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Preface 

This book is an exposition of the theoretical foundations of hyperbolic 
manifolds. It is intended to be used both as a textbook and as a reference. 
Particular emphasis has been placed on readability and completeness of ar­
gument. The treatment of the material is for the most part elementary and 
self-contained. The reader is assumed to have a basic knowledge of algebra 
and topology at the first-year graduate level of an American university. 

The book is divided into three parts. The first part, consisting of Chap­
ters 1-7, is concerned with hyperbolic geometry and basic properties of 
discrete groups of isometries of hyperbolic space. The main results are the 
existence theorem for discrete reflection groups, the Bieberbach theorems, 
and Selberg's lemma. The second part, consisting of Chapters 8-12, is de­
voted to the theory of hyperbolic manifolds. The main results are Mostow's 
rigidity theorem and the determination of the structure of geometrically 
finite hyperbolic manifolds. The third part, consisting of Chapter 13, in­
tegrates the first two parts in a development of the theory of hyperbolic 
orbifolds. The main results are the construction of the universal orbifold 
covering space and Poincare's fundamental polyhedron theorem. 

This book was written as a textbook for a one-year course. Chapters 
1-7 can be covered in one semester, and selected topics from Chapters 8-
12 can be covered in the second semester. For a one-semester course on 
hyperbolic manifolds, the first two sections of Chapter 1 and selected topics 
from Chapters 8-12 are recommended. Since complete arguments are given 
in the text, the instructor should try to cover the material as quickly as 
possible by summarizing the basic ideas and drawing lots of pictures. If all 
the details are covered, there is probably enough material in this book for 
a two-year sequence of courses. 

There are over 500 exercises in this book which should be read as part of 
the text. These exercises range in difficulty from elementary to moderately 
difficult, with the more difficult ones occurring toward the end of each set 
of exercises. There is much to be gained by working on these exercises. 

An honest effort has been made to give references to the original pub­
lished sources of the material in this book. Most of these original papers 
are well worth reading. The references are collected at the end of each 
chapter in the section on historical notes. 

This book is a complete revision of my lecture notes for a one-year course 
on hyperbolic manifolds that I gave at the University of Illinois during 1984. 

vii 
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CHAPTER 1 

Euclidean Geometry 

In this chapter, we review Euclidean geometry. We begin with an informal 
historical account of how criticism of Euclid's parallel postulate led to the 
discovery of hyperbolic geometry. In Section 1.2, the proof of the indepen­
dence of the parallel postulate by the construction of a Euclidean model of 
the hyperbolic plane is discussed and all four basic models of the hyper­
bolic plane are introduced. In Section 1.3, we begin our formal study with 
a review of n-dimensional Euclidean geometry. The metrical properties of 
curves are studied in Sections 1.4 and 1.5. In particular, the concepts of 
geodesic and arc length are introduced. 

§1.1. Euclid's Parallel Postulate 

Euclid wrote his famous Elements around 300 B.C. In this thirteen-volume 
work, he brilliantly organized and presented the fundamental propositions 
of Greek geometry and number theory. In the first book of the Elements, 
Euclid develops plane geometry starting with basic assumptions consisting 
of a list of definitions of geometric terms, five "common notions" concerning 
magnitudes, and the following five postulates: 

(1) A straight lzne may be drawn from any point to any other point. 

(2) A finite stra~ght line may be extended continuously zn a straight line. 

(3) A circle may be drawn with any center and any radius. 

(4) All right angles are equal. 

(5) If a straight line fallzng on two straight lines makes the interior angles 
on the same side less than two right angles, the two straight lines, if 
extended indefinitely, meet on the side on which the angles are less 
than two right angles. 

1 
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----~~----------------- - - - -

Figure 1.1.1. Euclid's parallel postulate 

The first four postulates are simple and easily grasped, whereas the fifth 
is complicated and not so easily understood. Figure 1.1.1 illustrates the 
fifth postulate. When one tries to visualize all the possible cases of the 
postulate, one sees that it possesses an elusive infinite nature. As the sum 
of the two interior angles a + (3 approaches 180°, the point of intersection 
in Figure 1.1.1 moves towards infinity. Euclid's fifth postulate is equivalent 
to the modern parallel postulate of Euclidean geometry: 

Through a point outszde a gwen mjinzte strazght lme there is 
one and only one mjinite strazght line parallel to the given line. 

From the very beginning, Euclid's presentation of geometry in his Ele­
ments was greatly admired, and The Thirteen Books of Euclid's Elements 
became the standard treatise of geometry and remained so for over two 
thousand years; however, even the earliest commentators on the Elements 
criticized the fifth postulate. The main criticism was that it is not suffi­
ciently self-evident to be accepted without proof. Adding support to this 
belief is the fact that the converse of the fifth postulate (the sum of two 
angles of a triangle is less than 180°) is one of the propositions proved by 
Euclid (Proposition 17, Book I). How could a postulate, whose converse 
can be proved, be unprovable? Another curious fact is that most of plane 
geometry can be proved without the fifth postulate. It is not used until 
Proposition 29 of Book I. This suggests that the fifth postulate is not really 

necessary. 
Because of this criticism, it was believed by many that the fifth postulate 

could be derived from the other four postulates, and for over two thousand 
years geometers attempted to prove the fifth postulate. It was not until 
the nineteenth century that the fifth postulate was finally shown to be 
independent of the other postulates of plane geometry. The proof of this 
independence was the result of a completely unexpected discovery. The 
denial of the fifth postulate leads to a new consistent geometry. It was 
Carl Friedrich Gauss who first made this remarkable discovery. 
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Gauss began his meditations on the theory of parallels about 1792. After 
trying to prove the fifth postulate for over twenty years, Gauss discovered 
that the denial of the fifth postulate leads to a new strange geometry, which 
he called non-Euclidean geometry. After investigating its properties for over 
ten years and discovering no inconsistencies, Gauss was fully convinced of 
its consistency. In a letter to F. A. Taurinus, in 1824, he wrote: "The 
assumption that the sum of the three angles (of a triangle) is smaller than 
1800 leads to a geometry which is quite different from our (Euclidean) 
geometry, but which is in itself completely consistent." Gauss's assumption 
that the sum of the angles of a triangle is less than 1800 is equivalent to the 
denial of Euclid's fifth postulate. Unfortunately, Gauss never published his 
results on non-Euclidean geometry. 

Only a few years passed before non-Euclidean geometry was rediscovered 
independently by Nikolai Lobachevsky and Janos Bolyai. Lobachevsky 
published the first account of non-Euclidean geometry in 1829 in a paper 
entitled On the principles of geometry. A few years later, in 1832, Bolyai 
published an independent account of non-Euclidean geometry in a paper 
entitled The absolute science of space. 

The strongest evidence given by the founders of non-Euclidean geome­
try for its consistency is the duality between non-Euclidean and spherical 
trigonometries. In this duality, the hyperbolic trigonometric functions play 
the same role in non-Euclidean trigonometry as the ordinary trigonometric 
functions play in spherical trigonometry. Today, the non-Euclidean ge­
ometry of Gauss, Lobachevsky, and Bolyai is called hyperbolic geometry, 
and the term non-Euclidean geometry refers to any geometry that is not 
Euclidean. 

Spherical-Hyperbolic Duality 

Spherical and hyperbolic geometries are oppositely dual geometries. This 
duality begins with the opposite nature of the parallel postulate in each 
geometry. The analogue of an infinite straight line in spherical geometry 
is a great circle of a sphere. Figure 1.1.2 illustrates three great circles on 
a sphere. For simplicity, we shall use the term line for either an infinite 
straight line in hyperbolic geometry or a great circle in spherical geometry. 
In spherical geometry, the parallel postulate takes the form: 

Through a point outside a given line there is no lme parallel to 
the gwen line. 

The parallel postulate in hyperbolic geometry has the opposite form: 

Through a pomt outside a given lme there are infinztely many 
lines parallel to the given line. 
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Figure 1.1.2. A spherical equilateral triangle ABC 

The duality between spherical and hyperbolic geometries is further ev­
ident in the opposite shape of triangles in each geometry. The sum of the 
angles of a spherical triangle is always greater than 1800 , whereas the sum 
of the angles of a hyperbolic triangle is always less than 1800 . As the sum 
of the angles of a Euclidean triangle is 1800 , one can say that Euclidean 
geometry is midway between spherical and hyperbolic geometries. See Fig­
ures 1.1.2, 1.1.3, and 1.1.5 for an example of an equilateral triangle in each 
geometry. 

Figure 1.1.3. A Euclidean equilateral triangle ABC 
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Curvature 

Strictly speaking, spherical geometry is not one geometry but a continuum 
of geometries. The geometries of two spheres of different radii are not met­
rically equivalent; although they are equivalent under a change of scale. 
The geometric invariant that best distinguishes the various spherical ge­
ometries is Gaussian curvature. A sphere of radius r has constant positive 
curvature l/r2. Two spheres are metrically equivalent if and only if they 
have the same curvature. 

The duality between spherical and hyperbolic geometries continues. Hy­
perbolic geometry is not one geometry but a continuum of geometries. Cur­
vature distinguishes the various hyperbolic geometries. A hyperbolic plane 
has constant negative curvature, and every negative curvature is realized 
by some hyperbolic plane. Two hyperbolic planes are metrically equivalent 
if and only if they have the same curvature. Any two hyperbolic planes 
with different curvatures are equivalent under a change of scale. 

For convenience, we shall adopt the unit sphere as our model for spherical 
geometry. The unit sphere has constant curvature equal to 1. Likewise, for 
convenience, we shall work exclusively with models for hyperbolic geometry 
whose constant curvature is -1. It is not surprising that a Euclidean plane 
is of constant curvature 0, which is midway between -1 and 1. 

The simplest example of a surface of negative curvature is the saddle 
surface in 1R3 defined by the equation z = xy. The curvature of this surface 
at a point (x, y, z) is given by the formula 

-1 
",(x, y, z) = (1 2 2)2' +x +y 

(1.1.1 ) 

In particular, the curvature of the surface has a unique minimum value of 
-1 at the saddle point (0,0,0). 

There is a well-known surface in 1R3 of constant curvature -1. If one 
starts at (0,0) on the xy-plane and walks along the y-axis pulling a small 
wagon that started at (1,0) and has a handle of length 1, then the wagon 
would follow the graph of the tractrzx (L. trahere, to pull) defined by the 
equation 

y = cosh-1 (~) -~. (1.1.2) 

This curve has the property that the distance from the point of contact 
of a tangent to the point where it cuts the y-axis is 1. See Figure 1.1.4. 
The surface S obtained by revolving the tractrix about the y-axis in 1R3 is 
called the tractroid. The tractroid S has constant negative curvature -1; 
consequently, the local geometry of S is the same as that of a hyperbolic 
plane of curvature -1. Figure 1.1.5 illustrates a hyperbolic equilateral 
triangle on the tractroid S. 
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y 

x 
1 

Figure 1.1.4. Two tangents to the graph of the tractrix 

Figure 1.1.5. A hyperbolic equilateral triangle ABC on the tractroid 
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§1.2. Independence of the Parallel Postulate 

After enduring twenty centuries of criticism, Euclid's theory of parallels was 
fully vindicated in 1868 when Eugenio Beltrami proved the independence 
of Euclid's parallel postulate by constructing a Euclidean model of the hy­
perbolic plane. The points of the model are the points inside a fixed circle, 
in a Euclidean plane, called the circle at infinzty. The lines of the model 
are the open chords of the circle at infinity. It is clear from Figure 1.2.1 
that Beltrami's model has the property that through a point P outside a 
line L there is more than one line parallel to L. Using differential geometry, 
Beltrami showed that his model satisfies all the axioms of hyperbolic plane 
geometry. As Beltrami's model is defined entirely in terms of Euclidean 
plane geometry, it follows that hyperbolic plane geometry is consistent if 
Euclidean plane geometry is consistent. Thus, Euclid's parallel postulate 
is independent of the other postulates of plane geometry. 

In 1871, Felix Klein gave an interpretation of Beltrami's model in terms 
of projective geometry. In particular, Beltrami and Klein showed that the 
congruence transformations of Beltrami's model correspond by restriction 
to the projective transformations of the extended Euclidean plane that 
leave the model invariant. For example, a rotation about the center of 
the circle at infinity restricts to a congruence transformation of Beltrami's 
model. Because of Klein's interpretation, Beltrami's model is also called 
Klein's model of the hyperbolic plane. We shall take a neutral position and 
call this model the proJectwe disk model of the hyperbolic plane. 

The projective disk model has the advantage that its lines are straight, 
but it has the disadvantage that its angles are not necessarily the Euclidean 
angles. This is best illustrated by examining nght angles in the model. 

Figure 1.2.1. Lines passing through a point P parallel to a line L 
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L 
p 

Figure 1.2.2. Two perpendicular lines L and L' of the projective disk model 

Let L be a line of the model which is not a diameter, and let P be the 
intersection of the tangents to the circle at infinity at the endpoints of L 
as illustrated in Figure 1.2.2. Then a line L' of the model is perpendzcular 
to L if and only if the Euclidean line extending L' passes through P. In 
particular, the Euclidean midpoint of L is the only point on L at which the 
right angle formed by L and its perpendicular is a Euclidean right angle. 
We shall study the projective disk model in detail in Chapter 6. 

The Conformal Disk Model 

There is another model of the hyperbolic plane whose points are the points 
inside a fixed circle in a Euclidean plane, but whose angles are the Eu­
clidean angles. This model is called the conformal disk model, since its 
angles conform with the Euclidean angles. The lines of this model are the 
open diameters of the boundary circle together with the open circular arcs 
orthogonal to the boundary circle. See Figures 1.2.3 and 1.2.4. The hy­
perbolic geometry of the conformal disk model is the underlying geometry 
of M.C. Escher's famous circle prints. Figure 1.2.5 is Escher's Circle Limit 
IV. All the devils (angels) in Figure 1.2.5 are congruent with respect to the 
underlying hyperbolic geometry. Some appear larger than others because 
the model distorts distances. We shall study the conformal disk model in 
detail in Chapter 4. 

The projective and conformal disk models both exhibit Euclidean rota­
tional symmetry with respect to their Euclidean centers. Rotational sym­
metry is one of the two basic forms of Euclidean symmetry; the other is 
translational symmetry. There is another conformal model of the hyper­
bolic plane which exhibits Euclidean translational symmetry. This model 
is called the upper half-plane model. 
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Figure 1.2.3. Asymptotic parallel lines of the conformal disk model 

Figure 1.2.4. An equilateral triangle ABC in the conformal disk model 
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Figure 1.2.5. M. C. Escher: Circle Limit IV 
©1989 M. C. Escher Heirs / Cordon Art - Baarn - Holland 

The Upper Half-Plane Model 

The points of the upper half-plane model are the complex numbers above 
the real axis in the complex plane. The lines of the model are the open rays 
orthogonal to the real axis together with the open semicircles orthogonal 
to the real axis. See Figures 1.2.6 and 1.2.7. The orientation preserving 
congruence transformations of the upper half-plane model are the linear 
fractional transformations of the form 

"'(z) -_ az + b b d b '1/ with a, ,c, real and ad - c > O. 
cz +d 

In particular, a Euclidean translation T(Z) = Z + b is a congruence trans­
formation. The upper half-plane model exhibits Euclidean translational 
symmetry at the expense of an unlimited amount of distortion. Any mag­
nification JL(z) = az, with a > 1, is a congruence transformation. We shall 
study the upper half-plane model in detail in Chapter 4. 
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Figure 1.2.6. Asymptotic parallel lines of the upper half-plane model 

Figure 1.2.7. An equilateral triangle ABC in the upper half-plane model 



12 1. Euclidean Geometry 

The Hyperboloid Model 

All the models of the hyperbolic plane we have described distort distances. 
Unfortunately, there is no way we can avoid distortion in a useful Euclidean 
model of the hyperbolic plane because of a remarkable theorem of David 
Hilbert that there is no complete C2 surface of constant negative curvature 
in ]R3. Hilbert's theorem implies that there is no reasonable distortion-free 
model of the hyperbolic plane in Euclidean 3-space. 

Nevertheless, there is an analytic distortion-free model of the hyperbolic 
plane in Lorentzian 3-space. This model is called the hyperbolozd model of 
the hyperbolic plane. Lorentzian 3-space is ]R3 with a non-Euclidean ge­
ometry (described in Chapter 3). Even though the geometry of Lorentzian 
3-space is non-Euclidean, it still has physical significance. Lorentzian 4-
space is the model of space-time in the theory of special relativity. 

The points of the hyperboloid model are the points of the positive sheet 
(x > 0) of the hyperboloid in ]R3 defined by the equation 

(1.2.1) 

A line of the model is a branch of a hyperbola obtained by intersecting 
the model with a Euclidean plane passing through the origin. The angles 
in the hyperboloid model conform with the angles in Lorentzian 3-space. 
In Chapter 3, we shall adopt the hyperboloid model as our basic model of 
hyperbolic geometry because it most naturally exhibits the duality between 
spherical and hyperbolic geometries. 

Exercise 1.2 

1. Let P be a point outside a line L in the projective disk model. Show that 
there exists two lines L1 and L2 passing through P parallel to L such that 
every line passing through P parallel to L lies between L1 and L2. The two 
lines L1 and L2 are called the parallels to L at P. All the other lines passing 
through P parallel to L are called ultraparallels to L at P. Conclude that 
there are infinitely many ultraparallels to L at P. 

2. Prove that any right triangle in the conformal disk model, with its right 
angle at the center of the model, has angle sum less than 1800

• 

3. Let u, v be distinct points of the upper half-plane model. Show how to 
construct the hyperbolic line joining u and v with a Euclidean ruler and 

compass. 

4. Let ¢(z) = ~;t~ with a, b, e, din lR and ad - be > O. Prove that ¢ maps the 
complex upper half-plane bijectively onto itself. 

5. Show that the intersection of the hyperboloid x2 - y2 - Z2 = 1 with a 
Euclidean plane passing through the origin is either empty or a hyperbola. 
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§1.3. Euclidean n-Space 

The standard analytic model for n-dimensional Euclidean geometry is the 
n-dimensional real vector space JRn . A vector in JRn is an ordered n-tuple 
x = (Xl, ... , Xn) of real numbers. Let X and y be vectors in JRn. The 
Euclidean inner product of x and y is defined to be the real number 

x . y = XIYl + ... + XnYn' (1.3.1) 

The Euclidean inner product is the prototype for the following definition: 

Definition: An inner product on a real vector space V is a function from 
V X V to JR, denoted by (v, w) 1-+ (v, w), such that for all v, w in V, 

(1) (v, ) and ( ,w) are linear functions from V to JR (bilinearity); 

(2) (v, w) = (w, v) (symmetry); and 

(3) if v =I- 0, then there is a w =I- 0 such that (v, w) =I- 0 (nondegeneracy). 

The Euclidean inner product on JRn is obviously bilinear and symmetric. 
Observe that if x =I- 0 in JRn, then x . x > 0, and so the Euclidean inner 
product is also nondegenerate. 

An inner product ( , ) on a real vector space V is said to be posztwe 
definite if and only if (v, v) > 0 for all nonzero v in V. The Euclidean inner 
product on JRn is an example of a positive definite inner product. 

Let ( , ) be a positive definite inner product on V. The norm of v in V, 
with respect to ( , ), is defined to be the real number 

IJvlJ = (v, v)!. (1.3.2) 

The norm of x in JRn, with respect to the Euclidean inner product, is called 
the Euclidean norm and is denoted by I xl-

Theorem 1.3.1. (Cauchy's inequality) Let ( , ) be a posztive definite inner 
product on a real vector space V. If v, w are vectors in V, then 

l(v,w)1 ~ IlvlllJwll 
with equality zf and only zf v and ware lmearly dependent. 

Proof: If v and w are linearly dependent, then equality clearly holds. 
Suppose that v and ware linearly independent. Then tv - w =I- 0 for all t 
in JR, and so 

o < Iltv - wl12 = (tv - w, tv - w) 

= t211vl12 - 2t(v,w) + IJw112. 
The last expression is a quadratic polynomial in t with no real roots, and 
so its discriminant must be negative. Thus 

o 
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Let x, y be nonzero vectors in ]Rn. By Cauchy's inequality, there is a 
unique real number O(x, y) between 0 and 7f such that 

x·y= IxllylcosO(x,y). (1.3.3) 

The Euclidean angle between x and y is defined to be O(x,y). 
Two vectors x, yin ]Rn are said to be orthogonal if and only if x . y = O. 

As cos ( 7f / 2) = 0, two nonzero vectors x, y in ]R n are orthogonal if and only 
if O(x,y) = 7f/2. 

Corollary 1. (The triangle inequality) If x and yare vectors zn ]Rn, then 

Ix + yl ::; Ixl + Iyl 
with equality if and only zf x and yare lznearly dependent. 

Proof: Observe that 

Ix+yl2 (x+y)·(x+y) 

Ixl2 + 2x . y + lyl2 
< Ixl2 + 21xllyl + lyl2 

(Ixl + lyl)2 
with equality if and only if x and y are linearly dependent. 

Metric Spaces 

The Euclidean distance between vectors x and y in ]Rn is defined to be 

o 

(1.3.4) 

The distance function dE is the prototype for the following definition: 

Definition: A metrzc on a set X is a function d : X x X ----) ]R such that 
for all x, y, z in X, 

(1) d(x, y) ~ 0 (nonnegativity); 

(2) d(x, y) = 0 if and only if x = y (nondegeneracy); 

(3) d(x,y) = d(y,x) (symmetry); and 

(4) d(x, z) ::; d(x, y) + d(y, z) (triangle inequality). 

The Euclidean distance function dE obviously satisfies the first three 
axioms for a metric on ]Rn. By Corollary 1, we have 

Ix - zl = I(x - y) + (y - z)1 ::; Ix - yl + Iy - zI. 
Therefore dE satisfies the triangle inequality. Thus dE is a metric on ]Rn, 

called the Euclzdean metric. 
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Definition: : A metric space is a set X together with a metric d on X. 

Example: Euclzdean n-space En is the metric space consisting of ]Rn 

together with the Euclidean metric dE' 

An element of a metric space is called a point. Let X be a metric space 
with metric d. The open ball of radius r > 0, centered at the point a of X, 
is defined to be the set 

B(a,r) = {x EX: d(a,x) < r}. 

The closed ball of radius r > 0, centered at the point a of X, is defined to 
be the set 

C(a,r) = {x EX: d(a, x) S; r}. 

A subset U of X is open in X if and only if for each point x of U, there 
is an r > ° such that U contains B(x, r). In particular, if S is a subset of 
X and r > 0, then the r-neighborhood of S in X, defined by 

N(S, r) = U{B(x, r) : XES}, 

is a open in X. 
The collection of all open subsets of a metric space X is a topology on 

X, called the metric topology of X. A metric space is always assumed to be 
topologized with its metric topology. The metric topology of En is called 
the Euclzdean topology of ]Rn. We shall assume that ]Rn is topologized with 
the Euclidean topology. 

Isometries 

A function ¢ : X ----t Y between metric spaces preserves distances if and 
only if 

dy(¢(x),¢(y)) = dx(x,y) for all x,y in X. 

Note that a distance preserving function is a continuous injection. 

Definition: An isometry from a metric space X to a metric space Y is a 
distance preserving bijection ¢ : X ----t Y. 

The inverse of an isometry is obviously an isometry, and the composite 
of two isometries is an isometry. Two metric spaces X and Yare said to 
be isometric (or metrzcally equivalent) if and only if there is an isometry 
¢ : X ----t Y. Clearly, being isometric is an equivalence relation among the 
class of all metric spaces. 

The set of isometries from a metric space X to itself, together with 
multiplication defined by composition, forms a group I(X), called the group 
of zsometries of X. An isometry from En to itself is called a Euclzdean 
isometry. 
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Example: Let a be a point of En. The function Ta : En ----+ En, defined 
by the formula 

Ta(X) = a + x, 

is called the translatzon of En by a. The function Ta is an isometry, since 
Ta is a bijection with inverse La and 

jTa(x) - Ta(y)j = j(a + x) - (a + y)j = jx - yj. 

Definition: A metric space X is homogeneous if and only if for each pair 
of points x, y of X, there is an isometry ¢ of X such that ¢(x) = y. 

Example: Euclidean n-space En is homogeneous, since for each pair of 
points x, y of En, the translation of En by y - x translates x to y. 

Orthogonal Transformations 

Definition: A function ¢ : ]R.n ----+ ]R.n is an orthogonal transformation if 
and only if 

¢(x) . ¢(y) = x . y for all x, yin ]R.n. 

Example: The antipodal transformatzon a of]R.n, defined by a(x) = -x, 
is an orthogonal transformation, since 

a(x) . a(y) = -x· -y = X· y. 

Definition: A basis {Vl, ... , vn} of]R.n is orthonormal if and only if 

Vt . vJ = 8tJ (Kronecker's delta) for all i, j. 

Example: Let et be the vector in ]R.n whose coordinates are all zero, 
except for the ith, which is one. Then {el, ... , en} is an orthonormal basis 
of]R.n called the standard basis of ]R.n. 

Theorem 1.3.2. A function ¢ : ]R.n ----+ ]R.n is an orthogonal transformation 
if and only if ¢ zs linear and {¢( el), ... , ¢( en)} is an orthonormal basis of 
]R.n. 

Proof: Suppose that ¢ is an orthogonal transformation of ]R.n. Then 

¢(et) . ¢(eJ) = et · eJ = 8tJ . 

To see that ¢(ed, ... , ¢(en ) are linearly independent, suppose that 
n 

Z=ct¢(et ) = O. 

Upon taking the inner product of this equation with ¢(eJ ), we find that 
cJ = 0 for each j. Hence {¢(ed, ... , ¢(en)) is an orthonormal basis of ]R.n. 
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Let x be in ~n. Then there are coefficients C1, .•. ,en in ]R such that 
n 

¢(x) = Lc.¢(e.) . 
• =1 

As {¢( e1), ... , ¢( en)} is an orthonormal basis, we have 

cJ = ¢(x) . ¢(eJ) = X· eJ = XJ' 

Then ¢ is linear, since 

¢(tx•e.) = tx.¢(e.). 

17 

Conversely, suppose that ¢ is linear and {¢( e1), ... ,¢( en)} is an or­
thonormal basis of ]Rn. Then ¢ is orthogonal, since 

¢(x) . ¢(y) ~ ¢ (t, x,e,) . ¢ (t, y,e, ) 

(t,x.¢(e,)) . (t,y,¢(e,)) 
n n 

LLx'YJ¢(e.). ¢(eJ) 

n 

Lx.y. = x·y. 
.=1 

o 

Corollary 2. Every orthogonal tmnsformation is a Euclidean zsometry. 

Proof: Let ¢ : ]Rn ~ ]Rn be an orthogonal transformation. Then ¢ 
preserves Euclidean norms, since 

1¢(x)12 = ¢(x)· ¢(x) = X· x = Ix12. 

Consequently ¢ preserves distances, since 

I¢(x) - ¢(Y)I = I¢(x - y)1 = Ix - YI· 

By Theorem 1.3.2, the map ¢ is bijective. Therefore ¢ is a Euclidean 
isometry. 0 

A real n x n matrix A is said to be orthogonal if and only if the associated 
linear transformation A : ]Rn ~ ]Rn, defined by A(x) = Ax, is orthogonal. 
The set of all orthogonal n x n matrices together with matrix multiplication 
forms a group O(n), called the orthogonal group of n x n matrices. By 
Theorem 1.3.2, the group O(n) is naturally isomorphic to the group of 
orthogonal transformations of ]Rn. 

The next theorem follows immediately from Theorem 1.3.2. 
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Theorem 1.3.3. Let A be a real n x n matrix. Then the following are 
equwalent: 

(1) The matT'tX A is orthogonal. 

(2) The columns of A form an orthonormal basis of IRn. 

(3) The matrix A satisfies the equation At A = I. 

(4) The matrix A satisfies the equation AAt = I. 

(5) The rows of A form an orthonormal basis of IRn. 

Let A be an orthogonal matrix. As AtA = I, we have that (detA)2 = 1. 
Thus det A = ±1. If det A = 1, then A is called a rotatwn. Let SO(n) be 
the set of all rotations in O(n). Then SO(n) is a subgroup of index two 
in O(n). The group SO(n) is called the special orthogonal group of n x n 
matrices. 

Group Actions 

Definition: A group G acts on a set X if and only if there is a function 
from G x X to X, written (g, x) 1--+ gx, such that for all g, h in G and x in 
X, we have 

(1) 1· x = x and 

(2) g(hx) = (gh)x. 

A function from G x X to X satisfying conditions (1) and (2) is called an 
actwn of G on X. 

Example: If X is a metric space, then the group I(X) of isometries of X 
acts on X by ¢x = ¢(x). 

Definition: An action of a group G on a set X is transitwe if and only if 
for each x, y in X, there is a gin G such that gx = y. 

Theorem 1.3.4. For each dzmension m, the natural action of O(n) on 
the set of m-dzmensional vector subspaces of IRn zs transztive. 

Proof: Let V be an m-dimensional vector subspace of IRn with m > O. 
Identify IRm with the subspace of IRn spanned by the vectors el, ... ,em· It 
suffices to show that there is an A in O(n) such that A(lRm) = V. 

Choose a basis {Ul, ... , Un} of IRn such that {Ul, .. ·, um} is a basis 
of V. We now perform the Gram-Schmidt process on {Ul, ... ,un}· Let 
Wl = udiuli. Then IWll = 1. Next, let V2 = U2 - (U2 • Wl)Wl. Then V2 is 
nonzero, since Ul and U2 are linearly independent; moreover, 

Wl . V2 = Wl . U2 - (U2· Wd(Wl . wd = o. 
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Now let 

W2 v2/lv21, 
V3 U3 - (U3 . WdWI - (U3 . W2)W2, 

W3 v3/lv31, 

Vn Un - (Un' WdWI - (Un' W2)W2 - ... - (Un' Wn-I)Wn-l, 

Wn vn/lvnl· 

Then {WI"'" W n } is an orthonormal basis ofll~n with {WI, .. " W m } a basis 
of V. Let A be the n x n matrix whose columns are WI,···, wn- Then A 
is orthogonal by Theorem 1.3.3, and A(]Rm) = V. D 

Definition: Two subsets Sand T of a metric space X are congruent in 
X if and only if there is a isometry ¢ of X such that ¢(S) = T. 

Being congruent is obviously an equivalence relation on the set of all 
subsets of X. An isometry of a metric space X is also called a congruence 
transformation of X. 

Definition: An m-plane of En is a coset a+ V of an m-dimensional vector 
subspace V of ]Rn. 

Corollary 3. All the m-planes of En are congruent. 

Proof: Let a+ V and b+ W be m-planes of En. By Theorem 1.3.4, there 
is a matrix A in O(n) such that A(V) = W. Define ¢ : En ----+ En by 

¢(x) = (b - Aa) + Ax. 

Then ¢ is an isometry and 

¢( a + V) = b + W. 

Thus a + V and b + Ware congruent. D 

Characterization of Euclidean Isometries 

The following theorem characterizes an isometry of En. 

Theorem 1.3.5. Let ¢ : En ----+ En be a function. Then the following are 
equivalent: 

(1) The functwn ¢ is an zsometry. 

(2) The function ¢ preserves distances. 

(3) The functwn ¢ is of the form ¢(x) = a+Ax, where A zs an orthogonal 
matrzx and a = ¢(O). 
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Proof: By definition, (1) implies (2). Suppose that ¢ preserves distances. 
Then A = ¢ - ¢(O) also preserves distances and A(O) = O. Therefore A 
preserves Euclidean norms, since 

IAxl = IA(x) - A(O)I = Ix - 01 = Ixl. 
Consequently A is orthogonal, since 

2Ax . Ay = IAxl 2 + IAyl2 - lAx - Ayl2 

Ixl2 + lyl2 - Ix - Yl2 = 2x· y. 

Thus, there is an orthogonal n x n matrix A such that ¢(x) = ¢(O) + Ax, 
and so (2) implies (3). If ¢ is in the form given in (3), then ¢ is the 
composite of an orthogonal transformation followed by a translation, and 
so ¢ is an isometry. Thus (3) implies (1). D 

Remark: Theorem 1.3.5 states that every isometry of En is the composite 
of an orthogonal transformation followed by a translation. It is worth 
noting that such a decomposition is unique. 

Similarities 

A function ¢ : X -4 Y between metric spaces is a change of scale if and 
only if there is a real number k > 0 such that 

dy(¢(x),¢(y)) = kdx(x,y) for all X,y in X. 

The positive constant k is called the scale factor of ¢. Note that a change 
of scale is a continuous injection. 

Definition: A similarity from a metric space X to a metric space Y is a 
bijective change of scale ¢ : X -4 Y. 

The inverse of a similarity, with scale factor k, is a similarity with scale 
factor 11k. Therefore, a similarity is also a homeomorphism. Two metric 
spaces X and Yare said to be s~milar (or equivalent under a change of 
scale) if and only if there is a similarity ¢ : X -4 Y. Clearly, being similar 
is an equivalence relation among the class of all metric spaces. The set 
of similarities from a metric space X to itself, together with multiplication 
defined by composition, forms a group S(X), called the group of similarities 
of X. The group of similarities S(X) contains the group of isometries I(X) 
as a subgroup. A similarity from En to itself is called a Euclidean similarity. 

Example: Let k > 1. The function ILk : En -4 En, defined by ILk (x) = kx, 
is called the magnification of En by the factor k. Clearly, the magnification 
ILk is a similarity with scale factor k. 

The next theorem follows easily from Theorem 1.3.5. 
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Theorem 1.3.6. Let ¢ : En --* En be a function. Then the following are 

equivalent: 

(1) 

(2) 

(3) 

The functIOn ¢ zs a similarity. 

The function ¢ zs a change of scale. 

The functIOn ¢ zs of the form ¢( x) = a + kAx, where A is an orthog­
onal matrix, k is a positzve constant, and a = ¢(O). 

Given a geometry on a space X, its principal group is the group of all 
transformations of X under which all the theorems of the geometry remain 
true. In his famous Erlanger Program, Klein proposed that the study of a 
geometry should be viewed as the study of the invariants of its principal 
group. The principal group of n-dimensional Euclidean geometry is the 
group S(En) of similarities of En. 

Exercise 1.3 

1. Let Vo, ... ,Vm be vectors in lRn such that Vl - Vo, ... ,Vm - Vo are linearly in­
dependent. Show that there is a unique m-plane of En containing Vo, . .. ,Vm . 

Conclude that there is a unique I-plane of En containing any two distinct 
points of En. 

2. A hne of En is defined to be a I-plane of En. Let x, y be distinct points of 
En. Show that the unique line of En containing x and y is the set 

{x + t(y - x) : t E lR}. 

The lme segment in En joining x to y is defined to be the set 

{x + t(y - x) : 0 :S t :S I}. 

Conclude that every line segment in En extends to a unique line of En. 

3. Two m-planes of En are said to be parallel if and only if they are cosets 
of the same m-dimensional vector subspace of lRn. Let x be a point of En 
outside of an m-plane P of En. Show that there is a unique m-plane of En 
containing x parallel to P. 

4. Two m-planes of En are said to be coplanar if and only ifthere is an (m + 1)­
plane of En containing both m-planes. Show that two distinct m-planes of 
En are parallel if and only if they are coplanar and disjoint. 

5. A hyperplane of En is defined to be an (n - I)-plane of En. Let Xo be a 
point of a subset P of En. Prove that P is a hyperplane of En if and only 
if there is a unit vector a in lRn , which is unique up to sign, such that 

P = {x E En : a· (x - xo) = a}. 

6. The orthogonal complement of an m-dimensional vector subspace V of lRn is 
defined to be the set 

V-L={xElRn:X·y=O forallyinV}. 



22 1. Euclidean Geometry 

Prove that V-L is an (n - m)-dimensional vector subspace of ]Rn and that 
and each vector x in ]Rn can be written uniquely as x = y + z with y in V 
and z in V-L. In other words, ]Rn = V EEl V-L. 

7. A line and a hyperplane of En are said to be orthogonal if and only if their 
associated vector spaces are orthogonal complements. Let y be a point of 
En outside of a hyperplane P of En. Show that there is a unique point Xo 
in P nearest to y and that the line passing through Xo and y is the unique 
line of En passing through y orthogonal to P. 

8. Let Uo, ... , Un be vectors in ]Rn such that Ul - Uo, ... , Un - Uo are linearly 
independent, let Vo, ... , Vn be vectors in ]Rn such that Vl - Vo, ... , Vn - Vo 
are linearly independent, and suppose that 

Show that there is a unique isometry ¢ of En such that ¢(u,) = v, for each 
z = 1, ... ,no 

9. Prove that Em and En are isometric if and only if m = n. 

10. Let II II be the norm of a positive definite inner product ( , ) on an n­
dimensional real vector space V. Define a metric d on V by the formula 
d(v, w) = Ilv - wll. Show that d is a metric on V and prove that the metric 
space (V, d) is isometric to En. 

§1.4. Geodesics 

In this section, we study the metrical properties of lines of Euclidean n­
space En. In order to prepare for later applications, all the basic definitions 
in this section are in the general context of curves in a metric space X. 

Definition: A curve in a space X is a continuous function, : [a, b] -+ X 
where [a, b] is a closed interval in ~ with a < b. 

Let, : [a, b] -+ X be a curve. Then ,(a) is called the 2mtzal pomt of, 
and ,(b) is called the terminal point. We say that, is a curve in X from 
,(a) to ,(b). If X = En, then, is said to be linear if and only if 

,(a + t(b - a)) = ,(a) + t(,(b) - ,(a)) 

for all t in [0,1]. 

Example: Let x, y be points of En. Define, : [0, 1] -+ En by 

,(t) = x + t(y - x). 

Then, is a linear curve in En from x to y. 

The proof of the next theorem is straightforward and is left to the reader. 
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Theorem 1.4.1. Let"( : [a, b] _ En be a curve. Then the following are 

equivalent: 

(1) The curve,,( is lmear. 

(2) The curve "( satisfies the equation 

"((t) = "((a) + G = :) ("((b) - "((a)). 

(3) The curve,,( has a constant first derivatzve "(' : [a, b] _ En. 

Definition: Three points x, y, z of En are collinear, with y between x 
and z, if and only if there is a real number t between 0 and 1 such that 
y=x+t(z-x). 

The proof of the next lemma is elementary and is left to the reader. 

Lemma 1. Three pomts x, y, z of En are collinear, with y between x and 
z, if and only 2f 

Iz - xl = Iy - xl + Iz - YI· 

Geodesic Arcs 

Definition: A geodes2c arc in a metric space X is a distance preserving 
function a : [a, b]- X, with a < bin R 

Note that a geodesic arc a : [a, b] _ X is a continuous injection and so is 
a curve. 

Theorem 1.4.2. A curve a: [a, b] _ En is a geodesic arc if and only 2f a 
2S linear and la'(t)1 = 1 for all tin [a,b]. 

Proof: Suppose that a is linear and 1a'(t)1 = 1. Then by Theorem 1.4.1, 

a(t) = a(a) + G = :) (a(b) - a(a)) , 

and since 1a'(t)1 = 1, we have 

la(b) - a(a)1 = b - a. 

Therefore 
It - sl 

la(t) - a(s)1 = b _ a la(b) - a(a)1 = It - sI-
Thus a is a geodesic arc. 

Conversely, suppose that a is a geodesic arc. Let t be in [a, b]. Then 

la(b) - a(a)1 b - a 

b-t+t-a 

la(b) - a(t)1 + la(t) - a(a)l. 
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By Lemma 1, we have that a(a), a(t), a(b) are collinear with a(t) between 
a(a) and a(b). Therefore, there is some J(t) in [0,1] such that 

a(t) = a(a) + J(t)(a(b) - a(a)). 

Now, since 
J(t) = la(t) - a(a)1 = t - a 

la(b) - a(a)1 b - a' 

the curve a is linear by Theorem 1.4.1 and 

la/(t)1 = la(b) - a(a)1 = 1. 
b-a 

o 

Definition: A geodesic segment joining a point x to a point y in a metric 
space X is the image of a geodesic arc a : [a, b] -> X whose initial point is 
x and terminal point is y. 

Corollary 1. The geodeszc segments of En are its line segments. 

Theorem 1.4.3. Let [x, y] and [y, z] be geodesic segments joining x to y 
and y to z, respectively, in a metric space X. Then the set [x, y] U [y, z] zs 
a geodesic segment joining x to z in X iJ and only zJ 

d(x, z) = d(x, y) + dey, z). 

Proof: If [x, y] u [y, z] is a geodesic segment joining x to z, then obviously 

d(x, z) = d(x, y) + dey, z). 

Conversely, suppose that the above equation holds. Let a : [a, b] -> X and 
(3 : [b, c] -> X be geodesic arcs from x to y and y to z, respectively. Define 
'Y : [a, c] -> X by 'Y(t) = a(t) if a ~ t ~ band 'Y(t) = (3(t) if b ~ t ~ c. 
Suppose that a ~ s < t ~ c. If t ~ b, then 

d("t(s),'Y(t)) = d(a(s),a(t)) = t - s. 

If b ~ s, then 
d("t(s),'Y(t)) = d({3(s), (3(t)) = t - s. 

If s < b < t, then 

Moreover 

d("t(s),'Y(t)) < d("t(s),'Y(b)) + d("t(b),'Y(t)) 
(b - s) + (t - b) = t - 8. 

d("t(s) , 'Y(t)) > d('Y(a) , 'Y(c)) - d("t(a) , 'Y(s)) - d("t(t) , 'Y(c)) 
d(x, z) - (8 - a) - (c - t) 

d( x, y) + d(y, z) - (c - a) + (t - 8) 
= (b - a) + (c - b) - (c - a) + (t - 8) = t - 8. 
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Therefore, we have 

d(-y(s),'Y(t)) = t - s. 

Hence'Y is a geodesic arc from x to z whose image is the set [x, y] U [y, z]. 
Thus [x, y] u [y, z] is a geodesic segment joining x to y. 0 

A subset C of En is said to be convex if and only if for each pair of 
distinct points x, yin C, the line segment joining x to y is contained in C. 
The notion of convexity in En is the prototype for the following definition: 

Definition: A metric space X is geodesically convex if and only if for each 
pair of distinct points x, y of X, there is a unique geodesic segment in X 
joining x to y. 

Example: Euclidean n-space En is geodesic ally convex. 

Remark: The modern interpretation of Euclid's first axiom is that a 
Euclidean plane is geodesically convex. 

Definition: A metric space X is geodesically connected if and only if each 
pair of distinct points of X are joined by a geodesic segment in X. 

A geodesically convex metric space is geodesic ally connected, but a 
geodesically connected metric space is not necessarily geodesically convex. 

Definition: A geodesic curve in a metric space X is a locally distance 
preserving curve 'Y: [a,b]-+ X. 

A geodesic arc is a geodesic curve, but a geodesic curve is not necessarily 
a geodesic arc. 

Definition: A geodeszc section in a metric space X is the image of an 
injective geodesic curve 'Y : [a, b] -+ X. 

A geodesic segment is a geodesic section, but a geodesic section is not 
necessarily a geodesic segment. 

Definition: A geodesic halJ-lzne in a metric space X is a locally distance 
preserving function TJ : [0, +(0) -+ X. 

A geodesic half-line is continuous, since it is locally continuous. 

Definition: A geodesic ray in a metric space X is the image of a geodesic 
half-line TJ : [0, +(0) -+ X. 
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Geodesic Lines 

Definition: A geodesic lme in a metric space X is a locally distance 
preserving function A : lR -+ X. 

A geodesic line is continuous, since it is locally continuous. 

Theorem 1.4.4. A functwn A : lR -+ En is a geodesic line if and only if 
A(t) = A(O) + t(A(1) - A(O)) for all t and \A(1) - A(O)\ = 1. 

Proof: Suppose that A(t) = A(O) + t(A(1) - A(O)) and \A(1) - A(O)\ = 1. 
Then X(t) is constant and of norm one. Hence, the restriction of A to any 
interval is a geodesic arc by Theorems 1.4.1 and 1.4.2. Thus A is a geodesic 
line. 

Conversely, suppose that A is a geodesic line. By Theorems 1.4.1 and 
1.4.2, the function A is differentiable and A' is a constant unit vector. Hence 

A(t) = A(O) + t(A(1) - A(O)) 

for all t and \A(1) - A(O)\ = 1. o 

Definition: A geodesic in a metric space X is the image of a geodesic line 
A:lR-+X. 

Corollary 2. The geodesics of En are its lines. 

Definition: A metric space X is geodeszcally complete if and only if each 
geodesic arc a : [a, b] -+ X extends to a unique geodesic line A : lR -+ X. 

Example: Euclidean n-space En is geodesically complete. 

Remark: The modern interpretation of Euclid's second axiom is that a 
Euclidean plane is geodesically complete. 

Definition: A metric space X is totally geodesic if and only if for each 
pair of distinct points x, y of X there is a geodesic of X containing both x 
and y. 

Example: Euclidean n-space En is totally geodesic. 

Definition: A coordinate frame of En is an n-tuple (AI, ... , An) of func­

tions such that 

(1) the function A, : lR -+ En is a geodesic line for each i = 1, ... , n; 

(2) there is a point a of En such that A,(O) = a for all i; and 

(3) the set {A~ (0), ... ,A~ (O)} is an orthonormal basis of lRn. 
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Example: Define Ez : lR --t En by E2(t) = tez. Then (El,'" ,En) is a 
coordinate frame of En, called the the standard coordinate frame of En. 

Theorem 1.4.5. The action of I(En) on the set of coordinate frames of 
En, given by ¢()\!, ... ,An) = (¢Al' ... ,¢An), zs transztive. 

Proof: Let (AI, .. ' ,An) be a coordinate frame of En. It suffices to show 
that there is a ¢ in I(En) such that ¢(El,"" En) = (AI"'" An). Let A be 
the n x n matrix whose columns are A~ (0), ... , A~(O). Then A is orthogonal 
by Theorem 1.3.3. Let a = Az(O) and define ¢ : En --t En by ¢(x) = a+Ax. 
Then ¢ is an isometry. As ¢Ez(O) = Az(O) and (¢Ez)'(O) = A~(O), we have 
that ¢(El, ... , En) = (AI"'" An). D 

Remark: The modern interpretation of Euclid's fourth axiom is that the 
group of isometries of a Euclidean plane acts transitively on the set of all 
its coordinate frames. 

Exercise 1.4 

1. Prove Theorem 1.4.1. 

2. Prove Lemma 1. 

3. A subset X of En is said to be affine if and only if X is a totally geodesic 
metric subspace of En. Prove that an arbitrary intersection of affine subsets 
of En is affine. 

4. An affine combmatwn of points VI, ... ,Vrn of En is a linear combination of 
the form tiVI + ... + trnvrn such that tl + ... + trn = 1. Prove that a subset 
X of En is affine if and only if X contains every affine combination of points 
of X. 

5. The affine hull of a subset S of En is defined to be the intersection A(S) of 
all the affine subsets of En containing S. Prove that A(S) is the set of all 
affine combinations of points of S. 

6. A set {vo, ... , Vrn} of points of En is said to be affinely zndependent if and 
only if tovo + ... + trnvrn = 0 and to + ... + trn = 0 imply that t, = 0 for all 
~ = 0, ... ,m. Prove that {vo, . .. ,vrn } is affinely independent if and only if 
the vectors VI - Vo, . .. ,Vrn - Vo are linearly independent. 

7. An affine bas~s of an affine subset X of En is an affinely independent set of 
points {vo, ... , Vrn} such that X is the affine hull of { Vo, ... , vrn }. Prove that 
every nonempty affine subset of En has an affine basis. 

8. Prove that a nonempty subset X of En is affine if and only if X is an m-plane 
of En for some m. 

9. A function ¢ : En ---> En is said to be affine if and only if 

¢((1 - t)x + ty) = (1 - t)¢(x) + t¢(y) 

for all x, y in En and t in R Show that an affine transformation of En maps 
affine sets to affine sets and convex sets to convex sets. 
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10. Prove that a function ¢ : En -t En is affine if and only if there is an n x n 
matrix A and a point a of En such that ¢(x) = a + Ax for all x in En. 

11. Prove that an arbitrary intersection of convex subsets of En is convex. 

12. A convex combznatwn of points VI, ... ,Vm of En is a linear combination of 
the form hVI + ... + tmvm such that tl + ... + tm = 1 and t, ~ 0 for all 
z = 1, ... ,m. Prove that a subset C of En is convex if and only if C contains 
every convex combination of points of C. 

13. The convex hull of a subset S of En is defined to be the intersection C(S) of 
all the convex subsets of En containing S. Prove that C(S) is the set of all 
convex combinations of points of S. 

14. Let S be a subset of En. Prove that every element of C(S) is a convex 
combination of at most n + 1 points of S. 

15. Let K be a compact subset of En. Prove that C(K) is compact. 

16. Let C be a convex subset of En. Prove that for all r > 0, the r-neighborhood 
N(C,r) of C in En is convex. 

17. A subset of S of En is locally convex if and only if for each x in S, there is an 
r > 0 so that B(x, r) n S is convex. Prove that a closed, connected, locally 
convex subset of En is convex. 

18. Prove that a geodesic section in a metric space X can be subdivided into a 
finite number of geodesic segments. 

§1.5. Arc Length 

Let a and b be real numbers such that a < b. A partztion P of the closed 
interval [a, b] is a finite sequence {to, . .. ,tm} of real numbers such that 

a = to < t1 < ... < tm = b. 

The norm of the partition P is defined to be the real number 

[PI = max{t, - t,-1 : i = 1, ... ,m}. 

Let Pta, b] be the set of all partitions of [a, b]. If P, Q are in Pta, b], then 
Q is said to refine P if and only if each term of P is a term of Q. Define a 
partial ordering of Pta, b] by Q ~ P if and only if Q refines P. 

Let 'Y : [a, b] -+ X be a curve in a metric space X and let 

P = {to,.··, tm } 

be a partition of [a, b]. The P-inscribed length of 'Y is defined to be 
m 

lb, P) = L db(t,-d, 'Y(t,)). 
,=1 

It follows from the triangle inequality that if Q ~ P, then lb, P) ~ lb, Q). 
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Definition: The length of a curve 'Y : [a, b] -+ X is 

I'YI = sup { £b, P) : P E P[a, bJ}. 

Note that since {a, b} is a partition of [a, b], we have 

db(a),'Y(b)) ::; !'YI ::; 00. 

Definition: A curve 'Y is rectifiable if and only if I'YI < 00. 
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Example: Let 'Y : [a, b] -+ X be a geodesic arc and let P be a partition 
of [a, b]. Then 

m 

0=1 
m 

L(to - to-I) b - a. 
0=1 

Therefore 'Y is rectifiable and 

Theorem 1.5.1. Let'Y: [a, c] -+ X be a curve, let b be a number between 
a and c, and let 0: : [a, b] -+ X and (3 : [b, c] -+ X be the restrzctwns of 'Y. 
Then we have 

I'YI = 10:1 + 1(31· 
Moreover'Y is rectzfiable if and only if 0: and (3 are rectifiable. 

Proof: Let P be a partition of [a, b] and let Q be a partition of [b, c]. 
Then P U Q is a partition of [a, c] and 

£(0:, P) + £((3, Q) = £b, P U Q). 

Therefore, we have 

10:1 + 1(31 ::; !'YI· 
Let R be a partition of [a, c]. Then R' = R U {b} is a partition of [a, c] 

and R' = P U Q, where P is a partition of [a, b] and Q is a partition of 
[b,cj. Now 

£b, R) ::; £b, R') = £(0:, P) + £((3, Q). 

Therefore, we have 

Thus, we have 

!'YI = 10:1 + 1(31· 
Moreover 'Y is rectifiable if and only if 0: and (3 are rectifiable. o 
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Let X be a geodesically connected metric space and let 'Y : [a, b] ~ X 
be a curve from x to y. Then h'l ~ d(x, y) with equality if 'Y is a geodesic 
arc. Thus d(x, y) is the shortest possible length of 'Y. It is an exercise to 
show that bl = d(x, y) if and only if'Y maps [a, b] onto a geodesic segment 
joining x to y and d(x, 'Y(t)) is an increasing function of t. Thus, a shortest 
path from x to y is along a geodesic segment joining x to y. 

Let {to, ... ,tm} be a partition of [a,b] and let 'Y. : [t._1,t.] ~ X, for 
i = 1, ... , m, be a sequence of curves such that the terminal point of 'Y.-1 
is the initial point of 'Y.. The product of 'Y1, ... , 'Ym is the curve 

'Y1·· ·'Ym: [a,b] ~ X 

defined by 

'Y1 ... 'Ym(t) = 'Y.(t) for t.-1 ::; t ::; t •. 

If each 'Y. is a geodesic arc, then 'Y1 ... 'Ym is called a piecewise geodesic 
curve. By Theorem 1.5.1, a piecewise geodesic curve 'Y1 ... 'Ym is rectifiable 
and 

Let 'Y : [a, b] ~ X be a curve in a geodesically connected metric space 
X and let 

p = {to, ... , tm } 

be a partition of [a, b]. Then there is a piecewise geodesic curve 

'Y1·· ·'Ym: [0,£] ~ X 

such that 'Y. is a geodesic arc from 'Y(t.-d to 'Y(t.). The piecewise geodesic 
curve 'Y1 ... 'Ym is said to be inscribed on 'Y. See Figure 1.5.1. Notice that 

Thus, the length of 'Y is the supremum of the lengths of all the piecewise 
geodesic curves inscribed on 'Y. 

Figure 1.5.1. A piecewise geodesic curve inscribed on a curve 'Y 
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Euclidean Arc Length 

A C1 curve in En is defined to be a differentiable curve "I : [a, b] -7 En 
with a continuous derivative "I' : [a, b] -7 En. Here "I'(a) is the right-hand 
derivative of "I at a, and "I'(b) is the left-hand derivative of "I at b. 

Theorem 1.5.2. If"l: [a, b] -7 En zs a C1 curve, then "I is rectifiable and 
the length of "I is given by the formula 

I'YI = ib 1"I'(t)ldt. 

Proof: Let P = {to, ... ,tm } be a partition of [a, b]. Then we have 
m 

,=1 

< t lt~l 1"I'(t)ldt ib 1'Y'(t)ldt. 

Therefore "I is rectifiable and 

1"11 :S ib 1"I'(t)ldt. 

If a :S c < d :S b, let "Ic,d be the restriction of "I to the interval [c, dj. 
Define functions A, p, : [a, b] -7 ~ by A(a) = 0, A(t) = l"Ia,tl if t > a, and 

p,(t) = it 1'Y'(t)ldt. 

Then p,'(t) = 1'Y'(t) I by the fundamental theorem of calculus. 
Suppose that a:S t < t + h :S b. Then by Theorem 1.5.1, we have 

l'Y(t + h) - "I(t) I :S I'Yt,t+h1 = A(t + h) - A(t). 

Hence, by the first part of the proof applied to "It,Hh, we have 

I "I(t + h) - "I(t) I < A(t + h) - A(t) < .!:.It+h I '(t)ldt = p,(t + h) - p,(t) 
h - h - h t "I h· 

Likewise, these inequalities also hold for a :S t + h < t :S b. Letting h -7 0, 
we conclude that 

I'Y' (t) I = A' (t) = p,' (t). 

Therefore, we have 

o 
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Let 'Y : [a, b] -+ En be a curve. Set 

dx = (dX1,"" dxn ) 

and 

Then by definition, we have 

1, Idxl = hi· 

Moreover, if'Y is a C1 curve, then by Theorem 1.5.2, we have 

The difi"erentia1ldxl is called the element of Euclidean arc length of En. 

Exercise 1.5 

1. Let,: [a, bJ -+ X be a curve in a metric space X and let P, Q be partitions 
of [a, b] such that Q refines P. Show that f(r, P) ::; f(r, Q). 

2. Let, : [a, bJ -+ X be a rectifiable curve in a metric space X. For each t in 
[a, b], let ,a,t be the,restriction of, to [a, t]. Define a function A : [a, b] -+ IR 
by A(a) = 0 and A(t) = lIa,tl if t > a. Prove that A is continuous. 

3. Let, : [a, b] -+ X be a curve from x to y in a metric space X with x i= y. 
Prove that 111 = d(x, y) if and only if, maps [a, b] onto a geodesic segment 
joining x to y and d(x,,(t)) is an increasing function of t. 

4. Let , = (rl, ... , ,n) be a curve in En. Prove that , is rectifiable in En if 
and only if each of its component functions " is rectifiable in R 

5. Define,: [0,1] -+ IR by ,(0) = 0 and ,(t) = tsin (lit) if t > O. Show that, 
is a nonrectifiable curve in R 

6. Let, : [a, bJ -+ X be a curve in a metric space X. Define ,-I : [a, bJ -+ X 
by ,-let) = ,(a + b - t). Show that 11-11 = 111. 

7. Let, : [a, b] -+ X be a curve in a metric space X and let T/ : [a, bJ -+ [c, d] 
be an increasing homeomorphism. The curve ,T/-l : [c, d] -+ X is called a 
reparametenzatwn of ,. Show that liT/-II = 111· 

S. Let, : [a, b] -+ En be a C l curve. Show that, has a reparameterization, 
given by T/ : [a, bJ -+ [a, b], so that ,T/-l is a C l curve and 

Conclude that a piecewise C l curve can be reparameterized into a C l curve. 
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§1.6. Historical Notes 

§1.1. For commentary on Euclid's fifth postulate, see Heath's translation 
of Euclid's Elements [118]. Gauss's correspondence and notes on non­
Euclidean geometry can be found in Vol. VIII of his Werke [150]. For a 
translation of Gauss's 1824 letter to Taurinus, see Greenberg's 1974 text 
Euclidean and non-Euclidean Geometries [166]. A German translation of 
Lobachevsky's 1829-1830 Russian paper On the principles of geometry can 
be found in Engel's 1898 treatise N. 1. Lobatschefskij [262]. Bolyai's 1832 
paper Scientiam spatzi absolute veram exhzbens, with commentary, can be 
found in the 1987 translation Appendix [51]. Hyperbolic geometry is also 
called Lobachevskian geometry. 

For the early history of non-Euclidean geometry, see Bonola's 1912 
treatise Non-Euclidean Geometry [52]. See also Gray's 1979 article Non­
Euclidean geometry - a re-interpretatzon [159], Gray's 1987 article The 
discovery of non-Euclidean geometry [161]' Milnor's 1982 article Hyper­
bolic geometry: the first 150 years [290], and Houzel's 1992 article The 
bzrth of non-Euclzdean geometry [200]. A comprehensive history of non­
Euclidean geometry can be found in Rosenfeld's 1988 treatise A History of 
Non-Euclzdean Geometry [353]. For a list of the early literature on non­
Euclidean geometry, see Sommerville's 1970 Bibliography of Non-Euclzdean 
Geometry [377]. 

For an explanation of the duality between spherical and hyperbolic ge­
ometries, see Chapter 5 of Helgason's 1978 treatise Differentzal Geometry, 
Lie Groups, and Symmetrzc Spaces [188]. The intrinsic curvature of a 
surface was formulated by Gauss in his 1828 treatise Dzsquzsitiones gen­
erales circa superficies curvas. For a translation, with commentary, see 
Dombrowski's 1979 treatise 150 years after Gauss' "disquisitzones generales 
circa superficies curvas" [148]. Commentary on Gauss's treatise and the 
derivation of Formula 1.1.1 can be found in Vol. II of Spivak's 1979 treatise 
Differential Geometry [378]. The tractroid was shown to have constant neg­
ative curvature by Minding in his 1839 paper Wie szch entscheiden liifst, 
ob zwei gegebene krumme Fliichen auf einander abwickelbar sind oder nicht 
[292]. 

§1.2. Beltrami introduced the projective disk model of the hyperbolic 
plane in his 1868 paper Saggio di interpetrazione della geometria non­
euclidea [38]. In this paper, Beltrami concluded that the intrinsic geom­
etry of a surface of constant negative curvature is non-Euclidean. Klein's 
interpretation of hyperbolic geometry in terms of projective geometry ap­
peared in his 1871 paper Ueber die sogenannte Nzcht-Euklidische Geometrie 
[224J. In this paper, Klein introduced the term hyperbolzc geometry. Bel­
trami introduced the conformal disk and upper half-plane models of the 
hyperbolic plane in his 1868 paper Teorza fondamentale degli spazzi dz cur­
vatura costante [39]. The mathematical basis of Escher's circle prints is 
explained in Coxeter's 1981 article Angels and devzls [94]. See also the 
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proceedings of the 1985 M. C. Escher congress M. C. Escher: Art and 
Sczence [117]. Poincare identified the linear fractional transformations of 
the complex upper half-plane with the congruence transformations of the 
hyperbolic plane in his 1882 memoir Theorze des groupes fuchsiens [330]. 
Hilbert's nonimbedding theorem for smooth complete surfaces of constant 
negative curvature appeared in his 1901 paper Ueber Fliichen von constan­
ter Gaussscher Kriimmung [190]. For a proof of Hilbert's nonimbedding 
theorem for C2 surfaces, see Milnor's 1972 paper Efimov's theorem about 
complete zmmersed surfaces of negative curvature [291]. 

§1.3. The study of n-dimensional geometry was initiated by Cayley in 
his 1843 paper Chapters in the analytical geometry of (n) dimenswns [74]. 
Vectors in n-dimensions were introduced by Grassmann in his 1844 trea­
tise Die lzneale Ausdehnungslehre [156]. The Euclidean inner product ap­
peared in Grassmann's 1862 revision of the Ausdehnungslehre [157], [158]. 
The Euclidean norm of an n-tuple of real numbers and Cauchy's inequality 
for the Euclidean inner product appeared in Cauchy's 1821 treatise Cours 
d'Analyse [71]. Formula 1.3.3 appeared in Schliifli's 1858 paper On the 
multiple integral I dxdy ... dz [360]. The triangle inequality is essentially 
Proposition 20 in Book I of Euclid's Elements [118]. The Euclidean dis­
tance between points in n-dimensional space was defined by Cauchy in his 
1847 paper Memoire sur les lieux analytiques [73]. The early history of n­
dimensional Euclidean geometry can be found in Rosenfeld's 1988 treatise 
[353]. For the history of vectors, see Crowe's 1967 treatise A History of 
Vector Analyszs [97]. 

The notion of a metric was introduced by Frechet in his 1906 paper Sur 
quelques poznts du calcul fonctionnel [137]. Metric spaces were defined by 
Hausdorff in his 1914 treatise Grundziige der Mengenlehre [181]. Orthog­
onal transformations in n-dimensions were first considered implicitly by 
Euler in his 1771 paper Problema algebrazcum ob affectiones prorsus szngu­
lares memorabzle [124]. Orthogonal transformations in n-dimensions were 
considered explicitly by Cauchy in his 1829 paper Sur l'equatwn a l'azde de 
laquelle on determine les znegaZztes seculazres des mouvements des planetes 
[72]. The term orthogonal transformation appeared in Schliifli's 1855 paper 
Reduction d'une integrale multiple, quz comprend l'arc de cercle et l'azre du 
triangle spherique comme cas particuZzers [359]. The term group was intro­
duced by Galois in his 1831 paper Memoire sur les condztwns de resolubzlite 
des equatwns par radicaux [146], which was published posthumously in 
1846. The group of rotations of Euclidean 3-space appeared in Jordan's 
1867 paper Sur les groupes de mouvements [205]. For the early history 
of group theory, see Wussing's 1984 history The Genesis of the Abstract 
Group Concept [418]. 

All the essential material in §1.3 in dimension three appeared in Euler's 
1771 paper [124] and in his 1776 paper Formulae generales pro trans la­
tione quacunque corporum rigidorum [126]. See also Lagrange's 1773 pa­
pers Nouvelle solutwn du probleme du mouvement de rotatwn [249] and 



§1.6. Historical Notes 35 

Sur l'attractzon des spMrozdes elliptiques [250]. The group of orientation 
preserving isometries of Euclidean 3-space appeared in Jordan's 1867 paper 
[205]. The group of similarities of Euclidean n-space appeared in Klein's 
1872 Erlanger Program [226]. For commentary on Klein's Erlanger Pro­
gram, see Hawkins' 1984 paper The Erlanger Programm of Felix Klein 
[185], Birkhoff and Bennett's 1988 article Felzx Klem and hzs "Erlanger 
Programm" [48], and Rowe's 1992 paper Klein, Lie, and the "Erlanger Pro­
gramm" [354]. Isometries of Euclidean n-space were studied by Jordan in 
his 1875 paper Essai sur la geometrze it n dzmenszons [207]. For an overview 
of the development of geometry and group theory in the nineteenth century, 
see Klein's 1928 historical treatise Development of Mathematzcs m the 19th 
Century [238] and Yaglom's 1988 monograph Felzx Klem and Sophus Lie 
[420]. 

§1.4. The hypothesis that a line segment is the shortest path between 
two points was taken as a basic assumption by Archimedes in his third 
century B.C. treatise On the sphere and cylmder [23]. The concept of 
a geodesic arose out of the problem of finding a shortest path between 
two points on a surface at the end of the seventeenth century. Euler first 
published the differential equation satisfied by a geodesic on a surface in 
his 1732 paper De lmea brevisszma in superjicie quacunque duo quaelzbet 
puncta Jungente [119]. For the history of geodesics, see Stackel's 1893 
article Bemerkungen zur Geschichte der geodiitzschen Lmzen [379]. The 
general theory of geodesics in metric spaces can be found in Busemann's 
1955 treatise The Geometry of Geodeszcs [63]. 

§1.5. Archimedes approximated the length of a circle by the perimeters 
of inscribed and circumscribed regular polygons in his third century B.C. 
treatise On the Measurement of the Circle [23]. Latin translation of the 
works of Archimedes and Apollonius in the Middle Ages and the introduc­
tion of analytic geometry by Fermat and Descartes around 1637 spurred 
the development of geometric techniques for finding tangents and quadra­
tures of plane curves in the first half of the seventeenth century. This led 
to a series of geometric rectifications of curves in the middle of the seven­
teenth century. In particular, the first algebraic formula for the length of 
a nonlinear curve, y2 = x 3 , was found independently by Neil, van Heuraet, 
and Fermat around 1658. In the last third of the seventeenth century, cal­
culus was created independently by Newton and Leibniz. In particular, 
they discovered the element of Euclidean arc length and used integration 
to find the length of plane curves. For a concise history of arc length, see 
Boyer's 1964 article Early rectzjications of curves [57]. A comprehensive 
history of arc length can be found in Traub's 1984 thesis The Development 
of the Mathematzcal Analysis of Curve Length from Archzmedes to Lebesgue 
[391]. All the essential material in §1.5 appeared in VoLl of Jordan's 1893 
treatise Cours d'Analyse [210]. Arc length in metric spaces was introduced 
by Menger in his 1930 paper Zur Metrik der Kurven [286]. For the general 
theory of arc length in metric spaces, see Busemann's 1955 treatise [63]. 



CHAPTER 2 

Spherical Geometry 

In this chapter, we study spherical geometry. In order to emphasize the 
duality between spherical and hyperbolic geometries, a parallel develop­
ment of hyperbolic geometry will be given in Chapter 3. In many cases, 
the arguments will be the same except for minor changes. As spherical 
geometry is much easier to understand, it is advantageous to first study 
spherical geometry before taking up hyperbolic geometry. We begin by 
studying spherical n-space. Elliptic n-space is considered in Section 2.2. 
Spherical arc length and volume are studied in Sections 2.3 and 2.4. The 
chapter ends with a section on spherical trigonometry. 

§2.1. Spherical n-Space 

The standard model for n-dimensional spherical geometry is the unit sphere 
sn of jRn+l defined by 

sn = {x E jRn+l : Ixl = 1}. 

The Euclzdean metrzc dE on sn is defined by the formula 

dE(x, y) = Ix - yl· (2.1.1) 

The Euclidean metric on sn is sufficient for most purposes, but it is not 
intrinsic to sn, since it is defined in terms of the vector space structure 
of jRn+l. We shall define an intrinsic metric on sn, but first we need to 
review cross products in jR3. 

Cross Products 

Let x, y be vectors in jR3. The cmss pmduct of x and y is defined to be 

x x y = (X2Y3 - X3Y2, X3Yl - XIY3, XIY2 - X2Yl). (2.1.2) 

The proof of the next theorem is routine and is left to the reader. 

36 
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Theorem 2.1.1. Ijw,x,y,z are vectors in IR3 , then 

(1) x x y = -y x x, 

Xl X2 X3 

(2) (x x y) . z = YI Y2 Y3 

Zl Z2 Z3 

(3) (x x y) x z = (x· z)y - (y. z)x, 

1 X· z x·w 

I· (4) (x x y) . (z x w) = 
y·w y·z 

Let x, y, z be vectors in IR3. The real number (x x y) . z is called the 
scalar triple product of x, y, z. It follows from Theorem 2.1.1(2) that 

(x x y) . z = (y x z)· x = (z x x) . y. (2.1.3) 

Thus, the value of the scalar triple product of x, y, z remains unchanged 
when the vectors are cyclically permuted. Consequently 

(x x y) . x = (x x x) . y = 0 

and 
(x x y) . y = (y x y) . x = o. 

Hence x x y is orthogonal to both x and y. It follows from Theorem 2.1.1 
(4) and Formula 1.3.3 that if x and yare nonzero, then 

Ix x yl = Ixllyl sinB(x, y), (2.1.4) 

where B(x, y) is the Euclidean angle between x and y. 
Let A be in 0(3). Then a straightforward calculation shows that 

A(x x y) = (detA)(Ax x Ay). (2.1.5) 

In particular, a rotation of IR3 preserves cross products. Consequently, the 
direction of x x y relative to x and y is given by the right-hand rule, since 
el x e2 = e3. 

The Spherical Metric 

Let x, y be vectors in sn and let B( x, y) be the Euclidean angle between 
x and y. The spherical distance between x and y is defined to be the real 
number 

ds(x, y) = B(x, y). (2.1.6) 

Note that 
o ~ ds(x,y) ~ 7r 

and ds(x, y) = 7r if and only if y = -x. Two vectors x, y in sn are said to 
be antipodal if and only if y = -x. 
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Theorem 2.1.2. The sphencal distance functwn dB is a metnc on sn. 

Proof: The function dB is obviously nonnegative, nondegenerate, and 
symmetric. It remains only to prove the triangle inequality. The orthog­
onal transformations of lR,nH act on sn and obviously preserve spherical 
distances. Thus, we are free to transform x, y, z by an orthogonal trans­
formation. Now the three vectors x, y, z span a vector subspace of lR,nH of 
dimension at most three. By Theorem 1.3.4, we may assume that x, y, z 
are in the subspace of lR,n+l spanned by el, e2, e3. In other words, we may 
assume that n = 2. Then we have 

cos(O(x, y) + O(y, z)) 

cos O(x, y) cos O(y, z) - sin O(x, y) sin O(y, z) 

(x· y)(y . z) - Ix x ylly x zl 
< (x· y)(y. z) - (x x y) . (y x z) 

(x· y)(y. z) - ((x· y)(y. z) - (x· z)(y· y)) 

x·z 

cosO(x, z). 

Thus, we have that O(x, z) :::; O(x, y) + O(y, z). o 

The metric dB on sn is called the spherical metnc. The metric topology 
of sn determined by dB is the same as the metric topology of sn determined 
by dE. The metric space consisting of sn together with its spherical metric 
dB is called spherical n-space. Henceforth sn will denote spherical n-space. 
An isometry from sn to itself is called a sphencal isometry. 

Remark: A function ¢ : sn ---+ sn is an isometry if and only if it is 
an isometry with respect to the Euclidean metric on sn because of the 
following identity on sn: 

1 2 
X • Y = 1 - -Ix - yl . 

2 

Theorem 2.1.3. Every orthogonal transformation oflR,nH restncts to an 
zsometry of sn, and every isometry of sn extends to a unique orthogonal 

transformation of lR,nH . 

Proof: Clearly, a function ¢ : sn ---+ sn is an isometry if and only if 
it preserves Euclidean inner products on sn. Therefore, an orthogonal 
transformation of lR,nH restricts to an isometry of sn. The same argument 
as in the proof of Theorem 1.3.2 shows that an isometry of sn extends to 
a unique orthogonal transformation of lR,n+l. 0 

Corollary 1. The group of spherical zsometnes I(sn) is zsomorphic to the 

orthogonal group O(n + 1). 
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Spherical Geodesics 

Definition: A great czrcle of sn is the intersection of sn with a 2-
dimensional vector subspace of ~n+l. 

Let x and y be distinct points of sn. If x and yare linearly independent, 
then x and y span a 2-dimensional subspace V(x, y) of jRn+l, and so the 
set S(x, y) = sn n V(x, y) is the unique great circle of sn containing both 
x and y. If x and yare linearly dependent, then y = -x. Note that if 
n > 1, then there is a continuum of great circles of sn containing both x 
and -x, since every great circle of sn containing x also contains -x. 

Definition: Three points x, y, z of sn are sphencally collznear if and only 
if there is a great circle of sn containing x, y, z. 

Lemma 1. If x, y, z are zn sn and 

e(x, y) + e(y, z) = e(x, z), 

then x, y, z are spherically collznear. 

Proof: As x, y, z span a vector subspace of jRn+l of dimension at most 3, 
we may assume that n = 2. From the proof of Theorem 2.1.2, we have 

(x x y) . (y x z) = Ix x ylly x zI. 
Hence x x y and y x z are linearly dependent by Theorem 1.3.1. Therefore 
(x x y) x (y x z) = O. As 

(x x y) x (y x z) = (x· (y x z))y, 
we have that x, y, z are linearly dependent by Theorem 2.1.1(2). Hence 
x, y, z lie on a 2-dimensional vector subspace of jRn+l and so are spherically 
collinear. D 

Theorem 2.1.4. Let a : [a, b] ---+ sn be a curve wzth b - a <?T. Then the 
followzng are equzvalent: 

(1) The curve a zs a geodeszc arc. 

(2) There are orthogonal vectors x, y zn sn such that 

a(t) = (cos(t - a))x + (sin(t - a))y. 

(3) The curve a satzsjies the dzfferentwl equatzon a" + a = O. 

Proof: Let A be an orthogonal transformation of jRn+l. Then we have 
that (Aa)' = Aa'. Consequently a satisfies (3) if and only if Aa does. 
Hence we are free to transform a by an orthogonal transformation. Suppose 
that a is a geodesic arc. Let t be in the interval [a, b]. Then we have 

e(a(a), a(b)) b - a 

(t-a)+(b-t) 

e(a(a), a(t)) + e(a(t), a(b)). 
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By Lemma 1, we have that a(a), a(t), a(b) are spherically collinear. As 

O(a(a), a(b)) = b - a < 71", 

the points a(a) and a(b) are not antipodal. Hence a(a) and a(b) lie on a 
unique great circle S of sn. Therefore, the image of a is contained in S. 
Hence, we may assume that n = 1. By applying a rotation of the form 

( c~ss -sins) 
sms coss 

we can rotate a(a) to ell so we may assume that a(a) = el. Then 

el . a(t) = a(a) . a(t) = cosO(a(a), a(t)) = cos(t - a). 

Therefore e2 • a(t) = ± sin(t - a). As a is continuous and b - a < 71", we 
have that either 

sin(t - a) for all t 
or 

- sin(t - a) for all t. 

In the latter case, we can apply the reflection 

and so we may assume that 

a(t) = (cos(t - a))el + (sin(t - a))e2. 

Thus (1) implies (2). 
Next, suppose there are orthogonal vectors x, yin sn such that 

a(t) = (cos(t - a))x + (sin(t - a))y. 

Let sand t be such that a ~ s ~ t ~ b. Then we have 

cosO(a(s),a(t)) = a(s)·a(t) 
= cos(s - a) cos(t - a) + sin(s - a) sin(t - a) 

= cos(t - s). 

As t - s < 71", we have that O(a(s), a(t)) = t - s. Thus a is a geodesic arc. 
Hence (2) implies (1). 

Clearly (2) implies (3). Suppose that (3) holds. Then 

a(t) = cos(t - a)a(a) + sin(t - a)a'(a). 

Upon differentiating the equation a(t) ·a(t) = 1, we see that a(t) ·a'(t) = O. 
Thus a(t) and a'(t) are orthogonal for all t. In particular, a(a) and a'(a) 
are orthogonal. Observe that 

la(tW = cos2(t - a) + sin2 (t - a)la'(a)12. 

As la(t)1 = 1, we have that la'(a)1 = 1. Thus (3) implies (2). o 

The next theorem follows easily from Theorem 2.1.4. 
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Theorem 2.1.5. A functwn >. : lR --+ sn is a geodesic lzne if and only if 
there are orthogonal vectors x, y zn sn such that 

>.(t) = (cost)x + (sint)y. 

Corollary 2. The geodesics of sn are zts great circles. 

Exercise 2.1 

1. Show that the metric topology of sn determined by the spherical metric is 
the same as the metric topology of sn determined by the Euclidean metric. 

2. Let A be a real n x n matrix. Prove that the following are equivalent: 

(1) A is orthogonal. 

(2) IAxl = Ixl for all x in lR.n . 

(3) A preserves the quadratic form f(x) = xi + ... + x~. 

3. Show that every matrix in SO(2) is of the form 

( 
cose 
sine 

- Sine) 
cose . 

4. Show that a curve a : [a, b] --> sn is a geodesic arc if and only if there are 
orthogonal vectors x, yin sn such that 

aCt) = (cos(t - a))x + (sin(t - a))y and b - a::; 7r. 

Conclude that sn, with n > 0, is geodesically connected but not geodesically 
convex. 

5. Prove Theorem 2.1.5. Conclude that sn is geodesically complete. 

6. A great m-sphere of sn is the intersection of sn with an (m + 1 )-dimensional 
vector subspace of lR.n+1 . Show that a subset X of sn, with more than one 
point, is totally geodesic if and only if X is a great m-sphere of sn for some 
m>O. 

7. Let Uo, ... ,Un be linearly independent vectors in sn, let Vo, ... ,Vn be linearly 
independent vectors in sn, and suppose that e( u,' uJ ) = e( v,, vJ ) for all i, j. 
Show that there is a unique isometry ¢ of sn such that ¢(u,) = v, for each 
z = 0, ... ,no 

8. Prove that every similarity of sn is an isometry. 

9. A tangent vector to sn at a point x of sn is defined to be the derivative 
at 0 of a differentiable curve, : [-b, b] --> sn such that ,(0) = X. Let 
Tx = Tx(sn) be the set of all tangent vectors to sn at x. Show that 

Tx = {y E lR.n +1 : x . y = O}. 

Conclude that Tx is an n-dimensional vector subspace of lR.n +1 • The vector 
space Tx is called the tangent space of sn at X. 
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10. A coordmate frame of sn is an-tuple (Al, ... , An) of functions such that 

(1) the function A, : :IE. --> sn is a geodesic line for each i = 1, ... ,nj 

(2) there is a point x of sn such that A,(O) = x for all ij and 

(3) the set {A~(O), ... , A~(O)} is an orthonormal basis of Tx(sn). 

Show that the action of I(sn) on the set of coordinate frames of sn, given 
by ¢(Al, ... ,An) = (¢Al, ... ,¢An), is transitive. 

§2.2. Elliptic n-Space 

The antipodal map a: jRn+l ---. jRn+l, defined by a(x) = -x, obviously 
commutes with every orthogonal transformation of IRn+l; consequently, 
spherical geometry is antipodally symmetric. The antipodal symmetry of 
spherical geometry leads to a duplication of geometric information. For 
example, if three great circles of S2 form the sides of a spherical triangle, 
then they also form the sides of the antipodal image of the triangle. See 
Figure 2.5.3 for an illustration of this duplication. 

The antipodal duplication in spherical geometry is easily eliminated by 
identifying each pair of antipodal points x, -x of sn to one point ±x. The 
resulting quotient space is called real projective n-space. pn The spherical 
metric ds on sn induces a metric dp on pn defined by 

dp(±x, ±y) = min{ds(x, y), ds(x, -y)}. (2.2.1) 

Notice that dp(±x, ±y) is just the spherical distance from the set {x, -x} 
to the set {y, -y} in sn. The metric space consisting of pn and the metric 
dp is called elliptzc n-space. The lines (geodesics) of pn are the images of 
the geodesics of sn with respect to the natural projection 'T] : sn ---. pn. As 
'T] is a double covering, each line of pn is a circle that is double covered by 
a great circle of sn. Elliptic geometry, unlike spherical geometry, shares 
with Euclidean geometry the property that there is a unique line passing 
through each pair of distinct points. 

Gnomonic Projection 

Identify jRn with jRn x {O} in jRn+l. The gnomonic projection 

v : IRn ---. sn 

is defined to be the composition of the vertical translation of jRn by en+l 
followed by radial projection to sn. See Figure 2.2.1. An explicit formula 

for v is given by 
v(x) = x + en+l (2.2.2) 

ix+en+li 
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o x 

F · re 22 1 The gnomonic proJ'ection v of IR into S1 19U .•. 

The function v maps ]Rn bijectively onto the upper hemisphere of sn. 
Hence, the function T/V : ]Rn ---+ pn is an injection. The complement of 
T/v(]Rn) in pn is pn-l, which corresponds to the equator of sn with an­
tipodal points identified. 

Classical real projective n-space is the set 

jRn =]Rn U pn-l 

with pn-l adjoined to ]Rn at infinity. In jRn, a point at infinity in pn-l is 
adjoined to each line of]Rn forming a finite line. Two finite lines intersect if 
and only if they intersect in ]Rn or they are parallel in ]Rn, in which case they 
intersect at their common point at infinity. Besides the finite lines, there 
are the lines of pn-l at infinity. When n = 2, there is exactly one line at 
infinity. Classically, the real projective plane refers to the Euclidean plane 
]R2 together with one line at infinity adjoined to it so that lines intersect 
as described above. 

The injection T/V : ]Rn ---+ pn extends by the identity map on pn-l to a 
bijection lJ : jRn ---+ pn that maps the lines ofjRn to the lines of pn. Classical 
real projective n-space is useful in understanding elliptic geometry, smce 
the finite lines of jRn correspond to the lines of ]Rn. 

Exercise 2.2 

1. Prove that dp is a metric on pn. 

2. Let T/ : sn -+ pn be the natural projection. Show that if x is in sn and 
r > 0, then T/(B(x,r)) = B(T/(x),r). 

3. Show that T/ maps the open hemisphere B(x, 7r /2) homeomorphically onto 
B(T/(x),7r/2). Conclude that T/ is a double covering. 

4. Show that T/ maps B(x,7r/4) isometrically onto B(T/(x),7r/4). 

5. Prove that the geodesics of pn are the images of the great circles of sn with 
respect to T/. 
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6. Show that pI is isometric to ~ Sl . 

7. Show that the complement in p2 of an open ball B(x,r), with r < 7r/2, is a 
Mobius band. 

8. Let x be a point of p3 at a distance s > 0 from a geodesic L of p3. Show 
that there is a geodesic L' of p3 passing through x such that each point 
in L' is at a distance s from L. The geodesics Land L' are called Clifford 
parallels. 

9. Let S+ = {x E sn : X n+l > a}. Define 4> : s+ -+ ]Rn by 

Show that 4> is inverse to 1I : ]Rn -+ sn. Conclude that 1I maps ]Rn homeo­
morphically onto S+. 

10. Define an m-plane Q of pn to be the image of a great m-sphere of sn with 
respect to the natural projection 'f) : sn -+ pn. Show that the intersection 
of a corresponding m-plane Q of jRn with ]Rn is either an m-plane of En or 
the empty set, in which case Q is an m-plane at infinity in pn-l. 

§2.3. Spherical Arc Length 

In this section, we determine the element of spherical arc length of sn. 

Theorem 2.3.1. A curve 'Y : [a, b] - sn is rectifiable zn sn zf and only if 
'Y is rectzfiable zn Rn+l; moreover, the spherzcallength of'Y is the same as 

the Euclzdean length of 'Y. 

Proof: The following inequality holds for all (): 

1 - (j2 /2 S; cos () S; 1 - (}2/2 + (}4/24. 

Hence, we have that 

Let X,y be in sn. Then 

Ix - Yl2 = 2(1- cos (}(x, y)). 

Consequently 
Ix-YI 

Ix - yl S; (}(x, y) S; V1 _ (}2(X, y)/12 

As 0 S; (}(x, y) S; 7r, we have 

Ix-yl 
Ix - yl S; (}(x, y) S; V1 _ 7r2 /12 
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Let P be a partition of [a, b] and let fsb, P) and fEb, P) be the spher­
ical and Euclidean P-inscribed length of " respectively. Then we have 

f ( P) < f ( P) < fEb, P) E" - s" - VI _ 7f2/12 

Let iris and I,IE be the spherical and Euclidean length of" respectively. 
Then we have that 

I I < I I < !rIE 
, E - ,s -VI _ 7f2/12 

Therefore, is rectifiable in sn if and only if , is rectifiable in ~n+l. 
Suppose that IPI :S 8 and set 

p,b,8) = sup{Ob(s),,(t)) : It - sl :S 8}. 

Then we have that 
f ( P) < fEb, P) 
s " - V1 - p,2/12 

Hence, we have that 

I I < !rIE 
, S - VI - p,2/12 

As , : [a, b] --+ sn is uniformly continuous, p,(" 8) goes to zero with 8. 
Therefore 1,ls :S I,IE. Thus !rls = !rIE. 0 

Corollary 1. The element of spherical arc length of sn is the element of 
Euclzdean arc length of ~n+l restricted to sn. 

§2.4. Spherical Volume 

Let x be a vector in ~n+l such that Xn and Xn+l are not both zero. The 
spherical coordinates (p, 01 , ... , On) of x are defined as follows: 

(1) p = lxi, 

(2) 0, = O(e2) x,e, + x'+le,+l + ... + xn+len+d if i < n, 

(3) On is the polar angle from en to Xnen + xn+len+l. 

The spherical coordinates of x satisfy the system of equations 

Xl PCOSOl, 

X2 p sin 01 cos O2 , 

Xn p sin 01 sin O2 . .. sin On-l cos On, 

Xn+l psinOl sin O2 •.• sin On-l sinOn. 

(2.4.1) 
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A straightforward calculation shows that 

(1) 
8x x 

8p lxi' (2.4.2) 

(2) 18X I . . 80, = psmOI··· smO,_I, (2.4.3) 

(3) 
8x 8x 8x 
8p' 80l ' ... '80n are orthogonal. (2.4.4) 

This implies that the Jacobian of the spherical coordinate transformation 
(p, Ol, ... , On) f--7 (Xl, ... ,xn+d is pn-l sinn- 1 Ol sinn- 2 O2 ... sin On-I. 

The spherical coordinate parameterzzation of sn is the map 

g : [0, nln-l x [O,2nl -+ sn 

defined by g(OI, ... , On) = (Xl' ... ' Xn+l), where x. is expressed in terms 
of Ol, ... , On by the system of Equations (2.4.1). The map g is surjective, 
and injective on the open set (0, n)n-l x (O,2n). 

A subset X of sn is said to be measurable in sn if and only if g-I(X) is 
measurable in lRn. In particular, all the Borel subsets of sn are measurable 
in sn. If X is measurable in sn, then the spherical volume of X is defined 
to be 

Vol (X) = 1 sinn- l 01 sinn- 2 O2 ... sinOn_IdOl··· dOn. 
g-l(X) 

(2.4.5) 

The motivation for Formula 2.4.5 is as follows: Subdivide the rectangular 
solid [0, nln-l x [O,2nl into a rectangular grid. Each grid rectangular solid 
of volume !:iOI ... !:iOn that meets g-I(X) corresponds under g to a region 
in sn that meets X. This region is approximated by the rectangular solid 
spanned by the vectors g:l !:i01 ,· .. , gl!:iOn . Its volume is given by 

I ~!:iOll· . ·18g !:iOn I = sinn- l Ol sinn- 2 O2 . .. sin On-l!:i0l ... !:iOn· 
801 80n 

As the mesh of the subdivision goes to zero, the sum of the volumes of the 
approximating rectangular solids approaches the volume of X as a limit. 

Let X be a measurable subset of sn and let ¢ be an orthogonal trans­
formation of lRn+l. It is a basic fact of advanced calculus that ¢(X) is 
also measurable in sn, and the volume of ¢(X) can be measured with re­
spect to the new parameterization ¢g of sn. As ¢ maps the rectangular 
solid spanned by the vectors g:l !:i01 , ... , it !:iOn onto the rectangular solid 

spanned by the vectors ~:~ !:i01 ,· .. , ~t: !:iOn, we deduce that 

Vol(¢(X)) = Vol(X). 

In other words, spherical volume is an isometry-invariant measure on sn. 
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It is clear from Formula 2.4.5 that spherical volume is countably additive, 
that is, if {X'}~l is a sequence of disjoint measurable subsets of sn, then 

00 

X = U X, is also measurable in sn and 
,=1 

00 

Vol (X) = L Vol(X,). 
2=1 

Theorem 2.4.1. The element of spherical volume for the upper hemi­
sphere Xn+l > 0 of sn, with respect to the Euclidean coordinates Xl, ... ,Xn , 
zs 

Proof: It is more convenient for us to show that the element of spher­
ical volume for the hemisphere Xl > 0, with respect to the coordinates 

[1- (x~ + ... + x;+l)l~' 
The desired result will then follow by a simple change of coordinates. 

Consider the transformation 

g: (0, n/2) x (0, n)n-2 x (0,2n) -+]Rn 

defined by 
g((h, ... , ()n) = (X2,"" Xn+1), 

where X 2 is given by (2.4.1). Then by (2.4.4), the vectors tl, ... , !1l are 
orthogonal. Hence, the Jacobian of the transformation g is given by 

lag I lag I 
ael aen 

e . en- l . n-2 e . e cos 1 sm 1 sm 2'" sm n-l' 

By changing variables via g, we have 

1 . n-l e . n-2 e . e de sm 1 sm 2'" sm n-l 1'" den 
g-l(X) 

where p : sn -+ ]Rn is the projection 

P(Xl"" Xn+l) = (X2,"" Xn+l). o 
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Exercise 2.4 

1. Show that the spherical coordinates of a vector x in ]Rn+1 satisfy the system 
of Equations (2.4.1). 

2. Show that the spherical coordinate transformation satisfies the Equations 
(2.4.2)-(2.4.4). 

3. Show that the element of spherical arc length dx in spherical coordinates is 
given by 

d 2 d02 + . 2 0 d02 • 2 0 . 2 0 2 X = 1 sm 1 2 + ... + sm 1· .. sm n-ldOn. 

4. Let B (x, r) be the spherical disk centered at a point x of 8 2 of spherical 
radius r. Show that the circumference of B(x,r) is 27rsinr and the area of 
B(x, r) is 27r(1-cosr). Conclude that B(x, r) has less area than a Euclidean 
disk of radius r. 

5. Show that 

(1) 

(2) 
2n+1 n 

Vol(82n ) = 7r . 
(2n - 1)(2n - 3)···3·1 

§2.5. Spherical Trigonometry 

Let x, y, z be three spherically noncollinear points of 8 2 • Then no two of 
x, y, z are antipodal. Let 8(x, y) be the unique great circle of 8 2 containing 
x and y, and let H(x, y, z) be the closed hemisphere of 8 2 with 8(x, y) as its 
boundary and z in its interior. The spherical tT'tangle with vertices x, y, z 
is defined to be 

T(x, y, z) = H(x, y, z) n H(y, z, x) n H(z, x, y). 

We shall assume that the vertices of T(x, y, z) are labeled in positive order 
as in Figure 2.5.l. 

Let [x, y] be the minor arc of 8(x, y) joining x to y. The s2des ofT(x, y, z) 
are defined to be [x,yl, [y,zl, and [z,x]. Let a = (}(y,z), b = (}(z, x), and 
c = (}(x, y). Then a, b, c is the length of [y, zl, [z, x], [x, yl, respectively. Let 

f : [0, a] --t 8 2 , g: [0, b] --t 8 2 , h: [0, c] --t 8 2 

be the geodesic arc from y to z, z to x, and x to y, respectively. 
The angle 0: between the sides [z, x] and [x, y] is defined to be the angle 

between -g'(b) and h'(O). Likewise, the angle (3 between the sides [x, y] and 
[y, z] is defined to be the angle between -h'(c) and 1'(0), and the angle "/ 
between the sides [y, z] and [z, x] is defined to be the angle between - I' ( a ) 
and g' (0) . The angles 0:, (3, "/ are called the angles of T (x, y, z). The side 
[y, zl, [z, x], [x, y] is said to be opposite the angle 0:, (3, ,,/, respectively. 
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y 

j3 

c 

z x 

b 

Figure 2.5.1. A spherical triangle T(x, y, z) 

Lemma 1. If 0:, j3, "Yare the angles of a spherical trzangle T(x, y, z), then 

(1) e(z x x, x x y) = 7f - 0:, 

(2) e(x x y, y x z) = 7f - j3, 

(3) e(y x z, z x x) = 7f - "Y. 

Proof: The proof of (1) is evident from Figure 2.5.2. The proof of (2), 
and (3), is similar. 0 

-g'(b) h'(O) 

Figure 2.5.2. Four vectors on the tangent plane Tx with 0: < 7f /2 
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Theorem 2.5.1. If a, (3, "( are the angles of a spherical trzangle, then 

a+(3+,,(>1L 

Proof: Let a, (3, "( be the angles of a spherical triangle T(x, y, z). Then 

((x x y) x (z x y)) . (z x x) 
[(x· (z x y))y - (y. (z x y))x]· (z x x) 
(x· (z x y))(y. (z x x)) 
-(y. (z X x))2 

< o. 
By Theorem 2.1.1(2), the vectors x x y, z x y, z x x are linearly independent, 
and so their associated unit vectors are spherically noncollinear. By Lemma 
1 of §2.1, we have 

O(x x y, z x x) < O(x x y, z x y) + O(z x y, z x x). 

Now by Lemma 1, we have 

7f - a < (3 + "(. o 

Theorem 2.5.2. (The Law of Sines) If a, (3, "( are the angles of a spherzcal 
trzangle and a, b, c are the lengths of the opposite szdes, then 

sin a sin b sin c 
sin a sin (3 sin "( 

Proof: Upon taking norms of both sides of the equations 

(z x x) x (x x y) = (z· (x x y))x, 

we find that 

(x x y) x (y x z) = (x· (y x z))y, 

(y x z) x (z x x) = (y. (z x x))z, 

sinbsincsina = x· (y x z), 

sin c sin a sin (3 = x . (y x z), 

sina sin bsin"( = x· (y x z). o 

Theorem 2.5.3. (The First Law of Cosines) If a, (3, "( are the angles of a 
spherical triangle and a, b, c are the lengths of the opposzte szdes, then 

Proof: Since 

we have that 

cos c - cos acos b 
cos"( = 

sinasinb 

I y. x y. z I 
(y x z) . (x x z) = x . z z. z ' 

sin a sin bcos "( = cosc - cosacosb. o 
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Let T( x, y, z) be a spherical triangle. By the same argument as in the 
proof of Theorem 2.5.1, the vectors z x x, x x y, y x z are linearly indepen­
dent, and so the associated unit vectors are spherically noncollinear. The 
spherical triangle 

, (YXZ zxx XX y ) 
T = T Iy x zl' Iz x xl' Ix x yl (2.5.1) 

is called the polar triangle of T(x, y, z). Let a', b', c' be the lengths of the 
sides of T' and let a', (3', "I' be the opposite angles. By Lemma 1, we have 

a' = 7f - a, b' = 7f - (3, c' = 7f - "I. 

As T(x, y, z) is the polar triangle of T', we have 

a' = 7f - a, (3' = 7f - b, "I' = 7f - c. 

sin a sin (3 

Proof: By the first law of cosines applied to the polar triangle, we have 

( ) _ cos(7f - "I) - cos(7f - a) cos(7f - (3) 
COS7f-C - . ). . 

sm(7f - a sm(7f - (3) o 

Area of Spherical Triangles 

A lune of 8 2 is defined to be the intersection of two distinct, nonopposite 
hemispheres of 8 2 • Any lune of 8 2 is congruent to a lune L(a) defined in 
terms of spherical coordinates (¢, 0) by the inequalities 0 ~ 0 ~ a. Here 
a is the angle formed by the two sides of L(a) at each of its two vertices. 
See Figure 2.5.3. By Formula 2.4.5, we have 

Area(L(a» = 100: 107r 
sin¢d¢dO = 20.. 

As L(7f /2) is a quarter-sphere, the area of 8 2 is 47f. 

Theorem 2.5.5. If a, (3, "I are the angles of a spherical triangle T, then 

Area(T) = (a + (3 + "I) - 7f. 

Proof: The three great circles extending the sides of T subdivide 8 2 into 
eight triangular regions which are paired off antipodally. Two of the regions 
are T and - T, and the other six regions are labeled A, - A, B, - B, C, -C 
in Figure 2.5.4. Any two of the sides of T form a lune with angle a, (3, or 
"I. The lune with angle a is the union of T and A. Hence, we have 

Area(T) + Area(A) = 20.. 
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\ 
\ 
\ 
\ 
I 
I 
I 

Figure 2.5.3. A lune £(00) of 8 2 

Likewise, we have that 

Area(T) + Area(B) = 2(3, 

Area(T) + Area( C) = 2')'. 

Adding these three equations and subtracting the equation 

Area(T) + Area(A) + Area(B) + Area(C) = 27f 

gives Area(T) = 00+ (3 + 'Y - 7f. 

Figure 2.5.4. The subdivision of 8 2 into eight triangular regions 

o 
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Exercise 2.5 

1. Let 0;, /3, 'Y be the angles of a spherical triangle and let a, b, e be the lengths 
of the opposite sides. Show that 

(1) cos a cos b cos e + sin bsin ecos 0;, 

cos b cos a cos e + sin a sin ecos /3, 

case cos a cos b + sin a sin b cos 'Y, 

(2) coso; - cos /3 cos 'Y + sin /3 sin 'Y cos a, 

cos/3 - cos 0; cos 'Y + sin 0; sin 'Y cos b, 

cos'Y - cos 0; cos /3 + sin 0; sin /3 cos e. 

2. Let 0;, /3, 7r /2 be the angles of a spherical right triangle and let a, b, e be the 
lengths of the opposite sides. Show that 

(1) case = cosacosb, 

(2) case cot 0; cot /3, 

(3) sina sinesino;, 

sin b sin esin /3, 

(4) coso; tanbcot e, 

cos/3 tan a cot e, 

(5) sina tan b cot /3, 

sin b tanacot 0;, 

(6) coso; cos a sin /3, 

cos /3 cosbsino;. 

3. Let 0;, /3, 'Y be the angles of a spherical triangle such that 0;, /3, 'Y ::; 7r /2 and 
let a, b, e be the lengths of the opposite sides. Prove that a, b, e ::; 7r /2 and 
that a ::; b ::; e if and only if 0; ::; /3 ::; 'Y. 

4. Let 0;, /3, 7r /2 be the angles of a spherical right triangle, and let a, b, e be 
the lengths of the opposite sides. Prove that 0;, /3 < 7r /2 if and only if 
a,b,e<7r/2. 

5. Prove that a spherical triangle is equilateral if and only if it is equiangular. 

6. Let T(x, y, z) be a spherical triangle labeled as in Figure 2.5.1 such that 
0;, /3 < 7r /2. Prove that a or b < 7r /2 and that the point on the great circle 
through x and y nearest to z lies in the interior of the side [x, y]. 

7. Let 0;, /3, 'Y be real numbers in the interval (0, 7r /2] such that 0; + /3 + 'Y > 7r. 

Prove that there is a spherical triangle with angles 0;, /3, 'Y. 

8. Prove that two spherical triangles are congruent if and only if they have the 
same angles. 
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§2.6. Historical Notes 

§2.1. Spherical geometry in n-dimensions was first studied by Schliifli in his 
1852 treatise Theorie der vzelfachen Kontinuitiit [362], which was published 
posthumously in 1901. The most important results of Schliifli's treatise 
were published in his 1855 paper Reductzon d'une zntegrale multiple, qui 
comprend l'arc de cercle et l'aire du triangle spherique comme cas partzc­
ulzers [359] and in his 1858-1860 paper On the multzple integral J dxdy· .. dz 
[360], [361]. In particular, n-dimensional spheres were defined by Schliifli 
in this paper [360]. The differential geometry of spherical n-space was 
first considered by Riemann in his 1854 lecture Uber dze Hypothesen, welch 
der Geometrie zu Grunde lzegen [349], which was published posthumously 
in 1867. For a translation with commentary, see Vol. II of Spivak's 1979 
treatise Differential Geometry [378] 

The cross product appeared implicitly in Lagrange's 1773 paper Nouvelle 
solutzon du probleme du mouvement de rotatzon [249]. The cross product 
evolved in the nineteenth century out of Grassmann's outer product defined 
in his 1844 Ausdehnungslehre [156] and Hamilton's vector product defined 
in his 1844-1850 paper On Quaternions [177]. The basic properties of cross 
products, in particular, Theorem 2.1.1, appeared in Hamilton's paper On 
Quaternions [177]. The cross product was defined by Gibbs in his 1881 
monograph Elements of Vector Analysis [152]. The triple scalar product 
was defined by Hamilton in his paper On Quaternions [177]. According to 
Heath's 1921 treatise A History of Greek Mathematzcs [186], the triangle 
inequality for spherical geometry is Proposition 5 in Book I of the first 
century Sphaerica of Menelaus. That the geodesics of a sphere are its 
great circles was affirmed by Euler in his 1732 paper De linea brevissima 
in superjicie quacunque duo quaelibet puncta jungente [119]. 

§2.2. Classical real projective space was introduced by Desargues in 
his 1639 monograph Brouillon project d'une atteznte aux evenements des 
recontres du cone avec un plan [104]. Classical projective geometry was sys­
tematically developed by Poncelet in his 1822 treatise 'JIrazte des proprietes 
projectzves des jigures [341]. The metric for the elliptic plane was defined 
by Cayley in his 1859 paper A sixth memoir upon quantics [76]. Moreover, 
the idea of identifying antipodal points of a sphere to form real projective 
2-space appeared in this paper. The term elliptic geometry was introduced 
by Klein in his 1871 paper Ueber dze sogenannte Nzcht-Euklidische Geome­
trie [224]. Three-dimensional Elliptic geometry was developed by Clifford 
in his 1873 paper Prelimznary sketch of biquaternions [82] and by Newcomb 
in his 1877 paper Elementary theorems relating to the geometry of a space 
of three dzmensions and of uniform positive curvature [315]. Real projec­
tive 3-space appeared in Killing's 1878 paper Ueber zwez Raumformen mit 
constanter posztiver Kriimmung [219]. Real projective n-space appeared in 
Killing's 1885 monograph Nicht-Euklidischen Raumformen [221]. 
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§2.3. The element of spherical arc length for the unit sphere was derived 
by Euler in his 1755 paper Principes de la trigonometrie spherique tires de 
la methode des plus grands et plus petzts [120]. 

§2.4. Spherical coordinates and the element of spherical volume for the 
unit n-sphere appeared in Jacobi's 1834 paper Functwmbus homogeneis 
secundi ordinis [202] and in Green's 1835 paper On the deter'mination of 
the exterior and mterwr attractwns of ellzpsoids of variable denszties [162]. 
Moreover, the volume of an n-dimensional sphere was implicitly determined 
by Jacobi and Green in these papers. Spherical coordinates for Euclidean 
n-space appeared in SchHifli's 1858 paper [360]. For the theory of measure 
on manifolds in Euclidean n-space, see Fleming's 1977 text Functwns of 
Several Varzables [133]. 

§2.5. According to Heath's 1921 treatise A History of Greek Mathemat­
ics [186], spherical triangles first appeared in the first century Sphaerica of 
Menelaus. In Book I of the Sphaerica, the theorem that the sum of the 
angles of a spherical triangle exceeds two right angles was established. Ac­
cording to Rosenfeld's 1988 study A History of Non-Euclzdean Geometry 
[353], rules equivalent to the spherical sine and cosine laws first appeared 
in Indian astronomical works of the fifth-eighth centuries. In the ninth 
century, these rules appeared in the Arabic astronomical treatises of al­
Khowarizmi, known in medieval Europe as Algorithmus. The spherical 
law of sines was proved by Ibn Iraq and Abu 1-Wafa in the tenth century. 
The polar triangle and Lemma 1 appeared in the thirteenth century Ara­
bic treatise Disclosmg the secrets of the figure of secants by al-Tusi. The 
first law of cosines appeared in the fifteenth century treatise De triangulis 
omnimodzs libri quinque of Regiomontanus, which was published posthu­
mously in 1533. The vector proof of Theorem 2.5.3 (first law of cosines) 
was given by Hamilton in his paper On Quaternwns [177]. The second 
law of cosines appeared in Viete's 1593 treatise Variorum de rebus math­
ematiczs responsorum Mer VIII. According to Lohne's 1979 article Essays 
on Thomas Harriot [270], the formula for the area of a spherical triangle 
in terms of the angular excess and its remarkably simple proof was first 
discovered by Harriot in 1603. However, Theorem 2.5.5 was first published 
by Girard in his 1629 paper De la mesure de la superfice des triangles et 
polygones spheriques with a more complicated proof. The simple proof 
of Theorem 2.5.5 appeared in Euler's 1781 paper De mensura angulorum 
solidorum [127]. Spherical trigonometry was thoroughly developed in mod­
ern form by Euler in his 1782 paper Trigonometria sphaerica umversa ex 
przmzs prmczpiis breviter et dzlucide derzvata [128]. 



CHAPTER 3 

Hyperbolic Geometry 

We now begin the study of hyperbolic geometry. The first step is to define 
a new inner product on Iln, called the Lorentzian inner product. This leads 
to a new concept of length. In particular, imaginary lengths are possible. 
In Section 3.2, hyperbolic n-space is defined to be the positive half of the 
sphere of unit imaginary radius in Iln+!. The elements of hyperbolic arc 
length and volume are determined in Sections 3.3 and 3.4. The chapter 
ends with a section on hyperbolic trigonometry. 

§3.1. Lorentzian n-Space 

Let x and Y be vectors in Iln with n > 1. The Lorentzian inner product of 
x and y is defined to be the real number 

x 0 Y = -XIYI + X2Y2 + ... + XnYn· (3.1.1) 

The Lorentzian inner product is obviously an inner product on Iln. The 
inner product space consisting of the vector space Iln together with the 
Lorentzian inner product is called Lorentzian n-space, and is denoted by 
1l1,n-I. Sometimes it is desirable to replace the Lorentzian inner product 
on Iln by the equivalent inner product 

(x, y) = XIYI + ... + Xn-IYn-I - XnYn. (3.1.2) 
The inner product space consisting of Iln together with this new inner 
product is also called Lorentzian n-space but is denoted by Iln-I,I. For 
example, in the theory of special relativity, Il3,1 is a model for space-time. 
The first three coordinates of a vector x = (Xl, X2, X3, X4) in Il3,1 are the 
space coordinates, and the last is the time coordinate. In this chapter, 
we shall work in 1l1,n-I, and for simplicity we shall continue to use the 
notation Iln for the underlying vector space of 1l1,n-I. 

The Lorentzian norm of a vector x in Iln is defined to be the complex 

number 
Ilxll = (x 0 x)!. 

56 

(3.1.3) 
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----

Figure 3.1.1. The light cone C 2 of IR,1,2 

Here Ilxll is either positive, zero, or positive imaginary. If Ilxll is positive 
imaginary, we denote its absolute value (modulus) by Illxlll· 

The LO'f'entzian dzstance between vectors x and y in ]Rn is defined to be 
the complex number 

ddx,y) = Ilx - yll· (3.1.4) 

Note that ddx, y) is either positive, zero, or positive imaginary. The set 
of all x in ]Rn such that Ilxll = 0 is the hypercone Cn - l defined by the 
equation 

(3.1.5) 

The hypercone C n - l is called the light cone of ]Rn. See Figure 3.1.1. If 
Ilxll = 0, then x is said to be lzght-like. A light-like vector x is said to be 
positive (resp. negative) if and only if Xl > 0 (resp. Xl < 0). 

If Ilxll > 0, then x is said to be space-like. Note that x is space-like if 
and only if its coordinates satisfy the inequality 

222 
Xl < X2 + ... + x n · 

The exteNor of C n - l in ]Rn is the open subset of ]Rn consisting of all the 
space-like vectors. 

If Ilxll is imaginary, then x is said to be time-lzke. Note that x is time-like 
if and only if its coordinates satisfy the inequality 

222 
Xl > X2 + ... + Xn-

A time-like vector x is said to be posztive (resp. negatzve) if and only if 
Xl > 0 (resp. Xl < 0). The interior of C n - l in ]Rn is the open subset of]Rn 
consisting of all the time-like vectors. 
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Theorem 3.1.1. If x and yare positzve (resp. negative) time-like vectors 
in]Rn and t > 0, then 

(1) the vectortx is positive (resp. negatzve) time-like; 

(2) the vector x + y is pos2tive (resp. negatzve) time-like. 

Proof: (1) IItxll2 = t2 11xl1 2 < O. 

(2) (Xl + Y1)2 = xi + 2X1Y1 + yi 
> (x~ + ... + x~) + 2(x~ + ... + x~)! (y~ + ... + y~)! + (y~ + ... + y~) 
~ (x~ + ... + x~) + 2(X2Y2 + ... + xnYn) + (y~ + ... + y~) 
= (X2 + Y2)2 + ... + (xn + Yn)2. 0 

Corollary 1. The set of positzve (resp. negatzve) time-like vectors is a 
convex subset of]Rn. 

Proof: If x and Y are positive (resp. negative) time-like vectors in ]Rn 
and 0 < t < 1, then (1 - t)x + ty is positive (resp. negative) time-like by 
Theorem 3.1.1. 0 

Lorentz Transformations 

Definition: A function ¢ : ]Rn ---+ ]Rn is a Lorentz transformation if and 
only if 

¢(x) 0 ¢(y) = x 0 Y for all x, yin ]Rn. 

A basis {V1' ... , vn } of]Rn is said to be Lorentz orthonormal if and only 
if V1 0 V1 = -1 and v. 0 vJ = 8'J otherwise. Note that the standard basis 
{el, ... , en} of]Rn is Lorentz orthonormal. 

Theorem 3.1.2. A function ¢ : ]Rn ---+ ]Rn is a Lorentz transformation 
if and only if ¢ 2S linear and {¢( e1), ... , ¢( en)} is a Lorentz orthonormal 
basis of]Rn. 

Proof: Suppose that ¢ is a Lorentz transformation of ]Rn. Then 

¢(e1) 0 ¢(et) = e1 0 e1 = -1 

and 
¢( e.) 0 ¢( eJ ) = e. 0 eJ = 8'J otherwise. 

This clearly implies that ¢(e1), ... , ¢(en ) are linearly independent. Hence 
{¢(et}, ... , ¢(enH is a Lorentz orthonormal basis of ]Rn. 

Let x be in ]Rn. Then there are coefficients C1, ... ,Cn in ]R such that 
n 

¢(x) = Lc.¢(e.) . 
• =1 
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As {1>( e1), ... , 1>( en)} is a Lorentz orthonormal basis, we have 

-C1 1>(x) 01>(e1) x 0 e1 -Xl 

and 
xJ for j > 1. 

Then 1> is linear, since 
n n 

1>(L x ,e,) = L x ,1>(e,). 

Conversely, suppose that 1> is linear and {1>(e1),"" 1>(en )} is a Lorentz 
orthonormal basis of jRn. Then 1> is a Lorentz transformation, since 

¢(x) 0 ¢(y) = ¢ (~x.e.) 0 ¢ (t,y,e,) 
(~x.¢(e.)) 0 (t, y,¢(e,)) 
n n 

L Lx,Y,1>(e,) o1>(eJ ) 

,=1 J=l 

-X1Y1 + X2Y2 + ... + xnYn = X 0 y. 0 

A real n x n matrix A is said to be Lorentzian if and only if the associated 
linear transformation A : jRn -+ jRn, defined by A(x) = Ax, is Lorentzian. 
The set of all Lorentzian n x n matrices together with matrix multiplication 
forms a group 0(1, n - 1), called the Lorentz group of n x n matrices. By 
Theorem 3.1.2, the group 0(1, n - 1) is naturally isomorphic to the group 
of Lorentz transformations of jRn. The next theorem follows immediately 
from Theorem 3.1.2. 

Theorem 3.1.3. Let A be a real n x n matrix. Then the following are 
equivalent: 

(1) The matrtx A is Lorentzian. 

(2) The columns of A form a Lorentz orthonormal basis of jRn. 

(3) The matrix A satzsfies the equatwn AtJA = J, where 

(4) The matrtx A satisfies the equation AJAt = J. 

(5) The rows of A form a Lorentz orthonormal basis of jRn . 
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Let A be a Lorentzian matrix. As AtJA = J, we have that (detA)2 = 1. 
Thus det A = ±1. Let 80(1, n - 1) be the set of all A in 0(1, n - 1) such 
that det A = 1. Then 80(1, n-1) is a subgroup of index two in 0(1, n-1). 
The group 80(1, n - 1) is called the special Lorentz group. 

By Corollary 1, the set of all time-like vectors in ]Rn has two connected 
components, the set of positive time-like vectors and the set of negative 
time-like vectors. A Lorentzian matrix A is said to be positzve (resp. neg­
atzve) if and only if A transforms positive time-like vectors into positive 
(resp. negative) time-like vectors. For example, the matrix J is negative. 
By continuity, a Lorentzian matrix is either positive or negative. 

Let PO(1, n - 1) be the set of all positive matrices in 0(1, n - 1). Then 
PO(1, n-1) is a subgroup of index two in 0(1, n-1). The group of positive 
matrices PO(1, n - 1) is called the positzve Lorentz group. Likewise, let 
P80(1, n - 1) be the set of all positive matrices in 80(1, n - 1). Then 
P80(1,n -1) is a subgroup of index two in 80(1,n -1). The group 
P80(1, n - 1) is called the positive special Lorentz group. 

Definition: Two vectors x, Y in ]Rn are Lorentz orthogonal if and only if 
x 0 Y = O. 

Theorem 3.1.4. Let x and y be nonzero Lorentz orthogonal vectors in]Rn. 
If x is time-like, then y zs space-like. 

Proof: As x is time-like, we have that x~ > x~ + ... + x;. Hence, we have 

1 > (tx~) x12. 

As x 0 y = 0, we have that XIYI = X2Y2 + ... + XnYn' Hence 

YI = (t XtYt) xII. 
t=2 

Observe that 

IIyI1 2 -y~ + y~ + ... + y~ 

-[(t,x,y,) x,'r + t,y; 

> O. 
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Moreover, if IIyl12 = 0, then 2:~2 y; = 0, and so Yt = 0 for i = 2, ... ,n. 
As Y1 = (2:~=2 xtYt) xl 1, we have Y = O. But Y -# 0 and so IIYII > O. 0 

Definition: Let V be a vector subspace of ]Rn. Then V is said to be 

(1) tzme-like if and only if V has a time-like vector, 

(2) space-lzke if and only if every nonzero vector in V is space-like, or 

(3) light-like otherwise. 

Theorem 3.1.5. For each dimenswn m, the natural actwn ofPO(l, n-1) 
on the set of m-dzmensional time-lzke vector subspaces of]Rn is transziive. 

Proof: Let V be an m-dimensional, time-like, vector subspace of ]Rn. 
Identify]Rm with the subspace of]Rn spanned by the vectors e1, ... , em. It 
suffices to show that there is an A in PO(l, n - 1) such that A(]Rffi) = V. 
Choose a basis {U1' ... ,un} of]Rn such that U1 is a positive time-like vector 
in V and {U1, ... ,um} is a basis for V. Let W1 = uI/lllu1111. Then we have 
that W1 0 W1 = -1. Next, let V2 = U2 + (U2 0 WdW1. Then V2 is nonzero, 
since U1 and U2 are linearly independent; moreover 

W1 0 V2 = W1 0 U2 + (U2 0 W1) (W1 0 W1) = O. 

Therefore V2 is space-like by Theorem 3.1.4. Now let 

W2 v2/llv211, 
V3 U3 + (U3 0 WdW1 - (U3 0 W2)W2, 

W3 v3/llv311, 

vn Un + (Un 0 WdW1 - (Un 0 W2)W2 - ... - (Un 0 Wn-1)Wn-1, 

Wn vn/llvnll. 

Then we have that {W1' ... , Wn} is a Lorentz orthonormal basis of]Rn and 
{W1' ... ,wm } is a basis of V. Let A be the n x n matrix whose columns 
are W1,··., Wn· Then A is Lorentzian by Theorem 3.1.3, and A(]Rm) = V; 
moreover, A is positive, since A(e1) = W1 is positive time-like. 0 

Theorem 3.1.6. Let x, Y be posztive (negative) time-like vectors m ]Rn. 
Then x 0 Y ::::; Ilxllllyll wzth equality if and only if x and y aTe lmearly 
dependent. 

Proof: By Theorem 3.1.5, there is an A in PO(l, n-1) such that Ax = tel. 
As A preserves Lorentzian inner products, we can replace x and y by Ax 
and Ay. Thus, we may assume, without loss of generality, that x = X1 e1. 
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Then we have 

IIxl1 211Yl12 -xi( -yi + y~ + '" + y;J 

with equality if and only if 

xiY~ - xi(Y~ + ... + y~) 
< xiyi 

(x 0 y)2 

y~ + ... +y~ = 0, 

that is, y = Ylel. Now since 

x 0 y = -XIYl < 0, 

we have that 

x 0 Y :s: Ilxllllyll 

with equality if and only if x and yare linearly dependent. 

The Time-Like Angle between Time-Like Vectors 

o 

Let x and y be positive (negative) time-like vectors in jRn. By Theorem 
3.1.6, there is a unique nonnegative real number 7)(x, y) such that 

x 0 y = Ilxllllyll cosh 7)(x, y). (3.1.6) 

The Lorentzian time-lzke angle between x and y is defined to be 7)(x, y). 
Note that 7)(x, y) = ° if and only if x and yare positive scalar multiples of 
each other. 

Exercise 3.1 

1. Let A be a real n x n matrix. Prove that the following are equivalent: 

(1) A is Lorentzian. 

(2) IIAxl1 = Ilxll for all x in ]Rn. 

(3) A preserves the quadratic form q(x) = -xi + x~ + ... + x~. 
2. Prove algebraically that every Lorentzian n x n matrix is either positive or 

negative. 

3. Show that PO(l, n - 1) is naturally isomorphic to the p'T'O]ectwe Lorentz 
group 0(1, n - 1)/{±I}. 

4. The Lorentzwn complement of a vector subspace V of ]Rn is defined to be 

the set 
V L = {x E]Rn : x 0 y = 0 for all y in V}. 

Show that VL = J(V)1-. 

5. Let V be a vector subspace of ]Rn. Show that the following are equivalent: 
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(1) The subspace V is time-like. 

(2) The subspace VL is space-like. 

(3) The subspace V-L is space-like. 

63 

6. Let V be a vector subspace of ]Rn. Show that V is light-like if and only if 
V n C n - 1 is a line passing through the origin. 

7. Show that PO(l, n - 1) acts transitively on the hyperboloid Gn - 1 in ]Rn 
defined by the equation -xi + x~ + ... + x~ = 1. 

8. Show that PO(l, n - 1) acts transitively on 

(1) the set of m-dimensional space-like subspaces of ]Rn, and 

(2) the set of m-dimensionallight-like subspaces of]Rn. 

9. Let V be a 2-dimensional time-like subspace of ]Rn. Show that V n C n - 1 is 
the union of two lines that intersect at the origin. 

10. Let x and y be linearly independent space-like vectors in ]Rn and let V be 
the 2-dimensional vector subspace spanned by x and y. Show that 

(1) Ix 0 yl < Ilxllllyll if and only if V is space-like, 

(2) Ix 0 yl = Ilxllllyll if and only if V is light-like, 

(3) Ix 0 yl > Ilxllllyll if and only if V is time-like. 

§3.2. Hyperbolic n-Space 

Since a sphere of radius r in ~n+l is of constant curvature 1/r2 and hyper­
bolic n-space is of constant negative curvature, the duality between spher­
ical and hyperbolic geometries suggests that hyperbolic n-space should 
be a sphere of imaginary radius. As imaginary distances are possible in 
Lorentzian (n + I)-space, we should take as our model for hyperbolic n­
space the sphere of unit imaginary radius 

F n = {x E ~n+l : IIxI1 2 = -I}. 

The only problem is that the set Fn is disconnected. The set F n is a 
hyperboloid of two sheets defined by the equation 

xi - (x~ + ... + x;'+1) = 1. 

The subset of all x in F n such that Xl > 0 (resp. Xl < 0) is called the POS2-

tive (resp. negative) sheet of Fn. We get around this problem by identifying 
antipodal vectors of Fn or equivalently by discarding the negative sheet of 
Fn. The hyperboloid model Hn of hyperbolic n-space is defined to be the 
positive sheet of Fn. See Figure 3.2.1. Note that hyperbolic geometry is 
actually dual to elliptic geometry rather than spherical geometry. 
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X2 

Figure 3.2.1. The hyperboloid p2 inside 0 2 

Let x,y be vectors in Hn and let .,,(x,y) be the Lorentzian time-like 
angle between x and y. The hyperbohc distance between x and y is defined 
to be the real number 

dH(x, y) = .,,(x, y). 

As x 0 y = !lxll !lyll cosh .,,(x, y), we have the equation 

coshdH(x,y) = -xoy. 

(3.2.1) 

(3.2.2) 
We shall prove that dH is a metric on Hn, but first we need some prelimi­
nary results concerning cross products in IR3. 

Lorentzian Cross Products 

Let x, y be vectors in IR3 and let 

( 
-1 0 0) 

J= 0 1 0 . 
001 

The Lorentzian cross product of x and y is defined to be 

x&;y = J(x x y). 

Observe that 

xo(x&;y) 

yo(x&;y) 

x 0 J(x x y) = X· (x x y) = 0, 

yo J(x x y) = y. (x x y) = O. 

Hence x &; y is Lorentz orthogonal to both x and y. 

(3.2.3) 

(3.2.4) 



§3.2. Hyperbolic n-Space 65 

Lemma 1. If x, yare vectors in]R3, then x 0 y = J(y) x J(x). 

Proof: As J is an orientation reversing orthogonal transformation, we 
have that 

J(x x y) = J(y) x J(x). 

Theorem 3.2.1. Ifw,x,y,z are vectors in ]R3, then 

(1) 

(2) 

x0y = -y0x, 

1 

Xl 

(x 0 y) 0 z = YI 
Zl 

(3) x0(y0z) = (xoy)z-(zox)y, 

(4) (x0y)o(z0w) 

Proof: Observe that 

(1) x0y 

(2) (x0Y)oz 

(3) x 0 (y 0 z) 

(4) (X0y)O(Z0w) 

= 1 x ow x 0 z I. 
yow yoz 

J(y) x J(x) 
-J(x) x J(y) 
-y0x. 

J(x x y) . J(z) 
(x x y) . z. 

J(y 0 z) x J(x) 
(y x z) x J(x) 
(y. J(x))z - (z. J(x))y 
(xoy)z- (zox)y. 

J(x x y) 0 J(z x w) 
(xxy)o(zxw) 
(x x y) . J(z x w) 
(x x y) . (J(w) x J(z)) 

x·J(w) x·J(z) 
y·J(w) y·J(z) 

= 1 x 0 w x 0 z I. 
yow yoz 

o 

o 

Corollary 1. If x, yare posztwe (negative) time-lzke vectors in ]R3, then 
x0y is space-like and iix0yii = -iixiiiiyiisinhry(x,y). 
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Proof: By Theorem 3.2.1(4), we have 

Ilx Q9 Yl12 (x 0 y)2 _ IIxl1 211Yl12 

IIxl1 211Yl12 cosh2 7](x, y) - IIxl1 211Yl12 

IIxl1211Yl12 sinh2 7](x, y). 

Corollary 2. If x, yare space-like vectors m jR3, then 

(1) Ix 0 yl < IIxll Ilyll zf and only zf x Q9 y zs time-lzke, 

(2) Ix 0 yl = Ilxll Ilyll if and only if x Q9 y is lzght-lzke, 

(3) Ix 0 yl > Ilxll Ilyll zf and only zf x Q9 y is space-like. 

o 

Proof: By Theorem 3.2.1(4), we have Ilx Q9 Yl12 = (x 0 y? - Ilx11 211Y112. 0 

Theorem 3.2.2. The hyperbolic dzstance functwn dH zs a metnc on Hn. 

Proof: The function dH is obviously nonnegative and symmetric, and 
nondegenerate by Theorem 3.1.6. It remains only to prove the triangle 
inequality 

The positive Lorentz transformations of jRn+1 act on Hn and obviously 
preserve hyperbolic distances. Thus, we are free to transform x, y, z by a 
positive Lorentz transformation. Now the three vectors x, y, z span a vector 
subspace of jRn+1 of dimension at most three. By Theorem 3.1.5, we may 
assume that x, y, z are in the subspace of jRn+l spanned by el, e2, e3. In 
other words, we may assume that n = 2. By Corollary 1, we have 

Ilx Q9 yll = sinh 7](x, y) and Ily Q9 zll = sinh 7](Y, z). 

As y is Lorentz orthogonal to both x Q9 y and y Q9 z, the vectors y and 
(x Q9 y) Q9 (y Q9 z) are linearly dependent. Therefore, the latter is either zero 
or time-like. By Corollary 2, we have 

I(XQ9Y)O(YQ9z)l:S: IlxQ9yllllyQ9 z ll· 

Putting this all together, we have 

cosh(7](x, y) + 7](Y, z)) 

cosh 7](x, y) cosh 7](y, z) + sinh 7](x, y) sinh 7](y, z) 

(x 0 y)(y 0 z) + Ilx Q9 yll Ily Q9 zll 

> (x 0 y) (y 0 z) + (x Q9 y) 0 (y Q9 z) 

(x 0 y)(y 0 z) + ((x 0 z)(y 0 y) - (x 0 y)(y 0 z)) 

-XOz 

cosh 7](x, z). 

Thus, we have that 7](x, z) :s: 7](x, y) + 7](y, z). o 
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The metric dH on Hn is called the hyperbolic metric. The metric topol­
ogy of Hn determined by dH is the same as the metric topology determined 
by the Euclidean metric dE on Hn defined by 

dE(x, y) = Ix - yl. (3.2.5) 

The metric space consisting of Hn together with its hyperbolic metric dH 

is called hyperbolzc n-space. Henceforth Hn will denote hyperbolic n-space. 
An isometry from Hn to itself is called a hyperbolic zsometry. 

Theorem 3.2.3. Every positzve Lorentz transformation of ~n+l restrzcts 
to an isometry of H n, and every isometry of Hn extends to a unique posztive 
Lorentz transformatzon of ~n+1 . 

Proof: Clearly, a function ¢ : H n ----t Hn is an isometry if and only if it 
preserves Lorentzian inner products on Hn. Therefore, a positive Lorentz 
transformation of ~n+1 restricts to an isometry of Hn. 

Conversely, suppose that ¢ : Hn ----t H n is an isometry. Assume first 
that ¢ fixes el. Let ¢l, ... ,¢n+1 be the components of ¢. Then 

¢1(X) -¢(x) 0 el 

-¢(x) 0 ¢(ed 

Thus ¢(x) = (Xl, ¢2(X), ... ,¢n+l (x)). 
Let p : Hn ----t ~n be defined by p(x) = x, where x = (X2,'" ,Xn+1)' 

Then p is a bijection. Define ¢ : ~n ----t ~n by 

¢(u) = (¢2(p-I(U)), ... , ¢n+1(p-l(u))). 

Then ¢(x) = ¢(x) for all x in Hn. As ¢(x) 0 ¢(y) = x 0 y, we have 

-XlYI + ¢(x) . ¢(y) = -XIYI + X . y. 
Therefore ¢(x) . ¢(y) = x . y. Thus ¢ is an orthogonal transformation. By 
Theorem 1.3.2, there Js an orthogonal n x n matrix A such that Au = ¢( u) 
for all u in ~n. Let A be the matrix 

Then A is positive Lorentzian and Ax = ¢(x) for all x in Hn. 
Now assume that ¢ is an arbitrary isometry of Hn. By Theorem 3.1.5, 

there is a B in PO(l, n) such that B¢(ed = el. As B¢ extends to a 
positive Lorentz transformation of ~n+\ the same is true of ¢. Suppose 
that C and D are in PO(l, n) and extend ¢. Then CD- I fixes each point 
of Hn. As Hn is not contained in any proper vector subspace of ~n+l, we 
have that CD- I fixes all of ~n+l. Therefore C = D. Thus ¢ extends to a 
unique positive Lorentz transformation of ~n+l. o 
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Corollary 3. The group of hyperbolic tsometries I(Hn) is isomorphic to 
the positwe Lorentz group PO(l, n). 

Hyperbolic Geodesics 

Definition: A hyperbolic line of Hn is the intersection of Hn with a 
2-dimensional time-like vector subspace of ]Rn+l. 

Let x and Y be distinct points of Hn. Then x and y span a 2-dimensional 
time-like subspace V(x, y) of ]Rn+l, and so 

L(x, y) = H n n V(x, y) 

is the unique hyperbolic line of Hn containing both x and y. Note that 
L(x, y) is a branch of a hyperbola. 

Definition: Three points x, y, z of Hn are hyperbolically collmear if and 
only if there is a hyperbolic line L of Hn containing x, y, z. 

Lemma 2. If x, y, z are pmnts of H n and 

TJ(x,y) +TJ(Y,z) = TJ(x,z), 

then x, y, z are hyperboltcally collinear. 

Proof: As x, y, z span a time-like vector subspace of ]Rn+1 of dimension 
at most 3, we may assume that n = 2. From the proof of Theorem 3.2.2, 
we have that 

(x ® y) 0 (y ® z) = Ilx ® ylilly ® zll· 

By Corollary 2, we have that (x ® y) ® (y ® z) is light-like. Now since 

(x ® y) ® (y ® z) = -((x ® y) 0 z)y 

and Y is time-like, we have that (x®y) oz = o. Consequently x, y, z are lin­
early dependent by Theorem 3.2.1(2). Hence x, y, z lie on a 2-dimensional 
time-like vector subspace of]R3 and so are hyperbolically collinear. D 

Definition: Two vectors x, yin ]Rn+l are Lorentz orthonormal if and only 

if IIxl1 2 = -1 and x 0 y = 0 and IIyl12 = 1. 

Theorem 3.2.4. Let a : [a, b] -7 Hn be a curve. Then the following are 

equivalent: 

(1) The curve a is a geodestc arc. 

(2) There are Lorentz orthonormal vectors x, y in ]Rn+l such that 

a(t) = (cosh(t - a))x + (sinh(t - a))y. 

(3) The curve a satisfies the dtfferential equation a" - a = o. 
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Proof: Let A be a Lorentz transformation of ]R.n+l. Then (Aa)' = Ad. 
Consequently a satisfies (3) if and only if Aa does. Hence, we are free to 
transform a by a Lorentz transformation. Suppose that a is a geodesic arc. 
Let t be in the interval [a, b]. Then we have 

'T](a(a) , a(b)) b - a 

= (t - a) + (b - t) 

= 'T](a(a),a(t)) +'T](a(t),a(b)). 

By Lemma 2, we have that a(a),a(t),a(b) are hyperbolically collinear. 
Consequently, the image of a is contained in a hyperbolic line L of Hn. 
Hence, we may assume that n = 1. By applying a Lorentz transformation 
of the form 

( coshs sinhS) 
sinhs coshs 

we can transform a(a) to el, and so we may assume that a(a) = el. Then 

el . a(t) -a(a) 0 a(t) 

= cosh'T](a(a),a(t)) 

= cosh(t - a). 

Therefore e2 . a(t) = ±sinh(t - a). As a is continuous, we have either 

e2 . a(t) sinh(t - a) for all t 
or 

e2 . a(t) - sinh(t - a) for all t. 

In the latter case, we can apply the reflection 

and so we may assume that 

a(t) = (cosh(t - a))el + (sinh(t - a))e2. 

Thus (1) implies (2). 
Next, suppose there are Lorentz orthonormal vectors x, y in ]R.n+l such 

that 
a(t) = (cosh(t - a))x + (sinh(t - a))y. 

Let sand t be such that aSs S t S b. Then we have 

cosh 'T](a(s) , a(t)) -a(s) 0 a(t) 

= cosh(s - a) cosh(t - a) - sinh(s - a) sinh(t - a) 
= cosh(t - s). 

Therefore 'T](a(s), a(t)) = t - s. Thus a is a geodesic arc. Hence (2) implies 
(1). Clearly (2) implies (3). Suppose that (3) holds. Then 

a(t) = cosh(t - a)a(a) + sinh(t - a)a'(a). 
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On differentiating the equation a(t)oa(t) = -1, we see that a(t)oa'(t) = O. 
In particular, a(a) 0 a'(a) = O. Observe that 

Ila(t)112 = - cosh2(t - a) + sinh2(t - a)llo/(a)112. 

As Ila(t)112 = -1, we have that Ila'(a)11 2 = 1. Therefore a(a),a'(a) are 
Lorentz orthonormal. Thus (3) implies (2). 0 

Theorem 3.2.5. A function>. : lR. -+ Hn zs a geodesic line if and only if 
there are Lorentz orthonormal vectors x, y in lR.n+l such that 

>.(t) = (cosht)x + (sinht)y. 

Proof: Suppose there are Lorentz orthonormal vectors x, yin lR.n+l such 
that >.(t) = (cosht)x + (sinht)y. Then>. satisfies the differential equation 
>'" - >. = O. Hence, the restriction of >. to any interval [a, b], with a < b, is 
a geodesic arc by Theorem 3.2.4. Thus>. is a geodesic line. 

Conversely, suppose that >. is a geodesic line. By Theorem 3.2.4, the 
function>. satisfies the differential equation >'" - >. = O. Consequently 

>.(t) = (cosh t)>'(O) + (sinh t)>.' (0). 

The same argument as in the proof of Theorem 3.2.4 shows that >'(0), >.'(0) 
are Lorentz orthonormal. 0 

Corollary 4. The geodesics of Hn are zts hyperbolic lmes. 

Proof: By Theorem 3.2.5, every geodesic of H n is a hyperbolic line. 
Conversely, let L be a hyperbolic line of Hn. By Theorem 3.1.5, we may 
assume that n = 1. Then L = Hl. Define >. : lR. -+ Hl by 

>.(t) = (cosht)el + (sinht)e2' 

Then >. is a geodesic line mapping onto Hl. Thus L is a geodesic. 0 

Hyperplanes 

We now consider the geometry of hyperplanes of Hn. 

Definition: A hyperbolzc m-plane of H n is the intersection of Hn with 
an (m + I)-dimensional time-like vector subspace of lR.n+l . 

Note that a hyperbolic I-plane of Hn is the same as a hyperbolic line of 
Hn. A hyperbolic (n -I)-plane of Hn is called a hyperplane of Hn. 

Let x be a space-like vector in lR.n+l . Then the Lorentzian complement of 
the vector subspace (x) spanned by x is an n-dimensional time-like vector 
subspace of lR.n+1. Hence P = (X)L n Hn is a hyperplane of Hn. The 
hyperplane P is called the hyperplane of Hn Lorentz orthogonal to x. 
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Theorem 3.2.6. Let x and y be lmearly ~ndependent space-like vectors m 
IRn+l. Then the following are equivalent: 

(1) The vectors x and y satisfy the equation Ix 0 yl < Ilxll Ilyll· 
(2) The vector subspace V spanned by x and y is space-lzke. 

(3) The hyperplanes P and Q of H n Lorentz orthogonal to x and y, re­
spectzvely, intersect. 

Proof: Assume that (1) holds. Then for nonzero real numbers sand t, 
we have that 

Ilsx + tyl12 IIsxl1 2 + 2st(x 0 y) + Iityl12 

Thus V is space-like. 

> IIsxl12 - 21stl Ilxll Ilyll + Iityl12 
(II sxll - Iityl1)2 

> o. 

Conversely, if (2) holds, then the Lorentzian inner product on V is pos­
itive definite. Hence, Cauchy's inequality holds in V, and so (1) holds. 
Thus (1) and (2) are equivalent. Now (2) and (3) are equivalent, since 
VL = (x)L n (y)L. 0 

The Space-Like Angle between Space-Like Vectors 

Let x and y be space-like vectors in IRn+1 that span a space-like vector 
subspace. Then by Theorem 3.2.6, we have that 

Ix 0 yl :S Ilxll Ilyll 
with equality if and only if x and yare linearly dependent. Hence, there is 
a unique real number ry(x, y) between 0 and 7r such that 

x 0 y = Ilxll Ilyll cosry(x, y). (3.2.6) 

The Lorentzzan space-like angle between x and y is defined to be ry(x, y). 
Note that ry(x, y) = 0 if and only if x and yare positive scalar multiples 
of each other, ry(x, y) = 7r /2 if and only if x and yare Lorentz orthogonal, 
and ry(x, y) = 7r if and only if x and yare negative scalar multiples of each 
other. 

Let A, /1 = IR ---+ Hn be geodesic lines such A(O) = /1(0). Then A' (0) 
and /1' (0) span a space-like vector subspace of IRn+1. The hyperbol~c angle 
between A and /1 is defined to be the Lorentzian space-like angle between 
A'(O) and /1'(0). 

Let P be a hyperplane of Hn and let A : IR ---+ H n be a geodesic line 
such that A(O) is in P. Then the hyperbolic line L = A(IR) is said to be 
Lorentz orthogonal to P if and only if P is the hyperplane of Hn Lorentz 
orthogonal to X(O). 
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Theorem 3.2.7. Let x and y be linearly mdependent space-l2ke vectors m 
JRn+l. Then the following are equwalent: 

(1) The vectors x and y satisfy the inequality Ix 0 yl > Ilxll Ilyli. 
(2) The vector subspace V spanned by x and y is time-like. 

(3) The hyperplanes P and Q of Hn Lorentz orthogonal to x and y, re­
spectively, are disjoint and have a common Lorentz orthogonal hyper­
bolic line. 

Proof: Except for scalar multiples of x, every element of V is a scalar 
multiple of an element of the form tx + y for some real number t. Observe 
that the expression 

is a quadratic polynomial in t. This polynomial takes on negative values if 
and only if its discriminant 

4(x 0 y)2 _ 411 xl1 211Yl12 
is positive. Thus (1) and (2) are equivalent. 

Suppose that V is time-like. Then VL is space-like. Now since V L = 
(x)L n (y)L, we have that P and Q are disjoint. Observe that N = VnHn 
is a hyperbolic line and V n (x)L is a I-dimensional subspace of JRn+1. 
Moreover, the equation 

(tx + y) 0 x = 0 

has the unique solution 

Furthermore 

Iltx + Yl12 = 
(x o y)2 2 

IIxl12 + IIYII < O. 

Hence V n (x)L is time-like. Thus N n P is the single point 

-(x 0 y)(x/llxll) + Ilxlly 
u= , 

±J(x 0 y)2 - IIxl1211Yl12 
where the plus or minus sign is choosen so that u is positive time-like. 
Likewise N n Q is a single point v. Let ,\ : JR -+ Hn be a geodesic line such 
that '\(0) = u and '\(JR) = N. As ,\'(0) and x are both Lorentz orthogonal 
to u in V, we have that '\'(0) is a scalar multiple of x. Thus N is Lorentz 
orthogonal to P. Likewise N is Lorentz orthogonal to Q. 

Conversely, assume that (3) holds. Let N be the common Lorentz or­
thogonal hyperbolic line to P and Q. Then there is a 2-dimensional time­
like vector subspace W of JRn+1 such that N = W n Hn. As N is Lorentz 
orthogonal to P, we have that x is in W. Likewise y is in W. Hence 
V = W, and so V is time-like. 0 
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Remark: The proof of Theorem 3.2.7 shows that if P and Q are disjoint 
hyperplanes of Hn, with a common Lorentz orthogonal hyperbolic line N, 
then N is unique; moreover, if x, yare space-like vectors in jRn+l Lorentz 
orthogonal to P, Q, respectively, then x and yare tangent vectors of N. 

The Time-Like Angle between Space-Like Vectors 

Let x and y be space-like vectors in jRn+l that span a time-like vector 
subspace. Then by Theorem 3.2.7, we have that Ix 0 yl > Ilxll Ilyli. Hence, 
there is a unique positive real number 'f)(x, y) such that 

Ix 0 yl = Ilxll Ilyll cosh 'f)(x, y). (3.2.7) 

The Lorentzzan tIme-like angle between x and y is defined to be 'f)(x, y). 
We now give a geometric interpretation of 'f)(x, y). 

Theorem 3.2.8. Let x and y be space-like vectors In jRn+l that span a 
time-like vector subspace, and let P, Q be the hyperplanes of H n Lorentz 
orthogonal to x, y, respectzvely. Then 'f)(x, y) IS the hyperbolzc distance f'T"Om 
P to Q measured along the hyperbolic line N Lorentz orthogonal to P and 
Q . Moreover x 0 y < 0 If and only If x and yare oppOSItely onented tangent 
vectors of N. 

Proof: From the proof of Theorem 3.2.7, we have that P n N is the point 

u 

and Q n N is the point 

v 

Now 

-(x 0 y)(x/llxll) + Ilxlly 

±J(x 0 y)2 - IIxl1 211Yl12 

IIYllx - (x 0 y)(y/llyll) 

±J(x 0 y)2 - Ilx11 211y112· 

-uov 

-((x 0 y)3 Illxllllyll) + (x 0 y)llxllllyll 

±((x 0 y)2 -llxI1 21IYI12) 

-((x 0 y)3 + (x 0 y)llxI1 21IYI12)/llxll Ilyll 

±((x 0 y)2 -llxI121IYI12) 
-(x 0 y) 

±llxllllYII 
Ix 0 yl 

Ilxllllyll 
cosh 'f)(x, y). 

Moreover, the calculation of -u 0 v shows that u and v have the same sign 
if and only if x 0 y < O. Observe that u and v are in the 2-dimensional 
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time-like subspace V spanned by x and y. Evidently u and v are in the 
quadrant of V between x and y or -x and -y if and only if the coefficient 
-x 0 y of u and v is positive. Thus x and yare oppositely oriented tangent 
vectors of N if and only if x 0 y < O. 0 

Let x and y be space-like vectors in lRn+1 and let P, Q be the hyperplanes 
of Hn Lorentz orthogonal to x, y, respectively. Then P and Q are said to 
meet at infimty if and only if (x)L n (y)L is light-like. If P and Q meet at 
infinity, then P and Q are disjoint, but when viewed from the origin, they 
appear to meet at the positive ideal endpoint of the 1-dimensionallight-like 
subspace of (x)L n (y)L. 

Theorem 3.2.9. Let x and y be lmearly independent space-like vectors m 
lRn+l. Then the followmg are equwalent: 

(1) The vectors x and y satisfy the equation Ix 0 yl = Ilxll Ilyli. 

(2) The vector subspace V spanned by x and y is lzght-lzke. 

(3) The hyperplanes P and Q of Hn Lorentz orthogonal to x and y, re­
spectwely, meet at mfinity. 

Proof: (1) and (2) are equivalent by Theorems 3.2.6 and 3.2.7, and (2) 
and (3) are equivalent, since VL = (x)L n (y)L. 0 

Theorem 3.2.10. Let x and y be linearly mdependent space-like vectors m 
lRn+1 such that the vector subspace V spanned by x and y is light-like. Then 
x 0 y < 0 zf and only if x and yare on opposite sides of the l-dzmensional 
light-lzke subspace of V. 

Proof: The equation Iltx + yll = 0 is equivalent to the quadratic equation 

t211xl1 2 + 2(x 0 y)t + IIyl12 = 0, 

which by Theorem 3.2.9 has the unique solution 

t = -(x 0 y)/llxI1 2. 

Observe that the light-like vector 

-(x 0 y)(x/llxI1 2 ) + y 

is in the quadrant of V between x and y if and only if x 0 y < O. Hence x 
and yare on opposite sides of the 1-dimensionallight-like subspace of V if 
and only if x 0 y < O. 0 

Theorem 3.2.11. Let y be a point of H n and let P be a hyperplane of 
Hn. Then there is a unique hyperbolic line N of H n passing through y and 

Lorentz orthogonal to P. 
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Proof: Let x be a unit space-like vector Lorentz orthogonal to P, and let 
V be the subspace spanned by x and y. Then N = V n Hn is a hyperbolic 
line passing through y. Now the equation 

(tx + y) 0 x = 0 

has the solution t = -x 0 y. Hence 
-(xoy)x+y 

w = --'r:===='='==;=;;:==:::= 
±v(x 0 y)2 + 1 

is a point of pnN. Let A : ~ -+ Hn be a geodesic line such that A(~) = N 
and A(O) = w. As w, x are Lorentz orthonormal vectors, we have 

A(t) = (cosht)w ± (sinht)x. 

Hence A' (0) = ±x. Thus N is Lorentz orthogonal to P. 
Suppose that N is a hyperbolic line passing through y and Lorentz 

orthogonal to P. Let A : ~ -+ H n be a geodesic line such that A(~) = N 
and A(O) is in P. Then A'(O) is Lorentz orthogonal to P. Hence A'(O) = ±x. 
Let W be the 2-dimensional time-like subspace such that N = W n Hn. 
As x and yare in W, we have that W = V. Thus N is unique. 0 

The Angle between Space-Like and Time-Like Vectors 

Let x be a space-like vector and y a positive time-like vector in ~n+1. Then 
there is a unique nonnegative real number 1J(x, y) such that 

Ix 0 yl = Ilxll Illylll sinh 1J(x, y). (3.2.8) 
The Lorentzian t2me-like angle between x and y is defined to be 1J(x, y). 
We now give a geometric interpretation of 1J(x, y). 

Theorem 3.2.12. Let x be a space-like vector and y a positive time-like 
vector m ~n+l, and let P be the hyperplane of Hn Lorentz orthogonal 
to x. Then 1J(x, y) 2S the hyperbolic distance from y/illyill to P measured 
along the hyperbolic line N passing through y/illyill Lorentz orthogonal to 
P. Moreover x 0 y < 0 2f and only if x and yare on Oppos2te sides of the 
hyperplane of~n+l spanned by P. 

Proof: As in the proof of Theorem 3.2.8, we have that P n N is the point 

-(x 0 y)(x/llxID + Ilxlly 
U = ~±-'-VI7( x=o=y=;:')2;;=-~11 x::::;:;:II~211=y 1~12 . 

Let v = Y/IIIYIII. Then 

coshdH(u,v) = -uov 

v(x 0 y)2 -llx11 211Y112 

Ilxlllllylll 

cosh 1J(x, y). 
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Moreover, the calculation of -uov shows that u has the plus sign. Observe 
that u is in the 2-dimensional time-like subspace V spanned by x and y. 
Evidently u is in the quadrant of V between x and y if and only if the 
coefficient -x 0 y of u is positive. Thus x and yare on opposite sides of 
the hyperplane of ]Rn+1 spanned by P if and only if x 0 y < O. 0 

Exercise 3.2 

1. Show that the metric topology of H n determined by the hyperbolic metric is 
the same as the metric topology of H n determined by the Euclidian metric. 

2. Prove that H n is homeomorphic to En. 

3. Show that every matrix in PSO(l, 1) is of the form 

( coshs 
sinhs 

sinhs ) 
coshs . 

4. Let A be in PO(l, 2). Prove that A(x ® y) = (detA)(Ax ® Ay). 

5. Show that every hyperbolic line of H n is the branch of a hyperbola whose 
asymptotes are I-dimensional time-like vector subspaces. 

6. Prove that H n is geodesically complete. 

7. Two hyperbolic lines of H n are said to be parallel if and only if there is a 
hyperbolic 2-plane containing both lines and the lines are disjoint. Show 
that for each point x of H n outside a hyperbolic line L, there are infinitely 
many hyperbolic lines passing through x parallel to L. 

8. Prove that a nonempty subset X of H n is totally geodesic if and only if X 
is a hyperbolic m-plane of H n for some m. 

9. Prove that H1 is isometric to E1, but H n is not isometric to En for n > l. 
10. Let Uo, . .. ,Un be linearly independent vectors in H n , let Vo, ... ,Vn be lin­

early independent vectors in H n , and suppose that 1]( U" uJ ) = 1]( V" vJ ) for 
all Z, J. Prove that there is a unique hyperbolic isometry cP of H n such that 
cp(u,) = v. for each i = 0, ... , n. 

11. A tangent vector to H n at a point x of H n is defined to be the derivative 
at 0 of a differentiable curve "I : [-b, bj --. H n such that "1(0) = x. Let 
Tx = Tx(Hn) be the set of all tangent vectors to H n at x. Show that 

Tx = {y E jRn+1 : x 0 y = O}. 

Conclude that Tx is an n-dimensional space-like vector subspace of lRn+1. 
The vector space Tx is called the tangent space of H n at x. 

12. A coordznate frame of H n is an n-tuple of functions (A1, ... , An) such that 

(1) the function A. : jR --. H n is a geodesic line for each i = 1, ... ,n; 

(2) there is a point x of H n such that A,(O) = x for all Z; and 

(3) the set {Ai(O), ... , A~(O)} is a Lorentz orthonormal basis of Tx(Hn). 

Show that the action of I(Hn) on the set of coordinate frames of Hn, given 

by cp(A1, ... , An) = (cpA1,"" cpAn), is transitive. 
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§3.3. Hyperbolic Arc Length 

In this section, we compare the hyperbolic length of a curve, in Hn with 
its Lorentzian length in ]Kn+l and show that they are the same. In the 
process, we find the element of hyperbolic arc length of Hn. 

Let x, y be points of Hn. By Theorem 3.1.6, we have 

Ilx - Yl12 IIxl1 2 - 2x 0 Y + IIyl12 

> -2 - 211xll Ilyll = 0 

with equality if and only if x = y. Hence, the Lorentzian distance function 

ddx, y) = Ilx - yll 

satisfies the first three axioms for a metric on Hn. Unfortunately, dL does 
not satisfy the triangle inequality. Nevertheless, we can still use dL to 
define the length of a curve in Hn. 

Let, : [a, b] --+ Hn be a curve and let P = {to, .. . ,tm } be a partition 
of [a, b]. The Lorentzzan P-znscribed length of, is defined to be 

m 

The curve , is said to be Lorentz rectifiable if and only if there is a real 
number £(r) such that for each E > 0 there is a partition P of [a, b] such 
that if Q :S P, then 

I£(r) -h(r,Q)1 < E. 

If £(r) exists, then it is unique, since if P and Q are partitions of [a, b], 
then there is a partition R of [a, b] such that R:S P, Q. 

The Lorentzzan length 11111 of , is defined to be £(r) if , is Lorentz 
rectifiable or 00 otherwise. 

Theorem 3.3.1. Let, : [a, b] --+ Hn be a curve. Then, is rectifiable in 
H n if and only if, is Lorentz rectifiable; moreover, the hyperbolic length 
of, is the same as the Lorentzian length of ,. 

Proof: Let x, y be in Hn. Then we have 

Ilx - Yl12 IIxl1 2 - 2x 0 Y + IIyl12 

= 2(cosh1](x,y) -1). 
Now since 

cosh 1] ~ 1 + (1]2/2), 

we have that 
Ilx - yll ~ 1](x, y). 

Suppose that, is Lorentz rectifiable. Then there is a partition P of [a, b] 
such that if Q :S P, then 

111111 - h(r, Q)I < 1. 
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Hence, for all Q :s; P, we have 

Thus, is rectifiable. By Taylor's theorem, we have 

T)2 T)4 
cosh T) :s; 1 + 2 + 24 cosh T). 

Hence, if cosh T)(x, y) :s; 12, we have 

Ilx - yll :s; T)(x, yhh + T)2(X, y). 

Now suppose that, is rectifiable and E > O. Then there is a partition P of 
[a, b] such that 

Let 8 > 0 and set 

/-lb,8) =supbb(s),,(t)): Is-tl:s; 8}. 

As , is uniformly continuous, /-lb,8) goes to zero with 8. Hence, there is 
a 8 > 0 such that cosh /-lb, 8) :s; 12 and 

1,IHJ1 + /-l2b, 8) < IrIH + E. 

Now we may assume that IPI :s; 8. Then for all Q :s; P, we have 

Hence, we have 

IrIH - E < CHb, Q) 
< hb,Q) 
< CHb, Q)J1 + /-l2 

< IrlHJ1 + /-l2 

< I,IH + E. 

il,IH -CLb,Q)i < E for all Q:S; P. 

Thus, is Lorentz rectifiable and Ilrll = I,IH' D 

Let, : [a, b] ---+ H n be a differentiable curve. As ,(t) o,(t) = -1, we 
have ,(t) 0 ,'(t) = O. Hence ,'(t) is space-like for all t by Theorem 3.1.4. 

Theorem 3.3.2. Let, : [a, b] ---+ Hn be a C1 curve. Then, zs rectifiable 
and the hyperbolic length of, is given by the formula 

11,11 = lb 1Ir'(t)lldt. 

Proof: Define f : [a, b]n+1 ---+ lR by the formula 

f(x) = 1-,~(xd2 + ,~(X2)2 + ... + '~+1(Xn+l)21~· 
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Then f is continuous. Observe that the set 

{If(x) - f(y)1 : x, y E [a, bt+1 } 

is bounded, since [a, bl n+1 is compact. Let 8> 0 and set 

J-l(f,8) = sup{lf(x) - f(y)l: lx, -Ytl ~ 8 for i = 1, ... ,n+ I}. 

Let P = {to, ... ,tm } be a partition of [a, bl such that IFI ~ 8. By the mean 
value theorem, there is a real number St) between t)-1 and t) such that 

't(t)) - ,t(t)-I) = ,~(St))(t) - t)-d. 
Then we have 

IIr(tJ) - ,(t)-I)11 = f(s))(t) - t)-d, 
where s) = (SI,), ... , Sn+1,J). Hence 

111,(t)) - ,(tJ-dll -IIr'(t))II(tJ - t)-dl 

If(s)) -IIr'(t))III(t) - t)-d 

< J-l(f, 8)(tJ - t)-I). 

Set 
m 

S(r, P) = L 1Ir'(t))II(tJ - tJ-d· 

Then we have 
led"p) - S(r,p)1 

m 

< LIII,(tJ) - ,(tJ-dll- 1Ir'(tJ)II(tJ - tJ-dl 
J=1 

m 

< LJ-l(f,8)(tJ -tJ - 1 ) = J-l(f,8)(b-a). 
J=1 

Next, observe that 

il Ib'(tliidt ~ Sh Pli 

f itJ (1Ir'(t)11 -11,'(t))ll)dt 
J=1 tJ-l 

< fJitJ (1Ir'(t)II-IIr'(t))II)dtl 
J=1 tJ-l 

< f itJ 1IIr'(t)II-IIr'(t))11 Idt 
)=1 tJ-l 
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Thus 

It 1h'(t111<1t - £,J1, P11 

< lib Ib'(t)lldt - S(,,(, p)1 + is(''(, P) - Cdry, p)i 
< 2/-L(f, 8)(b - a). 

Now f : [a, b]n+l ---+ lR is uniformly continuous, since [a, b]n+l is compact. 
Therefore /-L(f, 8) goes to zero with 8. Hence 

lim Cdry, P) = rb Ib'(t)lldt. 
IPI--+O } a o 

Let ry : [a, b] ---+ Hn be a curve. Set dx = (dXl,"" dXn+l) and 

Ildxll = (-dxr + dx~ + ... + dX;'+l)!' 

Then by definition, we have 

111dxll = Ibll· 

Moreover, if ry is a C l curve, then by Theorem 3.3.2, we have 

111dXli = ib Ib'(t)lldt. 

The differential Ildxll is called the element of hyperbohc arc length of Hn. 

Exercise 3.3 

1. Show that the Lorentzian distance function dL is not a metric on Hn. 

2. Let 'Y : [a, b] -+ H n be a curve that is rectifiable in En+1. Prove that 'Y is 
rectifiable in Hn. 

3. Let'Y: [a, b] -+ H n be a rectifiable curve. Prove that 'Y is rectifiable in En+l. 

§3.4. Hyperbolic Volume 

Let x be a point of H n, with n > 1, such that Xn and Xn+l are not both 
zero. The hyperbolic coordinates (rll,"" Tin) of x are defined as follows: 

TI, = TI(e" x,e, + X,+le,+l + .,. + Xn+len+l) if i < n, 

Tin is the polar angle from en to Xnen + xn+len+l' 
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The hyperbolic coordinates of x satisfy the system of equations 

Xl cosh TJl, 

X2 sinh TJl cos TJ2, 

Xn sinh TJl sin TJ2 ... sin TJn-l cos TJn' 

Xn+l sinh "11 sin "12· .. sin TJn-l sin "In· 

The hyperbolic coordinate parameterzzation of Hn is the map 

h : ]R. x [0,7ft-2 X [0, 27f] ~ H n 

defined by 
h(TJl, ... , "In) = (Xl, ... , x n+!), 

81 

(3.4.1) 

where X~ is expressed in terms of the hyperbolic coordinates "11, ... ,"In by 
the system of Equations (3.4.1). The map h is surjective, and injective on 
the open set ]R. x (0,7f)n-2 X (0, 27f). A straightforward calculation shows 
that 

(1) II:~II =1, 
(3.4.2) 

(2) II :~ II = sinh "11 sin "12· .. sin TJ~-l for i > 1, (3.4.3) 

(3) 
ah ah 

for i < j. (3.4.4) -0-=0 
aTJ~ aTJ] 

A subset X of Hn is said to be measurable in Hn if and only if h-l(X) is 
measurable in ]R.n. In particular, all the Borel subsets of Hn are measurable 
in Hn. If X is measurable in Hn, then the hyperbolic volume of X is defined 
by the formula 

Vol(X) = ( sinhn-lTJlSinn-2TJ2···sinTJn_ldTJl···dTJn. 
Jh- 1 (X) 

(3.4.5) 

The motivation for Formula 3.4.5 is as follows: Subdivide]R.n into a rect­
angular grid pattern parallel to the coordinate axes. Each grid rectan­
gular solid of volume tl.TJl ... tl.TJn that meets h-l(X) corresponds under 
h to a region in Hn that meets X. This region is approximated by the 
Lorentzian rectangular solid spanned by the vectors aah tl.TJl, ... , aah tl.TJn. 

'71 "1n 
Its Lorentzian volume is 

II :~ tl.TJlll· . ·11 :~ tl.TJn II = sinhn- l "11 sinn- 2 "12· .. sin TJn-ltl.TJl ... tl.TJn· 

As the mesh of the subdivision goes to zero, the sum of the volumes of the 
approximating rectangular solids approaches the volume of X as a limit. 

Let X be a measurable subset of H n and let ¢ be a positive Lorentz 
transformation of ]R.n+!. It is a basic fact of differential geometry that 
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¢(X) is also measurable in H n and the hyperbolic volume of ¢(X) can be 
measured with respect to the new parameterization ¢h of Hn. As ¢ maps 
the Lorentzian rectangular solid spanned by the vectors 

8h 8h 
~.6.1]1' ... ' ~.6.1]n 
U1]l U1]n 

onto the Lorentzian rectangular solid spanned by the vectors 

we deduce that 

Vol(¢(X)) = Vol(X). 

In other words, hyperbolic volume is an isometry-invariant measure on Hn. 
It is clear from Formula 3.4.5 that hyperbolic volume is count ably addi­

tive, that is, if {X,} ~1 is a sequence of disjoint measurable subsets of Hn, 
00 

then X = U X, is also measurable in Hn and 
,=1 

00 

Vol(X) = L Vol(X,). 
,=1 

Theorem 3.4.1. The element of hyperbolic volume of Hn with respect to 
the Euclzdean coordinates Xl, . .. ,Xn zn IRn ,l zs 

dX1·· ·dxn 

[1 + (xI + ... + x;)l~· 

Proof: It is more convenient for us to work in 1R1,n and show that 
the element of hyperbolic volume of H n with respect to the coordinates 
X2, . .. ,Xn +1 is 

[1 + (x~ + ... + x;+l)l~· 
The desired result will then follow by a simple change of coordinates. Con­
sider the transformation Ii : IRn - 1 x (0,211") -+ IRn defined by 

1i(1]1 , ... , 1]n) = (X2' ... ' X n +1), 

where x, is given by the system of Equations (3.4.1). Then by Formula 

3.4.4, the vectors gh , ... , lh are orthogonal. Hence, the Jacobian of the 
VT/l vT/n 

transformation Ii is given by 

1:1·1:.1 
h . hn - 1 . n-2 . = cos 1]1 sm 1]1 sm 1]2· .. sm 1]n-l· 
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By changing variables via Ti, we have 

r sinhn - 1 'f/1 sinn - 2 'f/2 ..• sin 'f/n-1 d'f/1 ... d'f/n 
Jh- 1 (X) 

where p : H n ----t ~n is the projection 

p(X1, ... , Xn+1) = (X2,"" Xn+1)' o 

Exercise 3.4 

1. Show that the hyperbolic coordinates of a point x of H n satisfy the system 
of Equations (3.4.1). 

2. Show that the hyperbolic coordinates parameterization h satisfies Equations 
(3.4.2)-(3.4.4) . 

3. Show that the element of hyperbolic arc length Ildxll in hyperbolic coordi­
nates is given by 

IIdxll2 = d'f/~ + sinh2 'f/ld'f/~ + ... + sinh2 'f/l sin2 'f/2 ••• sin2 'f/n-ld'f/~. 

4. Let B(x, r) be the hyperbolic disk centered at a point x of H2 of hyperbolic 
radius r. Show that the circumference of B(x, r) is 27r sinh r and the area 
of B(x,r) is 27r(coshr - 1). Conclude that B(x,r) has more area than a 
Euclidean disk of radius r. 

5. Let B(x, r) be the hyperbolic ball centered at a point x of H3 of hyperbolic 
radius r. Show that the volume of B(x,r) is 7r(sinh2r - 2r). 

6. Prove that every similarity of H n , with n > 1, is an isometry. 

§3.5. Hyperbolic Trigonometry 

Let x, y, z be three hyperbolically noncollinear points of H2. Let L(x, y) 
be the unique hyperbolic line of H2 containing x and y, and let H(x, y, z) 
be the closed half-plane of H2 with L(x, y) as its boundary and z in its 
interior. The hyperbolic trtangle with vertices x, y, z is defined to be 

T(x, y, z) = H(x, y, z) n H(y, z, x) n H(z, x, y). 

We shall assume that the vertices of T(x, y, z) are labeled in negative order 
as in Figure 3.5.1. 
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y 

x z 

Figure 3.5.1. A hyperbolic triangle T(x, y, z) 

Let [x, y] be the segment of L(x, y) joining x to y. The sides of T(x, y, z) 
are defined to be [x, yl, [y, zl, and [z, x]. Let a = ",(y, z), b = ",(z, x), and 
c = ",(x, y). Then a, b, c is the hyperbolic length of [y, zl, [z, x], [x, z], 
respectively. Let 

be geodesic arcs from y to z, z to x, and x to y, respectively. 
The angle 0: between the sides [z, x] and [x, y] of T(x, y, z) is defined to 

be the Lorentzian angle between -g'(b) and h'(O). The angle (3 between 
the sides [x, y] and [y, z] of T(x, y, z) is defined to be the Lorentzian an­
gle between -h'(c) and 1'(0). The angle "/ between the sides [y, z] and 
[z, x] of T (x, y, z) is defined to be the Lorentzian angle between - I' ( a ) 
and g'(O). The angles 0:,(3,,,/ are called the angles of T(x,y,z). The side 
[y, zl, [z, x], [x, y] is said to be opposite the angle 0:, (3, ,,/, respectively. 

Lemma 1. If 0:, (3, "/ are the angles of a hyperbolic tnangle T(x, y, z), then 

(1) ",(z Q9 x, x Q9 y) = 7f - 0:, 

(2) ",(XQ9Y, YQ9z) =7f-(3, 

(3) ",(y Q9 z, z Q9 x) = 7f - "/. 

Proof: Without loss of generality, we may assume that x = el. The proof 
of (1) is evident from Figure 2.5.2. The proof of (2), and (3), is similar. 0 

Lemma 2. Let x, y be space-like vectors zn ]R3. If x Q9 y is time-like, then 

Illx Q9 ylll = Ilxll Ilyll sin ",(x, y). 
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Proof: As x (>9 y is time-like, the vector subspace of]R3 spanned by x and 
y is space-like. By Theorem 3.2.1(4), we have 

Ilx (>9 Yl12 (x 0 y)2 _ IIxl12 IIyl12 
IIxl12 IIyl12 cos2 'T](x, y) - IIxl12 IIyl12 
-llx11211Y112 sin2 'T](x,y). 0 

Theorem 3.5.1. If a, (3, "( are the angles of a hyperbolic triangle, then 

a+(3+,,«7r. 

Proof: Let a, (3, "( be the angles of a hyperbolic triangle T(x, y, z). By 
the same argument as in Theorem 2.5.1, the vectors x (>9 y, z (>9 y, z (>9 x are 
linearly independent. Let 

X(>9y Z(>9y z(>9x 
u = Ilx (>9 YII' v = liz (>9 YII' W = liz (>9 xii' 

Now as 

(x (>9 y) (>9 (z (>9 y) = ((x (>9 y) 0 z)y 
and 

(z (>9 y) (>9 (z (>9 x) = ((x (>9 y) 0 z)z, 

we have that both u (>9 v and v (>9 ware negative time-like vectors. By 
Lemma 2 and Theorems 3.1.6 and 3.2.1(4), we have 

cos('T](u,v) + 'T](v, w)) 

cos 'T]( u, v) cos 'T]( v, w) - sin 'T]( u, v) sin 'T]( v, w) 

(u 0 v)(v 0 w) + Ilu (>9 vii Ilv (>9 wll 
> (u 0 v)(v 0 w) + ((u (>9 v) 0 (v (>9 w)) 

(u 0 v)(v 0 w) + ((u 0 w)(v 0 v) - (v 0 w)(u 0 v)) 
uow 

COS'T](u, w). 

Hence, either 
'T](u, w) > 'T](u, v) + 'T](v, w) 

or 

27f - 'T](u, w) < 'T](u,v) + 'T](v, w). 

By Lemma 1, we have that 'T](u,w) = 7f - a, 'T](u, v) = (3, and 'T](v,w) = "(. 
Thus, either 7f > a + (3 + "( or 7f + a < (3 + "(. Without loss of generality, 
we may assume that a is the largest angle. If 7f + a < (3 + ,,(, we have the 
contradiction 

Therefore, we have that 
a + (3 + "( < 7f. o 
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Theorem 3.5.2. (Law of Sines) If a, j3, "( are the angles of a hyperbolic 
tnangle and a, b, c are the lengths of the opposite sides, then 

sinh a sinh b sinh c 
sin a sin j3 sin "( 

Proof: Upon taking norms of both sides of the equations 

(z 0 x) 0 (x 0 y) = -((z 0 x) 0 y)x, 

(x 0 y) 0 (y 0 z) = -((x 0 y) 0 z)y, 

(y 0 z) 0 (z 0 x) = -((y 0 z) 0 x)z, 

we find that 

sinhb sinhc sin a = I(x 0 y) 0 zl, 
sinhc sinha sinj3 = I(x 0 y) 0 zl, 
sinha sinhb sin,,( = I(x 0 y) 0 zl. o 

Theorem 3.5.3. (The First Law of Cosines) If a, j3, "( are the angles of a 
hyperbolic triangle and a, b, c are the lengths of the opposite sides, then 

cosh a cosh b - cosh c 
cos"( = 

sinha sinhb 

Proof: Since 

(y 0 z) 0 (x 0 z) = I y 0 z y 0 x I 
zoz zox ' 

we have that 

sinh a sinh b cos "( = cosh a cosh b - cosh c. o 

Theorem 3.5.4. (The Second Law of Cosines) If a, j3, "( are the angles of 
a hyperbohc tnangle and a, b, c are the lengths of the opposzte sides, then 

Proof: Let 

x' 

Then 

Now since 

we have 

h cos a cos j3 + cos"( 
cos c= . 

sin a sinj3 

y0z 
y' 

Ily0zll' 

y'0z' 
x = Illy' 0 z'lll 

z0x 
Ilz0xll' 

and y 

z' = 
x0y 

Ilx0yll· 

z'0x' 

Illz'0x'lll· 

I y' 0 x' y' 0 z' I 
(y' 0 z') 0 (z' 0 x') = z' 0 x' z' 0 z' , 

_ sin(n - a) sin(n - (3) coshc = - cos(n - "() - cos(n - a) cos(n - (3). 0 
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It is interesting to compare the hyperbolic sine law 

sinh a sinh b sinh e 

sin a sin /3 sill'Y 

with the spherical sine law 

sina sinb sine 

sina sin/3 
. , 

sm,,! 

and the hyperbolic cosine laws 

cos,,! 

coshe 

with the spherical cosine laws 

cos,,! 

cose 

Recall that 

cosh a cosh b - cosh e 

sinh a sinh b 
cos a cos /3 + cos "! 

sin a sin/3 

cos e - cos a cos b 

sin a sin b 
cos a cos /3 + cos "! 

sin a sin/3 

sin ia = i sinh a and cos ia = cosh a. 
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Hence, the hyperbolic trigonometry formulas can be obtained from their 
spherical counterparts by replacing a, b, e by ia, ib, ie, respectively. 

Area of Hyperbolic Triangles 

A sector of H2 is defined to be the intersection of two distinct nonopposite 
half-planes of H2. Any sector of H2 is congruent to a sector S (a) defined 
in terms of hyperbolic coordinates (TI, e) by the inequalities 

-00/2 ::; e ::; 00/2. 

Here a is the angle formed by the two sides of S(a) at its vertex el. 
Let /3 = 00/2. Then the geodesic rays that form the sides of S(a) are 

represented in parametric form by 

(cosht)el + (sinht)((cos/3)e2 + (sin/3)e3) for t;::: 0, 

(cosht)el + (sinht)((cos/3)e2 - (sin/3)e3) for t;::: O. 

These geodesic rays are asymptotic to the I-dimensional light-like vector 
subspaces spanned by the vectors (1, cos/3, sin(3) and (1, cos/3, - sin(3) , re­
spectively. These two light-like vectors span a 2-dimensional vector sub­
space V that intersects H2 in a hyperbolic line L. Let T(a) be the inter­
section of S(a) and the closed half-plane bounded by L and containing el. 
See Figure 3.5.2. It is an interesting fact, which will be proved in Chapter 
4, that H2 viewed from the origin looks like the projective disk model with 
the point el at its center. Observe that the two sides of the sector S(a) 
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L 

\ 

Figure 3.5.2. A generalized triangle with two ideal vertices 

meet the hyperbolic line L at infinity. From this perspective, it is natural 
to regard T(a) as a hyperbolic triangle with two ideal vertices at infinity. 

A generahzed hyperbolic triangle in H2 is defined in the same way that 
we defined a hyperbolic triangle in H2 except that some of its vertices may 
be ideal. When viewed from the origin, a generalized hyperbolic triangle 
in H2 appears to be a Euclidean triangle in the projective disk model with 
its ideal vertices on the circle at infinity. See Figure 3.5.2. The angle of a 
generalized hyperbolic triangle at an ideal vertex is defined to be zero. 

An 2nfinite hyperbolic tnangle is a generalized hyperbolic triangle with 
at least one ideal vertex. An infinite hyperbolic triangle with three ideal 
vertices is called an 2deal hyperbolic triangle. Obviously, any infinite hyper­
bolic triangle with exactly two ideal vertices is congruent to T( a) for some 
angle a. 

We now find a parametric representation for the side L of T( a) in terms 
of hyperbolic coordinates (TJ, ()). To begin with, the vector 

(1, cos,8, sin,8) x (1, cos,8, - sin,8) = (-2 cos,8 sin,8, 2 sin,8, 0) 

is normal to the 2-dimensional vector subspace V whose intersection with 
H2 is L. Hence, the vectors in V satisfy the equation 

(cos ,8)XI - X2 = o. 
Now the points of H2 satisfy the system of equations 

{
Xl = cosh TJ, 
X2 = sinh TJ cos (), 
X3 = sinh TJ sin (). 
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Hence, the points of L satisfy the equation 

Xl = sec (3 cos 8J xi - 1. 

Solving for Xl, we find that 

Therefore 

and 

cos 8 
Xl = . vi cos2 8 - cos2 (3 

cos 8 cos (3 
X2 = -r======c==== vi cos2 8 - cos2 (3 

sin 8 cos (3 
X3 = . vi cos2 8 - cos2 (3 

Lemma 3. Area T(a) = 7f - a. 

Proof: Let 
x(8) = (x1(8),X2(8),X3(8)) 
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be the polar angle parameterization of L that we have just found. Then 
by Formula 3.4.5, we have 

I fJ l1/(el,x(o)) 
Area T(a) = sinh'fJd'fJd8 

and 

Thus, we have that 

-fJ 0 

I fJ (coSh'fJ(e1,x(8)) -1)d8 
-fJ 

I fJ cos 8d8 

-fJ vlcos2 8 - cos2 (3 

11 du 

-1 Vl- u2 ' 

sin 8 
whereu= -­

sin (3 

Arcsin ul 1 = 7f. 
-1 

Area T(a) = 7f - a. o 
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Figure 3.5.3. An ideal triangle subdivided into three infinite triangles 

Lemma 4. The area of an ideal hyperbolic triangle zs 'if. 

Proof: Let T be any ideal hyperbolic triangle and let x be any point in 
the interior of T. Then T can be subdivided into three infinite hyperbolic 
triangles each of which has x as its only finite vertex. See Figure 3.5.3. Let 
ex, (3, 'Y be the angles of the triangles at the vertex x. Then 

Area(T) = ('if - ex) + ('if - (3) + ('if - 'Y) = 'if. D 

Theorem 3.5.5. If ex, (3, 'Yare the angles of a generalized hyperbolic trian­
gle T, then 

Area(T) = 'if - (ex + (3 + 'Y)' 

Proof: By Lemmas 3 and 4, the formula holds if T has two or three ideal 
vertices. Suppose that T has only two finite vertices x and y with angles 
ex and (3. By extending the finite side of T, as in Figure 3.5.4, we see that 
T is the difference of two infinite hyperbolic triangles Tx and Ty with only 
one finite vertex x and y, respectively. Consequently 

Area(T) = Area(Tx) - Area(Ty) = ('if - ex) - (3. 

Now suppose that T has three finite vertices x, y, z with angles ex, (3, 'Y. By 
extending the sides of T, as in Figure 3.5.5, we can find an ideal hyperbolic 
triangle T' that can be subdivided into four regions, one of which is T, and 
the others are infinite hyperbolic triangles Tx , Ty, Tz with only one finite 
vertex x, y, z, respectively. Consequently, we have 

Area(T') Area(T) + Area(Tx) + Area(Ty) + Area(Tz ). 

Thus 
'if = Area(T) + ex + (3 + 'Y. D 

Corollary 1. If ex, (3, 'Yare the angles of a generalized hyperbolic triangle, 

then 
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Figure 3.5.4. An infinite triangle T expressed as the difference of two triangles 

\ 

Figure 3.5.5. The ideal triangle found by extending the sides of T(x, y, z) 
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Existence of Hyperbolic Triangles 

The next theorem extends Theorem 3.5.4 to the case 'Y = O. 

Theorem 3.5.6. If a, (3, 0 are the angles of an infinite hyperbolic triangle 
wzth exactly one zdeal vertex and c is the length of the finite szde, then 

h 1 + cos a cos (3 
cos c=. . 

sma sin (3 

Proof: Let T(x, y, z) be an infinite hyperbolic triangle with one ideal 
vertex z. We represent z by a positive light-like vector. Let 

x' = 
y®z , z®x 

Ily®zll' y = IIz®xll' 
, x®y 

z = . 
IIx®YII 

Then 

x = 
y' ®z' 

IIly'®z'lli 
and 

z' ®x' 
y = IIlz' ®x'ili' 

Let u be a point in the interior of the side [x, z) and let v be a point in the 
interior of the side [y, z). By Lemma 1, we have 

Hence, we have 

",(u®x, x®y) =1I"-a, 

",(x ® y, y ® v) = 11" - (3. 

",(z ® x, x ® y) = 11" - a, 

",(x ® y, y ® z) = 11" - (3. 

Now z is in the subspace V spanned by x' and y', and x' and y' are on 
opposite sides of (z) in V. Hence x' oy' = -1 by Theorems 3.2.9 and 3.2.10. 
Now since 

we have 

I y'ox' Y'OZ'I (y' ® z') 0 (z' ® x') = , , , , , zox zoz 

- sin(1I" - a) sin(1I" - (3) coshc = -1- cos(1I" - a) cos(1I" - (3). 0 

We next prove a law of cosines for a hyperbolic quadrilateral with two 
adjacent right angles. See Figure 3.5.6. 

Theorem 3.5.7. Let Q be a hyperbolic convex quadrzlateral with two ad­
Jacent rzght angles, opposzte angles a, (3, and szdes of length c, d between 
a, (3 and the right angles, respectively. Then 

cos a cos (3 + cosh d 
coshc = . . (3 . 

sm a SIn 
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z 

Figure 3.5.6. A hyperbolic quadrilateral Q with two adjacent right angles 

Proof: Let x, y be the vertices of Q at a, f3, and let z be the unit space-like 
vector Lorentz orthogonal and exterior to the side of Q of length d. Let 

y~z I z~x I x~y 

x' = lly~zll' y = llz~xll' z = llx~yll· 
Then 

x 
y/~z' 

llly/~z'lil 
and y 

z/~X' 

lllz/~x'lll· 

Now since 

I y' 0 x' y' 0 Zl I 
(y' ~ Zl) 0 (Zl ~ x') = Zl 0 x' Zl 0 Zl , 

we have 

- sin(7r - a) sin(7r - (3) coshc = - coshd - cos(7r - a) cos(7r - (3). 0 

Theorem 3.5.B. Let Q be a hyperbolzc convex quadrilateral with two ad­
jacent rzght angles and opposite angles a, f3. Then a + f3 < 7r. 

Proof: Subdivide Q into two triangles with angles a, f3h /'1 and f32, /'2, 7r /2 
such that f31 + f32 = f3 and /'1 + /'2 = 7r /2. Then 

Area(Q) 7r - a - f31 - /'1 + 7r - f32 - /'2 - 7r /2 
7r - a - f3. 

We next prove the existence theorem for hyperbolic triangles. 

o 
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Theorem 3.5.9. Let 0:, /3, ry be positzve real numbers such that 

o:+/3+ry< 7r. 

Then there 2S a hyperbolic triangle, unique up to congruence, w2th angles 
o:,/3,ry. 

Proof: We shall only prove existence. The proof of uniqueness is left as 
an exercise for the reader. We may assume, without loss of generality, that 
0:, /3 < 7r /2. Now since 

0: + /3 < 7r - ry, 

we have that 
cos(o: + (3) > cos(7r - ry). 

Hence 
cos 0: cos /3 - sin 0: sin /3 > - cos ry, 

and so 
cos 0: cos /3 + cos ry > sin 0: sin /3 . 

Thus, we have that 
cos 0: cos /3 + cos ry 

. /3 >1. smo:sin 

Hence, there is a unique positive real number c satisfying the equation 

h cos 0: cos /3 + cos ry 
cos c= . 

sin 0: sin/3 

Let [x, y] be a geodesic segment in H2 of length c joining a point x to a 
point y, and let Lb, La be the hyperbolic lines passing through the points 
x, y, respectively, making an angle 0:, /3, respectively, with [x, y] on the 
same side of [x, y]. We claim that La and Lb meet on the same side of the 
hyperbolic line L e , containing [x, y], as 0:, /3. The proof is by contradiction. 

Assume first that La and Lb meet, possibly at infinity, on the opposite 
side of Le than the angles 0:, /3. Then the lines La, Lb, Le form a generalized 
hyperbolic triangle two of whose angles are 7r - 0: and 7r - /3, but 

(7r - 0:) + (7r - (3) > 7r, 

which contradicts Corollary 1. 
Assume next that La and Lb do not meet, even at infinity. Then La and 

Lb have a common perpendicular hyperbolic line Ld joining a point u of 
Lb to a point v of La. Assume first that u =1= x, v =1= y and that [u, v] is on 
the opposite side of Le. See Figure 3.5.7. Then u, v, x, yare the vertices 
of a hyperbolic quadrilateral with two adjacent right angles and opposite 
angles 7r - 0: and 7r - /3, but 

(7r - 0:) + (7r - (3) > 7r, 

which contradicts Theorem 3.5.8. 
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u d v 
------~h~-----,Lrl------Ld 

x c Y 
--------~------~+------- Le 

a (3 

Figure 3.5.7. The four lines in the proof of Theorem 3.5.9 

Next, assume that u = x, v =f. y and that v is on the opposite side 
of Le. Then x, y, v are the vertices of a hyperbolic triangle with angles 
7r /2 - a, 7r - (3, 7r /2, but 

(7r/2 - a) + (7r - (3) + 7r/2 > 7r, 

which contradicts Corollary 1. Likewise, if v = y and u is on the opposite 
side of L e , we also have a contradiction. 

Next, assume that u =f. x and that u is on the same side of Le as a, and 
v =f. y and v is on the opposite side of Le. Then the lines La, L b , L e, Ld 
form two hyperbolic triangles two of whose angles are a, 7r /2 and 7r- (3, 7r /2, 
respectively. As (3 < 7r /2, we have 

7r-(3+7r/2> 7r, 

which contradicts Corollary 1. Likewise, if v =f. y and v is on the same side 
of Le as (3, and u =f. x and u is on the opposite side of L e, we also have a 
contradiction. 

Next, assume that v = y, u =f. x and that u is on the same side of 
Le as a. Then x, y, u are the vertices of a hyperbolic triangle with angles 
a, (3 - 7r /2, 7r /2, but (3 < 7r /2, which is a contradiction. Likewise, if u = x 
and v =f. y and v is on the same side of Le as (3, we also have a contradiction. 

Finally, assume that u =f. x, v =f. y, and [u, v] is on the same side of Le as 
a, (3. Then u, v, x, y are the vertices of a hyperbolic quadrilateral with two 
adjacent right angles and opposite angles a, (3. By Theorem 3.5.7, we have 

h _ cos a cos (3 + coshd 
cosc- .. (3 , 

sm a SIn 

which is a contradiction, since coshd > cos')'. 
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It follows that La and Lb meet, possibly at infinity, on the same side 
of Lc as 0:, (3. Therefore, the lines La, Lb, Lc form a generalized hyperbolic 
triangle T with angles 0:, (3, 8. By Theorems 3.5.4 and 3.5.6, we have 

h cos 0: cos (3 + cos 8 
cos c= . 

sin 0: sin (3 

Hence cos 8 = cos, and therefore 8 = ,. Thus T is the desired triangle. D 

Almost Rectangular Quadrilaterals and Pentagons 

Theorem 3.5.10. Let Q be a hyperbolic convex quadrilateral with three 
rzght angles and fourth angle" and let a, b the lengths of the sides opposite 
the angle ,. Then 

cos, = sinh a sinh b. 

Proof: Let x, y be space-like vectors Lorentz orthogonal and exterior to 
the sides of Q of length a, b, respectively. Let z be the vertex of Q of angle 
, and z' the opposite vertex. Let u, v be the vertices of Q between x, z and 
y, z, respectively. See Figure 3.5.8. By Lemma 1, we have 

ry(VQ9Z,ZQ9u) =7f-,. 

Hence, we have 
ry(YQ9Z,ZQ9X) =7f-,. 

Likewise ry(x,y) = 7f/2. 

x y 

Figure 3.5.8. A hyperbolic quadrilateral Q with three right angles 
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Let 

Then 

Now since 

x' 

x 

y®z 
Ily®zll 

y' ® z' 

Ily' ® z'll 

and y' 

and y 

I 
y' 0 x' 

(y' ® z') 0 (z' ® x') = z' 0 x' 

we have by Theorem 3.2.12 that 

z®x 
Ilz®xll' 

z' ®x' 

liz' ® x'il' 

y' 0 z' I 
z' 0 z' , 

0= - cos(Jr - "I) - sinh a sinh b. 
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o 

Theorem 3.5.11. Let P be a hyperbolic convex pentagon with four right 
angles and fifth angle "I, let c' be the length of the side of P opposite "I, 
and let a, b be the lengths of the sides of P adjacent to the side opposite "I. 
Then 

h ' cosh a cosh b + cos "I 
cosc= . 

sinh a sinh b 

Moreover, the above formula also holds if the vertex of P of angle "I is at 
infinity. 

z' 

x""'----+--f------\----':..,.------..:....:::.....".y 

Figure 3.5.9. A hyperbolic pentagon P with four right angles 
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Proof: Assume first that the vertex z of angle, is finite. Let x, y, Zl be 
unit space-like vectors Lorentz orthogonal and exterior to the sides of P of 
length a, b, c' , respectively. Let u, v be the vertices of P between x, z, and 
y, z, respectively. See Figure 3.5.9. By Lemma 1, we have 

Hence, we have 

Let 

Then 

Now since 

we have 

x' 

x 

7](vl'29z,zl'29u) =1f-,. 

7](y 1'29 z, z 1'29 x) = 1f -,. 

yl'29z 

IIYl'29zl1 

y' 1'29 Zl 

IIY' 1'29 zlll 

and y' = 

and y 

zl'29x 

liz 1'29 xii' 

Zl 0 x' 

IIZl l'29x'II' 

I y' 0 x' y' 0 Zl I 
(y' 1'29 Zl) 0 (Zl 1'29 x') = Zl 0 x' Zl 0 Zl , 

- sinh a sinh b cosh c = - cos, - cosh a cosh b. 

Assume now that z is at infinity. We can then represent z by a positive 
light-like vector. Let x' and y' be as above. Then z is in the subspace 
V spanned by x' and y', and x' and y' are on opposite sides of (z) in V. 
Hence x' 0 y' = -1 by Theorems 3.2.9 and 3.2.10. As before, we have 

- sinh a sinh b cosh c = -1 - cosh a cosh b. o 

Right-Angled Hyperbolic Hexagons 

Let H be a right-angled hyperbolic convex hexagon in the projective disk 
model D2 of the hyperbolic plane. Without loss of generality, we may 
assume that the center of D2 is in the interior of H. Then no side of H is 
part of a diameter of D2. As all the perpendiculars to a nondiameter line 
of D2 meet in a common point outside of D2, the three Euclidean lines 
extending three alternate sides of H meet pairwise in three points x, y, z 
outside of D. Likewise, the three Euclidean lines extending the opposite 
three alternate sides of H meet pairwise in thrye points x', y', Zl outside of 
D2. See Figure 3.5.10. The points x', y', Zl are determined by the points 
x, y, z. To understand why, we switch to the hyperbolic model H2. We can 
then represent x, y, z as unit space-like vectors that are Lorentz orthogonal 
and exterior to three alternate sides of H. Then 

I yl'29z I zl'29x I xl'29y 
x = Ily 1'29 zll' y = liz 1'29 xii' z = Ilx 1'29 yll' 

In other words T(x', y', Zl) is the polar triangle of the ultm-zdeal triangle 
T(x, y, z). Compare with Formula 2.5.1. See also Figure 1.2.2. 
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Z' 

Z 

Figure 3.5.10. A right-angled hyperbolic hexagon H 

Lemma 5. Let x, y be space-like vectors in ]R3. If x ® y is space-lzke, then 

Ilx ® yll = Ilxll Ilyll sinh 7)(x, y). 

Proof: As x ® y is space-like, the vector subspace of]R3 spanned by x and 
y is time-like. Hence 

Ix 0 yl = Ilxll IIYII cosh 7)(x, y). 

By Theorem 3.2.1(4), we have 

Ilx ® Yl12 (x 0 y)2 _ IIxl1 211Yl12 

IIxl1 211Yl12 cosh2 7)(x, y) -llx11211Y112 

II x l1 211Yl12 sinh2 7)(x, y). o 

Theorem 3.5.12. (Law of Sines for right-angled hyperbolic hexagons) If 
a, b, c are the lengths of alternate sides of a rzght-angled hyperbolzc convex 
hexagon and a', b', c' are the lengths of the opposite szdes, then 

sinh a sinh b sinh c 
sinh a' sinh b' sinh c' . 

