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To my students



Preface

Manifolds are everywhere. These generalizations of curves and surfaces to
arbitrarily many dimensions provide the mathematical context for under-
standing “space” in all of its manifestations. Today, the tools of manifold
theory are indispensable in most major subfields of pure mathematics, and
outside of pure mathematics they are becoming increasingly important to
scientists in such diverse fields as genetics, robotics, econometrics, com-
puter graphics, biomedical imaging, and, of course, the undisputed leader
among consumers (and inspirers) of mathematics—theoretical physics. No
longer a specialized subject that is studied only by differential geometers,
manifold theory is now one of the basic skills that all mathematics students
should acquire as early as possible.

Over the past few centuries, mathematicians have developed a wondrous
collection of conceptual machines designed to enable us to peer ever more
deeply into the invisible world of geometry in higher dimensions. Once
their operation is mastered, these powerful machines enable us to think
geometrically about the 6-dimensional zero set of a polynomial in four
complex variables, or the 10-dimensional manifold of 5 x 5 orthogonal ma-
trices, as easily as we think about the familiar 2-dimensional sphere in R3.
The price we pay for this power, however, is that the machines are built
out of layer upon layer of abstract structure. Starting with the familiar
raw materials of Euclidean spaces, linear algebra, and multivariable calcu-
lus, one must progress through topological spaces, smooth atlases, tangent
bundles, cotangent bundles, immersed and embedded submanifolds, ten-
sors, Riemannian metrics, differential forms, vector fields, flows, foliations,
Lie derivatives, Lie groups, Lie algebras, and more—just to get to the
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point where one can even think about studying specialized applications of
manifold theory such as gauge theory or symplectic topology.

This book is designed as a first-year graduate text on manifold theory,
for students who already have a solid acquaintance with general topology,
the fundamental group, and covering spaces, as well as basic undergradu-
ate linear algebra and real analysis. The book is similar in philosophy and
scope to the first volume of Spivak’s classic text [Spi79], though perhaps
a bit more dense. I have tried neither to write an encyclopedic introduc-
tion to manifold theory in its utmost generality, nor to write a simplified
introduction that gives students a “feel” for the subject without the strug-
gle that is required to master the tools. Instead, I have tried to find a
middle path by introducing and using all of the standard tools of mani-
fold theory, and proving all of its fundamental theorems, while avoiding
unnecessary generalization or specialization. I try to keep the approach
as concrete as possible, with pictures and intuitive discussions of how one
should think geometrically about the abstract concepts, but without shying
away from the powerful tools that modern mathematics has to offer. To fit
in all of the basics and still maintain a reasonably sane pace, I have had
to omit a number of important topics entirely, such as complex manifolds,
infinite-dimensional manifolds, connections, geodesics, curvature, fiber bun-
dles, sheaves, characteristic classes, and Hodge theory. Think of them as
dessert, to be savored after completing this book as the main course.

The goal of my choice of topics is to cover those portions of smooth
manifold theory that most people who will go on to use manifolds in math-
ematical or scientific research will need. To convey the book’s compass, it
is easiest to describe where it starts and where it ends.

The starting line is drawn just after topology: I assume that the reader
has had a rigorous course in topology at the beginning graduate or advanced
undergraduate level, including a treatment of the fundamental group and
covering spaces. One convenient source for this material is my Introduction
to Topological Manifolds [Lee00], which I wrote two years ago precisely with
the intention of providing the necessary foundation for this book. There
are other books that cover similar material well; I am especially fond of
Sieradski’s An Introduction to Topology and Homotopy [Sie92] and the new
edition of Munkres’s Topology [Mun00).

The finish line is drawn just after a broad and solid background has been
established, but before getting into the more specialized aspects of any par-
ticular subject. For example, I introduce Riemannian metrics, but I do not
go into connections or curvature. There are many Riemannian geometry
books for the interested student to take up next, including one that I wrote
five years ago [Lee97] with the goal of moving expediently in a one-quarter
course from basic smooth manifold theory to some nontrivial geometric
theorems about curvature and topology. For more ambitious readers, I rec-
ommend the beautiful recent books by Petersen [Pet98], Sharpe [Sha97],
and Chavel [Cha93].
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This subject is often called “differential geometry.” I have deliberately
avoided using that term to describe what this book is about, however,
because the term applies more properly to the study of smooth mani-
folds endowed with some extra structure—such as Lie groups, Riemannian
manifolds, symplectic manifolds, vector bundles, foliations—and of their
properties that are invariant under structure-preserving maps. Although I
do give all of these geometric structures their due (after all, smooth man-
ifold theory is pretty sterile without some geometric applications), I felt
that it was more honest not to suggest that the book is primarily about
one or all of these geometries. Instead, it is about developing the general
tools for working with smooth manifolds, so that the reader can go on to
work in whatever field of differential geometry or its cousins he or she feels
drawn to.

One way in which this emphasis makes itself felt is in the organization
of the book. Instead of gathering the material about a geometric structure
together in one place, I visit each structure repeatedly, each time delving as
deeply as is practical with the tools that have been developed so far. Thus,
for example, there are no chapters whose main subjects are Riemannian
manifolds or symplectic manifolds. Instead, Riemannian metrics are intro-
duced in Chapter 11 right after tensors; they then return to play major
supporting roles in the chapters on orientations and integration, followed
by cameo appearances in the chapters on de Rham cohomology and Lie
derivatives. Similarly, symplectic structures make their first appearance at
the end of the chapter on differential forms, and can be seen lurking in an
occasional problem or two for a while, until they come into prominence at
the end of the chapter on Lie derivatives. To be sure, there are two chapters
(9 and 20) whose sole subject matter is Lie groups and/or Lie algebras, but
my goals in these chapters are less to give a comprehensive introduction
to Lie theory than to develop some of the more general tools that every-
one who studies manifolds needs to use, and to demonstrate some of the
amazing things one can do with those tools.

The book is organized roughly as follows. The twenty chapters fall into
four major sections, characterized by the kinds of tools that are used.

The first major section comprises Chapters 1 through 6. In these chapters
I develop as much of the theory of smooth manifolds as one can do using,
essentially, only the tools of topology, linear algebra, and advanced calculus.
Isay “essentially” because, as the reader will soon find out, there are a great
many definitions here that will be unfamiliar to most readers and will make
the material seem very new. The reader’s main job in these first six chapters
is to absorb all the definitions and learn to think about familiar objects in
new ways. It is the bane of this subject that there are so many definitions
that must be piled on top of one another before anything interesting can
be said, much less proved. I have tried, nonetheless, to bring in significant
applications as early and as often as possible. By the end of these six
chapters, the reader will have been introduced to topological manifolds,
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smooth manifolds, the tangent and cotangent bundles, and abstract vector
bundles.

The next major section comprises Chapters 7 through 10. Here the main
tools are the inverse function theorem and its corollaries. This is the first of
four foundational theorems on which all of smooth manifold theory rests. It
is applied primarily to the study of submanifolds (including Lie subgroups
and vector subbundles), quotients of manifolds by group actions, embed-
dings of smooth manifolds into Euclidean spaces, and approximation of
continuous maps by smooth ones.

The third major section, consisting of Chapters 11 through 16, uses ten-
sors and tensor fields as its primary tools. Beginning with the definition
(or, rather, two different definitions) of tensors, I introduce Riemannian
metrics, differential forms, integration, Stokes’s theorem (the second of the
four foundational theorems), and de Rham cohomology. The section culmi-
nates in the de Rham theorem, which relates differential forms on a smooth
manifold to its topology via its singular cohomology groups.

The last major section, Chapters 17 through 20, explores the circle of
ideas surrounding integral curves and flows of vector fields, which are the
smooth-manifold version of systems of ordinary differential equations. The
main tool here is the fundamental theorem on flows, the third founda-
tional theorem. It is a consequence of the basic existence, uniqueness, and
smoothness theorem for ordinary differential equations. Both of these theo-
rems are proved in Chapter 17. Flows are used to define Lie derivatives and
describe some of their applications (most notably to symplectic geometry),
to study tangent distributions and foliations, and to explore in some detail
the relationship between Lie groups and their Lie algebras. Along the way,
we meet the fourth foundational theorem, the Frobenius theorem, which is
essentially a corollary of the inverse function theorem and the fundamental
theorem on flows.

The Appendix (which most readers should read, or at least skim, first)
contains a cursory summary of the prerequisite material on topology, lin-
ear algebra, and calculus that is used throughout the book. Although no
student who has not seen this material before is going to learn it from read-
ing the Appendix, I like having all of the background material collected in
one place. Besides giving me a convenient way to refer to results that I
want to assume as known, it also gives the reader a splendid opportunity
to brush up on topics that were once (hopefully) well understood but may
have faded a bit.

I should say something about my choices of conventions and notations.
The old joke that “differential geometry is the study of properties that are
invariant under change of notation” is funny primarily because it is alarm-
ingly close to the truth. Every geometer has his or her favorite system of
notation, and while the systems are all in some sense formally isomorphic,
the transformations required to get from one to another are often not at
all obvious to the student. Because one of my central goals is to prepare
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students to read advanced texts and research articles in differential geome-
try, I have tried to choose notation and conventions that are as close to the
mainstream as I can make them without sacrificing too much internal con-
sistency. When there are multiple conventions or notations in common use
(such as the two common conventions for the wedge product or the Laplace
operator), I explain what the alternatives are and alert the student to be
aware of which convention is in use by any given writer. Striving for too
much consistency in this subject can be a mistake, however, and I have
eschewed absolute consistency whenever 1 felt it would get in the way of
ease of understanding. I have also introduced some common shortcuts at an
early stage, such as the Einstein summation convention and the systematic
confounding of maps with their coordinate representations, both of which
tend to drive students crazy at first, but pay off enormously in efficiency
later.

This book has a rather large number of exercises and problems for the
student to work out. Embedded in the text of each chapter are questions
labeled as “exercises.” These are (mostly) short opportunities to fill in the
gaps in the text. Many of them are routine verifications that would be
tedious to write out in full, but are not quite trivial enough to warrant
tossing off as obvious. I hope that conscientious readers will take the time
at least to stop and convince themselves that they fully understand what
is involved in doing each exercise, if not to write out a complete solution,
because it will make their reading of the text far more fruitful. At the end of
each chapter is a collection of (mostly) longer and harder questions labeled
as “problems.” These are the ones from which I select written homework
assignments when I teach this material, and many of them will take hours
for students to work through. It is really only in doing these problems that
one can hope to absorb this material deeply. I have tried insofar as possible
to choose problems that are enlightening in some way and have interesting
consequences in their own right. The results of many of them are used in
the text.

I welcome corrections or suggestions from readers. I plan to keep an up-
to-date list of corrections on my Web site, www.math.washington.edu/ lee.
If that site becomes unavailable for any reason, the publisher will know
where to find me.

Happy reading!

Acknowledgments. There are many people who have contributed to the
development of this book in indispensable ways. I would like to mention es-
pecially Judith Arms and Tom Duchamp, both of whom generously shared
their own notes and ideas about teaching this subject; Jim Isenberg and
Steve Mitchell, who had the courage to teach from early drafts of this book,
and who have provided spectacularly helpful suggestions for improvement;
and Gary Sandine, who found a draft on the Web, and not only read it
with incredible thoroughness and made more helpful suggestions than any-
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one else, but also created more than a third of the illustrations in the
book, with no compensation other than the satisfaction of contributing to
our communal quest for knowledge while gaining a deeper understanding
for himself. In addition, I would like to thank the many other people who
read the draft and sent their corrections and suggestions to me, especially
Jaejeong Lee. (In the Internet age, textbook writing becomes ever a more
collaborative venture.) Most of all, I would like to thank all of my students
past, present, and future, to whom this book is dedicated. It is a cliché in
the mathematical community that the only way to really learn a subject is
to teach it; but I have come to appreciate much more deeply over the years
how much feedback from students shapes and hones not only my teaching
and my writing, but also my very understanding of what mathematics is
all about. This book could not have come into being without them.

Finally, I am deeply indebted to my beloved family—Pm, Nathan, and
Jeremy—who once again have endured my preoccupation and extended
absences with generosity and grace. This time I plan to thank them by not
writing a book for a while.

John M. Lee
Seattle, Washington
July, 2002
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1
Smooth Manifolds

This book is about smooth manifolds. In the simplest terms, these are
spaces that locally look like some Euclidean space R™, and on which one
can do calculus. The most familiar examples, aside from Euclidean spaces
themselves, are smooth plane curves such as circles and parabolas, and
smooth surfaces such as spheres, tori, paraboloids, ellipsoids, and hyper-
boloids. Higher-dimensional examples include the set of unit vectors in
R™+! (the n-sphere) and graphs of smooth maps between Euclidean spaces.

The simplest examples of manifolds are the topological manifolds, which
are topological spaces with certain properties that encode what we mean
when we say that they “locally look like” R™. Such spaces are studied
intensively by topologists.

However, many (perhaps most) important applications of manifolds
involve calculus. For example, most applications of manifold theory to
geometry involve the study of such properties as volume and curvature.
Typically, volumes are computed by integration, and curvatures are com-
puted by formulas involving second derivatives, so to extend these ideas
to manifolds would require some means of making sense of differentia-
tion and integration on a manifold. The applications of manifold theory
to classical mechanics involve solving systems of ordinary differential equa-
tions on manifolds, and the applications to general relativity (the theory
of gravitation) involve solving a system of partial differential equations.

The first requirement for transferring the ideas of calculus to manifolds
is some notion of “smoothness.” For the simple examples of manifolds we
described above, all of which are subsets of Euclidean spaces, it is fairly
easy to describe the meaning of smoothness on an intuitive level. For ex-
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Figure 1.1. A homeomorphism from a circle to a square.

ample, we might want to call a curve “smooth” if it has a tangent line that
varies continuously from point to point, and similarly a “smooth surface”
should be one that has a tangent plane that varies continuously from point
to point. But for more sophisticated applications it is an undue restric-
tion to require smooth manifolds to be subsets of some ambient Euclidean
space. The ambient coordinates and the vector space structure of R™ are
superfluous data that often have nothing to do with the problem at hand.
It is a tremendous advantage to be able to work with manifolds as ab-
stract topological spaces, without the excess baggage of such an ambient
space. For example, in general relativity, spacetime is thought of as a 4-
dimensional smooth manifold that carries a certain geometric structure,
called a Lorentz metric, whose curvature results in gravitational phenom-
ena. In such a model there is no physical meaning that can be assigned
to any higher-dimensional ambient space in which the manifold lives, and
including such a space in the model would complicate it needlessly. For
such reasons, we need to think of smooth manifolds as abstract topological
spaces, not necessarily as subsets of larger spaces.

It is not hard to see that there is no way to define a purely topological
property that would serve as a criterion for “smoothness,” because it cannot
be invariant under homeomorphisms. For example, a circle and a square in
the plane are homeomorphic topological spaces (Figure 1.1), but we would
probably all agree that the circle is “smooth,” while the square is not. Thus
topological manifolds will not suffice for our purposes. As a consequence,
we will think of a smooth manifold as a set with two layers of structure:
first a topology, then a smooth structure.

In the first section of this chapter we describe the first of these structures.
A topological manifold is a topological space with three special properties
that express the notion of being locally like Euclidean space. These prop-
erties are shared by Euclidean spaces and by all of the familiar geometric
objects that look locally like Euclidean spaces, such as curves and surfaces.
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We then prove some important topological properties of manifolds that we
will use throughout the book.

In the next section we introduce an additional structure, called a smooth
structure, that can be added to a topological manifold to enable us to make
sense of derivatives.

Following the basic definitions, we introduce a number of examples of
manifolds, so you can have something concrete in mind as you read the
general theory. At the end of the chapter we introduce the concept of a
smooth manifold with boundary, an important generalization of smooth
manifolds that will be important in our study of integration in Chapters
14-16.

Topological Manifolds

In this section we introduce topological manifolds, the most basic type of
manifolds. We assume that the reader is familiar with the basic properties
of topological spaces, as summarized in the Appendix.

Suppose M is a topological space. We say that M is a topological manifold
of dimension n or a topological n-manifold if it has the following properties:

e M is a Hausdorff space: For every pair of points p,q € M, there are
disjoint open subsets U,V C M such that p € U and g € V.

e M is second countable: There exists a countable basis for the topology
of M.

e M is locally Euclidean of dimension n: Every point of M has a
neighborhood that is homeomorphic to an open subset of R™.

The locally Euclidean property means, more specifically, that for each
p € M, we can find the following:

e an open set U C M containing p;
e an open set Uc R™: and

e a homeomorphism ¢: U — U.

¢ Exercise 1.1. Show that equivalent definitions of locally Euclidean
spaces are obtained if instead of requiring U to be homeomorphic to an
open subset of R™, we require it to be homeomorphic to an open ball in R™,
or to R" itself.

If M is a topological manifold, we often abbreviate the dimension of M as
dim M. In informal writing, one sometimes writes “Let M™ be a manifold”
as shorthand for “Let M be a manifold of dimension n.” The superscript
n is not part of the name of the manifold, and is usually not included in
the notation after the first occurrence.
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The basic example of a topological n-manifold is, of course, R™. It is
Hausdorff because it is a metric space, and it is second countable be-
cause the set of all open balls with rational centers and rational radii is
a countable basis.

Requiring that manifolds share these properties helps to ensure that
manifolds behave in the ways we expect from our experience with Euclidean
spaces. For example, it is easy to verify that in a Hausdorff space, one-point
sets are closed and limits of convergent sequences are unique (see Exercise
A.5 in the Appendix). The motivation for second countability is a bit less
evident, but it will have important consequences throughout the book,
mostly based on the existence of partitions of unity (see Chapter 2).

In practice, both the Hausdorff and second countability properties are
usually easy to check, especially for spaces that are built out of other man-
ifolds, because both properties are inherited by subspaces and products
(Lemmas A.5 and A.8). In particular, it follows easily that any open sub-
set of a topological n-manifold is itself a topological n-manifold (with the
subspace topology, of course).

The way we have defined topological manifolds, the empty set is a topo-
logical n-manifold for every n. For the most part, we will ignore this special
case (sometimes without remembering to say so). But because it is useful
in certain contexts to allow the empty manifold, we have chosen not to
exclude it from the definition.

We should note that some authors choose to omit the Hausdorff property
or second countability or both from the definition of manifolds. However,
most of the interesting results about manifolds do in fact require these
properties, and it is exceedingly rare to encounter a space “in nature” that
would be a manifold except for the failure of one or the other of these
hypotheses. For a couple of simple examples, see Problems 1-1 and 1-2; for
a more involved example (a connected, locally Euclidean, Hausdorff space
that is not second countable), see [Lee00, Problem 4-6].

Coordinate Charts

Let M be a topological n-manifold. A coordinate chart (or just a chart)
on M is a pair (U, ¢), where U is an open subset of M and ¢: U — U
is a homeomorphism from U to an open subset U = o(U) C R™ (Figure
1.2). By definition of a topological manifold, each point p € M is contained
in the domain of some chart (U, ¢). If ¢(p) = 0, we say that the chart is
centered at p. If (U, ) is any chart whose domain contains p, it is easy to
obtain a new chart centered at p by subtracting the constant vector ¢(p).

