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PREFACE

This is a systematic exposition of the basic part of the theory of mea-
sure and integration. The book is intended to be a usable text for
students with no previous knowledge of measure theory or Lebesgue
integration, but it is also intended to include the results most com-
monly used in functional analysis. Our two intentions are some what
conflicting, and we have attempted a resolution as follows.

The main body of the text requires only a first course in analysis
as background. It is a study of abstract measures and integrals, and
comprises a reasonably complete account of Borel measures and in-
tegration for R. Each chapter is generally followed by one or more
supplements. These, comprising over a third of the book, require some-
what more mathematical background and maturity than the body of
the text (in particular, some knowledge of general topology is assumed)
and the presentation is a little more brisk and informal. The material
presented includes the theory of Borel measures and integration for R”,
the general theory of integration for locally compact Hausdorff spaces,
and the first dozen results about invariant measures for groups.

Most of the results expounded here are conventional in general
character, if not in detail, but the methods are less so. The following
brief overview may clarify this assertion.

The first chapter prepares for the study of Borel measures for R. This
class of measures is important and interesting in its own right and it
furnishes nice illustrations for the general theory as it develops. We
begin with a brief analysis of length functions, which are functions on
the class # of closed intervals that satisfy three axioms which are
eventually shown to ensure that they extend to measures. It is shown
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in chapter 1 that every length function has a unique extension A to the
lattice & of sets generated by # so that /i is exact, in the sense that
A(A) = A(B) + sup{A(C): C € & and C = A\ B} for members A and B
of ¥ with 4 = B.

The second chapter details the construction of a pre-integral from a
pre-measure. A real valued function g on a family o/ of sets that is
closed under finite intersection is a pre-measure iff it has a countably
additive non-negative extension to the ring of sets generated by <7 (e.g.,
an exact function p that is continuous at ). Each length function is a
pre-measure. If u is an exact function on .o/, the map y + u(A4) for 4 in
</ has a linear extension I to the vector space L spanned by the
characteristic functions y,, and the space L is a vector lattice with
truncation: I A fe L if fe L. If u is a pre-measure, then the positive
linear functional I has the property: if { f, }, is a decreasing sequence in
L that converges pointwise to zero, then lim,I( f,} = 0. Such a function-
al [ is a pre-integral. An integral is a pre-integral with the Beppo Levi
property: if { f,}, is an increasing sequence in L converging pointwise
to a function f and sup, I(f,) < o, then f € L and lim, I(f,} = I(f).

In chapter 3 we construct the Daniell-Stone extension L! of a
pre-integral I on L by a simple process which makes clear that the
extension is a completion under the L! norm | /||, = I(| f|). Briefly: a
set E is called null iff there is a sequence { f,}, in L with ), || f,Il; <
such that Y | f,(x)| = oo for all x in E, and a function g belongs to L*
iff g is the pointwise limit, except for the points in some null set, of a
sequence {g,}, in L such that ) ,lg,s; — gall; < c© (such sequences
are called swiftly convergent). Then L! is a norm completion of L and
the natural extension of I to L! is an integral. The methods of the
chapter, also imply for an arbitrary integral, that the domain is norm
complete and the monotone convergence and the dominated conver-
gence theorems hold. These results require no measure theory; they
bring out vividly the fundamental character of M. H. Stone’s axioms
for an integral.

A measure is a real (finite) valued non-negative countably additive
function on a d-ring (a ring closed under countable intersection). If J is
an arbitrary integral on M, then the family o/ = {A: y, e M} is a
d-ring and the function A J(x,) is a measure, the measure induced
by the integral J. Chapter 4 details this procedure and applies the
result, together with the pre-measure to pre-integral to integral theo-
rems of the preceding chapters to show that each exact function that is
continuous at (J has an extension that is a measure. A supplement
presents the standard construction of regular Borel measures and an-
other supplement derives the existence of Haar measure.

A measure u on a é-ring </ is also a pre-measure; it induces a pre-
integral, and this in turn induces an integral. But there is a more direct
way to obtain an integral from the measure y: A real valued function
f belongs to L () iff there is {a,}, in R and {A4,}, in o/ such that
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Y ula,lu(A4,) < oo and f(x) = Y, a,1, (x)for all x, and in this case the
integral 1,( f) is defined to be Y, a,(A,). This construction is given in
chapter 6, and it is shown that every integral is the integral with
respect to the measure it induces.

Chapter 6 requires facts about measurability that are purely set
theoretic in character and these are developed in chapter 5. The critical
results are: Call a function f &/ o-simple (or &/ o¢*-simple) iff =
Y wanx4 forsome {4,},in o/ and {a,},in R (in R, respectively). Then,
if o/ is a J-ring, a real valued function f is &/ o-simple iff it has a
support in </, and is locally «/ measurable (if B is an arbitrary Borel
subset of R, then 4 n f "1 [B] belongs to & for each A4 in /). Moreover,
if such a function is non-negative, it is &/ ¢*-simple.

Chapter 7 is devoted to product measures and product integrals. It is
concerned with conditions that relate the integral of a function f w.r.t.
1 ®yv to the iterated integrals [ ([ f(x, y)dux)dvy and [ (] f(x, y)dvy)dux.
We follow the natural approach, deriving the Fubini theorem from the
Tonelli theorem, and the latter leads us to grudgingly allow that some
perfectly respectable g-simple functions have infinite integrals (we call
these functions integrable in the extended sense, or integrable*).

Countably additive non-negative functions u to the extended set R*
of reals (measures in the extended sense or measures*) also arise naturally
(chapter 8) as images of measures under reasonable mappings. If x is a
measure on a o-field o/ of subsets of X, # is a o-field for Y, and
T: X — Yis .o/ — % measurable, then the image measure Ty is defined
by Tu(B) = u(T 1[B]) for each B in #. If &/ is a S-ring but not a
o-field, there is a possibly infinite valued measure that can appropri-
ately be called the T image of u. We compute the image of Borel-
Lebesgue measure for R under a smooth map, and so encounter inde-
finite integrals.

Indefinite integrals w.r.t. a o-finite measure u are characterized in
chapter 9, and the principal result, the Radon—Nikodym theorem, is
extended to decomposable measures and regular Borel measures in a
supplement. Chapter 10 begins the study of Banach spaces. The duals
of some standard spaces are characterized, and in a supplement our
methods are used to establish very simply, or at least o-simply, the
basic facts about Bochner integrals.

This book is based on various lectures given by one or the other of
us in 1965 and later, at the Indian Institute of Technology, Kanpur;
Panjab University, Chandigarh; University of California, Berkeley; and
the University of Kansas. We were originally motivated by curiosity
about how a g-simple approach would work; it did work, and a version
of most of this text appeared as preprints in 1968, 1972 and 1979,
under the title “Measures and Integrals.” Since that time our point of
view has changed on several matters (but not on g-simplicity) and the
techniques have been refined.

This is the first of two volumes on Measure and Integral. The ex-
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ercises, problems, and additional supplements will appear as a com-
panion volume to be published as soon as we can sift and edit a large
disorganized mass of manuscript.

We are grateful to Klaus Bichteler, Harlan Glaz, T. Parthasarathy,
and Allan Shields for suggestions and criticisms of earlier versions of
this work and to Dorothy Maharam Stone and 1. Namioka for their
review of the final manuscript. We are indebted to our students for
their comments and their insights. We owe thanks to Jean Steffey, Judy
LaFollette, Carol Johnson, and especially to Ying Kelley and Sharon
Gumm for assistance in preparation of the manuscript, and to Saroja
Srinivasan for her nonmeasurable support.

This work was made possible by support granted at one time or
another by the Miller Foundation of the University of California,
Berkeley, the National Science Foundation, the Panjab (India} Uni-
versity, and the University of Kansas. We thank them.

J. L. KELLEY T. P. SRINIVASAN
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Chapter 0

PRELIMINARIES

This brief review of a few conventions, definitions and elementary
propositions is for reference to be used as the need arises.

SETS

We shall be concerned with sets and with the membership relation, €. If
A and B are sets then A = B iff 4 and B have the same members; i.e., for
all x, x € A iff x € B. A set A is a subset of a set B (B is a superset of 4,
A <= B, B> A) iff x e B whenever x € A. Thus 4 = B iff A = B and
B < A. The empty set is denoted .

If A and B are sets then the union of A and Bis AU B, {x: x € A or
x € B}; the intersection A " B is {x: x € A and x € B}; the difference
A\Bis {x: x € A and x ¢ B; the symmetric difference 4 A Bis (4 v B)\
(A n B); and the Cartesian product 4 x Bis {(x,y): x € A,y € B}. The
operations of union, intersection, and symmetric difference are com-
mutative and associative, n distributes over U and A, and v distributes
over Nn. The set (F is an identity for both U and A.

If, for each member ¢ of an index set T, 4, is a set, then this cor-
respondence is called an indexed family, or sometimes just a family of
sets and denoted {A,},cr. The union of the members of the family is
Uter A= {41t e T} ={x:x € A, for some member t of T} and
the intersection is (Vo7 4, =(){A;:te T} = {x:xe€ A, for each
member t of T}. There are a number of elementary identities such as
Ute rus Ar = (UIETAI)U(UIESAI)7 C\UteTAt = mteT(C\Al) for
all sets C (the de Morgan law), and |, (BN A,) =B | J,. 1 4,.
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FUNCTIONS

We write f/: X — Y, which we read as “f is on X to Y”, iff f is a map of
X into Y; that is, f is a function with domain X whose values belong to
Y. The value of the function f at a member x of X is denoted f(x), or
sometimes f,.

If f: X - Y then “x+> f(x), for x in X”, is another name for f. Thus
x+— x%, for x in R (the set of real numbers) is the function that sends
each real number into its square. The letter “x”, in “x+ x2 for x in R”
is a dummy variable, so x> x? for x in R is the same as t+ ¢? for t in
R. (Technically, “+" binds the variable that precedes it.)

If f: X>Yandg: Y- Zthen gof: X — Z, the composition of g
and f, is defined by g o f(x) = g(f(x)) for all x in X.

If f: X > Y and A « X then f|A4 is the restriction of f to A4 (that is,
{(x,y): x e Aand y = f(x)})and f[A] is the image of 4 under f(that is,
{y:y = f(x) for some x in A}). If B < Y then f~'[B] = {x: f(x) € B
is the pre-image or inverse image of B under f. For each x, f '[x] is

ST
COUNTABILITY

A set A is countably infinite if there is a one to one correspondence
between A and the set N of natural numbers (positive integers), and a
set is countable iff it is countably infinite or finite.

Here is a list of the propositions on countability that we will use, with
brief indications of proofs.

A subset of a countable set is countable.

If A is a subset of N, define a function recursively by letting f(n) be
the first member of A\ {x: x = f(m) for some m, m < n}. Then f(n) = n
for each member # of the domain of f, and A is countably infinite if the
domain of f is N and is finite otherwise.

The image of a countable set under a map is countable.

If fis a map of N onto 4 and D = {n: ne N and f(m) # f(n) for
m < n} then f|D is a one to one correspondence between A and a subset
of N.

The union of a countable number of countable sets is countable.

It is straightforward to check that the union of a countable number
of finite sets is countable, and N x N is the union, for k in N, of the
finite sets {(m,n): m + n =k + 1}.



COUNTABILITY; ORDERINGS AND LATTICES 3

If A is an uncountable set of real numbers then for some positive
integer n the set {a:a € A and |a| > 1/n} is uncountable.

Otherwise A4 is the union of countably many countable sets.

The family of all finite subsets of a countable set is countable.

For each n in N, the family 4, of all subsets of {1,...... , n} is finite,
whence ( ), 4, is countable.

The family of all subsets of N is not countable.

If f is a function on N onto the family of all subsets of N, then
for some positive integer p, f(p) = {n: n ¢ f(n)}. If pe f(p) then p e
{n:n¢ f(n)}, whence p¢ f(p). If p¢ f(p) then p¢ {n:n¢ f(n}

whence p € f(p). In either case there is a contradiction.

ORDERINGS AND LATTICES

A relation = partially orders a set X, or orders X iff it is reflexive on X
(x = x if x € X) and transitive on X (if x, y and z are in X, x = y and
y 2 z then x = z). A partially ordered set is a set X with a relation =
that partially orders it (formally, (x, =) is a partially ordered set). A
member u of a partially ordered set X is an upper bound of a subset Y of
X iffu = yfor all yin Y; and if there is an upper bound s for Y such that
u = s for every upper bound u of Y, then s is a supremum of Y, sup Y. A
lower bound for Y and an infimum of Y, inf Y are defined in correspond-
ing fashion.

An ordered set X is order complete or Dedekind complete iff each
non-empty subset of X that has an upper bound has a supremum, and
this is the case iff each non-empty subset that has a lower bound has an
infimum.

A lattice is a partially ordered set X such that {x,y} has a unique
supremum and a unique infimum for all x and y in X. We denote
sup{x,y} by x v y and inf{x,y} by x A y. A vector lattice is a vector
space E over the set R of real numbers which is a lattice under a partial
ordering with the properties: for x and y in E and r in R* (the set of
non-negative real numbers), if x =2 0 then rx =20, if x=0and y=0
then x + y = 0, and x = y iff x — y = 0. Here are some properties of
vector lattices:

Forall xand y, x vy=—((—x)A(—=y)and x A y= —((—Xx) v
(—y)), because multiplication by — 1 is order inverting.

Forall x,yandz,(x vy)+z=x+2z)v(y+z)and (x A y)+z=
(x + z) A (y + z), because the ordering is translation invariant (i.e.,
xzyiffx+zzy+ 2).



4 CHAPTER 0: PRELIMINARIES

Forall xand y, x+ y=x v y+ x A y (replace z by —x — y in the
preceding and rearrange).

If x¥*=xvO0and x = —-(xA0=(=x)vO0 then x=xv 0+
xA0=x"—x".

For each member x of a vector lattice E, the absolute value of x is de-
fined to be |x| = x™ + x~. Vectors x and y are disjoint iff [ x| A |y| = 0.

For each vector x, x* and x~ are disjoint, because x* A x~ +
xA0=Kx"+xA0A X +xA0)=(x"—x")A0=xA0, whence
xTAxT =0

The absolute value function x> |x| completely characterizes the
vector lattice ordering because x = 0 iff x = | x|. On the other hand, if
E is a vector space over R, A: E—> E, A o A = A, A is absolutely homo-
geneous (i.e., A(rx) = |r|A(x) for r in R and x in E), and A is additive on
A[E] (i.e, A(A(x) + A(y)) = A(x) + A(y) for x and y in E), then Eis a
vector lattice and 4 is the absolute value, provided one defines x = y to
mean A(x — y) = x — y.

(Decomposition lemma) If x 20,y =2 0,z=20andz < x + y, thenz =
u+ v for some uand v with0 £ u < xand 0 £ v £ y. Indeed, we may set
u=zAxand v=z—z A X, and it is only necessary to show that
z—z A x £ y. But by hypothesis,y =2 z—xand y 2 0,s0 y 2 (z—x) v 0,
and a translation by —z then shows that y —z>(—x) v (—z) =
—(z A x)as desired.

A real valued linear functional f on a vector lattice E is called posi-
tive iff f(x) = Ofor x = 0. If f is a positive linear functional, or if f is the
difference of two positive linear functionals, then { f(u): 0 £ u < x}isa
bounded subset of R for each x = 0.

If f is a linear functional on E such that f*(x)=sup{f(u): 0Su<x}<oc
forall x = 0, then f is the difference of two positive linear functionals, for
the following reasons. The decomposition lemma implies that { f(z):
0sz=x+y}={fu)+ f(v): 0= u =< xand0 < v £ y}, consequently
f* is additive on P = {x: x € E and x 2 0}, and evidently f* is abso-
lutely homogeneous. It follows that if x, y, u and v belong to P and
x—y=u—vthen f*(x)— f7(y) = f () — f*(v),and f can be ex-
tended to a linear functional on E—which we also denote by /. More-
over, f* — fis non-negative on P and so f = f* —(f" — f) is the
desired representation.

The class E* of differences of positive linear functionals on E is itself
ordered by agreeing that f = g iff f(x) = g(x) for all x in E with x = 0.
Then E*, with this ordering, is a vector lattice and f+ = f v 0. Itis to
be emphasized that “fis positive” does not mean that f(x) = 0 for all x
in E, but only for members x of E with x = 0.

Suppose a vector space F of real valued functions on a set X is
ordered by agreeing that f = 0 iff f(x) = 0 for all x in X. If F, with
this ordering, is a lattice, then it is a vector lattice and is called a vector
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function lattice. This is equivalent to requiring that (f v g)(x) =
max { f(x),g(x)} for all x in X.

CONVERGENCE IN R*

A relation = directs a set D iff > orders D and for each o and fin D
there is y in D such that y = « and y = 8. Examples: the usual notion of
greater than or equal to directs R, the family of finite subsets of any set
X is directed by > and also by <, and the family of infinite subsets of
R is directed by > but not by <.

A net is a pair (x, =) such that x is a function and = directs the
domain D of x. We sometimes neglect to mention the order and write
the net x, or the net {x,},.p. A net with values in a metric space X (or
a topological space) converges to a member ¢ of X iff {x,},.p is even-
tually in each neighborhood U of ¢; that is, if for each neighborhood U
of ¢ there is a in D such that x; € U for all § = «. If {x, },. p converges
to ¢ and to no other point, then we write lim, ., X, = c.

A finite sequence {x, };_, is a function on a set of the form {1,2,...,n},
for some n in N. A sequence is a function on the set of positive integers,
and the usual ordering of N makes each sequence a net. A sequence
{x, }nen Will also be denoted by {x, },2, or just by {x,},. Thus for each
g, {p + q*}, is the sequence p+> p + q* for p in N.

It is convenient to extend the system of real numbers. The set R,
with two elements oo and —oo adjoined, is the extended set R* of real
numbers and members of R* are real* numbers. We agree that oo is
the largest member of R*, —oo is the smallest, and for each r in R we
agree thatr + 00 = 00 +r= 0, r + —00 = —© + F = —00,F 0 = ®©
ifr>0,r-o0=-0wif r<0, r(—0)=(—r) 0 for r#0, 0-c0 =
0-(—0)=0, 0 00 =(—w0) (—0) =00 and o0 (—w) = (—00) 0 =
—00.

Every non-empty subset of R which has an upper bound has a
smallest upper bound, or supremum, in R and it follows easily that
every subset of R* has a supremum in R* and also an infimum. In
particular, sup & = —oo and inf & = —o0.

A neighborhood in R* of a member r of R is a subset of R* containing
an open interval about r. A subset V of R* is a neighborhood of oo iff for
some real number r, V contains {s: s € R* and s > r}. Neighborhoods of
—oo are defined in a corresponding way. Consequently a net {x, },. pin
R* converges to oo iff for each real number s there is § in D such that
x,>sfora = B.

If {x,}.c 4 and {y,},. 4 are convergent nets in R* then lim,. , (x,+y,)=
lim, . 4x, + lim,. 4 y,, provided the sum of the limits is defined and
lim, . 4 xuVe = (limy, . 4x,) (lim,. 4y,) provided the pair (lim,. 4 x,,
lim,. ,y,) is not one among (0, +o0) or (+oc,0). The proofs parallel
those for nets in R with minor modifications.
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If a net {x,},. + in R* is increasing (more precisely non-decreasing) in
the sense that x; = x, if f > «, then {x,},., converges to sup,. 4 x,;
for if r < sup, . 4 x,, then r is not an upper bound for {x,},. 4, conse-
quently r < x, for some «, and hence r < x; < sup,. 4x, for f = a.
Likewise, a decreasing net in R* converges to inf, . 4 X, in R*.

If {X,},c 415 @ net in R* then o> sup{x;: p € A and p 2 o} is a de-
creasing net and consequently converges to a member of R*. This
member is denoted limsup,.,x, or limsup{x,: a € A}. Similarly
liminf{x,: « € A} islim, _,inf{xz: B = a}. It is easy to check that a net
{X, }.c 4 converges iff lim sup, . 4 x, = liminf, . 4 x,, and that in this case
lim, . 4 x, = limsup,. 4x, = liminf,_ 4 x,.

If { f.}.c4 is a net of functions on a set X to R* then sup,. , f, is
defined to be the function whose value at x is sup, . 4 f,(x), and simi-
larly, (inf,  , f,)(x) = inf, c 4 fo(x), (limsup, . 4 /,)(x) = limsup, . 4 [,(x)
and (liminf,_, f,)(x) = liminf,. , f,(x). The net{f,},., converges
pointwise to f iff f = limsup,.,f, = liminf,. ,f, or, equivalently,
f(x) = lim,_ 4 f,(x)for all x.

UNORDERED SUMMABILITY

Suppose x = {x,},. r is an indexed family of real* numbers. We agree
that {x,},. ; is summable* over a finite subset 4 of T iff x does not
assume both of the values oo and —oo at members of A4, and in this case
the sum of x, for ¢ in A4 is denoted by Y ,. ,x, or Y 4x. If {x,},. 1 is
summable* over each finite subset, and if % is the class of all finite
subsets of T, then # is directed by >, {) ,x},.# is a net, and we
say that x is summable* over 7, or just summable* provided that the
net {Y ,x} .7 converges. In this case the unordered sum, ) ;x, is
lim{} ,x: Ae #},and {x,},.r is summable* to ¥ r x.

If x = {x,},c7 is a family of real numbers, then x is automatically
summable* over each finite subset of T and we say that x is summable
over 7, or just summable, provided it is summable* and }  x € R.

If {x,},cn is a sequence of real numbers then the (ordered) sum,
lim, Y *_, x,, may exist although the sequence is not summable (e.g.,
x, = (—1)*/n for each n in N). However, if {x,}, is summable* then the
limit of {Y 7_, x, }, exists and lim, Y fo1 X, = Y wen Xp-

Here are the principal facts about unordered summation, with a few
indications of proof. Throughout, x = {x,},.rand y = {y,},.r will be
indexed families of real* numbers, (x*), = (x,)* and (x7), = (x,)” for
each ¢, and r will be a real number.

The family x = {x,},.y is summable iff for e > 0 there is a finite
subset A of T such that ) g|x| < e for each finite subset B of T\ A.

If x ={x,},.r is summable then x, = 0 except for countably many
points t.

If x, 2 0 for each t then {x,},. 1 is summable*.
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(The net {) , x: A € #} is increasing.)

The family x is summable* iff one of Y px* and Y ; x™ is finite; it is
summable iff both are finite; and in either of these two cases, Y rx =
Y #x" =Y px7. (The result reduces to the usual “limit of the diffe-
rence” proposition.)

If x is summable* and r € R then rx is summable* and Y rrx =r) 1 x.

The next proposition states that ), is additive except for co — o0
troubles”. It’s another “limit of a sum” result.

If x and y are summable*, {x, y,} # {00, —o0} for all t, and
3 rx,Y ry} # {0, —0}, then x + y is summable* and Y ;(x + y) =
ZTX + ZTY~

If x is summable* over T and A < T then x is summable* over A.

If x is summable* over T and % is a disjoint finite family of subsets
of TthenY g5 (Xpx) =Y {x;:t €| Jpca B}

If </ is a decomposition of T (i.e., a disjoint family of subsets such that
T = |J4cw A) and x is summable* over T then Ay ,x is summable*

over o/ and Y 1x = 4oy 4%
If x is summable* over Y x Z, then Y y,zx = ,cyd.zezX(y,2) =

ZstZerx(yﬂz)'

It is worth noticing that the condition, “x is summable*”, is neces-
sary for the last equality. Here is an example. Define x on N x N by
letting x(m,n) be 1 if m =n, —1 if n=m + 1, and O otherwise. Then
Ymenx(mn)=0ifn>0and 1iffn=20,50 Y ,cnQ menx(m,n)) =1,
whereas Zme N (Zne N x(m, n)) = st N (0) = 0.

A family {f,},. of real* valued functions on a set X is pointwise
summable* (summable, respectively) iff { f,(x)},. r is summable* (sum-
mable, respectively) for each x in X, and in this case the pointwise sum,
(Y.rer fi)(x) is defined to be 3, _ 1 f;(x) for each x in X.

HAUSDORFF MAXIMAL PRINCIPLE

If = partially orders X then a subset C of X is a chain iff for all x and
y in C with x # y, either x = y or y = x but not both. We assume (and
occasionally use) the following form of the maximal principle.

ZOoRN’S LEMMA  If C is a chain in a partially ordered space (X, =) then
C is contained in a maximal chain D—that is a chain that is a proper
subset of no other chain.

Consequently, if every chain in X has a supremum in X then there is a
maximal member m of X —thatis, if n = m thenn = m.

Here is a simple example of the application of the maximal principle.
Suppose that G is a subset of the real plane R? and that & is the family
of disks D,(a,b) = {(x,y):(x — a)* + (y — b)*> < r?} with (a,b) in R?,
r > O and D,(a, b) = G. Then there is a maximal disjoint subfamily .# of
2, and G\ | Jp. .« D contains no non-empty open set.



Chapter 1

PRE-MEASURES

We consider briefly the class of length functions. These will turn out
to be precisely the functions on the family of closed intervals that can
be extended to become measures; these are examples of pre-measures.
Their theory furnishes a concrete illustration of the general construc-
tion of measures.

A closed interval is a set of the form [a:b] = {x: x € Rand a<x<b},
an open interval is a set of the form (a:b) = {x:a < x < b}, and
(a:b] and [a: b) are half open intervals. The family of closed intervals is
denoted #; we agree that ¢J € #. We are concerned with real valued
functions 4 on ¢, and we abbreviate A([a:b]) by A[a:b]. The closed
interval [b:b] is just the singleton {b}, and A[b:b] = A({b}) is abbre-
viated A{b}.

A non-negative real valued function A on _# such that A(F) =01is a
length, or a length function for R, iff 4 has three properties:

Boundary inequality 1fa < bthen Ala:b] = A{a} + A{b}.

Regularity Ifa e Rthen A{a} = inf{A[a —e:a+ e]:e>0.

Additive property 1If a < b < ¢ then Ala:b] + A[b:c] = Ala:c] +
A[b:b].

The length, or the usual length function 7, is defined by /[a:b]=b—a
for a < b. The length 7 is evidently a length function; it has a number of
special properties—for example, A {x} = 0 for all x.

There are length functions that vanish except at a singleton. The unit
mass at a member ¢ of R, ¢, is defined by letting ¢.[a:b] be one if
¢ € [a:b] and zero otherwise. Thus ¢, {x} =0if x #c and ¢,{c¢} =1. Each
such unit mass is a length function, and each non-negative, finite linear
combination of unit masses is a length function.
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A length function 4 is discrete iff A[a:b] =) .., A{x} for every
closed interval [a:b]. That is, a length function 4 is discrete iff the
function x+— A{x} is summable over each closed interval [a:b] and
Ala:b]is thesum Y (.., A{x} (of course, in this case 4 {x} = 0 except
for countably many x). Each discrete length 4 is the sum Y . g4 {x}e,,
since Y cpA{xtefa:bl =) ccamA{x} = Aila:b].

If 4 is a discrete length function then the function x — A{x} deter-
mines 4 entirely. On the other hand, if f 1s a non-negative real valued
function that is summable over intervals and Ala:b] =) . (4.5 f(X),
then A evidently satisfies the boundary inequality and has the additive
property required for length functions. It is also regular, and hence a
discrete length function, as the following argument shows. If a € R,
e>0and E =[a— 1:a+ 1]\{a}, then there is a finite subset F of E
such that Y . f(x)<e+ ) ..rf(x), whence ) . ppf(x)<e If
d< min{‘x_a| :XEF}> then er[a—d:n+d]f(x) é .f(a)+2er\Ff(x)<
fla)+e. Thus A[a —d:a + d] < A{a} + e, and consequently A{a} =
inf{ila—d:a+d]:d> 0}

A length function 4 is continuous iff 1 {x} = 0 for all x. The usual
length function # is continuous. Another example of a continuous length
function: if f is a non-negative real valued continuous function on R
and A[a:b] is the Riemann integral of f over [a:b], then 4 is a con-
tinuous length function.

It turns out that each length function is the sum, in a unique way, of
a discrete length function and a continuous one. We prove this after
establishing a lemma.

1 LemMmA If Aisalength functionand a = ay < a; £ " £ apuyy = b,
thenz, oAla;ia; 1= Ala:b] + Y7y A{a;},andif a; < a,Hforeachl
then Ala:b] = Y 10 A{a;}.

PROOF The definition of length implies the lemma for m=1. Assume that
the proposition is established for m = p and that a, < a, < < a,4,.
Then Y 7o Ala;:a;, 1=4lag:a,. 1+ £y A{a;}, hence Z”“)[a a0, ]=
Alag:a,, 1+ Ala,e tapiy 1+ Y 7oy A{a;}, and the additivity property
of 4 then implies that ) P25 A[a;:a;4,]1 = Alag:a,,, 1+ 3.7 A{a;}.

If a; < a;4, for each i, then the boundary inequality implies that
Z; oﬂ[a aiv] 2 Z Lo(A{ai} + A{aiy }), so Ala:b] + Z L A{a} 2

“oA{a;} + Y. A{a;} and hence A[a:h] = Y Wi i{a,). W

It is a consequence of the preceding that each length function is
monotonic; that is, if [¢:d] = [a:b] then A[c:d] < A[a:b]. fa<c <
d<b then Ala:c] + Alc:d]+ A[d:b] = Ala:b] + A{c} + A{d}, so
Ala:b] — Alc:d] = Ala:c] — A{c} + A[d:b] — A{d} = 0,and the var-
ious special cases (e.g., a = c) are easy to check.

Suppose 4 is a length function. The discrete part of 4, 4, is defined by
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Aq(I) =Y . .1 A{x} for each closed interval I. The inequality asserted in
the preceding lemma states that A,(I} < A(I) for each I in ¢, and it fol-
lows that x — 4{x} is summable over each interval, and consequently 4,
is a length function. It is a discrete length function because 4,[a:b] =
Yoxetan A} = Y rcran da{x}

The continuous part 4, of the length function 4 is defined by A.(I) =
A(I) — A4(I) for all closed intervals I. The function 4, is non-negative
because 4; < 4, and it is straightforward to check that it satisfies the
boundary inequality and has the additive property for length. Finally,
Adx} = A{x} — 4;{x} = Oforall x, and inf {A,[x —e:x + e]:e >0} =
inf{A[x —e:x+e]— A[x —e:x + e]:e>0} =0 because 4 is regu-
lar, so 4, has the regularity property, and consequently it is a continuous
length.

We have seen that each length function 4 can be represented as the
sum A, + 4, of a continuous length and a discrete length. The represen-
tation is in fact unique, for if A = 4, + 4, where 4, is a discrete length
and 4, is continuous then A {x} = 4; {x} + A, {x} = 1, {x} because 1, is
continuous, and since 4, is discrete, A, ()= .. 4, {x}=) .. 4{x}=
Aq(I) for all closed intervals I. Consequently A, = A;and A, = 4,.

We record this result for reference.

2 ProprosITION Each length function is the sum in just one way of a
discrete length and a continuous lergth.

There is a standard way of manufacturing length functions. Suppose
f is a real valued function on R that is increasing in the sense that
f(x) = f(y) whenever x = y. For each x in R let f_(x), the left hand
limit of f at x, be sup{ f(y): y < x} and let f, (x), the right hand limit of
fatx,beinf{f(y): y > x}. Itis easy to verify that f, is increasing and
right continuous (that is, (f,), = f,) and that f_ is increasing and left
continuous. The jump of fat x, j(x),is f,(x) — f_(x) = inf{ f(x + e) —
f(x — e):e > 0}; it is O iff f is continuous at x. The function f is called
a jump function provided f,(b) — f-(a) = Y c(ausy Jr(x) for all a and b
with a < b.

The flength i, or the length induced by f, is defined by A,[a:b] =
fi(b) — f_(a) for all a and b with a < b. We note that i, {x} is just the

jumps, j(x).

3 PROPOSITION If fis an increasing function on R to R then i, is a
length function; it is a continuous length iff f is continuous and is discrete

iff fis a jump function.

PROOF A straightforward verification shows that A, satisfies the
boundary inequality and has the additive property for length. If b € R
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and e > O then inf {A,[b —e:b + e]:e >0} =inf{f . (b+e):e>0} —
sup(f-(b — e):e > 0}. But f, is right continuous and f_ is left con-
tinuous, hence inf{A;[b+ e:b—e]:e>0} = f,(b)— f_(b) = A;{b},
so A, is regular and hence is a length function.

The length 4, is continuous iff A,{x} = j,(x) = O for all x; that is, f
is a continuous function. The function A, is discrete iff A,[a:b] =
Y cewa:nAr{x} and this is the case iff f,(b) — f-(a) =Y ;c(a51dr(X);
that is, if f is a jump function. W

We will show that every length function is f length for some f. It will
then follow from propositions 2 and 3 that each increasing f is in just
one way the sum of a jump function and a continuous function.

Different increasing functions F may induce the same length, and in
particular F, F + (a constant), F,, F_ and any function sandwiched
between F_ and F, all induce the same length. We agree that F is a
distribution function for a length 1 iff A = 1. A normalized distribution
function for a length 1 is a right continuous increasing function F that
induces 4 and vanishes at 0 (one could, alternatively, “normalize” by
pre-assigning a different value or a value at a different point and/or
require left continuity in place of right).

4 PRrOPOSITION The unique normalized distribution function F for
a length A is given by F(x) = A[0:x] — A{0} for x 20 and F(x) =
—A[x:0] + A{x} for x < 0; alternatively, F(x) = A[a:x] — A[a:0] for
each x and all a < min{x, 0}.

PROOF If a < b < ¢ then Ala:c] — A[a:b] = A[b:c] — A{b} by the
additive property. It follows that if a £ x, a £ 0 and F(x) = A[a:x] —
Ala:0] then F(x) does not depend on a, and that F(x) = A[0:x] —
A{0} for x 20 and F(x)= —A[x:0] + A{x} for x < 0. Evidently
F(0)=0, and if e>0, a<x and a<0 then F(x +e)— F(x) =
Ala:x +e] — Ala:x] = A[x:x + e] — A{x}, so right continuity of F is
a consequence of the regularity of 4.

If b < c and a < min{b,0}, then F(c) — F(b) = Ala:c] — A[a:0] —
(Ala:b] — Ala:0]) = Ala:c] — Ala:b] = A[b:c] — A{b}. If we show
that F(b) = F_(b) + A{b}, then it will follow that F(c) — F_(b) =
Alb:c] for all b < ¢, whence F is a distribution function for A. For
a<b, F(by— F(a) = A[a:b] — A{a} and if a is near b, then i[a, b] is
near A{b} by regularity. Moreover, since ar> A{a} is summable over
each interval,{1{a,}}, converges to zero for each strictly increasing
sequence {a, }, that converges to b. Hence F(b) — F_(b) = A{b}, and it
follows that F is a normalized distribution function for A.

Finally, if G is also a normalized distribution function for 1 then
F(x)— F_(a) = Ala:x] = G(x) — G_(a) for a < x so F and G differ by
a constant, and since F(0) = G(0) = O this constant is zero. W
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The usual length function ¢, where ¢[a:b] =b —a for a < b, is
characterized among length functions A by the fact that for i = ¢,
A[0:1] =1 and 2 is invariant under tramnslation, in the sense that
Ala:b] = Ala+ x:b + x] for all x and all a and b with a < b. If we
agree that the translate of a set E by x, E+ x,is {y + x:y € E} then
{(E + x)={(E)foreach Ein ¢.

5 THEOREM There is, to a constant multiple, a unique translation
invariant length—each invariant length A is A[0:1]7.

PROOF Suppose A is a translation invariant length. Then A{x} =
A{y} for all x and y in R because y = x + (x — y), and since oc >
A[0:1]1 2 ), cpo: 1) A{x}, it must be that 1{x} = 0 for all x. Thus Ais a
continuous length so A[a:b] + A[b:c] = A[a:c] for a £ b < c. More-
over, A[b:c¢] = A[0:c — b] for b < ¢ because 4 is translation invariant.

Let f(x) = A[0:x] for x = 0. Then f is monotonic and for x and y
non-negative, f(x + y) = A[0:x + y] = A[0:x] + A[x:x + y] = f(x) +
f(y). Consequently, by induction, f(nx) = nf(x) for nin N and x = 0,
and letting y = x/n, we infer that f(y/n) = (1/n)f(y). Therefore f(rx) =
rf(x) for all x = 0 and all rational non-negative r, and so f(r) = rf{1).
Finally, f is monotonic, so sup{ f(r):r rational and r £ x} < f(x) <
inf{ f(r):r rational and r = x}, whence xf(1) = sup{rf(1):r rational
and r < x} < f(x) < inf {rf(1):r rational and r = x} = xf(1), so f(x) =
xf(l)forx 2 0. Thus A{b:c] = f(c—b)=(c—=b)f(})=7/[b:c]A[0:1]
forb<e. B

We shall eventually extend each length function A to a domain sub-
stantially larger than the family # of closed intervals. We begin by
extending 4 to the class of unions of finitely many closed intervals.

A lattice of sets is a non-empty family ./ that is closed under finite
union and intersection. That is, a non-empty family o is a lattice iff
Au B and A n B belong to &/ for all members 4 and B of /. The
inclusion relation partially orders each family </, and .« is a lattice
with this partial ordering iff o is a lattice of sets. The family of all finite
subsets of R, or of all countable subsets, or of all compact subsets or of
all open subsets, are examples of lattices.

The lattice & (7)) generated by a family .o/ of sets is the smallest
lattice of sets that contains .o/. Evidently # (/) consists of finite unions
of finite intersections of members of .o/. The family # of closed intervals
is closed under finite intersection and the union of two intersecting
intervals is an interval, so £ (#) is the class of unions of finitely many
disjoint closed intervals.

An exact function is a real valued non-negative function y on a lattice
< such that: & € o, u(&F) =0, and p(A) = pu(B) + sup{u(C): C € o
and C = A\ Bfor all A and B in &/ with B = A}. An exact function u is
automatically monotonic (if A o B then u(A4) = ¢(B)), and exactness
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also implies that u(4 U B) = u(A) + u(B) for all disjoint members 4
and B of with 4 U B in &/ (that is, u is additive).

We show that each length function 4 on # has a unique extension (its
canonical extension) to an exact function on £ ( #).

6 THEOREM Each length function A on ¢ extends uniquely to an ex-
act function u on the lattice £ (¥) of unions of finitely many closed
intervals.

PROOF The only possible exact extension of a length function 4 to
L(#)is given by u(| 1, I,) = Y.Ly A(I,) for each disjoint family {I; }I~,
with I; in #, so the proof reduces to showing u is exact. For con-
venience, let A (E) =sup{A(I): I cE and I € ¢} and let u,(E)=
sup{u(D): D < E and D e £(#)} for Ec R. It is straightforward
to verify, using the definition of length function, that if a <b
then A, (a:b) = A[a:b] — A{a} — A{b}, A [a:b) = ila:b] — A{b} and
Ae(a:b] = Ala:b] — A{a}.

Suppose ¢; £d, <c¢,£d, < <¢,=d, Then by lemma 1,
Aley:d,] = Z?:1 Aleirdi] + Z?:‘]l (Aldiici ] — A{di} — Mew}) =
S Aleid ]+ Yol Ag(dizciyy) 2 Y1y Alci:d; ] If E is an interval —
open, closed or half-open—and E > | )i, [¢;:d;] then E > [c;:d,]
and it follows that p, (E) = A, (E).

If A=[a:b]>B=)_, [c;:d;] then u(A)=Ai(A)=Ala:c;]—A{c,}+
iley:id,] + Aldy:b] = A{d,} = pylazey) + u(B) + YIok uy(diiciny) +
Py (d,:b]. If E and F are intervals and sup E < inf F then u (EU F) =
Uy (E) + p, (F). It follows that u(A) = p(B) + py(A\ B). Finally, this
last equality extends without difficulty to a union A of finitely many
disjoint closed intervals. W

SUPPLEMENT: CONTENTS

The extended length function of theorem 6 is a special case of a more
general construct. Let us suppose that X is a locally compact Hausdorff
space. A content for X is a non-negative real valued, subadditive, addi-
tive, monotonic function u on the family € of compact sets. That is, for
allAand Bin 4,0 < u(A4) < oo, u(A v B) £ u(A) + u(B) with equality
if An B =, and u(A) < u(B) if A = B. A content u is regular iff for
each member A of ¥ and each ¢ > 0 there is a member B of ¥ with 4 a
subset of the interior B® of B and u(B) — u(A) < e. Thus, p is regular iff
p(A) = inf{u(B): B € ¥ and B® > A}. A content may fail to be regular
but each content can be “regularized” in the following sense. The regu-
larization u’ of a content y is defined by p'(A) = inf{u(B): A < B°, B
compact} for all compact sets A.

7 PROPOSITION The regularization i’ of a content u is a regular con-
tent.
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PROOF It is easy to see that u’ 1s regular; we have to show that it is a
content.

Clearly x4’ is monotone, non-negative and real valued. Suppose that
A and B are compact and C and D are members of €, that 4 = C°
and B < D° Then A U B = (Cu D)° and hence y'(AuB) < y(CuD) =<
u(C) + u(D). Taking the infimum for all such C and D, we see that
W(A v B) < u'(A) + @' (B), so u is subadditive.

It remains to prove that y’ is additive. Suppose that A and B are
disjoint compact sets and that 4 U B = C° where C € 4. Then we may
choose members E and F of € so that EnF =, E°> A4, F°> B
and EUF < C. Then u(C) 2 u(Ew F) = u(E) + u(F) 2 y'(A) + ¢/ (B).
Taking the infimum for all such C shows that y'(4u B) = y'(4) +
w(B). N

There is a variant of the preceding that is sometimes useful. Let us
agree that a pre-content for X is a non-negative, real valued, sub-
additive, additive, monotonic function u on a class # of compact sub-
sets of X with the properties: the union of two members of % belongs
to %, and # is a base for neighborhoods of compacta in the sense that
every neighborhood of a compact set 4 contains a compact neighbor-
hood of A4 that belongs to #. The pre-content y is regular iff its regu-
larization 1, given by u'(A4) = inf{ u(B): B € # and 4 = B° for compact
A, agrees with g on 4.

The argument for the preceding proposition shows that the regular-
ization of a pre-content u on £ is a regular content . If a regular
content v is an extension of a pre-content ¢ on %4, then v = 1/, for the
following reasons. Each compact neighborhood A of a compact set C
contains a compact neighborhood B that belongs to #,so Cc Bc< 4
and v(C) £ v(B) = u(B) £ v(A). Hence v(C) < y'(C) < v(A), and since v
is regular, v = y’. Thus:

8 PROPOSITION The regularization of a pre-content u is a regular
content ', and if u is regular, then y' is the unique regular content that
extends p.

It turns out that a regular content u is always an exact func-
tion; i.e., for all compact sets A and B with B < A, u(A) — u(B) =
sup{p(C): C = A\B,C € €}.

9 PRroPOSITION Each regular content is an exact function.

PROOF Suppose that 4 and B are compact sets and B« A. If Cis a
compact subset of 4\ B then u(4) = u(Bu C) = u(B) + p(C). On the
other hand, for e > 0O there is a compact set D so that D° > B
and p(D) — u(B) < e, whence, if C=A\D° then C = A\B and



SUPPLEMENT: G INVARIANT CONTENTS 15

pn(4) < u(D) + u(C) < u(B) + p(C) + e. It follows that u(A) = u(B) +
sup{p(C): C = A\ B and C compact}. B

A net {E,},.p of sets is decreasing iff E, c E, whenever f follows o.
A content u is hypercontinuous iff u((),. p E,) = lim, . p u(E,) for every
decreasing net {E,}, in the family ¥ of compact subsets of X. Since a
content u is monotonic, lim, . p u(E,) = inf, . p p(E,) for a decreasing
net {E, },.

10 PROPOSITION A content u on € is regular iff it is exact, and this is
the case iff it is hypercontinuous.

PROOF We know a regular content is exact and we show that an exact
content u is regular. Suppose B € ¥ and e > 0, and let A be any com-
pact neighborhood of B. Because u is exact there is a compact subset
C of A\ B such that p(A) < u(B) + u(C) + e. Then every compact
subset D of A\(Bu C) has u content less than e because pu(A4) =
(B Cu D)= puB) + u(C) + u(D) > u(B) + (u(4) — u(B) —e) +
u(D), whence 0 > —e + u(D). Let E be a compact neighborhood of C
that is disjoint from B and let F = A\ E°. Then F is a compact neigh-
borhood of B, and if K is a compact subset of F\ B, then it is also a
subset of A\(Bu C) so u(K) < e. Taking the supremum of u(K) for
such K and using exactness, we find u(F) — u(B) < e, so u is regular.

We next show that if u is regular, then it is hypercontinuous. Suppose
{E,},cp is a decreasing net of compact sets and E = (),.p E,. For
e > 0 choose a compact neighborhood F of E so that u(F) < u(E) + e.
Since (),.pE, = F° and each E, is compact and F° is open, there is
some finite subset {o;,0,,...a,} so ()i, E,, = F°, and since D is dir-
ected, there is o so E, = F°, whence inf, . pu(E,) £ u(F) < u(E) + e.
Thus u is hypercontinuous.

Finally, suppose u is hypercontinuous and B € €. Then the family
D of compact neighborhoods o of B is directed by <, and if E, = «
for each «, then {E,},.p is decreasing and (),.p E, = B. By hyper-
continuity lim, . p u(E,) = p((\acp E4) = u(B), so there are compact
neighborhoods of B with u content near u(B). Thus uis regular. W

SUPPLEMENT: G INVARIANT CONTENTS

We suppose throughout that X is a locally compact Hausdorff space,
that G is a group, and that G acts on X in the following sense. For each
a in G there is a homeomorphism (usually denoted x +— ax for x in X)
of X onto X such that the map x + ax followed by x — bx is x — (ba)x;
that is, the composition (x bx) o (x> ax) is x +— (ba)x. Restated: If
we let @(a)(x) = ax, then ¢ is a homomorphism (¢ (ab) = ¢(a) c ¢ (b))
of G into the group of homeomorphisms of X onto itself. The situa-
tion is also described by saying X is a left G space. (If X is a right
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G space and ¢(a)(x) = xa, then @(ab) = ¢ (b) o @(a); i.c., ¢ is an anti-
homomorphism. If X is a left G space, then the definition xa = a ! x
makes X a right G space.)

We also assume throughout that G acts transitively (for x and y in X
there is a in G such that ax = y); and that the action of G is semi-rigid
in the sense that if 4 and B are disjoint compact subsets of X and
Xy € X, then there is a neighborhood V of x, such that no set of the
form {aV = av: v e V} intersects both A and B. The group of rigid
motions of R” is the prototypical example of a semi-rigid transitive
action.

A content u for X is G invariant iff u(aA4) = p(A) for each a in G and
for each compact subset A of X. We will show that there is a G invari-
ant, regular content for X that is not identically zero.