Proof: By Theorem 3.2.8, we have 

a' 7)(Y, z), b' = 7)(z, x), c' = 7)(Y, z), 

a = 7)(Y',z'), b=7)(z',x'), c=7)(Y',z'). 
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Upon taking norms of both sides of the equations 

we find that 

(z Q9 x) Q9 (x Q9 y) = -((z Q9 x) 0 y)x, 

(x Q9 y) Q9 (y Q9 z) = -((x Q9 y) 0 z)y, 

(y Q9 z) Q9 (z Q9 x) = -((y Q9 z) 0 x)z, 

sinhb' sinhc' sinha = I(x Q9 y) 0 zl, 
sinhc' sinha' sinhb = I(x Q9 y) 0 zl, 
sinha' sinhb' sinhc = I(x Q9 y) 0 zi. o 

Theorem 3.5.13. (Law of Cosines for right-angled hyperbolic hexagons) 
If a, b, c are the lengths of alternate sides of a right-angled hyperbolic convex 
hexagon and a', b', c' are the lengths of the opposzte szdes, then 

h ' cosh a cosh b + cosh c 
cosc= . 

sinha sinh b 
Proof: Since 

(y Q9 z) 0 (z Q9 x) = I y 0 x y 0 z I 
zox zoz ' 

we have by Theorem 3.2.8 that 

- sinh a' sinh b' cosh c = - cosh c' - cosh a' cosh b' . o 

Corollary 2. The lengths of three alternate sides of a right-angled hyper­
bolic hexagon are determined by the lengths of the opposite three sides. 

We now prove the existence theorem for right-angled hexagons. 

Theorem 3.5.14. Let a, b, c be posztive real numbers. Then there is a 
right-angled hyperbolic convex hexagon, unique up to congruence, with al­
ternate szdes of length a, b, c, respectively. 

Proof: Let c' be the unique positive real number that satisfies the equation 

, cosh a cosh b + cosh c 
cosh c = . h . h b sm asm 

and let Sc' be a geodesic segment in H2 of length c'. Erect perpendicular 
geodesic segments Sa and Sb of length a and b, respectively, at the endpoints 
of Sc' on the same side of Se" Let La' and Lb, be the hyperbolic lines 
perpendicular to Sb and Sa, respectively, at the endpoint of Sb and Sa, 
respectively, opposite the endpoint of Sc" See Figure 3.5.10. 

Without loss of geomerality, we may assume that c ~ a, b. Then Lb' 

does not meet Sb; otherwise, we would have a quadrilateral with three 
right angles and fourth angle /, and opposite sides of length a and c', and 
so by Theorem 3.5.10, we would have 

sinh a sinh c' = cos / , 
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but 

sinh2 a sinh2 c' 

> 

> 

sinh2 a(cosh2 c' - 1) 

(cosh a cosh b + cosh c)2 - sinh2 a sinh2 b 

sinh2 b 

1, 
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which is a contradiction. Likewise La' does not meet Sa. Moreover La' does 
not meet L b" even at infinity; otherwise, we would have a pentagon with 
four right-angles and fifth angle r as in Figure 3.5.9, and so by Theorem 
3.5.11, we would have 

cosh c' = cosh ~ cosh ~ + cos r , 
smhasmhb 

which is a contradiction, since cosh c > cos r. 
By Theorems 3.2.6-3.2.9, the hyperbolic lines La' and Lb, have a common 

perpendicular hyperbolic line Lc. Let La, Lb be the hyperbolic line of H2 
containing Sa, Sb, respectively. Then Lc is on the same side of La as Sc" 
since Lc meets La' and La' is on the same side of La as Sc" Likewise Lc is 
on the same side of Lb as Sc" Let Sc be the segment of Lc joining La' to 
Lb'. Then we have a right-angled convex hexagon H with alternate sides 
Sa, Sb, Sc. Let d be the length of Sc. Then by Theorem 3.5.13, we have 

h ' cosh a cosh b + coshd 
cosc= . 

sinh a sinh b 

Hence d = c. Thus H has alternate sides of length a, b, c. The proof that 
H is unique up to congruence is left as an exercise for the reader. 0 

Exercise 3.5 

l. Let a, /3, r be the angles of a hyperbolic triangle and let a, b, c be the lengths 
of the opposite sides. Prove that a :S b :S c if and only if a :S /3 :S 'Y. 

2. Let a, /3, 'Y be the angles of a hyperbolic triangle and let a, b, c be the lengths 
of the opposite sides. Show that 

(1) cosh a cosh b cosh c - sinh b sinh c cos a, (3.5.1) 
coshb cosh a cosh c - sinh a sinh c cos /3, (3.5.2) 
coshc cosh a cosh b - sinh a sinh b cos 'Y , (3.5.3) 

(2) cos a - cos /3 cos 'Y + sin /3 sin 'Y cosh a, (3.5.4) 

cos /3 - cos a cos 'Y + sin a sin 'Y cosh b, (3.5.5) 

cos'Y - cos a cos /3 + sin a sin /3 cosh c. (3.5.6) 
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3. Let a, {3, Jr /2 be the angles of a hyperbolic right triangle and let a, b, c be the 
lengths of the opposite sides. Show that 

(1) coshc cosh a cosh b, (3.5.7) 

(2) coshc cot a cot {3, (3.5.8) 

(3) sinha sinhcsina, (3.5.9) 
sinhb sinh c sin {3, (3.5.10) 

(4) cos a tanh b coth c, (3.5.11) 
cos {3 tanh a coth c, (3.5.12) 

(5) sinha tanh b cot {3, (3.5.13) 
sinhb tanhacota, (3.5.14) 

(6) cos a cosh a sin {3, (3.5.15) 
cos {3 coshbsina. (3.5.16) 

4. Let a, {3, 0 be the angles of an infinite hyperbolic triangle with exactly one 
ideal vertex and let c be the length of the finite side. Show that 

. h cos a + cos (3 sIn c = . 
sina sin{3 

(3.5.17) 

5. Prove that a generalized hyperbolic triangle is equilateral if and only if it is 
equiangular. 

6. Show that for a hyperbolic equilateral triangle of angle a and side length a, 

cosh(a/2) sin(a/2) = 1/2. (3.5.18) 

7. Prove that an angle bisector of a hyperbolic triangle T bisects the opposite 
side of T if and only if the other two sides of T have the same length. 

8. Prove that the three angle bisectors of a hyperbolic triangle T meet in a 
common point inside T equidistant from each of the three sides of T. 

9. Let T(x, y, z) be a hyperbolic triangle labeled as in Figure 3.5.1 such that 
a, {3 < Jr /2. Prove that the point on the hyperbolic line through x and y 

nearest to z lies in the interior of the side [x, y]. 

10. Let a,{3,"Y be nonnegative real numbers such that a+{3+"Y < Jr. Prove that 
there is a generalized hyperbolic triangle with angles a, {3, "y. 

11. Prove that two generalized hyperbolic triangles are congruent if and only if 
they have the same angles. 

12. Prove that two right-angled hyperbolic convex hexagons are congruent if and 
only if they have the same three lengths for alternate sides. 
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§3.6. Historical Notes 

§3.1. Lorentzian geometry was introduced by Klein in his 1873 paper Ue­
ber dze sogenannte Nicht-Euklzdzsche Geometrie [227] and was developed by 
Killing in his 1885 treatise Nzcht-Euklzdzschen Raumformen [221]. Three­
dimensional Lorentzian geometry was described by Poincare in his 1887 
paper Sur les hypotheses fondamentales de la geometrze [335]. See also 
Bianchi's 1888 paper Sulle forme dzfferenziali quadratiche indefinite [45]. 
Lorentzian 4-dimensional space was introduced by Poincare as a model 
for space-time in his 1906 paper Sur la dynamique de l'electron [338]. 
For commentary on Poincare's paper, see Miller's 1973 article A study 
of Henrz Poincare's "Sur la dynamique de l'electron" [288]. Lorentzian 4-
dimensional space was proposed as a model for space-time in the theory of 
special relativity by Minkowski in his 1907 lecture Das Relativztiitsprinzip 
[296]. For commentary, see Pyenson's 1977 article Hermann Mmkowskz 
and Einstem's Specwl Theory of Relatwzty [345]. Lorentzian geometry was 
developed by Minkowski in his 1908 paper Dze Grundglezchungen fur dze 
elektromagnetischen Vorgiinge m bewegten Korpern [293] and in his 1909 
paper Raum und Zezt [294]. Lorentzian 4-space is also called Mmkowski 
space-time. Lorentz transformations of n-space were first considered by 
Killing in his 1885 treatise [221]. In particular, Theorem 3.1.3 appeared in 
Killing's treatise. Lorentz transformations of space-time were introduced 
by Lorentz in his 1904 paper Electromagnetic phenomena m a system mov­
ing wzth any veloczty less than that of lzght [271]. The terms Lorentz trans­
formatwn and Lorentz group were introduced by Poincare in his 1906 paper 
[338]. The geometry of the Lorentz group was studied by Klein in his 1910 
paper Uber die geometrichen Grundlagen der Lorentzgruppe [236]. For a 
discussion of the role played by Lorentzian geometry in the theory of rel­
ativity, see Penrose's 1978 article The geometry of the universe [325] and 
Naber's 1992 monograph The Geometry of Minkowskz Spacetime [313]. 

§3.2. The hyperboloid model of hyperbolic space and Formula 3.2.2 ap­
peared in Killing's 1878 paper Ueber zwei Raumformen mit constanter pos­
itwer Krummung [219]. The time-like and space-like angles were essentially 
defined by Klein in his 1871 paper Ueber dze sogenannte Nicht-Euklzdzsche 
Geometrie [224]. Most of the material in §3.2 appeared in Killing's 1885 
treatise [221]. Other references for this section are Klein's 1928 treatise 
Vorlesungen uber mch-euklidisch Geometrze [237], Coxeter's 1942 treatise 
Non-Euclidean Geometry [91], Busemann and Kelly's 1953 treatise Pro­
jective Geometry and Projectwe Metrics [64], and Thurston's 1979 lecture 
notes The Geometry and Topology of 3-Manifolds [389]. 

§3.3. The element of hyperbolic arc length of the hyperboloid model 
of hyperbolic space appeared in Killing's 1880 paper Die Rechnung in den 
Nzcht-Euklzdischen Raumformen [220]. The Lorentzian length of a hyper­
bolic line segment was defined by Yaglom in his 1979 monograph A Szmple 
Non-Euclidean Geometry and Its Physical Baszs [419]. 
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§3.4. Two-dimensional hyperbolic coordinates appeared as polar co­
ordinates in Lobachevski's 1829-30 paper On the principles of geometry 
[262]. Two-dimensional hyperbolic coordinates were defined by Cox in 
terms of Euclidean coordinates in his 1882 paper Homogeneous coordinates 
in zmaginary geometry [84]. Moreover, Cox gave the element of hyperbolic 
area in both hyperbolic and Euclidean coordinates in this paper. Hyper­
bolic coordinates in n-dimensions and Formula 3.4.5 appeared in B6hm 
and Hertel's 1981 treatise Polyedergeometrie in n-dzmenswnalen Raumen 
konstanter Kriimmung [50]. 

§3.5. That the sum of the angles of a hyperbolic triangle is less than two 
right angles was proved by Saccheri, under his acute angle hypotheis, in 
his 1733 treatise Euclides ab omm naevo vindzcatus [355]. Formulas equiv­
alent to the hyperbolic sine and cosine laws appeared in Lobachevski's 
1829-30 paper [262]. See also his 1837 paper Geometrie imaginaire [264]. 
The law of sines appeared in a form that is valid in spherical, Euclidean, 
and hyperbolic geometries in Bolyai's 1832 paper Scientiam spatiz abso­
lute vemm exhzbens [51]. The duality between hyperbolic and spherical 
trigonometries was developed by Lambert in his 1770 memoire Observa­
tions tngonometriques [251]. Taurinus proposed that the duality between 
hyperbolic and spherical trigonometries infers the existence of a geome­
try opposite to spherical geometry and studied its properties in his 1826 
treatise Geometriae przma elementa [386]. That the area of a hyperbolic 
triangle is proportional to its angle defect first appeared in Lambert's mono­
graph Theone der Pamllellinien [252], which was published posthumously 
in 1786. For a translation of the relevant passages, see Rosenfeld's 1988 
treatise A History of Non-Euclzdean Geometry [353]. The elegant proof of 
Theorem 3.5.5 was communicated to Bolyai's father by Gauss in his letter 
of March 6, 1832. For a translation, see Coxeter's 1977 article Gauss as a 
geometer [93]. 

The law of cosines for quadrilaterals with two adjacent right angles ap­
peared in Ranum's 1912 paper Lobachefskian polygons trigonometrically 
equivalent to the triangle [346]. The cosine law for trirectangular quadri­
laterals appeared in Barbarin's 1901 treatise Etudes de geometrie analy­
tzque non Euclidienne [30]. The law of cosines for quadrectangular pen­
tagons appeared in Ranum's 1912 paper [346]. That the formulas of spher­
ical trigonometry with pure imaginary arguments admit an interpreta­
tion as formulas for right-angled hyperbolic hexagons appeared implicitly 
in Schilling's 1891 note Ueber die geometrische Bedeutung der Formeln 
der spharischen Trigonometrze zm Falle complexer Argumente [357]. The 
sine and cosine laws for right-angled hyperbolic hexagons appeared im­
plicitly in Schilling's 1894 paper Beitrage zur geometrzschen Theorze der 
Schwarz'schen s-Functwn [358] and explicitly in Ranum's 1912 paper [346]. 
References for hyperbolic trigonometry are Beardon's 1983 treatise The 
Geometry of Dzscrete Groups [34] and Fenchel's 1989 treatise Elementary 
Geometry zn Hyperbolic Space [132]. 



CHAPTER 4 

Inversive Geometry 

In this chapter, we study the group of transformations of En generated 
by reflections in hyperplanes and inversions in spheres. It turns out that 
this group is isomorphic to the group of isometries of Hn+l. This leads to 
a deeper understanding of hyperbolic geometry. In Sections 4.5 and 4.6, 
the conformal ball and upper half-space models of hyperbolic n-space are 
introduced. The chapter ends with a geometric analysis of the isometries 
of hyperbolic n-space. 

§4.1. Reflections 

Let a be a unit vector in En and let t be a real number. Consider the 
hyperplane of En defined by 

pea, t) = {x E En : a· x = t}. 

Observe that every point x in pea, t) satisfies the equation 

a·(x-ta)=O. 

Hence pea, t) is the hyperplane of En with unit normal vector a passing 
through the point tao One can easily show that every hyperplane of En is 
of this form, and every hyperplane has exactly two representations pea, t) 
and P( -a, -t). 

The reflection p of En in the plane pea, t) is defined by the formula 

p(x)=x+sa, 

where s is a real scalar so that x + ~sa is in pea, t). This leads to the 
explicit formula 

p(x) =x+2(t-a·x)a. (4.1.1) 

The proof of the following theorem is routine and is left as an exercise for 
the reader. 

105 
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Theorem 4.1.1. If P tS the refiectwn of En in the plane P(a, t), then 

(1) p(x) = x if and only if x is m P(a, t),. 

(2) p2(X) = x for all x in En,. and 

(3) P is an tsometry. 

Theorem 4.1.2. Every isometry of En tS a composition of at most n + 1 
refiectwns in hyperplanes. 

Proof: Let ¢ : En -+ En be an isometry and set Vo = ¢(O). Let Po be the 
identity if Vo = 0, or the reflection in the plane P (vo/lvo I, Iva 1/2) otherwise. 
Then po(vo) = 0 and so Po¢(O) = O. By Theorem 1.3.5, the map ¢o = Po¢ 
is an orthogonal transformation. 

Now suppose that <Pk-l is an orthogonal transformation of En that fixes 
el, ... ,ek-l· Let Vk = <Pk-l (ek) - ek and let Pk be the identity if Vk = 0, 
or the reflection in the plane P (vk/lvkl, 0) otherwise. Then Pk¢k-l fixes 
ek. See Figure 4.1.1. Also, for each j = 1, ... ,k - 1, we have 

(<Pk-l(ek) - ek) . eJ 

¢k-l (ek) . eJ 

¢k-l(ek) . <Pk-l(eJ ) 

ek . eJ 

o. 

Therefore eJ is in the plane P (vk/lvkl, 0) and so is fixed by Pk. Thus, we 
have that ¢k = Pk¢k-l fixes el, ... , ek. It follows by induction that there 
are maps Po, ... ,Pn such that each P. is either the identity or a reflection 
and Pn ... Po<P fixes 0, el, ... ,en. Therefore Pn ... po<P is the identity and 
we have that ¢ = Po· .. Pn. 0 

P 

Figure 4.1.1. The reflection of the point <Pk-l(ek) in the plane P 



§4.1. Reflections 107 

Inversions 

Let a be a point of En and let r be a positive real number. The sphere of 
En of radius r centered at a is defined to be the set 

S(a,r) = {x E En: Ix - al = r}. 

The reflection (or mverswn) a of En in the sphere Sea, r) is defined by the 

formula 
a(x) = a + sex - a), 

where s is a positive scalar so that 

la(x) - al Ix - al = r2. 

This leads to the explicit formula 

a(x) =a+ Cx~alr (x-a). ( 4.1.2) 

There is a nice geometric construction of the point a(x). Assume first 
that x is inside Sea, r). Erect a chord of Sea, r) passing through x per­
pendicular to the line joining a to x. Let u and v be the endpoints of 
the chord. Then a(x) is the point x' of intersection of the lines tangent 
to Sea, r) at the points u and v in the plane containing a, u, and v, as in 
Figure 4.1.2. Observe that the right triangles T(a, x, v) and T(a, v, x') are 
similar. Consequently, we have 

Ix' - al r 
r Ix - al' 

Therefore x' = a(x) as claimed. 
Now assume that x is outside S(a, r). Let y be the midpoint of the line 

segment [a, xl and let C be the circle centered at y ofradius Ix-yl. Then C 
intersects Sea, r) in two points u, v, and a(x) is the point x' of intersection 
of the line segments [a, xl and [u, v], as in Figure 4.1.3. 

v 
~--

a x' = a(x) 

u 

Figure 4.1.2. The construction of the reflection of a point x in a sphere S(a,r) 
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v 

a y x 

u 

Figure 4.1.3. The construction of the reflection of a point x in a sphere S( a, r) 

Theorem 4.1.3. If a is the reflection of En zn the sphere S(a, r), then 

(1) a(x) = x if and only if x zs zn S(a, r); 

(2) a2(x) = x for all x =I- a; and 

(3) for all x, y =I- a, 

r21x - yl 
la(x)-a(y)I=1 II I x-a y-a 

Proof: (1) Since 

we have that a(x) = x if and only if Ix - al = r. 

(2) Observe that 

(3) Observe that 

la(x) - a(y)1 = 

a + Ca(x~ _ al r (a(x) - a) 

a+ cx~a'r Cx~a,r (x-a) 

x. 

2 \ (x - a) (y - a) \ 
r Ix _ al 2 - Iy - al 2 

2 1 2(x-a)·(y-a) 1 
r - + [Ix - al 2 Ix - al 2 Iy - al 2 Iy - al 2 

r21x - yl 
Ix - allY - al' 

]
1/2 

o 
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Conformal Transformations 

Let U be an open subset of En and let ¢ : U -t En be a differentiable 
function. Let ¢' (x) be the matrix (~:; (x)) of partial derivatives of ¢. The 
function ¢ is said to be conformal if and only if there is a function 

K,: U -t IR+, 

called the scale factor of ¢, such that K,(x)-1¢'(x) is an orthogonal matrix 
for each x in U. Notice that the scale factor K, of a conformal function ¢ is 
uniquely determined by ¢, since [K,(x)]n = I det ¢'(x)l. 

Lemma 1. Let A be a real n x n matrix. Then there is a positive scalar 
k such that k-1 A is an orthogonal matrix if and only if A preserves angles 
between nonzero vectors. 

Proof: Suppose there is a k > 0 such that k- 1 A is an orthogonal matrix. 
Then A is nonsingular. Let x and y be nonzero vectors in En. Then Ax 
and Ay are nonzero, and A preserves angles, since 

cosO(Ax,Ay) 
Ax·Ay 

IAxiiAyl 
k-1 Ax . k- 1 Ay 

Ik-1 Axl Ik-1 AYI 
x·y 
Ixllyl = cos O(x, y). 

Conversely, suppose that A preserves angles between nonzero vectors. 
Then A is nonsingular. As O(Ae" AeJ) = O( e., eJ) = 0 for all i =I- j, the 
vectors Ae1, ... , Aen are orthogonal. Let B be the orthogonal matrix such 
that Be, = Ae,/IAe,1 for each i. Then B-1A also preserves angles and 
B-1 Ae, = c,e, where c, = IAe,l. Thus, we may assume, without loss of 
generality, that Ae, = c,e., with c, > 0, for each i = 1, ... ,n. As 

O(A(e, + eJ), AeJ) = O(e, + eJ, eJ) 

for all i =I- j, we have 

(c. e, + cJeJ) . cJeJ _ 1 
(c~ + C;)1/2cJ - .J2. 

Thus 2c; = c~ + c; and so c, = cJ for all i and j. Therefore, the common 
value of the c, is a positive scalar k such that k- 1 A is orthogonal. 0 

Let 0:, /3 : [-b, b] -t En be differentiable curves such that 0:(0) = /3(0) 
and 0:'(0),/3'(0) are both nonzero. The angle between 0: and /3 at 0 is 
defined to be the angle between 0:' (0) and /3' (0) . 

Theorem 4.1.4. Let U be an open subset of En and let ¢ : U -t En be 
a d2fferentiable function. Then ¢ 2S conformal if and only 2f ¢ p"reserves 
angles between differentiable curves in U. 
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Proof: Suppose that the function ¢ is conformal. Then there is a function 
K, : U ----+ lR.+ such that K,(X)-l¢'(x) is orthogonal for each x in U. Let 
a, (3 : [-b, b] ----+ U be differentiable curves such that a(O) = (3(0) and 
a'(O),(3'(O) are both nonzero. Then by Lemma 1, we have 

O((¢a)'(O), (¢(3)'(O)) 

O( ¢' (a(O) )a' (0), ¢' ((3(0) )(3' (0)) 

= O(a'(O), (3'(0)). 

Hence, the angle between ¢a and ¢(3 at 0 is the same as the angle between 
a and (3 at o. 

Conversely, suppose that ¢ preserves angles between differentiable curves 
in U. Then the matrix ¢'(x) preserves angles between nonzero vectors for 
each x. By Lemma 1, there is a positive scalar K,(x) such that K,(X)-l¢'(X) 
is orthogonal for each x in U. Thus ¢ is conformal. 0 

Let U be an open subset of En and let ¢ : U ----+ En be a differentiable 
function. Then ¢ is said to preserve (resp. reverse) orientation at a point 
x of U if and only if det¢'(x) > 0 (resp. det¢'(x) < 0). The function ¢ is 
said to preserve (resp. reverse) orientation if and only if ¢ preserves (resp. 
reverses) orientation at each point x of U. 

Theorem 4.1.5. Every refiectwn of En in a hyperplane or sphere is con­
formal and reverses orientatwn. 

Proof: Let p be the reflection of En in the plane P(a, t). Then 

p(x) = x + 2(t - a· x)a, 

p'(x) = (8'J - 2a.aJ ) = 1 - 2A, 

where A is the matrix (a.aJ ). As p'(x) is independent oft, we may assume 
without loss of generality that t = O. Then p is an orthogonal transforma­
tion and 

p(x) = (1 - 2A)x. 

Thus 1 - 2A is an orthogonal matrix, and so p is conformal. 
By Theorem 1.3.4, there is an orthogonal transformation ¢ such that 

¢(a) = el. Then 

¢p¢-l(X) ¢(¢-l(x) - 2(a. ¢-l(x))a) 

x - 2(a· ¢-l(x))el 

x - 2(¢(a) . x)el 

x - 2(el . x)el. 

Therefore ¢p¢-l is the reflection in P(el, 0). By the chain rule, 

det(¢p¢-l)'(x) = detp'(x). 
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To compute the determinant of p'(x), we may assume that a = el· Then 

-1 
1 o 

I -2A= 

o 
1 

Thus det p' (x) = -1, and so p reverses orientation. 
Let O"r be the reflection of En in the sphere S(O, r). Then 

O"r(x) 
r 2x 

Ixl 2 

and so 
r2 

O"~(x) r2 (8'J _ 2X.XJ) W(I -2A), Ixl2 Ixl4 

where A is the matrix (x.xJ /lxI 2 ). We have already shown that I - 2A is 
orthogonal, and so 0" r is conformal; moreover 0" r reverses orientation, since 

det O"~(x) (1:1) 2n det(I - 2A) 

-C:lrn 
< O. 

Now let 0" be the reflection with respect to S(a, r) and let T be the 
translation by a. Then T'(X) = I and 0" = TO"rT-1. Hence 0"' (x) = O"~(x-a). 
Thus 0" is conformal and reverses orientation. 0 

Exercise 4.1 

1. Prove Theorem 4.1.1. 

2. Show that the reflections of En in the planes pea, 0) and PCb, 0) commute if 
and only if their normal vectors a and b are orthogonal. 

3. Show that a real n x n matrix A preserves angles between nonzero vectors if 
and only if there is a positive scalar k such that \Ax\ = k\x\ for all x in En. 

4. Let U be an open connected subset of En and let cp : U -+ En be a C1 

function such that cp' (x) is nonsingular for all x in U. Show that cp either 
preserves orientation or reverses orientation. 

5. Let U be an open connected subset of IC. Prove that a function cp : U -+ tC 
is conformal if and only if either cp is analytic and cp' (z) =I=- 0 for all z in U or 
¢ is analytic and ¢'(z) =I=- 0 for all z in U. 
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§4.2. Stereographic Projection 

Identify En with En X {O} in En+!. The stereographic projection 7r of En 
onto sn - {en+l} is defined by projecting x in En towards (or away from) 
en+! until it meets the sphere sn in the unique point 7r(x) other than en+!. 
See Figure 4.2.1. As 7r(x) is on the line passing through x in the direction 
of en+l - x, there is a scalar s such that 

7r(x) = x + S(en+l - x). 

The condition J7r(x)J2 = 1 leads to the value 

JxJ2 -1 
s=.;---;~-

JXJ2 + 1 

and the explicit formula 

( 2Xl 2xn JXJ2 -1) 
7r(x) = 1 + JXJ2'···' 1 + JXJ2' JxJ2 + 1 . 

The map 7r is a bijection of En onto sn - {en+ I}. 

(4.2.1) 

There is a nice interpretation of stereographic projection in terms of in­
versive geometry. Let a be the reflection of En+l in the sphere S(en+!, y2). 
Then 

(4.2.2) 

If x is in En, then 

a(x) 

r------ -\ I \ I \ 

I E2 
, 

I 
, 

I / \ .... 
--.... -_L- ..... x 

\ 

~ 
/ 

Figure 4.2.1. The stereographic projection 7r of E2 into 8 2 
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Thus the restriction of (J to En is stereographic projection , 
7r : En --7 sn - {en+!}. 

As (J is its own inverse, we can compute the inverse of 7r from Formula 
4.2.2. If Y is in sn - {en+d, then 

2(y - en+l) 
(J(Y) en+l + ---,-,---:-"----~-'----

lyI 2 - 2y . en+l + 1 

1 
en+l + 1 (Yl,"" Yn, Yn+l - 1) 

- Yn+l 

( Yl , ... , Yn ,0) . 
1 - Yn+l 1 - Yn+l 

Hence 
(4.2.3) 

Let 00 be a point not in E n+ 1 and define En = En U { 00 }. Now extend 
7r to a bijection n- : En --7 sn by setting n-( 00) = en+!, and define a metric 
d on En by the formula 

d(x,y) = In-(x) -n-(Y)I· (4.2.4) 

The metric d is called the chordal metric on En. By definition, the map n­
is an isometry from En, with the chordal metric, to sn with the Euclidean 
metric. The metric topology on En determined by the chordal metric is the 
same as the Euclidean topology, since 7r maps En homeomorphically onto 
the open subset sn - { en+ I} of sn. The metric space En is compact and is 
obtained from En by adjoining one point at infinity. For this reason, En is 
called the one-point compactijication of En. The one-point compactification 
of the complex plane C is called the Riemann sphere t = C u { 00 }. 

Theorem 4.2.1. If x, yare in En, then 

(1) 
2 

d(x,oo) = (1 + IxI2)l/2' 

(2) 21x-YI 
d(x, y) = (1 + IxI2)l/2(1 + IYI2)l/2' 

Proof: (1) Observe that 

d(x, 00) In-(x) -n-(00)1 

17r(x) - en+ll 

I ( 2Xl 2Xn -2) I 
1 + Ixl2 ' ... , 1 + Ixl2 ' 1 + Ixl2 

2 

(1 + IxI2)l/2' 
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(2) By Theorem 4.1.3, we have 

d(x, y) = 2lx-yl 
Ix - en+llly - en+ll 

2lx-yl 

4. Inversive Geometry 

o 

By Theorem 4.2.1, the distance d(x, 00) depends only on Ixl. Conse­
quently, every open ball Bd (00, r) is of the form En - B (0, s) for some 
s > 0. Therefore, a basis for the topology of En consists of all the open 
balls B(x, r) of En together with all the neighborhoods of 00 of the form 

N(oo, s) = En - B(O, s). 

In particular, this implies that a function f : En -+ En is continuous at a 
point a of En if and only lim f(x) = f(a) in the usual Euclidean sense. 

x---->a 

Let P(a, t) be a hyperplane of En. Define 

P(a, t) = P(a, t) U {oo}. 

Note that the subspace P(a, t) of En is homeomorphic to sn-l. Let p be 
the reflection of En in P(a, t) and let fJ : En -+ En be the extension of p 
obtained by setting fJ(oo) = 00. Then fJ(x) = x for all x in P(a, t) and fJ2 
is the identity. The map fJ is called the reflectwn of En in the extended 
hyperplane P(a, t). 

Theorem 4.2.2. Every reflection of En in an extended hyperplane 2S a 
homeomorphism. 

Proof: Let p be the reflection of En in a hyperplane. Then p is continuous. 
As lim p(x) = 00, we have that fJ is continuous at 00. Therefore fJ is a 

x---->oo 
continuous function. As fJ is its own inverse, it is a homeomorphism. 0 

Let a be the reflection of En in the sphere S(a, r). Extend a to a map 
a: En -+ En by setting a(a) = 00 and a(oo) = a. Then a(x) = x for allA x 
in S (a, r) and a2 is the identity. The map a is called the reflection of En 
in the sphere S(a, r). 

Theorem 4.2.3. Every reflection of En m a sphere of En is a homeomor­
phism. 

Proof: Let a be the reflection of En in the sphere S(a, r) and let a be 
the extended reflection of En. As a2 is the identity, a is a bijection with 
inverse a. The map a is continuous, since a is continuous, lim a(x) = 00, 

x---->a 

and lim a(x) = a. Thus a is a homeomorphism. 0 
x---->oo 
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Cross Ratio 

Let u, v, x, y be points of En such that u i= v and x i= y. The cross ratw 
of these points is defined to be the real number 

d(u,x)d(v,y) 
[u,v,x,y] = d(u, v)d(x, y)" (4.2.5) 

The cross ratio is a continuous function of four variables, since the metric 
d : En X En ---+ lR is a continuous function. The following theorem follows 
immediately from Theorem 4.2.1. 

Theorem 4.2.4. If u, v, x, yare pomts of En such that u i= v and x i= y, 
then 

(1) 

(2) 

(3) 

(4) 

(5) 

Exercise 4.2 

1. Derive Formula 4.2.1. 

lu - xliv - yl 
[u, v, x, y] = I I I 1 ' u-v x-y 

Iv-YI 
[oo,v,x,y] = -I -I' x-y 

lu-xl 
[u,oo,x,y] = -1--1' x-y 

Iv-yl 
[u, v, 00, y] = -I --I' u-v 

lu-xl 
[u, v, x, 00] = -I --I· u-v 

2. Let U be a subset of En containing 00. Show that U is open in En if and 
only if U is of the form En - K, where K is a compact subset of En. 

3. Let 'I) : En -> En be a homeomorphism and let i) : En -> En be the extension 
obtained by setting i)( 00) = 00. Prove that i) is a homeomorphism. 

4. Prove that the Euclidean metric on En does not extend to a metric d on En 
so that the metric space (En, d) is compact or connected. 

5. Let pea, t) be a hyperplane of En. Show that the extended plane pea, t) is 
homeomorphic to sn-l. 

§4.3. Mobius Transformations 

A sphere E of En is defined to be either a Euclidean sphere Sea, r) or an 
extended plane pea, t) = pea, t) u {oo}. It is worth noting that pea, t) is 
topologically a sphere. 
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Definition: A Mobius transformation of En is a finite composition of 
reflections of En in spheres. 

Let M(En) be the set of all Mobius transformations of En. Then M(En) 
obviously forms a group under composition. By Theorem 4.1.2, every isom­
etry of En extends in a unique way to a Mobius transformation of En. 
Thus, we may regard the group of Euclidean isometries I(En) as a sub­
group of M(En). 

Let k be a positive constant and let ILk : En ----+ En be the function 
defined by ILk (x) = kx. Then ILk is a Mobius transformation, since ILk is the 
composite of the reflection in 8(0,1) followed by the reflection in 8(0, Vk). 
As every similarity of En is the composite of an isometry followed by ILk 
for some k, every similarity of En extends in a unique way to a Mobius 
transformation of En. Thus, we may also regard the group of Euclidean 
similarities S(En) as a subgroup of M(En). 

In order to simplify notation, we shall no longer use a hat to denote the 
extension of a map to En. 

Lemma 1. If U is the refiectzon of En m the sphere 8(a, r) and Ul is the 
refiectzon m 8(0,1), and ¢ : En ----+ En 2S defined by ¢(x) = a + rx, then 
U = ¢Ul¢-l. 

Proof: Observe that 

U(x) a+ Cx~a[r (x-a) 

¢G~x ____ a~;) 

¢Ul(x~a) = ¢Ul¢-l(X). o 

Theorem 4.3.1. A function ¢ : En ----+ En is a Mobius transformation 2f 
and only if it preserves cross ratzos. 

Proof: Let ¢ be a Mobius transformation. As ¢ is a composition of 
reflections, we may assume that ¢ is a reflection. A Euclidean similarity 
obviously preserves cross ratios, and so we may assume by Lemma 1 that 
¢(x) = X/[x[2. By Theorem 4.1.3, we have 

[x-y[ 
[¢(x) - ¢(y)[ = ~. 

By Theorem 4.2.4, we deduce that 

[¢(u), ¢(v), ¢(x), ¢(y)] = [u,v,x,y] 

if u v x yare all finite and nonzero. The remaining cases follow by conti-, , , 
nuity. Thus ¢ preserves cross ratios. 
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Conversely, suppose that ¢ preserves cross ratios. By composing ¢ with 
a Mobius transformation, we may assume that ¢( (0) = 00. Let u, v, x, y be 
points of En such that u -I- v, x -I- y, and (u, v) -I- (x, y). Then either u -I- x 
or v -I- y. Assume first that u -I- x. As [¢(u), oo,¢(x), ¢(y)] = [u,oo,x,y], 
we have 

I¢(u) - ¢(x)1 lu - xl 
I¢(x) - ¢(y)1 - Ix - YI' 

and since [¢(u),¢(v),¢(x),oo] = [u,v,x,oo], we have 

Hence 

I¢(u) - ¢(x)1 lu - xl 
I¢(u) - ¢(v)1 = lu - vi· 

I¢(u) - ¢(v)1 
lu-vl 

I¢(u) - ¢(x)1 
lu-xl 

I¢(x) - ¢(y)1 
Ix-yl 

Similarly, if v -I- y, then 

I¢(u) - ¢(v)1 
lu-vl 

I¢(x) - ¢(y)1 
Ix-yl 

Hence, there is a positive constant k such that I¢(x) - ¢(y)1 = klx - yl for 
all x, y in En. By Theorem 1.3.6, we have that ¢ is a Euclidean similarity. 
Thus ¢ is a Mobius transformation. D 

From the proof of Theorem 4.3.1, we deduce the following theorem. 

Theorem 4.3.2. A Mobws transformation ¢ of En fixes 00 zf and only if 
¢ is a simzlarity of En. 

The Isometric Sphere 

Let ¢ be a Mobius transformation of En with ¢(oo) -I- 00. Let a = ¢-1(00) 
and let u be the reflection of En in the sphere S(a, r). Then ¢u fixes 00. 
Hence ¢u is a similarity of En by Theorem 4.3.2. Therefore, there is a 
point b of En, a scalar k > 0, and an orthogonal transformation A of En 
such that 

¢(x) = b+ kAu(x). (4.3.1) 

By Theorem 4.1.3, we have 

kr2 1x - yl 
I¢(x) - ¢(y)1 = I I I I· x-a y-a 

Now suppose that X,y are in S(a,t). Then I¢(x) - ¢(y)1 = Ix - yl if and 
only if t = rvk. Thus ¢ acts as an isometry on the sphere S(a, rvk), and 
S(a, rvk) is unique with this property among the spheres of En centered 
at a. For this reason, S(a, rvk) is called the isometric sphere of ¢. 
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Theorem 4.3.3. Let ¢ be a Mobius transformatwn of En with ¢( 00) i=- 00. 

Then there is a umque reflection u in a Euchdean sphere I; and a umque 
Euclzdean isometry 'lj; such that ¢ = 'lj;u. Moreover I; is the isometric 
sphere of ¢. 

Proof: Let u be the reflection in the isometric sphere S (a, r) of ¢. Then 
a = ¢-1(00) and ¢u(oo) = 00. By Theorem 4.3.2, we have that ¢u is a 
Euclidean similarity. Let X,Y be in S(a,r). Then we have 

I¢u(x) - ¢u(y)1 = I¢(x) - ¢(y)1 = Ix - YI· 

Thus 'lj; = ¢u is a Euclidean isometry and ¢ = 'lj;u. 
Conversely, suppose that u is a reflection in a sphere S(a, r) and 'lj; is 

a Euclidean isometry such that ¢ = 'lj;u. Then ¢( a) = 00 and ¢ acts as 
an isometry on S (a, r). Therefore S (a, r) is the isometric sphere of ¢. As 
'lj; = ¢u, both u and 'lj; are unique. 0 

Preservation of Spheres 

The equation defining a sphere S(a, r) or P(a, t) in En is 

Ixl2 - 2a . x + lal2 - r2 = ° 
or 

- 2a . x + 2t = 0, 

respectively, and these can be written in the common form 

aolxl 2 - 2a· x + an+l = ° with lal 2 > aOan+l· 

(4.3.2) 

(4.3.3) 

Conversely, any vector (ao, ... , an+1) in JR.n+2 such that lal 2 > aOan+l, 
where a = (at, ... , an) determines a sphere I; of En satisfying the equation 

aolxl2 - 2a . x + an+l = 0. 

If ao i=- 0, then 

If ao = 0, then 

I; = PC:I' a21:i) . 
The vector (ao, ... , an+l) is called a coeJficzent vector for I;, and it is 
uniquely determined by I; up to multiplication by a nonzero scalar. 

Theorem 4.3.4. Let ¢ be a Mobius transformation of En. If I; is a sphere 
of En, then ¢(I;) zs also a sphere of En. 

Proof: Let ¢ be a Mobius transformation, and let I; be a sphere. As 
¢ is a composition of reflections, we may assume that ¢ is a reflection. 
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A Euclidean similarity obviously maps spheres to spheres, and so we may 
assume by Lemma 1 that ¢(x) = x/lxI 2 • 

Let (ao, ... , an+l) be a coefficient vector for~. Then ~ satisfies the 

equation 
aolxl2 - 2a· x + an+l = o. 

Let y = ¢(x). Then y satisfies the equation 

ao - 2a· y + an+llyl2 = O. 

But this is the equation of another sphere ~/. Hence ¢ maps ~ into ~/. 
The same argument shows that ¢ maps ~' into ~. Therefore ¢(~) = ~/. 0 

Theorem 4.3.5. The natural action ofM(En ) on the set of spheres of En 
zs transitzve. 

Proof: Let ~ be a sphere of En. It suffices to show that there is a Mobius 
transformation ¢ such that ¢(~) = En-l. As the group of Euclidean 
isometries I(En) acts transitively on the set of hyperplanes of En, we may 
assume that ~ is a Euclidean sphere. As the group of Euclidean similarities 
S(En) acts transitively on the set of spheres of En, we may assume that 
~ = sn-l. Let a be the reflection in the sphere S (en, y'2). Then we have 
that a(sn-l) = En-l by stereographic projection. 0 

Theorem 4.3.6. If ¢ is a Mobius transformatzon of En that fixes each 
poznt of a sphere ~ of En, then ¢ zs either the zdentity map of En or the 
reflection in ~. 

Proof: Assume first that ~ = En-l. Then ¢(oo) = 00. By Theorem 
4.3.2, we have that ¢ is a Euclidean similarity. As ¢(O) = 0 and ¢(el) = el, 
we have that ¢ is an orthogonal transformation. Moreover, since ¢ fixes 
el, ... , en-l, we have that ¢(en ) = ±en. Thus ¢ is either the identity or 
the reflection in P ( en, 0) . 

Now assume that ~ is arbitrary. By Theorem 4.3.5, there is a Mobius 
transformation 'Ij; such that 'Ij;(~) = En-l. As 'Ij;¢'Ij;-l fixes each point 
of En-l, we find that 'Ij;¢'Ij;-l is either the identity or the reflection p in 
En-l. Hence ¢ is either the identity or 'Ij;-l p'lj;. Let a be the reflection in 
~. As 'lj;a'lj;-l fixes each point of E n- l and is not the identity, we have 
that 'lj;a'lj;-l = p. Hence a = 'Ij;-lp'lj;. Thus ¢ is either the identity or a. 0 

Definition: Given a reflection a in a sphere ~ of En, two points x and y of 
En are said to be inverse poznts with respect to ~ if and only if y = a(x). 

Theorem 4.3.7. Let ¢ be a M obzus transformation of En. If x and yare 
inverse poznts wzth respect to a sphere ~ of En, then ¢(x) and ¢(y) are 
znverse poznts with respect to ¢(~). 
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Proof: Let 0" be the reflection in E. Then ¢mp-l fixes each point of 
¢(E) and is not the identity. By Theorem 4.3.6, we have that ¢O"¢-l is the 
reflection in ¢(E). As ¢O"¢-l(¢(x)) = ¢(y), we have that ¢(x) and ¢(y) 
are inverse points with respect to ¢(E). 0 

Exercise 4.3 

1. Show that a Mobius transformation of En either preserves or reverses orien­
tation depending on whether it is the composition of an even or odd number 
of reflections. Let Mo(En) be the set of all orientation preserving Mobius 
transformations of En. Conclude that Mo(En) is a subgroup of M(En) of 
index two. 

2. A lmear fraetwnal transformatwn of the Riemann sphere C is a continuous 
map ¢ : C ---> C of the form ¢(z) = ~;t~, where a, b, c, d are in IC and 

ad - bc =I O. Show that every linear fractional transformation of C is an 
orientation preserving Mobius transformation of C. 

3. Let LF(C) be the set of all linear fractional transformations of C. Show that 
LF(C) is a group under composition. 

4. Let GL(2, IC) be the group of all invertible complex 2 x 2 matrices, and 
let PGL(2, IC) be the quotient group of GL(2, IC) by the normal subgroup 
{kI: k E IC*}. Show that the map S : GL(2, IC) ---> LF(C), defined by 

S (a b) (z) = az + b, 
cd ez+d 

induces an isomorphism from PGL(2, IC) to LF(C). 

5. Let p(z) = z be complex conjugation. Show that 

M(C) = LF(C) U LF(C)p. 

Deduce that LF(C) = Mo(C). 

6. Let ¢(z) = ~;t~ be a linear fractional transformation of C with ¢(oo) =I 00. 

Show that the zsometne ezrcle of ¢ is the set 

{z E IC: lez + dl = lad - bel!}. 

7. Let ¢ be a Mobius transformation of En with ¢( (0) i= 00, and let ~c/> be the 
isometric sphere of ¢. Prove that ¢(~c/» = ~c/>-1. 

8. Let ¢ be a Mobius transformation of En with ¢(oo) i= 00, and let ¢'(x) be 
the matrix of partial derivatives of ¢. Prove that the isometric sphere of ¢ 
is the set {x E En : ¢'(x) is orthogonal}. 
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§4.4. Poincare Extension 

Under the identification of En-I with En-I x {O} in En, a point x of 
En-I corresponds to the point x = (x,O) of En. Let ¢ be a Mobiu~ 
transformation of En-I. We shall extend ¢ to a Mobius transformation ¢ 
of En as follows. If ¢ is the reflection of En-I inA P(a, t), then ¢ is th~ 
reflection of En in P(o" t). If ¢ is the reflection of En-I in 8(a, r), then ¢ 
is the reflection of En in 8(0" r). In both these cases 

¢(x,O) = (¢(x),O) for all x in En-I. 

Thus ¢ extends ¢. In particular ¢ leaves En-I invariant. It is also clear 
that ¢ leaves invariant upper half-space 

un = {(Xl,'" ,xn) E En: Xn > O}. 

Now assume that ¢ is an arbitrary Mobius transformation of En-I. Then 
¢ is the composition ¢ = al ... am of reflections. L~t ¢ = ~I ... O'm. Then 
¢ extends ¢ and leaves un invariant. Suppose that ¢I and ¢2 are two such 
Mobius transformations. Then ¢1¢2I fixes each point of En-I and leaves 
un invariant. By Theorem 4.3.6, we have that ¢1¢2I is the identity and 
so ¢I = ¢2. Thus ¢ depends only on ¢ and not on the decomposition 
¢ = al ... am. The map ¢ is called the Poincare extension of ¢. 

Theorem 4.4.1. A Mobius transformation ¢ of En leaves upper half-space 
un invariant if and only if ¢ is the Pomcare extension of a Mobzus trans­
formation of En-I. 

Proof: Let ¢ be a Mobius transformation of En that leaves un invariant. 
As ¢ is a homeomorphism, it also leaves the boundary of un invariant. 
Hence ¢ restricts to a homeomorphism ¢ of En-I. As ¢ preserves cross 
ratios in En, we have that ¢ preserves cross ratios in En-I. ~herefore 
¢ is a Mobius transformation of En-I by Theorem 4.3.1. Let ¢ be the 

Poincare extension of ¢. The_n ¢¢-I fixes each point of En-I and leaves 
un invariant. Therefore ¢ = ¢ by Theorem 4.3.6. o 

Mobius Transformations of Upper Half-Space 

Definition: A Mobzus transformation of upper half-space un is a Mobius 
transformation of En that leaves un invariant. 

Let M(Un) be thAe set of all Mobius transformations of un. Then M(Un) is a 
subgroup of M(En). The next corollary follows immediately from Theorem 
4.4.1. 

Corollary 1. The group M(Un) of Mobius transformations of un zs zso­
morphic to M(En-I). 
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Two spheres E and E' of En are said to be orthogonal if and only if they 
intersect in En and at each point of intersection in En their normal lines 
are orthogonal. 

Corollary 2. Every Mjjbzus transformation of un is the composition of 
reflections of En in spheres orthogonal to En-1. 

Proof: Let 'lj; be a Mobius transformation of un. Then 'lj; is the Poincare 
extension ¢ of a Mobius transformation ¢ of En -1. The map ¢ is the com­
position a1 ... am of reflections of En-1 in spheres. The Poincare extension 
of the reflection a, is a reflection of En in a sphere orthogonal to En-1. 
As ¢ = 0-1 ... o-m, we have that 'lj; is the composition of reflections of En in 
spheres orthogonal to En-1. 0 

Theorem 4.4.2. Two spheres of En are orthogonal under the following 
conditions: 

(1) The spheres F(a, r) and F(b, s) are orthogonal if and only zf a and b 
are orthogonal. 

(2) The spheres S(a, r) and F(b, s) are orthogonal zf and only if a is zn 
P(b, s). 

(3) The spheres S(a,r) and S(b, 8) are orthogonal zf and only ifr and 8 

satzsfy the equatzon la - bl 2 = r2 + 8 2 . 

Proof: Part (1) is obvious. The proof of (2) is left to the reader. The 
proof of (3) goes as follows: At each point of intersection x of S (a, r) and 
S(b, 8), the normal lines have the equations 

{ u = a + t(x - a), 
v = b+t(x - b), 

where t is a real parameter. These lines are orthogonal if and only if their 
direction vectors x - a and x - b are orthogonal. Observe that 

l(x-b)-(x-a)12 

Ix - al2 - 2(x - b) . (x - a) + Ix - al2 

82 - 2(x - b)· (x - a) + r2. 

Hence (x - a) and (x - b) are orthogonal if and only if 

la - W = r2 + 8 2 . 

Thus, if the spheres are orthogonal, then 

la - bl 2 = r2 + 8 2 . 

2 2 2 h h . 'ht Conversely, suppose that la - bl = r + 8. T en t ere is a ng 
triangle in En with vertices a, b, x such that Ix - al = r and Ix - bl = 8. 

Consequently, x is a point of intersection of S(a,r) and S(b, 8), and the 
spheres are orthogonal. See Figure 4.4.1. 0 



§4.4. Poincare Extension 123 

a b 

Figure 4.4.1. Orthogonal circles S(a, r) and S(b, s) 

Remark: It is clear from the proof of Theorem 4.4.2 that two spheres ~ 
and ~' of En are orthogonal if and only if they are orthogonal at a single 
point of intersection in En. 

Theorem 4.4.3. A reflection a of En in a sphere ~ leaves upper half-space 
un invariant if and only if E n- I and ~ are orthogonal. 

Proof: Let ~ = P(a, t) or S(a, r). By Theorem 4.4.2, we have that En-I 
and ~ are orthogonal if and only if an = O. Let x be in En and set y = a( x). 
Then for all finite values of y, we have 

if ~ = P(a, t), 

if ~ = S(a, r). 

Assume that an = 0 and Xn > o. Then x =f. a, and so y is finite and Yn > O. 
Thus a leaves un invariant. 

Conversely, assume that a leaves un invariant. Then a leaves E n- I 
invariant. As the reflection in En-I switches un and -un, we may assume 
that ~ is not En-I. Let x be in E n- I - ~ with Y finite. Then Xn = 0 = Yn. 
As x is not in ~, the coefficient of an in the above expression for Yn is 
nonzero. Hence an = O. 0 

Theorem 4.4.4. Let ¢ be a M obzus transformatwn of un. If ¢( (0) = 00, 

then ¢ zs a Euclzdean similarity. If ¢( (0) =f. 00, then the isometrzc sphere 
~ of ¢ zs orthogonal to En-I and ¢ = 'ljJa, where a is the reflectwn m ~ 
and 'ljJ zs a Euclidean zsometry that leaves un invariant. 
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Proof: If ¢( 00) = 00, then ¢ is a Euclidean similarity by Theorem 4.3.2. 
Now assume tha.! ¢( 00) =f. 00. Then ¢ is the Poincare extension of a Mobius 
transformation ¢ of E n - 1 by Theorem 4.4.1. Let Cf be the reflection of 
!!.n-l Ain the isometri<:...sph~e E of ¢. Then there is a Euclidean isometry 
't/J of E n - 1 such that ¢ = 't/JCf by Theorem 4.3.3. Let a, 't/J be the Poincare 
extensions of Cf, 1jj, respectively. Then a is a reflection in a sphere :E of En 
orthogonal to En-l, and't/J is an isometry of En that leaves un invariant. 
As ¢ = 1jjCf, we have that ¢ = 't/Ja. Therefore:E is the isometric sphere of ¢ 
by Theorem 4.3.3. 0 

Mobius Transformations of the Unit n-Ball 

Let a be the reflection of En in the sphere S ( en, v'2). Then 

a(x) 2(x-en) 
en + I 12 . X - en 

(4.4.1) 

Therefore 

la(xW 
Thus 

(4.4.2) 

This implies that a maps lower half-space -un into the open unit n-ball 

B n = {x E En: Ixl < I}. 

As a is a homeomorphism of En, it maps each component of En - En-l 
homeomorphically onto a component of En - sn-l. Thus a maps -un 
homeomorphically onto Bn and vice versa. 

Let p be the reflection of En in En-l and define 'f/ = ap. Then'f/ maps 
un homeomorphically onto Bn. The Mobius transformation 'f/ is called the 
standard tmnsformatwn from un to Bn. 

Definition: A Mobius tmnsformation of sn is a function ¢ : sn -+ sn 
such that n-1¢n is a Mobius transformation of En, where n : En -+ sn is 
stereographic projection. 

Let M(sn) be the set of all Mobius transformations of sn. Then M(sn) 
forms a group under composition. The mapping 't/J t-+ n't/Jn-1 is an isomor­
phism from M(En) to M(sn). 

Let ¢ be a Mobius transformation of sn-l. The Pmncare extension of ¢ 
is the Mobius transformation ¢ of En defined by ¢ = 'f/,(f'f/-l, where,(f is the 
Poincare extension of 't/J = n-1¢n and 'f/ is the standard transformation from 
un to Bn. The Mobius transformation ¢ obviously extends ¢ and leaves B n 

invariant; moreover, ¢ is unique with this property. The following theorem 
follows immediately from Theorem 4.4.1. 
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Theorem 4.4.5. A Mobius transformation ¢ of En leaves the open umt 
ball B n invar'Wnt zf and only if ¢ is the Pmncare extenswn of a Mobius 
transformatwn of sn-l. 

Definition: A Mobzus transformation of the open unit ball B n is a Mobius 
transformation of En that leaves B n invariant. 

Let M(Bn) be the set of all Mobius transformations of Bn. Then M(Bn) 
is a subgroup of M(En). The next corollary follows immediately from 
Theorem 4.4.5. 

Corollary 3. The group M(Bn) of Mobius transformatwns of B n is iso­
morphic to M(sn-l). 

The following corollary follows immediately from Corollary 2. 

Corollary 4. Every Mobius transformatwn of Bn zs the composition of 
A 1 refiectwns of En m spheres orthogonal to sn- . 

Theorem 4.4.6. A refiectwn cr of En m a sphere ~ leaves the open unit 
ball B n invarzant zf and only zf sn-l and ~ are orthogonal. 
Proof: Let 7] be the standard transformation from un to Bn. Then 
~' = 7]-1(~) is a sphere of En by Theorem 4.3.4, and cr' = 7]- l cr7] is the 
reflection in ~' by Theorem 4.3.6. As 7] maps un bijectively onto Bn, 
the map cr leaves B n invariant if and only if cr' leaves un invariant. By 
Theorem 4.4.3, this is the case if and only if En - 1 and ~' are orthogonal. 
By Theorem 4.1.5, the map 7] is conformal and so it preserves angles. Hence 
En-l and ~' are orthogonal if and only if sn-l and ~ are orthogonal. 0 

Theorem 4.4.7. Let ¢ be a Mobius transformatwn of Bn. If¢(oo) = 00, 
then ¢ is orthogonal. If ¢( 00) -=1= 00, then the isometrzc sphere ~ of ¢ zs 
orthogonal to sn-l and ¢ = 'ljJcr, where cr is the refiection in ~ and'ljJ is an 
orthogonal transformatwn. 

Proof: Assume first that ¢( 00) = 00. Then ¢ is a Euclidean similarity by 
Theorem 4.3.2. As ¢(O) = 0, we have that ¢(x) = kAx, where k > 0 and 
A is an orthogonal matrix. As ¢ leaves sn-l invariant, we must have that 
k = 1. Thus ¢ is orthogonal. 

Now assume that ¢( 00) -=1= 00. Let cr be the reflection in the sphere 
S(a,r), where a = ¢-l(oo) and r2 = 1-laI2. Then S(a,r) is orthogonal 
to sn-l by Theorem 4.4.2. Hence cr leaves Bn invariant by Theorem 4.4.6. 
Now ¢cr(oo) = ¢(a) = 00. Hence ¢cr is an orthogonal transformation 'ljJ, 
and ¢ = 'ljJcr. By Theorem 4.3.3, the isometric sphere of ¢ is Sea, r). 0 

Theorem 4.4.8. Let ¢ be a Mobius transformatwn of Bn. Then ¢(O) = 0 
zf and only if ¢ zs an orthogonal transformation of En. 
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Proof: As 0 and 00 are inverse points with respect to sn-l, and ¢ leaves 
sn-l invariant, ¢(O) and ¢( 00) are inverse points with respect to sn-l. 
Therefore ¢ fixes 0 if and only it fixes 00. The theorem now follows from 
Theorem 4.4.7. D 

Exercise 4.4 

1. Identify the upper half-plane U2 with the set of complex numbers 

{z E C: Imz > O}. 

Show that a linear fractional transformation ¢ of Cleaves U 2 invariant if 
and only if there exists real numbers a, b, e, d, with ad - be > 0, such that 

¢(z) = az+b. 
ez+d 

2. Let ¢ be in LF(C). Show that there are complex numbers a, b, e, d such that 
-I.(z) = az+b and ad - be = 1. 
'I' cz+d 

3. Let SL(2, C) be the group of all complex 2 x 2 matrices of determinant one, 
and let PSL(2, C) be the quotient of SL(2, C) by the normal subgroup {±I}. 
Show that the inclusion of SL(2, C) into GL(2, C) induces an isomorphism 
from PSL(2, C) to PGL(2, C). Deduce that PSL(2, C) and LF(C) are iso­
morphic groups. 

4. Show that the standard transformation T} : U2 ---+ B2 is given by 

() iz + 1 
T}Z --­- z+i· 

5. Identify the open unit disk B2 with the open unit disk in C, 

{zEC:lzl<l}. 

Let ¢(z) = ~:~~ be in LF(C) normalized so that ad - be = 1. Show that ¢ 
leaves B2 invariant if and only if e = Ii and d = a. 

6. Identify upper half-space U 3 with the set of quaternions 

{z+tj:zEC and t>O}. 

Let ¢(z) = ~:~~ be a linear fractional transformation of C normalized so 
that ad - be = 1. Show that the Poincare extension of ¢ is given by 

- 1 . 
¢(w) = (aw + b)(ew + d)-, where w = z + tJ. 

7. Prove that Poincare extension induces a monomorphism 

mapping M(Bn- 1 ) onto the subgroup M(Bn- 1 ) of elements of M(Bn) that 
leave B n- 1 and each component of B n - B n- 1 invariant. 
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§4.5. The Conformal Ball Model 

Henceforth, we shall work with hyperbolic n-space H n in ~n,l. We now 
redefine the Lorentzian inner product on ~n+l to be 

x 0 Y = XIYl + ... + XnYn - Xn+lYn+1' (4.5.1) 

All the results of Chapter 3 remain true after one reverses the order of the 
coordinates of ~n+l. The Lorentz group of ~n,l is denoted by O(n, 1). 

Identify ~n with ~n x {O} in ~n+l. The stereographic projectwn ( of 
the open unit ball Bn onto hyperbolic space Hn is defined by projecting 
x in Bn away from -en+l until it meets Hn in the unique point ((x). See 
Figure 4.5.1. As ((x) is on the line passing through x in the direction of 
x + en+l, there is a scalar s such that 

((x) = x + s(x + en+d. 

The condition 11((x)112 = -1 leads to the value 

1 + Ixl 2 
s=------'---'-::-

1-lx12 

and the explicit formula 

_ ( 2Xl 2xn 1 + IXI2) 
((x) - 1 _ IxI2'"'' 1 _ Ix12' 1 _ Ixl 2 . (4.5.2) 

The map ( is a bijection of B n onto Hn. The inverse of ( is given by 

C1(y) = (1 Yl , ... , Yn ). (4.5.3) 
+ Yn+l 1 + Yn+l 

-e3, 
- - - -1-- - _ 

~/------v-------:-------~ '--::.. 

Figure 4.5.1. The stereographic projection ( of B2 onto H2 
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Define a metric dB on Bn by the formula 

dB(x, y) = dH(((x), ((y)). (4.5.4) 

The metric dB is called the Poincare metric on Bn. By definition, ( is 
an isometry from Bn, with the metric dB, to hyperbolic n-space Hn. The 
metric space consisting of Bn together with the metric dB is called the 
conformal ball model of hyperbolic n-space. 

Theorem 4.5.1. The metric dB on Bn is gwen by 
2\x _ y\2 

cosh dB (x, y) = 1 + (1 -\x\2)(1 _\y\2)' 

Proof: By Formula 3.2.2, we have 

cosh dH(((x), ((y)) -((x) 0 ((y) 

-4x . y + (1 + \x\2)(1 + \y\2) 
(1 - \x\2)(1 _ \y\2) 

(1 - \x\2)(1 - \y\2) + 2(\x\2 + \y\2) - 4x. Y 
(1 - \x\2)(1 _ \y\2) 

2\x _ y\2 

Lemma 1. If ¢ is a Mob~us transformation of Bn and x, y are ~n B n, then 

\¢(x) - ¢(y)\2 \x _ y\2 
(1 -\¢(x)\2)(1-\¢(y)\2) (1-\x\2)(1-\y\2)' 

Proof: This is obvious if ¢ is an orthogonal transformation. By Theorem 
4.4.6, we may assume that ¢ is a reflection in a sphere S(a, r) orthogonal 
to sn-l. By Theorem 4.1.3, we have 

\¢(x) - ¢(y)\ r2 

\x - y\ = \x - a\ \y - a\' 
As S(a,r) is orthogonal to sn-l, we have that r2 = \a\2 -1. Moreover 

r2 
¢(x) = a+ \ \2(x-a). 

Hence 

\¢(xW 

Thus 

\¢(X)\2 - 1 

x-a 

(\a\2 - l)\x - a\2 + 2r2a· (x - a) + r 4 

\x - a\2 
r2[\x - a\2 + 2a· (x - a) + \a\2 - 1] 

\x-a\2 

r2(\x\2 - 1) 
\x - a\2 . 
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Hence 

Therefore 

1-11>(x)12 
1-lx12 

11>(x) - 1>(y)12 
Ix - yl2 

Hyperbolic Translation 

(1-11>(x)12)(1-11>(y)12) 
(1 -lxI2)(1-lyI2) 
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Let S(a, r) be a sphere of En orthogonal to sn-1. By Theorem 4.4.2, we 
have r2 = lal2 - 1. Thus, the radius r is a function of a. Let O"a be the 
the reflection in S(a, r). Then O"a leaves B n invariant by Theorem 4.4.6. 
Let Pa be the reflection in the hyperplane a . x = O. Then Pa also leaves 
Bn invariant, and therefore the composite PaO"a leaves B n invariant. Let 
a* = allal 2 . A straightforward calculation shows that 

) _ (lal2 - 1) _ (lxl2 - 2x· a* + 1) 
PaO"a(x - I 12 X I 12 a. x-a x-a 

In particular PaO"a(O) = -a*. 
Let b be a nonzero point of B n and set b' = -b*. By Theorem 4.4.2, the 

sphere S(b', (lb'12 - 1)1/2) is orthogonal to sn-1. Hence, we may define a 
Mobius transformation of Bn by the formula Tb = PbIO"b'. Then 

T(X)= (lb*12-1)x (l x I2 +2x.b+1)b*. 
b Ix+b*12 + Ix+b*12 

In terms of b, we have the formula 

(1-lbI2) (lxl2 + 2x· b+ 1) b 
Tb(X) = (lbI2IxI2+2x.b+1)x+ (lbI2IxI2+2x.b+1) . (4.5.5) 

As Tb is the composite of two reflections in hyperplanes orthogonal to the 
line (-b/lbl, b/lbl), the transformation Tb acts as a translation along this 
line. We also define TO to be the identity. Then Tb(O) = b for all b in Bn. 
The map Tb is called the hyperbolic translation of Bn by b. 

Theorem 4.5.2. Every Mobius transformation of B n restricts to an isom­
etry of the conformal ball model Bn, and every isometry of Bn extends to 
a unique Mobius transformation of Bn. 

Proof: That every Mobius transformation of B n restricts to an isometry 
of B n follows immediately from Theorem 4.5.1 and Lemma 1. Conversely, 
let 1> : Bn ---t B n be an isometry. Define'lj; : Bn ---t Bn by 'Ij;(x) = T;(~)1>(x). 
Then 'Ij;(0) = O. By the first part of the theorem, 'Ij; is an isometry of Bn. 

Let x, y be points of Bn. From the relation 

dB ('Ij;(x) , 0) = dB(x, 0) 
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and Theorem 4.5.1, we have 

I?j;(x) 12 

1 -1?j;(x)12 

Hence I?j;(x) I = Ixl. Likewise, we have 

I?j;(x) - ?j;(y) 12 Ix _ Yl2 

(1 - 1?j;(x)l2)(1 - 1?j;(y)12) - (1 - IxI 2)(1 - lyI2). 

Therefore, we have 

I?j;(x) - ?j;(y) I = Ix - YI· 

Thus ?j; preserves Euclidean distances in Bn. 
Now ?j; maps each radius of B n onto a radius of Bn. Therefore?j; extends 

to a function 1jj : B n ......, Bn such that 

?j;([0, x)) = [O,ljj(x)) for each x in sn-l. 

Moreover ?j; is continuous, since 

ljj(x) = 2?j;(x/2) for each x in Bn. 

Therefore 1jj preserves Euclidean distances. Hence 1jj preserves Euclidean 
inner products on Bn. The same argument as in the proof of Theorem 
1.3.2 shows that 1jj is the restriction of an orthogonal transformation A 
of En. Therefore T¢(o)A extends ¢. Moreover T¢(o)A is the only Mobius 
transformation of B n extending ¢, since any two Mobius transformations 
extending ¢ agree on B n and so are the same by Theorem 4.3.6. 0 

By Theorem 4.5.2, we can identify the group I(Bn) of isometries of the 
conformal ball model with the group M(Bn) of Mobius transformations of 
Bn. In particular, we have the following corollary. 

Corollary 1. The groups I(Bn) and M(Bn) are zsomorphzc. 

An m-sphere of En is defined to be the intersection of a sphere S(a, r) 
of En with an (m+ I)-plane of En that contains the center a. An rr::-sph!;-re 
of En is defined to be either an m-sphere or an extended m-plane P of En. 

Lemma 2. The group M(En) acts transitively on the set of all m-spheres 

of En. 

Proof: Let V be the vector subspace of En spanned by el,···, em· It 
suffices to show that for every m-sphere ~ of En, there is a Mobius trans­
formation ¢ of En such that ¢(V) = ~, and the image of V under every 
Mobius transformation of En is an m-sphere of En. 

Let ~ be an arbitrary m-sphere of En. If ~ is an extended m-plane, 
then there is an isometry ¢ of En such that ¢(V) = ~, since I(En) acts 
transitively on the set of m-planes of En. 
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N ow suppose that I: is an m-sphere of En. As the group of similarities 
of En acts transitively on the set of m-spheres of En, we may a!'sume that 
I: = sm. Then the reflection in the sphere S (em+l' v'2) maps V onto I:. 

Let ¢ be a Mobius transform!1tion of En. If ¢( 00) = 00, th:n ¢ is a 
Euclidean similarity, and so ¢(V) is an extended m-plane of En. Now 
assume that ¢( 00) i- 00. Then by Theorem 4.3.3, we have that ¢ = 'lj;o­
where 0- is the reflection in a sphere S(a, r) and'lj; is a Euclidean isometry. 
If a is in V, then 0- leaves V invariant, and so ¢(V) is an extended m-plane 
of En. 

Now assume that a is not in V. Then V and a span an (m + 1)­
dimensional vector subspace W of En. Moreover V is a sphere in TV. 
As 0- leaves TV invariant, o-(V) is a sphere in TV by Theorem 4.3.4. The 
point 00 is not in o-(V), since a is not in V. Hence o-(V) is an m-sphere of 
En, and so ¢(V) is an m-sphere of En. D 

A subset P of Bn is said to be a hyperbolic m-plane of B n if and only 
if ((P) is a hyperbolic m-plane of Hn. A p-sphere I: and a q-sphere I:' of 
En are said to be orthogonal if and only if they intersect and at each finite 
point of intersection their tangent planes are orthogonal. 

Theorem 4.5.3. A subset P of Bn zs a hyperbolic m-plane of Bn if and 
only zf P zs the zntersection of Bn with either an m-dimenswnal vector 
subspace of En or an m-sphere of En orthogonal to sn-l. 

Proof: Let P be the intersection of B n with the vector subspace V of En 
spanned by el,···, em. Then obviously ( maps P onto the hyperbolic m­
plane of Hn obtained by intersecting H n with the vector subspace spanned 
by V and en+l' Thus P is a hyperbolic m-plane of Bn. 

Let pI be an arbitrary hyperbolic m-plane of Bn. By Theorem 3.1.5, 
the group M(Bn) acts transitively on the set of hyperbolic m-planes of Bn. 
Hence, there is a Mobius transformation ¢ of B n such that ¢(P) = P'. By 
Lemma 2, the set ¢(V) is an m-sphere of En. As ¢ is conformal, ¢(V) 
is orthogonal to ¢(sn-l) = sn-l. Therefore pI is the intersection of Bn 
with either an m-dimensional vector subspace of En or an m-sphere of En 
orthogonal to sn-l. 

Let Q be the intersection of Bn with either an m-dimensional vector sub­
space of En or an m-sphere of En orthogonal to sn-l. Then the boundary 
of Q in sn-l is an (m-l)-sphere I: of En. By Lemma 2, there is a Mobius 
transformation 'lj; of sn-l such that 'lj; maps the boundary of P in sn-l 
onto Q. The Poincare extension ~ then maps Ponto Q. Thus Q is a 
hyperbolic m-plane of Bn. D 

A hyperbolic line of Bn is defined to be a hyperbolic I-plane of Bn. The 
geodesics of Bn are its hyperbolic lines by Corollary 4 of §3.2. 
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Corollary 2. A subset L of B n is a hyperbolic line of Bn 2f and only 2f 
L is either an open dwmeter of Bn or the 2ntersection of B n with a circle 
orthogonal to sn-l. 

It is clear from the geometric definition of the stereographic projection 
( of B n onto Hn that ( preserves the Euclidean angle between any two 
geodesic lines intersecting at the origin. As the hyperbolic angle between 
two geodesic lines in Hn intersecting at ((0) = en+l is the same as the 
Euclidean angle, the hyperbolic angle between two geodesic lines in B n 

intersecting at the origin is the same as the Euclidean angle between the 
lines. Moreover, since the isometries of B n are conformal, the hyperbolic 
angle between any two intersecting geodesic lines in Bn is the same as 
the Euclidean angle between the lines. Thus, the hyperbolic angles of B n 

conform with the corresponding Euclidean angles. For this reason, Bn is 
called the conformal ball model of hyperbolic n-space. 

The hyperbol2c sphere of B n , with center b and radius r > 0, is defined 
to be the set 

Theorem 4.5.4. A subset S of B n 2S a hyperbohc sphere of Bn 2f and 
only 2f S is a Euchdean sphere of En that is contamed m Bn. 

Proof: Let S = SB(b,r). Assume first that b = 0. By Theorem 4.5.1, 
the distance dB(O, x) is an invertible function of Ixl. Therefore S is a 
Euclidean sphere centered at 0. Now assume that b is an arbitrary point of 
Bn. Then the hyperbolic translation Tb maps SB(O,r) onto S. Therefore 
S is a Euclidean sphere by Theorem 4.3.4. 

Conversely, suppose that S is a Euclidean sphere contained in Bn. If S 
is centered at 0, then S is a hyperbolic sphere, since dB(O, x) is an invertible 
function of Ixl. Now assume that S is not centered at 0. Let x be the point 
of S nearest to 0, and let y be the point of S farthest from 0. Then the line 
segment [x, y] is a diameter of S. The line segment [x, y] is also a geodesic 
segment of Bn. Let b be the hyperbolic midpoint of [x, y], and let r be the 
hyperbolic distance from b to x. Then Tb maps SB(O,r) onto SB(b,r), and 
S B (b, r) is a Euclidean sphere by Theorem 4.3.4. Observe that Tb maps a 
diameter of SB(O,r) onto [x,y]. Therefore [x,y] is orthogonal to SB(b,r) 
at x and y, since Tb is conformal. Hence [x, y] is a Euclidean diameter of 
SB(b,r). Therefore S = SB(b,r). 0 

Let a be a point on a hyperbolic sphere S of B n , and let R be the 
geodesic ray of B n starting at a and passing through the center c of S. If 
we expand S by moving c away from a on R at a constant rate while keeping 
a on S, the sphere tends to a limiting hypersurface ~ in B n containing a. 
By moving a to 0, we see that ~ is a Euclide~ sphere minus the ideal 
endpoint b of R and that the Euclidean sphere ~ is tangent to sn-l at b. 
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Figure 4.5.2. A horocycle of B2 

A hO'T'Osphere I; of En, based at a point b of sn-l, is defined to be the 
intersection with En of a Euclidean sphere in En tangent to sn-l at b. A 
horosphere in dimension two is also called a hO'T'Ocycle. See Figure 4.5.2. 
The interior of a horosphere is called a hO'T'Oball. The interior of a horocycle 
is also called a horodisk. 

Theorem 4.5.5. The element of hyperbolic arc length of the conformal 
ball model En zs 

21dxl 
1-lxI2' 

Proof: Let y = ((x). From the results of §3.3, the element of hyperbolic 
arc length of Hn is 

Iidyll = (dYi + ... + dy~ - dY~+l)!' 
Now since 

2x" 
y" = 1 _ Ixl2 for i = 1, ... ,n, 

we have 

Hence 

Thus 
n 
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Now since 

we have that 

Thus 

1 + \X\2 
Yn+l = 1 _ \X\2' 

o 

Theorem 4.5.6. The element of hyperbolic volume of the conformal ball 
model B n zs 

2ndxl··· dXn 
(1 - \x\2)n . 

Proof: An intuitive argument goes as follows: The element of hyperbolic 
arc length in the x,-direction is 

2dx, 
ds, = ----,-~ 

1-\X\2· 

Therefore, the element of hyperbolic volume is 

2ndxl··· dXn 
dS l ... dSn = (1 _ \x\2)n . 

For a proof based on the definition of hyperbolic volume, start with the ele­
ment of hyperbolic volume of H n with respect to the Euclidean coordinates 
Yl, ... , Yn given by Theorem 3.4.1, 

dYl··· dYn 

[1 + (Yi + ... + Y~)l~· 
Then change coordinates via the map "( : B n -+ En defined by 

- 2x 
((x) = 1-\X\2. 

Now since "( is a radial map, it is best to switch to spherical coordinates 
(p, el , ... , en-l) and decompose "( into the composite mapping 

(Xl, ... ,Xn) f--t (p,el, ... ,en- l ) 

f--t (~, el , ... , en-l) 
1-p 

f--t (Yl, ... ,Yn). 

Now since 
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the Jacobian of"( is 

1 2(1 + p2) 
pn-l (1 _ p2)2 

Let Y = "((x). Then 

Therefore 
dYl ... dYn 

(1 + IYI2)~ 

Exercise 4.5 

(~)n-l 
1- p2 

1 

2n(1 + p2) 
(1 - p2)n+l . 

2n(1 + Ix12) (1 - Ix12) dx ... dx 
(1 _ IxI2)n+l (1 + Ix12) 1 n 

2ndxl ... dXn 
(1 - Ixl 2 )n . 

1. Show that if x is in En, then 

( 1+ IXI) 
dB(O,x)=log 1-lxl . 
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2. Let b be a nonzero point of En. Show that the hyperbolic translation n of 
En acts as a hyperbolic translation along the hyperbolic line passing through 

° and b. 

3. Let b be a point of En and let A be in O(n). Show that 

(1) T1: 1 = Lb, 

(2) AnA-1 = TAb. 

4. Show that SB(O, r) = S(O, tanh(r/2». 

5. Prove that the hyperbolic and Euclidean centers of a sphere of En coincide 
if and only if the sphere is centered at the origin. 

6. Prove that the metric topology on En determined by dB is the same as the 
Euclidean topology on En. 

7. Prove that all the horospheres of En are congruent. 

8. Let b be a point of En not on a hyperbolic m-plane P of En. Prove that 
there is a unique point a of P nearest to b and that the hyperbolic line 
passing through a and b is the unique hyperbolic line of En passing through 
b orthogonal to P. Hint: Move b to the origin. 

9. Let b be a point of En not on a horosphere L; of En. Prove that there is a 
unique point a of L; nearest to b and the hyperbolic line passing through a 

and b is the unique hyperbolic line of En passing through b orthogonal to L;. 

10. Show that every isometry of E2 is of the form 

az+b z f-+ -_--

bz+a 
az+ b 

or z f-+ -_ -- where lal 2 - Ibl 2 = 1. 
bz+a 
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§4.6. The Upper Half-Space Model 

Let "I be the standard transformation from upper half-space un to the 
open unit ball Bn. Then "I = up, where P is the reflection of En in the 
hyperplane E n- 1 and u is the reflection of En in the sphere Seen, v'2). 
Define a metric du on un by the formula 

du(x, y) = dB (rJ(x), rJ(Y))· (4.6.1) 

The metric du is called the Pomcare metric on un. By definition, "I is an 
isometry from un, with the metric du , to the conformal ball model Bn of 
hyperbolic n-space. The metric space consisting of un together with the 
metric du is called the upper half-space model of hyperbolic n-space. 

Theorem 4.6.1. The metnc du on un zs given by 

Ix _Y12 
coshdu(x, y) = 1 + . 

2xnYn 

Proof: By Theorem 4.5.1, we have 

coshdu(x, y) cosh dB (rJ(x ), rJ(Y)) 

1 2Iup(x) - up(y) 12 
+ (1-lup(x)l2)(1-lup(y)12)· 

By Theorem 4.1.3, we have 

lup(x) - up(Y)1 
2Ip(x) - p(Y)1 

Ip(x) - enllp(y) - enl 
21x-YI 

and by Formula 4.4.2, we have 

2 -4[p(x)]n 4xn 
1 -lup(x)1 = Ip(x) _ en l2 = Ix + en l2 · 

Therefore 
Ix - YI2 

coshdu(x, y) = 1 + 2 . 
xnYn 

The next theorem follows immediately from Theorem 4.5.2. 

o 

Theorem 4.6.2. Every Mobzus transformation of un restncts to an zsom­
etry of the upper half-space model un, and every zsometry of un extends 
to a unzque Mobzus transformation of un. 

By Theorem 4.6.2, we can identify the group I(Un ) of isometries of the 
upper half-space model with the group M(Un ) of Mobius transformations 
of un. 
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Corollary 1. The groups I(Un) and M(Un) are isomorphzc. 

As the upper half-space model un is isometric to hyperbolic n-space 
Hn, we have that I(Un) is }somorphic to I(Hn). By Corollary 1 of §4.4, 
the groups M(Un) and M(En- l ) are isomorphic. Thus, from Corollary 1, 
we have the following corollary. 

Corollary 2. The groups I(Hn) and M(En-l) are isomorphic. 

A subset P of un is said to be a hyperbolic m-plane of un if and only if 
ry(P) is a hyperbolic m-plane of Bn. The next theorem follows immediately 
from Theorem 4.5.3. 

Theorem 4.6.3. A subset P of un zs a hyperbolzc m-plane of un if and 
only if P is the mtersection of un wzth either an m-plane of En orthogonal 
to En-lor an m-sphere of En orthogonal to En-I. 

A hyperbolic lme of un is defined to be a hyperbolic I-plane of un. The 
geodesics of un are its hyperbolic lines by Corollary 4 of §3.2. 

Corollary 3. A subset L of un is a hyperbolic line of un zf and only if L 
is the intersection of un wzth either a straight line orthogonal to En-lor 
a czrcle orthogonal to En-I. 

The standard transformation ry : un -+ Bn is conformal. Hence, the 
hyperbolic angle between any two intersecting geodesic lines of un conforms 
with the Euclidean angle between the lines, since this is the case in the 
conformal ball model Bn. Thus, the upper half-space model un is also a 
conformal model of hyperbolic n-space. 

The hyperbolic sphere of un, with center a and radius r > 0, is defined 
to be the set 

Su(a,r) = {x E un : du(a,x) = r}. 

The next theorem follows immediately from Theorem 4.5.4 

Theorem 4.6.4. A subset S of un is a hyperbolzc sphere of un zf and only 
if S is a Euclidean sphere of En that is contained in un. 

A subset ~ of un is said to be a horosphere of un based at a point b of 
En-I if and only if ry(~) is a horosphere of Bn based at the point ry(b). 

Theorem 4.6.5. A subset ~ of un is a horosphere of un based at a pomt 
b of En-I if and only if ~ is either a Euclidean hyperplane in un parallel 
to En-I if b = 00, or the intersectwn wzth un of a Euclzdean sphere m un 
tangent to En-I at b if b =1= 00. 
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Figure 4.6.1. A horocycle of U2 

Proof: By Theorem 4.3.4, a subset I; of un is a horosphere of un if and 
only if I; is a sphere of En that is contained in un and meets E n- I at 
exactly one point. Therefore I; is a horosphere of un if and only if I; is 
either a Euclidean hyperplane in un parallel to En-lOr the intersection 
with un of a Euclidean sphere in un tangent to En-I. 0 

A horosphere in dimension two is also called a horocycle. See Figure 
4.6.1. The interior of a horosphere is called a horaball. The interior of a 
horocycle is also called a horadisk. 

Theorem 4.6.6. The element of hyperbolic arc length of the upper half­
space model un is 

Idxl 

Proof: Let y = 'T](x). Then 

2(p(x) - en) 
y = en + I 12 ' x+ en 

By Theorem 4.5.5, the element of arc length of En is 2IdYI/(1 -IYI2). As 

we have 

Hence 

for i = I, ... ,n - I, 

4x,(x + en) . dx 

Ix + en l 2 
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Now since 

we have 

Hence 

Thus 

2(xn + 1) 
Yn = 1 - Ix + enl2 ' 

139 

4 [ldxl 2 _ 4[(x + en) . dX]2 + 41x + en I2[(x + en) . dx]2] 
Ix + enl4 Ix + enl2 Ix + enl4 

41dxl2 

Ix+en I4 ' 

From the proof of Theorem 4.6.1, we have 

Therefore, we have 
21dyl 

1-IY12 
Idxl 

o 

Theorem 4.6.7. The element of hyperbolic volume of the upper half-space 
model un is 

Proof: An intuitive argument goes as follows: The element of hyperbolic 
arc length in the x.-direction is 

ds. = dx •. 
Xn 

Therefore, the element of hyperbolic volume is 

dXl" ·dxn 
dSl ... dSn = (xn)n 

The element of hyperbolic volume of un can also be derived from the 
element of hyperbolic volume of Bn. Let y = ry(x). By Theorem 4.5.6, the 
element of hyperbolic volume of Bn is 

2ndYl'" dYn 
(1 -lyI2)n . 
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From the proof of Theorem 4.1.5, we see that the Jacobian of rJ is 

From the proof of Theorem 4.6.1, we have 

1-ly12 = 4xn 
Ix+enI2 • 

Therefore 

2ndYl··· dYn 
(1 - IYI2)n 

Exercise 4.6 

1. Show that if x = sen and y = ten, then du(x, y) = 1 log(slt) I. 

2. Show that if -1 < s < 1 and x is in Un, then 

-1 (1+8) TJ TBenTJ(X)= 1-s x. 

o 

3. Let x be in un. Show that the nearest point to x on the positive nth axis is 
Ixlen and 

coshdu(x, Ixlen ) = Ixl/xn . 

4. Show that Su(a, r) = S(a(r), an sinh r), where 

a(r) = (aI, ... , an-I, an cosh r). 

5. Prove that the metric topology on un determined by du is the same as the 
Euclidean topology. 

6. Prove that all the horospheres of un are congruent. 

7. Prove that any Mobius transformation ¢ of fj;n that leaves the horosphere 
I; 1 = {x E un : Xn = 1} invariant is a Euclidean isometry of En. 

8. Show by changing coordinates that every Mobius transformation of un pre­
serves hyperbolic volume. 

9. Show that every isometry of U 2 is of the form 

az+b a(-z)+b 
z 1-+ -- or z 1-+ , 

ez + d e( -z) + d 

where a, b, e, d are real and ad - be = 1. Conclude that the group Io(U2 ) of 
orientation preserving isometries of U 2 is isomorphic to PSL(2, JR). 
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§4. 7. Classification of Transformations 

Let ¢ be a Mobius transformation of Bn. Then ¢ maps the closed ball Bn 
to itself. By the Brouwer fixed point theorem, ¢ has a fixed point in Bn. 
The transformation ¢ is said to be 

(1) elhptic if ¢ fixes a point of Bn; 

(2) parabolic if ¢ fixes no point of Bn and fixes a unique point of sn-\ 

(3) hyperbolzc if ¢ fixes no point of B n and fixes two points of sn-l. 

Let Fq, be the set of all the fixed points of ¢ in Bn, and let 'ljJ be a Mobius 
transformation of Bn. Then 

F'ljJq,'IjJ-l = 'ljJ(Fq,). 

Hence ¢ is elliptic, parabolic, or hyperbolic if and only if'ljJ¢'ljJ-l is elliptic, 
parabolic, or hyperbolic, respectively. Thus, being elliptic, parabolic, or 
hyperbolic depends only on the conjugacy class of ¢ in M(Bn). 

Elliptic Transformations 

We now characterize the elliptic transformations of Bn. 

Theorem 4.7.1. A Mobws transformatwn ¢ of B n zs ellzptic if and only 
zf ¢ zs conjugate in M(Bn) to an orthogonal transformation of En. 

Proof: Suppose that ¢ is elliptic. Then ¢ fixes a point b of Bn. Let Tb be 
the hyperbolic translation of B n by b. Then Tb1¢Tb fixes the origin. By 
Theorem 4.4.8, the map Tb-1¢Tb is an orthogonal transformation A of En. 
Thus ¢ = TbATbl. Conversely, suppose that ¢ is conjugate in M(Bn) to 
an orthogonal transformation A of En. Then A is elliptic, since it fixes the 
origin. Therefore ¢ is elliptic. 0 

Let SB(b, r) be the hyperbolic sphere of Bn with center b and radius r. 
Let x, y be in SB(b, r) and let a, (3 : [0, r] -+ B n be geodesics arcs from b to 
x and y, respectively. Regard a and (3 as the hyperbolic radii of SB(b, r) 
from the center b to x and y. The sphere S B (b, r) has a natural spherical 
metric given by 

d(x, y) = (sinh r )e( a' (0), (3' (0)). 

In other words, a hyperbolic sphere of radius r is isometric to a Euclidean 
sphere of radius sinh r. If ¢ is an elliptic transformation of Bn, with b 
as a fixed point, then obviously ¢ leaves each hyperbolic sphere SB(b, r) 
centered at b invariant; moreover, ¢ acts as an isometry of the natural 
spherical metric on SB(b, r). 
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Parabolic Transformations 

In order to analyze parabolic and hyperbolic transformations, it will be 
more convenient to work in the upper half-space model un of hyperbolic 
space. Elliptic, parabolic, and hyperbolic Mobius transformations of un 
are defined in the same manner as in the conformal ball model Bn. Let ¢ 
be a Mobius transformation of un. The transformation ¢ is said to be 

(1) elliptic if ¢ fixes a point of un; 

(2) parabolic if ¢ fixes no point of un and fixes a unique point of En-I; 

(3) hyperbolic if ¢ fixes no point of un and fixes two points of En-I. 

Note that being elliptic, parabolic, or hyperbolic depends only on the con­
jugacy class of ¢ in M(Un ). 

We now characterize the parabolic transformations of un. 

Theorem 4.7.2. A Mobius transformatwn ¢ of un is parabolic if and only 
zf ¢ zs conjugate zn M(Un) to the Poincare extension of a fixed point free 
isometry of En-I. 

Proof: Suppose that ¢ is parabolic. Then ¢ fixes a point a of En-I. 
In the conformal ball model Bn, the point 00 corresponds to en and an 
appropriate rotation will map any point of sn-I to en. Hence, there is a 
Mobius transformation 'lj; of un such that 'lj;(a) = 00. Then 'lj;¢'lj;-I fixes 
00. By Theorems 4.3.2 and 4.4.1, the map 'lj;¢'lj;-I is the Poincare extension 
of a similarity of En-I. Hence, there is a point b in En-I, a scalar k > 0, 
and an orthogonal transformation A of En-I such that 

'lj;¢'lj;-l(x) = b+ kAx. 

As 00 is the only fixed point of 'lj;¢'lj;-I, the fixed point equation 

b+ kAx = x 

has no solutions in En-I. The above equation can be rewritten as 

(A - ~I) x = -~. 
Since this equation has no solution, we have 

det ( A - ~ I) = O. 

Thus 11k is an eigenvalue of A. As A is orthogonal, k = 1. Thus 'lj;¢'lj;-I is 
the Poincare extension of a fixed point free isometry of En-I. 

Conversely, suppose that 1> is conjugate in M(Un ) to the Poincare exten­
sion of a fixed point free isometry 'lj; of En-I. Then the Poincare extension 
~ is parabolic, since 00 is its only fixed point. Thus 1> is parabolic. 0 
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An important class of parabolic transformations of un are the nontrivial 
Euclidean translations of un. Such a transformation is of the form 

X 1-+ a + x, 

where a is a nonzero point of En-I. A Mobius transformation ¢ of un is 
said to be a parabolic translation if and only if ¢ is conjugate in M(Un ) to 
a nontrivial Euclidean translation of un. 

Let ~I be the horosphere of un defined by 

~I = {x E Un : Xn = I}. 

The horosphere ~I has a natural Euclidean metric given by 

d(x, y) = Ix - yl· 

This metric is natural, since the element of hyperbolic arc length Idxl/xn 

of un restricts to the element of Euclidean arc length Idxl on ~I' 
Let ~ be any horosphere of un. Then there is a Mobius transformation 

¢ of un such that ¢(~) = ~I. Define a Euclidean metric on ~ by 

d(x, y) = I¢(x) - ¢(y)l. 

We claim that this metric is independent of the choice of ¢. Suppose that 
'ljJ is another Mobius transformation of un such that 'ljJ(~) = ~I. Then 
¢'ljJ-I leaves ~I invariant. This implies that ¢'ljJ-I is a Euclidean isometry. 
Therefore, if x, yare in ~, then 

I¢(x) - ¢(y)1 = 1¢'ljJ-I'ljJ(X) - ¢'ljJ-I'ljJ(y) I = 1'ljJ(x) _ 'ljJ(y) I· 
Thus, the metric d on ~ does not depend on ¢. The metric d is called the 
natural Euclidean metric on ~. 

Theorem 4.7.3. Let ~ and~' be hOTOspheres of un and let 'ljJ be a Mobius 
transformation of un such that 'ljJ(~) = ~'. Then 'ljJ acts as an isometry 
with respect to the natural Euclidean metrics on ~ and ~'. 

Proof: Let ¢ and ¢' be Mobius transformations of un such that ¢(~) = ~I 
and ¢'(~') = ~I' Then ¢''ljJ¢-1 leaves ~I invariant and so is a Euclidean 
isometry. Hence, if x, yare in ~, then 

d'('ljJ(x) , 'ljJ(y)) 1¢''ljJ(x) - ¢''ljJ(y) I 

1¢''ljJ¢-I¢(X) _ ¢''ljJ¢-I¢(y) I 
I¢(x) - ¢(y)1 

d(x, y). o 

Now let ¢ be a parabolic transformation of un with a as its unique fixed 
point in En-I. By Theorem 4.7.2, the map ¢ leaves each horosphere of un 
based at a invariant. By Theorem 4.7.3, the map ¢ acts as an isometry of 
the natural Euclidean metric on each horosphere based at a. 
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Hyperbolic Transformations 

We now characterize the hyperbolic transformations of un. 

Theorem 4.7.4. A Mobius transformation ¢ of un is hyperbolic zf and 
only if ¢ zs conjugate in M(Un ) to the Pomcare extenswn of a similarzty 
'ljJ of E n- l of the form 'ljJ(x) = kAx, where k > 1 and A is an orthogonal 
transformation of En-I. 

Proof: Suppose that ¢ is hyperbolic. By conjugating ¢, we may assume 
that one of the fixed points of ¢ is 00. Let a in En-l be another fixed point 
and let T be the translation of En by -a. Then T¢T- 1 fixes both 0 and 00. 

This implies that there is a scalar k > 0 and an orthogonal transformation 
A of E n - l such that 

T¢T-1(X) = kAx. 

As A fixes en and T¢T- 1 has no fixed points in un, we must have k i:- 1. 
Let u(x) = X/JxJ2. Then 

UT¢T-1U-I(x) = k- l Ax. 

Hence, we may assume that k > 1. 
Conversely, suppose that ¢ is conjugate in M(Un ) to the Poincare ex­

tension of a similarity 'ljJ of En-l of the form 'ljJ(x) = kAx, where k > 1 and 
A is an orthogonal transformation of En-I. Then the Poincare extension 
'¢ is hyperbolic, since 0 and 00 are its only fixed points. Therefore ¢ is 
hyperbolic. 0 

Corollary 1. A hyperbolic transformation has exactly two fixed points. 

The simplest class of hyperbolic transformations of un are the nontrivial 
magnifications of un. Such a transformation is of the form x ~ kx, where 
k > 1. Notice that a magnification of un leaves the positive nth axis 
invariant. Moreover, if t > 0, then 

du(ten , kten ) = log k. 

Thus, a magnification of un acts as a hyperbolic translation along the pos­
itive nth axis. A Mobius transformation ¢ of un is said to be a hyperbolic 
translatwn if and only if ¢ is conjugate in M(Un ) to a magnification of un. 

Now let ¢ be an arbitrary hyperbolic transformation of un with a and b 
its two fixed points, and let L be the hyperbolic line of un with endpoints 
a and b. By Theorem 4.7.4, the map ¢ is the composite of an elliptic trans­
formation of un that fixes the line L followed by a hyperbolic translation 
along L. The line L is called the axis of the hyperbolic transformation ¢. 
Note that a hyperbolic transformation acts as a translation along its axis. 

Remark: We are not using the term hyperbolic transformatwn in its usual 
sense. Traditionally, a hyperbolic translation is called a hyperbolic trans­
formation, and a hyperbolic transformation that is not a hyperbolic trans­
lation is called a loxodromzc transformation. 
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Exercise 4.7 

1. Prove that every element of LF(C) has either one or two fixed points in C. 

2. Let Zl Z2 Za be distinct points of C and let WI, W2, Wa be distinct points of 
C. Sh~w ~hat there is a unique element rjJ of M(C) such that rjJ(zJ) = WJ for 
j = 1,2,3. 

3. For each nonzero k in te, define ILk in LF(C) by ILk(Z) = kz if k =1= 1, and 
ILl (z) = Z + 1. Prove that each nonidentity element of LF(C) is conjugate to 
ILk for some k. 

4. Let 

Define 

rjJ(Z) = az + b 
cz+d 

with a, b, c, d in te and ad - bc = 1. 

tr2 (rjJ) = (a + d)2. 

Show that two nonidentity elements rjJ, 'lj; of LF(C) are conjugate if and only 
if tr2(rjJ) = tr2('lj;). 

5. Let rjJ be in LF(C) with rjJ =1= I. Show that 

(1) ;p is an elliptic transformation of Ua if and only if tr2(rjJ) is in [0,4); 

(2) ;p is a parabolic transformation of Ua if and only if tr2 (rjJ) = 4; 

(3) ;p is a hyperbolic translation of U3 if and only if tr2(rjJ) is in (4, +00). 

6. Prove that the fixed set in B n of an elliptic transformation of B n is a hyper­
bolic m-plane. 

7. Let a be the point of sn-l fixed by a parabolic transformation rjJ of Bn. 
Prove that if x is in Bn, then 

lim rjJm(x) = a. 
m--+oo 

In other words, a is an attractwe fixed pomt. 

8. Let a and b be the points of sn-l fixed by a hyperbolic transformation 'lj; of 
Bn, and let L be the axis of'lj;. Suppose that 'lj; translates L in the direction 
of a. Prove that if x is in Bn and x =1= b, then 

lim 'lj;m(x) = a. 
m--+oo 

In other words, a is an attractwe fixed pomt and b is a repulswe fixed pomt. 

9. Let A be in PO(n, 1). Prove that 

(1) A is elliptic if and only if A leaves invariant a 1-dimensional time-like 
vector subspace of jRn,l; 

(2) A is parabolic if and only if A is not elliptic and A leaves invariant a 
unique 1-dimensionallight-like vector subspace of jRn,\ 

(3) A is hyperbolic if and only if A is not elliptic and A leaves invariant 
two 1-dimensionallight-like vector subspaces of jRn,l. 

10. Let A be in PO(n, 1). Prove algebraically that A is either elliptic, parabolic, 
or hyperbolic. 
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§4.8. Historical Notes 

§4.1. Jordan proved that a reflection of Euclidean n-space in a hyperplane 
is orientation reversing in his 1875 paper Essai sur la geometrze a n dim en­
swns [207]. That an isometry of Euclidean n-space is the composition of at 
most n + 1 reflections in hyperplanes appeared in Coxeter's 1948 treatise 
Regular Polytopes [92]. 

According to Rosenfeld's 1988 treatise A History of Non-Euclidean Ge­
ometry [353], Appollonius proved that an inversion in a circle maps circles 
to circles in his lost treatise On plane loci. A systematic development of 
inversion in a circle was first given by Plucker in his 1834 paper Analyt~sch­
geometrzsche Aphor~smen [326]. Inversion in a sphere was considered by 
Bellavitis in his 1836 paper Teorza delle figure inverse, e loro uso nella ge­
ometrza elementare [37]. Theorem 4.1.3 appeared in Liouville's 1847 Note 
au sUJet de l'article precedent (de M. Thomson) [259]. For the early his­
tory of inversion, see Patterson's 1933 article The origms of the geometrzc 
princzple of mverswn [324]. 

Conformal transformations of the plane appeared in Euler's 1770 paper 
Cons~derationes de trajectoriis orthogonalibus [123]. In particular, Euler 
considered linear fractional transformations of the complex plane in this 
paper. That inversion in a circle is conformal appeared in Plucker's 1834 
paper [326]. That inversion in a sphere is conformal appeared in Thomson's 
1845 letter to Liouville Extra~t d'une lettre de M. Thomson [388]. 

§4.2. According to Heath's 1921 treatise A History of Greek Mathemat­
~cs [186], stereographic projection was described by Ptolemy in his second 
century treatise Planzsphaerium. That stereo graphic projection is the in­
version of a sphere into a plane appeared in Bellavitis' 1836 paper [37]. The 
Riemann sphere was introduced by Riemann in his 1857 paper Theorie der 
Abel'schen Functionen [348]. The cross ratio of four points in the plane was 
introduced by Mobius in his 1852 paper Ueber eine neue Verwandtschaft 
zwischen ebenen F~guren [297]. 

§4.3. Mobius transformations of the plane were studied by Mobius in his 
1855 paper Theorie der Kre~sverwandtschaft m rein geometrzscher Darstel­
lung [298]. In particular, the 2-dimensional versions of Theorems 4.3.1 and 
4.3.2 appeared in this paper. Mobius transformations of 3-space were con­
sidered by Liouville in his 1847 note [259]. Liouville proved the remarkable 
theorem that a smooth conformal transformation of 3-space is a Mobius 
transformation in his 1850 note Extenswn au cas des trois dimenswns de 
la questwn du trace geographique [261]. Liouville's ~?eorem was extended 
to n-dimensions, n > 2, by Lie in his 1871 paper Uber diejenzge Theorie 
eines Raumes mit bel~ebig melen D~mensionen [258]. The isometric circle 
of a linear fractional transformation of the complex plane was introduced 
by Ford in his 1927 paper On the foundatwns of the theory of d~scontmu­
ous groups [135]. That inversion in a sphere maps inverse points to inverse 
points appeared in Thomson's 1845 letter to Liouville [388]. 
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§4.4. The Poincare extension of a Mobius transformation of the plane 
was defined by Poincare in his 1881 note Sur les groupes kleineens [329]. 
Mobius transformations of a sphere were considered by Mobius in his 1855 
paper [298]. The 2-dimensional versions of Theorems 4.4.7 and 4.4.8 ap­
peared in Ford's 1929 treatise Automorph2c Functions [136]. 

§4.5. The conformal ball model of radius two was introduced by Beltrami 
in his 1868 paper Saggio di interpetrazione della geometna non-euclzdea 
[38]. In particular, he derived its element of arc length and noted that this 
Riemannian metric had already been affirmed to be of constant negative 
curvature by Riemann in his 1854 lecture Uber dze Hypothesen, welch der 
Geometne zu Grunde lzegen [349]. For a discussion, see the introduction 
of Stillwell's 1985 translation of Poincare's Papers on Fuchsian Functions 
[340]. The stereographic projection of Beltrami's conformal ball model onto 
hyperbolic space Hn appeared in Killing's 1878 paper Ueber zwei Raum­
formen mzt constanter pos2tiver Kriimmung [219]. The 2-dimensional con­
formal ball model of radius one and curvature -4 appeared in Poincare's 
1882 paper Sur les fonctwns Juchszennes [331]. The 2-dimensional confor­
mal ball model of radius one and curvature -1 appeared in Hausdorff's 
1899 paper Analytische Beitriige zur mchteuklidischen Geometne [180]. 

§4.6. The upper half-space model was introduced by Beltrami in his 1868 
paper [38]. In particular, he derived its element of arc length and noted that 
this Riemannian metric in dimension two had already been shown to be of 
constant negative curvature by Liouville in his 1850 note Sur le theoreme 
de M. Gauss, concernant le prod.,uzt des deux rayons de courbure pnnczpaux 
[260]. That the group of Mobius transformations of n-space is isomorphic 
to the group of isometries of hyperbolic (n + I)-space follows immediately 
from observations of Klein in his 1872 paper Ueber Lmzengeometne und 
metrische Geometne [225] and in his 1873 paper Ueber die sogenannte 
Nicht-Euklidzsche Geometne [227]. 

§4.7. The classification of the isometries of the hyperbolic plane into 
three types according to the nature of their fixed points appeared in Klein's 
1871 paper Ueber die sogenannte Nzcht-Euklidzsche Geometrie [224]. The 
terms elliptic, parabolzc, and hyperbolic transformations were introduced by 
Klein in his 1879 paper Ueber dze Transformation der ellzptzschen Functio­
nen [231] and were applied to isometries of hyperbolic n-space by Thurston 
in his 1979 lectures notes The Geometry and Topology of 3-Manifolds [389]. 

That the intrinsic geometry of a sphere in hyperbolic space is spher­
ical is implicit in Lambert's remark in his 1786 monograph Theone der 
Parallellinien [252] that spherical trigonometry is independent of Euclid's 
parallel postulate. This was proved by Bolyai in his 1832 paper Sczentiam 
spatn absolute veram exhzbens [51]. The corresponding fact in hyperbolic 
n-space appeared in Beltrami's 1868 paper Teoria fondamentale degli spaziz 
di curvatura costante [39]. That the intrinsic geometry of a horosphere is 
Euclidean appeared in Lobachevski's 1829-30 paper On the pnnczples of 
geometry [262] and in Bolyai's 1832 paper [51]. 



CHAPTER 5 

Isometries of Hyperbolic Space 

In this chapter, we study the topology of the group I(Hn) of isometries of 
hyperbolic space. The chapter begins with an introduction to topological 
groups. The topological group structure of I(Hn) is studied from various 
points of view in Section 5.2. The discrete subgroups of I(Hn) are of 
fundamental importance for the study of hyperbolic manifolds. The basic 
properties of the discrete subgroups of I(Hn) are examined in Section 5.3. 
A characterization of the discrete subgroups of I(En) is given in Section 
5.4. The chapter ends with a characterization of all the elementary discrete 
subgroups of I( Hn). 

§5.1. Topological Groups 

Consider the n-dimensional complex vector space en. A vector in en is 
an ordered n-tuple Z = (Zl' ... ' zn) of complex numbers. Let Z and w be 
vectors in en. The Herrmtian inner product of Z and w is defined to be the 
complex number 

(5.1.1) 

where a bar denotes complex conjugation. The Herrmtzan norm of a vector 
Z in en is defined to be the real number 

Izi = (z * z)!. (5.1.2) 

Obviously Izl ~ 0, since 

Izl = (IZlI2 + ... + IZnI 2)!. 
The Hermitian norm determines a metric on en in the usual way, 

de(z, w) = Iz - wi· (5.1.3) 

The metric space consisting of en together with the metric de is called 
complex n-space. Define ¢ : en --+ ]R2n by 

¢(Zl, ... ,Zn) = (Rezl,Imzl, ... ,Rezn,Imzn). 

148 
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Then ¢ is obviously an isomorphism of real vector spaces. Moreover, 

¢(z) . ¢(w) = Re (z * w). 

Consequently ¢ preserves norms. Therefore ¢ is an isometry. For this 
reason, we call de the Euclzdean metric on en. 

Definition: A topological group is a group G that is also a topological 
space such that the multiplication (g, h) f-+ gh and inversion g f-+ g-l in G 
are continuous functions. 

The following are some familiar examples of topological groups: 

(1) real n-space lRn with the operation of vector addition, 

(2) complex n-space en with the operation of vector addition, 

(3) the positive real numbers lR+ with the operation of multiplication, 

(4) the unit circle Sl in the complex plane with the operation of complex 
multiplication, 

(5) the nonzero complex numbers e* with the operation of complex mul­
tiplication. 

Definition: Two topological groups G and H are isomorphic topological 
groups if and only if there is an isomorphism ¢ : G ---+ H that is also a 
homeomorphism. 

Example: The spaces en and lR2n are isomorphic topological groups. 

The General Linear Group 

Let GL( n, e) be the set of all invertible complex n x n matrices. Then 
GL(n, e) is a group under the operation of matrix multiplication. The 
group GL(n, e) is called the genemllinear group of complex n x n matrices. 

The norm of a complex n x n matrix A = (a~J) is defined to be the real 
number 

(5.1.4) 

This norm determines a metric on GL(n, q in the usual way, 

d(A, B) = IA - BI. (5.1.5) 

Note that this is just the Euclidean metric on GL( n, q regarded as a subset 
of en2 . For this reason, we call d the Euclzdean metric on GL(n, e). 
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Theorem 5.1.1. The general hnear group GL(n,q, wzth the Euclidean 
metrzc topology, zs a topologzcal group. 

Proof: Matrix multiplication (A, B) ~ AB is continuous, since the entries 
of AB are polynomials in the entries of A and B. The determinant function 

det: GL(n,q ----t C* 

is continuous, since det A is a polynomial in the entries of A. By the adjoint 
formula for A -1, we have 

(A- 1 )J' = (-1)'+J (det A'J)/(det A), 

where A'J is the matrix obtained from A by deleting the ith row and jth 
column. Consequently, each entry of A-1 is a rational function of the 
entries of A. Therefore, the inversion map A ~ A -1 is continuous. Thus 
GL(n, q is a topological group. 0 

Any subgroup H of a topological group G is a topological group with 
the subspace topology. Hence, each of the following subgroups of GL(n, q 
is a topological group with the Euclidean metric topology: 

(1) the special linear group SL(n, q of all complex n x n matrices of 
determinant one, 

(2) the general linear group GL(n, JR) of all invertible real n x n matrices, 

(3) the special linear group SL(n, JR) of all real n x n matrices of deter­
minant one, 

(4) the orthogonal group O(n), 

(5) the special orthogonal group SO(n), 

(6) the Lorentz groups 0(1, n - 1) and O(n - 1,1), 

(7) the positive Lorentz groups PO(1, n - 1) and PO(n - 1,1). 

The Unitary Group 

A complex n x n matrix A is said to be unztary if and only if 

(Az)*(Aw)=z*w 

for all z, w in en. Obviously, the set of all unitary matrices in GL(n, q 
forms a subgroup U(n), called the unitary group of complex n x n matrices. 
A unitary matrix is real if and only if it is orthogonal. Therefore U(n) 
contains O(n) as a subgroup. 

Two vectors z and w in en are said to be orthogonal if and only if 
z * w = o. A basis {Vi, ... , Vn} of en is said to be orthonormal if and only 
if V, * vJ = 8'J for all i, j. The next theorem characterizes a unitary matrix. 
The proof is left as an exercise for the reader. 
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Theorem 5.1.2. Let A be a complex n x n matr1,x. Then the following are 
equivalent: 

(1) The matr1,X A is umtary. 

(2) The columns of A form an orthonormal basis of en. 
(3) The matr1,X A satzsjies the equatwn At A = I. 

(4) The matr1,X A satzsjies the equatwn AAt = I. 

(5) The rows of A form an orthonormal baszs of en. 

Corollary 1. A real matrix is unitary if and only zf it is orthogonal. 

Let A be a unitary matrix. As At A = I, we have that I det AI = 1. Let 
SU(n) be the set of all A in U(n) such that detA = 1. Then SU(n) is a 
subgroup of U(n). The group SU(n) is called the specwl umtary group of 
complex n x n matrices. 

Theorem 5.1.3. The unitary group U(n) is compact. 

Proof: If A is in U(n), then IAI2 = 2:;=1 IAeJ 12 = n. Therefore U(n) is 

a bounded subset of en2 . The function 
2 2 

f: en --+ en , 
defined by f(A) = At A, is continuous. Therefore U(n) = f-1(1) is a closed 
subset of en2 • Hence U(n) is a closed bounded subset of en2 and therefore 
is compact. 0 

Corollary 2. The orthogonal group O(n) is compact. 

Proof: As ]Rn2 is closed in en2 and O(n) = U(n) n ]Rn2, we have that 
O(n) is closed in U(n), and so O(n) is compact. 0 

Quotient Topological Groups 

Lemma 1. If h zs an element of a topologzcal group G, then the maps 

9 ~ hg and 9 ~ gh, 

from G to ztselJ, are homeomorphisms. 

Proof: Both maps are continuous and have continuous inverses 9 ~ h-1g 
and 9 ~ gh-I, respectively. 0 

Let H be a subgroup of a topological group G. The coset space G/H is 
the set of cosets {gH : 9 E G} with the quotient topology. The quotient 
map will be denoted by 1r : G --+ G / H. 
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Lemma 2. If H is a subgroup of a topologzcal group G, then the quotient 
map 7r : G ---7 G I H is an open map. 

Proof: Let U be open in G. Then 7r(U) is open in G I H if and only if 
7r-l(7r(U)) is open in G by the definition of the quotient topology on GIH. 
Now since 

7r- 1 (7r(U))=UH= U Uh, 
hEH 

we have that 7r-l(7r(U)) is open by Lemma 1. Thus 7r is an open map. 0 

Theorem 5.1.4. Let N be a normal subgroup of a topological group G. 
Then GIN, with the quotient topology, is a topological group. 

Proof: Let 7r : G ---7 GIN be the quotient map g f--+ gN. Then we have a 
commutative diagram 

G 
g f--+ g-l 

G 

7rl 17r 

GIN 
gN f--+ g-l N 

GIN. 

This implies that the inversion map gN f--+ g-l N is continuous. 
Next, observe that we have a commutative diagram 

(g, h) f--+ gh 
GxG G 

7rx7rl 

GIN x GIN 
(gN, hN) f--+ ghN 

GIN 

As 7r is an open map, 7r x 7r is also an open map. Consequently 7r x 7r is 
a quotient map. From the diagram, we deduce that the multiplication in 
GIN is continuous. 0 

By Theorem 5.1.4, the following quotient groups, with the quotient 
topology, are topological groups: 

(1) the projective general linear group PGL(n, C) = GL(n, c)IN, where 
N is the normal subgroup {kJ : k E <C*}; 

(2) the projective special linear group PSL(n, C) = SL(n, c)IN, where 
N is the normal subgroup {wI: w is an nth root of unity}; 

(3) the projective general linear group PGL(n,~) = GL(n, ~)IN, where 
N is the normal subgroup {kJ : k E ~*}; 
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(4) the projective special linear group PSL(2n,lR.) = SL(2n,lR.)/{±I}j 

(5) the projective special unitary group PSU(n) = SU(n)/N, where N is 
the normal subgroup {wI: w is an nth root of unity}. 

Theorem 5.1.5. Let H be a subgroup of a topological group G, and let 
"1 : G -+ X be a contmuous functzon such that "1-1 ("1(g)) = gH for each 9 
in G. If 0" : X -+ G is a continuous right mverse of "1, then the function ¢ : 
X x H -+ G, defined by ¢(x, h) = O"(x)h, 2S a homeomorphzsm; moreover, 
the junctzon 'ij : G / H -+ X, induced by "1, is a homeomorphism. 

Proof: The function ¢ is a composite of continuous functions and so is 
continuous. Let 9 be in G. As "1O""1(g) = "1(g), we have that O""1(g) is in gH, 
and so g-10""1(g) is in H. Define a function 

'lj;:G-+XxH 

by the formula 
'lj;(g) = ("1 (g) , [0""1(g)t1g). 

The map 'lj; is the composite of continuous functions and so is continuous. 
Observe that 

and 

¢'lj;(g) ¢("1(g), [0""1(g)t1g) 

0""1 (g) [0""1(9) ]-1 9 

9 

'lj;¢(x, h) = 'lj;(O"(x)h) 

("1 ( O"(x)h) , [0""1 ( O"(x)h) ]-1 0" (x )h) 

('flO" (x) , [0""10" (x ) ]-1 O"(x)h) 

(x, [O"(x)]-lO"(x)h) 

(x, h). 

Thus ¢ is a homeomorphism with inverse 'lj;. 
Let 7r : G -+ G / H be the quotient map. Then "1 induces a continuous 

bijection 'ij : G / H -+ X such that 'ij7r = "1. The map 7r0" is a continuous 
inverse of'ij, and so 'ij is a homeomorphism. 0 

Exercise 5.1 

1. Prove that lR and lR+ are isomorphic topological groups. 

2. Prove that C* and lR+ x 8 1 are isomorphic topological groups. 

3. Prove that 8 1 and 80(2) are isomorphic topological groups. 

4. Prove that lR and P80(1, 1) are isomorphic topological groups. 
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5. Prove that if z, ware in en, then Iz * wi :::; Izllwl with equality if and only 
if z and w are linearly dependent. 

6. Let A be a complex n x n matrix. Show that IAzl :::; IAlizl for all z in en. 
7. Let A, B be complex n x n matrices. Prove that IABI :::; IAIIBI. 

8. Let A, B be complex n x n matrices. Prove that IA ± BI :::; IAI + IBI. 

9. Prove Theorem 5.1.2. 

10. Prove that a complex n x n matrix A is unitary if and only if IAzl = Izl for 
all z in en. 

11. Let A be in SL(2, <C). Show that the following are equivalent: 

(1) A is unitary; 

(2) IAI2 = 2; 

(3) A is of the form ( ~ ~). -w z 

12. Let A be a complex 2 x 2 matrix. Show that 21 det AI :::; IAI2. 

13. Let 7r : SL(2, <C) --+ PSL(2, <C) be the quotient map. Prove that 7r maps any 
open ball of radius v'2 homeomorphically onto its image. Deduce that 7r is 
a double covering. 

14. Prove that PSL(2, <C) and PGL(2, <C) are isomorphic topological groups. 

15. Prove that GL(n,<C) is homeomorphic to <C* x SL(n,<C). 

§5.2. Groups of Isometries 

Let X be a metric space. Henceforth, we shall assume that the group I(X) 
of isometries of X and the group S(X) of similarities of X are topologized 
with the subspace topology inherited from the space C(X, X) of continuous 
self-maps of X with the compact-open topology. 

Theorem 5.2.1. A sequence {4>.} of isometries of a metric space X con­
verges m I(X) to an isometry 4> if and only if {4>.(x)} converges to 4>(x) 
for each point x of x. 

Proof: It is a basic property of the compact-open topology of C(X, X) 
that 4>. --+ 4> if and only if {4>.} converges uniformly to 4> on compact sets, 
that is, for each compact subset K of X and E > 0, there is an integer k 
such that d(4).(x), 4>(x)) < E for all i ~ k and every x in K. If 4>. --+ 4>, then 
4>.(x) --+ 4>(x) for each x in X, since each point of X is compact. 

Conversely, suppose that 4>.(x) --+ 4>(x) for each x in X. Let K be a 
compact subset of X and let E > o. On the contrary, suppose that {4>.} 
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does not converge uniformly on K. Then there is a subsequence {¢t)} of 
{ ¢t} and a sequence {x)} of points of K such that for each j, we have 

d(¢t) (x)), ¢(x))) 2: E. 

By passing to a subsequence, we may assume that {x)} converges to a point 
x in K, since K is compact. Choose j large enough so that d( x) , x) < E / 4 
and d(¢t) (x),¢(x)) < E/2. Then we have the contradiction 

d(¢t) (x)), ¢(x))) < d(¢t) (x)), ¢t) (x)) + d(¢t) (x), ¢(x)) + d(¢(x), ¢(x))) 

= 2d(x),x) + d(¢t) (x),¢(x)) 

< E. 

Therefore ¢t -'> ¢ uniformly on K. Thus ¢t -'> ¢. o 

Definition: A metric space X is finitely compact if and only if all its 
closed balls are compact, that is, 

C(a,r) = {x EX: d(a, x) :::; r·} 

is compact for each point a of X and r > 0. 

Theorem 5.2.2. If X 2S a finitely compact metr2c space, then leX) 2S a 
topologzcal group. 

Proof: It is a basic property of the compact-open topology that the 
composition map (¢, 'IjJ) f----c> ¢'IjJ is continuous when X is locally compact. 
Now a finitely compact metric space has a countable basis. Consequently, 
C(X, X) and therefore leX) has a countable basis. Hence, we can prove 
that the inversion map ¢ 1-* ¢-1 is continuous using sequences. Suppose 
that ¢t -'> ¢ in leX). Then ¢t(x) -'> ¢(x) for each x in X. Let E> 0, let x 
be a point of X, and let y = ¢ -1 (x). Then there is an integer k such that 
for all i 2: k, we have d( ¢t (y), ¢(y)) < E. Then for all i 2: k, we have 

d( ¢;1 (x), ¢-1 (x)) d(x, ¢t¢ -1 (x)) 

= d(¢¢-l(X), ¢t¢-l(x)) 

= d(¢(y), ¢t(Y)) < E. 

Therefore ¢;l(x) -'> ¢-l(X). By Theorem 5.2.1, we have that ¢;1 -'> ¢-1. 
Hence, the inversion map is continuous. Thus leX) is a topological group. 
o 

Theorem 5.2.3. The restriction map p : O(n) -'> I(sn) is an zsomorphism 
of topological groups. 

Proof: By Theorem 2.1.3, we have that p is an isomorphism. Thus, we 
only need to show that p is a homeomorphism. Suppose that At -'> A in 
O(n). Then obviously Atx -'> Ax for all x in sn. Therefore At -'> A in 
l(sn) by Theorem 5.2.1. Conversely, suppose that At -'> A in l(sn). Then 
Ate) -'> Ae) for each j = 1, ... , n + 1. Hence At -'> A in O(n). Thus p is a 
homeomorphism. 0 
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Theorem 5.2.4. The functwn <I> : En X O(n) -+ I(En), defined by the 
formula <I> (a, A) = a + A, zs a homeomorphism. 

Proof: Let e : I(En) -+ En be the evaluation map defined by e(¢) = ¢(O). 
It is a basic property of the compact-open topology that the evaluation map 
e is continuous. Define T : En X En -+ En by T(a, x) = a + x. Then T is 
obviously continuous. It is a basic property of the compact-open topology 
that the corresponding function f : En -+ I(En), defined by f(a)(x) = a+x, 
is also continuous. The map f is a right inverse for e. 

We shall identify 0 (n) with the group of isometries of En that fix the ori­
gin. By the same argument as in the proof of Theorem 5.2.3, the compact­
open topology on O(n) is the same as the Euclidean topology on O(n). 

For each ¢ in I(En), we have 

e-1(e(¢)) = ¢O(n). 

Therefore <I> is a homeomorphism by Theorem 5.1.5. o 

The group T(En) of translations of En is a subgroup of I(En), and 
so T(En) is a topological group with the subspace topology. The next 
corollary follows immediately from Theorem 5.2.4. 

Corollary 1. The evaluation map e : T(En) -+ En, defined by the formula 
e(T) = T(O), is an zsomorphism of topologzcal groups. 

Theorem 5.2.5. The restrictwn map p : PO(n, 1) -+ I(Hn) is an zsomor­
phism of topologzcal groups. 

Proof: By Theorem 3.2.3, we have that p is an isomorphism. Thus, we 
only need to show that p is a homeomorphism. Suppose that A. -+ A in 
PO(n, 1). Then obviously A.x -+ Ax for all x in Hn. Therefore A. -+ A in 
I(Hn) by Theorem 5.2.1. Conversely, suppose that A. -+ A in I(Hn). Then 
A.en+l -+ Aen+l. Now for each j = 1, ... ,n, the vector vJ = eJ + V2en+l 
is in Hn. Hence A,vJ -+ AVJ for each j = 1, ... ,no Therefore, we have 

A.eJ + V2A.en+l -+ AeJ + V2Aen+1' 

Hence A.eJ -+ AeJ for each j = 1, ... , n. Therefore A. -+ A in PO(n, 1). 
Thus p is a homeomorphism. 0 

Groups of Mobius Transformations 

Each Mobius transformation of Bn is completely determined by its action 
on 8Bn = sn-l because of Poincare extension. Consequently, the topology 
of sn-l determines a natural topology on the group M(Bn). This topology 
is the metric topology defined by the metric 

DB(¢,'ljJ) = sup J¢(x) - 'ljJ(x)J. (5.2.1) 
xESn - 1 
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The metric topology determined by DB on M(Bn) is a natural topology 
because it coincides with the compact-open topology inherited from the 
function space c(sn-l, sn-l) of continuous self-maps of sn-l. 

Lemma 1. If ¢ is zn M(Bn), then 

X,y~§,,-l I¢(~;=~I(Y)I =expdB(O,¢(O)). 

Proof: Suppose that ¢(oo) = 00. Then ¢ is orthogonal by Theorem 4.4.7. 
Hence, we have 

I¢(~) - ¢rY)1 = 1 = expdB(O, 0). 
X-Y 

Now suppose that ¢( (0) =I- 00. Then ¢ = 7/J(J, where (J is the reflection in a 
sphere S(a, r) orthogonal to sn-l and 7/J is an orthogonal transformation. 
By Theorem 4.4.2(3), we have that r2 = lal2 - 1; and by Theorem 4.1.3, 

I¢(x) - ¢(Y)I r2 lal2 - 1 

Ix - YI I·T - ally - al Ix - ally - al' 
From the equation Ix - al 2 = 1 - 2a· x + lal2, we see that the minimum 
value of Ix - al occurs when x = allal. Therefore 

I¢(x) - ¢(y)1 lal2 - 1 lal + 1 
sup --

x,yESn-1 Ix - yl (Ial- 1)2 lal- l' 

Now since 
lal2 - 1 

(J(x)=a+
1 

12 (x-a), x-a 

we have that dO) = allal 2 . Therefore lal = 1/1¢(0)1. Hence 

lal + 1 1 + I¢(O)I 
lal-1 = 1-1¢(0)1 = expdB(O,¢(O)). o 

Theorem 5.2.6. The group M(Bn), wzth the metric topology determined 
by DB, zs a topological group. 

Proof: Let ¢, ¢o, 7/J, 7/Jo be in M(Bn). By Lemma 1, there is a positive 
constant k(¢) such that I¢(x) - ¢(y)1 ::; k( ¢) Ix - yl for all x, y in sn-l. As 
7/J restricts to a bijection of sn-l, we have D(¢7/J,¢o7/J) = D(¢,¢o). Hence 

D(¢7/J, ¢o7/Jo) ::; D(¢7/J, ¢o7/J) + D(¢o7/J, ¢o7/Jo) 

::; D(¢, ¢o) + k(¢o)D(7/J, 7/Jo). 

This implies that the composition map (¢, 7/J) f----* ¢7/J is continuous at 
(¢o,7/Jo). Similarly, the map ¢ f----* ¢-l is continuous at ¢o, since 

D(¢-l, ¢Ol) D(¢-l¢, ¢Ol¢) 

D(¢Ol¢O, ¢Ol¢) 

< k(¢Ol)D(¢o, ¢). 0 
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Corollary 2. The group M(sn-l), with the metric topology determined by 
DB, is a topologzcal group. 

Let 'T} be the standard transformation from un to Bn. Then 'T} induces 
an isomorphism 'T}*,: M(Un) ---- M( Bn) defined by 'T}* (¢) = 'T}¢'T}-l. The 
restriction of'T} to En-l is stereographic projection 

n: : En- 1 ____ sn-l. 

Let d be the chordal metric on En-l. Define a metric Du on M(Un) by 

Then 

Du(¢, 'l/J) = sup d(¢(x), 'l/J(x)). 
xEEn-l 

sup In:¢(x) - n:'l/J(x) I 
xEEn-l 

= DB ('T}¢'T}-l, 'T}'l/J'T}-l) 

DB('T}*(¢), 'T}*('l/J)). 

(5.2.2) 

Thus 'T}* : M(Un) ---- M(Bn) is an isometry of metric spaces. The next 
theorem follows immediately from Theorem 5.2.6. 

Theorem 5.2.7. The group M(Un), wzth the metnc topology determzned 
by Du , is a topological group. 

Poincare extension induces a homeomorphism from M(sn-l) to M(Bn). 
Therefore, Poincare extension induces a homeomorphism from M(En - 1 ) to 
M(Un ). This implies the following corollary. 

Corollary 3. The group M(En - 1), wzth the metric topology determined by 
Du , is a topologzcal group. 

Theorem 5.2.8. The function <J? : B n x O(n) ---- M(Bn), defined by the 
formula <J?(b, A) = 'TbA, zs a homeomorphism. 

Proof: Let e : M(Bn) ____ Bn be the evaluation map defined by e(¢) = 

¢(O). We now show that e is continuous. Suppose that D(¢,I) < r. As 
each Euclidean diameter La of B n is mapped by ¢ onto a hyperbolic line 
¢(La) of B n whose endpoints are a distance at most r from those of La, 
the Euclidean cylinder Ca with axis La and radius r contains ¢(La). Then 
e is continuous at the identity map I, since 

{¢(O)} c n¢(La) c nCa = {x E B n : Ixl < r}. 
a a 

Now suppose that {¢.} is a sequence in M(Bn) converging to ¢. Then ¢-l¢. 
converges to I, since M(Bn) is a topological group. As e is continuous at I, 
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we have that ¢-l¢.(O) converges to O. Therefore ¢.(O) converges to ¢(O). 
Thus e is continuous. 

Define (h : B n x sn-l ----+ sn-l by oT(b, x) = Tb(X). By Formula 4.5.5, 
we have that 

( ) _ (l-lbI2 ) 2(1 + X· b\ 
Tb X - Ix + bj2 x + Ix + bj2 . 

Therefore aT is continuous. Hence, the function of : B n ----+ M(sn-l), 
defined by of(b)(x) = Tb(X), is continuous, since the metric topology on 
M(sn-l), determined by DB, is the same as the compact-open topology. 
Therefore, the function f : B n ----+ M(Bn), defined by f(b)(x) = Tb(X), is 
continuous, since the map from M(sn-l) to M(Bn), induced by Poincare 
extension, is a homeomorphism. The map f is a right inverse of e. 

Let ¢ be in M(Bn). Then clearly ¢O(n) is contained in e-1(e(¢)). 
Suppose that 'Ij; is in e-1(e(¢)). Then 'Ij;(O) = ¢(O) and so ¢-l'lj;(O) = O. 
By Theorem 4.4.8, we have that ¢-l'lj; is in O(n). Therefore'lj; is in ¢O(n). 
Thus e-1(e(¢)) = ¢O(n). Hence cP is a homeomorphism by Theorem 5.1.5. 
o 

Theorem 5.2.9. The function 'l! : Bn x O(n) ----+ I(Bn), defined by the 
formula 'l!(b, A) = 'TbA, is a homeomorphism. 

Proof: Let e : I(Bn) ----+ B n be the evaluation map defined by e(¢) = ¢(O). 
Then e is continuous. Define T : Bn x B n ----+ Bn by T(b, x) = Tb(X). Let b 
and x be in Bn. Then by Formula 4.5.5, we have 

(1 - Ib1 2) (lxl 2 + 2x . b + 1) 
Tb(X) = (lbl2lxl2 + 2x. b + 1) x + (lbl2lxl2 + 2x. b + 1) b. 

Hence T is continuous. Therefore, the function f : Bn ----+ I(Bn), defined by 
f(b)(x) = Tb(X), is continuous. The map f is a right inverse of e. 

We shall identify O(n) with the group of all isometries of Bn that fix 
the origin. By the same argument as in the proof of Theorem 5.2.3, with 
eJ replaced by eJ /2, the compact-open topology on O(n) is the same as the 
Euclidean topology on O(n). As e-1(e(¢)) = ¢O(n), we have that 'l! is a 
homeomorphism by Theorem 5.1.5. 0 

Theorem 5.2.10. The restrict20n map p : M(Bn) ----+ I(Bn) 2S an isomor­
phism of topological groups. 

Proof: The map p is an isomorphism by Theorem 4.5.2. The functions 
cP : Bn X O(n) ----+ M(Bn) and 'l! : Bn x O(n) ----+ I(Bn) are homeomor­
phisms by Theorems 5.2.8 and 5.2.9. As p = 'l!cp-l, we have that p is a 
homeomorphism. 0 

The next theorem follows immediately from Theorem 5.2.10. 
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Theorem 5.2.11. The restriction map p : M(Un ) ----7I(Un ) is an isomor­
phism of topologzcal groups. 

The group S(En-l) of similarities of E n- I is isomorphic, by extension 
to 00, to the group M(En-l)oo of transformations in M(En-l) fixing 00. 

Theorem 5.2.12. The restriction map p : M(En-l)oo ----7 S(En-l) zs an 
zsomorphzsm of topological groups. 

Proof: The metric topology on M(En-l)oo is the same as the compact­
open topology, since En - I is compact. Suppose that 'ljJ, ----7 'ljJ in M(En- 1 )00' 
Then 'ljJ, (x) ----7 'ljJ( x) for each point x in En-I. By essentially the same 
argument as in the proof of Theorem 5.2.1 (see Exercise 5.2.2), we have 
that p('ljJ,) ----7 p('ljJ). Therefore p is continuous. 

Suppose that ¢, ----7 ¢ in S(En-I). Then ¢,(x) ----7 ¢(x) for each point x in 
En-I. Let ¢ be the Poincare extension of ¢. Then obviously ¢,(x) ----7 ¢(x) 
for each point x in un. Hence ¢, ----7 ¢ in M(Un ) by Theorems 5.2.1 and 
5.2.11. Let ¢ : En-I ----7 En-I be the extension of ¢ defined by ¢(oo) = 00. 

Then ¢, ----7 ¢, since Poincare extension induces a homeomorphism from 
M(En-l) to M(Un ). As p(¢) = ¢, we have that p-I(¢,) ----7 p-I(¢). Hence 
p-I is continuous. Thus p is a homeomorphism. 0 

Exercise 5.2 

1. Let ~ : X ---> Y be an isometry of finitely compact metric spaces. Prove that 
the function ~* : I(X) ---> I(Y), defined by ~*(¢) = ~¢C\ is an isomorphism 
of topological groups. 

2. Let X be a metric space. Prove that ¢. ---> ¢ in SeX) if and only if ¢,(x) ---> 

¢(x) for each point x of X. 

3. Let X be a finitely compact metric space. Prove that SeX) is a topological 
group. 

4. Prove that the function <T> : En X lR+ X 0 (n) ---> S (En), defined by the formula 
<T>(a, k, A) = a + kA, is a homeomorphism. 

5. Let S(En)o be the subgroup of seEn) of all similarities that fix the origin. 
Prove that the map W : lR+ X O(n) ---> S(En)o, defined by w(k,A) = kA, is 
an isomorphism of topological groups. 

6. Let E(n) be the group of all real (n + 1) x (n + 1) matrices of the form 

where A is an n x n orthogonal matrix and a is a point of En. Prove that 
the function "7 : I(En) ---> E(n), defined by "7(a+A) = A a , is an isomorphism 
of topological groups. 
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7. Let B : SL(2, <C) -+ LF(C) be defined by 

B (a b) (z) = az + b. 
cd cz+d 

Prove that B is continuous. Here SL(2, <C) has the Euclidean metric topology 
and LF(C) has the compact-open topology. 

8. Prove that a homomorphism TJ : G -+ H of topological groups is continuous 
if and only if TJ is continuous at the identity element 1 of G. 

9. Let q;(z) = ~::~ be in LF(C) with ad - bc = 1 and d i= O. Show that 

() d2 1 1 
1 = 4>(1)-4>(0) - 4>(00)-4>(0)' 

(2) cd = 4>(00/"-4>(0)' 

(3) bjd = q;(0), 

(4) ad = 4>(:!~~~(0)' 

10. Prove that PSL(2, <C) and LF(C) are isomorphic topological groups. 

11. Let q;(z) = ~:t~ be in LF(C) with ad - bc = 1. Prove that ¢(J) = J in U3 if 

and only if (~ ~) is unitary. 

12. Prove that PSU(2) and SO(3) are isomorphic topological groups. 

13. Let H be the set all matrices of the form ( ~ ~) with z, w in C. Show 
-w z 

that H, with matrix addition and multiplication, is isomorphic to the ring 
of quaternions lHI via the mapping 

( z w) . 
_ _ f-> Z + wJ. -w z 

14. Prove that SU(2) and the group S3 of unit quaternions are isomorphic topo­
logical groups. 

15. Prove that S3 j{±l} and SO(3) are isomorphic topological groups. 

§5.3. Discrete Groups 

In this section, we study the basic properties of discrete groups of isometries 
of sn,En, and Hn. 

Definition: A dzscrete group is a topological group r all of whose points 
are open. 

Lemma 1. Ifr is a topologzcal group, then r is discrete if and only if {I} 
is open in r. 
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Proof: If r is discrete, then {1} is open. Conversely, suppose that {1} is 
open. Let 9 be in r. Then left multiplication by 9 is a homeomorphism of 
r. Hence g{l} = {g} is open in r. D 

Any group r can be made into a discrete group by giving r the discrete 
topology. Therefore, the topology of a discrete group is not very interesting. 
What is interesting is the study of discrete subgroups of a continuous group 
like lRn or GL(n, C). Here are some examples of discrete subgroups of 
familiar continuous groups. 

(1) The integers Z is a discrete subgroup of R 

(2) The Gaussian integers Z[i] = {m + ni : m, n E Z} is a discrete 
subgroup of C. 

(3) The set {kn : n E Z} is a discrete subgroup of lR+ for each k > O. 

(4) The group of nth roots of unity {exp(i27rmln): m = O,1, ... ,n-1} 
is a discrete subgroup of S1 for each positive integer n. 

(5) The set {kn : n E Z} is a discrete subgroup of C* for each k in 
C* - S1. 

Lemma 2. A metnc space X is discrete if and only zf every convergent 
sequence {xn } in X zs eventually constant. 

Proof: Suppose that X is discrete and Xn -+ x in X. Then there is an 
r > 0 such that B (x, r) = {x}. As Xn -+ x, there is an integer m such that 
Xn is in B(x, r) for all n 2: m. Thus Xn = x for all n 2: m. 

Conversely, suppose that every convergent sequence in X is eventually 
constant and X is not discrete. Then there is a point x such that {x} is 
not open. Therefore B(x, lin) i= {x} for each integer n > o. Choose Xn 
in B (x, 1 In) different from x. Then Xn -+ x, but {xn } is not eventually 
constant, which is a contradiction. Therefore X must be discrete. D 

Lemma 3. If G zs a topological gr-oup wzth a metric topology, then every 

discrete subgr-oup of G is closed in G. 

Proof: Let r be a discrete subgroup of G and suppose that G - r is not 
open. Then there is a gin G - rand gn in B(g, lin) n r for each integer 
n > o. As gn -+ 9 in G, we have that gng;;~1 -+ 1 in r. But {gng;;~1} 
is not eventually constant, which contradicts Lemma 2. Therefore, the set 
G - r must be open, and so r is closed in G. D 
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Theorem 5.3.1. A subgroup r ofU(n) 2S d2screte if and only ifr is fimte. 

Proof: If r is finite, then r is obviously discrete. Conversely, suppose 
that r is discrete. Then r is closed in U(n) by Lemma 3. Therefore r is 
compact, since U(n) is compact. As r is discrete, it must be finite. 0 

Corollary 1. A subgroup r of O( n) is discrete if and only 2f r 2S fimte. 

Definition: The group of symmetrzes of a subset 5 of a metric space X 
is the group of all isometries of X that leave 5 invariant. 

Example 1. It has been known since antiquity that the five regular solids 
can be inscribed in a sphere; in fact, a construction is given in Book 13 of 
Euclid's Elements. The group of symmetries of a regular solid P inscribed 
in 52 is a finite subgroup of 0(3) whose order is 

(1) 24 if P is a tetrahedron, 

(2) 48 if P is a cube or octahedron, 

(3) 120 if P is a dodecahedron or icosahedron. 

Theorem 5.3.2. A subgroup r of lRn 2S d2screte 2f and only 2f r is gener­
ated by a set of 1m early mdependent vectors. 

Proof: We may assume that r is nontrivial. Suppose that r is generated 
by a set {VI, ... , vm } of linearly independent vectors. Then 

r = ZVI EB ... EB Zvm · 

By applying a nonsingular linear transformation, we may assume that v, = 
e, for each i = 1, ... ,m. Then r n B(O, 1) = {O}. Therefore r is discrete 
by Lemma 1. 

Conversely, suppose that r is discrete. This part of the proof is by 
induction on n. Assume first that n = 1. Let r > 0 be such that B(O, r) 
contains a nonzero element of r. Then C(O, r) n r is a closed subset of 
CeO, r) by Lemma 3. Hence C(O, r) n r is a compact discrete space and 
therefore is finite. Thus, there is a nonzero element u in r nearest to O. By 
replacing u by -u, if necessary, we may assume that u is positive. Let v 
be an arbitrary element in r. Then there is an integer k such that v is in 
the interval [ku, (k + l)u). Hence v - ku is in the set 

r n [O,u) = {O}. 
Therefore v = ku. Thus u generates r. 

Now assume that n > 1 and every discrete subgroup oflRn - 1 is generated 
by a set of linearly independent vectors. As above, there is a nonzero 
element u in r nearest to 0 and 

rnlRu = Zu. 
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Let Ul, ... , Un be a basis of ~n with Un = u, and let rJ : ~n -+ ~n-l be 
the linear transformation defined by rJ(u,) = e, for i = 1, ... ,n - 1 and 
rJ(u) = o. Then rJ is a continuous function such that rJ-l(rJ(X)) = x + ~u 
for all x in ~n. Define a linear transformation a : ~n-l -+ ~n by a(ei) = u, 
for i = 1, ... ,n -1. Then a is a continuous right inverse of rJ. By Theorem 
5.1.5, the map 'fj : ~n /~u -+ ~n-I induced by rJ is an isomorphism of 
topological groups. 

Let 7r : ~n -+ ~n /~u be the quotient map. We claim that 7r(f) is 
a discrete subgroup of ~n /~u. Let {v,} be a sequence in f such that 
7r(v,) -+ 0 in 7r(f). Then 'fj7r(v,) -+ 0 in ~n-I and so rJ(v,) -+ 0 in ~n-l. 
Therefore arJ(v,) -+ 0 in ~n. Hence v, -+ 0 (mod ~u). Consequently, there 
are real numbers r, such that v, - r,u -+ 0 in ~n. By adding a suitable 
integral multiple of U to v" we may assume that Ir,1 ~ 1/2. For large 
enough i, we have that 

Whence, we have 

Iv,1 < lv, - r,ul + Ir,ul 
< lul/2 + lul/2 = lui. 

Therefore v, = 0 for all sufficiently large i. Consequently, every convergent 
sequence in 7r(f) is eventually constant. Thus 7r(f) is a discrete subgroup 
of ~n /~u by Lemma 2. By the induction hypothesis, there are vectors 
WI, ... ,Wm in f such that 7r ( WI), .•. , 7r ( W m ) are linearly independent in 
~n /~u and generate 7r(r). Therefore u, WI, ... ,Wm are linearly indepen­
dent in ~n and generate f. This completes the induction. 0 

Definition: A lattice of ~n is a subgroup generated by n linearly inde­
pendent vectors of ~n • 

Corollary 2. Every lattzce of ~n is a discrete subgroup of ~n . 

Example 2. Let f be the set of points of ~4 of the form ~(m, n,p, q) 
where m, n, p, q are either all odd integers or all even integers. Then r is a 
lattice of ~4. This lattice is interesting because it has 24 unit vectors ±e, 
for i = 1,2,3,4 and (±~, ±~, ±~, ±~) all of which are a nearest neighbor 
to 0 in f. It is worth noting that these 24 points are the vertices of a 
regular polyhedron in ~4 called the 24-cell. 

Let SL(n, C) be the group of complex n x n matrices .w?ose determinant 
is ±1. Then SL(n,q is a subgroup of GL(n,q contammg SL(n,q as a 
subgroup of index two. 

Theorem 5.3.3. A subgroup f of SL(n, q is discrete if and only if for 
each r > 0, the set {A E f : IAI ~ r} is fimte. 
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Proof: Suppose that {A E r : IAI :::; r} is finite for each r > O. Let 
BJ ---+ B in r. As the norm function is continuous, IBJ I ---+ IBI. Hence, 
there is an integer k such that I IBJ I - IBI I :::; 1 for all j ?: k. Now the 
set {A E r : IAI :::; 1 + IBI} is finite. Hence {BJ } is eventually constant. 
Therefore r is discrete by Lemma 2. 

Conversely, suppose that r is discrete and the set {A E r : IAI :::; r} is 
infinite for some r > o. Then there is an infinite sequence {AJ } of distinct 
elements in r such that I AJ I :::; r for all j. As the set 

2 

{XECn :Ixl:::;r} 

is compact, the sequence {AJ } contains a convergent subsequence. By pass­
ing to this subsequence, we may assume that AJ ---+ A. As the determinant 

function det : Cn2 ---+ C is continuous, the set 

st(n, q = det- 1 { -1,1} 

is closed in cn2
• Hence St(n, q contains its limit point A. Consequently 

AJA;-~l ---+ I in r. But the sequence {AJA;-~l} is not eventually constant, 
contrary to Lemma 2. Thus, the set {A E r : IAI :::; r} is finite for all r > O. 
D 

Corollary 3. Every discrete subgmup r of st( n, q is countable. 

00 
Proof: Let r m = {A E r : IAI :::; m}. Then r = u r m is countable. D 

m=l 

Example 3. Observe that the modular gmup SL(n, Z) and the unimodular 
group GL(n, Z) are discrete subgroups of St(n, q by Theorem 5.3.3. 

Discontinuous Groups 

Let G be a group acting on a set X and let x be an element of X. 

(1) The subgroup Gx = {g E G : gx = x} of G is called the stabilzzer of 
x in G. 

(2) The subset Gx = {gx : 9 E G} of X is called the G-orbit through x. 
The G-orbits partition X. 

(3) Define a function ¢ : G/Gx ---+ Gx by ¢(gGx ) = gx. Then ¢ is a 
bijection. Therefore, the index of Gx in G is the cardinality of the 
orbit Gx. 

Definition: A group G acts discontinuously on a topological space X 
if and only if G acts on X and for each compact subset K of X, the set 
K n gK is nonempty for only finitely many 9 in G. 
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Lemma 4. If a group G acts d2scontinuously on a topolog2cal space X, 
then each stab2lizer subgroup of G is finite. 

Proof: Let x be a point of X. Then the stabilizer Gx of x in G is finite, 
since {x} is compact. 0 

Definition: A collection S of subsets of a topological space X is locally 
finite if and only if for each point x of X, there is an open neighborhood 
U of x in X such that U meets only finitely many members of S. 

Clearly, any sub collection of a locally finite collection S is also locally 
finite. Another useful fact is that the union of the members of a locally 
finite collection S of closed sets is closed. 

Lemma 5. If a group G acts discontmuously on a metnc space X, then 
each G-orbit is a closed discrete subset of X. 

Proof: Let x be a point of X. We now show that the collection of one­
point subsets of Gx is locally finite. On the contrary, suppose that y is 
a point of X such that every neighborhood of y contains infinitely many 
points of Gx. Since X is a metric space, there is an infinite sequence {g~} 
of distinct elements of G such that {g~x} converges to y. Then 

K = {X,y,gIX,g2X, ... } 

is a compact subset of X. As g~x is in K n g~K for each i, we have a 
contradiction. Thus {{gx} : 9 E G} is a locally finite family of closed 
subsets of X. Hence, every subset of Gx is closed in X. Therefore Gx is a 
closed discrete subset of X. D 

Definition: A group G of homeomorphisms of a topological space X is 
discontinuous if and only if G acts discontinuously on X. 

Theorem 5.3.4. Let r be a group of sim2lanties of a metric space X. 
Then r 2S discontinuous 2f and only 2f 

(1) each stabilizer subgroup of r is fimte, and 

(2) each r -orb2t is a closed d2screte subset of X. 

Proof: If r is discontinuous, then r satisfies (1) and (2) by Lemmas 4 
and 5. Conversely, suppose that r satisfies (1) and (2). On the contrary, 
suppose that r is not discontinuous. Then there is a compact subset K of 
X and an infinite sequence {g~} of distinct elements of r such that K and 
g~K overlap. Now g-;1 K and K also overlap. By passing to a subsequence, 
we may assume that g~ -=I=- g-1 for all i -=I=- j, and by replacing g~ with g-;\ if 

J . 
necessary, we may assume that the scale factor k~ of g~ IS at most one. Now 
for each i, there is a point x~ in K such that g~x~ is in K. As K is compact, 
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the sequence {x,} has a limit point x in K. By passing to a subsequence, 
we may assume that {x,} converges to x. Likewise, we may assume that 
{g,x,} converges to a point yin K. Now observe that 

d(g,x, y) ::; d(g,x, g,x,) + d(g,x" y) 

= k,d(x, x,) + d(g,x., y). 

Hence {g,x} converges to y. For each i, there are only finitely many j such 
that g,x = gJx by (1). Hence, there is an infinite subsequence of {g.x}, 
whose terms are all distinct, converging to y; but this contradicts (2). Thus 
r is discontinuous. o 

Lemma 6. If X is a finitely compact metric space, then I(X) is closed in 
the space C(X,X) of all continuous self-maps of X. 

Proof: The space X has a countable basis, since X is finitely compact. 
Therefore C(X, X) has a countable basis. Hence I(X) is closed in C(X, X) 
if and only if every infinite sequence of elements of I(X) that converges in 
C(X, X) converges in I(X). 

Let {¢.} be a sequence in I(X) that converges to a map ¢ : X -+ X. 
Then for each pair of points x, y of X, we have that 

d(¢.(x), ¢.(y)) -+ d(¢(x), ¢(y)). 
Therefore, we have 

d(x,y) = d(¢(x),¢(y)). 

Hence ¢ preserves distances. 
We now show that ¢ is surjective. Let a be a base point of X and let 

C(a, r) be the closed ball centered at a of radius r > O. Then the set 
¢(C(a,2r)) is closed in X, since C(a,2r) is compact. On the contrary, 
suppose that y is a point of C(¢(a),r) that is not in ¢(C(a,2r)). Set 

s = dist(y, ¢(C(a, 2r))). 

Then 0 < s ::; r. As ¢. -+ ¢ uniformly on C(a, 2r), there is an index j such 
that 

d(¢J(x),¢(x)) < s 

for each point x in C(a,2r). Observe that 

d(y, ¢J(a)) ::; d(y, ¢(a)) + d(¢(a), ¢J(a)) ::; r + s ::; 2r. 

Therefore y is in C(¢J(a),2r). As ¢J maps C(a,2r) onto C(¢J(a),2r), 
there is a point x in C(a,2r) such that ¢J(x) = y. Then we have the 
contradiction 

d(y,¢(x)) = d(¢J(x),¢(x)) < s. 

Therefore, we have that 

C(¢(a),r) C ¢(C(a,2r)). 

As r is arbitrary, ¢ must be surjective. Hence ¢ is an isometry. Therefore, 
the sequence {¢.} converges in I(X). Thus I(X) is closed in C(X, X). 0 



168 5. lsometries of Hyperbolic Space 

Theorem 5.3.5. Let X be a finitely compact metric space. Then a group 
r of isometries of X zs discrete if and only if r is discontmuous. 

Proof: Suppose that r is discontinuous. Let x be a point of X. Then 
the orbit rx is discrete and the stabilizer subgroup r x is finite by Theorem 
5.3.4. Let ex : r ----+ rx be the evaluation map at x. Then ex is continuous. 
Hence, the set e;;-l (x) = r x is open in r. Therefore, the identity map of X 
is open in r, and so r is discrete by Lemma 1. 

Conversely, suppose that r is discrete. Now X has a countable basis, 
since X is finitely compact. Therefore C(X, X) has a countable basis. 
Moreover C(X, X) is regular, since X is regular. Therefore C(X, X) is 
metrizable. Hence r is closed in leX) by Lemma 3, and so r is closed in 
C(X, X) by Lemma 6. 

On the contrary, suppose that r is not discontinuous. Then there is a 
point y of X and an infinite sequence S = {¢,} of distinct elements of r 
such that the sequence {¢, (y)} converges to a point of X. The set S is 
closed in C(X, X), since r is a closed discrete subset of C(X, X). The set 
S is equicontinuous on X, since for each x in X, r > 0, and i, we have 

¢,(B(x, r)) = B(¢,(x), r)). 

Let x be an arbitrary point of X. Then exeS) = {¢,(x)}. Observe that 
for all i, we have that 

d(¢,(x), ¢,(y)) = d(x, y). 

Let r = d(x, y). Then we have that 

{¢2(X)} C N( {¢,(y)}, r), 

which is compact, since {¢2(y)} is bounded. Hence exeS) is compact. 
Therefore S is compact by the Arzela-Ascoli theorem. As S is discrete, 
we have the contradiction that S is finite. Thus r is discontinuous. 0 

Exercise 5.3 

1. Prove that a subgroup r of lR+ is discrete if and only if there is a k > 0 such 
that r = {km : m E Z}. 

2. Prove that a subgroup r of Sl is discrete if and only if r is the group of nth 
roots of unity for some n. 

3. Prove that every finite group of order n + 1 is isomorphic to a subgroup 
of O(n). Hint: Consider the group of symmetries of a regular n-simplex 
inscribed in sn-1. 

4. Prove that the proJectwe modular group PSL(2n, Z) = SL(2n, Z) / {±I} is a 
discrete subgroup of PSL(2n, lR). 

5. Prove that the elliptzc modular group, of all linear fractional transformations 
A.(z) = az+b where abc d are integers and ad-be = 1, is a discrete subgroup 
t.p cz+d ' , , 

of LF(C). 
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6. Prove that Picard's group PSL(2, Z[i]) = SL(2, Z[~]) / {±I} is a discrete sub­
group of PSL(2, q. 

7. Let G be a group acting on a set X. Prove that 

(1) the G-orbits partition X; 

(2) the function ¢ : G/Gx -7 Gx, defined by ¢(gGx ) = gx, is a bijection 
for each x in X. 

8. Prove that a discrete group r of isometries of a finitely compact metric space 
X is countable. 

9. Let r be the group generated by a magnification of En. Prove that 

(1) r is a discrete subgroup of SeEn); 

(2) r does not act discontinuously on En; 

(3) r acts discontinuously on En - {a}. 

10. Let X = sn, En, or Hn. Prove that a subgroup r of leX) is discrete if and 
only if every r-orbit is a discrete subset of X. 

§5.4. Discrete Euclidean Groups 

In this section, we characterize the discrete subgroups of the group I( En) 
of isometries of En. 

Definition: An isometry ¢ of En is ell~ptzc if and only if ¢ fixes a point 
of En; otherwise ¢ is parabolic. 

Note that ¢ in I(En) is elliptic (resp. parabolic) if and only if its Poincare 
extension ¢ in M(Un +1) is elliptic (resp. parabolic). Every element ¢ of 
I(En) is of the form ¢(x) = a + Ax with a in En and A in O(n). We shall 
write simply ¢ = a + A. 

Theorem 5.4.1. Let ¢ be in I (En) . Then ¢ is parabolzc 2j and only 2j 
there is a line L of En on whzch ¢ acts as a nontrivial translatwn. 

Proof: Suppose that ¢ = a + A is parabolic. Then ¢ has no fixed points 
in En by definition. Let V be the space of all vectors in En fixed by A, and 
let W be its orthogonal complement. Write a = b + c with b in V and c in 
W. Let x be an arbitrary point of En and write x = v + w with v in V and 
win W. Now the orthogonal transformation A leaves the decomposition 

invariant. Hence A - I maps W to itself. As V is the kernel of A - I and 
V n W = {O}, we have that A - I maps W isomorphic ally onto itself. 
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Next, observe that the fixed point equation 

a+Ax = x 

is equivalent to the equation 

(b + c) + (v + Aw) = v + w, 

which is equivalent to 
(A - I)w = -b - c. 

Consequently b =1= 0, otherwise we could solve the last equation for wand 
obtain a fixed point for ¢. Choose y in En such that (A - I)y = -c. Let L 
be the line whose parametric form is x = tb + y, with t in lR. Then ¢ acts 
as a nontrivial translation on L, since 

¢(tb + y) a+A(tb+y) 

a+tAb+Ay 

a+tb+y - c 

(t+l)b+y. 

Conversely, suppose there is a line L of En on which ¢ acts as a nontrivial 
translation. Then ¢ maps each hyperplane of En orthogonal to L to another 
hyperplane orthogonal to L. Consequently ¢ has no fixed points in En. 
Therefore ¢ is parabolic. 0 

Corollary 1. If ¢ 2S a parabolic 2sometry of En, then there is a lme L of 
En, an elliptic isometry 'lj; of En that fixes each pomt of L, and a nontrivial 
translation T that leaves L 2nvariant, such that ¢ = T'lj;. 

Proof: Let ¢ = a + A be parabolic. Write a = b + c as in the proof of 
Theorem 5.4.1. Choose y such that (A - I)y = -c and let L be the line 

x = tb + y with t in lR. 

Let 'lj; = c + A and T = b + I. Then ¢ = T'lj;. Moreover, 'lj; fixes each point 
of L, and T leaves L invariant. 0 

Corollary 2. If ¢ is a parabolic isometry of En, then the subgroup f of 
I(En) generated by ¢ is d2screte. 

Proof: By Theorem 5.4.1, there is a line L of En on which ¢ acts as 
a nontrivial translation. Let x be a point on L. Then the orbit fx is 
a discrete set. As the map e : f -+ fx, defined by e(¢m) = ¢m(x), is 
continuous, we have that e-1 (x) = {I} is open in f, and so f is discrete. 0 

Remark: Let ¢ be an elliptic isometry of En. Then ¢ has a fixed point in 
En, and so ¢ is conjugate in I(En) to an element in O(n). Consequently, 
the subgroup generated by ¢ is discrete if and only if ¢ has finite order. 
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The next theorem is a basic result in linear algebra. 

Theorem 5.4.2. Let A be an orthogonal n x n matrzx. Then there are 
angles (h, ... , ()m, with 0 ::::; ()l ::::; ... ::::; ()m ::::; 7r, such that A is conjugate in 
O(n) to a block diagonal matrix of the form 

(
COS e] 

where B(O) = 1, B(7r) = -1, and B(e]) = . e 
sm ] 

- sin() ) 
e] otherwzse. 

cos] 

The angles e1 , ... ,em in Theorem 5.4.2 are called the angles of rotation 
of A, and they completely determine the conjugacy class of A in O(n), since 
e±2111, ... ,e±211", are the eigenvalues of A, counting multiplicities. Further­
more, A is conjugate in U(n) to a diagonal matrix with diagonal entries 
e±2111, ... ,e±211",. Note that A has finite order if and only if each angle of 
rotation of A is a rational multiple of 7r. 

Commutivity in Discrete Euclidean Groups 

If A and B are real n x n matrices and if x is a point of En, then 

(1) 

(2) 

(3) 
if B is orthogonal, then 

(4) 

(5) 

IAxl::::; IAllxl, 
IABI::::;IAIIBI, 
IA±BI::::; IAI + IBI; 

IBAI = IAI = IABI, 

IBAB- 1 - II = IA - II-

(5.4.1) 

(5.4.2) 

(5.4.3) 

(5.4.4) 

(5.4.5) 

Lemma 1. If A zs in O(n) and IA - II < 2, then A is a rotation with all 
rotatwn angles less than 7r /2. 

Proof: By Formula 5.4.5, we may assume that A is in the block diagonal 
form of Theorem 5.4.2. Since IA - II < 2, no rotation angle of A is equal 
to 7r, and so A is a rotation. Moreover, for each rotation angle e > 0, we 
have that 

(cos e - 1)2 + sin2 e + sin2 e + (cos () - I? < 4. 

Hence, we have that 

4 - 4 cos e < 4. 

Therefore cos () > O. Thus () < 7r /2 for each rotation angle () of A. 0 
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Lemma 2. Let A, B be in GL(n, q with A conjugate to a dzagonal matrix, 
and let en = VI EB ... EB Vm be the ezgenspace decomposition of en relative 
to A. Then A and B commute zf and only zf B(~) = ~ for each j. 

Proof: Let cJ be the eigenvalue associated to the eigenspace ~ for each 
j. Then ~ = ker(A - cJI) by definition. Hence 

B(~) ker B(A - cJI)B- I 

= ker(BAB- I - cJI). 

Therefore 
en = B(VI) EB ... EB B(Vm) 

is the eigenspace decomposition of en relative to BAB- I . 
Now suppose that A and B commute. Then BAB- I = A and therefore 

B(~) = ~ for each j. Conversely, suppose that B(~) = ~ for each j. 
Let v be an arbitrary vector in en. Then we can write v = VI + ... + Vm 

with vJ in ~. Observe that 

BAvJ = BcJvJ = cJBvJ 
and 

ABvJ = A(BvJ) = cJBvJ. 

But this implies that BAv = ABv, and so BA = AB. o 

Lemma 3. Let A, B be in O(n) with IB - II < 2. If A commutes wzth 
BAB-l, then A commutes with B. 

Proof: By Lemma 1, we have that B is a rotation with all angles less 
than 7r /2. Hence, all the eigenvalues of B have positive real parts. Let 
en = WI EB ... EB We be the eigenspace decomposition of en relative to B. 
Then the eigenspaces WJ are mutually orthogonal, since B is orthogonal. 
Let W be a nonzero vector in en and write W = WI + ... + We with wJ in 
WJ • Let cJ be the eigenvalue of B corresponding to WJ • Then 

Re ((Bw) * w) = Re ((I:>JwJ) * L Wk) = Re LcJ lwJ I2 > O. 

Hence B cannot send any nonzero vector of en to an orthogonal vector. 
Let en = VI EB··· EB Vm be the eigenspace decomposition of en relative 

to A. Then 
en = B(VI) EB ... EB B(Vm) 

is the eigenspace decomposition of en relative to BAB-I . Now since 
BAB-I and A commute, A(B(~)) = B(~) for each j by Lemma 2. Con­
sequently 

B(~) = EB(B(~) n Vk) 
k 

is the eigenspace decomposition of B(~) relative to A. Now, since B 
cannot send any nonzero vector of en to an orthogonal vector, we must 
have that B(~) n Vk = {O} for j =I- k. Thus B(~) = B(~) n ~ c ~. 
Hence B(~) = ~ for all j, and so A commutes with B by Lemma 2. 0 
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Lemma 4. Let r be a discrete subgroup of I(En) and let cP = a + A and 
'l/J = b + B be in r. If IA - II < 1/2 and IB - II < 2, then A and B 
commute. 

Proof: On the contrary, suppose that BA -=I AB. Define a sequence {'l/Jm} 
in r by 'l/Jo = 'l/J and 'l/Jm+l = 'l/JmcP'l/J:;;,l. Let 'l/Jm = bm + Bm· Then we have 

'l/Jm+l 'l/JmcP'l/J;;,l 
'l/JmcP(-B;;,lbm + B;;,l) 

'l/Jm(a - AB;;,lbm + AB;;,l) 

bm + Bma - BmAB;;,lbm + BmAB;;,l. 

Hence Bm+1 = BmAB:;;,l. As IBo - II < 2 and 

IBm+l - II = IBmAB;;,l - II = IA - II < 1/2, 

it follows by induction that BmA -=I ABm for all m, since BoA -=I ABo and 
if BmA -=I ABm, then (BmAB:;;,1)A -=I A(BmAB;;;l) by Lemma 3. Hence 
Bm -=I A for all m. 

Next, observe that 

IA - Bm+11 IA - BmAB;;,ll 

IABm -BmAI 
I(A - Bm)(A - 1) - (A - I)(A - Bm)1 

< I(A - Bm)(A - 1)1 + I(A - I)(A - Bm)1 

< 2IA-IIIA- B ml 

< IA-Bml· 

Thus Bm+1 is nearer to A than Bm. Hence, the terms of the sequence 
{ Bm}, and therefore of {'l/Jm} , are distinct. 

Next, observe that 

bm+1 (I - BmAB;;,l )bm + Bma 

and so 
1 

Ibm+11 ~ 21bml + lui-

Consequently Ibml is bounded by 21al + Ibl for all m. Therefore, the se­
quence {bm } has a convergent subsequence {bmj }. Furthermore {Bmj } has 
a convergent subsequence, since O(n) is compact. Therefore {'l/Jm} has a 
subsequence that converges in I(En) by Theorem 5.2.4, and therefore in r, 
since r is closed in I (En). As the terms of {'l/Jm} are distinct, we have a 
contradiction to the discreteness of r by Lemma 2 of §5.3. D 

Lemma 5. Let r be a discrete subgroup of I(En) and let cP = a + A and 
'l/J = b + B be in r with IA - II < 1 and IB - II < 1. If A and B commute, 
then cP and 'l/J commute. 
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Proof: Let [4>, 'I/J] = 4>'l/J4>-l'I/J-l. Then 

[4>,'I/J] 4>'l/J4>-l(-B- l b + B-1 ) 

Now set 

4>'I/J( -A-l a - A-I B-l b + A-I B-1 ) 

4>(b - BA-l a - BA-l B-l b + BA-l B-1 ) 

a + Ab - ABA-l a - ABA-l B-l b + ABA-l B-1 

(A - I)b + (I - B)a + I. 

c = (A - I)b + (I - B)a. 

Define a sequence {4>m} in r by 4>1 = [4>, [4>, 'l/JlJ and 4>m = [4>,4>m-l]. Then 
4>1 = (A - I)c + I, and in general 4>m = (A - I)mc + I. Now 

I(A - I)mcl ~ IA - Ilmlcl-
As IA - II < 1, we have that (A - I)mc ~ 0 in En. Therefore 4>m ~ I in 
r by Theorem 5.2.4. Hence, the sequence {4>m} is eventually constant by 
Lemma 2 of §5.3. Therefore (A - I)mc = 0 for some m. 

Let V be the space of all vectors in En fixed by A and let W be its 
orthogonal complement. Write c = v + w with v in V and w in W. Then 

(A - I)mc = (A - I)mw. 

As A is orthogonal, A - I maps W isomorphically onto itself. Therefore 
w = o. Hence c is fixed by A. The same argument, with the sequence 
{'l/Jm} defined by 'l/Jl = ['I/J, [4>, 'l/JlJ and 'l/Jm = ['I/J, 'l/Jm-l], shows that c is also 
fixed by B. 

Now observe that (A - I)b is in Wand so is orthogonal to c. Likewise 
(I - B)a is orthogonal to c. As c = (A - I)b + (I - B)a, we have that c is 
orthogonal to itself, and so c = O. Thus 4> and 'I/J commute. 0 

Lemma 6. If X is a compact metric space, then for each r > 0, there zs 
a maximum number k(r) of points of X with mutual dzstances at least r. 

Proof: On the contrary, suppose there is no upper bound to the number of 
points of X with mutual distances at least r. Since X is compact, it can be 
covered by finitely many balls of radius r /2, say B(xl, r /2), ... , B(xm, r /2). 
Let Yl, . .. , Ym+l be m + 1 points of X with mutual distances at least r. 
Then some ball B(x" r /2) contains two points Y3 and Yk. But 

d(Y3' Yk) ~ d(Y3' x.) + d(x" Yk) < r /2 + r /2 = r, 

which is a contradiction. o 

Lemma 7. Let r be a subgroup of I(En) and for each r > 0, let r r be the 
subgroup of r generated by all elements 4> = a + A m r, with IA - II < r, 
and let kn(r) be the maxzmum number of elements of O(n) with mutual 
distances at least r relative to the metNc d(A, B) = IA - BI. Then r r ZS a 
normal subgroup ofr and [r: rr] ~ kn(r) for each r > O. 
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Proof: Let ¢ = a + A be in f,.., with IA - II < r, and let 'ljJ = b + B be in 
f. Then 'ljJ¢'ljJ-l = c + BAB- l for some c in En. Hence 

IBAB- l - II = IA - II < r. 
Thus 'ljJ¢'ljJ-l is in f r . Consequently fr is a normal subgroup of f. 

Let 'ljJ, = b. + B" for i = 1, ... ,m, be a maximal number of elements of 
f such that the mutual distances between B l ,.·., Bm are at least r. Then 
m ::; kn(r). Let 'ljJ = b + B be an arbitrary element of f. Then there is an 
index j such that IB - BJ I < r; otherwise 'ljJ, 'ljJl, ... ,'ljJm would be m + 1 
elements of f such that the mutual distances between B, B l ,···, Bm are 
at least r. Hence IBB;l - II < r. As 'ljJ'ljJ;l = c+ BB;l for some c in En, 

we have that 'ljJ'ljJ;l is in f r . Therefore'ljJ is in the coset fr'ljJJ. Hence 

f = f r'ljJl U ... U f r'ljJm. 

Thus [f: frl ::; m::; kn(r). 0 

Theorem 5.4.3. Let f be a discrete subgroup of I(En). Then f has an 
abelian normal subgroup N of finite index containmg all the translations m 
f and the index of N in f zs bounded by a number depending only on n. 

Proof: Let N = f 1.. Then we have that N is a normal subgroup of f with 
2 

[f : Nl ::; kn (1/2) by Lemma 7; moreover, N is abelian by Lemmas 4 and 
5. Clearly N contains every translation in f. 0 

Example: Let f be the group of symmetries of zn in En. Then fO = zn; 
moreover, the stabilizer fo is the subgroup of O(n) of all matrices with 
integral entries. Clearly fo is a finite group. Now the map e : f ----+ zn, 
defined by e(¢) = ¢(O), is continuous. Hence e-l(O) = fo is open in f. As 
fo is finite, we have that {I} is open in f. Therefore f is discrete. 

If ¢ = a + A is in f, then obviously A is in fo. Hence, the mapping 
a + A f-7 A determines a short exact sequence 

1 ----+ T ----+ f ----+ fo ----+ I, 

where T is the translation subgroup of f. The sequence splits, since fo is a 
subgroup of f. Therefore f = Tfo is a semi-direct product. In particular, 
the index of T in f is the order of fo. 

Definition: Let G be a group acting on a set X. 

(1) An element g of G acts trzvially on X if and only if gx = x for all x 
in X. 

(2) The group G acts trivially on X if and only if every element of G acts 
trivially on X. 

(3) The group G acts effectively on G if and only if 1 is the only element 
of G acting trivially on X. 



176 5. Isometries of Hyperbolic Space 

Theorem 5.4.4. Let r be an abelwn dzscrete subgroup of I(En). Then 
there are subgroups Hand K of r and an m-plane P of En such that 

(1) the group r has the direct sum decomposition r = K EB H; 

(2) the group K zs finite and acts trzvially on P; and 

(3) the group H is free abelian of rank m and acts effectively on P as a 
discrete group of translations. 

Proof: The proof is by induction on the dimension n. The theorem is 
trivial when n = o. Assume that n > 0 and the theorem is true for all 
dimensions less than n. Choose ep = a + A in r such that the dimension 
of the space V of all vectors in En fixed by A is as small as possible. If 
V = En, then r is a group of translations and the theorem holds for r by 
Theorem 5.3.2 with H = rand P the vector space spanned by the orbit 
roo 

Now assume that dim V < n. Let W be the orthogonal complement of 
V in En. Write a = v + w with v in V and w in W. Since the image of 
A - I is W, there is a y such that (A - I)y = w. Let T = Y + I. Then 

Tep(-y + I) 
T(a - Ay +A) 

y+a-Ay+A 

a-w+A 

v+A. 

Consequently, by conjugating the group r by T, we may assume that A 
fixes a. 

Let 'IjJ = b + B be in r. From the proof of Lemma 5, we have 

[ep, 'IjJ] = (A - 1)b + (I - B)a + I. 

Hence (A - I)b + (I - B)a = o. As A and B commute, B(V) = V and so 
(B - I) (V) C V. From the equation 

(B - I)a = (A - 1)b, 

we deduce that (B - I)a is in V n W = {O}. Hence B fixes a and A fixes 
b. Thus b is in V. Consequently 'IjJ, and therefore r, leaves V invariant. 

By conjugating the group r by an appropriate rotation, we may assume 
that V = Ek with k < n. Let r be the subgroup of I(Ek) obtained 
by restricting the isometries in r, and let p : r ----+ r be the restriction 
homomorphism. The kernel of p is a discrete subgroup of O(n) and is 
therefore finite by Theorem 5.3.1. As r acts discontinuously on Ek, the 
group r does also and is therefore discrete. _ _ _ 

By the induction hypothesis, the~ ar~sub!2:"0ups Hand K of r, and 
an m-plane P of Ek such that (1) r = K EB H, (2) K is finite and acts 
trivially on P, and (3) II is free abelian of rank m and acts effectively on 
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P as a discrete group of translations. Let K = p-1 (R). Then K is a finite 
subgroup of r, and K acts trivially on P. Moreover, there is an exact 
sequence 

l--+K--+r--+H--+l. 

The sequence splits, since II is free abelian. Hence, there is a~ubgroup H 
of r such that r = Kill Hand p maps H isomorphic ally onto H. Therefore 
H is free abelian of rank m and H acts effectively on P as a discrete group 
of translations. This completes the induction. D 

Definition: A lattice subgroup r of I(En) is a group r generated by n 
linearly independent translations. 

Corollary 3. A subgroup r ofI(En) is a lattice subgroup if and only ifr 
is discrete and free abelian of rank n. 

Lemma 8. Let H be a subgroup of finite zndex in a topological group r 
wzth a metrzc topology. If H zs discrete, then r is dzscrete. 

Proof: Suppose that H is discrete. Then H is closed in r by Lemma 3 
of §5.3. Since H is of finite index in r, there are elements g1, ... ,gm in r, 
with g1 = 1, such that 

Hence, we have 
H = r - g2H U ... U gmH. 

As each coset g2H is closed in r, we have that H is open in r. As {I} is 
open in H, we have that {I} is open in r. Thus r is discrete. D 

The next theorem follows immediately from Theorems 5.4.3 and 5.4.4 
and Lemma 8. 

Theorem 5.4.5. Let r be a subgroup ofI(En). Then r is discrete if and 
only if r has a free abelian subgroup H of rank m and of finite index such 
that H acts effectively on an m-plane P of En as a dzscrete group of trans­
lations. 

We shall prove that the m-plane P in Theorem 5.4.5 can be chosen so 
that P is invariant under r. The next lemma takes care of the case m = O. 

Lemma 9. If r zs a finzte subgroup of I( En), then r fixes a poznt of En. 

Proof: Let m = If! and set 

a= ~ L¢(O). 
m <PEr 
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Then for 'If; = b + B in r, we have 

'If; (a) b + ~ L B¢(O) 
me/>H 

~ Lb+B¢(O) 
m 

e/>H 

~ L'If;¢(O) 
m 

e/>Er 

~ L¢(O) = a. 
e/>Er o 

Theorem 5.4.6. Let r be a dzscrete subgroup ofI(En). Then 

(1) the group r has a free abelzan subgroup H of rank m and fimte mdex; 

(2) there is an m-plane P of En such that H acts effectively on P as a 
dzscrete group of translations; and 

(3) the m-plane P zs invariant under r. 

Proof: By Theorem 5.4.3, the group r has an abelian normal subgroup N 
of finite index. By Theorem 5.4.4, the group N has a free abelian subgroup 
H of rank m and of finite index, there is an m-plane Q of En such that H 
acts effectively on Q as a discrete group of translations, and N acts on Q 
via translations. By conjugating r in I( En), we may assume that Q = Em. 

Let ¢ = a + A be an arbitrary element of N. As ¢(O) = a, we find that a 
is in Em and ¢ acts on Em by translation by a. Hence A fixes each point 
of Em. Let Ve/> be the subspace of En of elements fixed by A and set 

V = n Ve/>' 
e/>EN 

Then Em c V. 
Let 'If; = b + B be an arbitrary element of r. We now show that 'If; leaves 

V invariant. First of all, we have 

B(V) B( n Ve/» 
e/>EN 

n BVe/> 
e/>EN 

n V,pcfJ,p-l 
cfJEN 

n Ve/> = V. 
e/>EN 

Thus B leaves V invariant. Let ¢ = a + A be in N. Then 

'If;¢'If;-1 = (I - BAB-1)b + Ba + BAB-1. 

As 'If;¢'If;-1 is in N, there is a v in Em such that 

(J - BAB-1)b + Ba = v. 
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Let W,p¢,p-l be the orthogonal complement of V,p¢,p-l. Write b = c + d 
with c in V,p¢,p-l and d in W,p¢,p-l. Then we have 

(1 - BAB-1)d + Ba = v. 

Now observe that 
Ba = v + (BAB- 1 - I)d 

is the orthogonal decomposition of Ba with respect to V,p¢,p-l and W,p¢,p-l. 
As Ba is in V, we have that (BAB- 1 - J)d = 0, and so d = 0. Therefore b 
is in V,p¢,p-l for each ¢ in N. Hence b is in V. Thus '¢ leaves V invariant. 
Furthermore Ba is in Em for each a in Em. Hence B leaves Em invariant. 

Now by conjugating r by an appropriate rotation of En that leaves Em 
fixed, we may assume that V = Ei with e 2: m. Let TJ : Ei -t E i- m be the 
projection defined by 

TJ(Xl, ... ,Xi) = (X£-m+1, ... ,Xi). 

Define a : E i- m -t Ei by 

a(xl, ... ,Xi-m) = (0, ... ,0, Xl, ... ,Xi-m). 

Then a is a right inverse for TJ. By Theorem 5.1.5, we have that TJ induces 
an isomorphism of topological groups 

'if: EilEm -t Ei-m. 

Define a metric on Ei I Em by 

Then 'if is an isometry. 
We now define an action of r IN on Ei I Em by 

(N'¢) (x + Em) = ,¢(x) + Em = b + Bx + Em. 

This action is well defined, since N acts on Ei by translation by elements 
of Em and B leaves Em invariant. Moreover r IN acts on Ei I Em via 
isometries. By Lemma 9, the finite group r IN fixes a point P = X + Em 
of E£ I Em. Hence r leaves the m-plane P invariant, and H acts effectively 
on P as a discrete group of translations. 0 

Exercise 5.4 

1. Let 10(C) be the group of orientation preserving Euclidean isometries of C. 
Show that every element of 10(C) is of the form ¢(z) = az + b with a in 8 1 

and b in C. 

2. Determine all the discrete subgroups of 10(C). 

3. Let A be a real n x n matrix. Prove that IAI2 = tr(AAt). 

4. Prove Formula 5.4.4. 
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5. Prove Formula 5.4.5. 

6. Let ¢ be a parabolic isometry of En and let L be a line of En on which ¢ 
acts as a translation. Show that the unit vector u pointing in the direction 
in which ¢ translates L is uniquely determined by ¢. The vector u is called 
the translatwn dtrectwn vector of ¢. 

7. Let r be a discrete subgroup of I(En). Prove that the subgroup T of trans­
lations of r has finite index in r if and only if every isometry ¢ = a + A in 
r has the property that its O(n)-component A has finite order. 

8. Find an upper bound for kn (1/2). 
9. Prove that the order of the group r o, in the example after Theorem 5.4.3, is 

2nn!. 

10. Let r be a discrete subgroup of I(En) and let m be as in Theorem 5.4.6. 
Prove that any two r-invariant m-planes of En are parallel. 

§5.5. Elementary Groups 

In this section, we shall characterize the elementary discrete subgroups of 
M(Bn). 

Definition: A subgroup G of M(Bn) is elementary if and only if G has a 
finite orbit in the closed ball Bn. 

We shall divide the elementary subgroups of M(Bn) into three types. 
Let G be an elementary subgroup of M(Bn). 

(1) The group G is said to be of ellzptic type if and only if G has a finite 
orbit in Bn. 

(2) The group G is said to be of parabolic type if and only if G fixes a 
point of sn-l and has no other finite orbits in Bn. 

(3) The group G is said to be of hyperbolic type if and only if G is neither 
of elliptic type nor of parabolic type. 

Let cp be in M( Bn) and let x be a point of Bn. Then 
(cpGcp-l)cp(X) = cp(Gx). 

In other words, the cpGcp-l-orbit through cp(x) is the 4>-image ofthe G-orbit 
through x. This implies that cpGcp-l is also elementary; moreover, G and 
cpGcp-l have the same type. Thus, the elementary type of G depends only 
on the conjugacy class of G. 

Elementary Groups of Elliptic Type 

Theorem 5.5.1. Let G be an elementary subgroup of M(Bn). Then the 
following are equwalent: 
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(1) The group G zs of elliptic type. 

(2) The group G fixes a point of Bn. 

(3) The group G zs conjugate in M(Bn) to subgroup ofO(n). 
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Proof: Suppose that G is of elliptic type. We pass to the hyperboloid 
model H n of hyperbolic space and regard G as a subgroup of PO(n, 1). 
As G is of elliptic type, it has a finite orbit {VI, ... , Vrn} in Hn. Let 
v = VI + ... + Vrn . Then V is a positive time-like vector of ]R!.n,l by Theorem 
3.1.1. Now let Vo = v/lllvlll. Then Vo is in Hn. If A is in G, then A permutes 
the elements of {VI, ... , vrn} by left multiplication. Therefore, we have 

Av 
Avo = Illvlll 

AVI + ... + AVrn 

Illvlll 
VI + ... + Vrn 

Illvlll 
Thus G fixes Vo. Hence (1) implies (2). 

Vo· 

Suppose that G fixes a point b of Bn. Let ¢ be a Mobius transformation 
of Bn such that ¢(O) = b. Then ¢-IG¢ fixes O. Consequently ¢-IG¢ is a 
subgroup of O(n) by Theorem 4.4.8. Thus (2) implies (3). 

Suppose there is a ¢ in M(Bn) such that ¢-lG¢ is a subgroup of O(n). 
Then G fixes ¢(O), and so (3) implies (1). 0 

The next theorem follows immediately from Theorems 5.3.1 and 5.5.1. 

Theorem 5.5.2. Let r be a subgroup of M(Bn). Then the following are 
equivalent: 

(1) The group r is finite. 

(2) The group r is conjugate in M(Bn) to a finite subgroup of O(n). 

(3) The group r is an elementary discrete subgroup of ellzptic type. 

Elementary Groups of Parabolic Type 

In order to analyze elementary groups of parabolic and hyperbolic type, 
it will be more convenient to work in the upper half-space model un of 
hyperbolic space. Elementary subgroups of M(Un ) of elliptic, parabolic, 
and hyperbolic type are defined in the same manner as in the conformal 
ball model Bn. The main advantage of working in M(Un) is that the group 
of Euclidean similarities S(En-l) is isomorphic by Poincare extension to 
the stabilizer of 00 in M(Un). Consequently, we may identify S(En-l) with 
the stabilizer of 00 in M(Un). 
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Theorem 5.5.3. Let G be an elementary subgroup of M(Un ). Then the 
following are equivalent: 

(1) The group G is of parabolic type. 

(2) The group G has a unzque fixed poznt in En-I. 

(3) The group G is conjugate zn M(Un ) to a subgroup of S(En-l) that 
fixes no point of En-I. 

Proof: Obviously (1) implies (2), and (2) and (3) are equivalent. We shall 
prove that (2) implies (1) by contradiction. Suppose that G fixes a unique 
point a of En-I and G is not of parabolic type. Then G has a finite orbit 
{UI, ... ,Um } in un other than {a}. Assume first that {UI, ... ,Um } is in 
un. Then G is of elliptic type, and so it fixes a point U of un by Theorem 
5.5.1. Consequently G fixes the hyperbolic line L starting at a and passing 
through u. But this implies that G fixes the other endpoint of L contrary 
to the uniqueness of a. Therefore {UI' ... , um } must be contained in En-I. 

As a is the only fixed point of G in En-I, we must have m ~ 2. The 
index of each stabilizer Gu , is m. Therefore H = GU1 n GU2 is of finite 
index in G. Moreover, each element of H is elliptic, since H fixes the three 
points a, UI, U2. Therefore H fixes the hyperbolic line L joining a and UI' 

Let U be any point on L. As Gu contains H, we have that Gu is of finite 
index in G. Consequently, the orbit Gu is finite. But we have already 
shown that this leads to a contradiction. Therefore G must be of parabolic 
type. Thus (2) implies (1). 0 

Theorem 5.5.4. Let ¢, 'Ij; be in M(Un ) wzth 'Ij; hyperbohc. If ¢ and 'Ij; have 
exactly one fixed poznt in common, then the subgroup generated by ¢ and 
'Ij; 2S not d2screte. 

Proof: By conjugating in M(Un ), we may assume that the common fixed 
point is 00. Thus, we may regard ¢ and 'Ij; to be in S(En-I). By conjugating 
in S(En- I ), we may assume that 'Ij; fixes O. Then there are positive scalars 
r, s, matrices A, B in O(n - 1), and a nonzero point a of E n - I such that 
¢(x) = a + rAx and 'Ij;(x) = sBx. By replacing 'Ij; with 'Ij;-l, if necessary, 
we may also assume that 0 < s < 1. Then we have 

'lj;m¢'Ij;-m(x) = sm Bma + rBm AB-mx 

for each positive integer m. The terms of the sequence {'Ij;m¢'Ij;-m} are all 
distinct, since 

'lj;m¢'Ij;-m(o) = sm Bma with a =f:. O. 

As O(n - 1) is compact, the sequence {Bm AB-m } has a convergent sub­
sequence {Bm,AB-m,}. Let Tm be the translation of E n - I by smBma. 
Then {Tm} converges to I by Corollary 1 of §5.2. As 

'lj;m¢'Ij;-m = TmrBm AB-m , 

the sequence {'Ij;m, ¢'Ij;-m, } converges but is not eventually constant. There­
fore, the group (¢, 'Ij;) is not discrete by Lemma 2 of §5.3. 0 
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Theorem 5.5.5. A subgroup r of M(Un ) zs an elementary discrete sub­
group of parabolic type if and only zfr is conjugate m M(Un ) to an infinite 
discrete subgroup ojI(En-I). 

Proof: Suppose that r is an elementary discrete subgroup of parabolic 
type. By Theorem 5.5.3, we may assume that r is a subgroup of S(En-l) 
that fixes no point of En-I. By Theorem 5.5.4, the group r has no hy­
perbolic elements, otherwise r would fix a point of En-I. Consequently, 
every element ¢ of r is of the form ¢(x) = a + Ax, where A is in O(n - 1) 
and a is in En-I. Thus r is a subgroup of I(En-I). The group r must be 
infinite, otherwise r would be of elliptic type. 

Conversely, suppose that r is an infinite discrete subgroup of I(En-I). 
On the contrary, assume that r fixes a point of En-I. By conjugating in 
I(En - I ), we may assume that r fixes O. Then r is a subgroup of O(n -1). 
But r is discrete, and so r must be finite, which is not the case. Therefore 
r fixes no point of En-I. Hence r is of parabolic type by Theorem 5.5.3. 0 

Elementary Groups of Hyperbolic Type 

Let S(En- I )* be the subgroup of M(En-l) of all transformations that 
leave invariant the set {O, oo}. The group S(En-I)* contains the subgroup 
S(En-l)o of all similarities that fix both 0 and 00 as a subgroup of in­
dex two. We shall identify S(En-I)* with the subgroup of M(Un ) of all 
transformations that leave {O, oo} invariant. 

Theorem 5.5.6. Let G be an elementary subgroup of M(Un ). Then the 
following are equwalent: 

(1) The group G is of hyperbolzc type. 

(2) The union of all the fimte orbits of G in un consists of two pomts m 
En-I. 

(3) The group G zs conjugate m M(Un ) to a subgroup of S(En-I)* that 
fixes no point of the posztive nth axis. 

Proof: Suppose that G is of hyperbolic type. Then all the finite orbits of 
G are contained in En-I, since G is not of elliptic type. Let {UI' ... , urn} be 
the union of a finite number of finite G-orbits. Then each of the stabilizers 
Gu , is of finite index in G, since each of the orbits Gu, is finite. Let 

H = GU1 n ... n Gu ",. 

Then H is of finite index in G and fixes each U,. If m ~ 3, the group H 
must be of elliptic type; but this implies that G is of elliptic type, which is 
not the case. Therefore m can be at most 2. The case of one finite orbit, 
consisting of a single point, is ruled out by Theorem 5.5.3. Therefore, either 
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G has one finite orbit consisting of two points or two finite orbits consisting 
of one point each. Thus (1) implies (2). 

Obviously (2) implies (3). Suppose that G is a subgroup of S(En-l)* 
that fixes no point of the positive nth axis. Then either G fixes both 0 and 
00 or {O, oo} is a G-orbit. Consequently G is not of parabolic type. 

On the contrary, assume that G is of elliptic type. If G fixes both 0 and 
00, then G fixes the positive nth axis, which is not the case. Therefore 
{O, oo} is a G-orbit. The stabilizer Go is of index two in G and fixes both 
o and 00. Hence Go fixes the positive nth axis L. Let ¢ be in G - Go. 
Then ¢ leaves L invariant and switches its endpoints. Consequently ¢ has 
a fixed point u on L. As Go and ¢ generate G, the group G fixes u, which 
is a contradiction. It follows that G is of hyperbolic type. Thus (3) implies 
(1). 0 

The next theorem follows immediately from Theorems 5.5.2 and 5.5.6. 

Theorem 5.5.7. A subgroup r of M(Un ) zs an elementary discrete sub­
group of hyperbolzc type zf and only zfr is conjugate in M(Un ) to an infinzte 
dzscrete subgroup of S(En- 1 )*. 

The structure of an infinite discrete subgroup r of S(En- 1 )* is easy to 
describe. Let ro be the subgroup of r fixing O. Then ro is of index 1 or 2 
in r. Every element of r 0 is of the form kA, where k is a positive scalar 
and A is in O(n - 1). Let 

p: ro -+ lR+ 

be the homomorphism defined by p(kA) = k. The kernel of p is the group 
ronO(n-1), which is finite. As the orbit roen is discrete, we find that the 
image of p is an infinite discrete subgroup of lR+. Hence, there is a scalar 
s > 1 such that 

p(ro) = {sm : m E Z}. 

Thus r 0 is finite by infinite cyclic. 
Let 'lj; be an element of r 0 such that p( 'lj;) = s. Then r 0 is the semidirect 

product of the finite subgroup ronO(n-1) and the infinite cyclic subgroup 
generated by 'lj;. Consequently r has an infinite cyclic subgroup generated 
by a hyperbolic transformation as a subgroup of finite index. This leads to 
the next theorem. 

Theorem 5.5.8. A subgroup r of M(Un ) is an elementary discrete sub­
group of hyperbolic type if and only ifr contains an mfinzte cyclic subgroup 
generated by a hyperbolic transformation as a subgroup of finite index. 

Proof: Suppose that r has an infinite cyclic subgroup H generated by a 
hyperbolic transformation 'lj; as a subgroup of finite index. Let a and b be 
the fixed points of'lj;. As r a contains H, we have that r a is of finite index 
in r. Therefore, the orbit ra is finite. Likewise rb is finite. Hence r is 
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elementary. As H has no fixed points in un, the type of r is not elliptic 
by Theorem 5.5.1. Moreover r is not of parabolic type, since the union 
of all the finite orbits of r contains at least a and b. Therefore r must 
be of hyperbolic type. Let L be the axis of 'If; and let x be a point on L. 
Then the orbit Hx is a discrete set. As the map e : H -t Hx, defined by 
e('If;m) = 'If;m(x), is continuous, e-1(x) = {I} is open in H, and so H is 
discrete. Consequently r is discrete by Lemma 8 of §5.4. The converse 
follows from Theorem 5.5.7 and the discussion thereafter. 0 

Example: Let J-L be the magnification of un defined by J-L(x) = 2x, and 
let U be the inversion of un defined by u(x) = x/lxI 2 . Let r be the group 
generated by J-L and u. As UJ-LU = J-L- 1 , the infinite cyclic group (J-L) has 
index two in r. Therefore r is an elementary discrete subgroup of M(Un ) 

of hyperbolic type by Theorem 5.5.8. Observe that r leaves the set {O, oo} 
invariant but fixes neither 0 nor 00. 

Solvable Groups 

Let F</> be the set of all fixed points in Bn of a Mobius transformation ¢ of 
Bn. If ¢,'If; are in M(Bn), then obviously 

F1/J</>1/J-l = 'If;(F</». 

This simple observation is the key to the proof of the next lemma. 

Lemma 1. Every abelian subgroup ofM(Bn) is elementary. 