Given a chart (U, ), we call the set U a coordinate domain, or a coor-
dinate neighborhood of each of its points. If in addition ¢(U) is an open
ball in R™, then U is called a coordinate ball. The map ¢ is called a (local)
coordinate map, and the component functions (z?,...,z") of ¢, defined by
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Figure 1.2. A coordinate chart.

o(p) = (z*(p),...,x™(p)), are called local coordinates on U. We will some-
times write things like “(U, ¢) is a chart containing p” as shorthand for
“(U, ) is a chart whose domain U contains p.” If we wish to emphasize
the coordinate functions (x!,...,z") instead of the coordinate map ¢, we

will sometimes denote the chart by (U, (z!,...,2")) or (U, (z%)).

Ezxamples of Topological Manifolds

Here are some simple examples of topological manifolds.

Example 1.1 (Graphs of Continuous Functions). Let U C R™ be an
open set, and let F': U — R* be a continuous function. The graph of F is
the subset of R” x R* defined by

[(F)={(z,y) e R" xR*: 2 € U and y = F(z)},

with the subspace topology. Let 71 : R™ x R¥ — R™ denote the projection
onto the first factor, and let pr: I'(F) — U be the restriction of m; to
[(F):

or(z,y) =z, (z,y)eT(F).

Because @F is the restriction of a continuous map, it is continuous; and it
is a homeomorphism because it has a continuous inverse given by

(F) 7 (z) = (,F(z)).

Thus T'(F) is a topological manifold of dimension 7. In fact, I'(F') is home-
omorphic to U itself, and (I'(F),¢r) is a global coordinate chart, called
graph coordinates. The same observation applies to any subset of R*** de-
fined by setting any k of the coordinates (not necessarily the last k) equal
to some continuous function of the other n, which are restricted to lie in
an open subset of R™.
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Figure 1.3. Charts for S™.

Example 1.2 (Spheres). Let S™ denote the (unit) n-sphere, which is
the set of unit vectors in R**1:

St = {z e R™: [z] = 1},

with the subspace topology. It is Hausdorff and second countable because
it is a topological subspace of R™. To show that it is locally Euclidean, for
each indext =1,...,n+ 1 let Ui+ denote the subset of S™ where the ith
coordinate is positive:

Ut = {(xl,...,x"H) esn: gt >0}.

k3

(See Figure 1.3.) Similarly, U;” is the set where z* < 0.
Let B™ = {z € R™ : |z| < 1} denote the open unit ball in R”, and let
f:B™ = R be the continuous function

flu) = V1= |ul?
Then for each i = 1,...,n+1, it is easy to check that U{" NS™ is the graph
of the function

i 1 i nt1
T —f(x R, L ),

where the hat over z* indicates that z* is omitted. Similarly, U, NS" is
the graph of

-~

x’:—f(xl,...,:ci,...,x"H).
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Figure 1.4. A chart for RP™.

Thus each set Uii N S™ is locally Euclidean of dimension n, and the maps
<pii: Uii NS™ — B” given by

+/,.1 n+1\ _ 1 i n+1
©w; (x,...,x )-(m,...,m’,...,x )

are graph coordinates for S™. Since every point in S” is in the domain of
at least one of these 2n + 2 charts, S™ is a topological n-manifold.

Example 1.3 (Projective Spaces). The n-dimensional real projective
space, denoted by RP™ (or sometimes just P"), is defined as the set of
1-dimensional linear subspaces of R™*!. We give it the quotient topology
determined by the natural map m: R"*! \ {0} — RP" sending each point
z € R {0} to the subspace spanned by z. For any point z € R**1< {0},
let [z] = m(x) denote the equivalence class of = in RP™.

For each i = 1,...,n+1, let U; C R™"! < {0} be the set where z* # 0,
and let U; = 7r([71) C RP™. Since U; is a saturated open set, U; is open
and g, U; = U; is a quotient map (see Lemma A.10). Define a map
(7273 U; - R" by

1
Vs [xl,...,x"+1] = (%’”"

b

xi—l Ii-f-l xn-l—l)
yoeay

zt gt zt

This map is well-defined because its value is unchanged by multiplying z
by a nonzero constant. Because ¢; o 7 is continuous, ¢; is continuous by

the characteristic property of quotient maps (Lemma A.10). In fact, ¢; is
a homeomorphism, because its inverse is given by

o; ' (uly.. u) = [ul,...,ui“l,l,ui,...,u"],

as you can easily check. Geometrically, if we identify R™ in the obvious way
with the affine subspace where z¢ = 1, then ¢;[z] can be interpreted as the
point where the line [z] intersects this subspace (Figure 1.4). Because the
sets U; cover RP™, this shows that RP" is locally Euclidean of dimension
n. The Hausdorff and second countability properties are left as exercises.
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< Exercise 1.2. Show that RP™ is Hausdorff and second countable, and is
therefore a topological n-manifold.

< Exercise 1.3. Show that RP™ is compact. [Hint: Show that the
restriction of 7 to S™ is surjective.]

Example 1.4 (Product Manifolds). Suppose Mi,...,M; are topo-
logical manifolds of dimensions ny, ..., ng, respectively. We will show that
the product space My x --- x My is a topological manifold of dimension
Ny +- - -+ng. It is Hausdorff and second countable by Lemmas A.5 and A.8,
so only the locally Euclidean property needs to be checked. Given any point
(P1,...,Pk) € My X --- X My, we can choose a coordinate chart (U;, ;) for

each M; with p; € U;. The product map
@1 X X Pgt U1 X e X Uk —)Rn1+"'+nk

is a homeomorphism onto its image, which is an open subset of R™1+ ¥k,
Thus M; x --- x My is a topological manifold of dimension n; + --- + ny,
with charts of the form (U7 x -+ x U, 1 X <+ X @g).

Example 1.5 (Tori). For any positive integer n, the n-torus is the prod-
uct space T" = S! x - - - xS'. By the discussion above, it is an n-dimensional
topological manifold. (The 2-torus is usually called simply “the torus.”)

Topological Properties of Manifolds

As topological spaces go, manifolds are quite special, because they share
so many important properties with Euclidean spaces. In this section we
discuss a few such properties that will be of use to us throughout the book.

The first property we need is that every manifold has a particularly well
behaved basis for its topology. If X is a topological space, a subset K ¢ X
is said to be precompact (or relatively compact) in X if its closure in X is
compact.

Lemma 1.6. FEvery topological manifold has a countable basis of
precompact coordinate balls.

Proof. Let M be a topological n-manifold. First we will prove the lemma
in the special case in which M can be covered by a single chart. Suppose
¢: M — U C R" is a global coordinate map, and let B be the collection of
all open balls B,.(z) C R™ such that r is rational, z has rational coordinates,
and B,.(z) C U. Each such ball is precompact in U , and it is easy to
check that B is a countable basis for the topology of U. Because @ is a
homeomorphism, it follows that the collection of sets of the form ¢~ (B) for
B € B is a countable basis for the topology of M, consisting of precompact
coordinate balls, with the restrictions of ¢ as coordinate maps.
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Now let M be an arbitrary n-manifold. By definition, every point of M
is in the domain of a chart. Because every open cover of a second countable
space has a countable subcover (Lemma A.4), M is covered by countably
many charts {(U;, p;)}. By the argument in the preceding paragraph, each
coordinate domain U; has a countable basis of precompact coordinate balls,
and the union of all these countable bases is a countable basis for the
topology of M. If V' C U; is one of these precompact balls, then the closure
of V in U; is compact, hence closed in M. It follows that the closure of V'
in M the same as its closure in U;, so V is precompact in M as well. 0O

A topological space M is said to be locally compact if every point has a
neighborhood contained in a compact subset of M. If M is Hausdorff, this
is equivalent to the requirement that M have a basis of precompact open
sets (see [Lee00, Proposition 4.27]). The following corollary is immediate.

Corollary 1.7. Every topological manifold is locally compact.

Connectivity

The existence of a basis of coordinate balls has important consequences for
the connectivity properties of manifolds. Recall that a topological space X
is said to be

e connected if there do not exist two disjoint, nonempty, open subsets
of X whose union is X;

e path connected if every pair of points in X can be joined by a path
in X; and
o locally path connected if X has a basis of path connected open sets.
(See the Appendix, pages 550-552, for a review of these concepts.) The fol-

lowing proposition shows that connectivity and path connectivity coincide
for manifolds.

Proposition 1.8. Let M be a topological manifold.
(a) M is locally path connected.

b) M is connected if and only if it is path connected.

d

(b)
(¢) The components of M are the same as its path components.
(d)

M has at most countably many components, each of which is an open
subset of M and a connected topological manifold.

Proof. Since every coordinate ball is path connected, part (a) follows from
the fact that M has a basis of coordinate balls (Lemma 1.6). Parts (b) and
(c) are immediate consequences of (a) (see Lemma A.16). To prove (d),
note that each component is open in M by Lemma A.16, so the collection
of components is an open cover of M. Because M is second countable, this
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cover must have a countable subcover. But since the components are all
disjoint, the cover must have been countable to begin with, which is to say
that M has only countably many components. a

Fundamental Groups of Manifolds

The following result about fundamental groups of manifolds will be impor-
tant in our study of covering manifolds in Chapters 2 and 9. For a brief
review of the fundamental group, see the Appendix, pages 553-555.

Proposition 1.9. The fundamental group of any topological manifold is
countable.

Proof. Let M be a topological manifold. By Lemma, 1.6, there is a countable
collection B of coordinate balls covering M. For any pair of coordinate balls
B, B’ € B, the intersection BN B’ has at most countably many components,
each of which is path connected. Let X be a countable set containing one
point from each component of BNB' for each B, B’ € ‘B (including B = B’).
For each B € B and each z,z’ € X such that z,z’ € B, let pﬁz, be some
path from z to z’ in B.

Since the fundamental groups based at any two points in the same com-
ponent of M are isomorphic, and X contains at least one point in each
component of M, we may as well choose a point ¢ € X as base point. De-
fine a special loop to be a loop based at ¢ that is equal to a finite product
of paths of the form pfi »- Clearly, the set of special loops is countable, and
each special loop determines an element of 71 (M, q). To show that 7 (M, q)
is countable, therefore, it suffices to show that every element of m; (M, q) is
represented by a special loop.

Suppose f: [0,1] = M is any loop based at ¢. The collection of compo-
nents of sets of the form f~1(B) as B ranges over B is an open cover of [0, 1],
so by compactness it has a finite subcover. Thus there are finitely many
numbers 0 = ap < a; < -+ < ax = 1 such that [a;_1, a;] C f~!(B) for some
B C B. For each i, let f; be the restriction of f to the interval {a;_1,a;],
reparametrized so that its domain is [0,1], and let B; € B be a coordinate
ball containing the image of f;. For each i, we have f(a;) € B; N By,
and there is some z; € X that lies in the same component of B; N B;;; as
f(a;). Let g; be a path in B; N B4y from z; to f(a;) (Figure 1.5), with
the understanding that o = zx = ¢, and gg and gi are both equal to the
constant path c, based at g. Then, because g;” 1. g; is path homotopic to a
constant path,

frfieees f

~go-f1-gf1-91-fz-gz‘l-~--g,§_11-gk_1-fk-g;1

~fiefare e f,
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Figure 1.5. The fundamental group of a manifold is countable.

where f, =gi-1° fi gi_l. For each 1, ﬁ is a path in B; from z; ;1 to z;.
Since B; is simply connected, f; is path homotopic to pfiﬂhzi. It follows
that f is path homotopic to a special loop, as claimed. a

Smooth Structures

The definition of manifolds that we gave in the preceding section is suffi-
cient for studying topological properties of manifolds, such as compactness,
connectedness, simple connectedness, and the problem of classifying man-
ifolds up to homeomorphism. However, in the entire theory of topological
manifolds there is no mention of calculus. There is a good reason for this:
However we might try to make sense of derivatives of functions on a man-
ifold, such derivatives cannot be invariant under homeomorphisms. For
example, the map ¢: R — R? given by ¢(u,v) = (u!/3,v!/3) is a home-
omorphism, and it is easy to construct differentiable functions f: R? - R
such that f o is not differentiable at the origin. (The function f(z,y) =z
is one such.)

To make sense of derivatives of real-valued functions, curves, or maps
between manifolds, we will need to introduce a new kind of manifold called
a “smooth manifold.” It will be a topological manifold with some extra
structure in addition to its topology, which will allow us to decide which
functions on the manifold are smooth.

The definition will be based on the calculus of maps between Euclidean
spaces, so let us begin by reviewing some basic terminology about such
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maps. If U and V are open subsets of Euclidean spaces R™ and R™, re-
spectively, a function F': U — V is said to be smooth (or C*°, or infinitely
differentiable) if each of its component functions has continuous partial
derivatives of all orders. If in addition F' is bijective and has a smooth in-
verse map, it is called a diffeomorphism. A diffeomorphism is, in particular,
a homeomorphism. A review of some of the most important properties of
smooth maps is given in the Appendix. (You should be aware that some
authors use the word “smooth” in somewhat different senses, for example
to mean continuously differentiable or merely differentiable. On the other
hand, some use the word “differentiable” to mean what we call “smooth.”
Throughout this book, “smooth” will for us be synonymous with C.)

To see what additional structure on a topological manifold might be
appropriate for discerning which maps are smooth, consider an arbitrary
topological n-manifold M. Each point in M is in the domain of a coordinate
map ¢: U = U C R™. A plausible definition of a smooth function on M
would be to say that f: M — R is smooth if and only if the composite
function f o p~': U — R is smooth in the sense of ordinary calculus.
But this will make sense only if this property is independent of the choice
of coordinate chart. To guarantee this independence, we will restrict our
attention to “smooth charts.” Since smoothness is not a homeomorphism-
invariant property, the way to do this is to consider the collection of all
smooth charts as a new kind of structure on M.

With this motivation in mind, we now describe the details of the
construction.

Let M be a topological n-manifold. If (U, ¢), (V, 1) are two charts such
that U NV # &, the composite map Yo~ 1: o(UNV) = p(UNV) is
called the transition map from ¢ to ¢ (Figure 1.6). It is a composition
of homeomorphisms, and is therefore itself a homeomorphism. Two charts
(U, p) and (V,4) are said to be smoothly compatible if either UNV = &
or the transition map v o ¢! is a diffeomorphism. (Since (U NV) and
Y(UNV) are open subsets of R™, smoothness of this map is to be interpreted
in the ordinary sense of having continuous partial derivatives of all orders.)

We define an atlas for M to be a collection of charts whose domains cover
M. An atlas A is called a smooth atlas if any two charts in A are smoothly
compatible with each other.

It often happens in practice that we can prove for every pair of coordinate
maps ¢ and 1 in a given atlas that the transition map 1 o p~! is smooth.
Once we have done this, it is unnecessary to verify directly that 1 o ¢!
is a diffeomorphism, because its inverse (¢ o ¢=1)7! = p o 1)~! is one of
the transition maps we have already shown to be smooth. We will use this
observation without further comment when appropriate.

Our plan is to define a “smooth structure” on M by giving a smooth atlas,
and to define a function f: M — R to be smooth if and only if f o ™! is
smooth in the sense of ordinary calculus for each coordinate chart (U, )
in the atlas. There is one minor technical problem with this approach: In



Smooth Structures 13

Figure 1.6. A transition map.

general, there will be many possible choices of atlas that give the “same”
smooth structure, in that they all determine the same collection of smooth
functions on M. For example, consider the following pair of atlases on R™:

A = {(R*,Idg~)}
Ar = {(Bl(l‘),IdBl(z)) T e Rn} .

Although these are different smooth atlases, clearly a function f: R™ — R
is smooth with respect to either atlas if and only if it is smooth in the sense
of ordinary calculus.

We could choose to define a smooth structure as an equivalence class
of smooth atlases under an appropriate equivalence relation. However, it is
more straightforward to make the following definition: A smooth atlas A on
M is mazimal if it is not contained in any strictly larger smooth atlas. This
just means that any chart that is smoothly compatible with every chart in
A is already in A. (Such a smooth atlas is also said to be complete.)

Now we can define the main concept of this chapter. A smooth structure
on a topological n-manifold M is a maximal smooth atlas. A smooth mani-
fold is a pair (M, A), where M is a topological manifold and A is a smooth
structure on M. When the smooth structure is understood, we usually omit
mention of it and just say “M is a smooth manifold.” Smooth structures are
also called differentiable structures or C™ structures by some authors. We
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will use the term smooth manifold structure to mean a manifold topology
together with a smooth structure.

We emphasize that a smooth structure is an additional piece of data
that must be added to a topological manifold before we are entitled to
talk about a “smooth manifold.” In fact, a given topological manifold may
have many different smooth structures (see Example 1.14 and Problem
1-3). And it should be noted that it is not always possible to find a smooth
structure on a given topological manifold: There exist topological manifolds
that admit no smooth structures at all. (The first example was a compact
10-dimensional manifold found in 1960 by Michel Kervaire [Ker60].)

It is generally not very convenient to define a smooth structure by ex-
plicitly describing a maximal smooth atlas, because such an atlas contains
very many charts. Fortunately, we need only specify some smooth atlas, as
the next lemma shows.

Lemma 1.10. Let M be a topological manifold.

(a) Every smooth atlas for M is contained in a unique mazimal smooth
atlas.

(b) Two smooth atlases for M determine the same mazimal smooth atlas
if and only if their union is a smooth atlas.

Proof. Let A be a smooth atlas for M, and let A denote the set of all
charts that are smoothly compatible with every chart in A. To show that
A is a smooth atlas, we need to show that any two charts of A are smoothly
compatible with each other, which is to say that for any (U, ), (V,v) € 4,
Yo i UNV)— (U NV) is smooth.

Let z = ¢(p) € o(UNV) be arbitrary. Because the domains of the charts
in A cover M, there is some chart (W,6) € A such that p € W (Figure
1.7). Since every chart in A is smoothly compatible with (W, ), both of
the maps 6 o p~! and v o0 §~! are smooth where they are defined. Since
p € UNVNW, it follows that op~! = (pof71)o(fop™!) is smooth on a
neighborhood of z. Thus ¥ o¢~! is smooth in a neighborhood of each point
in (U N V). Therefore, A is a smooth atlas. To check that it is maximal,
just note that any chart that is smoothly compatible with every chart in
A must in particular be smoothly compatible with every chart in A, so
it is already in \A. This proves the existence of a maximal smooth atlas
containing A. If B is any other maximal smooth atlas containing A, each
of its charts is smoothly compatible with each chart in A, so B C A. By
maximality of B, B = A.

The proof of (b) is left as an exercise. d

¢ Exercise 1.4. Prove Lemma 1.10(b).
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Figure 1.7. Proof of Lemma 1.10(a).