Let us call a set of the form aB = {ax: x € B} a G image, or just an
image of B, and for each subset E of G let EB = {ax: a € E and x € B}.
We begin the construction of a G invariant content by adopting a
notation for the number of G images of a compact set B with B® # ¥
required to cover a compact set 4. Let [4]| B] be the smallest number n
such that there is a subset E of G with n members with 4 = EB. Notice
that [A|B][B|C] = [A}|C], forif A =« EBand B < FC then A c EFC.
Clearly [aA|B] = [A|B] for each a in G.

We construct an approximation to a G invariant content from the
function (A4, B)— [ 4| B] as follows. Let B be a fixed compact subset of
X with non-void interior, and let x, be a fixed member of X. For each
compact neighborhood V of x, and each member C of the class € of
compact subsets of X, let 4,(C) = [C|V]/[B|V]. Then 4, has the fol-
lowing properties. It is non-negative, subadditive and monotone, and is
G invariant in the sense that 4, (a¢C) = 4,(C) for allain G and C in 4.
Moreover, 4, (&) = 0and [C|B] = 4,(C) = 1/[B|C] because [C|B] x
[B(VIz [CiV]and [BICI[C|V] 2 [BIV]

The function 4, may fail to be additive, but it does have a sort of
additive property: if no G image of V intersects both C and D, then
Ay(C U D)= 4,(C) + A4, (D).

11 LemMa Let B be a compact subset of X with non-empty interior.
Then there is a G invariant content A on € such that [C|B] 2 A(C)=
1/[B|C] forall Cin®¥.

PROOF For x, in X and a compact neighborhood V of x, let Z, be the
set of all monotone, G invariant, subadditive functions A on ¢ such that
[C|B] = A(C) = 1/[B|C] for all C in ¥, and such that 1 is V additive in
the sense that A(C u D) = A(C) + A(D) whenever no G image of V inter-
sects both C and D. The set Z, is not empty because the function i,
constructed earlier is a member. Moreover, it is easy to check that
Zy is a closed subset of the product space X{[0: [C|B]]: C € %}, this
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product is compact by Tychonoff’s theorem, and so Z, is com-
pact. If ¥V <« W then Z, = Zy, and therefore the family {Z,:V a
compact neighborhood of x,} has the finite intersection property.
Consequently there is a member A which belongs to Z,, for all V. That
is, A(C u D) = A(C) + A(D) if there is some neighborhood V of x, such
that no G image of V intersects both C and D. But the action of G is
supposed to be semi-rigid by hypothesis, so 4 is additive and the lemma
is proved. W

The G invariant content whose existence was just established is not
identically zero because A(C) = 1/[B|C], whence A(B) = 1. It may be
that A fails to be regular, but according to proposition 7, the regular-
ization A’ given by A2'(C) = inf{A(B): B is a compact neighborhood of
C} is a regular content, and it is evidently G invariant. This establishes
the following.

12 THEOREM If the action of a group G by homeomorphisms on a
locally compact Hausdorff space X is transitive and semi-rigid, then
there is a regular G invariant content for X that is not identically zero.

A topological group is a group G with a topology such that x +— x ! is
a continuous map of G onto itself and (x, y)+ xy is a continuous map
of G x G, with the product topology, into G. This is the same thing as
requiring that (x, y)— xy~! be a continuous map of G x G into G.
Notice that since the map x+— x~! is its own inverse and is continuous,
it is in fact a homeomorphism of G onto G.

If A and B are subsets of G, then AB = {x: x = yz for some y in A and
some z in B}, and A~ = {x: x™! € A}. For each member b of G, b4 =
{b} A and Ab = A{b}. The set bA is the left translate of A by b and Ab
is the right translate. Left translation by b is the map x — bx of G, and
right translation by b is x+ xb. Left translation by b is continuous
because it is the map x> (b, x) followed by (y, z)+> yz and, since left
translation by 7! is the inverse, it is a homeomorphism. Conse-
quently the left (or right) translate of a set which is compact, or open or
closed, is of the same sort. If 4 is open, then 47!, BA = | ),.pbA and
AB =), .5 Ab are open.

Each group G acts by left translation on itself; the assignment of a
member a of G to the function x+ ax for x in G is such an action.
Evidently the action is transitive (since y = (yx~!)x). We show that if G
is a locally compact Hausdorff topological group, then the action by
left translation is semi-rigid.

13 PROPOSITION The action by left translation of a locally compact
Hausdorff topological group G upon itelf is semi-rigid.
Consequently there is a regular content u for G, not identically zero,
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which is left invariant in the sense that u(A) = u(aA) for A compact and
ainG.

PROOF Suppose C and D are disjoint compact sets and that V is a
neighborhood of the identity e such that for some x, (xV)n C # & and
xV nD # ; that is, xv € C and xw € D for some members v and w of
V. Then v"'we C™ 1D and consequently (V' V)~ (C™'D) # . But
C7'D is compact and e ¢ C ' D because C n D = (J. Consequently
there is a neighborhood of (e, ¢) of the form W™ x W whose image
under the group map, (y,z)w yz, is disjoint from C~!D. That is,
(W 'W)n(C™'D) = &, and so no left translate of W intersects both C
and D. W

SUPPLEMENT: CARATHEODORY PRE-MEASURES

Here is the classical Carathéodory construction for measures and of
extending certain pre-measures. We assume throughout that v is a
non-negative R* valued function on the class 22(X) of all subsets of X
and that v((J) = 0. Let us agree that a subset M of X splits 4 additively
iff v(4d) = v(A M) + v(A\M). A set M is Carathéodory v measurable
iff M splits every member of #(X) additively. Let .4 be the family of
Carathéodory measurable sets. Evidently JJe #, X € # and if M €
A then X\ M € .#. We show that if M and N are members of .# then
so are M n N and M U N besides X\ M (thus .# is a field of sets),
and if M n N = ¢, then v(M U N) = v(M) + v(N) (that is, v is finitely
additive or just additive).

14 CARATHEODORY LEMMA  The class .# is a field of sets and v| .4 is
finitely additive.

PROOF We show that if M and N belong to .# then M N e #;
it will follow that .# is a field of sets. For each 4 in 2(X), v(4) =
v(An M)+ v(A\ M) because A splits M additively, and v(A n M) =
v(AnM AN N)Y+ v((An M)\N) because N splits A n M additively.
But v((4 n M)\N) + v(A\ M) = v(A\(M n N)) because M splits A4\
(M n N) additively, so v(A)=v(AnM~nN)+ v(A\(Mn N)}) and
hence M "N e 4.

If M and N are disjoint members of .#, then v(M u N)=
v(MUN)n M)+ v((MuN)\M)=v(M + v(N). Thus v is additive
on the field .# of sets. W

We agree that v is countably subadditive iff v(4) < 3, v(4,) for all 4
and {A,}, in the domain of v such that {A4,}, covers A4, and v is
countably additive iff v(A4) =) ,v(A4,) provided {4,}, is a disjoint
sequence with | J, 4, = 4. If v is countably sub-additive, then it is also
finitely subadditive and monotonic. A family ./ of sets is called a
o-field iff .o7 is a field of sets and .o7 is closed under countable union.
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15 THEOREM If v is countably subadditive non-negative R* valued on
P(X) and v(Z) = 0, then the family M of Carathéodory v measurable
sets is a o-field and v is countably additive on M. In fact M — v(A N M),
for M in ., is countably additive for each A < X.

PROOF If M and N are disjoint members of .# and A4 < X, then
v AN (M UN)=vAn~n(MUNAM) +v((An(Mu N)I\N) =
v(An M)+ v(A n N) because M € #, so M—v(An M) is finitely
additive on /.

Suppose that {M, }, is a disjoint sequence in .# and 4 ¢ X. Then
for each n, v(4) = v(A\ Uiy M) + v(A 0 Uiy My) 2 v(A\ U, M,) +
Yoo v(AnM,). Hence v(A) = v(4A\J, M,) + Y., v(AnM,) so v(4) 2
v(A\J, M,) + v(4 n | J, M,) because v is countably sub-additive. But
this last inequality is an equality because v is subadditive, and we infer
that ( J, M, € .# and (replace A by A n |, M,) that M —v(4 N M) is
countably additiveon .Z. W

The preceding theorem underlies an extension process whereby,
under certain circumstances, one may extend a function u: o/ - R* to
a measure. Suppose that .o/ is a family of subsets of X, 4 on &/ is
R* valued non-negative, J €./, and u(F) = 0. The outer measure u*
induced by x is defined on 2(X) by agreeing that u*(E) = o if no
sequence in .« covers E, and p*(E) = inf{) ,u(A4,): {4,}, in o/ and
E = | J, A,} otherwise. Evidently u* is an extension of u iff u is count-
ably sub-additive, and it is straightforward to verify that u* is itself
countably subadditive (the “¢/2" argument”). Hence (taking v = u*), if
A is the family of Carathéodory measurable sets, u* is countably
additive on .#. But an assumption must be made to ensure that &/ =
M if p*| M is to be an extension of u.

A function u: &/ - R* is a Carathéodory pre-measure iff it is count-
ably subadditive, .« is non empty and closed under finite intersection
and u(A) = u(B) + u*(A\ B) for all A and B in &/ with B < A.

16 EXTENSION THEOREM Each Carathéodory pre-measure p: of — R*
extends to a countably additive R* valued function u* on the o-field M
of Carathéodory u* measurable sets.

PROOF We show that each member A of &/ is Carathéodory u*
measurable. Suppose B = X and {C,}, is a sequence in </ that covers
B. Then u(C,) = u(C,n A) + u*(C,\ A) for each n, so ) ,u(C,) =
2 (Con A) + 3, u*(C,\ A) Z p* (B A) + u*(B\A). Upon taking
the infimum for all such sequences {C,},, we obtain u*(B)=
u*(B N A) + p*(B\ A). The same inequality holds if no sequence in .o/
covers B because in this case u*(B) = co. The reverse inequality holds
because p* is sub-additive, and it followsthat 4 ¢ .. N
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If 1 is a Carathéodory pre-measure on ./ and # = {B: B € .# and
u*(B) < o0}, then % is a d-ring of sets (i.e. # is closed under union,
difference and countable intersection) and u*|# is a non-negative,
countably additive, real valued extension of u. That is, u*|% is a mea-
sure that is an extension of u.

Note The Carathéodory condition, u(A4) — u(B) = u*(4\ B) for all 4
and B in .o/ with B < A4 is, in a certain sense, the dual of the require-
ment for exactness: u(A4) — p(B) = sup { u(C): C = A\ B}.

It is not difficult to see that a regular content (in the sense of the
preceding supplements) is a Carathéodory pre-measure as well as exact.
Consequently each regular content has an extension that is a measure.
We shall also deduce this fact later, from exactness. We shall not use
the Carathéodory results in what follows.



Chapter 2

PRE-MEASURE TO PRE-INTEGRAL

Each length function 4 induces a rudimentary integration process as
follows. If the function y,.,; is 1 on the interval [a: b] and 0 elsewhere,
then its “integral” I* (y,.5) With respect to A should be A[a:b], and if
=371 CiXia b, then I*(f) should be Y i, c;A[a;:b;]. But is this as-
signment non-ambiguous? Stated in another way: does the function
Xa:py— ALa:b] have a linear extension to the vector space of linear
combinations of functions of the form y,.,;? It turns out that this is the
case, and that it is a consequence of the fact that 1 has an additive
extension to a ring of sets containing the closed intervals, as we pre-
sently demonstrate.

A ring of sets is a non-empty family .o/ of sets such that if 4 and B are
members of .« then 4 U B and 4\ B also belong to /. In other words,
a non-empty family ./ of sets is a ring iff it is closed under difference
and finite union.

The family 22 (X) of all subsets of a set X is a ring, as is the family of
all finite subsets of X and the family of all countable subsets of X.
Another example of a ring: the family of all finite unions of half-open
intervals (a:b], where a and b are real numbers and (a:b] =
{x:a<x =< b}

A ring ./ of sets is automatically closed under intersection because
AN B = A\(A\B), and it is also closed under symmetric difference be-
cause A A B = (4\ B) u(B\ A). Thus if .o/ is a ring of subsets of X then
(o, A, n)is aring in the algebraic sense; it is a subring of Z(X) (A is the
operation of ring addition; n is multiplication). Conversely, a family .«/
of sets which is closed under intersection and symmetric difference is
closed under union and difference because 4 U B = (4 A B)A (AN B)
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and A\B=An(AAB). Hence a family of sets is a ring of sets
iff («/,A,n) is a ring in the algebraic sense. If in addition, X =
(J{A4: 4 € o} € o then o/ is a ring with unit X, or ./ is a field of sets
for X, or just a field of sets or an algebra of sets.

If o is a family of sets then the family of all subsets of { ), .., 4 is a
ring that contains /. The smallest ring that contains .« is called the
ring generated by ./; its members are just those sets that belong to
every ring of sets that contains <. Similarly the lattice generated by o/
is the smallest lattice (family closed under finite union and intersection)
that contains .o/,

It is not difficult to give a simple, explicit description of the ring #
generated by a finite family {4,,A,,...,4,}. Let X = J}_; 4;,let 4/ =
X\ A; for each i, and for each subset M of {1,2,...n} let Ep =
(Viem A0 (Viem A7 = (Vjem AN ¢ m A;. Then E, belongs to each
ring of sets containing {4, 4,,...,4,} and so E,, € #. If N is another
subset of {1,2,...,n} and j € M\N, then E,, c 4;and Ey = A so Ey
and Ej are disjoint, and consequently the family of all unions of sets of
the form E, is a ring #' with # = #. But if xe 4, and M =
{j:x e A;}, then x € Eyy < A;, so A; is the union of the sets E, that it
contains. Consequently 4; € #’, and it follows that #' = #. Thus #
consists of unions of sets of the form E,,.

A non-empty set E,, is an atom of the ring %, in the sense that
Ey € # and (F is the only member of # that is a proper subset of E,,.
Thus # consists of all possible unions of atoms, i.e., #Z is atomic. Notice
that each atom Ey = ();c s A\ ¢ i 4; is the difference of members of
the lattice & generated by {4, 4,,..., A,}. This establishes all except
the last statement of the following.

1 LemMma If & isthe lattice and R the ring generated by {4, A,,...,
A, } then R is atomic, each atom is the difference of members of &, and
for each A in ¥ thereis Bin ¥ so A\ B is an atom.

PROOF Suppose that A is a non-empty member of £. Choose a subset
M of {1,2,...,n} which is maximal with respect to the property that
{A;};cu fails to cover A andlet B= AN | ;. A4;. If k ¢ M then 4, >
ANJjem A; # & by maximality, and if k € M then 4, > A\ J;cm 4;.
Hence the atom [\, ga Ay O (Veem A’ @ A\B # &, s0 A\B € # and
is a non-empty subset of an atom of #, and so must be identical with
that atom. W

We recall that an exact function u is a real valued function on
a lattice .o/ of sets such that ¢J e .o/, u(F) =0, and u(A) — u(B) =
sup{u(C): C € o/ and C = A\ B} for all 4 and B in & with B < A.
For such sets 4 and B the number u(A4) — u(B) depends only on the
difference set A\ B, and since 4 U B\B = A\ AN B for all 4 and B,
u(A v B) — u(B) = u(4) — u(A n B) for all 4 and B.
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A function u is modular iff it is a real valued function on a lattice .&/
of sets, @& € o, u(F) = 0 and u(A) + u(B) = u(A v B) + p(A n B) for
all A and B in «/. Each exact function is modular. A real (or real¥*)
valued function p on a family 7 is finitely additive iff y(4 v B) =
u(4) + u(B) for all disjoint members 4 and B of &/ with AU B in /.
The following proposition asserts that each modular function on <,
and in particular each exact function, has a finitely additive real valued
extension to the ring generated by .o/. (We owe the proof to H. v.
Weizsicker.)

2 THEOREM The ring # generated by a lattice </ of sets consists of
unions of finitely many disjoint sets of the form A\ B with A and B in o/

Each modular function yu on o/ has a unique finitely additive extension
u-to AR.

PROOF The family # = {B: B belongs to the ring generated by some
finite subfamily {A,,A,,...,A,} of &} is itself a ring containing .,
and consequently # > #. The first assertion of the proposition then
follows from lemma 1, and the proof of the second assertion reduces to
the case where ./ is finite.

Let us define u'(A\B) to be u(A4) — u(B) for A and B in &/ with B <
A. This definition is not ambiguous, for the following reasons. Suppose
A, B, C and D belong to ./, B< A, D < C and A\ B = C\D. Then
A=(ANC)uB so, since u is modular, pu(A4) = u(4n C) + u(B) —
u(AnCnB) and since BNnC=BnD, we have u(A)— u(B)=
u(A n C) — u(B n D) which by symmetry is u(C) — u(D). We note that
any additive extension of u must agree with u' on differences, so an
additive extension of u to 4, if there is one, is unique.

Each atom of £ is the difference of two members of &/, and we define
p~ of an arbitrary member 4 of Z to be ) {y'(T): T < A and T is an
atom of R}. Clearly, u~ is additive on # and we show by induction on
the number of atoms contained in A that u~(4) = u(A)for Ain 7. If A
is a non-empty member of </, then there is, by the lemma, a member B
of o/ such that B < A and A\ B is an atom, whence p~(4) — 1~ (B) =
#T(A\B) = W (A\B) = u(A) — u(B), so u~(A) — p"(B) = u(A) — u(B).
The inductive hypotheses implies that u~(B) = u(B) and so u~(4) =
u(A4). m

A real* valued function yx on a family 7 of sets is countably additive
iff (> ,A4,) =23 ,u(4,) for all disjoint sequences {A4,}, in &/ with
(JnA4, in o/ If o/ is a ring of sets then countable additivity can be
viewed as finite additivity plus a continuity condition, as follows. If
{A,},1s a disjoint sequence in .7, then Y, u(A,) = lim, Y i—; u(A,), and
since p is finitely additive, this is lim, u(( Ji-; 4,). Consequently u is
countably additive iff lim, u({ Ji=; 4,) = (|, 4,) for every disjoint
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sequence in .o/ with [ J, 4, in /. The sequence {| Ji-, 4}, of partial
unions of {4,}, is an increasing sequence in ./, and every increasing
sequence {B,}, in &/ is the sequence of partial unions of the disjoint
sequence By, B,\ By, B3\ B,, ... in &. It follows that u is countably
additive iff it is continuous from below, in the sense that lim, u(B,) =
u(|n B,) for each increasing sequence {B,}, in .« with (JaB, in .
(A sequence {B, }, is increasing iff B, = B, for all n, and it is decreasing
iff B, o B,,, for all n.)

There are other characterizations of countable additivity. We agree
that a real* valued function u on &/ is continuous from above at 4 iff
A € o/ and u(A) = lim, u(A,) for each decreasing sequence {4, }, in </
with 4 = (), 4, and u(4,) < oo, that p is continuous from above iff it is
continuous from above at each member A of o7, and that u is con-
tinuous at ¥ iff it is continuous from above at ¢f. We notice that the
counting function 7y, which assigns to a set A of integers the number
7(A) of members of A4, is continuous from above, although y is oo on
each of the sets {k: k > n} but is zero on their intersection.

Lastly, u is subadditive iff u(C) < p(A4) + u(B) for A, B and C in ./
with C =« A U B, and p is countably sub-additive iff u(C) <>, u(4,)
provided C € 7, {4,}, is a sequence in ./, and C < | J, A4,.

We observe that if u is non-negative and finitely additive on a ring .o/
then it is monotonic in the sense that u(B) = u(A4) if B > A, because
u(B) = pu(A) + u(B\ A).

3 PROPOSITION If pis a real* valued, finitely additive, non-negative
function on a ring < of set, then u is countably additive iff it is con-
tinuous from below, and this is the case iff it is countably subadditive.

If pis countably additive it is continuous from above and if p is finite
valued and continuous at & then it is countably additive.

PROOF We have already seen that u is countably additive iff it is
continuous from below. Suppose u is countably additive, {4,}, is a
sequence in o7, C < | J, A, and C € . Let B, = | Ji-; C n A, for each
n. Then {B, },is increasing and C = | J, B,, so B, B,\ B,, B;\ B, ... are
disjoint and u(C) = p(By) + )., tt(Bus1\ By) < u(A,) + Y0 #(A44q) be-
cause B, < 4, and B,,\B, < A,., for each n. Consequently u is
countably subadditive.

If {4,}, is a disjoint sequence in o/ and | J, 4, € o then Y, u(4,) =
lim, Y 7oy u(Ay) = lim, p(i=y Ay) = p(\Jn 4,). If p is countably sub-
additive then Y, u(4,) = u(|J, 4,), whence Y, u(4,) = u({J, A,) and
u is countably additive.

Suppose {A,}, is a decreasing sequence in &/, A =[], A4, € &, and
u(A;) < co. Then {A,\4,}, is increasing, the union is 4,\ A, and
u(A\A4,) = u(A,) — pn(4,) for each n because u(A4,\A4,) + u(4,) =
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u(A,) and u(A4,) £ u(A,) < «. Therefore, if u is countably additive,
and hence continuous from below, then u(A;) — pu(A) = lim, (u(A4,) —
1(A,)) so u(A) = lim, u(A,). Thus p is continuous from above.

Finally, suppose that y is finite valued and continuous from above at
& and that {4,}, is a disjoint sequence in o/ with A = { J, 4, € &.
Then {A\ Ji-; A:}, is a decreasing sequence with void intersection
so lim, p(A\ | Ji=; A,) = 0. It follows that u(A4) = lim, p(| Jiz, Ax) =
lim, Y #-y n(Ay), so uis countably additive. W

We have notice that each exact function y on a lattice o/ of sets is
modular, and so by theorem 2 it has a unique finitely additive extension
u” to the ring # generated by .«/. If 4 and B belong to .« and B <« A4,
then u~(A\ B) = u(A) — pu(B) = sup{u(C): C € of and C = A\ B}, and
since every member of £ is the union of finitely many disjoint sets of
the form A\ B, p~(R) = sup{u(C): C € o and C = R} for all R in Z.
We use this fact to show that x4~ is continuous at J if p is.

4 PROPOSITION The unique finitely additive extension u~ on Z of an
exact function p on o is given by p~(R)=sup{u(4): Ae .o and
A < R}.

If u is continuous at J then so is pu”.

PROOF The first statement has already been established.

Suppose that {R,}, is a decreasing sequence in # with (|, R, = &
and that {e,}, is a sequence of positive numbers with ), e, small. For
each n there is 4, in o/ with A, < R, and p~(R,) — u(A4,) <e,. We
show inductively that p~(R,) — u([ V-1 4;) <ey +e,+ - +e, for
each p, and since {ﬂf’:l A;}, is a decreasing sequence in ./ with void
intersection, it will follow that u~(R,) is arbitrarily small for p suf-
ficiently large.

The proposition is clear for p = 1. The inductive step: by modularity,
w(Apee) + “(ﬂip=1 A;)) = Ay 0 mfﬂ A;) + p(Ap v ﬂf):x 4;) =
ﬂ(ﬂzpjxl A;)) + 1T (Ry) < H(ﬂf’:f A;) + /J(ﬂfﬂ A) +e +e+ 0+
e, by the inductive hypothesis. So u(A4,.,) < p(( V723 4;)) + e, + e, +
oteand pT(Ry ) < p(V2l A +e +ey++e,+e,,, B

If p is exact on a lattice o/ of compact sets then u is automatically
continuous at ¢, for if {4,}, is decreasing in .o/ with (), 4, = &J, then
A, = & for nlarge. Hence:

5 CoRrOLLARY Each exact function u on a lattice of compact sets has
a countably additive, non-negative real valued extension u~ to the ring #
generated by o/, given by u~(R) = sup{u(A4): A € o/ and A = R} for R
in A.
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A function y on a family .« of sets is called a pre-measure provided
2/ 1s closed under finite intersection and u has a countably additive,
non-negative real valued extension to the ring # generated by /. Thus
each exact function that is continuous at (J is a pre-measure. The pre-
ceding corollary, together with theorem 1.6, shows that every length
function is a pre-measure. (The term “pre-measure” is used in anticipa-
tion of the theorem that every pre-measure has an extension that is a
measure.)

A characteristic function is a function that assumes no value other
than O or 1. If 4 c X then the characteristic function of 4 (on X),
denoted y,4, is defined to be 1 at points of 4 and 0 at points of X \ A.

A real valued function f is simple iff it has finite range or, equiva-
lently, iff f is a finite linear combination of characteristic functions. If
of is a family of subsets of X, then a function f on X is .« simple iff [
is a finite linear combination of characteristic functions of members of
/. We denote by L the vector space of .7 simple functions. If o is a
lattice of sets then L is identical with the class LZ of # simple func-
tions, where Z is the ring generated by ./, because # consists of unions
of finitely many disjoint sets of the form A\ B with 4 and B in .&/.
Further, if 4 is a family closed under intersection and .« is the lattice
generated by # then L? = L = L”?. We omit the straightforward
proof of this fact.

If .« is a ring of sets then each .o/ simple function is linear combina-
tion of characteristic functions of disjoint members of &/ (e.g., ax, +
bys = axss + (@ + b)yanp + byp 4). Further, if f and g belong to L,
then we may suppose f =), a,xc and g =) iy by, for some
disjoint finite sequence {C,,C,,...,C,} in /. It follows that f v
g and f A g, where (f v g)(x) = max{ f(x),g(x)} and (f A g)(x) =
min{ f(x),g(x)}, belong to L7, so L is a vector function lattice. This is
a lattice with truncation, in the sense that if f € L/ then 1 A f e L.
Thus L is a vector function lattice with truncation. (We think of L
as a linearization of the ring «/.)

Suppose that u is a modular function on a lattice «/. We will con-
struct a linear functional I*# on L such that I*(y,) = u(A) for all 4 in
o . It turns out that if x4 is monotonic then I* is positive, in the sense
that I*(f) = 0if f = 0. If u is a pre-measure, I*(f) will turn out to be
the integral of f with respect to any measure that is an extension of u.

6 PRrOPOSITION If pis a modular function on a lattice sf of sets, then
there is a unique linear functional I* on L such that I*(x,) = u(A) for
Ain of, and if u is monotonic then I* is positive.

PROOF Suppose for the moment that p is finitely additive on a ring
of of sets. We show that if A,, A,, ..., A, are members of &/
and Y7 a;xs, =0, then Y7 a,u(A;)=0, whence the definition
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(Y1 aixa) = Y'7_1 a;u(A;) is not ambiguous. Choose a finite dis-
joint subfamily # of the ring « so that 4,=(){B:Be # and
B = A;} for each i. Then u(4;) =) {u(B): Be # and B < A;} and
Sriau(A) =Y pean(B) (Y {a; B A;}). But for B in A, ) {a;:
B < A;} = 0because ¥ 7, a,5,, = 0. Consequently Y 7_; a;u(A;) = 0.

If u is modular on a lattice .o/ then u extends, by theorem 2, to a
finitely additive function u~ on the ring # generated by ./, and
I* (74) = u(A) for A in /. Each member of # is the union of finitely
many disjoint sets of the form A\ B with ¢ « B= 4 and 4 and B in
<, and if p is monotonic then ™ is nonnegative and I* is posi-
tive. Uniqueness of I* follows from the fact that {y,: 4 € o/} spans
LY ®

Here are some useful consequences of positivity of I*. If f and g
belongto L and f = g, then I*(f — g) = 0so I*(f) = I*(g9). If0 S g =
ay, with A in .o/ then I“(g) < au(A). A set S is a support for f iff f is
zero outside S. If S is a support for f, f € L¥ and § € .« then I*(f) <
w(S) max f.

A pre-integral, or a Daniell-Stone pre-integral is a positive linear
functional I on a vector function lattice L with truncation, such that
lim, I(f,) = 0 for every decreasing sequence { f,}, in L that converges
pointwise to zero. This last condition can be stated alternatively: I
is a countably additive linear functional, in the sense that I(} ,g,) =
Y . 1(g,) for all sequences {g,}, of non-negative members of L with
pointwise sum Y , g, belonging to L. (The proof is the usual partial sum
and differencing trick.) Thus a pre-integral is a positive, countably
additive linear functional on a vector function lattice with truncation.

7 THEOREM (PRE-MEASURE TO PRE-INTEGRAL) If u is a pre-measure
on of, then I* is a pre-integral on L.

PROOF Suppose u is a pre-measure on .« and that { f, }, is a decreasing
sequence in L with lim, f, = 0. We may suppose that .« is a ring of
sets. Let S in &/ be a support for f;;let b be an upper bound for f;, and
fore>0let A, = {x: f,(x) > e}. Then {4,}, is decreasing and (), 4, =
&, so u(A,) is small for n large because u is continuous at . Hence
for n large, f, < e save on a set 4 with u(4) <e, f, < by, + eys and

I*(f,) < bu(A) + eu(S) < (b + u(S))e. Consequently lim, I*(f,) =0. H

There are pre-integrals that are not induced by pre-measures. Let
Cla:b] be the set of all continuous real valued functions f on [a:b].
Then the Riemann integral R(f) = (5 f(¢) dt, for f in C[a:b], is a posi-
tive linear functional on a vector function lattice with truncation. We
will show that it is a pre-integral.

There is a variant of this example. Let C,(R) be the class of con-
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tinuous real valued functions on R that have compact supports (i.c.,
for each f there is a compact set K such that f is identically zero on
R\ K). Then C.(R) is a vector function lattice with truncation and the
Riemann integral, restricted to C.(R), is a pre-integral. We prove this
after establishing a preliminary result. Recall that a real valued func-
tion f is upper semi-continuous, or u.s.c. iff {x: f(x) = ¢} is closed for
each cin R, and f is lower semi-continuous iff {x: f(x) < ¢} is closed for
each c.

8 Dinr’s THEOREM If a decreasing sequence { f,}, of u.s.c. functions
on [a:b], or on R with compact supports, converges pointwise to zero,
then it converges to zero uniformly.

PROOF For e > 0 let A4, = {x: f,(x) = e}. Then {4,}, is a decreasing
sequence of compact sets and (), 4, = & because lim, f,(x) = 0 for all
x. Consequently there is n such that 4, = 7. It follows that {f,},
converges uniformly to zero. MW

9 PROPOSITION Each positive linear functional, and in particular the
Riemann integral, on either C[a:b] or C.(R), is a pre-integral.

PROOF We prove only that a positive linear functional on C.(R) is a
pre-integral. Suppose { f,}, is a decreasing sequence in C(R), and let
[ £l = sup. gl f(x)| for each n. By Dini’s theorem, lim, || f,,|| = 0.
Choose M so | fi(x)] =0 if |x|] 2 M and choose a non-negative
member h of C(R) thatis 1 on [—M: M], whence f, < || f, I h for all

n. Then O0ZI(f,)=Z |/, 11(h) because I is positive, and hence
lim, I{(f,)=0. W

In the next chapter we will extend each pre-integral to an integral.
An integral is a pre-integral, say J on M, with the additional Beppo Levi
property: If { f,}, is an increasing sequence in M that converges point-
wise to a real valued function f, and if sup, J(f,) < oo, then f € M and
J(f)=lim,J(f,). In chapter 4 we show that each integral induces a
measure so that each pre-measure induces a pre-integral, then an inte-
gral, and finally a measure.

SUPPLEMENT: VOLUME A,; THE ITERATED INTEGRAL

A closed interval in R is a set of the form 4 = [a:b]; a closed interval
in R", or an n-interval, is the Cartesian product X!_; A; of n closed
intervals {A4;}}-, in R, and the class of n-intervals is denoted by
¢,. The n-dimensional volume or just the volume is defined on #, by
setting A,( X!, 4;) equal to the product []i-, /(4;), where / is the
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usual length. Thus 4, = £, and 4,4, (X1 [a;:b;]) =121 (b — a;) =
An(Xizy [a;:b;1)¢(ap4y by ] We shall not distinguish between
Xl A; and (X?=1 A;) X Apsy-

Let L™ (=L7) be the class of ¢, simple functions. Because #, is
closed under intersection, L" is identical with the class of # simple
functions, where 2 is the ring generated by ¢, (we observe that x4 p =
X4+ 18 — Xa~p) Consequently L" is a vector function lattice with
truncation.

Suppose f = > %, a;x4 forsomea;,a,,...,a,inRand 4, 4,, ...,
A, in #,. We define I"( f) to be Y ¥_; a;4,(A;). The first assertion of the
following proposition implies that this definition is not ambiguous, and
that I" is a positive linear functional on L".

10 ProrosITION If a;e R and A;e ¢, for i=1,2, ..., k, and if
z:;l Aixa, 2 0, then Z?q a;A,(A4;) 2 0.
The function I" is a pre-integral on L".

PROOF The proposition is true for n = 1, and we argue by induction.
Each n-interval A, is the cartesian product B; x C; with B;in #,_, and
C;in ¢, and if (x,y) e R"! x RY, then y, (x,y) = x5, () xc,(¥)- For
each x in R"™! the function ) {_; a,xp (x)xc, is a non-negative #; sim-
ple function on R, and hence ) ¥, a;4,(C;) x5, (x) = 0. Consequently, by
the induction hypothesis, 0 < Y ¥, a; 4, (C;) A,— (B;) = Y k- a; 2,(A;).

Evidently I" is a positive linear functional on L", and we show by
induction that it is a pre-integral. Suppose that {s,}, is a descending
sequence in L" that converges pointwise to zero. Then for each k,
S = 2% Ay x4, With Ay = By x Cy, with By, in #,_; and Cy in #,.
For each x in R"™Y, {} 7% ay x5 (X)xc, }x iS @ decreasing sequence of
J#, simple functions on R that converges pointwise to zero, whence
{> ay A (Cy) 2, (%)} is decreasing and converges to zero for each
x, and hence, by the induction assumption { ) 25 a; A, (Cy) A—1 (By) }e =
{I"(s,) } converges to zero. M

The Riemann integral restricted to C.(R) is a pre-integral R ac-
cording to corollary 9. There is a similar pre-integral on C.(R"), the
class of continuous real valued functions on R” that have compact
supports. It is defined recursively as follows. For f in C.(R"*!) and y
in R, let f(x;,%x;,...,%,) = f(x;,%X5,...,%,,y). We let Ry =R. If
fe C.AR"!) then f, € C.(R") for all y, y+> R,(f,) belongs to C.(R),
and R, (f) is defined to be R, (y+— R,(f,)). The functional R, is the
n'® iterated Riemann integral. Evidently it is a positive linear func-
tional. We show that it is a pre-integral. (This fact has already been
established for n = 1 and the generalization to locally compact Haus-
dorff spaces is theorem 12 in the next supplement.)
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11 PROPOSITION Every positive linear functional I on C.(R"), and in
particular the iterated Riemann integral, is a pre-integral.

PROOF Suppose a decreasing sequence { f; }, in C,(R") converges to
zero pointwise. Then the sequence converges to zero uniformiy by the
argument in Dini’s theorem (theorem 8), so if || f, || = sup,cpnl fr(x)|
then { || f, || }x converges to zero.

Choose M so that if xe R" and |x;|= M for i=1, 2, ..., n,
then f| (x), and hence f,(x) for all g, is zero. If P is the Cartesian product
of n copies of [—M:M], then f, < || f,|lxp and evidently y, < h =
[T ((1+ M —|x;]) v 0). Then h € C.(R"), f, < | f,I|h, s0 0 I(f,) <
| f, 11 (h) because I is positive, and hence lim I(f,)=0. N

SUPPLEMENT: PRE-INTEGRALS ON C,(X) AND Co(X)

We assume, for the rest of this section, that X is a locally compact
Hausdorff space.

Let C,(X) be the family of all real valued continuous functions on X
that have compact supports; and let Cy(X) be the family of all real
valued continuous functions that vanish at oo in the sense that for
e > 0, there is a compact subset K of X such that | f(x)| < e for each
member x of X\ K.

12 ProprosiTioN If I is a positive linear functional on either C,(X) or
Co(X), then I is a pre-integral.

PROOF Suppose { f, },is a decreasing sequence in C,(X) that converges
to 0 pointwise, and that K is a compact support for f;. Then it is
easy to see that { f,}, converges uniformly to zero on K —indeed, the
argument for theorem 8, as written, establishes this. Choose a non-
negative number g of C.(X) such that g = yx. (Urysohn’s lemma, ap-
plied to a compact neighborhood V of K, shows that there is such a
function g.) Then f, < (sup, f,(x))xx < (sup, f,(x))g and hence I( f,) <
(sup, f,(x))I(g). Hence lim,I(f,) =0, and consequently [ is a pre-
integral on C (X).

Suppose that I is a positive linear functional on C,(X) and that
Y = X U {0} is the one point compactification of X (the open neigh-
borhoods of oo are complements of compact subsets of X). For each f
in C(Y) let J(f)= f(o0) + I(f]X). Then J is a positive linear func-
tional on C(Y) = C,(Y) and is consequently a pre-integral. Finally, if
{ fu }a is a sequence in C,(X) that converges pointwise to zero, g,(y) =
f.(y)for yin X and g,(oc) = 0, then 0 = lim, J(g,) = lim, I(f,). Thus I
is a pre-integral on Cy(X). W

The validity of the preceding proposition requires that the domain of
I be large enough. A positive linear functional I on a vector sublattice
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of C.(X) or Cy(X) need not be a pre-integral —for example, let L be the
family of all continuous functions on [0:1] which vanish at 0 and
which have a right derivative there, and for f in L let I( f) be the value
of the right derivative at 0.

There is an extension of the preceding proposition that applies to
bounded linear functionals on C,(X). The supremum norm of a mem-
ber f of Cy(X) is defined by || f ||x = sup,.x|f(x)|, and a linear func-
tional F on Cy(X) is bounded relative to the sup norm iff |F| =
sup{|F(f): | flx = 1} < oo. One sees without difficulty that | F(f)| <
IFI S Ny

The norm | |y induces a metric (f,g)— || f — gllx for Cy(X), and
the bounded linear functionals are just those that are continuous rela-
tive to the metric topology. The space Cy(X) is complete since conver-
gence relative to the metric is just uniform convergence.

The following argument shows that each pre-integral I on C,(X)
is bounded, whence so is the difference of two pre-integrals on
Co(X). Suppose || f,llx =<1 and I(f,) = 2" for each n. Then, since
1) = £) 20, I(If,) 2 2" The sequence {Y3.,27"|f [}y is a
Cauchy sequence and converges to some f = Y V., 27"|f,|, whence
I(f)= Y. N-127"1(| f,1) = N for all N, and this is a contradiction.

13  PROPOSITION A linear functional F on Cy(X) is bounded iff it is the
difference of two pre-integrals.

PROOF It is only necessary to show that a bounded linear func-
tional F is the difference of two positive linear functional, and this
will follow (see chapter 0) provided we show that F*(f) = sup{F(u):
ueCy(X) and 0 u <= f)} < o for all non-negative members f
of Co(X). If 0=u < f, then |F(u)| < |F| Jullx < IF| |l fllx whence
FY(f)SIFIIflix<oo. W



Chapter 3

PRE-INTEGRAL TO INTEGRAL

This section is devoted to the construction of an integral from a
pre-integral, and to a few consequences. Among these consequences
are norm completeness, Fatou’s lemma, the monotone convergence
theorem and the dominated convergence theorem for an arbitrary
integral.

We recall that a pre-integral is a positive linear functional I on a
vector function lattice L with truncation such that lim,I(f,) = 0 for
every decreasing sequence { f, }, in L that converges pointwise to zero.
This last condition is equivalent to requiring that lim, I( f,) = I(f) for
every increasing {or decreasing) sequence { f,}, in L that converges
pointwise to a member f of L. An alternative statement: [ is countably
additive in the sense that Y , I( f,) = I(f) for every sequence { f,}, of
non-negative members of L with pointwise sum f = ), f, belonging to
L.

An integral is a positive linear functional I on a vector function
lattice L with truncation that has the property (the Beppo Levi prop-
erty). if { f,}, is an increasing sequence in L, sup, I ( f,) < 00, and f(x) =
sup, f,(x) < oo for all x, then f e L and I(f) = lim,I(f,). An alter-
native statement: if { f,}, is a sequence of non-negative members of L
with Y, I(f,) < o and f(x) =3, f,(x) < oo for all x, then f € L and
I(f) =3 ,1(f,)- Notice that the domain of an integral is closed under
pointwise convergence of decreasing sequences of non-negative mem-
bers. Each integral is evidently also a pre-integral.

If I is any positive linear functional on L and f and g are members of
L with f < gthenlI(g — f)=0soI(f) < I(g). Consequently |[I(f)| <
I{|f]) because —| f| < f < |f|. The norm (or L; norm) of a member f
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of L, || f 1, or just || ||, is defined to be I(|f]). Thus |[I(f)| = | f1l;.
(It would be more precise to call | ||, the “norm induced by I”, and
label it “|} |I,”.)

The L, norm is unfortunately not always a norm. A norm for a vector
space E is a real valued non-negative function || | on E such that

@O If+gll =S+ lglforall fandginE,
(ii) |2/ || = ||| f || for all f in E and all scalars 2, and
(iii) for each fin E,if | f || = O then f = 0.

The L, norm has properties (i) and (ii) but, in general, may fail to satisfy
(iii). It should properly be called a semi-norm or a pseudo-norm, but we
follow time honored usage in calling it a norm.

If | || is a semi-norm for a vector space E then | f — g| is the
norm distance from f to g, and the function (f,g)— | f — gl is the
norm semi-metric. A sequence {f,}, is fundamental or Cauchy iff
lim, , || fu — full =0, and E is complete iff each Cauchy sequence in E
converges to some member of E. This is the case iff each Cauchy se-
quence in E has a subsequence which converges to a member of E.

The space L of a pre-integral I on L may fail to be complete, and the
integral induced by I is to be a completion. That is, we enlarge L to a
space L', and extend I on L to I' on L' so that I' is a pre-integral and
L' is complete relative to its natural norm. The obvious approach is to
adjoin to L the pointwise limits of Cauchy sequences in L, but unfor-
tunately a Cauchy sequence may fail to converge at any point. For
example, the characteristic functions of the intervals, [0:1], [0:1/2],
[1/2:1],[0:1/3],[1/3:2/3],[2/3:1], [0:1/4], ... converge at no point
of [0:1]. But this sequence of characteristic functions is Cauchy rela-
tive to the norm f+ I(] f|), if I is the Riemann integral on the class of
piecewise continuous functions on [0: 1]. Thus we cannot hope to com-
plete L by adjoining pointwise limits of arbitrary Cauchy sequences.
But a variant of this idea works.

A sequence {g,}, in a semi-normed space E is swiftly convergent iff
Y wlgus1r — gull < 00. A swiftly convergent sequence {g,}, is auto-
matically a Cauchy sequence because || g, ps1 — gl = | 2022 (Gasr —
g <Yl g1 — gill, and this sum is small for n large. Each
Cauchy sequence has a swiftly convergent subsequence, and it follows
that E is complete iff each swiftly convergent sequence in E converges
relative to the norm distance to a member of E.

There is a natural one to one correspondence between swiftly conver-
gent sequences and sequences with summable norms. If a sequence
{f,}, in E has summable norms in the sense that ) , | f,|l < co, then
the sequence {Y %, fi}, of partial sums is swiftly convergent. On the
other hand, if {g,}, is swiftly convergent then it is the sequence of
partial sums of the sequence g,, g, — g1>---» Gns1 — Jn> - - - » Which has
summable norms. We agree that a sequence { f, }, is norm summable to
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[iff the sums of { f,}, over finite subsets of N converge to f (explicitly,
for e > 0 there is a finite subset F of N such that |}, ¢ f, — f | < efor
all finite G with F < G = N). If { f,}, is norm summable to f, then
lim, || f = Y3-1 fil =0.

Statements about swiftly convergent sequences can always be trans-
lated into statements about sequences with summable norms, and vice
versa. The following proposition is an example. (A methodological
note: swift convergence is convenient for order theoretic arguments and
summing sequences is convenient for arguments involving linearity.)

1 PROPOSITION A semi-normed space E is complete iff each swiftly
convergent sequence in E converges to a member of E, or iff each se-
quence in E with summable norms is norm summable to a member of E.

We would like to extend a pre-integral I on L by adjoining to L the
pointwise sums of sequences in L that have summable norms and then
extending I to such sums. Unfortunately, such a sequence { f, }, may
not be summable at each point—the set {x: Y ,|f,(x)] = oo} may be
non-void—but we cope with this exceptional set in statesmanlike
fashion. We ignore it.

A subset E of X is null, or [ null, iff there is a sequence { f,}, in L
with summable norms such that Y ,|f,(x)| = oo for each x in E
(e, E < {x: Y 1 f,(x)] = oc}). Thus, if Y, | f, || < oo, then { f,(x)}, is
(absolutely) summable except for members x of the I null set {x:
Y .l fu(x)] = oo}, and each swiftly convergent sequence {g,}, in L con-
verges pointwise outside of the null set {x: ), |g,+;(x) — g,(x)| = oc}.

Each subset of an [ null set is evidently I null. If e > 0 then
{(x: Y 1 ()] =0} = {x: ), lefp(x)| = 0}, so aset E is I nulliff there
is {g,},in L with ), 1g,(x)| = oo for each x in Eand with ) , {|g,] <e.
If, for each n, E, is a null set, then there is a sequence { f, , }, in L with
Nallfusl <27and ¥, | £, (x)| = co for all x in E,, whence { f, i}, « is
a double sequence with summable norms and ), |/, .(x)] = oo on
{ ). E,; therefore the countable union of null sets is null. The same sort
of reasoning shows that E is null iff for e > 0 there is { f,}, in L with
Y ulful =2 xgand Y, || £, Il < e. Here is yet another description of null
sets: E is null iff there is an increasing sequence {h,}, of non-negative
members of L with sup, ||h, | < o and sup, h,(x) = oo for x in E.

We emphasize the inconsequential nature of null sets by agreeing
that a proposition about x holds almest everywhere or for almost every
x (a.e., for a.e. x, I a.e., for I a.e. x) iff the set of points x for which the
proposition fails is I null.

We extend the pre-integral I on L by adjoining all pointwise sums
of sequences { f,}, in L with summable norms. More precisely: we

Jnin

adjoin to L real valued functions f such that f(x) =), f,(x) for
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I almost every x, and we define the integral of f to be Y, I(f,). The
next lemma implies that this definition is not ambiguous.

2 FUNDAMENTAL LEMMA If {f,}, is a sequence in L, Y, [If,Il < oo
and Y, f,(x) 2 0 for I a.e. x, then 0 > ,1(f,) 2 0.

If {g,}n is a swiftly convergent sequence in L and lim,g,(x) = 0 for
I a.e.x then oo > lim,1(g,) = 0.