Proof: The proof is by induction on n. The theorem is trivial when n = 0, 
since BO = {O} by definition. Now suppose that n > 0 and the theorem 
is true for all dimensions less than n. Let G be an abelian subgroup of 
M(Bn). Assume first that G has an element ¢ that is either parabolic or 
hyperbolic. Then F</> consists of one or two points. As 'If;¢'If;-l = ¢ for all 
'If; in G, we have that 'If;(F</» = F</> for all 'If; in G, and so G is elementary. 

Now assume that all the elements of G are elliptic. Let ¢ be in G. Then 
F</> is the closure in Bn of a hyperbolic m-plane of Bn, since ¢ is conjugate 
in M(Bn) to an element of O(n). Therefore F</> is a closed m-disk. Choose 
¢ in G such that the dimension of F</> is as small as possible. If dim F</> = n, 
then G is trivial, so assume that dim F</> < n. By conjugating G in M(Bn), 
we may assume that F</> = Bm with m < n. As G is abelian, we have 
that 'If;(F</» = F</> for all 'If; in G; in other words, Gleaves Bm invariant. 
Moreover G leaves Em invariant by Theorem 4.3.7. 

Let G be the group of transformations of Em obtained by restricting 
the elements of G. Then G is a subgroup of M(Bm) by Theorem 4.3.1. 
Moreover G is abelian, since G is a homomorphic image of G. By the 
induction hypothesis, G, and therefore G, has a finite orbit in Bm. Thus 
G is elementary. This completes the induction. 0 
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Theorem 5.5.9. Let r be a dzscrete subgroup of M(Bn). Then r zs ele­
mentary zf and only if zt has a abelzan subgroup of fimte index. Moreover, 
zf r is elementary, then zt has a free abelzan subgroup of fimte index whose 
rank is 0 if r is ellzptic, 1 zf r is hyperbolzc, or k, wzth 0 < k < n, zf r zs 
parabolic. 

Proof: If r is elementary, then it has a free abelian subgroup of finite 
index by Theorems 5.4.5, 5.5.2, 5.5.5, and 5.5.8 whose rank is 0 if r is 
elliptic, 1 if r is hyperbolic, or k, with 0 < k < n, if r is parabolic. 

Conversely, suppose that r has an abelian subgroup H of finite index. 
Then H is elementary by Lemma 1. Let x be a point in Bn such that Hx 
is finite. As [r : H] is finite, there are elements (/>1, ... , ¢rn in r such that 

r = ¢IH U ... U ¢rnH. 

Hence, we have that 

rx = ¢lHx U ... U ¢rnHx 

is finite. Therefore r is elementary. o 

Theorem 5.5.10. Every solvable subgroup of M(Bn) zs elementary. 

Proof: Let G be a solvable subgroup of M(Bn). Define G(O) = G and 
G(k) = [G(k-l), G(k-l)] for k > o. Then G(k) = 1 for some smallest k. 
We prove that G is elementary by induction on the solvability degree k. 
This is clear if k = 0, so assume that k > 0 and all subgroups of M(Bn) 
of solvability degree k - 1 are elementary. As the solvability degree of 
H = G(l) is k - 1, we have that H is elementary. 

Assume first that H is of parabolic or hyperbolic type. Then the union 
of the finite orbits of H in sn-l is a one or two point set F. Let h be in 
Hand 9 in G. Then g-lhg is in H, since H is a normal subgroup of G. 
Hence g-lhg(F) = F. Therefore hg(F) = g(F). Hence g(F) is a union of 
finite orbits of H, and therefore g(F) = F. Hence G has a finite orbit and 
so G is elementary. 

Now assume that H is elliptic. Let F be the set of all points of B n fixed 
by H. Then F is an m-plane of Bn. By conjugating G in M(Bn ), we may 
assume that F = Brn. If x is in F, and h is in H, and 9 is in G, then 
g-lhgx = x, and so hgx = gx, and therefore gx is in F. Hence G maps 
F to itself. Let G be the subgroup of M(Brn) obtained by restricting the 
elements of G to F. Then H is a subgroup of the kernel of the restriction 
homomorphism p : G --+ G. Hence p induces a homomorphism from G / H 
onto G. As G/H is abelian, G is abelian. Therefore G is elementary by 
Lemma 1. Hence G, and therefore G, has a finite orbit in F. Thus G is 
elementary. 0 

Theorem 5.5.11. IfG is a nonelementary subgroup ofM(Bn) that leaves 
no proper m-plane of B n invanant, then G has no nontrivwl, elementary, 

normal subgroups. 
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Proof: On the contrary, let H be a nontrivial, elementary, normal sub­
group of G. Assume first that H is of elliptic type. Then the set F of 
all points of B n fixed by H is a proper m-plane of Bn. Let x be a point 
of F, let ¢ be in H, and let 'ljJ be in G. Then 'ljJ-1¢'ljJ(X) = x, whence 
¢'ljJ(x) = 'ljJ(x). Hence 'ljJ(x) is fixed by ¢. As ¢ is arbitrary in H, we have 
that 'ljJ(x) is in F. As 'ljJ is arbitrary in G, we deduce that Gleaves F 
invariant, which is not the case. 

Assume next that H is not of elliptic type. Then the union of all the 
finite orbits of H is a one or two point set F. Let 'ljJ be in G. Then 

'ljJ-1H'ljJ(F) = HF = H. 

Hence H'ljJ(F) = 'ljJ(F). Therefore 'ljJ(F) = F. As 'ljJ is arbitrary in G, we 
deduce that GF = F, which is not the case because Gis nonelementary. 
Thus, we have a contradiction. 0 

Corollary 1. If n > 1, then M(Bn) has no nontrivial, solvable, normal 
subgroups. 

Proof: By Theorem 3.1.5, we have that M(Bn) leaves no proper m-plane 
of B n invariant. Furthermore, since M(Bn) acts transitively on sn-l, we 
have that M(Bn) is nonelementary for n > 1. Therefore M(Bn) has no 
nontrivial, solvable, normal subgroups by Theorems 5.5.10 and 5.5.11. 0 

Remark: The group M(Bn) is isomorphic to I(Hn). Therefore I(Hn) has 
no nontrivial, solvable, normal subgroups for n > 1. In contrast, both 
I(sn) and I(En) have nontrivial, abelian, normal subgroups. 

The group M(Bn) has a nontrivial, abelian, quotient group because the 
subgroup Mo(Bn) of orientation preserving isometries of Bn has index two. 
It follows from the next theorem that Mo (Bn) is the only proper normal 
subgroup of M(Bn) whose group of cosets is abelian. 

Theorem 5.5.12. The group Mo(Bn) has no nontrivzal, abelian, quotzent 
groups. 

Proof: It suffices to show that Mo(Bn) is equal to its commutator sub­
group. We pass to the upper half-space model un. The group Mo(Un ) is 
generated by all products 'Y = ala2 of two reflections in spheres I:1 and 
I:2 of En that are orthogonal to En-1. There is a sphere I: of En that is 
orthogonal to E n - 1 and tangent to both I:1 and I:2. Let a be the reflec­
tion in I:. Then (31 = ala and (32 = aa2 are parabolic translations. This 
is clear upon positioning the spheres so that 00 is the point of tangency. 
As 'Y = (31(32, we find that Mo(Un) is generated by the set of all parabolic 
translations of un. 

Now as any parabolic translation of un is conjugate in Mo(Un ) to the 
parabolic translation T of un, defined by T(X) = e1 + x, it suffices to show 
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that T is a commutator. Let fJ be the magnification of un defined by 
fJ(x) = 2x. Then 

Therefore T = [fJ, T]. 

fJTfJ-1( -e1 + x) 

fJT( -eI/2 + x/2) 

fJ(eI/2 + x/2) 
e1 + x. 

o 

We now define an elementary subgroup of I(Hn). Let ( : Bn -+ H n be 
stereographic projection. 

Definition: A subgroup r of I(Hn) is elementary if and only if the 
subgroup (-1 r( of I(Bn) corresponds to an elementary subgroup of M(Bn) 
under the natural isomorphism from I(Bn) to M(Bn). 

All the results of this section now apply to elementary subgroups of 
I(Hn). Furthermore, it is clear that we can define in a similar fashion 
elementary subgroups of the group of isometries of any model of hyperbolic 
space and all the results of this section apply to any model of hyperbolic 
space. 

Exercise 5.5 

1. Let G be an elementary subgroup of M(Bn) of hyperbolic type. Prove that 
G has a hyperbolic element and that every element of G is either elliptic or 
hyperbolic. 

2. Let cp, 'lj; be elliptic elements in M(Bn). Prove that if cp and 'lj; commute, then 
either F¢ C F,p or F,p C F¢ or F¢ and F,p intersect orthogonally. 

3. Let G be an abelian subgroup of M(Bn). Prove that 

(1) G is of elliptic type if and only if every element of G is elliptic, 

(2) G is of parabolic type if and only if G has a parabolic element, and 

(3) G is of hyperbolic type if and only if G has a hyperbolic element. 

4. Let cp, 'lj; be in M(Bn) and suppose that cp and 'lj; have a common fixed point 
in En. Prove that [cp, 'lj;] is either elliptic or parabolic. 

5. Let G be a subgroup of M(Bn) with no nonidentity elliptic elements. Prove 
that G is elementary if and only if any two elements of G have a common 
fixed point. 
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§5.6. Historical Notes 

§5.1. The quadratic form of the Hermitian inner product was introduced 
by Hermite in his 1854 paper Sur la tMorze des formes quadratzques [189). 
Complex n-space was described by Klein in his 1873 paper Ueber die so­
genannte Nzcht-Euk12dische Geometrie [227). The concept of a topological 
group evolved out of the notion of a continuous group of transformations 
of n-dimensional space as developed by Lie, Killing, and Cartan in the late 
nineteenth century. For an overview of the relationship between continu­
ous groups and geometry, see Cartan's 1915 survey article La theorie des 
groupes contmus et la geometrie [68]. Abstract topological groups were in­
troduced by Schreier in his 1925 paper Abstrakte kontinuier12che Gruppen 
[368). A systematic development of the algebra of matrices was first given 
by Cayley in his 1858 paper A memoir on the theory of matrices [75]. For 
the early history of matrix algebra, see Hawkins' 1977 articles Another look 
at Cayley and the theory of matrzces [182) and Weierstrass and the theory 
of matrices [183). Unitary transformations were studied by Frobenius in 
his 1883 paper Uber die principale Transformation der Thetafunctwnen 
mehrerer Variabeln [141). The unitary group appeared in Autonne's 1902 
paper Sur l'Hermitzen [28]. Quotient topological groups were considered 
by Schreier in his 1925 paper [368]. Theorem 5.1.4 appeared in Pontrja­
gin's 1939 treatise Topologzcal Groups [343). The n-dimensional projective 
general linear group appeared in Klein's 1873 paper [227). 

§5.2. The group of isometries of a finitely compact metric space was 
shown to have a natural topological group structure by van Dantzig and 
van der Waerden in their 1928 paper Uber metrisch homogene Riiume [393]. 
See also Koecher and Roe1cke's 1959 paper Dzskontznuierliche und dzskrete 
Gruppen von Isometrien metrzscher Riiume [246). As a reference for the 
compact-open topology, see Dugundji's 1966 text Topology [110]. Theorem 
5.2.8 appeared in Beardon's 1983 text The Geometry of Discrete Groups 
[34). 

§5.3. Discrete groups of Euclidean isometries were studied implicitly by 
crystallographers in the first half of the nineteenth century. For the early 
history of group theory in crystallography, see Scholz's 1989 articles The 
rise of symmetry concepts in the atomzstic and dynamistic schools of crys­
tallography, 1815-1830 [364) and Crystallographic symmetry concepts and 
group theory (1850-1880) [365). Discrete groups of Euclidean isometries 
were first studied explicitly by Jordan in his 1869 Memoire sur les groupes 
de mouvements [206]. In particular, the 3-dimensional versions of Corollary 
1 and Theorem 5.3.2 appeared in Jordan's paper. Lattices arose in crys­
tallography, in the theory of quadratic forms, and in the theory of elliptic 
functions during the nineteenth century. Finite groups and subgroups of 
the elliptic modular group were the first discrete linear groups studied. In 
particular, Klein determined all the finite groups of linear fractional trans­
formations of the complex plane in his 1876 paper Ueber biniire Formen 
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mit lmearen TransJormatwnen m sich selbst [229]. Subgroups of the el­
liptic modular group were investigated by Klein in his 1879 paper Ueber 
die TransJormatwn der elliptischen Functionen [231]. The term discrete 
group was used informally by Schreier in his 1925 paper [368]. A dzscrete 
topological group was defined by Pontrjagin in his 1939 treatise [343]. 

Poincare defined a discontinuous group to be a group of linear fractional 
transformations of the complex plane that has no infinitesimal operations 
in his 1881 note Sur les Jonctions fuchsiennes [327]. He defined a Fuchszan 
group to be a discontinuous group that leaves invariant a circle. Poincare 
knew that a F'uchsian group is equivalent to a discrete group of isometries 
of the hyperbolic plane. Klein pointed out that there are discrete groups 
of linear fractional transformations of the complex plane that do not act 
discontinuously anywhere on the plane in his 1883 paper Neue Beitriige zur 
Rzemannschen Funktionentheorie [233]. Poincare then defined a properly 
discontinuous group to be a group of linear fractional transformations of 
the complex plane that acts discontinuously on a nonempty open subset of 
the plane in his 1883 Memozre sur les groupes klemeens [332]. He called 
such a group a Klemian group. Poincare knew that a Kleinian group acts as 
a discrete group of isometries of the upper half-space model of hyperbolic 
3-space. See Poincare's 1881 note Sur les groupes kleineens [329]. In mod­
ern terminology, a Kleinian group is any discrete group of linear fractional 
transformations of the complex plane. Moreover, the terms discontinuous 
and properly discontinuous have been replaced by discrete and discontin­
uous, respectively. For the evolution of the definition of a discontinuous 
group, see Fenchel's 1957 article Bemerkungen zur allgemeinen Theorie 
der dzskontinuzerlzchen TransJormationsgruppen [131]. Theorem 5.3.3 ap­
peared in Fubini's 1905 paper Sulla teorza dei gruppz dzscontinuz [143]. 
Theorem 5.3.4 for groups of isometries appeared in Bers and Gardiner's 
1986 paper Fricke Spaces [43]. Theorem 5.3.5 for groups of isometries of 
hyperbolic space was proved by Poincare in his 1883 memoir [332]. Theo­
rem 5.3.5 was essentially proved by Siegel in his 1943 paper Dzscontinuous 
groups [375]. See also Koecher and Roelcke's 1959 paper [246]. 

Poincare was led to investigate discrete groups of isometries of the hy­
perbolic plane because of his work on differential equations of functions 
of a complex variable. In particular, Poincare studied functions J of a 
complex variable z with the property that J("fZ) = J(z) for all elements 
'Y of a discrete group r of linear fractional transformations of the complex 
plane. Such a function J is called an automorphzc function with respect 
to the group r. For the fascinating history of this line of research, see 
Gray's 1986 monograph Linear Differential Equations and Group Theory 
from Rzemann to Poincare [160]. References for the theory of F'uchsian and 
Kleinian groups are Fricke and Klein's 1897-1912 treatise Vorlesungen uber 
dze Theorie der automorphen Functwnen [139], Ford's 1929 treatise Auto­
morphic Functions [136], Lehner's 1964 treatise Dzscontinuous Groups and 
Automorphic Functions [255], Magnus' 1974 treatise Noneuclidean Tesse-
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lations and the~r Groups [272], Beardon's 1983 text [34], and Maskit's 1988 
treatise Kleinian Groups [282]. 

§5.4. The 3-dimensional version of Theorem 5.4.1 was first proved by 
Chasles in his 1831 paper Note sur les proprietes generales du systeme de 
deux corps semblables entr'eux [78]. Theorems 5.4.1 and 5.4.2 appeared in 
Jordan's 1875 paper Essai sur la geometrie Ii n dimenswns [207]. Lemma 
3 was proved by Frobenius in his 1911 paper Uber den von L. Bieberbach 
gefundenen Beweis emes Satzes von C. Jordan [142]. Lemma 4 for finite 
subgroups of the orthogonal group also appeared in this paper. Lemmas 
4, 5, and 7 appeared in Oliver's 1980 paper On Bieberbach 's analys~s of 
discrete Euclidean groups [323]. Theorem 5.4.3 was first proved for fi­
nite subgroups of the orthogonal group by Jordan in his 1878 Memozre 
sur les equations differentielles lineaires [208] and in his 1880 paper Sur 
la determmation des groupes d'ordre fim contenus dans le groupe lmeaire 
[209]. Theorem 5.4.3 follows easily from Jordan's theorem and Bieber­
bach's algebraic characterization of discrete Euclidean groups given in his 
1911 paper Uber die Bewegungsgruppen der Euklzd~schen Riiume [46]. Like­
wise, Theorems 5.4.4-5.4.6 follow from Bieberbach's characterization in this 
paper. 

§5.5. The concept of an elementary group is implicit in the classification 
of discontinuous groups of linear fractional transformations of the complex 
plane given by Fricke and Klein in Vol. I of their 1897 treatise [139]. The 
term elementary group was introduced by Ford in his 1929 treatise [136]. 
Our definition of an elementary group conforms with the definition of an 
elementary group in dimension three given by Beardon in his 1983 text 
[34]. The 2-dimensional version of Theorem 5.5.4 appeared on p.118 in 
Vol. I of Fricke and Klein's 1897 treatise [139]. Theorem 5.5.5 appeared in 
Greenberg's 1974 paper Commensurable groups of Moebzus transformatwns 
[165]. Theorems 5.5.7 and 5.5.8 were proved by Thkia in his 1985 paper On 
~somorphisms of geometrically finite Mobzus groups [392]. Theorem 5.5.9 
appeared in Martin's 1989 paper On discrete Mobzus groups in all dimen­
sions [280]. The 3-dimensional version of Theorem 5.5.10 was essentially 
proved by Myrberg in his 1941 paper Die Kapazitiit der singuliiren Menge 
der linearen Gruppen [312]. Theorem 5.5.11 was essentially proved by Chen 
and Greenberg in their 1974 paper Hyperbolic spaces [80]. Theorem 5.5.12 
follows from the fact that Mo(Bn) is a simple Lie group. References for 
elementary groups are Ford's 1929 treatise [136], Beardon's 1983 text [34], 
Kulkarni's 1988 paper Conjugacy classes in M(n) [248], and Waterman's 
1988 paper Purely ellipt~c Mobius groups [404]. 



CHAPTER 6 

Geometry of Discrete Groups 

In this chapter, we study the geometry of discrete groups of isometries of 
sn, En, and Hn. The chapter begins with an introduction to the projective 
disk model of hyperbolic n-space. Convex sets, polyhedra, and polytopes 
in sn, En, and H n are studied in Sections 6.2, 6.3, and 6.4, respectively. 
The basic properties of fundamental domains for a discrete group are ex­
amined in Sections 6.5 and 6.6. The chapter ends with a study of the basic 
properties of tessellations of sn, En, and Hn. 

§6.1. The Projective Disk Model 

The open umt n-dzsk in ~n is defined to be the set 

Dn={XE~n:lxl<1}. 

Note that Dn is the same set as Bn. The reason for the new notation is 
that a new metric dD on Dn will be defined so that Dn and B n are different 
metric spaces. 

Identify ~n with ~n x {O} in ~n+1. The gnomomc projection J.L of Dn 
onto Hn is defined to be the composition of the vertical translation of Dn 
by en+l followed by radial projection to Hn. See Figure 6.1.1. An explicit 
formula for J.L is given by 

() x + en+l 
J.L x = III x + en+dl· 

The map J.L : Dn ....., H n is a bijection. The inverse of J.L is given by 

J.L-l(Xl, ... , xn+d = (XdXn+l, ... , xn/xn+d· 

Define a metric dD on D n by 

dD(X, y) = dH(J.L(x), J.L(Y))· 

(6.1.1) 

(6.1.2) 

(6.1.3) 

By definition, J.L is an isometry from Dn, with the metric dD, to hyperbolic 
n-space Hn. The metric space consisting of Dn, together with the metric 
dD, is called the prOjective dzsk model of hyperbolic n-space. 

192 
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-1 o x 1 

F· 6 11 The gnoIIlonic proJ'ection II. of Dl onto Hl 19ure . . . t'" 

Theorem 6.1.1. The metric dD on D n is given by 

1- X· y 
coshdD(x,y) = J1-lxI2J1-lyI2 

Proof: By Formula 3.2.2, we have 

cosh dH(/-l(X) , /-ley)) 
x + en+l Y + en+l =-----c;- 0 ----"-------'--"C"C 

Illx + en +1111 Illy + en +1111 
1- X· Y 
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In order to understand the isometries of D n , we need to introduce ho­
mogeneous coordinates for projective n-space pn and classical projective 
n-space jRn. By definition, pn = sn / {±1}. Thus, a point of pn is a pair of 
antipodal points of sn. The idea of homogeneous coordinates is to use any 
nonzero vector on the line passing through a pair ±x of antipodal points 
of sn to represent the point {±x} of pn. With this in mind, we say that a 
nonzero vector x in lRn +1 is a set of homogeneous coordinates for the point 
{±x/lxl} of pn. Notice that two nonzero vectors x, yin lRn +l are homoge­
neous coordinates for the same point of pn if and only if each is a nonzero 
scalar multiple of the other. By definition, jRn = lRn U pn-l. Moreover, 
gnomonic projection v : lRn ----+ sn induces a bijection v : jRn ----+ pn. A set 
of homogeneous coordinates for a point x of jRn is a set of homogeneous co­
ordinates for the point vex). In particular, if Xn+l =I- 0, then (Xl"'" xn+d 
is a set of homogeneous coordinates for the point (xdXn+1"" ,Xn/xn+1) 
of lRn in jRn. 
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A projectzve transformation of pn is a bijection 4> : pn --+ pn that corre­
sponds to a bijective linear transformation ¢ : jRn+l --+ jRn+! with respect 
to homogeneous coordinates that is determined only up to multiplication 
by a nonzero scalar. In other words, a projective transformation of pn 
corresponds to an element of PGL(n + 1, jR). Projective transformations 
of jRn correspond to projective transformations of pn via the bijection 
V: jRn --+ pn. 

Theorem 6.1.2. Every isometry of D n extends to a unique proJectzve 
transformation of classzcal projective n-space jRn and every projective trans­
formatwn of jRn that leaves Dn invariant restrzcts to an zsometry of Dn. 

Proof: Let 4> be a projective transformation of jRn. Then 4> corresponds 
to a bijective linear transformation ¢ of jRn+1 that is unique up to multi­
plication by a nonzero scalar. Let (Xl, ... , x n+!), with Xn+! i- 0, be a set 
of homogeneous coordinates for the vector (XI/Xn+l,'" ,xn/xn+d in jRn. 
Then 

(~)2 + ... + (~)2 < 1 
Xn+l Xn+l 

if and only if 
2 2 2 

Xl + ... +xn < xn+l' 

Hence 4> leaves D n invariant if and only if ¢ leaves invariant the interior of 
the light cone en in jRn,1 defined by the equation 

2 2 2 
Xl + ... + xn = xn+l · 

Suppose that ¢ leaves invariant the interior of the light cone en. We 
claim that some nonzero scalar multiple of ¢ is a positive Lorentz trans­
formation. Since ¢ is continuous, ¢ either leaves invariant the positive and 
negative components of the interior of en or permutes them. By multi­
plying ¢ by -1, if necessary, we may assume that ¢ leaves invariant the 
components of the interior of en. By composing ¢ with a positive Lorentz 
transformation, we may assume that ¢ leaves invariant the (n + 1 )st ~is of 
jRn+l. By multiplying ¢ by a positive scalar, we may assume that 4> fixes 
the unit vector en+!' We now show that ¢ is an orthogonal transformation. 
Let X be a vector in jRn+1 not on the (n + l)st axis of jRn+l. It suffices 
to show that 1¢(x)1 = IxI- Let V be the 2-di!llensional vector subspace of 
jRn+1 spanned by X and en+l' By composing 4> with an _orthogonal transfor­
mation of jRn+1 that fixes en+l, we may assume that 4> leaves V invariant. 
Consequently, we may assume that n = 1. Then the matrix for 4> is of the 

form 

Now since ¢ leaves invariant the light cone, and since 

(~ ~)(~)=(b:1)' 
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we have that a = ±(b + 1). By composing ¢ with the reflection 

( -1 0) 
o 1 ' 

if necessary, we may assume that a = b + 1. Then we have 

with a = -b + 1. Hence a = 1 and b = O. Therefore ¢ is the ide~tity. 
Hence ¢ is an orthogonal transformati(~n that fixes en +1· Therefore ¢ is a 
positive Lorentz transformation. Thus ¢ leaves the interior of_the light cone 
en invariant if and only if some nonzero scalar multiple of ¢ is a positive 
Lorentz transformation. 

Now every isometry of Hn extends to a unique positive Lorentz transfor­
mation of jRn,l, and every positive Lorentz transformation of jRn,l restricts 
to an isometry of H n by Theorem 3.2.3. Moreover, the isometries of H n 

correspond via the isometry fL- 1 : H n ---+ Dn, defined by 

fL- 1(X1, ... ,xn+d = (XdXn+1' ... ,xn/xn+d, 

to the isometries of Dn. Therefore, every isometry of D n extends to a 
unique projective transformation of jRn, and every projective transforma­
tion of jRn that leaves Dn invariant restricts to an isometry of Dn. 0 

Theorem 6.1.3. A function ¢ : D n ---+ Dn fixmg the or2gin 2S an 2sometry 
of D n if and only if it is the restrictwn of an orthogonal transformation of 
jRn. 

Proof: If ¢ is the restriction of an orthogonal transformation of jRn, then ¢ 
is an isometry of Dn by Theorem 6.1.1. Now assume that ¢ is an isometry. 
Then ¢ extends to a projective transformation ¢ of jRn and ¢ corresponds 
to a bijective linear transformation ¢ of jRn+l with respect to homogeneous 
coordinates that is unique up to multiplication by a nonzero scalar. The 
unit vector en+! in jRn+l is a set of homogeneous coordinates for the origin 
in Dn. Hence ¢ leaves the (n+ l)st axis invariant. Thus, by multiplying ¢ 
by a nonzero scalar, we may assume that ¢ fixes the vector en+!. Now by 
the same argument as in the proof of Theorem 6.1.2, we deduce that ¢ is 
an orthogonal transformation of jRn+l. Now since ¢ restricts to ¢ on Dn, 
we have that ¢ is the restriction of an orthogonal transformation of jRn. 0 

A subset P of Dn is said to be a hyperbolic m-plane of Dn if and only if 
fL(P) is a hyperbolic m-plane of Hn. 

Theorem 6.1.4. A subset P of D n is a hyperbohc m-plane of D n 2f and 
only 2f P 2S the nonempty intersection of Dn w2th an m-plane of jRn . 
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Proof: Let Q be a hyperbolic m-plane of Hn. Then Q is the intersection 
of H n with an (m + I)-dimensional time-like vector subspace V of !R.n+l . 
Observe that J-L- l is the composite of the radial projection of Hn onto the 
hyperplane P(en+!, 1) followed by the translation by -en+!' Clearly, radial 
projection maps Q onto the intersection of the m-plane VnP(en+l, 1) with 
the interior of the light-cone en of !R.n,l. Thus J-L- l (Q) is the nonempty 
intersection of Dn with an m-plane of !R.n. Clearly, we can reverse the 
argument and show that any nonempty intersection of Dn with an m-plane 
of!R.n is the image under J-L- l of a hyperbolic m-plane of Hn. D 

A hyperbolic line of Dn is defined to be a hyperbolic I-plane of Dn. 

Corollary 1. The hyperbolic lines of Dn are the open chords of Dn. 

Remark: The fact that the hyperbolic m-planes of Dn conform with 
Euclidean m-planes makes the projective model very useful for convexity 
arguments. However, one must keep in mind that the hyperbolic angles of 
Dn do not necessarily conform with the Euclidean angles; in other words, 
Dn is not a conformal model of hyperbolic n-space. 

Theorem 6.1.5. The element of hyperbolic arc length of the pr-ojectwe disk 
model Dn is 

[(1-lxI2)ldxI2 + (x· dx)2l~ 
1-lx12 

Proof: Let y = J-L(x). From the results of §3.3, the element of hyperbolic 
arc length of H n is 

IldY11 = (dYi + ... + dy; - dy;+!)~. 
Now since 

for z = 1, ... ,n, 

we have 
dx, x,(x· dx) 

dy, = (1 _ IxI2)l/2 + (1 _ IxI2)3/2' 

Hence 

Thus 
n 1 ( 2 2(x, dx)2 IxI2(x· dX)2) 

1 - Ixl2 Idxl + 1 - Ixl2 + (1 - Ix12)2 

1 ( 2 (2-lxI2)(X.dX?) 
1 _ Ixl 2 Idxl + (1 - Ix1 2)2 . 
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Now since 
1 

we have that 

Thus 

D 

Theorem 6.1.6. The element of hyperbol2c volume of the projective d2Sk 
model Dn is 

dXl ... dX n 

(1 - Ix1 2 ) nt' . 

Proof: By Theorem 3.4.1, the element of hyperbolic volume of Hn, with 
respect to the Euclidean coordinates Yl, ... , Yn, is given by 

dYl··· dYn 

[l+(Yi+···+Y~)l~· 
To find the element of hyperbolic volume of Dn, we change coordinates via 
the map Ji : D n ----; ]Rn defined by 

x 
Ji(X) = (1 -lxI2)~· 

As fJ, is a radial map, it is best to switch to spherical coordinates and 
decompose Ji into the composite 

(Xl, ... , Xn) 1-+ (p, el , ... , en-d 

1-+ ( P " el , ... , en-I) (1 - p2)'i 

1-+ (Yl, ... ,Yn). 
Now as 

the Jacobian of Ji is 

pn1_l (1_lp2)~ C1 !p2)~) n-l 

Therefore 
1 

dXl··· dXn 

(1 - Ix12) nt' . 

1 

dXl··· dXn , 
( 1 ~)'i + l-lx l2 

D 
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Exercise 6.1 

1. Show that the hyperbolic angle between any two geodesic lines of D n inter­
secting at the origin conforms with the Euclidean angle between the lines. 
In other words, D n is conformal at the origin. 

2. Let P be a hyperplane of Dn. Prove that all the tangent lines of sn-l at 
the poin!:, of P n sn-l intersect in a unique point of classical real projective 
n-space ]Rn called the pole of P. See Figure 1.2.2. 

3. Prove that a line L of D n is orthogonal to a hyperplane P of D n if and only 
if the projective line extending L passes through the pole of P. 

4. Prove that the correspondence between a hyperplane of D n and its pole gives 
a one-to-one correspondence between the set of hyperplanes of D n and the 
points of jRn _ Dn. 

5. Let x be a point of Dn. Define an inner product ( 

if i = J, 
ifz=!=J. 

)x on]Rn by 

Let A, JL : ]R -> Dn be geodesic lines such that A(O) = x = JL(O), and let 
U = A' (0) and v = JL' (0). Show that the hyperbolic angle () between A and JL 
is given by the formula 

cos () = _---'-( u...:,_v..!..).::.x_~ 
1 1 . 

(u, u)i (v, v)i 

§6.2. Convex Sets 

Throughout this section, X = sn, En, or Hn with n > O. A pair of points 
x, y of X is said to be proper if and only if x, yare distinct and x, yare not 
antipodal points of X = sn. If x, yare a proper pair of points of X, then 
there is a unique geodesic segment in X joining x to y. We shall denote 
this segment by [x, y]. 

Definition: A subset C of X is convex if and only if for each pair of 
proper points x, y of C, the geodesic segment [x, y] is contained in C. 

In order to have uniformity in terminology, we shall define an m-plane 
of sn to be a great m-sphere of sn. 

Example: Every m-plane of X is convex. In particular, every pair of 
antipodal points of sn is convex! 

Remark: It is obvious from the definition of convexity in X that an 
arbitrary intersection of convex subsets of X is convex. 
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Let C be a nonempty convex subset of X. 

(1) The dimension of C is defined to be the least integer m such that C 
is contained in an m-plane of X. 

(2) If dimC = m, then clearly C is contained in a unique m-plane of X, 
which is denoted by (C). 

(3) The znterwrof C is the topological interior of C in (C) and is denoted 
by Co. 

( 4) The boundary of C is the topological boundary of C in (C) and is 
denoted by ac. 

(5) The closure of C is the topological closure of C in X and is denoted 
by C. Note that C is also the topological closure of C in (C), since 
(C) is closed in X. Therefore C is the disjoint union of Co and ac. 

If C is the empty set, then the dimension of C is undefined, and all the 
sets (C), Co, ac, and C are empty by definition. 

Lemma 1. Let x, y be a proper pa2r of poznts of X. Then there is an r > 0 
such that if u 2S zn B(x, r) and v is in B(y, r), then u, v 2S a proper pair. 

Proof: This is clear if X = En or Hn. Assume that X = sn. Observe 
that the sets {±x} and {±y} are disjoint, since x, y is a proper pair of 
points. Let r be half the distance from {±x} to {±y}. Then B (x, r), 
B(y,r), and B(-x,r) are mutually disjoint. As -B(x,r) = B(-x,r), no 
point of B(x,r) can be antipodal to a point of B(y,r). 0 

Theorem 6.2.1. If C 2S a convex subset of X, then so is C. 

Proof: Let x, y be a proper pair of points in C. By Lemma 1, there are 
proper pairs of points u" v2 , for i = 1,2, ... , in C such that U 2 ---7 x and 
V 2 ---7 y. Define a curve 

from x to y by 

Likewise, define a curve 

'"Y : [0, 1] ---7 X 

1 
(1- t)x + ty 

(l~t)x+ty 

l(l~t)x+tyl 

(l~t)x+ty 

lll(l~t)x+tyill 

if X = En, 

ifx=sn, 

if X = Hn. 

from U 2 to V 2 for each i. Then clearly '"Y2(t) ---7 '"Y(t) for each t. Therefore 
'"Y(t) is in C for each t. 0 



200 6. Geometry of Discrete Groups 

Given a proper pair of points x, y of X, let [x, y) denote the segment 
[x, y] minus its endpoint y. 

Theorem 6.2.2. Let C be a convex subset of X and let x, y be a proper 
pair of points zn C. If x is zn Co, then [x, y) is contazned in Co. 

Proof: Without loss of generality, we may assume that (C) = X. We 
first consider the case X = En. As x is in Co, there is an r > 0 such that 
B (x, r) is contained in C. Let t be in the open interval (0, 1) and let 

z = (1 - t)x + ty. 

We need to show that z is in Co. Assume first that y is in C. Observe that 
z is in the set 

(1 - t)B(x, r) + ty = B(z, (1 - t)r). 

As B(x, r) and yare both contained in C, we have that B(z, (1 - t)r) is 
contained in C, since C is convex. Thus z is in Co. See Figure 6.2.l. 

Assume now that y is in ac. As y is in ac, the open ball B(y, rl(l-t)r) 
contains a point v of C. Now since 

B(y, rl(l- t)r) = rl(z - (1- t)B(x, r)), 

there is a point u of B(x, r) such that 

v = rl(z - (1 - t)u). 

Then z = (1 - t)u + tv. Let w = (1 - t)x + tv. Then z is in the set 

(1 - t)B(x, r) + tv = B(w, (1- t)r). 

As B(x, r) and v are contained in C, we have that B( w, (l-t)r) is contained 
in C. Therefore z is in Co. Thus (x, y) is contained in Co. 

Next, assume that X = Hn. We now pass to the projective disk model 
D n and regard C as a convex subset of Dn. Then C is also a convex subset 
of En. As Dn is open in En, we have that Co in Dn is the same as Co in 
En. Therefore [x, y) is contained in Co by the Euclidean case. 

x y 

Figure 6.2.1. B(z, (1 - t)r) = (1 - t)B(x, r) + ty 
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Finally, assume that X = sn. Let z be the midpoint of the geodesic 
segment [x, yj. Then B(z, 7f /2) is an open hemisphere of sn containing 
[x,yj. As x is in Co, we have that Co n B(z,7f/2) is a nonempty open 
subset of sn. Consequently 

(CnB(z,7f/2)) =sn. 
By replacing C with C n B(z, 7f /2), we may assume, without loss of gener­
ality, that C is contained in B(z, 7f /2). We may also assume that z = en+l' 

Now by gnomonic projection, we can view C as a convex subset of En. 
Then [x, y) is contained in Co by the Euclidean case. D 

Theorem 6.2.3. If C is a nonempty convex subset of X, then so zs Co. 

Proof: That Co is convex follows immediately from Theorem 6.2.2. It 
remains to show that Co is nonempty. Without loss of generality, we may 
assume that (C) = X. We first consider the case X = En. Then there exist 
n + 1 vectors vo, ... , Vn in C such that VI - Vo, ... , Vn - Vo are linearly inde­
pendent. As C is convex, it contains every vector of the form x = I:~=o t,vt 

with tt ~ 0 and I:~=o tt = 1. By applying an affine transformation of En, 
we may assume that Vo = 0 and v, = et for i > O. 

Let a = (n~l""'n~l) in En. We now show that B(a'n(n1+l)) IS 

contained in C. Suppose that 

1 
Ix - al < ( ). nn+l 

Then we have 
1 1 1 

n(n + 1) < x ---
t n+l < n(n + 1) 

and so 
1 

(1- ~) 1 
(1 +~) . (n + 1) < X t < 

(n + 1) 

Therefore 0 < X t < ~ for i = 1, ... , n. Hence I:~=l X t < 1. This implies 
that x is in C. Consequently B(a, n(n1+l)) is contained in C. Thus a is in 
Co and so Co is nonempty. 

Next, assume that X = Hn. We pass to the projective disk model Dn 
and regard C as a convex subset of Dn. Then Co is nonempty by the 
Euclidean case. Finally, assume that X = sn. Then C contains a basis 
VI, ... ,Vn+l of jRn+l, since (C) = sn. Let P be the hyperplane of jRn+l 

containing VI, ... ,Vn+l' Then P does not contain the origin of jRn+l. Let 
V be the n-dimensional vector subspace of jRn+l parallel to P, and let H 
be the open hemisphere of sn whose boundary is V n sn and that contains 
VI, ... , Vn+l. Then (C n H) = sn. By replacing C with C n H, we may 
assume that C c H. We may also assume that H is the upper hemisphere 
of sn. Now by gnomonic projection, we can view C as a convex subset of 
En. Then Co is nonempty by the Euclidean case. D 
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b 

a 

Figure 6.2.2. A right circular cylinder in E3 

Sides of a Convex Set 

Definition: A side of a convex subset C of X is a nonempty, maximal, 
convex subset of ac. 

Example: Let C be a right circular cylinder in E3 situated as in Figure 
6.2.2. Then the sides of C are the top and bottom of C and all the vertical 
line segments in ac joining the top to the bottom of C as [a, b] in Figure 
6.2.2. Notice that C has an uncountable number of sides. 

Theorem 6.2.4. If S zs a szde of a convex subset C of X, then 

Cn (S) = S. 

Proof: This is clear if dim S = 0, so assume that dim S > O. We first 
show that Co and (S) are disjoint. Suppose that x is in both Co and (S). 
Now So is nonempty by Theorem 6.2.3. As dim S > 0, we can choose y in 
So so that x and yare nonantipodal. As Co and ac are disjoint, x =I- y. 
Hence x, y is a proper pair of points. Now since y is in So, there is an r > 0 
such that 

B(y, r) n (S) c S. 

By Theorem 6.2.2, the half-open geodesic segment [x, y) is contained in Co. 

But observe that 
[x,y) n B(y,r) c (S) n B(y,r) eSc ac, 

which is a contradiction. Therefore Co and (S) are disjoint. 
Now as C = Co u ac, we have that C n (S) c ac. The set C is convex 

by Theorem 6.2.1. Hence C n (S) is a convex subset of ac containing S. 
Therefore C n (S) = S because of the maximality of S. 0 
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Theorem 6.2.5. Let P be an m-plane of X that contazns an (m - 1)­
dimenswnal stde S of a convex flUbset C of X. Then Co n P is contazned 
zn one of the components of P - (S); moreover, C n P is contained in one 
of the closed half-spaces of P bounded by (S). 

Proof: If COnP = 0, then CnP = S, since CnP is a convex subset of ac 
containing S. Hence, we may assume that Conp -I=- 0. Then Pc (C), since 
(S) C P and P contains a point of Co. Therefore Co n P is a nonempty, 
open, convex subset of P - (S). On the contrary, suppose that x and 
yare points of Co n P contained in different components of P - (S). As 
dim(COnP) > 0, we may assume that x and yare nonantipodal. Now since 
[x, y] is connected, it must contain a point of (S). But [x, y] is contained 
in Co by Theorem 6.2.3, and Co is disjoint from (S) by Theorem 6.2.4, 
which is a contradiction. Therefore Co n P is contained in a component of 
P - (S). 

Clearly, we have 
Co nP C cnp. 

Let y be in ac n P and choose x in Co n P so that x, yare nonantipodal. 
By Theorem 6.2.2, the set Co np contains [x, y). Therefore y is in Co n P. 
Thus Co n P = C n P. Consequently C n P is contained in one of the 
closed half-spaces of P bounded by (S) by the first part of the theorem. D 

Theorem 6.2.6. If C tS a convex subset of X, then 

(1) every nonempty convex subset of ac is contazned in a stde of C; 

(2) every stde of C is closed; 

(3) the sides of C meet only along thetr boundartes. 

Proof: (1) Let K be a nonempty convex subset of ac and let /C be the set 
of all convex subsets of ac containing K. Then /C is partially ordered by 
inclusion and nonempty, since /C contains K. Let C be a chain of /C. Then 
the union of the elements of C is obviously convex and an upper bound for 
C. Therefore /C has a maximal element by Zorn's lemma. 

(2) Let S be a side of C. Then S is convex by Theorem 6.2.1. Also S 
is contained in ac, since ac is closed. Therefore S = S because of the 
maximality of S. Thus S is closed. 

(3) Let Sand T be distinct sides of C. On the contrary, suppose that 
x is in both S and TO. As Sand T are distinct maximal convex subsets of 
ac, the side T is not contained in S. Hence, there is a point y of T not in 
S. By Theorem 6.2.4, we have that C n (S) = S, and so y is not in (S). 

Assume first that dim T = O. Then x and yare antipodal. As S is 
not contained in T, it contains a point z -I=- x. Let S(x, z) be the unique 
great circle of sn containing x and z. Then S(x, z) also contains y = -x. 
As S(x, z) is contained in (S), we find that y is also in (S), which is a 
contradiction. 
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Now assume that dimT > O. Then T - 8 is an open subset of T by 
(2). Therefore, we may assume that y is not antipodal to x. Let L be the 
unique geodesic of X passing through x and y, and let P be the plane of 
X of dimension 1 + dim 8 that contains (8) and L. As x is in TO, there is 
an r > 0 such that 

B(x, r) n (T) cT. 

Observe that B(x, r) n L is on both sides of (8) in P and 

B(x,r) n L C B(x,r) n (T) eTc ae. 

Therefore, there are points of e on both sides of (8) in P contrary to 
Theorem 6.2.5. It follows that 8 and TO are disjoint. Thus 8 and T meet 
only along their boundaries. 0 

Exercise 6.2 

1. Let C be a convex subset of X that is not a pair of antipodal points of sn. 
Prove that C is connected. 

2. Let C be a nonempty convex subset of sn. Prove that C is a great m-sphere 
of sn if and only if -C = C. 

3. Let C be a convex subset of X that is not a closed great semicircle of sn. 
Prove that C is geodesic ally convex if and only if C does not contain a pair 
of antipodal points. 

4. Let C be a nonempty convex subset of X. Show that 

(1) (Co) = e = e, 
(2) aco = ac = ae, 
(3) (COr = Co = (et, 
(4) (CO) = (C) = (e), 

(5) dim Co = dim C = dim e. 
5. Let C be a proper, closed, convex subset of X. Prove that C is the intersec­

tion of all the closed half-spaces of X containing C. 

6. Let C be a closed convex subset of sn. Prove that C is contained in an open 
hemisphere of sn if and only if C does not contain a pair of antipodal points. 

7. Let C be a subset of sn. Define K (C) to be the union of all the geodesic 
rays in E n +1 from the origin passing through a point of C. Prove that C is 
a convex subset of sn if and only if K(C) is a convex subset of En+l. 

8. Let C be a convex subset of sn. Prove that a subset S of BC is a side of C 
if and only if K(S) is a side of K(C). 

9. Let C be a bounded, n-dimensional, convex, proper subset of X. Prove that 
BC is homeomorphic to sn-l. 
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§6.3. Convex Polyhedra 

Throughout this section, X = sn, En, or H n with n > O. 

Definition: A convex polyhedron P in X is a nonempty, closed, convex 
subset of X such that the collection S of its sides is locally finite in X. 

Remark: Locally finite in sn is the same as finite, since sn is compact; 
and every locally finite collection of subsets of En or Hn is countable, since 
En and Hn are finitely compact metric spaces. 

Theorem 6.3.1. Every side of an m-dimenswnal convex polyhedron P in 
X has dimenswn m - 1. 

Proof: We may assume that m = n. Let S be a side of P. Then there 
is a point x in So by Theorem 6.2.3. Now as the collection of sides of Pis 
locally finite, there is an r > 0 such that B(x, r) meets only finitely many 
sides of P. By Theorem 6.2.6(3), the side S is the only side of P containing 
x. Hence, we may shrink B(x, r) to avoid all the other sides of P, since the 
sides of P are closed. Consequently, we may assume that 

B(x,r)nopcS. 

Moreover, we may assume that r < 7r/2. As x is in OP, the open ball 
B(x, r) contains a point y of po and a point z of X - P. Now y is not in 
(S) by Theorem 6.2.4. Let Q be the plane of X of dimension 1 + dim S 
that contains y and (S). Since the geodesic segment [y, z] is connected, it 
contains a point w of OP. As [y, z] c B(x, r), the point w is in S. See 
Figure 6.3.1. Hence z is in Q. Consequently Q contains the nonempty open 
set B(x,r) n (X - P). Therefore Q = X. Thus dimS = n -1. 0 

--~----------~~--~-S 
x 

P 

Figure 6.3.1. The four points w, x, y, z in the proof of Theorem 6.3.1 
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Theorem 6.3.2. Let P be an n-dimenswnal convex polyhedron 2n X that 
is not all of X. For each s2de S of P, let Hs be the closed half-space of X 
such that oHs = (S) and P C Hs. Then 

P = n{ Hs : S 2S a side of P}. 

Proof: Let K = n{Hs : S is a side of P}. Clearly, we have P C K. Let 
x be a point of X - P and let y be a point of po that is not antipodal to x. 
Then the segment [x, y] contains a point z of OP, since [x, y] is connected. 
Let S be a side of P that contains z. Then x and yare on opposite sides 
of the hyperplane (S). Hence y is not in Hs. Therefore X - Pc X - K 
and so K C P. Thus P = K. 0 

Theorem 6.3.3. If x is a point m the boundary of a side S of a convex 
polyhedron P m X, then x 2S in the boundary of another side of P. 

Proof: We may assume that (P) = X. On the contrary, suppose that x 
is not contained in any other side of P. Since the collection of sides of P is 
locally finite, there is an r > 0 such that B(x, r) meets only finitely many 
sides of P. As S is the only side of P containing x, we can shrink B (x, r) 
to avoid all the other sides of P, since the sides of P are closed. Therefore, 
we may assume that B(x,r) n 8P c S. Moreover, we may assume that 
r < 7f/2. As x is in 8P, the ball B(x,r) contains a point y of po. As x is 
in 8S, the ball B(x,r) contains a point z of (S) - S. Now z is in X - P, 
since P n (S) = S by Theorem 6.2.4. Consequently, the geodesic segment 
[y, z] contains a point w of 8P. See Figure 6.3.2. 

As B(x, r) n 8P c S, the point w is in S. As z, ware in (S), we deduce 
that y is in (S), which is a contradiction, since P n (S) = S. It follows 
that x is contained in some other side T of P; moreover, x must be in the 
boundary of T by Theorem 6.2.6(3). 0 

S 

Figure 6.3.2. The four points w, x, y, z in the proof of Theorem 6.3.3 
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Theorem 6.3.4. Let 5 and T be dzstinct sides of a convex subset G of X, 
and let x, y be a proper pair of pomts of G with x m 50 and y in TO. Then 
the open geodesic segment (x, y) zs contained in Co. 

Proof: Assume first that [x, y] is contained in 8G. Then [x, y] is contained 
in a side R of G by Theorem 6.2.6(1). As R meets 50 at x, we have that 
R = 5 by Theorem 6.2.6(3). But R also meets TO at y, and so R = T, which 
is a contradiction. Therefore (x, y) contains a point z of GO. Furthermore, 
(x, z] and [z, y) are contained in Co by Theorem 6.2.2. Thus (x, y) is 
contained in Co. 0 

Theorem 6.3.5. Every side of a convex polyhedron P in X is a convex 

polyhedron. 

Proof: Let 5 be a side of P. Then 5 is nonempty and convex by defi­
nition; moreover, 5 is closed by Theorem 6.2.6(2). Clearly 5 is a convex 
polyhedron if the dimension of 5 is either 0 or 1, so assume that dim 5 > 1. 

Let R be the collection of sides of 5. We need to show that R is locally 
finite in X. Let x be a point of X. As the collection S of sides of P is 
locally finite, there is an r > 0 such that B(x, r) meets only finitely many 
sides of P. We may assume that r < 1f /2. Let Ro be the collection of all 
the sides of 5 that meet B(x, r). Suppose that R is in Ro. Then B(x, r) 
contains a point y of RO, since B(x, r) is open. By Theorem 6.3.3, we can 
choose a side f(R) of P other than 5 containing y. 

We claim that the function f : Ro ----7 S is injective. On the contrary, let 
R1 and R2 be distinct sides of 5 in Ro such that f(R1) = f(R2). Now f(R.) 
contains a point y. of R~ n B(x,r) for i = 1,2. As r < 1f/2, we have that 
Y1 and Y2 are nonantipodal. By Theorem 6.3.4, the open geodesic segment 
(Y1, Y2) is contained in 5°. But [Y1, Y2] is contained in f(R.) because of the 
convexity of f(R,), which is a contradiction. Therefore f is injective. 

As B(x, r) meets only finitely many sides of P, the image of f is finite. 
Therefore Ro is finite. This shows that R is locally finite. Thus 5 is a 
convex polyhedron. 0 

Definition: A ridge of a convex polyhedron P is a side of a side of P. 

Theorem 6.3.6. If R is a ridge of a convex polyhedron P m X, then 

(1) R O meets exactly two szdes 51 and 52 of P; 

(2) R zs a side of both 51 and 52; 

(3) R = 51 n 52. 

Proof: We may assume that (P) = X. Let R be a side of a side 51 of 
P. Choose a point x in RO and an r > 0 such that B(x, r) n (R) cR. By 
Theorem 6.3.3, there is another side 52 of P containing x in its boundary. 
By Theorem 6.3.1, both (51) and (52) are hyperplanes of X. Now by 
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Theorem 6.2.5, the convex set P is contained in one of the closed half­
spaces of X bounded by (82 ). Hence, every diameter of B(x, r) in R must 
lie in (82 ), Therefore B(x, r) nRc (82 ), Consequently, by Theorem 6.2.4, 
we have B(x,r) nRc 8 2 . Furthermore, by Theorem 6.2.6(3), we have 
B(x, r) nRc 882 . Now by Theorem 6.2.6(1), the convex set B(x, r) n R 
is contained in a side R2 of 8 2 . Let R1 = R. Then by Theorems 6.3.1 and 
6.3.5, both (R1) and (R2) have dimension n - 2. As B(x, r) n R1 c R2, we 
have that (R1) = (R2)' Now (81 ) n (82 ) contains (R). Therefore 

dim( (81) n (82)) ;::: n - 2. 

If the last equality were strict, then we would have (81 ) = (82 ), which is 
not the case by Theorem 6.2.4. Therefore (81 ) n (82 ) = (R). Hence, for 
each i, we have 

R" 8" n (R) 
p n (8") n (R) 

P n (81 ) n (82 ) = 81 n 82 . 

Thus R1 = R2. Therefore R is a side of 81 and 82 , and R = 81 n 82 . 

Next, assume that RO meets a third side 83 of P. Then the same argu­
ment as above shows that R is a side of 83 and R = 81 n 83 , Furthermore 
(83 ) is also a hyperplane of X. Now the set X - (81 ) U (82 ) has four 
components 0 1 , O2 , 0 3 , 0 4 , one of which, say 0 1 , contains po by Theorem 
6.2.5. Moreover P is contained in 0 1 . As 83 is in 0 1 , the hyperplane (83 ) 

divides 0 1 into two parts, that is, 0 - (83 ) has two components 0 11 and 
0 12 . See Figure 6.3.3. Now by Theorem 6.2.5, we have that po is contained 
in both 0 11 and 0 12 , which is a contradiction. Therefore RO meets exactly 
two sides of P. 0 

0 11 

Figure 6.3.3. The subdivision of E2 by three concurrent lines 
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Theorem 6.3.7. An m-dzmensional convex polyhedron P in En or Hn, 
with m > 0, is compact if and only if 

(1) the polyhedron P has at least m + 1 sides; 

(2) the polyhedron P has only jimtely many szdes; and 

(3) each side of P is compact. 

Proof: We may assume that m = n. The proof is by induction on n. 
The theorem is obviously true when n = 1, so assume that n > 1 and the 
theorem is true for n - 1. Let Y = En or Hn. 

Now suppose that P is compact. Then 8P is nonempty; otherwise P 
would be Y, which is not the case. Therefore P has at least one side S 
by Theorem 6.2.6(1). Now S is an (n - I)-dimensional convex polyhedron 
by Theorems 6.3.1 and 6.3.5; moreover, S is compact, since S is a closed 
subset of P. Therefore S has at least n sides R b ... , Rn by the induction 
hypothesis. By Theorem 6.3.6, each R, is the side of another side S, of P; 
moreover, the sides SI, ... ,Sn are distinct, since S n S, = R.. Therefore P 
has at least n + 1 sides. 

Now, for each x in P, there is a r(x) > 0 such that B(x, r(x)) meets 
only finitely many sides of P. As P is compact, there is a finite subset 
{Xl, ... ,xd of P such that P is covered by the union of B(x"r(x,)), for 
i = 1, ... , k. Therefore P has only finitely many sides; moreover, each side 
of P is compact, since each side of P is a closed subset of P. 

Conversely, suppose that P satisfies properties (1), (2), (3). By Theorem 
6.2.6(1), the boundary of P is the union of all the sides of P. Therefore 
8P is compact. Let x be a point in po. Then there is an r > 0 such that 
B(x, r) contains 8P, since 8P is bounded. Let y be a point on 8P and let 
z be the endpoint of the radius of B(x, r) passing through y. Then z is not 
in P because of Theorem 6.2.3. Therefore, the set S(x, r) - Pis nonempty. 
As the sphere S (x, r) is connected for n > 1, the set S (x, r) n po is empty. 
Hence S(x,r) is contained in Y -P. As P is connected, P c B(x,r). Thus 
P is bounded and so is compact. This completes the induction. 0 

Theorem 6.3.8. Let P be an m-dimensional convex polyhedron in sn, 
wzth m > O. Then the following are equwalent: 

(1) P zs contained in an open hemisphere of sn; 

(2) P has at least m + 1 szdes and each side S of P zs contained in an 
open hemisphere of (S); 

(3) P has a side S that zs contained m an open hemisphere of (S). 

Proof: Suppose that P is contained in an open hemisphere H of sn. We 
may assume that H is the upper hemisphere of sn. Then by gnomonic 
projection, we can view P as a compact convex polyhedron of En. Then 
P has at least m + 1 sides by Theorem 6.3.7. If S is a side of P, then S is 
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contained in the open hemisphere H n (S). Thus (1) implies (2). Clearly 
(2) implies (3). 

Suppose that P has a side S that is contained in an open hemisphere of 
(S). On the contrary, assume that P is not contained in an open hemisphere 
of sn. We may assume that m = n, (S) = sn-l, and P is contained in the 
closed southern hemisphere S~ of sn. Then dist(en , P) = 7r/2. Let y be 
a point of sn. Then dist(y, P) ::; 7r /2; otherwise P would be contained in 
the open hemisphere opposite y. Hence, there is a point x of P such that 
8(x,y) ::; 7r/2. Now assume that y i- ±en . Then x is in the n-dimensional 
lune S~ n C(y,7r/2). Consequently, there is a sequence of points {y,} of 
[en, y 1 converging to en and a sequence of points {x,} of P such that x, is 
in S~ n C(y" 7r /2) for each i. As P is compact, the sequence {x,} has a 
limit point Xo in P n sn-l = S that is contained in the closed hemisphere 
of sn-l whose center is the intersection of the great circle through en and 
y with sn-l. Thus S has the property that every closed hemisphere of (S) 
contains a point of S, which is a contradiction. Thus (3) implies (1). D 

Faces of a Convex Polyhedron 

Let P be an m-dimensional convex polyhedron in X. We now define a 
k-face of P for each k = 0,1, ... ,m inductively as follows: The only m-face 
of Pis P itself. Suppose that all the (k + I)-faces of P have been defined 
and each is a (k + I)-dimensional convex polyhedron in X. Then a k-face 
of P is a side of a (k + I)-face of P. By Theorems 6.3.1 and 6.3.5, a k-face 
of P is a k-dimensional convex polyhedron in X. A proper face of P is a 
k-face of P with k < m. Note that a proper face of P is just a side of a 
side ... of a side of P. Therefore, a face E of a face F of P is a face of P. 
In other words, the face relation is transitive. 

Theorem 6.3.9. If C is a convex subset of a convex polyhedron P in X 
such that Co meets a face E of P, then C c E. 

Proof: Let m = dimP and k = dimE. The proof is by induction on 
m - k. This is certainly true if k = m, so assume that k < m and the 
theorem is true for all (k + I)-faces of P. Now E is a side of a (k + I)-face 
F of P. By the induction hypothesis C C F. Let x be a point of Co n E. 
Choose r > 0 so that 

B(x, r) n (C) c C. 

By Theorem 6.2.5, the convex set F is contained in one of the closed half­
spaces of (F) bounded by (E). Hence, every diameter of B(x, r) in C must 
lie in (E). Therefore 

B(x, r) n (C) c (E). 

Hence (C) c (E). Therefore 

C c Fn (E) = E. D 
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Theorem 6.3.10. The interwrs of all the faces of a convex polyhedron P 
in X form a partition of P. 

Proof: Let m = dim P. We first prove that P is the union of the interiors 
of all its faces by induction on m. This is certainly true if m = 0, so assume 
that m > 0 and any (m - I)-dimensional convex polyhedron in X is the 
union of the interiors of all its faces. Then each side of P is the union of 
the interiors of all its faces. As P is the union of oP and po, we have that 
P is the union of the interiors of all its faces. 

Now suppose that E and F are faces such that EO meets FO. Then 
E c F and FeE by Theorem 6.3.9. Hence E = F. Thus, the interiors 
of all the faces of P form a partition of P. 0 

Theorem 6.3.11. If E and F are faces of a convex polyhedron P zn X 
such that E c F, then E zs a face of F. 

Proof: Let x be a point of EO. Then there is a face G of F such that x 
is in GO by Theorem 6.3.10. Now E c G and GeE by Theorem 6.3.9. 
Therefore E = G. Thus E is a face of F. 0 

Theorem 6.3.12. The family of all the faces of a convex polyhedron Pin 
X is locally fimte. 

Proof: Let m = dim P. The proof is by induction on m. This is certainly 
true if m = 0, so assume that m > 0 and the theorem is true for all (m-I)­
dimensional polyhedra in X. Let x be a point of X. Then there is an ro > 0 
such that B(x, ro) meets only finitely many sides of P, say Sl, ... , Sk. By 
the induction hypothesis, the family of all faces of St is locally finite in X 
for each i = 1, ... , k. Hence, there is an rz > 0 such that B(x, rz ) meets 
only finitely many faces of Sz for each i = 1, ... ,k. Let 

r = min{ro, ... , rk}. 

Then B(x, r) meets only finitely many faces of P. o 

Theorem 6.3.13. If E zs a k-face of an m-dzmenswnal convex polyhedron 
P in X, then 

(1) E is a side of every (k + I)-face of P that meets EO; 

(2) E zs a side of only finitely many (k + I)-faces of P; 

(3) E zs a side of at least m - k (k + I)-faces of P; 

(4) E is the intersection of any two (k + I)-faces of P that meet EO. 

Proof: (1) Suppose that F is a (k + I)-face of P that meets EO. Then 
E c F by Theorem 6.3.9, moreover, E is a side of F by Theorem 6.3.11. 

(2) Let x be a point of EO. Then there is an r > 0 such that B(x,r) 
meets only finitely many (k + I)-faces of P by Theorem 6.3.12. Hence E 
is a side of only finitely many (k + I)-faces of P. 
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(3) We now prove that E is a side of at least m - k (k + I)-faces of P 
by induction on m - k. This is certainly true if k = m, so assume that 
k < m and the theorem is true for all (k + I)-faces of P. Now E is a 
side of a (k + I)-face F of P. By the induction hypothesis, F is a side 
of m - k - 1 (k + 2)-faces of P, say G l , ... , Gm - k - l . By Theorem 6.3.6, 
we have that E is a side of exactly two sides F and F, of G, for each 
i = 1, ... ,m - k -1. Suppose that i =1= j. As Fe G, n GJ , we have 

dim(G, n GJ ) = k + 1. 

Therefore, we have 
FO c (G, n GJ)o. 

By Theorem 6.3.9, we have that G, n GJ c F. Thus F = G, n GJ • Con­
sequently F, =1= FJ • Thus, the m - k (k + I)-faces F, F l ,···, Fm - k - l are 
distinct. 

(4) Let Fl and F2 be distinct (k + I)-faces of P that meet EO. Then 
E C Fl n F2 by (1). Hence 

Therefore, we have 

By Theorem 6.3.9, we have that Fl n F2 c E. Thus E = Fl n F2. 0 

Theorem 6.3.14. If E is a k-face of an m-dimensional convex polyhedron 
P in X, then 

(1) E is a face of every side of P that meets EO; 

(2) E is a face of only finitely many sides of P; 

(3) E is a face of at least m - k sides of P; 

(4) E is the intersection of all the sides of P that meet EO or E = P. 

Proof: (1) Let 8 be a side of P that meets EO. Then E C 8 by Theorem 
6.3.9; moreover E is a face of 8 by Theorem 6.3.11. (2) Let x be a point 
of EO. Then there is an r > 0 such that B(x, r) meets only finitely many 
sides of P. Hence E is a face of only finitely many sides of P. 

We now prove (3) and (4) by induction on m - k. This is certainly true 
if k = m - 1 or m, so assume that k < m - 1 and the theorem is true for all 
(k + I)-faces of P. By Theorem 6.3.13, we have that E is a side of finitely 
many (k + I)-faces of P, say F l , ... , Fe with C ~ m - k. By the induction 
hypothesis and (2), we have that F, is a face of only finitely many sides of 
P, say 8,1,"" 8d" and C, ~ m - k - 1 for each i and 
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Now the sets {S1J} and {S2J} are not the same, since F1 and F2 are distinct 
(k + I)-faces of P. Hence, one of the sides in one of the sets is not in the 
other set. Therefore E is a face of at least m - k sides of P. Clearly 

{S'J : j = 1, ... , f, and i = 1, ... , f} 

is the set of all the sides of P that meet EO. By Theorem 6.3.13, we have 
that F, n FJ = E for all i,j such that i =I j. Hence 

I'. I'. £, 
E = n E, = n n S'J' ,=1 ,=1J=1 

Thus E is the intersection of all the sides of P that meet EO. o 

Theorem 6.3.15. Every nonempty intersection of szdes of a convex poly­
hedron P in X is a face of P. 

Proof: Let C be a nonempty intersection of sides of P. Then Co contains 
a point x by Theorem 6.2.3. The point x is in oP, since C coP. By 
Theorem 6.3.10, there is a face E of P such that x is in EO. Then C C E 
by Theorem 6.3.9. Now E is the intersection of all the sides of P that meet 
EO by Theorem 6.3.14. Therefore E C C. Thus E = C. 0 

Theorem 6.3.16. Let P be an m-dimenszonal convex polyhedron zn sn. 
Then either 

(1) the polyhedron P is a great m-sphere of sn; or 

(2) the intersectzon of all the sides of P zs a great k-sphere of sn; or 

(3) the polyhedron P is contained in an open hemisphere of sn. 

Proof: The proof is by induction on m. The theorem is certainly true 
for m = 0, so assume that m > 0 and the theorem is true for all (m - 1)­
dimensional convex polyhedra in sn. If P has no sides, then (1) holds. 
Hence, we may assume that P has a side S. 

Now assume that S is a great (m - I)-sphere of sn. Then P is a closed 
hemisphere of (P), since a point of pO can be joined to any point of S by 
a geodesic arc. Therefore (2) holds. Thus, we may assume that no side of 
P is a great (m - I)-sphere of sn. 

If S is contained in an open hemisphere of (S), then (3) holds by Theorem 
6.3.8. Hence, we may assume that no side of P is contained in an open 
hemisphere. By the induction hypothesis, the intersection of all the sides 
of a side of P is a great k-sphere of sn. 

We may assume that m = n, (S) = sn-1, and P C Sf.. Let To be the 
intersection of all the sides of a side T of P. Then To is a great k-sphere 
of sn. As To C Sf., we must have 

To C P n sn-1 = S. 

Now To is a face of T by Theorem 6.3.15, and so To is a face of P. Therefore 
To is a face of S by Theorem 6.3.11. Now To is the intersection of all the 
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sides of S that meet To by Theorem 6.3.14. Let So be the intersection of 
all the sides of S. Then So C To cT. Let Po be the intersection of all the 
sides of P. Then So C Po. Now So is a face of S by Theorem 6.3.15, and so 
So is a face of P. Therefore So is the intersection of all the sides of P that 
meet So by Theorem 6.3.14. Hence Po C So. Thus Po = So. Hence Po is a 
great k-sphere of sn. Thus (2) holds. This completes the induction. 0 

Vertices of a Convex Polyhedron 

A O-face of a convex polyhedron P in X consists either of a single point or 
a pair of antipodal points. 

Definition: A vertex of a polyhedron P is a point in a O-face of P. 

Definition: The convex hull of a subset S of X is the intersection of all 
the convex subsets of X containing S. 

Theorem 6.3.17. A convex polyhedron P in En or H n is compact if and 
only if P has only finitely many vertwes and P is the convex hull of zts 
vertzces. 

Proof: Assume first that P is in En. The proof is by induction of the 
dimension m of P. The theorem is certainly true when m = 0, so assume 
that m > 0 and the theorem is true in dimension m - 1. Suppose that P is 
compact. Then by Theorem 6.3.7, the polyhedron P has only finitely many 
sides and each side is compact. By the induction hypothesis, each side of 
P has only finitely many vertices and is the convex hull of its vertices. 
Therefore P has only finitely many vertices. Let V be the set of vertices of 
P. Then the convex hull C(V) is contained in P, since P is convex. Let x 
be a point of P. We claim that x is in C(V). If x is in a side S of P, then 
x is a convex combination of the vertices of S by the induction hypothesis. 
Hence, we may assume that x is in po. Let Vo be a vertex of P. Then the 
ray from Vo passing through x meets {) P in a point yother than vo, since P 
is bounded. By Theorem 6.2.2, the point x lies between Vo and y. Hence, 
there is a real number t between 0 and 1 such that 

x = (1 - t)vo + ty. 

Let S be a side of P containing y. By the induction hypothesis, there are 
vertices VI, ... ,Vk of S and positive real numbers tl, ... ,tk such that 

k 

Y = L t•v• and 
.=1 

Observe that 
k 

X = (1 - t)vo + t L t.v • 
• =1 
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is a convex combination of VO, ... , Vk. Hence x is in C(V). Therefore 

P = C(V). 
Conversely, suppose that P has only finitely many vertices and P is the 

convex hull of its vertices. Let r > 0 be such that the ball B(O, r) contains 
the set V of vertices of P. Then B (0, r) contains the convex hull C (V), 
since B(O, r) is convex. Hence P is bounded and so P is compact. This 
completes the induction. 

Now assume that P is Hn. We pass to the projective disk model Dn. If 
P is compact, then P is a Euclidean polyhedron, and so P has only finitely 
many vertices and P is the convex hull of its vertices by the Euclidean case. 
Conversely, suppose that P has only finitely many vertices and P is the 
convex hull of its vertices. Then P is compact by the same argument as in 
the Euclidean case. 0 

Theorem 6.3.18. An m-dtmensional convex polyhedron P m sn, wtth 
m > 0, tS contained in an open hemtsphere of sn if and only if P is the 
convex hull of its vertices. 

Proof: Suppose that P is contained in an open hemisphere of sn. We 
may assume that P is contained in the open northern hemisphere of sn. 
Now by gnomonic projection, we can view P as a compact polyhedron in 
En. Then P is the convex hull of its vertices by Theorem 6.3.17. 

Conversely, suppose that P is the convex hull of its vertices. On the 
contrary, suppose that P is not contained in an open hemisphere of sn. 
Then the intersection Po of all the sides of P is a great k-sphere of sn by 
Theorem 6.3.16. Now Po is contained in every O-face of P, since a O-face of 
P is the intersection of all the sides of P containing it by Theorem 6.3.14. 
Therefore dim Po = 0, and so Po is a pair of antipodal points. Hence P 
has only two vertices. Therefore, the convex hull of the vertices of P is Po, 
which is a contradiction, since m > O. 0 

Links of a Convex Polyhedron 

Let x be a point of a convex polyhedron P in X. Then there is a real 
number r such that 0 < r < 7r /2 and r is less than the distance from x to 
any side of P not containing x, since the set of sides of P is locally finite. 
The set 

L(x) = P n S(x, r) 

is called a link of x in the polyhedron P. The spherical geometry of the 
link L(x) is uniquely determined by x up to a change of scale induced by 
radial projection from x. 

For simplicity, we have only considered spherical polyhedra in sn. By a 
simple change of scale, the theory of spherical polyhedra in sn generalizes 
to polyhedra in any sphere of X. 
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Theorem 6.3.19. Let x be a point of an m-dimensional convex polyhedron 
p in X, with m > 0, and let r be a real number such that 0 < r < 7[/2 and 
r is less than the distance from x to any side of P not conta2ning x. Then 
the link 

L(x) = P n S(x, r) 

ofx 2n P is an (m-1)-d2mensional convex polyhedron in the sphere S(x, r). 
Moreover, if S(x) is the set of s2des of P containing x, then 

{T n S(x, r) : T E S(x)} 

2S the set of sides of L(x). 

Proof: The proof is by induction on m. The theorem is obviously true 
for m = 1, so assume that m > 1 and the theorem is true for all (m - 1)­
dimensional convex polyhedra in X. We may assume that m = n. If x is 
in po, then L(x) = S(x, r), so assume that x is in 8P. Let S be the set of 
sides of P. For each T in S, let HT be the closed half-space of X bounded 
by the hyperplane (T) and containing P. Then we have 

P= n HT. 
TES 

Now as HT n S(x, r) = S(x, r) for each T not containing x, we have 

pnS(x,r) = n (HTnS(x,r)). 
TES(x) 

Now HT n S(x, r) is a closed hemisphere of S(x, r) for each T in S(x). 
Therefore L(x) is a closed convex subset of S(x,r). 

Let y be a point of po such that y is not antipodal to x. By shrinking r, 
if necessary, we may assume that d(x, y) ? r. Then the geodesic segment 
[x, y] intersects S(x, r) in a point z of po by Theorem 6.2.2. Therefore 
po nS(x, r) is a nonempty open subset of S(x, r) contained in L(x). Hence 
dimL(x) = n - l. 

Now as 
po n S(x,r) c L(xt, 

we have that 
8L(x) c 8P n S(x, r). 

Let T be a side of P containing x. By the induction hypothesis, Tn S (x, r) 
is an (n - 2 )-dimensional convex polyhedron in S (x, r). Now since P C H T, 

no point of T n S (x, r) has an open neighborhood in S (x, r) contained in 

L(x). Therefore 
Tn S(x, r) c 8L(x). 

Hence, we have 
8P n S(x, r) c 8L(x). 

Therefore, we have 
8L(x) = 8P n S(x, r). 
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The convex set Tn S(x, r) is contained in a side T of L(x) by Theorem 

6.2.6(1). Now as 

we have that 

8pnS(x,r)= U (TnS(x,r)), 
TES(x) 

8L(x) = U T. 
TES(x) 

Therefore {T : T E S(x)} is the set of sides of L(x) by Theorem 6.2.6(3). 
Hence L(x) has only finitely many sides. Thus L(x) is a convex polyhedron 

in S(x, 'r). 
Now by Theorem 6.2.6(3), we have 

TO c Tn S(x, r). 

Therefore T = Tn S(x, r) for each T in S(x). Thus 

{TnS(x,r) :TES(X)} 

is the set of sides of L( x). D 

Theorem 6.3.20. Let P be a convex polyhedron m Dn. Then zts closure 
P m En is a convex subset of En such that P n Dn = P and 

8(P) = 8P U (P n sn-l). 

Moreover, if S is a side of P, then its closure S in En zs a side of P, and 
if u is a poznt of 8(P) that is not in the Euclidean closure of a side of P, 
then {u} is a szde of P. 

Proof: We may assume that (P) = Dn. As P is a convex subset of En, 
we have that P is a convex subset of En by Theorem 6.2.1. As Dn is open 
in En and P is closed in Dn, we have 

PnDn = P, 

Clearly, we have that 

POc(Pt, and 8Pc8(P). 

P n sn-l C 8(P). 

Therefore, we deduce that pO = (P)O and 

8(P) = 8P U (P n sn-l). 

Let S be a side of P. Then S is contained in a side 8 of P. Now 8 n Dn 
is a convex subset of 8P containing S. Therefore 8 n Dn = S. Clearly, we 
have that 

8 n sn-l C 8(8). 

Therefore 8° c S, and so 8 = S by Theorem 6.2.2. 
Let u be a point of 8(P) that is not in the closure of a side of P. Let U 

be a side of 8(P) containing u. Then U is not the closure of a side of P. 
Hence UO is disjoint from 8P, and so UO C sn-l. Therefore U = {u}. D 
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Define K, : Dn -+ Bn by K, = (-1 fl. Then K, is an isometry from Dn to 
Bn. Observe that 

Hence, we have 

The inverse of K, is given by 

c 1 ( X + en +1 ) 

Illx + en+1111 
x 1 

Illx + en+llil (1 + Illx + en+IIII-1) 
x 

III x + en+1111 + 1· 

x 

2y 

Observe that K, extends to a homeomorphism 

which is the identity on sn-1. 

(6.3.1) 

(6.3.2) 

Definition: An ideal pomt of a convex polyhedron P in Bn is a point u 
of P n sn-l, where P is the closure of P in En. 

Theorem 6.3.21. Let u be an zdeal point of a convex polyhedron P m Bn. 
Then for each point x of P, there zs a geodeszc ray [x, u) m P starting at 
x and ending at u. 

Proof: Since the isometry K, : Dn -+ Bn extends to a homeomorphism 
If, : Dn -+ B n , we can pass to the projective disk model Dn of hyperbolic 
space. Let x be a point of P. Now P is a convex subset of En by Theorem 
6.3.20. Therefore, the line segment [x, u] is in P. Now since 

[x,u] n sn-1 = {u} and Pn Dn = P, 

we have that [x, u) C P. 0 

Definition: A side S of a convex polyhedron P in Bn is mcident with an 
ideal point u of P if and only if u is in the closure of S in En. 

Theorem 6.3.22. Let 00 be an ideal point of a convex polyhedron P in 
un. Then a szde S of P zs mcident with 00 if and only S zs vertical. 

Proof: Every hemispherical side of P is bounded in En. Therefore, if a 
side S of P is incident with 00, then S must be vertical. 
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Conversely, suppose that S is a vertical side of P. Let x be a point of S. 
By Theorem 6.3.21, there is a geodesic ray [x, 00) in P starting at x and 
ending at 00. Now since [x, 00) and (S) are vertical, we deduce that 

[x, 00) c (S) np = S. 

Therefore S is incident with 00. D 

Definition: A horopoint of a convex polyhedron P in En is an ideal point 
u of P for which there is a horosphere ~ of En based at u such that ~ 
meets only the sides of P incident with u. 

Note that if P is finite-sided, then every ideal point of P is a horopoint. 

Example: Let P be a convex polyhedron in un all of whose sides are 
hemispherical hyperplanes of un such that P is the closed region above 
them. Then 00 is an ideal point of P, and 00 is a horopoint of P if and 
only if the set of radii of the sides is bounded. 

Let u be a horopoint of a convex polyhedron P in En. Then there is 
a horosphere ~ of En based at u such that ~ meets only the sides of P 
incident with u. The set 

L(u)=pn~ 

is called a lmk of u in the polyhedron P. The Euclidean geometry of the 
link L( u) is uniquely determined by u up to a similarity induced by radial 
projection from u. 

Theorem 6.3.23. Let u be a horopmnt of an m-dzmensional convex poly­
hedron P m En, and let ~ be a horosphere of En based at u such that ~ 
meets only the sides of P mcident with u. Then the link 

L(u)=pn~ 

of u m P zs an (m - I)-dimensional convex polyhedron in the horosphere 
~. Moreover, if S(u) zs the set of sides of P incident wzth u, then 

{sn~: S E S(u)} 

is the set of szdes of L(u). 

Proof: We pass to the upper half-space model un of hyperbolic space. 
We may assume that u = 00. The proof is by induction on m. The theorem 
is obviously true for m = 1, so assume that m > 1 and the theorem is true 
for all (m -I)-dimensional convex polyhedra in un. We may assume that 
m = n. By Theorem 6.3.22, a side of P is incident with 00 if and only if it 
is vertical. If P has no vertical sides, then L(u) = ~, so assume that P has 
a vertical side. Let S be the set of sides of P. For each S in S, let Hs be 
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the closed half-space of un bounded by the hyperplane (8) and containing 
P. Then we have 

p = n Hs. 
SES 

Now as Hs n E = E for each hemispherical side 8 of P, we have 

pnE= n (HsnE). 
TES(u) 

Now Hs n E is a closed half-space of E for each 8 in S(u). Therefore L(u) 
is a closed convex subset of E. 

Let x be a point of po. By shrinking E, if necessary, we may assume 
that x is not inside of E. Then the geodesic ray [x, 00) intersects E in a 
point y of po by Theorem 6.2.2 applied to the Euclidean closure of P in 
the projective disk model. Therefore po n E is a nonempty open subset of 
E contained in L(u). Hence dimL(u) = n - l. 

Now as 

we have that 
oL(u) coP n E. 

Let 8 be a vertical side of P. By the induction hypothesis, 8 n E is an 
(n - 2)-dimensional convex polyhedron in E. Now since P C H s, no point 
of 8 n E has an open neighborhood in E contained in L(u). Therefore 

8nE C oL(u). 

Hence, we have 
oP nEe oL(u). 

Therefore, we have 
oL(u) = oP n E. 

The convex set 8nE is contained in a side 5 of L(u) by Theorem 6.2.6(1). 
Now as 

we have that 

oPnE= U (8nE), 
SES(u) 

oL(u) = u 5. 
SES(u) 

Therefore {5 : 8 E S(u)} is the set of sides of L(u) by Theorem 6.2.6(3). 
Now by Theorem 6.2.6(3), we have 

50 c 8n E. 

Therefore 5 = 8 n E for each 8 in S(u). Thus 

{8 n E : 8 E S(u)} 

is the set of sides of L(u). Moreover, the set of sides of L(u) is locally 
finite in E, since the set of sides of P is locally finite in un. Thus L( u) is 
a convex polyhedron in E. 0 
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~--...: .... 

Figure 6.3.4. The link of 00 in a polyhedron in U 3 

There is a nice way of representing the link of a horopoint u of a polyhe­
dron P in un. If we position P so that u = 00, then the vertical projection 

v: un ----+ E n- 1 

projects L(u) onto a similar polyhedron in En-l that does not depend on 
the choice of the horosphere ~ of un such that L(u) = P n~. See Figure 
6.3.4. 

Definition: An ideal vertex of a convex polyhedron P in Bn is a horopoint 
of P whose link is compact. 

For example, the polyhedron in Figure 6.3.4 has an ideal vertex at 00. 

Theorem 6.3.24. Let P be a convex polyhedron m Dn. Then ~ts closure 
P in En is a convex polyhedron m En ~f and only ~f every ~deal point of P 
tS an ideal vertex of P. 

Proof: Let m = dim P. We may assume that m > O. Suppose that P is 
a convex polyhedron in En. Let u be an ideal point of P. We claim that 
u is a vertex of P. On the contrary, suppose that u is not a vertex of P. 
Then u is in the interior of a k-face F of P for some k > 0 by Theorem 
6.3.10. Hence, there is an open Euclidean line segment in F containing u. 
But any such line segment cannot lie entirely in D n , since u is in sn-l. 
Thus, we have a contradiction, and so u must be a vertex of P. 
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If m = 1, the sides of P are the two endpoints of P. If m > 1, the sides 
of P are the closures of the sides of P by Theorem 6.3.20. As P is compact, 
P has only finitely many sides. Therefore P has only finitely many sides. 
Let u be an ideal point of P. Then u is a horopoint of P. Let ~ be a 
horosphere of Dn based at u such that ~ meets only the sides of P incident 
with u. We claim that P n ~ is compact. The proof is by induction on m. 
This is certainly true if m = 1, so assume that m > 1 and the claim is true 
for all (m - I)-dimensional convex polyhedra in Dn. Now the vertex u of 
P meets at least m sides of P by Theorem 6.3.14. Therefore P n ~ has at 
least m sides by Theorem 6.2.23. If S is a side of P incident with u, then 
S n ~ is compact by the induction hypothesis. Therefore P n ~ is compact 
by Theorem 6.3.7. Thus u is an ideal vertex of P. 

Conversely, suppose that every ideal point of P is an ideal vertex. We 
may assume that m > 1. Then every ideal point of P is in the closure of 
a side of P. Hence P is a closed convex subset of En whose sides are the 
closures of the sides of P by Theorem 6.3.20. We now show that the set of 
sides of P is locally finite in En. Let x be a point of En. We need to find 
an open neighborhood N of x in En that meets only finitely many sides of 
P. If x is in En - P, we may take N = En - P. If x is in Dn, then such 
an N exists, since the set of sides of P is locally finite in Dn. Therefore, 
we may assume that x is an ideal vertex of P. 

We pass to the upper half-space model un of hyperbolic space and posi­
tion P so that x = 00. Let ~ be a horizontal horosphere of un that meets 
only the the sides of P incident with 00. Then L( 00) = P n ~ is compact. 
By Theorem 6.3.22, the sides of P incident with 00 are the vertical sides of 
P. Let B be a ball in En centered at a point in E n- 1 such that L(oo) C B. 
Then B contains the closures of all the hemispherical sides of P, since all 
the hemispherical sides of P lie below L(oo). Therefore N = En - B is an 
open neighborhood of 00 in En that meets only the sides of P containing 
00. As L(oo) is compact, L(oo) has only finitely sides. Therefore P has 
only finitely many sides incident with 00 by Theorem 6.3.23. Hence N 
meets only finitely many sides of P. We pass back to the projective disk 
model D n of hyperbolic space. Then the set of sides of P is locally finite 
in En. Therefore P is a convex polyhedron in En. 0 

Definition: A generalized vertex of a convex polyhedron P in B n is either 
a vertex of P or an ideal vertex of P. 

Definition: The convex hull in D n of a subset S of D n is the intersection 
of the convex hull of S in En with Dn. 

Theorem 6.3.25. Let P be a convex polyhedron in Dn. Then zts closure P 
in En is a convex polyhedron zn En zJ and only zJ P has only finitely many 
generalized vertzces and P zs the convex hull of zts generalzzed vertices. 
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Proof: Let m = dimP. We may assume that m > O. Suppose that Pis 
a convex polyhedron in En. If m = 1, the sides of P are the two endpoints 
of P. If m > 1, the sides of P are the closures of the sides of P by Theorem 
6.3.20. We claim that the vertices of P are the generalized vertices of 
P. The proof is by induction on m. This is certainly true if m = 1, so 
assume that m > 1 and the claim is true for all (m - 1 )-dimensional convex 
polyhedra in Dn. Now the vertices of P are the vertices of the sides of 
P. Therefore, the vertices of P are the generalized vertices of the sides 
of P by the induction hypothesis. Let v be a vertex of P in sn-l. Then 
v is an ideal vertex of P by Theorem 6.3.24. Hence, every vertex of P is 
a generalized vertex of P. If v is an ideal vertex of P, then v is an ideal 
vertex of every side of P incident with v and therefore v is a vertex of P. 
Hence, every generalized vertex of P is a vertex of P. Thus, the vertices of 
P are the generalized vertices of P, which completes the induction. 

Let V be the set of vertices of P. As P is compact, V is finite and 
P = C(V) by Theorem 6.3.17. Hence P has only finitely many generalized 
vertices and P is the convex hull of its generalized vertices, since 

P = P n D n = C (V) n Dn. 

Conversely, suppose that P has only finitely many generalized vertices 
and P is the convex hull of its generalized vertices. Let V be the set of 
generalized vertices of P and let C(V) be the convex hull of V in En. Then 
we have 

P = C(V) nDn. 

As V c Dn and Dn is a convex subset of En, we have that C(V) c Dn. 
Clearly, we have 

C(V) n sn-l C V. 

Therefore, we have 

C(V) = P U V. 

Now C(V) is a closed subset of En containing P, since V is finite. There­
fore, we have 

P c C(V) = P U V c P. 

Hence, we have P = P U V. Therefore, every ideal point of P is an ideal 
vertex of P. Hence P is a convex polyhedron in En by Theorem 6.3.24. D 

Theorem 6.3.26. Let P be an m-dzmenswnal convex polyhedron in Dn! 
with m > 1. Then zts closure P m En zs a convex polyhedron in En if and 
only if P has only finitely many sides and P has finzte volume in (P). 

Proof: We may assume that m = n. Suppose that P is a convex poly­
hedron in En. By Theorem 6.3.20, the sides of P are the closures of the 
sides of P. As P is compact, P has only finitely many sides. Therefore P 
has only finitely many sides. 
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By the argument in the proof of Theorem 6.3.24, every ideal point of 
P is a vertex of P. As P is compact, P has only finitely many vertices. 
Therefore P has only finitely many ideal points. Now every ideal point of 
P is an ideal vertex of P by Theorem 6.3.24. Let VI, ... ,Vk be the ideal 
vertices of P. For each i, choose a horoball B, based at V, such that B, 
meets only the sides of P incident with V,. Then the set 

P - (BI U ... U Bk) 

is compact and therefore has finite volume. Hence, it suffices to show that 
P n B, has finite volume for each i = 1, ... , k. 

Let V be an ideal vertex of P and let B be the corresponding horoball. 
We now pass to the upper half-space model un. Without loss of generality, 
we may assume that V = 00. Then B is of the form 

{x E Un : Xn > s} 

for some s > O. Now all the sides of P incident with 00 are vertical. Let 
1/ : un --+ E n- I be the vertical projection. Then by Theorem 4.6.7, we 
have 

Vol(P n B) 

dXI ... dXn-1 __ n_ 100 {1 } dx 
8 v(pn8B) (Xn)n 

[ 1 1 ]00 
Vol(I/(P n 8B)) (n _ 1) xn - I 8 

1 1 
--Vol(I/(P n 8B))-1' n -1 sn-

Now the set P n 8B is compact, since V is an ideal vertex of P. Therefore 
Vol(P n B) is finite. Thus P has finite volume. 

Conversely, suppose that P has only finitely many sides and P has finite 
volume in Dn. Then every ideal point of P is a horopoint of P. The above 
volume computation shows that the link of every ideal point of P has finite 
volume and is therefore compact. See Exercise 6.3.5. Hence, every ideal 
point of P is an ideal vertex. Therefore P is a convex polyhedron in En 
by Theorem 6.3.24. 0 

Exercise 6.3 

1. Let P be a convex polyhedron in X. Prove that P has a countable number 
of sides; and if X = sn, then P has a finite number of sides. 

2. Prove that the intersection of a locally finite family of closed half-spaces of 
X is a convex polyhedron in X. 
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3. Find an example of a convex polyhedron in E3 such that the family of half­
spaces in Theorem 6.3.2 is not locally finite. 

4. Let P be a convex polyhedron in En or Hn. Prove that P is compact if and 
only if P does not contain a geodesic ray. 

5. Let P be an n-dimensional convex polyhedron in En. Prove that P is com­
pact if and only if the volume of P is finite. 

6. Let P be a subset of sn. Prove that P is a convex polyhedron in sn if and 
only if K(P) is a convex polyhedron in En+1. See Exercise 6.2.7. 

7. Let x be a point of an m-dimensional convex polyhedron P in X, with m > 0, 
let r be a real number such that 0 < r < 'If /2 and r is less than the distance 
from x to any side of P not containing x, and let L ( x) = P n S ( x, r). Prove 
that 

(1) the link L(x) is a great (m - I)-sphere of S(x, r) if and only if x is in 
po; 

(2) the intersection of all the sides of L(x) is a great (k-I)-sphere of S(x, r) 
if and only if x is in the interior of a k-face of P with 0 < k < m; 

(3) the link L (x) is contained in an open hemisphere of S (x, r) if and only 
if x is a vertex of P. 

8. Find an example of a convex polygon in D2 of finite area with an infinite 
number of sides. 

9. Let P be an n-dimensional convex polyhedron in En of finite volume. Prove 
that P is has finitely many sides if and only if every ideal point of P is a 
horopoint of P. 

§6.4. Polytopes 

Throughout this section, X = sn, En, or Hn with n > O. We now consider 
the classical polyhedra in X. 

Definition: A polytope in X is a convex polyhedron P in X such that 

(1) P has only finitely many vertices; 

(2) P is the convex hull of its vertices; 

(3) P is not a pair of antipodal points of sn. 

Theorem 6.4.1. A convex polyhedmn P m X is a polytope m X if and 
only if P ~s compact, and if X = sn, then P ~s contamed m an open 
hemisphere of sn. 

Proof: This follows immediately from Theorems 6.3.17 and 6.3.18. 0 
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Theorem 6.4.2. An m-dimensional polytope P m X has at least m + 1 
vertices. 

Proof: Assume first that P is in En. The proof is by induction on the 
dimension m. The theorem is certainly true whel1 m = 0, so suppose that 
m > ° and the theorem is true in dimension m - 1. Let S be a side 
of P. Then S is a polytope by Theorem 6.4.1. Hence, by the induction 
hypothesis, S has at least m vertices. Now since P is the convex hull of its 
vertices, S cannot contain all the vertices of P. Therefore P has at least 
m + 1 vertices. This completes the induction. 

Now assume that P is in sn. Then by gnomonic projection, we can view 
P as a Euclidean polyhedron. Therefore P has at least m + 1 vertices by 
the Euclidean case. 

Now assume that P is Hn. We pass to the projective disk model Dn. 
Then P is a Euclidean polyhedron, since P is compact. Therefore P has 
at least m + 1 vertices by the Euclidean case. 0 

Definition: An m-s2mplex in X is an m-dimensional polytope in X with 
exactly m + 1 vertices. 

We leave it as an exercise to prove that a subset S of En is an m-simplex 
if and only if S is the convex hull of an affinely independent subset of m + 1 
points {vo, ... , vm } of En. 

Example: The standard m-s2mplex ~ m in En is the convex hull of the 
points 0, el, ... ,em of En. 

Theorem 6.4.3. An m-d2menswnal polytope 2n X, with m > 0, has at 
least m + 1 sides. 

Proof: This follows from Theorems 6.3.7, 6.3.8, and 6.4.1. o 

Theorem 6.4.4. An m-d2menswnal polytope m X, with m > 0, is an 
m-simplex 2f and only 2f P has exactly m + 1 sides. 

Proof: The proof is by induction on m. The theorem is certainly true 
for m = 1, so assume that m > 1 and the theorem is true for all (m - 1)­
dimensional polytopes in X. Suppose that P is an m-simplex. Then P 
has at least m + 1 sides by Theorem 6.4.3. Let S be a side of P. Then 
S does not contain all the vertices of P, since P is the convex hull of its 
vertices. Therefore S has at most m vertices. As S is an (m-1 )-dimensional 
polytope, S has at least m vertices by Theorem 6.4.2. Therefore S has 
exactly m vertices. Hence S is an (m - 1 )-simplex. Thus, each side of P is 
an (m - 1 )-simplex. Hence, each side of P is the convex hull of m vertices 
of P. Since the set of m + 1 vertices of P has exactly m + 1 subsets with m 
vertices, P has at most m + 1 sides. Therefore P has exactly m + 1 sides. 
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Conversely, suppose that P has exactly m + 1 sides. Then P has at least 
m + 1 vertices by Theorem 6.4.2. Now by Theorem 6.3.14, each vertex of 
P is the intersection of at least m sides of P. As the intersection of all the 
sides of P is contained in each vertex of P, the intersection of all the sides 
of P is empty. Therefore, each vertex of P is the intersection of exactly 
m sides of P. Since the set of m + 1 sides of P has exactly m + 1 subsets 
with m sides, P has at most m + 1 vertices. Therefore P has exactly m + 1 
vertices. Thus P is an m-simplex. 0 

Theorem 6.4.5. Let P be a polytope in X. Then the group of symmetrzes 
of P m (P) is finite. 

Proof: The proof is by induction on dim P = m. The theorem is obviously 
true if m = 0, so assume that m > 0 and the theorem is true for all (m -1)­
dimensional polytopes in X. Let r be the group of symmetries of P in 
(P). Then r acts on the finite set S of sides of P. Now Sis nonempty by 
Theorem 6.4.3, and each side of P is an (m - 1)-dimensional polytope by 
Theorem 6.4.1. By the induction hypothesis, the stabilizer of each side of 
P is finite. Therefore r is finite. 0 

Definition: The centrozd of a polytope P in X with vertices VI, ... , Vk is 
the point 

Note that c is a well-defined point of X by Theorems 3.1.1 and 6.4.1. A 
polytope P in X contains its centroid c, since c is in the convex hull of the 
vertices of P. It is an exercise to prove that the centroid c of P is in the 
interior of P. 

Theorem 6.4.6. Let P be a polytope m X. Then every symmetry of P 
fixes the centroid of P. 

Proof: Let 9 be a symmetry of P. Then 9 permutes the vertices VI, ... , Vk 

of P. If X = En, then there is a point a of En and an A in O(n) such that 
9 = a + A by Theorem 1.3.5. If X = sn or Hn, then 9 is linear. Therefore, 
we have 

(
VI + ... + Vk) = VI + ... + Vk 

9 k k· 

Hence gc = c. o 
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Generalized Polytopes 

We now generalize the concept of a polytope in Hn to allow ideal vertices 
on the sphere at infinity of Hn. It will be more convenient for us to work 
in a model of hyperbolic space that allows a direct representation of the 
sphere at infinity. 

Definition: A generalized polytope in Dn is a convex polyhedron P in 
Dn such that P has only finitely many generalized vertices and P is the 
convex hull of its generalized vertices. 

Theorem 6.4.7. A convex polyhedron P in Dn zs a generalzzed polytope 
m Dn if and only if its closure P m En is a polytope in En. 

Proof: This follows immediately from Theorems 6.3.25 and 6.4.1. 0 

Theorem 6.4.8. Let P be an m-dimensional convex polyhedron in Dn, 
wzth m > 1. Then P zs a generalized polytope in Dn zf and only if P has 
jimtely many szdes and P has jimte volume in (P). 

Proof: This follows immediately from Theorems 6.3.25 and 6.3.26. 0 

Theorem 6.4.9. An m-dimensional generahzed polytope P m D n has at 
least m + 1 generalized vertzces. 

Proof: By Theorem 6.4.7, we have that P is a polytope in En. By Theo­
rem 6.4.2, we have that P has at least m+ 1 vertices. Now by the argument 
in the proof of Theorem 6.3.25, the vertices of P are the generalized vertices 
of P. Therefore P has at least m + 1 generalized vertices. 0 

Definition: A generahzed m-szmplex in Dn is an m-dimensional general­
ized polytope in D n with exactly m + 1 generalized vertices. 

Note that a generalized O-simplex is just a point. A generalized I-simplex 
is either a geodesic segment or a geodesic ray or a geodesic. 

Theorem 6.4.10. A convex polyhedron m Dn zs a generalzzed m-szmplex 
in Dn if and only if its closure in En is an m-szmplex in En. 

Proof: Suppose that P is a generalized m-simplex. By Theorem 6.4.7, we 
have that P is a polytope in En. By the argument in the proof of Theorem 
6.3.25, the vertices of P are the generalized vertices of P. Therefore P has 
exactly m + 1 vertices. Thus P is an m-simplex in En. 

Conversely, suppose that P is an m-simplex in En. Then P is a polytope 
in D n by Theorem 6.4.7. By the argument in the proof of Theorem 6.3.25, 
the vertices of P are the generalized vertices of P. Therefore P has exactly 
m + 1 generalized vertices. Thus P is a generalized m-simplex. 0 
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Theorem 6.4.11. An m-dimenswnal generalzzed polytope P m D n , with 

m > 1, has at least m + 1 szdes. 

Proof: By Theorem 6.4.7, we have that P is a polytope in En. By 
Theorem 6.3.20, the sides of P are the closures of the sides of P. Now by 
6.4.3, we have that P has at least m + 1 sides. Therefore P has at least 

m + 1 sides. 0 

Theorem 6.4.12. An m-dzmensional generalized polytope P in D n , wzth 
m > 1, is a generalized m-szmplex if and only if P has exactly m + 1 sides. 

Proof: By Theorem 6.4.7, we have that ]5 is a polytope in En. By 
Theorem 6.4.10, we have that P is a generalized m-simplex if and only if P 
is an m-simplex in En. By Theorem 6.3.20, the sides of]5 are the closures 
of the sides of P. Therefore P is a generalized m-simplex if and only P has 
exactly m + 1 sides by Theorem 6.4.4. 0 

Definition: An zdeal polytope in Dn is a generalized polytope in Dn all 
of whose generalized vertices are ideal. 

Definition: An zdeal m-szmplex in Dn is a generalized m-simplex in Dn 
all of whose generalized vertices are ideal. 

Example: Let Vo, ... , Vm be m + 1 affinely independent vectors in sn-l, 
with m > 0. Then their convex hull is a Euclidean m-simplex 6 inscribed 
in sn-l. Therefore 6 minus its vertices is an ideal m-simplex in Dn by 
Theorem 6.4.10. 

Theorem 6.4.13. Let P be a generalzzed polytope in Dn that zs not a 
geodesic of Dn. Then the group of symmetrzes of P m (P) zs fimte. 

Proof: Let r be the group of symmetries of P in (P). Then r permutes 
the generalized vertices of P. Let 9 be an element of r that fixes all the 
generalized vertices of P. We claim that g = 1. The proof is by induction 
on m = dimP. This is certainly true if m = 0, so assume that m > 0, 
and the claim is true for all (m - I)-dimensional generalized polytopes in 
Dn that are not geodesics. Let v be a generalized vertex of P. Then P 
has a side S that is not incident with v, since P is the convex hull of its 
generalized vertices and P is not a geodesic. If S is a geodesic of Dn , then 
9 = 1, since 9 fixes the endpoints of Sand v. If S is not a geodesic, then 
by the induction hypothesis, 9 is the identity on (S). Therefore 9 = 1 
by Theorem 4.3.6. Hence r injects into the group of permutations of the 
generalized vertices of P. Therefore r is finite. 0 
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Regular Polytopes 

Let P be an m-dimensional polytope in X. A flag of P is a sequence 
(Fo, Fl , ... , Fm) of faces of P such that dim F. = i for each i and F. is a 
side of F'+l for each i < m. Let :F be the set of all flags of P and let r be 
the group of symmetries of P in (P). Then r acts on :F by 

g(Fo, F l , ... , Fm) = (gFo, gFl , ... , gFm). 

Definition: A regular polytope in X is a polytope P in X whose group of 
symmetries in (P) acts transitively on the set of its flags. 

Theorem 6.4.14. Let P be a regular polytope zn X. Then P ~s znscnbed 
in a sphere of (P) centered at the centroid of P. 

Proof: Let r be the group of symmetries of P. Then r acts transitively 
on the vertices Vb ... , Vk of P. Now each element of r fixes the centroid c 
of P by Theorem 6.4.6. Therefore 

d(c, vd = d(c, v.) for each i. 

Hence P is inscribed in the sphere of (P) centered at c ofradius d(c,vl). 0 

The regular polytopes in X are completely classified. First, we consider 
the classification of Euclidean regular polytopes. 

(1) A 1-dimensional, Euclidean, regular polytope is a line segment. 

(2) A 2-dimensional, Euclidean, regular polytope is a regular polygon. 

(3) A 3-dimensional, Euclidean, regular polytope is a regular solid. Up 
to similarity, there only five regular solids, the regular tetrahedron, 
hexahedron, octahedron, dodecahedron, and icosahedron. 

(4) There are up to similarity only six 4-dimensional, Euclidean, regular 
polytopes. They are called the 5-cell, 8-cell, 16-cell, 24-cell, 120-cell, 
and 600-cell. A k-cell has k sides. 

(5) For n 2: 5, there are up to similarity only three n-dimensional, Eu­
clidean, regular polytopes, the regular n-simplex with n+ 1 sides, the 
n-cube with 2n sides, and its dual with 2n sides. 

The classification of regular polytopes in sn and Hn is essentially the 
same as the classification of regular polytopes in En. The only difference is 
that in sn and H n regular polytopes of the same combinatorial type come 
in different nonsimilar sizes. 

Theorem 6.4.15. Let P be a polytope in sn. Then P is regular, w~th 
centrozd en+l, if and only if the gnomonic projection of P into En ~s regular 

with centroid O. 
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Proof: We may assume that (P) = sn. Suppose that P is regular with 
centroid en + 1. Let A be a symmetry of P. Then A is an element ~ 0 (n + 1) 
that fixes en+l. Hence, the restriction of A to En is an element A of O(n). 
The gnomonic projection of S+ onto En is given by 

¢(x) = X/Xn+l, where x = (Xl, ... , Xn). 

Observe that 

¢(Ax) = Ax/(Ax)n+l = Ax/xn+1 = A¢(x). 

Therefore, we have 
A¢(P) = ¢(AP) = ¢(P). 

Hence A is a symmetry of ¢(P). Therefore ¢(P) is regular in En. Let 
VI, ... ,Vk be the vertices of P. Then we have 

VI + ... + Vk = !Vl + ... + vk!en+1· 

Therefore, we have 
'ilt + ... +'ih = O. 

Observe that 

Therefore, we have 

Hence 
('ih/(Vl)n+r) + ... + ('ih/(Vk)n+r) VI + ... + Vk 
-'----'--"----=-:....c.:...:....::-'----:-_----'-~~____'_~ - - 0 

k - k(Vr)n+l -. 

Thus, the centroid of ¢(P) is o. 
Conversely, suppose that ¢(P) is regular with centroid o. Let A be a 

symmetry of ¢(P). Then A is an element of O(n). Let A be the element of 
O(n + 1) that extends A and fixes en+l. Then we have A¢ = ¢A. Hence, 
we have 

AP = A¢-l¢(p) = ¢-l A¢(P) = ¢-l¢(p) = P. 

Hence A is a symmetry of P. Therefore P is regular. 
Now since the symmetries of P of the form A fix en +1 and act transitively 

on the vertices of P, we conclude as before that 

(V2 )n+l = (Vl)n+1 for all i. 

Therefore 
VI + ... + Vk _ (vI!(vr)n+1) + ... + (Vk/(Vk)n+r) 

k( Vr)n+l - k = O. 

Hence, we have 
VI + ... + Vk = O. 

Therefore, we have 

VI + ... + Vk = !Vl + ... + vk!en+1. 

Thus, the centroid of P is en +1. o 



232 6. Geometry of Discrete Groups 

Theorem 6.4.16. Let P be a polytope m Dn. Then P zs regular with 
centrozd 0 tf and only tf P tS regular in En wtth centroid O. 

Proof: The proof is the same as the proof of Theorem 6.4.15 with sn 
replaced by Hn. 0 

Regular Ideal Polytopes 

Let P be an ideal polytope in Dn. A flag of P is defined as before except 
that vertices are now ideal. 

Definition: A regular ideal polytope in D n is an ideal polytope P in Dn 
whose group of symmetries in (P) acts transitively on the set of its flags. 

Theorem 6.4.17. An ideal polytope P in D n is regular tf and only if P 
tS congruent to an ideal polytope m Dn whose closure m En tS a regular 
polytope m En. 

Proof: We may assume that (P) = D n and n > 1. Let r be the group of 
symmetries of P. Then r is finite by Theorem 6.4.13. Hence r fixes a point 
of Dn by Theorems 5.5.1 and 5.5.2. By conjugating r, we may assume that 
r fixes O. Then every symmetry of P is a symmetry of P. Therefore, if P 
is regular, then P is regular. 

Conversely, suppose that P is regular. Then the centroid of Pis 0, since 
P is inscribed in sn-l. See Exercise 6.4.6. Hence, every symmetry of P is 
a symmetry of P. Therefore P is regular. 0 

Exercise 6.4 

1. Prove that a subset S of En is an m-simplex if and only if S is the convex 
hull of an affinely independent subset {vo, ... , vm} of En. 

2. An edge of a convex polyhedron P in X is a I-face of P. Prove that an 
m-dimensional polytope in X, with m > 1, has at least m(m + 1)/2 edges 
and at least m(m + 1)/2 ridges. 

3. Prove that an m-simplex in X has c;::n k-faces for each k = 0, ... , m. 

4. Let P be a polytope in X. Prove that the centroid of P is in po. 

5. Prove that the centroid of a regular polytope P in X is the only point of (P) 
fixed by all the symmetries of P in (P). 

6. Let P be an n-dimensional polytope in X that is inscribed in a sphere S of 
X. Prove that S is unique. 

7. Prove that the group of symmetries of an n-simplex in X is isomorphic to 
the group of permutations of its vertices. 
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§6.5. Fundamental Domains 

Let r be a group acting on a metric space X. The orbit space of the action 
of r on X is defined to be the set of r -orbits 

x/r = {rx : x E X} 
topologized with the quotient topology from X. The quotient map will be 
denoted by 

7f : X ---+ x/r. 

Recall that if A and B are subsets of X, then the distance from A to B 
in X is defined to be 

dist(A,B) = inf{d(x,y): x E A and y E B}. 

The orbzt space dzstance functzon 

dr : x/r x x/r ---+ lR 

is defined by the formula 

dr(rx, ry) = dist(rx, ry). (6.5.1) 

If dr is a metric on x/r, then dr is called the orbit space metrzc on x/r. 

Theorem 6.5.1. Let r be a group of isometries of a metric space X. Then 
dr is a metrzc on X /r if and only if each r -orbit zs a closed subset of X. 

Proof: Let x, y be in X and let g, h be in r. Then 

d(gx, hy) = d(x, g-lhy). 

Therefore 
dist(rx,ry) = dist(x,ry). 

Suppose that dr is a metric and rx =f=. ry. Then 

dist(x, ry) = dr(rx, ry) > O. 

Let r = dist(x, ry). Then B(x, r) eX - ry. Hence X - ry is open and 
therefore ry is closed. Thus, each r -orbit is a closed subset of X. 

Conversely, suppose that each r-orbit is a closed subset of X. If x, yare 
in X and rx =f=. ry, then 

dr(rx, ry) = dist(x, ry) > O. 
Thus dr is nondegenerate. 

Now let x, y, z be in X and let g, h be in r. Then 

d(x, gy) + d(y, hz) d(x, gy) + d(gy, ghz) 

> d(x,ghz) 

> dist(x, rz). 

Therefore 

dist(x, rz) ~ dist(x, ry) + dist(y, rz). 

Hence dr satisfies the triangle inequality. Thus dr is a metric on x/r. 0 
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Corollary 1. If r is a discontinuous group of isometrzes of a metrzc space 
X, then dr 2S a metric on X /r. 
Proof: By Theorem 5.3.4, each r-orbit is a closed subset of X. 0 

Theorem 6.5.2. Let r be a group of isometrzes of a metric space X such 
that dr is a metric on x/r. Then the metric topology on x/r, determined 
by dr, 2S the quot2ent topology; if 7r : X -+ x/r 2S the quotient map, then 
for each x m X and r > 0, we have 

7r(B(x,r)) = B(7r(x),r). 

Proof: Let x be in X and suppose that r > o. Then clearly 

7r(B(x, r)) C B(7r(x), r). 

To see the reversed inclusion, suppose that y is in X and 

dr(rx,ry) < r. 
Then we have 

dist(x, ry) < r. 

Consequently, there is a gin r such that d(x, gy) < r. Moreover, we have 
7r(gy) = ry. Thus, we have 

7r(B(x,r)) = B(7r(x),r). 

Hence 7r is open and continuous with respect to the metric topology on 
x/r. 

Let U be an open subset of x/r with respect the quotient topology. 
Then 7r -1 (U) is open in x. Therefore U = 7r ( 7r -1 (U)) is open in the 
metric topology on x/r. Let x be in X and suppose that r > o. Then 

7r-1(B(7r(x),r)) = U B(gx,r). 
gEr 

Therefore B(7r(x), r) is open in the quotient topology on x/r. Thus, the 
metric topology on X /r determined by dr is the quotient topology. 0 

Fundamental Regions 

Definition: A subset R of a metric space X is a fundamental region for 
a group r of isometries of X if and only if 

(1) the set R is open in X; 

(2) the members of {gR: g E r} are mutually disjoint; and 

(3) X = U{gR : 9 E r}. 

Definition: A subset D of a metric space X is a fundamental domain for 
a group r of isometries of X if and only if D is a connected fundamental 

region for r. 
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Theorem 6.5.3. If a group r of isometnes of a metric space X has a 
fundamental region, then r 2S a discrete subgroup of I( X). 

Proof: Let x be a point of a fundamental region R for a group of isometries 
r of a metric space X. Then the evaluation map 

e : r ---+ rx, 
defined by e(g) = gx, is a continuous. Now the point x is open in rx, since 
Rnrx = {x}. Moreover, the stabilizer rx is trivial. Hence 1 = c 1 (x) is 
open in r. Therefore r is discrete by the proof of Lemma 1 of §5.3. 0 

Theorem 6.5.4. If R is a fundamental region for a group r of 2sometnes 
of a metric space X, then for each 9 =F 1 in r, we have 

RngR c 8R. 

Proof: Let x be a point of R n gR and let r be a positive real number. 
Then B(x, r) contains a point of R, since x is in R, and a point of gR, since 
x is in gR. As Rand gR are disjoint, B(x,r) meets R and X - R. Hence 
x is in 8R. Thus 8R contains R n gR for each 9 =F 1 in r. 0 

Definition: A fundamental region R for a discrete group r of isometries 
of X = sn, En, or Hn is proper if and only if Vol(8R) = 0, that is, 8R is 
a null set in X. 

Example 1. Let Q be the antipodal map of sn. Then r = {I, Q} is 
a discrete subgroup of I(sn) and any open hemisphere of sn is a proper 
fundamental domain for r. The orbit space Sn jr is elliptic n-space pn. 

Example 2. Let T. be the translation of En bye. for i = 1, ... , n. 
Then {T1, ... ,Tn} generates a discrete subgroup r of I(En). A proper 
fundamental domain for r is the open unit n-cube (0, l)n in En. The orbit 
space En jr is similar to the n-torus (S1) n . 

Example 3. Let p be the reflection of Hn in a hyperplane P. Then 
r = {I, p} is a discrete subgroup of I( Hn). Either one of the two open 
half-spaces of Hn bounded by P is a proper fundamental domain for r. 
The orbit space Hn jr is isometric to a closed half-space of Hn. 

Theorem 6.5.5. If r is a d2screte group of 2sometnes of X = sn, En, or 
Hn, then all the proper fundamental regions for r have the same volume. 

Proof: Let Rand S be proper fundamental regions for r. Observe that 

X - U gS c U g8S. 
gEr 9Er 

Therefore, we have 

Vol(X - U gS) = 0. 
gEr 
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Hence 

Vol(R) Vol(Rn ( u g8)) 
9Er 

Vol( u Rng8) 
gEr 

I:Vol(Rng8) 
gEr 

I:VOI(g-lRn8) = Vol(8). 
gEr 

o 

Theorem 6.5.6. If R 2S a fundamental region for a group r of isometries 
of a metnc space X and 9 2S an element of r fixmg a pomt of X, then 9 
is conjugate in r to an element h such that h fixes a pomt of BR. 

Proof: This is certainly true if 9 = 1, so assume that 9 #- 1. Let x be a 
fixed point of g. Then there is a point y of 11, and an element f of r such 
that fx = y. Let h = fgf-1. Then h fixes y. As R and hR are disjoint, y 
is in BR. 0 

Corollary 2. Let R be a fundamental region for a d2screte group r of 
isometnes of En or Hn. If 9 is an ellipt2c element ofr, then 9 2S conjugate 
in r to an element h such that h fixes a pomt of BR. 

Proof: Every elliptic element of r has a fixed point. o 

Lemma 1. If r is a discrete group of 2sometnes of Hn such that Hn jr is 
compact, then there is an f > 0 such that d(x, hx) ~ P for all x in H n and 
all nonelliptic h in r. 
Proof: Let x be an arbitrary point of Hn and set 

r(x) = ~dist(x,rx - {x}). 

Then any two open balls in 

{B(gx, r(x)) : 9 E r} 

are either the same or are disjoint. Let 7f : H n --t Hn jr be the quotient 
map. As H n jr is compact, the open cover 

{B(7f(y),r(y)) : y E Hn} 

has a Lebesgue number f > O. Hence, there is a y in H n such that 
B(7f(y), r(y)) contains B(7f(x), P). Consequently U B(gy, r(y)) contains 

gEr 
B(x,f). As B(x,f) is connected, there is a 9 in r such that B(gy,r(y)) 
contains B(x, f). By replacing y with gy, we may assume that 9 = 1. 

Now let h be an arbitrary nonelliptic element of r. As B(y, r(y)) 
and B(hy,r(y)) are disjoint, B(x,f) and B(hx,f) are disjoint. Therefore 
d(x, hx) ~ f. 0 
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Theorem 6.5.7. If f is a discrete group of isometrzes of Hn such that 
H n /f zs compact, then every element of f is ezther elliptic or hyperbolzc. 

Proof: On the contrary, suppose that f has a parabolic element f· We 
pass to the upper half-space model un. Then we may assume, without 
loss of generality, that f (00) = 00. Then f is the Poincare extension of a 
Euclidean isometry of En-I. By Theorem 4.6.1, we have for each t > 0, 

[ten - f(ten)[ 
coshd(ten,f(ten)) 1+ 2t2 

[en - f(en )[ 
1 + 2t2 . 

Hence 
lim coshd(ten , f(ten )) 1. 

t-+oo 

Therefore 
o. 

But this contradicts Lemma 1. D 

Corollary 3. If f is a discrete group of isometries of H n with a parabolic 
element, then every fundamental region for f is unbounded. 

Proof: Let R be a fundamental region for f. If R were bounded, then 
R would be compact; but the quotient map 1[" : H n --+ H n /f maps R onto 
H n /f, and so Hn /f would be compact contrary to Theorem 6.5.7. D 

Locally Finite Fundamental Regions 

Definition: A fundamental region R for a group f of isometries of a 
metric space X is locally finite if and only if {gR : g E f} is a locally finite 
family of subsets of X. 

Example: Every fundamental region of a discrete group f of isometries 
of sn is locally finite, since f is finite. 

Let R be a fundamental region for a discontinuous group f of isometries 
of a metric space X, and let R/f be the collection of disjoint subsets of R, 

{fx n R: x E R}, 
topologized with the quotient topology. At times, it will be useful to adopt 
R/f as a geometric model for X/f. The importance of local finiteness in 
this scheme is underscored by the next theorem. 

Theorem 6.5.S. If R is a fundamental regzon for a discontinuous group 
f of isometries of a metrzc space X, then the inclusion L : R --+ X znduces 
a continuous bijection Ii : R/f --+ X/f, and Ii is a homeomorphism if and 
only if R is locally finite. 
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Proof: The map K, is defined by K,(rx n R) = rx. If x, y are in Rand 
rx = ry, then we have 

rxnR= rynR. 

Therefore K, is injective. As R contains a fundamental set, K, is subjective. 
Let 'TJ : R -+ R/r be the quotient map. Then we have a commutative 
diagram 

x 

'TJ! ! 1l" 

R/r ~ x/r. 
This implies that K, is continuous. Thus K, is a continuous bijection. 

Now assume that R is locally finite. To prove that K, is a homeomor­
phism, it suffices to show that K, is an open map. Let U be an open subset 
of R/r. As 'TJ is continuous and surjective, there is an open subset V of X 
such that 'TJ- 1(U) = R n V and 'TJ(R n V) = U. Let 

Then we have 

W = U g(RnV). 
gEr 

1l"(W) 1l"(Rn V) 

1l"L(Rn V) 

= K,'TJ(R n V) = K,(U). 

In order to prove that K,(U) is open, it suffices to prove that W is open in 
X, since 1l" is an open map. 

Let w be in W. We need to show that W contains an open ball B 
centered at w. As W is r-invariant, we may assume that w is R n V. As 
R is locally finite, there is an open ball B centered at w that meets only 
finitely many r-images of R, say glR, . .. , gmR. Then we have 

B C glR U ... U gmR. 

If g,R does not contain w, then B - g,R is an open neighborhood of w, 
and so we may shrink B to avoid g,R. Thus, we may assume that each 
g,R contains w. Then g;lw is in R for each i. As 'TJ(g;lW) = 'TJ(w), we 
have that g;lw is in 'TJ- 1(U) = R n V. Hence w is in g, V for each i. By 
shrinking B still further, we may assume that 

B C gl V n ... n gm V. 

Consequently Be W, since if x is in B, then x is in both g,R and g.V for 
some i, and so x is in g.(R n V), which is contained in W. Therefore W is 
open and K, is an open map. Thus K, is a homeomorphism. 

Conversely, suppose that K, is a homeomorphism and on the contrary 
there is a point y of X at which R is not locally finite. Then there is a 
sequence {X'}~l of points in R and a sequence {g'}~l of distinct elements 
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of r such that g,x, ----+ y. As gR is open and disjoint from every other 
r-image of R, the point y is not in any gR. Let 

K = {Xl,X2," .}. 

As K c R, we have that 7f(y) is not in 7f(K). 
We claim that K is closed in X. Let x be in X - K. Now ry - {x} is a 

closed subset of X by Theorem 5.3.4. Therefore 

dist(x,ry- {x}) > O. 

Now let 
1 . 

r = 2"dlst(X,ry - {x}). 

As the g, are distinct, x is equal to at most finitely many g:;ly, since r y is 
finite. Thus d(x,g:;ly) ~ 2r for large enough i. As g,x, ----+ y, we have that 
d(g,x" y) < r for large enough i. Hence, for large enough i, we have 

2r:::; d(x,g:;ly):::; d(x, x,) +d(x"g:;ly) 

and 
r < 2r - d(g,x" y) :::; d(x, x,). 

Thus B(x, r) contains only finitely many points of K, and so there is an 
open ball centered at x avoiding K. Thus X - K is open and so K is closed. 

As K c R, we have that 'f)-I ('f)(K)) = K, and so 'f)(K) is closed in Rjr. 
Therefore K,'f)(K) = 7f(K) is closed in Xjr, since K, is a homeomorphism. 
As 7f is continuous, we have 7f(g,x,) ----+ 7f(y), that is, 7f(x,) ----+ 7f(y), As 
7f(K) is closed, 7f(y) is in 7f(K), which is a contradiction. Thus R is locally 
fintie. D 

Theorem 6.5.9. Let x be a boundary point of a locally jinzte fundamental 
region R for a group r of zsometrzes of a metric space X. Then 8R n rx 
zs jinzte and there zs an r > 0 such that zf NCR, r) zs the r-nezghborhood of 
R zn X, then 

N(R, r) n rx = 8Rn rx. 

Proof: As R is locally finite, there is an r > 0 such that B(x, r) meets 
only finitely many r-images of R, say gIl R, ... , g:;;,lR. By shrinking r, if 
necessary, we may assu~ that x is in each g:;lR. Suppose that gx is also 
in 8R. Then x is in g-l R and so 9 = g, for some i. Hence 

8Rnrx c {glX, ... ,gmX}. 

Moreover, for each i, there is a y, in 8R such that x = g:;ly,. Therefore 

8Rn rx = {glX, ... ,gmx}. 

Next, suppose that d(gx,y) < r with y in R. Then d(x,g-ly) < r. Hence 
9 is in {gl,"" gm} and so gx is in 8R. Thus 

N(R,r) nrx = 8Rnrx. D 
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Theorem 6.5.10. Let R be a fundamental region for a discontinuous 
group r of isometries of a locally compact metric space X such that x/r 
is compact. Then R is locally fimte if and only zf R zs compact. 

Proof: Suppose that R is compact. Then the map K, : R/r ---> x/r is a 
continuous bijection from a compact space to a Hausdorff space and so is 
a homeomorphism. Therefore R is locally finite by Theorem 6.5.8. 

Conversely, suppose that R is locally finite and on the contrary R is not 
compact. Then R is not count ably compact, since R is a metric space. 
Hence, there is an infinite sequence {x,} in R that has no convergent sub­
sequence. As x/r is compact, {7f(x,)} has a convergent subsequence. By 
passing to this subsequence, we may assume that {7f(x,)} converges in x/r. 
As the quotient map 7f maps R onto X /r, there is a point x of R such that 
7f(xt ) ---> 7f(x). As 7f maps R homeomorphically onto 7f(R), the point x 
must be in BR. By Theorem 6.5.9, there is an r > 0 such that 

N(R,r) nrx = BRnrx. 

Moreover, there are only finitely many elements gl, ... ,gm of r such that 

BR n rx = {glX, ... , gmx}. 

By shrinking r, if necessary, we may assume that B(g,x, r) is compact for 
each i = 1, ... , m. As 7f(x,) ---> 7f(x), there is a k > 0 such that 

dist(rx" rx) < r 

for all i 2: k. Hence, there is a h, in r for each i 2: k such that 

d(x" h,x) < r. 

Now since 
N(R,r) nrx = BRnrx, 

we have h,x = gJx for some j = 1, ... , m. Hence x, is in the compact set 

B(glx, r) U··· U B(gmx, r) 

for all i 2: k. But this implies that {x,} has a convergent subsequence, 
which is a contradiction. Thus R is compact. D 

Theorem 6.5.11. If R is a locally finite fundamental region for a group 
r of isometnes of a connected metric space x, then r is generated by the 

set 
\II = {g E r : R n gR is nonempty}. 

Proof: Let H be the subgroup of r generated by \II, and let x be in X. 
Then there is a 9 in r such that gx is in R. Su£Pose that h is another 
element of r such that hx is in R. Then gx is in R n gh- 1 R and so gh- 1 

is in \II. Hence Hg = Hh. This implies that there is ayell-defined function 
¢ : X ---> r /H, defined by ¢(x) = Hg, where gx is in R. 
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As R is locally finite, there is an open ball B c~ntered at x that meets 
only finitely many r-images of R, say gIR, ... , gmR. We may assume that 
each gtR contains x. Then we have 

Be gIRU··· ugmR. 

If y is in B, then y is in gtR for some i, and we have 

if;(y) = Hg;1 = if;(x). 

Thus if; is constant on B. Hence, the fibers of the map if; are open. As X 
is connected, if; is constant. 

Let 9 be in r, let u be in R, and let v be in g-1 R. Then 

H = if; ( u) = if; ( v) = Hg 

and so 9 is in H. This shows that H = r. Thus \Ii generates r. D 

Rigid Metric Spaces 

Definition: A metric space X is rigid if and only if the only similarity 
of X that fixes each point of a nonempty open subset of X is the identity 
map of X. 

Theorem 6.5.12. If X is a geodesically connected and geodesically com­
plete metnc space, then X is rigid. 

Proof: Let if; be a similarity of X that fixes each point of a nonempty 
open subset W of X. Then the scale factor of if; is one, and so if; is an 
isometry of X. Let w be a point of Wand let x be an arbitrary point of 
X not equal to w. Then there is a geodesic line ,\ : lR --) X whose image 
contains wand x. Observe that 

if;'\ : lR --) X 

is also a geodesic line and if;'\ agrees with ,\ on the open set ,\-1 (W). As 
every geodesic arc in X extends to a unique geodesic line, we deduce that 
if;'\ ='\. Therefore if;(x) = x. Hence if; = 1. Thus X is rigid. D 

Example: It follows from Theorem 6.5.12 that sn,En, and Hn are rigid 
metric spaces. 

Definition: A subset F of a metric space X is a fundamental set for a 
group r of isometries of X if and only if F contains exactly one point from 
each r -orbit in X. 

Theorem 6.5.13. An open subset R of a rzgid metric space X is a fun­
damental region for a group r of isometries of X if and only if there zs a 
fundamental set F for r such that ReF c R. 
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Proof: Suppose that R is a fundamental region for r. Then the members 
of {gR : 9 E r} are mutually disjoint. Therefore R contains at most one 
element from each r-orbit in X. Now since 

x = U{gR: 9 E r}, 

there is a fundamental set F for r such that ReF c R by the axiom of 
choice. 

Conversely, suppose there is a fundamental set F for the group r such 
that ReF c R, and suppose that g, h are elements ofr such that gRnhR 
is nonempty. Then there are points x, y of R such that gx = hy. Hence 
h-1gx = y. As x and yare in F, we deduce that h-1gx = x. Therefore 
h-1g fixes each point of Rng-1hR. As X is rigid, h-1g = 1. Hence 9 = h. 
Thus, the members of {gR : 9 E r} are mutually disjoint. 

Now as F c R, we have 

X = U gF = U gR. 
gEr gEr 

Thus R is a fundamental region for r. o 

If R is a fundamental region for a group r of isometries of a metric space 
X, then the stabilizer of every point of R is trivial. We next consider an 
example of a discontinuous group of isometries of a metric space X such 
that every point of X is fixed by some 9 =I- 1 in r. Hence, this group does 
not have a fundamental region. 

Example: Let X be the union of the x-axis and y-axis of E2 and let 

r = {l,p,CT,a}, 

where p and CT are the reflections in the x-axis and y-axis, respectively, and 
a is the antipodal map. Then r is a discontinuous group of isometries of 
X, since r is finite. Observe that every point of X is fixed by a nonidentity 
element of r. Hence r has no fundamental region. Moreover X is not rigid. 

Theorem 6.5.14. Let r be a discontinuous group of zsometries of a rigid 
metric space X. Then there is a poznt x of X whose stabilzzer r x is trivial. 

Proof: Since r is discontinuous, the stabilizer of each point of X is finite. 
Let x be a point of X such that the order of the stabilizer subgroup r x is 
as small as possible. Let s be half the distance from x to fx - {x}. Then 
for each 9 in r, we have that B(x, s) meets B(gx, s) if and only if gx = x. 
Hence, for each point y in B(y, s), we have that rye r x and therefore 
r y = r x because of the minimality of the order of r x' Hence, every point 
of B (x, s) is fixed by every element of r x' Therefore r x = {1}, since X is 
ri~. 0 
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gu 

u 

Figure 6.5.1. The half-space H 9 ( U ) 

Dirichlet Domains 

Let r be a discontinuous group of isometries of a metric space X, and let 
u be a point of X whose stabilizer r u is trivial. For each 9 i=- 1 in r, define 

Hg(u) = {x EX: d(x, u) < d(X, gun· 

Observe that the set Hg(u) is open in X. Moreover, if X = sn,En, or Hn, 
then Hg(u) is the open half-space of X containing u whose boundary is 
the perpendicular bisector of every geodesic segment joining u to guo See 
Figure 6.5.1. The Dzrichlet domain D(u) for r, with center u, is either X 
if r is trivial or 

D(u) = n{Hg(u) : 9 i=- 1 in r} 

if r is nontrivial. 

Theorem 6.5.15. Let D(u) be the Dzrichlet domam, with center u, for a 
dzscontmuous group r of isometries of a metric space X such that 

(1) X is geodeszcally connected; 

(2) X zs geodeszcally complete; 

(3) X zs fimtely compact. 

Then D( u) zs a locally finite fundamental domain for r. 

Proof: This is clear if r is trivial, so assume that r is nontrivial. Let 
r > O. Then C(u,r) is compact. Hence C(u,r) contains only finitely many 
points of an orbit rx, since r is discontinuous. Let Kg = X - H 9 (u) for each 
9 i=- 1 in r. Then Kg is closed in X. We next show that {Kg: 9 i=- 1 in r} 
is a locally finite family of sets in X. Suppose that B(u, r) meets Kg in a 
point X. Then we have 

d(u,gu) < d(u,x)+d(x,gu) 

< d(u,x)+d(x,u) 

< 2r. 
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Hence B (u, 2r) contains guo As B (u, 2r) contains only finitely many points 
of ru, the ball B (u, r) meets only finitely many of the sets Kg. Therefore 
{Kg: 9 =f. 1 in r} is a locally finite family of closed sets in X. Hence 

X - D(u) = U{Kg : 9 =f. 1 in r} 

is a closed set. Thus D(u) is open. 
From each orbit rx, choose a point nearest to u and let F be the set 

of chosen points. Then F is a fundamental set for r. If x is in D(u) and 
9 =f. 1 in r, then 

d(x, u) < d(x, gu) = d(g-lx, u) 

and so x is the unique nearest point of the orbit rx to u. Thus D(u) c F. 
Let x be an arbitrary point of F not equal to u and let 9 =f. 1 be in r. 

Then d(x, u) ~ d(x, gu), since otherwise we would have 

d(x, u) > d(x, gu) = d(g-lx, u), 

contrary to the assumption that x is in F. Let [u, x] be a geodesic segment 
in X joining u to x. Let y be a point of the open segment (u, x). Then 

d(y, u) d(x, u) - d(x, y) 

~ d(x,gu)-d(x,y) ~ d(y,gu) 

with equality only if 

d(x, gu) = d(x, y) + d(y, gu). 

Suppose that we have equality. Let [x, y] be the geodesic segment in [x, u] 
joining x to y and let [y, gu] be a geodesic segment in X joining y to guo 
By Theorem 1.4.3, we have that [x, y] U [y, gu] is a geodesic segment [x, gu] 
in X joining x to guo Now [x, u] and [x, gu] both extend [x, y] and have the 
same length. Therefore [x, u] = [x, gu], since X is geodesically complete. 
Hence u = gu, which is a contradiction. Therefore, we must have 

d(y, u) < d(y, gu). 

Hence y is in Hg(u) for all 9 =f. 1 in r. Therefore y is in D(u). Hence 
[u,x) C D(u). Therefore x is in D(u). Hence F C D(u). Thus D(u) is a 
fundamental region for r by Theorems 6.5.12 and 6.5.13. Moreover, if x is 
in D(u), then [u, x] c D(u), and so D(u) is connected. 

It remains only to show that D(u) is locally finite. Suppose r > 0 and 
B(u,r) meets gD(u). Then there is some x in D(u) such that d(u,gx) < r. 
Moreover 

d(u,gu) < d(u,gx) + d(gx,gu) 

< r+d(x,u) 

< r + d(X,g-lU) 

r + d(gx,u) 

< 2r. 

But this is possible for only finitely many g. Thus D(u) is locally finite. 0 
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Theorem 6.5.16. Let D(u) be the Dirichlet domam, with center u, for a 
discontmuous group r of isometries of a metrzc space X such that 

(1) X is geodesically connected; 

(2) X is geodesically complete; 

(3) X is finitely compact. 

Then 
D(u) = {x EX: x is a nearest pomt offx to u}. 

Proof: This is clear if f is trivial, so assume that f is nontrivial. For 
each 9 -=I- 1 in f, define 

Lg = {x EX: d(x, u) :s; d(x, gun· 

Then Lg is a closed subset of X containing Hg. Now since 

Lg = {x EX: d(x,u) :s; d(g-lx,un, 

we have 

n{Lg : 9 -=I- 1 in r} = {x EX: x is a nearest point of fx to u}. 
Moreover, since 

D(u) n{Hg(u) : 9 -=I- 1 in f}, 
we have that 

D(u) c n{Lg: 9 -=I- 1 in f}. 
Now suppose that x is a nearest point of fx to u. Then we can choose a 

fundamental set F for r containing x such that each point of F is a nearest 
point in its orbit to u. From the proof of Theorem 6.5.15, we have that 
Fe D(u). Thus x is in D(u). Therefore 

D(u) = {x EX: x is a nearest point of fx to u}. D 

Exercise 6.5 

1. Let R be a fundamental region for a group r of isometries of a metric space 
X and let R be the topological interior of R. Prove that R is the largest 
fundamental region for r containing R. 

2. Let R be a fundamental region for a group r of isometries of a metric space 
X. Prove that R is locally finite if and only if {gR : 9 E r} is a locally finite 
family of subsets of X. 

3. Let r be a discontinuous group of isometries of a metric space X with a 
fundamental region R such that R is compact. Prove that 

(1) r is finitely generated, and 

(2) r has only finitely many conjugacy classes of elements with fixed points. 
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4. Let r be the subgroup of I(<C) generated by f : z>---+ z + 1 and 9 : z >---+ z + i. 
Find a fundamental domain for r that is not locally finite. 

5. Let r be a discontinuous group of isometries of a metric space X that has a 
fundamental region. Prove that the set of points of X that are not fixed by 
any 9 oil in r is an open dense subset of X. 

6. Prove that the set Hg(u) used in the definition of a Dirichlet domain is open. 

7. Let D(u) be a Dirichlet domain, with center u, for a group r as in Theorem 
6.5.16. Prove that if x is in 8D(u), then 8D(u) n rx is a finite set of points 
that are all equidistant from u. 

§6.6. Convex Fundamental Polyhedra 

Throughout this section, X = sn, En, or H n with n > O. Let r be a 
discrete group of isometries of X. By Theorem 6.5.14, there is a point u 
of X whose stabilizer r u is trivial. Let D(u) be the Dirichlet domain for r 
with center u. Then D(u) is convex, since by definition D(u) is either X or 
the intersection of open half-spaces of X. By Theorem 6.5.15, we have that 
D(u) is a locally finite fundamental domain for r. Hence r has a convex, 
locally finite, fundamental domain. 

Lemma 1. If D zs a convex, locally jimte, fundamental domain for a dzs­
crete group r of zsometrzes of X, then for each poznt x of aD, there is a 
9 -j. 1 in r such that x is of D n gD. 

Proof: As D is locally finite, there is an r > 0 such that B(x,r) meets 
only finitely many r-images of D, say glD, ... , grnD with gl = 1. By 
shrinking r, if necessary, we may assume that x is in each g.D. As D is 
convex, aD = aD. Therefore B(x, r) contains a point not in D. Hence 
m> 1. Thus, there is a 9 -j. 1 in D such that x is in gD. 0 

Theorem 6.6.1. If D zs a convex, locally jimte, fundamental domazn for 
a dzscrete group r of isometrzes of X, then D zs a convex polyhedron. 

Proof: Since D is convex in X, we have that D is closed and convex in X. 
Let S be the set of sides of D. We need to show that S is locally finite. Let 
x be an arbitrary point of X. If x is in D, then D is a neighborhood of x 
that meets no side of D. If x is in X - D, then X - D is a neighborhood of 
x that meets no side of D. Hence, we may assume that x is in aD. As D is 
locally finite, there is an r > 0 such that B (x, r) meets only finitely many 
f-images of D, say goD, ... , grnD with go = 1. By shrinking r, if necessary, 
we may assume that x is in each g.D. Now for each i > 0, we have that 
D n g.D is a nonempty convex subset of aD. By Theorem 6.2.6(1), there 
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is a side S2 of D containing D n gtD. By Lemma 1, we have 

Therefore 

B(x,r) n aD c Sl U··· U Sm· 

Now suppose that S is a side of D meeting B(x, r). Then B(x, r) meets 
So, since So = S. By Theorem 6.2.6(3), we have that S = St for some i. 
Thus B(x, r) meets only finitely many sides of D. Hence S is locally finite. 
Thus D is a convex polyhedron. 0 

Corollary 1. Every convex, locally fimte, fundamental domain for a d~s­
crete a group r of ~sometries of X is proper. 

Proof: Let D be a convex, locally finite, fundamental domain for r. Then 
the sides of D form a locally finite family of null sets in X. Hence aD is 
the union of a countable number of null sets and so is a null set. Thus D 
is proper. o 

Fundamental Polyhedra 

Definition: A convex fundamental polyhedron for a discrete group r of 
isometries of X is a convex polyhedron P in X whose interior is a locally 
finite fundamental domain for r. 

Let r be a discrete group of isometries of X. By Theorem 6.6.1, the 
closure D of any convex, locally finite, fundamental domain D for r is a 
convex fundamental polyhedron for r. In particular, the closure D( u) of 
any Dirichlet domain D(u) for r is a convex fundamental polyhedron for 
r, called the D~richlet polyhedron for r with center u. 

Example: Let r = PSL(2, Z) and regard r as a subgroup of I(U2 ). Then 
r is discrete. Let T be the generalized hyperbolic triangle with vertices 
±~ + v{i and 00. See Figure 6.6.1. Then T is the Dirichlet polygon for r 
with center ti for any t > 1. 

Let r be a discrete group of isometries of X and let u be a point of X 
whose stabilizer r u is trivial. For each g i=- 1 in r, define 

Pg(u) = {x EX: d(x, u) = d(x, gu)}. 

Then Pg ( u) is the unique hyperplane of X that bisects and is orthogonal 
to every geodesic segment in X joining u to guo 
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Figure 6.6.1. A Dirichlet polygon T for PSL(2, &::) 

Theorem 6.6.2. Let 8 be a szde of a Dzrichlet domain D(u), with center 
u, for a discrete group r of isometries of X. Then there is a unique element 
9 =f 1 of r that satisfies one (or all) of the following three properties: 

(1) (8) = Pg(u); 

(2) 8 = D(u) n gD(u); 

(3) g-18 is a side of D(u). 

Proof: (1) Since 

oD(u) C U{Pg(u) : 9 =f 1 in n, 
we have that 

8 C U{Pg(u) : 9 =f 1 in n· 
Therefore 

8 = U{8 n Pg(u) : 9 =f 1 in n· 
Now 8 n Pg(u) is a closed convex subset of X for each 9 =f 1 in r. As r is 
countable, we must have 

dim(8 n Pg(u)) = n - 1 

for some g; otherwise, the (n -I)-dimensional volume of 8 would be zero. 
Now since 

dim(8 n Pg(u)) = n-l 

we have that (8) = Pg(u). 
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Let g, h be elements of r such that 

Pg(u) = (8) = Ph(u). 

Since Pg ( u) is the perpendicular bisector of a geodesic segment from u to 
gu, we have that gu = hu. But u is fixed only by the identity element of r, 
and so 9 = h. Thus, there is a unique element 9 of r such that (8) = Pg (u). 

(2) By (1) there is a unique element 9 -#1 of r such that 8 C Pg(u). 
Let x be an arbitrary point of 8. Then d(x, u) = d(x, gu). By Theorem 
6.5.16, we have that x is a nearest point of rx to u. Now 

d(g-lx, u) = d(x, gu) = d(x, u). 

Therefore g-lx is also a nearest point of rx to u. Hence g-lx is in D(u) 
by Theorem 6.5.16. Therefore g-18 C D(u). Hence 

8 C D(u) n gD(u). 

But D(u) n gD(u) is a convex subset of 8D(u). Therefore 

8 = D(u) n gD(u), 

since 8 is a maximal convex subset of 8D(u). 
Suppose that h is another nonidentity element of r such that 

8 = D(u) n hD(u). 

Let x be an arbitrary point of 8. Then h-1x is in D(u) and so 

d(x, u) = d(h-1x, u) = d(x, hu). 

Hence x is in Ph (u). Therefore 8 C Ph (u). Hence 9 = h by the uniqueness 
of 9 in (1). Thus, there is a unique 9 -#1 in r such that 

8 = D(u) n gD(u). 

(3) By (2), there is unique element 9 -#1 of r such that 

8 = D(u) n gD(u). 

Then we have 
g-18 = g-l D(u) n D(u). 

Therefore g-18 C 8D(u). Hence, there is a side T of D(u) containing g-18. 
By (1) there is a unique element h -#1 of r such that 

T = D(u) n hD(u). 

Hence, we have 

and so we have 

S C gD(u) n ghD(u). 
Thus, we have 

8 C D(u) n ghD(u). 
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Suppose that gh -I- 1. We shall derive a contradiction. Since 8 is a maximal 
convex subset of 8D(u), we have 

8 = D(u) n ghD(u). 

Then gh = 9 by (2), and so h = 1, which is a contradiction. It follows that 
gh = 1 and so h = g-l. Thus g-18 = T. 

Suppose that 1 is another nonidentity element of r such that 1-18 is a 
side of D (u). Then we have 

and so we have 
8 = D(u)nlD(u). 

Hence 1 = 9 by (2). Thus, there is a unique element 9 -I- 1 of r such that 
g-18 is a side of D(u). 0 

Definition: A convex fundamental polyhedron P for r is exact if and only 
if for each side 8 of P there is an element 9 of r such that 8 = P n gPo 

It follows from Theorem 6.6.2(2) that every Dirichlet polyhedron for a 
discrete group is exact. Figure 6.6.2 illustrates an inexact, convex, funda­
mental polygon P for PSL(2, Z). The polygon P is inexact, since the two 
bounded sides of P are neither congruent nor left invariant by an element 
of PSL(2, Z). See Theorem 6.6.3. 
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Figure 6.6.2. An inexact, convex, fundamental polygon P for PSL(2, Z) 
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Theorem 6.6.3. If 8 zs a szde of an exact, convex, fundamental polyhe­
dron P for a discrete group r of isometries of X, then there is a unzque 
element 9 -=I=- 1 of r such that 

8 = pngP; 

moreover, g-18 zs a szde of P. 

Proof: Since P is exact, there is an element 9 of r such that 8 = P n gPo 
Clearly 9 -=I=- 1. If h -=I=- 1 is another element of r such that 8 = P n hP, then 
gPO and hpo overlap; therefore gPO = hpo and so 9 = h. Thus, there is a 
unique element 9 -=I=- 1 of r such that 8 = P n gPo The proof that g- 18 is 
a side of P is the same as the proof of Theorem 6.6.2(3). D 

Exercise 6.6 

1. Let u, v be distinct points of X and let 

p = {x EX: d(x,u) = d(x,v)}. 

Prove that P is the unique hyperplane of X that bisects and is orthogonal 
to every geodesic segment in X joining u to v. 

2. Let r be the subgroup of I(C) generated by the translations of C by 1 and 
~ + V; L Determine the Dirichlet polygon of r with center 0 in Co 

3. Let T be the generalized hyperbolic triangle in Figure 6.6.1. Prove that T is 
the Dirichlet polygon for PSL(2, Z) with center ti for any t > 1. 

§6.7. Tessellations 

Throughout this section, X = 8 n, En, or Hn with n > o. 

Definition: A tessellation of X is a collection P of n-dimensional convex 
polyhedra in X such that 

(1) the interiors of the polyhedra in P are mutually disjoint; 

(2) the union of the polyhedra in P is X; and 

(3) the collection P is locally finite. 

Definition: A tessellation P of X is exact if and only if each side 8 of a 
polyhedron P in P is a side of exactly two polyhedrons P and Q in P. 

An example of an exact tessellation is the grid pattern tessellation of E2 
by congruent squares. An example of an inexact tessellation is the familiar 
brick pattern tessellation of E2 by congruent rectangles. 
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Definition: A regular tessellation of X is an exact tessellation of X 
consisting of congruent regular polytopes. 

The three regular tessellations of the plane, by equilateral triangles, 
squares, and regular hexagons, have been known since antiquity. The five 
regular tessellations of the sphere induced by the five regular solids have 
been known since the Middle Ages. We are interested in tessellations of X 
by congruent polyhedra because of the following theorem. 

Theorem 6.7.1. Let P be an n-dimenswnal convex polyhedron in X and 
let r be a group of 2sometries of X. Then r is discrete and P is an (exact) 
convex fundamental polyhedron for r 2f and only 2f 

P = {gP: 9 E r} 

is an (exact) tessellation of X. 

Proof: Suppose that r is discrete and P is a convex fundamental polyhe­
dron for r. Then po is a locally finite fundamental domain for r. Hence, 
we have that 

(1) the members of {gpo: 9 E r} are mutually disjoint; 

(2) X = U{gP : 9 E r}; and 

(3) the collection P is locally finite. 

Thus P is a tessellation of X. 
Now assume that P is exact. Let 8 be a side of P. Then there is a 

unique element of 9 #- 1 of r such that 8 = P n gP; moreover g-18 is a 
side of P. Hence 8 is a side of gPo Therefore 8 is a side of exactly two 
polyhedrons P and gP of P. As P is r-equivariant, the same is true for 
any side of any polyhedron in P. Thus P is exact. 

Conversely, suppose that P is a tessellation of X. Then 

(1) the members of {gpo: 9 E r} are mutually disjoint; 

(2) X = U{gP : 9 E r}; and 

(3) the collection P is locally finite. 

Hence po is a a locally finite fundamental domain for r. Therefore r is 
discrete by Theorem 6.5.3 and P is a convex fundamental polyhedron for 
the group r. 

Now assume that P is exact. Then for each side 8 of P, there is a gin 
r such that 8 is a side of gPo Hence 8 c P n gPo Since P n gP c 8P and 
8 is a maximal convex subset of 8P, we have that 8 = P n gPo Thus P is 

exact. D 
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Definition: A collection P of n-dimension convex polyhedra in X is said to 
be connected if and only if for each pair P, Q in P there is a finite sequence 
PI, ... ,Pm in P such that P = P1 ,Pm = Q, and p.- 1 and p. share a 
common side for each i > 1. 

Theorem 6.7.2. Every exact tessellatzon of X zs connected. 

Proof: The proof is by induction on the dimension n of X. The theorem 
is obviously true when n = 1, so assume that n > 1 and the theorem is 
true in dimension n - 1. Let P be an exact tessellation of X and let P be a 
polyhedron in P. Let U be the union of all the polyhedra Q in P for which 
there is a finite sequence PI, ... , Pm in P such that P = PI , Pm = Q, and 
p.-1 and p. share a common side for each i > 1. Then U is closed in X, 
since P is locally finite. 

We now show that U is open in X. Let x be a point of U. Choose r such 
that 0 < r < 7r /2 and C(x, r) meets only the polyhedra of P containing x. 
Let Q be a polyhedron in P containing x. Then r is less than the distance 
from x to any side of Q not containing x. By Theorem 6.3.19, the set 
QnS(x, r) is an (n-1)-dimensional convex polyhedron in S(x, r); moreover, 
if S (x) is the set of sides of Q containing x, then {T n S (x, r) : T E S (x)} is 
the set of sides of Q n S (x, r). Therefore P restricts to an exact tessellation 
T of S(x, r). By the induction hypothesis, T is connected. Consequently, 
each polyhedron in P containing x is contained in U. Therefore U contains 
B(x,r). Thus U is both open and closed in X. As X is connected, U = X. 
Thus P is connected. 0 

Theorem 6.7.3. Let P be an exact, convex, fundamental polyhedron for 
a discrete group r of isometrzes of X. Then r is generated by the set 

<P = {g E r : P n gP is a side of Pl. 

Proof: By Theorem 6.7.1, we have that P = {gP : 9 E r} is an exact 
tessellation of X. By Theorem 6.7.2, the tessellation P is connected. Let 
9 be an arbitrary element of r. Then there is a finite sequence of elements 
g1, ... ,gm of r with P = gl P , gmP = gP, and g.-lP and g.p share a 
common ~~de for each i > 1. Th~s implies that gl = 1, gm = g, and 
P and g.-lg.P share a common sIde for each i > 1. We may assume 
that g.-l -=1= g. for each i > 1. Then g:;.!lg. is in <P for each i > 1. As 
9 = gl(g1"l g2 )··· (g:;;"=-lgm), we have that <P generates r. 0 

Theorem 6.7.4. If a discrete group r of zsometries of X has a finzte-szded, 
exact, convex, fundamental polyhedron P, then r is finitely generated. 

Proof: By Theorem 6.6.3, the set of sides S of P is in one-to-one corre­
spondence with the set <P = {g E r : P n gP E S}. Therefore <P is finite 
and so r is finitely generated by Theorem 6.7.3. 0 
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Side-Pairing 

Let S be a side of an exact, convex, fundamental polyhedron P for a discrete 
group r of isometries of X. By Theorem 6.6.3, there is a unique element 
gs of r such that 

(6.7.1) 

Furthermore S' = g"E/ (S) is a side of P. The side S' is said to be pazred to 
the side S by the element gs of r. As 

S' = P n g8 1 (P), 

we have that gs' = g8 1 . Therefore S is paired to S' by g8 1 and SI! = S. 
The r -side-pairing of P is defined to be the set 

<P = {gS : S is a side of Pl. 
The elements of <P are called the side-pairing transformations of P. 

Two points x, x' of P are said to be paired by <P, written x c::: x', if and 
only if there is a side S of P such that x is in S, x' is in S', and gs(x' ) = x. 
If gs(x' ) = x, then gS'(x) = x'. Therefore x c::: x' if and only if x' c::: x. 
Two points x, y of P are said to be related by <P, written x rv y, if either 
x = y or there is a finite sequence Xl, ... ,Xm of points of P such that 

x = Xl c::: X2 c::: .•. c::: Xm = y. 

Being related by <P is obviously an equivalence relation on the set P. The 
equivalence classes of P are called the cycles of <P. If x is in P, we denote 
the cycle of <P containing x by [xl. 

Theorem 6.7.5. If P is an exact, convex, fundamental polyhedron for a 
dzscrete group r of isometrzes of X, then for each point x of P, 

(1) the cycle [xl is finite, and 

(2) [xl = pnrx. 

Proof: (1) It is clear from the definition of a cycle that [xl c P n rx. 
Hence [xl is finite by Theorem 6.5.9. 

(2) Let y be in Pnrx. Then there is an f in r such that y = fx. Hence 
x is in f- 1 F. As P is locally finite, there is an r > 0 such that B(x,r) 
meets only finitely many r-images of P, say glP, ... , gmP. By shrinking 
r, we may assume that x is in g,P for each i. By shrinking r still further, 
we may assume that r < 7r /2 and r is less than the distance from x to any 
side of g,P not containing x. Now for each i, the set g,P n S(x, r) is an 
(n - I)-dimensional convex polyhedron in the sphere S(x, r) by Theorem 
6.3.19. Moreover 

T = {g,P n S(x,r) : i = 1, ... ,m} 

is an exact tessellation of S(x, r). By Theorem 6.7.2, the tessellation T is 
connected. Hence, there are elements iI, ... , fc of r such that x is in f,-l P 
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for each i, and P = f11 P, f- 1 P = re1 P, and f:-\p and f.- 1 P share a 
common side for each i > 1. This implies that !1 = 1, Ie = f, and P and 
f._d.- 1 P share a common side S. for each i > 1. We may assume that 
i > 1 and f.-1 =J f. for each i > 1. Then f._d.- 1 = gs, for each i > 1. Let 
Xl = X and x. = f.x for each i > 1. As X is in f.- 1 P, we have that f.x is 
in P. Hence x. is in P for each i. Now 

gS,(x.) = f._d.- 1(x.) = f.-1 X = X.-1· 

Hence X.-1 is in pngS, (P). Therefore X.-1 is in S. and x. is in S: for each 
i > 1. Hence, we have 

X = Xl ~ X2 ~ ... ~ XI! = y. 

Therefore X rv y. Thus [xl = P n rx. o 

Dihedral Angles 

Let P be an n-dimensional convex polyhedron in X. Sides Sand T of P 
are said to be adjacent if and only if either X = Sl and S, T are the sides 
of P or n > 1 and S nTis a side of both Sand T. In particular, the one 
side of a semicircle in Sl is adjacent to itself. 

Let Sand T be sides of P. We now define the dihedral angle ()(S, T) of 
P between Sand T. First of all, if S = T, then ()(S, T) is defined to be 71". 

If Sand T are distinct, nonadjacent sides of P, then ()(S, T) is defined to 
be o. Now assume that S and T are adjacent. If X = Sl, then ()(S, T) is 
defined to be the angle between the endpoints of P. 

Next assume that n > 1. Then the hyperplanes (S) and (T) subdivide 
X into four regions, one of which contains P; moreover, 

(8) n (T) = (S n T). 

Let X be any point in S n T and let A, /1 : ~ -+ X be geodesic lines such 
that 

(1) A(O) = X = /1(0); 

(2) A and /1 are normal to (S) and (T), respectively; and 

(3) X(O) and /1'(0) are directed away from the respective half-spaces of 
X containing P. 

Let a be the angle between A and /1 at the point x. Clearly a does not 
depend on the choice of x. The dihedral angle of P between Sand T is 
defined to be the angle 

()(S, T) = 7l" - a. 

See Figure 6.7.1. Note that as 0 < a < 7l", we have 

0< ()(S,T) < 7l". 

(6.7.2) 
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8 T 

Figure 6.7.1. The dihedral angle 8(8, T) between adjacent sides 

In general, we have that 
o ~ 8(8, T) ~ n. 

The dihedral angle 8(8, T) is said to be proper if and only if 

o < (}(8, T) < n. 

Note that (}(8, T) is proper if and only if 8 and T are distinct adjacent 
sides of P. 

Cycles of Polyhedra 

Definition: A cycle of polyhedra in X is a finite set 

C = {Po, ... ,Pm-d 

of n-dimensional convex polyhedra in X such that for each i (mod m), 

(1) there are adjacent sides 8 2 and 8 2+1 of P2 such that P2 n P,+l = 8 2+1 ; 

m-1 

(2) 2: (}(82 , 8 2+d = 2n; and 
,=0 

m-1 
(3) if n > 1, then R = n P, is a side of 8, for each i. 

,=0 

See Figure 6.7.2. Note that a collection C of geodesic segments in 8 1 is a 
cycle if and only if C is a tessellation of 8 1 . 

Figure 6.7.2. A cycle of equilateral triangles in E2 
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Theorem 6.7.6. Let R be a rzdge of a polyhedron P in an exact tessella­
tion P of X. Then the set of all polyhedra in P containing R forms a cycle 
whose intersection zs R. 

Proof: Let S be one of the two sides of P containing R. We inductively 

define sequences 

such that for each i, 

(2) Po = P and So = S; 

(3) R is a side of S,; 

(4) S, and StH are adjacent sides of Pt ; and 

Now R is contained in only finitely many polyhedra in P, since P is lo­
cally finite. Hence, the sequence {Pt } involves only finitely many distinct 
polyhedra. Evidently, the terms Po, PI,"" Pk - I are distinct if 

k-I 

L e(S" St+d ::; 21f. 
t=o 

Hence, the first repetition of the sequence occurs at the first polyhedron 
Pm such that 

m 

L e(S" S,+I) > 21f. 
,=0 

Clearly Pm intersects the interior of Po and so Pm = Po. Hence Sm = So 
and 

Now as 

we have that 

m-l 
L e(St, S,+d = 21f. 
t=O 

R = s, n StH for each i, 

m-l 
R = n Pt. 

,=0 

Therefore {Po, ... , P m-l} is a cycle of polyhedra whose intersection is R. 
Let Q be any polyhedron in P containing R. Then clearly Q meets 

the interior of U:':(/ Pt. This implies that Q meets the interior of Pt for 
some i, whence Q = Pt. Thus {Po, ... , Pm-I} is the set of polyhedra in P 
containing R. D 
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Cycle Relations 

Let P be an exact, convex, fundamental polyhedron for a discrete group 
r of isometries of X. We next consider certain relations in r that can be 
derived from the ridges and sides of P. 

Let R be a side of a side 8 of P. Define a sequence {8'}~1 of sides of 
P inductively as follows: 

(1) Let 81 = 8. 

(2) Let 82 be the side of P adjacent to 8i such that g8, (8i n 82) = R. 

(3) Let 8'+1 be the side of P adjacent to 8~ such that 

g8, (8; n 8,+d = 8;_1 n 8, for each i > 1. 

We call {8'}~1 the sequence of s2des of P determined by Rand 8. 

Theorem 6.7.7. Let R be a s2de of a s2de 8 of an exact, convex, fun­
damental polyhedron P for a d2screte group r of 2sometries of X, and let 
{8'}~1 be the sequence of s2des of P determmed by Rand 8. Then there 
2S a least pos2tive mteger jl and a pos2tive mteger k such that 

(1) 8,H = 8, for each i, 

(2) 2::=1 e(8~, 8,+d = 27r /k, and 

(3) the element g8, g82 ... g8e has order k. 

Proof: Define a sequence {g,} ~o of elements of r by go = 1 and 

g, = g8, g82 ... g8, for each i > O. 

We now prove that {g,P}~o forms a cycle of polyhedra in X. As 8~ and 
8'+1 are adjacent sides of P for each i, we have that g,8~ and g,8,+1 are 
adjacent sides of g,P for each i; moreover, 

g,P n g,+1P = g,(P n g8,+1 P) = g,8'+1 

and g,8,+1 = g'+18~+1 for each i > 1. 
Now for each i > 0, we have 

Therefore, we have 

g'+18~+1 n g,+18,+2 

g,+1 (8~+1 n 8,+2) 

g,(8~ n 8,+d 
g,-18, n g,8,+1. 

n g,P = 81 ng8,(82) = R. 
,=0 

By Theorem 6.7.6, there is an integer m > 0 such that {g,P}:c/ is a cycle 
of polyhedra. Hence g,+mP = g,P for each i, and so g,+m = g, for each i. 
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Now since 

g~+m-1S~+m 

g~+m-1P n g~+mP 
g~-1P n g,P = g,-1S" 

we find that S,+m = S, for each i. 
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Let £ be the least positive integer such that S,+£ = S, for each i. Then 
k = ml£ is a positive integer. As 

m 

L e(g,s:, g,S,+d = 27r, 
~=1 

we have that 
e 

k L e(s:, S~+d = 27r. 

Moreover, as gm = 1, we have that g; = 1, and since g] -=1= 1 for 1 < j < m, 
we deduce that k is the order of ge. 0 

Let R be a side of a side S of an exact, convex, fundamental polyhedron 
P for a discrete group r of isometries of X, and let {S~} ~1 be the sequence 
of sides of P determined by Rand S. By Theorem 6.7.7, there is a least 
positive integer £ such that S,+£ = S, for each i. The finite sequence 
{S'};=1 is called the cycle oj sides of P determined by Rand S. The 
element gSlgS2 ... gs£ of r is called the cycle transJormatzon of the cycle 
of sides {S'};=1' By Theorem 6.7.7, the cycle transformation gSlgS2 ... gSe 
has finite order k. The relation 

(gSlgS2 ••• gSe)k = 1 (6.7.3) 

in r is called the cycle relatzon of r determined by the cycle of sides {S,} ~= 1 . 

For each side S of P, the relation 

gSgS' = 1 (6.7.4) 
is called the szde-pairing relatzon determined by the side S. 

Remark: The cycle relations together with the side-pairing relations form 
a complete set of relations for the generators 

<I> = {gS : S is a side of P} 
of the group r; that is, any relation among the generators <I> can be derived 
from these relations. For a proof, see §13.5. 

Example: Let L, S, R be the three sides occurring left to right in the 
Dirichlet polygon T for PSL(2, Z) in Figure 6.6.1. Then 

gR(Z) = Z + 1 and gs(z) = -liz. 

Hence R' = L, S' = S, and L' = R. Observe that {S, R} is a cycle of sides 
of T whose cycle transformation gSgR has order three. Moreover gs has 
order two. The relations (gSgR)3 = 1 and g~ = 1 form a complete set of 
relations for the generators {9S, gR} of PSL(2, Z). 
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Exercise 6.7 

1. Let 8 be a side of an exact, convex, fundamental polyhedron P for r. Show 
that 8' = 8 if and only if gs has order two in r. 

2. Let {8'};=1 be a cycle of sides of an exact, convex, fundamental polyhedron P 
for r. Show that the cycle transformation gs! ... gSl leaves 8~n81 invariant. 

3. Furthermore, if X = En or Hn, with n > 1, prove that gs! ... gSl fixes a 
point of 8~ n 8 1 . 

4. Let r be the discrete group of isometries of E2 generated by the translations 
of E2 by el and e2. Then P = [0,1]2 is an exact, convex, fundamental 
polygon for r. Find all the cycles of sides of P and the corresponding cycle 
relations of r. 

5. Let P be an exact, convex, fundamental polyhedron for r with only finitely 
many sides. Prove that P has only finitely many cycles of sides. 

6. Let R be a ridge of an exact, convex, fundamental polyhedron P for r and 
let 8 and T be the two sides of P such that R = 8 n T. Let {S'};=l be the 
cycle of sides of P determined by Rand S. Show that {S~_.}~;;;~ is the cycle 
of sides P determined by Rand T. Conclude that the pair consisting of the 
cycle transformation gs! ... gSl and its inverse depends only on R. 

7. Let R be a side of a side S of an exact, convex, fundamental polyhedron P 
for r and let R' be the side of S' such that gs(R') = R. Let {S'};=l be the 
cycle of sides of P determined by Rand S. Show that {S2,"" Si, Sd is 
the cycle of sides of P determined by R' and S2. Conclude that the cycle 
transformation of {S2, ... , Si, Sl} determined by R' and S2 is conjugate in 
r to the cycle transformation of {S,};=l determined by Rand S. 

§6.8. Historical Notes 

§6.1. All the essential material in §6.1 appeared in Beltrami's 1868 papers 
Saggw dz interpetrazwne della geometria non-euclidea [38] and Teona fon­
damentale deglz spaziz di curvatura costante [39]. See also Klein's 1871-73 
paper Ueber die sogenannte Nicht-Euklidische Geometrie [224], [227]. 

§6.2. Convex curves and surfaces were defined by Archimedes in his 
third century B.C. treatise On the sphere and cylinder [23]. Convex sets 
in Euclidean n-space were first studied systematically by Minkowski. See, 
for example, his 1911 treatise Theone der konvexen Korper, insbesondere 
BegrUndung zhres Oberfliichenbegnffs [295]. The Euclidean versions of The­
orems 6.2.1-6.2.3 were proved by Steinitz in his 1913-16 paper Bedingt kon­
vergente Reihen und konvexe Systeme [380], [381], [382]. For a survey of 
convexity theory, see Berger's 1990 article Convexzty [42]. References for 
the theory of convex sets are Griinbaum's 1967 text Convex Polytopes [172] 
and BrYindsted's 1983 text An Introduction to Convex Polytopes [59]. 
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§6.3. Convex polyhedra in hyperbolic 3-space were defined by Poincare 
in his 1881 note Sur les groupes klezneens [329]. General polyhedra in 
Euclidean n-space were studied by Klee in his 1959 paper Some characteri­
zations of convex polyhedra [223]. General polyhedra in hyperbolic n-space 
were considered by Andreev in his 1970 paper Intersection of plane bound­
anes of a polytope wzth acute angles [15]. Theorem 6.3.26 appeared in Vin­
berg's 1967 paper Discrete groups generated by reflections zn Lobacevskzz 
spaces [397]. 

§6.4. Euclidean polygons and the regular solids were thoroughly stud­
ied in Euclid's Elements [118]. General 3-dimensional Euclidean polytopes 
were first studied by Descartes in his seventeenth century manuscript De 
solidorum elementzs [105], which was not published until 1860. General 
3-dimensional Euclidean polytopes were studied by Euler in his 1758 pa­
per Elementa doctrinae solzdorum [121]. In particular, Euler introduced 
the concept of an edge of a polyhedron in this paper. Polytopes in Eu­
clidean n-space and spherical n-space were first studied by Schliifli in his 
1852 treatise Theone der vielfachen Kontinuitiit [362], which was published 
posthumously in 1901. In particular, Schliifli classified all the regular 
Euclidean and spherical polytopes in this treatise. The most important 
results of Schliifli's treatise were published in his 1855 paper Reduction 
d'une integrale multiple, qui comprend l'arc de cercle et l'azre du triangle 
spherique comme cas particuliers [359] and in his 1858-60 paper On the 
multzple integral J dxdy ... dz [360], [361]. Convex polytopes in hyperbolic 
n-space were considered by Dehn in his 1905 paper Die Eulersche Formel 
im Zusammenhang mit dem Inhalt in der Nicht-Euklidischen Geometrie 
[101]. For a characterization of 3-dimensional hyperbolic polytopes, see 
Hodgson, Rivin, and Smith's 1992 paper A characterzzation of convex hy­
perbolzc polyhedra and of convex polyhedra inscribed in the sphere [197] 
and Hodgson and Rivin's 1993 paper A charactenzation of compact convex 
polyhedra in hyperbolzc 3-space [196]. References for the theory of convex 
polytopes are Griinbaum's 1967 text [172], Coxeter's 1973 treatise Regular 
Polytopes [92], and BrlZlndsted's 1983 text [59]. 

§6.5. The concept of a fundamental region arose in the theory of lattices. 
For example, Gauss spoke of an elementary parallelogram of a plane lattice 
in his 1831 review [149] of a treatise on quadratic forms. The concept of a 
fundamental region for a Fuchsian group was introduced by Poincare in his 
1881 note Sur les fonctions fuchszennes [327]. See also Klein's 1883 paper 
Neue Beitriige zur Riemannschen Funktionentheone [233]. Theorem 6.5.5 
was essentially proved by Siegel in his 1943 paper Dzscontznuous groups 
[375]. Moreover, the concept of a locally finite fundamental regwn was in­
troduced by Siegel in this paper. The 2-dimensional version of Theorem 
6.5.7 was proved by Klein in his 1883 paper [233]. Theorem 6.5.8 ap­
peared in Beardon's 1974 paper Fundamental domains for Klezman groups 
[33]. Theorem 6.5.11 was essentially proved by Siegel in his 1943 paper 
[375]. The Dirichlet domazn of a plane lattice was introduced by Dirichlet 
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in his 1850 paper Uber d~e Reductwn der positiven quadratischen Formen 
[107]. Theorem 6.5.15 appeared in Busemann's 1948 paper Spaces w~th 
non-positzve curvature [62]. For the theory of fundamental regions of Fuch­
sian groups, see Beardon's 1983 text The Geometry of Discrete Groups 
[34]. 

§6.6. According to Klein's historical study Development of Mathemat~cs 
in the 19th Century [238], Gauss determined the fundamental polygon for 
the elliptic modular group in Figure 6.6.1. This fundamental polygon was 
described by Dedekind in his 1877 paper Schre~ben an Herrn Borchardt 
iiber d~e Theor~e der ellipt~schen Modulfunktionen [100]. The term funda­
mental polygon was introduced by Klein for certain subgroups of the elliptic 
modular group in his 1879 paper Ueber die Transformation der ellipt~schen 
Functionen [231]. The notion of a fundamental polygon was extended to 
all Fuchsian groups by Poincare in his 1881 note [327]. See also Dyck's 
1882 paper Gruppentheoretische Studien [111]. Fundamental polyhedra for 
Kleinian groups were introduced by Poincare in his 1881 note [329]. The 
2-dimensional version of Theorem 6.6.1 was proved by Beardon in his 1983 
text [34]. Theorem 6.6.1 for dimension n > 2 seems to be new. 

§6.7. The three regular tessellations of the plane were discovered by 
the Pythagoreans according to Heath's 1921 treatise A H~story of Greek 
Mathemat~cs [186]. The five regular tessellations of the sphere were de­
scribed by Abu 1-Wafa in the 10th century according to a manuscript re­
ported by Woepcke in his 1855 article Recherches sur l'h~stoire des sciences 
mathemat~cs chez les orientaux, d'apres des trmtes zned~ts arabes et per­
sans [415]. For the classification of the regular tessellations of sn, En, and 
Hn, see Coxeter's 1973 treatise Regular Polytopes [92] and Coxeter's 1956 
paper Regular honeycombs zn hyperbolic space [90]. The general notion of 
a tessellation of the hyperbolic plane generated by a fundamental poly­
gon appeared in Poincare's 1881 note [327]. The concepts of s~de-pairing 
transformatwn and cycle of verhces determined by a fundamental polygon 
for a Fuchsian group were introduced by Poincare in his 1881 note Sur les 
fonctions fuchsiennes [328]. See also his 1882 paper ThEorie des groupes 
fuchsiens [330]. Tessellations of hyperbolic space generated by a funda­
mental polyhedron were considered by Poincare in his 1883 Memozre sur 
les groupes klezneens [332]. 



CHAPTER 7 

Classical Discrete Groups 

In this chapter, we study classical discrete groups of isometries of sn, En, 
and Hn. We begin with the theory of discrete reflection groups. In Section 
7.4, we study the theory of crystallographic groups. The chapter ends with 
a proof of Selberg's lemma. 

§7.1. Reflection Groups 

Throughout this section, X = sn, En, or Hn with n > O. 

Lemma 1. Let x be a point ~ns~de a horosphere ~ of Hn. Then the shortest 
d~stance from x to ~ is along the umque hyperbolic lme passing through x 
Lorentz orthogonal to ~. 

Proof: We pass to the conformal ball model En of hyperbolic space and 
move x to the origin. Then the shortest distance from 0 to ~ is obviously 
along the unique diameter of En orthogonal to ~. See Figure 7.1.1. 0 

o 
d 

Figure 7.1.1. The shortest distance d from the origin to a horocycle of B2 
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Let S be a side of an n-dimensional convex polyhedron P in X. The 
reflection of X in the side S of P is the reflection of X in the hyperplane 
(S) spanned by S. 

Theorem 7.1.1. Let G be the group generated by the reflections of X in 
the sides of a jinzte-sided, n-dimensional, convex polyhedron P in X of 
jinite volume. Then 

X = u{gP : 9 E G}. 

Proof: The proof is by induction on the dimension n. The theorem is 
obviously true when n = 1, so assume that n> 1 and the theorem is true 
in dimension n - 1. Let x be a point of P and let G(x) be the subgroup 
of G generated by all the reflections of X in the sides of P that contain 
x. Let r(x) be a real number such that 0 < r(x) < 7r/2 and the ball 
C(x, r(x)) meets only the sides of P containing x. By Theorem 6.3.19, 
the set P n S(x, r(x)) is an (n - I)-dimensional, convex polyhedron in the 
sphere S(x, r(x)). From the induction hypothesis, we have 

S(x, r(x)) = U{g(P n S(x, r(x))) : 9 E G(x)}. 

Now since P is convex, we deduce that 

B(x, r(x)) C U{gP : 9 E G(x)}. 

By Theorems 6.3.25 and 6.3.26, the polyhedron P has only finitely many 
ideal vertices, say VI, ... , vm . For each i, let B, be a horoball based at v, 
such that B, meets only the sides of P incident with v,. For each i, let G, 
be the subgroup of G generated by all the reflections of X in the sides of P 
that are incident with v,. By Theorem 6.3.23, the set pn8B, is a compact, 
Euclidean, (n -I)-dimensional, convex polyhedron in the horosphere 8B,. 
We deduce from the induction hypothesis that 

B, C U{gP : 9 E G,}. 

By Lemma 1, there is a horoball B~ based at v, such that B~ C B, and 
dist(B~, 8B,) = 1 for each i. Set 

m I 
Po = P - U B,. 

,=1 

Then Po is compact by Theorem 6.3.26. Let R > 0 be a Lebesgue number 
for the open cover {B(x,r(x)) : x E Po} of Po such that R < 1. Let 

U = U{gP : 9 E G}. 

We claim that N(P, R) c U. Observe that N(Po, R) C U. Let x be a point 
of P n B~. Then we have 

B(x,R) c B, c U. 

Hence N (B~, R) c U for each i. Therefore N (P, R) c U as claimed. Now as 
U is G-equivariant, we deduce that N(gP, R) c U for each gin G. Therefore 
N(U,R) C U, and so U = X. D 
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Let P be an exact, convex, fundamental polyhedron for a discrete group 
r of isometries of X. Then for each side 8 of P, there is a unique element 
gs of r such that 

8=pngs(P). 

The group r is defined to be a discrete reflection group, with respect to 
the polyhedron P, if and only if gs is the reflection of X in the hyperplane 
(8) for each side 8 of P. 

Definition: An angle a is a submulttple of an angle /3 if and only if there 
is a positive integer k such that a = /3/k or a = /3/00 = O. 

Theorem 7.1.2. Let r be a dtscrete reflectwn group with respect to the 
polyhedron P. Then all the dihedral angles of Pare submulttples of 7r; 

moreover, if gs and gT are the reflections m adjacent stdes 8 and T of P, 
and 0(8, T) = 7r /k, then gSgT has order k in r. 

Proof: Let 8, T be adjacent sides of P. Then {8, T} is a cycle of sides of 
P. By Theorem 6.7.7, there is a positive integer k such that 

20(8,T) = 27r/k 

and the element gSgT has order k in r. o 

Theorem 7.1.3. Let P be afimte-sided, n-dtmensional, convex polyhedron 
in X of finite volume all of whose dthedral angles are submultiples of 7r. 

Then the group r generated by the reflections of X in the sides of P is a 
discrete reflection group with respect to the polyhedron P. 

Proof: (1) The proof is by induction on n. The theorem is obviously true 
when n = 1, so assume that n > 1 and the theorem is true in dimension 
n -1. The idea of the proof is to construct a topological space X for which 
the theorem is obviously true, and then to show that X is homeomorphic 
to X by a covering space argument. 

(2) Let r x P be the cartesian product of rand P. We topologize r x P 
by giving r the discrete topology and r x P the product topology. Then 
r x P is the topological sum of the subspaces 

{{g} x P : 9 E r}. 
Moreover, the mapping (g,x) 1-+ gx is a homeomorphism of {g} x Ponto 
gP for each gin r. 

(3) Let 5 be the set of sides of P and for each 8 in 5, let gs be the 
reflection of X in the side 8 of P. Let <I> = {9S : 8 E 5}. Two points (g, x) 
and (h,y) of r x P are said to be paired by <1>, written (g,x) ~ (h,y), if 
and only if g-lh is in <I> and gx = hy. Suppose that (g, x) ~ (h, y). Then 
there is a side 8 of P such that g- l h = gs. As g"81 = gS, we have that 
(h, y) ~ (g, x). Furthermore x is in P n gs(P) = 8, and so x = gsx = y. 
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Two points (g, x) and (h, y) of r x P are said to be related by <I>, written 
(g, x) rv (h, y), if and only if there is a finite sequence, (gO, xo), ... , (gk, Xk), 
of points of r x P such that (g, x) = (gO, xo), (gk, Xk) = (h, y), and 

(g,-l, x,-d ::: (g" x,) for i = 1, ... , k. 

Being related by <I> is obviously an equivalence relation on r x P; moreover, 
if (g, x) '::' (h, y), then x = y. Let [g, x] be the equivalence class of (g, x) 
and let X be the quotient space of r x P of equivalence classes. 

(4) If (g,x) ::: (h,x), then obviously (fg,x) ::: (fh,x) for each f in r. 
Hence r acts on X by j[g, x] = [fg, x]. For a subset A of P, set 

[A] = {[I,x]: x E A}. 

Then if 9 is in r, we have 

g[A] = {[g,x] : x E A}. 

If (g, x) is in r x po, then [g, x] = {(g, x)}. Consequently, the members of 
{g[PO] : 9 E r} are mutually disjoint in X. 

(5) We now show that X is connected. Let TJ : r x P ---+ X be the quotient 
map. As TJ maps {g} x Ponto g[P]' we have that g[P] is connected. In 
view of the fact that 

X = U{g[P] : 9 E r}, 

it suffices to show that for any 9 in r, there is a finite sequence go,···, gk 
in r such that [P] = gOrp], gdP] = g[P]' and gz-l[P] and g,[P] intersect 
for each i > o. As r is generated by the elements of <I>, there are sides S, of 
P such that 9 = gSl ... gSk. Let go = 1 and g, = gSl ... gs, for i = 1, ... ,k. 
Now as 

we have that 

Therefore, we have 

Thus X is connected. 
(6) Let x be a point of P, let S(x) be the set of all the sides of P 

containing x, and let r(x) be the subgroup of r generated by the elements 
of {gS : S E S(x)}. We now show that r(x) is finite. Let r be a real number 
such that 0 < r < 7r /2 and r is less than the distance from x to any side 
of P not containing x. By Theorem 6.3.19, we have that P n S(x, r) is an 
(n - I)-dimensional convex polyhedron in the sphere S(x, r) and 

{T n S(x, r) : T E S(x)} 

is the set of sides of P n S(x,r). Clearly P n S(x,r) is compact and all 
the dihedral angles of P n S(x, r) are submultiples of 7r. By the induction 
hypothesis, r(x) restricts to a discrete reflection group with respect to 
P n S(x, r). Hence r(x) is finite, since S(x, r) is compact. 
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(7) We next show that 

[l,x] = {(g,x): g E r(x)}. 

Let (g, x) be in [1, x]. Then there is a sequence go, ... , gk in r such that 
(l,x) = (go, x), (gk,X) = (g,x), and (g.-I, x) ~ (g.,x) for all i > O. Hence 
g.x = x for all i and there is a side S. in S(x) such that g, = g,-lgS, for 
i = 1, ... , k. Therefore g = gSl ... gSk' Thus g is in r(x). Consequently 

[1, x] C {(g, x) : g E r(x)}. 

Now let g be an element of r(x). Since r(x) is generated by the set 
{gS : S E S(x)}, there are sides S, in S(x) such that g = gSl ... gSk' Let 
go = 1 and g. = gSl ... gs, for i = 1, ... , k. Then g, is in r(x) for all 
i. As g;_\g. = gs" we have that (g,-l, x) ~ (g., x) for all i > O. Hence 
(l,x) rv (g,x). Thus 

[l,x] = {(g,x): g E r(x)}. 

(8) For each point x of P and real number r as in (6), define 

B(x,r) = U g[pnB(x,r)]. 
9Er(x) 

Suppose that g is in r(x) and y is P n B(x, r). Then S(y) c S(x), and so 
r(y) c r(x). As 

we have that 

Consequently 

[1, y] = {(h, y) : h E r(y)}. 

[g,y] = {(gh,y): h E r(y)}. 

17- I (B(x,r)) = U {g} x (pnB(x,r)). 
gEr(x) 

Hence B(x, r) is an open neighborhood of [1, x] in X; moreover B(x, r) 
intersects g[P] if and only if g is in r(x). 

(9) Let K, : X --+ X be the map defined by K,[g, x] = gx. We now show 
that K, maps B(x,r) onto B(x,r). By Theorem 6.7.1, we have that 

{gP n S(x, r) : g E r(x)} 

is a tessellation of S(x, r). Consequently, the members of 

{gPO n B(x,r) : g E r(x)} 

are mutually disjoint and 

B(x, r) = U (gP n B(x, r)). 
gEr(x) 

Now as K, maps g[pnB(x, r)] onto gPnB(x, r) for each gin r(x), we have 
that K, maps B(x, r) onto B(x, r). 

(10) We now show that K, maps B(x, r) injectively into B(x, r). Let g, h 
be in r(x), let y,z be in P n B(x,r), and suppose that K,[g,y] = K,[h,z]. 
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Then gy = hz. Hence P and g-lhP intersect at y = g-lhz. As y is in 
P n B(x, r), we have that r(y) c r(x). Now there is an s > 0 such that 

and 

B(y, s) c B(x, r), 

B(y,s) = u (JpnB(y,s)). 
fH(y) 

Hence g-lhP n B(y,s) intersects fPo n B(y,s) for some f in r(y). But 
the members of 

{J po n B(x, r) : f E r(x)} 

are mutually disjoint. Therefore g-lh = f for some f in r(y). Hence 

y = f-1 y = h-1gy = Z 

and 
[g, y] = g[l, y] = g[g-lh, y] = [h, y] = [h, z]. 

Thus K maps B(x, r) bijectively onto B(x, r). 
(11) We now show that K maps B(x, r) homeomorphic ally onto B(x, r). 

Let 9 be in r (x). As K7] maps {g} x P n B (x, r) homeomorphically onto 
gP n B(x, r), we have that K maps g[P n B(x, r)] homeomorphicallyonto 
gP n B(x, r). Now since 

B(x,r) = U (gPnB(x,r)), 
gEr(x) 

and each set gPnB(x,r) is closed in B(x,r), and r(x) is finite, we deduce 
that K maps B(x, r) homeomorphically onto B(x, r). 

(12) Now let 9 be an element of r. Then left multiplication by 9 is a 
homeomorphism of X, since left multiplication by 9 is a homeomorphism 
of r x P. Hence gB(x, r) is an open neighborhood of [g, x] in X. As 
K(gB(x, r)) = gK(B(x, r)), we have that K maps gB(x, r) homeomorphi­
cally onto B(gx, r). Thus K is a local homeomorphism. 

(13) We now show that X is Hausdorff. Let 

[g,x] = {(gl,X), ... ,(gk,X)}, 

[h, y] = {(hI, y), ... , (he, y)} 

be distinct points of X. Then they are disjoint subsets of r x P. Now 
choose r as before so that K maps B(x, r) homeomorphically onto B(x, r) 
and K maps B(y, r) homeomorphic ally onto B(y, r). We may choose r small 
enough so that the sets 

7]-1 (gB(x, r)) 

7]-1 (hB(y, r)) 

k 
U {g,} x (P n B ( x, r) ) , 

,=1 

e 
U {h)} x (P n B(y, r)) 

)=1 

are disjoint in r x P, since if g, =I- h), then {g,} x P and {h) } x P are disjoint; 
while if x =I- y, we can choose r small enough so that B(x, r) and B(y, r) 
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are disjoint. Therefore gB(x, r) a:.nd hB(y,!) are disjoint neighborhoods of 
[g, x] and [h, y], respectively, in X. Thus X is Hausdorff. 

(14) Let v be an ideal vertex of P, let S(v) be the set of all the sides 
of P incident with v, and let rev) be the subgroup of r generate~ by the 
set {gS : S E S(v)}. Let B be a horoball based at v such that B meets 
only the sides in S ( v). Then P naB is an (n - 1 )-dimensional, Euclidean, 
convex polyhedron in the horosphere aB and 

{SnaB: S E S(v)} 

is the set of sides of pnaB. Clearly PnaB is compact and all the dihedral 
angles of P n aB are submultiples of 1r. By the induction hypothesis, r( v) 
restricts to a discrete reflection group with respect to P naB. 

(15) Define 
B = u g[pnB]. 

gEr(v) 

By the same argument as in (8), we have 

1]~I(B) = U {g} x (P n B). 
gEr(v) 

Hence B is an open subset of X, and B intersects g[P] if and only if g is 
in rev). By the same arguments as in (9) and (10), K, maps B bijectively 
onto B. As K, is an open map, K, maps B homeomorphic ally onto B. 

(16) Let VI, ... , vm be the ideal vertices of P and for each i, let B, be a 
horoball based at v, such that B, meets only the sides of P incident with v,. 
Let B: be the horoball based at v, such that B: c B, and dist(B~, aB,) = l. 
Now set 

m I 
Po=P-UB,. 

,=1 

Then Po is compact. Let x be a point of P. Choose rex) > 0 as before 
so that K, maps B(x,r(x)) homeomorphically onto B(x,r(x)). As Po is 
compact, the open covering {B(x,r(x)) : x E Po} of Po has a Lebesgue 
number £ such that 0 < £ < 1. If x is in Po, let y be a point of Po such 
that B(x,£) c B(y,r(y)), and let B(x) be the subset of B(y,r(y)) that is 
mapped onto B(x,£) by K,. If x is in B~, let B(x) be the subset of B, that 
is ~apped onto B(x, £) by K,. Then B(x) is an open neighborhood of [1, x] 
in X that is mapped homeomorphic ally onto B(x, R) by K,. Moreover, if g 
is in r, then gB(x) is an open neighborhood of [g,x] in X that is mapped 
homeomorphic ally onto B(gx, £) by K,. Thus, if y is in the image of K" then 
B(y, £) is in the image of K,. Therefore K, is surjective. 

(17) Next, let a : [a, b] --+ X be a geodesic arc from y to z such that 
lal < R and suppose that K,[g, x] = y. We now show that a lifts to a 
unique curve 00 : [a, b] --+ X such that Oo(a) = [g, xl. Now as K, maps gB(x) 
homeomorphic ally onto B(gx, g), the map a lifts to a curve 00 : [a, bl --+ X 
such that Oo(a) = [g, xl and Oo([a, b]) c gB(x). Suppose that 6: : [a, bl --+ X 
is a different lift of a starting at [g,xl. Then 6:~I(gB(x)) is a proper open 
neighborhood of a in [a, bl, since 6: is continuous and not equal to 00. Let t 
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be the first point of [a, b] not in this neighborhood. Then a(t) -=1= &(t). As 
X is Hausdorff, there are disjoint open neighborhoods U and V of a(t) and 
&(t), respectively. Choose s < t in the open neighborhood a-1(U)n&-1(V) 
of t. Then &(s) is in gB(x) and so must be equal to a(s). As U and V are 
disjoint, we have a contradiction. Therefore, the lift a is unique. 

(18) We now show that K, : X -+ X is a covering projection. Let z be 
a point of X. We will show that B(z,R) is evenly covered by K,. Since K, 
is surjective, there is a point [g, x] of X such that K,[g, x] = z. Then K, 
maps the open neighbor hood 9 B (x) of [g, x] in X homeomorphically onto 
B£z, R). Next2.. suppose that [h, y] -=1= [g, x] and K,[h, y] = z. We claim that 
gI!(x) and _hB(y) are disjoint. On the contrary, suppose that [f, w] is in 
gB(x) n hB(y). Let a : [a, b] -+ X be a geodesic arc from z to fw. As 
fw is in B(z,R), we have that tal < R. Hence a lifts to unique curves 
aI, a2 : [a, b] -+ X starting at [g, x] and [h, y], respectively. Both a1 and 
a2 end at [f, w], since [f, w] is the only point in gB(x) and in hB(y) that 
is mapped to fw by K,. By the uniqueness of the lift of a-I starting at 
[f, w], we have that [g, x] = [h, y], which is a contradiction. Hence gB(x) 
and hB(y) are disjoint, and so B(z, R) is evenly covered by K,. Thus K, is a 
covering projection. 

(19) Now K, : X -+ X is a homeomorphism, since X is simply connected 
and X is connected. Therefore, the members of {gpo: 9 E r} are mutually 
disjoint, since the members of {g[PO ] : 9 E r} are mutually disjoint; and 

X U{gP : 9 E r}, 

since we have 
X U{g[P] : 9 E r}. 

(20) We now show that 

p = {gP: 9 E r} 

is locally finite. Let y be an arbitrary point of X. Then there is a unique 
element [f,x] of X such that K,[f, x] = y. Let r be such that 0 < r < n/2 
and r is less than the distance from any side of P not containing x. Then 
the open neighborhood f B(x, r) of [f, x] intersects g[P] if and only if f-1 g 
is in r(x). Hence, the set 

K,(fB(x,r)) = B(fx,r) = B(y,r) 

intersects gP if and only if f-1 g is in r(x). As r(x) is finite, we have that 
B(y, r) meets only finitely many members of P. Thus P is locally finite. 

(21) If g5 is any side of gP, then g5 is also a side of ggSP, and since 

gP n ggSP = g5, 

we have that gP and ggsP are the only polyhedra of P containing g5 as a 
side. Thus P is an exact tessellation of X. Therefore r is discrete and P is 
an exact, convex, fundamental polyhedron for r by Theorem 6.7.1. Thus 
r is a discrete reflection group with respect to the polyhedron P. 0 
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Example 1. Let 

P = {x E sn : x. ~ 0 for i = 1, ... , n + I}. 

Then P is a regular n-simplex in sn whose dihedral angle is 7r /2. Therefore, 
the group r generated by the reflections in the sides of P is a discrete reflec­
tion group with respect to P by Theorem 7.1.3. Obviously, the tessellation 
{gP : g E r} of sn contains 2n+1 simplices, and so r has order 2n+l. It 
is worth noting that the vertices of the regular tessellation {gP : g E r} of 
sn are the vertices of an (n + I)-dimensional, Euclidean, regular, polytope 
inscribed in sn. 

Example 2. Let P be an n-cube in En. Then P is a regular polytope in 
En whose dihedral angle is 7r /2. Therefore, the group r generated by the 
reflections in the sides of P is a discrete reflection group with respect to P 
by Theorem 7.1.3. 

Example 3. Form a cycle of hyperbolic triangles by reflecting in the 
sides of a 30° - 45° hyperbolic right triangle, always keeping the vertex at 
the 30° angle fixed. As 30° = 360° /12, there are 12 triangles in this cycle, 
and their union is a hyperbolic regular hexagon P whose dihedral angle is 
90°. See Figure 7.1.2. Let r be the group generated by the reflections in 
the sides of P. Then r is a discrete reflection group with respect to P by 
Theorem 7.1.3. 