For example, if a topological manifold M can be covered by a single
chart, the smooth compatibility condition is trivially satisfied, so any such
chart automatically determines a smooth structure on M.

It is worth mentioning that the notion of smooth structure can be gener-
alized in several different ways by changing the compatibility requirement
for charts. For example, if we replace the requirement that charts be
smoothly compatible by the weaker requirement that each transition map
¥ o p~! (and its inverse) be of class C*, we obtain the definition of a C*
structure. Similarly, if we require that each transition map be real-analytic
(i-e., expressible as a convergent power series in a neighborhood of each
point), we obtain the definition of a real-analytic structure, also called a
C¥ structure. If M has even dimension n = 2m, we can identify R?™ with
C™ and require that the transition maps be complex-analytic; this deter-
mines a complex-analytic structure. A manifold endowed with one of these
structures is called a C* manifold, real-analytic manifold, or complex man-
ifold, respectively. (Note that a C° manifold is just a topological manifold.)
We will not treat any of these other kinds of manifolds in this book, but
they play important roles in analysis, so it is useful to know the definitions.
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Figure 1.8. A coordinate grid.

Local Coordinate Representations

If M is a smooth manifold, any chart (U, ¢) contained in the given maximal
smooth atlas will be called a smooth chart, and the corresponding coordi-
nate map ¢ will be called a smooth coordinate map. It is useful also to
introduce the terms smooth coordinate domain or smooth coordinate neigh-
borhood for the domain of a smooth coordinate chart. A smooth coordinate
ball will mean a smooth coordinate domain whose image under a smooth
coordinate map is a ball in Euclidean space.

The next lemma gives a slight improvement on Lemma 1.6 for smooth
manifolds. Its proof is a straightforward adaptation of the proof of that
lemma.

Lemma 1.11. Every smooth manifold has a countable basis of precompact
smooth coordinate balls.

¢ Exercise 1.5. Prove Lemma 1.11.

Here is how one usually thinks about coordinate charts on a smooth
manifold. Once we choose a smooth chart (U, ) on M, the coordinate
map ¢: U — U C R" can be thought of as giving an identification between
U and U. Using this identification, we can think of U simultaneously as an
open subset of M and (at least temporarily while we work with this chart)
as an open subset of R™. You can visualize this identification by thinking of
a “grid” drawn on U representing the inverse images of the coordinate lines
under ¢ (Figure 1.8). Under this identification, we can represent a point
p € U by its coordinates (z!,...,2") = ¢(p), and think of this n-tuple as
being the point p. We will typically express this by saying “(z!,...,z") is
the (local) coordinate representation for p” or “p = (z!,...,z") in local
coordinates.” N

Another way to look at it is that by means of our identification U « U,
we can think of ¢ as the identity map and suppress it from the notation.
This takes a bit of getting used to, but the payoff is a huge simplification
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of the notation in many situations. You just need to remember that the
identification is in general only local, and depends heavily on the choice of
coordinate chart.

For example, if M = R2, let U = {(x,y) : £ > 0} C M be the
open right half-plane, and let ¢: U — R? be the polar coordinate map
o(z,y) = (r,0) = (v/z*+y? tan ' y/z). We can write a given point
p € U either as p = (z,y) in standard coordinates or as p = (r,6) in
polar coordinates, where the two coordinate representations are related by
(r,0) = (/&% + y%,tan"' y/z) and (z,y) = (rcosd,rsind).

Examples of Smooth Manifolds

Before proceeding further with the general theory, let us survey some
examples of smooth manifolds.

Example 1.12 (Zero-Dimensional Manifolds). A zero-dimensional
topological manifold M is just a countable discrete space. For each point
p € M, the only neighborhood of p that is homeomorphic to an open subset
of R% is {p} itself, and there is exactly one coordinate map ¢: {p} — RO.
Thus the set of all charts on M trivially satisfies the smooth compatibil-
ity condition, and every zero-dimensional manifold has a unique smooth
structure.

Example 1.13 (Euclidean Spaces). R" is a smooth n-manifold with
the smooth structure determined by the atlas consisting of the single chart
(R™, Idg~). We call this the standard smooth structure, and the resulting co-
ordinate map standard coordinates. Unless we explicitly specify otherwise,
we will always use this smooth structure on R™.

Example 1.14 (Another Smooth Structure on the Real Line).
Consider the homeomorphism %: R — R given by

Y(z) = 23 (1.1)

The atlas consisting of the single chart (R,1)) defines a smooth structure
on R. This chart is not smoothly compatible with the standard smooth
structure, because the transition map Idg~ 09y~ (y) = y'/? is not smooth
at the origin. Therefore, the smooth structure defined on R by ¢ is not the
same as the standard one. Using similar ideas, it is not hard to construct
many distinct smooth structures on any given positive-dimensional topo-
logical manifold, as long as it has one smooth structure to begin with (see
Problem 1-3).

Example 1.15 (Finite-Dimensional Vector Spaces). Let V be a
finite-dimensional vector space. Any norm on V determines a topology,
which is independent of the choice of norm (Exercise A.53). With this
topology, V has a natural smooth manifold structure defined as follows. Any
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(ordered) basis (E1,. .., E,) for V defines a basis isomorphism E: R® — V
by

E(z) = Zn: z'E;.
=1

This map is a homeomorphism, so the atlas consisting of the single chart
(V,E~!) defines a smooth structure. To see that this smooth structure
is independent of the choice of basis, let (E‘l, RPN En) be any other basis
and let E(z) = >, z’ E’j be the corresponding isomorphism. There is some
invertible matrix (AZ) such that E; = 3, Al Ej for each 7. The transition

map between the two charts is then given by E~! o E(z) = Z, where
z=(2',...,2") is determined by -
n

zn:zﬂﬁj = in = Y 2 AlE;.
j=1 i=1

4,j=1

It follows that 7 = 3°, A’z*. Thus the map from z to Z is an invertible
linear map and hence a diffeomorphism, so the two charts are smoothly
compatible. This shows that the union of the two charts determined by
any two bases is still a smooth atlas, and thus all bases determine the same
smooth structure. We will call this the standard smooth structure on V.

The Einstein Summation Convention

This is a good place to pause and introduce an important notational con-
vention that we will use throughout the book. Because of the proliferation
of summations such as ), z°F; in this subject, we will often abbreviate
such a sum by omitting the summation sign, as in

E(z) = 2'E;.

We interpret any such expression according to the following rule, called
the Einstein summation convention: If the same index name (such as i
in the expression above) appears exactly twice in any monomial term,
once as an upper index and once as a lower index, that term is under-
stood to be summed over all possible values of that index, generally from
1 to the dimension of the space in question. This simple idea was intro-
duced by Einstein to reduce the complexity of the expressions arising in
the study of smooth manifolds by eliminating the necessity of explicitly
writing summation signs.

Another important aspect of the summation convention is the positions
of the indices. We will always write basis vectors (such as F;) with lower
indices, and components of a vector with respect to a basis (such as z*) with
upper indices. These index conventions help to ensure that, in summations
that make mathematical sense, any index to be summed over will typically
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appear twice in any given term, once as a lower index and once as an
upper index. Any index that is implicitly summed over is a “dummy index,”
meaning that the value of such an expression is unchanged if a different
name is substituted for each dummy index. For example, z*E; and z?E;
mean exactly the same thing.

Since the coordinates of a point (xl, e ,a:") € R™ are also its compo-
nents with respect to the standard basis, in order to be consistent with our
convention of writing components of vectors with upper indices, we need
to use upper indices for these coordinates, and we will do so throughout
this book. Although this may seem awkward at first, in combination with
the summation convention it offers enormous advantages when we work
with complicated indexed sums, not the least of which is that expressions
that are not mathematically meaningful often betray themselves quickly
by violating the index convention. (The main exceptions are expressions
involving the Euclidean dot product z -y = ), z'y*, in which the same
index appears twice in the upper position, and the standard symplectic
form on R?", which we will define in Chapter 12. We will always explicitly
write summation signs in such expressions.)

More Examples
Now we continue with our examples of smooth manifolds.

Example 1.16 (Matrices). Let M(m x n,R) denote the space of m x n
matrices with real entries. It is a vector space of dimension mn under matrix
addition and scalar multiplication. Thus M(m x n,R) is a smooth mn-
dimensional manifold. Similarly, the space M(m x n,C) of m x n complex
matrices is a vector space of dimension 2mn over R, and thus a smooth
manifold of dimension 2mn. In the special case m = n (square matrices),
we will abbreviate M(n x n,R) and M(n x n,C) by M(n,R) and M(n,C),
respectively.

Example 1.17 (Open Submanifolds). Let U be any open subset of R™.
Then U is a topological n-manifold, and the single chart (U,Idy) defines a
smooth structure on U.

More generally, let M be a smooth n-manifold and let U C M be any
open subset. Define an atlas on U by

Ay = {smooth charts (V, @) for M such that V C U}.

Any point p € U is contained in the domain of some chart (W, ) for M; if
we set V =W NU, then (V,¢|y) is a chart in Ay whose domain contains
p. Therefore, U is covered by the domains of charts in Ay, and it is easy
to verify that this is a smooth atlas for U. Thus any open subset of M
is itself a smooth n-manifold in a natural way. Endowed with this smooth
structure, we call any open subset an open submanifold of M. (We will
define a more general class of submanifolds in Chapter 8.)
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Example 1.18 (The General Linear Group). The general linear group
GL(n,R) is the set of invertible n x n matrices with real entries. It is a
smooth n2-dimensional manifold because it is an open subset of the n?-
dimensional vector space M(n,R), namely the set where the (continuous)
determinant function is nonzero.

Example 1.19 (Matrices of Maximal Rank). The previous exam-
ple has a natural generalization to rectangular matrices of maximal rank.
Suppose m < n, and let M,,(m x n,R) denote the subset of M(m X n,R)
consisting of matrices of rank m. If A is an arbitrary such matrix, the fact
that rank A = m means that A has some nonsingular m x m minor. By
continuity of the determinant function, this same minor has nonzero de-
terminant on some neighborhood of A in M(m x n,R), which implies that
A has a neighborhood contained in M,,(m x n,R). Thus M,,(m x n,R)
is an open subset of M(m x n,R), and therefore is itself a smooth mn-
dimensional manifold. A similar argument shows that M,(m x n,R) is a
smooth mn-manifold when n < m.

Example 1.20 (Spheres). We showed in Example 1.2 that the n-sphere
S® ¢ R™*! is a topological n-manifold. Now we put a smooth structure
on S™ as follows. Foreach i =1,...,n+ 1, let (Uii, <pli) denote the graph
coordinate charts we constructed in Example 1.2. For any distinct indices
i and j, the transition map ¢ o (<,0ji)_1 is easily computed. In the case
1< j, we get

goiio(goji)‘l (ul,...,un)z (ul,...,zﬁ,...,j: 1——‘u|2,...,u"),

and a similar formula holds when ¢ > j. When ¢ = j, an even simpler
computation gives cpii o (@f)‘l = Idg~. Thus the collection of charts
{(Uii, gali)} is a smooth atlas, and so defines a smooth structure on S™.
We call this its standard smooth structure.

Example 1.21 (Projective Spaces). The n-dimensional real projective
space RP™ is a topological n-manifold by Example 1.3. We will show that
the coordinate charts (U;, ¢;) constructed in that example are all smoothly
compatible. Assuming for convenience that i > 7, it is straightforward to
compute that

1,1 o ul ug—l uj+1 ui—l 1 u™
©; 0P, ('LL,...,’LL) ‘J,..., u] y u] yeeoy - . s

which is a diffeomorphism from ¢;(U; N Uj) to ¢;(U; N U;).

Example 1.22 (Smooth Product Manifolds). If M;,..., My are
smooth manifolds of dimensions n1,...,ng, respectively, we showed in Ex-
ample 1.4 that the product space My x - - - x My, is a topological manifold of
dimension nq +- - -+ng, with charts of the form (Uy x -+ - x Uy, 1 X+ - X 9 ).
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Any two such charts are smoothly compatible because, as is easily verified,

(1 X - X Pp)o(pr X - X op)h = (Y10 ) X -+ X (Yrogp),

which is a smooth map. This defines a natural smooth manifold structure
on the product, called the product smooth manifold structure. For example,
this yields a smooth manifold structure on the n-torus T" = S x --- x S!.

In each of the examples we have seen so far, we have constructed a smooth
manifold structure in two stages: We started with a topological space and
checked that it was a topological manifold, and then we specified a smooth
structure. It is often more convenient to combine these two steps into a
single construction, especially if we start with a set that is not already
equipped with a topology. The following lemma provides a shortcut.

Lemma 1.23 (Smooth Manifold Construction Lemma). Let M be
a set, and suppose we are given a collection {U,} of subsets of M, together
with an injective map o : U, — R™ for each «, such that the following
properties are satisfied:

(i) For each a, ¢,(U,) is an open subset of R™.
(#) For each o and B3, ¢o(Us NUg) and pg(Us NUg) are open in R™.

(#1) Whenever UoNUg # &, ¢a o<p§1: 03(UaNUg) = 9a(UsNUg) is a
diffeomorphism.

() Countably many of the sets U, cover M.

(v) Whenever p,q are distinct points in M, either there exists some U,
containing both p and q or there ezist disjoint sets Uy, Ug withp € U,
and q € Ug.

Then M has a unique smooth manifold structure such that each (Uy, pq)
s a smooth chart.

Proof. We define the topology by taking all sets of the form ¢! (V), with
V an open subset of R", as a basis. To prove that this is a basis for a
topology, we need to show that for any point p in the intersection of two
basis sets (V) and wgl(W), there is a third basis set containing p and

contained in the intersection. It suffices to show that ¢ (V) N cpgl(W) is
itself a basis set (Figure 1.9). To see this, observe that (iii) implies that
Vo © gogl(W) is an open subset of ¢, (Uy NUg), and (ii) implies that this
set is also open in R™. It follows that

02 (V)N 95" W) = o3 (V Ngao w3 (W)

is also a basis set, as claimed.

Each of the maps ¢, is then a homeomorphism (essentially by definition),
so M is locally Euclidean of dimension n. If {U,, } is a countable collection
of the sets U, covering M, each of the sets U,, has a countable basis, and
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Figure 1.9. The smooth manifold construction lemma.

the union of all these is a countable basis for M, so M is second countable,
and the Hausdorff property follows easily from (v). Finally, (iii) guarantees
that the collection {(Uy, ¢ )} is a smooth atlas. It is clear that this topology
and smooth structure are the unique ones satisfying the conclusions of the
lemma. O

Example 1.24 (Grassmann Manifolds). Let V be an n-dimensional
real vector space. For any integer 0 < k < n, we let Gx(V) denote the set
of all k-dimensional linear subspaces of V. We will show that G(V') can be
naturally given the structure of a smooth manifold of dimension k(n — k).
The construction is somewhat more involved than the ones we have done
so far, but the basic idea is just to use linear algebra to construct charts for
Gk (V), and then apply the smooth manifold construction lemma (Lemma
1.23). Since we will give a more straightforward proof that Gg(V) is a
smooth manifold in Chapter 9 (Example 9.32), you may wish to skip the
hard part of this construction (the verification that the charts are smoothly
compatible) on first reading.

Let P and @ be any complementary subspaces of V' of dimensions k& and
(n—k), respectively, so that V decomposes as a direct sum: V = P&Q. The
graph of any linear map A: P — @ is a k-dimensional subspace I'(A) C V|,
defined by

I'A)={z+ Az :z € P}.
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Figure 1.10. Smooth compatibility of coordinates on Gi(V).

Any such subspace has the property that its intersection with Q is the zero
subspace. Conversely, any subspace with this property is easily seen to be
the graph of a unique linear map A: P — Q.

Let L(P, Q) denote the vector space of linear maps from P to @, and
let Ug denote the subset of G(V') consisting of k-dimensional subspaces
whose intersection with @ is trivial. Define a map : L(P,Q) — Ug by

$(4) = T(A).

The discussion above shows that v is a bijection. Let p = ¢~1: Ug —
L(P,Q). By choosing bases for P and @, we can identify L(P,Q) with
M((n — k) x k,R) and hence with R*"~%) and thus we can think of
(Ug, ¢) as a coordinate chart. Since the image of each chart is all of L(P, @),
condition (i) of Lemma 1.23 is clearly satisfied.

Now let (P',Q’) be any other such pair of subspaces, and let 9, ¢’ be
the corresponding maps. The set p(Ug N Ug/) C L(P,Q) consists of all
A € L(P,Q) whose graphs intersect @ trivially, which is easily seen to
be an open set, so (ii) holds. We need to show that the transition map
@' 0 p~! = ¢ 09 is smooth on this set. This is the trickiest part of the
argument.

Suppose A € ¢(Ug NUg/) C L(P,Q) is arbitrary, and let S denote the
subspace ¥(A) = T'(A) C V. If we put A’ = ¢’ o 9)(A), then by definition
A’ is the unique linear map from P’ to Q' whose graph is equal to S. To
identify this map, let 2’ € P’ be arbitrary, and note that A’z’ is the unique
element of Q' such that 2’ + A’z’ € S, which is to say that

'+ A's' =z + Az for some z € P. (1.2)

(See Figure 1.10.) There is in fact a unique z € P for which this holds,
characterized by the property that

z+Az—1' €Q'.
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If we let I4: P — V denote the map I4(z) =+ Az and let 7p/: V — P/
be the projection onto P’ with kernel @Q’, then x satisfies

0=np(z+ Az —2') =np ols(z) —2'.

As long as A stays in the open subset of linear maps whose graphs intersect
Q' trivially, mpr o I4: P — P’ is invertible, and thus we can solve this last
equation for x to obtain x = (mp o I4)~!(z’). Therefore, A’ is given in
terms of A by

Ax' =Ipx -2 =Ipo(nproly) M) — 2. (1.3)

If we choose bases (E;) for P’ and (F7) for @', the columns of the matrix
representation of A’ are the components of A’E]. By (1.3), this can be
written

A/EZI = IA o (7Tp/ o ]A)Al(El/) — Ez/

The matrix entries of 14 clearly depend smoothly on those of A, and thus so
also do those of mprol4. By Cramer’s rule, the components of the inverse of
a matrix are rational functions of the matrix entries, so the expression above
shows that the components of A’E] depend smoothly on the components
of A. This proves that ¢’ o ¢! is a smooth map, so the charts we have
constructed satisfy condition (iii) of Lemma 1.23.

To check the countability condition (iv), we just note that G (V) can in
fact be covered by finitely many of the sets Ug: For example, if (E1, ..., E,)
is any fixed basis for V', any partition of the basis elements into two subsets
containing k and n — k elements determines appropriate subspaces P and
Q, and any subspace S must have trivial intersection with @ for at least
one of these partitions (see Exercise A.34). Thus Gg(V) is covered by the
finitely many charts determined by all possible partitions of a fixed basis.
Finally, the Hausdorff condition (v) is easily verified by noting that for any
two k-dimensional subspaces P, P’ C V, it is possible to find a subspace Q
of dimension n — k whose intersections with both P and P’ are trivial, and
then P and P’ are both contained in the domain of the chart determined
by, say, (P, Q).

