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Preface

This book is an exposition of the theoretical foundations of hyperbolic
manifolds. It is intended to be used both as a textbook and as a reference.
Particular emphasis has been placed on readability and completeness of ar-
gument. The treatment of the material is for the most part elementary and
self-contained. The reader is assumed to have a basic knowledge of algebra
and topology at the first-year graduate level of an American university.

The book is divided into three parts. The first part, consisting of Chap-
ters 1-7, is concerned with hyperbolic geometry and basic properties of
discrete groups of isometries of hyperbolic space. The main results are the
existence theorem for discrete reflection groups, the Bieberbach theorems,
and Selberg’s lemma. The second part, consisting of Chapters 8-12, is de-
voted to the theory of hyperbolic manifolds. The main results are Mostow’s
rigidity theorem and the determination of the structure of geometrically
finite hyperbolic manifolds. The third part, consisting of Chapter 13, in-
tegrates the first two parts in a development of the theory of hyperbolic
orbifolds. The main results are the construction of the universal orbifold
covering space and Poincaré’s fundamental polyhedron theorem.

This book was written as a textbook for a one-year course. Chapters
1-7 can be covered in one semester, and selected topics from Chapters 8-
12 can be covered in the second semester. For a one-semester course on
hyperbolic manifolds, the first two sections of Chapter 1 and selected topics
from Chapters 8-12 are recommended. Since complete arguments are given
in the text, the instructor should try to cover the material as quickly as
possible by summarizing the basic ideas and drawing lots of pictures. If all
the details are covered, there is probably enough material in this book for
a two-year sequence of courses.

There are over 500 exercises in this book which should be read as part of
the text. These exercises range in difficulty from elementary to moderately
difficult, with the more difficult ones occurring toward the end of each set
of exercises. There is much to be gained by working on these exercises.

An honest effort has been made to give references to the original pub-
lished sources of the material in this book. Most of these original papers
are well worth reading. The references are collected at the end of each
chapter in the section on historical notes.

This book is a complete revision of my lecture notes for a one-year course
on hyperbolic manifolds that I gave at the University of Illinois during 1984.

vii
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I wish to express my gratitude to:

(1) James Cannon for allowing me to attend his course on Kleinian
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CHAPTER 1

Euclidean Geometry

In this chapter, we review Euclidean geometry. We begin with an informal
historical account of how criticism of Euclid’s parallel postulate led to the
discovery of hyperbolic geometry. In Section 1.2, the proof of the indepen-
dence of the parallel postulate by the construction of a Euclidean model of
the hyperbolic plane is discussed and all four basic models of the hyper-
bolic plane are introduced. In Section 1.3, we begin our formal study with
a review of n-dimensional Euclidean geometry. The metrical properties of
curves are studied in Sections 1.4 and 1.5. In particular, the concepts of
geodesic and arc length are introduced.

§1.1. Euclid’s Parallel Postulate

Euclid wrote his famous Elements around 300 B.C. In this thirteen-volume
work, he brilliantly organized and presented the fundamental propositions
of Greek geometry and number theory. In the first book of the Elements,
Euclid develops plane geometry starting with basic assumptions consisting
of a list of definitions of geometric terms, five “common notions” concerning
magnitudes, and the following five postulates:

1) A straight line may be drawn from any point to any other point.
2) A finite strawght line may be extended continuously 1 a straight line.

(
(
(3) A circle may be drawn with any center and any radius.
(4) All right angles are equal.

(

5) If a straight line falling on two straight lines makes the interior angles
on the same side less than two right angles, the two straight lines, if
extended indefinitely, meet on the side on which the angles are less
than two right angles.
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Figure 1.1.1. Euclid’s parallel postulate

The first four postulates are simple and easily grasped, whereas the fifth
is complicated and not so easily understood. Figure 1.1.1 illustrates the
fifth postulate. When one tries to visualize all the possible cases of the
postulate, one sees that it possesses an elusive infinite nature. As the sum
of the two interior angles « + 3 approaches 180°, the point of intersection
in Figure 1.1.1 moves towards infinity. Euclid’s fifth postulate is equivalent
to the modern parallel postulate of Euclidean geometry:

Through a point outside a giwen wnfinite straight line there is
one and only one wnfinite straight line parallel to the given line.

From the very beginning, Euclid’s presentation of geometry in his Ele-
ments was greatly admired, and The Thirteen Books of Euclid’s Elements
became the standard treatise of geometry and remained so for over two
thousand years; however, even the earliest commentators on the Elements
criticized the fifth postulate. The main criticism was that it is not sufli-
ciently self-evident to be accepted without proof. Adding support to this
belief is the fact that the converse of the fifth postulate (the sum of two
angles of a triangle is less than 180°) is one of the propositions proved by
Euclid (Proposition 17, Book I). How could a postulate, whose converse
can be proved, be unprovable? Another curious fact is that most of plane
geometry can be proved without the fifth postulate. It is not used until
Proposition 29 of Book I. This suggests that the fifth postulate is not really
necessary.

Because of this criticism, it was believed by many that the fifth postulate
could be derived from the other four postulates, and for over two thousand
years geometers attempted to prove the fifth postulate. It was not until
the nineteenth century that the fifth postulate was finally shown to be
independent of the other postulates of plane geometry. The proof of this
independence was the result of a completely unexpected discovery. The
denial of the fifth postulate leads to a new consistent geometry. It was
Carl Friedrich Gauss who first made this remarkable discovery.
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Gauss began his meditations on the theory of parallels about 1792. After
trying to prove the fifth postulate for over twenty years, Gauss discovered
that the denial of the fifth postulate leads to a new strange geometry, which
he called non-Euclidean geometry. After investigating its properties for over
ten years and discovering no inconsistencies, Gauss was fully convinced of
its consistency. In a letter to F. A. Taurinus, in 1824, he wrote: “The
assumption that the sum of the three angles (of a triangle) is smaller than
180° leads to a geometry which is quite different from our (Euclidean)
geometry, but which is in itself completely consistent.” Gauss’s assumption
that the sum of the angles of a triangle is less than 180° is equivalent to the
denial of Euclid’s fifth postulate. Unfortunately, Gauss never published his
results on non-Euclidean geometry.

Only a few years passed before non-Euclidean geometry was rediscovered
independently by Nikolai Lobachevsky and Janos Bolyai. Lobachevsky
published the first account of non-Euclidean geometry in 1829 in a paper
entitled On the principles of geomeltry. A few years later, in 1832, Bolyai
published an independent account of non-Euclidean geometry in a paper
entitled The absolute science of space.

The strongest evidence given by the founders of non-Euclidean geome-
try for its consistency is the duality between non-Euclidean and spherical
trigonometries. In this duality, the hyperbolic trigonometric functions play
the same role in non-Euclidean trigonometry as the ordinary trigonometric
functions play in spherical trigonometry. Today, the non-Euclidean ge-
ometry of Gauss, Lobachevsky, and Bolyai is called hyperbolic geometry,
and the term non-Euclidean geometry refers to any geometry that is not
Euclidean.

Spherical-Hyperbolic Duality

Spherical and hyperbolic geometries are oppositely dual geometries. This
duality begins with the opposite nature of the parallel postulate in each
geometry. The analogue of an infinite straight line in spherical geometry
is a great circle of a sphere. Figure 1.1.2 illustrates three great circles on
a sphere. For simplicity, we shall use the term line for either an infinite
straight line in hyperbolic geometry or a great circle in spherical geometry.
In spherical geometry, the parallel postulate takes the form:

Through a point outside a given line there is no line parallel to
the gwen line.

The parallel postulate in hyperbolic geometry has the opposite form:

Through a pownt outside a given line there are infinstely many
lines parallel to the given line.
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Figure 1.1.2. A spherical equilateral triangle ABC

The duality between spherical and hyperbolic geometries is further ev-
ident in the opposite shape of triangles in each geometry. The sum of the
angles of a spherical triangle is always greater than 180°, whereas the sum
of the angles of a hyperbolic triangle is always less than 180°. As the sum
of the angles of a Euclidean triangle is 180°, one can say that Fuclidean
geometry is midway between spherical and hyperbolic geometries. See Fig-
ures 1.1.2, 1.1.3, and 1.1.5 for an example of an equilateral triangle in each
geometry.

.
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\\ \ |
\ ' /

\ L _ \\\‘—///

S

Figure 1.1.3. A Euclidean equilateral triangle ABC
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Curvature

Strictly speaking, spherical geometry is not one geometry but a continuum
of geometries. The geometries of two spheres of different radii are not met-
rically equivalent; although they are equivalent under a change of scale.
The geometric invariant that best distinguishes the various spherical ge-
ometries is Gaussian curvature. A sphere of radius r has constant positive
curvature 1/72. Two spheres are metrically equivalent if and only if they
have the same curvature.

The duality between spherical and hyperbolic geometries continues. Hy-
perbolic geometry is not one geometry but a continuum of geometries. Cur-
vature distinguishes the various hyperbolic geometries. A hyperbolic plane
has constant negative curvature, and every negative curvature is realized
by some hyperbolic plane. Two hyperbolic planes are metrically equivalent
if and only if they have the same curvature. Any two hyperbolic planes
with different curvatures are equivalent under a change of scale.

For convenience, we shall adopt the unit sphere as our model for spherical
geometry. The unit sphere has constant curvature equal to 1. Likewise, for
convenience, we shall work exclusively with models for hyperbolic geometry
whose constant curvature is —1. It is not surprising that a Euclidean plane
is of constant curvature 0, which is midway between —1 and 1.

The simplest example of a surface of negative curvature is the saddle
surface in R3 defined by the equation z = zy. The curvature of this surface
at a point (z,y, z) is given by the formula

-1

K(z,y,2) = (1422 +12)2

(1.1.1)
In particular, the curvature of the surface has a unique minimum value of
—1 at the saddle point (0, 0, 0).

There is a well-known surface in R? of constant curvature —1. If one
starts at (0,0) on the zy-plane and walks along the y-axis pulling a small
wagon that started at (1,0) and has a handle of length 1, then the wagon

would follow the graph of the tractriz (L. trahere, to pull) defined by the
equation

y = cosh™} e) —V1-2z2 (1.1.2)

This curve has the property that the distance from the point of contact
of a tangent to the point where it cuts the y-axis is 1. See Figure 1.1.4.
The surface S obtained by revolving the tractrix about the y-axis in R3 is
called the tractroid. The tractroid S has constant negative curvature —1;
consequently, the local geometry of S is the same as that of a hyperbolic
plane of curvature —1. Figure 1.1.5 illustrates a hyperbolic equilateral
triangle on the tractroid S.
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Figure 1.1.4. Two tangents to the graph of the tractrix

=

Figure 1.1.5. A hyperbolic equilateral triangle ABC' on the tractroid



§1.2. Independence of the Parallel Postulate 7

§1.2. Independence of the Parallel Postulate

After enduring twenty centuries of criticism, Euclid’s theory of parallels was
fully vindicated in 1868 when Eugenio Beltrami proved the independence
of Euclid’s parallel postulate by constructing a Euclidean model of the hy-
perbolic plane. The points of the model are the points inside a fixed circle,
in a Euclidean plane, called the circle at infinity. The lines of the model
are the open chords of the circle at infinity. It is clear from Figure 1.2.1
that Beltrami’s model has the property that through a point P outside a
line L there is more than one line parallel to L. Using differential geometry,
Beltrami showed that his model satisfies all the axioms of hyperbolic plane
geometry. As Beltrami’s model is defined entirely in terms of Euclidean
plane geometry, it follows that hyperbolic plane geometry is consistent if
Euclidean plane geometry is consistent. Thus, Euclid’s parallel postulate
is independent of the other postulates of plane geometry.

In 1871, Felix Klein gave an interpretation of Beltrami’s model in terms
of projective geometry. In particular, Beltrami and Klein showed that the
congruence transformations of Beltrami’s model correspond by restriction
to the projective transformations of the extended Euclidean plane that
leave the model invariant. For example, a rotation about the center of
the circle at infinity restricts to a congruence transformation of Beltrami’s
model. Because of Klein’s interpretation, Beltrami’s model is also called
Klein’s model of the hyperbolic plane. We shall take a neutral position and
call this model the projective disk model of the hyperbolic plane.

The projective disk model has the advantage that its lines are straight,
but it has the disadvantage that its angles are not necessarily the Euclidean
angles. This is best illustrated by examining right angles in the model.

Figure 1.2.1. Lines passing through a point P parallel to a line L
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Figure 1.2.2. Two perpendicular lines L and L’ of the projective disk model

Let L be a line of the model which is not a diameter, and let P be the
intersection of the tangents to the circle at infinity at the endpoints of L
as illustrated in Figure 1.2.2. Then a line L’ of the model is perpendicular
to L if and only if the Euclidean line extending L’ passes through P. In
particular, the Euclidean midpoint of L is the only point on L at which the
right angle formed by L and its perpendicular is a Euclidean right angle.
We shall study the projective disk model in detail in Chapter 6.

The Conformal Disk Model

There is another model of the hyperbolic plane whose points are the points
inside a fixed circle in a Euclidean plane, but whose angles are the Eu-
clidean angles. This model is called the conformal disk model, since its
angles conform with the Euclidean angles. The lines of this model are the
open diameters of the boundary circle together with the open circular arcs
orthogonal to the boundary circle. See Figures 1.2.3 and 1.2.4. The hy-
perbolic geometry of the conformal disk model is the underlying geometry
of M.C. Escher’s famous circle prints. Figure 1.2.5 is Escher’s Circle Limit
IV. All the devils (angels) in Figure 1.2.5 are congruent with respect to the
underlying hyperbolic geometry. Some appear larger than others because
the model distorts distances. We shall study the conformal disk model in
detail in Chapter 4.

The projective and conformal disk models both exhibit Euclidean rota-
tional symmetry with respect to their Euclidean centers. Rotational sym-
metry is one of the two basic forms of Euclidean symmetry; the other is
translational symmetry. There is another conformal model of the hyper-
bolic plane which exhibits Euclidean translational symmetry. This model
is called the upper half-plane model.
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Figure 1.2.4. An equilateral triangle ABC in the conformal disk model
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Figure 1.2.5. M. C. Escher: Circle Limit IV
©1989 M. C. Escher Heirs / Cordon Art - Baarn - Holland

The Upper Half-Plane Model

The points of the upper half-plane model are the complex numbers above
the real axis in the complex plane. The lines of the model are the open rays
orthogonal to the real axis together with the open semicircles orthogonal
to the real axis. See Figures 1.2.6 and 1.2.7. The orientation preserving
congruence transformations of the upper half-plane model are the linear
fractional transformations of the form

b
o(z) = azt with a,b, ¢, d real and ad — be > 0.
cz+d

In particular, a Euclidean translation 7(z) = z + b is a congruence trans-
formation. The upper half-plane model exhibits Euclidean translational
symmetry at the expense of an unlimited amount of distortion. Any mag-
nification u(z) = az, with @ > 1, is a congruence transformation. We shall
study the upper half-plane model in detail in Chapter 4.
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Figure 1.2.6. Asymptotic parallel lines of the upper half-plane model

Figure 1.2.7. An equilateral triangle ABC in the upper half-plane model
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The Hyperboloid Model

All the models of the hyperbolic plane we have described distort distances.
Unfortunately, there is no way we can avoid distortion in a useful Euclidean
model of the hyperbolic plane because of a remarkable theorem of David
Hilbert that there is no complete C2? surface of constant negative curvature
in R3. Hilbert’s theorem implies that there is no reasonable distortion-free
model of the hyperbolic plane in Euclidean 3-space.

Nevertheless, there is an analytic distortion-free model of the hyperbolic
plane in Lorentzian 3-space. This model is called the hyperboloid model of
the hyperbolic plane. Lorentzian 3-space is R® with a non-Euclidean ge-
ometry (described in Chapter 3). Even though the geometry of Lorentzian
3-space is non-Euclidean, it still has physical significance. Lorentzian 4-
space is the model of space-time in the theory of special relativity.

The points of the hyperboloid model are the points of the positive sheet
(z > 0) of the hyperboloid in R3 defined by the equation

x? -y - 2% =1. (1.2.1)
A line of the model is a branch of a hyperbola obtained by intersecting
the model with a Euclidean plane passing through the origin. The angles
in the hyperboloid model conform with the angles in Lorentzian 3-space.
In Chapter 3, we shall adopt the hyperboloid model as our basic model of
hyperbolic geometry because it most naturally exhibits the duality between
spherical and hyperbolic geometries.

Exercise 1.2

1. Let P be a point outside a line L in the projective disk model. Show that
there exists two lines L, and Lo passing through P parallel to L such that
every line passing through P parallel to L lies between L and Lz. The two
lines L1 and Lo are called the parallels to L at P. All the other lines passing
through P parallel to L are called ultraparallels to L at P. Conclude that
there are infinitely many ultraparallels to L at P.

2. Prove that any right triangle in the conformal disk model, with its right
angle at the center of the model, has angle sum less than 180°.

3. Let u,v be distinct points of the upper half-plane model. Show how to
construct the hyperbolic line joining u and v with a Euclidean ruler and
compass.

4. Let ¢(z) = &*b with a,b,¢,d in R and ad — bc > 0. Prove that ¢ maps the
complex upper half—plane bijectively onto itself.

5. Show that the intersection of the hyperboloid 22 —y* — 2% = 1 with a
Euclidean plane passing through the origin is either empty or a hyperbola.
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§1.3. Euclidean n-Space

The standard analytic model for n-dimensional Euclidean geometry is the
n-dimensional real vector space R™. A wvector in R™ is an ordered n-tuple

x = (x1,...,Zy) of real numbers. Let z and y be vectors in R™. The
Euclidean inner product of x and y is defined to be the real number
T y=x191+* + TnYn. (1.3.1)

The Euclidean inner product is the prototype for the following definition:

Definition: An inner product on a real vector space V is a function from
V x V to R, denoted by (v, w) — (v, w), such that for all v,w in V,

(1) (v, ) and ( ,w) are linear functions from V to R (bilinearity);
(2) (v,w) = (w,v) (symmetry); and
(3) if v # 0, then there is a w # 0 such that (v,w) # 0 (nondegeneracy).

The Euclidean inner product on R™ is obviously bilinear and symmetric.
Observe that if z # 0 in R™, then z -z > 0, and so the Euclidean inner
product is also nondegenerate.

An inner product {, ) on a real vector space V is said to be positive
definite if and only if (v,v) > 0 for all nonzero v in V. The Euclidean inner
product on R™ is an example of a positive definite inner product.

Let (, ) be a positive definite inner product on V. The norm of v in V,
with respect to ( , ), is defined to be the real number

o)l = (v, v)2. (1.3.2)

The norm of z in R™, with respect to the Fuclidean inner product, is called
the Buclidean norm and is denoted by |z|.

Theorem 1.3.1. (Cauchy’s inequality) Let { , ) be a positive definite inner
product on a real vector space V. If v,w are vectors in V, then

(v, w)] < [lol] [|w]]
with equality of and only +f v and w are linearly dependent.

Proof: 1If v and w are linearly dependent, then equality clearly holds.

Suppose that v and w are linearly independent. Then tv — w # 0 for all ¢
in R, and so

0 < [[twv—wl® = (tv—w,tv—w)
2]0)|? — 2t(v, w) + [|w])2.

The last expression is a quadratic polynomial in ¢ with no real roots, and
so its discriminant must be negative. Thus

(v, w)? — 4”1}“2”7,0[[2 < 0. o
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Let z,y be nonzero vectors in R™. By Cauchy’s inequality, there is a
unique real number 6(x,y) between 0 and w such that

z-y = |z||y|cosb(z,y). (1.3.3)

The Fuclidean angle between x and y is defined to be 8(z, y).
Two vectors z,y in R™ are said to be orthogonal if and only if z -y = 0.
As cos(m/2) = 0, two nonzero vectors z,y in R” are orthogonal if and only

if O(z,y) = /2.

Corollary 1. (The triangle inequality) If z and y are vectors in R”, then
|z +yl < |z + |yl

with equality if and only of x and y are hnearly dependent.

Proof: Observe that

lz+y” = (z+y) (a+y)
|2]* + 2z -y + [y
<z + 20l fy| + [y
= (lz| + ly})?
with equality if and only if z and y are linearly dependent. o

Metric Spaces

The Euclidean distance between vectors z and ¢ in R™ is defined to be
du(w,y) = |z —yl. (1.3.4)

The distance function dg is the prototype for the following definition:

Definition: A metric on a set X is a function d : X x X — R such that

for all z,y,z in X,

(1) d(z,y) > 0 (nonnegativity);

(2) d(z,y) = 0 if and only if z = y (nondegeneracy);

(3) d(z,y) = d(y, ) (symmetry); and

(4)

4) d(z,z) < d(z,y) + d(y, z) (triangle inequality).

The Euclidean distance function dg obviously satisfies the first three
axioms for a metric on R™. By Corollary 1, we have
2=z =|(z—y) + @y -2 < |z —yl+|y—z]

Therefore dg satisfies the triangle inequality. Thus dg is a metric on R",
called the Fuclidean metric.
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Definition: : A metric space is a set X together with a metric d on X.

Example: FEuclidean n-space E™ is the metric space consisting of R"
together with the Euclidean metric dg.

An element of a metric space is called a point. Let X be a metric space
with metric d. The open ball of radius r > 0, centered at the point a of X,
is defined to be the set

B(a,r) ={z € X : d(a,z) <T}.

The closed ball of radius r > 0, centered at the point a of X, is defined to
be the set
Cla,r) ={z € X : d(a,z) <r}.

A subset U of X is open in X if and only if for each point 2 of U, there
is an r > 0 such that U contains B(z,r). In particular, if S is a subset of
X and r > 0, then the r-neighborhood of S in X, defined by

N(S,r) =U{B(z,r): z € S},

is a open in X.

The collection of all open subsets of a metric space X is a topology on
X, called the metric topology of X. A metric space is always assumed to be
topologized with its metric topology. The metric topology of E™ is called
the Buchdean topology of R™. We shall assume that R™ is topologized with
the Euclidean topology.

Isometries

A function ¢ : X — Y between metric spaces preserves distances if and
only if

dy (¢(z), ¢(y)) = dx(z,y) for all z,yin X.

Note that a distance preserving function is a continuous injection.

Definition: An isometry from a metric space X to a metric space Y is a
distance preserving bijection ¢ : X — V.

The inverse of an isometry is obviously an isometry, and the composite
of two isometries is an isometry. Two metric spaces X and Y are said to
be isometric (or metrically equivalent) if and only if there is an isometry
¢ : X — Y. Clearly, being isometric is an equivalence relation among the
class of all metric spaces.

The set of isometries from a metric space X to itself, together with
multiplication defined by composition, forms a group I(X), called the group

of wsometries of X. An isometry from E™ to itself is called a Euchdean
isometry.
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Example: Let a be a point of E™. The function 7, : E™ — E", defined
by the formula

To(x) =a+z,

is called the translation of E™ by a. The function 7, is an isometry, since
Tq 18 a bijection with inverse 7_, and

I7a(2) = 7a(¥)| = [(a +2) = (e +y)| = |z -y

Definition: A metric space X is homogeneous if and only if for each pair
of points z,y of X, there is an isometry ¢ of X such that ¢(z) = y.

Example: FEuclidean n-space E™ is homogeneous, since for each pair of
points x,y of E™, the translation of E™ by y — x translates x to y.

Orthogonal Transformations

Definition: A function ¢ : R® — R" is an orthogonal transformation if
and only if

o(x) - dy) =z-y forall z,y in R™.

Example: The antipodal transformation o of R™, defined by a(z) = —z,
is an orthogonal transformation, since

a(z) aly) =-z-—y=2z-y.

Definition: A basis {v1,...,v,} of R™ is orthonormal if and only if

v, - v, = &, (Kronecker’s delta) for all 4, j.

Example: Let e, be the vector in R™ whose coordinates are all zero,
except for the ith, which is one. Then {e1,...,e,} is an orthonormal basis
of R™ called the standard basis of R™.

Theorem 1.3.2. A function ¢ : R* — R™ is an orthogonal transformation
if and only if ¢ 18 linear and {¢(e1),...,d(en)} is an orthonormal basis of
R™.

Proof: Suppose that ¢ is an orthogonal transformation of R™. Then

¢(ez) : ¢(€j) =€, € = 5”.
To see that ¢(ey), ..., d(en) are linearly independent, suppose that

> adle) =0.
=1

Upon taking the inner product of this equation with ¢(e;), we ﬁnd that
¢, = 0 for each j. Hence {¢(e1),..- ,¢(en)} is an orthonormal basis of R™.
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Let z be in R™. Then there are coefficients c1,..., ¢, in R such that
n
= Z c.P(e,).
=1
As {¢(e1),...,¢(en)} is an orthonormal basis, we have

¢, =) dle;) =z - e, =1,

Then ¢ is linear, since

¢ (i [If7,€1> = Z IZ¢(61)'

Conversely, suppose that ¢ is linear and {¢(e1),...,d(es)} is an or-
thonormal basis of R™. Then ¢ is orthogonal, since

¢(z) - o(y) ¢(Z xmz) 3| > we
=1 7=1

l

= (szqb(el))- Zyg¢(eg)

=1
= Z Z T1Yy ¢(61 ¢(€J>
=1 j3=1

= szyz = Y. o

Corollary 2. Every orthogonal transformation is a Euclidean 1s0metry.

Proof: Let ¢ : R® — R” be an orthogonal transformation. Then 10
preserves Euclidean norms, since

6(2)|* = p(x) - §(2) =z - & = |a]2.

Consequently ¢ preserves distances, since

16(2) = 6(v)| = p(z — y)| = |z — y|.

By Theorem 1.3.2, the map ¢ is bijective. Therefore ¢ is a Euclidean

isometry. o

A real nxn matrix 4 is said to be orthogonal if and only if the associated
linear transformation A : R® — R™, defined by A(z) = Az, is orthogonal.
The set of all orthogonal n x n matrices together with matrix multiplication
forms a group O(n), called the orthogonal group of n x n matrices. By
Theorem 1.3.2, the group O(n) is naturally isomorphic to the group of
orthogonal transformations of R™.

The next theorem follows immediately from Theorem 1.3.2.
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Theorem 1.3.3. Let A be a real n X n matrix. Then the following are
equwvalent:

(1) The matriz A is orthogonal.

2) The columns of A form an orthonormal basis of R™.
3) The matriz A satisfies the equation A*A = 1.

4) The matriz A satisfies the equation AA* = 1.

(5) The rows of A form an orthonormal basis of R™.

(
(
(

Let A be an orthogonal matrix. As A*A = I, we have that (det A)? = 1.
Thus det A = £1. If det A = 1, then A is called a rotateon. Let SO(n) be
the set of all rotations in O(n). Then SO(n) is a subgroup of index two

in O(n). The group SO(n) is called the special orthogonal group of n X n
matrices.

Group Actions

Definition: A group G acts on a set X if and only if there is a function
from G x X to X, written (g, ) — gz, such that for all g,h in G and z in
X, we have

(1) 1-z =2z and

(2) g(hz) = (gh)z.

A function from G x X to X satisfying conditions (1) and (2) is called an
action of G on X.

Example: If X is a metric space, then the group I(X) of isometries of X
acts on X by ¢z = &(z).

Definition: An action of a group G on a set X is transitwe if and only if
for each z,y in X, there is a g in G such that gz = y.

Theorem 1.3.4. For each dvmension m, the natural action of O(n) on
the set of m-dvmensional vector subspaces of R™ 1s transitive.

Proof: Let V be an m-dimensional vector subspace of R with m > 0.
Identify R™ with the subspace of R™ spanned by the vectors ey, ..., €m- It
suffices to show that there is an A in O(n) such that A(R™) =V.

Choose a basis {u1,...,u,} of R™ such that {u1,...,um} is a basis
of V. We now perform the Gram-Schmidt process on {u1,... ,Un}. Let
wy = u1/|ug|. Then |wi] = 1. Next, let v = uaz — (ug - wi)wi. Then vy is
nonzero, since u; and uy are linearly independent; moreover,

wi - V2 :wl-u2—(u2-w1)(w1~w1)20.
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Now let

wy = vz/|val,

vy = ug— (uz - wi)wy — (uz - wa)we,

ws = wv3/lvsl,

Up = Up — (Un - w)wi — (Un - wo)wz — -+ — (Up * Wp—1)Wr—1,

wy, = Up/|Unl-
Then {wy,...,w,} is an orthonormal basis of R™ with {wy, ..., w,} a basis
of V. Let A be the n X n matrix whose columns are wy,...,w,. Then A
is orthogonal by Theorem 1.3.3, and A(R™) = V. o

Definition: Two subsets S and T' of a metric space X are congruent in
X if and only if there is a isometry ¢ of X such that ¢(S) =T.

Being congruent is obviously an equivalence relation on the set of all
subsets of X. An isometry of a metric space X is also called a congruence
transformation of X.

Definition: An m-plane of E™ is a coset a+V of an m-dimensional vector
subspace V of R™.

Corollary 3. All the m-planes of E™ are congruent.

Proof: Let a+V and b+ W be m-planes of E*. By Theorem 1.3.4, there
is a matrix A in O(n) such that A(V) = W. Define ¢ : E® — E™ by

#(x) = (b — Aa) + Ax.
Then ¢ is an isometry and
dpla+V)=b+W.
Thus a + V and b+ W are congruent. a]

Characterization of Euclidean Isometries
The following theorem characterizes an isometry of E™.
Theorem 1.3.5. Let ¢ : E™ — E™ be a function. Then the following are
equivalent:
(1) The function ¢ is an wsometry.

(2) The function ¢ preserves distances.

(3) The functron ¢ is of the form ¢(z) = a+ Az, where A 1s an orthogonal
matriz and a = ¢(0).
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Proof: By definition, (1) implies (2). Suppose that ¢ preserves distances.
Then A = ¢ — ¢(0) also preserves distances and A(0) = 0. Therefore A
preserves Euclidean norms, since

|Az| = |A(z) — A(0)| = |z — 0] = |.
Consequently A is orthogonal, since
24z - Ay = |Az|? +|Ay|? — |Az — Ay|?
2 + |y =l -y = 2z-y.
Thus, there is an orthogonal n x n matrix A such that ¢(z) = ¢(0) + Az,
and so (2) implies (3). If ¢ is in the form given in (3), then ¢ is the

composite of an orthogonal transformation followed by a translation, and
so ¢ is an isometry. Thus (3) implies (1). a

Remark: Theorem 1.3.5 states that every isometry of E™ is the composite
of an orthogonal transformation followed by a translation. It is worth
noting that such a decomposition is unique.

Similarities

A function ¢ : X — Y between metric spaces is a change of scale if and
only if there is a real number & > 0 such that

dy (¢(), $(y)) = kdx(z,y) for all ¢,y in X.

The positive constant k is called the scale factor of ¢. Note that a change
of scale is a continuous injection.

Definition: A similarity from a metric space X to a metric space Y is a
bijective change of scale ¢ : X — Y.

The inverse of a similarity, with scale factor k, is a similarity with scale
factor 1/k. Therefore, a similarity is also a homeomorphism. Two metric
spaces X and Y are said to be similar (or equivalent under a change of
scale) if and only if there is a similarity ¢ : X — Y. Clearly, being similar
is an equivalence relation among the class of all metric spaces. The set
of similarities from a metric space X to itself, together with multiplication
defined by composition, forms a group S(X), called the group of similarities
of X. The group of similarities S(X) contains the group of isometries I(X)
as a subgroup. A similarity from E™ to itself is called a Fuclidean similarity.

Example: Let k > 1. The function uy : E™ — E™, defined by py(z) = k=,
is called the magnification of E™ by the factor k. Clearly, the magnification

Uy is a similarity with scale factor k.

The next theorem follows easily from Theorem 1.3.5.
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Theorem 1.3.6. Let ¢ : E™ — E™ be a function. Then the following are
equivalent:

(1) The function ¢ 1s a similarity.
(2) The function ¢ 1s a change of scale.

(3) The function ¢ 15 of the form ¢(x) = a+ kAx, where A is an orthog-
onal matriz, k is a positwe constant, and a = ¢(0).

Given a geometry on a space X, its principal group is the group of all
transformations of X under which all the theorems of the geometry remain
true. In his famous Erlanger Program, Klein proposed that the study of a
geometry should be viewed as the study of the invariants of its principal
group. The principal group of n-dimensional Euclidean geometry is the
group S(E™) of similarities of E™.

Exercise 1.3

1. Let vo,...,vn be vectors in R™ such that vq — vy, ..., vm — v are linearly in-
dependent. Show that there is a unique m-plane of E® containing vo, ..., Um.
Conclude that there is a unique 1-plane of E™ containing any two distinct
points of E™.

2. A hne of E™ is defined to be a 1-plane of E™. Let z, y be distinct points of
E™. Show that the unique line of E™ containing x and y is the set
{z+tly—z):tcR}.
The line segment in E™ joining « to y is defined to be the set
{z+tly—z):0<t <1}

Conclude that every line segment in £ extends to a unique line of E™.

3. Two m-planes of E™ are said to be parallel if and only if they are cosets
of the same m-dimensional vector subspace of R™. Let z be a point of E™
outside of an m-plane P of E™. Show that there is a unique m-plane of E™
containing z parallel to P.

4. Two m-planes of E™ are said to be coplanar if and only if there is an (m+1)-
plane of E™ containing both m-planes. Show that two distinct m-planes of
E™ are parallel if and only if they are coplanar and disjoint.

5. A hyperplane of E™ is defined to be an (n — 1)-plane of E™. Let zo be a
point of a subset P of E™. Prove that P is a hyperplane of E™ if and only
if there is a unit vector @ in R”, which is unique up to sign, such that

P={z€E":a (z—=z) =0}.

6. The orthogonal complement of an m-dimensional vector subspace V of R” is
defined to be the set

V‘Lz{xeR":az~y:0 for all y in V'}.
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Prove that V= is an (n — m)-dimensional vector subspace of R" and that
and each vector z in R™ can be written uniquely as ¢ = y + z with y in V
and z in V*. In other words, R =V @ V.

A line and a hyperplane of E™ are said to be orthogonal if and only if their
associated vector spaces are orthogonal complements. Let y be a point of
E™ outside of a hyperplane P of E™. Show that there is a unique point z
in P nearest to y and that the line passing through xo and y is the unique
line of E™ passing through y orthogonal to P.

Let uo, ..., un be vectors in R™ such that u; — uo,...,un — uo are linearly
independent, let vo,...,vn be vectors in R™ such that vy — vg,...,vn — v
are linearly independent, and suppose that

fu, — uy| = v, —v,| for all 4, .

Show that there is a unique isometry ¢ of E™ such that ¢(u,) = v, for each
1=1,...,n.

. Prove that E™ and E™ are isometric if and only if m = n.
10.

Let | || be the norm of a positive definite inner product ( , ) on an n-
dimensional real vector space V. Define a metric d on V' by the formula

d(v,w) = ||v — w]||. Show that d is a metric on V and prove that the metric
space (V,d) is isometric to E™.

§1.4. Geodesics

In

this section, we study the metrical properties of lines of Euclidean n-

space E™. In order to prepare for later applications, all the basic definitions
in this section are in the general context of curves in a metric space X.

Definition: A curve in a space X is a continuous function v : [a,b] — X
where [a, b] is a closed interval in R with a < b.

Let v : [a,b] — X be a curve. Then v(a) is called the wnatral point of

and (b) is called the terminal point. We say that 7 is a curve in X from
v(a) to y(b). If X = E™, then 1 is said to be linear if and only if

v(a+tb—a)) = y(a) +t(v(b) — 7(a))

for all ¢ in [0, 1].

Example: Let z,y be points of E™. Define v : [0,1] — E™ by

y(t) =z + iy — 2)-

Then 7 is a linear curve in E™ from z to y.

The proof of the next theorem is straightforward and is left to the reader.
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Theorem 1.4.1. Let v : [a,b] — E™ be a curve. Then the following are
equivalent:

(1) The curve vy is lnear.
(2) The curve vy satisfies the equation
t—a

1) =@+ (=2 ) (6) = 1(0).

(3) The curve v has a constant first derwatwe ' : [a,b] — E™.

—a

Definition: Three points x,y,z of E™ are collinear, with y between z
and z, if and only if there is a real number ¢ between 0 and 1 such that
y=2x+t(z—x).

The proof of the next lemma is elementary and is left to the reader.

Lemma 1. Three pownts z,y,z of E™ are collinear, with y between x and
z, if and only +f
|z -z =y —z[+ ]z -yl

Geodesic Arcs

Definition: A geodesic arc in a metric space X is a distance preserving
function « : [a,b] — X, with @ < bin R.

Note that a geodesic arc a : [a,b] — X is a continuous injection and so is
a curve.

Theorem 1.4.2. A curve o : [a,b] — E™ is a geodesic arc if and only if «

1s linear and |o/(t)| = 1 for all t in [a,b)].

Proof: Suppose that « is linear and |o/(¢)| = 1. Then by Theorem 1.4.1,
a(t) = afa) + < > (a(b) — a(a)),

and since |&/(¢)| = 1, we have

la(b) — a(a)] = b — a.

t—a

b—a

Therefore
|t — s
T, o) —ala)[ = [t —s|.

alt) — a(s) = =

Thus « is a geodesic arc.
Conversely, suppose that o is a geodesic arc. Let t be in [a,b]. Then
la(d) —a(a)l = b-a
= b—t+t—a
= |a(®) —at)| +|a(t) — ala)|.
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By Lemma 1, we have that a(a), a(t), a(b) are collinear with «(t) between
a(a) and a(b). Therefore, there is some f(¢) in [0,1] such that
a(t) = a(a) + f(t)(a(b) — afa)).
Now, since
la(t) —afa)] _ t—a
t) = =
1) la(b) — afa)] b—a’

the curve « is linear by Theorem 1.4.1 and

() 120~ o)

= 1.
b—a .

Definition: A geodesic segment joining a point x to a point y in a metric
space X is the image of a geodesic arc « : [a,b] — X whose initial point is
z and terminal point is y.

Corollary 1. The geodesic segments of E™ are its line segments.

Theorem 1.4.3. Let [z,y] and [y, 2] be geodesic segments joining x to y
and y to z, respectively, in a metric space X. Then the set [z,y] U [y, 2] s
a geodesic segment joining x to z in X if and only of

d(z,2) = d(z,y) + d(y, 2).
Proof: If [z,y]U[y, 2] is a geodesic segment joining x to z, then obviously
d(z,z) = d(z,y) + d(y, 2).
Conversely, suppose that the above equation holds. Let a : [a,b] — X and
B :[b,c] — X be geodesic arcs from z to y and y to z, respectively. Define
v :la,c] = X by y(t) = a(t)ifa <t <band H(t) = B(t) fb <t <c
Suppose that a < s <t <ec Ift <b, then
d(v(s),7(t)) = d(a(s),a(t)) =t — 5.
If b <s, then
d(y(s),7(t)) = d(B(s), B(t)) =t — 5.
If s < b < t, then

d(y(s),7(1)) < d(v(),7(b)) + (v (), 7(2))
(b—s)+(t-b = t—s.

Moreover
d(y(s),7(®) > d(v(a),7(c)) — d(v(a),¥(s)) — d(v(¥),7(€))
d(z,2) — (s—a)—(c—1)
= d(z,y) +d(y,2) —(c—a) + (t— )
= (b—a)+(c—b—(c—a)+(t—5) = t—s
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Therefore, we have
d(v(s),7(t) =t — s.

Hence y is a geodesic arc from x to z whose image is the set [z, y] U [y, z].
Thus [z,y] U [y, 2] is a geodesic segment joining x to y. o

A subset C of E™ is said to be convez if and only if for each pair of
distinct points z,y in C, the line segment joining z to y is contained in C.
The notion of convexity in E™ is the prototype for the following definition:

Definition: A metric space X is geodesically convez if and only if for each
pair of distinct points xz,y of X, there is a unique geodesic segment in X
joining x to y.

Example: Euclidean n-space E™ is geodesically convex.

Remark: The modern interpretation of Euclid’s first axiom is that a
Euclidean plane is geodesically convex.

Definition: A metric space X is geodesically connected if and only if each
pair of distinct points of X are joined by a geodesic segment in X.

A geodesically convex metric space is geodesically connected, but a
geodesically connected metric space is not necessarily geodesically convex.

Definition: A geodesic curve in a metric space X is a locally distance
preserving curve vy : [a,b] — X.

A geodesic arc is a geodesic curve, but a geodesic curve is not necessarily
a geodesic arc.

Definition: A geodesic section in a metric space X is the image of an
injective geodesic curve v : [a,b] — X.

A geodesic segment is a geodesic section, but a geodesic section is not
necessarily a geodesic segment.

Definition: A geodesic half-line in a metric space X is a locally distance
preserving function 7 : [0, +00) — X.

A geodesic half-line is continuous, since it is locally continuous.

Definition: A geodesic ray in a metric space X is the image of a geodesic
half-line 7 : [0, +o0) — X.
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(GGeodesic Lines

Definition: A geodesic hine in a metric space X is a locally distance
preserving function A : R — X.

A geodesic line is continuous, since it is locally continuous.
Theorem 1.4.4. A function A : R — E™ is a geodesic line if and only if
A(t) = XM0) + t(A(1) — X(0)) for all t and |A(1) — A(0)| = 1.

Proof: Suppose that A() = A(0) + t(A(1) — A(0)) and |A(1) — A(0)| = 1.
Then X(¢) is constant and of norm one. Hence, the restriction of A to any

interval is a geodesic arc by Theorems 1.4.1 and 1.4.2. Thus ) is a geodesic
line.

Conversely, suppose that A is a geodesic line. By Theorems 1.4.1 and
1.4.2, the function A is differentiable and ) is a constant unit vector. Hence

A(t) = A(0) + ¢(A(1) — A(0))
for all t and [A(1) — A(0)| = 1. o

Definition: A geodesic in a metric space X is the image of a geodesic line
AR—- X,

Corollary 2. The geodesics of E™ are its lines.

Definition: A metric space X is geodesically complete if and only if each
geodesic arc « : [a,b] — X extends to a unique geodesic line A : R — X.

Example: FEuclidean n-space E™ is geodesically complete.

Remark: The modern interpretation of Euclid’s second axiom is that a
Euclidean plane is geodesically complete.

Definition: A metric space X is totally geodesic if and only if for each
pair of distinct points z,y of X there is a geodesic of X containing both =
and y.

Example: Euclidean n-space E™ is totally geodesic.

Definition: A coordinate frame of E™ is an n-tuple (Ay,...,\n) of func-
tions such that
(1) the function A, : R — E™ is a geodesic line foreach i =1,...,n;

(2) there is a point a of E™ such that X,(0) = a for all ¢; and
(3) the set {N;(0),...,A;,(0)} is an orthonormal basis of R™.
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Example: Define ¢, : R — E™ by ¢,(t) = te,. Then (g1,...,e,) is a
coordinate frame of E™, called the the standard coordinate frame of E™.

Theorem 1.4.5. The action of I(E™) on the set of coordinate frames of
E", given by (A1, ..., A\n) = (A1, ..., dAn), 18 transitive.

Proof: Let (A1,...,\,) be a coordinate frame of E™. It suffices to show
that there is a ¢ in I(E™) such that ¢(e1,...,6n) = (A1,...,An). Let A be
the n x n matrix whose columns are A} (0),..., A}, (0). Then A is orthogonal

by Theorem 1.3.3. Let a = A,(0) and define ¢ : E™ — E" by ¢(z) = a+ Axz.
Then ¢ is an isometry. As ¢e,(0) = A, (0) and (¢¢,)’(0) = A.(0), we have
that ¢)(51,...,€n):()\1,...,>\n). m]

Remark: The modern interpretation of Euclid’s fourth axiom is that the
group of isometries of a Euclidean plane acts transitively on the set of all
its coordinate frames.

Exercise 1.4

1. Prove Theorem 1.4.1.
2. Prove Lemma 1.

3. A subset X of E™ is said to be affine if and only if X is a totally geodesic

metric subspace of E™. Prove that an arbitrary intersection of affine subsets
of E™ is affine.

4. An affine combination of points v1,. .., v, of E™ is a linear combination of
the form t1v1 + - - - 4 € vy, such that ¢4 4 - -+ + ¢ = 1. Prove that a subset

X of E™ is affine if and only if X contains every affine combination of points
of X.

5. The affine hull of a subset S of E™ is defined to be the intersection A(S) of
all the affine subsets of E™ containing S. Prove that A(S) is the set of all
affine combinations of points of §.

6. A set {vo,...,vn} of points of E™ is said to be affinely independent if and
only if tovo + -+ - + tyvm = 0 and to+ - +1tm = 0 imply that £, = 0 for all
1 =0,...,m. Prove that {vo,..., v} is affinely independent if and only if
the vectors v1 — vo, ..., vm — vo are linearly independent.

7. An affine basis of an affine subset X of E™ is an affinely independent set of
points {vo, ..., vn} such that X is the affine hull of {vo,...,vm}. Prove that
every nonempty affine subset of E™ has an affine basis.

8. Prove that a nonempty subset X of E" is affine if and only if X is an m-plane
of E™ for some m.

9. A function ¢ : E™ — E™ is said to be affine if and only if
(L —t)z +ty) = (1 - t)¢(x) + td(y)

for all z,y in E™ and ¢ in R. Show that an affine transformation of E™ maps
affine sets to affine sets and convex sets to convex sets.



28 1. Euclidean Geometry

10. Prove that a function ¢ : E™ — E™ is affine if and only if there is an n X n
matrix A and a point a of E™ such that ¢(z) = a + Az for all z in E™.

11. Prove that an arbitrary intersection of convex subsets of E™ is convex.

12. A convexr combination of points v1,...,Vn of E™ is a linear combination of
the form #1v1 + -+ + t;mUm such that t1 + -+ ¢, = 1 and ¢, > 0 for all
1 =1,...,m. Prove that a subset C of E" is convex if and only if C contains
every convex combination of points of C'.

13. The convez hull of a subset S of E™ is defined to be the intersection C(S) of

all the convex subsets of E™ containing S. Prove that C(S) is the set of all
convex combinations of points of S.

14. Let S be a subset of E”. Prove that every element of C(S) is a convex
combination of at most n + 1 points of S.

15. Let K be a compact subset of E”. Prove that C(K) is compact.

16. Let C be a convex subset of E™. Prove that for all 7 > 0, the r-neighborhood
N(C,r) of C in E™ is convex.

17. A subset of S of E™ is locally convez if and only if for each z in S, there is an
7 > 0 so that B(z,r) N S is convex. Prove that a closed, connected, locally
convex subset of E™ is convex.

18. Prove that a geodesic section in a metric space X can be subdivided into a
finite number of geodesic segments.

§1.5. Arc Length

Let a and b be real numbers such that a < b. A partition P of the closed
interval [a, b] is a finite sequence {to,...,tx} of real numbers such that

a:t0<t1<--'<tm:b.
The norm of the partition P is defined to be the real number
|P| = max{t, —t,_1 :i=1,...,m}.

Let P[a, b] be the set of all partitions of [a,b]. If P, Q are in PJa,b], then
Q is said to refine P if and only if each term of P is a term of Q. Define a
partial ordering of Pla,b] by @ < P if and only if Q refines P.
Let 7 : [a,b] — X be a curve in a metric space X and let
P={to,.-,tm}

be a partition of [a,b]. The P-inscribed length of 7 is defined to be

g(% P) = Emz d(’Y(tz—l)a "Y(tz))'

=1

Tt follows from the triangle inequality that if @ < P, then £(7, P) <4(v,Q).
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Definition: The length of a curve v : [a,b] — X is
7l = sup{é(y, P) : P € Pla,b]}.
Note that since {a, b} is a partition of [a, b], we have
d(v(a),~(b)) < 7| < oo.

Definition: A curve 7 is rectifiable if and only if |y| < oo.

Example: Let 7 : [0,b] — X be a geodesic arc and let P be a partition
of [a,b]. Then

A~
=
3

I
NE

d(’Y(tz—l)’ ’Y(tz))

s
Il
-

I
NgE

(tl _tz—l) = b—a.

-
1l
-

Therefore -y is rectifiable and
17l = d(v(a), (b))

Theorem 1.5.1. Let v : [a,c] — X be a curve, let b be a number between

a and c, and let o : [a,b] — X and B : [b,c] — X be the restrictions of 7.
Then we have

vl = laf+ 18-
Moreover vy is rectifiable if and only if & and 8 are rectifiable.
Proof: Let P be a partition of [a,b] and let Q be a partition of [b, c].
Then P U Q is a partition of [a,c] and
fa, P) +£(8,Q) = £(v, PUQ).
Therefore, we have
laf + 18] < |-

Let R be a partition of [a,c]. Then R’ = RU {b} is a partition of [a, c]
and R’ = P U Q, where P is a partition of [a,b] and Q is a partition of
[b, c]. Now

{7, R) < (v, R) = £, P) + £(8,Q).
Therefore, we have
vl < el +18]-
Thus, we have
Iyl = lof + 18]

Moreover 7 is rectifiable if and only if a and 3 are rectifiable. o
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Let X be a geodesically connected metric space and let « : [a,b] - X
be a curve from z to y. Then |vy| > d(z,y) with equality if -y is a geodesic
arc. Thus d(z,y) is the shortest possible length of 4. It is an exercise to
show that || = d(z,y) if and only if v maps [a, b] onto a geodesic segment
joining x to y and d(z,~y(t)) is an increasing function of ¢. Thus, a shortest
path from z to y is along a geodesic segment joining = to y.

Let {to,...,tm} be a partition of [a,b] and let ~, : [t,—1,t,] — X, for
i=1,...,m, be a sequence of curves such that the terminal point of v,_;
is the initial point of v,. The product of v1,...,vm is the curve

Y Ym [a’b] — X
defined by
T Ym(t) =Y (t) fort,_; <t <t,.

If each =, is a geodesic arc, then ~; -- -, is called a piecewise geodesic

curve. By Theorem 1.5.1, a piecewise geodesic curve 71 - - - v, is rectifiable
and

|71"'7m‘ = |’Yl|+"'+"7ml'

Let v : [a,b] — X be a curve in a geodesically connected metric space
X and let

P={tg,...,tm}
be a partition of [a,b]. Then there is a piecewise geodesic curve
Yoo Ym 2 [0,4] = X

such that -, is a geodesic arc from ~(¢,—1) to ¥(t,). The piecewise geodesic
curve 7 - - - Ym is said to be inscribed on 7. See Figure 1.5.1. Notice that

v, P) =71 Yml-

Thus, the length of «y is the supremum of the lengths of all the piecewise
geodesic curves inscribed on 7.

Figure 1.5.1. A piecewise geodesic curve inscribed on a curve 7y
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Euclidean Arc Length

A C! curve in E™ is defined to be a differentiable curve 7 : [a,b] — E™
with a continuous derivative 4’ : [a,b] — E™. Here +/(a) is the right-hand
derivative of vy at a, and +/(b) is the left-hand derivative of -y at b.

Theorem 1.5.2. Ifv: [a,b] — E™ 15 a C' curve, then v is rectifiable and
the length of v is given by the formula

b
Iy = / Iy (8 dt.

Proof: Let P = {tg,...,tm} be a partition of [a,b]. Then we have

(nP) = D hle) (i)
= X[ Vo
< Z / = [ o

Therefore y is rectifiable and

b
I < / I (8)]dt.

Ifa <c<d<b let y.q be the restriction of v to the interval [e, d].
Define functions A, 1 : [a,b] — R by A(a) = 0, A\(¢) = |ya| if t > a, and

t) = / Iy (t) .

Then p/'(t) = |/ (¢)| by the fundamental theorem of calculus.
Suppose that a <t < ¢+ h < b. Then by Theorem 1.5.1, we have

Y+ R) = ()] < Ireern| = AE+R) — A1)
Hence, by the first part of the proof applied t0 Yt,t4-n, We have

‘w +h) = ()| _ At+h) - s — 1) = )
h - h - h h '
Likewise, these inequalities also hold for a S t+h <t <b. Letting h — 0,

we conclude that
Y ()] = N (t) = ' (t).

Il = / Iy (8)|dt. .

Therefore, we have
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Let v : [a,b] — E™ be a curve. Set
dz = (dz.,...,dz,)

and

|dz| = (da? + - - + dm%)%

L da] = ).

Moreover, if 7y is a C* curve, then by Theorem 1.5.2, we have

asl = [ 1 (0t
faa= |

The differential |dz| is called the element of Euclidean arc length of E™.

Then by definition, we have

Exercise 1.5

1. Let 7 : [a,b] — X be a curve in a metric space X and let P, @ be partitions
of [a,b] such that Q refines P. Show that £(v, P) < £(v, Q).

2. Let 7 : [a,b] — X be a rectifiable curve in a metric space X. For each ¢ in
[a,b], let va,¢ be the restriction of « to [a,]. Define a function X : [a,b] — R
by Aa) =0 and A(t) = |Ya,:| if ¢t > a. Prove that X is continuous.

3. Let v : [a,b] — X be a curve from z to y in a metric space X with z # y.
Prove that |y| = d(z,y) if and only if v maps [a, ] onto a geodesic segment
joining x to y and d(z,y(t)) is an increasing function of ¢.

4. Let v = (71,...,7m) be a curve in E™. Prove that « is rectifiable in E™ if
and only if each of its component functions -, is rectifiable in R.

5. Define v : [0,1] — R by ¥(0) = 0 and ~(¢) = tsin (1/¢) if ¢ > 0. Show that
is a nonrectifiable curve in R.

6. Let v : [a,b] — X be a curve in a metric space X. Define v~* : [a,b] — X
by v7'(t) = y(a +b—t). Show that |y~ = |v|.

7. Let 7y : [a,b] — X be a curve in a metric space X and let 7 : [a,b] — [c,d]
be an increasing homeomorphism. The curve yn~" : [¢,d] — X is called a
reparameterization of v. Show that |yn™!| = |7l.

8. Let v : [a,b] = E™ be a C! curve. Show that -y has a reparameterization,
given by 7 : [a,b] — [a,b], so that yn~" is a C* curve and

(™) (@) =0=(yn 1) (b).

. . . . 1
Conclude that a piecewise C! curve can be reparameterized into a C* curve.
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§1.6. Historical Notes

§1.1. For commentary on Euclid’s fifth postulate, see Heath’s translation
of Euclid’s Elements [118]. Gauss’s correspondence and notes on non-
Euclidean geometry can be found in Vol. VIII of his Werke [150]. For a
translation of Gauss’s 1824 letter to Taurinus, see Greenberg’s 1974 text
Euclidean and non-Euclidean Geometries [166]. A German translation of
Lobachevsky’s 1829-1830 Russian paper On the principles of geometry can
be found in Engel’s 1898 treatise N. I. Lobatschefskij [262]. Bolyai’s 1832
paper Scientiam spatii absolute veram exhibens, with commentary, can be
found in the 1987 translation Appendiz [51]. Hyperbolic geometry is also
called Lobachevskian geometry.

For the early history of non-Euclidean geometry, see Bonola’s 1912
treatise Non-Fuclidean Geometry [52]. See also Gray’s 1979 article Non-
Euclidean geometry - a re-interpretation [159], Gray’s 1987 article The
discovery of non-FEuclidean geometry [161], Milnor’s 1982 article Hyper-
bolic geometry: the first 150 years [290], and Houzel’s 1992 article The
burth of non-Euclidean geometry [200]. A comprehensive history of non-
Euclidean geometry can be found in Rosenfeld’s 1988 treatise A History of
Non-Euclhdean Geometry [353]. For a list of the early literature on non-
Euclidean geometry, see Sommerville’s 1970 Bibliography of Non-Euclhdean
Geometry [377).

For an explanation of the duality between spherical and hyperbolic ge-
ometries, see Chapter 5 of Helgason’s 1978 treatise Differential Geometry,
Lie Groups, and Symmetric Spaces [188]. The intrinsic curvature of a
surface was formulated by Gauss in his 1828 treatise Disquisitiones gen-~
erales circa superficies curvas. For a translation, with commentary, see
Dombrowski’s 1979 treatise 150 years after Gauss’ “disquisitiones generales
circa superficies curvas” [148]. Commentary on Gauss’s treatise and the
derivation of Formula 1.1.1 can be found in Vol. IT of Spivak’s 1979 treatise
Differential Geometry [378]. The tractroid was shown to have constant neg-
ative curvature by Minding in his 1839 paper Wie sich entscheiden lafst,
ob zwei gegebene krumme Flichen auf einander abwickelbar sind oder nicht
[292].

§1.2. Beltrami introduced the projective disk model of the hyperbolic
plane in his 1868 paper Saggio di interpetrazione della geometria non-
euclidea [38]. In this paper, Beltrami concluded that the intrinsic geom-
etry of a surface of constant negative curvature is non-Euclidean. Klein’s
interpretation of hyperbolic geometry in terms of projective geometry ap-
peared in his 1871 paper Ueber die sogenannte Nichi- Euklidische Geometrie
[224]. In this paper, Klein introduced the term hyperbolic geometry. Bel-
trami introduced the conformal disk and upper half-plane models of the
hyperbolic plane in his 1868 paper Teorwa fondamentale degli spazii di cur-
vatura costante [39]. The mathematical basis of Escher’s circle prints is
explained in Coxeter’s 1981 article Angels and dewdls [94]. See also the
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proceedings of the 1985 M. C. Escher congress M. C. Escher: Art and
Science [117]. Poincaré identified the linear fractional transformations of
the complex upper half-plane with the congruence transformations of the
hyperbolic plane in his 1882 memoir Théorie des groupes fuchsiens [330].
Hilbert’s nonimbedding theorem for smooth complete surfaces of constant
negative curvature appeared in his 1901 paper Ueber Fldchen von constan-
ter Gaussscher Krimmung [190]. For a proof of Hilbert’s nonimbedding
theorem for C? surfaces, see Milnor’s 1972 paper Efimov’s theorem about
complete immersed surfaces of negative curvature [291].

§1.3. The study of n-dimensional geometry was initiated by Cayley in
his 1843 paper Chapters in the analytical geometry of (n) dimensions [74].
Vectors in n-dimensions were introduced by Grassmann in his 1844 trea-
tise Die lineale Ausdehnungslehre [156]. The Euclidean inner product ap-
peared in Grassmann’s 1862 revision of the Ausdehnungslehre [157], [158].
The Euclidean norm of an n-tuple of real numbers and Cauchy’s inequality
for the Euclidean inner product appeared in Cauchy’s 1821 treatise Cours
d’Analyse [71]. Formula 1.3.3 appeared in Schlifli's 1858 paper On the
multiple integral [ dzdy---dz [360]. The triangle inequality is essentially
Proposition 20 in Book I of Euclid’s Elements [118]. The Euclidean dis-
tance between points in n-dimensional space was defined by Cauchy in his
1847 paper Mémoire sur les lieuz analytiques [73]. The early history of n-
dimensional Euclidean geometry can be found in Rosenfeld’s 1988 treatise
[353]. For the history of vectors, see Crowe’s 1967 treatise A History of
Vector Analysis [97).

The notion of a metric was introduced by Fréchet in his 1906 paper Sur
quelques pownts du calcul fonctionnel [137]. Metric spaces were defined by
Hausdorff in his 1914 treatise Grundziige der Mengenlehre [181]. Orthog-
onal transformations in n-dimensions were first considered implicitly by
Euler in his 1771 paper Problema algebrascum ob affectiones prorsus singu-
lares memorabile [124]. Orthogonal transformations in n-dimensions were
considered explicitly by Cauchy in his 1829 paper Sur l’équation ¢ l'arde de
laquelle on détermine les mnégalités sécularres des mouvements des planétes
[72]. The term orthogonal transformation appeared in Schléifli’s 1855 paper
Réduction d’une intégrale multiple, qui comprend Uarc de cercle et Uarre du
triangle sphérique comme cas particuliers [359]. The term group was intro-
duced by Galois in his 1831 paper Mémoire sur les conditions de résolubilité
des équations par radicauz [146], which was published posthumously in
1846. The group of rotations of Euclidean 3-space appeared in Jordan’s
1867 paper Sur les groupes de mouvements [205]. For the early history
of group theory, see Wussing’s 1984 history The Genesis of the Abstract
Group Concept [418].

All the essential material in §1.3 in dimension three appeared in Euler’s
1771 paper [124] and in his 1776 paper Formulae generales pro transla-
tione quacunque corporum rigidorum [126]. See also Lagrange’s 1773 pa-
pers Nouwvelle solution du probléme du mouvement de rotation [249] and
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Sur Dattraction des sphérowdes elliptiques [250]. The group of orientation
preserving isometries of Euclidean 3-space appeared in Jordan’s 1867 paper
[205]. The group of similarities of Euclidean n-space appeared in Klein’s
1872 Erlanger Program [226]. For commentary on Klein’s Erlanger Pro-
gram, see Hawkins’ 1984 paper The FErlanger Programm of Feliz Klein
[185], Birkhoff and Bennett’s 1988 article Felwr Klewn and his “Erlanger
Programm?” [48], and Rowe’s 1992 paper Klein, Lie, and the “Erlanger Pro-
gramm” [354]. Isometries of Euclidean n-space were studied by Jordan in
his 1875 paper Essai sur la géométrie ¢ n dimensions [207]. For an overview
of the development of geometry and group theory in the nineteenth century,
see Klein’s 1928 historical treatise Development of Mathematics wn the 19th
Century [238] and Yaglom’s 1988 monograph Felz Klewn and Sophus Lie
[420].

§1.4. The hypothesis that a line segment is the shortest path between
two points was taken as a basic assumption by Archimedes in his third
century B.C. treatise On the sphere and cylnder [23]. The concept of
a geodesic arose out of the problem of finding a shortest path between
two points on a surface at the end of the seventeenth century. Euler first
published the differential equation satisfied by a geodesic on a surface in
his 1732 paper De lLnea brevissuma in superficie quacunque duo quaelibet
puncta jungente [119]. For the history of geodesics, see Stiickel’s 1893
article Bemerkungen zur Geschichte der geoddtischen Limien [379]. The
general theory of geodesics in metric spaces can be found in Busemann’s
1955 treatise The Geometry of Geodesics [63].

§1.5. Archimedes approximated the length of a circle by the perimeters
of inscribed and circumscribed regular polygons in his third century B.C.
treatise On the Measurement of the Circle [23]. Latin translation of the
works of Archimedes and Apollonius in the Middle Ages and the introduc-
tion of analytic geometry by Fermat and Descartes around 1637 spurred
the development of geometric techniques for finding tangents and quadra-
tures of plane curves in the first half of the seventeenth century. This led
to a series of geometric rectifications of curves in the middle of the seven-
teenth century. In particular, the first algebraic formula for the length of
a nonlinear curve, y? = 23, was found independently by Neil, van Heuraet,
and Fermat around 1658. In the last third of the seventeenth century, cal-
culus was created independently by Newton and Leibniz. In particular,
they discovered the element of Euclidean arc length and used integration
to find the length of plane curves. For a concise history of arc length, see
Boyer’s 1964 article Early rectifications of curves [57]. A comprehensive
history of arc length can be found in Traub’s 1984 thesis The Development
of the Mathematical Analysis of Curve Length from Archimedes to Lebesque
[391]. All the essential material in §1.5 appeared in Vol.1 of Jordan’s 1893
treatise Cours d’Analyse [210]. Arc length in metric spaces was introduced
by Menger in his 1930 paper Zur Metrik der Kurven [286]. For the general
theory of arc length in metric spaces, see Busemann’s 1955 treatise [63]



CHAPTER 2

Spherical Geometry

In this chapter, we study spherical geometry. In order to emphasize the
duality between spherical and hyperbolic geometries, a parallel develop-
ment of hyperbolic geometry will be given in Chapter 3. In many cases,
the arguments will be the same except for minor changes. As spherical
geometry is much easier to understand, it is advantageous to first study
spherical geometry before taking up hyperbolic geometry. We begin by
studying spherical n-space. Elliptic n-space is considered in Section 2.2.
Spherical arc length and volume are studied in Sections 2.3 and 2.4. The
chapter ends with a section on spherical trigonometry.

§2.1. Spherical n-Space
The standard model for n-dimensional spherical geometry is the unit sphere
S™ of R**! defined by
St ={z e R" : |z| = 1}.
The Euclidean metric dg on S™ is defined by the formula
dn(z,y) = o — y- (2.1.1)

The Euclidean metric on S™ is sufficient for most purposes, but it is not
intrinsic to S, since it is defined in terms of the vector space structure
of R"*1, We shall define an intrinsic metric on S™, but first we need to
review cross products in R3.

Cross Products

Let x,y be vectors in R3. The cross product of z and y is defined to be
T Xy = (2y3 — T3Y2, T3Y1 — T1Y3, T1Y2 — T2y1)- (2.1.2)

The proof of the next theorem is routine and is left to the reader.

36
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Theorem 2.1.1. If w,z,y, z are vectors in R3, then
(1) TXY=—-YyXc,
ry T2 X3
(2) (Txy)z=|1n y2 ys |,

21 22 23

@) (@Exyxz=(z2)y-(y 2)z,

@) (exy) (xw)=

x-z T-w
y-z y-w
Let ,y,z be vectors in R3. The real number (z x y) - z is called the
scalar triple product of x,y, z. It follows from Theorem 2.1.1(2) that
(xxy)-z=(yxz2)-z=(2xz)- . (2.1.3)
Thus, the value of the scalar triple product of z,y,z remains unchanged
when the vectors are cyclically permuted. Consequently
(xxy)-z=(xxz) y=0
and
(zxy)-y=(yxy) z=0
Hence z x y is orthogonal to both z and y. It follows from Theorem 2.1.1
(4) and Formula 1.3.3 that if z and y are nonzero, then
1z x y| = |z| [y| sin0(z,y), (2.1.4)
where 6(z,y) is the Euclidean angle between z and y.
Let A be in O(3). Then a straightforward calculation shows that
Az x y) = (det A)(Az x Ay). (2.1.5)

In particular, a rotation of R3 preserves cross products. Consequently, the

direction of x X y relative to z and y is given by the right-hand rule, since
€1 X eg = e3.

The Spherical Metric

Let z,y be vectors in S™ and let 6(z,y) be the Euclidean angle between

x and y. The spherical distance between x and y is defined to be the real
number

ds(z,y) = 0(=,y). (2.1.6)
Note that
0<ds(z,y) <m

and dg(z,y) = 7 if and only if y = —z. Two vectors z,y in S™ are said to
be antipodal if and only if y = —z.
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Theorem 2.1.2. The spherical distance function dg is a metric on S™.

Proof: The function dg is obviously nonnegative, nondegenerate, and
symmetric. It remains only to prove the triangle inequality. The orthog-
onal transformations of R"*! act on S™ and obviously preserve spherical
distances. Thus, we are free to transform z,y, z by an orthogonal trans-
formation. Now the three vectors z,y, z span a vector subspace of R"*! of
dimension at most three. By Theorem 1.3.4, we may assume that x,y, 2
are in the subspace of R"*! spanned by ey, e, e3. In other words, we may
assume that n = 2. Then we have

cos(0(z, y) + 6(y, z))
= cosf(z,y) cosb(y, z) —sinf(z,y) sin(y, z)
= (z-y)(y-2) — e xylly x 2|

< (@ y)(y-2)—(zxy) (yx=z)
= (@ Yy-2) - (= Yy 2)—(z-2)(yy)
= cosb(z, z).
Thus, we have that 6(z,z) < 6(z,y) + 0(y, 2). o

The metric dg on S™ is called the spherical metric. The metric topology
of S™ determined by dg is the same as the metric topology of S™ determined
by dg. The metric space consisting of S™ together with its spherical metric
dg is called spherical n-space. Henceforth S™ will denote spherical n-space.
An isometry from S™ to itself is called a spherical isometry.

Remark: A function ¢ : S® — S™ is an isometry if and only if it is
an isometry with respect to the Euclidean metric on S™ because of the
following identity on S™:

1
zoy=1-glz -y

Theorem 2.1.3. Every orthogonal transformation of R™*1 restricis to an
wsometry of S™, and every isometry of S™ extends to a unique orthogonal
transformation of R*T1.

Proof: Clearly, a function ¢ : S — S™ is an isometry if and only if
it preserves Euclidean inner products on S™. Therefore, an orthogonal
transformation of R™*! restricts to an isometry of S™. The same argument
as in the proof of Theorem 1.3.2 shows that an isometry of 8™ extends to
a unique orthogonal transformation of R L o

Corollary 1. The group of spherical 1sometries I(S™) is 1somorphic to the
orthogonal group O(n +1).
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Spherical Geodesics

Definition: A great circle of S™ is the intersection of S™ with a 2-
dimensional vector subspace of R™t1.

Let z and y be distinct points of S™. If x and y are linearly independent,
then « and y span a 2-dimensional subspace V(z,y) of R**!, and so the
set S(z,y) = S" NV (z,y) is the unique great circle of S™ containing both
z and y. If x and y are linearly dependent, then y = —z. Note that if
n > 1, then there is a continuum of great circles of S™ containing both z
and —z, since every great circle of S™ containing x also contains —z.

Definition: Three points x,y, z of S™ are spherically collinear if and only
if there is a great circle of S™ containing z, v, 2.

Lemma 1. If z,y, z are in S™ and
0(z,y) +6(y, z) = 0(x, 2),

then x,y, z are spherically collinear.
Proof: As z,y,z span a vector subspace of R™*! of dimension at most 3,
we may assume that n = 2. From the proof of Theorem 2.1.2, we have

(z xy)- (yx2)=lexy|lyx 2|
Hence z x y and y X z are linearly dependent by Theorem 1.3.1. Therefore
(xxy)x(yxz)=0. As

(2 xy) x (yx 2) = (z- (y x 2))y,
we have that z,y, z are linearly dependent by Theorem 2.1.1(2). Hence

%, 9y, z lie on a 2-dimensional vector subspace of R"*! and so are spherically
collinear. o

Theorem 2.1.4. Let a: [a,b] — S™ be a curve with b — a < 7. Then the
following are equivalent:

(1) The curve o 1s a geodesic arc.
(2) There are orthogonal vectors T,y m S™ such that
a(t) = (cos(t — a))z + (sin(t — a))y.
(3) The curve a satisfies the differential equation o + o = 0.
Proof: Let A be an orthogonal transformation of R**. Then we have
that (Aa)’ = Aa’. Consequently o satisfies (3) if and only if Ao does.

Hence we are free to transform « by an orthogonal transformation. Suppose
that « is a geodesic arc. Let ¢ be in the interval [a,b]. Then we have

O(afa),a(d)) = b—a
= (t—a)+(b-1)
= f(a(a), o)) + 0(a(t), a(b)).
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By Lemma 1, we have that a(a), a(t), a(b) are spherically collinear. As
f(a(a),a(d)) =b—a <,

the points a(a) and a(b) are not antipodal. Hence a(a) and «(b) lie on a
unique great circle S of S™. Therefore, the image of « is contained in S.
Hence, we may assume that n = 1. By applying a rotation of the form

coss —sins
sin s cos s
we can rotate a(a) to e, so we may assume that a(a) = e;. Then

e1-a(t) = ala) - a(t) = cosb(ala), a(t)) = cos(t — a).

Therefore eg - a(t) = tsin(t — a). As a is continuous and b — a < 7, we
have that either

ex-at) = sin(t—a) forallt
or
ea-aft) = —sin(t—a) forallt.

In the latter case, we can apply the reflection

(o)
0o -1/’
and so we may assume that
a(t) = (cos(t — a))er + (sin(t — a))es.
Thus (1) implies (2).
Next, suppose there are orthogonal vectors z,y in S™ such that
a(t) = (cos(t — a))z + (sin(t — a))y.
Let s and ¢ be such that a < s <t < b. Then we have
cosO(a(s),a(t)) = als)-alt)
= cos(s — a) cos(t — a) + sin(s — a) sin(t — a)
= cos(t — s).

As t — s < 7, we have that 8(a(s),a(t)) =t —s. Thus « is a geodesic arc.
Hence (2) implies (1).
Clearly (2) implies (3). Suppose that (3) holds. Then

a(t) = cos(t — a)a(a) + sin(t — a)a’(a).

Upon differentiating the equation a(t)-a(t) = 1, we see that o(?) -/ (t) =0.
Thus a(t) and o (t) are orthogonal for all ¢. In particular, a(a) and o/ (a)
are orthogonal. Observe that

la(t))? = cos?(t — a) + sin®(t — a)|o/(a)|*.
As |a(t)| = 1, we have that |a/(a)| = 1. Thus (3) implies (2). o

The next theorem follows easily from Theorem 2.1.4.
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Theorem 2.1.5. A function A : R — S™ is a geodesic line if and only if
there are orthogonal vectors x,y in S™ such that

A(t) = (cost)x + (sint)y.

Corollary 2. The geodesics of S™ are its great circles.
Exercise 2.1

1. Show that the metric topology of S™ determined by the spherical metric is
the same as the metric topology of S™ determined by the Euclidean metric.

2. Let A be a real n X n matrix. Prove that the following are equivalent:
(1) A is orthogonal.
(2) |Az| = |z| for all z in R™.
(3) A preserves the quadratic form f(z) = 2% + .- 4+ z2.

3. Show that every matrix in SO(2) is of the form

cosf) —sinf
sin @ cosf |’

4. Show that a curve « : [a,b] — S™ is a geodesic arc if and only if there are
orthogonal vectors z,y in S™ such that

a(t) = (cos(t - a))z + (sin(t — a))y and b—a < 7.

Conclude that §™, with n > 0, is geodesically connected but not geodesically
convex.

5. Prove Theorem 2.1.5. Conclude that S” is geodesically complete.

6. A great m-sphere of S™ is the intersection of S™ with an (m + 1)-dimensional
vector subspace of R™"*. Show that a subset X of S™, with more than one

point, is totally geodesic if and only if X is a great m-sphere of S™ for some
m > 0.

7. Let uo, ..., un be linearly independent vectors in S™, let vy, ..., vy, be linearly
independent vectors in S™, and suppose that 6(u,,u,) = O(v,,v,) for all 4, §.
Show that there is a unique isometry ¢ of S™ such that ¢(u,) = v, for each
1=0,...,n.

8. Prove that every similarity of S™ is an isometry.

9. A tangent vector to S™ at a point & of S™ is defined to be the derivative
at 0 of a differentiable curve y : [-b,b] — S™ such that v(0) = z. Let
T: = T:(S™) be the set of all tangent vectors to S™ at z. Show that

T.={yeR" :z.y=0}.

Conclude that Ty is an n-dimensional vector subspace of R™"1, The vector
space Ty is called the tangent space of S™ at .
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10. A coordinate frame of S™ is a n-tuple (A1, ..., An) of functions such that

(1) the function A, : R — 8™ is a geodesic line for each i = 1,...,n;
(2) there is a point x of S™ such that A, (0) = z for all i; and
(3) the set {A1(0),...,2,(0)} is an orthonormal basis of T, (S™).

Show that the action of I{S™) on the set of coordinate frames of S”, given
by ¢(A1,...,An) = (dM1,. .., ¢As), is transitive.

§2.2. Elliptic n-Space

The antipodal map « : R**! — R*"1 defined by a(z) = —z, obviously
commutes with every orthogonal transformation of R™t!; consequently,
spherical geometry is antipodally symmetric. The antipodal symmetry of
spherical geometry leads to a duplication of geometric information. For
example, if three great circles of $? form the sides of a spherical triangle,
then they also form the sides of the antipodal image of the triangle. See
Figure 2.5.3 for an illustration of this duplication.

The antipodal duplication in spherical geometry is easily eliminated by
identifying each pair of antipodal points z, —z of S™ to one point +z. The
resulting quotient space is called real projective n-space. P™ The spherical
metric dg on S™ induces a metric dp on P™ defined by

dp(*z, ty) = min{ds(z,v),ds(z, —y)}. (2.2.1)

Notice that dp(+x,+y) is just the spherical distance from the set {z, —z}
to the set {y, —y} in S™. The metric space consisting of P" and the metric
dp is called elliptic n-space. The lines (geodesics) of P" are the images of
the geodesics of S™ with respect to the natural projection n : S — P™. As
7 is a double covering, each line of P™ is a circle that is double covered by
a great circle of S®. Elliptic geometry, unlike spherical geometry, shares
with Euclidean geometry the property that there is a unique line passing
through each pair of distinct points.

Gnomonic Projection

Identify R™ with R™ x {0} in R***. The gnomonic projection
v:R* — S"

is defined to be the composition of the vertical translation of R™ by en41
followed by radial projection to S™. See Figure 2.2.1. An explicit formula
for v is given by

T+ €nti

_ ZTtens (2.2.2)
lm + €n+1|

v(z)
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T+ eg

Figure 2.2.1. The gnomonic projection v of R into S*

The function v maps R™ bijectively onto the upper hemisphere of S™.
Hence, the function nv : R® — P™ is an injection. The complement of
nv(R™) in P™ is P"~1, which corresponds to the equator of S™ with an-
tipodal points identified.

Classical real projective n-space is the set

R* =R"U P!

with P"~! adjoined to R™ at infinity. In R™, a point at infinity in P! is
adjoined to each line of R™ forming a finite line. Two finite lines intersect if
and only if they intersect in R™ or they are parallel in R”, in which case they
intersect at their common point at infinity. Besides the finite lines, there
are the lines of P"~! at infinity. When n = 2, there is exactly one line at
infinity. Classically, the real projective plane refers to the Euclidean plane
R? together with one line at infinity adjoined to it so that lines intersect
as described above.

The injection nv : R™ — P™ extends by the identity map on P*! to a
bijection 7 : R — P™ that maps the lines of R™ to the lines of P". Classical

real projective n-space is useful in understanding elliptic geometry, since
the finite lines of R™ correspond to the lines of R™.

Exercise 2.2

1. Prove that dp is a metric on P™.

2. Let 7 : 8" — P™ be the natural projection. Show that if = is in S™ and
r >0, then n(B(z,r)) = B(n(z), r).

3. Show that 7 maps the open hemisphere B (z,7/2) homeomorphically onto
B(n(z), m/2). Conclude that 7 is a double covering.

4. Show that n maps B(z,7/4) isometrically onto B(n(z),7/4).

5. Prove that the geodesics of P™ are the images of the great circles of S™ with
respect to 7.
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Show that P! is isometric to %Sl.

Show that the complement in P? of an open ball B(z,r), with r < 7/2, is a
Moébius band.

Let z be a point of P* at a distance s > 0 from a geodesic L of P®. Show
that there is a geodesic L' of P? passing through z such that each point

in L' is at a distance s from L. The geodesics L and L’ are called Clifford
parallels.

Let S = {z € 8" : zn4+1 > 0}. Define ¢ : ST — R™ by
¢($1,...,$n+1) = ($1/$n+1,...,xn/xn+1).

Show that ¢ is inverse to v : R™ — S§". Conclude that v maps R™ homeo-
morphically onto S7.

Define an m-plane Q of P™ to be the image of a great m-sphere of S™ with
respect to the natural projection 7 : S™ — P™. Show that the intersection
of a corresponding m-plane Q of R™ with R" is either an m-plane of E™ or
the empty set, in which case Q is an m-plane at infinity in P™*.

§2.3. Spherical Arc Length

In this section, we determine the element of spherical arc length of 5.

Theorem 2.3.1. A curve v : [a,b] — S™ is rectifiable wn S™ of and only if
~y is rectifiable mn R™T1; moreover, the spherical length of «y is the same as
the Euclidean length of 7.

Proof: The following inequality holds for all 0:

1—6%/2 <cosf <1—6%/2+6%/24.

Hence, we have that

62 — 6*/12 < 2(1 — cos ) < 6°.

Let =,y be in S™. Then

lz — y|? = 2(1 — cosO(z, y))-

Consequently

|z —yl _
1—02%(z,y)/12

lz —y| < 0(z,y) <

As 0 < 6(z,y) < 7, we have

lz — g

J1-72/12

|5L'_y| < 9(1‘,y) <
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Let P be a partition of [a,b] and let £s(v, P) and £5(vy, P) be the spher-
ical and Euclidean P-inscribed length of -, respectively. Then we have

195 (77 P)
Lg(vy,P) <fs(v,P) < ———~—.
5(7,P) < {s(v, P) =
Let |v|s and |y|g be the spherical and Euclidean length of v, respectively.
Then we have that
IVlE

< < =
Ve <lvls < T _W2/12

Therefore « is rectifiable in S™ if and only if v is rectifiable in R™t1.
Suppose that |P| < § and set

u(,6) = sup{B(y(s), 7() : |t — 8| < 5}.
Then we have that

14 P
ts(7,P) < 2D
V1—p?/12
Hence, we have that

T V1212
As v : [a,b] — S™ is uniformly continuous, u(y, 8) goes to zero with 6.
Therefore |y|s < |y|g. Thus |y|s = |7|E. o

Corollary 1. The element of spherical arc length of S™ is the element of
Eucldean arc length of R™t restricted to S™.

§2.4. Spherical Volume

Let  be a vector in R™+! such that Zp and z,41 are not both zero. The
spherical coordinates (p, 61, ..., 0r) of z are defined as follows:

(1) p= 2,
(2) 0, =0(e,, e, + Top1€41 + -+ Tpprenyr) ifi <,
(3) 6, is the polar angle from e,, to z,e, + Tnt1€n41-

The spherical coordinates of z satisfy the system of equations

T1 = pcosbyq,
Tz = psinfqcosbsy,

(2.4.1)
Tn = psinb;sinf,---sinf,_qcosb,,

Znt1 = psinGisinby---sinf,_;sinb,.
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A straightforward calculation shows that

Oz x
(1) i Tl (2.4.2)
0
(2) 6% = psinfy ---sinf,_q, (2.4.3)
Or Oz Oz

3 —_— ey,
(3) 3, 90, 06, are orthogonal. (2.4.4)
This implies that the Jacobian of the spherical coordinate transformation
(0,61,-..,60) = (T1,...,Tpy1) is p" Lsin™ 1 0, sin" 26, - --sinb,_;.

The spherical coordinate parameterization of S™ is the map

g: (0,7t x [0,2n] — S™

defined by g(61,...,6,) = (z1,...,Tns1), where z, is expressed in terms
of 01,...,0, by the system of Equations (2.4.1). The map g is surjective,
and injective on the open set (0,7)"! x (0, 27).

A subset X of S™ is said to be measurable in S™ if and only if g=1(X) is
measurable in R™. In particular, all the Borel subsets of S™ are measurable
in S™. If X is measurable in S™, then the spherical volume of X is defined
to be

Vol(X) = / sin® 16, sin® 20y ---sinb,_1d; - - - db,,. (2.4.5)
—HX)

The motivation for Formula 2.4.5 is as follows: Subdivide the rectangular
solid [0, 7]"~! x [0, 27] into a rectangular grid. Each grid rectangular solid
of volume Af; --- Af, that meets g~ (X) corresponds under g to a region
in S™ that meets X. This region is approx1mated by the rectangular solid
spanned by the vectors g—eglAOh ceey 30 L A@,,. Its volume is given by

Og
\89 NG,

As the mesh of the subdivision goes to zero, the sum of the volumes of the
approximating rectangular solids approaches the volume of X as a limit.
Let X be a measurable subset of S™ and let ¢ be an orthogonal trans-
formation of R™*!. It is a basic fact of advanced calculus that ¢(X) is
also measurable in S?, and the volume of ¢(X) can be measured with re-
spect to the new parameterlzatlon ¢g of S” As ¢ maps the rectangular
solid spanned by the vectors 89 I N0, ..., 80 29 A@,, onto the rectangular solid

~3g Ab, |- — gin™ 1 0y sin™ 26y - - sinf,_1Ab; - - AG,,.

00,

spanned by the vectors 609 Aby, ..., g? AG,,, we deduce that
Vol(¢(X)) = Vol(X).

In other words, spherical volume is an isometry-invariant measure on S™.
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It is clear from Formula 2.4.5 that spherical volume is countably additive,
that is, if {X,}5°, is a sequence of disjoint measurable subsets of S™, then

X = OL<J>1 X, is also measurable in S™ and
=
Vol(X E Vol(X.

Theorem 2.4.1. The element of spherical volume for the upper hemi-
sphere Tn41 > 0 of 8™, with respect to the Fuclidean coordinates Ty, ..., %n,

18
d.’El te d.’En

(L= (af+-+ad))s

Proof: It is more convenient for us to show that the element of spher-
ical volume for the hemisphere z; > 0, with respect to the coordinates

T2, ...y Tntl, IS
dzy - drp4

- (23 +- +a22,))

The desired result will then follow by a simple change of coordinates.
Consider the transformation

g:(0,7/2) x (0,7)""% x (0,27) — R"

defined by
§(01, c.. ,Hn) = (.’EQ, e In+1)
where z, is given by (2.4.1). Then by (2.4.4), the vectors (,?99 yeens 6%5 are
orthogonal. Hence, the Jacobian of the transformation g is given by
_ 69 8g
Jg(64,...,0,
9(0n ) 20,| |96,

= cosfsinf}~ Lgin®~ 20y -sinf,_.

By changing variables via g, we have

/ sin” ! 0y sin" 26, - - - sin 0r—1d0; ---db,,
971(X)

_ / de‘Q e dxn-i—l
g971(X) 2!

_ / d dmn+1
p(x) [L— (23 +-- + ~”3%+1)]é 7

where p : S — R" is the projection

P(T1, ... Tpyt) = (22,...,Tpt1)- a
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Exercise 2.4

1. Show that the spherical coordinates of a vector x in R™*' satisfy the system
of Equations (2.4.1).

2. Show that the spherical coordinate transformation satisfies the Equations
(2.4.2)-(2.4.4).

3. Show that the element of spherical arc length dx in spherical coordinates is
given by

d® = db? + sin® 0,d63 + - - - +sin” 6; - - - sin® 0,,_1d6>.

4. Let B(z,r) be the spherical disk centered at a point x of S? of spherical
radius . Show that the circumference of B(z,r) is 2rsinr and the area of
B(z,r) is 2m(1—cosr). Conclude that B(z,r) has less area than a Euclidean
disk of radius r.

5. Show that

_ 27"

) Vol($* T = ——

M) Vel =

2n+lﬂ_n
2n—-1)(2n-3)---3-1°

(2)  Vol(§*") =

§2.5. Spherical Trigonometry

Let z,vy, z be three spherically noncollinear points of S2. Then no two of
z,v, z are antipodal. Let S(z,y) be the unique great circle of $? containing
z and y, and let H(z,y, z) be the closed hemisphere of 52 with S(z,y) as its
boundary and z in its interior. The spherical triangle with vertices z,y, 2
is defined to be

T(x7 y’ Z) = H(x7 y’ z) ﬁ H(y7 Z? :L.) m H(Z’ x’ y)'
We shall assume that the vertices of T'(z,y, z) are labeled in positive order
as in Figure 2.5.1.

Let [z, ] be the minor arc of S(z, y) joining  to y. The sides of T(z,y, 2)
are defined to be [z, 1], [y, 2], and [z,z]. Let a = 6(y,2), b = 0(z,z), and
¢ = 0(x,y). Then a,b,c is the length of [y, 2], [z, z], [z, y], respectively. Let

f:[0,a] = S2%, g:[0,6] = % h:[0,c] — s?
be the geodesic arc from y to 2z, z to z, and z to y, respectively.

The angle o between the sides [z, z] and [z, y] is defined to be the angle
between —g'(b) and h/(0). Likewise, the angle 3 between the sides [z, y] and
[y, 2] is defined to be the angle between —h'(c) and F/(0), and the angle v
between the sides [y, 2] and [z, z] is defined to be the angle between — f'(a)
and ¢’(0). The angles a, 3,7 are called the angles of T(z,y,z). The side
[y, 2], [2, %], [z, y] is said to be opposite the angle a, 3, ~, respectively.
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b

Figure 2.5.1. A spherical triangle T'(z,y, 2)

Lemma 1. If a, 8, are the angles of a spherical triangle T(z,y, z), then

1) (zxz,zcxy)=7—q,
(2) Oz xy,yx z) =7 — B,
3) blyxz,zxz)=m—17.

Proof: The proof of (1) is evident from Figure 2.5.2. The proof of (2),
and (3), is similar. o

—g'(b) h'(0)

Figure 2.5.2. Four vectors on the tangent plane T, with o < 7/2
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Theorem 2.5.1. If , 3, are the angles of a spherical triangle, then
a+fB+y>m.
Proof: Let o, 8, be the angles of a spherical triangle T'(z, vy, z). Then
((zxy) x(zxy))-(zx2)
(- (zxy)y~(y-(zxy))z] (2 x 2)

= (@ (zxy)y- (2 x 1))

= —(y-(zxx))?

< 0.

By Theorem 2.1.1(2), the vectors z X y, z X y, z X = are linearly independent,

and so their associated unit vectors are spherically noncollinear. By Lemma
1 of §2.1, we have

Oz xy,zxz)<(zxyzxy)+0(zxyzxz).

Now by Lemma 1, we have

T—a<fB+7. o

Theorem 2.5.2. (The Law of Sines) If o, 8,7 are the angles of a spherical
triangle and a,b, ¢ are the lengths of the opposite sides, then

sina sin b sine¢

sina sin8  siny’
Proof: Upon taking norms of both sides of the equations

(2 % ) x (@ xy) = (2 (@ x ),
(@ xy) x (y x 2) = (- (y x 2))y,
(y x 2) x (2 x z) = (y- (2 x 2))2,
we find that
sinbsincsina =z - (y X z),

sincsinasin =z - (y x 2),

sinagsinbsiny =z - (y X 2). o

Theorem 2.5.3. (The First Law of Cosines) If a, 8,7 are the angles of a
spherical triangle and a,b,c are the lengths of the opposite sides, then

cosc — cosacosb

cosy = ; ;
K sinasinb

Proof: Since

SIS
[SSRS]
SIS
[SEERN

(yxz) (zx2)=

we have that
sin asinbcosy = cos ¢ — cos a cos b. o
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Let T(z,y, z) be a spherical triangle. By the same argument as in the
proof of Theorem 2.5.1, the vectors z X z,x X y,y X z are linearly indepen-
dent, and so the associated unit vectors are spherically noncollinear. The
spherical triangle

T =T yxz,zxw,”xy) (2.5.1)
ly x 2" |z x z|" | x y

is called the polar triangle of T'(z,y,z). Let a’, b, ¢’ be the lengths of the
sides of T and let o/, 3, be the opposite angles. By Lemma. 1, we have

d=r—a,bV=n-08,c=r—1.
As T'(z,y, z) is the polar triangle of 7", we have
o =x—a, fl=m-b v =rwr—c

Theorem 2.5.4. (The Second Law of Cosines) If a, 8,7 are the angles of
a spherical triangle and a,b, c are the lengths of the opposite sides, then

cos a.cos B + cosy
cosc = .

sin asin 8
Proof: By the first law of cosines applied to the polar triangle, we have

cos(m — y) — cos(m — ) cos(m — 3)
sin(m — «) sin(m — 3)

cos(m —¢) =

Area of Spherical Triangles

A lune of S? is defined to be the intersection of two distinct, nonopposite
hemispheres of S2. Any lune of S? is congruent to a lune L(c) defined in
terms of spherical coordinates (¢, ) by the inequalities 0 < 6 < o. Here
@ is the angle formed by the two sides of L(a) at each of its two vertices.
See Figure 2.5.3. By Formula 2.4.5, we have

Area(L(a)) = /Oa /07r sin ¢ dodf = 2a.

As L(m/2) is a quarter-sphere, the area of S? is 47.

Theorem 2.5.5. If «, (3,7 are the angles of a spherical triangle T, then
Area(T) = (a+ B +7) — .

Proof: The three great circles extending the sides of T subdivide S2 into
eight triangular regions which are paired off antipodally. Two of the regions
are T and —T, and the other six regions are labeled A,—-A B,—-B,C,-C
in Figure 2.5.4. Any two of the sides of T form a lune with angle o, 3, or
7. The lune with angle « is the union of T and A. Hence, we have

Area(T) + Area(A) = 20.
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Figure 2.5.3. A lune L(a) of 52

Likewise, we have that
Area(T") + Area(B) = 24,
Area(T) + Area(C) = 2.
Adding these three equations and subtracting the equation
Area(T") + Area(A) + Area(B) + Area(C) = 27
gives Area(T) =a+f+v—m. =

Figure 2.5.4. The subdivision of 5?2 into eight triangular regions
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Exercise 2.5

1. Let «, 8, be the angles of a spherical triangle and let a, b, ¢ be the lengths
of the opposite sides. Show that

(1) cosa = cosbcosc+sinbsinccosa,
cosb = cosacosc+ sinasinccos 3,
cosc = cosacosb+sinasinbcosy,

(2) cosa = —cosfcosy+ sinBsinycosa,
cosf = —cosacosvy+ sinasinycosb,
cosy = —cosacos+ sinasinfcosc.

2. Let o, 3,7/2 be the angles of a spherical right triangle and let a, b, ¢ be the
lengths of the opposite sides. Show that

(1) cosc = cosacosb,
(2) cosc = cotacot S,
(3) sina = sincsina,
sinb = sinesin 3,
(4) cosa = tanbcote,
cos = tanacotc,

(5) sina = tanbcot 3,

sinb = tanacota,
(6) cosa = cosasin g,
cosf3 = cosbsina.

3. Let «, 3,7 be the angles of a spherical triangle such that «, 8,y < 7/2 and
let a,b, ¢ be the lengths of the opposite sides. Prove that a,b,c < 7/2 and
thatagbgcifandonlyifagﬂgfy.

4. Let o, 3,m/2 be the angles of a spherical right triangle, and let a,b,c be
the lengths of the opposite sides. Prove that a,B < w/2 if and only if
a,b,c < w/2.

5. Prove that a spherical triangle is equilatera] if and only if it is equiangular.

6. Let T(z,y,2) be a spherical triangle labeled as in Figure 2.5.1 such that
@, 3 < m/2. Prove that a or b < 7/2 and that the point on the great circle
through = and y nearest to z lies in the interior of the side [z, ]

7. Let a, 8,7 be real numbers in the interval (0, 7/2] such that o + B4+~ >m.
Prove that there is a spherical triangle with angles o, 3,7.

8. Prove that two spherical triangles are congruent if and only if they have the
same angles.
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§2.6. Historical Notes

§2.1. Spherical geometry in n-dimensions was first studied by Schlifli in his
1852 treatise Theorie der wielfachen Kontinuitat [362], which was published
posthumously in 1901. The most important results of Schlafli’s treatise
were published in his 1855 paper Réduction d’une wntégrale multiple, qui
comprend l'arc de cercle et l'aire du triangle sphérique comme cas partic-
ulers [359] and in his 1858-1860 paper On the multiple integral [ dzdy - - - dz
[360], [361]. In particular, n-dimensional spheres were defined by Schlifli
in this paper [360]. The differential geometry of spherical n-space was
first considered by Riemann in his 1854 lecture Uber die Hypothesen, welch
der Geometrie zu Grunde liegen [349], which was published posthumously
in 1867. For a translation with commentary, see Vol.II of Spivak’s 1979
treatise Differential Geometry [378]

The cross product appeared implicitly in Lagrange’s 1773 paper Nouvelle
solutron du probléme du mouvement de rotation [249]. The cross product
evolved in the nineteenth century out of Grassmann’s outer product defined
in his 1844 Ausdehnungslehre [156] and Hamilton’s vector product defined
in his 1844-1850 paper On Quaternions [177]. The basic properties of cross
products, in particular, Theorem 2.1.1, appeared in Hamilton’s paper On
Quaternions [177]. The cross product was defined by Gibbs in his 1881
monograph Elements of Vector Analysis [152]. The triple scalar product
was defined by Hamilton in his paper On Quaternions [177]. According to
Heath’s 1921 treatise A History of Greek Mathematics [186], the triangle
inequality for spherical geometry is Proposition 5 in Book I of the first
century Sphaerica of Menelaus. That the geodesics of a sphere are its
great circles was affirmed by Euler in his 1732 paper De linea brevissima
in superficie quacunque duo quaelibet puncta jungente [119].

§2.2. Classical real projective space was introduced by Desargues in
his 1639 monograph Brouillon project d’une attewnte aux événements des
recontres du cone avec un plan [104]. Classical projective geometry was sys-
tematically developed by Poncelet in his 1822 treatise Traité des propriétés
projectwes des figures [341]. The metric for the elliptic plane was defined
by Cayley in his 1859 paper A sizth memoir upon quantics [76]. Moreover,
the idea of identifying antipodal points of a sphere to form real projective
2-space appeared in this paper. The term elliptic geometry was introduced
by Klein in his 1871 paper Ueber die sogenannte Nucht-Euklidische Geome-
trie [224]. Three-dimensional Elliptic geometry was developed by Clifford
in his 1873 paper Preliminary sketch of biquaternions [82] and by Newcomb
in his 1877 paper Elementary theorems relating to the geometry of a space
of three divmensions and of uniform positive curvature [315]. Real projec-
tive 3-space appeared in Killing’s 1878 paper Ueber zweu Raumformen mit
constanter positiver Kriimmung [219]. Real projective n-space appeared in
Killing’s 1885 monograph Nicht-Euklidischen Raumformen [221].
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§2.3. The element of spherical arc length for the unit sphere was derived
by Euler in his 1755 paper Principes de la trigonométrie sphérique tirés de
la méthode des plus grands et plus petits [120].

§2.4. Spherical coordinates and the element of spherical volume for the
unit n-sphere appeared in Jacobi’s 1834 paper Functionibus homogeneis
secundi ordinis [202] and in Green’s 1835 paper On the determination of
the esterior and wnterior attractions of ellipsoids of variable densities [162].
Moreover, the volume of an n-dimensional sphere was implicitly determined
by Jacobi and Green in these papers. Spherical coordinates for Euclidean
n-space appeared in Schléfli’s 1858 paper [360]. For the theory of measure
on manifolds in FEuclidean n-space, see Fleming’s 1977 text Functions of
Several Variables [133].

§2.5. According to Heath’s 1921 treatise A History of Greek Mathemat-
ics [186], spherical triangles first appeared in the first century Sphaerica of
Menelaus. In Book I of the Sphaerica, the theorem that the sum of the
angles of a spherical triangle exceeds two right angles was established. Ac-
cording to Rosenfeld’s 1988 study A History of Non-Euchdean Geometry
[353], rules equivalent to the spherical sine and cosine laws first appeared
in Indian astronomical works of the fifth-eighth centuries. In the ninth
century, these rules appeared in the Arabic astronomical treatises of al-
Khowarizmi, known in medieval Europe as Algorithmus. The spherical
law of sines was proved by Ibn Iraq and Abu -Wafa in the tenth century.
The polar triangle and Lemma, 1 appeared in the thirteenth century Ara-
bic treatise Disclosing the secrets of the figure of secants by al-Tusi. The
first law of cosines appeared in the fifteenth century treatise De triangulis
omnimodis libri quinque of Regiomontanus, which was published posthu-
mously in 1533. The vector proof of Theorem 2.5.3 (first law of cosines)
was given by Hamilton in his paper On Quaternions [177]. The second
law of cosines appeared in Viete's 1593 treatise Variorum de rebus math-
ematicis responsorum hber VIII. According to Lohne’s 1979 article Essays
on Thomas Harriot [270], the formula for the area of a spherical triangle
in terms of the angular excess and its remarkably simple proof was first
discovered by Harriot in 1603. However, Theorem 2.5.5 was first published
by Girard in his 1629 paper De la mesure de la superfice des triangles et
polygones sphériques with a more complicated proof. The simple proof
of Theorem 2.5.5 appeared in Euler’s 1781 paper De mensura angulorum
solidorum [127]. Spherical trigonometry was thoroughly developed in mod-
ern form by Euler in his 1782 paper Trigonometria sphaerica unwersa ex
prums principiis breviter et diucide derwata [128)].



CHAPTER 3

Hyperbolic Geometry

We now begin the study of hyperbolic geometry. The first step is to define
a new inner product on R™, called the Lorentzian inner product. This leads
to a new concept of length. In particular, imaginary lengths are possible.
In Section 3.2, hyperbolic n-space is defined to be the positive half of the
sphere of unit imaginary radius in R"*!. The elements of hyperbolic arc
length and volume are determined in Sections 3.3 and 3.4. The chapter
ends with a section on hyperbolic trigonometry.

§3.1. Lorentzian n-Space

Let z and y be vectors in R™ with n > 1. The Lorentzian inner product of
z and y is defined to be the real number

ToYy=—T1Y1 +Tay2 + -+ TplYn- (3.1.1)
The Lorentzian inner product is obviously an inner product on R™. The
inner product space consisting of the vector space R™ together with the
Lorentzian inner product is called Lorentzian n-space, and is denoted by
RL7—1. Sometimes it is desirable to replace the Lorentzian inner product
on R™ by the equivalent inner product
<:I77y> =21Y1+ -+ Tn-1Yn—-1 — Tn¥Yn. (312)
The inner product space consisting of R™ together with this new inner
product is also called Lorentzian n-space but is denoted by R L1, For
example, in the theory of special relativity, R31 is a model for space-time.
The first three coordinates of a vector = (1, %2, Z3,24) in R3! are the
space coordinates, and the last is the time coordinate. In this chapter,
we shall work in RV~ and for simplicity we shall continue to use the
notation R™ for the underlying vector space of RM™~1.
The Lorentzian norm of a vector z in R™ is defined to be the complex

number .

56
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Figure 3.1.1. The light cone C? of R*?

Here ||z|| is either positive, zero, or positive imaginary. If ||z|| is positive
imaginary, we denote its absolute value (modulus) by |||z||.

The Lorentzian distance between vectors x and y in R™ is defined to be
the complex number

do(z,y) = ||z —yll. (3.1.4)

Note that dr(z,y) is either positive, zero, or positive imaginary. The set
of all z in R™ such that ||z|| = 0 is the hypercone C"~! defined by the
equation

22 =i+ a2 (3.1.5)

The hypercone C™"~! is called the light cone of R™. See Figure 3.1.1. If
lzll = 0, then « is said to be lght-like. A light-like vector z is said to be
positive (resp. negative) if and only if 1 > 0 (resp. z; < 0).