Figure 7.1.2. A cycle of twelve 30° - 45° hyperbolic right triangles 
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Example 4. Let D(r) be a regular dodecahedron inscribed on the sphere 
S(O,r) in E3 with 0 < r < 1. Then D(r) is a hyperbolic regular dodecahe­
dron in the projective disk model D3 of hyperbolic 3-space. Let O(r) be the 
hyperbolic dihedral angle of D(r). When r is small, O(r) is approximately 
equal to but less than the value of the dihedral angle of a Euclidean regular 
dodecahedron 0(0), which is approximately 116.6°. As r increases to 1, the 
angle O(r) decreases continuously to its limiting value 0(1), the dihedral 
angle of a regular ideal dodecahedron in D3. See Figure 7.1.3. 

Figure 7.1.3. Four views of an expanding, hyperbolic, regular, dodecahedron 
centered at the origin in the conformal ball model of hyperbolic 3-space 
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Figure 7.1.4. A regular ideal dodecahedron in U 3 with a vertex at 00 

To find the value of 0(1), we consider a regular ideal dodecahedron in 
the upper half-space model U3 of hyperbolic 3-space with an ideal vertex 
at 00. Since the dodecahedron is regular, the link of the ideal vertex at 00 

is an equilateral triangle. Therefore 0(1) = 60°. See Figure 7.1.4. 
Now as OCr) is a continuous function of r, taking values in the interval 

[0(1),0(0)], there is a unique value ofr such that OCr) = 90°. Let P = D(r) 
for this r. Then P is a hyperbolic regular dodecahedron whose dihedral 
angle is 7r /2. Let r be the group generated by the reflections in the sides 
of P. Then r is a discrete reflection group with respect to P by Theorem 
7.1.3. 

Example 5. By the previous discussion, a regular ideal dodecahedron 
P in H3 has dihedral angle 7r /3. Let r be the group generated by the 
reflections in the sides of P. Then r is a discrete reflection group with 
respect to P by Theorem 7.1.3. 

Example 6. The 24 points ±e., for i = 1,2,3,4, and (±~, ±~, ±~, ±~) of 
8 3 are the vertices of a regular 24-cell in E4. Let P be the corresponding 
regular ideal 24-cell in B4. The link of an ideal vertex of P is a cube. 
Therefore, the dihedral angle of P is 7r /2. Let r be the group generated by 
the reflections in the sides of P. Then r is a discrete reflection group with 
respect to P by Theorem 7.1.3. 
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Let r be a discrete reflection group with respect to a polyhedron P. Then 
all the dihedral angles of P are submultiples of 71' by Theorem 7.1.2. Let 
{8,} be the sides of P and for each pair of indices i, j, let k'J = 71'/ e( 8" 8J). 
Let F be the group freely generated by the symbols {8,} and let g8, be the 
reflection of X in the hyperplane (8,). Then the map ¢ : F ----> r, defined 
by ¢(8,) = g8" is an epimorphism. By Theorem 7.1.2, the kernel of ¢ 
contains the words (8,8J )k!J whenever k'J is finite. 

Let G be the quotient of F by the normal closure of the words 

{(8,8J)k'J : k'J is finite}. 

Then ¢ induces an epimorphism 'ljJ : G ----> r. We shall prove that 'ljJ is an 
isomorphism when P has finitely many sides and finite volume. This fact 
is usually expressed by saying that 

is a group presentation for r under the mapping 8, f-+ g8,. Here it is 
understood that (8,8J )k'J is to be deleted when k'J = 00. 

Theorem 7.1.4. Let r be a dzscrete reflectwn group wzth respect to a 
finite-sided polyhedron P zn X of finite volume. Let {8,} be the set of 
sides of P and for each pair of zndzces i, j, let k'J = 71' /e(8" 8J). Then 

(8,; (8,8J )k!J) 

is a group presentation for r under the mapping 8, f-+ g8,. 

Proof: The proof follows the same outline as the proof of Theorem 7.1.3, 
and so only the necessary alterations will be given. The start of the in­
duction requires proof. If n = 1, then P is a geodesic segment and r is 
obviously a dihedral group of order 2k12 . It is then an exercise in group 
presentations to show that r has the presentation 

(81 ,82 ; 8f, 8~, (8182 )k12 ). 

The main alteration in the proof of Theorem 7.1.3 is to replace r by G 
in the construction of the covering space X. Everything goes through as 
before except where the induction hypothesis is used in steps (6) and (14). 
Here one draws the additional conclusion that r(x) has the presentation 

(8, E S(x); (8,8J )k'J). 

Since the subgroup G(x) of G generated by the set {8, : 8, E S(x)} satisfies 
the same relations and maps onto r(x), we deduce that G(x) has the same 
presentation. In particular, the mapping 8, f-+ g8, induces an isomorphism 
from G(x) onto r(x). Now everything goes through as before. The final 
conclusion is that the mapping 8, f-+ g8, induces an isomorphism from G 
to r. D 
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Coxeter Groups 

Definition: A Coxeter group G is an abstract group defined by a group 
presentation of the form (8,; (8,8) )k'3), where 

(1) the indices i, j vary over some countable indexing set I; 

(2) the exponent k,) is either a positive integer or 00 for each i,j; 

(3) k,) = k),; 

(4) k .. = 1 for each i; 

(5) k,) > 1 ifi =fj; and 

(6) if k,) = 00, then the relator (8,8) )k'3 is deleted. 

Note that if i =f j, then the relator (8)8,)k3' is derivable from the relators 
8;,8;, and (8,8) )k'3; and therefore only one of the relators (8,8) )k'3 and 
(8)8,)k3' is required and the other may be deleted. 

Let G = (8., i E I; (8,8))k'3) be a Coxeter group. The Coxeter graph of 
G is the labeled graph with vertices I and edges 

((i,j) : k,) > 2}. 

Each edge (i, j) is labeled by k,). For simplicity, the edges with k,) = 3 are 
usually not labeled in a representation of a Coxeter graph. 

Example 7. The Coxeter group G = (81 ; 8D is a cyclic group of order 
two. Its Coxeter graph is a single vertex. 

Example 8. The Coxeter group G(k) = (81,82;8r,8~,(8182)k) is a 
dihedral group of order 2k. Its Coxeter graph, when k > 2, is a single edge 
with the label k. 

Let r be a discrete reflection group with respect to a finite-sided poly­
hedron P of finite volume. Let {8,} be the set of sides of P, and for each 
pair of indices i,j, let k,) = n/()(8" 8)). Then the Coxeter group 

G = (8,; (8,8))k'3) 

is isomorphic to r by Theorem 7.1.4. Thus r is a Coxeter group. 

Example 9. Let r be the group generated by the reflections in the sides 
of a rectangle P in E2. By Theorem 7.1.4, the group r has the presentation 

(81 ,82 ,83 ,84; 8;, (8,8,+d2 i mod 4). 
The Coxeter graph of r consists of two disjoint edges labeled by 00. 
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A Coxeter group G is said to be irreduczble or reducible according as its 
Coxeter graph is connected or disconnected. We leave it as an exercise to 
show that a reducible Coxeter group is the direct product of the irreducible 
Coxeter groups represented by the connected components of its graph. For 
example, the discrete reflection group in Example 9 is the direct product of 
the two infinite dihedral groups (81, 83 ; 8~, 8~) and (82 , 84 ; 8~, 8J). This 
is not surprising, since a rectangle in E2 is the cartesian product of two line 
segments. In general, the geometric basis for the direct product decompo­
sition of a reducible discrete reflection group is the fact that orthogonal 
reflections commute. 

Exercise 7.1 

1. Let r be a discrete reflection group with respect to a polyhedron P. Prove 
that P is the Dirichlet polyhedron for r with center any point of po. 

2. Let r be a discrete reflection group with respect to a polyhedron P. Prove 
that X /r is isometric to P. 

3. Let r be the group generated by two reflections of E1 about the endpoints 
of a line segment. Show that r has the presentation (S, T; S2, T2). 

4. Let k be a positive integer or 00. Prove that the element ST generates a 
cyclic normal subgroup of order k and index 2 in the dihedral group 

Interpret this fact geometrically in terms of reflections of S1 or E1. 

5. Prove that a reducible Coxeter group G is the direct product of the ir­
reducible Coxeter groups represented by the connected components of the 
Coxeter graph of G. 

6. Prove that the group r in Example 1 is an elementary 2-group of rank n + 1. 

7. Show that the Coxeter graph of the group r in Example 3 is connected. 

8. Let P be an n-dimensional convex polyhedron in sn all of whose dihedral 
angles are submultiples of 1r. Prove that P has at most n + 1 sides. 

9. Let P be an n-dimensional convex polyhedron in En all of whose dihedral 
angles are submultiples of 7r. Prove that P has at most 2n sides. 

10. Let r be a discrete reflection group with respect to a finite-sided polyhedron 
P in X of finite volume and let S and T be distinct nonadjacent sides of P. 
Prove that the element gSgT has infinite order in r. 

11. Prove that Theorem 7.1.1 is still true without the hypothesis that P has 
finite volume. 

12. Prove that Theorem 7.1.3 is still true without the hypothesis that P has 
finite volume. 

13. Prove that Theorem 7.1.4 is still true without the hypothesis that P has 
finite volume. 
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§7.2. Simplex Reflection Groups 

Throughout this section, X = sn, En, or H n with n > O. Let..6. be an 
n-simplex in X all of whose dihedral angles are submultiples of 7r. By 
Theorem 7.1.3, the group r generated by the reflections of X in the sides 
of ..6. is a discrete group of isometries of X. The group r is called an 
n-szmplex reflectwn group. 

We shall also include the case of a O-simplex ..6. in Sa. We regard the 
antipodal map a of Sa to be a reflection of Sa. Since {..6.,oo(..6.)} is a 
tessellation of So, we also call the group r generated by a, a O-simplex 
reflection group. The Coxeter graph of r is defined to be a single vertex. 

Assume that n = 1. Then ..6. is a geodesic segment in X. Clearly r is a 
dihedral group of order 2k, with k > 1, where 7r /k is the angle of ..6.. The 
Coxeter graph of r is either two vertices if k = 2 or an edge labeled by k if 
k > 2. If X = SI, then k is finite, whereas if X = El or HI, then k = 00. 

Assume that n = 2. Then there are integers a, b, c, with 2 :::; a :::; b :::; c, 
such that..6. is a triangle T(a,b,c) in X whose angles are 7r/a, 7r/b, 7r/c. 
Note that T(a, b, c) is determined up to similarity in X by the integers a, b, c. 
The group r generated by the reflections in the sides of T(a, b, c) is denoted 
by G(a, b, c). Let Go(a, b, c) be the subgroup of G(a, b, c) of orientation 
preserving isometries. Then Go(a, b, c) has index two in G(a, b, c). The 
group Go(a, b, c) is called a triangle group, whereas G(a, b, c) is called a 
triangle reflection group. 

Spherical Triangle Reflection Groups 

Assume that X = S2. By Theorem 2.5.1, we have 
7r 7r 7r - + - + - > 7r. 
abc 

Hence, the integers a, b, c satisfy the inequality 

1 1 1 
-+-+->1. 
abc 

There are an infinite number of solutions of the form 
111 
2 + 2 + ~ > 1, 

and only three more solutions, 

1 1 1 
2 + 3 + 3> 1, 

111 
2 + 3 + 4> 1, 

111 
2+3+5>1. 

The Coxeter graph of the group G(2, 2, 2) consists of three vertices, and 
so G(2, 2, 2) is an elementary 2-group of order 8. The Coxeter graph of 
G(2, 2, c), for c > 2, is the disjoint union of a vertex and an edge labeled 
by c. Hence G(2, 2, c) is the direct product of a group of order 2 and a 
dihedral group of order 2c. Thus G(2, 2, c) has order 4c. The tessellation of 
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8 2 generated by reflecting in the sides of T(2, 2, 5) is illustrated in Figure 
7.2.1(a). 

By Theorem 2.5.5, the area of T(2, 3, 3) is 

7r 7r 7r 7r 
-+-+--7r=-. 
233 6 

As the area of 8 2 is 47r, the tessellation 

{gT(2, 3, 3) : g E G(2, 3, 3)} 

contains 24 triangles, and so G(2, 3, 3) has order 24. The tessellation can 
be partitioned into 4 cycles, each consisting of 6 triangles cycling about 
a 60° vertex. The union of each of these cycles is a spherical equilateral 
triangle. See Figure 7.2.1(b). This gives a regular tessellation of 8 2 by 4 
equilateral triangles. It is clear from the geometry of these two tessella­
tions that G(2, 3, 3) is the group of symmetries of the regular tetrahedron 
inscribed in 8 2 with its vertices at the corners of the 4 equilateral trian­
gles. Consequently G(2, 3, 3) is a symmetric group on four letters. The 
triangle group Go(2, 3, 3) is an alternating group on four letters called the 
tetrahedral group. The Coxeter graph of G(2, 3, 3) is 

• • • 

The area of T(2, 3, 4) is 7r /12. Therefore, the tessellation 

{gT(2, 3, 4) : g E G(2, 3, 4)} 

contains 48 triangles, and so G(2, 3, 4) has order 48. The tessellation can 
be partitioned into 6 cycles, each consisting of 8 triangles cycling about 
a 45° vertex. The union of each of these cycles is a spherical regular 
quadrilateral. See Figure 7.2.1(c). This gives a regular tessellation of 8 2 

by 6 quadrilaterals. It is clear from the geometry of these two tessellations 
that G(2, 3, 4) is the group of symmetries of the cube inscribed in 8 2 with 
its vertices at the corners of the 6 quadrilaterals. The above tessellation of 
8 2 by 48 triangles can also be partitioned into 8 cycles, each consisting 
of 6 triangles cycling about a 60° vertex. The union of each of these 
cycles is a spherical equilateral triangle. See Figure 7.2.1(c). This gives 
a regular tessellation of 8 2 by 8 equilateral triangles. It is clear from the 
geometry of these two tessellations that G(2, 3, 4) is the group of symmetries 
of the regular octahedron inscribed in 8 2 with its vertices at the corners of 
the 8 equilateral triangles. Now since a regular octahedron is antipodally 
symmetric, we have 

G(2,3,4) = {±1} x Go(2,3,4). 

The triangle group Go(2, 3, 4) is a symmetric group on four letters called 
the octahedral group. The Coxeter graph of G(2, 3, 4) is 

4 
• • • 
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The area of T(2, 3, 5) is 7r /30. Therefore, the tessellation 

{gT(2, 3, 5) : 9 E G(2, 3, 5)} 

contains 120 triangles, and so G(2, 3, 5) has order 120. The tessellation 
can be partitioned into 12 cycles, each consisting of 10 triangles cycling 
about a 36° vertex. The union of each of these cycles is a spherical regular 
pentagon. See Figure 7.2.1(d). This gives a regular tessellation of 8 2 by 
12 pentagons. It is clear from the geometry of these two tessellations that 
G(2, 3, 5) is the group of symmetries of the regular dodecahedron inscribed 
in 8 2 with its vertices at the corners of the 12 pentagons. The above 
tessellation of 8 2 by 120 triangles can also be partitioned into 20 cycles, 
each consisting of 6 triangles cycling about a 60° vertex. The union of 
each of these cycles is a spherical equilateral triangle. See Figure 7.2.1( d). 
This gives a regular tessellation of 8 2 by 20 equilateral triangles. It is clear 
from the geometry of these two tessellations that G(2, 3, 5) is the group of 
symmetries of the regular icosahedron inscribed in 8 2 with its vertices at 
the corners of the 20 equilateral triangles. Now since a regular icosahedron 
is antipodally symmetric, we have 

G(2, 3, 5) = {±1} x Go(2, 3, 5). 

The triangle group Go(2, 3, 5) is an alternating group on five letters called 
the ~cosahedral group. The Coxeter graph of G(2, 3, 5) is 

• • 5 • 

Euclidean Triangle Reflection Groups 

Now assume that X = E2. Then we have 
7r 7r 7r - + - + - = 7r. 
abc 

Hence, the integers a, b, c satisfy the equation 

1 1 1 
-+-+-=1. 
abc 

There are exactly three solutions, 

1 1 1 1 1 1 
3 + 3 + 3 = 1, 2 + 4: + 4: = 1, 

1 1 1 
2+3+6=1. 

Note that T(3, 3, 3) is an equilateral triangle, T(2, 4, 4) is an isosceles right 
triangle, and T(2, 3, 6) is a 30°-60° right triangle. The tessellation of 
E2 generated by reflecting in the sides of T(a, b, c) in each of the three 
cases is illustrated in Figure 7.2.2. The Coxeter graphs of the groups 
G(3, 3, 3), G(2, 4, 4), and G(2, 3, 6) are, respectively, 

4 4 • • • • • 6 • 
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(a) (b) 

(c) (d) 

Figure 7.2.1. Tessellations of 8 2 obtained by reflecting in the sides of a triangle 
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Figure 7.2.2. Tessellations of E2 obtained by reflecting in the sides of a triangle 
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Hyperbolic Triangle Reflection Groups 

Now assume that X = H2. By Theorem 3.5.1, we have 

7r 7r 7r 
- + - + - < 7r. 
abc 

Hence, the integers a, b, c satisfy the inequality 

1 1 1 
-+-+-<1. 
abc 

There are an infinite number of solutions to this inequality. Each solution 
determines a hyperbolic triangle T(a, b, c) and a corresponding reflection 
group G(a,b,c). Of all these triangles, T(2, 3, 7) has the least area, 7r/42. 

The Coxeter graph of a hyperbolic reflection group G(a, b, c) is either 

b c • • • or 

according as a = 2 or a > 2. Figure 7.2.3 illustrates the tessellation of B2 
generated by reflecting in the sides of T(2, 4, 6). Note that this tessellation 
is the underlying geometry of Escher's circle print in Figure 1.2.5. 

Figure 7.2.3. Tessellation of B2 obtained by reflecting in the sides of T(2, 4, 6) 
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Theorem 7.2.1. Let a, b, c, a', b', c' be mtegers such that 

2 :::; a :::; b :::; c and 2:::; a' :::; b' :::; c'. 

Then the triangle reflection groups G(a, b, c) and G(a', b', c') are tsomorphic 
if and only if (a, b, c) = (a', b', c'). 

Proof: Suppose that G(a,b,c) and G(a', b', c') are isomorphic. Assume 
first that G(a,b,c) is finite. Then G(a,b, c) and G(a', b', c') are isomor­
phic spherical triangle reflections groups. From the description of all the 
spherical triangle reflection groups, we deduce that (a, b, c) = (a', b', c'). 
Thus, we may assume that G(a, b, c) is infinite. Then G(a, b, c) is either 
a Euclidean or hyperbolic triangle reflection group. In either case, every 
element of finite order in G(a, b, c) is elliptic. 

By Theorem 6.5.6, every element of finite order in G(a, b, c) is conjugate 
in G(a, b, c) to an element that fixes a point on the boundary ofthe triangle 
T(a, b, c). Let x, y, z be the vertices of T(a, b, c) corresponding to the angles 
7r I a, 7r Ib, 7r I c. In view of the fact that 

{gT(a, b, c) : 9 E G(a, b, c)} 

is a tessellation of X, the stabilizer subgroup of each side of T(a, b, c) is the 
group of order two generated by the reflection in the corresponding side of 
T(a, b, c). Furthermore, the stabilizer subgroup at the vertex x, y, or z is a 
dihedral group of order 2a, 2b, or 2c, respectively. 

Let v be an arbitrary vertex of T(a, b, c) and let Gv be the stabilizer 
subgroup at v. Then 

{gT(a, b, c) : 9 E Gv} 

forms a cycle of triangles around the vertex v. Consequently, no two vertices 
of T(a, b, c) are in the same orbit. Therefore, two elements in Gx U Gy U Gz 

are conjugate in G(a, b, c) if and only if they are conjugate in the same 
stabilizer Gv, since gGvg-l = Ggv . Hence, the integers {2, a, b, c} are char­
acterized by G(a, b, c) as the orders of the maximal finite cyclic subgroups 
of G(a, b, c). As this set is invariant under isomorphism, we have that 
{2, a, b, c} = {2, a', b', c'}. Therefore (a, b, c) = (a', b', c'). 0 

Barycentric Subdivision 

Let P be an n-dimensional polytope in X. The barycentric subdtvtswn of 
P is the subdivision of Pinto n-simplices whose vertices can be ordered 
{vo, ... ,vn } so that Vk is the centroid of a k-face Fk of P for each k, and Fk 

is a side of Fk+1 for each k = 0, ... ,n - 1. In particular, all the simplices 
of the barycentric subdivision of P share the centriod of P as a common 
vertex, and the side of such a simplex opposite the centroid of P is part 
of the barycentric subdivision of a side of P. For example, Figure 7.1.2 
illustrates the barycentric subdivision of a regular hexagon in B2. 
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Tetrahedron Reflection Groups 

We now consider some examples of tetrahedron reflection groups deter­
mined by regular tessellations of 8 3 , E 3, and H3. 

Example 1. Let P be a regular Euclidean 4-simplex inscribed in 8 3 . 

Then radial projection of OP onto 8 3 gives a regular tessellation of 8 3 

by five tetrahedra. Now since three of these tetrahedra meet along each 
edge, their dihedral angle is 21f /3. Let T be one of these tetrahedra. Then 
barycentric subdivision divides T into 24 congruent tetrahedra. Let D. be 
one of these tetrahedra. Then the dihedral angles of D. are all submultiples 
of 1f as indicated in Figure 7.2.4. Therefore, the group r generated by 
reflecting in the sides of D. is a discrete reflection group with respect to D. 
by Theorem 7.1.3. It is clear from the geometry of D. and T that r is the 
group of symmetries of P. Therefore r is a symmetric group on five letters, 
and so r has order 5! = 120. The Coxeter graph of r is 

• • • • 

Example 2. Let P be a cube in E3. The dihedral angle of P is 1f /2. 
Observe that barycentric subdivision divides Pinto 48 congruent tetrahe­
dra. Let D. be one of these tetrahedra. Then the dihedral angles of D. are 
all submultiples of 1f as indicated in Figure 7.2.5. Therefore, the group r 
generated by reflecting in the sides of D. is a discrete reflection group with 
respect to D. by Theorem 7.1.3. It is worth noting that r is the group of 
symmetries of the regular tessellation of E3 by cubes obtained by reflecting 
in the sides of P. The Coxeter graph of r is 

• 4 4 • • • 
Example 3. By the argument in Example 4 of §7.1, there is a hyper­
bolic regular dodecahedron P whose dihedral angle is 21f /5. Observe that 
barycentric subdivision divides Pinto 120 congruent tetrahedra. Let D. be 
one of these tetrahedra. Then the dihedral angles of D. are all submultiples 
of 1f as indicated in Figure 7.2.6. Therefore, the group r generated by 
reflecting in the sides of D. is a discrete reflection group with respect to D. 
by Theorem 7.1.3. It is worth noting that r is the group of symmetries of 
the regular tessellation of H3 by dodecahedra obtained by reflecting in the 
sides of P. The Coxeter graph of r is 

5 • • 
5 • • 
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Figure 7.2.4. A spherical tetrahedron with dihedral angles submultiples of 7r 

Figure 7.2.5. A Euclidean tetrahedron with dihedral angles submultiples of 7r 

Figure 7.2.6. A hyperbolic tetrahedron with dihedral angles submultiples of 7r 
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Bilinear Forms 

We now review some of the elementary theory of bilinear forms. Recall 
that a bzlinear form on a real vector space V is a function from V x V to 
lR, denoted by (v, w) f---+ (v, WI, such that for all v, W in V, 

(1) (v, I and ( ,W I are linear functions from V to lR (bilinearity); 
(2) (v, wI = (w, vI (symmetry). 

Moreover, ( , I is said to be nondegenerate if and only if 
(3) if v-=/=- 0, then there is a W -=/=- 0 such that (v, WI -=/=- 0 (nondegeneracy). 

Remark: A nondegenerate bilinear form on V is the same as an inner 
product on V. 

A bilinear form ( , I on V is said to be positzve semzdejinzte if and only 
if 

(4) (v, vI ?: 0 for all v in V. 
Finally, a bilinear form ( , I on V is said to be positzve dejinite if and only 
if 

(5) (v, vI > 0 for all nonzero v in V. 
N ow suppose that ( , I is a bilinear form on lRn. The matrzx A of ( , I 

is the real n x n matrix (a,]) defined by 

Observe that A is a symmetric matrix. We say that A is posztive dejinzte, 
positive semzdejinzte, or nondegenerate according as ( , I has the same 
property. By the Gram-Schmidt process, there is a basis Ul, ... ,Un of lRn 

such that 

(U21 U]I 0 ifi-=/=-j, 

{ 1 if 1 :::; i :::; p, 

(u" U,I -1 if p + 1 :::; i :::; q, 
0 if q + 1 :::; i :::; n, 

where p, q are integers such that 0 :::; p :::; q :::; n. Note that A is positive 
(semi) definite if and only if p = n (p = q), and A is nondegenerate if and 
only if q = n. Furthermore q is equal to the rank of A. The pair (p, q - p) 
is called the type of A. 

Given any real symmetric n x n matrix A, we define the bilznear form 
of A on lRn by the formula 

(X,YI = X· Ay. 

Clearly, A is the matrix of the bilinear form of A. 
The null space of a bilinear form ( , I on lRn is the set 

{y E lRn : (x,YI = 0 for all x in lRn}. 

Clearly, the null space of the bilinear form of a matrix A is the null space 

of A. 
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Definition: The Gram matrix of an n-simplex 6. in X whose sides are 
SI, ... , Sn+l is the (n+1)x(n+1) matrix whose ijth entry is - cosB(S" SJ). 

Th 7 2 2 L t B f ,; J. 1 n + 1 be ~eal numbers such that eorem . ., e 'J' Jor", = , ... , , ' 

(1) B'J = BJ, for all i,j, 

(2) Bn = 7r for each i, and 

(3) B'J zs zn the interval (0, 7r /2] if i #- j. 

Let A be the (n + 1) x (n + 1) matnx whose ij th entry zs - cos B'J and 
let A, be the n x n matnx obtained from A by deletzng the ith row and ith 
column. Then there zs an n-simplex 6. zn ezther sn, En, or H n whose Gram 
matrix is A zf and only if A, zs positive definite for each i = 1, ... ,n + 1. 
Furthermore 6. zs 

(1) spherzcal zf and only zf A zs positive definite, 

(2) Euclzdean if and only zf A is of type (n,O), 

(3) hyperbolic zf and only if A zs of type (n, 1). 

Proof: (1) Suppose that 6. is an n-simplex in sn with sides SI, ... , Sn+l 
such that B(S" SJ) = BtJ for all i, j = 1, ... ,n + 1. Let (S,) be the hyper­
plane of sn containing S, and let ~ be the n-dimensional vector subspace 
of JR.n+l such that 

Let H2 be the half-space of JR.n+l bounded by ~ and containing 6.. Then 

6. = (:6~ H2) n sn. 

Let v, be the unit normal of ~ directed into H 2 • Then 

H, = {x E JR.n+l : X· v, ~ O}. 

Let B be the (n + 1) x (n + 1) matrix whose jth column vector is vJ . Then 
the orthogonal complement of the column space of B is the set 

{x E JR.n+l : x . V t = 0 for i = 1, ... , n + I}. 

But this set is n~!II~ = {O}. Therefore VI, ... , Vn+l form a basis of JR.n+l. 
Thus B is nonsingular. 

Next, define a positive definite inner product in JR.n+l by the formula 

(x,y) = Bx· By. 

Then for each i, j, we have 

(e"eJ ) 
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Therefore A is the matrix of this inner product, and so A is positive definite. 
Furthermore, A, is positive definite for each i = 1, ... ,n + 1. 

Conversely, suppose that A is positive definite. Then there is an or­
thonormal basis Ul, ... , Un+l of IRn+ l with respect to the inner product of 
A. Let B be the (n + 1) x (n + 1) matrix whose jth column vector is u). 
Then Bt AB = I. Let e = B- 1 . Then A = etc. Let v) be the jth column 
vector of e. Then VI, ... ,Vn+l form a basis of IRn+l and A = (v, . v)). Let 

Q = {y E IRn+ l : y, 2: 0 for i = 1, ... , n + I}. 

Then the set Q is an (n + I)-dimensional convex polyhedron in E n +l with 
n + 1 sides and one vertex at the origin. 

Now let 

H, {x E IRn+l : v, . x 2: O} 

and 

Observe that 

e t G~: H,) c Q. 

Let y be an arbitrary vector in Q. Set x = Bty. Then etx = y. Hence 
v, . x 2: 0 for all i, and so x is in n~11 H,. Therefore 

e t G~: H,) = Q. 

Hence n~!11 Hi is an (n + I)-dimensional convex polyhedron in En+l with 
n + 1 sides 

~ n C~: HJ) for i = 1, ... ,n + 1 

and exactly one vertex at the origin. Therefore 

~= G~: H,) nsn 
is an n-dimensional convex polyhedron in sn with sides 

( n+l ) n £ . 1 S, = ~ n n H) n S or ~ = 1, ... ,n + . 
)=1 

Moreover ~ is contained in an open hemisphere of sn by induction on n 
and Theorem 6.3.8. Therefore ~ is an n-simplex in sn by Theorem 6.4.4. 
Furthermore, for all i, j, we have 

8(S" S)) = 7r - 8(v"v)) = 7r - (7r - 8,)) = 8'J' 

(2) Suppose that ~ is an n-simplex in En with sides SI, ... ,Sn+l such 
that 8( S" S)) = 8,) for all i, j = 1, ... , n + 1. Let P, be the hyperplane of 
IRn containing S, and let H, be the half-space of IRn bounded by P, and 
containing ~. Then 
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Let v, be the unit normal of Pz directed into Hz. Then for all i,j, we have 

V,· vJ = cos(7r - e'J) = - cose'J. 

By translating ~, if necessary, we may assume that the vertex of ~ 
opposite the side SJ is the origin. Then the set 

( n+1 ) sn-I n H, n 
1,=1 
FFJ 

is an (n - 1 )-simplex in sn-I. By the argument in (1), we have that 
VI, ... ,1IJ' ... ,Vn+1 form a basis ofl~n and AJ is positive definite; moreover, 
this is true for each j = 1, ... ,n + 1. 

Let B be the nX (n+l) matrix whose jth column is vJ for j = 1, ... , n+1. 
Define a bilinear form on ~n+1 by the formula 

(x,y) = Bx· By. 

Then the matrix of this form is A. Moreover, the null space of this form 
is the null space of B. As the rank of B is n, the null space of B is 
I-dimensional. Therefore, the null space of the bilinear form of A is 1-
dimensional. Hence A is of type (n, 0). 

Conversely, suppose that A is of type (n,O) and A, is positive definite 
for each i = 1, ... ,n + 1. Consider the bilinear form of A defined by 

(x,y) = x· Ay. 

Clearly, the null space of the form is the orthogonal complement in ~n+1 
of the column space of A. Let x be a nonzero vector in the null space of 
A. Then each component x, of x is nonzero, since A, is positive definite 
for each i = 1, ... , n + 1. Define y and Z in ~n+1 by 

{ x, if x, > 0 y, 
0 if x, < 0, 

{ x, if x, < 0 
Z, 

0 if x, > O. 

Then x = y + z. As (x, y) = 0, we have 

Now observe that 

(y, y) + (y, z) = o. 

(y,z) = La'Jy,zJ. 
'ieJ 

As a'J ::; 0 and y,zJ ::; 0 for each i =I- j, we have that (y, z) 2': O. Therefore 
(y, y) = 0, since A is positive semidefinite. If z =I- 0, then some component 
of y is zero, and so y = 0, since A, is positive definite for each i. Hence, 
either y = 0 or z = o. Thus, all the components of x have the same sign. 
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Now as A is of type (n, 0), there is a nonsingular (n+ 1) x (n+ 1) matrix 
G such that 

Let vJ be the jth column vector of G and let vJ be the vector in lRn obtained 
by dropping the last coordinate of vJ • Then A = (v • . vJ ). 

Let G be the n x n matrix whose jth column vector is vJ • Then 

Ge • . GeJ = v • . vJ • 

Hence, the restriction of the bilinear form of A to ]Rn is given by 

(x,y) = Gx· Gy. 

As An+l is positive definite, the matrix G must be nonsingular. Therefore 
VI, ... ,vn form a basis of lRn. Furthermore 

v. . v. = - cos 1T = 1 for each i = 1, ... , n + 1. 

Now let 

and 
v;, {xElRn:V.·x=O}. 

Let B be the (n + 1) x n matrix whose ith row is v •. As BBt = A, the 
column space of B is the column space of A. Suppose that x is in n~:l H •. 
Then v • . x 2: 0 for each i = 1, ... , n + 1. Hence, each component of Bx 
is nonnegative. Let y be a nonzero vector in the null space of A. Then y 
is orthogonal to the column space of A. Hence (Bx) . y = o. As all the 
components of y have the same sign, we deduce that Ex = O. Therefore x 
is in n~:tv. = {O}. Thus n~:11 H, = {O}. 

Let 
Ha = {x E lRn : Vn+l . x 2: -I} 

and let 

By applying the linear isomorphism Gt , we may assume, without loss of 
generality, that v, = e. for each i = 1, ... ,n. Then for each j = 1, ... ,n, 

Vn+l . eJ = Vn+l . vJ = - cos 8n+l,) :::; O. 

Now if Vn +l . eJ = 0, then e) is in n~:l H. = {O}, which is a contradiction. 
Hence, all the coordinates of Vn +l are negative. Therefore,6. is the n­

simplex bounded by the n coordinate hyperplanes of lRn and the hyperplane 

Va = {x E]Rn : (-vn+d· x = I}. 
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Returning to the general case, we find that the n + 1 sides of the n-simplex 
Do are 

8, = V; n ( n HJ) 
J=O 

for z = 0, ... , n, 

and for all i,j mod (n + 1), we have ()(8" 8J ) = ()'J. 

(3) Suppose that Do is an n-simplex in Hn with sides 8 1 , ... ,8n +l such 
that ()(8" 8J ) = ()'J for all i, j = 1, ... ,n + 1. Let (8,) be the hyperplane 
of H n containing 8, and let V; be the n-dimensional, time-like, vector 
subspace of jRn,l such that 

(8,) = V; n Hn. 

Let H, be the half-space of jRn+l bounded by V; and containing Do. Then 

Do = (:6; H,) n Hn. 
Let v, be the unit Lorentz normal of V; directed into H,. Then 

H, = {x E jRn,l : x 0 v, ~ O}. 

Let B be the (n + 1) x (n + 1) matrix whose jth column vector is vJ • Then 
the Lorentz orthogonal complement of the column space of B is the set 

{xEjRn,l:xov,=O for i=1, ... ,n+1}. 

But this set is n~!llv; = {O}. Therefore Vl, ... , Vn +1 form a basis of jRn+l. 

Thus B is nonsingular. 
Next, define a bilinear form on jRn+l of type (n, 1) by the formula 

(x,y) = Bx 0 By. 

Then for all i, j, we have 

(e" eJ ) 

v, 0 vJ 

cos( 7r - ()'J) = - cos ()'J. 

Hence A is the matrix of this form, and so A is of type (n, 1). 
Let Uk be the vertex of Do opposite the side 8 k and let rk be half the 

distance from Uk to 8 k in Hn. Then the set 

Do' = 8( Uk, rk) n Do 

is a spherical (n - 1 )-simplex with sides 

8~ = 8, n 8(uk,rk) for i =f. k. 

Furthermore, we have 

()(8~,8;) = ()(8,,8J ) for i,j =f. k. 

Therefore Ak is positive definite by (1) for each k = 1, ... ,n + 1. 
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Conversely, suppose that A is of type (n, 1) and A" is positive definite 
for each i = 1, ... , n+ 1. Let] be the diagonal (n+ 1) x (n+ 1) matrix with 
diagonal entries 1, ... , 1, -1. Then there is a nonsingular (n + 1) x (n + 1) 
matrix C such that A = Ct ]C. Let vJ be the jth column vector of C. 
Then VI, ... , Vn+l form a basis of jRn+l and A = (v" 0 vJ ). Let 

Q = {y E jRn+l : y" ~ 0 for i = 1, ... , n + I}. 

Then the set Q is an (n + I)-dimensional convex polyhedron in En+l with 
n + 1 sides and one vertex at the origin. 

Now let 

and 
~ {x E jRn,1 : V" 0 x = O}. 

Then H" is a half-space of jRn+l bounded by the n-dimensional vector 
subspace ~ of jRn+l. As before, we have 

Ct ] C~: H") = Q. 

Therefore n~!11 H" is an (n + I)-dimensional convex polyhedron in E n+1 

with n + 1 sides 

for i = 1, ... , n + 1 

and exactly one vertex at the origin. As 

V" 0 V" = - cos 7r = 1, 

we have that V" is space-like, and so ~ is time-like. Therefore, the set 

II = C~: H") n Hn 

is an n-dimensional convex polyhedron in H n with sides 

S" = ~ n (n~1 HJ) n Hn for i = 1, ... , n + 1. 
J=1 

Furthermore, for all i, j, we have 

()(S", SJ) 7r - ()( V" vJ) 

7r-(7r-()'J) = ()"J' 

It remains only to show that II is compact. Define a bilinear form on jRn+l 

by the formula 
(x, y) = Cx 0 Cy. 

Then the matrix of this form is A. As AJ is positive definite, this form is 
positive definite on the vector subspace (el, ... ,eJ , •.• ,en+l). Hence, the 
Lorentzian inner product on jRn,1 is positive definite on the vector subspace 

WJ = (Vl, ... ,VJ , ... ,Vn+l)' 
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Therefore WJ is space-like. Let 

n+l 
L J = n 11;. 

t=l 

'#J 

Then L is the I-dimensional vector subspace of ]Rn+l spanned by the 
J n+l" h 'd I-dimensional edge of n,=l H, that IS OpposIte t e SI e 

Observe that 

LJ ={XE]Rn,l :XOV,=O for all i=Jj}. 

Hence LJ is the Lorentz orthogonal complement of W J • Consequently LJ is 
time-like. Hence L J n H n is a vertex of .6.. Thus.6. has vertices L J n H n for 
j = 1, ... , n + 1. Therefore .6. is compact by induction on n and Theorem 
6.3.7. Thus .6. is an n-simplex in Hn. This completes the proof of (3). 

In order to complete the proof, we need to prove that if A, is positive 
definite for each i = 1, ... , n + 1, then A is either positive definite or of 
type (n, 0) or (n, 1). This is left as an exercise for the reader. 0 

Classification of Simplex Reflection Groups 

Let r be the group generated by the reflections of X in the sides of an 
n-simplex.6. all of whose dihedral angles are submultiples of Jr. Let v be a 
vertex of .6. and let r v be the subgroup of r consisting of the elements of r 
fixing v. Then r v is a spherical (n - 1 )-simplex reflection group. Moreover, 
the subgraph of the Coxeter graph of r, obtained by deleting the vertex 
corresponding to the side of .6. opposite v and its adjoining edges, is the 
Coxeter graph of r v' By induction, every subgraph of the Coxeter graph 
of r obtained by deleting vertices and their adjoining edges is the Coxeter 
graph of a spherical simplex reflection group. 

The group r is said to be irreducible if and only if its Coxeter graph is 
connected. Suppose that r is irreducible. Then we can delete vertices and 
their adjoining edges from the Coxeter graph of r so that after each deletion 
we obtain a connected subgraph. Now the only labels on the irreducible 
spherical triangle reflection groups are 3, 4, and 5. Therefore, if n > 2, 
the Coxeter graph of r has only 3, 4, and 5 as possible labels. Hence, 
there are only finitely many possible Coxeter graphs of n-simplex reflection 
groups for each n > 2. In view of Theorem 7.2.2, it is straightforward to 
list all the possible Coxeter graphs of n-simplex reflections groups for a 
given n. Spherical and Euclidean n-simplex reflection groups exist in all 
dimensions n; however, hyperbolic n-simplex reflection groups exist only 
for dimensions n :::; 4. Figures 7.2.7-7.2.9 illustrate the Coxeter graphs of 
all the irreducible, simplex, reflection groups. 
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Figure 7.2.7. The irreducible, spherical, simplex, reflection groups 
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Figure 7.2.8. The Euclidean, simplex, reflection groups 
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Figure 7.2.9. The hyperbolic, simplex, reflection groups 
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Exercise 7.2 

1. Prove that Go(2, 3, 4) is a symmetric group on four letters and Go(2, 3, 5) is 
an alternating group on five letters. 

2. Prove that T(2, 3, 7) is the triangle of least hyperbolic area among all the 
hyperbolic triangles T(a, b, c). 

3. Prove that G(2, 4, 6) contains the group r in Example 3 of §7.1 as a subgroup 

of index 12. 

4. Let a, b, c, a', b', c' be integers such that 2 ::; a ::; b::; c and 2 ::; a' ::; b' ::; c'. 
Prove that the triangle groups Go (a, b, c) and Go (a' , b' , d) are isomorphic if 
and only if (a, b, c) = (a', b', c'). 

5. Let f, g, h be the reflections in the sides of T(a, b, c) opposite the angles 
Jr/a, Jr/b,Jr/c. Prove that Go(a,b,c) has the group presentation 

where u r-> gf and v r-> fh. 

6. Prove that the group of symmetries of an (n + I)-dimensional, Euclidean, 
regular polytope inscribed in sn is isomorphic to a spherical, n-simplex, 
reflection group. 

7. Prove the regular tessellations of sn correspond under radial projection to 
the (n + I)-dimensional, Euclidean, regular polytopes inscribed in sn. 

8. Prove that the group of symmetries of a regular tessellation of X is an n­
simplex reflection group. 

9. Let A be as in Theorem 7.2.2 and suppose that A, is positive definite for 
each i = 1, ... , n + 1. Prove that A is either positive definite or of type (n, 0) 
or (n, 1) according as det A is positive, zero, or negative. 

10. Prove that every Euclidean or hyperbolic simplex reflection group is irre­
ducible. 

11. Prove that every hyperbolic n-simplex reflection group is nonelementary 
when n > 1. 

§7.3. Generalized Simplex Reflection Groups 

Let A be a generalized n-simplex in Hn all of whose dihedral angles are 
submultiples of Jr. Then the group r generated by the reflections of H n in 
the sides of A is a discrete group of isometries of H n by Theorem 7.1.3. 
The group r is called a (generalized) simplex reflection group. Figure 
7.3.1 illustrates the Coxeter graphs of the hyperbolic, noncom pact triangle, 
reflection groups. Figure 7.3.2 illustrates the tessellation of B2 obtained 
by reflecting in the sides of an ideal triangle. 
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00 00 

• • • 
00 

a>2 
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b 00 

• • • b>2 

00 

Figure 7.3.1. The hyperbolic, noncompact triangle, reflection groups 

Figure 7.3.2. Tessellation of B2 obtained by reflecting an ideal triangle 
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Example: Let r be the subgroup of PO(2, 1) of all the matrices with 
integral entries. Then r is a discrete subgroup of PO(2, 1), since r is a 
subgroup of the discrete group GL(3, Z). We now show that r is a discrete 
reflection group with respect to a triangle T(2, 4, 00) in H2. Clearly r acts 
on the set S = H2 n Z3. Observe that the point e3 = (0,0,1) is in S. The 
stabilizer of e3 in r is isomorphic to 0(2) n GL(2, Z). Hence r is a dihedral 
group of order eight generated by the 90° rotation about the z-axis and 
the reflection in the xz-plane. 

Observe that the points of S - {e3} nearest to e3 are the four points 
(±2, ±2, 3). Let A be the Lorentzian matrix that represents the unique 
reflection of H2 that maps e3 to (2,2,3). Then A = A-I = (JAJ)i. 
Therefore A is of the form 

(
a b 2) 
b c 2 . 

-2 -2 3 

From the information that the columns of A form a Lorentz orthonormal 
basis of ]R2,1 and det A = -1, we deduce that 

A = (=; =i ;). 
-2 -2 3 

Therefore A is in r. Observe that A fixes the plane z = x + y. Hence A 
fixes the hyperbolic line of H2 given by the conditions 

z = x + y, x2 + y2 - Z2 = -1, z > O. 

Substituting the first equation into the second, we see that A fixes the 
hyperbolic line of H2 given by the equation xy = 1/2. 

Next, observe that the reflections 

(x, y, z) ~ (x, -y, z) and (x, y, z) ~ (y, x, z) 

fix the hyperbolic lines y = 0 and x = y, respectively, of H2. Let T be the 
triangle in H2 defined by the inequalities 

xy S; 1/2, Y ~ 0, x ~ y. 

Then clearly T = T(2, 4, 00). See Figure 7.3.3. Let r l be the subgroup of 
r generated by the matrices representing the reflections in the sides of T. 
Then r l is a discrete reflection group with respect to T. 

Let g be an element of r. Then there is an f in r I such that f ge3 is in 
T. Clearlye3 is the only point of S contained in T. Therefore fge3 = e3. 
Thus f g is in the stabilizer of e3 in r. As the stabilizer of e3 in r is a 
subgroup of r l , we have that g is in rl. Therefore r = rl. Thus r is a 
triangle reflection group with respect to T(2,4,00). A nice consequence of 
this fact is that the set S of integral points of H2 is the set of hyperbolic 
centers of all the ideal squares of the tessellation of H2 in Figure 7.3.4. 
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Figure 7.3.3. A triangle T(2, 4, 00) in H2 

Figure 7.3.4. Tessellation of the unit disk by ideal squares 
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4 00 

r 2 • • • 

4 4 
r3 • • • • 

4 
r4 - rg • • I • • 

Figure 7.3.5. Coxeter graphs of the groups r n for n = 2, ... ,9 

Let r n be the subgroup of PO(n, 1) consisting of all the matrices with 
integral entries. Then r n is a discrete subgroup of PO(n, 1), since r n is a 
subgroup of the discrete group GL( n + 1,2). The group r n is a hyperbolic, 
noncompact n-simplex, reflection group for n = 2,3, ... ,9. The Coxeter 
graphs of these groups are listed in Figure 7.3.5. 

Definition: The Gram matrix of a generalized n-simplex ~ in Hn, with 
sides Sl,"" Sn+1, is the (n + 1) x (n + 1) matrix whose ijth entry is 
- cosB(S" SJ)' 

Theorem 7.3.1. Let B'J' for i, j = 1, ... ,n + 1, be real numbers such that 

(1) BtJ = BJ, for all i, j, 

(2) Btt = 7r for each i, and 

(3) BtJ is in the interval [0, 7r /2] if i =I- j. 

Let A be the (n + 1) x (n + 1) matrix whose ij th entry zs - cos BtJ and let 
At be the n x n matrzx obtained from A by deleting the ith row and ith 
column. Then there is a noncompact generalized n-simplex ~ in Hn whose 
Gram matrix is A if and only zf 

(1) every column of A has more than one nonzero entry; 

(2) the matrix A is the Gram matrix of ezther a spherical or Euclidean 
(n - I)-simplex for each i = 1, ... , n + 1; and 

(3) the matrix At is the Gram matrix of a Euclzdean (n - I)-simplex for 
some i. 

Proof: Suppose that ~ is a noncompact generalized n-simplex in Hn with 
sides Sl, ... ,Sn+1 such that B( Stl SJ) = BtJ for all i, j = 1, ... , n + 1. If the 
vertex of ~ opposite the side Sk is finite, then Ak is the Gram matrix of a 
spherical (n - 1 )-simplex by the same argument as in the proof of Theorem 
7.2.2(3). 
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Suppose that the vertex of ~ opposite the side Sk is ideal. We pass 
to the upper half-space model un. Then we may assume, without loss of 
generality, that the ideal vertex of ~ opposite the side Sk is 00. Let B be a 
horoball based at 00 such that B does not meet Sk. Then ~' = BB n ~ is 
a Euclidean (n -I)-simplex with sides S~ = S. n BB for i -=I- k by Theorem 
6.3.23. Clearly, we have 

{}(S~,S;) = {}(S"SJ) for i,j -=I- k. 

Therefore Ak is the Gram matrix of the Euclidean (n -I)-simplex ~'. By 
our hypothesis, ~ has at least one ideal vertex. Hence A. is the Gram 
matrix of a Euclidean (n - I)-simplex for some i. 

Let Vl, ... ,vn+! in ]Rn+l be defined as in the proof of Theorem 7.2.2(3). 
Then for each i,j, we have 

V. 0 vJ = - cos {}'J. 

Let C be the (n+ 1) x (n+ 1) matrix whose jth column vector is vJ • Define 
a bilinear form on ]Rn+1 by the formula 

(x, y) = Cx 0 Cy. 

Then A is the matrix of this form. As AJ is positive semidefinite, this 
form is positive semidefinite on the vector subspace (el, ... , eJ , ••• , en+l). 
Hence, the Lorentzian inner product on ]Rn,l is positive semidefinite on the 
vector subspace 

Therefore WJ is either space-like or light-like. 
On the contrary, suppose that the jth column of A has only one nonzero 

entry, namely, - cos {}J] = 1. Then vJ is Lorentz orthogonal to WJ • There­
fore vJ is either time-like or light-like. But vJ 0 vJ = 1, and so we have a 
contradiction. Thus, every column of A must have at least two nonzero 
entries. Thus A satisfies (1)-(3). 

Conversely, suppose that A satisfies (1)-(3). Then A. is the Gram matrix 
of a Euclidean (n - I)-simplex for some i. By reindexing, if necessary, we 
may assume that An+! is the Gram matrix of a Euclidean (n-l)-simplex. 
Then ]Rn has a basis {Ul, ... ,un} such that (U.,uJ ) = 0 if i -=I- j, and 
(U., u.) = 1 for i = 1, ... ,n - 1, and (un' Un) = o. Now the matrix of the 
bilinear form of A with respect to the basis {Ul' ... , Un, en+l} is 

1 o * 

B= o 1 * o b 
* * b 1 

where b = (un' en+l). Write Un = (Cl, ... , en) as a vector in ]Rn. Then by 
the argument in the proof of Theorem 7.2.2(2), all the components c. of Un 
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have the same sign. Hence 
n 

b = L c, (e" en+l) i- 0, 
,=1 

since (e" en+l) ::; 0 for all i < n + 1 with inequality for some i < n + 1. By 
expanding the determinant of B along the (n + 1 )st column, we find that 

detB = _b2 < o. 
Hence, the rank of B, and therefore of A, is n + 1. As the bilinear 
form of A is positive definite on the (n - I)-dimensional vector subspace 
(Ul, ... , Un-I), the matrix A must be of type (n,l). 

Define ~ as in the proof of Theorem 7.2.2(3). Then the same argument 
there proves that ~ is an n-dimensional convex polyhedron in H n with 
sides SI, ... ,Sn+l such that 8(S"SJ) = 8'J for all i,j. Moreover, if AJ is 
positive definite, then the n sides SI, ... , 8J, ... ,Sn+l intersect at a vertex 
of ~. 

Suppose that AJ is of type (n,O). Let WJ be the n-dimensional vector 
subspace of jRn+l defined as in the proof of Theorem 7.2.2(3). By the same 
argument there, the Lorentzian inner product on jRn,1 is of type (n,O) on 
WJ . Therefore WJ is light-like. Hence, the Lorentz orthogonal complement 
LJ of W J is light-like. By the same argument as in the proof of Theorem 
7.2.2(3), we deduce that L J represents an ideal vertex of ~ opposite the 
side SJ. Thus ~ has n + 1 generalized vertices and at least one ideal vertex. 
Therefore ~ is a noncompact generalized n-simplex in Hn. D 

It follows from Theorem 7.3.1 and the fact that the Coxeter graphs of 
Euclidean simplex reflection groups are connected that a Coxeter graph is 
the graph of a hyperbolic, noncom pact n-simplex, reflection group if and 
only if it has the following properties: 

(1) The number of vertices is n + 1. 

(2) The graph is connected. 

(3) Any subgraph obtained by deleted a vertex and its adjoining edges is 
the Coxeter graph of either a spherical or Euclidean (n - I)-simplex 
reflection group. 

(4) Some subgraph obtained by deleting a vertex and its adjoining edges 
is the Coxeter graph of a Euclidean (n - I)-simplex reflection group. 

For each dimension n 2': 3, there are only finitely many such graphs, 
and such graphs exist only for n ::; 9. Figure 7.3.6 illustrates the Coxeter 
graphs of all the hyperbolic, noncompact tetrahedron, reflection groups. 
The number of Coxeter graphs of hyperbolic, noncompact n-simplex, re­
flection groups for n = 4, ... ,9 is 9,12,3,4,4,3, respectively. 
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Figure 7.3.6. The hyperbolic, noncompact tetrahedron, reflection groups 
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Exercise 7.3 

1. Prove that PSL(2, Z) is isomorphic to the subgroup of orientation preserving 
isometries of a reflection group with respect to a triangle T(2, 3, (0). 

2. Prove that r3 is a hyperbolic, noncompact tetrahedron, reflection group. 

3. Construct the Coxeter graphs of all the hyperbolic, noncompact 4-simplex, 
reflection groups. 

4. Prove that each label of the Coxeter graph of a hyperbolic, noncompact 
n-simplex, reflection group, with n 2: 4, is at most 4. 

5. Prove that the dimension n of a hyperbolic, noncom pact n-simplex, reflection 
group is at most 9. 

§7.4. Crystallographic Groups 

In this section, we study the theory of crystallographic groups. 

Definition: An n-dimensional crystallographic group is a discrete group 
r of isometries of En such that En Ir is compact. 

Examples of crystallographic groups are the Euclidean, simplex, reflection 
groups in Figure 7.2.8. 

Theorem 7.4.1. Let r be a discrete group of isometrzes of En. Then the 
followmg are equivalent: 

(1) The group r 2S crystallograph2c. 

(2) Every convex fundamental polyhedron for r is compact. 

(3) The group r has a compact Dirichlet polyhedron. 

Proof: (1) implies (2) by Theorem 6.5.10. Clearly (2) implies (3), and 
(3) implies (1). 0 

Let P be a convex fundamental polyhedron for an n-dimensional crys­
tallographic group r. Then P is compact by Theorem 7.4.1. Therefore P 
is bounded and has only finitely many sides. We regard P to be a model 
for an n-dimensional crystal, and the tessellation {gP : g E r} of En to be 
a model for a crystalline structure. 

The study of crystalline structures is called crystallography. By the end 
of the nineteenth century, crystallographers had classified 1-, 2-, and 3-
dimensional crystallographic groups. For each of these dimensions, it was 
determined that there is only a finite number of essentially different kinds 
of crystallographic groups. This led Hilbert to ask, in problem 18 on his 
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celebrated list of problems, if there is only a finite number of essentially 
different kinds of crystallographic groups in each dimension. This problem 
was answered affirmatively by 1. Bieberbach in 1910. Bieberbach proved 
that there are only finitely many isomorphism classes of n-dimensional crys­
tallographic groups for each n. In this section, we shall prove Bieberbach's 
theorem. 

Lemma 1. ffH is a subgroup of finite mdex of a d~screte group r of isome­
tr~es of X = En or Hn, then x/r is compact if and only if X/H is compact. 

Proof: Suppose that X/H is compact. Define a function 

¢ : X/H ---+ x/r 

by ¢(Hx) = rx. Let 7r : X ---+ x/r and T] : X ---+ X/H be the quotient 
maps. Then 7r = ¢T]. Therefore ¢ is continuous. As ¢ is surjective, x/r is 
compact. 

Conversely, suppose that x/r is compact. Let D be a Dirichlet domain 
for r. Then D is a locally finite fundamental domain for r. Therefore D 
is compact by Theorem 6.5.10. Let gIH, ... , gmH be the co sets of H in r 
and define 

Then K is a compact subset of X. Let x be a point of X. Then there is a 
gin r such that gx is in D; moreover, there is an index i such that g = g,h 
for some h in H. Hence hx is in g:;1 D. Thus Hx is in T](K). This shows 
that X/H = T](K) and therefore X/H is compact. 0 

Theorem 7.4.2. Let r be a discrete group of ~sometries of En. Then r 
is crystallograph~c zf and only ~f the subgroup T of translatzons of r is of 
fimte mdex and has rank n. 

Proof: Suppose that r is crystallographic. By Theorem 5.4.3, the group 
r has an abelian subgroup H of finite index containing T; moreover, H is 
also crystallographic by Lemma 1. By Theorem 5.4.4, there is an m-plane 
P of En on which H acts by translation. Since points at a distance d 
from P stay at a distance d from P under the action of H, the orbit space 
En /H is unbounded if m < n. As En /H is compact, we must have m = n. 
Therefore H is a lattice subgroup of I(En). Hence H = T, and T is of finite 
index in r and has rank n. 

Conversely, suppose that the subgroup T of translations of r is of finite 
index and has rank n. By Theorem 5.3.2, there is a basis VI, ... , vn of]Rn 
such that T is the group generated by the translations of En by VI, ... , Vn· 
Clearly, the parallelepiped P spanned by VI, ... , Vn is a convex fundamental 
polyhedron for T. As P is compact, En /T is also compact. Therefore En /r 
is compact by Lemma 1. 0 
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Let r be an n-dimensional crystallographic group and let T = T(r) be 
its group of translations. Then T is a free abelian group of rank nand 
has finite index in r by Theorem 7.4.2. Furthermore, by Theorem 5.4.4, 
the subgroup T of r is characterized as the unique maximal free abelian 
subgroup of r. Consequently, the rank n of T is an isomorphism invariant 
of r. Therefore, the dimension n of r is an isomorphism invariant of r. 

Let 'T} : r --7 O(n) be the natural projection defined by 'T}(a + A) = A. 
The image II of'T} is called the point group of r. As T is the kernel of 'T}, we 
have an exact sequence of groups 

1 --7 T --7 r --7 II --7 1. (7.4.1) 

Therefore T is a normal subgroup of r and II is a finite group. Furthermore, 
conjugation in r induces a left action of II on T that makes T into a II­
module. Let L = L(r) be the lattice subgroup of]R.n corresponding to T. 
If a + A is in rand b is in L, then 

(a + A)(b + I) (a + A)-l = Ab + I. (7.4.2) 

Hence II acts on L by left matrix multiplication. By Theorem 5.4.4, the 
group T is a maximal abelian subgroup of r. Hence II acts effectively on 
T and therefore on L. Consequently, we have a faithful representation of 
II into Aut(L) given by A f-7 <PA where <PA(X) = Ax. As L is isomorphic 
to zn, we have an exact sequence of groups 

o --7 zn --7 r --7 Q --7 1, (7.4.3) 

where Q is a finite subgroup of GL(n, Z) and the left action of Q on zn 
induced by conjugation in r is the natural action of Q on zn. The standard 
method of proving that there are only finitely many isomorphism classes 
of n-dimensional crystallographic groups is to prove that there are only 
finitely many isomorphism classes of group extensions of the form (7.4.3). 
We shall take a different, more geometric, approach which exploits the 
geometry of lattices in ]R.n. 

Lemma 2. Let B(a,r) be the open ball in En with center a and radius r. 
Then there zs a posztzve constant cn , depending only on n, such that 

Vol(B(a,r)) = cnrn. 

Proof: Without loss we may assume that a = O. Integrating with respect 
to spherical coordinates, we have 

Vol(B(O, r)) = 102
'" 10'" ... loT pn-l sinn- 2 lh··· sin ()n-2dpd(h ... d()n-l 

.::.nVol(sn-l). 
n 

Hence, the desired constant is 

1 
Cn = _Vol(sn-l). 

n o 
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Definition: A lattice L in ]R.n is full scale if and only if an the nonzero 
vectors of L have norm at least 1. 

Lemma 3. Let L be a full scale lattice in]R.n and for each r ~ 0, let N(r) 
be the number of vectors in L whose norm is at most r. Then 

Proof: Since L is fun scale, the distance between any two distinct vectors 
in L is at least 1. Consequently, the open bans of radius ~ centered at the 
N(r) vectors of L, whose norm is at most r, are pairwise disjoint and are 
all contained in the ban of radius r + ~ centered at the origin. Comparing 
the volumes, we deduce from Lemma 2 that 

N(r)(~r:::; (r+ ~r. o 

Lemma 4. Let {VI, ... ,vn } be a basis for ]R.n. Then for each x in ]R.n, 
there are integers kl' ... ,kn such that 

Proof: Let x be in ]R.n. Then there are real numbers h, ... ,tn such that 
x = L:~=1 t.v •. Let k. be an integer nearest to t. in R Then we have 

Ix -tk.v·1 It(t. -k.)v·1 

n 

< L:\(t. -k.)v.\ 
.=1 

< ~(lvll + ... + IVn\). 0 

Lemma 5. Let V be a vector subspace of]R.n spanned by m linearly mde­
pendent unit vectors VI, ... ,vm in a full scale lattice L in ]R.n. If a vector 
u in L is not in V, then its V.L -component w has norm 

Proof: On the contrary, let u be a vector in L whose V.L-component w 
satisfies 

Now let 
k=(m+3)n. 

Then kiwi:::; 1. Hence, the vectors 0, u, 2u, ... ,ku are at a distance at most 
1 from V. By Lemma 4, we may add suitable integral linear combinations 
of VI, ..• ,Vm to each of these vectors to obtain k + 1 new distinct vectors in 
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L whose V~-components have not changed but whose V-components have 
norm at most m/2. These k + 1 vectors of L have norm less than 

r = (m/2) + 1. 

By Lemma 3, we have 

k + 1 :::; N (r) :::; (2r + 1 t = (m + 3 t , 
which is a contradiction. Therefore 

o 

Definition: An n-dimensional crystallographic group f is normalized if 
and only if its lattice L(r) is full scale and contains n linearly independent 
unit vectors. 

Lemma 6. Let f be an n-dzmenswnal crystallographic group. Then f is 
isomorphic to a normalized n-dimenswnal crystallographic group. 

Proof: By changing scale, we may assume that a shortest nonzero vector 
in L(f) is a unit vector. Now assume by induction that L(f) is full scale 
and contains m < n linearly independent unit vectors VI, ... , V m . We shall 
find an n-dimensional crystallographic group f' isomorphic to f such that 
L(f') is full scale and contains m + 1 linearly independent unit vectors. 

Let V be the vector subspace of IRn spanned by VI, ... , vm. Assume 
first that the action of the point group II of f on L(f) does not leave 
V invariant. Then there is an element A of II and an index i such that 
Avz is not in V. Let Vm+l = Avz . Then VI, ... , Vm+l are m + 1 linearly 
independent unit vectors in L(f). Therefore f is the desired group. 

Now assume that II leaves V invariant. Then II also leaves V~ invariant. 
For each t > 0, define a linear automorphism at of IRn by the formula 

at(u) = V + tw, 

where u = v+w with V in V and w in V~. Let a+A be in f. As A leaves 
V and V ~ invariant, we have 

at(a + A)a;;-I = at(a) + A. 

Hence, for each t > 0, the group 

f t = atfa;;-I 

is a subgroup of I(En). As 

T(ft ) = atT(r)a;;-1 

and T(ft) is of finite index in f t for each t > 0, we have that f t is an 
n-dimensional crystallographic group for each t > 0. Moreover, we have 
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Let u be an arbitrary vector in L(r) - V and write u = v + W with v in 
V and w in V l... Then for t such that 

0< t :S Iwl-I(m + 3)-n, 

the vector v + tw is in L(rt ) - V and 

It wi :S (m + 3)-n. 

By Lemma 5, the lattice L(rt ) cannot be full scale. Let 

s = inf{t : L(rt ) is full scale}. 

Then 0 < s :S 1. As lat(u)1 ;::: 1 for all t > s, we have that las(u)1 ;::: 1, 
since lat(u)1 is a continuous function of t. Therefore L(rs) is full scale. 

Let Uo be a shortest vector in L(rs) - V. We claim that Uo is a unit 
vector. On the contrary, suppose that luol > 1. By replacing r by r s, we 
may assume that s = 1. Write Uo = Vo + Wo with Vo in V and Wo in V l.. . 
As lul 2 ;::: luol 2, we have 

Let t = luol-I. Then 

lat(uW Iv + twl2 

Ivl 2 + t21wl2 

> Ivl 2 + t2(lvol2 + Iwol2 - Iv1 2) 

Iv1 2(1 - t2 ) + t21uol 2 

> t 2 1uol 2 

1. 

Therefore L(rt ) is full scale contrary to the minimality of s. Thus, we 
have that Vm+I = Uo is a unit vector. Hence VI, ... , Vm+I are m + 1 
linearly independent unit vectors in L(rs). Therefore rs is the desired 
group. This completes the induction. Thus r is isomorphic to a normalized 
n-dimensional crystallographic group. 0 

Theorem 7.4.3. (Bieberbach's theorem) For each dimenswn n, there are 
only jinztely many isomorphism classes of n-d2menswnal crystallographic 
groups. 

Proof: Fix a positive integer n. By Lemma 6, it suffices to show that there 
are only finitely many isomorphism classes of normalized n-dimensional 
crystallographic groups. Let r be such a group. Then L(r) contains n 
linearly independent unit vectors WI, .•. , wn . For each i, let w. = w. + I 
be the corresponding translation in r, and let H be the subgroup of T(r) 
generated by WI, ..• , Wn . Then H is a free abelian group of rank nand 
therefore has finite index in T(r). By Theorem 7.4.2, the group T(r) has 
finite index in r. Hence H is of finite index in r. 
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By Lemma 4, we may choose for each coset Hw of H in r a represen­
tative W = W + A whose translation vector W has norm Iwi ~ n/2. Let 
Wn+l, .. ' ,Wm be the chosen coset representatives. Then every element ¢ of 
r can be expressed uniquely in the form 

¢ = (alwl + ... + anWn + I)wp, 

where al, ... ,an and p are integers with n + 1 ~ p ~ m. We shall call this 
expression the normal form for ¢. 

Since every element of r has a unique normal form, there are for each 
i, j = 1, ... ,m, unique integers C'Jk and f( i, j) > n such that 

w,wJ = (C'JIWl + ... + c'Jnwn + I)wf(',J)' 

The integers C'Jk and f(i,j) completely determine r, since one can find the 
normal form of a product of elements ¢, 't/J of r given the normal forms for 
¢, 't/J and w,wJ for each i, j = 1, ... ,m. To see this, let 

¢ = (alwl + ... + anWn + I)wp, 

't/J = (b1wl + ... + bnwn + I)wq 

be the normal forms for ¢ and 't/J. Then 

¢'t/J = (alwl + ... + anwn + I)wp(W~l ... w~n)Wq. 
To find the normal form for ¢'t/J, it suffices to find the normal form of 
Wp(W~l ... w~n )wq. If b1 > 0, we replace WpWl by its normal form. This has 
the effect of lowering b1 to b1 -1. If b1 < 0, we replace wpw11 by its normal 
form 

(d1wl + ... + dnwn + I)w,. 

Observe that 
W,Wl = (-d1wl - ... - dnwn + I)wpo 

Hence i is the unique integer such that p = f(i, 1); moreover dk = -C,lk 
for each k = 1, ... ,n. Thus, we can raise b1 to b1 + 1. It is clear that by 
repeated application of these two steps we can find the normal form of ¢'t/J. 

Even more is true. The integers C'Jk and f(i,j) determine r up to 
isomorphism, in the sense that if r' is another normalized n-dimensional 
crystallographic group with the same set of integers, then rand r' are 
isomorphic. To see this, let wi, ... , w~ be the corresponding unit vectors 
of L(r') and let W~+l"" ,w~ be the corresponding coset representatives. 
Then the function ~ : r ~ r', defined by 

~((alwl + ... + anWn + I)wp) = (alw~ + ... + anw~ + I)w~, 
is an isomorphism, since e is obviously a bijection, and the same algorithm 
determines the normal form for a product in each group. Thus, to show 
that there are only finitely many isomorphism classes of normalized n­
dimensional crystallographic groups, it suffices to show that the absolute 
values of the integers C'Jk and m have an upper bound depending only on 
the dimension n. 
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Now the elements w., wJ and Wf(',J) have translation vectors oflength at 
most n/2. Consequently, the translation vector of 

C'JIWI + ... + c'Jnwn + I = w,wJwf(~'J) 
has length at most 3n/2. Let Vk be the component of Wk perpendicular to 
the hyperplane spanned by WI, ... , Wk-l, Wk+I, ... , Wn . Then 

IC'JkVkl ~ 3n/2. 

By Lemma 5, we have that 

IVkl > (n + 2)-n. 

Hence, for each i, j, k, we have 

IC'Jkl ~ 3;(n+2)n. 

We next find an upper bound for m. First of all, we have 

m - n = [r: H] = [r: T(r)][T(r) : H]. 

Now the translations among the representatives wn+l, ... , Wm form a com­
plete set of coset representatives for H in T(r). Each translation vector w, 
has norm at most n/2 and, by Lemma 3, is one of at most (n+ l)n vectors 
in L(r). Hence 

[T(r) : H] ~ (n + l)n. 

Next, observe that 
[r : T(r)] = IIII, 

where II is the point group of r. Let A be in II. Then A is uniquely 
determined by its images Aw, for i = 1, ... , n. By Lemma 3, the vector 
Aw, is one of at most 3n different unit vectors in L(r). Hence A is one of 
at most (3n)n different matrices in O(n). Hence 

[r : T(r)] ~ (3n)n. 

Thus, we have 
o 

Remark: The exact number of isomorphism classes of n-dimensional 
crystallographic groups for n = 1,2,3,4 is 2,17,219,4783, respectively. 

The Splitting Group 

Let r be an n-dimensional crystallographic group and let m be the order 
of the point group II of r. Let r* be the subgroup of I(En) generated by 
T(r)~ and r. Then r* has the same point group II. Therefore 

[r* : r] [T(r)~ : T(r)] 

[';'L(r) : L(r)] 
[( .;,z)n : zn] 
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Hence r* is also an n-dimensional crystallographic group with 

L(f*) = ~L(f). (7.4.4) 

The group f* is called the splitting group of f. 

Lemma 7. If f* is the splittzng group of f, then the following exact se­
quence splzts 

1 -t T(f*) -t f* -t II -t l. 

Proof: Let 'f] : f* -t II be the natural projection. For each A in II, choose 
CPA in f such that 'f](CPA) = A. Then for each A, B in II, there is an element 
T(A, B) of T(f) such that 

CPACPB = T(A, B)CPAB. 

Let CPA = aA + A for each A. Then 

CPACPB = aA + AaB + AB. 

Hence, we have 
T(A, B) = aA + AaB - aAB + I. 

Define a function f : II x II -t L(r) by the formula 

f(A, B) = aA + AaB - aAB. 

Taking the sum of both sides of the last equation, as B ranges over all the 
elements of II, gives 

L f(A,B) = maA +A L aB - LaB. 
BEIl BEIl BEIl 

Define a : f -t f* by 

1 
a(A) = -- L f(A,C) +aA + A. 

m CEIl 

Let 8 = L:CEIl ac. Then 

1 
a(A) = --(A - 1)8 + A. 

m 
Observe that 

1 
--(AB - 1)8 + AB 

m 
a(AB) 

1 1 
--(A - 1)8 - -(AB - A)8 + AB 

m m 
a(A)a(B). 

Therefore a is a homomorphism such that 'f]a is the identity on II. 0 

Theorem 7.4.4. Let ~ : f 1 -t f 2 be an isomorphism of n-dimenswnal 
crystallographic groups. Then there zs an affine bijection Q; ofJRn such that 
for each cP in f 1, we have 
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Proof: Since the subgroup of translations of a crystallographic group is 
characterized as the unique maximal free abelian subgroup, we have 

~(T(fd) = T(f2)' 

Hence ~ induces an isomorphism ~ : Ih -+ Ih between the point groups 
of fl and f 2. For each A in III, choose CPA in fl such that 'T/l(CPA) = A 
where 'T/l : f 1 -+ Ih is the natural projection. Then {CPA: A E IId is a set 
of coset representatives for T(fi) in fi. Let T be an arbitrary element of 
T(fi) and let m be the order of III and II2. Define C : fr -+ f; by 

C(TCPA) = [~(Tm)l~~(cpA). 

Then C is an isomorphism, since C maps T(fi) isomorphically onto T(f;), 
and C agrees with the isomorphism ~. Moreover C extends ~. 

By Lemma 7, the exact sequence 

1 -+ T(f;) -+ f; -+ II, -+ 1 

splits for each i = 1,2. Let u, : II, -+ f: be a splitting homomorphism. 
The finite group u,(II,) has a fixed point in En. By a change of origin, we 
may assume that u,(II,) fixes the origin. Then u,(II,) = II, for i = 1,2. 
Hence, every element of f: is of the form TA with T in T(f:) and A in II,. 
Let VI, ... ,Vn generate L(f 1) and define WI, ... ,Wn by 

wJ+I=~(vJ+I) for j=l, ... ,n. 

Then WI, ... , Wn generate L(f2)' Hence, there is a unique linear automor­
phism a of jRn such that a( vJ ) = wJ for j = 1, ... ,n. 

Let A be in III and let a be in L(fi). Then 

Hence, we have 

Therefore 

and so we have 

Hence, we have 

Thus, we have 

Hence, we have 

A(a + I)A- l = Aa + I. 

C(A(a + I)A- l ) = C(Aa + I). 

C(A)(a(a) + I)C(A)-l = aAa + I 

C(A)a(a) + I = aAa + I. 

C(TA) 

C(A)a = aA. 

C(T)C(A) 
(aTa- l )(aAa-l ) 

a(TA)a- l . o 
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Bieberbach Groups 

Definition: An n-dimensional Bzeberbach group is a group G for which 
there is an exact sequence of groups 

o ---+ 7I.,n ~ G ~ Q ---+ 1 (7.4.5) 

such that Q is a finite subgroup of GL( n, 71.,) and the left action of Q on 7I.,n 

induced by conjugation in G is the natural action of Q on 7I.,n. 

For example, any n-dimensional crystallographic group is an n-dimensional 
Bieberbach group. We shall algebraically characterize crystallographic 
groups by showing that every n-dimensional Bieberbach group is isomor­
phic to an n-dimensional crystallographic group. 

Lemma 8. Let G be an n-dzmenszonal Bieberbach group and let Q be a 
finite subgroup of GL(n, 71.,) as in the exact sequence 7.4.5. Then G can be 
embedded as a subgroup of finzte zndex in the semidirect product 7I.,n )<! Q. 

Proof: For each q in Q, choose an element Xq of G such that ry(Xq) = q 
and Xl = 1. Then for each q, r in Q, there is a unique element f(q, r) of 
7I.,n such that 

XqXr = [f(q, r)xqr . 

The function f : Q x Q --t 7I.,n completely determines G, since if a, b are in 
7I.,n, then 

([(a)xq)([(b)xr) = [(a + qb + f(q, r))xqr . 

The associativity of the group operation in G gives rise to the following 
cocycle identity for f. For each q, r, sin Q, we have 

f(q, r) + f(qr, s) = qf(r, s) + f(q, rs). 

We next construct a new n-dimensional Bieberbach group G* from G 
and f· Let G* = 7I.,n X Q as a set and let m = IQI. Define a multiplication 
in G* by the formula 

(a,q)(b,r) = (a+qb+mf(q,r),qr). 

It is straightforward to check that G* is a group with this multiplication. 
Let ~ : 7I.,n --t G* and 1l" : G* --t Q be the natural injection and projection. 
Then we have an exact sequence 

o ---+ 7I.,n-~ G* ~ Q ---+ 1. 

Moreover, we have 
(0, q)(a, 1)(0, q)-l = (qa, 1). 

Therefore G* is an n-dimensional Bieberbach group. 
Next, we show that 1l" has a right inverse. Define u : Q --t G* by 

u(q) = (- LJ(q,s),q). 
sEQ 
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Taking the sum of both sides of the co cycle identity for f gives 

mf(q,r) + LJ(qr,s) =qLf(r,s)+ Lf(q,s). 
SEQ sEQ sEQ 

Hence 

a-(qr) ( - L f(qr, s), qr) 
sEQ 

(- Lf(q,s)-qLf(r,s)+mf(q,r),qr) 
sEQ sEQ 

a-(q)a-(r). 

Thus a- is a homomorphism such that na- is the identity on Q. 
Next, define a function 

e : zn )<l Q ---t G* 

by the formula 
e(a, q) = t£(a)a-(q). 

Then e is an isomorphism. Hence, it suffices to show that G can be em­
bedded in G* as a subgroup of finite index. 

Define c: : G ---t G* by 

Then we have 

c:(~(a + qb + f(q, r))xqr ) 

(m(a + qb + f(q, r)), qr) 

(ma + q(mb) + mf(q, r)), qr) 

(ma, q)(mb, r) 

c:( ~(a )xq )c:( ~(b )Xr). 

Thus c: is a homomorphism. Clearly c: is a monomorphism and 

o 

Lemma 9. LetQ be afimte subgroup ofGL(n,lR) (resp. GL(n,C)). Then 
Q is conjugate in GL(n, IR) (resp. GL(n, C)) to a fimte subgroup of O(n) 
(resp. U(n)). 

Proof: Define an inner product on IRn (resp. en) by the formula 

(x,y) = L qx * qy. 
qEQ 

This product is obviously bilinear, Hermitian symmetric, and nondegener­
ate; moreover, for each q in Q, we have 

(qx, qy) = (x, y). 
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By the Gram-Schmidt process, we construct an orthonormal basis VI,··· ,vn 

for JRn (resp. en) with respect to this inner product. Define A in GL(n, JR) 
(resp. GL(n, tC)) by Ae1, = V2 for i = 1, ... , n. Then 

n n 

(Ax,Ay) (A Lx2 e",A LYJeJ) 
J=1 J=1 

n 

LX2Y2 
2=1 

X * y. 

If q is in Q and x, yare in JRn (resp. en), then 

A~lqAx * A~lqAy (qAx, qAy) 

(Ax,Ay) 

x *y. 

Thus A ~lqA is an orthogonal (resp. unitary) transformation. Hence 
A~lQA is a finite subgroup of O(n) (resp. U(n)). 0 

Theorem 7.4.5. Let G be an n-dimensional Bieberbach group. Then Gis 
isomorphzc to an n-dimenswnal crystallographzc group. 

Proof: As every subgroup of finite index of an n-dimensional crystallo­
graphic group is again an n-dimensional crystallographic group, we may 
assume, by Lemma 8, that G is a semidirect product tln ><I Q, where Q is a 
finite subgroup of GL(n, 7l). By Lemma g, there is a matrix A in GL(n, JR) 
such that AQA~l is a subgroup of O(n). The group L = A(71n) is a lattice 
in JRn and II = AQA~l acts naturally on L. The function 

a : tln ><I Q ------+ L ><I II 

defined by the formula 

a(a, q) = (Aa, AqA~l) 

is obviously an isomorphism. Now define a function 

by the formula 
j3(a,A)=a+A. 

Then 13 is clearly a monomorphism. Let T = j3(L). Then T is gener­
ated by n linearly independent translations. Therefore T is a discrete 
subgroup of I(En). As T is of finite index in r = Imj3, we have that r 
is an n-dimensional crystallographic group. Thus G is isomorphic to an 
n-dimensional crystallographic group. 0 
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Exercise 7.4 

1. Prove that a discrete group r of isometries of En is crystallographic if and 
only if the translation direction vectors of its parabolic elements span ]Rn. 

See Exercise 5.4.6. 

2. Let r be a crystallographic group. Prove that an element a + A of r is a 
translation if and only if IA - II < 1/2. 

3. Verify that G* in the proof of Lemma 8 is a group. 

4. Derive the co cycle identity for f in the proof of Lemma 8. 

5. Prove that the group G* in the proof of Lemma 8 is isomorphic to the 
splitting group of G when G is crystallographic. 

§7.5. Torsion-Free Linear Groups 

In this section, we prove Selberg's lemma. In order to prove this lemma, 
we need to review some commutative ring theory. 

Integral Domains 

In this section, all rings are commutative with identity. 

Definition: A ring A is an zntegral domain if and only if 0 =I- 1 in A and 
whenever ab = 0 in A, then either a = 0 or b = O. 

Clearly, any subring of a field in an integral domain. Let 8 be a subset 
of an integral domain A. Then 8 is said to be multiplzcatzvely closed if and 
only if 1 is in 8 and 8 is closed under multiplication. Suppose that 8 is 
multiplicatively closed. Define an equivalence relation on A x 8 by 

(a, s) ~ (b, t) if and only if at = bs. 

Let a / s be the equivalence class of (a, s) and let 8-1 A be the set of equiv­
alence classes. Then 8-1 A is a ring with fractional addition and multipli­
cation. The ring 8-1 A is called the rzng of fractwns of A with respect to 
the multiplicatively closed set 8. 

Observe that the mapping a r--+ a/I is a ring monomorphism of A into 
8-1 A. Hence, we may regard A as a subring of 8-1 A. Note that 8-1 A is 
also an integral domain. If 8 = A - {O}, then 8-1 A is a field, called the 
field of fractwns of A. Thus, any integral domain is a subring of a field. 

Definition: An ideal P of a ring A is przme if and only if A/Pis an 
integral domain. 
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An ideal M of a ring A is said to be maximal if and only if M is proper 
(M i- A) and A contains no ideals between M and A. Any maximal ideal 
M of a ring A is prime, because AIM is a field. By Zorn's Lemma, any 
proper ideal I of a ring A is contained in a maximal ideal of A. 

Let P be a prime ideal of an integral domain A. Then 8 = A - P is 
a multiplicatively closed subset of A. The ring Ap = 8-1 A is called the 
localizatwn of A at P. 

Definition: A ring A is local if and only if A has a unique maximal ideal. 

Lemma 1. If M is a proper 2deal of a rzng A such that every element of 
A - M 2S a unit of A, then A is a local ring with M 2tS maximal 2deal. 

Proof: Let I be a proper ideal of A. Then every element of I is a nonunit. 
Hence I C M, and so M is the only maximal ideal of A. 0 

Theorem 7.5.1. If P 2S a prime ideal of an integral domain A, then Ap 
is a local ring. 

Proof: Let 8 = A - P. Then M = {als : a E P and s E 8} is a proper 
ideal of Ap. If bit is in Ap - M, then b is in 8, and so bit is a unit of Ap. 
Therefore Ap is a local ring with M its maximal ideal by Lemma 1. 0 

Integrality 

Let A be a subring of a ring B. An element b of B is said to be zntegral 
over A if and only if b is a root of a monic polynomial with coefficients in 
A, that is, there are elements ai, ... , an of A such that 

(7.5.1) 

Clearly, every element of A is integral over A. 
Let bl , ... , bm be elements of B and let A[b!, ... , bm ] be the subring of 

B generated by A and b!, ... , bm . Note that every element of the ring 
A[bl , ... , bm ] can be expressed as a polynomial in b!, ... , bm with coeffi­
cients in A. If B = A[b!, ... , bm ], we say that B is finztely generated over 
A, and bl , ... , bm are generators of B over A. 

Theorem 7.5.2. Let A be a subring of an integral domain B and let b be 
an element of B. Then the followzng are equivalent: 

(1) The element b 2S zntegral over A. 

(2) The rzng A[b] 2S a finitely generated A-module. 

(3) The rzng A[b] 2S contained 2n subring C of B such that C is a finitely 
generated A-module. 
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Proof: Assume that (1) holds. From Formula 7.5.1, we have 

bn+, = -(albn+,-l + ... + anb') for all i ~ O. 

Hence, by induction, all positive powers of b are in the A-module generated 
by 1, b, ... ,bn- l . Thus A[b] is generated, as an A-module, by 1, b, ... ,bn- l . 
Thus (1) implies (2). 

To see that (2) implies (3), let C = A[b]. 
Assume that (3) holds. Let Cl, ... , en be generators of C as an A-module. 

Then there are coefficients a,) in A such that for each i = 1, ... ,n, 

Then we have that 
n 

n 

bc, = L a,) c) . 
)=1 

L(8,)b - a,))c) = O. 
)=1 

By multiplying on the left by the adjoint of the matrix (8,) b - a,)), we 
deduce that 

det(8,)b - a'J)c) = 0 for j = 1, ... , n. 

Therefore, we have 
det(8t )b - a,)) = O. 

Expanding out the determinant gives a equation of the form (7.5.1). Hence 
b is integral over A. Thus (3) implies (1). 0 

Corollary 1. If A zs a subring of an integral domain B, and bl , ... , bm 
are elements of B, each integral over A, then the ring A[bl , ... , bm] is a 
finitely generated A -module. 

Proof: The proof is by induction on m. The case m = 1 follows from 
Theorem 7.5.2. Let A, = A[bl , ... , btl and assume that A m- l is a finitely 
generated A-module. Then Am = Am-l[bm] is a finitely generated A m- l -
module by Theorem 7.5.2. Thus Am is a finitely generated A-module. 0 

Corollary 2. If A is a subring of an integral domazn B, then the set C of 
all elements of B that are zntegral over A zs a subring of B contazning A. 

Proof: Let c, d be in C. Then A[c, d] is a finitely generated A-module 
by Corollary 1. Hence c + d and cd are integral over A by Theorem 7.5.2. 
Thus C is a subring of B. 0 

Let A be a subring of an integral domain B. The subring C of B of all 
elements of B that are integral over A is called the integral closure of A in 
B. If C = A, then A is said to be zntegrally closed in B. If C = B, then B 
is said to be zntegral over A. 
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Lemma 2. Let A be a subring of an zntegral domazn B such that B is 

zntegral over A. 

(1) IfQ is a prime zdeal of B, and P = AnQ, then B/Q zs zntegral over 

A/P. 

(2) If 8 is a multiplicatively closed subset of A, then 8-1 B zs zntegral 
over 8-1 A. 

Proof: Let b be in B. Then there are elements a1, ... ,an of A such that 

bn + a1bn-1 + ... + an = O. 

Upon reducing mod Q, we find that b + Q is integral over A/ P. 
(2) Let b/s be in 8-1B. Then dividing the last equation by sn gives 

(b/s)n + (aI/s)(b/st- 1 + ... + (an/sn ) = o. 
Thus b/ s is integral over 8-1 A. D 

Lemma 3. Let A be a subring of an zntegral domain B such that B is 
integral over A. Then A is a field if and only zf B is a field. 

Proof: Suppose that A is a field and b is a nonzero element of B. Then 
there are coefficients a1, ... ,an in A such that 

bn + a1bn-1 + ... + an = 0, 

and n is as small as possible. As B is an integral domain, we have that 
an i- O. Hence 

b- I = _a~1(bn-1 + a1bn-2 + ... + an-1) 

exists in B, and so B is a field. 
Conversely, suppose that B is a field and a is a nonzero element of A. 

Then a- 1 exists in B and so is integral over A. Hence, there are coefficients 
a1, ... , an in A such that 

a-n + a1a-n+1 + ... + an = o. 
Then we have 

a-I = -(a1 + a2a + ... + anan- 1) 

is an element of A, and so A is a field. D 

Lemma 4. Let A be a subring of an integral domain B such that B is 
integral over A, let Q be a przme zdeal of B, and let P = An Q. Then P 
is maximal in A zf and only if Q zs maximal in B. 

Proof: By Lemma 2(1), we have that B/Q is integral over A/P. As Q is 
prime, we have that B /Q is an integral domain. Therefore A/Pis a field 
if and only if B/Q is a field by Lemma 3. D 
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Theorem 7.5.3. Let A be a subring of an zntegral domazn B such that B 
is integral over A, and let P be a prime ideal of A. Then there zs a prime 
zdeal Q of B such that An Q = P. 

Proof: Let Bp = (A - p)-l B. Then Bp is integral over Ap by Lemma 
2(2). Consider the commutative diagram of natural injections 

A ~ B 
ad 113 
Ap ~ Bp. 

Let N be a maximal ideal of B p. Then M = Ap n N is maximal in Ap by 
Lemma 4. Hence M is the unique maximal ideal of the local ring A p . Let 
Q = t3- 1 (N). Then Q is a prime ideal of B such that 

AnQ=a-1(M)=P. 0 

Valuation Rings 

Definition: A subring B of a field F is a valuatwn rzng of F if and only 
if for each nonzero element x of F, either x is in B or x-1 is in B. 

Theorem 7.5.4. If B zs a valuatwn rzng of a field F, then 

(1) B zs a local ring; and 

(2) B zs zntegrally closed in F. 

Proof: (1) Let M be the set of nonunits of B. If x is in M and b in 
B, then bx is in M, otherwise (bx) -1 would be in B, and therefore the 
element x-1 = b(bx)-l would be in B, which is not the case. Now let x, y 
be nonzero elements of M. Then either xy-1 is in B or x-1y is in B. If 
xy-1 is in B, then x + y = (1 + xy-1)y is in M, and likewise if x-1y is in 
B. Hence M is an ideal of B and therefore B is a local ring by Lemma l. 

(2) Let x in F be integral over B. Then there are coefficients b1, ... , bn 

in B such that 
xn + b1xn- 1 + ... + bn = O. 

If x is in B, then we are done, otherwise x-1 is in B and so 

x = -(b1 + b2x-1 ... + bnx1- n ) 

is in B. Thus B is integrally closed in F. o 

Let F be a field and let K be an algebraically closed field. Let ~ be 
the set of all pairs (A, a), where A is a subring of F and a : A ---+ K is a 
homomorphism. Define a partial ordering on ~ by the rule 

(A,a) :::; (B,t3) if and only if A c Band 131 A = a. 

By Zorn's Lemma, the set ~ has a maximal element. 
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Theorem 7.5.5. Let (B,(3) be a maxzmal element of L:. Then B zs a 
valuatzon ring of F. 

Proof: We first show that B is a local ring with M = ker (3 its maximal 
ideal. The ring (3(B) is an integral domain, since it is a subring of the field 
K. Therefore M is prime. We extend (3 to a homomorphism "( : BM --> K 
by setting 

"((bls) = (3(b)I(3(s) 

for all b in Band s in B - M, which is allowable, since (3( s) =1= o. As the 
pair (B, (3) is maximal, we have that B = B M. Therefore, every element 
of B - M is a unit, and so B is a local ring and M is its maximal ideal by 
Lemma 1. 

Now let x be a nonzero element of F and let M[x] be the ideal of 
B[x] of all polynomials in x with coefficients in M. We now show that 
either M[x] =1= B[x] or M[X-l] =1= B[x-l]. On the contrary, suppose that 
M[x] = B[x] and M[X-l] = B[x-l]. Then there are coefficients ao, ... ,am 
and bo, ... , bn in M such that 

ao + alx + ... + amxm = 1, 

bo + blx- l + ... + bnx-n = 1 

and m and n are as small as possible. By replacing x by X-I, if necessary, 
we may assume that m 2: n. Multiplying the second equation by xn gives 

(1 - bo)xn = blxn- l + ... + bn. 

As bo is in M, we have that 1 - bo is in B - M and so is a unit of B. 
Therefore, we can write 

xn = CIXn - 1 + ... + Cn 

with Ct in M. Hence, we can replace xm by CIXm - 1 + ... + cnxm- n in 
the first equation. This contradicts the minimality of m. Thus, either 
M[x] =1= B[x] or M[x-l] =1= B[x-l]. 

We now show that either x is in B or x-I is in B. Let B' = B[x]. By 
replacing x by x-I, if necessary, we may assume that M[x] =1= B'. Then 
M[x] is contained in a maximal ideal M' of B'; and B n M' = M, since 
BnM' is a proper ideal of B containing M. Hence, the inclusion of B into 
B' induces an embedding of the field k = B 1M into the field k' = B' 1M'. 
Moreover k' = k[x] where x = x+ M'. Hence, if x =1= 0, there are coefficients 
Co, ... , Cn in k such that 

x-I Co + CIX + ... + cnxn. 

Hence, we have 
o = -1 + Cox + ... + cnxn+l . 

Therefore x is algebraic over k. 
Now the homomorphism (3 : B --> K induces an embedding 73 : k --> K 

because M = ker (3. Let p(t) be the irreducible polynomial for x over k. 
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As K is algebraically closed, the polynomial (/3p)(t) has a root r in K. We 
extend /3 to a homomorphism /3' : k' -+ K as follows: Let y be in k'. Then 
there is a polynomial f(t) over k such that y = f(x). Define 

/3'(y) = (/3f)(r). 

Then /3' is well defined, since if g(t) is another polynomial over k such that 
y = g(x)'-.then (g- f)(x) = 0, and so p(t) divides (g- f)(t), whence (/3p)(t) 
divides ((3 (g - f)) (t) and so 

(/3g)(r) = (/3f)(r). 

Clearly /3' is a ring homomorphism extending /3. Composing (3' with the 
natural projection B' -+ k' gives a homomorphism (3' : B' -+ K extending 
(3. As (B, (3) is maximal, B = B', and so x is in B. Thus B is a valuation 
ring of F. D 

Corollary 3. If A zs a subring of a field F, then the zntegral closure C of 
A m F is the intersectwn of all the valuatwn rings of F contazmng A. 

Proof: Let B be a valuation ring of F containing A. Then B is integrally 
closed in F by Theorem 7.5.4. Hence, any element of F that is integral 
over A is an element of B. Therefore C c B. 

Now let x be an element of F - C and let A' = A[X-I]. Then x is not 
in A', since otherwise there would be coefficients ao, ... ,an in A such that 

x = ao + aIx- 1 + ... + anx-n 

and so we would have 

x n+1 - aoxn - ... - an = 0 

and therefore x would be in C, which is not the case. Hence X-I is a 
nonunit of A' and so is contained in a maximal ideal M of A'. Let k be 
the algebraic closure of the field k = A' / M and let a : A' -+ k be the 
composition of the natural projection A' -+ k followed by the inclusion 
k -+ k. Then a can be extended to a homomorphism (3 : B -+ k where B 
is a valuation ring of F containing A' by Theorem 7.5.5. Then x-I is also 
a nonunit in B, since (3(x- l ) = O. Therefore x is not in B. Hence C is the 
intersection of all the valuation rings of F containing A. D 

Lemma 5. Every algebrazcally closed field is mfinite. 

Proof: Let K be an algebraically closed field and on the contrary, suppose 
that K is finite. Let p be the characteristic of K. Then K is a finite 
dimensional vector space over the field of order p. Hence K has pn elements 
for some positive integer n. Therefore, the group K* of units of K has 
order pn - 1. Let q be a prime not dividing pn - 1. Then the polynomial 
(tq - 1) / (t - 1) has no root in K, since the order of every element of K* 
divides pn -1. Thus K is not algebraically closed, which is a contradiction. 
Hence K must be infinite. D 
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Theorem 7.5.6. Let A be a subring of an zntegral domazn B such that B 
is finitely generated over A, and let b be a nonzero element of B. Then there 
exists a nonzero element a of A wzth the property that any homomorphzsm 
0: of A into an algebrazcally closed field K, such that o:(a) =f 0, can be 
extended to a homomorphzsm (3 : B ~ K such that (3(b) =f 0. 

Proof: By induction on the number of generators of B over A, we reduce 
immediately to the case where B is generated over A by a single element x. 
Assume first that x is not algebraic over A, that is, no nonzero polynomial 
with coefficients in A has x as a root. As B = A[x], there are coefficients 
ao, ... ,an in A, with ao =f 0, such that 

b = aoxn + aIxn- 1 + ... + an. 

Set a = ao and let 
o::A~K 

be a homomorphism such that o:(a) =f 0. Now the nonzero polynomial 

o:(ao)tn + o:(adtn-I + ... + o:(an) 

has at most n roots in K; therefore, there is an element y of K such that 

o:(ao)yn + o:(adyn-I + ... + o:(an) =f 0, 

since K is infinite by Lemma 5. Extend 0: : A ~ K to a homomorphism 

(3:B~K 

by setting (3(x) = y. Then (3(b) =f 0, as required. 
Assume next that x is algebraic over A. Then x is integral over the field 

F of fractions of A. As b is in F[x], we have that b is integral over F by 
Theorem 7.5.2. Hence b is algebraic over A, and therefore b-I is algebraic 
over A. Hence, there are coefficients co, ... ,Cm and do, ... ,dn in A, with 
codo =f 0, such that 

Coxm + CIXm - 1 + ... + Cm = 0, 

dob-n + dIb l - n + ... + dn = 0. 

Set a = codo and let 0: : A ~ K be a homomorphism such that o:(a) =f 0. 
Then 0: can be extended first to a homomorphism 

0:' : A[a- I ] ~ K 

by setting 
o:'(a- I ) = o:(a)-l, 

and then to a homomorphism "( : C ~ K, where C is a valuation ring of 
the field of fractions of B, by Theorem 7.5.5. As a = codo, we have that 
x is integral over A[a- I ]. Therefore x is in C by Corollary 3, and so C 
contains B. Likewise, since a = codo, we have that b- I is integral over 
A[a- I ]. Therefore b- I is in C, and so b is a unit in C. Hence "((b) =f 0. 
Now take (3 : B ~ K to be the restriction of "( to B. 0 
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Selberg's Lemma 

Let A be a subring of C. Then A is said to be fimtely generated if and only if 
A is finitely generated over Z, that is, there are a finite number of elements 
aI, ... ,am of A, called the generators of A, such that every element of A 
can be expressed as a polynomial in aI, ... ,am with coefficients in Z. 

Theorem 7.5.7. Let A be a fimtely generated subrzng of C. Then every 
subgroup of GL(n, A) has a torswn-free normal subgroup of fimte zndex. 

Proof: For each prime p in Z, let Ctp be the composite 

'11 proj '11 inj-
~ -----+ ~p -----+ Zp, 

where Zp = ZjpZ and Zp is the algebraic closure of Zp. By Theorem 
7.5.6, there is a nonzero integer m with the property that for any prime 
p not dividing m, the homomorphism Ctp : Z --+ Zp can be extended to a 
homomorphism (3p : A --+ Zp. As (3p(l) = 1, the kernel of (3p is a proper 
ideal of A. Let Mp be a maximal ideal of A containing ker (3p. Then 

pZ = Z n ker (3p C Z n Mp. 

As pZ is a maximal ideal of Z, we have that Z n Mp = pZ. Therefore Aj Mp 
is a field of characteristic p. 

Now (3p : A --+ Zp induces an embedding of Aj ker (3p into Zp. As Zp is 
an algebraic extension of Zp, we have that Aj ker (3p is algebraic over Zp­
Therefore AjMp is an algebraic extension of Zp. As A is finitely generated 
over Z, we have that AjMp is finitely generated over Zp. Therefore AjMp 
is a finite extension of Zp by Corollary 1. Hence Aj Mp is a finite field. 

Let GLn(A, Mp) be the kernel of the natural projection from GLn(A) 
into GLn(AjMp). Then GLn(A, Mp) is a normal subgroup of GLn(A) of 
finite index, since GLn(AjMp) is a finite group. Let r be an arbitrary 
subgroup of GLn(A) and set 

rp =rnGLn(A,Mp). 

Then r p is a normal subgroup of r of finite index. 
Let p, q be distinct primes not dividing m and set 

rp,q=rpnrq. 

Then r p,q is a normal subgroup of r of finite index. We now prove that 
r p,q is torsion-free by contradiction. Let g be an element of r p,q of fi.nite 
order r > 1. We may assume, without loss of generality, that r is pnme. 
As gT = I, each eigenvalue of g is an rth root of unity. By Lemma 9 of 
§7.4, we have that g is conjugate in GL(n, C) to a unitary matrix. Hence 
g is conjugate to a diagonal matrix. Now since the order of g is r, at least 
one eigenvalue of g is a primitive rth root of unity w. 



§7.5. Torsion-Free Linear Groups 327 

Let B = A[w]. By Theorem 7.5.3, there is a prime ideal Qp of B such 
that An Qp = Mp. Let ¢(t) be the characteristic polynomial of g. As g is 

in GLn(A, Mp), we have 
¢(t) == (t - It mod Mp[t]. 

Therefore, we have 
¢(w) == (w - l)n mod Qp. 

As ¢( w) = 0, we have that w - 1 is in Q p, since B / Q p is an integral domain. 
Hence, there is a nonzero element x of Qp such that w = 1 + x. Observe 

that 
r(r-l) 2 T 

1=(I+xr=l+rx+ x +···+x. 
2 

Therefore, there is a y in Qp such that 

1=I+x(r+y). 

Thus x(r + y) = 0 and so r + y = O. Hence r is in Z n Qp = pZ. As r is 
prime, we have that r = p. Likewise r = q, and we have a contradiction. 
Thus r p,q is torsion-free. D 

Corollary 4. (Selberg's lemma) Every finitely generated subgroup r oj 
GL(n, C) has a torszon-jree normal subgroup oj fimte index. 

Proof: Let r be the group generated by gl, ... , gm and let A be the 
subring of C generated by all the entries of the matrices gr1, ... ,g~l. Then 
r is a subgroup of GL(n, A) and so has a torsion-free normal subgroup of 
finite index by Theorem 7.5.7. D 

Corollary 5. Every finitely generated subgroup ojI(Hn) has a torszon-jree 
normal subgroup of finite index. 

Proof: The group PO(n, 1) is a subgroup of GL(n + 1, q. D 

Exercise 7.5 

1. Let r be a group with a torsion-free subgroup of finite index. Prove that r 
has a torsion-free normal subgroup of finite index. 

2. r be a group with a torsion-free subgroup of finite index. Prove that there 
is an upper bound on the set of finite orders of elements of r. 

3. Let A be a finitely generated subring of <C. Prove that every subgroup of 
PSL(2, A) has a torsion-free normal subgroup of finite index. 

4. Prove that every finitely generated subgroup of PSL(2, IC) has a torsion-free 
normal subgroup of finite index. 

5. Prove that every finitely generated subgroup r of GL(n, IC) is residually 
finite, that is, for each 9 i- 1 in r, there is normal subgroup r 9 of r of finite 
index such that 9 is in r - r g. Conclude that every finitely generated group 
of hyperbolic isometries is residually finite. 
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§7.6. Historical Notes 

§7.1. Theorems 7.1.2 and 7.1.3 for 2- and 3-dimensional hyperbolic polyhe­
dra appeared in Poincare's 1883 Memoire sur les groupes kleineens [332]. 
Theorems 7.1.3 and 7.1.4 for spherical and Euclidean n-simplices appeared 
in Coxeter's 1932 paper The polytopes wzth regular-prismatic vertex figures 
II [86]. See also Witt's 1941 paper Spiegelungsgruppen und Aufziihlung 
halbeinfacher Liescher Rmge [414]. Theorems 7.1.1 and 7.1.3 for compact 
polyhedra were proved by Aleksandrov in his 1954 Russian paper On the 
filling of space by polyhedra [12] and in general by Seifert in his 1975 paper 
Komplexe mzt Seitenzuordnung [371]. Coxeter groups were introduced by 
Coxeter in his 1935 paper The complete enumeration of finite groups of the 
form R~ = (R.RJ)k'J = 1 [88]. 

§7.2. The spherical, Euclidean, and hyperbolic triangle reflection groups 
were determined by Schwarz in his 1873 paper Ueber diejenigen Fiille, in 
welchen die Gaussische hypergeometrische Reihe eme algebrazsche Func­
tion ihres vierten Elementes darstellt [369]. Hyperbolic, tetrahedron, re­
flection groups were considered by Dyck in his 1883 paper Uber die durch 
Gruppen linearer Transformationen gegebenen reguliiren Gebietseintheilun­
gen des Raumes [112]. The spherical, tetrahedron, reflection groups were 
determined by Goursat in his 1889 paper Sur les substitutions orthogonales 
et les divisions regulieres de l'espace [155]. The spherical and Euclidean, 
n-simplex, reflection groups were enumerated by Coxeter in his 1931 note 
Groups whose fundamental regwns are simplexes [85]. See also Coxeter's 
1934 paper Discrete groups generated by reflections [87]. The hyperbolic, 
tetrahedron, reflection groups were described by Coxeter and Whitrow 
in their 1950 paper World-structure and non-Euclidean honeycombs [96]. 
The hyperbolic, compact n-simplex, reflection groups were enumerated by 
Lanner in his 1950 thesis On complexes with transitive groups of auto­
morphisms [253]. Theorem 7.2.2 for spherical and Euclidean n-simplices 
appeared in Coxeter's 1932 paper [86]. See also Witt's 1941 paper [414]. 
Theorem 7.2.2 for hyperbolic n-simplices appeared in Vinberg's 1967 paper 
Dzscrete groups generated by reflectwns m Lobacevskii spaces [397]. 

§7.3. Theorem 7.3.1 and Figure 7.3.5 appeared in Vinberg's 1967 paper 
[397]. The hyperbolic, noncompact n-simplex, reflection groups were enu­
merated by Chein in his 1969 paper Recherche des graphes des matrices de 
Coxeter hyperboliques d'ordre ::; 10 [79]. For a survey of hyperbolic reflec­
tion groups, see Vinberg's 1985 paper Hyperbolic reflection groups [398]. 
References for reflection groups are Bourbaki's 1968 treatise Groupes et 
Algebres de Lie [54], Coxeter's 1973 treatise Regular Polytopes [92], and 
Humphreys' 1990 treatise Reflection Groups and Coxeter Groups [201]. 
A complete list of the Coxeter graphs of the hyperbolic, noncompact n­
simplex, reflection groups can be found in Humphreys' 1990 treatise [201]. 
For the history of reflection groups, see the historical notes in Bourbaki's 
1968 treatise [54] and in Coxeter's 1973 treatise [92]. 
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§7.4. Theorem 7.4.1 appeared in Auslander's 1965 paper An account 
of the theory of crystallographic groups [26]. Theorems 7.4.2 and 7.4.3 
were proved by Bieberbach in his 1911 paper Uber die Bewegungsgruppen 
der Euklzdischen Riiume I [46]. Our proof of Theorem 7.4.3 was given by 
Buser in his 1985 paper A geometric proof of Bieberbach's theorems on 
crystallographic groups [65]. Theorem 7.4.4 was proved by Bieberbach in 
his 1912 paper Uber die Bewegungsgruppen der Euklidzschen Riiume II [47]. 
A description of the 2-dimensional crystallographic groups can be found in 
Coxeter and Moser's 1980 treatise Generators and Relations for Dzscrete 
Groups [95]. For the history and classification of crystallographic groups, 
see the 1978 treatise Crystallographic Groups of Four-Dimensional Space 
of Brown, Biilow, Neubiiser, Wondratschek, and Zassenhaus [61]. Lemma 
9 was proved by Moore in his 1898 paper An universal invariant for fi­
nite groups of lmear substitutions [304] and by Loewy in his 1898 paper 
Ueber bzlineare Formen mit conjugirt zmaginiiren Variabeln [269]. Theo­
rem 7.4.5 appeared in Zassenhaus' 1948 paper Uber emen Algonthmus zur 
Bestimmung der Raumgruppen [422]. As a reference for crystallographic 
groups, see Farkas' 1981 article Crystallographic groups and their mathe­
matics [130]. 

§7.5. The material on integrality and valuation rings is basic commuta­
tive ring theory which was adapted from Chapter 5 of Atiyah and Macdon­
ald's 1969 text Introduction to Commutatwe Algebra [25]. Selberg's lemma 
was proved by Selberg in his 1960 paper On dzscontinuous groups in hzgher­
dzmensional symmetnc spaces [372]. For another proof of Selberg's lemma, 
see Alperin's 1987 paper An elementary account of Selberg's lemma [14]. 



CHAPTER 8 

Geometric Manifolds 

In this chapter, we lay down the foundation for the theory of hyperbolic 
manifolds. We begin with the notion of a geometric space. Examples of 
geometric spaces are sn, En, and Hn. In Sections 8.2 and 8.3, we study 
manifolds locally modeled on a geometric space X via a group G of simi­
larities of X. Such a manifold is called an (X, G)-manifold. In Section 8.4, 
we study the relationship between the fundamental group of an (X, G)­
manifold and its (X, G)-structure. In Section 8.5, we study the role of 
metric completeness in the theory of (X, G)-manifolds. In particular, we 
prove that if M is a complete (X, G)-manifold, with X simply connected, 
then there is a discrete subgroup r of G of isometries acting freely on X 
such that M is isometric to x/r. The chapter ends with a discussion of 
the role of curvature in the theory of spherical, Euclidean, and hyperbolic 
manifolds. 

§8.1. Geometric Spaces 

We begin our study of geometric manifolds with the definition of a topo­
logical manifold without boundary. 

Definition: An n-manifold (without boundary) is a Hausdorff space M 
that is locally homeomorphic to En, that is, for each point u of M, there 
is an open neighborhood U of u in M such that U is homeomorphic to an 
open subset of En. 

Example: Euclidean n-space En is an n-manifold. 

Definition: A closed manifold is a compact manifold (without boundary). 

Example: Spherical n-space sn is a closed n-manifold. 

330 
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Definition: An open manifold is a manifold (without boundary) all of 
whose connected components are noncompact. 

Example: Hyperbolic n-space Hn is an open n-manifold. 

Definition: An n-manifold-with-boundary is a Hausdorff space M that is 
locally homeomorphic to un = {x E En: Xn ~ O}. 

Example: Closed upper half-space un is n-manifold-with-boundary. 

Let M be an n-manifold-with-boundary and let MO be the set of points 
of M that have an open neighborhood homeomorphic to an open subset 
of un. Then MO is an open subset of M called the interzor of M. The 
interior MO of M is an n-manifold. Let 8M = M - MO. Then 8M is a 
closed subset of M called the boundary of M. The boundary 8M of Mis 
an (n -I)-manifold. A manifold-with-boundary is often called a manifold; 
however, in this book, a manifold will mean a manifold without boundary. 

Definition: An n-dimensional geometric space is a metric space X satis­
fying the following axioms: 

(1) The metric space X is geodesically connected; that is, each pair of 
distinct points of X are joined by a geodesic segment in X. 

(2) The metric space X is geodesically complete; that is, each geodesic 
arc a : [a, b] ----+ X extends to a unique geodesic line A : ~ ----+ X. 

(3) There is a continuous function E : En ----+ X and a k > 0 such that E 

maps B(O, k) homeomorphically onto B(E(O), k); for each point u of 
sn-1, the map A : ~ ----+ X, defined by A(t) = E(tU), is a geodesic line 
such that A restricts to a geodesic arc on the interval [-k, k]; 

(4) The metric space X is homogeneous. 

One should compare Axioms 1-4 with Euclid's Postulates 1-4 in §1.1. Note 
that Axioms 3 and 4 imply that X is an n-manifold. 

Example 1. Euclidean n-space En is an n-dimensional geometric space. 

Example 2. Spherical n-space sn is an n-dimensional geometric space. 
Define E : En ----+ sn by E(O) = en +1 and 

E(X) = (cos Ix\)en +1 + (sin Ixl) 1:1 for x =I- o. 

Then E satisfies Axiom 3 with k = 7r /2. 
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Example 3. Hyperbolic n-space H n is an n-dimensional geometric space. 
Define c : En -7 Hn by c(O) = en+l and 

c(x) = (cosh \xl)en+l + (sinh \x\) \~\ for x i= O. 

Then c satisfies Axiom 3 for all k > O. 

Theorem 8.1.1. Let X be an n-dzmenswnal geomet'rZc space and suppose 
that c : En -7 X zs a functwn satisfying Axwm 3. Then for each geodesic 
line A : 1R. -7 X such that A(O) = c(O), there zs a point u of sn-l such that 
A(t) = c(tu) for all t. 

Proof: Let A : 1R. -7 X be a geodesic line such that A(O) = c(O). Then 
there is a c > 0 such that the restriction of A to [0, c] is a geodesic arc. Let 
k be the constant in Axiom 3 and choose b > 0 but less than both c and 
k. Then A(b) is in B(c(O), k). Hence, there is a point u of sn-l such that 
c(bu) = A(b). Define a : [0, c] -7 X by 

a(t) = {c(tu), 0::::; t ::::; b, 
A(t), b::::;t::::;c. 

Then a is the composite of two geodesic arcs. Hence a is a geodesic arc by 
Theorem 1.4.3, since 

d(A(O), A(b)) + d(A(b), A(C)) = d(A(O), A(C)). 

By Axiom 2, the arc a extends to a unique geodesic line fL : 1R. -7 X. Now 
A and fL both extend the restriction of A to [b, c]. Therefore A = fL. Hence 
A(t) = c(tu) for 0 ::::; t ::::; b. Furthermore A(t) = c(tu) for all t, since A is 
the unique geodesic line extending the restriction of A to [0, b]. 0 

Theorem 8.1.2. Let B(x, r) be an open ball in a geometric space X and 
let B (x, r) be its topologzcal closure zn X. Then 

B(x,r) = {y EX: d(x,y)::::; r} = C(x,r). 

Furthermore the closed ball C (x, r) zs compact. 

Proof: In general, in a metric space, B (x, r) C C (x, r). As every point 
of the set {y EX: d( x, r) = r} is joined to x by a geodesic segment in 
B(x, r) by Axiom 1, we also have the reverse inclusion. Thus, we have 

B(x, r) = C(x, r). 

Let c : En -7 X be a function satisfying Axiom 3 with c(0) = x. As c is 
continuous, c(B(O, r)) C B(x, r). Let y be an arbitrary point of C(x, r). By 
Axiom 1, there is a geodesic arc a : [0, £] -7 X from x to y. By Axiom 2, 
the arc a extends to a geodesic line A : 1R. -7 X. By Theorem 8.1.1, there is 
a point u of sn-l such that A(t) = c(tu) for all t. Hence y = c(£u), where 
£ = d(x,y) ::::; r. Therefore y is in c(C(O,r)). Hence c(C(O,r)) = C(x,r). 
As C(O, r) is compact and c is continuous, C(x, r) is compact. 0 
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Free Group Actions 

Let r be a discrete group of isometries of an n-dimensional geometric space 
X. Then r is discontinuous by Theorems 5.3.5 and 8.1.2. Hence Xjr is 
a metric space by Theorems 5.3.4 and 6.5.1. We next consider a sufficient 
condition on the action of r on X so that Xjr is an n-manifold. 

Definition: A group r acting on a set X acts freely on X if and only if 
for each x in X, the stabilizer subgroup r x = {g E r : gx = x} is trivial. 

Example: The group {±1} acts freely on sn. 

Definition: A function e : X ---t Y between metric spaces is a local 
zsometry if and only if for each point x of X, there is an r > 0 such that e 
maps B(x,r) isometrically onto B(e(x),r). 

Theorem 8.1.3. Let r be a group of isometries of a metric space X such 
that r acts freely and discontinuously on X. Then the quotient map 

7r : X ---t Xjr 

is a local isometry and a coverzng projection. Furthermore, if X is con­
nected, then r zs the group of covering transformatzons of 7r. 

Proof: Let x be an arbitrary point of X. Then we have 

7r(B(x,r)) = B(7r(x),r) 

for each r > 0 by Theorem 6.5.2. Hence 7r is an open map. Now as r 
acts freely on X, the map g 1---* gx is a bijection from r onto rx. The set 
rx - {x} is closed by Theorem 5.3.4. Hence, we have 

dist(x,rx - {x}) > O. 

Now set 
1 . 

s = "2d1st(x,rx - {x}) 

and let y, z be arbitrary points of B(x, s/2). Then d(y, z) < s. Let g -I- 1 
be in r. Then 

Hence, we have 

Therefore 

d(x,gx) :S d(x,y) + d(y,gz) + d(gz,gx). 

d(y,gz) > d(x,gx) - d(x,y) - d(z,x) 

> 2s - s/2 - s/2 = s. 

dr(7r(y) , 7r(z)) = dist(ry, rz) = d(y, z). 

Thus 7r maps B(x, s/2) isometrically onto B(7r(x), s/2), and so 7r is a local 
isometry. 
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Now let g, h be in r and suppose that B(gx, s) and B(hx, s) overlap. 
Then B(x, s) and B(g-lhx, s) overlap. Consequently 

d(X,g-lhx) < 2s. 

Because of the choice of s, we have that g-lh = 1 and so g = h. Thus, 
the open balls {B(gx, s) : g E r} are mutually disjoint in X. The orbit 
space metric dr on Xjr is the distance function between r-orbits in X. 
Therefore 7l'-1(B(7l'(x),s)) is the s-neighborhood of rx in X. Hence, we 
have 

7l'-l(B(7l'(x), s)) = U B(gx, s). 
gEr 

As each h =I- 1 in r moves B(gx, s) off itself, no two points of B(gx, s) are 
in the same r-orbit. Therefore 7l' maps B(gx, s) bijectively onto B(7l'(x) , s). 
Furthermore, since 7l' is an open map, 7l' maps B(gx, s) homeomorphically 
onto B(7l'(x), s) for each g in r. Hence B(7l'(x) , s) is evenly covered by 7l'. 
Thus 7l' is a covering projection. 

If g is in r, then 7l'g = 7l', and so g is a covering transformation of 7l'. Now 
assume that X is connected. Choose a base point Xo of X. Let T : X ~ X 
be a covering transformation of 1r. Then 7l'T = 7l'. Hence 7l'T(XO) = 7l'(xo), 
and so there is an element g of r such that T(XO) = gxo. Now g and T 
are both lifts of 7l' : X ~ Xjr with respect to 7l' that agree at one point. 
Therefore T = g by the unique lifting property of covering projections. 
Thus r is the group of covering transformations of 7l'. 0 

X-Space-Forms 

Let r be a discrete group of isometries of an n-dimensional geometric space 
X such that r acts freely on X. Then the orbit space X jr is called an 
X-space-form. By Theorem 8.1.3, an X-space-form is an n-manifold. 

Choose a base point Xo of X. Let a : [0, 1] ~ Xjr be a loop based at 
the point rxo. Lift a to a curve a : [0, 1] ~ X starting at Xo· Then 

7l'a(l) = a(l) = rxo· 

Now since r acts freely on X, there is a unique element ga of r such that 
a(l) = gOl.xo. By the covering homotopy theorem, the element ga depends 
only on the homotopy class [a] in the fundamental group 7l'l(Xjr, rxo). 
Hence, we may define a function 

ry: 7l'l(Xjr) ~ r 

by the formula ry([a]) = ga· 

Theorem 8.1.4. Let X be a simply connected geometnc space and let Xjr 
be an X -space-form. Then ry : 7l'1 (Xjr) ~ r zs an zsomorphism. 
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Proof: Let a, fJ : [0,1] -+ Xjr be loops based a~ rxo and let a,!J : [0,1] -+ 

X be lifts starting at Xo. Then the curve a(gafJ) : [0,1] -+ X lifts afJ and 
starts at Xo. Observe that 

Therefore 

Thus "I is a homomorphism. 
Let 9 be an arbitrary element of r. As X is geodesically connected, 

there is a curve 'Y : [0,1] -+ X from Xo to gxo. Then 7r'Y : [0,1] -+ Xjr is a 
loop based at rxo whose lift starting at Xo is 'Y. Hence "I[7r'Y] = g. Thus "I 
is surjective. To see that "I is injective, assume that "1([01]) = 1. Then a is 
a loop in X. As X is simply connected, [a] = 1 and so 

[a] = 7r*[a] = 1. 

Hence "I is injective. Thus "I is an isomorphism. o 

Theorem 8.1.5. Let X be a szmply connected geometric space. Then two 
X -space-forms Xjr and XjH are isometric if and only zf rand Hare 
conjugate m the group I(X) of zsometries of X. 

Proof: Let cp be an element of I(X) such that H = cprcp-l. Then for each 
9 in r and x in X, we have 

cpgx = (cpgcp-l)cpx. 

Hence cpgx is in the same H-orbit as cpx. Thus cp induces a homeomorphism 

¢: Xjr -+ XjH 

defined by ¢(rx) = Hcpx. If x and yare in X, then 

Thus ¢ is an isometry. 

dH(Hcpx, Hcpy) 

dH(cpcp-1Hcpx, cpcp-1Hcpy) 

dH(cprx, cpry) 

dr(rx,ry). 

Conversely, suppose that ~ : Xjr -+ X/H is an isometry. By Theorem 
8.1.3, the quotient maps 7r : X -+ x/r and "I : X -+ X/H are covering 
projections. Since X is simply connected, ~ lifts to a homeomorphism ~ 
such that the following diagram commutes: 

X ---L X 
7r1 1"1 
x/r -L X/H. 

As 7r, ~, and "I are local isometries, ~ is also a local isometry. 
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Let x, y be distinct points of X. As X is geodesically connected there - , 
is a ge<!desic arc a : [O,.e] ---+ X from x to y. Since ~ is a local isometry, the 
curve ~a is rectifiable and 

Ital = lal = .e = d(x, y). 

Therefore, we have 

d(t(x), t(y)) ~ d(x, y). 

Likewise, we have 

Hence, we have 

d(x, y) d(t-1t(x), t-1t(y)) 

< d(t(x),t(y)). 

Therefore, we have 

d(t(x),t(y)) = d(x,y). 

Thus t is an isometry of X. 
Let 9 be an arbitrary element of r. Then we have 

~7rgt-l 

~7rt-l 
",U-l 

",. 

Hence tgt-1 is a covering transformation of",. Therefore ~g~-l is in H by 
Theorem 8.1.3. Thus H contains trt-1. By reversing the roles of rand 
H, we have that r contains t-1H{ Hence trt-1 = H. Thus rand Hare 
conjugate in I(X). 0 

Exercise 8.1 

1. Prove that elliptic n-space pn is an n-dimensional geometric space. 

2. Prove that the n-torus Tn = En /'l..n is an n-dimensional geometric space. 

3. A metric space X is said to be locally geodeszcally convex if and only if for 
each x in X, there is an r > 0 such that any two distinct points in B(x, r) 
are joined by a unique geodesic segment in X. Prove that every geometric 
space is locally geodesically convex. 

4. Prove that every X-space-form is geodesically connected. 

5. Let x/r be an X-space-form and let N(r) be the normalizer of r in I(X). 
Prove that I(x/r) is isomorphic to N(r)/r. 
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§8.2. Clifford-Klein Space-Forms 

Let X = sn, En, or Hn. Then an X -space-form is called a Clifford-Klein 
space-form. Thus, a Clifford-Klein space-form is an orbit space Xjr where 
r is a discrete group of isometries of X acting freely on X. A Clifford­
Klein space-form Xjr is also called a spherical, Euclidean, or hyperbolic 
space-form according as X = sn, En, or Hn. 

Theorem 8.2.1. A dzscrete group r of isometries of X = En or Hn acts 
freely on X if and only if r is torsion-free. 

Proof: As r is discontinuous, the stabilizer r x is finite for each x in X. 
Hence, if r is torsion-free, then r x = {1} for each x in X, and so r acts 
freely on X. Conversely, suppose that r acts freely on X. Then every 
nonidentity element of r is either parabolic or hyperbolic, and so every 
nonidentity element of r has infinite order. Thus r is torsion-free. 0 

Definition: The volume of a Clifford-Klein space-form Xjr is the volume 
of any proper fundamental region R of r in X. 

Note that the volume of a Clifford-Klein space-form Xjr is well defined, 
since all the proper fundamental regions of r have the same volume by 
Theorem 6.5.5. 

Theorem 8.2.2. If Xjr and XjH are two zsometric Clifford-Klein space­
forms, then 

Vol(Xjr) = Vol(XjH). 

Proof: By Theorem 8.1.5, there is an isometry ¢ of X such that H = 
¢r¢-l. Let R be a proper fundamental region for r. We now show that 
¢(R) is a proper fundamental region for H. First of all, ¢(R) is an open set, 
since R is open. Let F be a fundamental set for r such that ReF c R. 
As H¢x = ¢rx for each x in X, we have that ¢(F) is a fundamental set 
for H. Moreover 

¢(R) c ¢(F) c ¢(R). 

Furthermore 

Vol(8(¢(R))) = Vol(¢(8R)) = Vol(8R) = o. 
Therefore ¢(R) is a proper fundamental region for H by Theorem 6.5.13. 
Finally 

Vol(Xjr) = Vol(R) = Vol(¢(R)) = Vol(XjH). o 

Definition: A Clifford-Klein space-form Xjr is orzentable if and only if 
every element of r is orientation preserving. 
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Spherical Space-Forms 

It follows from Theorem 8.1.3 that every spherical space-form sn /r is 
finitely covered by sn. Hence, every spherical space form is a closed n­
manifold with a finite fundamental group when n > 1. 

Example 1. Clearly, the group {±1} acts freely on sn. The space-form 
sn / {±1} is elliptic n-space pn. 

Theorem 8.2.3. Sphe7"tcal n-space sn and elhptzc n-space pn are the only 
spherical space-forms of even dimension n. 

Proof: Let M = sn /r be a space-form of even dimension n and let A 
be a nonidentity element of r. Then A is an odd dimensional orthogonal 
matrix. By Theorem 5.4.2, we deduce that ±1 is an eigenvalue of A. Hence 
1 is an eigenvalue of A 2 . Therefore A 2 fixes a point of sn. As r acts freely 
on sn, we must have that A2 = 1. Consequently, all the rotation angles of 
A are 7r. Hence A is conjugate in O(n + 1) to -1. As -1 commutes with 
every matrix in O(n + 1), we have A = -1. Thus M = pn. 0 

Theorem 8.2.4. Every sphe7"tcal space-form sn /r of odd dzmenswn n is 
orientable. 

Proof: Let M = sn /r be a space-form of odd dimension n and let A 
be a nonidentity element of r. Then A is an even dimensional orthogonal 
matrix. As r acts freely on sn, the matrix A has no eigenvalue equal to 
1. By Theorem 5.4.2, we deduce that A has an even number of eigenvalues 
equal to -1. Hence A is a rotation. Consequently, every element of r 
preserves an orientation of sn and therefore M is orient able. 0 

Example 2. Identify S3 with the unit sphere in (:2 given by 

{(z,w) E (:2: Izl2 + Iwl2 = I}. 

Let p and q be positive coprime integers. Then the matrix 

( 
e27r./p 0 ) 

o e2nq/ p 

is unitary and has order p. Let r be the finite cyclic subgroup of U(2) 
generated by this matrix. Then r acts freely on S3 as a group of isometries. 

The space-form 
£(p, q) = s3/r 

is called the (p, q)-lens space. It is known that two lens spaces £(p, q) 
and £(p', q') are homeomorphic if and only if p = p' and either q == ±q' 
(mod p) or qq' == ±1 (mod p). In particular, £(5,1) and £(5,2) have iso­
morphic fundamental groups but are not homeomorphic. Thus, the home­
omorphism type of a spherical space-form is not determined, in general, by 
the isomorphism type of its fundamental group. 
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Euclidean Space-Forms 

Let En Ir be a Euclidean space-form. Then r is a torsion-free discrete 
group of isometries of En. By the characterization of discrete Euclidean 
groups in §5.4, the group r is a finite extension of a finitely generated free 
abelian group of rank at most n. 

Example 3. Let r be a lattice subgroup of I(En). Then r is a torsion­
free discrete subgroup ofI(En). The space-form En Ir is called a Euclidean 
n-torus. 

Theorem 8.2.5. Every compact, n-dzmensional, Euclidean space-form zs 
finitely covered by a Euclidean n-torus. 

Proof: Let En Ir be a compact Euclidean space-form. By Theorem 
7.4.2, the subgroup T of translations of r is of finite index and of rank n; 
moreover, T is a normal subgroup of r. Now the action of r on En induces 
an action of r IT on En IT such that if 9 is in r and x is in En, then 

(Tg)(Tx) = Tgx. 

The group r IT acts as a group of isometries of En IT, since 

dT(TgTx, TgTy) dT(Tgx, Tgy) 

= dT(gTx,gTy) 

= dT(Tx, Ty). 

Furthermore r IT acts discontinuously on En IT, since it is finite. 
Next, we show that r IT acts freely on En IT. Suppose that 

(Tg)(Tx) = Tx. 

Then Tgx = Tx. Hence gx = hx for some h in T. Therefore h-1gx = x. 
As r acts freely on En, we have that h-1g = 1. Therefore 9 = h, and so 9 
is in T. Thus r IT acts freely on En IT. 

By Theorem 8.1.3, the quotient map 

7r: En IT -+ (En IT)/(r IT) 

is a covering projection. Clearly (En IT)/(r IT) is isometric to En Ir. Thus 
En Ir is finitely covered by the Euclidean n-torus En IT. D 

Corollary 1. If En Ir zs a compact Euclzdean space-form, then r is a 
torsion-free finite extension of a free abelian group of rank n. 

Example 4. Let T~ be the translation of E2 bye" for i = 1,2, and let p 
be the reflection of E2 in the line y = 1/2. Let r be the group generated 
by PTI and T2. Then r is a torsion-free discrete subgroup of I(E2). The 
space-form E2/r is a Klein bottle that is double covered by the Euclidean 
torus E2 IT, where T is generated by Tf and T2. 
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Two Euclidean space-forms En /r and En /H are said to be affinely equiv­
alent if and only if there is a homeomorphism ¢ : En /r ----+ En /H induced 
by an affine bijection of lRn. By Theorem 7.4.4, two compact Euclidean 
space-forms have isomorphic fundamental groups if and only if they are 
affinely equivalent. Moreover, there are only finitely many isomorphism 
classes of n-dimensional crystallographic groups by Theorem 7.4.3. There­
fore, there are only finitely many affine equivalence classes of n-dimensional, 
compact, Euclidean, space-forms. The exact number of affine equivalence 
classes of n-dimensional, compact, Euclidean, space-forms for n = 1,2,3,4 
is 1,2,10,74, respectively. 

Hyperbolic Space-Forms 

Our main goal is to understand the geometry and topology of hyperbolic 
space-forms. We begin by studying the elementary hyperbolic space-forms. 

Definition: A hyperbolic space-form Hn /r is elementary if and only if r 
is an elementary subgroup of I(Hn). 

The type of an elementary space-form Hn /r is defined to be the elemen­
tary type of r. By the characterization of elementary discrete subgroups 
of I(Hn) in §5.5, a space-form H n /r is elementary if and only if r contains 
an abelian subgroup of finite index. 

Let H n /r be an elementary space-form. Assume first that r is of elliptic 
type. Then r is finite by Theorem 5.5.2, but r is torsion-free by Theorem 
8.2.1. Therefore r is trivial. Thus, the only n-dimensional, elementary, 
hyperbolic space-form of elliptic type is Hn. 

Next, assume that r is of parabolic type. We now pass to the upper 
half-space model and consider r to be a subgroup of I(Un ). By Theorem 
8.1.5, we may assume that r fixes 00. Then r corresponds under Poincare 
extension to an infinite discrete subgroup of I(En-l) by Theorem 5.5.5. As 
r acts trivially on the second factor of the cartesian product 

un = E n- 1 X lR+, 

we deduce that un /r is homeomorphic to (En-1/r) x lR+. As r is torsion­
free, En-l/r is a Euclidean space-form. The next theorem says that the 
similarity type of En-1/r is a complete isometric invariant of un /r. 

Theorem 8.2.6. Let un /r and un /H be two elementary space-forms of 
parabolic type such that both rand H fix 00. Then un /r and un /H are 
isometric if and only if E n- 1 /r and En-1/H are similar. 

Proof: By Theorem 8.1.5, the space-forms un /r and un /H are isometric 
if and only if rand H are conjugate in I(Un ). As rand H both fix 00, they 
are conjugate in I(Un ) if and only if they are conjugate in the subgroup of 
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I(Un) that fixes 00. The group S(En-l) of similarities of En-l corresponds 
under Poincare extension to the subgroup of I(Un ) that fixes 00. Thus f 
and H are conjugate in I(Un) if and only if they are conjugate in S(En-l). 
The same argument as in the proof of Theorem 8.1.5 shows that f and H 
are conjugate in S(En-l) if and only if En-l If and En-1/H are similar. 
Thus un If and un IH are isometric if and only if E n- 1 If and En-1/H 
are similar. 0 

Now assume that f is of hyperbolic type. From the description of an 
elementary discrete group of hyperbolic type in §5.5, we have that f is 
an infinite cyclic group generated by a hyperbolic element of I(Un ). By 
Theorem 8.1.5, we may assume that f is generated by a Mobius transfor­
mation ¢ of un defined by ¢( x) = kAx with k > 1 and A an orthogonal 
transformation of En that fixes the n-axis. A fundamental domain for f is 
the two-sided region 

{x E Un : 1 < Xn < k}. 

Let K = {km : m E Z}. The two sides of the fundamental domain of fare 
paired by ¢. Consequently un If is a (n - I)-dimensional vector bundle 
over the circle lR+ IK. 

Next observe that the geodesic segment [en, ken] in un projects to a 
simple closed curve w in un If, called the fundamental cycle of un If. The 
length of w is defined to be log k, which is the hyperbolic length of [en, ken]. 
The torsion angles of un If are defined to the angles of rotation of A. 

Theorem 8.2.7. Two elementary space-forms Unlfl and Unlf2 of hy­
perbolic type are zsometric if and only if they have the same fundamental 
cycle length and torsion angles. 

Proof: By Theorem 8.1.5, the space-forms un If 1 and un If2 are iso­
metric if and only if fl and f2 are conjugate in I(Un ). Hence, we may 
assume that f, is generated by a Mobius transformation ¢, of un, given 
by ¢, = k,A" with k, > 1 and A, an orthogonal transformation of En that 
fixes the n-axis for i = 1,2. 

Now suppose that fl and f2 are conjugate in I(Un ). Then there is a 
Mobius transformation 1jJ of un such that ¢1 = 1jJ¢~l1jJ-l. As the fixed 
points of 1jJ¢~l1jJ-l are 1jJ{O, oo}, we deduce that 1jJ leaves the set {O, oo} 
invariant. Assume first that 1jJ fixes both 0 and 00. Then there is a £ > 0 
and B in O(n) that fixes en such that 1jJ = £B. This implies that 

1jJ¢~I1jJ-l = B¢~1 B-1. 

Hence, we have 

k1Al = k~l BA~l B-1. 

As kl' k2 > 1, we have that kl = k2 and Al = BA2B-l. Therefore un If 1 
and un If2 have the same fundamental cycle length and torsion angles. 
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Now assume that 'ljJ switches 0 and 00. Then we may assume, by the 
first case, that 'ljJ(x) = x/lxI 2 . Then 'ljJ<p~I'ljJ-I = k~IA~. Hence, we have 
that klAI = k~1 A~. As kl, k2 > 1, we have that kl = k2 and Al = A21. 
Therefore un /r I and un /r 2 have the same fundamental cycle length and 
torsion angles. 

Conversely, suppose that un /r l and un /r2 have the same fundamental 
cycle length and torsion angles. Then kl = k2' and Al and A2 are conjugate 
in O(n) by an orthogonal transformation that fixes en. Therefore <PI and 
<P2 are conjugate in I(Un ). Thus r l and r 2 are conjugate in I(Un ) if and 
only if they have the same fundamental cycle length and torsion angles. 0 

Exercise 8.2 

1. Show that E1 j27fT. is isometric to 8 1 . 

2. Prove that the lens spaces L(p, q) and L(p, q') are isometric if and only if 
q == ±q' (mod p) or qq' == ±1 (mod p). 

3. Show that the volume of a spherical space-form 8 n jr is given by the formula 

4. Show that the Klein bottle group r of Example 4 is a torsion-free discrete 
subgroup of I(E2). 

5. Let En jr be an noncompact Euclidean space-form such that r is nontrivial 
and the subgroup T of translations of r is of finite index in r. Prove that 
En jr is finitely covered by a Euclidean space-form isometric to T m x E n- m , 

where T m is a Euclidean m-torus with 0 < m < n. 

6. Let En jr and En jH be Euclidean n-tori with rectangular fundamental poly­
hedra P and Q, respectively. Prove that En jr and En jH are isometric if 
and only if P and Q are congruent in En. 

7. Let En jr and En jH be Euclidean n-tori with rectangular fundamental poly­
hedra P and Q, respectively. Prove that En jr and En jH are similar if and 
only if P and Q are similar in En. 

8. Prove that two Euclidean space-forms En jr and En jH are similar if and 
only if r and H are conjugate in S(En). 

9. Let En jr and En jH be compact Euclidean space-forms and let A(JRn ) be 
the group of affine bijections of JRn . Prove that the following are equivalent: 

(1) En jr and En jH are affinely equivalent; 

(2) rand H are conjugate in A(JRn ); 

(3) rand H are isomorphic. 

10. Prove that every elementary hyperbolic space-form has infinite volume. 
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§8.3. (X, G)-Manifolds 

Let G a group of similarities of an n-dimensional geometric space X and 
let M be an n-manifold. An (X, G)-atlas for M is defined to be a family 
of functions 

called charts, satisfying the following conditions: 

(1) The set Ut , called a coordznate neighborhood, is an open connected 
subset of M for each i. 

(2) The chart cPt maps the coordinate neighborhood Ut homeomorphically 
onto an open subset of X for each i. 

(3) The coordinate neighborhoods {UthEI cover M. 

(4) If Ut and UJ overlap, then the function 

cPJcP-;l : cPt(Ut n UJ) ---+ cPJ(Ut n UJ), 

called a coordinate change, agrees in a neighborhood of each point of 
its domain with an element of G. See Figure 8.3.1. 

) 

Figure 8.3.1. A coordinate change 
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Theorem 8.3.1. Let <1> be an (X, G)-atlas for M. Then there is a unique 
maximal (X, G)-atlas for M containmg <1>. 

Proof: Let <1> = {¢. : U. ----+ X} and let <P be the set of all functions 
¢ : U ----+ X such that 

(1) the set U is an open connected subset of M; 

(2) the function ¢ maps U homeomorphically onto an open subset of X; 

(3) the function 
¢¢-;1 : ¢.(U. n U) ----+ ¢(U. n U) 

agrees in a neighborhood of each point of its domain with an element 
of G for each i. 

Clearly <P contains <1>. Suppose that ¢ : U ----+ X and 'I/J : V ----+ X are in 
<P. Then for each i, we have that 

'I/J¢-1 : ¢(U n V n U.) ----+ 'I/J(U n V n U.) 

is the composite 'I/J¢-;1¢.¢-1, and therefore it agrees in a neighborhood of 
each point of its domain with an element of G. As {U.} is an open cover of 
M, we have that 'I/J¢-1 : ¢(U n V) ----+ 'I/J(U n V) agrees in a neighborhood of 
each point of its domain with an element of G. Thus <P is an (X, G)-atlas 
for M. Clearly <P contains every (X, G)-atlas for M containing <1>, and so 
<P is the unique maximal (X, G)-atlas for M containing <1>. 0 

Definition: An (X, G)-structure for an n-manifold M is a maximal 
(X, G)-atlas for M. 

Definition: An (X, G)-manifold M is an n-manifold M together with an 
(X, G)-structure for M. 

Let M be an (X, G)-manifold. A charl for M is an element ¢: U ----+ X 
of the (X, G)-structure of M. If u is a point of M, then a chartfor (M, u) 
is a chart ¢ : U ----+ X for M such that u is in U. 

Example 1. An (Sn,I(Sn))-structure on a manifold is called a spherical 
structure, and an (sn, I(sn ))-manifold is called a spherical n-manifold. 

Example 2. A (En,I(En))-structure on a manifold is called a Euclidean 
structure, and a (En,I(En))-manifold is called a Euclidean n-manzfold. 

Example 3. An (Hn , I(Hn))-structure on a manifold is called a hyperbolic 
structure, and an (Hn, I(Hn ))-manifold is called a hyperbolic n-manzfold. 

Example 4. A (En,S(En))-structure on a manifold is called a Euclidean 
simzlarity structure, and a (En, S (En))_ manifold is called a Euclzdean sim­
ilarity n-manifold. 
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X-Space-Forms 

Let r be a discrete group of isometries of an n-dimensional geometric space 
X such that r acts freely on X. Then the quotient map 7r : X ----+ Xjr is 
a local isometry. Hence Xjr is an n-manifold. For each x in X, choose 
r(x) > 0 so that 7r maps B(x,r(x)) isometrically onto B(7r(x),r(x)). Let 
U x = B ( 7r ( X ) , r (x)) and let ¢x : U x ----+ X be the inverse of the restriction 
of 7r to B(x, r(x)). Then {Ux}xEX is an open cover of Xjr and ¢x maps 
Ux homeomorphic ally onto B(x,r(x)) for each x in X. Furthermore Ux is 
connected for each x in X, since B(x,r(x)) is connected. 

Let x, y be points of X such that Ux and Uy overlap and consider the 
function 

¢y¢;1 : ¢x(Ux n Uy) ----+ ¢y(Ux n Uy). 

Let z be an arbitrary point of ¢x(Ux n Uy) and set W = ¢y ¢;;; 1 (z). Then 
7r(z) = 7r(w). Hence, there is a 9 in r such that gz = w. As 9 is continuous 
at z, there is an E > 0 such that ¢y(UxnUy) contains gB(z, E). By shrinking 
B(z, E), if necessary, we may assume that ¢x(Ux n Uy) contains B(z, E). As 
7rg = 7r, the map ¢:;/g agrees with ¢;;;1 on B(z, E). Thus ¢y¢;;;1 agrees with 
9 on B(z, E). This shows that {¢x : Ux ----+ X}xEX is an (X,r)-atlas for 
Xjr. By Theorem 8.3.1, this atlas determines an (X, r)-structure on Xjr, 
called the znduced (X, r)-structure. Thus Xjr together with the induced 
(X, r)-structure is an (X, r)-manifold. 

Let G be a subgroup of S(X) containing r. Clearly, an (X, r)-atlas for 
Xjr is also an (X, G)-atlas for Xjr; therefore, the induced (X, r)-structure 
on Xjr determines an (X, G)-structure on Xjr, called the induced (X, G)­
structure. In particular, Xjr, with the induced (X, I(X))-structure, is an 
(X,I(X))-manifold. Thus, every X-space-form is an (X,I(X))-manifold. 

Theorem 8.3.2. Let X be a geodesically connected and geodeszcally com­
plete metric space. If 9 and hare similarzties of X that agree on a nonempty 
open subset of X, then 9 = h. 

Proof: The metric space X is rigid by Theorem 6.5.12. o 

Theorem 8.3.3. Let ¢]¢-;1 : ¢.(U. n U]) ----+ ¢](U. n U]) be a coordinate 
change of an (X, G)-manzfold M. Then ¢]¢-;1 agrees with an element of 
G on each connected component of its domain. 

Proof: Let C be a connected component of ¢.(U. n UJ). Suppose that w 
and x are in C. Then there are open subsets WI, ... , Wm of C such that w 
is in WI, the sets W k and W k+1 overlap for k = 1, ... , m - 1, the set Wm 
contains x, and ¢]¢-;1 agrees with an element gk of G on Wk. As gk and 
gk+1 agree on the nonempty open set Wk n W k+l, we have that gk = gk+1 
by Theorem 8.3.2. Therefore, all the gk are the same. Thus ¢J¢-;1 agrees 
with gl at x and therefore on C. 0 
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Metric (X, G)-Manifolds 

Definition: A metric (X, G)-mamfold is a connected (X, G)-manifold M 
such that G is a group of isometries of X. 

Let ry : [a, b] ----7 M be a curve in a metric (X, G)-manifold M. We now define 
the X-length of ry. Assume first that ry([a, b]) is contained in a coordinate 
neighborhood U. Let ¢ : U ----7 X be a chart for M. The X-length of ry is 
defined to be 

Ihll = I¢ryl· 
The X-length of ry does not depend on the choice of the chart ¢, since if 
'!jJ : V ----7 X is another chart for M such that V contains ry([a, b]), then there 
is an isometry gin G that agrees with '!jJ¢-1 on ¢ry([a, b]) by Theorem 8.3.3 
and therefore 

Now assume that ry : [a, b] ----7 M is an arbitrary curve. As ry([a, b]) is 
compact, there is a partition 

a = to < h < ... < tm = b 

of [a, b] such that ry([t,-I, t.]) is contained in a coordinate neighborhood U. 
for each i = 1, ... , m. Let ryt,_l,t, be the restriction of ry to [t z- 1 , t z]. The 
X-length of ry is defined to be 

m 

ibll = L ibt,_"t, II· 
,=1 

The X-length of ry does not depend on the choice of the partition {t,}, 
since if 

a = So < SI < ... < Se = b 

is another partition such that ry([S.-I, s,]) is contained in a coordinate 
neighborhood 11;" then there is a third partition 

a = ro < rl < ... < rk = b 

m k e 

L ibt,-"d = L ibr,-"r,li = L ibs,-"S,Ii. 
,=1 

Definition: A curve ry in a metric (X, G)-manifold M is X-rectzjiable if 

and only if ibll < 00. 

Lemma 1. Any two points m a metrzc (X, G)-mamfold M can be Joined 
by an X -rectzJiable curve m M. 
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Proof: Define a relation on M by u rv V if and only if u and v are joined 
by an X-rectifiable curve in M. It is easy to see that this is an equivalence 
relation on M. Let [u] be an equivalence class and suppose that v is in 
[u]. Let 'IjJ : V ----+ X be a chart for (M, v). Then there is an r > 0 such 
that 'IjJ(V) contains B ('IjJ (v) , r). Let x be an arbitrary point in B('IjJ(v) , r). 
As X is geodesically connected, there is a geodesic arc a : [a, b] ----+ X from 
'IjJ(v) to x. Clearly B ('IjJ (v) , r) contains a([a, b]). Hence 'IjJ-1 a : [a, b] ----+ M 
is an X-rectifiable curve from v to 'IjJ-1(X). This shows that [u] contains 
the open set 'IjJ-1(B('IjJ(v),r)). Thus [u] is open in M. As M is connected, 
[u] must be all of M. Thus, any two points of M can be joined by an 
X-rectifiable curve. 0 

Theorem 8.3.4. Let M be a metrzc (X, G)-manifold. Then the function 
d : M x M ----+ lR, defined by 

d( u, v) = inf 111'11, 
'Y 

where I' varies over all X -rectifiable curves from u to v, zs a metric on M. 

Proof: By Lemma I, the function d is well defined. Clearly d is nonnega­
tive and d( u, u) = 0 for all u in M. To see that d is nondegenerate, let u, v 
be distinct points of M. Since M is Hausdorff, there is a chart ¢ : U ----+ X 
for (M, u) such that v is not in U. Choose r > 0 such that ¢(U) contains 
C(¢(u), r). By Theorem 8.1.2, the sphere 

S(¢(u),r) = {x EX: d(¢(u),x) = r} 

is compact. Hence, the set 

T = ¢-l(S(¢(U), r)) 

is closed in M, since M is Hausdorff. 
Let I' : [a, b] ----+ M be an arbitrary X-rectifiable curve from u to v. Since 

I'([a, b]) is connected and contains both u and v, it must meet T. Hence, 
there is a first point c in the open interval (a, b) such that I'(c) is in T. Let 
I'a,c be the restriction of I' to [a, c]. Then the image of I'a,c is contained in 
¢-l(C(¢(U), r)). Consequently, we have 

111'11 ;::: Iha,cll = I ¢I'a,c I ;::: dx(¢(u), ¢I'(c)) = r. 

Therefore, we have 

d( u, v) ;::: r > O. 

Thus d is nondegenerate. 
If I' : [a, b] ----+ M is an X-rectifiable curve from u to v, then 

1'-1 : [a, b] ----+ M 

is an X-rectifiable curve from v to u, and 111'-111 = 111'11. Consequently d is 
symmetric. 
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If 0: : [a, b] -t M is an X-rectifiable curve from u to v, and (3 : [b, c]-t M 
is an X-rectifiable curve from v to w, then 0:{3 : [a, c] -t M is an X­
rectifiable curve from u to w, and 

110:{311 = 110:11 + 1I{311· 
This implies the triangle inequality 

d(u, w) ::; d(u, v) + d(v, w). 

Thus d is a metric on M. o 

Let M be a metric (X, G)-manifold. Then the metric d in Theorem 
8.3.4 is called the induced metT'lC on M. Henceforth, we shall assume that 
a metric (X, G)-manifold is a metric space with the induced metric. 

Theorem 8.3.5. Let c/J : U -t X be a chart for a metT'lC (X, G)-manifold 
M, let x be a point of c/J(U), and let r > 0 be such that c/J(U) contains 
B(x, r). Then c/J-l maps B(x, r) homeomorphically onto B(c/J-l(X), r). 

Proof: Clearly c/J-l maps B(x,r) into B(c/J-l(x),r). Let v be an arbitrary 
point of B(c/J-l(x),r). Then there is an X-rectifiable curve "(: [a,b]-t M 
from c/J-l(x) to v such that Ii'YII < r. Suppose that v is not in c/J-l(B(x,r)). 
We shall derive a contradiction. Let s = (1i'Y11 + r)/2. Since ,,(([a, b]) is 
connected and contains both c/J-l(X) and v, it must meet c/J-1(S(x, s)). 
Hence, there is a first point c in (a, b) such that "((c) is in c/J-1(S(x, s)). Let 
"(a,c be the restriction of"( to [a, c]. Then the image of "(a,c is contained in 
c/J-1(C(x, s)). Consequently 

Ii'YII ~ li'Ya,cll = I c/J"(a,c I ~ s, 

which is a contradiction. Thus c/J-l maps B(x, r) onto B(c/J-l(x), r). 0 

Corollary 1. If M zs a metT'lC (X, G)-mamfold, then the topology of M is 
the metric topology determmed by the mduced metT'lc. 

Theorem 8.3.6. Let c/J : U -t X be a chart for a metric (X, G)-manifold 
M, let x be a poznt of c/J(U), and let r > 0 be such that c/J(U) contains 
B(x, r). Then c/J-1maps B(x, r /2) isometrically onto B(c/J-l(x), r /2); there­
fore c/J is a local isometry. 

Proof: By Theorem 8.3.5, the function c/J-l maps B(x, r /2) bijectively 
onto B(c/J-l(x),r/2). Hence, we only need to show that c/J-l preserves 
distances on B(x, r /2). Let y, z be distinct points of B(x, r /2). As X is 
geodesically connected, there is a geodesic arc 0: : [0, I!] -t X from y to 
z. By the triangle inequality, dx(Y,z) < r. Hence, every point in 0:([0,1!]) 
is at most a distance r/2 from either y or z. Therefore B(x,r) contains 
0:([0, R]). Hence 

d(c/J-l(y), c/J-l(z)) ::; 11c/J-10:11 = 10:1 = dx(y, z). 
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Now let 'Y : [a, b) ---+ M be any X-rectifiable curve from ¢-l(y) to ¢-l(Z). 
Assume first that U contains 'Y([a, b)). Then 

Ibll = I¢'YI ~ dx(Y, z). 
Now assume that U does not contain 'Y([a, b)). Set 

s = max{dx(x,y),dx(x,z)} + (r/2). 

Then s < r. Hence, there is a first point c in (a, b) such that 'Y(c) is 
in ¢-1(8(x, s)), and there is a last point d in (a, b) such that 'Y(d) is in 
¢-1(8(x, s)). Let 'Ya,c be the restriction of'Y to [a, c) and let 'Yd,b be the 
restriction of'Y to [d, b). Then 

Ibll ~ Iba,cll + II'Yd,bll 
1¢'Ya,cl + 1¢'Yd,bl 

> dx(Y, ¢'Y(c)) + dx(¢'Y(d), z) 

> r/2+r/2 
> dx(Y,z). 

Thus, in general, we have 

Ibll ~ dx(Y, z). 
Hence, we have 

d(¢-l(y), ¢-l(z)) ~ dx(y, z). 

Since we have already established the reverse inequality, we have that ¢-1 
maps B(x,r/2) isometrically onto B(¢-1(x),r/2). 0 

Example: The unit circle 8 1 in rc is a Euclidean 1-manifold. The complex 
argument mapping 

arg : 8 1 - { -1} ---+ R 

is a chart for 8 1 whose image is the open interval (-71",71"). Observe that 
(-71" /2,71" /2) is the largest open interval centered at the origin that is 
mapped isometrically onto its image by arg- 1 . This example shows why 
the radius r is halved in Theorem 8.3.6. 

Exercise 8.3 

1. Prove Corollary 1. 

2. Let 'Y : [a, b] ---+ M be a curve in a metric (X, G)-manifold. Prove that the 
X-length of'Y is the same as the length of'Y with respect to the induced 
metric. 

3. Let Xjr be an X-space-form. Show that the induced metric on Xjr is the 
orbit space metric dr. 

4. Prove that every metric (X, G)-manifold is locally geodesically convex. 

5. Prove that any two points of a metric (X, G)-manifold M can be joined by 
a piecewise geodesic curve in M. 
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§8.4. Developing 

Let ¢: U - X be a chart for an (X, G)-manifold M and let "(: [a, bj- M 
be a curve whose initial point "((a) is in U. Then there is a partition 

a = to < it < ... < tm = b 

and a set {¢. : U. - X}~l of charts for M such that ¢1 = ¢ and U. 
contains ,,(([t.-1, t.]) for each i = 1, ... , m. Let g. be the element of G that 
agrees with ¢'¢-:;1 on the connected component of U. n U.+1 containing 
"((t.). Let "(. be the restriction of"( to the interval [t.- I , t.]. Then ¢."(. and 
g.¢.+l "(.+1 are curves in X and 

g.¢.+1'Y(t.) = ¢'¢-;;l¢'+1"((t.) = ¢."((t.). 

Thus g.¢.+l "(.+1 begins where ¢."(. ends, and so we can define a curve 
1': [a, b] - X by the formula 

l' = (¢1'Y1)(gl¢2"(2) (glg2¢3"(3) ... (gl ... gm-1¢m"(m). 

We claim that l' does not depend on the choice of the charts {¢.} once a 
partition of [a, bj has been fixed. Suppose that {'l/J. : v" - X}~I is another 
set of charts for M such that 'l/J1 = ¢ and v" contains "(([t.-1, t.]) for each 
i = 1, ... , m. Let h. be the element of G that agrees with 'l/J.'l/J::):1 on the 
component of v" n v,,+1 containing "((t.). As U. n v" contains "(([t.-1, t.]), 
it is enough to show that 

gl ... g.-I¢. = h1 ... h.-1'l/J. 

on the component of U. n v" containing "(([t.-I, t.]) for each i. This is true 
by hypothesis for i = 1. We proceed by induction. Suppose that it is 
true for i - 1. Let f. be the element of G that agrees with 'l/J.¢-;l on the 
component of U. n v" containing "(([t._1t.]). On the one hand, f. agrees 
with 

'l/J.( 'l/J-;.!1 h-;.!2 ... hii )(gl ... g._2¢._1)¢-;1 

on the component of ¢.(U.-1 n v,,-1 n U. n v,,) containing "((t.-1). On the 
other hand, (h-;':l ... hi 1)(gl··· g.-d agrees with 

('l/J.'l/J;.!l) (h-;':2 ... hi 1)(gl··· g._2)(¢._l¢-;1) 

on the component of ¢.(U.-1 nv,,-l nUt nv,,) containing ,,((t.-d· Therefore 

f. = (hi':l· .. hi l )(gl···g.-d 

by Theorem 8.3.2. Hence 

(h1··· h.-l) (h-;':l ... hi l )(gl··· g.-l)¢. 

(h1 ... h.-df.¢. 
(h1 ... h.-1)'l/J. 

on the component of U. n v" containing "(([t.-l, t.]). This completes the 
induction. 
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Next, we show that l' does not depend on the partition of [a, b]. Let 
{S'};=l be another partition with charts N. : ~ -> X};=l. Then {r.} = 
{s.} U {t.} is a partition of [a, b] containing both partitions. Since the 
charts {¢.} and {'If.} can both be used in turn for the partition {r.}, we 
deduce that all three partitions determine the same curve 1'. The curve 
l' : [a, b] -> X is called the continuatzon of ¢'YI along 'Y. 

Theorem 8.4.1. Let ¢ : U -> X be a chart for an (X, G)-manifold M, 
let a, fJ : [a, b] -> M be curves with the same initial pomt in U and the 

same terminal pomt in M, and let &, {J be the continuations of ¢al' ¢fJI 
along a, fJ, respectzvely. If a and fJ are homotopic by a homotopy that keeps 
thezr endpoints fixed, then & and {J have the same endpoznts, and they are 
homotopic by a homotopy that keeps thezr endpoints fixed. 

Proof: This is clear if a and fJ differ only along a subinterval (c, d) such 
that a([c, d]) and fJ([c, d]) are contained in a simply connected coordinate 
neighborhood U. In the general case, let H : [a, b]2 -> M be a homotopy 
from a to fJ that keeps the endpoints fixed. As [a, b] is compact, there is 
a partition a = to < tl < ... < tm = b such that H([t._ l , t.] x [tJ-I, tJl) 
is contained in a simply connected coordinate neighborhood U'J for each 
i, j = 1, ... , m. Let a'J be the curve in M defined by applying H to the 
curve in [a, b]2 illustrated in Figure 8.4.1(a), and let fJ'J be the curve in M 
defined by applying H to the curve in [a, b]2 illustrated in Figure 8.4.1(b). 
Then by the first remark, &'J and {J'J have the same endpoints and are 
homotopic by a homotopy keeping their endpoints fixed. By composing all 
these homotopies starting at the lower right-hand corner of [a, b]2, proceed­
ing right to left along each row ofrectangles [t.-l, t.] x [tJ-I, tJ], and ending 
at the top left-hand corner of [a, bj2, we find that & and {J are homotopic 
by a homotopy keeping their endpoints fixed. 0 

b ...---------, 

+ 

a b a b 

(a) (b) 

Figure 8.4.1. Alternate routes from (a, a) to (b, b) in the square [a, W 
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(X,G)-Maps 

Definition: A function ~ : M ---> N between (X, G)-manifolds is an 
(X, G)-map if and only if ~ is continuous and for each chart ¢ : U ---> X 
for M and chart 'If; : V ---> X for N such that U and ~-l(V) overlap, the 
function 

agrees in a neighborhood of each point of its domain with an element of G. 

Theorem 8.4.2. A functwn ~ : M ---> N between (X, G)-manzfolds is an 
(X, G)-map if and only if for each poznt u of M, there is a chart ¢ : U ---> X 
for (M, u) such that ~ maps U homeomorphically onto an open subset of 
N and ¢~-l : ~(U) ---> X is a chart for N. 

Proof: Suppose that ~ : M ---> N is an (X, G)-map and u is an arbitrary 
point of M. Let 'If; : V ---> X be a chart for (N,~(u)). Since ~ is continuous 
at u, there is a chart ¢ : U ---> X for (M, u) such that ~(U) c V. Then 

'If;~¢-l : ¢(U) ---> 'If;~(U) 

agrees with an element g of G, since ¢(U) is connected. Hence ~ maps U 
homeomorphically onto an open subset of N, and ¢~-l : ~(U) ---> X agrees 
with g-l'lf; : V ---> X. Therefore ¢~-l is a chart for N. 

Conversely, suppose that for each point u of M, there is a chart ¢ : U ---> 

X for (M, u) such that ~ maps U homeomorphically onto an open subset 
of N, and ¢~-l : ~(U) ---> X is a chart for N. Then ~ is continuous. Let 
X : W ---> X and 'If; : V ---> X be charts for M and N, respectively, such 
that W and ~-l(V) overlap, and let u be an arbitrary point of the set 
Wn~-l(V). Then there is a chart ¢: U ---> X for (M,u) such that ~ maps 
U homeomorphically onto an open subset of N and ¢~-l : ~(U) ---> X is a 
chart for N. Observe that in a neighborhood of u, the function 

'If;h-l : X(W n Cl(V)) ---> 'If;(~(W) n V) 

agrees with ('If;~¢-l )(¢X- l ). As ¢X-l and 'If;~¢-l are coordinate changes 
for M and N, respectively, 'If;~X-l agrees in a neighborhood of u with an 
element of G. Thus ~ is an (X, G)-map. 0 

Theorem 8.4.3. Let ¢ : U ---> X be a chart for a simply connected (X, G)­
manifold M. Then there is a unique (X, G)-map ¢ : M ---> X extending the 

chart ¢. 

Proof: Fix a point u in U and let v be an arbitrary point of M. Then 
there is a curve a : [a, b] ---> M from u to v. Let & : [a, b] ---> X be the 
continuation of ¢al along a. Then &(b) does not depend on the choice of 
a by Theorem 8.4.1, since M is simply connected. Hence, we may define a 
function ¢ : M ---> X by ¢(v) = &(b). 
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Let 1jJ : V ----+ X be a chart for (M, v) such that 1jJ = ¢ if v is in U. Then 
there is a partition 

a = to < tl < ... < tm = b 

and a set of charts {¢. : U. ----+ X}::'I for M such that ¢I = ¢, and U. 
contains a([t._I, t.]) for each i = 1, ... , m, and ¢m = 1jJ. Let a. be the 
restriction of a to [t.-I, t.] and let g. be the element of G that agrees with 
¢'¢;}I on the connected component of U. n U.+ I containing a(t.). Then 

a = (¢lal)(gl¢2a2)··· (gl ... gm-I¢mam). 

Let j3 : [b, c] ----+ V be a curve from v to wand let g = gl ... gm-I. Then 
;;jJ = ag1jJj3. Hence ¢(w) = ;;jJ(c) = g1jJ(w). Therefore ¢(w) = g1jJ(w) 
for all w in V. Hence ¢ maps V homeomorphically onto the open subset 
g1jJ(V) of X and 1jJ¢-1 : ¢(V) ----+ X is the restriction of g-I. Thus ¢ is an 
(X, G)-map by Theorem 8.4.2; moreover, ¢ extends ¢. 

Now let ~ : M ----+ X be any (X, G)-map extending ¢. Without loss of 
generality, we may assume that the set of charts {¢. : U. ----+ X}::'I for M 
has the property that 

¢.c l : ~(U.) ----+ X 

is a chart for X. Then ¢.~-I extends to an element h-;I of G. Hence 
~(w) = h.¢.(w) for all w in U •. As ~(w) = ¢(w) for all w in U, we have 
that hI ¢ = ¢ and so hI = 1. We proceed by induction. Suppose that 
h.-I = gl··· g.-2· Then for each win U.- b we have 

~(w) h.-I¢.-I(W) 

gl··· g.-2¢.-I(W) 
¢(w). 

Hence 

h.¢.(w) = ~(w) = ¢(w) = gl··· g.-I¢.(W) 

for all w in U.- I n U •. Therefore h. = gl ... g.-I. Hence, by induction, we 
have that 

~(v) = hm¢m(v) = g¢m(v) = ¢(v). 

Therefore ~ = ¢. Thus ¢ is unique. o 

Theorem 8.4.4. Let M be a simply connected (X, G)-manifold. 1f6,6: 
M ----+ X are (X, G)-maps, then there is a unique element g of G such that 
6 = g~l· 

Proof: Let ¢ : U ----+ X be a chart for M such that ¢~;I : ~.(U) ----+ X 
is a chart for X for i = 1,2. By Theorem 8.3.3, there is an element g. of 
G extending ¢~;I : ~.(U) ----+ X. As g.~. is an (X, G)-map extending ¢ for 
i = 1,2, we have that gI6 = g26 by the uniqueness of ¢. Let g = gilgl. 
Then 6 = g6· If h is another element of G such that 6 = h~b then 
g6 = h6 whence g = h by Theorem 8.3.2. Thus g is unique. 0 
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The Developing Map 

Let M be a connected (X, G)-manifold and let /'l, : M -t M be a universal 
covering projection. Then M is simply connected. Let {¢, : U, -t X} be 
an (X, G)-atlas for M such that U, is simply connected for each i. Then 
the set U, is evenly covered by /'l, for each i. Let {U'J} by the set of sheets 
over U, and let /'l,'J : U'J -t U, be the restriction of /'l,. Define ¢'J : U'J -t X 
by ¢'J = ¢,/'l,'J' Then ¢'J maps U'J homeomorphically onto the open set 
¢(U,) in X. Suppose that U'J and Uk£ overlap. Then U, and Uk overlap. 
Consider the function 

¢'J¢-,;l : ¢k£(U'J n Uki) -t ¢'J(U'J n Uk£). 

If x is in ¢k£(U'J n Uk£), then 

¢'J¢-,;l(x) = ¢,/'l,'J/'l,-,;l(X)¢-,;1 = ¢,¢-,;1(x). 

Hence ¢'J¢-,;l agrees in a neighborhood of each point of its domain with 
an element of G. Therefore {¢'J : U'J -t X} is an (X, G)-atlas for M. 
We shall assume that M is an (X, G)-manifold with the (X, G)-structure 
determined by this (X, G)-atlas. 

Observe that /'l, maps the coordinate neighborhood U'J homeomorphi­
cally onto U,' and ¢'J/'l,-1 : /'l,(U'J) -t X is the chart ¢, : U, -t X for M. 
Thus /'l, is an (X, G)-map by Theorem 8.4.2. 

Let 7 : M -t M be a covering transformation of /'l, and let U be an 
arbitrary point of M. Then there is an i such that /'l,(u) is in U,. Hence, 
there is a j such that u is in U'J' As 7 permutes the sheets over U" there 
is a k such that 7(U'J) = U,k' Observe that ¢'J7-1 : 7(U'J) -t X is the 
chart ¢,k : U,k -t X. Therefore 7 is an (X, G)-map. 

Let ¢ : U -t X be a chart for M. Then ¢ extends to a unique (X, G)­
map 8 : M -t X by Theorem 8.4.3. The map 

8:M-tX 

is called the developzng map for M determined by the chart ¢. By Theorem 
8.4.4, any two developing maps for M differ only by composition with an 
element of G. Thus, the developing map 8 is unique up to composition 
with an element of G. 

Holonomy 

Choose a base point u of M and a base point u of M such that /'l,(u) = u. 
Let a: [0, 1]-t M be a loop based at u. Then a lifts to a unique curve a in 
M starting at U. Let v be the endpoint of a. Then there is a unique covering 
transformation 70. of /'l, such that 70.(U) = V. The covering transformation 
70. depends only on the homotopy class of a in the fundamental group 
7f1 (M, u) by Theorem 8.4.1. Let f3 : [0, 1] -t M be another loop based at 

u. Then af3 = (a)(70.,6) and so 70.{3 = 70.7{3. 
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Let 8 : M ---+ X be a developing map for M. As 8701 : M ---+ X is an 
(X, G)-map, there is a unique element ga of G such that 8701 = ga8. Define 

TJ: H1(M,u) ---+ G 

by TJ([a]) = gOi' Then TJ is well defined, since ga depends only on the 
homotopy class of a. Observe that 

87af3 = 87a7f3 = g0l 87f3 = gagf3b. 

Hence 
TJ([a][jJ]) = TJ([ajJ]) = gagf3 = TJ([a])TJ([jJ])· 

Thus TJ is a homomorphism. The homomorphism TJ : H1 (M) ---+ G is called 
the holonomy of M determined by the developing map 8. 

Note, if 8' : M ---+ X is another developing map for M, then there is a 9 
in G such that 8' = gb, and therefore 

8'701 = g87a = gga 8 = ggOlg-18'. 

Hence, the holonomy TJ' of M determined by 8' differs from the holonomy 
of M determined by 8 by conjugation by g. 

Theorem 8.4.5. Let M be a connected (X, G)-manifold and let H be 
a subgroup of G. Then the (X, G)-structure of M contams an (X, H)­
structure for M zf and only if H contams the image of a holonomy TJ : 
H1(M) ---+ G for M. 

Proof: Suppose that the (X, G)-structure of M contains an (X, H)­
structure. Then H contains the image of any holonomy for M defined 
in terms of the (X, H)-structure for M. Conversely, suppose that H con­
tains the image of a holonomy TJ : H1 (M) ---+ G for M. Let 8 : M ---+ X 
be the developing map that determines TJ, and let {¢, : U, ---+ X} be an 
(X, G)-atlas for M such that U, is evenly covered by the covering pro­
jection '" : M ---+ M for each i. Let {U'J} be the set of sheets over U, 
and let "'tJ : UtJ ---+ U, be the restriction of "'. Define ¢'J : U'J ---+ X by 
¢tJ = ¢t"'tJ' Then {¢'J : UtJ ---+ X} is an (X, G)-atlas for M. Hence 8 maps 
UtJ homeomorphically onto an open subset of X for each i and j. 

For each i, choose a sheet U'J over U, and define 'l/Jt : Ut ---+ X by setting 
'l/Jt = 8",~1. Then 'l/Jt maps Ut homeomorphically onto an open subset of X 
for each i. Assume that Ut and Uk overlap and consider the function 

'l/Jk'l/J;1 : 'l/Jt(U, n Uk) ---+ 'l/Jk(U, n Uk)' 

Then for some j and C, we have 

'l/Jk'l/J;1(x) = 8"'kl"'tJ8-1(x) 

for each x in 'l/Jt(Ut n Uk). Hence 'l/Jk'l/J;1 agrees in a neighborhood of each 
point of its domain with b78-1 for some covering transformation 7 of "'. 
By hypothesis, 878-1 agrees with an element of H. Hence {'l/Jt : Ut ---+ X} 
is an (X, H)-atlas for M. 
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Now as ¢'J : U'J ----+ X is a chart for iiI, we have that ¢,/5-1 : 8(U'J) ----+ X 
is the restriction of an element of G. Since 

¢,'l/!:;l = ¢'''''J 8- 1 = ¢'J 8- 1, 

we have that ¢,'l/!:;l is the restriction of an element of G. This implies that 
{'lj!,} is contained in the (X, G)-structure of M. Consequently, the (X, H)­
structure on M determined by {'l/!,} is contained in the (X, G)-structure of 
M. Thus, the (X, G)-structure of M contains an (X, H)-structure. 0 

Definition: An (X, G)-manifold M is orientable if and only if the (X, G)­
structure of M contains an (X, Go)-structure for M, where Go is the group 
of orientation preserving elements of G. 

By Theorem 8.4.5, a connected (X, G)-manifold M is orientable if and only 
if the image of a holonomy rJ : 7fl (X) ----+ G for M consists of orientation 
preserving elements of G. 

Exercise 8.4 

1. Prove that an (X, G)-map is a local homeomorphism. 

2. Prove that a composition of (X, G)-maps is an (X, G)-map. 

3. Let X be a geometric space and let G be a subgroup of S(X). Prove that a 
function ~ : X ----> X is an (X, G)-map if and only if ~ is in G. 

4. Let M be an (X, G)-manifold and let K, : iII ----> M be a covering projection. 
Prove that iII has a unique (X, G)-structure so that K, is an (X, G)-map. 

5. Let M and N be (X, G)-manifolds, let K, : iII ----> M be a covering projection, 
and let ~ : M ----> N and ~ : iII ----> N be functions such that ~ = ~K,. Prove 
that ~ is an (X, G)-map if and only if ~ is an (X, G)-map. 

6. Prove that an (X, G)-map ~ : M ----> N between metric (X, G)-manifolds is a 
local isometry. 

7. Let U be a nonempty open connected subset of X = sn, En, or H n, and let 
¢ : U ----> X be a distance preserving function. Prove that ¢ extends to a 

unique isometry of X. 

8. Let X = sn, En, or H n, and let ~ : M ----> N be a function between metric 
(X, I(X) )-manifolds. Prove that ~ is an (X, I(X) )-map if and only if ~ is a 

local isometry. 

9. Let M be a connected (X, G)-manifold and let H be a normal subgroup of 
G. Prove that the (X, G)-structure of M contains an (X, H)-structure if and 
only if H contains the image of every holonomy for M. 

10. Let M be a connected (X, G)-manifold and let H be a normal subgroup of 
G. Suppose that the (X, G)-structure of M contains an (X, H)-structure for 
M. Prove that the set of (X, H)-structures for M contained in the (X, G)­
structure of M is in one-to-one correspondence with G / H. 
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§8.5. Completeness 

In this section, we study the role of various forms of completeness in the 
theory of (X, G)-manifolds. We begin with the most elementary form of 
completeness. 

Metric Completeness 

Definition: An infinite sequence {x'}~l in a metric space X is a Cauchy 
sequence if and only if for each E > 0, there is a positive integer k such that 
d(x.,xJ ) < E for all i,j ~ k. 

Lemma 1. Let {x'}~l be a Cauchy sequence in a metric space X. Then 
{x.} converges in X if and only if {x.} has a lzmit pomt in X. 

Proof: Let y be a limit point of {x.} in X. We shall prove that {x.} 
converges to y. Let E > o. As {x.} is a Cauchy sequence, there is an 
integer k such that for all i, j ~ k, we have 

d(x., x J ) < E/2. 
As y is a limit point of {x.}, there is an integer e ~ k such that 

d(Xl, y) < E/2. 
Hence, for all i ~ k, we have 

d(x., y) S d(x., Xl) + d(Xl, y) < E. 

Thus x. ---- y in X. o 

Definition: A metric space X is complete if and only if every Cauchy 
sequence in X converges in X. 

Theorem 8.5.1. Let X be a metric space and suppose there is an E > 0 
such that B(x, E) zs compact for all x m X. Then X is complete. 

Proof: Let {x.} be a Cauchy sequence in X. Then there is a positive 
integer k such that d(x., x J ) < E for all i,j ~ k. Hence B(Xk, E) contains x. 
for all i ~ k. As B(Xk, E) is compact, the sequence {x.} has a limit point 
in B(Xk, E). Hence {x.} converges by Lemma 1. Thus X is complete. 0 

Theorem 8.5.2. Let r be a group of zsometries of a fimtely compact met­
ric space all of whose r -orbits are closed. Then X /r is a complete metric 
space. 

Proof: Let B(x,r) be an open ball in X. Then the quotient map 7r : 

X ---- x/r maps B(x,r) onto B(7r(x),r) by Theorem 6.5.2. As B(x,r) is 
compact, we have 

7r(B(x, r)) = B(7r(x), r). 

Hence B(7r(x),r) is compact. Thus x/r is complete by Theorem 8.5.1. 0 
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Theorem 8.5.3. Let f be a group of isometries of a metric space X such 
that each f -orbzt zs a closed discrete subset of X. If X /f is complete, then 
X zs complete. 

Proof: Let {x,} be a Cauchy sequence in X. Then {fx,} is a Cauchy 
sequence in X/f, since 

dist(fx" fxJ) :::; d(x" xJ). 

Hence {fx,} converges to an orbit fy. Set 

1 . 
s= 2"dlst(y,fy-{y}). 

Then s > 0, since fy is a closed discrete subset of X. Now for all 9 in f, 
we have that 

1 
s = 2"dist(gy,fy - {gy}). 

As {x,} is a Cauchy sequence, there is an integer k such that d(x" x J) < s/2 
for all i,j, ~ k. Suppose that 0 < E:::; s/2. As fx, ...... fy, there is an integer 
C ~ k and an element g, of f such that d(x" g,y) < E for all i ~ C. Hence, 
if i ~ C, then 

d(xk, g,y) :::; d(Xk' x,) + d(x" g,y) < s. 

But B(Xk' s) contains at most one point of fy. Therefore, there is an 
element 9 of f such that g,y = gy for all i ~ C. Moreover d(x"gy) < E for 
all i ~ C. Therefore x, ...... gy. Thus X is complete. D 

Theorem 8.5.4. Let X be a complete metric space and let ~ : X ...... X be 
a similarity that is not an isometry. Then ~ has a unique fixed point in X. 

Proof: By replacing ~ by ~-l, if necessary, we may assume that the scale 
factor k of ~ is less than one. Let x be any point of X. Define a sequence 
{Xm}~=l in X by Xm = ~m(x) for each m. Then for m < n, we have 

n-l 

< L d(e(x), e+l(x)) 
R=m 

Consequently {xm } is a Cauchy sequence in X. Therefore, the sequence 
{ x m } converges to a point y in X. As ~ is continuous, the sequence {~( x m )} 

converges to ~(y). But ~(xm) = Xm+l. Hence {xm } and {~(xm)} converge 
to the same point, and so ~(y) = y. Thus y is a fixed point of ~ in X. 



§8.5. Completeness 359 

Now let z be another fixed point of~. Then 

d(y, z) = d(~(y), ~(z)) = kd(y, z). 

Hence d(y, z) = ° and so y = z. Thus y is the unique fixed point of ~. 0 

Geodesic Completeness 

We next consider the role of geodesic completeness in the theory of metric 
(X, G)-manifolds. Recall that a metric space X is geodesically complete if 
and only if each geodesic arc a : [a, b] ----7 X extends to a unique geodesic 
line ,\ : JR. ----7 X. 

Theorem 8.5.5. If M Z8 a geode8ically complete met'rzc (X, G)-manifold, 
then M is geode8ically connected. 

Proof: Let u, v be points of M, with d(u, v) = £ > 0, and let ¢ : U ----7 X 
be a chart for (M,u). Choose'r > ° so that ¢(U) contains B(¢(u),2'r). 
Then ¢ maps B(u, 'r) isometrically onto B(¢(u), 'r) by Theorem 8.3.6. 

Assume first that v is in B(u,'r). Then ¢(v) is in B(¢(u),'r) and 

d(¢(u), ¢(v)) = d(u, v) = £. 

As X is geodesically connected, there is a geodesic arc a : [0, £] ----7 X from 
¢(u) to ¢(v). Observe that 

1001 = £ = d(u,v) < 'r. 
Therefore B(¢(u),'r) contains the image of a. Hence ¢-la: [0,£] ----7 M is 
a geodesic arc from u to v. 

Now assume that v is not in B(u, 'r). Let S be a sphere S(u, c) in M 
with c < 'r. Then the function 15 : S ----7 JR., defined by l5(z) = d(z, v), is 
continuous. As S is compact, there is a point w on S at which 15 attains its 
minimum value. Since w is in B(u, 'r), there is a geodesic arc (3 : [0, b] ----7 M 
from u to w. Moreover (3 extends to a unique geodesic line ,\ : JR. ----7 M, 
since M is geodesically complete. 

We claim that ,\(£). = v. To prove this result, we shall prove that 
d('\(t),v) = £ - t for all t in [b,£]. First of all, since every curve from 
u to v must intersect S, we have 

Hence, we have 

d(u, v) > dist(u, S) + dist(S, v) 

d(u,w)+d(w,v) 

> d(u, v). 

d('\(b),v) = d(w,v) = £ - b. 

Now let 8 be the supremum of all t in [b, £] such that d('\(t), v) = £ - t. 
Then d('\(8),v) = £ - 8 by the continuity of d('\(t) , v) as a function of t. 
Let '\o,s : [0,8] ----7 M be the restriction of '\. As 

d(u, v) :s; d(u, '\(8)) + d('\(s), v), 
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S S' 

u w ),( 8) w' v 

Figure 8.5.1. A geodesic segment joining u to v 

we have that 

C :::; d()'(O), ),(8)) + C - 8. 

Hence, we have 

II),o,sll = 8:::; d()'(O), ),(8)). 

Therefore II),o,sll = d()'(O), ),(8)). Consequently ),o,s is a geodesic arc. Sup­
pose that 8 < C. We shall derive a contradiction. 

Let'ljJ : V ~ X be a chart for (M, ),(8)). Choose r' > 0 so that 'ljJ(V) 
contains B('ljJ),(8),2r'). Let S' be a sphere S(),(8),E') with 

E' < min {r', C - 8} 

and let w' be a point on S' nearest to v. See Figure 8.5.1. Now since 

d(),(8),V)=C-8 and E'<C-8, 

we have that v is not in the closed ball 0(),(8), E'). Therefore 

d()'( 8), v) ~ dist(),( 8), S') + dist(S', v) 

= d(),(8), w') + dew', v) ~ d(),(8), v). 

Hence d(),(8), v) = E' + dew', v) and so dew', v) = (C - 8) - E'. Therefore 

d(u, w') > d(u, v) - dew', v) 
C - (C - 8 - E') 

8 + E' 

d(u, ),(8)) + d(),(8), w') ~ d(u, w'). 

Let "Y : [0,8 + E'l ~ M be the composite of )'o,s and a geodesic arc from 
),( 8) to w'. Then "Y is a geodesic arc by Theorem 1.4.3, since 

d(u,w') = d(u, ),(8)) + d(),(8), w'). 
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As M is geodesically complete, the arc 'Y extends to a unique geodesic line 
JL : lR ----> M. But JL also extends AO,8' Therefore JL = A. Hence A agrees 
with 'Y, and so A(8 + E') = w'. Therefore 

d(A(8 + E'), v) = e - (8 + E'). 

But this contradicts the supremacy of 8. Therefore 8 = e. Hence A(e) = v 
and Ao,£ is a geodesic arc in M from u to v. Thus M is geodesically 
connected. 0 

Lemma 2. Let X be a geometric space. Then there is a k > ° such that 
2f A : lR ----> X is a geodesic lme, then A restricts to a geodesic arc on the 

interval [-k, k]. 

Proof: Let k be as in Axiom 3 for a geometric space. Then k has the 
desired property by Axioms 3 and 4 and Theorem 8.1.1. 0 

Theorem 8.5.6. Let M be a metric (X, G)-manifold and let ~ : M ----> X 
be a local isometry. Then M is geodes2cally complete if and only if ~ is a 
covering projection. 

Proof: Suppose that ~ is a covering projection. Let Ct : [a, b] ----> M be a 
geodesic arc in M. As ~ is a local isometry, ~Ct : [a, b] ----> X is a geodesic 
curve. Consequently, ~Ct extends to a unique geodesic line A : lR ----> X. 
Since ~ is a covering projection, A lifts to a geodesic line JL : IR ----> M 
such that JL(a) = Ct(a). By unique path lifting, JL extends Ct. Now let 
JL' : lR ----> M be another geodesic line extending Ct. Then ~JL' : lR ----> X 
is a geodesic line extending ~Ct. Therefore ~JL' = A. By the unique lifting 
property of covering projections, JL' = JL. Hence JL is the unique geodesic 
line in M extending Ct. Thus M is geodesically complete. 

Conversely, suppose that M is a geodesically complete. We first show 
that geodesic arcs in X can be lifted with respect to~. Let Ct : [a, b] ----> X 
be a geodesic arc and let u be a point of M such that ~(u) = Ct(a). Since ~ 
is a local isometry, there is a geodesic arc f3 : [a, c] ----> M such that f3(a) = u, 
c < b, and ~f3 is the restriction Cta,c of Ct to [a, c]. As M is geodesically 
complete, f3 extends to a unique geodesic line JL : lR ----> M. Since ~ is 
a local isometry, ~JL : lR ----> X is a geodesic line extending Cta,c. Hence 
~JL : lR ----> X is the unique geodesic line extending Ct. Let 0: : [a, b] ----> M be 
the restriction of JL. Then o:(a) = u and ~o: = Ct. Thus, geodesic arcs can 
be lifted with respect to ~. 

Next, we show that ~ is surjective. Let x be a point in the image of ~ 
and let y be any other point of X. As X is geodesically connected, there 
is a geodesic arc Ct : [0, e] ----> X from x to y. As x is in the image of ~, we 
can lift Ct to a curve 0: : [0, e] ----> M with respect to ~. Then 

~o:(e) = Ct(e) = y. 

Hence y is in the image of~. Thus ~ is surjective. 
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Now let B(x, r) be an arbitrary open ball in X. We next show that 

C1(B(x, r)) = U B(u, r). 
UEI:;-l(x) 

As ~ is a local isometry, we have 

~(B(u,r)) c B(x,r) 

for each u in ~-l (x). Therefore 

U B(u, r) C C1(B(x, r)). 
uEI:;-l(x) 

Now let v be an arbitrary point in ~-l(B(x,r)). Then ~(v) is in B(x,r). 
Let a: [0,£]---+ X be a geodesic arc from ~(v) to x, and let a: [0,£] ---+ M 
be a lift of a with respect to ~ such that a(O) = v. Then 

~a(£) = a(£) = x. 

Thus a(£) is in ~-l(X). Moreover 

Iiall = lal = d(x, ~(v)) < r. 
Therefore v is in B(a(£),r). This shows that 

C1(B(x, r)) C U B(u, r). 
UEI:;-l(X) 

Since we have already established the reverse inclusion, we have 

C1(B(x, r)) = U B(u, r). 
uEI:;-l(X) 

Let u be in ~-l(x). We next show that ~ maps B(u, r) onto B(x, r). Let 
y be an arbitrary point of B(x, r) other than x. Then there is a geodesic 
arc a : [0, £] ---+ X from x to y. Moreover, there is a lift a : [0, £] ---+ M with 
respect to ~ such that a(O) = u. Then ~a(£) = a(£) = y. Furthermore 

Iiall = lal = d(x, y) < r. 
Therefore a(£) is in B(u,r). This shows that ~ maps B(u,r) onto B(x,r). 

By Lemma 2, there is a k > 0 such that if A : lR ---+ X is a geodesic 
line, then A restricts to a geodesic arc on [-k, k]. Let u be in ~-l(x). We 
next show that ~ maps B(u, k) bijectively onto B(x, k). We have already 
established that ~ maps B(u, k) onto B(x, k). On the contrary, suppose 
that v, ware distinct points of B ( u, k) such that ~ (v) = ~ (w). By Theorem 
8.5.5, there is a geodesic arc a: [-b, b] ---+ M from v to w. As the endpoints 
of a are in B(u, k), we have 

2b=d(v,w) :::; d(v,u)+d(u,w) < 2k. 

Therefore 0 < b < k. As M is geodesically complete, a extends to a 
geodesic line /-L : lR ---+ M. Because of the choice of k, the geodesic line ~/-L : 
lR ---+ X restricts to a geodesic arc on [-k, k]. Therefore ~a : [-b, b] ---+ X is 
a geodesic arc from ~(v) to ~(w), which is a contradiction. Hence ~ maps 
B(u, k) bijectively onto B(x, k). 
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By the triangle inequality, the sets {B(u, k/2) : u E ~-l(X)} are pairwise 
disjoint. Now since ~ maps B(u, k/2) homeomorphically onto B(x, k/2) for 
each u in ~-l(X) and 

C1(B(x, k/2)) = U B(u, k/2), 
uE/:;-l(X) 

the set B(x, k/2) is evenly covered by~. Thus ~ is a covering projection. 0 

Complete (X, G)-Manifolds 

Let 8 : iII ---+ X be a developing map for a connected (X, G)-manifold M. 
Let {U,} be the collection of all the open connected sets U, of iII such that 
8 maps U, homeomorphically into X, and let ¢, : U, ---+ X be the restriction 
of 8. Then {¢,} is an (X, {I })-structure for iII, and {¢,} is contained in 
the (X, G)-structure on iII, since 8 is an (X, G)-map. We shall regard the 
universal covering space iII to be an (X, {I} )-manifold with the (X, {1})­
structure {¢,}. Then 8 is also a developing map for the (X, {I} )-manifold 
iII, since 8 : iII ---+ X is the unique (X, {I} )-map extending ¢, : Ut ---+ X. 
Note that the (X, {I} )-structure on iII is unique up to multiplication by 
an element of G. Therefore, the induced metric on iII is unique up to 
multiplication by a scale factor of an element of G. 

Definition: An (X, G)-manifold M is complete if and only if the universal 
covering space of each connected component of M is a complete metric 
space. 

Theorem 8.5.7. Let M be a metric (X, G)-manifold. Then the followzng 
are equivalent: 

(1) M is complete; 

(2) M 2S geodesically complete; 

(3) M 2S a complete metric space. 

Proof: Suppose that M is complete. Then iII is a complete metric space. 
We now show that iII is geodesically complete. Let a : [a, b] ---+ iII be 
a geodesic arc and let 8 : iII ---+ X be a developing map for M. Then 
800 : [a, b] ---+ X is a geodesic curve. Hence, there is a unique geodesic line 
.A : lR ---+ X extending 800. Let I be the largest interval in lR containing [a, b] 
for which there is a map J-L : I ---+ iII lifting .A with respect to 8. Then I is 
open, since 8 is a local homeomorphism. On the contrary, suppose that I is 
not all of lR. Then there is a sequence of real numbers {tt} in I converging 
to an endpoint c of I. As 8 is a local isometry, J-L is locally a geodesic 
arc. Therefore, J-L does not increase distances. Hence {J-L(t,)} is a Cauchy 
sequence in iII. As iII is a complete metric space, {J-L(t,)} converges to a 
point u in iII. Now extend J-L to a function 7l : I U {c} ---+ iII by setting 
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p;(c) = u. Then p; is continuous, since the point u does not depend on the 
choice of the sequence {t.} converging to the point c. Observe that 

8p;(c) = lim 8p,(t.) = lim A(t.) = A(C). 
't---too '£--+00 

Hence p; : I U { c} ---- IV! further lifts A. But this contradicts the maximality 
of I. Thus I is all of lR and p, : lR ---- IV! is a geodesic line extending a. 

Let /1/ : lR ---- IV! be another geodesic line extending a. As 8 is a local 
isometry, 8/1/ : lR ---- X is a geodesic line extending 8a. Hence 811/ = A = 8p,. 
Therefore p,' = p" since 8 is a local homeomorphism. Hence p, is the unique 
geodesic line extending a. Thus IV! is geodesically complete. Therefore M 
is geodesic ally complete, since the universal covering projection K, : IV! ---- M 
is a local isometry. Thus (1) implies (2). 