The smooth manifold G,(V) is called the Grassmann manifold of k-
planes in V, or simply a Grassmannian. In the special case V = R", the
Grassmannian Gg(R") is often denoted by some simpler notation such as
Gy n or G(k,n). Note that G, (R"*1) is exactly the n-dimensional projective
space RP™.

Manifolds with Boundary

In many important applications of manifolds, most notably those involv-
ing integration, we will encounter spaces that would be smooth manifolds
except that they have a “boundary” of some sort. Simple examples of such
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Figure 1.11. A manifold with boundary.

spaces include the closed unit ball in R™ and the closed upper hemisphere
in S™. To accommodate such spaces, we need to generalize our definition
of manifolds.

The model for these spaces will be the closed n-dimensional upper half-
space H™ C R™, defined as

H" = {(z,...,2") eR" : 2" > 0}.

We will use Int H” and OH"™ to denote the interior and boundary of H",
respectively, as a subset of R™:

IntH" = {(z!,...,2") € R* : 2™ > 0},
OH™ = {(z',...,2") e R™ : 2" = 0}.

An n-dimensional topological manifold with boundary is a second-
countable Hausdorff space M in which every point has a neighborhood
homeomorphic to a (relatively) open subset of H” (Figure 1.11). An open
subset U C M together with a homeomorphism ¢ from U to an open sub-
set of H™ will be called a chart, just as in the case of manifolds. When it
is necessary to make the distinction, we will call (U, ) an interior chart if
o(U) C Int H", and a boundary chart if p(U) N OH" # @.

To see how to define a smooth structure on a manifold with boundary,
recall that a smooth map from an arbitrary subset A C R™ to R* is defined
to be a map that admits a smooth extension to an open neighborhood of
each point (see the Appendix, page 587). Thus if U is an open subset of
H", amap F: U — R is smooth if for each z € U, there exists an open
set V C R™ and a smooth map F: V — R that agrees with F on V N H"
(Figure 1.12). If F is such a map, the restriction of F' to U N Int H™ is
smooth in the usual sense. By continuity, all the partial derivatives of F at
points of U NOH™ are determined by their values in Int H", and therefore in
particular are independent of the choice of extension. It is a fact (which we
will neither prove nor use) that F': U — R* is smooth in this sense if and
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R*

Figure 1.12. Smoothness of maps on open subsets of H".

only if F' is continuous, F|ynmsu» is smooth, and the partial derivatives of
Fluamta- of all orders have continuous extensions to all of U.

For example, let B2 C R? be the open unit disk, let U = B? N H?, and
define f: U — R by f(z,y) = v/1 — z% — y2. Because f extends smoothly
to all of B? (by the same formula), f is a smooth function on U. On the
other hand, although g(z,y) = /y is continuous on U and smooth in
U NIntH?, it has no smooth extension to any neighborhood of the origin
in R? because 8g/0y — oo as y — 0. Thus g is not smooth on U.

Now let M be a topological manifold with boundary. Just as in the
manifold case, a smooth structure for M is defined to be a maximal smooth
atlas—a collection of charts whose domains cover M and whose transition
maps (and their inverses) are smooth in the sense just described. With such
a structure, M is called a smooth manifold with boundary. A point p € M
is called a boundary point if its image under some smooth chart is in H",
and an interior point if its image under some smooth chart is in Int H".
The boundary of M (the set of all its boundary points) is denoted by OM;
similarly, its interior, the set of all its interior points, is denoted by Int M.
Once we have developed a bit more machinery, you will be able to show
that M is the disjoint union of OM and Int M (see Problem 7-7).

Be careful to observe the distinction between these new definitions of the
terms “boundary” and “interior” and their usage to refer to the boundary
and interior of a subset of a topological space. A manifold M with boundary
may have nonempty boundary in this new sense, irrespective of whether
it has a boundary as a subset of some other topological space. If we need
to emphasize the difference between the two notions of boundary, we will
use the terms topological boundary and manifold boundary as appropriate.
For example, the closed unit disk B2 is a smooth manifold with boundary
(as you will be asked to show in Problem 1-9), whose manifold boundary is
the circle. Its topological boundary as a subspace of R? happens to be the
circle as well. However, if we think of B? as a topological space in its own
right, then as a subset of itself, it has empty topological boundary. And if
we think of it as a subset of R? (considering R? as a subset of R? in the
obvious way), its topological boundary is all of B2. Note that H™ is itself
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a smooth manifold with boundary, and its manifold boundary is the same
as its topological boundary as a subset of R™.

Every smooth n-manifold can be considered as a smooth n-manifold
with boundary in a natural way: By composing with a diffeomorphism
from R™ to H™ such as (z',...,2z"71,2") — (z!,...,2" 1, e*"), we can
modify any manifold chart to take its values in Int H" without affecting
the smooth compatibility condition. On the other hand, if M is a smooth
n-manifold with boundary, any interior point p € Int M is by definition in
the domain of a smooth chart (U, ¢) such that ¢(p) € Int H”. Replacing
U by the (possibly smaller) open set ¢ !(Int H") C U, we may assume
that (U, ¢) is an interior chart. Because open sets in Int H" are also open
in R™, each interior chart is a chart in the ordinary manifold sense. Thus
Int M is a topological n-manifold, and the set of all smooth interior charts
is easily seen to be a smooth atlas, turning it into a smooth n-manifold.
In particular, a smooth manifold with boundary whose boundary happens
to be empty is a smooth manifold. However, manifolds with boundary are
not manifolds in general.

Even though the term “manifold with boundary” encompasses manifolds
as well, for emphasis we will sometimes use the phrase “manifold without
boundary” when we are talking about manifolds in the original sense, and
“manifold with or without boundary” when we are working in the broader
class that includes both cases. In the literature, you will also encounter the
terms closed manifold to mean a compact manifold without boundary, and
open manifold to mean a noncompact manifold without boundary.

The topological properties of manifolds that we proved earlier in the
chapter have natural extensions to manifolds with boundary. For the record,
we state them here.

Proposition 1.25. Let M be a topological manifold with boundary.
(a) M is locally path connected.

() M has at most countably many components, each of which is a
connected topological manifold with boundary.

(¢) The fundamental group of M is countable.

¢ Exercise 1.6. Prove Proposition 1.25.

Many of the results that we will prove about smooth manifolds through-
out the book have natural analogues for manifolds with boundary. We will
mention the most important of these as we go along.
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Figure 1.13. Stereographic projection.

Problems

1-1.

1-2.

1-4.

Let X be the set of all points (z,y) € R? such that y = +1, and
let M be the quotient of X by the equivalence relation generated by
(z,—1) ~ (z,1) for all z # 0. Show that M is locally Euclidean and
second countable, but not Hausdorff. (This space is called the line
with two origins.)

Show that the disjoint union of uncountably many copies of R is
locally Euclidean and Hausdorff, but not second countable.

. Let M be a nonempty topological manifold of dimension n > 1. If M

has a smooth structure, show that it has uncountably many distinct
ones. [Hint: Begin by constructing homeomorphisms from B” to itself
that are smooth on B™ \ {0}.]

If £ is an integer between 0 and min(m,n), show that the set of
m X n matrices whose rank is at least k is an open submanifold of
M(m x n,R). Show that this is not true if “at least k” is replaced by
“equal to k.”

Let N = (0,...,0,1) be the “north pole” in S* C R"*! and let
S = —N be the “south pole.” Define stereographic projection o: S™~
{N} = R" by

1 n
o (2l am) = —(Il:'x'n’fl)

Let 6(z) = —o(—z) for z € S™ \ {S}.

(a) For any z € S™ \ {N}, show that o(z) is the point where
the line through N and x intersects the linear subspace where
"1 = 0, identified with R™ in the obvious way (Figure 1.13).
Similarly, show that &(z) is the point where the line through S



1-6.

1-7.

1-8.

1-9.

Problems 29

and z intersects the same subspace. (For this reason, & is called
stereographic projection from the south pole.)
(b) Show that o is bijective, and

2ut, .. 2un Jul? - 1)

—1 1 n ,_(
o (u,...,u)— WP 41

(c) Compute the transition map & o 0! and verify that the atlas
consisting of the two charts (S \ {N},0) and (S™ \ {S},0)
defines a smooth structure on S™. (The coordinates defined by
o or & are called stereographic coordinates.)

(d) Show that this smooth structure is the same as the one defined
in Example 1.20.

By identifying R? with C in the usual way, we can think of the unit
circle S! as a subset of the complex plane. An angle function on a
subset U C S! is a continuous function 8: U — R such that e¥®) = p
for all p € U. Show that there exists an angle function § on an open
subset U C S! if and only if U # S!. For any such angle function,
show that (U, 6) is a smooth coordinate chart for S! with its standard
smooth structure.

Complex projective n-space, denoted by CP", is the set of 1-
dimensional complex-linear subspaces of C"T!, with the quotient
topology inherited from the natural projection m: C"*! \ {0} —
CP". Show that CP™ is a compact 2n-dimensional topological man-
ifold, and show how to give it a smooth structure analogous to
the one we constructed for RP". (We identify C"*! with R?"*2 via
(z' + iy, ..., 2"t 4y o (21, yl, .., ety

Let k and n be integers such that 0 < k£ < n, and let P,Q C R"
be the subspaces spanned by (es,...,ex) and (ex41,--.,€n), respec-
tively, where e; is the ith standard basis vector. For any k-dimensional
subspace S C R™ that has trivial intersection with @, show that the
coordinate representation (.S) constructed in Example 1.24 is the
unique (n — k) X k matrix B such that S is spanned by the columns
of the matrix (2’;), where I denotes the k x k identity matrix.

Let M = B", the closed unit ball in R™. Show that M is a topological
manifold with boundary, and that it can be given a natural smooth
structure in which each point in S"~! is a boundary point and each
point in B” is an interior point.



2
Smooth Maps

The main reason for introducing smooth structures was to enable us to
define smooth functions on manifolds and smooth maps between manifolds.
In this chapter we carry out that project.

Although the terms “function” and “map” are technically synonymous,
in studying smooth manifolds it is often convenient to make a slight dis-
tinction between them. Throughout this book we will generally reserve the
term “function” for a map whose range is R (a real-valued function) or R¥
for some k > 1 (a vector-valued function). The word “map” or “mapping”
can mean any type of map, such as a map between arbitrary manifolds.

We begin by defining smooth real-valued and vector-valued functions,
and then generalize this to smooth maps between manifolds. We then study
diffeomorphisms, which are bijective smooth maps with smooth inverses. If
there is a diffeomorphism between two smooth manifolds, we say that they
are diffeomorphic. The main objects of study in smooth manifold theory
are properties that are invariant under diffeomorphisms.

Later in the chapter we introduce Lie groups, which are smooth mani-
folds that are also groups in which multiplication and inversion are smooth
maps, and we study smooth covering maps and their relationship to the
continuous covering maps studied in topology.

At the end of the chapter we introduce a powerful tool for smoothly
piecing together local smooth objects, called partitions of unity. They will
be used throughout the book for building global smooth objects out of ones
that are initially defined only locally.
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Rk

Figure 2.1. Definition of smooth functions.

Smooth Functions and Smooth Maps

If M is a smooth n-manifold, a function f: M — R is said to be smooth
if for every p € M, there exists a smooth chart (U, ¢) for M whose domain
contains p and such that the composite function f o ¢~! is smooth on the
open subset U = ¢(U) C R™ (Figure 2.1). The most important special
case is that of smooth real-valued functions f: M — R; the set of all such
functions is denoted by C*°(M). Because sums and constant multiples of
smooth functions are smooth, C*° (M) is a vector space.

¢ Exercise 2.1. Show that pointwise multiplication turns C*°(M) into a
commutative ring and a commutative and associative algebra over R (see
the Appendix, page 564, for the definition of an algebra).

<O Exercise 2.2. Let U C R™ be an open set with its usual smooth manifold
structure. Show that a map f: U — R is smooth in the sense just defined
if and only if it is smooth in the sense of ordinary calculus.

¢ Exercise 2.3. Suppose M is a smooth manifold and f: M — R*¥ is a

smooth function. Show that fop™!: o(U) = R* is smooth for every smooth
chart (U, ¢) for M.

Given a function f: M — R* and a chart (U, ) for M, the function
f: ©(U) — RF defined by f(x) = fo e~ !(z) is called the coordinate rep-
resentation of f. By definition, f is smooth if and only if its coordinate
representation is smooth in some smooth chart around each point. By the
preceding exercise, smooth maps have smooth coordinate representations
in every smooth chart.
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Figure 2.2. Definition of smooth maps.

For example, consider the real-valued function f(z,y) = 22 + y* on the
plane. In polar coordinates on the set U = {(z,y) : ® > 0}, it has the
coordinate representation f(r,@) = r2. In keeping with our practice of
using local coordinates to identify an open subset of a manifold with an
open subset of Euclidean space, in cases where it will cause no confusion
we will often not even observe the distinction between f and f itself, and
write f(r,0) = r? in polar coordinates. Thus we might say, “f is smooth
on U because its coordinate representation f(r,6) = r2 is smooth.”

The definition of smooth functions generalizes easily to maps between
manifolds. Let M, N be smooth manifolds, and let F': M — N be any
map. We say that F' is a smooth map if for every p € M, there exist
smooth charts (U, ) containing p and (V,¢) containing F(p) such that
F(U) ¢ V and the composite map ¢ o F o ¢~! is smooth from ¢(U) to
(V) (Figure 2.2). Note that our previous definition of smoothness of real-
valued functions can be viewed as a special case of this one, by taking
N =V =RF and ¢ = Id: R — R*.

O Exercise 2.4 (Smoothness Is Local). Let M and N be smooth man-
ifolds, and let F: M — N be a map. If every point p € M has a
neighborhood U such that the restriction F|y is smooth, show that F is
smooth. Conversely, if F' is smooth, show that its restriction to any open
subset is smooth.

The next lemma is really just a restatement of the previous exercise, but
it gives a highly useful way of constructing smooth maps.
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Lemma 2.1. Let M and N be smooth manifolds, and let {Uy}aca be an
open cover of M. Suppose that for each a € A, we are given a smooth map
Fy: Us = N such that the maps agree on overlaps: Folu,nuy = Falu.nus
for all « and B. Then there exists a unique smooth map F: M — N such
that F|y, = F, for each a € A.

¢ Exercise 2.5. Prove the preceding lemma.

One important observation about our definition of smooth maps is that,
as one might expect, smoothness implies continuity.

Lemma 2.2. Every smooth map between smooth manifolds is continuous.

Proof. Suppose F': M — N is smooth. For each p € M, the definition of
smoothness guarantees that we can choose smooth charts (U, ¢) containing
p and (V, %) containing F(p) such that F(U) C V and Yo Fop~1: p(U) —
(V) is a smooth map, hence continuous. Since ¢: U — o(U) and ¢: V —
(V) are homeomorphisms, this implies in turn that

Fly=t¢ 'o(oFop )op:U—=YV,

which is a composition of continuous maps. Since F' is continuous in a
neighborhood of each point, it is continuous on M. O

If F: M — N is a smooth map, and (U, ¢) and (V,9) are any smooth
charts for M and N, respectively, we call F =1 o F o ¢~! the coordinate
representation of F’ with respect to the given coordinates.

¢ Exercise 2.6. Suppose F: M — N is a smooth map between smooth
manifolds. Show that the coordinate representation of F' with respect to any
pair of smooth charts for M and N is smooth.

As with real-valued or vector-valued functions, once we have chosen spe-
cific local coordinates in both the domain and range, we can often ignore
the distinction between F' and F'.

To prove that a map F': M — N is smooth directly from the definition
requires, in part, that for each p € M we prove the existence of coordinate
domains U containing p and V' containing F'(p) such that F(U) C V. This
requirement is included in the definition precisely so that smoothness will
automatically imply continuity as in Lemma 2.2. However, if F' is known
a priori to be continuous, then smoothness can be checked somewhat more
easily by examining its coordinate representations in the charts of particular
smooth atlases for M and N, as the next lemma shows.

Lemma 2.3. Let M and N be smooth manifolds, and let F': M — N be
a continuous map. If {(Ua, va)} and {(Va,¥g)} are smooth atlases for M
and N, respectively, and if for each o and 3, Yso F oy, is smooth on its
domain of definition, then F is smooth.
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Figure 2.3. A composition of smooth maps is smooth.

Proof. Given p € M, choose a pair of charts (U, ¢o) and (V3,1¢g) from
the given atlases such that p € U, and F(p) € V. By continuity of F', the
set U = F~}(V3)NU, is open in M, and F(U) C Vp. Therefore, the charts
(U, valu) and (V3,1a) satisfy the conditions required in the definition of
smoothness. g

Lemma 2.4. Any composition of smooth maps between smooth manifolds
is smooth.

Proof. Let F: M — N and G: N — P be smooth maps, and let p € M
be arbitrary. By definition of smoothness of G, there exist smooth charts
(V, 6) containing F(p) and (W, 9) containing G(F(p)) such that G(V) C W
and o Gof71: (V) — (W) is smooth. Since F is continuous, F~1(V)
is an open neighborhood of p in M, so there is a smooth chart (U, ¢) for
M such that p € U C F~}(V) (Figure 2.3). By Exercise 2.6, § o F o ¢~}
is smooth from ¢(U) to 6(V). Then we have G o F(U) ¢ G(V) ¢ W,
and o (Go F)op™* = (b0 Gob 1) o (8o Foyl): p(U) — $(W) is
smooth because it is a composition of smooth maps between open subsets
of Euclidean spaces. O

Although most of our efforts in this book will be devoted to the study
of smooth manifolds and smooth maps, we will also need to work with
topological manifolds and continuous maps on occasion. For the sake of
consistency, we adopt the following convention: Without further qualifica-
tion, a “manifold” will always be understood to be a topological manifold,
and a “coordinate chart” will be understood in the topological sense, as a
homeomorphism from an open set in the manifold to an open set in Eu-
clidean space. Similarly, our default assumption for most functions, maps,
and other geometric objects will be merely continuity; smoothness will not
be assumed unless explicitly specified. This convention requires a certain
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discipline, in that we have to remember to state the smoothness hypothesis
whenever it is needed; but its advantage is that it frees us from having to
remember which types of maps are assumed to be smooth and which are
not. The main exceptions will be a few concepts that require smoothness
for their very definitions.

We now have enough information to produce a number of interesting
examples of smooth maps. In spite of the apparent complexity of the def-
inition, it is usually not hard to prove that a particular map is smooth.
There are basically only three common ways to do so:

e Write the map in smooth local coordinates and recognize its
component functions as compositions of smooth elementary functions;

e Exhibit the map as a composition of known smooth maps;

e Use some special-purpose theorem that applies to the particular case
under consideration.

Example 2.5 (Smooth Maps).

(a) Any map from a zero-dimensional manifold into a smooth manifold
is automatically smooth.