If |z]| > 0, then z is said to be space-like. Note that z is space-like if
and only if its coordinates satisfy the inequality

x% <x%+~-—|—xi.
The exterior of C™ ! in R™ is the open subset of R” consisting of all the
space-like vectors.
If ||z|| is imaginary, then & is said to be time-like. Note that z is time-like
if and only if its coordinates satisfy the inequality

a:f >$%+---+mi.
A time-like vector x is said to be positive (resp. negatwe) if and only if

21 > 0 (resp. z1 < 0). The interior of C™* ! in R™ is the open subset of R
consisting of all the time-like vectors.
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Theorem 3.1.1. If x and y are positwe (resp. negative) time-like vectors
m R™ and t > 0, then
(1) the vector tz is positive (resp. negatwve) time-like;
(2) the vector x + y is positive (resp. negative) time-like.
Proof: (1) |tz||? = 3|z < 0.
(2) (21 +y1)” =21 + 251y +yi
> (gh ot al) + 2@ A o) )T (B )
> (23 + +p) + 2zawa + o+ Tayn) + (U3 4R)
= (@2+32)° + -+ (Tn +a)* o

Corollary 1. The set of positwe (resp. negatwe) time-like vectors is a
convex subset of R™.

Proof: If z and y are positive (resp. negative) time-like vectors in R™
and 0 < ¢ < 1, then (1 — t)z + ty is positive (resp. negative) time-like by
Theorem 3.1.1.

o

Lorentz Transformations

Definition: A function ¢ : R® — R™ is a Lorentz transformation if and
only if

¢(z)op(y) =z oy forall z,y in R™.
A basis {v1,...,v,} of R" is said to be Lorentz orthonormal if and only

if v; ow; = —1 and v, o v, = §,, otherwise. Note that the standard basis
{e1,-..,en} of R™ is Lorentz orthonormal.

Theorem 3.1.2. A function ¢ : R® — R" is a Lorentz transformation
if and only if ¢ 1s linear and {¢(e1),...,¢(en)} is a Lorentz orthonormal
basis of R™.

Proof: Suppose that ¢ is a Lorentz transformation of R™. Then

d(e1)op(er) =ejoe = —1
and
o(e,) o p(e;) = e, 0e, = b,, otherwise.

This clearly implies that ¢(e1),...,@(en) are linearly independent. Hence
{¢(e1), ..., ¢(es)} is a Lorentz orthonormal basis of R™.
Let z be in R™. Then there are coefficients cy, ..., ¢, in R such that

ox) = cdle)
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As {¢(e1), ..., d(en)} is a Lorentz orthonormal basis, we have

o1 = B@)ogle) = zoer =~
and
¢, = p(z)odle,)) = zoe, = x; forj>1

Then ¢ is linear, since

¢(Z xlel) = Z xl¢(el)'
=1 =1

Conversely, suppose that ¢ is linear and {#(e1),...,d(en)} is a Lorentz
orthonormal basis of R™. Then ¢ is a Lorentz transformation, since

o) o dly) = ¢(szez>o¢ > e
=1 1=1

= (Z xztb(ez)) o Zyg¢(ej)
=1 J=1
= Z Z .Y P(e) 0 (;5(6])

=1 3=1
= —XT1Y1 +T2Y2+ -+ TpYn = TOY. o

A real n xn matrix A is said to be Lorentzian if and only if the associated
linear transformation A : R" — R”, defined by A(z) = Az, is Lorentzian.
The set of all Lorentzian n x n matrices together with matrix multiplication
forms a group O(1,n — 1), called the Lorentz group of n x n matrices. By
Theorem 3.1.2; the group O(1,n — 1) is naturally isomorphic to the group
of Lorentz transformations of R™. The next theorem follows immediately
from Theorem 3.1.2.

Theorem 3.1.3. Let A be a real n X n matriz. Then the following are

equivalent:

(1) The matriz A is Lorentzian.
(2) The columns of A form a Lorentz orthonormal basis of R™.

(3) The matriz A satisfies the equation A'JA = J, where
-1 0

0 1
(4) The mairiz A satisfies the equation AJA? = J.

(5) The rows of A form a Lorentz orthonormal basis of R™.
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Let A be a Lorentzian matrix. As A'JA = J, we have that (det A)? = 1.
Thus det A = +1. Let SO(1,n — 1) be the set of all A in O(1,n — 1) such
that det A = 1. Then SO(1,n 1) is a subgroup of index two in O(1,n—1).
The group SO{1,n — 1) is called the special Lorentz group.

By Corollary 1, the set of all time-like vectors in R™ has two connected
components, the set of positive time-like vectors and the set of negative
time-like vectors. A Lorentzian matrix A is said to be positwe (resp. neg-
atwe) if and only if A transforms positive time-like vectors into positive
(resp. negative) time-like vectors. For example, the matrix J is negative.
By continuity, a Lorentzian matrix is either positive or negative.

Let PO(1,n — 1) be the set of all positive matrices in O(1,n —1). Then
PO(1,n—1) is a subgroup of index two in O(1,n—1). The group of positive
matrices PO(1,n — 1) is called the positwwve Lorentz group. Likewise, let
PSO(1,n — 1) be the set of all positive matrices in SO(1,n — 1). Then
PSO(1,n — 1) is a subgroup of index two in SO(1,n — 1). The group
PSO(1,n — 1) is called the positive special Lorentz group.

Definition: Two vectors x,y in R™ are Lorentz orthogonal if and only if
roy=0.

Theorem 3.1.4. Let x and y be nonzero Lorentz orthogonal vectors in R™.
If © is time-like, then y 1s space-like.
Proof: As z is time-like, we have that 2 > 2% +-- -+ 2. Hence, we have
n
1> (Z xf) 1:1_2.
1=2
As z oy = 0, we have that z1y1 = z2y2 + - -+ + TpYn. Hence

n
Yy = (Z :vzyl) 3:1‘1.
1=2

lyll> = —vi+v

Observe that
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Moreover, if ||y||2 = 0, then Y. ,y? = 0, and so y, = 0 for i = 2,...,n.
Asyr = (31, 2,y,) 7', we have y = 0. But y # 0 and so [|y[| > 0. o

Definition: Let V be a vector subspace of R®. Then V is said to be
(1) twme-like if and only if V has a time-like vector,
(2) space-like if and only if every nonzero vector in V is space-like, or

(3) light-like otherwise.

Theorem 3.1.5. For each dimension m, the natural action of PO(1,n—1)
on the set of m-dimensional time-like vector subspaces of R™ is transitive.

Proof: Let V be an m-dimensional, time-like, vector subspace of R™.
Identify R™ with the subspace of R™ spanned by the vectors ey, ..., em,. It
suffices to show that there is an A in PO(1,n — 1) such that A(R™) = V.

Choose a basis {u, ..., u,} of R™ such that u; is a positive time-like vector
in V and {u1,...,un} is a basis for V. Let w1 = uy /||u1 ||. Then we have
that wy ow; = —1. Next, let v2 = ug + (ug o wy)wy. Then vs is nonzero,

since u; and ug are linearly independent; moreover
W1 O Vg = Wy O Ug + (Ug 011)1)(?1)1 owl) =0.

Therefore v, is space-like by Theorem 3.1.4. Now let

wy = vp/val,

vs = wu3+ (uz owy)w — (uz o we)wa,

w3 = U3/H’U3I|,

Un = Un + (Un 0 wi)wr ~ (Un 0 Wo)wy — -+ — (Up 0 Wy—1 )Wy _1,

wn = vp/|vall.
Then we have that {wy,...,w,} is a Lorentz orthonormal basis of R and
{wy, ... ,Wm} is a basis of V. Let A be the n x n matrix whose columns
are wi, . .., wn. Then A is Lorentzian by Theorem 3.1.3, and AR™) =V;
moreover, A is positive, since A(e1) = w; is positive time-like. o

Theorem 3.1.6. Let z,y be positive (negative) time-like vectors wn R™.

Then x oy < |||yl with equality if and only if  and y are hnearly
dependent.

Proof: By Theorem 3.1.5, thereis an A in PO(1,n—1) such that Az = te;.
As A preserves Lorentzian inner products, we can replace  and y by Az
and Ay. Thus, we may assume, without loss of generality, that z = z;e;.
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Then we have

lz*llyl? = —2}(—vi+uvs+--+95)
= yf —2i (s +-- 4 )
< 2iyd
= (zoy)®

with equality if and only if
s+t yn =0,

that is, y = y1e1. Now since

zoy=—z1y <0,
we have that
zoy < =l lyll
with equality if and only if z and y are linearly dependent. a]

The Time-Like Angle between Time-Like Vectors

Let = and y be positive (negative) time-like vectors in R™. By Theorem
3.1.6, there is a unique nonnegative real number n(z,y) such that
zoy = |lz|| |yl coshn(z,y). (3.1.6)

The Lorentzian time-like angle between z and y is defined to be n(z,y).

Note that 7(z,y) = 0 if and only if = and y are positive scalar multiples of
each other.

Exercise 3.1

1. Let A be a real n X n matrix. Prove that the following are equivalent:
(1) A is Lorentzian.
(2) ||Az| = |jz| for all z in R™.
(3) A preserves the quadratic form qz) = —zi+ a5+ -+ z2.
2. Prove algebraically that every Lorentzian n x n matrix is either positive or
negative.

3. Show that PO(1,n — 1) is naturally isomorphic to the projective Lorentz
group O(1,n — 1)/{ZI}.

4. The Lorentzian complement of a vector subspace V of R™ is defined to be
the set
VE={reR":z0y=0 forallyinV}

Show that VZ = J(V)*.

5. Let V be a vector subspace of R™. Show that the following are equivalent:
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(1) The subspace V is time-like.
(2) The subspace V" is space-like.
(3) The subspace V+ is space-like.
6. Let V be a vector subspace of R”. Show that V' is light-like if and only if
V NnC™ ! is a line passing through the origin.
7. Show that PO(1,n — 1) acts transitively on the hyperboloid G" 1 in R™
defined by the equation 2+l =1
8. Show that PO(1,n — 1) acts transitively on

(1) the set of m-dimensional space-like subspaces of R", and

(2) the set of m-dimensional light-like subspaces of R™.

9. Let V be a 2-dimensional time-like subspace of R™. Show that VN C™™! is
the union of two lines that intersect at the origin.

10. Let z and y be linearly independent space-like vectors in R™ and let V' be
the 2-dimensional vector subspace spanned by z and y. Show that

(1) |zoy| < ||z|l lly]l if and only if V is space-like,
(2) |zoy| = |lz| lly| if and only if V is light-like,
(3) |z oyl > ||zl |ly|l if and only if V' is time-like.

§3.2. Hyperbolic n-Space

Since a sphere of radius r in R"*! is of constant curvature 1/r2 and hyper-
bolic n-space is of constant negative curvature, the duality between spher-
ical and hyperbolic geometries suggests that hyperbolic n-space should
be a sphere of imaginary radius. As imaginary distances are possible in
Lorentzian (n + 1)-space, we should take as our model for hyperbolic n-
space the sphere of unit imaginary radius

F'={z eR"": ||z|? = —1}.

The only problem is that the set F™ is disconnected. The set F™ is a
hyperboloid of two sheets defined by the equation

o — @y +- - +ad) =1

The subset of all z in F™ such that z; > 0 (resp. z; < 0) is called the posi-
tive (resp. negative) sheet of F™. We get around this problem by identifying
antipodal vectors of F™ or equivalently by discarding the negative sheet of
F™. The hyperboloid model H™ of hyperbolic n-space is defined to be the
positive sheet of F™. See Figure 3.2.1. Note that hyperbolic geometry is
actually dual to elliptic geometry rather than spherical geometry.
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Figure 3.2.1. The hyperboloid F? inside C?

Let z,y be vectors in H™ and let n(z,y) be the Lorentzian time-like
angle between = and y. The hyperbolic distance between x and y is defined
to be the real number

du(z,y) = n(z,y). (3.2.1)
As z oy = ||z| |ly|| coshn(z,y), we have the equation
coshdy(z,y) = —zoy. (3.2.2)

We shall prove that dg is a metric on H™, but first we need some prelimi-
nary results concerning cross products in R3.

Lorentzian Cross Products

Let z,y be vectors in R3 and let

-1 0 0
J = 01 01}. (3.2.3)
0 0 1
The Lorentzian cross product of z and y is defined to be
Ty =J(zxy). (3.2.4)
Observe that
zo(z®y) = zolJlzxy) = z-(zxy = 0,
yo(z®y) = yoll@xy) = y-(zxy) =

Hence z ® y is Lorentz orthogonal to both  and y.
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Lemma 1. If z,y are vectors in R3, then z @ y = J(y) x J(z).

Proof: As J is an orientation reversing orthogonal transformation, we
have that

J(zxy)=J(y) x J(z). o

Theorem 3.2.1. If w,z,y,2 are vectors in R3, then

1) zoy = -yos,
r1 T2 X3

Yi Y2 Y3
21 22 Z3

2) (®y)oz =

?

) z8u®z) = (zoy)z—(z0z)y,

row xoz

@  @epeow = |10 40

Proof: Observe that

(1) r@y = J(y) xJ(x)
= —J(z) x J(y)
= -y

(2) (z®y)oz = J(xxy)- J(z)
= (zxy)- 2

(3) TR@WY®z) = Jy®z)xJ(z)

= (yxz)xJ(=z)
(y-J(x)z — (z- J(2))y

= (zoy)z— (zox)y.

4) (z®y)o(z@w) = J(x xy)o J(z x w)

(z xy)o(zxw)

(z xy)-J(z x w)

(zxy) (J(w) x J(2))

x -

J(w) (2)
Y- J( )

x-J
w) y-J(z

row xXozx
yow yoz

[m}

Corollary 1. If z,y are positive (negative) time-like vectors in R3, then
T ®y is space-like and ||z @ y|| = —||z| |ly|| sinhn(z,y).
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Proof: By Theorem 3.2.1(4), we have

(zoy)* — ll=|*[lyl*
12l cosh® n(z, y) — [l (|||
|21yl sink? 1z, ). o

llz ® yl?

i

Corollary 2. If x,y are space-like vectors in R3, then

(1) |lzoyl < |lz| llyll of and only +f  ® y 1s time-hke,
(2) |lzoy| =zl llyll i and only if x @ y is hght-like,
(3) |z oyl > |zl ||yl of and only +f x @ y is space-like.

Proof: By Theorem 3.2.1(4), we have ||z ® y||? = (z o 9)? — ||z||?|ly||%. ©

Theorem 3.2.2. The hyperbolic distance function dg 1s a metric on H™.

Proof: The function dy is obviously nonnegative and symmetric, and

nondegenerate by Theorem 3.1.6. It remains only to prove the triangle
inequality

The positive Lorentz transformations of R®*1 act on H™ and obviously
preserve hyperbolic distances. Thus, we are free to transform z,y,z by a
positive Lorentz transformation. Now the three vectors z, y, z span a vector
subspace of R™! of dimension at most three. By Theorem 3.1.5, we may
assume that x,v, 2 are in the subspace of R"*1 spanned by ej,es,e3. In
other words, we may assume that n = 2. By Corollary 1, we have

lo@yll = sinhn(e,y) and |y® | = sinhn(y.2).

As y is Lorentz orthogonal to both z ® y and y ® 2, the vectors y and
(z®y) ® (y® z) are linearly dependent. Therefore, the latter is either zero
or time-like. By Corollary 2, we have

(z@y)o(y@2)| < llz®yl lly® 2.

Putting this all together, we have

cosh(n(z,y) +n(y, 2))
= coshn(z,y) coshn(y, z) + sinhn(z,y) sinhn(y, z)
= (zoy)(yo2)+lzeyllly®z
(zoy)(yoz)+(z®@y)o(y®2)

= (zoy)(yoz)+((woz)(yoy) — (zoy)(yoz))

Y

= coshn(z,2).
Thus, we have that n(z,z) < n(z,y) + n(y, 2). o
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The metric dg on H™ is called the hyperbolic metric. The metric topol-
ogy of H™ determined by dy is the same as the metric topology determined
by the Euclidean metric dg on H™ defined by

de(z,y) = |z —y)- (3.2.5)
The metric space consisting of H™ together with its hyperbolic metric dg

is called hyperbolic n-space. Henceforth H™ will denote hyperbolic n-space.
An isometry from H™ to itself is called a hyperbolic 1sometry.

Theorem 3.2.3. Every posilwe Lorentz transformation of R™1 restricts
to an isometry of H™, and every isometry of H™ extends to a unique positive
Lorentz transformation of R*1,

Proof: Clearly, a function ¢ : H™ — H™ is an isometry if and only if it
preserves Lorentzian inner products on H”. Therefore, a positive Lorentz
transformation of R"*1 restricts to an isometry of H™.

Conversely, suppose that ¢ : H® — H™ is an isometry. Assume first
that ¢ fixes e;. Let ¢1,..., ¢n+1 be the components of ¢. Then

hi(@) = —¢()oer
= (@) o d(er)
= —xoe = 1.
Thus ¢(z) = (21, 2(2), - ., dny1(2)).

Let p : H" — R" be defined by p(z) = Z, where 7 = (T2, .., Tnt1)-
Then p is a bijection. Define ¢ : R® — R” by

B(w) = (¢2(p7 (W), -+, g1 (0~ (w))).
Then ¢(z) = ¢(z) for all z in H™. As ¢(z) o ¢(y) = z oy, we have
—T1y1 + $(Z) - $(Y) = —z1y1 + T+ F.

Therefore ¢(Z) - #(§) = Z- 7. Thus ¢ is an orthogonal transformation. By
Theorem 1.3.2, there is an orthogonal n x n matrix A such that Ay = ()
for all w in R™. Let A be the matrix

10 --- 0

0

: A
0
Then A is positive Lorentzian and Az = ¢(x) for all z in H™.

Now assume that ¢ is an arbitrary isometry of H™. By Theorem 3.1.5,
there is a B in PO(1,7n) such that Bé(e;) = e;. As B¢ extends to a
positive Lorentz transformation of R™! the same is true of ¢. Suppose
that C' and D are in PO(1,7n) and extend ¢. Then C'D~! fixes each point
of H". As H™ is not contained in any proper vector subspace of R™*!, we
have that CD™?! fixes all of R**!. Therefore C' = ). Thus ¢ extends to a
unique positive Lorentz transformation of R?*1. o



68 3. Hyperbolic Geometry

Corollary 3. The group of hyperbolic 1sometries I(H™) is isomorphic to
the positwe Lorentz group PO(1,n).

Hyperbolic Geodesics

Definition: A hyperbolic line of H™ is the intersection of H™ with a
2-dimensional time-like vector subspace of R**1,

Let z and y be distinct points of H™. Then z and y span a 2-dimensional
time-like subspace V (x,y) of R™*!, and so

L(l’,y) =H"nN V(:L‘vy)

is the unique hyperbolic line of H™ containing both z and y. Note that
L{z,y) is a branch of a hyperbola.

Definition: Three points z,y,z of H™ are hyperbolically collinear if and
only if there is a hyperbolic line L of H™ containing x, y, 2.

Lemma 2. If z,y,z are pownts of H" and

77('177 y) -+ n(y» Z) = 7)(537 Z)a
then x,y, z are hyperbolically collinear.
Proof: As z,y,z span a time-like vector subspace of R"*! of dimension

at most 3, we may assume that n = 2. From the proof of Theorem 3.2.2,
we have that

(z®y)eo(y®z)=lzeylllyo-=|.
By Corollary 2, we have that (z ® y) ® (y ® z) is light-like. Now since
@y e Yoz =—((z8y)o2)y

and y is time-like, we have that (z®y) oz = 0. Consequently z,y, z are lin-
early dependent by Theorem 3.2.1(2). Hence x,y, z lie on a 2-dimensional
time-like vector subspace of R? and so are hyperbolically collinear. o

Definition: Two vectors z,y in R**! are Lorentz orthonormal if and only
if [|z]|2= —1 and zoy =0 and |jy[|* = 1.

Theorem 3.2.4. Let a : [a,b] — H™ be a curve. Then the following are
equivalent:

(1) The curve « is a geodesic arc.
(2) There are Lorentz orthonormal vectors x,y in R+ such that
a(t) = (cosh(t — a))z + (sinh(t — a))y.

(3) The curve a satisfies the differential equation o —a=0.
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Proof: Let A be a Lorentz transformation of R"**. Then (Aa) = Ad/.
Consequently « satisfies (3) if and only if Aa does. Hence, we are free to
transform a by a Lorentz transformation. Suppose that « is a geodesic arc.
Let ¢ be in the interval [a, b]. Then we have

n(a(a),a(b)) = b—a
= (t—a)+(b—1t)
= nla(a), a(t)) +nla(t), a(b)).
By Lemma 2, we have that a(a),a(t), a(b) are hyperbolically collinear.

Consequently, the image of « is contained in a hyperbolic line L of H™.
Hence, we may assume that n = 1. By applying a Lorentz transformation

of the form
coshs sinhs
sinhs coshs

we can transform a(a) to e1, and so we may assume that a(a) = e;. Then

er-aft) = —ala)oalt)
— coshn(a(a), a(t))
cosh(t — a).
Therefore e; - a(t) = £sinh(t — a). As « is continuous, we have either
ez -aft) = sinh(t—a) forallt
or
ez-at) = —sinh(t —a) for all t.

In the latter case, we can apply the reflection

1 0
0 -1 /)
and so we may assume that
a(t) = (cosh(t — a))e; + (sinh(t — a))e,.
Thus (1) implies (2).

Next, suppose there are Lorentz orthonormal vectors z,y in R**1 such
that

a(t) = (cosh(t — a))z + (sinh(t — a))y.
Let s and t be such that ¢ < s <t < b. Then we have

coshn(a(s), a(t)) = —a(s)oa(t)
= cosh(s — a) cosh(t — a) — sinh(s — a) sinh(t — a)
= cosh(t — s).

Therefore n{a(s), a(t)) = t —s. Thus o is a geodesic arc. Hence (2) implies
(1). Clearly (2) implies (3). Suppose that (3) holds. Then

a(t) = cosh(t — a)a(a) + sinh(t — a)d/(a).
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On differentiating the equation a(t)oa(t) = —1, we see that a(t)od/(t) = 0.
In particular, a(a) o &/(a) = 0. Observe that

lla(®)||* = — cosh?(t — a) + sinh®(t — a) || (a) | .

As ||a(t)||? = —1, we have that ||o’(a)||> = 1. Therefore a(a),a’(a) are
Lorentz orthonormal. Thus (3) implies (2). o

Theorem 3.2.5. A function A : R — H™ 13 a geodesic line if and only if
there are Lorentz orthonormal vectors x,y in R™ such that

A(t) = (cosht)z + (sinh t)y.

Proof: Suppose there are Lorentz orthonormal vectors z, y in R**! such
that A(¢) = (cosht)z + (sinht)y. Then A satisfies the differential equation
A" — X = 0. Hence, the restriction of X to any interval [a,b], with a < b, is
a geodesic arc by Theorem 3.2.4. Thus A is a geodesic line.

Conversely, suppose that A is a geodesic line. By Theorem 3.2.4, the
function X satisfies the differential equation A/ — A = 0. Consequently

A(t) = (cosht)A(0) + (sinh £) A’ (0).
The same argument as in the proof of Theorem 3.2.4 shows that A(0), A’(0)

are Lorentz orthonormal. al

Corollary 4. The geodesics of H™ are its hyperbolic lines.

Proof: By Theorem 3.2.5, every geodesic of H™ is a hyperbolic line.
Conversely, let L be a hyperbolic line of H™. By Theorem 3.1.5, we may
assume that n = 1. Then L = H'. Define A : R — H! by

A(t) = (cosht)ey + (sinht)es.

Then ) is a geodesic line mapping onto H 1. Thus L is a geodesic. o

Hyperplanes
We now consider the geometry of hyperplanes of H™.

Definition: A hyperbolic m-plane of H™ is the intersection of H™ with
an (m + 1)-dimensional time-like vector subspace of R

Note that a hyperbolic 1-plane of H™ is the same as a hyperbolic line of
H™. A hyperbolic (n — 1)-plane of H™ is called a hyperplane of H™.

Let z be a space-like vector in R™t1. Then the Lorentzian complement of
the vector subspace () spanned by  is an n-dimensional time-like vector
subspace of R"*!. Hence P = (z) N H™ is a hyperplane of H". The
hyperplane P is called the hyperplane of H™ Lorentz orthogonal to x.
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Theorem 3.2.6. Let x and y be linearly mdependent space-like vectors in
R”*1. Then the following are equivalent:

(1) The vectors © and y satisfy the equation |z o y| < ||z|| {|y]l-

(2) The vector subspace V' spanned by = and y is space-like.

(3) The hyperplanes P and Q of H™ Lorentz orthogonal to x and y, re-

spectwely, intersect.

Proof: Assume that (1) holds. Then for nonzero real numbers s and ¢,
we have that

sz +tyl® = |sz]|* + 2st(z 0 y) + |ity]|?
> lsall® — 2fst] [l llyll + lityl?
= (lsall = fltyl)?
> 0.

Thus V is space-like.
Conversely, if (2) holds, then the Lorentzian inner product on V is pos-
itive definite. Hence, Cauchy’s inequality holds in V, and so (1) holds.

Thus (1) and (2) are equivalent. Now (2) and (3) are equivalent, since
VE = (o) {y)" -

The Space-Like Angle between Space-Like Vectors

Let z and y be space-like vectors in R™*! that span a space-like vector
subspace. Then by Theorem 3.2.6, we have that

|z oyl <l |lyll

with equality if and only if z and y are linearly dependent. Hence, there is
a unique real number 7(z,y) between 0 and 7 such that

zoy = ||z|| llyll cosn(z,y). (3.2.6)

The Lorentzian space-like angle between z and y is defined to be n(z,y).
Note that n(x,y) = 0 if and only if z and y are positive scalar multiples
of each other, n(z,y) = 7/2 if and only if z and y are Lorentz orthogonal,
and 7(z,y) = 7 if and only if z and y are negative scalar multiples of each
other.

Let A, =R — H™ be geodesic lines such \(0) = ©(0). Then X(0)
and '(0) span a space-like vector subspace of R*+!. The hyperbolic angle
between X\ and p is defined to be the Lorentzian space-like angle between
X'(0) and ¢/ (0).

Let P be a hyperplane of H” and let A : R — H™ be a geodesic line
such that A(0) is in P. Then the hyperbolic line L = A(R) is said to be

Lorentz orthogonal to P if and only if P is the hyperplane of H™ Lorentz
orthogonal to X' (0).
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Theorem 3.2.7. Let x and y be linearly independent space-like vectors wn
R™*L. Then the following are equivalent:

(1) The vectors x and y satisfy the inequality |z o y| > ||z|| ||y
(2) The vector subspace V spanned by x and y is time-like.

(3) The hyperplanes P and Q of H™ Lorentz orthogonal to = and y, re-

spectively, are disjoint and have a common Lorentz orthogonal hyper-
bolic line.

Proof: Except for scalar multiples of xz, every element of V is a scalar

multiple of an element of the form ¢z + y for some real number ¢. Observe
that the expression

Itz + ylI” = ¢*||z|® + 2t(z 0 y) + [|y||?

is a quadratic polynomial in ¢. This polynomial takes on negative values if
and only if its discriminant

Az oy)* — 4f|z|*ly]*

is positive. Thus (1) and (2) are equivalent.

Suppose that V is time-like. Then VI is space-like. Now since VE =
(z)L' N (y)L, we have that P and Q are disjoint. Observe that N = VN H"
is a hyperbolic line and V N (z)” is a 1-dimensional subspace of R™*!,
Moreover, the equation

(tx+y)ox=0

has the unique solution
t=—zoy/|a|?.

Furthermore
(zoy)?
|zl

Hence V N {(z)” is time-like. Thus N N P is the single point

_ —@oy)(a/lz]) + llzlly
+/(@oy)? — [elPlyl*’

where the plus or minus sign is choosen so that w is positive time-like.
Likewise N NQ is a single point v. Let A : R — H™ be a geodesic line such
that A(0) = u and A(R) = N. As X'(0) and z are both Lorentz orthogonal
to u in V, we have that X' (0) is a scalar multiple of z. Thus N is Lorentz
orthogonal to P. Likewise N is Lorentz orthogonal to Q.

Conversely, assume that (3) holds. Let N be the common Lorentz or-
thogonal hyperbolic line to P and Q. Then there is a 2-dimensional time-
like vector subspace W of R™*! such that N =W N H". As N is Lorentz
orthogonal to P, we have that z is in W. Likewise y is in W. Hence
V =W, and so V is time-like. a]

[tz + y||? = +[lylI* <.
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Remark: The proof of Theorem 3.2.7 shows that if P and @ are disjoint
hyperplanes of H™, with a common Lorentz orthogonal hyperbolic line NV,
then N is unique; moreover, if z,y are space-like vectors in R™*! Lorentz
orthogonal to P, Q, respectively, then « and y are tangent vectors of V.

The Time-Like Angle between Space-Like Vectors

Let z and y be space-like vectors in R™! that span a time-like vector
subspace. Then by Theorem 3.2.7, we have that |z oy| > ||| |y||. Hence,
there is a unique positive real number n(z,y) such that

|z oyl = llzll llyll coshn(z,y). (3.2.7)

The Lorentzian time-like angle between z and y is defined to be n(z,y).
We now give a geometric interpretation of n(z, y).

Theorem 3.2.8. Let « and y be space-like vectors in R™™! that span a
time-like vector subspace, and let P,Q be the hyperplanes of H™ Lorentz
orthogonal to z,y, respectwely. Then n{x,y) 1s the hyperbolic distance from
P to Q measured along the hyperbolic line N Lorentz orthogonal to P and

Q. Moreover xoy < 0 1f and only 1f x and y are oppositely orented tangent
vectors of N.

Proof: From the proof of Theorem 3.2.7, we have that PN N is the point

—(zoy)(z/llzl) + llzlly
+y/(z0y)? — [l2[[ly[?

Hywh-@oyﬂymym_
++/(z 0 y)? — [lz][[y]|?

u =

and @ NN is the point

Now

coshdy(u,v) = —wow

—((oy)®/llzll llyll) + (z o y)llzll Iyl
£((zoy)? —|lzl2[lyl[?)
—((@oy)® + (@oy)|llllyl®)/ll=ll llyll
=((@oy)? — [l=|2[lyl[?)

—(zoy)
x| yll
|z oy
Il Iyl
= coshn(z,y).

Moreover, the calculation of —u o v shows that u and v have the same sign
if and only if z oy < 0. Observe that u and v are in the 2-dimensional
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time-like subspace V spanned by x and y. Evidently u and v are in the
quadrant of V between z and y or —x and —y if and only if the coefficient

—x oy of u and v is positive. Thus = and y are oppositely oriented tangent
vectors of NV if and only if x oy < 0. o

Let = and y be space-like vectors in R"*! and let P, @ be the hyperplanes
of H™ Lorentz orthogonal to x,y, respectively. Then P and @) are said to
meet at infimty if and only if (z)L N (y)L is light-like. If P and Q meet at
infinity, then P and @ are disjoint, but when viewed from the origin, they

appear to meet at the positive ideal endpoint of the 1-dimensional light-like
subspace of (z)F N (y)L.

Theorem 3.2.9. Let x and y be linearly independent space-like vectors in
R™1. Then the following are equivalent:

(1) The vectors x and y satisfy the equation |z oy| = ||z| ly||-
(2) The vector subspace V' spanned by x and y is light-like.
(3) The hyperplanes P and Q) of H™ Lorentz orthogonal to x and y, re-

spectiwvely, meet at infinity.

Proof: (1) and (2) are equivalent by Theorems 3.2.6 and 3.2.7, and (2)
and (3) are equivalent, since VL = (z)L N (y)L. o

Theorem 3.2.10. Let z and y be linearly independent space-like vectors in
R+ such that the vector subspace V spanned by x and y is light-like. Then
zoy < 0 of and only if x and y are on opposite sides of the 1-dvmensional

light-like subspace of V.
Proof: The equation ||tz + y|| = 0 is equivalent to the quadratic equation
2|2]l? + 2(z 0 y)t + lyll” = 0,
which by Theorem 3.2.9 has the unique solution
t=—(zoy)/ll=|*
Observe that the light-like vector
—(zoy)(@/|=l*) +y

is in the quadrant of V between z and y if and only if z oy < 0. Hence z
and y are on opposite sides of the 1-dimensional light-like subspace of V' if
and only if z oy < 0. o

Theorem 3.2.11. Let y be a point of H™ and let P be a hyperplane of
H™. Then there is a unigue hyperbolic line N of H" passing through y and
Lorentz orthogonal to P.
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Proof: Let z be a unit space-like vector Lorentz orthogonal to P, and let
V be the subspace spanned by z and y. Then N =V N H" is a hyperbolic
line passing through y. Now the equation
(tzr+y)ox=0

has the solution t = —z o y. Hence

—(zoy)z+y
+y/{(zoy)?+1
is a point of PNN. Let A : R — H™ be a geodesic line such that A(R) = N
and A\(0) = w. As w,z are Lorentz orthonormal vectors, we have

A(t) = (cosht)w % (sinht)z.

Hence ) (0) = +x. Thus N is Lorentz orthogonal to P.

Suppose that N is a hyperbolic line passing through y and Lorentz
orthogonal to P. Let A : R — H™ be a geodesic line such that A(R) = N
and A(0) is in P. Then X' (0) is Lorentz orthogonal to P. Hence ' (0) = *z.
Let W be the 2-dimensional time-like subspace such that N = W N H™.
As z and y are in W, we have that W = V. Thus N is unique. o

The Angle between Space-Like and Time-Like Vectors

Let x be a space-like vector and y a positive time-like vector in R?*!. Then
there is a unique nonnegative real number 7(z, y) such that

lz oyl = [lz|| [yl sinhn(z,y). (32.8)
The Lorentzian time-like angle between 2 and y is defined to be n(z,y).
We now give a geometric interpretation of n(z,y).

Theorem 3.2.12. Let = be a space-like vector and y a positive time-like
vector mn R™ 1 and let P be the hyperplane of H™ Lorentz orthogonal
to x. Then n(x,y) 15 the hyperbolic distance from y/|||y|| to P measured
along the hyperbolic line N passing through y/|||y|l| Lorentz orthogonal to
P. Moreover x oy < 0 +f and only if z and y are on opposite sides of the
hyperplane of R™"*! spanned by P.

Proof: As in the proof of Theorem 3.2.8, we have that PN N is the point
_ —(oy)(=/lzl) + ll=lly
£1/(z 0 y)? — [Jz[P2ly[2

Let v = y/|ylll. Then

coshdpy(u,v) = —wow

V(@oy)? —fiz]?[ly[?
[l Tyl

= coshn(z,y).
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Moreover, the calculation of —uov shows that u has the plus sign. Observe
that u is in the 2-dimensional time-like subspace V' spanned by z and y.
Evidently u is in the quadrant of V' between z and y if and only if the
coefficient —z o y of u is positive. Thus z and y are on opposite sides of
the hyperplane of R**! spanned by P if and only if z oy < 0. o

Exercise 3.2

Show that the metric topology of H™ determined by the hyperbolic metric is
the same as the metric topology of H™ determined by the Euclidian metric.

2. Prove that H" is homeomorphic to E™.

3. Show that every matrix in PSO(1,1) is of the form

coshs sinhs
sinhs coshs /°

4. Let A be in PO(1,2). Prove that A(z ® y) = (det A)(Az ® Ay).

10.

11.

12.

Show that every hyperbolic line of H™ is the branch of a hyperbola whose
asymptotes are 1-dimensional time-like vector subspaces.

Prove that H™ is geodesically complete.

. Two hyperbolic lines of H™ are said to be parallel if and only if there is a

hyperbolic 2-plane containing both lines and the lines are disjoint. Show
that for each point  of H™ outside a hyperbolic line L, there are infinitely
many hyperbolic lines passing through x parallel to L.

Prove that a nonempty subset X of H™ is totally geodesic if and only if X
is a hyperbolic m-plane of H" for some m.

Prove that H' is isometric to E', but H™ is not isometric to E™ for n > 1.

Let ug,...,un be linearly independent vectors in H™, let vo,...,vn be lin-
early independent vectors in H™, and suppose that n(u., ;) = 1(v:, ;) for
all ¢, 7. Prove that there is a unique hyperbolic isometry ¢ of H™ such that
¢(u,) = v, for each i =0,...,n.

A tangent vector to H™ at a point = of H" is defined to be the derivative
at 0 of a differentiable curve v : [=b,b] — H™ such that v(0) = z. Let
T, = T (H™) be the set of all tangent vectors to H™ at . Show that
T :{yE]R"Jrl :xoy =0}

Conclude that T is an n-dimensional space-like vector subspace of R
The vector space T is called the tangent space of H " at x.
A coordinate frame of H™ is an n-tuple of functions (M, ..., An) such that

(1) the function A, : R — H"™ is a geodesic line foreach i =1,...,n;

(2) there is a point z of H™ such that X (0) = z for all 2; and

(3) the set {A1(0),...,An(0)} is a Lorentz orthonormal basis of T (H™).

Show that the action of I(H™) on the set of coordinate frames of H™, given
by ¢(A1, ..., An) = (@A, ... ,®An), is transitive.
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§3.3. Hyperbolic Arc Length

In this section, we compare the hyperbolic length of a curve v in H™ with
its Lorentzian length in R™*! and show that they are the same. In the
process, we find the element of hyperbolic arc length of H™.
Let 2,y be points of H™. By Theorem 3.1.6, we have
lz—yl> = el =2z 0y + Iyl
> —2-2z[ [yl = O

with equality if and only if # = y. Hence, the Lorentzian distance function

dr(z,y) = [lz - yll
satisfies the first three axioms for a metric on H™. Unfortunately, d;, does
not satisfy the triangle inequality. Nevertheless, we can still use dr to
define the length of a curve in H™.
Let 7 : [a,b] — H™ be a curve and let P = {to,...,tm} be a partition
of [a,b]. The Lorentzian P-inscribed length of «y is defined to be

(1 P) = 3 It) — 1)l

The curve v is said to be Lorentz rectifiable if and only if there is a real
number £(7) such that for each ¢ > 0 there is a partition P of [a,b] such
that if Q@ < P, then

[(y) =2 (7, Q)| < e

If ¢(y) exists, then it is unique, since if P and @ are partitions of [a, b],
then there is a partition R of [a, b] such that R < P, Q.

The Lorentzian length ||v|| of v is defined to be £(v) if v is Lorentz
rectifiable or co otherwise.

Theorem 3.3.1. Let 7 : [a,b] — H™ be a curve. Then vy is rectifiable in
H™ if and only if v is Lorentz rectifiable; moreover, the hyperbolic length
of v is the same as the Lorentzian length of .

Proof: Let z,y be in H™. Then we have
le—9l> = |zl =2z 0y +[|y|?
= 2(coshn{z,y) —1).
Now since
coshn > 1+ (1%/2),
we have that
lz —yll = n(z,y).

Suppose that v is Lorentz rectifiable. Then there is a partition P of [a, ]
such that if Q < P, then

| vl = £c(7, Q)] < L.
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Hence, for all @Q < P, we have

Cua(7,Q) < €(v,Q) < [lv]| + 1.
Thus + is rectifiable. By Taylor’s theorem, we have

n
hnp <14+ —+ — .
coshn <1+ 9 +24coshn

Hence, if coshn(z,y) < 12, we have

llz —yll <nlz,y)v/1+n2(z,y).

Now suppose that « is rectifiable and € > 0. Then there is a partition P of
la,b] such that

IVl —u (v, P) <e
Let § > 0 and set

(7, 6) = sup{n(v(s),y(t)) : |s — t| < 6}.

As ~ is uniformly continuous, p(vy, ) goes to zero with §. Hence, there is
a 6 > 0 such that cosh (v, 6) <12 and

Va1 4p82(7,6) < |y|lg +e

Now we may assume that |P| < 6. Then for all @ < P, we have

L (v, Q)
(v, Q)

Cu(y, Q)V1+ p?
IV V14 p?

Iyle + e

A

IVl — €

A CIACIA A

Hence, we have

| Vlz = £(7,Q)| <€ forall @ <P.
Thus + is Lorentz rectifiable and ||| = V|- o

Let v : [a,b] — H" be a differentiable curve. As y(t) o y(t) = —1, we
have v(t) o ¥/(t) = 0. Hence 7/ (t) is space-like for all ¢ by Theorem 3.1.4.

Theorem 3.3.2. Let v : [a,b] — H™ be a C* curve. Then v 1s rectifiable
and the hyperbolic length of v is given by the formula

b
vl = / v (#)]|dt.

Proof: Define f : [a,b]" "' — R by the formula

(S

F@) =] =Y (@) + 9@ + - + Vo (@nr1)?] 2
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Then f is continuous. Observe that the set
{lf(z) = f@W)| : 2,y € [a,0]" "'}
is bounded, since [a, b]"*1 is compact. Let § > 0 and set
(£, 6) = sup{|f(z) — F@) < [ — 9| <6 fori=1,...,n+1}.

Let P = {to,...,tm} be a partition of [a, b] such that |P| < §. By the mean
value theorem, there is a real number s,, between ¢,_; and ¢, such that

1(ty) = n(t;—1) = ’Y:(SZJ)(tJ —t)-1)-
Then we have
Iv(ts) = v -0l = f(sy)(t, — ty-1),
where s, = (s1,5,...,8n41,;). Hence
HPv(8) = 2Ol = 1Y DI = t5-1)]
= () = IV )Nt — ty—1)
< ﬂ(f, 5)@3 _ty—l)'
Set
S(v,P) = Z Iy @I —t5-1).
J=1

Then we have
IEL(’Y’P) - S(’%P)I

NgE

[ () = (&= = I (&)1 8y = ty—1))|

<
Il

NgE

<

(F,8)( ~tym1) = ulf,6)(b - a).

<
I
=

Next, observe that

b
/ I @®)ldt — S(v, P)

i

> [ (- 1) e

< Y| ol
7=1 7—1

< 3 [ Ivoi-ie

S m

[ w0 = wiro0-a).

71=1 t)-1
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Thus

b
/ I @®)lldt — £1.(x, P)

A

b
[ W@ = $6.P)| + |01 P) - s, )
(£, )b — a).

Now f : [a,b]"*! — R is uniformly continuous, since [a,b" ! is compact.
Therefore p(f,§) goes to zero with 6. Hence

IA

b
Jm e P) = [l .

Let v : [a,b] = H™ be a curve. Set dz = (dz1,...,dzn41) and

|dz|| = (—da? + dz3 + - - + dz? )2,

/ ldz] = ]l

Moreover, if 7 is a C! curve, then by Theorem 3.3.2, we have

L Jal = | Iy ).

The differential ||dz]|| is called the element of hyperbolic arc length of H™.

Then by definition, we have

Exercise 3.3

1. Show that the Lorentzian distance function dy, is not a metric on H".

2. Let 7 : [a,b] — H™ be a curve that is rectifiable in E™*!. Prove that « is
rectifiable in H".

3. Let v : [a,b] — H™ be a rectifiable curve. Prove that ~ is rectifiable in E™'.

§3.4. Hyperbolic Volume

Let z be a point of H™, with n > 1, such that z, and T,41 are not both
zero. The hyperbolic coordinates (11, . - . ,Mn) of z are defined as follows:

Ny = N(€y, Loy + Tyg1€41 + -+ Tpyient1) i <m,

7y, is the polar angle from e, t0 Tpen + Tnt1€n+1-
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The hyperbolic coordinates of z satisfy the system of equations

1 = coshy,
zo = sinh7 cosne,
(3.4.1)
Ty = sinhnsinng---sinn,_1 cosny,,
Zn+1 = sinhn;sings---sinn,_1sinn,.

The hyperbolic coordinate parameterization of H™ is the map
h:Rx[0,7]""2 x [0,20] — H"

defined by
h(”?h .. ann) = (.1’1, fes 7$n+1)a

where z, is expressed in terms of the hyperbolic coordinates 7, ..., 7, by
the system of Equations (3.4.1). The map h is surjective, and injective on
the open set R x (0,7)" 2 x (0,27). A straightforward calculation shows
that

oh
1 —Il=1, 3.4.2
OR (342)
oh . . . .
(2) |l = sinh# sinny - --sinn,—y fori > 1, (3.4.3)
Th
Oh  Oh
3 s—o-—=0 fori<j. 3.4.4
3) on,  On, ( )

A subset X of H" is said to be measurable in H™ if and only if h=1(X) is
measurable in R™. In particular, all the Borel subsets of H” are measurable

in H™. If X is measurable in H™, then the hyperbolic volume of X is defined
by the formula

Vol(X) = / y )sinh”_1 71 8in" "2y - - - sinn,_1dn; - - “dnn,.  (3.4.5)
R=1(X

The motivation for Formula 3.4.5 is as follows: Subdivide R” into a rect-
angular grid pattern parallel to the coordinate axes. Each grid rectan-
gular solid of volume An; --- An, that meets h~(X) corresponds under
h to a region in H™ that meets X. This region is approximated by the

Lorentzian rectangular solid spanned by the vectors g—;‘lAm, el %Ann.
Its Lorentzian volume is
Oh Oh . e e .
‘ 6—771 Nl WAnn = sinh™ !y sin ny- - sinny, 1Ay - - - An,.
n

As the mesh of the subdivision goes to zero, the sum of the volumes of the

approximating rectangular solids approaches the volume of X as a limit.
Let X be a measurable subset of H" and let ¢ be a positive Lorentz

transformation of R™*1. It is a basic fact of differential geometry that
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$(X) is also measurable in H™ and the hyperbolic volume of ¢(X) can be
measured with respect to the new parameterization ¢h of H™. As ¢ maps
the Lorentzian rectangular solid spanned by the vectors

oh Oh
— ceoy =—AD,
67]1 T]l? ) ann 77
onto the Lorentzian rectangular solid spanned by the vectors
h
O¢ A Oph

ey ANy,
6771 n ann i
we deduce that
Vol(¢(X)) = Vol(X).
In other words, hyperbolic volume is an isometry-invariant measure on H™.

It is clear from Formula 3.4.5 that hyperbolic volume is countably addi-
tive, that is, if {X,}%2; is a sequence of disjoint measurable subsets of H™,

then X = OL? X, is also measurable in H™ and

=1
Vol(X) = i Vol(X,).
=1

Theorem 3.4.1. The element of hyperbolic volume of H™ with respect to
the Euclidean coordinates x1,...,%n mn R™! 1s

dzy---dzy,
(L4 @+ +ad)]E

Proof: It is more convenient for us to work in RY™ and show that
the element of hyperbolic volume of H™ with respect to the coordinates
T2,-..yTnt1 is

dzy - dTpi1

L+ @3+ el

The desired result will then follow by a simple change of coordinates. Con-
sider the transformation h : R"™! x (0,27) — R™ defined by

h’(”h? v 77]n) = (x27 e 1wn+1)7

where z, is given by the system of Equations (3.4.1). Then by Formula

3.4.4, the vectors g—:l, e % are orthogonal. Hence, the Jacobian of the

transformation A is given by
oh
Onn,

o
om

Jh(m, .., 7m)

. -1 . -2 .
= coshnysinh™ " 9y sin " “n2---sinnp_1-
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By changing varjables via h, we have

/ sinh™ 'y sin® 2 ny - - sinnu_1dny - din
h=1(X)

_ / dxy - dTpi1

B Rh—1(X) cosh m

. / dIEQ e dCEn+1
p(X) Z1 ’

where p : H™ — R™ is the projection

p(]?l,...,iﬁn+1): (.’L’z,...,xn+1). ]
Exercise 3.4

1. Show that the hyperbolic coordinates of a point x of H™ satisfy the system
of Equations (3.4.1).

2. Show that the hyperbolic coordinates parameterization h satisfies Equations
(3.4.2)-(3.4.4).

3. Show that the element of hyperbolic arc length ||dz|| in hyperbolic coordi-
nates is given by

lldz||® = dn? + sinh® g1dn3 + - - - + sinh® 71 sin® g - - - sin® 9, _1dn2.

4. Let B(x,r) be the hyperbolic disk centered at a point z of H? of hyperbolic
radius 7. Show that the circumference of B(z,r) is 2w sinhr and the area
of B(z,r) is 2n(coshr — 1). Conclude that B(z,r) has more area than a
Fuclidean disk of radius r.

5. Let B(z,r) be the hyperbolic ball centered at a point = of H® of hyperbolic
radius 7. Show that the volume of B(z,r) is w(sinh 2r — 2r).

6. Prove that every similarity of H", with n > 1, is an isometry.

§3.5. Hyperbolic Trigonometry

Let z,y,z be three hyperbolically noncollinear points of H2. Let L(z,y)
be the unique hyperbolic line of H? containing z and y, and let H(x,y, 2)
be the closed half-plane of H? with L(z,y) as its boundary and z in its
interior. The hyperbolic triangle with vertices x,y, z is defined to be

T(z,y,2) = H(z,y,2) N H(y,z,x) N H(z,z,y).

We shall assume that the vertices of T'(z,y, z) are labeled in negative order
as in Figure 3.5.1.
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€T b z

Figure 3.5.1. A hyperbolic triangle T'(z, y, 2)

Let [z, y] be the segment of L(z,y) joining = to y. The sides of T'(x,y, z)
are defined to be [z,y], [y, 2], and [z,z]. Let a = n(y, 2), b = n(z,z), and
¢ = n(x,y). Then a,b,c is the hyperbolic length of [y, z], [2,z], [z, 2],
respectively. Let

f:[0,a] — H? g:[0,b] — H?, h:[0,c] — H?

be geodesic arcs from y to z, z to z, and x to y, respectively.

The angle a between the sides [z, z] and [z,y] of T(z,y, 2) is defined to
be the Lorentzian angle between —g’(b) and h'(0). The angle 5 between
the sides [z,y] and [y, 2] of T'(x,y, z) is defined to be the Lorentzian an-
gle between —h/(c) and f/(0). The angle v between the sides [y, z] and
[2,z] of T(z,y,2) is defined to be the Lorentzian angle between —f’(a)
and ¢'(0). The angles «, 8,7 are called the angles of T'(x,y, z). The side
[y, 2], [z, 2], [z,y] is said to be opposite the angle «, 3,7, respectively.

Lemma 1. Ifa, 3,7 are the angles of a hyperbolic triangle T'(x,y, z), then

(1) nz@zr,zy)=1—aq,
(2) nz@y, y®z)=m1-7,
B) ny®z 20z) =7 —17.

Proof: Without loss of generality, we may assume that = e;. The proof
of (1) is evident from Figure 2.5.2. The proof of (2), and (3), is similar. ©

Lemma 2. Let z,y be space-like vectors in R3. If z ® y is time-like, then

llz @ ylll = llzll llyll sinn(z, y)-
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Proof: As z®y is time-like, the vector subspace of R3 spanned by z and
y is space-like. By Theorem 3.2.1(4), we have
lz ®yl? (zoy)? — |z} llyll?
l2® flyll? cos® n(z, y) — ll]* llylI?
= —|zl*lyl?sin® n(z, y). 0

Il

Theorem 3.5.1. If o, B, v are the angles of a hyperbolic triangle, then
a+pf+y<m.

Proof: Let «, 5, v be the angles of a hyperbolic triangle T'(x,y,z). By
the same argument as in Theorem 2.5.1, the vectors z®y, 2 ®y, z @ x are
linearly independent. Let
TR®Y AT} Z2Qx
= , U= , w= .
llz @ yll Iz @yl llz @z

Now as

(z0y) @ (z0y) =((z®y)o2)y
and
(:®y)®(z@1) = (z®y)o2)z
we have that both u ® v and v ® w are negative time-like vectors. By
Lemma 2 and Theorems 3.1.6 and 3.2.1(4), we have
cos(n(u, v) + n(v,w))
cos n(u, v) cos (v, w) — sinn(u,v) sinn(v, w)
= (uov)(vow)+[u@v| lvewl|
(wov)(vow)+ ((u®v)o (vew))
= (ov)(vouw)+ ((wow)(uov) - (vouw)(uow))

uow

V

= cosn(u,w).
Hence, either
n(w,w) > n(u,v) +n(v, w)
or
2m — W(u, 'LU) < U(Ua U) + U(Ua w)
By Lemma 1, we have that n(u,w) = 7 — a, n(u,v) = 8, and (v, w) =17.
Thus, either 7 > a + 3+ v or 7 + a < 8+ ~. Without loss of generality,

we may assume that a is the largest angle. If 7 + a < 8 + , we have the
contradiction

T+oa<f+y<7m+oa.

Therefore, we have that
a+ B+ < o
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Theorem 3.5.2. (Law of Sines) If o, 8, are the angles of a hyperbolic
triangle and a, b, c are the lengths of the opposite sides, then

sinh a _ sinh b _ sinh ¢

sina  sinf  sinvy
Proof: Upon taking norms of both sides of the equations
(20r)®(z®y) =—((2®2) oy)z,
(z@y)®@(y®z2)=—((z®y)oz)y
(V@2 @ (o) =-(y®2) o),
we find that
sinh b sinhe sina = |(z @ y) o 2|,
sinh¢ sinha sin 8 = |[(z Q@ y) o 2,

sinha sinhb siny = [(z @ y) o z|. o

Theorem 3.5.3. (The First Law of Cosines) If a, 8,7 are the angles of a
hyperbolic triangle and a, b, c are the lengths of the opposite sides, then
coshacoshb — coshe

cosy =
7 sinha sinhb

Proof: Since
yoz youm

wozo@esz)=| 12" 127

)

we have that
sinha sinhbcos~y = coshacoshb — coshe. o

Theorem 3.5.4. (The Second Law of Cosines) If o, 3,7 are the angles of
a hyperbolic triangle and a,b,c are the lengths of the opposite sides, then

cos acos 3 + cos~y

he =
costie sin oz sin 8
Proof: Let
= y®z y = 28 S = $®y.
ly® 2|’ Iz ®z|’ |z ®yl
Th
en y/ ® Z/ Z/ ® .'E/
r = TN and Yy = I IPENWITE
lly" ® 2|l Iz ® z'|
Now since
’ / ’ / y/ oz yl oz
(y®z)o(z®m): Jdox 2oz |
we have

— sin(m — ) sin(m — (3) cosh ¢ = — cos(m — ) — cos(m — a)cos(m —f3). o
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It is interesting to compare the hyperbolic sine law

sinha sinhd sinhc

sin a sin@  sinvy
with the spherical sine law

sina sinb sinc

sinaw sin@  siny’
and the hyperbolic cosine laws

~ coshacoshb —coshe
ST = sinh @ sinh b ’

cos acos 3 + cos~y

coshe =

sin e sin §
with the spherical cosine laws

cosc — cosacos b
cosy =

sinasinb ’

cosacos 3 + cosy
cosc = .

sin asin 8
Recall that
sinia = ¢sinha and cosia = cosha.

Hence, the hyperbolic trigonometry formulas can be obtained from their
spherical counterparts by replacing a, b, ¢ by ia, ib, ic, respectively.

Area of Hyperbolic Triangles

A sector of H? is defined to be the intersection of two distinct nonopposite
half-planes of H2. Any sector of H? is congruent to a sector S (o) defined
in terms of hyperbolic coordinates (n,6) by the inequalities

-0/2<6<a/2

Here a is the angle formed by the two sides of S (a) at its vertex e;.

Let B = a/2. Then the geodesic rays that form the sides of S () are
represented in parametric form by

(cosht)er + (sinht)((cos B)es + (sin B)es) for t > 0,
(cosht)e; + (sinht)((cos B)ey — (sinB)es) for t > 0.

These geodesic rays are asymptotic to the 1-dimensional light-like vector
subspaces spanned by the vectors (1, cos 3, sin B) and (1, cos 8, — sin ), re-
spectively. These two light-like vectors span a 2-dimensional vector sub-
space V' that intersects H? in a hyperbolic line L. Let T'(a) be the inter-
section of S(a) and the closed half-plane bounded by L and containing e;.
See Figure 3.5.2. It is an interesting fact, which will be proved in Chapter
4, that H? viewed from the origin looks like the projective disk model with
the point e; at its center. Observe that the two sides of the sector S (a)
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Figure 3.5.2. A generalized triangle with two ideal vertices

meet the hyperbolic line L at infinity. From this perspective, it is natural
to regard T'(«) as a hyperbolic triangle with two ideal vertices at infinity.

A generalized hyperbolic triangle in H? is defined in the same way that
we defined a hyperbolic triangle in H? except that some of its vertices may
be ideal. When viewed from the origin, a generalized hyperbolic triangle
in H? appears to be a Euclidean triangle in the projective disk model with
its ideal vertices on the circle at infinity. See Figure 3.5.2. The angle of a
generalized hyperbolic triangle at an ideal vertex is defined to be zero.

An infinite hyperbolic triangle is a generalized hyperbolic triangle with
at least one ideal vertex. An infinite hyperbolic triangle with three ideal
vertices is called an 1deal hyperbolic triangle. Obviously, any infinite hyper-
bolic triangle with exactly two ideal vertices is congruent to T'(«) for some
angle a.

We now find a parametric representation for the side L of T'(c) in terms
of hyperbolic coordinates (7, 6). To begin with, the vector

(1,cos B,sin B) x (1,cos 8, —sin 3) = (—2cos Bsin B, 2sin 3, 0)

is normal to the 2-dimensional vector subspace V whose intersection with
H? is L. Hence, the vectors in V satisfy the equation

(cos B)x1 —z2 = 0.
Now the points of H? satisfy the system of equations

x1 = coshn,
2o = sinhn cos 6,
3 = sinhnsing.
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Hence, the points of L satisfy the equation

z1 = sec B cosfy/z? — 1.

Solving for =1, we find that
cosf

\/cos? 0 — cos? B
cosfcos
v/cos? 6 — cos? 3
sin @ cos 8

V/cos2 0 — cos? B

Lemma 3. Area T(a) =7 — a.

r1 =

Therefore

9 =

and

I3 =

Proof: Let
z(0) = (z1(9), x2(8), z3(0))

be the polar angle parameterization of L that we have just found. Then

by Formula 3.4.5, we have
B pnle1,z(8))
Area T(a) = / / sinh n dndd
8Jo
B

= [ﬂ(cosh n(er,z(0)) — 1)db

_ /ﬁ 2(6)d0 — o

-8B
B B
/ 21(0)d0 = / cos 0df
-8 -8 v/cos? 8 — cos2 3
_ /ﬁ cos df
-8 V/sin? 8 — sin2 @
sin 6

/1 du b
= ———, whereu= =
1 V1—u2 sin 8

and

1
= Arcsinu‘ = T.
-1

Thus, we have that
Area T(a) = 7 — a. o
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7

Figure 3.5.3. An ideal triangle subdivided into three infinite triangles

Lemma 4. The area of an ideal hyperbolic triangle 1s .

Proof: Let T be any ideal hyperbolic triangle and let x be any point in
the interior of T. Then T can be subdivided into three infinite hyperbolic
triangles each of which has x as its only finite vertex. See Figure 3.5.3. Let
a, 3,7 be the angles of the triangles at the vertex x. Then

Area(T)=(r—a)+ (7 =B+ (r—7) =m. =

Theorem 3.5.5. If «, 3,7 are the angles of a generalized hyperbolic trian-
gle T, then

Area(T) =7 — (a+ B +7).

Proof: By Lemmas 3 and 4, the formula holds if 7' has two or three ideal
vertices. Suppose that 7" has only two finite vertices « and y with angles
a and (. By extending the finite side of T', as in Figure 3.5.4, we see that
T is the difference of two infinite hyperbolic triangles T, and T, with only
one finite vertex = and y, respectively. Consequently
Area(T) = Area(T,) — Area(T,) = (1 — a) — 3.

Now suppose that 7' has three finite vertices ,y, z with angles o, 8,7. By
extending the sides of T', as in Figure 3.5.5, we can find an ideal hyperbolic
triangle T” that can be subdivided into four regions, one of which is T', and
the others are infinite hyperbolic triangles T, T,, T, with only one finite
vertex , v, z, respectively. Consequently, we have

Area(T’) = Area(T) + Area(T,) + Area(Ty) + Area(T?).

Thus
7w = Area(T)+a+8+1. o

Corollary 1. If a, 3,7 are the angles of a generalized hyperbolic triangle,
then
a+B8+y<m.
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Figure 3.5.4. An infinite triangle T expressed as the difference of two triangles

/d\

Figure 3.5.5. The ideal triangle found by extending the sides of T'(x,y, 2)
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Existence of Hyperbolic Triangles

The next theorem extends Theorem 3.5.4 to the case v = 0.

Theorem 3.5.6. If o, 3,0 are the angles of an infinite hyperbolic triangle
with exactly one 1deal vertex and c is the length of the finite side, then

1+ cosacos

coshec = - -
sin asin 3

Proof: Let T(z,y,z) be an infinite hyperbolic triangle with one ideal
vertex z. We represent z by a positive light-like vector. Let

) y®z . 28z, 28y
ly® 2|’ lz® |’ lz®yll
Then
v e J Rz
.’17:"‘—/—, and y:—'—,———,‘-
lly" 2] llz" @'l

Let u be a point in the interior of the side [z, z) and let v be a point in the
interior of the side [y, z). By Lemma 1, we have

nu®z, z@y) =7 —a,

nz®y, y®v) =7~ p.
Hence, we have

nz®z, z@yY)=1—aq,

Nz@y, y®z)=7—F.

Now z is in the subspace V spanned by z’ and ¢/, and 2z’ and y’ are on
opposite sides of (z) in V. Hence 2’0oy’ = —1 by Theorems 3.2.9 and 3.2.10.
Now since

y/ o .,L_/ y/ o ZI

(y/®zl)o(zl®xl)= Jdox 2oz

we have
—sin(m — a)sin(m — B) coshc = —1 — cos(m — @) cos(m — ). 8

We next prove a law of cosines for a hyperbolic quadrilateral with two
adjacent right angles. See Figure 3.5.6.

Theorem 3.5.7. Let Q be a hyperbolic convez quadrilateral with two ad-
jacent right angles, opposite angles o, 3, and sides of length c,d between
a, 8 and the right angles, respectively. Then

cosacos 3 + coshd

coshc = : .
sin aesin 8
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Y

Ty

Figure 3.5.6. A hyperbolic quadrilateral @ with two adjacent right angles

Proof: Let x,y be the vertices of Q at «, 3, and let z be the unit space-like
vector Lorentz orthogonal and exterior to the side of @ of length d. Let

;. Y®z y/ . z2Qr S = TRY
ly® 2|’ |z ® |’ llz®yl
Then
/®Z/ ZI®II
T = %’ and y = Mot o Il
ly" @ 2'|| llz" @ 2|l
Now since
/ ! / /
(y/®zl)o(zl®$l)= Z/Zi/ lez/ s
we have

—sin(7 — a) sin(m — 8) cosh¢ = — coshd — cos(m — @) cos(m — ). ©

Theorem 3.5.8. Let Q be a hyperbolic conver quadrilateral with two ad-
Jacent mght angles and opposite angles o, 3. Then o+ 8 < .

Proof: Subdivide @ into two triangles with angles a, 31, v1 and Ba, 72, 7/2
such that 81 + B2 = 8 and v; +v2 = #/2. Then

Area(Q) = m7—a-pBi—m+71—Ba—v2—7/2
= m—a-—0.

We next prove the existence theorem for hyperbolic triangles.
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Theorem 3.5.9. Let o, 3, be positwwe real numbers such that
a+f+y <.

Then there 1s a hyperbolic triangle, unique up to congruence, with angles
a) 187 ’Y'

Proof: We shall only prove existence. The proof of uniqueness is left as

an exercise for the reader. We may assume, without loss of generality, that
a, B < w/2. Now since

at+pB<T—7,
we have that
cos(a + 3) > cos(m — 7).
Hence
cosacos —sinasin > — cos~,

and so
cos acos B + cos~y > sinasin 5.

Thus, we have that
cos acos 3 + cos~y

- - > 1.
sin a sin 38

Hence, there is a unique positive real number c satisfying the equation

cos a cos 3 + cos~y
sinasin 8 )

coshc =

Let [z, y] be a geodesic segment in H 2 of length ¢ joining a point z to a
point y, and let Ly, L, be the hyperbolic lines passing through the points
z,7, respectively, making an angle «, /3, respectively, with [z,y] on the
same side of [z,y]. We claim that L, and L, meet on the same side of the
hyperbolic line L., containing [z, y], as o, 8. The proof is by contradiction.

Assume first that L, and L meet, possibly at infinity, on the opposite
side of L, than the angles o, 3. Then the lines Ly, Ly, L form a generalized
hyperbolic triangle two of whose angles are 7 — o and m — (3, but

(W_O‘)+(7T_B)>7T7

which contradicts Corollary 1.

Assume next that L, and Ly do not meet, even at infinity. Then L, and
L have a common perpendicular hyperbolic line Lg joining a point u of
Ly, to a point v of L,. Assume first that u # z, v # y and that [u,v] is on
the opposite side of L.. See Figure 3.5.7. Then u,v,,y are the vertices
of a hyperbolic quadrilateral with two adjacent right angles and opposite
angles m — o and ™ — 3, but

(r—a)+ (r—pF) >m,

which contradicts Theorem 3.5.8.
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U d v
| O Lqg
x c Y
L
o ﬁ ¢
Lb La

Figure 3.5.7. The four lines in the proof of Theorem 3.5.9

Next, assume that u = z,v # y and that v is on the opposite side

of L.. Then z,y,v are the vertices of a hyperbolic triangle with angles
/2 — a,m — 3,7/2, but

(r/2—~a)+ (m—B) +7/2 >,

which contradicts Corollary 1. Likewise, if v = y and u is on the opposite
side of L., we also have a contradiction.

Next, assume that u # x and that u is on the same side of L. as «, and
v # y and v is on the opposite side of L.. Then the lines Lq, Ly, L¢, Lg
form two hyperbolic triangles two of whose angles are o, w/2 and 71— 3, 7/2,
respectively. As 8 < m/2, we have

T—-0B+7/2>m,

which contradicts Corollary 1. Likewise, if v # y and v is on the same side
of L. as B, and u # = and w is on the opposite side of L., we also have a
contradiction.

Next, assume that v = y, v # = and that u is on the same side of
L. as a. Then z,y,u are the vertices of a hyperbolic triangle with angles
a,8—7m/2,7/2, but B < 7/2, which is a contradiction. Likewise, if u = x
and v # y and v is on the same side of L. as 3, we also have a contradiction.

Finally, assume that u # x,v # y, and [u, v] is on the same side of L. as
a, 3. Then u,v,z,y are the vertices of a hyperbolic quadrilateral with two
adjacent right angles and opposite angles o, 3. By Theorem 3.5.7, we have

cosacos 3+ coshd
sin «sin 8

coshe =

2

which is a contradiction, since coshd > cos~.
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Tt follows that L, and L; meet, possibly at infinity, on the same side
of L. as «, 8. Therefore, the lines L, Ly, L, form a generalized hyperbolic
triangle T' with angles «, 3,6. By Theorems 3.5.4 and 3.5.6, we have
cosacos 3+ cosd

sin asin 3

Hence cos § = cos~y and therefore §6 = . Thus T is the desired triangle. o

coshe =

Almost Rectangular Quadrilaterals and Pentagons

Theorem 3.5.10. Let Q be a hyperbolic convex quadrilateral with three

right angles and fourth angle v, and let a, b the lengths of the sides opposite
the angle ~v. Then

cosy = sinh a sinh b.

Proof: Let z,y be space-like vectors Lorentz orthogonal and exterior to
the sides of @ of length a, b, respectively. Let z be the vertex of Q) of angle
~ and 2’ the opposite vertex. Let u, v be the vertices of Q between z, z and
1, z, respectively. See Figure 3.5.8. By Lemma 1, we have

nv®z,zQu)=m—1.

Hence, we have

ny®z20) =7 —7.

Likewise n(z,y) = 7/2.

Figure 3.5.8. A hyperbolic quadrilateral @ with three right angles
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Let
L = Y27 4 y = 8z
ly ® 2| |z ® ||
Then
v Q27 7@
z = ——— and Yy = —— -
ly' ® 2| I’ ® '
Now since

yox' y o7
Zox' 2oz

Y ®2)o(F@a) =

)

we have by Theorem 3.2.12 that

0 = —cos(m — «y) — sinh asinh . o

Theorem 3.5.11. Let P be a hyperbolic convexr pentagon with four right
angles and fifth angle vy, let ¢’ be the length of the side of P opposite v,

and let a,b be the lengths of the sides of P adjacent to the side opposite .
Then

cosh — cosh a cosh b + cos~y

sinh asinh b

Moreover, the above formula also holds if the vertex of P of angle 7 is at
infinity.

Figure 3.5.9. A hyperbolic pentagon P with four right angles
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Proof: Assume first that the vertex z of angle + is finite. Let z,y, 2’ be
unit space-like vectors Lorentz orthogonal and exterior to the sides of P of
length a,b, ¢/, respectively. Let u,v be the vertices of P between z, z, and
Y, z, respectively. See Figure 3.5.9. By Lemma 1, we have

nv®z,zQu) =7 — .
Hence, we have

Ny®z,z@z)=m—1.

Let
/ y®z 12 z®x
= —— and Yy = ———.
ly ® || Iz ® ||
Then , ,
! !
xr = % and ’y = ZoT
v ® 2| 2/ ® 2|
Now since
! ! / !
! / / n_|Yyoxr Yoz
(y ®Z)O(Z®$)_ dox oz |
we have

—sinh asinh bcosh ¢ = — cosy — cosh a cosh b.

Assume now that z is at infinity. We can then represent z by a positive
light-like vector. Let x’ and 4’ be as above. Then z is in the subspace
V spanned by z' and 3/, and z’ and y’ are on opposite sides of (z) in V.
Hence 2’ oy’ = —1 by Theorems 3.2.9 and 3.2.10. As before, we have

—sinhasinhbcoshe = —1 — cosh a cosh b. o

Right-Angled Hyperbolic Hexagons

Let H be a right-angled hyperbolic convex hexagon in the projective disk
model D? of the hyperbolic plane. Without loss of generality, we may
assume that the center of D? is in the interior of H. Then no side of H is
part of a diameter of D?. As all the perpendiculars to a nondiameter line
of D? meet in a common point outside of D?, the three Euclidean lines
extending three alternate sides of H meet pairwise in three points x,y, z
outside of D. Likewise, the three Euclidean lines extending the opposite
three alternate sides of H meet pairwise in three points z’,%/, 2’ outside of
D?. See Figure 3.5.10. The points z',%/, 2’ are determined by the points
z,y, z. To understand why, we switch to the hyperbolic model H?. We can
then represent ,y, 2 as unit space-like vectors that are Lorentz orthogonal
and exterior to three alternate sides of H. Then
’ y®z ’ A ’ xRy

' = , Y= , 2=
ly ® 2| Iz ® 2| llz ®yl

In other words T'(z',y’,2') is the polar triangle of the ultra-1deal triangle
T(z,y,#). Compare with Formula 2.5.1. See also Figure 1.2.2.
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Figure 3.5.10. A right-angled hyperbolic hexagon H

Lemma 5. Let x,y be space-like vectors in R3. If z ® Y 15 space-like, then
lz @yl = llz|l Iyl sinhn(z,y).

Proof: As z®y is space-like, the vector subspace of R3 spanned by x and
y is time-like. Hence

|z oyl = |zl lyll coshn(z,y).
By Theorem 3.2.1(4), we have

lz@yl® = (zoy)* - |||yl
= ll=l*lyl* cosh? n(z, y) — |l]?[ly|*
]2 lly]|? sinh? n(z, ). o

Theorem 3.5.12. (Law of Sines for right-angled hyperbolic hexagons) If
a,b,c are the lengths of alternate sides of a right-angled hyperbolic convex
hezagon and a’,b', ¢’ are the lengths of the opposite sides, then

sinh a sinh b sinh c

sinha’  sinh® = sinhc'”

Proof: By Theorem 3.2.8, we have

!

a = n(yaz)a 4 :n(zax)’ d :77(2/72)’
a = 7)), b=n(z,2"), c=ny,7).
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Upon taking norms of both sides of the equations
(@) ®(z®y) =—((2®=z)oy)z,
z®y)®@@Hy®2)=—-(z®y) o2y,
W®2)®(2z®z)=-((y®2)01)z,

we find that

sinh b’ sinh ¢’ sinha = |(z @ y) o 2|,
sinh ¢ sinha’sinhb = |(z ® y) o 2|,

sinha’ sinh ¥’ sinhec = |(z ® y) o 2|. o

Theorem 3.5.13. (Law of Cosines for right-angled hyperbolic hexagons)
If a, b, ¢ are the lengths of alternate sides of a right-angled hyperbolic convex
hezagon and a’,b',c are the lengths of the opposite sides, then

cosha coshb + coshe
sinh asinh b

coshd =

Proof: Since
yoxr Yoz

oo zoa)=| YT ¥

?

we have by Theorem 3.2.8 that
—sinh @’ sinh ¥’ cosh ¢ = — cosh ¢’ — cosha’ coshd'. =

Corollary 2. The lengths of three alternate sides of a right-angled hyper-
bolic hexagon are determined by the lengths of the opposite three sides.

We now prove the existence theorem for right-angled hexagons.

Theorem 3.5.14. Let a,b,c be positive real numbers. Then there is a
right-angled hyperbolic convex hezagon, unique up to congruence, with al-
ternate sides of length a, b, c, respectively.

Proof: Let ¢’ be the unique positive real number that satisfies the equation

cosh ¢ cosh a coshb + coshc
shc' =

sinh a sinh b
and let S. be a geodesic segment in H 2 of length ¢'. Erect perpendicular
geodesic segments S, and Sy, of length a and b, respectively, at the endpoints
of S on the same side of So. Let Lo and Ly be the hyperbolic lines
perpendicular to S, and S,, respectively, at the endpoint of Sp and Sq,
respectively, opposite the endpoint of S./. See Figure 3.5.10.

Without loss of geomerality, we may assume that ¢ > a, b. Then Ly
does not meet Sp; otherwise, we would have a quadrilateral with three
right angles and fourth angle v, and opposite sides of length a and ¢/, and
so by Theorem 3.5.10, we would have

sinh asinh ¢’ = cos,
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but
sinh?asinh®¢ = sinh? a(cosh? ¢’ — 1)
_ (coshacoshb + coshc)? — sinh® asinh® b
a sinh® b
S cosh? ¢
sinh? b
> 1,

which is a contradiction. Likewise L, does not meet S,. Moreover L, does
not meet Ly, even at infinity; otherwise, we would have a pentagon with
four right-angles and fifth angle « as in Figure 3.5.9, and so by Theorem
3.5.11, we would have

cosha cosh b + cosy
sinh a sinh b

cosh¢ =

?

which is a contradiction, since cosh ¢ > cos~.

By Theorems 3.2.6-3.2.9, the hyperbolic lines L, and L; have a common
perpendicular hyperbolic line L.. Let L, Ly be the hyperbolic line of H?
containing S,, Sy, respectively. Then L. is on the same side of L, as S,
since L. meets Ly and Lo is on the same side of L, as S,. Likewise L, is
on the same side of L, as S.. Let S, be the segment of L. joining L, to
Ly . Then we have a right-angled convex hexagon H with alternate sides
Sa, S, Sc. Let d be the length of S.. Then by Theorem 3.5.13, we have

cosh e — cosh a cosh b + cosh d
N sinh a sinh b
Hence d = c. Thus H has alternate sides of length a,b,c. The proof that
H is unique up to congruence is left as an exercise for the reader. o

Exercise 3.5

1. Let a, 8, be the angles of a hyperbolic triangle and let a, b, c be the lengths
of the opposite sides. Prove that a < b < ¢ if and only if a < 8 < .

2. Let a, 8,7 be the angles of a hyperbolic triangle and let a, b, ¢ be the lengths
of the opposite sides. Show that

(1 cosha = coshbcoshe — sinhbsinhccosa, (3.5.1)
coshb = coshacoshc — sinhasinhccos g, (3.5.2)
coshe = coshacoshb~— sinhasinhbcosy, (3.5.3)
(2) cosa = —cos3cosy+ sinBsinycosha, (3.5.4)
cosf3 = —coswcosy + sinasinycoshb, (3.5.5)

cosy = —cosacosf +sinasinfcoshec. (3.5.6)
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3. Let a, 8, m/2 be the angles of a hyperbolic right triangle and let a, b, c be the
lengths of the opposite sides. Show that

(1) coshe = coshacoshb, (3.5.7)
(2) coshe = cotacot 3, (3.5.8)
(3) sinha = sinhesing, (3.5.9)
sinhb = sinhcsin g, (3.5.10)
4) cosa = tanhbcothe, (3.5.11)
cos 3 = tanhacothe, (3.5.12)
(5) sinha = tanhbcot g, (3.5.13)
sinhbd = tanhacot«, (3.5.14)
(6) cosa = coshasinf, (3.5.15)
cosf = coshbsina. (3.5.16)

4. Let o, 3,0 be the angles of an infinite hyperbolic triangle with exactly one
ideal vertex and let ¢ be the length of the finite side. Show that

cosa + cos 3

sinhe¢ = — - .
sin asin 3

(3.5.17)

5. Prove that a generalized hyperbolic triangle is equilateral if and only if it is
equiangular.

6. Show that for a hyperbolic equilateral triangle of angle o and side length a,
cosh(a/2) sin(a/2) = 1/2. (3.5.18)

7. Prove that an angle bisector of a hyperbolic triangle 1" bisects the opposite
side of T if and only if the other two sides of T have the same length.

8. Prove that the three angle bisectors of a hyperbolic triangle 7' meet in a
common point inside T equidistant from each of the three sides of T'.

9. Let T(x,y,2) be a hyperbolic triangle labeled as in Figure 3.5.1 such that
a,B < m/2. Prove that the point on the hyperbolic line through z and y
nearest to z lies in the interior of the side [z,y].

10. Let o, 3,7 be nonnegative real numbers such that o+ 8+~ < 7. Prove that
there is a generalized hyperbolic triangle with angles «, 3,7.

11. Prove that two generalized hyperbolic triangles are congruent if and only if
they have the same angles.

12. Prove that two right-angled hyperbolic convex hexagons are congruent if and
only if they have the same three lengths for alternate sides.
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§3.6. Historical Notes

§3.1. Lorentzian geometry was introduced by Klein in his 1873 paper Ue-
ber die sogenannte Nicht-Euklidische Geometrie [227] and was developed by
Killing in his 1885 treatise Nucht-Euklidischen Raumformen [221]. Three-
dimensional Lorentzian geometry was described by Poincaré in his 1887
paper Sur les hypothéses fondamentales de la géométre [335]. See also
Bianchi’s 1888 paper Sulle forme differenziali quadratiche indefinite [45)].
Lorentzian 4-dimensional space was introduced by Poincaré as a model
for space-time in his 1906 paper Sur la dynamique de l’électron [338].
For commentary on Poincaré’s paper, see Miller’s 1973 article A study
of Henrv Poincaré’s “Sur la dynamique de Uélectron” [288]. Lorentzian 4-
dimensional space was proposed as a model for space-time in the theory of
special relativity by Minkowski in his 1907 lecture Das Relativititsprinzip
[296]. For commentary, see Pyenson’s 1977 article Hermann Minkowsk:
and Einstein’s Special Theory of Relatwity [345]. Lorentzian geometry was
developed by Minkowski in his 1908 paper Die Grundgleichungen fir die
elektromagnetischen Vorginge in bewegten Kérpern [293] and in his 1909
paper Raum und Zeit [294]. Lorentzian 4-space is also called Minkowski
space-time. Lorentz transformations of n-space were first considered by
Killing in his 1885 treatise [221]. In particular, Theorem 3.1.3 appeared in
Killing’s treatise. Lorentz transformations of space-time were introduced
by Lorentz in his 1904 paper Electromagnetic phenomena mn a system mov-
ing with any velocity less than that of hght [271]. The terms Lorentz trans-
formation and Lorentz group were introduced by Poincaré in his 1906 paper
[338]. The geometry of the Lorentz group was studied by Klein in his 1910
paper Uber die geometrichen Grundlagen der Lorentzgruppe [236]. For a
discussion of the role played by Lorentzian geometry in the theory of rel-
ativity, see Penrose’s 1978 article The geometry of the universe [325) and
Naber’s 1992 monograph The Geometry of Minkowsk: Spacetime [313].

§3.2. The hyperboloid model of hyperbolic space and Formula 3.2.2 ap-
peared in Killing’s 1878 paper Ueber zwei Raumformen mit constanter pos-
itwer Krimmung [219]. The time-like and space-like angles were essentially
defined by Klein in his 1871 paper Ueber de sogenannte Nichi-Euklidische
Geometrie [224]. Most of the material in §3.2 appeared in Killing’s 1885
treatise [221]. Other references for this section are Klein’s 1928 treatise
Vorlesungen iber nich-euklidisch Geometrie [237], Coxeter’s 1942 treatise
Non-Euclidean Geometry (91], Busemann and Kelly’s 1953 treatise Pro-
Jjective Geometry and Projectwe Metrics [64], and Thurston’s 1979 lecture
notes The Geometry and Topology of 3-Manifolds [389].

§3.3. The element of hyperbolic arc length of the hyperboloid model
of hyperbolic space appeared in Killing’s 1880 paper Die Rechnung in den
Nucht-Euklidischen Raumformen [220]. The Lorentzian length of a hyper-
bolic line segment was defined by Yaglom in his 1979 monograph A Simple
Non-Euclidean Geometry and Its Physical Basis [419)]
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§3.4. Two-dimensional hyperbolic coordinates appeared as polar co-
ordinates in Lobachevski’s 1829-30 paper On the principles of geometry
[262]. Two-dimensional hyperbolic coordinates were defined by Cox in
terms of Euclidean coordinates in his 1882 paper Homogeneous coordinates
in wmaginary geometry [84]. Moreover, Cox gave the element of hyperbolic
area in both hyperbolic and Euclidean coordinates in this paper. Hyper-
bolic coordinates in n-dimensions and Formula 3.4.5 appeared in Bohm
and Hertel’s 1981 treatise Polyedergeometrie in n-dimensionalen Rdumen
konstanter Krimmung [50].

§3.5. That the sum of the angles of a hyperbolic triangle is less than two
right angles was proved by Saccheri, under his acute angle hypotheis, in
his 1733 treatise Fuclides ab omns naevo vindicatus [355]. Formulas equiv-
alent to the hyperbolic sine and cosine laws appeared in Lobachevski’s
1829-30 paper [262]. See also his 1837 paper Géométrie imaginaire [264].
The law of sines appeared in a form that is valid in spherical, Euclidean,
and hyperbolic geometries in Bolyai’s 1832 paper Scientiam spatiz abso-
lute veram ezhibens [51]. The duality between hyperbolic and spherical
trigonometries was developed by Lambert in his 1770 memoire Observa-
tions trigonométriques [251]. Taurinus proposed that the duality between
hyperbolic and spherical trigonometries infers the existence of a geome-
try opposite to spherical geometry and studied its properties in his 1826
treatise Geometriae prima elementa [386]. That the area of a hyperbolic
triangle is proportional to its angle defect first appeared in Lambert’s mono-
graph Theorie der Parallellinien [252], which was published posthumously
in 1786. For a tramslation of the relevant passages, see Rosenfeld’s 1988
treatise A History of Non-Euclhdean Geometry [353]. The elegant proof of
Theorem 3.5.5 was communicated to Bolyai’s father by Gauss in his letter
of March 6, 1832. For a translation, see Coxeter’s 1977 article Gauss as a
geometer [93].

The law of cosines for quadrilaterals with two adjacent right angles ap-
peared in Ranum’s 1912 paper Lobachefskian polygons trigonometrically
equivalent to the triangle [346]. The cosine law for trirectangular quadri-
laterals appeared in Barbarin’s 1901 treatise Etudes de géométrie analy-
tuque non Buclidienne [30]. The law of cosines for quadrectangular pen-
tagons appeared in Ranum’s 1912 paper [346]. That the formulas of spher-
ical trigonometry with pure imaginary arguments admit an interpreta-
tion as formulas for right-angled hyperbolic hexagons appeared implicitly
in Schilling’s 1891 note Ueber die geometrische Bedeutung der Formeln
der sphérischen Trigonometrie vm Falle complexer Argumente [357]. The
sine and cosine laws for right-angled hyperbolic hexagons appeared im-
plicitly in Schilling’s 1894 paper Beitrige zur geometrischen Theorie der
Schwarz’schen s-Function [358] and explicitly in Ranum’s 1912 paper [346].
References for hyperbolic trigonometry are Beardon’s 1983 treatise The
Geometry of Discrete Groups [34] and Fenchel’s 1989 treatise Elementary
Geometry wn Hyperbolic Space [132].



CHAPTER 4

Inversive Geometry

In this chapter, we study the group of transformations of E™ generated
by reflections in hyperplanes and inversions in spheres. It turns out that
this group is isomorphic to the group of isometries of H™!. This leads to
a deeper understanding of hyperbolic geometry. In Sections 4.5 and 4.6,
the conformal ball and upper half-space models of hyperbolic n-space are
introduced. The chapter ends with a geometric analysis of the isometries
of hyperbolic n-space.

§4.1. Reflections

Let a be a unit vector in E™ and let ¢ be a real number. Consider the
hyperplane of E™ defined by

P(a,t)={z € E" :a-2 =1t}.
Observe that every point x in P(a,t) satisfies the equation
a-{x~—ta) =0.

Hence P(a,t) is the hyperplane of E™ with unit normal vector a passing
through the point ta. One can easily show that every hyperplane of E™ is

of this form, and every hyperplane has exactly two representations P(a,t)
and P(—a, —t).

The reflection p of E™ in the plane P(a,t) is defined by the formula
p(z) =z + sa,

where s is a real scalar so that z + 1sa is in P(a,t). This leads to the
explicit formula

plz) =z+2(—a-x)a. (4.1.1)

The proof of the following theorem is routine and is left as an exercise for
the reader.

105
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Theorem 4.1.1. If p 1s the reflection of E™ in the plane P(a,t), then

(1) p(x) =z if and only if x is m P(a,t);
(2) p*(z) =z for all z in E™; and

(3) p is an sometry.

Theorem 4.1.2. Every isometry of E™ 1s a composition of at most n+ 1
reflections in hyperplanes.

Proof: Let ¢ : E™ — E™ be an isometry and set vg = ¢(0). Let pg be the
identity if vg = 0, or the reflection in the plane P (vg/|vg|, |vo|/2) otherwise.
Then po(vo) = 0 and so pgp(0) = 0. By Theorem 1.3.5, the map ¢o = po
is an orthogonal transformation.

Now suppose that ¢y _1 is an orthogonal transformation of E™ that fixes
€1,...,€x—1. Let vy = Pr_1{ex) — ex and let pi be the identity if vy, = 0,
or the reflection in the plane P (vy/|vk|,0) otherwise. Then prpér—1 fixes
ex. See Figure 4.1.1. Also, for each j =1,...,k — 1, we have

vkoe; = (dr—1(er) —ex) e
= ¢dr_1(ex) €
= ¢up—1(ex) - dpr—1(e,)
= €r*€
= 0.

Therefore e, is in the plane P (vx/|vx|,0) and so is fixed by pg. Thus, we
have that ¢r = pr¢r_1 fixes ey,...,ex. It follows by induction that there

are maps po,- - -, Pn Such that each p, is either the identity or a reflection
and p, ---po¢ fixes 0,e1,...,e,. Therefore p, - --po¢ is the identity and
we have that ¢ = pg -+ pn- al

Pr—1(ex) — ex Pr—1(ex)

Figure 4.1.1. The reflection of the point ¢x—1(ex) in the plane P
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Inversions

Let a be a point of E™ and let r be a positive real number. The sphere of
E™ of radius r centered at a is defined to be the set

S(a,r)={zx € E" : |x —a| =1}
The reflection (or wnversion) o of E™ in the sphere S(a,r) is defined by the
formula
o(z) =a+ s(z — a),
where s is a positive scalar so that
lo(z) — a |z — a| = 2.

This leads to the explicit formula

o(z) =a+ (hf (z — a). (4.1.2)

There is a nice geometric construction of the point o(x). Assume first
that z is inside S(a,r). Erect a chord of S(a,r) passing through z per-
pendicular to the line joining a to z. Let u and v be the endpoints of
the chord. Then o(z) is the point 2’ of intersection of the lines tangent
to S(a,r) at the points u and v in the plane containing a, u, and v, as in
Figure 4.1.2. Observe that the right triangles T'(a,z,v) and T'(a, v, z') are
similar. Consequently, we have

|z’ - al T

r o |z—al
Therefore 2’ = o(x) as claimed.

Now assume that z is outside S{a,r). Let y be the midpoint of the line
segment [a, z] and let C be the circle centered at y of radius |z—y|. Then C
intersects S(a,r) in two points u,v, and o(z) is the point z’ of intersection
of the line segments [a,z] and [u,v], as in Figure 4.1.3.

u

Figure 4.1.2. The construction of the reflection of a point z in a sphere S(a, )
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Figure 4.1.3. The construction of the reflection of a point z in a sphere S(a, r)

Theorem 4.1.3. If o is the reflection of E™ wn the sphere S(a,r), then
(1) o(z) =z if and only if 15w S(a,r);
(2) 0%(z) =z for all z # a; and
(3) for all z,y # a,
r?lz —y|
|o(z) = o(y)| = T=aly—al
Proof: (1) Since
lo(z) - al & — al =12,
we have that o(z) = z if and only if |z —a| = .

(2) Observe that \
o*(z) = a+ (W) (o(z) —a)

(2 () e

(3) Observe that

of(x—a) (y—a)
lo(z) —o(y)| = r |$—a|2—|y—al2
Ta[ 1 2z-a)-(y-a) , 1 r”
lz—af?  |z—affly-al® ly—af
|z —yl

|z —al [y —al
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Conformal Transformations

Let U be an open subset of E™ and let ¢ : U — E™ be a differentiable
function. Let ¢'(x) be the matrix (g%;(x)) of partial derivatives of ¢. The
function ¢ is said to be conformal if and only if there is a function

k:U— Ry,

called the scale factor of ¢, such that k(z)~1¢/(x) is an orthogonal matrix
for each x in U. Notice that the scale factor x of a conformal function ¢ is
uniquely determined by ¢, since [k(z)]™ = | det ¢'(z)|.

Lemma 1. Let A be a real n X n matriz. Then there is a positive scalar
k such that k' A is an orthogonal matriz if and only if A preserves angles
between nonzero vectors.

Proof: Suppose there is a k > 0 such that £~ A is an orthogonal matrix.
Then A is nonsingular. Let z and y be nonzero vectors in E®. Then Az
and Ay are nonzero, and A preserves angles, since

Azx - Ay
COSO(AZL‘,Ay) = m
k=1Az - k' Ay
k=1 Az| |k~ Ay|

-y
— cos 0(z, y).
|| [yl ’

Conversely, suppose that A preserves angles between nonzero vectors.
Then A is nonsingular. As f(Ae,, Ae,) = 6(e,,e,) = 0 for all i # j, the

vectors Aey, ..., Ae, are orthogonal. Let B be the orthogonal matrix such
that Be, = Ae,/|Ae,| for each i. Then B~'A also preserves angles and
B~lAe, = ce, where ¢, = |Ae,|. Thus, we may assume, without loss of

generality, that Ae, = c,e,, with ¢, > 0, for each i = 1,...,n. As
0(A(e. +¢,), Ae;) = O(e. + ¢;,€,)
for all ¢ # 5, we have

(ce. + cey) - €, 1

(¢ +)2e, V2
Thus 2¢2 = 2 + ¢? and so ¢, = ¢, for all 4 and j. Therefore, the common
value of the ¢, is a positive scalar k such that k1A is orthogonal. o

Let a, 8 : [=b,b] — E™ be differentiable curves such that a(0) = B8(0)
and o/(0),8(0) are both nonzero. The angle between o and 3 at 0 is
defined to be the angle between o/(0) and §(0).

Theorem 4.1.4. Let U be an open subset of E™ and let ¢ : U — E™ be

a differentiable function. Then ¢ 1s conformal if and only of ¢ preserves
angles between differentiable curves in U.
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Proof: Suppose that the function ¢ is conformal. Then there is a function
k : U — Ry such that x(z)"1¢'(z) is orthogonal for each z in U. Let
a,B : [=b,b] — U be differentiable curves such that «(0) = B(0) and
o/(0), 5'(0) are both nonzero. Then by Lemma 1, we have

0((¢)'(0), (63)'(0))
= 0(¢'(«(0))e'(0), ¢'(5(0))5'(0))
6(a’(0), 5'(0)).
Hence, the angle between ¢a and ¢ at 0 is the same as the angle between
«a and 3 at 0.

Conversely, suppose that ¢ preserves angles between differentiable curves
in U. Then the matrix ¢'(z) preserves angles between nonzero vectors for
each z. By Lemma 1, there is a positive scalar x(z) such that x(z)~1¢/(z)
is orthogonal for each z in U. Thus ¢ is conformal. o

Let U be an open subset of E™ and let ¢ : U — E™ be a differentiable
function. Then ¢ is said to preserve (resp. reverse) orientation at a point
z of U if and only if det ¢/(z) > 0 (resp. det ¢'(x) < 0). The function ¢ is
said to preserve (resp. reverse) orientation if and only if ¢ preserves (resp.
reverses) orientation at each point z of U.

Theorem 4.1.5. Every reflection of E™ in a hyperplane or sphere is con-
formal and reverses orientation.

Proof: Let p be the reflection of E™ in the plane P(a,t). Then

plz) =z +2(t—a-z)a,
o' (x) = (6, — 2a,a;)) =1 — 24,
where A is the matrix (a,a,). As p’(x) is independent of ¢, we may assume

without loss of generality that ¢ = 0. Then p is an orthogonal transforma-
tion and

p(z) = (I — 2A)z.

Thus I — 2A is an orthogonal matrix, and so p is conformal.
By Theorem 1.3.4, there is an orthogonal transformation ¢ such that
¢(a) = e;. Then
¢pp~M(z) = ¢(¢7'(2) —2(a- ¢ (x))a)
)
= 2 2(8la) wer
= x—2(e1-x)er.

Therefore ¢p¢—" is the reflection in P(e1,0). By the chain rule,
det(¢pp ") () = det p'(z).
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To compute the determinant of ¢’ (x), we may assume that a = ey. Then

-1
1 0
I-2A=
0
1
Thus det p/(z) = —1, and so p reverses orientation.

Let o, be the reflection of E™ in the sphere S(0,7). Then

r2z
@ = Lp
and so 5 f 0 2z,x, r?
27 7 _
o = (Gh =) = EE)

where A is the matrix (z,z,/|z|?). We have already shown that I —2A is
orthogonal, and so o, is conformal; moreover o, reverses orientation, since

deto’(z) = (L)% det(I — 24)

]

- (@) <o

Now let o be the reflection with respect to S(a,r) and let 7 be the
translation by a. Then 7/(z) = I and o = 70,7~ . Hence o'(z) = ol.(z—a).
Thus o is conformal and reverses orientation. o

Exercise 4.1

1. Prove Theorem 4.1.1.

2. Show that the reflections of E™ in the planes P{a,0) and P(b,0) commute if
and only if their normal vectors a and b are orthogonal.

3. Show that a real n x n matrix A preserves angles between nonzero vectors if
and only if there is a positive scalar k such that |Az| = kl|z| for all z in E™.

4. Let U be an open connected subset of E® and let ¢ : U — E™ be a C!

function such that ¢'(z) is nonsingular for all z in U. Show that ¢ either
preserves orientation or reverses orientation.

5. Let U be an open connected subset of C. Prove that a function ¢ : U — C
is conformal if and only if either ¢ is analytic and ¢'(z) #0forall zin U or
¢ is analytic and ¢'(z) # 0 for all z in U.
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84.2. Stereographic Projection

Identify E™ with E™ x {0} in E™*!. The stereographic projection w of E™
onto S™ — {en41} is defined by projecting  in E™ towards (or away from)
€n11 until it meets the sphere S™ in the unique point 7(z) other than e, ;.
See Figure 4.2.1. As m(x) is on the line passing through z in the direction
of en41 — x, there is a scalar s such that

7(2) =z + s(ent1 — @)
The condition |7 (z)|? = 1 leads to the value
|z> — 1
R
lz|2 +1
and the explicit formula
211 2z, |r|2-1
= _— , . 42.1
(@) (1+ [z T+ |22 a2+ 1 (42.1)
The map = is a bijection of E™ onto S™ — {ep41}-

There is a nice interpretation of stereographic projection in terms of in-

versive geometry. Let o be the reflection of E™*! in the sphere S(eny1,v/2).
Then

2(z — en+1)
— ey + 2T Cntl) 4.2.2
o) = ey + 2 (422
If  is in E™, then
2
o(x) = epp1+ W(m’ ey T, —1)

_ 211 2z, |w|2—1>
R R T P LA A

E2

Figure 4.2.1. The stereographic projection 7 of E? into S?
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Thus, the restriction of o to E™ is stereographic projection
m:E" — 8" —{ent1}-

As ¢ is its own inverse, we can compute the inverse of 7 from Formula
4.2.2. fyis in S™ — {en 41}, then

2(y_ 6n—+-1)
o(y) = epy1+ [y|2 — 2y - epns1 + 1
1
€n+1 + (yla ceyYn, Ynt1l — 1)
1 — Yn+1
_ < Y1 Yn 0)
= RN , .
1= yns1 1= Yni1
Hence
-1 _ Y1 Yn ) (42 3)
T = sy . 2.
) (1 = Yn+1, I T

Let 0o be a point not in E™*! and define £” = E™ U {co}. Now extend
7 to a bijection 7 : E™ — S™ by setting #(co) = e,41, and define a metric
d on E™ by the formula

d(z,y) = [#(z) — 7 (y)|. (4.2.4)
The metric d is called the chordal metric on E™. By definition, the map #
is an isometry from E”, with the chordal metric, to S™ with the Euclidean
metric. The metric topology on E™ determined by the chordal metric is the
same as the Euclidean topology, since 7 maps E™ homeomorphically onto
the open subset S™ —{e,, 11} of S™. The metric space E" is compact and is
obtained from E™ by adjoining one point at infinity. For this reason, E™ is
called the one-point compactification of E™. The one-point compactification
of the complex plane C is called the Riemann sphere C = CU {0}

Theorem 4.2.1. If z,y are in E™, then

2
(1) d(z,00) = (—IW,
@ dey) = Y

(L + |22 (1 + [y[2)1/2
Proof: (1) Observe that
d(z, o)

i

|7 () — #(c0))]

= |m(z) — enta]

_ 21, 2z, -2
- Lz’ 1+ |22’ 1+ |z)2

2
(1 Jz2)t/2”
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(2) By Theorem 4.1.3, we have

d(z,y) = 2z — 4|
’ |x - en+1} ly — en+1|
2|z —y|
(14 2z)V2(1 + y|2) /2 :

By Theorem 4.2.1, the distance d(x,c0) depends only on |z|. Conse-
quently, every open ball By(co,r) is of the form E™ — B(0,s) for some
s > 0. Therefore, a basis for the topology of E™ consists of all the open
balls B(x,r) of E™ together with all the neighborhoods of co of the form

N(oo,s) = E™ — B(0, s).

In particular, this implies that a function f : En — E™ is continuous at a
point ¢ of E™ if and only lim f(z) = f(a) in the usual Euclidean sense.
r—a

Let P(a,t) be a hyperplane of E™. Define
P(a,t) = P(a,t) U{occ}.

Note that the subspace P(a,t) of E™ is homeomorphic to S™~ L. Let p be
the reflection of E™ in P(a,t) and let j : E® — E™ be the extension of p
obtained by setting p(co) = co. Then p(x) = z for all z in P(a,t) and p?
is the identity. The map p is called the reflection of E™ in the extended
hyperplane P(a, t).

Theorem 4.2.2. Every reflection of E™ in an extended hyperplane 15 a
homeomorphism.

Proof: Let p be the reflection of E™ in a hyperplane. Then p is continuous.
As lim p(x) = oo, we have that p is continuous at co. Therefore p is a
—0o0

continuous function. As p is its own inverse, it is a homeomorphism. o

Let o be the reflection of E™ in the sphere S(a,r). Extend o to a map

cEm— B by setting 6(a) = oo and 6(c0) = a. Then 6(x) =z for all z
in S (a,7) and &2 is the identity. The map 6 is called the reflection of En
in the sphere S(a, 7).

Theorem 4.2.3. Every reflection of E™ 1 a sphere of E™ is a homeomor-
phism.

Proof: Let o be the reflection of E™ in the sphere S(a,r) and let & be
the extended reflection of E™. As 62 is the identity, & is a bijection with
inverse 4. The map & is continuous, since o is continuous, ilg}z o(z) = oo,

and lim o(z) = a. Thus ¢ is a homeomorphism. o

T— 00
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Cross Ratio

Let u,v,z,y be points of E™ such that u # v and x # y. The cross ratio
of these points is defined to be the real number
d(u, z)d(v,y)
d(u,v)d(z,y)
The cross ratio is a continuous function of four variables, since the metric
d: E™ x E™ — R is a continuous function. The following theorem follows
immediately from Theorem 4.2.1.

[u,v,m,y] = (425)

Theorem 4.2.4. If u,v,x,y are pownts of E™ such that u # v and © # y,
then
lu—z| vyl

(1) [u’v7x:y]:[u_vl lﬂ:~y|’

@) [oo,,a,] = :z:ﬂ’
®  lnoomy = =2,
@ ooy = 22,

G)  [uv,1z,00 = :Z:j[’

Exercise 4.2

1. Derive Formula 4.2.1.

2. Let U be a subset of E™ containing co. Show that U is open in E™ if and
only if U is of the form E™ — K, where K is a compact subset of E”.

3. Letn: E™ - E"bea homeomorphism and let /) : E™ — E™ be the extension
obtained by setting f{cc) = co. Prove that 7 is a homeomorphism.

4. Prove that the Euclidean metrlAc on E™ does not extend to a metric d on £
so that the metric space (E™,d) is compact or connected.

5. Let P(a,t) be a hyperplane of E™. Show that the extended plane P(a,t) is
homeomorphic to S™~

§4.3. Mobius Transformations

A sphere ¥ of E™ is defined to be either a Euclidean sphere S(a,r) or an
extended plane P(a,t) = P(a,t) U {oo}. It is worth noting that P(a,t) is
topologically a sphere.
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Definition: A Mobius transformation of E™ is a finite composition of
reflections of E™ in spheres.

Let M(E™) be the set of all Mobius transformations of E™. Then M(E™)
obviously forms a group under composition. By Theorem 4.1.2, every isom-
etry of E™ extends in a unique way to a Mdbius transformation of E™.
Thus, we may regard the group of Euclidean isometries I(E™) as a sub-
group of M(E™).