PROOF We first observe that if {u, }, is a sequence of non-negative mem-
bers of L and Y ,u, = ve L then Y, I(u,) 2 I(v) because ) j-, u;, =
(Yr_jw) Avso Y sy I(w) 2 I((Y 5= ux) A v) and hence, taking limits,
S Iw) = I(im, (X p=yw) Av)=1(). If Y ,u, 23 ,v,, where
{v,}, is a sequence of non-negative members of L, then Y ,I(u,) =
Y N1 I(v,) for each N, and hence  ,I(u,) = > ,I(v

Suppose { f,},is a sequence in L with Y | ||, < co and Y, f,(x) =
0 except for x in a null set E. We may choose a sequence {h,}, of
non-negative members of L with Y, [|h, | < oo such that ), h,(x) =
forall xin E.If f,* = f,vOand —f,” = f, A O, then f, = f,* — f,~
and || f, Il 2 max{| f," 1,11 £, I} so {£,*} and {f,”}, have summable
norms. For a fixed positive number ¢ let u, = f,* + th, and v, = f,”.
Then ) ,u (x ) = ), v,(x) for all x and the preceding paragraph implies
that Y, I(u,) =), If N+ eY L) 2, I, =), 1(f,7). Since
this is the case for all positive t, it must be that > , I(f£,") = >, I(f,7)
o), I(f,)z0. W

The Daniell extension I! on L! of I on L is defined as follows. A real
valued function f belongs to L!, or is I' integrable, iff there is a se-
quence { f,}, in L with summable norms such that f(x) = Y, f,(x) for I
almost every x, and in this case I'(f) =Y ,I1(f,). If {g,,},, is also a
sequence in L with summable norms and f(x) = z gn ) I a.e.x, then
Yulfu—92)=0=3,(g9.— fu) I ae, hence ) ,(I I(g,l)) 0 ac-
cording to the fundamental lemma and ), I(f,) = Z I(g,). Thus the
definition of I' is not ambiguous. It follows from the definition that L!
is a vector space and I! is a positive linear functional on that vector
space.

The members f of L' can also be described as pointwise limits I a.e.
of swiftly convergent sequences { f,}, in L, and I'(f) = lim, I( f,). If
{fu}n and {g,}, are swiftly convergent sequences in L, then so are
{fu A Gutu>{fu vV gu}and { f, A 1},. 1t follows that L' is a vector func-
tion lattice with truncation. Hence I' on L' will be shown to be an
integral if it has the Beppo Levi property: if {f,}, is an increasing
sequence in L1, f(x) = sup, f,(x) for all x, and sup,I'(f,) < oo, then
fe L' and I'(f) = lim,I1'(f,). We establish this fact after recording
for reference a single lemma.

The norm || f|; of a member f of L' is I'(| f|)—| f| € L' because
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L' is a vector lattice. Evidently || ||, is an extension of the norm | |
for L. If {h,},is a sequence in L with summable norms, then |, h,| <

Yoalhalso 1 ahully = (I 0 hal) £ (X uT1h4l) = Y, |1, . Hence:

3 Lemma If I is a pre-integral on L, { f,}, is a sequence in L with
summable norms and f(x) =Y, f,(x) for L a.e. x, then | f — Y 1., fi | <
S e I il

Consequently, if f € L' and e > 0, then there is a sequence {g,}, with
summable norms in L, such that f =Y g, 1 ae., |f—g,|, <e and

Zn”gn” < ”f“l + e.

Suppose that {f,}, is a sequence of non-negative members of a
Daniell extension L' with summable norms and that f(x) = ), f,(x) <
o for all x. Then there is, for each n, a sequence { f, ; }; in L such that
Yallfual < fully + 27" and f, =3, f,.« except on an I null set E,.
Then ) , | fuxl <ooand f =3, f, =3, fu except on the I null
set EU{J, E,, where E = {x: Y, | f,.«(x)] = oo }. Consequently f € L'

and I'(f) =5, 1'(f,). Thus:

4 THEOREM (PRE-INTEGRAL TO INTEGRAL) The Daniell extension of a
pre-integral is an integral.

A particular consequence of lemma 3 is that for f in L* and e > 0
there is g in L with || f — g||; < e; that is, L is dense in L!. It is also the
case that L' is complete, so that L' is a completion of L. In outline:
if {f,}, is a Cauchy sequence in L', there is {g,}, in L so that
lim,|| f, — 9., =0, {g,}, is Cauchy and so has a swiftly convergent
subsequence, this subsequence converges to a member f of L, hence so
does {g,}, and so does { f, },.

We will presently show that the domain of every integral is com-
plete. We use the Daniell extension process to deduce properties of an
arbitrary integral.

5 LeMMA ON NULL SETS If J is an integral on M, ge M, { f,}, is a
sequence in M with summable norms and E = {x: Y ,| f,(x)| = o0}, then
X € M, gy e Mand J(yg) = J(gxe) = 0.

PROOF We may assume without loss of generality that f, = 0 for each
n, so the sequence {s,}, of partial sums is increasing, sup,J(s,) < o
and E = {x: lim,s,(x) = oo}. For each k, the sequence {(27%s,) A 1} is
increasing and J((27%s,) A 1) £ 27%J(s,). Consequently, since J is an
integral, lim, ((27%s,) A 1) belongs to M and J of the limit is bounded
by 27% sup, J(s,). The sequence {lim,(27%s,) A 1}, is decreasing, and it
follows that lim, lim,((27%s,) A 1) belongs to M and J of this double



NORM COMPLETENESS 37

limit is zero. But lim, lim, ((27%s,(x)) A 1) is 1 if lim,s,(x) = co and 0
otherwise; that is, the double limit is yg, so yz € M and J(yg) = 0.

An even simpler argument serves to establish the assertion about g.
We assume g = 0. For each k, J(g A (2%y:)) £ J(2¥yz) = 0, and taking
the limit on k yields gy € M and J(gyg)=0. B

Ifge M, g=0J ae. and J(g) =0, then the set 4 = {x:g(x) # 0}
and all its subsets are J null because the sequence |g|, |g], ... has
summable norms and its pointwise sum is oo on A. In particular if
s € M and J(yg) = 0, the subsets of E are J null. The preceding lemma
shows that all J null sets are of this form.

6 THEOREM ON NORM COMPLETENESS If J is an integral on M, then
each swiftly convergent sequence in M is dominated J a.e. by a member of
M and converges J a.e. and in norm to a member of M.

In particular M is norm complete.

PROOF Suppose J is an integral on M, that {f,}, is a sequence in
M with ), | full < 00, E = {x: ), fu(x)] = o} and f = (1 — xz)f-
Then f belongs to the Daniell extension M! of M and by lemma 3 the
partial sums of { f,}, converge J a.e. and in norm to f. We assert that
when J is an integral on M, f belongs to M. This is the case because: if
fi ¥ = fi v 0, then by the preceding lemma, (1 — ¥;)f,* € M for each k,
{2221 (1 — xg)fi "} is increasing, J(zﬁ:l (I =)™ = J(ZZ=1 fk+) =<
Y JUfil) < o, whence Y (1 — xp)fs " € M, Y, (1 — xg)f,~ € M simi-
larly, and so f € M.

It follows that a swiftly convergent sequence { f,}, in M converges J
a.e. and in norm to a member of M. Since each Cauchy sequence in M
has a swiftly convergent subsequence, M is norm complete. Moreover,
the sequence {| f,., — f,|}, has summable norms, so if # ‘x) = | f; (x)| +
Z,, [ fu+1(x) — f,(x)| for x outside the set E where the sum on the right is
infinite, and h(x) = O for x in E, then h € M and { f, }, is dominated by
hae. N

The preceding theorem does not imply that every integral J on M is
identical with its Daniell extension J' on M!. A swiftly convergent
sequence { f, }, in M converges J a.e. and in norm to some member g of
M, but it also converges J a.e. and in norm to g + h for every real
valued function h with J null support, and such a function & may fail to
belong to M. In fact, the Daniell extension M! of an integral J on M is
precisely {u: u is a real valued function agreeing J a.e. with some member
gof M} = {g + h: g € M, and h has J null support}

The integral J on M is said to be null complete iff each real valued
function h with J null support belongs to M, or iff M = M*. If an
integral J on M is an extension of a pre-integral I on L, then J! on M!
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is an extension of I on L!, and if M is null complete so that M = M?,
then J on M is itself an extension of I' on L!. Thus every null complete
integral that extends a pre-integral I on L also extends I! on L1!.
Assuming for the moment that a Daniell extension is always null com-
plete (it is), we conclude that the Daniell extension of a pre-integral
is its smallest null complete integral extension. Because of this, the
Daniell extension of an integral I on Lis called the usual or the mini-
mal null completion of I on L; it is often denoted I on LY as well as I'
onL!

7 PROPOSITION The Daniell extension of a pre-integral is its smallest
null complete integral extension.

In particular, every null complete integral that extends an integral I on
L also extends its null completion IV on L".

PROOF We need only show that the Daniell extension of a pre-integral
I on L is null complete. If h has I' null support E, then there
is a sequence {f,}, in L' with summable norms such that E c
{x:) .| fu(x)| = co}. By lemma 3, for each n there is a sequence { f, , },
in L such that ¥, full <27 + I £, 1, and f,(x) = Y fo(x) out-
side an I null set E,. Then {f, ,}, . has summable norms and E ¢
{x:Y il fux(x) = o0} u ), E,. Hence E is I null, so h e L' and the
proposition is proved. B

A sequence { f, }, is increasing J a.e. iff J is an integral and for each n,
frse1(x) = f,(x) for J ae. x. A J a.e. increasing sequence in M such that
sup, J(f,) < oo is evidently swiftly convergent. The theorem on norm
completeness therefore has the following corollary.

8 MoNOoTONE CONVERGENCE THEOREM If J is an integral on M,
{ fu}n is a sequence that is increasing J a.e. and sup,J(f,) < oo, then
{ fu}. converges J a.e. and in norm to a member f of M, and J(f) =

lim, J( f,).

There is a useful consequence of the preceding result. Recall that a set
V with partial ordering = is order complete (conditionally complete,
Dedekind complete) iff each non-empty subset W which has an upper
bound in ¥ has a supremum in V (that is, a member w of V that is an
upper bound for W and is less than or equal to every other upper
bound).

Suppose J is an integral on M. Let us agree that f= ;g iff f and g
belong to M and f = g J almost everywhere. We show that M is =,
order complete. In fact, if J is bounded from above on a non-empty
subset W of M that is closed under v (i.e., if g and h are in W, then so
is g v h), then there is an increasing sequence { f,}, in W such that
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sup, J(f,) = sup{J(f): f € W} < o0, theorem 8 shows that { f,}, con-
verges J a.e. to a member f of M, and it is straightforward to verify that
fisa = ; supremum of W.

9 COROLLARY If J is an integral on M, then a non-empty sub-
set W of M that is closed under v has a =; supremum, provided
sup{J(g):g € W} < o0.

In particular, M with the ordering = ;, is order complete.

Thus the domain of an integral is both norm complete and order
complete; it may or may not be null complete.

We will establish another convergence theorem for integrals after an
important preliminary lemma. (A stronger form of the lemma is given
in chapter 7.)

10 Fatou’s LEMMA Suppose J is an integral on M and {f,}, is a
sequence of non-negative members of M such that lim inf, J( f,) < oo and
lim inf, f,(x) < oo for all x.

Then liminf, f, € M and J(lim inf, f,) < lim inf, J( f,).

PROOF For each n, the sequence f,, f, A foris fu A Sos1 A Sur2s--- 1S
decreasing and so its pointwise limit, inf,>, f,, belongs to M be-
cause M is the domain of an integral. Since inf, >, fi, < f,, J(infy=, fi) =
J(f,) and so lim, J(inf, >, fi) < liminf, J( f,) < . Consequently, the B.
Levi property of integrals shows liminf, f, = lim,inf;>, f, € M and
J(liminf, f,) = lim, J(infi >, /i), which is at most liminf, J(f,). B

11 DoMINATED CONVERGENCE THEOREM  Suppose that J is an integral
on M, ge M, {f,}, is a sequence in M that converges pointwise to a
function f, and | f,(x)| < g(x) for all x.

Then f € M, J(f) = lim, J(f,) and { f,}, converges to f in norm.

PROOF Fatou’s lemma applied to the sequence {f, + g}, shows
that liminf,(f, + g) belongs to M and that J(liminf,(f, + g)) <
liminf, J(f, + g). Consequently f = lim, f, belongs to M and J(f) <
liminf, J(f,). The same lemma applied to the sequence {—f, + g},
shows that J(—f) £ liminf, J(—f,) = —limsup,J(f,), whence J(f) =
lim, J (f,).

This result, applied to the sequence {| f, — f|},, which is dominated
by 2g, shows that lim, || f, — fll; =0. M

There is a slightly stronger form of the preceding, obtained by judi-
ciously sprinkling “a.e.’s” almost everywhere. It reads: If a sequence in
M converges pointwise a.e. to f and is dominated a.e. by a member of
M, then it converges a.e. and in norm to a member of M, and this member
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agrees a.e. with f. This form can be easily obtained from theorem 11 by
using lemma 5 (on null sets).

Both the monotone convergence and the dominated convergence
theorems deduce “limit of the integral = integral of the limit” re-
sults from pointwise convergence plus an additional assumption. Some
additional assumption is necessary, as the following simple examples
show.

The first example is called the “moving bump”. Let # be length and
let I be the induced preintegral on the space L* of ¢ simple functions.
If f, = Xn.n+1; for each n, then lim, f, = 0 but lim, I'(f,)=1#0=
I*(lim, f,).

If all the members of the sequence { f, }, vanish outside a fixed inter-
val [a:b], then pointwise convergence of { f,}, to a member f of L¥
still fails to imply convergence of {I7(f,)}, to I’(f), as the “growing
steeple” example shows. Let f, = ny ., for each n. Then lim, f, = 0
but lim, I’(f, ) = 1. A further note: both the moving bump and growing
steeple examples can be modified to get sequences of differentiable
functions, with the same sort of behavior relative to the integral in-
duced by I.

It can happen that the Daniell extensions of different pre-integrals
are identical—indeed the prototype of an integral occurs naturally as
the Daniell extension of two quite different pre-integrals. We recall that
the Riemann integral R on the space C.(R) of continuous real valued
functions on R with compact support is a pre-integral according to
proposition 2.9, and theorem 2.7 implies that the length function ¢
induces a pre-integral I on the class L’ of linear combinations of
finitely many characteristic function y,. ;.

12 PrROPOSITION The Riemann integral R on C.(R) and the pre-
integral I induced by length have the same Daniell extension.

Because the Daniell extension of a pre-integral is its smallest null
complete integral extension (proposition 7), it is sufficient to show that
(I’)! is an extension of the Riemann integral R on C,.(R) and that R! is
an extension of I’. We leave this proof to the reader.

Finally, the Lebesgue integral I' on L' (R) is defined to be the Daniell
extension of the pre-integral I’ induced by length. The Lebesgue inte-
gral for an interval [a:b], is defined by: f € L![a:b] iff the extension
g of f which is zero on R\[a:b] belongs to L!(R), and in this case
{5 f(tydt = I'(g). It is, in fact, the case that this integral is also the
Daniell extension of the Riemann integral on C[a:b].

13 NoOTES
(i) The description of I null sets as a set of points of “divergence” of
a sequence with summable norms dates back to F. Riesz or earlier.



NOTES 41

(i1) The notion of integral used here is due to M. H. Stone, who for-
mulated an abstract version of Daniell’s construction of the Lebesgue
integral. The role of the truncation axiom needs elucidation. It ensures
that the domain of an integral contains “enough characteristic func-
tions” so that the induced measure completely determines the integral
(see theorem 5.11).

If the truncation axiom is not assumed, then the methods of this
section can be varied to construct an extension of a positive, countably
additive linear functional on a vector function lattice which is, modulo
the subspace of members of norm zero, a space L with the properties:
L is a complete normed space (a Banach space), L is a vector lattice
such that if | f| = |g| then | f|| = |lgll, and if f > 0 and ¢g = 0, then
Il f+gl=1fI + gl S. Kakutani calls such spaces L spaces, and he
has established a structure theory for these. See, for example, the
appendix of [KN].

(iii) We have not yet defined the “integral I, on L (u) with respect to
a measure ¢ on .2/”. An obvious possibility: since a measure is an exact
function that is continuous at (¥, it induces a pre-integral I* on the
class of .o/ simple functions, and one could define the integral I, on
L, (p) to be the Daniell extension of I*. However we shall presently
show that there is an integral extension of I* that generally has a
smaller domain than does the Daniell extension—its null completion is
the Daniell extension. The integral I,, which we define in chapter 6,
turns out to be the minimal integral extension of I*.



Chapter 4

INTEGRAL TO MEASURE

A measure is a real valued, non-negative, countably additive function
on a d-ring /. A d-ring is a ring &/ of sets such that if {4,}, is a
sequence in /. then (), 4, € o/; that is, a é-ring is a ring ./ that is
closed under countable intersection. The family of all finite subsets of
R, the family of all countable subsets of R, and the family of all
bounded subsets of R are examples of d-rings. We observe that one
of these families is closed under countable union but the other two are
not.

Here are two examples of a measure. If X is any set, counting measure
y for X is defined for all finite subsets A of X by letting y(A4) be the
number of members of A. If f is a non-negative, real valued function on
X, then discrete measure with weight function f, v, is defined by v,(4) =
Y ce 4 f(x) for all finite subsets 4 of X.

At this stage we have no assurance that measures exists, except for
essentially trivial examples. Generally one must extend a function on
some family of sets, such as a length function on the family of intervals,
to a measure on some J-ring containing the family. We will accomplish
this extension by showing that each integral induces a measure in a
natural way. Then a length function (or pre-measure) induces a pre-
integral, which induces an integral, which in turn induces a measure,
and this measure is an extension of the length function (pre-measure)!

Suppose J is an integral on M. Let # = {B: x5 € M} and let #(B) =
J(xg). The family % is a ring because y 05 = X4 vV XBs XarnB = X4 N XB
and x4 5 = X4 — Xang> and the function 7 is finitely additive because J
is linear. If {B,}, is an increasing sequence in %, sup,n(B,) < o and
B =), B,, then {yp }, is an increasing sequence in M that converges
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pointwise to yp, and sup, J(yp_ ) < oo. Consequently, since J is an inte-
gral, yp € M and lim, J (xp, ) = J (1), so B € # and lim,n(B,) = n(B). In
particular, # is continuous from below and hence is countably additive.
If {C,}, s a decreasing sequence in 4, then {C,\ C,}, is increasing, and
we infer that | J,(C,\C,) = C,\(),C, €%, so (),C,e # and Z is
therefore a é-ring. Thus # is a measure. It is the measure induced by the
integral J.

The argument given in the preceding paragraph also shows that the
measure y has the special property: if {4, }, is a disjoint sequence in £
such that ), n(4,) < o, then | J, 4, € #. A measure with this property
is called a standard measure. Thus the measure induced by an integral
is always a standard measure. For the record:

1 PRrROPOSITION (INTEGRAL TO MEASURE) If J is an integral on M,
B = {B: yg € M} and n(B) = J(xg) for Bin &, then % is a 6-ring and n is
a standard measure on 4.

We use the preceding proposition to construct an abundance of mea-
sures. Each pre-measure p on .o/ induces a pre-integral I* on L
according to theorem 2.7, where L is the class of .« simple functions
and I*(y,) = p(A) for 4 in /. The Daniell extension I' on L! of the
pre-integral I* is an integral according to theorem 3.4, and proposition
1 asserts that I' induces a measure y on 4 = {B: yz € L'} and #(B) =
I'(y3) for Be . 1f Ae o then y,e LY < L' so A e #, and u(A4) =
I*(x4) = I'(x4) = n(A). Hence 7 is an extension of y, and the following
theorem is proved.

2 EXTENSION THEOREM FOR PRE-MEASURES Each pre-measure u on
o, and in particular each exact function on of that is continuous at &5,
can be extended to a measure.

Explicitly: The measure induced by the Daniell extension of the pre-
integral I" on L is an extension of p.

There is usually not a unique measure that extends a pre-measure
but it turns out that there is a “smallest” such extension. We first
observe there is a smallest d-ring that contains a family .« of sets,
because o/ is a subfamily of the é-ring {B: B< | J,. ., A4}, and 2 =
{D: D belongs to each 6-ring that contains s/} is the smallest §-ring that
contains .«/. The family 2 is the J-ring generated by .«7; it contains .o/
and is a subfamily of every §-ring that contains .o7.

If u is a pre-measure on .o7, then the é-ring 2 generated by .« is a
subfamily of the domain of every measure 5 that extends u, so #| 2 is an
extension of yu. We presently show that two measures that agree on a
family that is closed under intersection (as .« is) agree on the generated
d-ring, from which we conclude that there is a unique measure v (=#|2)
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on & that extends u. We assume for the moment that this is the case, in
order to simplify the statement of the next two results. The unique
measure v on & that extends p is the measure induced by p, or the
minimal measure extending 4; every measure that extends u also ex-
tends v. In general, v is not standard.

The d-ring generated by the family of compact subsets of R is the
Borel d-ring 28° (R) for R. The family of bounded subsets is a o-ring that
contains the family of compact sets and hence contains #°(R). A mea-
sure on #°(R) is a Borel measure for R. The family %#°(R) is also
generated by the class of closed intervals, and each length function is a
pre-measure, so the minimal measure extending a length function is a
Borel measure. We show that every Borel measure can be obtained in
this way.

3 PROPOSITION The minimal measure extending a length function is a
Borel measure for R, and every Borel measure is such an extension.

PROOF It’s only necessary to show that the restriction of a Borel mea-
sure u to the family of closed intervals is a length function. Ifa £ b Z ¢
then pla:b] + ulb:c] =pula:b] + ulb:c] + u{b} = ula:c] + p{b},
so u has the required additive property. The boundary inequality,
if a<b then pfa:b] = u{a} + u{b}, is equally evident. Finally
lim,ula—n"': a+ n"'] = p{a} because u is continous from above
at {a}, and it follows that u satisfies the continuity condition for
lengths. B

A length function 1 on ¢ is translation invariant iff A[a:b] =
Ala + c:b + c] for all a, b and ¢ with a < b. According to theorem 1.5,
the usual length 7, where £/[a:b] = b — a, is the only length function
that is translation invariant and assigns the value 1 to [0:1]. Conse-
quently, in view of the preceding corollary, there is precisely one Borel
measure A with the property that A([0:1])=1 and A([a:b])=
A([a+ c:b + c]) for all a, b and ¢ with a < b. It turns out that this
measure is translation invariant in the sense that if ¢ € R, B € #°(R) and
¢+ B={c+b:be B}, thenc+ Be #°(R) and A(B) = A(c + B). We
leave the proof of this fact to the reader (it follows from the fact that the
pre-integral I* on L7 is translation invariant in the sense that if fe L*
and f.(x) = f(x — ¢) then f, € L and I*(f) = I*(f.)). Thus:

4 PROPOSITION There is one and only one translation invariant Borel
measure A such that A([0:1]) = 1.

The measure A is called Borel-Lebesgue measure for R. It is not
standard since N ¢ #°(R) although {n} € #°(R) and A({n}) = 0 for all
nin N.
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We need some facts about J-rings before establishing the uniqueness
of the minimal measure extending a pre-measure. The union of count-
ably many members of a §-ring may fail to be a member, but each
S-ring is “locally” closed under countable union, in a sense made pre-
cise by the following lemma. We agree that a ring &/ is closed under
dominated countable union iff ( ], A, € o whenever {4,}, is a sequence
in & and there is a member B of .« such that B o Un A,.

5 LeMMA Each é-ring is closed under dominated countable union, and
each ring that is closed under dominated countable disjoint union is a
d-ring.

PROOF If {4,},is a sequence in a d-ring .« and {4, }, is dominated by
a member B of o/, then B\| ), 4, = [),(B\A4,) € o/ and so | J, 4, =
B\(B\|J, 4,) € .

On the other hand, if {4,}, is a sequence in a ring &/ and B,=
(Vi<n 4 for each n, then the sequence {B,}, of partial intersections is
decreasing, the difference sequence {B,\ B, }, is disjoint and domi-
nated by By, and so (J,(B,\B,+1) =B \[ B, = A4,\().A4, € .
Hence (), A, € o provided .o/ is closed under dominated, countable
disjoint union. Consequently, in this case, ./ is a 6-ring. W

6 THEOREM ON GENERATED J-RINGS Suppose a family o/ is closed
under finite intersections. Then the smallest family € that contains of
and is closed under proper difference, finite disjoint union and dominated
countable disjoint union, is the d-ring generated by o/ .

PROOF It is sufficient to show that € is closed under intersection, for €
is then a ring which, in view of the preceding lemma, is a J-ring.

For each set B the family €3 = {C: C € ¥ and Bn C € ¥} is closed
under proper difference, disjoint union and dominated countable dis-
joint union, because ¥ is closed under these operations and “inter-
section with B” distributes over each operation (e.g., if {D,}, is a dis-
joint sequence in %y that is dominated by a member E of %y, then
{D,}, and {Bn D,}, are disjoint sequences in ¥ and are dominated
by E€¥, so |J,D,e% and | J,(BnD,)=Bn|J,D, €%, whence
Un Dn € (gB)

If B € o/ then €3 > &/ because ¥ o .o/ and ./ is closed under inter-
section. Thus BN C € ¥ if B e o/ and C € ¥. Hence, if B € ¥ then €3 @
o/, and since % has the three closure properties, €5 > . Conse-
quently, BnCe ¥ forallBandCin¥. B

7 COROLLARY Two measures that agree on a family o/ that is closed
under intersection also agree on the 0-ring generated by </ .
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Consequently each pre-measure on of extends to a unique measure, the
induced measure, on the d-ring generated by <.

PROOF Suppose u is a measure on a é-ring 4, v is a measure on € and
that & = {E: E € # n % and u(E) = v(E)}. If D and E belong to & then
D\E € # n ¥ because # N ¥ is a é-ring, and if D > E then u(D\ E) =
u(D) — u(E) = v(D) — v(E) = v(D\E) so D\E € &. Similarly, if DNnE =
& then DU E € &. Finally, if {D,}, is a disjoint sequence in &, E €
& and | J,D, < E, then | J,D, e Z#n % and u({J,D,) =) ,u(D,) =
Y .v(D,) =v(J,D,)so ), D, € & The preceding theorem then implies
that if & contains a family .o/ that is closed under intersection then &
contains the é-ring .o/ generates. B

A measure that is obtained from an exact pre-measure has special
approximation properties, derived essentially from the inner approxi-
mation property of exactness. We deduce this approximation re-
sult from an “above and below” approximation for Daniell integrable
functions.

We suppose that I is a pre-integral on L and that I! on L! is its
Daniell extension.

8 LEMMA (APPROXIMATION FROM ABOVE AND BELOW) If I is a pre-
integral on L, f € L' and e > O then there is a member g of L and a
sequence {h,}, of non-negative members of L such thaty ,1(h,) < e and
f = g1(x) S X ha(x) for all x.

Consequently, if p,=¢g— Y. !- h; and q, =g + Y7, h;, then {p,},
is decreasing in L, {q,}, is increasing in L, lim,p, < f < lim,q,, and
0<lim,I(q,)— lim,I(p,) <e.

PROOF Since f e L', f =Y, f, outside of an I null set E, for some
norm summable sequence { f,}, in L. For e > 0 choose N so that
Y asnll filli < e/2 and choose {v,}, in L with ¥ ,|v,ll; <e/2 and
Y alval =0 onE. Letg=>3Y, fiandlet h, = | fy,,| + |v,| for each n.
Then g and {h,}, have the desired properties. H

Suppose v is a measure on ¥. We say that a member C of ¢ has
inner v approximations in & iff & is a subfamily of ¥ and v(C) =
sup{v(E): E € & and E = C}, and C has outer approximations in & iff
v(C) = inf{v(E): E € & and E o C}. We agree that for each family «/,
245 is the family of intersections of countably many members of &/, and
o, is the family of countable unions of members. Thus =7, consists of
countable unions of countable intersections of members of «/.

9 PROPOSITION (INNER APPROXIMATION) If [ is the pre-integral
induced by an exact pre-measure on o and v on € is the measure induced
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by the Daniell extension I' of I, then each member of € has inner
approximations in ;.

Moreover, for each C in € there is A in o, such that A < C and
v(C\ 4) = 0.

PROOF We first show that if {C,}, is decreasing sequence in %
and each C, has inner approximations in & then C = (), C, has
such approximations in «/;. Choose 4, € &/ so that 4, < C, and
Y av(C,\ 4,) is small. Then 4 = () A, is an inner approximation for C
because C\ 4 < | J,(C,\ 4,), whence, by countable subadditivity of v,
VW(C\A) £ Y, V(G A,).

Next, for each C in ¢ and each e > 0 there is, by the approxima-
tion lemma, a decreasing sequence {g,}, of & simple functions with
lim, g, < xc and lim, I(g,) 2 v(C) — e. We may suppose that g, = O for
each n, s0 0 < lim,g, £ xc- f 0<a< 1 and E = {x: lim,g,(x) = a},
then E < C and lim, g, < g + ayc\g, so I'(lim,g,) < v(E) + av(C\E) =
(1 — a)v(E) + av(C) provided E € %. On the other hand I'(lim,g,) =
lim,1(g,) = v(C) — e, so v(C)—e = (1 — a)v(E) + av(C), whence v(C) =
v(E) + (e/(1 — a)), so E is an inner approximation for C, provided
Ee®.

Finally, E = [, E, where E, = {x: g,(x) 2 a}, so E € %, and in view
of the result established in the first paragraph, the proof reduces to
showing that there is an inner v approximation for E, in & for each n.
But g, is «Z-simple so E, belongs to the ring generated by the lattice <7,
which consists of unions of disjoint differences of members of &7 (see
theorem 2.2). The definition of exactness then shows that there is an
inner approximation for E, in ./, and the first half of proposition
follows.

If C € % and A, € o/; with v(C\ 4,) < 1/n for each n, then | J, 4, €
5, and v(C\ | J, 4,) = 0. The proposition is thus established. B

The preceding proposition implies results on outer approximation,
based on the observation that if C = D and E is a “good” inner
approximation for D\ C, then D\ E is a “good” outer approximation
for C. The proof of corollary 10 will furnish an example.

A measure p is a Lebesgue—Stieltjes measure for R iff there is a length
function A such that u is induced by the Daniell extension of the pre-
integral I*. We say that u is the Lebesgue—Stieltjes measure induced by
/. We notice that u determines A-—in fact, A = u| ¢, where # is the
class of closed intervals—so length functions and Lebesgue—Stieltjes
measures are paired off. It is worth noticing that the domain of a
Lebesgue—Stieltjes measure u depends on the length function u|#,
whereas all minimal measures induced by length functions have the
same domain, the Borel d-ring %°(R).

Lebesgue measure A' for R is the Lebesgue-—Stieltjes measure
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induced by the usual length /. It is straightforward to verify that
A' is translation invariant and that A*([0:1]) = 1. If u is a transla-
tion invariant Lebesgue—Stieltjes measure and p([0:1]) = 1, then the
length 4 = u| # is translation invariant and A([0:1]) = 1,s0 4 = ¢ by
theorem 1.5. Consequently each of u and A! is induced by the usual
length ¢, and it follows that A' is the unique Lebesgue—Stieltjes mea-
sure that is translation invariant and assigns the value 1 to [0:1].

Proposition 9 has the following corollary about Lebesgue—Stieltjes
measures.

10 CoRrROLLARY If B belongs to the domain & of a Lebesgue Stieltjes
measure 1, and in particular if B € #°(R), then for e > 0 there is a com-
pact set K and an open set U such that K« B< U and n(K) + e 2
n(B) 2 n(U) —e.

PROOF The measure 7 is induced by the Daniell extension of I* where
A =n]|#,s0 by proposition 9, B has inner approximations in .o/;, where
&/ is the lattice generated by the family of closed intervals. But .o/; is
then just the family of compacta, so there is a compact set K with
K < Band #(K) + e 2 n(B).

If B is a bounded set, then B « (a:b) for some a and b. There is then
a compact subset D of (a:b)\ B such that n(D) + e = n((a:b)\ B) =
n({a:b)) — n(B). Then (B) + e =2 n((a:b)) — n(D), and if U = (a:b)\ D,
then B < U and U is an open set as required.

If B is not bounded it is the union of the bounded members B, =
Bn[—n:n] of &, there is an open set U, o B, so that y(U,) < y(B) +
27", and U = | J, U, is an open set as required. W

The preceding corollary is often phrased: each Lebesgue—Stieltjes
measure for R, and each Borel measure for R, is inner regular (inner
approximation by compacta) and outer regular (outer approximation
by open sets); in other words each such measure is regular.

The minimal measure induced by a pre-measure A on &7 is generally
not the measure induced by the Daniell extension of the pre-integral I'*
on L“. Each measure induced by an integral is standard, and the
minimal measure may fail to be standard (e.g., Borel-Lebesgue mea-
sure A). Moreover, each Daniell integral is null complete (each function
with null support is integrable), and the measure v on ¥ induced by
a null complete integral has the special property: if E = D e € and
v(D) = 0, then E € € and v(E) = 0. Such measures are called complete.
Borel-Lebesgue measure is not complete. However, it turns out that the
minimal measure induced by a pre-measure A completely determines
the measure induced by the Daniell extension of the pre-integral I*.

The standardization of a measure u on ./ is the function v on & given
by: Be # iff B= |, A, for some disjoint sequence {4,}, in &/ with
Y . 1(A,) < oo, and in this case v(B) = Y, u(A4,). We leave to the reader
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the proof that this definition is not ambiguous, that v is a standard
measure; that u is standard iff it is identical with its standardization,
and that u is complete iff its standardization v is complete.

The usual completion or just the completion of a measure p on & is
the function p¥ on o/ " defined by: AY € oV iff AY is the symmetric
difference A A E for some member A of &/ and some subset E of a
member of ./ of u measure zero, and in this case u"(4") = u(A).
(Roughly speaking, u is defined on the sets which are, give and take a
subset of a set of measure zero, members of .«7.) It is not hard to verify
that u is well defined, it is a complete measure extending p, and it is
the smallest such extension.

The standardization of the completion of a measure u is its stan-
dardized completion. It is an extension of u that is both standard and
complete, and it is the smallest such extension.

11 PROPOSITION Let A be a pre-measure on o, I* on L the induced
pre-integral and let v on € be the measure induced by the Daniell exten-
sion of I*. Then every complete standard measure that extends A is an
extension of v.

Consequently v is the standardized completion of the minimal measure
extending A.

PROOF Let L' = (L¥)! be the domain of the Daniell extension of I,
and let 0 on 2 be the standardized completion of the minimal measure
extending A. Since v is standard and complete, v is an extension of a.
Thus o« ¢ 2 < 6, L% <« LY < L® c L', and consequently the Daniell
extensions, (I*)! and (I°)', of the pre-integrals are ordered similarly.
Thus (L)' = (LY)' « L' = (L)' whence I* and I° have the same
Daniell extensions. In particular, v is the measure induced by the Dan-
iell extension of 1%, so proposition 9 applies to the pre-integral I’ and
the measure v. An application of the same yields that ¢ is an exten-
sion of v for the following reason: Suppose C € 4. Since yo € L' =
(LZ)' and ¢ on Z is standard, it is clear that C is a subset of a
member D of Z. Applying proposition 9 to the members C and D\ C
of € we find sets F < C and G <« D\ C in 2 so that v(C\F) = 0 and
v((D\C)\G) = 0. Thus C is sandwiched between the members F and
D\G of &, 6(F) = v(C) = 6(D\ G), and ¢ is a complete measure. Con-
sequently Ce 2. R

12 CoOROLLARY Each Lebesgue—Stieltjes measure v for R is the stan-
dardized completion of the Borel measure v| #°(R).

In particular, Lebesgue measure for R is the standardized completion
of Borel—Lebesgue measure.

13 Notes (i) Lebesgue measure A' on & is the measure induced by
the Daniell extension of I/, where ¢ is the length, so A! is the minimal



50 CHAPTER 4: INTEGRAL TO MEASURE

complete standardized measure that extends /. The family £, , consist-
ing of all countable unions of members of %, is the smallest ¢-ring
(a ring closed under countable unions) containing %, and Classical
Lebesgue measure is the extension of A! to £, given by assigning
infinite measure to members of ¥, \ #. The ¢-ring .%, is in fact a o-field
(closed under complements and countable unions), and its members are
called Lebesgue measurable sets. Similarly, the members of the smallest
o-field (#°(R)), containing #°(R) are called Borel measurable.

(it) There are translation invariant measures on o-fields for R which
are extensions of classical Lebesgue measure (see S. Kakutani and J. C.
Oxtoby, Ann. of Math. 52 (1950) 580-590). But there is no measure
extending Lebesgue measure which is defined for all subsets of R, even
without the requirement of translation invariance. However Banach
showed that there are non-negative finitely additive extensions of
Lebesgue measure which are defined for all subsets of R, which are
invariant under rigid motions (Fund. Math. 4 (1923), 7-33).

(i11) Borel—Lebesgue measure A, for R” can be defined by imitating
the construction in R (see Supplement) or by recursively setting A, ,,
equal to the product measure A, ® A as soon as we have defined prod-
uct measure (chapter 7). Then Lebesgue measure A” is the standard-
ized completion of A,. It is translation invariant (and invariant under
all rigid motions) for each n. There are finitely additive extensions,
invariant under rigid motions, of A2 to the family of all subsets of
R? (see Banach, loc. cit.). But for n = 3, such extensions of A" do not
exist (see Banach and Tarski, Fund. Math. 6 (1924), 244-277; see also
J. Rosenblatt, Trans. Amer. Math. Soc. 265 (1981), 623-636).

(iv) The measure A" is the unique measure on its domain, up to
constant multiple, that is invariant under rigid motions. In fact (G. A.
Margulis, Monatsh. Math. 90 (1980), 233-235 and preprint 1981;
D. Sullivan, Bull. Amer. Math. Soc. (N.S.) 4 (1981), 121-123) for n = 3,
there is no finitely additive non-negative function on the family of
Lebesgue measurable sets in R”, other than a multiple of Lebesgue
measure, which is invariant under rigid motions. The conclusion
extends to R? provided we require invariance under the shear trans-
formation: (x,,x,)— (x; + x,,x,), as well as invariance under rigid
motions (S. Wagon, Proc. Amer. Math. Soc. 85 (1982), 353-359).

SUPPLEMENT: LEBESGUE MEASURE A" FOR R"

Lebesgue measure for R", n > 1, is the natural generalization of Lebes-
gue measure for R. Recall that a closed interval in R" is the Car-
tesian product X7_; 4; of closed intervals {4;}{_, in R and its volume
(X121 Ay) is [ ]2y £(A)), the product of the lengths of its sides. The
volume function 4, on the class #, of closed intervals induces, accord-
ing to proposition 2.10, a pre-integral I" on the class of #, simple
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functions by the prescription: I"(} ¥_, a;x4,) = Y f~y a;A,(4;) for a;in R
and A;in ¢,,i =1, 2, ... k. The Lebesgue integral for R" is the Daniell
extension of I" and Lebesgue measure for R", A* on #”, is the measure
induced by the Lebesgue integral.

The characteristic function of each closed interval in R" belongs
to the domain of the Lebesgue integral, and consequently the -ring
#°(R") generated by the family of closed intervals is a subfamily of .#".
Borel-Lebesgue measure A, for R" is A"|%°(R"). We list, omitting the
proofs, some straightforward generalizations of the facts about Lebes-
gue measure Al

Recall that the iterated Riemann integral on C.(R") is a pre-integral
according to proposition 2.11.

14 PROPOSITION Borel— Lebesgue measure A, is the minimal measure
that is an extension of the volume function, A" is the standardized com-
pletion of A,, and both A, and A" are translation invariant.

The Daniell extension of the iterated Riemann integral on C.(R") is
identical with the Lebesgue integral.

Each member of " has compact inner and open outer approximations,
so both A" and A, are regular measures.

Classical Lebesgue measure for R” is the extension of A" to the g-ring
&) generated by ", given by assigning infinite measure to members of
LI\ &L", and the members of £ are called Lebesgue measurable sets.

SUPPLEMENT: MEASURES ON #°(X)

Let us suppose that X is a locally compact Hausdorff space and agree
that #8°(X) is the d-ring generated by the family € of compact subsets
of X. We recall that a content A for X is a non-negative, real valued,
monotonic, additive and subadditive function on ¢, and that a content
A is regular iff A(C) = inf {A(D): D a compact neighborhood of C}.

Each regular content 4 is exact (proposition 1.9), hence it is an exact
pre-measure, and corollary 7 then asserts that there is a unique Borel
measure u (that is, a measure on #°(X)) that extends 4. The measure p
is minimal (i.e., each measure that extends A also extends p).

15 THEOREM Each regular content A for X can be extended to a
unique Borel measure u, and every measure that extends 2 also extends p.

Moreover, the measure u is regular, and if B € #°(X) there is D in €,
such that D = B and u(B\ D) = 0.

The last assertion of the theorem’s statement is a direct consequence
of proposition 9. We use the term regular for a measure u on a family
of subsets of X to mean both inner regular (inner y approximations by
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compacta) and outer regular (outer u approximations by open sets).
An inner regular measure u on %£°(X) is automatically outer regular
because: if B € #°(X), V is an open member of %4°(X) that contains B
and K is a compact set that is a good inner g approximation to V\ B,
then V\ K is an open set that is a good outer u approximation for B.

There are Borel measures that are not regular—an example is not
hard to describe. Let X be the set of all ordinal numbers less than or
equal to the first uncountable ordinal Q, and let X have the order
topology (the family of sets of the form {x: a < x < b} foraand b in X,
is a base). Then X is a compact Hausdorff space. The space X\ {Q}
has the curious property: any two closed uncountable subsets of X\
{Q} intersect and the intersection is a closed uncountable set (see the
interlacing lemma [K] p. 131). Moreover, the intersection of a decreas-
ing sequence {F,}, of closed uncountable subsets of X\ {Q} is a set of
the same kind because: for each § < Q there is «, in F, with o, > f so
{a,} has a cluster point y = f and y € ﬂ,, F,. For B in #°(X), define
u(B) = 1iff B contains a closed uncountable subset of X\ {Q}, and let
u(B)Y = 0 otherwise. Since there are not two disjoint members of %°(X)
at which g is non-zero, u is additive. If {4,}, is decreasing and
u(A,} =1 for each n, then u((),4,) =1, and it follows that u is a
measure. It is not regular since p(X\{Q}) = 1 but u vanishes at each
compact subset of the open set X \ {Q}. For each a in X the sets X, =
{x:a < x} are compact and (), X, = {Q}. Evidently u(X,)=1 for
a < Qand u{Q} = 0. Consequently the set {Q} has no outer approxi-
mation by open sets, u is not hypercontinuous on the family 4 of
compact sets and u| ¥ is a content which is not regular.

SUPPLEMENT: G INVARIANT MEASURES

Let us suppose that G is a group, that a locally compact Hausdorff
space X is a left G space, and that for each a in G the map x> ax is a
homeomorphism of X onto itself. The action of G is transitive iff for x
and y in X there is a in G so ax = y, and the action is semi-rigid iff for
disjoint compact subsets 4 and B of X and for x in X, there is a
neighborhood V of x so no set of the form aV intersects both A and B.

Theorem 1.12 asserts that if the action of G is transitive and semi-
rigid then there is a G invariant regular content A for X that is not
identically zero. We leave to the reader (consider theorem 6) the verifi-
cation of the fact that the unique Borel measure p that extends 4 is also
G invariant (explicitly, if B € #°(X) and a € G then aB € #°(X) and
w(B) = u(aB)). Thus:

16 THEOREM If a group G acts on a locally compact Hausdorff space
X by homeomorphisms, and if the action is transitive and semi-rigid, then
there is a G invariant Borel measure for X that is not identically zero.
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According to proposition 1.13, the action by left translation of a
locally compact topological Hausdorff group upon itself is semi-rigid.
Consequently there is a regular Borel measure #, not identically zero,
that is left invariant in the sense that #(xB) = n(B) for all B in #°(X)
and x in X. Thus:

17 CoROLLARY (EXISTENCE OF HAAR MEASURE) There is a regular
left invariant Borel measure, not identically zero, for each locally com-
pact Hausdorff topological group.

Such a left invariant measure 7 is called a left Haar measure. A right
invariant Haar measure is a regular Borel measure p not identically
zero, such that p(Bx) = p(B) for x in X and B in #°(X). If n is a left
Haar measure and we set p(E) = n(E~!) then p is a right Haar measure,
the right Haar measure corresponding to 7.



Chapter 5

MEASURABILITY AND ¢-SIMPLICITY

We need further information on the structure of integrable functions if
our theory of integration is to be conveniently usable. For example, if J
on M is the Daniell extension of the pre-integral induced by a length
function, must every continuous function with compact support belong
to M ? The answer is not self-evident, although it had certainly better be
“yes”! We shall presently find criteria for integrability involving a set
theoretic (measurability) requirement, and a magnitude requirement.

Measurable functions play the role in the theory of measure and
integration that is played by continuous functions in general topology.
We try to emphasize the similarities. After a couple of preliminary
results we define a borel space— the analogue of a topological space—
and establish a few general propositions about measurable maps. These
are then applied to the class of measurable real valued functions.

A o-ring is a ring ./ of sets that is closed under countable union; i.e.,
if {4, }, is a sequence in .« then { J, 4, € . Each o-ring ./ is a d-ring,
in view of the identity: if X = [ J, 4,, then (), 4, = X\(X\ (). 4,) =
X\ Jn(X\ 4,). On the other hand, the family of finite subsets of any
infinite set and the family of bounded subsets of R are J-rings that are
not o-rings.

Recall that a field of sets for X is a ring .o/ such that X = | J,. ., 4
and X € . A o-field, or o-algebra, or borel field, is a field that is closed
under countable union or, equivalently, closed under countable inter-
section. The family of all subsets 4 of R such that 4 or R\ 4 is count-
able is a g-field for R.

The o-ring generated by a family .« of sets is the smallest g-ring &
containing .o/. Explicitly, & = {S:S belongs to each o-ring % that con-
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tains o/ }. The o-field generated by o/ is, similarly, the smallest o-field
containing .«/.

Here are some useful elementary facts about generated families. We
agree that for each family .7, the family </, = {E:E = | J, 4, for some
{A,},in o},

1 PROPOSITION Suppose </ is a non-empty family of subsets of X and
that 2, and F are respectively the §-ring, the a-ring and the a-field for
X generated by /. Then

(i) each member of 2 (of &) can be covered by finitely (countably,
respectively) many members of </
(i1) each member of % (of &) belongs to the 6-ring (o-ring, respec-
tively) generated by a countable subfamily of </, and
(i) & = D,, D, is identical with the family of all unions of countable
disjoint subfamilies of 9, and F € % iff either F or X \ F belongs to
&,

PROOF We prove only three of the assertions, leaving other similar
proofs to the reader.