(b) Consider the n-sphere S™ with its standard smooth structure. The
inclusion map ¢: S® < R"*! is certainly continuous, because it is
the inclusion map of a topological subspace. It is a smooth map be-
cause its coordinate representation with respect to any of the graph
coordinates of Example 1.20 is

T(u!,...,u") =10 (goii)_l (u!,...,u")

1 i—1 i n
= (u R T v B [T L T 7 ),

which is smooth on its domain (the set where |u|? < 1).

(c) The quotient map 7: R**! < {0} — RP™ is smooth, because its
coordinate representation in terms of any of the coordinates for RP™
constructed in Example 1.21 and standard coordinates on R™*! \ {0}
is

~ 1 n+1\ _ 1 n+1l) _ 1 n+1
7!'(113,...,.’1} )—cpiovr(x,...,m )—(pz[.’E,,{E ]
Il l'i_l :L.H-l .T,'n+1
:<E,..., (Iji y l‘i yeoy :L‘i )

(d) Define p: S® — RP™ as the restriction of 7: R**! \ {0} — RP™ to
S ¢ R**! \ {0}. It is a smooth map, because it is the composition
p = 7o ¢ of the maps in the preceding two examples.

< Exercise 2.7. Let Mi,..., M, and N be smooth manifolds. Show that
amap F: N - M; x--- X My is smooth if and only if each of the component



36 2. Smooth Maps

maps F; = m; 0 F: N — M, is smooth. (Here 7;: M1 x --- X My — M, is
the projection onto the ith factor.)

We can also define smooth maps to and from smooth manifolds with
boundary, with the understanding that a map whose domain is a subset
of the half-space H™ is smooth if it admits an extension to a smooth map
in an open neighborhood of each point, and a map whose range is H" is
smooth if it is smooth as a map into R™. You can work out the details for
yourself.

Diffeomorphisms

A diffeomorphism between smooth manifolds M and N is a smooth bijective
map F: M — N that has a smooth inverse. We say that M and N are
diffeomorphic if there exists a diffeomorphism between them. Sometimes
this is symbolized by M = N. For example, if B™ denotes the open unit
ball in R™, the map F: B" — R™ given by F(z) = z/(1 — |z|?) is easily
seen to be a diffeomorphism, so B® &~ R”. If M is any smooth manifold
and (U, ¢) is a smooth coordinate chart on M, then ¢: U — p(U) C R" is
a diffeomorphism. (In fact, its coordinate representation is the identity.)

< Exercise 2.8. Show that “diffeomorphic” is an equivalence relation.

More generally, F': M — N is called a local diffeomorphism if every
point p € M has a neighborhood U such that F(U) is open in N and
Fly: U — F(U) is a diffeomorphism. It is clear from the definition that a
local diffeomorphism is, in particular, a local homeomorphism and therefore
an open map.

< Exercise 2.9. Show that a map between smooth manifolds is a
diffeomorphism if and only if it is a bijective local diffeomorphism.

Just as two topological spaces are considered to be “the same” if they
are homeomorphic, two smooth manifolds are essentially indistinguishable
if they are diffeomorphic. The central concern of smooth manifold the-
ory is the study of properties of smooth manifolds that are preserved by
diffeomorphisms.

It is very natural to wonder whether the smooth structure on a given
topological manifold is unique in some sense. We observed in Example 1.12
that every zero-dimensional manifold has a unique smooth structure. How-
ever, as Problem 1-3 showed, any positive-dimensional smooth manifold
admits many distinct smooth structures.

A more subtle and interesting question is whether a given topological
manifold admits smooth structures that are not diffeomorphic to each
other. For example, let R denote the topological manifold R, but endowed
with the smooth structure described in Example 1.14 (defined by the global
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chart 1 (x) = 2®). It turns out that R is diffeomorphic to R with its stan-
dard smooth structure. Define a map F: R — R by F(z) = z!/3. The
coordinate representation of this map is ﬁ’(t) =1 o Foldg'(t) = t, which
is clearly smooth. Moreover, the coordinate representation of its inverse
is F~1(y) = IdgoF~! o 9~!(y) = v, which is also smooth, so F is a dif-
feomorphism. (This is one case in which it is important to maintain the
distinction between a map and its coordinate representation!)

It turns out, as you will see later, that there is only one smooth struc-
ture on R up to diffeomorphism (see Problem 17-7). More precisely, if A;
and A are any two smooth structures-on R, there exists a diffeomorphism
F: (R, A;) — (R, A2). In fact, it follows from work of James Munkres
[Mun60] and Edwin Moise [Moi77] that every topological manifold of di-
mension less than or equal to 3 has a smooth structure that is unique
up to diffeomorphism. The analogous question in higher dimensions turns
out to be quite deep, and is still largely unanswered. Even for Euclidean
spaces, the problem was not completely solved until late in the twentieth
century. The answer is somewhat surprising: As long as n # 4, R™ has a
unique smooth structure (up to diffeomorphism); but R* has uncountably
many distinct smooth structures, no two of which are diffeomorphic to each
other! The existence of nonstandard smooth structures on R* (called fake
R*’s) was first proved by Simon Donaldson and Michael Freedman in 1984
as a consequence of their work on the geometry and topology of compact
4-manifolds; the results are described in [DK90] and [FQ90].

For compact manifolds, the situation is even more fascinating. For ex-
ample, in 1963, Michel Kervaire and John Milnor [KM63] showed that, up
to diffeomorphism, S” has exactly 28 nondiffeomorphic smooth structures.
On the other hand, in all dimensions greater than 3 there are compact
topological manifolds that have no smooth structures at all. The prob-
lem of identifying the number of smooth structures (if any) on topological
4-manifolds is an active subject of current research.

Lie Groups

A Lie group is a smooth manifold G that is also a group in the algebraic
sense, with the property that the multiplication map m: G x G — G and
inversion map i: G — G, given by
m(g,h) =gh,  i(g)=g7",

are both smooth. Because smooth maps are continuous, a Lie group is, in
particular, a topological group (a topological space with a group structure
such that the multiplication and inversion maps are continuous).

The group operation in an arbitrary Lie group will be denoted by juxta-
position, except in certain abelian groups such as R”™ in which the operation
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is usually written additively. It is traditional to denote the identity element
of an arbitrary Lie group by the symbol e (for German Einselement, “unit
element”), and we will follow this convention, except in specific examples in
which there is a more common notation (such as I, for the identity matrix
in a matrix group, or 0 for the identity element in R™).

The following alternative characterization of the smoothness condition
is sometimes useful.

Lemma 2.6. If G is a smooth manifold with a group structure such that
the map G x G — G given by (g,h) — gh™! is smooth, then G is a Lie
group.

¢ Exercise 2.10. Prove Lemma 2.6.

Example 2.7 (Lie Groups). Each of the following manifolds is a Lie
group with the indicated group operation.

(a) The general linear group GL(n,R) is the set of invertible n x n matri-
ces with real entries. It is a group under matrix multiplication, and it
is an open submanifold of the vector space M(n,R), as we observed
in Chapter 1. Multiplication is smooth because the matrix entries of
a product matrix AB are polynomials in the entries of A and B. In-
version is smooth because Cramer’s rule expresses the entries of A™!
as rational functions of the entries of A.

(b) The complex general linear group GL{n,C) is the group of complex
n X n matrices under matrix multiplication. It is an open submanifold
of M(n,C) and thus a 2n%-dimensional smooth manifold, and it is a
Lie group because matrix products and inverses are smooth functions
of the real and imaginary parts of the matrix entries.

(c) If V is any real or complex vector space, we let GL(V) denote
the set of invertible linear transformations from V to itself. It is a
group under composition. If V' is finite-dimensional, any basis for V'
determines an isomorphism of GL(V) with GL(n,R) or GL(n,C),
with n = dimV, so GL(V) is a Lie group. The transition map be-
tween any two such isomorphisms is given by a map of the form
A — BAB™! (where B is the transition matrix between the two
bases), which is smooth. Thus the smooth manifold structure on
GL(V) is independent of the choice of basis.

(d) The real number field R and Euclidean space R™ are Lie groups un-
der addition, because the coordinates of z — y are smooth (linear!)
functions of (z,y).

(e) The set R* of nonzero real numbers is a 1-dimensional Lie group
under multiplication. (In fact, it is exactly GL(1,R) if we identify a
1 x 1 matrix with the corresponding real number.) The subset R*
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of positive real numbers is an open subgroup, and is thus itself a
1-dimensional Lie group.

The set C* of nonzero complex numbers is a 2-dimensional Lie group
under complex multiplication, which can be identified with GL(1, C).

The circle S* € C* is a smooth manifold and a group under complex
multiplication. With appropriate angle functions as local coordinates
on open subsets of S! (see Problem 1-6), multiplication and inversion
have the smooth coordinate expressions (61,62) — 61 + 62 and 0 —
—6, and therefore S! is a Lie group, called the circle group.

If Gy, ..., Gy are Lie groups, their direct product is the product man-
ifold G; x - - - X G, with the group structure given by componentwise
multiplication:

(gla vee agk) (glp e ag;c) = (glglla s agkg;c) .
It is a Lie group, as you can easily check.
The n-torus T® = S! x - - - x §? is an n-dimensional abelian Lie group.

Any finite or countably infinite group with the discrete topology is
a zero-dimensional Lie group. We will call any such group a discrete
group.

If G and H are Lie groups, a Lie group homomorphism from G to H is
a smooth map F': G — H that is also a group homomorphism. It is called
a Lie group isomorphism if it is also a diffeomorphism, which implies that
it has an inverse that is also a Lie group homomorphism. In this case we
say that G and H are isomorphic Lie groups.

Example 2.8 (Lie Group Homomorphisms).

(a)
(b)

The inclusion map S! <+ C* is a Lie group homomorphism.

The map exp: R — R* given by exp(t) = €’ is smooth, and is a
Lie group homomorphism because e(*t?) = e%et. (Note that R is
considered as a Lie group under addition, while R* is a Lie group
under multiplication.) The image of exp is the open subgroup R*
consisting of positive real numbers, and exp: R — R¥ is a Lie group
isomorphism with inverse log: Rt — R.

Similarly, exp: C — C* given by exp(z) = e* is a Lie group homo-
morphism. It is surjective but not injective, because its kernel consists
of the complex numbers of the form 27ik, where k is an integer.

The map €: R — S! defined by £(t) = €™ is a Lie group homo-
morphism whose kernel is the set Z of integers. Similarly the map
e™: R™ — T" defined by e™(ty,...,t,) = (€*™1,... ™) is a Lie
group homomorphism whose kernel is Z™.
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Figure 2.4. A covering map.

(e) The determinant function det: GL(n,R) — R* is smooth because
det A is a polynomial in the matrix entries of A. It is a Lie
group homomorphism because det(AB) = (det A)(det B). Similarly,
det: GL{(n,C) —» C* is a Lie group homomorphism.

(f) If G is any Lie group and g € G, define Cy: G — G to be conjugation
by g: Cy(h) = ghg™!. Then C, is smooth because group multiplica-
tion is smooth, and a simple computation shows that it is a group
homomorphism.

Smooth Covering Maps

You are probably already familiar with the notion of a covering map be-
tween topological spaces: This is a surjective continuous map 7: M — M
between connected, locally path connected spaces with the property that
every point p € M has a neighborhood U that is evenly covered, meaning
that U is connected and each component of 7~!(U) is mapped homeomor-
phically onto U by n (Figure 2.4). The basic properties of covering maps
are summarized in the Appendix (pages 556-557).

In the context of smooth manifolds it is useful to introduce a slightly
more restrictive type of covering map. If M and M are connected smooth
manifolds, a smooth covering map n: M — M is a smooth surjective map
with the property that every p € M has a connected neighborhood U such
that each component of 7=(U) is mapped diffeomorphically onto U by .
In this context we will also say that U is evenly covered. The manifold M
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is called the base of the covering, and M is called a covering manifold of
M.

To distinguish this new definition from the previous one, we will often call
an ordinary (not necessarily smooth) covering map a topological covering
map. A smooth covering map is, in particular, a topological covering map.
However, it is important to bear in mind that a smooth covering map is
more than just a topological covering map that happens to be smooth: The
definition of smooth covering map requires in addition that the restriction
of 7 to each component of the inverse image of an evenly covered set be a
diffeomorphism, not just a smooth homeomorphism.

Proposition 2.9 (Properties of Smooth Coverings).
(a) Any smooth covering map is a local diffeomorphism and an open map.
(b) An injective smooth covering map is a diffeomorphism.

(¢) A topological covering map is a smooth covering map if and only if it
s a local diffeomorphism.

< Exercise 2.11. Prove Proposition 2.9.

¢ Exercise 2.12. Ifmy: ]\Z — M and 73: Mz — M> are smooth covering
maps, show that m X m2: M1 x M2 — M; x M, is a smooth covering map.

< Exercise 2.13. Suppose 7: M — M is a smooth covering map. Since
m is also a topological covering map, there is a potential ambiguity about
what it means for a subset U C M to be evenly covered: Does m map the
components of 77 !(U) diffeomorphically onto U, or merely homeomorphi-
cally? Show that the two concepts are in fact equivalent: If U C M is evenly
covered in the topological sense, then 7 maps each component of 7~ (U)
diffeomorphically onto U.

If : MN—> M is any continuous map, a section of 7 is a continuous map
o: M — M such that moo = Idp:
)o

M
M.

A local section is a continuous map o: U — M defined on some open set
U C M and satisfying the analogous relation m ¢ ¢ = Idy. Many of the
important properties of smooth covering maps follow from the existence of
smooth local sections.

Lemma 2.10 (Local Sections of Smooth Coverings). Suppose

7w M — M is a smooth covering map. Every point of M s _in the im-
age of a smooth local section of w. More precisely, for any q € M there is
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a neighborhood U of p = w(q) and a smooth local section o: U — M such
that o(p) = q.

Proof. Let U C M be an evenly covered neighborhood of p. If U is the
component of 7!(U) containing g, then 7|5: U — U is by hypothesis a
diffeomorphism. It follows that o = (7|z)~': U — U is a smooth local
section of 7 such that o(p) = q. |

One important application of local sections is the following proposition,
which gives a very simple criterion for deciding which maps out of the base
of a covering are smooth.

Proposition 2.11. Suppose =: M — M is a smooth covering map and
N is any smooth manifold. A map F: M — N is smooth if and only if
Fom: M — N is smooth:

o~

M
™ For
M N.

F

Proof. One direction is obvious by composition. Suppose conversely that
Fom is smooth, and let p € M be arbitrary. By the preceding lemma there
is a neighborhood U of p and a smooth local section o: U — M, which
satisfies m o ¢ = Idy. Then the restriction of F to U satisfies

Fly=Foldy=Fo(roo)=(Fom)oo,

which is a composition of smooth maps. Thus F' is smooth on U. Since F
is smooth in a neighborhood of each point, it is smooth. a

The next proposition shows that every covering space of a connected
smooth manifold is itself a smooth manifold.

Proposition 2.12. If M is a connected smooth n-manifold and : M -
M is a topological covering map, then M is a topological n-manifold, and
it has a unique smooth structure such that 7 is a smooth covering map.

Proof. Because 7 is, in particular, a local homeomorphism, it is clear that
M is locally Euclidean. N

Let p and ¢ be distinct points in M. If 7(p) = n(q) and U C M is an
evenly covered open set containing 7(p), then the components of 7=1(U)
containing p and ¢ are disjoint open subsets of M separating p and q. On
the other hand, if n(p) # m(q), there are disjoint open sets U,V Cc M
containing 7(p) and n(q), respectively, and then 7=}(U) and 7=1(V) are
open subsets of M:, separating p and ¢. Thus M is Hausdorf.

To show that M is second countable, we will show first that each fiber
of m is countable. Given ¢ € M and an arbitrary point gy € 7~1(q), we
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will construct a surjective map 3: m(M,q) — 7~ 1(q); since 7 (M, q) is
countable, this suffices. Let [f] € (M, ¢q) be the path class of an arbi-
trary loop f: [0,1] = M based at q. The path lifting property of covering
maps (Proposition A.26(b)) guarantees that there is a lift f: [0,1] —
M of f starting at g, and the homotopy lifting property (Proposition
A.26(c)) shows that the lifts of path-homotopic loops are themselves path-
homotopic. Thus the endpoint f(l) € n7!(q) depends only on the path
class of £, so it makes sense to define 8[f] = F(1). To see that g is surjec-
tive, just note that any point § € 77 1(q) can be joined to go by some path
f [0,1] —>M andthenq—ﬂ[vrof]

The collection of all evenly covered open sets is an open cover of M, and
therefore has a countable subcover {U;}. For any given 4, each component
of 7~1(U;) contains exactly one point in each fiber over U;, so #~1(U;) has
countably many components. Since each component is homeomorphic to
Us, it has a countable basis. The union of all of these countable bases forms
a countable basis for the topology of M so M is second countable.

Given any point ¢ € M, let U be an evenly covered neighborhood of
m(q). Shrinking U if necessary, we may assume also that it is the domain
of a smooth coordinate map : U — R"™. Letting U be the component of
7~ 1(U) containing g, and 3 = pom: U — R", it is clear that (U @) is a
chart on M (see Figure 2.5). If two such charts (U @) and (v, 1/1) overlap,
the transition map can be written

1 -1

= (Y o 7lgnay) © (P o Tlgap)
= o7|gng © (Tlgnp) T 0@

=popl,

Yo
-1

which is smooth. Thus the collection of all such charts defines a smooth
structure on M. The uniqueness of this smooth structure is left to the
reader (Problem 2-7). 0O

The next result is an important application of the preceding proposition.

Theorem 2.13 (Existence of a Universal Covering Group). Let G
be a connected Lie group. There exist a simply connected Lie group G (called

the universal covering group of G) and a smooth covering map 7: G = G
that is also a Lie group homomorphism.

Proof. By Proposition A.29, there exist a simply connected topological
space G and a (topological) covering map 7n: G — G. Proposition 2.12
shows that G has a unique smooth manifold structure such that = is a
smooth covering map. By Exercise 2.12, 1t x 1: G X G — G X G is also a
smooth covering map.

Let m: GXG — G and i: G — G denote the multiplication and inversion
maps of G, respectively, and let € be an arbitrary element of the fiber



44 2. Smooth Maps

Figure 2.5. Smooth compatibility of charts on a covering manifold.