Let k£ be a positive constant and let ug : Em — E™ be the function
defined by i (z) = kx. Then py is a Mobius transformation, since puy is the
composite of the reflection in S(0, 1) followed by the reflection in S(0, vVk).
As every similarity of E™ is the composite of an isometry followed by py
for some k, every similarity of E™ extends in a unique way to a Mdbius
transformation of E™. Thus, we may also regard the group of Euclidean
similarities S(E™) as a subgroup of M(E™).

In order to simplify notation, we shall no longer use a hat to denote the
extension of a map to E™.

Lemma 1. If o is the reflection of Ej’” wn the sphere S(a,r) and o1 is the
reflection wn S(0,1), and ¢ : E™ — E™ 1s defined by ¢(x) = a + rx, then
o= ¢op L.

Proof: Observe that

o(z) = a—l—(h)z(ﬂc—a)
=

= ¢01(m_a> = ¢o1¢7 " (). o

r

Theorem 4.3.1. A function ¢ : E™ — E™ is a Mébius transformation of
and only if it preserves cross ratios.

Proof: Let ¢ be a Mobius transformation. As ¢ is a composition of
reflections, we may assume that ¢ is a reflection. A Euclidean similarity
obviously preserves cross ratios, and so we may assume by Lemma 1 that
#(z) = z/|z|?>. By Theorem 4.1.3, we have

_ |z —yl

By Theorem 4.2.4, we deduce that
[¢(u)a #(v), ¢>(93), d’(y)] = [U’v v, T, y]

if u, v, z,y are all finite and nonzero. The remaining cases follow by conti-
nuity. Thus ¢ preserves cross ratios.
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Conversely, suppose that ¢ preserves cross ratios. By composing ¢ with
a Mobius transformation, we may assume that ¢(c0) = co. Let u, v, z,y be
points of E™ such that u # v,  # y, and (u,v) # (z,y). Then either u # z
or v # y. Assume first that u # z. As [¢p(u), 00, d(z), d(y)] = [u, 00,2, Y],

e have o) = 9(a)| _ Ju—z]
6@ o) lz—ul
and since [¢(u), d(v), d(z), 00] = [u, v, z, 0], we have
6(w) — 6(@)| _ |u—c|
o) —6(0)| ~ lu—vl
T o= )] _ 1) = 4@l _ 1(e) - 80|
fu ] T fw—y]

Similarly, if v # y, then
|6(w) = ¢(v)| _ 16(z) — ¢(v)|

lu—vf -y

Hence, there is a positive constant k such that |¢(z) — ¢(y)| = k|z — y| for
all z,y in E™. By Theorem 1.3.6, we have that ¢ is a Euclidean similarity.
Thus ¢ is a M6bius transformation. o

From the proof of Theorem 4.3.1, we deduce the following theorem.

Theorem 4.3.2. A Mébws transformation ¢ of En fizes oo if and only if
@ is a similarity of E™.

The Isometric Sphere

Let ¢ be a Mobius transformation of E™ with $(o0) # co. Let a = ¢71(00)
and let o be the reflection of E™ in the sphere S(a,). Then ¢o fixes co.
Hence ¢o is a similarity of E™ by Theorem 4.3.2. Therefore, there is a

point b of E™, a scalar k > 0, and an orthogonal transformation 4 of E™
such that

#(x) = b+ kAo (z). (4.3.1)
By Theorem 4.1.3, we have

kr2|z — y|
¢(z) — p(y)| = ——.
Now suppose that z,y are in S(a,t). Then |f(z) — ¢(y)| = |z — y| if and
only if t = rv/k. Thus ¢ acts as an isometry on the sphere S(a,rvk), and
S(a, r\/E) is unique with this property among the spheres of E™ centered
at a. For this reason, S(a,rvk) is called the isometric sphere of ¢.
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Theorem 4.3.3. Let ¢ be a Mdbius transformation of E™ with ¢(co) # oo.
Then there is a unique reflection o in a Euclidean sphere 3 and a unique

FEuclidean isometry ¢ such that ¢ = Yo. Moreover ¥ is the isometric
sphere of ¢.

Proof: Let ¢ be the reflection in the isometric sphere S(a,r) of ¢. Then
a = ¢~ 1(00) and ¢o(00) = co. By Theorem 4.3.2, we have that ¢o is a
Euclidean similarity. Let z,y be in S(a,r). Then we have

I¢o(z) — do(y)| = [(x) — d(y)| = |z — yl.
Thus ¢ = ¢o is a Euclidean isometry and ¢ = 0.
Conversely, suppose that o is a reflection in a sphere S(a,r) and ¢ is
a Euclidean isometry such that ¢ = t¢o. Then ¢(a) = oo and ¢ acts as

an isometry on S(a,r). Therefore S(a,r) is the isometric sphere of ¢. As
1 = ¢o, both ¢ and v are unique. o

Preservation of Spheres

The equation defining a sphere S(a,r) or P(a,t) in E™ is

|z|2 —2a-z+|al* -7 =0 (4.3.2)
or
—2a-x+2t=0, (4.3.3)

respectively, and these can be written in the common form
aolz|?* = 2a -2 + any1 =0 with |a® > agantr.

Conversely, any vector (ag,...,a0n+1) in R?T2 such that la|> > aoan+1,
where a = (a1, . . ., a,) determines a sphere 3 of E™ satisfying the equation

aolz|* —2a -z + ant1 = 0.
If ag # 0, then

s S(g (|a|2—aoan+1)%>_

ap’ |aol
If ag = 0, then
A 6 Ontl
Y = P<—,——> .
la|” 2[al
The vector (ag,...,an+1) is called a coefficient vector for %, and it is

uniquely determined by ¥ up to multiplication by a nonzero scalar.

Theorem 4.3.4. Let ¢ be a Mobius transformation of E™. IfY is a sphere
of E™, then ¢(X) 15 also a sphere of ™.

Proof: Let ¢ be a Mdbius transformation, and let Y be a sphere. As
¢ is a composition of reflections, we may assume that ¢ is a reflection.
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A Euclidean similarity obviously maps spheres to spheres, and so we may
assume by Lemma 1 that ¢(z) = z/|z|%
Let (ag,--.,an+1) be a coeflicient vector for X.. Then ¥ satisfies the
equation
aolz|* — 2a -z + any1 = 0.

Let y = ¢(z). Then y satisfies the equation
ap — 20 -y + any1lyl* = 0.

But this is the equation of another sphere Y. Hence ¢ maps Y into Y.
The same argument shows that ¢ maps ¥’ into ¥. Therefore p(X) =% o

Theorem 4.3.5. The natural action of M(E™) on the set of spheres of En
18 transitive.

Proof: Let ¥ be a sphere of Em. Tt suffices to show that there is a Mobius
transformation ¢ such that ¢(X) = En—!. As the group of Euclidean
isometries I( E™) acts transitively on the set of hyperplanes of E™, we may
assume that ¥ is a Euclidean sphere. As the group of Euclidean similarities
S(E™) acts transitively on the set of spheres of E™, we may assume that
Y = S™~L. Let o be the reflection in the sphere S(e,, v2). Then we have
that o(S™~1) = En1 by stereographic projection. o

Theorem 4.3.6. If ¢ is a Mébius transformation of E™ that fixes each

pownt of a sphere % of E™, then ¢ 1s either the wdentity map of E™ or the
reflection in 3.

Proof: Assume first that & = E™~!. Then ¢(c0) = co. By Theorem
4.3.2, we have that ¢ is a Euclidean similarity. As ¢(0) = 0 and ¢(e1) = e1,
we have that ¢ is an orthogonal transformation. Moreover, since ¢ fixes
€1,...,en—1, we have that ¢(e,) = *e,. Thus ¢ is either the identity or
the reflection in P(ey, 0).

Now assume that ¥ is arbitrary. By Theorem 4.3.5, there is a Mobius
transformation ¢ such that ¢(¥) = Enl. As p~! fixes each point
of E™~1) we find that ¢! is either the identity or the reflection p in
E™~!. Hence ¢ is either the identity or 1»~'pti). Let o be the reflection in
¥. As o1p~! fixes each point of E”! and is not the identity, we have
that 9¥o1)~! = p. Hence o = ¢~ 1 pyp. Thus ¢ is either the identity or o. ©

Definition: Given a reflection ¢ in a sphere ¥ of En, two points z and y of
E™ are said to be inverse points with respect to ¥ if and only if y = o(z).

Theorem 4.3.7. Let ¢ be a Mobwus transformation of Em. If x andy are
inverse points with respect to a sphere . of E™, then ¢(z) and ¢(y) are
wnwerse points with respect to ¢(X).
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Proof: Let o be the reflection in ¥. Then ¢o¢—' fixes each point of
#(X) and is not the identity. By Theorem 4.3.6, we have that ¢o¢~! is the

reflection in ¢(X). As ¢op1(d(z)) = ¢(y), we have that ¢(z) and ¢(y)
are inverse points with respect to ¢(3). o

Exercise 4.3

1. Show that a Mdbius transformation of E™ either preserves or reverses orien-
tation depending on whether it is the composition of an even or odd number
of reflections. Let Mo(E™) be the set of all orientation preserving Mébius

transformations of £™. Conclude that Mo(E™) is a subgroup of M(E™) of
index two.

2. A lhnear fractional transformation of the Riemann sphere € is a continuous

map ¢ : C — € of the form ¢(z) = 25137 where a,b,c,d are in C and

ad — bc # 0. Show that every linear fractional transformation of C is an
orientation preserving Mobius transformation of C.

3. Let L‘F(C) be the set of all linear fractional transformations of C. Show that
LF(C) is a group under composition.

4. Let GL(2,C) be the group of all invertible complex 2 X 2 matrices, and
let PGL(2,C) be the quotient group of GL(2,C) by the normal subgroup
{kI : kK € C*}. Show that the map = : GL(2,C) — LF(C), defined by

=( a b (Z)_az+b
“\ec d T ez+d’

induces an isomorphism from PGL(2,C) to LF(C).
5. Let p(z) = Z be complex conjugation. Show that
M(C) = LF(C) ULF(C)p.

Deduce that LF(C) = Mo(C).

6. Let ¢(z) = Z:ig be a linear fractional transformation of C with ¢(00) # oo.

Show that the 1sometric circle of ¢ is the set

{zeC:\ez-}—dl:]ad—bc\%}.

7. Let ¢ be a Mdbius transformation of E™ with ¢(c0) # oo, and let Xy be the
isometric sphere of ¢. Prove that ¢(Xg) = Ly-1.

8. Let ¢ be a Mobius transformation of E™ with ¢(00) # o0, and let ¢'(z) be
the matrix of partial derivatives of ¢. Prove that the isometric sphere of ¢
is the set {z € E™ : ¢/(z) is orthogonal}.
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84.4. Poincaré Extension

Under the identification of E"~1 with E"~! x {0} in E", a point z of
E™~1 corresponds to the point # = (z,0) of E”. Let ¢ be a Mdbius
transformation of E"~!. We shall extend ¢ to a Mobius transformation qS
of Em as follows. If ¢ is the reflection of E™! in, P(a,t), then ¢ is the
reflection of E™ in P(a,t). If ¢ is the reflection of £~ in S(a,r), then ¢
is the reflection of E™ in S(&,r). In both these cases

é(x,0) = (¢(x),0) for all z in E"L.

Thus ¢ extends ¢. In particular qg leaves ™! invariant. It is also clear
that ¢ leaves invariant upper half-space

U" ={(z1,...,2,) € E™ : z,, > 0}.

Now assume that ¢ is an arbitrary Mobius transformation of E“_l Then
¢ is the composition ¢ = oy - - - oy, of reflections. Let ng =0y- . Then
& extends ¢ and leaves U™ invanant Suppose that ¢; and ¢2 are two such
Mobbius transformations. Then gbl q§2 fixes each pomt of E"~! and leaves
U™ invariant. By Theorem 4.3.6, we have that ¢1¢2 is the identity and
S0 ¢y = ¢2. Thus é depends only on ¢ and not on the decomposition
¢ =01-+0m. The map ¢ is called the Poincaré extension of ¢.

Theorem 4.4.1. A M¢bius transformation ¢ of E™ leques upper half-space

U™ invariant if and only if ¢ is the Poincaré extension of a Mobius trans-
formation of E"1.

Proof: Let ¢ be a Mobius transformation of E™ that leaves U” invariant.
As ¢ is a homeomorphism, it also leaves the _boundary of U™ invariant.
Hence ¢ restricts to a homeomorphism ¢ of En~1. As ¢ preserves cross
ratios in E”, we have that ¢ preserves cross ratios in E~ 1. Therefore
@ is a Mobius transformation of En-t by Theorem 4.3.1. Let ¢ be the
Poincaré extension of ¢. Then ¢¢5 ! fixes each point of 7! and leaves
U™ invariant. Therefore ¢ = ¢ by Theorem 4.3.6. o

Mébius Transformations of Upper Half-Space

Definition: A Mobwus transformation of upper half- space U™ is a, Mobius
transformation of E™ that leaves U™ invariant.

Let M(U™) be the set of all Mébius transformations of U™. Then M(U™)isa

subgroup of M(E") The next corollary follows immediately from Theorem
4.4.1.

Corollary 1. The group M(U™) of Mébius transformations of U™ 1s 1s0-
morphic to M(E™1).
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Two spheres ¥ and X’ of Em are said to be orthogonal if and only if they

intersect in E™ and at each point of intersection in E™ their normal lines
are orthogonal.

Corollary 2. Every Mabws transformation of U™ is the composition of
reflections of E™ in spheres orthogonal to E™~ 1,

Proof: Let ¢ be a Mobius transformation of U™. Then v is the Poincaré
extension ¢ of a Mobius transformation ¢ of En=1. The map ¢ is the com-
position o1 - - - oy, of reflections of E™=1in spheres. The Poincaré extension
of the reflection o, is a reflection of E"in a sphere orthogonal to En-t
As ¢ = &y - - - Gm, we have that 1 is the composition of reflections of E™ in

spheres orthogonal to E"~ 1, o

Theorem 4.4.2. Two spheres of E™ are orthogonal under the following
conditions:

(1) The spheres P(a,r) and P(b,s) are orthogonal if and only 1f a and b
are orthogonal.

(2) The spheres S(a,r) and P(b,s) are orthogonal of and only if a is
P(b,s).

(3) The spheres S(a,r) and S(b,s) are orthogonal 1f and only if r and s
satisfy the equation |a — b|?> = r? + 2.

Proof: Part (1) is obvious. The proof of (2) is left to the reader. The
proof of (3) goes as follows: At each point of intersection z of S(a,r) and
S(b, s), the normal lines have the equations

u=a+tz—a),
{ v=>b+t(x —b),

where t is a real parameter. These lines are orthogonal if and only if their
direction vectors z — a and x — b are orthogonal. Observe that

la—b = |@&-b)~(@-a)
= jz—af—2@-b) - (x—a)+|z—af
s2—2(x—0b)-(xz—a)+r’
Hence (z — a) and (z — b) are orthogonal if and only if
la —b|? = r? + &2
Thus, if the spheres are orthogonal, then
la —b? =r? + &°
Conversely, suppose that |a — b2 = r? + 52. Then there is a right
triangle in E™ with vertices a,b,z such that | —a| =r and |z — b = s.

Consequently, z is a point of intersection of S(a,r) and S(b,s), and the
spheres are orthogonal. See Figure 4.4.1. o
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Figure 4.4.1. Orthogonal circles S(a,r) and S(b, s)

Remark: It is clear from the proof of Theorem 4.4.2 that two spheres X
and X’ of E™ are orthogonal if and only if they are orthogonal at a single
point of intersection in E™.

Theorem 4.4.3. A reflection o of E™ in a sphere ¥ leaves upper half-space
U™ invariant if and only if E™' and ¥ are orthogonal.

Proof: Let ¥ = P(a,t) or S(a,r). By Theorem 4.4.2, we have that £"!
and ¥ are orthogonal if and only if a,, = 0. Let z be in E™ and set y = o(z).
Then for all finite values of y, we have

ZTn+2(t—a-x)ay if ¥ = P(a,t),

(ﬁ)%n + (1 - (W)2> an it == S(a,r).

Assume that a,, = 0 and x,, > 0. Then z # a, and so y is finite and y,, > 0.
Thus o leaves U™ invariant.

Conversely, assume that o leaves U™ invariant. Then o leaves E71
invariant. As the reflection in En1 switches U™ and —U™, we may assume
that ¥ is not E*~ !, Let z be in E"~! — X with y finite. Then z,, = 0 = y,,.
As z is not in ¥, the coefficient of a, in the above expression for y, is
nonzero. Hence a,, = 0. o

Yn =

Theorem 4.4.4. Let ¢ be a Mébwus transformation of U™. If $(00) = oo,
then ¢ 1s a Euclhidean similarity. If ¢(c0) # oo, then the isometric sphere
¥ of ¢ 15 orthogonal to E* ! and ¢ = o, where o is the reflection mn 2
and 1 1s a Euclidean wsometry that leaves U™ invariant.
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Proof: If ¢(o0) = 0o, then ¢ is a Euclidean similarity by Theorem 4.3.2.
Now assume that ¢(co ) # 00. Then ¢ is the Poincaré extension of a Mobius
transformation & of E"1 by Theorem 4.4.1. Let & be the reflection of
E" ! in the isometric sphere 33 of . Then there is a Euclidean isometry
1 of E™~! such that ¢ = 9G by Theorem 4.3.3. Let 0, be the Poincaré
extensions of a‘ﬁ, respectively. Then ¢ is a reflection in a sphere ¥ of E™
orthogonal to E™1, and 1) is an isometry of E™ that leaves U™ invariant.
As ¢ = 47, we have that ¢ = ¥o. Therefore ¥ is the isometric sphere of ¢
by Theorem 4.3.3.

u]

Mobius Transformations of the Unit n-Ball

Let o be the reflection of E™ in the sphere S(ey,v2). Then

2(x — e,
o) = en+t 4|i — en‘z,). (4.4.1)
Therefore A ( )
9 en - (x —ep 4
= 1 .
|o(z)] + o — e PR
Thus 4
T

This implies that o maps lower half-space —U™ into the open unit n-ball
B" ={z € E":|z| < 1}.

As ¢ is a homeomorphism of E™, it maps each component of En — 1
homeomorphically onto a component of Emn — §7~1 Thus ¢ maps —U™
homeomorphically onto B™ and vice versa.

Let p be the reflection of E™ in E™! and define 7 = op. Then 1 maps
U™ homeomorphically onto B™. The Mobius transformation 7 is called the
standard transformation from U™ to B™.

Definition: A Mébius transformation of S™ is a function ¢ : S* — S™
such that 7~ 1¢m is a Mobius transformation of E", where 7 : Em - 8™ is
stereographic projection.

Let M(S™) be the set of all Mobius transformations of S™. Then M(S™)
forms a group under composition. The mapping ¢ — mpr~! is an isomor-
phism from M(E™) to M(S™).

Let ¢ be a Mobius transformation of Sn-t . The Poincaré extension of ¢
is the Mdbius transformation @ of E™ defined by ¢ 771/)17 1 where ¥ is the
Poincaré extension of ¢ = 7~ 1¢m and 7 is the standard transformatlon from
U™ to B™. The Mobius transformation ¢) obviously extends ¢ and leaves B™
invariant; moreover, ¢> is unique with this property. The following theorem
follows immediately from Theorem 4.4.1.
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Theorem 4.4.5. A Mobius transformation ¢ of E™ leaves the open umt
ball B™ invarant of and only if ¢ is the Powncaré extension of a Mébius
transformation of S*1.

Definition: A Mdébwus transformation of the open unit ball B™ is a Mdbius
transformation of E™ that leaves B™ invariant.

Let M(B™) be the set of all Mdbius transformations of B®. Then M(B™)
is a subgroup of M(E™). The next corollary follows immediately from
Theorem 4.4.5.

Corollary 3. The group M(B™) of Mdbius transformations of B™ is iso-
morphic to M(§™71).

The following corollary follows immediately from Corollary 2.

Corollary 4. Every Mébius transformation of B™ 1s the composition of
reflections of E™ wn spheres orthogonal to S™~ 1.

Theorem 4.4.6. A reflection o of E™ mn a sphere ¥ leaves the open unit
ball B™ invariant 1f and only +f S*~ ! and & are orthogonal.

Proof: Let n be the standard transformation from U™ to B"™. Then
¥ = n~!(X) is a sphere of E" by Theorem 4.3.4, and o/ = n~ton is the
reflection in ¥’ by Theorem 4.3.6. As 7 maps U™ bijectively onto B™,
the map o leaves B™ invariant if and only if ¢’ leaves U™ invariant. By
Theorem 4.4.3, this is the case if and only if £~ and Y/ are orthogonal.
By Theorem 4.1.5, the map 7 is conformal and so it preserves angles. Hence
E™ 1 and ¥ are orthogonal if and only if ! and ¥ are orthogonal. o

Theorem 4.4.7. Let ¢ be a Mébius transformation of B™. If ¢(00) = oo,
then ¢ is orthogonal. If ¢(o0) # oo, then the isometric sphere 3. of ¢ 1s

orthogonal to S™~! and ¢ = Yo, where o is the reflection in X3 and v is an
orthogonal transformation.

Proof: Assume first that ¢(co) = co. Then ¢ is a Euclidean similarity by
Theorem 4.3.2. As ¢(0) = 0, we have that #(r) = kAz, where k > 0 and
A is an orthogonal matrix. As ¢ leaves S™~1 invariant, we must have that
k = 1. Thus ¢ is orthogonal.

Now assume that ¢(c0) # co. Let o be the reflection in the sphere
S(a,r), where a = ¢~!(c0) and 72 = 1 — la|?. Then S(a,r) is orthogonal
to S"! by Theorem 4.4.2. Hence o leaves B" invariant by Theorem 4.4.6.
Now ¢o(00) = ¢(a) = co. Hence ¢o is an orthogonal transformation 1,
and ¢ = 1po. By Theorem 4.3.3, the isometric sphere of ¢ is S(a,r). o

Theorem 4.4.8. Let ¢ be a Mébius transformation of B®. Then $(0) =0
of and only if ¢ s an orthogonal transformation of E™.
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Proof: As 0 and co are inverse points with respect to S™~!, and ¢ leaves
S™=1 invariant, ¢(0) and @(co) are inverse points with respect to S™~1.
Therefore ¢ fixes 0 if and only it fixes co. The theorem now follows from
Theorem 4.4.7. o

Exercise 4.4

1. Identify the upper half-plane U? with the set of complex numbers
{z€C: Imz > 0}.

Show that a linear fractional transformation ¢ of C leaves U? invariant if
and only if there exists real numbers a, b, ¢, d, with ad — bc > 0, such that

_az+b
9(z) = cz+d’

2. Let ¢ be in LF(C). Show that there are complex numbers a, b, ¢, d such that
o(z) = %_‘tg and ad — bc = 1.

3. Let SL(2,C) be the group of all complex 2 x 2 matrices of determinant one,
and let PSL(2, C) be the quotient of SL(2,C) by the normal subgroup {+1}.
Show that the inclusion of SL(2,C) into GL(2,C) induces an isomorphism

from PSL(2,C) to PGL(2,C). Deduce that PSL(2,C) and LF(C) are iso-
morphic groups.

4. Show that the standard transformation 5 : U? — B? is given by
iz+1
z2+14

n(z) =

5. Identify the open unit disk B? with the open unit disk in C,

{zeC: |z < 1}.

Let ¢(z) = ZZZIZ be in LF(C) normalized so that ad — bc = 1. Show that ¢

leaves B2 invariant if and only if ¢ = b and d = @.

6. Identify upper half-space U® with the set of quaternions
{z+tj:2€C and t>0}.

Let ¢(z) = ‘CLZZ:[Z be a linear fractional transformation of C normalized so

that ad — bc = 1. Show that the Poincaré extension of ¢ is given by

H(w) = (aw + b)(cw + d)™', where w = z+1j.
7. Prove that Poincaré extension induces a monomorphism
T:M(B™" ') — M(B")

mapping M(B"*) onto the subgroup M(B™ 1) of elements of M(B") that
leave B"~! and each component of B™ — B"~! invariant.
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§4.5. The Conformal Ball Model

Henceforth, we shall work with hyperbolic n-space H™ in R™!. We now
redefine the Lorentzian inner product on R™! to be
zoy=1o1y1 +  + TnYn — Tnt1¥Yn+1- (4.5.1)
All the results of Chapter 3 remain true after one reverses the order of the
coordinates of R*+1. The Lorentz group of R™! is denoted by O(n, 1).
Identify R™ with R™ x {0} in R™*!. The stereographic projection ¢ of
the open unit ball B™ onto hyperbolic space H™ is defined by projecting
z in B™ away from —e,_; until it meets H™ in the unique point {(x). See
Figure 4.5.1. As () is on the line passing through z in the direction of
x + en 11, there is a scalar s such that
((@) =z +s(z+ent1).
The condition ||¢(x)/|? = —1 leads to the value
1+ |z|?
S =
1—|=|?

and the explicit formula
211 2z, 1+ |z)?
T) = ooy , . 4.5.
N G e e (452
The map ( is a bijection of B™ onto H™. The inverse of ( is given by

c‘l(y)=< LA L ) (4.5.3)

T4+ 9nt1’ 14+ ynp

Figure 4.5.1. The stereographic projection ¢ of B? onto H?
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Define a metric dp on B™ by the formula

The metric dp is called the Poincaré metric on B™. By definition, ( is
an isometry from B™, with the metric dg, to hyperbolic n-space H". The
metric space consisting of B™ together with the metric dp is called the
conformal ball model of hyperbolic n-space.

Theorem 4.5.1. The metric dg on B™ is given by
20z —y|?
(1= le)@ =y

coshdp(z,y) =1+

Proof: By Formula 3.2.2, we have

coshdg (((2),((y)) = —C(z)o((y)
—4z-y+ 1+ A+ |yl*)
(1= - [yl?)
(== = [yl*) +2(|z]* + yI*) =4z -y
(1~ [z~ |y}?)

= 1+ 2o~y o
(1 = [x)(1 = [yl*)
Lemma 1. If ¢ is a Mébwus transformation of B™ and x,y are mn B™, then
|¢(z) — o)l _ |z —yf®

(1-lp@))(1 - s)P) 1 —lzlHQ -~ [y?)
Proof: This is obvious if ¢ is an orthogonal transformation. By Theorem

4.4.6, we may assume that ¢ is a reflection in a sphere S(a,r) orthogonal
to S®~1. By Theorem 4.1.3, we have

|¢(x) — ¢l _ r?

lz—yl  |lz—ally-al

As S(a,r) is orthogonal to S"~*, we have that r* = |a|*> — 1. Moreover

2

d(r) = a+|—m2—(m—a).
Hence ”
@) = laf+—ge -+ e
Thus 5 5 5 4
al* —1)|lz—a 2réa - (x —a)+
pp -1 = (P mDemd e
_ r2[|x—a|2+2a-(z—a)—l—|a|2—1]
B |z — al?

|z — 1)
|z —al*
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Hence
L-le@P _
1—|z? |z —al?
TR ) — sl (L 8@~ 1)) -
iz —y? 1 — [T -y

Hyperbolic Translation

Let S(a,r) be a sphere of E™ orthogonal to 571, By Theorem 4.4.2, we
have 2 = |a|? — 1. Thus, the radius r is a function of a. Let o, be the
the reflection in S(a,r). Then o, leaves B™ invariant by Theorem 4.4.6.
Let p, be the reflection in the hyperplane a - ¢ = 0. Then p, also leaves
B" invariant, and therefore the composite p,0, leaves B™ invariant. Let
a* = a/|al®. A straightforward calculation shows that

(la?~=1) (> =2z -a* +1)

Pa0a(T) = |z — a2 T - |z — al?

*

In particular p,0,(0) = —a™.

Let b be a nonzero point of B™ and set b’ = —b*. By Theorem 4.4.2, the
sphere S(b', (|b'|> — 1)/2) is orthogonal to S"~'. Hence, we may define a
Mobius transformation of B™ by the formula 7, = pyop. Then

(Jo*]> = 1) (|z|> + 2z - b+ 1)

= b*.
7(2) |z + b 2 z Iz + b2
In terms of b, we have the formula
(1—15?) (|z|> + 2z - b+ 1)

() = ( b. (4.5.5)

bRz +22-b+1) " (b2z]Z+2z-b+ 1)
As 73, is the composite of two reflections in hyperplanes orthogonal to the
line (—b/|b],b/|b]), the transformation 7, acts as a translation along this
line. We also define 7y to be the identity. Then 73,(0) = b for all b in B™.
The map 7, is called the hyperbolic translation of B™ by b.

Theorem 4.5.2. Every Mdébius transformation of B™ restricts to an isom-
etry of the conformal ball model B™, and every isometry of B™ extends to
a unigue Mobius transformation of B™.

Proof: That every Mobius transformation of B™ restricts to an isometry

of B™ follows immediately from Theorem 4.5.1 and Lemma 1. Conversely,

let ¢ : B™ — B™ be an isometry. Define ¢ : B™ — B™ by ¢(z) = (;(}))qﬁ(x).

Then ¢(0) = 0. By the first part of the theorem, v is an isometry of B™.
Let z,y be points of B™. From the relation

dg(¥(x),0) = dg(x,0)
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and Theorem 4.5.1, we have

W@PE e
L=l 1—|zP
Hence |9(x)| = |z|. Likewise, we have
() — ()| _ |z —y[”

1= @) =) 1= [zP) -yl
Therefore, we have
[(x) — () = |z —yl.
Thus ¢ preserves Euclidean distances in B™.

Now 1 maps each radius of B" onto a radius of B". Therefore 1) extends
to a function i : B™ — B"™ such that

¥([0,z)) = [0,%(z)) for each x in S™ 1.
Moreover 1) is continuous, since
P(x) = 2¢(x/2) for each z in B™.

Therefore ¥ preserves Euclidean distances. Hence v preserves Euclidean
inner products on B™. The same argument as in the proof of Theorem
1.3.2 shows that 7 is the restriction of an orthogonal transformation A
of E™. Therefore 74()A extends ¢. Moreover 74(p)A is the only Mobius
transformation of B™ extending ¢, since any two Mdbius transformations
extending ¢ agree on B™ and so are the same by Theorem 4.3.6. o

By Theorem 4.5.2, we can identify the group I(B™) of isometries of the
conformal ball model with the group M(B™) of Mobius transformations of
B". In particular, we have the following corollary.

Corollary 1. The groups I(B™) and M(B™) are 1somorphic.

An m-sphere of E™ is defined to be the intersection of a sphere S (a,T)
of E"™ with an (m+1)-plane of E™ that contains the center a. An m-sphere
of E™ is defined to be either an m-sphere or an extended m-plane P of Em.

Lemma 2. The group M(E") acts transitively on the set of all m-spheres
of E™.

Proof: Let V be the vector subspace of E" spanned by e1,...,€mn- It
suffices to show that for every m-sphere of E™, there is a Moblus trans-
formation ¢ of E™ such that #(V) = %, and the image of V under every
MGébius transformation of E™ is an m—Sphere of E™.

Let ¥ be an arbitrary m-sphere of Er. Y is an extended m-plane,
then there is an isometry ¢ of E™ such that $(V) = X, since I(E™) acts
transitively on the set of m-planes of E™.
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Now suppose that ¥ is an m-sphere of E™. As the group of similarities
of E™ acts transitively on the set of m-spheres of E™, we may assume that
¥ = S™. Then the reflection in the sphere S(emy1,v/2) maps V onto %.

Let ¢ be a Mobius transformation of E™. If ¢(00) = oo, then ¢ is a
Euclidean similarity, and so ¢(V) is an extended m-plane of E™. Now
assume that ¢(co0) # oco. Then by Theorem 4.3.3, we have that ¢ = Yo
where ¢ is the reflection in a sphere S(a,r) and ¢ is a Euclidean isometry.
If ¢ is in V, then o leaves 1% invariant, and so ¢(V) is an extended m-plane
of E™.

Now assume that a is not in V. Then V and a span an (m + 1)-
dimensional vector subspace W of E™. Moreover V is a sphere in W.
As o leaves W invariant, o(V) is a sphere in W by Theorem 4.3.4. The
point oo is not in ¢(V), since a is not in V. Hence (V) is an m-sphere of
E™ and so cb(V) is an m-sphere of E™. o

A subset P of B™ is said to be a hyperbolic m-plane of B™ if and only
if ((P) is a hyperbolic m-plane of H". A p-sphere ¥ and a g-sphere ¥’ of
E™ are said to be orthogonal if and only if they intersect and at each finite
point of intersection their tangent planes are orthogonal.

Theorem 4.5.3. A subset P of B™ s a hyperbolic m-plane of B™ if and
only 1f P 15 the wntersection of B™ with either an m-dimensional vector
subspace of E™ or an m-sphere of E™ orthogonal to S™1.

Proof: Let P be the intersection of B" with the vector subspace V of E™
spanned by ey, ..., e,. Then obviously ¢ maps P onto the hyperbolic m-
plane of H™ obtained by intersecting H™ with the vector subspace spanned
by V and e,;;. Thus P is a hyperbolic m-plane of B”.

Let P’ be an arbitrary hyperbolic m-plane of B”. By Theorem 3.1.5,
the group M(B") acts transitively on the set of hyperbolic m-planes of B™,
Hence, there is a Mobius transformation ¢ of B” such that ¢(P) = P'. By
Lemma 2, the set ¢(V) is an m-sphere of E™. As ¢ is conformal, ¢(V)
is orthogonal to ¢(S™~1) = S"~1. Therefore P’ is the intersection of B™
with either an m-dimensional vector subspace of E” or an m-sphere of E™
orthogonal to S™I.

Let @ be the intersection of B™ with either an m-dimensional vector sub-
space of E™ or an m-sphere of E™ orthogonal to S"~1. Then the boundary
of @ in "' is an (m — 1)-sphere % of E™. By Lemma 2, there is a Mdbius
transformation 1 of S™~! such that 1 maps the boundary of P in S

onto (. The Poincaré extension 1 then maps P onto Q. Thus Q is a
hyperbolic m-plane of B™. o

A hyperbolic line of B™ is defined to be a hyperbolic 1-plane of B™. The
geodesics of B™ are its hyperbolic lines by Corollary 4 of §3.2.
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Corollary 2. A subset L of B™ is a hyperbolic line of B™ 1f and only 1f

L is either an open dwameter of B™ or the wntersection of B™ with a circle
orthogonal to S™ 1.

It is clear from the geometric definition of the stereographic projection
¢ of B™ onto H™ that ( preserves the Euclidean angle between any two
geodesic lines intersecting at the origin. As the hyperbolic angle between
two geodesic lines in H™ intersecting at {(0) = e,41 is the same as the
Euclidean angle, the hyperbolic angle between two geodesic lines in B"
intersecting at the origin is the same as the Fuclidean angle between the
lines. Moreover, since the isometries of B™ are conformal, the hyperbolic
angle between any two intersecting geodesic lines in B™ is the same as
the Euclidean angle between the lines. Thus, the hyperbolic angles of B™
conform with the corresponding Euclidean angles. For this reason, B™ is
called the conformal ball model of hyperbolic n-space.

The hyperbolic sphere of B™, with center b and radius r > 0, is defined
to be the set

Sp(b,r) ={x € B" : dg(b,z) =r}.

Theorem 4.5.4. A subset S of B™ 1s a hyperbolic sphere of B™ uf and
only +f S is a Eucldean sphere of E™ that is contained in B™.

Proof: Let S = Sg(b,7). Assume first that b = 0. By Theorem 4.5.1,
the distance dg(0,z) is an invertible function of |z|. Therefore S is a
Euclidean sphere centered at 0. Now assume that b is an arbitrary point of
B™. Then the hyperbolic translation 7, maps Sg(0,r) onto S. Therefore
S is a Euclidean sphere by Theorem 4.3.4.

Conversely, suppose that S is a Euclidean sphere contained in B™. If S
is centered at 0, then S is a hyperbolic sphere, since dp(0, z) is an invertible
function of |z|. Now assume that S is not centered at 0. Let 2 be the point
of S nearest to 0, and let y be the point of S farthest from 0. Then the line
segment [z,y] is a diameter of S. The line segment [z, y| is also a geodesic
segment of B™. Let b be the hyperbolic midpoint of [z,y], and let » be the
hyperbolic distance from b to z. Then 7, maps Sp(0,r) onto Sp(b,r), and
Sp(b,r) is a Euclidean sphere by Theorem 4.3.4. Observe that 7, maps a
diameter of S5(0,7) onto [z,y]. Therefore [z,y] is orthogonal to Sg(b,T)
at = and y, since 7, is conformal. Hence [z,y] is a Euclidean diameter of
Sp(b,r). Therefore S = Sp(b,T). a

Let a be a point on a hyperbolic sphere S of B, and let R be the
geodesic ray of B™ starting at a and passing through the center c of 5. If
we expand S by moving ¢ away from a on R at a constant rate while keeping
a on S, the sphere tends to a limiting hypersurface ¥ in B™ containing a.
By moving a to 0, we see that X is a Euclidean sphere minus the ideal
endpoint b of R and that the Euclidean sphere X is tangent to Sn1 at b.
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Figure 4.5.2. A horocycle of B2

A horosphere ¥ of B, based at a point b of S*!, is defined to be the
intersection with B™ of a Euclidean sphere in B™ tangent to S™~! at b. A
horosphere in dimension two is also called a horocycle. See Figure 4.5.2.
The interior of a horosphere is called a horoball. The interior of a horocycle
is also called a horodisk.

Theorem 4.5.5. The element of hyperbolic arc length of the conformal

ball model B™ 13
2|dz|

1— [z

Proof: Let y = ((z). From the results of §3.3, the element of hyperbolic
arc length of H™ is

ldyll = (dy? + -+ dy? — dy?,1)%.

Now since
23, for i — 1
yz———l_kv|2 ori=1,...,n,
we have p ( )
2dz, 4o, (x - dx
dy, = .
MU TRE T 0Py
Hence
4 dz,dz,(z - dz) = Az?(x - dx)?
d 2 _ d 2 1l 2
SR (R RE < ST RE T a-Rpr )
Thus
é 4 Az -dz)?  4|z|*(x - dx)?
d 2 - = d 2
2 = (1 + o + ")

- b 25)
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Now since
_ 14
yﬂ"rl - 1 _ |:17|27

we have that
d Az -dx
T e
Thus
= 4|dz|?
St -, = A
2 - [oP)?

m]

Theorem 4.5.6. The element of hyperbolic volume of the conformal ball
model B™ 1s
2™dxq - - - dzy,

(1= lz?)~
Proof: An intuitive argument goes as follows: The element of hyperbolic
arc length in the z,-direction is
_ 2dz,
1 faf
Therefore, the element of hyperbolic volume is

2"dxq - - - dx,
dsy---dsy, = ——M———.
(L= |z2)m

For a proof based on the definition of hyperbolic volume, start with the ele-
ment of hyperbolic volume of H™ with respect to the Euclidean coordinates
Y1,---,Yn given by Theorem 3.4.1,

ds,

dyy -+ - dyn
[+ (42 + - +12)]2

Then change coordinates via the map ¢ : B® — E™ defined by

- 2
C(w)zl—_%-

Now since ( is a radial map, it is best to switch to spherical coordinates
(p,01,...,0,_1) and decompose ¢ into the composite mapping

(131,...,:L‘n) — (p,91,...,0n_1)

Now since
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the Jacobian of ¢ is
1 2040 (20 \"7 _ 2"(L+0Y)
(1= p2)2 \1—p2 (1= p2)ntt’
Let y = ((z). Then

1 1 xf?
A+y2)r  L+=

Therefore

GrpPi O PP (L e
2%dxy - - dxy,

1= [z[2)" ?

Exercise 4.5

1. Show that if x is in B", then

ds(0,z) = log <1__‘— m) .

2. Let b be a nonzero point of B". Show that the hyperbolic translation 7, of

B™ acts as a hyperbolic translation along the hyperbolic line passing through
0 and b.

3. Let b be a point of B™ and let A be in O(n). Show that
(1) 77t =7_p,
(2) AnA™! =145,

4. Show that Sp(0,r) = 5(0, tanh(r/2)).

5. Prove that the hyperbolic and Euclidean centers of a sphere of B™ coincide
if and only if the sphere is centered at the origin.

6. Prove that the metric topology on B™ determined by dg is the same as the
Fuclidean topology on B™.

7. Prove that all the horospheres of B™ are congruent.

8. Let b be a point of B™ not on a hyperbolic m-plane P of B™. Prove that
there is a unique point a of P nearest to b and that the hyperbolic line
passing through a and b is the unique hyperbolic line of B™ passing through
b orthogonal to P. Hint: Move b to the origin.

9. Let b be a point of B™ not on a horosphere ¥ of B®. Prove that there is a
unique point a of ¥ nearest to b and the hyperbolic line passing through a
and b is the unique hyperbolic line of B™ passing through b orthogonal to 3.

10. Show that every isometry of B2 is of the form

az+b az +b
— = or zr =
bz+a bZ+a

where |a)® — |b)* = 1.
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§4.6. The Upper Half-Space Model

Let n be the standard transformation from upper half-space U™ to the
open unit ball B®. Then n = op, where p is the reflection of E™ in the
hyperplane E"~! and o is the reflection of E™ in the sphere S(en, v2).
Define a metric dy on U™ by the formula

dy(z,y) = de(n(z),n(y)). (4.6.1)

The metric dy is called the Powncaré metric on U™. By definition, 7 is an
isometry from U™, with the metric dy, to the conformal ball model B™ of
hyperbolic n-space. The metric space counsisting of U™ together with the
metric dy is called the upper half-space model of hyperbolic n-space.

Theorem 4.6.1. The metric dy on U™ 1s given by

lz —y|?
coshd =14+ —".
oshdy(z,y) =1+ T

Proof: By Theorem 4.5.1, we have

coshdy(z,y) = coshdp(n(z),n(y))
2lop(z) — ap(y)|?
(1 —lop(@)2) (A — lop(y)?)

= 1+

By Theorem 4.1.3, we have

2|p(z) — p(y)|
lopl@) =orW)l = Ly ZeulTo(y) =<l
_ 2z —yl
|z + enl| ly +enl’
and by Formula 4.4.2, we have
—A4[p(2)]n dan
]_ — 2 = = .
POl = ) —eaP " ot el
Therefore )
R |
coshdy(z,y) =1+ ETRT o
nJgn

The next theorem follows immediately from Theorem 4.5.2.

Theorem 4.6.2. Fvery Mdbwus transformation of U™ restricts to an 1som-
etry of the upper half-space model U™, and every isometry of U™ extends
to a unique Mébwus transformation of U™.

By Theorem 4.6.2, we can identify the group I(U™) of isometries of the
upper half-space model with the group M(U™) of Mdbius transformations
of U™.
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Corollary 1. The groups ({U™) and M(U™) are isomorphac.

As the upper half-space model U™ is isometric to hyperbolic n-space
H™, we have that I{U™) is isomorphic to I(H™). By Corollary 1 of §4.4,
the groups M(U™) and M(E™~1) are isomorphic. Thus, from Corollary 1,
we have the following corollary.

Corollary 2. The groups I(H™) and M(E"1) are isomorphic.

A subset P of U™ is said to be a hyperbolic m-plane of U™ if and only if
n{P) is a hyperbolic m-plane of B™. The next theorem follows immediately
from Theorem 4.5.3.

Theorem 4.6.3. A subset P of U™ 1s a hyperbolic m-plane of U™ if and
only if P is the wntersection of U™ with either an m-plane of E™ orthogonal
to E™~1 or an m-sphere of E™ orthogonal to E*1.

A hyperbolic line of U™ is defined to be a hyperbolic 1-plane of U™. The
geodesics of U™ are its hyperbolic lines by Corollary 4 of §3.2.

Corollary 3. A subset L of U™ is a hyperbolic line of U™ 1f and only if L
is the intersection of U™ with either a straight line orthogonal to E"~! or
a circle orthogonal to E™1.

The standard transformation n : U® — B" is conformal. Hence, the
hyperbolic angle between any two intersecting geodesic lines of U™ conforms
with the Euclidean angle between the lines, since this is the case in the
conformal ball model B™. Thus, the upper half-space model U™ is also a
conformal model of hyperbolic n-space.

The hyperbolic sphere of U™, with center a and radius r > 0, is defined
to be the set

Sv(a,r) ={z € U" : dy(a,x) = r}.

The next theorem follows immediately from Theorem 4.5.4

Theorem 4.6.4. A subset S of U™ is a hyperbolic sphere of U™ 1f and only
if S is a Buclidean sphere of E™ that is contained in U™.

A subset ¥ of U™ is said to be a horosphere of U™ based at a point b of
E™1 if and only if n(X) is a horosphere of B™ based at the point 7(b).
Theorem 4.6.5. A subset = of U™ is a horosphere of U™ based at a pownt
b of E™L if and only if ¥ is either a Buclidean hyperplane in U™ parallel
to E" ' if b = oo, or the intersection with U™ of o Euchdean sphere in U™
tangent to E™1 at b if b £ oco.
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Figure 4.6.1. A horocycle of U?

Proof: By Theorem 4.3.4, a subset ¥ of U™ is a horosphere of U™ if and
only if ¥ is a sphere of E™ that is contained in U™ and meets E" ! at
exactly one point. Therefore ¥ is a horosphere of U™ if and only if ¥ is
either a Euclidean hyperplane in U™ parallel to E®~! or the intersection
with U” of a Euclidean sphere in U™ tangent to E"~1. =

A horosphere in dimension two is also called a horocycle. See Figure
4.6.1. The interior of a horosphere is called a horoball. The interior of a
horocycle is also called a horodisk.

Theorem 4.6.6. The element of hyperbolic arc length of the upper half-
space model U™ is

ldo|
T
Proof: Let y = n(z). Then
Y =€n + |x m en‘z
By Theorem 4.5.5, the element of arc length of B" is 2yl /(1 — |y[?). As
2z
:__l— f ':17..-,77/—]_,
Yu |:1?+en|2 or 2
we have
du, = 2dz, . 41‘@(17 + en) -dx
Y = \x+en\2 l$+6n|2 .
Hence
2 2

v = ‘$+enl4 |ﬂ'}+6n‘2 |$+6n‘4



§4.6. The Upper Half-Space Model 139

Now since

2z t1)
yn — |l' + en‘z ’
h
we have do — —2dz,  Azn+1)(z+e) dz
Y = et enl? |7 + en]?
Hence
PR S S P 4y + 1)dzp(z + €p) - dx
Yn = |z + e |* " |z + en|?
N 4z, +1)2[(z+en) - dx]2]
|+ enl* '
Thus
= A o Maten) do | Azt enllloten): de]
W’ = e |7 + en]? |z + enld
B 4|dx|?
Tz el

From the proof of Theorem 4.6.1, we have

9 4z,
=Wl = |z + en]?’
Therefore, we have
2ldy|  _ |d=z|
T—y2 = i

Theorem 4.6.7. The element of hyperbolic volume of the upper half-space
model U™ is
dzy---dx,

(-’En)n

Proof: An intuitive argument goes as follows: The element of hyperbolic
arc length in the z,-direction is

dx
ds, = —.
T

Therefore, the element of hyperbolic volume is

ds, - ds, = LFL 4o
(Tn)"

The element of hyperbolic volume of U™ can also be derived from the
element of hyperbolic volume of B". Let y = n(z). By Theorem 4.5.6, the
element of hyperbolic volume of B™ is
2"dy, - -dyn
(1= ly*)"
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From the proof of Theorem 4.1.5, we see that the Jacobian of 7 is

(\/5)277, on

lp(z) = en?® |z + en)?”

From the proof of Theorem 4.6.1, we have

Therefore

4z
1—|y?= —2—.
ly| Tt el
Py dyn < on > 2loten™
dzy---dz,
(wn)n : m]

Exercise 4.6

. Show that if z = se, and y = ten, then dy(z,y) = |log(s/t)|.
. Show that if —1 < s < 1 and z is in U™, then

n'lTsenn(fL') = (1 * S) T

1—s

. Let z be in U™. Show that the nearest point to & on the positive nth axis is
|z|en and

coshdy (z, |z|en) = |z|/Zn.

. Show that Sy(a,r) = S(a{r), an sinhr), where
a(r) = (a1,...,an-1,an coshr).

. Prove that the metric topology on U™ determined by dy is the same as the
Euclidean topology.

6. Prove that all the horospheres of U™ are congruent.

. Prove that any Mébius transformation ¢ of E™ that leaves the horosphere
%y = {z € U™ : ¢, = 1} invariant is a Euclidean isometry of E™.

. Show by changing coordinates that every Mobius transformation of U™ pre-
serves hyperbolic volume.

. Show that every isometry of U? is of the form

az+b a(—%Z)+b
- —— or 2zt ————,
cz+d co(—z)+d

where a, b, ¢, d are real and ad — bc = 1. Conclude that the group Io(U 2) of
orientation preserving isometries of U 2 is isomorphic to PSL(2,R).
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§4.7. Classification of Transformations

Let ¢ be a Mobius transformation of B™. Then ¢ maps the closed ball_F"
to itself. By the Brouwer fixed point theorem, ¢ has a fixed point in B™.
The transformation ¢ is said to be

(1) ellaptic if ¢ fixes a point of B™;
(2) parabolic if ¢ fixes no point of B™ and fixes a unique point of S™;

(3) hyperbolic if ¢ fixes no point of B™ and fixes two points of S71L.

Let Fy be the set of all the fixed points of ¢ in B", and let 3 be a M&bius
transformation of B™. Then

Fd)qﬁ'w*l = w(FQﬁ)

Hence ¢ is elliptic, parabolic, or hyperbolic if and only if ¥¢y ! is elliptic,
parabolic, or hyperbolic, respectively. Thus, being elliptic, parabolic, or
hyperbolic depends only on the conjugacy class of ¢ in M(B™).

Elliptic Transformations
We now characterize the elliptic transformations of B™.

Theorem 4.7.1. A Mébwus transformation ¢ of B™ 1s elliptic if and only
of ¢ 15 conjugate in M(B™) to an orthogonal transformation of E™.

Proof: Suppose that ¢ is elliptic. Then ¢ fixes a point b of B™. Let 7, be
the hyperbolic translation of B® by b. Then Ty Lo, fixes the origin. By
Theorem 4.4.8, the map 7, Lém is an orthogonal transformation A of E™.
Thus ¢ = T AT, !, Conversely, suppose that ¢ is conjugate in M(B™) to
an orthogonal transformation A of E™. Then A is elliptic, since it fixes the
origin. Therefore ¢ is elliptic. o

Let Sp(b,r) be the hyperbolic sphere of B™ with center b and radius r.
Let z,y be in Sp(b,7) and let a, 3 : [0, 7] — B™ be geodesics arcs from b to
z and y, respectively. Regard a and 8 as the hyperbolic radii of Sp (b,r)
from the center b to z and y. The sphere Sg (b,7) has a natural spherical
metric given by

d(z,y) = (sinhr)0(c’(0), 5(0)).

In other words, a hyperbolic sphere of radius r is isometric to a Euclidean
sphere of radius sinhr. If ¢ is an elliptic transformation of B", with b
as a fixed point, then obviously ¢ leaves each hyperbolic sphere Sp(b,r)
centered at b invariant; moreover, ¢ acts as an isometry of the natural

spherical metric on Sg(b,r).



142 4. Inversive Geometry

Parabolic Transformations

In order to analyze parabolic and hyperbolic transformations, it will be
more convenient to work in the upper half-space model U™ of hyperbolic
space. Elliptic, parabolic, and hyperbolic Mébius transformations of U"
are defined in the same manner as in the conformal ball model B™. Let ¢
be a Mébius transformation of U™. The transformation ¢ is said to be

(1) elliptic if ¢ fixes a point of U™;

(2) parabolic if ¢ fixes no point of U™ and fixes a unique point of £En~1;

(3) hyperbolic if ¢ fixes no point of U™ and fixes two points of £ 1.
Note that being elliptic, parabolic, or hyperbolic depends only on the con-

jugacy class of ¢ in M(U™).
We now characterize the parabolic transformations of U™.

Theorem 4.7.2. A Mébius transformation ¢ of U™ is parabolic if and only

of ¢ 15 congugate in M(U™) to the Poincaré extension of a fized point free
isometry of E™ L.

Proof: Suppose that ¢ is parabolic. Then ¢ fixes a point a of E™~1.
In the conformal ball model B™, the point oo corresponds to e, and an
appropriate rotation will map any point of S ! to e,. Hence, there is a
Moébius transformation ¥ of U™ such that 1(a) = co. Then ¥¢yp—1 fixes
00. By Theorems 4.3.2 and 4.4.1, the map )¢y —! is the Poincaré extension
of a similarity of E»~1. Hence, there is a point b in E*!, a scalar k > 0,
and an orthogonal transformation A of E"~! such that

Yoy~ (z) = b+ kAz.
As oo is the only fixed point of ¢!, the fixed point equation
b+ kAx =2z

has no solutions in E™"~1. The above equation can be rewritten as

Since this equation has no solution, we have

1

Thus 1/k is an eigenvalue of A. As A is orthogonal, k = 1. Thus el is
the Poincaré extension of a fixed point free isometry of E™~1.

Conversely, suppose that ¢ is conjugate in M(U™) to the Poincaré exten-
sion of a fixed point free isometry 1 of E"~1. Then the Poincaré extension
1E is parabolic, since oo is its only fixed point. Thus ¢ is parabolic. o
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An important class of parabolic transformations of U™ are the nontrivial
Euclidean translations of U™. Such a transformation is of the form

r—a+x,

where a is a nonzero point of E®~1, A Mébius transformation ¢ of U™ is
said to be a parabolic translation if and only if ¢ is conjugate in M(U™) to
a nontrivial Fuclidean translation of U™.

Let 31 be the horosphere of U™ defined by

Yi={zeU":z, =1}
The horosphere ¥; has a natural Euclidean metric given by

d(@,y) = |z - yl.

This metric is natural, since the element of hyperbolic arc length |dz|/z,
of U™ restricts to the element of Euclidean arc length |dz| on 3.

Let ¥ be any horosphere of U™. Then there is a Mobius transformation
¢ of U™ such that ¢(X) = ;. Define a Euclidean metric on X by

d(z,y) = |p(x) — ¢(y)|.

We claim that this metric is independent of the choice of ¢. Suppose that
¥ is another M&bius transformation of U™ such that (¥) = ¥;. Then
¢1p~! leaves 3y invariant. This implies that ¢! is a Euclidean isometry.
Therefore, if z,y are in %, then

|6(x) — ()] = 6™ 9(2) — ¢ (y)| = [1(z) — P(y)I.

Thus, the metric d on ¥ does not depend on ¢. The metric d is called the
natural Buclidean metric on X.

Theorem 4.7.3. Let ¥ and ' be horospheres of U™ and let ¥ be a Mébius
transformation of U™ such that ¥(X) = X’. Then 1 acts as an isometry
with respect to the natural Euclidean metrics on S and Y.

Proof: Let ¢ and ¢’ be M6bius transformations of U” such that dE)=3,
and ¢'(X') = 1. Then ¢'p¢~! leaves ¥y invariant and so is a Euclidean

isometry. Hence, if =,y are in X, then
d'((z), %(y)) [6'd(z) — ¢"9(y)]
= ¢ 0(z) - ¢ b(y)]
l¢(z) — o(y)]
= d(z,v). )

Now let ¢ be a parabolic transformation of U™ with q as its unique fixed
point in E™ !, By Theorem 4.7.2, the map ¢ leaves each horosphere of U™
based at @ invariant. By Theorem 4.7.3, the map ¢ acts as an isometry of
the natural Euclidean metric on each horosphere based at a.
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Hyperbolic Transformations
We now characterize the hyperbolic transformations of U™.

Theorem 4.7.4. A Mébius transformation ¢ of U™ is hyperbolic if and
only if ¢ 18 comgugate in M(U™) to the Powncaré extension of a similarity

W of En1 of the form v(x) = kAz, where k > 1 and A 1is an orthogonal
transformation of E™L.

Proof: Suppose that ¢ is hyperbolic. By conjugating ¢, we may assume
that one of the fixed points of ¢ is co. Let a in E*~! be another fixed point
and let 7 be the translation of E™ by —a. Then 7¢7~! fixes both 0 and oo.
This implies that there is a scalar k > 0 and an orthogonal transformation
A of En 1 such that
¢ (z) = kAg.

As A fixes e, and 7¢7! has no fixed points in U™, we must have k # 1.
Let o(z) = z/|z|?. Then

or¢r o (z) = k1 Az,
Hence, we may assume that & > 1.

Conversely, suppose that ¢ is conjugate in M(U™) to the Poincaré ex-
tension of a similarity ¢ of E"~! of the form 9 (x) = kAz, where k > 1 and
A is an orthogonal transformation of E*~1. Then the Poincaré extension
1) is hyperbolic, since 0 and oo are its only fixed points. Therefore ¢ is
hyperbolic. o

Corollary 1. A hyperbolic transformation has exactly two fixed points.

The simplest class of hyperbolic transformations of U™ are the nontrivial
magnifications of U™. Such a transformation is of the form z — kz, where
k > 1. Notice that a magnification of U™ leaves the positive nth axis
invariant. Moreover, if ¢ > 0, then

dy (ten, kten) = logk.
Thus, a magnification of U™ acts as a hyperbolic translation along the pos-
itive nth axis. A M&bius transformation ¢ of U™ is said to be a hyperbolic
translation if and only if ¢ is conjugate in M(U™) to a magnification of U™.

Now let ¢ be an arbitrary hyperbolic transformation of U™ with a and b
its two fixed points, and let L be the hyperbolic line of U™ with endpoints
a and b. By Theorem 4.7.4, the map ¢ is the composite of an elliptic trans-
formation of U™ that fixes the line L followed by a hyperbolic translation
along L. The line L is called the azis of the hyperbolic transformation ¢.
Note that a hyperbolic transformation acts as a translation along its axis.

Remark: We are not using the term hyperbolic transformation in its usual
sense. Traditionally, a hyperbolic translation is called a hyperbolic trans-
formation, and a hyperbolic transformation that is not a hyperbolic trans-
lation is called a loxodromac transformation.
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Exercise 4.7

1. Prove that every element of LF(C) has either one or two fixed points in C.

2. Let z1, 29, 23 be distinct points of C and let w1, wa, w3 be distinct points of

10.

€. Show that there is a unique element ¢ of M(C) such that ¢(z,) = w, for
j=1,2,3.

. For each nonzero k in C, define uy in LF(C) by ux(z) = kz if k # 1, and

p1(z) = z+ 1. Prove that each nonidentity element of LF(C) is conjugate to
ux for some k.

. Let

az+b
+d

o(z) = with a,b,¢,d inC and ad —bc=1.
Define
tr*(9) = (a+ ).
Show that two nonidentity elements ¢, of LF(C) are conjugate if and only
if tr?(¢) = tr ().

. Let ¢ be in LF(C) with ¢ # I. Show that

(1) ¢ is an elliptic transformation of U® if and only if tr?(¢) is in [0,4);
(2) ¢ is a parabolic transformation of U3 if and only if tr?(¢) = 4;
(3) & is a hyperbolic translation of U? if and only if tr?(¢) is in (4, +o0).

Prove that the fixed set in B™ of an elliptic transformation of B™ is a hyper-
bolic m-plane.

Let a be the point of 8™~1 fixed by a parabolic transformation ¢ of B™.
Prove that if z is in B™, then

lim ¢™(z) = a.
m—0o0
In other words, a is an attractwe fized pownt.
Let a and b be the points of S~ fixed by a hyperbolic transformation 1 of
B™, and let L be the axis of 1. Suppose that ¢ translates L in the direction
of a. Prove that if  is in B™ and x # b, then

lim ¢™(z) = a.

In other words, a is an attractwe fized pownt and b is a repulswe fized point.

. Let A be in PO(n, 1). Prove that

(1) A s elliptic if and only if A leaves invariant @ 1-dimensional time-like
vector subspace of R™1;

(2) A is parabolic if and only if A is not elliptic and A leaves invariant a
unique 1-dimensional light-like vector subspace of R™!,

(3) A is hyperbolic if and only if A is not elliptic and A leaves invariant
two 1-dimensional light-like vector subspaces of R™?,

Let A be in PO(n,1). Prove algebraically that A is either elliptic, parabolic,
or hyperbolic.
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§4.8. Historical Notes

§4.1. Jordan proved that a reflection of Euclidean n-space in a hyperplane
is orientation reversing in his 1875 paper Essai sur la géométrie ¢ n dimen-
stons [207]. That an isometry of Euclidean n-space is the composition of at
most n + 1 reflections in hyperplanes appeared in Coxeter’s 1948 treatise
Regular Polytopes [92].

According to Rosenfeld’s 1988 treatise A History of Non-Euclidean Ge-
ometry [353], Appollonius proved that an inversion in a circle maps circles
to circles in his lost treatise On plane loci. A systematic development of
inversion in a circle was first given by Pliicker in his 1834 paper Analytisch-
geometrische Aphorismen [326]. Inversion in a sphere was considered by
Bellavitis in his 1836 paper Teorwa delle figure inverse, e loro uso nella ge-
ometria elementare [37]. Theorem 4.1.3 appeared in Liouville’s 1847 Note
au swjet de l’article précédent (de M. Thomson) [259]. For the early his-
tory of inversion, see Patterson’s 1933 article The origins of the geometric
principle of iversion [324].

Conformal transformations of the plane appeared in Euler’s 1770 paper
Considerationes de trajectoriis orthogonalibus [123]. In particular, Euler
considered linear fractional transformations of the complex plane in this
paper. That inversion in a circle is conformal appeared in Pliicker’s 1834
paper [326]. That inversion in a sphere is conformal appeared in Thomson’s
1845 letter to Liouville Extrait d’une lettre de M. Thomson [388].

§4.2. According to Heath’s 1921 treatise A History of Greek Mathemat-
1cs [186], stereographic projection was described by Ptolemy in his second
century treatise Planisphaerium. That stereographic projection is the in-
version of a sphere into a plane appeared in Bellavitis’ 1836 paper [37]. The
Riemann sphere was introduced by Riemann in his 1857 paper Theorie der
Abel’schen Functionen [348]. The cross ratio of four points in the plane was
introduced by Mobius in his 1852 paper Ueber eine neue Verwandtschaft
zwischen ebenen Figuren [297).

§4.3. Mobius transformations of the plane were studied by Mébius in his
1855 paper Theorie der Kreisverwandtschaft in rein geometrischer Darstel-
lung [298]. In particular, the 2-dimensional versions of Theorems 4.3.1 and
4.3.2 appeared in this paper. Mdbius transformations of 3-space were con-
sidered by Liouville in his 1847 note [259]. Liouville proved the remarkable
theorem that a smooth conformal transformation of 3-space is a Mobius
transformation in his 1850 note Extension au cas des trois dimensions de
la question du tracé géographique [261]. Liouville’s theorem was extended
to n-dimensions, n > 2, by Lie in his 1871 paper Uber diejenige Theorie
eines Raumes mit beliebig welen Dimensionen [258]. The isometric circle
of a linear fractional transformation of the complex plane was introduced
by Ford in his 1927 paper On the foundations of the theory of discontinu-
ous groups [135]. That inversion in a sphere maps inverse points to inverse
points appeared in Thomson’s 1845 letter to Liouville [388].
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84.4. The Poincaré extension of a Mdbius transformation of the plane
was defined by Poincaré in his 1881 note Sur les groupes kleinéens [329).
Moébius transformations of a sphere were considered by Mdbius in his 1855
paper [298]. The 2-dimensional versions of Theorems 4.4.7 and 4.4.8 ap-
peared in Ford’s 1929 treatise Automorphic Functions [136].

§4.5. The conformal ball model of radius two was introduced by Beltrami
in his 1868 paper Saggio di interpetrazione della geometria non-euchdea
[38]. In particular, he derived its element of arc length and noted that this
Riemannian metric had already been affirmed to be of constant negative
curvature by Riemann in his 1854 lecture Uber die Hypothesen, welch der
Geometrie zu Grunde hegen [349]. For a discussion, see the introduction
of Stillwell’s 1985 translation of Poincaré’s Papers on Fuchsian Functions
[340]. The stereographic projection of Beltrami’s conformal ball model onto
hyperbolic space H™ appeared in Killing’s 1878 paper Ueber zwei Raum-
formen mat constanter positiver Krimmung [219]. The 2-dimensional con-
formal ball model of radius one and curvature —4 appeared in Poincaré’s
1882 paper Sur les fonctions fuchsiennes [331]. The 2-dimensional confor-
mal ball model of radius one and curvature —1 appeared in Hausdorf’s
1899 paper Analytische Beilrige zur nichteuklidischen Geometrie [180)].

§4.6. The upper half-space model was introduced by Beltrami in his 1868
paper [38]. In particular, he derived its element of arc length and noted that
this Riemannian metric in dimension two had already been shown to be of
constant negative curvature by Liouville in his 1850 note Sur le théoréme
de M. Gauss, concernant le produst des deux rayons de courbure principaus
[260]. That the group of Mébius transformations of n-space is isomorphic
to the group of isometries of hyperbolic (n 4 1)-space follows immediately
from observations of Klein in his 1872 paper Ueber Limiengeometrie und
metrische Geometrie [225] and in his 1873 paper Ueber die sogenannte
Nicht-Euklidische Geometrie [227).

84.7. The classification of the isometries of the hyperbolic plane into
three types according to the nature of their fixed points appeared in Klein’s
1871 paper Ueber die sogenannte Nicht-FEuklidische Geometrie [224]. The
terms elliptic, parabolic, and hyperbolic transformations were introduced by
Klein in his 1879 paper Ueber die Transformation der elliptischen Functio-
nen [231] and were applied to isometries of hyperbolic n-space by Thurston
in his 1979 lectures notes The Geometry and Topology of 3-Manifolds [389).

That the intrinsic geometry of a sphere in hyperbolic space is spher-
ical is implicit in Lambert’s remark in his 1786 monograph Theorie der
Parallellinien [252] that spherical trigonometry is independent of Euclid’s
parallel postulate. This was proved by Bolyai in his 1832 paper Scientiam
spatu absolute veram exhibens [51). The corresponding fact in hyperbolic
n-space appeared in Beltrami’s 1868 paper Teoria fondamentale degli spazit
di curvatura costante [39]. That the intrinsic geometry of a horosphere is
Euclidean appeared in Lobachevski’s 1829-30 paper On the principles of
geometry [262] and in Bolyai’s 1832 paper [51].



CHAPTER 5

Isometries of Hyperbolic Space

In this chapter, we study the topology of the group I{H™) of isometries of
hyperbolic space. The chapter begins with an introduction to topological
groups. The topological group structure of I(H™) is studied from various
points of view in Section 5.2. The discrete subgroups of I(H™) are of
fundamental importance for the study of hyperbolic manifolds. The basic
properties of the discrete subgroups of I(H™) are examined in Section 5.3.
A characterization of the discrete subgroups of I(E™) is given in Section
5.4. The chapter ends with a characterization of all the elementary discrete
subgroups of I(H™).

§5.1. Topological Groups

Consider the n-dimensional complex vector space C™. A wvector in C™ is
an ordered n-tuple z = (z1,...,2n) of complex numbers. Let z and w be
vectors in C™. The Hermatian inner product of z and w is defined to be the
complex number

ZzxWw=21W1 +* + 2pnWn, (5.1.1)

where a bar denotes complex conjugation. The Hermatian norm of a vector
z in C" is defined to be the real number

2| = (2% 2)%. (5.1.2)
Obviously |z| > 0, since
ol = (2 - o)
The Hermitian norm determines a metric on C™ in the usual way,
do(z,w) = |z — w|. (5.1.3)

The metric space consisting of C™ together with the metric dc is called
complex n-space. Define ¢ : C* — R2" by

é(21,..-,2n) = (Rez;, Im2q, . .. ,Re z,,,ITm z,,).

148
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Then ¢ is obviously an isomorphism of real vector spaces. Moreover,

¢(2) - p(w) = Re (z * w).
Consequently ¢ preserves norms. Therefore ¢ is an isometry. For this

reason, we call d¢ the Fuclidean metric on C™.

Definition: A topological group is a group G that is also a topological
space such that the multiplication (g, h) — gh and inversion g — ¢! in G
are continuous functions.

The following are some familiar examples of topological groups:

1) real n-space R™ with the operation of vector addition,

(

(2) complex n-space C™ with the operation of vector addition,

(3) the positive real numbers R with the operation of multiplication,
)

(4) the unit circle S* in the complex plane with the operation of complex
multiplication,

(5) the nonzero complex numbers C* with the operation of complex mul-
tiplication.

Definition: Two topological groups G and H are tsomorphic topological
groups if and only if there is an isomorphism ¢ : G — H that is also a
homeomorphism.

Example: The spaces C” and R?" are isomorphic topological groups.

The General Linear Group

Let GL(n,C) be the set of all invertible complex n x n matrices. Then
GL(n,C) is a group under the operation of matrix multiplication. The
group GL(n, C) is called the general linear group of complex n x n matrices.

The norm of a complex n x n matrix A = (aqy) is defined to be the real

number
n 1/2
|A] = ( > Iawl2> . (5.1.4)

7,7=1
This norm determines a metric on GL(n, C) in the usual way,
d(A,B) = |A - Bj. (5.1.5)

Note that this is just the Euclidean metric on GL(n, C) regarded as a subset
of C*". For this reason, we call d the Euchdean metric on GL(n,C)
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Theorem 5.1.1. The general linear group GL(n,C), unth the Euclidean
metric topology, 1s a topological group.

Proof: Matrix multiplication (A, B) — AB is continuous, since the entries
of AB are polynomials in the entries of A and B. The determinant function

det : GL(n,C) — C*

is continuous, since det A is a polynomial in the entries of A. By the adjoint
formula for A~!, we have

(A_l)ﬂ = (—1)""7(det AY)/(det A),

where A" is the matrix obtained from A by deleting the ith row and jth
column. Consequently, each entry of A~! is a rational function of the
entries of A. Therefore, the inversion map A — A~! is continuous. Thus
GL(n,C) is a topological group. o

Any subgroup H of a topological group G is a topological group with
the subspace topology. Hence, each of the following subgroups of GL(n,C)
is a topological group with the Euclidean metric topology:

(1) the special linear group SL(n,C) of all complex n X n matrices of
determinant one,

(2) the general linear group GL(n,R) of all invertible real n x n matrices,

(3) the special linear group SL(n,R) of all real n x n matrices of deter-
minant one,

(4) the orthogonal group O(n),

5) the special orthogonal group SO(n),

(5)
(6) the Lorentz groups O(1,n — 1) and O(n — 1,1),
(7)

the positive Lorentz groups PO(1,n — 1) and PO(n — 1,1).

The Unitary Group

A complex n x n matrix A is said to be unitary if and only if
(Az) x (Aw) = z* w

for all z,w in C*. Obviously, the set of all unitary matrices in GL(n,C)
forms a subgroup U(n), called the unitary group of complex n X n matrices.
A unitary matrix is real if and only if it is orthogonal. Therefore U(n)
contains O(n) as a subgroup.

Two vectors z and w in C" are said to be orthogonal if and only if
z%w=0. A basis {v1,...,v,} of C" is said to be orthonormal if and only
if v, v, = &, for all 4, j. The next theorem characterizes a unitary matrix.
The proof is left as an exercise for the reader.
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Theorem 5.1.2. Let A be a complex n xn matrix. Then the following are
equivalent:

(1) The matriz A is unitary.

(2) The columns of A form an orthonormal basis of C™.
(3) The matriz A satisfies the equation A'A = 1.

(4) The matriz A satisfies the equation AA* = I.

(

5) The rows of A form an orthonormal basis of C™.

Corollary 1. A real matriz is unitary if and only +f it is orthogonal.

Let A be a unitary matrix. As A*A = I, we have that |det A| = 1. Let
SU(n) be the set of all A in U(n) such that det A = 1. Then SU(n) is a
subgroup of U(n). The group SU(n) is called the special unatary group of
complex n X n matrices.

Theorem 5.1.3. The unitary group U(n) is compact.
Proof: If A is in U(n), then |A|]? = > y=1|Ae;|* = n. Therefore U(n) is
a bounded subset of C*". The function
Jc” e
defined by f(A) = A4, is continuous. Therefore U(n) = f~(I) is a closed

subset of C**. Hence U(n) is a closed bounded subset of C** and therefore
is compact. o

Corollary 2. The orthogonal group O(n) is compact.

Proof: As R™ is closed in C** and O(n) = U(n) NR™, we have that
O(n) is closed in U(n), and so O(n) is compact. o

Quotient Topological Groups

Lemma 1. If h 1s an element of a topological group G, then the maps
g—hg and g gh,

from G to utself, are homeomorphisms.

Proof: Both maps are continuous and have continuous inverses g— hlg
and g — gh™!, respectively. o

Let H be a subgroup of a topological group G. The coset space G /H is
the set of cosets {gH : g € G} with the quotient topology. The quotient
map will be denoted by 7 : G — G/H.
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Lemma 2. If H is a subgroup of a topological group G, then the quotient
map 7 : G — G/H is an open map.

Proof: Let U be open in G. Then 7(U) is open in G/H if and only if

71 (w(U)) is open in G by the definition of the quotient topology on G/H.
Now since

-1
U))=UH =
m(n(U))=UH = U Uh,
we have that 7= (7(U)) is open by Lemma 1. Thus 7 is an open map. o

Theorem 5.1.4. Let N be a normal subgroup of a topological group G.
Then G/N, with the quotient topology, is a topological group.

Proof: Let 7: G — G/N be the quotient map g — gN. Then we have a
commutative diagram

1

g—g
G _ G
T 7
gN — g 'N

G/IN —~ " GJN.

This implies that the inversion map gN — g~ !N is continuous.
Next, observe that we have a commutative diagram

(g, h) — gh

GxG _—
TXT] lm

(gN,hN) — ghN
G/N x G/N G/N

As 7 is an open map, m X 7 is also an open map. Consequently 7 x 7 is
a quotient map. From the diagram, we deduce that the multiplication in
G/N is continuous. o

By Theorem 5.1.4, the following quotient groups, with the quotient
topology, are topological groups:

(1) the projective general linear group PGL(n,C) = GL(n,C)/N, where
N is the normal subgroup {kI : k € C*};

(2) the projective special linear group PSL(n,C) = SL(n,C)/N, where
N is the normal subgroup {wI : w is an nth root of unity};

(3) the projective general linear group PGL(n, R) = GL(n, R)/N, where
N is the normal subgroup {kI : k € R*};
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(4) the projective special linear group PSL(2n,R) = SL(2n,R)/{£I};

(5) the projective special unitary group PSU(n) = SU(n)/N, where N is
the normal subgroup {wl : w is an nth root of unity}.

Theorem 5.1.5. Let H be a subgroup of a topological group G, and let
n: G — X be a continuous function such that n=(n(g)) = gH for each g
inG. Ifo: X — G is a continuous right wnverse of n, then the function ¢ :
X x H — G, defined by ¢(z, h) = o(x)h, 1s a homeomorphism; moreover,
the function 7 : G/H — X, induced by n, is a homeomorphism.

Proof: The function ¢ is a composite of continuous functions and so is
continuous. Let g be in G. As non(g) = n(g), we have that on(g) is in gH,
and so g~'on(g) is in H. Define a function

W:G— X xH

by the formula
¥(9) = (n(g), [on(g)]~*9)-

The map 1 is the composite of continuous functions and so is continuous.
Observe that

o(g) = ¢(n(g),lon(g)"g)
= on(g)lon(g) g

= g

and

Yo(z,h) = (o(x)h)

= (n(e(x)h), lon(o(z)h)] " o (z)h)
= (no(z),lono(x)]"'o(x)h)
= (z,[o0(@)] a(x)h)
= (z,h).

Thus ¢ is a homeomorphism with inverse .

Let 7 : G — G/H be the quotient map. Then 71 induces a continuous

bijection 7 : G/H — X such that fir = 5. The map 7o is a continuous
inverse of 7, and so 7] is a homeomorphism. o

Exercise 5.1

Prove that R and Ry are isomorphic topological groups.
Prove that C* and Ry x S* are isomorphic topological groups.

Prove that S* and SO(2) are isomorphic topological groups.

W =

Prove that R and PSO(1,1) are isomorphic topological groups.
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5. Prove that if z,w are in C*, then |z * w| < |z| |w| with equality if and only
if z and w are linearly dependent.

Let A be a complex n X n matrix. Show that |Az| < |A]|z]| for all z in C™.
Let A, B be complex n x n matrices. Prove that |[AB| < |A]||B].

Let A, B be complex n X n matrices. Prove that |A 4+ B| < |A| + |B|.
Prove Theorem 5.1.2.

© 0 N @

10. Prove that a complex n X n matrix A is unitary if and only if |Az| = |z| for
all zin C™.

11. Let A be in SL(2,C). Show that the following are equivalent:
(1) A is unitary;
(@) AP =2

w8

(3) A is of the form ( _z > .

12. Let A be a complex 2 x 2 matrix. Show that 2| det A| < |A|>.

13. Let 7 : SL(2,C) — PSL(2,C) be the quotient map. Prove that = maps any
open ball of radius v/2 homeomorphically onto its image. Deduce that = is
a double covering.

14. Prove that PSL(2,C) and PGL(2,C) are isomorphic topological groups.
15. Prove that GL(n,C) is homeomorphic to C* x SL(n, C).

§5.2. Groups of Isometries

Let X be a metric space. Henceforth, we shall assume that the group I(X)
of isometries of X and the group S(X) of similarities of X are topologized
with the subspace topology inherited from the space C(X, X) of continuous
self-maps of X with the compact-open topology.

Theorem 5.2.1. A sequence {¢,} of isometries of a metric space X con-
verges w 1(X) to an isometry ¢ if and only if {¢.(z)} converges to o(x)
for each point x of X.

Proof: It is a basic property of the compact-open topology of C(X,X)
that ¢, — ¢ if and only if {¢,} converges uniformly to ¢ on compact sets,
that is, for each compact subset K of X and € > 0, there is an integer k
such that d(¢,(z), #(x)) < € for all i > k and every z in K. If ¢, — ¢, then
¢.(z) — H(z) for each z in X, since each point of X is compact.
Conversely, suppose that ¢,(z) — ¢(x) for each z in X. Let K be a
compact subset of X and let ¢ > 0. On the contrary, suppose that {¢,}
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does not converge uniformly on K. Then there is a subsequence {¢,, } of
{¢.} and a sequence {z,} of points of K such that for each j, we have

(¢, (z;), ¢(;)) 2 €.

By passing to a subsequence, we may assume that {x, } converges to a point
z in K, since K is compact. Choose j large enough so that d(z,,z) < €/4
and d(¢,, (), #(x)) < €/2. Then we have the contradiction

Ay, (25),8(25)) < Ay, (x;), b1, (7)) + d(y, (2), $(2)) + d(¢(2), $(z,))
= 2d(z;,z) + d(¢,, (z), ¢(x))
< €.

Therefore ¢, — ¢ uniformly on K. Thus ¢, — ¢. o

Definition: A metric space X is finitely compact if and only if all its
closed balls are compact, that is,

Cla,r) ={r € X : d(a,z) <71}
is compact for each point a of X and r > 0.

Theorem 5.2.2. If X 1s a finitely compact metric space, then I(X) s a
topological group.

Proof: It is a basic property of the compact-open topology that the
composition map (¢, ¥) — ¢ is continuous when X is locally compact.
Now a finitely compact metric space has a countable basis. Consequently,
C(X, X) and therefore I(X) has a countable basis. Hence, we can prove
that the inversion map ¢ — ¢~! is continuous using sequences. Suppose
that ¢, — ¢ in I(X). Then ¢,(z) — ¢() for each z in X. Let ¢ > 0, let z
be a point of X, and let y = #71(z). Then there is an integer k such that
for all i > k, we have d(¢,(v), #(y)) < e. Then for all i > k, we have

d(¢; (), (z)) d(z, .6 ()
d(pp™"(z), g7 (2))
d(p(y), du(y)) < e

Therefore ¢, ! (z) — ¢~1(z). By Theorem 5.2.1, we have that ¢, ' — ¢~1.

Hence, the inversion map is continuous. Thus I(X) is a topological group.
o

fl

I

Theorem 5.2.3. The restriction map p : O(n) — 1(S™) is an 1somorphism
of topological groups.

Proof: By Theorem 2.1.3, we have that p is an isomorphism. Thus, we
only need to show that p is a homeomorphism. Suppose that A, — A in
O(n). Then obviously A,z — Az for all z in S™. Therefore A, — Ain
I(S™) by Theorem 5.2.1. Conversely, suppose that A, — A in I(S™). Then
Ase; — Aey foreach j =1,... n+ 1. Hence A, = Ain O(n). Thus pis a

homeomorphism. o
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Theorem 5.2.4. The function ® : E™ x O(n) — I(E™), defined by the
formula ®(a, A) = a + A, 15 a homeomorphism.

Proof: Lete:I(E™) — E™ be the evaluation map defined by e(¢) = ¢(0).
It is a basic property of the compact-open topology that the evaluation map
e is continuous. Define 7 : E™ x E™ — E™ by 7(a,z) = a + z. Then 7 is
obviously continuous. It is a basic property of the compact-open topology
that the corresponding function 7 : E™ — I(E™), defined by #(a)(z) = a+z,
is also continuous. The map 7 is a right inverse for e.

We shall identify O(n) with the group of isometries of E™ that fix the ori-
gin. By the same argument as in the proof of Theorem 5.2.3, the compact-
open topology on O(n) is the same as the Euclidean topology on O(n).

For each ¢ in I(E™), we have

e (e(9)) = ¢O(n).

Therefore ® is a homeomorphism by Theorem 5.1.5. o

The group T(E™) of translations of E™ is a subgroup of I(E™), and
so T(E™) is a topological group with the subspace topology. The next
corollary follows immediately from Theorem 5.2.4.

Corollary 1. The evaluation map e : T(E™) — E™, defined by the formula
e(T) = 7(0), is an somorphism of topological groups.

Theorem 5.2.5. The restriction map p : PO(n,1) — I(H™) is an 1somor-
phism of topological groups.

Proof: By Theorem 3.2.3, we have that p is an isomorphism. Thus, we
only need to show that p is a homeomorphism. Suppose that A, — A in
PO(n,1). Then obviously A,z — Az for all z in H™. Therefore A, — Ain
I(H™) by Theorem 5.2.1. Conversely, suppose that A, — A in I(H"). Then
Aeny1 — Aent1. Now for each j =1,...,n, the vector v, = e, + V211
is in H". Hence A,v, — Av, for each j = 1,...,n. Therefore, we have

Ae; + \/—2_Azen+1 — Ae, + \/iAenH.

Hence A,e, — Ae, for each j = 1,...,n. Therefore A, — A in PO(n,1).
Thus p is a homeomorphism. o

Groups of Mobius Transformations

Each Mébius transformation of B™ is completely determined by its action
on &B™ = S*1 because of Poincaré extension. Consequently, the topology
of §"~1 determines a natural topology on the group M(B™). This topology
is the metric topology defined by the metric

Dp(,9) = Sup lo(z) — v (@)l. (5.2.1)
resn—1!
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The metric topology determined by Dg on M(B") is a natural topology
because it coincides with the compact-open topology inherited from the
function space C(S™~1,5"7!) of continuous self-maps of S™~1.

Lemma 1. If ¢ is wmn M(B™), then
w192~ 00)

z,yc8n—1 'I - y|

= expdp(0, #{0)).

Proof: Suppose that ¢(o0) = co. Then ¢ is orthogonal by Theorem 4.4.7.
Hence, we have
l¢(x) - ¢(y)l —1= exde(0,0).
|z -yl
Now suppose that ¢(c0) # oo. Then ¢ = 1o, where o is the reflection in a
sphere S(a,r) orthogonal to S"~! and 1 is an orthogonal transformation.
By Theorem 4.4.2(3), we have that r* = [a|? — 1; and by Theorem 4.1.3,

lo(z) — d(y)| _ r? la]2 — 1

=yl lz—ally~al |z —ally—a|

From the equation |z —a|? = 1 — 2a - 2 + |a/?, we see that the minimum
value of |z — a| occurs when = = a/|a|. Therefore

9(z) —¢@)| _ la*—1 _Ja|+1

sup = = .
syesn-1 [T =yl (la] =1)2  Ja| -1
Now since )
_ o lef -1
o(zx)=a+ 7 o (z — a),

we have that 0(0) = a/|a|®. Therefore |a| = 1/|¢(0)|. Hence
jal 1 _ 1+ 6(0)]
lal =1 1—1¢(0)]

Theorem 5.2.6. The group M(B"™), with the metric topology determined
by Dpg, s a topological group.

= expdgp(0,¢(0)). o

Proof: Let ¢, ¢g, 1,190 be in M(B"™). By Lemma 1, there is a positive

constant k(¢) such that |¢(z) — ¢(y)| < k(4)|z — y| for all z, yin Sl As

1 restricts to a bijection of S”~1, we have D(¢), potp) = D(¢, do). Hence
D(¢y, dotho) < D(¢, doy) + D(dot), dotho)

< D(¢,¢0) + k(o) D(3, 90).

This implies that the composition map (g, ¥) — @b is continuous at
(#0,%0). Similarly, the map ¢ — ¢! is continuous at ¢, since

D(¢7, ¢5") D(¢ ¢, 95 ')
= D(¢5" %0, 95"9)
k(66 1) D(o, ). o

IA
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Corollary 2. The group M(S™~1), with the metric topology determined by
Dg, is a topological group.

Let 1 be the standard transformation from U™ to B™. Then 7 induces
an isomorphism 7. : M(U™) — M(B™) defined by n.(¢) = n¢n~*. The
restriction of  to E"~! is stereographic projection

T En~1 N Sn—l

Let d be the chordal metric on E”~!. Define a metric Dy on M(@U™) by

CL‘GEn_l
Then
Dy(d) = sup |ng(x) — 7o)
rzCcEn—1
= sup |mom ' (y) — wpm T (y)]
yesSn—1

= Dg(nén ', myn™?)
= Dp(n«(9),n(¥)).

Thus 7. : M(U™) — M(B™) is an isometry of metric spaces. The next
theorem follows immediately from Theorem 5.2.6.

Theorem 5.2.7. The group M(U™), with the metric topology determined
by Dy, is a topological group.

Poincaré extension induces a homeomorphism from M(S™~") to M(B™).
Therefore, Poincaré extension induces a homeomorphism from M(E™™1) to
M(U™). This implies the following corollary.

Corollary 3. The group M(E””l), with the metric topology determined by
Dy, is a topological group.

Theorem 5.2.8. The function ® : B™ x O(n) — M(B™), defined by the
formula ®(b, A) = 1pA, 15 a homeomorphism.

Proof: Let e : M(B™) — B" be the evaluation map defined by e(¢) =
#(0). We now show that e is continuous. Suppose that D(¢,I) < r. As
each Euclidean diameter L, of B™ is mapped by ¢ onto a hyperbolic line
#(Ly) of B™ whose endpoints are a distance at most r from those of L,
the Euclidean cylinder C,, with axis L, and radius r contains ¢(Ls). Then
e is continuous at the identity map I, since

{6(0)} C Q(P(La) C QC"‘ ={zeB":|z|<r}.

Now suppose that {¢,} is a sequence in M(B™) converging to ¢. Then oL,
converges to I, since M(B™) is a topological group. As e is continuous at I,
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we have that ¢~ '¢,(0) converges to 0. Therefore ¢,(0) converges to ¢(0).
Thus e is continuous.

Define 07 : B™ x 8"~ — §™~! by 9r(b,z) = 7(z). By Formula 4.5.5,
we have that

- 21+z-b)
™) = e T T op

Therefore 97 is continuous. Hence, the function 87 : B® — M(S"™1),
defined by 07(b)(z) = 7p(x), is continuous, since the metric topology on
M(S™~1), determined by Dp, is the same as the compact-open topology.
Therefore, the function 7 : B® — M(B"), defined by 7(b)(z) = 7(z), is
continuous, since the map from M(S"~!) to M(B"), induced by Poincaré
extension, is a homeomorphism. The map 7 is a right inverse of e.

Let ¢ be in M(B™). Then clearly ¢O(n) is contained in e~!(e(¢)).
Suppose that ¢ is in e~'(e(¢)). Then (0) = ¢(0) and so ¢~'¢(0) = 0.
By Theorem 4.4.8, we have that ¢! is in O(n). Therefore 1/ is in $pO(n).
Thus e (e(¢)) = $O(n). Hence ® is a homeomorphism by Theorem 5.1.5.

0

Theorem 5.2.9. The function ¥ : B™ x O(n) — I(B"), defined by the
formula ¥ (b, A) = 7 A, is a homeomorphism.

Proof: Let e :1(B") — B" be the evaluation map defined by e(¢) = ¢(0).
Then e is continuous. Define 7 : B™ x B"® — B" by 7(b,z) = 7(z). Let b
and z be in B™. Then by Formula 4.5.5, we have
(1—15%) (2> +22-b+1)

(6Pl + 22 b+ 1) (b2l + 22 b+ 1)
Hence 7 is continuous. Therefore, the function 7 : B® — I(B™), defined by
7(b)(x) = (), is continuous. The map 7 is a right inverse of e.

We shall identify O(n) with the group of all isometries of B" that fix
the origin. By the same argument as in the proof of Theorem 5.2.3, with
e, replaced by €, /2, the compact-open topology on O(n) is the same as the

Fuclidean topology on O(n). As e™(e(¢)) = $O(n), we have that ¥ is a
homeomorphism by Theorem 5.1.5. )

Tb(CE) =

Theorem 5.2.10. The restriction map p : M(B™) — I(B™) 1s an isomor-
phism of topological groups.

Proof: The map p is an isomorphism by Theorem 4.5.2. The functions
® : B™ x O(n) — M(B") and ¥ : B" x O(n) — I(B") are homeomor-
phisms by Theorems 5.2.8 and 5.2.9. As p = U®~!, we have that pis a
homeomorphism. o

The next theorem follows immediately from Theorem 5.2.10.
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Theorem 5.2.11. The restriction map p : M(U™) — L(U™) is an isomor-
phism of topological groups.

The group S(E™™1) of similarities of E"~! is isomorphic, by extension
to 0o, to the group M(E™ 1), of transformations in M(E™~!) fixing oo.

Theorem 5.2.12. The restriction map p : M(E" 1), — S(E™1) 15 an
1somorphism of topological groups.

Proof: The metric topology on M(E” Do is the same as the compact-
open topology, since £ is compact. Suppose that 1, — ¥ in M(E" 1)
Then ,(x) — ¥(x) for each point z in E"~!. By essentially the same
argument as in the proof of Theorem 5.2.1 (see Exercise 5.2.2), we have
that p(t),) — p(¢). Therefore p is continuous.

Suppose that ¢, — ¢ in S(E"!). Then ¢,(z) — ¢(x) for each point z in
E" ! Let ¢ be the Poincaré extension of ¢. Then obviously qbl (z) — (f)(:v)
for each pomt z in U™. Hence ¢, — ¢ in M(U™) by Theorems 5.2.1 and
5.2.11. Let ¢ : En~1 — En—1 be the extension of ¢ defined by ¢(o0) = co.
Then ¢1 — ¢, since Poincaré extension induces a homeomorphism from
M(E™1) to M(U™). As p(¢) = ¢, we have that p=(¢,) — p~1(¢). Hence
p~! is continuous. Thus p is a homeomorphism. o

Exercise 5.2

1. Let £ : X — Y be an isometry of finitely compact metric spaces. Prove that
the function &, : I(X) — I(Y), defined by &.(¢) = £#€™", is an isomorphism
of topological groups.

2. Let X be a metric space. Prove that ¢, — ¢ in S(X) if and only if ¢.(z) —
¢(z) for each point z of X.

3. Let X be a finitely compact metric space. Prove that S(X) is a topological
group.

4. Prove that the function ® : E™ xRy x O(n) — S(E™), defined by the formula
®(a,k,A) = a+ kA, is a homeomorphism.

5. Let S(E™)o be the subgroup of S(E™) of all similarities that fix the origin.
Prove that the map ¥ : Ry x O(n) — S(E")o, defined by ¥(k, A) = kA, is
an isomorphism of topological groups.

6. Let E(n) be the group of all real (n+ 1) x (n 4 1) matrices of the form

where A is an n x n orthogonal matrix and a is a point of E™. Prove that
the function 7 : I(E™) — E(n), defined by n(a+ A) = A, is an isomorphism
of topological groups.
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10.
11.

12.

13.

14.

15.

Let E : SL(2,C) — LF(C) be defined by
=[ a b (2) = az+b
“\e a |¥WTaxa

Prove that E is continuous. Here SL(2, C) has the Euclidean metric topology

and LF(C) has the compact-open topology.

Prove that a homomorphism 7 : G — H of topological groups is continuous
if and only if n is continuous at the identity element 1 of G.

Let ¢(z) = 2£% be in LF(C) with ad — bc = 1 and d # 0. Show that

T cz+d
1) & = 578w ~ F—0
(2) ed= W-o)—l—zf(o—y
(3) b/d=¢(0),
(4) ad = 5 2=0ss.

Prove that PSL(2,C) and LF(C) are isomorphic topological groups.

Let ¢(z) = 22£% be in LF(C) with ad — bc = 1. Prove that ¢(3) = 7 in U® if

. a b . .
and only if ( c d ) is unitary.

Prove that PSU(2) and SO(3) are isomorphic topological groups.

Let H be the set all matrices of the form z ;} with z,w in C. Show

that H, with matrix addition and multiplication, is isomorphic to the ring
of quaternions H via the mapping

( i ?)Hz—kwj.
—w Z

Prove that SU(2) and the group $* of unit quaternions are isomorphic topo-
logical groups.

Prove that $°/{£1} and SO(3) are isomorphic topological groups.

§5.3. Discrete Groups

In this section, we study the basic properties of discrete groups of isometries
of S E™, and H™.

Definition: A discrete group is a topological group I' all of whose points
are open.

Lemma 1. IfT is a topological group, then T is discrete if and only if {1}
15 open in I
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Proof: If T' is discrete, then {1} is open. Conversely, suppose that {1} is
open. Let g be in T'. Then left multiplication by ¢ is a homeomorphism of
I. Hence g{1} = {g} is open in T. o

Any group I' can be made into a discrete group by giving I" the discrete
topology. Therefore, the topology of a discrete group is not very interesting.
What is interesting is the study of discrete subgroups of a continuous group

like R™ or GL(n,C). Here are some examples of discrete subgroups of
familiar continuous groups.

(1) The integers Z is a discrete subgroup of R.

(2) The Gaussian integers Z[i] = {m + ni : m,n € Z} is a discrete
subgroup of C.

(3) The set {k™: n € Z} is a discrete subgroup of R, for each k > 0.

(4) The group of nth roots of unity {exp(i2rm/n): m=0,1,...,n—1}
is a discrete subgroup of S* for each positive integer n.

(5) The set {k™ : n € Z} is a discrete subgroup of C* for each k in
cr - St

Lemma 2. A metric space X is discrete if and only of every convergent
sequence {x,} in X 1s eventually constant.

Proof: Suppose that X is discrete and x,, — « in X. Then there is an
r > 0 such that B(z,r) = {z}. Asx, — z, there is an integer m such that
T, is in B(z,r) for all n > m. Thus =, = x for all n > m.

Conversely, suppose that every convergent sequence in X is eventually
constant and X is not discrete. Then there is a point z such that {x} is
not open. Therefore B(z,1/n) # {z} for each integer n > 0. Choose
in B(z,1/n) different from z. Then xz, — z, but {z,} is not eventually
constant, which is a contradiction. Therefore X must be discrete. o

Lemma 3. If G 1s a topological group unth a metric topology, then every
discrete subgroup of G is closed in G.

Proof: Let I' be a discrete subgroup of G' and suppose that G — I is not
open. Then there is a g in G —I' and g, in B(g,1/n) NT for each integer
n > 0. As g, — ¢ in G, we have that gng;il — 1in I". But {gng;_il_l}
is not eventually constant, which contradicts Lemma 2. Therefore, the set
G — T must be open, and so I is closed in G. o
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Theorem 5.3.1. A subgroup T of U(n) 1s discrete if and only if T is finte.

Proof: If T is finite, then T" is obviously discrete. Conversely, suppose
that I' is discrete. Then I is closed in U(n) by Lemma 3. Therefore I" is
compact, since U(n) is compact. As I is discrete, it must be finite. o

Corollary 1. A subgroup ' of O(n) is discrete if and only +f T 1s finste.

Definition: The group of symmetries of a subset S of a metric space X
is the group of all isometries of X that leave S invariant.

Example 1. It has been known since antiquity that the five regular solids
can be inscribed in a sphere; in fact, a construction is given in Book 13 of
Euclid’s Elements. The group of symmetries of a regular solid P inscribed
in $? is a finite subgroup of O(3) whose order is

(1) 24 if P is a tetrahedron,
(2) 48 if P is a cube or octahedron,

(3) 120 if P is a dodecahedron or icosahedron.

Theorem 5.3.2. A subgroup T' of R” s discrete of and only of T is gener-
ated by a set of hinearly wndependent vectors.

Proof: We may assume that I is nontrivial. Suppose that T" is generated
by a set {vi,..., v} of linearly independent vectors. Then

I'=Zv®--- & Zv,.

By applying a nonsingular linear transformation, we may assume that v, =
e, for each ¢ = 1,...,m. Then T'N B(0,1) = {0}. Therefore T is discrete
by Lemma, 1.

Conversely, suppose that I' is discrete. This part of the proof is by
induction on n. Assume first that n = 1. Let 7 > 0 be such that B(0,r)
contains a nonzero element of I'. Then C(0,r) N T is a closed subset of
C(0,7) by Lemma 3. Hence C(0,7) NT is a compact discrete space and
therefore is finite. Thus, there is a nonzero element 1 in T' nearest to 0. By
replacing v by —u, if necessary, we may assume that u is positive. Let v
be an arbitrary element in I". Then there is an integer k such that v is in
the interval [ku, (k + 1)u). Hence v — ku is in the set

rno,u) = {o}.
Therefore v = ku. Thus u generates T
Now assume that n > 1 and every discrete subgroup of R™~1! is generated

by a set of linearly independent vectors. As above, there is a nonzero
element « in T nearest to 0 and

I'NRu = Zu.
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Let uy,...,u, be a basis of R® with u, = u, and let n : R® — R"~! be
the linear transformation defined by n(u,) = e, for i = 1,...,n — 1 and
n(u) = 0. Then 7 is a continuous function such that n™(n(z)) = z + Ru
for all z in R™. Define a linear transformation o : R* ! — R” by o(e;) = u,
fori=1,...,n—1. Then o is a continuous right inverse of 1. By Theorem
5.1.5, the map 7 : R*/Ru — R™! induced by 7 is an isomorphism of
topological groups.

Let m : R® — R"/Ru be the quotient map. We claim that «(T) is
a discrete subgroup of R”/Ru. Let {v,} be a sequence in I' such that
7(v,) = 0 in #(T). Then 7r(v,) — 0 in R*~! and so n(v,) — 0 in R~ 1,
Therefore on(v,) — 0 in R™. Hence v, — 0 (mod Ru). Consequently, there
are real numbers r, such that v, — r,u — 0 in R™. By adding a suitable
integral multiple of u to v,, we may assume that |r,| < 1/2. For large
enough %, we have that

v, — ryu| < |ul/2.

Whence, we have

v < v, = | + |
< |ul/2+uf/2 = |ul.

Therefore v, = 0 for all sufficiently large i. Consequently, every convergent
sequence in m(I') is eventually constant. Thus 7(T") is a discrete subgroup
of R”/Ru by Lemma 2. By the induction hypothesis, there are vectors
Wi, ..., W in T such that 7w(wy),...,m(wy,) are linearly independent in
R™/Ru and generate mw(T"). Therefore u,ws,...,w,, are linearly indepen-
dent in R™ and generate I'. This completes the induction. o

Definition: A lattice of R™ is a subgroup generated by n linearly inde-
pendent vectors of R™.

Corollary 2. Every lattice of R™ is a discrete subgroup of R™.

Example 2. Let I' be the set of points of R? of the form %(m,n,p, q)
where m, n, p, q are either all odd integers or all even integers. Then I is a
lattice of R%. This lattice is interesting because it has 24 unit vectors e,
fori=1,2,3,4 and (:I:%,:l:—é—, :i:%, :I:%) all of which are a nearest neighbor
to 0 in I'. It is worth noting that these 24 points are the vertices of a

regular polyhedron in R* called the 24-cell.

Let Sl(n, C) be the group of complex n X n matrices whose determinant
is 1. Then SL(n,C) is a subgroup of GL(n,C) containing SL(n,C) as a
subgroup of index two.

Theorem 5.3.3. A subgroup I of SL(n,C) is discrete if and only if for
each r > 0, the set {A €T : |A| <r} is finate.
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Proof: Suppose that {4 € I' : |A| < r} is finite for each » > 0. Let
B, — B in I'. As the norm function is continuous, |B,| — |B|. Hence,
there is an integer k such that | |B,| — |[B| | < 1 for all j§ > k. Now the
set {A €T :|A| <14 |B|}is finite. Hence {B,} is eventually constant.
Therefore T is discrete by Lemma, 2.

Conversely, suppose that I' is discrete and the set {A € T': |A| <7} is
infinite for some 7 > 0. Then there is an infinite sequence {A,} of distinct
elements in I" such that |A,| <r for all j. As the set

{zeC” :|z|<r}

is compact, the sequence {A,} contains a convergent subsequence. By pass-
ing to this subsequence, we may assume that A, — A. As the determinant

function det : C*° — C is continuous, the set
SL(n,C) = det™*{~1,1}

is closed in C™*. Hence SL(n, C) contains its limit point A. Consequently
AJA;&1 — I in I". But the sequence {AJAJ__&l} is not eventually constant,
contrary to Lemma 2. Thus, the set {A € T': |A| < r} is finite for all » > 0.

[m]
Corollary 3. Every discrete subgroup T’ of SAL(n7 C) is countable.

Proof: LetT',, ={AcT:|A <m}. ThenT = OleFm is countable. o
m=

Example 3. Observe that the modular group SL(n, Z) and the unimodular
group GL(n,Z) are discrete subgroups of SL(n,C) by Theorem 5.3.3.

Discontinuous Groups

Let G be a group acting on a set X and let z be an element of X.

(1) The subgroup G, = {g € G : gz = z} of G is called the stabilizer of
z in G.

(2) The subset Gz = {gz : g € G} of X is called the G-orbit through z.
The G-orbits partition X.