Let # = {B: there is a sequence {A,}, in o with B< | ), A,}. One
verifies without difficulty that & is a o-ring and evidently o/ < 4.
Hence 4 contains the smallest o-ring % that contains «/, so if S € &
then S € #. Thus each member of ¥ can be covered by countably many
members of 7.

Let & = {E: there is a countable subfamily <f; of &/ such that E
belongs to the 6-ring generated by </ }. If {E,}, is a sequence in &, then
. g is a countable subfamily of ./, the S-ring ¥ generated by
\Jn g contains E, for each n and hence (N E. € % < &. 1t follows that
2 < &, so each member of 2 belongs to the §-ring generated by a
countable subfamily of ./

Since & is a d-ring, 2 <= &, and so the union of countably many
members of & belongs to &. Let % = {|),D,:{D,}, is a disjoint
sequence in 9}. Then 2 < % = %, and we need only show that % is
a g-ring to conclude that % = &. The union | J, E, of the members
of a sequence {E,}, is also the union of the members of the disjoint
sequence {D,}, where D, = E,\| )<, E,. Consequently % = 2, and is
therefore closed under countable union. It remains to show that % is
closed under difference. If {4,,}, and {B,}, are in & then (J, A,\
UnBo = Un (4 \Un B) = Un (1a(4,\B,) and (), (4,\B,) € @ for

each m, and it follows that % is closed under difference. W

One of the devices used in the preceding proof is worth noticing. If
{A,}, is a sequence of sets, the disjointing process yields a disjoint
sequence {B,},, where B, = 4,\ ( Ji<, Ay, such that | J, 4, = | J, B, and
Urey 4, = U, B, for each m.
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The most important o-field is the Borel field of R, denoted Z(R). It is
defined to be the ¢-field for R that is generated by the family of all open
subsets of R. It is also the o-field generated by the closed sets, or the
compact sets, or the closed intervals [a: b], or the open intervals or by
#°(R). The Borel field of R is also the o-ring generated by any one of
these families of sets— this g-ring is, in fact, a o-field.

The Borel field 8(R*) of R*, the extended set of real numbers, is the
o-field generated by the family of all open subsets of R*. Of course there
are other descriptions of #(R*) and #(R). For example, A € Z(R*) iff
AN R e B(R), and #(R) = (#°(R)),, the family of countable unions of
members of the Borel d-ring (the d-ring generated by the compact sets).

Here is a description of #(R) and of #(R*) that we will need pre-
sently.

2 LeMMA The Borel field #(R) is the o-field generated by sets of the
Sform (—cc :7) with r rational (or alternatively, of the form (— oo :r], or
(r:00), or [r: x)).

The Borel field #(R*) is similarly generated by sets [—oc:r) (or
[—oo:ir],or(r:o0], or [r:o0]).

PROOF We prove only that the o-ring «/ generated by {(—oc0:r):r
rational } generates the Borel field 4(R) of R, leaving the remaining
arguments to the reader. First, R = | ) {(—oo:r):r rational} so R € o
and hence R\ (— oo :r) = [r: o0) € o for each rational r. Then (s: c0) =
) {[r:o0):r rational and r > s} € o/ for every s. Hence each open
interval (s:r), with » and s rational, belongs to .7, and since each open
set is the union of countably many such intervals, each open set belongs
to .o/. Consequently &/ contains the Borel field #(R), and since 7 is
generated by a subfamily of Z(R), o « Z(R)so o = Z(R). N

A borel space is an ordered pair (X, /) such that .« is a g-field of sets
for X (in particular, X = | J,. .~ 4). The members of .o/ are .o/ measur-
able, or .o/ borel measurable, or if confusion is unlikely, just measurable
or borel.

A function f on X to Y is o/ — 98 measurable or o/ — 2 borel mea-
surable iff .o/ is a o-field for X, # is a o-field for Y, and f "![B] € </ for
each member B of 4.

The elementary properties of measurability all follow from three
simple remarks, each a precise analogue in statement and proof of a
result about continuous functions.

3 PROPOSITION Suppose (X, o), (Y,%B) and (Z,%) are borel spaces,
f:X—>Yandg: Y > Z.

(i) The family 2 = {E:f7'[E] € o/} is a o-field and f is o — B
measurable iff # < 2.
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(ii) The family 7 = { f "'[B]: Be #} is a o-field and f is o — B
measurable iff of > T .

() If [ is o/ — 9B measurable and g is B — € measurable, then g o f is
of — € measurable.

Thus 2 is the largest o-field for Y that makes f &/ — 2 measurable,
and 7 is the smallest o-field for X that makes f 9 — % measurable.

Here is a particular case of part (i) of the preceding proposition.
Suppose f'[G] € o for all members G of a family 4 of sets that
generates 4. Then ¥4, and hence 4, are subfamilies of 2, and so f is
o/ — % measurable. For example, if f is a continuous real valued func-
tion on R then f ![V] is open for each set V, and such open sets
V generate the Borel o-field #(R), so f is Z(R) — #(R) measurable.
If f: R" —» R", and the Borel o-field 2 (R") is defined to be the o-field
that is generated by the family of open subsets of R”, then the same
argument shows that f is Z(R™) — #(R") measurable provided f is
continuous.

4 CoroLLARY If f7'[G] e o for all members G of a family 4 that
generates B, then [ is of — B measurable.

In particular, a continuous function f: R™ —» R" is Z(R™) — #(R")
measurable, and f: X — R* is o — B(R*) measurable iff {x: f(x) >
r} € o for each rational number r (alternatively, f(x) 2 r, f(x) <r, or

fx) = 7).

PROOF The last statement follows from the fact (lemma 2) that Z(R*)
is generated by each of the families of sets {x:x >r}, {x:x2=r},
{x:x <r}and {x: x < r}, forr rational. W

Suppose that (X, .o7) is a borel space and that W is a subset of X. The
relativization of o/ to W, o/ ||W,is {AnW:A e o/}. The family o/ |W
is a o-field for W, and in fact, .o/ || W is the smallest o-field that makes
the identity map, i: W - X, o | W — o/ measurable (see proposition 1,
part (ii), and note that i "' [A4] = A n W for A = X). An example: #(R)
is the relativization of #(R*) and the identity i: R - R* is #(R) —
2 (R*) measurable.

The standard method of constructing a og-field for X x Y from o-
fields &/ for X and # for Y, is based on making the two projec-
tions measurable. Suppose P;(x,y) = x and P,(x,y) =y for all (x,y)
in X x Y. A o-field € for X x Y makes P, a ¥ — .o/ measurable func-
tion if ¥ > {P,7'[A]:A€e o} ={A x Y:Ae o} and similarly, P,
is € — # measurable if ¥ > {X x B:B e #}. Consequently the small-
est o-field that makes both projections measurable is generated by
{AxY:Ae o} U{X x B:Be £}, or by all “rectangles” 4 x B with
A in &/ and B in #. The product borel space of (X,.«/) and (Y, #) is



58 CHAPTER 5: MEASURABILITY AND o-SIMPLICITY

(X x Y, & ® #) where of ® A is the o-field generated by the family
{A x B:A € o/ and B € #} of “rectangles”. (Notice that &/ ® £ is also
the §-ring generated by the family of rectangles.)

Here are the properties of &/ ® # that we will need.

5 ProvrosiTiON If (X, .o/) and (Y, B) are borel spaces, then

(i) the product o-field o/ ® A is the smallest that makes the projec-
tions Pi: X x Y > X and P,: X x Y - Y measurable,
(i1) Z(R) ® #(R) is the Borel o-field #(R?), and
(iiiy if (Z,%€) is a borel spaceand f: Z - X x Y, then fis€ — oA @ #
measurable iff P, o f and P, o f are respectively, € — of and € —
A measurable.

PROOF Part (i) has already been established.

The projections P;: R x R— R and P,: R x R — R are continuous
and hence #(R?) — %#(R) measurable, so by part (i), Z(R?) > Z(R) ®
% (R). On the other hand, #(R?) is generated not only by the family of
open sets, but also by the family of rectangles 4 x B with 4 and B
open. But such sets 4 x B belong to Z(R) ® #(R) so #(R?) c #(R) ®
2 (R), and part (i) follows.

We know that o/ ® 4 is generated by {A x Y:4 e o} u{X x B:
Be %}, so [:Z— X x Y is measurable iff f7![4 x Y]e % and
fU[XxB]le¥ for A in & and B in #. But f'[Ax Y] =
(P, o f)*[A] and f '[X x B] = (P, o f)"'[B]. Consequently f is
€ — o ® # measurable iff P, o f is ¥ — &/ measureable and P, o f is
% — % measurable. This is the assertion of part (iii). W

For the remainder of the section, we shall be concerned primarily
with real* valued functions and we agree for convenience that a func-
tion f on X is .o/ measurable iff / is R* valued on X, o/ is a o-field for
X and fis o — #(R*) measurable.

We deduce from the measurability of one or two functions on X,
the measurability of many others by using the composition property
(proposition 3, part (iii)).

6 THEOREM If h and k are o/ measurable real valued functions on X,
then each of the following is o/ measurable: any constant function,
h+k hk,hvk hnak hAl1/hif his non-vanishing, and | h|? for each
positive number p.

PROOF Let [h, k] (x) = (h(x), k(x)) for all x in X. Then [h, k] is o —
2 (R?) measurable (proposition 5 part (iii}). For (a,b) in R?, let
+(a,b)=a + b, T(a,b) = ab, \/(a,b) =av b and /\(a,b) =a A b.
Each of the four functions +, T, \/ and /\ is continuous on R? to R!,
hence #(R?) — % (R) measurable, and so we infer by composition that
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+ o[hkl=h+k, Tol[hk]l=hk \/o[hkl=hvk N ol[hk]l=
hAkand A\ o[h1]=hAa1 are & measurable. Finally, r—|r|? is
continuous and hence #(R) — #(R) measurable, and if i(r) = I |r for
r # 0 and i(0) = 1 then a direct verification shows that i is Z(R) —
2 (R) measurable. If follows that |h}? and, for h non-vanishing, 1/h, are
o/ measurable. B

Each assertion of the preceding theorem remains correct if “mea-
surable” is replaced everywhere by “continuous”. No assertion of the
following theorem has that property. We recall that if { f,}, is a se-
quence of real* valued functions then inf, f, is the function whose
value at any point x is inf, { f,(x)}. That is, (inf, f,)(x) = inf, f,(x).
Similarly (sup, f,) (x) = sup, f,(x), (liminf, f,)(x) = liminf, f,(x) and
(lim sup, f,)(x) = lim sup, f,(x).

7 THeoREM If {f,}, is a sequence of real* valued </ measurable func-
tions then inf, f,, sup, f,, iminf, f, and lim sup, f, are all &/ measurable.
In particular, if { f,}, converges pointwise to f then f is o/ measurable.

PROOF We first show that for each real number a the set {x:
inf, f,(x) < a} is measurable. This is true because {x: inf, f,(x) < a} =
{x: f,(x) < a for some non-negative integer n} and this is the union of
the sets {x: f,(x) < a} as n runs over the non-negative integers. Each
of these sets is measurable because f, is measurable for each n, and
hence their union is measurable. Consequently inf, f, is a measurable
function.

Since sup, f, = —inf,(—f,), sup, f, is also measurable. We can see
that lim inf, f, is measurable by noticing that lim inf, f, = sup, (inf,. , f,)
and for each n the function inf,. , f, is measurable. Finally, lim sup, f, =

—liminf,(—f,). W

It will be convenient to represent an .o/ measurable function as a
countable linear combination of characteristic functions of members of
. A real* valued function f on X is &/ e-simple iff .o is a family of
subsets of X and f =}, a,x, for some sequences {a,}, in Rand {4,},
in .o/ (explicitly, {a,x, (x)}, is supposed to be summable* to f(x) for
each x in X). The function f is ./ a*-simple iff the sequence of coeffi-
cients can be taken to be non-negative. Every function f is .« g-simple
for some family 7, as we now show.

For each ¢t in [0:o0] let D(t) be the “ones digit” in the (termi-
nating if possible) dyadic representation of ¢t and let D(t) = 0 for t
in [—00:0]. Then D=3}, nXizn-1.2m + Xfw)- If 1€[0:00], then
the k-th digit in the dyadic representation of ¢ is D(27%r) and
t=Y,c22"D(@27%1). It follows that if f: X — R* then f*(x)=
Y ncaxr,(f(x)) for suitable sequences {c,}, and {F,},, where each c, is
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positive and each F, is of the form [a:b) with 0 < a < b, or F, = {o0}.
Lastly we notice that yz( f(x)) = x;-1p;(X).

For each function f on X to R* let %, consist of { f ~'[c0]} and all
sets f'[a:b) with 0 <a < b, and let %, consist of { f '[c0]} and
sets f "Y(a:b], 0 < a < b. The preceding paragraph shows that f* is
F, 6" -simple, and a similar argument (but use non-terminating dyadic
expansions) shows f* is 4, ¢ -simple. Thus:

8 REPRESENTATION LEMMA If f is a real* valued function, then f+ is
both #; and 4, o* -simple, and f is both &, and ¥, a-simple.

Consequently, if </ is a o-field, then a real* valued function f is </
a-simple iff it is of measurable.

There is also a measure theoretic characterization of the ./ o-simple
functions when .o/ is a oé-ring. A set B is locally &/ measurable iff
A N B € o/ for each member A4 of /. It is straightforward to verify that
the family £ .o/ (X) (or simply £ ./} of locally .« measurable subsets of
X is a o-field for X. A real* valued function f on X is locally o/
measurable iff it is .o/ measurable. Each &/ g-simple function is ¥/
g-simple and therefore #.o/ measurable, but in addition: each such
function vanishes outside the union of some countable subfamily of .«7.

A set S is a support of a function f iff f vanishes outside S. We recall
that for each family .o/ of sets, 7, i1s the family of all unions of count-
ably many members of .« and that if .o/ is a §-ring then &/, is the o-ring
generated by ./, according to proposition 1.

9 THEOREM ON o/ ¢-SIMPLICITY If < is a 3-ring of subsets of X, then
a real* valued function f is of o-simple iff it is & .o/ measurable and has
a support in of,, or iff f "1[B] € <, for each B in #(R*) with0 ¢ B.

If f is non-negative and o/ c-simple, then it is of ¢*-simple.

PROOF  Suppose f is o/ o-simple, say f =) ,a,x4,. Then each y, is
% .o/ measurable, so f is the pointwise limit of a sequence of ¥/
measurable functions and is therefore ./ measurable. Evidently
{Jn A4, € o, and is a support for f.

On the other hand, suppose f is £/ measurable and has a support
(Um A, with each A4,, a member of .«/. We may suppose {4,,} disjoint.
According to lemma 8, f =Y, b,y for some sequence {B,}, in £/
and some {b,},, with b, > 0if f = 0. Then 4,,~ B, € o/ for allmand n
because A, € &/ and B,e Lo, and [ =Y, ,b.x4, s, is required
representation of f.

Suppose f is Z.&/ measurable with support ( J, 4, for some {4,},
in o7, and that 0 ¢ B € Z(R*). Then f "![B] € ¥« and, since 0 ¢ B,
S7'[Bl © JaA,. Thus f'[B] = (4, f7'[B]), A, f'[B] is
in & for each n,and so f "1[B] € «,.
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If f~'[B] € «, for each B in #(R*) with 0 ¢ B, then f'[B] € &,
for sets B of each of the forms: [a:b)or (—b: —a]withO <a < b < o0,
{oo} or {—0}. Hence, by the representation lemma 8, f is ./, g-simple
or, if f 20, &/, ¢ -simple. But each member of <7, is the union of
a disjoint sequence in ./, and so f is ./ o-simple and, if f =0,
o ¢*-simple. W

We saw in chapter 4 that each integral induces a measure. We will
show, after a lemma, that each pre-integral I induces pre-measure that
completely determines the minimal integral extension of 1.

10 Lemma If f: X > R* and ae R, then {n(f na— f A(a—n"1))},
is a decreasing sequence that converges pointwise to .. rix)za), and
{n(f A(a+n"t)— f A a)},is increasing and converges to X{x:f(x)>a) -

PROOF For each x, n(f(x) A a— f(x) A(a—n"")) is 0 for f(x) £
a—nt 1for f(x) 2 a, and is n(f(x) —(a—n"'))=1—n(a - f(x))
fora—n"' < f(x) £ a. It follows that {n(f A a— f A (a—n""))},is
a decreasing sequence converging pointwise t0 (x.rx=a)- A similar
calculation shows that {n(f A (a+n™')— f A a)}, is increasing and
converges pointwise to x(,.rx)>qo- M

Suppose that J is an integral on M that extends a pre-integral [ on L,
that feL and 4= {x: f(x)=1}. Let go(4A)=Ilim, I(n(f A 1l—
fAald—=—n))=Ilim,J(n(f A1 —f A (1 —n"1))). Since J is an inte-
gral on M, lemma 10 implies that y, € M and the limit is J(y,), so
po(A) = J(x4) for all 4 in the family & of sets of the form {x: f(x) = 1}
for f e L. Thus yu, agrees with the measure induced by J for all 4 in the
lattice &, and so yu, is a pre-measure, the pre-measure induced by the
pre-integral I. Then p, induces a unique measure u on the trunca-
tion S-ring of L, the J-ring & generated by %, and u is called: the
measure induced by I. This agrees with the earlier definition of measure
induced by an integral because: if I is itself an integral on L, then
F ={A: y, € L} which is a é-ring, so the truncation §-ring J coin-
cides with # and u(A4) = py(A) = I(yx,) for A in 7. Each (non-negative)
member of L is J a-simple (7 o*-simple, respectively) because of
the representation lemma 8. If I is an integral, a pointwise sum
f=Yn.a,24,, with {a,}, in R* and {A4,}, in 7, belongs to L iff
Y .a,u(A,) < oo, and in this case I(f)=) ,a,u(A4,) by the Levi
property.

We have proved:

11 THEOREM If anintegral J on M is an extension of a pre-integral I
on L, then the measure induced by J extends the measure u induced by 1
on the truncation 6-ring 7 of L.
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If Lis itself an integral, then f € Liff f(x) =), a,x4,(x) for all x, for
some {a,}, in Rand {A,},in T such thaty ,|a,|p(A,) < oo, and in this

case 1(f) = ¥, a,u(A,).

The foregoing characterization of L and I suggests a direct construc-
tion of an integral from a measure. We examine this construction in
detail in the next chapter.

Finally, let us suppose that I is a pre-integral on L and 7 is its
truncation d-ring, and let L,, the Baire family of L, be { f: fis real
valued and 7 o-simple}. In view of theorem 9, L, is a vector function
lattice with truncation and is closed under pointwise sequential con-
vergence. It follows from the definition of integral, that if I' on L' is the
Daniell extensionof Ion L, L; = L' nL,and |y = I'|L,, then I, is an
integral. In view of theorem 11, every integral J on M that extends I
also extends I, . Thus

12 CoROLLARY Each pre-integral I on L has a minimal integral exten-
sion I, = I'|L' n L,; that is, every integral extension of I is an exten-
sion of 1.

The minimal extension of a pre-integral is generally not null com-
plete. We have seen (proposition 3.7) that the smallest null complete
integral extension of a pre-integral is its Daniell extension.

SUPPLEMENT: STANDARD BOREL SPACES

A Polish space is a topological space that is homeomorphic to a
complete metric separable space X, and its Borel field #(X) is the
a-field generated by the family of open sets. We will show that any two
uncountable Polish spaces X and Y are Borel isomorphic (that is, there
is a one to one map F of X onto Y such that F is #(X) — #(Y ) measur-
able and F~!is #(Y) — #(X) measurable). A slightly stronger result is
true if X has no isolated points. In this case, there is a continuous Borel
isomorphism F of the space N® of all sequences of positive integers
onto X, where N has the discrete topology and N® has the product
topology.

We assume throughout that X is a complete metric separable space.
A point x is a condensation point of a subset B of X iff each neighbor-
hood of x contains uncountably many points of B, and B is condensed
iff each member of B is a point of condensation of B. (If B is closed in X
then it is condensed iff it has no isolated points, but we shall not need
this fact.) The set of all condensation points of X is a condensed subset
of X.

Let us agree that a set is convenient iff it is non-empty, closed and
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condensed, and that a convenient cover for a set B is a sequence {4,},
of convenient sets such that A,,,\ 4, # & forallnand B = | J, 4,.

13 LemMA If B is open in a convenient subset A of X, B # (J and
e > 0, then there is a convenient cover {A,}, of B consisting of sets of
diameter less than e.

PROOF For each x in B there is an open neighborhood V of x in 4 of
diameter less than ¢ whose closure V'~ is a subset of B, so V™ is a
convenient neighborhood of x of diameter less than e. The set B can be
covered by a sequence of such convenient subsets, and after discarding
each member of the sequence that is covered by its predecessors, we
have either a convenient cover as desired, or a finite sequence covering
B,say A,, A,, ... A,. Since dia A, < e, the proof of the lemma reduces
to showing that 4,\ | Jy<, 4, has a convenient cover. In other words,
we need only show that if B is an open non-void subset of a convenient
set 4 then B has a convenient cover.

Suppose 4 is a convenient set, C is a closed subset and B = A\ C #
. If A, is the closure of {x: dist(x, C) > 1/n} then A, is a convenient
setand B = | J, 4,. If we omit repetitions from the sequence 4, 4,, ...
A,, ... then the result is either a convenient cover for B or a finite
sequence. In case of the latter, B = A, for some n, and the proof reduces
to showing that a convenient set B has a convenient cover.

Suppose then that B is a convenient set, x, € B and that {x,}, is a
one to one sequence in B\ {x, } that converges to x,. Choose a disjoint
sequence {4,}, such that lim,(dia A4,) = 0 and A, is the closure of an
open neighborhood in B of x, for each n. Then C = {xo} U [ J, A2, is
closed, B\ C is open, and since x,,.,; € B\ C for all n, x, belongs to
the closure (B\ C)~ of B\ C. Hence the sequence (B\C)™, A4,, Ay, ...,
A,,,...1s a convenient cover for B. W

14 THEOREM If every member of a Polish space X is a point of con-
densation, then there is a continuous one to one map F of N* onto X such
that F~' is Borel measurable.

PROOF Let {A(n)}, be a convenient cover of X by sets of diameter less
than one and let B(n) = A(n)\ | J,<, A(k) for each n. Then {B(n)}, is a
disjoint cover of X. Let {A(n, p)}, be a convenient cover of B(n) by sets
of diameter less than § and let B(n,p) = A(n, p)\ | J,<, A(n, g). Recur-
sively, for each finite sequence ny, ..., n, in N, let {4(ny,...,n,p)},
be a convenient cover of B(n,,...,n,) by sets of diameter less than
1/(k + 1), and let B(ny,...,n,p)= Any,...,0, P\ Ug<p,A(ny,...,
My, q)

Then for all n,, ..., n, and p, B(n,,...,n,p) < A(ny,...,n,p) <
B(ny,...,m) < A(ny,...,n), {B(ny,...,n,q)}, is a disjoint cover
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of B(n,,...,n,), and A(n,,...,n,) has diameter less then 1/k.
Consequently, for each member v = {v,}, of N*, [, B(v{,..., )=
(Ve A(vy,..., %), and since {A(v;,...,v )}, is a decreasing sequence of
closed sets whose diameters tend to zero, this intersection consists of a
single point of X. We define F(v) to be this point.

If v and # are members of N that agree for the first k coordi-
nates, then dist(F(v), F(n)) < 1/k because both F(v) and F(n) belong to
AWy,...,v)=AM;,...,n.). Consequently F is continuous and so is a
Borel mapping.

The family {B(n)}, is a disjoint cover of X, {B(n,...,n,p)}, is dis-

joint cover of B(n,...,n,) for all n,, ..., n,, and hence for each g the
family of all sets B(n,, ..., n,) is a disjoint cover of X. A member x of X
is then F(v) where v is the unique sequence such that x € B(v;,...,v,)

for each ¢, and so F is a one to one map of N* onto X.

Finally, the set V(n,,...,n) = {v:iv,=n;, for i=1,...,k} is open
in N*, the family of such sets is a base for the topology of N® and
F[V(ny,...,n)] is the Borel set B(n,,...,n,). Hence F~' is Borel
measurable. W

If Z is a closed subset of a complete metric space Y and f(y) =
1/dist(y, Z) for y in Y\ Z, then the graph of f, which is homeomorphic
to Y\ Z, is a closed subset of Y x R and is hence complete. If {Z,}, is
a sequence of closed subsets of Y and ( f(y)), = 1/dist(y, Z,) for each n
and each y in Y\ J, Z,, then the graph of f: Y\ U,, Z,— R*is a closed
and hence complete subset of Y x R®. In particular, if D is a countable
subset of a condensed Polish space X, then X\ D is Polish and con-
densed, hence Borel isomorphic to N*, and consequently X is Borel
isomorphic to X\ D.

Finally, suppose that Y is an uncountable Polish space, X is the set
of its points of condensation, E is the countable set Y\ X, f is a one to
one map of E onto a subset D of X and g is a Borel isomorphism of X
onto X\ D. Then the map that agrees with f on E and with g on X
is a Borel isomorphism of Y onto X. Theorem 14 then establishes the
following.

15 THEOREM Every uncountable Polish space is Borel isomorphic to
N>,

A borel space (X, <) that is Borel isomorphic to (N®, Z(N%)) is
called a standard borel space.

16 Notes See Kuratowski [1] and Engelking [1], for example, for
further information in this direction. The construction given for the
proof of theorem 14 is a variant of a method due to Souslin.

For a lucid, well organized account of some of the most important
results on standard borel spaces see W. Arvesen, An Invitation to
C*-Algebras, Springer-Verlag, New York, 1976.



Chapter 6

THE INTEGRAL I, ON L, (u)

This section is devoted to the construction of an integral I, from a
measure p, to the relationships between p and I, (especially for Borel
measures u for R), and to a brief consideration of the vector spaces
L,(u),1 £ p = oo, associated with p.

There is no difficulty in obtaining an integral from a measure. If u is
a measure on a J-ring & of subsets of X, L is the class of &/ simple
functions on X and I* is the linear functional on L such that I*(y,) =
u(A) for all 4 in o/, then p is also a pre-measure and therefore, ac-
cording to theorem 2.7, I* is a pre-integral. Hence, by theorem 3.4, the
Daniell extension of I* is an integral. Thus I* has an integral extension,
and I,, the integral w.r.t. u, is to be the minimal extension of I*.

The construction just outlined for I, is not efficient—it fails to use
the fact that u is supposed to be a measure, not just a pre-measure. We
give a direct construction for I, and a simple proof that I, is an integral.

A real valued funcion f is g integrable and f € L;(x) (or L, (X, </, )
or L,(X,p)) iff there are sequences {4,}, in ./ and {a,}, in R such
that )", {a,|u(A,) < oo and f(x) =Y ,a,x4,(x) for every x in X, and
in this case, I,(f) = Y, a,1(A4,). The definition of I,(f) is not ambigu-
ous, for the following reasons. The fundamental lemma 3.2 implies
that if f=Y, 8,0, 20 and Y, I*(a,x.]) = Y. la,l u(4,) < o,
then Y, I*(a,x4,) = > na,1(A,) 2 0. Consequently, if f =3  b,xs =
S v Cntess Yonlbal H(B,) < o0, and Y, [¢,| (C,) < oo, then ¥, b,u(B,) —
Y ncau(C,) = 0. The integral L,(f) of a u integrable function f is the
integral of fw.r.t. u, | fdu, or | f(x)dx.

The definition of L,(u) and I, can be rephrased in terms of the
sequence of partial sums s, = Y -y @; x,, in L which is swiftly conver-
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gent in the sense that Y, (s, — s,ll; = Y, I*[s,4; — s,/ is finite. A real
valued function f is u integrable iff it is the pointwise limit of a swiftly
convergent sequence {s, }, in L™, and in this case I,(f) is lim, I*(s,).

There is another useful description of u integrability of a non-
negative function f. If f is u integrable, then f =), a,7, with {a,},in
R, {4,},in o/ and ) ,|a,| u(A4,) < oo, whence Y, a," x,, and ), a,” 1,
are both u integrable. If f = 0 and integrable, then according to
theorem 5.9, f =) ,b,x5 for some {b,}, in R" and {B,}, in <,
and since ) , a," x4, — Y.n=1 buxp, = 0foreach N, o >3, a," u(4,) —

w1 b,u(B,). Consequently coc > Y, b,u(B,) = 1,(f). We infer: a func-
tion f is non-negative and p integrable iff there are sequences {b, }, in
R* and {B,}, in o/ so that f =) b,ys and ) ,b,u(B,) < o0, and in
this case 1,(f) =, b,u(B,).

The preceding description can be rephrased in terms of sequences: a
function f is non-negative and u integrable iff it is the pointwise limit
of an increasing sequence {s,}, of non-negative .« simple functions
such that lim, I*(s,) < oo, and in this case I,( f) = lim, I*(s,).

We use any of the foregoing descriptions of u integrable functions as
convenience dictates.

1 THEOREM (MEASURE TO INTEGRAL) If pis a measure on <, then I,
is an integral.

Moreover, if Jis an integral on M such that y, € M and J(y,) = u(A)
for all Ain o/, then J is an extension of I,.

PROOF Evidently I, is a positive linear functional on the vector space
L (p). If f is the pointwise limit of a swiftly convergent sequence {s,},
of .o/ simple functions, then | f| = lim,|s,| and 1 A f = lim,1 A s, are
also such limits, and hence L, (u) is a lattice with truncation.

Suppose that { f,}, is a sequence of non-negative members of L (p)
such that Y, 1/l =3, L(f,) < o and Y, f,(x) < oo for each x. Then
for each n there are sequences {a, .}, in R* and {4, .}, in & such
that f,(x) =Y 4 a,,x4, (%) for all x and L(f,) = Y, a, ,u(A,,), whence
an;l(x) = Zn.kan,kXAn.k(x) for all x and oo > Zn,kan,k‘u(An.k) =
Y . L(f,). Tt follows that Y, f, is u integrable and its p integral is
Y . 1,(f,). This establishes Levi’s property, and we conclude that I, is
an integral.

Suppose J is an integral on M, y, € M for all 4 in &/ and J(y,) =
u(A). Evidently J and I, agree on the class L of o/ simple functions.
Every non-negative member f of L, (u) is the pointwise limit of an in-
creasing sequence {s,}, in L and oo > I,(f) = lim, I(s,) = lim, J(s,).
Since J is an integral, feMand J(f) =1,(f) N

The integral with respect to g, I,, is the minimal integral extension of
the pre-integral I*, because every integral that extends I* is an exten-
sionof I,.
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We notice that if yz € L{(u), then yz =) ,a,x, witha, > 0and 4,
in o/ for each n, whence B = | J, 4,. Consequently B belongs to the
domain of the standardization of u. On the other hand each member C
in the domain of the standardization of y is the union C = | J, C, for a
disjoint sequence {C,}, in & with ) ,u(C,) < o, so yc € L;(p). It
follows that the measure induced by I, is the standardization of the
measure u. Thus we recover the measure u from the integral I,, up to
standardization (see p. 48).

A further question arises naturally: Does every integral J on M occur
as the integral with respect to some measure? More specifically, is
J = I, if v is the measure induced by J? Theorem 5.11, together with the
definition of I,, show that this is the case. Thus:

2 TuHeOREM Each integral J on M is the integral with respect to a
measure, the measure induced by J.
If wis a measure, the measure induced by I, is the standardization of p.

The preceding theorem implies that two measures yield the same
integral iff they have the same standardization, and in particular, the
integral with respect to a measure is identical with that with respect to
its standardization.

It will be convenient to have a description of I, null sets in terms of u.
We recall that a set is I, null iff it is a subset of E = {x: ), | f,(x)| = o0}
for some sequence { f,}, in L, (u) with summable norms. In this case,
according to lemma 3.5, y; € L,(u) and so by theorem 2, E belongs to
the domain of the standardization of u. Hence an I, null set is a subset
of the union of countably many sets of u measure zero, and it is straight
forward to verify that each such set is I, null. We agree that a set is g
null iff it is 1, null, that a proposition holds x4 almost everywhere or u a.e.
iff it holds except at the members of a u null set, and that f=,g iff
f 2 g u almost everywhere.

We state, for later convenience, a mild variant of a couple of the
preceding results, as well as some corollaries of theorem 1 that follow
directly from results of chapter 3. It is assumed that y is a measure on
a o-ring of subsets of X.

3 COROLLARY (SUMMARY) If a real valued function f on X is the
pointwise limit of a sequence {f,}, in L,(p) that is dominated by a
member of L,(u), then f € L,(u)andlim, || f — f,II, = 0.

Each swiftly convergent sequence { f,}, in L (), and consequently
each u a.e. increasing sequence { f,}, with sup, I,( f,) < o, converges u
a.e. and in norm to a member of L (u).

The space L () is norm complete; it is a norm completion of L.

The space L (u) is =, order complete; in fact, if 5 # W < L{(p),
sup{I,(f): fe W} < and W is closed under v, then W has a
supremum.



68 CHAPTER 6: THE INTEGRAL I, ON L,(u)

The null completion of L (w)is L (u"), where p" is the completion of

.

An ¥ of measurable real valued function f is u integrable if it is

dominated by a member of L (), or if it is non negative and sup,{I,(h):
his of simple and h < f} < o0.

We assume that p is a measure on a J-ring & of subsets of X and
show that convergence of a sequence { f, }, 4 almost everywhere may
imply convergence in a formally stronger sense. A sequence { f,}, of
real valued functions on X converges # almost uniformly to a function
S iff for each e > O there is a member 4 of .&/ with I,(x,) < e such that
{ fu}, converges uniformly to f on X\A. If p is a standard measure,
then I,(x4) = u(A), so almost uniform convergence can be described as
uniform convergence outside a set of small 4 measure. In general,
almost uniform convergence is uniform convergence outside the union
A of a disjoint sequence {4, }, in o/ with Y, u(4,) small; we sometimes
say A is of small standardized # measure.

Almost uniform convergence implies almost everywhere conver-
gence; it neither implies nor is implied by convergence in L, norm.
However, it is implied by swift convergence.

4 TureoreM (EGorov) If a sequence { f,}, of o/ a-simple functions
converges to fu a.e. and if the sequence {| f,| A 1}, is dominated y a.e. by
a pt integrable function, then { f,}, converges to f almost uniformly.

In particular, this is the case if { f,}, has a support in o, or if { f,},is
swiftly convergent.

PROOF We assume without loss of generality that u is a standard
measure on o/ and that f = 0. For each n let g,(x) = sup{| fi(x)] A 1:
k =z n}. Then {g,}, is a decreasing sequence of ./ g-simple functions
that converges to zero u almost everywhere. For each e > 0 and for
each n let E, = {x: g,(x) 2 e}. Then ey; < g, and {g,(x)}, is domi-
nated by a member hof L, (u), so E, € o/ and u(E,) < I,(h)/e < . The
sequence {E, }, is decreasing and (), E, is a null set, and consequently
(since u is continuous from above) lim, u(E,) = p(( ), E,) = 0. We de-
duce: for e > 0 there is N so that u(Ey) <e,and if n 2 N and x ¢ Ey,
then g,(x) < e, and hence | f,(x)| A 1 < e.

For each e, 0 < e < 1, and each k, choose N, and a set F, in </ such
that u(F,) < e2*andifn = N, and x ¢ F,, then | f,(x)]| < e2 . [ F =
Y« Fy, then u(F) < e and for each k, if n 2 N, and x ¢ F, then | f,(x)| <
e27* Consequently { f, }, converges uniformly to O on X\F. W

We have been particularly interested in measures induced by length
functions for R. These are the Borel measures for R; that is, measures u
on the Borel §-ring #°(R) generated by the family of compact sets
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(chapter 4). If u is such a measure, then each member of L, () is #°(R)
o-simple and so is locally #°(R) measurable and has a support that is a
countable union of members of #°(R), according to theorem 5.9. But
the family of locally %°(R) measurable sets is just the Borel o-field
A(R), so the #°(R) o-simple functions are just the #(R) measurable
real valued functions. It follows that if a #(R) measurable function f
bounded by b has a bounded support, say [ —a:a], then f belongs to
L, (p) because | f| < byj_,.,- Consequently the class C.(R) of all con-
tinuous real valued functions on R with compact support is a subclass
of L, (u) for each Borel measure u for R, and f—1,(f) for f in C.(R),
is a positive linear functional on C,(R). Moreover:

5 RIESZ REPRESENTATION THEOREM Each positive linear functional
on C,(R) is the restriction to C,(R) of the integral with respect to a unique
Borel measure p for R, and C.(R) is dense in L | (u).

PROOF We know that each positive linear functional I on C.(R) is a
pre-integral by proposition 2.9. The truncation é-ring induced by C_.(R)
is the d-ring generated by the family of sets {x: f(x) = 1} with f in C(R)
and this is just the family of compact sets. Corollary 5.12 then shows
that there is one and only one Borel measure u such that I = I,|C.(R),
and that I, is the minimal extension of the pre-integral I, whence C.(R)
isdensein L,(y). W

An immediate consequence of the preceding theorem is that if yis a
Borel measure for R and f € L, (u), then there is a continuous function
g with compact support with ||/ — g|, small. Of course this also fol-
lows directly from the regularity of u: If E € %°(R) there is by regularity
a compact set K and a bounded open set U with K < E < U and both
u(K)and p(U) near u(E). If g is a continuous function with yx < g < xy
(and there is such a function by Urysohn’s lemma) then u(K) < I,(g) £
w(U), so ||g — xgll; is small. If follows that 2°(R) simple functions, and
hence arbitrary u integrable functions, can be approximated in norm
by members of C.(R).

Here is a last approximation result.

6 LusIN’S THEOREM If uis a Borel measure for Rand f € L, (u), then
there is a closed subset F of R such that f|F is continuous and R\F has
small standardized p measure.

PROOF There is a sequence { f, }, of continuous functions in L, (u) that
converges in norm to f, and we may assume that the sequence con-
verges swiftly. Consequently, by Egorov’s theorem, there is for each
e > 0 a set E of standardized p measure less than e/2 such that { f,},
converges to f uniformly on R\E. The set E is the union (), E, of
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bounded Borel sets with Y, u(E,) < e/2. As u is outer regular there is
for each n, a bounded open set G,, so G, o E, and u(G,\E,) < e27""1,
Let F = R\, G,. Then R\F = { J, G, has standardized x measure less
than e, and { f,|F}, is a sequence of continuous functions converging
uniformly to f|F, so f|F is continuous. W

We conclude our study of the integral I, on L,(u) with a brief
consideration of some other vector spaces associated with y. The
space L, (u) belongs to a one parameter family L ,(u) of vector spaces
constructed from p. Suppose, for example, that p is counting mea-
sure for {1,2}. Then L,(u) can be identified with R? with the norm
l(xy,x2)ll1 = 1x4] + |x,|. The unit ball B, in L, (u) is the “diamond”
{(xy,x3): |x,] + |x,] £ 1}. For each (x;,x,) in R? and for each p,
1= p< oo, we let [[(xy, x2)ll, = (Ix117 + [x2/")"7, and let [|(xy,x,)ll,, =
lim, ., (1,17 + |x,07)"? = max{|x, , |x,|}. For each p, I Sp< oo, | I,
is a norm, the L,(p) norm for R® The spaces L,(u) have different
geometry for different values of p. The accompanying figure displays
this by picturing the unit ball {(x;,x,): [(x,,x,)ll, < 1} for various
values of p.

Unit Ball
in Lplw

#

Ho#

R e b v

iow

B BT~ B

Suppose u is an arbitrary measure on a d-ring &/ of subsets of X
and suppose for the present that 1 < p < co. Then L,(#) is defined
to be the class of real valued & o-simple functions f such that | f|?
is u integrable. Thus (by 5.9) f € L, (u) iff f is locally ./ measurable,
has a support in &/, and | f|? € L, (u). For such functions f, | fl, =
(f1/17dw)"'?, and we call | |, the L, norm (well prove that it’s a
semi-norm).

If u is counting measure for {1, 2}, then the underlying space L ,(u) is
R? for all p, but the geometry of the space (determined by the norm)
varies with the p. If u is any totally finite measure—that is, sup { u(A):
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Ae o} =b< oo—the family {L,(u)}, is a nested decreasing family:
L,(p) < L,(p)ifr > p(proof:if fe L,(u)and A = {x: |f(x)| £ 1} then
(If1Pdu = [1f1Pxadp + §1fPaxadu < b+ §IfI"xadp < ). For
an arbitrary measure u there is no necessary inclusion relationship
among the L ,(u) spaces for different values of p.

7 PROPOSITION Suppose p and q are positive numbers such that 1/p +
/g = 1.
(i) If x and y are non-negative, then xy < (x?/p) + (y%/q) with equali-
ty iff x? =y
(ii) (HOLDER INEQUALITY) If f e L,(u) and g € L,(p), then fge
Ly(w and | fgly = 1f1,lgll, with equality iff one of | f1” and
|g|? is a multiple of the other, u almost everywhere.
(iii) (MINKOWSKI INEQUALITY) If f and g belong to L ,(p), then f +
geL,(wand | f +gl, < Ifll,+ llgl, with equality iff one of f
and g is a multiple of the other, y almost everywhere.

PROOF (i) If y = 0 the lemma is clear. If y # 0, then the inequali-
ty reduces, upon dividing by y? and letting r = 1/p, to (x"y™4) <
r(x?y™9) 4+ 1 — r. But since 0 < r < 1, the function defined by t — t" for
t = 0, lies below its tangent line at (1,1) which is t+rt + 1 —r and
touches this line only at t = 1. The lemma follows.

(i) Part (i) shows that | fg| < (1 f"/p) + (1g1*/q), so if F = (| f1?/p) +
(191%/q) — | fg| then F = 0 and F € L, (). The set A = {x: F(x) > 0} be-
longs to .2Z,, and if 4 contains a member B of .« of positive 4 measure,
then u({x: F(x) > (1/n)}) is positive for some n, whence I,(F) > 0. We
infer that || fgll; = ((1f11,)"/p) + ((ligll,)*/q) with equality iff | /|7 = [g|*
u almost everywhere. If either | f]l, or |lgll, is zero, the Holder in-
equality is trivial. Otherwise, we replace f by f/| fIl, and g by g/ligll,,
and so obtain | fgll./Ilfl,llgll, = (1/p) + (1/9) = 1, with equality iff
lgliy 1 f1= 111,19l nalmost everywhere.

(iii) For convenience, let h= f+g. Then |h)P=|f+g|P <
[2sup(1f1,1g1)17 < 2°(I fI” + |g|"), and consequently he L, (). We
observe that |h|? = |h|P"Y | f + g| < [h|P7Y| f] + |h|P"! |g| with equali-
ty for g # 0 iff f is a multiple of g. We prove ||/ + gll, < I/, + lgll,
by applying Holder’s inequality to each summand in the foregoing.
Since 1/p+1/g=1, (|h|?"*)"=|h|’, hence |h|"P"' e L, (n), and
I1h1P~* 1, = (lIAll,)"%. Consequently Holder’s inequality shows that
L(IRP) S (IR1)P N 11, + (1R )P gl Hence |[h],=(I,(Ih[P)) "<
I fil, + llgll,- It is easy to see that equality requires that if g # O then f
is a multiple of g u almost everywhere. W

Each vector space L () shares many convergence and completeness
properties with L, (u). We list a few of these, and outline the proofs.
There are no new ideas.
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8 PROPOSITION Suppose u is a measure on of and 1 £ p < o,

(1) (DOMINATED CONVERGENCE) If a sequence { f,}, in L,(p) is domi-
nated a.e. by a member g of L ,(y) and converges pointwise a.e. to
a real valued function f, then f € L ,(y) and lim, || f — f,I[, = 0.

(ii) (MONOTONE CONVERGENCE) A norm bounded, a.e. increasing se-
quence { f,}, in L ,(u) converges a.e. and in norm to a member f of
L ,(u) and f(x) = sup, f,(x) for a.e. x.

(iii) The class L of o simple functions is norm dense in L,(u).

(iv) Each swiftly converging sequence in L ,(p) is dominated a.e. by a
member of L ,(u) and converges pointwise a.e. and in norm to a
member of L ,(u).

Consequently L ,(y) is complete.

PROOF

(i) Since |[f, — fIP<(1fil +1S1)" =2°g" ae., felL,(u). Since
lim,| f, — f1? =0 a.e., theorem 3.11 on dominated convergence shows
that lim, I, (| f, — f|?) = 0 and hence lim, || f, — f|, = 0.

(i) We may assume that f, = 0 a.e. for each n (replace {f,}, by
{fy— fi}s) Then { f,”},1s a norm bounded, a.e. increasing sequence in
L, () and converges a.e. to a non-negative member g of L, (u). Then
f =g"" € L,(u) (check that g'” is .o/ — %B(R) measurable and has a
support in «7,) and { f, }, converges a.e. to f. The preceding result on
dominated convergence then completes the proof.

(iiiy Each non-negative member f of L ,(y) is pointwise sum ), a, Xa,
with {4,}, in o/ and {a,}, in R*. The preceding result shows that the
sequence { Y 7_; @ X4, }» CONVerges in norm to f.

(iv) Suppose {f,}, is a swiftly convergent sequence in L ,(u), and
let g, = |fil + Y12} foes — fil for cach n. Then |g,l, < Ifill, +
Y el fusr — fil , < oo and so, by part (ii) on monotone convergence,
{gn}. converges a.e. to a member g of L, (u). Consequently, from the
definition of {g,},, { f,}» converges a.e. to some f and since { f,}, is
dominated by g, { f, }, converges in L , norm to a member of L ,(u) that
agrees a.e. with f. W

It is clear from Minkowski inequality that for f, and f in L,(u),
I fully = 1S, £ Wi fu — fli,, and consequently, convergence in norm of a
sequence { f,}, to f in L ,(u) implies convergence of the sequence of
norms { | f,ll,}. to [ f,, thatis, f— || f|, for fin L () is continuous.
In the reverse direction:

9 THEOREM (VITALI) Suppose 1 < p < oo, { f,}, is a sequence in L (1)
converging a.e. to a member f in L ,(y), and suppose {| f,|l,}. converges
to || fl,. Then { f,}, converges in p-norm to f.
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PROOF Since |f, — fIP < (1Sl + 1f1)P S27°(1ful” + | f1P), the se-
quence {2°(| f,I? + |f1"} = |f, — fI?}, of non-negative members of
L,(u) converges a.e. to the member 27*'|f|? whence by Fatou’s
lemma, 27" | f|Pdu < liminf, [ 2P(1 f,IP + | f1P) = | f, — f1P)dp =
24 [ f1Pdp — limsup, [ | f, — f1Pdp. So limsup | f, — fIPdu=0. W

(This elegant proof is due to W. P. Novinger, Proc. Amer. Math. Soc. 34
(1972), 627-628.)