7 l(e) C G. Since G is simply connected, the lifting criterion for covering
maps (Proposition A.27) guarantees that the map mo (1 x7): Gx G — G
has a unique continuous lift m: GxG— G satisfying m(é,€) = & and
mom=mo (7w X7):

a—"
™
G—G (2.1)

T X

I

Q_\_‘Ql

|

Because m can be expressed locally as o o m o {7 X 7) for a smooth local
section o of , it follows that 7 is smooth. By the same reasoning, iow: G —
G has a smooth lift i: G — G satisfying i() = € and roi=iom:

. i (2.2)

7

_Z,é
|

G
]
G
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We define multiplication and inversion in G by zy = m(z,y) and 27! =
#(x) for all z,y € G. Then (2.1) and (2.2) can be rewritten as

m(zy) = m(z)7(y), (2:3)
(e = m(z)"t (2.4)

It remains only to show that Gisa group with these operations, for then
it is a Lie group because m and 7 are smooth, and (2.3) shows that 7 is a
Lie group homomorphism. _

First we show that € is an identity for multiplication in G. Consider the
map f: G — G defined by f(z) = éx. Then (2.3) implies that 7o f(z) =
m()r(z) = er(z) = n(z), so f is a lift of m: G —» G. The identity map
Ids is another lift of 7, and it agrees with f at a point because f(€) =
m(e, e) = €, so the unique lifting property of covering maps (Proposition
A.26(a)) implies that f = IdG, or equivalently, éz = z for all z € G. The
same argument shows that zé = x.

Next, to show that multiplication in G is associative, consider the two
maps Qy,agR: G x G x G = G defined by

aL(l', Y, Z) = ($y)27
ar(z,y,2) = z(yz).
Then (2.3) applied repeatedly implies that

moay(x,y,z) = (n(z)n(y))r(z) = 7(z)(w(y)n(2)) = 7 0 ar(2,y, 2),

so ar, and ag are both lifts of the same map a(z,y,z) = 7(x)r(y)n(2).
Because oy, and ap agree at (€,¢€,€), they are equal. A similar argument

shows that 7'z = 227! = ¢, so G is a group. O

<o Exerc1se 2.14. Complete the proof of the preceding theorem by showing
that z 'z =zz~ ! =é.

Proper Maps

There are not many simple criteria for determining whether a given surjec-
tive map is a covering map, even if it is known to be a local diffeomorphism.
In this section we describe one such criterion, called properness. It will have
many other applications throughout the book.

If M and N are topological spaces, a map F: M — N (continuous or
not) is said to be proper if for every compact set K C N, the inverse image
F~1(K) is compact. The next three lemmas give useful sufficient conditions
for a map to be proper.

Lemma 2.14. Suppose M is a compact space and N is a Hausdorff space.
Then every continuous map F: M — N is proper.
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N
F(M)
G F
F-YK M
NG
G(K)

Figure 2.6. A map with a left inverse is proper.

Proof. If K C N is compact, then it is closed in N because N is Hausdorff.
By continuity, F~!(K) is closed in M and therefore compact. O

Recall that a subset A C M is said to be saturated with respect to a
map F: M — N if A= F~1(F(A)) (see page 548).

Lemma 2.15. Suppose F: M — N is a proper map between topological
spaces, and A C M 1is any subset that is saturated with respect to F. Then
Fla: A— F(A) is proper.

Proof. Let K C F(A) be compact. The fact that A is saturated means that
(F|a)~Y(K) = F71(K), which is compact because F is proper. O

Lemma 2.16. Let F: M — N be a continuous map between Hausdorff
spaces. If there exists a continuous left inverse for F (i.e., a continuous
map G: N — M such that Go F =1dyy), then F is proper.

Proof. If K C N is any compact set, then any point z € F~1(K) satisfies
z = G(F(z)) € G(K). Since K is closed in N, it follows that F~}(K) is a
closed subset of the compact set G(K) (Figure 2.6), so it is compact. O

For continuous maps between topological manifolds there is an alterna-
tive characterization of properness in terms of divergent sequences, which
is somewhat easier to visualize. If X is a topological space, a sequence {p;}
in X is said to escape to infinity if for every compact set K C X there are
at most finitely many values of i for which p; € K.

¢ Exercise 2.15. Show that a sequence of points in a topological manifold
escapes to infinity if and only if it has no convergent subsequence.
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Proposition 2.17 (Sequential Characterization of Proper Maps).
Suppose M and N are topological manifolds. A continuous map F: M — N
is proper if and only if for every sequence {p;} in M that escapes to infinity,
{F(p;)} escapes to infinity in N.

Proof. First suppose that F is proper, and let {p;} be a sequence in M
that escapes to infinity. If {F'(p;)} does not escape to infinity, then there
is a compact subset K C N that contains F(p;) for infinitely many values
of 4. It follows that p; lies in the compact set F~1(K) for these values of i,
which contradicts the assumption that {p;} escapes to infinity.
Conversely, suppose every sequence escaping to infinity in M is taken by
F to a sequence escaping to infinity in N. Let K C N be a compact set,
and let L = F~1(K) C M. To show that L is compact, we will show that
every sequence in L has a convergent subsequence. Suppose to the contrary
that {p;} is a sequence in L with no convergent subsequence. Then by the
hypothesis and Exercise 2.15, {F(p;)} has no convergent subsequence; but
this is impossible because F'(p;) lies in the compact set K for all 4. |

It is often extremely useful to be able to show that a given continuous
map is a closed map. For example, Lemma A.13 shows that a closed con-
tinuous map that is also surjective, injective, or bijective is automatically a
quotient map, a topological embedding, or a homeomorphism, respectively.
One situation in which this condition is automatically fulfilled is when the
domain is compact: The closed map lemma (Lemma A.19) asserts that any
continuous map from a compact topological space to a Hausdorff space
is closed. But there are also plenty of interesting manifolds that are not
compact and therefore are not covered by this result. The following is a
powerful generalization of the closed map lemma.

Proposition 2.18 (Proper Continuous Maps Are Closed). Suppose
F: M — N is a proper continuous map between topological manifolds. Then
F is closed.

Proof. If K is a closed subset of M, we need to prove that F(K) is closed
in N. Let y be an arbitrary point of F/(K). By Exercise A.8, there exists a
sequence {y;} of points in F(K) such that y; — y. The fact that y; € F(K)
means that there exists z; € K such that F(z;) = y;.

Let U be a precompact neighborhood of y in N. For all large enough ¢,
y; € U C U, and therefore z; € F~! (U). The hypothesis that F is proper
implies that F~! (U) is compact, and thus {z;} has a subsequence {z;, }
converging to a point z € M. Because K is closed, x € K. By continuity,

F(z)= lim F(z;,) = klim Vi, =Y,
—>00

k—oo

which implies y € F(K), as desired. O

The next proposition is the main result of this section.
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Figure 2.7. A proper local diffeomorphism is a covering map.

Proposition 2.19. Suppose M and M are connected smooth manifolds
and 7: M — M s a proper local diffeomorphism. Then w is a smooth
covering map.

Proof. Because 7 is a local diffeomorphism, it is an open map, and because
it is proper, it is a closed map. Thus 7r(M ) is both open and closed in M.
Since it is obviously nonempty, it is all of M, so 7 is surjective.

Let p € M be arbitrary. Since 7 is a local diffeomorphism, each point of
77 1(p) has a neighborhood on which 7 is injective, so 771(p) is a discrete
set. Since 7 is proper, 7 ~1(p) is also compact, so it is finite. Write 771 (p) =
{P1,.-.,Dk}. For each ¢, there exists a neighborhood V; of p; on which 7 is
a diffeomorphism onto an open set V; C M. Shrinking each v if necessary,
we may assume also that V;NV; = @ for ¢ # j.

Set U = Vy N--- NV (Figure 2.7), which is a neighborhood of p. Then
U obviously satisfies

U cC 'V for each 3. (2.5)
Because K = M ~ (\71 U---u I7k) is closed in M and 7 is a closed map,

m(K) is closed in M. Replacing U by U ~ w(K), we can assume that U also
satisfies

I U)Cc ViU U (2.6)

Finally, after replacing U by the connected component of U containing p,
we can assume that U is connected and still satisfies (2.5) and (2.6). We
will show that U is evenly covered.



Partitions of Unity 49

Let U; = n~}(U)NV;. By virtue of (2.6), 7~ }(U) = (71U -UUy. Because
m: V; — V; is a diffeomorphism, (2 5) implies that =: U; — U is still a

diffeomorphism, and in particular U is connected. Because Ul, . Uk are
disjoint connected open subsets of 7 ~1(U), they are exactly the components
of m=1(U). m|

Partitions of Unity

One of the more useful tools in topology is the gluing lemma (Lemma A.7),
which shows how to construct continuous maps by “gluing together” maps
defined on subspaces. For smooth manifolds, however, the gluing lemma is
of limited usefulness, because the map it produces is rarely smooth, even
when it is built out of smooth maps on subspaces. For example, the two
functions f4: [0,00) = R and f_: (—o0,0] — R defined by

fi(z) = 4z, z € [0, 00),
f-(z) = —=, z € (—00,0],

are both smooth and agree at the point 0 where they overlap, but the
continuous map f: R — R that they define, namely f(z) = |z|, is not
smooth at the origin.

In this section we introduce partitions of unity, which are tools for patch-
ing together local smooth objects into global ones. They are indispensable
in smooth manifold theory and will reappear throughout the book.

All of our constructions in this section are based on the existence of
smooth functions that are positive in a specified part of a manifold and
identically zero in some other part. We begin by defining a smooth function
on the real line that is zero for £ < 0 and positive for t > 0.

Lemma 2.20. The function f: R — R defined by

et t>0,
ft)=
0, t <0,

15 smooth.

Proof. The function in question is pictured in Figure 2.8. It is clearly
smooth on R \ {0}, so we need only show that all derivatives of f exist
and are continuous at the origin. We begin by noting that f is continuous
because lim\ o e~1/t = (. In fact, a standard application of I"Hépital’s rule
and induction shows that for any integer k > 0,

e 1/t t=Fk

li = lim .
tl\I,% tk 0 el/t =0 (2.7)
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f@®) h(?)

Figure 2.8. f(t) = e/t Figure 2.9. A cutoff function.

We will show by induction that for ¢t > 0, the kth derivative of f is of
the form

70) = 2D - (28)

for some polynomial py(t). It is clearly true (with po(t) = 1) for k = 0, so
suppose it is true for some k > 0. By the product rule,

FED () = Pilt) —1je _ 2kpe(t) i R 1 i

t2k t2k+1 t2k t2
_ () = 2ktpe(t) +pe(t) i
- t2k+2 € ?

which is of the required form. Note that (2.8) and (2.7) imply
im F®) () =
lim fH(t) =0, (2.9)

since a polynomial is continuous.
Finally, we prove that for each £ > 0,

f®0) =o.

For k = 0 this is true by definition, so assume that it is true for some
k > 0. It suffices to show that f has one-sided derivatives from both sides
and that they are equal. Clearly, the derivative from the left is zero. Using
(2.7) again, we compute

pr(t) —1/t
——e -0
K+1) () — 1oy _L2F oy P e
fE0) = Jim t i arr € 0
By (2.9), this implies that each f®) is continuous, so f is smooth. ]

Lemma 2.21. There ezxists a smooth function h: R — R such that h(t) = 1
fort <1, 0<h(t) <1 forl<t<2, and h(t)=0 fort > 2.
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Proof. Let f be the function of the previous lemma, and set

je-y
R T T ) &

(See Figure 2.9.) Note that the denominator is positive for all ¢, because at
least one of the expressions 2 — ¢t and t — 1 is always positive. Since f > 0
always, it is easy to check that h(t) is always between 0 and 1, and is zero
when ¢ > 2. When t <1, f(t — 1) =0, so h(t) =1 there. d

A function with the properties of h in this lemma is usually called a
cutoff function.

If f is any real-valued or vector-valued function on a topological space
M, the support of f, denoted by supp f, is the closure of the set of points
where f is nonzero:

supp f = {p € M : f(p) # 0}.

If supp f is contained in some set U, we say that f is supported in U. A
function f is said to be compactly supported if supp f is a compact set.
Clearly, every function on a compact space is compactly supported.

Lemma 2.22. There is a smooih function H: R™ —)_R such that 0 <
H(z) <1 everywhere, H =1 on B1(0), and supp H = B3(0).

Proof. Just set H(xz) = h(|z|), where h is the function of the preceding
lemma. Clearly, H is smooth on R™ \ {0}, because it is a composition of
smooth functions there. Since it is identically equal to 1 on B;(0), it is
smooth there too. O

The function H constructed in this lemma is an example of a smooth
bump function, a smooth real-valued function that is equal to 1 on a speci-
fied closed set (in this case B;(0)) and is supported in a specified open set
(in this case any open set containing Bo(0)). Later, we will generalize this
notion to manifolds.

Paracompactness

To use bump functions effectively on a manifold, we will need to construct
some open covers with special properties. Let X be a topological space. A
collection U of subsets of X is said to be locally finite if each point of X
has a neighborhood that intersects at most finitely many of the sets in U.

<O Exercise 2.16. If U is an open cover of X such that each set in U
intersects only finitely many others, show that U is locally finite.

Given an open cover U of X, another open cover V is called a refinement
of U if for each V' € V there exists some U € U such that V C U. We
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say that X is paracompact if every open cover of X admits a locally finite
refinement.

A key topological result that we will need is the fact that every manifold
is paracompact. This is a consequence of second countability, and in fact is
one of the most important reasons why second countability is included in
the definition of manifolds.

The following lemma will be a first step in the proof of paracompactness.

Lemma 2.23. Every topological manifold admits a countable, locally finite
cover by precompact open sets.

Proof. Let M be a topological manifold. We will construct the desired cover
in three steps.

Start with a countable cover {B;}%2, by precompact open sets (such as
the countable basis whose existence was proved in Lemma 1.6). Next, we
will show that M admits a countable cover {U;}22, satisfying the following
properties:

i) U; is a precompact open subset of M;
j

(11) Uj_l - Uj for j > 2;
(iii) Bj C Uj.

Begin with U; = B;. Assume by induction that open sets U; have been
defined for j = 1,...,k satisfying (i)-(iii). Because Uy is compact and
covered by {B;}, there is some my such that

U CByU---UBp,.

If we let Ugy1 = B1U---U By, , then clearly (i) and (ii) are satisfied with
j = k + 1. Moreover, by increasing my, if necessary, we may assume that
my > k+1, so that Byy1 C Ugs1. Thus by induction we obtain a countable
sequence of open sets {U;} satisfying (i)—(iii). Since {B;} is a cover of M,
(iii) guarantees that {U;} is a cover as well.

Finally, to obtain a locally finite cover, we just set V; = U; \Uj_z (Figure
2.10). Since V; is a closed subset of the compact set U, it is compact. If
p € M is arbitrary, then p € Vi, where k is the smallest integer such that
p € Ug. Clearly, Vi, has nonempty intersection only with Vi_; and Vi,
so the cover {V;} is locally finite. O

Now we are ready to show that every smooth manifold is paracompact.
In fact, for future use, we will show something stronger; that every open
cover admits a locally finite refinement of a particularly nice type. If M is
a smooth manifold, we say that an open cover {W;} of M is regular if it
satisfies the following properties:

(1) The cover {W;} is countable and locally finite.
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Figure 2.10. Constructing a locally finite cover.

(ii) Each W; is the domain of a smooth coordinate map ¢;: W; — R
whose image is B3(0) C R™.

(iii) The collection {U;} still covers M, where U; = ¢; *(B1(0)).

Proposition 2.24. Let M be a smooth manifold. Every open cover of M
has a regqular refinement. In particular, M is paracompact.

Proof. Let X be any open cover of M, and let {V;} be a countable, locally
finite cover of M by precompact open sets. For each p € M, let W, be a
neighborhood of p that intersects only finitely many of the sets V;. Replac-
ing W, by its intersection with those V;’s that contain p, we may assume
that

o if p € V}, then W, C V; as well.

Since X is an open cover of M, p € X for some set X € X. Shrinking W,
further if necessary, we may also assume that

o W, is contained in one of the open sets of X.

Shrinking once more, we can assume that W), is a smooth coordinate ball,
and by choosing the coordinate map judiciously, we can arrange that

e W, is the domain of a smooth coordinate map ¢,: W, — Bs(0)
centered at p.

Let Uy = 0,1 (B1(0)).

For each k, the collection {Up 1pE Vk} is an open cover of V. By
compactness, Vy is covered by finitely many of these sets. Call the sets
Ub,..., U, and let (W, 0}), ..., (W™, @i**) denote the corresponding
coordinate charts. The collection of all the sets {W}} as k and i vary is
clearly a countable open cover of M that refines X and satisfies (ii) and
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(iii) in the definition of a regular cover. To show that it is a regular cover,
we need only show that it is locally finite.

For any given k, each set W,z is by construction contained in some V;,
which obviously satisfies V. NV, # 0. The compact set V is covered by
finitely many V}’s, and each such V; intersects at most finitely many others;
it follows that there are only finitely many values of k¥’ for which W} and
W,z: can have nonempty intersection. Since there are only finitely many sets
W}, for each k', the cover we have constructed is locally finite. O

Now let M be a topological space, and let X = {X, }4c4 be an arbitrary
open cover of M. A partition of unity subordinate to X is a collection of
continuous functions {¢: M — R},c4 with the following properties:

(i) 0<¢Yy(z) <lforallae Aand allz € M.
(ii
(i
(iv) > gcaWalz) =1forall z € M.

) supp ¥ C Xa.
ii) The set of supports {Supp ¥, }aca is locally finite.
)

Because of the local finiteness condition (iii), the sum in (iv) actually has
only finitely many nonzero terms in a neighborhood of each point, so there
is no issue of convergence. If M is a smooth manifold, a smooth partition
of unity is one for which each of the functions v, is smooth.

Theorem 2.25 (Existence of Partitions of Unity). If M is a smooth
manifold and X = { X4 }aca 18 any open cover of M, there exists a smooth
partition of unity subordinate to X.

Proof. Let {W;} be a regular refinement of X (see Proposition 2.24). For
each 4, let ¢;: W; — B3(0) be the smooth coordinate map whose existence
is guaranteed by the definition of a regular cover, and let

Ui = ¢; 1 (B1(0)),
Vi = ;" (B2(0)).
For each ¢, define a function f;: M — R by

f'_ HO@?, OnWi7
o on M \V;,

where H: R® — R is the smooth bump function of Lemma 2.22. On the
set W; . V; where the two definitions overlap, both definitions yield the
zero function, so f; is well-defined and smooth, and supp f; C W;.

Define new functions g;: M — R by

v filz)
97 = = Ey



Partitions of Unity 55

Because of the local finiteness of the cover {W;}, the sum in the denomina-
tor has only finitely many nonzero terms in a neighborhood of each point
and thus defines a smooth function. Because f; =1 on U; and every point
of M is in some U;, the denominator is always positive, so g; is a smooth
function on M. It is immediate from the definition that 0 < g; < 1 and
Ei gi = 1.

Finally, we need to reindex our functions so that they are indexed by the
same set A as our open cover. Because the cover {W;} is a refinement of
X, for each i we can choose some index a(i) € A such that W; C X,;). For
each a € A, define ¢,: M — R by

Yo = Z Gi-

ia(i)=a

If there are no indices i for which a(i) = «, then this sum should be
interpreted as the zero function. Each 1), is smooth and satisfies 0 < ¢, < 1
and suppt, C X,. Moreover, the set of supports {Supp¥q }aca is still
locally finite, and Y~ %o = >, ¢; = 1, so this is the desired partition of
unity. OJ

O Exercise 2.17. Let M be a smooth manifold with boundary. Show that
M is paracompact, and that every open cover of M admits a subordinate
smooth partition of unity.