(3) Define a function ¢ : G/G, — Gz by #(9G;) = gz. Then ¢ is a
bijection. Therefore, the index of G, in G is the cardinality of the
orbit Gu.

Definition: A group G acts discontinuously on a topological space X
if and only if G acts on X and for each compact subset K of X, the set
K N gK is nonempty for only finitely many gin G.
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Lemma 4. If a group G acts discontinuously on a topological space X,
then each stabilizer subgroup of G is finite.

Proof: Let « be a point of X. Then the stabilizer G, of z in G is finite,
since {z} is compact. =

Definition: A collection S of subsets of a topological space X is locally
finite if and only if for each point = of X, there is an open neighborhood
U of z in X such that U meets only finitely many members of S.

Clearly, any subcollection of a locally finite collection S is also locally
finite. Another useful fact is that the union of the members of a locally
finite collection & of closed sets is closed.

Lemma 5. If a group G acts discontinuously on a metric space X, then
each G-orbit is a closed discrete subset of X.

Proof: Let x be a point of X. We now show that the collection of one-
point subsets of Gz is locally finite. On the contrary, suppose that y is
a point of X such that every neighborhood of y contains infinitely many
points of Gz. Since X is a metric space, there is an infinite sequence {g,}
of distinct elements of G such that {g,z} converges to y. Then

K= {xvyaglxag2m7 .. }

is a compact subset of X. As g,z is in K N g, K for each i, we have a
contradiction. Thus {{gz} : ¢ € G} is a locally finite family of closed
subsets of X. Hence, every subset of Gz is closed in X. Therefore Gz is a
closed discrete subset of X. o

Definition: A group G of homeomorphisms of a topological space X is
discontinuous if and only if G acts discontinuously on X.

Theorem 5.3.4. Let I' be a group of similarities of a metric space X.
Then T 1s discontinuous of and only f

(1) each stabilizer subgroup of I is finite, and
(2) each T-orbut is a closed discrete subset of X.

Proof: If I is discontinuous, then I' satisfies (1) and (2) by Lemmas 4
and 5. Conversely, suppose that I" satisfies (1) and (2). On the contrary,
suppose that T' is not discontinuous. Then there is a compact subset K of
X and an infinite sequence {g,} of distinct elements of I" such that K and
g, K overlap. Now g, 1K and K also overlap. By passing to a Subsequence
we may assume that g, # g, ! for all i # j, and by replacing g, with g, Lif
necessary, we may assume that the scale factor k, of g, is at most one. Now
for each i, there is a point z, in K such that g,z, is in K. As K is compact,



§5.3. Discrete Groups 167

the sequence {z,} has a limit point z in K. By passing to a subsequence,
we may assume that {z,} converges to z. Likewise, we may assume that
{g.z,} converges to a point y in K. Now observe that

d(g®,y) < d(g.x, gux2) + d(9:70, )
= kzd(xaxl) + d(gzxuy)'
Hence {g,z} converges to y. For each 4, there are only finitely many j such
that g,z = g,z by (1). Hence, there is an infinite subsequence of {g,z},
whose terms are all distinct, converging to y; but this contradicts (2). Thus
T is discontinuous. o

Lemma 6. If X is a finitely compact metric space, then 1(X) is closed in
the space C(X, X) of all continuous self-maps of X.

Proof: The space X has a countable basis, since X is finitely compact.
Therefore C(X, X) has a countable basis. Hence I(X) is closed in C(X, X)
if and only if every infinite sequence of elements of I(X) that converges in
C(X, X) converges in I(X).

Let {#.} be a sequence in I(X) that converges to a map ¢ : X — X.
Then for each pair of points x,y of X, we have that

d(d.(z), ¢:(y)) — d(o(), $(y)).
Therefore, we have
Hence ¢ preserves distances.

We now show that ¢ is surjective. Let a be a base point of X and let
C(a,r) be the closed ball centered at a of radius r > 0. Then the set
#(C(a,2r)) is closed in X, since C(a,2r) is compact. On the contrary,
suppose that y is a point of C(¢(a),r) that is not in ¢(C(a,2r)). Set

s = dist(y, ¢(C(a, 2r))).

Then 0 < s < 7. As ¢, — ¢ uniformly on C(a, 2r), there is an index j such
that

d(¢,(x), d(x)) < s
for each point  in C(a, 2r). Observe that
d(y, ¢;(a)) < d(y, ¢(a)) + d(¢(a), ¢(a)) <7+ s < 2r.

Therefore y is in C(¢,(a),2r). As ¢, maps C(a, 2r) onto C(¢,(a),2r),
there is a point z in C(a,2r) such that ¢,(z) = y. Then we have the
contradiction

d(y, ¢(z)) = d(¢, (x), p(z)) < s.
Therefore, we have that
C(¢(a),r) C ¢(C(a,2r)).
As r is arbitrary, ¢ must be surjective. Hence ¢ is an isometry. Therefore,
the sequence {¢,} converges in I(X). Thus I(X) is closed in C(X, X). o
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Theorem 5.3.5. Let X be a finitely compact metric space. Then a group
I’ of isometries of X 1s discrete if and only if I' is discontinuous.

Proof: Suppose that T' is discontinuous. Let = be a point of X. Then
the orbit I'z is discrete and the stabilizer subgroup I';, is finite by Theorem
5.3.4. Let ¢, : I' — I'z be the evaluation map at z. Then ¢, is continuous.
Hence, the set e, 1(x) = I'; is open in T'. Therefore, the identity map of X
is open in I', and so T is discrete by Lemma 1.

Conversely, suppose that I' is discrete. Now X has a countable basis,
since X is finitely compact. Therefore C(X, X) has a countable basis.
Moreover C(X, X) is regular, since X is regular. Therefore C(X, X) is
metrizable. Hence I' is closed in I(X) by Lemma 3, and so T is closed in
C(X, X) by Lemma, 6.

On the contrary, suppose that T is not discontinuous. Then there is a
point y of X and an infinite sequence S = {¢,} of distinct elements of I"
such that the sequence {¢,(y)} converges to a point of X. The set § is
closed in C(X, X), since I is a closed discrete subset of C(X, X). The set
S is equicontinuous on X, since for each z in X, r > 0, and 7, we have

¢1(B(x77")) = B(le(x)’r))

Let x be an arbitrary point of X. Then £,(S) = {¢,(z)}. Observe that
for all 4, we have that

d(¢(2), ¢.(y)) = d(z,y)-
Let r = d(z,y). Then we have that

{6()} cN{&()}im), -

which is compact, since {#,(y)} is bounded. Hence e;(S) is compact.
Therefore S is compact by the Arzela-Ascoli theorem. As S is discrete,
we have the contradiction that S is finite. Thus T is discontinuous. o

Exercise 5.3

1. Prove that a subgroup I of Ry is discrete if and only if there is a k > 0 such
that T = {k™ : m € Z}.

2. Prove that a subgroup I" of S* is discrete if and only if I' is the group of nth
roots of unity for some n.

3. Prove that every finite group of order n + 1 is isomorphic to a subgroup
of O(n). Hint: Consider the group of symmetries of a regular n-simplex
inscribed in S™7.

4. Prove that the projectwe modular group PSL(2n,Z) = SL(2n,Z)/{£I} is a
discrete subgroup of PSL(2n, R).

5. Prove that the elliptic modular group, of all linear fractional transformations

o(z) = ;‘jig where a, b, c, d are integers and ad—bc = 1, is a discrete subgroup

of LF(C).
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6. Prove that Picard’s group PSL(2,Z[i]) = SL(2,Z[2])/{£} is a discrete sub-
group of PSL(2,C).

7. Let G be a group acting on a set X. Prove that
(1) the G-orbits partition X;
(2) the function ¢ : G/Gz — Gz, defined by ¢(9Gz) = gz, is a bijection

for each x in X.

8. Prove that a discrete group I" of isometries of a finitely compact metric space
X is countable.

9. Let I" be the group generated by a magnification of E™. Prove that
(1) T is a discrete subgroup of S(E");

(2) T does not act discontinuously on E™;

(3) T acts discontinuously on E™ — {0}.

10. Let X = 5™, E™, or H". Prove that a subgroup I' of I(X) is discrete if and
only if every I'-orbit is a discrete subset of X.

§5.4. Discrete Euclidean Groups

In this section, we characterize the discrete subgroups of the group I(E™)
of isometries of E™.

Definition: An isometry ¢ of E™ is elliptic if and only if ¢ fixes a point
of E™; otherwise ¢ is parabolic.

Note that ¢ in I(E™) is elliptic (resp. parabolic) if and only if its Poincaré
extension ¢ in M(U™) is elliptic (resp. parabolic). Every element ¢ of
I(E™) is of the form ¢(z) = a + Az with ¢ in E™ and A in O(n). We shall
write simply ¢ = a + A.

Theorem 5.4.1. Let ¢ be in I(E™). Then ¢ is parabolic 1f and only of
there is a line L of E™ on which ¢ acts as a nontrivial translation.

Proof: Suppose that ¢ = a + A is parabolic. Then ¢ has no fixed points
in ™ by definition. Let V be the space of all vectors in E" fixed by A, and
let W be its orthogonal complement. Write a = b+ ¢ with b in V and ¢ in
W. Let x be an arbitrary point of E™ and write = v 4w with v in V and
w in W. Now the orthogonal transformation A leaves the decomposition

Er=VoW

invariant. Hence A — I maps W to itself. As V is the kernel of 4 — I and
V NW = {0}, we have that A — I maps W isomorphically onto itself.
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Next, observe that the fixed point equation
a+Ar==x
is equivalent to the equation
b+c)+ (v+ Aw) = v+ w,
which is equivalent to
A-Dw=-b—c

Consequently b # 0, otherwise we could solve the last equation for w and
obtain a fixed point for ¢. Choose y in E™ such that (A —1I)y = —c. Let L
be the line whose parametric form is x = tb + y, with ¢ in R. Then ¢ acts
as a nontrivial translation on L, since

Hltb+y) = a+ Altb+y)
= a+tAb+ Ay
= a+th+y—c
(t+1)b+y.
Conversely, suppose there is a line L of E™ on which ¢ acts as a nontrivial
translation. Then ¢ maps each hyperplane of E™ orthogonal to L to another

hyperplane orthogonal to L. Consequently ¢ has no fixed points in E™.
Therefore ¢ is parabolic. o

Corollary 1. If ¢ s a parabolic 1sometry of E™, then there is a line L of
E™, an elliptic isometry ¢ of E™ that fizes each pownt of L, and a nontrivial
translation T that leaves L wnvariant, such that ¢ = 1.

Proof: Let ¢ = a + A be parabolic. Write a = b+ ¢ as in the proof of
Theorem 5.4.1. Choose y such that (A — I)y = —c and let L be the line

r=tb+y withtinR.

Let » =c+ A and 7 = b+ I. Then ¢ = 7¢. Moreover, 1 fixes each point
of L, and 7 leaves L invariant. o

Corollary 2. If ¢ is a parabolic isometry of E™, then the subgroup I of
I(E™) generated by ¢ is discrete.

Proof: By Theorem 5.4.1, there is a line L of E™ on which ¢ acts as
a nontrivial translation. Let z be a point on L. Then the orbit I'r is
a discrete set. As the map e : I' — I'z, defined by e(¢™) = ¢™(x), is
continuous, we have that e~!(z) = {I} is open in I, and so I is discrete. o

Remark: Let ¢ be an elliptic isometry of E™. Then ¢ has a fixed point in
E", and so ¢ is conjugate in I(E™) to an element in O(n). Consequently,
the subgroup generated by ¢ is discrete if and only if ¢ has finite order.
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The next theorem is a basic result in linear algebra.

Theorem 5.4.2. Let A be an orthogonal n x n matrz. Then there are
angles 01, ...,0m, with0 < 01 <--- <0, <, such that A is conjugate in
O(n) to a block diagonal matriz of the form

B(61) 0

0 . B(0m)

cosfl, —sind,

where B(0) =1, B(n) = —1, and B(#,) = ( sin6, cos 0,

) otherunse.

The angles 6,,...,0,, in Theorem 5.4.2 are called the angles of rotation
of A, and they completely determine the conjugacy class of A in O(n), since
err . eTWm are the eigenvalues of A, counting multiplicities. Further-
more, A is conjugate in U(n) to a diagonal matrix with diagonal entries
et . eT¥m Note that A has finite order if and only if each angle of
rotation of A is a rational multiple of .

Commutivity in Discrete Euclidean Groups

If A and B are real n x n matrices and if z is a point of E”, then

(1) [Az| < |A] |z, (5.4.1)

(2) |AB| < |A||B|, (5.4.2)

(3) |A+ B| < |A|+|B); (5.4.3)
if B is orthogonal, then

(4) |BA| = |A| = |AB], (5.4.4)

(6)  |BAB™'—1I|=|A-1|. (5.4.5)

Lemma 1. If A 15 in O(n) and |A — 1| < 2, then A is a rotation with all
rotation angles less than /2.

Proof: By Formula 5.4.5, we may assume that A is in the block diagonal
form of Theorem 5.4.2. Since |A —I| < 2, no rotation angle of A is equal

to 7, and so A is a rotation. Moreover, for each rotation angle 0 > 0, we
have that

(cosf — 1)® + sin® @ 4 sin? 6 + (cos 6 — 1)? < 4.
Hence, we have that
4—4cosf < 4.

Therefore cos @ > 0. Thus 6 < m/2 for each rotation angle 6 of A. o
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Lemma 2. Let A, B be in GL(n,C) with A conjugate to a diagonal matriz,
and let C* =V, @ --- @ Vy,, be the egenspace decomposition of C™ relative
to A. Then A and B commute 1f and only +f B(V,) =V, for each j.

Proof: Let c, be the eigenvalue associated to the eigenspace V; for each
J. Then V, = ker(A — ¢,I) by definition. Hence
B(V,) = kerB(A-c,I)B™*
= ker(BAB™' —¢,I).
Therefore
C*=B(V1)®-- @ B(V)
is the eigenspace decomposition of C™ relative to BAB™!.
Now suppose that A and B commute. Then BAB~' = A and therefore
B(V,) =V, for each j. Conversely, suppose that B(V,) = V, for each j.

Let v be an arbitrary vector in C"*. Then we can write v = vy + - -+ + vy,
with v, in V;. Observe that

BAv, = Beyv, = ¢, By,
and
ABv, = A(Bv,) = ¢, Bv,.
But this implies that BAv = ABv, and so BA = AB. o

Lemma 3. Let A, B be in O(n) with |B — I| < 2. If A commutes with
BAB™!, then A commutes with B.

Proof: By Lemma 1, we have that B is a rotation with all angles less
than /2. Hence, all the eigenvalues of B have positive real parts. Let
C*" =W, @ ---® W, be the eigenspace decomposition of C™ relative to B.
Then the eigenspaces W, are mutually orthogonal, since B is orthogonal.
Let w be a nonzero vector in C" and write w = wy + --- + we with w, in
W,. Let ¢, be the eigenvalue of B corresponding to W,. Then

Re ((Bw) *w) = Re ((Z c]wj> * Zwk> = ReZcJIwA2 > 0.

Hence B cannot send any nonzero vector of C™ to an orthogonal vector.
Let C* = Vi @ -+ ® V,, be the eigenspace decomposition of C™ relative
to A. Then
C*"=BWV1)®-- ®B(Vin)
is the eigenspace decomposition of C" relative to BAB~!'. Now since
BAB™! and A commute, A(B(V,)) = B(V,) for each j by Lemma 2. Con-

sequently
B(V,) = ©(B(V;) N Vi)

is the eigenspace decomposition of B(V)) relative to A. Now, since B
cannot send any nonzero vector of C™ to an orthogonal vector, we must
have that B(V;) N Vi, = {0} for j # k. Thus B(V,) = B(V;)nV, C V.
Hence B(V,) =V, for all j, and so A commutes with B by Lemma 2. ©
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Lemma 4. Let T be a discrete subgroup of I(E™) and let ¢ = a+ A and
Yw=b+Bbeimnl. If|A—-1 <1/2 and |B—1| < 2, then A and B
commute.

Proof: On the contrary, suppose that BA # AB. Define a sequence {t¢, }
in I by ¥ = and ¥y41 = Ymdt. Let ¥, = by, + By,. Then we have

Vmi1 = Ymdy}

= Ymé(—By bm + B.')

= tYm(a— AB b, + AB;Y)

= by + Bpa— BpAB by, + B, AB L.
Hence B,,11 = B, AB;;'. As |Bg — I| < 2 and

[Bit1—I| = |BuAB;)t — I =|A - 1| < 1/2,

it follows by induction that By, A # AB,, for all m, since ByA # ABg and
if BnA # ABp,, then (B,AB,')A # A(B,AB,;;!) by Lemma 3. Hence

B, # A for all m.
Next, observe that

|A - Bm+1|

|A— B, AB;,!|
|AB,, — B, A|
(A= Bn)(A—I)— (A—I)(A~ B,,)|

< [(A=Bn)(A=I)|+ (A~ I)(A - Bp)|
< 2[A-1I[|A- By
< |A—= Byl

Thus By,41 is nearer to A than B,,. Hence, the terms of the sequence
{Bm}, and therefore of {1,,,}, are distinct.
Next, observe that

bmy1 = (I — BpAB Yoy, + Bpa
and so

bl < bl + .

Consequently |b,| is bounded by 2|a| + |b| for all m. Therefore, the se-
quence {b,, } has a convergent subsequence {bm, }. Furthermore {B,, } has
a convergent subsequence, since O(n) is compact. Therefore {¥m} has a
subsequence that converges in I(E™) by Theorem 5.2.4, and therefore in I,
since ' is closed in I(E™). As the terms of {¢,,,} are distinct, we have a
contradiction to the discreteness of I' by Lemma 2 of §5.3. o

Lemma 5. Let T' be a discrete subgroup of I(E™) and let ¢ = a + A and
Y =b+BbeinT with|A—I| <1 and|B—1I|<1. If A and B commute,
then ¢ and ¥ commute.
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Proof: Let [¢,v] = ¢ppp~19p~1. Then
6, 9] = ¢v¢ ' (-B~'b+B7)
¢p(—A"ta— AT'B7 o+ ATIBTY)
= ¢(b—BA'a~BA'B™'b+BA B
= a+Ab— ABA 'a— ABA™'B b+ ABA'B!
= (A-Db+ (I —B)a+1.

Il

Now set
c=(A—-I)b+ (I — B)a.

Define a sequence {¢m} in T by ¢y = [6, [¢, %] and ¢ = [, dm_1]. Then
¢1 = (A—1TI)c+1I, and in general ¢,, = (A — I)™c+ I. Now

[(A—D)"c| < |A—I|™]|c].
As |A — I| < 1, we have that (A — I)™c¢ — 0 in E™. Therefore ¢,, — I in

T' by Theorem 5.2.4. Hence, the sequence {¢,,} is eventually constant by
Lemma 2 of §5.3. Therefore (A — I)™c¢ = 0 for some m.

Let V' be the space of all vectors in E™ fixed by A and let W be its
orthogonal complement. Write ¢ = v 4+ w with v in V and w in W. Then

(A-—D)Mec=(A-1"w.
As A is orthogonal, A — I maps W isomorphically onto itself. Therefore

w = 0. Hence c is fixed by A. The same argument, with the sequence
{¥m} defined by 1 = [, [$,¥]] and Y, = [¥0, Ym—1], shows that c is also
fixed by B.

Now observe that (A — I)b is in W and so is orthogonal to c. Likewise
(I — B)a is orthogonal to ¢. As ¢ = (A—1I)b+ (I — B)a, we have that ¢ is
orthogonal to itself, and so ¢ = 0. Thus ¢ and ¥ commute. o

Lemma 6. If X is a compact metric space, then for each r > 0, there 1s
a mazimum number k(r) of points of X with mutual distances at least r.

Proof: On the contrary, suppose there is no upper bound to the number of
points of X with mutual distances at least . Since X is compact, it can be
covered by finitely many balls of radius r/2, say B(x1,7/2), ..., B(Tm,7/2).
Let y1,...,Ym+1 be m + 1 points of X with mutual distances at least r.
Then some ball B(z,,r/2) contains two points y, and y,. But

d(y]uyk) < d(ijxl) + d(xzyyk> < T/2 + T/Z =T,

which is a contradiction. o

Lemma 7. Let T be a subgroup of I(E™) and for each r >0, let Ty be the
subgroup of ' generated by all elements ¢ = a+ A i T', with [A-1I| <,
and let ky(r) be the mazsmum number of elements of O(n) with mutual
distances at least r relative to the metric d(A, B) = |A— B|. Then T’y 15 a
normal subgroup of T' and [T : T'y] < kn(r) for each v > 0.
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Proof: Let ¢ =a+Abeinl,, with |[A—I| <r, andlet y =b+ B bein
I'. Then ¢¢1p~! = ¢+ BAB™! for some c in E™. Hence

|IBAB™' —I|=|A-1I| <.

Thus 9¢p~! is in I',.. Consequently I',. is a normal subgroup of T.

Let ¢, = b, + B,, for i = 1,...,m, be a maximal number of elements of
T" such that the mutual distances between By, ..., B,, are at least r. Then
m < kp(r). Let 9 = b+ B be an arbitrary element of I. Then there is an
index j such that |B — B,| < r; otherwise ¢, 1, ..., %, would be m + 1
elements of I' such that the mutual distances between B, Bq,...,B,, are
at least r. Hence |BBJ_1 —Il<r. As Wﬁj_l = c—{—BBJ_1 for some ¢ in E™,

we have that 1/)1#3_1 is in I';. Therefore 7 is in the coset I';9),. Hence
F:Frwl U“'Urr¢m-
Thus [I': T] <m < ky(r). =

Theorem 5.4.3. Let ' be a discrete subgroup of I(E™). Then T’ has an
abelian normal subgroup N of finite index containing all the translations wn
I' and the index of N in T' 15 bounded by a number depending only on n.

Proof: Let N = I‘%. Then we have that N is a normal subgroup of I" with

[[': N] < k,(1/2) by Lemma 7; moreover, N is abelian by Lemmas 4 and
5. Clearly N contains every translation in T. o

Example: Let I" be the group of symmetries of Z™ in E®. Then ['0 = YARH
moreover, the stabilizer I'g is the subgroup of O(n) of all matrices with
integral entries. Clearly Ty is a finite group. Now the map e : I' — Z*,
defined by e(¢) = ¢(0), is continuous. Hence e~1(0) = Iy is open in T'. As
T’y is finite, we have that {I} is open in I'. Therefore T is discrete.

If $=a+ Aisin T, then obviously 4 is in Ty. Hence, the mapping
a+ A A determines a short exact sequence

1-T->T—>Ty—1,

where T is the translation subgroup of I'. The sequence splits, since 'y is a
subgroup of I'. Therefore I' = TT, is a semi-direct product. In particular,
the index of T in I is the order of Ty.

Definition: Let G be a group acting on a set X.

(1) An element g of G acts trwially on X if and only if gz = z for all
in X.

(2) The group G acts trivially on X if and only if every element of G acts
trivially on X.

(3) The group G acts effectively on G if and only if 1 is the only element
of G acting trivially on X.
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Theorem 5.4.4. Let I be an abelhan discrete subgroup of I(E™). Then
there are subgroups H and K of T' and an m-plane P of E™ such that

(1) the group T has the direct sum decomposition T' = K @ H;
(2) the group K 1s finite and acts trwially on P; and

(3) the group H is free abelian of rank m and acts effectively on P as a
discrete group of translations.

Proof: The proof is by induction on the dimension n. The theorem is
trivial when n = 0. Assume that n > 0 and the theorem is true for all
dimensions less than n. Choose ¢ = a + A in T such that the dimension
of the space V' of all vectors in E™ fixed by A is as small as possible. If
V = E™, then I is a group of translations and the theorem holds for ' by
Theorem 5.3.2 with H =T and P the vector space spanned by the orbit
Io.

Now assume that dim V' < n. Let W be the orthogonal complement of
Vin E™. Write a = v+ w with v in V and w in W. Since the image of
A —1is W, there is a y such that (A — I)y = w. Let 7 =y + I. Then

TOTTH = TP(-y+1)
= 7(a—Ay+ A)
= y+a—-Ay+ A
= a—w+A
v+ A.

Consequently, by conjugating the group I' by 7, we may assume that A
fixes a.

Let v = b+ B be in I'. From the proof of Lemma 5, we have
o, ] =(A—1)b+ (I —B)a+1.

Hence (A~ I)b+ (I — B)a =0. As A and B commute, B(V) =V and so
(B—1I)(V) C V. From the equation

(B —I)a=(A— I,

we deduce that (B — I)a is in VN W = {0}. Hence B fixes a and A fixes
b. Thus b is in V. Consequently 1, and therefore I', leaves V' invariant.

By conjugating the group I' by an appropriate rotation, we may assume
that V = E* with & < n. Let T be the subgroup of I(E¥) obtained
by restricting the isometries in I', and let p : I' — T be the restriction
homomorphism. The kernel of p is a discrete subgroup of O(n) and is
therefore finite by Theorem 5.3.1. As I' acts discontinuously on E* the
group I' does also and is therefore discrete. B o

By the induction hypothesis, there are subgroups H and K of I', and
an m-plane P of E* such that (1) T = K @ H, (2) K is finite and acts
trivially on P, and (3) H is free abelian of rank m and acts effectively on



§5.4. Discrete Euclidean Groups 177

P as a discrete group of translations. Let K = p~1(K). Then K is a finite
subgroup of I', and K acts trivially on P. Moreover, there is an exact

sequence .
1-K—->T—-H-—>1.

The sequence splits, since H is free abelian. Hence, there is a subgroup H
of " such that I' = K& H and p maps H isomorphically onto H. Therefore
H is free abelian of rank m and H acts effectively on P as a discrete group
of translations. This completes the induction. o

Definition: A lattice subgroup T of I(E™) is a group I' generated by n
linearly independent translations.

Corollary 3. A subgroup I' of I(E™) is a lattice subgroup if and only if T
is discrete and free abelian of rank n.

Lemma 8. Let H be a subgroup of finite wndez in a topological group T’
unth a metric topology. If H s discrete, then T is discrete.

Proof: Suppose that H is discrete. Then H is closed in I’ by Lemma 3
of 85.3. Since H is of finite index in I, there are elements Giy. oy Gm in T,
with g; = 1, such that

F'=gHU: - UgnH.

Hence, we have

H=TI-g¢gHU---Ug,H.
As each coset g,H is closed in I', we have that H is open in I. As {1} is
open in H, we have that {1} is open in I'. Thus I is discrete. o

The next theorem follows immediately from Theorems 5.4.3 and 5.4.4
and Lemma, 8.

Theorem 5.4.5. Let T’ be a subgroup of I(E™). Then T is discrete if and
only if T' has a free abelian subgroup H of rank m and of finite index such

that H acts effectively on an m-plane P of E™ as a discrete group of trans-
lations.

We shall prove that the m-plane P in Theorem 5.4.5 can be chosen so
that P is invariant under I". The next lemma takes care of the case m = 0.

Lemma 9. IfT s a finite subgroup of I(E™), then T fives a pownt of E™.

Proof: Let m = |I'| and set

a= 3" 6(0).

¢er
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Then for » = b+ B in I', we have

@) = b3 BHO)

¢l

= %Zb—kqu(O)

¢l

= S ()

oel

= 2360 = a

ger -
Theorem 5.4.6. Let I' be a discrete subgroup of I(E™). Then

(1) the group T has a free abelian subgroup H of rank m and finite index;

(2) there is an m-plane P of E™ such that H acts effectively on P as a
discrete group of translations; and

(3) the m-plane P 1s invariant under T'.

Proof: By Theorem 5.4.3, the group I" has an abelian normal subgroup N
of finite index. By Theorem 5.4.4, the group N has a free abelian subgroup
H of rank m and of finite index, there is an m-plane Q) of E™ such that H
acts effectively on @ as a discrete group of translations, and N acts on Q
via translations. By conjugating T" in I(E™), we may assume that @@ = E™.

Let ¢ = a+ A be an arbitrary element of N. As ¢(0) = a, we find that a
is in E™ and ¢ acts on E™ by translation by a. Hence A fixes each point
of E™. Let Vj be the subspace of E™ of elements fixed by A and set

V=nV,
$EN

Then E™ C V.

Let ¥ = b+ B be an arbitrary element of I'. We now show that 1 leaves
V invariant. First of all, we have

B(V) = B(¢QNV¢>

N _BYV,
PEN ¢

= ﬁ V —
ooy Y

= NV, = W
peN?

Thus B leaves V invariant. Let ¢ = a + A be in N. Then
wept = (I — BAB™Y )b+ Ba+ BAB™".
As ¢! is in N, there is a v in E™ such that
(I - BAB™")b+ Ba =v.
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Let Wygy— be the orthogonal complement of Vigy-1. Write b = ¢ + d
with ¢ in Viygy-1 and d in Wygy-1. Then we have

(I - BAB™Y)d+ Ba=v.
Now observe that

Ba=v+ (BAB™'~1)d

is the orthogonal decomposition of Ba with respect to Vi1 and Wygy—1.
As Ba is in V, we have that (BAB~! —I)d =0, and so d = 0. Therefore b
is in Vygy-1 for each ¢ in N. Hence bisin V. Thus 1 leaves V invariant.
Furthermore Ba is in E™ for each a in E™. Hence B leaves E™ invariant.

Now by conjugating T' by an appropriate rotation of E™ that leaves E™
fixed, we may assume that V = E¢ with £ > m. Let 7 : E* — E*~™ be the
projection defined by

(@1, %) = (Temm1y-- - Te)

Define o : Et~™ — Ef by

(21, To—m) = (0,...,0,Z1, ..., e m)-

Then ¢ is a right inverse for . By Theorem 5.1.5, we have that n induces
an isomorphism of topological groups

7:EYE™ — B,
Define a metric on E¢/E™ by
dz+E™ y+ E™) = |n(z) —n(y)|-
Then 7 is an isometry.
We now define an action of I'/N on Ef/E™ by
(NY)(z+E™)=9¢(z)+ E™=b+ Bx+ E™.

This action is well defined, since N acts on E¢ by translation by elements
of E™ and B leaves E™ invariant. Moreover I'/N acts on Ef/E™ via
isometries. By Lemma 9, the finite group I'/N fixes a point P = z + E™
of E*/E™. Hence I leaves the m-plane P invariant, and H acts effectively
on P as a discrete group of translations. o

Exercise 5.4

1. Let Ig(C) be the group of orientation preserving Euclidean isometries of C.
Show that every element of Io(C) is of the form ¢(z) = az + b with @ in §*
and b in C.

2. Determine all the discrete subgroups of Ip(C).
3. Let A be a real n x n matrix. Prove that |A|* = tr(AA?).

4. Prove Formula 5.4.4.
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5. Prove Formula 5.4.5.

6. Let ¢ be a parabolic isometry of E™ and let L be a line of E™ on which ¢
acts as a translation. Show that the unit vector u pointing in the direction
in which ¢ translates L is uniquely determined by ¢. The vector u is called
the translation direction vector of ¢.

7. Let I be a discrete subgroup of I{E™). Prove that the subgroup T of trans-
lations of I" has finite index in T" if and only if every isometry ¢ = a + A in
I’ has the property that its O(n)-component A has finite order.

8. Find an upper bound for kn(1/2).

9. Prove that the order of the group I'p, in the example after Theorem 5.4.3, is
2"nl.

10. Let T" be a discrete subgroup of I(E™) and let m be as in Theorem 5.4.6.
Prove that any two I'-invariant m-planes of E™ are parallel.

85.5. Elementary Groups

In this section, we shall characterize the elementary discrete subgroups of

M(B™).

Definition: A subgroup G of M(B") is elementary if and only if G has a
finite orbit in the closed ball B™.

We shall divide the elementary subgroups of M(B™) into three types.
Let G be an elementary subgroup of M(B").

(1) The group G is said to be of elliptic type if and only if G has a finite
orbit in B™.

(2) The group G is said to be of parabolic type if and only if G fixes a
point of S”~! and has no other finite orbits in B".

(3) The group G is said to be of hyperbolic type if and only if G is neither
of elliptic type nor of parabolic type.
Let ¢ be in M(B™) and let « be a point of B™. Then
(6G6~)o(x) = #(Cz). |

In other words, the ¢G¢~'-orbit through ¢(z) is the ¢-image of the G-orbit
through z. This implies that $G¢~! is also elementary; moreover, G and
#Gp~! have the same type. Thus, the elementary type of G depends only
on the conjugacy class of G.

Elementary Groups of Elliptic Type

Theorem 5.5.1. Let G be an elementary subgroup of M(B™). Then the
following are equiwvalent:
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(1) The group G 1s of elliptic type.
(2) The group G fizes a point of B™.
(3) The group G 1s conjugate in M(B™) to subgroup of O(n).

Proof: Suppose that G is of elliptic type. We pass to the hyperboloid
model H™ of hyperbolic space and regard G as a subgroup of PO(n, 1).
As G is of elliptic type, it has a finite orbit {vi,...,vn} in H". Let
v =11+ +vy. Then v is a positive time-like vector of R™! by Theorem
3.1.1. Now let vg = v/||[v||. Then vy isin H™. If Aisin G, then A permutes

the elements of {vy,...,vn} by left multiplication. Therefore, we have

A

A'UO = __’U_
lll

_ Av+ -+ Avy
llll
v+t U v
AT TIm o~ .
liwll

Thus G fixes vg. Hence (1) implies (2).

Suppose that G fixes a point b of B™. Let ¢ be a Mobius transformation
of B™ such that ¢(0) = b. Then ¢~1G¢ fixes 0. Consequently ¢~ 1G¢ is a
subgroup of O(n) by Theorem 4.4.8. Thus (2) implies (3).

Suppose there is a ¢ in M(B™) such that $~1G¢ is a subgroup of O(n).
Then G fixes ¢(0), and so (3) implies (1). o

The next theorem follows immediately from Theorems 5.3.1 and 5.5.1.

Theorem 5.5.2. Let I' be a subgroup of M(B™). Then the following are
equivalent:

(1) The group T is finite.
(2) The group T is conjugate in M(B™) to a finite subgroup of O(n).
(3) The group I is an elementary discrete subgroup of elliptic type.

Elementary Groups of Parabolic Type

In order to analyze elementary groups of parabolic and hyperbolic type,
it will be more convenient to work in the upper half-space model U™ of
hyperbolic space. Elementary subgroups of M(U™) of elliptic, parabolic,
and hyperbolic type are defined in the same manner as in the conformal
ball model B™. The main advantage of working in M(U™) is that the group
of Euclidean similarities S(E™~!) is isomorphic by Poincaré extension to
the stabilizer of co in M(U™). Consequently, we may identify S(E™~!) with
the stabilizer of oo in M(U™).
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Theorem 5.5.3. Let G be an elementary subgroup of M(U™). Then the
following are equivalent:

(1) The group G is of parabolic type.
(2) The group G has a unique fized pownt in En-1,

(3) The group G is congugate in M(U™) to a subgroup of S(E™~!) that
fizes no point of E* L,

Proof: Obviously (1) implies (2), and (2) and (3) are equivalent. We shall
prove that (2) implies (1) by contradiction. Suppose that G fixes a unique
point a of E"~! and G is not of parabolic type. Then G has a finite orbit
{u1,...,um} in U™ other than {a}. Assume first that {ui,..., um} is in
U™. Then G is of elliptic type, and so it fixes a point u of U™ by Theorem
5.5.1. Consequently G fixes the hyperbolic line L starting at a and passing
through «. But this implies that G fixes the other endpoint of L contrary
to the uniqueness of a. Therefore {u1, ..., Uy} must be contained in E*~1.

As a is the only fixed point of G in E"fl, we must have m > 2. The
index of each stabilizer G, is m. Therefore H = G,, N G,, is of finite
index in G. Moreover, each element of H is elliptic, since H fixes the three
points a, u1,us. Therefore H fixes the hyperbolic line L joining a and u;.
Let u be any point on L. As G, contains H, we have that G, is of finite
index in G. Consequently, the orbit Gu is finite. But we have already
shown that this leads to a contradiction. Therefore G must be of parabolic
type. Thus (2) implies (1). o

Theorem 5.5.4. Let ¢, be in M(U™) with ¥ hyperbolic. If ¢ and 3 have
ezactly one fized pownt in common, then the subgroup generated by ¢ and
1 18 not discrete.

Proof: By conjugating in M{U™), we may assume that the common fixed
point is co. Thus, we may regard ¢ and ¥ to be in S(E"~!). By conjugating
in S(E™~!), we may assume that ¢ fixes 0. Then there are positive scalars
r, s, matrices A, B in O(n — 1), and a nonzero point a of E™! such that
#(x) = a + rAz and ¢(z) = sBz. By replacing ¢ with 11, if necessary,
we may also assume that 0 < s < 1. Then we have

PPy ™ (x) = s"BMa+rB"AB™ "z
for each positive integer m. The terms of the sequence {¢™ ¢~} are all
distinct, since

P~ ™(0) = s™B™a  with a # 0.

As O(n — 1) is compact, the sequence {B™AB~"} has a convergent sub-
sequence {B™ AB~™}. Let T,, be the translation of E"~! by s™B™a.
Then {7,,} converges to I by Corollary 1 of §5.2. As

P pp™™ = 7, T BTABTT,
the sequence {¢™ ¢1p~™ } converges but is not eventually constant. There-
fore, the group (¢, 1) is not discrete by Lemma 2 of §5.3. o
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Theorem 5.5.5. A subgroup T' of M(U™) 1s an elementary discrete sub-
group of parabolic type if and only 1f T" is conjugate in M(U™) to an infinite
discrete subgroup of I[(E™1).

Proof: Suppose that ' is an elementary discrete subgroup of parabolic
type. By Theorem 5.5.3, we may assume that I is a subgroup of S(E™~1)
that fixes no point of E"~!. By Theorem 5.5.4, the group I' has no hy-
perbolic elements, otherwise I' would fix a point of E"~!. Consequently,
every element ¢ of T' is of the form ¢(x) = a + Az, where A is in O(n — 1)
and a is in E"~1. Thus I is a subgroup of I(E™~1). The group I" must be
infinite, otherwise I" would be of elliptic type.

Conversely, suppose that I' is an infinite discrete subgroup of I(E™™1).
On the contrary, assume that I fixes a point of E"~!. By conjugating in
I(E™!), we may assume that I fixes 0. Then T is a subgroup of O(n — 1).
But I' is discrete, and so I' must be finite, which is not the case. Therefore
I fixes no point of E™~!. Hence T is of parabolic type by Theorem 5.5.3. o

Elementary Groups of Hyperbolic Type

Let S(E™ '), be the subgroup of M(E"™!) of all transformations that
leave invariant the set {0, 00}. The group S(E™1), contains the subgroup
S(E™ ') of all similarities that fix both 0 and co as a subgroup of in-
dex two. We shall identify S(E™~'), with the subgroup of M(U™) of all
transformations that leave {0, 0o} invariant.

Theorem 5.5.6. Let G be an elementary subgroup of M(U™). Then the
following are equivalent:

(1) The group G is of hyperbolc type.

(2) The union of all the finate orbits of G in U™ consists of two pownts mn
Ern-L,

(3) The group G 1s comgugate in M(U™) to a subgroup of S(E™1), that
fizes no point of the positive nth azis.

Proof: Suppose that G is of hyperbolic type. Then all the finite orbits of
G are contained in E™!, since G is not of elliptic type. Let {u1,...,u.,} be
the union of a finite number of finite G-orbits. Then each of the stabilizers
G, is of finite index in G, since each of the orbits Gu, is finite. Let

H=Gy N NG,

Then H is of finite index in G and fixes each u,. If m > 3, the group H
must be of elliptic type; but this implies that G is of elliptic type, which is
not the case. Therefore m can be at most 2. The case of one finite orbit,
consisting of a single point, is ruled out by Theorem 5.5.3. Therefore, either
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G has one finite orbit consisting of two points or two finite orbits consisting
of one point each. Thus (1) implies (2).

Obviously (2) implies (3). Suppose that G is a subgroup of S(E™1),
that fixes no point of the positive nth axis. Then either G fixes both 0 and
oo or {0,000} is a G-orbit. Consequently G is not of parabolic type.

On the contrary, assume that G is of elliptic type. If G fixes both 0 and
00, then G fixes the positive nth axis, which is not the case. Therefore
{0, 0} is a G-orbit. The stabilizer Gy is of index two in G and fixes both
0 and co. Hence Gy fixes the positive nth axis L. Let ¢ be in G — Gj.
Then ¢ leaves L invariant and switches its endpoints. Consequently ¢ has
a fixed point u on L. As Gy and ¢ generate G, the group G fixes u, which
is a contradiction. It follows that G is of hyperbolic type. Thus (3) implies

(1). o
The next theorem follows immediately from Theorems 5.5.2 and 5.5.6.

Theorem 5.5.7. A subgroup T of M(U™) 1s an elementary discrete sub-
group of hyperbolic type of and only +f T is conjugate in M(U™) to an infinate
discrete subgroup of S(E™1),.

The structure of an infinite discrete subgroup I' of S(E™~1), is easy to
describe. Let I'g be the subgroup of I" fixing 0. Then I'y is of index 1 or 2
in I'. Every element of 'y is of the form kA, where k is a positive scalar
and A is in O{n — 1). Let

p:To— R4

be the homomorphism defined by p(kA) = k. The kernel of p is the group
['oNO(n—1), which is finite. As the orbit I'pey, is discrete, we find that the
image of p is an infinite discrete subgroup of R. Hence, there is a scalar
s > 1 such that

p(To) = {s™ :m € Z}.

Thus T’y is finite by infinite cyclic.

Let 9 be an element of T such that p(y) = s. Then T’ is the semidirect
product of the finite subgroup I'oNO(n—1) and the infinite cyclic subgroup
generated by 1. Consequently I' has an infinite cyclic subgroup generated
by a hyperbolic transformation as a subgroup of finite index. This leads to
the next theorem.

Theorem 5.5.8. A subgroup T' of M(U™) is an elementary discrete sub-
group of hyperbolic type if and only if I' contains an wnfinate cyclic subgroup
generated by a hyperbolic transformation as a subgroup of finite index.

Proof: Suppose that I' has an infinite cyclic subgroup H generated by a
hyperbolic transformation ¢ as a subgroup of finite index. Let a and b be
the fixed points of ¥. As T, contains H, we have that T, is of finite index
in T. Therefore, the orbit I'a is finite. Likewise I'b is finite. Hence T is
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elementary. As H has no fixed points in U™, the type of T is not elliptic
by Theorem 5.5.1. Moreover ' is not of parabolic type, since the union
of all the finite orbits of " contains at least a and b. Therefore I' must
be of hyperbolic type. Let L be the axis of ¢ and let x be a point on L.
Then the orbit Hz is a discrete set. As the map e : H — Hz, defined by
e(y™) = ¢™(z), is continuous, e 1(x) = {I} is open in H, and so H is
discrete. Consequently T' is discrete by Lemma 8 of §5.4. The converse
follows from Theorem 5.5.7 and the discussion thereafter. o

Example: Let y be the magnification of U™ defined by u(z) = 2z, and
let o be the inversion of U™ defined by o(x) = z/|z|?>. Let T be the group
generated by u and 0. As opo = p~!, the infinite cyclic group (p) has
index two in I'. Therefore I is an elementary discrete subgroup of M(U™)
of hyperbolic type by Theorem 5.5.8. Observe that I" leaves the set {0, 00}
invariant but fixes neither 0 nor oo.

Solvable Groups

Let F be the set of all fixed points in B" of a Mébius transformation ¢ of
B™. If ¢, are in M(B™), then obviously

Fygyp—1 = P(Fy).
This simple observation is the key to the proof of the next lemma.

Lemma 1. Every abelian subgroup of M(B") is elementary.

Proof: The proof is by induction on n. The theorem is trivial when n — 0,
since B® = {0} by definition. Now suppose that n > 0 and the theorem
is true for all dimensions less than n. Let G be an abelian subgroup of
M(B™). Assume first that G has an element ¢ that is either parabolic or
hyperbolic. Then F, consists of one or two points. As ¢¢yp~! = ¢ for all
¥ in G, we have that ¢(F,) = F, for all ¢ in G, and so @ is elementary.

Now assume that all the elements of G are elliptic. Let ¢ be in G. Then
Fy is the closure in B™ of a hyperbolic m-plane of B™, since ¢ is conjugate
in M(B") to an element of O(n). Therefore F is a closed m-disk. Choose
@ in G such that the dimension of Fy is as small as possible. If dim Fy =n,
then G is trivial, so assume that dim Fy <n. By conjugating G in M(B"),
we may assume that Fy = B™ with m < n. As @G is abelian, we have
that ¢(Fy) = Fy for all 4 in G; in other words, G leaves B™ invariant.
Moreover G leaves E™ invariant by Theorem 4.3.7.

Let G be the group of transformations of E™ obtained by restricting
the elements of G. Then G is a subgroup of M(B™) by Theorem 4.3.1.
Moreover G is abelian, since G is a homomorphic image of G. By the
induction hypothesis, G, and therefore G, has a finite orbit in B™. Thus
G is elementary. This completes the induction. o
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Theorem 5.5.9. Let T be a discrete subgroup of M(B™). Then T' 1s ele-
mentary if and only if it has a abelian subgroup of finite index. Moreover,
if I is elementary, then of has a free abelian subgroup of finite index whose

rank is 0 if T is elliptic, 1 of T is hyperbolic, or k, with 0 < k < n, of T" 1s
parabolic.

Proof: If I is elementary, then it has a free abelian subgroup of finite
index by Theorems 5.4.5, 5.5.2, 5.5.5, and 5.5.8 whose rank is 0 if " is
elliptic, 1 if T" is hyperbolic, or k, with 0 < k < n, if T' is parabolic.
Conversely, suppose that I' has an abelian subgroup H of finite index.
Then H is elementary by Lemma 1. Let z be a point in B™ such that Hz
is finite. As [I": H] is finite, there are elements ¢, ..., ¢, in T' such that

r=¢HU--- U ¢, H.
Hence, we have that

I'c = ¢HxU---U ¢, Hex
is finite. Therefore I' is elementary. o

Theorem 5.5.10. Every solvable subgroup of M (B™) 1s elementary.

Proof: Let G be a solvable subgroup of M(B™). Define G(® = G and
G® = [*-1 G*-1)] for k > 0. Then G = 1 for some smallest k.
We prove that G is elementary by induction on the solvability degree k.
This is clear if k¥ = 0, so assume that k£ > 0 and all subgroups of M (B™)
of solvability degree k — 1 are elementary. As the solvability degree of
H =GW is k — 1, we have that H is elementary.

Assume first that H is of parabolic or hyperbolic type. Then the union
of the finite orbits of H in S™ ! is a one or two point set F'. Let h be in
H and g in G. Then g~ 'hg is in H, since H is a normal subgroup of G.
Hence g~ 'hg(F) = F. Therefore hg(F) = g(F). Hence g(F) is a union of
finite orbits of H, and therefore g(F) = F. Hence G has a finite orbit and
so G is elementary.

Now assume that H is elliptic. Let F be the set of all points of B™ fixed
by H. Then F is an m-plane of B™. By conjugating G in M(B™), we may
assume that F = B™. If z isin F, and h is in H, and g is in G, then
g 'hgz = z, and so hgz = gz, and therefore gz is in F. Hence G maps
F to itself. Let G be the subgroup of M(B™) obtained by restricting the
elements of G to F. Then H is a subgroup of the kernel of the restriction
homomorphism p : G — G. Hence p induces a homomorphism from G/H
onto G. As G/H is abelian, G is abelian. Therefore G is elementary by
Lemma 1. Hence G, and therefore G, has a finite orbit in F'. Thus G is
elementary. o

Theorem 5.5.11. If G is a nonelementary subgroup of M(B™) that leaves
no proper m-plane of B" invarant, then G has no nontrivial, elementary,
normal subgroups.
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Proof: On the contrary, let H be a nontrivial, elementary, normal sub-
group of G. Assume first that H is of elliptic type. Then the set F' of
all points of B™ fixed by H is a proper m-plane of B™. Let x be a point
of F, let ¢ be in H, and let ¢ be in G. Then ¢ '¢yp(x) = x, whence
d(x) = ¥(z). Hence ¥(z) is fixed by ¢. As ¢ is arbitrary in H, we have
that ¢(z) is in F. As 9 is arbitrary in G, we deduce that G leaves F
invariant, which is not the case.

Assume next that H is not of elliptic type. Then the union of all the
finite orbits of H is a one or two point set F. Let 9 be in G. Then

Y 'Hy(F) = HF = H.

Hence Hy(F') = y(F). Therefore )(F) = F. As 4 is arbitrary in G, we
deduce that GF = F, which is not the case because G is nonelementary.
Thus, we have a contradiction. o

Corollary 1. If n > 1, then M(B"™) has no nontrivial, solvable, normal
subgroups.

Proof: By Theorem 3.1.5, we have that M(B") leaves no proper m-plane
of B™ invariant. Furthermore, since M(B™) acts transitively on S* !, we
have that M(B") is nonelementary for n > 1. Therefore M(B™) has no
nontrivial, solvable, normal subgroups by Theorems 5.5.10 and 5.5.11. o

Remark: The group M(B™) is isomorphic to I(H™). Therefore [(H™) has
no nontrivial, solvable, normal subgroups for n > 1. In contrast, both
I(S™) and I(E™) have nontrivial, abelian, normal subgroups.

The group M(B™) has a nontrivial, abelian, quotient group because the
subgroup My (B") of orientation preserving isometries of B” has index two.
It follows from the next theorem that My(B™) is the only proper normal
subgroup of M(B™) whose group of cosets is abelian.

Theorem 5.5.12. The group Mo(B™) has no nontrival, abelian, quotient
groups.

Proof: It suffices to show that My(B™) is equal to its commutator sub-
group. We pass to the upper half-space model U™. The group My(U™) is
generated by all products v = o109 of two reflections in spheres X; and
Yy of E™ that are orthogonal to E™~1. There is a sphere ¥ of E™ that is
orthogonal to E™ ! and tangent to both %1 and ¥5. Let o be the reflec-
tion in . Then 81 = 010 and B3 = 0oy are parabolic translations. This
is clear upon positioning the spheres so that oo is the point of tangency.
As v = 152, we find that My (U™) is generated by the set of all parabolic
translations of U™,

Now as any parabolic translation of U™ is conjugate in Mo(U™) to the
parabolic translation 7 of U™, defined by 7(x) = e; + z, it suffices to show
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that 7 is a commutator. Let u be the magnification of U™ defined by
u(z) = 2z. Then

prptt N z) = prpT(—er + @)

= pr(~e1/2+z/2)
= pler/2+x/2)
= €1 -+ x.

Therefore 7 = [u, 7].

We now define an elementary subgroup of I(H"). Let ¢ : B® — H™ be
stereographic projection.

Definition: A subgroup I’ of I(H™) is elementary if and only if the
subgroup ¢ ~'T'¢ of I(B™) corresponds to an elementary subgroup of M(B")
under the natural isomorphism from I(B™) to M(B").

All the results of this section now apply to elementary subgroups of
I(H™). Furthermore, it is clear that we can define in a similar fashion
elementary subgroups of the group of isometries of any model of hyperbolic
space and all the results of this section apply to any model of hyperbolic
space.

Exercise 5.5

1. Let G be an elementary subgroup of M(B™) of hyperbolic type. Prove that
G has a hyperbolic element and that every element of G is either elliptic or
hyperbolic.

2. Let ¢, be elliptic elements in M(B™). Prove that if ¢ and ¢ commute, then
either Fy C Fy or Fyy C Fy or Fy and F intersect orthogonally.

3. Let G be an abelian subgroup of M(B™). Prove that

(1) G is of elliptic type if and only if every element of G is elliptic,
(2) G is of parabolic type if and only if G has a parabolic element, and

(3) G is of hyperbolic type if and only if G has a hyperbolic element.

4. Let ¢, be in M(B™) and suppose that ¢ and ¢ have a common fixed point
in B™. Prove that [¢,)] is either elliptic or parabolic.

5. Let G be a subgroup of M(B™) with no nonidentity elliptic elements. Prove
that G is elementary if and only if any two elements of G have a common
fixed point.
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§5.6. Historical Notes

§5.1. The quadratic form of the Hermitian inner product was introduced
by Hermite in his 1854 paper Sur la théore des formes quadratiques [189).
Complex n-space was described by Klein in his 1873 paper Ueber die so-
genannte Nicht-Fuklidische Geometrie [227]. The concept of a topological
group evolved out of the notion of a continuous group of transformations
of n-dimensional space as developed by Lie, Killing, and Cartan in the late
nineteenth century. For an overview of the relationship between continu-
ous groups and geometry, see Cartan’s 1915 survey article La théorie des
groupes continus et la géométrie [68]. Abstract topological groups were in-
troduced by Schreier in his 1925 paper Abstrakte kontinuierliche Gruppen
[368]. A systematic development of the algebra of matrices was first given
by Cayley in his 1858 paper A memoir on the theory of matrices [75]. For
the early history of matrix algebra, see Hawkins’ 1977 articles Another look
at Cayley and the theory of matrices [182) and Weierstrass and the theory
of matrices [183]. Unitary transformations were studied by Frobenius in
his 1883 paper Uber die principale Transformation der Thetafunctionen
mehrerer Variabeln [141]. The unitary group appeared in Autonne’s 1902
paper Sur I’Hermitien [28]. Quotient topological groups were considered
by Schreier in his 1925 paper [368]. Theorem 5.1.4 appeared in Pontrja-
gin’s 1939 treatise Topological Groups [343]. The n-dimensional projective
general linear group appeared in Klein’s 1873 paper [227].

§5.2. The group of isometries of a finitely compact metric space was
shown to have a natural topological group structure by van Dantzig and
van der Waerden in their 1928 paper Uber metrisch homogene Rdume [393].
See also Koecher and Roelcke’s 1959 paper Diskontinuierliche und diskrete
Gruppen von Isometrien metrischer Réume [246]. As a reference for the
compact-open topology, see Dugundji’s 1966 text Topology [110]. Theorem
5.2.8 appeared in Beardon’s 1983 text The Geometry of Discrete Groups
(34].

§5.3. Discrete groups of Euclidean isometries were studied implicitly by
crystallographers in the first half of the nineteenth century. For the early
history of group theory in crystallography, see Scholz’s 1989 articles The
rise of symmetry concepts in the atomistic and dynamistic schools of crys-
tallography, 1815-1830 [364] and Crystallographic symmetry concepts and
group theory (1850-1880) [365). Discrete groups of Fuclidean isometries
were first studied explicitly by Jordan in his 1869 Mémoire sur les groupes
de mouvements [206]. In particular, the 3-dimensional versions of Corollary
1 and Theorem 5.3.2 appeared in Jordan’s paper. Lattices arose in crys-
tallography, in the theory of quadratic forms, and in the theory of elliptic
functions during the nineteenth century. Finite groups and subgroups of
the elliptic modular group were the first discrete linear groups studied. In
particular, Klein determined all the finite groups of linear fractional trans-
formations of the complex plane in his 1876 paper Ueber bindre Formen
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mit linearen Transformationen wn sich selbst [229]. Subgroups of the el-
liptic modular group were investigated by Klein in his 1879 paper Ueber
die Transformation der elliptischen Functionen [231]. The term discrete
group was used informally by Schreier in his 1925 paper [368]. A duscrete
topological group was defined by Pontrjagin in his 1939 treatise [343].

Poincaré defined a discontinuous group to be a group of linear fractional
transformations of the complex plane that has no infinitesimal operations
in his 1881 note Sur les fonctions fuchsiennes [327]. He defined a Fuchsian
group to be a discontinuous group that leaves invariant a circle. Poincaré
knew that a Fuchsian group is equivalent to a discrete group of isometries
of the hyperbolic plane. Klein pointed out that there are discrete groups
of linear fractional transformations of the complex plane that do not act
discontinuously anywhere on the plane in his 1883 paper Neue Beitrige zur
Riemannschen Funktionentheorie [233]. Poincaré then defined a properly
discontinuous group to be a group of linear fractional transformations of
the complex plane that acts discontinuously on a nonempty open subset of
the plane in his 1883 Mémowre sur les groupes klemnéens [332]. He called
such a group a Klewnian group. Poincaré knew that a Kleinian group acts as
a discrete group of isometries of the upper half-space model of hyperbolic
3-space. See Poincaré’s 1881 note Sur les groupes kleinéens [329]. In mod-
ern terminology, a Kleinian group is any discrete group of linear fractional
transformations of the complex plane. Moreover, the terms discontinuous
and properly discontinuous have been replaced by discrete and discontin-
uous, respectively. For the evolution of the definition of a discontinuous
group, see Fenchel’s 1957 article Bemerkungen zur allgemeinen Theorie
der diskontinwerlichen Transformationsgruppen [131]. Theorem 5.3.3 ap-
peared in Fubini’s 1905 paper Sulla teoria dei grupp: discontinui [143].
Theorem 5.3.4 for groups of isometries appeared in Bers and Gardiner’s
1986 paper Fricke Spaces [43]. Theorem 5.3.5 for groups of isometries of
hyperbolic space was proved by Poincaré in his 1883 memoir [332]. Theo-
rem 5.3.5 was essentially proved by Siegel in his 1943 paper Discontinuous
groups [375]. See also Koecher and Roelcke’s 1959 paper [246].

Poincaré was led to investigate discrete groups of isometries of the hy-
perbolic plane because of his work on differential equations of functions
of a complex variable. In particular, Poincaré studied functions f of a
complex variable z with the property that f(yz) = f(z) for all elements
~ of a discrete group I of linear fractional transformations of the complex
plane. Such a function f is called an automorphic function with respect
to the group T. For the fascinating history of this line of research, see
Gray’s 1986 monograph Linear Differential Equations and Group Theory
from Riemann to Poincaré [160]. References for the theory of Fuchsian and
Kleinian groups are Fricke and Klein’s 1897-1912 treatise Vorlesungen tber
die Theorie der automorphen Functionen [139], Ford’s 1929 treatise Auto-
morphic Functions [136], Lehner’s 1964 treatise Discontinuous Groups and
Automorphic Functions [255], Magnus’ 1974 treatise Noneuclidean Tesse-
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lations and thewr Groups [272], Beardon’s 1983 text [34], and Maskit’s 1988
treatise Kleinian Groups [282].

85.4. The 3-dimensional version of Theorem 5.4.1 was first proved by
Chasles in his 1831 paper Note sur les propriétés générales du systéme de
deux corps semblables entr’euz [78]. Theorems 5.4.1 and 5.4.2 appeared in
Jordan’s 1875 paper Essai sur la géométrie a n dimensions [207]. Lemma
3 was proved by Frobenius in his 1911 paper Uber den von L. Bieberbach
gefundenen Beweis ewnes Satzes von C. Jordan {142]. Lemma 4 for finite
subgroups of the orthogonal group also appeared in this paper. Lemmas
4, 5, and 7 appeared in Oliver’s 1980 paper On Bieberbach’s analysis of
discrete Euclidean groups [323]. Theorem 5.4.3 was first proved for fi-
nite subgroups of the orthogonal group by Jordan in his 1878 Mémoure
sur les équations différentielles linéaires [208] and in his 1880 paper Sur
la détermanation des groupes d’ordre fim contenus dans le groupe lnéaire
[209]. Theorem 5.4.3 follows easily from Jordan’s theorem and Bieber-
bach’s algebraic characterization of discrete Euclidean groups given in his
1911 paper Uber die Bewegungsgruppen der Euklidischen Riume [46]. Like-
wise, Theorems 5.4.4-5.4.6 follow from Bieberbach’s characterization in this
paper.

85.5. The concept of an elementary group is implicit in the classification
of discontinuous groups of linear fractional transformations of the complex
plane given by Fricke and Klein in Vol.I of their 1897 treatise [139]. The
term elementary group was introduced by Ford in his 1929 treatise [136].
Our definition of an elementary group conforms with the definition of an
elementary group in dimension three given by Beardon in his 1983 text
[34]. The 2-dimensional version of Theorem 5.5.4 appeared on p-118 in
Vol.T of Fricke and Klein’s 1897 treatise [139]. Theorem 5.5.5 appeared in
Greenberg’s 1974 paper Commensurable groups of Moebius transformations
[165]. Theorems 5.5.7 and 5.5.8 were proved by Tukia in his 1985 paper On
wsomorphisms of geometrically finite Mébius groups [392]. Theorem 5.5.9
appeared in Martin’s 1989 paper On discrete Mdbius groups n all dimen-
stons [280]. The 3-dimensional version of Theorem 5.5.10 was essentially
proved by Myrberg in his 1941 paper Die K. apazitit der singuldren Menge
der linearen Gruppen [312]. Theorem 5.5.11 was essentially proved by Chen
and Greenberg in their 1974 paper Hyperbolic spaces [80]. Theorem 5.5.12
follows from the fact that My(B") is a simple Lie group. References for
elementary groups are Ford’s 1929 treatise [136], Beardon’s 1983 text [34],
Kulkarni’s 1988 paper Conjugacy classes in M(n) [248], and Waterman’s
1988 paper Purely elliptic Mébius groups [404].



CHAPTER 6

Geometry of Discrete Groups

In this chapter, we study the geometry of discrete groups of isometries of
S™, E™, and H™. The chapter begins with an introduction to the projective
disk model of hyperbolic n-space. Convex sets, polyhedra, and polytopes
in §7, E™, and H™ are studied in Sections 6.2, 6.3, and 6.4, respectively.
The basic properties of fundamental domains for a discrete group are ex-
amined in Sections 6.5 and 6.6. The chapter ends with a study of the basic
properties of tessellations of S™, E™, and H™.

§6.1. The Projective Disk Model

The open unit n-disk in R™ is defined to be the set

D" ={z eR": |z| < 1}.
Note that D™ is the same set as B™. The reason for the new notation is
that a new metric dp on D™ will be defined so that D™ and B™ are different
metric spaces.

Identify R™ with R™ x {0} in R™*+1. The gnomonic projection p of D™
onto H™ is defined to be the composition of the vertical translation of D"
by ent1 followed by radial projection to H™. See Figure 6.1.1. An explicit
formula for u is given by

T+ ent1
p(z) = ot entll (6.1.1)
The map p : D™ — H™ is a bijection. The inverse of u is given by
p Nz, Ta1) = (@1/ T, - s T/ Trt1) (6.1.2)
Define a metric dp on D™ by
dp(z,y) = da(u(=), 1Y) (6.1.3)

By definition, y is an isometry from D", with the metric dp, to hyperbolic
n-space H™. The metric space consisting of D™, together with the metric
dp, is called the projective disk model of hyperbolic n-space.

192



§6.1. The Projective Disk Model 193

\ >
L |

N

-1 0 =z 1

Figure 6.1.1. The gnomonic projection g of D' onto H*

Theorem 6.1.1. The metric dp on D™ is given by

1__ ..
coshdp(z,y) = Y

VIRV

Proof: By Formula 3.2.2, we have

coshdp(z,y) = coshdy(u(z), u(y))
__ Ttepn o Y+ enti
iz +entall Hy + entall
l—z-y

V=PI °

In order to understand the isometries of D™, we need to introduce ho-
mogeneous coordinates for projective n-space P™ and classical projective
n-space R™. By definition, P = S™/{+£1}. Thus, a point of P" is a pair of
antipodal points of S™. The idea of homogeneous coordinates is to use any
nonzero vector on the line passing through a pair +z of antipodal points
of S™ to represent the point {+x} of P™. With this in mind, we say that a
nonzero vector = in R™™! is a set of homogeneous coordinates for the point
{#£z/|z|} of P™. Notice that two nonzero vectors z,y in R*1 are homoge-
neous coordinates for the same point of P" if and only if each is a nonzero
scalar multiple of the other. By definition, R® = R™ U P*~!. Moreover,
gnomonic projection v : R” — 8™ induces a bijection 7 : R"* — P™. A set
of homogeneous coordinates for a point = of R™ is a set of homogeneous co-
ordinates for the point 7(x). In particular, if z,4+1 # 0, then (21, ..., ZTny1)

is a set of homogeneous coordinates for the point (x1/%n41,...,%n/Tnt1)
of R™ in R™.
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A projectwe transformation of P™ is a bijection ¢ : P® — P™ that corre-
sponds to a bijective linear transformation ¢ : R**! — R™+! with respect
to homogeneous coordinates that is determined only up to multiplication
by a nonzero scalar. In other words, a projective transformation of P"
corresponds to an element of PGL(n + 1,R). Projective transformations

of Ri" correspond to projective transformations of P™ via the bijection
v:R" — P,

Theorem 6.1.2. Every isometry of D" eztends to a unique projective
tmnsformatiog of classical projective n-space R™ and every projective trans-
formation of R™ that leaves D™ invariant restricts to an 1sometry of D™.

Proof: Let ¢ be a projective transformation of R™. Then ¢ corresponds
to a bijective linear transformation ¢ of R™*! that is unique up to multi-

plication by a nonzero scalar. Let (z1,...,%n41), With z,1 # 0, be a set
of homogeneous coordinates for the vector (z1/Zn11,...,Tn/Tpy1) in R™.
Then

T 2 T 2
< 1 ) + o + < ; ) < 1
Tn+1 Tp+1

2
a:1+'-~+a;i<:ci+1‘

if and only if

Hence ¢ leaves D™ invariant if and only if (;Nb leaves invariant the interior of
the light cone C™ in R™! defined by the equation
i+ tal =1l .

Suppose that q; leaves invariant the interior of the light cone C™. We
claim that some nonzero scalar multiple of ¢ is a positive Lorentz trans-
formation. Since ¢ is continuous,  either leaves invariant the positive and
negative components of the interior of C™ or permutes them. By multi-
plying ¢ by —1, if necessary, we may assume that ¢ leaves invariant the
components of the interior of C™. By composing 6 with a positive Lorentz
transformation, we may assume that 6 leaves invariant the (n+1)st axis of
R™*+!, By multiplying ¢ by a positive scalar, we may assume that 6 fixes
the unit vector e, 1. We now show that 4 is an orthogonal transformation.
Let = be a vector in R"*! not on the (n 4 1)st axis of R™™!. Tt suffices
to show that |¢(z)| = |z|. Let V be the 2-dimensional vector subspace of
R™*! spanned by = and e, 1. By composing é with an orthogonal transfor-
mation of R**1 that fixes e,4+1, we may assume that 6 leaves V invariant.
Consequently, we may assume that n = 1. Then the matrix for ¢ is of the

form
a O
(5 9)

Now since ¢ leaves invariant the light cone, and since

(5 9)(1)=(ota)
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we have that @ = =(b+ 1). By composing é with the reflection

(1)

if necessary, we may assume that a = b+ 1. Then we have

a 0 -1\ _ -a )

() ()-(in,
with @ = —b+ 1. Hence a = 1 and b = 0. Therefore ¢ is the identity.
Hence ¢ is an orthogonal transformation that fixes e,;1. Therefore ¢ is a
positive Lorentz transformation. Thus ¢ leaves the interior of the light cone
C™ invariant if and only if some nonzero scalar multiple of ¢ is a positive
Lorentz transformation.

Now every isometry of H™ extends to a unique positive Lorentz transfor-
mation of R™!, and every positive Lorentz transformation of R™?! restricts
to an isometry of H™ by Theorem 3.2.3. Moreover, the isometries of H™
correspond via the isometry p=* : H® — D™ defined by

/fl(:rl, vy Zpg1) = (@1 Tng1, - T/ Tng1),

to the isometries of D™. Therefore, every isometry of D™ extends to a
unique projective transformation of R™, and every projective transforma-
tion of R™ that leaves D™ invariant restricts to an isometry of D™. )

Theorem 6.1.3. A function ¢ : D™ — D" fizing the origin 1s an 1sometry

of D™ if and only if it is the restriction of an orthogonal transformation of
R™,

Proof: If ¢ is the restriction of an orthogonal transformation of R™, then ¢
is an isometry of D™ by Theorem 6.1.1. Now assume that ¢ is an isometry.
Then ¢ extends to a projective transformation qAS of R” and ¢ corresponds
to a bijective linear transformation qz; of R™! with respect to homogeneous
coordinates that is unique up to multiplication by a nonzero scalar. The
unit vector e, in R"*! is a set of homogeneous coordinates for the origin
in D™. Hence ¢ leaves the (n+ 1)st axis invariant. Thus, by multiplying ¢
by a nonzero scalar, we may assume that ¢ fixes the vector €n+1. Now by
the same argument as in the proof of Theorem 6.1.2, we deduce that gzz is
an orthogonal transformation of R*!, Now since ¢ restricts to ¢ on D™,
we have that ¢ is the restriction of an orthogonal transformation of R™. o

A subset P of D™ is said to be a hyperbolic m-plane of D™ if and only if
#(P) is a hyperbolic m-plane of H™.

Theorem 6.1.4. A subset P of D™ is a hyperbolic m-plane of D™ f and
only of P 1s the nonempty intersection of D™ with an m-plane of R™.
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Proof: Let @ be a hyperbolic m-plane of H™. Then Q is the intersection
of H™ with an (m + 1)-dimensional time-like vector subspace V of R™t1,
Observe that u~! is the composite of the radial projection of H™ onto the
hyperplane P(en41,1) followed by the translation by —e, 1. Clearly, radial
projection maps @) onto the intersection of the m-plane VN P(en1,1) with
the interior of the light-cone C™ of R™!. Thus p~1(Q) is the nonempty
intersection of D™ with an m-plane of R". Clearly, we can reverse the
argument and show that any nonempty intersection of D™ with an m-plane
of R™ is the image under u~! of a hyperbolic m-plane of H™. o

A hyperbolic line of D™ is defined to be a hyperbolic 1-plane of D™,

Corollary 1. The hyperbolic lines of D™ are the open chords of D™,

Remark: The fact that the hyperbolic m-planes of D" conform with
Euclidean m-planes makes the projective model very useful for convexity
arguments. However, one must keep in mind that the hyperbolic angles of
D™ do not necessarily conform with the Euclidean angles; in other words,
D™ is not a conformal model of hyperbolic n-space.

Theorem 6.1.5. The element of hyperbolic arc length of the projectve disk
model D™ is

(1~ [z[*)da]® + (= - dz)*)
1—faf? '

Proof: Let y = u(z). From the results of §3.3, the element of hyperbolic
arc length of H™ is

ldyll = (dyi + -+ + dy? — dy2i,)>.

Now since "
e T fa=1,....m,
RO !
h
e Have dy = dz, x,(x - dzx)
(PO ERR PR
Hence )
1 2z,dz,(z - dz)  z2(z - dx) )
2 - = dr? [ . .
wt = o (e P R
Thus
= 1 s 2(x-dz)? x|z dw)Q)
z_:ldyz = TP <‘d$| Tz ]2 + 11— [22)2

! ) (2 [o)(e - dn)?
[~ o de] T PR >
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Now since )

Ynt+1 = (1 — |$|2)1/27

we have that
T -dx

dYnt1 = (1 — |‘,L.,2)3/2'
Thus

Y s (1= z)def? + (x - do)?
;d% dyn+1_ (1_|$|2)2 ) o

Theorem 6.1.6. The element of hyperbolic volume of the projective disk

model D™ is
dxy -+ -dx,

(1~ [a?)F

Proof: By Theorem 3.4.1, the element of hyperbolic volume of H™, with
respect to the Euclidean coordinates yi, ..., yn, is given by
dy -~ dyn
[+ 7+ +y2)]E
To find the element of hyperbolic volume of D™, we change coordinates via
the map zz : D™ — R™ defined by
x

)= ey

As p is a radial map, it is best to switch to spherical coordinates and
decompose 7 into the composite

(Il,...,l’n) = (p7911'-'a0n—1)
p
_77917' .. 79n—1>
(T

= (Y1, Un)-
Now as

() "o
do \(L=p2)3 /)~ (1-p2)3’
the Jacobian of 1 is

1 1 ( P )”‘1 1
prt (1- p2)% (1- pQ)% N rfﬁ)@

Therefore
dyy - - - dyy, _ 1 dzy---dz,
L+ @R+ T2 (1o O+ﬁﬁf
1—|z|2
d.’El T da:n

(1 |of2)%* °
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Exercise 6.1

1. Show that the hyperbolic angle between any two geodesic lines of D" inter-
secting at the origin conforms with the Euclidean angle between the lines.
In other words, D™ is conformal at the origin.

2. Let P be a hyperplane of D™. Prove that all the tangent lines of $*~! at
the points of PN .S™ ! intersect in a unique point of classical real projective
n-space R™ called the pole of P. See Figure 1.2.2.

3. Prove that a line L of D™ is orthogonal to a hyperplane P of D™ if and only
if the projective line extending L passes through the pole of P.

4. Prove that the correspondence between a hyperplane of D™ and its pole gives
a one-to-one correspondence between the set of hyperplanes of D™ and the
points of R® — D",

5. Let z be a point of D™. Define an inner product { , ); on R™ by

_ 1=z el iti=y,
(en,€5)e = { Z.T, if 1 #£ 5.
Let A,p : R — D™ be geodesic lines such that A\(0) = z = u(0), and let

u = X'(0) and v = 1'(0). Show that the hyperbolic angle 8 between A and p
is given by the formula

(ui Vg

cosf = T T-
<u7u>ﬂ§ <’U,v>§

§6.2. Convex Sets

Throughout this section, X = S™, E™, or H"™ with n > 0. A pair of points
x,y of X is said to be proper if and only if z, y are distinct and x,y are not
antipodal points of X = S™. If x,y are a proper pair of points of X, then
there is a unique geodesic segment in X joining x to y. We shall denote
this segment by [z, y].

Definition: A subset C of X is convez if and only if for each pair of
proper points x,y of C, the geodesic segment [x,y] is contained in C.

In order to have uniformity in terminology, we shall define an m-plane
of 8™ to be a great m-sphere of S™.

Example: Every m-plane of X is convex. In particular, every pair of
antipodal points of S™ is convex!

Remark: [t is obvious from the definition of convexity in X that an
arbitrary intersection of convex subsets of X is convex.
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Let C be a nonempty convex subset of X.

(1) The dimension of C is defined to be the least integer m such that C
is contained in an m-plane of X.

(2) I dim C = m, then clearly C is contained in a unique m-plane of X,
which is denoted by (C).

(3) The wnterior of C is the topological interior of C in (C) and is denoted
by C°.

(4) The boundary of C is the topological boundary of C in (C) and is
denoted by 9C.

(5) The closure of C is the topological closure of C' in X and is denoted
by C. Note that C is also the > topological closure of C' in (C), since
(C) is closed in X. Therefore C is the disjoint union of C° and dC.

If C is the empty set, then the dimension of C is undefined, and all the
sets (C), C°, OC, and C are empty by definition.

Lemma 1. Let x,y be a proper par of pownts of X. Then there is anr > 0
such that if u 15w B(zx,r) and v is in B(y,r), then u,v 1s a proper pair.

Proof: This is clear if X = E™ or H". Assume that X = S™. Observe
that the sets {z} and {+y} are disjoint, since x,y is a proper pair of
points. Let r be half the distance from {+z} to {£y}. Then B(z,r),
B(y,r), and B(—~z,r) are mutually disjoint. As —B(z,r) = B(—=z,7), no
point of B(z,r) can be antipodal to a point of B(y, r). o

Theorem 6.2.1. If C s a convex subset of X, then so is C.

Proof: Let z,y be a proper pair of points in C. By Lemma 1, there are
proper pairs of points u,,v,, for i = 1,2,..., in C such that u, — x and
v, — y. Define a curve

7:00,1] = X
from z to y by
(1-tz+ty if X=E",

(1—t)z+t .
vt = { (ohey X =5

(1—t)z+ty . _
T Deryy £ X =H"
Likewise, define a curve
% (t) :[0,1] —- C

from u, to v, for each i. Then clearly ~,(t) — ~(t) for each t. Therefore
v(t) is in C for each t. o
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Given a proper pair of points z,y of X, let [z,y) denote the segment
[z, y] minus its endpoint y.

Theorem 6.2.2. Let C' be a conver subset of X and let x,y be a proper
pair of points m C. If x is m C°, then [z,y) is contaned in C°.

Proof: Without loss of generality, we may assume that (C) = X. We
first consider the case X = E™. As z is in C°, there is an r > 0 such that
B(z,r) is contained in C. Let t be in the open interval (0,1) and let

z=(1-t)z+ty.
We need to show that z is in C°. Assume first that y is in C'. Observe that
z is in the set
(1—-t)B{z,r) +ty = B(z, (1 —- t)r).
As B(z,r) and y are both contained in C, we have that B(z, (1 —t)r) is
contained in C, since C is convex. Thus z is in C°. See Figure 6.2.1.

Assume now that y is in 8C. Asyis in dC, the open ball B(y,t=1(1—t)r)
contains a point v of C. Now since

B(y,t7'(1 —t)r) =t~ (2 — (1 — t)B(z, 7)),
there is a point u of B(x,r) such that
v=t"1z—(1-t)u).
Then z = (1 — t)u+ tv. Let w = (1 —t)z + tv. Then z is in the set
(1 —t)B(z,r) +tv = B(w, (1 —t)r).

As B(x,r) and v are contained in C, we have that B(w, (1—t)r) is contained
in C. Therefore z is in C°. Thus (z,y) is contained in C°.

Next, assume that X = H™. We now pass to the projective disk model
D™ and regard C as a convex subset of D™. Then C is also a convex subset
of E™. As D™ is open in E™, we have that C° in D" is the same as C° in
E™. Therefore [z,y) is contained in C° by the Euclidean case.

Figure 6.2.1. B(z,(1 —t)r) = (1 —t)B(z,r) +ty
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Finally, assume that X = S™. Let z be the midpoint of the geodesic
segment [z,y]. Then B(z,7/2) is an open hemisphere of 5™ containing
[z,y]. As z is in C°, we have that C° N B(z,7/2) is a nonempty open
subset of S™. Consequently

(CNB(z,m/2)) = S™

By replacing C with C N B(z,7/2), we may assume, without loss of gener-
ality, that C is contained in B(z,7/2). We may also assume that z = e,,4;.
Now by gnomonic projection, we can view C as a convex subset of E™.
Then [z,y) is contained in C° by the Euclidean case. o

Theorem 6.2.3. If C is a nonempty convex subset of X, then so 1s C°.

Proof: That C° is convex follows immediately from Theorem 6.2.2. It
remains to show that C° is nonempty. Without loss of generality, we may
assume that (C') = X. We first consider the case X = E™. Then there exist
n+1 vectors vy, . .., v, in C such that v; —vp, ..., v, —vg are linearly inde-
pendent. As (' is convex, it contains every vector of the form z = Z?:O t,v,
with ¢, > 0 and 3", ¢, = 1. By applying an affine transformation of E™
we may assume that vg =0 and v, = e, for ¢ > 0.

Let a = (ﬁ,,#) in E™. We now show that B(a,ﬁ) is
contained in C. Suppose that

1
|z —a] < A1)
Then we have
1 1 1
“n(n+1) R < n(n+1)

and so

w(a) < = <),

Therefore 0 < z, < % for i =1,...,n. Hence Z:;l 2z, < 1. This implies
that z is in C. Consequently B(a, ;(#1)) is contained in C. Thus a is in
C° and so C° is nonempty.

Next, assume that X = H™. We pass to the projective disk model D™
and regard C as a convex subset of D®. Then C° is nonempty by the
Euclidean case. Finally, assume that X = $*. Then C contains a basis
V1., Uny1 of R since (C) = S™. Let P be the hyperplane of R"*+1
containing v1,...,v,11. Then P does not contain the origin of R**1, Let
V' be the n-dimensional vector subspace of R"! parallel to P, and let H
be the open hemisphere of S™ whose boundary is V' N S™ and that contains
V1,-..,Unt1. Then (C'NH) = S". By replacing C with C' N H, we may
assume that C C H. We may also assume that H is the upper hemisphere
of S™. Now by gnomonic projection, we can view C as a convex subset of
E™. Then C° is nonempty by the Euclidean case. o
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b

-

a

Figure 6.2.2. A right circular cylinder in E®

Sides of a Convex Set

Definition: A side of a convex subset C of X is a nonempty, maximal,
convex subset of 0C.

Example: Let C be a right circular cylinder in E® situated as in Figure
6.2.2. Then the sides of C are the top and bottom of C' and all the vertical
line segments in AC joining the top to the bottom of C as [a,b] in Figure
6.2.2. Notice that C has an uncountable number of sides.

Theorem 6.2.4. If S s a side of a convex subset C of X, then
CcNn{(S)=_5.

Proof: This is clear if dim S = 0, so assume that dim.S > 0. We first
show that C° and (S) are disjoint. Suppose that z is in both C° and (S).
Now S° is nonempty by Theorem 6.2.3. As dim S > 0, we can choose y in
S° so that z and y are nonantipodal. As C° and OC are disjoint, x # y.
Hence z, y is a proper pair of points. Now since y is in S°, thereisanr >0
such that
B(y,r)N{S) C S.
By Theorem 6.2.2, the half-open geodesic segment [%,y) is contained in C°.
But observe that
[z,y) N B(y,r) C {(S)N B(y,r) C 5 CIC,

which is a contradiction. Therefore C° and (S) are disjoint.

Now as C = C° UC, we have that C N (S) C C. The set C is convex
by Theorem 6.2.1. Hence C N (S) is a convex subset of dC containing .
Therefore C N (S) = S because of the maximality of 5. o
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Theorem 6.2.5. Let P be an m-plane of X that contawns an (m — 1)-
dimensional side S of a convex gubset C of X. Then C° N P is contained
mn one of the components of P — (S); moreover, C N P is contained in one
of the closed half-spaces of P bounded by (S)}.

Proof: If C°NP = (), then CNP = S, since CNP is a convex subset of IC'
containing S. Hence, we may assume that C°NP # (. Then P C (C), since
(S) C P and P contains a point of C°. Therefore C° N P is a nonempty,
open, convex subset of P — (S). On the contrary, suppose that x and
y are points of C° N P contained in different components of P — (S). As
dim(C°NP) > 0, we may assume that z and y are nonantipodal. Now since
[x,y] is connected, it must contain a point of (S). But [z,y] is contained
in C° by Theorem 6.2.3, and C° is disjoint from (S) by Theorem 6.2.4,
which is a contradiction. Therefore C° N P is contained in a component of
P—{(S).
Clearly, we have
C°NnPcCNP.

Let y be in 8C' N P and choose z in C° N P so that z,y are nonantipodal.
By Theorem 6.2.2, the set C° N P contains [z,y). Therefore y is in C° N P.
Thus C°NP = C N P. Consequently C N P is contained in one of the
closed half-spaces of P bounded by (S) by the first part of the theorem. o

Theorem 6.2.6. If C 1s a conver subset of X, then

(1) every nonempty convex subset of OC is contained in o side of C;

(2) every sude of C is closed;

(3) the sides of C meet only along thewr boundaries.

Proof: (1) Let K be a nonempty convex subset of 8C and let K be the set
of all convex subsets of dC containing K. Then K is partially ordered by
inclusion and nonempty, since X contains K. Let C be a chain of . Then
the union of the elements of C is obviously convex and an upper bound for
C. Therefore K has a maximal element by Zorn’s lemma.

(2) Let S be a side of C. Then § is convex by Theorem 6.2.1. Also §
is contained in 9C, since AC is closed. Therefore S = S because of the
maximality of S. Thus S is closed.

(3) Let S and T be distinct sides of C. On the contrary, suppose that
z is in both S and T°. As S and T are distinct maximal convex subsets of
OC, the side T is not contained in S. Hence, there is a point y of T not in
S. By Theorem 6.2.4, we have that C' N (S) = S, and so y is not in (S).

Assume first that dimT = 0. Then z and y are antipodal. As S is
not contained in T, it contains a point z # . Let S(x,z) be the unique
great circle of 5™ containing  and z. Then S(z, z) also contains Y= —zx.
As S(z,z) is contained in (S), we find that y is also in (S), which is a
contradiction.
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Now assume that dimT > 0. Then T — S is an open subset of T' by
(2). Therefore, we may assume that y is not antipodal to z. Let L be the
unique geodesic of X passing through z and y, and let P be the plane of
X of dimension 1 4 dim S that contains (S) and L. As z is in T°, there is
an r > 0 such that

B(z,r)N{(T) C T.
Observe that B(z,r) N L is on both sides of (S) in P and
B(z,r)NL C B(z,r)N{T) c T C 8C.

Therefore, there are points of C on both sides of (S) in P contrary to
Theorem 6.2.5. It follows that S and T° are disjoint. Thus S and T meet
only along their boundaries. o

Exercise 6.2

1. Let C be a convex subset of X that is not a pair of antipodal points of S™.
Prove that C is connected.

2. Let C be a nonempty convex subset of S™. Prove that C is a great m-sphere
of 8™ if and only if —C = C.

3. Let C be a convex subset of X that is not a closed great semicircle of S™.
Prove that C is geodesically convex if and only if C' does not contain a pair
of antipodal points.

4. Let C be a nonempty convex subset of X. Show that

(1) (C)=C=C,
(2) 8C° =dC = aC,
(3) (C°)y =C°=(0),
(4) (€°) = (C) = (©),
(5) dimC® = dimC = dimC.
5. Let C be a proper, closed, convex subset of X. Prove that C is the intersec-
tion of all the closed half-spaces of X containing C.

6. Let C be a closed convex subset of S™. Prove that C is contained in an open
hemisphere of ™ if and only if C does not contain a pair of antipodal points.

7. Let C be a subset of S™. Define K(C) to be the union of all the geodesic
rays in E™** from the origin passing through a point of C. Prove that C is
a convex subset of S™ if and only if K(C) is a convex subset of E™*.

8. Let C be a convex subset of S™. Prove that a subset S of 8C is a side of C
if and only if K(S) is a side of K(C).

9. Let C be a bounded, n-dimensional, convex, proper subset of X. Prove that
9C is homeomorphic to S™7*.
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§6.3. Convex Polyhedra
Throughout this section, X = S™, E™, or H" with n > 0.

Definition: A convez polyhedron P in X is a nonempty, closed, convex
subset of X such that the collection S of its sides is locally finite in X.

Remark: Locally finite in S™ is the same as finite, since S™ is compact;
and every locally finite collection of subsets of E™ or H™ is countable, since
E™ and H™ are finitely compact metric spaces.

Theorem 6.3.1. Every side of an m-dimensional convex polyhedron P in
X has dimension m — 1.

Proof: We may assume that m = n. Let S be a side of P. Then there
is a point z in 5° by Theorem 6.2.3. Now as the collection of sides of P is
locally finite, there is an r > 0 such that B(z,r) meets only finitely many
sides of P. By Theorem 6.2.6(3), the side S is the only side of P containing
z. Hence, we may shrink B(z,r) to avoid all the other sides of P, since the
sides of P are closed. Consequently, we may assume that

B(z,r)NoP C S.

Moreover, we may assume that r < /2. As z is in AP, the open ball
B(z,r) contains a point y of P° and a point z of X — P. Now 4 is not in
(S) by Theorem 6.2.4. Let Q be the plane of X of dimension 1 + dim S
that contains y and (S). Since the geodesic segment [y, 2] is connected, it
contains a point w of OP. As [y,z] C B(z,r), the point w is in S. See
Figure 6.3.1. Hence z is in ). Consequently Q) contains the nonempty open
set B(z,r) N (X — P). Therefore Q = X. Thus dimS = n — 1. o

—

Y

Figure 6.3.1. The four points w, z,v, z in the proof of Theorem 6.3.1
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Theorem 6.3.2. Let P be an n-dimensional convex polyhedron in X that
is not all of X. For each side S of P, let Hg be the closed half-space of X
such that 0Hg = (S) and P C Hg. Then

P=n{Hg : S 15 a side of P}.

Proof: Let K = N{Hg : S is a side of P}. Clearly, we have P C K. Let
z be a point of X — P and let y be a point of P° that is not antipodal to z.
Then the segment [z,y] contains a point z of P, since [z, y] is connected.
Let S be a side of P that contains z. Then x and y are on opposite sides

of the hyperplane (S). Hence y is not in Hg. Therefore X — P C X — K
and so K C P. Thus P = K.

[m]

Theorem 6.3.3. If z is a point wn the boundary of a side S of a convex
polyhedron P in X, then x 15 in the boundary of another side of P.

Proof: We may assume that (P) = X. On the contrary, suppose that x
is not contained in any other side of P. Since the collection of sides of P is
locally finite, there is an r > 0 such that B(z,r) meets only finitely many
sides of P. As S is the only side of P containing z, we can shrink B(z,r)
to avoid all the other sides of P, since the sides of P are closed. Therefore,
we may assume that B(z,7) N 9P C S. Moreover, we may assume that
r < /2. As z is in OP, the ball B(z,r) contains a point y of P°. As x is
in 88, the ball B(z,r) contains a point z of {(S) —S. Now z is in X — P,
since PN (S) = S by Theorem 6.2.4. Consequently, the geodesic segment
[y, 2] contains a point w of OP. See Figure 6.3.2.

As B(z,r)NOP C S, the point w is in S. As z,w are in (S), we deduce
that y is in (S), which is a contradiction, since P N (S) = S. It follows
that z is contained in some other side T' of P; moreover,  must be in the
boundary of 7' by Theorem 6.2.6(3). o

<

Figure 6.3.2. The four points w,z,¥y,z in the proof of Theorem 6.3.3
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Theorem 6.3.4. Let S and T be distinct sides of a convez subset C of X,
and let x,y be a proper pair of pownts of C with x m S° andy in T°. Then
the open geodesic segment (x,y) 15 contained in C°.

Proof: Assume first that [z, y] is contained in C. Then [z, y] is contained
in a side R of C by Theorem 6.2.6(1). As R meets S° at z, we have that
R = S by Theorem 6.2.6(3). But R also meets T° at y, and so R = T', which
is a contradiction. Therefore (x,y) contains a point z of C°. Furthermore,
(%,2] and [z,y) are contained in C° by Theorem 6.2.2. Thus (z,y) is
contained in C°. o

Theorem 6.3.5. Fvery side of a convexr polyhedron P in X is a convex
polyhedron.

Proof: Let S be a side of P. Then S is nonempty and convex by defi-
nition; moreover, S is closed by Theorem 6.2.6(2). Clearly S is a convex
polyhedron if the dimension of S is either 0 or 1, so assume that dim S > 1.

Let R be the collection of sides of S. We need to show that R is locally
finite in X. Let = be a point of X. As the collection S of sides of P is
locally finite, there is an r > 0 such that B(z,r) meets only finitely many
sides of P. We may assume that r < 7/2. Let Rq be the collection of all
the sides of S that meet B(z,r). Suppose that R is in Rg. Then B(z,7)
contains a point y of R°, since B(z,r) is open. By Theorem 6.3.3, we can
choose a side f(R) of P other than S containing y.

We claim that the function f : Ry — S is injective. On the contrary, let
Ry and Ry be distinct sides of S in Rg such that f(R;) = f(Rz2). Now f(R,)
contains a point y, of R N B(x,r) for i = 1,2. As r < /2, we have that
y1 and yo are nonantipodal. By Theorem 6.3.4, the open geodesic segment
(y1,y2) is contained in S°. But [y1, yo] is contained in f(R,) because of the
convexity of f(R,), which is a contradiction. Therefore f is injective.

As B(z,r) meets only finitely many sides of P, the image of f is finite.
Therefore Ry is finite. This shows that R is locally finite. Thus S is a
convex polyhedron. o

Definition: A ridge of a convex polyhedron P is a side of a side of P.

Theorem 6.3.6. If R is a ridge of a convez polyhedron P wn X, then

(1) R° meets ezactly two sides S and S of P;

(2) R 15 a side of both S; and Sy;

3) R=51N8;,.
Proof: We may assume that (P) = X. Let R be a side of a side ] of
P. Choose a point z in R° and an r > 0 such that B(x,r) N (R) C R. By

Theorem 6.3.3, there is another side Sz of P containing x in its boundary.
By Theorem 6.3.1, both (S;) and (S3) are hyperplanes of X. Now by
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Theorem 6.2.5, the convex set P is contained in one of the closed half-
spaces of X bounded by (S2). Hence, every diameter of B(z,r) in R must
lie in (S2). Therefore B(z,r) N R C (S,). Consequently, by Theorem 6.2.4,
we have B(z,7) N R C S,. Furthermore, by Theorem 6.2.6(3), we have
B(z,7) N R C 8S3. Now by Theorem 6.2.6(1), the convex set B(z,7) N R
is contained in a side R of S;. Let Ry = R. Then by Theorems 6.3.1 and
6.3.5, both (R;) and (Rj) have dimension n—2. As B(z,7) N R; C Ry, we
have that (R1) = (Rz). Now (S1) N (S3) contains (R). Therefore

dlm(<51> n <52>) >n—2.

If the last equality were strict, then we would have (S; (S2), which is

not the case by Theorem 6.2.4. Therefore (S1) N (S3) = (R). Hence, for
each i, we have

R, = S,N(R)
PN {(S,)N(R)
PN(S1)N(S2) = S1NS.

Thus R; = Ry. Therefore R is a side of Sy and S2, and R = 5, N Ss.
Next, assume that R° meets a third side S3 of P. Then the same argu-
ment as above shows that R is a side of S3 and R = S; N S3. Furthermore
(Ss) is also a hyperplane of X. Now the set X — (S;) U (S2) has four
components Cy, Cy, C5, Cy, one of which, say Cy, contains P° by Theorem
6.2.5. Moreover P is contained in C;. As Ss is in C1, the hyperplane (S3)
divides C; into two parts, that is, C — (S3) has two components Cy; and
C1a. See Figure 6.3.3. Now by Theorem 6.2.5, we have that P° is contained
in both C1; and Ci2, which is a contradiction. Therefore R° meets exactly

two sides of P. o
Cs
C4 02
Sl SS 52
Cu Ci2
Ci

Figure 6.3.3. The subdivision of E? by three concurrent lines
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Theorem 6.3.7. An m-dimensional convex polyhedron P in E™ or H",
with m > 0, is compact if and only if

(1) the polyhedron P has at least m + 1 sides;
(2) the polyhedron P has only finitely many sides; and
(3) each side of P is compact.

Proof: We may assume that m = n. The proof is by induction on n.
The theorem is obviously true when n = 1, so assume that n > 1 and the
theorem is true forn — 1. Let Y = E™ or H".

Now suppose that P is compact. Then 0P is nonempty; otherwise P
would be Y, which is not the case. Therefore P has at least one side S
by Theorem 6.2.6(1). Now S is an (n — 1)-dimensional convex polyhedron
by Theorems 6.3.1 and 6.3.5; moreover, S is compact, since S is a closed
subset of P. Therefore S has at least n sides Ry, ..., R, by the induction
hypothesis. By Theorem 6.3.6, each R, is the side of another side S, of P;
moreover, the sides Sy, ..., S, are distinct, since SN .S, = R,. Therefore P
has at least n + 1 sides.

Now, for each x in P, there is a 7(z) > 0 such that B(z,r(z)) meets
only finitely many sides of P. As P is compact, there is a finite subset
{z1,..., 2} of P such that P is covered by the union of B(z,,r(z,)), for
it =1,...,k. Therefore P has only finitely many sides; moreover, each side
of P is compact, since each side of P is a closed subset of P.

Conversely, suppose that P satisfies properties (1), (2), (3). By Theorem
6.2.6(1), the boundary of P is the union of all the sides of P. Therefore
OP is compact. Let x be a point in P°. Then there is an r > 0 such that
B(z,r) contains OP, since OP is bounded. Let y be a point on 0P and let
z be the endpoint of the radius of B(z,r) passing through y. Then z is not
in P because of Theorem 6.2.3. Therefore, the set S(z,7)— P is nonempty.
As the sphere S(z,7) is connected for n > 1, the set S (xz,r)N P° is empty.
Hence S(z,r) is contained in Y — P. As P is connected, P C B(z, ). Thus
P is bounded and so is compact. This completes the induction. o

Theorem 6.3.8. Let P be an m-dimensional convex polyhedron in S™,
with m > 0. Then the following are equivalent:

(1) P 1s contained in an open hemisphere of 8™;

(2) P has at least m + 1 sides and each side S of P 1s contained in an
open hemisphere of (S);

(3) P has a side S that s contained wn an open hemisphere of (S).

Proof: Suppose that P is contained in an open hemisphere H of S™. We
may assume that H is the upper hemisphere of S™. Then by gnomonic
projection, we can view P as a compact convex polyhedron of E®. Then
P has at least m + 1 sides by Theorem 6.3.7. If S is a side of P, then S is
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contained in the open hemisphere H N (S). Thus (1) implies (2). Clearly
(2) implies (3).

Suppose that P has a side S that is contained in an open hemisphere of
(S). On the contrary, assume that P is not contained in an open hemisphere
of S™. We may assume that m = n, (S) = S"~!, and P is contained in the
closed southern hemisphere S of S™. Then dist(e,, P) = 7/2. Let y be
a point of S™. Then dist(y, P) < 7/2; otherwise P would be contained in
the open hemisphere opposite y. Hence, there is a point x of P such that
0(z,y) < /2. Now assume that y # +e,. Then z is in the n-dimensional
lune S N C(y,n/2). Consequently, there is a sequence of points {y,} of
[en, y] converging to e, and a sequence of points {z,} of P such that z, is
in S N C(y,,m/2) for each i. As P is compact, the sequence {z,} has a
limit point zo in PN S™~1 = § that is contained in the closed hemisphere
of "~ whose center is the intersection of the great circle through e,, and
y with S"~1. Thus S has the property that every closed hemisphere of (S)
contains a point of S, which is a contradiction. Thus (3) implies (1). o

Faces of a Convex Polyhedron

Let P be an m-dimensional convex polyhedron in X. We now define a
k-face of P for each k = 0,1,...,m inductively as follows: The only m-face
of P is P itself. Suppose that all the (k + 1)-faces of P have been defined
and each is a (k + 1)-dimensional convex polyhedron in X. Then a k-face
of P is a side of a (k+ 1)-face of P. By Theorems 6.3.1 and 6.3.5, a k-face
of P is a k-dimensional convex polyhedron in X. A proper face of P is a
k-face of P with k& < m. Note that a proper face of P is just a side of a
side ... of a side of P. Therefore, a face E of a face F' of P is a face of P.
In other words, the face relation is transitive.

Theorem 6.3.9. If C is a convex subset of a convex polyhedron P in X
such that C° meets a face E of P, then C C E.

Proof: Let m = dim P and k = dim E. The proof is by induction on
m — k. This is certainly true if k¥ = m, so assume that ¥ < m and the
theorem is true for all (k + 1)-faces of P. Now E is a side of a (k 4 1)-face
F of P. By the induction hypothesis C C F'. Let = be a point of C° N E.
Choose r > 0 so that

B(z,r)n{C) c C.

By Theorem 6.2.5, the convex set F' is contained in one of the closed half-
spaces of (F') bounded by (E). Hence, every diameter of B(z,r) in C must
lie in (E). Therefore

B(z,r)N{C) C (E).

Hence (C) C (E). Therefore
CCcFN(E)=E. 5
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Theorem 6.3.10. The interiors of all the faces of a convex polyhedron P
i X form a partition of P.

Proof: Let m = dim P. We first prove that P is the union of the interiors
of all its faces by induction on m. This is certainly true if m = 0, so assume
that m > 0 and any (m — 1)-dimensional convex polyhedron in X is the
union of the interiors of all its faces. Then each side of P is the union of
the interiors of all its faces. As P is the union of 9P and P°, we have that
P is the union of the interiors of all its faces.

Now suppose that E and F' are faces such that E° meets F°. Then
E C F and F C I by Theorem 6.3.9. Hence E = F. Thus, the interiors
of all the faces of P form a partition of P. o

Theorem 6.3.11. If E and F are faces of a convex polyhedron P in X
such that E C F, then E 1s a face of F.

Proof: Let x be a point of E°. Then there is a face G of F such that x
is in G° by Theorem 6.3.10. Now E C G and G C E by Theorem 6.3.9.
Therefore £ = G. Thus FE is a face of F. o

Theorem 6.3.12. The family of all the faces of a convex polyhedron P in
X is locally finate.

Proof: Let m = dim P. The proof is by induction on m. This is certainly
true if m = 0, so assume that m > 0 and the theorem is true for all (m— 1)-
dimensional polyhedra in X. Let z be a point of X. Then there is an 9 >0
such that B(z,ro) meets only finitely many sides of P, say S1,...,8%. By
the induction hypothesis, the family of all faces of S, is locally finite in X
for each i = 1,... k. Hence, there is an r, > 0 such that B(z,r,) meets
only finitely many faces of S, for each i =1, ... ,k. Let

r =min{rg,...,7g}.

Then B(z,r) meets only finitely many faces of P. o

Theorem 6.3.13. If E 15 a k-face of an m-dimensional convex polyhedron
P in X, then

(1) E is a side of every (k + 1)-face of P that meets E°;

(2) E 15 a side of only finitely many (k + 1)-faces of P;

(3) E 15 a side of at least m — k (k + 1)-faces of P;

(4) E is the intersection of any two (k + 1)-faces of P that meet E°.
Proof: (1) Suppose that F is a (k + 1)-face of P that meets E°. Then
E C F by Theorem 6.3.9, moreover, E is a side of F by Theorem 6.3.11.

(2) Let = be a point of £°. Then there is an r > 0 such that B(x,r)

meets only finitely many (k + 1)-faces of P by Theorem 6.3.12. Hence E
is a side of only finitely many (k + 1)-faces of P.
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(3) We now prove that F is a side of at least m — k (k + 1)-faces of P
by induction on m — k. This is certainly true if k¥ = m, so assume that
k < m and the theorem is true for all (k + 1)-faces of P. Now E is a
side of a (k + 1)-face F' of P. By the induction hypothesis, F' is a side
of m — k —1 (k + 2)-faces of P, say Gi,...,Gm_g—1. By Theorem 6.3.6,
we have that F is a side of exactly two sides F' and F, of G, for each
it=1,...,m—k — 1. Suppose that i # j. As F C G, NG,, we have

dim(G,NG,) =k + 1.
Therefore, we have
F° c(G.nG,))".
By Theorem 6.3.9, we have that G, NG, C F. Thus F = G, N G,. Con-

sequently F, # F,. Thus, the m — k (k + 1)-faces F, Fy,...,F,_x_1 are
distinct.