Two members p and g of (1: o) are called conjugate indices iff 1/p +
1/q = 1. In this case, according to Holder’s inequality, if f € L ,(p) and
g€ Ly(p)then fg e L,(g)and L,(1£,) < IIf1l,llgll,- We agree that oo is
the index conjugate to 1, and the definition of L_(u) will be such that
Holder’s inequality for this pair of indices is self evident.

Suppose u is a measure on a d-ring ./ of subsets of X. We recall that
the family %o/ of locally measurable sets is {B: Bn A € <« for all A
in o/}. A set E is locally g null iff E is a subset of a member B in £«
and u(Bn A)=0 for all 4 in o/, and a property holds locally u
a.e. iff it holds outside some locally u null set. A real valued function
f on X is u essentially bounded or just essentially bounded iff for some
r,| f1 £ rlocally u a.e., and for such a function, || |, = inf{r:|f| < r
locally p a.e.}. We notice that | fll, £ | fllx = sup.cx|f(x)] and that
| fll, may be zero while | f||y = co. The space Ly, (u) or L, (u, X) is
the class of .o/ measurable essentially bounded functions; it is
entirely determined by the -ring .o/ and the family of locally u null
sets.

10 ProPOSITION  The class L, (p) is a complete semi-normed space.

Each member of L_(u) that is bounded on X by b in absolute value, is
the uniform limit of a sequence of £/ simple functions whose absolute
value is bounded by b. Consequently the family of .o/ simple functions
is dense in L (u).

PROOF Evidently L (pu) is a vector space. We notice that if f e L_(u)
then | /]| < || fll, locally u a.e., because for each n, | f| £ || fll. + 1/n
outside some locally u null set B,, and | J,, B, is locally u null.

If {f.}, is a Cauchy sequence in L,(u) then |f,(x)— f,(x)| <
Ilf, — foll o except for x in a locally p null set 4, ,. Let Y=X\| J, , 4, ,,
and for each n let g, = f, on Y and 0 on X\Y. Then {g,}, is a se-
quence in L (u), || f» — gull. = O for each n, and since |g,(x) — g, (x)| =
I f, — fill, forall p, g and x, {g,}, is a Cauchy sequence with respect to
the sup norm || ||y. Consequently {g,}, converges in the sup norm, and
hence in the L_(u) norm, to a bounded locally .«/ measurable function
g. Therefore lim, || f, — g, = 0.
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Finally suppose f is #.«/ measurable, 0 < f(x) £ b and n = b. Then
n-2n

the function s, = ) ;23" (k — )27 ¥ -1jk—1)2-n: 42 18 Lo simple and
| f —s,| £ 27" The proposition follows. W

The spaces L ,(A') for Lebesgue measure A’ in R are of special inter-
est. It is easy to see that for 1 £ p < oo, the family of # simple func-
tions, where ¢ is the collection of closed intervals, is dense in L ,(A%),
and so is the family C.(R) of continuous functions with compact sup-
port. For each real valued function f on R and each ¢ in R, suppose
T.(f) is the translate of f by t; thatis, T,(f)(x) = f(x + ¢t) for x in R. If
feL,(A")sodoes T,(f)and | T,(/)|, = | fll,, because A’ is transla-
tion invariant. Thus, for each ¢ in R, T, is an isometric map of L,(A")
onto itself.

We show that for each f in L,(A'), t > T,(f) for ¢ in R is a uni-
formly continuous map of R to L,(A"). This will follow if we show
that |T,(f) — fll, is small for |h| small, since [T.(f)— T,(f)l, =

IT-(f) = Sl

11 THEOREM (CONTINUITY OF TRANSLATION ON L ,(A'))
If feL,(A")and1 < p < o, then limy_o | T,(f) — fl,=0.

PROOF Suppose g € C.(R) and [a:b] is a support for g. Then
[a—1h|:b+|h|] is a support for |Ty(g) —g| so [T,(9) —gl, =
((b — a+ 2[h))sup,| T,(g)(x) — g(x)|”}¥?, and the supremum is small
for |h| small because g is uniformly continuous. Thus ¢+ T;(g) is
continuous.

For e > 0, choose g in C.(R) so ||f — gll, <e, and take |h| small
enough that | T(g) — gll, < e. Then | T,(f) — fll, = IT(f) — Tu(9ll,
+ | T,(9) — gll, + llg — fl, < 3e. The theorem follows. W

We note that the preceding theorem fails for p = oo —e.g., let f be
the characteristic function yg: -

We conclude with a single application of the theorem that L,(u) is
complete. This space has a particularly interesting structure. If f and g
belong to L,(u) then, according to Hélder’s inequality, fg is u inte-
grable and I,(| fg]) £ [ /1. llgll., with equality iff [g],[f]=1Ifll21g]
u almost everywhere. We let the inner product of f and g, {f, g, be
L,(f9)- Then (f,g)— < f, g is linear in each variable, symmetric in the
sense that (f,g> = (g, f >, and {f, f> = 0 for all f. Such a space is
called a real euclidean space. Thus L,(u), with { , >, is a real euclidean
space, || fl, = ({f, f>)V? is a semi-norm, and L,(x) with this semi-
norm is complete.

A complex euclidean space is a vector space E over C with an inner
product { , > on E x E to C such that (x, y)— {x, y) is linear in x and
conjugate linear in y (i.e., {x,ay + bz) = a"{(x,y)> + b"<{x,z) for all x,
yand zin E and all e and b in C, where ~ denotes complex conjugation);
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{y,x) is the complex conjugate of (x, y) for all x and y;and {x,x> =2 0
for all x.

If E with ( , ) is a real or complex euclidean space, then the eu-
clidean semi-norm is given by ||x|| = ({x,x>)"2. This definition does
yield a semi-norm for the following reason. If x and y belong to E and
a is a complex number of modulus 1 such that {ax, y> = |{x, y>|, then
0 < <allylx—lxly,alyllx—Ilxly> = 2Ix|*Iyl? =21 <x po Hixl Iyl
whence (the Cauchy-Schwartz inequality) |<{x,y>| < |[x| |yl with
equality holding iff |(a|y||x — ||x]ly)| = 0. Consequently ||x + y||? =
x4+ y,x) +{x+yp> = x+yllxl + Ix+ ylliyl, so lx+yl=
x| + [yl with equality iff ||y — bx| = O for some complex number b.

A linear functional F on a real or complex semi-normed space E is
bounded iff sup {|F(x)|: | x| < 1} < oo, and in this case | F|| is defined
to be this supremum. It is easy to verify that F is bounded iff it is con-
tinuous relative to the semi-metric (x, y)— ||x — y|. If E is a euclidean
space, y € E and F(x) = {x,y) for all x in E, then F is a bounded linear
functional by reason of the Cauchy—Schwartz inequality, and in fact
|F|l = |lyll. We will show that every bounded linear functional on a
complete euclidean space is of the form x — {y, x> for some y.

We need a preliminary lemma and this lemma depends on the paral-
lelogram law: if x and y belong to a euclidean space, then ||x + y||? +
x — ylI? = 2|jx||> + 2|y|®. This follows directly by “expanding”
{x+y,x+y>+ {x—y,x—y>. We agree that a member x of E is
perpendicular to a subset H iff {x,y> = O for all yin H.

12 ProrosiTiION If H is a closed vector subspace of a complete eu-
clidean space E and x, € E\H, then there is y, in H such that x, — y, is
perpendicular to H.

PROOF Choose a sequence {y,}, in H such that lim, |xq — y,| =
inf,.pllxo — yll = K. We assert that {y,}, is a Cauchy sequence. In-
deed, for e > 0 if N is an integer such that K + ¢ = |x, — y,ll = K
for n = N, and if we set z, = x, — y, for all k, then [yy — y,||* =
lzy — zalI? = 2lznl? + 202,07 = llzy + 2,17 = 2lx0 — yul* +
2Mxo = yall> = 4lxo — (yn + yu)/217 = 2(K + €)> + 2(K + e)* — 4K?,
since (yy + yy)/2 € H, 50 |[yy — y,lI* < 8Ke + 4>, It follows that {y,},
is a Cauchy sequence. This sequence converges to a member y, of H
because E is complete and H is closed. Thus the infimum of ||x, — y||
for y in H is assumed at y = y,.

We infer that if z, is the non-zero vector xq — yo, then |zy]|2 <
lzo — v||* for all v in H. Thus the quadratic function t — {(z, — tv,
zog —tvy — {29,z for t in R, has a minimum at ¢t = 0, and so the
coefficient of ¢, which is —<{zy,v) — v, z, ), is zero for each v in H.
There is a complex number a such that {z,,av) = |{z,,v>|, and since
av e H,{zy,v) =0foreachvin H. M
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We agree that a complete euclidean space is a Hilbert Space. If F is a
bounded linear functional on the (real or complex) Hilbert space E,
then H = {x: F(x) = 0} is closed. If F is not identically zero (otherwise
F(x) = {x,0) for all x), then H # E and so there is by proposition 12 a
non-zero vector u that is perpendicular to H, and since u ¢ H, F(u) # 0.
Then for x in E, x — (F(x)/F(u))u € H so {x — (F(x)/F(u))u),u> = 0,
whence (x,u) = (F(x)/F(u)) {u,u) so F(x) = (F(u)/<{u,ud){x,u) forall
x. This establishes the following.

13 THeoOREM (RiEsz) Each bounded linear functional F on a Hilbert
space E is of the form F(x) = {x,u), for some u.

In particular, if F is a bounded linear functional on L,(u), then there
isgin L,(p)suchthat F(f)= ffq dy for all fin L,(p).

SUPPLEMENT: BOREL MEASURES AND
POSITIVE FUNCTIONALS

It is assumed throughout that X is a locally compact Hausdorff space.
A Borel measure for X is a measure y on the §-ring #°(X) generated by
compact subsets of X. The measure is regular iff members of %#°(X)
have inner u approximations by compacta, and this is the case iff
members have outer y approximations by open members of %°(X). (See
the Supplement: Measures on £°(X), to chapter 4.)

Each closed set belongs to the o-field #%°(X) of locally %°(X) mea-
surable sets, and consequently each real valued continuous function on
X is #%°(X) measurable. If such a function f has a compact support
K, then f is dominated by a scalar multiple of y, and so f is u inte-
grable for every Borel measure u. Thus the class C.(X) of continuous
real valued functions f on X with compact support is a subclass of
L, (u) for each Borel measure p. If y is regular, then C,(X) is dense in

Ly(p).

14 PROPOSITION If pis a regular Borel measure for X, then C.(X) is
dense in L (p).

PROOF It is sufficient to show that for each B in #°(X), there is f in
C.(X) so that || f — x|l ; is small, because linear combinations of finitely
many such functions are dense in L, (u) (by the definition of L, (y)).
There is a compact set K and an open member U of #°(X) such that
K = B< U and p(U) — u(K) is small, and Urysohn’s lemma implies
that there is f in C.(X) with yx < f < yy, whence p(K) 2 I,(f) =
u(U). But we also have yx < x5 < xy so #(K) £ I,{xg) < u(U), whence
both y, — f and f — yp are between —(xy — xx) and yy — yx and
I f — xgll1 £ n(U) — u(K) which is small. Consequently C.(X) is dense
inL,(p). W



SUPPLEMENT: BOREL MEASURES AND POSITIVE FUNCTIONALS 77

The preceding proposition makes it possible to establish a straight-
forward generalization of theorem 11. Suppose G is a locally compact
Hausdorff topological group, # is a left invariant regular Borel measure
(a left Haar measure), | £ p < co and f € L,(n). For each h in G, let
T,(f)(x) = f(hx) for all x in G. Then T,(f) is near T,( f) in L (y) pro-
vided h is near k in G (i.e., provided A~k is near the identity e). Re-
phrased: h — T,(f) is a continuous map of G into L ,(#).

15 THEOREM ON CONTINUITY OF TRANSLATION If n is a left Haar
measure for G,1 < p < oo and f € L,(n), then | T,(f) — fll, is small for
h near e.

PROOF We first establish the theorem for a member g of C.(G). Because
g has a compact support, it is uniformly continuous in the sense that for
¢ > 0 there is a neighborhood W of e such that |g(y) — g(x)| < ¢ if
yx~1 € W. In other words, if h € W then | T, (g) (x) — g(x)| < & for all x.
Thus T,(g) converges to g uniformly as i converges to e. If K is a
compact support for g and V is a compact neighborhood of e, then
V ~1K is a support for T,(g) for every hin V, and since (V "'K) < oo, it
follows that T,(g) converges to g in the norm | |,.

If feL,(n) and g is a member of C,(G) such that ||f —g|, is
small, then since (T(f)— T(9l,=If—4gl, and [ T(f)— fll, =

IT(f) — TP, + 1 Tu(g) — gll, + llg — fllps ITu(f)— fl, is near
| T,(g) — gll,- The theorem follows. W

If u is a Borel measure for X, then the map f»—»jfdu for f in C.(X),
is a positive linear functional on C,(X). If-C,(X) is the space of those
continuous real valued functions on X that vanish at oo, and v is a
Borel measure for X, then f+— [ f dv also defines a positive linear func-
tion on C,(X), provided v is totally finite—that is, sup{v(4):
A e B°X)} = |vly < . (We leave the proof of this fact to the reader.)
Both of these statements have converses, as does proposition 14.

16 RieESzZ REPRESENTATION THEOREM For each positive linear func-
tional F on C.(X), there is a unique regular Borel measure u such that
F(f)= [ fdu forall fin C.(X).

A positive linear functional J on Cy,(X) is also of the form fr>
[ fdv for a unique regular Borel measure v and, moreover, |J| =

vl

PROOF A positive linear functional F on C.(X) is a pre-integral ac-
cording to proposition 2.10, and theorem 5.11 then asserts that there
is @ unique measure p on the truncation é-ring 7 of C.(X), the measure
induced by F, such that the integral I, is an extension of F. The trunca-
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tion d-ring 4 is generated by the lattice # of sets of the form
{x: f(x) 2 1} with f in C.(X). Every compact set K has a compact
neighborhood that belongs to &, and p|# is non-negative, monotonic,
additive and subadditive—it is a pre-content in the terminology of
chapter 1. Moreover, since p({x: f(x) 2 1}) = p({), {x: f(x) = 1 —
(1/n}) and {x: f(x) 2 1 — (1/n)} is a compact neighborhood of {x:
f(x) 2 1}, the regularization of (p| %) is an extension of p|#. Con-
sequently, the Borel measure u that extends the regularization of p| %
is a regular Borel extension of p, and hence F(f)= [ fdp = [ fdu
for all f in C.(X). Suppose = is any regular Borel measure such that
F(f)={fdnfor fin C.(X). Then by the preceding proposition, C.(X)
is dense in L, (x) and in L, (n) in their norms and the norms agree on
C.(X). It follows that 7 = p.

If J is a positive linear functional on Cy(X), then there is certainly a
unique, regular Borel measure v so that J(f) = [ fdv for f in C(X).
Because J is positive it is bounded (see chapter 2) and if f vanishes off
Kand |[fllx = L [J(/) = u(K) < vlly, so [J] < [ivlly. On the other
hand if B € #°(X), K is a compact inner approximation for B and f is
a member of C.(X) which is 1 on K and 0= f £ 1, then v(B) <
vIK)te<|[fdv+e=J(f)+e whence sup{v(B):Be #°(X)}=<
[J1, leading to equality. Finally, J and f | fdv for f in Cy(X), are
both bounded linear functionals that agree on the dense subspace
C.(X) of Cy(X), and hence they agree on Cy(X). W

Here is a simple corollary. Suppose v is a Borel measure such that
C.(X) is dense in L, (v) (relative to the I, norm), and suppose u is the
regular Borel measure such that jfdu = jf dv for all f in C.(X). Then
C.(X)is also dense in L, () (relative to the I, norm) and the two norms
agree on C.(X). It follows that v = u. Thus

17 CoRrROLLARY If v is a Borel measure for X and C.(X) is dense in
L, (v) then v is regular.

Here is one more approximation result for a function that is inte-
grable w.r.t. a regular Borel measure u—a generalization of theorem 6.
We recall that the standardized y measure of aset Aisviff 4 =) , 4,
for some disjoint sequence {4,}, in #°(X) such that v = { J, u(4,)—
that is, iff the standardization of u takes the value v at A. 4 set X is
e-compact iff it is the union of countably many compact sets.

18 LusiN’s THEOREM If u is a regular Borel measure for X, fe L, (u)
and e > 0, then there is g in Co(X) and an open set U such that g = f on
X\U, |If — gll, < e and U has standardized p measure less than e.

If X is o-compact, then any L #B°(X) measurable function f is con-
tinuous on X \ U for some open set U of small standardized y measure.
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PROOF We assume (without loss of generality) that f = 0, and for
convenience in statement, we fail to distinguish between u and its stan-
dardization (the measure induced by I,,).

Suppose f € L,(p), and for each n let U, = {x: f(x) = n}. Then
nyy, < f,s0 u(U,) < | fll1/n, and f = n A f except at the points of a
set U, which, for n large, has small 4 measure. Because u is regular, U,
is a subset of an open set V, of small measure. Moreover, the increasing
sequence {n A f}, converges pointwise to f and hence ||n A f — f|, is
small for n large. Consequently, for e > 0 there is N in N and an open
set V such that |[f — N A fll, <e/2, u(V)<e/2 and f =N A f on
X\V.

We show that there is an open set W such that u(W) < ¢/2N and
f is continuous on X \W. Then on X\W, N A f is continuous, non-
negative, bounded by N, and has a g-compact support. It follows that
N A f has a continuous extension g: X — [0: N] by Tietze’s theorem.
Then pu(VuW)<e and |f—glliSIf=NAfli+INAf—gli<
e/2 + N (e/2N) = e.

To establish the existence of the desired open set W: Choose a se-
quence { f,}, in C.(X) that converges swiftly to f, invoke Egorov’s
theorem 4 to see that { f,}, converges to f almost uniformly, and use
the fact that the uniform limit of continuous functions is continuous.

The last statement of the theorem follows from the first together with
the e¢/2" argument. Suppose that {K,}, is an increasing sequence of
compact sets with X = | J, K,,, that K, is a neighborhood of K,, let
fu=f A nyx,_ and choose an open set V, such that f, is continuous on
X\V, and u(V,) < e/2". Then V = | J, V, has measure less than e, and f
i1s continuous on X\V. W



Chapter 7

INTEGRALS* AND PRODUCTS

It will be convenient to extend the domain of an integral to include
certain R* valued functions, and to extend the integral to an R* valued
functional on the larger domain. We make this extension and sub-
sequently phrase the Beppo Levi theorem and Fatou’s lemma in this
context. A more serious use of the new construct is then made in the
study of product integrals and product measures.

We recall that a sequence {t,}, of members of R* is summable* or
summable in the extended sense, iff {} , rt,}; has a limit in R* as F
runs through the family of finite subsets of N (the family is directed by
inclusion), and in this case, ) ¢, is lim{) , . pt,: F < N} and {¢,}, is
summable* to Y ,¢,. Thus, the sequence {t,}, is summable iff it is
summable* and ) 1, is finite, and the sequence {z,}, is summable*
unless } ,(t, v 0)= oo and Y, (¢, A 0) = —c0.

Suppose u is a measure on a d-ring &/ of subsets of X and f is an R*
valued function. Then f is u integrable*, or integrable*, or integrable in
the extended sense, iff for some sequence {4, }, in &/ and some {q,}, in
R, {a,u(A4,)}, is summable* and {a,x,(x)}, is summable* to f(x) for
each x. The class of all u integrable* functions is denoted L* (u). Evi-
dently L, (u) = L*(u).

Each p integrable function f is real valued and satisfies a measur-
ability condition, that f be .« g-simple (or equivalently, f is locally </
measurable with an .o/, support). Each u integrable* function is real*
valued and satisfies the same measurability condition.

Each real valued o/ o-simple function f that is dominated by a
member g of L, (y) (that is, | f| £ g) belongs to L,(u). We show that
each R* valued .o g-simple function that is bounded above, or below,
u a.e. by a member of L, (), itself belongs to L*(u).
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1 PROPOSITION An R* valued function is u integrable* iff it is locally
of measurable with a support in o, and is bounded either below or above
W a.e. by a pintegrable function.

Consequently L*(p) is a function lattice with truncation, and if { f,},
is a sequence in L*(u) that is bounded below or above u a.e. by a mem-
ber of L,(u), then sup, f,, inf, f,, limsup, f, and liminf, f, belong to

L*(p).

PROOF Suppose that f is integrable*, f =), a,x, with {a,u(4,)},
summable*, g =3 ,a,"x, and h=},a, 7y, . Then f is bounded
above by g and below by —h, and g or h is equal y a.e. to an integrable
function according as the sequence {a,*n(4,)}, or {a,”u(4,)}, is
summable.

Conversely if f is locally o/ measurable with an &/, support, then so
are f* and f~ whence f* =) ,a,x,, and [~ =} ,b,xp, Witha, 20,
b,=0, A, € o/ and B, € o/ for each n. If f is bounded below pu a.e.
by an integrable function v, then f~ < v~ u ae., v~ is integrable, so
{b,1(B,)}, is summable. Likewise if f is bounded above u a.e. by a
member of L,(u) then {a,u(A,)}, is summable. It follows that f is
integrable* in either case. W

We notice from the foregoing that if f is integrable*, f =3, an¥a,
and f is not bounded above u ae. by a member of L,(u), then
Y .aypu(A,) = oo and hence Y ,a,u(A4,) = co. Similarly if f is not
bounded below p a.e. by an integrable function then ), a,u(4,) =
— 00. On the other hand if f is bounded both above and below p a.e. by
integrable functions, then f is p a.e. equal to an integrable function g,
and it is easy to see that ) , a,u(4,) = I,(9).

For each member f of L*(u) we define the extended integral 1,*(f)
to be Y ,a,u(A,), provided f(x)=1) ,a,14,(x) for each x and
{a,u(A,)}, is summable*. We have just seen that this definition is not
ambiguous, that I, *(f) is finite iff f is equal u a.e. to a member of
L;(p), and that I*|L,(u)=1,. If I,*(f)= o (or —oo) then f~ (re-
spectively f ) agrees a.e. with an integrable function. We agree that if
f € L*(p), then | fdu, or | f(x)dux, is I,*(f).

If f and g are members of L*(u) and f =g p ae., then I,*(f) =<
I,*(g). This is the only additional fact needed to establish the following
convenient form of the monotone convergence theorem for I,*.

2 THEOREM (B. Levi) If {f,},is an increasing sequence in L*(u) and
L*(f,)> —oco, thenlim, f, € L*(pu) and I,*(lim, f,) = lim, I,*( f,).

Consequently, if {f,}, is in L*(u) and f, =0 for each n, then
Yonfu€ L¥(w) and L*(Y 1) = Y L*(f):

PROOF Since I,*(f;) > —oo, fi~ agrees a.e. with an integrable func-
tion, and since f, = f; = —f,” for each n, lim, f, € L*(n) by the
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preceding proposition. It is evident that I, *(lim, f,) = lim, 1,*(f,), so
equality holds if the limit on the right is co. Suppose that lim, I,*( f,) <
oo. Then —oo < I,*(fy) £ I,*(f,) < o, hence f, agrees a.e. with an
integrable function g, for each n. The monotone convergence theorem
for I, applies to the sequence {g,}, in L,;(y) and consequently
1,*(lim, f,) = 1,*(lim, g,) = lim,1,(g,) = lim, L*(f,).

3 Fatou’s LEMMA If {f,}, is a sequence in L*(p) which is bounded
below a.e. by an integrable function g, then I*(liminf, f,) =<
liminf, I,*( f,), and if { f,}, is bounded above a.e. by an integrabl func-
tion, then I *(lim sup, f,) 2 limsup, I, *( f,).

PROOF Forp >m, f, 2 N\, fiso that L*(f,) = L*(/\ie-n fi), and so
LX(N\iow fi) < liminf, 1,*(f,) for each m. The sequence { \i,, fi }m 1S
increasing with pointwise limit, liminf, f,, and L*(A\iZ, fi) = L.(g) >
—o0 so by the preceding theorem, I,*(lim inf; f,) = lim,, L*(/\i-p fi) <
liminf,1,*(f,).

Applying this conclusion to {-f,}, vields the assertion about
limsup, f,. 1

A form of the dominated convergence theorem for I,* follows
from Fatou’s lemma, just as for I, (see chapter 3). If {f,}, is a se-
quence in L*(u) and g is an integrable function such that |f,| < g
a.e. for all n, then I *(liminf, f,) < liminf 1,*(f,) < limsup, 1,*(f,) £
I*(limsup, f,). Consequently, if lim inf, f, = lim sup, f, a.e., the preced-
ing inequalities must be equalities and {I,*(f,)}, converges to
IL*(liminf, f,) = L,*(limsup, f,). (Both lim inf, f, and lim sup, f, belong
to L*(u) in view of proposition 1.) This form of the dominated conver-
gence theorem can also be derived directly from the earlier version in
chapter 3.

Here is another example of the use of the B. Levi theorem for I *. If
u is a regular measure on a d-ring . of subsets of R, then for 4 in &/
and for e > 0 there is in .&/ a compact set K and an open set U such that
K< A< U and u(U) < u(K) + e. Then yg is upper semi-continuous,
xu is lower semi-continuous, yx < yx, < yxy and I*(xy) < I*(zg) + e
By taking countable linear combinations, using the /2" trick and
Levi’s theorem, one finds that any non-negative member of L, (u)—
and hence any member—can be approximated from above by lower
semi-continuous members of L*(u) and from below by upper semi-
continuous. Explicitly:

4 PROPOSITION If uis a regular measure on a o-ring of subsets of R,
f e L,(n) and e > 0, then there are members s and t of L*(u), s upper
semi-continuous and t lower semi-continuous, such that s < f <t and
L*(s) + e > I*(1)
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Proposition 4 furnishes a link between our treatment of integration
and the classical Daniell treatment of the Lebesgue integral. A lower
semi-continuous function fon [0:1] to (— o0 : c0] is the pointwise limit
of an increasing sequence { f, }, of continuous real valued functions on
[0:1], and the Lebesgue integral* of f is just the supremum of the
Riemann integrals of the f,. In a similar fashion, one can describe the
Lebesgue integral of an upper semi-continuous function f on [0:1] to
[—o00: 00) as the infimum of the Riemann integrals of continuous func-
tions above f. The preceding proposition leads to a description of an
arbitrary Lebesgue integrable function in terms of approximation from
above by ls.c. (—oo:o0] valued functions and from below by u.s.c.
[ — o0 : o0) valued functions. It is worth noticing that one cannot always
approximate a Lebesgue integrable function f on [0: 1] from above by
an u.s.c. function (e.g., the characteristic function of the set of rational
numbers in [0:1]), nor by a real, finite valued, 1s.c. function (e.g.,
f(x) = Ofor x irrational, f(p/q) = q for p and q relatively prime positive
integers with g = p). ’

We now use the results on integrable* functions to construct a mea-
sure for X x Y from measures for X and for Y. We suppose throughout
that u is a measure on a J-ring o7 of subsets of X and v is a measure on
a o-ring 4 of subsets of Y. For each function f on X x Y to R* and for
each (x,y) in X x Y, the horizontal section of f through y, f7, is the
function x - f(x, y) and the vertical section through x, f;, is y > f(x, y).
Thus f.(y) = f(x,y) = f¥(x)forall (x,y)in X x Y.

If ¥ e L*(u) for each y, then E,(f) is the function y— I, *(f*) =
[f(x,y)dux, and if f, € L*(v) for each x, then E”(f) is the function
x> L¥(f) = [f(x,p)dvy. ITE,(f) € L*(v), then I,* o E,(f)is an iter-
ated integral of f, denoted [ f(x,y)duxdvy, and if E'(f) e L*(u),
then || f(x,y)dvydux = I,* o E*(f). We deduce from theorem 2 that if
{ fu}n is a sequence of non-negative functions on X x Y to R* such
that f,” € L*(u) for all n and y and E,(f,) € L*(v) for each n, then
(X, /) € L*(u) for cach y, E, (Y, f,) € L*(v) and L,* 0 E, (¥, f,) =
2al* o E(f):

A function f on X x Y to R is compatible with # and v iff x—
f(x,y) is u integrable for each y, yn—»ff(x, y)dux is v integrable, y+—
f(x,y) is v integrable for each x, xo—>§f(x, y)dvy is u integrable, and
§J f(x,y)duxdvy = {{ f(x,y)dvydux. A subset D of X x Y is compati-
ble with # and v iff its characteristic function is compatible.

5 LeMMA ON COoMPATIBILITY The family of compatible sets is closed
under disjoint union, proper difference, and disjoint dominated countable
union.

If p and v are complete measures, A is a compatible set,
([ xa(x,y)duxdvy =0 and B < A then B is compatible and
[T xs(x, y)dux dvy = 0.
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PROOF The family F of compatible functions is evidently a vector
space. Suppose that 4 and B are compatible sets. If 4 and B are
disjoint, then y, 5= 4+ xp€ F so Au B is compatible, and if
B < A, then y43= 14— xp € F so A\B is compatible. If {B,}, is a
disjoint sequence of compatible subsets of a compatible set 4 and
B={J,B,, then yz5=73 x5 S t4 50 L*oE"(xg) =3 ,1,* 0 E'(15,) <
1,* o E¥(y4) < co. It follows without difficulty that B is compatible, and
the first assertion of the lemma is established. The second assertion is a
consequence of the fact that, if 4 and v are complete measures, then
both iterated integrals of y, vanish iff for u a.e. x, y,(x, y) vanishes for v
a.e. y, and for v a.e. y, y,(x,y) vanishes for p a.e. x, because if y,
satisfies this condition then so does yj for every subset Bof A. M

If Ae o/ and B e %, then the rectangle 4 x B is a compatible
set, since 2. p(X, ¥) = 14 (X) 15(¥), 50 | x4 xp(x, y) dux dvy = u(A)v(B) =
{§ #4xp(x, y)dvydux. The product d-ring o/ ® A is defined to be the
o-ring generated by the family of all rectangles 4 x B with 4 in .o/
and B in #. The intersection of two rectangles is a rectangle, and
consequently theorem 4.6 shows that o/ ® # is the smallest family
containing all rectangles that is closed under disjoint union, proper
difference, and disjoint dominated countable union. The preceding
lemma then implies that every member of .o/ ® 4 is a compatible set, so
the two iterated integrals of y. agree and are finite for each C in
o R B.

For C in o/ ®%, let u®v(C) be the iterated integral
”xc(x, y)dux dvy. The iterated integral is countably additive whence
4 ® v is a non-negative, real valued, countably additive function on
o & AB. Thus p ® v is a measure, the product measure of u and v. It is
the unique measure on the d-ring generated by rectangles 4 x B, 4 in
</ and B in 4, such that u ® v(A x B} = u(A4)v(B).

Let us agree that a set 4 is null compatible with g and v iff 4 is
compatible and the iterated integrals of y, are zero. Evidently each set
of 4 ® v measure zero is null compatible. If 4 and v are complete
measures, then each subset of a null compatible set is of the same sort
by lemma 5. It follows that members of (& ® %), where (4 ® v)}* on
(o ® #)¥ denotes the usual completion of u ® v, consists of com-
patible sets. We record these facts after adopting some notation.

For each subset C of X x Y and each member (x, y), the horizontal
section of C through y,*C, is {u: (1, y) € C} and the vertical section of C
through x, .C, is {v: (x,v) € C}. If C is compatible with 4 and v, then
Fxe(x, y)dux = p(°C) and § yc(x, yydvy = v(,C).

6 THEOREM ON SECTIONS If C e of ® A, then the product integral
1, &, agrees with both iterated integrals at y¢, so p@v(C) = [ u(*C)dvy =
[v(:C)dux.
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If p and v are complete measures, then the integral w.r.t. the usual
completion of u ® v agrees with the iterated integral at . for C in the
completion (of ® B)".

7 REMARKS

(1) Product measure u &® v is the unique measure on .« ® % such that
U ®v(A x B) = u(A)v(B) for all rectangles A x B with 4 in ./ and B in
4. The intersection of two rectangles is a rectangle and the difference of
two rectangles is the union of finitely many disjoint rectangles. Con-
sequently the family # of such unions is a ring of sets and so u ® v|Z is
an exact pre-measure, and this pre-measure induces pu ® v. Conse-
quently each member of &/ ® % has inner approximations in %; and
outer approximations in #,,.

(ii) The usual completion of a measure p on a -ring & is obtained by
letting A" be the family of all subsets of sets of p measure zero, and
assigning measure p(D) to each symmetric difference D AN with D in @
and N in A". The only requirements on the family 4" needed to ensure
that this process yields a “completion” of p is that each subset of a
member of A" belong to A7, A is closed under A, and /" N2 =
{A: A e @D and p(A) = 0}.

One can construct different completions by using different families
A. For example, the family of null sets and the family of locally null
sets yield completions which are convenient for certain purposes. Every
completion of A" is evidently an extension of the usual completion. If
and v are complete measures, p = 4 ® v and A" is the family of all
subsets of sets that are null compatible with 4 and v, then a completion
of u ® v is obtained, the null compatible completion, that agrees with
the iterated integrals on each member of its domain. It is the “largest”
completion with this property.

According to theorem 6, both of the iterated integrals are extensions
of Ig,[{xc: C € o ® #}. Since 1,5, and both interated integrals are
countably additive, we infer that I, 5 , agrees with the iterated integrals
on the class of all linear combinations ), c,xc, with {c,}, in R* and
{C,},in &/ ® #. This class L* (o @ #B) = { f: f is non-negative, R*
valued and of ® % o-simple} is identical with the class of non-negative

I, & ,* integrable functions. This establishes the following.

8 TONELLI THEOREM If u and v are measures, u ® v is their product
measure, and f € L* (o @ B), then | fdu® v = [ ([ f(x,y)dvy)dux. In
detail: f. e L*(v) for each x in X, E'(f)e L*(u) and I,o *(f) =
1,* o EX(f) = L* o E,(f).

Moreover; if u and v are complete and f € L*((«/ ® #)V), then
lugw *(f) =1%o E'(f)=1*0o E,(f)
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The Fubini theorem is a corollary to the Tonelli theorem. It is con-
venient, before stating the theorem, to make the convention that if f is
a function that agrees y a.e. with a member g of L, () then | f(x) dux or
[ fdu,is [ g du. (We are surreptitiously enlarging the family of functions
that we can “integrate™.)

9 FuBIiNt THEOREM Let u and v be measures, let y ® v be the product
measure and let (u ® v)" be its completion. Then | f(x, y)du ® v(x,y) =
§(§ f(x,y)dvyydux forall fin L, (p®v), and also for fin L ((p®Vv)")
provided v is complete.

Indetail: if feL (u®v),orif feL,(u®v)")andvis complete,
then [, € L (v) for pa.e. x, and if h(x) = I,(f,) for such x, then h agrees
i a.e. with a member g of L (p) and {gdu = fdu® v.

PROOF Suppose fe L (p®@v)and f Z0.Thenl, o (f)=1,5.*(f)=
I* o E*(f) < o, and consequently E*(f)(x) is finite except for x in
some p null set D. If x ¢ D, then EY(f)(x) = [,*(f,) is finite, so f, €
L, (v). Thus | f(x, y)dvy is defined and agrees with E*( f)(x) for p a.e. x,
so [( fGoy)dvy)dpx = 1,* o E*(f) = Lg(f).

The same line of argument establishes the theorem for a member of
L,((#®v)"), provided v is complete. W

10 CoROLLARY Both iterated integrals agree with I, o, on L (u ® v),
and if p and v are complete then the iterated integrals agree with

Lugwon Li((p®v)”).

A particular consequence of the preceding is that one “may inter-
change the order of integration if the integrand is integrable with re-
spect to the product measure”. One might suppose that the two iterated
integrals are always equal, but this would be a hazardous supposition.
Here are two examples.

Let both p and v be counting measures for the set N of natural
numbers and let f (m,n) be 1 if m=nand —1 if n =m + 1 and zero
elsewhere. Then one of the iterated integrals is one and the other is
zero. This is essentially an “infinity minus infinity” trouble.

Here is an example of a different character. Let u be any measure
(like A(,.,;) on the Borel subsets of [0: 1] such that ¢([0:1]) = 1 and
u({x}) = Oforeach x in [0: 1], let v be counting measure for [0: 1], and
let f be the characteristic function of the diagonal {(x:x): x € [0:1]}.
Then, again, one iterated integral is one and the other is zero. This is a
“borel measurability problem”.

Finally, the “almost everywhere” qualifications in the statement of
the Fubini theorem are essential. It is easy to define u ® v integrable
functions f such that f, i8 not always v integrable (e.g., for Lebesgue—
Borel measure A ® A for the plane, the function that sends (x, y) to
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1//x* + y? for 0 < x2 + y? < 1 and into 0 otherwise). It is also easy to
define bounded non-negative functions f such that f, is always v inte-
grable but x— jf(x, y)dvx is not always u integrable.

SUPPLEMENT: BOREL PRODUCT MEASURE

The product of two regular Borel measures may fail to be a Borel
measure, but it has a natural extension which is a regular Borel mea-
sure, and the Tonelli and Fubini theorems extend to this measure. We
establish these facts after two preliminary lemmas.

If A is a regular Borel measure for a locally compact Hausdorff space
Z and f is a bounded member of L, (4), then f can be approximated
from above by a lower semi-continuous member of L, (1), and from
below by a u.s.c. member, because proposition 4 and its proof apply
directly to regular Borel measures. Moreover, a bounded, non-negative
u.s.c. function g that vanishes outside a compact set K is necessarily A
integrable because: it is locally #°(Z) measurable and has compact
support and hence is %#°(Z) o-simple, and since g < byg € L,(Z),
I,*(g) < co. We use these facts to establish a “hypercontinuity” prop-
erty for I, on the class of such functions g.

11 LeMMA Suppose Ais a regular Borel measure for Z, K is a compact

subset of Z, { f,}xcp is a decreasing net of real valued, non-negative

upper semi-continuous functions vanishing outside K and f = inf, f,.
Then each f, and f are J integrable and I1,(f) = inf, ., I,( f,).

PROOF The function f is u.s.c. because it is the limit of a decreasing net
of u.s.c. functions, and each real valued u.s.c. function on a compact set
is bounded because it assumes its supremum. It follows that each f, and
f are A integrable. Evidently I,(f) < inf,. p I,( f,), and the reverse in-
equality remains to be proved.

For e > 0 choose a real valued ls.c. function g such that g >
f and I,(g— f)<e. Then {(f,—g) v 0},.p is a decreasing net
of u.s.c. functions converging pointwise, and so uniformly, to
zero (observe, with Dini: if d > 0, then (),.p{z: f,(z) — g(z) > d}
= (). Consequently, for o large, f,(z) — g(z) < e for all z, whence
infyepL(f,) < I,(9) + eA(K) < I,(f) + e + eA(K). The desired equal-
ity follows. W

We assume for the remainder of this supplement that # and v are
regular Borel measures for locally compact Hausdorff spaces X and Y
respectively.

The following lemma will help establish that each compact subset 4
of X x Y is compatible with p and v; that is, for each (x, y) in X x Y, the
vertical section (y4), € L(v) and the horizontal section (y,)* € L, (p),
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the function E¥ given by E”(x,)(x) = | x,(x,y)dvy = v(,A4) is u inte-
grable, E, is v integrable, and the iterated integrals I, o E” and I, o E,
are equal.

12 Lemma If {A,},cp is a decreasing net of compact sets, each of
which is compatible with pand v and A = (\, . p A,, then A is compatible

and jj Xa (X, y) dvy d;zx = lima eD jj XA,,(xs y) dV_V d.ux

PROOF For each x in X, the vertical sections {(x4 ). }.p form a de-
creasing net of u.s.c. functions on Y so the preceding lemma implies
that v(xA) = jXA(xa y) dvy = limaeDjXAu(xs y) dVy = limaED v(an)' That
is, the pointwise limit of {E* (3, )},cpis E*(¥4).

For each compact subset C of X x Y, the function x — v(,C) is u.s.c.
for the following reasons. For x in X and e > 0 there is an open mem-
ber V of #°(Y) so .C = V and v(V) < v(,C) + e because v is regular.
Because C is compact there is a neighborhood U of x such that ,C = V
for u in U, whence v(,C) £ v(V) < v(,C) + e. Thus the function x +—
v(,C), which is E¥(y.), is upper semi-continuous.

Since the decreasing net {E*(x4 )},.p of u.s.c. functions converges
pointwise to E'(x4), I, 0 E'(x4) =lim,cpl, o E'(x,,) by lemma 11,
and I, o E,(x4) = lim,.p1, o E,(y, ) in similar fashion. But for each «,
the two iterated integrals of x,_are equal, and so this is also the case for
the limit function y,. W

If D and E are compact subsets of X and Y respectively, then the
rectangle D x E is compatible with y and v and the intersection of two
such rectangles is such a rectangle. Consequently every union of finitely
many compact rectangles is compatible with x and v. Each neighbor-
hood of a compact subset 4 of X x Y contains a neighborhood that is
a finite union of compact rectangles and the family of such neighbor-
hoods is directed by <. Lemma 12 then implies that A is compatible
with x4 and v.

The family of compatible subsets of X x Y is closed under disjoint
union, proper difference and dominated disjoint countable union ac-
cording to lemma 5, and since the intersection of two compact sets is
compact, theorem 4.6 on generated J-rings implies that every member
of #°(X x Y)is compatible with g and v. The iterated integral is count-
ably additive and so u ®4 v, where u ®4 v(B) is the iterated integral of
zg for each B in #°(X x Y), is a measure. It is called the Borel product
measure. This measure u ®g4 v is an extension of the product measure
1 ® v since the value of each at B is the iterated integral of the charac-
teristic function of B.

For convenience let A" be {4: A e B°(X x Y) and p ®4v(A) = 0}.
Here are some important properties of the Borel product.
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13 THEOREM ON BOREL PRODUCT MEASURE Each member B of
B°(X x Y)is compatible with u and v, and each iterated integral of yg is
U ®4v(B). The Borel product ®4v is a regular Borel measure that
extends 1 ® v and it is the unique regular Borel measure that extends
D x E> u(D)v(E) for compact rectangles D x E.

The 6-ring B°(X x Y) is the family of symmetric differences BA N
with B in #°(X) ® #°(Y) and N in A"

PROOF It follows from lemma 12 and the definition of u ® 4 v that for
each compact subset 4 of X x Y, u ®4v(A)is the infimum of y ® 4 v(B)
for B a compact neighborhood of 4, and consequently u ® 4 v restricted
to the family of compact subsets is a regular content and hence (theo-
rem 4.15) extends to a regular Borel measure. This measure agrees
with u ®4v on compacta and therefore also on the generated J-ring
B°(X x Y),s0 u®4v is regular.

A regular Borel measure that agrees with u ®4 v on compact rectan-
gles also agrees on the family of finite unions of compact rectangles,
hence by regularity on all compacta, and consequently is identical with
U &pv.

The family of all symmetric differences BA N with B in #°(X) ®
#°(Y)and N in .4 is a 6-ring and a subfamily of #°(X x Y). We show
that each compact set A, and hence each member of °(X x Y) belongs
to the subfamily and this will establish the last assertion of the theorem.

Each compact set A is the intersection of compact neighborhoods B
of A4 such that Be #°(X)® #°(Y), nd u ®4v(A) is the infimum of
U ®4 v(B) for these neighborhoods B. There is then a sequence {B, }, of
such neighborhoods such that y ®4v(A) = lim, u ®4v(B,). Let B =
().B, and N = B\A. Then Be #°(X)® #°(Y), Ne #° (X x Y),
U®zv(IN)=0andA=BAN. B

The last statement of the preceding theorem was established by first
proving that each compact subset 4 of X x Y is a subset of a compact
member B of #°(X)® #°(Y) such that u ®4v(B\A) = 0. It is worth
noticing that each open member U of #°(X x Y) contains an open
member V of #°(X)® #°(Y) such that p®4zv(U\V) =0 (let 4 =
U~\U, and use the foregoing result).

Both the iterated integrals and the extended integral w.r.t. u ®gv
are countably additive on the class L* of non-negative R* valued
#°(X x Y) o-simple functions, and since they agree on characteristic
functions of members of °(X x Y), they agree on L™. The class L* can
also be described as the family of non-negative ##°(X x Y) mea-
surable functions that vanish off a countable union of members of
#°(X x Y),and since each such countable union is a subset of a count-
able union of compacta, L* is just the family of non-negative locally
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Borel measurable functions with g-compact support. This establishes
the Tonelli theorem for u ®4 v and the Fubini theorem follows from it.

The usual completion of a measure is obtained by enlarging the
family of sets of measure zero, by adjoining all subsets of such sets. The
usual completion of a regular Borel measure is both inner and outer
regular but its domain generally includes some non-Borel sets. We
leave to the reader the proof that the Tonelli and Fubini theorems hold
for the usual completions of y, v and y ®4v.

Here is a summary of the principal foregoing results. (Caution: the
statement of the Fubini theorem presumes the convention on || that is
made before theorem 9.)

14 SummarY Let p and v be regular Borel measures for locally com-
pact Hausdorff spaces and let u ® z v be their Borel product.

(i) (ToNELLY) If f is a R* valued non-negative locally Borel measur-
able function with g-compact support, then so are the functions
(x> § e yydvy) € L*(w), (y+= [ f(x,y)dux) € L*(v) for each
(x,y) in X x Y, and the two iterated integrals agree with the
extended integral w.r.t. u Qg v.

(ii) (FUBINI)  If fe Li(u®z4v), then [fdu®gv={[f(x,y)duxdvy =
[T f(x,y)dvydux.

(iii) Both the Tonelli and Fubini theorems hold for the usual comple-
tions of w,vand pt gz v.

15 Notes The Fubini theorem for Borel product of regular mea-
sures has been widely assumed but the first proofs available in the
literature are due to W. W. Bledsoe and A. P. Morse, Trans. Amer.
Math. Soc. 79 (1955), 173-215, MR 16, 1008; Karel de Leeuw, Math.
Scand. 11 (1962), 117-122, MR 33, 4179; and M. Hable and M. Rosen-
blatt, Proc. Amer. Math. Soc. 14 (1963), 177-184, MR 30, 214. A close
examination of the Borel product and stronger versions of the Fubini
theorem are provided by Roy A. Johnson, Trans. Amer. Math. Soc. 123
(1966), 112—129, MR 33, 5832.



Chapter 8

MEASURES* AND MAPPINGS

A measure in the extended sense, or just a measure*, is a non-negative,
countably additive, R* valued function u on a §-ring o with u() = 0.
The function on .o/ that is 0 at ¢J and oo elsewhere is a measure*, each
measure is a measure*, and each finite valued measure* is a measure.
Classical Lebesgue measure for R (see note 4.13(i)) is the prototypical
example of a measure*. A function f is integrable (or integrable*) w.r.t.
a measure* u on .o iff it is integrable (integrable*) w.r.t. the measure
to=pul{A: Ae o and p(A) < oo} and in this case [fdu = [ fdu,.
Thus the integral w.r.t. classical Lebesgue measure is indentical with
the integral w.r.t. Al.