O Exercise 2.18. Let M be a topological manifold with or without bound-
ary. Show that M is paracompact, and that every open cover of M admits
a subordinate partition of unity.

As our first application of partitions of unity, we will extend the notion
of bump functions to arbitrary closed sets in manifolds. If M is a smooth
manifold, A C M is a closed subset, and U C M is an open set containing A,
a continuous function ¢: M — R is called a bump function for A supported
mUif0<¢y<lonM,y=1o0n A, and suppy C U.

Proposition 2.26 (Existence of Bump Functions). Let M be a
smooth manifold. For any closed set A C M and any open set U containing
A, there exists a smooth bump function for A supported in U.

Proof. Let Uy = U and U; = M\ A, and let {¢g, %1} be a smooth partition
of unity subordinate to the open cover {Uy,U;}. Because ¢ = 0 on A
and therefore 19 = ) ,4¢; = 1 there, the function 9y has the required
properties. 0

Our second application is an important result concerning the possibility
of extending smooth functions from closed subsets. Suppose M and N are
smooth manifolds, and A C M is an arbitrary subset. We say that a map
F: A — N is smooth if it has a smooth extension in a neighborhood of
every point, or more precisely, if for every p € A there is an open set
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W C M containing p and a smooth map F: W — N whose restriction to
W N A agrees with F.

Lemma 2.27 (Extension Lemma). Let M be a smooth manifold, let
A C M be a closed subset, and let f: A — R be a smooth function. For
any open set U containing A, there exists a smooth function f: M — R
such that fla = f andsupp f C U.

Proof. For each p € A, choose a neighborhood W, of p and a smooth
function f;: W, — R* that agrees with f on W, N A. Replacing W), by
W, NU, we may assume that W, C U. The collection of sets {W, : p €
A} U {M \ A} is an open cover of M. Let {¢, : p € A} U {¢o} be a
smooth partition of unity subordinate to this cover, with suppy, C W,
and supp iy C M \ A. B

For each p € A, the product 1, f, is smooth on W, and has a smooth
extension to all of M if we interpret it to be zero on M \ supp®,. (The
extended function is smooth because the two definitions agree on the open
set W), \ supp ¢, where they overlap.) Thus we can define f: M — R* by

F@) =" vp(z) fyla).

pEA

Because the collection of supports {supp ¥,} is locally finite, this sum ac-
tually has only a finite number of nonzero terms in a neighborhood of
any point of M, and therefore defines a smooth function. If z € A, then
fo(x) = f(x) for each p and ¢o(z) = 0, and thus

o) = X b)) = (o) + 3 60le)) 10) = S,

pEA pEA

SO f is indeed an extension of f. Finally, suppose z € Suppf. Then x has
a neighborhood on which at most finitely many of the functions 1, are
nonzero, and z must be in supp, for at least one p € A, which implies
that r € W, C U. |

The extension lemma, by the way, illustrates an essential difference be-
tween smooth manifolds and real-analytic manifolds. The analogue of the
extension lemma for real-analytic functions on real-analytic manifolds is de-
cidedly false, because a real-analytic function that is defined on a connected
domain and vanishes on an open set must be identically zero.

As our final application of partitions of unity, we will construct a special
kind of smooth function. If M is a topological space, an exhaustion function
for M is a continuous function f: M — R with the property that the set
M, = {zx € M : f(z) < ¢} is compact for each ¢ € R. The name comes
from the fact that the compact sets M, exhaust M as c increases to positive
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infinity. For example, the functions f: R™ — R and ¢g: B® — R given by
1
fz) = |=l, g9(z) = m,

are exhaustion functions. Of course, if M is compact, any continuous real-
valued function on M is an exhaustion function, so such functions are
interesting only for noncompact manifolds.

Proposition 2.28 (Existence of Exhaustion Functions). Fuvery
smooth manifold admits a smooth positive exhaustion function.

Proof. Let M be a smooth manifold, let {V]}g";l be any countable open
cover of M by precompact open sets, and let {1;} be a smooth partition
of unity subordinate to this cover. Define f € C*°(M) by

o0
fp) =Y i%;(p)-
=1
Then f is smooth because only finitely many terms are nonzero in a neigh-

borhood of any point, and positive because f(p) > > ;¥;j(p) = 1. For any
positive integer N, if p ¢ U;'V=1 V;, then ¢;(p) =0for 1 <j < N, so

(e 0] o oo
o)=Y i) > Y Nujl) =N vip)=N.
J=N+1 j=N+1 j=1
Equivalently, if f(p) < N, then p € Ujvzl V;. Thus for any ¢ < N, M, is a
closed subset of the compact set U;VII Vj and is therefore compact. g
Problems

2-1. Compute the coordinate representation for each of the following maps
in stereographic coordinates (see Problem 1-5), and use this to prove
that each map is smooth.

(a) For each n € Z, the nth power map p,: S* — S! is given in
complex notation by p,(z) = 2™.

(b) a:S™ — S™ is the antipodal map a(z) = —z.

(c) F: 8% — S?is given by F(z,w) = (2W+wZ, iwZz —i2W, 2Z —w),
where we think of S? as the subset {(w,z) : |w|*> + [2|2 =1} of
c2

2-2. Show that the inclusion map B» < R™ is smooth when B~ is regarded
as a smooth manifold with boundary.

2-3. Let R denote the real line with its standard smooth structure, and let
R denote the same topological manifold with the smooth structure
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2-4.

2-6.

2-8.

2-9.

2-10.

2-11.

2. Smooth Maps

defined in Example 1.14. Let f: R — R be any function. Determine
necessary and sufficient conditions on f so that it will be:

(a) a smooth map from R to R;
(b) a smooth map from R to R.

Let P: R**! < {0} — R**! <\ {0} be a smooth map, and suppose
that for some d € Z, P(Ar) = AP(z) for all A € R~ {0} and
z € R*™1 < {0}. (Such a map is said to be homogeneous of degree
d.) Show that the map P: RP" — RP* defined by Plz] = [P(z)] is
well-defined and smooth.

. Let M be a nonempty smooth manifold of dimension n > 1. Show

that C*°(M) is infinite-dimensional.

For any topological space M, let C(M) denote the algebra of contin-
uous functions f: M — R. If F': M — N is a continuous map, define
F*:C(N) > C(M)by F*(f)=foF.

(a) Show that F* is a linear map.

(b) If M and N are smooth manifolds, show that F is smooth if and
only if F*(C*>(N)) c C*(M).

(¢) If F: M — N is a homeomorphism between smooth manifolds,
show that it is a diffeomorphism if and only if F'™* restricts to an
isomorphism from C*(N) to C=(M).

[Remark: This result shows that in a certain sense, the entire smooth
structure of M is encoded in the space C°(M). In fact, some au-
thors define a smooth structure on a topological manifold M to be a
subalgebra of C(M) with certain properties.]

. Let M be a connected smooth manifold, and let 7: M = Mbea

topological covering map. Show that there is only one smooth struc-
ture on M such that 7 is a smooth covering map (see Proposition
2.12). [Hint: Use the existence of smooth local sections.]

Show that the map &®: R” — T" defined in Example 2.8(d) is a
smooth covering map.

Show that the map p: S — RP" defined in Example 2.5(d) is a
smooth covering map.

Let CP™ denote n-dimensional complex projective space, as defined
in Problem 1-7.

(a) Show that the quotient map m: C**! \ {0} — CP" is smooth.
(b) Show that CP! is diffeomorphic to S2.

Let G be a connected Lie group, and let U C G be any neighborhood
of the identity. Show that every element of G can be written'as a finite
product of elements of U. In particular, U generates G. (A subset U
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2-13.

2-14.

2-15.

2-16.

2-17.

2-18.

Problems 59

of a group G is said to generate G if every element of G can be written
as a finite product of elements of U and their inverses.)

Let G be a Lie group, and let Gy denote the connected component
of G containing the identity (called the identity component of G).

(a) Show that G is the only connected open subgroup of G.
(b) Show that each connected component of G is diffeomorphic to

Go.

Let G be a connected Lie group. Show that the universal covering
group G constructed in Theorem 2.13 is unique in the following sense:
If G’ is any other simply connected Lie group that admits a smooth
covering map 7’': G’ — G that is also a Lie group homomorphism,
then there exists a Lie group isomorphism ®: G — G’ such that
mod=m.

Let M be a topological manifold, and let U be a cover of M by pre-
compact open sets. Show that U is locally finite if and only if each
set in U intersects only finitely many other sets in U. Give counterex-
amples to show that the conclusion is false if either precompactness
or openness is omitted from the hypotheses.

Suppose M is a locally Euclidean Hausdorff space. Show that M
is second countable if and only if it is paracompact and has count-
ably many connected components. [Hint: If M is paracompact, show
that each component of M has a locally finite cover by precompact
coordinate balls, and extract from this a countable subcover.]

Suppose M is a topological space with the property that for every
open cover X of M, there exists a partition of unity subordinate to
X. Show that M is paracompact.

Show that the assumption that A is closed is necessary in the ex-
tension lemma (Lemma 2.27), by giving an example of a smooth
real-valued function on a nonclosed subset of a smooth manifold that
admits no smooth extension to the whole manifold.

Let M be a smooth manifold, let B C M be a closed subset, and let
0: M — R be a positive continuous function.

(a) Using a partition of unity, show that there is a smooth function
d: M — R such that 0 < g(a:) < §(z) for all z € M.

(b) Show that there is a continuous function %: M — R that is
smooth and positive on M ~\ B, zero on B, and satisfies ¢)(z) <
§(x) everywhere. [Hint: Consider 1/(1+ f), where f: M~ B - R
is a positive exhaustion function.]
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Tangent Vectors

One of the key tools in our study of smooth manifolds will be the idea of
linear approrimation. This is a familiar notion from calculus in Euclidean
spaces, where for example a function of one variable can be approximated
by its tangent line, a parametrized curve in R™ by its tangent vector, a
surface in R? by its tangent plane, or a map from R™ to R™ by its total
derivative (see the Appendix).

In order to make sense of linear approximations on manifolds, we need to
introduce the notion of the tangent space to a manifold at a point, which
we can think of as a sort of “linear model” for the manifold near the point.
Because of the abstractness of the definition of a smooth manifold, this
takes some work, which we carry out in this chapter.

We begin by studying a much more concrete object: geometric tangent
vectors in R™, which can be thought of as “arrows” attached to a particular
point in R™. Because the definition of smooth manifolds is built around the
idea of identifying which functions are smooth, the property of a geometric
tangent vector that is amenable to generalization is its action on smooth
functions as a “directional derivative.” The key observation about geomet-
ric tangent vectors, which we prove in the first section of this chapter, is
that the process of taking directional derivatives gives a natural one-to-one
correspondence between geometric tangent vectors and linear maps from
C>®(R™) to R satisfying the product rule. (Such maps are called “deriva-
tions.”) With this as motivation, we then define a tangent vector on a
smooth manifold as a derivation of C*°(M) at a point.

In the second section of the chapter we show how tangent vectors can
be “pushed forward” by smooth maps. Using this, we connect the abstract
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definition of tangent vectors to our concrete geometric picture by showing
that any smooth coordinate chart (U, ¢) gives a natural isomorphism from
the space of tangent vectors to M at p to the space of tangent vectors to
R™ at ¢(p), which in turn is isomorphic to the space of geometric tangent
vectors at ¢(p). Thus any smooth coordinate chart yields a basis for each
tangent space. Using this isomorphism, we describe how to do concrete
computations in such a basis.

The last part of the chapter is devoted to showing how a smooth curve
in a smooth manifold has a tangent vector at each point, which can be
regarded as the derivation of C°°(M) that takes the derivative of each
function along the curve. In the final section we discuss and compare several
alternative approaches to defining tangent spaces.

Tangent Vectors

Imagine a manifold in Euclidean space. For concreteness, let us take it to
be the unit sphere S*~! C R”. What do we mean by a “tangent vector”
at a point of S*~!? Before we can answer this question, we have to come
to terms with a dichotomy in the way we think about an element of R™.
On the one hand, we usually think of it as a point in space, whose only
property is its location, expressed by the coordinates (acl, e ,1:”). On the
other hand, when doing calculus we sometimes think of it instead as a
vector, which is an object that has magnitude and direction, but whose
location is irrelevant. A vector v = vie; (where e; denotes the ith standard
basis vector) can be visualized as an arrow with its initial point anywhere
in R™; what is relevant from the vector point of view is only which direction
it points and how long it is.

What we really have in mind when we work with tangent vectors is a
separate copy of R™ at each point. When we talk about the set of vectors
tangent to the sphere at a point a, for example, we are imagining them as
living in a copy of R™ with its origin translated to a.

Geometric Tangent Vectors

Here is a preliminary definition of tangent vectors in Euclidean space. Let
us define the geometric tangent space to R™ at the point a € R", denoted
by RZ, to be the set {a} x R™. More explicitly,

R} = {(a,v) : v € R"}.

A geometric tangent vector in R™ is an element of this space. As a matter of
notation, we will abbreviate (a,v) as v, (or sometimes v|, if it is clearer, for
example if v itself has a subscript). We think of v, as the vector v with its
initial point at a (Figure 3.1). This set R” is a real vector space (obviously
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Figure 3.1. Geometric tangent space. Figure 3.2. Tangent space to S™.

isomorphic to R™ itself) under the natural operations

Vg + Wa = (V4 w)g,

c(vg) = (cv)q.

The vectors e;|,, i =1,...,n, are a basis for R. In fact, as a vector space,
R7 is essentially the same as R™ itself; the only reason we add the index a
is so that the geometric tangent spaces R} and R} at distinct points a and
b will be disjoint sets.

With this definition we could, for example, think of the tangent space to
S"~! at a point @ € S*7! as a certain subspace of R? (Figure 3.2), namely
the space of vectors that are orthogonal to the radial unit vector through
a, noting that the geometric tangent space R} inherits an inner product
from R™ via the natural isomorphism R™ = R”.

The problem with this definition, however, is that it gives us no clue as
to how we might set about defining tangent vectors on an arbitrary smooth
manifold, where there is no ambient Euclidean space. So we need to look
for another characterization of tangent vectors that might make sense on
a manifold.

The only things we have to work with on smooth manifolds so far are
smooth functions, smooth maps, and smooth coordinate charts. Now, one
thing that a Euclidean tangent vector provides is a means of taking “direc-
tional derivatives” of functions. For example, any geometric tangent vector
v, € R} yields a map Dy, : C*°(R™) — R, which takes the directional
derivative in the direction v at a:

Dy, f=Dyf(a) = % fla+tv). (3.1)
t=0

This operation is linear and satisfies the product rule:

Dy, (f9) = f(a) Dvly g +g(a) Dol, f.
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Ifv, = viei’a in terms of the standard basis, then by the chain rule D, |, f
can be written more concretely as

i Of

Dy, f=v' 21 (a).

(Here we are using the summation convention as usual, so the expression on
the right-hand side is understood to be summed over ¢ = 1 to n. This sum
is consistent with our index convention if we stipulate that an upper index
“in the denominator” is to be regarded as a lower index.) For example, if
vq = €, then

of
Dy, f= %(a)‘
With this construction in mind, we make the following definition. If a is
a point of R™, a linear map X : C°(R"™) — R is called a derivation at a if

it satisfies the following product rule:

X(fg) = f(a)Xg+g(a)X f. (3.2)

Let T, (R™) denote the set of all derivations of C*°(R") at a. Clearly, T,(R")
is a vector space under the operations

(X +Y)f=X[+Y],
(eX)f = e(X ).

The most important (and perhaps somewhat surprising) fact about this
space is that it is finite-dimensional, and in fact is naturally isomorphic to
the geometric tangent space R? that we defined above. The proof will be
based on the following lemma.

Lemma 3.1 (Properties of Derivations). Suppose a € R™ and X €
T, (R™).

(a) If f is a constant function, then X f = 0.

(b) If f(a) = g(a) = 0, then X(fg) = 0.

Proof. Tt suffices to prove (a) for the constant function f;(z) = 1, for then
f(z) = cimplies X f = X(cfy) = ¢X f1 = 0 by linearity. For fy, it follows
from the product rule,

Xfi=X(fifi) = ila) X fi + fi(a) X fL = 2X fi,

which implies that X f; = 0. Similarly, (b) also follows from the product
rule:

X(fg) = fa)Xg+g(a)Xf=0+0=0. O

Now let v, € R} be a geometric tangent vector at a. By the product
rule, the map D, |, : C*°(R™) — R defined by (3.1) is a derivation at a. As
the following proposition shows, every derivation at a is of this form.
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Proposition 3.2. For any a € R", the map v, — D,|, is an isomorphism
from R? onto T,(R™).

Proof. The map v, +— D,|, is linear, as is easily checked. To see that
it is injective, suppose v, € R} has the property that D,|, is the zero
derivation. Writing v, = viei,a in terms of the standard basis, and taking
f to be the jth coordinate function z7: R® — R, thought of as a smooth
function on R™, we obtain

0= D, (%) = o' ()| =0,

r=a

Since this is true for each j, it follows that v, is the zero vector.

To prove surjectivity, let X € T,(R™) be arbitrary. Motivated by the
computation in the preceding paragraph, we define real numbers v!, ..., v"
by

We will show that X = D, |, where v = v'e;.

To see this, let f be any smooth real-valued function on R™. By Tay-
lor’s formula with remainder (Theorem A.58), there are smooth functions
g1, - - -, gn defined on R™ such that g;(a) = 0 and

@+ o)
=1

Note that the last term in (3.3) is a sum of functions, each of which is
a product of two functions g;(z) and (z* — a?) that vanish when z = a.
Applying X to this formula and using Lemma, 3.1, we obtain

Xf=X(f +ZX< :z—a)>+X(gi($)($i‘al))

zt —a +qu (z" — a") (3.3)

—0+ afi(a)(X(a:l)—X(al))qLO
el
= D lo f-
This shows that X = D,|,. O

Corollary 3.3. For any a € R™, the n derivations
0 0

oz |, Oz

b
a
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defined by

o . of
oxt af_ oxt (a),

form a basis for T,(R™), which therefore has dimension n.

Proof. This follows immediately from the preceding proposition, once we
note that 8/0z%|, = D,],- O

Tangent Vectors on a Manifold

Now we are in a position to define tangent vectors on a manifold. Let M be
a smooth manifold and let p be a point of M. A linear map X: C*(M) - R
is called a derivation at p if it satisfies

X(fg) = f(p)Xg+gXf (3.4)

for all f,g € C*°(M). The set of all derivations of C*°(M) at p is a vector
space called the tangent space to M at p, and is denoted by T,M. An
element of T, M is called a tangent vector at p.

The following lemma is the analogue of Lemma 3.1 for manifolds.