(4) Let Fy and F; be distinct (k + 1)-faces of P that meet E°. Then
E C Fi N Fy by (1). Hence

Therefore, we have
E° C (Fl N Fg)o.
By Theorem 6.3.9, we have that F} N Fo C E. Thus E = F1 N Fy. o

Theorem 6.3.14. If E is a k-face of an m-dimensional convex polyhedron
P in X, then

(1) E is a face of every side of P that meets E°;

(2) E is a face of only finitely many sides of P;

(3) E is a face of at least m — k sides of P;

(4) E is the intersection of all the sides of P that meet E° or E = P.

Proof: (1) Let S be a side of P that meets £°. Then E C S by Theorem
6.3.9; moreover E is a face of S by Theorem 6.3.11. (2) Let = be a point
of E°. Then there is an r > 0 such that B(z,r) meets only finitely many
sides of P. Hence F is a face of only finitely many sides of P.

We now prove (3) and (4) by induction on m — k. This is certainly true
if k = m—1 or m, so assume that k < m—1 and the theorem is true for all
(k + 1)-faces of P. By Theorem 6.3.13, we have that E is a side of finitely
many (k + 1)-faces of P, say Fi,...,Fp with £ > m — k. By the induction
hypothesis and (2), we have that F, is a face of only finitely many sides of
P, say S,1,...,5u,, and £, > m —k — 1 for each 1 and

ez
F,=nn
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Now the sets {S1,} and {S5, } are not the same, since F; and F; are distinct
(k + 1)-faces of P. Hence, one of the sides in one of the sets is not in the
other set. Therefore F is a face of at least m — k sides of P. Clearly

{S,:7=1,....4,and it =1,...,4}

is the set of all the sides of P that meet E°. By Theorem 6.3.13, we have
that F, N F) = E for all 4, j such that ¢ # j. Hence

4 {4
E=NE=n 08,
=1 1=17=1

Thus FE is the intersection of all the sides of P that meet E°. o

Theorem 6.3.15. Every nonempty intersection of sides of a convex poly-
hedron P in X is a face of P.

Proof: Let C be a nonempty intersection of sides of P. Then C° contains
a point by Theorem 6.2.3. The point z is in P, since C C 8P. By
Theorem 6.3.10, there is a face E of P such that z is in £°. Then C C E
by Theorem 6.3.9. Now FE is the intersection of all the sides of P that meet
E° by Theorem 6.3.14. Therefore E C C. Thus E = C. o

Theorem 6.3.16. Let P be an m-dimensional convex polyhedron wn S™.
Then either

(1) the polyhedron P is a great m-sphere of S™; or
(2) the intersection of all the sides of P 1s a great k-sphere of S™; or
(3) the polyhedron P is contained in an open hemisphere of S™.

Proof: The proof is by induction on m. The theorem is certainly true
for m = 0, so assume that m > 0 and the theorem is true for all (m — 1)-
dimensional convex polyhedra in S™. If P has no sides, then (1) holds.
Hence, we may assume that P has a side S.

Now assume that S is a great (m — 1)-sphere of S™. Then P is a closed
hemisphere of (P), since a point of P° can be joined to any point of S by
a geodesic arc. Therefore (2) holds. Thus, we may assume that no side of
P is a great (m — 1)-sphere of S™.

If §is contained in an open hemisphere of (S), then (3) holds by Theorem
6.3.8. Hence, we may assume that no side of P is contained in an open
hemisphere. By the induction hypothesis, the intersection of all the sides
of a side of P is a great k-sphere of S™.

We may assume that m = n, (S) = §"~1 and P C S%. Let Ty be the
intersection of all the sides of a side T of P. Then Ty is a great k-sphere
of S™. As Ty C 87, we must have

ThycPns*1l=g.

Now T is a face of T' by Theorem 6.3.15, and so T} is a face of P. Therefore
Ty is a face of S by Theorem 6.3.11. Now T} is the intersection of all the
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sides of S that meet Ty by Theorem 6.3.14. Let Sy be the intersection of
all the sides of §. Then Sy C Ty C T'. Let Py be the intersection of all the
sides of P. Then Sy C Py. Now Sy is a face of S by Theorem 6.3.15, and so
Sp is a face of P. Therefore Sy is the intersection of all the sides of P that
meet Sg by Theorem 6.3.14. Hence Py C Sy. Thus Py = Sy. Hence Py is a
great k-sphere of S™. Thus (2) holds. This completes the induction. =

Vertices of a Convex Polyhedron

A O-face of a convex polyhedron P in X consists either of a single point or
a pair of antipodal points.

Definition: A wvertez of a polyhedron P is a point in a 0-face of P.

Definition: The conver hull of a subset S of X is the intersection of all
the convex subsets of X containing S.

Theorem 6.3.17. A convex polyhedron P in E™ or H™ is compact if and

only if P has only finitely many vertices and P is the convex hull of ts
vertices.

Proof: Assume first that P is in E™. The proof is by induction of the
dimension m of P. The theorem is certainly true when m = 0, so assume
that m > 0 and the theorem is true in dimension m — 1. Suppose that P is
compact. Then by Theorem 6.3.7, the polyhedron P has only finitely many
sides and each side is compact. By the induction hypothesis, each side of
P has only finitely many vertices and is the convex hull of its vertices.
Therefore P has only finitely many vertices. Let V be the set of vertices of
P. Then the convex hull C'(V) is contained in P, since P is convex. Let
be a point of P. We claim that z is in C(V). If 2 is in a side S of P, then
2 is a convex combination of the vertices of S by the induction hypothesis.
Hence, we may assume that z is in P°. Let vy be a vertex of P. Then the
ray from vy passing through z meets 9P in a point y other than v, since P
is bounded. By Theorem 6.2.2, the point z lies between v and y. Hence,
there is a real number ¢ between 0 and 1 such that

X = (1 - t)vo + ty.
Let S be a side of P containing y. By the induction hypothesis, there are

vertices v1, ..., v of S and positive real numbers #1,...,% such that
K k
yzztzvz and Ztl =1.
=1 1=1

Observe that .

x=(1 —t)vo—l—tthvz

=1
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is a convex combination of wvg,...,vx. Hence z is in C(V). Therefore
P=C(V).

Conversely, suppose that P has only finitely many vertices and P is the
convex hull of its vertices. Let r > 0 be such that the ball B(0,r) contains
the set V' of vertices of P. Then B(0,r) contains the convex hull C(V),
since B(0,7) is convex. Hence P is bounded and so P is compact. This
completes the induction.

Now assume that P is H™. We pass to the projective disk model D™. If
P is compact, then P is a Euclidean polyhedron, and so P has only finitely
many vertices and P is the convex hull of its vertices by the Euclidean case.
Conversely, suppose that P has only finitely many vertices and P is the
convex hull of its vertices. Then P is compact by the same argument as in
the Euclidean case. o

Theorem 6.3.18. An m-dimensional convex polyhedron P wn S™, with
m > 0, 1s contained in an open hemasphere of S™ if and only if P is the
convex hull of its vertices.

Proof: Suppose that P is contained in an open hemisphere of S$*. We
may assume that P is contained in the open northern hemisphere of S™.
Now by gnomonic projection, we can view P as a compact polyhedron in
E™. Then P is the convex hull of its vertices by Theorem 6.3.17.
Conversely, suppose that P is the convex hull of its vertices. On the
contrary, suppose that P is not contained in an open hemisphere of S™.
Then the intersection P, of all the sides of P is a great k-sphere of S™ by
Theorem 6.3.16. Now P, is contained in every O-face of P, since a 0-face of
P is the intersection of all the sides of P containing it by Theorem 6.3.14.
Therefore dim P, = 0, and so P, is a pair of antipodal points. Hence P
has only two vertices. Therefore, the convex hull of the vertices of P is Py,
which is a contradiction, since m > 0. o

Links of a Convex Polyhedron

Let = be a point of a convex polyhedron P in X. Then there is a real
number r such that 0 < 7 < 7/2 and 7 is less than the distance from z to
any side of P not containing x, since the set of sides of P is locally finite.
The set

L(z) = PN S(z,r)

is called a link of z in the polyhedron P. The spherical geometry of the
link L(x) is uniquely determined by x up to a change of scale induced by
radial projection from z.

For simplicity, we have only considered spherical polyhedra in S™. By a
simple change of scale, the theory of spherical polyhedra in S™ generalizes
to polyhedra in any sphere of X.
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Theorem 6.3.19. Let x be a point of an m-dimensional convez polyhedron
P in X, with m > 0, and let v be a real number such that 0 <r < 7/2 and
T is less than the distance from x to any side of P not containing x. Then
the link

L(z) = PN S(zx,r)

of z wn P is an (m—1)-dimensional convex polyhedron in the sphere S(x, 7).
Moreover, if S(x) is the set of sudes of P containing x, then

{TnS(x,r): T € S(x)}
18 the set of sides of L(x).

Proof: The proof is by induction on m. The theorem is obviously true
for m = 1, so assume that m > 1 and the theorem is true for all (m — 1)-
dimensional convex polyhedra in X. We may assume that m = n. If z is
in P°, then L(z) = S(z,), so assume that z is in OP. Let S be the set of
sides of P. For each T in S, let Hr be the closed half-space of X bounded
by the hyperplane (T') and containing P. Then we have

P= T@S Hr.

Now as Hr N S(z,r) = S(z,r) for each T not containing x, we have

PNS(z,r)= Teg(z)(HT NS(z,r)).
Now Hr N S(x,r) is a closed hemisphere of S(z,r) for each T in S(z).
Therefore L(z) is a closed convex subset of S(z,r).

Let y be a point of P° such that y is not antipodal to z. By shrinking r,
if necessary, we may assume that d(z,y) > r. Then the geodesic segment
[x,y] intersects S(z,r) in a point z of P° by Theorem 6.2.2. Therefore
P°NS(z,r) is a nonempty open subset of S(x,) contained in L(z). Hence
dim L(z) =n — 1.

Now as

P°nNS(z,r) C L(x)°,

we have that
OL(x) c 9PN S(z,r).

Let T be a side of P containing z. By the induction hypothesis, TNS(z, )
is an (n —2)-dimensional convex polyhedron in S(z, r). Now since P C Hr,
no point of 7'N S(z,r) has an open neighborhood in S (z,7) contained in
L(z). Therefore

TN S(z,r) C OL(x).

Hence, we have
OP N S(x,r) C OL(x).

Therefore, we have
OL(x) = 0PN S(x,T).
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The convex set TN S(z,r) is contained in a side T of L(z) by Theorem
6.2.6(1). Now as

PN S(z,7) = TGL;@)(T nS(x,r)),

we have that

A~

OL(z) =

= U
TeS(z)

Therefore {T': T € S(x)} is the set of sides of L(z) by Theorem 6.2.6(3).
Hence L(z) has only finitely many sides. Thus L(z) is a convex polyhedron
in S(z,r).

Now by Theorem 6.2.6(3), we have

T cTnS(z,r).
Therefore 7' = T'N S(z,r) for each T in S(z). Thus
{TNS(z,r): T € S(x)}
is the set of sides of L(x). o

Theorem 6.3.20. Let P be a convez polyhedron wn D™. Then ts closure
P wn E™ is a convex subset of E™ such that PN D™ = P and

8(P) =8P U (PN S ).

Moreover, if S is a side of P, then its closure S in E™ 15 a side of P, and

if u is a pownt of 8(?)_that is not in the Buclidean closure of a side of P,
then {u} is a side of P.

Proof: We may assume that (P) = D". As P is a convex subset of E™,
we have that P is a convex subset of E” by Theorem 6.2.1. As D™ is open
in E™ and P is closed in D", we have

PND"=P, P° C(P)°, and 8P c 8(P).
Clearly, we have that .
PnsS™t c a(P).

Therefore, we deduce that P° = (P)° and
O(P)=0PuU(Pns™.

Let S be a side of P. Then S is contained in a side § of P. Now § N D™
is a convex subset of P containing S. Therefore $ N D" = §. Clearly, we
have that

Snshtc o).
Therefore $° C S,andso S =3 by Theorem 6.2.2.
Let u be a point of (P) that is not in the closure of a side of P. Let U

be a side of O(P) containing u. Then U is not the closure of a side of P.
Hence U® is disjoint from 0P, and so U° C S"~'. Therefore U = {u}. o
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Define k : D® — B"™ by & = ("'u. Then & is an isometry from D™ to
B™. Observe that

Clue) = (W%)
Il +a;n+1||| (T +[ll= +1€n+1l||"1)
Hence, we have
K@) = — (6.3.1)

L+ VI-[a

The inverse of « is given by

_ 2y
£y = TT e (6.3.2)

Observe that k extends to a homeomorphism
®:D" — B",
which is the identity on S™~!.

Definition: An ideal pownt of a convex polyhedron P in B™ is a point u
of PN 8™ 1, where P is the closure of P in E™.

Theorem 6.3.21. Let u be an 1deal point of a convex polyhedron P wn B™.
Then for each point x of P, there 1s a geodesic ray [x,u) wn P starting at
z and ending at u.

Proof: Since the isometry x : D™ — B"™ extends to a homeomorphism
% : D" — B", we can pass to the projective disk model D™ of hyperbolic
space. Let x be a point of P. Now P is a convex subset of E™ by Theorem
6.3.20. Therefore, the line segment [z,u] is in P. Now since

[z,u]NS" ' ={u} and PND" =P,

we have that [z,u) C P. o

Definition: A side S of a convex polyhedron P in B™ is ncident with an
ideal point u of P if and only if u is in the closure of S in £™.

Theorem 6.3.22. Let co be an ideal point of a convex polyhedron P in
U™. Then a side S of P 1s wncident with oo if and only S 15 vertical.

Proof: Every hemispherical side of P is bounded in £™. Therefore, if a
side S of P is incident with oo, then S must be vertical.
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Conversely, suppose that S is a vertical side of P. Let x be a point of S.
By Theorem 6.3.21, there is a geodesic ray [z,00) in P starting at z and
ending at co. Now since [z, 00) and (S) are vertical, we deduce that

[z,00) C (S)NP =5.

Therefore S is incident with oo. o

Definition: A horopoint of a convex polyhedron P in B™ is an ideal point
u of P for which there is a horosphere ¥ of B™ based at u such that X
meets only the sides of P incident with .

Note that if P is finite-sided, then every ideal point of P is a horopoint.

Example: Let P be a convex polyhedron in U™ all of whose sides are
hemispherical hyperplanes of U™ such that P is the closed region above
them. Then oo is an ideal point of P, and oo is a horopoint of P if and
only if the set of radii of the sides is bounded.

Let u be a horopoint of a convex polyhedron P in B™. Then there is
a horosphere ¥ of B™ based at u such that ¥ meets only the sides of P
incident with u. The set

L(u)=PNY

is called a link of u in the polyhedron P. The Euclidean geometry of the
link L(w) is uniquely determined by u up to a similarity induced by radial
projection from u.

Theorem 6.3.23. Let u be a horopownt of an m-dimensional convez poly-
hedron P wn B™, and let & be a horosphere of B™ based at w such that ¥
meets only the sides of P wncident with u. Then the link

Liuy)=PNX

of u m P s an (m — 1)-dimensional convex polyhedron in the horosphere
Y. Moreover, if S(u) 1s the set of sides of P incident with u, then

{§NX:8€eSu)}
is the set of sudes of L(u).

Proof: We pass to the upper half-space model U” of hyperbolic space.
We may assume that u = co. The proof is by induction on m. The theorem
is obviously true for m = 1, so assume that m > 1 and the theorem is true
for all (m — 1)-dimensional convex polyhedra in U™. We may assume that
m = n. By Theorem 6.3.22, a side of P is incident with oo if and only if it
is vertical. If P has no vertical sides, then L(u) = %, so assume that P has
a vertical side. Let S be the set of sides of P. For each S in S, let Hg be
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the closed half-space of U™ bounded by the hyperplane (S) and containing
P. Then we have

P= s@s Hs:.

Now as Hg N X = 3 for each hemispherical side S of P, we have
Pn¥X= n (HgnX).
e (u)( sNX)

Now HgNX is a closed half-space of ¥ for each S in S(u). Therefore L(u)
is a closed convex subset of X.

Let z be a point of P°. By shrinking 3, if necessary, we may assume
that z is not inside of X. Then the geodesic ray [z, 00) intersects ¥ in a
point y of P° by Theorem 6.2.2 applied to the Euclidean closure of P in
the projective disk model. Therefore P° N is a nonempty open subset of
Y contained in L(u). Hence dim L(u) = n — 1.

Now as

P°NXE c L(w)°,
we have that
OL(u) COPNX.

Let S be a vertical side of P. By the induction hypothesis, SN X is an
(n — 2)-dimensional convex polyhedron in . Now since P C Hg, no point
of SN 3 has an open neighborhood in ¥ contained in L(u). Therefore

SNY C L(u).

Hence, we have
OPNY C OL(u).

Therefore, we have
8L(u) = OP N X.
The convex set SNY is contained in a side S of L(u) by Theorem 6.2.6(1).

Now as
PN = U (SN,

SeS(w)

we have that

aL(U) - SGLéJ(u) 5

Therefore {3 : S € S(u)} is the set of sides of L(u) by Theorem 6.2.6(3).
Now by Theorem 6.2.6(3), we have

SecSne.
Therefore S = SN L for each S in S(u). Thus
{SN¥:85eS(u}

is the set of sides of L(u). Moreover, the set of sides of L(u) is locally
finite in X, since the set of sides of P is locally finite in U™. Thus L(u) is
a convex polyhedron in . o
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Figure 6.3.4. The link of oo in a polyhedron in U3

There is a nice way of representing the link of a horopoint u of a polyhe-
dron P in U™. If we position P so that © = oo, then the vertical projection

v:U"— E™1

projects L(u) onto a similar polyhedron in E™~! that does not depend on

the choice of the horosphere X of U™ such that L(u) = PN X. See Figure
6.3.4.

Definition: An ideal vertex of a convex polyhedron P in B™ is a horopoint
of P whose link is compact.

For example, the polyhedron in Figure 6.3.4 has an ideal vertex at co.

Theorem 6.3.24. Let P be a convex polyhedron wn D™. Then ats closure

P in E™ is a convex polyhedron wn E™ +f and only 1f every ideal point of P
18 an ideal vertex of P.

Proof: Let m = dim P. We may assume that m > 0. Suppose that P is
a convex polyhedron in E™. Let uw be an ideal point of P. We claim that
u is a vertex of P. On the contrary, suppose that u is not a vertex of P.
Then wu is in the interior of a k-face F of P for some k > 0 by Theorem
6.3.10. Hence, there is an open Euclidean line segment in F' containing u.
But any such line segment cannot lie entirely in D", since u is in S™71.
Thus, we have a contradiction, and so u must be a vertex of P.
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If m = 1, the sides of P are the two endpoints of P. If m > 1, the sides
of P are the closures of the sides of P by Theorem 6.3.20. As P is compact,
P has only finitely many sides. Therefore P has only finitely many sides.
Let u be an ideal point of P. Then u is a horopoint of P. Let X be a
horosphere of D™ based at u such that ¥ meets only the sides of P incident
with u. We claim that P N is compact. The proof is by induction on m.
This is certainly true if m = 1, so assume that m > 1 and the claim is true
for all (m — 1)-dimensional convex polyhedra in D"™. Now the vertex u of
P meets at least m sides of P by Theorem 6.3.14. Therefore P 1Y has at
least m sides by Theorem 6.2.23. If S is a side of P incident with u, then
S MY is compact by the induction hypothesis. Therefore PNY is compact
by Theorem 6.3.7. Thus u is an ideal vertex of P.

Conversely, suppose that every ideal point of P is an ideal vertex. We
may assume that m > 1. Then every ideal point of P is in the closure of
a side of P. Hence P is a closed convex subset of E” whose sides are the
closures of the sides of P by Theorem 6.3.20. We now show that the set of
sides of P is locally finite in E™. Let z be a point of E”. We need to find
an open neighborhood N of x in E™ that meets only finitely many sides of
P. If £ is in E™ — P, we may take N = E® — P. If z is in D", then such
an N exists, since the set of sides of P is locally finite in D™. Therefore,
we may assume that z is an ideal vertex of P.

We pass to the upper half-space model U™ of hyperbolic space and posi-
tion P so that z = oco. Let X be a horizontal horosphere of U™ that meets
only the the sides of P incident with oco. Then L(co) = PN X is compact.
By Theorem 6.3.22, the sides of P incident with oo are the vertical sides of
P. Let B be aball in E™ centered at a point in E"~! such that L(cc) C B.
Then B contains the closures of all the hemispherical sides of P, since all
the hemispherical sides of P lie below L(co). Therefore N = E™ — B is an
open neighborhood of co in E™ that meets only the sides of P containing
o0. As L(oo) is compact, L(oo) has only finitely sides. Therefore P has
only finitely many sides incident with oo by Theorem 6.3.23. Hence N
meets only finitely many sides of P. We pass back to the projective disk
model D" of hyperbolic space. Then the set of sides of P is locally finite
in E™. Therefore P is a convex polyhedron in E™. o

Definition: A generalized vertez of a convex polyhedron P in B™ is either
a vertex of P or an ideal vertex of P.

Definition: The convex hullin D™ of a subset S of D™ is the intersection
of the convex hull of S in E™ with D™.

Theorem 6.3.25. Let P be a convex polyhedron in D™. Then its closure P
in E™ is a convez polyhedron m E™ 1f and only +f P has only finitely many
generalized vertices and P 1s the convex hull of 1ts generalized vertices.
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Proof: Let m = dim P. We may assume that m > 0. Suppose that P is
a convex polyhedron in E™. If m = 1, the sides of P are the two endpoints
of P. If m > 1, the sides of P are the closures of the sides of P by Theorem
6.3.20. We claim that the vertices of P are the generalized vertices of
P. The proof is by induction on m. This is certainly true if m = 1, so
assume that m > 1 and the claim is true for all (m — 1)-dimensional convex
polyhedra in D™. Now the vertices of P are the vertices of the sides of
P. Therefore, the vertices of P are the generalized vertices of the sides
of P by the induction hypothesis. Let v be a vertex of P in $"~!. Then
v is an ideal vertex of P by Theorem 6.3.24. Hence, every vertex of P is
a generalized vertex of P. If v is an ideal vertex of P, then v is an ideal
vertex of every side of P incident with v and therefore v is a vertex of P.
Hence, every generalized vertex of P is a vertex of P. Thus, the vertices of
P are the generalized vertices of P, which completes the induction.

Let V be the set of vertices of P. As P is compact, V is finite and
P = C(V) by Theorem 6.3.17. Hence P has only finitely many generalized
vertices and P is the convex hull of its generalized vertices, since

P=PND"=C(V)nD"

Conversely, suppose that P has only finitely many generalized vertices
and P is the convex hull of its generalized vertices. Let V be the set of
generalized vertices of P and let C (V') be the convex hull of V in E™. Then
we have

P=C(V)nD"

As V C D" and D" is a convex subset of E", we have that C(V) c D™
Clearly, we have

cvns™lcv.

Therefore, we have

C(V)=PUV.

Now C(V) is a closed subset of E" containing P, since V is finite. There-
fore, we have

PcCV)=PUV CP.

Hence, we have P = P U V. Therefore, every ideal point of P is an ideal
vertex of P. Hence P is a convex polyhedron in E™ by Theorem 6.3.24. o

Theorem 6.3.26. Let P be an m-dimensional convex polyhedron in D™,
with m > 1. Then 1ts closure P wn E™ 15 a conver polyhedron in E™ if and
only if P has only finitely many sides and P has finate volume in (P)

Proof: We may assume that m = n. Suppose that P is a convex poly-
hedron in E™. By Theorem 6.3.20, the sides of P are the closures of the
sides of P. As P is compact, P has only finitely many sides. Therefore P
has only finitely many sides.
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By the argument in the proof of Theorem 6.3.24, every ideal point of
P is a vertex of P. As P is compact, P has only finitely many vertices.
Therefore P has only finitely many ideal points. Now every ideal point of
P is an ideal vertex of P by Theorem 6.3.24. Let vq,...,v; be the ideal
vertices of P. For each 4, choose a horoball B, based at v, such that B,
meets only the sides of P incident with v,. Then the set

P— (B U---UBy)

is compact and therefore has finite volume. Hence, it suffices to show that
P N B, has finite volume for each i =1, ..., k.

Let v be an ideal vertex of P and let B be the corresponding horoball.

We now pass to the upper half-space model U™. Without loss of generality,
we may assume that v = co. Then B is of the form

{r eU": z, > s}

for some s > 0. Now all the sides of P incident with oo are vertical. Let
v : U™ — E™! be the vertical projection. Then by Theorem 4.6.7, we

have
pag  (Tn)"

/ / del T dxn_l dl‘n
s »(PNOB) (Tr)™

= Vol(v(PNdB)) {ﬁ ;;—}1] )

Vol(P N B)

i

i

1

n—1
Now the set P N B is compact, since v is an ideal vertex of P. Therefore
Vol(P N B) is finite. Thus P has finite volume.

Conversely, suppose that P has only finitely many sides and P has finite
volume in D™. Then every ideal point of P is a horopoint of P. The above
volume computation shows that the link of every ideal point of P has finite
volume and is therefore compact. See Exercise 6.3.5. Hence, every ideal
point of P is an ideal vertex. Therefore P is a convex polyhedron in E™
by Theorem 6.3.24. o

Vol(v(P N 8B))

sn—1 :

Exercise 6.3

1. Let P be a convex polyhedron in X. Prove that P has a countable number
of sides; and if X = S™, then P has a finite number of sides.

9. Prove that the intersection of a locally finite family of closed half-spaces of
X is a convex polyhedron in X.
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3. Find an example of a convex polyhedron in £* such that the family of half-
spaces in Theorem 6.3.2 is not locally finite.

4. Let P be a convex polyhedron in E™ or H". Prove that P is compact if and
only if P does not contain a geodesic ray.

5. Let P be an n-dimensional convex polyhedron in E™. Prove that P is com-
pact if and only if the volume of P is finite.

6. Let P be a subset of S™. Prove that P is a convex polyhedron in S™ if and
only if K(P) is a convex polyhedron in E™"*!. See Exercise 6.2.7.

7. Let z be a point of an m-dimensional convex polyhedron P in X, with m > 0,
let r be a real number such that 0 < » < 7/2 and r is less than the distance
from z to any side of P not containing z, and let L(z) = PN S(z,r). Prove
that

(1) the link L(x) is a great (m — 1)-sphere of S(z,r) if and only if z is in
P°;

(2) the intersection of all the sides of L(z) is a great (k—1)-sphere of S(z, r)
if and only if z is in the interior of a k-face of P with 0 < k < m;

(3) the link L(z) is contained in an open hemisphere of $(z,r) if and only
if z is a vertex of P.

8. Find an example of a convex polygon in D? of finite area with an infinite
number of sides.

9. Let P be an n-dimensional convex polyhedron in B™ of finite volume. Prove

that P is has finitely many sides if and only if every ideal point of P is a
horopoint of P.

§6.4. Polytopes

Throughout this section, X = §", E™, or H™ with n > 0. We now consider
the classical polyhedra in X.

Definition: A polytope in X is a convex polyhedron P in X such that

(1) P has only finitely many vertices;
(2) P is the convex hull of its vertices;

(3) P is not a pair of antipodal points of S™.

Theorem 6.4.1. A conver polyhedron P wn X is q polytope wn X if and

only if P 1s compact, and if X = S™, then P 1s contained wm an open
hemisphere of S™.

Proof: This follows immediately from Theorems 6.3.17 and 6.3.18. o
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Theorem 6.4.2. An m-dimensional polytope P wn X has at least m + 1
vertices.

Proof: Assume first that P is in E™. The proof is by induction on the
dimension m. The theorem is certainly true when m = 0, so suppose that
m > 0 and the theorem is true in dimension m — 1. Let S be a side
of P. Then S is a polytope by Theorem 6.4.1. Hence, by the induction
hypothesis, S has at least m vertices. Now since P is the convex hull of its
vertices, S cannot contain all the vertices of P. Therefore P has at least
m + 1 vertices. This completes the induction.

Now assume that P is in S™. Then by gnomonic projection, we can view
P as a Euclidean polyhedron. Therefore P has at least m + 1 vertices by
the Euclidean case.

Now assume that P is H". We pass to the projective disk model D™.
Then P is a Euclidean polyhedron, since P is compact. Therefore P has
at least m + 1 vertices by the Euclidean case. o

Definition: An m-simpler in X is an m-dimensional polytope in X with
exactly m + 1 vertices.

We leave it as an exercise to prove that a subset S of E™ is an m-simplex
if and only if S is the convex hull of an affinely independent subset of m+1
points {vg,...,vm} of E™.

Example: The standard m-sumpler A™ in E™ is the convex hull of the
points 0,e1,..., e, of E™.

Theorem 6.4.3. An m-dimensional polytope in X, with m > 0, has at
least m + 1 sides.

Proof: This follows from Theorems 6.3.7, 6.3.8, and 6.4.1. a]

Theorem 6.4.4. An m-dimensional polytope wn X, with m > 0, is an
m-simplez of and only of P has exactly m + 1 sides.

Proof: The proof is by induction on m. The theorem is certainly true
for m = 1, so assume that m > 1 and the theorem is true for all (m — 1)-
dimensional polytopes in X. Suppose that P is an m-simplex. Then P
has at least m + 1 sides by Theorem 6.4.3. Let S be a side of P. Then
S does not contain all the vertices of P, since P is the convex hull of its
vertices. Therefore S has at most m vertices. As S is an (m—1)-dimensional
polytope, S has at least m vertices by Theorem 6.4.2. Therefore S has
exactly m vertices. Hence S is an (m — 1)-simplex. Thus, each side of P is
an (m — 1)-simplex. Hence, each side of P is the convex hull of m vertices
of P. Since the set of m + 1 vertices of P has exactly m+ 1 subsets with m
vertices, P has at most m + 1 sides. Therefore P has exactly m + 1 sides.
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Conversely, suppose that P has exactly m -+ 1 sides. Then P has at least
m + 1 vertices by Theorem 6.4.2. Now by Theorem 6.3.14, each vertex of
P is the intersection of at least m sides of P. As the intersection of all the
sides of P is contained in each vertex of P, the intersection of all the sides
of P is empty. Therefore, each vertex of P is the intersection of exactly
m sides of P. Since the set of m + 1 sides of P has exactly m + 1 subsets
with m sides, P has at most m + 1 vertices. Therefore P has exactly m+1
vertices. Thus P is an m-simplex. o

Theorem 6.4.5. Let P be a polytope in X. Then the group of symmetres
of P wn (P) is finite.

Proof: The proof is by induction on dim P = m. The theorem is obviously
true if m = 0, so assume that m > 0 and the theorem is true for all (m —1)-
dimensional polytopes in X. Let I' be the group of symmetries of P in
(P). Then T acts on the finite set S of sides of P. Now S is nonempty by
Theorem 6.4.3, and each side of P is an (m — 1)-dimensional polytope by
Theorem 6.4.1. By the induction hypothesis, the stabilizer of each side of

P is finite. Therefore I is finite. o
Definition: The centroud of a polytope P in X with vertices Viy..., Uk i8
the point

(v1+--~+vk)/k leZEn,

(vit- tvw)/k ; —
c= I(vi+ +v’;)/k' if X =87,

(Witedo)/k e v
Mot Fwoo/Fy AL X =H"

Note that c is a well-defined point of X by Theorems 3.1.1 and 6.4.1. A
polytope P in X contains its centroid ¢, since ¢ is in the convex hull of the

vertices of P. It is an exercise to prove that the centroid ¢ of P is in the
interior of P.

Theorem 6.4.6. Let P be a polytope i X. Then every symmetry of P
fizes the centroid of P.

Proof: Let g be a symmetry of P. Then g permutes the vertices vy, ..., vy
of P. If X = E™, then there is a point a of E” and an A4 in O(n) such that

= a+ A by Theorem 1.3.5. If X = §™ or H™, then g is linear. Therefore,
we have

g Vit vy
k B k ‘

Hence gc = c.
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Generalized Polytopes

‘We now generalize the concept of a polytope in H™ to allow ideal vertices
on the sphere at infinity of H™. It will be more convenient for us to work

in a model of hyperbolic space that allows a direct representation of the
sphere at infinity.

Definition: A generalized polytope in D™ is a convex polyhedron P in
D™ such that P has only finitely many generalized vertices and P is the
convex hull of its generalized vertices.

Theorem 6.4.7. A convex polyhedron P in D™ 1s a generalized polytope
wm D™ if and only if its closure P wn E™ is a polytope in E™.

Proof: This follows immediately from Theorems 6.3.25 and 6.4.1. o

Theorem 6.4.8. Let P be an m-dimensional convexr polyhedron in D™,
with m > 1. Then P 1s a generalized polytope in D™ 1f and only if P has
finately many sides and P has finste volume in (P).

Proof: This follows immediately from Theorems 6.3.25 and 6.3.26. o

Theorem 6.4.9. An m-dimensional generalized polytope P in D™ has at
least m + 1 generalized vertices.

Proof: By Theorem 6.4.7, we have that P is a polytope in E™. By Theo-
rem 6.4.2, we have that P has at least m+1 vertices. Now by the argument
in the proof of Theorem 6.3.25, the vertices of P are the generalized vertices
of P. Therefore P has at least m + 1 generalized vertices. o

Definition: A generalized m-simplex in D™ is an m-dimensional general-
ized polytope in D™ with exactly m + 1 generalized vertices.

Note that a generalized 0-simplex is just a point. A generalized 1-simplex
is either a geodesic segment or a geodesic ray or a geodesic.

Theorem 6.4.10. A convez polyhedron i D™ 1s a generalized m-simplex
in D™ if and only if its closure in E™ is an m-simplex in E™.

Proof: Suppose that P is a generalized m-simplex. By Theorem 6.4.7, we
have that P is a polytope in E™. By the argument in the proof of Theorem
6.3.25, the vertices of P are the generalized vertices of P. Therefore P has
exactly m + 1 vertices. Thus P is an m-simplex in E™.

Conversely, suppose that P is an m-simplex in E™. Then P is a polytope
in D" by Theorem 6.4.7. By the argument in the proof of Theorem 6.3.25,
the vertices of P are the generalized vertices of P. Therefore P has exactly
m + 1 generalized vertices. Thus P is a generalized m-simplex. o
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Theorem 6.4.11. An m-dimensional generalized polytope P wn D™, with
m > 1, has at least m + 1 sudes.

Proof: By Theorem 6.4.7, we have that P is a polytope in E™. By
Theorem 6.3.20, the sides of P are the closures of the sides of P. Now by
6.4.3, we have that P has at least m + 1 sides. Therefore P has at least
m + 1 sides. o

Theorem 6.4.12. An m-dimensional generalized polytope P in D™, unth
m > 1, is a generalized m-simplex if and only if P has exactly m + 1 sides.

Proof: By Theorem 6.4.7, we have that P is a polytope in E™. By
Theorem 6.4.10, we have that P is a generalized m-simplex if and only if P
is an m-simplex in E™. By Theorem 6.3.20, the sides of P are the closures
of the sides of P. Therefore P is a generalized m-simplex if and only P has
exactly m + 1 sides by Theorem 6.4.4. o

Definition: An ideal polytope in D™ is a generalized polytope in D" all
of whose generalized vertices are ideal.

Definition: An udeal m-simplex in D™ is a generalized m-simplex in D"
all of whose generalized vertices are ideal.

Example: Let v, ..., v, be m+ 1 affinely independent vectors in 771,
with m > 0. Then their convex hull is a Euclidean m-simplex A inscribed
in "~ Therefore A minus its vertices is an ideal m~simplex in D" by
Theorem 6.4.10.

Theorem 6.4.13. Let P be a generalized polytope in D™ that 1s not a
geodesic of D™. Then the group of symmetries of P wn {P) 1s finute.

Proof: Let I' be the group of symmetries of P in (P). Then T' permutes
the generalized vertices of P. Let g be an element of T" that fixes all the
generalized vertices of P. We claim that g = 1. The proof is by induction
on m = dim P. This is certainly true if m = 0, so assume that m > 0,
and the claim is true for all (m — 1)-dimensional generalized polytopes in
D™ that are not geodesics. Let v be a generalized vertex of P. Then P
has a side S that is not incident with v, since P is the convex hull of its
generalized vertices and P is not a geodesic. If S is a geodesic of D™, then
g =1, since g fixes the endpoints of S and v. If S is not a geodesic, then
by the induction hypothesis, g is the identity on (S). Therefore ¢ = 1
by Theorem 4.3.6. Hence I injects into the group of permutations of the
generalized vertices of P. Therefore T is finite. o
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Regular Polytopes

Let P be an m-dimensional polytope in X. A flag of P is a sequence
(Fo, F1,...,Fy) of faces of P such that dim F, = i for each ¢ and F, is a
side of F,4+; for each ¢ < m. Let F be the set of all flags of P and let I be
the group of symmetries of P in (P). Then I' acts on F by

g(F07F15"'7Fm):(gFOagFla"‘agFm)'

Definition: A regular polytope in X is a polytope P in X whose group of
symmetries in (P) acts transitively on the set of its flags.

Theorem 6.4.14. Let P be a regular polytope in X. Then P 1s 1nscribed
in a sphere of (P) centered at the centroid of P.

Proof: Let I" be the group of symmetries of P. Then I' acts transitively
on the vertices vq,...,v; of P. Now each element of T fixes the centroid ¢
of P by Theorem 6.4.6. Therefore

d(e,v1) = d(c,v,) for each i.

Hence P is inscribed in the sphere of (P) centered at ¢ of radius d(c, v1). o

The regular polytopes in X are completely classified. First, we consider
the classification of Fuclidean regular polytopes.

(1) A 1-dimensional, Euclidean, regular polytope is a line segment.
(2) A 2-dimensional, Euclidean, regular polytope is a regular polygon.

(3) A 3-dimensional, Euclidean, regular polytope is a regular solid. Up
to similarity, there only five regular solids, the regular tetrahedron,
hexahedron, octahedron, dodecahedron, and icosahedron.

(4) There are up to similarity only six 4-dimensional, Euclidean, regular
polytopes. They are called the 5-cell, 8-cell, 16-cell, 24-cell, 120-cell,
and 600-cell. A k-cell has k sides.

(5) For n > 5, there are up to similarity only three n-dimensional, Eu-
clidean, regular polytopes, the regular n-simplex with n+1 sides, the
n-cube with 2n sides, and its dual with 2™ sides.

The classification of regular polytopes in S™ and H™ is essentially the
same as the classification of regular polytopes in E™. The only difference is
that in S™ and H™ regular polytopes of the same combinatorial type come
in different nonsimilar sizes.

Theorem 6.4.15. Let P be a polytope in S™. Then P is regular, with
centrod eny1, if and only if the gnomonic projection of P into E™ 1s reqular
with centroid 0.
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Proof: We may assume that (P) = S™. Suppose that P is regular with
centroid e, 1. Let A be a symmetry of P. Then A is an element of O(n+1)
that fixes e,+1. Hence, the restriction of A to E™ is an element A of O(n).
The gnomonic projection of S onto E™ is given by
¢(x) =T/Tpy1, where T = (Z1,...,Ty).
Observe that
#(Az) = Az/(AT)pny1 = AT /2ni1 = Ad(z).
Therefore, we have _
Ap(P) = ¢(AP) = ¢(P).

Hence A is a symmetry of ¢(P). Therefore ¢(P) is regular in E™. Let
v1,...,Vr be the vertices of P. Then we have

vt v = v+ vgleng.
Therefore, we have

Tyt + T = 0.

Observe that

cos0(vy, ent1) =, - eppg = (V)1

Therefore, we have

(v1)nt1 = (v)ns1 for all 5.
Hence
@/ (0)nt1) + -+ O/ (VE)ng1)  Ti -+ Ty
k o k(’Ul)n+1
Thus, the centroid of ¢(P) is 0.
Conversely, suppose that ¢(P) is regular with centroid 0. Let A be a
symmetry of ¢(P). Then A is an element of O(n). Let A be the element of

O(n + 1) that extends A and fixes ent1. Then we have A¢ = ¢A. Hence,
we have

=0.

AP = A $(P) = 6" A$(P) = ¢~ 1¢(P) = P.
Hence A is a symmetry of P. Therefore P is regular.

Now since the symmetries of P of the form A fix én+1 and act transitively
on the vertices of P, we conclude as before that

(V)n+1 = (V1)pga  for all 4.
Therefore
Ut 40 @0/ (0)ns1) + -+ O/ (Ok)ng1)
= = 0.
k(Ul)n+1 k
Hence, we have

D+ + Ty = 0.
Therefore, we have
Vit Ug = v+ A+ Uglengr.
Thus, the centroid of P is e,;. o
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Theorem 6.4.16. Let P be a polytope wn D™. Then P 1s regular with
centrord O of and only of P 1s regular in E™ unth centroid 0.

Proof: The proof is the same as the proof of Theorem 6.4.15 with S™
replaced by H™.

[m]

Regular Ideal Polytopes

Let P be an ideal polytope in D™. A flag of P is defined as before except
that vertices are now ideal.

Definition: A regular ideal polytope in D™ is an ideal polytope P in D"
whose group of symmetries in (P) acts transitively on the set of its flags.

Theorem 6.4.17. An ideal polytope P in D™ is reqular +f and only if P

18 congruent to an ideal polytope mn D™ whose closure in E™ 1s a regular
polytope mn E™.

Proof: We may assume that (P) = D™ and n > 1. Let T" be the group of
symmetries of P. Then I is finite by Theorem 6.4.13. Hence I fixes a point
of D™ by Theorems 5.5.1 and 5.5.2. By conjugating I', we may assume that
T fixes 0. Then every symmetry of P is a symmetry of P. Therefore, if P
is regular, then P is regular.

Conversely, suppose that P is regular. Then the centroid of P is 0, since
P is inscribed in S™!. See Exercise 6.4.6. Hence, every symmetry of P is
a symmetry of P. Therefore P is regular. o

Exercise 6.4

1. Prove that a subset S of E™ is an m-simplex if and only if S is the convex
hull of an affinely independent subset {vo, ..., vm} of E™.

2. An edge of a convex polyhedron P in X is a 1-face of P. Prove that an
m-dimensional polytope in X, with m > 1, has at least m(m + 1)/2 edges
and at least m(m + 1)/2 ridges.

m+1
k+1

4. Let P be a polytope in X. Prove that the centroid of Pisin P°.

3. Prove that an m-simplex in X has ( ) k-faces for each £k =0,...,m.

5. Prove that the centroid of a regular polytope P in X is the only point of (P)
fixed by all the symmetries of P in (P).

6. Let P be an n-dimensional polytope in X that is inscribed in a sphere S of
X. Prove that S is unique.

7. Prove that the group of symmetries of an n-simplex in X is isomorphic to
the group of permutations of its vertices.
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§6.5. Fundamental Domains

Let T be a group acting on a metric space X. The orbit space of the action
of I on X is defined to be the set of I'-orbits

X/T={Tz:z2 € X}
topologized with the quotient topology from X. The quotient map will be

denoted by
m: X — X/T.

Recall that if A and B are subsets of X, then the distance from A to B

in X is defined to be
dist(A, B) = inf{d(z,y) : 2 € A and y € B}.
The orbit space dustance function
dr: X/Tx X/T - R
is defined by the formula
dr(T'z,I'y) = dist(I'z, T'y). (6.5.1)

If dp is a metric on X/I', then dr is called the orbit space metric on X/T.

Theorem 6.5.1. LetT be a group of isometries of a metric space X. Then
dr is a metric on X/T" if and only if each T-orbit 1s a closed subset of X.

Proof: Let x,y be in X and let ¢,k be in I. Then
d(gz, hy) = d(z, g™ hy).
Therefore
dist(T'z, I'y) = dist(z, T'y).
Suppose that dr is a metric and I'z # I'y. Then
dist(z,T'y) = dr(Tz,Ty) > 0.

Let r = dist(x,T'y). Then B(z,r) C X —T'y. Hence X — I'y is open and
therefore I'y is closed. Thus, each I'orbit is a closed subset of X.

Conversely, suppose that each T-orbit is a closed subset of X. If z,y are
in X and 'z # I'y, then

dr(T'z,Ty) = dist(x,T'y) > 0.
Thus dr is nondegenerate.
Now let z,y,2 be in X and let g, h be in I". Then
d(z,9y) +d(y,hz) = d(z,gy) + d(gy, gh)

> d(z,ghz)

> dist(z, T'z).
Therefore

dist(z, I'z) < dist(z, Ty) + dist(y, I'z).

Hence dr satisfies the triangle inequality. Thus dr is a metric on X /T. o
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Corollary 1. IfT' is a discontinuous group of isometries of a metric space
X, then dr 1s a metric on X/T.

Proof: By Theorem 5.3.4, each I-orbit is a closed subset of X. o

Theorem 6.5.2. Let I' be a group of isomelries of a metric space X such
that dy is a metric on X/T'. Then the metric topology on X /T, determined
by dr, 1s the quotient topology; if m : X — X/T 1s the quotient map, then
for each z i X and r >0, we have

w(B(z,r)) = B(w(x),r).
Proof: Let x be in X and suppose that r > 0. Then clearly
w(B(z,r)) C B(w(x),r).
To see the reversed inclusion, suppose that y is in X and
dr(T'z,Ty) <.
Then we have
dist(z,Ty) < r.

Consequently, there is a g in T such that d(z, gy) < r. Moreover, we have
w(gy) = I'y. Thus, we have

m(B(z,r)) = B(r(z), 7).
Hence 7 is open and continuous with respect to the metric topology on
X/T.
Let U be an open subset of X/T" with respect the quotient topology.
Then 7~ (U) is open in X. Therefore U = w(x~!(U)) is open in the
metric topology on X/T". Let x be in X and suppose that r > 0. Then

Y (B(r(z),7)) = gLGJF B(gz,T).

Therefore B(w(x),r) is open in the quotient topology on X/I'. Thus, the
metric topology on X/T" determined by dr is the quotient topology. o

Fundamental Regions

Definition: A subset R of a metric space X is a fundamental region for
a group T of isometries of X if and only if

(1) the set R is open in Xj;

(2) the members of {gR : g € T'} are mutually disjoint; and

(3) X =U{gR:g€eT}.
Definition: A subset D of a metric space X is a fundamental domain for

a group I of isometries of X if and only if D is a connected fundamental
region for I.
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Theorem 6.5.3. If a group I of isometries of a metric space X has a
fundamental region, then T 1s a discrete subgroup of I(X).

Proof: Let x be a point of a fundamental region R for a group of isometries
I' of a metric space X. Then the evaluation map

e:I' - Tz,

defined by e(g) = gz, is a continuous. Now the point z is open in T'z, since
RNTz = {z}. Moreover, the stabilizer I', is trivial. Hence 1 = ¢~ 1(z) is
open in I'. Therefore I' is discrete by the proof of Lemma 1 of §5.3. o

Theorem 6.5.4. If R is a fundamental region for a group T' of 1sometries
of a metric space X, then for each g 1 inT', we have

RNgR C dR.

Proof: Let x be a point of RN gR and let r be a positive real number.
Then B(x,r) contains a point of R, since z is in R, and a point of gR, since
z is in gR. As R and gR are disjoint, B(z,r) meets R and X — R. Hence
z is in OR. Thus AR contains RN gR for each g # 1 in T. o

Definition: A fundamental region R for a discrete group I' of isometries
of X = 8", E", or H™ is proper if and only if Vol(OR) = 0, that is, R is
a null set in X.

Example 1. Let a be the antipodal map of S*. Then I' = {1,a} is
a discrete subgroup of I(S™) and any open hemisphere of S™ is a proper
fundamental domain for I'. The orbit space S™ /T is elliptic n-space P".

Example 2. Let 7, be the translation of E» by e, for i = 1,...,n.
Then {71,...,7,} generates a discrete subgroup T' of I(E™). A proper
fundamental domain for T is the open unit n-cube (0,1)™ in E™. The orbit
space E" /I is similar to the n-torus (S1)™.

Example 3. Let p be the reflection of H™ in a hyperplane P. Then
[' = {1,p} is a discrete subgroup of I(H"). Either one of the two open
half-spaces of H™ bounded by P is a proper fundamental domain for T.
The orbit space H™/T is isometric to a closed half-space of H™.

Theorem 6.5.5. IfT is a discrete group of 1sometries of X = S™, E™, or
H™, then all the proper fundamental regions for I' have the same volume.
Proof: Let R and S be proper fundamental regions for I'. Observe that
X~ U gSc U gbs.
gng geI‘g

Therefore, we have
Vol(X — U =0.
0 ( e gS) 0
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Hence
Vol(R) = Vol(RN (gLeJF 95))

= Vol(gLGJF RN gS)

= > Vol(RngS)
ger
= ) Vol(g7'RNS) = Vol(S).

0
gel

Theorem 6.5.6. If R 1s a fundamental region for a group T of isometries
of a metric space X and g s an element of T fizaing a pownt of X, then g
1s conjugate in I' to an element h such that h fizes a pownt of OR.

Proof: This is certainly true if g = 1, so assume that g # 1. Let z be a
fixed point of g. Then there is a point y of R and an element f of " such

that fr =y. Let h = fgf~!. Then h fixes y. As R and AR are disjoint, y
is in OR. o

Corollary 2. Let R be a fundamental region for a discrete group I' of
isometries of E™ or H™. If g is an elliptic element of T, then g s conjugate
in T to an element h such that h fizes a point of OR.

Proof: Every elliptic element of I has a fixed point. o

Lemma 1. IfT is a discrete group of 1sometries of H™ such that H™ /T is
compact, then there is an £ > 0 such that d(z,hx) > £ for all x in H™ and
oll nonelliptic h in T.

Proof: Let z be an arbitrary point of H™ and set
1
r(z) = idist(a:,I‘m —{z}).

Then any two open balls in

{B(gz,r(z)) : g €T}
are either the same or are disjoint. Let 7w : H® — H"™/I" be the quotient
map. As H"/T is compact, the open cover

{B(r(y),(v)) :y € H"}
has a Lebesgue number £ > 0. Hence, there is a y in H™ such that
B(n(y),r(y)) contains B(n(x),£). Consequently ggFB(gy,r(y)) contains

B(z,£). As B(z,{) is connected, there is a g in I' such that B(gy,r(y))
contains B(z, ). By replacing y with gy, we may assume that g = 1.
Now let A be an arbitrary nonelliptic element of I'. As B(y,r(y))
and B(hy,r(y)) are disjoint, B(z,£) and B(hz,{) are disjoint. Therefore
d{z, hz) > £. o
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Theorem 6.5.7. If T is a discrete group of isometries of H™ such that
H™/T 1s compact, then every element of T' is esther elliptic or hyperbolic.

Proof: On the contrary, suppose that I" has a parabolic element f. We
pass to the upper half-space model U™. Then we may assume, without
loss of generality, that f(oco) = co. Then f is the Poincaré extension of a
Euclidean isometry of E»~!. By Theorem 4.6.1, we have for each t > 0,

te, — f(te
coshd(ten, f(ten)) = 1+ [n—zté(—n—)(
_ len — f(en)l
Hence
tlim coshd(te,, f(te,)) = 1.

Therefore

tlim d(ten, f(ten)) = 0.
But this contradicts Lemma 1. o

Corollary 3. IfT is a discrete group of isometries of H™ with a parabolic
element, then every fundamental region for T' is unbounded.

Proof: Let R be a fundamental] region for I'. If R were bounde(L then
R would be compact; but the quotient map 7 : H” — H" /T maps R onto
H" /T, and so H" /T would be compact contrary to Theorem 6.5.7. o

Locally Finite Fundamental Regions

Definition: A fundamental region R for a group I' of isometries of a

metric space X is locally finite if and only if {gR: g € T'} is a locally finite
family of subsets of X.

Example: Every fundamental region of a discrete group I' of isometries
of S™ is locally finite, since I' is finite.

Let R be a fundamental region for a discontinuous group I' of isometries
of a metric space X, and let R/T" be the collection of disjoint subsets of R,

{TzNnR:z € R},
topologized with the quotient topology. At times, it will be useful to adopt

R/T as a geometric model for X /T. The importance of local finiteness in
this scheme is underscored by the next theorem.

Theorem 6.5.8. If R is a fundamental region for a discontinuous group
I' of isometries of a metric space X, then the inclusion  : R — X wnduces
a continuous bijection k : R/T — X/T', and k is a homeomorphism if and
only if R is locally finite.
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Proof: The map « is defined by x(I'z N R) = I'z. If x,y are in R and
T'z =Ty, then we have

rtNR=TynNR.

Therefore & is injective. As R contains a fundamental set, & is subjective.

Let n : R — R/T be the quotient map. Then we have a commutative
diagram

R - X
nl I
R/T & X/T.

This implies that x is continuous. Thus & is a continuous bijection.

Now assume that R is locally finite. To prove that « is a homeomor-
phism, it suffices to show that x is an open map. Let U be an open subset
of R/T". As 7 is continuous and surjective, there is an open subset V' of X
such that n~}(U) = RNV and n(RNV) = U. Let

W = ggrg(R nv).
Then we have
(W) = w(RNV)
= m(RNV)
= wp(RNV) = k().

In order to prove that x(U) is open, it suffices to prove that W is open in
X, since 7 is an open map.

Let w be in W. We need to show that W contains an open ball B
centered at w. As W is T-invariant, we may assume that w is RNV. As
R is locally finite, there is an open ball B centered at w that meets only
finitely many T-images of R, say g1 R, . .., gmR. Then we have

BC giRU---UgmR.

If g,R does not contain w, then B — g,R is an open neighborhood of w,
and so we may shrink B to avoid g,R. Thus, we may assume that each
g.R contains w- Then g, 'w is in R for each i. As n(g; 'w) = n(w), w
have that g 'w is in n~}(U) = RNV. Hence w is in g,V for each . By
shrinking B still further, we may assume that

BcgVnN---NgmV.

Consequently B C W, since if  is in B, then z is in both ¢, R and g,V for
some 4, and so z is in g,(R NV, which is contained in W. Therefore W is
open and « is an open map. Thus « is a homeomorphism.

Conversely, suppose that  is a homeomorphism and on the contrary
there is a point y of X at which R is not locally finite. Then there is a
sequence {z,}2, of points in R and a sequence {g,};2, of distinct elements
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of T such that g,z, — y. As gR is open and disjoint from every other
T-image of R, the point y is not in any gR. Let

K = {z1,x2,...}.

As K C R, we have that 7(y) is not in 7(K). .
We claim that K is closed in X. Let z be in X — K. Now 'y — {z} is a
closed subset of X by Theorem 5.3.4. Therefore

dist(z, Ty — {z}) > 0.
Now let 1
r= idist(ac, Ty — {z}).

As the g, are distinct,  is equal to at most finitely many g, Ly, since Ty is
finite. Thus d(z, g, Y4) > 2r for large enough i. As g,z, — y, we have that
d(g.x,,y) < r for large enough i. Hence, for large enough 4, we have

2r <d(z,9, 'y) < d(z,z,) + d(z,, 9, ')
and
r < 2r —d{g,z,,y) <d(z,z,).

Thus B(z,r) contains only finitely many points of K, and so there is an
open ball centered at = avoiding K. Thus X — K is open and so K is closed.

As K C R, we have that n~!(n(K)) = K, and so n(K) is closed in R/T.
Therefore kn(K) = n(K) is closed in X/T, since & is a homeomorphism.
As m is continuous, we have 7(g,x,) — w(y), that is, 7(z,) — n(y). As
m(K) is closed, 7(y) is in w(K), which is a contradiction. Thus R is locally
finite. o
Theorem 6.5.9. Let x be a boundary point of a locally finite Sfundamental
region R for a group I' of 1sometries of a metric space X. Then ORN Tz
18 finute and there 1s an v > 0 such that of N(R,r) 15 the r-neighborhood of
R X, then

N(R,r)NTz = 8RNTz.

Proof: As R is locally finite, there is an r > 0 such that B (z,7) meets
only finitely many I'images of R, say ¢i 'R, ..., g;'R. By shrinking r, if
necessary, we may assume that z is in each g 'R. Suppose that gx is also
in OR. Then z is in ¢7'R and so g = g, for some 4. Hence

ORNTz C {g1z,...,gmz}.
Moreover, for each 4, there is a y, in R such that z = 9, 14,. Therefore
ORNTz = {g1z,...,gmz}.

Next, suppose that d(gz,y) < r with y in R. Then d(z,g 'y) < r. Hence
gisin {g1,...,9m} and so gz is in R. Thus

N(R,r)NTz =dRNTxz. o
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Theorem 6.5.10. Let R be a fundamental region for a discontinuous
group T' of isometries of a locally compact metric _space X such that X /T
is compact. Then R is locally finste if and only 1f R 18 compact.

Proof: Suppose that R is compact. Then the map « : R/T - X/Tis a
continuous bijection from a compact space to a Hausdorff space and so is
a homeomorphism. Therefore R is locally finite by Theorem 6.5.8.

Conversely, suppose that R is locally finite and on the contrary R is not
compact. Then R is not countably compact, since R is a metric space.
Hence, there is an infinite sequence {z,} in R that has no convergent sub-
sequence. As X/T" is compact, {n(z,)} has a convergent subsequence. By
passing to this subsequence, we may assume that {n(z,)} converges in X/T.
As the quotient map m maps R onto X/T, there is a point « of R such that
m(z,) — w(z). As m maps R homeomorphically onto m(R), the point
must be in OR. By Theorem 6.5.9, there is an 7 > 0 such that

N(R,r)NTz = 8RN Txz.
Moreover, there are only finitely many elements g1, ..., gm of I' such that
ORNTz = {g1x,...,gm2}.
By shrinking r, if necessary, we may assume that B(g,z,r) is compact for
eachi=1,...,m. As n(z,) — m(x), there is a k > 0 such that
dist(Tz,,Tz) < r
for all ¢ > k. Hence, there is a h, in I for each ¢ > k such that
d(x,, h,x) < 1.
Now since .
N(R,r)NTz =0RNTz,
we have h,z = g,z for some j = 1,...,m. Hence z, is in the compact set
B(g1z,7) U+ U B(gmz,7)

for all i > k. But this implies that {z,} has a convergent subsequence,
which is a contradiction. Thus R is compact. o

Theorem 6.5.11. If R is a locally finite fundamental region for a group
T of isometries of a connected metric space X, then T' is generated by the
set o

U = {g €T :RNgR is nonempty}.

Proof: Let H be the subgroup of I' generated by ¥, and let  be in X.
Then there is a ¢ in T such that gz is in R. Suppose that h is another
element of T such that hz is in R. Then gz is in RNgh 'R and so gh™1
is in ¥. Hence Hg = Hh. This implies that there is a well-defined function
¢ : X — T'/H, defined by ¢(z) = Hg, where gz is in R.
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As R is locally finite, there is an open ball B c_elntered at x that meets
only finitely many [-images of R, say g1 R, ..., gm . We may assume that
each gzﬁ contains z. Then we have

BC g RU---UgnR.
If y is in B, then y is in g, R for some 4, and we have

d(y) = Hg " = ¢(a).

Thus ¢ is constant on B. Hence, the fibers of the map ¢ are open. As X
is connected, ¢ is constant.
Let g be in I, let u be in R, and let v be in g~*R. Then

H = ¢(u) = ¢(v) = Hyg
and so g is in H. This shows that H = I". Thus ¥ generates I. o

Rigid Metric Spaces

Definition: A metric space X is rigid if and only if the only similarity
of X that fixes each point of a nonempty open subset of X is the identity
map of X.

Theorem 6.5.12. If X is a geodesically connected and geodesically com-
plete metric space, then X is rigid.

Proof: Let ¢ be a similarity of X that fixes each point of a nonempty
open subset W of X. Then the scale factor of ¢ is one, and so ¢ is an
isometry of X. Let w be a point of W and let x be an arbitrary point of

X not equal to w. Then there is a geodesic line A : R — X whose image
contains w and z. Observe that

N R— X

is also a geodesic line and §X agrees with A on the open set A~HW). As
every geodesic arc in X extends to a unique geodesic line, we deduce that
@A = . Therefore ¢(x) = z. Hence ¢ = 1. Thus X is rigid. o

Example: It follows from Theorem 6.5.12 that S™,E", and H™ are rigid
metric spaces.

Definition: A subset F of a metric space X is a fundamental set for a

group I' of isometries of X if and only if F' contains exactly one point from
each I'-orbit in X.

Theorem 6.5.13. An open subset R of a rigid metric space X is a fun-
damental region for a group T' of isometries of X if and only if there 1s a
fundamental set F for T such that RC F C R.
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Proof: Suppose that R is a fundamental region for I". Then the members
of {gR : g € '} are mutually disjoint. Therefore R contains at most one
element from each I'-orbit in X. Now since

X =U{gR:geT},

there is a fundamental set F for I such that R C F C R by the axiom of
choice.

Conversely, suppose there is a fundamental set F' for the group I'" such
that R C F C R, and suppose that g, k are elements of T" such that gRNAR
is nonempty. Then there are points x,y of R such that gz = hy. Hence
h™'gz = y. As z and y are in F, we deduce that h~*gz = z. Therefore
h~1g fixes each point of RNg~'hR. As X is rigid, h~'g = 1. Hence g = h.
Thus, the members of {gR : g € '} are mutually disjoint.

Now as F' C R, we have

Thus R is a fundamental region for T'. o

If R is a fundamental region for a group I' of isometries of a metric space
X, then the stabilizer of every point of R is trivial. We next consider an
example of a discontinuous group of isometries of a metric space X such
that every point of X is fixed by some g # 1 in I'. Hence, this group does
not have a fundamental region.

Example: Let X be the union of the z-axis and y-axis of E? and let
F = {17p70-?a}5

where p and o are the reflections in the z-axis and y-axis, respectively, and
« is the antipodal map. Then T is a discontinuous group of isometries of
X, since I is finite. Observe that every point of X is fixed by a nonidentity
element of I'. Hence I' has no fundamental region. Moreover X is not rigid.

Theorem 6.5.14. Let T be a discontinuous group of wsometries of a rigid
metric space X. Then there is a pownt x of X whose stabilizer I'y, is trivial.

Proof: Since I' is discontinuous, the stabilizer of each point of X is finite.
Let z be a point of X such that the order of the stabilizer subgroup I'y is
as small as possible. Let s be half the distance from z to I'z — {z}. Then
for each g in I, we have that B(z,s) meets B(gz, s) if and only if gz = =.
Hence, for each point y in B(y,s), we have that Iy, C I'; and therefore
I'y =Ty because of the minimality of the order of I';. Hence, every point
of B(x, s) is fixed by every element of I';. Therefore I'; = {1}, since X is
rigid. o
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au

Figure 6.5.1. The half-space Hg(u)

Dirichlet Domains

Let T be a discontinuous group of isometries of a metric space X, and let
u be a point of X whose stabilizer T',, is trivial. For each g # 1 in I, define
Hy(u) ={z € X : d(z,u) < d(z,gu)}.

Observe that the set Hy(u) is open in X. Moreover, if X = S, E™, or H",
then Hy(u) is the open half-space of X containing v whose boundary is
the perpendicular bisector of every geodesic segment joining u to gu. See

Figure 6.5.1. The Dsrichlet domain D(u) for T, with center u, is either X
if " is trivial or

D(u) =N{Hg(u): g #1in T}

if T" is nontrivial.

Theorem 6.5.15. Let D(u) be the Durichlet domawn, with center u, for a
discontinuous group I' of isometries of a metric space X such that

(1) X is geodesically connected;

(2) X s geodesically complete;

(3) X s finutely compact.

Then D(u) 1s a locally finite fundamental domain for T.

Proof: This is clear if T is trivial, so assume that I" is nontrivial. Let
r > 0. Then C(u,r) is compact. Hence C(u,r) contains only finitely many
points of an orbit I'z, since I' is discontinuous. Let Ky = X —H 4 (u) for each
g#1inI. Then K, is closed in X. We next show that {K,: g # 1 in I'}

is a locally finite family of sets in X. Suppose that B(u,r) meets K, in a
point . Then we have

d(u,gu) < d(u,z)+d(z, gu)
< d(u,z) + d{z,u)
< 2r
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Hence B(u, 2r) contains gu. As B(u,2r) contains only finitely many points
of T'u, the ball B(u,r) meets only finitely many of the sets K,. Therefore
{Ky:g9# 1inT} is a locally finite family of closed sets in X. Hence
X—-Du)=U{K;:9g#1inT}
is a closed set. Thus D(u) is open.
From each orbit I'z, choose a point nearest to u and let F' be the set

of chosen points. Then F is a fundamental set for I'. If = is in D(u) and
g#1in T, then

d(z,u) < d(z,gu) = d(g™ z,u)

and so z is the unique nearest point of the orbit I'z to u. Thus D(u) C F.
Let  be an arbitrary point of F' not equal to u and let g # 1 be in T.
Then d(z,u) < d(z, gu), since otherwise we would have

d(z,u) > d(z, gu) = d(g™ z,u),

contrary to the assumption that = is in F'. Let [u, z] be a geodesic segment
in X joining u to z. Let y be a point of the open segment (u,z). Then

d(y7u) = d(xa u’) - d(.’,C, y)

IN

with equality only if

d(z, gu) = d(z,y) + d(y, gu).
Suppose that we have equality. Let [z,y] be the geodesic segment in [z, u)
joining x to y and let [y, gu] be a geodesic segment in X joining y to gu.
By Theorem 1.4.3, we have that [z,y] U [y, gu] is a geodesic segment [z, gu]
in X joining z to gu. Now [z, u] and [z, gu] both extend [z, y] and have the
same length. Therefore [z,u] = [z, gu], since X is geodesically complete.
Hence v = gu, which is a contradiction. Therefore, we must have

d(y,u) < d(y, gu).

Hence y is in Hy(u) for all g # 1 in I'. Therefore y is in D(u). Hence
[u,z) C D(u). Therefore z is in D(u). Hence F C D(u). Thus D(u) is a
fundamental region for I' by Theorems 6.5.12 and 6.5.13. Moreover, if  is
in D(u), then [u,z] C D(u), and so D(u) is connected.

It remains only to show that D(u) is locally finite. Suppose r > 0 and
B(u,r) meets gD(u). Then there is some 2 in D(u) such that d(u, gz) <.
Moreover

d(u,gu) < d(u,gz) + d(gz, gu)
< r+d(z,u)
< r+d(z,g )
= r+d(gz,u)
< 2r.

But this is possible for only finitely many g. Thus D(u) is locally finite. o
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Theorem 6.5.16. Let D(u) be the Dirichlet domain, with center u, for a
discontinuous group I' of isometries of a metric space X such that

(1) X is geodesically connected;
(2) X is geodesically complete;
(3) X is finitely compact.
Then
D(u) ={z € X : z is a nearest pownt of I'c to u}.

Proof: This is clear if T" is trivial, so assume that I' is nontrivial. For
each g # 1 in I, define

Ly={ze X :d(z,u) <d(z,gu)}.
Then L, is a closed subset of X containing H,. Now since
Ly={x e X :d(z,u) <d(g7'z,u)},
we have
M{Lg:9#1inT} ={z € X : x is a nearest point of 'z to u}.
Moreover, since
D) = N{Hyw):g#1mT},

we have that o
D) <€ n{Lg:g#1inT}.

Now suppose that z is a nearest point of I'z to 4. Then we can choose a
fundamental set F for I’ containing x such that each point of F is a nearest

point in its orbit to w. From the proof of Theorem 6.5.15, we have that
F C D(u). Thus z is in D(u). Therefore

D(u) = {z € X : z is a nearest point of 'z to u}. o

Exercise 6.5

1. Let R be a fundamental region for a group I' of isometries of a metric space

X and let R be the topological interior of R. Prove that £ is the largest
fundamental region for T containing R.

2. Let R be a fundamental region for a group T of isometries of a metric space

X. Prove that R is locally finite if and only if {gR : g € T'} is a locally finite
family of subsets of X.

3. Let T’ be a discontinuous group _of isometries of a metric space X with a
fundamental region R such that R is compact. Prove that

(1) T is finitely generated, and

(2) T has only finitely many conjugacy classes of elements with fixed points.
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4. Let T be the subgroup of I(C) generated by f:2z+— z+1land g: z+— 2z +1.
Find a fundamental domain for I' that is not locally finite.

5. Let I" be a discontinuous group of isometries of a metric space X that has a
fundamental region. Prove that the set of points of X that are not fixed by
any g # 1 in T" is an open dense subset of X.

6. Prove that the set Hg(u) used in the definition of a Dirichlet domain is open.

7. Let D(u) be a Dirichlet domain, with center u, for a group I" as in Theorem
6.5.16. Prove that if « is in 0D(u), then 8D(u) NT'z is a finite set of points
that are all equidistant from w.

§6.6. Convex Fundamental Polyhedra

Throughout this section, X = S™ E™, or H™ with n > 0. Let I" be a
discrete group of isometries of X. By Theorem 6.5.14, there is a point u
of X whose stabilizer T, is trivial. Let D(u) be the Dirichlet domain for T’
with center u. Then D(u) is convex, since by definition D(u) is either X or
the intersection of open half-spaces of X. By Theorem 6.5.15, we have that
D(u) is a locally finite fundamental domain for I'. Hence I' has a convex,
locally finite, fundamental domain.

Lemma 1. If D 15 a convez, locally finite, fundamental domain for a dis-
crete group I' of 1sometres of X, then for each pownt x of 0D, there is a
g# 1 inT such that x is of DN gD.

Proof: As D is locally finite, there is an r > 0 such that B(xz,r) meets
only finitely many T-images of D, say oD, ...,gmD with g1 = 1. By
shrinking r, if necessary, we may assume that z is in each ¢.D. As D is
convex, dD = OD. Therefore B(x,r) contains a point not in D. Hence
m > 1. Thus, there is a ¢ # 1 in D such that z is in gD. o

Theorem 6.6.1. If D 1s a convex, locally finte, fundamental domawmn for
a discrete group T of isometries of X, then D s a convex polyhedron.

Proof: Since D is convex in X, we have that D is closed and convex in X.
Let S be the set of sides of D. We need to show that S is locally finite. Let
= be an arbitrary point of X. If z is in D, then D is a neighborhood of z
that meets no side of D. If z is in X — D, then X — D is a neighborhood of
7 that meets no side of D. Hence, we may assume that = is in D. As D is
locally finite, there is an r > 0 such that B(z,r) meets only finitely many
T-images of D, say goD, - . ., gm D with go = 1. By shrinking r, if necessary,
we may assume that z is in each g,D. Now for each i > 0, we have that
Dng,D is a nonempty convex subset of 0D. By Theorem 6.2.6(1), there
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is a side S, of D containing D N ¢g,D. By Lemma 1, we have
B(z,r)N 8D C @l(ﬁ Ng.D).

Therefore
B(z,m)N3dD C S1U---USp,.

Now suppose that S is a side of D meeting B(z,r). Then B(z,r) meets
S°, since S° = S. By Theorem 6.2.6(3), we have that S = S, for some i.
Thus B(x,r) meets only finitely many sides of D. Hence S is locally finite.
Thus D is a convex polyhedron. o

Corollary 1. Every convex, locally finate, fundamental domain for a dis-
crete a group I' of wsometries of X is proper.

Proof: Let D be a convex, locally finite, fundamental domain for T'. Then
the sides of D form a locally finite family of null sets in X. Hence 8D is
the union of a countable number of null sets and so is a null set. Thus D
is proper. u

Fundamental Polyhedra

Definition: A convez fundamental polyhedron for a discrete group I' of
isometries of X is a convex polyhedron P in X whose interior is a locally
finite fundamental domain for T".

Let T' be a discrete group of isometries of X. By Theorem 6.6.1, the
closure D of any convex, locally finite, fundamental domain D for T is a
convex fundamental polyhedron for I'. In particular, the closure D(u) of
any Dirichlet domain D(u) for I is a convex fundamental polyhedron for
', called the Durichlet polyhedron for I' with center w.

Example: Let I' = PSL(2,Z) and regard T as a subgroup of I(U?). Then
I is discrete. Let T be the generalized hyperbolic triangle with vertices

j:% + @z and co. See Figure 6.6.1. Then T is the Dirichlet polygon for '
with center ¢i for any ¢ > 1.

Let I" be a discrete group of isometries of X and let u be a point of X
whose stabilizer T',, is trivial. For each g# 1in T, define

Py(u) = {z € X : d(z,u) = d(z, gu)}.

Then P,(u) is the unique hyperplane of X that bisects and is orthogonal
to every geodesic segment in X joining v to gu.
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Figure 6.6.1. A Dirichlet polygon T for PSL(2, Z)

Theorem 6.6.2. Let S be a side of a Durichlet domain D(u), with center
u, for a discrete group T of isometries of X. Then there is a unique element
g # 1 of T that salisfies one (or all) of the following three properties:

(1) (S) = Po(u);
(2) §=D(u)NgD(w);
(3) g7 1S is a side of D(u).
Proof: (1) Since
0D(u) C U{Py(u) : g #1in T},

we have that
S CU{Py(u): g#1inT}
Therefore
S=U{SNPy(u):g#1inT}

Now SN P,(u) is a closed convex subset of X for each g # 1 in T'. AsTis
countable, we must have

dim(S N Py(u)) =n—1

for some g; otherwise, the (n — 1)-dimensional volume of S would be zero.

Now since
dim(S N Py(u)) =n—1

we have that (S) = Py(u).
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Let g, h be elements of T" such that
Pg(u) = (S) = Pu(w).

Since Py(u) is the perpendicular bisector of a geodesic segment from u to
gu, we have that gu = hu. But u is fixed only by the identity element of T,
and so g = h. Thus, there is a unique element g of I" such that (S) = P,(u).

(2) By (1) there is a unique element g # 1 of I" such that S C Py(u).
Let z be an arbitrary point of S. Then d(z,u) = d(z, gu). By Theorem
6.5.16, we have that z is a nearest point of I'z to u. Now

d(g™ z,u) = d(z, gu) = d(z,u).

Therefore g~'z is also a nearest point of I'z to u. Hence g~z is in D(u)

by Theorem 6.5.16. Therefore g~'S C D(u). Hence
S C D(u) N gD(u).

But D(u) N gD(u) is a convex subset of dD(u). Therefore
S = D(u) N gD(u),

since S is a maximal convex subset of dD(u).
Suppose that h is another nonidentity element of I" such that

S = D(u) N hD(u).
Let « be an arbitrary point of S. Then h~'z is in D(u) and so
d(z,u) = d(h ™'z, u) = d(z, hu).

Hence z is in Py (u). Therefore S C P,(u). Hence g = h by the uniqueness
of g in (1). Thus, there is a unique g # 1 in T" such that

S = D(u) N gD(u).
(3) By (2), there is unique element g # 1 of T such that
S = D(u) N gD(u).
Then we have
978 =g7'D(u) N D(u).

Therefore g=1S C 8D(u). Hence, there is a side T of D(u) containing g~1S.
By (1) there is a unique element k # 1 of T such that

T = D(u) N hD(u).
Hence, we have
97'S C D(u) N hD(u)
and so we have
S € gD(u) N ghD(w).
Thus, we have
S C D(u) N ghD(u).
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Suppose that gh # 1. We shall derive a contradiction. Since S is a maximal
convex subset of dD(u), we have

S = D(u) N ghD(u).
Then gh = g by (2), and so h = 1, which is a contradiction. It follows that

gh=1andso h=g"! Thus g 'S =T.

Suppose that f is another nonidentity element of T' such that =1 is a
side of D(u). Then we have

f7'8 = D(u)n f'D(w)
and so we have

S

D(u) N fD(u).

Hence f = g by (2). Thus, there is a unique element g # 1 of T' such that
g~ 1S is a side of D(u). o
Definition: A convex fundamental polyhedron P for I is exact if and only
if for each side S of P there is an element g of I" such that S = PngP.

It follows from Theorem 6.6.2(2) that every Dirichlet polyhedron for a
discrete group is exact. Figure 6.6.2 illustrates an inexact, convex, funda-
mental polygon P for PSL(2,Z). The polygon P is inexact, since the two
bounded sides of P are neither congruent nor left invariant by an element
of PSL(2,7Z). See Theorem 6.6.3.

v |

| i ,
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-1 -1 0

P
—

Figure 6.6.2. An inexact, convex, fundamental polygon P for PSL(2,Z)
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Theorem 6.6.3. If S 1s a sude of an exact, convez, fundamental polyhe-
dron P for a discrete group T' of isometries of X, then there is a unique
element g # 1 of I' such that

S=PnNgP;
moreover, g~1S 15 a sude of P.

Proof: Since P is exact, there is an element g of I such that S = PNgP.
Clearly g # 1. If h # 1 is another element of T" such that S = PNAP, then
gP° and hP° overlap; therefore gP° = hP° and so g = h. Thus, there is a
unique element g # 1 of I' such that S = P N gP. The proof that g~1$ is
a side of P is the same as the proof of Theorem 6.6.2(3). o

Exercise 6.6

1. Let u,v be distinct points of X and let
P={zc X :d(z,u) =d(z,v)}.

Prove that P is the unique hyperplane of X that bisects and is orthogonal
to every geodesic segment in X joining u to v.

2. Let T" be the subgroup of I(C) generated by the translations of C by 1 and
% + @z. Determine the Dirichlet polygon of I" with center 0 in C.

3. Let T be the generalized hyperbolic triangle in Figure 6.6.1. Prove that T is
the Dirichlet polygon for PSL(2,Z) with center #i for any ¢ > 1.

§6.7. Tessellations
Throughout this section, X = §™, E™, or H"™ with n > 0.

Definition: A tessellation of X is a collection P of n-dimensional convex
polyhedra in X such that

(1) the interiors of the polyhedra in P are mutually disjoint;

(2) the union of the polyhedra in P is X; and

(3) the collection P is locally finite.

Definition: A tessellation P of X is exact if and only if each side S of a
polyhedron P in P is a side of exactly two polyhedrons P and Q in P.

An example of an exact tessellation is the grid pattern tessellation of E2
by congruent squares. An example of an inexact tessellation is the familiar
brick pattern tessellation of E? by congruent rectangles.
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Definition: A regular tessellation of X is an exact tessellation of X
consisting of congruent regular polytopes.

The three regular tessellations of the plane, by equilateral triangles,
squares, and regular hexagons, have been known since antiquity. The five
regular tessellations of the sphere induced by the five regular solids have
been known since the Middle Ages. We are interested in tessellations of X
by congruent polyhedra because of the following theorem.

Theorem 6.7.1. Let P be an n-dimensional convez polyhedron in X and
let T' be a group of wsometries of X. Then T is discrete and P is an (ezact)
convez fundamental polyhedron for T of and only 1f

P={gP:geT}

is an (ezxact) tessellation of X.

Proof: Suppose that I' is discrete and P is a convex fundamental polyhe-
dron for I'. Then P° is a locally finite fundamental domain for I'. Hence,
we have that

(1) the members of {gP° : g € I'} are mutually disjoint;
(2) X =U{gP:9€T}; and
(3) the collection P is locally finite.

Thus P is a tessellation of X.

Now assume that P is exact. Let S be a side of P. Then there is a
unique element of g # 1 of I' such that S = P N gP; moreover g 18 is a
side of P. Hence S is a side of gP. Therefore S is a side of exactly two
polyhedrons P and gP of P. As P is I'-equivariant, the same is true for
any side of any polyhedron in P. Thus P is exact.

Conversely, suppose that P is a tessellation of X. Then

(1) the members of {gP° : g € '} are mutually disjoint;
(2) X =U{gP:g€T}; and
(3) the collection P is locally finite.

Hence P° is a a locally finite fundamental domain for I'. Therefore I is
discrete by Theorem 6.5.3 and P is a convex fundamental polyhedron for
the group I.

Now assume that P is exact. Then for each side S of P, there is a g in
I" such that S is a side of gP. Hence S C PNgP. Since PNgP C JP and
S is a maximal convex subset of P, we have that S = PN gP. Thus P is
exact. o



§6.7. Tessellations 253

Definition: A collection P of n-dimension convex polyhedra in X is said to
be connected if and only if for each pair P, Q) in P there is a finite sequence
Py,...,P, in P such that P = P, P, = Q, and F,_; and P, share a
common side for each i > 1.

Theorem 6.7.2. Every exact tessellation of X 1s connected.

Proof: The proof is by induction on the dimension n of X. The theorem
is obviously true when n = 1, so assume that n > 1 and the theorem is
true in dimension n — 1. Let P be an exact tessellation of X and let P be a
polyhedron in P. Let U be the union of all the polyhedra @ in P for which
there is a finite sequence Pi,..., P, in P such that P = P;, P, = @, and
P,_; and P, share a common side for each 4 > 1. Then U is closed in X,
since P is locally finite.

We now show that U is open in X. Let z be a point of U. Choose r such
that 0 < r < /2 and C(z,r) meets only the polyhedra of P containing .
Let @ be a polyhedron in P containing z. Then r is less than the distance
from z to any side of @Q not containing z. By Theorem 6.3.19, the set
QNS(z,7) is an (n—1)-dimensional convex polyhedron in S(z, ); moreover,
if S(x) is the set of sides of Q containing z, then {TNS(xz,r): T € S(z)} is
the set of sides of QN S(z, 7). Therefore P restricts to an exact tessellation
T of S(z,r). By the induction hypothesis, 7 is connected. Consequently,
each polyhedron in P containing z is contained in U. Therefore U contains

B(z,r). Thus U is both open and closed in X. As X is connected, U = X.
Thus P is connected.

a
Theorem 6.7.3. Let P be an exact, convez, fundamental polyhedron for
a discrete group T' of isometries of X. Then T is generated by the set

®={geT:PnNgP is a side of P}.

Proof: By Theorem 6.7.1, we have that P = {gP : g € T'} is an exact
tessellation of X. By Theorem 6.7.2, the tessellation P is connected. Let
g be an arbitrary element of I'. Then there is a finite sequence of elements
g1,---,9m of I' with P = ¢, P, g,,P = gP, and 9.—1P and g¢,P share a
common side for each ¢ > 1. This implies that 91 =1, g, = g, and
P and g, 11 9.P share a common side for each i > 1. We may assume
that g,_1 # g, for each 4 > 1. Then gz__llgZ is in ® for each i > 1. As

g=g1(97 g2)--- (972 19m), we have that ® generates I o

Theorem 6.7.4. If a discrete group T of 1sometries of X has a finste-sided,
exact, conver, fundamental polyhedron P, then T is finitely generated.

Proof: By Theorem 6.6.3, the set of sides S of P is in one-to-one corre-
spondence with the set ® = {g € T': PN gP € S}. Therefore ® is finite
and so I is finitely generated by Theorem 6.7.3. o
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Side-Pairing

Let S be a side of an exact, convex, fundamental polyhedron P for a discrete
group I' of isometries of X. By Theorem 6.6.3, there is a unique element
gs of T" such that

S = PnNgs(P). (6.7.1)

Furthermore S’ = g5'(S) is a side of P. The side S is said to be pasred to
the side S by the element gg of T'. As

S =Pngg'(P)

we have that gss = gg'. Therefore S is paired to S by g5t and §” = S.
The I'-side-pairing of P is defined to be the set

® = {gs: S is a side of P}.

The elements of @ are called the side-pairing transformations of P.

Two points ,2’ of P are said to be paired by ®, written x ~ 2/, if and
only if there is a side S of P such that z isin S, 2’ isin $’, and gg(z') = z.
If gs(z') = =, then gg/(x) = 2’. Therefore z ~ 2’ if and only if &’ ~ z.
Two points z,y of P are said to be related by ®, written 2 ~ y, if either
x = y or there is a finite sequence x4, ..., z,, of points of P such that

)

=21 N Lo Ty = Y.

Being related by @ is obviously an equivalence relation on the set P. The
equivalence classes of P are called the cycles of ®. If z is in P, we denote
the cycle of ® containing z by [z].

Theorem 6.7.5. If P is an exact, convez, fundamental polyhedron for a
discrete group ' of isometries of X, then for each point x of P,

(1) the cycle [z] is finite, and
(2) [z]=PnNTz.

Proof: (1) It is clear from the definition of a cycle that [z] C P NTz.
Hence [z] is finite by Theorem 6.5.9.

(2) Let y be in PNT'z. Then there is an f in I such that y = fx. Hence
z is in f~'P. As P is locally finite, there is an r > 0 such that B(z,r)
meets only finitely many I'-images of P, say g1 P,...,gmP. By shrinking
r, we may assume that z is in g, P for each ¢. By shrinking r still further,
we may assume that r < 7/2 and r is less than the distance from x to any
side of ¢, P not containing x. Now for each ¢, the set g,P N S(z,r) is an
(n — 1)-dimensional convex polyhedron in the sphere S(z,r) by Theorem
6.3.19. Moreover

T={9.PNS(z,r):i=1,...,m}

is an exact tessellation of S(z,r). By Theorem 6.7.2, the tessellation Tlis
connected. Hence, there are elements f1,. .., fr of I such that x isin f, " P
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for each i, and P = f;'P, f~'P = f;'P, and f_,P and f, ' P share a
common side for each ¢ > 1. This implies that f; =1, f; = f, and P and
fio1 fﬁ_lP share a common side S, for each ¢ > 1. We may assume that
i>1and f,_q # f, for each i > 1. Then f,_;f ! = gg, for each i > 1. Let
xy =x and z, = f,x foreach i > 1. As z is in f[lP, we have that f,x is
in P. Hence z, is in P for each i. Now

gs, (xz) = fz—lfz_l(:rz) = fz—lx = Ty—1-

Hence z,_; is in PNgg, (P). Therefore z,_; isin S, and «z, is in S} for each
1 > 1. Hence, we have

=21 2T X XTIy =Y.

Therefore z ~ y. Thus [z] = PN Tz. D

Dihedral Angles

Let P be an n-dimensional convex polyhedron in X. Sides S and T of P
are said to be adjacent if and only if either X = S* and S, T are the sides
of Porn>1and SNT is aside of both S and T. In particular, the one
side of a semicircle in S! is adjacent to itself.

Let 5 and T be sides of P. We now define the dihedral angle 6(S,T) of
P between S and T'. First of all, if S = T, then (S, T) is defined to be 7.
If S and T are distinct, nonadjacent sides of P, then 6(S,T) is defined to
be 0. Now assume that S and T are adjacent. If X = S*, then 6(S,T) is
defined to be the angle between the endpoints of P.

Next assume that n > 1. Then the hyperplanes (S) and (T') subdivide
X into four regions, one of which contains P; moreover,

(S) N (T) = (SNT).

Let z be any point in SNT and let A,z : R — X be geodesic lines such
that

(1) A0) =z = u(0);
(2) X and p are normal to (S) and (T, respectively; and

(3) N(0) and 1/(0) are directed away from the respective half-spaces of
X containing P.

Let a be the angle between A and u at the point . Clearly a does not
depend on the choice of z. The dihedral angle of P between S and T is
defined to be the angle

6(S,T) =7 — o (6.7.2)
See Figure 6.7.1. Note that as 0 < a < 7, we have
0<68(S,T) <.
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0(S,T)
S T

Figure 6.7.1. The dihedral angle 6(S,T) between adjacent sides

In general, we have that
0<0(5,T) <.

The dihedral angle 6(S, T is said to be proper if and only if
0<0(S,T) <.

Note that 6(S,T) is proper if and only if § and T are distinct adjacent
sides of P.

Cycles of Polyhedra

Definition: A cycle of polyhedra in X is a finite set
C: {Po,...,Pm_l}
of n-dimensional convex polyhedra in X such that for each 7 (mod m),

(1) there are adjacent sides S, and S, 11 of P, such that P, NP1 = 5415

m—1

2) > H(Szasz—',-l) = 2m; and

1=0
—1
(3) if n > 1, then R = mQO P, is a side of S, for each <.

See Figure 6.7.2. Note that a collection C of geodesic segments in Slis a
cycle if and only if C is a tessellation of S L

Figure 6.7.2. A cycle of equilateral triangles in E?
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Theorem 6.7.6. Let R be a ridge of a polyhedron P in an exact tessella-
tion P of X. Then the set of all polyhedra in P containing R forms a cycle
whose intersection 1s R.

Proof: Let S be one of the two sides of P containing R. We inductively
define sequences
P07P1,... and S(),Sl,...

such that for each 1,
(1) P, is in P and S, is a side of P,;
(2) Pp=Pand Sy =S;
(3) R is a side of S;;
(4) S, and S,41 are adjacent sides of P,; and
(5) P,NPy1=841.

Now R is contained in only finitely many polyhedra in P, since P is lo-
cally finite. Hence, the sequence {P,} involves only finitely many distinct
polyhedra. Evidently, the terms Py, P, ..., P,_q are distinct if

ko
—_

9(5“5144) S 271'.

o
Il
=]

Hence, the first repetition of the sequence occurs at the first polyhedron
P,, such that

Z 0(5,, Sz+1) > 27.
1=0

Clearly P, intersects the interior of Py and so P, = Py. Hence S, = S,
and

—

0(S,,S141) = 2m.
Now as
R=S8,1n8,4 foreachi,

we have that
-1
R="N P.

1=0
Therefore {P,, ..., P,_1} is a cycle of polyhedra whose intersection is R.
Let @ be any polyhedron in P containing R. Then clearly @ meets
the interior of Ufg)l P,. This implies that () meets the interior of P, for
some ¢, whence Q = P,. Thus {P,,..., P,_1} is the set of polyhedra in P

containing R. o
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Cycle Relations

Let P be an exact, convex, fundamental polyhedron for a discrete group
T' of isometries of X. We next consider certain relations in I" that can be
derived from the ridges and sides of P.

Let R be a side of a side S of P. Define a sequence {S,}22, of sides of
P inductively as follows:

(1) Let Sl = S.
(2) Let S be the side of P adjacent to S} such that gs, (S} N S,) = R.

(3) Let Sy41 be the side of P adjacent to S’ such that
9s,(S.NS,11)=S8_,NnS, foreachi>1.

We call {S,}2; the sequence of sides of P determined by R and S.

Theorem 6.7.7. Let R be a sude of a side S of an exact, convex, fun-
damental polyhedron P for a discrete group T of 1sometries of X, and let
{5}, be the sequence of sides of P determined by R and S. Then there
15 a least positive integer £ and a positive integer k such that

(1) Sy4e =8, for each 1,
(2) 3¢, 05, 8,41) = 27/, and
(3) the element gs,gs, - - gs, has order k.
Proof: Define a sequence {g,}°2, of elements of T" by go = 1 and
9 = 9s,9s, - --9gs, for eachi > 0.
We now prove that {g,P}32, forms a cycle of polyhedra in X. As S; and
S,+1 are adjacent sides of P for each i, we have that ¢,5, and ¢,5,41 are
adjacent sides of ¢, P for each ¢; moreover,
9PN g 1P =g(PNgs, ,P)= 9.5+
and ¢,S,41 = o415, for each i > 1.
Now for each ¢ > 0, we have
6.541 N G4152 = Gu41541 N G142
= Gut1(Si41 N Set2)
G (S: N Sit1)
= 615N GSu1.

Therefore, we have
0 P = 51Ngs,(52) = R
=

By Theorem 6.7.6, there is an integer m > 0 such that {g.P}  is a cycl.e
of polyhedra. Hence g,+mP = g, P for each ¢, and so g,+m = g, for each i.



86.7. Tessellations 259

Now since
Gi-18tm = Getm-15um
Gotm—1P N goym P
= g1 PNgP = g-15,
we find that S,4,, = S, for each i.

Let £ be the least positive integer such that S, = 5, for each ¢. Then
k =m/¢ is a positive integer. As

m
29(915’;,9151-4-1) = 2m,
=1

we have that

14
k> 0(S, 8.11) = 2.
=1

Moreover, as g,, = 1, we have that gf = 1, and since g, #1forl<j<m,
we deduce that & is the order of g,. o

Let R be a side of a side S of an exact, convex, fundamental polyhedron
P for a discrete group I" of isometries of X, and let {S,}2°, be the sequence
of sides of P determined by R and S. By Theorem 6.7.7, there is a least
positive integer £ such that S,;, = S, for each i. The finite sequence
{S,}_, is called the cycle of sides of P determined by R and S. The
element gg, gs, ---gs, of I' is called the cycle transformation of the cycle
of sides {S,}_,. By Theorem 6.7.7, the cycle transformation gg, g, - - - gs,
has finite order k. The relation

(95,95, 9s,)" = 1 (6.7.3)
in I' is called the cycle relation of I" determined by the cycle of sides {5, }¢_;.
For each side S of P, the relation

9sgs: =1 (6.7.4)
is called the siude-pairing relation determined by the side S.
Remark: The cycle relations together with the side-pairing relations form
a complete set of relations for the generators
® = {gs : S is a side of P}

of the group I'; that is, any relation among the generators ® can be derived
from these relations. For a proof, see §13.5.

Example: Let L,S, R be the three sides occurring left to right in the
Dirichlet polygon T for PSL(2,Z) in Figure 6.6.1. Then

gr(2) =2+1 and gg(z) = —1/z.
Hence R = L, §' = S, and L' = R. Observe that {S, R} is a cycle of sides
of T whose cycle transformation gggr has order three. Moreover gs has
order two. The relations (gsgr)® = 1 and g% = 1 form a complete set of
relations for the generators {gg, gr} of PSL(2,7Z).
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Exercise 6.7

1. Let S be a side of an exact, convex, fundamental polyhedron P for I". Show
that S’ = S if and only if gs has order two in I

2. Let {S,}*_, be a cycle of sides of an exact, convex, fundamental polyhedron P
for I". Show that the cycle transformation gs, - - - gg, leaves S;N S, invariant.

3. Furthermore, if X = E™ or H", with n > 1, prove that gs, ---gs, fixes a
point of S; N S;.

4. Let T be the discrete group of isometries of E? generated by the translations
of E? by e; and es. Then P = [0,1)2 is an exact, convex, fundamental

polygon for I'. Find all the cycles of sides of P and the corresponding cycle
relations of T

5. Let P be an exact, convex, fundamental polyhedron for I" with only finitely
many sides. Prove that P has only finitely many cycles of sides.

6. Let R be a ridge of an exact, convex, fundamental polyhedron P for T and
let S and T be the two sides of P such that R = SN T. Let {S,}*_; be the
cycle of sides of P determined by R and S. Show that {S;_, f;é is the cycle
of sides P determined by R and T'. Conclude that the pair consisting of the
cycle transformation gs, - - - gs, and its inverse depends only on R.

7. Let R be a side of a side S of an exact, convex, fundamental polyhedron P
for T' and let R’ be the side of S’ such that gs(R') = R. Let {S,}_; be the
cycle of sides of P determined by R and S. Show that {S2,...,S5¢, 51} is
the cycle of sides of P determined by R’ and S»>. Conclude that the cycle
transformation of {Sz,...,Se, S1} determined by R’ and S; is conjugate in
T" to the cycle transformation of {S,}¢_; determined by R and S.

§6.8. Historical Notes

§6.1. All the essential material in §6.1 appeared in Beltrami’s 1868 papers
Saggro du interpetrazione della geometria non-euclidea [38] and Teorwa fon-
damentale degh spazir di curvatura costante [39]. See also Klein’s 1871-73
paper Ueber die sogenannte Nicht-Euklidische Geometrie [224], [227].

§6.2. Convex curves and surfaces were defined by Archimedes in his
third century B.C. treatise On the sphere and cylinder [23]. Convex sets
in Euclidean n-space were first studied systematically by Minkowski. See,
for example, his 1911 treatise Theorie der konvexen Korper, insbesondere
Begriindung thres Oberflichenbegriffs [295]. The Euclidean versions of The-
orems 6.2.1-6.2.3 were proved by Steinitz in his 1913-16 paper Bedingt kon-
vergente Reihen und konveze Systeme [380], [381], [382]. For a survey of
convexity theory, see Berger’s 1990 article Convezity [42]. References for
the theory of convex sets are Griinbaum’s 1967 text Convex Polytopes [172]
and Brondsted’s 1983 text An Introduction to Convez Polytopes [59].
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§6.3. Convex polyhedra in hyperbolic 3-space were defined by Poincaré
in his 1881 note Sur les groupes kleinéens [329]. General polyhedra in
Euclidean n-space were studied by Klee in his 1959 paper Some characteri-
zations of convex polyhedra [223]. General polyhedra in hyperbolic n-space
were considered by Andreev in his 1970 paper Intersection of plane bound-
ares of a polytope with acute angles [15]. Theorem 6.3.26 appeared in Vin-
berg’s 1967 paper Discrete groups generated by reflections wn Lobacevsku
spaces [397].

§6.4. Euclidean polygons and the regular solids were thoroughly stud-
ied in Euclid’s Elements [118]. General 3-dimensional Euclidean polytopes
were first studied by Descartes in his seventeenth century manuscript De
solidorum elementis [105], which was not published until 1860. General
3-dimensional Euclidean polytopes were studied by Euler in his 1758 pa-
per Elementa doctrinae solidorum [121]. In particular, Euler introduced
the concept of an edge of a polyhedron in this paper. Polytopes in Eu-
clidean n-space and spherical n-space were first studied by Schlafli in his
1852 treatise Theorie der vielfachen Kontinuitat [362], which was published
posthumously in 1901. In particular, Schlafli classified all the regular
Euclidean and spherical polytopes in this treatise. The most important
results of Schléfli’s treatise were published in his 1855 paper Réduction
d’une intégrale multiple, qui comprend Uarc de cercle et Iarre du triangle
sphérique comme cas particuliers [359] and in his 1858-60 paper On the
multiple integral [ dazdy - --dz [360], [361]. Convex polytopes in hyperbolic
n-space were considered by Dehn in his 1905 paper Die Eulersche Formel
wm Zusammenhang mit dem Inhalt in der Nicht-Euklidischen Geometrie
[101]. For a characterization of 3-dimensional hyperbolic polytopes, see
Hodgson, Rivin, and Smith’s 1992 paper A characterization of convex hy-
perbolic polyhedra and of convexr polyhedra inscribed in the sphere [197]
and Hodgson and Rivin’s 1993 paper A characterization of compact convex
polyhedra in hyperbolic 3-space [196]. References for the theory of convex
polytopes are Griinbaum’s 1967 text [172], Coxeter’s 1973 treatise Regular
Polytopes [92], and Brgndsted’s 1983 text [59].

§6.5. The concept of a fundamental region arose in the theory of lattices.
For example, Gauss spoke of an elementary parallelogram of a plane lattice
in his 1831 review [149] of a treatise on quadratic forms. The concept of a
fundamental region for a Fuchsian group was introduced by Poincaré in his
1881 note Sur les fonctions fuchsiennes [327]. See also Klein’s 1883 paper
Neue Beitrige zur Riemannschen Funktionentheorie [233]. Theorem 6.5.5
was essentially proved by Siegel in his 1943 paper Discontinuous groups
[375]. Moreover, the concept of a locally finite fundamental region was in-
troduced by Siegel in this paper. The 2-dimensional version of Theorem
6.5.7 was proved by Klein in his 1883 paper [233]. Theorem 6.5.8 ap-
peared in Beardon’s 1974 paper Fundamental domains for Klewnian groups
[33]. Theorem 6.5.11 was essentially proved by Siegel in his 1943 paper
[375]. The Dirichlet domain of a plane lattice was introduced by Dirichlet
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in his 1850 paper Uber die Reduction der positiven quadratischen Formen
[107]. Theorem 6.5.15 appeared in Busemann’s 1948 paper Spaces with
non-positwe curvature [62]. For the theory of fundamental regions of Fuch-
sian groups, see Beardon’s 1983 text The Geometry of Discrete Groups
[34].

§6.6. According to Klein’s historical study Development of Mathematics
in the 19th Century [238], Gauss determined the fundamental polygon for
the elliptic modular group in Figure 6.6.1. This fundamental polygon was
described by Dedekind in his 1877 paper Schreiben an Herrn Borchardt
tber die Theore der elliptischen Modulfunktionen [100]. The term funda-
mental polygon was introduced by Klein for certain subgroups of the elliptic
modular group in his 1879 paper Ueber die Transformation der elliptischen
Functionen [231]. The notion of a fundamental polygon was extended to
all Fuchsian groups by Poincaré in his 1881 note [327]. See also Dyck’s
1882 paper Gruppentheoretische Studien [111]. Fundamental polyhedra for
Kleinian groups were introduced by Poincaré in his 1881 note [329]. The
2-dimensional version of Theorem 6.6.1 was proved by Beardon in his 1983
text [34]. Theorem 6.6.1 for dimension n > 2 seems to be new.

§6.7. The three regular tessellations of the plane were discovered by
the Pythagoreans according to Heath’s 1921 treatise A History of Greek
Mathematics [186]. The five regular tessellations of the sphere were de-
scribed by Abu I-Wafa in the 10th century according to a manuscript re-
ported by Woepcke in his 1855 article Recherches sur [’histoire des sciences
mathématics chez les orientauz, d’apreés des traités médits arabes et per-
sans [415]. For the classification of the regular tessellations of §, E™, and
H™, see Coxeter’s 1973 treatise Regular Polytopes [92] and Coxeter’s 1956
paper Regular honeycombs wn hyperbolic space [90]. The general notion of
a tessellation of the hyperbolic plane generated by a fundamental poly-
gon appeared in Poincaré’s 1881 note [327]. The concepts of side-pairing
transformation and cycle of vertices determined by a fundamental polygon
for a Fuchsian group were introduced by Poincaré in his 1881 note Sur les
fonctions fuchsiennes [328]. See also his 1882 paper Théorie des groupes
fuchsiens [330]. Tessellations of hyperbolic space generated by a funda-
mental polyhedron were considered by Poincaré in his 1883 Mémoure sur
les groupes klemnéens [332].



CHAPTER 7

Classical Discrete Groups

In this chapter, we study classical discrete groups of isometries of S™, E™,
and H™. We begin with the theory of discrete reflection groups. In Section
7.4, we study the theory of crystallographic groups. The chapter ends with
a proof of Selberg’s lemma.

§7.1. Reflection Groups
Throughout this section, X = 8™, E™, or H™ with n > 0.

Lemma 1. Let z be a point inside a horosphere Y2 of H™. Then the shortest
distance from x to X is along the umque hyperbolic line passing through x
Lorentz orthogonal to X.

Proof: We pass to the conformal ball model B™ of hyperbolic space and
move z to the origin. Then the shortest distance from 0 to X is obviously
along the unique diameter of B™ orthogonal to ¥. See Figure 7.1.1. o

/
1

Figure 7.1.1. The shortest distance d from the origin to a horocycle of B?

263
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Let S be a side of an n-dimensional convex polyhedron P in X. The
reflection of X in the side S of P is the reflection of X in the hyperplane
(S) spanned by S.