Now assume that M is geodesically complete. Then IV! is geodesically 
complete, since the universal covering projection K, : IV! ---- M is a local 
isometry. Therefore 8 : IV! ---- X is a covering projection by Theorem 8.5.6. 
Furthermore, the proof of Theorem 8.5.6 shows that there is an r > 0 such 
that B (x, 2r) is evenly covered by 8 for all x in X. Let u be a point of 
IV!. From the proof of Theorem 8.5.6, we have that 8 maps B(u,r) onto 
B(8(u),r). As 8 is continuous, we have 

8(B(u,r)) c B(8(u),r). 
By a geodesic arc lifting argument, 8 maps B(u,r) onto B(8(u),r). Now 
as 8 maps B (u, r) homeomorphically onto B (8 (u), r), we have that B (u, r) 
is compact for each point u of IV!. By the same argument, the covering 
projection K,: IV! ____ M maps B(u,r) onto B(K,(u),r). Therefore B(u,r) is 
compact for each point u of M. Hence M is a complete metric space by 
Theorem 8.5.1. Thus (2) implies (3). 

Now assume that M is a complete metric space. Let r be the group of 
covering transformations of the universal covering K, : IV! ---- M. Then r is a 
group of isometries of IV! and K, induces a homeomorphism If, : IV! /r ---- M. 
Moreover If, is a local isometry, since K, and the quotient map 7r : IV! ---- IV! /r 
are local isometries. Now the homeomorphism If, : IV! /r ---- M induces an 
(X, G)-manifold structure on IV! Jr. We claim that the orbit space metric 
dr on IV! /r is the same as the induced (X, G)-manifold metric d on IV! Jr. 
First of all, dr and d agree locally, since If, : IV! /r ---- M is a local isometry; 
moreover dr ::::; d, since arc length with respect to dr is the same_ as X­
length. Finally, dr = d, since 7r preserves X-length. Therefore If, : M /r ---­
M is an isometry. Hence IV! /r is a complete metric space. Therefore IV! is 
a complete metric space by Theorem 8.5.3. Thus (3) implies (1). D 

Definition: An (X, G)-structure <I> for a manifold M is complete if and 
only if M, with the (X, G)-structure <1>, is a complete (X, G)-manifold. 

Theorem 8.5.8. Let M be an (X, G)-manifold and let G1 be the group of 
tsometrzes in G. Then M is complete if and only if the (X, G)-structure of 
M contains a complete (X, G1)-structure for M. 
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Proof: Without loss of generality, we may assume that M is connec~ed. 
Suppose that M is complete. Then_the u~iversal covering space M is 
a complete metric space. Let T : M ----+ M be a noni~entity covering 
transformation of the universal covering projection K, : M ----+ M. T_hen 
T is an (X, G)-map. Hence T is locally a similarity. Moreover, as M is 
connected, all the local scale factors of T have the same value k. Let 
'Y: [a, b] ----+ if be an X-rectifiable curve from u to v. Then 11T1'11 = kll'Yll· 
Hence, we have that 

d(T(U), T(V)) :s: kd(u, v). 

Likewise, we have 

Observe that 

Therefore, we have 
d(T(U),T(V)) = kd(u,v). 

Thus T is a similarity. Since T has no fixed points, T is an isometry by 
Theorem 8.5.4. 

Let 'rJ : 7rl (M) ----+ G be the holonomy determined by 8. Then 'rJ is defined 
by 'rJ([a]) = ga where 8Ta = ga8 and Ta is a certain covering transformation 
of K,. As 8 and Ta are local isometries, ga is an isometry of X. Hence, the 
image of 'rJ is contained in the group G1 of isometries in G. Therefore, 
the (X, G)-structure <P of M contains an (X, GI)-structure <PI for M by 
Theorem 8.4.5. Moreover <PI is complete, since if is a complete metric 
space. 

Conversely, suppose that the (X, G)-structure <P of M contains a com­
plete (X, Gd-structure <PI for M. Then if is a complete metric space. 
Therefore M is a complete (X, G)-manifold. D 

Definition: A function ~ : M ----+ N between (X, G)-manifolds is an 
(X, G)-equzvalence if and only if ~ is a bijective (X, G)-map. 

Clearly, the inverse of an (X, G)-equivalence is also an (X, G)-equivalence. 
Two (X, G)-manifolds M and N are said to be (X, G)-equivalent if and 
only if there is an (X, G)-equivalence ~ : M ----+ N. Note that an (X, G)­
equivalence ~ : M ----+ N between metric (X, G)-manifolds is an isometry. 

Theorem 8.5.9. Let G be a group of szmilarities of a simply connected 
geometric space X and let M be a complete connected (X, G)-mamfold. 
Let 8 : if ----+ X be a developzng map for M and let 'rJ : 7rl (M) ----+ G be the 
holonomy of M determined by 8. Then 8 is an (X, {l})-equzvalence, 'rJ maps 
7rl (M) zsomorphically onto a freely acting discrete group f of isometrzes of 
X, and 8 induces an (X, G)-equzvalence from M to X/f. 
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Proof: First of all, if is geodesically complete by Theorem 8.5.7. Hence, 
the developing map D : if ---- X is a covering projection by Theorem 8.5.6. 
Therefore D is a homeomorphism, since X is simply connected. Hence D is 
an (X, {I} )-equivalence and so is an isometry. Now 7rl (M) corresponds to 
the group of covering transformations of the universal covering /1, : if ---­
M which corresponds via D to the image of 'fJ. Therefore 'fJ maps 7rl (M) 
isomorphically onto a freely acting discrete group r of isometries of X. 
Moreover D induces a homeomorphism {; such that the following diagram 
commutes: 

if 
/1,! 

M 

~ X 
!7r 

7f 
-----+ Xjr, 

where 7r is the quotient map. As /1" D, and 7r are (X, G)-maps, {; is an 
(X, G)-map. Hence {; is an (X, G)-equivalence. 0 

Theorem 8.5.10. Let M be a metT'tc (X, I(X))-manifold w~th X simply 
connected. Then the followzng are equivalent: 

(1) The mamfold M is complete. 

(2) There ~s an E > 0 such that each closed E-ball in M is compact. 

(3) All the closed balls in M are compact. 

(4) There zs a sequence {M'}~l of compact subsets of the mamfold M 
such that M = U~l M. and N(M., 1) C M.+1 for each i. 

Proof: Assume that M is complete. Then M is isometric to an X -space­
form Xjr by Theorem 8.5.9. Now all the closed balls in X are compact by 
Theorem 8.1.2. Hence, all the closed balls in Xjr are compact by Theorem 
6.5.2. Therefore, all the closed balls in M are compact. Thus (1) implies 
(3). As (3) implies (2), and (2) implies (1) by Theorem 8.5.1, we have that 
(1)-(3) are equivalent. 

Now assume that all the closed balls in M are compact. Let u be a point 
of M. For each integer i > 0, let M. = C(u,i). Then M = U~lM. and 

N(M., 1) C M.+1 

for each i. Thus (3) implies (4). 
Now assume that (4) holds. Let {u.} be a Cauchy sequence in M. Then 

there is an integer k such d( u., uJ ) < 1 for all i, j ~ k. As M = U~l M., 
there is an integer e such that 

{ut, ... ,ud c Me· 

Then the set Me+1 contains the entire sequence {u.}, since 

N(Me, l) c M€+l· 

As M€+l is compact, the sequence {u.} converges. Therefore M is com­
plete. Hence (4) implies (1). Thus (1)-(4) are equivalent. 0 
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Exercise 8.5 

1. Prove that every locally compact, homogeneous, metric space X is complete. 

2. Let X be a connected n-manifold with a complete metric. Prove that a 
function'; : X -+ X is an isometry if and only if it preserves distances. 

Hint: Use invariance of domain. 

3. Prove that a local isometry'; : M -+ N between metric (X, G)-manifolds is 
an isometry if and only if it is a bijection. 

4. Let M be a metric (X, G)-manifold and let Ii : iiI -+ M be a covering 
projection with iiI connected. Prove that M is geodesically complete if and 
only if iiI is geodesically complete. 

5. Prove that a local isometry'; : M -+ N between geodesically complete metric 
(X, G)-manifolds is a covering projection. 

6. Prove that a connected (X, G)-manifold M is complete if and only if every 
(or some) developing map 6 : iiI -+ X for M is a covering projection. 

7. Let X be a simply connected geometric space. Prove that a function'; : 
X -+ X is an isometry if and only if it is a local isometry. 

8. Prove that the universal covering space X of a geometric space X is also a 
geometric space. 

9. Let M be an (X, I(X))-manifold and let X be the universal covering space of 
X. Prove that the (X,I(X))-structure of M lifts to an (X,I(X))-structure 
for M. 

10. Let M be a complete connected (X,I(X))-manifold and let X be the uni­
versal covering space of X. Prove that M is (X,I(X))-equivalent to an 
X -space-form. 

§8.6. Curvature 

In this section, we briefly describe the role of curvature in the theory of 
spherical, Euclidean, and hyperbolic manifolds. We assume that the reader 
is familiar with the basic theory of Riemannian manifolds. In particular, 
every connected Riemannian manifold has a natural metric space structure. 

Theorem 8.6.1. A connected Riemannian n-manifold X is an n-dimen­
swnal geometrzc space if and only if X 2S homogeneous. 

Proof: Suppose that X is homogeneous. Then X is a complete metric 
space by Theorem 8.5.1. Hence X is geodesically connected and geodesi­
cally complete by the Hopf-Rinow-Whitehead Theorem. The exponential 
map at any point of X determines a function c : En -+ X satisfying Axiom 
3 for a geometric space. 0 
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Remark: It is a theorem of Berestovskii that an n-dimensional geometric 
space X has a Riemannian metric compatible with its topology such that 
every isometry of X is an isometry of the Riemannian metric. 

Definition: An n-dimensional geometry is a simply connected, homoge­
neous, Riemannian n-manifold X for which there is at least one X-space­
form of finite volume. 

Euclidean I-dimensional geometry E1 is the only I-dimensional geom­
etry up to isometry. If n > 1, then sn, En, and H n are examples of 
nonsimilar n-dimensional geometries. These geometries are characterized 
as the geometries of constant curvature because of the following theorem. 

Theorem 8.6.2. Let X be a Riemannian n-mamfold such that X is 

(1) connected, 

(2) complete, 

(3) szmply connected, and 

(4) of constant sectional curvature. 

Then X is simzlar to either sn, En, or Hn. 

Remark: One should compare conditions 1-4 in Theorem 8.6.2 with 
Euclid's Postulates 1-4 in §1.1. 

Corollary 1. If X is a 2-dimensional geometry, then X is similar to either 
S2, E2, or H2. 

Proof: As X is homogeneous, X is of constant curvature. o 

Two n-dimensional geometries X and Yare said to be equivalent if 
and only if there is a diffeomorphism 1> : X --+ Y such that 1> induces an 
isomorphism 1>* : I(X) --+ I(Y) defined by 

1>*(g) = 1>g1>-l. 

It is a theorem of Thurston that there are, up to equivalence, exactly eight 

3-dimensional geometries. 
We end the chapter with the definition of a geometric manifold. 

Definition: A geometric n-manifold is an (X, S(X))-manifold, where 
S(X) is the group of similarities of an n-dimensional geometry X. 

Spherical, Euclidean, and hyperbolic manifolds are examples of geometric 

manifolds. 
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§8.7. Historical Notes 

§8.1. The concept of an n~.dzmenswnal manifold was introduced by Rie­
mann in his 1854 lecture Uber die Hypothesen, welche der Geometrze zu 
Grunde liegen [349]. For a discussion, see Scholz's 1992 article Riemann's 
vision of a new approach to geometry [366], and for the early history of 
manifolds, see Scholz's 1980 thesis Geschichte des Mannigfaltzgkeitsbegriffs 
von Riemann bis Poincare [363]. The concept of a geometrzc space was 
introduced here as a metric space generalization of a homogeneous Rie­
mannian manifold. Theorem 8.1.3 for Clifford-Klein space-forms appeared 
in Hopf's 1926 paper Zum Clifford-Kleinschen Raumproblem [198]. The 
fundamental group was introduced by Poincare in his 1895 memoir Analy­
sis situs [336]. In particular, Theorem 8.1.4 for Clifford-Klein space-forms 
was described in this paper. Theorem 8.1.5 for closed geometric surfaces 
was essentially proved by Poincare in his 1885 paper Sur un theoreme de 
M. Fuchs [334]. 

§8.2. The elliptic plane was introduced by Cayley in his 1859 paper A 
sixth memoir upon quantzcs [76]. In 1873, Clifford described a Euclidean 
torus embedded in elliptic 3-space in his paper Preliminary Sketch of Bi­
quaternions [82]. Closed hyperbolic surfaces were constructed by Poincare 
in his 1882 paper Theorie des groupes fuchsiens [330]. In 1890, Klein pro­
posed the problem of determining all the closed spherical, Euclidean, and 
hyperbolic manifolds in his paper Zur Nicht-Euklzdischen Geometrie [234]. 
Killing recognized that a closed spherical, Euclidean, or hyperbolic mani­
fold can be represented as an orbit space of a discontinuous group of isome­
tries acting freely in his 1891 paper Ueber die Clifford-Klein'schen Raum­
formen [222]. In particular, Killing introduced the term Clifford-Klein 
space-form in this paper. For the historical context of Killing's work, see 
Hawkins' 1980 article Non-Euclidean geometry and Weierstrassian mathe­
matzcs [184]. Theorem 8.2.3 appeared in Killing's 1891 paper [222]. The­
orem 8.2.4 appeared in Hopf's 1926 paper [198]. The lens spaces L(5, 1) 
and L(5, 2) were shown to be nonhomeomorphic by Alexander in his 1919 
paper Note on two three-dimensional manzfolds with the same group [13]. 
For the classification of lens spaces, see Brody's 1960 paper The topological 
classification of the lens spaces [58], and for the classification of spherical 
space-forms, see Wolf's 1984 treatise Spaces of Constant Curvature [416]. 
Theorem 8.2.5 appeared in Auslander and Kuranishi's 1957 paper On the 
holonomy group of locally Euclzdean spaces [27]. The Euclidean plane­
forms were described by Klein in his 1928 treatise Vorlesungen iiber nzcht­
euklidische Geometrie [237]. The 3-dimensional Euclidean space-forms were 
enumerated by Nowacki in his 1934 paper Die euklidzschen, dreidimension­
alen, geschlossenen und offenen Raumformen [322]. See also Hantzsche 
and Wendt's 1935 paper Dreidimensionale euklidische Raumformen [178]. 
References for Euclidean space-forms are Wolf's 1984 treatise [416] and 
Charlap's 1986 text Bieberbach Groups and Flat Manifolds [77]. 
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§8.3. The concept of an (X, G)-manifold originated in the notion of a lo­
cally homogeneous Riemannian manifold introduced by Cartan in his 1926 
paper L'applzcatwn des espaces de Riemann et l'analysis situs [69]. The 
concept of an (X, G)-manifold was introduced by Veblen and Whitehead in 
their 1931 paper A set ofaxwms for d2fferent2al geometry [395]. For further 
development of the theory of (X, G)-manifolds, see Goldman's 1988 paper 
Geometric structures on mamfolds and vanet2es of representatwns [154]. 

§8.4. The concept of the developing map originated in the notion of 
a developable surface introduced by Euler in his 1772 paper De solidis 
quorum superficwm in planum explware lwet [125]. For commentary, see 
Cajori's 1929 article Generalzzations in geometry as seen m the history 
of developable surfaces [66]. Theorem 8.4.1 appeared in Ehresmann's 1936 
paper Sur les espaces localement homogenes [115]. The developing map and 
holonomy homomorphism for locally homogeneous Riemannian manifolds 
were described by Cartan in his 1926 paper [69]. 

§8.5. The concept of metric completeness was introduced by Frechet in 
his 1906 paper Sur quelques points du calcul fonctionnel [137]. For the his­
tory of metric completeness, see Dugac's 1984 article Histmre des espaces 
complets [109]. Theorem 8.5.4 for the Euclidean plane was proved by Euler 
in his 1795 paper De centro s2militudims [129]. Theorems 8.5.5, 8.5.7, and 
8.5.10 for Riemannian surfaces were proved by Hopf and Rinow in their 
1931 paper Ueber den Begriff der vollstandigen different2algeometnschen 
Flache [199] and were extended to Riemannian n-manifolds by Whitehead 
in his 1935 paper On the covering of a complete space by the geodes2cs 
through a point [410]. See also Cohn-Vossen's 1935 paper Existenz kurzester 
Wege [83]. Theorem 8.5.9 for spherical, Euclidean, or hyperbolic manifolds 
was proved by Hopf in his 1926 paper [198] and was extended to locally ho­
mogeneous Riemannian manifolds by Whitehead in his 1932 paper Locally 
homogeneous spaces in differential geometry [409]. 

§8.6. Berestovskii proved his theorem on geometric spaces in his 1982 pa­
per Homogeneous Busemann G-spaces [41]. The notion of an n-dimensional 
geometry originated in Riemann's concept of a manifold of constant cur­
vature which he introduced in his 1854 lecture [349]. For a discussion, see 
von Helmholtz's 1876 paper On the ongin and s2gnificance of geometncal 
axwms [399]. The notion of an n-dimensional geometry was developed by 
Killing, Lie, and Cartan in their work on Lie groups. For a discussion, 
see Cartan's 1936 article Le role de la theorie des groupes de L2e dans 
l'evolution de la geometrie moderne [70]. Theorem 8.6.2 appeared in Rie­
mann's 1854 lecture [349]. For a proof, see Vol. II of Spivak's 1979 treatise 
Different2al Geometry [378]. Thurston's theorem on 3-dimensional geome­
tries appeared in his 1982 article Three d2menswnal manifolds, Kleiman 
groups, and hyperbolzc geometry [390]. For a discussion, see Scott's 1984 
survey The geometnes of 3-manifolds [370]. The 4-dimensional geometries 
are described in Wall's 1985 paper Geometries and geometric structures in 
real dimension 4 and complex dimension 2 [400]. 



CHAPTER 9 

Geometric Surfaces 

In this chapter, we study the geometry of geometric surfaces. The chapter 
begins with a review of the topology of compact surfaces. In Section 9.2, 
a geometric method for constructing spherical, Euclidean, and hyperbolic 
surfaces is given. The fundamental relationship between the Euler charac­
teristic of a closed geometric surface and its area is derived in Section 9.3. 
In Section 9.4, the set of similarity equivalence classes of Euclidean or hy­
perbolic structures on a closed surface is shown to have a natural topology. 
The geometry of closed geometric surfaces is studied in Sections 9.5 and 
9.6. The chapter ends with a study of the geometry of complete hyperbolic 
surfaces of finite area. 

§9.1. Compact Surfaces 

A surface is a connected 2-dimensional manifold. A compact surface is 
called a closed surface. 

Definition: A triangulation of a closed surface M consists of a finite 
family of functions 

{¢, : ~2 -+ M}~I 

with the following properties: 

(1) The function ¢, maps the standard 2-simplex ~2 homeomorphic ally 
onto a subset T, of M, called a triangle. The vertzces and edges of T, 
are the images of the vertices and edges of ~ 2 under ¢,. 

(2) The surface M is the union of the triangles T I , ... , Tm. 

(3) If i -=I=- j, then the intersection of T, and TJ is either empty, a common 
vertex of each triangle, or a common edge of each triangle. 

371 
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Figure 7.2.1 illustrates four different triangulations of 8 2. It is a funda­
mental theorem of the topology of surfaces that every closed surface has 
a triangulation. Given a triangulation of a closed surface M, let v be the 
number of vertices, e the number of edges, and t the number of triangles. 
The Euler characteNstzc of M is the integer 

X(M) = v - e + t. (9.1.1) 

It is a basic theorem of algebraic topology that X(M) does not depend on 
the choice of the triangulation. More generally, if M is a cell complex with 
a O-cells, b I-cells, and c 2-cells, then 

X(M) = a - b + c. (9.1.2) 

If M1 and M2 are surfaces, then we can form a new surface M1 #M2' 
called the connected sum of M1 and M 2 , as follows: Let ¢. : b,.2 -+ M., for 
i = 1,2, be a function that maps b,.2 homeomorphically into M. and set 

M: = M - ¢.(Intb,.2) 

for i = 1,2. Then M1 #M2 is defined to be the quotient space of the 
disjoint union Mi U M~ obtained by identifying ¢1 (x) with ¢2 (x) for each 
x in 8b,.2. The topological type of M1#M2 does not depend on the choice 
of the functions ¢1 and ¢2. Evidently, if M1 and M2 are closed, then 

(9.1.3) 

since we can choose ¢1 and ¢2 to be part of triangulations of M1 and M2· 
Starting from the fact that closed surfaces can be triangulated, it is 

not difficult to classify all closed surfaces up to homeomorphism. The 
classification of closed surfaces is summarized in the following theorem. 

Theorem 9.1.1. A closed surface is homeomorphic to either a sphere, a 
connected sum of tori, or a connected sum of projective planes. 

Orient ability 

Let {¢. : b,.2 -+ M}~1 be a triangulation of a closed surface M. Orient 
the standard 2-simplex b,. 2 with the positive orientation from E2. Then ¢. 
orients the triangle T. = ¢.(b,.2) for each i. In particular, ¢. orients each 
of the three edges of T.. A triangulation of M is said to be oriented if and 
only if each edge of the triangulation receives opposite orientations from 
the two adjacent triangles of which it is an edge. See Figure 9.1.1. 

Let p be the reflection of b,. 2 in the line y = x. Then p reverses the 
orientation of b,. 2. A triangulation {¢. : b,. 2 -+ M} ~1 for M is said to be 
orientable if and only if an oriented triangulation of M can be obtained 
from {¢'}~1 by replacing each ¢. by ¢. or ¢.p. The surface M is said 
to be oNentable if and only if it has an orient able triangulation. It is a 
basic theorem of algebraic topology that a closed surface M is orient able 
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Figure 9.1.1. Adjacent oriented triangles with compatible orientations 

if and only if every triangulation of M is orient able. Furthermore, a closed 
surface is orientable if and only if it is either a sphere or a connected sum 
of tori. 

A connected sum of n tori is called a closed orient able surface of genus 
n. A 2-sphere is also called a closed orientable surface of genus zero. The 
relationship between the Euler characteristic of a closed orient able surface 
M and its genus is given by the formula 

X(M) = 2(1 - genus(M)). (9.1.4) 

A connected sum of n projective planes is called a closed nonorientable 
surface of genus n. A closed nonorientable surface of genus two is also 
called a Klein bottle. The relationship between the Euler characteristic of 
a closed nonorientable surface M and its genus is given by the formula 

X(M) = 2 - genus(M). (9.1.5) 

The next theorem states that the Euler characteristic and orient ability 
form a complete set of topological invariants for the classification of closed 
surfaces. 

Theorem 9.1.2. Two closed surfaces are homeomorphic 2f and only if 
they have the same Euler characteristic and both are orientable or both 
are nonorientable. 

S urfaces-with-boundary 

A surface-with-boundary is a connected 2-manifold-with-boundary. Let M 
be a compact surface-with-boundary. The boundary 8M of M is a disjoint 
union of a finite number of topological circles. Let M* be the closed surface 
obtained from M by gluing a disk along its boundary to each boundary 
circle of M. We now state the classification theorem for compact surfaces­
with-boundary. 
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Theorem 9.1.3. Two compact surJaces-wzth-boundary M1 and M2 are 
homeomorphic zJ and only zJ they both have the same number oj bound­
ary components and the closed surJaces Mi and M:;', obtained from M1 
and M2 by gluzng a dzsk to each boundary component, are homeomorphic. 

Ihangulatwns and the Euler characteristzc of a compact surface-with­
boundary M are defined in the same way as for closed surfaces. If M has 
m boundary components, then the relationship between the Euler charac­
teristics of M and M* is given by the formula 

X(M*) = X(M) + m. (9.1.6) 

A compact surface-with-boundary M is said to be orientable if and only 
if the closed surface M* is orientable. The next theorem follows from 
Theorems 9.1.2 and 9.1.3. 

Theorem 9.1.4. Two compact surJaces-wzth-boundary are homeomorphic 
zJ and only iJ they have the same number oj boundary components, the same 
Euler characterzstic, and both are orientable or both are nonorientable. 

§9.2. Gluing Surfaces 

In this section, we construct spherical, Euclidean, and hyperbolic surfaces 
by gluing together convex polygons in X = 8 2 , E2, or H2 along their sides. 

Let P be a finite family of disjoint convex polygons in X and let G be 
a group of isometries of X. 

Definition: A G-szde-pairing for P is a subset of G, 

<1> = {g8 : 8 E S}, 

indexed by the collection S of all the sides of the polygons in P such that 
for each side 8 in S, 

(1) there is a side 8' in S such that g8(8') = 8; 

(2) the isometries g8 and 98' satisfy the relation 98' = 981 ; and 

(3) if 8 is a side of Pin P and 8' is a side of P' in P, then 

pn98(P') = 8. 

It follows from (1) that 8' is uniquely determined by 8. The side 8' is 
said to be paired to the side 8 by <1>. From (2), we deduce that 8" = 8. 
Thus, the mapping 8 f-+ 8' is an involution of the set S. It follows from 

(3) that 98 -I- 1 for all 8. 
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Let <I? = {gS : S E S} be a G-side-pairing for P and set 

II= U P. 
PEP 
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Two points x, x' of II are said to be pazred by <I?, written x '::::' x', if and only 
if there is a side S in S such that x is in S, and x' is in S', and gS(X') = x. 
If gs(x' ) = x, then gSI(x) = x'. Therefore x '::::' x' if and only if x' '::::' x. 

Two points x, y of II are said to be related by <I?, written x rv y, if and 
only if either x = y or there is a finite sequence Xl, ... , Xm of points of II 

such that 
x = Xl '::::' x2 '::::' ... '::::' xm = y. 

Being related by <I? is obviously an equivalence relation on the set II. The 
equivalence classes of II are called the cycles of <I? If x is in II, we denote 
the cycle of <I? containing x by [xl· 

Let 

be a finite cycle of <I? Let P, be the polygon in P containing the point x, 
and let e, be the angle subtended by P, at the point x, for each i = 1, ... , m. 
The angle sum of [xl is defined to be the real number 

e[xl = el + ... + em· 

Definition: A G-side-pairing <I? for P is proper if and only if each cycle 
of <I? is finite and has angle sum 27T. 

Example 1. Let P be a closed hemisphere in S2. Pair op to itself by 
the antipodal map a of S2. Then each point x in po forms a cycle whose 
angle sum is 27T, and each pair of antipodal points x, x' in OP form a cycle 
whose angle sum is 27T. Therefore, this {I,a}-side-pairing is proper. 

Example 2. Let P be a rectangle in E2. Pair the opposite sides of P 
by translations. Then each point x in po forms a cycle whose angle sum 
is 27T. See Figure 9.2.1(a). Each pair of points x, x' directly across from 
each other in the interior of opposite sides forms a cycle whose angle sum 
is 27T. See Figure 9.2.1(b). Finally, the four vertices XI,X2,X3,X4 of P 
form a cycle whose angle sum is 27T. See Figure 9.2.1(c). Therefore, this 
T(E2 )-side-pairing is proper. 

Example 3. Let P be an exact fundamental polygon for a discrete group 
f of isometries of X acting freely on X. For each side S of P, there is a 
unique element gs of f such that P n gSP = S. Then 

<I? = {gS : S is a side of P} 

is a proper f-side-pairing by Theorems 6.7.5 and 6.7.7. 
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X4 X3 
t----,------,;----. 

o x x' 

(1) (2) (3) 

Figure 9.2.1. Cycles in a rectangle 

Theorem 9.2.1. If <P = {g8 : 8 E S} is a proper G-side-pazring for P, 
then for each szde 8 in S, 

(1) the isometry g8 fixes no pomt of 8'; and 

(2) the sides 8 and 8' are equal zf and only if 8 is a great circle of 8 2 

and g8 zs the antipodal map of 8 2 • 

Proof: (1) On the contrary, suppose that g8 fixes a point x of 8'. Assume 
first that x is in the interior of 8'. Then [x] = {x} and e [x] = 7r, which 
is a contradiction. Assume now that x is an endpoint of 8'. Then x is an 
endpoint of exactly one other side T in S. As g8(8') = 8, we have that 
x is in 8, and so either 8 = 8' or 8 = T. If 8 = 8', then g8 would fix 8 
pointwise, contrary to the first case; therefore 8 = T. Then [x] = {x} and 
e[x] < 7r, which is a contradiction. Thus g8 fixes no point of 8'. 

(2) If 8 is a great circle and g8 is the antipodal map of 8 2 , then 

8' = g"8 1(8) = 8. 

Conversely, suppose that 8' = 8. As g8' = g"81, we have that g8 has order 
two. Let x be a point of 8. Then x' = g8(X) is also a point of 8. If x 
and x' were not antipodal points, then g8 would fix the midpoint of the 
geodesic segment joining x to x' in 8 contrary to (1). Therefore x and x' 
are antipodal points of 8 2 . Hence 8 is invariant under the antipodal map of 
8 2 , and so 8 must be a great circle. Hence, the polygon P in P containing 
8 is a hemisphere. As g8 is the antipodal map on 8 and P n 98(P) = 8, 
we have that g8 is the antipodal map of 8 2 . 0 

Let <P be a proper G-side-pairing for P. Then II is the topological sum 
of the polygons in P, since P is a finite family of disjoint closed subsets of 
X. Let M be the quotient space of II of cycles of <P. The space M is said 
to be obtained by gluing together the polygons in P by <P. We next prove 
the gluing theorem for geometric surfaces. 
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Theorem 9.2.2. Let G be a group oj zsometrzes oj X and let M be a space 
obtained by gluing together a finzte Jamzly P oj disjoint convex polygons in 
X by a proper G-side-pazring <1>. Then M zs a 2-maniJold wzth an (X, G)­
structure such that the natural injection oj po into M is an (X, G)-map 
Jor each P in P. 

Proof: Without loss of generality, we may assume that each polygon in 
P has at least one side. Let 7r : II ---+ M be the quotient map and let x be 
a point of II. We now construct an open neighborhood U(x, r) of 7r(x) in 
M and a homeomorphism 

¢x: U(x,r) ---+ B(x,r) 

for all sufficiently small values of r. 
Let P be the polygon in P containing x. There are three cases to 

consider. Either (1) x is in po, or (2) x is in the interior of a side 8 of P, 
or (3) x is a vertex of P. See Figure 9.2.1. If x is in po, then [xl = {x}. If 
x is in the interior of a side of P, then [xl = {x, x'}, with x =I- x', since <I> is 
proper. If x is a vertex of P, then x is the endpoint of exactly two sides of 
P, and so x is paired to exactly two other points of II, since <I> is proper. 
In this case, each element of [xl is paired to exactly two other elements of 
[xl. Thus, in all three cases, the cycle [xl can be ordered 

[xl = {Xl,X2, ... ,Xm} 

so that 
x = Xl ~ X2 ~ ... ~ Xm ~ X. 

Moreover, if m > 1, then there is a unique side 8 2 in S such that gs,(x2+d = 
X 2 for i = 1, ... ,m - 1, and gs", (xd = X m . 

Let gl = 1 and gt = gS1 ... gS,-1 for i = 2, ... ,m. Then g2Xt = x for 
each i. Let Pt be the polygon in P containing the point X t for each i. Let 
r be a positive real number such that r is less than one-third the distance 
from Xt to X J for each i =I- j and from Xt to any side of Pt not containing 
X t for each i. Then the sets Pt n B(x" r), for i = 1, ... , m, are disjoint. 

Let et be the angle subtended by Pt at the point Xt. Then Pt n B(X2' r) 
is a sector of the open disk B(X2' r) whose angular measure is e2. Hence 

g2(P2 n B(x" r)) = g2Pt n B(x, r) 

is a sector of the open disk B(x, r) whose angular measure is et • If m = 1, 
then 

B(x, r) 

If m = 2, then 
B(x, r) 

P n B(x, r) = glPl n B(x, r). 

(P n B(x, r)) U (gS1 P2 n B(x, r)) 

(glPl n B(x, r)) U (g2P2 n B(x, r)). 

Now assume that m > 2. Observe that the polygons Pt and gs,(P2+l ) lie 
on opposite sides of their common side 8" and so the polygons gtPt and 



378 9. Geometric Surfaces 

Figure 9.2.2. The partition of B(x, r) into sectors by a proper side-pairing 

g.+1P.+1 lie on opposite sides of their common side g.8. for i = 1, ... ,m-1. 
As 8. = gS, (8~) for i = 1, ... , m, we have that g.8. = g'+l8~ for i = 
1, ... ,m -1. Now 8. and 8~_1 are the two sides of p. whose endpoint is x. 
for i = 2, ... ,m, and so g.8. and g.8~_1 = g.-18.-1 are the two sides of g.p. 
whose endpoint is x for i = 2, ... , m. Therefore, the sectors g.p. n B(x, r), 
for i = 1, ... ,m, occur in sequential order rotating about the point x. See 
Figure 9.2.2. Since B[x] = 2n, we have 

B(x,r) = U (g.p.nB(x,r)) . 
• =1 

The polygons Pm and gSTJP) lie on opposite sides of their common 
side 8m , and so the polygons gs~ (Pm) and P lie on opposite sides of their 
common side 8:r,. Now as 8 1 and 8:r, are the two sides of P whose endpoint 
is x, we deduce that 

gmPm = gs~ Pm. 

Therefore gm = gs~. Hence, we have the cycle relation gS1 ... gs", = 1. 
In all three cases, let 

U(x, r) = neQ1 p. n B(x., r)). 

Now as the set 

is open in II, we have that U (x, r) is an open subset of M. 



§9.2. Gluing Surfaces 379 

Define a function 

Wx: U p. n B(x" r) ----; B(x, r) 
,=1 

by Wx(z) 
function 

g,z if z is in P, n B(x21 r). Then Wx induces a continuous 

¢x : U(x, r) ----; B(x, r). 

The function ¢x is a bijection with a continuous inverse defined by 

¢;l (z) = 7r(g;:l z) if z is in g,P, n B(x, r). 

Hence ¢x is a homeomorphism. 
N ext we show that M is Hausdorff. Let x and Y be points of II such that 

7r(x) and 7r(Y) are distinct points of M. Let {Xl, ... ,xm } and {Yl, ... ,Yn} 
be the cycles of <l> containing X and y, respectively. Then {Xl,.'" x m } 

and {Yl,"" Yn} are disjoint subsets of II. Let P, be the polygon in P 
containing x, for i = 1, ... , m, and let QJ be the polygon in P containing 
YJ for j = 1, ... ,n. Then we can choose radii rand s as before so that 

7rC9lP,nB(x"r)) =U(x,r) 

and 

Moreover, we can choose rand s small enough so that 

are disjoint subsets of II. As 

U p t nB(x21 r) =7r-l(U(x,r)) 
,=1 

and 
n -1 
U QJ n B(YJ' s) = 7r (U(y, s)), 

J=l 

we deduce that U(x, r) and U(y, r) are disjoint open neighborhoods of 7r(x) 
and 7r(Y) in M. Thus M is Hausdorff, and therefore M is a 2-manifold. 

Next, we show that 

{¢x : U(x,r) ----; B(x,r)} 

is an (X, G)-atlas for M. By construction, U(x, r) is an open connected 
subset of M and ¢x is a homeomorphism. Moreover U(x, r) is defined for 
each point 7r(x) of M and sufficiently small radius r. Hence {U(x,r)} is 
an open cover of M. It remains only to show that if U(x, r) and U(y, s) 
overlap, then the coordinate change 

¢y¢;l : ¢x(U(x,r) n U(y,s)) ----; ¢y(U(x,r) n U(y, s)) 

agrees in a neighborhood of each point of its domain with an element of G. 
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As before, we have 

n-1(U(x,r)) = U p. n B(x.,r), 
.=1 

n-l(U(y, S)) = U QJ n B(YJ' S). 
J=1 

By reversing the roles of x and y, if necessary, we may assume that m ~ n. 
If m > 1, let 8. be the side of p. containing x. as before, and if n > 1, let 
TJ be the side of Q J containing YJ as before. Let 91, ... ,9m and hI, ... , hn 
be the elements of G constructed as before for x and y. Because of the 1/3 
bounds on rand s, there is only one index j, say £, such that the set 

p n B(x, r) n QJ n B(YJ' s) 
is nonempty. We shall prove that the coordinate change <py<p;1 is the 
restriction of the element h£ of G. 

Assume first that m = 1. Then x is in po and 

n-l(U(x,r)) = B(x,r). 
Therefore 

U(x, r) n U(y, s) 

= n(B(x, r)) n nCQl QJ n B(YJ' s)) 

n(B(x,r)n U QJnB(YJ's)) 
J=1 

n(B(x,r) nB(y£,s)). 
Hence 

<Px(U(x, r) n U(y, s)) = B(x, r) n B(y£, s) 

and 
<Py (U(x, r) n U(y, s)) = h£ (B(x, r) n B(y£, s)). 

Therefore, the coordinate change 

<Py<p;;t : B(x, r) n B(y£, s) -+ h£ (B(x, r) n B(y£, s)) 
is the restriction of h£. 

Assume next that m = 2. Then x is in the interior of a side 8 of P and 
x' is in the interior of a side 8' of pi and the set 

pi n B(X', r) n QJ n B(YJ' s) 

is nonempty only for j = £-1 or £+ 1 (mod n). By reversing the ordering of 
Yl,.'" Yn, if necessary, we may assume that this intersection is nonempty 
only for j = £ + 1. Then P = Q£, pi = QHl, 8 = T£, and 

U(x, r) n U(y, s) 

n[(P n B(x, r)) U (pi n B(x',r))] n n[JQl QJ n B(YJ' s)] 

n[JQ1 p n B(x, r) n QJ n B(YJ' s) U JQl pi n B(X', r) n QJ n B(YJ' s)] 

n[(P n B(x, r) n B(y£, s)) U (pi n B(X', r) n B(YH1' s))]. 
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Hence 

and 

¢x(U(x,r)nU(y,s)) 
(p n B(x, r) n B(yc, s)) U gs (p' n B(x', r) n B(YC+l' s)) 

(p n B(x, r) n B(YR, s)) U (gs(P') n B(x, r) n B(YR' s)) 

B(x, r) n B(YR' s) 

¢y(U(x,r) n U(y,s)) 

hc(P n B(x, r) n B(YR' s)) U hHl (P' n B(x', r) n B(YHl' s)) 

hc[(P n B(x, r) n B(YR' s)) U gs(P' n B(x', r) n B(YHl, s))] 

hR[(pnB(x,r) nB(yc,s)) U (gs(P') nB(x,r) nB(YRs))] 

hR(B(x, r) n B(YR, s)). 

Now on the set 
P n B(x, r) n B(YR, s), 

the map ¢y¢;,1 is the restriction of hR, and on the set 

gs(P' n B(x', r) n B(YHl, s)), 
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the map ¢y¢-;:l is the restriction of hHlgs 1 = hR. Hence, the coordinate 
change 

¢y¢;l : B(x, r) n B(YR, s) ----t he(B(x, r) n B(YR, s)) 

is the restriction of hR. 
Assume now that m > 2. Then both x and yare vertices. As U(x, r) 

and U(y, s) overlap, 1T(X) = 1T(Y) because of the bounds on rand s. Hence 
x = YR. Let t = min{r, s}. Then 

Now either 

or 

U(x, r) n U(y, s) 

¢x(U(x, t)) 

¢y(U(x, t)) 

U(x, t), 

B(x, t), 

B(y, t). 

x, = YR-,-l (mod m). 

By reversing the ordering of Yl, ... ,Yrn, if necessary, we may assume that 
the former holds. Then 

and 
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Now observe that 

and so we have 

Now as 

9. Geometric Surfaces 

9. 981 .. ·98,-1 

9T£ .. ·9T£+,_2 

hi1hl+._l (mod m) 

m 
B(x, t) = U 9.P• n B(x, t), .=1 

the map ¢y¢;l is the restriction of 

hl+._19:;1 = (h£9.)9:;1 = h£ 

on the set 9.P.nB(x, t) for each i = 1, ... , m. Hence, the coordinate change 

¢y¢;l : B(x, t) --* B(y, t) 

is the restriction of h£. Thus, in all three cases, ¢y¢;l agrees with an 
element of G. This completes the proof that {¢x} is an (X, G)-atlas for M. 

Let P be a polygon in P and let L : po --* M be the natural injection of 
po into M. Then for each point x in po and chart ¢x : U(x, r) --* B(x, r), 
the map 

L-1 : LB(x, r) --* B(x, r) 

is ¢x. Therefore L is an (X, G)-map by Theorem 8.4.2. Thus, the (X, G)­
structure of M has the property that the natural injection of po into M is 
an (X, G)-map for each P in P. 0 

Example 4. Let n be an integer greater than one. Then 
7f 7f 7f 7f 
- + - + - = - < 7f. 
2n 4n 4n n 

Hence, there is a hyperbolic triangle of the form 6. (2:' 4:' :..) by Theorem 
3.5.9. Now reflecting in the sides of 6., keeping the vertex whose angle is 
7f /2n fixed, generates a cycle of 4n hyperbolic triangles whose union is a 
regular hyperbolic 4n-gon P whose dihedral angle is 7f /2n. We position P 
in B2 so that its center is the origin. See Figure 9.2.3. 

Now label the sides of P in positive order by the symbols 

Sl, T1 , S~, T{, ... , Sn, Tn, S~, T~ 

as in Figure 9.2.3. The side S: is paired to the side S. by first reflecting 
in the straight line passing through the origin and the center of the side 
labeled T", and then reflecting in the side of P labeled S.. The side T: is 
paired to the side T. by first reflecting in the straight line passing through 
the origin and the center of the side labeled S:, and then reflecting in the 
side of P labeled T.. The 4n vertices of P form a cycle whose angle sum is 
27f. Therefore, this side-pairing is proper. 
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Figure 9.2.3. A regular hyperbolic octagon 
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Let M be the space obtained from P by gluing together its sides by 
this side-pairing. Then M is a closed surface with a (B 2 ,Io(B 2 ))-structure 
by Theorem 9.2.2. It is evident from the gluing pattern of P that M is a 
connected sum of n tori. Thus M is a closed orient able surface of genus 
n>l. 

Example 5. Let n be an integer greater than two. Then 

'iT 'iT 'iT 2'iT -+-+- = - <'iT. 
n 2n 2n n 

Hence, there is a hyperbolic triangle of the form 6 (~, 2: ' 2:) by Theorem 
3.5.9. Now reflecting in the sides of 6, keeping the vertex whose angle is 
'iT In fixed, generates a cycle of 2n hyperbolic triangles whose union is a 
regular hyperbolic 2n-gon Q whose dihedral angle is 'iT In. We position Q 
in B2 so that its center is the origin. 

We now divide the sides of Q into pairs of consecutive sides. Each of 
these pairs of consecutive sides of Q are paired by a rotation about the 
origin followed by the reflection in the corresponding side of Q. The 2n 
vertices of Q form a cycle whose angle sum is 2'iT. Therefore, this side­
pairing is proper. 

Let M be the space obtained from Q by gluing together its sides by 
this side-pairing. Then M is a closed surface with a (B2 ,I(B2 ))-structure 
by Theorem 9.2.2. It is evident from the gluing pattern of Q that M is a 
connected sum of n projective planes. Thus M is a closed nonorientable 
surface of genus n > 2. 
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The Generalized Gluing Theorem 

In later applications, we shall need a more general version of Theorem 9.2.2. 
The first step towards this generalized gluing theorem is to generalize the 
notion of a convex polygon so as to allow vertices in the interior of a side. 

Definition: An abstract convex polygon P in X is a convex polygon P in 
X together with a collection £: of subsets of OP, called the edges of P, such 
that 

(1) each edge of P is a dosed, I-dimensional, convex subset of OP; 

(2) two edges of P meet only along their boundaries; 

(3) the union of the edges of Pis OP; 

(4) the collection £: is a locally finite family of subsets of X. 

By Theorem 6.2.6, a convex polygon P in X, together with the collection 
S of its sides, is an abstract convex polygon. Note that, in general, an edge 
of an abstract convex polygon P mayor may not be equal to the side of P 
containing it. The vertzces of an abstract convex polygon P are defined to 
be the endpoints of the edges of P. A vertex of an abstract convex polygon 
P may be in the interior of a side of P. 

We next generalize the notion of a disjoint set of convex polygons so as 
to allow the possibility that the polygons may live in different copies of X. 

Definition: A disjoint set of abstract convex polygons of X is a set of 
functions 

:=:={~p:PEP} 

indexed by a set P such that 

(1) the function ~p : X -t X p is a similarity for each P in P; 

(2) the index P is an abstract convex polygon in Xp for each P in P; 

(3) the polygons in P are mutually disjoint. 

Let :=: be a disjoint set of abstract convex polygons of X and let G be a 
group of similarities of X. 

Definition: A G-edge-pazring for :=: is a set of functions 

<I> = {</JE: E E £} 

indexed by the collection £: of all the edges of the polygons in P such that 
for each edge E of a polygon P in P, 
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(1) there is a polygon pi in P such that the function ¢E : X p' ----t Xp is 

a similarity; 

(2) the similarity ~pl¢E~P' is in G; 

(3) there is an edge E' of pi such that ¢E(E' ) = E; 

(4) the similarities ¢E and ¢E' satisfy the relation ¢E' = ¢E/; 

(5) the polygons P and ¢E(P') are situated so that P n ¢E(P') = E. 

Let <P be a G-edge-pairing for 3. Then the pairing of edge points by 
elements of <P generates an equivalence relation on the set II = UPEP P. 
The equivalence classes are called the cycles of <P, and <P is said to be proper 
if and only if every cycle of <P is finite and has angle sum 27r. Topologize 
II with the direct sum topology and let M be the quotient space of II of 
cycles of <P. The space M is said to be obtained by gluing together the 
polygons of 3 by <P. 

The proof of the next theorem follows the same outline as the proof of 
Theorem 9.2.2 and is therefore left to the reader. 

Theorem 9.2.3. Let G be a group of szmilarities of X and let M be a space 
obtazned by gluzng together a disJoznt set 3 of abstract convex polygons of 
X by a proper G-edge-painng <P. Then M is a 2-manifold wzth an (X, G)­
structure such that the natural znJection of po into M zs an (X, G)-map 
for each polygon P of 3. 

Exercise 9.2 

1. With the same definitions as in the proof of Theorem 9.2.2, prove that for 
each index i, there is at most one index J such that the following set is 
nonempty: 

P, n B(x" r) n QJ n B(YJ' s). 

2. Show that the same gluing pattern on the sides of a square in E2, as in 
Example 5, yields a Euclidean structure on the Klein bottle. 

3. Let P be a convex fundamental polygon for a discrete group r of isometries 
of X and let E be the collection of all I-dimensional convex subsets of OP 
of the form P n gP for some 9 in r. Prove that P together with E is an 
abstract convex polygon in X. 

4. Let P be as in Exercise 3. For each edge E of P, let gE be the element of r 
such that P n gE(P) = E. Prove that <P = {gE : E E E} is a r-edge-pairing 
for P. 

5. Prove Theorem 9.2.3. 
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§9.3. The Gauss-Bonnet Theorem 

We next prove the Gauss-Bonnet Theorem for closed geometric surfaces. 

Theorem 9.3.1. If /'i, = 1,0, or -1 2S the curvature of a closed spherical, 
Euchdean, or hyperbol2c surface M, then 

/'i,Area(M) = 27rX(M). 

Proof: As M is compact, M is complete. By Theorem 8.5.9, we may 
assume that M is a space-form X/f. Let P be an exact fundamental 
polygon for f. Then P is compact by Theorem 6.5.10. 

If P has no sides, then P = 8 2 = M and 

Area(M) = 47r = 27rX(M). 

If P has one side, then P is a closed hemisphere of 8 2 , and so M = p 2 by 
Theorem 9.2.1(2), and 

Area(M) = 27r = 27rX(M). 

If P has two sides, then P is a lune of 8 2 , but any side-pairing of a lune 
is not proper. Therefore, we may assume that P has at least three sides. 
Then the 2nd barycentric subdivision of P subdivides P into triangles and 
projects to a triangulation of M so that each triangle of the subdivision of 
P is mapped homeomorphically onto a triangle of the triangulation. 

Let ,0>1, ... , ,0,t be the triangles of the 2nd barycentric subdivision of P. 
Then e = 3t/2 is the number of edges of the triangulation of M. Let v be 
the number of vertices of the triangulation of M. Then 

X(M) = v - e + t = v - ~t. 

Suppose that /'i, = 1 or -1. Then by Theorems 2.5.5 and 3.5.5, we have 

/'i,Area(M) /'i,Area(P) 
t 

/'i, L Area( ,0" (a" ,6" 1',)) 

27rv - t7r 

27r( V - ~t) 

Now suppose that /'i, = O. Then we have 

27rx(M). 

t 

27rv = L(a2 +,62 + 1'2) = t7r. 
,=1 

Hence, we have 
X(M) = (v - ~t) = O. 

Thus, we have 
/'i,Area(M) = 27rX(M). o 
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Theorem 9.3.2. If M is a closed surface, then M has 

(1) a spher'tcal structure if and only 2f X(M) > 0, 

(2) a Eucl2dean structure 2f and only if x(M) = 0, 

(3) a hyperbolzc structure 2f and only 2f X(M) < 0. 
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Proof: (1) If X(M) > 0, then M is either a sphere or projective plane by 
Theorem 9.1.1, both of which have a spherical structure. Conversely, if M 
has a spherical structure, then X(M) > ° by Theorem 9.3.1. 

(2) If X(M) = 0, then M is either a torus or a Klein bottle by Theorem 
9.1.1, both of which have a Euclidean structure. Conversely, if M has a 
Euclidean structure, then X(M) = ° by Theorem 9.3.1. 

(3) If X(M) < 0, then M is either a closed orient able surface of genus n, 
with n > 1, or a closed nonorientable surface of genus n, with n > 2, both 
of which have a hyperbolic structure by the constructions in Examples 4 
and 5 in §9.2. Conversely, if M has a hyperbolic structure, then X(M) < ° 
by Theorem 9.3.1. 0 

Exercise 9.3 

1. Let T be a triangle in 8 2 , E2, or H2. Prove that the centroid of T is the inter­
section of the three geodesic segments joining a vertex of T to the midpoint 
of the opposite side of T. 

2. Let P be a compact convex polygon in X = 8 2 , E2, or H2 with n sides and 
n 2': 3. Prove that the 2nd barycentric subdivision of P divides Pinto 12n 
triangles. 

3. With the same definitions as in the proof of Theorem 9.3.1, prove that each 
triangle of the barycentric subdivision of P is mapped homeomorphically 
onto the image in M by the quotient map from X to M. 

4. With the same definitions as in the proof of Theorem 9.3.1, prove that the 
2nd barycentric subdivision of P projects to a triangulation of M. 

§9.4. Moduli Spaces 

Let M be a closed surface such that X(M) ~ 0. By Theorem 9.3.2, the 
surface M has a Euclidean or hyperbolic structure according as X(M) = ° 
or X(M) < 0. In this section, we show that the set of similarity equivalence 
classes of Euclidean or hyperbolic structures on M has a natural topology. 

If X(M) = 0, let £(M) be the set of Eucl2dean structures for M, and 
if X(M) < 0, let H(M) be the set of hyperbolic structures for M. Let 
X = E2 or H2 according as X(M) = ° or X(M) < 0, and let S(M) be 
the set of complete (X, S(X))-structures for M. We begin by studying the 
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relationship between S(M) and £(M) or 1t(M). First of all, if X(M) < 0, 
then S(M) = 1t(M), since S(H2) = I(H2) and every hyperbolic structure 
for M is complete because M is compact. Thus, we may assume that 
X(M) = o. 

Define a left action of S(E2) on £(M) as follows: If ~ : E2 --t E2 is a 
similarity and 

ef> = {4>. : U. --t E2} 

is a Euclidean structure for M, define ~ef> to be the Euclidean structure for 
M given by 

~ef> = {~4>. : U. --t E2}. 

Clearly, I(E2) acts trivially on £(M). Hence, the action of S(E2) on £(M) 
induces an action of S(E2)jI(E2) on £(M). The group S(E2)jI(E2) is 
isomorphic to ffi+. Consequently, there is a corresponding action of lR+ on 
£ (M) defined as follows: If k > 0 and ef> = {4>. : U. --t E2} is in £ (M), 
then 

kef> = {k4>. : U. --t E2}. 

Clearly, this action of lR+ on £(M) is effective. Furthermore, we see that 
two elements of £(M) are in the same S(E2)-orbit if and only if they differ 
by a change of scale. 

Given a Euclidean structure ef> for M, let <1> be the unique complete 
(E2, S(E2) )-structure for M containing ef>. 

Lemma 1. If ef> zs a Euclzdean structure for M, then <1> is the disjoint 
union of the Euclzdean structures {kef> : k > a}. 

Proof: Clearly, the Euclidean structures {kef> : k > o} are disjoint and 

U{kef> : k > o} C <1>. 

Let 4> : U --t E2 be an arbitrary chart in <1>. We shall prove that 4> is in kef> 
for some k > o. Define a function f : U --t lR+ as follows: For each point 
u of U, choose a chart 4>. : U. --t E2 of ef> such that u is in U •. Then 4>4>;:1 
agrees with an element 9 of S(E2) in a neighborhood of u. Define f(u) to 
be the scale factor of g. Observe that f(u) does not depend on the choice 
of the chart 4>., since if 4>J : UJ --t E2 is another chart in ef> such that u is 
in UJ , then 

in a neighborhood of u, and 4>.4>-1 agrees with an isometry of E2 in this 
neighborhood. It is clear from th~ definition of f that f is locally constant; 
therefore, f is constant, since U is connected. 

Let k be the constant value of f. If 4>. : U --t E2 is a chart in ef> such 
that U and U. overlap, then k- l 4>4>;:l agrees with an element of I(E2) in a 
neighborhood of each point of 4>.(U n U.). Therefore k- l 4> is in ef>. Hence 

4> is in kef>. Thus 
<1> = U{kef> : k > O}. o 
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Theorem 9.4.1. If M zs a closed surface such that X(M) = 0, then the 
mappzng <I> f---+ <1> znduces a bZJection from S(E2)\£(M) onto SCM). 

Proof: If ~ is an S(E2) and <I> is in £(M), then ~<I> = <1>. Hence, the 
mapping <I> f---+ <1> induces a function 

(J : S(E2)\£(M) --7 SCM). 

Suppose that <I> and <1>' are elements of £ (M) such that <1> = <1>'. By Lemma 
1, there is a k > 0 such that <1>' = k<l>. Hence <I> and <1>' are in the same 
S(E2 )-orbit of £(M). Therefore (J is injective. Now let W be an arbitrary 
element of SCM). By Theorem 8.5.8, we have that W contains a Euclidean 
structure <I> for M. As <1> = W, we have that (J is surjective. Thus (J is a 
bijection. o 

Moduli Space 

Two (X, SeX) )-structures wand W' for M are said to be simzlar if and only 
if (M, w) and (M, w') are (X, S(X))-equivalent. Let M(M) be the set of 
similarity equivalence classes of complete (X, S(X))-structures for M. 

(1) If X(M) = 0, then M(M) is in one-to-one correspondence with the 
set of similarity classes of Euclidean structures for M by Theorem 
9.4.1. 

(2) If X(M) < 0, then M(M) is the set of isometry classes of hyperbolic 
structures for M. 

The set M(M) is called the moduli space of Euclidean or hyperbolic struc­
tures for M. 

We next study the relationship between SCM) and M(M). Let Hom(M) 
be the group of homeomorphisms of M. Define a right action of Hom(M) 
on SCM) as follows: If h : M --7 M is a homeomorphism and 

W = {'ljJt: V. --7 X} 

is an element of SCM), define wh to be the element of SCM) given by 

wh = {'ljJth: h-1(V.) --7 X}. 

Theorem 9.4.2. If M is a closed surface such that X(M) :s; 0, then the 
natural projectwn from SCM) to M(M) induces a bijection from the set 
S(M)/Hom(M) onto M(M). 

Proof: Let h : M --7 M be a homeomorphism and let 

w = {'ljJt : V. --7 X} 

be an element of SCM). Then for each i and j, we have 

('ljJth)('ljJJh)-l = 'ljJt'ljJ;l. 
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Hence h is an (X, S(X))-map from (M, iJ!h) to (M, iJ!). As h is a bijec­
tion, (M, iJ!h) and (M, iJ!) are (X, S(X))-equivalent. Hence, the natural 
projection from SCM) to M(M) induces a surjection 

J.L: S(M)/Hom(M) --+ M(M). 

Let iJ! and iJ!' be similar elements of SCM). Then there is an (X, S(X))­
equivalence h : (M, iJ!') --+ (M, iJ!). As h is a local homeomorphism and a 
bijection, h is a homeomorphism. If 'Ij;. : V. --+ X and 'lj;J : ~ --+ X are 
charts in iJ! and iJ!', respectively, then 'Ij;.h'lj;-;l agrees in a neighborhood of 
each point of its domain with an element of SeX). Therefore 'Ij;.h is in iJ!'. 
Hence iJ!h = iJ!'. Thus iJ! and iJ!' are in the same Hom(M)-orbit in SCM). 
Hence J.L is injective. Thus J.L is a bijection. 0 

Teichmiiller Space 

Let Hom1(M) be the group of all homeomorphisms of M homotopic to 
the identity map of M. The Teichmuller space of Euclidean or hyperbolic 
structures for M is defined to be the set 

T(M) = S(M)/Hom1(M). 

The group Hom1(M) is a normal subgroup of Hom(M). The quotient 

Map(M) = Hom(M)/Hom1(M) 

is called the full mapping class group of M. The action of Hom( M) on S (M) 
induces an action of Map(M) on T(M); moreover, the quotient map from 
T(M) to M(M) induces a bijection from T(M)/Map(M) onto M(M). 

The Dehn-Nielsen Theorem 

Choose a base point u of M and let h : M --+ M be a homeomorphism. 
Then h induces an isomorphism 

h* : 1f1(M,u) --+ 1f1(M, h(u)). 

Let a : [0,1] --+ M be a curve from u to h(u). Then a determines a change 
of base point isomorphism 

a*: 1f1(M,h(u)) --+ 1f1(M,u) 

defined by 
a*(bD = [a'Ya - 1]. 

The composite a*h* is an automorphism of 1f1(M) = 1f1(M,u). Let 
f3 : [0,1] --+ M be another curve from u to h(u). Then f3*h* is also an 
automorphism of 1f1 (M). Moreover 
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The automorphism (;3a- 1 )* Of1r1(M) is just conjugation by [;3a- 1]. 
Let Inn( 1r1 (M)) be the group of inner automorphisms of 1r1 (M). Then 

the quotient group 

Out(1r1(M)) = Aut(1r1 (M))/Inn(1rl (M)) 

is called the outer automorphism group of 1rl (M). Let [h*] be the coset 
a*h*Inn(1rl(M)) in Out(1rl (M)). Then [h*] does not depend on the choice 
of the curve a. If h is homotopic to the identity map of M, then a*h* 
is an inner automorphism of 1rl (M), and so [h*] = 1. Thus, the mapping 
h f---7 [h*] induces a function 

v: Map(M) ---+ OUt(1rl (M)). 

The next theorem is a basic theorem of surface theory. 

Theorem 9.4.3. (The Dehn-Nielsen Theorem) If M is a closed surface 
with X(M) ::; 0, then v : Map(M) ---+ OUt(1r1 (M)) zs an isomorphzsm. 

Proof: We shall only prove that v is a monomorphism. We begin by 
showing that v is a homomorphism. Let g, h : M ---+ M be homeomor­
phisms, let a : [0, 1] ---+ M be a curve from the base point u to h( u), and 
let ;3 : [0,1] ---+ M be a curve from u to g(u). Then ;3ga : [0,1] ---+ M is a 
curve from u to gh(u). Hence 

v[gh] (;3ga) * (gh)*Inn(1r1 (M)) 

(;3*g*a*h*Inn( 1rl (M)) 

(;3*g*) (a*h*)Inn(1r1 (M)) = v[g]v[h]. 

Thus v is a homomorphism. 
Let h : M ---+ M be a homeomorphism such that v[h] = 1 in OUt(1rl (M)) 

and let a : [0,1] ---+ M be a curve from u to h(u). Then there is a loop 
, : [0,1] ---+ M based at u such that a*h* = ,*. Hence h* = (a- 1,)*. By 
replacing a by ,-la, we may assume that h* = a;l. 

Now M has a cell structure with one O-cell u, k I-cells, and one 2-cell. 
Let ,. : [0,1] ---+ M, for i = 1, ... ,k, be characteristic maps for the I-cells 
of M. Then h,. c::::' a- 1,.a c::::' ,. for each i. 

Hence, there are homotopies H. : [0, IF ---+ M from h,. to ,. such that 
H.(O, t) = H.(I, t) for all t and H.(O, t) = H](O, t) for all t and all i,j. 

Let hI be the restriction of h to the I-skeleton Ml of M. Define a 
homotopy 

H: M1 x [0,1]---+ M 

by H(J.(s), t) = H.(s, t). Then H is well defined and a homotopy of hI to 
the inclusion map of Ml into M. As X(M) ::; 0, we have that 1r2(M) = 0. 
Hence, we can extend H to a homotopy of h to the identity map of M. 
Therefore [h] = 1 in Map(M). Thus v is a monomorphism. 0 
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Deformation Space 

Let ry : 7T'l(M) -7 I(X) be a holonomy for M with respect to a complete 
(X, S(X))-structure W for M. The holonomy ry depends on the choice of a 
developing map for M. If ry' is another holonomy for M with respect to W, 
then there is a similarity ~ of X such that 

ry'(c) = ~ry(C)C1 

for each c in 7T'l(M). 
Let [ry] denote the orbit S(X)ry under the left action of S(X) on the set 

of homomorphisms Hom(7T'l(M), I(X)) by conjugation. Then [ry] does not 
depend on the choice of the developing map for M. Thus, the mapping 
W f-+ [ry] defines a function from S(M) into 

S(X)\Hom(7T'l(M),I(X)). 

Now by Theorem 8.5.9, the holonomy ry maps 7T'1 (M) isomorphically 
onto a discrete subgroup of I( X). A homomorphism in Hom( 7T'1 (M), I( X)) 
mapping 7T'1 (M) isomorphically onto a discrete subgroup of I(X) is called 
a dzscrete fazthful representation of 7T'l(M) in I(X). Let D(7T'l(M),I(X)) 
be the set of discrete faithful representations of 7T'1 (M) in I(X). Then 
D(7T'l (M), I(X)) is invariant under the action of S(X). 

The deformatwn space of M is defined to be the set 

V(M) = S(X)\D(7T'l(M), I(X)). 

Note that the mapping W f-+ [ry] defines a function from S(M) to V(M). 
Let h : M -7 M be a homeomorphism and let () : if -7 X be the 

developing map for M that determines the holonomy ry. Let", : if -7 M 
be the universal covering projection and let h : if -7 if be a lift of h with 
respect to "'. Then {)h : if -7 X is a developing map for the (X,S(X))­
structure wh for M. We now compute the holonomy for M determined by 
()h in terms of ry and h. 

Choose a base point U of if such that ",(u) = u. Let a : [0,1] -7 M be a 
loop based at u. Then a lifts to a unique curve a in if starting at U. Let 
v be the endpoint of a and let Ta be the unique covering transformation 
of", such that Ta(U) = V. Then there is a unique element ga of I(X) such 

that 

The holonomy ry: 7T'l(M,u) -7I(X) is defined by ry([a]) = ga' 
Let u' = h(u), U' = h(u), and ry' : 7T'l(M, u') -7 I(X) be the holonomy 

for M determined by (). Then 

"'hTa = h"'Ta = h", 

and 
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Now as 

we have that 

Hence, we have 
thTa = OThak = 9haok. 

Thus, the holonomy for M determined by ok is 

r/h* : 71"1 (M, u) ----t I(X). 
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Note that r/ is defined relative to the base point _u' = h(u). We now 
switch the base point back to u. Let;Y: [0, 1] ----t M be a curve from u 
to u' and set 'Y = "';Y. Then'Y: [0,1] ----t M is a curve from u to u'. Let 
f3 : [0,1] ----t M be a loop based at u' and let j3 : [0,1] ----t M the lift of f3 
starting at u'. Then 'Yf3'Y- 1 : [0,1] ----t M is a loop based at u and 

;yj3(Tf3;y-1) : [0, 1]----t M 
is the lift of 'Yf3'Y-1 starting at u. Observe that 

;yj3(Tf3;y-1)(1) = Tf3(U). 

Hence T-yf3-y-l = Tf3. Thus r/ = rn* where 

'Y* : 71"l(M,u') ----t 71"l(M,u) 

is the change of base point isomorphism. Therefore, the holonomy for M 
determined by ok is 

TJ'Y*h* : 71"l(M,u) ----t I(X). 

Now suppose that h: M ----t M is homotopic to the identity map of M. 
Then the automorphism 

'Y*h* : 71"1 (M) ----t 71"1 (M) 

is conjugation by an element b of 71"1 (M). If c is in 71"1 (M), then 

TJ'Y*h*(c) = TJ(bcb- 1) = TJ(b)TJ(c)TJ(b)-l. 

Therefore, we have that 

TJ'Y*h* = TJ(b) . TJ· 

Hence wand wh determine the same element [TJ] of D(M). Thus, the 
mapping W f---+ [TJ] induces a function p : T(M) ----t D(M) defined by 

p([w]) = [TJ]' 

where [W] = WHom1(M). 

Theorem 9.4.4. If M zs a closed surface such that X(M) ~ 0, then the 
function p : T(M) ----t D(M), defined by p([w]) = [TJ]' where TJ is a holonomy 
for (M, w), zs a bijection. 
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Proof: We first show that p is injective. Let WI and W2 be complete 
(X, S(X))-structures for M such that P(["p1]) = P([W2]). Let 8. : M ---> X 
be a developing map for (M, W.) and let 

'Tit: 'Tr1(M,u) ---> I(X) 

be the holonomy for M determined by 8. for i = 1,2. Then p([W.]) = [71.] 
for i = 1,2. Therefore [711] = [712]. Hence, there is a similarity ~ of X such 
that 712 = ~ . 711· Now ~81 is also a developing map for (M, WI); moreover, 
~81 determines the holonomy ~ . 711. Hence, by replacing 81 with ~81' we 
may assume that 711 = 712. 

Let r = Im(71.) for i = 1,2. Then r acts freely and discontinuously 
on X by Theorem_ 8.5.9. Let 8. : M ---> x/r be the map induced by 8. 
for i = 1,2. Then 8. is an (X, S(X))-equivalence from (M, w.) to x/r for 

--I-
i = 1,2. Let h = 82 81. Then h is an (X, S(X))-equivalence from (M, W1) 
to (M, W2). Therefore w2h = W by Theorem 9.4.2. 

Let rx. = 8.(u) and let 

{}.: 'Tr1(X/r,rx.) ---> r 

be the holonomy for x/r for i = 1,2. Then 71. is the composite 

'Tr1(M) ~ 'Tr1(X/r) ~ r. 

Let :y : [0,1] ---> X be a curve from Xl to X2 and set "I = 'Tr:y. Then 
"I: [0,1] ---> x/r is a curve from rX1 to rX2 and {}2 = {}n*· Hence 

(8~1 "1- 1 )*h* (8~1 "1- 1)* (8~1)* (8d* 

(8~ 1 ) * "1;- 1 (8 d * 
71;1{}2"1;-1{}11711 

-1 
712 711 
1. 

Therefore h is homotopic to the identity map of M by Theorem 9.4.3. 
Hence [W1] = [W2]. Thus p is injective. 

We now show that p is surjective. Let 71 : 'Tr1 (M) ---> I(X) be a dis­
crete faithful representation of 'Tr1(M) in I(X) and set r = Im(71)· Since 
M has either a Euclidean or hyperbolic structure, 'Tr1 (M) is torsion-free. 
Therefore r is a torsion-free discrete subgroup of I(X). Hence r acts freely 
and discontinuously on X, and so X /r is either a Euclidean or hyperbolic 
surface. 

Let {} : 'Tr1(X/r) ---> r be the holonomy for x/r. Then {}-1 71 : 'Tr(M) ---> 

'Tr1(X/r) is an isomorphism. Consequently M and x/r are homeomorphic. 
By Theorem 9.4.3, there is a homeomorphism h : M ---> x/r such that 

(X*h* = {}-171~, 

where (X* is a change of base point isomorphism and ~ is an inner automor­
phism of'Tr1(M). 
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Let '11 = {1j!2 : ~ -+ X} be the (X, S(X))-structure for X/f. Then 

wh = N2h : h-l(~) -+ X} 

is a complete (X, S(X))-structure for M. Lift h to a homeomorphism 
Ii: iiI -+ X. Then Ii is a developing map for (M, wh). The holonomy for M 
determined by Ii is fJ{3*h* where (3* is a change of base point isomorphism. 
Therefore, we have 

p[wh]) [fJ{3*h*] 
[fJ{3*a;:-la*h*] 
[fJ({3a);:-la*h*] 

[fJa*h*] = [1]]. 

Hence p is surjective. Thus p is a bijection. D 

The group Aut(7rl(M)) acts on D(7rl(M), I(X)) on the right. Moreover, 
if ( is an automorphism of 7rl(M) and 1] is in D(7rl(M),I(X)) and ~ is a 
similarity of X, then 

(~'1])( = ~. (1](). 

Hence, the action of Aut(7rl(M)) on D(7rl(M),I(X)) induces an action of 
Aut(7rl(M)) on V(M). Let [ be an inner automorphism of 7rl(M). Then 
there is a b in 7rl(M) such that [(c) = bcb-1 for all c in 7rl(M). If 1] is in 
D(7rl(M), I(X)), then 

1][(c) = 1](bcb-1) = 1](b)1](c)1](b)-l. 

Hence 1][ = 1](b) '1]. Therefore Inn(7rl(M)) acts trivially on V(M). Hence, 
the action of Aut(7rl(M)) on V(M) induces an action of Out(7rl(M)) on 
V(M). Let 

O(M) = V(M)/Out(7rl(M)). 

Theorem 9.4.5. If M zs a closed surface such that X(M) ::::: 0, then the 
functwn p: T(M) -+ V(M) induces a bijection p: M(M) -+ O(M). 

Proof: Let '11 be a complete (X, S(X))-structure for M and let h : M -+ M 
be a homeomorphism. Let 1] : 7rl(M) -+ I(X) be a holonomy for (M, '11). 
Then there is a change of base point isomorphism r* such that 1]r*h* 
7rl(M) -+ I(X) is the holonomy for who Hence 

p([W][h]) p([Wh]) 

[1]r*h*] 
[1]] [h*] 
p([W])//([h]). 

By Theorems 9.4.3 and 9.4.4, we have that p induces a bijection from 
T(M)/Map(M) onto V(M)/Out(7rl(M)). Thus p induces a bijection from 
M(M) onto O(M). D 



396 9. Geometric Surfaces 

We now define a topology for each of the sets V(M), O(M), T(M), 
and M(M). First, topologize 7r1(M) with the discrete topology and the 
set C( 7r1 (M), I(X)) of all functions from 7r1 (M) to I(X) with the compact­
open topology. Then C(7r1(M),I(X)) is the cartesian product I(X)7rlCM) 
with the product topology. 

Next, we topologize D(7r1(M),I(X)) with the subspace topology inher­
ited from C(7r1(M),I(X)). Now we topologize V(M) and O(M) with the 
quotient topology inherited from D(7r1(M),I(X)) and V(M), respectively. 
Finally, we topologize T(M) and M(M) so that p : T(M) ---+ V(M) and 
p: M(M) ---+ O(M) are homeomorphisms. Then M(M) has the quotient 
topology inherited from T(M). 

Remark: It is a fundamental theorem of Teichmiiller space theory that 
Teichmiiller space T(M) is homeomorphic to a finite dimensional Euclidean 
space. Moreover T(M) has a finitely compact metric such that the map­
ping class group Map(M) acts discontinuously on T(M) by isometries. 
Therefore, the orbit space T(M)/Map(M) has a complete metric. Now 
T(M)/Map(M) is homeomorphic to M(M). Therefore, moduli space 
M(M) has a complete metric. 

Exercise 9.4 

1. Let <P and <P' be Euclidean structures for M. Prove that ci> and ci>' are similar 
if and only if (M, <p) and (M, <p') are similar metric spaces. 

2. Let <P and <P' be hyperbolic structures for M. Prove that <P and <P' are 
similar if and only if (M, <p) and (M, <p') are isometric. 

3. Let <P and <P' be hyperbolic structures for M. Prove that [<p] = [<p'] in T(M) 
if and only if there is an isometry from (M, <p) to (M, <p') that is homotopic 
to the identity map of M. 

4. Let h: M ----> M be a homeomorphism of a surface M and let a : [0,1]----> M 
be a curve from u to h(u). Prove that if h is homotopic to the identity map 
of M, then a* h* is an inner automorphism of 7rl (M, u). 

5. Let M be a closed surface. Prove that the natural action of Homl(M) on 
M is transitive. 

6. Let u be a point of a surface M and let h : M ----> M be a homeomorphism. 
Prove that h is homotopic to a homeomorphism g : M ----> M such that 

g(u) = u. 

7. Prove that Nielsen's homomorphism v is surjective if M is a torus. 

8. Prove that Nielsen's homomorphism v is surjective if M is a Klein bottle. 

9. Let M be a closed surface. Prove that Aut(7rl(M)) is a countable group. 
Conclude that Out(7rl(M)) is a countable group. 

10. Prove that C(7rl(M), I(X)) is the cartesian product I(X)7l"l(M) with the prod­

uct topology. 
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§9.5. Closed Euclidean Surfaces 

In this section, we classify the Euclidean structures on the torus T2. By 
definition, T2 is the orbit space E2 I'll}. Therefore T2 has a Euclidean 
structure as a Euclidean space-form. This Euclidean structure on T2 is 
far from unique. We shall prove that T2 has an uncountable number of 
nonsimilar Euclidean structures. 

Theorem 9.5.1. The deformatwn space V(T2) zs homeomorphic to the 
upper half-plane U2,. moreover, the right actwn of the group Aut( 7fl (T2)) 
on V(T2) corresponds to the right action of GL(2, Z) on u2 gwen by 

z . (a b) = {~~:~ if ad - bc = 1, 

c d ~::~ if ad - bc = -l. 

Proof: We shall identify 7fl (T2) with Z2 and E2 with e. By Theorem 
5.4.4, every homomorphism in D(Z2, I(C)) maps Z2 into the subgroup T(C) 
of translations ofe. By Corollary 1 of Theorem 5.2.4, we may identify T(C) 
with e. 

We now show that Hom(Z2, C) is homeomorphic to C2. Define 

h: Hom(Z2,C) ----+ C2 

by the formula 
h(7]) = (7](1,0),7](0,1)). 

As each component of h is an evaluation map, h is continuous. The map 
h is obviously an isomorphism of groups. To see that h-1 is continuous, 
we regard Hom(Z2, C) to be a subspace of the cartesian product C;:z2. Now 
h -1 : C2 ----+ C;:z2 is defined by 

h-1(z, w)(m, n) = mz + nw. 

Hence, each component of h-l, given by (z, w) f---7 mz + nw, is continuous 
and so h-1 is continuous. Thus h is a homeomorphism. 

Let.; be a similarity of e. Then there is a nonzero complex number u 
and a complex number v such that 

';(z) = {u~ + v ~f'; preserves ~rientation, 
uz + v If'; reverses onentation. 

Let T be the translation of C by w. If'; preserves orientation, then 

';TC 1 (Z) ';T(U- 1 Z - u- 1v) 

';(u- 1Z-U-1V+w) 

z+uw. 
If .; reverses orientation, then 

';TC 1(Z) ';T(U-1Z - u-1v) 
.;(u-1z - u- 1v + w) 

z+uw. 
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Hence, the action of S(C) on T(C) by conjugation corresponds under the 
identification ofT(C) with C to multiplication by nonzero complex numbers 
of C possibly followed by complex conjugation. Moreover, the left action 
of S(C) on Hom(Z2, C) corresponds under h to multiplication by nonzero 
complex numbers on C2 possibly followed by complex conjugation on C2. 

By Theorem 5.3.2, a homomorphism 'fJ : Z2 ----+ C maps Z2 isomorphically 
onto a discrete subgroup of C if and only if 'fJ(1, 0) and 'fJ(0, 1) are linearly 
independent over R Hence D(Z2, C) corresponds under h to the subset 
D of C2 of all pairs (z, w) such that z, ware linearly independent over R 
Now define f : D ----+ U2 by 

f( ) = {z/w if Im(z/w) > 0, 
z, w z/w if Im(z/w) < o. 

Then f is continuous and induces a continuous bijection 

g: S(C)\D ----+ U2 . 

As the mapping z f-+ (z, 1) from U2 to D is continuous, we see that g-l is 
continuous. Therefore g is a homeomorphism. Thus V(T2) is homeomor­
phic to U2 • 

We identify Aut(Z2) with the group GL(2, Z) so that a matrix (~ ~) 
in GL(2, Z) represents the automorphism of Z2 that maps (1,0) to (a, c) and 
(0,1) to (b, d). Then the right action of Aut(Z2) on Hom(Z2, C) corresponds 
under the isomorphism 

h: Hom(Z2,C) ----+ C2 

to the right action of GL(2, Z) on C2 given by 

(z,w) (~ ~) = (az+cw,bz+dw). 

Hence, the right action of GL(2, Z) on S(C)\D corresponds under the home­
omorphism 

g: S(C)\D ----+ U2 

to the right action of GL(2, Z) on U2 given by 

(
a b) {~:t~ if ad - bc = 1, 

z . c d = ~~t~ if ad - bc = -l. o 

Theorem 9.5.2. The moduli space M(T2) zs homeomorphzc to the hyper­

bolzc tNangle L':.(i, ~ + 1i,oo) in U2 • 

Proof: If (~ ~) is in GL(2, Z), then 

z. (~ ~) = (~ ~). z, 
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where GL(2, Z) acts on the left by hyperbolic isometries of U2 . Hence, the 
orbit space U2 /GL(2, Z) is the same as the orbit space PGL(2, Z)\U2 . Now 

the triangle L(i, ~+ "ii, 00) is a fundamental polygon for PGL(2, Z); more­
over, PGL(2, Z) is a triangle reflection group with respect to L. Therefore 
PGL(2, Z)\U2 is homeomorphic to L by Theorem 6.5.8. No,; t?(T2) is 
homeomorphic to U2 /GL(2, Z) by Theorem 9.5.1. Hence M(T ) IS home­
omorphic to the triangle L. D 

Let P be the unit square in (C with vertices 0,1,1 + i, i. The Klein bottle 
K2 is, by definition, the surface obtained by gluing the opposite sides of P 
by the translation Tl, defined by Tl(Z) = Z + 1, and the glide-reflection PI, 
defined by Pl(Z) = -z + 1 + i. This side-pairing of P is proper, and so K2 
has a Euclidean structure by Theorem 9.2.2. 

We leave it as an exercise to show that Tl and PI generate a discrete 
subgroup fl of I(C) and P is a fundamental polygon for fl· The group fl 
is called the Klein bottle gmup. The group fl is isomorphic to 7rl(K2) by 
Theorems 6.5.8, 6.5.10, and 8.1.4. Like the torus T2, the Klein bottle K2 
has an uncountable number of nonsimilar Euclidean structures. The proof 
of the next theorem is left as an exercise for the reader. 

Theorem 9.5.3. The deformatwn space V(K2) is homeomorphic to U l ; 

moreover, Out(7rl(K2)) acts trzvially on V(K2) and therefore the modulz 
space M(K2) zs also homeomorphic to U1 . 

Exercise 9.5 

1. Let P be the parallelogram in C, with vertices 0,1, z, w in positive order 
around P, and let M be the torus obtained from P by gluing the opposite 
sides of P by translations. Prove that the class of M in T(T2) corresponds 
to the point w of U 2 under the composite of the bijections of Theorems 9.4.4 
and 9.5.1. 

2. Show that T1 and pi generate a discrete subgroup of T(C) of index two in 
the Klein bottle group r 1 . Conclude that r 1 is a discrete subgroup of I(C). 

3. Prove that the square P in C, with vertices 0,1,1 + i, i, is a fundamental 
polygon for the Klein bottle group r 1 . 

4. Prove that a discrete subgroup r of I(C) is isomorphic to r 1 if and only if 
there are v, w in C such that v, ware linearly independent over lE. and r is 
generated by T and p defined by T(Z) = Z + wand p(z) = -(w/w)z + v. 

5. Prove that D(K2) is homeomorphic to U 1 • 

6. Let P be the parallelogram in C, with vertices 0,1, z, w in positive order 
around P, and let M be the Klein bottle obtained from P by gluing the 
opposite sides [0, w] and [1, z] by a translation and [0,1] and [w, z] by a 
glide-reflection. Prove that the class of M in T(K2) corresponds to the 
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point Im(z) of U 1 under the composite of the bijections of Theorems 9.4.4 
and 9.5.3. 

7. Prove that 71 generates a characteristic subgroup of r1 and that r 1/ (71) is 
an infinite cyclic group generated by (71)P1. 

8. Prove that Out(r1) is a Klein four-group generated by the cosets Inn(rl)o 
and Inn(r1)f3, where 0(71) = 71 and O(pl) = 71Pl, and 13(71) = 71 and 
f3(Pl) = Pl1. 

9. Prove that Out(7rl(K2)) acts trivially on V(K2). 

10. Let K, : M(K2) -+ M(T2) be the function defined by mapping the class of a 
Klein bottle to the class of its orientable double cover. Prove that K, is well 
defined and that K, is neither surjective nor injective. 

§9.6. Closed Geodesics 

In this section, we study the geometry of closed geodesics of hyperbolic 
surfaces. 

Definition: A period of a geodesic line ..\ : ~ -+ X is a positive real 
number P such that ..\(t + p) = ..\(t) for all t in R A geodesic line ..\ is 
periodic if it has a period. 

Theorem 9.6.1. A perwdic geodesic line..\ : ~ -+ X has a smallest period 
PI and every perwd of ..\ is a multzple of Pl· 

Proof: Let P be the set of all real numbers p such that ..\(t + p) = "\(t) 
for all t. Then P consists of all the periods of ..\, their negatives, and zero. 
The set P is clearly a subgroup of~. Now since ..\ is a geodesic line, there 
is an s > 0 such that ..\ restricted to the closed interval [-s, s] is a geodesic 
arc. Therefore ..\ is injective on [-s, s]. If p is a nonzero element of P, then 
..\(p) = ..\(0), and so p cannot lie in the open interval (-s, s). Therefore 0 
is open in P, and so P is a discrete subgroup of~. By Theorem 5.3.2, the 
group P is infinite cyclic. Let PI be the positive generator of P. Then PI 
is the smallest period of ..\, and every period of ..\ is a multiple of Pl. 0 

Definition: A closed geodesic in a metric space X is the image of a 
periodic geodesic line ..\ : ~ -+ X. 

Example: Let M = Hn /r be a space-form and let 1r : H n -+ H n /r be the 
quotient map. Let h be a hyperbolic element of r with axis L in H n , and 
let 5. : ~ -+ Hn be a geodesic lin~ whos~ image is L. Then h a~ts on L as a 
translation by a distance p = d(..\(O) , h"\(O)). Therefore..\ = 1r..\: ~ -+ M is 
a periodic geodesic line with period p. Hence, the set C = ..\(~) is a closed 
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geodesic of M. Observe that 

C = A(lR) = 7fj(lR) = 7f(L). 

Therefore, the axis L of h projects onto the closed geodesic C of M. 

Definition: An element h of a group f is primitive in f if and only if h 
has no roots in f, that is, if h = gm, with 9 in f, then m = ±1. 

Theorem 9.6.2. Let C be a closed geodesic of a space-form M = H n If. 
Then there is a przmitive hyperbolic element h of f whose axis projects onto 
C. Moreover, the aXIS of a hyperbolIc element f of f projects onto C if 
and only if there is an element 9 of f and a nonzero integer k such that 
f = ghkg-1. 

Proof: Since C is a closed geodesic, there is a periodic geodesic line 
A : lR -+ M whose image is C. Let j : lR -+ H n be a lift of A with respect 
to 7f : H n -+ Hn Ir. Then j maps lR isometrically onto a hyperbolic line L 
of Hn. Let p be the smallest period of A. Then 7f j(p) = 7f j(O). Hence, there 
is a nonidentity element h of r such that j(p) = hj(O). Now hj : lR -t H n 

also lifts A and agrees with ~ : lR -t H n , defined by 

'\(t) = j(t + p), 

at t = o. As,\ also lifts A, we have that hj = ~ by the unique lifting 
property of the covering projection 7f : Hn -+ Hn If. Therefore h leaves L 
invariant. Hence h is hyperbolic with axis L. Moreover h is primitive in f, 
since 

p = d(j(O), hj(O)) 

is the smallest period of A. Thus h is a primitive hyperbolic element of f 
whose axis projects onto C. 

Let f be a hyperbolic element of r and suppose that 9 is an element of 
rand k is a nonzero integer such that f = ghkg-1. Then the axis of f is 
gL. Therefore, the axis of f projects onto C. 

Conversely, suppose that the axis K of f projects onto C. Then there 
exists an element 9 of f such that K = gL. Now g-l fg is a hyperbolic 
element of r with axis L. Hence g-l fg acts as a translation on L by a 
signed distance, say q. Now ±q is a period of A, and so there is a nonzero 
integer k such that q = kp by Theorem 9.6.1. Hence g-l fgh- k fixes each 
point of L. As f acts freely on Hn, we have that g-l fgh- k = 1. Therefore 
g-l fg = hk and so f = ghkg-1. 0 

Theorem 9.6.3. Let M = Hn If be a compact space-form. Then every 
nonzdentIty element of f IS hyperbolic. 

Proof: Since f is discrete and M is compact, every element of f is either 
elliptic or hyperbolic by Theorem 6.5.7. Moreover, since r acts freely on 
Hn, an elliptic element of r must be the identity. 0 
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Closed Curves 

Let M = H n jr be a space-form. A closed curve 'Y : [0,1] ----+ M is said to be 
ell2ptzc, parabolzc, or hyperbolzc if and only if for a lift l' : [0, 1] ----+ Hn, the 
element 9 of r such that 1'(1) = g1'(O) is elliptic, parabolic, or hyperbolic, 
respectively. This does not depend on the choice of the lift 1', since if 
l' : [0,1] ----+ Hn is another lift of 'Y, then l' = /1' for some / in r and so 

fgr1i'(0) fgr1 h(O) 

= /g1'(O) 

= h(1) = 1'(1). 

Note that a closed curve 'Y : [0,1] ----+ M is elliptic if and only if 'Y is null 
homotopic (nonessential). Hence, an essential closed curve 'Y : [0,1] ----+ M 
is either parabolic or hyperbolic. If M is compact, then every essential 
closed curve 'Y : [0, 1] ----+ M is hyperbolic by Theorem 9.6.3. 

Definition: Two closed curves a, (3 : [0,1] ----+ X are freely homotopic if 
and only if there is a homotopy H : [0,1]2 ----+ X from a to (3 such that 
H(O, t) = H(1, t) for all t. 

Theorem 9.6.4. Let 'Y : [0,1] ----+ M be a hyperbolzc closed curve in a 
complete hyperbolzc n-mamfold M. Then there 2S a perwdic geodesic lme 
A : JR. ----+ M that is unique up to compositwn wzth a translatwn m JR., and 
there 2S a unique perwd p of A such that 'Y is freely homotopic to the closed 
curve Ap : [0,1]----+ M defined by Ap(t) = A(pt). 

Proof: Since any closed curve freely homotopic to 'Y is in the same con­
nected component of M as 'Y, we may assume that M is connected. As 
M is complete, we may assume that M is a space-form Hn jr by Theo­
rem 8.5.9. Let1' : [0,1] ----+ H n be a lift of'Y with respect to the quotient 
map 7r : H n ----+ Hn jr. As 'Y is hyperbolic, the element h of r such that 
h1'(O) = 1'(1) is hyperbolic. _ 

Let L be the axis of h in H n and let A : JR. ----+ H n be a geodesic line 
parameterizing L in the same direction that h translates L. Then A = 7r >. 
is a geodesic line in M. Let p > ° be such that 

h>.(t) = >.(t + p). 

Applying 7r, we find that 

A(t) = A(t + p). 

Thus p is a period for A. _ 
Define a homotopy if : [0,1]2 ----+ Hn from l' to Ap by the formula 

_ (1 - t)1'(s) + t>.p(s) 
H(s, t) = 111(1 _ t)1'(s) + t>.p(s)lll· 



§9.6. Closed Geodesics 

Observe that 

hH(O, t) 
h((l - t}:Y(O) + t5.(O)) 

111(1 - th(O) + t5.(O) III 
(1 - t)hi(O) + th5.(O) 

IlIh((l - t)i(O) + t5.(O)) III 
(1 - t)i(l) + t5.(p) 

111(1 - th(l) + t5.(p) III 
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H(l,t). 

Let H = 7f H. Then H(O, t) = H(1, t) for all t. Hence ry is freely homotopic 

to Ap via H. 
We now prove uniqueness. Let /-l : JR ---+ M be a periodic geodesic line 

and let q be a period of /-l such that ry is freely homotopic to /-lq. Let 
G: [0, IF ---+ M be a homotopy from ry to /-lq such that G(O, t) _= G(l, t) for 
all t, and let 0 : [0,1]2 ---+ H n be a lift of G such that i(s) = G(s, 0) for all 
s. As hi(O) = i(l), we have 

hO(O, t) = 0(1, t) 

for all t by unique path lifting. 
Let j1, : JR ---+ Hn be the lift of /-l such that j1,(0) = 0(0,1). Then 0 is a 

homotopy from i to j1,q. Hence 

hj1,(O) = hO(O, 1) = 0(1,1) = fl,(q). 

Now for each integer k, we have that ryk is freely homotopic to /-lkq, and 
the above argument shows that hk j1,(0) = j1,(kq). Hence, we have 

hj1,((k - l)q) = j1,(kq). 

Therefore h maps the line segment [j1,((k - l)q), j1,(kq)] to the line segment 
[j1,(kq) , j1,((k + l)q)]. Thus h leaves j1,(JR) invariant, and so fl,(JR) = L. As 
hj1,(O) = j1,(q), we have p = q, and /-l and A differ by a translation of R 0 

Definition: A closed curve ry : [a, b] ---+ X is simple if and only if ry 
is injective on the interval [a,b). A closed geodesic in a metric space X, 
defined by a periodic line A : JR ---+ X, with smallest period p, is szmple if 
and only if the restriction of A to the closed interval [O,p] is a simple closed 
curve. 

Theorem 9.6.5. Let ry : [0,1] ---+ M be a hyperbolzc, simple, closed curve 
in a complete, orientable, hyperbohc surface M. Then there is a penodic 
geodesic lme A : JR ---+ M that is unique up to compositzon wzth a translation 
m JR, and there is a unzque penod p of A such that ry zs freely homotopic to 
the closed curve Ap : [0,1] ---+ M defined by Ap(t) = A(pt). Furthermore p 
is the smallest period of A and Ap zs simple. 

Proof: All but the last sentence of the theorem follows from Theorem 
9.6.4. As in the proof of Theorem 9.6.4, let i : [0,1] ---+ H2 be a lift of 
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"( with respect to the quotient map 7[ : H2 ----+ H2 jr, and let h be the 
hyperbolic element of r such that h1'(O) = 1'(1). Let C = "(([0,1]). Then 
C is homeomorphic to 3 1 . Let 6 be the component of 7[-l(C) containing 
1'(0). Then we have 

6 = U{hk1'([O, 1]) : k E Z} 

by unique path lifting. 
Since "( represents an element of infinite order in 7[1 (M), the covering 

6 of C is universal, and so 6 is homeomorphic to lR. Let L be the axis 
of h in H2. We now pass to the projective disk model D2. Because of 
the attractive-repulsive nature of the endpoints of L in D2 with respect 
to h, the closure of 6 in D2 is the union of 6 and the two endpoints of 
L. Therefore, the closure of 6 in D2 is homeomorphic to a closed interval 
whose interior is 6 and whose endpoints are those of L. 

Let 5, : lR ----+ D2 be a geodesic line parameterizing L in the same direction 
that h translates L, and let p > 0 be such that 

h)..(t) = )..(t + p). 

Then A = 7[).. is a geodesic line with period p, and "( is freely homotopic to 
Ap by the proof of Theorem 9.6.4. 

Let q be the smallest period of A. We now show that Aq : [0,1] ----+ M 
is simple. On the contrary, suppose that Aq is not simple. Then Aq must 
cross itself transversely. Hence, there is an element g of r and another lift 
g).. : lR ----+ D2 of A such that the hyperbolic line gL = g)"(lR) intersects L at 
one point. As the endpoints of 6 and g6 link, 6 and g6 must intersect. 
See Figure 9.6.1. But 6 and g6 are distinct components of 7[-l(C) and so 
are disjoint, which is a contradiction. Thus Aq is simple. 

Figure 9.6.1. Lifts of two simple closed curves on a closed hyperbolic surface 
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Let m = plq. Then Ap = A:;'. Assume that m > 1. We shall derive a 

contradiction. Let g be the element of r such that g 5. (0) = 5. (q). By unique 

path lifting, we have 

Therefore, we have 

gTn 5.(0) = gTn-l5.(q) = 5.(p) = h5.(O). 

Hence h = gTn. Consequently g has the same axis as h, and so g translates 
along L a distance q in the same direction as h. 

Now, without loss of generality, we may assume that L is the line 

(-e2, e2) of D2. Then C divides D2 into two components, the left ~me 
that contains -e1 and the right one that contains e1. Observe that gC is 
a component of 1r-1 (C) different from C and so must be in either the left 

or right component of D2 - C. Say gC is in the right component. Likewise 

gC divides D2 into two components, the left one that contains -e1 and 
the right one that contains e1. Moreover g maps the right component of 

D2 - C onto the right component of D2 - gC because g leaves invariant the 
right component of Sl - {±e2}. Hence g2C is in the right component of 

D2 - C. By induction, we deduce that gmc = C is in the right component 

of D2 - C, which is a contradiction. Therefore m = 1 and p = q. Thus, 
is freely homotopic to the simple, closed, geodesic curve Ap. 0 

Let, : [0, 1] -+ M be a hyperbolic, simple, closed curve in a complete 
orient able surface M. By Theorem 9.6.5, there is a periodic geodesic line 
A : JR -+ M, with smallest period p, that is unique up to composition with a 
translation in JR, such that, is freely homotopic to Ap : [0,1] -+ M defined 
by Ap(t) = A(pt). Moreover Ap is simple. The simple closed geodesic A(JR) 
of M is said to represent the simple closed curve ,. 

Definition: Two curves 0;, (3 : [0,1] -+ X are homotopically distinct if and 
only if 0; is not freely homotopic to (3±1. 

Theorem 9.6.6. Let 0;, (3 : [0,1] -+ M be disjoint, homotopically dzstinct, 
hyperboizc, simple, closed curves in a complete, orzentable, hyperbolic sur­
face M. Then 0; and (3 are represented by dzsjoint, szmple, closed geodesics 
ofM. 

Proof: On the contrary, suppose that the simple closed geodesics repre­
senting 0; and (3 intersect. We may assume that M is a space-form H2/r. 
Then there are lifts K and L of the geodesics in the universal cover H2 that 
intersect. Now K and L do not coincide, since 0; and (3 are homotopically 
distinct. Therefore K and L intersect at one point. 

Let A = 0;([0,1]) and B = (3([0,1]). Then there are lifts A and B of A 
and B, respectively, that have the same endpoints as K and L, respectively. 
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Consequently A and B must intersect. See Figure 9.6.1. Therefore A and 
B intersect, which is a contradiction. Thus, the simple closed geodesics 
representing a and {3 are disjoint. 0 

Theorem 9.6.7. Let a, {3 : [0,1] --+ M be homotopzcally distinct, hyper­
bolzc, szmple, closed curves m a complete, orzentable, hyperbolic surface M 
whose zmages meet transversely at a single pomt. Then the szmple closed 
geodeszcs of M, representing a and (3, meet transversely at a single point. 

Proof: We may assume that M is a space-form H2/r. Let 7f : H2 --+ H2/r 
be the quotient map. Let A = a([O,I]), B = {3([0, 1]), and A and B 
be components of 7f-l(A) and 7f-1 (B), respectively, such that A and B 
intersect. Let 9 and h be the hyperbolic elements of r that leave A and B 
invariant, respectively, and let K, L be the axis of g, h, respectively. 

We now show that A and B meet transversely at a single point. As A 
and B meet transversely, A and B also meet transversely. Suppose that A 
and B meet at two points !i; and y. Then 7f(!i;) = x = 7f(y). Hence, there 
exist nonzero integers k and f such that gk!i; = Y = hi!i;. Therefore gk = hi, 
and so K = L. Hence a and {3 or a and (3-1 are homotopic by Theorem 
9.6.5, which is a contradiction. Thus A and B meet transversely at a single 
point !i;. Therefore K and L meet at a single point z. 

Next, we show that the geodesics C = 7f(K) and D = 7f(L), representing 
a and (3, meet at a single point. Suppose that C and D meet at points z and 
w with 7f(z) = z. Let w be a point of L such that 7f(w) = w. Then there is 
an element f of r such that f K meets L at a single point w. Consequently 
fA meets B at a point y. Then 7f(fJ) = x. As Y is in B, there is an integer 
m such that y = hm!i;. Now since fA and hm A meet at y, we have that 
fA = hm A. Therefore f K = hm K. As K and L meet at the point Z, we 
have that hmK and L meet at the point hmz. Therefore w = hmz. Hence 
w = z. Thus C and D meet transversely at a single point. 0 

Exercise 9.6 

1. Let En /r be a space-form and let 9 and h be nonidentity elements of r with 
h hyperbolic. Prove that the following are equivalent: 

(1) The elements 9 and h are both hyperbolic with the same axis. 

(2) The elements 9 and h are both powers of the same element of r. 

(3) The elements 9 and h commute. 

(4) The elements 9 and h have the same fixed points in sn-l. 

(5) The elements 9 and h have a common fixed point in sn-l. 

2. Let En /r be a compact space-form. Prove that every elementary subgroup 

of r is cyclic. 
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3. Let X be a geometric space and let M = x/r be a space-form. Let A : lR --? 

M be a periodic geodesic line with smallest period p. Prove that there are 
only finitely many numbers t in the interval [O,p] such that A(t) = A(8) with ° s: s < t. Conclude that a closed geodesic of M intersects itself only finitely 
many times. 

4. Let X = sn, En, or Hn, and let M = x/r be a space-form. Let 7r : X --? 

X /r be the quotient map. Prove that a closed geodesic C of M is simple if 
and only if 7r -1 (C) is a disjoint union of geodesics of X. 

5. Let I : [0,1] --? M be an essential closed curve in a complete Euclidean 
n-manifold M. Prove that there is a periodic geodesic line A : lR --? M and 
a unique period p of A such that I is freely homotopic to the closed curve 
Ap : [0,1] --? M defined by Ap(t) = A(pt). 

6. Let I : [0,1] --? M be an essential, simple, closed curve in a complete, 
orientable, Euclidean surface M. Prove that there is a periodic geodesic line 
A : lR --? M and a unique period p of A such that I is freely homotopic to 
the closed curve Ap : [0,1] --? M defined by Ap(t) = A(pt). Furthermore pis 
the smallest period of A and Ap is simple. 

7. Let I and Ap be as in Theorem 9.6.4. Prove that IApl s: iii. Conclude that 
Ap has minimal length in its free homotopy class. 

8. Prove that the infimum of the set of lengths of essential closed curves in a 
compact hyperbolic n-manifold M is positive. 

9. Let X be a geometric space and let M = x/r be a space-form. Let A, fL : 
lR --? M be periodic geodesic lines such that A(lR) = fL(lR). Prove that there 
is an isometry ~ of lR such that fL = A~. Conclude that the length of the 
closed geodesic A(lR) is well defined to be the smallest period of A. 

lD. Let X be a geometric space and let M = x/r be a compact space-form. 
Prove that for each f! > 0, there are only finitely many closed geodesics in 
M of length less than f!. 

§9.7. Closed Hyperbolic Surfaces 

In this section, we describe the Teichmiiller space of a closed orient able 
surface of genus n > 1. The next theorem is a basic theorem of the topology 
of closed surfaces. 

Theorem 9.7.1. If M is a closed orzentable surface of genus n > 1, then 

(1) the maxzmum number of disJoint, homotopically dzstinct, essential, 
simple, closed curves zn M zs 3n - 3; and 

(2) the complement zn M of a maximal number of disjoint, homotopzcally 
distznct, essential, 8zmple, closed curves in M is the disjoint union of 
2n - 2 surfaces each homeomorphic to S2 mznus three dzs]oznt closed 
disks. 
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Figure 9.7.1. A pair of pants 

Pairs of Pants 

We shall call a space P homeomorphic to the complement in 8 2 of three 
disjoint open disks a pmr of pants. See Figure 9.7.1. A pair of pants is 
a compact orient able surface-with-boundary whose boundary consists of 
three disjoint topological circles. By Theorems 9.6.6 and 9.7.1, a closed, 
orient able, hyperbolic surface M of genus n > 1 can be subdivided by 
3n - 3 disjoint, simple, closed geodesics into the union of 2n - 2 pairs of 
pants with the geodesics as their boundary circles. See Figure 9.7.2. 

Let P be a pair of pants in a hyperbolic surface M such that each 
boundary circle of P is a simple closed geodesic of M. A seam of P is 
defined to be the image 8 of an injective geodesic curve (j : [a, b] ---; M such 
that the point (j(a) is in a boundary circle A of P, the point (j(t) is in the 
interior of P for a < t < b, the point (j(b) is in another boundary circle B 
of P, and the geodesic section 8 is perpendicular to both A and B. 

--) 

Figure 9.7.2. A maximal number of disjoint, homotopically distinct, essential, 

simple, closed curves on a closed orient able surface of genus three 
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Theorem 9.7.2. Let P be a pair of pants m a hyperbolic surface M such 
that each boundary circle of P is a simple closed geodeszc of M. Then any 
two boundary czrcles of Pare jomed by a unique seam of P. Moreover, the 
three seams of P are mutually disjoint. 

Proof: Let P' be a copy of P. For each point x of P, let x' be the 
corresponding point of P'. Let Q be the quotient space obtained from the 
disjoint union of P and P' by identifying x with x' for each point x of ap. 
We regard Q to be the union of P and P' with 

ap = P n P' = ap'. 

The space Q is a closed orient able surface of genus two called the double of 
P. See Figure 9.7.3. 

Let A, B, C be the boundary circles of P. The hyperbolic structures on 
the interiors of P and P' extend to a hyperbolic structure on Q so that 
A, B, C are closed geodesics of Q. The hyperbolic surface Q is complete, 
since Q is compact. 

Let a : [0,1] ---> P be a simple curve such that the point a(O) is in A, 
the point a(t) is in the interior of P for 0 < t < 1, and the point a(l) is 
in B. Let a' be the corresponding simple curve in P'. Then aa,-1 is an 
essential, simple, closed curve in Q. Hence aa,-1 is freely homotopic to a 
simple closed curve 8 whose image is a simple closed geodesic D in Q by 
Theorem 9.6.5. Now by Theorem 9.6.7, the geodesic D meets the geodesics 
A and B transversely in single points. Let S = D n P. Then S is a section 
of D contained in P joining A to B. 

Let p: Q ---> Q be the map defined by p(x) = x' and p(x') = x for each 
point x of P. Then p is an isometry of Q. Observe that 

p(aa'-I) = a'a-1. 

Hence a' a -1 is freely homotopic to p8, and pD is the simple closed geodesic 
of Q that represents a' a-I. Therefore pD = D by Theorem 9.6.5. Conse­
quently D is perpendicular to both A and B. Hence S is perpendicular to 
A and B. Thus S is a seam of P joining A to B. 

Figure 9.7.3. The double of a pair of pants 
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Now suppose that T is another geodesic section in P joining A to B that 
is perpendicular to A and B. Then E = T U T' is a simple closed geodesic 
of Q. Let (J, T : [0,1] --+ P be simple curves starting in A whose images 
are S, T, respectively. Then (J is freely homotopic to T by a homotopy 
keeping the endpoints on A and B. Hence (J(J,-1 is freely homotopic to 
TT,-I. Therefore D = E by Theorem 9.6.5. Hence S = T. Thus, the seam 
S is unique. 

Now suppose that T is the seam of P joining A to C. Let {3 : [0,1]--+ P 
be a simple curve such that the point (3(0) is in A, the point (3(t) is in 
the interior of P for 0 < t < 1, the point (3(1) is in C, and the image of 
{3 is disjoint from the image of a. Then aa'-1 and (3{3,-1 are essential, 
homotopically distinct, disjoint, simple, closed curves in Q. Therefore, the 
simple closed geodesics representing them, D and T U T', are disjoint by 
Theorem 9.6.6. Thus Sand T are disjoint. 0 

Let P be a pair of pants in a hyperbolic surface M such that each 
boundary circle of P is a simple closed geodesic of M. If we split P apart 
along its seams, we find that P is the union of two subsets Dl and D 2 , 

meeting along the seams of P, each of which is homeomorphic to a disk. 
The boundary of each D. is the union of six geodesic sections meeting only 
along their endpoints at right angles. 

By replacing M with the double of P, we may assume that M is com­
plete. Therefore, we may assume that M is a space-form H2/r. Let 
7r : H2 --+ H2/r be the quotient map and let H. be a component of 7r-1 (D.) 
for i = 1,2. As D. is simply connected, 7r maps H. homeomorphically onto 
D. for i = 1,2. The set H. is a closed, connected, locally convex subset 
of H2 and so is convex. Hence H. is a convex hexagon in H2 all of whose 
angles are right angles. Thus P can be obtained by gluing together two 
right-angled, convex, hyperbolic hexagons along alternate sides. 

Theorem 9.7.3. Let P be a pair of pants m a hyperbolic surface M such 
that each boundary circle of P is a simple closed geodesic of M. Let a, b, c be 
the lengths of the boundary czrcles of P and let HI, H2 be the nght-angled, 
convex, hyperbolic hexagons obtained from P by sphtting P along its seams. 
Then HI and H2 are congruent with nonseam alternate sides of length 
a/2, b/2, c/2, respectively. Moreover P is determined, up to isometry, by 

the lengths a, b, c. 

Proof: As HI and H2 have the same lengths for their seam alternate sides, 
HI and H2 are congruent by Theorem 3.5.14. Hence HI and H2 have the 
same lengths for their nonseam alternate sides. As these lengths add up to 
a, b, c, respectively, we find that the nonseam alternate sides of HI and H2 
have length a/2, b/2, c/2, respectively. As HI and H2 are determined, up to 
congruence, by the lengths a/2, b/2, c/2, we deduce that P is determined, 
up to isometry, by the lengths a, b, c. 0 
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___________ "-L ___________ ____ 

Figure 9.7.4. A marked, closed, orientable surface of genus three 

Teichmiiller Space 

Let M be a closed orientable surface of genus n > 1. We mark M by 
choosing 3n - 3 disjoint, homotopically distinct, essential, simple, closed 
curves O!" : [0,1] --4 M, for i = 1, ... , 3n - 3, and n + 1 more disjoint, 
homotopically distinct, essential, simple, closed curves (3J : [0,1] --4 M, for 
j = 1, ... ,n + 1, which together with the first set of curves divides Minto 
closed disks as in Figure 9.7.4. Observe that the first set of curves divides 
M into pairs of pants and that the second set of curves forms a continuous 
set of topological seams for the pairs of pants. 

Let <f> be a hyperbolic structure for M. By Theorem 9.6.6, the curves 
0!1, ... , 0!3n-3 are represented by 3n - 3 disjoint, simple, closed geodesics 
A 1 , ... ,A3n - 3 of (M,<f». By Theorem 9.7.1, these geodesics divide M 
into 2n - 2 pairs of pants. By Theorem 9.7.3, these pairs of pants are 
determined, up to isometry, by the lengths of their boundary circles. Let 
£" be the length of A" for each i = 1, ... , 3n - 3. 

In order to determine the isometry type of (M, <f» from that of the pairs 
of pants, we need to measure the amount of twist with which the boundary 
circles of the pairs of pants are attached. We use the curves (31, ... , (3n+1 
to measure these twists. By Theorem 9.6.6, the curves (31, ... ,(3n+1 are 
represented by n + 1 disjoint, simple, closed geodesics B 1 , ... , Bn +!. In 
the pairs of pants, these geodesics restrict to geodesic sections joining the 
boundary circles because of Theorem 9.6.7. Furthermore, in the pairs of 
pants, these geodesic sections are homotopic to the seams of the pairs of 
pants by homotopies keeping the endpoints on the curves AI, ... , A3n- 3 . 

We orient M. This orients all the pairs of pants of M. Let p" and 
Q" be the pairs of pants of M with A" as a boundary circle, and suppose 
that the orientation of A" agrees with the orientation of p". Let 2a" be 
the total radian measure that the above homotopies move, within p", the 
two endpoints on A". The number a" measures the degree to which the 
two geodesic sections wrap around the two seams of p" ending in A" and 
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Figure 9.7.5. The four geodesic sections and seams ending in the geodesic A, 

is called the wmding degree of (P"A,). See Figure 9.7.5. The winding 
degree a, does not depend on the choice of the homotopies. Let b, be the 
winding degree of (Q" A,). The real number t, = a, - b, is called the twzst 
coefficient of A,. The twist coefficient t, measures the twist with which P, 
and Q, are attached at A, relative to the given marking of M. Note that 
t, is congruent modulo 27r to the angle that Q, must rotate around A, so 
that the corresponding seams of P, and Q, match up. See Figure 9.7.5. 

Define a function 
F : 1i(M) --+ lR6n- 6 

by setting 

F(cI» = (loge1 , h, loge2 , t2,"" loge3n- 3 , t3n-3). (9.7.1) 

We shall call the components of F( cI» the length-twist coordinates of the 
hyperbolic structure cI> for M. 

Theorem 9.7.4. Let M be a closed orzentable surface of genus n > 1. 
Then the function F : 1i(M) --+ lR6n- 6 mduces a bijection from T(M) to 
lR6n- 6 . 

Proof: Let h : M --+ M be a homeomorphism that is homotopic to 
the identity map of M. Then h is an isometry from (M, cI>h) to (M, cI». 
Consequently h-1 A, is a simple closed geodesic of (M, cI>h) for all i. As 
h-1 is homotopic to the identity map, h-1 A, is freely homotopic to A, 
for each i. Hence, the curves a1,"" a3n-3 are represented in (M, cI>h) by 
the geodesics h-1 A!, ... , h-1 A 3n-3' Likewise, the curves (31, ... , (3n+1 are 
represented in (M, cI>h) by the geodesics h-1 B1"'" h-1 B n +1. As h- 1 is 
an isometry, h -1 A, has the same length and twist coefficient as A, for each 
i. Thus F(cI>h) = F(cI». Therefore F induces a function 

F : T(M) --+ lR6n- 6 . 
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Next, we show that F is injective. Suppose that <1> and <1>' are hy­
perbolic structures for M such that F( <1» = F( <1>'). Let AI"'" A3n- 3 
be the simple closed geodesics in (M, <p) representing cq, ... , a3n-3, and 
let A~, ... , A~n-3 be the simple closed geodesics in (M, <1>') representing 
a1, ... ,a3n-3. Then At has the same length and twist coefficient as A~ 
for each i. By Theorem 9.7.3, there is an isometry h: (M,<1>') -+ (M,<p) 
mapping the geodesic A~ onto the geodesic At for each i. 

Let B 1, ... ,Bn+1 be the simple closed geodesics in (M,<P) represent­
ing (31, ... , (3n+1, and let B~, ... , B~+l be the simple closed geodesics in 
(M, <1>') representing (31, ... , (3n+1' Now the sets h(BD,···, h(B~+l) are 
simple closed geodesics in (M, <1» that form a continuous set of topolog­
ical seams for the pairs of pants of (M, <1» and twist the same amount 
about the geodesics AI"'" A3n- 3 as the continuous set of topological 
seams B I, ... , Bn+l' Consequently h(B;) is freely homotopic to BJ for 
each j. Therefore h(B;) = BJ for each j by Theorem 9.6.5. 

Regard the geodesics A~, ... , A~n-3 and B~, ... , B~+l as forming the 
I-skeleton MI of a cell structure for M. Let hI be the restriction of h to 
MI. Then we can construct a homotopy from hI to the inclusion map of 
M1 into M, since At is freely homotopic to A~ for each i and BJ is freely 
homotopic to B; by a homotopy consistent with the first set of homotopies 
for each j. Now since 7r2(M) = 0, the homotopy of hI to the inclusion of 
M1 into M can be extended to a homotopy of h to the identity map of M. 
As <p' = <Ph, we have that [<1>'] = [<1>] in T(M). Thus F is injective. 

Next, we show that F is surjective. Let (Sl' tl,"" S3n-3, t3n-3) be a 
point of lR6n- 6 and set £t = eS ' for i = 1, ... , 3n - 3. By Theorem 3.5.14, 
there are 4n - 4 right-angled, convex, hyperbolic hexagons that can be 
glued together in pairs along alternate sides to give 2n - 2 pairs of pants 
whose 6n - 6 boundary circles have length £1, £1, £2, £2, ... ,£3n-3, £3n-3, 
respectively, and which are in one-to-one correspondence with the 2n - 2 
pairs of pants of M in such a way that the indexing of the lengths of the 
boundary circles of each of the pairs of pants corresponds to the indexing 
of the boundary circles of the corresponding pair of pants of M. Write 
tt = Bt + 27rkt , with ° :::; Bt < 27r and kt an integer. Let M' be the 
surface obtained by gluing together the 2n - 2 pairs of pants along the two 
boundary circles of length £t with a twist of Bt for each i. By Theorem 9.2.3, 
the surface M' has a hyperbolic structure such that the circle C t in M', 
obtained by gluing the two boundary circles of length £t, is a simple closed 
geodesic of length £t for each i. Furthermore, the one-to-one correspondence 
between the pairs of pants of M and M' extends to a homeomorphism 
h: M -+ M' mapping at ([0, 1]) onto C t for each i. 

Let <1> = {<pt : Ut -+ H2} be the hyperbolic structure of M'. Then 

<Ph = {<pth: h- 1 (Ut) -+ H2} 

is a hyperbolic structure for M such that h is an isometry from (M, <Ph) to 
(M', <1». Let At = at([O, 1]) for each i. Then At is a simple closed geodesic 
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of (M, <Ph) of length £t that represents at for each i. Moreover, the twist 
coefficient of At is congruent to ()t modulo 27T. Hence, by replacing h with 
h composed with an appropriate number of Dehn twists about Ct for each 
i, we can assume that the twist coefficient of At is tt for each i. Then 

F(<Ph) = (Sl' t l ,··., S3n-3, t3n-3)· 

Hence F is surjective. Thus F is a bijection. o 

Remark: I~s a fundamental theorem of Teichmiiller space theory that 
the bijection F : T(M) --+ ~6n-6 is a homeomorphism. 

Corollary 1. The moduli space M(M) of a closed orzentable surface M 
of genus n > 1 zs uncountable. 

Proof: Since 7Tl (M) is finitely generated, the group Out( 7Tl (M)) is count­
able. Therefore, the mapping class group Map(M) is countable, since the 
Nielsen homomorphism 

l/: Map(M) --+ Out(7Tl(M)) 

is injective. By Theorem 9.7.4, we have that T(M) is uncountable, and so 
the set T(M)jMap(M) is uncountable. As there is a bijection from the set 
T(M)jMap(M) to M(M), we have that M(M) is uncountable. 0 

Exercise 9.7 

1. Prove Theorem 9.7.1. 

2. Prove that the hyperbolic structure in the interior of a pair of pants extends 
to a unique hyperbolic structure on its double. 

3. Let P be a pair of pants with boundary circles A, B, C and let a, (3 : [0,1] --+ 

P be simple curves whose images are geodesic sections that begin in A, end in 
B, and are otherwise disjoint from A, B, C. Prove that a is freely homotopic 
to (3 by a homotopy that keeps the endpoints in A and B. 

4. Let if be a marked, closed, orientable surface of genus n - 1 embedded in 
R3 so that the (3) curves all lie on the xy-plane, the at curves lie either on 
the xz-plane or on planes parallel to the yz-plane, and if and its marking 
are invariant under a 1800 rotation ¢ about the z-axis and the reflection p 
in the xy-plane. Let (J = p¢ and let r = {I, (J}. Prove that M = if /r is a 
closed nonorientable surface of genus n. 

5. Let e > 0. Prove that if in Exercise 4 has a hyperbolic structure <I>e whose 
length-twist coordinates are log e, 0, ... , log e, 0, and such that ¢ and pare 
isometries. Conclude that <I>e induces a hyperbolic structure <l'>e on M. 

6. Prove that the moduli space M(M) of a closed nonorientable surface M of 

genus n > 2 is uncountable. 
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§9.8. Hyperbolic Surfaces of Finite Area 

In this section, we study the geometry of complete hyperbolic surfaces 
of finite area. We begin by determining the geometry of exact, convex, 
fundamental polygons of finite area. 

Theorem 9.8.1. Let P be an exact, convex, fundamental polygon of jinzte 
area for a discrete group r of zsometries of H2. Then P has only a jinzte 
number of sides and the sides of P can be cyclically ordered so that any two 
consecutive sides meet ezther in H2 or at infinity. 

Proof: We pass to the projective disk model D2. Let P be the closure of 
P in E2 and suppose that P contains m points on 8 1. Then P contains the 
convex hull Q of these m points. The set Q = Q n D2 is an ideal polygon 
with m sides. As Q can be subdivided into m - 2 ideal triangles, 

Area(Q) = (m - 2)1r. 

As P contains Q and the area of P is finite, there must be an upper bound 
on the number of points of P on 8 1 . Thus P contains only finitely many 
points on 8 1 . 

Let B(v) be the angle subtended by P at a vertex v. Suppose that 
VI,·· . ,vn are finite vertices of P and R is the convex hull of VI, . .. ,vn . 

Then R is a compact convex polygon with n sides. As R can be subdivided 
into n - 2 triangles, we deduce that 

n 

Area(R) = (n - 2)1r - L B(v.) . 
• =1 

Therefore, we have 
n 

21r + Area(R) = L(1r - B(v.)) . 
• =1 

Consequently 

21r + Area(P) ?: L {1r - B( v) : v is a vertex of P}. 

Hence, the sum E(1r - B(v)) converges. Let 
v 

A {v: B(v) S; 21r/3} 
and 

B {v: B(v) > 21r/3}. 
Then A is a finite set, since the sum E(1r - B(v)) converges. 

v 
Now the r-side-pairing of P induces an equivalence relation on the ver-

tices of P whose equivalence classes are called cycles of vertices. Each cycle 
C of vertices is finite by Theorem 6.7.5 and corresponds to a cycle of sides 
of P, and so by Theorem 6.7.7, the angle sum 

B(C) = L{B(v) : v E C} 
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is a submultiple of 27f. Consequently, each cycle C of vertices contains at 
most two vertices from the set B and at least one vertex from the set A. 
Therefore, there are only finitely many cycles of vertices. As each cycle of 
vertices is finite, P has only finitely many vertices. This, together with the 
fact that P n 8 1 is finite, implies that P has only finitely many sides and 
the sides of P can be cyclically ordered so that any two consecutive sides 
meet either in D2 or at an ideal vertex on the circle 8 1 at infinity. 0 

We now determine the topology of a complete hyperbolic surface of finite 
area. 

Theorem 9.8.2. Let M be a complete hyperbolic surface of fimte area. 
Then M is homeomorphic to a closed surface mznus a finite number of 
poznts and 

Area(M) = -27fx(M). 

Proof: Since M is complete, we may assume that M is a space-form 
H2 If. Let P be an exact, convex, fundamental polygon for f. As 

Area(P) = Area(H2 If), 

we have that P has finite area. By Theorem 9.8.1, the polygon P has only 
finitely many sides and the sides of P can be cyclically ordered so that 
any two consecutive sides meet either in H2 or at infinity. We now pass to 
the projective disk model D2. Let P be the closure of P in E2. Then P 
is a compact convex polygon in E2. By Theorem 6.5.8, the surface M is 
homeomorphic to the space P If obtained from P by gluing together the 
sides of P paired by elements of f. This pairing extends to a side-pairing 
of P. Let P If be the space obtained from P by gluing together the sides 
of P paired by elements of f. Then P If is a closed surface and P If is 
homeomorphic to P If minus the images of the ideal vertices of P. Thus 
M is homeomorphic to a closed surface minus a finite number of points. 

Now P If is a cell complex, with some O-cells removed, consisting of a 
O-cells, b I-cells, and one 2-cell. Let Vi, ... , Vm be the finite vertices of P 
and let n be the number of sides of P. As P can be subdivided into n - 2 
generalized triangles, we deduce that 

Area(P) 

Thus, we have that 

m 

(2b - 2)7f - 27fa 

-27f(a - b + 1) 

Area(M) = -27fX(M). 

- 27fx(Plr)· 

o 
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Complete Gluing of Hyperbolic Surfaces 

Let M be a hyperbolic 2-manifold obtained by gluing together a finite 
family P of disjoint, convex, finite-sided polygons in H2 of finite area by a 
proper I(H2)-side-pairing <P. We shall determine necessary and sufficient 
conditions such that M is complete. 

It will be more convenient for us to work in the conformal disk model 
B2. Then the sides of each polygon in P can be cyclically ordered so that 
any two consecutive sides meet either in B2 or at an ideal vertex on the 
circle 51 at infinity. We may assume, without loss of generality, that no 
two polygons in P share an ideal vertex. Then the side-pairing <P of the 
sides S of the polygons in P extends to a pairing of the ideal vertices of 
the polygons in P. The pairing of the ideal vertices of the polygons in 
P generates an equivalence relation whose equivalence classes are called 
cycles. If v is an ideal vertex, we denote the cycle containing v by [v]. 

Let v be an ideal vertex of a polygon Pv in P. Then we can write 
[v] = {V1,V2, ... ,Vm } 

with 

Define sides 51, ... , 5m in S inductively as follows: Let 51 be a side in S 
such that gSl (V2) = VI. Then VI is an ideal endpoint of 51· Suppose that 
sides 51, ... , 5J - 1 have been defined so that v, is an ideal endpoint of 5, 
and gs,(v,+d = v, for i = 1, ... ,j -1. As gSJ_l(5;_1) = 5J- 1, we have 
that vJ is an ideal endpoint of 5;_1. Let 5 J be the other side in S whose 
ideal endpoint is vJ . Then gSJ (vJ+l) = vJ if j < m, and gSm (vd = Vm 
if j = m. Thus 51, ... ,5m are defined. The sequence {5J~1 is called a 
cycle of unbounded szdes corresponding to the cycle [v] of ideal vertices. 

Example 1. Let P be the ideal square in B2 with vertices ±e1 and ±e2. 
Pair the opposite sides of P by first reflecting in the lines y = ±x and 
then reflecting in the corresponding side of P. This Io(B2)-side-pairing 
<P is proper. The hyperbolic surface M obtained by gluing together the 
opposite sides of P by <P is a once-punctured torus. Figure 9.8.1 illustrates 
the cycle of vertices of P and the corresponding cycle of unbounded sides. 

Choose E > 0 so that the Euclidean E-neighborhoods of the ideal vertices 
VI, ... , Vm are disjoint and meet only two sides in S. Let P, be the polygon 
in P containing the side 5,. Choose a point Xl of 51 so that the horocycle 
based at VI passing through Xl is contained in B(V1,E). See Figure 9.8.2. 
The horocycle intersects PI in a horoarc (}:1 that is perpendicular to the 
sides 5!", and 51. Since gSll is continuous at VI, we can choose Xl closer 
to VI, if necessary, so that the horocycle based at V2 passing through the 
point x~ = gSll(xd is contained in B(V2,E). This horocycle intersects P2 in a horoarc (}:2 that is perpendicular to 5i and 52. Let X2 be the endpoint 
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Figure 9.8.1. The cycle of sides of an ideal square with opposite sides paired 

--~ ---~ __ ,I r-
/ 

/ 
S' m 

Figure 9.8.2. The horocycle based at VI passing through the point Xl 
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of a2 in S2. Continuing in this way, we construct a sequence of points 
Xl, ... ,Xm and horoarcs al,' .. ,am such that Xi is an endpoint of a. f~r 
i = 1, ... , m, and X~_l is an endpoint of a. for i = 2, ... , m, and a. IS 

contained in B(v., €) for i = 1, ... , m. 
Let x~ be the endpoint of al in S'm. Define d(v) to be ±d(x'm,x~) with 

the sign positive if and only if x'm is further away from v than x~. The real 
number d( v) does not depend on the choice of Xl because if Yl, ... ,Ym is 
another such sequence of points, then 

d(x~, y~) = d(Xb Yl) = d(x~, yD = ... = d(xm' Ym) = d(x:-", y'm) 

and so 

±d(x:-",x~) ±d(x:-", y'm) ± d(y:-", x~) 

±d(x~, y~) ± d(y'm, x~) 

±d(y'm, y~). 

The real number d(v) is called the gluing invarzant of the ideal vertex v. 
For example, the gluing invariant of the ideal vertex VI in Figure 9.8.1 is 
zero. 

Set gv = g81 ••• g8m· The element gv is called the cycle transformation of 
the cycle of unbounded sides {S'}~l' As g8, (V.+l) = v. and gSm (VI) = vm , 
we have that gv fixes v. 

Theorem 9.B.3. The glumg invarwnt d( v) zs zero if and only zf the cycle 
transformatzon gv is parabolic. 

Proof: Let f. be the parabolic element of I(B2) that fixes v. and maps 
x. to X~_l for i = 1, ... , m, and set g. = g8, for each i. As g.(v.+d = v., 
gm(Vl) = vm, and g.(x~) = X., we have that fIgl ... fmgm fixes v and 

fIgl'" fmgm(x:-") = x~. 

Suppose that d(v) = O. Then x'm = x~. Hence fIgl '" fmgm fixes 
the side S'm. Therefore fIgl ... fmgm is either the reflection in S'm or the 
identity map. Now g. maps the side of S: containing p.+ l to the side 
of S. not containing p. for i = 1, ... m, and Pm+l = PI; moreover, f. 
maps the side of S. not containing p. to the side of S:_l containing p. 
for i = 1, ... , m, and Sb = S'm. Hence fIgl '" fmgm maps the side of S'm 
containing PI to the side of S'm containing Pl. Therefore fIgl'" fmgm 
must be the identity map. Now observe that 

g:;;l (fIgl'" fmgm) (g:;;/ '" gIl) 
m 

II(gl···g.-d.g:-\ ···gl l ) . 

• =1 

As each term of the above product is parabolic, with fixed point v, we have 
that gv is parabolic with fixed point v. 
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Conversely, suppose that gv is parabolic. Then from the last equation, 
we deduce that fIgl'" fmgm is either parabolic, with fixed point v, or 
the identity map. As fIgl'" fmgm leaves invariant the hyperbolic line 
containing S~, we have that fIgl ... fmgm is the identity map. Therefore 
x;'" = x~ and so d(v) = O. 0 

Theorem 9.8.4. Let r v be the group generated by the cycle transformatwn 
gv' If gv is parabolic, then there ts a horodtsk B (v) based at v and an 
injective local isometry 

L: B(v)/rv -+ M 

compatible with the projection of the polygon Pv to M. 

Proof: We pass to the upper half-plane model U2 and assume, without 
loss of generality, that v = 00. Then gv is a horizontal translation of 
U2 . Let B(v) be the open horodisk based at v with the horoarc 001 on its 
boundary. Then rv acts freely and discontinuously on B(v) as a group of 
isometries. Consequently B( v) Ir v is a hyperbolic surface. 

We now find a fundamental domain for rv in B(v). Define gl = 1 
and g, = g81 ... g8,-1 for i = 2, ... ,m. As the polygons P, and g8, (P,+r) 
lie on opposite sides of their common side S, for i = 1, ... , m - 1, the 
polygons g,P, and gt+lPt+1 lie on opposite sides of their common side g,S, 
for i = 1, ... , m - 1. Thus, the rectangular strips g,Pt n B (v) lie adjacent 
to each other in sequential order. See Figure 9.8.3. As gv translates the 
side S~ of g1P1 onto the side gmSm of gmPm, we see that the rectangular 
strip 

is the closure of a fundamental domain D for r v in B ( v); moreover D is 
locally finite. 

S' m 

B(v) 

------JR. 

Figure 9.8.3. A fundamental domain for rv in B(v) 
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By Theorem 6.5.8, the inclusion map of D into B( v) induces a homeo­

morphism 
"": Djrv ---+ B(v)Jrv . 

Let 'Jr: D F, -+ AI be the quotient map. Then we have a map 1jJ : D -+ M 
7,=1 

defined by 1jJ(z) = 'Jrg;:l(Z) if z is in gtFt n B(v). Clearly 1jJ induces an 

embedding 

Define L: B(v)Jrv ---+ M by L = ¢",-l. It is clear from the gluing construc­
tion of the hyperbolic structure for M that L is a local isometry. 0 

Lemma 1. Let K and L be two vertical hyperbolic lines oj U2 and let 
a and f3 be two horizontal homarcs Joining K to L with f3 above a at a 

hyperbolic dzstance d. Then 

Proof: Let 

K {k + ti : t > O}, 

L { R + ti : t > O}, 

a(t) t + ai for k ::; t ::; R, 

f3(t) t + bi for k ::; t ::; R. 

Then we have 

lal = if la/(t)j dt = 1£ dt = (£ - k). 
k Im(a(t» k a a 

Likewise 1f31 = (£ - k)Jb. Now 

jalJlf31 = bJa = exp(du(ai,bi» = ed . o 

Theorem 9.8.5. Let M be a hyperbolic 2-manzJold obtained by gluing to­
gether a finzte family P of diSJoint, convex, finite-sided polygons in H2 of 
finite area by a pmper I(H2 )-szde-pmring <P. Then M is complete if and 
only zJ d( v) = 0 for each zdeal vertex v of a polygon in P. 

Proof: Without loss of generality, we may assume that M is connected. 
We pass to the conformal disk model B2. Let v be an ideal vertex of a 
polygon in P and let [v] = {VI, ... , vm } with v = VI. Choose a sequence of 
points Xl, ... ,Xm of B2 and a sequence of horoarcs aI, ... ,am as before. 
Suppose that d( v) < O. Then the images of these arcs in M appear as in 
Figure 9.8.4. By continuing along horoarcs, as indicated in Figure 9.8.4, 
we construct an infinite sequence of points {x,} ~l of B2 and an infinite 
sequence of horoarcs {a'}~l' Let a be the ray in M obtained by spiraling 
in along the images of the a,. Then a has finite length, since the length 
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Figure 9.8.4. A sequence of horoarcs spiraling into a puncture of M 

of each successive circuit around the puncture of M represented by v is 
reduced by a constant factor less than one because of Lemma 1. Conse­
quently, the image of the sequence {x.} in M is a Cauchy sequence. As this 
sequence does not converge, M is incomplete. If d( v) > 0, we spiral around 
the puncture in the opposite direction and deduce that M is incomplete. 
Thus, if M is complete, then d(v) = 0 for each ideal vertex v. 

Conversely, suppose that d(v) = 0 for each ideal vertex v. Then by 
Theorems 9.8.3 and 9.8.4, we can remove open horodisk neighborhoods of 
each ideal vertex to obtain a compact surface-with-boundary Mo in M. 
For each t > 0, let Mt be the surface-with-boundary obtained by removing 
smaller horodisk neighborhoods bounded by horocycles at a distance t from 
the original ones. See Figure 9.8.5. Then M t is compact for each t > 0 and 
M= U M t . 

t>O 

Mo 

Figure 9.8.5. A complete hyperbolic surface M of finite area 
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Let x be a point of M - M t . Then there is ad> 0 such that x is 
in 8MH d. We claim that d is the distance in M from x to M t . By the 
definition of Mt+d, we have that d is at most the distance in M from x to 
Mt . On the contrary, suppose that "( is a curve in M from x to a point y in 
M t of length less than d. Then "( must cross 8Mt, and so we may assume 
that y is in 8Mt and the rest of "(lies in M - M t . By Theorem 9.8.4, there 
is an injective local isometry 

L : B ( v ) jr v ---+ M 

whose image is the component of M - Mo containing x. Hence "( corre­
sponds under L to a curve in B ( v) jr v of the same length. Let Ct be the 
horocycle in B(v) at a distance t from 8B(v). Then L- 1,,(lifts to a curve l' 
in B(v) starting in CHd and ending in Ct. By Lemma 1 of §7.1, we have 
that 11'1 ~ d, which is a contradiction. Thus d is the distance in M from x 
to M t . Consequently Mt+1 contains N(Mt, 1) for each t > O. Therefore M 
is complete by Theorem 8.5.10(4). 0 

Cusps 

Let B(oo) be the open horodisk IR. x (1, (0) in U2 and let fe be the hor­
izontal translation of U2 by a Euclidean distance c > 0 in the positive 
direction. Let r e be the infinite cyclic group generated by fe. Then reacts 
freely and discontinuously on B( (0) as a group of isometries. Consequently 
B(oo)jre is a hyperbolic surface. The surface B(oo)jre is homeomorphic 
to Sl x (1, (0). Each horocycle IR. x {t} in B(oo) projects to a horocir­
cle in B(oo)jre, corresponding to Sl x {t} in Sl x (1, (0), whose length 
decreases exponentially with t because of Lemma 1. For this reason, a hy­
perbolic surface M, isometric to B(oo)jre for some c > 0, is called a cusp 
of circumference c. 

The geometry of a cusp is easy to visualize because a cusp of circumfer­
ence c ::::; 7r isometrically embeds in E3. See Figure 1.1.5. The circumference 
of a cusp M is unique and an isometric invariant of M because it is the 
least upper bound of the lengths of the horocircles of M. 

The area of a cusp M of circumference c is defined to be the area of the 
fundamental domain 

D = (O,c) x (1,00) 

for re in B(oo). Hence, we have 

Area( M) = j dx~y = 100 r dx~y = c. 
D Y 1 Jo Y 

Thus, the area of a cusp M is equal to its circumference and is therefore 
finite even though M is unbounded. 

We now determine the geometry of a complete hyperbolic surface of 
finite area. 
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Theorem 9.8.6. Let M be a complete hyperbolzc surface of finite area. 
Then there zs a compact surface-with-boundary Mo in M such that M - Mo 
is the diSjoint union of a finite number of cusps. 

Proof: Since M is complete, we may assume that M is a space-form 
H2 If. Let P be an exact, convex, fundamental polygon for f. Then P has 
finite area and only finitely many sides. By Theorem 6.5.8, the inclusion 
map of Pinto H2 induces a homeomorphism 

K, : Plf -+ H2 If, 

where P If is the space obtained from P by gluing together the sides of P 
paired by the elements of a subset <I> of f. By Theorem 6.7.7, the I(H2)­
side-pairing <I> is proper. Therefore P If has a hyperbolic structure by 
Theorem 9.2.2. It is clear from the gluing construction of the hyperbolic 
structure for P If that K, is a local isometry. Moreover, since P If and H2 If 
are both hyperbolic surfaces, K, is an isometry. Therefore P If is complete. 

We now pass to the conformal disk model B2. Since P If is complete, 
we can remove open horodisk neighborhoods of each ideal vertex of P to 
obtain a compact surface-with-boundary Mo in M. Furthermore M - Mo 
has a finite number of components, and for each component C of M - Mo 
there is a ideal vertex v of P and an injective local isometry 

L: B(v)/fv -+ M, 

as in Theorem 9.8.4, mapping onto C. By replacing the horodisk neigh­
borhood B(v) of v by a smaller concentric horodisk, if necessary, we can 
arrange L to map the cusp B(v)/fv isometrically onto C. Thus, we can 
choose Mo so that each component of M - Mo is a cusp. 0 

Discrete Groups 

We now consider a general method for constructing a discrete torsion-free 
subgroup f of I(H2) whose space-form H2 If has finite area. 

Theorem 9.8.7. Let <I> be a proper I(H2 )-side-pazring for a finite-sided 
convex polygon P in H2 of finite area such that the gluing invarzants of all 
the ideal vertzces of P are zero. Then the group f generated by <I> zs discrete 
and torszon-free, P is an exact, convex, fundamental polygon for f, and the 
zncluszon map of P znto H2 znduces an zsometry from the hyperbolic surface 
M, obtained by gluing together the szdes of P by <1>, to the space-form H2 If. 

Proof: The quotient map 7f : P -+ M maps po homeomorphically onto 
an open subset U of M. Let ¢ : U -+ H2 be the inverse of 7f. From the 
construction of M, we have that ¢ is locally a chart for M. Therefore ¢ is 

a chart for M. 
Let K, : if -+ M be a universal covering. As U is simply connected, 

- - - - 2 
¢ : U -+ H2 lifts to a chart ¢ : U -+ H2 for M. Let 8 : M -+ H be the 
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developing map determined by ¢. The hyperbolic surface M is complete by 
Theorem 9.8.5. Therefore 8 is an isometry by Theorem 8.5.9. Let ( = Ko8-1 . 

Then ( : HZ ----> M is a covering projection extending 7f on po. Moreover, 
by continuity, ( extends 7f. 

Let r be the group of covering transformations of (. By Theorem 8.5.9, 
we have that r is a torsion-free discrete group of isometries of H2, and ( 
induces an isometry from HZ Ir to M. Now as U is simply connected, it 
is evenly covered by (. Hence, the members of {gpo: 9 E r} are mutually 
disjoint. As 7f(P) = M, we have 

X = U{gP: 9 E r}. 

Therefore po is a fundamental domain for r. 
Let gs be an element of <P. Choose a point y in the interior of the side 

8 of P. Then there is an element yl in the interior of the side 8' of P 
such that gs(y') = y. Since 7f(Y') = y, there is an element 9 of r such that 
g(y') = y. Since g8' does not extend into po, we must have that g8' lies 
on the hyperbolic line extending 8. Moreover, since pairs of points of 8° 
equidistant from yare not identified by 7f, we have that 9 and gS agree on 
8 1 • Furthermore, since gP lies on the opposite side of 8 from P, we deduce 
that 9 = gs by Theorem 4.3.6. Thus r contains <P. Therefore Plr is a 
quotient of M. 

Now by Theorem 6.5.8, the inclusion map of P into HZ induces a contin­
uous bijection from Plr to H2/r. The composition of the induced maps 

HZ/r ----> M ----> Plr ----> HZ/r 

restricts to the identity map of po and so is the identity map by continuity. 
Therefore M = P Ir. 

Now since ( : H2 ----> M induces an isometry from H2/r to M = Plr, 
the inclusion map of P into HZ induces an isometry from Plr to HZ Ir. 
Therefore P is locally finite by Theorem 6.5.8. Hence P is an exact, convex, 
fundamental polygon for r. Finally <P generates r by Theorem 6.7.3. 0 

Example 2. Let P be the ideal square in U Z with vertices -1,0,1,00. 
See Figure 9.8.6. Pair the vertical sides of P by a horizontal translation 
and the sides incident with ° by reflecting in the y-axis and then reflecting 
in the corresponding side of P. This Io(U2 )-side-pairing <P is proper. The 
hyperbolic surface M obtained by gluing together the sides of P by <P is a 
thrice-punctured sphere. 

The complete hyperbolic structure of finite area on the thrice-punctured 
sphere is very special because the thrice-punctured sphere is the only sur­
face that has a complete hyperbolic structure of finite area that is unique 
up to isometry. 

Theorem 9.8.8. The complete hyperbolic structure of fimte area on the 
thnce-punctured sphere is umque up to isometry. 
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p 

-1 o 1 

Figure 9.8.6. The ideal square P in U2 with vertices -1,0,1,00 

Proof: Let M be a thrice-punctured sphere with a complete hyperbolic 
structure of finite area. Then M is isometric to a space-form U2 jr of finite 
area. By Theorem 9.8.6, there is a compact surface-with-boundary Mo in 
M such that M - Mo is the disjoint union of three cusps. Therefore Mo is 
a pair of pants. Consider the curves a, {3, 'Y in Mo shown in Figure 9.8.7. 
Observe that the simple closed curves a{3-1, (3'Y- 1, and a'Y-1 are freely 
homotopic to the boundary horocircles of Mo. Therefore, the elements 
of 7rl(M), represented by these curves, correspond to parabolic elements 
f, g, h of r g. As [a{3-1] and [{3'Y-1] generate the free group 7r1 (M) of rank 
two, f and g generate the free group r of rank two. Moreover, since 

[a'Y-1] = [a{3-1 ][{3'Y-1], 

we have that h = fg. 

{3 

'Y o o 

Figure 9.8.7. The pair of pants Mo in a thrice-punctured sphere M 
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By conjugating r in Io(U2 ), we may assume that J(z) = z + 2. 
parabolic, there are real numbers a, b, c, d, such that 

az+b 
g(z) = cz + d 

with ad - be = 1 and a + d = 2. Next, observe that 

h(z) = (a + 2c)z + (b + 2d). 
cz+d 

As h is parabolic, we have 
a+2c+d= ±2. 

427 

As 9 is 

Hence c = 0 or - 2. If c = 0, then J and h would commute, which is 
not the case, since r is a free group of rank two generated by J and h. 
Therefore c = - 2. 

The elements J and 9 do not commute, since they generate r. Therefore, 
the fixed point of 9 is on the real axis. By conjugating r by a horizontal 
translation of U 2 , we may assume that the fixed point of 9 is O. Then b = O. 
Now since ad - be = 1, we have that ad = 1. As a + d = 2, we deduce that 
a = 1 = d. Hence, we have 

z 
g(z) = -2z + 1· 

Now g(l) = -1. Hence 9 pairs the sides of the ideal square in Figure 9.8.6 
incident with o. Therefore r is the discrete group in Example 2. Thus, the 
complete hyperbolic structure of finite area on M is unique up to isometry. 
o 

Exercise 9.8 

1. Construct a hyperbolic convex polygon of finite area with infinitely many 
sides. 

2. Let M be a surface obtained from a closed surface by removing a finite 
number of points. Prove that M has a complete hyperbolic structure of 
finite area if and only if X(M) < o. 

3. Let C be a cycle of m ideal vertices. Prove that C has 2m cycle trans­
formations associated to its vertices and that all these transformations are 
conjugates of each other or their inverses. Conclude that if one of these 
transformations in parabolic, then they are all parabolic. 

4. Prove that the horodisk B(v) in Theorem 9.8.4 can be replaced by a smaller 
concentric horodisk so that ~ maps the cusp B(v)/rv isometrically onto its 
image in M. 

5. Prove that the group in Example 2 is the group of all linear fractional trans­
formations ,),(z) = (az + b)/(cz + d) with a, b, c, d integers such that 

ad - bc = 1 and (~ ~) == (~ ~) (mod 2). 

6. Prove that the once-punctured torus has an uncountable number of noniso­
metric complete hyperbolic structures of finite area. 
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§9.9. Historical Notes 

§9.1. The Euler characteristic of the boundary of a convex polyhedron was 
essentially introduced by Euler in his 1758 paper Elementa doctrinae solz­
dorum [121]. Euler proved that the Euler characteristic of the boundary of 
a convex polyhedron is two in his 1758 paper Demonstratio nonnullarum 
insigmum proprietatum quzbus solida hedris planis inclusa sunt praedita 
[122]. The Euler characteristic of a closed, orientable, polygonal surface 
was introduced by Lhuilier in his 1813 paper Memozre sur la polyedrometrie 
[257]. In particular, Formula 9.1.4 appeared in this paper. A surface with 
a complex structure is called a Riemann surface. Closed Riemann surfaces 
were introduced and classified by Riemann in his 1857 paper Theone der 
Abel'schen Punctionen [348]. Closed orientable surfaces were classified by 
Mobius in his 1863 paper Theorie der elementaren Verwandtschaft [299]. 
The notion of orient ability of a surface was introduced by Mobius in his 
1865 paper Ueber die Bestimmung des Inhaltes eines Polyeders [300]. See 
also his paper Zur Theone der Polyeder und der Elementarverwandtschaft 
[301], which was published posthumously in 1886. Formula 9.1.6 appeared 
in Jordan's 1866 paper Recherches sur les polyedres [204]. Compact ori­
entable surfaces-with-boundary were classified by Jordan in his 1866 paper 
La deformation des surfaces [203]. That the projective plane is nonori­
entable appeared in Klein's 1874 paper Bemerkungen uber den Zusammen­
hang der Fliichen [228]. See also Klein's 1876 paper Ueber den Zusammen­
hang der Fliichen [230]. The Klein bottle was introduced by Klein in his 
1882 treatise Ueber Rzemanns Theone der algebraischen Functionen und 
ihrer Integrale [232]. Theorems 9.1.2 and 9.1.4 appeared in Dyck's 1888 
paper Beztriige zur Analyszs sztus [113]. For the early history of topology 
of surfaces, see Pont's 1974 treatise La Topologze Algebnque des origines Ii 
Pomcare [342] and Scholz's 1980 treatise Geschichte des Mannigfaltigkeits­
begriffs von Rzemann bis Pomcare [363]. References for the topology of 
surfaces are Massey's 1967 text Algebrazc Topology: An Introduction [283] 
and Moise's 1977 text Geometnc Topology m Dimenswns 2 and 3 [302]. 

§9.2. In 1873, Clifford described a Euclidean torus embedded in elliptic 
3-space in his paper Prelzminary sketch of bzquaternions [82]. In particu­
lar, he wrote, "The geometry of this surface is the same as that of a finite 
parallelogram whose opposite sides are regarded as identical." Closed hy­
perbolic surfaces were constructed by Poincare in his 1882 paper Theorie 
des groupes fuchszens [330] by gluing together the sides of hyperbolic con­
vex polygons by proper side-pairings. As a reference for geometric surfaces, 
see Weeks' 1985 text The Shape of Space [406]. 

§9.3. The Gauss-Bonnet theorem for closed, orientable, Riemannian 
surfaces appeared in Dyck's 1888 paper [l1~J and was extended to nonori­
entable surfaces by Boy in his 1903 paper Uber dze Curvatura mtegra und 
die Topologze geschlossener Fliichen [56]. Theorems 9.3.1 and 9.3.2 ap­
peared in Weeks' 1985 text [406]. 
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§9.4. The moduli space of a closed orient able surface M was introduced 
by Riemann in his 1857 paper [348] as the space of all conformal equiva­
lence classes of Riemann surface structures on M. In particular, Riemann 
asserted that the moduli space of a closed orient able surface M of genus 
n > 1 can be parameterized by 3n - 3 complex parameters that he called 
modulz. For a discussion, see Chap. V of Dieudonne's 1985 treatise History 
of Algebrazc Geometry [106]. Klein asserted that every closed Riemann 
surface is conformally equivalent to either a spherical, Euclidean, or hyper­
bolic plane-form, that is unique up to orientation preserving similarity, in 
his 1883 paper Neue Beitriige zur Riemann'schen Functionentheorie [233]. 
Klein's assertion is called the uniformization theorem. The uniformiza­
tion theorem was proved independently by Poincare in his 1907 paper Sur 
l'uniformisation des fonctions analytiques [339] and by Koebe in his 1907 
paper Uber dze Uniformisierung belzebzger analytischen Kurven [239]. For 
a discussion, see Abikoff's 1981 article The uniformization theorem [2]. It 
follows from the uniformization theorem that Riemann's moduli space of 
a closed orient able surface M of positive genus is equivalent to the moduli 
space of orientation preserving similarity classes of Euclidean or hyperbolic 
structures for M. 

The Teichmiiller space of a closed orient able surface appeared implicitly 
in Klein's 1883 paper [233] and in Poincare's 1884 paper Sur les groupes 
des equatwns lineazres [333]. For a discussion, see §6.4 of Gray's 1986 
treatise Lmear DzfJerential Equations and Group Theory from Riemann to 
Pomcare [160]. Teichmiiller space was explicitly introduced by Teichmiiller 
in his 1939 paper Extremale quasikonforme Abbildungen und quadratzsche 
DifJerentzale [387]. Theorem 9.4.3 for orient able surfaces was proved by 
Dehn and Nielsen and appeared in Nielsen's 1927 paper Untersuchungen 
zur Topologie der geschlossenen zweiseitigen Fliichen [319]. Theorem 9.4.3 
for nonorientable surfaces was proved by Mangler in his 1938 paper Die 
Klassen von topologischen Abbzldungen emer geschlossenen Fliichen auf 
sich [274]. The space of discrete faithful representations of a group ap­
peared in Weil's 1960 paper On dzscrete subgroups of Lie groups [408]. 

§9.5. That the moduli space of the torus has complex dimension one ap­
peared in Riemann's 1857 paper [348]. Theorems 9.5.1 and 9.5.2 appeared 
in Poincare's 1884 paper [333]. 

§9.6. All the essential material in this section appeared in Poincare's 
1904 paper Cinquieme complement Ii l'analysis sztus [337]. 

§9.7. A closed orient able hyperbolic surface was implicitly decomposed 
into pairs of pants by Fricke and Klein in their 1897-1912 treatise Vorlesun­
gen tiber die TheONe der automorphen Functionen [139]. Moreover, they 
implicitly showed that a pair of pants is the union of two congruent right­
angled hyperbolic hexagons sewn together along seams. Instead of working 
with right-angled hexagons, they worked projectively with ultra-ideal tri­
angles. An ultra-ideal triangle corresponds to a right-angled hexagon in 
the same way that the triangle T(x, y, z) corresponds to the right-angled 
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hexagon in Figure 3.5.10. Fricke and Klein also essentially proved that the 
Teichmiiller space of a closed orient able surface of genus n > 1 is home­
omorphic to (6n - 6)-dimensional Euclidean space. They expressed their 
coordinates in terms of the traces of the matrices in SL(2, lit) that repre­
sent the transformations corresponding to the decomposition geodesics and 
certain other simple closed geodesics on a closed hyperbolic surface. Each 
trace determines the length of the corresponding simple closed geodesic. 
The twist coefficients of the decomposition geodesics were not clearly iden­
tified by Fricke and Klein. For discussions, see Keen's 1971-1973 paper On 
Fricke moduli [214], [215], Harvey's 1977 article Spaces of dzscrete groups 
[179], and Bers and Gardiner's 1986 paper Frzcke Spaces [43]. 

An explicit decomposition of a closed, orient able , hyperbolic surface into 
right-angled hyperbolic hexagons was given by Lobell in his 1927 thesis Die 
iiberall reguliiren unbegrenzten Fliichen fester Kriimmung [265]. In particu­
lar, Lobell described the length coordinates and twist coordinates (modulo 
2n) of a closed, orientable, hyperbolic surface. Lobell's decomposition and 
coordinates were described by Koebe in his 1928 paper Riemannsche Man­
nigfaltzgkeiten und nichteuklidzsche Raumformen. III [243]. This decompo­
sition was further studied by Nielsen and Fenchel in their 1959 manuscript 
Discontinuous Groups of Non-Euclidean Motions [321]. In particular, they 
implicitly unwound the twist coordinates. For a discussion, see Wolpert's 
1982 paper The Fenchel-Nielsen deformation [417]. The length-twist coor­
dinates of a closed, orientable, hyperbolic surface were explicitly described 
by Thurston in his 1979 lecture notes The Geometry and Topology of 3-
Manifolds [389], by Douady in his 1979 expose L'espace de Tezchmiiller 
[108], and by Abikoff in his 1980 treatise The Real Analytic Theory of Te­
ichmiiller Space [1]. For a characterization of a pair of pants in a hyperbolic 
surface, see Basmajian's 1990 paper Constructzng potrs of pants [31]. 

§9.8. Theorem 9.8.1 was proved by Siegel in his 1945 paper Some re­
marks on discontznuous groups [376]. Theorem 9.8.2 was proved by Koebe 
in his 1928 paper [243]. The complete gluing of an open surface of finite 
area was considered by Poincare in his 1884 paper [333]. For commentary, 
see Klein's 1891 paper Ueber den BegrzjJ des functionentheoretzschen Fun­
damentalbereichs [235]. Theorem 9.8.4 was essentially proved by Seifert in 
his 1975 paper Komplexe mit Seztenzuordnung [371]. Theorem 9.8.5 for a 
single polygon was proved by de Rham in his 1971 paper Sur les polygones 
generateurs de groupes fuchsiens [103] and by Maskit in his 1971 paper 
On Poincare's theorem for fundamental polygons [281]. Theorem 9.8.5 was 
proved by Seifert in his 1975 paper [371]. Theorem 9.8.6 essentially ap­
peared in Koebe's 1927 Preisschrift Allgemeine Theorie der Rzemannschen 
Manmgfaltigkeiten [240]. See also his 1928 paper [243]. Theorem 9.8.7 ap­
peared in de Rham's 1971 paper [103] and in Maskit's 1971 paper [281]. 
Theorem 9.8.8 is a consequence of the classification of all the complete hy­
perbolic structures on a thrice-punctured sphere given by Fricke and Klein 
in their 1897-1912 treatise [139]. 



CHAPTER 10 

Hyperbolic 3-Manifolds 

In this chapter, we construct some examples of hyperbolic 3-manifolds. We 
begin with a geometric method for constructing spherical, Euclidean, and 
hyperbolic 3-manifolds in Sections 10.1 and 10.2. Examples of complete 
hyperbolic 3-manifolds of finite volume are constructed in Section 10.3. 
The problem of computing the volume of a hyperbolic 3-manifold is taken 
up in Section 10.4. The chapter ends with a detailed study of hyperbolic 
Dehn surgery on the figure-eight knot complement. 

§10.1. Gluing 3-Manifolds 

In this section, we shall construct spherical, Euclidean, and hyperbolic 3-
manifolds by gluing together convex polyhedra in X = S3, E 3, or H3 along 
their sides. 

Let P be a finite family of disjoint convex polyhedra in X and let G be 
a group of isometries of X. 

Definition: A G-szde-pazring for P is a subset of G, 

<1> = {98 : S E S}, 

indexed by the collection S of all the sides of the polyhedra in P such that 
for each side S in S, 

(1) there is a side S' in S such that g8(S') = S; 

(2) the isometries g8 and g8' satisfy the relation g8' = g"8\ and 

(3) if S is a side of Pin P and S' is a side of P' in P, then 

P n 98(P') = S. 

It follows from (1) that S' is uniquely determined by S. The side S' is 
said to be pazred to the side S by <1>. From (2), we deduce that S" = S. The 
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pairing of side points by elements of <P generates an equivalence relation on 
the set II = U PEP P, and the equivalence classes are called the cycles of <P. 

The solid angle w subtended by a polyhedron P in X at a point x of P 
is defined to be the real number 

w = 47f Vol(P n B(x, r)) 
Vol(B(x,r)) , 

where r is less than the distance from x to any side of P not containing x. 
It follows from Theorems 2.4.1 and 3.4.1 that w does not depend on r. 

Let [x] = {Xl, ... ,xrn } be a finite cycle of <P. Let P, be the polyhedron 
in P containing the point x, and let w, be the solid angle subtended by P, 
at the point x, for each i = 1, ... ,m. The solid angle sum of [x] is defined 
to be the real number 

w[x] = WI + ... +wrn . 

If x is in the interior of a polyhedron in P, then [x] = {x} and w[x] = 47f. 
If x is in the interior of a side S of a polyhedron in P, then x' = gsl(X) is 
in the interior of S' and [x] = {x, x'}; therefore w[x] = 27f or 47f according 
as x = x' or x i=- x'. 

Now suppose that x is in the interior of an edge of a polyhedron in P. 
Then every point of [x] is in the interior of an edge of a polyhedron in P, 
in which case [x] is called an edge cycle of <P. Let (), be the dihedral angle 
of P, along the edge containing x. for each i. The dihedral angle sum of 
the edge cycle [x] is defined to be the real number 

()[x] = ()l + ... + ()rn' 

Note that w. = 2(), for each i. Therefore w[x] = 2()[x]. 

Definition: A G-side-pairing <P for P is proper if and only if each cycle 
of <P is finite and has solid angle sum 47f. 

Theorem 10.1.1. If G is a group of isometNes of X and <P zs a proper 
G-side-paiNng for a finzte family P of disjomt convex polyhedra in X, then 

(1) the isometry g8 fixes no point of S' for each S m S; 

(2) the szdes Sand S' are equal zf and only if S is a great 2-sphere of S3 
and g8 is the antipodal map of S3; and 

(3) each edge cycle of <P contains at most one point of an edge of a poly-

hedron in P. 

Proof: (1) On the contrary, suppose that g8 fixes a point x of S'. Let [x] = 
{Xl,'" ,xrn }. Then m;::: 2, since <P is proper. Let p. be the polyhedron in 
P containing x. for each i. Let r be a positive real number such that r is less 
than half the distance from x. to x J for each i i=- j and from x. to any side of 
p. not containing x. for each i. Then p.nS(X., r) is a polygon in the sphere 
S(X., r) and the polygons {p. n S(X., r)} are disjoint. Now the side-pairing 
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<I> restricts to a proper I(S2)-side-pairing of the polygons {Po n S(X., rn. 
Let ~ be the space obtained by gluing together the polygons. Then ~ has 
a spherical structure by Theorem 9.2.3; moreover ~ is a 2-sphere, since ~ 
is compact, connected, and w[x] = 41f. 

Let P be the polyhedron in P containing x. Then the side S' n S (x, r) 
of P n S(x, r) is paired to the side S n S(x, r) of P n S(x, r). Let y be a 
point of SnS(x,r) and let y' = gsl(y). Then y:l y' by Theorem 9.2.1(1). 
As P n S(x, r) is a convex polygon, there is a geodesic segment [y, y'] in 
P n S(x, r) joining y to y'. As y is paired to y', the segment projects to a 
great circle of the sphere ~, but this is a contradiction because the length 
of [y, y'] is at most half the length of a great circle of S(x, r). Thus g8 fixes 
no point of S'. 

(2) The proof of (2) is the same as the proof of Theorem 9.2.1(2). 
(3) Suppose that [x] is an edge cycle. Then the cycle [xl can be ordered 

[x] = {Xl,X2, ... ,Xm } 

so that 

Let E. be the edge of the polyhedron in P containing x., and let k be the 
number of points of [x] contained in E I . Then E. contains k points of [xl 
for each i. Let y. be the centroid of the points of [x] in E. for each i, and 
let y = YI. Then we have 

y = YI ~ Y2 ~ ... ~ Ym ~ y. 

Moreover 
d(XI, yd = d(X2, Y2) = ... = d(xm , Ym). 

Therefore k = 1 or 2. Now as 

41f = w[x] = 2B[x] = 2kB[y] = kw[y] = 4k1f, 

we must have k = 1. o 

Let <I> be a proper G-side-pairing for P and let M be the quotient space 
of II of cycles of <1>. The space M is said to be obtained by gluing together 
the polyhedra in P by <1>. 

Theorem 10.1.2. Let G be a group of isometries of X and let M be a 
space obtained by gluzng together a finite family P of disjoint convex poly­
hedra in X by a proper G-side-pairzng <1>. Then M is a 3-manifold with 
an (X, G)-structure such that the natural injection of po into M zs an 
(X, G)-map for each P in P. 

Proof: Without loss of generality, we may assume that each polyhedron 
in P has at least one side. Let x a point of II and let [x] = {Xl, ... , x m }. 
Let p. be the polyhedron in P containing x. for each i. If x. in a side of po, 
then m ~ 2 by Theorem 10.1.1. Let 8(x) be the minimum distance from 
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x. to xJ for each i =1= j and from x. to any side of p. not containing x. for 
each i. 

Let r be a real number such that 0 < r < 8(x)/2. Then for each i, 
the set p. n S (X., r) is a polygon in the sphere S (X., r), and the polygons 
{p. n S(x.,rn are disjoint. Now the side-pairing <I> restricts to a proper 
I(S2)-side-pairing of the polygons {p. n S(X., rn. Let I:(x, r) be the space 
obtained by gluing together the polygons. Then I:(x, r) has a spherical 
structure by Theorem 9.2.3. Now since I:(x, r) is compact, connected, and 
w[x] = 471", we deduce that I:(x,r) is a 2-sphere. 

Let 71" : II ---+ M be the quotient map. Then for each i, the restriction of 
71" to the polygon p. n S(X., r) extends to an isometry 

~. : S(x., r) ---+ I:(x, r). 

Moreover, for each i,j, the isometry 

~;1~.: S(xi,r) ---+ S(xJ,r) 

extends to a unique isometry g'J of X, and g'J (x.) = X J . 
Suppose that the element 9 8 of <I> pairs the side S' n S (X., r) of the 

polygon p. n S(X., r) to the side S n S(xJ, r) of PJ n S(xJ, r). Then ~;1~. 
agrees with g8 on the set S' n S(X., r). Hence ~;1~. agrees with g8 on the 
great circle (S') n S(x.,r). Therefore g'J agrees with g8 on the plane (S'). 
Now since g'J and g8 both map p. n S(x.,r) to the opposite side of the 
plane (S) from PJ n S(xJ, r), we deduce that g'J = g8 by Theorem 4.3.6. 

Now suppose that 

Then we have 

Hence, we have 

N the elements 9 9 are in <I> by the previous argument. ow '1'2'···' 'p-1'p 

Therefore g'J is in G for each i, j. 
Define 

U(x, r) = '0 7I"(p. n B(x., r)) . 
• =1 

As the set 
7I"-1(U(x,r)) = '0 p.nB(x.,r) 

.=1 

is open in II, we have that U(x, r) is an open subset of M. 
Suppose that x = Xk and define a function 

Wx: '0 p. n B(x., r) ---+ B(x, r) 
.=1 

by the rule 
Wx(Z) = g.k(Z) if Z is in p. n B(x., r). 
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Suppose that 9s(X,) = xJ. Then 9s = 9'J· Let Y be a point of S n B(xJ' r) 
and let Y' = 9s 1 (y). Then Y' is a point of S' n B(x" r). As 

~k1~z = (~k1~J)(~;1~2)' 

we have that 9zk = 9Jk9'J. Therefore 

'ljJx(Y) = 9Jk(Y) = 9Jk9S(Y') = 9zk(Y') = 7/Jx(Y')· 

Consequently 7/Jx induces a continuous function 

¢x : U(x, r) ~ B(x, r). 

For each t such that 0 < t < r, the function ¢x restricts to the isometry 

~k1 : 2:(x, t) ~ S(x, t) 

corresponding to t. Therefore ¢x is a bijection with a continuous inverse 
defined by 

¢,;l(Z) = 7r9;k,1(Z) if Z is in 9,k(Pz n B(x" r)). 

Hence ¢x is a homeomorphism. The same argument as in the proof of 
Theorem 9.2.2 shows that M is Hausdorff. Thus M is a 3-manifold. 

Next, we show that 

{¢x : U(x,r) ~ B(x,r) \ x is in II and r < 8(x)/3} 

is an (X, G)-atlas for M. By construction, U(x, r) is an open connected 
subset of M and ¢x is a homeomorphism. Moreover U (x, r) is defined 
for each point 7r( x) of M and sufficiently small radius r. Consequently 
{U(x,r)} is an open cover of M. 

Suppose that U(x, r) and U(y, s) overlap and r < 8(x)/3 and s < 8(y)/3. 
Let F(x) be the face ofthe polyhedron in P that contains x in its interior. 
By reversing the roles of x and y, if necessary, we may assume that 

dimF(x) ~ dimF(y). 

As before, we have 

7r-I(U(X, r)) 

7r- l (U(y, s)) 

m 
U pznB(x"r), 

2=1 
n 
U QJ n B(YJ' S). 

J=l 

Now for some i and j, the set p,nB(x" r) meets QJ nB(YJ' s). By reindex­
ing, we may assume that PI n B(Xl' r) meets Ql n B(Yl' s). Then PI = Ql 
and d(XI' Yl) < r + s. We claim that Yl is in every side of PI that contains 
Xl. On the contrary, suppose that Yl is not in a side of PI that contains 
Xl. Then s < d(XI' Yl)/3. Therefore Xl is in every side of PI that contains 
YI, otherwise we would have the contradiction that r < d( xl, yr) /3. Hence 
F(XI) is a proper face of F(YI), which is a contradiction. Therefore YI is 
in every side of PI that contains Xl. This implies that for each i, the set 
P, n B(x" r) meets QJ n B(YJ' s) for some j. 
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We claim that the set p,nB(x" r) meets QJ nB(YJ' s) for only one index 
j. On the contrary, suppose that P, n B(x" r) meets QJ n B(YJ' s) and 
Qk n B(Yk, s). Then P, = QJ = Qk· Now since YJ and Yk are in every side 
of P, that contains x" we have that F(YJ) and F(Yk) are faces of F(x,). 
Moreover, F(YJ) and F(Yk) are distinct by Theorem 10.1.1. Therefore 
F(YJ) and F(Yk) are proper faces of F(x,). Consequently, we have 

r < d(x"YJ)/3, r < d(X"Yk)/3, and s < d(YJ,Yk)/3. 
Now observe that 

d(x"YJ) + d(X"Yk) < (r + s) + (r + s) 

< d(x" YJ)/3 + d(x" Yk)/3 + 2d(YJ, Yk)/3 

< d(x" YJ) + d(x" Yk), 

which is a contradiction. Therefore P, n B(x" r) meets QJ n B(YJ, s) for 
only one index j. 

We claim that the set QJ n B(YJ,s) meets P, n B(x"r) for only one 
index i. On the contrary, suppose that QJ n B(YJ' s) meets P, n B(x" r) 
and Pk n B(Xk' r). Then P, = QJ = Pk. Now since YJ is in every side of P, 
that contains x, or Xk, we have that F(YJ) is a face of F(x,) and F(Xk). 
Moreover F(x,) and F(Xk) are distinct by Theorem 10.1.1. Therefore F(YJ) 
is a proper face of F(x,) and F(Xk). Consequently, we have 

r < d(x" YJ)/3 < (r + s)/3. 

Therefore r < s/2. As s < 8(y)/3, we have that r < 8(y)/6. Now observe 
that 

d(x"YJ) < r + s < 8(y)/2 and d(Xk'YJ) < r + s < 8(y)/2. 

From the construction of U(y, r+s), we deduce that 7f maps p,nB(YJ' r+s) 
injectively into M. As x, and Xk are in P, n B(YJ,r + s), we have a 
contradiction. Consequently, we can reindex [y 1 so that P, n B (x" r) meets 
only Q, n B(y" s) for i = 1, ... , m. Then P, = Q, for each i. 

Let g'J and h'J be the elements of G constructed as before for x and 
y. Suppose that gs pairs the side Sf n S(x"r) of P, n S(x"r) to the side 
S n S(xJ' r) of PJ n S(xJ' r). Then gs = g'J and gs(x,) = xJ. Therefore x, 
is in Sf. Now since P, n B (x" r) meets P, n B (y" s), we have that y, is also 
in Sf. Now observe that gs(P, n B(x" r)) meets gs(P, n B(y" s)). Hence 
PJ n B(xJ' r) meets PJ n B(gsY" s). Therefore gsY, = YJ· Hence g'J = h'J. 

Now suppose that 

Then we deduce from the previous argument that 

and 

g'J g'p-1'pg'p-2'P-1 ... g'1'2 
h'P_1'ph'p_2'P_1 ... h'1'2 h'J. 
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Next, observe that 

U(x, r) n U(y, s) 

71'(,91 p. n B(x., r)) n 71'CQ1 Qj n B(YJ' s)) 

71'([.91 P• nB(x.,r)] n [JQ1QJ nB(YJ's)]) 

71'('91JQ1 [P. n B(x., r) n QJ n B(Yj, s)]) 

= 71'(.91 p. n B(x., r) n B(y., s)). 

Let x = Xk and Y = Yeo Then 

¢x(U(x,r)nU(y,s)) = .91 g.k (p. nB(x.,r) nB(y.,s)) 

and 

Now on the set 
g.k (P. n B(x., r) n B(y., s)), 

the map ¢y¢;;t is the restriction of 

h.eg;j.1 = h.eh;j.1 = h.ehb = hkl 
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for each i = 1, ... , m. Therefore ¢y¢-;;t is the restriction of hke. Thus 
¢y¢;l agrees with an element of G. This completes the proof that {¢x} is 
an (X, G)-atlas for M. 

The same argument as in the proof of Theorem 9.2.2 shows that the 
(X, G)-structure of M has the property that the natural injection map of 
po into M is an (X, G)-map for each P in P. 0 

The next theorem makes it much easier to apply Theorem 10.1.2. 

Theorem 10.1.3. Let G be a group of orientation preserving isometries 
of X and let <I> = {g8 : S E S} be a G-side-pairing for a finite family P of 
dzsjoint convex polyhedra in X. Then <I> is proper zf and only if 

(1) each cycle of <I> is finite; 

(2) the isometry g8 fixes no poznt of Sf for each S in S; and 

(3) each edge cycle of <I> has dihedral angle sum 271'. 

Proof: Suppose that <I> is proper. Then every cycle of <I> is finite and has 
solid angle sum 471'; moreover, g8 fixes no point of Sf for each S in S by 
Theorem 10.1.1. Let 

[x] = {Xl,"" xm } 

be an edge cycle of <I>. As w[x] = 20[x], we have that O[x] = 271'. Thus, 
every edge cycle of <I> has dihedral angle sum 271'. 
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Conversely, suppose that <P satisfies (1)-(3). Then every cycle of <P is 
finite by (1). Now let 

[x] = {Xl, ... ,Xm } 

be a cycle of <P. If x is in the interior of a polyhedron of P, then w[x] = 47f. 
If x is in the interior of a side of a polyhedron of P, then w[x] = 47f by (2). 
If x is in the interior of an edge of a polyhedron of P, then [x] is an edge 
cycle, and we have by (3) that 

w[x] = 28[x] = 47f. 

Now assume that x is a vertex of a polyhedron of P. Then x, is a vertex 
of a polyhedron P, in P for each i. Let r be a positive real number such 
that r is less than half the distance from x, to x J for each i #- j and from 
x, to any side of P, not containing x, for each i. Then P, n 5(x" r) is a 
polygon in the sphere 5(x"r) and the polygons {p,n5(x"r)} are disjoint. 
Now the side-pairing <P restricts to a proper side-pairing of the polygons 
{p,n5(x" r)}. Hence, the space ~ obtained by gluing together the polygons 
has an orientable spherical structure by Theorem 9.2.3. Therefore ~ is a 
2-sphere, since it is compact and connected. Hence w[x] = 47f. Thus <P is 
proper. o 

Example 1. Let P be a cube in E3. Define a T(E3 )-side-pairing <P for 
P by pairing the opposite sides of P by translations. Then each edge cycle 
of <P consists of four points. Therefore, each edge cycle of <P has dihedral 
angle sum 27f. Hence <P is proper by Theorem 10.1.3. Therefore, the space 
M obtained by gluing together the sides of P by <P is a T(E3 )-manifold by 
Theorem 10.1.2. The 3-manifold M is called the cubical Euchdean 3-torus. 

Example 2. Let D(r) be a regular spherical dodecahedron inscribed on 
the sphere 5( e4, r) in 53 with 0 < r ::;; 7f /2. Let 8(r) be the dihedral angle 
of D(r). When r is small, 8(r) is approximately equal to but greater than 
the value of the dihedral angle of a Euclidean regular dodecahedron, which 
is approximately 116°, 34'. As r increases, 8( r) increases continuously until 
it reaches 8(7f/2), the dihedral angle of a regular dodecahedron in 53 with 
vertices on 52. As 8D(7f/2) = 52, we have that 8(7f/2) = 180°. Now as 8(r) 
is a continuous function of r, taking values in the interval (8(0), 8(7f/2)]' 
there is a unique value of r such that 8(r) = 120°. Let P = D(r) for this 
value of r. Then P is a regular spherical dodecahedron all of whose proper 
dihedral angles are 27f /3. 

Define an Io(53)-side-pairing <P for P by pairing the opposite sides of P 
with a twist of 7f / 5. See Figure 10 .1.1. Then each edge cycle of <P consists 
of three points. Therefore, each edge cycle of <P has dihedral angle sum 27f. 
Hence <P is proper by Theorem 10.1.3. Therefore, the space M obtained by 
gluing together the sides of P by <P is an orientable spherical 3-manifold 
by Theorem 10.1.2. The 3-manifold M is called the Poincare dodecahedral 
space. 
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Figure 10.1.1. The gluing pattern for the Poincare dodecahedral space 
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Example 3. By the argument in Example 4 of §7.1, there is a regular 
hyperbolic dodecahedron P in H3 all of whose proper dihedral angles are 
27r/5. Define an Io(H3)-side-pairing <I> for P by pairing the opposite sides 
of P with a twist of 37r /5. See Figure 10.1.2. Then each edge cycle of <I> 
consists of five points. Therefore, each edge cycle of <I> has dihedral angle 
sum 27r. Hence <I> is proper by Theorem 10.1.3. Therefore, the space M 
obtained by gluing together the sides of P by <I> is a closed, orient able, 
hyperbolic 3-manifold by Theorem 10.1.2. The 3-manifold M is called the 
SezJert- Weber dodecahedral space. 
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Figure 10.1.2. The gluing pattern for the Seifert-Weber dodecahedral space 
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Exercise 10.1 

1. Prove that the Poincare dodecahedral space has the same singular homology 
as the 3-sphere. 

2. Prove that the fundamental group of the Poincare dodecahedral space has 
order 120. 

3. Compute the singular homology of the Seifert-Weber dodecahedral space. 

4. Show that the Seifert-Weber dodecahedral space has a finite covering space 
whose first singular homology group is infinite. 

5. Prove that there are an infinite number of nonisometric, closed, orientable, 
hyperbolic 3-manifolds. 

§lO.2. Complete Gluing of 3-Manifolds 

Let M be a hyperbolic 3-manifold obtained by gluing together a finite 
family P of disjoint, convex, finite-sided polyhedra in H3 of finite volume by 
a proper I(H3 )-side-pairing <I>. In this section, we shall determine necessary 
and sufficient conditions such that M is complete. 

It will be more convenient for us to work in the conformal ball model 
B3. Then each polyhedron in P has only finitely many ideal vertices on 
the sphere 82 at infinity by Theorems 6.3.25 and 6.3.26. We may assume, 
without loss of generality, that no two polyhedrons in P share an ideal 
vertex. Then the side-pairing <I> of the sides S of the polyhedra in P 
extends to a pairing of the ideal vertices of the polyhedra in P, which, in 
turn, generates an equivalence relation on the set of all the ideal vertices 
of the polyhedra in P. The equivalence classes are called cycles. The cycle 
containing an ideal vertex v is denoted by [v]. A cycle of ideal vertices is 
called a cusp point of the manifold M. 

Let v be an ideal vertex of a polyhedron Pv in P. Choose a horosphere 
~v based at v that meets only the sides in S incident with v. The link of 
the ideal vertex v is defined to be the set 

L(v) = Pv n ~v. 

Note that L(v) is a compact Euclidean polygon in the horosphere ~v, with 
respect to the natural Euclidean metric of ~v, whose similarity type does 
not depend on the choice of the horosphere ~v. For each cycle [v] of ideal 
vertices, we shall assume that the horospheres {~u : u E [v]} have been 
chosen small enough so that the links {L(u) : u E [v]} are disjoint. We 
next show that <I> determines a proper S(E2)-side-pairing of the polygons 

{L(u) : u E [v]}. 
Let gs be an element of <I> and let u, u' be elements of [v] such that 

gs(u') = u. Then ~Ul n 8' is a side of L(u') and ~u n 8 is a side of L(u). 
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Now let 
9s: I:u ' --+ gs(I:u ') 

be the restriction of gs. Then 9s is an isometry with respect to the natural 
Euclidean metrics of the horospheres I:u ' and gs(I:u'). Observe that the 
line segment 

is parallel to the line segment I:u n 5 because gs(I:ul) is concentric with 
I:u . Let 

Ps : gs('2:'u') --+ I:u 

be the radial projection of gs(I:u') onto I:u. Then Ps is a change of scale 
with respect to the natural Euclidean metrics of gs(I:ul) and I:u· Define 

by hs = Ps9s. Then hs is a similarity with respect to the natural Euclidean 
metrics of I:ul and I:u. Moreover hs maps the side I:u' n 5' of L( u') onto 
the side I:u n5 of L(u). Clearly {hs } is a proper S(E2)-side-pairing ofthe 
polygons {L ( u)}. Here 5 ranges over the set of all the sides in S incident 
with the cycle [v]. We shall assume that the horospheres {I: u } have been 
chosen so that Ps = 1 for the largest possible number of sides 5. 

Let L[v] be the space obtained by gluing together the polygons {L(u)} 
by {h s }. Then L[v] is a Euclidean similarity surface by Theorem 9.2.3. 
The surface L[v] is called the link of the cusp point [v] of the hyperbolic 
3-manifold M obtained by gluing together the polyhedra in P by <P. We 
now determine the topology of L[v]. 

Theorem 10.2.1. The link L[v] of a cusp point [v] of M zs either a torus 
or a Klein bottle; moreover, if each element of <P is orientation preserving, 
then L[v] is a torus. 

Proof: By construction, L[v] is a closed surface. By subdividing the 
polygons, if necessary, we may assume that all the polygons {L( u)} are 
triangles. Let p, e, t be the number of vertices, edges, and triangles, respec­
tively. Then we have 3t = 2e, since each triangle has 3 edges and each edge 
bounds 2 triangles. Now the sum of all the angles of the triangles is 7ft on 
the one hand and 27fp on the other. Hence t = 2p. Therefore 

X(L[v]) p-e+t 
1 3 
2t - 2t + t = O. 

Hence L[v] is either a torus or a Klein bottle. If each element of <P is 
orientation preserving, then each element of {hs } is orientation preserving, 
whence L[v] is orientable; therefore L[v] is a torus. 0 
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Theorem 10.2.2. The l~nk L[v] of a cusp point [v] of M is complete if 
and only zf links {L(u)} for the ~deal vertices zn [v] can be chosen so that 
<I> restricts to a side-pa~ring for {L( u)}. 

Proof: Suppose that <I> restricts to a side-pairing for {L(u)}. Then 
hs = 9s for each 8, and so {hs} is an I(E2)-side-pairing for {L(u)}. As 
L[v] is compact, the (E2,I(E2))-structure on L[v] determined by {hs} is 
complete by Theorem 8.5.7. Hence L[v] is a complete (E2, S(E2))-surface 
by Theorem 8.5.8. 

Conversely, suppose that L[v] is complete. Let 9 be the abstract graph 
whose vertices are the elements of [v] and whose edges are the sets {u, u'} 
for which there is an element gs of <I> such that gs(u') = u. Then 9 is 
connected. Let 1-£ be the subgraph of 9 whose vertices are those of 9 and 
whose edges are the sets {u, u'} for which there is an element gs of <I> such 
that gs(u') = u and ps = 1. We now show that 1-£ is connected. On the 
contrary, assume that 1-£ is disconnected. Then there is an edge {u, u'} 
of 9 joining two components of 1-£. By rechoosing all the horospheres 
corresponding to one of these components by a uniform change of scale, we 
can add the edge {u,u'} to 1-£. However, we assumed in the original choice 
of the horospheres that 1-£ has the largest possible number of edges. Thus 
1-£ must be connected. 

Now as L[v] is complete, the (E2, S(E2))-structure of L[v] contains a 
(E2,I(E2))-structure; moreover, since 1-£ is connected, we can choose the 
scale of the (E2,I(E2))-structure on L[v] so that the natural injection map 
of L(u)O into L[v] is a local isometry for each u in [v]. Let gs be an element 
of <I> such that gS (u') = u. Then the restriction of hs to the interior of the 
side ~Ul n 8' of L(u') is a local isometry because it factors through L[v]. 
Consequently hs is an isometry and therefore ps = 1. Thus <I> restricts to 
a side-pairing for {L(u)}. 0 

We now assume that L[v] is complete. For greater clarity, we pass to 
the upper half-space model U3 and assume, without loss of generality, that 
v = 00. By Theorem 8.5.9, there is a group of isometries r v of U3 acting 
freely and discontinuously on ~v, and there is a (E2, I(E2))-equivalence 
from ~vjrv to L[v] compatible with the projection from L(v) to L[v]. 

Let B(v) be the open horoball based at v such that 8B(v) = ~v. Then 
r v acts freely and discontinuously on B (v) as a group of isometries. Con­
sequently B (v) jr v is a hyperbolic 3-manifold called a solid horocusp. It 
is clear from the gluing construction of M that we have the following 3-
dimensional version of Theorem 9.8.4. 

Theorem 10.2.3. If the lznk L[v] of a cusp point [v] of M ~s complete, 
then there ~s an injective local isometry 

L: B(v)jrv ----+ M 

compatible with the projectwn of Pv to M. 
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We next consider the 3-dimensional version of Theorem 9.8.5. 

Theorem 10.2.4. Let M be a hyperbolic 3-manifold obtained by gluing 
together a finite family P of disjomt, convex, finite-sided polyhedra m H3 
of finite volume by a proper I(H3 )-side-pazring <P. Then M zs complete zf 
and only if L[v] is complete for each cusp point [v] of M. 

Proof: Suppose that L[v] is incomplete for some ideal vertex v. By 
Theorem 10.2.2, there is a side 8 incident with [v] such that Ps f 1. Let 1i 
be the graph in the proof of Theorem 10.2.2. Since 1i is connected, there 
are sides 81 , ... , 8m incident with the cycle [v] at ideal vertices VI, ... , V m , 

respectively, such that gS,(V,+l) = v., and gSm(vt) = Vm , and Ps, = 1 for 
each i = 1, ... ,m - 1, and 8 = 8!".. 

Let L, = L( v,) for i = 1, ... ,m. Choose a point x& in the side 8 n Ll 
of the polygon Ll . Let al be a Euclidean geodesic arc in Ll joining x& 
to a point Xl in the side 8 1 n Ll of L 1 . We choose inductively a point 
x, in the side 8, n L, of L, and a Euclidean geodesic arc a, in L, joining 
x~_l to x, for i = 2, ... ,m so that ps(x~) = x&. If the point x~ is closer 
to VI than x&, then the same argument as in the proof of Theorem 9.8.5 
shows that the sequence XI, X2, .•• ,Xm can be continued to a nonconvergent 
Cauchy sequence in M. If x& is closer to VI than x~, then X m , Xm-l, ... , Xl 

can be continued to a nonconvergent Cauchy sequence in M. Thus M is 
incomplete. 

Conversely, suppose that L[v] is complete for each ideal vertex v. From 
Theorem 10.2.3, we deduce that there is a compact 3-manifold-with-bound­
ary Mo in M such that M - Mo is the disjoint union of solid horocusps. The 
same argument as in the proof of Theorem 9.8.5 shows that M is complete. 
D 

Exercise 10.2 

1. Prove that the similarity type of the link of a cusp point L[v] does not depend 
on the choice of the horospheres {~u}. 

2. Fill in the details of the proof of Theorem 10.2.3. 

3. Prove that the horoball B(v) in Theorem 10.2.3 can be replaced by a smaller 
concentric horoball so that L maps the solid horocusp B(v)jrv isometrically 
onto its image in M. 

4. Prove that a solid horocusp has finite volume. 

5. Prove that the hypothesis of finite volume can be dropped from Theorem 
10.2.4. 

6. State and prove the 3-dimensional version of Theorem 9.8.7. 
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§10.3. Finite Volume Hyperbolic 3-Manifolds 

In this section, we construct some examples of open, complete, hyperbolic 
3-manifolds of finite volume obtained by gluing together a finite number of 
regular ideal polyhedra in H3 along their sides. Each of these examples is 
homeomorphic to the complement of a knot or link in i;3. 

The Figure-Eight Knot Complement 

Let T be a regular ideal tetrahedron in B3. See Figure 10.3.1. Since the 
group of symmetries of T acts transitively on its edges, all the dihedral an­
gles of T are the same. We now pass to the upper half-space model U 3 and 
position T with a vertex at 00 as in Figure 10.3.2. Then a sufficiently high 
horizontal horosphere will intersect T in an equilateral Euclidean triangle. 
Therefore, all the dihedral angles of Tare 7r /3. 

Let T and T' be two disjoint regular ideal tetrahedrons in B3. Label the 
sides and edges of T and T' as in Figure 10.3.3. Since a Mobius transforma­
tion of B3 is determined by its action on the four vertices of T, the group of 
symmetries of T corresponds to the group of permutations of the vertices 
of T. Consequently, there is a unique orientation reversing isometry is of 
B3 that maps T' onto T and side 8' onto 8 in such a way as to preserve 
the gluing pattern between 8' and 8 in Figure 10.3.3 for 8 = A, B, C, D. 

Figure 10.3.1. A regular ideal tetrahedron in B3 
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Figure 10.3.2. A regular ideal tetrahedron in U3 
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Figure 10.3.3. The gluing pattern for the figure-eight knot complement 
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Let gs be the composite of fs followed by the reflection in the side S. 
Then gA, gE, ge, gD and their inverses form an Io(B3 )-side-pairing <P for 
{T, T'}. There are six points in each edge cycle of <P. Hence, the dihedral 
angle sum of each edge cycle of <P is 27l'. Therefore <P is a proper side-pairing. 

Let M be the space obtained by gluing together T and T' by <P. Then 
M is an orient able hyperbolic 3-manifold by Theorem 10.1.2. There is 
one cycle of ideal vertices. The link of the cusp point of M is a torus by 
Theorem 10.2.1. This can be seen directly in Figure 10.3.4. 

Now choose disjoint horospheres based at the ideal vertices of T' that 
are invariant under the group of symmetries of T'. Then the isometries 
fA, fE, fe, fD will map these horospheres to horospheres based at the ideal 
vertices of T that are invariant under the group of symmetries of T. Conse­
quently, these horospheres are paired by the elements of <P. Therefore, the 
link of the cusp point of M is complete by Theorem 10.2.2. Thus M has 
one solid horocusp by Theorem 10.2.3. Finally M is complete by Theorem 
10.2.4. 

T T' 

Figure 10.3.4. The link of the cusp point of the figure-eight knot complement 
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Figure 10.3.5. The figure-eight knot 

Let K be a figure-eight knot in E3. See Figure 10.3.5. We now show 
that M is homeomorphic to j};3 - K. Drape the knot K over the top of the 
tetrahedron T and add directed arcs a, b to K as in Figure 10.3.6. These 
two arcs will correspond to the two edges a, b of M. 

Now observe that the boundary of side A has the gluing pattern in 
Figure 1O.3.7(a). The resulting quotient space is homeomorphic to a closed 
disk with two points removed as in Figure 10.3. 7(b). This quotient space 
is homeomorphic to a disk with one interior point and part of its boundary 
removed as in Figures 10.3.7(c) and (d). The last disk spans the part of K 
that follows the contour of side A. Notice that the knot passes through the 
missing point of the interior of the disk in Figure 1O.3.7(d). 

Likewise, sides B, C, D of T give rise to disks that span the parts of 
K that follow the contours of sides B, C, D. See Figures 10.3.8-10.3.10. 
These four disks together with K form a 2-complex L whose I-skeleton is 
the union of K and the arcs a, b. Let M2 be the image of aT in M. From 
the compatibility of the gluing, we see that M2 is homeomorphic to L - K. 

I 

~\ 
I I \ 

I I \ 

I~ ~ L.. _____________________ ~ 

Figure 10.3.6. The figure-eight knot draped over the tetrahedron T 
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Figure 10.3.7. Side A deforming into a 2-cell of the complex L 



§10.3. Finite Volume Hyperbolic 3-Manifolds 449 

a b 
b 

a 
B 

b 

(a) (b) 

,,- .... (1il / .... 
/ , 

/ \ I I 
/ \ I I 

{ 
\ I 

b \ I 

a 0 ~ 9 I 
,,- ~ 

I / .... 
/ B .... 

I / .... 
\ / / .... 

/ .... 
\ / / .... , / .... _---- -------'-

.... / ~ .... ,,-

-----

(c) (d) 

Figure 10.3.8. Side B deforming into a 2-cell of the complex L 
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Figure 10.3.9. Side C deforming into a 2-cell of the complex L 
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Figure 10.3.10. Side D deforming into a 2-cell of the complex L 
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Figure 10.3.11. Cross sections normal to the arcs a and b pointing down 

Observe that each of the arcs a, b meets all four of the 2-cells of L. By 
collapsing the arcs a, b to points, we see that L has the homotopy type of a 
2-sphere. Consequently i;3 - L is the union of two open 3-balls. Now cut 
i;3 - K open along the interiors of the 2-cells of L and split apart the arcs 
a, b along their interiors to yield two connected 3-manifolds-with-boundary 
Nand N' whose boundaries are 2-spheres minus four points with the same 
cell decomposition as the boundaries of T and T', respectively. Figure 
10.3.11 illustrates cross sections of the subdivisions of i;3 - K normal to 
the arcs a and b. Notice that 00 is in N. This explains the inside-out flip 
of the disks in Figures 10.3.7-10.3.10. 

As the interiors of Nand N' are open 3-balls, the manifolds Nand N' 
are closed 3-balls minus four points on their boundaries. Consequently, 
there is a function 

that induces a homeomorphism from i;3 - K to M. Thus M is homeomor­
phic to the complement of a figure-eight knot in i;3. 