Each measure p on a d-ring ./ can be extended to a measure* on
the o-field .o/ of locally &/ measureable sets, usually in many dif-
ferent ways. Here is an extreme example: if X = R, o« = {, {1}} and
u({1}) =0, then Lo/ is the class Z(R) of all subsets of R, and every
measure* v on Z(R) for which v({1}) = 0 is an extension of p.

The canonical extension #, of a measure x on .o/ —or of a measure*
n—is defined by setting pu4(B) = sup{ u(A4): A € o« and A = B} for each
B in Z.o/. Evidently u, is an extension of p and each measure* on
£ .o/ that extends p is greater than or equal to p,. It is straightforward
to check that p, is countably additive, and so u, is the minimal
measure®* on ¥/ that extends u. Classical Lebesgue measure is the
canonical extension of Al

Not every measure* on £« is the canonical extension of a measure,
because each such canonical extension p, has the property: pu.(B) =
sup{p4(A): Ae Lo, A< Band p,u(A) < o} for Bin £.«/. Such mea-
sures* are sometimes called semi-finite. The measure* u, is finite



92 CHAPTER 8: MEASURES* AND MAPPINGS

valued (and thus a measure) iff x4 is a bounded function on .&/; that is, u
is totally finite. In this case u4(X) is the total 4 mass.

It is not difficult to describe the integral w.r.t. u, in terms of the
integral w.r.t. u. If B € .« and p,(B) < o, then there is an increasing
sequence {A4,},in o/ such that 4 = | J, 4, = B and u,(B) = lim, u(4,).
If B € &/,, we may assume 4 = B, but in any case u(B\A4) = 0, whence
B\ A is locally of # measure zero in the sense that u(C n (B\ 4)) = 0 for
all Cin .«/. Thus yp 4 = 0 locally g a.e. (that is, except on a subset of a
set of locally 1 measure zero). Hence yp is p, integrable iff B € £/
and for some subset D of B, y, is u integrable and y, = yg locally u
almost everywhere. If B e o/, then yp, is itself u integrable, and
consequently so is ypz. This establishes the following proposition for
characteristic function of members of ¥ .o/, and it extends directly to
linear combinations with non-negative coefficients of countably many
such functions.

1 PROPOSITION A real valued function f is integrable w.r.t. the canon-
ical extension pt, of a measure p on o iff it is £/ measurable and
agrees locally u a.e. with some p integrable function g, and in this case
§fdpy =fgdu

A p, integrable function is p integrable iff it has a support in <.

NoTE There is no difficulty in establishing this and several other prop-
ositions in this section for functions that are integrable* —that is,
integrable in the extended sense. But we give here only the simplest
forms of the results, since the propositions for integrable* functions are
straightforward consequences of these.

Suppose u is a measure* on a d-ring o/ of subsets of X, 4 is a é-ring
of subsets of Y, and T: X — Y is a map such that T™*[{B] € .o/ for
each B in 4. Then the T image measure* of x4 on 2, denoted Tgzu or
just Tu if confusion is unlikely, is defined by setting Tu(B) = sup { u(A):
A e .o/ and A =« T7'[B]} for each Bin #. If p is a measure, then Tu(B)
is just u,(T'[B]).

2 MAPPING LEMMA Suppose </ and & are 6-rings of subsets of X
and Y respectively, u is a measure on </, T: X — Y is a map such that
T ' [B]le &£« forall Bin %, and f is a real valued # o-simple function
onY.

Then fe L, (Tw) iff fo Te L,(u4), or iff fo T agrees locally u a.e.
with a member of L,(u), and in this case { fdTu is | fo Tduy, which
isequalto | fo Tduiff fo T has a supportin of,.

PROOF If Be % and Tu(B)< oo then T '[Ble o and
ux(T71[B]) < o0, s0 jZBdTH = J‘XT' s iy = IXB oTduy,. If fisa
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non-negative # o-simple function on Y, then f =) ,b,xp for some
sequences {B,}, in # and {b,}, in R*, foT =3 b,xg o T, and
§fdTu =Y ,b,Tu(B,) =Y ,bus(T'[B,])= [ fo Tduy. This fact,
together with proposition 1, establishes the lemma. W

Here is a simple example of the use of the mapping lemma. Suppose
a € R and T is translation by a, in the sense that T(x) = x + a for all
x in R. Borel-Lebesgue measure A is on # = #°(R) and is invariant
under translation, so Tz A = A. Consequently, by the mapping lemma
[fdA=[fdTzA = [ fo TdA = | f(x + a)dAx for each A integrable
function f. The same sort of equality holds for Lebesgue measure.

Here is another consequence of the mapping lemma. We are con-
cerned with the image of a measure u on ./ under a real valued map g.
If g7'[B] is locally .o/ measurable for each B in # = #°(R), and in
particular if g is &7 o-simple, then gz u is a Borel measure*, the Borel
image measure* under g. If f is a real valued Borel measurable function
on R then fo g is #.&/ measurable, and if g has a support E in &/,
and f(0) =0, then fo g also vanishes outside E. Consequently the
preceding lemma applies, and [ fdggu = [ fo gduif fe L,(ggp), or if
foge L,(p). In particular, if f is the identity function t+> ¢ for ¢t in R,
then [gdu = [tdggut for each g in L, (p).

3 COROLLARY Suppose u is a measure on o, g is real valued and <f
o-simple, and g4 u is the Borel image measure*. Then a Borel measurable
real valued function f on R that vanishes at 0 is a member of L,(ggp) iff
fogeL,(u, and in this case | fdggu = | fo gdp.

In particular, [ gdp = [tdggut for all g in L (p).

It is worth noting that if g is pu integrable and r > 0 then
rue({x:|g(x)| > r}) < |lgll;. Consequently, the image gzu is finite
at each member of #°(R) that is bounded away from 0, and if u
is not totally finite, each Borel neighborhood of 0 has infinite g4 pu
measure.

We will be concerned with mappings of Borel measures for intervals.
The Borel d-ring #8°(E) of a (possibly infinite) interval E is the d-ring
generated by the family of compact subsets of E or, alternatively, by the
closed intervals [c:d] contained in E. If E is a closed interval [a:b],
then #°[a:b] is the family #°(R)|[a:b] of all members of #°(R) that
are subsets of [a:b]. For each interval E, the Borel o-field #(E) is
L °(E), which is identical with #(R)||E. A Borel measure* (measure)
for E is a measure* (measure, respectively) on #°(E).

If E is a (possibly infinite) open interval, E = (a:b) with —o0 < a <
b £ co, then there is a one-to-one monotonic continuous map with
a continuous inverse on (a: b) onto R—for example, if a and b are finite,
then x+— 1/(b — x) — 1/(x — a) for x in (a:b), is such a map. Conse-
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quently results about Borel measures for R imply results about Borel
measures for (a:b). Here is an example.

If f is an increasing real valued function on (a:b), then the “length
function” given by [c:d]+— f,(d) — f_(c) for each closed subinterval
[c:d] of (a:b), is a pre-measure (see chapter 2) and hence, by prop-
osition 4.3, it extends to a unique Borel measure v, for (a:b). The
measure v, is the Borel measure for (a:b) induced by f. If g is another
increasing function on (a:b) then v, = v, iff g is sandwiched between
¢+ f- and c + f, for some constant c¢. Every Borel measure pu for
(a:b)is induced by some f—for example (proposition 1.4), if ¢ € (a: b),
by x> ulc:x] — p{c} for xin[c:b)and x— —pu[x:c] + p{x} for x in
(a:c). Each increasing function inducing g is called a distribution func-
tion for y. Such a function normalized to be right continuous, is unique
to an additive constant.

Borel-Lebesgue measure A(,.; for (a:b) is just the restriction of
Borel-Lebesgue measure A to the §-ring #°(a:b). We shall be con-
cerned with the Borel image FA,,.,, of A, under an increasing real
valued function F on (a:b). Such a function F is %(a:b) — #(R) mea-
surable and is continuous except at the points of a countable set. In
particular, F differs from the right continuous function F, only at the
points of a countable set, consequently the symmetric difference of
{x: F(x) e E} and {x: F,(x) € E} has A measure zero for all E, and
hence FA., = F.A,.;- In a similar fashion one sees that fA,,,) is
the same for all f sandwiched between F_ and F,.

The quasi-inverse F~ of an increasing function F on (a:b) to R is
defined as follows. Let « = inf, F(x) and § = sup, F(x). For each mem-
ber t of the open interval (a: f) the set {x: F(x) 2 t} is not empty and
is bounded below and we define F~(z) to be inf{x: F(x) = t} for ¢t in
(e: B). Evidently F~ is just F~! if F is continuous and one-to-one. We
note that F~ = (F,)~, and that F~ is always left continuous (if {¢t,},
is an increasing sequence in («: ) converging to a member t of (a:f)
then {{x: F,(x) 2 t,}}, is a decreasing sequence of half infinite intervals
whose intersection is {x: F,(x) = t}, whence lim, F, ~(t,}) = F. ~(1)).

4 THEOREM Suppose F is an increasing real valued function on a
(possibly infinite) interval (a: b), o = inf, F(x) and B = sup, F(x).

Then the Borel image FA,.,,, is the Borel measure induced by F~,
and the Borel measure induced by F is the Borel image measure F™ A, . 4.

PROOF We may assume without loss of generality that F is right con-
tinuous, and hence that F~(t) is the smallest member of {x: F(x) = t}
for each ¢ in (x:f8). Consequently F(x) <t iff x < F~(t), whence
F(x) = tiff x = F~(1).

If a<u<v<f, then Ay ,,(F'[u:v)=A({x:u=<F(x)<v})=
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Ag.ny({x: F7(u) £ x < F~(v)}) = F~(v) — F~(u). Since F~ is left con-
tinuous, F~(v) — F~(u) = v[u:v) where v is the measure induced by F.
It follows that F A, agrees with v on 2°(«: f).

Ifa<c<d<b, then FYAy, 45(c:d] = Ay p({t:c < F7 () £d}) =
Ag.p({t: F(c) <t £ F(d)}) = F(d) — F(c). Hence F~ A, 4 is the mea-
sure induced by F. W

A particular consequence of the preceding result is that each Borel
measure u for an open interval is the Borel image of A, for some a
and B, because u is induced by an increasing function—any distri-
bution function F for u will do. We obtain, after a preliminary lemma,
a representation theorem for p in the case that F is continuously
differentiable.

Suppose v is a measure on a §-ring ¢ of subsets of X and f is locally
v integrable on X, in the sense that fy, € L,(v) for each 4 in &/. In
this case, the indefinite integral fv of f w.r.t. v is defined by fiv(4) =
| fxadv for A in . (We shall later extend the notion of indefinite
integral to a more general situation.)

5 LeMMA If w is non-negative and locally v integrable, then the in-
definite integral w.v is a measure on </, fe L,(w.v) iff fwe L(v), and
in this case [ f d(w.v) = | fwdv.

PROOF If {4,}, is a disjoint sequence in .o/ and A = Y , A, € &, then
limy Y N, wv(A4,) = [wy,dv = w.v(4) by B. Levi’s theorem and it fol-
lows that w.v is a measure on .. If f is a non-negative member of
L,(w.v), then f =) ,b,xp for some b, 20 and B, in « for each n,
so fw=Y ,b,wys, . Hence [ fwdv=73 b, fwyg dv=73 ,b,w.v(B,) =
[fdwy). =

If a distribution function F of a Borel measure u for a (possibly
infinite) interval (a:b) is continuously differentiable, then u[c:d] =
faF (tydt = [ F' Y.y Na.py = F'Aa.py[c:d] for each closed subinter-
val [c:d] of (a:b). Consequently, since F'.A, ., is a measure that agrees
with u on closed intervals, it agrees with u on #°(a:b).

6 ProrosITION If a distribution function F of a Borel measure j for
(a:b)is continuously differentiable, then p = F'.A,.,, and hence j fdu=
[ fF dAg., forall finL,(p).

The following result is an easy consequence of proposition 6 and
theorem 4, which give two different descriptions of the measure in-
duced by a continuously differentiable distribution function. However,
a direct proof is easy as well. (An extension of the result is given in
a supplement.)
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7 PROPOSITION (IMAGES OF A, ,, UNDER SMOOTH Maps) If T is a
continuously differentiable map of (a:b) onto (a:B) and T’ is never zero,
then the Borel image TyA,, ., is the indefinite integral |(T ™'Y |.A. -

PROOF If [y:6] = (a:pB), then TzA, ,[y:6]= A(a:b)(T‘l[y:(i]). If
T'(x) >0 for each x, then A, (T '[y:6]) is T'(8)— T '(y) =
S (T dA 5y = (T Ay p[y: 0], and if T'(x) <0 for each x,
then Ay, T '[y:6] is T'(p)— T7H0) =[5 — (T dAy.p =
[(T7'Y[.Aq.p[y:0]. The proposition follows. M

It is worth noticing that the usual convention for a definite integral
disguises the necessary absolute value in the statement of the preceding
result. Explicitly: suppose T is continuously differentiable on (a:b)
onto (xx: fB), T'(x) > 0 for all x, [c:d] = (a:b), and g is a non-negative
Borel measurable function on («: ). Then, according to the preced-
ing proposition and the mapping lemma 2, j(x(w,)g) oTdA,., =
j(x(c 29 (T71Y dA,. 5. In the usual notation for definite integrals, this
becomes [T g(T(x))dAy.px = [Eg(W(T 'Y (y)d A, 4y. This for-
mula is also correct if T’ is always negative, provided we agree that
|1- W@is — [T T7' (@) < T (c).

A variant of the formula j7 W@goTdAy = [1g9/T dA,.,
is obtained by setting g =foS§ and S=T7"! We then have
(58 fdAu., = f2f( (y)dA. Yy for each non-negative Borel
measurable functlon f on (a b) and each continuously differentiable
map S of (o:8) onto (a:b) such that §’ is everywhere positive. This is
sometimes called the “change of variable” formula. If f is continuous
and hence the derivative of some function F on (a:b), then the pro-
position becomes (58 F'dA,., = [¢(F o SYdA.,, and in this case
the formula follows from the fundamental theorem of calculus. We
observe: this change of variable formula does not require that S’ be
non-vanishing nor that S be one-to-one.

It is important to characterize Borel measures p that are indefinite
integrals w.r.t. A. Each such measure vanishes at each Borel set of
A measure zero, but it would be a bold conjecture that each Borel
measure u vanishing at A null Borel sets is an indefinite integral with
respect to A. This is in fact the case—it is a special case of the Radon—
Nikodym theorem established in the next chapter. Here we content
ourselves with showing how to recover the function w (at least A a.e.)
from the measure w.A.

For each locally A integrable function w and for h > 0, let Ax(w) (x) =
(1/h) [3**wd A = (1/h)w.A((x: x + h)) and let T,(w)(x) = w(x + t). Thus
A, (w)(x) is the average w.r.t. A of w over (x: x + h).

8 LemMa If weL,(A) and h>0, then |A,(Ww)—=w|;=
(1/h) f2-o I T,(w) — w|, dAs < sup{| T(w) — wil;: s € [0:h]}.
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PROOF We see: ||4,(w) — wl|, = j|(1/h)j§‘§;‘((w(t) — w(x))dAt|dAx
< (1/h)”(x:x+,,)|w(t)— w(x)|dAtdAx which, because A is transla-
tion invariant, is (l/h)Hlo:,,”w(x + t) — w(x)| d At d Ax, which by the
Fubini theorem is (1/h) [io.n | | T.(w)(x) — w(x)| d Ax d As. This estab-
lishes the first inequality and since ||T,(w) — w|l; < 2|w|; < oo, the
second is clear. W

The preceding lemma shows that if w € L (A), then 4,(w) converges
in the norm of L (A) to w as h goes to 0, since s+ T,(w) is a continu-
ous function on R to L,(A) according to 6.11 and Ty(w)=w. If u =
w.A, then A,(w)(x) is u((x: x + h))/A((x: x + h)), which is sometimes
abbreviated as (Ayu/A,A)(x), and its limit w, as h goes to 0, is
denoted (du/dA) (x) (it is called a Radon—Nikodym derivative of u w.r.t.
A and is determined A a.e. only). If F is the distribution function of
u, then A4,(w) at x is the difference quotient (F(x + h) — F(x))/h. We
record:

9 THEOREM (LEBESGUE) If we L,(A) and pu= w.A, then A u/AA
belongs to L, (A) and converges in norm to w as h goes to zero.

If w is an arbitrary locally A integrable function, then the measure
w.A still determines w, A a.e., because the preceding applies to wy,
for each interval [a: b].

If F is a distribution function of w.A, the preceding version of
Lebesgue’s theorem yields that (1/h) (F(x + h) — F(x)) convergesin L -
norm to w as h goes to zero. The best version of Lebesgue’s theorem
asserts the pointwise convergence of (1/h)(F(x + h) — F(x)) to w(x)
for almost every x. However, the pointwise analysis takes additional
machinery. A good account of these matters can be found in (E. Hewitt
and K. Stromberg [1], I. E. Segal and R. A. Kunze [1], and R. L.
Wheeden and A. Zygmund [1].)

10 NoOTES

(i) A Borel measure which is an indefinite integral w.r.t. A vanishes
at each singleton {x}, so the corresponding distribution function F is
continuous, and moreover, F is the indefinite integral of its derivative
(which will exist a.e. by Lebesgue’s theorem). On the other hand there
are continuous (and even continuous and strictly increasing) distribu-
tion functions F with F’(x) = 0 for almost every x—the corresponding
Borel measures are singular and are carried on sets in #(R) which are
A null (see chapter 9).

(i) Oxtoby and Ulam have characterized Borel measures y which are
Borel images of A under a homeomorphism of R onto itself—u is such
a measure iff y{x} = 0 for each x, u(U) > 0 for each open Borel set U
and u is not totally finite. See Ann. Math. 42 (1941), 874-920.
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SUPPLEMENT: STIELTJES INTEGRATION

We have seen (Corollary 3) that an arbitrary integral [gdu can be
computed as an integral with respect to a Borel measure v = gzpu for
R. We will show that, at least for a continuous function f on a closed
interval [a:b], | f du can be computed conveniently by a Riemann type
approximation in terms of a distribution function for yu; that is, as
a Riemann-Stieltjes integral.

Suppose that F is an increasing function on the closed interval [a: b]
and that —oc < a < b < o0. Then the extension of F to R that is con-
stant on (—oo:a] and on [b: ) induces a measure on #°(R). This
measure, restricted to the §-ring #°[a:b] of those members of #°(R)
that are subsets of [a:b], is a Borel measure for [a:b]—it is the
measure induced by F. If x is the measure induced by F then p{a} =
F.(a) — F(a), p{b} = F(b) — F_(b) and u[c:d] = F,(d) — F_{(c) for all
cand d in (a:b).

Each Borel measure for [a:b] is induced by an increasing function
on [a:b] just as each Borel measure for R is induced by a distribution
function on R. We see this as follows. A Borel measure u for [a:b] has
a natural extension u” to a Borel measure for R, given by u"(4) =
u(A n[a:b]) for A in #°(R). Every distribution function for " is
constant on (—oo:a) and on (b:o0), and there are such distribution
functions that are constant on (—oc:a] and on [b: o). The restriction
of one of these to [a:b] induces u.

Suppose that u is the Borel measure for [a:b] induced by an in-
creasing real valued function F on [a:b]. We describe a method of
computing | f du—at least for suitable functions f—directly in terms
of the distribution function F.

A subdivision ¢ = {0, }¢Z! of [a:b] is a finite sequence ¢ such that
a=0, <0, <' <0, =b. Forabounded real valued function f on
[a:b] let m; and M, be the infimum and supremum respectively of f on
the open interval (o;: 0;;, ). We adopt, for convenience, the convention
that F_(¢,) = F(o,) and F (0,4+,) = F(o,4,), and we set L(s,f,F) =

2! f(0))(Fy(o;) — F_(0;)) + Z?ﬂ m(F_(0;+1)— Fi(0;)) and U(e,f, F)
the same sum with m; replaced by M,;. If + is the step function that
agrees with f at points of the subdivision and is m; on each interval
(6;:0;4,), then v < f and L(o, f, F) = [ v du, where p is the measure
induced by F. Similarly, there is a step function u, f < u such that
Ul(o, f,F) = [udp. It follows that if f is u integrable, then L (o, f, F) <
[ fdu < U(a, f,F).

The function f is Stieltjes integrable, or Riemann—Stieltjes integrable
w.r.t. F over [a:b] iff the supremum, sup, L (o, f, F), over all subdivi-
sions ¢ of [a:b] is equal to inf, U(o, f, F), and in this case the Stieltjes
integral (& f(¢) dF (v) is sup, L (o, f, F) = inf, U (o, f, F). Evidently: if f is
u integrable and is also Stieltjes integrable w.r.t. F, then | fdu=
[ F(0)dF ()
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Finally, each continuous function f is Stieltjes integrable w.r.t. F.
This follows at once from the uniform continuity of f and the obser-
vation that U(s, f,F)— L(0, f,F) = Z?q (M; — m)(F_(6;4,) — Fi(0:)).
Thus:

11 PROPOSITION If a bounded function f on [a:b] is Stieltjes inte-
grable w.r.t. an increasing function F and is also integrable w.r.t. the
measure p induced by F—and in particular if f is continuous—then

[ dF () =] fdp

If F(t) = t for each ¢ in [a:b], then the Stieltjes integral [} f(¢) dF (1)
is just the Riemann 1ntegra1 {5 f(t)dt. We notice that, with our con-
vention, [5gdP = [5g(t)dPt would denote the integral of g w.r.t. a
measure P, whereas j” (t)dP(t) denotes the Stieltjes integral w.r.t. a
function P on [a:b].

NOTE A bounded function f on [a:b] may be Stieltjes integrable w.r.t.
an increasing function F without being continuous on [a:b]—for in-
stance f = y(,. It turns out (see H. J. TerHorst, Amer. Math. Monthly
91 (1984), 551-559) that f is Stieltjes integrable w.r.t. F iff f is con-
tinuous p a.e. on the set Z, = {x € [a:b]: u{x} = 0}. In particular, f is
Riemann integrable iff the set of points of discontinuity has Lebesgue
measure zero. W

It is not surprising that some standard theorems involving Borel
measures were originally results about Stieltjes integration. The Riesz
representation theorem 6.5 is a classical instance. Here is (approxi-
mately) the original form of the result.

12 CoROLLARY Suppose I is a positive linear functional on the space
C of real valued continuous functions on [0:1], and F(t) = inf{I(h): he C
and h 2 0.4} for 0 <t < 1and F(0) = 0.

Then I(f) = fo (t)dF(t) for all f in C.

PROOF The functional f+—I(f|[0:1]), for f in the class C.(R) of
continuous functions on R with compact support, is a positive linear
functional on C,(R). Hence, by 6.5, there is a Borel measure v for R
such that I( f|[0:1]) = [ f dv for f in C.(R). The measure v vanishes on
Borel sets outside [0: 1] because: if [a:b] is disjoint from [0: 1], then
there is f in C.(R) which is 1 on [a:b], zeroon [0:1]and 0 £ f £ 1,
whence v[a:b] < | fdv =1I(f|[0:1]) = 0. It is straightforward to ver-
ify that F induces v||#°[0:1], and the corollary follows. B

A Stieltjes integral [5 f(t) dG(¢) reduces to a Riemann integral if G is
an increasing function that is sufficiently smooth. In particular this is
the case if G has a Riemann integrable derivative.
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13 PROPOSITION Suppose g is a non-negative Riemann integrable
function on [a:b] and G(x) = [} g(t)dt + ¢ for x in [a:b]. Then each
Riemann lntegrable funcnon f is Stieltjes integrable over [a:b] w.r.t. G
and (5 f(1)dG(1) = [5 f(£)g(t) dt.

PROOF Suppose o = {0;}%X! is a subdivision of [a:b], M; and m; are
respectively the supremum and infimum of f on (o;: g,,,) for each i and
M is the supremum of g on [a:b]. Since G is continuous the upper

Riemann-—Stieltjes sum Uf(a, f G) reduces to 1 M(G(o;,,) —
G(o;)) whence U (o, f G) — j" =Y, |3 H(M f®)g(t)de.
Lo, f,G)—[b f()g(t)dt=Y 4 1L,i“(m f(t))g(t)dt. Thus Ul(o, f,G)—

L(a,f,G) is majorlzed by MY &, [0 (M, —m)dt =M%, (M, —
m;)(0;+, — 0;), which is small if max; o; is small, because f is Riemann
integrable. The proposition follows. W

SUPPLEMENT: THE IMAGE OF A, UNDER
A SMOOTH MAP

Proposition 7 on the image of A ,.,, under a smooth map T generalizes
to higher dimensions. We consider first a linear map T:R? - R”. The
determinant of T is denoted det 7.

14 THEOREM If alinear map T: R? — RP® is non-singular and f e C.(R?)
then [ fdA, = [|detT|fo TdA,.

PROOF According to proposition 4.14 the integral of a member f of
C.(R?P) w.r.t. A, can be obtained by iterated integration w.r.t. A. It
follows that if R is a simple reflection in the plane x; = x;, i # j, so
R(x); = x;, R(x); = x; and R(x), = x, for k different from i and j, then
jfdAp = | fo RdA,. Evidently |det R| = 1. More generally, if R is a
composition of such simple reflections (for varying i and j), then
fdA,=(|detR|fo RdA, and |det R| = 1.

A linear map S: R? - R” is a simple shear if for some i, j with i # j
and some scalar ¢, S(x);, = x; + tx; and S(x), = x, for k # i and for all
x. Proposition 4.14 shows that for all simple shears, and hence for each
composition S of simple shears, | f dA, = [ fo SdA, forall f in C.(R?).
Evidently |det S| = 1 for each such composition.

Proposition 4.14 also shows that if D is a non-singular diagonal map
of R? to R? (that is, if for some nonzero A, 4,...4, and for all x,
D(x); = /;x;), then { fdA, = [|A1,4,...4,| fo DA, = [|det D|fo DdA,.

Finally: A square matrix can be reduced to a diagonal matrix by
elementary row operations, and it follows that if T is an arbitrary
linear map, then S o To R is a diagonal map D for some composi-
tion S of simple shears and some composition R of simple reflections.
But the inverse of a simple shear is a simple shear and each reflec-
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tion is its own inverse and so T is of the form S o D o R. Hence
|det T| = |det Sdet Ddet R| = |det D| and so [|detT| fo TdA,=
[ldetS o D o R|f o S o Do RdA, = fldetD| f o S o DdA, =
[foSdA,=(fdA,. W

A function T on an open subset of R? to R? is differentiable at a point
x of its domain and T'(x) is its derivative, iff T'(x) is a linear map
of R? to R” such that (T'(x + h) — T(x) — T'(x)(h))/||h]| converges to
zero as ||h|| converges to zero. The matrix of T'(x) with respect to the
usual basis for RP, which has i —j entry 0(T(x));/0x;, is called the
Jacobi matrix at x and the absolute value of its determinant, which is
the same as |det T'(x)], is the Jacobian of T at x.

A map T: R? - RP is called affine iff it differs from a linear transfor-
mation by a constant; that is, T(x) = L(x) + ¢ for some linear map L,
some ¢ and all x in R?. In this case T'(x), for every x, is the linear map
L, and in fact affine maps are just those that have constant derivatives.

If L: R? - R? is linear and C(x) = x + ¢ is translation by ¢, then
C o L(x) = L(x) + ¢ = T(x) and since integration w.r.t. A, is invari-
ant under translation, the preceding theorem implies that | fdA, =
{ldet T'| fo TdA, for all f in C,(RP), provided |det T'| # 0. We agree
that an affine map T is non-singular if |det T'| # 0.

15 CoroLLARY If T:RP - RP is a non-singular affine map, then
[fdA,=[|detT'|fo TdA, for all f in C.(RP), and A,(T[A]) =
|det T'| A, (A) for all A in B°(RP).

PROOF We prove the second assertion. If B is a compact subset of
R?, then there is a decreasing sequence { f, }, in C,(R?) that converges
pointwise to yp. Consequently A,(B) = lim, [ f,dA, = lim,|det T'| x
[fuoTdA,=|detT'|[ygo TdA,=|det T'|A,(T*[B]), and if B =
T[A], then A, (T[A]) = |det T'| A,(A). Each open member of %°(R?)
is the union of an increasing sequence of compact sets A4, and it follows
that A, (T[U] = |det A’| A,(U). The same equality holds for an arbi-
trary member B of #°(R”) because of regularity. W

Each differentiable function T on R? to R? is, intuitively, “locally
almost affine,” and this suggests that the preceding result, together with
a subdivision argument, could show that A, (T[A4]) = jA |det T'|dA,
for suitable T and 4. We establish a theorem of this sort after a couple
of lemmas.

The half open cube Q,(a) in R? with center a = (a,,a,...a,) and half
width r > 0 is the cartesian product X?-; [a; — r:a; + r). Norm R? by
setting | x|, = sup{|x;|: i =1,2...p}. Then the open ball about a of
radius r is contained in Q,(a), Q,(a) is contained in the closed ball, and
its diameter is 2r. As Q,(a) can be subdivided by bisection into 27
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disjoint half-open cubes of half width r/2, it follows that each half open
cube can be subdivided into disjoint half open cubes of small diameter.
Further:

16 LeMMA Each open subset W of R? is the union of a disjoint count-
able family of half open cubes Q of small diameter whose closures are
subsets of W.

PROOF Let o/ be a disjoint countable family of half open cubes that
covers R?. For e > 0 let # be the family of all half open cubes Q that are
obtained from members of .o/ by successive bisections and for which
Q™ < W and dia(Q) < e, and let € be the subfamily of # consisting
of those members of # that are proper subsets of no member of 2.
Evidently % is a disjoint family, and for each x in W the class
{Q: x € Q € #} is non-empty and linearly ordered by = and its largest
member belongs to %, so € covers W. B

The space of all linear maps of R? to R” is normed by setting || 4|},
the operator norm of A, to be sup{|A(x)|: x € R” and | x|, < 1} for
each map A, and so |A(y)|l, = ||41]|lyll, for all y in R?. In particular,
we note that if [ is the identity map of R?, then A(h) =h + (4 — )(h) =
h + (a vector of length at most |A — I|| [h] ).

A map T on an open subset U of R? to R” is continuously differen-
tiable iff x+— T'(x) is a continuous map on U to the space of all linear
maps of R? to R” with the operator norm. If T is continuously differ-
entiable and one to one on U, and the Jacobian of T does not vanish,
then by the inverse function theorem, V = T[U] is open, T~! is con-
tinuously differentiable on V and (T 1) (Tx) = (T'(x)) ! for xin U.

For each open subset U of R? let #°(U) be the d-ring generated by
the family of compact subsets of U, or what is the same thing, the class
of members B of #°(R?) such that the closure B~ of B is a subset of U.
Let Ay be A, restricted to the family #°(U).

17 LemMA Suppose T: U — RP? is one to one, continuously differenti-
able, and has a non-vanishing Jacobian on an open subset U of RP, that
V = T[U] and that B € #°(U). Then inf{|det T'(c)|: c € B} Ay(B) £
Ay(T[B]) < sup{|det T'(c): ¢ € B} Ay(B).

PROOF Suppose first that W is a bounded open set with W~ < U and
a and a + h are members of R” such that the line segment {a + th:
0=<t<£1} is contained in W. Then, because (d/dt)(T(a + th) =
T'(a+ thy(h), T(a+ h) — T(a) = [, T'(a + th)(h)dt, where the Rie-
mann integral of an integrable R” valued function F on [0:1] is
given by ([l_oF(¢)dt), = [}-o F(t);dt for i=1, 2, ...p. Evidently
Iizo F(8)dt]|,, < max;sup,|F(t);].
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If ceU, T'(c )_ (T(@a+h)—T(a) = [l-oT'(c)™" o T'(a + th)(h)dt
=h+ [lo(T'(c)™" o T'(a+ th) —I)(h)dt. If ¢, a and a + h all belong
to a half—open cube Q and Q™ = W, then T'(c)"'(T(a + h) — T(a)) =
h + (a vector of length at most sup{|T'(c)™ o T'(b) — I|: b€ Q and
c € Q}|lhll,)- But T’ is continuous and invertible at each point of the
compact set 07, and a uniform continuity argument yields fore > 0 a
d>0 such that sup{|T'(c)"'eT'(b)—I|:beQ and ceQ}<e
if diaQ < d. According to the preceding lemma, W is the union
of a disjoint countable family ¥ of cubes of diameter less than
d. If Q is one of these with center a and width w, then 0 <w <
d and T'(¢)"*(T(a + h) — T(a)) = h + (a vector of length at most

ellh],), whence T'(c)"'[T[Q]— T(a)] < {x: lxll, <w(l +e)}, so
A (T ()" [TLQ]1]) £ (1 + e)?Ay(Q). Corpllary 15 then implies that
Idet T () AL(T([Q]) £ (1 + e)? Ay(Q) for each ¢ in Q. Consequently
Ay(T[Q]) < sup{ldetT'(c)|: c € W} (1 + )’ Ay(Q), and summing for
Q in € establishes the same inequality for W and for all e > 0. Hence

Ay (T[W]) £ sup{|det T'(c)|: c € W} Ay (W) for all open sets W with
W~ cU.

Suppose that B e #°(U), e > 0 and W is a bounded open set such
that Bc W, W~ < U and Ay(W) < Ay(B) + e. Let b = sup{|det T'(c)|:
ceB} and W,={xe W:|detT'(x)| <b+e}. Then Bc W, c
and by the preceding result, A, (T[B]) = AU (T[W,])
b+ e)Ay(W,) = (b+ e)(Ay(B) + e) Consequently A, (T[B])
bAy(B) = sup{|det T'(c)|: ¢ € B} Ay(B) for all B in #°(U).

The result just established applies also to the member T[B] of Z°(V)
and the map T7': V> U, so Ay(T ' [T[B]]) £ sup{|det(T ') (c)|:
ce T[B]} A (T[B]), det(T Y (c) = (det T'(T! (c)))‘1 for ¢ in T[B],
and therefore Ay(B) = (1/inf{|det T'(b)|: b € B})A,(T[B]). Thus
Ay(B)infs|det T'| < Ay(T[B]) < Ay(B) supy|det T'|.

IAIA

18 TueorReM If T is a continuously differentiable one to one map with
non-vanishing Jacobian on an open subset U of RP and V = T[U] < R?,
then Ay (T[B]) = (g|det T'(x)|dAyx for each member B of #°(U).

PROOF Suppose B e #°(U) and By; = {x € B: (i — 1)/k < |det T'(x)| <
i/k} for positive integers k and i. Then B,; € #°(U) for each k and
i and in view of the preceding lemma, A, (T[B;]) lies between
((i — 1/k)Ay(B) and (i/k)Ay(B). It is evident that [ |det T'(x)|dAyx
also lies between the same two bounds for each k and i. Since B =
(J: By: for each k it follows that |A,(T[B]) — [zldet T'(x)|dAyx| <
Y. (1/k)Ay(B;) = (1/k)Ay(B) and consequently A, (T[B]) =
{pldet T'(x)|dAyx. H

There are immediate consequences of the foregoing. The Borel image
TaAy is given by TuzAy(B) = Ay(T '[B]) for each B in #°(V),
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and by the preceding theorem, Ay(T'[B])= [gldet(T ) |dA,.
Consequently the Borel image TzA, is the indefinite integral
|det(T71Y|.Ayp.

The “change of variable formula” is also a consequence. If C € #°(V)
then [ycdAy = Ap(T[T'[C]]) = [r-1i¢;|det T'|dAy = f(xc o T) x
|det T'|d Ay, and it follows that | fdA, = [(fo T)|det T'|d Ay for all
fin L,(Ay). Thus:

19 CoroLrary If T is a continuously differentiable one to one map
with non-vanishing Jacobian on an open subset U of R? and V = T[U],
then

(i) the Borel image TgAy is the indefinite integral |det(T ') |.A, and
(i) [ fdAy = [(fo T)|det T'|dAy for all f in L, (Ay).

NOTES

(i) A form of the preceding results holds for maps T: U — V that are
regular, in the sense that 77! [K] is compact for each compact subset
K of V, but are not necessarily one to one. If T is regular and |det T'|
is non-vanishing, then T is locally one to one by the implicit functions
theorem, and it can be shown that each f in C.(V') is the sum of finitely
many members f7, ... f, such that f; o T has a compact support K; and
T is one to one on an open set U; containing K,;. Corollary 19 can
then be used to conclude that { f;d A, = {|det T'| f; o T d Ay for each i,
and hence the same equality for f.

Part (i) of the corollary takes a slightly different form in this case:
if for y in V, @(y) =Y {1/|det T'(x)|: x such that T(x)=y}, then
T%AU = (pAV

(i) If |det T'| vanishes at points of U, then TzA, may fail to be an
indefinite integral. For example: if T is a constant ¢ on a compact set
A and Ay(A4) # 0, then TzpAy({c}) = Ay(A) # 0, and TzAy cannot be
an indefinite integral w.r.t. A,.

(iii) The hypothesis “T is continuously differentiable” can be weak-
ened substantially. See for example W. Rudin [1] or K. T. Smith [1].

SUPPLEMENT: MAPS OF BOREL MEASURES¥*;
CONVOLUTION

Suppose X is a locally compact Hausdorff space, u: #°(X) —» R* is
a Borel measure for X and p, is the canonical extension of u to
L B°(X). That is, p4(B) = sup{p(A4): A € #°(X) and A = B} for each
member B of ##°(X). Then u, is a measure* (a measure in the ex-
tended sense), and if u is a regular measure then ., is inner regular
in the sense that y,(B) = sup{ux(A): A a compact subset of B} for
each B in #%°(X). On the other hand, an inner regular measure* v
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on #£4%°(X) that is finite on compact sets is evidently the canonical
extension of the regular Borel measure v| #°(X).

Suppose that X and Y are locally compact Hausdorff spaces and
that T is a continuous map of X into Y. If B is a compact subset of Y,
then T '[B] is closed and therefore locally #°(X) measurable, and
consequently every compact set belongs to the o-field {4: T7'[A4] is in
F#°(X)}. Hence T '[B] € £%°(X) for each B in #°(Y).

The Borel image Tgu, or just Tu, of an inner regular measure* u
on #°(X) under a continuous map T: X — Y is defined by Tu(B) =
sup{p(A): A e #°(X)and A = T '[B]} for each member B of %°(Y).
If p is inner regular, then for B in #°(Y) there is a compact subset D
of T™Y[B] such that u(D) is near Tu(B), so T[D] is a compact subset
of B and Tu(T[D]) = u(D), and hence Tu is inner regular. Thus the
Borel image of an inner regular measure* is inner regular.

If u is a regular Borel measure for X and T: X - Y is continuous,
then the Borel image measure* Tu is given by Tu(B) = u.(T '[B])
for each B in #°(Y). In this case lemma 2 applies directly and yields
the following.

20 PROPOSITION Suppose X and Y are locally compact Hausdorff
spaces, T: X — Y is continuous, u is a regular Borel measure for X and
Tu is its Borel image measure®.

Then a #°(Y) o-simple function f belongs to L (Tw) iff fo T is in
L, (py), or iff fo T agrees locally u a.e. with a member of L (u), and
in this case § fdTu is | fo T duy, which is equal to | fo Tdu iff fo T
has a o-compact support.

There is no serious difficulty in extending the preceding proposition
to the integral* (integral in the extended sense) w.r.t. Tu, but one
has to be a little careful about infinities even if X is g-compact. Let
L*(Y) be the class of countable linear combinations with non-negative
coefficients of characteristic functions of members of #°(Y). These
functions can also be described as the non-negative locally #°(Y)
measurable R* valued functions with g-compact support, and each of
them is integrable* w.r.t. every Borel measure for Y. But this is not
necessarily the case for a measure* Tu. (Eg,let X =7 x 27, Y =127,
T(p,q)=p + q for (p,q) in X, and let u be counting measure. Then
Tu(A) = o for every non-empty subset A of Y, and only the zero
function is Ty integrable*.)

21 PROPOSITION Suppose u is a regular Borel measure for X,
T:X — Y is continuous and X is o-compact.

If fe L*(Y),then fo T is uintegrable*, and ifjfo Tdu < oo, then f
is also Tu integrable*. If f is Tu integrable*, then fo T is u integrable*
and [ fdTu = [ fo Tdp.
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PROOF The function fo T is non-negative, locally #°(X) measurable
and has a ¢-compact support, so fo T =) ,a,x, With a, >0 and
A, € #B°(X) for each n. Hence fo T is u integrable*,

If {foTdu<oo and B is a member of #°(Y) such that m =
infyep f(y) > 0, then o0 > { fo Tdu 2 [(myz) o Tdu = mTu(B). But
is a countable linear combination with non-negative coefficients of
characteristic functions of such sets B of finite Tu measure, so f is Ty
integrable*.

If f is Ty integrable*, then f =), b, x5 with b, = 0, B, € #°(Y) and
Tu(B,) < oo for all n. Then b,yp is Tu integrable and jb,,xBndTu =
{ byxs, o T dp by the preceding proposition. Summing on n then shows
that { fdTu=[fo T dy W

Let us suppose that G is a locally compact Hausdorff topological
group, and that T': G x G — G is the group map given by I'(x, y) = xy
for all x and y in G. The convolution z % v of regular Borel measures y
and v for G is defined to be the Borel image measure* I'uy ®4 v. Thus
for A in #BG), uxv(A)=(u®sv)u({x.)): xy € A}) = sup{ s @y v(B)
Be #°(G x G) and I'[B] < A}. We can compute u x v(4) as an
iterated integral {{y,(xy)duxdvy. In case G is g-compact, foT
is u ®g v integrable* for f in L*(G) according to the preceding
proposition. The Tonelli theorem 7.14 then applies and it exhibits
[ foTdu®g v as an iterated integral.

Explicitly: for each x and y, x+— f(x, y) is u integrable*, y — f(x,y)
is v integrable*, y|—>jf(x, y)dux is v integrable*, x— [ f(x, y)dvy is p
integrable*, and the integral in the extended sense of f w.r.t. u @z v
is identical with the two iterated integrals. This fact, together with the
preceding proposition, establishes the following.

22 ProrosITION If u and v are regular Borel measures for a o-
compact G and fe L*(G), then [ foTdu®gzv=|{f(xy)duxdvy =
§§ fxy)dvydpx.

If [ is pxv integrable*, then jfdu xv=[foldu®zgv. If
[foTdu®gv< oo, then fisu x vintegrable*.

Here is an example of the use of these results. Suppose u, v and # are
regular Borel measures for the g-compact group G,  is left invariant,
fe L*(G) and h is a member of L*(G) such that v = h.y (that is,
v(4) = [,hdy for each A in #°(G)—whence [gdv = [ghdy for all
g in L*(G)). Then [ fo Tdu®z v = [ | f(xy)h(y)dnydux, and since #
is left invariant, this is { [ f(y)h(x™"y)dny dux. Consequently the func-
tion yrs [h(x"'y)dux, which we denote u * h, belongs to L7(G)
and [(px h)fdn=(foTdu®gv. If f is px v integrable*, and in
particular if [foTldu®gv < oo, then [(uxh)fdn=[fduxv=
[ fdu % (hn).
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If, further, u = g.n for some g in L*(G), then [ foTdu®zv =
[{f(1)g(x)h(x"y)dnx dny and so the function y [ g(x)h(x~"y) dnx,
denoted g *, h, is in L*(G) and [(g x, h)fdn=[foTdu®zv. If f
is p v integrable*, and in particular if | fo I'du®g v < oo, then
[fduxv="{fd(gn) *(hn)=[(g *, h)fdnIf p x v(A) < oo for all A
in #°(G), then p * (h.n) = (u * h).n and (g.n) * (h.n) = (g *, h).n.

We record these facts, prefacing the statement with a simple result
about indefinite integrals w.r.t. a regular Borel measure u for a locally
compact Hausdorff space X.

Let |ully = px(X) = sup{u(A): A € #°(X)}. The measure u is totally
finite iff || u||,, < oo.

23 PROPOSITION Suppose p is a regular Borel measure for a locally
compact Hausdorff space X and fe L*(X). Then f.u is a regular Borel
measure if f is locally u integrable, and if f is u integrable, then f.u is
totally finite and ||f.uly = 11 f1+-

PROOF We show only that the indefinite integral of a locally u inte-
grable function f is regular. For e > 0 and 4 in #°(X) choose n so
jA(f — f A n)du < e and choose a compact subset B of 4 so that
#(A\B) < e/n. Then [, fdu — [pfdu = [op(f — f A ndu +
Japf Andu < [4(f—f A n)ydu + [ppndp < e + n(e/n), so fou is
regular. W

Here is a summary of some immediate consequences of the foregoing
results and the definition of x. We leave details of the proof to the
readers.

24 THEOREM (SUMMARY) Suppose G is a o-compact group; f, g and h
belong to L*(G); u, v and n are reqular Borel measures for G; n is left
invariant; and g and h are locally n integrable*.

(1) If || * v||y is finite, then it is a regular Borel measure, and in any

case, [u* vily = lplvlviy.

(ii) If f is u * (h.n) integrable*, so if | [ f(xy)h(y)dux dny < oo, then
[ £ x Bydn = [ f du * han.

(iii) If f is (g.n) * (h.n) integrable*, so if (| f(xy)g(x)h(y)dnxdny
is finite, then [ f d(g.n) » (h.n) = [ f(g *, h)dn.

(iv) If h belongs to L,(n) and |u|, < oo, then puxhe L (n),
[ hily = lplylthlly, and p x (h.n) = (1 x h).n. If g also belongs
to L,(n), then (g *, h) € L () and (g *, h).n = (g.n) * (h.n).



Chapter 9

SIGNED MEASURES AND INDEFINITE
INTEGRALS

A real (finite) valued function f on X is locally p integrable iff 4 is a
measure on a é-ring .o of subsets of X and fy, € L,(u) for all 4 in .o/.
In this case f.u, the indefinite integral of f with respect to y, is the
function A+ f, fdu for A in /. This function is always countably
additive and hence f.u is a measure if f is non-negative. Consequently
f.u is the difference of two measures, f*.u and f~.u. These two mea-
sures have little to do with each other: one of them “lives on” the set
{x: f(x) = 0} and the other lives on {x: f(x) < 0}.

There are several natural questions. Which countably additive real
valued functions on .o/ are differences of measures? If a function is the
difference of measures, may these measures be chosen so that they
live on disjoint sets? Which countably additive real valued functions
are indefinite integrals? This section is devoted to an investigation of
these and related questions.