Theorem 7.1.1. Let G be the group generated by the reflections of X in
the sides of a finite-sided, n-dimensional, convex polyhedron P in X of
finite volume. Then

X =U{gP:g€G}.

Proof: The proof is by induction on the dimension n. The theorem is
obviously true when n = 1, so assume that n > 1 and the theorem is true
in dimension n — 1. Let = be a point of P and let G(x) be the subgroup
of G generated by all the reflections of X in the sides of P that contain
z. Let r(z) be a real number such that 0 < 7(z) < 7/2 and the ball
C(z,r(x)) meets only the sides of P containing z. By Theorem 6.3.19,
the set P N S(x,r(z)) is an (n — 1)-dimensional, convex polyhedron in the
sphere S(z,7(z)). From the induction hypothesis, we have

S(z,r(z)) = U{g(PNS(z,7(z)) : g € G(z)}.
Now since P is convex, we deduce that
B(z,r(z)) CU{gP:g € G(z)}.

By Theorems 6.3.25 and 6.3.26, the polyhedron P has only finitely many
ideal vertices, say v, ...,Un. For each i, let B, be a horoball based at v,
such that B, meets only the sides of P incident with v,. For each i, let G,
be the subgroup of G generated by all the reflections of X in the sides of P
that are incident with v,. By Theorem 6.3.23, the set PNJB, is a compact,
Euclidean, (n — 1)-dimensional, convex polyhedron in the horosphere 0B,.
We deduce from the induction hypothesis that

B, cU{gP: g€ G,}.
By Lemma 1, there is a horoball B, based at v, such that B; C B, and
dist(B!,0B,) = 1 for each 4. Set
Py=P- U B..
1=1
Then P, is compact by Theorem 6.3.26. Let £ > 0 be a Lebesgue number
for the open cover {B(z,r(z)) : € Py} of Py such that £ < 1. Let
U=U{gP:g€G}.
We claim that N(P,£) C U. Observe that N(Fo,£) C U. Let z be a point
of PN B]. Then we have
B(z,f)c B, CcU.

Hence N(B!,£) C U for each i. Therefore N(P,£) C U as claimed. Now as
U is G-equivariant, we deduce that N(gP,¢) C U for each g in G. Therefore
N(U,¢) cU,andso U = X. o
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Let P be an exact, convex, fundamental polyhedron for a discrete group
T of isometries of X. Then for each side S of P, there is a unique element
gs of I such that
S = Pngs(P).

The group T is defined to be a discrete reflection group, with respect to
the polyhedron P, if and only if gg is the reflection of X in the hyperplane
(S) for each side S of P.

Definition: An angle « is a submultiple of an angle 3 if and only if there
is a positive integer k such that o = 8/k or a = /00 = 0.

Theorem 7.1.2. Let T' be a discrete reflection group with respect to the
polyhedron P. Then all the dihedral angles of P are submultiples of «;
moreover, if gs and gr are the reflections wn adjacent sides S and T of P,
and 0(S,T) = n/k, then gsgr has order k in T.

Proof: Let S,T be adjacent sides of P. Then {5, T} is a cycle of sides of
P. By Theorem 6.7.7, there is a positive integer k such that

20(S,T) = 2n/k

and the element gggr has order k in T. o

Theorem 7.1.3. Let P be a finte-sided, n-dvmensional, convez polyhedron
in X of finite volume all of whose dihedral angles are submultiples of .
Then the group T' generated by the reflections of X in the sides of P is a
discrete reflection group with respect to the polyhedron P.

Proof: (1) The proof is by induction on n. The theorem is obviously true
when n = 1, so assume that n > 1 and the theorem is true in dimension
n—1. The idea of the proof is to construct a topological space X for which
the theorem is obviously true, and then to show that X is homeomorphic
to X by a covering space argument.

(2) Let ' X P be the cartesian product of ' and P. We topologize I' x P
by giving I' the discrete topology and T’ x P the product topology. Then
I’ x P is the topological sum of the subspaces

{{g}xP:geF}.

Moreover, the mapping (g, ) — gz is a homeomorphism of {g} x P onto
gP for each g in T

(3) Let S be the set of sides of P and for each S in S, let gs be the
reflection of X in the side S of P. Let ® = {gs : S € S}. Two points (g, z)
and (h,y) of T' x P are said to be paired by ®, written (9,2) ~ (h,y), if
and only if g7'h is in ® and gz = hy. Suppose that (9,x) ~ (h,y). Then
there is a side S of P such that g=*h = gg. As gg' = gs, we have that
(h,y) =~ (g, ). Furthermore z is in PN gs(P) =S, and so z = ggz = y.
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Two points (g,z) and (h,y) of ' x P are said to be related by ®, written
(9,x) ~ (h,y), if and only if there is a finite sequence, (go, Zo), - - - , (gk, Tk),
of points of I' x P such that (g,z) = (g0, %0), (gk,zx) = (h,y), and

(-1, %-1) = (Go,x,) fori=1,... k.

Being related by @ is obviously an equivalence relation on I' x P; moreover,
if (g,2) ~ (h,y), then = y. Let [g,z] be the equivalence class of (g, z)
and let X be the quotient space of I" X P of equivalence classes.

(4) I (g,2) =~ (h,z), then obviously (fg,z) ~ (fh,z) for each f in T
Hence T' acts on X by flg,z] = [fg,x]. For a subset A of P, set

[A] = {[1,2] : x € A}.

Then if g is in ', we have
gl4] = {[g,:v] NS A}.
If (g,z) is in I' x P°, then [g,z] = {(g,z)}. Consequently, the members of

{g[P°] : g € T} are mutually disjoint in X,

(5) We now show that X is connected. Let i : T'x P — X be the quotient
map. As 7 maps {g} x P onto g[P], we have that g[P] is connected. In
view of the fact that

X =U{g[P]: g €T},

it suffices to show that for any g in T', there is a finite sequence g, ..., gk
in T such that [P] = go[P], gx[P] = g|P], and g, 1[P] and g¢,[P)] intersect
for each ¢ > 0. As I is generated by the elements of ®, there are sides S, of
P such that g = gs, -+ ¢gs,. Let go =1and g, =gs, ---gs, fori=1,... k.
Now as

S, = POQSI(‘P)a

we have that
[S.] C [P] N gs,[P].

Therefore, we have
gz—l[Sz] C gz—l[P] ngz[P]-

Thus X is connected.

(6) Let = be a point of P, let S(x) be the set of all the sides of P
containing z, and let I'(x) be the subgroup of I" generated by the elements
of {gs : S € S(x)}. We now show that I'(x) is finite. Let r be a real number
such that 0 < r < m/2 and 7 is less than the distance from x to any side
of P not containing z. By Theorem 6.3.19, we have that P N S(z,r) is an
(n — 1)-dimensional convex polyhedron in the sphere S(z,r) and

{TNS(z,r): T € S(x)}

is the set of sides of P N S(x,r). Clearly PN S(z,r) is compact and all
the dihedral angles of P N S(z,r) are submultiples of 7. By the induction
hypothesis, I'(x) restricts to a discrete reflection group with respect to
PN S(z,r). Hence I'(z) is finite, since S(z,r) is compact.
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(7) We next show that

[1,2] = {(g,2) : g € T(2)}.
Let (g,z) be in [1,z]. Then there is a sequence go,...,gx in I' such that
(1,2z) = (g0, 2), (9x,2) = (g9, %), and (g,—1, ) =~ (g,, ) for all ¢ > 0. Hence
g,x = z for all i and there is a side S, in S(x) such that g, = ¢g,—19s, for
i=1,...,k. Therefore g = gg, - -- gs,. Thus g is in I'(z). Consequently

[1,z] C {(g,:c) 1g € F(m)}

Now let g be an element of I'(x). Since I'(z) is generated by the set
{gs : S € S(z)}, there are sides S, in S{x) such that g = gg, - - gs,. Let
go=1and g, = gg,---gs, for ¢ = 1,... k. Then g, is in T'(z) for all
i. As g ' g, = gs,, we have that (g,_1,%) =~ (g,,z) for all i > 0. Hence
(1,z) ~ (g,z). Thus

[1,2] = {(g,2) : g € ()}
(8) For each point z of P and real number r as in (6), define

B(m,r) = g[P N B(z,r)].

U
g€l ()
Suppose that g is in I'(z) and y is P N B(z, ). Then S(y) C S(z), and so
I'(y) Cc I'(x). As

[yl ={(hy) - h € T(y)}.
we have that
l9,9] = {(gh,y) : L€ T(y)}.

Consequently

T (Bar) = U {g}x (PN B,7)).
ger(z)
Hence B(x,r) is an open neighborhood of [1,2] in X; moreover B(z,r)
intersects g[P] if and only if g is in I'(z).
(9) Let £ : X — X be the map defined by x[g, z] = gz. We now show
that £ maps B(z,r) onto B(x,r). By Theorem 6.7.1, we have that

{gPNS(z,r): g €T(x)}

is a tessellation of S(z,r). Consequently, the members of
{gP° N B(z,r): g € T(z)}

are mutually disjoint and

B(x,r) = (gPﬂB(:v,r)).

U
g€l(z)
Now as x maps g[P N B(x,r)] onto gP N B(z,r) for each g in I'(x), we have
that £ maps B(x,r) onto B(z,r).

(10) We now show that « maps B(z, ) injectively into B(z,r). Let g, h
be in I'(z), let y,z be in P N B(x,r), and suppose that «[g,y] = |k, 2].
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Then gy = hz. Hence P and g~ 'hP intersect at y = g~ 'hz. As y is in
PN B(xz,r), we have that I'(y) C T'(z). Now there is an s > 0 such that

B(y,s) C B(z,7),

and
B(yas) :feLl'J‘(y)(meB(y’S))

Hence g=*hP N B(y, s) intersects fP° N B(y,s) for some f in I'(y). But
the members of

{fP°NB(x,r): feT(x)}
are mutually disjoint. Therefore g~'h = f for some f in I'(y). Hence

y=fly=hTlgy==z
and
l9,9] = g1, 9] = glg™"h, 9] = [h, 9] = [h, 2].
Thus & maps B(z,r) bijectively onto B(z,7).
(11) We now show that x maps B(z,r) homeomorphically onto B(z,).
Let g be in I'(z). As xn maps {g} x PN B(z,r) homeomorphically onto

gP N B(z,r), we have that x maps g[P N B(z,r)] homeomorphically onto
gP N B(x,r). Now since

B(z,r) ge%J(z)(gP N Bz, 7")),
and each set gP N B(z,r) is closed in B(z,r), and I'(x) is finite, we deduce
that x maps B (z,7) homeomorphically onto B(z,r).

(12) Now let g be an element of I Then left multiplication by g is a
homeomorphism of X, since left multiplication by g is a homeomor~phism
of I' x P. Hence gB(m r) is an open neighborhood of [g,z] in X. As
k(gB(z,r)) = gk(B(z,r)), we have that k maps gB(z,r) homeomorphi-
cally onto B(gz,r). Thus & is a local homeomorphism.

(13) We now show that X is Hausdorff. Let

[g,x] = {(91,93),~--,(gk,$)},
h,yl = {(h1,9),-.,(he;y)}

be distinct points of X. Then they are disjoint subsets of I' x P. Now
choose 7 as before so that x maps B(x,r) homeomorphically onto B(z,)
and x maps B(y, r) homeomorphically onto B(y,r). We may choose r small
enough so that the sets

77_1(93(% T)) -

n ' (hB(y,r)) =

are disjoint in I'x P, since if g, # hj, then {g,} x P and {h, } x P are disjoint;
while if z # y, we can choose r small enough so that B(z, r) and B(y,r)

{9} x (PN B(z,1),
1

hy} x (PN B(y,r))

|| Ce H C=
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are disjoint. Therefore gB(z,) and hB (y,r) are disjoint neighborhoods of
[g, 2] and [h,y], respectively, in X. Thus X is Hausdorff.

(14) Let v be an ideal vertex of P, let S(v) be the set of all the sides
of P incident with v, and let I'(v) be the subgroup of I' generated by the
set {gs : S € S(v)}. Let B be a horoball based at v such that B meets
only the sides in S(v). Then PN AB is an (n — 1)-dimensional, Euclidean,
convex polyhedron in the horosphere 9B and

{SNdB:S5eSv)}

is the set of sides of PNJB. Clearly PNJB is compact and all the dihedral
angles of PN B are submultiples of 7. By the induction hypothesis, I'(v)
restricts to a discrete reflection group with respect to P N dB.

(15) Define

B= U g4[PnB.
S (U)g[ ]

By the same argument as in (8), we have

ﬁ*(3)=:er({g} (PN B)

Hence B is an open subset of X, and B intersects g[P] if and only if g is
in I'(v). By the same arguments as in (9) and (10), x maps B bijectively
onto B. As x is an open map, x maps B homeomorphically onto B.

(16) Let vq, ..., vy, be the ideal vertices of P and for each i, let B, be a
horoball based at v, such that B, meets only the sides of P incident with v,.
Let B; be the horoball based at v, such that B, C B, and dist(B!,8B,) = 1
Now set

m
Py=P - EJB:

Then Py is compact. Let = be a point of P. Choose r(z) > 0 as before
so that k maps B(z,7(z)) homeomorphically onto B(z,r(z)). As Py is
compact, the open covering {B(z,7(z)) : ¢ € Py} of Py has a Lebesgue
number £ such that 0 < ¢ < 1. If z is in Py, let y be a point of Py such
that B(z,¢) C B(y,r(y)), and let B(z) be the subset of B(y,r(y)) that is
mapped onto B(z,£) by k. If z is in B!, let B(z) be the subset of B, that
is mapped onto B(z,£) by k. Then B(z ) is an open neighborhood of [1, z]
in X that is mapped homeomorphically onto B(z, ) by k. Moreover, if ¢
is in T, then gB(z) is an open neighborhood of [9,] in X that is mapped
homeomorphlcally onto B(gz,£) by k. Thus, if y is in the image of «, then
B(y,{) is in the image of . Therefore & is surjective.

(17) Next, let o : [a,b] — X be a geodesic arc from y to z such that
la| < £ and suppose that x[g,z] = y. We now show that a lifts to a
unique curve & : [a,b] — X such that &(a) = [g, z]. Now as k maps gB(x)
homeomorphically onto B(gz, ¢), the map « lifts to a curve & : [a,b] — X
such that &(a) = [g,2] and a([a,d]) C gB(z). Suppose that & : [a,b] — X
is a different lift of o starting at [g, z]. Then &~ (gB (z)) is a proper open
neighborhood of a in [a, b], since & is continuous and not equal to é&. Let ¢
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be the first point of [a, b] not in this neighborhood. Then &(t) # &(t). As
X is Hausdorff, there are disjoint open neighborhoods U and V of &(¢) and
é(t), respectively. Choose s < t in the open neighborhood a=1(U)Na~1 (V)
of t. Then &(s) is in gB(z) and so must be equal to @&(s). As U and V are
disjoint, we have a contradiction. Therefore, the lift & is unique.

(18) We now show that x : X — X is a covering projection. Let z be
a point of X. We will show that B(z,¥) is evenly covered by . Since s
is surjective, there is a point [g,x] of X such that s[g,z] = z. Then &
maps the open neighborhood gB () of [g,x] in X homeomorphically onto
B(z,£). Next, suppose that [h,y] # [g,z] and «[h,y] = 2. We claim that
gB(z) and hB(y) are disjoint. On the contrary, suppose that [f,w] is in
gB(xz) N hB(y). Let o : [a,b] — X be a geodesic arc from z to fw. As
Jw is in B(z,£), we have that |a| < £. Hence « lifts to unique curves
&1,6 : [a,b] — X starting at [g,z] and [h,y], respectively. Both &; and
d end at [f,w], since [f,w] is the only point in gB(z) and in hB(y) that
is mapped to fw by k. By the uniqueness of the lift of o' starting at
[f,w], we have that [g,a] = [h,y], which is a contradiction. Hence gB(z)
and hB(y) are disjoint, and so B(z,£) is evenly covered by k. Thus & is a
covering projection.

(19) Now & : X — X is a homeomorphism, since X is simply connected
and X is connected. Therefore, the members of {gP° : g € T'} are mutually
disjoint, since the members of {g[P°]: g € '} are mutually disjoint; and

X = UgP:geTl},

since we have

X
(20) We now show that

U{glP]: g €T}

P={gP:gel}

is locally finite. Let y be an arbitrary point of X. Then there is a unique
element [f,x] of X such that s[f,z] = y. Let r be such that 0 < r < 7/2
and 7 is less than the distance from any side of P not containing z. Then
the open neighborhood fB(x,r) of [f, ] intersects g[P] if and only if ftg
is in T'(z). Hence, the set

R(fB(IJ‘)) = B(fx,r) = B(y,T‘)

intersects gP if and only if f~1g is in I'(z). As I'(z) is finite, we have that
B(y,r) meets only finitely many members of P. Thus P is locally finite.
(21) If ¢S is any side of gP, then ¢S is also a side of ggsP, and since

gPNggsP = g5,

we have that gP and ggsP are the only polyhedra of P containing gS as a
side. Thus P is an exact tessellation of X. Therefore I is discrete and P is
an exact, convex, fundamental polyhedron for T' by Theorem 6.7.1. Thus
I' is a discrete reflection group with respect to the polyhedron P. o
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Example 1. Let
P={zeS":2,>0 fori=1,...,n+ 1}

Then P is a regular n-simplex in S™ whose dihedral angle is 7/2. Therefore,
the group I" generated by the reflections in the sides of P is a discrete reflec-
tion group with respect to P by Theorem 7.1.3. Obviously, the tessellation
{gP : g € T} of S™ contains 2"*! simplices, and so I' has order 271, It
is worth noting that the vertices of the regular tessellation {gP : g € I'} of
S™ are the vertices of an (n + 1)-dimensional, Euclidean, regular, polytope
inscribed in S™.

Example 2. Let P be an n-cube in £™. Then P is a regular polytope in
E™ whose dihedral angle is 7/2. Therefore, the group I' generated by the
reflections in the sides of P is a discrete reflection group with respect to P
by Theorem 7.1.3.

Example 3. Form a cycle of hyperbolic triangles by reflecting in the
sides of a 30° — 45° hyperbolic right triangle, always keeping the vertex at
the 30° angle fixed. As 30° = 360°/12, there are 12 triangles in this cycle,
and their union is a hyperbolic regular hexagon P whose dihedral angle is
90°. See Figure 7.1.2. Let I" be the group generated by the reflections in
the sides of P. Then I' is a discrete reflection group with respect to P by
Theorem 7.1.3.

/ \

N

Figure 7.1.2. A cycle of twelve 30° - 45° hyperbolic right triangles
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Example 4. Let D(r) be a regular dodecahedron inscribed on the sphere
S(0,7) in E® with 0 < r < 1. Then D(r) is a hyperbolic regular dodecahe-
dron in the projective disk model D3 of hyperbolic 3-space. Let 6(r) be the
hyperbolic dihedral angle of D(r). When r is small, §(r) is approximately
equal to but less than the value of the dihedral angle of a Euclidean regular
dodecahedron #(0), which is approximately 116.6°. As r increases to 1, the
angle 6(r) decreases continuously to its limiting value 6(1), the dihedral
angle of a regular ideal dodecahedron in D3. See Figure 7.1.3.

Figure 7.1.3. Four views of an expanding, hyperbolic, regular, dodecahedron
centered at the origin in the conformal ball model of hyperbolic 3-space
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Figure 7.1.4. A regular ideal dodecahedron in U 3 with a vertex at oo

To find the value of §(1), we consider a regular ideal dodecahedron in
the upper half-space model U? of hyperbolic 3-space with an ideal vertex
at oc. Since the dodecahedron is regular, the link of the ideal vertex at co
is an equilateral triangle. Therefore (1) = 60°. See Figure 7.1.4.

Now as 0(r) is a continuous function of r, taking values in the interval
[6(1), 8(0)], there is a unique value of r such that 6(r) = 90°. Let P = D(r)
for this 7. Then P is a hyperbolic regular dodecahedron whose dihedral
angle is 7/2. Let T" be the group generated by the reflections in the sides

of P. Then T is a discrete reflection group with respect to P by Theorem
7.1.3.

Example 5. By the previous discussion, a regular ideal dodecahedron
P in H3 has dihedral angle 7/3. Let T' be the group generated by the
reflections in the sides of P. Then I is a discrete reflection group with
respect to P by Theorem 7.1.3.

Example 6. The 24 points te,, fori = 1,2, 3,4, and (:I:%, :I:%, :I:%, :I:%) of
53 are the vertices of a regular 24-cell in E*. Let P be the corresponding
regular ideal 24-cell in B%. The link of an ideal vertex of P is a cube.
Therefore, the dihedral angle of P is m/2. Let T" be the group generated by
the reflections in the sides of P. Then I is a discrete reflection group with
respect to P by Theorem 7.1.3.
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Let I" be a discrete reflection group with respect to a polyhedron P. Then
all the dihedral angles of P are submultiples of m by Theorem 7.1.2. Let
{S.} be the sides of P and for each pair of indices i, j, let k., = 7/6(S,, S,).
Let F' be the group freely generated by the symbols {S,} and let gg, be the
reflection of X in the hyperplane (S,). Then the map ¢ : F — I, defined
by #(S,) = gs,, is an epimorphism. By Theorem 7.1.2, the kernel of ¢
contains the words (S,S,)¥ whenever k,, is finite.

Let G be the quotient of F by the normal closure of the words

{(S.8,)% : ke, is finite}.

Then ¢ induces an epimorphism v : G — I'. We shall prove that 1 is an
isomorphism when P has finitely many sides and finite volume. This fact
is usually expressed by saying that

CHEERLD

is a group presentation for I' under the mapping S, — gs,. Here it is
understood that (5,5,)*4 is to be deleted when k., = oo.

Theorem 7.1.4. Let ' be a discrete reflection group with respect to a
finite-sided polyhedron P wn X of finite volume. Let {S,} be the set of
sides of P and for each pair of induces i, j, let k,; = 7/60(S,,S,). Then

(Sl? (SlS])k”)

s a group presentation for I' under the mapping S, — g¢s, .

Proof: The proof follows the same outline as the proof of Theorem 7.1.3,
and so only the necessary alterations will be given. The start of the in-
duction requires proof. If n = 1, then P is a geodesic segment and I' is
obviously a dihedral group of order 2k;2. It is then an exercise in group
presentations to show that I' has the presentation

(S1,S2; 5%, 53, (S152)%12).

The main alteration in the proof of Theorem 7.1.3 is to replace I' by G
in the construction of the covering space X. Everything goes through as
before except where the induction hypothesis is used in steps (6) and (14).
Here one draws the additional conclusion that I'(z) has the presentation

(S, € S(2);(5.9,)"9).

Since the subgroup G(z) of G generated by the set {S, : S, € S(x)} satisfies
the same relations and maps onto I'(z), we deduce that G(x) has the same
presentation. In particular, the mapping S, — gs, induces an isomorphism
from G(z) onto T'(z). Now everything goes through as before. The final
conclusion is that the mapping S, — gs, induces an isomorphism from G
to T o
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Coxeter Groups

Definition: A Coxeter group G is an abstract group defined by a group
presentation of the form (S,; (S,9,)%), where

1) the indices 4, j vary over some countable indexing set Z;

(

(2) the exponent k,, is either a positive integer or oo for each 1, j;
(3) kuy = kps
(4) k,, =1 for each 3;

(5) ky > 1ifi+#j; and

(6) if k,, = oo, then the relator (S,S,) is deleted.

Note that if ¢ # j, then the relator (S,S,)* is derivable from the relators
S2, SJ2, and (S5,5,)%; and therefore only one of the relators (S,8,)k and
(S,8,)Fs is required and the other may be deleted.
Let G = (8,1 € Z;(5,5,)%) be a Coxeter group. The Cozeter graph of
G is the labeled graph with vertices Z and edges
{(4,7) : kyy > 2}.

Each edge (4, ) is labeled by k,,. For simplicity, the edges with k,, = 3 are
usually not labeled in a representation of a Coxeter graph.

Example 7. The Coxeter group G = ($1;5%) is a cyclic group of order
two. Its Coxeter graph is a single vertex.

Example 8. The Coxeter group G(k) = (Si,Ss; 57,53, (S152)F) is a
dihedral group of order 2k. Its Coxeter graph, when k > 2, is a single edge
with the label k.

Let T" be a discrete reflection group with respect to a finite-sided poly-
hedron P of finite volume. Let {S,} be the set of sides of P, and for each
pair of indices ¢, j, let k,; = 7/0(S,, S,). Then the Coxeter group

G=(S; (stj)k”)
is isomorphic to I" by Theorem 7.1.4. Thus T is a Coxeter group.
Example 9. Let I' be the group generated by the reflections in the sides
of a rectangle P in E2. By Theorem 7.1.4, the group I" has the presentation
(51,52, 83,84;52,(8,8,41)% i mod 4).
The Coxeter graph of T consiéts of two disjoint edges labeled by oo.
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A Coxeter group G is said to be irreducible or reducible according as its
Coxeter graph is connected or disconnected. We leave it as an exercise to
show that a reducible Coxeter group is the direct product of the irreducible
Coxeter groups represented by the connected components of its graph. For
example, the discrete reflection group in Example 9 is the direct product of
the two infinite dihedral groups (S1, S3;5%, 82) and (S2,S4; 52, 52). This
is not surprising, since a rectangle in E? is the cartesian product of two line
segments. In general, the geometric basis for the direct product decompo-

sition of a reducible discrete reflection group is the fact that orthogonal
reflections commute.

Exercise 7.1

1. Let I" be a discrete reflection group with respect to a polyhedron P. Prove
that P is the Dirichlet polyhedron for I" with center any point of P°.

2. Let I be a discrete reflection group with respect to a polyhedron P. Prove
that X/T" is isometric to P.

3. Let I' be the group generated by two reflections of E' about the endpoints
of a line segment. Show that T has the presentation (S,7; 5%, T?).

4. Let k be a positive integer or co. Prove that the element ST generates a
cyclic normal subgroup of order k£ and index 2 in the dihedral group

G(k) = (S,T;8%,T?,(ST)*).

Interpret this fact geometrically in terms of reflections of S* or E!.

5. Prove that a reducible Coxeter group G is the direct product of the ir-
reducible Coxeter groups represented by the connected components of the
Coxeter graph of G.

6. Prove that the group I' in Example 1 is an elementary 2-group of rank n+ 1.
7. Show that the Coxeter graph of the group I in Example 3 is connected.

8. Let P be an n-dimensional convex polyhedron in S™ all of whose dihedral
angles are submultiples of m. Prove that P has at most n + 1 sides.

9. Let P be an n-dimensional convex polyhedron in E™ all of whose dihedral
angles are submultiples of w. Prove that P has at most 2n sides.

10. Let I be a discrete reflection group with respect to a finite-sided polyhedron
P in X of finite volume and let S and T be distinct nonadjacent sides of P.
Prove that the element gsgr has infinite order in T'.

11. Prove that Theorem 7.1.1 is still true without the hypothesis that P has
finite volume.

12. Prove that Theorem 7.1.3 is still true without the hypothesis that P has
finite volume.

13. Prove that Theorem 7.1.4 is still true without the hypothesis that P has
finite volume.
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§7.2. Simplex Reflection Groups

Throughout this section, X = S™ E™, or H™ with n > 0. Let A be an
n-simplex in X all of whose dihedral angles are submultiples of 7. By
Theorem 7.1.3, the group I' generated by the reflections of X in the sides
of A is a discrete group of isometries of X. The group I' is called an
n-simplex reflection group.

We shall also include the case of a 0-simplex A in S%. We regard the
antipodal map a of S° to be a reflection of S°. Since {A,a(A)} is a
tessellation of S°, we also call the group I' generated by «, a 0-simplex
reflection group. The Coxeter graph of I" is defined to be a single vertex.

Assume that n = 1. Then A is a geodesic segment in X. Clearly I is a
dihedral group of order 2k, with k > 1, where m/k is the angle of A. The
Coxeter graph of ' is either two vertices if & = 2 or an edge labeled by k if
k> 2. If X = S1, then k is finite, whereas if X = E! or H', then k = cc.

Assume that n = 2. Then there are integers a,b,c, with 2 < a < b < ¢,
such that A is a triangle T'(a,b,c) in X whose angles are 7/a, 7/b, 7/c.
Note that T'(a, b, ¢) is determined up to similarity in X by the integers a, b, c.
The group I' generated by the reflections in the sides of T'(a, b, ¢) is denoted
by G(a,b,c). Let Go(a,b,c) be the subgroup of G(a,b,c) of orientation
preserving isometries. Then Gg(a,b,c) has index two in G(a,b,c). The
group Go(a,b,c) is called a triangle group, whereas G(a, b, ¢) is called a
triangle reflection group.

Spherical Triangle Reflection Groups

Assume that X = S2. By Theorem 2.5.1, we have

T wT™ w
-+ -+ —=—>m
a b ¢
Hence, the integers a, b, c satisfy the inequality
1 1 1
-+ -4+->1
a b ¢
There are an infinite number of solutions of the form
1 + L + L >1
2 2 ¢ ’
and only three more solutions,
1 1 1 1 1 1 1 1 1
c+=-+->1, -+ 4= -4+ =+ = .
27373 33Ty b gt3z+g>1

The Coxeter graph of the group G(2,2,2) consists of three vertices, and
so G(2,2,2) is an elementary 2-group of order 8. The Coxeter graph of
G(2,2,c¢), for ¢ > 2, is the disjoint union of a vertex and an edge labeled
by c. Hence G(2,2,c¢) is the direct product of a group of order 2 and a
dihedral group of order 2¢. Thus G (2,2, ¢) has order 4c. The tessellation of
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52 generated by reflecting in the sides of 7'(2,2,5) is illustrated in Figure
7.2.1(a).
By Theorem 2.5.5, the area of T'(2,3,3) is

E+7T+7T_ _7T
27373 775

As the area of S? is 4, the tessellation
{97(2,3,3) : g € G(2,3,3)}

contains 24 triangles, and so G(2,3,3) has order 24. The tessellation can
be partitioned into 4 cycles, each consisting of 6 triangles cycling about
a 60° vertex. The union of each of these cycles is a spherical equilateral
triangle. See Figure 7.2.1(b). This gives a regular tessellation of S? by 4
equilateral triangles. It is clear from the geometry of these two tessella-
tions that G(2,3,3) is the group of symmetries of the regular tetrahedron
inscribed in $? with its vertices at the corners of the 4 equilateral trian-
gles. Consequently G(2,3,3) is a symmetric group on four letters. The
triangle group Go(2,3,3) is an alternating group on four letters called the
tetrahedral group. The Coxeter graph of G(2,3,3) is

r—o—@

The area of T'(2,3,4) is w/12. Therefore, the tessellation
{97'(2,3,4) : g € G(2,3,4)}

contains 48 triangles, and so G(2,3,4) has order 48. The tessellation can
be partitioned into 6 cycles, each consisting of 8 triangles cycling about
a 45° vertex. The union of each of these cycles is a spherical regular
quadrilateral. See Figure 7.2.1(c). This gives a regular tessellation of S?
by 6 quadrilaterals. It is clear from the geometry of these two tessellations
that G(2,3,4) is the group of symmetries of the cube inscribed in .S 2 with
its vertices at the corners of the 6 quadrilaterals. The above tessellation of
52 by 48 triangles can also be partitioned into 8 cycles, each consisting
of 6 triangles cycling about a 60° vertex. The union of each of these
cycles is a spherical equilateral triangle. See Figure 7.2.1(c). This gives
a regular tessellation of S? by 8 equilateral triangles. It is clear from the
geometry of these two tessellations that G(2, 3, 4) is the group of symmetries
of the regular octahedron inscribed in S 2 with its vertices at the corners of
the 8 equilateral triangles. Now since a regular octahedron is antipodally
symmetric, we have

G(2,3,4) = {£1} x Go(2,3,4).
The triangle group Go(2,3,4) is a symmetric group on four letters called
the octahedral group. The Coxeter graph of G(2,3,4) is
4

r——©
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The area of T(2,3,5) is m/30. Therefore, the tessellation
{97(2,3,5) : g € G(2,3,5)}

contains 120 triangles, and so G(2,3,5) has order 120. The tessellation
can be partitioned into 12 cycles, each consisting of 10 triangles cycling
about a 36° vertex. The union of each of these cycles is a spherical regular
pentagon. See Figure 7.2.1(d). This gives a regular tessellation of S? by
12 pentagons. It is clear from the geometry of these two tessellations that
G(2,3,5) is the group of symmetries of the regular dodecahedron inscribed
in 8% with its vertices at the corners of the 12 pentagons. The above
tessellation of S? by 120 triangles can also be partitioned into 20 cycles,
each consisting of 6 triangles cycling about a 60° vertex. The union of
each of these cycles is a spherical equilateral triangle. See Figure 7.2.1(d).
This gives a regular tessellation of $% by 20 equilateral triangles. It is clear
from the geometry of these two tessellations that G(2,3,5) is the group of
symmetries of the regular icosahedron inscribed in $? with its vertices at
the corners of the 20 equilateral triangles. Now since a regular icosahedron
is antipodally symmetric, we have

G(2,3,5) = {1} x Go(2,3,5).

The triangle group Go(2,3,5) is an alternating group on five letters called
the wcosahedral group. The Coxeter graph of G(2,3,5) is

5

o —o

Euclidean Triangle Reflection Groups

Now assume that X = E2. Then we have

N S
—+ -+ —-—=m
a b ¢
Hence, the integers a, b, ¢ satisfy the equation
1 1 1
- +-4+-=1
a + b + c
There are exactly three solutions,
1 1 1 1 1 1 1 1 1
-4+ =4+ == 1’ — — — = — — —_ =
3 3 3 2+4+4 L, 2+3+6 L

Note that T'(3,3,3) is an equilateral triangle, T(2, 4,4) is an isosceles right
triangle, and 7'(2,3,6) is a 30°-60° right triangle. The tessellation of
E? generated by reflecting in the sides of T'(a,b,c) in each of the three
cases is illustrated in Figure 7.2.2. The Coxeter graphs of the groups
G(3,3,3),G(2,4,4), and G(2,3,6) are, respectively,
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D€

(a) (b)
(c) (d)

Figure 7.2.1. Tessellations of S? obtained by reflecting in the sides of a triangle
g
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Figure 7.2.2. Tessellations of E? obtained by reflecting in the sides of a triangle
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Hyperbolic Triangle Reflection Groups

Now assume that X = H?. By Theorem 3.5.1, we have
T
b
Hence, the integers a, b, ¢ satisfy the inequality

1 1 1
o4 -<l
a b ¢
There are an infinite number of solutions to this inequality. Each solution
determines a hyperbolic triangle T'(a,b,c) and a corresponding reflection
group G(a,b,c). Of all these triangles, T(2,3,7) has the least area, m/42.
The Coxeter graph of a hyperbolic reflection group G(a,b, ¢) is either

a c
.-—b—'._c—-. or

b

according as @ = 2 or a > 2. Figure 7.2.3 illustrates the tessellation of B2
generated by reflecting in the sides of T'(2,4, 6). Note that this tessellation
is the underlying geometry of Escher’s circle print in Figure 1.2.5.

s T
-+ -+ -<m
a c

>

i
il

oy

Figure 7.2.3. Tessellation of B? obtained by reflecting in the sides of T'(2,4, 6)
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Theorem 7.2.1. Let a,b,c,a’,b,c be integers such that
2<a<b<c and 2<a' <¥ <¢.

Then the triangle reflection groups G(a, b, c) and G(a', V', ) are isomorphic
if and only if (a,b,c) = (a/, ¥, ).

Proof: Suppose that G(a,b,c) and G(a',¥',c’) are isomorphic. Assume
first that G(a,b,c) is finite. Then G(a,b,¢) and G(a’,V',¢') are isomor-
phic spherical triangle reflections groups. From the description of all the
spherical triangle reflection groups, we deduce that (a,b,¢) = (a’,V',c).
Thus, we may assume that G(a,b,c) is infinite. Then G(a,b,c) is either
a Euclidean or hyperbolic triangle reflection group. In either case, every
element of finite order in G(a, b, ¢) is elliptic.

By Theorem 6.5.6, every element of finite order in G(a, b, ¢) is conjugate
in G(a, b, ¢) to an element that fixes a point on the boundary of the triangle
T(a,b,c). Let z,y, z be the vertices of T'(a, b, ¢) corresponding to the angles
w/a,m/b,7/c. In view of the fact that

{9T(a,b,c) : g € G(a,b,c)}

is a tessellation of X, the stabilizer subgroup of each side of T'(a, b, ¢) is the
group of order two generated by the reflection in the corresponding side of
T'(a,b,c). Furthermore, the stabilizer subgroup at the vertex z, Y, Or 2 is a
dihedral group of order 2a, 2b, or 2c, respectively.

Let v be an arbitrary vertex of T'(a,b,c) and let G, be the stabilizer
subgroup at v. Then

{9T(a,b,c) : g € G,}

forms a cycle of triangles around the vertex v. Consequently, no two vertices
of T'(a, b, ) are in the same orbit. Therefore, two elements in G,, U Gy,UG,
are conjugate in G(a,b,c) if and only if they are conjugate in the same
stabilizer G,, since gG,g~ ! = Ggo. Hence, the integers {2, a, b, ¢} are char-
acterized by G(a, b, c) as the orders of the maximal finite cyclic subgroups
of G(a,b,c). As this set is invariant under isomorphism, we have that
{2,a,b,c} = {2,d',V,c'}. Therefore (a,b,¢) = (d/,¥,c). o

Barycentric Subdivision

Let P be an n-dimensional polytope in X. The barycentric subdwnsion of
P is the subdivision of P into n-simplices whose vertices can be ordered
{vo, .., vn} so that vy is the centroid of a k-face Fy, of P for each k, and Fy,
is a side of Fyiq foreach k =0,...,n—1. In particular, all the simplices
of the barycentric subdivision of P share the centriod of P as a common
vertex, and the side of such a simplex opposite the centroid of P is part
of the barycentric subdivision of a side of P. For example, Figure 7.1.2
illustrates the barycentric subdivision of a regular hexagon in B2.
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Tetrahedron Reflection Groups

We now consider some examples of tetrahedron reflection groups deter-
mined by regular tessellations of 3, E3, and H3.

Example 1. Let P be a regular Euclidean 4-simplex inscribed in S3.
Then radial projection of P onto S* gives a regular tessellation of $°
by five tetrahedra. Now since three of these tetrahedra meet along each
edge, their dihedral angle is 27/3. Let T be one of these tetrahedra. Then
barycentric subdivision divides 7" into 24 congruent tetrahedra. Let A be
one of these tetrahedra. Then the dihedral angles of A are all submultiples
of 7w as indicated in Figure 7.2.4. Therefore, the group I'" generated by
reflecting in the sides of A is a discrete reflection group with respect to A
by Theorem 7.1.3. Tt is clear from the geometry of A and T that T is the
group of symmetries of P. Therefore I' is a symmetric group on five letters,
and so I' has order 5! = 120. The Coxeter graph of I is

Example 2. Let P be a cube in E3. The dihedral angle of P is m/2.
Observe that barycentric subdivision divides P into 48 congruent tetrahe-
dra. Let A be one of these tetrahedra. Then the dihedral angles of A are
all submultiples of 7 as indicated in Figure 7.2.5. Therefore, the group I'
generated by reflecting in the sides of A is a discrete reflection group with
respect to A by Theorem 7.1.3. It is worth noting that I' is the group of
symmetries of the regular tessellation of E? by cubes obtained by reflecting
in the sides of P. The Coxeter graph of I is

4 4

o ® L4 ®

Example 3. By the argument in Example 4 of §7.1, there is a hyper-
bolic regular dodecahedron P whose dihedral angle is 2m/5. Observe that
barycentric subdivision divides P into 120 congruent tetrahedra. Let A be
one of these tetrahedra. Then the dihedral angles of A are all submultiples
of 7 as indicated in Figure 7.2.6. Therefore, the group I' generated by
reflecting in the sides of A is a discrete reflection group with respect to A
by Theorem 7.1.3. It is worth noting that T is the group of symmetries of
the regular tessellation of H 3 by dodecahedra obtained by reflecting in the
sides of P. The Coxeter graph of T is
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/ - /3

Figure 7.2.5. A Euclidean tetrahedron with dihedral angles submultiples of 7

Figure 7.2.6. A hyperbolic tetrahedron with dihedral angles submultiples of 7
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Bilinear Forms

We now review some of the elementary theory of bilinear forms. Recall
that a bulinear form on a real vector space V is a function from V x V to
R, denoted by (v, w) — (v, w), such that for all v,w in V,

(1) (v, ) and ( ,w) are linear functions from V to R (bilinearity);

(2) (v,w) = (w,v) (symmetry).
Moreover, (, ) is said to be nondegenerate if and only if

(3) if v # 0, then there is a w # 0 such that (v, w) # 0 (nondegeneracy).

Remark: A nondegenerate bilinear form on V is the same as an inner
product on V.

A bilinear form (, ) on V is said to be positive semudefinite if and only
if

(4) (v,v) >0for all vin V.
Finally, a bilinear form (, ) on V is said to be positwe definite if and only
if

(5) (v,v) > 0 for all nonzero v in V.

Now suppose that {, ) is a bilinear form on R™. The matrz A of (, )
is the real n x n matrix (a,,) defined by

Ay = (e, €;).
Observe that A is a symmetric matrix. We say that A is positive definite,
positive semadefinite, or nondegenerate according as ( , ) has the same

property. By the Gram-Schmidt process, there is a basis uq,...,u, of R”
such that

(u,uy) = 0 ifi#j,
1 if1<i<p,
(ug,u,) = -1 ifp+1<i<yg,
0 ifg+1<i<n,
where p, ¢ are integers such that 0 < p < ¢ < n. Note that A is positive
(semi) definite if and only if p =n (p = ¢), and A is nondegenerate if and
only if ¢ = n. Furthermore g is equal to the rank of A. The pair (p,q—p)
is called the type of A.

Given any real symmetric n x n matrix A, we define the bilinear form
of A on R" by the formula

(z,y) =z - Ay.
Clearly, A is the matrix of the bilinear form of A.
The null space of a bilinear form (, ) on R™ is the set

{y € R™: (z,y) =0 for all  in R"}.

Clearly, the null space of the bilinear form of a matrix A is the null space
of A.
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Definition: The Gram matriz of an n-simplex A in X whose sides are
Sy .., Sn+1 s the (n+1) x (n+1) matrix whose ijth entry is — cos 6(S,, S;).

Theorem 7.2.2. Let 0,,, fori,j=1,...,n+1, be real numbers such that

(1) 6,, =90,, foralli,j,

(2) 6,, = for each i, and

(3) 6., 15 wn the interval (0,7/2] if i # j.
Let A be the (n + 1) x (n + 1) matrz whose ijth entry 1s —cosb,, and
let A, be the n X n matriz obtained from A by deleting the ith row and ith
column. Then there 1s an n-simplex A wn esther S™, E™, or H™ whose Gram
matriz is A of and only if A, 1s positive definite for eachi=1,...,n+ 1.
Furthermore A 1s

(1) spherical of and only 1f A 18 positive definite,

(2) Euchdean if and only of A is of type (n,0),

(3) hyperbolic +f and only if A 1s of type (n,1).
Proof: (1) Suppose that A is an n-simplex in S™ with sides Sty S
such that 6(S,,S,) =6,, foralli,j5 =1,...,n+ 1. Let (S,) be the hyper-

plane of S™ containing .S, and let V, be the n-dimensional vector subspace
of R™*! such that

(S,) =V, ns"™
Let H, be the half-space of R"*! bounded by V, and containing A. Then

n+1
A= ( A H) nsm.
=1
Let v, be the unit normal of V, directed into H,. Then
H, ={z Rz, > 0}.

Let B be the (n+1) x (n+ 1) matrix whose jth column vector is v;. Then
the orthogonal complement of the column space of B is the set

{eeR" . z.v, =0 fori=1,...,n+1}.

But this set is ﬂz":llVl = {0}. Therefore vy, ..., Up41 form a basis of R™*1!,
Thus B is nonsingular.

Next, define a positive definite inner product in R"*! by the formula
(z,y} =Bz - By~
Then for each 4, 7, we have

<61,€]> = Bez'BGJ

v, -

cos(m —0y,;) = —cosb,,.
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Therefore A is the matrix of this inner product, and so A is positive definite.
Furthermore, A, is positive definite for each i = 1,...,n + 1.

Conversely, suppose that A is positive definite. Then there is an or-
thonormal basis ui,...,u,41 of R™ ! with respect to the inner product of
A. Let B be the (n + 1) x (n 4 1) matrix whose jth column vector is u,.
Then B'AB = I. Let C = B~*. Then A = C*'C. Let v, be the jth column
vector of C. Then vy,...,v,41 form a basis of R**! and A = (v, - v,). Let

Q={yeR"™:y, >0 fori=1,...,n+1}.
Then the set @ is an (n + 1)-dimensional convex polyhedron in E*+! with
n + 1 sides and one vertex at the origin.
Now let
H, = {zeR":y,-2>0}
and

Vi

I

{z e R v, -z = 0}.

ct ("r:ﬁll H) cQ.

Observe that

Let y be an arbitrary vector in Q. Set z = B'y. Then C'z = y. Hence
v, - x > 0 for all ¢, and so z is in ﬁ?;LllHl. Therefore

¢ [t _
C (191 HZ> - Q.
Hence N"*' H; is an (n + 1)-dimensional convex polyhedron in E™*! with
n -+ 1 sides

n+1 .
V. N ( DIHJ> fori=1,...,n+1
J:
and exactly one vertex at the origin. Therefore
+1
A= (nm Hl) ns"
=1
is an n-dimensional convex polyhedron in S™ with sides
1
S, =V,N (nﬁlHJ> Nns™ fori=1,...,n+1.
J:

Moreover A is contained in an open hemisphere of S™ by induction on n
and Theorem 6.3.8. Therefore A is an n-simplex in S™ by Theorem 6.4.4.
Furthermore, for all 4, j, we have

0(S,,S,) =7 — (v, vy) = — (T — O,y) = byy.

(2) Suppose that A is an n-simplex in E™ with sides 51,..., Sna1 such
that 6(S,,S,) = 6,, for all 4,j = 1,...,n+ 1. Let P, be the hyperplane of
R™ containing S, and let H, be the half-space of R™ bounded by P, and
containing A. Then
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Let v, be the unit normal of P, directed into H,. Then for all 4, j, we have
v, - vy = cos(m — 6,,) = —cosb,,.

By translating A, if necessary, we may assume that the vertex of A
opposite the side S, is the origin. Then the set

+1
<nol Hl> ﬂSn_l
s

is an (n — 1)-simplex in S"~!. By the argument in (1), we have that
V1, ..., 0y,...,Unq1 form a basis of R™ and A, is positive definite; moreover,
this is true for each j =1,...,n+ 1.

Let B be the nx (n+1) matrix whose jth column is v, for j = 1,...,n+1.
Define a bilinear form on R™*! by the formula

(z,y) = Bz - By.

Then the matrix of this form is A. Moreover, the null space of this form
is the null space of B. As the rank of B is n, the null space of B is
1-dimensional. Therefore, the null space of the bilinear form of A is 1-
dimensional. Hence A is of type (n,0).

Conversely, suppose that A is of type (n,0) and A, is positive definite
for each i = 1,...,n + 1. Consider the bilinear form of A defined by

Clearly, the null space of the form is the orthogonal complement in R™*+1
of the column space of A. Let = be a nonzero vector in the null space of
A. Then each component z, of z is nonzero, since A, is positive definite
for each i =1,...,n 4 1. Define y and z in R™*! by

. z, if z,>0
Y= 0 i a <o,
P z, if z,<0

v 0 if x,>0.

Then x =y + 2. As (z,y) = 0, we have

Y, 9) + (y,2) =0.

Now observe that

(y,2) = Z Ay Y 2.

#g

As a,; <0 and y,2, <0 for each i # j, we have that (y,z) > 0. Therefore
(y,y) =0, since A is positive semidefinite. If z # 0, then some component
of y is zero, and so y = 0, since A, is positive definite for each i. Hence,
either y = 0 or z = 0. Thus, all the components of z have the same sign.
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Now as A is of type (n,0), there is a nonsingular (n+1) x (n+1) matrix
C such that
1 0

A=C! C.

0 0

Let v, be the jth column vector of C and let 7, be the vector in R™ obtained
by dropping the last coordinate of v;. Then A = (7, - 7,).
Let C be the n x n matrix whose jth column vector is 7,. Then

Ce,-Ce, =7, -7,.

Hence, the restriction of the bilinear form of A to R™ is given by

(z,y) = Cz - Cy.
As A, .1 is positive definite, the matrix C must be nonsingular. Therefore
v1,...,U, form a basis of R™. Furthermore
U, 0,=—cost=1 foreachi=1,...,n+1.
Now let

H, = {z€R":7,-2>0}
and

V., = {z€eR":7,-2=0}.

Let B be the (n + 1) x n matrix whose ith row is 7,. As BB' = A, the
column space of B is the column space of A. Suppose that x is in ﬂ;’“:llHl.
Then 7, - > 0 for each 4 = 1,...,n + 1. Hence, each component of Bx
is nonnegative. Let y be a nonzero vector in the null space of A. Then y
is orthogonal to the column space of A. Hence (Bz) -y = 0. As all the
components of y have the same sign, we deduce that Bz = 0. Therefore =
is in N1V, = {0}. Thus N H, = {0}

Let
H0:{$6Rn25n+1'117_>_—1}
and let "
A= N H,.

1=0
By applying the linear isomorphism C*, we may assume, without loss of
generality, that U, = e, for each ¢ =1,...,n. Then for each j =1,...,7,

Upi1 € = Upy1 Uy = —€080n41,y < 0.

Now if Up41 - €, = 0, then e, is in Nt H, = {0}, which is a contradiction.
Hence, all the coordinates of Tn41 are negative. Therefore A is the n-
simplex bounded by the n coordinate hyperplanes of R™ and the hyperplane

Vo={z € R": (~Tpny1) -z =1}.
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Returning to the general case, we find that the n+ 1 sides of the n-simplex
A are

SZZVZO<F7}10H]> fore=0,...,n,
]:

and for all 4,7 mod (n + 1), we have §(S,,S,) = 6,,.

(3) Suppose that A is an n-simplex in H™ with sides Sy, ..., Sp41 such
that 6(S,,5,) =6,, for all ¢,7 =1,...,n+ 1. Let (S,) be the hyperplane
of H™ containing S, and let V, be the n-dimensional, time-like, vector
subspace of R™! such that

(S,)=V,nH".
Let H, be the half-space of R""! bounded by V, and containing A. Then

n+1
A= ( N Hz> NnH™
1=1
Let v, be the unit Lorentz normal of V, directed into H,. Then

H, ={zeR™ 200, >0}

Let B be the (n+1) x (n+ 1) matrix whose jth column vector is v,. Then
the Lorentz orthogonal complement of the column space of B is the set

{zxeR™ :z0v, =0 for i=1,...,n+1}.

But this set is ﬂ;‘:llVZ = {0}. Therefore v1,...,v,41 form a basis of R*+1,
Thus B is nonsingular.

Next, define a bilinear form on R"** of type (n, 1) by the formula
(z,y) = Bz o By.

Then for all 7, j, we have

(er,€5) = Be, o Be,
= w00,
= cos(m—¥6,,) = —cos 6,;.

Hence A is the matrix of this form, and so A is of type (n,1).

Let uy be the vertex of A opposite the side Sk and let r; be half the
distance from ug to S; in H™. Then the set

A" = S(ug, ) N A
is a spherical (n — 1)-simplex with sides
Si=8,nN S(uk,ri) fori#k.
Furthermore, we have
0(S;,8;) = 6(S,,S,) for i, j+#k.
Therefore Ay is positive definite by (1) for each k=1,...,n+ 1.
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Conversely, suppose that A is of type (n,1) and A, is positive definite
foreachi=1,...,n+1. Let J be the diagonal (n+1) X (n+1) matrix with
diagonal entries 1,...,1, —1. Then there is a nonsingular (n+ 1) x (n+1)
matrix C' such that A = C*JC. Let v, be the jth column vector of C.
Then vy,...,vn41 form a basis of R and A = (v, o v,). Let

Q={yeR":y,>0 fori=1,...,n+1}.

Then the set @ is an (n + 1)-dimensional convex polyhedron in E"*! with
n + 1 sides and one vertex at the origin.
Now let

H, {z e R™! 10,02 >0}

and
Vi = {zeR™ :y,0z=0}.

Then H, is a half-space of R""! bounded by the n-dimensional vector
subspace V, of R**!. As before, we have

cty ("511 H) —Q.

Therefore N H, is an (n + 1)-dimensional convex polyhedron in E™+!
with n + 1 sides

n+1 .
v.N ( ﬂlHj) fori=1,...,n+1
9=
and exactly one vertex at the origin. As
v, 01, = —cosm =1,
we have that v, is space-like, and so V, is time-like. Therefore, the set
+1
A= ("n H2> nH"
=1
is an n-dimensional convex polyhedron in H™ with sides
+1
S, =V,n (”nIHJ> AH" fori=1,....n+1.
g=

Furthermore, for all 4, j, we have
0(S.,S;) = m—6(w,v,)
= nm—(n—0,) = b,

It remains only to show that A is compact. Define a bilinear form on R™*!
by the formula

(z,y) = Cz o Cy.
Then the matrix of this form is A. As A, is positive definite, this form is
positive definite on the vector subspace (e1,...,é,,...,€en41). Hence, the

Lorentzian inner product on R™! is positive definite on the vector subspace

W, = (v1,..., 055, Ung1)-
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Therefore W, is space-like. Let

L="0 V.

1#£7

Then L; is the 1-dimensional vector subspace of R"*! spanned by the
1-dimensional edge of N?*! H, that is opposite the side

1
v, N ("ﬁl Hz) .

Ly={zeR™ :z0v,=0 forall i#j}.

Observe that

Hence L, is the Lorentz orthogonal complement of W,. Consequently L, is
time-like. Hence L, N H™ is a vertex of A, Thus A has vertices L, N H” for
j=1,...,n+ 1. Therefore A is compact by induction on n and Theorem
6.3.7. Thus A is an n-simplex in H™. This completes the proof of (3).

In order to complete the proof, we need to prove that if A, is positive
definite for each ¢ = 1,...,n + 1, then A is either positive definite or of
type (n,0) or (n,1). This is left as an exercise for the reader. o

Classification of Simplex Reflection Groups

Let I' be the group generated by the reflections of X in the sides of an
n-simplex A all of whose dihedral angles are submultiples of 7r. Let v be a
vertex of A and let I', be the subgroup of T consisting of the elements of T
fixing v. Then T, is a spherical (n — 1)-simplex reflection group. Moreover,
the subgraph of the Coxeter graph of I, obtained by deleting the vertex
corresponding to the side of A opposite v and its adjoining edges, is the
Coxeter graph of I',. By induction, every subgraph of the Coxeter graph
of I" obtained by deleting vertices and their adjoining edges is the Coxeter
graph of a spherical simplex reflection group.

The group I is said to be irreducible if and only if its Coxeter graph is
connected. Suppose that I' is irreducible. Then we can delete vertices and
their adjoining edges from the Coxeter graph of I so that after each deletion
we obtain a connected subgraph. Now the only labels on the irreducible
spherical triangle reflection groups are 3, 4, and 5. Therefore, if n > 2,
the Coxeter graph of T' has only 3, 4, and 5 as possible labels. Hence,
there are only finitely many possible Coxeter graphs of n-simplex reflection
groups for each n > 2. In view of Theorem 7.2.2, it is straightforward to
list all the possible Coxeter graphs of n-simplex reflections groups for a
given n. Spherical and Euclidean n-simplex reflection groups exist in all
dimensions n; however, hyperbolic n-simplex reflection groups exist only
for dimensions n < 4. Figures 7.2.7-7.2.9 illustrate the Coxeter graphs of
all the irreducible, simplex, reflection groups.
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Figure 7.2.7. The irreducible, spherical, simplex, reflection groups
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Figure 7.2.8. The Euclidean, simplex, reflection groups
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Figure 7.2.9. The hyperbolic, simplex, reflection groups
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Exercise 7.2

10.

11.

Prove that Go(2,3,4) is a symmetric group on four letters and Go(2,3,5) is
an alternating group on five letters.

Prove that T(2,3,7) is the triangle of least hyperbolic area among all the
hyperbolic triangles T'(a, b, ¢).

Prove that G(2,4,6) contains the group I in Example 3 of §7.1 as a subgroup
of index 12.

Let a,b,c,a’, b, ¢’ be integers such that 2 < e <b<cand2<a' <V <.
Prove that the triangle groups Go(a, b, c) and Go(a’, b, ') are isomorphic if
and only if (a,b,c) = (a’,¥', ).

Let f, g, h be the reflections in the sides of T'(a,b, c) opposite the angles
w/a,7/b,m/c. Prove that Go(a,b,c) has the group presentation

(u7 v; uc, Uba (uv)a)’

where u — gf and v — fh.

. Prove that the group of symmetries of an (n + 1)-dimensional, Euclidean,

regular polytope inscribed in S™ is isomorphic to a spherical, n-simplex,
reflection group.

Prove the regular tessellations of S™ correspond under radial projection to
the (n + 1)-dimensional, Euclidean, regular polytopes inscribed in S™.

Prove that the group of symmetries of a regular tessellation of X is an n-
simplex reflection group.

Let A be as in Theorem 7.2.2 and suppose that A, is positive definite for
eachi=1,...,n+1. Prove that A is either positive definite or of type (n,0)
or (n,1) according as det A is positive, zero, or negative.

Prove that every Euclidean or hyperbolic simplex reflection group is irre-
ducible.

Prove that every hyperbolic n-simplex reflection group is nonelementary
when n > 1.

§7.3. Generalized Simplex Reflection Groups

Let A be a generalized n-simplex in H™ all of whose dihedral angles are
submultiples of w. Then the group I generated by the reflections of H" in
the sides of A is a discrete group of isometries of H™ by Theorem 7.1.3.
The group I' is called a (generalized) simplex reflection group. Figure
7.3.1 illustrates the Coxeter graphs of the hyperbolic, noncompact triangle,
reflection groups. Figure 7.3.2 illustrates the tessellation of B2 obtained
by reflecting in the sides of an ideal triangle.
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Figure 7.3.1. The hyperbolic, noncompact triangle, reflection groups

Figure 7.3.2. Tessellation of B? obtained by reflecting an ideal triangle
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Example: Let I' be the subgroup of PO(2,1) of all the matrices with
integral entries. Then T is a discrete subgroup of PO(2,1), since I is a
subgroup of the discrete group GL(3,7Z). We now show that I" is a discrete
reflection group with respect to a triangle T'(2,4, 00) in H2. Clearly I acts
on the set S = H?> N Z3. Observe that the point ez = (0,0,1) is in S. The
stabilizer of ez in T is isomorphic to O(2)NGL(2,Z). Hence I' is a dihedral
group of order eight generated by the 90° rotation about the z-axis and
the reflection in the xz-plane.

Observe that the points of S — {e3} nearest to ez are the four points
(+2,42,3). Let A be the Lorentzian matrix that represents the umnique
reflection of H? that maps ez to (2,2,3). Then 4 = A™! = (JAJ).
Therefore A is of the form

a b 2
b c 2
-2 -2 3

From the information that the columns of A form a Lorentz orthonormal
basis of R*! and det A = —1, we deduce that

-1 -2 2
A={ -2 -1 2
-2 -2 3

Therefore A is in I'. Observe that A fixes the plane z = z + 3. Hence A
fixes the hyperbolic line of H? given by the conditions

z=x+4y, x2+y2—22:—1, z>0.

Substituting the first equation into the second, we see that A fixes the
hyperbolic line of H? given by the equation zy =1/2.
Next, observe that the reflections

(iE, Y, Z) = (xa -Y Z) and ("L‘)ya Z) = (y: z, Z)

fix the hyperbolic lines y = 0 and = = y, respectively, of H2. Let T be the
triangle in H? defined by the inequalities

vy <1/2, y>0, z>y.

Then clearly T' = T'(2,4, ). See Figure 7.3.3. Let I'; be the subgroup of
' generated by the matrices representing the reflections in the sides of T.
Then I'y is a discrete reflection group with respect to 7.

Let g be an element of I'. Then there is an f in I'; such that fges is in
T. Clearly es is the only point of S contained in T. Therefore fges = es.
Thus fg is in the stabilizer of e3 in T. As the stabilizer of e5 in T is a
subgroup of I'1, we have that g is in I';. Therefore I' = T';. Thus T is a
triangle reflection group with respect to T'(2, 4, 00). A nice consequence of
this fact is that the set S of integral points of H? is the set of hyperbolic
centers of all the ideal squares of the tessellation of H? in Figure 7.3.4.
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Figure 7.3.4. Tessellation of the unit disk by ideal squares
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Figure 7.3.5. Coxeter graphs of the groups I'y, forn=2,...,9

Let I';, be the subgroup of PO(n,1) counsisting of all the matrices with
integral entries. Then I',, is a discrete subgroup of PO(n, 1), since I',, is a
subgroup of the discrete group GL(n+1,Z). The group I', is a hyperbolic,
noncompact n-simplex, reflection group for n = 2,3,...,9. The Coxeter
graphs of these groups are listed in Figure 7.3.5.

Definition: The Gram matriz of a generalized n-simplex A in H", with
sides S1,...,8n41, is the (n + 1) X (n + 1) matrix whose ijth entry is
—cos6(5,,5,).

Theorem 7.3.1. Let6,,, fori,j=1,...,n+1, be real numbers such that
(1) 6., =6,, for all i,j,
(2) 0,, =7 for each i, and
(3) 6.y is in the interval [0,7/2] if i # j.

Let A be the (n+ 1) x (n + 1) matriz whose ijth entry 1s — cos 8, and let

A, be the n x n matriz obtained from A by deleting the ith row and ith

column. Then there is a noncompact generalized n-simplez A in H™ whose
Gram matriz is A if and only of

(1) every column of A has more than one nonzero entry;

(2) the matriz A, is the Gram matriz of either a spherical or Euclidean
(n —1)-simplex for eachi=1,...,n+1; and

(3) the matriz A, is the Gram matriz of a Buchdean (n — 1)-simplez for
some 1.

Proof: Suppose that A is a noncompact generalized n-simplex in H™ with
sides S1, ..., Snt1 such that 6(S,,S,) =6,, forall4,5 =1,...,n+1. If the
vertex of A opposite the side Sy, is finite, then Ay is the Gram matrix of a

spherical (n —1)-simplex by the same argument as in the proof of Theorem
7.2.2(3).
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Suppose that the vertex of A opposite the side Sy is ideal. We pass
to the upper half-space model U™. Then we may assume, without loss of
generality, that the ideal vertex of A opposite the side Sy is 0co. Let B be a
horoball based at oo such that B does not meet Si. Then A’ = 90BN A is
a Euclidean (n — 1)-simplex with sides S! = S, N 3B for i # k by Theorem
6.3.23. Clearly, we have

6(S.,5") = 6(S,,,) fori,j+k

Therefore Ay is the Gram matrix of the Euclidean (n — 1)-simplex A’. By
our hypothesis, A has at least one ideal vertex. Hence A, is the Gram
matrix of a Euclidean (n — 1)-simplex for some 3.

Let vy, ..., V41 in R**! be defined as in the proof of Theorem 7.2.2(3).
Then for each i, j, we have

v, 0V, = —cos ;.

Let C be the (n+1) x (n+ 1) matrix whose jth column vector is v,. Define
a bilinear form on R**! by the formula

(z,5) = Ca o Cy.
Then A is the matrix of this form. As A, is positive semidefinite, this
form is positive semidefinite on the vector subspace (e1,...,&;,...,€nt1).

Hence, the Lorentzian inner product on R™! is positive semidefinite on the
vector subspace

WJ - <U1,...,@J,...,Un+1>.

Therefore W), is either space-like or light-like.

On the contrary, suppose that the jth column of A has only one nonzero
entry, namely, —cos@,, = 1. Then v, is Lorentz orthogonal to W,. There-
fore v, is either time-like or light-like. But v, o v, = 1, and so we have a
contradiction. Thus, every column of A must have at least two nonzero
entries. Thus A satisfies (1)-(3).

Conversely, suppose that A satisfies (1)-(3). Then A, is the Gram matrix
of a Euclidean (n — 1)-simplex for some i. By reindexing, if necessary, we
may assume that A1 is the Gram matrix of a Euclidean (n — 1)-simplex.
Then R” has a basis {ui,...,u,} such that (u,,u,) = 0if ¢ ¥ j, and

(uy,u,) = 1fori=1,...,n—1, and (un, u,) = 0. Now the matrix of the
bilinear form of A with respect to the basis {u1,...,Un,ens1} i8
1 0 *
B=1 o 1 * |
0 b
x -+ *x b 1
where b = (Un, ent1). Write u, = (c1,.. ., ¢n) as a vector in R”. Then by

the argument in the proof of Theorem 7.2.2(2), all the components ¢, of u,
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have the same sign. Hence

b:

k2

Cl<627 en—|—1> # 07
=1
since (e,, en11) < 0 for all i < n+ 1 with inequality for some ¢ <n+1. By
expanding the determinant of B along the (n + 1)st column, we find that

det B=—b% < 0.

Hence, the rank of B, and therefore of A, is n + 1. As the bilinear
form of A is positive definite on the (n — 1)-dimensional vector subspace
(u1,...,un_1), the matrix A must be of type (n,1).

Define A as in the proof of Theorem 7.2.2(3). Then the same argument
there proves that A is an n-dimensional convex polyhedron in H™ with
sides S1,...,Sny1 such that 6(S,,S,) = 6,, for all 4, j. Moreover, if A, is
positive definite, then the n sides Si,..., S'J, ..., Sph41 intersect at a vertex
of A.

Suppose that A, is of type (n,0). Let W, be the n-dimensional vector
subspace of R™*! defined as in the proof of Theorem 7.2.2(3). By the same
argument there, the Lorentzian inner product on R™! is of type (n,0) on
W,. Therefore W) is light-like. Hence, the Lorentz orthogonal complement
L, of W, is light-like. By the same argument as in the proof of Theorem
7.2.2(3), we deduce that L, represents an ideal vertex of A opposite the
side S,. Thus A has n+1 generalized vertices and at least one ideal vertex.
Therefore A is a noncompact generalized n-simplex in H™. o

It follows from Theorem 7.3.1 and the fact that the Coxeter graphs of
Euclidean simplex reflection groups are connected that a Coxeter graph is
the graph of a hyperbolic, noncompact n-simplex, reflection group if and
only if it has the following properties:

(1) The number of vertices is n + 1.
(2) The graph is connected.

(3) Any subgraph obtained by deleted a vertex and its adjoining edges is
the Coxeter graph of either a spherical or Euclidean (n — 1)-simplex
reflection group.

(4) Some subgraph obtained by deleting a vertex and its adjoining edges
is the Coxeter graph of a Euclidean (n — 1)-simplex reflection group.

For each dimension n > 3, there are only finitely many such graphs,
and such graphs exist only for n < 9. Figure 7.3.6 illustrates the Coxeter
graphs of all the hyperbolic, noncompact tetrahedron, reflection groups.
The number of Coxeter graphs of hyperbolic, noncompact n-simplex, re-
flection groups for n =4,...,9 is 9,12, 3,4, 4, 3, respectively.
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Figure 7.3.6. The hyperbolic, noncompact tetrahedron, reflection groups
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Exercise 7.3

1. Prove that PSL(2, Z) is isomorphic to the subgroup of orientation preserving
isometries of a reflection group with respect to a triangle T'(2, 3, 00).

2. Prove that I's is a hyperbolic, noncompact tetrahedron, reflection group.

3. Construct the Coxeter graphs of all the hyperbolic, noncompact 4-simplex,
reflection groups.

4. Prove that each label of the Coxeter graph of a hyperbolic, noncompact
n-simplex, reflection group, with n > 4, is at most 4.

5. Prove that the dimension n of a hyperbolic, noncompact n-simplex, reflection
group is at most 9.

§7.4. Crystallographic Groups
In this section, we study the theory of crystallographic groups.

Definition: An n-dimensional crystallographic group is a discrete group
T of isometries of E™ such that E™/T" is compact.

Examples of crystallographic groups are the Euclidean, simplex, reflection
groups in Figure 7.2.8.

Theorem 7.4.1. Let T" be a discrete group of isometries of E™. Then the
followwng are equivalent:

(1) The group T 1s crystallographac.
(2) Every convez fundamental polyhedron for T' is compact.

(3) The group T has a compact Dirichlet polyhedron.

Proof: (1) implies (2) by Theorem 6.5.10. Clearly (2) implies (3), and
(3) implies (1). o

Let P be a convex fundamental polyhedron for an n-dimensional crys-
tallographic group I'. Then P is compact by Theorem 7.4.1. Therefore P
is bounded and has only finitely many sides. We regard P to be a model
for an n-dimensional crystal, and the tessellation {gP : g € '} of E™ to be
a model for a crystalline structure.

The study of crystalline structures is called crystallography. By the end
of the nineteenth century, crystallographers had classified 1-, 2-, and 3-
dimensional crystallographic groups. For each of these dimensions, it was
determined that there is only a finite number of essentially different kinds
of crystallographic groups. This led Hilbert to ask, in problem 18 on his
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celebrated list of problems, if there is only a finite number of essentially
different kinds of crystallographic groups in each dimension. This problem
was answered affirmatively by L. Bieberbach in 1910. Bieberbach proved
that there are only finitely many isomorphism classes of n-dimensional crys-

tallographic groups for each n. In this section, we shall prove Bieberbach’s
theorem.

Lemma 1. IfH is a subgroup of finite index of a discrete group T' of isome-
tries of X = E™ or H™, then X /T is compact if and only if X /H is compact.

Proof: Suppose that X/H is compact. Define a function
¢:X/H—- X/T

by ¢(Hz) = Tz. Let 7 : X — X/T and  : X — X/H be the quotient
maps. Then m = ¢7. Therefore ¢ is continuous. As ¢ is surjective, X/T" is
compact.

Conversely, suppose that X/T" is compact. Let D be a Dirichlet domain
for . Then D is a locally finite fundamental domain for I'. Therefore D
is compact by Theorem 6.5.10. Let g1H, ..., ¢g,H be the cosets of Hin I’
and define

K=g7'Du---ug;'D.

Then K is a compact subset of X. Let = be a point of X. Then there is a
g in T such that gz is in D; moreover, there is an index i such that g = g,h
for some A in H. Hence hz is in g, 'D. Thus Hz is in n(K). This shows
that X/H = n(K) and therefore X/H is compact. o

Theorem 7.4.2. Let T be a discrete group of isometries of E™. Then T’
is crystallographac of and only +f the subgroup T of translations of T' is of
finate index and has rank n.

Proof: Suppose that I' is crystallographic. By Theorem 5.4.3, the group
T has an abelian subgroup H of finite index containing T; moreover, H is
also crystallographic by Lemma 1. By Theorem 5.4.4, there is an m-plane
P of E™ on which H acts by translation. Since points at a distance d
from P stay at a distance d from P under the action of H, the orbit space
E™/H is unbounded if m < n. As E™/H is compact, we must have m = n.
Therefore H is a lattice subgroup of I(E™). Hence H = T, and T is of finite
index in I" and has rank n.

Conversely, suppose that the subgroup T of translations of T is of finite
index and has rank n. By Theorem 5.3.2, there is a basis v1,...,v, of R"
such that T is the group generated by the translations of E™ by v1, ..., vn.
Clearly, the parallelepiped P spanned by v1, . .., v, is a convex fundamental
polyhedron for T. As P is compact, E™/T is also compact. Therefore E™ /T’
is compact by Lemma 1. o
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Let T’ be an n-dimensional crystallographic group and let T = T(T") be
its group of translations. Then T is a free abelian group of rank n and
has finite index in T' by Theorem 7.4.2. Furthermore, by Theorem 5.4.4,
the subgroup T of T is characterized as the unique maximal free abelian
subgroup of I'. Consequently, the rank n of T is an isomorphism invariant
of T'. Therefore, the dimension n of I' is an isomorphism invariant of T".

Let n : I' — O(n) be the natural projection defined by n(a + A) = A.
The image II of 7 is called the point group of I'. As T is the kernel of 7, we
have an exact sequence of groups

1-T->T->1I- 1 (7.4.1)

Therefore T is a normal subgroup of I" and IT is a finite group. Furthermore,
conjugation in I' induces a left action of II on T that makes T into a II-
module. Let L = L(T") be the lattice subgroup of R™ corresponding to T.
Ifa+ Aisin I and b is in L, then

(a+A)b+D(a+ A =Ab+1. (7.4.2)

Hence II acts on L by left matrix multiplication. By Theorem 5.4.4, the
group T is a maximal abelian subgroup of I'. Hence II acts effectively on
T and therefore on L. Consequently, we have a faithful representation of
IT into Aut(L) given by A — ¢4 where ¢pa(z) = Az. As L is isomorphic
to Z™, we have an exact sequence of groups

02" 5T - Q— 1, (7.4.3)

where @) is a finite subgroup of GL(n,Z) and the left action of Q on Z"
induced by conjugation in I is the natural action of Q on Z". The standard
method of proving that there are only finitely many isomorphism classes
of n-dimensional crystallographic groups is to prove that there are only
finitely many isomorphism classes of group extensions of the form (7.4.3).
We shall take a different, more geometric, approach which exploits the
geometry of lattices in R™.

Lemma 2. Let B(a,r) be the open ball in E™ with center a and radius r.
Then there 1s a positwe constant ¢y, depending only on n, such that

Vol(B(a,r)) = c,r™.

Proof: Without loss we may assume that ¢ = 0. Integrating with respect
to spherical coordinates, we have

27 T T
Vol(B(0,7)) = / / e / P tsin® 26, - - sin Op—odpdfy ---db,_;
o Jo 0

n
= Z™Vol(sm .
n
Hence, the desired constant is

1
” = — 1 n—1 .
c nVO (8™ o
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Definition: A lattice L in R™ is full scale if and only if all the nonzero
vectors of L have norm at least 1.

Lemma 3. Let L be o full scale lattice in R™ and for each r > 0, let N(r)
be the number of vectors in L whose norm is at most r. Then

N(r) < (2r + )™

Proof: Since L is full scale, the distance between any two distinct vectors
in L is at least 1. Consequently, the open balls of radius % centered at the
N(r) vectors of L, whose norm is at most r, are pairwise disjoint and are
all contained in the ball of radius r + % centered at the origin. Comparing
the volumes, we deduce from Lemma 2 that

N < )" :
Lemma 4. Let {v1,...,v,} be a basis for R™. Then for each z in R",
there are integers ki, ..., k, such that

x—Zkvl < 2(joa] 4+ Jon)).

Proof: Let x be in R™. Then there are real numbers ¢, ...,¢, such that
T = Zle t,v,. Let k, be an integer nearest to t, in R. Then we have

n
T — E k,v,
=1

n

Z(t, — kv,

=1
S Zl(tz - kz)vzl
1=1
< (vl + -+ fonl) o

Lemma 5. Let V be a vector subspace of R™ spanned by m linearly inde-
pendent unit vectors vy,...,Um in a full scale lattice L in R™. If a vector
w in L is not in V, then its V- -component w has norm

lw| > (m+3)""™.

Proof: On the contrary, let u be a vector in L whose V-+-component w
satisfies
0<|w|<(m+3)™"
Now let
k= (m+3)".

Then k|w| < 1. Hence, the vectors 0,u,2u, ..., ku are at a distance at most
1 from V. By Lemma 4, we may add sultable 1ntegra1 linear combinations
of vq,...,Um to each of these vectors to obtain k+1 new distinct vectors in
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L whose V1-components have not changed but whose V-components have
norm at most m/2. These k + 1 vectors of L have norm less than

r=(m/2)+ 1.
By Lemma 3, we have
E+1<Nr)<@r+1)"=(m+3)",
which is a contradiction. Therefore

|w] > (m+3)7" o

Definition: An n-dimensional crystallographic group I' is normalized if
and only if its lattice L(T") is full scale and contains n linearly independent
unit vectors.

Lemma 6. Let I be an n-dimensional crystallographic group. Then T is
isomorphic to a normalized n-dimensiwonal crystallographic group.

Proof: By changing scale, we may assume that a shortest nonzero vector
in L(T') is a unit vector. Now assume by induction that L(I') is full scale
and contains m < n linearly independent unit vectors vy, ..., vm,. We shall
find an n-dimensional crystallographic group I isomorphic to I" such that
L(T") is full scale and contains m + 1 linearly independent unit vectors.

Let V' be the vector subspace of R™ spanned by v1,...,vm. Assume
first that the action of the point group II of T on L(T") does not leave
V invariant. Then there is an element A of IT and an index i such that
Av, is not in V. Let v, 41 = Av,. Then V1,...,Umy1 are m + 1 linearly
independent unit vectors in L(T'). Therefore I is the desired group.

Now assume that IT leaves V invariant. Then IT also leaves VL invariant.
For each t > 0, define a linear automorphism oy of R™ by the formula

ai(u) = v + tw,

where u = v+w with v in V and w in VL. Let a+AbeinT. As A leaves
V and V4 invariant, we have

a(a+ Ao = ay(a) + A
Hence, for each t > 0, the group
[y =ola;?
is a subgroup of I(E™). As
T(Ty) = &, T(T)ey; !

and T(T';) is of finite index in [; for each t > 0, we have that T is an
n-dimensional crystallographic group for each ¢ > 0. Moreover, we have

L) = o (L(T)).
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Let u be an arbitrary vector in L(T') — V and write u = v+ w with v in
V and w in V1. Then for ¢ such that
0<t<|w/ *(m+3)™™,
the vector v + tw is in L(T;) — V and
[tw] < (m+3)7".
By Lemma 5, the lattice L(I';) cannot be full scale. Let
s = inf{t : L(T}) is full scale}.

Then 0 < s < 1. As |ay(u)| > 1 for all t > s, we have that |as(u)| > 1,
since |a;(u)| is a continuous function of t. Therefore L(T,) is full scale.

Let up be a shortest vector in L(I';) — V. We claim that ug is a unit
vector. On the contrary, suppose that |ug| > 1. By replacing T by T',, we
may assume that s = 1. Write ug = vg + wo with vg in V and wp in VL.
As |ul? > |up|?, we have

[0 + |w]? > Jvo|® + [wol.

Let t = |ug|™!. Then

Jove (w)? v+ twl?

[of? + 2 |w]®

o] + £*(Jvo|? + |wol* — [v])
[0 (1 = ) + t?|uo|*

t2|u0|2

1.

AV | AVAR |

Therefore L(T';) is full scale contrary to the minimality of s. Thus, we
have that v,41 = wup is a unit vector. Hence vi,...,Umy1 are m + 1
linearly independent unit vectors in L(I's). Therefore I'y is the desired
group. This completes the induction. Thus I' is isomorphic to a normalized
n-dimensional crystallographic group. o

Theorem 7.4.3. (Bieberbach’s theorem) For each dimension n, there are
only finutely many isomorphism classes of n-dimensional crystallographic
groups.

Proof: Fix a positive integer n. By Lemma 6, it suffices to show that there
are only finitely many isomorphism classes of normalized n-dimensional
crystallographic groups. Let T’ be such a group. Then L(T") contains n
linearly independent unit vectors ws, ..., wy. For each i, let w, = w, +1
be the corresponding translation in T, and let H be the subgroup of T(T)
generated by wi,...,wn. Then H is a free abelian group of rank n and
therefore has finite index in T(I'). By Theorem 7.4.2, the group T(T') has
finite index in I'. Hence H is of finite index in T'.
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By Lemma 4, we may choose for each coset Hw of H in I' a represen-
tative w = w + A whose translation vector w has norm jw| < n/2. Let
Wnil,---,wm be the chosen coset representatives. Then every element ¢ of
T" can be expressed uniquely in the form

¢ = (aw1 + - + apwy, + 1wy,

where a1, ..., a, and p are integers with n + 1 < p < m. We shall call this
expression the normal form for ¢.

Since every element of I' has a unique normal form, there are for each
i,j = 1,...,m, unique integers c¢,,; and f(¢,j) > n such that

wwy = (Cy1wy + -« + CoynWn + I)wf(%])'

The integers ¢,;x and f(3, j) completely determine I', since one can find the
normal form of a product of elements ¢, of T given the normal forms for

¢,% and w,w, for each 4,5 =1,...,m. To see this, let
¢ = (arwi+ -+ agwy + Hwp,
Y = (bhwy + -+ bywy + Iwg

be the normal forms for ¢ and ¢. Then
oY = (a1w1 + -+ + anwy + Duwp(wd - wh )w,.

To find the normal form for ¢, it suffices to find the normal form of
wp (WY -+ Wl )w,. If by > 0, we replace wpwy by its normal form. This has
the effect of lowering by to b; — 1. If b; < 0, we replace Wpwy ! by its normal

form

wpwl_l = (dywi + -+ dywy + Dw,.
Observe that
wwr = (~dyw; — - ~dpwp, + Dwy.
Hence ¢ is the unique integer such that p = f(4,1); moreover dj, = —Ci1k
for each k = 1,...,n. Thus, we can raise b; to by + 1. Tt is clear that by

repeated application of these two steps we can find the normal form of Y.

Even more is true. The integers ¢y and f(i,7) determine I' up to
isomorphism, in the sense that if IV is another normalized n-dimensional
crystallographic group with the same set of integers, then I' and I’ are
isomorphic. To see this, let w},...,w!, be the corresponding unit vectors

of L(T") and let wy,,4,...,w}, be the corresponding coset representatives.
Then the function £ : T — TV, defined by

§((awr + - + apwp + DNwy) = (aqw) + - Fagwl, + DNwl,
D

is an isomorphism, since ¢ is obviously a bijection, and the same algorithm
determines the normal form for a product in each group. Thus, to show
that there are only finitely many isomorphism classes of normalized n-
dimensional crystallographic groups, it suffices to show that the absolute

values of the integers ¢,;; and m have an upper bound depending only on
the dimension n.
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Now the elements w,,w,; and wy(, ;) have translation vectors of length at
most n/2. Consequently, the translation vector of

C1W1 + -+ eypwp +1 = wzij;(llyj)
has length at most 3n/2. Let vy be the component of wy perpendicular to
the hyperplane spanned by w1,...,wg—1, Wk+1,-..,Wn. LThen
ey kvk| < 3n/2.
By Lemma 5, we have that
lvg| > (n+2)"".
Hence, for each i, 7, k, we have
ekl < S0+ 2)"
We next find an upper bound for m. First of all, we have
m—n=[:H =[T:T()[T) : H.
Now the translations among the representatives wpi1, ... ,wn, form a com-

plete set of coset representatives for H in T(T"). Each translation vector w,

has norm at most n/2 and, by Lemma 3, is one of at most (n+1)™ vectors
in L(T"). Hence

[T(T) : H < (n+1)™
Next, observe that

[': T(I)] = [,
where II is the point group of I Let A be in II. Then A is uniquely
determined by its images Aw, for ¢ = 1,...,n. By Lemma 3, the vector

Auw, is one of at most 3™ different unit vectors in L(I'). Hence A is one of
at most (37)" different matrices in O(n). Hence

C:T@) < @3™".
Thus, we have

m<n+@")"(n+1)" o

Remark: The exact number of isomorphism classes of n-dimensional
crystallographic groups for n = 1,2,3,4 is 2, 17, 219, 4783, respectively.

The Splitting Group

Let T be an n-dimensional crystallographic group and let m be the order
of the point group II of T'. Let I'* be the subgroup of I(E™) generated by
T(I‘)?% and I'. Then I'* has the same point group I1. Therefore

[[*:T] = [T(T)=:T())]
= [SL(T): LT)]
[(£Z)":Z"]

m".
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Hence IT'* is also an n-dimensional crystallographic group with
L(r+ = %L(I‘). (7.4.4)
The group I'* is called the splitting group of T'.

Lemma 7. If T'* is the splitting group of T, then the following exact se-
quence splits
1-T(I") ->I" -1 - 1.

Proof: Let n:I'* — II be the natural projection. For each A in II, choose
¢4 in T such that n(¢4) = A. Then for each A, B in II, there is an element
7(A, B) of T(T') such that
¢a¢p =T(A,B)pas.
Let ¢4 = a4 + A for each A. Then
¢a¢B =as+ Aap + AB.

Hence, we have
T(A,B) =as+ Aag —aap + 1.

Define a function f : II x IT — L(T') by the formula
f(A,B)=as+ Aap — aasB.

Taking the sum of both sides of the last equation, as B ranges over all the
elements of II, gives

Zf(A,B):maA—G—AZaB— ZaB.

Bell Bel Bell
Define o : I' = IT'* by

a(A) = —% > FAC) +aa+ A
Cell

Let s =5 cen @c- Then
1
A= ~(A- )
o(A) m(A Ns+ A

Observe that
1

o(AB) = _E(AB —I)s+ AB
1 1
= ——(A-I)s— —=(AB - A)s+ AB
m m
= o(A)a(B).
Therefore o is a homomorphism such that no is the identity on II. o

Theorem 7.4.4. Let £ : Ty — I'y be an isomorphism of n-dimensional
crystallographic groups. Then there 1s an affine bijection o of R™ such that
for each ¢ in T'y, we have

£(¢) = aga™".
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Proof: Since the subgroup of translations of a crystallographic group is
characterized as the unique maximal free abelian subgroup, we have

§(T(T1)) = T(T).
Hence ¢ induces an isomorphism € : TI; — TI, between the point groups
of I'y and T'. For each A in Iy, choose ¢4 in 'y such that ny(d4) = A
where 7, : 'y — II; is the natural projection. Then {¢4 : A € II;} is a set

of coset representatives for T(I'7) in I';. Let T be an arbitrary element of
T(I'1) and let m be the order of II; and II,. Define &* : T% — T by

£ (Tha) = [E(T™)]TE(Pa).

Then £* is an isomorphism, since £* maps T(I'}) isomorphically onto T(T'3),
and £* agrees with the isomorphism £. Moreover £* extends £.
By Lemma 7, the exact sequence

1-TI) Iy -1, —» 1

T

splits for each ¢ = 1,2. Let o, : I, — I'F be a splitting homomorphism.
The finite group o,(I1,) has a fixed point in E™. By a change of origin, we
may assume that o,(I,) fixes the origin. Then o,(Il,) = TI, for i = 1,2.
Hence, every element of I'} is of the form 7A with 7 in T(T'¥) and A in II,.
Let v1,...,v, generate L(T";) and define ws,...,w, by

w, +I =&, +1I) for j=1,...,n.

Then wy, ..., w, generate L(I's). Hence, there is a unique linear automor-
phism o of R™ such that a(v,) =w, for j =1,...,n.
Let A be in II; and let @ be in L(T'}). Then

Ala+ DA™ = Aa+1.
Hence, we have
£ (A(a+ DA™Y = € (Aa+ ).
Therefore
£ (A)(ala) + NEYA) ™ = ada+]1
and so we have
& (Aa(a) + I =aAa+1.
Hence, we have
£ (A)a = aA.
Thus, we have
£(A) = ada"t.
Hence, we have
g (r4) = £(nE(4)
= (ara ) (ada™)

= a(tA)a™h o
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Bieberbach Groups

Definition: An n-dimensional Bieberbach group is a group G for which
there is an exact sequence of groups
0—7Z"-5G-1Q—1 (7.4.5)

such that Q is a finite subgroup of GL(n,Z) and the left action of @ on Z"
induced by conjugation in G is the natural action of @ on Z".

For example, any n-dimensional crystallographic group is an n-dimensional
Bieberbach group. We shall algebraically characterize crystallographic
groups by showing that every n-dimensional Bieberbach group is isomor-
phic to an n-dimensional crystallographic group.

Lemma 8. Let G be an n-dimensional Bieberbach group and let @ be a
finite subgroup of GL(n,Z) as in the exact sequence 7.4.5. Then G can be
embedded as a subgroup of finite index in the semidirect product Z™ x Q).

Proof: For each ¢ in Q, choose an element z, of G such that n(z,) = ¢

and 7 = 1. Then for each g,r in Q, there is a unique element f(q,r) of
Z™ such that

Tqlyr = Lf(qa T)xqr-

The function f: Q x Q — Z™ completely determines G, since if a, b are in
7", then :

(t(@)zg)(t(b)xr) = t(a+ gb+ f(g,T))zqr.

The associativity of the group operation in G gives rise to the following
cocycle identity for f. For each ¢,r, s in @), we have

flg,7) + flar,s) = af(r,s) + f(q,7s).
We next construct a new n-dimensional Bieberbach group G* from G
and f. Let G* =Z" x @) as a set and let m = |Q|. Define a multiplication

in G* by the formula
(a,q)(b,7) = (a+ gb+mf(q,7),qr).
It is straightforward to check that G* is a group with this multiplication.

Let k : Z™ — G* and 7 : G* — @ be the natural injection and projection.
Then we have an exact sequence

Moreover, we have
(0,4)(a,1)(0,9)™" = (ga, 1).

Therefore G* is an n-dimensional Bieberbach group.
Next, we show that 7 has a right inverse. Define ¢ : Q — G* by

a(q) = (— > fa, S),q)-

s€EQ
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Taking the sum of both sides of the cocycle identity for f gives

mf(gr)+ > flars)=a Y f(rs)+ > £(a,5).

sEQ SEQ sEQ
Hence
olar) = (= flar,s),ar)
sEQ
= (X @) -0y £r8) +mfla.r),ar)
SEQ SEQ
= a(g)o(r).

Thus o is a homomorphism such that 7o is the identity on Q.
Next, define a function

E:7L"xQ -G

by the formula

£(a,q) = r(a)o(q).
Then £ is an isomorphism. Hence, it suffices to show that G' can be em-
bedded in G* as a subgroup of finite index.

Define € : G — G* by

e(u(a)zq) = (ma,q).

Then we have
e(Ua)zq(b)zry) = e(la+qb+ flg,7))xqr)
(m(a+gb+ fg,r)),qr)
= (ma+q(mb) + mf(g,r)),qr)
(

= (ma,q)(mb,r)
= e(a)zg)e(t(b)xr).
Thus ¢ is a homomorphism. Clearly € is a monomorphism and
[G* :e(@)] = [Z" : (mZ)"] = m". o

Lemma 9. Let Q be a finute subgroup of GL(n,R) (resp. GL(n,C)). Then
Q is congugate in GL(n,R) (resp. GL(n,C)) to a finate subgroup of O(n)
(resp. U(n)).

Proof: Define an inner product on R™ (resp. C™) by the formula

(@,y) = gz *qy.
q€Q
This product is obviously bilinear, Hermitian symmetric, and nondegener-
ate; moreover, for each ¢ in @, we have

(gz,qy) = (z,y).
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By the Gram-Schmidt process, we construct an orthonormal basis v1, . . . ,vn
for R™ (resp. C™) with respect to this inner product. Define A in GL(n, R)
(resp. GL(n,C)) by Ae, = v, fori=1,...,n. Then

(Az, Ay) = <AZ$161’AZ%€J>
=1 1=1
= <szvz7zy]v]>
=1 1=1
= szyz
— oy,

If g is in Q and z,y are in R™ (resp. C"), then
AT'qAzx ATqAy = (qAz,qAy)
(Az, Ay)

= Tx*xy.

Thus A7!gA is an orthogonal (resp. unitary) transformation. Hence
A71QA is a finite subgroup of O(n) (resp. U(n)). o

Theorem 7.4.5. Let G be an n-dimensional Bieberbach group. Then G is
1somorphac to an n-dimensional crystallographic group.

Proof: As every subgroup of finite index of an n-dimensional crystallo-
graphic group is again an n-dimensional crystallographic group, we may
assume, by Lemma 8, that G is a semidirect product Z™ x @, where Q is a
finite subgroup of GL(n,Z). By Lemma 9, there is a matrix A in GL(n, R)
such that AQA™" is a subgroup of O(n). The group L = A(Z") is a lattice
in R and IT = AQA~! acts naturally on L. The function

a:Z"xQ — LxII
defined by the formula
a(a,q) = (Aa, AgA™")
is obviously an isomorphism. Now define a function
B:LxII— I(E™)
by the formula
Bla,A) =a+ A.

Then [ is clearly a monomorphism. Let T = B(L). Then T is gener-
ated by n linearly independent translations. Therefore T is a discrete
subgroup of I(E™). As T is of finite index in I' = Im 3, we have that T
is an n-dimensional crystallographic group. Thus G is isomorphic to an
n-dimensional crystallographic group. o
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Exercise 7.4

1. Prove that a discrete group I" of isometries of E™ is crystallographic if and
only if the translation direction vectors of its parabolic elements span R™.
See Exercise 5.4.6.

2. Let T be a crystallographic group. Prove that an element a + A of ' is a
translation if and only if |A — I| < 1/2.

3. Verify that G* in the proof of Lemma 8 is a group.
4. Derive the cocycle identity for f in the proof of Lemma 8.

5. Prove that the group G™ in the proof of Lemma 8 is isomorphic to the
splitting group of G when G is crystallographic.

§7.5. Torsion-Free Linear Groups

In this section, we prove Selberg’s lemma. In order to prove this lemma,
we need to review some commutative ring theory.

Integral Domains
In this section, all rings are commutative with identity.

Definition: A ring A is an integral domain if and only if 0 # 1 in A and
whenever ab = 0 in A, then either a =0 or b = 0.

Clearly, any subring of a field in an integral domain. Let S be a subset
of an integral domain A. Then § is said to be multiplcatively closed if and
only if 1 is in S and S is closed under multiplication. Suppose that S is
multiplicatively closed. Define an equivalence relation on A x S by

(a,s) = (b,t) if and only if at = bs.

Let a/s be the equivalence class of (a, s) and let S~1A be the set of equiv-
alence classes. Then S~'A is a ring with fractional addition and multipli-
cation. The ring S™!A is called the ring of fractions of A with respect to
the multiplicatively closed set S.

Observe that the mapping a — a/1 is a ring monomorphism of A into
S—1A. Hence, we may regard A as a subring of S~*A. Note that S'A is
also an integral domain. If § = A — {0}, then S7'A is a field, called the
field of fractions of A. Thus, any integral domain is a subring of a field.

Definition: An ideal P of a ring A is prime if and only if A/P is an
integral domain.
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An ideal M of a ring A is said to be mazimal if and only if M is proper
(M # A) and A contains no ideals between M and A. Any maximal ideal
M of a ring A is prime, because A/M is a field. By Zorn’s Lemma, any
proper ideal I of a ring A is contained in a maximal ideal of A.

Let P be a prime ideal of an integral domain A. Then S = A — P is
a multiplicatively closed subset of A. The ring Ap = S~'A is called the
localization of A at P.

Definition: A ring A is local if and only if A has a unique maximal ideal.

Lemma 1. If M is a proper wdeal of a ming A such that every element of
A — M 15 a unit of A, then A is a local ring with M ts mazimal 1deal.

Proof: Let I be a proper ideal of A. Then every element of I is a nonunit.
Hence I C M, and so M is the only maximal ideal of A. a

Theorem 7.5.1. If P 1s a prime ideal of an integral domain A, then Ap
s a local ring.

Proof: Let S=A—P. Then M = {a/s:a € P and s € S} is a proper
ideal of Ap. If b/t isin Ap — M, then b is in S, and so b/t is a unit of Ap.
Therefore Ap is a local ring with M its maximal ideal by Lemma 1. o

Integrality

Let A be a subring of a ring B. An element b of B is said to be mntegral
over A if and only if b is a root of a monic polynomial with coefficients in
A, that is, there are elements ay, ..., a, of A such that

b +arb" + .- 4a, = 0. (7.5.1)

Clearly, every element of A is integral over A.
Let by,...,b, be elements of B and let Alb1, ..., by) be the subring of
B generated by A and by,...,b,,. Note that every element of the ring

Alby,...,by] can be expressed as a polynomial in by,...,b,, with coeffi-
cients in A. If B = Afby,..., bm], we say that B is finstely generated over
A, and by, ..., b, are generators of B over A.

Theorem 7.5.2. Let A be a subring of an integral domain B and let b be
an element of B. Then the following are equivalent:

(1) The element b 1s wntegral over A.
(2) The ring A[b] 1s a finitely generated A-module.

(3) The ring A[b] s contained wn subring C of B such that C 1is a finitely
generated A-module.
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Proof: Assume that (1) holds. From Formula 7.5.1, we have
WP = (@b 44 anb®) forall i > 0.

Hence, by induction, all positive powers of b are in the A-module generated
by 1,b,...,b""!. Thus A[b] is generated, as an A-module, by 1,b,...,b" .
Thus (1) implies (2).

To see that (2) implies (3), let C' = A[b].

Assume that (3) holds. Let ¢y, ..., ¢, be generators of C' as an A-module.
Then there are coefficients a,, in A such that for each i = 1,...,n,

n
be, = Z 045Cy.
7=1
Then we have that

> (65— ary)e; = 0.

=1
By multiplying on the left by the adjoint of the matrix (6,6 — a,,), we
deduce that
det(6,,b —a,y)c, =0 forj=1,...,n

Therefore, we have
det(6,,b — ay;) = 0.

Expanding out the determinant gives a equation of the form (7.5.1). Hence
b is integral over A. Thus (3) implies (1). o

Corollary 1. If A s a subring of an integral domain B, and by,...,bn
are elements of B, each integral over A, then the ring Alby,...,bn] is a
finitely generated A-module.

Proof: The proof is by induction on m. The case m = 1 follows from
Theorem 7.5.2. Let A, = Aby,...,b,] and assume that A,,_; is a finitely
generated A-module. Then A,, = A,,_1[bn] is a finitely generated Ap,_1-
module by Theorem 7.5.2. Thus A,, is a finitely generated A-module. o

Corollary 2. If A is a subring of an integral domawn B, then the set C' of
all elements of B that are integral over A 1s a subring of B containing A.

Proof: Let ¢,d be in C. Then Ale,d] is a finitely generated A-module
by Corollary 1. Hence c + d and cd are integral over A by Theorem 7.5.2.
Thus C is a subring of B. o

Let A be a subring of an integral domain B. The subring C' of B of all
elements of B that are integral over A is called the integral closure of A in
B. If C = A, then A is said to be ntegrally closed in B. If C = B, then B
is said to be wntegral over A.
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Lemma 2. Let A be a subring of an wntegral domawn B such that B is
wntegral over A.

(1) If Q is a prime wdeal of B, and P = ANQ, then B/Q 1s wntegral over
A/P.

(2) If S is a multiplicatively closed subset of A, then S™'B 1s wntegral
over ST A.

Proof: Let b be in B. Then there are elements a4, ...,a, of A such that
"+ ab" 4+ a, = 0.

Upon reducing mod @, we find that b+ @ is integral over A/P.
(2) Let b/s be in S~'B. Then dividing the last equation by s gives

(b/8)" + (a1/s)(b/s)" ™" + - + (an/s") = 0.
Thus b/s is integral over S~LA. o

Lemma 3. Let A be a subring of an ntegral domain B such that B is
integral over A. Then A is a field if and only +f B is a field.

Proof: Suppose that A is a field and b is a nonzero element of B. Then
there are coefficients a1, ...,a, in A such that

bn+a1bn—1+...+an:0’

and 7 is as small as possible. As B is an integral domain, we have that
an # 0. Hence

b—l — _ar—Ll<bn_1 + albn~2 4ot anfl)

exists in B, and so B is a field.
Conversely, suppose that B is a field and a is a nonzero element of A.

Then a~! exists in B and so is integral over A. Hence, there are coefficients
ai,...,a, in A such that

a”"+aa™" . g, =0,

Then we have

a™t = —(ay +aza+ -+ ana™t)

is an element of A, and so A is a field. o
Lemma 4. Let A be a subring of an integral domain B such that B is
integral over A, let Q be a prime 1deal of B, and let P = ANQ. Then P
is mazimal in A of and only if Q 1s mazimal in B.

Proof: By Lemma 2(1), we have that B/Q is integral over A /P. As Qis
prime, we have that B/(Q is an integral domain. Therefore A/P is a field
if and only if B/Q is a field by Lemma 3. o
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Theorem 7.5.3. Let A be a subring of an wntegral domawn B such thal B
is integral over A, and let P be a prime ideal of A. Then there 1s a prime
wdeal Q of B such that ANQ = P.

Proof: Let Bp = (A — P)~!B. Then Bp is integral over Ap by Lemma
2(2). Consider the commutative diagram of natural injections

A — B

al 1B

Ap — Bp.
Let N be a maximal ideal of Bp. Then M = Ap N N is maximal in Ap by
Lemma 4. Hence M is the unique maximal ideal of the local ring Ap. Let
Q = B71(N). Then Q is a prime ideal of B such that

ANQ=a"Y(M)=P. o
Valuation Rings

Definition: A subring B of a field F' is a valuation ring of F if and only
if for each nonzero element z of F, either z is in B or £~ ! is in B.

Theorem 7.5.4. If B 1s a valuation ring of a field F', then

(1) B 1s a local ring; and
(2) B s wntegrally closed in F'.

Proof: (1) Let M be the set of nonunits of B. If z is in M and b in
B, then bz is in M, otherwise (bx)~! would be in B, and therefore the
element =" = b(bx) ! would be in B, which is not the case. Now let z,y
be nonzero elements of M. Then either zy~' is in B or z ™'y is in B. If
zy~Lisin B, then z +y = (1 +zy~')y is in M, and likewise if z "ty is in
B. Hence M is an ideal of B and therefore B is a local ring by Lemma 1.

(2) Let z in F be integral over B. Then there are coefficients by, ..., by
in B such that

"+ bz 4+ b, = 0.

1isin B and so

If z is in B, then we are done, otherwise ™
z=—(b1 + boz Lo byt

is in B. Thus B is integrally closed in F'. o
Let F be a field and let K be an algebraically closed field. Let ¥ be

the set of all pairs (A, ), where A is a subring of F and a: A — K is a
homomorphism. Define a partial ordering on ¥ by the rule

(A,a) < (B,B) ifand only if AC B and B A=a.

By Zorn’s Lemma, the set X has a maximal element.
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Theorem 7.5.5. Let (B,3) be a mazwmal element of .. Then B 15 a
valuation ring of F.