The Whitehead Link Complement 

Let P be the regular ideal octahedron in B3 with vertices ±el, ±e2, ±e3· 
See Figure 10.3.12. By considering a regular ideal octahedron in U3 , with 
a vertex at 00, as in Figure 10.3.13, we see that all the dihedral angles of 

Pare 1f/2. 
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Figure 10.3.12. A regular ideal octahedron in B3 
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Figure 10.3.13. A regular ideal octahedron in U3 
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Figure 10.3.14. The gluing pattern for the Whitehead link complement 

Now label the sides, edges, and vertices of P as in Figure 10.3.14. Let gA 
be the Mobius transformation of B3 that is the composite of the reflection 
in the plane of B3 midway between the plane of side A and side A', then a 
27f /3 rotation in the plane of A about the center of A in the positive sense 
with respect to the outside of A, and then a reflection in the plane of A. 
Let gB be defined as gA except without the rotation. Let ge be defined 
as gA and let gD be defined as gB. Then gA, gB, ge, gD and their inverses 
form a Io(B3)-side-pairing <I> for the polyhedron P. There are four points 
in each edge cycle of <I>. Hence, the dihedral angle sum of each edge cycle 
of <I> is 27f. Therefore <I> is a proper side-pairing. 

Let M be the space obtained by gluing together the sides of P by <I>. 
Then M is an orient able hyperbolic 3-manifold by Theorem 10.1.2. There 
are two cycles of ideal vertices of P. The links of the cusp points of M 
are tori by Theorem 10.2.1. This can be seen directly in Figure 10.3.15. 
Each element g8 of <I> is the composite of an orthogonal transformation 
followed by the reflection in S. Consequently, disjoint horospheres based 
at the ideal vertices of P and equidistant from the origin are paired by the 
elements of <I>. Therefore, the links of the cusp points of M are complete 
by Theorem 10.2.2. Thus M has two disjoint solid horocusps by Theorem 
10.2.3. Finally M is complete by Theorem 10.2.4. 
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Figure 10.3.15. The links of the cusp points of the Whitehead link complement 
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Figure 10.3.16. The Whitehead link 

Let L be a Whitehead link in E3. See Figure 10.3.16. We now show that 
M is homeomorphic to j;3 - L. Drape the link L over the top pyramid of 
the regular octahedron and add three directed arcs a, b, c to L as in Figure 
10.3.17. These three arcs will correspond to the three edges a, b, c of M. 

Now observe that the boundary of side A of P has the gluing pattern 
in Figure 1O.3.18(a). The resulting quotient space is homeomorphic to a 
closed disk with two points removed as in Figure 10.3.18(b). This quotient 
space is homeomorphic to a disk with one interior point and part of its 
boundary removed as in Figure 1O.3.18(c). This last disk spans the right 
half of the component of L in Figure 10.3.17 that is in the shape of an 
infinity sign. Notice that the other component passes through the missing 
point of the interior of the disk in Figure 1O.3.18(c). 
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Figure 10.3.17. The Whitehead link draped over of a regular octahedron 
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Figure 10.3.1S. Side A deforming into a 2-cell of the complex K 
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Figure 10.3.19. Side B deforming into a 2-cell of the complex K 
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Next, observe that the boundary of side B of P has the gluing pattern 
in Figure 10.3.19(a). The resulting quotient space is homeomorphic to a 
closed disk with part of the boundary removed as in Figure 10.3.19(b) and 
(c). The last disk spans the part of L in Figure 10.3.17 that follows the 
contour of side B. Likewise, the sides C and D of P give rise to disks that 
span the parts of L that follow the contours of sides C and D. These four 
disks together with L form a 2-complex K whose I-skeleton is the union 
of L and the arcs a, b, c. Let M2 be the image of 8P in M. From the 
compatibility of the gluing, we see that M2 is homeomorphic to K - L. 

The 2-complex K is contractible because if we collapse the arcs a, b, c 
to points, we obtain a closed disk. Consequently E;3 - K is an open 3-
ball. Now cut E;3 - L open along the interiors of the 2-cells of K and 
split apart the arcs a, b, c along their interiors to yield a 3-manifold-with­
boundary N whose boundary is a 2-sphere minus six points with the same 
cell decomposition as 8P. Now as the interior of N is an open 3-ball, N 
is a closed 3-ball minus six points on its boundary. Consequently, there is 
map ¢ : N ---+ P inducing a homeomorphism from E;3 - L to M. Thus M 
is homeomorphic to the complement of a Whitehead link in E;3. 

The Borromean Rings Complement 

Let L be the Borromean rings in Figure 10.3.20. We now describe a hyper­
bolic structure for E;3 - L. 

Figure 10.3.20. The Borromean rings 
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H 

b 

F 

e 

Figure 10.3.21. The 2-complex K 

Adjoin six directed arcs a, b, ... , f to L as in Figure 10.3.21. The union 
of L and these six arcs form the I-skeleton of a 2-complex K whose 2-cells 
are disks corresponding to the eight regions A, B, ... , H in Figure 10.3.21. 
Observe that each of the arcs a, b, . .. ,f meets four of the 2-cells of K. By 
collapsing the arcs a, b, ... ,f to points, we see that K has the homotopy 
type of a 2-sphere. Consequently j;3 - K is the union of two open 3-balls. 

Now cut j;3 - L open along the interiors of the 2-cells of K and split apart 
the arcs a, b, ... ,f along their interiors to yield two connected 3-manifolds­
with-boundary Nand N' whose boundaries are 2-spheres minus six points 
with the same cell decompositions as the boundaries of the octahedrons 
in Figure 10.3.22. As the interiors of Nand N' are open 3-balls, Nand 
N' are closed 3-balls minus six points on their boundaries. Consequently 
j;3 _ L can be obtained by gluing together two regular ideal octahedrons 
along their sides by the side-pairing in Figure 10.3.22. 

Notice that the paired sides are glued together with 1200 rotations, al­
ternating in direction from side to adjacent side. We leave it as an exercise 
to show that this side-pairing determines a complete hyperbolic structure 
for j;3 - L. 
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Figure 10.3.22. The gluing pattern for the Borromean rings complement 
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Exercise 10.3 

1. Determine the class in M (T2) of the link ofthe cusp point of the figure-eight 
knot complement. 

2. Determine the classes in M(T2) of the links of the cusp points of the White­
head link complement. 

3. Draw a picture of each of the 2-cells of the complex K in Figure 10.3.21. 

4. Explain how the gluing pattern in Figure 10.3.22 is derived from the splitting 
of the complex in Figure 10.3.21. 

5. Prove that the side-pairing of two regular ideal octahedrons described in 
Figure 10.3.22 induces a complete hyperbolic structure on the complement 
of the Borromean rings in PP. 

6. Construct a complete hyperbolic manifold M by gluing together the sides of a 
regular ideal tetrahedron. The manifold M is called the Gtesekmg mamfold. 

7. Show that the link of the cusp point of the Gieseking manifold M is a Klein 
bottle. Conclude that M is nonorientable. 

8. Show that the Gieseking manifold double covers the figure-eight knot com­
plement. 

9. Construct a complete, orientable, hyperbolic manifold M by gluing together 
two regular ideal tetrahedrons such that M is not homeomorphic to the 
figure-eight knot complement. The manifold M is called the Stster of the 
figure-eight knot complement. 

10. Show that the links of the cusp points of the figure-eight knot complement 
and its sister represent different classes in M(T2 ). 

§10.4. Hyperbolic Volume 

In this section, we compute the volume of the hyperbolic 3-manifolds con­
structed in the last section. We begin by studying the geometry of ideal 
tetrahedra. 

Ideal Tetrahedra 

Let T be an ideal tetrahedron in H3 and let ~ be a horosphere based at 
an ideal vertex v of T that does not meet the opposite side of T. Then 

L(v)=~nT 

is a Euclidean triangle, called the link of v in T. See Figure 10.4.1. Note 
that the orientation preserving similarity class of L( v) does not depend on 
the choice of~. 
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v = 00 

L(v) 
(3 

Figure 10.4.1. An ideal tetrahedron in U 3 

Theorem 10.4.1. The (orientatwn preserving) similarzty class of the lznk 
L( v) of a vertex v of an ideal tetrahedron T zn H3 determines T up to 
(orientatwn preserving) congruence. 

Proof: We pass to the upper half-space model U3 and assume, without 
loss of generality, that v = 00. Then the other three vertices of T form 
a triangle in E2 that is in the orientation preserving similarity class of 
L( v). See Figure 10.4.1. Now any (orientation preserving) similarity of E2 
extends to a unique (orientation preserving) isometry of U 3 . Therefore, if 
T' is another ideal tetrahedron in U3 , with a vertex v' such that L( v) is 
(directly) similar to L(v'), then T and T' are (directly) congruent. 0 

Theorem 10.4.2. Let T be an ideal tetrahedron zn H3. Then T is deter­
mzned, up to congruence, by the three dihedral angles a, (3, '"Y of the edges 
incident to a vertex ofT. Moreover, oo+(3+'"Y = 7r and the dihedral angles 
of opposite edges of T are equal. Furthermore, if a, (3, '"Yare posztive real 
numbers such that a + (3 + '"Y = 7r, then there zs an zdeal tetrahedron in H3 
whose dzhedral angles are a, (3, '"Y. 

Proof: Let v be an ideal vertex of T. By Theorem 10.4.1, the congruence 
class of T is determined by the similarity class of L( v), which, in turn, is 
determined by the dihedral angles a, (3, '"Y of the edges of T incident to v. 
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a' 

~' " 
Figure 10.4.2. The dihedral angles of a tetrahedron 

To see that the dihedral angles of the opposite sides of T are equal, label 
the dihedral angles of T as in Figure 10.4.2. Then we have the system of 
equations 

{ 
a+~+, = 7l', 
a+~' +,' = 7l', 
a' +~' +,=7l', 
a' +~+,' = 7l'. 

By adding the first two and the last two equations, we obtain the system 

{ 2a + (~ + ~') + (r + ,') = 27l', 
2a' + (~+ ~') + (r + ,') = 27l'. 

Therefore a = a'. The same argument shows that ~ = ~' and, = ,'. The 
existence part of the theorem is left as an exercise for the reader. 0 

It follows from Theorems 10.4.1 and 10.4.2 that the orientation preserv­
ing similarity class of the link L( v) of a vertex v of T does not depend on 
the choice of v. A simple geometric explanation of this fact is that the 
group of orientation preserving symmetries of T acts transitively on the set 
of vertices of T. See Exercise 10.4.3. 

The Lobachevsky Function 

We now study some of the properties of the Lobachevsky function JI(O) 
defined by the formula 

JI(O) = -1° log\2sint\dt. (10.4.1) 

Notice that the above integral is improper at all multiples of 7l'. We will 
prove that JI(O) is well defined and continuous for all O. To begin with, we 
define JI(O) = O. 
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Let w be a complex number in the complement of the closed interval 
[1,(0). Then 1- w is in the complement of the closed interval (-00,0]. 
Define arg(l- w) to be the argument of 1-w in the interval (-n, n). Then 
the formula 

log(1 - w) = log 11 - wi + i arg(1 - w) (10.4.2) 

defines log(1 - w) as an analytic function of w in the complement of the 
closed interval [1, (0). The relationship between log(1 - w) and JI(O) is 
revealed in the next lemma. 

Lemma 1. 110 < 0 < n, then 

log(l- e2•0 ) = log(2 sin 0) + i(O - n/2). 

Proof: Observe that 

1 - (cos 20 + i sin 20) 

1 - (cos2 0 - sin2 0) - 2i sin 0 cos 0 

2sin2 0 - 2isinOcosO 

2 sin O(sinO - i cos 0) 

2sinO[cos(O -n/2) + isin(O -n/2)J. 

The result now follows from Formula 10.4.2. 

Consider the function ¢( w) defined by the formula 

¢(w) = -log(1 - w) . 
w 

The singularity at w = ° is removable, since 

lim w¢(w) = 0. 
w-tO 

From the power series expansion 
00 n 

-log(1 - w) = L -:' for Iwl < 1, 
n=l 

we find that 
00 n-l 

¢(w) = L w n ' for Iwl < l. 
n=l 

o 

(10.4.3) 

(10.4.4) 

(10.4.5) 

Thus ¢(w) is analytic in the complement of the closed interval [1, (0). 
The dilogarithm functwn 'l/J(z) is defined as an analytic function of z on 

the complement of the closed interval [1, (0) by the formula 

'l/J(z) = 1z 
¢(w)dw. (10.4.6) 
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Figure 10.4.3. Curves a, (3, I in the unit disk 

By integrating Formula 10.4.5, we find that 
00 n 

1jJ(z) = L ~2' for Izl < 1. 
n=l 

Note that the above series converges uniformly on the closed disk Izl :::;: 1. 
Now define 

Then 1jJ(z) is continuous on the closed disk Izl :::;: 1 and 
00 n 

1jJ(z) = L z 2' for Izl :::;: 1. 
n=l n 

(10.4.7) 

Let f, () be real numbers such that 0 < f < () < 7r and consider the curves 
a, {3, 'Y in Figure 10.4.3. Since ¢( w) is analytic in the complement of the 
closed interval [1,00), we have 

i ¢(w)dw + h ¢(w)dw = i ¢(w)dw. 

Hence, we have h ¢(w)dw = 1jJ(e2.()) _1jJ(e2' E ). 

Let w = e2.(). Then dw/w = 2id(). Hence, we have 

h ¢(w)dw = - h log(l- w)dw/w 

-1() log(l - e2•t )2idt 

-1() [log(2sint) + i(t - 7r/2)]2idt 

[t2 -7rt]: - 2i 1() log(2sint)dt. 



466 10. Hyperbolic 3-Manifolds 

Thus 

-2i 19 
log(2sint)dt = 'lj;(e2•9 ) - 'lj;(e2U ) + [1I't - t2]:. 

Since 'lj; is continuous on the unit circle, we deduce that the improper 
integral 

(9 log(2 sin t)dt = lim 19 
log(2 sin t)dt 10 <-->0+ < 

exists, and so JI(O) is well defined for 0 < 0 < 11' and 

2iJI(0) = 'lj;(e2•9 ) - 'lj;(1) + 11'0 - 02. (10.4.8) 

By letting 0 -t 11', we find that JI(1I') exists and JI(1I') = O. Thus, Formula 
1004.8 holds for 0 :::; 0 :::; 11'. 

Theorem 10.4.3. The function JI(O) zs well defined and continuous for 
all O. Moreover, for all 0, the function JI(O) satzsfies the relations 

(1) JI(O + 11') = JI(O), 

(2) JI(-O) = -JI(O). 

Proof: (1) As JI (0) = 0 = JI ( 11') and - log 12 sin 0 I is periodic of period 11', 

we deduce that JI(O) is well defined for all 0, continuous, and periodic of 
period 11'. (2) As -log 12 sin 01 is an even function, JI(O) is an odd function. 
o 

Theorem 10.4.4. For each positive integer n, the function JI(O) satisfies 
the zdentzty 

n-l 

JI(nO) = n L JI(O + j1l'/n). 
J=O 

Proof: Upon substituting z = e2•t into the equation 
n-l 

zn - 1 = II (z - e-2n:'J1n), 
J=O 

we obtain the equation 
n-l 

e2mt - 1 = II e2•t (1 _ e-2.t-2""Jln). 

J=O 

From the proof of Lemma 1, we have 

11- e2•9 1 = 12sinOI· 

Therefore, we have 
n-l 

12sinntl = II 12sin(t+j1l'/n)l· 
J=O 
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Hence, we have 

o n-l rO 
!alogI2sinnt1dt= ~Jo log 12sin(t +],7f/n)ldt. 

After changing variables, we have 

1 nO n-l10+J1f/n. - r log 12 sin xldx = L log 12s111Xldx. 
n Jo J=O J1f/n 

Thus, we have 
n-l n-l 

~JI(nO) = L JI(O + j7f/n) - L JI(j7f/n). 
n J~ J~ 

By Theorem 10.4.3, we have 

JI((n - j)7f/n) = JI(-j7f/n) = -JI(j7f/n). 

Hence, we have 
n-l 

L JI(j7f/n) = O. 
)=0 

Thus, we have 
n-l 

~JI(nO) = L JI(O + j7f/n). 
n 

)=0 

By the fundamental theorem of calculus, we have 

dJI(O) 
dO 

d2 JI(0) 
d02 

-logI2sinOI, 

- cotO. 

467 

o 

Consequently, JI(O) attains its maximum value at 7f/6 and its minimum 
value at 57f /6. One can compute by numerical integration that 

JI(7f/6) = .5074708 .... 

By Theorem 10.4.4, we have the equation 

1 
2JI(20) = JI(O) + JI(O + 7f/2) 

and therefore, by Theorem 10.4.3, we have 

1 
2JI(20) = JI(O) - JI(7f/2 - 0). 

Substituting 0 = 7f /6 yields the equation 

1 
2JI(7f/3) = JI(7f/6) - JI(7f/3). 

(10.4.9) 
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7r /6 7r /3 27r/3 57r/6 

Figure 10.4.4. A graph of the Lobachevsky function 

Thus, we have 

2 
JI(7r/3) = 3JI(7r/6) = .3383138 .... 

o 
7r 

(10.4.10) 

We now have enough information to sketch the graph of JI(O). See Figure 
10.4.4. 

Volumes of Noncompact Tetrahedra 

Consider a noncom pact tetrahedron Sa,(3 in U3 with three right dihedral 
angles and three other dihedral angles a, 7r /2 - a, (3 as in Figure 10.4.5. 

y 

x 

Figure 10.4.5. The tetrahedron Scx,f3 
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Figure 10.4.6. The side of 80'.,(3 on the xz-plane 

Theorem 10.4.5. The volume of the tetrahedron Sa,{3 ~s given by 

1 
Vol(Sa,{3) = 4 [JI(oo +;3) + JI(oo -;3) + 2JI(7f /2 - a)]. 

469 

Proof: We may assume, without loss of generality, that the ideal vertex of 
Sa,{3 is at 00 and that the base of Sa,f3 is on the unit sphere. The vertical 
projection of Sa,{3 to the xy-plane is a Euclidean right triangle 6. We 
may assume that 6 is situated as in Figure 10.4.5. From Figure 10.4.6 we 
deduce that the base of 6 has length cos;3. Thus 6 is the set of all points 
(x, y) satisfying the inequalities 

0::::: x ::::: cos;3, 

0::::: y ::::: xtanoo. 

By Theorem 4.6.7, the element of hyperbolic volume of U3 is dxdydz/z3 . 

Thus, the volume V of Sa,{3 is given by the formula 

V = {{Joo dxdydz 
JJ, ,,h-x2_y2 z3 

6. 

({ dxdy 

JJ 2(1 - x 2 - y2)" 
6. 

Now let u = \1'1- x 2 . Then we have 

V 
{COS {3 (X tan a dydx 

Jo Jo 2(u2 - y2) 

r os 
{3 ~ log \ u + x tan a \ dx 

Jo 4u u - xtanoo 

1 u cos a + x sm a l COS
{3 1 \ . \ - og . dx. 

o 4u ucosoo - xsmoo 
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Let x = cose. Then u = sine and dx/u = -de. Hence 

v 1 1(3 1 12 sin( e + a) 1 -- og de 
4 1r/2 2sin(e - a) 

1 
4 [JI(fJ + a) - JI(7r/2 + a) - JI(fJ - a) + JI(7r/2 - a)) 

1 
4 [JI(a + fJ) + JI(a - fJ) + 2JI(7r/2 - a)). o 

Now suppose that the tetrahedron 80:,(3 has two ideal vertices. Then the 
vertex (cos;3, cos fJ tan a) of 6 is on the unit circle. Hence 

cos2 fJ + cos2 fJtan2 a = l. 

Thus tan2 a = tan2 fJ and so a = fJ. By Theorem 10.4.5, we have 
1 

Vol(80:,0:) = 4 [JI(2a) + 2JI(7r/2 - a)). 

By Formula 10.4.9, we have 

2JI(7r/2 - a) = 2JI(a) - JI(2a). 

This implies the next result. 

Corollary 1. The volume of the tetrahedron 80:,0: zs given by 

1 
Vol(80:,0:) = "2JI(a). 

Let To:,(3,'Y be an ideal tetrahedron in U3 with dihedral angles a,;3, "(. 
We now compute the volume of To:,(3,"!" 

Theorem 10.4.6. The volume of the zdeal tetrahedron To:,(3,'Y is given by 

Vol(To:,(3,'Y) = JI(a) + JI(fJ) + JIh). 

Proof: We may assume that one vertex of To:,(3,'Y is at (Xl and that the 
base of To:,(3,'Y is on the unit sphere. The vertical projection of To:,(3,'Y to 
E2 is a Euclidean triangle 6 with angles a, fJ, "( and vertices on the unit 
circle. There are three cases to consider. The origin is (1) in the interior 
of 6, (2) on a side of 6, or (3) in the exterior of 6. 

(1) Suppose that the origin is in the interior of 6. Join the origin to 
the midpoints of the sides and the vertices of 6 by line segments. This 
subdivides 6 into six right triangles. Note that the pairs of triangles that 
share a perpendicular to a side of 6 are congruent. See Figure 10.4.7. Since 
an angle inscribed in a circle is measured by one half its intercepted arc, the 
angles around the origin are as indicated in Figure 10.4.7. Projecting this 
subdivision of 6 vertically upwards subdivides To:,(3,'Y into six generalized 
tetrahedra of the form 8e,e with e = a, a, fJ, fJ, ,,(, "(. See Figure 10.4.8. By 
Corollary 1, we have 

Vol(To:,(3,'Y) = 2 DJI(a) + ~JI(;3) + ~JIh)} 
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Figure 10.4.7. Subdivision of the triangle /::,. 

(2) Now suppose that the origin is on a side of 6.. Then 6. is inscribed 
in a semicircle. Hence, one of the angles of 6. is a right angle, say'Y. Join 
the origin to the midpoints of the sides and vertices of 6. by line segments. 
This subdivides 6. into four right triangles. See Figure 10.4.9. The same 
argument as in case (1) shows that 

{3 

Figure 10.4.8. Subdivision of the tetrahedron Ta ,{3,7 
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a iL------'---"'=--------~ (3 

Figure 10.4.9. Subdivision of the triangle tc,. 

(3) Now suppose that the origin is in the exterior of 6.. Then one of the 
angles of 6. is obtuse, say T Join the origin to the midpoints of the sides 
and vertices of 6. by line segments. This expresses 6. as the union of four 
right triangles minus the union of two right triangles. See Figure 10.4.10. 
The same argument as in case (1) shows that 

o 

Example 1. The hyperbolic structure on the complement of the figure­
eight knot constructed in the last section was obtained by gluing together 
two copies of T rr / 3 ,1f/3,1f/3' Thus, its volume is 6JI(Jr /3) = 2.0298832 .... 

Figure 10.4.10. The triangle tc,. expressed as the difference of right triangles 
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Theorem 10.4.7. A tetrahedron of maximum volume in H3 is a regular 
ideal tetrahedron. 

Proof: Since any tetrahedron in H3 is contained in an ideal tetrahedron, 
it suffices to consider only ideal tetrahedra. Because of Theorem 10.4.6, we 
need to maximize the function 

V(a,,6, /,) = JI(a) + JI(,6) + JIb) 

subject to the constraints 

00,,6, /' ? 0 and 00+,6 + /' = 7L 

As V is continuous, it has a maximum value in the compact set 00,,6, /' ? 0 
and 00+,6 + /' = 7r. Now V(a,,6, /,) = 0 if anyone of 00,,6, /' is zero. Hence 
V attains its maximum value when 00,,6, /' > O. Let 

f(a,,6, /,) = 00+,6 + /'. 
Then by the Lagrange multiplier rule, there is a scalar A such that 

grad(V) = Agrad(f) 

at any maximum point (000, ,60, /'0). Then we have 

JI'(ao) = JI'(,6o) = JI'bo). 

Therefore, we have 

sin 000 = sin,6o = sin /'0 . 

As 000 + ,60 + /'0 = 7r, we deduce that 000,,60, /'0 = 7r /3. Thus, every ideal 
tetrahedron of maximum volume is regular. 0 

Let P be an ideal polyhedron in U3 obtained by taking the cone to 00 

from an ideal n-gon on a hemispherical plane of U3. Let 001, ... ,an be the 
dihedral angles of P between its vertical sides and the base n-gon. We shall 
denote P by Pal, ,an' 

Theorem 10.4.8. The polyhedron Pal, .. ,an has the follow2ng properties: 

(1) a1+a2+"'+an=7r, 

(2) Vol(Pal , .. ,an ) = L~l JI(a,). 

Proof: The proof is by induction on n. The case n = 3 follows from 
Theorems 10.4.2 and 10.4.6. Suppose that the theorem is true for n - 1. 
By subdividing the base n-gon of Pal, .. ,an into an (n-1 )-gon and a triangle, 
and taking the cone to 00 on each polygon, we can subdivide Pal, .. ,an into 
the union of Pal, .. ,an -2,{3 and P an - l ,an ,7r-{3' By the induction hypothesis, 
we have that 

001 + ... + a n -2 + ,6 = 7r, 

a n -1 + an + 7r - ,6 = 7r. 
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Adding these two equations gives (1). Similarly, we have 

Vol(Pa l, .. ,an _2,/3) = (}; JI(a,)) + JI(,6), 

Vol(Pan _ 1 ,an ,7r-/3) = JI(an-l) + JI(an ) + JI(7r - ,6). 

Adding these two equations gives (2). o 

Example 2. The hyperbolic structure on the complement of the White­
head link constructed in the last section was obtained from a regular ideal 
octahedron, which can be subdivided into two copies of p 7r/ 4 ,7r/4,7r/4,7r/4' 

Therefore, its volume is 

8JI(7r/4) = 3.6638623 .... 

Example 3. The hyperbolic structure on the complement of the Bor­
romean rings constructed in the last section was obtained by gluing to­
gether two regular ideal octahedrons. Therefore, its volume is 

16JI( 7l" / 4) = 7.3277247 .... 

Exercise 10.4 

1. Let L be the positive 3rd axis in U3 and let r be a positive real number. Set 

C(L,r) = {x E U3 : du(x,L) = r}. 

Prove that C(L, r) is a cone with axis L and cone point 0, and that the angle 
¢ between Land C(L, r) satisfies the equation sec ¢ = cosh r. 

2. Let K and L be two nonintersecting and nonasymptotic hyperbolic lines of 
B3. Prove that there is a unique hyperbolic line M of B3 perpendicular to 
both K and L. 

3. Let T be an ideal tetrahedron in B3 and let K, L, M be the perpendiculars 
to the opposite edges of T. Prove that the group r of orientation preserving 
symmetries of T contains the 1800 rotations about K, L, M. Conclude that 
K, L, M meet at a common point and are pairwise orthogonal and that r 
acts transitively on the set of ideal vertices of T. 

4. Deduce from Formula 10.4.8 that the function JI(O) has the Fourier series 

expansion 

JI(O) = ! ~ sin(2nO) . 
2~ n 2 

n=l 

5. Prove that the function JI(O) has the series expansion 

00 Bn (20?n+l 
JI(O) = 0 - 0Iog(20) + L 2n (2n + 1)! for 0 < 0 < 7r, 

n=l 

where Bl = 1/6, B2 = 1/30, B3 = 1/42, ... are Bernoulli numbers, by twice 
integrating the usual Laurent series expansion for the cotangent of O. 
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6. Prove that the set of volumes of all the ideal tetrahedra in H3 is the interval 
(0, 3JI(rr /3)]. 

7. Prove that a regular ideal hexahedron can be subdivided into five regular 
ideal tetrahedra. 

8. Find the volume of a regular ideal dodecahedron. 

9. Let P be a regular dodecahedron in H3 whose dihedral angles are 27r /5. 
Estimate the volume of P by finding the volumes of the inscribed and cir­
cumscribed balls about P. 

§10.5. Hyperbolic Dehn Surgery 

In this section, we construct hyperbolic structures for almost all the closed 
3-manifolds obtained from jj;3 by performing Dehn surgery along the figure­
eight knot. We begin by parameterizing Euclidean triangles. 

Parameterization of Euclidean Triangles 

Let 6( u, v, w) be a Euclidean triangle in the complex plane C with vertices 
u, v, w labeled counterclockwise around 6. To each vertex of 6 we asso­
ciate the ratio of the sides adjacent to the vertex in the following manner. 

w-u u-v v-w 
z(u) = --, z(v) = --, z(w) = --. (10.5.1) 

v-u w-v u-w 
The complex numbers z(u), z(v), z(w) are called the vertex mvarzants of 
the triangle 6(u,v,w). See Figure 10.5.1. 

Lemma 1. The vertex mvariants z(u),z(v),z(w) depend only on the ori­
entatwn preserving similarity class of the triangle 6( u, v, w). 

w 

w-u z(u) = w-u 
v-u 

U L-______ ~----~ 

v-u 

Figure 10.5.1. The vertex invariant z ( u) of the triangle l> ( u, v, w) 
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z(u) 

Figure 10.5.2. The triangle 6(0,1, z(u)) 

Proof: An arbitrary orientation preserving similarity of C is of the form 
x f--+ ax + b with a =1= o. Observe that 

z(au+b) = 
(aw+b) - (au + b) 
(av + b) - (au + b) 

a(w - u) = z(u). 
a(v - u) o 

Lemma 2. Let z(u) be a vertex znvariant of a triangle L.(u, v, w). Then 

(1) Im(z(u)) > 0; and 

(2) arg(z(u)) is the angle of L.(u, v, w) at u. 

Proof: Define a similarity ¢ of C by 

¢(x) = _x _ _ _ u_. 
v-u v-u 

Then ¢(u) = 0, ¢(v) = 1, and ¢(w) = z(u). As ¢ preserves orientation, the 
triangle ~(O, 1, z(u)) is labeled counterclockwise. See Figure 10.5.2. Hence 
Im(z(u)) > 0, and arg(z(u)) is the angle of L.(u,v,w) at u. 0 

It is evident from Figure 10.5.2 that z(u) determines the orientation 
preserving similarity class of 6(u, v, w). Consequently z(u) determines 
z(v) and z(w). By Lemma 1, we can calculate z(v) and z(w) from the 
triangle L.(O, 1, z(u)). This gives the relationships 

z(v) 

z(w) 

1 
1-z(u)' 
z(u) - 1 

z(u) . 

(10.5.2) 

(10.5.3) 

Example: For an equilateral triangle L.(u, v, w), the vertex invariants 

z(u), z(v), z(w) are all equal to! + V;i, since L.(u, v, w) is directly similar 

to L.(O, 1, ~ + V;i). 
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We now state precisely the parameterization of Euclidean triangles in C 
by their vertex invariants. 

Theorem 10.5.1. Let 6(u, v, w) be a Euclidean trzangle zn C, with ver­
tices labeled counterclockwise and let Zl = z(u), Z2 = z(v), Z3 = z(w) be its 
vertex znvariants. Then Zl, Z2, Z3 are in U2 and satisfy the equations 

(1) ZlZ2Z3 = -1, and 

(2) 1 - Z2 + ZlZ2 = o. 
Conversely, if ZbZ2,Z3 are zn U2 and satzsfy (1) and (2), then there is 
a Euclidean triangle 6 in C that zs unique up to orientatwn preserving 
simzlarity whose vertex znvarzants in counterclockwise order are Zl, Z2, Z3. 

Proof: By Formulas 10.5.2 and 10.5.3, we have 

ZlZ2 Z3 = Zl (_1 ) (~) =-l. 
1- Zl Zl 

As Z2 = 1/(1 - Zl), we have Z2 - ZlZ2 = l. 
Conversely, suppose that Zb Z2, Z3 are in U2 and satisfy equations (1) 

and (2). Then the vertex invariants of 6(0, 1, Zl) are Zb Z2, Z3. 0 

Parameterization of Ideal Tetrahedra 

We now parameterize the ideal tetrahedra in H3. Let v be a vertex of an 
ideal tetrahedron T in H3. We label the edges of T, incident with v, with 
the corresponding vertex invariants Zl, Z2, Z3 of the link of v. Then opposite 
edges of T have the same label. The three parameters Zl, Z2, Z3 are indexed 
according to the right-hand rule with your thumb pointing towards a vertex 
of T. See Figure 10.5.3. The complex parameters Zb Z2, Z3 are called the 
edge znvariants of T. 

Figure 10.5.3. The edge invariants of an ideal tetrahedron 
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The next theorem follows immediately from Theorems 10.4.1 and 10.5.1. 

Theorem 10.5.2. Let Zl, Z2, Z3 be complex numbers in U2 satisfymg 

(1) ZlZ2Z3 = -1, and 

(2) 1 - Z2 + ZlZ2 = o. 
Then there zs a zdeal tetrahedron T in H 3, unique up to orzentatwn preserv­
ing congruence, whose edge invariants, in right-hand order, are Zl, Z2, Z3. 

Gluing Consistency Conditions 

Let <P be an 10 (H3)-side-pairing for a finite family T of disjoint ideal tetra­
hedra in H3. We now determine necessary and sufficient conditions on the 
edge invariants of the tetrahedra in T such that <P is proper. The side­
pairing <P induces a pairing on the set £ of edges of the tetrahedra in T, 
which, in turn, generates an equivalence relation on £. The equivalence 
classes of £ are called cycles of edges. 

Theorem 10.5.3. Let <P be an Io(H3)-side-pairing for a finite family T 
of disjoint zdeal tetrahedra m H3. Then <P is proper zf and only if the 
invariants of each cycle of edges {E1, ... Em} satisfy the equations 

(1) z(E1)z(E2 )··· z(Em) = 1, and 

(2) argz(E1)+argz(E2)+·· ·+argz(Em) = 211", 
where 0 < arg z(E~) < 11" for each i. 

Proof: Let E. be an edge of the side S~ of the tetrahedron T~ in T. 
By reindexing, if necessary, we may assume that g8. (E~+d = E~ for i = 
1, ... , m - 1 and g8m (E1) = Em· Define gl = 1 and g~ = g81 ... g8.-1 for 
i = 2, ... , m + 1. Then gm+1 (E1) = E 1. Orient T~ positively for each i. 
This orients each side of T •. Now orient E~ positively with respect to S~ for 
each i. As g8. is orientation preserving, its restriction g8. : S: -+ S~ reverses 
orientation. As S~+l and S: intersect along E~+1' the edge E~+l is oriented 
negatively with respect to S:. Therefore, the restriction g8, : E~+l -+ E~ 
preserves orientation for i = 1, ... , m - 1. Likewise g8m : E1 -+ Em 
preserves orientation. Hence gm+1 preserves the orientation of E 1· Thus, 
either gm+1 is the identity on E1 or gm+1 acts as a nontrivial translation 
along E1 . In the latter case, <P has an infinite cycle on E1 . Thus <P has 
finite cycles if and only if gm+1 is the identity on E1 for each cycle of edges 
{E1, ... ,Em}. 

The tetrahedrons T~ and g8, (T~+d lie on opposite side of their common 
side S~ and so the tetrahedrons g~T. and g.+1T.+1 lie on opposite sides of 
their common side g~S. for i = 1, ... , m - 1. Now S~ and S:_l are the 
two sides of T. intersecting along E. and so g.S. and g~S:_l = g~-lS.-l 
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Figure 10.5.4. A cycle of Euclidean triangles 

are the two sides of 9tTt intersecting along El for i = 2, ... ,m. Therefore, 
the tetrahedra 9tT" for i = 1, ... , m, occur in sequential order rotating 
about the edge El starting at the side S~ of Tl and ending at the side 
9mSm = 9m+lS~ of 9mTm. Observe that {9tTt} forms a cycle oftetrahedra 
around the edge El if and only if the dihedral angle sum of the edges 
E 1 , ... ,Em is 271" and 9m+l = 1. Thus <I> is proper if and only if {9tTt} 
forms a cycle of tetrahedra around El for each cycle of edges {El' ... , Em}. 

By taking El to be a vertical line of U3 , we see that {9tTt} forms a cycle 
if and only if the orientation preserving similarity classes of Euclidean tri­
angles determined by the invariants z(Ed, ... ,z(Em) have representatives 
that form a cycle around a point of C. See Figure 10.5.4. This will be the 
case if and only if 

arg Z(El) + arg z(E2 ) + ... + arg z(Em) = 271" 

and representatives can be chosen so that their sides match up correctly. 
As Iz(Et)1 is the ratio of the length of adjacent sides, the sides will match 
up correctly if and only if Iz(Ed··· z(Em)1 = 1. Thus <I> is proper if and 
only if the edge invariants of every cycle of edges satisfy equations (1) and 
(2). 0 

Hyperbolic Structures on the Figure-Eight Knot 

Consider the gluing pattern on two parameterized ideal tetrahedrons T and 
T' in Figure 10.5.5 that gives the figure-eight knot complement. The gluing 
consistency equations for the two edge cycles are 

ZlW2Z2WIZ2W2 = 1 and ZlW3Z3WIZ3W3 = 1, 

or equivalently 
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Z2 

~ 11' 
----.:;>--- - - - - - - -1-

W2 

o 

T T' 

Figure 10.5.5. The gluing pattern for the figure-knot complement 

As Z1Z2Z3 = -1 and WIW2W3 = -1, the product of the two consistency 
equations is automatically satisfied 

(ZIZ2Z3)2 (WI W2W3)2 = 1. 

Thus, we need only consider one of the consistency equations, say 

(10.5.4) 

From Formulas 10.5.2 and 10.5.3, we have Z2 1/(1 - zd, and so 
ZI Z2 = Z2 - 1. Likewise WI W2 = W2 - 1. Hence, upon substituting z = Z2 

and W = W2 into Formula 10.5.4, we have 

Z(Z -1)w(w -1) = 1. (10.5.5) 

This gives the quadratic equation in z, 

z2 - Z - (w(w - 1))-1 = 0, (10.5.6) 

which has the solutions 

1 ± VI + 4(w(w -1))-1 
z= 

2 
(10.5.7) 

We want solutions such that Im( w) > ° and Im( z) > 0. For each value of w, 
there is a unique solution for z, with Im(z) > 0, provided the discriminant 
1 + 4(w(w - 1))-1 is not in the interval [0,00). 

Let w = a + bi with a, b real and b > 0. Then 

w(w-l) (a+bi)(a-l+bi) 
= (a(a - 1) - b2 ) + (b(a - 1) + ab)i. 
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2i 

o 

I 

6 .1 + v'i5 i 2 2 

• .1 + V3i 
2 2 

1/2 1 

Figure 10.5.6. The solution space for w 

Now suppose that w(w - 1) is real. Then 

b(a-1)+ab=0 

and so a = 1/2. Thus 
1 2 

w(w - 1) = -4 - b . 

Solving the inequality 

1 + 4(w(w _1))~1 :::: 0 

481 

yields the inequality b :::: v'I5/2. Thus, the desired solutions correspond to 
the points in U2 minus the ray n + ~i : t :::: v'I5}. See Figure 10.5.6. 

We also need to satisfy the angle sum equations 

Now as 

we have that 

arg(Zl) + 2 arg(z2) + arg( wr) + 2 arg( W2) 

arg(zl) + 2arg(z3) + arg(w1) + 2arg(w3) 

Likewise, we have 

Therefore 81 < 47f, and so 81 = 27f. Likewise 82 = 27f. The next theorem 
now follows from Theorem 10.5.3. 



482 10. Hyperbolic 3-Manifolds 

Theorem 10.5.4. The hyperbolic structures on the figure-eight knot com­
plement obtained by glumg together the parameterized ~deal tetrahedrons T 
and T' according to the given pattern are parameterzzed by the pomts in the 
upper half w-plane minus the ray {~+!i : t ::::: v'i5}. The parameterization 
is given by W2 = wand 

1 V1 1 
Z2 = "2 + "4 + w (w - 1)" 

The Uniqueness of the Complete Structure 

Let M be the hyperbolic 3-manifold obtained by properly gluing together 
the ideal tetrahedrons T and T' according to the gluing pattern in Figure 
10.5.5. We now show that ~ + v{i is the only value of the parameter w for 
which M is complete. 

Let L be the link of the cusp point of M. By Theorem 10.2.4, we have 
that M is complete if and only if L is complete. By Theorems 8.4.5, 8.5.8, 
and 8.5.9, we have that L is complete if and only if the holonomy 

'TJ: 7rl(L) ---+ So(([:) 

maps 7rl (L) isomorphically onto a freely acting discrete group of Euclidean 
isometries of C. By Theorem 5.4.4, this is the case if and only if the image 
of 'TJ is a lattice group of translations of C. 

Now every element of So(([:) is ofthe form ¢(z) = az+,B with a in C* and 
,B in C; moreover, ¢ is a Euclidean translation if and only if a = 1. Notice 
that the derivative of ¢ is ¢'(z) = a, and so ¢ is a Euclidean translation if 
and only if ¢'(z) = 1. 

We now compute the derivative of the holonomy of the similarity struc­
ture on L. Consider the pseudo-triangulation of L in Figure 10.5.7. After 
developing the triangulation of L onto C, we can regard directed edges of 
the triangulation as vectors in C. The ratio, as complex numbers, of any 
two vectors in the same triangle is known in terms of the vertex invari­
ants. See Figure 10.5.1. This allows us to compute the derivative of the 
holonomy as a telescoping product of ratios. 

Let x be the element of 7rl (L) represented by the base of the parallelo­
gram in Figure 10.5.7. To compute 'TJ'(x) , we assign the value 1 to the base 
of triangle a and develop the triangulation of L onto C along x until we 
come to another copy of triangle a. See Figure 1O.5.8( a). The values of the 
directed edges encountered along the way are given in terms of the vertex 
invariants by the equations 

1 VI Vu 
- = ZI, - = W2, ... , - = z3· 
VI V2 V12 

Therefore 
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T T' 

y 

x 

Figure 10.5.7. The link of the cusp point of the figure-eight knot complement 

Hence, we have 

1/V12 = z5wiw~ = (W1W2)2 = (w _1)2 
Zlz2 Z - 1 

The value V12 of the base of the second triangle a is T]'(x). Thus 

T]' (x) = (~ ~ ~ r (10.5.8) 

Let y be the element of 7r1 (L) represented by the left side of the paral­
lelogram in Figure 10.5.7. From Figure 1O.5.8(b), we compute 

-1 1 
r/(y) = -Z3W1W3 = -- = ( ) 

ZlZ2W2 W 1 - z 

From Formula 10.5.5, we have 

T]'(y) = z(l - w). (10.5.9) 

Now T]'(x) = 1 if and only if z = w, and so T]'(x) = 1 = T]'(y) if and only 

if w(l - w) = 1. Hence T]' is trivial if and only if W = ~ + V;i. Thus M is 

complete if and only if W = ~ + V;i, that is, both T and T' are regular. 



484 10. Hyperbolic 3-Manifolds 

(a) 

(b) 

Figure 1O.5.S. The developments of triangle a along x and y 

The Metric Structure of the Link 

We now assume that M is incomplete. Then the link L of the cusp point 
of M is incomplete. By Theorem 8.4.5, the image of the holonomy 

contains an element ¢ that is not an isometry. Then ¢(z) = az + {3 with 
lal i= 0, 1. By composing the developing map b : L ----7 C with a translation 
of C, we may assume that (3 = O. Then ¢ fixes O. As 'lrl(L) is abelian, 
every element of Im(7]) must also fix 0. Thus 7] maps into the subgroup 
So(C)o of orientation preserving similarities of C that fix O. 

Every element of So (C)o is of the form z r--+ kz for some nonzero complex 
number k. Hence, we may identify So(C)o with the multiplicative group C* 
of nonzero complex numbers. The exponential map exp : C ----7 C* induces 
an isomorphism from the topological group C/2'lri7L to C*. Therefore exp 
induces a complete metric on C* so that C/2'lri7L is isometric to C* via expo 
It is an exercise to show that C* is a geometric space with 1o(C*) = C*. 
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. Tr· 1 A , A' £ _ 1 + 1 . FIgure 10.5.9. lang es u.a , • •• ,U.h or w -"2 "2Z 

We now show that the developing map 8 : £ -+ C maps into C*. Let 
1:::::., for i = a ... , h, be the eight triangles in the triangulation of L. Lift , '- .., 

these triangles to tri~ngles 1:::::." for i = a, . .. ,h, in L that meet as in_Figure 
10.5.7. Let I:::::.~ = 8(1:::::.,) for i = a, .. :) h. See Figure 10.5.9. Since L is the 
union of the images of the triangles 1:::::., under the covering transformations 
of the universal covering K, : £ -+ L, we have that 8(£) is the union of the 
images of the triangles I:::::.~ under the elements of Im(1]). Since 1](Y) does 
not fix a point in any of the triangles I:::::.~, we see that 0 is not in any of the 
triangles I:::::.~. As Im(1]) leaves C* invariant, we deduce that 1] maps into C*. 
Therefore L has the structure of a (C*, C*)-manifold by Theorem 8.4.5. 

Now L is a complete (C*, C*)-manifold because L is compact. Hence 
£ is a complete (C*, C*)-manifold. Therefore 8 : £ -+ C* is a universal 
covering by Theorem 8.5.6. The exponential map exp : C -+ C* is a 
universal covering of geometric spaces. We shall identify the group T(q 
of translations of C with C. Then the complete (C*, C*)-structure of L 
lifts to a complete (C, q-structure for L. Let '6 : £ -+ C be a lift of 
8 : £ -+ C* with respect to expo Then '6 is the developing map for L as 
a (C, q-manifold. Let ij : 1Tl (L) -+ C be the holonomy determined by '6. 
Then 1] = exp ij is the holonomy determined by 8. 

Theore~ 10.5.5. The group Im(1]) is a discrete subgroup of C* and the 
map 8 : L -+ C* induces a (C*, C*)-equivalence from L to C* /Im(1]) if and 
only if 21Ti is in Im( ij). 

Proof: Since I: is_ a complete (C, q-manifold, Im(ij) is a discrete sub­
group of C, and 8 : L -+ C induces a (C, q-equivalence from L to C/lm(ij) 
by Theorem 8.5.9. Observe that we have a commutative diagram of epi­
morphisms 

C 

1 
C/lm(ij) 

exp 
C* 

1 
C* /Im(1]). 
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Suppose that Im(7]) is a discrete subgroup of C* and {j induces a (C*, C*)­
equivalence from L to C* /Im(7]). Then exp is an isomorphism. Now as 
exp(27ri) = 1, we have that 27ri is in Im(i)). 

Conversely, suppose that 27ri is in Im(i)). As 7] = expi), the kernel of 
7] is nontrivial. Hence Im( 7]) is the direct sum of a finite cyclic group and 
an infinite cyclic group. Therefore, the infinite cyclic group generated by 
¢ is of finite index in Im(r/). As (¢) is discrete, Im(7]) is discrete. Since 27ri 
is in Im(i)), the map exp is an isomorphism. As C/lm(i)) is compact and 
C* /Im( 7]) is Hausdorff, exp is a homeomorphism. Consequently {j induces 
a (C*, C*)-equivalence from L to C* /Im(7]). 0 

Suppose that Im( 7]) is a discrete subgroup of C* and {j : L ---+ C* induces 
a (C*, C*)-equivalence from L to C* /Im(7]). Then 8-1 : C ---+ L induces 
a covering projection from C* to L that is a (C*, C*)-map. Consequently, 
the triangulation of L lifts to a triangulation of C* by Euclidean triangles. 
Thus, the triangulation of L develops into an exact tessellation of C* by 
Euclidean triangles. Figure 10.5.10 illustrates the exact tessellation of C* 
when ij(y) = 27ri/1O. 

Figure 10.5.10. A tessellation of C* by Euclidean triangles 
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Metric Completion 

We now determine when the metric completion M of M is a hyperbolic 
3-manifold. We shall identify the triangle 6, in L with a triangle in M 
that represents it, for each i = a, ... , h, such that these eight triangle~ in M 
meet as in Figure 10.5.9. Then we may identify the triangle 6, of L with 
a triangle in the universal covering space 1M that projects to the t!iangle 
6, in M, for each i = a, ... ,h, such that these eight triangles in M meet 
as in Figure 10.5.9. 

A - 3 
Regard C as the boundary of U3 in ]R3. _ Let 8 : M ~ U be the 

developing map for M that maps the triangle 6 a onto a horizontal trian~le 
A A - , 

directly above 6~. Let 6~ = 8(6,) for i = a, . .. ,h. Then the triangles 6, 
lie on a horizontal horosphere of U3 with L< directly above 6~ for each i. 
Let fJ : 1fl(M) ~ 1o(U3 ) by the holonomy determined by 8. Then we have 
a commutative diagram 

1o(C*) 

1j 

1o(U3), 

where i and j are the injections induced by indusion and Poincare exten­
sion, respectively. 

Let T" be the tetrahedron in M corresponding to T or T' that contains 
the triangle 6, for i = a, . .. ,h. Then T, lifts to a tetrahedron ,t in 1M 
containing li,. Let T: = 8CT,) for i = a, ... , h. Then T: is the ideal 
tetrahedron in U3 , with one vertex at 00, directly above the triangle 6~. 

Let C be a solid cone in U3 centered about the 3rd axis, with its vertex 
at 0, such that the triangle li~ is outside of C for each i = a, ... ,h. Then 
T: intersects 8C in a triangle < directly above li~. See Figure 10.5.ll. 
Let T, be the triangle in T, corresponding to <. Since T: is above li~, for 
i = a, ... ,h, the triangles Ta , ... ,Th meet only along their boundaries in 
M. Furthermore, since the image of JTJ leaves 8C invariant, the triangles 
Ta , ... ,Th fit together to form a pseudo-triangulation of a torus S in M. 

The torus S is the boundary of a dosed neighborhood N in M of the cusp 
point of 1):1. Let 7, be the triangle in T, corresponding to T, for i = a, ... , h, 
and let N be the component of the subspace of 1M over N that contains 7, 
for each i. As N deformation retracts onto Sand 1fl (S) injects into 1fl (M), 
we have that 1fl(N) injects into 1fl(M). Hence N is a universal covering 
space of N. 

Let Co be C minus the 3rd axis. As the developing map 8 : L ~ C* 
is surjective, C* is covered by the triangles li~, for i = a, ... ,h, and their 
images by elements of the image of the holonomy TJ : 1fl (L) ~ C*. Hence 
Co is covered by the tetrahedra T:, for i = a, ... ,h, and their images by 
the elements of j(1m(TJ)). Consequently 8(N) = Co. 
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Figure 10.5.11. The triangles T: (on the cone), ,6.;, and L,.; 

Let U& be U3 minus the 3rd axis. Then the universal covering 

exp: C ----> C* 

extends to a universal covering 

exp: U3 ----> UJ. 

The hyperbolic metric induced on U3 by exp is not the Poincare metric, 
so we shall denote U3 , with the induced metric, by U&. Let Co be the 
subspace of U& over Co. Then Co is a universal covering space of Co. 

Now since the developing map fj : L ----> C* lifts to a homeomorphism 
§ : L ----> C, the developing map 8 : if ----> Co lifts to a homeomorphism 

8: if ----> Co. Let 
3: T(C) ----> 1o(UJ) 

be the injection obtained by lifting j : 1o(C*) ----> 1o(U3). Since '8 : L ----> C 
~nduces a (C, C)-equivalence from L to C/1m(i]), we conclude that the map 

8: if ----> Co induces an isometry from N to Co/3(1m(i])). 

Theorem 10.5.6. Let M be an incomplete hyperbol~c 3-manzfold obtained 
by properly gluing together two ~deal tetrahedrons according to the gluing 
pattern for the figure-eight knot complement. Then the metric completzon 
M is a hyperbolic 3-manifold ~f and only if the holonomy i] : 7r1 (L) ----> C 
for the link L of the cusp powt of M has the property that 

1m( i]) n i lR = 27ri Z. 
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Proof: Suppose that 
1m( ij) n i JR = 27ri Z. 

Let r = j(1m(1])) and r = ](1m(ij)),.: A...s 1] = expij, the projection of Co 
onto Co induces an isometry from Cojr to Cojr. Hence N is isometric 
to Cojr. The metric completion of Co is C, since C is the closure of Co 
in the complete metric space U3 • The group r is generated by a hyper­
bolic transformation of U3 whose axis is the core of C. Therefore r acts 
discontinuously on C. Hence C jr is a metric space homeomorphic to a 
solid torus. As C jr is compact, C jr is complete. Hence C jr is the metric 
completion of Cojr, since Cjr is the closure of Cojr in Cjr. Thus, the 
metric completion N of N is isometric to C jr. 

Now observe that the hyperbolic structure of the interior of Co jr extends 
to a hyperbolic structure on the interior of C jr. Hence, the hyperbolic 
structure of N° extends to a hyperbolic structure on N°. As M - N° is 
compact, the metric completion of Mis (M - N) UN, which is a hyperbolic 
3-manifold. 

Conversely, suppose that M is a hyperbolic 3-manifold. Let 8 : M ~ U3 

be the developing map for M that is consistent with the developing map 
8: M ~ U3 for M. Let fj : 7r1(M) ~ 1(U3 ) be the holonomy determined 
by 8. Then we have a commutative diagram 

7r(L) 
1] 

1o(C*) ---+ 

it !j 

7r1(M) 
fJ 

1o(U3 ) ---+ 

! ! 

7r1 (M) 
fj 

1(U3 ). ---+ 

By Theorem 8.5.9, we have that 1m(fj) is a discrete torsion-free subgroup 
of 1(U3 ). Therefore r = j(1m(1])) is a discrete torsion-free subgroup of 
1o(U3 ). As r fixes 0 and 00, the group r is elementary of hyperbolic type. 
By Theorem 5.5.8, the group r contains an infinite cyclic subgroup of finite 
index generated by a hyperbolic transformation. Since r is torsion-free, r 
is an infinite cyclic group generated by a hyperbolic transformation. As 
1] = exp fj, the image of fj is generated by an element in the kernel of exp 
and some other element not in i JR. Hence, there is a positive integer m 
such that 

1m( ij) n i JR = m27ri Z. 

By Theorem 8.5.9, the map 8 : M --> U3 induces an isometry from M 
to U3 j1m(fj). Consequently 8 induces an isometry from S to aCjr. This 
implies that 8 : L --> C* induces a (C*, C*)-equivalence from L to C* jr. 
By Theorem 10.5.5, we have that 27ri is in 1m(ij). Therefore m = 1. 0 
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I 
f.L I 

I 
K--+-+ 

'-

Figure 10.5.12. A meridian-longitude pair fL, A for a knot K 

The Dehn Surgery Invariant 

Let K be a smooth knot in i;3. A meridian of K is a simple closed curve 
f.L on the surface of a tubular neighborhood N of K in i;3 that bounds a 
disk in N. A meridian f.L of K is unique up to isotopy; and so the element 
m of 7rl(aN) representing f.L is unique up to sign. A longitude of K is an 
essential simple closed curve A on aN that meets a meridian f.L of K at only 
one point and is null homologous in i;3 - K. A longitude A of K is unique 
up to isotopy; and so the element £ of 7rl (aN) representing A is unique up 
to sign. A meridian f.L and longitude A of K that meet at only one point 
are called a meridwn-longitude pair of K and, by convention, are oriented 
by the right-hand rule with your thumb pointing in the direction of A. See 
Figure 10.5.12. Finally, the pair m,£ generates 7rl(aN). 

We now determine a meridian-longitude pair for the figure-eight knot 
K. From Figure 10.3.7, we see that the curve a in Figure 10.3.4 represents 
a meridian of K. Figure 10.5.13 illustrates a as it would appear in Figure 
10.3.6. Let L be the link of the cusp point of M and assume first that 
L is complete. Starting on a, we follow a longitude on L, slightly above 
K in Figure 10.3.6, down through side A. The path of sides and regions 
encountered in Figure 10.3.6 is 

AN' DNBN' ANCN' BNDN'CN A. 

Hence, the longitude crosses the curves in Figure 10.3.4 in the order 

a, E, 15,~, A, 'fJ, L, 1· 

a 

A 

Figure 10.5.13. The meridian a of the figure-eight knot 



§1O.5. Hyperbolic Dehn Surgery 491 

a 

Figure 10.5.14. A representation of a meridian-longitude pair on L 

Thus, the central zigzag path in Figure 10.5.14 represents a longitude for 
K. From Figures 10.5.7 and 10.5.14, we deduce that the meridian and 
longitude of K are represented by m = y and £ = x + 2y in 1l'1(L). From 
Formulas 10.5.8 and 10.5.9, we have 

7](m) 

7](£) 

z(l - w), 
z2(1- z)2. 

(10.5.10) 

(10.5.11) 

Now assume that M is incomplete. The holonomy 7] : 1l'1(L) ---t C* lifts 
to a homomorphism iJ : 1l'1 (L) ---t C such that iJ maps 1l'1 (L) isomorphic ally 
onto a lattice subgroup of C. Therefore iJ(m) and iJ(£) form a basis for the 
real vector space C. From Formulas 10.5.10 and 10.5.11, we have 

iJ(m) 
iJ(£) 

log Iz(l - w)1 + i arg(z(l- w)), 

2 log Iz(l- z)1 + 2iarg(z(1- z)). 
(10.5.12) 

(10.5.13) 

Now arg(z(l - w)) and arg(z(l - z)) are continuous functions of w that 

approach 0 as w ---t ~ + 1 i. Hence, we have 

with 

Thus, we have 

arg(z(l - w)) 

arg(z(l - z)) 
arg(z) + arg(l - w), 

arg(z) + arg(l - z), 

0< arg(z) < 1l', 

-1l' < arg(l - w) < 0, 

-1l' < arg(l - z) < O. 

-1l' < arg(z(l - w)) < 1l', 

-1l' < arg(z(l - z)) < 1l'. 
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Definition: If M is incomplete, the Dehn surgery invanant of M is the 
pair of real numbers ( a, b) such that 

aij(m) + bij(£) = 271"i. (10.5.14) 

If M is complete, the Dehn surgery mvanant of M is 00. 

Let W be the solution space for w in Figure 10.5.6. Then the Dehn 
surgery invariant determines a map 

d: W ~E2 

such that d(~ + 1i) = 00. If w =1= ~ + 1i, then 

d(w) = (a(w), b(w)), 

where a and b satisfy the system of equations 

a log Iz(l- w)1 + 2blog Iz(l- z)1 = 0, 

aarg(z(l- w)) + 2barg(z(1- z)) = 21f. 

(10.5.15) 

(10.5.16) 

(10.5.17) 

Theorem 10.5.7. The Dehn surgery invariant map d is continuous. 

Proof: Let Wo be W minus the point ~ + 1i. By Cramer's rule, a and 
b, satisfying Equations 10.5.16 and 10.5.17, are continuous functions of w 
on the set Woo As both arg(z(l - w)) and arg(z(l - z)) approach 0 as 

w ~ ~ + 1i, we deduce from Equation 10.5.17 that (a(w),b(w)) ~ 00 as 

w ~ ~ + 1i. Hence d is continuous at the point ~ + 1i. 0 

Theorem 10.5.8. Let M be an incomplete hyperbolic 3-manifold obtamed 
by properly gluing together two zdeal tetrahedrons according to the gluing 
pattern for the jigure-ezght knot complement. Then the metric completion 
M zs a hyperbolic 3-manifold if and only if the Dehn surgery invariant of 
M is a pazr (p, q) of copnme integers. 

Proof: By Theorem 10.5.6, the metric completion M is a hyperbolic 
3-manifold if and only if 

Im( ij) n i lR. = 21fi Z. 

Now Im(ij) ni lR. is a subgroup of Im(ij) and therefore is a free abelian group 
of rank 0, 1, or 2. The last case is impossible since Im(ij) n i lR. would then 
be of finite index in Im( ij), and every subgroup of finite index of Im( ij) is 
generated by two linearly independent vectors of the real vector space Co 
Hence Im( ij) n i lR. is a cyclic group. As Im( ij) is generated by ij( m) and 

ij(£), we have that 
Im( ij) n i lR. = 21fi Z 

if and only if there are coprime integers p, q such that 

pij(m) + qij(£) = 21fi. o 
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Dehn Surgery 

Let N be a closed tubular neighborhood of the figure-eight knot K in 
E3. Let p, q be coprime integers and let M(p,q) be the closed orientable 

3-manifold obtained by gluing a solid torus V to jj;3 - N° along their 
boundaries by a homeomorphism that maps a meridian of V onto a simple 
closed curve in 8N representing mpeq in 7fl(8N). The 3-manifold M(p,q) is 

said to be obtained from jj;3 by (p, q)-Dehn surgery on K. 

Theorem 10.5.9. Let M be an incomplete hyperbolic 3-manifold, obtained 
by properly gluing together two ideal tetrahedrons according to the gluing 
pattern for the jigure-ezght knot K, whose Dehn surgery invariant is a pair 
(p, q) of coprzme zntegers. Then the metric completion M is a hyperbolic 
3-manifold homeomorphic to the 3-manifold M(p,q) obtazned from E3 by 
(p, q)-Dehn surgery on K. 

Proof: By Theorem 10.5.8, the metric completion M is a hyperbolic 
3-manifold. From the proof of Theorem 10.5.6, we have 

M = (M - N°) u N, 

where N is a solid torus isometric to e/r. The group r = j(Im('T])) is 
generated by a hyperbolic transformation z f--+ kz, where jkj > 1. Let F 
be the frustrum in U3 bounded by 8e and the horospheres X3 = 1, jkj. 
See Figure 10.5.15. Then FO is a fundamental domain for r in e, and 
V = Fir is a solid torus that is glued to M - N° to give M. Now M _ N° 
is homeomorphic to the complement in jj;3 of a open tubular neighborhood 
of K. Therefore M is homeomorphic to a 3-manifold obtained from jj;3 by 
Dehn surgery on K. Observe that the bottom rim p of F in Figure 10.5.15 
represents a meridian of V, and p corresponds to a rotation by 27f in r. 
As the Dehn surgery invariant of M is (p, q), the curve p represents the 
element mpeq of 7fl(8N). Thus M is homeomorphic to M(p,q). 0 

Ikl 

Figure 10.5.15. The frustrum F within the cone C 
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Figure 10.5.16. The compactification of W along the missing ray 

Let W be the compactification of the solution space W obtained by 
adjoining to W the real axis, a copy of lR along the ray 

R = g + !i : t 2 Ji5} 

as indicated in Figure 10.5.16, and two more points ±oo, with -00 joining 
the left ends of the new lines together and +00 joining the right ends of 
the new lines together. Note that W is topologically a disk whose interior 
is W. 

Let a be the involution of W obtained by interchanging the solutions w 
and z of Equation 10.5.5, 

z(z -l)w(w -1) = 1. 

Then we deduce from Formulas 10.5.10 and 10.5.11 that 

a7](m) 

a7](£) 

7](m)-l = 7]( -m), 

7](£)-1 = 7](-£). 

Therefore, we deduce from Formula 10.5.14 that da = -d. 

Lemma 3. The involution a oj W extends to a continuous involution & 

oJW. 

Proof: The function a : W ----t W is defined by the formula 

1 /1 1 
a(w) = "2 ± V 4 + w(w - 1)" 

Hence a is analytic and therefore a is continuous. 
When w is near the interval (-00,0), we find that z is near the interval 

(1,00). Hence a extends continuously to (-00,0) by the formula 

1 /1 1 
&(w) = "2 + V 4 + w(w - 1)" 

We define &(0) = +00. 
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When w is near the interval (0,1/2]' we find that z is near the right side 
of the ray R. Hence (J extends continuously to (0,1/2] by the formula 

, 1 ./ (1 1) (J(w) = "2 + zy - 4: + w(w -1) , 

where &( w) is understood to lie in the right copy R+ of the ray R. 
When w is near the interval [1/2,1), we find that z is near the left side 

of R. Hence (J extends continuously to [1/2,1) by the formula 

&(w) = ~ +iV- (~+ W(W1_1)), 
where &( w) is understood to lie in the left copy R_ of R. We define 
&(1) = -00. 

When w is near the interval (1,00), we find that z is near the interval 
(-00,0). Hence (J extends continuously to (1,00) by the formula 

&(w) = ~ - V~ + w(w1_ 1)· 

We define &(+00) = O. 
When w is near the right side of R, we find that z is near the interval 

(0,1/2]. Hence (J extends continuously to R+ by the formula 

&(w) = ! _ h + 1 . 2 y4 w(w-1) 

When w is near the left side of R, we find that z is near the interval 
[1/2,1). Hence (J extends continuously to R_ by the formula 

&(w) = ~ + V~ + W(W1_1)· 

Finally, we define &(-00) = 1. Then & is a continuous involution of W. 0 

Let r be the involution of W defined by 

r(w)=l-w. 

Then r(z) = 1- z, and we deduce from Formulas 10.5.10 and 10.5.11 that 

r'T/(m) = 'T/(m)-l, 

r'T/(£) = 'T/(£). 

Therefore, we deduce from Formulas 10.5.12-10.5.14 that 

dr(w) = (ar(w), br(w)) = (a(w), -b(w)). 

Let p : E;2 --+ E;2 be the reflection in the x-axis. Then dr = pd. Clearly r 
extends to a continuous involution f of W. 
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Lemma 4. The Dehn surgery mvariant map d : W ---- iJ2 extends to a 
contmuous functwn d : W ____ fj;2. 

Proof: We begin by extending d to the open interval (1,00). When w is 
near (1,00), then z is near the interval (-00,0). Thus, for w in (1,00), we 
define 

1 ./1 1 
z = "2 - V"4 + w(w -1)' 

arg(w) = 0, arg(1 - w) = -7r, arg(z) = 7r, arg(1 - z) = O. 

Then arg(z(l- w)) = 0 and arg(z(l- z)) = 7r. From Equation 10.5.17, we 
find that b(w) = 1, and so from Equation 10.5.16, we have 

a(w) = -2 log Iz(l- z)l. 
log Iz(l- w)l) 

From Equation 10.5.5, we have 

a(w) = -2log(w(w -1)). 
log(w(l - z)) 

Define d on the interval (1, 00) by 

d(w) = (a(w), 1). 

Then d is continuous on the set W U (1, 00). 
Next, observe that 

and that 

log(w(w -1)) 
log(w(1 - z)) 

log(w) + log(w - 1) 
log(w) + log(1 - z) 
1 + log(w-l) 

log(w) 

1 + log(l-z) 
log(w) 

lim log(w(w - 1)) = 2. 
w-+oo log(w(1 - z)) 

< 2 

Hence a(w) > -4 and lim a(w) = -4. Now 
w-+oo 

a((1 + ./5)/2) = 0 

and a(w) ::; 0 for w ~ (1 + ./5)/2. By continuity, we deduce that a maps 
the interval [(1 + -../5) /2,00) onto the interval (-4,0]. Observe that 

d( (1, (1 + ./5) /2]) dO' (( -00, (1 - ./5) /2]) 

= dO'f([(1+./5)/2,00)) 

= -pd([(l + ./5)/2,00)). 

Therefore a maps the interval (1, (1 + -../5)/2] onto the interval [0,4). 
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We now extend d to the right copy R+ of the ray R. When w is near 
the right side of R, then z is near the interval (0,1/2]. Thus, for w in R+, 
we define 

1 ./1 1 
z = 2 - V 4: + w(w -1)' 

arg(z) = 0, and arg(1 - z) = O. Then arg(z(1 - z» = 0 and 

arg(z(1 - w») = arg(1 - w). 

From Equation 10.5.17, we find that 

27r a(w) - -~--:­
- arg(l- w) 

As w varies from ~ + ~i to +00 along R+, the value of a(w) increases 
from -4.76679 ... to -4. From Equation 10.5.16, we find that 

b(w) = -a(w) log Iz(1 - w)l. 
2 log Iz(l- z)1 

From Equation 10.5.5, we have 

b(w) = -a(w) log Iw(l- z)1 
2 log Iw(l- w)1 

-a(w) log Iw(1 - z)1 
= 

2loglwwl 

= 
-a(w) log Iw(l- z)1 

4 log Iwl 

= _ a(w) (1 + log(l- z») . 
4 log Iwl 

Hence, we have 

bG + ~ i) = 0 and w!l~oo b(w) = 1. 

Define d on R+ by 

d(w) = (a(w), b(w)). 

Then d is continuous on the set W U R+. 
We next define d( +00) = (-4, 1) and show that d is continuous at +00. 

Suppose that w is in W with Iwllarge and w is to the right of the ray R. 
Then Izl is small. From the equation 

Izllz - 11 Iwl Iw - 11 = 1, 

we deduce that 

Therefore, we have 

log Izi + 2 log Iwl ~ O. 
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y 

(-4,1) (4,1) 

-_-~5--------------~--~--~----------~~~~x 
5 

(-4,-1) (4, -1) 

Figure 10.5.17. The image of the boundary of W 

From Equation 10.5.16, we find that a + 4b ~ O. From the equation 

arg(z) + arg(z - 1) + arg(w) + arg(w - 1) = 27r, 

we deduce that 

Therefore, we have 

arg(z) ~ 7r - 2arg(w). 

arg(1 - z) ~ 0, 

arg(1 - w) ~ arg(w) - 7r, 

arg(z(1 - w)) ~ - arg(w) , 

arg(z(1- z)) ~ 7r - 2arg(w). 

From Equation 10.5.17, we find that 

-(a + 4b) arg(w) + 2b7r ~ 27r. 

Therefore (a, b) ~ (-4,1) with (a, b) ~ (-4,1) as w ~ +00. Thus dis 
continuous at the point +00. 

Now, by symmetry, d: W ~ i;2 extends to a continuous function 

d:w~i;2 

such that do- = -d and df = pd. Consequently d( aW) is a simple closed 
curve enclosing the origin that is symmetric with respect to the x and y 
axes. See Figure 10.5.17. 0 

Theorem 10.5.10. Let p, q be coprzme integers such that either Ipi > 4 
or Iql > 1, and let M(p,q) be the closed orientable 3-manifold obtained from 

i;3 by (p, q)-Dehn surgery on the figure-eight knot. Then M(p,q) has a 
hyperbolic 3-mamfold structure. 
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Proof: Let C and D be the closed disks in P;2 bounded by the simple 
closed curve d( 8W) with (0,0) in C. See Figure 10.5.17. Let 

r : P;2 - {(O, O)} ~ D 

be a retraction that retracts C - {(O,O)} onto 8C = 8D. From Equation 
10.5.17, we deduce that (0,0) is not in the image of d. Hence, the function 

I:W~D 

defined by 1 = rd is well defined and continuous. 
We now prove that 1 is onto. On the contrary, suppose that 1 is not 

onto. Then 1 is homotopic to a map 9 : W ~ 8D such that 1 and 9 
agree on 8W. Let 81 : 8W ~ 8D be the restriction of f. Then we have a 
commutative diagram of first homology groups and homomorphisms: 

H 1(8W) 

(8/)* 1 9* / 

H 1(8D) 

As H 1(W) = 0, we have that (81)* is the zero homomorphism; but 81 is 
a degree one map, which is a contradiction. Therefore 1 is onto. 

Now since r retracts C - {(O,O)} onto 8D, we deduce that D c d(W). 
Therefore DO c d(W). The theorem now follows from Theorem 10.5.9, 
since (p, q) is in DO. 0 

Exercise 10.5 

1. Prove that every Euclidean triangle in C is directly similar to a triangle whose 
vertices are 0,1, z, where z satisfies the inequalities Im(z) > 0, Izl :S 1, and 
Iz - 11 :S 1. 

2. Prove that C* is a geometric space with 10(C*) = C*, where C* acts on itself 
by multiplication. 

3. Let M(p,q) be the hyperbolic 3-manifold obtained by (p, q)-Dehn surgery on 
the figure-eight knot and let Moo be the complete, hyperbolic, figure-eight 
knot complement. Prove that 

Vol(M(p,q)) < Vol(Moo), 

lim Vol(M(p,q)) Vol(Moo). 
(p,q)-->oo 

4. Prove that infinitely many nonisometric, closed, orient able , hyperbolic 3-
manifolds can be obtained from the figure-eight knot by hyperbolic Dehn 
surgery. 

5. Prove that the Seifert-Weber dodecahedral space cannot be obtained from 
the figure-eight knot by hyperbolic Dehn surgery. 
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§10.6. Historical Notes 

§10.1. The concept of gluing together polyhedra to construct a 3-manifold 
was introduced by Poincare in his 1895 paper Analysis situs [336]. In 
particular, Example 1 appeared in this paper. The first example of a 
closed hyperbolic 3-manifold was constructed by Lobell in his 1931 paper 
Beispiele geschlossener dreidimensionaler Clifford-Kleinscher Riiume neg­
ativer Kriimmung [268] by gluing together eight copies of a 14-sided, right­
angled, hyperbolic polyhedron. For a description of Lobell's 3-manifold 
in terms of reflection groups, see Vesnin's 1987 paper Three-dimenswnal 
hyperbolic manifolds of Lobell type [396]. Examples 2 and 3 were given by 
Seifert and Weber in their 1933 paper Die beiden Dodekaederriiume [405]. 
Moreover, Theorem 10.1.3 appeared in this paper. Other examples of closed 
hyperbolic 3-manifolds obtained by gluing together polyhedra can be found 
in Best's 1971 paper On torsion-free discrete subgroups of PSL(2, q wzth 
compact orbit space [44], in Gucul's 1979 paper On a series of compact 3-
dimenswnal manifolds of constant negatwe curvature [173), and in Molnar's 
1989 paper Two hyperbolic football manifolds [303]. 

§10.2. Necessary and sufficient conditions for the complete gluing of 
a hyperbolic 3-manifold from a single polyhedron were given by Maskit 
in his 1971 paper On Poincare's theorem for fundamental polygons [281]. 
Necessary and sufficient conditions for the complete gluing of a hyperbolic 
3-manifold were given by Seifert in his 1975 paper Komplexe mit Seiten­
zuordnung [371). The concept of the link of a cusp point of a hyperbolic 
3-manifold was introduced by Thurston in his 1979 lecture notes The Ge­
ometry and Topology of 3-Manifolds [389], and all of the results of this 
section appeared in Thurston's notes. 

§10.3. The first example of a complete hyperbolic 3-manifold of finite 
volume was constructed by Gieseking in his 1912 thesis Analytzsche Unter­
suchungen iiber topologische Gruppen [153) by gluing together the sides of 
a regular ideal tetrahedron. For a discription of the Gieseking manifold, 
see Adams' 1987 paper The noncompact hyperbolic 3-manifold of minimal 
volume [4]. The Gieseking manifold is nonorientable. Its orient able double 
cover is the figure-eight knot space. That the figure-eight knot space has a 
complete hyperbolic structure appeared in Riley's 1975 paper A quadratic 
parabolic group [350]. The construction of the complete hyperbolic struc­
ture on the figure-eight knot space by gluing together two regular ideal 
tetrahedrons was given by Thurston in his 1979 lecture notes [389]. The 
complements of the Whitehead link and the Borromean rings were first 
shown to have a complete hyperbolic structure by Riley. See Wielenberg's 
1978 paper The structure of certain subgroups of the pzcard group [412] 
and Riley's 1979 paper An elliptzcal path from parabolic representations to 
hyperbolic structures [351). The construction of the complete hyperbolic 
structure on the Whitehead link and the Borromean rings by gluing to­
gether regular ideal octahedrons was given by Thurston in his 1979 lecture 
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notes [389J. For examples of complete hyperbolic 3-manifolds obtained 
by gluing together ideal cubes or regular ideal dodecahedra, see Aitchison 
and Rubinstein's 1990 paper An introductzon to polyhedral metNcs of non­
positive curvature on 3-manifolds [10J and their 1992 paper Combinatorial 
cubings, cusps, and the dodecahedral knots [11 J. 

§10A. Theorems 1004.1 and 10.4.2 appeared in Thurston's 1979 lecture 
notes [389). Clausen investigated the function f(¢) = 2J1(¢/2) in his 1832 
paper Ueber die Function f(¢) = sin¢ + i2 sin2¢ + ;2 sin3¢ + etc. [81). 
In particular, Formula 10.4.9 appeared in this paper. Moreover, Theo­
rem 10.4.3 is implicit in Clausen's Fourier series expansion of f(¢)· The 
Lobachevsky function was originally defined to be minus the integral of 
log cos e from 0 to e by Lobachevsky in his 1836 Russian treatise Applzca­
tion of imagznary geometry to certain integrals. For a German translation 
with commentary, see N. J. LobatschefskiJs Imagzniire GeometNe und An­
wendung der imaginaren Geometrie auf eznige Integrale (263]. The present 
Lobachevsky function was introduced by Milnor in Thurston's 1979 lecture 
notes (389]. All the results of this section appeared in Thurston's notes 
and in Milnor's 1982 paper Hyperbolzc geometry: the first 150 years [290). 
Theorem 10.4.5 was essentially proved by Lobachevsky in his 1836 trea­
tise [263). Theorem 10.4.7 appeared in Coxeter's 1935 paper The functzons 
of Schlafii and Lobatschefsky (89] and was proved by Milnor in his 1982 
paper [290). For the computation of the volume of a compact hyperbolic 
tetrahedron, see Kellerhals' 1989 paper On the volume of hyperbolic poly­
hedra [217] and her 1991 paper The dilogarithm and volumes of hyperbolic 
polytopes (218]. 

Jorgensen and Thurston have proved that the set of all the volumes of 
complete hyperbolic 3-manifolds of finite volume is a weB-ordered closed 
subset of the real line with all the volumes of open complete manifolds of 
finite volume as limit points from the left. In particular, there is a closed 
hyperbolic 3-manifold of minimum volume. Furthermore, volume is a finite­
to-one function of complete hyperbolic 3-manifolds of finite volume. For 
a discussion, see Thurston's 1979 lecture notes [389] and Gromov's 1981 
paper Hyperbolic manifolds according to Thurston and JRirgensen [168). 
Wielenberg has constructed arbitrarily large finite sets of nonisometric, 
open, complete, hyperbolic 3-manifolds with the same finite volume in his 
1980 paper Hyperbohc 3-mamfolds which share a fundamental polyhedron 
(413], and Apanasov and Gutsul have constructed arbitrarily large finite 
sets of nonisometric, closed, hyperbolic 3-manifolds with the same volume 
in their 1992 paper Greatly symmetric totally geodesic surfaces and closed 
hyperbolic 3-manifolds whzch share a fundamental polyhedron [21]. For a 
lower bound on the volume of an open, complete, hyperbolic 3-manifold 
of finite volume, see Adams' 1988 paper Volumes of N -cusped hyperbolic 
3-manifolds [5]. For a positive lower bound for the set of volumes of com­
plete hyperbolic 3-manifolds, see Gehring and Martin's 1991 paper Inequal­
ities for Mobius transformations and dzscrete groups [151]. See also Culler 
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and Shalen's 1992 paper Paradoxical decompositions, 2-generator Klemzan 
groups, and volumes of hyperbol~c 3-mamfolds [98]. For an algebraic charac­
terization of complete hyperbolic 3-manifolds of finite volume, see my 1987 
paper Euler characterist~cs of 3-mamfold groups and d~screte subgroups of 
SL(2,C) [347]. 

§1O.5. The similarity structures on the torus were considered by Kuiper 
in his 1950 paper Compact spaces with a local structure determined by the 
group of s~m~lanty transformatwns in En [247]. See also Fried's 1980 paper 
Closed similarity manifolds [140]. 

Hyperbolic Dehn surgery was introduced by Thurston in his 1979 lec­
ture notes [389], and all the results of this section appeared in Thurston's 
notes. According to Thurston [389], he became interested in hyperbolic 
Dehn surgery because of J(iirgensen's 1977 paper Compact 3-manifolds of 
constant negatzve curvature fibering over the c~rcle [212]. Thurston has 
proved that most knot and link spaces have a complete hyperbolic struc­
ture and almost all Dehn surgeries on a hyperbolic knot or link space yield a 
hyperbolic 3-manifold. For details, see Thurston's 1979 lecture notes [389], 
his 1982 article Three-d~mensional manifolds, Kleinian groups and hyper­
bol~c geometry [390], Morgan's 1984 paper On Thurston's umformizatwn 
theorem for 3-dimensional mamfolds [305], McMullen's 1992 article Rie­
mann surfaces and the geometr~zation of 3-manifolds [285], and Benedetti 
and Petronio's 1992 text Lectures on Hyperbolic Geometry [40]. 

For an analysis of the volumes of hyperbolic 3-manifolds obtained by 
Dehn surgery on a hyperbolic knot space, see Neumann and Zagier's 1985 
paper Volumes of hyperbolic 3-manifolds [314]. For a computation of the 
volumes of closed, orientable, hyperbolic 3-manifolds of small complex­
ity, see Matveev and Fomenko's 1988 paper Constant energy surfaces of 
Hamiltonian systems, enumeratwn of 3-d~mensional manifolds m mcreas­
ing order of complexity, and computation of volumes of closed hyperbolic 
mamfolds [284]. Weeks has written a computer program called SnapPea 
that computes invariants of hyperbolic 3-manifolds. For a discussion, see 
Adams' 1990 review SnapPea, The Weeks hyperbol~c 3-manifold program 
[6]. See also Weeks' 1993 paper Convex hulls and 2sometries of cusped hy­
perbohc 3-mamfolds [407]. For a tabulation of hyperbolic knots and links 
and their invariants, see Adams, Hildebrand, and Weeks' 1991 paper Hy­
perbol~c mvanants of knots and lmks [8]. For an analysis of some of the 
complete hyperbolic 3-manifolds obtained by Dehn surgery on the White­
head link complement, see Hodgson, Meyerhoff, and Weeks' 1992 paper 
Surgeries on the Wh~tehead lmk y~eld geometr2cally similar manifolds [195]. 



CHAPTER 11 

Hyperbolic n-Manifolds 

In this chapter, we take up the study of hyperbolic n-manifolds. We be­
gin with a geometric method for constructing spherical, Euclidean, and 
hyperbolic n-manifolds. In Section 11.2, we prove Poincare's fundamental 
polyhedron theorem for freely acting groups. In Section 11.3, we determine 
the simplices of maximum volume in hyperbolic n-space. In Section 11.4, 
we study the Gromov invariant of a closed, orient able, hyperbolic manifold. 
In Section 11.5, we study the measure homology of hyperbolic space-forms. 
In Section 11.6, we prove Mostow's rigidity theorem for closed, orientable, 
hyperbolic manifolds. 

§11.1. Gluing n-Manifolds 

In this section, we shall construct n-dimensional spherical, Euclidean, and 
hyperbolic manifolds by gluing together n-dimensional convex polyhedra. 
Let X = sn, En, or Hn with n > O. 

Definition: An n-dimensional, abstract, convex polyhedron P in X is an 
n-dimensional convex polyhedron P in X together with a collection F of 
subsets of OP, called the facets of P, such that 

(1) each facet of P is a closed, (n -I)-dimensional, convex subset of OP; 

(2) two facets of P meet only along their boundaries; 

(3) the union of the facets of P is oP; 

(4) the collection F is locally finite in X. 

By Theorem 6.2.6, an n-dimensional convex polyhedron P in X, together 
with the collection S of its sides, is an n-dimensional, abstract, convex 
polyhedron. Note that, in general, a facet of an abstract convex polyhedron 

503 
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P mayor may not be equal to the side of P containing it. It is an exercise 
to prove that every facet of an n-dimensional, abstract, convex polyhedron 
is an (n - 1 )-dimensional convex polyhedron. 

Definition: A disjoint set oj n-dimensional, abstract, convex polyhedra 
of X is a set of functions 

3 = {~p : PEP} 

indexed by a set P such that 

(1) the function ~p : X ----* X p is a similarity for each P in P; 

(2) the index P is an n-dimensional abstract convex polyhedron in X p 

for each P in P; and 

(3) the polyhedra in P are mutually disjoint. 

Let 3 be a disjoint set of n-dimensional, abstract, convex polyhedra of 
X and let G be a group of similarities of X. 

Definition: A G-Jacet-patrzng for 3 is a set of functions 

cI> = {<p F : F E F} 

indexed by the collection F of all the facets of the polyhedra in P such 
that for each facet F of a polyhedron P in P, 

(1) there is a polyhedron P' in P such that the function <PF : XP' ----* X p 

is a similarity; 

(2) the similarity gF = ~i}<pF~PI is in G; 

(3) there is a facet F' of P' such that <PF(F') = F; 

(4) the similarities <PF and <PF' satisfy the relation <PFI = <pi;,1; 

(5) the polyhedrons P and <PF(P') are situated so that P n <PF(P') = F. 

Let cI> be a G-facet-pairing for 3. The pairing of facet points by ele­
ments of cI> generates an equivalence relation on the set II = U PEP P whose 
equivalence classes are called the cycles of cI>. Topologize II with the direct 
sum topology and let M be the quotient space of II of cycles. The space 
M is said to be obtained by gluing together the polyhedra of 3 by cI>. 

The normal2zed sol2d angle w subtended by a polyhedron P in X at a 
point x of P is defined to be the real number 

Vol(P n B(x, r)) w= --~----~~~ 
Vol(B(x, r)) 

where r is less than the distance from x to any side of P not containing x. 
It follows from Theorems 2.4.1 and 3.4.1 that w does not depend on r. 
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Let [x] = {Xl, ... , xm} be a finite cycle of <T>. Let p. be the polyhedron in 
P containing the point x. and let W. be the normalized solid angle subtended 
by P. at the point x. for each i = 1, ... , m. The normalzzed solid angle 
sum of [x] is defined to be 

w[x] = WI + ... +wm · 

Definition: A G-facet-pairing <T> for 3 is proper if and only if each cycle 
of <T> is finite and has normalized solid angle sum 1. 

The proof of the next theorem is by induction on n and follows the same 
outline as the proof of Theorem 10.1.2 and it is therefore left to the reader. 

Theorem 11.1.1. Let G be a group of similaritzes of X and let M be a 
space obtained by gluing together a disjoint set 3 of n-dimensional, abstract, 
convex polyhedra of X by a proper G-facet-pairing <T>. Then M is an n­
manifold with an (X, G)-structure such that the natural injectwn of po 
mto M is an (X, G)-map for each polyhedron P of 3. 

Example 1. We now consider an example of a closed hyperbolic 4-
manifold obtained by gluing together the sides of a 4-dimensional, regular, 
convex polyhedron in H4. For n = 0,1,2,3,4, let r n be the discrete, 
n-simplex, reflection group whose Coxeter graph is, respectively, 

• 

• 5 • 

• 5 • • 

• 5 • • • 

• 5 • • • 5 • 

For n = 1,2,3, the group r n is a discrete group of isometries of sn 
generated by the reflections of sn in the sides of a spherical n-simplex 
6. n. The group r 4 is a discrete group of isometries of H4 generated by the 
reflections of H4 in the sides of a hyperbolic 4-simplex 6.4 . For n = 1,2,3,4, 
let Vn be a vertex of 6.n such that the subgroup of r n fixing Vn is r n-l. 

Then the images of 6. n under r n-l fit together at Vn to give the barycentric 
subdivision of a regular convex polyhedron pn in sn, if n = 1,2,3, or in 
H4 if n = 4. The images of pn under r n form an exact tessellation of sn, 
if n = 1,2,3, or of H4 if n = 4, by congruent copies of pn. The group of 
symmetries of this tessellation is r n' The order of r n, for n = 0,1,2,3,4, 
is 2, 10, 120, 14400, 00, respectively. 
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For n = 1,2,3, the convex hull of the set of vertices of this tessellation 
of 8 n is a regular Euclidean convex polyhedron Qn+1 which is combinato­
rially equivalent to pn+1. The set p1 is an arc of twice the length of ~ 1 

and so 8 1 is tessellated by 10/2 = 5 copies of it. Hence Q2 is a regular 
pentagon. Therefore p2 is a regular spherical pentagon and 8 2 is tessel­
lated by 120/10 = 12 copies of it. Hence Q3 is a regular dodecahedron. 
Therefore p3 is a regular spherical dodecahedron and 8 3 is tessellated by 
14400/120 = 120 copies of it. The 4-dimensional regular polyhedron Q4 is 
called the 120-cell. Therefore p4 is a regular hyperbolic 120-cell. 

The polyhedron Q4 has 120 sides, 720 ridges, 1200 edges, and 600 ver­
tices. Each side of Q4 is a regular dodecahedron and is parallel to its 
opposite side, - 8. For each side 8 of p4, let f s be the reflection of H4 
that pairs 8 to its opposite side 8' and let gs be the composite of fs fol­
lowed by the reflection in the side 8. Then {gs} is an Io(H4)-side-pairing 
for p4. We shall call <P = {gs} the opposite szde-pairing of p4. 

U sing known coordinates for the vertices of Q4, one can check that each 
ridge cycle contains 5 points, each edge cycle contains 20 points, and all 
the vertices of p4 belong to 1 cycle. Therefore <P has finite cycles. Now the 
tessellation of H4 by congruent copies of p4 has the property that 5 copies 
of p4 meet along a ridge, 20 copies of p4 meet along an edge, and 600 
copies of p4 meet at a vertex. Consequently, the normalized solid angle 
subtended by p4 at an interior ridge point is 1/5, at an interior edge point 
is 1/20, and at a vertex is 1/600. Hence, each cycle has normalized solid 
angle sum 1. Thus <P is proper. 

Let M be the space obtained by gluing the sides of p4 by the opposite 
side-pairing <P. Then M is a closed, orient able , hyperbolic 4-manifold by 
Theorem 11.1.1. The manifold M is called the Davis 120-cell space. 

Complete Gluing of n-Manifolds 

We now consider gluing together polyhedra to form a complete manifold. 
We begin by proving a complete gluing theorem for Euclidean manifolds. 

Theorem 11.1.2. Let M be a Euclidean n-manifold obtained by glumg 
together a finite family P of dzsjoint, finite-sided, n-dimensional, convex 
polyhedra in En by a proper I(En)-side-pairing <P. Then M is complete. 

Proof: Without loss of generality, we may assume that M is connected. 
Then M is a metric space with the induced metric. We shall prove that M 
is complete by finding an E > 0 so that B( u, E) is compact for every u in 
M. It will then follow from Theorem 8.5.1 that M is complete. 

Let II be the union of the polyhedra in P and let 7r : II ----> M be the 
quotient map. Let x be a point of II and let {Xl, . .. , Xm} be the cycle of 
<P containing x. Let p" be the polyhedron in P containing x" and let r > 0 
be less than one-third the distance from x" to any side of p" not containing 
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x. for each i. Then there is a chart 

¢x : U(x, r) ~ B(x, r) 

for (M,1f(x)). By Theorem 8.3.5, we~ave that ¢;;1 maps B(x, r/2) home­
omorphically onto B( 1f(x), r /2). As B(x, r /2) is compact, we have 

¢;;t(B(x, r/2)) = B(1f(x), r/2) 

and therefore B(1f(x), r/2) is compact. 
Let nk be the union of all the k-faces of the polyhedra in P for each 

k = 0,1, ... ,n. Then no is a finite set. Let ro > 0 be less than one-sixth 
the distance from any point x of no to any side of a polyhedron in P not 
containing x. Then B(1f(x) , ro) is compact for each x in nO. Now suppose 
that rk > 0 and B(1f(x), rk) is compact for each x in nk. Let rk+1 > 0 be 
such that rk+1 :s; rk/2 and for each (k+ I)-face F of a polyhedron in P, we 
have that rk+l is less than one-sixth the distance from F - N(8F, rk/2) to 
any side of a polyhedron in P not containing F. Let x be a point of nk+l. 
Then there is a (k + I)-face F such that x is in F. 

Assume first that x is in N(8F, rk/2). Then there is a point y of 8F 
such that Ix - yl < rk/2. Hence 1f(x) is in B(1f(y),rk/2). By the triangle 
inequality, B(1f(x), rk+l) C B(1f(Y), rk). Therefore B(1f(x), rk+l) is com­
pact. Now assume that x is not in N(8F,rk/2). Let {Xl,."'Xm } be the 
cycle of x. Then there is a (k + I)-face Fz of a polyhedron in P such that x. 
is in F.o for each i. Moreover x, is not in N(8F" rk/2) for each i because 
each element of q, is an isometry. Therefore rk+l is less than one-sixth 
the distance from x. to any side of a polyhedron in P not containing x. 
for each i. Hence B(1f(x) , rk+1) is compact. It follows by induction that 
B(1f(x),rn) is compact for all x in n. 0 

Let M be a hyperbolic n-manifold obtained by gluing together a finite 
family P of disjoint, finite-sided, n-dimensional, convex polyhedra in B n by 
a proper M(Bn)-side-pairing q,. We shall determine necessary and sufficient 
conditions such that M is complete. We may assume, without loss of 
generality, that no two polyhedrons in P meet at infinity. Then q, extends 
to a side-pairing of the (n - I)-dimensional sides of the Euclidean closures 
of the polyhedra in P, which, in turn, generates an equivalence relation on 
the union of the Euclidean closures of the polyhedra in P. The equivalence 
classes are called cycles. We denote the cycle containing a point x by [xl. 

Let P be a polyhedron in P. A cusp point of P is a point c of P n sn-l 
that is the intersection of the Euclidean closures of all the sides of P incident 
with c. The cycle of a cusp point of a polyhedron in P is called a cusp point 
of M. As each polyhedron in P has only finitely many cusp points, M has 
only finitely many cusp points. 

Let c be a cusp point of a polyhedron in P. Let b be a point in [cl 
and let Pb be the polyhedron in P containing b in its Euclidean closure. 
The link of b is defined to be the (n - 1 )-dimensional, Euclidean, convex 
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polyhedron L(b) obtained by intersecting Pb with a horosphere ~b based 
at b that meets only the sides of Pb incident with b. We shall assume that 
the horospheres {~b : b E [c]} have been chosen small enough so that the 
links of the points of [c] are mutually disjoint. Then <I> determines a proper 
S(En-l)-side-pairing for {L(b) : b E [c]} as in §1O.2. Let L[c] be the space 
obtained by gluing together the polyhedra {L(b)} by this side-pairing. The 
space L[c] is called the link of the cusp pomt [c] of M. 

Theorem 11.1.3. The link L[c] of a cusp point [c] of M %s a connected, 
Eucl%dean, s%m%lanty (n - 1) -manifold. 

Proof: The space L [c] is a (En-I, S (En-l))_ manifold by Theorem 11.1.1. 
It follows directly from the definition of a cycle that L[c] is connected. 0 

Theorem 11.1.4. The link L[c] of a cusp pomt [c] of M %s complete if 
and only %f the lmks {L(b)} for the points in [c] can be chosen so that <I> 

restncts to a s%de-pa%rmg for {L(b)}. 

Proof: If links for the points in [c] can be chosen so that <I> restricts to 
a side-pairing for {L(b)}, then this side pairing for {L(b)} is an I(En-l)_ 
side-pairing, and so L[c] is complete by Theorem 11.1.2. The converse is 
proved by the same argument as in the proof of Theorem 10.2.2. 0 

Theorem 11.1.5. If the lmk L[c] of a cusp pomt [c] of M is complete, 
then there is a horoball B (c) based at the point c, a d%screte subgroup r c of 
M(Bn) leaving B(c) invarwnt, and an injective local isometry 

L : B(c)jrc ----; M 

compatible with the projectwn of Pc to M. 

Proof: The proof is the same as the proof of Theorem 10.2.3. 0 

Theorem 11.1.6. Let M be a hyperbolic n-manifold obtained by gluing 
together a fimte family P of disjoint, finite-sided, n-dimensional, convex 
polyhedra in B n by a proper M(Bn)-side-pairing <I>. Then M is complete if 
and only if L[c] is complete for each cusp point [c] of M. 

Proof: Without loss of generality, we may assume that M is connected. 
Suppose that L[c] is incomplete for some cusp point [c] of M. Then M 
is incomplete by the same argument as in the proof of Theorem 10.2.4. 
Conversely, suppose that L[c] is complete for each cusp point [c]. Let Mo 
be the manifold-with-boundary obtained from M by removing the image 
of the injective local isometry 

L: B(c)jrc ----; M 

of Theorem 11.1.5 for each cusp point [c] of M. Then Mo is complete by the 
same argument as in the proof of Theorem 11.1.2. Finally M is complete 
by the same argument as in the proof of Theorem 9.8.5. 0 
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Example 2. We now consider an example of an open, complete, hyper­
bolic 4-manifold of finite volume obtained by gluing together the sides of a 
4-dimensional, regular, ideal, convex polyhedron in H4. For n = 0,1,2,3,4, 
let r n be the discrete, n-simplex, reflection group whose Coxeter graph is, 

respectively, 

• 

• • 
4 • • • 
4 

• • • • 
4 4 

• • • • • 

For n = 1,2,3, the group r n is a discrete group of isometries of sn 
generated by the reflections of sn in the sides of a spherical n-simplex 
b. n. The group r 4 is a discrete group of isometries of H4 generated by 
the reflections of H4 in the sides of a generalized hyperbolic 4-simplex b. 4 . 

For n = 1,2,3,4, let Vn be a vertex of b. n such that the subgroup of r n 

fixing Vn is r n-l. Then the images of b.n under r n-l fit together at Vn to 
give the barycentric subdivision of a regular convex polyhedron pn in sn, 
if n = 1,2,3, or in H4 if n = 4. The images of pn under r n form an exact 
tessellation of sn, if n = 1, 2, 3, or of H4 if n = 4, by congruent copies of 
pn. The group of symmetries of this tessellation is r n' The order of r n, 
for n = 0,1,2,3,4, is 2,6,48,1152, 00, respectively. 

For n = 1,2,3, the convex hull of the set of vertices of this tessellation of 
sn is a regular Euclidean convex polyhedron Qn+1 that is combinatorially 
equivalent to pn+1. The set pI is an arc of twice the length of b. 1 and so SI 
is tessellated by 6/2 = 3 copies of it. Hence Q2 is an equilateral triangle. 
Therefore p2 is a spherical equilateral triangle and S2 is tessellated by 
48/6 = 8 copies of it. Hence Q3 is a regular octahedron. Therefore p3 is a 
regular spherical octahedron and S3 is tessellated by 1152/48 = 24 copies 
of it. The 4-dimensional regular polyhedron Q4 is called the 24-cell. All 
the vertices of p4 are ideal. Therefore p4 is a regular, ideal, hyperbolic 
24-cell. 

The 24-cell Q4 has 24 sides, 96 ridges, 96 edges, and 24 vertices. Each 
side S of Q4 is a regular octahedron and is parallel to its opposite side, 
-So We rotate Q4 so that its vertices are ±e" for i = 1,2,3,4, and 
(±~, ±~, ±~, ±~). We pass to the projective model D4 of hyperbolic space 
and rotate p4 so that Q4 and p4 coincide. We now pair each side S of 
p4 to its opposite side S' by an orientation reversing isometry gs of D4. 
For each of the eight sides of p4 whose Euclidean centers are (± ~, 0, 0, ± ~) 
and (0, ±~, ±~, 0), let gs be the composite of the antipodal map followed 
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by the reflection in the side S. Now each side of p4 has two vertices of 
the form ±e. and ±eJ with i i=- j. For the remaining 16 sides of p4, let 
g8 be the composition of the reflection of D4 that pairs S to S' followed 
by the reflection of D4 that transposes the vertices ±e. and ±eJ of S, 
and then followed by the reflection in the side S. Then cI> = {g8} is an 
I(D4)-side-pairing for p4. 

One can check that each ridge cycle contains 4 points and each edge 
cycle contains 8 points. Therefore cI> has finite cycles. Now the tessellation 
of D4 by congruent copies of p4 has the property that 4 copies of p4 meet 
along a ridge and 8 copies of p4 meet along an edge. Consequently, the 
normalized solid angle subtended by p4 at an interior ridge point is 1/4 
and at an interior edge point is 1/8. Hence, each cycle has normalized solid 
angle sum 1. Thus cI> is proper. 

Let M be the space obtained by gluing the sides of p4 by cI>. Then M is a 
hyperbolic 4-manifold by Theorem 11.1.1. The manifold M is noncompact 
and nonorientable but has finite volume. We shall call M the hyperbolic 
24-cell space. 

There are 6 cycles of ideal vertices of p4. Each element g8 of cI> is the 
composite of a rotation about the origin followed by the reflection in S. 
Consequently, disjoint horospheres based at the ideal vertices of p4 and 
equidistant from the origin are paired by the elements of cI>. Therefore, the 
links of the cusp points of M are complete by Theorem 11.1.4. Finally M 
is complete by Theorem 11.1.6. 

Exercise 11.1 

1. Prove that every facet of an n-dimensional, abstract, convex polyhedron is 
an (n - I)-dimensional convex polyhedron. 

2. Let P be a convex fundamental polyhedron for a discrete group r of isome­
tries of X and let :F be the collection of (n - I)-dimensional convex subsets 
of 8P of the form P n gP for some 9 in r. Prove that P together with F is 
an abstract convex polyhedron in X. 

3. For each facet F of P in Exercise 2, let gF be the element of r such that 
P n gF(P) = F. Prove that if> = {gF : F E F} is a r-facet-pairing for P. 

4. Prove Theorem 11.1.1. 

5. Let r be the group generated by the opposite side-pairing of the hyperbolic 
120-cell p4. Prove that r is a torsion-free subgroup of r 4 of index 14400. 

6. Let P be a finite-sided convex polyhedron in En. Prove that for each r > 0, 
the set P - N(8P, r) is either empty or a finite-sided convex polyhedron. 

7. Let P and Q be disjoint, finite-sided, convex, polyhedrons in En. Prove that 

dist(P, Q) > O. 

8. Explain why the argument in the proof of Theorem 11.1.2 breaks down in 
the hyperbolic case. 
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§11.2. Poincare's Theorem 

In this section, we prove Poincare's fundamental polyhedron theorem for 
freely acting discrete groups of isometries of X = 8 n, En, or H n with n > 1. 
We begin by proving a weak version of Poincare's theorem. 

Theorem 11.2.1. Let cI> be a proper I(X)-side-pairing for an n-dzmen­
sional convex polyhedron P in X such that the (X, I(X))-mamfold M ob­
tained by gluzng together the sides of P by cI> is complete. Then the group r 
generated by cI> zs dzscrete and acts freely, P is an exact, convex, fundamen­
tal polyhedron for r, and the inclusion of P into X induces an zsometry 

from M to the space-form Xjr. 

Proof: The quotient map 7r : P -+ M maps po homeomorphically onto 
an open subset U of M. Let ¢ : U -+ X be the inverse of 7r. From the 
construction of M, we have that ¢ is locally a chart for M. Therefore ¢ is 
a chart for M. 

Let '" : M -+ M be a universal covering. As U is simply connected, 
¢ : U -+ X lifts to a chart ¢ : {j -+ X for M. Let 8 : M -+ X be the 
developing map determined by ¢. Then 8 is an isometry by Theorem 8.5.9. 
Let ( = ",8-1 . Then ( : X -+ M is a covering projection extending 7r on 
po. Moreover, by continuity, ( extends 7r. 

Let r be the group of covering transformations of (. By Theorem 8.5.9, 
we have that r is a freely acting discrete group of isometries of X and ( 
induces an isometry from Xjr to M. Now as U is simply connected, it is 
evenly covered by (. Hence, the members of {gpo: g E r} are mutually 
disjoint. As 7r(P) = M, we have 

X = U{gP: g E r}. 

Therefore po is a fundamental domain for r. 
Let gS be an element of cI>. Choose a point y in the interior of the side 

8 of P. Then there is an point y' in the interior of the side 8' of P such 
that gs(y') = y. Since 7r(Y') = y, there is an element g of r such that 
g(y') = y. Since g8' does not extend into po, we must have that g8' lies 
on the hyperplane (8). 

Now since 7r : P -+ M maps a neighborhood of y in 8 injectively into 
M, we must have that g and gs agree on a neighborhood of y' in 8'. Hence 
g = gs on (8'). Furthermore, since gP lies on the opposite side of 8 from 
P, we deduce that g = gS by Theorem 4.3.6. Thus r contains cI>. Therefore 
P jr is a quotient of M. 

Now by Theorem 6.5.8, the inclusion map of P into X induces a contin­
uous bijection from Pjr to Xjr. The composition of the induced maps 

Xjr -+ M -+ Pjr -+ Xjr 

restricts to the identity map of po and so is the identity map by continuity. 
Therefore M = Pjr. 



512 11. Hyperbolic n-Manifolds 

Now since ( : X ---7 M induces an isometry from x/r to M = P/r, 
the inclusion map of P into X induces an isometry from P /r to X /r. 
Therefore P is locally finite by Theorem 6.5.8. Hence P is an exact, convex, 
fundamental polyhedron for r. Finally <I> generates r by Theorem 6.7.3. 0 

In order to apply Theorem 11.2.1, we need to know that the manifold M 
is complete. If X = sn, then M is always complete, since M is compact. 
If X = En and the polyhedron P is finite-sided, then M is complete by 
Theorem 11.1.2. If X = Hn and P is finite-sided, then easily verifiable 
necessary and sufficient conditions for M to be complete are given by The­
orems 11.1.4 and 11.1.6. If X = Hn and P has infinitely many sides, then 
M may fail to be complete even though the conditions of Theorem 11.1.6 
are satisfied. This phenomenon is exhibited by the next example. 

Example 1. We now consider a proper side-pairing <I> for an infinite-sided 
hyperbolic polygon P, with no vertices, such that the hyperbolic surface M 
obtained by gluing together the sides of P by <I> is incomplete. Let {Sn};;:O=1 
and {S~};;:O=1 be sequences of disjoint lines of U2 formed by Euclidean semi­
circles of unit radius whose centers lie on the real line lR in the increasing 
order 

such that 
distu(Sn, S~) = 1/2n = distu(S~, Sn+1) 

for each n. Let P be the closed region of U2 above and bounded by the 
family of lines {Sn, S~};;:O=1. Then P is a convex polygon in U2 whose sides 
are the lines {Sn,S~};;:O=1· 

Let x~ be the point of S~ nearest to Sn+1 and let Xn+1 be the point 
of Sn+1 nearest to S~ for each n. Then the geodesic segment [x~, Xn+1] 
is orthogonal to both S~ and Sn+1 and has length 1/2n. Let g1 be the 
composition of the reflection in the vertical line midway between S1 and 
S~ followed by the reflection in S1, and for each n > 1, let gn be the 
composition of the reflection in the vertical line midway between Sn and 
S~ followed by the reflection in Sn, and then followed by the translation 
along Sn so that 

Then gn(S~) = Sn and 
<I> = {gn,g~1}~=1 

is a proper Io(U2)-side-pairing for P. Let 7r : P ---7 M be the quotient map. 
Observe that the union of geodesic segments 

[X~, X2] u [x~, X3] u··· 
projects to a half-open geodesic section in M of length one. Hen~e, we have 
that {7r(Xn)};;:O=1 is a Cauchy sequence in M. Observe that thIs sequence 
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does not converge in M, since each point of M has a neighborhood in 
M that contains at most one term of the sequence {1f(xn )}. Thus M is 
incomplete. Therefore P is not a fundamental polygon for the group r 
generated by <f) by Theorems 6.5.8 and 8.5.2. 

Note that the same construction works in all dimensions. Just replace 
the semicircles with hemispheres all of whose centers are collinear. 

Poincare's Fundamental Polyhedron Theorem 

Let S be the set of sides of an exact, convex, fundamental polyhedron P 
for a freely acting discrete group r of isometries of X. Then for each S in 
S, we have the side-pairing relation 

gsgs' = 1 

of r. The expression S S' is called the word in S corresponding to the 
side-pairing relation gsgs' = 1 of r. Recall from §6.7 that each cycle of 
sides {S2} ~=1 of P determines a cycle relation 

(gS,gS2 ... gSc)k = 1 

of r, where k is the order of gS,gS2 ... gSe-
If X = sn, then gS,gS2 ... gsc leaves invariant a ridge R of P and so 

fixes a point of R by the Brouwer fixed point theorem; but r acts freely on 
sn, therefore we must have k = 1. If X = En or Hn, then r is torsion-free 
and so k = 1. Thus, we have the cycle relation 

gS,gS2 ... gsc = 1. 

The expression SlS2 ... Se is called the word in S corresponding to the 
above cycle relation of r. We are now ready to state Poincare's fundamental 
polyhedron theorem for freely acting discrete groups of isometries of X. 

Theorem 11.2.2. Let <P be a proper I(X)-side-pazring for an n-dimen­
sional convex polyhedron P in X such that the (X,I(X))-manifold M ob­
tamed by gluing together the sides of P by <P is complete. Then the group 
r generated by <P is discrete and acts freely, P is an exact, convex, funda­
mental polyhedron for r, and zf S is the set of sides of P and R is the set 
of words in S corresponding to all the side-pazring and cycle relations of r, 
then (S; R) is a group presentation for r under the mapping S 1--+ g S . 

Proof: (1) By Theorem 11.2.1, the group r is discrete and acts freely, 
and P is an exact, convex, fundamental polyhedron for r. 

(2) Let F be the group freely generated by the elements of S. Then we 
have an epimorphism Tf : F ~ r defined by Tf(S) = gs. By Theorem 6.7.7, 
the kernel of Tf contains the elements of R. Let G be the quotient of F by 
the normal closure of the set R in F. Then Tf induces an epimorphism 

L: G~r. 
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We shall prove that ~ is an isomorphism. 
(3) Let G x P be the cartesian product of G and P. We topologize G x P 

by giving G the discrete topology and G x P the product topology. Then 
G x P is the topological sum of the subspaces 

{{g} x P : g E G}. 

Moreover, the mapping (g, x) ~ ~(g)x is a homeomorphism of {g} x Ponto 
~(g)P for each g in G. 

(4) Two points (g,x) and (h,y) of G x P are said to be paired by <I> , 
written (g,x) ~ (h,y), if and only if g-lh is in S and ~(g)x = ~(h)y. 
Suppose (g,x) ~ (h,y). Then there is a side S of P such that g-lh = S. 
As S-l = S' in G, we have that (h, y) ~ (g, x). Furthermore x is in 
pngs(p) = S and y = x' is in S'. 

Two points (g, x) and (h, y) of G x P are said to be related by <I>, written 
(g, x) rv (h, y), if and only if there is a finite sequence, (go, xo), ... , (gk, Xk), 
of points of G x P such that (g, x) = (go, xo), (gk, Xk) = (h, y), and 

(g.-I, x.-d ~ (gt) x.) for i = 1, ... ,k. 

Being related by <I> is obviously an equivalence relation on G x P; moreover, 
if (g,x) rv (h,y), then x rv y. Let [g,x] be the equivalence class of (g,x) 
and let X be the quotient space of G x P of equivalence classes. 

(5) If (g,x) ~ (P,y), then obviously (fg,x) ~ (fh,y) for each f in G. 
Hence G acts on X by J[g,x] = [fg,x]. For a subset A of P, set 

[A] = {[I,x] : x E A}. 

Then, if g is in G, we have 

g[A] = {[g,x] : x E A}. 

If (g, x) is in G x po, then 

[g,x] = {(g,x)}. 

Consequently, the members of {g[PO] : g E G} are mutually disjoint in X. 
(6) We now show that X is connected. Let 71' : GxP ----- X be the quotient 

map. As 71' maps {g} x Ponto g[P], we have that g[P] is connected. In 
view of the fact that 

X = U{g[P] : g E G}, 

it suffices to show that for any g in G, there is a finite sequence go, ... ,gm 
in r such that [P] = go[P], gm[P] = g[P], and g.-tlP] and g.[P] intersect 
for each i > O. As G is generated by the elements of S, there are sides S. of 
P such that g = Sl ... Sm. Let go = 1 and g. = Sl ... S. for i = 1, ... , m. 

Now since 
S. = pngS,(p), 

we have that 
[S.] c [P] n S.[P]. 
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Therefore, we have 

Thus X is connected. 
(7) Let Po be P minus all its faces of dimension less than n - 3. Set 

Xo = U{g[Po] : 9 E G}. 
Then the same argument as in (6) shows that Xo is connected. 

(8) Let 

be the function defined by K:[g, x] = L(g)X. Then K: is continuous, since 
K:7r : G x P -7 X is continuous. Moreover K: maps g[P] homeomorphically 
onto L(g)P, since K:7r maps {g} x P homeomorphic ally onto L(g)P. 

(9) Let 
Xo = U{ "'(Po: "'( E r}. 

Then K: restricts to a surjection 

K:o : Xo -7 Xo. 

Hence Xo is connected. 
(10) We now show that K:o : Xo -7 Xo is a covering projection. Let x be 

an arbitrary point of Xo; we need to find an open neighborhood U of x in 
Xo that is evenly covered by K:o. Let "'( be an element of r such that x is 
in ",(Po. Now since 

K:og = L(g )K:o 

for all 9 in G, we may assume that "'( = 1. 
Assume first that x is in po. Then U = po is an open neighborhood of 

x in Xo that is evenly covered by K:o and the sheets over U are the members 
of 

{g[PO]: 9 E Ker(L)}. 

Now assume that x is in the interior of a side S of P. Then we have 

[l,x] = {(l,x),(S,x')}. 

Hence, the set [SO] meets only [P] and SiP] among the members of 

{g[P] : 9 E G}. 

Consequently 
U = po U So U g8 po 

is an open neighborhood of x in Xo that is evenly covered by K:o and the 
sheets over U are the members of 

{g([PO] U [SO] U S[PO]) : 9 E Ker(L)}. 

Now assume that x is in the interior of a ridge R of P. Let {S'}~=l be 
the cycle of sides of P with Sl = Sand R = S~ n Sl. Let Xl = x and 
X,+l = gs,l(x,) for i = 1, ... ,£ -1. Then g8e(X1) = Xc and 
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Therefore, we have 
[x] = {Xl, ... ,xe}. 

Now 
(l,x) = (l,x!) ~ (81,X2) ~ ... ~ (81 . ··8£-l,x£). 

As 81 ... 8£ = 1 in G, we have 

(81 ... 8£-1, Xl) ~ (1, x), 

which closes the cycle of (1, x). Therefore 

[1, x] = {(I, x!), (81, X2), ... , (81 ... 8£-1, Xl)}. 

Let gl = 1 and let g. = 81 ... 8.-1 for each i = 2, ... , £. The elements 
~(gl)' ... , ~(g£) ofr are distinct, since the polyhedra ~(gl)P, ... , ~(g£)P form 
a cycle around their common ridge R of one revolution. See Figure 9.2.2. 
Therefore, the elements gl, ... , g£ of G are distinct. Now the set [RO] meets 
only gdP], ... ,g£[P] among the members of {g[P] : 9 E G}. Consequently 

£ £ 
U = RO U U ~(g.)8~ U U ~(g.)PO 

.=1 .=1 
is an open neighborhood of x in Xo that is evenly covered by ""'0 and the 
sheets over U are the members of 

{g([RO] U '~1 g.[8~] U '~1 g.[PO]) : 9 E Ker(~)}. 
Thus ""'0 is a covering projection. 

(11) Now Xo is simply connected by a general position argument. Hence 
""'0 : Xo ----t Xo is a homeomorphism. Observe that,.,., maps g[PO] onto po 
for all 9 in Ker(~) and the members of {g[PO] : 9 E Ker(~)} are mutually 
disjoint. Therefore Ker(~) = {I}. Hence ~ : G ----t r is an isomorphism. 
Thus (S; R) is a group presentation for r under the mapping 8 f-+ g8. 0 

Theorem 11.2.2 gives a group presentation (S; R) for the group r gener­
ated by the side-pairing <T> of P. The presentation (S; R) can be simplified 
by eliminating each side-pairing relation 88' = 1 and exactly one of the 
generators 8 or 8'. If 8' is eliminated, then each occurrence of 8' in a 
cycle relation is replaced by 8-1. Moreover, each cycle of sides {8'};=1 
determines 2£ cycles of sides by taking cyclic permutations of {8'}~=1 and 
their inverse orderings. The corresponding cycle transformations are all 
conjugate to each other or their inverses. Therefore, anyone of the cor­
responding cycle relations is derivable from anyone of the others. Hence, 
all but one of them can be eliminated from a presentation for r. Thus 
(S; R) can be simplified to a presentation with half the generators and one 
relation for each cycle of ridges of P. 

Example 2. Consider the ideal square P in U 2 in Figure 9.8.6. Label the 
sides of P left to right by 8, T, T', 8'. Let M be the hyperbolic surface ob­
tained by gluing the sides of P by the side-pairing <T> described in Example 
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2 of §9.8. Then M is a thrice-punctured sphere. Therefore M has three 
cusp points. It is clear that links for the cusp points of P can be chosen so 
that if> pairs their endpoints. Hence M is complete. By Theorem 11.2.2, 
the group r generated by if> has the presentation 

(S, S', T, T'; SS', TT'). 

We eliminate the generators S' and T' and the side-pairing relations to 
obtain the presentation (S, T) for r. Thus r is a free group of rank two 
generated by g8 and gT· 

Example 3. Consider the regular octagon P in B2 in Figure 9.2.3. Let 
M be the hyperbolic surface obtained by gluing the sides of P by the side­
pairing if> described in Example 4 of §9.2. Then M is a closed orientable 
surface of genus two. Observe that P has one cycle of vertices and therefore 
essentially one cycle of sides 

{Sl, Tl , S~, T~, S2, T2, S~, Ta. 

Hence, the group r generated by if> has the presentation 

(Sl, Tl , S2, T2; SlTlSllT2-lS2T2S:;lTl-l). 

Example 4. Consider a regular ideal octahedron P in B3 with the gluing 
pattern for the Whitehead link complement in Figure 10.3.14. Then P has 
three cycles of edges and therefore essentially three cycles of sides 

{A, D', c, B'}, {B, c, D', C'}, {A, B, A', D'}. 

Therefore, the Whitehead link group has the presentation 

(A, B, C, D; AD-lCB-l , BCD-lC-I, ABA-1D-1). 

Exercise 11.2 

1. Show that Theorem 11.2.2 does not hold for X = 8 1 but does hold for 
X = E1 or H1. 

2. Use the gluing pattern for the 3-torus M in Example 1 of §1O.1 to find a 
presentation for 7r1 (M). 

3. Use the gluing pattern for the Poincare dodecahedral space M in Figure 
10.1.1 to find a presentation for 7r1 (M). 

4. Use the gluing pattern for the Seifert-Weber dodecahedral space M in Figure 
10.1.2 to find a presentation for 7r1(M). 

5. Use the gluing pattern for the figure-eight knot complement M in Figure 
10.3.3 to find a presentation for 7r1(M). 

6. Reduce the presentation from the previous exercise to a two-generator, one­
relator presentation. 

7. Reduce the presentation from Example 4 to a two-generator, one-relator 
presentation. 
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§11.3. Simplices of Maximum Volume 

An n-simplex .6. n in B n is said to be regular if and only if every permutation 
of the vertices of .6. n is induced by a Mobius transformation of Bn. In this 
section, we prove that an n-simplex .6. n in B n has maximum volume if and 
only if .6. n is regular and ideal. As every simplex in Bn is contained in an 
ideal simplex, it suffices to consider only ideal simplices. 

In dimension one, BI is the only ideal I-simplex and BI is regular and 
of maximum length. Thus, we may assume that n ~ 2. In dimension 
two, all ideal triangles are congruent in B2, and so all ideal triangles are 
regular and of maximum area. In dimension three, an ideal tetrahedron 
has maximum volume if and only if it is regular by Theorem 10.4.7. Thus, 
we are only concerned with dimensions n ~ 4. 

Lemma 1. The volume of an n-simplex .6. n in D n zs gwen by 

1 dXI· ··dx 
Vol(.6.n) = 6.n (1 _lxI2)(n+~)/2· 

Proof: By Theorem 6.1.6, the element of hyperbolic volume of the pro­
jective disk model Dn is dXI ... dxn/(1 - IxI2)(n+ I )/2. 0 

Let.6.n be an ideal n-simplex in un with vertices Va, ... , Vn . By replacing 
.6. n with a congruent n-simplex, we may assume that Va = 00. Since 
VI, ... , Vn all lie on an (n - 2)-sphere in En-I and the group S(En-l) 
acts transitively on the set of all (n - 2)-spheres in En-I, we may assume, 
without loss of generality, that VI, ... , Vn are in sn-2. Then the side of 
.6. n, spanned by VI, ... , Vn , lies in the northern hemisphere of sn-I. Let 
v : un --7 En- I be the vertical projection. Since all the sides of .6.n 

incident with 00 are vertical, v(.6.n ) is a Euclidean (n - I)-simplex with 
deleted vertices. Therefore v(.6.n ) is an ideal (n -I)-simplex in Dn-I. We 
shall use this fact to set up an induction on the dimension n. 

Lemma 2. The volume of an ideal n-simplex .6.n zn un, with vertices 
Sn 2 . b va, ... , Vn such that Va = 00 and VI, ... , Vn are zn -, zs gwen y 

1 1 dXI ... dXn-1 
Vol(.6.n) = n _ 1 v(6.n) (1 _lxI 2)(n-I)/2· 

Proof: By Theorem 4.6.7, the element of hyperbolic volume of the upper 
half-space model un is dXI ... dXn/(xn)n. Therefore, we have 

Vol(.6.n ) 1 dXI··· dXn 

6.n (Xn)n 

1 (100 ~)dXI ... dXn-1 
v(6.n) (1-lv(x)1 2 )! (Xn)n 

1 1 dXI ... dXn-1 
n -1 v(6.n ) (1-lv(x)12)(n-I)/2· o 
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Lemma 3. Let ~n be an ideal n-szmplex m un, wzth vertices Vo, ... , Vn 
such that Vo = 00 and Vl, ... ,Vn are in sn-2, and let v : un --+ En-l be the 
vertzcal projectwn. Then ~n is regular zf and only if v(~n) is Euclidean 
regular. 

Proof: Suppose that ~n is regular. To prove that v(~n) is Euclidean 
regular, it suffices to show that the transposition of any two vertices v, W 

of v(~n) is realized by a Euclidean isometry. Since ~n is regular, there is 
a Mobius transformation T of un such that T transposes v and wand fixes 
every other vertex of ~ n. As T fixes 00, we have that T is the Poincare 
extension of a similarity of En-l. Moreover, since T leaves invariant the 
Euclidean line segment [v, w], we have that T is a Euclidean isometry. Thus 
v(~n) is Euclidean regular. 

Conversely, suppose that v(~n) is Euclidean regular. To prove that ~n 
is regular, it suffices to prove that the transposition of any vertex u of 
v(~n) and 00 is realized by a Mobius transformation of un. Since v(~n) 
is Euclidean regular, every vertex v =I u of v(~n) is the same Euclidean 
distance r from u. Let 0' be the reflection of En in the sphere S (u, r). Then 
o'(u) = 00, 0'(00) = u, and 0' fixes all the other vertices of ~n. Thus ~n is 
regular. 0 

Lemma 4. Let ~~ be a regular Euclidean n-simplex inscribed in sn-l and 
let F : Dn --+ En be the vector field defined by 

x 
F(x) = (1-lxI2)(n-l)/2. 

Then the followmg dzvergence formula holds: 

r (divF)dV = r (F. n)dS, 
Jt:;.;; Jet:;.;; 

where n is the outward normal to the boundary of ~~ . 

Proof: We first calculate the divergence of F. Observe that 

divF(x) ~ 8~. ((1 - Ixl~)(n-l)/2) 
~ (1 (n - 1)x2 ) 

~ (1 - IxI2)(n-l)/2 + (1 _ IxI2)(n~1)/2 

n (n - 1)lx12 

(1 - IxI2)(n-l)/2 + (1 - IxI2)(n+1)/2 

1 (n - 1) 
(1 - IxI2)(n-l)/2 + (1 - IxI2)(n+1)/2· 

By Theorem 6.3.26, the set ~~ has finite volume in Dn. Therefore, by 
Lemma 1, the integral of (1 _lxI2)-(n+l)/2 over ~~ is finite. 



520 11. Hyperbolic n-Manifolds 

Next, observe that 

o ~ (1 _ Ixl~)(n-l)/2 ~ (1 _ Ixl~)(n+l)/2. 
Therefore, the integral of (1 - IxI2)-(n-l)/2 over ~~ is finite. Hence, the 
integral of div F over ~~ is finite. 

Now a~~ consists of n + 1 regular Euclidean (n -l)-simplices a.~~ for 
i = 0,1, ... , n. Let v. be the vertex of ~~ opposite the side a.~~. Since 
o is the centroid of ~~, we have that 'E~=o v. = O. Hence, for each j, we 
have that 

n 

LV. ·VJ = o . 
• =0 

As v • . vJ ' for i i- j, is independent of i and j, we have 

1 + nv.· vJ = 0 

and so for all i i- j, we have 

V.· Vj = -lin. 

Let x be any point of a.~~. Then there are coefficients to, ... , tn in the 
interval [0,1] such that 

n n 

X = LtJvJ, LtJ = 1, and t. = o. 
J=O J=O 

Hence 
n 

X . n = x . (-v.) = - L tJvJ . V. = -vJ . V. = lin. 
J=O 

Let a. and rn be the center and radius of the circumscribed (n - 2)-sphere 
for a.~~. Then a. is a scalar multiple of v.. As a • . -v. = lin, we have 
that a. = -v.ln. Now 0, a., and any vertex vJ i- v. form a right triangle 
with the right angle at a.. Therefore 

la.12 + r~ = 1. 

Hence, we have 
rn = (1-1/n2)!. 

Let x be any point of a.~~. Then 0, x, and a. form a right triangle with 
the right angle at a.. Therefore 

la.12 + Ix - a.1 2 = Ix12. 

Hence, we have 

Therefore 

1 n+11 ~ 
(F· n)dS = -- ( 2 _ I _ 12)(n-l)/2· 

aA;: n anA;: rn X an 
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Now onA": is congruent to rnA,,:-l. Hence, this integral transforms into 

n + 1 f dXl ... dXn-l 
-n- 1 L:!.::-l (1 - IxI2)(n-l)/2 . 

Moreover, this integral is finite by Lemma 2. Thus, both integrals in the 
desired divergence formula are finite. 

For each i = 0,1, ... , n and real number r such that 1/2 < r < 1, let 
A~-l(r) be the (n - I)-simplex obtained by intersecting A": with the hy­
perplane normal to v, and passing through the point rv,. Then A~-l(r) 
is a regular Euclidean (n - I)-simplex for each i. Let A":(r) be the poly­
hedron obtained from A": by truncating A": along the (n - 1 )-simplices 
A~-l(r), ... , A~-l(r). Then by the divergence theorem, we have 

f (divF)dV = f (F· n)dS. 
1L:!.,;(r) 1M,;(r) 

Taking the limit as r --> 1 gives the formula 

f (divF)dV = f (F· n)dS + lim (t f (F. n)dS) . 
1L:!.'; 1M'; r->l ,=0 1L:!.~-1(r) 

Thus, it remains only to show that the last term is zero. 
The hyperplane spanned by A~-l(r) has the equation X· Vi = r. Hence 

f (F.n)dS= f rdS. 
1L:!.~-1(r) 1L:!.~-1(r) (I-lxI2)(n-l)/2 

Let Ll~(r) be the n-simplex spanned by Ll~-l(r) and V,. Then Ll~(r) is 
a regular Euclidean n-simplex. Let s be the Euclidean distance from the 
centroid c, of Ll~ (r) to v,. Since the Euclidean distance from c, to the side 
A~-l(r) of A~(r) is sin, we have 

r + (sin) + s = 1. 

Hence, we have 

s = (1- r)/(I + lin). 

Let Sn be the radius of the circumscribed (n - 2)-sphere for A~-l(r). Then 

Sn = s(I- Iln2)~ = (1- r) (1- lin) ~ 
1 + lin 

Observe that for each x in A~-l(r), we have 

IxI2 ~ r2 + s~ 

r2+(I-r)2 (n-I) 
n+I 

< r2 + (1- r? 
1- 2r + 2r2 

= I+2r(r-I) 

< 1 + (r - 1) = r. 



522 11. Hyperbolic n-Manifolds 

Then we have r rdB 
I~~-l(r) (1-lxI2)(n-l)/2 

< r dB 
J6.~-l(V) (1- r)(n-l)/2 

Vol(~~-l(r)) 
(1 - r)(n-l)/2· 

Now 
V01(~~-1(r)) = sn-lVol(~~-l) = kn(l- r)n-l 

for some constant kn depending only on n. Therefore 

1 rdB:::; kn(1- r)(n-l)/2. 
6.~-l(v) (1 - IxI2)(n-l)/2 

Taking the limit as r ........ 1, we deduce that 

1m = o. 1· 1 rdB 
r-->l 6.~-l(r) (l-lxI2)(n-l)/2 

Lemma 5. If ~~ zs a Euclidean regular zdeal n-simplex in Dn) then 

Proof: 

n 1 dXl·· ·dx 
Vol(~~) = -- ( 1 12)( -~)/2· n - 1 6.:; 1- x n 

By Lemma 4, we have 

1 dXl·· ·dxn 
6.:; (1 - IxI2)(n-1)/2 

By Lemmas 1-3, we have 

r dX1··· dXn (_ 1)¥ l(~n) = (n + l)(n - 1)¥ l(~n). 
J6.:; (1 -lxI2)(n-l)/2 + n 0 * n 0 * 

Hence 
1 r dX1 ... dXn 1 n 

(n - 1) } 6.:; (1 _ IxI2)(n-l)/2 = -; Vol(~*). 

Lemma 6. If ~~ ~s a Euclidean regular ideal n-simplex m Dn} then 

1 1 Vol(~n+l) 1 
- - - < * <-. 
n n 2 - Vol(~'Z) - n 

Proof: By Lemmas 1, 2, and 5, we have the formulas 

1 dXl·· ·dxn 
6.:; (1 _lxI2)(n+1)/2 Vol(~~), 

1 dXl···dxn nVol(~~+l), 
6.:; (1 - IxI 2)n/2 

r dXl· ··dxn n -lVol(~~). 
} 6.:; (1 - IxI 2)Cn- 1)/2 n 

o 

o 
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Hence 
n -lVol(~~) :::; nVol(~~+l) :::; Vol(~~). 

n 
o 

Lemma 7. Let J : (0,1] -+ lR. be a continuous concave Junctwn, let c be 
the centrozd oj a Euclidean n-szmplex ~n znscrzbed zn sn-I, and let ~~ be 
a regular Euclzdean n-szmplex znscrzbed in sn-l. Then 

in J(1-lxI 2 )dV :::; ~:~:~~;~ i,: J((1-l cI2 )(1-lx I2 ))dV 

whenever both zntegrals are finite. Moreover, iJ J is strictly concave, then 
equalzty holds zJ and only zJ ~ n is regular. 

Proof: Let vo, ... ,Vn be the vertices of ~ n. Then 
n n 

~ n = {L t. v. : t, ~ ° and L t. = 1 }. 
,=0 .=0 

Let ~n be the n-simplex in En+l given by 
n 

,=0 
Let P be the hyperplane of En+ 1 spanned by ~n and let a : P -+ En be 
the affine bijection defined by 

n 

a(to, ... ,tn ) = L t,v,. 
,=0 

Upon changing variables by a, we have 

Therefore, we have 

{ dV = ( I deta'ldS. J6. n J6. n 

I det a'i = VoIE(~n) 
VoIE(~n) . 

Upon changing variables by a, we have 

VoIE(~n) { ( n 2) 
VoIE(~n) J6.

n 
J 1-I~t,v,1 dS. 

Let a be a permutation of the set {O, ... ,n}. As the Lebesgue measure 
Son P is invariant under the transformation t, ~ ta (.), we have 
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Hence 

Now 
n 2 n 

[2:)U(t)vt[ = Ltu(t)tU(J)Vt · VJ + Lt;. 
t=O tOPJ t=O 

Moreover 

L (n(n 1+ 1) L tkte) v, . vJ 

#J k# 

n(n 1+ 1) (1- t t;) L V t . vJ 

t=O tOP] 

n(n1+l) (1- ~t;) [(n+l)2IcI2 -(n+l)] 

~ (1- ~t;) ((n+ 1)le1 2 -1). 

Hence 

1 n 2 

1- (n+ I)! ;;]~tu(t)Vtl 
n 1 n 

(1- Ltn + ;:(1- Ltn (1 + (n+ 1)leI2 ) 

t=O t=O 

(1- ttn (n: 1) (I-len. 
t=O 
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Therefore 
n 

VolE (ton) r f(l -lxI2)dV:::; r f( (n + 1) (1 -lcI2) (1 - 2:>;) )dS 
VolE(ton) JAn JAn n .=0 

with equality if ton is regular. 
We now apply this last equality to g(t) = f((l - IcI 2)t) and to~. Then 

we have 

VolE (ton) r f((1-l cI2)(1-lx I2))dV 
VolE(to~) JA':; 

= Ln f ((1- lc I2 )(n:1)(1- ~t;))dS. 
Therefore, we have 

r f(1-lxI 2)dV:::; Voldto:) r f((1-1c1 2)(1-lxI2))dV. 
JAn VoIE(to*) J A':; 

Now assume that we have equality and f is strictly concave. Then 

for all (to, ... , tn) in ton. Therefore 

for all (to, ... , tn) in ton and all (Y. Let to = h = 1/2 and t. = 0 for i > l. 
Then we find that 

Ivo + vII = Iv. + vJ I for all i -=f. j. 

Hence, we have 
Vo . VI = v • . vJ for all i -=f. j. 

Therefore, we have 

Ivo - VII = Iv. - vJI for all i -=f. j. 

Consequently ton is regular. o 

Theorem 11.3.1. An n-simplex ton zn Bn has maximal volume if and 
only if it is regular and ideal. 

Proof: The proof is by induction on n. The theorem is true for n = 1,2,3, 
so assume that n ~ 3 and the theorem is true in dimension n. Now consider 
ton+l . We may assume that ton+1 is ideal. We pass to the upper half-space 
model un+! and position ton+1 as in Lemma 2. Let ton = v(ton+!). 

Let to~ be a regular ideal n-simplex in Dn and let 

kn = nVol(to~+I)/Vol(to~). 
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Define f : (0,1] ----7 ~ by 

f(t) = rn/2 - knr(n+l)/2. 

Then 

f"(t) = (~) (n; 2) r(n+4)/2 _ kn (n; 1) (n; 3) r(n+5)/2. 

Hence 
f"(t) < 0 if and only if t < kn(n + 1)(n + 3) 

n(n + 2) 

Therefore, if 1 < kn(:tn~~)+3) or equivalently kn > (n~~)t:~3)' then f is 
strictly concave. By Lemma 6, we have 

kn ;::: (n - 1)/n. 

Now observe that 
(n-l) > n(n+2) 

n - (n+l)(n+3) 

if and only if n2 - n > 3, which is the case, since n ;::: 3. Thus f is strictly 
concave. 

For ease of notation, set 

C _ VolE(,6.n) 
n - VolE (,6.;;) . 

We now apply Lemma 7 to f and ,6. n. By Lemmas 1 and 2, we have 

n Vol (,6. n+l) - kn Vol (,6. n) 

1 f(1 - Ix1 2 )dV 
,6.n 

< Cn i>; f((1-lcI 2)(I-lxI2))dV 

Cn (1 - IcI2)-n/2nVol(,6.~+1) - Cnkn(1-lcI2)-(n+l)/2Vol(,6.~) 

Cn(I-lcI2)-n/2 [nVol(,6.~+l) - kn(1-lcI2)-1/2Vol(,6.~)J 

< Cn(I-lcI2)-n/2[nVol(,6.~+l) - knVol(,6.~)J 

o. 
By the induction hypothesis, we have 

Vol(,6.n) ::::; Vol(,6.~) 

and so 

nVol(,6.n+l) ::::; kn Vol(,6.n) ::::; kn Vol(,6.~) = nVol(,6.~+l). 

Thus V01(,6.~+1) is maximal. If Vol (,6.n+ 1 ) = Vol(,6.~+l), then we have by 
Lemma 7 that ,6.n is Euclidean regular and therefore ,6.n+l is regular by 

Lemma 3. o 
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Theorem 11.3.2. The hyperbolzc volume of a generalized n-simplex ~n 
in D n zs a contmuous function of its vertzces. 

Proof: For each positive integer j, let ~; be a generalized n-simplex in 
D n with vertices voJ' ... , vnJ such that (voJ, . .. , vnJ ) ----+ (va, ... , vn) where 
Va, ... , Vn are the vertices of a generalized n-simplex ~n in Dn. We need 
to prove that 

lim Vol(~;) = Vol(~n). 
J--+OO 

Assume first that ~; is ideal for each j. Then ~ n is ideal. This part 
of the proof is by induction on the dimension n. There is nothing to prove 
in dimension one, since Dl is the only ideal I-simplex in Dl. In dimension 
two, all ideal 2-simplices are congruent, and so the theorem is true in this 
case. Assume that n > 2 and this part of the theorem is true in dimension 
n-1. 

For each j, let AJ be the rotation of En that rotates VOJ to va with no 
other nonzero angles of rotation. As vOJ ----+ va, we have that AJ ----+ I in 
O(n). Hence (AJvoJ, ... ,AJvnJ) ----+ (vo, ... ,vn). As 

Vol(AJ(~;)) = Vol(~;), 

we may replace ~; by AJ(~;)' Thus, we may assume, without loss of 
generality, that vOJ = va for all j. 

We now pass to the upper half-space model un of hyperbolic space and 
assume, without loss of generality, that va = 00 and VI, ... , Vn lie on sn-2 in 
En-I. For each j, the vertices VIJ, ... , vnJ lie on an (n - 2 )-sphere S (aJ, r J) 
in En-I. Now as (VIJ, ... ,vnJ ) ----+ (Vl, ... ,Vn), we have that aJ ----+ 0 and 
rJ ----+ 1. Let 

,J,. -1 -II 'VJ = -rJ aJ + rJ . 

Then cPJ maps S(aJ,rJ) onto sn-2. Moreover cPJ ----+ I in S(En-l). Hence 
(cPJ(VIJ),···,cPJ(vnJ )) ----+ (VI, ... ,vn). As 

Vol(cPJ(~;)) = Vol(~;), 

we may replace ~; by cPJ(~;)' Thus, we may assume, without loss of 
generality, that the vertices VI, ... , Vn lie on the sphere sn-2 for all j. By 
Lemma 2, we have 

Vol(~n) = -1-1 dXl··· dXn -l 
n - 1 v(.6.n ) (1 - IxI2)(n-l)/2' 

where v : un ----+ En-l is the vertical projection. 
For each j, let XJ be the characteristic function of the set v(~n) and 

let X be the characteristic function of v( ~ n). Then {XJ} converg~s to X 
almost everywhere, and for each j, we have 

XJ(x) XJ(x) 
(1 - IxI2)(n-l)/2 ::; (1 - IxI2)n/2· 
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By the induction hypothesis, we have 

lim r XJ(x)dV = r X(x)dV 
J-+OO j Dn-l (1 - ixi2)n/2 j Dn-l (1 _ ixi2)n/2 < 00. 

By the dominated convergence theorem, we deduce that 

lim r XJ(x)dV _ r X(x)dV 
J-+OO j Dn-l (1 - ixi2)(n-l)/2 - j Dn-l (1 - ixi2)(n-l)/2 . 

Therefore 
lim Vol(~~) = Vol(~n). 

J-+OO 

We now return to the general case. Without loss of generality, we may 
assume that 0 is the centroid of ~ n. Then every vertex of ~ n is nonzero. 
As the vertices of ~7 converge to the vertices of ~ n, we may assume 

that every vertex of ~j is nonzero for each j. For each j, let A7 be the 

ideal n-simplex with vertices voJ"'" VnJ , where v'J = v'J/iv'Ji, and let An 
be the ideal n-simplex with vertices vo, ... ,Vn, where V, = v,/iv,i. Then 
(voJ, ... , vnJ ) -t (vo, ... , vn). Let XJ' XJ' X, X be the characteristic functions 
for the sets ~7, A7, ~ n , An, respectively. Then XJ -t X and XJ -t X almost 

everywhere. Now as ~j C Aj, we have that XJ ~ XJ for each j. Let 

dV 
dp, = (1 _ ixi2)(n+1)/2 

be the element of hyperbolic volume of Dn. By the first case, we have 

lim r XJdp, = r Xdp, < 00. 
J-+oojDn jDn 

By the dominated convergence theorem, we deduce that 

lim r XJdP, = r Xdp,. 
J-+OO j Dn j Dn 

Therefore, we have 
lim Vol(~~) = Vol(~n). 

J-+OO 
o 

Exercise 11.3 

1. Prove that the edge length of a regular Euclidean n-simplex inscribed in 
sn-l is )2(1 + lin). 

2. Prove that the volume of a regular Euclidean n-simplex inscribed in sn-l is 

(n+ l)! ( 1)n/2 1+ -
n! n 

3. Let t:::..n be a Euclidean n-simplex inscribed in sn-l and let t:::..:' be a regular 
Euclidean n-simplex inscribed in sn-l. Prove that 

VolE(t:::.. n) ~ VolE(t:::..~) 

with equality if and only if t:::.. n is regular. 
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4. Prove that a regular ideal 4-simplex in B4 has volume 

107r . ( 1 ) 7r2 
Tarcsm "3 - 3" = .26889 .... 

5. Fill in the details in the proof of Lemma 7 that 

L ta(2)ta(J) = (n - 1)! L tktl. 

k# 
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In this section, we consider the Gromov invariant of a closed, orient able, 
hyperbolic manifold. As an application, we prove that two homotopy equiv­
alent, closed, orientable, hyperbolic manifolds have the same volume. 

Let X be a topological space and let S(X;~) be the singular chain 
complex of X with real coefficients. For each integer k ~ 0, the group of 
singular k-chains Sk(X;~) is a real vector space with a basis consisting of 
all continuous maps from the standard k-simplex ~ k to X. Recall that a 
continuous map U : ~ k -+ X is called a smgular k-simplex in X. 

Let c be a k-chain in Sk(X; ~). Then for each singular k-simplex u in 
X, there is a unique real number r a such that 

c = LraU. 

Here ra = 0 for all but finitely many u. The simphcial norm of c is defined 
to be the real number 

If a is a homology class in Hk (X; ~), the simplicial norm of a is defined 
to be the real number 

110011 = inf{llcll : c is a k-cycle representing a}. 
If a and (3 are in Hk(X;~) and t is in ~, then obviously 

(1) Iitall = It I 110011, 

(2) 1100 + (311 :::; 110011 + 11(311· 

Lemma 1. If f : X -+ Y is a continuous function and a is a homology 
class in Hk(X;~), then Ilf*(a)11 :::; 110011. 

Proof: Let c be a k-cycle representing a and write c = 2: r aU as before. 
a 

Then the homology class f * (a) in Hk (Y; ~) is represented by f * (c), where 

f*(c) = L rafu. 



530 11. Hyperbolic n-Manifolds 

As the maps fa: .6. k ---+ Yare not necessarily distinct, we have 

Therefore Ilf*(a)11 ~ Ilall· o 

Definition: The Gromov mvaT'tant of a closed, connected, orient able n­
manifold M is the simplicial norm of a fundamental class of Min Hn(M; JR). 
The Gromov invariant of M is denoted by IIMII. 

Theorem 11.4.1. If M ~s a closed, connected, oT'tentable, spherical or 
Euclidean n-manifold, with n > 0, then IIMII = o. 

Proof: Assume first that M = sn or Tn. Then M admits a map f : 
M ---+ M of degree two. By Lemma 1, we have 

(degf)IIMII ~ IIMII· 

Consequently IIMII = o. 
Now assume that M is arbitrary. Then M is finitely covered by M = sn 

or Tn. Let 7r : M ---+ M be the covering projection. By Lemma 1, we have 

(deg7r)IIMII ~ IIMII = o. 
As the degree of 7r is the order of the covering, we have that deg 7r ~ 1 and 
so IIMII = o. 0 

Remark: Since the simplicial norm of a nonzero homology class may be 
zero, the simplicial norm on real singular homology is technically not a 
norm but only a pseudonorm. 

Straight Singular k-Simplices 

The standard k-simplex .6.k is the k-simplex in En spanned by the vectors 
0= eo, ell ... , ek. Let x be a point of .6.k . Then we have 

k 

x = Lx.e. 
,=1 

with 0 ~ x. ~ 1 for each i and E~=1 x. ~ 1. Set 

k 

Xo = 1- LX, . 
• =1 

Then Xo, ..• , Xk are the barycentric coordinates of x and we have 

k 

x = Lx,e,. 
,=0 
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A singular k-simplex 0" in H n is said to be straight if and only if for each 
x in ,~\ we have 

The image of a straight singular k-simplex 0" is the convex hull in H n 

of the points O"(eo), ... , O"(ek); moreover, 0" is uniquely determined by the 
sequence of points O"(eo), ... , O"(ek); furthermore, if g is an isometry of H n , 

then gO" is also a straight singular k-simplex. 
Let M = H n If be a hyperbolic space-form. A singular k-simplex 0" in 

M is said to be strazght if and only if 0" lifts to a straight singular k-simplex 
if in Hn. By the previous remark, if some lift of 0" is straight, then every 
lift of 0" is straight, since any two lifts of 0" differ by an element of f. 

Given a singular k-simplex 0" in M, we can associate to 0" a straight 
singular k-simplex Str( 0") as follows: First lift 0" to a singular k-simplex if 
in Hn. Let Str( if) be the unique straight singular k-simplex determined by 
the sequence of points if(eo), ... , if(ek). Now let Str(O") = 7r Str(if) where 
7r : H n ----t M is the quotient map. Then Str( 0") is a straight singular k­
simplex, and Str(O") does not depend on the choice of the lift if, since any 
two lifts of 0" differ by an element of f. 

The straightening operator Str on singular k-simplices in M extends 
linearly to a linear transformation 

Furthermore, since 

Strk- 18k = 8k Strk 

for all k, we have that Str = {Strd is a chain map. 

Lemma 2. The straightening chain map Str : S(M; JR.) ----t S(M; JR.) zs 
chain homotopzc to the identity. 

Proof: Let 0" be a singular k-simplex in M. Lift 0" to a singular k-simplex 
if in Hn. Since Hn is convex, there is a canonical homotopy 

Fij : b,.k x [0,1] ----t H n 

from if to Str( if) defined by 

F- (x t) = (1 - t)if(x) + tStr(if(x)) 
u, 111(1 - t)a(x) + tStr(if(x))III· 

If g is an isometry of Hn, then Fgij = gFij. Therefore Fij projects to a 
homotopy 

Fu : b,. k X [0, 1] ----t M 

from 0" to Str( 0") that does not depend on the choice of the lift if. 
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Now f}.k X [0,1] has vertices 

ao = (eo, 0), ... , ak = (ek, 0), bo = (eo, 1), ... , bk = (ek' 1). 

For each i = 0, ... , k, let 

a, : f}.k+1 ----+ f}.k X [0,1] 

be the affine map that maps eo, . .. ,ek+l to ao, ... ,a" b" ... , bk, respec­
tively. Define a linear transformation 

by the formula 
k 

Fk(a) = 2.:)-l)'F,,-a,. 
,=0 

A straightforward calculation shows that 

ok+1Fk(a) + Fk-1ok(a) = Strk(a) - a. 

Therefore, we have 

Ok+lFk + Fk-10k = Strk - idk. 

Thus F = {Fk } is a chain homotopy from Str to the identity. o 

Let Strk(M;ffi.) be the set of all straight singular k-chains in M. Then 
Str(M; ffi.) is a chain sub complex of S(M; ffi.). 

Theorem 11.4.2. If M is a hyperbolic space-form, then the inclusion 
chain map 

i : Str(M; ffi.) ----+ S(M; ffi.) 

induces an isomorphism on homology. 

Proof: The straightening chain map Str : S(M; ffi.) ----+ Str(M; ffi.) is a chain 
homotopy inverse of i by Lemma 2. 0 

Remark: It follows from Theorem 11.4.2 that one can compute the real 
homology of a hyperbolic space-form M using only straight singular chains 
in M. Moreover, if c is any singular chain in M, then IIStr(c)II :S Ilcll, and 
so one can also compute the simplicial norm of a real homology class of M 
using only straight singular cycles. 

Lemma 3. Let M be a compact, oriented, hyperbolic space-form Hn /f, 
with n > 1, and let Vn be the volume of a regular ideal n-simplex in Hn. 
Then 

IIMII 2 Vol(M)/Vn . 
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Proof: Let DM be the hyperbolic volume form for M and let c = Lo- ro-a 
be any straight singular n-cycle representing the fundamental class of M 
in Hn(M;lR). We claim that 

1 DM = Vol(M). 

First we show that the integral Ie DM depends only on the homology class 
of c. Let c' be any singular n-cycle homologous to c. Then there is singular 
(n + 1 )-chain b such that 

c - c' = ab. 

By Stokes's theorem, we have 

since dDM = O. Thus Ie DM depends only on the homology class of c. 
Let P be an exact, convex, fundamental polyhedron for f. Then P is 

compact by Theorem 6.5.10. Since P is exact, the barycentric subdivision 
of P projects to a subdivision of M into a finite number of hyperbolic n­

simplices. Moreover, the second barycentric subdivision of P projects to a 
triangulation of M into a finite number of hyperbolic n-simplices S1, ... , Sm 

that barycentric ally subdivides the first subdivision of M. For each i = 
1, ... , m, let a, : bon ~ M be the straight singular n-simplex such that 
a,(eJ ) is the unique vertex of s, contained in the jth skeleton of the first 
subdivision of M for each j = 0, ... , n, and let r, = 1 or -1 according as 
a, is orientation preserving or not for each i. Then 

is a straight singular n-cycle representing the fundamental class of M. Now 

and for each i, we have 

Therefore, we have 

f, DM = I:V01(s,) = Vol(M). 
e ,=1 

Thus, we have 

1 DM = 1 DM = Vol(M). 
e e' 
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Next observe that 

a 

a 

Now by Theorem 11.3.1, we have 

Therefore, we have 

Dividing by Vn , we obtain the inequality 

Vol(M)jVn < Ilell· 
Therefore, we deduce that 

Vol(M)jVn :::; IIMII· o 

Haar Measure 

Let G = I(Hn) and let H be the subgroup of G of all elements that fix 
the point en+!' The left-invariant Haar integral of a function ¢ : G ----+ lR is 
given by the formula 

i ¢(g)dg = i/H (L ¢(gh)dh) d(gH), 

where dh is the left-invariant Haar measure on the compact group Hand 
d(gH) is the left-invariant measure on G j H corresponding to hyperbolic 
volume in H n under the homeomorphism from G j H to H n given by The­
orems 5.1.5 and 5.2.9. The Haar measure on a topological group is unique 
up to multiplication by a positive scalar. We shall normalize the Haar 
measure dg on G by normalizing the Haar measure dh on H so that 

L dh = 1. 

Lemma 4. Let x be a point of Hn, let R be an open (resp. closed) subset 
of Hn, and let 

S = {g E I(Hn) : gx E R}. 

Then S is open (resp. closed) and the Haar measure of S zs the volume of 
the set R. 
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Proof: Assume first that x = en+}' As the evaluation map 

c : I(Hn) -+ H n, 
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defined by c(g) = gen+l, is continuous, S = CI(R) is open (resp. closed). 
Let xs be the characteristic function of the set S. Then 

VoleS) faXS(9)d9 

fa/H (L xs(9h)dh) d(gH) 

1 xS/H(gH)d(gH) = Vol(R). 
G/H 

Now let x be an arbitrary point of Hn. Set 

So = {g E I(Hn) : gen+l E R} 

and let f be an isometry of H n such that fx = en+l· Then S = Sof· 
Hence S is open (resp. closed). It is a basic fact of the theory of Haar 
measure that the Haar measure on a group is both left- and right-invariant 
if the abelianization of the group is finite. Consequently, the Haar mea­
sure on I(Hn) is both left- and right-invariant because of Theorem 5.5.12. 
Therefore 

VoleS) = Vol(Sof) = Vol(So) = Vol(R). o 

Theorem 11.4.3. (Gromov's theorem) Let M be a closed, connected, ori­
ented, hyperbolic n-manzfold, wzth n > 1, and let Vn be the volume of a 
regular ideal n-szmplex zn Hn. Then 

IIMII = Vol(M)IVn. 

Proof: Since M is complete, we may assume that M is a space-form 
Hn Ir. Let P be a convex fundamental polyhedron for r. Then P is 
compact by Theorem 6.5.10. Choose a point Xo in po and let Uo = n(xo) 
where n : Hn -+ Hn Ir is the quotient map. 

Let (T : ~n --+ M be a straight singular n-simplex such that (T(e.) = Uo 
for each i. Then (T lifts to a unique straight singular n-simplex (j : ~n -+ H n 

such that (j(eo) = Xo. As n(j(e.) = Uo for each i, we have that (j(e,) is in 
the r-orbit of Xo for each i. Hence, there is a unique element f, of r, with 
fo = 1, such that (j(e,) = f,xo for each i. 

Given £ > 0, choose points Xl,.'" xn of Hn such that XO, ... , Xn are the 
vertices of a regular n-simplex ~£ in Hn whose edge length is J!. For each 
i = 0, ... ,n, let 

S, = {g E I(Hn) : gx, E f.(PO)}. 

By Lemma 4, the set S, is open and VoleS,) = Vol(P). Let 

S(j = So n ... n Sn· 
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Then Su is open and Vol(Su) ~ Vol(P). As P is compact, Vol(P) is finite 
and therefore Vol(Su) is finite. 

so 
Suppose that 9 is in Su. Then gx. is in f.(P O ) for each i = 0, ... ,n and 

d( xo, f.xo) ~ d( xo, gxo) + d(gxo, gx.) + d(gx., f.xo) 

< .e + 2 diam(P). 

Let T = .e+2diam(P). As B(Xo,T) contains only finitely many elements of 
rxo, there are only finitely many u such that the set Su is nonempty. 

Suppose that Su is nonempty. Then if 9 is in Su, we have 

d(a(e.),gx.) < diam(P) 

for each i = 0, ... , n. Hence, the vertices of a(.6.n ) are within a fixed 
distance from the corresponding vertices of the regular n-simplex g.6.~. By 
choosing.e sufficiently large, we may assume that a(.6.n ) is a nondegenerate 
n-simplex in Hn. 

For each u, let Tu = ±Vol(Su) with the plus or minus sign according as 
u preserves or reverses orientation. Set 

Then Ci is a straight singular n-chain in M. 
For each i = 0, ... ,n, let 

T. = {g E I(Hn) : gx. E rap}. 

By Lemma 4, the set T. is closed and 

Vol(T.) = Vol(rap) = 0. 

Now let 
T=ToU···UTn . 

Then T is closed and Vol(T) = 0. 
Suppose that 9 is in So - T. Then there exists a unique element f. 

of r, with fo = 1, such that gx. is in f.po for each i = 1, ... , n. Let 
a : .6.n _ H n be the straight singular n-simplex such that a(e.) = f.xo for 
each i. Let u = na. Then 9 is in Su. Consequently, we have 

So - T = USu· 
u 

Moreover, the sets {Su} are pairwise disjoint. Therefore, we have 

Vol(So) = Vol(So - T) = LVol(Su) = L ITul· 
u u 

Hence, we have 

IICil1 = L ITul = Vol(So) = Vol(P) = Vol(M). 
u 
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Now let a : .6.n --+ H n be an arbitrary, nondegenerate, straight, singular 
n-simplex such that a(e.) = f.xo for some f. in r for each i = 0, ... , n. Let 

8" = {g E I(Hn) : gx. E f.(PO) for i = 0, ... ,n} 
and let r" = ±Vol(8,,) with the plus or minus sign according as 'Ira pre­
serves or reverses orientation. If f is in r, then f 8 if = 8 f" and so r fi7 = r if . 
Thus, the infinite chain 

Ce = ~rifa 

" is r-equivariant. Now for each a, there is an f in r such that fa(eo) = Xo· 
Therefore, we have 

rif = rfif = r1C(if)· 

Hence, the chain ce is the infinite chain in Hn that covers the chain Ce in 
M. Therefore ce locally finite. 

Now observe that 
aCe = ~r"aa 

" is a locally finite chain. Hence, we have 

aCe = LSTr, 

where each r is a straight singular (n-l)-simplex in Hn such that r(e.) is in 
rxo for each i. For each such r, let PT(resp. NT) be the set of all isometries 
of Hn that contribute positively (resp. negatively) to the coefficient ST of 
r. Let p be the reflection of Hn in the hyperplane spanned by the image of 
r. Then the symmetric difference of PT and pNT is a subset of T. Hence PT 

and pNT differ by a set of measure zero, and so ST = O. Therefore aCe = O. 
As aCe covers ace, we deduce that aCe = o. Thus Ce is a cycle. 

Now since Hn(M;lR) is generated by the fundamental class [c] of M, 
there is a constant ke such that [ee] = ke[c]. Let OM be the volume form 
of M. On the one hand, 

1 OM = 1 OM = ke 10M = keVol(M) 
c£ k£c c 

and so 

On the other hand, 

1 OM = ~rCTl a*(OM) = ~lrCTIVol(a(.6.n)). 
~ CT 6 n CT 

Let ae be a simplex, with a nonzero coefficient in the sum L r lTa, such 
that a(.6. n) has least volume. Then 

1£ OM > (~lrlTl)VOl(ae(.6.n)) 
= IlceIIVol(ae(.6.n)) 

Vol(M)Vol(ae(.6.n )). 
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Hence, we have that 
ke 2 Vol((Je(~n)). 

Now as [cdkeJ is the fundamental class of M, we deduce that 

IIMII:::; licell/ke :::; Vol(M)/Vol((Je(~n)). 

Now there is an isometry ge of H n such that (Je(e 2 ) is within a distance 
diam(P) from gex, for each i = 0, ... , n. Consequently 

lim Vol((Je(~n)) = Vn 
e--->oo 

by Theorem 11.3.2. Therefore 

IIMII :::; Vol(M)/Vn. 

As we have already established the reversed inequality in Lemma 3, the 
proof is complete. D 

Theorem 11.4.4. If M, N are homotopy equivalent, closed, connected, 
orientable, hyperbol2c n-mamfolds, with n > 1, then Vol(M) = Vol(N). 

Proof: Let f : M ----7 N be a homotopy equivalence and let g : N ----7 M be 
a homotopy inverse of f. Let Ii be a fundamental class of M. Then f*(Ii) 
is a fundamental class of Nand 

Hence, by Lemma 1, we have 

Therefore, we have 

Hence, by Theorem 11.4.3, we find that 

Vol(M) = Vol(N). 

Exercise 11.4 

D 

1. Explain why the proof of Lemma 3 breaks down in the spherical case where 
Vn is replaced by Vol(sn). 

2. Prove that the abelianization of I(Hn) has order two. 

3. Let G be a topological group whose abelianization is finite. Prove that a 
left-invariant Haar measure on G is right-invariant. 

4. Give a direct proof that the n-chain Cc in the proof of Theorem 11.4.3 is a 

cycle. 

5. Let M be a closed, connected, orientable, hyperbolic surface. Prove that 

IIMII = 2Ix(M)I· 
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§11.5. Measure Homology 

In this section, we develop the theory of measure homology of a hyperbolic 
space-form. Let M be a differentiable manifold. For each integer k ~ 0, let 
Coo (A k , M) be the space of Coo singular k-simplices in M topologized with 
the C1 topology. The C1 topology is a larger topology than the compact­
open topology that takes into account not only the proximity of functions 
but also of their first derivatives. 

Let Ck(M) be the real vector space of all compactly supported, signed, 
Borel measures I-" of bounded total vaT'tation 111-"11 on the space COO(Ak,M). 
Here 

where I-" = 1-"+ - 1-"- is the Jordan decomposition of I-" into its positive and 
negative variations. 

For each i = 0, ... , k, let 17, : Ak- 1 -> Ak be the ith face map. Then 17, 
induces a continuous function 

17: : COO(Ak,M) -> coo(Ak-l,M) 

defined by 17; ((T) = (T17,. Furthermore 17; induces a linear transformation 

defined by 

((17;)*(1-")) (B) = 1-"((17:)-1 (B)) 

for each measure I-" in Ck(M) and Borel subset B of COO (Ak- 1 ,M). Define 
a linear transformation 8k : Ck(M) -> Ck-1(M) by the formula 

k 

8k = L( -l)'(17:k 
,=0 

Lemma 1. The system {Ck (M),8k} is a cham complex. 

Proof: If j < i, then 

and so we have 

(17;)*(17:)* = (17:-1)*(17;k 

With this identity, the usual calculation shows that 8k-18k = 0. 0 

The homology of the chain complex C(M) = {Ck(M),8k} is called the 
measure homology of M. Let SOO(M) be the sub chain complex of S(M;JR) 
of Coo singular chains in M. It is a basic fact of differential topology that 
the inclusion chain map from SOO(M) into SCM; JR) induces an isomorphism 
on homology. 
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Given a Coo singular k-simplex a : D..k --7 M, define an atomic Borel 
measure J.Lu on Coo (D.. k ,M) at a by the formula 

ifaisinB, 
otherwise. 

Define a linear transformation 

by the formula 

mk(Lrua) = LruJ.Lu. 
u u 

Lemma 2. The fam2ly {md of linear transformations is a chain map from 
SOO(M) to C(M). 

Proof: Let a : D.. k --7 M be a Coo singular k-simplex. It suffices to show 
that 

Observe that 
k 

8mk(a) = 8J.Lu = L(-1)'(1J:)*(J.Lu), 

whereas 

Moreover 

Thus, we have 

Therefore, we have 

.=0 

= {1 if a is in (1Jn-1 (B), 
o otherwise 

= { 
1 if 1J:(a) is in B, 
o otherwise 

{ ~ if a1J. is in B, 
otherwise 

J.LU1]> (B). 

o 
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Let Ok(M) be the real vector space of all Coo k-forms on M and let 

dk : Ok(M) ----+ Ok+l(M) 

be the exterior differential. Then {Ok (M), dk} is a co chain complex whose 
cohomology is the de Rham cohomology of M. 

Let V k (M) be the real vector space of all linear functionals on Ok (M). 
Define 

by the formula 
(akf)(W) = f(dk-1W). 

Then {Vk(M), ad is a chain complex. 

Lemma 3. Let w be a Coo k-form on M and let 

Iw: COO(D-.\M) ----+ lR 

be the functwn defined by 

Then Iw is continuous. 

Proof: For each point u of M, let T(M, u) be the tangent space of M 
at u, and let Ak(T(M,u)) be the real vector space of all skew-symmetric 
k-linear functionals on T( M, u). Set 

Ak(T(M)) = U Ak(T(M, u)). 
uEM 

Then Ak(T(M)) is a Coo vector bundle over M. A Coo k-form w on M is 
a Coo section of this bundle. 

Given a in COO(D-.k,M), let 

T(a)* : Ak(T(M)) ----+ Ak(T(D-.k)) 

be the induced map. Then 

l w = 1 a*(w), 
a b,k 

where a*(w) is the Coo k-form on D-.k defined by 

a*(w) = T(a)* 0 w 0 a. 

Since the space Coo (D-. k , M) is metrizable, we can prove the continuity of Iw 
in terms of sequences. Suppose that a, ----+ a in Coo (D-. k , M). Then we have 
that T(az) ----+ T(a) in C(T(D-.k), T(M)), since a z ----+ a in the C1 topology. 
Hence T(az)* ----+ T(a)* in C(Ak(T(M)), Ak(T(D-.k))). Since composition of 
maps is continuous with respect to the compact-open topology, we deduce 
that a;(w) ----+ a*(w) in C(D-.k,Ak(T(D-.k))). 
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o-*(w)= L f," 'k dx'"I\···l\dx'k, 
'I <. <'k 

where f," .. 'k is in coo(~k,lR). Likewise, we have 

o-:(w)= L f:"··'k dx'"I\···l\dx'k. 
'l<···<'k 

Then 1;l ... 'k ----7 f," ·'k in c(~ k, lR) for each i 1 ... ik· Hence f;l 'k ----7 f'" ... 'k 

uniformly, since ~k is compact. Therefore 

lim 1 f:1 ··'k dX'" 1\ ... 1\ dX'k = 1 f," "'k dX'" 1\ ... 1\ dX'k 
'---+00 tJ.k tJ.k 

by the Lebesgue dominated convergence theorem for each i 1 ... i k . Hence 

lim r o-:(w) = r o-*(w). 
,---+ooJtJ.k JtJ.k 

Thus Iw is continuous. 
o 

Let p, be a measure in Ck(M) and let K be the compact support of 
p,. Then the set Iw(K) is bounded in lR for each w in nk(M). As p, has 
bounded total variation, the integral iK Iwdp, is finite for each w in nk(M). 
Hence, we may define a linear functional 

f/1 : nk(M) ----7lR 

by the formula 

f/1(w) = 1 (1 w) dp,. 
uEC=(tJ.k,M) u 

Define a linear transformation 

Lemma 4. The family {£k} of linear transformations is a cham map from 
C(M) to D(M). 

Proof: Let p, be a measure in Ck(M). Then 

£k-l (~(-I)'(7J:)*(P,)) 
k 

L( -1)'£k-l ((7J:)*(p,)) 

k 

L( -I)' f(7Jn*(/1)· 
,=0 
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Now we have 
, 
~) -1)' f(,.,:). (I') (w) 

Thus, we have 

tu(-l)' 1Ec=(!:,.k-l,M) (1 w) d((rJ:)*(p,)) 

tu( -1)' 1Ec=(!:,.k,M) (l:(u) w) dp, 

1Ec=(!:,.k,M) (tu(-l)' 1,." w) dp, 

1Ec=(!:,.k,M) (fau W ) dp, 

1Ec=(!:,.k,M) (1 dw) dp, 

fl'(dw) 
8fl'(w), 
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o 

Theorem 11.5.1. Let M be a differentiable manifold. Then the composi­
tion of the chain maps 

m* : S=(M) ----t C(M) and £*: C(M) ----t V(M) 

znduces an zsomorphism on homology. 

Proof: Define a linear transformation 

by the formula 

(Jk(w))(c) = 1 w. 

Then {Jk } is a cochain map that induces an isomorphism on cohomology 
by de Rham's theorem. By the universal coefficients theorem, the chain 
map 

(1*)* : Hom(Hom(S~(M),lR),lR) ----t Hom(O*(M),lR) 

induces an isomorphism on homology. Consequently, the corresponding 
chain map 
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induces an isomorphism on homology. Here 

(c* Jk)(w) 

c*(Jk(w)) 
(Jk(w))(c) 

l w. 

Given u in Coo (60 k , M), then 

£kmk(U) = £k(fLu) = fJ-L,,' 

Moreover 

since flu is the atomic measure on Coo (60 k ,M) at u. Therefore, we have 
that £*m* = J*, and so £*m* induces an isomorphism on homology. 0 

Straightening 

Now assume that M is a hyperbolic space-form. Define a function 

Strk: Coo(6ok,M) ---+ Coo(6ok,M) 

Lemma 5. The function Strk : Coo(6ok,M) ---+ Coo(6ok,M) zs continuous 
for each k. 

Proof: Let 7r : H n ---+ M be the quotient map. Then 

7r * : Coo (60 k, Hn) ---+ Coo (60 k, M) 

is a continuous surjection, moreover 7r * is an open map, since 7r is a local 
homeomorphism. Define a function 

Strk : coo(6ok, Hn) ---+ COO (6ok , Hn) 

by Strk(u) = Str(u). As Strk7r* = 7r*Strk, it suffices to show that Strk is 
continuous. 

The image of Strk is the set Str(6ok, Hn) of straight singular k-simplices 
in Hn. The C1 topology on Str(6ok,Hn) is the same as the compact-open 
topology. Moreover, the function 

Strk : Coo (60 k, Hn) ---+ Str(6o k, Hn) 

is continuous with respect to the compact-open topology. Therefore Strk is 
continuous with respect to the C1 topology, since the C1 topology contains 
the compact-open topology. 0 
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The continuous function 

Strk : Coo (.6. k , M) --+ Coo (.6. k, M) 

induces a linear transformation 

(Strk )* : Ck(M) --+ Ck(M) 

defined by 
((Strk)*(f.L))(B) = f.L((Strk)-l(B)) 

for each measure f.L in Ck(M) and Borel subset B of Coo (.6.k, M). 

Lemma 6. The family {(Strk )*} of lmear transformations is a chain map 
from C(M) to C(M). 

Proof: Observe that 
k 

8k (Strk )* = L(-1Y(1J;)*(Strk )* 
.=0 

k 

L( -1Y(1J;Strk )* 
.=0 

k 

L( -1Y(Strk - 11J;)* 

k 

L(-1)'(Strk - 1)*(1J;)* = (Strk - 1)*8k . 
o 

.=0 

Theorem 11.5.2. Let M be a hyperbolic space-form. Then the straight-
ening chazn map 

(Str*)* : C(M) --+ C(M) 

is cham homotopzc to the identzty. 

Proof: Given an element u of COO(.6.k,M), let Fa:.6.k X [0,1]--+ M be 
the homotopy from u to Str(u) constructed in Lemma 2 of §11.4. Define 

Fk : COO (.6. k,M) --+ coo (.6.k X [0,1],M) 

by Fk(u) = Fa. We claim that Fk is continuous. Define 

pk: Coo (.6.k,Hn) --+ coo (.6.k x [0,1],Hn) 

by pk(u) = Fa. Let 7[ : Hn --+ M be the quotient map. Then 

7[* : Coo (.6.k, Hn) --+ Coo (.6.k, M), 

7[* : coo (.6.k x [0,1], Hn) --+ coo (.6.k X [0,1]' M) 

are continuous open surjections, since 7[ is a local homeomorphism. As 
7[ *Fk = pk7[ *, it suffices to show that pk is continuous. 
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The function 

A: Coo (!:lk ,Hn) ----+ Coo (!:!>\ Hn) x Coo (f::lk ,Hn ), 

defined by the formula 
A(O') = (0', Str(O')), 

is continuous, since Strk is continuous. The function 

B : COO (f:::..k ,Hn) x COO (!::!>\ Hn) ----+ COO(!:::.k, H n x H n), 

defined by the formula 

B(O', T)(X) = (O'(x), T(X)), 

is continuous. The function 

C : coo(!~.k, H n x Hn) ----+ c oo (6k X [0,1], H n x H n x [0,1]), 

defined by the formula 

C(O')(X, t) = (u(X) , t), 

is continuous. The function 

defined by the formula 

(1 - t)x + ty 
¢(x, y, t) = III (1 - t)x + tylll ' 

is Coo. Therefore, the function 

D : c oo (6k x [0,1]' H n x H n x [0,1]) ----+ c oo (6k X [0,1]' H n ), 

defined by D = ¢*' is continuous. Finally, the function 

pk: Coo (6k,Hn) ----+ c oo (6k x [O,I],Hn ) 

is continuous, since pk = DCBA. 
For each i = 0, ... ,k, let 

a, : 6 k +1 ----+ 6 k x [0,1] 

be the affine map constructed in Lemma 2 of §11.4. Then 

(a,)* : c oo (6k x [0, I],M) ----+ c oo (6k+1,M) 

is continuous, since a, is Coo. 
For each i = 0, ... ,k, define a function 

F,k: c oo (6k,M) ----+ COO (6k+l,M) 

by F,k (0') = Faa,. Then F,k is continuous, since F,k = a; Fk . 
Define a linear transformation F': : Ck (M) ----+ Ck +1 (M) by the formula 

k 

F: = 2) -1)'(F,k)*. 
,=0 
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Essentially the same calculation as in Lemma 2 of §11.4 shows that 

8k+1F!: + F!:-18k = (Strk )* - idk· 
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Thus F* = {F!:} is a chain homotopy from (Str*)* to the identity. 0 

Smearing 

We now assume that the space-form M = H n If is compact and orient able. 
Let G = Io(Hn) be the group of orientation preserving isometries of Hn, 
and let H be the subgroup of G of all elements that fix the point en+l. 
The Haar mtegral of a function ¢ : G ----+ lR is given by the formula 

L ¢(g)dg = L/H (L ¢(gh)dh) d(gH), 

where dh is the Haar measure on the compact group Hand d(gH) is the 
measure on G I H corresponding to hyperbolic volume in Hn under the 
homeomorphism from GIH to Hn given by Theorems 5.1.5 and 5.2.9. We 
shall normalize the Haar measure dg on G by normalizing the Haar measure 
dh on H so that L dh = 1. 

The group G has a left-invariant metric. For example, the metric corre­
sponding to the metric d on Mo (Bn), defined by 

d(¢,7/J) = DB(¢-1,7/J-1), 

is left-invariant. Therefore f acts freely and discontinuously on G as a 
group of isometries by left multiplication by Theorem 5.3.4. Therefore, the 
quotient map 

K,: G ----+ f\G 

is a covering projection by Theorem 8.1.3. Consequently, the Haar measure 
on G descends to a positive measure on f\ G so that K, is locally measure 
preserving. The integral of a function ¢ : f\ G ----+ lR, with respect to this 
measure, is given by the formula 

{ ¢(fg)d(fg) = 1 ({ ¢(fgh)dh) d(fgH), 
Jf'\G (f'\G)/H JH 

where d(fgH) is the measure on the double coset space 

(f\G)IH = f\(GIH) = f\Hn = M 

corresponding to hyperbolic volume. The volume of f\ G is given by 

Vol(f\G) { ({ dh) d(fgH) 
Jf'\G/H JH 

( d(fgH) = Vol(M). 
Jr\G/H 
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The group G is homeomorphic to Hn x H by Theorems 5.1.5 and 5.2.9. 
Moreover, the corresponding action of f on Hn x H is given by 

g(x,h) = (gx,*). 

Let D be a Dirichlet polyhedron for f. Then DO x H is a fundamental 
domain for the action of f on Hn x H. As M is compact, D is compact. 
Therefore D x H is compact, and so f\G is compact. 

Given u in Str(~k, H n ), define a function 

u* : f\G -+ Str(~k,M) 

by u* (f g) = 7rgu, where 7r : Hn -+ M is the quotient map. 

Lemma 7. The function u* : f\ G -+ Str( ~ k ,M) is continuous. 

Proof: Let",: G -+ f\G be the quotient map. Then u* lifts to a function 

u* : G -+ Str(~k,Hn) 

defined by u* (g) = gu. As 7r * u* = u* "', it suffices to show that 

u* : G -+ Str(~k, Hn) 

is continuous. Since the action of G on Hn, 

a: G x H n -+ H n , 

given by a(g, x) = gx, is continuous, the corresponding inclusion map 
8: : G -+ C(Hn, Hn) is continuous. As 

u*: C(Hn,Hn) -+ c(~k,Hn) 

is continuous, its restriction 

u* : G -+ Str(~k, Hn) 

is continuous. D 

Let u be an element of Str( ~ k, Hn). The smear of u is the positive Borel 
measure on Coo (~k ,M) given by the formula 

Smr(u) = (u*)*(d(fg)). 

In other words, if B is a Borel subset of COO(~k,M), then Smr(u)(B) is 
the volume of (u*)-l(B) in f\G. As f\G is compact, the image of 

u* : f\G -+ COO(~k, M) 

is compact. Therefore Smr(u) has compact support. Moreover 

IISmr(u)11 = Vol(f\G) = Vol(M). 

Thus, we have a function 

Smr: Str(~k,Hn) -+ Ck(M). 
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Lemma 8. If U is m Str(~k, Hn) and f is in Io(Hn), then 

Smr(fu) = Smr(u). 
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Proof: Define f* : f\G ----7 f\G by f*(fg) = fgf. Then f* is continuous, 
since right multiplication by f is continuous in G. Observe that 

Smr(fu) = ((fu )*)* (d(fg)) 

= (u* !*)*(d(fg)) = (u*)*(f*)*(d(fg)). 

Now since the Haar measure on G is right-invariant, the induced measure 
on f\G is invariant under right multiplication by G. Hence, if B is a Borel 
subset of f\G, we have 

(f*)*(d(fg))(B) = Vol((f*)-l(B)) = Vol(Brl) = Vol(B). 

Therefore, we have 
(f*)*(d(fg)) = d(fg). 

Hence, we have 

Smr(fu) = (u*)*(d(fg)) = Smr(u). 

The function 
Smr : Str(~k, Hn) ----7 Ck(M) 

extends linearly to a linear transformation 

o 

Lemma 9. The famzly {Smrk} of linear transformations is a chain map 
from Str(Hn) to C(M). 

Proof: Let u be an element of Str( ~ k , Hn). It suffices to show that 

Smrk(ou) = oSmrk(u). 

Observe that 

Smrk(ou) = Smrk (t,( -l)'Urh) = t,( -l)'Smr(u7},), 

whereas 

Now observe that 

k 

oSmrk(u) = 2)-1)'(7}:)*Smr(u). 
,=0 

(( U7},)*)* (d(fg)) 

(7}: u*)* (d(fg)) 

(7}:) * (u*)* (d(fg)) 

Therefore Smrk(ou) = oSmrk(u). o 
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Let a : Don -+ Hn be a straight singular n-simplex and let p be a reflec­
tion of Hn. The average of a is the signed Borel measure on Coo (Do n , M) 
given by 

1 
Avg(a) = "2 (Smr(a) - Smr(pa)). 

Theorem 11.5.3. Let M = Hn /r be a compact orientable space-form. If 
a is m Str(Don , Hn), then Avg(a) is a cycle m Cn(M). 

Proof: Observe that 
1 

8Avg(a) "2 (8Smr(a) - 8Smr(pa)) 

1 
"2 (Smr(8a) - Smr(8pa)) 

~ [smr (t, ( -1)' ary.) - Smr (t, ( -1)' pary.) 1 
1 k 

"2 ~)-I)·(Smr(ary.) - Smr(pary.)) . 
• =0 

Moreover, we have 
Smr(ary.) = Smr(pary.), 

since ary. and pary. differ by an element of Io(Hn). Hence 8Avg(a) = O. 0 

Representing the Fundamental Class 

We now assume that the space-form M = H n /r is compact and oriented. 
Let c be a cycle in S~(M) that represents the fundamental class of M. 
Then the cycle FM = In(c) in Dn(M), defined by 

FM(w) = 1 w, 

represents the fundamental class of Min Hn(D(M)). The cycle FM does 
not depend on the choice of c because Dn+l (M) = O. The cycle FM is 
called the fundamental cycle of Min Dn(M). 

A cycle I-" in Cn(M) is said to represent a class fi, in Hn(D(M)) if the 
cycle fn(l-") = fl-' in Dn(M) represents fi,. 

Lemma 10. Let I-" be a cycle m Cn(M), let OM be the volume form of M, 
and let FM be the fundamental cycle of M m Dn(M). Then I-" represents 
the class fl-'(OM)Vol(M)-l[FMJ in Hn(D(M)). 

Proof: Since [FMJ generates Hn(D(M)), there is a constant k such that 
[fl-'J = k[FMJ. As Dn+1(M) = 0, we have that fl-' = kFM· Hence 

fl-'(OM) = kFM(OM) = kVol(M) 

and so k = fl-'(OM)/Vol(M). 0 
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Theorem 11.5.4. Let M = Hn /r be a compact oriented space-form, let 
u be in Str(~n, H n), and let FM be the fundamental cycle of Min Dn(M). 
Then Avg(u) represents the class ±Vol(u(~n))[FMl in Hn(D(M)) wzth the 
plus or mznus szgn accordzng as 7rU preserves or reverses orientation. 

Proof: Observe that 

fSmr(a) (nM ) = 

Hence 

1 (1 nM) d(Smr(u)) 
TECoo(fl.n,M) T 

1 (1 nM) d((u*)*(d(rg))) 
TEcoo(fl.n,M) T 

r (1 nM) d(rg) 
Jr9Er\G a* (rg) 

r (1 nM) d(rg) 
Jr9Er\G 7rga 

r ±Vol(gu(~n))d(rg) 
JrgEr\G 

r ±Vol(u(~n))d(rg) 
Jr\G 
±Vol(u(~ n))Vol(r\G) 

±Vol(u(~ n))Vol(M). 

fAvg(a) (nM) = ~ (fSmr(a) (nM) - fSmr(pa) (nM)) 

= ±Vol(u(~n))Vol(M). 

Therefore Avg(u) represents the class ±Vol(u(~n))[FMl in Hn(D(M)) by 
Lemma 10. 0 

Exercise 11.5 

1. Let M be a differentiable manifold. Prove that the total variation is a norm 
on Ck(M) for each k. 

2. Let M be a hyperbolic space-form. Prove that mk : Strk(M) -> Ck(M) is 
norm preserving for each k. 

3. Let i : {eo, ... , ek} -> ~ k be the inclusion map. Prove that 

is a homeomorphism with the compact-open topology on Str(~ k, Hn). Con­
clude that Str(~k, Hn) is homeomorphic to (Hn)k+l. 
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4. Let M = Hn/r be a hyperbolic space-form. Prove that Str(~k,M), with 
the compact-open topology, is homeomorphic to (Hn)k+1 /r, where r acts 
diagonally on the left of (Hn)k+l as a discontinuous group of isometries. 
Conclude that Str(~k, M) is a connected (k + l)n-dimensional manifold. 

5. Prove that the C 1 topology on Str(~k, Hn) is the compact-open topology. 

6. Prove that the straightening function 

Strk: Coo(~k,Hn) ---+ Str(~k,Hn) 

is continuous with respect to the compact-open topology. 

7. Let M be a hyperbolic space-form and let 7r : H n ---+ M be the quotient map. 
Prove that 

is an open map. 

8. Let u : ~ n ---+ H n be a straight singular n-simplex. Prove that the definition 
of A vg( u) does not depend on the choice of the reflection p. 

9. Prove that IIAvg(u)II = Vol(M). 

10. Let M be a compact, oriented, n-dimensional, hyperbolic space-form. Prove 
that IIMII = inf{lItLll : tL in Cn(M) represents the fundamental class of Min 
Hn(1J(M))}. 

§11.6. Mostow Rigidity 

Let M and N be closed, connected, orientable, hyperbolic n-manifolds, 
with n > 2. In this section, we prove Mostow's rigidity theorem which 
states that a homotopy equivalence cp : M --+ N is homotopic to an isom­
etry. Since M and N are complete, we may assume that M and N are 
hyperbolic space-forms, say M = H n Ir and N = H n IH. 

It is basic theorem of differential topology that any continuous function 
between differentiable manifolds is homotopic to a C= map. Hence, we 
may assume that a homotopy equivalence cp : M --+ N is a C= (smooth) 
map. 

Lipschitz Conditions 

Definition: A function f : X --+ Y between metric spaces satisfies a 
Lzpschitz condition if and only if there is a constant k > 0 such that 

d(f(x),f(Y)):::; kd(x,y) for all X,y in X. 

The constant k is called a Lipschitz constant for f· 

Lemma 1. Let C be a compact convex subset of H n and let f : C --+ H n 

be a C1 map. Then f satisfies a Lzpschitz condztion. 
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Proof: Let x, y be distinct points of C and let a : [a, b] ----+ C be a geodesic 
arc from x to y. Then fa: [a, b] ----+ H n is a Cl curve from f(x) to fey). We 
pass to the upper half-space model un of hyperbolic space. By Theorem 
4.6.6, the element of hyperbolic arc length of un is Idxl/xn. Observe that 

d(f(x) , fey)) < Ifal 

I b I (fa)'(t) I dt 
a (fa(t))n 

I b If'(a(t))a'(t)ldt 
a (fa(t))n 

< Ib If'(a(t))lla'(t)1 dt 
a (fa(t))n 

I b 1f'(a(t))I(a(t))nla'(t)1 dt. 
a (fa(t))n(a(t))n 

Let k be the maximum value of the continuous function If'(x)lxn/(f(x))n 
on the compact set C. Then we have 

d(f(x),f(y)) < klb la'(t)ldt 
a (a(t))n 

= klal = kd(x, y). 0 

Lemma 2. A C l map cp : M ----+ N satisfies a L2psch2tZ condition. 

Proof: By Lemma 1 and Theorem 8.3.6, the map cp satisfies a Lipschitz 
condition locally, that is, for each point w of M, there is an r(w) > 0 and 
a k(w) > 0 such that 

d(cp(u),cp(v)):s k(w)d(u,v) for all u,v in B(w,r(w)). 

As M is compact, there is a finite set of points {Wl,"" we} of M such 
that {B(w"r(w.))} covers M. Set 

k = max{k(wl), ... , k(we)}. 

Let u, v be distinct points of M. By Theorem 8.5.5, there is a geodesic 
arc a : [a, b] ----+ M joining u to v. Moreover, there is a partition 

a=to<···<tm=b 
of the interval [a, b] such that for each i, we have 

a([t" t.+1]) C B( wJ ' r( wJ )) for some j. 

Hence, we have 

m-l 

d(cp(u) , cp(v)) < L d(cp(a(t.)), cp(a(t'+l))) 

m-l 

< L kd(a(t.),a(t.+d) 
.=0 

kd(u, v). 
o 
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By covering space theory, any map rp : M --t N lifts to a map rjJ : Hn --t 

Hn such that the following diagram commutes: 
rjJ 

Hn ----> Hn 

where 7r and 'TJ are the quotient maps. 

Lemma 3. Let rjJ : Hn --t H n be a hjt of a smooth homotopy equivalence 
rp : M --t N. Then rjJ satisfies a Lipschitz condition and a Lipschztz constant 
for rp is also a Lipschztz constant for rjJ. 

Proof: Since 'TJ : Hn --t N is a covering projection, we deduce from 
Theorem 8.3.6 that for each w in N and x in 'TJ-l(W) there is an r(w) > 0 
such that 'TJ maps B(x,r(w)) isometrically onto B(w,r(w)). Let E be a 
Lebesgue number for the covering {B(w, r(w))} of the compact space N. 
Then'TJ maps B(x, E) isometrically onto B('TJ(x) , E) for each x in Hn. 

Now as M is compact, rp : M --t N is uniformly continuous. Hence, 
there is a 8 > 0 such that if d(u, v) < 8, then d(rp(u),rp(v)) < Eo Let x,y 
be points of Hn, with d( x, y) < 8, and let a : [a, b] --t Hn be a geodesic arc 
from x to y. Then 

7ra([a, b]) C B(7r(x), 8), 

since 7r is a local isometry. Hence 

rp7ra([a, b]) C B(rp7r(x) , E). 

Next, observe that 'TJrjJa = rp7ra and'TJ maps B(rjJ(x) , E) isometrically onto 
B(rp7r(x) , E). Therefore, by unique path lifting, we have 

rjJa([a,b]) C B(rjJ(X),E). 

Let k be a Lipschitz constant for rp. Then we have 

d(rjJ(x) , rjJ(y)) d('TJrjJ(x) , 'TJrjJ(y)) 

= d(rp7r(x), rp7r(y)) 

::; kd(7r(x),7r(Y)) = kd(x,y). 

Now assume that x and yare arbitrary points of Hn. Let 

x = XO, Xl, ... ,Xm = Y 

be a partition of the geodesic segment [x, y] such that d(x" X,+l) < 8 for 
each i = 0, ... , m - 1. Then 

m-l 

d(rp(x) , rp(y)) < L d(rp(x,), rp(x,+l)) 
,=0 
m-l 

< L kd(x" X'H) kd(x,y). 
0 

,=0 
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Pseudo-isometries 

Definition: Given a metric space X, a function f : X ----7 X is a pseudo­
isometry if and only if there are constants k and g such that 

k- 1d(x, y) - g s:; d(J(x), f(y)) s:; kd(x, y) 

for all x, y in X; moreover, if g = 0, then f is called a quasi-isometry. 

Theorem 11.6.1. Let M = Hn /r and N = H n /H be compact orientable 
space-forms and let rp : H n ----7 Hn be a lift of a smooth homotopy equiva­
lence r.p : M ----7 N. Then rp zs a pseudo-isometry. 

Proof: Let 1/J : N ----7 M be a smooth homotopy inverse for r.p and let 
F : M x [0,1] ----7 M be a homotopy from 1/Jr.p to idM . Let;jJ : H n ----7 Hn 
be a lift of 1/J. By the covering homotopy theorem, F lifts to a map l' : 
Hn x [0,1] ----7 Hn such that 1'0 = ;jJrp. As 7rFl = FI7r = 7r, we have that 
1'1 = f for some element f of r. By replacing ;jJ with f- 1;jJ and l' with 
f- 1 1"_ if necessary, we may assume that 1'1 = idHn. Then l' is a homotopy 
from 1/Jrp to idHn. Now let g be an arbitrary element of r. Then we have 

7rF(g x id) F( 7r x id)(g x id) 

= F(7rg x id) 

= F(7r x id) 7rF. 

Hence, there is an element h of r such that F(g x id) = hF. As 1'1 = idHn, 
we find that h = g. Therefore l' is r-equivariant. In particular ;jJrp = 1'0 is 
r-equivariant. 

Let D be a Dirichlet polyhedron for r. Then D is compact, since H n /r 
is compact. Therefore F(D x [0,1]) is compact. Let 0 be the diameter of 
F(D x [0,1]). If x is in D, then ;jJrp(x) and x are in F(D x [0,1]) and so 

d(;jJrp(x), x) s:; O. 

As ;jJrp is r-equivariant, the above inequality holds for all x in Hn. 
By Lemma 3, there is a constant k > a such that 

d(rp(x), rp(y)) s:; kd(x, y) and d(;jJ(x), ;jJ(y)) s:; kd(x, y) 

for all x, y in Hn. Observe that 

d(x, y) < d(x, ;jJrp(x)) + d(;jJrp(x), ;jJrp(y)) + d(;jJrp(y), y) 

s:; 20 + kd(rp(x), rp(y)). 