A signed measure is a real (finite) valued, countably additive func-
tion on a J-ring. Suppose u is a signed measure on a J-ring &/ of
subsets of X. 4 subset B of X is u positive iff B is locally .7 measurable
(i.e, AnBe o for all A in o) and u(A4) =0 for all A in «/ that
are subsets of B. There are alternative descriptions: for each 4 in <,
AN Be .o/ and u(A n B) = 0; or B is locally &/ measurable and A—
i1(A n B) is a measure. Evidently each member A of o/ that is a subset
of a pu positive set is u positive, and the union of countably many u
positive sets is p positive.

A set B is u negative iff it is locally &/ measurable and u(A4) =< 0 for
each member A of o/ that is a subset of B, or iff B is — u positive.
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1 LemMA If pis a signed measure on o, A € o/ and u(A) > 0 then A
contains a p positive set B with u(B) = u(A).

PROOF We assert that for each e > 0 there is a member C, of &/ such
that Cy = A4, u(Cy) £ 0 and each member D of o with D = 4\ C, has
u measure greater than —e. If this were not the case, then one could
select recursively a disjoint sequence {D,}, in & with D, < A and
u(D,) £ —efor all n. But every §-ring is closed under dominated count-
able union and | J, D, = 4, So (., D, € # and u(|J,D,) =Y., u(D,) =
—o00, and this is a contradiction.

Select recursively, C,,, in o so that C,.; © A\ Ji—o G, #(Cps1) £ 0
and each member D of & with D < A\ J3Z;C, has p measure >
—27""1 The argument of the preceding paragraph shows that this
selection is always possible. Then B = A\| ), C, is u positive, and

u(B) = u(A) — Y, u(C,) = u(4). |

We recall that if & is a family of sets, then .o/, is the family of all
unions of countably many members of /. The upper variation g% of
a signed measure p on < is defined, for 4 in o, by u*(4) = sup { u(B):
B < A and B € &/} and the lower variation u~ is given by u (4) =
—inf{u(B): B 4 and Be o/} = (—w)*. If a member A of & is u
positive, then u*(A4) = u(4) and if 4 is u negative then u~ (A) = — u(A).
If a set A is the union of a u positive set A* and a u negative set A~ and
A" n A" = &, then {A*, A7} is a Hahn decomposition of A relative to
u. A representation of u as the difference v — p of measures v and p is a
Jordan representation.

2 THEOREM (JORDAN, HAHN) If u is a signed measure on o, then the
upper and lower variations of u are measures and p is their difference.
Moreover, each member A of s, is the union of a u positive set A* and
a u negative set A~ that is disjoint from it.

PROOF For A in &, choose a sequence {B,}, of members of o/ that
are subsets of A such that u*(A4) = sup, u(B,), and for each n choose,
using lemma 1, a p positive subset C, of B, with u(C,) = u(B,). Let
A" =J,C,. Then A" € o and since C, « A" = A foreach n, u*(A4) £
pr(AT) < ut(A), so p*(A) = u*(A"). But A" is the union | J,C, of u
positive sets and is therefore u positive, so u*(4*) = u(4*). Thus
pw(A*) = u*(A).

Let A~ = A\A". Clearly A~ is u negative and u(47) = u(4) —
ut(A)=inf{u(B): B Aand Be o/} = —u~ (A).

If {A,}, is a disjoint sequence in <, then | J, 4,* and ( J, 4, furnish
a Hahn decomposition for | J, 4,, and the last assertion of the theorem
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follows. If (), A4, € o, then Y ,u*(4,) =Y ,pu(4,7) = u({Jo4,") =
p*({JnA4,) so p* is a measure, and so is p~ = (—p)*. Hence pu=
ut — uis a Jordan representation of u. W

It is worth noticing that if u is a signed measure on .« and the
underlying space X belongs to .7, (as is the case for Borel measures
for R"), then X has a Hahn decomposition into a u positive and a u
negative set.

The class M(of) of all signed measures on a §-ring o/ is a vector
space, and 1t is partially ordered by agreeing that, for y and 4 in M (<),
A= piff A(A) = u(A) for all 4 in 7. Suppose that 1 = u, 4 € &/ and
that {A*, A~} is a Hahn decomposition of 4 for p. If A = pand 1 2 0,
then A(4) = A*(A4) = A(A") = u(A") = u*(A). Thus A= u*, and we
have shown that u* is the smallest signed measure that is greater than
or equal both 0 and p. Thus, u* is the supremum of {0, u} relative to the
ordering of M («/). Consequently M (&), with this ordering, is a vector
lattice, and that u v v=v + (u — v) v 0 = v + (u — v)*. In particular,
the definition of u* is consistent with the usual lattice convention:
ut=puvo.

3 CautioN Suppose u and v are measures on /. It is not always
the case that 4 v v(A4) = max {u(A),v(4)} = u(A) v v(4). For example:
if X ={0,1}, o = {F, {0},{1},{0,1}}, u is unit mass at 0 and v is unit
mass at 1, then p{0} v v{0} = u{1} v v{1} = u{0,1} v v{0,1} =1,
but the smallest measure greater than or equal to each of y and v is
¢ + v, which is 2 at {0, 1}. What is true is that u v v(4) = u(A) v v(4)
for all 4 in o/ —indeed, g v v is the smallest measure for which this is
the case. W

A Jordan representation of a signed measure A on ./ as the difference
u — v of measures x4 and v is not unique—one may add any measure
on &/ to both u and v and get another Jordan representation. The
canonical Jordan representation as the difference A* — A~ of the varia-
tions has a special property: A* and A~ live, at least locally, on disjoint
sets. Let us make this assertion precise.

Suppose p is a measure on /. We agree that u lives on a set C, (u is
carried by C, C is a carrier for u) iff An C e o and p(A4) = u(An C)
for all 4 in «/. Examples: If the underlying space X has a Hahn
decomposition X = X* U X~ for a signed measure p on ./, then u*
lives on X* and p~ lives on X ~; if f is a locally o/ measurable non-
negative function such that fy, € L,(u) for each A in &/ and if S is
a locally & measurable support for f, then the indefinite integral f.u
lives on S. Evidently a measure u lives on C iff X'\ C is locally of u
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measure zero in the sense that A N (X\C) € & and u(4 n(X\C))=0
for all A in /.

A measure v on & is said to be singular w.r.t. a measure g on « iff v
lives on a set C that is locally of u measure zero. This is the case iff y is
singular w.r.t. v because u lives on the set X\ C, which is locally of v
measure 0, and consequently g and v have disjoint carriers. We agree
that u and v are mutually singular, and write g L v, iff 4 and v have
disjoint carriers. The measures x4 and v are locally L, and p is locally L
to v, iff for each A4 in ./ there are disjoint members 4, and A, of &/
whose union is 4 such that v(4,) = u(4,) = 0. The measure v on .« is
absolutely continuous w.r.t. the measure p on &/, v< g, iff v(4) =0
whenever p(A4) = 0 (we extend the definition on p. 113.)

4 LEBESGUE DECOMPOSITION THEOREM Suppose p and v are measures
on a d-ring o/ of subsets of X, that vi(A) = sup{v(B): Bc A, Be &
and u(B) = 0} for all A in of and that v, =v — v;. Then v, and v, are
measures, v, is locally L to v, and to p, and v, < p.

If X e o,, thenv, L p.

PROOF For each 4 in o/, the family {B: B = A, B € & and u(B) = 0}
is closed under countable union and hence has a member A, with
v(A,) = sup{v(B): B e o, B < A and u(B) = 0} = v,(A). It follows that
each subset of A\ A, of u measure zero must have v measure zero,
whence v,(A\ 4;) = 0, and v, and u are locally L.

If u(A) = 0 then A, may be taken to be 4, so v.(A) = v(4) — v,(4) =
v(4) —v(4,)=0. W

The measure v; is called the singular part of v (w.r.t. u) and v, is the
absolutely continuous part. Of course there is also a Lebesgue decom-
position of u into singular part p; of u (w.r.t. v) and absolutely con-
tinuous part p.. But the immediate consequences of this fact—as well
as theorem 4 itself—are corollaries of the following result.

5 FUNDAMENTAL LEMMA If u and v are measures on a 6-ring < of
subsets of X and E € </, then there is an </ a-simple functionh,0 < h <
xe Such that u(A) = h(u + v)(A) and v(A) = (1 — h).(u + v)(A) for all
subsets A of E that belong to <.

If Eg={x1h(x)=0}, E; ={x:h(x)=1}, E,=E\(EqUE,) and
A c E,, then u(Fy)=0=v(E,), v(4) = [4((1 — h)/h)dp and u(A) =
jA ((h/(1 — h)dv.

PROOF For the measure p + v the class L,(u + v) of o/ o-simple real
valued functions f such that | /|2 € L, (u + v), together with the inner
product given by {f,g> = [ fgd(n + v), is a Hilbert space (see chapter
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6). If fe L,(u+ v) and E € o/ then | fyz|? is (1 + v) integrable and
vanishes off a set of finite measure, so | fxg| is (4 + v) and hence u
integrable. Moreover | fygldp < || fxgld(p +v) < [1fll2 1%l by the
Cauchy-Schwartz inequality and consequently F = (f+ [ fdu) is
a bounded linear functional on L,(u + v). According to the Riesz
theorem 6.12, thereis hin L,(u + v) such that F(f) = [ fhd(u + v) for
all fin L,(u+ v). Since F(f) = F(fxg) = [gfxghd(p + v), we may
suppose h = 0 outside E, and since F(f)=0for f =20, h =0 (u+v)
a.e., and we may suppose h = 0. If e > 0 and B = {x: x € E and h(x) >
1 + e}, then u(B) = F(xp) = [gxghd(x + v) = (1 + €)(u + v)(B), whence
(¢ +v)(B) =0 and we may suppose that 0 < h < yg. Since u(4) =
hip+ v)(A), v(A) = [ 1d(p + v) — u(A) = [,(1 — h)d(u + v) for each
A in o/ that is a subset of E.

If feL,(p+v)and Ac E,, then |, fdu=1{,fhd(u+v) and so
faf(@=hydu= [, fhdv. If A,={x:1/n<h<1-1/n}, then both
Xa,/(1 — h) and x, /h belong to L,(u + v), and we infer that u(4,) =
§ %4,(h/1 — h)dv and v(A,) = [ x4 (1 — h)/hdu. Consequently, u(A4) =
lim, u(A,) = {4 (h/(1 — h))dv and v(4) = lim, v(4,) = [,(1 — h)/hdp.

]

6 THEOREM (RADON-NIKODYM) If u and v are measures on a o-ring
of of subsets of X, X € &/, and v <y, then v=r.u for some non-
negative, </ o-simple functionron X.

PROOF Suppose X = | J,E, and {E,}, is a disjoint sequence in .
Then according to the preceding lemma, for each n there is a function
h,,0 < h, < g _such that u(A N E,) = [4~p h,d(u+ v)iff A € of. The
subset Z of A n E, on which h, vanishes has y measure 0 and hence
v measure zero, and so u(4 N E,) = [4g (h, + xz)d(p + v). In brief,
we may suppose h, is strictly positive. In this case, according to the
preceding lemma, if r, = (1 — h,)/h,, then v(A N E,) = r,u(A). If r =
Yt thenv=ryu R

NOTE An alternative proof, independent of the Riesz representation
theorem 6.12, can be based directly on lemma 1. But the argument
given here, which is due to von Neumann, is prettier. I

There is an extension of the preceding theorem. Suppose &/ is a
é-ring of subsets of X and f is a real valued locally measurable function
on X, not necessarily locally u integrable. The indefinite integral f.u of f
w.r.t. p is defined on the class # of all members A of &/ such that

Sxa € Ly(p) by setting f.u(A4) = IAfd#'

7 PROPOSITION If uis a measure on a d-ring < of subsets of X and
fis a locally .o/ measurable real valued function on X, then the domain
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B of f.uis a o-ring, B oA < B,, and f.u is a signed measure on B
that vanishes on all members of % with yu measure zero.

PROOF We show only that &/ < %,, and leave to the reader the rest of
the proof. Suppose A € o and that B, = {x: xe A, n < f(x) S n+ 1}
for each integer n. Then B, € &/ because f is locally «/ measurable,
| fxs,| < Inl + 1so fyg € L;(u), and hence B, € #. Consequently 4 =
\J{B,:neZies, M

It is worth noticing a few of the simple consequences of the condition
that .« and # be d-rings and # < &/ < %,. First: if p is a measure on
o/ and v = u| 4 is its restriction to %, then the integrals I, and I, are
identical. Second: # is an ideal in ./ in the sense that An B e & if
A e of and B € 4. This is the case because A N B is the union of a
countable number of members of # and the d-ring & is closed under
countable dominated union. It follows that if € is also a é-ring and
¢ <o <€, then {BNC:Be % and C € €} is identical with # N ¥.
Lastly: if 4 is a measure on a dé-ring # and v is a measure on %,
then the integrals I, and I, are identical iff u|# "% = v|# ¥ and
BUE < (BNE),.

A signed measure v on a d-ring 4 is absolutely continuous w.r.t. a
measure y on .o/, and we write v< u, iff # < of =« 4, and v(B)=0
for all members B of # with u measure zero (or equivalently v*(B) =
v (B) = 0 for all such B). A signed measure v is an indefinite integral
w.r.t. u iff there is a locally .«/ measurable real valued function f such
that v = (f.u)|#. The indefinite integral v = f.u of a locally u inte-
grable function f is an indefinite integral w.r.t. u (no surprise) and
v < U

8 RADON-NIKODYM THEOREM FOR SIGNED MEASURES If u is a mea-
sure on a 6-ring 4 of subsets of X and X € o/,, then every signed
measure v that is absolutely continuous w.r.t. u is an indefinite integral
w.r.t. .

PROOF We may assume without loss of generality that v is a measure
because it is the difference v* — v~ of measures on the domain # of
v that are absolutely continuous w.r.t. u. Evidently v is absolutely
continuous w.r.t. u|# and since &/ < B,, X € o/, = #,. Hence, by
theorem 6, v = r.(u| %) for some # o-simple non-negative real valued
function r. The theorem follows. M

We sketch without proof a few straightforward propositions about
indefinite integrals. Suppose that u is a measure on a J-ring & of
subsets of X and that r and s are locally u integrable functions on
X. Then (r + s).py=r.u+ s.u. If s = 0 so that s.u is a measure, then
r(s.p) = (rs).u and if rs is p integrable, then [rd(s.u) = [rsdu. If s is
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never zero and # is the domain of (1/s).u, then # = &/ = 4, and
s(1/s).u= pu|A.

If 1 and v are measures on o/ and r is a locally &/ measurable real
valued function on the underlying space X such that v = r.u then r is
called a Radon—-Nikodym derivative of v w.r.t. u. It is not unique,
but two such derivatives differ by a function with a support of locally
u measure zero. Radon—Nikodym derivatives of v w.r.t. u are de-
noted (ambiguously) dv/du. If f is both u and v integrable, then
J(f)dv/duydp = [ fdv. If p also has a derivative with respect to v,
then (du/dv)(dv/du) = 1 locally u a.e., and if v has a derivative with
respect to another measure z, then (du/dv)(dv/drn) = du/dr.

There is a natural definition of the integral of a function f w.r.t. a signed
measure v on .«/. A function f is v integrable iff f = Zna,,xAn for se-
quences {a,},in Rand {4,},in o with Y ,|a,||v*(4,) + v (4,)| < o,
and in this case [fdv=Y,a,v(A4,)=[fdv* —[fdv . Evidently
L,(vy=L,(v*)nL,(v7). The measure ¥V, = v* + v~ is called the vari-
ation of v. It is easy to see that for A4 in &/, V,(4) = sup{v(B) — v(C):
B,Ce o and Bc A, C < A} =sup{) k., [v(B)|: {B;}¥, is a disjoint
family of members of &/ that are subsets of A}, and if v = f.u for a
measure u then V, = | f]. .

Evidently v < V,, and if v =r.V,, then {x: r(x) > 0} is a v positive
set, {x:r(x) £0} is v negative and consequently there is a Hahn
decomposition of X for v.

Thus the Radon—Nikodym theorem for ¥V, implies the Hahn decom-
position theorem for v. There is a converse: if 4 and v are measures on
o/, v < p and for each real number k, there is a Hahn decomposition
of X for u — kv, then v is an indefinite integral w.r.t. u.

NOTE The first result of this sort, that the Radon—Nikodym theorem
for u is equivalent to the proposition that the dual of L,(u) is L (),
is due to I. Segal; related results were established by J. M. G. Fell and
by one of the authors. See J. L. Kelley, Math. Annalen 163 (1966)
89-94, for details and further results.

SUPPLEMENT: DECOMPOSABLE MEASURES

The Radon—-Nikodym theorem and the Hahn decomposition theorem
were established in the foregoing chapter under the assumption that u
is a measure on a d-ring .« of subsets of X and X € «,. If X is a locally
compact Hausdorff space and u is a regular measure on the Borel
d-ring #°(X), then X ¢ (#°(X)), unless X is o-compact. Nevertheless
the foregoing theorems still hold for g. The principal fact needed for
the proof is that there is a suitable disjoint subfamily of #°(X) whose
union is “u almost all of X, in a sense which we now make precise.

A decomposition for a measure u on a d-ring of & of subsets of X, or
a u decomposition, is a disjoint subfamily & of ./ such that:



SUPPLEMENT: DECOMPOSABLE MEASURES 115

(i) A subset B of | | {D: D € 9} is locally .o/ measurable if it is piece-
wise in .7, in the sense that B~ D € o for each D in 92, and

(ii)) a member A4 of .o/ is of u measure zero if it is piecewise of u
measure zero, in the sense that u(A n D) = 0 for each D in 2.

Evidently the union of the members of a 4 decomposition is locally &/
measurable, and its complement is locally of u measure zero. A measure
u is decomposable iff there is a decomposition for pu.

An example: If X € ./, and 2 is a disjoint countable subfamily of o/
covering X, then & is a u decomposition for every measure y on &/, so
every measure p on &/ is decomposable.

It is worth noticing that the property of being a decomposition for u
depends only on the families .o/ and 4" = {A: A € o/ and u(A4) = 0}.

9 PATCHWORK LEMMA Suppose u is a measure on a o-ring o of
subsets of X and & is a decomposition for u. Then:

(1) if for each member D of 2, fp is an £/ measurable function with
support D, then the function f =Y 4 fp is &/ measurable, and,

(i) if v is a signed measure on & that is absolutely continuous w.r.t. u,
then v(C) =Y .4 v(C n D) for each C in .

PROOF (i) If Be #(R) and D€ & then f'[B]nD = f, '[B]nDe «,
so f'[B]n(|peg D) e Lo/ The set f [B]n(X\|Jpeo D) is cither
empty or X\ (Jp.y D according as B does not or does include zero.
Consequently f ' [B] € Z</ and f is #.o/ measurable.

(i1) Since v < p, we have # < o/ < %, and (see p. 113) Cn A € 4 for
all A in o/. Since o0 > u(C) 2 Y. 5. 4 #(C N D), the family & = {C n D:
De% and u(Cn D) # 0} is a countable family of subsets of C, so
V(Uees E) =Y gcev(E). Thesets | ] {CnD: D e 2 and u(C D) =0}
and C\ U {CnD:D e 9} are piecewise of u measure zero and hence of
measure zero. SO v(C) = Y g ¢ V(E) =Y pegv(Cn D). B

If for each D in 2, v, denotes the signed measure defined by v,(C) =
v(C n D) for C in the domain of v, then the fundamental lemma 5
applied to the positive and negative parts of v yields a p integrable
function f, with support D such that v,(C) = (fp.u)(C) for all C in
the domain of v. Then the function f =Y , 4 fp is £.o/-measurable
and  (£0)(O)=Ypes(f)(CAD) =Y pea(fo-)(C) =Y peqvp(C) =
Y peav(Cn D) = v(C) for all C in the domain of v, according to the
preceding lemma. This establishes the following:

10 CorOLLARY (RADON-NIKODYM THEOREM FOR DECOMPOSABLE
MEASURES) If u is a decomposable measure, then each signed measure
that is absolutely continuous w.r.t. u is an indefinite integral w.r.t. u.
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If v = f.u the set {x: f(x) > 0} is v positive, and {x: f(x) < 0} is v
negative, and together they provide a Hahn decomposition of X for v.
Thus:

11  CoroLLARY (GLOBAL HAHN DECOMPOSITION)  If v is a signed mea-
sure and if the variation V, of v is decomposable, then there is a Hahn
decomposition of X for v.

NOTE It is just as easy to derive the foregoing corollary directly from
the patch work lemma: if & is a V, decomposition then | J {D*: D € &}
is v positive and | J {D™: D € 2} is v negative. W

Every regular Borel measure u for a locally compact Hausdorff space
X is decomposable, and so the Radon—Nikodym theorem holds for
such measures. This will follow immediately from a simple lemma. We
agree that a subset K of X is u tight iff it is compact, u(K) > 0, and
u(M) < u(K) for each compact proper subset M of K. Each compact
set A contains a u tight set K with u(K) = pu(4)—explicitly, K =
{x: x € A and for each open neighborhood V of x, u(V n A) # 0}. We
recall that a set S is a carrier for y iff S € ##°(X) and its complement
is locally of 1 measure zero.

12 LemMma If u is a regular Borel measure for a locally compact
Hausdorff space X and A" is a maximal disjoint family of u tight sets,
then each member of #°(X) intersects only countably many members of
A and \ g . 4 K is a carrier for p.

Moreover, X is a decomposition for .

PROOF We first show that a member V of #°(X) intersects only count-
ably many members of 2. Since V is a subset of an open set in %°(X)
we may assume that ¥V is open. For each positive integer n the family
{K: Ke A and u(K n V)= 1/n} is finite since u(V') is finite, and for
each member K of & either y(KnV)>0or KnV = J because K
is u tight. The assertion follows.

Suppose that for each K in %', By e #°(X), B,< K and B =
(Uxk .# Bx. Since a member 4 of #°(X) intersects only countably many
members of A, 4 n B is the union of countably many members of
#°(X) and is hence a member, and so B is locally Borel.

If A € #°(X) then {K: K € # and A n K # (J} is countable, whence
W(A) = Y g e (A N K) + p(A\Ugen K). I A\ g K which be-
longs to #°(X) has positive u measure then it contains a compact set of
positive measure and hence a y tight K of positive measure. This set is
clearly disjoint from each member of #" contradicting the maximality
of #". Thus & is a decomposition for p. W
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13 CorROLLARY (RADON—NIKODYM THEOREM FOR BOREL MEASURES)
A signed measure that is absolutely continuous with respect to a regular
Borel measure pu for a locally compact space is an indefinite integral
w.r.t. p of alocally Borel real valued function.

14 Note The classical Borel field for X, 4.(X) is the o-field gener-
ated by the family of open subsets of X. It is easy to see that L%(X)
contains %,.(X), but in general the two fields are not equal. Thus, it
can happen that a function f is £%(X) measurable but not %,.(X)
measurable. But we do not know whether it is always possible to
choose a Radon—Nikodym derivative dv/du, where u is a regular Borel
measure and v < g, to be %,.(X) measurable.

SUPPLEMENT: HAAR MEASURE

Suppose G is a locally compact Hausdorff topological group. A left
Haar measure for G is a regular Borel measure # (a regular measure
on %°(G)), not identically zero, that is invariant under left translation.
That is, n(z"*B) = 5(B) for all zin G and B in #°(G), and consequently
[ fz'x)dnx = | f(x)dnx for each f in L, (). According to 4.17 there
is at least one left Haar measure for G; in fact, to a constant multiple
there is precisely one.

We first observe that if 5 is a left Haar measure for G then n(U) > 0
for each non-empty open set U in #°(G) because every compact set is
covered by finitely many left translates of U, and hence | gdn > 0 for
each nonnegative member of C,(G) that is not identically zero. We
suppose that g is such a function and show that for each member f
of C,(G), the ratio [ f dn/f g dn is independent of the choice of the left
Haar measure . If v and #n are both left Haar measures for G and
fe CAG), then | fdn =k fdvwith k= [gdn/{gdv, whence, accord-
ing to the uniqueness part of Riesz theorem 6.16, 5 = kv. We start with
a simple continuity result.

15 PROPOSITION Suppose n is a regular Borel measure for G and
f € CAG). Then the functions x+ | f(ux)dnu and x> | f(xv)dnv are
continuous at each member x of G.

PROOF Suppose x, € G, W is a compact neighborhood of x, and K is
a compact support of f. Then for each x in W, the function u+— f(ux)
is continuous and has the compact support KW ™1 It is straight-
forward to check that f is left uniformly continuous in the sense that
sup{|f(ux) — f(ux,)|: u € G} is small for x5 x near e, and || f(ux)dnu —
| fux,)dnu| is also small since n(KW ') < co. It follows that x —
ff(ux) dnu is continuous at x, and, in similar fashion, x»—»jf(xv) dnv
is continuous. M
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The following result is due to v. Neumann.

16 THEOREM (UNIQUENESS OF HAAR MEASURE) If # and v are left
Haar measures for G, then n = kv for some positive real number k.

PROOF Suppose p and u are left Haar measures for G, g is a non-
negative member of C,.(G), not identically zero, and fe C.(G). We
show that the ratio | f dn/[ g dn is independent of #. According to the
preceding proposition, the function x — [ g(ux)duu is continuous and
it is strictly positive on G, whence the function s defined on G x G by
h(x,y) = f(x)g(yx)/[ g(ux)duu is continuous. Evidently [ h(x, y)duy =
f(x) for each x in G.

If K is a compact support for f and S for g, then K x SK™' is a
compact support for k, so h € C.(G x G). Consequently by the Tonelli
(or Fubini) theorem, [hdn® pu= [[h(x,y)duydnx = | f(x)dnx. On
the other hand, [hdn® u=[[h(x,y)dnxduy = [[h(y ' x,y)dnxduy
because # is left invariant, (x,y)— h(y 'x,y) has a compact sup-
port and so {f(x)dnx = [hdn® p=|{h(y'x, y)duydr/x Since u
is left invariant, this last integral is Hh txy d,uy dnx =
FI O™ g/ gluy ™) duwydnxduy = [gdnf(f( /I gluy™")duu)duy.
Thus ffdn/_[g dn is independent of #, and so equals jfdv/jg dv for any
left Haar measure v, and the theorem follows. W

For the rest of the supplement it is assumed that » is a left Haar
measure for G.

If b € G and #5,(B) = #(Bb™!) for all B in #°(G), then 7, is a regular,
left invariant Borel measure that is not identically zero, and is therefore
a real positive multiple of #. The modulart function A for G is defined
by agreeing that A(b), for each b in G, is the unique positive real
number such that #(Bb™!) = A(b)y(B) for all B in £°(G). Clearly A is
independent of the choice of left Haar measure and it is easy to see that
A(bc) = A(b)A(c). We show that A is continuous.

If F is the map x+ xb of G to G and Fn is Borel image of n under
F, then Fy(E) = n(F'[E]) = 5(Eb™') = A(b)y(E) for E in #°(G), and
consequently | f(xb)dnx = A(b) | f(x)dnx for all f in L, (n). Thus right
translation Rj, where R,(f)(x) = f(xb), is a linear automorphism of
L,(y) which multiplies the norm of each member by A(b). If fe C.(G)
and | fdn # 0, the relation [ f(xz)dnx = A(z) f(x)dnx shows (prop-
osition 15) that A is continuous. Thus

17 PROPOSITION Let 5 be a left Haar measure and let A be the
modular function for the group G. Then for all a and b in G, E in #°(G)

tA modular function on a lattice of sets is something quite different (see
chapter 1) and “A” has already been used for the symmetric difference of two
sets. Both usages of “modular” and “A” are standard.
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and f in L (n), n(Eb™') = A(b)n(E) and | f(xb)dnx = A(b) | f(x)dnx.
Moreover, A is continuous and A(ab) = A(a)A(b).

It is a consequence of the preceding proposition that if G is compact,
then the unimodular function A is identically 1, since in this case A[G]
is a compact subgroup of the multiplicative group of positive real
numbers and {1} is the only possibility. The group G is unimodular iff
the modular function A is identically 1. This happens iff each left Haar
measure 7 is also invariant under right translation; that is #(Eb) = n(E)
for all b and all Borel sets E. Compact groups, and of course abelian
groups, are unimodular, but even the group of all affine transforma-
tions, x — ax + b with a # 0 fails to be unimodular.

A right Haar measure is a regular Borel measure that is invariant
under right translation. If 5 is left Haar measure and we set p(E) =
n(E™!) for all E in %(G), then p is a right Haar measure because
p(Eb) =n(b*E"Y) = y(E™') = p(E) for E in B(G) and b in G. The
measure p is the right Haar measure corresponding to ». There is an-
other description of this measure.

18 PRrOPOSITION The right Haar measure p corresponding to n agrees
on #°(G) with the indefinite integral A.n.
Consequently p and n are mutually absolutely continuous.

PROOF If fA is n integrable, by the previous result, ff(xb)A(xb) dnx =
A(b) [ f(x)A(x)dnx for each b in G. Since A(xb) = A(x)A(b) # 0, the
equation becomes [ f(xb)A(x)dnx = | f(x)A(x)dnx, so | f(xb)d(An)x =
[ fd(An). If B e %°(G) then A is n integrable because A is continuous
(hence locally %°(G) measurable) and bounded on the closure of B.
Consequently (A.n)|%°(G) is a right invariant Borel measure, and it is
regular according to 8.23.

Right Haar measure is essentially unique, like left Haar measure, and
it follows that p = k(A.n)| #°(G) for some positive number k. We see
that k = 1 as follows. Choose a neighborhood V of e in #°(G) so that
the continuous function A differs very little from 1 on V, and let W =
VAV Then W= W™ and p(W)=n(W™!)=n(W)>0. On the
other hand, An(W) = | xw(x)A(x)dnx and since A is near 1 on W,
An(W)isnearn(W),sok=1. B

19 CoOROLLARY If nis aleft Haar measure and p is the corresponding
right Haar measure, then fe L (n) if and only if f/A € L (p), and in

this case | fdn = [(f/A)dp = | f(x 1) A(x)dn.

Assume for the rest of this section that G is 6-compact. In this case,
if g and h are non-negative members of L,(y), then (g.n) x (h.n) =
(g x, h)nand g », h € L,(n) according to proposition 8.24.
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There is no difficulty in extending the notion of convolution to
signed measures and the notion of convolution *, to functions which
are not necessarily non-negative. If the extension is made, then L,(n)
becomes an algebra under x and the space M of regular Borel signed
measures of finite total variation is a normed algebra under x. Then
the preceding conclusion implies that the map f+ f.n, for fin L, (n)is
a norm preserving algebra homomorphism of L () onto the subspace
M, of M which consists of signed measures that are absolutely con-
tinuous with respect to #. We notice that a member of M is absolutely
continuous w.r.t. 7 iff it is absolutely continuous w.r.t. some (and hence
every) left Haar measure on G, or equivalently w.r.t. some (and hence
every) right Haar measure. Thus the space M, is independent of the
choice of the Haar measure.

The # convolution of functions, *,, depends on » according to the
prescription (g *, h){(y) = [g(x)h(x7'y) dnx for n a.e. y, and replacing
n by another left Haar measure changes this convolution by a scalar
factor. However x, is not at all the convolution which is appropriate for
members of L, (p), where p is the right Haar measure corresponding
to n; », should be defined so that the map f+— f.p for fin L (p)isa
multiplicative map of L, (p) into the algebra of regular signed measures
of finite total variation. Since p = A.n, this will be accomplished if the
map f—(1/A)f of L ,(p)onto L, (n)is multiplicative; that is,

1 h
K(h *pf):K*ng
for functions k and f belonging to L,(p). A little computation then
gives the correct definition for p. It is: the convolution h x,f of
functions ~ and f belonging to L,(p) is defined by hx,f(x)=
fh(xy ") f(y)dpy for p a.e. x. We then have the following proposition.
The proof is left to the reader.

20 PrOPOSITION Each of the maps shown below is a linear isometry
which preserves convolution.

L LML
1(’7)3 *q m l(p)a *p
A o

£ (9

TM, « ¥



Chapter 10

BANACH SPACES

The class of all bounded linear functionals on a normed linear space E
is itself a normed linear space E* called the dual or adjoint of E. The
structure of this space is of interest because a problem about the space
E can often be reformulated or “dualized” to a problem about the
adjoint space and, if one is lucky, the dual problem may be more
amenable to reason than the original. But this dualization usually re-
quires a representation theorem for members of E*, of the sorts that
have already been established (see 6.5 and 6.13). Most of this chapter is
devoted to such representations. We begin by reviewing the pertinent
definitions.

A semi-norm for a real or complex vector space E is a real valued
non-negative function || || on E such that |u + v|| £ lul| + ||v| for all
u and v in E and |ru| = |r||ju}| for u in E and for each scalar r.
The semi-norm is a norm iff |u|| = 0 only for u = 0. The vector space
E, with a semi-norm || || is a semi-normed vector space. The semi-
metric induced by a semi-norm || | is given by dist(u,v) = ||u — v| for
all u and v in E. If the semi-norm || || is in fact a norm, the induced
semi-metric is a metric and if, further, this metric space is complete,
then E with | |, is a Banach space.

Here are some classical examples and some classical notation. The
space m of all bounded sequences s = {s,}, of real numbers, with the
supremum norm ||s|y = sup,<n|S.l, is @ normed space. It is identical
with L_(y), where y is counting measure for N, with the norm | |,
and it is frequently denoted #,. According to theorem 6.10, if u is a
measure, then L_(u), with || ||, is complete and consequently 7 is a
Banach space.
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The space ¢ consisting of all convergent sequences of real num-
bers, with the supremum norm, is a closed subspace of m. It is closed
because the uniform limit of continuous functions is continuous
and (roughly speaking) ¢ is the set of functions on N that can be
extended continuously to N U {+o0}. Thus ¢ is a Banach space, and so
is the subspace ¢, consisting of all sequences of real numbers that
converge to zero. We will presently describe the adjoint of the space
Co-

A linear functional ¢ on a space E with semi-norm || | is continuous
w.r.t. the semi-metric induced by | | iff it is bounded, in the sense that
@l = sup{|p(u)]:ue E and |ul £1} < oo. In this case |¢(u)| <
@1l lul —indeed [@]l = inf{r:|¢(u)| < r|u| for all u in E}—hence
o) — ¢()| < ¢l lu — v| for all u and v, and in particular ¢ is
uniformly continuous.

The class of all bounded linear functionals on a semi-normed space
E is the dual or adjeint or conjugate E* of E. It is normed by the
dual norm ¢ — [{¢|, which is just the supremum norm on the unit ball
B = {u:ue Eand lul| £1}. Convergence in the metric induced by this
norm is uniform convergence in the complete normed space of all
bounded continuous functions on B with the supremum norm. Con-
sequently E* is complete whether or not E is complete, and so E* is a
Banach space.

Here is an example of a representation theorem for an adjoint space.
Suppose ¢ € cy*, that for k and m in N, 6¥(m) = 1 if k = m and zero
otherwise, and that f(k) = ¢(5%). For u in c,, the supremum norm
lu — Y oy u, 6%y converges to zero because u vanishes at oc and,
since ¢ is continuous, @(u) = lim, Y i_; u, ¢(6*) = lim, Y i_; u, f(k).
Then @(signum f) = lim, Y i | f(k)] =Y | f(k)| < co. Consequently
feLi), o) = [u, f(kydyk, [¢)| < luln|f]l; and @(signum f) =
I fl; so ¢l =1If],. Hence f+>(ur> [ufdy) is a linear isometry of
L,(y) onto ¢,*. The space L,(y) is also denoted /;, and one says
(inaccurately) that £, is the adjoint of ¢y, £, = (¢o)*.

There is a suggestive way of phrasing this last result. A signed
measure u on the o-ring .o of finite subsets of N is the indefinite integral
f.y for some f in L,(y) = ¢, iff it is of finite total variation, so cy*
can be identified as the space of all signed measures on .« that are of
finite total variation.

Let Cy(R) be the class of all continuous real valued functions on R
that vanish at oo in the sense that for each e > 0, the set {x: | f(x)| = e}
is bounded. We will identify C,(R)* after a technical lemma.

Recall that the variation V, of a signed measure pon A is u™ + u~,
and the total variation of g, |uly, is sup{V,(A): A € o/}. Alterna-
tively, |ull, = sup{u(4) — u(B): A and B disjoint members of &/} =
sup{Y ¥ |u(A4;)]: {A4;}% a disjoint family in .o7}.
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1 LeMMA Suppose u is a signed measure on a d-ring o/ of subsets of
X, |ully < oo, and S is the class of o/ a-simple functions on X with finite
supremum norm || | x.

Then each member f of S is u integrable, || fdu| < | fllxluly, and
if ¢ is the linear functional f+ | fdp, then ||¢|| = lluly.

PROOF Each member f of S has a support E in «Z,, consequently
|f1 = fxxe> so f is V, integrable and || fdV,[ < [flx|xedV, <
I/ lx lellys so I|@ll < llully. On the other hand, each member A of &/
is the union of a u positive set 4™ and a u negative set A~, and if
f = xar — xa- then ¢(f) = V,(A) = | flIxVu(A), so [[¢] 2 V,(A) for 4
in o7, hence ||¢] = ||ul, and equality results. W

We recall that C.(R) is the family of all continuous real valued
functions on R that have compact support.

2 RiEsSzZ REPRESENTATION THEOREM For each bounded linear func-
tional ¢ on Co(R) there is a unique signed Borel measure pu for R such
that ¢(f) = [ f du for all f in Co(R). Moreover, |4l = |ully.

PROOF The space C,(R) with its natural ordering is a vector lattice
and consequently ¢ is the difference ¢* — ¢~ of positive linear func-
tionals provided sup{¢(u): 0 < u <f} < oo for all f = 0 (see chapter
0). But if 0<u < f, then |ulg < [|flz and so [¢(u)| = 4] [lullg =
Il | fllg < co. Hence ¢ = ¢* — ¢~ for some positive linear func-
tionals ¢* and ¢~ on C,(R).

According to theorem 6.5, each positive linear functional on C.(R)
is equal on C.(R) to the integral w.r.t. a Borel measure p for R, and
consequently ¢(f) is the integral of f w.r.t. a signed Borel measure
u for R for each f in C.(R). The preceding lemma then implies that
each member f of C.(R) is u integrable, || fdu| < |flxllply and
sup{|¢(f)|: fe C(R) and ||flx < 1} = |ully. But C.(R) is dense in
Co(R). Tt follows that this supremum is just [|¢[, and ¢(f) = | fdu
for f in C,(R). The uniqueness of u follows from the equality of
norms. W

3 Note The same proof establishes the corresponding result for the
space Cp,., of continuous real valued functions on [a:b], with the
supremum norm (a Borel measure for [a: 5] is a measure on the J-ring
generated by compact subsets of [a: b]).

We have established a generalization of the proposition that cy* is
(essentially) /,, and it is natural to seek a description of (¢ *)* =/, *.
This is not hard. If ¢ is a bounded linear functional on 7, and g, =
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#(6") for all n in N, then g is a bounded sequence and ¢(s) = ), 5,4,
for all s in /,. On the other hand, if g is an arbitrary member of 7/,
then s— 3 5,9, is a member ¢, of £,, and [|¢,] is |lg|,. Consequently
(¥ ={¢, g€t} Since /| = L,(y)and 7/, = L,(y), where y is count-
ing measure for N, this result suggests a representation theorem for
L., (p)* for an arbitrary measure y. We establish such a theorem as
well as results for L *forallp, 1 < p £ o0.

Suppose 1 £ p £ o0, g is the index conjugate to p (that is, 1/p +
/g =1),and g € L,(u). Then gf € L, (p) and llgf I, < lgll Il f1, for all
S in L (u), according to the Holder inequality 6.7. Consequently, if
¢, is defined by ¢,(f) = {gf du for f in L,(yp), then ¢, € L (w)* and
f#,1l < llgll,. This last inequality is in fact an equality. A stronger form
of this result is established below.

4 LeMMA Suppose u is a measure on o/, 1 £ p < oo, q is the index

conjugate to p, g is an o/ a-simple function such that gf € L ,(u) for all

<f simple functions f and sup{|| gf du|: f .o simple and | f||, = 1} < co.
Then g € L, (1) and |41 = lgll,.

PROOF Let signum g be the sign of g, so (signumg) g = |g| and let
M,(g) = sup{|{gfdul:f o simple and |f|,=1}. We prove that
lgly £ M,(g) whence |gl, is finite and equals |g,|. For p =1, so
q = oo, we prove that for e > 0, the set S = {x: |g(x)| = M, (g) + ¢}
is locally of p measure zero, so |lgll, £ M, (g). If A€ .o/ and 4 < §,
then M, (g)u(A) Z | (x4 signumg)gdu = (4 1gldu = (M, (g) + e)u(A).
So0 = eu(A)and u(4) = 0.

Suppose 1 < p £ %0, so ¢ is finite. Let {4,}, be an increasing se-
quence of members of .o/ whose union is a support for g and let {g,},
be a sequence of .o/ simple functions dominated by |g| so that g, has
support 4, for each »n and {g,}, converges to g pointwise. Let h, =
(signum g)(1g,1/1g.1,)*". Then h, e L,(y) and |h,},=1, and by Fatou’s
lemma, gll, < liminf, |g,, = liminf, {|g,h,|du < liminf, [ |gh,|du =
liminf, { gh,du < M,(g). W

5 LemMA Suppose pis a measure on of and 1 £ p £ 0. Then:

(i) The space L ,(p)* is a vector lattice.
() If ¢ € L,(w* and v(A) = $(y4) for A in of, then v is finitely
additive and if p < oo, then v is countably additive.
(i} If p < o0, ¢ is a positive member of L ,(u)*, E € o/, and vg(4) =
O (yang) for all Ain of, then there is a non-negative member gg of
L, (p) with support E such that vg = gg- 1.

PROOF To prove (i) it is sufficient, in view of the decomposition
lemma of chapter 0, to prove that if fe L,(u) and ¢ € L,(1)*, then
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sup{p(u)ueL,(p) and 0Su=<f} <oo. But if 0<u< f then
lull, £ I fll,and [¢)| < 4]l |ull, < |l IIf,] < 0.

The first assertion of (ii), that v is finitely additive, follows from the
fact that the functional ¢ is additive. If a member 4 of ./ is the union
of an increasing sequence {A4,}, in &/, then lim, |y, — x40, =0,
provided p < oo, and so v(4) = ¢(x4) = lim, ¢(x,,) = lim,v(4,). Con-
sequently, if p < oo then v is countably additive.

The third assertion follows directly from the fundamental lemma 9.5
that was used to establish the Radon—Nikodym theorem. According
to 9.5, vg(A) = [((1 — h)/h)dpu for A in o/ that is a subset of E\E,
where E, is a set of u measure zero. But then E, is of v; measure zero
and consequently, changing & on a u-null set, we have vy = gg.u for a

member g of L, (x). M

6 REPRESENTATION THEOREM Suppose i is a measure on a -ring o
of subsets of X, p and q are conjugate indices, 1 < p < oo and for each
ginL,(pu), ¢,(f) = [ fgdu forall fin L,(p).

If p>1,orif p=1and X € o,, then each member ¢ of L, (u)* is ¢,
for some g in L, (1) and | ¢l = llgll-

PROOF We show that a member ¢ of L,(u)* is ¢, for some g in
L,(p). Because L ,(u)* is a vector lattice, ¢ is the difference of positive
members of L,(u)* and so we may assume that ¢ is a positive linear
functional. In this case the correspondence A — ¢(y,) is a measure v
on &7, and if E € o/ and vg(A) = v(4 N E) then, according to lemma 3,
vg = gg.u for some p integrable function g with support E. We obtain
the required function g by “piecing together the functions g;”.

If Be o/ and p > 1, then v(B) = ¢(x3) < 14 x5l = [ ¢lln(B) and
consequently supg. ., v(B) < co. Hence there is an increasing sequence
{B,}, in « such that supg ., v(B) = lim,v(B,), and therefore the com-
plement of | J, B, is locally of v measure zero. If E, = B,,,\B, for each
n, then v(4) =Y ,v(ANE,) =Y ,vg (4) =) gg,-.u(A) = g.u(A) for all
Ain o, where g =) gz . If p=1and X € o,, then X = | J, E, for
some disjoint sequence in o/ and v(4) =) ,v(A N E,) and we again
conclude that v(A) = g.u(A). Thus ¢(y,) = [x.gdp for all 4 in &
whence ¢(f) = [ fg du for simple functions f. According to lemma 4,
g€ L,(u) and |g|, = ll¢,ll, and since ¢ and ¢, agree on the simple

functionsin L ,(p), ¢(f) = ¢,(f)forall f. W

It is worth noticing that if 1 < p < oo then a member ¢ of L ,(u)*
determines, up to a member of L ,(u) of norm zero, the function g such
that ¢ = ¢,. That is, if h is another such function then |lg — hl|, = 0
since 0 = ¢, — ¢, = ¢,_, and |lg — h|l, = |4,_,|. Here is another way
of describing the preceding theorem: the map g+ ¢, for g € L, (p) is,
for 1 £ p < o, a norm preserving linear map of L, (u) onto L ,(pu)*.
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The preceding theorem does not hold if p = oco—it is not the case
that £ * is £/, —but there is a reasonable sounding description of the
adjoint of L_(u) for an arbitrary measure u. Suppose that u is a
measure on &/ and £/ is the g-field of locally »/ measurable sets.
Then the £ .o/ simple real valued functions are dense in L_(u) accord-
ing to 6.10. Consequently each bounded linear functional ¢ on L ()
is the unique continuous extension of ¢|{ f: f is Lo/ simple}. We are
thus led to seek a representation for the adjoint of the space of #
simple functions on X, with the supremum norm || ||y, where & is an
arbitrary ring of subsets of X.

Let us agree, for convenience, that if v is real valued and additive on
a ring # of sets, then (v, = sup{{u(4) — u(B)|: A and B disjoint
members of #}. If # is a -ring and v is a signed measure, then this
definition agrees with the earlier usage of || |,. Let L# be the space
of # simple functions, and for each linear functional ¢ on L%, let
@l = sup{|(f):fe L? and | f]lyx < 1}, whether or not the supre-
mum is finite. Then |¢(f)] < || flix |¢]l for all £ in L# if we agree that
000 =0.