Proof: We first show that B is a local ring with M = ker 8 its maximal
ideal. The ring B(B) is an integral domain, since it is a subring of the field
K. Therefore M is prime. We extend § to a homomorphism 7 : By — K

by setting
v(b/s) = B(b)/B(s)

for all b in B and s in B — M, which is allowable, since 3(s) # 0. As the
pair (B, ) is maximal, we have that B = Bj;. Therefore, every element
of B — M is a unit, and so B is a local ring and M is its maximal ideal by
Lemma 1.

Now let z be a nonzero element of F' and let M|x] be the ideal of
Blz] of all polynomials in & with coefficients in M. We now show that
either M[z] # Blz] or M{z™!] # Bz ~!]. On the contrary, suppose that
Mx] = Blz] and M{z~'] = B[z~!]. Then there are coefficients ay, .. ., am
and bg,...,b, in M such that

ap+ a1 x4+ +apz™ =1,
bo+biz ™t bz =1

and m and n are as small as possible. By replacing z by z~!, if necessary,
we may assume that m > n. Multiplying the second equation by z” gives

(1=bo)z" =brz™" L+ +b,.

As by is in M, we have that 1 — by is in B — M and so is a unit of B.
Therefore, we can write

" =cz" 4. 4,

with ¢, in M. Hence, we can replace ™ by ciz™= ! + ... + cpx™ ™" in
the first equation. This contradicts the minimality of m. Thus, either
M{z] # Blz] or M[z~!] # Blz™1].

We now show that either z is in B or z7! is in B. Let B’ = Blz]. By
replacing = by z™!, if necessary, we may assume that M [x] # B'. Then
M[z] is contained in a maximal ideal M’ of B’; and BN M’ = M , since
BN M’ is a proper ideal of B containing M. Hence, the inclusion of B into
B’ induces an embedding of the field k = B /M into the field k' = B’ /M.
Moreover k' = k[Z] where T = z+ M’. Hence, if # 0, there are coefficients
Co, - ..,Cn in k such that

T _ _
T = c+caT+--+c,T".

Hence, we have
0 = —14cZT+-+e,z" L
Therefore Z is algebraic over k.

Now the homomorphism 3 : B — K induces an embedding 8 : k — K
because M = ker 3. Let p(t) be the irreducible polynomial for Z over k.
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As K is algebraically closed, the polynomial (8p)(t) has a root r in K. We
extend f to a homomorphism 5’ : k' — K as follows: Let y be in k’. Then
there is a polynomial f(t) over k such that y = f(Z). Define

B'(y) = (BF)(r).
Then 3’ is well defined, since if g(t) is another polynomial over k such that

y = g(Z), then (¢— f)(T) = 0, and so p(t) divides (g— f)(t), whence (Gp)(t)
divides (8(g — f))(¢) and so

(Bg)(r) = (B)(r).
Clearly 3 is a ring homomorphism extending 8. Composing 8’ with the
natural projection B’ — k' gives a homomorphism 3’ : B’ — K extending
B. As (B, ) is maximal, B = B’, and so z is in B. Thus B is a valuation
ring of F. o
Corollary 3. If A s a subring of a field F, then the wtegral closure C of
A F is the intersection of all the valuation rings of F' containing A.

Proof: Let B be a valuation ring of F' containing A. Then B is integrally
closed in F' by Theorem 7.5.4. Hence, any element of F that is integral
over A is an element of B. Therefore C C B.

Now let z be an element of F — C and let A’ = A[z~1]. Then z is not
in A, since otherwise there would be coefficients aq, ..., a, in A such that

r=ag+az '+ - Fapz "
and so we would have

n+1

" —agx” — - —ap =0

and therefore 2 would be in C, which is not the case. Hence z7' is a
nonunit of A’ and so is contained in a maximal ideal M of A’. Let k be
the algebraic closure of the field k = A’/M and let o : A’ — k be the
composition of the natural projection A’ — k followed by the inclusion
k — k. Then a can be extended to a homomorphism 3 : B — k where B
is a valuation ring of F' containing A’ by Theorem 7.5.5. Then z 1 is also
a nonunit in B, since B(z~1) = 0. Therefore z is not in B. Hence C'is the
intersection of all the valuation rings of F' containing A. o

Lemma 5. Every algebraically closed field is wnfinite.

Proof: Let K be an algebraically closed field and on the contrary, suppose
that K is finite. Let p be the characteristic of K. Then K is a finite
dimensional vector space over the field of order p. Hence K has p™ elements
for some positive integer n. Therefore, the group K* of units of K has
order p" — 1. Let g be a prime not dividing p™ — 1. Then the polynomial
(t9 — 1)/(t — 1) has no root in K, since the order of every element of K~
divides p™ — 1. Thus K is not algebraically closed, which is a contradiction.
Hence K must be infinite. o
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Theorem 7.5.6. Let A be a subring of an wntegral domawn B such that B
is finitely generated over A, and let b be a nonzero element of B. Then there
exists a nonzero element a of A with the property that any homomorphism
a of A into an algebrascally closed field K, such that a(a) # 0, can be
extended to a homomorphism B : B — K such that 8(b) # 0.

Proof: By induction on the number of generators of B over A, we reduce
immediately to the case where B is generated over A by a single element .
Assume first that z is not algebraic over A, that is, no nonzero polynomial
with coefficients in A has z as a root. As B = A[z], there are coeflicients
ag, - - -, 0, in A, with ag # 0, such that

b=apz" +a1z" 4+ - +a,.
Set a = a¢ and let
a:A— K
be a homomorphism such that a(a) # 0. Now the nonzero polynomial
a(ag)t™ + ala)t™ ' + -+ + a(an)
has at most n roots in K; therefore, there is an element y of K such that
a(ao)y™ +efar)y" "+ + afan) #0,
since K is infinite by Lemma 5. Extend o : A — K to a homomorphism
8:B— K

by setting B(x) =y. Then 8(b) # 0, as required.

Assume next that z is algebraic over A. Then z is integral over the field
Fof fractions of A. As b is in F[z], we have that b is integral over F' by
Theorem 7.5.2. Hence b is algebraic over A, and therefore b=! is algebraic

over A. Hence, there are coefficients cy, ..., ¢, and dy, ... ,dn in A, with
codp # 0, such that

cox™ +ex™ 4 4, = 0,
dob™" + dlblﬁn +---+d,=0.
Set a = codp and let o : A — K be a homomorphism such that afa) # 0.
Then o can be extended first to a homomorphism
o Alal - K
by setting
o(a7h) = a(a)™,
and then to a homomorphism v : C — K, where C is a valuation ring of
the field of fractions of B, by Theorem 7.5.5. As a — codo, we have that
z is integral over A[a~']. Therefore z is in C by Corollary 3, and so C
contains B. Likewise, since a = cydy, we have that b1 is integral over

Ala™']. Therefore b~ is in C, and so b is a unit in C. Hence ~v(b) # 0.
Now take 3 : B — K to be the restriction of v to B. o
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Selberg’s Lemma

Let A be a subring of C. Then A is said to be finstely generated if and only if
A is finitely generated over Z, that is, there are a finite number of elements
ai,...,am of A, called the generators of A, such that every element of A
can be expressed as a polynomial in aq,...,a,, with coefficients in Z.

Theorem 7.5.7. Let A be a finitely generated subring of C. Then every
subgroup of GL(n, A) has a torswon-free normal subgroup of finite indez.

Proof: For each prime p in Z, let o, be the composite

z > L = Z,,
where Z, = Z/pZ and Zp is the algebraic closure of Z,. By Theorem
7.5.6, there is a nonzero integer m with the property that for any prime
p not dividing m, the homomorphism «,, : Z — Z; can be extended to a
homomorphism 8, : A — Z,. As (,(1) = 1, the kernel of 8, is a proper
ideal of A. Let M), be a maximal ideal of A containing ker 3,. Then

pZ = ZNker B, CZN M,.

As pZ is a maximal ideal of Z, we have that ZN M, = pZ. Therefore A/M,
is a field of characteristic p.

Now 3, : A — Z, induces an embedding of A/ ker 3, into Z,. As Z, is
an algebraic extension of Z,, we have that A/ ker 3, is algebraic over Z,.
Therefore A/M,, is an algebraic extension of Z,. As A is finitely generated
over Z, we have that A/M,, is finitely generated over Z,. Therefore A/M,
is a finite extension of Z, by Corollary 1. Hence A/M,, is a finite field.

Let GL, (A4, M,) be the kernel of the natural projection from GL,(A)
into GL,(A/M,). Then GL,(A, M,) is a normal subgroup of GL,(A) of
finite index, since GL, (A/M,) is a finite group. Let I' be an arbitrary
subgroup of GL,,(A) and set

I, = T NGL, (A, My).

Then T, is a normal subgroup of T' of finite index.
Let p, g be distinct primes not dividing m and set

Ty =TpNT,

Then T, , is a normal subgroup of T' of finite index. We now prove that
T'p.q is torsion-free by contradiction. Let g be an element of I'y, 4 of finite
order r > 1. We may assume, without loss of generality, that r is prime.
As g" = I, each eigenvalue of g is an rth root of unity. By Lemma 9 of
§7.4, we have that g is conjugate in GL(n,C) to a unitary matrix. Hence
g is conjugate to a diagonal matrix. Now since the order of g is r, at least
one eigenvalue of g is a primitive rth root of unity w.
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Let B = Alw]. By Theorem 7.5.3, there is a prime ideal @, of B such
that AN Qp = M. Let ¢(t) be the characteristic polynomial of g. As g is
in GL,,(4, M,), we have

#(t) = (t —1)" mod M,[t].
Therefore, we have
P(w) = (w—1)" mod Q,.
As ¢(w) = 0, we have that w—1 is in @y, since B/Q),, is an integral domain.
Hence, there is a nonzero element z of @), such that w = 1 + z. Observe
that
(r—1) ,

1=(1+a:)7“=1+m+rTI +tal

Therefore, there is a y in ¢, such that
1=1+2z(r+y).
Thus z(r +y) = 0 and so 7 +y = 0. Hence r is in ZNQ, = pZ. Asr is

prime, we have that r = p. Likewise r = ¢, and we have a contradiction.
Thus I', 4 is torsion-free. o

Corollary 4. (Selberg’s lemma) Every finitely generated subgroup T' of
GL(n,C) has a torsion-free normal subgroup of finite indez.

Proof: Let I' be the group generated by gi,...,¢m and let A be the

subring of C generated by all the entries of the matrices glil, oo, gL, Then
I’ is a subgroup of GL(n, A) and so has a torsion-free normal subgroup of
finite index by Theorem 7.5.7. D

Corollary 5. Every finitely generated subgroup of I(H™) has a torsion-free
normal subgroup of finite index.

Proof: The group PO(n, 1) is a subgroup of GL(n + 1,C). D
Exercise 7.5

1. Let I be a group with a torsion-free subgroup of finite index. Prove that T’
has a torsion-free normal subgroup of finite index.

2. T be a group with a torsion-free subgroup of finite index. Prove that there
is an upper bound on the set of finite orders of elements of T".

3. Let A be a finitely generated subring of C. Prove that every subgroup of
PSL(2, A) has a torsion-free normal subgroup of finite index.

4. Prove that every finitely generated subgroup of PSL(2,C) has a torsion-free
normal subgroup of finite index.

o. Prove that every finitely generated subgroup I' of GL(n,C) is residually
finite, that is, for each g # 1 in I, there is normal subgroup I'y of T" of finite
index such that g is in I' ~ I';. Conclude that every finitely generated group
of hyperbolic isometries is residually finite.
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§7.6. Historical Notes

§7.1. Theorems 7.1.2 and 7.1.3 for 2- and 3-dimensional hyperbolic polyhe-
dra appeared in Poincaré’s 1883 Mémoire sur les groupes kleinéens [332].
Theorems 7.1.3 and 7.1.4 for spherical and Euclidean n-simplices appeared
in Coxeter’s 1932 paper The polytopes with regular-prismatic vertex figures
I7 [86]. See also Witt’s 1941 paper Spiegelungsgruppen und Aufzihlung
halbeinfacher Liescher Ringe [414]. Theorems 7.1.1 and 7.1.3 for compact
polyhedra were proved by Aleksandrov in his 1954 Russian paper On the
filling of space by polyhedra [12] and in general by Seifert in his 1975 paper
Komplexe mat Seitenzuordnung [371]. Coxeter groups were introduced by
Coxeter in his 1935 paper The complete enumeration of finite groups of the
form R = (R,R,)*» =1 [88].

87.2. The spherical, Euclidean, and hyperbolic triangle reflection groups
were determined by Schwarz in his 1873 paper Ueber diejenigen Fille, in
welchen die Gaussische hypergeometrische Reihe eine algebraische Func-
tion thres vierten Elementes darstellt [369]. Hyperbolic, tetrahedron, re-
flection groups were considered by Dyck in his 1883 paper Uber die durch
Gruppen linearer Transformationen gegebenen regularen Gebietseintheilun-
gen des Raumes [112]. The spherical, tetrahedron, reflection groups were
determined by Goursat in his 1889 paper Sur les substitutions orthogonales
et les divisions réguliéres de l’espace [155]. The spherical and Euclidean,
n-simplex, reflection groups were enumerated by Coxeter in his 1931 note
Groups whose fundamental regions are simplezes [85]. See also Coxeter’s
1934 paper Discrete groups generated by reflections [87]. The hyperbolic,
tetrahedron, reflection groups were described by Coxeter and Whitrow
in their 1950 paper World-structure and non-Euclidean honeycombs [96].
The hyperbolic, compact n-simplex, reflection groups were enumerated by
Lannér in his 1950 thesis On complezes with transitive groups of auto-
morphisms [253]. Theorem 7.2.2 for spherical and Euclidean n-simplices
appeared in Coxeter’s 1932 paper [86]. See also Witt’s 1941 paper [414].
Theorem 7.2.2 for hyperbolic n-simplices appeared in Vinberg’s 1967 paper
Discrete groups generated by reflections wn Lobacevskii spaces [397].

§7.3. Theorem 7.3.1 and Figure 7.3.5 appeared in Vinberg’s 1967 paper
[397]. The hyperbolic, noncompact n-simplex, reflection groups were enu-
merated by Chein in his 1969 paper Recherche des graphes des matrices de
Cozeter hyperboliques d’ordre < 10 [79]. For a survey of hyperbolic reflec-
tion groups, see Vinberg’s 1985 paper Hyperbolic reflection groups [398].
References for reflection groups are Bourbaki’s 1968 treatise Groupes et
Algebres de Lie [54], Coxeter’s 1973 treatise Regular Polytopes [92], and
Humphreys’ 1990 treatise Reflection Groups and Cozeter Groups [201].
A complete list of the Coxeter graphs of the hyperbolic, noncompact n-
simplex, reflection groups can be found in Humphreys’ 1990 treatise [201].
For the history of reflection groups, see the historical notes in Bourbaki’s
1968 treatise [54] and in Coxeter’s 1973 treatise [92].
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§7.4. Theorem 7.4.1 appeared in Auslander’s 1965 paper An account
of the theory of crystallographic groups [26]. Theorems 7.4.2 and 7.4.3
were proved by Bieberbach in his 1911 paper Uber die Bewegungsgruppen
der Euklidischen Rdaume I [46]. Our proof of Theorem 7.4.3 was given by
Buser in his 1985 paper A geometric proof of Bieberbach’s theorems on
crystallographic groups [65]. Theorem 7.4.4 was proved by Bieberbach in
his 1912 paper Uber die Bewegungsgruppen der Euklidischen Réume II [47].
A description of the 2-dimensional crystallographic groups can be found in
Coxeter and Moser’s 1980 treatise Generators and Relations for Discrete
Groups [95]. For the history and classification of crystallographic groups,
see the 1978 treatise Crystallographic Groups of Four-Dimensional Space
of Brown, Biilow, Neubiiser, Wondratschek, and Zassenhaus [61]. Lemma
9 was proved by Moore in his 1898 paper An universal invariant for fi-
nite groups of linear substitutions [304] and by Loewy in his 1898 paper
Ueber bilineare Formen mit conjugirt vmagindren Variabeln [269]. Theo-
rem 7.4.5 appeared in Zassenhaus’ 1948 paper Uber emen Algorithmus zur
Bestimmung der Raumgruppen [422]. As a reference for crystallographic
groups, see Farkas’ 1981 article Crystallographic groups and their mathe-
matics [130].

§7.5. The material on integrality and valuation rings is basic commuta-
tive ring theory which was adapted from Chapter 5 of Atiyah and Macdon-
ald’s 1969 text Introduction to Commutative Algebra [25]. Selberg’s lemma
was proved by Selberg in his 1960 paper On discontinuous groups in hagher-
dimensional symmetric spaces [372]. For another proof of Selberg’s lemma,
see Alperin’s 1987 paper An elementary account of Selberg’s lemma [14].



CHAPTER 8

Geometric Manifolds

In this chapter, we lay down the foundation for the theory of hyperbolic
manifolds. We begin with the notion of a geometric space. Examples of
geometric spaces are S™, E™, and H™. In Sections 8.2 and 8.3, we study
manifolds locally modeled on a geometric space X via a group G of simi-
larities of X. Such a manifold is called an (X, G)-manifold. In Section 8.4,
we study the relationship between the fundamental group of an (X, G)-
manifold and its (X, G)-structure. In Section 8.5, we study the role of
metric completeness in the theory of (X, G)-manifolds. In particular, we
prove that if M is a complete (X, G)-manifold, with X simply connected,
then there is a discrete subgroup I' of G of isometries acting freely on X
such that M is isometric to X/I". The chapter ends with a discussion of
the role of curvature in the theory of spherical, Euclidean, and hyperbolic
manifolds.

§8.1. Geometric Spaces

We begin our study of geometric manifolds with the definition of a topo-
logical manifold without boundary.

Definition: An n-manifold (without boundary) is a Hausdorff space M
that is locally homeomorphic to E™, that is, for each point u of M, there
is an open neighborhood U of u in M such that U is homeomorphic to an
open subset of E™.

Example: Euclidean n-space E™ is an n-manifold.

Definition: A closed manifold is a compact manifold (without boundary).

Example: Spherical n-space S™ is a closed n-manifold.

330
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Definition: An open manifold is a manifold (without boundary) all of
whose connected components are noncompact.

Example: Hyperbolic n-space H™ is an open n-manifold.

Definition: An n-manifold-with-boundary is a Hausdorff space M that is
locally homeomorphic to U™ = {z € E" : z,, > 0}.

Example: Closed upper half-space U” is n-manifold-with-boundary.

Let M be an n-manifold-with-boundary and let M° be the set of points
of M that have an open neighborhood homeomorphic to an open subset
of U™. Then MP® is an open subset of M called the interior of M. The
interior M° of M is an n-manifold. Let OM = M — M°. Then &M is a
closed subset of M called the boundary of M. The boundary OM of M is
an (n — 1)-manifold. A manifold-with-boundary is often called a manifold;
however, in this book, a manifold will mean a manifold without boundary.

Definition: An n-dimensional geometric space is a metric space X satis-
fying the following axioms:

(1) The metric space X is geodesically connected; that is, each pair of
distinct points of X are joined by a geodesic segment in X.

(2) The metric space X is geodesically complete; that is, each geodesic
arc « : [a,b] — X extends to a unique geodesic line A : R — X.

(3) There is a continuous function € : E” — X and a k > 0 such that &
maps B(0, k) homeomorphically onto B(e(0), k); for each point u of
S™~1 the map A : R — X, defined by A(t) = e(tu), is a geodesic line
such that A restricts to a geodesic arc on the interval [—k, k];

(4) The metric space X is homogeneous.

One should compare Axioms 1-4 with Euclid’s Postulates 1-4 in §1.1. Note
that Axioms 3 and 4 imply that X is an n-manifold.

Example 1. Euclidean n-space E™ is an n-dimensional geometric space.

Example 2. Spherical n-space S™ is an n-dimensional geometric space.
Define € : E™ — S™ by £(0) = e,41 and
e(x) = (cos |z|)ent1 + (sin |x|)% for = # 0.

Then ¢ satisfies Axiom 3 with k = /2.
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Example 3. Hyperbolic n-space H" is an n-dimensional geometric space.
Define € : E™ — H™ by €(0) = en41 and
x

e(z) = (cosh|z|)ens1 + (sinh |z|) 2]

for z # 0.

Then ¢ satisfies Axiom 3 for all £ > 0.

Theorem 8.1.1. Let X be an n-dimensional geometric space and suppose
that € : E™ — X 15 a function satisfying Azom 8. Then for each geodesic
line A : R — X such that A(0) = €(0), there 1s a point u of S~ such that
A(t) = e(tu) for all t.

Proof: Let A : R — X be a geodesic line such that A(0) = £(0). Then
there is a ¢ > 0 such that the restriction of A to [0, ] is a geodesic arc. Let
k be the constant in Axiom 3 and choose b > 0 but less than both ¢ and
k. Then A(b) is in B(g(0), k). Hence, there is a point u of S*~! such that
g(bu) = A(b). Define o : [0,¢] — X by

_J e(tu), 0Lt <h,
a(t)_{A(t), b<t<e.

Then « is the composite of two geodesic arcs. Hence « is a geodesic arc by
Theorem 1.4.3, since

d(A(0), () + d(A(b), Alc)) = d(A(0), Ac))-
By Axiom 2, the arc o extends to a unique geodesic line p: R — X. Now
A and p both extend the restriction of A to [b, ¢|. Therefore A = p. Hence

A(t) = e(tu) for 0 < ¢t < b. Furthermore A(t) = e(tu) for all ¢, since A is
the unique geodesic line extending the restriction of A to [0, b]. o

Theorem 8.1.2. Let B(z,r) be an open ball in a geometric space X and
let B(z,r) be its topological closure i X. Then

B(x,r) ={y € X :d(z,y) <r} =C(z,7).

Furthermore the closed ball C(x,r) 18 compact.

Proof: In general, in a metric space, B(z,r) C C(z,r). As every point
of the set {y € X : d(z,r) = r} is joined to x by a geodesic segment in
B(z,7) by Axiom 1, we also have the reverse inclusion. Thus, we have

B(z,r) = C(z,7).

Let ¢ : E® — X be a function satisfying Axiom 3 with £(0) = z. As e is
continuous, e(B(0,7)) C B(z, ). Let y be an arbitrary point of C(z, 7). By
Axiom 1, there is a geodesic arc o : [0,£] — X from z to y. By Axiom 2,
the arc o extends to a geodesic line A : R — X. By Theorem 8.1.1, there is
a point u of S"~! such that A(t) = £(tu) for all ¢. Hence y = e(fu), where
¢ = d(z,y) < r. Therefore y is in (C(0,r)). Hence e(C(0,7)) = C(z,r).
As C(0,7) is compact and ¢ is continuous, C(z,) is compact. o
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Free Group Actions

Let I" be a discrete group of isometries of an n-dimensional geometric space
X. Then I is discontinuous by Theorems 5.3.5 and 8.1.2. Hence X/T is
a metric space by Theorems 5.3.4 and 6.5.1. We next consider a sufficient
condition on the action of I" on X so that X/T" is an n-manifold.

Definition: A group I' acting on a set X acts freely on X if and only if
for each z in X, the stabilizer subgroup I'y = {g € ' : gz = z} is trivial.

Example: The group {£1} acts freely on S™.

Definition: A function £ : X — Y between metric spaces is a local
wsometry if and only if for each point  of X, there is an r > 0 such that ¢
maps B(z,r) isometrically onto B(£(z), 7).

Theorem 8.1.3. Let I be a group of isometries of a metric space X such
that T' acts freely and discontinuously on X. Then the quotient map

m: X — X/T
is a local isometry and a covering projection. Furthermore, if X is con-

nected, then I 1s the group of covering transformations of .

Proof: Let x be an arbitrary point of X. Then we have
m(B(z,r)) = B(r(z),7)

for each 7 > 0 by Theorem 6.5.2. Hence 7 is an open map. Now as I
acts freely on X, the map g — gz is a bijection from T onto I'z. The set
I'z — {z} is closed by Theorem 5.3.4. Hence, we have

dist(z, Tz — {z}) > 0.
Now set 1
5= idist(a:, I'e — {z})

and let y, z be arbitrary points of B(x,s/2). Then d(y,z) <s. Let g # 1
be in I'. Then

d(z, gz) < d(x,y) + d(y, g2) + d(gz, gz).
Hence, we have

d(y,92) > d(z,gz) — d(z,y) — d(z,2)
> 25—8/2—-5/2 = s.
Therefore
dr(m(y), 7(2)) = dist(I'y, T'z) = d(y, 2).
Thus 7 maps B(z, s/2) isometrically onto B((z), s/2), and so 7 is a local
isometry.
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Now let g,h be in I’ and suppose that B(gz,s) and B(hz,s) overlap.
Then B(z,s) and B(g~'hz,s) overlap. Consequently

d(z,g”'ha) < 2s.

Because of the choice of s, we have that g7 'h = 1 and so g = h. Thus,
the open balls {B(gz,s) : g € '} are mutually disjoint in X. The orbit
space metric dr on X/I' is the distance function between I'-orbits in X.

Therefore 771 (B(n(z),s)) is the s-neighborhood of 'z in X. Hence, we
have

7 (B(r(z),s)) = gLEJF B(gz, s).

As each h # 1 in I" moves B(gz, s) off itself, no two points of B(gz, s) are
in the same T-orbit. Therefore # maps B(gz, s) bijectively onto B(w(z), s).
Furthermore, since 7 is an open map, 7w maps B(gz, s) homeomorphically
onto B(w(z),s) for each g in I'. Hence B(w(x), s) is evenly covered by .
Thus 7 is a covering projection.

If gisin I, then mg = 7, and so g is a covering transformation of 7. Now
assume that X is connected. Choose a base point zg of X. Let 7: X — X
be a covering transformation of #. Then w7 = m. Hence n7(2) = (o),
and so there is an element g of I' such that 7(x¢) = gxo. Now g and 7
are both lifts of 7 : X — X/T" with respect to 7 that agree at one point.
Therefore 7 = g by the unique lifting property of covering projections.
Thus T is the group of covering transformations of 7. o

X-Space-Forms

Let T be a discrete group of isometries of an n-dimensional geometric space
X such that T acts freely on X. Then the orbit space X/T" is called an
X-space-form. By Theorem 8.1.3, an X-space-form is an n-manifold.

Choose a base point zo of X. Let a : [0,1] — X/T" be a loop based at
the point T'zg. Lift o to a curve & : [0,1] — X starting at Zo. Then

ma(l) = a(l) = I'zg.

Now since T acts freely on X, there is a unique element g, of I' such that
&(1) = goo. By the covering homotopy theorem, the element g, depends
only on the homotopy class [o] in the fundamental group m (X/T,T'xo).
Hence, we may define a function

n:m(X/T)—-T

by the formula 7([]) = ga-

Theorem 8.1.4. Let X be a simply connected geometric space and let X/T
be an X -space-form. Then 1 : m(X/I') =T s an 1somorphism.
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Proof: Let o,(: [0,1] — X/T be loops based at 'z and let &, G:[0,1] —
X be lifts starting at zo. Then the curve &(g.f) : [0,1] — X lifts o and
starts at . Observe that

&gaB(1) = gagsTo.

Therefore
n([a][8]) = n([aB]) = gags = n([a])n([B)).

Thus 7 is a homomorphism.

Let g be an arbitrary element of I'. As X is geodesically connected,
there is a curve 7 : [0,1] — X from zy to gzg. Then 7wy : [0,1] — X/T is a
loop based at I'zo whose lift starting at z¢ is v. Hence n[my] = g. Thus 5
is surjective. To see that 7 is injective, assume that n([e]) = 1. Then & is
a loop in X. As X is simply connected, [&] = 1 and so

(o] = m[@] = 1.
Hence 7 is injective. Thus 7 is an isomorphism. o
Theorem 8.1.5. Let X be a simply connected geometric space. Then two

X -space-forms X/T' and X/H are isometric if and only +f T' and H are
conjugate wn the group I(X) of 1sometries of X.

Proof: Let ¢ be an element of I(X) such that H = ¢I'¢—!. Then for each
gin I’ and z in X, we have

b9z = ($g9¢™ ") .

Hence ¢gz is in the same H-orbit as ¢x. Thus ¢ induces a homeomorphism

¢: X/T — X/H
defined by ¢(I'z) = Héz. If z and y are in X, then
du(¢(lz),6(Ty)) = du(Hoz, Hoy)
= du(¢¢ 'Hoz, ¢~ 'Hey)
= du(¢l'z,¢l'y)
= dr(Tz,Ty).

Thus ¢ is an isometry.
Conversely, suppose that £ : X/T' — X/H is an isometry. By Theorem
8.1.3, the quotient maps 7 : X — X/T'and n : X — X/H are covering

projections. Since X is simply connected, & lifts to a homeomorphism ¢
such that the following diagram commutes:

x -
Tl In
x/r -5 x/H

As m,&, and 7 are local isometries, 5 is also a local isometry.
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Let z,y be distinct points of X. As X is geodesically connected, there
is a geodesic arc a : [0,£] — X from z to y. Since £ is a local isometry, the
curve €a is rectifiable and

ol = la| = £ = d(z, ).
Therefore, we have

d(€(@),€(y)) < d(z,y).

Likewise, we have

Hence, we have

Therefore, we have

Thus ¢ is an isometry of X.
Let g be an arbitrary element of I'. Then we have

négé™t = Emgé!
= ¢t
= e
7.
Hence égg —1is a covering transformation of n. Therefore £géVlisin H by
Theorem 8.1.3. Thus H contains £['¢€~!. By reversing the roles of I' and

H, we have that I' contains £-THE. Hence 51“5—1 = H. Thus I" and H are
conjugate in I(X). o

Exercise 8.1

1. Prove that elliptic n-space P" is an n-dimensional geometric space.
9. Prove that the n-torus T™ = E™/Z" is an n-dimensional geometric space.

3. A metric space X is said to be locally geodesically convex if and only if for
each z in X, there is an 7 > 0 such that any two distinct points in B(z,r)
are joined by a unique geodesic segment in X. Prove that every geometric
space is locally geodesically convex.

4. Prove that every X-space-form is geodesically connected.

5. Let X/T be an X-space-form and let N(I') be the normalizer of T in I(X).
Prove that I(X/T") is isomorphic to N(T")/T.
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§8.2. Clifford-Klein Space-Forms

Let X = 8™ E™, or H". Then an X-space-form is called a Clifford-Klein
space-form. Thus, a Clifford-Klein space-form is an orbit space X /T" where
T" is a discrete group of isometries of X acting freely on X. A Clifford-
Klein space-form X/T" is also called a spherical, Euclidean, or hyperbolic
space-form according as X = S™ E™ or H™.

Theorem 8.2.1. A discrete group I' of isometries of X = E™ or H™ acts
freely on X if and only if T is torsion-free.

Proof: As T is discontinuous, the stabilizer I, is finite for each x in X.
Hence, if T' is torsion-free, then I'; = {1} for each z in X, and so T acts
freely on X. Conversely, suppose that T acts freely on X. Then every
nonidentity element of I' is either parabolic or hyperbolic, and so every
nonidentity element of I" has infinite order. Thus T is torsion-free. a

Definition: The volume of a Clifford-Klein space-form X/T is the volume
of any proper fundamental region R of I" in X.

Note that the volume of a Clifford-Klein space-form X /T is well defined,

since all the proper fundamental regions of T' have the same volume by
Theorem 6.5.5.

Theorem 8.2.2. If X/T' and X/H are two 1sometric Clifford-Klein space-
forms, then

Vol(X/T) = Vol(X/H).

Proof: By Theorem 8.1.5, there is an isometry ¢ of X such that H =
¢I'¢~1. Let R be a proper fundamental region for I'. We now show that
#(R) is a proper fundamental region for H. First of all, ¢(R) is an open set,
since R is open. Let F' be a fundamental set for T such that R ¢ F C R.

As Hoz = ¢z for each z in X, we have that ¢(F) is a fundamental set
for H. Moreover

$(R) C ¢(F) C ¢(R).
Furthermore
Vol(0(é(R))) = Vol(¢(0R)) = Vol(8R) = 0.

Therefore ¢(R) is a proper fundamental region for H by Theorem 6.5.13.
Finally

Vol(X/T') = Vol(R) = Vol(¢(R)) = Vol(X/H). =

Definition: A Clifford-Klein space-form X /T is orentable if and only if
every element of I is orientation preserving.
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Spherical Space-Forms

It follows from Theorem 8.1.3 that every spherical space-form S™/T' is
finitely covered by S™. Hence, every spherical space form is a closed n-
manifold with a finite fundamental group when n > 1.

Example 1. Clearly, the group {£1} acts freely on S™. The space-form
S™/{=£1} is elliptic n-space P™.

Theorem 8.2.3. Spherical n-space S™ and elliptic n-space P™ are the only
spherical space-forms of even dimension n.

Proof: Let M = S™/T be a space-form of even dimension n and let A
be a nonidentity element of I'. Then A is an odd dimensional orthogonal
matrix. By Theorem 5.4.2, we deduce that +1 is an eigenvalue of A. Hence
1 is an eigenvalue of A2. Therefore A2 fixes a point of S™. As T acts freely
on S™, we must have that A2 = I. Consequently, all the rotation angles of
A are m. Hence A is conjugate in O(n + 1) to —I. As —I commutes with
every matrix in O(n + 1), we have A = —I. Thus M = P™. =

Theorem 8.2.4. Every spherical space-form S™ /T of odd dimension n is
orientable.

Proof: Let M = 8™/T be a space-form of odd dimension n and let A
be a nonidentity element of I". Then A is an even dimensional orthogonal
matrix. As I' acts freely on S™, the matrix A has no eigenvalue equal to
1. By Theorem 5.4.2, we deduce that A has an even number of eigenvalues
equal to —1. Hence A is a rotation. Consequently, every element of I
preserves an orientation of S™ and therefore M is orientable. o

Example 2. Identify S with the unit sphere in C? given by
{(z,w) € C%: |2)* + |w|* = 1}.
Let p and g be positive coprime integers. Then the matrix

627rz/p 0

is unitary and has order p. Let I' be the finite cyclic subgroup of U(2)
generated by this matrix. Then I acts freely on 53 as a group of isometries.
The space-form
L(p,q) = S°/T

is called the (p,q)-lens space. It is known that two lens spaces L(p,q)
and L(p/,¢') are homeomorphic if and only if p = p’ and either ¢ = +¢'
(mod p) or g¢’ = £1 (mod p). In particular, L(5, 1) and L(5,2) have iso-
morphic fundamental groups but are not homeomorphic. Thus, the home-
omorphism type of a spherical space-form is not determined, in general, by
the isomorphism type of its fundamental group.
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Euclidean Space-Forms

Let E™/T be a Euclidean space-form. Then I' is a torsion-free discrete
group of isometries of E™. By the characterization of discrete Euclidean
groups in §5.4, the group I is a finite extension of a finitely generated free
abelian group of rank at most n.

Example 3. Let I' be a lattice subgroup of I(E™). Then T is a torsion-
free discrete subgroup of I(E™). The space-form E™/T is called a Fuclidean
n-torus.

Theorem 8.2.5. FEvery compact, n-dimensional, Euclidean space-form 1s
finitely covered by a Euclidean n-torus.

Proof: Let E™/T be a compact Euclidean space-form. By Theorem
7.4.2, the subgroup T of translations of I' is of finite index and of rank n;
moreover, T is a normal subgroup of I'. Now the action of I" on E™ induces
an action of I'/T on E™/T such that if g is in T and z is in E™, then

(Tg)(Tz) = Tgz.
The group I'/T acts as a group of isometries of E™/T, since
dr(TygTz, TgTy) = dr(Tyz, Tgy)
dr(9Tz, gTy)
Furthermore I'/T acts discontinuously on E™/T, since it is finite.
Next, we show that I'/T acts freely on E™/T. Suppose that
(Tg)(Tz) = Tx.

Then Tgx = Tz. Hence gz = hx for some h in T. Therefore hlgz = z.
As T acts freely on E™, we have that A1 g = 1. Therefore g = h, and so ¢
is in T. Thus I'/T acts freely on E™/T.

By Theorem 8.1.3, the quotient map

m: E"/T — (E™/T)/(T/T)

Is a covering projection. Clearly (E™/T)/(I'/T) is isometric to E™/T. Thus
E™ /T is finitely covered by the Euclidean n-torus E™ /T. o

Corollary 1. If E"/T 1s a compact Euchdean space-form, then T is a
torsion-free finite extension of a free abelian group of rank n.

Example 4. Let 7, be the translation of E2 by e,, for i = 1,2, and let p
be the reflection of E? in the line y = 1 /2. Let T be the group generated
by pri and 7. Then I is a torsion-free discrete subgroup of I(E?). The
space-form E?/T is a Klein bottle that is double covered by the Euclidean
torus £*/T, where T is generated by 72 and 7.
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Two Euclidean space-forms E™/T" and E™ /H are said to be affinely equiv-
alent if and only if there is a homeomorphism ¢ : E"/I' — E™/H induced
by an affine bijection of R”. By Theorem 7.4.4, two compact Euclidean
space-forms have isomorphic fundamental groups if and only if they are
affinely equivalent. Moreover, there are only finitely many isomorphism
classes of n-dimensional crystallographic groups by Theorem 7.4.3. There-
fore, there are only finitely many affine equivalence classes of n-dimensional,
compact, Euclidean, space-forms. The exact number of affine equivalence
classes of n-dimensional, compact, Euclidean, space-forms for n =1,2,3,4
is 1,2, 10, 74, respectively.

Hyperbolic Space-Forms

Our main goal is to understand the geometry and topology of hyperbolic
space-forms. We begin by studying the elementary hyperbolic space-forms.

Definition: A hyperbolic space-form H"/T is elementary if and only if T’
is an elementary subgroup of I(H™).

The type of an elementary space-form H™/T is defined to be the elemen-
tary type of I'. By the characterization of elementary discrete subgroups
of I(H™) in §5.5, a space-form H" /I is elementary if and only if I' contains
an abelian subgroup of finite index.

Let H" /T be an elementary space-form. Assume first that I is of elliptic
type. Then T is finite by Theorem 5.5.2, but I is torsion-free by Theorem
8.2.1. Therefore T is trivial. Thus, the only n-dimensional, elementary,
hyperbolic space-form of elliptic type is H™.

Next, assume that I' is of parabolic type. We now pass to the upper
half-space model and consider T to be a subgroup of I(U™). By Theorem
8.1.5, we may assume that T fixes co. Then IT' corresponds under Poincaré
extension to an infinite discrete subgroup of I(E™~!) by Theorem 5.5.5. As
T acts trivially on the second factor of the cartesian product

U" = En—l X R+,

we deduce that U™/T" is homeomorphic to (E"~!/T') xRy. AsT' is torsion-
free, E"~1/T is a Euclidean space-form. The next theorem says that the
similarity type of E""/T" is a complete isometric invariant of U™/T.

Theorem 8.2.6. Let U™/T" and U™/H be two elementary space-forms of
parabolic type such that both T' and H fiz co. Then U™/T and U™/H are
isometric if and only if E""1/T and E"'/H are similar.

Proof: By Theorem 8.1.5, the space-forms U™/I" and U™ /H are isometric
if and only if I' and H are conjugate in I(U™). AsT' and H both fix oo, they
are conjugate in I(U™) if and only if they are conjugate in the subgroup of
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I(U™) that fixes co. The group S(E™~!) of similarities of E®~! corresponds
under Poincaré extension to the subgroup of I(U™) that fixes co. Thus I'
and H are conjugate in I(U™) if and only if they are conjugate in S(E"~1).
The same argument as in the proof of Theorem 8.1.5 shows that I" and H
are conjugate in S(E™1) if and only if E"~/T" and E"~!/H are similar.
Thus U™/T" and U™/H are isometric if and only if E*~1/T and E*~1/H
are similar. o

Now assume that I' is of hyperbolic type. From the description of an
elementary discrete group of hyperbolic type in §5.5, we have that T' is
an infinite cyclic group generated by a hyperbolic element of I(U™). By
Theorem 8.1.5, we may assume that T is generated by a Mobius transfor-
mation ¢ of U™ defined by ¢(z) = kAz with k¥ > 1 and A an orthogonal
transformation of E™ that fixes the n-axis. A fundamental domain for T is
the two-sided region

{zeU”: 1<z, <k}

Let K = {k™ : m € Z}. The two sides of the fundamental domain of T are
paired by ¢. Consequently U”/T is a (n — 1)-dimensional vector bundle
over the circle Ry /K.

Next observe that the geodesic segment len, ke,] in U™ projects to a
simple closed curve w in U™ /T, called the fundamental cycle of U™/T. The
length of w is defined to be log k, which is the hyperbolic length of [e,, key,)
The torsion angles of U™ /T are defined to the angles of rotation of A.

Theorem 8.2.7. Two elementary space-forms U™ /Ty and U™ /Ty of hy-

perbolic type are 1sometric if and only if they have the same fundamental
cycle length and torsion angles.

Proof: By Theorem 8.1.5, the space-forms U™ /T1 and U™ /T, are iso-
metric if and only if 'y and T’y are conjugate in I(U™). Hence, we may
assume that I', is generated by a Mébius transformation ¢, of U™, given
by ¢, = k, A,, with k, > 1 and A, an orthogonal transformation of E™ that
fixes the n-axis for i = 1, 2.

Now suppose that I'; and I'; are conjugate in I(U™). Then there is a
Mébius transformation ¥ of U™ such that ¢ = ¢¢§t1'd)*1. As the fixed
points of Yely—1 are ¥{0, 00}, we deduce that v leaves the set {0, 00}
invariant. Assume first that 9 fixes both 0 and co. Then there is al>0
and B in O(n) that fixes e,, such that ¥ = £B. This implies that

w¢g:1,lp—1 — quz:tlB—l.
Hence, we have
k1A = k' BAF B

As ki, kg > 1, we have that k; = ky and A; = BA,B~1. Therefore U /Ty
and U™ /Ty have the same fundamental cycle length and torsion angles.
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Now assume that 1) switches 0 and co. Then we may assume, by the
first case, that 1(z) = z/|x|?. Then ¢¥¢i'y~" = kJ'AL. Hence, we have
that kyA; = kFYAT. As kq,ky > 1, we have that k; = ky and A, = A7
Therefore U™ /Ty and U™/I'; have the same fundamental cycle length and
torsion angles.

Conversely, suppose that U™/T"; and U™ /T'5 have the same fundamental
cycle length and torsion angles. Then k; = k9, and A; and As are conjugate
in O(n) by an orthogonal transformation that fixes e,,. Therefore ¢; and
¢o are conjugate in I(U™). Thus I'; and I'y are conjugate in I(U™) if and
only if they have the same fundamental cycle length and torsion angles. o

Exercise 8.2

1. Show that E'/27Z is isometric to S*.

2. Prove that the lens spaces L(p,q) and L(p,q’) are isometric if and only if
g = +q' (mod p) or g¢’ = £1 (mod p).

3. Show that the volume of a spherical space-form S™ /T is given by the formula
Vol(S™/T") = Vol(S™)/|T|.
4. Show that the Klein bottle group I of Example 4 is a torsion-free discrete
subgroup of I(E?).

5. Let E™/T be an noncompact Euclidean space-form such that I' is nontrivial
and the subgroup T of translations of I' is of finite index in I". Prove that
E™/T is finitely covered by a Euclidean space-form isometric to 7™ x E"™,
where T™ is a Euclidean m-torus with 0 < m < n.

6. Let E™/T' and E™/H be Euclidean n-tori with rectangular fundamental poly-
hedra P and Q, respectively. Prove that E™/I" and E"/H are isometric if
and only if P and Q are congruent in E™.

7. Let E™/T" and E™/H be Euclidean n-tori with rectangular fundamental poly-
hedra P and Q, respectively. Prove that E™/T" and E™/H are similar if and
only if P and Q are similar in E™.

8. Prove that two Euclidean space-forms E™/I' and E"/H are similar if and
only if I and H are conjugate in S(E™).

9. Let E"/T and E™/H be compact Euclidean space-forms and let A(R™) be
the group of affine bijections of R™. Prove that the following are equivalent:

(1) E™/I' and E™/H are affinely equivalent;
(2) T and H are conjugate in A(R™);

(3) T and H are isomorphic.

10. Prove that every elementary hyperbolic space-form has infinite volume.
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§8.3. (X, G)-Manifolds

Let G a group of similarities of an n-dimensional geometric space X and
let M be an n-manifold. An (X, G)-atlas for M is defined to be a family
of functions

® = {¢z : Uz - X}ZEI?

called charts, satisfying the following conditions:

(1) The set U,, called a coordinate neighborhood, is an open connected
subset of M for each 3.

(2) The chart ¢, maps the coordinate neighborhood U, homeomorphically
onto an open subset of X for each 3.

(3) The coordinate neighborhoods {U, },cr cover M.

(4) If U, and U, overlap, then the function
¢3¢1_1 1o (U.NT) — ¢, (U, NT,),

called a coordinate change, agrees in a neighborhood of each point of
its domain with an element of G. See Figure 8.3.1.

b0, "

[

o8 b,

Figure 8.3.1. A coordinate change
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Theorem 8.3.1. Let & be an (X, G)-atlas for M. Then there is a unique
mazimal (X, G)-atlas for M containing .

Proof: Tet ® = {¢, : U, — X} and let ® be the set of all functions
¢ : U — X such that

(1) the set U is an open connected subset of M;

(2) the function ¢ maps U homeomorphically onto an open subset of X;

(3) the function
¢¢Z_1 10U, NU) — #(U.NU)

agrees in a neighborhood of each point of its domain with an element
of G for each 1.

_ Clearly ® contains ®. Suppose that ¢ : U — X and ¢ : V — X are in
®. Then for each ¢, we have that

Yol pUNVNU) - p(UNVAT,)
is the composite ¢, 14,071, and therefore it agrees in a neighborhood of
each point of its domain with an element of G. As {U,} is an open cover of
M, we have that ¢! : p(UNV) — »(UNV) agrees in a neighborhood of
each point of its domain with an element of G. Thus ® is an (X, G)-atlas

for M. Clearly @ contains every (X, G)-atlas for M containing ®, and so
® is the unique maximal (X, G)-atlas for M containing ®. =

Definition: An (X, G)-structure for an n-manifold M is a maximal
(X, G)-atlas for M.

Definition: An (X, G)-manifold M is an n-manifold M together with an
(X, G)-structure for M.

Let M be an (X, G)-manifold. A chart for M is an element ¢ : U — X
of the (X, G)-structure of M. If u is a point of M, then a chart for (M, u)
is a chart ¢ : U — X for M such that » is in U.

Example 1. An (S”,1(5™))-structure on a manifold is called a spherical
structure, and an (S™,I(S™))-manifold is called a spherical n-manifold.

Example 2. A (E",I(E™))-structure on a manifold is called a Euclidean
structure, and a (E™,1(E™))-manifold is called a Buclidean n-manfold.

Example 3. An (H",I(H™))-structure on a manifold is called a hyperbolic
structure, and an (H",1(H™))-manifold is called a hyperbolic n-manzfold.

Example 4. A (E™,S(E™))-structure on a manifold is called a Euclidean
simalarity structure, and a (E™, S(E™))-manifold is called a Euchdean sim-
ilarity n-manifold.
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X-Space-Forms

Let I" be a discrete group of isometries of an n-dimensional geometric space
X such that T acts freely on X. Then the quotient map 7 : X — X/I' is
a local isometry. Hence X/T" is an n-manifold. For each z in X, choose
r(z) > 0 so that = maps B(z,r(z)) isometrically onto B(n(z),r(z)). Let
U, = B(w(z),r(x)) and let ¢, : U; — X be the inverse of the restriction
of m to B(z,r(z)). Then {U}rex is an open cover of X/T" and ¢, maps
U, homeomorphically onto B(xz,r(z)) for each z in X. Furthermore U, is
connected for each x in X, since B(z,r(z)) is connected.

Let z,y be points of X such that U, and U, overlap and consider the
function

byd5 " 0o (Us NU,) — by (Uz NT).

Let z be an arbitrary point of ¢(Uz NU,) and set w = ¢,¢; (). Then
7(2) = 7(w). Hence, there is a g in T such that gz = w. As g is continuous
at z, there is an € > 0 such that ¢, (U,NU,) contains gB(z, €). By shrinking
B(z,¢€), if necessary, we may assume that ¢, (U, NU,) contains B(z,¢). As
mg = 7, the map (;S;lg agrees with ¢! on B(z,€). Thus ¢y¢;1 agrees with
g on B(z,€). This shows that {¢, : Uy — X}sex is an (X,T)-atlas for
X/T. By Theorem 8.3.1, this atlas determines an (X, I')-structure on X /T,
called the induced (X,T')-structure. Thus X/T' together with the induced
(X, I')-structure is an (X, T')-manifold.

Let G be a subgroup of S(X) containing I'. Clearly, an (X, I')-atlas for
X/Iis also an (X, G)-atlas for X/I'; therefore, the induced (X, T')-structure
on X/I" determines an (X, G)-structure on X/T, called the induced (X,G)-
structure. In particular, X/I', with the induced (X,1(X))-structure, is an
(X, I(X))-manifold. Thus, every X-space-form is an (X, I(X))-manifold.

Theorem 8.3.2. Let X be a geodesically connected and geodesically com-

plete metric space. If g and h are similarities of X that agree on a nonempty
open subset of X, then g = h.

Proof: The metric space X is rigid by Theorem 6.5.12. o

Theorem 8.3.3. Let ¢,¢. " : ¢,(U, N U,) = ¢,(U,NU,) be a coordinate
change of an (X,G)-manafold M. Then ?, ¢Z_1 agrees with an element of
G on each connected component of its domain.

Proof: Let C be a connected component of ¢ (U, NU,). Suppose that w
and z are in C. Then there are open subsets Wi, ..., Wy, of C such that w
is in Wy, the sets W), and Wy, overlap for k = 1,...,m — 1, the set W,,
contains x, and ¢,¢, ! agrees with an element gr of G on Wy,. As g and
gk+1 agree on the nonempty open set Wy N Wy 1, we have that gk = Gk+1
by Theorem 8.3.2. Therefore, all the g, are the same. Thus D0, ! agrees
with ¢ at = and therefore on C. o
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Metric (X, G)-Manifolds

Definition: A metric (X, G)-mamfold is a connected (X, G)-manifold M
such that G is a group of isometries of X.

Let v : [a,b] — M be a curve in a metric (X, G)-manifold M. We now define
the X-length of . Assume first that v([a,b]) is contained in a coordinate

neighborhood U. Let ¢ : U — X be a chart for M. The X-length of v is
defined to be

V]l = lvl-

The X-length of v does not depend on the choice of the chart ¢, since if
¥ : V — X is another chart for M such that V contains v([a, b]), then there

is an isometry ¢ in G that agrees with ¥¢~! on ¢y([a,b]) by Theorem 8.3.3
and therefore

o] = lggy| = o™ dy| = (vl

Now assume that 7 : [a,b] — M is an arbitrary curve. As ¥([a,b]) is
compact, there is a partition

a=ty<t1 < - <ty =b

of [a,b] such that y([t,—1,%,]) is contained in a coordinate neighborhood U,
for each i = 1,...,m. Let v, , ., be the restriction of v to [t,—1,¢,]. The
X-length of v is defined to be

V=" et
=1

The X-length of v does not depend on the choice of the partition {t,},
since if
a=83<s81<---<8=b

is another partition such that v([s,—1,$,]) is contained in a coordinate
neighborhood V,, then there is a third partition

a=rg < < -<rp=2>5

such that {r,} = {s,} U {t.}, and therefore

m k 4
S el =2 s = D sl
=1 =1 =1

Definition: A curve 7 in a metric (X, G)-manifold M is X-rectsfiable if
and only if ||| < co.

Lemma 1. Any two points mn a metric (X, G)-manifold M can be Joined
by an X -rectifiable curve wn M.
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Proof: Define a relation on M by u ~ v if and only if 4 and v are joined
by an X-rectifiable curve in M. It is easy to see that this is an equivalence
relation on M. Let [u] be an equivalence class and suppose that v is in
[u]. Let ¥ : V — X be a chart for (M, v). Then there is an r > 0 such
that (V) contains B(y(v),r). Let z be an arbitrary point in B(¢(v),1).
As X is geodesically connected, there is a geodesic arc « : [a,b] — X from
¥P(v) to z. Clearly B(¢(v),r) contains a([a,b]). Hence v a : [a,b] — M
is an X-rectifiable curve from v to 1 ~!(x). This shows that [u] contains
the open set ¥ ~!(B(+(v),r)). Thus [u] is open in M. As M is connected,
[u] must be all of M. Thus, any two points of M can be joined by an
X-rectifiable curve. o

Theorem 8.3.4. Let M be a metric (X, G)-manifold. Then the function
d: M x M — R, defined by

d(u,v) =t [,
where vy varies over all X -rectifiable curves from u to v, 1s a metric on M.

Proof: By Lemma 1, the function d is well defined. Clearly d is nonnega-
tive and d(u,u) = 0 for all v in M. To see that d is nondegenerate, let u,v
be distinct points of M. Since M is Hausdorfl, there is a chart p:U—-X
for (M, u) such that v is not in U. Choose > 0 such that ¢(U) contains
C(¢(u),r). By Theorem 8.1.2, the sphere

S(¢(u),r) = {z € X : d(¢(u),z) = r}

is compact. Hence, the set

T = ¢~ (S(¢(u),r))
is closed in M, since M is Hausdorff.

Let v : [a,b] — M be an arbitrary X-rectifiable curve from v to v. Since
7([a,?]) is connected and contains both u and v, it must meet T Hence,
there is a first point ¢ in the open interval (a, b) such that v(c) is in T. Let
Ya,c be the restriction of « to [a, c]. Then the i image of v, . is contained in
¢>‘1(C(¢( ),7)). Consequently, we have

IV = 1a,ell = ¢7a.el > dx (d(u), pv(c)) =
Therefore, we have
d(u,v) >r>0.

Thus d is nondegenerate.
If v : [a,b] = M is an X-rectifiable curve from « to v, then

vt fa,b) - M

is an X-rectifiable curve from v to u, and ||y~1|| = ||5||. Consequently d is
symmetric.
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If o : [a,b] — M is an X-rectifiable curve from u to v, and §: [b,c] —» M
is an X-rectifiable curve from v to w, then a8 : [a,¢] - M is an X-
rectifiable curve from u to w, and

Bl = llall + 18]l
This implies the triangle inequality

d(u,w) < d(u,v) + d(v,w).

Thus d is a metric on M. ul

Let M be a metric (X, G)-manifold. Then the metric d in Theorem
8.3.4 is called the induced metric on M. Henceforth, we shall assume that
a metric (X, G)-manifold is a metric space with the induced metric.

Theorem 8.3.5. Let ¢ : U — X be a chart for a metric (X, G)-manifold
M, let © be a point of ¢(U), and let r > 0 be such that $(U) contains
B(z,r). Then ¢~ maps B(z,r) homeomorphically onto B(¢~(x),r).

Proof: Clearly ¢! maps B(z,7) into B(¢!(z),r). Let v be an arbitrary
point of B(¢~!(z),7). Then there is an X-rectifiable curve v : [a,b] — M
from ¢~!(x) to v such that ||y|| < r. Suppose that v is not in ¢~ 1(B(z,)).
We shall derive a contradiction. Let s = (||y|| + r)/2. Since v([a,b]) is
connected and contains both ¢~!(z) and v, it must meet ¢~'(S(z,s)).
Hence, there is a first point c in (a, b) such that v(c) is in ¢=(S(z, s)). Let
Ya,c be the restriction of v to [a,c]. Then the image of v, is contained in
¢~ 1(C(z, s)). Consequently

7l = [1Ya,ell = [#Vael = s,
which is a contradiction. Thus ¢—' maps B(z,r) onto B(¢~1(z),r). o

Corollary 1. If M 1s a metric (X, G)-manafold, then the topology of M is
the metric topology determined by the induced metric.

Theorem 8.3.6. Let ¢ : U — X be a chart for a metric (X, G)-manifold
M, let z be a pomnt of ¢(U), and let r > 0 be such that #(U) contains
B(z,r). Then ¢~ maps B(z,r/2) isometrically onto B(¢~Y(z),7/2); there-
fore ¢ is a local isometry.

Proof: By Theorem 8.3.5, the function ¢~* maps B(z,7/2) bijectively
onto B(¢~!(z),r/2). Hence, we only need to show that ¢~' preserves
distances on B(z,r/2). Let y, 2 be distinct points of B(x,7/2). As X is
geodesically connected, there is a geodesic arc a : [0,/] — X from y to
z. By the triangle inequality, dx (y,z) < r. Hence, every point in a([0,4])
is at most a distance /2 from either y or z. Therefore B(z,r) contains
a([0,4]). Hence

d(¢7(),071(2)) < ll¢7 el = lof = dx(y, 2)-
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Now let 7 : [a,b] — M be any X-rectifiable curve from ¢~ (y) to ¢~1(z).

Assume first that U contains +([a, b]). Then
IV = lpv] = dx (y, 2).
Now assume that U does not contain «([a, b]). Set
§= max{dX(xy y)a dX(xa Z)} + (T/2)

Then s < r. Hence, there is a first point ¢ in (a,b) such that «(c) is
in $~1(S(z,s)), and there is a last point d in (a,b) such that v(d) is in
¢~ 1(S(z,s)). Let v, be the restriction of v to [a,c] and let 745 be the
restriction of 7 to [d,b]. Then

IV = Yaell + llvasll

= |¢7a,c| + |¢7d,b|
> dx(y,¢v(c)) + dx(¢7(d), 2)
> r/247r/2
> dx(y, 2).
Thus, in general, we have
71l > dx (y, 2).

Hence, we have

A7 (), 671 (2)) = dx(y, 2).
Since we have already established the reverse inequality, we have that ot
maps B(z,7/2) isometrically onto B(¢~!(z),r/2). =

Example: The unit circle S! in C is a Euclidean 1-manifold. The complex
argument mapping

arg: S* —{-1} - R
is a chart for S whose image is the open interval (—m, 7). Observe that
(=7/2,7/2) is the largest open interval centered at the origin that is

mapped isometrically onto its image by arg=!. This example shows why
the radius r is halved in Theorem 8.3.6.

Exercise 8.3

1. Prove Corollary 1.

2. Let v : [a,b] — M be a curve in a metric (X, G)-manifold. Prove that the

X-length of « is the same as the length of v with respect to the induced
metric.

3. Let X/T be an X-space-form. Show that the induced metric on X /T is the
orbit space metric dr.

4. Prove that every metric (X, G)-manifold is locally geodesically convex.

5. Prove that any two points of a metric (X, G)-manifold M can be joined by
a piecewise geodesic curve in M.
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$8.4. Developing

Let ¢ : U — X be a chart for an (X, G)-manifold M and let 7 : [a,b] — M
be a curve whose initial point (a) is in U. Then there is a partition

a=tg<t1 < - <tm=0b

and a set {¢, : U, — X}, of charts for M such that ¢; = ¢ and U,
contains y([t,—1,%,]) for each i = 1,...,m. Let g, be the element of G that
agrees with ¢,¢,_ +11 on the connected component of U, N U,41 containing
v(t.). Let -y, be the restriction of « to the interval [t, 1,t¢,]. Then ¢,7, and

GrPo+17Y.+1 are curves in X and
9:$4+17(t) = ¢z¢z_.|-11¢z+l’)’(tz) = ¢ (to)-
Thus ¢,¢,+17.+1 begins where ¢,7y, ends, and so we can define a curve
4 : [a,b] — X by the formula
= (¢171)(910272)(91926373) -+ - (91 * - In—1PmYm)-

We claim that 4 does not depend on the choice of the charts {¢,} once a
partition of [a, b] has been fixed. Suppose that {¢, : V, — X }™ 1 is another
set of charts for M such that ¢, = ¢ and V, contains +([t,—1,t,]) for each
i =1,...,m. Let h, be the element of G that agrees with ¢, +11 on the
component of V, NV, 1 containing (¢,). As U, NV, contains y([t,—1,%)),
it is enough to show that

g1 '91—1(?57, =hy--- hzfl"pz

on the component of U, NV, containing ~([¢,—1,t,]) for each i. This is true
by hypothesis for = 1. We proceed by induction. Suppose that it is
true for i — 1. Let f, be the element of G that agrees with wzcﬁ on the
component of U, NV, containing ~([t,—1t,]). On the one hand, f, agrees
with

wl(¢z 1 z_ g by )( "gz—2¢1—1)¢)_1

on the component of ¢,(U,_1 NV,—1 NU, NV,) containing y(t,—1). On the
other hand, (Y, ---h7")(g1- - - g:—1) agrees with

(@) (- Ay (g1 gum2) (B, )
on the component of ¢,(U,—1NV,_1NU,NV;) containing (¢, 1). Therefore
fo=(hiZi Ry )91 gu1)
by Theorem 8.3.2. Hence

(g1 go-)bn = (b1 heoa)(BZy AT ) (gL gu1)
= (hl"'hl—l)f1¢z
= (hl s hz—l)'ﬁbz

on the component of U, NV, containing ¥([t,—1,%]). This completes the
induction.
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Next, we show that 4 does not depend on the partition of [a,b]. Let
{s,}_, be another partition with charts {¢, : V, — X}* ;. Then {r,} =
{s,} U {t,} is a partition of [a,b] containing both partitions. Since the
charts {¢,} and {¢,} can both be used in turn for the partition {r,}, we
deduce that all three partitions determine the same curve 4. The curve
4 : [a,b] — X is called the continuation of ¢y, along 7.

Theorem 8.4.1. Let ¢ : U — X be a chart for an (X, G)-manifold M,
let a, 8 : [a,b] — M be curves with the same initial pownt in U and the
same terminal pownt in M, and let &, 5’ be the continuations of ¢ay, B
along «, B, respectwely. If o and 3 are homotopic by a homotopy that keeps
thewr endpoints fized, then & and [ have the same endpownts, and they are
homotopic by a homotopy that keeps their endpoints fived.

Proof: This is clear if o and § differ only along a subinterval (c,d) such
that a([c,d]) and B([c,d]) are contained in a simply connected coordinate
neighborhood U. In the general case, let H : [a,b]? — M be a homotopy
from « to B that keeps the endpoints fixed. As [a, b] is compact, there is
a partition @ = tp < t; < - < t,, = b such that H([t,_1,t,] x [t;—1,t,])
is contained in a simply connected coordinate neighborhood U,, for each
t,j =1,...,m. Let ay; be the curve in M defined by applying H to the
curve in [a, b]? illustrated in Figure 8.4.1(a), and let B.; be the curve in M
defined by applying H to the curve in [a, b]? illustrated in Figure 8.4.1(b).
Then by the first remark, &,, and Bl] have the same endpoints and are
homotopic by a homotopy keeping their endpoints fixed. By composing all
these homotopies starting at the lower right-hand corner of [a, B]2, proceed-
ing right to left along each row of rectangles [t,_1,#,] x [t;-1,¢,], and ending
at the top left-hand corner of [a,b]?, we find that & and B are homotopic

by a homotopy keeping their endpoints fixed. o
b
t, -
I |
tJ -1 -t
a t—1 &, b a t,—1 t, b
(a) (0)

Figure 8.4.1. Alternate routes from (a,a) to (b,b) in the square [a, b]?
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(X, G)-Maps

Definition: A function £ : M — N between (X, G)-manifolds is an
(X, G)-map if and only if £ is continuous and for each chart ¢ : U — X
for M and chart ¢ : V — X for N such that U and £~1(V) overlap, the
function

PEGTH 1 HUNETHV)) = H(EU)N V)

agrees in a neighborhood of each point of its domain with an element of G.

Theorem 8.4.2. A function § : M — N between (X, G)-mansfolds is an
(X, G)-map if and only if for each pownt u of M, there is a chart ¢ : U — X
for (M,u) such that & maps U homeomorphically onto an open subset of
N and ¢€71 : £(U) — X is a chart for N.

Proof: Suppose that £ : M — N is an (X, G)-map and u is an arbitrary
point of M. Let ¢ : V — X be a chart for (N, £(w)). Since £ is continuous
at u, there is a chart ¢ : U — X for (M, u) such that £(U) C V. Then

YES™ : p(U) — E(U)

agrees with an element g of G, since ¢(U) is connected. Hence £ maps U
homeomorphically onto an open subset of N, and ¢¢ 1 : £(U) — X agrees
with g~ : V — X. Therefore ¢£~! is a chart for N.

Conversely, suppose that for each point u of M, there is a chart ¢ : U —
X for (M, u) such that £ maps U homeomorphically onto an open subset
of N, and ¢¢ 1 : £(U) — X is a chart for N. Then ¢ is continuous. Let
X : W — X and 9 : V — X be charts for M and N, respectively, such
that W and £~(V) overlap, and let u be an arbitrary point of the set
W NE (V). Then there is a chart ¢ : U — X for (M, u) such that §{ maps
U homeomorphically onto an open subset of N and ¢¢~!: {(U) —» X is a
chart for N. Observe that in a neighborhood of u, the function

P x(WNETHV)) - (W) N V)

agrees with (€¢~1)(ox ). As ¢x~! and ¢€¢~" are coordinate changes
for M and N, respectively, ¥€x~! agrees in a neighborhood of u with an
element of G. Thus ¢ is an (X, G)-map. =

Theorem 8.4.3. Let ¢ : U — X be a chart for a simply connected (X, G)-
manifold M. Then there is a unique (X,G)-map ¢ : M — X extending the
chart ¢.

Proof: Fix a point u in U and let v be an arbitrary point of M. Then
there is a curve a : [a,b] — M from u to v. Let & : [a,b] — X be the
continuation of ¢a; along . Then &(b) does not depend on the choice of
a by Theorem 8.4.1, since M is simply connected. Hence, we may define a
function ¢ : M — X by ¢(v) = &(b).
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Let ¢ : V — X be a chart for (M, v) such that ¢ = ¢ if v is in U. Then
there is a partition
a=tg<ti <+ <ty =b

and a set of charts {¢, : U, — X}, for M such that ¢; = ¢, and U,
contains o([t,—1,t,]) for each ¢ = 1,...,m, and ¢,, = 9. Let o, be the
restriction of « to [t,—1,t,] and let g, be the element of G that agrees with
D, +11 on the connected component of U, N U,41 containing «(t,). Then

a = (dra1)(gid202) - (91 Gmn—1Pmam)-
Let 8 : [b,c] — V be a curve fE(\)m v to w and let g = g1 S Gme1 Then
af = agipB. Hence d(w) = af(c) = gip(w). Therefore p(w) = gyh(w)

for all w in V. Hence ¢ maps V homeomorphically onto the open subset
g(V) of X and ¢! : ¢(V) — X is the restriction of g~1. Thus ¢ is an
(X, @)-map by Theorem 8.4.2; moreover, ¢ extends o.

Now let £ : M — X be any (X, G)-map extending ¢. Without loss of
generality, we may assume that the set of charts {¢, : U, — X}, for M
has the property that

@bzg*l : f(Uz) - X

is a chart for X. Then ¢, ' extends to an element h, ! of G. Hence
§(w) = hy¢(w) for all w in U,. As é(w) = ¢(w) for all w in U, we have
that h1¢ = ¢ and so hy = 1. We proceed by induction. Suppose that
h.—1=g1---g.—2. Then for each w in U,_, we have

f(w) = hz—1¢z—1(w)
g1 Go—2d1(w)
= o(w).

Hence A
b (w) = §(w) = d(w) = g1- “ Gu—1¢u(w)

for all w in U,y N U,. Therefore h, = g1 g—1. Hence, by induction, we
have that

£(V) = hmpm(v) = gm (v) = G(v).
Therefore £ = QAS Thus d; is unique. o

Theorem 8.4.4. Let M be a simply connected (X, G)-manifold. If &,&5 :

M — X are (X, G)-maps, then there is q unique element g of G such that
& = gé1.

Proof: Let ¢ : U — X be a chart for M such that o EU) - X
is a chart for X for ¢ = 1,2. By Theorem 8.3.3, there is an element g, of
G extending qﬁfl_l 1&(U) — X. As g,&, is an (X, G)-map extending ¢ for
t = 1,2, we have that g1§; = g2£; by the uniqueness of qAS Let g = g5 'g:.
Then & = g&;. If h is another element of G such that & = hé&, then
g&1 = h&; whence g = h by Theorem 8.3.2. Thus g is unique. o
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The Developing Map

Let M be a connected (X, G)-manifold and let % : M — M be a universal
covering projection. Then M is simply connected. Let {¢, : U, — X} be
an (X, G)-atlas for M such that U, is simply connected for each i. Then
the set U, is evenly covered by « for each i. Let {U,,} by the set of sheets
over U, and let &,, : U,; — U, be the restriction of k. Define ¢y 1 Uy = X
by ¢y, = ¢uk,y. Then ¢,; maps U,, homeomorphically onto the open set

¢(U,) in X. Suppose that Uy, and Uy, overlap. Then U, and Uy overlap.
Consider the function

¢zg¢1:el : ¢k£(Um n ka) - ¢zJ(U1J N Uké)-
If zis in (ﬁkz(UU n UM), then

BBt () = uting iy (@) = dugy ().
Hence ¢,, qS,;el agrees in a neighborhood of each point of its domain with
an element of G. Therefore {¢,, : U;; — X} is an (X, G)-atlas for M.
We shall assume that M is an (X, G)-manifold with the (X, G)-structure
determined by this (X, G)-atlas.

Observe that x maps the coordinate neighborhood U,;, homeomorphi-
cally onto U,, and ¢,;x~! : k(U,;) — X is the chart ¢, : U, — X for M.
Thus & is an (X, G)-map by Theorem 8.4.2.

Let 7 : M — M be a covering transformation of x and let % be an
arbitrary point of M. Then there is an i such that k(@) is in U,. Hence,
there is a j such that @ is in U,,. As 7 permutes the sheets over U,, there
is a k such that 7(U,;) = Uy. Observe that ¢,,7 ! : 7(U,;) — X is the
chart ¢, : Uy — X. Therefore 7 is an (X, G)-map.

Let ¢ : U — X be a chart for M. Then ¢ extends to a unique (X, G)-
map & : M — X by Theorem 8.4.3. The map

§: M — X
is called the developing map for M determined by the chart ¢. By Theorem
8.4.4, any two developing maps for M differ only by composition with an

element of G. Thus, the developing map 6 is unique up to composition
with an element of G.

Holonomy

Choose a base point u of M and a base point @ of M such that k(i) = u.
Let o : [0,1] — M be aloop based at u. Then « lifts to a unique curve & in
M starting at . Let ¥ be the endpoint of & Then there is a unique covering
transformation 7, of & such that 7,(%) = 9. The covering transformation
T depends only on the homotopy class of & in the fundamental group
71 (M, u) by Theorem 8.4.1. Let §: [0,1] — M be another loop based at

u. Then c/y\B = (@)(7af) and 80 Top = TaTs-
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Let 6 : M — X be a developing map for M. As 67, : M — X is an
(X, G)-map, there is a unique element g, of G such that 67, = g,6. Define

n:m(Mu) -G

by n([a]) = go. Then 7 is well defined, since g, depends only on the
homotopy class of a.. Observe that

O0Tap = 0TaTg = 9gabTg = Gagpd.

Hence
n([[8]) = n([eB]) = gags = n(la])n([3])-

Thus 7 is a homomorphism. The homomorphism 7 : 71 (M) — G is called
the holonomy of M determined by the developing map 6.

Note, if ' : M — X is another developing map for M, then there is a g
in GG such that 6’ = g8, and therefore

8To = 96T = 99ab = ggag 6.

Hence, the holonomy 7’ of M determined by &' differs from the holonomy
of M determined by é§ by conjugation by g.

Theorem 8.4.5. Let M be a connected (X,G)-manifold and let H be
a subgroup of G. Then the (X,G)-structure of M contamns an (X, H)-

structure for M of and only if H contains the image of a holonomy n:
m (M) — G for M.

Proof:  Suppose that the (X, G)-structure of M contains an (X, H )-
structure. Then H contains the image of any holonomy for M defined
in terms of the (X, H)-structure for M. Conversely, suppose that H con-
tains the image of a holonomy 7 : 71 (M) — G for M. Let § : M — X
be the developing map that determines 7, and let {¢. : U, — X} be an
(X, G)-atlas for M such that U, is evenly covered by the covering pro-
Jection r : M — M for each i. Let {U,} be the set of sheets over U,
and let k,, : U,, — U, be the restriction of x. Define ¢y 1 Uy — X by
$uy = dutiny. Then {¢y; : Uyy — X} is an (X, G)-atlas for M. Hence § maps
U,, homeomorphically onto an open subset of X for each i and 7.

For each 1, choose a sheet U,; over U, and define ¥, : Uy, — X Dy setting
P, = 6&1_]1. Then v, maps U, homeomorphically onto an open subset, of X
for each i. Assume that U, and Uy, overlap and consider the function

Ot (U N UR) — (U, N Uy).

Then for some j and ¢, we have
Vrth, (%) = bk g6 ()

for each z in ,(U, N Uy). Hence Y ! agrees in a neighborhood of each
point of its domain with 676! for some covering transformation 7 of .
By hypothesis, 676! agrees with an element of H. Hence {1 U, —» X}
is an (X, H)-atlas for M.
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Now as ¢, : Uy, — X is a chart for M, we have that ¢,,6* : §(U,,) — X
is the restriction of an element of GG. Since

¢zd)_1 = ¢z’%36—1 = ¢136_1

we have that (;Sﬂp is the restriction of an element of GG. This implies that
{1} is contained in the (X, G)-structure of M. Consequently, the (X, H)-

structure on M determined by {%,} is contained in the (X, G)-structure of
M. Thus, the (X, G)-structure of M contains an (X, H)-structure. o

Definition: An (X, G)-manifold M is orientable if and only if the (X, G)-
structure of M contains an (X, Gy)-structure for M, where Gy is the group
of orientation preserving elements of G.

By Theorem 8.4.5, a connected (X, G)-manifold M is orientable if and only

if the image of a holonomy 7 : m(X) — G for M consists of orientation
preserving elements of G.

Exercise 8.4

1. Prove that an (X, G)-map is a local homeomorphism.
2. Prove that a composition of (X, G)-maps is an (X, G)-map.

3. Let X be a geometric space and let G be a subgroup of S(X). Prove that a
function ¢ : X — X is an (X, G)-map if and only if £ is in G.

4. Let M be an (X, G)-manifold and let « : M — M be a covering projection.
Prove that M has a unique (X, G)-structure so that & is an (X, G)-map.

5. Let M and N be (X, G)-manifolds, let x : M — M be a covering projection,
and let £ : M — N and E M — N be functions such that § = £k, Prove
that £ is an (X, G)-map if and only if £ is an (X, G)-map.

6. Prove that an (X, G)-map £ : M — N between metric (X, G)-manifolds is a
local isometry.

7. Let U be a nonempty open connected subset of X = S, E™, or H™, and let
¢ : U — X be a distance preserving function. Prove that ¢ extends to a
unique isometry of X.

8. Let X = S* E", or H™, and let £ : M — N be a function between metric
(X,1(X))-manifolds. Prove that £ is an (X,I(X))-map if and only if £ is a
local isometry.

9. Let M be a connected (X, G)-manifold and let H be a normal subgroup of

G. Prove that the (X, G)-structure of M contains an (X, H)-structure if and
only if H contains the image of every holonomy for M.

10. Let M be a connected (X, G)-manifold and let H be a normal subgroup of
G. Suppose that the (X, G)-structure of M contains an (X, H)-structure for
M. Prove that the set of (X, H)-structures for M contained in the (X, QG)-
structure of M is in one-to-one correspondence with G/H.
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§8.5. Completeness

In this section, we study the role of various forms of completeness in the
theory of (X, G)-manifolds. We begin with the most elementary form of
completeness.

Metric Completeness

Definition: An infinite sequence {x,}°, in a metric space X is a Cauchy
sequence if and only if for each € > 0, there is a positive integer & such that
d(z,,z,) < eforall i,j > k.

Lemma 1. Let {z,}°, be a Cauchy sequence in a metric space X. Then
{z.} converges in X if and only if {z,} has a hmit pont in X.

Proof: Let y be a limit point of {x,} in X. We shall prove that {z,}
converges to y. Let ¢ > 0. As {xz,} is a Cauchy sequence, there is an
integer k£ such that for all 7, > k, we have

d(z,, ;) < €/2.
As y is a limit point of {z,}, there is an integer ¢ > k such that

d(ze,y) < €/2.
Hence, for all i > k, we have

d(x,,y) < d(z,, %) + d(Tg,y) < €.

Thus z, — y in X. o

Definition: A metric space X is complete if and only if every Cauchy
sequence in X converges in X.

Theorem_8.5.1. Let X be a metric space and suppose there is an € > 0
such that B(x, €) 1s compact for all x wn X. Then X is complete.

Proof: Let {z,} be a Cauchy sequence in X. Then there is a positive
integer k such that d(z,,z,) < € for all i, j > k. Hence B(zy, €) contains x,
for all i > k. As B(zy,e€) is compact, the sequence {z,} has a limit point
in B(wg,€). Hence {z,} converges by Lemma 1. Thus X is complete. o

Theorem 8.5.2. Let T be a group of 1sometries of a finately compact met-

ric space all of whose T'-orbits are closed. Then X/T is a complete metric
space.

Proof: Let B(z,r) be an open ball in X. Then the quotient map T :
X — X/I' maps B(z,r) onto B(n(z),r) by Theorem 6.5.2. As B(z,r) is
compact, we have

m(B(z,r)) = B(n(z),r).

Hence B(w(x),r) is compact. Thus X/T is complete by Theorem 8.5.1. o



358 8. Geometric Manifolds

Theorem 8.5.3. Let T" be a group of isometries of a metric space X such
that each I'-orbit 1s a closed discrete subset of X. If X/T is complete, then
X 18 complete.

Proof: Let {z,} be a Cauchy sequence in X. Then {T'z,} is a Cauchy
sequence in X/T, since
dist(T'z,, T'z;) < d(z,,x,).

Hence {I'z,} converges to an orbit I'y. Set

1.,
s = 5dist(y, I'y — {y}).

Then s > 0, since I'y is a closed discrete subset of X. Now for all ¢ in T,
we have that

1.
s = dist(gy, 'y — {gy}).

As {z,} is a Cauchy sequence, there is an integer k such that d(z,,z,) < s/2
for all ¢, j, > k. Suppose that 0 < € < s/2. As 'z, — Ty, there is an integer
£ > k and an element g, of T" such that d(x,, g,y) < € for all 4 > £. Hence,
if i > £, then

d(l‘k,gly) < d(xkyxz) + d(xhgly) <s.

But B(zg,s) contains at most one point of I'y. Therefore, there is an
element g of I' such that g,y = gy for all ¢ > ¢. Moreover d(z,, gy) < € for
all ¢ > £. Therefore z, — gy. Thus X is complete. o

Theorem 8.5.4. Let X be a complete metric space and let £ : X — X be
a similarity that is not an isometry. Then £ has a unique fized point in X .

Proof: By replacing £ by 71, if necessary, we may assume that the scale
factor k of £ is less than one. Let z be any point of X. Define a sequence
{zm}%_; in X by z, = £™(z) for each m. Then for m < n, we have

d(@m,zn) = d(E™(),E"(x)).
> d(EH(z), ¢ (@)
=m
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Consequently {z,,} is a Cauchy sequence in X. Therefore, the sequence
{2} converges to a point y in X. As £ is continuous, the sequence {§(z)}
converges to £(y). But £(xm) = Tmt1. Hence {,,} and {£(zm)} converge
to the same point, and so £(y) = y. Thus y is a fixed point of £ in X.
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Now let z be another fixed point of £. Then

d(y, 2) = d(§(y), £(2)) = kd(y, 2)-
Hence d(y, z) = 0 and so y = z. Thus y is the unique fixed point of £&. o

Geodesic Completeness

We next consider the role of geodesic completeness in the theory of metric
(X, G)-manifolds. Recall that a metric space X is geodesically complete if
and only if each geodesic arc « : [a,b] — X extends to a unique geodesic
line A\: R — X.

Theorem 8.5.5. If M 1s a geodesically complete metric (X, G)-manifold,
then M is geodesically connected.

Proof: Let u,v be points of M, with d(u,v) =£ >0, and let ¢ : U — X

be a chart for (M,u). Choose r > 0 so that ¢(U) contains B(¢p(u),2r).

Then ¢ maps B(u,r) isometrically onto B(¢(u),r) by Theorem 8.3.6.
Assume first that v is in B(u,r). Then ¢(v) is in B(¢(u),r) and

d($(w), p(v)) = d(u,v) = L.
As X is geodesically connected, there is a geodesic arc o : [0,4] — X from
@(u) to ¢(v). Observe that
la| =€ =d(u,v) <.
Therefore B(#(u),r) contains the image of a. Hence ¢~ Lla : [0,€] — M is
a geodesic arc from u to v.

Now assume that v is not in B(u,r). Let S be a sphere S(u,€) in M
with € < r. Then the function § : S — R, defined by 6(z) = d(z,v), is
continuous. As S is compact, there is a point w on S at which § attains its
minimum value. Since w is in B(u, r), there is a geodesic arc 3 : [0,6] - M
from u to w. Moreover 3 extends to a unique geodesic line A : R — M,
since M is geodesically complete.

We claim that A(4) = v. To prove this result, we shall prove that

d(A(t),v) = £ —t for all ¢ in [b,4]. First of all, since every curve from
% to v must intersect S, we have

d(u,v) > dist(u,S) + dist(S, v)
d(u, w) + d(w,v)
d(u,v).

0

v

Hence, we have
d(\(b),v) = d(w,v) = £ —b.

Now let s be the supremum of all ¢ in [b, £] such that d(A(t),v) =L —t.
Then d(A(s),v) = £ — s by the continuity of d(A(t),v) as a function of t¢.
Let Ag,s : [0,5] — M be the restriction of A. As

d(u,v) < d(u, A(s)) + d(A(s),v),
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Figure 8.5.1. A geodesic segment joining u to v

we have that
£ < d(A0),A(s)) +£~s.
Hence, we have

[Ao,s1l = s < d(A(0), A(s))-

Therefore || Ao s|| = d(A(0), A(s)). Consequently Ag s is a geodesic arc. Sup-
pose that s < £. We shall derive a contradiction.

Let ¢ : V — X be a chart for (M, A(s)). Choose ' > 0 so that (V)
contains B(1A(s),2r"). Let S’ be a sphere S(\(s), €’) with

€ < min{r’, £ — s}
and let w’ be a point on S’ nearest to v. See Figure 8.5.1. Now since
d(A\(s),v)=f—s and € <l—s,
we have that v is not in the closed ball C(A(s),€'). Therefore
d(\(s),v) > dist(A(s),S’) + dist(S’,v)
= d(\(s),w) +dw',v) = d(A(s),v).

Hence d(\(s),v) = € + d(w',v) and so d(w’,v) = (£ — s) — €. Therefore

d(’U,, w/) 2 d(“’) U) - d(wla U)
= (—({—s—¢)
= s+¢

= d(u,\(s)) +d(\(s),w") > d(u,w’).

Let v : [0,5 + €] — M be the composite of Xgs and a geodesic arc from
A(s) to w’. Then v is a geodesic arc by Theorem 1.4.3, since

d(u,w'") = d(u, A(s)) + d(A(s),w).
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As M is geodesically complete, the arc v extends to a unique geodesic line
iR — M. But p also extends Ao s. Therefore p = A. Hence )\ agrees
with -y, and so A(s + €') = w’. Therefore

dA(s+¢€),v)=L€—(s+€).

But this contradicts the supremacy of s. Therefore s = ¢. Hence A(¢) = v
and A, is a geodesic arc in M from u to v. Thus M is geodesically
connected. o

Lemma 2. Let X be a geometric space. Then there is a k > 0 such that
if A: R — X is a geodesic line, then A restricts to a geodesic arc on the
interval [—k, k.

Proof: Let k be as in Axiom 3 for a geometric space. Then k has the
desired property by Axioms 3 and 4 and Theorem 8.1.1. o

Theorem 8.5.6. Let M be a metric (X, G)-manifold and let € : M — X
be a local isometry. Then M is geodesically complete if and only if € is a
covering projection.

Proof: Suppose that £ is a covering projection. Let o : [a,b] — M be a
geodesic arc in M. As £ is a local isometry, £a : [a,b] — X is a geodesic
curve. Consequently, £o extends to a unique geodesic line \ : R — X.
Since § is a covering projection, A lifts to a geodesic line v:R - M
such that p(a) = a(a). By unique path lifting, u extends a. Now let
p' : R — M be another geodesic line extending o. Then & R — X
is a geodesic line extending {o. Therefore £y’ = . By the unique lifting
property of covering projections, u’ = pu. Hence 4 is the unique geodesic
line in M extending o. Thus M is geodesically complete.

Conversely, suppose that M is a geodesically complete. We first show
that geodesic arcs in X can be lifted with respect to £ Let a:fa,b] — X
be a geodesic arc and let u be a point of M such that §(u) = a(a). Since ¢
is a local isometry, there is a geodesic arc § : [a, c] — M such that 8(a) = u,
¢ < b, and £ is the restriction a, . of a to la,c]. As M is geodesically
complete, 8 extends to a unique geodesic line R — M. Since € is
a local isometry, éu : R — X is a geodesic line extending 0q,c. Hence
Ep: R — X is the unique geodesic line extending a. Let & : [a,b] — M be
the restriction of y. Then &(a) = u and ¢& = o Thus, geodesic arcs can
be lifted with respect to &.

Next, we show that £ is surjective. Let z be a point in the image of ¢
and let y be any other point of X. As X is geodesically connected, there
is a geodesic arc o : [0,4] — X from  to y. As z is in the image of £, we
can lift a to a curve & : [0, €] — M with respect to €. Then

a(l) = a(f) = y.

Hence y is in the image of ¢. Thus ¢ is surjective.
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Now let B(z,r) be an arbitrary open ball in X. We next show that
-1
B(z,r))= U B(u,r).
E'Bar) =Y, Blur)
As £ is a local isometry, we have

&(B(u,r)) C B(z,T)
for each u in £71(z). Therefore

U B -t

o8, Bl € € B())

Now let v be an arbitrary point in £~(B(z,r)). Then £(v) is in B(z,7).
Let o : [0,£] — X be a geodesic arc from £(v) to «, and let & : [0,4] - M
be a lift of o with respect to £ such that &(0) = v. Then

£6(t) = alt) = z.
Thus () is in £€~1(z). Moreover

lall = ol = d(z,£(v)) <.
Therefore v is in B(&(£),r). This shows that

-1
EUB@m)C U, B,

Since we have already established the reverse inclusion, we have

-1
B(z,r))= U  B(u,r).
£ B = Y, Bl
Let u be in £ ~'(z). We next show that £ maps B(u,r) onto B(z,r). Let
y be an arbitrary point of B(z,r) other than z. Then there is a geodesic
arc o : [0,4] — X from z to y. Moreover, there is a lift &: [0,£] — M with
respect to & such that &(0) = u. Then £&(£) = a(f) = y. Furthermore

&l = |o| = d(z,y) <7

Therefore &(#) is in B(u,r). This shows that £ maps B(u,r) onto B(z,7).

By Lemma 2, there is a k > 0 such that if A : R — X is a geodesic
line, then A restricts to a geodesic arc on [k, k]. Let u be in £ 1(z). We
next show that & maps B(u, k) bijectively onto B(z, k). We have already
established that ¢ maps B(u,k) onto B(z,k). On the contrary, suppose
that v, w are distinct points of B(u, k) such that £(v) = {(w). By Theorem
8.5.5, there is a geodesic arc o : [—b,b] — M from v to w. As the endpoints
of o are in B(u, k), we have

2b = d(v,w) < d(v,u)+d(u,w) < 2k.

Therefore 0 < b < k. As M is geodesically complete, o extends to a
geodesic line p : R — M. Because of the choice of k, the geodesic line &u :
R — X restricts to a geodesic arc on [—k, k]. Therefore {a : [—b, b —» X is
a geodesic arc from £(v) to {(w), which is a contradiction. Hence £ maps
B(u, k) bijectively onto B(z, k).
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By the triangle inequality, the sets {B(u,k/2) : u € £~*(x)} are pairwise
disjoint. Now since & maps B(u, k/2) homeomorphically onto B(z, k/2) for
each u in £71(z) and

B kD)= U, Bluk/2)

the set B(z, k/2) is evenly covered by £. Thus £ is a covering projection. o

Complete (X, G)-Manifolds

Let § : M — X be a developing map for a connected (X, G)-manifold M.
Let {U,} be the collection of all the open connected sets U, of M such that
6 maps U, homeomorphically into X, and let ¢, : U, — X be the restriction
of 6. Then {¢,} is an (X, {1})-structure for M, and {¢,} is contained in
the (X, G)-structure on M, since & is an (X, G)-map. We shall regard the
universal covering space M to be an (X, {1})-manifold with the (X, {1})-
structure {¢,}. Then § is also a developing map for the (X, {1})-manifold
M, since § : M — X is the unique (X, {1})-map extending ¢, : U, — X.
Note that the (X, {1})-structure on M is unique up to multiplication by
an element of G. Therefore, the induced metric on M is unique up to
multiplication by a scale factor of an element of G.

Definition: An (X, G)-manifold M is complete if and only if the universal
covering space of each connected component of M is a complete metric
space.

Theorem 8.5.7. Let M be a metric (X, G)-manifold. Then the following
are equivalent:

(1) M is complete;
(2) M 1s geodesically complete;

(3) M 1s a complete metric space.

Proof: Suppose that M is complete. Then M is a complete metric space.
We now show that M is geodesically complete. Let « : [a,b] — M be
a geodesic arc and let § : M — X be a developing map for M. Then
ba: [a,b] — X is a geodesic curve. Hence, there is a unique geodesic line
A:R — X extending c. Let I be the largest interval in R containing [a, b]
for which there is amap p: I — M lifting A with respect to §. Then I is
open, since ¢ is a local homeomorphism. On the contrary, suppose that I is
not all of R. Then there is a sequence of real numbers {t,} in I converging
to an endpoint ¢ of I. As § is a local isometry, u is locally a geodesic
arc. Therefore, ;1 does not increase distances. Hence {u(t,)} is a Cauchy
sequence in M. As M is a complete metric space, {u(t, )} converges to a
point % in M. Now extend p to a function 7 : TU {c} — M by setting
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zi(¢) = 4. Then @ is continuous, since the point & does not depend on the
choice of the sequence {#,} converging to the point c¢. Observe that

6p(c) = lim bp(t,) = lim A(t,) = Ac)-
Hence i : IU{c} — M further lifts X. But this contradicts the maximality
of I. Thus I is all of R and p1: R — M is a geodesic line extending a.

Let ¢/ : R — M be another geodesic line extending «. As 6 is a local
isometry, 6u’ : R — X is a geodesic line extending . Hence 6y’ = A = dp.
Therefore ' = p, since 6 is a local homeomorphism. Hence p is the unique
geodesic line extending . Thus M is geodesically complete. Therefore M
is geodesically complete, since the universal covering projection & : M — M
is a local isometry. Thus (1) implies (2).

Now assume that M is geodesically complete. Then M is geodesically
complete, since the universal covering projection « : M — M is a local
isometry. Therefore § : M — X is a covering projection by Theorem 8.5.6.
Furthermore, the proof of Theorem 8.5.6 shows that there is an r > 0 such
that B(z,2r) is evenly covered by 6 for all z in X. Let 4 be a point of
M. From the proof of Theorem 8.5.6, we have that § maps B(&,r) onto
B(6(@),r). As 6 is continuous, we have

§(B(a,r)) C B(6(a),r).
By a geodesic arc lifting argument, § maps B(@,r) onto B(6(@),r). Now
as § maps B(ii, ) homeomorphically onto B(6(i), ), we have that B(d,r)
is compact for each point @ of M. By the same argument, the covering
projection % : M — M maps B(@,r) onto B(x(%),r). Therefore B(u,r) is
compact for each point u of M. Hence M is a complete metric space by
Theorem 8.5.1. Thus (2) implies (3).

Now assume that M is a complete metric space. Let T' be the group of
covering transformations of the universal covering « : M — M. ThenTis a
group of isometries of M and & induces a homeomorphism % : M [/T — M.
Moreover % is a local isometry, since x and the quotient map = : M- M /T
are local isometries. Now the homeomorphism & : M/T — M induces an
(X, G)-manifold structure on M /T. We claim that the orbit space metric
dr on M/T is the same as the induced (X, G)-manifold metric d on M/T.
First of all, dr and d agree locally, since & : M /T" — M is a local isometry;
moreover dr < d, since arc length with respect to dr is the same as X-
length. Finally, dr = d, since m preserves X-length. Therefore 7 : M /T" —
M is an isometry. Hence M /T is a complete metric space. Therefore M is
a complete metric space by Theorem 8.5.3. Thus (3) implies (1). =

Definition: An (X, G)-structure ® for a manifold M is complete if and
only if M, with the (X, G)-structure @, is a complete (X, G)-manifold.

Theorem 8.5.8. Let M be an (X, G)-manifold and let Gy be the group of
wsometries in G. Then M is complete if and only if the (X, G)-structure of
M contains a complete (X, G1)-structure for M.
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Proof: Without loss of generality, we may assume that M is connected.
Suppose that M is complete. Then the universal covering space M is
a complete metric space. Let 7 : M — M be a nonidentity covering
transformation of the universal covering projection x : M — M. Then
7 is an (X, G)-map. Hence 7 is locally a similarity. Moreover, as M is
connected, all the local scale factors of 7 have the same value k. Let
v : [a,b] — M be an X-rectifiable curve from u to v. Then ||7v| = k|v|.
Hence, we have that

d(7(u),7(v)) < kd(u,v).
Likewise, we have
(7 (w), 77 (v)) < K 'd(w, v).
Observe that
kd(u,v) = kd(r(7(«)), 7" (7(v))) < d(7(w), T(v)).

Therefore, we have

d(t(u), 7(v)) = kd(u,v).

Thus 7 is a similarity. Since 7 has no fixed points, 7 is an isometry by
Theorem 8.5.4.

Let n : w1 (M) — G be the holonomy determined by 6. Then 7 is defined
by n([a]) = go where 67, = go6 and 7, is a certain covering transformation
of k. As 6 and 7, are local isometries, g, is an isometry of X. Hence, the
image of 5 is contained in the group G of isometries in G. Therefore,
the (X, G)-structure ® of M contains an (X, Gy)-structure ®; for M by
Theorem 8.4.5. Moreover ®; is complete, since M is a complete metric
space.

Conversely, suppose that the (X, G)-structure ® of M contains a com-
plete (X, G1)-structure ®, for M. Then M is a complete metric space.
Therefore M is a complete (X, G)-manifold. o

Definition: A function € : M — N between (X, G)-manifolds is an
(X, G)-equavalence if and only if ¢ is a bijective (X, G)-map.

Clearly, the inverse of an (X, G)-equivalence is also an (X, G)-equivalence.
Two (X, G)-manifolds M and N are said to be (X, G)-equivalent if and
only if there is an (X,G)-equivalence £ : M — N. Note that an (X, G)-
equivalence § : M — N between metric (X, G)-manifolds is an isometry.

Theorem 8.5.9. Let G be a group of sumilarities of a simply connected
geometric space X and let M be a complete connected (X, G)-manfold.
Let 6 : M — X be a developing map for M and let n:m (M) — G be the
holonomy of M determined by §. Then é is an (X, {1})-equwvalence, n maps
w1 (M) 1somorphically onto a freely acting discrete group I' of isometries of
X, and § induces an (X, G)-equwvalence from M to X /L.
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Proof: First of all, M is geodesically complete by Theorem 8.5.7. Hence,
the developing map 8 : M — X is a covering projection by Theorem 8.5.6.
Therefore 6 is a homeomorphism, since X is simply connected. Hence 6 is
an (X, {1})-equivalence and so is an isometry. Now 71 (M) corresponds to
the group of covering transformations of the universal covering  : M —
M which corresponds via § to the image of n. Therefore n maps 7 (M)
isomorphically onto a freely acting discrete group I' of isometries of X.
Moreover & induces a homeomorphism & such that the following diagram
commutes:

M 5 x

K| =

M 5 X/,
where 7 is the quotient map. As k, §, and 7 are (X,G)-maps, § is an
(X, G)-map. Hence 6 is an (X, G)-equivalence. o

Theorem 8.5.10. Let M be a metric (X,1(X))-manifold with X simply
connected. Then the followwng are equivalent:

(1) The mamfold M is complete.

(2) There 1s an € > 0 such that each closed e-ball in M 1is compact.

(38) All the closed balls in M are compact.
)

(4) There s a sequence {M,}2, of compact subsets of the manaifold M

such that M = U2, M, and N(M,,1) C M,y for each i.

Proof: Assume that M is complete. Then M is isometric to an X-space-
form X/T by Theorem 8.5.9. Now all the closed balls in X are compact by
Theorem 8.1.2. Hence, all the closed balls in X/T" are compact by Theorem
6.5.2. Therefore, all the closed balls in M are compact. Thus (1) implies
(3). As (3) implies (2), and (2) implies (1) by Theorem 8.5.1, we have that
(1)-(3) are equivalent.

Now assume that all the closed balls in M are compact. Let u be a point
of M. For each integer i > 0, let M, = C(u,%). Then M = U2, M, and

N(M“ 1) C Mz—i—l
for each 4. Thus (3) implies (4).

Now assume that (4) holds. Let {u,} be a Cauchy sequence in M. Then
there is an integer k such d(u,,u,) < 1 for all 4,5 > k. As M = U2 M,,
there is an integer £ such that

{ul, e ,Uk} C M,.
Then the set M, contains the entire sequence {u,}, since
N(My,1) C Myyqa.

As My, is compact, the sequence {u,} converges. Therefore M is com-
plete. Hence (4) implies (1). Thus (1)-(4) are equivalent. o
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Exercise 8.5

1. Prove that every locally compact, homogeneous, metric space X is complete.

2. Let X be a connected n-manifold with a complete metric. Prove that a
function £ : X — X is an isometry if and only if it preserves distances.

Hint: Use invariance of domain.

3. Prove that a local isometry £ : M — N between metric (X, G)-manifolds is
an isometry if and only if it is a bijection.

4. Let M be a metric (X, G)-manifold and let & : M — M be a covering
projection with M connected. Prove that M is geodesically complete if and
only if M is geodesically complete.

5. Prove that a local isometry £ : M — N between geodesically complete metric
(X, G)-manifolds is a covering projection.

6. Prove that a connected (X, G):manifold M is complete if and only if every
(or some) developing map § : M — X for M is a covering projection.

7. Let X be a simply connected geometric space. Prove that a function ¢ :
X — X is an isometry if and only if it is a local isometry.

8. Prove that the universal covering space X of a geometric space X is also a
geometric space.

9. Let M be an (X,I(X))-manifold and let X be the universal covering space of

X. Prove that the (X,I(X))-structure of M lifts to an (X,1(X))-structure
for M.

10. Let M be a complete connected (X,I(X))-manifold and let X be the uni-

versal covering space of X. Prove that M is (X,I(X))-equivalent to an
X-space-form.

§8.6. Curvature

In this section, we briefly describe the role of curvature in the theory of
spherical, Euclidean, and hyperbolic manifolds. We assume that the reader
is familiar with the basic theory of Riemannian manifolds. In particular,
every connected Riemannian manifold has a natural metric space structure.

Theorem 8.6.1. A connected Riemannian n-manifold X is an n-dimen-
sional geometric space if and only if X 1s homogeneous.

Proof: Suppose that X is homogeneous. Then X is a complete metric
space by Theorem 8.5.1. Hence X is geodesically connected and geodesi-
cally complete by the Hopf-Rinow-Whitehead Theorem. The exponential
map at any point of X determines a function ¢ : E* — X satisfying Axiom
3 for a geometric space. o
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Remark: It is a theorem of Berestovskii that an n-dimensional geometric
space X has a Riemannian metric compatible with its topology such that
every isometry of X is an isometry of the Riemannian metric.

Definition: An n-dimensional geometry is a simply connected, homoge-

neous, Riemannian n-manifold X for which there is at least one X-space-
form of finite volume.

Euclidean 1-dimensional geometry E! is the only 1-dimensional geom-
etry up to isometry. If n > 1, then S™ E™ and H"™ are examples of
nonsimilar n-dimensional geometries. These geometries are characterized
as the geometries of constant curvature because of the following theorem.

Theorem 8.6.2. Let X be a Riemannian n-manifold such that X is

(1) connected,

(2) complete,

(3) sumply connected, and
)

(4) of constant sectional curvature.

Then X s simalar to either S™, E™, or H™.

Remark: One should compare conditions 1-4 in Theorem 8.6.2 with
Euclid’s Postulates 1-4 in §1.1.

Corollary 1. If X is a 2-dimensional geometry, then X is similar to either
S2 E?, or H?.

Proof: As X is homogeneous, X is of constant curvature. o

Two n-dimensional geometries X and Y are said to be equivalent if
and only if there is a diffeomorphism ¢ : X — Y such that ¢ induces an
isomorphism ¢, : I(X) — I(Y) defined by

d:(9) = pgo".

It is a theorem of Thurston that there are, up to equivalence, exactly eight
3-dimensional geometries.
We end the chapter with the definition of a geometric manifold.

Definition: A geometric n-manifold is an (X,S(X))-manifold, where
S(X) is the group of similarities of an n-dimensional geometry X.

Spherical, Euclidean, and hyperbolic manifolds are examples of geometric
manifolds.



88.7. Historical Notes 369

§8.7. Historical Notes

§8.1. The concept of an n-dimensional manifold was introduced by Rie-
mann in his 1854 lecture Uber die Hypothesen, welche der Geometrie zu
Grunde liegen [349]. For a discussion, see Scholz’s 1992 article Riemann’s
vision of a new approach to geometry [366], and for the early history of
manifolds, see Scholz’s 1980 thesis Geschichte des Mannigfaltigkeitsbegriffs
von Riemann bis Poincaré [363]. The concept of a geometric space was
introduced here as a metric space generalization of a homogeneous Rie-
mannian manifold. Theorem 8.1.3 for Clifford-Klein space-forms appeared
in Hopf’s 1926 paper Zum Clifford-Kleinschen Raumproblem [198]. The
fundamental group was introduced by Poincaré in his 1895 memoir Analy-
sis situs [336]. In particular, Theorem 8.1.4 for Clifford-Klein space-forms
was described in this paper. Theorem 8.1.5 for closed geometric surfaces
was essentially proved by Poincaré in his 1885 paper Sur un théoréme de
M. Fuchs [334].