Therefore, we have 

d(rp(x), rp(y)) ~ k- 1 d(x, y) - 20/k. 

Let g = 20/k. Then for all x, y in Hn, we have 

k- 1d(x, y) - g s:; d(rp(x), rp(y)) s:; kd(x, y). D 
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Lemma 4. Let 'Y : [a, bj ----; Hn be a C1 curve, let s be the distance from 
the set 'Y( [a, b]) to a hyperbol~c lme L of H n, and let P : Hn ----; L be the 
nearest point retraction. Then 

Ip'Yl ~ (cosh s)-l hi. 

Proof: We pass to the upper half-space model un of hyperbolic space. 
Now without loss of generality, we may assume that L is the positive nth 
axis. Then p(x) = Ixlen and 

Observe that 

coshd(x, p(x)) = Ixl/xn. 

I b l(p'Y),(t)1 dt 
a (P'Y(t))n 

I b Ip'b(t)h'(t)1 dt 

a h(t)1 

I b Ib(t)/h(t)l) ''Y'(t)1 dt 
a h(t)1 

I b h(t) . 'Y'(t) I dt 
a h(t)12 

I b h'(t)1 
< a h(t)1 dt 

< Ib 1'Y'(t)ldt = (cOShS)-lhl. 
a (coshs)b(t))n 

D 

Lemma 5. Let k > 0 be a Lipschitz constant for a function f : H n ----; Hn 
and let a: [a, bj----; H n be a geodesic arc from x to y. Then Ifal ~ kd(x, y). 

Proof: Let a = to < h < ... < tm = b be a partition of [a, bj. Then 
m m 

L d(fa(tt-d, fa(tt)) ~ L kd(a(tt-1), a(tt)) = kd(x, y). 

By definition of Ifal, we have that Ifal ~ kd(x, y). D 

Lemma 6. Let f : H n ----; H n be a pseudo-isometry. Then there ex~sts a 
constant r > 0 such that if a : [a, bj ----; H n is a geodesic arc, then 

fa([a, b]) C N([fa(a), fa (b)], r). 

Proof: Let a : [a, bj ----; H n be a geodesic arc and let L be a hyperbolic 
line of Hn passing through fa(a) and fa(b). Let k and £ be constants such 

that 
k- 1d(x, y) - £ ~ d(f(x), f(y)) ~ kd(x, y) 

for all x, y in Hn and set 
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L 

fa(d,) __ --tfa(b) 

fa(e) N(L, s) 

Figure 11.6.1. The pseudo-isometry f applied to the arc a 

Suppose that fa(e) is not in N(L, s). Then there is a largest subinterval 
[e, d] of [a, b] containing e such that fa([e, d]) is disjoint from N(L, s). See 
Figure 11.6.1. Let p = a(e) and q = a(d). Then 

d(f(p),L) = s = d(f(q),L). 

Let fJ : [e, d] ----; Hn be the restriction of a. We now establish an upper 
bound for the length of the curve f fJ. Let p : H n ----; L be the nearest point 
retraction. By Lemmas 4 and 5, we have 

k-1d(p, q) - £ < d(f(p) , f(q)) 

Therefore, we have 

< d(f(p) , pf(p)) + d(pf(p), pf(q)) + d(pf(q), f(q)) 

< 2s+lpffJl 

< 2s + (k2 + l)-llffJl 
< 2s + (k 2 + l)-lkd(p, q). 

d(p, q) ::; (2s + £)k(k2 + 1) = m. 

By Lemma 5, we have 

IffJl ::; kd(p,q)::; km. 

Now set t = s + km. Then 

ffJ([e,d]) c N(L,t). 

Therefore fa(e) is in N(L, t) and so 

fa([a, b]) C N(L, t). 
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L 

Figure 11.6.2. The pseudo-isometry f applied to the arc a 

Suppose that fa(e) is not in N([fa(a), fa (b)], t). Then there is a largest 
subinterval [c, d] of [a, b] containing e such that fa([c, d]) is disjoint from 
N([fa(a), fa(b)], t). See Figure 11.6.2. Let p = a(c) and q = a(d). Then 

d(f(p) , fa(b)) = t = d(f(q), fa(b)) 

or 
d(f(p) , fa(a)) = t = d(f(q), fa(a)). 

Without loss of generality, we may assume that the former holds. 
Let (3 : [c, d] --> H n be the restriction of a. We now establish an upper 

bound for the length of the curve f (3. Observe that 

d(f(p) , f(q)) ::; d(f(p) , fa(b)) + d(fa(b) , f(q)) = 2t. 

Therefore 
k-1d(p, q) - C ::; d(f(p), f(q)) ::; 2t. 

Hence, we have 
d(p, q) ::; k(2t + C) = j. 

By Lemma 5, we have 

If(3l::; kd(p,q)::; kj. 

Now set r = t + kj. Then 

f(3([c, d]) C B(fa(b), r). 

Therefore fa( e) is in B(fa(b), r), and so 

fa([a, b]) C N([fa(a), fa(b)], r). o 
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Lemma 7. Let f : En --+ En be a pseudo-isometry. Then there exists 
a constant r > ° such that for each hyperbolic ray R of En based at any 
pomt p, there zs a unique hyperbolic ray R' of En based at f(p) such that 

f(R) C N(R', r). 

Proof: Let R be a hyperbolic ray in En based at p and let ..\ : ~ --+ En 
be a geodesic line such that ..\([0,00)) = R. As f is a pseudo-isometry, 

lim d(f..\(O) , f)..(i)) = 00. 
t-7OO 

Let r be the constant of Lemma 6. Then there is an m > ° such that 

d(f..\(O),f"\(i)) ~ r for all i ~ m. 

Without loss of generality, we may assume that f )..(0) = 0. For each 
integer i ~ m, let Rt be the hyperbolic ray in En based at ° and passing 
through f)..(i). For each pair of integers i,j such that j > i ~ m, let XtJ 
be the point of RJ nearest to f)..(i). As 

f..\([O,i]) C f..\([O,j]) C N(RJ,r), 

we find that 
d(f)..(i),xtJ ) < r. 

Now the triangle 6(0, f..\(i) , xtJ ) has a right angle at xtJ . See Figure 11.6.3. 
Let a tJ be the angle of 6 at 0. Then by Formula 3.5.9, we have 

sinh d(f..\( i), x'J) = sinh d(O, f)..( i)) sin a tJ · 

Therefore, we have 
. sinh r 

slUatJ :::; sinhd(O, n(i))· 

f )"(i) 

f(R) 

f ..\(j) 

° 

Figure 11.6.3. The pseudo-isometry f applied to the ray R 
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Hence, for each E > 0, there is an integer k 2:: m such that at) < E for all 
j > i 2:: k. For each integer i 2:: m, let 

U t = f'\(i)/lf'\(i)l· 

Then {u t } is a Cauchy sequence in sn, since if i < j, we have 

ds ( u" u)) = at). 

Therefore {u t } converges to a point U in sn. 
Let R' be the ray based at ° and ending at u. Then the sequence of rays 

{Rt } converges to R' in En. Consequently, the sequence of neighborhoods 
{ N (R" r)} converges to N (R' , r) in En. If i < j, then 

f'\([O, i)) C fA([O,j]) c N(R),r). 

Therefore, we have 

f'\([O,i]) c n N(R),r) C N(R',r). 
»t 

Hence, we have 
f(R) = f'\([O, 00)) c N(R', r). o 

Lemma 8. Let f : Bn ---+ Bn be a pseudo-zsometry. Given a point U in 
sn-l, let R be a ray in Bn ending at u, and let R' be a ray ending at u' 
such that f(R) C N(R', r) for some r > 0. Then u' is uniquely determined 
by u, and the function 

foo: sn-l ---+ sn-l, 

defined by f 00 ( u) = u', is injectwe. 

Proof: Observe first that the point u' depends only on R and not on the 
choice of R', since if,\ : lR ---+ B n is a geodesic line such that '\([0,00)) = R, 
then f'\(i) ---+ u' as i ---+ 00. Next, we show that u' depends only on u and 
not on the choice of R. Suppose that S is another ray ending at u and that 
S' is a ray ending at u" such that f(S) C N(S', s) for some s > 0. 

On the contrary, suppose that u' -I- u". Let fL : R ---+ B n be a geodesic 
line such that fL([O, 00)) = S. Then there exist m > ° such that 

d(f'\(i),ffL(j)) 2:: 1 for all i,j 2:: m. 

Let k and g be constants such that 

k-1d(x, y) - g ::; d(f(x), f(y)) ::; kd(x, y) 

for all x, y. As Rand S are asymptotic, there exists i, j 2:: m such that 

d('\(i), fL(j)) < 11k. 

Therefore, we have that 

d(f'\(i) , ffL(j)) < 1, 

which is a contradiction. Hence u' = u". Thus u' depends only on u, and 
so we have a function foo : sn-l ---+ sn-l defined by foo(u) = u'. 
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We now show that f 00 is injective. On the contrary, suppose that u and 
v are distinct points of sn-l such that u' = Vi. Let Rand S be rays in Bn 
ending at u and v, respectively, and let R' and S' be rays in Bn such that 
feR) C N(R',r) for some r > 0 and f(S) C N(S',s) for some s > O. Let 
A, J-l be geodesic lines as above. Then there exists m > 0 such that 

d(A(i),J-l(j))2::k(1+r+s+£) for all i,j2::m. 

Since u' = Vi, there exists i, j 2:: m such that 

Hence, we have 

d(fA(i), fJ-l(j)) < 1 + r + s. 

d(A(i),J-l(j)) < k(d(fA(i),fJ-l(j)) +£) 

< k(1+r+s+£), 

which is a contradiction. Thus f 00 is injective. o 

Lemma 9. Let f : Bn -+ B n be a pseudo-isometry. Then there exists a 
constant r > 0 such that for each hyperbolic line L of Bn, there is a unzque 
hyperbolic line L' of B n such that f(L) c N(L', r). 

Proof: Let L be a hyperbolic line of Bn with endpoints u and v, and let 
A : lR -+ B n be a geodesic line such that A(lR) = Land A(t) -+ v as t -+ 00. 

Let r > 0 be the constant in Lemma 7. Then for each positive integer i, 
there is a ray R, of Bn based at f A( i) such that 

fA((-oo,i]) C N(R"r). 

Moreover, all the rays {R,} terminate at the same point u' of sn-l that 
is the limit of the sequence {fA(-i)}. Likewise, the sequence {fA(i)} 
converges to a point Vi of sn-l. By Lemma 8, we have that u' -I Vi. 

Hence, the sequence of rays {R,} converges to the hyperbolic line L' of Bn 
with endpoints u' and Vi. Moreover, if j > i > 0, then 

fAce -00, i]) c fAce -oo,j]) C N(R), r). 

Therefore 

fA((-oo,i]) c n N(R),r) C N(L',r). 
», 

Hence, we have 

f(L) = fA(lR) C N(L', r). o 

Lemma 10. Let f : Bn -+ Bn be a pseudo-isometry. Then there exists a 
constant s > 0 such that for each hyperplane P of B n and hyperbolic line L 
orthogonal to P, the nearest point retraction p : Bn -+ L' maps f(P) onto 
a geodesic segment of length at most s. 



562 11. Hyperbolic n-Manifolds 

w 

u \--=----4--=------=::==---.1 v 

p 

Figure 11.6.4. The ideal triangle with sides J, K, L 

Proof: Let x be an arbitrary point of P. Without loss of generality, we 
may assume that P and L intersect at O. Let R be a ray in P based at 0 
and passing through x. Then there are two hyperbolic lines J and K of 
En that are asymptotic to both Rand L. See Figure 11.6.4. The distance 
from 0 to either J or K is c = sinh-l (1) by Formula 3.5.17. 

Let R' be the ray based at 1(0) such that I(R) C N(R', r) as in Lemma 
7, and let J', K' ,L' be the hyperbolic lines of En that remain within a 
distance r from I(J), I(K), I(L), respectively, as in Lemma 9. By Lemma 
8, the endpoint of R' is not an endpoint of L', and J' and L' are the two 
hyperbolic lines of En that are asymptotic to both R' and L'. See Figure 
11.6.5. Let I be the hyperbolic line of En that is asymptotic to R' and 
perpendicular to L'. Let p be the nearest point of L' to 1 (0) and let q be 
the intersection of I and L'. 

w' 

Figure 11.6.5. The ideal triangle with sides J', K', L' 
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Let k be a Lipschitz constant for f. Then the distance from f(O) to 
J' and K' is at most kc + r, where r is the constant in Lemma 9. As 
f(L) c N(L', r), the distance from p to J' and K' is at most kc + 2r = b. 
Since a geodesic segment from p to either J' or K' must cross I, we deduce 
from Formula 3.5.7 that d(p, q) < b. 

Let y be a point of R' such that d(f(x), y) ~ r. Since p does not increase 
distances, d(p f (x), p(y)) ~ r. As p(y) lies between p and q on L', we deduce 

that 
d(pf(x),p) ~ d(pf(x), p(y)) + d(p(y),p) ~ r + b. 

Therefore, the diameter of p(f(P)) is at most s = 2(r + b). o 

Given a pseudo-isometry f : B n ---+ B n, let j : Bn ---+ B n be the function 
that extends both f and f 00 : sn-l ---+ sn-l. 

Theorem 11.6.2. If f : Bn ---+ B n zs a pseudo-isometry, then the function 
j : B n ---+ B n zs continuous. 

Proof: This is clear if n = 1, so assume that n > 1. The function f is 
continuous in B n, since f is continuous and Bn is open in Bn. We now 
show that j is continuous at a point u of sn-l. Let L be the hyperbolic 
line of Bn passing through 0 and ending at u. Let r > 0 be as large as the 
constants in Lemmas 9 and 10, and let L' be the hyperbolic line of B n such 
that f(L) C N(L', r). Let U' be the open neighborhood ofj(u) = u' in B n 

bounded by a hyperplane P' of Bn orthogonal to L'. Let H' be the half­
space of Bn bounded by P' on the opposite side from U'. Let ,X : ~ ---+ Bn 
be a geodesic line such that ,X(~) = Land ,X(t) ---+ u as t ---+ 00. Then 
f,X (t) ---+ u' as t ---+ 00. Let p : Bn ---+ L' be the nearest point retraction. 
Then pf,X(t) ---+ u' as t ---+ 00. Hence, there is a constant m > 0 such that 

d(pf 'x(t), H') > 2r for all t ~ m. 

Let Pt be the hyperplane of B n orthogonal to L at ,X(t). Then by Lemma 
10, we have 

d(pf(Pt) , H') > r for all t ~ m. 

Let U be the open neighborhood of u in B n bounded by Pm. In order to 
show that j is continuous at u, it suffices to show that j(U) C U'. Now 
since the nearest point retraction p : Bn ---+ L' leaves H' invariant, the last 
inequality implies that f(U n Bn) C U' n Bn. 

Let v be a point of Unsn-l and set v' = j(v). Let K be the hyperbolic 
line of Bn passing through 0 and ending at v, and let f-L : ~ ---+ B n be a 
geodesic line such that f-L(~) = K and f-L(t) ---+ v as t ---+ 00. Then there is 
a constant c such that f-L(t) is in un Bn for all t ~ c. Hence ff-L(t) is in 
U' n Bn for all t ~ c. Now since ff-L(t) ---+ v' as t ---+ 00, we deduce that v' 
is in U' n sn-l. Thus j(U) C U' and so j is continuous at u. Thus j is 
continuous. o 
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Measure Homology 

Let cp : M ---+ N be a Coo map. Then cp induces a continuous function 

CP: : Coo (~ k ,M) ---+ Coo (~ k , N) 

defined by cp~(O") = CPO". Furthermore cp~ induces a linear transformation 

(cp:)* : Ck(M) ---+ Ck(N) 
defined by 

(cp:)*(J-L)(B) = J-L((cp:)-l(B)) 

for each J-L in Ck(M) and Borel subset B of COO(~k, N). 

Lemma 11. The family {(cp~)*} of linear transformations is a chain map 
from C(M) to C(N). 

Proof: Let J-L be an element of Ck(M). Then we have 
k 

(cp:-l)*(OJ-L) = (cp:-l)*(2)-1)'(7J:)*(J-L)) 
,=0 

k 

2) -1)' (cp:-l)* (7J:)*(J-L) 
,=0 

k 

2) -1)' (cp:-17J:)* (J-L), 
,=0 

whereas 
k 

2.:( -1)'(7J:)*(cp:)*(J-L) 
,=0 

k 

2.: (-1)' (71: CP:)* (J-L). 
,=0 

Now observe that if 0" is in COO(~k,M), then 

(cp:-17J:)(0") = cp(d7J,)) = (cpO")7J, = 7J:CP:(0")' 

Therefore, we have 

Thus, we have 

Let cp : M ---+ N be a Coo map. Then cp induces a cochain map 

{CPk : nk(M) ---+ nk(N)}, 

which, in turn, induces a chain map 

((CPk)* : Dk(M) ---+ Dk(N)}, 

where 

o 
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Lemma 12. Let rp : M ---+ N be a Coo map. Then the following diagram 

commutes for each k: 

Ck(M) 

(rp:)* 1 

Ck(N) 

Vk(M) 

1 (rpk)* 

Vk(N). 

Proof: Let /-L be an element of Ck(M) and let w be in [lk(N). Then 

Ck(rp~)*(/-L)(w) f(cp~)*(/1»(W) 

Therefore, we have 

1 (1 w) d ( (rp~) * (/-L) ) 
TECOO(Llk,N) T 

[ECOO(Llk,M) (L~(a) w) d/-L 

[ECOO(Llk,M) (La w) d/-L 

[ECOO(Llk,M) ([ rp*w) d/-L 

f/1> (rp'k (w)) 

(rpk)*(f/1»(W) (rp'k)*Ck(/-L) (w). 

o 

Theorem 11.6.3. Let M = En /r and N = En /H be compact orientable 
space-forms and let <p : En ---+ En be a lzit of a smooth homotopy equivalence 
rp : M ---+ N. If '11,0,.'" Un are the vertices of a regular ideal n-simplex in 
En, then <Poo(uo) , ... , <Poo(un) are the vertices of a regular zdeal n-simplex 
in En. 

Proof: On the contrary, suppose that the ideal n-simplex spanned by 
<Poo(uo), ... , <Poo(un ) is not regular. We pass to the upper half-space model 
un of hyperbolic space, and without loss of generality, we may assume that 
'11" i=- 00 for each i. Let Vn be the volume of a regular ideal n-simplex. By 
Theorems 11.3.1, 11.3.2, and 11.6.2, there is an E > 0 and an r > 0 such 
that if vo, ... , Vn are the vertices of an n-simplex ~ in un, with I'll" - v, I < r 
for each i, then we have 

Vol(Str(<p(~))) < Vn - E. 

Let 
u, = {x E un : I'll" - xl < r} 

and let 
K, = {x E un : I'll" - xl::; r/2}. 
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Let 
U = {g E 1o(Un ) : gK, c U, for each i = 0, ... ,n}. 

The set U is open in 1o(un), since the topology of Mo(un) corresponds 
under Poincare extension to the compact-open topology on Mo(En-l). 

Let G = 10 (Un). Then the quotient map K, : G ---+ r\ G is an open map, 
since it is a covering projection. Hence K,(U) is an open subset of r\G. 
Therefore Vol(K,(U)) > O. 

Let c; be a straight singular n-simplex in M such that 

lu, - ~(e,)1 ::::; r/2 for each i 

and 

where 
6 = EVol(K,(U))/2Vol(M). 

Now if 9 is in U, then 

Vol(Str(cpg~)) < Vn - E < Vol(~(.6.n)) + 6 - E, 

whereas if 9 is not in U, then 

We now assume that M and N are oriented so that cp : M ---+ N is 
orientation preserving. By switching the indices of Uo and Ul, if necessary, 
we may also assume that c; is orientation preserving. 

Observe that 

fcStrn)*Ccp:;)*cSmrc~)) (ON) 

fcStrncp:;).cSmrc~)) (ON) 

1 (1 ON) d((Strncp~)*(Smr(~))) 
TEcooC~n,N) T 

[Ecooc~n'M) (fstrncp:;ca) ON ) d(Smr(~)) 
1 ((ON) d((~)*(d(rg))) 
aECooC~n,M) iStrCcpa) 

l'ErIG (lst'(""(r,)) !IN ) d(rg) 

l'ErIG (lst,(,.,~ !IN ) d(rg) 

h9Er\G (fstrC'l/<P9~) ON) d(rg) 
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( ±Vol(Str(<pg~))d(rg) 
JrgH\G 

< (Vol(~(An)) + 8 - E)Vol(~(U)) 

+ (Vol(~(An)) + 8) (Vol(M) - Vol(~(U))) 
(Vol(~(An)) + 8)Vol(M) - EVol(~(U)) 

= (Vol(~(An)) + 8)Vol(M) - 28Vol(M) 

(Vol(~(An)) - 8)Vol(M). 

Let p be a reflection of un. Then we have 

- f(Strn)*('P~).(Smr(p.;»(ON) = - ( ±Vol(Str(<pgp~))d(rg) 
JrgH\G 

::; Vn Vol(M) 

< (Vol(~(An)) + 8)Vol(M). 

Therefore 

Hence 

fStr:('P~).(Avg(m(ON) = kVol(M) with k < Vol(~(An)). 
Now by Lemma 10 of §11.5 and Theorem 11.4.4, we have 

t'nStr~(<p~)*(Avg(~)) = fStr:('P~).(Avg(.;» (ON )Vol(N)-l FN 

= kVol(M)Vol(N)-l FN = kFN; 

but by Theorems 11.5.2 and 11.5.4 and Lemma 12, we have 

t'nStr;(<p;)*(Avg(~)) = t'n(<p~)*(Avg(~)) 

(<p~)*t'n(Avg(~) ) 

(<p~)*(Vol(~(An))FM) Vol(~(A n))FN' 

which is a contradiction. 

Rigidity 

o 

Lemma 13. Let p be the refiectzon of Bn zn the szde S of a regular zdeal 
n-szmplex A in Bn. If n > 2, then A and pA are the only regular ideal 
n-szmplices zn Bn having S as a szde. 

Proof: We pass to the upper half-space model un of hyperbolic space. 
Let va, ... ,Vn be the vertices of A with va, . .. ,Vn-l the vertices of S. We 
may assume that va = 00 and Vl, ... ,Vn are in sn-2. Let v : un ---+ E n- 1 

be the vertical projection. Then v(A) is a Euclidean regular (n-1)-simplex 
inscribed in sn-2 by Lemma 3 of §11.3; moreover va, . .. ,Vn-l, V are the 
vertices of a regular ideal n-simplex if and only if Vl, ... , Vn-l, V are the 
vertices of a Euclidean (n -l)-simplex in En-l inscribed in a unit (n - 2)­
sphere. Thus, either v = Vn or v is the point obtained from Vn by reflecting 
En-l in the hyperplane spanned by vb"" Vn-l. 0 
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Lemma 14. Let G be the group generated by the refiectwns in the sides 
of an ideal n-szmplex ~ m Bn wzth vertzces UO, ... , Un. Then the union of 
the orbits Guo, ... ,Gun is dense in sn-l. 

Proof: On the contrary, assume that U = U~=oGu, is not dense in sn-1. 
Then there is a point u of sn-1 and an open half-space H of Bn such that 
u is the center of the spherical disk 

D = H n sn-1 and D C sn-1 - U. 

By Theorem 7.1.1, we have 

{g~ : 9 E G} = Bn. 

Hence, there an element 9 of G such that g~ meets H. Since Bn - H is 
hyperbolic convex, some vertex of g~ meets D, which is a contradiction. 
Thus U is dense in sn-1. 0 

Theorem 11.6.4. Let M = B n If and N = Bn IH be compact orientable 
space-forms, with n > 2, and let cP : Bn -+ Bn be a lift of a smooth 
homotopy equivalence ({! : M -+ N. Then CPoo : sn-1 -+ sn-1 is a Mobius 
transformatwn. 

Proof: Let ~ be a hyperbolic, regular, ideal n-simplex in B n with ver­
tices Uo, ... , Un. By Theorem 11.6.3, we have that CPoo(uo), ... , CPoo(un ) are 
the vertices of a regular ideal n-simplex ~' in Bn. Let f be the unique 
Mobius transformation of sn-1 such that fU2 = CPoo(u,) for each i. Then 
f- 1cpoo(u,) = u, for each i. 

Let g, be the reflection of Bn in the side of ~ opposite the vertex u 2 • 

Then the points Uo, ... , U,-l, g,u" u 2+1l"" Un are the vertices of the reg­
ular ideal n-simplex g2~ in Bn. Consequently, the points 

CPoo(uo) , ... , CPoo(U,-l), CPoo(g,u2), CPoo(U,+l), .. ·, cp(un ) 

are the vertices of a regular ideal n-simplex (g,~)' in Bn. Let h, be the 
reflection of B n in the side of ~' opposite the vertex CPoo(u,). By Lemma 
13, we have that 

Therefore, we have 

Hence 

r 1cpoo(g,u2) = r 1h2CPoo(u,) = f- 1hdr1cpoo(u,) = g2U,. 

Thus f-1cpoo fixes g,u2 for each i. 
Let G be the group generated by go, ... ,gn' By induction, f-1cpoo fixes 

each point of U = U~=oGu,. Moreover, the set U is dense in sn-1 by 
Lemma 14. Therefore f-1cpoo is the identity map of sn-1 by continuity. 
Hence CPoo = f. Thus CPoo is a Mobius transformation of sn-1. 0 
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Theorem 11.6.5. (Mostow's rigidity theorem) If 'P : M -+ N is a 
homotopy equivalence between closed, connected, oT'tentable, hyperbolic n­
manifolds, with n > 2, then'P zs a homotopzc to an isometry. 

Proof: Without loss of generality, we may assume that M and N are 
hyperbolic space-forms, say M = Bn jr and N = Bn jH. Let 7r : Bn -+ M 
and 'Tl : Bn -+ N be the quotient maps. Let 9 be an element of r and let 
cp : B n -+ B n be a lift of 'P. Then we have 

'Tlcpg = 'P7rg = 'P7r = 'TlCP· 

Hence, there is a unique element 'P* (g) of H such that 

cpg = 'P* (g )cp. 

Moreover, if h is another element of r, then 

Therefore, we have 

Thus 'P* : r -+ H is a homomorphism. 
Let 'l/J : N -+ M be a homotopy inverse for 'P. Then as in the proof 

of Theorem 11.6.1, we can choose a lift {j; : B n -+ Bn such that {j;cp is 
r -equivariant. Let 9 be an element of r. Then we have 

g{j;cp = {j;cpg = (j;'P*(g)cp = 'l/J*('P*(g)){j;cp. 

Therefore 9 = 'l/J*'P*(g). Hence 'l/J*'P* = idr. Therefore 'P* is injective and 
'l/J* is surjective. Moreover'l/J* is surjective regardless of the choice of (j;. By 
reversing the roles of'P and 'l/J, we obtain that 'P* is surjective. Therefore 
'P* is an isomorphism. 

Without loss of generality, we may assume that 'P : M -+ N is smooth. 
By Theorems 11.6.1 and 11.6.2, we have 

CPoeg = 'P*(g)cpoe 

for each gin r by continuity. By Theorem 11.6.4, the map 

CPoe : sn-1 -+ sn-1 

is a Mobius transformation of sn-1. Hence CPoe extends to a Mobius trans­
formation f of Bn such that f 9 = 'P* (g) f for each 9 in r. Therefore 

frf- 1 = 'P*(r) = H. 

By Theorem 8.1.5, we have that f induces an isometry 7: M -+ N defined 
by 

7(rx) = fr f- 1 fx = Hfx. 

We now pass to the hyperboloid model of hyperbolic space. Define a 
homotopy 
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by the formula 

F x t = (1- t)rj5(x) + tJ(x) 
( ,) 111(I-t)rj5(x)+tJ(x)III' 

Then we have 

F(g x id) = 'P*(g)F for each 9 in r. 
Hence F induces a homotopy 

F : M x [0,1] ----+ N 

from 'P to ]. Thus 'P is homotopic to an isometry. D 

Corollary 1. The hyperbolic structure on a closed connected orientable , , , 
hyperbolic n-manzJold, with n > 2, is unzque up to isometry homotopic to 
the identzty. 

Exercise 11.6 

1. Let k and C be the constants in the definition of a pseudo-isometry of an 
unbounded metric space X. Prove that k ~ 1 and C ~ O. 

2. Let X be an unbounded metric space. Prove that a function f : X --+ X is 
a pseudo-isometry if and only if there are constants k and b such that 

d(f(x),f(Y))::; kd(x,y) for all x,y in X 

and 
k- 1d(x, y) ::; d(f(x), f(y)) if d(x, y) ~ b. 

3. Let L be a hyperbolic line of H n and let p : H n --+ L be the nearest point 
retraction. Prove that 'P does not increase distances. 

4. Let L be a hyperbolic line of D n passing through 0, and let p : D n --+ L 
be the nearest point retraction. Prove that p is the Euclidean orthogonal 
projection of D n onto L. 

5. Let p be as in Exercise 3 and let x, y, z be collinear points of H n with y 
between x and z. Prove that p(y) is between p(x) and p(z). 

6. Let x be a point on a hyperbolic line L of H n and suppose that r > O. Prove 
that the sphere S(x,r) is tangent to 8N(L,r). 

7. Let f : E2 --+ E2 be a pseudo-isometry. Prove that f= : Sl --+ Sl is a 
homeomorphism. 

8. Let Ua, ... , Un be the vertices of a regular ideal n-simplex in En and let 
Va, ... , Vn be the vertices of a regular ideal n-simplex in En. Prove that 
there is a unique Mobius transformation of 9 of sn-1 such that gu, = V, for 
each i. 

9. Let G be the group generated by the reflections in the sides of a regular ideal 
n-simplex in En. Prove that G is discrete if and only if n ::; 3. 

10. Let N n /r and H n /H be compact, orientable, hyperbolic space-forms, and 
let e : r --+ H be an isomorphism. Prove that there is an element f of I(Hn) 
such that e(g) = fgr 1 for each 9 in r. 
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§ 11. 7. Historical Notes 

§11.1. The Davis 120-cell space was constructed by Davis in his 1985 
paper A hyperbolic 4-manifold [99]. Closed hyperbolic n-manifolds have 
been shown to exist in all dimensions n using the theory of quadratic forms. 
Examples can be found in Borel's 1963 paper Compact ClzJJord-Klezn forms 
of symmetric spaces [53], Millson's 1976 paper On the first Betti number 
of a constant negatzvely curved manifold [289], and Gromov and Piatetski­
Shapiro's 1988 paper Non-arithmetic groups in Lobachevsky spaces [171]. 
Moreover, it follows from the results of Millson's 1976 paper [289] that there 
are an infinite number of nonisometric, closed, hyperbolic n-manifolds for 
each dimension n. 

Necessary and sufficient conditions for the complete gluing of a hyper­
bolic n-manifold from a finite family of polyhedra were essentially given by 
Seifert in his 1975 paper Komplexe mit Seitenzuordnung [371]. In partic­
ular, Theorem 11.1.2 implicitly appeared in this paper. Theorems 11.1.3 
and 11.1.6 appeared in Thurston's 1979 lecture notes The Geometry and 
Topology of 3-Manifolds [389]. 

The hyperbolic 24-cell space was constructed by Tschantz and myself. 
Open, complete, hyperbolic n-manifolds of finite volume exist in all dimen­
sions n > 1. Examples can be found in Millson's 1976 paper [289] and 
in Gromov and Piatetski-Shapiro's 1988 paper [171]. Moreover, it follows 
from the results of Millson's 1976 paper [289] that there are an infinite 
number of nonisometric, open, complete, hyperbolic n-manifolds of finite 
volume for each dimension n > 1. In contrast to dimension three, Wang has 
proved that for all n > 3, there are at most finitely many isometry classes 
of complete hyperbolic n-manifolds of volume less than any given bound 
in his 1972 paper Topzcs on totally discontznuous groups [403]. As refer­
ences for n-dimensional hyperbolic manifolds, see Apanasov's 1991 treatise 
Discrete Groups zn Space and Uniformzzatzon Problems [20] and Benedetti 
and Petronio's 1992 text Lectures on Hyperbolic Geometry [40]. 

§11.2. Theorem 11.2.1 for 3-dimensional compact polyhedra appeared 
in Weber and Seifert's 1933 paper Die bezden Dodekaederriiume [405]. The 
2- and 3-dimensional versions of Theorem 11.2.2 were essentially proved by 
Maskit in his 1971 paper On Pozncare's theorem for fundamental polygons 
[281]. 

§11.3. Theorem 11.3.1 was proved by Haagerup and Munkholm in their 
1981 paper Simplices of maximal volume in hyperbolzc n-space [174]. All 
the results in this section except for Theorem 11.3.2 appeared in this paper. 

§11.4. The Gromov invariant was introduced by Gromov and Thurston 
in Thurston's 1979 lecture notes [389]. All the results of this section ap­
peared in Thurston's lecture notes and in Gromov's 1982 paper Volume 
and bounded cohomology [169]. 

§11.5. Measure homology was introduced by Gromov and Thurston in 
Thurston's 1979 lecture notes [389]. All the results of this section appeared 
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in Thurston's lecture notes and in Gromov's 1982 paper [169]. As a ref­
erence for the C1 topology, see Hirsch's 1976 text Differential Topology 
[194]. 

§11.6. The concept of a quasi-zsometry has it origins in Dehn's 1912 pa­
per tiber unendliche dzskontinuierliche Gruppen [102] where he essentially 
proved that the fundamental group of a closed hyperbolic surface, with a 
word metric, quasi-isometrically embeds into the hyperbolic plane. For the 
n-dimensional version of this result, see Margulis' 1970 paper Isometry of 
closed manifolds of constant negatzve curvature with the same fundamen­
tal group [278] and Gromov and Pansu's 1991 survey Rzgzdzty of lattzces: 
An introduction [170]. See also Cannon's 1984 paper The combinatorzal 
structure of cocompact discrete hyperbolic groups [67]. 

The concept of a pseudo-zsometry was introduced by Mostow in his 1970 
paper The rzgzdzty of locally symmetric spaces [309]. Theorem 11.6.1 for 
homeomorphisms of a closed hyperbolic surface and the 2-dimensional ver­
sion of Lemma 9 were essentially proved by Morse in his 1924 paper A 
fundamental class of geodesics on any closed surface of genus greater than 
one [307]. See also the Morse lemma in Gromov and Pansu's 1991 survey 
[170]. Theorem 11.6.2 for lifts of homeomorphisms of a closed hyperbolic 
surface appeared in Nielsen's 1924 paper tiber topologische Abbildungen 
geschlossener Fiichen [318]. See also Nielsen's 1927 paper Untersuchungen 
zur Topologze der geschlossenen zweiseztzgen Fliichen [319]. Lemmas 7-9 
and Theorem 11.6.2 for quasi-isometries were proved by Efremovic and Ti­
homirova in their 1963 paper Contznuatzon of an equimorphism to infinity 
[114]. Theorem 11.6.3 was proved by Gromov and appeared in Thurston's 
1979 lecture notes [389] and in Munkholm's 1980 paper Szmpizces of max­
imal volume in hyperbolzc space, Gromov's norm, and Gromov's proof of 
Mostow's rigidzty theorem (following Thurston) [311]. Theorems 11.6.4 and 
11.6.5 for diffeomorphisms were proved by Mostow in his 1968 paper Quasi­
conformal mappings in n-space and the rigidity of hyperbolic space forms 
[308]. Theorems 11.6.4 and 11.6.5 were proved by Mostow in his 1973 study 
Strong Rigzdzty of Locally Symmetric Spaces [310]. 

All the essential material in this section appeared in Thurston's 1979 
lecture notes [389] and in Munkholm's 1980 paper [311]. See also Gromov 
and Pansu's 1991 survey [170]. Mostow's rigidity theorem has been gener­
alized to include complete hyperbolic n-manifolds, n > 2, of finite volume 
by Prasad in his 1973 paper Strong rzgidity of Q-Rank 1 lattices [344] and, 
more generally, to include complete hyperbolic n-manifolds, n > 2, whose 
volume grows radially slower than that of hyperbolic n-space by Sullivan 
in his 1980 paper On the ergodic theory at znfinity of an arbitrary dis­
crete group of hyperbolic motzons [384]. For a discussion on what happens 
to Mostow's rigidity theorem in dimension two, see Agard's 1985 article 
Remarks on the boundary mapping for a Fuchszan group [9]. 



CHAPTER 12 

Geometrically Finite n-Manifolds 

In this chapter, we study the geometry of geometrically finite hyperbolic 
n-manifolds. The chapter begins with a study of the limit set of a dis­
crete group of Mobius transformations of Bn. In Section 12.3, we study 
geometrically finite groups of Mobius transformations of Bn. In Section 
12.4, we study nilpotent groups of isometries of hyperbolic n-space. In 
Section 12.5, we prove the Margulis lemma. In Section 12.6, we apply the 
Margulis lemma to study the geometry of geometrically finite hyperbolic 
n-manifolds. In particular, we determine the global geometry of complete 
hyperbolic n-manifolds of finite volume. 

§12.1. Limit Sets of Discrete Groups 

In this section, we study some of the basic properties of the limit set of 
a discrete group of Mobius transformations of Bn. We shall denote the 
topological closure of a subset S of En by S. 

Definition: A point a of sn-l is a limzt point of a discrete subgroup r 
of M(Bn) if there is a point x of Bn and a sequence {g'}~l of elements of 
r such that {g,x }~l converges to a. The lzmzt set of r is the set L(r) of 
all limit points of r. 

Theorem 12.1.1. Let a be a point of sn-l fixed by either a parabolic or 
hyperbolzc element of a discrete subgroup r of M(Bn). Then a is a limit 
pomt ofr. 

Proof: Let 9 be either a parabolic or hyperbolic element of r that fixes 
a. By replacing 9 with g-1, if necessary, we may assume that a is the 
attractive fixed point of g. Then g'(O) ---+ a as i ---+ 00. Hence a is a limit 
point of r. 0 

573 
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Theorem 12.1.2. Let r be a dzscrete subgroup ofM(Bn). Then for each 
poznt x of B n , we have 

L(r) = rx n sn-l. 

Proof: By definition, we have 

rx n sn-l C L(r). 

Suppose that a is a limit point of r. Then there is a sequence {g2}~1 of 
elements of r and a point y of B n such that {g2Y} converges to a. Then 
we have 

d(g2 X, gtY) = d(x, y) for all i. 

Therefore ig2X - g2yi goes to zero as i --+ 00 by Theorem 4.5.1. Hence 

lim g,x = lim g2Y = a. 
'l,---+CX) 1,--+ CX) 

Therefore a is in rx n sn-l. Thus L(r) = rx n sn-l. o 

Theorem 12.1.3. Let r be a discrete subgroup of M(Bn). Then the fol­
lowing are equivalent: 

(1) The group r is elementary. 

(2) The lzmit set L(r) conszsts of 0, 1, or 2 poznts. 

(3) The lzmit set L(r) is finite. 

Proof: Suppose that r is elementary. Assume first that r is of elliptic 
type. Then r is finite by Theorem 5.5.2. Hence ro is finite and so L(r) is 
empty. Assume next that r is of parabolic type. Let a be the fixed point 
of r. Then r leaves invariant the horosphere ~ based at a passing through 
o by Theorem 5.5.5. Hence 

L(r) = ro n sn-l C ~ n sn-l = {a} 

and therefore L(r) = {a} by Theorem 12.1.1. 
Assume now that r is of hyperbolic type. Then r leaves invariant a 

hyperbolic line L of B n by Theorem 5.5.6. Let a, b be the endpoints of L 
and let x be any point of L. Then 

L(r) = rx n sn-l C L n sn-l = {a,b}. 

By Theorem 5.5.8, the group r has a hyperbolic element h, and by Theorem 
4.7.4, the axis of his L. Hence L(r) = {a,b} by Theorem 12.1.1. Thus (1) 
implies (2). Clearly (2) implies (3). 

Suppose that L(r) is finite. Assume first that ro is finite. As r is 
discontinuous, the stabilizer ro is finite. Therefore r is finite and so r is 
elementary. Now assume that ro is infinite. Then ro has a limit point a in 
the compact set Bn. The point a is in sn-1, since ro is a closed discrete 
subset of B n by Theorem 5.3.4. As ra c L(r), the orbit ra is finite and 
so r is elementary. Thus (3) implies (1). 0 
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Definition: A subset C of B n is hyperbolic convex if and only if any two 
distinct points of C can be joined by either a hyperbolic line segment or a 
hyperbolic ray or a hyperbolic line contained in C. 

Definition: The hyperbolic convex hull of a subset K of B n is the inter­
section C(K) of all the hyperbolic convex subsets of B n that contain the 
set K. 

Lemma 1. Let f be a d~screte subgroup of M(Bn ), let K be a closed f­
invariant subset of 5 n- 1 , and let C(K) be its hyperbolic convex hull in Bn. 
Then C(K) ~s a closed f -znvarzant subset of Bn. 

Proof: We pass to the projective disk model Dn. Then C(K) is the 
Euclidean convex hull of K in En. It is a basic theorem in the theory of 
convex sets that the convex hull of a compact subset of En is compact. 
Hence C(K) is compact and therefore C(K) is closed. 

Let g be in f. Then C(K) is f-invariant, since 

gC(K) g(n{5: 5:=! K and 5 is a convex subset of Dn}) 

n{g5 : 5 :=! K and 5 is a convex subset of Dn} 

n{g5 : g5 :=! K and g5 is a convex subset of Dn} 

n{ 5 : 5 :=! K and 5 is a convex subset of Dn} 

C(K). D 

Theorem 12.1.4. Let f be a nonelementary discrete subgroup ofM(Bn). 
Then every nonempty, f -invarzant, closed subset of 5 n- 1 contains L(f). 

Proof: Let K be a nonempty, f-invariant, closed subset of 5 n - 1 . Then 
K is infinite, since f is nonelementary. Let C(K) be the hyperbolic convex 
hull of Kin Bn. Then C(K) is a f-invariant closed subset of B n by Lemma 
1. Moreover C(K) n 5 n- 1 = K. Let x be any point of C(K) n Bn. Then 
fx c C(K) and so 

L(f) = fx n 5 n - 1 c C(K) n 5 n - 1 = K. 

Thus K contains L(f). D 

Lemma 2. Iff ~s a discrete subgroup ofM(Bn ) all of whose elements are 
elliptic, then f is jinzie. 

Proof: Every element of f is of finite order, since every element of f is 
elliptic and f is discontinuous. By Selberg's lemma, every finitely generated 
subgroup of f contains a torsion-free subgroup of finite index. Therefore, 
every finitely generated subgroup of f is finite. Given a finite subgroup H of 
f, let Fix(H) be the set of points fixed by every element of H. Then Fix(H) 
is an m-plane of Bn for some m ~ o. Choose H such that dimFix(H) is as 
small as possible. Now let 9 be any element of f and let K be the subgroup 
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of f generated by 9 and the elements of H. Then K is finitely generated 
and therefore is finite. Now Fix(K) C Fix(H). Hence, by the minimality 
of dim Fix (H) , we have that Fix(K) = Fix(H). As 9 is arbitrary in f, we 
deduce that Fix(f) = Fix(H). Thus f is elementary of elliptic type and so 
f is finite by Theorem 5.5.2. 0 

Theorem 12.1.5. Let F be the set of all fixed poznts of nonellzptzc ele­
ments of a dzscrete subgroup f ofM(Bn). Then F = L(f). 

Proof: As F C L(r), we have that F C L(f), since L(f) is closed. If f 
is elementary, then F = L(f) by Theorem 12.1.3; and so we may assume 
that f is nonelementary. Then some element of f is nonelliptic by Lemma 
2. Thus F is nonempty. 

Let a be in F. Then a is fixed by some nonelliptic element h of f. If 
9 is in f, then ghg- 1 is nonelliptic and fixes gao Hence F, and therefore 
F, is f-invariant. Thus F = L(r), since L(f) is the smallest nonempty, 
f-invariant, closed subset of sn-1 by Theorem 12.1.4. 0 

Lemma 3. If 9 zs ezther an elliptic or pMabolzc element of M(Un) such 
that g( (0) -=f. 00, then the zsometrzc spheres of 9 and g-l mtersect. 

Proof: Let Eg and Eg-l be the isometric spheres of 9 and g-l, respec­
tively. By Theorem 4.4.4, the sphere Eg is orthogonal to E n - 1 and 9 = fa 
where a is the reflection in E and f is a Euclidean isometry that leaves un 
invariant. Now since 

g-l = ar1 = f-1(jaf-1), 

we find that Eg-l = f(Eg) by Theorem 4.3.3. Let Hg and Hg-l be the 
closed half-spaces of un bounded above by Eg and Eg-l, respectively. Then 

g(Un - Hg U Hg-l) C g(Un - Hg) 

fa(Un - Hg) 

c f(Hg) 

Hg-l. 

Hence 9 does not fix a point of the set un - (Hg U Hg-l). Therefore, the 
fixed points of 9 are in H 9 U H y-l. By replacing 9 by g-l, if necessary, we 
may assume that 9 fixes a point a of H 9 and a is in Hg if 9 is elliptic. If a 
is in Eg , then Eg and Ey-l intersect at a. Assume next that a is inside Eg • 

Let E be the largest (horo)sphere (based) centered at a such that E C H g • 

Then E meets Eg at a unique point b. As 9 leaves E invariant, we have 
that gb is in H g, but gb is also in Eg-1. Therefore Eg and E g- 1 intersect, 
since they have the same radius. 0 

Theorem 12.1.6. Let f be a discrete subgroup of M(Bn) all of whose 
elements are either elliptic or parabolic. Then f is elementary. 



§12.1. Limit Sets of Discrete Groups 577 

Proof: If every element of r is elliptic, then r is elementary by Lemma 
2. Now assume that r has a parabolic element f. We pass to the upper 
half-space model un and conjugate r in M(Un) so that f(oo) = 00. Then 
f is a Euclidean isometry. We now prove that every element of r fixes 00. 

On the contrary, suppose that 9 is an element of r such that g( 00) =F 00. 

Let ~g be the isometric sphere of g. Then for each positive integer m, we 
have that ~fmg = ~g by Theorem 4.3.3. Moreover 

~g-lf-m = fmg(~f'"'g) = fmg(~g) = fm(~g_l)' 

Since the cyclic group generated by f acts discontinuously on En, there is 
a positive integer m such that ~g and fm(~g_l) are disjoint. Hence ~fmg 
and ~g-l f-m are disjoint. By Lemma 3, we have a contradiction. Thus, 
every element of r fixes 00 and so r is elementary. 0 

Theorem 12.1.7. Let F be the set of all fixed points of hyperbolzc elements 
of a non elementary discrete subgroup r ofM(Bn). Then F = L(r). 

Proof: By Theorem 12.1.6, the set F is nonempty. Hence F is a nonempty, 
r-invariant, closed subset of L(r), and therefore F = L(r) by Theorem 
12.1.4. 0 

Theorem 12.1.8. Let r be a non elementary discrete subgroup ofM(Bn). 
Then the limit set L(r) is perfect and is therefore uncountable. 

Proof: Recall that a set is perfect if and only if it is closed and has no 
isolated points. On the contrary, suppose that L(r) has an isolated point 
a. Then a is an isolated point of the set F of all fixed points of hyperbolic 
elements of r by Theorem 12.1.7. Hence a is fixed by some hyperbolic 
element h of r. As F is infinite, there is a b in F not fixed by h; but the 
set {hk(b) : k E Z} has a as a limit point, which is a contradiction. Thus 
L(r) is perfect. It is well known that a nonempty perfect subset of En is 
uncountable. 0 

The Ordinary Set 

We now study some of the basic properties of the complement of the limit 
set of a discrete group of Mobius transformations of Bn. 

Definition: The ordinary set of a discrete subgroup r of M(Bn) is the 
set 

o(r) = sn-l - L(r). 

A point of O(r) is called an ordinary point of r. 

Definition: A discrete subgroup r of M(Bn) is of the first kmd if O(r) 
is empty; otherwise r is of the second kind. 
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Example 1. Let r be a discrete subgroup of M(Bn) such that B n /r is 
compact. Then r is of the first kind. To see this, let x be a point of sn-l 
and let P be a fundamental polyhedron for r containing o. Then P is 
compact by Theorem 6.5.10. One can easily prove that there is a sequence 
{g'}~l of distinct elements of r such that B(x, l/i) contains g.p for all i. 
Therefore, the orbit ro accumulates at x. Thus L(r) = sn-l. 

Example 2. Every discrete elementary subgroup of M(Bn), with n > 1, 
is of the second kind by Theorem 12.1.3. 

Example 3. Let r be_ a discrete subgroup of M(Bn-l). Then r extends 
to a discrete subgroup r of M(Bn) by Poincare extension. Moreover 

L(f') = L(r) c sn-2 

an~ so f' is of the second kind. In particular, if r is of the first kind, then 
L(r) = sn-2. 

Theorem 12.1.9. Let r be a dzscrete subgroup of M(Bn) of the second 
kznd. Then 

(1) the ordinary set O(r) is an open dense subset of sn-\ 

(2) the limit set L(r) is a nowhere dense closed subset of sn-l. 

Proof: (1) If r is elementary, then clearly O(r) is a dense open subset of 
sn-l. Now suppose that r is nonelementary. Then O(r) is a nonempty, r­
invariant, closed subset of sn-l. Therefore O(r) contains L(r) by Theorem 
12.1.4. Hence O(r) = sn-l. 

(2) By (1), every neighborhood of a point in L(r) contains a point of 
O(r). Thus, the interior of L(r) in sn-l is empty and so L(r) is nowhere 
dense in sn-l. 0 

Nearest Point Retraction 

Let K be a closed, nonempty, hyperbolic convex subset of Bn. Let x be 
a point of B n - K. If K consists of a single point, then the nearest poznt 
of K to x is the single point of K, otherwise a nearest poznt of K to x is 
defined to be a point of K on the smallest (horo)sphere (based) centered 
at x that meets K. A nearest point y of K to x is unique, since if z were 
another nearest point, then the hyperbolic line segment [y, z] would lie in 
K, and its interior (y, z) would lie inside the smallest (horo)sphere (based) 
centered at x that meets K, which would be a contradiction. 

The nearest poznt retractwn of B n onto K is the function 

PK : B n ---- K 
defined such that P K (x) is the the nearest point of K to x. Note that if g 
is a Mobius transformation of B n and x is a point of Bn, then we have 

PgK(gX) = gpK(X). 
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Figure 12.1.1. The nearest point retraction p applied to a point y 

Lemma 4. Let K be a closed, nonempty, hyperbolzc convex subset of Bn. 
Then the nearest poznt retraction PK : B n -+ K is contznuous on the set 
B n U (sn-l - K). 

Proof: If K c sn-l, then K is a single point, and so we may assume 
that K contains a point of Bn. Let x be a point of B n U (sn-l - K). Then 
pK(X) is a point of Bn. By applying a Mobius transformation of Bn, we 
may assume, without loss of generality, that PK(X) = 0. Let y be another 
point of B n U (sn-l - K). In order to prove that P = PK is continuous at 
the point x, we will show that 

Ip(x) - p(y)1 ::: Ix - yl· 

This is certainly true if p(y) = 0, so assume that p(y) -I- 0. As K is 
hyperbolic convex, the line segment [0, p(y)] is contained in K. Moreover 
the angle between [O,p(y)] and [O,x] is at least 7r/2, since otherwise the 
smallest (haro )sphere (based) centered at x that meets K would meet the 
interior of [0, p(y)] at a point of K nearer to x than 0. Likewise, by moving 
p(y) to 0, we see that the angle between [0, p(y)] and [p(y), y] is at least 
7r/2. Now let P and Q be the Euclidean hyperplanes passing through ° 
and p(y), respectively, perpendicular to [0, p(y)]. Then the points x and y 
are on opposite sides of the region between P and Q. Therefore 

Ip(x) - p(y)1 ::: Ix - yl· 

See Figure 12.1.1. Hence p is continuous at the point x, and so PK is 
continuous on the set B n U (sn-l - K). 0 

Theorem 12.1.10. Let r be a discrete subgroup ofM(Bn). Then r acts 
discontinuously on Bn U O(r). 

Proof: This is clear if L(r) has ° or 1 points, and so we assume that L(r) 
has at least 2 points. Let C(r) be the hyperbolic convex hull of L(r) in 
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Bn. Then C(f) is a f-invariant closed subset of Bn by Lemma 1. Let 

p: B n ----t C(r) 

be the nearest point retraction of Bn onto C(f). Then p(gx) = gp(x) for 
all 9 in f and x in Bn, since C (r) is f -invariant. Moreover p is continuous 
on Bn U O(f) by Lemma 4. 

Let K be a compact subset of B n U O(f). Then p(K) is a compact 
subset of C(f) - L(f). Let 9 be an element of f such that K n gK -=I- 0. 
Upon applying p to K n gK, we find that 

p(K) n gp(K) -=I- 0. 
By Theorem 5.3.5, the group f acts discontinuously on Bn. Therefore 

p(K) n gp(K) -=I- 0 
for only finitely many 9 in f, whence K n gK -=I- 0 for only finitely many 9 
in f. Thus f acts discontinuously on Bn U O(f). D 

Remark: Let f be a discrete subgroup of M(Bn). The reason O(f) is 
called the ordinary set of f is because Bn U O(r) is the largest open subset 
of Bn on which f acts discontinuously. The proof is left as an exercise for 
the reader. 

Theorem 12.1.11. Letf be a dzscrete subgroup ofM(Bn ). Then for each 
x in O(f), there is open neighborhood N of x in B n U O(r) such that for 
each 9 in f, either N n gN = 0 or gN = Nand gx = x. 

Proof: Choose r > 0 so that 

C(x, r) n B n c B n U O(r). 

Let K = C(x, r)nBn. Then K is a compact subset of BnUO(f). As facts 
discontinuously on B n U O(f), there are only finitely many 9 in f such that 
K n gK -=I- 0. By shrinking r, if necessary, we may assume that K n gK = 0 
if gx -=I- x. Now the stabilizer f x is a finite group. By conjugating f in 
M(Bn), we may assume, without loss of generality, that fx fixes O. Then 
f x is a subgroup of O(n) that fixes the line through 0 and x. Consequently, 
each element of f x leaves N = B(x, r) n B n invariant. D 

Lemma 5. Let F be a convex fundamental polyhedron for a discrete sub­
group f of M( B n ), and let {gJ ~l be a sequence of dzstinct elements of f. 
Then the Euchdean diameter of g,F goes to zero as i goes to infimty. 

Proof: Let r > O. As C(O, r) is compact, the ball B(O, r) in Bn meets only 
finitely many members of {gF : 9 E f}, since F is locally finite.3herefore 
Bn _ B(O, r) contains all but finitely many of the term~of {g,F}~l' As 
each g,F is convex, the Euclidean diameters of all the g,F in B n - B(O, r) 
are bounded above by a function of r that goes to zero as r ----t 00. Therefore 
diamE(g,F) ----t 0 as i ----t 00. D 
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Theorem 12.1.12. Let P be a convex fundamental polyhedron for a dzs­
crete subgroup f ofM(Bn ). Then {gP : g E f} is a locally jinzte collection 

of subsets of B n U O(f). 

Proof: On the contrary, suppose that {gP : g E f} is not a locally finite 
collection of subsets of B n nO(r). Then there is a point a of B n nO(f) and 
a sequence {g'}~l of distinct elements of f such that B(a, Iii) contains 
a point x, of g,P. The point a is in O(f), since {gP : 9 E r} is a locally 
finite collection of subsets of Bn. As the terms of {g,} are distinct, the 
Euclidean diameter of g,P goes to zero as i --+ (X) by Lemma 5. As x, --+ a, 
we deduce that g,x --+ a for any x in P. Therefore a is a limit point of f, 
which is a contradiction. 0 

Theorem 12.1.13. Let P be a convex fundamental polyhedron for a dis­
crete subgroup f ofM(Bn ). Then 

O(f) = U g(P n O(r)). 
gEr 

Proof: Let x be a point of O(f). Choose a sequence of points {X'}~l 
in B n converging to x. Then for each i, there is a g, in f such that x, 
is in g,P. Now only finitely many of the terms of {g'}~l are distinct by 
Theorem 12.1.12. Hence, there is a j such that x, is in gJP for infinitely 
many i. Therefore x is in gJP' Thus 

O(f) = U g(P n O(f)). 
gEr 

o 

We now give a characterization of the discrete subgroups of M(Bn) of 
the second kind in terms of the geometry of their convex fundamental 
polyhedra. 

Theorem 12.1.14. Let f be a discrete subgroup ofM(Bn ). Then the fol­
lowing are equivalent: 

(1) The group f zs of the second kind. 

(2) Every convex fundamental polyhedron for f contazns a closed half­
space of Bn. 

(3) The group f has a convex fundamental polyhedron that contazns a 
closed half-space of Bn. 

Proof: Suppose that f is of the second kind. Let P be a convex funda­
mental polyhedron for f. By Theorem 12.1.13, we have 

O(f) = U g(P n O(f)). 
gEr 

Now f is countable, since f is discrete. As O(f) is locally compact, O(f) 
is a Baire space. Therefore, one of the closed subsets g(P n O(f)) of O(f) 
has a nonempty interior in O(f). Hence, the interior of P n O(r) in O(f) 
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is nonempty. Let x be a point of the interior of P n O(r). Then there is 
an r > 0 so that 

B(x,r)nsn-l cpnO(r). 

By convexity, the closed half-space of B n bounded by B(x, r) n sn-l is 
contained in P. Thus (1) implies (2). Clearly (2) implies (3). 

Suppose that r has a fundamental polyhedron that contains a closed 
half-space Bn. Then there is a point x of sn-l and an r > 0 such that 

B(x,r) n B n c P. 

As the sets {gPO : 9 E r} are mutually disjoint, the sets 

{g(B(x, r) n Bn) : 9 E r} 

are mutually disjoint. Hence, no point of B(x, r) n sn-l is fixed by a 
nonidentity element of r. By Theorem 12.1.5, we have that 

B(x,r) n sn-l C O(r). 

Therefore r is of the second kind. Thus (3) implies (1). o 

Definition: Let r be a discrete subgroup of M(Bn). The volume of B n jr 
is the volume of any proper fundamental domain for r in Bn. 

Note that the volume of B n jr is well defined, since all the proper funda­
mental domains for r have the same volume by Theorem 6.5.5. The next 
theorem follows immediately from Theorem 12.1.14. 

Theorem 12.1.15. Let r be a dzscrete subgroup of M(Bn) such that the 
volume of B n jr is finite. Then r zs of the first kznd. 

Theorem 12.1.16. Let H be an mfinite normal subgroup of a nonelemen­
tary discrete subgroup r ofM(Bn). Then L(H) = L(r). 

Proof: Let FH be the set of all fixed points of nonelliptic elements of 
H. Then FH is nonempty by Lemma 2. Given an element h of H, let Fh 
be the fixed set of h. If 9 is in r, then gFh = Fghg-l. Therefore FH is a 
r-invariant subset of sn-l. Hence FH is a nonempty, closed, r-invariant 
subset of sn-l. Therefore 

L(r) C FH = L(H) c L(r) 

by Theorems 12.1.4 and 12.1.5. o 

Example 4. In §1O.3, we constructed a complete hyperbolic 3-manifold 
M of finite volume that is homeomorphic to the complement of the figure­
eight knot K in i;3. By Theorem 8.5.9, there is a discrete subgroup r of 
M(B3) such that B3 jr is isometric to M. By Theorem 8.1.4, the group 
r is isomorphic to the fundamental group of B3 jr. It is a basic fact of 
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knot theory that the commutator subgroup of 7f1 (M) is a free group of 
rank 2 and the abelianization of 7f1 (M) is infinite cyclic. Therefore, the 
commutator subgroup r' of r is a free group of rank 2 and r jr' is infinite 
cyclic. Now the group r jr' acts freely and discontinuously as a group 
of isometries on B3 jr' and the orbit space (B3 jr')j(r jr') is B3 Jr. By 
Theorem 8.1.3, the quotient map 

7f : B3 jr' -+ B3 jr 

is a local isometry and a covering projection. As 7f is an infinite covering, 
B3 jr' has infinite volume. Nevertheless r' is of the first kind because of 
Theorems 12.1.15 and 12.1.16. 

Theorem 12.1.17. Let r be a jimtely generated, nonelementary, dzscrete 
subgroup of M(Bn) that leaves no m-plane of Bn invariant for m < n - 1. 
Then the normalzzer N of r in M(Bn) zs discrete. 

Proof: Let {g1, . .. , gm} be a set of generators for r with g1 = 1. Let x 
be a point of Bn that is fixed only by the identity element of r. Set 

s = dist(x,rx - {x}). 

Let 

u = {¢ E M(Bn) : d(¢(g.x), g.x) < sj2 for i = 1, ... , m}. 

Then U is an open neighborhood of the identity in M(Bn). 
Suppose that h is an element of N n U. Then we have 

d(g;:1 h -1 g,hx, x) d(g.hx, hg.x) 

< d(g,hx, g.x) + d(g,x, hg.x) 

d(hx, x) + d(g,x, hg,x) < s. 

Hence g;:1h-1g.hx = x and so g;:1h-1g.h = 1. Therefore hand g, commute 
for each i = 1, ... , m. As g1, ... , gm generate r, we have that h commutes 
with every element of r. 

Now let y be an arbitrary point of L(r). Then there is a sequence {I.} 
of elements of r such that f.x -+ y. Observe that for each i, we have 

d(f.x, hf.x) = d(f,x, f.hx) = d(x, hx). 

Consequently, we have 

lim If.x - hf,xl = o . 
• ---too 

Therefore hy = y. Thus h is the identity on L(r). 
Let m be the least integer such that L(r) is contained in an (m - 1)­

sphere of 8 n - 1 • By conjugating r, we may assume that L(r) c 8 m - 1 . As 
r leaves the convex hull C(r) of L(r) invariant, r also leaves B m invariant, 
since Bm is the affine hull of C(r). By our hypothesis, m = n - lor n. 
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Assume first that m = n. Then we can choose points Yo, ... , Yn of L(r) 
that are the vertices of an ideal n-simplex. As hy, = y, for each i, we 
deduce that h = 1. Hence N n U = {I}. 

Now assume that m = n - 1. Then we can conclude as above that his 
the identity on Bn-l. Therefore h is either the identity or the reflection p 
of Bn in the hyperplane Bn-l. Therefore, we have 

Nn (U - {p}) = {I}. 

Hence, the identity is open in N, and therefore N is discrete. o 

Classical Schottky Groups 

Let r be a subgroup of M(Bn). An open subset D of B n is called a r­
packing if D n gD = 0 for all 9 -=I- 1 in r. 

Theorem 12.1.18. Let r 1 , ... , r m be subgroups of M(Bn) whose union 
generates the group r, and let D, be a r, -packing for each i = 1, ... , m 

m 
such that D = n D, is nonempty and D, U DJ = Bn when i -=I- j. Then 

,=1 

(1) the group r is the free product of the groups r 1 , ... , r m; 

(2) the set D is a r -packing; 

(3) the group r zs dzscrete. 

Proof: (1) Let gk -=I- 1 be in r'k for each k = 1, ... ,£ and suppose that 
ik -=I- ik+l for each k = 1, ... ,£ - 1. We now prove by induction that 

g£ ... gl (D) c B n - Dw 

First of all, 
gl(D) c gl(D,J c B n - D'l· 

Assume that k < £ and 

Then we have 

gk+lgk··· gl(D) C gk+l(Bn - D'k) 

C gk+l (D'k+J c B n - D'k+l· 

This completes the induction. Therefore 

g£ ... gl(D) C B n - D'e C B n - D. 

This shows that g£ ... gl -=I- 1. Therefore r is the free product of r 1, ... ,r m· 

(2) Now suppose that 9 -=I- 1 in r. Then there exist gl,··., g£ as above 
so that 9 = g£ ... gl. Hence D n gD = 0 by (1). Thus D is a r-packing. 

(3) Now let x be a point of D. Then x is open in rx, since D is a 
r-packing by (2). Let c : r -* rx be the evaluation map at x. Then c is 
continuous. Therefore c-1 (x) = 1 is open in r, and so r is discrete. 0 
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Figure 12.1.2. A Schottky polygon P in B2 

A Schottky polyhedron in Bn is a convex polyhedron P in Bn, with an 
even number of sides, each of which is a hyperplane of Bn. See Figure 
12.1.2. Let <P be a M(Bn)-side-pairing for a Schottky polyhedron P in Bn, 
with 2m sides, such that no side of P is paired to itself. The group r 
generated by <P is called a classzcal Schottky subgroup of M(Bn) of rank m. 

Theorem 12.1.19. Let r be a classical Schottky subgroup of M(Bn) of 
rank m. Then r zs a free discrete subgroup of M(Bn) of rank m. 

Proof: Let r be generated by a M(Bn)-side-pairing <P for a Schottky 
polyhedron P in B n , with 2m sides, such that no side of P is paired to 
itself. Then we can order the sides of P as follows: 

SI"",Sm, S~, ... ,S~. 

Moreover r is generated by the elements g81> ... , g8rn • Let r. = (g8,) and 
let p. be the convex polyhedron in Bn with S. and S: as its only sides for 
each i = 1, ... ,m. Then p.o is a r.-packing and r. is infinite cyclic for each 
i = 1, ... ,m. Moreover po = n~l p.o is nonempty and p.o U PJ

o = B n when 
i -I- j. By Theorem 12.1.18, the group r is discrete and the free product of 
r l , ... , r m' Thus r is a free group of rank m. 0 

Example 5. Consider the Schottky polyhedron P in un whose sides are 
the vertical planes Xl = 1 and Xl = 2. Then the element h of M(Un ), 

defined by hx = 2x, pairs the sides of P. Observe that the set 

U{hk(p) : k E Z} 

is the open half-space, Xl > 0, in un. Therefore P is not a fundamental 
polyhedron for the Schottky group r generated by h. 

Example 5 shows that a Schottky polyhedron P is not necessarily a 
fundamental polyhedron for a Schottky group generated by a side-pairing 
of P. On the other hand, we have the following theorem. 
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Theorem 12.1.20. Let P be a Schottky polyhedron m Bn such that no 
two sides of P meet at infinity, and let r be a Schottky group generated by 
a M(Bn)-szde-pairing <I> for P such that no szde zs paired to itself. Then P 
zs an exact, convex, fundamental polyhedron for r, and the mcluszon of P 
into Bn mduces an zsometry from the hyperbolzc n-manifold P jr, obtained 
by gluing together the szdes of P by <I> , to the space-form Bn jr. 

Proof: The theorem follows immediately from Theorems 11.1.6 and 
11.2.1, since P has no cusp points. 0 

We next show that the Schottky groups in Theorem 12.1.20 have inter­
esting limit sets. 

Theorem 12.1.21. Let P be a Schottky polyhedron m Bn such that P has 
at least four sides and no two szdes of P meet at infinity, and let r be a 
Schottky group generated by a M(Bn)-side-pazring <I> for P such that no 
szde is paired to itself. Then L(r) is a Cantor set. 

Proof: Let S be a side of P. Since Sand S' do not meet at infinity, 
the side-pairing transformation gs is hyperbolic and its fixed points are 
on opposite sides of S and S'. Let T be a side of P distinct from Sand 
S'. Then gT is hyperbolic and its fixed points are on opposite sides of T 
and T'. Hence gs and gT do not have a common fixed point. Therefore 
r is nonelementary by Theorem 12.1.3. Hence L(r) is perfect by Theorem 
12.1.8. As every perfect, totally disconnected, compact, metric space is a 
Cantor set, it remains only to show that L(r) is totally disconnected. 

We begin by showing that 

P n sn-l C O(r). 

Assume first that P contains a point a fixed by some g # 1 in r. Then 
P and gP meet at a. Hence P and gP share a side S, and so g = gs· 
As gsl(S) = S', the sides S and S' meet at infinity at a, which is a 
contradiction. Therefore P contains no fixed points of nonidentity elements 
ofr. 

Now assume that P contains a limit point b of r. As the interior of 
P n sn-l is contained in O(r), the point b is in the closure of a side S of 
P. Choose r > 0 so that 

B(b, r) n sn-l C (P U gs(P)) n sn-l. 

By Theorem 12.1.5, there is a point c of B(b, r) that is fixed by a nonidentity 
element of r. As the interiors of P n sn-l and gs(P) n sn-l are contained 
in O(r), the point c must be in the closure of S. But P contains no fixed 
points of nonidentity elements of r, and so we have a contradiction. Thus, 

we have that 
P n sn-l C O(r). 
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Let P = {gP : 9 E r}. Then P is an exact tessellation of En by 
Theorem 12.1.20. Therefore P is connected by Theorem 6.7.2. Define a 
sequence of convex polyhedra PI C P2 C ... inductively as follows. Let 
PI = P. Assume that P, has been defined. Let Pt +1 be the union of Pt 

and the polyhedra in P that share a side with Pt. Then for each i, the 
polyhedron Pt is a finite union of polyhedra in P, and every side of P, is a 
hyperplane of En. Moreover, since P is connected, we have 

Now since 
P n sn-l C O(f) 

and O(f) is f-invariant, we have that 

P, n sn-l C O(f) 

for each i. Therefore 

Let u and v be distinct limit points of f and let L be the hyperbolic line 
of En with end points u and v. Since 

n (En - P t ) C sn-l, 
,=1 

there is an i such that En - P t does not contain L. Then by convexity, U 
and v lie in different components of En - Pt. Let U be the component of 
sn-l - P, containing u, and let V be the union of the remaining components 
of sn-l - Pt. Then U and V are disjoint open neighborhoods in sn-l of 
u and v, respectively, such that 

L(f) c uuV. 

Therefore u and v lie in different components of L(f). Thus L(f) is totally 
disconnected. D 

Exercise 12.1 

1. Let r be a discrete subgroup of M(Bn) with a parabolic element and let F be 
the set of all fixed points of parabolic elements of r. Prove that L(r) = F. 

2. Let r be a nonelementary discrete subgroup of M(Bn). Prove that r has 
an infinite number of hyperbolic elements, no two of which have a common 
fixed point. 

3. Let 9 be an element of M(Bn) such that for some x in sn-l and radius r 
with 0 < r < 1, we have 

g(C(x,r) n Sn-l) C B(x,r). 

Prove that 9 is hyperbolic and that 9 fixes a point of B(x, r) n sn-l. 
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4. Let r be a nonelementary discrete subgroup of M(Bn) and let x, y be distinct 
limit points of r. Prove that for each r > 0, there is a hyperbolic element 
h of r such that B(x, r) contains one of the fixed points of hand B(y, r) 
contains the other. 

5. Prove that a perfect subset of En is uncountable. 

6. Let r be a discrete subgroup of M(Bn) such that B n /r is compact. Prove 
that r is of the first kind by the argument sketched in Example 1. 

7. Let r be a nonelementary discrete subgroup of M(Bn), let P be an m-plane 
of B n , with m > 1, and suppose that r leaves no £-plane of B n invariant for 
all £ < m. Prove that r leaves P invariant if and only if L(r) c P n sn-l. 

8. Let K be a closed hyperbolic convex subset of En that contains a point of 
B n and let PK : En -+ K be the nearest point retraction. Prove that if x, y 
are in B n , then d(PK(X),PK(y)) ::; d(x,y). 

9. Let K be a closed, nonempty, hyperbolic convex subset of En. Prove that 
the nearest point retraction PK : En -+ K is continuous. 

10. Let r be a discrete subgroup of M(Bn) and let U be an open subset of sn-l 
on which r acts discontinuously. Prove that Ocr) contains U. Conclude that 
B n U Ocr) is the largest open subset of En on which r acts discontinuously. 

11. Let r be a discrete subgroup of M(Bn). Prove that a point x of sn-l is in 
OCr) if and only if there is an open neighborhood U of x in sn-l such that 
U n gU oF 0 for only finitely many 9 in r. 

12. Let r be a discrete subgroup of M(Bn) and let H be a subgroup of r of finite 
index. Prove that L(H) = L(r). 

13. Prove that the free group in Example 4 is not a classical Schottky subgroup 
of M(B3). 

14. Let gl, ... , gm be nonelliptic elements of M(Bn) such that no two elements 
have a common fixed point. Prove that there are positive integers kl' ... , km 

such that g~", ... ,g~= generate a classical Schottky group of rank m. 

15. Let r be a nonelementary discrete subgroup of M(Bn). Prove that r contains 
a classical Schottky group of rank m for each m. 

§12.2. Limit Points of Discrete Groups 

In this section, we study the basic properties of conical and cusped limit 
points of a discrete group of Mobius transformations of En. 

Conical Limit Points 

Definition: A point a of sn-l is a conical limzt poznt of a discrete sub­
group r of M(En) ifthere is a point x of En, a sequence {g'}~l of elements 
of r, a hyperbolic ray R in En ending at a, and an r > 0 such that {g,x }~l 
converges to a within the r-neighborhood N(R,r) of R in En. 
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a 

-a 

Figure 12.2.1. An r-neighborhood N of the line (-a, a) of B2 

Figure 12.2.1 illustrates the r-neighborhood of a diameter of E2. In the 
upper half-space model un, an r-neighborhood of a vertical line L of un 
is the interior of a Euclidean hypercone in un with L as its axis. Thus 00 

is a conical limit point of a discrete subgroup r of M(Un ) if and only if 
there is a point x of un and a sequence {gJ~l of elements of r such that 
{g,x }~l converges to 00 within a Euclidean hypercone in un whose axis 
is a vertical line of un. See Figure 12.2.2. 

Theorem 12.2.1. Let a be a poznt of sn-l fixed by a hyperbolic element 
h of a discrete subgroup r of M( En). Then a is a conical limit point of r. 

Proof: By replacing h with h-1 , if necessary, we may assume that a is 
the attractive fixed point of h. Let x be any point on the axis L of h. Then 
{h'X}~l converges to a within any r-neighborhood of L in En. Thus a is 
a conical limit point of r. 0 

N 

b 

Figure 12.2.2. An r-neighborhood N of the line (b, (Xl) of U2 
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We next prove that the point x in the definition of a conical limit point 
plays no special role. 

Theorem 12.2.2. Let a be a comcal lzmzt point of a discrete subgroup r 
ofM(Bn), let x be a poznt of Bn, let {g'}~l be a sequence of elements of 
r, let R be a hyperbolic my in B n endzng zn a, and let l' > 0 be such that 
{g2X } ~1 converges to a wzthin N (R, 1'). Then for each point y of Bn, there 
is an s > 0 such that {g2Y}~1 converges to a within N(R, s). 

Proof: Let s = d(x, y) + r. For each i, there is a point Z2 on R such that 
d(g,x, Z2) < r. Hence 

d(g,y, z,) :s; d(g2Y, g2X) + d(g2X, Z2) < d(y, x) + l' = s. 

Hence g2Y is in N(R, s) for each i, and so {g,y} converges to a within 
N(R,s). 0 

Theorem 12.2.3. Let a be a limit point of a discrete subgroup r ofM(Bn ) 
and let {g,} ~1 be a sequence of dzstinct elements of r. Then the following 
are equivalent: 

(1) For some (or each) hyperbolic my R in B n ending at a, there is an 
l' > 0 such that {g,(O)} converges to a withzn N(L,r). 

(2) For some (or each) hyperbolic my R zn Bn endzng at a, there zs a 
compact subset K of Bn such that for all i, we have 

K n g:;l R -I- 0. 

Proof: Suppose there is a hyperbolic ray R ending at a such that {g2(0)} 
converges to a within N(R, 1') for some r > O. Let S be another hyperbolic 
ray ending at a. Then there is an s > 0 such that N(R,r) c N(S, s). 
Therefore {g2(0)} converges to a within N(S,s). Thus, the quantifiers "for 
some" and "each" are equivalent in (1). 

Let R be a hyperbolic ray ending at a. Then for any gin rand l' > 0, 
one has d(g(O), R) :s; l' if and only if g-l R meets the compact set 0(0,1'). 
Thus (1) and (2) are equivalent. 0 

Theorem 12.2.4. A comcallimit point of a discrete subgroup r ofM(Bn ) 
cannot lie on the Euclidean boundary of any convex fundamental polyhedron 

for r. 
Proof: On the contrary, suppose that a conical limit point a of r lies on 
the Euclidean boundary of a convex fundamental polyhedron P for r. By 
Theorem 6.3.21, there is a hyperbolic ray R in P ending at a. By Theorem 
12.2.3, there is a sequence {g2}~1 of distinct elements of r and a compact 
subset K of B n such that for all i, we have 

K n g2P -I- 0. 
But this contradicts the fact that P is locally finite. o 
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Corollary 1. A fixed point of a hyperbolic element of a dzscrete subgroup r 
ofM(Bn ) cannot lze on the Euclzdean boundary of any convex fundamental 

polyhedron for r. 

Theorem 12.2.5. Let a be a limzt point of a dzscrete subgroup r ofM(Bn ), 

let {g'}~l be a sequence of dzstznct elements of r - r a, and let r, be the 
mdzus of the zsometric sphere of g, for each i. Then the following are 
equzvalent: 

(1) d(g,(O), [0, a)) = 0(1). 

(2) la - g,(O)1 = 0(1 -lg,(O)I). 

(3) la - g,(O)1 = O(r;). 

(4) The sequence {g,(On~l converges to a and for some (or each) x i= a 
zn sn-l there zs aD> 0 such that for all i, we have 

Ig;lx - g;lal ~ D. 

Proof: Assume that (1) holds. Let R = [0, a) and L = (-a, a). Then 
{g,(On converges to a. Hence, for all sufficiently large i, we have 

d(g2(0), R) = d(g,(O), L). 

Let x be a point of Bn nearer to a than to -a, and let y (resp. z) be the 
foot of the hyperbolic (resp. Euclidean) perpendicular from x to L. See 
Figure 12.2.3. 

Let a be the angle of the hyperbolic right triangle L:.(O,x,y) opposite 
the side [x, y]. Then we have 

sinhd(x, y) = sinhd(O, x) sina. 

a 

o 

Figure 12.2.3. The points x, y, z in the proof of Theorem 12.2.5 



592 

Now as 
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( 1 + Ixl) 
d(O, x) = log I-Ixl ' 

i hd( ) = 2\xl Iz - xl 
s n x, Y 1 _ IXJ2 Ixl 

21z -xl 
I-lxl2 . 

Hence, we have 

. h d( L) _ 21x - zl 
sm x, - 1 _ Ixl 2 . 

Now observe that 

la - xl < la - zl + Iz - xl 
< I(x/lxl) - zl + Iz - xl 
< I(x/lx\) - xl + 21z - xl 

1 -Ixl + 21z - xl· 
Hence, we have 

la-xl 
I-Ixl 

< 1 + 21z - xl 
I-Ixl 

1 + (1 + Ixl) sinhd(x, L) 
< I+2sinhd(x,L) 

1 + 2 sinh d(x, R). 

Therefore (1) implies (2). 
Assume that (2) holds. Then {g,(O)} converges to a. Let x be as above. 

Then 
. Iz - xl la - xl la - xl 

smhd(x,R) = 2 I 12 < 2 I 12 < 2--1- 1, I-x I-x I-x 
Therefore (2) implies (1). Thus (1) and (2) are equivalent. 

By Theorem 4.4.7, the isometric sphere S(a"r,) of g, is orthogonal to 
sn-1 and g, = f,O"" where 0", is the reflection in S(a" r,) and f, is an 
orthogonal transformation. Observe that 

a, = 0",(00) = 0".j,-1(00) = g;1(00). 

By Theorem 4.4.2, we have 

r; + 1 = la,1 2 = If,a,1 2 = If,O",(ooW = Ig,(ooW· 

By Theorem 4.3.7, we find that g,(oo) and g,(O) are inverse points with 
respect to sn-1. Therefore 

Hence, we have that 
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Therefore, we have that 

Hence, we have 

Therefore, we have that 

1 -lg,(O)1 = O(r;). 

Now let m be the minimum value of Ig,(O)I. Then we have 

1 -lg,(O)12 

m2 

(1 -lg,(O)I)(l + Ig,(O)I) 
m 2 

< 2(1 -lg,(O)I) 
m 2 

Hence, we have 
r; 0(1 - Ig,(O)I). 

Thus (2) and (3) are equivalent. 
Now for each i, we have 

-1 1-1 f-1(f f-1) g, = a" =, "a, . 

Hence, the isometric sphere of g;1 is S(j,a" r,) by Theorem 4.3.3. By 
Theorem 4.1.3, we deduce that for each x i- a in sn-1, we have 

-1 -1 r;lx - al 
Ig, x - g, al = Ix _ g,(oo)lla _ g,(oo)I' 

Let a be the inversion in sn-1. Then we have 

Ix - g,a(O)lla - g,a(O)1 

r;lx - al 
Ix - ag,(O)lla - ag,(O) I 

r;lx - al 
la(x) - ag,(O)lla(a) - ag"(O)1 

r;lx - al 
(Ix - g,(O)l/lg,(O)I)(la - g,(O)lIlg,(O)1) 

r;lg,(O)1 2 Ix - al 
la - g,(O)llx - g"(O)I' 

Now assume that (3) holds. Then there is a constant k > 0 such that 

la - g,(O)1 :::; kr;. 
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Hence {g.(O)} converges to a, and for each x i=- a in sn-1 and all sufficiently 
large i, we have 

I -1 -1 I g. x-g. a > Ig.(0)12 Ix - al 
klx - g.(O)1 

> 3lx-al 
4klx - g.(O)1 

> 3lx-al 
4k(31x - al/2) 

1/2k. 

Therefore (3) implies (4). 

Now assume that (4) holds, that is, {g.(O)} converges to a and there is 
an x i=- a in sn-1 and a 8 > 0 such that for all i, we have 

Then we have that 

Ig;1x - g;1al ::::: 8. 

r;lg.(0)12 Ix - al > 8. 
la - g.(O)llx - g.(O)1 -

Hence, for all sufficiently large i, we have 

la - g.(O)1 
< Ig.(o)12 Ix - al 

r2 81x - g.(O)1 • 
< Ix-al 

81x - g.(O)1 

< Ix-al 
= 8(lx - al/2) 

2/8. 

Therefore (4) implies (3). Thus (3) and (4) are equivalent. 

Cusped Limit Points 

o 

Let r be a discrete subgroup of M(un) such that 00 is fixed by a parabolic 
element of r. Then the stabilizer roo is an elementary group of parabolic 
type. Therefore roo corresponds under Poincare extension to a discrete 
subgroup of I(En-1). By Theorems 5.4.6 and 7.4.2, there is a roo-invariant 
m-plane Q of En-1 such that Q/r 00 is compact. Let r > 0 and let N(Q,r) 
be the r-neighborhood of Q in En. Then N(Q, r) is invariant under roo. 
Now set 

U(Q,r) = un - N(Q,r). 

Then U(Q, r) is an open roo-invariant subset of un. Note that if m = n-1, 
then U(Q, r) is a horoball based at 00. The set U(Q, r) is said to be a cusped 
regwn for r based at 00 if and only if for all 9 in r - roo, we have 

U(Q,r) ngU(Q,r) = 0. 
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-1 1 

Figure 12.2.4. The four circles in Example 1 

Example 1. Let P be the Schottky polyhedron in U3 with four sides 
whose boundaries in t are the four circles in Figure 12.2.4. We pair the 
two vertical sides of P and the two nonvertical sides of P by reflecting in the 
vertical plane midway between the two vertical sides, and then reflecting 
in the corresponding side of P. This side-pairing generates a Schottky 
subgroup r of M(U3 ) of rank 2. The group r corresponds under Poincare 
extension to the group in Example 2 at the end of §9.8. 

Observe that the parabolic translation fez) = z + 2 generates roo and 
roo leaves invariant the real axis R of <C. Let r ?': 1/2 and let N(R, r) be 
the r-neighborhood of JR in E3. Then roo leaves N (JR, r) invariant. Hence 
roo leaves invariant the set 

U(lR, r) = u 3 - N(lR, r). 

Now since 
U(JR, r) C U{fk(p) : k E Z}, 

we deduce that for all 9 in r - roo, we have 

U(lR,r) ngU(lR,r) = 0. 
Thus U(R, r) is a cusped region for r. 

Let c be a point of En-l fixed by a parabolic element of a discrete 
subgroup r of M(Un ). A subset U of un is a cusped region for r based at 
c if and only if and only if upon conjugating r so that c = 00, the set U 
transforms to a cusped region for r based at 00. 

Lemma 1. If U zs a cusped regzon based at c for a discrete subgroup r of 
M(un), then U C un U Ocr). 

Proof: On the contrary, suppose that there is a limit point a of r in U. 
Then there is a point x of un and a sequence {g'}~l of elements of r such 
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that {g,x} converges to a. As U is an open neighborhood of a in un, there 
is an integer j such that g,x is in U for all i ~ j. Since U n gU = 0 for all 
gin r - rc and 

g,x = (g,g;l )gJx, 

we conclude that g,g; 1 is in r c for all i ~ j. Hence, there is an element 
f, of rc such that g, = f,gJ for all i ~ j. Let y = gJx. Then {J'Y}~J 
converges to a. Hence a is a limit point of r c. Therefore a = c. But c is 
not in U, and so we have a contradiction. 0 

Definition: A cusped limit point of a discrete subgroup r of M(Bn) is 
a fixed point c of a parabolic element of r such that after passing to the 
upper half-space model un, there is a cusped region U for r based at c. 

Theorem 12.2.6. Let c be a cusped limit point of a discrete subgroup r of 
M(Bn) and let P be a convex fundamental polyhedron for r. Then there is 
an element g of r such that c zs zn gP. 

Proof: We pass to the upper half-space model un and conjugate r so 
that c = 00. Then r has a cusped region U(Q, r). By Lemma 1, we have 
that 

U(Q,r) C un U O(r). 

Hence, we have that 
L(r) c N(Q, r). 

Therefore, by increasing r, if necessary, we may assume that 

U(Q,r) C un U O(r) U {oo}. 

We now prove that P meets only finitely many members of 

{gU(Q, r) : gEn. 

Set 
C(Q,r) = U(Q,r) - (U(Q,r + 1) U {oo}). 

Then C(Q,r) is a closed subset of En. Now as 

U(Q, r) n gU(Q, r) = 0 for all gin r - rOC» 

we have 
U(Q,r)ngU(Q,r+1)=0 for allg inr-roo· 

Therefore, we have 

C(Q, r) C un - U gU(Q, r + 1). 
gEr 

Hence U(Q,r + 1) does not contain gP for any gin r. Therefore, if. gP 
meets U(Q,r), then gP meets C(Q,r), since gP is connected. Thus, If P 
meets g-lU(Q, r), then gP meets C(Q, r). 
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Let D be a Dirichlet polyhedron for f 00 in Q. Then D is compact, since 
Q/f 00 is compact. Let p : En -+ Q be the orthogonal projection. Then 
p-1(D) is closed in En, since p is continuous. Hence 

K = C(Q,r) np-1(D) 

is a closed subset of En; moreover K is bounded, since 

K c N(D,r + 1). 

Therefore K is compact. Furthermore 

C(Q,r) = U{jK: j E foo}. 

By Theorem 12.1.12, we have that {gP : 9 E f} is a locally finite family of 
subsets of un U O(f). As K is a compact subset of un U O(r), we deduce 
that K meets only finitely many f-images of P, say glP, ... ,gkP. Now 
suppose that P meets g-lU(Q,r). Then gP meets C(Q,r). Hence, there 
is an j in f 00 such that gP meets j K, and so j-1gP meets K. Therefore 
j-1g = g, for some i, and so 9 = jg,. Hence, we have 

g-lU(Q, r) = g;:lU(Q, r). 

Thus P meets only 

gllU(Q, r), ... ,gJ:1U(Q, r). 

Now let {X'}~l be a sequence of points of U(Q,r) such that the nth 
coordinate of x, goes to infinity as i -+ 00. Then for each i, there is an h, 
in f such that h,x, is in P. Then P meets h,U(Q, r). Hence, there is a j 
such that h,U(Q,r) = hJU(Q,r) for infinitely many i 2: j. For all such i, 
we have that 

h-;l h,U( Q, r) = U( Q, r). 

Hence, there is an j, in f 00 such that h-;lh, = j,. Therefore h, = hJj,. 
Let y, = j,x,. Then hJy, = h,x" and so hJy, is in P. Therefore y, is in 
h-;l P. As the nth coordinate of x, goes to infinity as i -+ 00, we have that 
j,x, -+ 00. Therefore y, -+ 00. Thus c is in h-;l P. 0 

The next corollary follows immediately from Theorems 12.2.4 and 12.2.6. 

Corollary 2. A cusped limit point of a discrete subgroup f of M( Bn) 2S 

not a conical limit point of f. 

Lemma 2. Let f be a discrete subgroups of M(un) such that 00 2S fixed 
by a parabolic element off, let Q be a f oo-invariant m-plane of E n - 1 such 
that Q /f 00 is compact, let P be a convex fundamental polyhedron for f, 
and let {x.}~l be a sequence of pomts of P converging to 00. Then 

lim distE(x" Q) = 00. 
'--"00 
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Proof: By Theorem 5.4.5, the group roo has a torsion-free subgroup of 
H of finite index. Then Q/H is compact by Lemma 1 of §7.4. Let D be 
a Dirichlet polyhedron for H. Then D is compact. Let r > 0 and let 
M(D, r) be the r-neighborhood of D in En-I. Then M(D, r) is compact. 
Let M(Q, r) be the r-neighborhood of Q in En-I. Then M(Q, r) is convex. 
As M(D,r) projects onto M(Q,r)/H, we find that M(Q,r)/H is compact. 
Hence M(Q,r)/H has finite volume in the space-form En-I/H. 

Now since x" ----+ 00 in P, we have that 00 is P. Let v : un ----+ En-I 
be the vertical projection. Then v(PO) is an open convex subset of En-I. 
Hence v(PO) n M(Q,r) is an open convex subset of En-I. Now since 
v(PO) n M(Q, r) injects M(Q, r)/H, we deduce that v(PO) n M(Q, r) has 
finite volume in En-I. Therefore v(PO) n M(Q,r) is bounded. Hence 
v(P) n M(Q, r) is compact. 

We now show that 

lim distE(x", Q) = 00. 
"->00 

Suppose that this is not the case. Then there is an r > 0 such that 

distE(x", Q) :::; r 

for infinitely many i. Hence v(x") is in the bounded subset v(P) n M(Q, r) 
of En-I for infinitely many i. As x" ----+ 00, we can conclude that there 
is an i such that the nth coordinate of x" is greater than r, which is a 
contradiction. o 

Definition: A polyhedral wedge in En is a convex polyhedron P in En 
such that the intersection of all its sides is nonempty. 

Note that the intersection of all the sides of a polyhedral wedge in En 
is an m-plane of En. Also a polyhedral wedge in En has only finitely 
many sides, since the collection of its sides is locally finite. Figure 12.2.5 
illustrates a polyhedral wedge in E2. 

P 

Figure 12.2.5. A polyhedral wedge P in E2 
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Lemma 3. Let P be an n-dimenszonal polyhedral wedge m En. Then there 
is an mteger f such that if PI, ... ,Pk are polyhedra m En that are congruent 
to P, with mutually dzsjoznt interiors, then k S; f. 

Proof: Let z be the point in the intersection of all the sides of P nearest 
to the origin. The normalized solid angle sub tended by P is defined to be 

w(P) = Vol(P n B(z, 1)). 
Vol(B(z, 1)) 

Given r > 0, let J.tr be the similarity of En defined by 

J.tr(x) = xlr 

and let Tr be the translation of En defined by 

Tr(X) =x-z+zlr. 

Then we have that 

Observe that 

1. Vol(P n B(O, r)) 
1m 

r __ oo Vol(B(O, r)) 
1. Vol(J.tr(P) n B(O, 1)) 
1m 

r--oo Vol(B(0,1)) 

1. Vol(P n B(T;I(O), 1)) 
1m 

r __ oo Vol(B(Tr- I (0),1)) 

1. Vol(P n B(z - zlr, 1)) 
1m 

r--oo Vol(B(z - zlr, 1)) 

Vol(P n B(z, 1)) 
Vol(B(z, 1)) 

w(P). 

Now let f be the greatest integer less than or equal to 1/w(P). Suppose 
there are f + 1 polyhedra Po, ... , Pe in En that are congruent to P whose 
interiors are mutually disjoint. We shall derive a contradiction. First of 
all, w(P.) = w(P) for each i. Choose r sufficiently large so that for each i, 
we have 

IV01(P.nB(0,r)) I 1 
Vol(B(O, r)) - w(P) < w(P) - f + 1· 

Then for each i, we have 

Vol(P. n B(O, r)) > Vol(B(O, r))/(f + 1). 

Hence 

VolC~o p. n B(O, r)) = .Eo Vol(P. n B(O, r)) > Vol(B(O, r)), 

which is a contradiction. Thus f is the desired upper bound. o 
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Cusp Points 

Let P be a convex polyhedron in Bn. A cusp point of P is a point c of 
P n sn-l for which there is an open neighborhood N of c in En such that 
the intersection of the Euclidean closures of all the sides of P that meet 
N is c. If c is a cusp point of P, then the cusp of P incident with c is the 
union of all the sides of P incident with c. For example, the two vertical 
sides of the polyhedron P in Example 1 form a cusp of P with 00 its cusp 
point. Likewise, the points -1,0, and 1 are cusp points of P. 

Suppose that c is a cusp point of P. Then there is a horosphere E based 
at c such that E meets only the sides of P incident with c. By Theorem 
6.3.23, the set 

L(c) = En P 

is a Euclidean convex polyhedron called the link of c in P. Note that 
the orientation preserving similarity class of L( c) does not depend on the 
choice of E. If we pass to the upper half-space model un and conjugate 
r so that c = 00, then there is a canonical way of representing L(c). Let 
v: un ----+ E n- 1 be the vertical projection. Then L(c) is directly similar to 
vP. For example, the projection vP of the polyhedron P in Example 1 is 
the polygon in C whose two sides are the vertical straight lines in Figure 
12.2.4. 

An ideal vertex of a polyhedron P in B n is a cusp point c of P such 
that L(c) is compact. If P is 2-dimensional, then every cusp point of P 
is an ideal vertex. The cusp points of the 3-dimensional polyhedron P in 
Example 1 are not ideal vertices of P. If P is n-dimensional and has finite 
volume in Bn, then every cusp point of P is an ideal vertex of P. 

Theorem 12.2.7. Let c be a cusped limit point of a discrete subgroup r 
ofM(Bn) and let P be a convex fundamental polyhedron for r such that c 

is in P. Then c is a cusp pomt of P. 

Proof: First we show that there is an r > 0 such that B(c, r) meets only 
the sides of P incident with c. Suppose that this is not the case. Then for 
each positive integer i, the ball B(c, Iii) meets a side S. of P such that c 
is not in S •. Since B(c, Iii) is open, it contains a point x. of S~. Then the 
sequence {X'}~l converges to c. By Lemma 1 of §6.6, there is an element 
g. i=- 1 of r such that x. is in P n g.p for each i. We now pass to the 
projective disk model Dn. By Theorem 6.3.20, we have 

P n g.p c (P n g.P) U (P n sn-l) 

C oP U (P n sn-l) = OP. 

Hence png.p is a convex subset of oP. By Theorem 6.2.6, the set png.P 
is contained in a side of the convex set P. By Theorem 6.3.20, the sides of 
P are the Euclidean closures of the sides of P together with the points of 
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P n sn-I that are not in the Euclidean closure of a side of P. Since x. is 
in S;, we deduce that 

As c is not in St for all i, we have that g.c -=I c for all i. 
We now pass to the upper half-space model un and conjugate f so that 

c = 00. Let U(Q,r) be a cusped region for f. Then g.c is in N(Q,r) for 
each i by Lemma 1. Let D be a Dirichlet polyhedron for f 00 in Q. Then 
D is compact, since Q/f 00 is compact. Hence N(D, r) is compact. Now 
for each i, there is an element f. of f 00 such that f.g.c is in N(D, r). By 
passing to a subsequence, we may assume that f.g.c ----7 b in En-I. By 
Lemma 2, we have that 

lim distE(x., Q) = 00. 
t---+oo 

Hence, we have that 

lim distE(f.x., Q) = 00. 
'---+00 

Therefore f.x. ----7 c. 
We now show that infinitely many of the terms of {f.g'}~1 are distinct. 

Suppose that this is not the case. Then by passing to a subsequence, we 
may assume that there is an element h of f such that f.g. = h for all i. As 
X t is in g.p, we have that f.x t is in hP for all i. As ftxt ----7 c, we find that 
c is in hP. Hence c = ft-IC is in f.-IhP = g.P. Then c is in P n gtP and 
so c is in S., which is a contradiction. Thus, infinitely many of the terms 
of {ftgt} are distinct. 

Let R. be the ray in ftgtP joining ftx. to ftg.c. Then the sequence of 
rays {R t } converges to the line (b,c). Let x be any point of (b,c). Then 
B(x,1) meets all but finitely many of the rays {R.}. Hence, the compact 
set C(x,l) meets all but finitely many terms of {ftgtP} contrary to the 
local finiteness of P. We pass back to the conformal ball model Bn. Then 
we conclude that there is an r > 0 such that B(c, r) meets only the sides 
of P incident with c. 

Now since every point of the interior of P n sn-I is an ordinary point 
of f, the limit point c is in oP. Hence B(c, r) meets at least one side of P 
incident with c. Let I; be a horosphere based at c and contained in B(c, r). 
We pass to the upper half-space model un with c = 00. By Theorem 
6.3.22, we have that I; meets only the vertical sides of P. Hence P n I; is a 
Euclidean, (n - 1 )-dimensional, convex, polyhedron in I; with at least one 
side by Theorem 6.3.23. Let v : un ----7 En-I be the vertical projection. 
Then vP is a Euclidean, (n - I)-dimensional, convex, polyhedron in E n - I 

directly similar to P n I;. 
We now show that c is a cusp point of P. Suppose that this is not 

the case. Then the intersection of all the vertical sides of P is nonempty. 
Hence vP is a polyhedral wedge in En-I. Let f be a parabolic element of 
f 00. Then f has infinite order. As the polyhedra {fk P}k=1 have mutually 



602 12. Geometrically Finite n-Manifolds 

disjoint interiors in un, the polyhedra {v fk P}k=l have mutually disjoint 
interiors in En-I. As vfkp = fkvp for each k, the polyhedron vfkp is 
congruent to vP for each k. But this contradicts Lemma 3. Thus c is a 
cusp point of the polyhedron P. 0 

We next consider an example of a cusp point of a fundamental polygon 
that is not a limit point. 

Example 2. Consider the Schottky polygon P in B2 in Figure 12.2.6. 
The polygon P is invariant under the antipodal map of B2. We pair the 
opposite sides of P by hyperbolic translations g, h along the diameters of 
B2 joining the opposite sides of P. This side-pairing generates a Schottky 
group r of rank two. The polygon P obviously contains the Dirichlet 
polygon D for r centered at O. Hence P = D, since po is a r-packing. 

The cusp point v of P is an ordinary point of r, since the open circular 
arcs (gu, v) and (v, hw) are subsets of OCr) and limit points are not isolated. 
Thus v is not a limit point of r. The same argument also shows that -v 
is not a limit point of r. 

w u 

P 

-u -w 

-v 

Figure 12.2.6. The polygon P and two of its translates 
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Exercise 12.2 

1. Let a be a conical limit point of a discrete subgroup r of M(Bn). Prove that 
ga is a conical limit point of r for each g in r. 

2. Let a be a limit point of a discrete subgroup r of M(Bn). Prove that a is a 
conical limit point of r if and only if there is a sequence {g'}~l of elements 
of r such that {g,(O)}~l converges to a within a Euclidean hypercone C 
whose vertex is a and whose axis passes through o. 

3. Let r be a nonelementary discrete subgroup of M(Bn). Prove that for each 
point a of sn-l, there is a point x # a of sn-l, a positive real number 6, 
and a sequence {g'}~l of distinct elements of r such that Ig,x - g,al 2: 6 for 
all i. Conclude that the hypothesis that {g,(O)}~l converges to a cannot be 
dropped from Theorem 12.2.5(4). 

4. Let c be a cusped limit point of a discrete subgroup r of M(Bn). Prove that 
gc is a cusped limit point of r for each g in r. 

5. Prove directly that a cusped limit point of r is not a conical limit point. 

6. Let P be a polyhedral wedge in En. Prove that the intersection of all the 
sides of P is an m-plane of En. 

7. Let P be a polyhedral wedge in En with at least two sides. Prove that every 
side of P is a polyhedral wedge. 

8. Let P be a finite-sided, convex, fundamental polyhedron for a discrete sub­
group r of M(U3 ) such that 00 is in P and 00 is fixed by a parabolic element 
of r. Let v : U 3 --+ E2 be the vertical projection. Prove that any two 
unbounded sides of v P are parallel. 

9. Let P be an n-dimensional convex polyhedron in B n of finite volume. Prove 
that every cusp point of P is an ideal vertex. 

§12.3. Geometrically Finite Discrete Groups 

In this section, we characterize the discrete subgroups of M(Bn) that have 
the property that every limit point is either conical or cusped in terms of 
the geometry of their convex fundamental polyhedra. 

Geometrically Finite Convex Polyhedra 

Definition: A convex polyhedron P in Bn is geometrically jinzte if and 
only if for each point x of P n sn-l there is an open neighborhood N of x 
in En that meets only the sides of P incident with x. 

Example 1. Every finite-sided convex polyhedron in Bn is geometrically 
finite. 
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Example 2. Let Q be a convex polyhedron in En-l with infinitely many 
sides and let 1/ : un ---7 E n- l be the vertical projection. Then the vertical 
prism P = l/-l(Q) is a convex polyhedron in un with an infinite set of 
sides 

{1/- 1(S) : S is a side of Q}. 

The polyhedron P is geometrically finite in En, since the set of sides of P 
is locally finite in En and every side of P is incident with 00. 

Theorem 12.3.1. Let P be a geometT'tcally finite convex polyhedron m 
Bn. Then 

(1) if x zs in 8P n sn-l, then there is a side of P incident with x; 

(2) zf x zs in 8P n sn-l and infinitely many sides of P are incident with 
x, then x zs a cusp pomt of P; 

(3) the polyhedron P has only finitely many cusp pomts; 

(4) all but fimtely many of the szdes of P are incident wzth a cusp pomt 
ofP. 

Proof: (1) Since P is geometrically finite, there is an r > 0 such that 
B(x,r) meets only the sides of P incident with x. As x is in 8P, the ball 
B(x, r) meets a side of P, which is therefore incident with c. 

(2) Suppose that the set S(x) of all sides of P incident with x is infinite. 
Then the intersection of all the sides in S(x) is empty, since S(x) is locally 
finite. Therefore x is a cusp point of P. 

(3) As P n sn-1 is compact, there are points Xl, ... , xm of P n sn-1 
and radii r1, ... , r m such that B (X., r.) meets only the sides of P incident 
with x. for each i and 

- 1 m P n sn- C U B(x., r.) . 
• =1 

Suppose that B(x., r.) contains a cusp point c of P. Then all the sides of 
P incident with c are incident with x.. As the intersection of the Euclidean 
closures of all the sides of P incident with c is c, we have that c = x •. 
Hence, all the cusp points of P are in the set {Xl, ... , x m }. 

(4) As P - U B(x., r.) is compact, all but finitely many sides of P 
.=1 

meet U B(x.,r.). Reindex so that Xl,'" ,Xk are all the cusp points of 
.=1 

P. Then the ball B(x., r.) meets only finitely many sides of P for each 
i = k + 1, ... , m by (2). Hence, all but finitely many sides of P meet 

k 
U B(x., r.). Thus, all but finitely many sides of P are incident with a 

.=1 
cusp point of P. o 

Remark: It follows from Theorem 12.3.1 that a geometrically finite con­
vex polyhedron in B n is finite-sided if and only if all its cusps are finite­
sided. Thus, every geometrically finite convex polygon in B2 is finite-sided. 
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Lemma 1. Let P be a convex polyhedron mEn. Then 8P is disconnected 
~f and only if 8P is the union of two parallel hyperplanes of (P). 

Proof: Without loss of generality, we may assume that (P) = En. Choose 
a point a of po and r > 0 so that C(a, r) C P. Define a function 

p:8P-+S(a,r) 

by letting p(x) be the intersection of the line segment [a, xl with the sphere 
S(a, r). Then we have 

r(x - a) 
p(x)=a+, ,. x-a 

Hence p is a continuous injection. Moreover p maps 8P homeomorphically 
onto p(8P), since p maps S homeomorphic ally onto p(S) for each side S of 
P and the set of sides of P is locally finite. Therefore 8P is disconnected 
if and only if p(8P) is disconnected. 

Let S be a side of P. Then for each point x of (S), the line segment 
[a, xl intersects both 8P and S(a, r). Consequently p(8P) contains the 
open hemisphere of S(a, r) nearest to S whose boundary is parallel to S. 
As 8P is the union of the sides of P, we deduce that p(8P) is a union of 
open hemispheres of S(a, r) whose boundaries are parallel to the sides of 
P. Consequently p(8P) is disconnected if and only if p(8P) is the union of 
two antipodal open hemispheres of S(a, r). Therefore 8P is disconnected if 
and only if P has exactly two parallel sides. Now P has exactly two parallel 
sides if and only if each side of P is a hyperplane of En by Theorem 6.3.6. 
Thus 8P is disconnected if and only if 8P is the union of two parallel 
~~~~~. D 

Lemma 2. Let E and E' be two k-faces of a convex polyhedron P in En. 
Then there is a sequence FI , ... , Fe of (k + I)-faces of P s1},ch that E ~s a 
side of FI , and E' is a s~de of Fe, and Ft and Ft + l meet along a common 
side for each i = 1, ... ,f - 1. 

Proof: Let m = dim P. The proof is by induction on m - k. This is 
clear if k = m - 1, so assume that k < m - 1 and the theorem is true for 
(k + I)-faces of P. Let F and F' be (k + I)-faces of P such that E is a side 
of F and E' is a side of F'. If F = F' , then we are done, so assume that 
F of- F'. Then by the induction hypothesis, there is a sequence G I , ... , Ge 
of (k + 2)-faces of P such that F is a side of G I , and F' is a side of Ge, and 
G t and Gt +1 meet along a common side Ft for each i < f. Let Fo = F and 
Fe = F'. We may assume that f is as small as possible. Then Ft of- F t +l for 
each i. Since F has at least one side E, we have that 8G1 is connected by 
Lemma 1. Hence, there is a sequence F n , ... ,FUI of sides of G I such that 
Fo = F n , Fle l = F l , and FlJ and F IJ+I meet along a common side for 
each j < fl' By induction, there is a sequence Fd , ... , Fte, of sides of Gt 

such that F t - l = Fd , Fte, = F" and FtJ and FtJ+I meet along a common 
side for each i and j < ft. D 
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Lemma 3. Let P be a convex polyhedron m En. If some k-face of P is a 
k-plane of En, then every k-face of P is a k-plane of En. 

Proof: Let E and E' be two k-faces of P and suppose that E is a k-plane 
of En. By Lemma 2, there is a sequence F1 , ... , FR of (k + I)-faces of P 
such that E is a side of F1 , and E' is a side of FR, and F, and F,+l meet 
along a common side E, for i = 1, ... , £ - 1. We may assume that £ is as 
small as possible. Let Eo = E and ER = E'. Then E, -I- E'+1 for each 
i = 0, ... , £-1. As E is both open and closed in of, and E -I- E 1, we deduce 
that oF1 is disconnected. Therefore E1 is a k-plane of En by Lemma 1. 
By induction, we conclude that E, is a k-plane for each i = 1, ... , £. Thus 
E' is a k-plane of En. 0 

Lemma 4. If P zs a convex polyhedron m En such that all but finztely 
many szdes of P are polyhedral wedges, then P is finite-sided. 

Proof: Let m = dim P. The proof is by induction on m. This is certainly 
true if m = 0, so assume that m > 0 and the theorem is true for all 
polyhedra in En of dimension m - 1. On the contrary, suppose that P 
has infinitely many sides. Then P has a side 8 that is a polyhedral wedge. 
Now the intersection of all the sides of 8 is a k-face of 8 that is a k-plane of 
En. Hence, every k-face of P is a k-plane by Lemma 3. Now every k-face 
of P is a face of only finitely many sides of P by Theorem 6.3.14, and by 
Lemma 3, every side of P has a k-face. Therefore, there are infinitely many 
k-faces of P. 

Assume now that k = m - 2. Then every side of P has either one side or 
two disjoint sides. Therefore P has at most two sides that are polyhedral 
wedges, which is a contradiction. Therefore, we may assume that k < m-2. 
Then every side of P has at least two sides by Lemma 3. 

Let T be a side of P that is not a polyhedral wedge. Then all but finitely 
many of the sides of T are a side of a polyhedral wedge side of P. As every 
side of a polyhedral wedge, with at least two sides, is a polyhedral wedge, 
we have that all but finitely many of the sides of T are polyhedral wedges. 
By the induction hypothesis, T is finite-sided. Hence T has only finitely 
many k-faces by Theorem 6.3.14. 

Now since all but finitely many of the sides of P are polyhedral wedges, 
and there are infinitely many k-faces of P, and each side of P has only 
finitely many k-faces, there is a k-face E of P such that all the sides of P 
containing E, say 8 1 , ... , 8R, are polyhedral wedges. As no other side of P 

R 
meets 8, for each i = 1, ... ,£, we find that U 8, is both open and closed 

,=1 
in oP. Hence OP is the union of the sides 8 1 , ... , 8R by Lemma 1. But 
this contradicts the assumption that P has infinitely many sides. Thus P 
is finite-sided. 0 
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Theorem 12.3.2. Let c be the cusp pomt of an infinite-sided cusp of a 
geometrically finite, exact, convex, fundamental polyhedron P for a discrete 
subgroup r ofM(Bn ). Then c is fixed by a parabolic element ofr. 

Proof: First, we prove that all but finitely many of the sides of P incident 
with c meet only the sides of P incident with c. On the contrary, suppose 
that {8'}~1 is a sequence of distinct sides of P such that c is in S. and 
8. meets a side T. of P such that c is not in T. for all i. Let g. = g8, for 
each i. As P n g.p = 8., we find that c is in g.p for each i. Now the terms 
of the sequence {g'}~1 are distinct. Hence, the Euclidean diameter of g.p 
goes to zero as i --+ 00. Now as c is a cusp point of P, there is an r > 0 
such that B( c, r) meets only the sides of P incident with c. Hence, there 
is a j such that 

As 8J C gJP, we find that B(c, r) meets TJ , which is a contradiction. Thus, 
all but finitely many of the sides of P incident with c meet only the sides 
of P incident with c. 

We say that a side 8 of P is cusped if a8 is a cusp of 8. We next 
prove that infinitely many of the sides of P incident with c are cusped and 
have c as their cusp point. We now pass to the upper half-space model 
un and conjugate r so that c = 00. Let v : un --+ En-I be the vertical 
projection. Then vP is an infinite-sided polyhedron in En-l whose sides 
are the vertical projections of the vertical sides of P. Now a vertical side 8 
of P is cusped if and only if 8 meets only vertical sides of P and v 8 is not 
a polyhedral wedge. Moreover, all but finitely many of the vertical sides of 
P meet only vertical sides of P, and by Lemma 4, infinitely many of the 
sides of v P are not polyhedral wedges. Hence, infinitely many of the sides 
of P incident with care cusped and have c as their cusp point. 

Let 8 be a cusped side of P. Then 8 is paired to another cusped side 
8' of P by g8' and the unique cusp point of 8 is paired to the unique cusp 
point of 8'. By Theorem 12.3.1, the polyhedron P has only finitely many 
cusp points and all but finitely many of the sides of P are incident with 
a cusp point of P. Consequently, there is a sequence {8'}~1 of distinct 
cusped sides of P incident with c such that c is the cusp point of 8. for all 
i, and 8: is incident with a cusp point c' of P for all i. Now since all but 
finitely many of the sides of P incident with c' meet only the sides of P 
incident with c', we may assume that 8: meets only the sides of P incident 
with c' for each i. Then c' is the cusp point of 8: for each i. 

Let h. = g8; for each i. Then the terms of the sequence {h'}~1 are 
distinct. Moreover h.c = c' for each i. Hence h.c = hic for all i. Therefore 
h-;I hic = c for all i. Hence, the stabilizer r c is infinite. Therefore r c is an 
infinite elementary group. By Theorem 12.2.4, the point c is not fixed by 
a hyperbolic element of r. Therefore r c is of parabolic type. Hence c is 
fixed by a parabolic element of r. 0 
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Let P be an exact, convex, fundamental polyhedron for a discrete sub­
group r of M(Bn) and let IP be the r-side-pairing of P. Two points x,x' 
of P are said to be paired by IP, written x c::: x', if and only if there is a side 
S of P such that x is in B, and x' is in B', and gs(x') = x. If gs(x') = x, 
then g s' (x) = x'. Therefore x c::: x' if and only if x' c::: x. Two points x, y 
of P are said to be related by IP, written x rv y, if and only if either x = y 
or there is a finite sequence Xl, ... ,x= of points of P such that 

Being related by IP is obviously an equivalence relation on the set P. The 
equivalence classes of P are called cycles. If x is in P, we denote the cycle 
containing x by [xl. 

Theorem 12.3.3. Let P be a geometrically finite, exact, convex, funda­
mental polyhedron for a dzscrete subgroup r of M( Bn). Then for each point 
x of P, we have that 

(1) the cycle [xl isfinzte; 

(2) [xl = pnrx. 

Proof: (1) By Theorem 6.7.5, we may assume that x is in P n sn-l. If x 
is in the interior of P n sn-l, then [xl = {x}. Hence, we may assume that 
x is in oP n sn-l. 

Assume first that x is fixed by a parabolic element of r. Then by the 
same argument as at the end of the proof of Theorem 12.2.7, we deduce 
that x is a cusp point of P. As [xl c rx, every point of [xl is fixed by 
a parabolic element of r. Hence, every point of [xl is a cusp point of P. 
By Theorem 12.3.1, the polyhedron P has only finitely many cusp points. 
Thus [xl is finite. 

Assume now that x is not fixed by a parabolic element ofr. By Theorem 
12.3.1, there is a side S of P such that x is in B. By Theorems 12.3.1 and 
12.3.2, only finitely many sides of P are incident with x. Let k be the 
smallest dimension such that there is a k-face E of P such that x is in E. 
Then for each side S of P incident with x, there is a k-face E of S such 
that E is incident with x by Lemma 3 applied to the link of x in P. Now 
by Theorem 6.3.14, every k-face of P incident with x is an intersection of 
sides of P that are incident with x. Hence, there are only finitely many 
k-faces of P incident with x, say E I ,···, Ee· 

Assume first that £ = 1. Then EI is the intersection of all the sides of 
P incident with x. Hence x is not a cusp point of P. Assume now that 
£ > 1. Then the intersection of all the sides of P incident with x is empty, 
since EI n E2 = 0 by the minimality of k. Hence x is a cusp point of P. 
Thus £ > 1 if and only if x is a cusp point of P. As x is not fixed by a 
parabolic element of r, no point of [xl is fixed by a parabolic element of r. 
Therefore, each cusp point in [xl is finite-sided by Theorem 12.3.2. 
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We say that x is directly related to a point y of P if there is an element 
9 of r such that y = gx and there are k-faces E and F of P such that x is 
in E, y is in F, and F = gE. As P is locally finite, there are only finitely 

many 9 in r such that 

for each i = 1, ... ,f. Hence x is directly related to only finitely many points 

of P. 
Now assume that x rv y. Then there is a finite sequence Xl,··· ,xm of 

points of P such that 

x = Xl ':::' X2 ':::' ... ':::' Xm = y. 

By induction on m, the integer k is the smallest dimension such that there 
is a k-face F of P such that y is in F. Thus k depends only on [xl. If x is 
directly related to y, then y is one of only finitely many points, so assume 
that x is not directly related to y. Then m > 2 and one of the points 
X2, ... ,Xm-l is a cusp point of P. Let j be the largest index such that 
x J is a cusp point of P. Then x J is directly related to y. As P has only 
finitely many cusp points and since each cusp point of P in [xl is directly 
related to only finitely many points of P, we conclude that y is one of only 
finitely many points. Thus [xl is finite. 

(2) By Theorem 6.7.5, we may assume that x is in P n sn-l. It is clear 
from the definition of [xl that [xl c pnrx. Let y be a point of Pnrx. Then 
there is an element 1 of r such that y = Ix, whence x is in 1-1 P. We now 
pass to the upper half-space model un and conjugate r so that x = 00. Let 
9 be an element of r such that x is in gPo Since gP is geometrically finite, 
a sufficiently high horizontal horosphere 2:; will meet only the vertical sides 
of gPo Then gPn2:; is a Euclidean, (n-1)-dimensional, convex polyhedron 
in 2:;. Let v : un ---7 E n- l be the vertical projection. Then vgP is a convex 
polyhedron in E n - l directly similar to gP n 2:;. Let 

T = {vgP : 9 E r and x E gP} 

and let U be the union of all the polyhedra in T. Then T is locally finite, 
since P is locally finite. Hence U is a closed subset of En-I. Now for any 
point z of U, there is a point w directly above z and an r > 0 such that 

B(w,r) C U{gP: 9 E r and x E gP}. 

Now vB(w, r) is an open neighborhood of z in En-l contained in U. Hence 
U is an open subset of En-I. Thus U is both open and closed in En-l and 
therefore is all of En-I. As {gP : 9 E r} is an exact tessellation of un, we 
conclude that T is an exact tessellation of En-I. 

Now by Theorem 6.7.2, the tessellation T is connected. Hence, there 
are elements !I, ... , 1m of r such that x is in the set 1~-1 P for each i and 
vP = vIII P, v 1;;,1 P = V 1-1 P, and v 1~-=-\ P and v 1~-1 P share a common 

side for each i > 1. Then P = 111 P, 1;;/ P = 1-1 P, and 1~-=-11 P and 1~-1 P 
share a common vertical side for each i > 1. Hence !I = 1 , 1m = 1, and 
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P and f'_lf,-l P share a common side S. for each i > 1. We may assume 
that f.-1 =f=. f, for each i > 1. Then f,_d,-l = g8, for each i > 1. Let 
Xl = X and x, = f,x for each i > 1. As X is in f.- 1 P, we find that f,x is in 
P. Hence x, is in P for each i. Now observe that 

g8,(X,) = f._d,-l(x.) = f,-l(X) = x.-1. 

Hence X,-l is in P n g8, (P). Therefore X.-1 is in S. and x, is in S~ for 
each i > 1. Hence 

X = Xl ~ x2 ~ ... ~ Xm = y. 

Therefore X '" y. Thus [x] = P n rx. o 

Theorem 12.3.4. Let P be a geometrically jinzte, exact, convex, funda­
mental polyhedron for a dzscrete subgroup r of M(Bn). Then every poznt 
of P n sn-1 is ezther an ordznary poznt or a cusped lzmzt point of r. 

Proof: Let x be a point of P n sn-1 and let 9 be an element of r such 
that x is in gPo Then g-lx is in P n rx. By Theorem 12.3.3, there are 
elements gl, ... ,gk of r such that 

P n rx = {gll x , ... , gk1X}. 

Hence g-lx = g;:lX for some i. Then x = gg;:lX and so gg;:l is in r x. 
Thus, we have that 

9 E r xg1 U ... u r xgk. 

Assume first that r x is finite. Then 9 is one of only finitely many 
elements of r, say gl, ... ,gR. We pass to the projective disk model Dn. 
Let r > 0 be less than the Euclidean distance from x to any side of g,P 
that does not contain x. Let y be a point of Dn n B(x,r) and let [x,y] be 
the line segment from x to y. From the proof of Theorem 12.3.3(2), we see 
that the line segment [x, y] starts off at x and immediately enters g,P for 
some i. The ray can exit g,P only at one of its sides not containing x. As 
[x, y] c B(x, r), we deduce that [x, y] C g,P. Therefore y is in g,P. Thus 

D n n B(x, r) C glP U··· U g£P. 

Hence x is not a limit point of r, and so x is an ordinary point of r. 
Now assume that r x is infinite. Then r x is an elementary group of either 

parabolic or hyperbolic type. By Theorem 12.2.4, the point x is not fixed 
by a hyperbolic element of r. Therefore r x is of parabolic type. Hence x 
is the fixed point of a parabolic element of r. 

We now pass to the upper half-space model un and conjugate r so that 
x = 00. Let II : un ----t E n- 1 be the vertical projection. Then from the 
proof of Theorem 12.3.3(2), we have that 

T = {lIgP : 9 E r and x E gP} 

is an exact tessellation of En-I. As 

T = {lIgP: 9 E r xg1 U ... urxgd, 
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we deduce that 
E n - 1 = U f( b vg,p). 

fEroo ,=1 

By Theorems 5.4.6 and 7.4.2, there is a f oo-invariant m-plane Q of E n - 1 

such that Q/f 00 is compact. Since g,P is geometrically finite for each 
i = 1, ... , k, there is an r > 0 such that N ( Q, r) contains every nonvertical 
side of glP, ... ,gkP. Let 

U(Q,r) = un - N(Q,r). 

Then we have that 

U(Q,r) C U f( b gJ5). 
fEr 00 ,=1 

Now since g)g;l(oo) -=1= 00 for each i,j such that i -=1= j, and since g)g;l is 
continuous at 00, we can increase r so that 

g)g;l(U(Q, r)) C N(Q, r) 

for each i, j such that i -=1= j. 
We claim that U (Q, r) is a cusped region for f. On the contrary, suppose 

that there is an element g of f - f 00 such that 

U(Q,r) ngU(Q,r) -=1= 0. 

Since U (Q, r) is an open subset of un, there is a point y in the interior of 
fg,P in un for some i and f in f 00 such that gy is in hg)? for some j and 
h in f 00. Then we have 

gfg,P = hg)P 

and so gfg, = hg). Then i -=1= j and 

Therefore, we have 

g = hg)g;l rl. 

gU(Q, r) hg)g;l r 1U(Q, r) 

hg)g;lU(Q, r) 

C hN(Q,r) 

N(Q, r), 

which is a contradiction. Hence U ( Q, r) is a cusped region for f. Thus x 
is a cusped limit point of f. 0 

Now since a geometrically finite convex polyhedron has only finitely 
many cusp points, the next corollary follows from Theorems 12.2.7 and 
12.3.4. 

Corollary 1. If P is a geometncally finite, exact, convex, fundamental 
polyhedron for a d~screte subgroup f of M( En), then? n L(f) ~s finite. 
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Geometrically Finite Groups 

Definition: A discrete subgroup f of M(Bn) is geometrically finite if and 
only if f has a geometrically finite, exact, convex, fundamental polyhedron. 

Remark: This is not the usual definition of a geometrically finite group. 
In the usual definition, polyhedra are finite-sided instead of geometrically 
finite. We shall prove that our new definition agrees with the usual def­
inition when n = 1,2,3. The reason we have altered the usual definition 
is because the new definition seems to be the right definition when n > 3. 
This is justified by Theorem 12.3.5 and the examples below. 

Theorem 12.3.5. Let f be a dzscrete subgroup of M(Bn). Then the fol­
lowing are equzvalent: 

(1) The group f is geometrically finzte. 

(2) Every limit poznt of f is either conzcal or cusped. 

(3) Every exact, convex, fundamental polyhedron for f zs geometrzcally 
finite. 

Proof: Suppose that f is geometrically finite. Then f has a geometrically 
finite, convex, fundamental polyhedron P. By conjugating f, if necessary, 
we may assume that 0 is in po. Let a be a limit point of f and let R be 
the ray in Bn from 0 to a. Assume first that R meets only finitely many 
members of the tessellation {gP : g E f}. Then a is in gP for some gin f. 
Hence a is a cusped limit point of f by Theorem 12.3.4. 

Now assume that R meets infinitely many members of the tessellation 
{gP : 9 E r}. Then there is a sequence {g'}~l of distinct nonidentity 
elements of f and a sequence {x,} ~1 of points of P such that g2X2 is in 
R n g,P and g,x2 --+ a as i --+ 00. Since the terms of {g,} are distinct, 
the Euclidean diameter of g2P goes to zero as i --+ 00. Hence g2(0) --+ a 
as i --+ 00. By passing to a subsequence of {g2}' we may assume that 
g;:l(_a) --+ band g;:l(a) --+ c. 

Assume first that b i= c. Then there exists a 8 > 0 such that for all i, 

Ig;:l(-a) - g;:l(a) I ~ 8. 

Hence a is a conical limit point of f by Theorem 12.2.5. Now assume that 
b = c. As X 2 is on the line 

g;:l(-a,a) = (g;:l(_a),g;:l(a)), 

we deduce that X 2 --+ c. Hence c is in P. Now since L(f) is a f-invariant 
closed subset of sn-l and g;:l(a) --+ C, we have that c is a limit point of f. 
Therefore c is a cusped limit point of f by Theorem 12.3.4. 

The point a is not in g,P, since the subray [g,x" a) of R is not contained 
in g2P, and the point -a is not in g2P, since 0 is not in g2P. Hence, since 
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±a is not in gzP for all i, we have that g;l(±a) is not in P for all i. 
Therefore 9 -1 (±a) =J- c for all z. 

We now ~ass to the upper half-space model un and conjugate r so that 
c = 00. Let U (Q, r) be a cusped region for r based at 00. As a is a limit 
point of r, we have that g;l(a) is a limit point of r for each i. Hence 
g;l(a) is in N(Q,r) for each i by Lemma 1 of §12.2. Now by Lemma 2 of 

§12.2, we have 
lim distE(x" Q) = 00. 

z--+= 

As X z is on the line (g;l(_a),g;l(a)) and g;l(a) is in N(Q,r), we deduce 

that 
lim \g;l(_a) - g;l(a)\ = 00. 

z--+= 

Let D be a Dirichlet polyhedron for r = in Q. Then D is compact. 
Hence N(D, r) is compact. Now for each i, there is an element f, of r = 
such that fzg; 1 (a) is in N (D, r). As f, is a Euclidean isometry, 

lim \f,g;l(-a) - fzg;l(a)\ = 00. 
z--+= 

Moreover {f,g;l(a)} is bounded. We now pass back to the ball model Bn. 
Let hz = gd;l for each i. Then there is a 6 > 0 such that for all i, 

\h;l(-a) - h;l(a)\ ~ 6. 

Now since the terms of {gz} are distinct, the Euclidean diameter of g,P 
goes to zero as i ----+ 00. Hence g,(c) ----+ a, since g,(O) ----+ a. Therefore 

hz(c) = gdz- 1 (c) = gz(c) ----+ a. 

As a is not in gzP for all i, we have that gz(c) =J- a for all i. Hence hz(c) =J- a 
for all i. Therefore, infinitely many of the terms of {h z } are distinct. Hence, 
by passing to a subsequence, we may assume that all the terms of {h z} are 
distinct. Then the Euclidean diameter of hzP goes to zero as i ----+ 00. 

Hence hz(O) ----+ a, since hz(c) ----+ a. Therefore a is a conical limit point by 
Theorem 12.2.5. Thus (1) implies (2). 

Now assume (2) that every limit point of r is either conical or cusped. 
Let P be an exact, convex, fundamental polyhedron for r. We now show 
that P is geometrically finite. Let x be a point of P n sn-1. Assume first 
that x is an ordinary point of r. Then by Theorem 12.1.12, there is an 
r > 0 such that B(x, r) meets only finitely many members of {gP : 9 E r}, 
say glP, ... , gkP, By shrinking r, if necessary, we may assume that x is in 
gzP for each i = 1, ... , k. Now suppose that B(x, r) meets a side S of P. 
Then B(x, r) meets gSP. Hence gs = gz for some i. Therefore x is gsP. 
By the argument in the proof of Theorem 12.2.7, we have that 

pngs(p) = S. 

Therefore S is incident with x. Thus B(x, r) meets only the sides of P 
incident with x. 
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Now assume that x is a limit point of r. Then x is not conical by 
Theorem 12.2.4. Therefore x is cusped by our hypothesis. Hence x is a 
cusp point of P by Theorem 12.2.7. Therefore, there is an r > 0 such that 
B (x, r) meets only the sides of P incident with x by the definition of a cusp 
point. This completes the proof that P is geometrically finite. Thus (2) 
implies (3). Clearly (3) implies (1). 0 

Theorem 12.3.6. Ifr 2S a geometrically fimte discrete subgroup ofM(Bn ) 

with n = 1,2,3, then every exact, convex, fundamental polyhedron for r is 
fimte-sided. 

Proof: Let P be an exact convex, fundamental polyhedron for r. Then 
P is geometrically finite by Theorem 12.3.5. By Theorem 12.3.1, it suffices 
to show that every cusp of P is finite-sided. On the contrary, suppose that 
c is the cusp point of an infinite-sided cusp of P. Then n = 3 and c is fixed 
by a parabolic element of r by Theorem 12.3.2. We now pass to the upper 
half-space model U3 and conjugate r so that c = 00. Let v : U3 ----; E2 
be the vertical projection. Then v(P) is a convex polygon in E2 whose 
sides are the vertical projections of the vertical sides of P. Hence v(P) has 
infinitely many sides. 

Assume first that E2 /r 00 is compact. By Theorem 5.4.5, the group roo 
has a torsion-free subgroup H of finite index. Then E2/H is compact by 
Lemma 1 of §7.4. Now since v(PO) injects into the space-form E2/H, we 
deduce that v(PO) has finite area. As v(PO) is convex, v(P) is compact. 
Hence v(P) has only finitely many sides, which is a contradiction. 

Now assume that E2 /r 00 is not compact. Then roo has an infinite cyclic 
subgroup H of finite index by Theorem 5.4.6. Now H is generated by either 
a horizontal translation or a glide-reflection of E3. Hence, by replacing H 
by a subgroup of index two, if necessary, we may assume that H is generated 
by a horizontal translation T of E3. 

Let 9 be an element of r such that P n gP is a vertical side 8 of P. We 
now show that there is at most one element f # 1 of H such that P n fgP 
is a vertical side T of P. Let f be such an element. Then f = T m for some 
integer m # O. By replacing T by T-l, if necessary, we may assume that 
m > O. Observe that f translates gP from the opposite side of (8) from 
P to the opposite side of (T) from P. Hence f translates a point of gP 
across (8) and a point of gP across (T). 

Now let k be a nonzero integer. If k < 0, then TkgP lies on the opposite 
side of (8) from P, and so P n TkgP = 0. If k > m, then TkgP lies on 
the opposite side of (T) from P, and so P n TkgP = 0. Now suppose that 
o < k < m. Choose points x in 8° and y in T so that the Euclidean line 
segment [x, y] is horizontal and sufficiently high enough so that [x, y] C P 
and [x, f-ly] C gPo Then (x, y) C po and (x, f-ly) C gpo. Now observe 
that the line segments Tk(x, f-ly) and (x, y) intersect. See Figure 12.3.1. 
Hence po and Tkgpo intersect. Therefore Tkg = 1 and so P n TkgP = P. 
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Figure 12.3.1. The line segment in the proof of Theorem 12.3.6 

Thus f is the only nonidentity element of H such that P n f gP is a vertical 
side of P. 

Let {S,} ~l be a sequence of distinct vertical sides of P. Then there is a 
sequence {g'}~l of distinct elements of f such that P n g,P = S, for each 
i. Now each coset of H in f contains at most two terms of {g,}. Hence, 
the terms of {gJ fall into infinitely many cosets of H in f. As H has finite 
index in f 00, the terms of {g,} must fall into infinitely many cosets of f 00 in 
f. But by the proof of Theorem 12.3.4, the terms of {g,} lie in only finitely 
many cosets of f 00 in f, which is a contradiction. Thus P is finite-sided. 0 

Theorem 12.3.7. Iff zs a geometrzcally finite dzscrete subgroup ofM(Bn) 
with no pambolzc elements, then every exact, convex, fundamental polyhe­
dron for f is finite-sided. 

Proof: Let P be in exact, convex fundamental polyhedron for f. Then 
P is geometrically finite by Theorem 12.3.5. The polyhedron P has no 
infinite-sided cusps by Theorem 12.3.2. Therefore P is finite-sided by The­
orem 12.3.1. 0 

Theorem 12.3.8. Iff is a geometrically finzte dzscrete subgroup ofM(Bn) 
of the first kind, then Bn If has finite volume and every exact, convex, 
fundamental polyhedron for f is finite-sided. 

Proof: Let P be an exact, convex fundamental polyhedron for f. Then 
P is geometrically finite by Theorem 12.3.5. Let v be a point of P n sn~l. 
We claim that v is an ideal vertex of P. On the contrary, suppose that v 
is not an ideal vertex of P. We now pass to the upper half-space model 
un and conjugate f so that v = 00. Since P is geometrically finite, there 
is an r > 0 so that C(O, r) contains all the nonvertical sides of P. Let 
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v : un ----* E n- l be the vertical projection. Then v(P) is a noncompact 
convex polyhedron in En-I. Hence, the set v(PO) is unbounded. Therefore 
v(PO) - 0(0, r) is a nonempty open subset of En-I. Hence, there is a point 
b of v(PO) - 0(0, r) and an s > ° so that 

O(b, s) n E n - l C v(PO) - 0(0, r). 

Now since 0(0, r) contains all the nonvertical sides of P, we have that 
O(b, s) C P. Therefore r is of the second kind by Theorem 12.1.14, which 
is a contradiction. Thus v is an ideal vertex of P. Hence P has finitely 
many sides and finite volume by Theorems 6.3.24 and 6.3.26. 0 

Theorem 12.3.9. Every geometrzcally finite dzscrete subgroup of M(Bn) 
zs fimtely generated. 

Proof: Let r be a geometrically finite discrete subgroup of M(Bn). Then 
r has a geometrically finite, exact, convex, fundamental polyhedron P. By 
Theorem 6.7.3, the group r is generated by the r-side-pairing 

<P = {9S : 5 is a side of Pl. 
If P is finite-sided, then <P is a finite set, and we are done, so assume 
that P is infinite-sided. Then P has an infinite-sided cusp and its cusp 
point is fixed by a parabolic element of r by Theorems 12.3.1 and 12.3.2. 
Moreover P has only finitely many cusp points Cl, ... , Cm that are fixed by a 
parabolic element of r, and all but finitely many sides of P, say 51, ... , 5e, 
are incident with Ct for some i. Let r t be the stabilizer of Ct for each i. 
Then r t is an elementary group of parabolic type. Hence r t is finitely 
generated for each i. Let {ftJ} be a finite set of generators of r t for each i. 
By Theorem 12.3.3, the cycle [ct] is finite for each i. Let [ct] = {gtJCt} for 
each i, and let W be the union of the sets {ftJ} and {gtJ}, for i = 1, ... ,m, 
and {gSk}' Then W is a finite subset ofr. 

We now show that W generates r. Since <P generates r, it suffices to 
show that <P c (W). Let 5 be a side of P. If 5 is not incident with Ct for 
some i, then 5 = 5 k for some k, and so gs is in W. Assume now that 5 is 
incident with Ct for some i. Then gS'(ct ) is fixed by a parabolic element of 
r, and so gS'(ct ) = Ck for some k. As Ct ~ Ck, we have that Ck = gtJCt for 
some j. Then we have 

9S'(Ct ) = gtJ(c,), 

whence gsgtJ is in r t . Therefore gs is (W). This shows that <P c (w). Thus 
r is finitely generated. 0 

It is well known that a discrete subgroup of M(B2) is geometrically finite 
if and only if it is finitely generated. We next consider an example of a 
finitely generated discrete subgroup of M(B3 ) that is not geometrically 
finite. 
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Example 3. Let r be the figure-eight knot group in Example 4 of §12.1. 
Then r is a discrete subgroup of M(B3) such that B3/r has finite volume. 
Let r' be the commutator subgroup of r. Then r' is a free group of rank 
two and a discrete subgroup of M(B3) of the first kind such that B3/r' 
has infinite volume. Therefore r' is not geometrically finite by Theorem 
12.3.8. 

We next consider an example that shows that Theorem 12.3.6 cannot 
be generalized to higher dimensions. 

Example 4. Let e be a real number such that e / 7r is irrational and let 

(
10 

A= 0 cose 
o sine 

-s~ne ) . 
cose 

Then A is an irrational rotation with axis lR in E3. Let f = el + A. Then 
f is an isometry of E3 that leaves lR invariant. The infinite cyclic group 
r generated by f is a discrete group of isometries of E3. Let a be a point 
of E3 and let P( a) be the Dirichlet polyhedron for r with center a. If 
a is in lR, then P( a) is the closed region between the two parallel planes 
orthogonal to lR at a distance 1/2 from a. 

Assume now that a is not in R We claim that P(a) has infinitely many 
sides. On the contrary, assume that P = P(a) is finite-sided. Let S be 
a side of P. Then (S) is the perpendicular bisector of the line segment 
[a, fm a] for some integer m 1= O. Consequently (S) intersects the line 

L = {(aI, ta2, ta3) : t E lR} 

passing through a and orthogonal to lR below the ray 

R = {(aI, ta2, ta3) : t ~ 1}. 

Hence P is contained in the closed half-space of E3 bounded by (S) and 
containing R. 

Now as a is an po, there is an r > 0 so that C(a,r) C P. Define 

p: 8P ---> S(a,r) 

by letting p(x) be the intersection of the line segment [a, x] with the sphere 
S(a,r). Then p is an injection. From the description of p(8P) in Lemma 1, 
we deduce that S(a,r) - p(8P) is a finite-sided convex polygon in S(a,r) 
that contains the point R n S(a, r) in its interior. Consequently, there is a 
solid cone C in E 3 , with axis R, such that 

C n S(a, r) C S(a, r) - p(8P). 

Then C c po. Hence, the cones {JmC}~=1 are mutually disjoint; but 
the same argument as in the proof of Lemma 3 of §12.2 shows that this is 
impossible. Thus P(a) is infinite-sided. 
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We now extend r to a discrete subgroup ofM(U4 ) by Poincare extension. 
Let II : U4 --t E3 be the vertical projection. For each point u of U4 , let 
P( u) be the Dirichlet polyhedron of r in U4 with center u. Then P( u) is 
a vertical prism over the polyhedron II P( u) in E3. Moreover, we have that 
IIP(U) = P(II(U)). Therefore P(u) is finite-sided if and only if II(U) is in 
R Thus r is a geometrically finite discrete subgroup of M(U4 ) such that 
some of its Dirichlet polyhedra are infinite-sided. 

Example 5. We now consider an example of nonelementary, geometrically 
finite, discrete subgroup of M(U4 ) such that some ofits Dirichlet polyhedra 
are infinite-sided. Let P be the Schottky polyhedron in U4 with two vertical 
sides 

P(-e1, 1/2) n U4 and P(e1. 1/2) n U4 , 

and two nonvertical sides 8(-e2' 1/2) n U4 and 8(e2' 1/2) n U4 . We pair 
the vertical sides of P by the element f of Example 4. Let L be the 
hyperbolic line of U4 that is orthogonal to the nonvertical sides of P. We 
pair the nonvertical sides of P by the hyperbolic translation h of U4 , with 
axis L, that maps one side to the other. Let r be the subgroup of M(U4 ) 

generated by f and h. Then r is a free discrete subgroup of M(U4 ) of rank 
2 by Theorem 12.1.19. Therefore r is a nonelementary subgroup of M(U4 ). 

For each point u of U4 , let D(u) be the Dirichlet polyhedron for r with 
center u. Let v be the point of L midway between the nonvertical sides 
of P. Then P = D(v), since P contains D(v) and po is a r-packing. 
Therefore P is an exact, convex, fundamental polyhedron for r with four 
sides. Hence r is geometrically finite. 

Now as 00 is a limit point of r in P, we have that 00 is cusped by 
Theorem 12.3.4. Hence, there is a cusped region U for r. Let B be a 
horoball based at 00 and contained in U. We now show that D(u) is 
infinite-sided for each u in B such that II( u) is not in R Let u be such a 
point and let 9 an element of r such that the hyperplane 

Pg(u) = {x E U4 : d(x,u) = d(x,gu)} 

contains a side 8 of D ( u ). If 9 is in roo, then 8 is a vertical side of D ( u ) . 
If 9 is not in roo, then gu is not in B, and so 8 is a nonvertical side of 
D(u) with u above (8). 

Now assume that D(u) has only finitely many sides. Then D(u) has 
only finitely many nonvertical sides, say 81."" 8m . Let H. be the closed 
half-space of U4 bounded by (8.) and containing u for each i. Let P(u) be 
the Dirichlet polyhedron for roo with center u. Then 

m 
D(u) = P(u) n n H •. 

• =1 

But P(u) has infinitely many sides, and so D(u) has infinitely many vertical 
sides, which is a contradiction. Thus D(u) has infinitely many sides. 
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Exercise 12.3 

1. Let P be a finite-sided, convex, fundamental polygon for a discrete subgroup 
r of M(B2 ). Prove that a cusp point c of P is a cusped limit point of r if 
and only if every element of [c] is a cusp point of P. 

2. Let P be a finite-sided, convex, fundamental polyhedron of finite volume for 
a discrete subgroup r of M(Bn). Prove that every ideal vertex of P is a 
cusped limit point of r. 

3. Let P be a geometrically finite, convex, fundamental polyhedron for a dis­
crete subgroup r of M(Bn). A cusp of P is said to be thtn if the link of its 
cusp point does not contain a Euclidean hypercone. Prove that a cusp point 
c of P is a cusped limit point of r if and only if every element of [c] is a thin 
cusp point of P. 

4. Let P be a convex fundamental polyhedron for a discrete subgroup r of 
M(Bn) and let b be a point of]5 n sn-l for which there is no r > 0 such 
that B(b, r) meets only the sides of P incident with b. Prove that b is a limit 
point of r that is neither conical nor cusped. 

5. Prove that every elementary discrete subgroup of M(Bn) is geometrically 
finite. 

6. Let H be a subgroup of finite index of a discrete subgroup r ofM(Bn). Prove 
that H is geometrically finite if and only if r is geometrically finite. 

7. Prove that every nonelementary, geometrically finite, discrete subgroup of 
M(Bn) contains a subgroup that is not geometrically finite. 

8. Let r be a geometrically finite discrete subgroup of M(Bn). Prove that every 
convex, fundamental polyhedron for r is geometrically finite. 

9. Let D(u) be the Dirichlet polyhedron in Example 5 with v(u) not in R 
Prove that D(u) has infinitely many vertical sides. 

10. Let x be an irrational number. Prove that there is a sequence {d./C'}~l of 
distinct rational numbers such that 

§12.4. Nilpotent Groups 

In this section, we study nilpotent subgroups of I(Hn). In particular, we 
prove that every discrete subgroup of I(Hn) generated by elements suf­
ficiently close enough to the identity is abelian. As an application, we 
prove that a subgroup of I(Hn) is discrete if and only if all its abelian and 
two-generator subgroups are discrete. 

Lemma 1. Let A, B be m O(n) wtth IB - II < 2. If A commutes with 
[B,A], then A commutes with B. 
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Proof: If A commutes with [B, A] = BAB-1 A-I, then A commutes with 
BAB-1, and so A commutes with B by Lemma 3 of §5.4. 0 

Lemma 2. If G 2S a mlpotent subgmup of O(n) generated by elements A 
such that IA - II < 2, then G is abelwn. 

Proof: Let A and B be elements of G such that lA-II < 2 and IB-II < 2. 
On the contrary, assume that A and B do not commute. Consider a nested 
chain of commutators 

D = [C1, [C2 , ... , [Cm, Cm+1]··· ]], 
where C, = A or B for all i. Since G is nilpotent, there is a maximal length 
m such that D -I- I. Assume that m has this value. Then D commutes 
with A and B. Hence D commutes with [C2 , ... , [Cm, Cm+1]··· ]]. There­
fore [C2 , . .. , [Cm, Cm+1]· .. ]] commutes with C1 by Lemma 1, which is a 
contradiction. Hence A and B commute. Therefore G is abelian. 0 

Lemma 3. If G 2S a nilpotent subgmup of S(En) generated by elements 
a + kA such that IA - II < 2, then G 2S abelwn. 

Proof: Define T) : G ~ O(n) by T)(a + kA) = A. Then T) is a homomor­
phism. Hence T)(G) is a nilpotent subgroup of O(n). By Lemma 2, we have 
that T)(G) is an abelian subgroup of O(n). Let ¢ = a + kA and 1jJ = b + RB 
be in G with IA - II < 2 and IB - II < 2. Then A and B are in T)( G) and 
so A and B commute. Hence 

[¢,1jJ] ¢1jJ¢-11jJ-1 

Now set 

¢1jJ¢-1 (_R- 1 B- l b + R-1 B-1) 

¢1jJ( _k-1 A-1a _ k-1g-1 A-I B- lb + k- l R- l A-I B-1) 

¢(b - Rk-1 BA -la - k- l A -lb + k-1 A-I) 

a + kAb - RBa - b + I 
(kA - I)b + (I - RB)a + I. 

c = (kA - I)b + (I - RB)a. 

Define a sequence {¢m} in G by ¢1 = [¢, [¢, 1jJ]] and ¢m = [¢, ¢m-1]. Then 
we have 

¢1 = (kA - I)c + I, 

and, in general, we have 

¢m = (kA - Ir c + I. 
As G is nilpotent, ¢m = I for some m. Assume first that k = 1 = R. 
Then the same argument as at the end of the proof of Lemma 5 of §5.4 
shows that ¢ and 1jJ commute. Now assume that one of k or R is not 1. 
Without loss of generality, we may assume that k -I- 1. Then the null space 
of kA - I is zero. Hence (kA - I)ffic = 0 implies that c = O. Therefore ¢ 
and 1jJ commute. Thus G is abelian. 0 
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Lemma 4. If A is in PO(n, 1), then 

IAI2 = (n + 1) + 4sinh2 dH(en+l,Aen+l)' 

Proof: Let A = (a.J ). By Theorem 3.1.3, the columns (and rows) of A 
form a Lorentz orthonormal basis of ]Kn,l. Therefore, we have 

and 

Hence, we have 

2 2 2 _{ 1 ifi<n+1 
a.,l + ... + a.,n - a.,n+1 - -1 if i = n + 1 

2 2 2 - 1 a1,n+1 + ... + an,n+1 - an+1,n+1 - - . 

.=1 J=l 
n n+1 n+1 

LLa;J + La;,+l,) 
.=1 )=1 J=l 

n 

n+1 

(n - 1) + 2 L a;,n+1 

(n -1) + 2( -1 + 2a;'+1,n+1) 

(n - 3) + 4a;'+1,n+1 

(n - 3) + 4( -en+1 0 Aen+1)2 

(n - 3) + 4cosh2 dH(en+l, Aen+d 

(n + 1) + 4sinh2 dH(en+1, Aen+1). o 

Lemma 5. Every nilpotent subgroup ofM(Bn) fixes a pomt of Bn. 

Proof: Let G be a nilpotent subgroup of M(Bn). Then G is elementary 
by Theorem 5.5.10. If G is of either elliptic or parabolic type, then G fixes 
a point of Bn, so we may assume that G is of hyperbolic type. We pass to 
the upper half-space model un. By Theorem 5.5.6, we may conjugate G 
so that G leaves the set {O, oo} invariant. 

We claim that G fixes both 0 and 00. On the contrary, assume that G 
fixes neither 0 nor 00. Let G1 be the subgroup of G that fixes the nth axis 
L of un. We now show that G1 is a normal subgroup of G. Let f be in G1 , 

let g be in G, and let y be in L. As g leaves L invariant, there is a point x 
of L such that y = gx. Then 

gfg-1y = gfx = gx = y. 

Thus gfg-1 is in G1 and so G1 is a normal subgroup of G. 
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Let G2 be the subgroup of G that fixes both 0 and 00. Then G2 is of 
index two in G. We now show that G1 -=I- G2 . On the contrary, suppose 
that G1 = G2 . Let h be an element of G - G2 . Then h leaves L invariant 
and so fixes a point z of L. As G is generated by G2 and h, we have that G 
fixes z, contrary to the assumption that G is of hyperbolic type. Therefore 
G1 -=I- G2 . 

As G is nilpotent, G/G1 is nilpotent. Therefore, the center of G/G1 is 
nontrivial. Hence, there is an element 9 of G2 - G1 and an element h of 
G - G2 such that 

hgh- 1 = 9 mod G1 . 

Now 9 = kA for some k > 0, with k -=I- 1, and A in O(n), with A(en) = en; 
and h = CBa-, for some C > 0, and B in O(n), with B(en) = en, and 
a-(x) = x/lxI 2 . Then 

CBa-kAa-C- 1 B- 1 

CBk- 1 AC-1 B- 1 = k- 1 BAB- 1 . 

But we have that 
k- 1 BAB- 1 -=I- kA mod G 1 , 

which is a contradiction. Hence G = G2 . 0 

Lemma 6. If f is the parabolic translation of U 2 defined by fez) = z + 1, 
then f corresponds to the Mobws transformation 9 of B2 defined by 

g(z) = (1 + i/2)z + (1/2) 
(z/2) + (1 - i/2) 

and 9 corresponds to the matrix A in PO(2, 1) defined by 

A = (~ ~~2 1~2). 
1 -1/2 3/2 

Proof: The standard transformation 1] 
that 1](0) = -i, 1]( i) = 0, and 1](00) = i. 
9 = 1]f1]-l is given by the matrix product 

: U2 ---+ B2 has the property 
Therefore 1](z) = '::,1. Hence 

( ~ 1 ) (1 1) (-i/2 1/2) = ( 1 + i/2 1/? ). 
i 0 1 1/2 -i/2 1/2 1 - z/2 

Now let ( : B2 ---+ H2 be stereographic projection. Then 9 corresponds 
to the matrix A in PO(2, 1) extending (g(-l. From Formulas 4.5.2 and 
4.5.3, we have that 

Ae3 = (gC 1 (e3) = (g(O) = ((2/5,1/5) = (1,1/2,3/2). 

Therefore, we have 
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As f fixes 00, we have that g fixes i. Consequently (0,1,1) is an eigenvector 
of A. This, together with the fact that the second and third columns of A 
are Lorentz orthogonal, implies that 

-1 1) 
1/2 1/2 . 

-1/2 3/2 

Finally, the first column of A can be derived from the information that the 
columns of A are Lorentz orthogonal and det A = 1. 0 

Theorem 12.4.1. Let G be a nilpotent subgroup ofPO(n, 1) generated by 
elements A such that IA - II < 2. Then G is abelian. 

Proof: By Theorem 5.5.10, we have that G is an elementary subgroup of 
PO(n, 1). Let A be an element of G such that IA - II < 2. Then 

IA - II2 = IAI2 - 2trA + (n + 1). 

By Lemma 4, we have 

IAI2 = (n + 1) + 4sinh2 d(en+1,Aen+1). 

Therefore 

IA - II2 = 2(n + 1- trA + 2sinh2 d(en+1' Aen+I)). 

Assume first that G is of elliptic type. Then G is conjugate in PO(n, 1) to 
a subgroup G' of O(n + 1). Let A' be the element of G' corresponding to 
A. Then 

lA' - II2 = 2(n + 1 - trA') = 2(n + 1 - trA). 

Therefore, we have 

lA' - II2 :s IA - II2 < 4. 

Therefore G' is abelian by Lemma 2. Hence G is abelian. 
Now assume that G is not elliptic. Then G fixes a point on the sphere 

at infinity of Hn by Lemma 5. Hence, there is a subgroup G' of S(En-1) 
whose Poincare extension in M(Un ) corresponds to a conjugate of G in 
PO(n, 1). Let ¢ = a + kA' be the element of G' corresponding to A. We 
shall prove that lA' - II < 2. Now since 

lA' - II = IBA' B-1 - II 

for all B in O(n - 1), we are free to conjugate ¢ in S(En-1). 
Assume first that ¢ is elliptic. Then by conjugating ¢ in I(En-1), we 

may assume that a = 0 and k = 1. Let..-4/ be the Poincare extension of 
A'. Then A' is in O(n) and A'en = en. Let TJ : un ---+ B n be the standard 
transformation. Then TJ = ap, where p is the reflection of En in E n- 1 and 
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a is the inversion in the sphere S ( en, V2). Hence 

1]A'1]-I(X) = apA'pa(x) 

= aA'a(x) 

A-'( 2(x-en)) 
a en + I 12 x-en 

= a 2 A'x 

A'x. 

Therefore 1]A'1]-1 = A'. Hence A is conjugate in PO(n, l) to the block 
diagonal matrix 

(~' ~), 
where 12 is the 2 x 2 identity matrix. Then we have 

lA' - 112 2(n - 1 - trA') 

2(n + 1- trA) 

< IA-112 
< 4. 

Assume next that ¢ is parabolic. Then by conjugating ¢ in S(En-l), 
we may assume that a = en-I, k = 1, and A'en-l = en-I. By Lemma 6, 
we have that A is conjugate in PO(n, 1) to the block diagonal matrix 

( A" 0) 
o B ' 

where A" is the (n - 2) x (n - 2) matrix obtained from A' by deleting its 
last row and column, and B is the 3 x 3 matrix in Lemma 6. As trB = 3, 
we have that 

lA' - 112 2(n - 1 - trA') 

2(n + 1- trA) 

< IA-112 
< 4. 

Assume now that ¢ is hyperbolic. Then by conjugating ¢ in I(En - 1), 

we may assume that a = O. Then A is conjugate in PO(n, 1) to the block 
diagonal matrix 

where 

( A' 0) 
o C ' 

C = (C?ShS sinhS) 
smhs coshs 
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and s is the hyperbolic distance translated by ¢ along its axis, that is, 
s = I log k I. Let p : H n -+ L be the nearest point retraction of Hn onto the 
axis L of A. It follows from Theorem 4.6.1 and Exercise 4.6.3 that for all 
x,Y in Hn, we have 

Hence, we have 

Therefore 

d(p(x), p(y)) ::; d(x, y). 

s d(p(en+I),Ap(en+I)) 

d(p( en+l) , p( Aen+ d) 
< d(en+lAen+l)' 

lA' - 112 = 2(n - 1 - trA') 

2(n -1- trA + 2coshs) 

< 2(n -1- trA + 2cosh2 s) 

2(n + 1- trA + 2sinh2 s) 

< 2(n+1-trA+2sinh2d(en+I,Aen+l)) 
IA-II2 

< 4. 

Thus, in all three cases, we have that lA' - II < 2. Therefore G' is abelian 
by Lemma 3. Hence G is abelian. 0 

Lemma 7. Let A,B be matrices in GL(n,q. If 0 < lA-II < 2-y13 and 
o < IB - II < 2 - yI3, then 

I[A,Bj- II < min{IA - II, IB - II}. 

Proof: Suppose that IA - II < k < 1 and IB - II < k < 1. Observe that 

A-I - I = -(A - I) - (A - I)(A- I - 1). 

Hence 

Therefore 

IA-I - II::; IA - II + IA - II IA-I - ll­

lA-I-II < lA-II < _k_ 
- 1 - IA - II 1 - k' 

Let C be a complex n x n matrix. Then we have 

CA-I = C + C(A- I - I). 

Hence, we have 

ICA-II = IC + C(A- I - 1)1 

< 101 + IC(A- I - 1)1 

< ICI(l + IA- I - II) 

< ICI(l + 1 ~ k) = 
ICI 

1- k' 
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Let Al = A - I and Bl = B-1. Then we have 

(ABA- l B-1 - I) (AB - BA)A-l B-1 

(AlBl - BlAl)A- l B-1 . 

Therefore, we have 

< 

Now let k = 2 -.J3. Then we have 

IAlBl - BlAll 
(1 - k)2 

2IA-IIIB-II 
(1 - k)2 

IABA- l B- 1 - 11< 21A - 11(2 - .J3) = IA - II­
(.J3-1)2 

Likewise IABA-l B- 1 - II < IB - II- o 

Theorem 12.4.2. Let r be a dzscrete subgroup of SL(n, q generated by 
elements A such that IA - II < 2 -.J3. Then r zs nilpotent. 

Proof: Regard SL(n, q as a subset of Cn2 • As 

SL(n, q = det- l { -1, I}, 

we have that SL(n, q is closed in cn2
• As r is closed in SL(n, q, the set 

r is closed in cn2
• Let 

J = r n B(I, 2 -.J3) and K = r n 0(1,2 - .J3). 

Then K is a compact discrete space. Therefore K and J are finite. Let m 
be the number of elements of J. 

Suppose that AI, ... ,Ak are elements of J. Define [AI] = A and 

[AI' ... ' AJ ] = [[AI' ... ' AJ - l ], AJ ] 

and suppose that [AI' ... ' AJ ] of- I for each j = 1, ... , k. Then by Lemma 
7, we have that 

IAl-II > I[Al,A2]-II 
> I [AI, A2, A3 ] - II 

> I[Al' ... ' Ak]- II-
Therefore AI, [AI' A2]' ... ' [AI, ... , Ak ] are distinct nonidentity elements of 
J. Hence k < m. Consequently, any m-fold commutator of elements of J 
is trivial. By repeated application of the identities 

[B,A] [A,Brl, 
[A, B- 1 ] B-l[B,A]B, 

[A, BO] [A, B]B[A, O]B-l, 
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we deduce that any m-fold commutator of elements of r = (J) is trivial. 
Thus r is nilpotent. 0 

Theorem 12.4.3. Let r be a discrete subgroup of PO(n, 1) generated by 
elements A such that IA - II < 2 - V3. Then r zs abelian. 

Proof: By Theorem 12.4.2, we have that r is nilpotent, and by Theorem 
12.4.1, we have that r is abelian. 0 

Theorem 12.4.4. Let r be a subgroup of POe n, 1). Then r is discrete if 
and only zf 

(1) every abelian subgroup of r is dzscretej and 

(2) every two-generator subgroup of r is discrete. 

Proof: Suppose that r is not discrete. Then there is a sequence {A,} ~l 
of distinct elements of r such that A, ---> I. Without loss of generality, we 
may assume that lA, - II < 2 - V3 for all i. Let H be the subgroup of 
r generated by {A,}. Then H is not discrete. If His nonabelian, then A, 
does not commute with AJ for some i, j, whence the subgroup generated 
by A, and AJ is not discrete by Theorem 12.4.3. 0 

Exercise 12.4 

1. A group r is said to be locally d2screte if and only if every finitely generated 
subgroup of r is discrete. Prove that Q is an abelian, nondiscrete, locally 
discrete subgroup of R 

2. Let 

r = { (c~s 7rX - sin 7rX) : x E Q} . 
sm 7rX cos 7rX 

Prove that r is an abelian, nondiscrete, locally discrete subgroup of 0(2). 

3. Let r be the group in Exercise 2, let H be a nonelementary discrete subgroup 
of PO(2, 1), and let 

K = { (~ ~): A E rand B E H} . 
Prove that K is a nonelementary, nondiscrete, locally discrete subgroup of 
PO(4,1). 

4. Let r be a nonelementary subgroup of I(Hn) such that r leaves no proper 
m-plane of H n invariant. Prove that r is discrete if and only if every two­
generator subgroup of r is discrete. 

5. Find an example of a nondiscrete subgroup r of PSL(2, IC) such that every 
abelian subgroup of r is discrete. 



628 12. Geometrically Finite n-Manifolds 

§12.5. The Margulis Lemma 

In this section, we prove the Margulis lemma. We then use the Margulis 
lemma to prove the existence of Margulis regions for a discrete subgroup 
of I(Hn). As an application, we prove that for each dimension n there 
is a positive lower bound for the set of volumes of complete hyperbolic 
n-manifolds. 

Definition: Given a discrete subgroup r of I(Hn), a point x of Hn, and 
to> 0, let r€(x) be the subgroup of r generated by the set 

{g E r: d(gx,x) :::; to}. 

Theorem 12.5.1. (The Margulis lemma). For each dzmension n, there is 
an to > 0 such that for every discrete subgroup r of I(Hn) and for every 
point x of H n , the group r€(x) is elementary. 

Proof: We pass to the conformal ball model Bn. Let r be a discrete 
subgroup of M(Bn). Let x be a point of Bn and let T be the hyperbolic 
translation of Bn by x. Then for each to > 0, we have 

T- 1r€(X)T T- 1(g E r: d(gx,x) :::; to)T 

= (T- 1gT E T- 1rT: d(T-1gT(0),0) :::; to) 

= (T- 1rT)€(0). 

Thus we may assume, without loss of generality, that x = O. Let r € = r € (0). 
For each positive integer f, set 

Kt = {g E M(Bn) : d(g(O), 0) :::; l/f}. 

Observe that Kt corresponds to the subset C(O,l/f) x O(n) of Bn x O(n) 
under the homeomorphism <T> : Bn x O(n) -+ M(Bn) of Theorem 5.2.8. 
Therefore Kt is compact for each f. The set Kg obviously contains the 
identity I for each f. Moreover Kt is invariant under the inversion map of 
M(Bn) for each f, since 

d(g(O), 0) = d(O, g-l (0)). 

Let KI be the set of all elements of M(Bn) of the form gl ... gt with g. 
in Kt for each i = 1, ... ,f. Observe that if g. is in Kt for each i = 1, ... , f, 
then 

t 

d(gl ... gt(O), 0) < L d(gl ... g£+l-.(O), gl ... gt-.(O)) 

£ 

L d(g£+l-.(O), 0) < 1. 
.=1 

Therefore KI C K1 for each f. 
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Let U be the open neighborhood of I in M(Bn) corresponding to the 
open set 

{A E PO(n, 1) : IA - II < 2 - v'3}. 

As M(Bn) is a topological group, with respect to the metric DB, defined by 
Formula 5.2.1, there is an r > 0 such that if B = B(I, r), then B-1 Be U. 
As the metric DB is right-invariant, Bg = B(g, r) for each g in M(Bn). 
By Lemma 6 of §5.4, there is a maximum number m of elements of the 
compact metric space K1 with mutual distances at least r. Hence, we can 
have at most m mutually disjoint open balls in K1 of radius r. Therefore, 
we can have at most m mutually disjoint right translates of B in M(Bn) 
by elements of K 1. 

Let E = 1/ (m + 1) and let H = (r e n U). Then H is an abelian subgroup 
of r e by Theorem 12.4.3. Let B h, ... , B /k be mutually disjoint right 
translates of B by elements of re n K1 with k as large as possible. Then 
k :::; m. We now show that {H/'}~=l contains a full set of cosets for H in rEo 
Let g be in rEo As re is generated by r n K m+b we can write g = gl ... g£ 
with g. in r n Km+1 for each i. We assume that £ is as small as possible. 
We call £ the length of g. 

Assume first that £ :::; m + 1. Then g is in K::ti c Kb and so g is in 
re nK1. Therefore Bg meets B/. for some i. Hence g/.-l is in B-1 Be U. 
Therefore g/.-l is in H and so Hg = Hj.. Now assume that £ > m + 1. Let 
h. = gl ... g. for each i = 1, ... , m + 1. Then h. is in K::ti C K1 for each 
i. Consequently, the sets {Bh.}:'11 cannot all be disjoint; say Bh. meets 
BhJ with i < j. Let a = h" {3 = g.+l ... gJ, and "( = gJ+1 ... gt. Then 
g = a{3"( with Ba n Ba{3 i- 0. Hence a(a{3)-l is in B-1 Be U. Therefore 
a{3-1 a -1 is Hand 

Let g' = a"(. Then Hg = Hg' and the length of g' is less than the length 
of g. By induction, it follows that Hg = Hg" with the length of gil at 
most m + 1. Hence Hg = H/. for some i by the previous argument. Thus 
{H/'}~=l contains a full set of cosets for H in rEo Hence 

[r e : H] :::; k :::; m. 

Therefore re is elementary by Theorem 5.5.9. o 

Definition: The n-dimensional Margulzs constant is the supremum en of 
all E > 0 that satisfy the n-dimensional Margulis lemma. 

Note that the Margulis constant en is finite for each n > 1, since there are 
nonelementary, discrete subgroups r of I(Hn) such that Hn /r is compact 
for each n > 1. 
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Margulis Regions 

Let r be a discrete subgroups of M(Bn). For each r > 0, set 

V(r, r) = {x E B n : d(x, gx) < r for some nonelliptic 9 in r}. 

Lemma 1. Let r be a dzscrete subgroup of M(Bn). Then V(r, r) zs a 
r -znvarzant open subset of Bn for each r > o. 

Proof: Let x be a point of V (r, r). Then there is a nonelliptic element 9 
of r such that d( x, gx) < r. Let f be any element of r. Then 

dUx, fgf-1 fx) = d(x, gx) < r. 

As fgf-1 is nonelliptic, fx is in V(r,r). Thus V(r,r) is r-invariant. 
Now let s = (r - d(x, gx))/2. Then for each y in B(x, s), we have 

d(y,gy) ::::: d(y, x) +d(x,gx) +d(gx,gy) 

= 2d(x,y)+d(x,gx) < r. 

Therefore V (r, r) contains B (x, s). Thus V (r, r) is open. o 

Lemma 2. Let r be an znfinzte, elementary, discrete subgroup ofM(Bn ). 
Then V (r, r) zs connected for each r > O. 

Proof: Assume first that r is of parabolic type. We pass to the upper 
half-space model un and assume without loss of generality that r fixes 
00. Then r is the Poincare extension of a discrete subgroup of I(En - 1 ) by 
Theorem 5.5.5. Hence, by Theorem 4.6.1, we deduce that for each x in un 
and each nonelliptic 9 in r, we have 

Ix - gxl 2 
coshd(x,gx) = 1 + 2 

2xn 

It is clear from the above formula that for all y sufficiently high enough on 
the vertical ray [x, (0) we have that d(y, gy) < r. Hence V (r, r) contains 
[y,oo) for some y in [x, (0). Moreover, if x is in V(r,r), then V(r,r) 
contains [x, 00 ) . 

On the contrary, suppose that V(r, r) is disconnected. Then there exist 
disjoint, nonempty, open subsets M and N of V(r, r) such that 

V(r,r) = MUN. 

By Lemma 1, the sets M and N are open in un. Now no point of M 
is vertically above a point of N and vice versa. Let v : un -+ E n- 1 be 
the vertical projection. Then v(M) and v(N) are disjoint, nonempty, open 
subsets of E n - 1 such that 

E n - 1 = v(M) U v(N), 

which is a contradiction. Thus V (r, r) is connected. 
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Assume now that r is of hyperbolic type. Then without loss of generality, 
we may assume that r leaves invariant the positive nth axis in un. Let x be 
a point of V(r, r). Then there is a nonelliptic 9 in r such that d(x, gx) < r. 
As 9 fixes both 0 and 00, we have that 9 is hyperbolic. Hence, there is a 
positive constant k, with k =I- 1, and an A in O(n - 1) such that 9 = kA. 
By Theorem 4.6.1, we have 

- 2 
Ix- kAxl 

coshd(x,gx) = 1 + 2kx~ 

Now Ixlen is the nearest point to x on the positive nth axis. Let y be 
any point on the geodesic segment [Ixlen, xl. Then Iyl = Ixl and Yn 2: xn· 
Observe that 

y . Ay (v(y) + Ynen) . (Av(y) + Ynen) 
v(y) . Av(y) + y~ 

Hence, we have 

Iv(y) 12 cos O(v(y), Av(y)) + y~ 
Iv(y) 12 cos O(v(x), Av(x)) + y~ 
Iv(x)12 cos O(v(x), Av(x)) + x~ 
+ (y~ - x~)(l- cosO(v(x), Av(x))) 

> Iv(x)12cosO(v(x),Av(x))+x~ = x·Ax. 

- 2 Iy- kAYI 
y~ 

= 

lyl2 - 2ky· Ay + k21Yl2 
y~ 

Ixl2 - 2kx· Ay + k21xl2 

x~ 
- 2 

Ix - kAxl 
x~ 

Therefore, we have 
d(y,gy) :S d(x,gx) < r. 

Hence V(r, r) contains the geodesic segment [lxlen, xl. Since V(r, r) also 
contains the positive nth axis, V(r,r) is connected. 0 

Lemma 3. Ifr is a d2screte subgroup ofM(Bn) and r > 0, then 

V(r, r) = u{V(r a, r): a 2S a fixed point of a nonell2ptic element of r}. 

Proof: Clearly, we have 

v(r a, r) C V(r, r) 

for each point a fixed by a nonelliptic element of r. Now let x be an 
arbitrary point of V (r, r). Then there is a nonelliptic element 9 of r such 
that d(x, gx) < r. Let a be a fixed point of g. Then 9 is in r a, and so x is 
in V(ra,r). Thus V(r,r) is the union of the sets {V(ra,r)}. 0 
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TheoreIll 12.5.2. Let f be a discrete subgroup ofM(Bn) and suppose that 
o < r :::; cn, where Cn 2S the Margulis constant. Then the set of connected 
components of V(f, r) 2S 

{V(f a, r) : a is a fixed pomt of a nonelliptic element of f}. 

Proof: By Lemmas 1-3, it suffices to show that any two members of 
{V(f a, rn are either disjoint or coincide. Suppose that a and b are two 
points fixed by nonelliptic elements of f, and suppose that x is in both 
V (f a, r) and V (f b, r). Then there are nonelli ptic elements g and h of f, 
fixing a and b, respectively, such that d( x, gx) < rand d( x, hx) < r. Hence 
9 and h are in fs(x) with s < Cn. As fs(x) is elementary, 9 and h have 
the same fixed points by Theorems 5.5.3 and 5.5.6. Therefore fa = fb by 
Theorem 5.5.4. 0 

Definition: Suppose that 0 < r :::; Cn , where Cn is the Margulis constant. 
A component V(f a, r) of V(f, r) is called a Margulis region for f based at 
the point a. 

Parabolic Fixed Points 

LeIllIlla 4. Let f be an elementary discrete subgroup of M(Un) of para­
bohc type that fixes 00, let Q be a f -invariant m-plane of En-l such that 
Q /f is compact, let P be the verhcal (m + 1) -plane of un above Q, and let 
Pt = {x E P : Xn 2: t}. Then for each r > 0, there is at> 0 such that 

N(Pt , r/3) C V(f, r). 

Proof: Let r > O. Since Q/f is compact, there is a compact Dirichlet 
polyhedron D for f in Q. From the proof of Lemma 2, we know that 
V(f, r /3) intersects each vertical line of un in an open vertical ray ending 
at 00, and if x is in V(f, r/3), then V(f, r/3) contains the ray [x, (0). 
Hence, since V(f, r /3) is open and D is compact, there is at> 0 such that 

D x {t} c V(f, r/3). 

Since f leaves 8Pt = Q x {t} invariant and V(f,r/3) is f-invariant, we 
have that 8Pt C V(f,r/3). Therefore Pt C V(f,r/3). 

Now let x be an arbitrary point of N(Pt , r /3). Then there is a point y 
of Pt such that d(x,y) < r/3. As y is in V(f,r/3), there is a nonelliptic 9 
in f such that d(y, gy) < r /3. Observe that 

d(x, gx) d(x, y) + d(y, gy) + d(gy, gx) 

< r/3+r/3+r/3 = r. 

Therefore x is in V (f, r). Thus 

N(Pt , r/3) C V(f, r). o 
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Lemma 5. Let a be a comcallzmit poznt of a discrete subgroup r ofM(Bn) 
and let R be a hyperbolzc ray zn Bn ending at a. Then for each r > 0, there 
zs a point x of B n and a sequence {g'}~l of dzstznct elements of r such 
that {g.x} ~l converges to a wzthzn N (R, r). 

Proof: By Theorem 12.2.3, there is a sequence {g'}~l of distinct elements 
of r and a compact subset K of Bn such that {g.(O)}~l converges to a 

and for all i, we have 

For each i, choose a point x. on R such that g;lX. is in K. As K is compact, 
the set {g;lX.} has a limit point x in K. By passing to a subsequence, we 
may assume that {g;lX'}~l converges to x within B(x, r). As g;lx. is in 
B(x,r) for each i, we have that x. is in B(g.x,r) for each i. Hence g.x is 
in N(R, r) for each i. As g.(O) -t a, we have that g.x -t a within N(R, r). 
o 

Theorem 12.5.3. Let b be a point of sn-l fixed by a parabolzc element of 
a discrete subgroup r ofM(Bn). Then b is not a comcallzmzt poznt ofr. 

Proof: We pass to the upper half-space model un and assume, without 
loss of generality, that b = 00. Let V(r 00, r) be a Margulis region for r 
based at 00. Then by Lemma 4, there is at> 0 such that 

N(Pt ,r/3) C V(roo,r). 

Let R be a vertical ray in Pt that ends at 00. On the contrary, assume 
that 00 is a conical limit point of r. Then by Lemma 5, there is a sequence 
{g'}~l of distinct elements of r and a point x of un such that {g.x }~l 
converges to 00 within N(R,r/3). Hence g.x -t 00 within V(r oo,r). Now 
by Theorem 12.5.2, the set V(r 00, r) is roo-invariant and is moved disjointly 
away from itself by elements of r - roo. Therefore, the elements of {g.x} 
are translates of each other by elements of roo, and so all have the same 
nth coordinate and therefore lie in a compact subset of N(R, r /3). Hence 
{g.x} cannot converge to 00, which is a contradiction. Thus b is not a 
conical limit point of r. 0 

The next corollary follows immediately from Theorems 12.3.5 and 12.5.3. 

Corollary 1. Every point fixed by a parabolzc element of a geometrically 
finite dzscrete subgroup r of M(Bn) is a cusped limit point of r. 

The Thick and Thin Parts of a Hyperbolic Space-Form 

Let M = B n /r be a hyperbolic space-form and let r > o. The r-thin part 
of M is the set 

V(M,r) = V(r,r)/r. 
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The r-thin part of M is an open subset of M. Let 

T(r, r) = B n - V(r, r). 

The r- thick part of M is the set 

T(M, r) = T(r, r)/r. 

The r-thick part of M is a closed subset of M whose complement is the 
r-thin part of M. 

Theorem 12.5.4. For each dimension n, there is a 8 > 0 such that for 
each hyperbolic space-form B n /r, there is a pomt x of Bn such that the 
quotient map Jr: B n -> Bn/r maps B(x,8) isometncally onto B(Jr(x),8). 

Proof: Let Cn be the Margulis constant. By Theorem 12.5.2, the set 
T(r, cn) is nonempty. Let x be any point of T(r, cn). Then d(x, gx) 2 Cn 
for every g -I- 1 in r. Then for every g -I- 1 in r, we have 

B(x, cn /2) n gB(x, cn /2) = 0. 

Hence Jr maps B(x, cn /2) bijectively onto B(Jr(x), cn /2). Therefore, by the 
triangle inequality, Jr maps B(x, cn/4) isometrically onto B(Jr(x), cn /4). D 

Corollary 2. For each dimension n, there zs a posztzve lower bound for 
the set of volumes of complete hyperbolic n-manifolds. 

Exercise 12.5 

1. Let r be an elementary discrete subgroup of M(Bn) all of whose nonidentity 
elements are parabolic translations. Prove that V(r, r) is a horoball in B n 

for each r > O. 

2. Let r be an elementary discrete subgroup of M(Bn) generated by a hyper­
bolic translation h of B n with axis L and translation length i! on L. Prove 
that for each r > i!, there is an s > 0 such that V(r,r) = N(L,s). 

3. Let r be an elementary discrete subgroup ofM(B3 ) generated by a hyperbolic 
element h with axis L and translation length i! on L. Prove that for each 
r > i!, there is an s > 0 such that V(r,r) = N(L,s). 

4. Let r be the Poincare extension of the Klein bottle group generated by the 
translation T(Z) = Z + 1 and the glide reflection p(z) = -z + 1 + i. Describe 
the subset V(r, r) of U3 for each r > O. 

5. Let r be an infinite, elementary, discrete subgroup of M(Bn). Prove that 
V(r, r) n sn-l = L(r) for each r > O. 

6. Prove that a geometrically finite discrete subgroup r of M(Bn) has only 
finitely many conjugacy classes of parabolic elements. 
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§12.6. Geometrically Finite Manifolds 

In this section, we study the geometry of geometrically finite hyperbolic 
manifolds. 

Lemma 1. If 6(x, y, z) is a generalized hyperbolzc tnangle whose angles 
at x and yare greater than 7f / 4, then d(x, y) < cosh -1 (3). 

Proof: Let a, (3, 'Y be the angles of 6(x, y, z) at x, y, z, respectively, and 
let c = d(x, y). Then by Theorems 3.5.4 and 3.5.6, we have 

cosh c = cos a .cos (3. + cos 'Y . 
sm a sm f3 

As a,(3 > 7f/4 and a + (3 + 'Y < 7f, we have that a,(3 < 37f/4. Hence 
sina, sin (3 > 1/.../2 and I cos ai, I cosf31 < 1/.../2. Therefore 

h (1/.../2)2 + 1 3 
cos c < (1/.../2)2 =. 0 

Lemma 2. If 6(x,y,z) is a hyperbolzc triangle, wzth d(y,z) ~ 2d(x,y), 
then the angle of 6(x,y,z) at z is less than 7f/4. 

Proof: Let a, (3, 'Y be the angles of 6(x, y, z) at x, y, z, respectively, and 
let a, b, c be the lengths of the opposite sides. Then we have that a ~ 2c. 
Now as 

d(y,z) ~ d(y, x) +d(x,z), 

we find that 
d(x, z) ~ d(y, z) - d(x, y) ~ d(x, y). 

Therefore b ~ c. 
On the contrary, assume that 'Y ~ 7f / 4. By the law of sines, we have 

sinh a sinh b sinh c 
sin a = sin (3 = sin 'Y 

As b ~ c, we have that sin(3 ~ sin'Y. Assume first that 'Y ~ 7f/2. Then 
(3 ~ 7f - 'Y. As a + (3 + 'Y < 7f, we have a contradiction. Therefore 'Y < 7f / 2, 
and so (3 ~ 'Y. 

Now as a ~ 2c, we have 

sinh a ~ sinh 2c = 2 sinh c cosh c ~ 2 sinh c. 

Therefore 

sin a ~ 2 sin 'Y ~ 2 sin'Y cos 'Y = sin 2'Y . 

As 'Y ~ 7f/4, we have that 2'Y ~ 7f/2. Hence a ~ 7f - 2'Y. Therefore 

a + f3 + 'Y ~ 7f - 'Y + (3 ~ 7f, 

which is a contradiction. It follows that 'Y < 7f / 4. o 
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Definition: Two subsets A and B of Bn are said to be r-near for some 
r > 0 if and only if A C N(B, r) and B C N(A, r). 

Let K be a closed, nonempty, hyperbolic convex subset of B n and let 

PK : B n ---+ K 

be the nearest point retraction. 

Lemma 3. For each r > 0, there is an s > 0 such that ~f K and L are 
closed, nonempty, convex, r-near subsets of Bn, then for all x zn Bn, 

d(PK(X), PL(X)) < S. 

Proof: Set 
s = max{2r, cosh-1 (3)}. 

Let x be a point of Bn, let y = PK(X), and let z = pL(X). If d(y,z) < 2r, 
then d(y, z) < s, so assume that d(y, z) ~ 2r. Then x =I- y, since if x = y, 
then x is in K and d(x, z) < r. Likewise x =I- z. Hence, the points x, y, z 
are distinct. 

Now since z is in Land L C N(K, r), there is a point w in K n B(z, r). 
As d(y, z) > r, we have that w =I- y. As K is convex, the geodesic segment 
[y, w] lies in K. Since y is the nearest point of K to x, the angle between 
[x,y] and [y,w] is at least 7f/2. As d(z,w) < rand d(y,z) ~ 2r, the angle 
between [y, z] and [y, w] is less than 7f / 4 by Lemma 2. Without loss of 
generality, we may assume that y = O. Then by Theorem 2.1.2, we have 

O(x, w) ::; O(x, z) + O(z, w). 

Hence 
O(x, z) ~ O(x, w) - O(z, w) > 7f/2 - 7f/4 = 7f/4. 

Therefore, the angle between [x,y] and [y,z] is greater than 7f/4. Likewise, 
the angle between [y, z] and [z, x] is greater than 7f / 4. Therefore 

d(y, z) < COSh-l(3) ::; s 

by Lemma 1. o 

Lemma 4. Let K and L be closed, nonempty, hyperbol~c convex subsets of 
B n and let C be a closed convex subset of B n such that K n C and L n C 
are r-near. Let s be as in Lemma 3 and let B be a subset of C such that 

N(B, s) C C. Then 

Proof: Let x be a point of pj/(B). Then pK(X) is in K n B. Therefore 

PKnc(X) = pK(X). 

By Lemma 3, we have 

d(PKnc(x),pwc(x)) < s. 
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As N (B, s) c C, we deduce that p Lnc( x) is in Co. We next show that 

PLnc(X) = PL(X). 

On the contrary, suppose that Pwc(x) = y and pL(x) = z with y i= z. 
Then z is nearer to x than y. As L is convex, the geodesic segment [y, z] 
lies in L. After positioning y at the origin, we see that every point on the 
open segment (y,z) is nearer to x than y. But (y,z) meets Co contrary 
to the fact that y is the nearest point of L n C to x. Therefore, we have 
pwc(x) = pL(x). Hence PL(X) is in C. Thus 6/(B) c p£I(C). D 

Theorem 12.6.1. Let r be a dzscrete subgroup oj M(Un) such that 00 is 
fixed by a parabolzc element oj r. Let Q be a roo -invanant m-plane oj 
En-l such that Q Ir 00 is compact. Then 00 zs a cusped lzmzt poznt oj r zJ 
and only zJ there zs at> 0 such that 

L(r) c N(Q, t). 

Proof: This is clear if r is elementary, so assume that r is nonelementary. 
If 00 is a cusped limit point of r, then by Lemma 1 of §12.2, there is a 
t > 0 such that 

L(r) c N(Q, t). 

Conversely, suppose that there is at> 0 such that L(r) c N( Q, t). Let 
V = V(r 00, r) be a Margulis region for r based at 00. Then for each 9 in r, 
either V n gV = 0 or gV = V and g(oo) = 00. Let v: un --> En-I be the 
vertical projection and let K be the closure of V-I (Q) in un. Let L be the 
hyperbolic convex hull of L(r) and let R be the closure of v-I (N (Q, t)) in 
un. Then K, L, R are closed hyperbolic convex subsets of un. Since Q Ir 00 

is compact, there is a closed horoball C based at 00 such that R n C c V. 
As R contains L(r), we have that L c R. Consequently, there is a r > 0 
such that K n C and L n Care r-near. 

Let s be as in Lemma 4 and let B be the horoball contained in C such 
that 8B is at a distance s from 8C. Then N(B, s) c C. By Lemma 4, we 
have that 6/(B) c p£I(C). Now as 

LnCcRnCcV, 

we find that p£I(C) C p£l(V). Therefore, we have that pj/(B) c p£I(V). 
Now observe that the set p]/(B) has the shape of a cusped region for r 

and for each 9 in r, we have 

gp£I(V) = p£l(gV). 

Consequently, for each 9 in r - roo, we have 

p£I(V) n gp£I(V) = p£l(V n gV) = 0. 

Hence p]/ (B) is a cusped region for r. Thus 00 is a cusped limit point of 
the group r. D 
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Corollary 1. If r 2S a discrete subgroup of M(Un) such that 00 is fixed 
by a parabolic element of rand En-1/r 00 is compact, then 00 2S a cusped 
limit pomt of r. 

Lemma 5. If r is an elementary d2screte subgroup of M(Un) of parabolic 
type that fixes 00, then for each pomt w of E n- 1 and r > 0 there is a unique 
point x of un d2rectly above w such that x is in av (r, r) . Moreover, 

aV(r,r) c {x E un: d(x,gx) = r for some parabolic gin q. 

Proof: Let w be a point of En-I, let x a point directly above w, and let 
f be a parabolic element of r. By Theorem 4.6.1, we have 

coshd(x,fx) = 1+ Ix-txl2 
2xn 

By increasing the value of x n , if necessary, we may assume that we have 
d(x, fx) :S r. Now there are only finitely many parabolic elements 9 of r 
such that 

C(x, r /2) n gC(x, r /2) f= 0, 

since r is discontinuous. Hence, there are only finitely many parabolic 
elements 9 of r such that d( x, gx) :S r. By replacing f with another 
parabolic element of r, if necessary, we may assume that 

d(x, fx) :S d(x, gx) 

for all parabolic elements 9 of r. By increasing the value of x n , if necessary, 
we may assume that d( x, f x) = rand d( x, gx) ~ r for all parabolic elements 
of r. If y is a point of un directly above x, then d(y, fy) < r. Therefore x 
is in aV(r, r). 

Now suppose that x is a point on aV(r, r). Then there is a sequence of 
points {yd~l of V(r, r) converging to x within B(x, r/2). Now for each i, 
there is a parabolic element g. of r such that d(y., g.y.) < r. Observe that 

d(x,g.x) < d(x,y.) +d(y.,g.y.) +d(g.y.,g.x) 

< (r/2)+r+(r/2) 

2r. 

Now as r is discontinuous, there are only finitely many elements 9 of r 
such that 

C(x, r) n gC(x, r) f= 0. 

Consequently, the sequence {g'}~l can take on only finitely many values. 
By passing to a subsequence, we may assume that g. = 9 for all i. As 
d(y., gy.) < r, we have by continuity that d( x, gx) :S r. But x is not in 
V(r, r), and so d(x, gx) = r. If y is a point of un directly above x, then x 
is in V (r, r). Therefore x is the only point in av (r, r) directly above w. 0 
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Geometrically Finite Hyperbolic Manifolds 

Definition: A hyperbolic n-manifold M is geometncally finite if and only 
if M has a finite number of connected components and each component of 
M is isometric to a space-form Bn /r such that r is geometrically finite. 

Remark: It follows from Theorem 8.1.5 that a hyperbolic space-form 
Bn /r is geometrically finite if and only if r is geometrically finite. 

Let M = B n /r be a hyperbolic space-form and let C(r) be the hyperbolic 
convex hull of the limit set of r. Then C(r) n B n is a closed, convex, 
r -invariant subset of Bn. The convex core of M is the set 

C(M) = (C(r) n Bn)/r. 

The convex core C(M) is a geodesically connected closed subset of M. It 
is an exercise to prove that C(M) is a deformation retract of M when M 
in nonelementary. 

Theorem 12.6.2. Let M = B n /r be a hyperbolzc space-form. Then the 
following are equwalent: 

(1) The hyperbolic manifold M is geometncally finite. 

(2) The open set N(C(M),r) has finzte volume for each r > O. 

(3) The closed set C(M) n T(M, r) is compact for each r > o. 

Proof: Suppose that M is geometrically finite. Then r is geometrically 
finite. Hence r has a geometrically finite, exact, convex, fundamental poly­
hedron P. Set 

B(r) = C(r) n Bn. 

We shall prove that N(C(M), r) has finite volume by proving that the set 
N(B(r), r) n P has finite volume. Now we have 

N(B(r),r) n sn-1 = L(r). 

Hence 

N(B(r), r) n P n sn-1 = L(r) n P. 

By Theorems 12.2.7, 12.3.1, and 12.3.4, we have that L(r) n P is a finite 
set of cusped limit points of r, say Cl, .•• ,Ck. For each i, let U, be a cusped 
region for r based at c •. By Lemma 2 of §12.2, we have that 

k 
(N(B(r), r) n P) - U U. 

,=1 

is a bounded subset of B n , and so it has finite volume. Hence, to prove 
that the set N (B (r), r) n P has finite volume, it suffices to show that the 
set N(B(r), r) n P n U. has finite volume for each i. 
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K 
4s 

Q 

Figure 12.6.1. The subdivision of N(K, s) n PI/(v- 1 (C) n B(s)) 

We now pass to the upper half-space model un and conjugate r so that 
Cl = 00. Then there is a roo-invariant m-plane Q of En-l and an s > 0 
such that Uj = U(Q, s). By Lemma 1 of §12.2, we have that 

L(r) c N(Q, s). 

Let v : un ---+ En- 1 be the vertical projection and let R be the closure 
in un of v-1(N(Q, s)). Then R is a closed hyperbolic convex subset of 
un containing L(r). Therefore C(r) c R. Let K = v-1(Q). Then by 
increasing s, if necessary, we may assume that 

N(B(r), r) nUl c N(K, s) nUl. 

Let D be a Dirichlet polyhedron for roo in Q and let 

B(t) = {x E un : Xn > t}. 

Observe that the set 

N(K, s) n pj/(v-1(DO) n B(s)) 

is a fundamental domain for roo in N(K, s) nUl. We now show that 

Vol(N(K, s) n pj/(v-1(D) n B(s))) < 00. 

As Q /r 00 is compact, D is compact. Hence, there is an m-cube C in Q 
containing D. By conjugating r, we may assume that Q = Em. Then 
K = Em+J. Let J-l : En ---+ En be defined by J-l(X) = 2x. Then J-l is an 
isometry of un that leaves K invariant. For each i = 0,1,2, ... , let 

N, = N(K, s) n p}/(v-1(C) n (B(2's) - B(2'+lS))). 

Observe that No is bounded, and so it has finite volume. See Figure 12.6.l. 
Since J-l( C) can be subdivided into 2m cubes congruent to C, we deduce 
that J-l(N,) can be subdivided into 2m regions each congruent to N,+l. 
Therefore 
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Hence, by induction, we have 

Vol(N2 ) = (2~ ) 2 Vol(No). 

Therefore 
00 

L:Vol(N2 ) 

00 ( 1 )2 
Vol(No) ~ 2m 

Vol(No) (2;~ 1) < 00. 

Hence 
Vol(N(K, s) n PK1(v-1(C) n B(s))) < 00. 

As DeC, we have that 

Vol(N(K, s) n PK1(v-1(D) n B(s))) < 00. 

Therefore, we have that 

Vol((N(K, s) n U1)/f 00) < 00. 

As N(B(r),r) n U1 c N(K,s) nUl, we have that 

Vol((N(B(r), r) n Ud/f 00) < 00. 

Since U1 is a cusped region for f based at 00, we deduce that 

Vol(N(B(f), r) n P nUl) < 00. 

Likewise, we have that 

Vol(N(B(f), r) n P n U2 ) < 00 

for each i > 1. Hence 

Vol(N(B(f), r) n P) < 00. 

Therefore, we have that 

Vol(N(C(M), r)) < 00. 

Thus (1) implies (2). 

641 

Now assume that N(C(M),r) has finite volume for each r > O. On the 
contrary, suppose that C(M) n T(M, r) is not compact for some r > O. 
Choose a sequence of points {U2}~1 of C(M) n T(M, r) inductively as fol­
lows: Let Ul be any point of C(M)nT(M, r). Assume that Ul, ... , U m have 
been chosen so that the balls {B( U 2 , r /2)}~1 are mutually disjoint. Since 

m 
the set U C(u2 ,r) is compact, it cannot contain C(M) nT(M,r). Hence, 

2=1 
there is a point U m +1 of C(M)nT(M, r) such that the balls {B(u2 , r/2)}~t1 
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are mutually disjoint. It follows by induction that there is a sequence 
{U'}~l of points of C(M) n T(M,r) such that the balls {B(u.,r/2)}~1 
are mutually disjoint. 

Now for each i, choose x. in C(r) n T(r, r) such that 1f(x.) = u. where 
1f : Bn --t M is the quotient map. Now as x. is in T(r, r), we have that 
d(x., gx.) 2: r for all 9 =11 in r. Hence, we have 

B(x., r /2) n gB(x., r /2) = 0 

for all 9 =I 1 in r. Consequently 1f maps B(x., r /2) bijectively onto 
B( u., r /2). Therefore 

Vol(B(u., r /2)) = Vol(B(x., r /2)) = Vol(B(O, r /2)). 

Now as 
B(u., r/2) C N(C(M), r/2) 

for each i, we deduce that N(C(M),r/2) has infinite volume, which is a 
contradiction. Therefore C(M) nT(M,r) must be compact for all r. Thus 
(2) implies (3). 

Now assume that C(M) n T(M, r) is compact for each r > o. We shall 
prove that r is geometrically finite by showing that every limit point of r 
is either conical or cusped. Let a be a limit point of r. If a is fixed by a 
hyperbolic element of r, then a is a conical limit point of r by Theorem 
12.2.l. 

Assume next that a is fixed by a parabolic element of r. We pass to 
the upper half-space model un and conjugate r so that a = 00. Let Q 
be a r <Xl-invariant m-plane of En-l such that Q/r <Xl is compact. We shall 
prove that a is a cusped limit point of r by showing that there is an s > 0 
such that 

L(r) C N(Q, s). 

On the contrary, suppose that there is no such s. Then there is a sequence 
{X'}~l of points of L(r) - {oo} such that distE(x., Q) goes to 00 with 
i. Let V(r <Xl, r) be a Margulis region for r based at 00. Then for each i, 
there is a point Y. of un directly above x. such that Y. is in 8V(r <Xl, r /2) by 
Lemma 5. Moreover Y. is in V (r <Xl, r) for each i by Lemma 5. Furthermore 
Y. is in C(r) for each i, since C(r) is convex. Clearly distE(Y., Q) goes to 
00 with i. 

Let 1f : un --t M be the quotient map. Then the sequence {1f(Y')}~l 
has a limit point in the compact set C(M) n8T(M,r/2). By passing to a 
subsequence, we may assume that {1f(Y.)} converges to a point w. Let z be 
a point of C(r) n 8T(r, r /2) such that 1f(z) = w. As 1f(Y.) --t w, there is a 
g. in r such that {g'Y'}~l converges to z. Now z is in V(r,r). Hence z is 
in V(rb, r) for some fixed point b of a nonidentity element of r by Lemma 
3 of §12.5. As g.Y. --t z, there is a j such that gJYJ is in V(rb, r). Now 
since YJ is in V(r <Xl, r), we have that gJYJ is in V(r 93 (<Xl) , r). By Theorems 
5.5.4 and 12.5.2, we deduce that gJ(oo) = b. Now by replacing z by g;lz, 
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we may assume that z is in V(f 00, r); by passing to a subsequence, we may 
assume that g,y, is in V(f 00, r) for all i. Then g, is in f 00 for all i. Hence 
distE(g,y" Q) goes to 00 with i, and so {g,y,} diverges to 00, which is a 
contradiction. Thus, there is as> 0 such that 

L(f) C N(Q, s). 

Hence, by Theorem 12.6.1, we have that a is a cusped limit point of f. 
Assume now that the point a is not fixed by a nonidentity element of f. 

Let R be a hyperbolic ray in B n starting in C(r) and ending at a. Then 
R C C(f), since C(f) is convex. Let r be the Margulis constant. Then 
no subray of R is contained in a component of V(f, r), since otherwise 
its endpoint a would be fixed by a nonidentity element of f. Therefore, 
the set R n T(f, r) is unbounded. Let {X'}~l be a sequence of points of 
RnT(f, r) converging to a. Then the sequence {1T(X')}~l has a limit point 
in the compact set C(M) nT(M, r). By passing to a subsequence, we may 
assume that {1T(X,)} converges to a point u of M. Choose a point y of B n 

such that 1T(y) = u. As 1T(X,) -+ u, there is an element g, of f such that 
the sequence {g,X'}~l converges to y. Since x, -+ a, infinitely many of 
the terms of {g,} are distinct. Hence, by passing to a subsequence, we may 
assume that the terms of {g,} are distinct. As g,x, -+ y, there is an s > 0 
such that 

g,R n C(y, s) i- 0 
for all i. Therefore a is a conical limit point of f by Theorem 12.2.3. Thus, 
every limit point of f is either conical or cusped. Hence f is geometrically 
finite by Theorem 12.3.5. Thus (3) implies (1). 0 

Theorem 12.6.3. Every complete hyperbolic n-manifold of fimte volume 
zs geometrzcally fimte. 

Proof: Let M be a complete hyperbolic n-manifold of finite volume. By 
Theorem 12.5.4, there is a positive lower bound for the set of volumes 
of complete hyperbolic n-manifolds. Therefore M has a finite number of 
connected components. Thus, we may assume that M is connected. By 
Theorem 8.5.9, we may assume that M is a space-form Bn If of finite 
volume. Then C(M) = M by Theorem 12.1.15. Hence M is geometrically 
finite by Theorem 12.6.2. 0 

Theorem 12.6.4. Let M = B n If be a nonelementary geometrzcally finite 
space-form such that f leaves no m-plane of Bn invariant for m < n - 1. 
Then the group I(M) of zsometries of M zs fimte. 

Proof: An isometry ¢ of M = B n If lifts to an isometry ¢ of B n such 
that ¢f¢-l = f. Moreover ¢ is unique up to composition with an element 
of f. Conversely, if'IjJ is an isometry of B n such that 'ljJf'IjJ-l = f, then 'IjJ 
induces an isometry of M. Let N be the normalizer of f in M(Bn). We 
conclude that I( M) is isomorphic to N If. 
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The group r is finitely generated by Theorem 12.3.9. Therefore N is 
discrete by Theorem 12.1.17. Now by Theorem 12.1.16, we have that 
L(r) = L(N). Therefore N leaves L(r) invariant. Hence N also leaves 
invariant the set 

Therefore N leaves invariant the set N(B(r), 1). 
Since the set N(B(r), 1) is open, there is a point x of N(B(r), 1) that is 

not fixed by any 9 =I- 1 in N. Let D be the Dirichlet domain for N centered 
at x. Set 

E = D n N(B(r), 1). 

Then E is a fundamental domain for the action of N on N (B (r), 1). Let 
{h,} be a set of r-coset representatives in N. Then 

F = Uh,E 

is a fundamental region for the action of ron N(B(r), 1). Let aNF be the 
boundary of Fin N(B(r), 1). As D is a locally finite fundamental domain 
for N, we have 

Therefore, we have 
Vol( aN F) = o. 

Hence, we have 
Vol(F) = Vol(N(B(r), l)jr). 

By Theorem 12.6.2, we have that 

Vol(F) = Vol(N(C(M), 1)) < 00. 

Now since 
[N : r] = Vol(F)jVol(E), 

we deduce that Njr is finite. Therefore I(M) is finite. o 

Corollary 2. Every complete hyperbohc n-manifold of fimte volume, wzth 
n > 1, has a fimte group of isometries. 

Proof: Let M be a complete hyperbolic n-manifold of finite volume. 
Then M has a finite number of connected components. Therefore, we may 
assume that M is connected. By Theorem 8.5.9, we may assume that Mis 
a space-form Bn jr of finite volume. The group r is nonelementary, since 
every elementary hyperbolic space-form has infinite volume. By Theorem 
12.6.3, the group r is geometrically finite. By Theorem 12.1.15, the group 
r is of the first kind. Therefore r leaves no proper m-plane of B n invariant. 
Hence I(M) is finite by Theorem 12.6.4. 0 
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The Ideal Boundary of a Hyperbolic Manifold 

Let M be a complete, connected, hyperbolic n-manifold. Then there is a 
torsion-free discrete subgroup r of M(Bn) and an isometry ~ : M -t Bn /r. 
The orbit space O(r)/r is called the ideal boundary of M. Let M be the 
union of M and its ideal boundary, and let 

be the extension of ~ that is the identity on O(r)/r. We topologize M so 
that ~ is a homeomorphism. We shall prove that M is an n-manifold-with­
boundary. The first step is to prove that M is Hausdorff. 

Lemma 6. Let r be a group acting discont~nuously on a locally compact 
Hausdorff space X. Then the orbit space x/r is Hausdorff. 

Proof: Let x and y be points of X such that rx and ry are disjoint. As 
X is locally compact, there are open neighborhoods U and V of x and y, 
respectively, such that U and V are compact and disjoint. Since {x} U V is 
compact, only finitely many elements of rx meet V. Hence W = V - rx 
is an open neighborhood of y. 

Let N be an open neighborhood of y such that NeW. Then rx and 
r N are disjoint, since rx and N are disjoint. Now since U U N is compact, 
at most finitely many r-images of N meet U. Hence M = U - rN is an 
open neighborhood of x. Moreover rM and rN are disjoint, since M and 
rN are disjoint. Therefore x/r is Hausdorff. 0 

Theorem 12.6.5. Let r be a torsion-free discrete subgroup of M(Bn) of 
the second kind. Then the quotient map 

7f : B n U ocr) -t (Bn U o(r)) /r 

zs a covermg proJectwn and the orbit space (BnUO(r))/r zs an n-mamfold­
with-boundary O(r)/r. 

Proof: Since r is torsion-free, it acts freely on Bn U Ocr) by Theorems 
8.2.1 and 12.1.11. Therefore 7f is a covering projection by Theorems 8.1.3 
and 12.1.11. Now by Lemma 6, the orbit space (BnUO(r))/r is Hausdorff. 
Hence (En U O(r))/r is an n-manifold-with-boundary, since Bn U Ocr) is 
an n-manifold-with-boundary. The boundary of (Bn U O(r))/r is O(r)/r. 
o 

Corollary 3. Let M be a complete, connected, hyperbolic n-manifold, and 
let M be the union of M and its ideal boundary. Then M ~s an n-manifold­
wzth-boundary. 
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Cusps 

Let r be a torsion-free, elementary, discrete subgroup of M(Bn) of parabolic 
type and let U be a cusped region in B n for r. A hyperbolic n-manifold 
isometric to U Ir is called an n-dimensional cusp. 

Lemma 7. Let r be a dtscrete subgroup of M( Bn) and let C be the set of 
cusped limit pomts ofr. Then for each point c in C, there tS a cusped regwn 
U (c) based at c for r such that the regions {U (c) : c E C} are mutually 
disjoint and gU ( c) = U (gc) for each 9 in rand c in C. 

Proof: This is clear if r is elementary, so assume that r is nonelementary. 
For each c in C, let V (c) = V (r c, r) be a Margulis region for r based at c. 
Then the regions {V(c) : c E C} are mutually disjoint and gV(c) = V(gc) 
for each 9 in rand c in C. Let p : Bn ---+ C(r) be the nearest point 
retraction. Then the regions {p-1(V(C)) : c E C} are mutually disjoint. 
As in the proof of Theorem 12.6.1, there is a cusped region U(c) for r 
based at c such that U (c) C P -1 (V (c)) for each c in C. Then the regions 
{U(c) : c E C} are mutually disjoint. Now as p is r-equivariant, we have 

gp-1(V(c)) = p-1(V(gc)) 

for each 9 in rand c in C. Consequently, we can choose U(c) so that 
gU(c) = U(gc) for each gin rand c in C. 0 

Theorem 12.6.6. Let M be a connected, geometrically fimte, hyperbolic 
n-mamfold and let M be the umon of M and tts ideal boundary. Then 
there tS a compact connected n-mamfold-with-boundary Mom M such that 
M - Mots the dtsjomt umon of a finite number of cusps. 

Proof: Since M is geometrically finite, we may assume that M is a space­
form Bn Ir and 

M = (Bn U O(r))/r 

with r geometrically finite. Let C be the set of cusped limit points of r. By 
Lemma 7, there is a cusped region U(c) based at c for r for each c in C such 
that the regions {U(c) : c E C} are mutually disjoint and gU(c) = U(gc) 
for each gin rand c in C. Let 

(Bn U O(r))o = (Bn U OCr)) - u U(c). 
cEC 

It is clear from the geometry of a cusped region that there is a continuous 

retraction 
p: B n U Ocr) ---+ (Bn u O(r))o. 

Hence (BnUO(r))o is a closed, connected, r-invariant subset of BnUO(r). 
Moreover (Bn U O(r))o is an n-manifold-with-boundary. Let 

7f : B n U Ocr) ---+ M 
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be the quotient map and set 

Mo = 1f((Bn U O(r))o). 

Then M 0 is a closed connected subset of M. Moreover M 0 is an n-manifold­
with-boundary. 

Let P be an exact, convex, fundamental polyhedron for r. Then P is 
geometrically finite. Hence P has only finitely many cusp points that are 
cusped limit points of r, say Cl, ••• , Cm. It follows from Theorems 12.2.6 
and 12.2.7 that for each c in C, there is a gin r such that gc = c. for some i. 
Therefore C is partitioned into only finitely many r -orbits. Consequently 
M - M 0 has only finitely many components and for each component K of 
M - M 0 there is an injective local isometry 

t: U(c)/rc ---+ K 

for some c in {C1' ... , cm }. By shrinking the regions {U ( c.) }, if necessary, 
we may assume that t is an isometry, whence K is a cusp. 

Now let 
Po = P - U ({c.} U U(c.)) . 

• =1 

Then Po is a closed subset of Bn by Lemma 2 of §12.2. Therefore Po is 
compact. By Theorem 12.3.4, we have that Po is a subset of Bn U O(r). 
Hence 1f(Po) is compact. Now as Mo C 1f(Po), we deduce that Mo is 
compact. o 

The next corollary gives the global geometry of a complete hyperbolic 
n-manifold of finite volume. 

Corollary 4. Let M be a complete hyperboltc n-manifold of finite volume. 
Then there zs a compact n-mamfold-with-boundary Mo in M such that 
M - Mo is the disjomt unwn of a finite number of cusps. 

Proof: The manifold M has a finite number of connected components by 
Theorem 12.6.3. Thus, we may assume that M is connected. By Theorem 
12.6.6, there is a compact connected n-manifold-with-boundary Mo in M 
such that M - Mo is the disjoint union of a finite number of cusps, since 
M=M 0 

Exercise 12.6 

1. Fill in the details of the proof of Theorem 12.6.1 of the existence of the closed 
horoball C. 

2. Fill in the details of the proof of Theorem 12.6.1 that the sets K n C and 
L n Care T-near. 

3. Let M be a nonelementary hyperbolic space-form. Prove that C(M) is a 
deformation retract of M. 
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4. Let M be a geometrically finite hyperbolic space-form. Prove that the infi­
mum of the set of lengths of simple closed geodesics of M is positive. 

5. Let H n /r be a geometrically finite space-form. Prove that for all sufficiently 
small values of r, we have 

vcr, r) = u{V(r a, r) : a is a fixed point of a parabolic element of r} 

6. Let M be a geometrically finite hyperbolic space-form. Prove that T(M, r) 
is a deformation retract of M for all sufficiently small values of r. 

7. Let M be a geometrically finite hyperbolic space-form. Prove that the set 
OeM) nT(M, r) is a deformation retract of M for all sufficiently small values 
of r. 

8. Fill in the details in the proof of Theorem 12.6.6 of the existence and conti­
nuity of the retraction p. 

9. Prove that the set of similarity types of the links of the cusp points of a 
complete hyperbolic n-manifold M of finite volume is an isometry invariant 
of M. 

§12.7. Historical Notes 

§12.1. Poincare introduced the limit set of a discrete group of linear frac­
tional transformations of the unit disk in his 1882 paper Sur les fonctions 
fuchsiennes [331]. Theorems 12.1.1, 12.1.3, 12.1.9, 12.1.13, and 12.1.18 
appeared in Vol. I of Fricke and Klein's 1897 Vorlesungen fiber die Theo­
rie der automorphen Functionen [139]. Theorems 12.1.2 and 12.1.12 ap­
peared in Fubini's 1908 treatise Introduzwne alla teoria dei gruppz discon­
tinuz e delle funzioni automorfe [144]. Theorem 12.1.4 appeared in Ford's 
1927 paper On the foundations of the theory of dzscontmuous groups of 
linear transformatwns [135]. Theorem 12.1.5 appeared in Vol. II of Ap­
pell, Goursat, and Fatou's 1930 treatise Theone des Fonctions Algebriques 
[22]. The 3-dimensional version of Theorem 12.1.6 was proved by van 
Vleck in his 1919 paper On the combinatwn of non-loxodromzc substitu­
tions [394]. Theorem 12.1.6 appeared in Apanasov's 1975 paper Kleiman 
groups m space [16]. Theorem 12.1.7 appeared in Lehner's 1964 survey 
Discontinuous Groups and Automorphic Functwns [255]. Theorems 12.1.8, 
12.1.14, and 12.1.15 appeared in Poincare's 1882 paper [331]. Theorem 
12.1.10 appeared in Poincare's 1883 Memoir sur les groupes kleineens [332]. 
The convex hull of the limit set of a torsion-free discrete group of Mobius 
transformations of the unit disk was introduced by Koebe in his 1928 pa­
per Riemannsche M annigfaltigkeiten und nichteuklzdzsche Raumformen III 
[243]. See also Nielsen's 1940 paper Uber Gruppen lmearer Transformatio­
nen [320]. As a reference for nearest point retractions onto convex sets, 
see Bishop and O'Neill's 1969 paper Mamfolds of negative curvature [49]. 
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The 2-dimensional version of Theorem 12.1.16 appeared in Greenberg's 
1960 paper Dzscrete groups of motwns [163], and the n-dimensional ver­
sion appeared in Chen and Greenberg's 1974 paper Hyperbolic spaces [80]. 
Theorem 12.1.17 for closed surface groups was proved by Poincare in his 
1885 paper Sur un theoreme de M. Fuchs [334]. Theorem 12.1.17 is a 
consequence of a general result in Wang's 1967 paper On a maximality 
property of dzscrete subgroups with fundamental domain of finzte measure 
[401]. Two-dimensional Schottky groups were introduced by Schottky in his 
1877 paper Ueber dze conforme Abbzldung mehrfach zusammenhiingender 
ebener Fliichen [367]. The 2-dimensional versions of Theorems 12.1.19 and 
12.1.20 are consequences of general results in Poincare's 1882 paper [331]. 
Limit sets of 3-dimensional Schottky groups were considered by Poincare 
in his 1883 memoir [332]. Theorem 12.1.21 essentially appeared in Fricke's 
1894 paper Dze Kreisbogenviersezte und das Princzp der Symmetrie [138]. 
See also Vol. I of Fricke and Klein's 1897 treatise [139]. For a discussion of 
the fractal nature of limit sets of Schottky groups, see Mandelbrot's 1983 
paper Self-znverse fractals osculated by szgma-discs and the limzt sets of 
znversion groups [273]. 

§12.2. Conical limit points of Fuchsian groups were introduced by Hed­
lund in his 1936 paper Fuchszan groups and transitzve horocycles [187]. In 
particular, Theorem 12.2.1 for Fuchsian groups of the first kind appeared 
in this paper. A conical limit point is also called a point of approxzma­
hon. The 3-dimensional versions of Theorems 12.2.1-12.2.5 were proved by 
Beardon and Maskit in their 1974 paper Lzmit poznts of Kleznian groups 
and finzte-sided fundamental polyhedra [35]. Corollary 1 appeared in Vol. I 
of Fricke and Klein's 1897 treatise [139]. Cusped limit points in dimension 
three were introduced by Beardon and Maskit in their 1974 paper [35]. 
Theorems 12.2.6 and 12.2.7 for Fuchsian groups were proved by Klein in 
his 1883 paper Neue Beitriige zur Rzemannschen Functwnentheorie [233]. 
The 3-dimensional versions of Theorems 12.2.6 and 12.2.7 for rank two 
parabolic fixed points appeared in Vol. I of Fricke and Klein 1897 treatise 
[139]. Theorems 12.2.6 and 12.2.7 for dimension n > 3 seem to be new. 
Corollary 2 was proved by Beardon and Maskit in their 1974 paper [35]. 
As references for the theory of limit sets, see Nicholls' 1988 survey article 
The lzmzt set of a dzscrete group of hyperbolzc motions [316] and his 1989 
treatise The Ergodic Theory of Discrete Groups [317]. 

§12.3. The concept of a geometrically finite convex polyhedron is new. 
Theorems 12.3.1 and 12.3.2 are new. The 3-dimensional versions of Theo­
rems 12.3.3-12.3.9 were proved by Beardon and Maskit in their 1974 paper 
[35]. Theorem 12.3.4 for finite-sided polyhedra appeared in Apanasov's 
1982 paper Geometrically finzte groups of transformatwns of space [18]. 
Theorems 12.3.3-12.3.9 for dimension n > 3 seem to be new. 

§12.4. Lemma 1 was proved by Frobenius in his 1911 paper Uber den 
von L. Bzeberbach gefundenen Beweis eines Satzes von C. Jordan [142]. 
Lemmas 2, 3, 5, and Theorem 12.4.1 were proved by Bowditch in his 1993 
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paper Geometrical finiteness for hyperbolzc g'f'OUpS [55]. Lemma 4 appeared 
in Beardon and Wilker's 1984 paper The norm of a Mobius transformatwn 
[36]. Lemma 6 appeared in Greenberg's 1962 paper Dzscrete subg'f'OUps 
of the Lorentz g'f'OUp [164]. Lemma 7 was proved by Zassenhaus in his 
1938 paper Bewezs eines Satzes fiber diskrete Gruppen [421]. Moreover, 
Theorem 12.4.2 has its origins in this paper. Theorem 12.4.2, without an 
explicit bound, appeared in Kazdan and Margulis' 1968 paper A p'f'Oof of 
Selberg'S conjecture [213]. See also Wang's 1969 paper Dzscrete nzlpotent 
subg'f'OUps of Lie g'f'OUpS [402]. Theorem 12.4.2 for real matrices appeared 
in Martin's 1989 paper On dzscrete Mobius g'f'OUpS in all dimenswns [280]. 
Theorem 12.4.3, without an explicit bound, appeared in Bowditch's 1993 
paper [55]. The 2- and 3-dimensional versions of Theorem 12.4.4 were 
proved by J0rgensen in his 1977 paper A note on subg'f'Oups of SL(2, q 
[211]. For improvements of Theorem 12.4.4, under additional hypothesis, 
see Martin's 1989 paper [280] and Abikoff and Haas' 1990 paper Nondiscrete 
g'f'OUpS of hyperbolic motwns [3]. 

§12.5. The 3-dimensional versions of Theorems 12.5.1 and 12.5.2 ap­
peared in Thurston's 1979 notes The Geometry and Topology of 3-Manifolds 
[389] and Gromov's 1981 paper Hyperbolzc manifolds accordzng to Thurston 
and J¢rgensen [168]. See also Gromov's 1978 paper Manifolds of nega­
tive curvature [167]. The Margulis lemma has its origins in Kazdan and 
Margulis' 1968 paper [213] and appeared in Gromov's 1978 paper [167] 
and in Thurston's 1979 notes [389]. The existence of parabolic Margulis 
regions in dimension two was established by Shimizu in his 1963 paper 
On discontznuous g'f'OUpS operatzng on the product of the upper half planes 
[374]. See also Leutbecher's 1967 paper Uber Spztzen diskontinuzerlzcher 
Gruppen von lineargeb'f'Ochenen Transformationen [256]. The existence of 
hyperbolic Margulis regions in dimension two was essentially established 
by Keen in her 1974 paper Collars on Rzemann surfaces [216]. See also 
Halpern's 1981 paper A p'f'Oof of the collar lemma [176] and Basmajian's 
1992 paper Generalzzing the hyperbolzc collar lemma [32]. Hyperbolic Mar­
gulis regions in dimension three were studied by Brooks and Matelski in 
their 1982 paper Collars zn Kleznian g'f'OUpS [60] and by Gallo in his 1983 
paper A 3-dzmenswnal hyperbolzc collar lemma [145]. Lemmas 4 and 5 
and Theorem 12.5.3 were proved by Susskind and Swamp in their 1992 
paper Limit sets of geometrically finite hyperbolzc g'f'OUpS [385]. The thick 
and thin parts of a hyperbolic space-form were introduced by Thurston 
in his 1979 lecture notes [389]. Theorem 12.5.4 was essentially proved by 
Kazdan and Margulis in their 1968 paper [213]. See also Wang's 1969 pa­
per [402]. Theorem 12.5.4 for Fuchsian groups appeared in Marden's 1974 
paper Universal p'f'Operties of Fuchszan g'f'OUpS in the Poincare metric [275] 
and in Sturm and Shinnar's 1974 paper The maximal znscribed ball of a 
Fuchsian g'f'OUp [383]. Theorem 12.5.4 appeared in Apanasov's 1975 paper 
A universal p'f'Operty of Kleinian groups in the hyperbolic metric [17] and in 
Wielenberg's 1977 paper Dzscrete Moebius g'f'OUps: fundamental polyhedra 
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and convergence [411]. For a lower bound on the radius in Theorem 12.5.4, 
see Martin's 1989 paper Balls zn hyperbolzc manifolds [279]. 

§12.6. Lemmas 1-4, and Theorem 12.6.1 were proved by Bowditch in 
his 1993 paper [55]. Corollary 1 for Fuchsian groups was implicitly proved 
by Klein in his 1883 paper [233]. The 2- and 3-dimensional versions of 
Corollary 1 appeared implicitly in Vol. I of Fricke and Klein's 1897 trea­
tise [139]. Corollary 1 appeared in Wielenberg's 1977 paper [411] and in 
Apanasov's 1982 paper [18]. The convex core of a hyperbolic surface was 
introduced by Lobell in his 1927 thesis Dze uberall regularen unbegrenzten 
Flachen fester Krummung [265]. See also Koebe's 1928 paper [243] and 
Lobell's 1929 paper Uber dze geodatzschen Linien der ClzfJord-Kleinschen 
Flachen [266]. Theorem 12.6.2 has its origins in Nielsen's 1940 paper [320]. 
The 2-dimensional version of Theorem 12.6.2 was proved by Nielsen and 
Fenchel in their 1959 manuscript Discontinuous Groups of Non-Euclidean 
Motions [321]. The convex core of a hyperbolic 3-manifold was intro­
duced by Lobell in his 1931 paper Bezspzele geschlossener dreidzmensionaler 
ClifJord-Kleznscher Raume negativer Krummung [268]. The 3-dimensional 
version of Theorem 12.6.2 was proved by Thurston in his 1979 lecture notes 
[389]. Theorem 12.6.2 was essentially proved by Bowditch in his 1993 pa­
per [55]. The 2-dimensional version of Theorem 12.6.3 was proved by Siegel 
in his 1945 paper Some remarks on discontinuous groups [376]. Theorem 
12.6.3 was proved by Garland and Raghunathan in their 1970 paper Funda­
mental domains for lattices in (lR-)rank 1 semisimple Lie groups [147]. See 
also Margulis' 1969 paper On the anthmetzcity of discrete groups [277] and 
Selberg's 1970 paper Recent developments zn the theory of discontznuous 
groups of motions of symmetric spaces [373]. The 2-dimensional version of 
Theorem 12.6.4 was proved by Lobell in his 1930 paper Ein Satz uber die 
eindeutzgen Bewegungen ClifJord-Kleznscher Flachen zn szch [267]. Theo­
rem 12.6.4 for dimension n > 2 seems to be new. Corollary 2 for closed 
surfaces was proved by Poincare in his 1885 paper [334], and for closed 
n-manifolds by Lawson and Yau in their 1972 paper Compact mamfolds 
of nonpositive curvature [254]. Corollary 2 was proved by A verous and 
Kobayashi in their 1976 paper On automorphisms of spaces of nonposz­
tive curvature with fimte volume [29]. Lemma 6 appeared in Thurston's 
1979 lecture notes [389]. Theorem 12.6.5 and Corollary 3 appeared in Mar­
den's 1974 paper The geometry of finitely generated Kleiman groups [276]. 
Lemma 7 was proved by Bowditch in his 1993 paper [55]. The 3-dimensional 
version of Theorem 12.6.6 was proved by Marden in his 1974 paper [276]. 
Theorem 12.6.6 for manifolds with a finite-sided fundamental polyhedron 
appeared in Apanasov's 1983 paper Geometrically fimte hyperbolic struc­
tures on mamfolds [19]. See also Tukia's 1985 paper On zsomorphzsms of 
geometrically finite Mobius groups [392]. Theorem 12.6.6 was proved by 
Bowditch in his 1993 paper [55]. The 2-dimensional version of Corollary 4 
was proved by Nielsen and Fenchel in their 1959 manuscript [321]. Corol­
lary 4 was proved by Garland and Raghunathan in their 1970 paper [147]. 



CHAPTER 13 

Geometric Orbifolds 

In this chapter, we study the geometry of geometric orbifolds. We begin by 
studying the geometry of an orbit space of a discrete group of isometries 
of a geometric space. In Section 13.2, we study orbifolds modeled on a 
geometric space X via a group G of similarities of X. Such an orbifold is 
called an (X, G)-orbifold. In particular, if r is a discrete group of isometries 
of X, then the orbit space x/r is an (X, G)-orbifold for any group G of 
similarities of X containing r. In Section 13.3, we study the role of metric 
completeness in the theory of (X, G)-orbifolds. In particular, we prove that 
if M is a complete (X, G)-orbifold, with X simply connected, then there is a 
discrete subgroup r of G of isometries of X such that M is isometric to X /r. 
In Section 13.4, we prove the gluing theorem for geometric orbifolds. The 
chapter ends with a proof of Poincare's fundamental polyhedron theorem. 

§13.1. Orbit Spaces 

In this section, we study the geometry of an orbit space X /r of a discrete 
group r of isometries of a geometric space X. 

Theorem 13.1.1. Let r be a dzscontinuous group of isometrzes of a metric 
space X and let 7r : X ----+ X /r be the quotient map. Then for each point x of 
X, the map 7r znduces a homeomorphzsm from B(x, r)/r x onto B(7r(x) , r) 
for all r such that 

o < r ::; ~dist(X, rx - {x}). 

Moreover 7r induces an isometry from B(x, r)/r x onto B(7r(x), r) for all r 
such that 

0< r::; ~dist(x,rx - {x}). 

Proof: Let x be an arbitrary point of X. Then we have 

7r(B(x,r)) = B(7r(x),r) 

652 
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for each r > 0 by Theorem 6.5.2. Hence 1l' is an open map. Set 

s= ~dist(x,fx-{x}) 
2 

and suppose that 0 < r s:; s. Then by the triangle inequality, we have 

B ( x, r) n 9 B ( x, r) = 0 for all 9 in f - f x . 

Therefore 1l' induces a homeomorphism from B (x, r) /f x onto B ( 1l' (x), r). 
Now suppose that 0 < r s:; s/2. Let y and z be points of B(x, r) with 

d(y,z) =dist(y,fxz) 

and suppose that 9 is in f - f x' Then we have 

2s < d(x,gx) 

Hence, we have that 

< d(x,y) +d(y,gz) +d(gz,gx) 

< (s/2) + d(y,gz) + (s/2). 

d(y, gz) 2 s > d(y, z). 

Therefore, we have that 

d(y,z) = dist(y,fz). 

Hence, we have that 

dist(f xy, f xZ) = dist(fy, fz). 

Thus 1l' maps B(x, r)/f x isometrically onto B(1l'(x), r). o 

Theorem 13.1.2. Let f be a discontinuous group of zsometrzes of a geo­
desically connected and geodeszcally complete metric space X and let 1l' : 

X ----+ X/f be the quotzent map. Then f is the set of all isometries <p of X 
such that 1l'<P agrees with 1l' on a nonempty open set; zn particular, f is the 
gmup of all isometries <p of X such that 1l'<P = 1l'. 

Proof: Let <p be an isometry of X such that 1l'<P agrees with 1l' on a 
nonempty open set U. Let x be a point of U such that the order of f x is 
as small as possible. Set 

s = ~dist(x,fX - {x}). 

Then by the triangle inequality, we have 

B(x, r) n gB(x, r) = 0 for all 9 in f - f x' 

Let y be a point of B(x, s) n U. Then f y c f x, and so f y = f x' Therefore, 
every element of f~; fixes each point of the nonempty open set B(x, s) n U. 
Hence f x = {I} by Theorem 8.3.2. 
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a(a) 

na(b) 
/ 

/ 
/ 

a(b) 

Figure 13.1.1. The image of a geodesic arc 

x-axis 

Now as n1>(x) = n(x), there is an element 9 of r such that 1>(x) = gx. 
Hence g-l1> is an isometry of X that fixes the point x. Now for each point 
y of B(x, s) n u, we have 

ng- 11>(y) = n1>(y) = n(y) 

and so g-l1>(y) is in 

ry n B(x, s) = {y}. 

Therefore g-l1> is the identity on the open set B(x, s) n U. Hence 1> = 9 
by Theorem 8.3.2. D 

Let r be a discrete group of isometries of a geometric space X and let 
n : X --> x/r be the quotient map. If a : [a, b] --> X is a geodesic arc, 
then na : [a, b] --> x/r is not necessarily a geodesic curve. For example, 
let X = E2 and let r be the group generated by the reflection of E2 in the 
x-axis. Then x/r is isometric to the closed half-plane U2 • Observe that 
if a(a) and a(b) lie on opposite sides of the x-axis, then na fails to be a 
geodesic curve at the point where a crosses the x-axis. See Figure 13.1.1. 
However, if a(a) or a(b) lies on the x-axis, then na is a geodesic arc. 

Lemma 1. Let r be a fimte group of isometries of a metr2c space X and 
let n : X ---+ x/r be the quotient map. Let a : [a, b] --> X be a geodes2c arc 
such that a(a) is fixed by every element of r. Then na : [a, b] --> x/r is a 
geodes2c arc. 

Proof: Observe that for each t in the interval [a, b], we have 

dr(na(a) , na(t)) 

Now if a ::; s < t ::; b, then we have 

dist(ra(a), ra(t)) 

dist(ra(a), a(t)) 

d(a(a), a(t)) = t - a. 

dr(na(a),na(s)) = s - a. 
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Hence, we have 

dr(7fa(s),7fa(t)) > dr(7fa(a),7fa(t)) - dr(7fa(a), 7fa(s)) 

(t - a) - (s - a) 

t - s. 

Moreover, we have 

dr (7fa(s),7fa(t)) = dist(ra(s), ra(t)) ::; d(a(s), a(t)) = t - s. 

Therefore, we have 
dr(7fa(s),7fa(t)) = t - s. 

Thus 7fa is a geodesic arc. 
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Theorem 13.1.3. Let r be a dzscontinuous group of zsometrzes of a metrzc 
space X and let 7f : X ...... x/r be the quotient map. If a : [a, b] ...... X is a 
geodesic are, then 7fa : [a, b] ...... x/r zs a piecewzse geodeszc curve. 

Proof: For each point x of X, set 

r(x) = ~dist(X,rx - {x}). 

Then the collection of open intervals 

{B(t, r(a(t))) : a::; t::; b} 

covers [a, b]. Now as [a, b] is compact, there is a partition {to,.··, tm } of 
[a, b] such that for each i = 1, ... , m, we have 

[t.-I, t.] c B(t, r(a(t))) 

for some t in [a, b]. Hence, by Theorem 13.1.1 and Lemma 1, we deduce 
that 7fa restricted to [t.-I, t.] is either a geodesic arc if t is not in (t.-I, t.) 
or the product of two geodesic arcs joined at t if t is in (t.-I, t.). Thus 7fa 
is a piecewise geodesic curve. 0 

Note that Theorem 13.1.3 implies that 7f : X ...... x/r preserves the 
length of a geodesic arc a : [a, b] ...... x. The next theorem says that 7f 
preserves the length of any curve "( : [a, b] ...... X. 

Theorem 13.1.4. Let r be a discontinuous group of isometries of a metrzc 
space X and let 7f : X ...... x/r be the quotient map. If"(: [a, b] ...... X zs a 
curve, then 17f"(1 = !"fl. 
Proof: For each point x of X, set 

r(x) = ~dist(x,rx-{x}). 
Then the collection of open balls 

B = {B("((t),r("((t))): a::; t::; b} 
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covers I'([a, b]). Now as I'([a, b]) is compact, there is a partition {to, ... , tm } 

of [a, b] such that for each i, there is a ball B(x" T i ) in B such that 

[ti-l, til c B(Xi' Ti). 

Moreover, by Theorem 13.1.1, there is a finite subgroup fi of f such that 
7r induces an isometry from B(xi , Ti)/fi onto B(7r(Xi)' Ti). Let I'i be the 
restriction of l' to the interval [ti-l, til, and let 7ri : X -+ X/fi be the 
quotient map. If the theorem is true for finite groups, then we would have 

\7rl'i\ = \7ril'i\ = hi\' 

and it would then follow from the additivity of arc length that 17r1'1 = 11'1. 
ThuH, we may assume that f is finite. 

The proof now proceeds by induction on the order In of f. The theorem 
is certainly true if If\ = 1. Assume that If) > 1 and the theorem is true for 
all groups of order less than If). Let F be the set of points of X that are 
fixed by all the elements ofT. If the image of l' is disjoint from F, then by 
the previous argument and the induction hypothesis, we can conclude that 
17r1'\ = 11'1. Thus, we may assume that there is a number c in the interval 
[a, b] such that I'(c) is in F. 

Now let P = {to, ... , tm } be an arbitrary partition of [a, b]. Then 
m 

m 

Hence 17r1'1 :S 11'1· 
On the contrary, suppose that 17r1'1 < hi. Then there is a partition 

{to, ... , tm } of [a, b] such that 
m 

i=1 

Let I'i be the restriction of l' to the interval [t.,-I, til. Then we have that 

17rl'il < d(')'(ti -d,I'Cti )) 

for at least one index i. Thus, by replacing l' with I'i, we may assume, 
without loss of generality, that 

I 7r1' \ < d(')'Ca),I'Cb)). 

Now as the point I'(c) is in F, we have 

dr(7r"((a),7rI'(c)) dist(fl'(a), fI'Cc)) 

dist(')'(a), fI'Cc)) 

d(')'Ca),I'(c)). 
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Likewise, we have 

dr ('ll'''((c), n"((b)) = d("((c) , "((b)). 

Hence, we have 

In"(l > dr(7f"((a) , n"((c)) + dr(n"((c) , 7f"((b)) 

d("((a) , "((c)) + d("((a) , "((c)) 

> d("((a) , "((b)), 

which is a contradiction. Thus 17f"(1 = 1"(1· 
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Theorem 13.1.5. Let f be a discontinuous group of isometrzes of a finitely 
compact metrzc space X. If X zs geodeszcally connected, then X If is 
geodeszcally connected. 

Proof: Let fx and fy be distinct f-orbits and let e = dr(fx, fy). Now 
e = dist (x, fy) and B (x, e + 1) contains only finitely many points of fy, 
since B(x,e + 1) is compact. Hence, there is an element 9 of f such that 
e = d(x,gy). 

Let a : [0, e] -+ X be a geodesic arc from x to gy and let n : X -+ X/f 
be the quotient map. We now show that 7ra : [0, e] -+ X/f is a geodesic 
arc from fx to fy. Suppose that 0 :::; s < t :::; e. Then 

dr(na(s),na(t)):::; d(a(s),a(t)) = t - s, 

since n does not increase distances. Now observe that 

e dr(na(O) , na(e)) 

< dr(na(O) , na(s)) + dr(na(s) , 7ra(t)) + dr(na(t) , na(e)) 

< s+(t-s)+(e-t) = e. 

Hence, we have that 

dr(na(s), na(t)) = t - s. 

Thus na is a geodesic arc from fx to fy. o 

Theorem 13.1.6. Let f be a dzscrete group of zsometries of a geometric 
space X and let n : X -+ X/f be the quotient map. If a : [a, b] -+ X/f zs 
a geodesic arc and x is a poznt of X such that n(x) = a(a), then there zs a 
geodesic arc a : [a, b] -+ X such that a(a) = x and na = a; moreover, a is 
unique up to multiplication by an element of the stabilizer f x' 

Proof: Since X is a geometric space, there is a k > 0 such that any 
point in the ball B(x, k) distinct from x is joined to x by a unique geodesic 
segment. Set 

1 . 
s = 2"dlst(x,fx - {x}) 

and let 
r = min{k, s/2}. 
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Suppose that c is a number such that a < c ::::: band c - a < r. Then 

dr(a(a), a(c)) = c - a < r 

and so there is a point z in B(x, r) such that rz = a(c) and 

d(x, z) = dr(a(a) , a(c)) = c - a. 

Let t be a number such that a < t < c. Then we have that 

dr(a(a), a(t)) = t - a < r. 
Hence, there is a point y in B(x, r) such that ry = a(t) and d(x, y) = t - a. 
As r ::::: s/2, we have that d(y, z) < s. Now, if g is in r - r x, then 

B(x, s) n gB(x, s) = (/) 

and so d(gy, z) 2': s, since r ::::: s/2. Therefore, by replacing y with gy for 
some g in r x, we may assume that d(y, z) = c - t. As r ::::: k, there is a 
unique geodesic segment [x, z] in X joining x to z. Let [x, y] be a geodesic 
segment in X joining x to y, and let [y, z] be a geodesic segment in X 
joining y to z. Then we have 

d(x, y) + d(y, z) = (t - a) + (c - t) = c - a = d(x, z). 

Therefore, by Theorem 1.4.3, we have 

[x, y] u [y, z] = [x, z]. 

Hence y lies on [x, z] at a distance t - a from x. Consequently 

O:a,c : [a, c] ---; X, 

defined by O:a,c(a) = x and O:a,c(t) = y and O:a,c(c) = z, is a geodesic arc 
such that O:a,c(a) = x and 1TO:a,c(C) = a(t) for all t in [a, c]. 

Next suppose that 
aa,c : [a, c] ---; X 

is another geodesic arc such that aa,c(a) = x and 1Taa,c(c) = a(t) for all t 
in [a, c]. Then we have 

1Taa,c(c) = a(c) = rz. 
Now as 

d(x, aa,c(c)) = c - a < r < s, 

there is a g in r x such that aa,c(c) = gz. Moreover, as 

d(x, gz) = d(x, z) < r ::::: k, 

there is a unique geodesic segment [x, gz] in X joining x to gz. Therefore 

aa,c = gO:a,c' 
Next let I! be the supremum of all real numbers c such that a < c ::::: b 

and there is a geodesic arc O:a,c : [a, c] ---; X such that O:a,c(a) = x and 
1TO:a,c(t) = a(t) for all t in [a, c] and O:a,c is unique up to multiplication by 

an element of r x' 
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Now since r x is finite, there is an increasing sequence 

a < Cl < C2 < ... 

converging to £ such that aa,cJ extends aa,c, for all i < j. Define 

aa,C : [a, £] ---+ X 

by aa,c(t) = aa,c, (t) if a ::; t ::; C" and 

aa,C(£) = lim aa,c, (c"), 
"-+= 
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which exists, since {aa,c, (c"n is a Cauchy sequence. Clearly aa,c preserves 
distances on [a, f). Observe that if a ::; t < £, then we have 

d( aa,C( t), lim aa,c, (c")) 
"-+= 

lim d(aa,c(t), aa,c, (c")) 
"-+= 
lim Ic~ - tl = £ - t. 
"-+= 

Thus aa,C preserves distances and therefore aa,c is a geodesic arc. Clearly 
7raa,c(t) = a(t) for all t in [a, f). As the quotient map 7r : X ---+ x/r is 
continuous, 7raa,c(£) = a(£). 

Now suppose that aa,C : [a, £] ---+ X is another geodesic arc such that 
aa,e(a) = x and 7raa,c(t) = a(t) for all t. Then for each i, there is a g, in 
r x such that aa,C extends g"aa,c,. As r x is finite, there is a 9 in r x such 
that 9 = g, for infinitely many i. Thus, by passing to a subsequence, we 
may assume that aa,C extends gaa,c, for all i. Therefore aa,e = gaa,c by 
continuity. 

We claim that £ = b. On the contrary, suppose £ < b. Let z = aa,c(£). 
By the first part of the proof, there is a geodesic arc ac,d : [£, d] ---+ X such 
that ac,d(£) = z and 7raC,d(t) = a(t) for all tin [£, d]. Define 

aa,d : [a, d] ---+ X 

by aa,d = aa,eae,d. Then aa,d(a) = x and 7raa,d(t) = a(t) for all t in [a, d]. 
Let w = aa,d( d). Then we have 

d(x, w) > dist(x, rw) 

dr( a( a), a( d)) 
d-a 

(£ - a) + (d - £) 

d(x, z) + d(z, w) ~ d(x, w). 

Therefore, we have 
d(x, w) = d(x, z) + d(z, w) 

and so aa,d is a geodesic arc by Theorem 1.4.3. 
Now suppose that aa,d : [a, d] ---+ X is another geodesic arc such that 

aa,d(a) = x and 7raa,d(t) = a(t) for all t. Then there is an element 9 of r x 
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such that gaa,d extends aa,€. Let v = aa,d(d) and let [x, z], [x, w], and [x, v] 
be the images of aa,C, aa,d, and aa,d, respectively. As the geodesic segments 
g[x, v] and [x, w] both extend the geodesic segment [x, z], we deduce that 
g[x, v] = [x, w], since X is geodesically complete. Therefore gaa,d = aa,d. 
Thus aa,d is unique up to multiplication by an element of r x' But d > C, 
which contradicts the supremacy of C. Therefore, we must have C = b. 
Thus, there is a geodesic arc a : [a, b] ---+ X such that a(a) = x, 7ra = a, 
and a is unique up to multiplication by an element of r x' D 

Theorem 13.1.7. Let r be a discrete group of isometries of a geometric 
space X and let 7r : X ---+ x/r be the quotzent map. If,: [a, b] ---+ x/r zs 
a rectifiable curve and x zs a poznt of X such that 7r( x) = ,(a), then there 
is a curve l' : [a, b] ---+ X such that 1'( a) = x and 7r1' = ,. 

Proof: Since,: [a, b] ---+ x/r is uniformly continuous, for each positive 
integer j, there is a t5J > 0 such that if s, t are in [a, b]' with Is - tl < t5J , 

then we have that 
dr(r(s),,(t)) < 1/j. 

Construct a sequence of partitions PJ = {ttJ} of [a, b] such that IPJ I < t5J 
for each j and 

Set 
CtJ = dr(,(ttJ),,(tt+l,J)) for each i,j. 

By Theorem 13.1.5, there is a geodesic arc a tJ : [O,C'J]---+ x/r starting at 
,(ttJ) and ending at ,(tt+l,J)' Define 'J : [a,b]---+ x/r by 

Let C([a,b],X) be the set of all continuous functions from [a,b] to X. 
Define a metric D on C([a, b], X) by the formula 

D(a,(3) = sup{d(a(t),(3(t)): t E [a,b]}. 

Then the metric topology determined by D is the compact-open topology. 
Likewise, define a metric Dr on C([a, b], X/r). 

We now show that the sequence {rJ} converges to , in C([a, b], X/r). 

Observe that if t is in [ttJ' tt+l,J], then 

dr(r(t)"J(t)) < dr(r(t),,(ttJ)) + dr(r(ttJ)"J(t)) 

< 1/j + dr(r(t'J)' ,(tt+l,J)) 
< 1/j + 1/j = 2/j. 

Hence, we have that 

Therefore 'J ---+ ,. 
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Now by Theorem 13.1.6, the curve 'YJ : [a, b] ~ X/f lifts to a curve 
iJ : [a, b] ~ X, with respect to 7[, such that iJ(a) = x for each j. We next 
show that the sequence {iJ} is equicontinuous. Let t > O. Then there is a 
positive integer m such that 

Dr(r, 'YJ) < t/3 for all j > m. 
For each t in [a, b], let 'Ya,t be the restriction of'Y to [a, t] and let >.(t) = ha,tl· 
Then>. : [a, b] --+ lR is continuous. Now since ii, ... ,im and>' are uniformly 
continuous, there is a 8 > 0 such that if 8, t are in [a, b], with 8 < t and 
t - 8 < 6, then 

for j = 1, ... ,m and 
>.(t) - >.(8) < t/3. 

Now suppose that j > m and 8, t are in [a, b], with 8 < t and t - 8 < 8. Let 
'Ys,t be the restriction of 'Y to [8, t]. Suppose that 8 is in [tk-1,J' tkJ] and t 
is in [tCj, tR+1,J]' Then we have 

d(iJ(8),iJ(t» 
£-1 

< d(iJ(8),iJ(tkJ» + I:d(iJ(t'J),iJ(t'+1,J» +dCiJ(tcJ),iJ(t») 
,=k 

£-1 

dr(rJ (8), 'YJ (tkJ» + I: dr(rJ (t'J)' 'YJ (t,+l,J» + dr (rJ (tfJ)' 'YJ (t» 
,=k 

C-1 
:S dr(rJ(s),'Y(S» + dr(r(S),'Y(tkJ» + I:dr (r(t'J),'Y(t,+l,J» 

+ dr(r(tcJ),'Y(t» + dr(r(t), 'YJ(t» 
< t/3 + hs,tl + t/3 

t/3 + >.(t) - >.(s) + t/3 
< t/3 + t/3 + t/3 = t. 

Thus {iJ} is equicontinuous. 
Now observe that if t is in [a, b], then we have 

d(iJ (a), iJ(t» :S liJI = hJI :S hi· 
Thus, the image of iJ is contained in B(x, hi) for each j. It follows by 
the Arzela-Ascoli theorem that the sequence {i]} has a limit point i in 
C([a, b], X). By passing to a subsequence, we may assume that iJ ~ i. 
Then iJ(a) ~ iCa) and so i(a) = x. Now the induced map 

7[ * : C([a, b], X) ~ C([a, b], X/f) 
is continuous. Therefore 7[*(iJ) ~ 7[* (i). Hence 'YJ ~ 7[i. Therefore 

o 
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Exercise 13.1 

1. Let r be a discrete group of isometries of a geometric space X and let x 
be a point of X. The point rx of x/r is called a ordmary pomt of x/r if 
r x = {I}, otherwise rx is called a smgular pmnt of x/r. Prove that the 
set of all ordinary points of X /r is a connected, open, dense subset of X /r. 
Conclude that the set of all singular points of x/r is a closed nowhere dense 
subset of X /r. 

2. Let r 1 and r 2 be discrete groups of isometries of X = sn, En, or Hn. Prove 
that x/r1 is isometric to X/r2 if and only if r 1 is conjugate to r2 in I(X). 

3. Let r be a discrete group of isometries of X = sn, En, or Hn. The volume 
of x/r is the volume of any proper fundamental domain for r in X. Prove 
that Vol(X/r) is an isometry invariant of x/r. 

4. Let r be a discrete group of isometries of En. Prove that En /r has finite 
volume if and only if r is a crystallographic group. 

5. Let r be an elementary discrete group of isometries of Hn. Prove that H n /r 
has infinite volume. 

§13.2. (X, G)-Orbifolds 

Let G a group of similarities of a geometric space X and let M be a 
Hausdorff space. An (X, G)-orb%fold atlas for M is defined to be a family 
of functions 

<P = {q\ : U" -+ X/rJ'ET, 
called charts, satisfying the following conditions: 

(1) The set U" called a coordmate ne%ghborhood, is an open connected 
subset of M, and r t is a discrete group of isometries of X for each i. 

(2) The chart cP, maps the coordinate neighborhood Ut homeomorphically 
onto an open subset of Xjr t for each i. 

(3) The coordinate neighborhoods {U,hET cover M. 

( 4) If Ut and U) overlap, then the function 

cP)cP;l : cPt(U, n UJ) -+ cP)(U, n U)), 

called a coordmate change, has the property that if x and yare points 
of X such that 

cP)cP;l(rtx) = r)y, 

then there is an element 9 of G such that gx = y and 9 lifts cP)cP;l 
in a neighborhood of x, that is, 

cP)cP;l(rtw) = rJgw 

for all w in a neighborhood of x. 
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Theorem 13.2.1. Let <.p be an (X, G)-orbifold atlas for M. Then there is 
a unique maximal (X, G)-orbifold atlas for M containing <.P. 

Proof: Let <.P = {r/J, : U, ---+ X/f,} and let (f) be the set of all functions 
r/J : U ---+ X /f such that 

(1) the set U is an open connected subset of M, and f is a discrete group 
of isometries of X; 

(2) the function r/J maps U homeomorphically onto an open subset of 
X/f; 

(3) the function 
r/Jr/J-;l : r/J, (U, n U) ---+ r/J(U, n U) 

has the property that if wand x are points of X such that 

r/Jr/J-;l(f,w) = fx, 

then there is an element 9 of G such that gw = x and 9 lifts r/Jr/J-;l in 
a neighborhood of w. 

Clearly (f) contains <.P. Suppose that r/J : U ---+ X/f and 'IjJ : V ---+ X/H 
are in (f). Consider the function 

'ljJr/J-l : r/J(U n V) ---+ 'IjJ(U n V). 

Suppose that x and yare points of X such that 'ljJr/J-l(fx) = Hy. Let 

r/J, : U, ---+ X/f, 

be in <.P such that r/J-l(fx) is in U,. Then there is a point w of X such that 

r/J-;l(f,w) = r/J-l(fx) = 'IjJ-l(Hy). 

Hence, there are elements 9 and h of G such that gw = x and hw = y, and 
g and h lift r/Jr/J-;l and 'ljJr/J-;1, respectively, in a neighborhood of w. Observe 
that hg-1x = y and hg-1 lifts 'ljJr/J-;lr/J,r/J-l = 'ljJr/J-l in a neighborhood of 
x. Thus (f) is an (X,G)-orbifold atlas for M. Clearly (f) contains every 
(X, G)-orbifold atlas for M containing <.P, and so (f) is the unique maximal 
(X, G)-atlas for M containing <.P. 0 

Definition: An (X, G)-orbifold structure for a Hausdorff space M is a 
maximal (X, G)-orbifold atlas for M. 

Definition: An (X, G)-orbifold M is a Hausdorff space M together with 
an (X, G)-orbifold structure for M. 

Definition: A geometric orbzfold is an (X, G)-orbifold such that X is an 
n-dimensional geometry. 

Example 1. Let f be a discrete group of isometries of a geometric space 
X and let G be any group of similarities of X containing f. Then the 
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identity map [ : X/f ----+ X/f constitutes an (X, G)-orbifold atlas for X/f. 
By Theorem 13.2.1, this atlas determines an (X, G)-orbifold structure for 
X/f, called the induced (X, G)-orbifold structure. Thus X/f together with 
the induced (X, G)-orbifold structure is an (X, G)-orbifold. 

Example 2. An (sn,I(sn))-orbifold is called a spherical n-orbifold. 

Example 3. A (En, I(En) )-orbifold is called a Euclidean n-orbzfold. 

Example 4. An (Hn, I(Hn) )-orbifold is called a hyperbolzc n-orbifold. 

Example 5. A (En,S(En))-orbifold is called a Euclidean similarity n­
orbifold. 

Definition: A chart for an (X, G)-orbifold M is an element ¢ : U ----+ X/f 
of the (X, G)-structure of M. 

Theorem 13.2.2. Let ¢ : U ----+ X/f be a chart for an (X, G)-orbifold M. 
Then f is a subgroup of G. 

Proof: By Theorem 6.5.15, the group f has a fundamental domain D in 
X. Let 7[ : X ----+ X/f be the quotient map. Then D contains a point x 
of the open set 7[-1 (¢(U)), since f D is dense in X. Let f be an arbitrary 
element of f and set y = fx. Then fx = fy. Hence, there is an element 
9 of G such that gx = Y and 9 lifts the identity map ¢¢-1 of ¢(U) in a 
neighborhood of x. Therefore 7[g agrees with 7[ in a nonempty open set. 
Hence 9 is in f by Theorem 13.1.2. As x is in D, the stabilizer f x is trivial. 
Therefore fx = gx implies that f = g. Hence f is in G. Thus f is a 
subgroup of G. D 

Order of a Point 

Let u be a point of an (X, G)-orbifold M. A chart for (M, u) is a chart 
¢ : U ----+ X/f for M such that u is in U. Suppose that ¢i : U, ----+ X/f, 
and ¢J : UJ ----+ X/fJ are charts for (M, u). Then there are points x and Y 
of X such that ¢,(u) = f,x and ¢J(u) = fJY' Hence ¢j¢-;l(f,x) = fJY' 
Therefore, there is an element 9 of G such that gx = Y and 9 lifts ¢J¢-;l 
in a neighborhood of x. Let f x be the stabilizer of x in f, and let f y be 
the stabilizer of y in f J' Let f be an element of f x' Then we have that 
gfg-1 y = Y and gfg-1 lifts the identity map (¢J¢-;l ) (¢,¢-;1 ) of ¢J (U, nUJ) 
in a neighbor hood of y. Therefore 9 f g-l is in f y by Theorem 13.1.2. 
Thus gf xg- 1 C f y' By reversing the roles of x and y, we deduce that 
g-lfyg C f x. Therefore gfx g- 1 = f y . Hence, the conjugacy class of fx 
in G depends only on the point u. 
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6 

6 L-______ -' 6 
2 

Figure 13.2.1. A Euclidean orbifold 

The order of the point u of the orbifold M is the order of the stabilizer 
r x. As r x is determined up to conjugacy by u, the order of u does not 
depend on the choices of ¢. and x. 

Example 6. Let r be the discrete group of isometries of E2 generated by 
the reflections in the sides of an equilateral triangle 6. By Theorem 6.5.8, 
the inclusion map [ : 6 ----7 E2 induces a homeomorphism K : 6 ----7 E2 Jr. 
Consequently, we can pull back the Euclidean orbifold structure of E2 jr 
onto 6 by K. Then the vertices of 6 have order six. The interior points of 
the sides of 6 have order two, and the interior points of 6 have order one. 
See Figure 13.2.1. 

Theorem 13.2.3. Let ¢ : U ----7 Xjr be a chart for (M, u), let x be a point 
of X such that ¢( u) = rx, and let r x be the stabilizer of x zn r. Then 
there zs an open nezghborhood V of u zn U such that ¢ restrzcted to V lifts 
to a chart'ljJ: V ----7 Xjrx for (M,u). 

Proof: If r x = r, then we may take V = U. Thus, we may assume that 
r x is a proper subgroup of r. Set 

s = ~dist(x,rx - {x}). 

By Theorem 13.1.1, the quotient map 7r : X ----7 Xjr induces a homeomor­
phism 

7]: B(x,s)/rx ----7 B(7r(x),s). 

Let V = ¢-1(B(7r(x), s)). Then V is an open neighborhood of u in U. 
Define'ljJ: V ----7 Xjrx by 'ljJ(v) = 7]-1¢(v). Then'ljJ lifts the restriction of ¢ 
to V. 

As the ball B(x, s) is connected, B(7r(x), s)) is also connected. There­
fore V is connected. The function ¢ maps V homeomorphically onto 
B(7r(x), s) and 7]-1 maps B(7r(x), s) homeomorphic ally onto the open sub­
set B (x, s) /r x of X /r x. Therefore 'ljJ maps V homeomorphically onto an 
open subset of X jr x. 
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Now suppose that ¢, : U, ---+ Xjr, is a chart for M. Consider the 
function 

'if;¢-;l : ¢,(U, n V) ---+ 'if;(U, n V). 

Suppose that y and z are points of X such that 

'if;¢:;l(r,y) = rx z . 

Then we have that 

Hence, we have that 
¢¢:;l(r,y) = rz. 

As ¢ and ¢, are charts for M, there is an element 9 of G such that gy = z 
and 9 lifts ¢¢:;l in a neighborhood W of y. This means that 

¢¢:;l(r,w) = rgw 

for all w in W. Let 1r, : X ---+ Xjr, be the quotient map and let 

Wi = W n 1r:;l(¢,(U, n V)). 

Then W' is a neighborhood of y in X, and for all w in W', we have 

'if;¢:;l(r,w) = r]-l¢¢:;l(r,w) = r]-l(rgw) = r xgw. 

Thus 9 lifts 'if;¢:;l in a neighborhood of y. Therefore 'if; : V ---+ Xjr x is a 
chart for (M,u). D 

An ordinary point of an (X, G)-orbifold M is a point of M of order one, 
and a singular point of M is a point of M of order greater than one. The 
ordinary set of M is the set D(M) of all ordinary points of M, and the 
singular set of M is the set ~(M) of all singular points of M. 

Example 7. Consider the Euclidean orbifold structure on the equilateral 
triangle I::,. in Example 6. Then D(I::,.) = 1::,.0 and ~(I::,.) = al::,.. 

Theorem 13.2.4. Let M be an (X, G)-orbifold. Then the ordznary set 
D(M) zs an open dense subset of M and the singular set ~(M) is a closed 
nowhere dense subset of M. 

Proof: Let u be an ordinary point of M. By Theorem 13.2.3, there is 
a chart ¢ : U ---+ X for (M, u). Then the order of each point of U is one. 
Hence U c D(M). Thus D(M) is open in M. 

Now let v be an arbitrary point of M and let 'if; : V ---+ Xjr be a chart 
for (M, v). Let D be a fundamental domain for r in X. Then r D is an 
open dense subset of X. Let W be an open neighborhood of v in V. Then 
there is an element 9 of r such that 'if;(W) n gD is nonempty. Now each 
point of 'if;-l(gD) has order one. Therefore W contains an ordinary point 
of M. Thus D(M) is dense in M. As ~(M) is the complement of D(M) in 
M, we conclude that ~(M) is a closed nowhere dense subset of M. D 
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Theorem 13.2.5. Let ¢J¢:;I : ¢,(U, n UJ) ---; ¢J(U' n UJ) be a coordinate 
change of an (X, G)-orbifold M. Then ¢J¢:;I hfts to an element of G on 
each connected component over zts domain. 

Proof: Let 1f, : X ---; X/f, be the quotient map and let C be a connected 
component of 1f:; I ( ¢, (U, n UJ )). Let w be a point of C. Then there is an 
open neighborhood W of w in C and an element 9 of G such that 9 lifts 
¢J¢:;I on W. Let x be an arbitrary point of C. Then there are open subsets 
WI"'" Wm of C such that W = WI, the sets Wk and W k+1 overlap for 
k = 1, ... ,m -1, the point x is in Wm , and ¢J¢:;I lifts to an element gk 
of G on Wk for each k. 

It suffices to prove that we can replace gm by g. The proof is by induction 
on m. This is certainly true if m = 1, so assume that m > 1, and we can 
replace gm-I by g. By Theorem 13.2.4, the open set 

¢J¢:;I(1f,(Wm_ 1 n W m )) 

contains an ordinary point f J z of X /f J' Then the stabilizer of z in f J is 
trivial. Hence, there is an r > 0 such that 

B(z,r)nB(jz,r) =0 

for all f -=I- 1 in f J . 

Let y be a point of W m-I n W m such that 

¢J¢:;I(f,y) = fJz. 

Then there is an s > 0 such that 

Now observe that 

B(y, s) C W m - I n Wm , 

gB(y, s) C B(gy, r), 

gmB(y, s) C B(gmY, r). 

fJgy = ¢J¢:;I(f,y) = fJgmy. 

Hence, there is an element h of f J such that gy = hgmy. Moreover, if y' is 
in B(y,s), then 

fJgy' = ¢J¢:;I(f,y') = fJgmy'. 

Hence, there is an element h' of f J such that gy' = h'gmY'. Observe that 
gy' is in B(gy,r) and gmY' is in B(gmy,r). Hence h'gmY' is in the set 

B(hgmy, r) n B(h' gmY, r). 

Now since fJgmy = fJz, the stabilizer of gmY in f J is trivial, and so 

hB(gmY, r) n h' B(gmY, r) = 0 unless h = h'. 

Hence h = h'. Therefore gy' = hgmy' for all y' in B(y, s). Hence 9 = hgm 
by Theorem 8.3.2. Thus, we may replace gm by g. 0 
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Metric (X, G)-Orbifolds 

Definition: A metric (X, G)-orbifold is a connected (X, G)-orbifold M 
such that G is a group of isometries of X. 

Let "Y : [a, b] -+ M be a curve in a metric (X, G)-orbifold M. We now 
defined the X-length of T Assume first that "Y([a, b]) is contained in a 
coordinate neighborhood U. Let cP : U -+ x/r be a chart for M. The 
X-length of "Y is defined to be 

Ihll = IcP"Yl· 

We now show that the X-length of"Y does not depend on the choice of the 
chart cP. Suppose that 'l/J : V -+ X/H is another chart for M such that V 
contains "Y([a, b]). 

Assume first that cP"Y is rectifiable. Then the curve cP"Y : [a, b] -+ x/r 
lifts to a curve cP"Y : [a, b] -+ X by Theorem 13.1.7. Now by Theorem 13.2.5, 
there is an isometry 9 in G that lifts 'l/JcP- 1 on cP"Y([a, b]). Hence 

IcP"Yl = IcP"Yl = Ighl = l'l/JcP- 1¢"YI = I'l/J"YI· 

Now assume that cP"Y is nonrectifiable. Then 'l/J"Y is nonrectifiable; other­
wise, we could lift 'l/J"Y : [a, b] -+ X/H to a curve 'l/J"Y : [a, b] -+ X and g-l'l/J"Y 
would be a rectifiable curve that lifts cP"Y, contrary to Theorem 13.1.4. 
Therefore, we have that 

I cP"Y I = 00 = I'l/J"YI· 

Thus, the X-length of "Y is well defined when the image of "Y lies in a 
coordinate neighborhood of M. 

Now assume that "Y : [a, b] -+ M is an arbitrary curve. As "Y([a, b]) is 
compact, there is a partition 

a = to < tl < ... < tm = b 

of [a, b] such that "Y([t,-l, t,]) is contained in a coordinate neighborhood U, 
for each i = 1, ... , m. Let "Yt,-l,t, be the restriction of"Y to [t,-l, tJ The 
X -length of "Y is defined to be 

m 

The X -length of "Y does not depend on the choice of the partition {tJ, 

since if 
a = So < Sl < ... < Sf = b 

is another partition such that "Y([S,-l, s.]) is contained in a coordinate 
neighborhood Vz, then there is a third partition 

a = ro < rl < ... < rk = b 
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such that {r"} = {s"} u {t"}, and therefore 

m k C 

L: Iht,-l,t,l1 = L: 111'1',-1,1',11 = L: 111'8,-1,8,11· 
"=1 "=1 "=1 

Definition: A curve "( in a metric (X, G)-orbifold M is X-rectzfiable if 

and only if 111'11 < 00. 

Lemma 1. Any two points of a metric (X, G)-orbifold M can be joined by 
an X -rectifiable curve in M. 

Proof: Define a relation on M by u rv V if and only if u and v are joined 
by an X-rectifiable curve in M. Clearly, this is an equivalence relation 
on M. Let [u] be an equivalence class and suppose that v is in [u]. Let 
'ljJ : V --+ XjH be a chart for (M, v). Then there is an r > 0 such that 'ljJ(V) 
contains B('ljJ(v),r). Let Hx be an arbitrary point of B('lj;(v),r). As XjH 
is geodesically connected, there is a geodesic arc a : [a, b] --+ XjH from 
'ljJ(v) to Hx. Clearly B ('ljJ (v) , r) contains a([a, b]). Hence 'ljJ-1 a : [a, b] --+ M 
is an X-rectifiable curve from v to 'ljJ-1(Hx). This shows that [uJ contains 
the open set 'ljJ-l(B('ljJ(v),r)). Thus [u] is open in M. As M is connected, 
[uJ must be all of M. Thus, any two points of M can be joined by an 
X-rectifiable curve. 0 

Theorem 13.2.6. Let M be a metric (X, G)-orbifold. Then the function 
d : M x M --+ lR, defined by 

d(u, v) = inf 111'11, 
'Y 

where "( varies over all X -rectifiable curves from u to v, is a metrzc on M. 

Proof: By Lemma 1, the function d is well defined. Clearly d is non­
negative and d( u, u) = 0 for all u in M. To see that d is nondegenerate, 
let u, v be distinct points of M. Since M is Hausdorff, there is a chart 
¢ : U --+ Xjr for (M, u) such that v is not in U. Choose r > 0 such that 
¢(U) contains C(¢(u),r). By Theorems 6.5.2 and 8.1.2, the set 

S(¢(u),r) = {rx E Xjr: dr(¢(u),rx) = r} 

is compact. Hence, the set T = ¢-1(S(¢(u),r)) is closed in M, since M is 
Hausdorff. 

Let"( : [a, b] --+ M be an arbitrary X-rectifiable curve from u to v. Since 
,,(([a, b]) is connected and contains both u and v, it must meet T. Hence, 
there is a first point c of the open interval (a, b) such that "((c) is in T. Let 
"(a,e be the restriction of"( to [a, c]. Then the image of "(a,e is contained in 
¢-l(C(¢(u), r)). Consequently, we have 

111'11 ~ Iha,ell = I¢"(a,el ~ dr(¢(u),¢"((c)) = r. 



670 13. Geometric Orbifolds 

Therefore d( u, v) ?: r > o. Thus d is nondegenerate. The rest of the proof 
follows the proof of Theorem 8.3.4. 0 

Let M be a metric (X, G)-orbifold. Then the metric d, in Theorem 
13.2.6, is called the induced metric on M. Henceforth, we shall assume 
that a metric (X, G)-orbifold is a metric space with the induced metric. 

Theorem 13.2.7. Let ¢ : U -+ x/r be a chart for a metric (X,G)­
orb~fold M, let rx be a pomt of ¢(U), and let r > 0 be such that ¢(U) 
contains the ball B(rx, r). Then ¢-l maps B(rx, r) homeomorph~cally 
onto B(¢-l(rx), r). 

Proof: The proof is the same as the proof of Theorem 8.3.5 with x 
~~~~~. 0 