7 LemMa If & is a ring of subsets of X, ¢ is a linear functional
on L? and v(B) = ¢(xp) for B in B, then |4l = ||vly and |4(f)] <

IAx vl

PROOF Each # simple function f on X is & simple for some finite
subring € of #. Then ¥ is a §-ring, v|¥ is a signed measure of finite
total variation and ¢(f) = | f dv|%, so lemma 1 implies that |¢(f)| <
If V€], and sup{|$(f)]: fe L® and | flx < 1} = [vI€],. It is
possible to choose a finite subring € of # so that sup{|¢(f)|:f€ L?
and | fllx £ 1} is near ||¢| and ||[v| €|, is near ||v||,. The desired result
follows. W

For each ring # of subsets of X, L? is the space of # simple
functions, with the supremum norm | ||y, FA(Z) is defined to be
{v:iv:% > R, vis finitely additive and |v|, < oo}, with the norm | ||,
and, if # is a d-ring, M(#) is the subspace of FA(#) consisting of
signed measures. Lastly, for each linear functional ¢ on a vector space
E of real valued functions on X, v, is defined by v,(4) = ¢(y,) for all 4
such that y, € E.

8 THEOREM If 4 is a ring of subsets of X and if for each ¢ in (L#)*,
vy(B) = ¢(xg) for B in B, then the map ¢ v, is a linear isometry of
(L#)* onto FA(%), and in particular F A(%) is complete.

If # is a d-ring, then M(9B) is a closed subspace of FA(%#) and is
therefore complete.
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PROOF To prove the first assertion we need only show that each
member of FA(%) is vy for a member ¢ in (L®)*. If fe L” then f =
Y7y bxp, for some real numbers b; and some disjoint members B;
of #,i=1,2,..., n Forve FA(%), let I' be the unique linear ex-
tension of the correspondence yz+ v(B) for B in # (see 2.6). Then
1" (f)l = l2?=1 b;v(B)| = (maxi‘bi|)2?=1 [v(B)I = I fllxlvlly whence
I’ is a bounded linear functional ¢ and evidently v, = v.

Each bounded linear functional ¢ on L# is the difference ¢* — ¢~
of positive linear functionals because (L%)* is a vector lattice and
the decomposition lemma of chapter 0 applies. Consequently each
member p of FA(A) is the difference u* — u~ of positive members.
Let M = {v: v e FA(%) and lim,v(B,) = v([ ], B,) for each decreasing
sequence {B,}, in #. Evidently M is closed (the uniform limit of
continuous functions is continuous). If y is a signed measure, both u*
and p~ belong to M, so 4 € M. On the other hand if u € M whence u*
and p~ both belong to M, they are both measures and so x is a signed
measure. Thus M = M(%). R

Suppose p is a measure on a d-ring &/ of subsets of X, £/ is the
o-field of locally o/ measurable sets and A" is the subfamily of £/
consisting of sets that are locally of measure zero. If ¢ is a linear
functional on L¥¥ and v(A) = ¢(y,) for A in L, then |v|, =
sup{|¢(f)|: fe L¥¥ and || f|x < 1} and, if v vanishes on ./, this is the
same as sup{|¢(f)|: fe LZ¥ and | f|, < 1}. If ¢ € L,(u)* whence v

vanishes on 4", the last supremum is ||¢] because L¥“ is dense in
L (u) according to 6.10. It follows that

9 THEOREM Suppose u is a measure on <, N is the family of Lo/
measurable sets that are locally of p measure 0, ¢ € L, (w)* and v4(A) =
¢ (Xa)-

Then vy is finitely additive on £ o/, vanishes on N and |v4ly = |41,
and every finitely additive function on ¥ .o/ that vanishes on N is v,
for some ¢ in L (p)*.

10 DiIGressioN The semi-normed spaces E that we have encountered
are almost all of a special type. They are semi-normed vector lattices, in
the sense that E is a vector lattice with a norm || | such that |||x]] =
x| for all x € E, and | x|l = || y|l provided x = y = 0.

Such a space E is an L space, or of type Ly, iff |[x + y|| = ||x| + || vl
for all positive x and y in E. The spaces co*, ¢, L (1), Co(R)*, FA(A)
for a ring 4 of sets, and M (/) for a §-ring </, are all L-spaces.

A semi-normed lattice E is an M space iff |x v y|| = max{|x|, | y|}
for all positive members x and y of E. The spaces ¢, m, £, Cy(R),
L. (u) and L# are M spaces.
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In each example that we have seen, the adjoint of an L space is an
M space and the adjoint of an M space is an L space. S. Kakutani, to
whom these concepts are due, has developed a structure theory for L
spaces. (See, for example, the appendix to [KN]).

A semi-normed vector lattice E is of type p, or an L, space, 1 <
p < oo, iff {|x|? + || yl|? = |x + y|? for all positive members x and y
of E. The adjoint of such a space is of type ¢, where ¢q is the index
conjugate to p. (See F. Bohnenblust, Duke Math. J. 6 (1940), 627-640.)

All of the examples at our disposal indicate that the second adjoint,
or double dual, E** of a normed space E is like E, or at least that E is
like a subspace of E**. For example, if | < p < o0 and y is a measure,
then L ,(u)* is like L, (p), and L, (u)** is like L,(u). But the second
adjoint E** may “contain” E as a proper subspace. For example, ¢y **
is essentially ¢, * which is like £/, and ¢, = £, but ¢y # 7.

If E is an arbitrary semi-normed space and x € E, then f+> f(x),
for f in E*, is a linear functional on E* that is called evaluation &, at
x. Formally, for each member x of E, &.(f) = f(x) for all f in E*.
Evidently |&.(f)] = lIx] I/, so &, € (E*)* and ||&| < ||x]. Thus & is
a linear map, evaluation, of E into E**, and it is bounded in the sense
that | & = sup{||&ll: x € E and ||x| £ 1} < oo. It is the case, but we
do not prove till later, that & is an isometry of E into the second adjoint
E**,

The evaluation map & may carry E onto E**, in which case E is said
to be reflexive, or the image §[E] may be a proper subspace of E**
so that E is non-reflexive. There are at hand examples of both sorts of
spaces. It seems reasonable, and is in fact the case, that if x is a measure
and 1 < p < oo, then L, (y) is reflexive. It is also to be expected (in
view of 6.13) that each Hilbert space is reflexive. On the other hand, it
is unlikely that cq, £, , £, or Co(R) is reflexive.

SUPPLEMENT: THE SPACES Co(X)* AND L, (p)*

The Riesz representation theorem 2 for C,(R)* has a straightforward
generalization to C,(X), for a locally compact Hausdorff space X.
According to theorem 6.16, each positive linear functional ¢ on Cy(X),
is of the form f | fdv for a unique regular Borel measure v for X
with finite total variation ||v|, and ||@|| = | v|ly. On the other hand,
each bounded linear functional on Cy(X) is the difference of two posi-
tive linear functionals, according to proposition 2.13. This establishes
the first part of the following theorem. We agree that v is a regular
Borel signed measure iff it is the difference of regular Borel measures.

11 Riesz REPRESENTATION THEOREM Each bounded linear functional
¢ on Co{X) agrees on Cy(X) with the integral w.r.t. a regular Borel
signed measure v of finite total variation. Moreover, v is unique and

figll = lvily-
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PROOF It is only the equality of norms that must be proved. The
uniqueness then follows for if v and p are regular Borel signed measures
of finite total variation and ¢(f)= [ fdv = ffd,u for all f in Cy(X),
then v — u is a regular Borel signed measure which represents the zero
functional Z on C,(X), whence ||v — ufl, = |Z]| = 0.

Suppose then that ¢(f) = | fdv for all f in Cy(X). For e > 0 there
are disjoint compact sets 4 and B such that [v(4) — v(B) — |[v[y] < e
by regularity. If C € #°(X) and is a subset of X\(4 u B), then [v(C)| <
e. There is a member f of Cy(X) so that fis 1 on A, —1 on B and
Ifllx = 1. Then [ fdv differs from (x4 — xz)dv by at most e, and
hence { fdv differs from |v|, by at most 2e. Consequently {v|, =
sup{|[ fdv]:fe Co(X)and | flxy=1}. W

The representation theorem 6 for L, (u)* extends to decomposable
measures.

12 REPRESENTATION THEOREM FOR L (u)* If p is a decomposable
measure and ¢ € L (n)*, then there is a member g of L_(u) such that
o(f)= jgf du for all f in L (). The function g is determined locally p
a.e. by ¢ and ||l = [I7].

PROOF According to the representation theorem 6, for each 4 in the
domain 7 of u, the functional ¢, on L, () defined by ¢,(f) = (x4 f ),
is represented by a member g, of L_(u) with support A4, so ¢(y,f) =
ngfdu for all f in L, (u). By modifying g, on a set of u measure zero
we may assume that |g,lly = ld4ll < 114)l. If £ is a decomposition
for u, the function g =) ;.5 ¢gp is £/ measurable according to the
patchwork lemma 9, and | g||x < | ¢]-

We complete the proof by establishing that ¢(f) = [ gf du for f in
L, (u). Each member A of ./ intersects only countably many members
of Z in a set of positive measure (because oo > u(4) = Y .4 u(4 N D))
and each f in L, (u) has support in .oZ,, whence there is a countable
subfamily & of 2 such that f(x) =0 for almost all x in X\| Jp.sD
and {y,f}pce is pointwise summable p a.e. and norm summable to
f in Ly(n). Consequently ¢(f) =Y pesd(tnf) =Y pes|dnfdu=
I(ZDeé”gD)fd/J’ = jgfdll- u

SUPPLEMENT: COMPLEX INTEGRAL AND COMPLEX
MEASURE

Suppose p is a measure on a J-ring </ of subsets of X. A complex
valued f: X - C is integrable w.r.t. # and fe L,(u:C) iff there are
sequences {A4,}, in ./ and {a,}, in C such that ) ,|a,|u(4,) < o and
f(x) =) ,a,x4,(x) for all x in X, and in this case [fdu = L(f) =
Y » a,u(A,). This definition is not ambiguous. The function f is inte-
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grable w.r.t. p iff Zf and #f are integrable and in this case | fdu =
{Rf du + i | #f dp. The space of complex valued integrable functions
is a vector space over C and f+ | f du is a complex linear functional
on it. If it is necessary to make a distinction between the spaces of
complex valued integrable and real valued integrable functions we will
denote the spaces respectively as L (u:C) and L, (u:R); if the context
makes the underlying scalar field clear, we shall use L, (u) to denote,
ambigously, either space. If f is pu integrable, so is |u| and |jfdu| <
{1fldu=1fly I lI; is a semi-norm, and L, (u:C) is complete under
the corresponding semi-metric. The spaces L,(x:C) and the p-norms
| I, (1 <p < oc)are defined as in the real case and the completeness
theorem extends to L ,(u: C) for all p. The inner product for L,(u:C)is
given by { f,¢g> = jfg~ dui where g~ is the complex conjugate of g.

There is a useful extension of the signum function. If x € R, then
signumx =01if x =10, 1 if x > 0 and —1 if x < 0, whence signum x =
x/| x| for x # 0. For each complex number x, if x = 0, then signum x =
0, and if x # 0, then signum x = x/|x|. Thus signum x is a complex
number of modulus one if x # 0, and x(sighum x)~ = | x| for all x. (It is
customary to write sighum x instead of signum(x), and if g is a complex
valued function (signum g) (1) = signum g (u) for all u.)

The real restriction Ep of a complex vector space E is the same set E
with the same vector addition, and with scalar multiplication restricted
to R x E. In brief, Eg is just E if you forget about scalar multiplication
by imaginary numbers. If ¢ is a linear functional on E, then the real
part Z¢ of ¢ is a linear functional on Ep and #¢ determines ¢, because
d(x) = Rp(x) — iAP(ix) for each x in E. If  is an arbitrary linear
functional on Eg, then x—(x) — iy (ix), for x in E, is a linear func-
tional on E (notice that ix — y(ix) — iy (— x) = i(Y(x) — i (ix)). There
is thus a one-to-one corréspondence between linear functionals on
E and linear functionals on Eg. If E is a semi-normed space and if
¢ is a bounded linear functional on E, then sup{|¢(x)|: |x| £ 1} =
sup{|R¢(x)|: ||x|| < 1}. This is true because |¢(x)| = ¢ (x/sighum ¢(x)).
Consequently the correspondence ¢ — #¢ is an isometric mapping of
E* onto Eg*. In fact it is a linear isometry of (E*)g onto (Ep)*. Thus:

If E is a semi-normed complex vector space, then the map ¢+ R¢ for
¢ in E* is an R-linear isometry of (E*)g onto Eg*.

The theorems and proofs for L ,(u: R) which do not involve the order
relation for R (e.g., the dominated convergence theorem and the Holder
and the Minkowski inequalities) carry over to L ,(u:C). In particular,
if p and g are conjugate indices, and g € L, (u:C), then the complex
linear functional ¢, on L ,(u: C) defined by ¢,(f) = { fg~du is bounded,
[,( /) = gl 1 I, and [4,l < ligll,- Asin the real case, this inequality
is actually an equality, and so g+ ¢, is a linear isometry of L (u:C)
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onto L,(u:C)* if 1 <p < oo, and also for p=1if X € .o/, or, more
generally, if 4 is a decomposable measure.

Suppose u is a measure on a J-ring &/ for X and f is a complex
valued £/ measurable function on X (that is, f is X/ — #(R?)
measurable, which is the case iff Zf and #f are ¥ .«/ measurable). The
indefinite integral of f w.r.t. pu, fiu, is defined by fu(B) = |5 f du for
each member B of # = {B: Be o« and fyze L ,(p)}. Then # is a
o-ring and # < o = 4,. If {B,}, is a disjoint sequence in # such
that | ), B, € 8, then fu(B) = Y o fu(B,), so fu is a complex valued
measure, or just a complex measure on 4. If # is a complex measure
on a J-ring 4, then ZA and £/ are signed measures on # and if p and
n are any signed measures on %, then p + in is a complex measure on
A.

The variation of a complex measure 4 on # is defined by letting
V,(B), for B in 4, equal sup Y 4.« |A(A)| for all finite subfamilies % of
% that consist of disjoint subsets of B. If one changes this definition
by replacing “finite” by countable, then the same function V, results,
and this makes it easy to verify that V, is a measure. The total variation
of 4, |Ally, is sup{V,(B): B € #}, and the class of complex measures A
for which ||A||, < oo is a complex vector space that is normed by | |, .

A complex measure A on a J-ring # for X is absolutely continuous
w.r.t. a measure x on a J-ring ./ for X, and we write 4 < g, iff V, < pu.
That is, # = o < %4, and V,(B) = 0 for all members B of # for which
u(B) = 0. This is the case iff #1 and #1 are absolutely continuous
w.r.t. u. If X € o/, or more generally, if there i1s a decomposition for
u, then A is an indefinite integral w.r.t. u, so A= fu|# for some
L .of measurable complex function f on X. The function f, which
is determined up to a set that is locally of u measure zero, is a
Radon-Nikodym derivative of the complex measure A w.r.t. u, denoted
dildu.

Suppose that g on ./ is a measure and f is an ¥.o/ measurable
function. If f is real valued so that f.u is a signed measure, we have
seen that V; , = |f|.u. The conclusion extends to the complex case
because: Suppose that f is complex valued, and B is an arbitrary
member of the domain # of f.u. For each disjoint family {B;}., of
members of 4 that are subsets of B, Y *_, |(f.p) (B)| = Y5, {5, fdul £
S fp|S1du < [51 f1dp whence V;,(B) < (f].4)(B). On the other
hand if Y /- b; Xs, 1S @ # simple function that is uniformly close to the
function ygz(signum f) and bounded by 1 in absolute value (proposi-
tion 6.10), then (|f|.p)(B) which is [ fyg(signum f)dp, is close to
§ fC k- bixp,) du whose absolute value is at most V; ,(B). Consequently
V; .(B)= (| f|.u)(B) forall Bin %, i.e., V; ,=|f|u.

It is evident that each complex measure A is absolutely continuous
w.r.t. V, and hence 4 = ¢.V, for some g, provided V, is decomposable.
In this case V, = |g|.V; and consequently |g| = 1 locally V, almost
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everywhere. The decomposition A = ¢.V;, with |g| =1 is called the
polar decomposition of /.

The product complex measure 1, ® 1, of complex measures 4; on &/
and 4, on # agrees on A x B for A in &/ and B in # with 4,(A)4,(B).
If A, = g.V,, and i, = h.V;, then A,(A)A,(B) = [ 1« gg(x)h(y)dV, ® V,,.
This makes a Fubini theorem for A; ® 4, derivable from that for
V., ®V,,.

A complex measure on the Borel §-ring #9(X) of a locally compact
Hausdorff space X, is a complex Borel measure for X. It is regular iff
the measure V; is regular, and this is the case iff the signed measures
RA and £4, or equivalently their positive and negative parts, are
regular. The family M,(#°(X):C) of all regular complex Borel mea-
sures is a closed subspace, under the total variation norm, of the
Banach space of all complex Borel measures for X and is therefore a
Banach space (if 4 is regular, |v — Al|, < e and V,(U\A) < e, then
V(UNA) < v — Ally + Vo(U\A) < 2e).

Suppose Cy(X :C) is the Banach space of complex valued contin-
uous functions on X that vanish at co, with the supremum norm | | .
For each regular complex Borel measure A = p + iy, the functional
¢, on Co(X:C) defined by ¢,(f)={fdp +i| fdn, is a member of
Co(X:C)*, and the correspondence i+ ¢, is a linear isometry of
M, (#°(X):C) onto Cy(X : C)*.

Each Borel measure is decomposable and consequently each com-
plex Borel measure 4 for X is an indefinite integral f.u for some Borel
measure p for X and for some locally o/ measurable f. If the measure
u is regular then so is f.u and so is | f|.u. Moreover, the correspon-
dence f+ f.u is a linear isometry of L, (u:C) onto the space of all
regular complex Borel measures for X that are of finite variation and
are absolutely continuous w.r.t. u, with the total variation norm (see
8.23).

SUPPLEMENT: THE BOCHNER INTEGRAL

The construction of an integral for real or complex valued functions
generalizes in a natural way to an integration process for vector valued
functions. If p is a (non-negative finite valued) measure on a é-ring of
subsets of X, then to certain functions on X with values in a Banach
space E, we assign a member of E, denoted [ f(x)dux. This assign-
ment, f— | fdy is the Bochner integral. The basic properties of the
integral of scalar valued functions generalize to the Bochner integral,
except for those (e.g., Fatou’s lemma) which depend explicitly on the
ordering of the real numbers.

If fis an E valued function on X and ¢ is a bounded linear func-
tional on E, then the composition ¢ o f is a scalar valued function
on X. It will turn out that if f: X — E has Bochner integral | fdu



SUPPLEMENT: THE BOCHNER INTEGRAL 133

and ¢ € E*, then ¢(f fdu) = [ o fdu. This connection between the
Bochner integral and the scalar integral is very useful, and for this and
other reasons we need an ample supply of bounded linear functionals
on E. The Hahn—Banach extension theorem shows that there is such a

supply.

13 HAHN-BANACH EXTENSION THEOREM Suppose F is a subspace of
a real vector space E and that p is a non-negative real valued function
on E such that p(x + y) < p(x) + p(p) and p(tx) = tp(x) for all x and y
in EandtinR.

Then each linear functional ¢ on F with ¢ < p extends to a linear
functional ¢’ on E with ¢’ < p.

PROOF Let P be the class of all linear functionals ¥ on subspaces of E
such that ¥ < p and ¥ is an extension of ¢. The class P is ordered by
agreeing that y follows 6 iff Y is an extension of . Each linearly
ordered subset of P has an upper bound (its graph is the union of the
graphs of its members), and consequently, by the Hausdorff principle,
there is a maximal member of P. We need to prove that the domain F
of a maximal member is all of E and this will follow from maximality
if we show that if x € E\F, then it is possible to extend a linear func-
tional dominated by p on F to the larger space {rx + y: r e R, y € F},
so that the extension is dominated by p.

If there is a real number ¢ such that rt + @(y) £ p(rx + y) for all
real numbers r and all y in F, then ¢'(rx + y) = rt + @(y) defines
the desired extension. If r > 0, then rt + @(y) L prx +y) iff t <
p(x + y/r) — ¢(y/r). That is, t must be less than or equal to p(x + u) —
¢@(u) for all u in F. If r < 0, then the inequality reduces in the same
way to —p(—x + v) + ¢(v) = t for all v in F. Consequently there is a
number ¢ as required unless —p(—x + v) + @(v) > p(x + u) — @(u) for
some members u and v of F. But in this case @(u + v) > p(—x + v) +
p(x + u) = p(u + v), which is a contradiction. W

14 CororLLARY If F is a subspace of a semi-normed space E and
@ € F*, then there is an extension  of ¢ in E* such that ||o| = |¥]|.
Consequently for each y in E if y # 0, then there is  in E* so that
Wil =y /lyl) =1

PROOF If E is a real linear space, then the corollary is a special case
of the preceding theorem with p(x) = [[@]| || x| for all x in E. If Eis a
complex normed space then Z¢ is a real linear functional on the real
restriction F of F and it is easy to see that | Z¢]| = ||¢|. Consequently
there is a real linear functional 0 on Ey so that ||0] = | Z¢]| and 0 is
an extension of R¢. Then, if (x) = 6(x) — if(ix) for x in E, { is a
complex linear functional on E, (notice that ¥ (ix) = 0(ix) — if(—x) =
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i(0(x) — i6(ix)) = iy (x)), and ||y || = [|0] = |R¢]| = ll@]|. Finally, ¢ is
an extension of ¢ because #Y is an extension of Zgp, so A(Y — )
vanishes on F, and hence y = ¢ on F.

If x € E and x # 0, the foregoing conclusion applied to the linear
functional ¢ defined by ¢(ay) = «| y| on the space F of scalar multi-
ples of y yields the last statement of the corollary. W

We recall that for each x in E, the evaluation at x, &,, is the func-
tional on E* defined by &,(f) = f(x) for f in E* It is evident that
[€.() < |Ix]| | fIl whence ||&,]| £ |lx||. This inequality is actually an
equality because the preceding corollary guarantees the existence of a
member f in E* of norm one with &,(f) = ||x|. Thus

15 CororLLarRY The evaluation map of a semi-normed space E into
its second adjoint E** is a linear isometry.

We now define measurability and then Bochner integrability for E
valued functions. We assume throughout that E is a normed linear space
over either R or C, that E* is the dual of E, and that g is a (finite
valued) measure on a 4-ring o7 of subsets of X.

The strong Borel s-field for E, or the classical Borel s-field, 2. (E),
is the o-field generated by the family of open subsets of E. The
members of %.(E) are strongly Borel measurable, or strongly Borel.
If E is separable (there is a countable dense subset of E), then %.(E)
is generated by any base for the topology, since each open set is
the union of countably many members of the base. The strong Borel
field for a subset 4 of E is the o-field 4.4 = {Bn A:B e $B,(E)}.
It is generated by {Sn A:S € ¥} where & is any family generating
B.(E).

The weak Borel field #/, or #(FE), is the smallest o-field such that
every bounded linear functional ¢ on E is measurable. The strong
Borel field 4, is one such o-field, and so ¥ is a subfamily of 4,. The
weak Borel field for a subset 4 of E is the relativization #7|4 =
{(WnA:Wew}.

The o-fields 8, and #" are generally not identical. However:

16 THEOREM If A is a separable subset of E, then .| A = # | A.

PROOF We first show that there is a sequence {¢,}, in E* such that
lx — yll = sup,|@,(x — y}| for all x and y in A. To this end, select
a dense sequence {z,}, in 4, and for all nonnegative integers i and
j choose a linear functional ¢; of norm one such that ||z, — z;|| =
©;;(z; — z;). This choice is possible because of the Hahn-Banach
theorem. Let p(x) = sup; ;| ¢;(x)| for all members x of E. Then p(x)
x| because |@;ll =1 for all i and j, and p(z; — z;) = l|z; — z;||. It is
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easy to verify that p is a semi-norm. We show that p(x — y) = |x — y|
for all members x and y of A by an approximation argument.

Choose z; and z; so that ||x — z] and ||y — z,|| are small. Then, from
the triangle inequality, |[x — y|| is near |z; — z;||. But p(x — z;) and
p(y — z;) are also small because p(u) < |lul| for all 4, and from the
triangle inequality (p is a semi-norm), we again have p(x — y) near
p(z; — z;) = llz; — z;|l. Consequently p(x — y) is near ||x — y|.

The preceding result shows that the function y+— ||x — y|, for y in
A, is #'|A measurable because it is the supremum of a countable
family of #7|| A measurable functions. Consequently, for every such x
and every r > 0 the set {y: ye 4 and |x — y| <r} is #||A measur-
able. But sets of this form generate %,| 4, so B.|A < #||A. A

We recall that if o/ is a d-ring of subsets of X, then L./ is the
family of all subsets of X which are locally in ./, in the sense that
B n A € o for all members A4 of of. The family ¥ .o/ is a o-field for X.
We agree that a function fon X to E is strongly measurable, iff f is
¥ of — B, measurable; that is, f'[S] is locally &/ measurable, for
each member S of the strong Borel field. The function f is weakly
measurable iff ' is £/ — # measurable. The family of all sets of the
form ¢ *[B], with ¢ in E* and B a Borel subset of the scalars, gener-
ates #, so f is weakly measurable iff f '[¢ '[B]]1=(pof) '[B] e
&L .o for all such ¢ and B. That is, f is weakly measurable iff ¢ o f is
% of measurable for all ¢ in E*.

Each strongly measurable function f on X to E is automatically
weakly measurable. If a function f on X to E is weakly measurable
and f[X] is separable, then for each strong Borel set B, f [B] =
S7UB A f[X]] e 4.1 f[X] according to theorem 16, and hence f is
strongly measurable. Thus:

17 CoroLLaRY If f: X — E is weakly measurable and has separable
range, then f is strongly measurable.

The description of weak measurability in terms of measurability of
the functions ¢ o f, with ¢ in E*, makes it clear that the sum of two
weakly measurable E valued functions and a scalar multiple of each
such function are weakly measurable. The pointwise limit f of a se-
quence {f,}, of weakly measurable functions on X to E is weakly
measurable because, for each ¢ in E*, ¢ o f is the pointwise limit of the
sequence {¢ o f,}, of measurable scalar valued functions and is there-
fore measurable. On the other hand, the class of strongly measurable
functions is not necessarily a linear space, although closed under point-
wise sequential convergence. But we are concerned only with functions
with separable range, and the preceding corollary guarantees that there
are no surprises here.
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The relation between measurable E valued functions and o-simple
functions is much the same as in the scalar case. A function f on X to
E is </ simple iff there are finite sequences {a, }, in E and {4, }, in &/
such that f(x) =3, X4, (x)a for all x in X, and a function f on X to E
is o/ o-simple or just g-simple iff there are sequences {a,}, in E and
{4,}, in o such that f(x) = znxAn(x)a,, for x in X. To be precise:
it is required that for each x, the unordered sum of the sequence
{#4,(x)a,}, relative to the norm topology be f(x).

Each o-simple function f =}, x, a, has a support | J, 4, in =/, and
a separable range—indeed the set of linear combinations with rational
coefficients of finitely many members of {a,}, is dense in a separable
subspace of E that contains f[ X]. Moreover, a o-simple function f is,
being the pointwise limit of a sequence of ./ simple functions, weakly
and therefore strongly measurable. Conversely, it is the case that each
strongly measurable E valued function f with separable range and a
support in &7, is o-simple. We prove a stronger statement which gives
information on both f and | f|.

If fis an ¥« measurable real valued function with support in
</, then by theorem 5.9 f* and f~ are countable linear combinations
with nonnegative coefficients of characteristic functions of members of .«
so there are sequences {r,},in R and {4,}, in .o/ so that f =), r, x4
and | f] =) ,[r,l X4, Essentially the same conclusion holds for E
valued functions f, except that the second equality is replaced by an
epsilon close inequality. We prove this after establishing a preliminary
lemma. An E valued function f is &/ elementary iff for some sequence
{a,}, in E and some disjoint sequence {4,}, in ., f(x) =), x4, (X)a,
for each x in X.

18 LeMMA Each strongly measurable E valued function f with separ-
able range and a support in </, is the uniform limit of a sequence of E
valued of elementary functions.

PROOF Suppose that { J, A,, where {4,}, is a disjoint sequence in
</, is a support for f and that for each n, {y, .}, is a dense subset
of f[A,]. For e>0 let E, ,={x:x€e A, and ||f(X) — y, mll <e}.
Then E, ,, € & because f is strongly measurable, and “disjointing”
by setting F, ,, = E, w\Uk<m Eni» We see that {F, .}, , is a disjoint
countable subfamily of . If g(x) =y, , for x in F, ,, and g{x) =0
for x outside the support U,,A,, of f, then g is elementary and
lg(x) — f(x)| <eforallx. MW

19 REPRESENTATION THEOREM Suppose that f: X — E is strongly
measurable, has separable range and a support | ), C, for some disjoint
sequence {Cp }, in of.

Then for each sequence {e,}, of positive numbers, there are sequences
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{A,}, in o and {a,}, in E such that f(x) =), x4, (X)a, and || f(x)|| <
Yonxa, ) lall Z NfC) + Yk exxe, (x) for all x.

PROOF It is sufficient to show that iff is supported by a member C of
o and e >0 then f(x) =), 14 (x)a, and Y x4 (%) la,] < If X +
exc(x) for some sequences {a,},in E and {4,}, in .;zf with 4, = C for
each n.

We suppose f is supported by a member C of /. The function f is
the uniform limit of a sequence of elementary functions, according to
lemma 18 and consequently, by using the differencing trick, we can
find a sequence { f,}, of elementary functions, each supported by C,
such that f(x) =Y., fu(x) for each x and || f,(x)| < e27" for all x and
for n > 0. Then || fo(X)|| < [ f(x)| + Y72, 27" = || f(x)|| + e for each x.
Iff,,(x Y« xs, (X)b, «, where {B,  } is a disjoint sequence in .o/ with

B, < C, then f(x) = Y., i x5, (x)b, for all x. For each n, because f,
is elementary, [/, = Y. Zn, ,(0)lby.ill, whence 3, .15, (x)l1by el =
Yl = 1 fo(x) + e = [ f(x)l + 2e. Since C is a support for

£ 1)) = Zn,kmn,k( M Iba, ikl £ 1f(X)Il + 2exc. This establishes the
lemma. W

20 PROPOSITION For each function f on X to E the following are
equivalent

(i) f is weakly measurable, has separable range and a support in of,,

(ii) f is strongly measurable, has separable range and a support in
"daa

(iii) f is of o-simple, and

(iv) f is the pointwise limit of a sequence of </ simple functions.

PROOF Corollary 5 shows that (i) implies (ii), the preceding theorem
shows that (ii) implies (iii), and (iii) clearly implies (iv). Finally, (iv)
implies (i) follows from the fact that the pointwise limit f of a se-
quence { f,}, of weakly measurable functions on X to E is weakly
measurable. W

A function f on X to E is Bochner integrable iff there are sequences
{A,}, in o and {a,}, in E with ), u(4,)|a,ll < co such that f(x) =
Yo Xa,(x)a, for each x. We want to define the Bochner integral of such
a function f to be Y, u(4,)a,. If E is complete the sequence { u(4,)a, },
is summable to a member of E, because it is absolutely summable. We
assume henceforth that F is complete and we show that the desired
definition is not ambiguous.

21 FUNDAMENTAL LEMMA If f is an E valued function, f(x)=
YonXa,(X)a, for each x, and y, p(A4,)lla,| < oo, then ¢ o fe L, (u) for
each g in E* and [ o fdu= (3, u(4,)a,.
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If f(x) is also equal to Y, xp (x)b, for all x, where Y, u(B,)||b,| < o,
then} ,pu(Ay)a, =Y., u(B,)b

PROOF Clearly ¢ o f(x) = ¥, 1, (\0(@,) and ¥, u(4,)]0(,)| <
ol Y. u(A )Ila | < co. Consequently ¢ ofe L,(u) and f¢ o fdu=
Y pu(A)e(a,) = @3, u(A,)a,). This establishes the first statement
of the lemma. The second statement follows from the Hahn-Banach
theorem (corollary 14): since ¢ (3, u(4,)a, — Y., u(B,)b,) = 0 for all ¢
in E%, Y, u(4,)a, — Y, 4(B,)b, = 0. W

If f is a Bochner integrable function on X to a Banach space
E, f(x)=3 ,14,(x)a, for each x, and ) ,u(A4,)lla,| < oo, then the
Bochner integral of f, jfdﬂ or B,(f), is defined to be Y, u(A4,)a,. The
preceding lemma shows that this definition is not ambiguous. It also
shows that if f is Bochner integrable, then ¢ o f is integrable for every
@ in E* and {¢ o fdu = ¢(f fdu). We notice that ||Z 24, (X)a,ll <
e Xa,(X)(x) lla,l for each x, and it follows that if f is Bochner inte-
grable then x — | f(x)|| is integrable.

We show that conversely, if f is an &/ o-simple function and
x> || f(x)|| is integrable, then f is Bochner integrable and moreover,

IB.(HI < JILf()If dpx.

22 THEOREM If f is an </ o-simple function on X to E then f is
Bochner integrable if and only if x> || f(x)|| is integrable, and in this
case, Hffdu“ < f | £l du. Moreover, if T is a bounded linear map of E
to a Banach space F then To f is Bochner integrable and T(j'fdu) =

{Tofdp.

PROOF We have already established some of the assertions of the
theorem. It only remains to show that if x> |[f(x)| is integrable,
then so is f and || fdul < {|fll du. According to theorem 19, for
each sequence {e}, of positive numbers, f(x) =1 ,x4 (x)a, and
Yo Xa,(X) laall < [ f )l + zkek,(ck( x) for all x for some sequences
{A4,}, in o/ and {a,}, in E and some disjoint sequence {C, }, in .&/ so
that | J, C; is a support for f. Let e, = e27*/u(C,) for each k for which
#(C,) # 0 and 0 otherwise. Then the o-simple real valued function
x> Y x4, (%) a,ll is dominated by x— || f(x)]| + Y« €xxc, (x) which is
integrable. Consequently x+— ) , Xa,(x)lla,|l is integrable and its inte-
gral ¥, u(A,)lla,ll [l flldu+ e So f is Bochner integrable and
1§ fdul < YA la]l < [1f 1 di + e whence || fdpul < [/ dp. ™

For each Banach space E and each measure y, the class of Bochner
integrable functions is denoted by L{(u, E£). For fin L, (w E), I fll1
is defined to be || f(x)|dux. It is easy to see that L,(u E) is a
linear space and that || ||; is a semi-norm for L, (g, E). The fact that
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If fdull < [l f(x)|l dux can be rephrased: the Bochner integral B, is a
linear function on L, (g, E) of norm at most one (of course ||B,| = 1;
consider a function x> y,(x)a). We show that L, (u, E) is complete.
The critical fact: the inequality || fdul < [ |l f(x)|| dux permits us to
deduce convergence in E from the theorems about convergence for
scalar valued functions.

23 THEOREM If E is a Banach space and p is a measure, then each
swiftly convergent sequence in L, (p, E) converges pointwise a.e. and in
norm to a member of L(u, E), and consequently L (u, E) is complete.

PROOF It is sufficient to show that if { f,}, is a sequence in L, (u, E)
such that ), || full; < oo, then there is a member f of L, (y, E) such that

lim, || f(x) = Y0 fi(x)| = 0 for p ae. x and lim, || f — Y k=0 fil L = 0.
But ¥, [1fully = lim, Y ieo [ 1L ()l dpx = lim, [ ¥ k=0 [l fu(x)]| dux and

s0, by B. Levi’s theorem, the increasing sequence {x — > 7_o | fi (x)] },
converges u almost everywhere to an integrable function ¢g. Let

f(x) =Y, f(x) for points x such that ) | f,(x)|| = g(x) and let f
be 0 otherwise. Then f is easily seen to be o-simple because each
f. is and fe L,(u, E) because j[lf(x )l dux < [ g(x)dux. Moreover

lim, || f — Zk:o Sy = lim, I I f(x) — Zk—o ()l dux = 0 by the domi-
nated convergence theorem. W

Finally, a generalization of the dominated convergence theorem is
valid for E valued functions.

24 DoOMINATED CONVERGENCE THEOREM Let { f, }, be a sequence in
Li(u, E) such that {f,(x)}, is a Cauchy sequence for p a.e. x and
suppose g is an integrable nonnegative function such that || f,(x)|| £ g(x)
for eachn and u a.e. x.

Then there is a member f of L, ,(u, E) such that f =lim, f, a.e.,
lim, || f, — fll, = 0, and consequently lim, | f,du = | f dp.

PROOF The function f defined by f(x) = lim, f,(x) if the limit on the
right exists and zero otherwise, is o-simple in view of proposition
20 and | f(x)]] £ g(x) for u a.e. x. Consequently the function x+—
| fo(x) — f(x)]] is an £ ./ measurable function with a support in o7,
which is dominated u a.e. by 2g. By the dominated convergence theo-
rem for scalar functions, lim, || f, — fll, = lim,,j I fu(x) — f(x)] dux =
flim, || fu(x) — f(x)| dux = 0. W
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almost uniform convergence, 68

approximation
of functions, from above and below,
46
inner and outer approximation of
sets, 46, 47, 48, 51, 52
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BXR™M), 51 C,(X), 30, 128
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102
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Borel o-field
Z(R) for R, 56
ZB(R*) for R*, 56
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classical Borel o-field Z_( X), 117
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space, 134
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space, 134
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of a measure*, 93
of an inner regular measure, 105
Bore] isomorphism, 62
Borel-Lebesgue measure
A for R, 50
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space, 51
for R, 44
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als, 77
Borel product measure, 88, 89
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essentially bounded, 73
linear functional, 31, 75, 122

C = the set of complex numbers
c, 122
c,, 122

extension of a length function, 13
extension of a measure, 91
Jordan representation, 110
Carathéodory
lemma, 18
measurable set, 18
pre-measure, 19
carrier of a measure, 110, 116
Cauchy-Schwartz inequality, 75
chain in a partially ordered space, 7
change of variable, 96
characteristic function x ,, 26
classical
Borel field, 117
Lebesgue measure, 50
compatible
function on X X Y, 83
null compatible completion, 85
null compatible set, 84
subset of X X Y, 83
complete
conditionally complete, 38
Dedekind complete, 3, 38
null complete integral, 37
order complete, 3, 38
completeness
of the domain of an integral, 37
of L,(u, E), 139
of L,(p), 72
completion of a measure
null compatible completion, 85
standardized completion, 49
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complex integrals and measures, 129
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&, 24
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almost everywhere, 34, 67
almost uniformly, 68
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2
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18, 23
countably subadditive, 18
counting measure, 42

)
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46
A
modular function on a group, 118
symmetric difference of sets, 1
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Daniell-Stone pre-integral, 27
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de Leeuw, Karel, 90
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Dini’s theorem, 28
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length function, 9
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measure with weight function f, 42

part of a length function, 9
disjointing process, 55
distribution function

for a length function, 11

for a measure, 94

normalized distribution function, 11,

94

dominated convergence theorem

for an integral, 39

for L,(p), 72

for the Bochner integral, 139
dominated countable union, 45
dual of a semi-normed space, 122
dual norm, 122

Egorov theorem, 68
elementary vector valued function, 136
Engelking, 64
essentially bounded, 73
euclidean
norm (semi-norm), 75
space, 74
evaluation mapping, 128
exact function, 12
extended set R* of real numbers, 5
extension theorems
of Ton L, 66
for linear functionals, 133
minimal integral extension I, on L,
minimal measure extending a pre-
measure, 44
for pre-integrals, 36
for pre-measures, 43

FA(%), 126
family of sets, 2
indexed family, 2
Fatou’s lemma, 39, 82
Fell, IM.G., 114
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o-field, 18, 54
o-field generated by a family, 55
finitely
additive, 13, 23
subadditive, 13
Fubini theorem, 86, 90
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G space, 15
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lattice generated by &7, 12
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a-ring generated by «7, 54
a-field generated by &, 55
theorem on generated §-rings, 45
group
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topological group, 17
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uniqueness, 118
Hable, M., 90
Hahn-Banach extension theorem, 133
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global Hahn decomposition, 116
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Hausdorff maximal principle, 7
Hewitt, E., 97
Hilbert space, 76
Holder inequality, 71
hypercontinuous content, 15

I#, 26

1,, 65, 66

1>, 81

', 35

I, 62

1", 38

ideal in a &-ring, 113
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Borel image Tz A, 103
Borel image measure* g, pu, 93
Borel image T,u of an inner regular

measure*, 105

of A,,.,, under a smooth map, 96
of A, under a smooth map, 100
of aset 4, f [A],2
Tp of a measure p, 92

indefinite integral f.», 95, 112
index conjugate to p, 73, 124
inner product, 74
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Bochner integrable, 137
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locally integrable, 95
p integrable, 65, 91
p integrable*, 80, 91
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Bochner integral, 137, 138
Daniell integral I' on L!, 35
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indefinite integral, 95, 112, 113, 131
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130
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iterated Riemann integral, 28
interval in R” = p-interval, 28
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Johnson, R.A., 90

Jordan representation of a signed mea-
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jump function, 10

jump of f at x, 10

Kakutani, S., 41, 50, 128
Kunze, R.A., 97
Kuratowski, C., 64
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4., 121

L* (= class of o/ simple functions),
26
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L*(p) = set of p integrable* func-
tions, 80
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L, (w), 73
L spaces, 41, 127
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L. (p)*, 127
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Lo/ = family of locally &/ measurable
sets, 60
lattice, 3
semi-normed vector lattice, 127
vector function lattice, 5
vector lattice, 3
lattice of sets, 12
lattice generated by a family, 12, 22
Lebesgue
decomposition theorem, 111
differentiation theorem, 97
integral for R, 50, 51
measurable, 50, 51
Lebesgue measure
classical Lebesgue measure for R”,
51
Al for R, 47
A" for R”, 50, 51
See also Borel-Lebesgue measure
Lebesgue-Stieltjes measure, 47
left invariant measure, 53
length function, §
measure induced by, 47
length A, induced by f = f length, 10
Levi property, 28
limsup, . ,x, and liminf,. ;x,, 6
locally
%/ measurable functions, 60
&/ measurable sets = Lo, 60
locally 1,111
poae., 92
of u measure zero, 92
p null set, 73
v integrable function, 95
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sure, 109
Lusin theorem, 69
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measurability, 54 ff.
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surable set = member of the o-
field &, 56

<% measurable function, 56

&/ measurable function = ZLZ(R*)
measurable function, 58

Carathéodory measurable, 18

Lebesgue measurable, 47, 51

strongly measurable function, 135

weakly measurable function, 135
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negative countably additive func-
tion on a §-ring), 42

Borel measure, 44, 51, 76, 88, 89, 93,
94

complete measure, 48

completion of a measure, 48, 85

counting measure, 42

discrete measure with weight func-
tion, 42

Haar measure, 53, 118

inner regular measure, 48, 105

measure induced by a length func-
tion, 47

measure induced by an increasing
function, 94, 98

measure induced by an integral, 42

measure induced by a pre-integral,
60

minimal measure induced by a pre-
measure, 44

regular measure, 48

semi-finite measure, 91

standard measure, 45

standardization of a measure, 48, 49

Minkowski inequality, 71
modular function
on a group, 118
on a lattice of sets, 23
monotone convergence theorem, 38, 72,
81
Morse, A.P., 90
moving bump example, 40
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N = set of natural numbers, 2
N>, 62
negative set (for a signed measure),
109
neighborhood in R*, 5
net, S
v. Neumann, J., 112, 118
norm, 31, 33, 121
dual norm, 122
L, norm, 32
L, norm, 70
norm complete, 33
norm distance, 33
norm summable to f, 34
operator norm, 102
supremum norm, 31
variation norm, 77, 122
normalized distribution function, 11,
94
norm completeness of the domain of
an integral, 37
Novinger, W.P., 73
null set
relative to a measure, 67
relative to a pre-integral, 34

operator norm, 102
order, 3
order complete, 38
partial order, 3
outer regular measure, 48
Oxtoby, J.C., 50, 97

parallelogram law for euclidean spaces,
75
partially ordered set, 3
patchwork lemma, 115
perpendicular, L
mutually singular measures, 111
vectors in a euclidean space, 75
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in &, 115
piecewise of measure zero, 115
pointwise summable and pointwise
sum, 7
polar decomposition of a complex
measure, 132
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Polish space, 62
positive
linear functional, 26
set (for a signed measure), 109
pre-content, 14
pre-integrals, 21, 27
on C (X) and C,(X), 30
pre-measure, 8, 26
induced by a pre-integral, 61
Carathéodory pre-measure, 18
product
Borel product measure, 87
borel space, 57
of complex measures, 132
8-ring, 84
integral, 84
measure, 84
o-field, 57
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R = the set of real numbers, 2
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of a complex measure, 131
Radon-Nikodym theorem, 112, 113
for Borel measures, 117
for decomposable measures, 115
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space, 130
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regular
Borel measure, 76, 78
Borel signed measure, 128
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measure, 48, 51, 52
regularity of length functions, 8
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to W, 57,134
representation lemma (of R* valued
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restriction f|A of a function f to a set
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Riemann
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Riemann-Stieltjes integral, 98
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ring generated by a family, 22, 23
o-ring, 54
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Rudin, W, 104
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of a function on X X Y, 83
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of a subset of X X Y, 84
Segal, L.LE., 97, 114
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upper semi-continuous, 28
semi-finite measure, 91
semi-norm, 33, 121
semi-rigid action of a group, 16
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signed measure, 109
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a
o-compact, 78
o-field, 18, 54
o-field generated by a family, 55
o-ring, 54
o-simplicity and measurability, 54,
60
&/ (= unions of countably many
members of &), 60
simple function, 26
&/ simple, 26
& o-simple, 59
& ¢ -simple, 59
a-simple vector valued, 136
singular
Borel measure for R, 97
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w.r.t. a measure (= mutually singu-
lar), 111
Smith, K.T., 104
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distribution function, 95

image of A, under a smooth map,
100
Souslin, 64
standard
Borel space, 62
measure, 43
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completion of a measure, 49
measure, 48
of small standardized measure, 68
Stieltjes
Lebesgue-Stieltjes measure, 47
Riemann-Stieltjes integral, 98
Stone, M.H.,, 41
Stromberg, K., 97
strong Borel o-field, 134
strongly measurable function, 135
subadditive, 13, 24
countably subadditive, 24
Sullivan, D., 50
summable, 6
norm summable to f, 33
summable*, 6, 80
with summable norms, 33
support for a function, 27, 60
supremum norm, || ||y, 31
swiftly convergent sequence { x,, },,
(= {llx,,: — x,lI}, is summable),
33,65
symmetric difference of sets, 1

Tarski, A., 50
Ter Horst, H.J., 99
tight (relative to a regular Borel mea-
sure), 116
Tonelli theorem, 85
for Borel measures, 90
topological group, 17
totally finite (= bounded) measure, 70,
77, 92
total p mass, 92
transitive action by a group, 15
translation invariant
length, 12
measure, 44, 53
truncation
8-ring of L, 61
function lattice with truncation, 26
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of a complex measure, 131
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weakly measurable function, 135
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