§8.2. The elliptic plane was introduced by Cayley in his 1859 paper A
sizth memoir upon gquantics [76]. In 1873, Clifford described a Euclidean
torus embedded in elliptic 3-space in his paper Preliminary Sketch of Bi-
quaternions [82]. Closed hyperbolic surfaces were constructed by Poincaré
in his 1882 paper Théorie des groupes fuchsiens [330]. In 1890, Klein pro-
posed the problem of determining all the closed spherical, Euclidean, and
hyperbolic manifolds in his paper Zur Nicht-Euklidischen Geometrie [234].
Killing recognized that a closed spherical, Euclidean, or hyperbolic mani-
fold can be represented as an orbit space of a discontinuous group of isome-
tries acting freely in his 1891 paper Ueber die Clifford-Klein’schen Raum-
formen [222]. In particular, Killing introduced the term Clifford-Klein
space-form in this paper. For the historical context of Killing’s work, see
Hawkins’ 1980 article Non-Euclidean geometry and Weierstrassian mathe-
matics [184]. Theorem 8.2.3 appeared in Killing’s 1891 paper [222]. The-
orem 8.2.4 appeared in Hopf’s 1926 paper [198]. The lens spaces L(5,1)
and L(5, 2) were shown to be nonhomeomorphic by Alexander in his 1919
paper Note on two three-dimensional manifolds with the same group [13].
For the classification of lens spaces, see Brody’s 1960 paper The topological
classification of the lens spaces [58], and for the classification of spherical
space-forms, see Wolf’s 1984 treatise Spaces of Constant Curvature [416].
Theorem 8.2.5 appeared in Auslander and Kuranishi’s 1957 paper On the
holonomy group of locally Euchdean spaces [27]. The Euclidean plane-
forms were described by Klein in his 1928 treatise Vorlesungen tiber nicht-
euklidische Geometrie [237]. The 3-dimensional Euclidean space-forms were
enumerated by Nowacki in his 1934 paper Die euklidischen, dreidimension-
alen, geschlossenen und offenen Raumformen [322]. See also Hantzsche
and Wendt’s 1935 paper Dreidimensionale euklidische Raumformen [178].
References for Euclidean space-forms are Wolf’s 1984 treatise [416] and
Charlap’s 1986 text Bieberbach Groups and Flat Manifolds [77)
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§8.3. The concept of an (X, G)-manifold originated in the notion of a lo-
cally homogeneous Riemannian manifold introduced by Cartan in his 1926
paper L’application des espaces de Riemann et Uanalysis situs [69]. The
concept of an (X, G)-manifold was introduced by Veblen and Whitehead in
their 1931 paper A set of azwoms for differential geometry [395]. For further
development of the theory of (X, G)-manifolds, see Goldman’s 1988 paper
Geometric structures on manifolds and varieties of representations [154).

§8.4. The concept of the developing map originated in the notion of
a developable surface introduced by Euler in his 1772 paper De solidis
quorum superfictem in planum explicare licet [125]. For commentary, see
Cajori’s 1929 article Generalizations in geometry as seen wn the history
of developable surfaces [66]. Theorem 8.4.1 appeared in Ehresmann’s 1936
paper Sur les espaces localement homogénes [115]. The developing map and
holonomy homomorphism for locally homogeneous Riemannian manifolds
were described by Cartan in his 1926 paper [69].

§8.5. The concept of metric completeness was introduced by Fréchet in
his 1906 paper Sur quelques points du calcul fonctionnel [137]. For the his-
tory of metric completeness, see Dugac’s 1984 article Histoiwre des espaces
complets [109]. Theorem 8.5.4 for the Euclidean plane was proved by Euler
in his 1795 paper De centro similitudinas [129]. Theorems 8.5.5, 8.5.7, and
8.5.10 for Riemannian surfaces were proved by Hopf and Rinow in their
1931 paper Ueber den Begriff der vollstindigen differentialgeometrischen
Fliche [199] and were extended to Riemannian n-manifolds by Whitehead
in his 1935 paper On the covering of a complete space by the geodesics
through a point [410]. See also Cohn-Vossen’s 1935 paper Ezistenz kirzester
Wege [83]. Theorem 8.5.9 for spherical, Euclidean, or hyperbolic manifolds
was proved by Hopf in his 1926 paper [198] and was extended to locally ho-
mogeneous Riemannian manifolds by Whitehead in his 1932 paper Locally
homogeneous spaces in differential geometry [409)].

§8.6. Berestovskii proved his theorem on geometric spaces in his 1982 pa-
per Homogeneous Busemann G-spaces [41]. The notion of an n-dimensional
geometry originated in Riemann’s concept of a manifold of constant cur-
vature which he introduced in his 1854 lecture [349]. For a discussion, see
von Helmholtz’s 1876 paper On the orgin and significance of geometrical
azoms [399]. The notion of an n-dimensional geometry was developed by
Killing, Lie, and Cartan in their work on Lie groups. For a discussion,
see Cartan’s 1936 article Le réle de la théorie des groupes de Lie dans
Dévolution de la géométrie moderne [70]. Theorem 8.6.2 appeared in Rie-
mann’s 1854 lecture [349]. For a proof, see Vol. II of Spivak’s 1979 treatise
Differential Geometry [378]. Thurston’s theorem on 3-dimensional geome-
tries appeared in his 1982 article Three dimensional manifolds, Kleinian
groups, and hyperbolic geometry [390]. For a discussion, see Scott’s 1984
survey The geometries of 3-manifolds [370]. The 4-dimensional geometrigs
are described in Wall’s 1985 paper Geometries and geometric structures in
real dimension 4 and complex dimension 2 [400].



CHAPTER 9

Geometric Surfaces

In this chapter, we study the geometry of geometric surfaces. The chapter
begins with a review of the topology of compact surfaces. In Section 9.2,
a geometric method for constructing spherical, Euclidean, and hyperbolic
surfaces is given. The fundamental relationship between the Euler charac-
teristic of a closed geometric surface and its area is derived in Section 9.3.
In Section 9.4, the set of similarity equivalence classes of Euclidean or hy-
perbolic structures on a closed surface is shown to have a natural topology.
The geometry of closed geometric surfaces is studied in Sections 9.5 and
9.6. The chapter ends with a study of the geometry of complete hyperbolic
surfaces of finite area.

§9.1. Compact Surfaces

A surface is a connected 2-dimensional manifold. A compact surface is
called a closed surface.

Definition: A triangulation of a closed surface M consists of a finite
family of functions

{6, : A%~ M i
with the following properties:
(1) The function ¢, maps the standard 2-simplex A? homeomorphically

onto a subset T, of M, called a triangle. The vertices and edges of T,
are the images of the vertices and edges of A2 under ¢,.

(2) The surface M is the union of the triangles T, .., T

(3) If i # 7, then the intersection of 7, and T, is either empty, a common
vertex of each triangle, or a common edge of each triangle.

371
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Figure 7.2.1 illustrates four different triangulations of S$%. It is a funda-
mental theorem of the topology of surfaces that every closed surface has
a triangulation. Given a triangulation of a closed surface M, let v be the

number of vertices, e the number of edges, and ¢ the number of triangles.
The Euler characteristic of M is the integer

x(M)=v—e+t. (9.1.1)

It is a basic theorem of algebraic topology that x(M) does not depend on
the choice of the triangulation. More generally, if M is a cell complex with
a O-cells, b 1-cells, and ¢ 2-cells, then

x(M)=a—-b+c. (9.1.2)
If My, and M, are surfaces, then we can form a new surface M;#Ms,

called the connected sum of M; and M, as follows: Let ¢, : A> — M,, for
i=1,2, be a function that maps A? homeomorphically into M, and set

M! = M — ¢,(Int A?)

for + = 1,2. Then M;#M,; is defined to be the quotient space of the
disjoint union Mj [] M} obtained by identifying ¢ (x) with ¢o(z) for each
x in 8A2. The topological type of M;# Mz does not depend on the choice
of the functions ¢; and ¢3. Evidently, if M; and M, are closed, then

x(My#Ms) = x (M) + x(Ma) — 2, (9.1.3)

since we can choose ¢; and ¢2 to be part of triangulations of My and M>.
Starting from the fact that closed surfaces can be triangulated, it is

not difficult to classify all closed surfaces up to homeomorphism. The

classification of closed surfaces is summarized in the following theorem.

Theorem 9.1.1. A closed surface is homeomorphic to either a sphere, a
connected sum of tori, or a connected sum of projective planes.

Orientability

Let {¢, : A2 — M}™, be a triangulation of a closed surface M. Orient
the standard 2-simplex A? with the positive orientation from E?. Then ¢,
orients the triangle T, = ¢,(A2) for each ¢. In particular, ¢, orients each
of the three edges of T,. A triangulation of M is said to be oriented if and
only if each edge of the triangulation receives opposite orientations from
the two adjacent triangles of which it is an edge. See Figure 9.1.1.

Let p be the reflection of A? in the line y = z. Then p reverses the
orientation of A2. A triangulation {¢, : A2 — M}, for M is said to be
orientable if and only if an oriented triangulation of M can be obtained
from {¢,}™, by replacing each ¢, by ¢, or ¢.p. The surface M is said
to be orentable if and only if it has an orientable triangulation. It is a
basic theorem of algebraic topology that a closed surface M is orientable
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Figure 9.1.1. Adjacent oriented triangles with compatible orientations

if and only if every triangulation of M is orientable. Furthermore, a closed
surface is orientable if and only if it is either a sphere or a connected sum
of tori.

A connected sum of n tori is called a closed orientable surface of genus
n. A 2-sphere is also called a closed orientable surface of genus zero. The
relationship between the Euler characteristic of a closed orientable surface
M and its genus is given by the formula

x(M) = 2(1 — genus(M)). (9.1.4)
A connected sum of n projective planes is called a closed nonorientable
surface of genus n. A closed nonorientable surface of genus two is also

called a Klein bottle. The relationship between the Euler characteristic of
a closed nonorientable surface M and its genus is given by the formula

X (M) =2 — genus(M). (9.1.5)

The next theorem states that the Euler characteristic and orientability

form a complete set of topological invariants for the classification of closed
surfaces.

Theorem 9.1.2. Two closed surfaces are homeomorphic +f and only if

they have the same Euler characteristic and both are orientable or both
are nonorientable.

Surfaces-with-boundary

A surface-with-boundary is a connected 2-manifold-with-boundary. Let M
be a compact surface-with-boundary. The boundary OM of M is a disjoint
union of a finite number of topological circles. Let M* be the closed surface
obtained from M by gluing a disk along its boundary to each boundary

circle of M. We now state the classification theorem for compact surfaces-
with-boundary.
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Theorem 9.1.3. Two compact surfaces-unth-boundary My and Ms are
homeomorphic if and only i1f they both have the same number of bound-
ary components and the closed surfaces M{ and M3, obtained from M;
and My by gluing a disk to each boundary component, are homeomorphic.

Triangulations and the Euler characteristic of a compact surface-with-
boundary M are defined in the same way as for closed surfaces. If M has

m boundary components, then the relationship between the Euler charac-
teristics of M and M* is given by the formula

xX(M*) = x(M) +m. (9.1.6)

A compact surface-with-boundary M is said to be orientable if and only
if the closed surface M™* is orientable. The next theorem follows from
Theorems 9.1.2 and 9.1.3.

Theorem 9.1.4. Two compact surfaces-unth-boundary are homeomorphic
of and only if they have the same number of boundary components, the same
Euler characteristic, and both are orientable or both are nonortentable.

§9.2. Gluing Surfaces

In this section, we construct spherical, Euclidean, and hyperbolic surfaces
by gluing together convex polygons in X = S2, E?, or H? along their sides.
Let P be a finite family of disjoint convex polygons in X and let G be
a group of isometries of X.
Definition: A G-side-pairing for P is a subset of G,
P = {gs :5eS8 },

indexed by the collection S of all the sides of the polygons in P such that
for each side S in S,

(1) there is a side S’ in S such that gs(S8") = S;
(2) the isometries gs and gg satisfy the relation ggr = g;l; and

(3) if S is a side of P in P and §’ is a side of P’ in P, then
PN gs(P/) =3S.

Tt follows from (1) that S’ is uniquely determined by S. The side S’ is
said to be paired to the side S by ®. From (2), we deduce that S"=25.
Thus, the mapping S — S’ is an involution of the set S. It follows from
(3) that gg # 1 for all S.
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Let ® = {gs: S € S8} be a G-side-pairing for P and set

= uU P
PeP

Two points x, =’ of II are said to be paired by ®, written z ~ z’, if and only
if there is a side S in § such that z is in S, and 2’ is in S/, and gs(2’) = =.
If gs(z') = x, then gg/(x) = «’. Therefore x ~ 2’ if and only if 2’ ~ z.

Two points x,y of II are said to be related by ®, written x ~ y, if and
only if either x = y or there is a finite sequence z1,...,z,, of points of II
such that

T=T] N Ty Ty =Y.

Being related by ® is obviously an equivalence relation on the set II. The
equivalence classes of II are called the cycles of ®. If z is in II, we denote
the cycle of ® containing x by [z].
Let
@] ={z1,...,zm}

be a finite cycle of ®. Let P, be the polygon in P containing the point z,
and let 6, be the angle subtended by P, at the point x, for each i = 1,...,m.
The angle sum of [z] is defined to be the real number

Ol =601+ -+ 0,,.

Definition: A G-side-pairing ® for P is proper if and only if each cycle
of @ is finite and has angle sum 2.

Example 1. Let P be a closed hemisphere in S2. Pair 9P to itself by
the antipodal map « of S2. Then each point z in P° forms a cycle whose
angle sum is 27, and each pair of antipodal points z, z’ in 8P form a cycle
whose angle sum is 27r. Therefore, this {I, a}-side-pairing is proper.

Example 2. Let P be a rectangle in E2. Pair the opposite sides of P
by translations. Then each point z in P° forms a cycle whose angle sum
is 2m. See Figure 9.2.1(a). Each pair of points z,2’ directly across from
each other in the interior of opposite sides forms a cycle whose angle sum
is 2m. See Figure 9.2.1(b). Finally, the four vertices T1,T2,%3,T4 Of P
form a cycle whose angle sum is 27. See Figure 9.2.1(c). Therefore, this
T(E?)-side-pairing is proper.

Example 3. Let P be an exact fundamental polygon for a discrete group
I’ of isometries of X acting freely on X. For each side S of P, there is a
unique element gg of I" such that PN ggP = S. Then

® = {g5 : S is a side of P}
is a proper I'-side-pairing by Theorems 6.7.5 and 6.7.7.
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Figure 9.2.1. Cycles in a rectangle

Theorem 9.2.1. If & = {95 : S € S} is a proper G-side-parring for P,
then for each side S in S,

(1) the isometry gs fizes no pownt of S'; and

(2) the sides S and S’ are equal +f and only if S is a great circle of S?
and gs 15 the antipodal map of S2.

Proof: (1) On the contrary, suppose that gs fixes a point z of S’. Assume
first that = is in the interior of S’. Then [z] = {z} and 8[z] = &, which
is a contradiction. Assume now that z is an endpoint of S’. Then z is an
endpoint of exactly one other side T in S. As gs(S’) = S, we have that
z isin S, and so either S = S or S =T. If § = &’, then gg would fix S
pointwise, contrary to the first case; therefore S = T. Then [z] = {z} and
f[x] < m, which is a contradiction. Thus gg fixes no point of S’.
(2) If S is a great circle and gg is the antipodal map of S?, then
S =g5'(8)=8S.

Conversely, suppose that S’ = 5. As ggr = g;l, we have that gs has order
two. Let z be a point of S. Then z’ = gg(z) is also a point of 5. If z
and z’ were not antipodal points, then gs would fix the midpoint of the
geodesic segment joining z to ' in S contrary to (1). Therefore z and x'
are antipodal points of S2. Hence S is invariant under the antipodal map of
S2, and so S must be a great circle. Hence, the polygon P in P containing
S is a hemisphere. As gg is the antipodal map on S and P N gs(P) = S,
we have that gg is the antipodal map of S2. o

Let & be a proper G-side-pairing for P. Then II is the topological sum
of the polygons in P, since P is a finite family of disjoint closed subsets of
X. Let M be the quotient space of IT of cycles of ®. The space M is said
to be obtained by gluing together the polygons in P by ®. We next prove
the gluing theorem for geometric surfaces.



§9.2. Gluing Surfaces 377

Theorem 9.2.2. Let G be a group of 1sometries of X and let M be a space
obtained by gluing together a finite family P of disjoint convex polygons in
X by a proper G-side-pairing ®. Then M 1s a 2-manifold with an (X, G)-
structure such that the natural ingection of P° into M is an (X,G)-map
for each P in P.

Proof: Without loss of generality, we may assume that each polygon in
P has at least one side. Let 7 : II — M be the quotient map and let z be
a point of II. We now construct an open neighborhood U(xz,r) of 7(x) in
M and a homeomorphism

¢y : U(z,r) — B(z,r)

for all sufficiently small values of r.

Let P be the polygon in P containing z. There are three cases to
consider. Either (1) z is in P°, or (2) z is in the interior of a side S of P,
or (3) z is a vertex of P. See Figure 9.2.1. If z is in P°, then [z] = {z}. If
z is in the interior of a side of P, then [z] = {z, '}, with z # 2/, since ® is
proper. If z is a vertex of P, then z is the endpoint of exactly two sides of
P, and so z is paired to exactly two other points of II, since ® is proper.
In this case, each element of [z] is paired to exactly two other elements of
[z]. Thus, in all three cases, the cycle [z] can be ordered

[.’E] = {w1,$2,...,$m}
so that
T=T)] Ty 2Ly, ™.

Moreover, if m > 1, then there is a unique side S, in S such that 95, (Zog1) =
z, fori=1,...,m—1, and gs, (z1) = z..

Let g1 =1 and g, = gg, ---gs,_, for i = 2,...,m. Then g,z, = z for
each 7. Let P, be the polygon in P containing the point «, for each ¢. Let
7 be a positive real number such that r is less than one-third the distance
from z, to z, for each i # j and from z, to any side of P, not containing
, for each 4. Then the sets P, N B(x,,r), fori =1, ... ,m, are disjoint.

Let 6, be the angle subtended by P, at the point z,. Then P, N B(z,,r)
is a sector of the open disk B(z,, ) whose angular measure is 6,. Hence

g.(P,N B(z,,7)) = ¢,P, N B(z,r)

is a sector of the open disk B(z,r) whose angular measure is 6,. If m = 1,
then

B(z,r) = PnB(zx,r)=g P N B(z,r).
If m =2, then
B(z,r) = (PNB(z,r))U(gs,Ps N B(z,r))

i

(91PN B(z,7)) U (92PN B(z,7)).
Now assume that m > 2. Observe that the polygons P, and 95, (Poy1) lie

K3
on opposite sides of their common side S,, and so the polygons ¢, P, and
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Figure 9.2.2. The partition of B(xz,r) into sectors by a proper side-pairing

9:1+1P,+1 lie on opposite sides of their common side ¢,5, fori =1,...,m—1.
As S, = gg,(S)) for i = 1,...,m, we have that ¢,S, = g,415, for i =
1,...,m—1. Now S, and S,_, are the two sides of P, whose endpoint is z,
fori=2,...,m,andso g,S, and g,S,_; = g,—15,—1 are the two sides of g, P,
whose endpoint is = for 7 = 2,...,m. Therefore, the sectors g, P, N B(z, ),
for i =1,...,m, occur in sequential order rotating about the point x. See
Figure 9.2.2. Since 6[x] = 27, we have

B(z,r) = Zgl (9.P. N B(z,7)).

The polygons P, and gs, (P) lie on opposite sides of their common
side Sy, and so the polygons ggi(Pm) and P lie on opposite sides of their
common side S/,. Now as S; and S/, are the two sides of P whose endpoint
is x, we deduce that

ng'm = ggipm

Therefore g, = ggi. Hence, we have the cycle relation gg, - -+ gs,, = 1.
In all three cases, let

U(z,r) = ﬁ(ngZ N B(wl,r))

Now as the set
1 m
 (U(z,r)) = y P,N B(z,,r)

is open in II, we have that U(z,r) is an open subset of M.
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Define a function
Py gl P,0 B(x,,r) — B(z,r)
by ¥s(2) = ¢,z if z is in P, N B(z,,r). Then 1, induces a continuous

function

The function ¢, is a bijection with a continuous inverse defined by
¢71(z) = w(g72) if zisin g, P, N B(x,T).

Hence ¢, is a homeomorphism.

Next, we show that M is Hausdorff. Let z and y be points of 11 such that
7(z) and 7(y) are distinct points of M. Let {z1,...,zn} and {y1,...,Yyn}
be the cycles of ® containing = and y, respectively. Then {z1,...,Zm}
and {y1,...,yn} are disjoint subsets of II. Let P, be the polygon in P
containing x, for i = 1,...,m, and let Q, be the polygon in P containing
y; for 5 =1,...,n. Then we can choose radii r and s as before so that

7r( U P, ﬂB(:cl,r)) =Ul(x,r)
=1
and n
7r(JLZJI Q] N B(y]? 5)) = U(y, S)
Moreover, we can choose r and s small enough so that
ml P,N B(x,,r) and 61 Q, N B(y,,s)
1= J=
are disjoint subsets of IT. As
0 P.0 B(z,,7) =77 (U(a, 7))
and "
0,00 By, ) =7 (U, 5),

we deduce that U(z, r) and U(y,r) are disjoint open neighborhoods of 7(x)
and 7(y) in M. Thus M is Hausdorff, and therefore M is a 2-manifold.
Next, we show that

{#z: U(z,7) = B(z,r)}

is an (X, G)-atlas for M. By construction, U (x,7) is an open connected
subset of M and ¢, is a homeomorphism. Moreover [/ (x,7) is defined for
each point 7(z) of M and sufficiently small radius r. Hence {U(z,r)} is
an open cover of M. It remains only to show that if U (z,7) and Uy, s)
overlap, then the coordinate change

byt b (U(z,r) N U(y,s)) — by (U($,r) NU(y, s))

agrees in a neighborhood of each point of its domain with an element of G.
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As before, we have
T (U(e,r) = U PN Bay,r),

Uy, ) = ]Ql Q, N B(y,, s).

By reversing the roles of z and y, if necessary, we may assume that m < n.
If m > 1, let S, be the side of P, containing z, as before, and if n > 1, let
T}, be the side of @, containing Y, as before. Let g1,...,9,, and hy, ..., A,
be the elements of G constructed as before for x and y. Because of the 1 /3
bounds on 7 and s, there is only one index J, say £, such that the set

PﬂB(:c,r)ﬂQJﬂB(yJ,s)

is nonempty. We shall prove that the coordinate change ¢,¢7' is the
restriction of the element h, of G.

Assume first that m = 1. Then z is in P° and
' (U(z,7)) = B(x,r).

Therefore
Ulz,r)NU(y, s)
= 7w(B(z,7))N W(JLZJl @, N B(y,, 5))
= #(Bz.r)n 0,Q,nB(y,s)
= W(B(a:,r) N By, s))
Hence
¢z(U($’ T) n U(y7 '5)) = B(ZZI, 7‘) n B(yb S)
and

by (U(x, r)NU(y, s)) = hy (B(a:, r) N B(ye, s))
Therefore, the coordinate change
dyd. " B(z,7) N Blye, s) = he(B(z,7) N By, 5))
is the restriction of hy.

Assume next that m = 2. Then z is in the interior of a side S of P and
z' is in the interior of a side S’ of P’ and the set

P'nB(z',r)NQ,NB(y,,s)
is nonempty only for j = £—1 or £4+1 (mod n). By reversing the ordering of

Y1,--.,Yn, if Necessary, we may assume that this intersection is nonempty
only for j = £+ 1. Then P = Qp, P' = Quy1, S =Ty, and

U(z,r)NU(y,s) i
= n[(PNB(z,r)) U (P NnB(,r)] N Tl'[]Lle Q, N B(y,,s)]

[l

7r[ GlPﬂB(:Jc,r) NQ, N B(y,,s) UJ§1 P'NB(z',r)NQ, ﬂB(yJ,s)]
j:

7[(P N B(z,7) N Bye, s)) U (P' N B(z',7) N B(yet,5))]-

Il
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Hence
65 (U(z,m) NU(y,s))
= (PN B(z,r)NB(ys,s)) Ugs(P'N B(a',7) N B(yet1,9))
= (PN B(z,r) N Blyes)) U (gs(P') N Bz, ) N Bye, 5))
= B(z,r)N By, s)
and
8, (U1 Uy, )
= he(PNB(z,7) N B(ye,s)) Uherr (PN B, 1) N B(yer, s))
= h[(PNB(z,r) N By, 8)) Ugs(P' N B(z',7) N B(ye+1, )]
= he[(PNB(z,r) N Blye,s)) U (gs(P"YNB(z,m)N B(yes))]
= he(B(z,r) N By, s)).
Now on the set
PN B(z,r) N B(ye, 8),
the map ¢,¢; " is the restriction of k¢, and on the set
gs(P'NB(&',7) N B(ye41,9)),

the map ¢,¢5 ! is the restriction of hnggl = hy. Hence, the coordinate
change

d)yqﬁ;l : B(x,r) N B(ye, s) — hg(B(az,r) N B(ye, s))
is the restriction of hy.

Assume now that m > 2. Then both z and y are vertices. As U(x,r)
and U(y, s) overlap, 7(z) = m(y) because of the bounds on r and s. Hence

2 = y¢. Let ¢ = min{r, s}. Then
U(z,r)NU(y,s) U(z,t),
¢ (U(z,t)) B(z,t),
d)y(U(xat)) = B(yat)

Now either
Z, = Yopo—1 (mod m)
or
T, = Yp—o—1 (mod m).
By reversing the ordering of y1, ..., ym, if necessary, we may assume that

the former holds. Then

P, = Qu4,—1 (mod m)
and

S, = Tpqs—1 (mod m).
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Now observe that

9 = 95,98,
9T, " " 9Tot,_2

= he—lh[_i_z_]_ (mod m)
and so we have
heri-1 = heg, (mod m).
Now as
B(z,t) = Zﬁl ¢.P,N B(z,1),

the map ¢, ¢, ! is the restriction of
heri19, ' = (heg.)g; " = he
on the set g, P,NB(x,t) for each ¢ = 1,...,m. Hence, the coordinate change
¢ydz ' : B(z,t) — B(y, 1)

is the restriction of he. Thus, in all three cases, ¢,¢,' agrees with an
element of G. This completes the proof that {¢,} is an (X, G)-atlas for M.

Let P be a polygon in P and let + : P° — M be the natural injection of
P° into M. Then for each point « in P° and chart ¢, : U(z,r) — B(z, ),
the map

Y uB(z, ) — B(x, )

is ¢. Therefore ¢ is an (X, G)-map by Theorem 8.4.2. Thus, the (X, G)-
structure of M has the property that the natural injection of P° into M is
an (X, G)-map for each P in P. =

Example 4. Let n be an integer greater than one. Then
T N s n T
o dn T dn om0

Hence, there is a hyperbolic triangle of the form A(%, I ZWZ) by Theorem
3.5.9. Now reflecting in the sides of A\, keeping the vertex whose angle is
7 /2n fixed, generates a cycle of 4n hyperbolic triangles whose union is a
regular hyperbolic 4n-gon P whose dihedral angle is 7/2n. We position P
in B? so that its center is the origin. See Figure 9.2.3.

Now label the sides of P in positive order by the symbols
SI) T17 Si’ Tllv sy Sna Tn7 S;w Trlz,

as in Figure 9.2.3. The side S, is paired to the side S, by first reflecting
in the straight line passing through the origin and the center of the side
labeled 7,, and then reflecting in the side of P labeled S,. The side T, is
paired to the side T, by first reflecting in the straight line passing through
the origin and the center of the side labeled S;, and then reflecting in the
side of P labeled 7,. The 4n vertices of P form a cycle whose angle sum is
27. Therefore, this side-pairing is proper.
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Figure 9.2.3. A regular hyperbolic octagon

Let M be the space obtained from P by gluing together its sides by
this side-pairing. Then M is a closed surface with a (B2, Iy(B?2))-structure
by Theorem 9.2.2. It is evident from the gluing pattern of P that M is a

connected sum of n tori. Thus M is a closed orientable surface of genus
n>1.

Example 5. Let n be an integer greater than two. Then

™ 7T+7T 27r<
-+ —+ — = — <7
n 2n 2n

Hence, there is a hyperbolic triangle of the form A(Z, £, ) by Theorem
3.5.9. Now reflecting in the sides of A, keeping the vertex whose angle is
7/n fixed, generates a cycle of 2n hyperbolic triangles whose union is a
regular hyperbolic 2n-gon @ whose dihedral angle is m/n. We position Q
in B? so that its center is the origin.

We now divide the sides of @ into pairs of consecutive sides. Each of
these pairs of consecutive sides of @ are paired by a rotation about the
origin followed by the reflection in the corresponding side of Q. The 2n
vertices of () form a cycle whose angle sum is 2r. Therefore, this side-
pairing is proper.

Let M be the space obtained from @ by gluing together its sides by
this side-pairing. Then M is a closed surface with a (B2, 1(B2))-structure
by Theorem 9.2.2. It is evident from the gluing pattern of @ that M is a

connected sum of n projective planes. Thus M is a closed nonorientable
surface of genus n > 2.



384 9. Geometric Surfaces

The Generalized Gluing Theorem

In later applications, we shall need a more general version of Theorem 9.2.2.
The first step towards this generalized gluing theorem is to generalize the
notion of a convex polygon so as to allow vertices in the interior of a side.

Definition: An abstract convezx polygon P in X is a convex polygon P in

X together with a collection & of subsets of 9P, called the edges of P, such
that

1) each edge of P is a closed, 1-dimensional, convex subset of 8P;

(
(2) two edges of P meet only along their boundaries;
(3) the union of the edges of P is dP;

(

4) the collection & is a locally finite family of subsets of X.

By Theorem 6.2.6, a convex polygon P in X, together with the collection
S of its sides, is an abstract convex polygon. Note that, in general, an edge
of an abstract convex polygon P may or may not be equal to the side of P
containing it. The wvertices of an abstract convex polygon P are defined to
be the endpoints of the edges of P. A vertex of an abstract convex polygon
P may be in the interior of a side of P.

We next generalize the notion of a disjoint set of convex polygons so as
to allow the possibility that the polygons may live in different copies of X.

Definition: A disjoint set of abstract convex polygons of X is a set of
functions

=E={p: PeP}
indexed by a set P such that
(1) the function £p : X — Xp is a similarity for each P in P;
(2) the index P is an abstract convex polygon in Xp for each P in P;

(3) the polygons in P are mutually disjoint.

Let = be a disjoint set of abstract convex polygons of X and let G bea
group of similarities of X.
Definition: A G-edge-pairing for E is a set of functions
P = {gb g:Ee€é }

indexed by the collection £ of all the edges of the polygons in P such that
for each edge E of a polygon P in P,
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(1) there is a polygon P’ in P such that the function ¢g : Xpr — Xp is
a similarity;

(2) the similarity f;lqﬁE&pr isin G;

(3) there is an edge E’ of P’ such that ¢pg(E’) = F;

(4) the similarities ¢ and ¢p satisfy the relation ¢p = ¢5';

(5) the polygons P and ¢g(P’) are situated so that PN ¢r(P') = E.

Let ® be a G-edge-pairing for =. Then the pairing of edge points by
elements of ® generates an equivalence relation on the set I = Upecp P.
The equivalence classes are called the cycles of @, and ® is said to be proper
if and only if every cycle of ® is finite and has angle sum 27. Topologize
IT with the direct sum topology and let M be the quotient space of IT of
cycles of ®. The space M is said to be obtained by gluing together the
polygons of = by ®.

The proof of the next theorem follows the same outline as the proof of
Theorem 9.2.2 and is therefore left to the reader.

Theorem 9.2.3. Let G be a group of symilarities of X and let M be a space
obtained by gluing together a disjomnt set = of abstract convex polygons of
X by a proper G-edge-pairing ®. Then M is a 2-manifold with an (X, G)-
structure such that the natural wmjection of P° into M 1s an (X, G)-map
for each polygon P of E.

Exercise 9.2

1. With the same definitions as in the proof of Theorem 9.2.2, prove that for
each index ¢, there is at most one index J such that the following set is
nonempty:

P.NnB(z.,r)NQ, N B(y,, s).

2. Show that the same gluing pattern on the sides of a square in E2, as in
Example 5, yields a Euclidean structure on the Klein bottle.

3. Let P be a convex fundamental polygon for a discrete group I' of isometries
of X and let £ be the collection of all 1-dimensional convex subsets of P

of the form P N gP for some g in I'. Prove that P together with £ is an
abstract convex polygon in X.

4. Let P be as in Exercise 3. For each edge E of P, let gr be the element of T

such that PN gp(P) = E. Prove that ® = {gp : E € £} is a M-edge-pairing
for P.

5. Prove Theorem 9.2.3.
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§9.3. The Gauss-Bonnet Theorem

We next prove the Gauss-Bonnet Theorem for closed geometric surfaces.

Theorem 9.3.1. If x = 1,0, or —1 1s the curvature of a closed spherical,
Euchdean, or hyperbolic surface M, then

kArea(M) = 2mx(M).

Proof: As M is compact, M is complete. By Theorem 8.5.9, we may
assume that M is a space-form X/I'. Let P be an exact fundamental
polygon for I'. Then P is compact by Theorem 6.5.10.

If P has no sides, then P = §? = M and

Area(M) = 4n = 2nx(M).

If P has one side, then P is a closed hemisphere of S?, and so M = P? by
Theorem 9.2.1(2), and

Area(M) = 2r = 2mx(M).
If P has two sides, then P is a lune of S%, but any side-pairing of a lune
is not proper. Therefore, we may assume that P has at least three sides.
Then the 2nd barycentric subdivision of P subdivides P into triangles and
projects to a triangulation of M so that each triangle of the subdivision of
P is mapped homeomorphically onto a triangle of the triangulation.
Let Aq,...,/\; be the triangles of the 2nd barycentric subdivision of P.

Then e = 3t/2 is the number of edges of the triangulation of M. Let v be
the number of vertices of the triangulation of M. Then

x(M)=v—e+t=v— 3t
Suppose that £ = 1 or —1. Then by Theorems 2.5.5 and 3.5.5, we have

kArea(M) = «kArea(P)
¢
= kK z Area(A,(au, B, M)
=1
t
= Z(QZ—I—,@Z-F%_W)
=1
= 2rv—tir
2n(v—3t) = 2mx(M).

Now suppose that £ = 0. Then we have
t
2my = Z(al + B+ ) =tw.
=1

Hence, we have .

X(M) = (v—4t) =0.
Thus, we have

kArea(M) = 2mx(M). o
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Theorem 9.3.2. If M is a closed surface, then M has

(1) a spherical structure if and only of x(M) >0,
(2) a Euclhdean structure if and only if x(M) =0,
(3) a hyperbolic structure +f and only +f x(M) < 0.

Proof: (1) If x(M) > 0, then M is either a sphere or projective plane by
Theorem 9.1.1, both of which have a spherical structure. Conversely, if M
has a spherical structure, then x(M) > 0 by Theorem 9.3.1.

(2) If x(M) =0, then M is either a torus or a Klein bottle by Theorem
9.1.1, both of which have a Euclidean structure. Conversely, if M has a
Euclidean structure, then x(M) = 0 by Theorem 9.3.1.

(3) If x(M) < 0, then M is either a closed orientable surface of genus n,
with n > 1, or a closed nonorientable surface of genus n, with n > 2, both
of which have a hyperbolic structure by the constructions in Examples 4
and 5 in §9.2. Conversely, if M has a hyperbolic structure, then x (M) < 0
by Theorem 9.3.1. o

Exercise 9.3

1. Let T be a triangle in $?, 2, or H2. Prove that the centroid of T is the inter-
section of the three geodesic segments joining a vertex of T' to the midpoint
of the opposite side of T

2. Let P be a compact convex polygon in X = S2, E?, or H? with n sides and
n 2> 3. Prove that the 2nd barycentric subdivision of P divides P into 12n
triangles.

3. With the same definitions as in the proof of Theorem 9.3.1, prove that each
triangle of the barycentric subdivision of P is mapped homeomorphically
onto the image in M by the quotient map from X to M.

4. With the same definitions as in the proof of Theorem 9.3.1, prove that the
2nd barycentric subdivision of P projects to a triangulation of M.

§9.4. Moduli Spaces

Let M be a closed surface such that x(M) < 0. By Theorem 9.3.2, the
surface M has a Euclidean or hyperbolic structure according as x(M) =0
or x(M) < 0. In this section, we show that the set of similarity equivalence
classes of Euclidean or hyperbolic structures on M has a natural topology.

If x(M) = 0, let E(M) be the set of Euchdean structures for M, and
if x(M) < 0, let H(M) be the set of hyperbolic structures for M. Let
X = E? or H? according as x(M) = 0 or x(M) < 0, and let S(M) be
the set of complete (X, S(X))-structures for M. We begin by studying the
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relationship between S(M) and E(M) or H(M). First of all, if x(M) <0,
then S(M) = H(M), since S(H?) = I(H?) and every hyperbolic structure
for M is complete because M is compact. Thus, we may assume that
x(M) = 0.

Define a left action of S(E?) on £(M) as follows: If ¢ : E? — E? is a
similarity and

®={¢,:U, — E*}
is a Euclidean structure for M, define £® to be the Euclidean structure for
M given by
§o = {§¢z U, — E2}

Clearly, I(E?) acts trivially on £(M). Hence, the action of S(E?) on £(M)
induces an action of S(E?)/I(E?) on £(M). The group S(E?)/I(E?) is
isomorphic to R,. Consequently, there is a corresponding action of R, on
E(M) defined as follows: If k > 0 and ® = {¢, : U, — E?} is in £(M),
then

k® = {k¢, : U, — E*}.

Clearly, this action of Ry on £(M) is effective. Furthermore, we see that
two elements of £(M) are in the same S(E?)-orbit if and only if they differ
by a change of scale.

Given a Euclidean structure ® for M, let & be the unique complete
(E?,S(E?))-structure for M containing ®.

Lemma 1. If ® 1s a Fuchdean structure for M, then & is the disjoint
union of the Fuchdean structures {k® : k > 0}.

Proof: Clearly, the Euclidean structures {k® : k > 0} are disjoint and
U{k® : k> 0} C &.

Let ¢ : U — E? be an arbitrary chart in ®. We shall prove that ¢ is in k®
for some k > 0. Define a function f : U — R, as follows: For each point
u of U, choose a chart ¢, : U, — E? of ® such that u is in U,. Then qbqb:l
agrees with an element g of S(E?) in a neighborhood of u. Define f(u) to
be the scale factor of g. Observe that f(u) does not depend on the choice
of the chart ¢,, since if ¢, : U, — E? is another chart in ® such that v is
in U,, then
6, = (6, )(9:9,")

in a neighborhood of u, and ¢,¢j_1 agrees with an isometry of E? in this
neighborhood. It is clear from the definition of f that f is locally constant;
therefore, f is constant, since U is connected.

Let k be the constant value of f. If ¢, : U — E? is a chart in ® such
that U and U, overlap, then k~1¢¢, ! agrees with an clement of I(E?) in a
neighborhood of each point of ¢,(U NU,). Therefore k~1¢ is in ®. Hence
¢ is in k®. Thus A

& =U{k®: k> 0}. o
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Theorem 9.4.1. If M 1s a closed surface such that x(M) = 0, then the
mapping ® — & induces a byection from S(E2)\E(M) onto S(M).

Proof: If ¢ is an S(E?) and ® is in £(M), then £€® = &. Hence, the
mapping ® — & induces a function
o: S(E*)\E(M) — S(M).

Suppose that ® and @ are elements of £(M) such that ® = &’. By Lemma
1, there is a & > 0 such that ® = k®. Hence ® and &’ are in the same
S(E?)-orbit of £(M). Therefore o is injective. Now let ¥ be an arbitrary
element of S(M). By Theorem 8.5.8, we have that ¥ contains a Euclidean
structure ® for M. As ® = ¥, we have that ¢ is surjective. Thus ¢ is a
bijection. o

Moduli Space

Two (X, S5(X))-structures ¥ and ¥’ for M are said to be simalar if and only
if (M,¥) and (M, ¥’) are (X,S(X))-equivalent. Let M(M) be the set of
similarity equivalence classes of complete (X, S(X))-structures for M.

(1) If x(M) = 0, then M(M) is in one-to-one correspondence with the

set of similarity classes of Euclidean structures for M by Theorem
9.4.1.

(2) If x(M) <0, then M(M) is the set of isometry classes of hyperbolic
structures for M.

The set M(M) is called the moduli space of Euclidean or hyperbolic struc-
tures for M.

We next study the relationship between S(M) and M(M). Let Hom(M )
be the group of homeomorphisms of M. Define a right action of Hom(M)
on S§(M) as follows: If h : M — M is a homeomorphism and

¥={4:V, - X}
is an element of S(M), define Wh to be the element of S(M) given by
Uh = {h,h: h™L(V,) — X},

Theorem 9.4.2. If M is a closed surface such that x(M) < 0, then the

natural projection from S(M) to M(M) induces a bijection from the set
S(M)/Hom(M) onto M(M).

Proof: Let h: M — M be a homeomorphism and let
U= {wz V- X}
be an element of S(M). Then for each i and j, we have

(o) (1, )L = ;7.
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Hence h is an (X,S(X))-map from (M,V¥h) to (M,¥). As h is a bijec-
tion, (M, Th) and (M, ¥) are (X, S(X))-equivalent. Hence, the natural
projection from S(M) to M(M) induces a surjection

i S(M)/Hom(M) — M(M).

Let ¥ and ¥’ be similar elements of S(M). Then there is an (X, S(X))-
equivalence h : (M, %) — (M, ¥). As h is a local homeomorphism and a
bijection, h is a homeomorphism. If ¢, : V, - X and ¢, : V, — X are
charts in ¥ and W', respectively, then d)zhw]_l agrees in a neighborhood of
each point of its domain with an element of S(X). Therefore ¥,k is in U,
Hence Wh = ¥'. Thus ¥ and ¥’ are in the same Hom(M )-orbit in S(M).
Hence p is injective. Thus p is a bijection. o

Teichmiiller Space

Let Hom; (M) be the group of all homeomorphisms of M homotopic to
the identity map of M. The Teichmauller space of Euclidean or hyperbolic
structures for M is defined to be the set

T(M)=8(M)/Hom;(M).
The group Hom; (M) is a normal subgroup of Hom(M). The quotient
Map(M) = Hom(M)/Hom, (M)

is called the full mapping class group of M. The action of Hom{M) on S(M)
induces an action of Map(M) on 7 (M ); moreover, the quotient map from
T(M) to M(M) induces a bijection from 7T (M)/Map(M) onto M(M).

The Dehn-Nielsen Theorem

Choose a base point v of M and let h : M — M be a homeomorphism.
Then h induces an isomorphism

hy : T (M, w) — w1 (M, h(u)).

Let o : [0,1] — M be a curve from u to h(u). Then o determines a change
of base point isomorphism

ay : T (M, h(u)) — m (M, u)
defined by
a. () = laya™"].

The composite a.hs is an automorphism of mi (M) = mi(M,u). Let
B :[0,1] — M be another curve from u to h(u). Then B.h. is also an
automorphism of 71 (M). Moreover

Bihy = Beo; tah, = (ﬂa_l)*a*h*.
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The automorphism (Ba~1). of m1(M) is just conjugation by [Ba~?].
Let Inn(m (M)) be the group of inner automorphisms of 71 (M). Then
the quotient group

Out(m(M)) = Aut(m (M) /Inn(m (M))

is called the outer automorphism group of m1(M). Let [hi] be the coset
ah Inn(my (M)) in Out(m(M)). Then [h.] does not depend on the choice
of the curve a. If h is homotopic to the identity map of M, then ayh,
is an inner automorphism of 71 (M), and so [h.] = 1. Thus, the mapping
h > [h,] induces a function

v : Map(M) — Out(m(M)).

The next theorem is a basic theorem of surface theory.

Theorem 9.4.3. (The Dehn-Nielsen Theorem) If M is a closed surface
with x(M) <0, then v : Map(M) — Out(r1(M)) 1s an isomorphism.

Proof: We shall only prove that v is a monomorphism. We begin by
showing that v is a homomorphism. Let g,h : M — M be homeomor-
phisms, let o : [0,1] — M be a curve from the base point u to h(u), and
let 3:[0,1] — M be a curve from u to g(u). Then Bga : [0,1] — M is a
curve from u to gh(u). Hence

vlghl = (Bga)«(gh).Inn(m (M))

= (Bsgsohy Inn(m (M))
(Begs)(etch)Inn(mi (M) = v[g]v[h].
Thus v is a homomorphism.

Let h: M — M be a homeomorphism such that v[h] = 1 in Out(ni(M))
and let o : [0,1] — M be a curve from u to h(u). Then there is a loop
7 :[0,1] — M based at u such that a,h, = v,. Hence h, = (e 1v),. By
replacing a by vy, we may assume that h, = a 1.

Now M has a cell structure with one 0-cell u, & 1-cells, and one 2-cell.

Let 7, : [0,1] — M, for i = 1,...,k, be characteristic maps for the 1-cells
of M. Then

hy, ~ a ly,a ~~, for each i.

Hence, there are homotopies H, : [0, 1] - M from hv, to v, such that
H,(0,t) = H,(1,t) for all t and H,(0,t) = H,(0,¢) for all t and all 4, 5.

Let h; be the restriction of h to the 1-skeleton M! of M. Define a
homotopy

H:M"'x[0,1 - M

by H(v,(s),t) = H,(s,t). Then H is well defined and a homotopy of h; to
the inclusion map of M into M. As x(M) < 0, we have that 7y (M) =0.
Hence, we can extend H to a homotopy of h to the identity map of M.
Therefore [h] = 1 in Map(M). Thus v is a monomorphism. o
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Deformation Space

Let  : m (M) — I(X) be a holonomy for M with respect to a complete
(X, S(X))-structure ¥ for M. The holonomy 1 depends on the choice of a
developing map for M. If ' is another holonomy for M with respect to ¥,
then there is a similarity £ of X such that

n'(¢) = &n(e)¢!
for each ¢ in 1 (M).

Let [n] denote the orbit S(X)n under the left action of S(X) on the set
of homomorphisms Hom(71 (M), I(X)) by conjugation. Then [5] does not
depend on the choice of the developing map for M. Thus, the mapping
¥ — [n] defines a function from S(M) into

S(X)\Hom(my (M), I(X)).

Now by Theorem 8.5.9, the holonomy n maps 7 (M) isomorphically
onto a discrete subgroup of I(X). A homomorphism in Hom(m;(M),I(X))
mapping 71 (M) isomorphically onto a discrete subgroup of I(X) is called
a discrete faithful representation of m (M) in I(X). Let D(m(M),I(X))
be the set of discrete faithful representations of (M) in I1(X). Then
D(m (M), 1(X)) is invariant under the action of S(X).

The deformation space of M is defined to be the set

D(M) = S(X)\D(m (M), [(X)).

Note that the mapping ¥ — [n] defines a function from S(M) to D(M).

Let h : M — M be a homeomorphism and let § : M — X be the
developing map for M that determines the holonomy n. Let & : M — M
be the universal covering projection and let h: M — M be a lift of h with
respect to k. Then 6k : M — X is a developing map for the (X,S(X))-
structure Uh for M. We now compute the holonomy for M determined by
&h in terms of 1) and h.

Choose a base point @ of M such that x(%) = u. Let o : [0,1] — M be a
loop based at u. Then « lifts to a unique curve & in M starting at . Let
7 be the endpoint of & and let 7, be the unique covering transformation
of & such that 7o(@) = 7. Then there is a unique element g, of I(X) such
that

6To = gab-

The holonomy 7 : 71 (M, u) — I(X) is defined by n([e]) = ga-
Let w' = h(u), @ = h(@), and 7' : m1 (M, u’) — I(X) be the holonomy
for M determined by 6. Then
Klea = hkTy = hk

and
KThah = Kh = hk.
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Now as

hro (@) = WD) = Thah(@),
we have that ~ ~
h7o, = Thah.

Hence, we have ~ ~ .
OhTo, = 6Thah = grodh.

Thus, the holonomy for M determined by Sh is
7' hy 2 w1 (M, u) — [(X).

Note that 7’ is defined relative to the base point u' = h(u). We now
switch the base point back to u. Let 4 : [0,1] — M be a curve from @
to @’ and set v = 7. Then v : [0,1] — M is a curve from u to u’. Let
8 :0,1] — M be a loop based at v’ and let 8 : [0,1] — M the lift of 3
starting at 4. Then v3y~1 : [0,1] — M is a loop based at u and

AB(rs7 ) [0,1] = M
is the lift of y8y~! starting at 4. Observe that
FB(r57 1) (1) = 75().
Hence 7.,3,-1 = 7. Thus 1’ = 9y, where
Yo 1 M (M, u') — w1 (M, u)

is the change of base point isomorphism. Therefore, the holonomy for M
determined by 6h is

NYshy 1 1 (M, 1) — I(X).

Now suppose that h : M — M is homotopic to the identity map of M.
Then the automorphism

Vehs : M (M) — m (M)
is conjugation by an element b of m (M). If ¢ is in m; (M), then
1Yhee(c) = n(bed™") = n(b)n(c)n(b) ™.
Therefore, we have that
1mY<cha = n(b) - 1.
Hence ¥ and Wh determine the same element (1] of D(M). Thus, the
mapping ¥ — [n] induces a function p : T(M) — D(M) defined by
p([¥]) = [n],
where [¥] = YHom; (M).

Theorem 9.4.4. If M 1s a closed surface such that x(M) <0, then the

function p: T(M) — D(M), defined by p([¥]) = [n], where 7 is a holonomy
for (M, ), 1s a bijection.
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Proof: We first show that p is injective. Let ¥; and ¥, be complete

(X,S(X))-structures for M such that p([¢1]) = p([¥s]). Let 6, : M — X
be a developing map for (M, ¥,) and let

n, : (M, u) — I(X)
be the holonomy for M determined by 6, for i = 1,2. Then p([¥,]) = [n,]
for ¢ = 1,2. Therefore [1] = [n2]. Hence, there is a similarity £ of X such
that 72 = € - m1. Now &8 is also a developing map for (M, ¥4); moreover,

£61 determines the holonomy & - 1. Hence, by replacing 6, with £6;, we
may assume that 71 = 7.

Let I' = Im(n,) for ¢ = 1,2. Then T acts freely and discontinuously
on X by Theorem 8.5.9. Let 6, : M — X/T be the map induced by 6,
for i =1,2. Then §, is an (X, S(X))-equivalence from (M, ¥,) to X/T for
i=1,2. Let h =06, 161. Then h is an (X, S(X))-equivalence from (M, W)
to (M, Vs). Therefore Ush = ¥ by Theorem 9.4.2.

Let Tz, = 6,(u) and let

9, m(X/T,Tz,) > T
be the holonomy for X/T for ¢ = 1,2. Then 7, is the composite

m(M) &% xS T
Let ¥ : [0,1] — X be a curve from z; to zz and set v = 7y. Then
v :10,1] — X/T is a curve from I'z; to I'zy and ¥ = ¥;v.. Hence

—1 _ —1 4 =1, =
(52 Y 1)*h* = (52 04 1)*(52 )*(51)*
__1 _ —
= (8 )uva (B1)x
= 7y ey 9T Im

= 772_1771
= 1.

Therefore h is homotopic to the identity map of M by Theorem 9.4.3.
Hence [¥1] = [¥2]. Thus p is injective.

We now show that p is surjective. Let n : m (M) — I(X) be a dis-
crete faithful representation of m; (M) in I(X) and set T' = Im(n). Since
M has either a Euclidean or hyperbolic structure, (M) is torsion-free.
Therefore T is a torsion-free discrete subgroup of I(X). Hence I' acts freely
and discontinuously on X, and so X/I is either a Euclidean or hyperbolic
surface.

Let 9 : m (X/I') — T be the holonomy for X/I'. Then 9y (M) —
71(X/T) is an isomorphism. Consequently M and X /T are homeomorphic.
By Theorem 9.4.3, there is a homeomorphism h : M — X/T such that

Oé*h* = 7-9_177L7

where a, is a change of base point isomorphism and ¢ is an inner automor-
phism of 71 (M).
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Let ¥ = {4, : V, — X} be the (X, S(X))-structure for X/T". Then
Th = {p,h: h~1(V,) = X}

is a complete (X,S(X))-structure for M. Lift h to a homeomorphism
h: M — X. Then h is a developing map for (M, WUh). The holonomy for M
determined by A is 98, h, where 3, is a change of base point isomorphism.
Therefore, we have

plUR]) = [0B.h.]
[98.07  auh]

= [19(/80‘);10‘*}“]
= [ouh.] = [n].
Hence p is surjective. Thus p is a bijection. o

The group Aut(m,(M)) acts on D(71(M),1(X)) on the right. Moreover,
if ¢ is an automorphism of 7,(M) and 7 is in D(m (M),1(X)) and £ is a
similarity of X, then

€ m¢=¢- Q).

Hence, the action of Aut(m (M)) on D(m1(M),1(X)) induces an action of
Aut(my (M)) on D(M). Let ¢ be an inner automorphism of 7 (M). Then
there is a b in m (M) such that 1(c) = beb™? for all ¢ in m (M). If  is in
D(mi(M),I(X)), then

nu(e) = n(beb™") = n(b)n(c)n(b) ™.

Hence nv = n(b) - . Therefore Inn(m;(M)) acts trivially on D(M). Hence,
the action of Aut(m(M)) on D(M) induces an action of Out(m(M)) on
D(M). Let

O(M) = D(M) /Out(m, (M)).

Theorem 9.4.5. If M 1s a closed surface such that x(M) < 0, then the
function p: T(M) — D(M) induces a bijection p : M(M) — O(M)

Proof: Let ¥ be a complete (X, S(X))-structure for M and let b : M — M
be a homeomorphism. Let 7 : 7 (M) — I(X) be a holonomy for (M, V).
Then there is a change of base point isomorphism +, such that 7v,h, :
m1 (M) — I(X) is the holonomy for Uh. Hence

p([¥][h]) p([¥h))
= [n7h]
= [nh]
= p([¥])r([A]).
By Theorems 9.4.3 and 9.4.4, we have that p induces a bijection from

T (M) /Map(M) onto D(M)/Out(m; (M)). Thus p induces a bijection from
M(M) onto O(M). o
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We now define a topology for each of the sets D(M), O(M), T (M),
and M(M). First, topologize (M) with the discrete topology and the
set C(m (M), 1(X)) of all functions from (M) to I(X) with the compact-
open topology. Then C(my(M),1(X)) is the cartesian product I(X)™ (M)
with the product topology.

Next, we topologize D(m1(M),1(X)) with the subspace topology inher-
ited from C(m1(M),1(X)). Now we topologize D(M) and O(M) with the
quotient topology inherited from D(w1(M),I(X)) and D(M), respectively.
Finally, we topologize T (M) and M(M) so that p: T(M) — D(M) and
p: M(M) — O(M) are homeomorphisms. Then M (M) has the quotient
topology inherited from 7 (M).

Remark: It is a fundamental theorem of Teichmiiller space theory that
Teichmiiller space 7 (M) is homeomorphic to a finite dimensional Euclidean
space. Moreover T (M) has a finitely compact metric such that the map-
ping class group Map(M) acts discontinuously on 7 (M) by isometries.
Therefore, the orbit space 7(M)/Map(M) has a complete metric. Now

T(M)/Map(M) is homeomorphic to M(M). Therefore, moduli space
M(M) has a complete metric.

Exercise 9.4

1. Let ® and ' be Euclidean structures for M. Prove that & and &' are similar
if and only if (M, ®) and (M, ®') are similar metric spaces.

2. Let ® and @' be hyperbolic structures for M. Prove that ® and ® are
similar if and only if (M, ®) and (M, ®') are isometric.

3. Let ® and ®' be hyperbolic structures for M. Prove that [®] = [®'] in T (M)
if and only if there is an isometry from (M, ®) to (M, ®') that is homotopic
to the identity map of M.

4. Let h: M — M be a homeomorphism of a surface M and let o : [0,1] — M
be a curve from u to h(u). Prove that if h is homotopic to the identity map
of M, then auh. is an inner automorphism of 71 (M, u).

5. Let M be a closed surface. Prove that the natural action of Hom, (M) on
M is transitive.

6. Let u be a point of a surface M and let h: M — M be a homeomorphism.
Prove that h is homotopic to a homeomorphism g : M — M such that
9(u) = u.

7. Prove that Nielsen’s homomorphism v is surjective if M is a torus.

8. Prove that Nielsen’s homomorphism v is surjective if M is a Klein bottle.

9. Let M be a closed surface. Prove that Aut(ri(M)) is a countable group.
Conclude that Out(mi(M)) is a countable group.

10. Prove that C(m; (M), 1(X)) is the cartesian product I(X)™ ™) with the prod-
uct topology.
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§9.5. Closed Euclidean Surfaces

In this section, we classify the Euclidean structures on the torus T2. By
definition, T2 is the orbit space E?/Z% Therefore T2 has a Euclidean
structure as a Euclidean space-form. This Euclidean structure on T2 is
far from unique. We shall prove that 72 has an uncountable number of
nonsimilar Euclidean structures.

Theorem 9.5.1. The deformation space D(T?) 1s homeomorphic to the
upper half-plane U?; moreover, the right action of the group Aut(m(T?))
on D(T?) corresponds to the right action of GL(2,Z) on U? gwen by

<a b) gte if ad—be=1,

¢ d SZEC i qd—be=—
Proof: We shall identify 7;(72) with Z? and E? with C. By Theorem
5.4.4, every homomorphism in D(Z?,1(C)) maps Z? into the subgroup T(C)
of translations of C. By Corollary 1 of Theorem 5.2.4, we may identify T(C)
with C.
We now show that Hom(Z?,C) is homeomorphic to C2. Define

h : Hom(Z? C) — C?

by the formula
h(n) = (n(1,0),n(0, 1)).
As each component of h is an evaluation map, A is continuous. The map
h is obviously an isomorphism of groups. To see that A~! is contlnuous
we regard Hom(Zz C) to be a subspace of the cartesian product C%*. Now
h=1:C? — C% is defined by
Rz, w)(m,n) = mz + nw.
Hence, each component of h=1, given by (z,w) — mz + nw, is continuous
and so h~! is continuous. Thus A is a homeomorphism.
Let £ be a similarity of C. Then there is a nonzero complex number
and a complex number v such that
(2) = {ui + v }f & preserves qrientation,
uZ +v if & reverses orientation.
Let 7 be the translation of C by w. If £ preserves orientation, then
ErE7Hz) = fr(ulz—ul)
= fu'z~u v+ w)
= z+uw.
If £ reverses orientation, then

&6 (2) = &r@@'z-u o)
= (@'z-7 T +w)

2z + uw.
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Hence, the action of S(C) on T(C) by conjugation corresponds under the
identification of T(C) with C to multiplication by nonzero complex numbers
of C possibly followed by complex conjugation. Moreover, the left action
of S(C) on Hom(Z?,C) corresponds under h to multiplication by nonzero
complex numbers on C? possibly followed by complex conjugation on C2.

By Theorem 5.3.2, a homomorphism 7 : Z? — C maps Z? isomorphically
onto a discrete subgroup of C if and only if (1,0) and 7(0,1) are linearly
independent over R. Hence D(Z2,C) corresponds under h to the subset

D of C? of all pairs (z,w) such that z,w are linearly independent over R.
Now define f : D — U? by

[ z/w if Im(z/w) >0,
Iz w) = {E/w if Tm(z/w) < 0.
Then f is continuous and induces a continuous bijection
9:S(O\D — U2

As the mapping z + (z,1) from U? to D is continuous, we see that g~! is
continuous. Therefore g is a homeomorphism. Thus D(7?) is homeomor-
phic to U2.

We identify Aut(2?) with the group GL(2, Z) so that a matrix < . Z )

in GL(2, Z) represents the automorphism of Z? that maps (1, 0) to (a, ¢) and
(0,1) to (b, d). Then the right action of Aut(Z?) on Hom(Z?, C) corresponds
under the isomorphism

h : Hom(Z?,C) — C?
to the right action of GL(2,Z) on C? given by

c d

Hence, the right action of GL(2,Z) on S(C)\D corresponds under the home-
omorphism

(z,w)( a b > — (a2 + cw, bz + dw).

g:S(C)\D — U?
to the right action of GL(2,Z) on U? given by

azte if gd —be =1,

( a b > bz+d
AR d = _
¢ azre if gd—bec=—L. .

Theorem 9.5.2. The moduli space M(T?) 18 homeomorphac to the hyper-
bolic trangle A(i, 5 + @2’, o0) in U2

Proof: If ( (z > is in GL(2,Z), then

Z'(i 3):<z 2).2,

b
d
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where GL(2,7) acts on the left by hyperbolic isometries of U2. Hence, the
orbit space U2/GL(2, Z) is the same as the orbit space PGL(2,Z)\U?2. Now
the triangle A(%, %-{-@i, o0) is a fundamental polygon for PGL(2, Z); more-
over, PGL(2,7Z) is a triangle reflection group with respect to A. Therefore
PGL(2,Z)\U? is homeomorphic to A by Theorem 6.5.8. Now O(T?) is
homeomorphic to U2?/GL(2,Z) by Theorem 9.5.1. Hence M (T?) is home-
omorphic to the triangle A. o

Let P be the unit square in C with vertices 0,1, 1+4,¢. The Klein bottle
K? is, by definition, the surface obtained by gluing the opposite sides of P
by the translation 7, defined by 71(2) = z + 1, and the glide-reflection py,
defined by p1(2) = —Z+ 1 + 4. This side-pairing of P is proper, and so K2
has a Euclidean structure by Theorem 9.2.2.

We leave it as an exercise to show that 7 and p; generate a discrete
subgroup I'; of I(C) and P is a fundamental polygon for I';. The group I';
is called the Klein bottle group. The group T’y is isomorphic to 1 (K?) by
Theorems 6.5.8, 6.5.10, and 8.1.4. Like the torus T2, the Klein bottle K2
has an uncountable number of nonsimilar Euclidean structures. The proof
of the next theorem is left as an exercise for the reader.

Theorem 9.5.3. The deformation space D(K?) is homeomorphic to U?;

moreover, Out(m1(K?)) acts trwially on D(K2) and therefore the modul
space M(K?) 1s also homeomorphic to U*.

Exercise 9.5

1. Let P be the parallelogram in C, with vertices 0,1, 2, w in positive order
around P, and let M be the torus obtained from P by gluing the opposite
sides of P by translations. Prove that the class of M in T (T?) corresponds

to the point w of U? under the composite of the bijections of Theorems 9.4.4
and 9.5.1.

2. Show that 7, and p? generate a discrete subgroup of T(C) of index two in
the Klein bottle group T'1. Conclude that I'; is a discrete subgroup of I(C).

3. Prove that the square P in C, with vertices 0,1,1+ 4,4, is a fundamental
polygon for the Klein bottle group I';.

4. Prove that a discrete subgroup I' of I(C) is isomorphic to I'; if and only if
there are v,w in C such that v, w are linearly independent over R and T is
generated by 7 and p defined by 7(z) = z + w and p(z) = —(w/w)z + v.

5. Prove that D(K?) is homeomorphic to U!.

6. Let P be the parallelogram in C, with vertices 0,1, 2z, w in positive order
around P, and let M be the Klein bottle obtained from P by gluing the
opposite sides [0,w] and [1,2] by a translation and [0,1] and [w,2] by a
glide-reflection. Prove that the class of M in T(K?) corresponds to the
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point Im(z) of U' under the composite of the bijections of Theorems 9.4.4
and 9.5.3.

7. Prove that 71 generates a characteristic subgroup of I'1 and that T’y /(r) is
an infinite cyclic group generated by (71)p1.

8. Prove that Out(T';) is a Klein four-group generated by the cosets Inn(T'; )«
and Inn(Fll)ﬁ, where (1) = 71 and a(p1) = Tp1, and B(11) = 71 and
Blpr) = py

9. Prove that Out(m (K?)) acts trivially on D(K?).

10. Let & : M(K?) — M(T?) be the function defined by mapping the class of a
Klein bottle to the class of its orientable double cover. Prove that x is well
defined and that x is neither surjective nor injective.

§9.6. Closed Geodesics

In this section, we study the geometry of closed geodesics of hyperbolic
surfaces.

Definition: A period of a geodesic line A : R — X is a positive real

number p such that A(t + p) = A(Z) for all £ in R. A geodesic line A is
periodic if it has a period.

Theorem 9.6.1. A perodic geodesic line A : R — X has a smallest period
p1 and every period of A is a multiple of py.

Proof: Let P be the set of all real numbers p such that A\(¢ + p) = A(t)
for all . Then P consists of all the periods of A, their negatives, and zero.
The set P is clearly a subgroup of R. Now since A is a geodesic line, there
is an s > 0 such that X restricted to the closed interval [—s, 5] is a geodesic
arc. Therefore ) is injective on [—s, s]. If p is a nonzero element of P, then
A(p) = A(0), and so p cannot lie in the open interval (—s,s). Therefore 0
is open in P, and so P is a discrete subgroup of R. By Theorem 5.3.2, the
group P is infinite cyclic. Let p1 be the positive generator of P. Then p;
is the smallest period of A, and every period of A is a multiple of p;. o

Definition: A closed geodesic in a metric space X is the image of a
periodic geodesic line A : R — X.

Example: Let M = H"/T" be a space-form and let 7 : H" — H"/T be the
quotient map. Let h be a hyperbolic element of I" with axis L in H™, and
let A : R — H™ be a geodesic line whose image is L. Then h actson L as a
translation by a distance p = d(A(0), hA(0)). Therefore A = 7A: R — M is
a periodic geodesic line with period p. Hence, the set C' = A(R) is a closed
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geodesic of M. Observe that
C = AR) = 7A(R) = 7(L).
Therefore, the axis L of h projects onto the closed geodesic C' of M.

Definition: An element h of a group I' is primitive in I' if and only if h
has no roots in I', that is, if h = g™, with g in I, then m = +1.

Theorem 9.6.2. Let C be a closed geodesic of a space-form M = H™/T.
Then there is a primitive hyperbolic element h of I whose azis projects onto
C. Moreover, the azs of a hyperbolic element f of T' projects onto C if
and only if there is an element g of I’ and a nonzero integer k such that

f=gh*g™l.

Proof: Since C is a closed geodesic, there is a periodic geodesic line
A : R — M whose image is C. Let A : R — H™ be a lift of \ with respect
ton: H® — H"/T". Then A maps R isometrically onto a hyperbolic line L
of H™. Let p be the smallest period of A. Then wA(p) = 7A(0). Hence, there
is a nonidentity element h of I' such that A(p) = hA(0). Now hA: R — H”
also lifts A\ and agrees with A\ : R — H ", defined by

A®) = A(t +p),
at t = 0. As X also lifts A, we have that AX = ) by the unique lifting
property of the covering projection m : H™ — H"/T". Therefore h leaves L
invariant. Hence A is hyperbolic with axis L. Moreover A is primitive in T,
since

p = d(A(0), BA(0))

is the smallest period of A\. Thus & is a primitive hyperbolic element of T
whose axis projects onto C.

Let f be a hyperbolic element of T' and suppose that g is an element of
I" and k is a nonzero integer such that f = gh*g~1. Then the axis of fis
gL. Therefore, the axis of f projects onto C.

Conversely, suppose that the axis K of f projects onto C. Then there
exists an element g of I' such that K = gL. Now g~ fg is a hyperbolic
element of I' with axis L. Hence g~! fg acts as a translation on L by a
signed distance, say q. Now =+q¢ is a period of A, and so there is a nonzero
integer k such that ¢ = kp by Theorem 9.6.1. Hence g1 fgh™F fixes each
point of L. AsT acts freely on H™, we have that g ' fgh™* = 1. Therefore
g~ fg="h* and so f = ghkg1. o

Theorem 9.6.3. Let M = H™/T' be a compact space-form. Then every
nonmdentity element of T 1s hyperbolic.

Proof: Since I is discrete and M is compact, every element of I is either
elliptic or hyperbolic by Theorem 6.5.7. Moreover, since T' acts freely on
H™, an elliptic element of T" must be the identity. o
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Closed Curves

Let M = H™/T be a space-form. A closed curve v : [0,1] — M is said to be
elliptic, parabolic, or hyperbolic if and only if for a lift 4 : [0,1] — H™, the
element g of T such that (1) = ¢5(0) is elliptic, parabolic, or hyperbolic,
respectively. This does not depend on the choice of the lift 7, since if
4:[0,1] — H™ is another lift of -y, then 4 = f7 for some f in I and so

faf7'40) = fgf~f5(0)
= fg%(0)
= f1) = AW
Note that a closed curve v : [0,1] — M is elliptic if and only if ~y is null
homotopic (nonessential). Hence, an essential closed curve 7 : [0,1] — M

is either parabolic or hyperbolic. If M is compact, then every essential
closed curve «y: [0,1] — M is hyperbolic by Theorem 9.6.3.

Definition: Two closed curves «, 5 : [0,1] — X are freely homotopic if
and only if there is a homotopy H : [0,1]?> — X from « to (3 such that
H(0,t) = H(1,t) for all ¢.

Theorem 9.6.4. Let v : [0,1] — M be a hyperbolic closed curve in a
complete hyperbolic n-manafold M. Then there 1s a periodic geodesic line
A: R — M that is unique up to composition with a translation m R, and
there 15 a unique pertod p of A such that <y is freely homotopic to the closed
curve Ay : [0,1] — M defined by \p(t) = A(pt).

Proof: Since any closed curve freely homotopic to v is in the same con-
nected component of M as 7, we may assume that M is connected. As
M is complete, we may assume that M is a space-form H" /T by Theo-
rem 8.5.9. Let 7 : [0,1] — H™ be a lift of v with respect to the quotient
map 7 : H® — H"/T'. As v is hyperbolic, the element h of T such that
h7(0) = #(1) is hyperbolic. }

Let L be the axis of h in H™ and let A : R — H™ be a geodesic line
parameterizing L in the same direction that A translates L. Then A = A
is a geodesic line in M. Let p > 0 be such that

hA(t) = At + p).
Applying m, we find that
A(t) = At +p).

Thus p is a period for A. 3
Define a homotopy H : [0,1]> — H™ from 7 to A, by the formula,

(1 = £)7(s) + tAo(s)

H(Svt) = m(l _ t)ﬁ/(s) + tj\p(S)\H .
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Observe that )
h((1 = 8)7(0) +tA(0))

MO0 = a0 + el
B (1 —t)h7(0) + thA(0)
IR = B7(0) + EAO)I
L M-miWEse) gy,
(L =)5(1) + A
Let H = 7H. Then H(0,t) = H(1,t) for all t. Hence ~ is freely homotopic
to A, via H.

We now prove uniqueness. Let u : R — M be a periodic geodesic line
and let q be a period of u such that v is freely homotopic to pg. Let
G : [0,1]*> — M be a homotopy from ~ to y, such that G(0,1) =G(1,t) for
all ¢, and let G : [0,1]2 — H" be a lift of G such that 3(s) = G(s, 0) for all
s. As h¥(0) = 3(1), we have

hG(0,t) = G(1,t)
for all ¢ by unique path lifting,.

Let fi : R — H™ be the lift of 4 such that ji(0) = G(0,1). Then G is a
homotopy from ¥ to f,. Hence

h(0) = hG(0,1) = G(1,1) = ji(q).

Now for each integer k, we have that v* is freely homotopic to pq, and
the above argument shows that h*/i(0) = ji(kq). Hence, we have

hi((k — 1)g) = fu(kg).
Therefore i maps the line segment [fi((k — 1)q), ji(kg)] to the line segment

[fi(kq), i((k + 1)g)]. Thus h leaves fi(R) invariant, and so B(R) = L. As
hii(0) = fi(g), we have p = g, and p and A differ by a translation of R. o

Definition: A closed curve v : [a,b] — X is simple if and only if ~
is injective on the interval [a,b). A closed geodesic in a metric space X,
defined by a periodic line A : R — X, with smallest period p, is semple if

and only if the restriction of A to the closed interval [0, p] is a simple closed
curve.

Theorem 9.6.5. Let v : [0,1] — M be a hyperbolic, simple, closed curve
in a complete, orientable, hyperbolic surface M. Then there is a periodic
geodesic line X : R — M that is unique up to composition with a translation
n R, and there is a umique period p of A such that v 15 freely homotopic to

the closed curve Ay : [0,1] — M defined by \,(t) = X(pt). Furthermore p
is the smallest period of A and Ap 18 simple.

Proof: All but the last sentence of the theorem follows from Theorem
9.6.4. As in the proof of Theorem 9.6.4, let 7 : [0,1] — H? be a lift of
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v with respect to the quotient map 7 : H2 — H?/T', and let h be the
hyperbolic element of I' such that h5(0) = 4(1). Let C = ~([0,1]). Then
C is homeomorphic to §. Let C' be the component of 7~!(C) containing
4(0). Then we have

C = U{h*3([0,1)) : k € Z}

by unique path lifting,.

Since v represents an element of infinite order in (M), the covering
C of C is universal, and so C is homeomorphic to R. Let L be the axis
of h in H2. We now pass to the projective disk model D?. Because of
the attractive-repulsive nature of the endpoints of L in D? with respect
to h, the closure of C in D? is the union of C' and the two endpoints of
L. Therefore, the closure of C in D? is homeomorphic to a closed interval
whose interior is C' and whose endpoints are those of L.

Let X : R — D? be a geodesic line parameterizing L in the same direction
that h translates L, and let p > 0 be such that

RA(t) = A(t + p).

Then A = 7 is a geodesic line with period p, and ~ is freely homotopic to
Ap by the proof of Theorem 9.6.4.

Let g be the smallest period of A. We now show that A, : [0,1] — M
is simple. On the contrary, suppose that A, is not simple. Then A, must
cross itself transversely. Hence, there is an element g of I and another lift
g\ : R — D? of X such that the hyperbolic line gL = gA(R Y) intersects L at
one point. As the endpoints of C and ¢C link, C and gC must intersect.
See Figure 9.6.1. But C and g¢C are distinct components of 7~!(C) and so
are disjoint, which is a contradiction. Thus A, is simple.

Figure 9.6.1. Lifts of two simple closed curves on a closed hyperbolic surface
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Let m = p/q. Then A, = A7’ Assume that m > 1. We shall derive a
contradiction. Let g be the element of I' such that gA\(0) = A(g). By unique
path lifting, we have o ~ ~

AggAq - -gm“l/\q = Ap.
Therefore, we have
g™ A\0) = g™ Mg) = A(p) = hA(0).
Hence h = g™. Consequently g has the same axis as h, and so g translates

along L a distance ¢ in the same direction as h.
Now, without loss of generality, we may assume that L is the line

(—ez,e3) of D2. Then C divides D? into two components, the left one
that contains —e; and the right one that contains e;. Observe that gC is
a component of 771 (C) different from C and so must be in either the left

or right component of D2-C. Say gC is in the right component. Likewise

gC divides D? into two components, the left one that contains —e; and
the right one that contains e;. Moreover g maps the right component of

D?—C onto the right component of D2 — ga because g leaves invariant the
right component of S* — {+e;}. Hence g*C is in the right component of

D2-C. By induction, we deduce that ¢™C = C is in the right component
of D? — C, which is a contradiction. Therefore m = 1 and p = g. Thus v
is freely homotopic to the simple, closed, geodesic curve Ap. o

Let 7 : [0,1) — M be a hyperbolic, simple, closed curve in a complete
orientable surface M. By Theorem 9.6.5, there is a periodic geodesic line
A: R — M, with smallest period p, that is unique up to composition with a
translation in R, such that v is freely homotopic to Ap : [0,1] —» M defined
by Ap(t) = A(pt). Moreover ), is simple. The simple closed geodesic A(R)
of M is said to represent the simple closed curve Y.

Definition: Two curves o, 3 : [0,1] — X are homotopically distinct if and
only if « is not freely homotopic to S%1.

Theorem 9.6.6. Let o, 3:[0,1] — M be disjoint, homotopically distinct,
hyperbolic, simple, closed curves in a complete, orientable, hyperbolic sur-

face M. Then o and B are represented by disjoint, simple, closed geodesics
of M.

Proof: On the contrary, suppose that the simple closed geodesics repre-
senting o and 3 intersect. We may assume that M is a space-form H?/T.
Then there are lifts K and L of the geodesics in the universal cover H2 that
intersect. Now K and L do not coincide, since o and f are homotopically
distinct. Therefore K and L intersect at one point.

Let A = ([0,1]) and B = §([0,1]). Then there are lifts 4 and B of A
and B, respectively, that have the same endpoints as K and L, respectively.
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Consequently A and B must intersect. See Figure 9.6.1. Therefore A and
B intersect, which is a contradiction. Thus, the simple closed geodesics
representing « and 3 are disjoint. o

Theorem 9.6.7. Let a,3 : [0,1] — M be homotopucally distinct, hyper-
bolic, simple, closed curves in a complete, orientable, hyperbolic surface M
whose vmages meet transversely at a single point. Then the sumple closed
geodesics of M, representing oo and 3, meet transversely at a single point.

Proof: We may assume that M is a space-form H?/T. Let 7 : H> — H?/T’
be the quotient map. Let A = «([0,1]), B = 5([0,1]), and A and B
be components of 7~!(A) and 7~1(B), respectively, such that A and B
intersect. Let g and h be the hyperbolic elements of T that leave A and B
invariant, respectively, and let K, L be the axis of g, h, respectively.

We now show that A and B meet transversely at a single point. As A
and B meet transversely, A and B also meet transversely. Suppose that A
and B meet at two points Z and §. Then 7(Z) = z = n(§). Hence there
exist nonzero integers k and ¢ such that g*% = § = h’Z. Therefore g* = h?,
and so K = L. Hence o and 3 or @ and ! are homotopic by Theorem
9.6.5, which is a contradiction. Thus A and B meet transversely at a single
point Z. Therefore K and L meet at a single point Zz.

Next, we show that the geodesics C' = w(K) and D = (L), representing
o and 3, meet at a single point. Suppose that C and D meet at points z and
w with 7(Z) = z. Let ¥ be a point of L such that m(w) = w. Then there is
an element f of I' such that fK meets L at a single point w. Consequently
fA meets B at a point §. Then 7(§) = z. As 7 is in B, there is an integer
m such that § = h™z. Now since fA and k™A meet at §j, we have that
f/1 = h™A. Therefore fK = h™K. As K and L meet at the point Z, we
have that h™K and L meet at the point A™Z. Therefore w = h™Z. Hence
w = z. Thus C and D meet transversely at a single point. o

Exercise 9.6

1. Let B™/T" be a space-form and let g and h be nonidentity elements of I with
h hyperbolic. Prove that the following are equivalent:

(1) The elements g and h are both hyperbolic with the same axis.
(2) The elements g and h are both powers of the same element of I
(3) The elements g and h commute.

(4) The elements g and h have the same fixed points in s

(5) The elements g and h have a common fixed point in st

2. Let B™/T" be a compact space-form. Prove that every elementary subgroup
of T' is cyclic.
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10.

. Let X be a geometric space and let M = X/T be a space-form. Let A: R —

M be a periodic geodesic line with smallest period p. Prove that there are
only finitely many numbers ¢ in the interval [0, p] such that A(¢) = A(s) with
0 < s < t. Conclude that a closed geodesic of M intersects itself only finitely
many times.

Let X = 8™, E", or H", and let M = X/T’ be a space-form. Let 7 : X —
X /T be the quotient map. Prove that a closed geodesic C' of M is simple if
and only if 7~ 1(Q) is a disjoint union of geodesics of X.

Let v : [0,1] — M be an essential closed curve in a complete Euclidean
n-manifold M. Prove that there is a periodic geodesic line A : R — M and
a unique period p of A such that ~ is freely homotopic to the closed curve
Ap 1 [0,1] — M defined by Ap(t) = A(pt).

. Let v : [0,1] — M be an essential, simple, closed curve in a complete,

orientable, Euclidean surface M. Prove that there is a periodic geodesic line
A:R — M and a unique period p of A such that v is freely homotopic to
the closed curve Ap : [0,1] — M defined by A,(t) = A(pt). Furthermore p is
the smallest period of A and )\, is simple.

- Let v and Ap be as in Theorem 9.6.4. Prove that |\,| < |y|. Conclude that

Ap has minimal length in its free homotopy class.

Prove that the infimum of the set of lengths of essential closed curves in a
compact hyperbolic n-manifold M is positive.

Let X be a geometric space and let M = X/T be a space-form. Let \,p :
R — M be periodic geodesic lines such that A(R) = #(R). Prove that there
is an isometry £ of R such that u = A¢. Conclude that the length of the
closed geodesic A(R) is well defined to be the smallest period of \.

Let X be a geometric space and let M = X /T" be a compact space-form.

Prove that for each £ > 0, there are only finitely many closed geodesics in
M of length less than ¢.

§9.7. Closed Hyperbolic Surfaces

In this section, we describe the Teichmiiller space of a closed orientable

surface of genus n > 1. The next theorem is a basic theorem of the topology
of closed surfaces.

Theorem 9.7.1. If M is a closed orentable surface of genus n > 1, then

(1) the mazsmum number of disjoint, homotopically distinct, essential,

simple, closed curves wn M 1s 3n — 3; and

(2) the complement m M of a magzimal number of disjoint, homotopically

distinct, essential, sumple, closed curves in M is the disjoint union of

2n — 2 surfaces each homeomorphic to S? minus three disyomnt closed
disks.
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Figure 9.7.1. A pair of pants

Pairs of Pants

We shall call a space P homeomorphic to the complement in S? of three
disjoint open disks a pair of pants. See Figure 9.7.1. A pair of pants is
a compact orientable surface-with-boundary whose boundary consists of
three disjoint topological circles. By Theorems 9.6.6 and 9.7.1, a closed,
orientable, hyperbolic surface M of genus n > 1 can be subdivided by
3n — 3 disjoint, simple, closed geodesics into the union of 2n — 2 pairs of
pants with the geodesics as their boundary circles. See Figure 9.7.2.

Let P be a pair of pants in a hyperbolic surface M such that each
boundary circle of P is a simple closed geodesic of M. A seam of P is
defined to be the image S of an injective geodesic curve o : [a,b] — M such
that the point o(a) is in a boundary circle A of P, the point o(t) is in the
interior of P for a < ¢ < b, the point o(b) is in another boundary circle B
of P, and the geodesic section S is perpendicular to both A and B.

Figure 9.7.2. A maximal number of disjoint, homotopically distinct, essential,
simple, closed curves on a closed orientable surface of genus three



§9.7. Closed Hyperbolic Surfaces 409

Theorem 9.7.2. Let P be a pair of pants wn a hyperbolic surface M such
that each boundary circle of P is a simple closed geodesic of M. Then any
two boundary circles of P are joined by a unique seam of P. Moreover, the
three seams of P are mutually disjoint.

Proof: Let P’ be a copy of P. For each point z of P, let 2’ be the
corresponding point of P’. Let Q be the quotient space obtained from the
disjoint union of P and P’ by identifying x with z’ for each point = of 9P.
We regard @ to be the union of P and P’ with

OP=PNP =P

The space @ is a closed orientable surface of genus two called the double of
P. See Figure 9.7.3.

Let A, B, C be the boundary circles of P. The hyperbolic structures on
the interiors of P and P’ extend to a hyperbolic structure on Q so that
A, B,C are closed geodesics of Q). The hyperbolic surface Q is complete,
since ) is compact.

Let o : [0,1] — P be a simple curve such that the point o(0) is in A,
the point «(t) is in the interior of P for 0 < ¢ < 1, and the point (1) is
in B. Let o be the corresponding simple curve in P’. Then aa’~! is an
essential, simple, closed curve in Q. Hence ao/~! is freely homotopic to a
simple closed curve § whose image is a simple closed geodesic D in Q by
Theorem 9.6.5. Now by Theorem 9.6.7, the geodesic D meets the geodesics
A and B transversely in single points. Let S = DN P. Then S is a section
of D contained in P joining A to B.

Let p: @ — Q be the map defined by p(z) = z’ and p(z") = z for each
point z of P. Then p is an isometry of Q. Observe that

plad’ ) =o'a™t.
Hence o/a™! is freely homotopic to pd, and pD is the simple closed geodesic
of @ that represents o/a~!. Therefore pD = D by Theorem 9.6.5. Conse-
quently D is perpendicular to both A and B. Hence S is perpendicular to
A and B. Thus S is a seam of P joining A to B.

/

\\\
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/
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Figure 9.7.3. The double of a pair of pants
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Now suppose that T is another geodesic section in P joining A to B that
is perpendicular to A and B. Then E = T UT" is a simple closed geodesic
of Q. Let 0,7 : [0,1] — P be simple curves starting in A whose images
are S, T, respectively. Then o is freely homotopic to 7 by a homotopy
keeping the endpoints on A and B. Hence oo’ ! is freely homotopic to
77'~1. Therefore D = E by Theorem 9.6.5. Hence S = T. Thus, the seam
S is unique.

Now suppose that T is the seam of P joining A to C. Let 3:1[0,1] — P
be a simple curve such that the point 3(0) is in A, the point §(t) is in
the interior of P for 0 < ¢ < 1, the point §(1) is in C, and the image of
8 is disjoint from the image of a. Then aa'~! and BB’ are essential,
homotopically distinct, disjoint, simple, closed curves in Q). Therefore, the

simple closed geodesics representing them, D and T U T’, are disjoint by
Theorem 9.6.6. Thus S and T are disjoint.

m]

Let P be a pair of pants in a hyperbolic surface M such that each
boundary circle of P is a simple closed geodesic of M. If we split P apart
along its seams, we find that P is the union of two subsets D; and Da,
meeting along the seams of P, each of which is homeomorphic to a disk.
The boundary of each D, is the union of six geodesic sections meeting only
along their endpoints at right angles.

By replacing M with the double of P, we may assume that M is com-
plete. Therefore, we may assume that M is a space-form H 2/T. Let
7 : H? — H?/T be the quotient map and let H, be a component of 7~ *(D,)
for i = 1,2. As D, is simply connected, 7 maps H, homeomorphically onto
D, for i = 1,2. The set H, is a closed, connected, locally convex subset
of H? and so is convex. Hence H, is a convex hexagon in H? all of whose
angles are right angles. Thus P can be obtained by gluing together two
right-angled, convex, hyperbolic hexagons along alternate sides.

Theorem 9.7.3. Let P be a pair of pants wn a hyperbolic surface M such
that each boundary circle of P is a simple closed geodesic of M. Let a, b, c be
the lengths of the boundary circles of P and let H,, Hy be the right-angled,
convez, hyperbolic hexagons obtained from P by splitting P along its seams.
Then Hy and H, are congruent with nonseam alternate sides of length
a/2,b/2,c/2, respectively. Moreover P is determined, up to isometry, by
the lengths a, b, c.

Proof: As H; and H» have the same lengths for their seam alternate sides,
H; and H, are congruent by Theorem 3.5.14. Hence H; and Hz have the
same lengths for their nonseam alternate sides. As these lengths add up to
a, b, ¢, respectively, we find that the nonseam alternate sides of H; and H»
have length a/2,b/2, ¢/2, respectively. As H; and H, are determined, up to
congruence, by the lengths a/2,b/2, c¢/2, we deduce that P is determined,
up to isometry, by the lengths a,b,c. o
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Figure 9.7.4. A marked, closed, orientable surface of genus three

Teichmiiller Space

Let M be a closed orientable surface of genus n > 1. We mark M by
choosing 3n — 3 disjoint, homotopically distinct, essential, simple, closed
curves a, : [0,1] — M, for 4 = 1,...,3n — 3, and n + 1 more disjoint,
homotopically distinct, essential, simple, closed curves §, : [0,1] — M, for
j=1,...,n+ 1, which together with the first set of curves divides M into
closed disks as in Figure 9.7.4. Observe that the first set of curves divides
M into pairs of pants and that the second set of curves forms a continuous
set of topological seams for the pairs of pants.

Let ® be a hyperbolic structure for M. By Theorem 9.6.6, the curves
ai,...,Q3,-3 are represented by 3n — 3 disjoint, simple, closed geodesics
Ai,...,Azn—3 of (M,®). By Theorem 9.7.1, these geodesics divide M
into 2n — 2 pairs of pants. By Theorem 9.7.3, these pairs of pants are
determined, up to isometry, by the lengths of their boundary circles. Let
£, be the length of A, for each i =1,...,3n — 3.

In order to determine the isometry type of (M, ®) from that of the pairs
of pants, we need to measure the amount of twist with which the boundary
circles of the pairs of pants are attached. We use the curves Bi,..., Bni1
to measure these twists. By Theorem 9.6.6, the curves 8y,..., 3,41 are
represented by n + 1 disjoint, simple, closed geodesics Bi,...,Bpi1. In
the pairs of pants, these geodesics restrict to geodesic sections joining the
boundary circles because of Theorem 9.6.7. Furthermore, in the pairs of
pants, these geodesic sections are homotopic to the seams of the pairs of
pants by homotopies keeping the endpoints on the curves A4;,..., As3,_3.

We orient M. This orients all the pairs of pants of M. Let P, and
Q. be the pairs of pants of M with A, as a boundary circle, and suppose
that the orientation of A, agrees with the orientation of P,. Let 2a, be
the total radian measure that the above homotopies move, within P,, the
two endpoints on A,. The number a, measures the degree to which the
two geodesic sections wrap around the two seams of P, ending in A, and
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Figure 9.7.5. The four geodesic sections and seams ending in the geodesic A,

is called the winding degree of (P,, A,). See Figure 9.7.5. The winding
degree a, does not depend on the choice of the homotopies. Let b, be the
winding degree of (Q,, A,). The real number ¢, = a, — b, is called the twust
coefficient of A,. The twist coefficient ¢, measures the twist with which P,
and @, are attached at A, relative to the given marking of M. Note that
t, is congruent modulo 27 to the angle that @), must rotate around A, so
that the corresponding seams of P, and ), match up. See Figure 9.7.5.
Define a function
F:H(M)— R0

by setting
F((I)) = (10g 61, tl, log 62, t2, ey 10g £3n—3, t3n_3). (971)

We shall call the components of F/(®) the length-twist coordinates of the
hyperbolic structure ® for M.

Theorem 9.7.4. Let M be a closed orientable surface of genus m > 1.
Then the function F : H(M) — R5"=6 snduces a bigection from T (M) to
R6n76‘

Proof: Let h : M — M be a homeomorphism that is homotopic to
the identity map of M. Then h is an isometry from (M, ®h) to (M, ®).
Consequently h~'A, is a simple closed geodesic of (M, ®h) for all 3. As
h~1 is homotopic to the identity map, h~'A, is freely homotopic to A,
for each 5. Hence, the curves as,...,as,—3 are represented in (M, ®h) by
the geodesics h=1A;,...,h 1As, 3. Likewise, the curves 3, ... , Bn+1 are
represented in (M, ®h) by the geodesics h™' By, . . . h !By, Ash7lis
an isometry, h ' A, has the same length and twist coefficient as A, for each
i. Thus F(®h) = F(®). Therefore I induces a function

F:T(M)— RS,
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Next, we show that F is injective. Suppose that ® and ® are hy-
perbolic structures for M such that F(®) = F(®'). Let Ay,...,Asn—3
be the simple closed geodesics in (M, ®) representing as, ..., x3,—3, and
let Af,..., A%, 5 be the simple closed geodesics in (M, ®’) representing
o1,...,03,—3. Then A, has the same length and twist coefficient as A/
for each i. By Theorem 9.7.3, there is an isometry h : (M, ®") — (M, d)
mapping the geodesic A] onto the geodesic A, for each i.

Let By,...,Bnry1 be the simple closed geodesics in (M, ®) represent-
ing B1,...,0n41, and let By,..., By, be the simple closed geodesics in
(M, ®') representing B1,...,8n11. Now the sets h(B1),...,h(By, ;) are
simple closed geodesics in (M, ®) that form a continuous set of topolog-
ical seams for the pairs of pants of (M, ®) and twist the same amount
about the geodesics Ajp,..., A3,_3 as the continuous set of topological
seams Bi,..., Bni1. Consequently h(B)) is freely homotopic to B, for
each j. Therefore h(B;) = B, for each j by Theorem 9.6.5.

Regard the geodesics A1,..., A3, 5 and Bf,..., B!, as forming the
1-skeleton M of a cell structure for M. Let h; be the restriction of h to
M. Then we can construct a homotopy from h; to the inclusion map of
M1 into M, since A4, is freely homotopic to A! for each i and B, is freely
homotopic to B; by a homotopy consistent with the first set of homotopies
for each j. Now since m3(M) = 0, the homotopy of h; to the inclusion of
M" into M can be extended to a homotopy of h to the identity map of M.
As @' = ®h, we have that [®'] = [®] in 7(M). Thus F is injective.

Next, we show that F is surjective. Let (81,815 -+, 83n—3,t3n_3) be a
point of R®"~6 and set £, = % for i = 1,...,3n — 3. By Theorem 3.5.14,
there are 4n — 4 right-angled, convex, hyperbolic hexagons that can be
glued together in pairs along alternate sides to give 2n — 2 pairs of pants
whose 6n — 6 boundary circles have length Oy, 8y, 09,0, ... b3y _3, b3, 3,
respectively, and which are in one-to-one correspondence with the 2n — 2
pairs of pants of M in such a way that the indexing of the lengths of the
boundary circles of each of the pairs of pants corresponds to the indexing
of the boundary circles of the corresponding pair of pants of M. Write
t, = 0, + 2rk,, with 0 < 6, < 27 and k, an integer. Let M’ be the
surface obtained by gluing together the 2n — 2 pairs of pants along the two
boundary circles of length ¢, with a twist of 0, for each 7. By Theorem 9.2.3,
the surface M’ has a hyperbolic structure such that the circle C, in M,
obtained by gluing the two boundary circles of length /,, is a simple closed
geodesic of length ¢, for each i. Furthermore, the one-to-one correspondence
between the pairs of pants of M and M’ extends to a homeomorphism
h: M — M’ mapping 0,([0,1]) onto C, for each i.

Let ® = {4, : U, — H?} be the hyperbolic structure of M’. Then

®h = {$.h: h~'(U,) - H?}

is a hyperbolic structure for M such that £ is an isometry from (M, ®h) to
(M',®). Let A, = 0,([0,1]) for each i. Then A, is a simple closed geodesic
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of (M, ®h) of length ¢, that represents o, for each 7. Moreover, the twist
coefficient of A, is congruent to §, modulo 27. Hence, by replacing h with
h composed with an appropriate number of Dehn twists about C, for each
i, we can assume that the twist coefficient of A, is ¢, for each i. Then

F(@h) = (81) t17 -0y 83n—3, t3n—3)'

Hence F is surjective. Thus F is a bijection. o

Remark: It is a fundamental theorem of Teichmiiller space theory that
the bijection F : T (M) — R%"~6 is a homeomorphism.

Corollary 1. The moduli space M(M) of a closed orentable surface M
of genus n > 1 15 uncountable.

Proof: Since (M) is finitely generated, the group Out (7 (M)) is count-

able. Therefore, the mapping class group Map(M) is countable, since the
Nielsen homomorphism

v : Map(M) — Out(m (M))

is injective. By Theorem 9.7.4, we have that 7 (M) is uncountable, and so
the set 7 (M)/Map(M) is uncountable. As there is a bijection from the set
T (M)/Map(M) to M (M), we have that M(M) is uncountable. =

Exercise 9.7

1. Prove Theorem 9.7.1.

2. Prove that the hyperbolic structure in the interior of a pair of pants extends
to a unique hyperbolic structure on its double.

3. Let P be a pair of pants with boundary circles A, B, C and let o, 8 : [0,1] —
P be simple curves whose images are geodesic sections that begin in A, end in
B, and are otherwise disjoint from A, B, C. Prove that o is freely homotopic
to 8 by a homotopy that keeps the endpoints in A and B.

4. Let M be a marked, closed, orientable surface of genus n — 1 embedded in
R? so that the B; curves all lie on the xy-plane, the o, curves lie either on
the zz-plane or on planes parallel to the yz-plane, and M and its marking
are invariant under a 180° rotation ¢ about the z-axis and the reflection p
in the zy-plane. Let 0 = p¢ and let T = {I,o}. Prove that M = M/T is a
closed nonorientable surface of genus n.

5. Let £ > 0. Prove that M in Exercise 4 has a hyperbolic structure &, whose
length-twist coordinates are log £,0,...,log#,0, and such that ¢ and p are
isometries. Conclude that ®, induces a hyperbolic structure ®, on M.

6. Prove that the moduli space M (M) of a closed nonorientable surface M of
genus n > 2 is uncountable.



§9.8. Hyperbolic Surfaces of Finite Area 415

§9.8. Hyperbolic Surfaces of Finite Area

In this section, we study the geometry of complete hyperbolic surfaces
of finite area. We begin by determining the geometry of exact, convex,
fundamental polygons of finite area.

Theorem 9.8.1. Let P be an exact, convex, fundamental polygon of finite
area for a discrete group T of 1sometries of H?. Then P has only a finite
number of sides and the sides of P can be cyclically ordered so that any two
consecutive sides meet esther in H? or at infinity.

Proof: We pass to the projective disk model D?. Let P be the closure of
P in E? and suppose that P contains m points on S*. Then P contains the
convex hull @ of these m points. The set @ = Q N D? is an ideal polygon
with m sides. As () can be subdivided into m — 2 ideal triangles,
Area(Q) = (m — 2)7.

As P contains @ and the area of P is finite, there must be an upper bound
on the number of points of P on S'. Thus P contains only finitely many
points on ST.

Let 6(v) be the angle subtended by P at a vertex v. Suppose that
V1,...,pn are finite vertices of P and R is the convex hull of vy, ..., v,.
Then R is a compact convex polygon with n sides. As R can be subdivided
into n — 2 triangles, we deduce that

n

Area(R) = (n—2)m — Y _0(v,).

1=1
Therefore, we have

n
21 + Area(R) = Z(ﬂ' —0(v,)).
=1
Consequently
27 + Area(P) > Z{ﬂ' —0(v) : v is a vertex of P}.
Hence, the sum (7 — 0(v)) converges. Let

A = {v:0(v) <2n/3}
and
B = {v:0(v)>2r/3}.
Then A is a finite set, since the sum Y (7 — 6(v)) converges.
Now the I'-side-pairing of P induceg an equivalence relation on the ver-
tices of P whose equivalence classes are called cycles of vertices. Each cycle

C of vertices is finite by Theorem 6.7.5 and corresponds to a cycle of sides
of P, and so by Theorem 6.7.7, the angle sum

8(C) => {8(v):ve C}
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is a submultiple of 2w. Consequently, each cycle C of vertices contains at
most two vertices from the set B and at least one vertex from the set A.
Therefore, there are only finitely many cycles of vertices. As each cycle of
vertices is finite, P has ounly finitely many vertices. This, together with the
fact that P N S! is finite, implies that P has only finitely many sides and
the sides of P can be cyclically ordered so that any two consecutive sides
meet either in D? or at an ideal vertex on the circle S* at infinity. o

We now determine the topology of a complete hyperbolic surface of finite
area.

Theorem 9.8.2. Let M be a complete hyperbolic surface of finite area.

Then M is homeomorphic to a closed surface minus a finite number of
pownts and

Area(M) = —2wx(M).

Proof: Since M is complete, we may assume that M is a space-form
H?/T. Let P be an exact, convex, fundamental polygon for I'. As

Area(P) = Area(H?/T),

we have that P has finite area. By Theorem 9.8.1, the polygon P has only
finitely many sides and the sides of P can be cyclically ordered so that
any two consecutive sides meet either in H? or at infinity. We now pass to
the projective disk model D?. Let P be the closure of P in E2. Then P
is a compact convex polygon in E?. By Theorem 6.5.8, the surface M is
homeomorphic to the space P/I' obtained from P by gluing together the
sides of P paired by elements of I'. This pairing extends to a side-pairing
of P. Let P/T be the space obtained from P by gluing together the sides
of P paired by elements of T'. Then P/T is a closed surface and P/T' is
homeomorphic to P/T" minus the images of the ideal vertices of P. Thus
M is homeomorphic to a closed surface minus a finite number of points.

Now P/T is a cell complex, with some 0-cells removed, consisting of a
0-cells, b 1-cells, and one 2-cell. Let vy, ...,vn be the finite vertices of P
and let n be the number of sides of P. As P can be subdivided into n — 2
generalized triangles, we deduce that

Area(P) = (n—2)7— i 0(v,)

= (2b—2)m —27ma
—2n(a—b+1) = —2mx(P/T).

Thus, we have that
Area(M) = —2mwx(M). o
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Complete Gluing of Hyperbolic Surfaces

Let M be a hyperbolic 2-manifold obtained by gluing together a finite
family P of disjoint, convex, finite-sided polygons in H? of finite area by a
proper I(H?)-side-pairing ®. We shall determine necessary and sufficient
conditions such that M is complete.

It will be more convenient for us to work in the conformal disk model
B2. Then the sides of each polygon in P can be cyclically ordered so that
any two consecutive sides meet either in B2 or at an ideal vertex on the
circle S* at infinity. We may assume, without loss of generality, that no
two polygons in P share an ideal vertex. Then the side-pairing ® of the
sides S of the polygons in P extends to a pairing of the ideal vertices of
the polygons in P. The pairing of the ideal vertices of the polygons in
P generates an equivalence relation whose equivalence classes are called
cycles. If v is an ideal vertex, we denote the cycle containing v by [v].

Let v be an ideal vertex of a polygon P, in P. Then we can write

W] = {v1,v2,...,0m}
with
V=V U Y, Ay,

Define sides S1,...,S8,, in S inductively as follows: Let S; be a side in S
such that gs, (v2) = vi. Then v; is an ideal endpoint of S1. Suppose that
sides 571,...,5;_1 have been defined so that v, is an ideal endpoint of S,
and gs,(v,11) = v, for i = 1,...,5 — 1. As 9s,.(S)_;) = S,_1, we have
that v, is an ideal endpoint of S7_1. Let S; be the other side in S whose
ideal endpoint is v,. Then 9s,(vy41) = v, if j < m, and gg,, (v1) = vy,
if j =m. Thus S1,..., 8, are defined. The sequence {S,}m is called a
cycle of unbounded sides corresponding to the cycle [v] of ideal vertices.

Example 1. Let 