Corollary 1. If M is a metNc (X, G)-orb~fold, then the topology of M is 
the metric topology determined by the induced metric. 

Theorem 13.2.8. Let ¢ : U -+ x/r be a chart for a metric (X, G)­
orb~fold M, let rx be a point of ¢(U), and let r > 0 be such that ¢(U) 
contains the ball B(rx,r). Then ¢-l maps B(rx,r/2) isometNcally onto 
B(¢-l(rx), r/2); therefore ¢ zs a local isometry. 

Proof: The proof is the same as the proof of Theorem 8.3.6 with x 
replaced by rx. 0 

Exercise 13.2 

1. Let ¢> : U -+ x/r be a chart for an (X, G)-orbifold M and let 9 be an element 
of G. Show that the function g: x/r -+ x/grg-l, defined by 

g(rx) = grg-1gx, 

is a similarity and that g¢> : U -+ x/grg- 1 is a chart for M. 

2. Let M be an (X, G)-orbifold. Prove that the (X, G)-orbifold structure of M 
contains a unique (X, G)-manifold structure for Q(M). 

3. Let 'Y : [a, b] -+ M be a curve in a metric (X, G)-orbifold. Prove that the 
X-length of'Y is the same as the length of'Y with respect to the induced 

metric. 

4. Let r be a discrete group of isometries of a geometric space X. Prove that 
Q(X/r) is a geodesically convex subset of x/r. 

5. Let r be a discrete group of isometries of geometric space X. Show that the 
induced metric on x/r and Q(x/r) is the orbit space metric dr. Conclude 
that x/r is the metric completion of the metric (X, r)-manifold Q(x/r). 
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§13.3. Developing Orbifolds 

In this section, we study the role of metric completeness in the theory of 
(X, G)-orbifolds. In particular, we prove that if M is a complete (X, G)­
orbifold, with X simply connected, then there is a discrete subgroup r of 
G of isometries of X such that M is (X, G)-equivalent to Xjr. 

(X, G)-Paths 

Let M be an (X, G)-orbifold. Informally, an (X, G)-path over M is a list 
of data that describes a piecewise lifting of a curve in M to X. The formal 
definition goes as follows: Let x and y be points of X and let 4> : U --+ X jr 
and'lj; : V --+ XjH be charts for M such that rx is in 4>(U) and Hy is in 
'lj;(V). An (X, G)-path over M from (x,4» to (y, 'lj;) is a sequence 

A = {9o, aI, 4>1,91, ... , 9m-I, am, 4>m, 9m} 

such that there is a partition {so, ... ,sm} of the unit interval [0,1] so that 
a. : [S.-l, s.] --+ X is a curve and 4>. : U. --+ Xjr. is a chart for M such 
that if 1f. : X --+ Xjr. is the quotient map, then 

1f.a.([s._l, s.l) C 4>.(U.) 

for each i, and 90, ... ,9m are elements of G such that 

(1) x = 90a1(0) and 90 lifts 4>4>11 in a neighborhood of a1(0), 

(2) a.(s.) = 9.a.+1(S.) and 9. lifts 4>.4>::;1 in a neighborhood of a.+1(s.) 
for each i = 1, ... ,m - 1, and 

(3) am(1) = 9mY and 9m lifts 4>m'lj;-l in a neighborhood of y. 

Observe that 

(1) 4>-l(rx) = 4>111f1a1(0), 

(2) 4>-;l1f•a.(s.) = 4>::;11f.+1a'+1(S.) for each i = 1, ... ,m -1, 

(3) 4>;;-.l1fmam(1) = 'lj;-l(Hy), 

and A describes the piecewise lifting of the curve 

A = (4)111f1a1)··· (4);;-.l1fmam) 

in M from the point 4>-1 (r x) to the point 'lj; -1 (Hy) . 

Example: Let a : [0,1] --+ X be the constant curve at the point x. Then 

I = {I, a, 4>,1} 

is an (X, G)-path over M from (x, 4» to (x,4» called the constant (X, G)­
path over M at (x, 4». 



672 13. Geometric Orbifolds 

We now consider five operations on an (X, G)-path 

A = {gO, aI, (PI, gl,·.·, gm-l, am, cPm, gm}. 

1. Subdivision 

For some index j, add a point S of the open interval (s J -1, S J) to the 
partition {So, ... , sm} and replace a J in A by 

aJ I[8J _1,8], cPJ' 1, aJI[8,8J ]' 

2. Junction 

Junction is the opposite operation of subdivision. 

3. Thanslation 

For some index j, if 7/J : 11; ----+ X /HJ is a chart for M such that 

cP,;-l7rJa J ([sJ-l, sJ]) C 11; 

and if fJ is an element of G that lifts 

7/JJcPt : cPJ(UJ n 11;) ----+ 7/JJ(UJ n 11;) 

in the component containing aJ([Sj-l, sJ])' replace gJ-l, aJ, cPJ' gJ in A by 

gJ-dJ-I, f JaJ, 7/JJ' fJgJ' 

Example: Let g be an element of G. Then g induces a similarity 

?J: x/rJ ----+ x/grJg-l, 

defined by 
?J(rJx) = grJg-lgx, 

such that the following diagram commutes: 

X ~ X 

1 1 
x/rJ ~ x/grJg-l 

where the vertical maps are the quotient maps. Observe that the function 

?JcPJ : UJ ----+ x/grJg- 1 

is a chart for M, since g lifts (?JcPJ)cP,;-l. Hence, by translation, we may 

replace gJ-l, aJ, cPJ' gJ in A by 

gJ_lg- 1, gaJ, ?JcPJ' ggJ' 

Thus, we are free to translate by any element of G. 
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4. Reparameterization 

For some increasing homeomorphism h: [0,1] ----; [0,1] such that h(s,) = t, 
for i = 0, ... ,m, replace a, by (3" defined by 

(3,(t) = a,(h-1(t)) for t,-l::; t ::; t, and i = 1, ... , m. 

5. Small Homotopy 

Replace a, by (3, for each i = 1, ... , m when there is a homotopy 

H, : [S,-l, s,] x [0,1] ----; X 

from a, to (3, such that 

and for all t, we have 

Homotopic (X, G)-Paths 

Two (X, G)-paths A and B over M from (x, ¢) to (y, 'IjJ) are said to be 
homotopic, written A ~ B, if and only if there is a finite sequence of the 
above five operations taking A to B. Being homotopic is obviously an 
equivalence relation among the set of (X, G)-paths over M from (x, ¢) to 
(y, 'IjJ). We shall denote the homotopy class of A by [A]. 

Now let 

A = {gO, a1, ¢1, gl,···, gm-1, am, ¢m, gm}, 

B = {ho, (31, 'ljJ1, h1, ... , hn- 1, (3n, 'ljJn, hn} 

be (X, G)-paths over M from (x, ¢) to (y, 'IjJ) and (y, 'IjJ) to (z, X), respec­
tively. The product AB of A and B is the (X, G)-path over M from (x, ¢ ) 
to (z,X), 

where 

and 
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In order to simplify notation, we shall drop the primes in AB and ignore 
reparameterization. Observe that if A ~ A' and B ~ B', then AB ~ A' B'. 
Hence, we may define the product 

[A][B] = [AB]. 

Fundamental Orb if old Group 

Let M be an (X, G)-orbifold. The fundamental orbifold group of M, based 
at (x, ¢), is the set 7rf(M, x, ¢) of homotopy classes of (X, G)-paths over M 
from (x, ¢) to (x, ¢) together with the multiplication of homotopy classes. 

Theorem 13.3.1. Let M be an (X, G)-orbifold. Then 7rf(M, x, ¢) 28 a 
group. 

Proof: The multiplication of 7rf(M, x, ¢) satisfies the associative law, 
since homotopy includes reparameterization. Let I = {I, 0:, ¢, I} be the 
constant (X, G)-path over M at (x, ¢), and let 

be an (X, G)-path over M from (x, ¢) to (x, ¢). Then we have 

I A {I, 0:, ¢, l}{gO, 0:1, ¢1, gl, . .. ,gm-1, O:m, ¢m, gm} 

{I, 0:, ¢, go, 0:1, ¢1, gl,· .. ,gm-I, O:m, ¢m, gm}. 

By translation, we have 

I A ~ {gO, golo:, ¢I, 1,0:1, ¢1, g1, ... ,gm-1, O:m, ¢m, gm}. 

Hence, by junction, we have 

IA ~ {gO, (golO:)O:l' ¢1, gb··· ,gm-1, O:m, ¢m, gm}. 

Now by small homotopy, we have 

IA ~ {gO, 0:1, ¢1, gl,···, gm-1, O:m, ¢m,gm} = A. 

Likewise, we have that AI ~ A. Hence, we have 

[I][A] = [A] = [A] [I]. 

Thus [I] is the identity element of 7rf(M, x, ¢). 
Given A as above, let 

A-I {-I -1,J.. -1 -1,J.. -1 -1 -1,J.. -I} 
= gm' am ,'I'm, gm-1' O:m-1, 'I'm-I, gm-2'···' gl ,0:1 ,'1'1, go . 

Then we have that 

Hence [A-I] is the inverse of [A]. Thus 7rf(M,x,¢) is a group. o 
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Holonomy 

Let M be an (X, G)-orbifold, let x be a point of X, and let ¢ : U ---+ Xjr 
be a chart for M such that rx is in ¢(U). Let 

A = {gO, aI, ¢1, gl,···, gm-l, am, ¢m, gm} 

be an (X, G)-path over M from (x, ¢) to (x, ¢). Then the element go··· gm 
of G depends only on [A]. Hence, we may define a homomorphism 

7) : 7rf(M, x, ¢) ---+ G 

by the formula 
7)([A]) = go ... gm· 

The homomorphism 7) is called the holonomy of M determined by (x, ¢). 
Let r be a discrete group of isometries of X. Then the orbit space Xjr 

is an (X, r)-orbifold such that the identity map 

~ : Xjr ---+ Xjr 

is a chart for X Ir. 

Theorem 13.3.2. Let r be a discrete gmup of isometr2es of a s2mply con­
nected geometnc space X. Then for any pmnt x of X, the holonomy 

7): 7rf(Xjr,x,~) ---+ r 

2S an isomorph2sm. 

Proof: We first show that 7) is surjective. Let 9 be an element of r. Then 
there is a curve a : [0,1] ---+ X from x to gx. Observe that A = {I, a,~, g} 
is an (X, f)-path over Xjr from (x,~) to (x,~) and 7)([A]) = g. Thus 7) is 
surjective. 

We now show that 7) is injective. Let 

A = {gO, aI, ¢1, gl,···, gm-1, am, ¢m, gm} 

be an (X, r)-path over Xjr from (x,~) to (x,~) such that go··· gm 1. 
Observe that by translation, we have 

A ~ {I, goa1,~, gogl, a2, ¢2, g3,···, gm-1, am, ¢m, gm}. 

Continuing in this way, we deduce that 

A ~ {I, goa1,~, 1, gogla2,~, 1, ... ,1, go··· gm-1am,~, I}. 

Hence, by junction, we have 

A ~ {I, (goar) (gOgl a 2) ... (go··· gm-lam),~, I}. 

Now since X is simply connected, the closed curve 

(goar) (gOgl a 2) ... (go··· gm-l a m) 

is null homotopic. Therefore A ~ I. Thus 7) is injective. D 
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Universal Orbifold Covering Space 

Let M be an (X, G)-orbifold. Let x, y, z be a points of X and suppose that 
¢ : U ----* X/f, '!jJ : V ----* X/H, and X: W ----* X/K are charts for M such that 
fx is in ¢(U), Hy is in '!jJ(V), and Kz is in X(W). An (X, G)-path J over 
M from (y, '!jJ) to (z, X) is said to be constant if and only if J = {I, (3, '!jJ, J}, 
where (3 : [0,1] ----* X is the constant curve at y. 

Let A be an (X, G)-path over M from (x, ¢) to (y, '!jJ) and let B be an 
(X, G)-path over M from (x, ¢) to (z, X). We say that A is related to B, 
written A '" B, if and only if there is a constant (X, G)-path J over M 
from (y, '!jJ) to (z, X) such that AJ ~ B. 

Lemma 1. Being related is an equwalence relation among the set oj all 
(X, G) -paths over M that start at (x, ¢ ) . 

Proof: As AI ~ A, we have that A '" A. Suppose that A '" B as above. 
Then there is a constant (X, G)-path J = {l, (3, '!jJ, J} over M from (y, '!jJ) 
to (z,X). Let J' = {l",X,j-l}, where,: [0,1] ----* X is the constant 
curve at z. Then J' is a constant (X, G)-path over M from (z, X) to (y, '!jJ). 
Observe that 

Therefore, we have that 

BJ' ~ AJJ-1 ~ A. 

Hence B '" A. 
Now suppose that A", Band B '" C. Then there is a constant (X, G)­

path K = {1",X,g} over M such that BK ~ C. Observe that 

JK {1,(3,'!jJ,J}{I",X,g} 

{I, (3, '!jJ, j", X, g} 

{I, (3, '!jJ, 1, j" '!jJ, jg} 

{1,(3j,,'!jJ,jg} = {1,(3,'!jJ,jg} 

and the last (X, G)-path is constant. Moreover, we have that 

AJK~BK~C. 

Therefore A '" C. Thus, being related is an equivalence relation. 0 

The universal orbijold covenng space of M, based at (x, ¢), is the set 
iiI of all equivalence classes of (X, G)-paths over M starting at (x, ¢). Let 
A be an (X, G)-path over M starting at (x, ¢)._ The equivalence class of A 
will be denoted by (A). Define a function Ii : M ----* M by 

Ii( (A)) = A(I). 

The function Ii is called the universal orbzjold covenng projection of iiI. 
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We now define a topology on M. Let A be an (X, G)-p~h over M 
from (x, ¢) to (y, 'ljJ), and let N be an open neighborhood of A(I) in M. 
Let (A, N) be the set of all equivalence classes of the for~ (AB), where 
B is an (X, G)-path over M starting at (y, 'ljJ) such that B([O, 1]) c N. 
Observe that if J is a constant (X, G)-path over M starting at (y, 'ljJ), 
then (A) = (AJ). Therefore (A) is in (A, N). Moreover, if (A") is in 
(A,N) n (A',N'), then A"(I) is in NnN' and 

(A",NnN') c (A,N) n (A',N'). 

Consequently, the set of all subsets of M of the form _(A, N) form a basis 
for a topology on M. Henceforth, we shall regard M to be topologized 
with this topology. 

Lemma 2. If A' is an (X, G)-path over M such that (A') zs zn (A, N), 
then 

(A',N) = (A,N). 

Proof: Since (A') is in (A, N), there is an (X, G)-path B over M such 
that A' "-' AB and B([O, 1]) eN. Hence, there is a constant (X, G)-path J 
such that A' J ~ AB. Now if B' is an (X, G)-path over M starting where 
A' ends such that B'([O, 1]) eN, then 

A'B' ~ A'JJ-1B' ~ ABJ-1B'. 

Therefore, we have 
(A',N) C (A,N). 

Now as 
A ~ ABB-1 ~ A' JB-t, 

we have that (A) is in (A', N). Therefore, we have 

(A,N) c (A',N) 

by the previous argument. Thus (A',N) = (A,N). o 

Lemma 3. Let M}e an (X, G)-orbifold. Then a unzversal orbifold cover­
ing projection /'1, : M --+ M is a contznuous open map. Moreover, if M zs 
connected, then /'1, is surjectzve. 

Proof: Suppose that M is based at (x, ¢), let A be an (X, G)-path over 
M from (x, ¢) to (y, 'ljJ), and let N be an open neighborhood of A(I) in M. 
Then /'1, is continuous at (A), since 

/'1,((A,N)) eN. 

To show -.!hat /'1, is open, it suffices to show that /'1,( (A, N)) is open in M. 
Now since A(I) = 'ljJ-l(Hy), we find that 'ljJ-l(Hy) is in V n N, and so Hy 
is in 'ljJ(V n N). Let s > ° be such that 

B(Hy, s) c 'ljJ(V n N). 
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Then 7jJ-1(B(Hy,s)) is an open neighborhood ofA(I) in Nand 

7jJ-1(B(Hy,s)) C K:((A,N)), 

since any geodesic arc in X/H from Hy to a point of B(Hy, s) lifts to a 
geodesic arc in X from y to a point of B(y,s). Now (A,N) = (A',N) for 
all A' in (A,N) by Lemma 2. Therefore, by the same argument, A'(I) 
has an open neighborhood contained in K:( (A, N)) for each (A') in (A, N). 
Thus K:((A, N)) is open in M. 

By a similar argument, M - K:(M) is open in M. Hence K:(M) is both 
open and closed in M. Therefore, if M is connected, K: is surjective. 0 

Lemma 4. Let M be an (X, G)-orbiJold. Then every umversal orbzJold 
covenng space M oj M zs connected. 

Proof: Let M be the universal orbifold covering space of M based at 
(x, ¢). Let 

be an (X, G)-path over M from (x, ¢) to (y,7jJ) and let I be the constant 
(X, G)-path over M at (x,¢). We claim that there is a curve in M from 
(1) to (A). The proof is by induction on m. 

Assume first that m = 1. Then 

A = {gO, 001, ¢1, gl}. 

Let J = {1,;3,7jJ,gll} be the constant (X, G)-path over M from (y,7jJ) to 
(001(1), ¢d. Then we have 

Hence, we have 

J ~ {gll,gl;3,¢l, I}. 

AJ {gO,a1,¢1,gI}{gl\gl;3,¢1, I} 

{go, 001, ¢1, 1, gl;3, ¢1, I} 

{gO, a1g1;3, ¢1, I} 

{go,a1,¢1,1}. 

Consequently, we may assume that gl = 1 and (y,7jJ) = (001(1), ¢1). 
Now for each t in [0,1], define at : [0,1] ---> X by 

at(s) = a1(ts) 

and define an (X, G)-path At over M from (x,¢) to (a1(t),¢d by 

At = {gO, at, ¢1, I}. 

Observe that 000 is the constant curve at 001 (0) and 

Ao = {gO, 000, ¢1, I} ~ {I, goao, ¢, go} rv I. 

Hence (Ao) = (1). Define 'Y : [0,1] ---> M by 'Y(t) = (At). 
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We now show that 'I is continuous at a point t. Let N be an open 
neighborhood of A(t) in M. Now since A = <P117rIa1 is continuous at t, 
there is an E > 0 such that 

A(B(t, E) n [0,1]) eN. 

We claim that 
'1(B(t, E) n [0,1]) c (At, N). 

Let r be in B(t,E) n [0,1]. Define a curve Pr: [0, 1] ~ X by 

(3r(s) = al((I- s)t + sr) 
and define an (X, G)-path Br over M from (al(t),<pd to (a1(r),<pr) by 

BT = {I, Pr, <P1, I}. 
Then we have 

and 

AtBr {go,at,<P1,1}{1,{3n<P1,1} 

{gO, at{3n <PI, I} 

{go,an <Pl,l} = Ar 

B r ([O,I]) = <p117r1Pr([0, 1]) eN. 

Hence '1(r) = (AT) is in (At,N). Therefore 

'1(B(t, E) n [0,1]) c (At, N) 
and so 'I is continuous at t. Thus 'I is a curve in M from (1) to (A). 

Now assume that m> 1 and let 

Am-1 = {gO, a~, <PI, gl,···, gm-2, a~_l' <Pm-1, I} 
be the (X, G)-path over M from (x, <p) to (am-ICSm-l), <Pm-1) determined 
by A by reparameterization. Then by the induction hypothesis, (1) can 
be joined to (Am-I) by a curve in M. Let M' be the universal orbifold 
covering space of M based at (am-1(sm-d, <Pm-d. Define a function 

(Am-I)* : M' ~ M 
by the formula 

Then we have 
(Am-d* (A', N)) = (Am-lA', N). 

Hence (Am-d* is a homeomorphism with inverse (A;'~lk 
Let 1m- 1 be the constant (X, G)-path over M at (am-l (sm-d, <Pm-d 

and let 
A~_l = {gm-l,a~,<Pm,gm} 

be the (X, G)-path over M from (am-1 (Sm-1), <Pm-d to (y, 'l(;) determined 
by A by reparameterization. Then by the case m = 1, we have that (1m - I ) 

can be joined to (A~_l) by a curve 'I : [0, 1] ~ M'. Now 

(Am - 1 )*'1 : [0, 1] ~ M 
is a curve from (Am-I) to (A). Hence (1) can be joined to (A) by a curve 
in M. Thus M is connected. 0 
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Lemma 5. Let M be an (X, G)-o'rbifold. Then eve'rY unive'rsal o'rbifold 
cove'ring space M of M is Hausdo'rff. 

Proof: Let M be the universal orbifold covering space of M based at 
(x, ¢) and let Ko : M ---+ M be the universal covering projection. Let (A) 
and (A') be distinct points of M. Assume first that Ko( (A)) and Ko( (A')) are 
distinct. As M is Hausdorff, there are disjoint open neighborhoods Nand 
N ' of Ko( (A)) and Ko( (A')), respectively. The projection Ko is continuous by 
Lemma 3. Hence Ko-1(N) and Ko- 1(N') are disjoint open neighborhoods of 
(A) and (A'), respectively. Thus, we may assume that Ko((A)) = Ko((A')). 

Suppose that A is an (X, G)-path over M from (x, ¢) to (y, 'ljJ), where 
'ljJ : V ---+ X/H. Let 'r > 0 be such that 

(1) B(Hy, 'r) c'ljJ(V), 

(2) 'r::; ~dist(y,Hy - {y}), 

(3) B(y, 'r) is simply connected. 

Now set 
N = 'ljJ-l(B(Hy, 'r)). 

Then N is an open neighborhood of 'ljJ-l(Hy) = Ko((A)) in M. 
We claim that (A, N) and (A', N) are disjoint open neighborhoods of 

(A) and (A'), respectively. On the contrary, suppose that (A, N) meets 
(A', N). Then (A, N) = (A', N) by Lemma 2. Hence (A') = (AB) for 
some (X, G)-path B over M from (y, 'ljJ) to (z, X) such that B([O, 1]) eN. 
Suppose that 

B = {ho, /31, 'ljJl, hI' ... ' hn- 1, /3n, 'ljJn, hn}. 

Then by Theorem 13.2.5, there is an element f2 of G such that f2 lifts the 
coordinate change 

'ljJ'ljJ:;1 : 'ljJ2 (V. n V) ---+ 'ljJ(V. n V) 

in the component containing /32([S2-1, S2]). Then by translation, we have 

B c::' {hofll, h/31' 'ljJ, hhd.;I, ... , fn-lhn-d;;l, fn/3n' 'ljJ, fnhn}· 

Now since we are free to replace B by any element of (B), we may assume, 
without loss of generality, that 'ljJ2 = 'ljJ for all i to begin with. Then each 
h2 lifts 'ljJ'ljJ-1, and so h2 is in H for each i. Hence, by translation, we have 

B {I, h0/31' 'ljJ, hohl' /32, 'ljJ, h2,···, hn- 1, /3n, 'ljJ, hn} 

{1,ho/31,'ljJ,I,hohl/32,'ljJ,hohlh2,/33,'ljJ,h3, ... ,hn-l,/3n,'ljJ,hn} 

{I, h0/31' 'ljJ, 1, hohl/32' 'ljJ, 1, ... ,1, ho ··· hn- 1/3n, 'ljJ, ho ··· hn}· 

Hence, we may assume that h2 = 1 for i = 1, ... , n - 1. Then by junction, 

we have that 
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Hence, we may assume that 

B = {1,,6,~,h}. 

Let J = {1,,),,X,h- 1 } be the constant (X, G)-path over M from (z,X) to 
(,6(1),~). Then we have 

Hence, we have 

BJ {1,,6,~,h}{h-\h')',~,I} 

{1,,6,~, I, h')',~, I} 

{I, ,6h')',~, I} 

{1,,6,~,1}. 

Hence, we may assume that h = 1 and (z, X) = (,6(1), ~). 
Now as 

1>:( (AB)) = 1>:( (A)), 

we have that 
~-l(H,6(I)) = ~-l(Hy). 

Hence H,6(I) = Hy and so there is an element 1 of H such that 1,6(1) = y. 
Let 1] : X ----+ X/H be the quotient map. Then we have 

1](,6([0,1])) C B(Hy,r). 

Hence, we have 

,6([0,1]) C 1]-1 (B(Hy, r)) = U B(hy, r). 
hEH 

Now since 
1 . 

r :s; 2d1st(y, Hy - {y}), 

any two balls in {B(hy, r) : h E H} are disjoint or coincide. Moreover 

B(hy, r) = B(y, r) 

if and only if h is in the stabilizer Hy of y. As ,6(0) = y and ,6([0,1]) is 
connected, we deduce that 

,6([0,1]) C B(y,r). 

As 1,6(1) = y, we must have that 1 is in Hy . Therefore ,6(1) = y. Thus,6 is 
a closed curve. Now since B(y, r) is simply connected, ,6 is null homotopic 
in B(y, r). Therefore AB c:::' A. Thus, we have 

(A') = (AB) = (A), 

which is a contradiction. Therefore (A, N) and (A', N) are disjoint open 
neighborhoods of (A) and (A') in ]1;[, respectively. Thus ]I;[ is Hausdorff. 0 
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The Developing Map 

Let 

be an (X, G)-path over M from (x, ¢) to (y, 'Ij;). Then the point go··· gmY 
of X depends only on [AJ. Moreover, if J = {I, [3, 'Ij;, J} is a constant 
(X, G)-path over M from (y, 'Ij;) to (z, X), then we have 

go··· gmfz = go··· gmY, 

since Jz = y, and so go··· gmY depends only on (A). 
Let M be the universal orbifold covering space of M based at (x, ¢). The 

developing map determined by (x, ¢) is the function 8 : M ---+ X defined by 

8((A)) = go··· gmy· 

Lemma 6. Let M be a universal orbifold covenng space of an (X, G)­
orb2fold M. Then the developing map 8 : M ---+ X 2S a local homeomor­
ph2sm. 

Proof: Let 8 be determined by (x, ¢) and let 

A = {gO, a1, ¢1, gl,···, gm-1, am, ¢m, gm} 

be an (X, G)-path over M from (x,¢) to (y,'Ij;), where 'Ij;: V ---+ X/H. Let 
r > 0 be such that 

(1) B(Hy, r) c 'Ij;(V), 

(2) r::; ~dist(y,Hy - {y}), 

(3) B(y, r) is simply connected. 

Now set 
N = 'Ij;-l(B(Hy,r)). 

Then N is an open neighborhood of 'Ij;-l(Hy) = A(I) in M. Let 

9 = go··· gm· 

We claim that 8 maps the set (A, N) bijectively onto the ball gB(y, r). Let 
(A') be an element of (A, N). By the argument in Lemma 5, we have that 
(A') = (AB), where 

B = {l,[3,'Ij;,I} 

is an (X, G)-path over M from (y, 'Ij;) to ([3 (1), 'Ij;) such that 

[3([0,1]) c B(y, r). 

Hence 8( (A')) = g[3(I) is in gB(y, r). Moreover, since we may take [3 to be 
any rescaled geodesic arc in B(y, r), we have that 

8((A,N)) = gB(y,r). 
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Now suppose that 
B' = {1,,8',,¢,1} 

is another (X, G)-path over M from (y,,¢) to (,8'(1),,¢) such that 

,8'([0,1]) C B(y, r) and 8( (AB)) = 8( (AB')). 

Then g,8(1) = g,8'(1). Hence ,8(1) = ,8'(1). Now since B(y,r) is simply 
connected, ,8 is homotopic to ,8' in B (y, r) by a homotopy keeping the 
endpoints fixed. Hence B c:= B' and so (AB) = (AB'). Thus 8 maps 
(A, N) injectively onto gB(y, r). 

Now since the sets of the form (A, N) form a basis for the topology of 
M, we deduce that 8 : M ---> X is a local homeomorphism. 0 

It follows from Lemmas 5 and 6 that a developing map 8 : M ---> X 
induces an (X, {1} )-manifold structure on M. We shall regard the universal 
orbifold covering space M to be an (X, {1} )-manifold whose charts are the 
restrictions of 8. Then M has a metric such that 8 : M ---> X is an (X, {1})­
map and therefore a local isometry. Thus, we have the following theorem. 

Theorem 13.3.3. If M zs a universal orbifold coverzng space of an (X, G)­
orbzfold M, then M is an (X, {1} )-manifold such that the developzng map 
8: M ---> X zs an (X, {1})-map. 

Observe that the fundamental orbifold group 7r'l(M, x, ¢) of an (X, G)­
orbifold M acts on the universal orbifold covering space M of M based at 
(x, ¢) by the formula 

[C](A) = (CA). 

Theorem 13.3.4. Let M be the universal orbzfold covering space based 
at (x,¢) of a connected (X,G2-orbifold M. Then 7r'l(M,x,¢) acts effec­
tively and discontinuously on M vza szmzlarities, and the universal orbzfold 
covering proJectzon /'i, : M ---> M znduces a homeomorphism 

If,: M/7rf.(M,x,¢) ---> M. 

Proof: We first show that 7r'l(M, x, ¢) acts effectively on M. Suppose that 
A is an (X, G)-path over M from (x, ¢) to (y, ,¢), and [Cj is an element 
of 7r'l(M, x, ¢), and [C](A) = (A). Then (CA) = (A). Hence, there is a 
constant (X, G)-path J = {1,,8, ,¢, f} over M from (y, '¢) to (y, '¢) such 
that CAJ c:= A. Now fy = y and f lifts ,¢,¢-I in a neighborhood of y. 
Hence f is in the stabilizer Hy • 

Observe that the homotopy classes of the form [J], with J as above, 
form a subgroup of 7r'l (M, y, '¢) isomorphic to Hy via the holonomy 

'T}: 7rf.(M,y,,¢) ---> G, 

and since [Cj = [AJ- I A-I], this subgroup of 7r'l(M, y, '¢) is isomorphic to 
the stabilizer of (A) via the change of base point isomorphism 

[Aj* : 7rf.(M,y,,¢) ---> 7rf.(M,x,¢). 
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Thus, the stabilizer of (A) is isomorphic to the finite group Hy . In partic­
ular, if A(I) = ~-I(Hy) is an ordinary point of M, then the stabilizer of 
(A) is trivial. Hence 7r'l(M, x, ¢) acts effectively on 1M. 

We next show that 7r'l(M, x, ¢) acts on 1M via similarities. Let [C] be an 
element of 7r'l(M, x, ¢). Then we have 

8([C](A)) = 8((CA)) = 7]([C])8((A)). 

Hence, the following diagram commutes: 

1M -.!..... X 

Now as 8 is a local isometry and 7]([C])* is a similarity, we deduce that [C]* 
is a local similarity, all of whose local scale factors are the same. As [C] * is 
a bijection, we conclude that [C]* is a similarity by the same argument as 
in the proof of Theorem 8.5.8. Thus 7r'l(M, x, ¢) acts on 1M via similarities. 

We next show that the 7r'l(M, x, ¢)-orbits are the fibers of ~ : 1M --> M. 
If [C] is in 7r'l(M, x, ¢), then 

~([C](A)) = ~((A)). 
Hence, we have 

7r~(M,x,¢)(A) c ~-I(~((A))). 

Now let B be an (X, G)-path over M from (x, ¢) to (z, X) such that 

~((A)) = ~((B)) 

Suppose that X : W --> X/K. Then 

~-I(Hy) = X-I(Kz). 

Let J be an element of G such that Jz = y and J lifts ~X-I in a neighbor­
hood of z and let 

J = {I, /3,~, J} 

be the constant (X, G)-path over M from (y,~) to (z,X). Then B(AJ)-I 
is an (X,G)-path over M from (x,¢) to (x,¢) and we have 

[B(AJ)-I](A) (B(AJ)-I A) 

= (BJ-IA-IA) 

= (BJ- I ) = (B). 

Hence (B) is in 7r'l(M,x,¢)(A). Therefore 

7rf(M,x,¢)(A) = ~-I(~((A))). 

Thus, the 7r'l(M, x, ¢ )-orbits are the fibers of ~. _ 
We next show that 7r'l(M, x, ¢) acts discontinuously on M. Fir~t of all, 

the 7r'l (M, x, ¢ )-orbits are closed, since they are the fibers of ~ : M --> M. 
Let A be an (X, G)-path over M from (x, ¢) to (y, ~), where ~ : V --> X/H. 

Let r > 0 be such that 
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(1) B(Hy,r) c'ljJ(V), 

(2) r::; ~dist(y,Hy - {y}), 

(3) B(y, r) is simply connected. 

Now set 
N = 'ljJ-1(B(Hy, r)). 

Then N is an open neighborhood of 'ljJ-1(Hy) = ~((A)) in M. By the 
argument in Lemma 6, we have 

(A,N) n ~-l(~((A))) = (A). 

Hence (A) is open in ~-1(~( (A) )). Thus, the 7rl(~' x, </»-orbits are discrete. 
Therefore 7r't.(M, x, </» acts discontinuously on M by Theorem 5.3.4. 

Now ~ : M ~ M is a continuous open surjection by Lemma 3, and the 
fibers of ~ are the 7r't.(M, x, </> )-orbits. Therefore ~ induces a homeomor­
phism 

If,: M/7r'1(M,x,</» ~ M. o 

Theorem 13.3.5. Let M be the universal orbifold covering space based at 
(x, </» of a connected (X, G)-orbifold M and let G1 be the group of zsome­
tries in G. Then the following are equwalent: 

(1) The group 7r't.(M, x, </» acts on M via isometries. 

(2) The image of the holonomy", : 7r't.(M, x, </» ~ G is contained in G1 • 

(3) The (X, G)-orbifold structure <1> of M contazns an (X, G1)-orbifold 
structure <1>1 for M containing </>. 

Proof: Let [C] be an element of 7r't.(M, x, </». Then we have the commu­
tative diagram 

M ~ X. 

Now by Theorem 13.3.4, the map [0]* is a similarity. As {j is a local 
isometry, [0]* is an isometry if and only if ",([0])* is an isometry. Thus (1) 
and (2) are equivalent. 

Suppose that the image of the holonomy 'T} : 7r't.(M, x, </» ~ G is con­
tained in G1 • Let 

A = {gO, aI, </>1,gl, ... ,gm-1, am, </>m,gm} 

be an (X, G)-path over M from (x, </» to (y, 'ljJ), where 'ljJ : V ~ X/H. Let 

9 =gO···gm 

and let 
g: X/H ~ X/gHg- 1 
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be the induced similarity. Define a function 

WA : V ----+ XjgHg- 1 

by WA = 9W· We claim that the totality of such maps {'I/JA} is an (X, Gd­
orbifold atlas for M. 

Suppose that 

B = {ho, (31, W1, h 1, ... , hn- 1,(3n, Wn, hn } 

is an (X, G)-path over M from (x, cp) to (z, X), where X : W ----+ XjK, and 
let 

h = ho '" hn . 

Suppose that gy' and hz' are points of X such that 

WBWA 1(gHg- 1gy') = hKh-1hz'. 

Then we have that 
XW- 1 (Hy') = Kz'. 

Now as V is connected, there is a rectifiable curve "1 : [0,1] ----+ XjH from 
Hy to Hy' such that 

"1([0,1]) C W(V)· 

The curve "1 lifts to a curve, : [0,1] ----+ X starting at y by Theorem 13.1.7. 
Let C = {1,',W,I} be the corresponding (X, G)-path over M from (y,W) 
to (r(I),'l/J). By replacing A by AC and y by ,(I), we may assume that 
Hy = Hy'. Likewise, we may assume that Kz = Kz'. Let e be an element 
of H such that ey = y', and let k be an element of K such that kz = z'. 
Then e and k are in G1 by Theorem 13.2.2. 

Now since XW- 1(Hy) = Kz, there is an element f of G such that fy = z 
and f lifts XW- 1 in a neighborhood of y. Let J = {I, (3, W, f- 1 } be the 
constant (X, G)-path over M from (y, W) to (z, X). Now (2) implies that 
1]([AJB-1]) is an element of G1. Hence gf-1h-1 is an element of G1. 

Observe that 

(hkfe- 1g- 1)(gy') = hkfe-1y' = hkfy = hkz = hz', 

and hkfe-1g-1 lifts XBWA 1 in a neighborhood of gy'. Thus {WA} is an 
(X, Gd-orbifold atlas for M. Moreover {WA} is obviously contained in the 
(X, G)-orbifold structure <P of M. Now as CPI = cP, we find that cP is in 
{'I/JA}. Thus (2) implies (3). 

Now suppose that the (X, G)-orbifold structure <P of M contains an 
(X, G)-orbifold structure <P1 for M containing cp. Let 

A = {gO, a1, CP1, gl,···, gm-1, am, CPm, gm} 
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be an (X, G)-path over M from (x, ¢) to (x, ¢) with partition {so, ... , sm} 
of [0,1]. We claim that go··· gm is in G1. By subdivision, we may assume 
that there is a chart 'IjJ. : V. -+ X/H. in <PI such that 

a. ([S.-l, s.]) C V. for each i = 1, ... ,m. 

Hence, by translation, we may assume that ¢. = 'IjJ. for each i. Now since 
¢: U -+ x/r is in <PI, there is an element ho of G1 such that hoa1(0) = x 
and ho lifts ¢¢11 in a neighborhood of a1(0). Hence goho1x = x and 
goho1 lifts ¢¢11(¢1¢-1) in a neighborhood of x. Therefore goho1 is in the 
stabilizer r x. Now r is a subgroup of G1 by Theorem 13.2.2. Therefore go 
is in G1. Likewise gl, ... , gm are in G1. Hence 1]([A]) = go··· gm is in G1. 
Thus, the image of 1] is contained in G1 and so (3) implies (2). 0 

Theorem 13.3.6. Let iII be the universal orbiJold covering space based at 
(x, ¢) oj a connected (X, G)-orbiJold M and let G1 be the group oj isome­
tries in G. Suppose that 7rr(M, x, ¢) acts on iII via isometries. Then the 
(X, G)-orbiJold structure <P oj M contains an (X, G1)-orbzJold structure 
<PI Jor M containing ¢, and iJ M together with <PI is considered to be 
a metric (X, G1)-orbiJold, then the unzversal orbiJold covering projectwn 
/'l, : iII -+ M induces an isometry 

K, : iII /7rr(M, x, ¢) -+ M. 

Proof: The (X, G)-orbifold structure <P of M contains an (X, G1)-orbifold 
structure <PI for M containing ¢ by Theorem 13.3.5. Consider M together 
with <PI to be an (X, G1)-orbifold. Let (A) be an arbitrary point of iII and 
suppose that 

is an (X, G)-path over M from (x,¢) to (y,'IjJ), where 'IjJ: V -+ X/H. Now 
let X : W -+ X/K be in <PI such that 'IjJ-1(Hy) is in W. Let z be a point of 
X such that 

'IjJ-1(Hy) = X-1(Kz). 

Then there is a constant (X, G)-path J = {1,,8, 'IjJ, J} over M from (y, 'IjJ) 
to (z, X)· Now by replacing A by AJ and 'IjJ by X, we may assume that 'IjJ 
is in <Pl. Then the same argument as at the end of the proof of Theorem 
13.3.5 shows that 9 = 90··· 9m is in G1 . 

Let r > 0 be such that 

(1) B(Hy,2r) C 'IjJ(V), 

(2) r ~ ~dist(y,Hy - {y}), 

(3) r ~ ~dist((A),7rr(M)(A) - {(A)}), 

(4) B(y,2r) is simply connected. 
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Now set 
N = 1j;-l(B(Hy, r)). 

Then N is an open neighborhood of 1j;-l(Hy) = K((A)) in M. By the 
argument in Lemma 6, the developing map 8 : iiI ---+ X maps the set 
(A, 1j;-l(B(Hy, 2r))) homeomorphically onto the ball B(gy, 2r). Hence, by 
Theorem 8.3.6, we have that 

(A,N) = B((A),r) 

and 8 maps B((A),r) isometrically onto B(gy,r). 
Suppose that [C] is in the stabilizer of (A). Then there is a constant 

(X, G)-path J over M from (y,1j;) to (y,1j;) such that 

8([C] (A)) 8((CA)) 

8([AJ]) 
8([AJA-1 A]) 

g1']([J])g-18([A]) 

with 1']([J]) in the stabilizer Hy. Hence 8 induces an isometry 8 such that 
the following diagram commutes: 

B((A),r) 8 
B(gy, r) --+ 

1 1 
B( (A), r)/'rrf(M) (A) 

"8 
B(gy,r)/gHyg-1 --+ 

1 1 
B(7rf(M)(A), r) 

g,p"K 
B(gHg-lgy, r), --+ 

where the vertical maps are induced by quotient maps. Now by Theorem 
13.1.1, the bottom vertical maps are isometries. Therefore g1j;ff is an isom­
etry. Observe that 1j; maps B(K((A)),r) isometrically onto B(Hy,r) by 
Theorem 13.2.8. Now as 9 is an isometry, the map 

g: X/H ---+ X/gHg-1 

is an isometry. Hence g maps B(Hy, r) isometrically onto B(gHg-lgy, r). 
Therefore ff maps B(7rf(M) (A), r) isometrically onto B(K( (A)), r). Thus ff 
is a local isometry. 

Now as ff : iiI /7rf(M) ---+ M is a homeomorphism, ff induces an (X, Gd­
orbifold structure on iiI /7rf(M). We claim that the orbit space m~tric d7r on 
iiI /7rf(M) agrees with the induced (X, Gd-orbifold metric don M /7rf(M). 
First of all, d7r and d agree locally, since ff is a local isometry; moreover, 
d7r :::; d, since arc length with respect to d7r is the same as X-length. On 
the contrary, suppose that (A) and (B) are points of iiI such that 

d7r(7r~(M)(A),7r~(M)(B)) < d(7r~(M)(A),7r~(M)(B)). 

Then we have 

dist((A),7r~(M)(B)) < d(7r~(M)(A),7r~(M)(B)). 
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Hence, there is an X-rectifiable curve 'Y : [0,1] --+ M from (A) to a point 
in 7r~(M)(B) such that 

II'YII < d(7r]'(M) (A), 7rr(M) (B) ). 

Let ro : M --+ M lrr~(M) be the quotient map. Then II ro'Y II 
Theorem 13.1.4. Therefore, we have 

Ilro'Yll < d(7rr(M)(A), 7rr(M)(B)), 

II'YII by 

which is a contradiction. Hence d", = d. Thus K is an isometry. 0 

Complete (X, G)-Orbifolds 

We now define a notion of completeness for (X, G)-orbifolds. 

Definition: An (X, G)-orbifold M is complete if and only if every universal 
orbifold covering space M of M is a complete metric space. 

Theorem 13.3.7. Let M be a metric (X, G)-orbifold. Then M is complete 
if and only if M is a complete metric space. 

Proof: Suppose that M is complete. Let M be the universal orbifold 
covering space of M based at (x,cp). Then M is a complete metric space. 
Hence M is geodesically complete by Theorem 8.5.7. Therefore, the de­
veloping map t5 : M --+ X is a covering projection by Theorem 8.5.6. 
Furthermore, the proof of Theorem 8.5.6 shows that there is an r > 0 such 
that B(w,2r) is evenly covered by t5 for all win X. Now t5 maps B((A),r) 
homeomorphically onto B(t5((A)),r) for all (A) in M. Hence B((A),r) is 
compact for all (A) in M. Now the quotient map 

ro: M --+ M/7rr(M,x,cp) 

maps B((A),r) onto B(ro((A)),r) by Theorem 6.5.2. As B((A),r) is com­
pact, we deduce that 

ro(B((A),r)) = B(ro((A)),r). 

Hence B(ro((A)),r) is compact for all (A) in M. Therefore M/7r~(M,x,cp) 
is a complete metric space by Theorem 8.5.1. Hence M is a complete metric 
space by Theorem 13.3.6. 

Conversely, suppose that M is a complete metric space. Then we have 
that M /7r~(M, x, cp) is a complete metric space by Theorem 13.3.6. Hence 
M is a complete metric space by Theorem 8.5.3. Thus M is complete. 0 

Definition: An (X, G)-orbifold structure ~ for a Hausdorff space M 
is complete if and only if M, with the (X, G)-orbifold structure ~, is a 
complete (X, G)-orbifold. 
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Theorem 13.3.8. Let M be an (X, G)-orbiJold and let G1 be the group 
oj zsometries zn G. Then M is complete zJ and only iJ the (X, G)-orbzJold 
structure oj M contains a complete (X, G 1 )-orbzJold structure Jor M. 

Proof: Without loss of generality, we may assume that M is connected. 
Suppose that M is complete. Then the universal orbifold covering space 
M of M based at (x, ¢) is a complete metric space. Let [0] be an element 
of 7r'1(M, x, ¢). Then the map [0]* : M ---+ M is a similarity by Theorem 
13.3.4. We claim that [0]* is an isometry. On the contrary, suppose that 
[0]* is not an isometry. Then [0]* has a fixed point (A) in M by Theorem 
8.5.4. Now by Theorem 13.3.4, the stabilizer of (A) is a finite group of 
isometries, which is a contradiction. Hence [0]* is an isometry. Thus 
7r'1(M, x, ¢) acts on M via isometries. Therefore, by Theorem 13.3.5, the 
(X, G)-orbifold structure of M contains an (X, G1 )-orbifold structure for 
M containing ¢. Consider M to be an (X, GI)-orbifold with this structure. 
Then by Theorem 13.3.6, the universal orbifold covering projection K, 

M ---+ M induces an isometry 

If,: M/7r~(M,x,¢) ---+ M. 

The developing map () : M ---+ X is a covering projection by Theorems 
8.5.6 and 8.5.7. Hence, there is an r > 0 such that B( (A), r) is compact 
for all (A) in M. Therefore B(7r'1(M)(A),r) is compact for all (A) in M. 
Hence M /7r'1(M) is a complete metric space by Theorem 8.5.1. Therefore 
M is a complete metric space. Hence M is a complete (X, G1)-orbifold 
by Theorem 13.3.7. Thus, the (X, G)-orbifold structure of M contains a 
complete (X, G1)-orbifold structure for M. 

Conversely, suppose that the (X, G)-orbifold structure <[> of M contains 
a complete (X, G1)-orbifold structure <[>1 for M. Consider M tog~ther 
with <[>1 to be an (X, G1)-orbifold. Let ¢ be a chart in <[>1 and let M be 
the universal (X, G)-orbifold covering space of M based atJx, ¢). Then by 
Theorems 13.3.5 and 13.3.6, the group 7r'1(M, x, ¢) acts on M via isometries, 
and the universal orbifold covering projection K, : M ---+ M induces an 
isometry If, : M /7r'1(M) ---+ M. Now M is a complete metric space by 
Theorem 13.3.7. Hence M/7r'1(M) is a complete metric space. Therefore 
M is a complete metric space by Theorem 8.5.3. 

Now suppose that M' is the (X, G)-orbifold covering space of M based 
at (y, '¢). Then there is an (X, G),:::path J!. over M from (x, ¢) to (y, ,¢), 
since M is connected. Let A* : M' ---+ M be the change of base point 
homeomorphism defined by 

A*((A')) = (AA'). 

Suppose that 
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and let g = go··· gm. Then we have a commutative diagram 

M' 
8' 1 

X 

A. 
---+ 

g. 
---+ 

M 
18 

X, 

691 

where the vertical maps are the developing maps. As g* is a similarity, we 
deduce that A* is a similarity. Hence M' is a complete metric space. Thus 
M is complete. 0 

Definition: A function ~ : M ~ N between (X, G)-orbifolds is an (X, G)­
map if and only if ~ is continuous and for each chart ¢ : U ~ X /r for M and 
chart 'IjJ : V ~ X/H for N such that U and ~-l(V) overlap, the function 

'IjJ~¢-l : ¢(U n ~-l(V)) ~ 'IjJ(~(U) n V) 

has the property that if x and yare points of X such that 

'IjJ~¢-l(rx) = Hy, 

then there is an element g of G such that gx = y and g lifts 'IjJ~¢-1 in a 
neighborhood of x. 

Theorem 13.3.9. An injection ~ : M --+ N between (X, G)-orbzJolds is an 
(X, G)-map zJ and only zJ Jor each pomt u oj M, there zs a chart ¢ : U ~ 
x/r Jor (M, u) such that ~ maps U homeomorphically onto an open subset 
oj N and ¢~-1 : ~(U) ~ Xjr is a chart Jor N. 

Proof: Suppose that ~ : M ~ N is an (X, G)-map and u is an arbitrary 
point of M. Let'IjJ : V ~ X/H be a chart for (N, ~(u)). Since ~ is continuous 
at u, there is a chart ¢: U ~ x/r for (M,u) such that ~(U) c V. Then 

'IjJ~¢-1 : ¢(U) ~ 'IjJ~(U) 

lifts to an element of G on each component over ¢(U). Hence 'IjJ~(U) is open 
in X/H, and so ~(U) is open in N. Therefore ~ is an open map. Hence ~ 
maps U homeomorphically onto ~(U). 

Now consider the map 

and suppose that 

Then we have 
'IjJ~¢-l(rx) = Hy. 

Hence, there is an element g of G such that gx = y and g lifts 'IjJ~¢-l 
in a neighborhood of x. Therefore g-ly = x and g-l lifts ¢~-l'IjJ-l in a 
neighborhood of y. As ~(U) c V and 'IjJ : V ~ X/H is a chart for N, we 
deduce that ¢~-l : ~(U) ~ x/r is a chart for N. 
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Conversely, suppose that for each point u of M, there is a chart <p : U -
x/r for (M, u) such that ~ maps U homeomorphically onto an open subset 
of N and <p~-l : ~(U) _ x/r is a chart for N. Then ~ is continuous. Let 
x: W - X/K and 'if; : V - X/H be charts for M and N, respectively, such 
that W and ~-l(V) overlap. Now let u be an arbitrary point of the set 
wn~-l(V). Then there is a chart <p : U - x/r for (M, u) such that ~ maps 
U homeomorphically onto an open subset of N and <p~-l : ~(U) _ x/r is 
a chart for N. Consider the function 

'if;~X-l : X(W n C1(V)) - 'if;(~(W) n V). 
Suppose that y and z are points of X such that 

'if;~x-l(Kz) = 'if;~(u) = Hy. 
Now since 

'if;~x-l = ('if;~<p-l)(<pX-l) 

and <PX-1 and 'if;(<p~-l)-l are coordinate changes for M and N, respec­
tively, there is an element h of G such that hz = y and h lifts 'if;~X-l in a 
neighborhood of z. Thus ~ is an (X, G)-map. 0 

Definition: A function ~ : M - N between (X, G)-orbifolds is an (X, G)­
equivalence if and only if ~ is a bijective (X, G)-map. 

Note that the inverse of an (X, G)-equivalence is also an (X, G)-equivalence. 
Two (X, G)-orbifolds M and N are said to be (X, G)-equivalent if and 
only if there is an (X, G)-equivalence ~ : M - N. Note that an (X, G)­
equivalence ~ : M - N between metric (X, G)-orbifolds is an isometry. 

Theorem 13.3.10. Let G be a group of similarities of a simply connected 
geometric space X and let M be a complete connected (X, G)-orbifold. Let 
"': 1l"]'(M) _ G be a holonomy of M and let 8: M - X be the correspond­
ing developing map. Then 8 is an (X, {1})-equivalence, '" maps 1l"]'(M) 
isomorphically onto a dzscrete group r of isometries of X, and 8 induces 
an (X, G)-equivalence from M to x/r. 
Proof: Now 8 : M - X is a covering projection by Theorems 8.5.6 
and 8.5.7. Therefore 8 is a homeomorphism, since X is simply connected. 
Hence 8 is an (X, {1} )-equivalence and so is an isometry. Now 1l"]'(M) cor­
responds to the group of covering transformations of the universal orbifold 
covering projection", : M _ M which corresponds via 8 to the image of ",. 
By Theorems 13.3.4, 13.3.5, and 13.3.8, the group 1l"]'(M) acts discontinu­
ously on M via isometries. Therefore", maps 1l"]'(M) isomorphicallyonto 
a discrete group r of isometries of X. By Theorem 13.3.4, we deduce that 
8 induces a homeomorphism "8 such that the following diagram commutes: 

M 
"'! 

M 

6 
---+ X 

!1l" 
x/r, 
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where 1r is the quotient map. 
We claim that 8 : M ---+ X/f is a chart for M. Let 7jJ : V ---+ X/H be a 

chart for M and let y and z be points of X such that 

R7jJ-l(Hy) = fz. 

Now since", : M ---+ M is onto, there is an (X, G)-path 

A = {gO, 001, <PI, gl,···, gm-l, am, <Pm, gm} 
over M from (x, <p) to (y,7jJ). Let g = go··· gm. Then g is in G and 

87jJ-l(Hy) 8",((A)) 

= 1r8( (A)) 

= 1r(gy) = fgy. 

Hence, there is an element f of f such that fgy = z. Let r > 0 such that 

B(Hy, r) c 7jJ(V). 

Suppose that y' =1= y is in B(y, r). Then there is a rescaled geodesic arc 
(3 : [0,1] ---+ X from y to y', and {1, (3, 7jJ, 1} is an (X, G)-path over M from 
(y, 7jJ) to (y', 7jJ). Observe that 

87jJ-l (Hy') 8",( (AB)) 

1r8( (AB)) 

1r(gy') = fgy'. 

Hence fg lifts 87jJ-l on B(y, r). Thus 8 : M ---+ X/f is a chart for M. It 
now follows from Theorem 13.3.9, with U = M, that 8 : M ---+ X/f is an 
(X, G)-equivalence. 0 

Exercise 13.3 

1. Let M be a connected (X, G)-orbifold. Prove that there is an (X, G)-path 
over M from any (x,c/» to any (y,'Ij;). 

2. Let r be a discrete group of isometries of a geometric space X and let 
[ : X jr -+ X jr be the identity map. Define a function ( : 71"1 (X, x) -+ 

7rl(Xjr, x, [) by (([a]) = [{I, 0, [,I}]. Prove that ( is a homomorphism and 
that the following sequence is exact: 

1 -+ 7r1(X, x) ~ 7rf(Xjr, x, [) ~ r -+ 1. 

3. Let M be the universal orbifold covering space based at (x,c/» of an (X,G)­
orbifold M and let K, : M -> M be the universal orbifold covering projection. 
Let A be an (X, G)-path over M from (x, c/» to (y, 'Ij;) and let N be an open 
neighborhood of K,( (A)) in M. Prove that K,( (A, N)) is the component of N 
containing K,( (A)). 

4. Let K, : M -> M be as in Exercise 3 with M connected. Prove that K, restricts 
to a covering projection K,1 : K,-l(n(M)) -> n(M). 

5. Prove that a connected (X, G)-orbifold M is complete if and only if every 
(or some) developing map 8 : M -> X for M is a covering projection. 
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§13.4. Gluing Orbifolds 

In this section, we shall construct n-dimensional spherical, Euclidean, and 
hyperbolic orbifolds by gluing together n-dimensional convex polyhedra. 
Let X = sn, En, or Hn with n > O. 

Definition: A dzsjoznt set of n-dzmensional convex polyhedra of X is a 
set of functions 

3 = {~p : PEP} 

indexed by a set P such that 

(1) the function ~p : X ---t X p is a similarity for each P in P; 

(2) the index P is an n-dimensional convex polyhedron in Xp for each 
Pin P; 

(3) the polyhedra in P are mutually disjoint. 

Let 3 be a disjoint set of n-dimensional convex polyhedra of X and let 
G be a group of similarities of X. 

Definition: A G-side-pairing for 3 is a set of functions 

<P = {<Ps : S E S} 

indexed by the collection S of all the sides of the polyhedra in P such that 
for each side S of a polyhedron P in P 

(1) there is a polyhedron P' in P such that the function <Ps : X P ' ---t Xp 
is a similarity; 

(2) the similarity gs = ~pl<pS~p, is in G; 

(3) there is a side S' of P' such that <Ps(S') = S; 

(4) the similarities <Ps and <Ps' satisfy the relation <Ps' = <Ps\ 

(5) the polyhedrons P and <Ps(P') are situated so that P n <Ps(P') = S. 

Let <P be a G-side-pairing for 3. The pairing of side points by elements 
of <P generates an equivalence relation on the set II = UPEP P whose equiv­
alence classes are called the cycles of <P. Topologize II with the direct sum 
topology and let M be the quotient space of II of cycles. The space M is 
said to be obtained by gluing together the polyhedra of 3 by <P. 

The cycle of a point x of II is denoted by [xl. Recall that a rzdge of a 
polyhedron P is a side of a side of P. If x is in the interior of a ridge of 
a polyhedron in P, then every point of [xl is in the interior of a ridge of a 
polyhedron in P, in which case [xl is called a ridge cycle of <P. 



§13.4. Gluing Orbifolds 695 

Let [xl = {Xl'"'' xm} be a finite ridge cycle of i[> and let P, be the 
polyhedron in P containing x, for each i. The point x, is in exactly two 
sides of Pt. Hence x, is paired to at most two other points of [xl for each 
i. Therefore, we can reindex {Xl"'" Xm} so that 

The ridge cycle [xl is said to be dzhedral if there is a side S of PI containing 
Xl such that CPs is the reflection of XPl in (S) and there is a side T of 
Pm containing Xm such that CPT is the reflection of X Pm in (T), otherwise 
[xl is said to be cyclic. Let (), be the dihedral angle of P, along the ridge 
containing x, for each i. The dzhedral angle sum of the ridge cycle [xl is 

defined to be 

Definition: A G-side-pairing i[> for 2 is subproper if and only if each 
cycle of i[> is finite, each dihedral ridge cycle of i[> has dihedral angle sum 
a submultiple of 7r, and each cyclic ridge cycle has dihedral angle sum a 
submultiple of 27r. 

Theorem 13.4.1. Let G be a group of similarities of X and let M be a 
space obtained by gluzng together a disjoint set 2 of n-dimenszonal convex 
polyhedra of X by a subproper G-side-painng i[>. Then M is an (X, G)­
orbifold such that the natural injection of po into M is an (X, G)-map for 
each polyhedron P of 2. 

Proof: The proof is by induction on the dimension n. In order to simplify 
notation, we shall assume that G is a group of isometries of X and leave 
the proof of the general case to the reader. This restriction only affects the 
Euclidean case of the theorem. By changing the scale of X p for each P in 
P, we may assume that each ~p : X -+ X p in 2 is an isometry. In order 
to simplify the notation, we shall further assume that X p = X and ~p = 1 
for each P in P and leave the proof of the general case to the reader. 

Let X a point of II and let [xl = {Xl, ... ,xm}. Let P, be the polyhedron 
in P containing x, for each i and let 8(x) be the minimum of 7r, the distance 
from x, to x J for each i #- j, and the distance from x, to any side of P, not 
containing x, for each i. 

Let r be a real number such that 0 < r < 8(x)/2. Then for each i, the 
set P, n S (x" r) is a spherical (n - 1 )-dimensional polyhedron in the sphere 
S(x" r), and the polyhedra {P, n Sex"~ r)} are disjoint. Observe that the 
side-pairing i[> restricts to a subproper I(sn-l )-side-pairing of the polyhedra 
{P, n S(x"r)}. Let I:(x,r) be the space obtained by gluing together the 
polyhedra {P, n S(x"r)}. Then I:(x,r) has a spherical (n - l)-orbifold 
structure by inspection if n = 1,2, or by induction if n > 2. Moreover 
I:(x, r) is compact, since [xl is a finite cycle. Therefore I:(x, r) is a complete 
spherical orbifold by Theorem 13.3.7. Furthermore I:(x, r) is connected if 
n>l. 
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Now by inspection if n = 1, or since <P is subproper if n = 2, or by 
Theorem 13.3.10 if n > 2, there is, for each i, a finite subgroup r, of G that 
fixes the point x, such that the restriction of the quotient map 7r : II -+ M 
to the polyhedron P, n S(x" r) extends to a continuous function 

K,,: S(x"r) -+ L:(x,r) 

such that K" induces an isometry 

R, : S(x" r)/r i -+ L:(x, r). 

Moreover r, does not depend on the choice of r. Let 

7r, : S(x" r) -+ S(x" r)/r, 
be the quotient map. Then we have K" = R,7r,. For each i,j, the isometry 

R-;lR,: S(x"r)/r, -+ S(xJ,r)/rJ 

lifts to an isometry 

such that 

K,J~'J RJ7rj~'J 
- --1-
K,J K,J K,,7r, 

R,7r, = K". 
Moreover ~'J is unique up to left multiplication by the restriction of an 
element of r J by Theorem 13.1.2. The isometry ~'J extends to an isometry 
g'J of X that is unique up to left multiplication by an element of r J' We 
may assume that g .. = 1 for each i. 

Suppose that the element gs of <P pairs the side S' n S(x" r) of the 
polyhedron P, n S(x" r) to the side S n S(xJ' r) of PJ n S(xJ' r). Then gs 
restricts to an isometry 

Observe that K" agrees with K,i?J S on the open set 

Us = (p,O U (S'r U gsl(pn) n S(x" r). 

Hence, on the open set ~'J(Us), the map K,J?Js~;/ agrees with K"C:/ = K,J' 

Therefore ?Js~;/ is the restriction of an element of r J by Theorem 13.1.2. 

Hence gSg;l is in r J , and so we may assume that gij = gs· If i = j, then 
the assumJtion that g'J = gS will conflict with the previous assumption 
that g .. = 1, but this will not matter, since we only need to specify g'J up 
to left multiplication by an element of r J , and in this case gs is in r J . 

Now suppose that 
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Then we have 

Hence, we deduce that 

~'3 (~'P-1'P~'P-2'P-1 ... ~'1'2)-1 
is the restriction of an element of r 3' Therefore, we have that 

g'3 (g'P-1'pg'P-2'P-1 ... g'1'2)-1 

is an element of r 3' Hence, we may assume that 

Define 
U(x,r) = U 7r(p,nB(x.,r)). 

,=1 
Since the set 

7r-1(U(x,r)) = U P, nB(x.,r) 
,=1 

is open in II, we have that U(x, r) is an open subset of M. 
Suppose that x = Xk and let r x = rk. Define a function 

m 
'¢x: U p,nB(x.,r)--+B(x,r)/rx ,=1 

by the rule 
'¢x(z) = r xg,k(Z) if Z is in P, n B(x., r). 

Suppose that gs(x,) = xJ" Then we may assume that g'3 = gs. Let y be a 
point of SnB(x3' r) and let y' = gs1(y). Then y' is a point of S'nB(x., r). 
Observe that 

K,k~3k~'3 = K,3~'3 = 11" = K,k~'k' 

Therefore, we have that 
~'k(~3k~'3)-1 

is the restriction of an element of r x' Hence, we have that 

g,k(g3kg'3 )-1 

is an element of r x' Therefore, we have 

'¢x(Y) r xg3k(Y) 
r xg3kgS (y') 

r xg3kg'3 (y') 
r xg,k(Y') = '¢x(Y'). 

Consequently '¢x induces a continuous function 

<Px : U(x,r) --+ B(x,r)/rx' 
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For each t such that 0 < t < r, the function ¢x restricts to a map 

¢x : ~(x, t) ----+ S(x, t)jf x. 

Let z be a point of P~ n S(x" t). Then we have 

'ljix(Z) 

7rk~2k (z) 
Rk1R~7r~ (z) 

Rk1K;~(Z) = 
Therefore (fix = Rk1. Hence ¢x is an isometry. Consequently ¢x IS a 
bijection with a continuous inverse defined by the rule 

¢;1(f xZ) = 7rg;k1 (Z) if z is in g~k(P~ n B(X2' r)). 

Hence ¢x is a homeomorphism. The same argument as in the proof of 
Theorem 9.2.2 shows that M is Hausdorff. 

Next, we show that 

{¢x: U(x,r) ----+ B(x,r)jfx I x is in II and r < 8(x)j4} 

is an (X, G)-atlas for M. By construction, U(x, r) is an open connected 
subset of M and ¢x is a homeomorphism. Moreover U(x, r) is defined 
for each point 7r(x) of M and sufficiently small radius r. Consequently 
{U(x, rn is an open cover of M. 

Suppose that the sets U(x, r) and U(y, s) overlap and r < 8(x)j4 and 
s < 8(y)j4. Let W be in B(x, r) and z be in B(y, s) such that 

¢y¢;1(fxw) = fyz. 

We need to find an element g of G such that gw = z and g lifts ¢y¢;1 in 
a neighborhood of w. 

Let F(x) be the face ofthe polyhedron in P that contains x in its interior. 
By reversing the roles of x and y, if necessary, we may assume that 

dimF(x) ::::: dimF(y) 

with equality only if r :::; s. As before, we have 

7r-1(U(X, r)) 

7r- 1 (U(y, s)) 

m 
U ptnB(x"r), 

t=1 

U QJ nB(YJ's). 
J=1 

Now for some i and j, the set Pt n B(x2,r) meets QJ n B(YJ's). Then 
P2 = QJ and d(x" YJ) < r + s. We claim that YJ is in every side of Pt that 
contains Xt. On the contrary, suppose that YJ is not in a side of P2 that 
contains Xt. Then s < d(x"YJ)j4. Therefore Xt is in every side of Pt that 
contains YJ' otherwise we would have the contradiction that r < d( x2, YJ) j 4. 
Hence F(x2) is a proper face of F(YJ)' which is a contradiction. Therefore 
YJ is in every side of Pt that contains Xt. This implies that for each i, the 
set P2 n B(X2' r) meets QJ n B(YJ' s) for some j. 
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We claim that the set P, n B(x"r) meets QJ n B(YJ's) for only one 
index j. On the contrary, suppose that P, n B(x"r) meets QJ n B(YJ's) 
and Qk n B(Yb s). Then P, = QJ = Qk. Now since YJ and Yk are in every 
side of P, that contains x" we have that F(YJ) and F(Yk) are faces of F(x,). 

Assume first that 
dimF(x) > dimF(y). 

Then F(YJ) and F(Yk) are proper faces of F(x,). Consequently, we have 

r < d(x"YJ)/4, r < d(X"Yk)/4, and s < d(YJ,Yk)/4, 
which leads to the contradiction 

d(x" YJ) + d(x" Yk) < (r + s) + (r + s) 

Now assume that 

Then r :::; s. Observe that 

< d(x" YJ)/4 + d(x" Yk)/4 + 2d(YJ' Yk)/4 

< d(x"YJ) +d(X"Yk). 

dimF(x) = dimF(y). 

s < d(YJ' Yk)/4 :::; (d(x"YJ) + d(x" Yk))/4 < 2(r + s)/4 
and so s < r, which is a contradiction. Therefore P, n B(x" r) meets 
QJ n B(YJ' s) for only one index j = i'. 

Let g'J and h'J be the elements of G constructed as before for x and 
y. Suppose that 9 s pairs the side 8' n 8 (x" r) of P, n 8 (x" r) to the side 
8 n 8(xJ,r) of PJ n 8(xJ,r). Then we may assume that g'J = gs. Now 
gs(x,) = xJ' and so x, is in 8'. As P, n B(x"r) meets P, n B(y",s), 
we have that y,' is also in 8'. Now observe that gs(P, n B(x"r)) meets 
gs(P, n B(y" , s)). Hence PJ n B(xJ' r) meets PJ n B(gsY,' , s). Therefore 
gSY,' = YJ" Hence, we may assume that g'J = h"J" 

Now suppose that 

x, = X'" c:,: X'2 c:,: •.• c:,: x'p = xJ. 
Then we deduce from the previous argument that 

Y,' = y,~ c:,: y,; c:,: •.• c:,: y,~ = YJ' 
and so we may assume that 

g'J g'P-1'pg'P-2'p-1 ... g'"'2 

= h" "h" " ... h" " h"J" p-l P p-2 p-l 1 2 

Next, observe that 

U(x,r) n U(y, s) 

7rC91 P, n B(x" r)) Il7rC91 QJ n B(YJ' s)) 

7r([,91 P,nB(x"r)] n L91 QJ nB(YJ's)]) 

7rC91 J 91 [P, n B(x" r) n QJ n B(YJ' s)]) 

7rC91 P, nB(x"r) nB(y",s)). 
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Let x = Xk and y = y£. Then 

<Px (U(x, r) n U(y, s)) = ,91 r xg,k (p, n B(x., r) n B(w, s)) 

and 

Now if v is a point of the set 

g,k (P, n B(x., r) n B(y", s)), 

then we have 

<Py (7r(g;i/ v )) 

r yh,,£g;i/v 

r yh,'£h;;~/v 
r yh,l£hkl"V = r yhk,£V. 

Therefore, the element hk,£ lifts <py<p;;;l. Hence, there is an element f of 
r y such that fhkl£w = z. Let 9 = fhkl£. Then 9 is an element of G such 
that gw = z and 9 lifts <py<p;;;l in a neighborhood of w. This completes the 
proof that {<Px} is an (X, G)-atlas for M. 

The same argument as in the proof of Theorem 9.2.2 shows that the 
(X, G)-structure of M has the property that the natural injection map of 
po into M is an (X, G)-map for each P in P. 0 

Example 1. Let I::::. be a triangle in 8 2 , E2, or H2 with angles a, a, 27r /3 at 
its vertices x, y, z, respectively. See Figure 13.4.1 Let L = [x, z], R = [y, z], 
8 = [x, y] be the sides of L.. Pair side L to side R by the rotation gR about 
z of 27r /3, pair side R to side L by gL = 9 I/' and pair side 8 to itself by the 
reflection 9 s in the line (8). Consider the side-pairing <I> = {g L, 9 R, 9 s }. 
The point z forms a cyclic ridge cycle whose angle sum is 27r /3. The points 
x and y form a dihedral ridge cycle whose angle sum is 2a. 

z 

y x 
8 

Figure 13.4.1. A triangle in 8 2 , E2, or H2 
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Assume that <P is subproper. Then there is a positive integer k such 
that 20; = 7r/k. Observe that the angle sum of 1'::0. is 

27r 27r 7r 
- +20; = - +-
3 3 k' 

which is greater than, equal to, or less than 7r, according as k is less than, 
equal to, or greater than three. Thus 1'::0. is spherical if 0; = 7r /2, 7r /4, 
Euclidean if 0; = 7r /6, and hyperbolic if 0; :::: 7r /2k with k > 3. 

Let M be the space obtained from 1'::0. by gluing together its sides ac­
cording to <P. Then by Theorem 13.4.1, we have that M is a 2-dimensional 
orbifold that is spherical if 0; = 7r /2, 7r / 4, Euclidean if 0; :::: 7r /6, and hy­
perbolic if 0; = 7r /2k with k > 3. Topologically, M is a disk. The singular 
set of M consists of a point of order 3 in the interior of M, corresponding 
to z, and the boundary of M, which consists of a point of order 2k, corre­
sponding to {x, y}, and an open edge of points of order 2, corresponding 
to 8°. 

Example 2. Let Q be a quadrilateral in E2 whose vertices are in cyclic 
order w, x, y, z, and whose angles are 0;,0;, /3, /3, respectively. See Figure 
13.4.2. As 20;+2/3 = 27r, we have that 0;+/3 = 7r. Let 8 = [w,x], 
R = [x, y], T = [y, z], L = [z, wJ. Then the sides 8 and T are parallel. 
Pair side T to side 8 by the composition gs of the vertical translation from 
T to 8 followed by a change of scale, pair side 8 to side T by gT = g"81, 
pair side L to itself by the reflection gL in the line (L), and pair side R 
to itself by the reflection gR in the line (R). Consider the side-pairing 
<P = {gL,gR,gS,gT}' Then {w,z} and {x,y} are dihedral ridge cycles 
whose angle sum is 7r. Therefore <P is subproper. 

Let M be the space obtained from Q by gluing together its sides accord­
ing to <P. Then M is a Euclidean similarity 2-orbifold by Theorem 13.4.1. 
Topologically, M is a cylinder. The singular set of M is its boundary and 
all the singular points of M have order two. 

z T y 

/3 /3 

L R 

w 
8 

x 

Figure 13.4.2. A quadrilateral in E2 
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a 
c 

o 

Figure 13.4.3. A right-angled regular tetrahedron in S3 

Example 3. Let P be the regular spherical tetrahedron in 8 3 whose 
vertices are the vectors el, e2, e3, e4. All the proper dihedral angles of P 
are 7r/2. Let A,B,C,D be the side of P opposite the vertex el,e2,e3,e4, 
respectively. See Figure 13.4.3. Pair the side B to the side A by a rotation 
gA of 7r /2 about their common edge [e3, e4]. Pair the side A to the side B 
by gB = gAl. Pair the side D to the side C by a rotation C of 7r /2 about 
their common edge [el' e2]. Pair the side C to the side D by gD = gc/' 
Consider the side-pairing <P = {g A, g B, gc, g D }. Observe that each point 
on the open edges (el' e2) and (e3, e4) forms a ridge cycle whose dihedral 
angle sum is 7r /2. All the remaining interior edge points of P fall into ridge 
cycles whose dihedral angle sum is 27r. Therefore <P is subproper. 

Let M be the space obtained from P by gluing together its sides accord­
ing to <P. Then M is a spherical 3-orbifold by Theorem 13.4.1. Topologi­
cally, M is a 3-sphere. This can be seen by first gluing side A to side B. 
This yields a 3-ball with the edge [el, e2] glued together at its ends to form 
the equator of the ball. The edge [e3, e4] becomes the north-south diameter 
of the ball. The sides C and D become the northern and southern hemi­
spheres of the ball. Now gluing the northern and southern hemispheres by 
a rotation about the equator yields a 3-sphere. The north-south diameter 
of the ball glues together at its ends to form a circle that simply links the 
equator. The singular set of M is therefore two simply linked circles, and 
all the singular points of M have order four. 
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Example 4. Let P be the cube in E3 with vertices (±1, ±1, ±1). Pair the 
x = ±1 side of P to itself by the rotation of 'iT about the line y = 0, x = ±1, 
respectively. Pair the y = ±1 side of P to itself by the rotation of 'iT about 
the line z = 0, y = ±1, respectively. Pair the z = ±1 side of P to itself 
by the rotation of 'iT about the line x = 0, z = ±1, respectively. The axes 
of these six rotations intersect P in six line segments that bisect the sides 
of P as indicated in Figure 13.4.4. Consider the side-pairing iI> consisting 
of these six rotations. The endpoints of the six axis line segments fall into 
ridge cycles whose dihedral angle sum is 'iT, and all the other interior edge 
points of P fall into ridge cycles whose dihedral angle sum is 2 'iT . Therefore 
iI> is subproper. 

Let M be the space obtained from P by gluing together its sides accord­
ing to iI>. Then M is a Euclidean 3-orbifold by Theorem 13.4.1. Topologi­
cally, M is a 3-sphere. This can be seen by gluing together the sides of P 
one at a time. The six axis line segments are glued together to form the 
Borromean rings. See Figure 10.3.20. This is beautifully illustrated in the 
video Not Knot. The singular set of M is therefore the Borromean rings, 
and all the singular points of M have order two. 

Example 5. Let P be a regular hyperbolic dodecahedron Pin H3 all of 
whose proper dihedral angles are 'iT/2 as in Example 4 of §7.1. We pass to 
the projective disk model D3 and center P at the origin. Then P is also a 
Euclidean regular dodecahedron. Choose three pairs of opposite edges of P 
that are perpendicular to each other. For example, the six horizontal and 
vertical edges in Figure 13.4.5. Each side of P shares exactly one of these 
edges with another side of P. For each of these six edges, pair the two sides 
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Figure 13.4.5. A right-angled regular dodecahedron in D3 

of P that share this edge by a rotation of 7r /2 about the edge. Consider 
the side-pairing <P consisting of these 12 rotations. Observe that each point 
in the interior of these six edges forms a ridge cycle whose dihedral angle 
sum is 7r /2, and all the remaining interior edge points of P fall into ridge 
cycles whose dihedral angle sum is 27r. Therefore <P is subproper. 

Let M be the space obtained from P by gluing together its sides accord­
ing to <P. Then M is a hyperbolic 3-orbifold by Theorem 13.4.1. Topolog­
ically, M is a 3-sphere. This can be seen by gluing together the sides of 
P one at a time. The six edges are glued together to form the Borromean 
rings. The singular set of M is therefore the Borromean rings, and all the 
singular points of M have order four. 

Complete Gluing of Orbifolds 

We now consider gluing together polyhedra to form a complete orbifold. 
We begin with the complete gluing theorem for Euclidean orbifolds. 

Theorem 13.4.2. Let M be a Euclidean n-orbifold obtained by gluing to­
gether a finite family P of dzsjoint, fimte-sided, n-dimensional, convex poly­
hedm in En by a subproper I(En)-side-pazring <P. Then M is complete. 

Proof: The proof is the same as the proof of Theorem 11.1.2 with the 
exception that the constant 1/3 must be replaced by 1/4 as in the proof of 
Theorem 13.4.1. 0 
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Let M be a hyperbolic n-orbifold obtained by gluing together a finite 
family P of disjoint, finite-sided, n-dimensional, convex polyhedra in Bn 
by a subproper M(Bn)-side-pairing cI>. We shall determine necessary and 
sufficient conditions such that M is complete. We may assume, without 
loss of generality, that no two polyhedrons in P meet at infinity. Then cI> 
extends to a side-pairing of the (n - I)-dimensional sides of the Euclidean 
closures of the polyhedra in P which, in turn, generates an equivalence 
relation on the union of the Euclidean closures of the polyhedra in P. The 
equivalence classes are called cycles. We denote the cycle containing a point 
x by [x]. The cycle of a cusp point of a polyhedron in P is called a cusp 
point of M. As each polyhedron in P has only finitely many cusp points, 
M has only finitely many cusp points. 

Let c be a cusp point of a polyhedron in P. Let b be a point in [c] 
and let Pb be the polyhedron in P containing b in its Euclidean closure. 
The link of b is the (n - 1 )-dimensional, Euclidean, convex polyhedron L(b) 
obtained by intersecting Pb with a horosphere ~b based at b that meets 
only the sides of Pb incident with b. We shall assume that the horospheres 
{~b : b E [cn have been chosen small enough so that the links of the points 
in [c] are mutually disjoint. Then cI> determines a subproper S(En-l )-side­
pairing for {L(b) : b E [cn as in §1O.2. Let L[c] be the space obtained by 
gluing together the polyhedra {L(b)} by this side-pairing. The space L[c] 
is called the link of the cusp point [c] of M. 

Theorem 13.4.3. The link L[c] of a cusp point [c] of M is a connected, 
Euclidean, similarity (n - 1)-orbifold. 

Proof: The space L[c] is a (En, S(En-l ))-orbifold by Theorem 13.4.1. It 
follows directly from the definition of a cycle that L[c] is connected. 0 

Theorem 13.4.4. The link L[c] of a cusp point [c] of M is complete if 
and only if the links {L(b)} for the points in [c] can be chosen so that cI> 
restricts to a side-pairing for {L(b)}. 

Proof: If links for the points in [c] can be chosen so that cI> restricts to a 
side-pairing for {L(b)}, then this side-pairing for {L(b)} is a I(En-l)-side­
pairing, and so L[c] is complete by Theorem 13.4.2. The converse is proved 
by the same argument as in the proof of Theorem 10.2.2. 0 

Theorem 13.4.5. If the link L[c] of a cusp point [c] of M is complete, 
then there is a horoball B(c) based at the point c, a dzscrete subgroup rc of 
M(Bn) leavmg B(c) mvariant, and an injective local isometry 

~: B(c)jrc --+ M 

compatible with the projection of Pc to M. 

Proof: The proof is the same as the proof of Theorem 10.2.3. 0 



706 13. Geometric Orbifolds 

Theorem 13.4.6. Let M be a hyperbolic n-orb2fold obtamed by glumg to­
gether a fimte family 'P of disjoint, finite-sided, n-dimenswnal, convex poly­
hedra m B n by a subproper M(Bn)-side-pairzng <1>. Then M is complete if 
and only 2f L[c] 2S complete for each cusp pomt [c] of M. 

Proof: The proof is the same as the proof of Theorem 11.1.6. o 

Example 6. Let 6 be a generalized triangle in H2 with angles 0,0, 2rr /3 
at its vertices x, y, z, respectively. See Figure 13.4.6. Let L = (x, z], R = 
(y, z], 8 = (x, y) be the sides of 6. Pair side L to side R by the rotation 
9R about z of 2rr/3, pair side R to side L by gL = 9[/, and pair side 
8 to itself by the reflection 98 in the line (8). Consider the side-pairing 
<1> = {gL, 9R, g8}' The point z forms a cyclic ridge cycle whose angle sum 
is 2rr /3. Therefore <1> is subproper. 

Let M be the space obtained from 6 by gluing together its sides ac­
cording to <1>. Then M is a hyperbolic 2-orbifold by Theorem 13.4.1. The 
cusp points x and y of 6 form a cusp point of M. Let L(x) and L(y) be 
disjoint links for x and y that are equidistant from z. Then <1> restricts to 
a side-pairing for L(x) and L(y). Therefore L[x] is complete by Theorem 
13.4.4. Hence M is complete by Theorem 13.4.6. 

Topologically, M is a disk with a point removed from its boundary that 
corresponds to the cusp point {x, y}. The singular set of M consists of a 
point of order 3 in the interior of M, corresponding to z, and the boundary 
of M, all of whose points have order 2. 

Figure 13.4.6. A generalized triangle in B2 
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Example 7. Let P be the regular, ideal, hyperbolic octahedron in B3 
with vertices at ±el, ±e2, ±e3. See Figure 10.3.12. All the proper dihedral 
angles of Pare 71'/2. For each horizontal edge of P, pair the two sides of 
P that share this edge by a rotation of 71'/2 about the edge. Consider the 
side-pairing <r> consisting of these eight rotations. Observe that each point 
on a horizontal edge of P forms a ridge cycle whose dihedral angle sum 
is 71'/2, and all the remaining edge points of P fall into ridge cycles whose 
dihedral angle sum is 71'. Therefore <r> is subproper. 

Let M be the space obtained from P by gluing together its sides accord­
ing to <r>. Then M is a hyperbolic 3-orbifold by Theorem 13.4.1. Observe 
that M has five cusps. Each of the four equatorial cusps of P yields a 
cusp of M, and the northern and southern cusps of P form the fifth cusp 
of M. Choose disjoint links for the cusps of P that are equidistant from 
the origin. Then <r> restricts to a side-pairing for these links. Therefore, 
each link of M is complete by Theorem 13.4.4. Hence M is complete by 
Theorem 13.4.6. 

Each link of M is topologically a 2-sphere. This can be seen from Figure 
13.4.7. Consequently, M is topologically a 3-sphere minus five points. The 
singular set of M consists of eight lines whose points have order either two 
or four as indicated in Figure 13.4.8. 
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Figure 13.4.8. The singular set of M 

Exercise 13.4 

1. Let <I> be a G-side-pairing for a finite set of disjoint, n-dimensional, compact, 
convex polyhedra of X. Prove that <I> has finite cycles. 

2. Let P be an exact fundamental polyhedron for a discrete group r of isome­
tries of X. Prove that the side-pairing of P determined by r is subproper. 

3. Let <I> be a G-side-pairing for an n-dimensional convex polyhedron P in X. 
Prove that <I> is subproper if and only if <I> has finite cycles and every ridge 
R of P satisfies the conclusions of Theorem 6.7.7. 

4. Explain in detail how the hypothesis that <I> is subproper is used in the proof 
of Theorem 13.4.1. 

5. Prove directly that the space obtained by gluing together the sides of the 
quadrilateral in Example 2 is a Euclidean similarity 2-orbifold. 

6. Prove that the Euclidean similarity orbifold in Example 2 is complete if and 
only if 0: = (3. 

7. Let M(o:) be the Euclidean similarity orbifold in Example 2. Prove that 
M (0:) and M (0:') are similar if and only if 0: = 0:' or 0: = 7r - 0:'. 

8. Describe all the subproper side-pairings for the ideal octahedron in Example 
7 that yield a complete hyperbolic orbifold. 

9. Position the quadrilateral Q in Example 2 in I[ so that the similarity gs is 
multiplication by a positive real number. Find all the values of the angle 0: 
of Q so that the side-pairing <I> generates a discrete group r of isometries of 
1[* with fundamental polygon Q. 

10. Generalize Theorem 10.5.6 so that the conclusion is as follows: The met­
ric completion M is a hyperbolic 3-orbifold if and only if the image of the 
holonomy for the link L of the cusp point of M contains 27ri. 

11. Generalize Theorem 10.5.8 so that the conclusion is as follows: The metric 
completion M is a hyperbolic 3-orbifold if and only if the Dehn surgery 
invariant of M is a pair (p, q) of integers. 

12. Generalize Theorem 10.5.9 so that the greatest common divisor d of p and 
q may be greater than one and the conclusion is as follows: The metric 
completion M is a hyperbolic 3-orbifold homeomorphic to the 3-manifold 
M(p/d,q/d) obtained from PJ3 by (Pjd, qjd)-Dehn surgery on K. 
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13. Generalize Theorem 10.5.10 so that the greatest common divisor d of p and 
q may be greater than one and the conclusion is as follows: M(p/d,q/d) has 
a hyperbolic 3-orbifold structure whose singular set is a simple closed curve 
all of whose points have order d when d > l. 

14. Prove that if d > 4, then S3 has a hyperbolic orbifold structure whose 
singular set is the figure-eight knot all of whose points have order d. 

15. Prove that if d > 4, then the d-fold cyclic branched covering of the figure­
eight knot has a hyperbolic 3-manifold structure. 

§13.5. Poincare's Theorem 

In this section, we prove Poincare's fundamental polyhedron theorem for 
discrete groups of isometries of X = sn, En, or H n with n > 1. We begin 
by proving a weak version of Poincare's theorem. 

Theorem 13.5.1. Let <]> be a subproper I(X)-szde-pazring for an n-dimen­
sional, convex polyhedron P in X such that the (X, I(X))-orbzfold M ob­
tained from P by gluzng together the szdes of P by <]> is complete. Then 
the group r generated by <]> is discrete, P is an exact, convex, fundamental 
polyhedron for r, and the zncluszon of P into X induces an zsometry from 
M to Xjr. 

Proof: The quotient map 7r : P ---+ M maps po homeomorphically onto 
an open subset U of M. Let ¢ : U ---+ X be the inverse of 7r. From the 
construction of M, we have that ¢ is locally a chart for M. Therefore ¢ is 
a chart for M. 

Let x be a point of po, let iII be the universal orbifold covering space 
of M based at (x, ¢), let,.., : iII --+ M be the universal orbifold covering 
projection, and let 0 : iII ---+ X be the corresponding developing map. 
By Theorem 13.3.10, the map 0 is an isometry. Let ( = ,..,0-1 . Then 
( : X ---+ M extends 7r on po, and so ( extends 7r by continuity. 

Let 'T/ : 7rf(M, x, ¢) ---+ I(X) be the holonomy of M. Then by Theorem 
13.3}0, the image of'T/ is a discrete group r of isometries of X and the map 
0: M ---+ X induces an isometry "8 : M --+ Xjr such that "8( : X ---+ Xjr is 
the quotient map. 

Now as U is a simply connected subset of O(M), it is evenly covered by 
,.., and (. Hence, the members of {gpo: 9 E r} are mutually disjoint. As 
7r(P) = M, we have 

X = U{gP: 9 E r}. 
Therefore po is a fundamental domain for r. 

Let 9 s be an element of <]>. Choose a point y in the interior of the side S 
of P. Then there is a point y' in the interior of the side S' of P such that 
gs(y') = y. Since 7r(Y') = y, there is an element 9 of r such that g(y') = y. 
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If y' i=- y, then 9 i=- 1. If y' = y, then n(y) is a singular point of M of order 
two, and so we may assume that 9 i=- 1. Now since gS' does not extend 
into po, we must have that gS' lies on the hyperplane (S). 

Assume first that S' i=- S. Then n : P ----* M maps So injectively into M. 
Therefore, we must have that 9 = g8 in a neighborhood of y' in S'. Hence 
9 = g8 on (S'). Furthermore, since gP lies on the opposite side of S from 
P, we deduce that 9 = g8 by Theorem 4.3.6. 

Assume now that S' = S. Then g8 has order two. We may assume that y 
is an ordinary point of the orbifold (S) I (98)' Then n maps a neighborhood 
of y in S injectively into M. Therefore, the same argument as before shows 
that 9 = g8· Thus r contains <P. Therefore Plr is a quotient of M. 

Now by Theorem 6.5.8, the inclusion map of P into X induces a contin­
uous bijection from Pjr to Xjr. The composition of the induced maps 

Xjr ----* M ----* Pjr ----* Xjr 

restricts to the identity map of po and so is the identity map by continuity. 
Therefore M = P jr. 

Now since ( : X ----* M induces an isometry from Xjr to M = Pjr, 
the inclusion map of P into X induces an isometry from Pjr to Xjr. 
Therefore P is locally finite by Theorem 6.5.8. Hence P is an exact, convex, 
fundamental polyhedron for r. Finally <P generates r by Theorem 6.7.3. 0 

In order to apply Theorem 13.5.1, we need to know that the orbifold M 
is complete. If X = sn, then M is always complete, since M is compact. 
If X = En and the polyhedron P is finite-sided, then M is complete by 
Theorem 13.4.2. If X = Hn and P is finite-sided, then easily verifiable 
necessary and sufficient conditions for M to be complete are given by The­
orems 13.4.4 and 13.4.6. If X = H n and P has infinitely many sides, then 
M may fail to be complete even though the conditions of Theorem 13.4.6 
are satisfied. This phenomenon is exhibited by the Example 1 of §11.2. 
In contrast, we have the following general reflection theorem, where M is 
always complete. 

Theorem 13.5.2. Let P be an n-dzmensional convex polyhedron in X all 
of whose dihedral angles are submultiples of n. Then the group r generated 
by the reflections of X in the szdes of P zs a discrete reflection group with 
respect to the polyhedron P. 

Proof: The orbifold M obtained by gluing together the sides of P by 
the reflections in the sides of P is just P. Moreover M is isometric to P, 
since P is a convex subset of X. Now as P is a closed subset of X, we 
have that P and M are complete. Therefore, the group r generated by the 
reflections of X in the sides of P is a discrete reflection group with respect 
to the polyhedron P by Theorem 13.5.1. 0 
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Poincare's Fundamental Polyhedron Theorem 

Let S be the set of sides of an exact, convex, fundamental polyhedron P 
for a discrete group r of isometries of X. Then for each S in S, we have 

the side-pairing relation 
g5g5' = 1 

of r. The expression S S' is called the word in S corresponding to the 
side-pairing relation 9595' = 1 of r. Recall from §6.7 that each cycle of 
sides {S"}~=l of P determines a cycle relation 

(951g52 .,. 95£)k = 1 

of r, where k is the order of g51g52 ... 9s£' The expression (SlS2'" SC)k 
is called the word in S corresponding to the above cycle relation of r. We 
are now ready to state Poincare's fundamental polyhedron theorem. 

Theorem 13.5.3. Let 1> be a subproper I(X)-side-pa~rmg for an n-d~men­
sional, convex polyhedron P in X such that the (X, I(X) )-orbifold M ob­
tamed from P by gluing together the s~des of P by 1> is complete. Then 
the group r generated by 1> 2S discrete, P ~s an exact, convex, fundamental 
polyhedron for r, and ~f S is the set of sides of P and R is the set of words 
in S corresponding to all the side-pairing and cycle relations of r, then 
(S; R) ~s a group presentation for r under the mapping S f---4 gs-

Proof: The proof is essentially the same as the proof of Theorem 11.2.2. 
The only difference is in the construction of the neighborhood U of an 
interior ridge point x of P in step (10), where £ is replaced by k£. 0 

Theorem 13.5.3 gives a group presentation (S; R) for the group r gen­
erated by the side-pairing 1>. The presentation (S; R) can be simplified 
by eliminating each side-pairing relation SS' = 1 such that S =f=. S' and 
exactly one of the generators S or S'. If S' is eliminated, then each occur­
rence of S' in a cycle relation is replaced by S-l. Moreover, each cycle of 
sides {Sz};=l determines 2£ cycles of sides by taking cyclic permutations of 
{S"}~=l and their inverse orderings. The corresponding cycle transforma­
tions are all conjugate to each other or their inverses. Therefore, any of the 
corresponding cycle relations is derivable from any of the others. Hence, all 
but one of them can be eliminated from a presentation for r. Thus (S; R) 
can be simplified to a presentation with the generators of the form S = S' 
and half the generators of the form S =f=. S', and the side-pairing relations 
of the form S2 = 1, and one cycle relation for each cycle of ridges of P. 

Example 1. Consider the triangle 6. in S2, E2 or H2 in Figure 13.4.1. Let 
r be the group generated by the side-pairing for 6. described in Example 
1 of §13.4. The triangle has two cycles of vertices. By Theorem 13.5.3, the 
group r has the presentation 

(L, R, S; LR, S2, R 3 , (RS)2k). 
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We eliminate the generator L and the side-pairing relation RL 1 to 
obtain the presentation 

for the group r. 

Example 2. Consider the regular tetrahedron P in 8 3 in Figure 13.4.3. 
Let r be the group generated by the side-pairing for P described in Example 
3 of §13.4. The tetrahedron has three cycles of edges. By Theorem 13.5.3, 
the group r has the presentation 

(A, B, C, D; AB, CD, B4, C4 , ADBC). 

We eliminate the generators A and D and the side-pairing relations AB = 1 
and CD = 1 to obtain the presentation 

for r. Therefore r is the direct product of two cyclic groups of order 4. 

Theorem 13.5.4. Let P be an exact, convex, fundamental polyhedron for 
a discrete group r of isometrzes of X, let 5 be the set of sides of P, and let 
R be the set of all the side-pazring and cycle relations of r with respect to 
the r-side-pairing of P. Then (5;R) is a group presentation for r under 
the mapping 8 f----+ gs. 

Proof: Let M be the orbifold obtained by gluing the sides of P by the r­
side-pairing of P. Then the inclusion of P into X induces an isometry from 
M to x/r by Theorem 13.5.1. Therefore M is complete. Hence (5; R) is 
a group presentation for r under the mapping 8 f----+ gs by Theorem 13.5.3. 
D 

Exercise 13.5 

1. Show that Theorem 13.5.3 does not hold for X = S1 but does hold for 
X=E1 orH1. 

2. Find a presentation for the discrete group of isometries of E3 corresponding 
to the Euclidean orbifold in Example 4 of §13.4. 

3. Find a presentation for the discrete group of isometries of H3 corresponding 
to the hyperbolic orbifold in Example 5 of §13.4. 

4. Find a presentation for the discrete group of isometries of H3 corresponding 
to the hyperbolic orbifold in Example 7 of §13.4. 

5. Let f be a discrete group of isometries of X. Prove that the dimension of 
L;(X/f) is n - 1 if and only if f contains a reflection of X. 



§13.6. Historical Notes 713 

§13.6. Historical Notes 

§13.1. Theorem 13.1.7 was essentially proved by Floyd in his 1950 paper 
Some characterizations of interior maps [134]. See also Armstrong's 1968 
paper The fundamental group of the orbit space of a discontinuous group 

[24]. 
§13.2. Spherical, Euclidean, and hyperbolic 2-orbifolds were studied by 

Koebe in his 1930 paper Riemannsche Mannigfaltigkeiten und nzchteuk­
lidische Raumformen V [245]. Two-dimensional spherical, Euclidean, and 
hyperbolic orbit spaces were studied by Nielsen and Fenchel in their 1959 
manuscript Discontinuous Groups of Non-Euclidean Motions (321]. Dif­
ferentiable n-orbifolds were introduced by Satake in his 1956 paper On a 
generalization of the notion of manifold (356]. These orbifolds were called 
V-manzfolds by Satake. The term orbifold was introduced by Thurston in 
his 1979 lecture notes The Geometry and Topology of 3-Manifolds (389]. 

§13.3. The homotopy theory of (X, G)-paths was developed by Hae­
fliger in his 1990 paper Orbz-espaces (175]. In particular, Theorem 13.3.2 
appeared in this paper. The concept of the developing map of an orbifold 
was introduced by Koebe in his 1930 paper [245]. In particular, Theorem 
13.3.10 for groups of isometries of S2, E2, or H2, without reflections, ap­
peared in this paper. Theorem 13.3.10 for groups of isometries appeared 
in Thurston's 1979 lecture notes [389]. 

§13.4. The hyperbolic 2-orbifold obtained by gluing together the sides of 
a fundamental polygon of a Fuchsian group was introduced by Poincare in 
his 1882 paper Theorze des groupes fuchszens [330]. Theorems 13.4.2-13.4.6 
were essentially proved by Seifert in his 1975 paper Komplexe mit Seiten­
zuordnung [371]. For some interesting examples of hyperbolic 3-orbifolds, 
see Weber and Seifert's 1933 paper Die beiden Dodekaederriiume [405], 
Meyerhoff's 1985 paper The cusped hyperbolzc 3-orbifold of minzmum vol­
ume [287], Adams' 1992 paper Noncompact hyperbolic 3-orbifolds of small 
volume [7], and Hilden, Lozano, and Montesinos' 1992 papers The arzth­
meticzty of figure eight knot orbifolds [192] and On the Borromean orbifolds: 
Geometry and arithmetic [191J. For a beautiful illustration of a sequence 
of geometric 3-orbifolds converging to the complement of the Borromean 
rings, see Epstein and Gunn's 1991 video Not Knot [116]. 

It is an interesting fact due to Thurston that every closed orient able 
3-manifold has a hyperbolic orbifold structure. In fact, every closed ori­
entable 3-manifold is an orbifold covering space of the hyperbolic orbifold 
in Example 5. For a discussion, see Hilden, Lozano, Montesinos, and Whit­
ten's 1987 paper On universal groups and 3-manifolds [193]. 

§13.5. The 2-dimensional version of Poincare's theorem for finite-sided 
polygons appeared in Poincare's 1882 paper [330]. See also de Rham's 
1971 paper Sur les polygones generateurs de groupes fuchsiens (103]. The 
3-dimensional version of Poincare's theorem for finite-sided polyhedra of 
infinite volume appeared in Poincare's 1883 Memoire sur les groupes des 
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klemeens [332]. The 2- and 3-dimensional versions of Poincare's theorem, 
for side-pairings such that the stabilizer of a face fixes the face pointwise, 
were proved by Maskit in his 1971 paper On Poincare's theorem for fun­
damental polygons [281]. Theorem 13.5.1, for finite-sided polyhedra and 
side-pairings such that the stabilizer of a face fixes the face pointwise, was 
proved by Seifert in his 1975 paper [371]. The n-dimensional version of 
Poincare's theorem, for finite-sided polyhedra of finite volume and side­
pairings such that the stabilizer of a face fixes the face pointwise, was 
proved by Morokuma in his 1978 paper A characterization of fundamen­
tal domains of discontinuous groups acting on real hyperbolic spaces [306]. 
The n-dimensional version of Poincare's theorem appeared in Maskit's 1988 
treatise Klemian Groups [282]. For a computer implementation of the 3-
dimensional version of Poincare's theorem, see Riley's 1983 paper Applica­
tions of a computer zmplementation of Poincare's theorem on fundamental 
polyhedra [352]. 
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cross 
product, 36 
ratio, 115 

crystallographic group, 305 
crystallography, 305 



738 

curvature 
of a manifold, 367 
of a surface, 5 

curve, 22 

cusp 
of type Cl, 31 

of a manifold, 646 
of a polyhedron, 600 
of a surface, 423 
point 

of a manifold, 440, 507 
of a polyhedron, 507, 600 
of an orbifold, 705 

cusped 
limit point, 596 
region, 594, 595 
side, 607 

cycle 
of a facet-pairing, 504 
of a side-pairing 

of a polyhedron, 254 
of polygons, 375 
of polyhedra, 432, 694 

of cusp points, 507, 705 
of edges, 478 
of ideal points, 507, 705 
of ideal vertices 

of polygons, 417 
of polyhedra, 440 

of polyhedra, 256 
of sides, 259, 417 
relation, 259 
transformation, 259, 419 

cyclic ridge cycle, 695 

Dn,192 
Davis 120-cell space, 506 
de Rham cohomology, 541 
deformation space, 392 
Dehn surgery, 493 

invariant, 492 
Dehn-Nielsen theorem, 391 
developing map 

of a manifold, 354 
of an orbifold, 682 

Index 

dihedral 
angle, 255 

sum, 432, 695 
ridge cycle, 695 

dilogarithm function, 464 
dimension of a convex set, 199 
Dirichlet 

domain, 243 
polyhedron, 247 

discontinuous 
action, 165 
group, 166 

discrete 
faithful representation, 392 
group, 161 
reflection group, 265 

disjoint set 
of polyhedra, 504, 694 

distance between sets, 233 

En, 15 
En, 113 
ry(x,y), 62, 71, 73, 75 
edge, 232 

cycle, 432 
invariants, 477 
of an abstract polygon, 384 

effective action, 175 
elementary 

group, 180, 188 
space-form, 340 

elliptic 
closed curve, 402 
elementary group, 180 
geometry, 42 
isometry of En, 169 
line, 42 
modular group, 168 
plane, 44 
space, 42 
transformation 

of En, 141 
of un, 142 

type, 180 
Erlanger Program, 21 
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Euclidean 
angle, 14 
distance, 14 
geometry, 1, 13 
inner product, 13 
isometry, 15 
line, 21 
manifold, 344 

structure, 344 
metric, 14 
norm, 13 
orbifold, 664 
plane, 19 
similarity, 20 

manifold, 344 
orbifold, 664 
structure, 344 

space, 15 
space-form, 337 
sphere, 107, 130 
topology, 15 
torus, 339 

Euler characteristic 
of a surface, 372 

exact 
fundamental 

polyhedron, 250 
tessellation, 251 

extended hyperplane, 114 
exterior of light cone, 57 

face, 210 
facet, 503 
facet-pairing, 504 
field of fractions, 318 
figure-eight knot, 447 

complement, 444 
finitely 

compact metric space, 155 
generated ring, 326 

first kind, 577 
flag, 230, 232 
free action, 333 
freely homotopic, 402 
Fuchsian group, 190 

full scale lattice, 308 
fundamental 

cycle, 550 
domain, 234 
orbifold group, 674 
polyhedron, 247 
region, 234 
set, 241 

GL(n,rc),149 
GL(n, lR), 150 
Gauss-Bonnet theorem, 386 
general linear group, 149 
generalized 

polytope, 228 
simplex, 228 
triangle, 88 
vertex, 222 

genus of a surface, 373 
geodesic, 26 

arc, 23 
curve, 25 
half-line, 25 
line, 26 
ray, 25 
section, 25 
segment, 24 

geodesically 
complete, 26 
connected, 25 
convex, 25 

geometric 
manifold, 368 
orbifold, 663 
space, 331 

geometrically finite 
group, 612 
manifold, 639 
polyhedron, 603 

geometry, 368 
Gieseking manifold, 461 
gluing invariant, 419 
gnomonic projection 

of D n onto Hn, 192 
of lRn into sn, 42 
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Gram matrix) 287) 301 
Gram-Schmidt process) 18 
great 

circle) 39 
sphere, 41 

Gromov 
invariant, 530 
theorem) 535 

group 
action, 18 
of isometries, 15 
of similarities, 20 
of symmetries) 163 
of the first kind) 577 
of the second kind, 577 

Hn, 63, 67 
Haar 

integral, 534, 547 
measure, 534, 547 

Hermitian 
inner product, 148 
norm, 148 

hexagon, 98 
Hilbert's theorem, 12 
holonomy 

of a manifold) 355 
of an orbifold, 675 

homogeneous 
coordinates, 193 
metric space, 16 

homotopic (X, G)-paths, 673 
homotopically distinct, 405 
horoball, 133, 138 
horocusp, 442 
horocycle, 133, 138 
horodisk, 133, 138 
horopoint, 219 
horosphere, 133, 137 

of B n , 133 
of un, 137 

hyperbolic 
angle 

of Dn, 198 
of Hn) 71 

closed curve, 402 
convex, 575 

hull, 575 
coordinates, 80 
cosine laws, 86 
distance, 64 
elementary group, 180 
geometry, 3, 63 
hexagon, 98 
isometry, 67 
law of sines, 86 
line 

of Bn, 131 
of Dn, 196 
of Hn, 68 
of un, 137 

manifold, 344 
structure, 344 

metric, 67 
orbifold, 664 
pentagon, 97 
plane, 5 

of B n , 131 
of D n , 195 
of Hn, 70 
of un, 137 

quadrilateral, 92, 96 
right triangle, 102 
space, 67 
space-form, 337 
sphere 

of B n , 132 
of un, 137 

transformation 
of Bn, 141 
of un, 142 

translation, 129, 144 
triangle, 83, 88 
trigonometry, 83 
type, 180 
volume) 81 

hyperboloid model, 12, 63 
hyperplane 

of En, 21 
of Hn, 70 

Index 
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I(X),15 
icosahedral group, 279 
ideal 

boundary, 645 
point, 218 
polytope, 229 
simplex, 229 
triangle, 88 
vertex, 221, 600 

incident, 218 
induced 

metric 
on a manifold, 348 
on an orbifold, 670 

structure 
on a manifold, 345 
on an orbifold, 664 

infinite triangle, 88 
initial point of a curve, 22 
inner product, 13 
inscribed 

curve, 30 
length of a curve, 28 

integral 
closure, 320 
domain, 318 
element, 319 
ring, 320 

integrally closed, 320 
interior 

of a convex set, 199 
of a manifold, 331 
of light cone, 57 

inverse points, 119 
inversion, 107 
inversive geometry, 105 
~rreducible Coxeter group, 276 
Isometric 

circle, 120 
metric spaces, 15 
sphere, 117 

isometry, 15 
isomorphic 

topological groups, 149 

Jordan decomposition, 539 
junction 

of an (X, G)-path, 672 

Klein bottle, 373 
Kleinian group, 190 
Klein's model, 7 

LF(t), 120 
lattice, 164 

subgroup, 177 
length 

of a closed geodesic, 407 
of a curve 

in a manifold, 346 
in a metric space, 29 
in an orbifold, 668 

length-twist coordinates, 412 
lens space, 338 
light cone, 57 
light-like 

vector, 57 
subspace, 61 

limit 

line 

point, 573 
set, 573 

of B n , 131 
of D n , 196 
of En, 21 
of H n , 68 
of pn, 42 
of un, 137 
segment, 21 

linear 
curve, 22 
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fractional transformation 
120 ' 

link 
of a cusp point 

of a manifold, 441, 508 
of a polyhedron, 507, 600 
of an orbifold, 705 

of a polyhedron, 215, 219 
of an ideal vertex, 440 
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Lipschitz 
condition, 552 
constant, 552 

Lobachevskian geometry, 33 
Lobachevsky function, 463 
local 

isometry, 333 
ring, 319 

localization, 319 
locally 

convex, 28 
discrete, 627 
finite, 166 

fundamental region, 237 
geodesically convex, 336 

longitude, 490 
Lorentz 

group, 59 
orthogonal vectors, 60 
orthonormal 

basis, 58 
vectors, 68 

rectifiable curve, 77 
transformation, 58 

Lorentzian 
angle, 62, 71, 73, 75 
complement, 62 
cross product, 64 
distance, 57 
geometry, 56 
inner product, 56 
inscribed length, 77 
length of a curve, 77 
matrix, 59 
norm, 56 
space, 56 

loxodromic transformation, 144 
lune of S2, 51 

M(Bn),125 
M(En),116 
M(sn), 124 
M(Un ),I21 
magnification, 20 
manifold, 330 

Index 

manifold-with-boundary, 331 
mapping class group, 390 
Margulis 

constant, 629 
lemma, 628 
region, 632 

maximal ideal, 319 
measurable subset 

of Hn, 81 
of sn, 46 

measure homology, 539 
meeting at infinity, 74 
meridian, 490 
meridian-longitude pair, 490 
metric, 14 

manifold, 346 
of Bn, 128 
of En, 14 
of En, 113 
of Hn, 64 
of pn, 42 
of sn, 37 
of un, 136 
orbifold, 668 
space, 15 
topology, 15 

metrically equivalent, 15 
Minkowski space-time, 103 
Mobius 

group 
of Bn, 125 
of En, 116 
of sn, 124 
of un, 121 

transformation 
of Bn, 125 
of En, 116 
of sn, 124 
of un, 121 

modular group, 165 
moduli, 429 

space, 389 
Mostow rigidity theorem, 569 
multiplicatively closed, 318 
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N(S, r), 15 
natural Euclidean metric, 143 
near sets, 636 
nearest point, 578 

retraction, 578 
to a line, 140 

negative 
light-like vector, 57 
Lorentzian matrix, 60 
time-like vector, 57 

neighborhood, 15 
non-Euclidean geometry, 3 
nondegenerate bilinear form, 

286 
norm 

of a matrix, 149 
of a partition, 28 
of a vector, 13, 56 

normalized 
solid angle, 504 

sum, 505 

O(n), 17 
0(1, n), 59 
O(n, 1), 127 
octahedral group, 278 
one-point compactification, 113 
open 

ball, 15 
manifold, 331 
set, 15 
unit n-ball, 124 
unit n-disk, 192 

orbifold, 663 
orbit, 165 

space, 233 
metric, 233 

order of a point, 665 
ordinary 

point 
of a group, 577 
of an orbifold, 666 

set 
of a group, 577 
of an orbifold, 666 

orient able 
manifold, 356 
space-form, 337 
surface, 372 

orthogonal 
complement, 21 
group, 17 
line and hyperplane 

of En, 22 
of Hn, 71 

matrix, 17 
spheres, 122, 131 
transformation, 16 
vectors 

in en, 150 
in ~n, 14 

orthonormal basis 
of en, 150 
of ~n, 16 
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outer automorphism group, 391 

pn,42 

P(a, t), 105 
PO(I, n), 60 
PO(n, 1), 150 
PSL(2, q, 152 
PSL(2, ~), 153 
packing, 584 
pair of pants, 408 
paired 

points 
of a polyhedron, 254 
of polygons, 375 
of polyhedra, 432, 694 

sides 
of a polyhedron, 254 
of polygons, 374 
of polyhedra, 431, 694 

parabolic 
closed curve, 402 
elementary group, 180 
isometry of En, 169 
transformation 

of En, 141 
of un, 142 
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parabolic (continued) 
translation, 143 
type, 180 

parallel 
hyperbolic lines, 76 
planes, 21 
postulate, 2 

parallels, 12 
partition of an interval, 28 
pentagon, 97 
period of a geodesic line, 400 
periodic geodesic line, 400 
Picard's group, 169 
piecewise geodesic curve, 30 
plane 

of En, 131 
of Dn, 195 
of En, 19 
of Hn, 70 
of pn, 44 
of un, 137 

Poincare 
dodecahedral space, 438 
extension, 121, 124 
metric 

of En, 128 
of un, 136 

polyhedron theorem 
for manifolds, 513 
for orbifolds, 711 

point, 15 
group, 307 
of approximation, 649 

polar triangle 
of a spherical triangle, 51 
of an ultra-ideal triangle, 98 

pole, 198 
polyhedral wedge, 598 
polytope, 225 
positive 

definite 
bilinear form, 286 
inner product, 13 

light-like vector, 57 
Lorentz group, 60 

Lorentzian matrix, 60 
semidefinite, 286 

Index 

special Lorentz group, 60 
time-like vector, 57 

preservation 
of angles, 109 
of distances, 15 

prime ideal, 318 
primitive element, 401 
principal group, 21 
product 

of (X, G)-paths, 673 
of curves, 30 

projective 
disk model, 7, 192 
general linear group, 152 
Lorentz group, 62 
modular group, 168 
space, 42, 43 
special 

linear group, 152 
unitary group, 153 

transformation, 194 
proper 

dihedral angle, 256 
face, 210 
facet-pairing, 505 
fundamental region, 235 
pair of points, 198 
side-pairing 

of polygons, 375 
of polyhedra, 432 

properly discontinuous 
group, 190 

pseudo-isometry, 555 

quadrilateral, 92, 96 
quasi-isometry, 555 
quaternions, 126, 161 
quotient topological group, 151 

IRn, 13 
jRn,43 
IRl,n, 56 
IRn,l, 56 
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ray, 25 
real 

projective space, 42 
space, 13 

rectifiable curve 
in a manifold, 346 
in a metric space, 29 
in an orbifold, 669 

refinement of a partition, 28 
reflection, 105, 107, 114 

group, 265 
regular 

ideal polytope, 232 
polytope, 230 
simplex, 518 
tessellation, 252 

related 
(X, G)-paths, 676 
points 

of a polyhedron, 254 
of polygons, 375 
of polyhedra, 432, 694 

reparameterization 
of a curve, 32 
of an (X, G)-path, 673 

repulsive fixed point, 145 
ridge, 207 

cycle, 694 
Riemann 

sphere, 113 
surface, 428 

right angle, 7 
right-angled hexagon, 98 
rigid metric space, 241 
ring of fractions, 318 
rotation, 18 

sn, 36, 38 
S(X), 20 
S(a,r),107 
SL(n, q, 150 
SL(n, lR), 150 
scalar triple product, 37 
scale factor 

of a conformal function, 109 

of a similarity, 20 
Schottky 

group, 585 
polyhedron, 585 

seam of a pair of pants, 408 
second kind, 577 
section of a geodesic, 25 
sector of H2, 87 
Seifert-Weber 

dodecahedral space, 439 
Selberg's lemma, 327 
side, 202 
side-pairing 

of a polyhedron, 254 
of polygons, 374 
of polyhedra, 431, 694 
relation, 259 
transformation, 254 

similar 
metric spaces, 20 
structures, 389 

similarity, 20 
simple closed 

curve, 403 
geodesic, 403 

simplex, 226 
reflection group, 277 

simplicial norm, 529 
singular 

chain complex, 529 
point 

of an orbifold, 666 
of an orbit space, 662 

set 
of an orbifold, 666 
of an orbit space, 662 

simplex, 529 
small homotopy 

of an (X, G)-path, 673 
smear of a simplex, 548 
smooth map, 552 
solid 

angle, 432 
sum, 432 

horocusp, 442 
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space-form, 334 
space-like 

angle, 71 
vector, 57 

subspace, 61 
space-time, 56 
special 

linear group, 150 
Lorentz group, 60 
orthogonal group, 18 
relativity, 56 
unitary group, 151 

sphere 
of Bn, 132 
of En, 107 
of En, 115 
of un, 137 

spherical 
coordinates, 45 
cosine laws, 50, 51 
distance, 37 
geometry, 36 
isometry, 38 
law of sines, 50 
manifold, 344 

structure, 344 
metric, 38 
orbifold, 664 
right triangle, 53 
space, 38 
space-form, 337 
triangle, 48 
trigonometry, 48 
volume, 46 

spherical-hyperbolic duality, 
3, 33, 63, 87 

splitting group, 313 
stabilizer, 165 
standard 

basis of ]Rn, 16 
coordinate frame of En, 27 
simplex, 226 
transformation, 124 

stereographic projection 
of Bn onto H n, 127 

Index 

of En into sn, 112 
straight singular simplex, 531 
structure 

of a manifold, 344 
of an orbifold, 663 

subdivision 
of an (X, G)-path, 672 

submultiple, 265 
subproper side-pairing, 695 
surface, 371 

with boundary, 373 

O(x, y), 14 
tangent 

space 
of Hn, 76 
of sn, 41 

vector 
to H n, 76 
to sn, 41 

Teichmiiller space, 390 
terminal point of a curve, 22 
tessellation, 251 
tetrahedral group, 278 
thick part of a manifold, 634 
thin 

cusp, 619 
part of a manifold, 633 

time-like 
angle, 62, 73, 75 
vector, 57 

subspace, 61 
topological group, 149 
torus, 336, 339 
total variation, 539 
totally geodesic, 26 
trace of a transformation, 145 
tractrix, 5 
tractroid, 5 
transitive group action, 18 
translation, 16 

direction vector, 180 
of an (X, G)-path, 672 

triangle 
group, 277 
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triangle (continued) 
inequality, 14 
of H2, 83, 88 
of S2, 48 
reflection group, 277 

triangulation, 371 
trivial action, 175 
twist coefficient, 412 
type 

of a symmetric matrix, 286 
of an elementary 

group, 180 
space-form, 340 

un, 121, 136 
U(n), 150 
ultra-ideal triangle, 98 
ultraparallels, 12 
unimodular group, 165 
unitary 

group, 150 
matrix, 150 

universal orbifold covering 
projection, 676 
space, 676 

upper 
half-plane model, 8, 10 
half-space, 121 

model, 136 

valuation ring, 322 
vector 

in en, 148 
in IRn , 13 

vertex, 214 
invariants, 475 
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of an abstract polygon, 384 
volume 

element 
of En, 134 
of D n , 197 
of Hn, 82 
of sn, 47 
of un, 139 

of sn, 48 
of a ball of H 3 , 83 
of a space-form, 337 
of an orbit space, 582, 662 

Whitehead link, 456 
complement, 452 

winding degree, 412 

(X, G)-
atlas 

of a manifold, 343 
of an orbifold, 662 

equivalence 
of manifolds, 365 
of orbifolds, 692 

manifold, 344 
structure, 344 

map 
of manifolds, 352 
of orbifolds, 691 

orbifold, 663 
structure, 663 

path, 671 
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