Lemma 3.4 (Properties of Tangent Vectors on Manifolds). Let M
be a smooth manifold, and suppose p € M and X € T,M.

(a) If f is a constant function, then X f = 0.
(b) If f(p) = g(p) =0, then X(fg) = 0.

<O Exercise 3.1. Prove Lemma 3.4.

In the special case M = R™, Proposition 3.2 shows that T,R"™ is naturally
isomorphic to the geometric tangent space R7, and thus also to R™ itself.
For this reason, you should visualize tangent vectors to an abstract smooth
manifold M as “arrows” that are tangent to M and whose base points
are attached to M at the given point. Theorems about tangent vectors
must always be proved using the abstract definition in terms of derivations,
but your intuition should be guided as much as possible by the geometric
picture.

Pushforwards

To relate the abstract tangent spaces we have defined on a manifold to
geometric tangent spaces in R™, we have to explore the way tangent vec-
tors behave under smooth maps. In the case of a smooth map between
Euclidean spaces, the total derivative of the map at a point (represented
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A e N

T 'S

Figure 3.3. The pushforward.

by its Jacobian matrix) is a linear map that represents the “best linear ap-
proximation” to the map near the given point. In the manifold case there
is a similar linear map, but now it acts between tangent spaces.

If M and N are smooth manifolds and F': M — N is a smooth map, for
each p € M we define a map F.: T, M — Tpp,) N, called the pushforward
associated with F' (Figure 3.3), by

(FX)(f) =X(foF).
Note that if f € C°(N), then fo F € C®(M), so X(f o F) makes sense.
The operator F, X is clearly linear, and is a derivation at F(p) because
(F.X)(f9) = X((fg)o F)
=X((foF)(goF))
=foF(p)X(goF)+goF(p)X(foF)
= f(F(p))(F.X)(g) + g(F(p))(Fx X)(f)-

Because the notation F, does not explicitly mention the point p, we will
have to be careful to specify it when necessary to avoid confusion.

Lemma 3.5 (Properties of Pushforwards). Let F: M — N and
G: N — P be smooth maps, and let p € M.

a) Fyv: TyM — TN is linear.

b) (GoF)y =G,0F,: T,M = Tgopp) P.
¢) (Idp)s =Idr,nm: T,M — T, M.
)

d) If F is a diffeomorphism, then F.: T,M — TppuN is an
isomorphism.

(
(
(
(

¢ Exercise 3.2. Prove Lemma 3.5.

Our first important application of the pushforward will be to use coor-
dinate charts to relate the tangent space to a point on a manifold with the
Euclidean tangent space. But there is an important technical issue that we
must address first: While the tangent space is defined in terms of smooth
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functions on the whole manifold, coordinate charts are in general defined
only on open subsets. The key point, expressed in the next lemma, is that
the tangent space is really a purely local construction.

Proposition 3.6. Suppose M is a smooth manifold, p € M, and
X € T,M. If f and g are smooth functions on M that agree on some
neighborhood of p, then X f = Xg.

Proof. Setting h = f — g, by linearity it suffices to show that Xh = 0
whenever h vanishes in a neighborhood of p. Let ¢ € C*°(M) be a smooth
bump function that is identically equal to 1 on the support of A and is
supported in M ~\ {p}. Because ¥ = 1 where h is nonzero, the product h
is identically equal to h. Since h(p) = ¥(p) = 0, Lemma 3.4 implies that
Xh=X(yph)=0. O

Using this proposition, the tangent space to an open submanifold can be
naturally identified with the tangent space to the whole manifold.

Proposition 3.7. Let M be a smooth manifold, let U C M be an open
submanifold, and let v: U — M be the inclusion map. For any p € U,
ts: TyU = T, M is an isomorphism.

Proof. Let B be a small neighborhood of p such that B C U. First suppose
X € T,U and 1, X =0€ T,M. If f € C(U) is arbitrary, the extension
lemma guarantees that there is a smooth function f € C°°(M) such that
f = f on B. Then by Proposition 3.6,

Xf= X(ﬂU) _ X(fo L) — (LX)f=0.

Since this holds for every f € C*°(U), it follows that X = 0, so ¢4 is
injective.

On the other hand, suppose Y € T,M is arbitrary. Define an operator
X:C®(U) — R by setting Xf = Yf, where fis any function on all of
M that agrees with f on B. By Proposition 3.6, X f is independent of
the choice of f, so X is well-defined, and it is easy to check that it is a
derivation of C*°(U) at p. For any g € C*°(M),

(teX)g=X(g0) =Y (g01) =Yg,

where the last two equalities follow from the facts that gos, g o, and g all
agree on B. Therefore, ¢, is also surjective. O

If U is an open set in a smooth manifold M, the isomorphism ¢, between
T,U and T, M is canonically defined, independently of any choices. From
now on we will identify T,U with T,M for any point p € U. This identifi-
cation just amounts to the observation that ¢, X is the the same derivation
as X, thought of as acting on functions on the bigger manifold M instead
of functions on U. Since the action of a derivation on a function depends
only on the values of the function in an arbitrarily small neighborhood,
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this is a harmless identification. In particular, this means that any tangent
vector X € T, M can be unambiguously applied to functions defined only
in a neighborhood of p, not necessarily on all of M.

<O Exercise 3.3. If F;: M — N is a local diffeomorphism, show that
F.: T,M — Tr) N is an isomorphism for every p € M.

Recall from Chapter 1 that every finite-dimensional vector space has a
natural smooth manifold structure that is independent of any choice of
basis or norm. The following proposition shows that the tangent space
to a vector space can be naturally identified with the vector space itself.
Compare this with the isomorphism between T,R™ and R that we proved
in the preceding section.

Proposition 3.8 (The Tangent Space to a Vector Space). For each
finite-dimensional vector space V and each point a € V, there is a natural
(basis-independent) isomorphism V. — T,V such that for any linear map
L:V > W the following diagram commutes:

o~

1% T,V
L L,
W —> Tr W (3.5)

Proof. As we did in the case of R", for any vector v € V, we define a
derivation D,|, of C*°(V) at a by

Dyl, f = Dyf(a) fla+ tv).

Cdt],_
Clearly, this is independent of any choice of basis. Once we choose a basis
for V, we can use the same arguments we used in the case of R™ to show
that D,|, is indeed a derivation at a, and that the map v — D,|, is an
isomorphism.

Now suppose L: V — W is a linear map. Because its components with
respect to any choices of bases for V and W are linear functions, L is
smooth. Unwinding the definitions and using the linearity of L, we compute

(L* Dvla)f - Dvia (folL)
d

A {VACER)

t=0

d
— La+tL
gl _, f(La+tLv)

= DLv|La fa
which is (3.5). a
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Rn

Figure 3.4. Tangent vectors in coordinates.

Using this proposition, we will routinely identify tangent vectors to a
finite-dimensional vector space with elements of the space itself.

Computations in Coordinates

Our treatment of the tangent space to a manifold so far might seem
hopelessly abstract. To bring it down to earth, we will show how to do
computations with tangent vectors and pushforwards in local coordinates.

Let (U,p) be a smooth coordinate chart on M. Note that ¢ is, in
particular, a diffeomorphism from U to an open subset U c R~ Thus,
combining the results of Proposition 3.7 and Lemma 3.5(d) above, we see
that @,: T,M — T, R™ is an isomorphism.

By Corollary 3.3, T,;,)R™ has a basis consisting of the derivations
a/ 8xi|¢(p), i = 1,...,n. Therefore, the pushforwards of these vectors under
(¢71)« form a basis for T,M (Figure 3.4). In keeping with our standard
practice of treating coordinate maps as identifications, we will use the
following notation for these pushforwards:

9
ort »

0
- -1

@(p)
Unwinding the definitions, we see that /0z"|, acts on a smooth function
f:U—>Rby

]
ozt

9
ozt

of .
(fop™) = 5%(1)),

f=

p

»(p)

where f = f o ! is the coordinate representation of f, and p =

(p',...,p™) = @(p) is the coordinate representation of p. In other words,
0/0x*, is just the derivation that takes the ith partial derivative of (the
coordinate representation of) f at (the coordinate representation of) p.



70 3. Tangent Vectors

The vectors 8/dx|, are called the coordinate vectors at p associated with
the given coordinate system. In the special case of standard coordinates on
R™, the coordinate basis vectors 8/9z%|, are literally the partial derivative
operators, which correspond to the standard basis vectors e;|, under the
isomorphism T,R™ <> R7.

The following lemma summarizes the discussion so far.

Lemma 3.9. Let M be a smooth n-manifold. For anyp € M, T,M is an
n-dimensional vector space. If (U, (z*)) is any smooth chart containing p,
the coordinate vectors (8/0x?|p,...,0/0z™|,) form a basis for T,M.

Thus any tangent vector X € T,M can be written uniquely as a linear
combination

X Xia

8xp

where we are using the summation convention as usual. The numbers
(X L ,X") are called the components of X with respect to the given
coordinate system. If X is known, its components can be computed easily
from its action on the coordinate functions. For each j, thinking of 27 as a
smooth real-valued function on U, we have

J
;0T

) =xGm=x,

X (¢7) = (Xiaii

where the last equality follows because dz7/8z* = 0, except when i = j,
in which case it is equal to 1. Thus the components of X are given by
X7 = X (29).

Next we explore how pushforwards look in coordinates. We begin by
considering the special case of a smooth map F: U — V, where U C
R™ and V C R™ are open subsets of Euclidean spaces. For any p € U,
we will determine the matrix of F.: T,R™ — Tp,)R™ in terms of the

standard coordinate bases. Using (:cl, . ,x”) to denote the coordinates in
the domain and (yl, cee ym) to denote those in the range, we use the chain
rule to compute the action of F, on a typical basis vector as follows:
9] 0 of OF7
(7 3] )7= 3| o P = gsFo Gzt

OFJ 0

ox Oy F(p)
Thus

0 OFJ 0
F] =) (36)
oz'|, Oz OV | k) _
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D
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)

=

Figure 3.5. The pushforward in coordinates.

In other words, the matrix of F, in terms of the standard coordinate bases
is

OF! OF!

5;(1)) axn(p)
o 2w

(Recall that the columns of the matrix of a linear map are the components
of the images of the basis vectors.) This matrix is none other than the Jaco-
bian matriz of F', which is the matrix representation of the total derivative
DF(p): R™ — R™. Therefore, in this special case, Fy: T,R® — TppR™
corresponds to the total derivative DF(p): R® — R™, under our usual
identification of Euclidean space with its tangent space.

Now consider the more general case of a smooth map F': M — N between
smooth manifolds. Choosing smooth coordinate charts (U, ¢) for M near
p and (V,4) for N near F(p), we obtain the coordinate representation
F=voFop~l: oUNF-Y(V)) — (V) (Figure 3.5). By the computation
above, E, is represented with respect to the standard coordinate bases by
the Jacobian matrix of F. Using the fact that F o p™! = ¢y~ 1 o F, we
compute

9 8 [~ B
L =F*((<p e 5 >=(w 1)*<F*é—i >
" p T o(p) T o(p) (3.7)
OFI ) oFi 9 '
:w*l)*( ‘o) 2 >=—7ﬁ—- .
9z =7 Y By /0T OY gy
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Thus F is represented in terms of these coordinate bases by the Jacobian
matrix of (the coordinate representative of) F'. In fact, the definition of
the pushforward was cooked up precisely to give a coordinate-independent
meaning to the Jacobian matrix of a smooth map.

Because of this, in the differential geometry literature the pushforward
of a smooth map F: M — N is sometimes called its differential, its total
derivative, or just its derivative, and can also be denoted by such symbols
as

F'(p), dF, DF, dF|,, DF(p), etc.

We will stick with the notation F, for the pushforward of a map between
manifolds, and reserve DF(p) for the total derivative of a map between
finite-dimensional vector spaces, which in the case of Euclidean spaces we
identify with the Jacobian matrix of F.

Change of Coordinates

Suppose (U, ¢) and (V,1)) are two smooth charts on M, and p e UNV.
Let us denote the coordinate functions of ¢ by (:v’) and those of ¥ by (F)
Any tangent vector at p can be represented with respect to either basis
(8/0x*|,) or (8/07"|,). How are the two representations related?

Writing the transition map ¥ o o 1: U NV) = (U NV) in the
shorthand notation

Po ap_l(az) = (El(x), e ,En(m)) ,
by (3.6) the pushforward by v o ¢! can be written

0

om0
*8:ci

(Yop™) = 5,7 (°(P) 5=

#(p) ¥(p)

(See Figure 3.6.) Using the definition of coordinate vectors, we obtain

0 0 5,
=) am| =@ e, o
Oz p 9z ©(p) Ox ©(p)
o7 0 oz’ 15}
= @), 75(00) 5= = () (¥7), 2= (3.8)
or oxJ o(p) ox ox’ w(p)
ot . 0
=20 P o3|,

where P = (p) is the representation of p in z*-coordinates. (This formula
is easy to remember, because it looks exactly the same as the chain rule
for partial derivatives in R™.) Applying this to the components of a vector
X = X'8/0z'|, = X70/8% |, we find that the components of X transform
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Figure 3.6. Change of coordinates.

by the rule

~,_3§j

XI = 5ot () X*. (3.9)

The Tangent Space to a Manifold with Boundary

Suppose M is an n-dimensional manifold with boundary, and p is a bound-
ary point of M. There are a number of ways one might choose to define the
tangent space to M at p. Should it be an n-dimensional vector space, like
the tangent space at an interior point? Or should it be (n — 1)-dimensional,
like the boundary? Or should it be an n-dimensional half-space, like the
space H™ on which M is modeled locally? The standard choice is to define
T,M to be an n-dimensional vector space (Figure 3.7). This may or may
not seem like the most geometrically intuitive choice, but it has the advan-
tage of making most of the definitions of geometric objects on a manifold
with boundary look exactly the same as those on a manifold.

Thus if M is a manifold with boundary and p € M is arbitrary, we
define the tangent space to M at p in the same way as we defined it for
a manifold: T, M is the space of derivations of C*°(M) at p. Similarly, if
F: M — N is a smooth map between manifolds with boundary, we define
the pushforward by F at p € M to be the linear map F.: T,M — Tpp N
defined by the same formula as in the manifold case:

(F.X)f = X(f o F).
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Figure 3.7. The tangent space to a manifold with boundary.

The most important fact about these definitions is expressed in the
following lemma.

Lemma 3.10. If M is an n-dimensional manifold with boundary and p is
a boundary point of M, then T,M is an n-dimensional vector space, with
basis given by the coordinate vectors (8/0z!|p,...,8/0x™|,) in any smooth
chart.

Proof. 1t is obvious from the definition that T,M is a vector space. For
any smooth coordinate map ¢, the pushforward ¢.: T, M — T, ,)H" is an
isomorphism by the same argument as in the manifold case; thus it suffices
to show that for any a € OH", T,H" is n-dimensional and spanned by the
standard coordinate vectors.

Consider the inclusion map ¢: H" < R™. We will show that ¢,: T,H" —
T,R™ is an isomorphism. Suppose +,X = 0. Let f be any smooth real-
valued function defined on a neighborhood of a in H”, and let f be any
extension of f to a smooth function on an open subset of R™®. (Such an
extension exists by the extension lemma.) Then fo t=f,s0

Xf=X (fo L) = (L*X)f: 0,
which implies that ¢, is injective. On the other hand, if Y € T,R"™ is
arbitrary, define X € T,H" by
Xf=YFf,
where f is any extension of f. Writing ¥ = Y%8/8z¢|, in terms of the
standard basis, this means that

af

Xf:Yiaxi (a).

This is well-defined because by continuity the derivatives of f~ at a are
determined by those of f in H™. It is easy to check that X is a derivation
at a and that Y = 1, X, so ¢, is surjective. O
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Figure 3.8. The tangent vector to a curve.

Tangent Vectors to Curves

The notion of the tangent vector to a smooth curve in R” is familiar from
elementary calculus. It is just the vector whose components are the deriva-
tives of the component functions of the curve. In this section we extend
this notion to curves in manifolds.

If M is a manifold, we define a curve in M to be a continuous map
~v:J — M, where J C R is an interval. (In this section we will be interested
primarily in curves whose domains are open intervals, but for some purposes
it is useful to allow J to have one or two endpoints; the definitions all make
sense in that case if we consider J as a manifold with boundary.) Note that
in this book the term “curve” will always refer to a map from an interval
into M (sometimes called a parametrized curve), not just a set of points in
M.

Our definition of the tangent space leads to a very natural interpretation
of tangent vectors to smooth curves in manifolds. If v is a smooth curve in
a smooth manifold M, we define the tangent vector to v at tg € J (Figure
3.8) to be the vector

d
/ —
Vi) = 4

) S T’y(to)Mv

to
where d/dt|y, is the standard coordinate basis for T3 R. (As in ordinary

calculus, it is customary to use d/dt instead of 9/8t when the domain is
1-dimensional.) Other common notations for the tangent vector to - are

. dvy dry
t — (¢ —
7( 0)7 dt( 0)7 and dt imto
This tangent vector acts on functions by
d d d(f o)
/

= * T = —- = t .
vior= (v g )1= 5| ven="25"2w

In other words, +'(to) is the derivation at (o) obtained by taking the
derivative of a function along . (If tg is an endpoint of J, this still holds,
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provided that we interpret the derivative with respect to t as a one-sided
derivative.)

Now let (U,¢) be a smooth chart with coordinate functions (z*). If
v(to) € U, we can write the coordinate representation of v as ~(t) =
(’yl(t), N (t)), at least for t sufficiently near tg, and then the formula
for the pushforward in coordinates tells us that

Yito) = (1) (to) |
¥(to)
This means that +/(¢o) is given by essentially the same formula as it would
be in Euclidean space: It is the tangent vector whose components in a
coordinate basis are the derivatives of the component functions of .

The next lemma shows that every tangent vector on a manifold is the
tangent vector to some curve. This gives an alternative and somewhat more
geometric way to think about the tangent space: It is just the set of tangent

vectors to smooth curves in M.

Lemma 3.11. Let M be a smooth manifold andp € M. Every X € T,M
is the tangent vector to some smooth curve in M.

Proof. Let (U,p) be a smooth coordinate chart centered at p, and
write X = X'0/0x|, in terms of the coordinate basis. Define a curve
v: (—e,&) = U by setting v(t) = (¢X',...,tX"™) in these coordinates.
(Remember, this really means v(t) = ¢! (tX',...,tX"™).) Clearly, this is
a smooth curve with v(0) = p, and by the computation above, v(0) =
Xia/c’)a:i|7(o) = X. O

The next proposition shows that tangent vectors to curves behave well
under composition with smooth maps.

Proposition 3.12 (The Tangent Vector to a Composite Curve).
Let F: M — N be a smooth map, and lety: J — M be a smooth curve. For
any ty € J, the tangent vector att = tg to the composite curve Foy: J - N
is given by

(F'o7)'(to) = Fu(+'(t0))-
Proof. Just go back to the definition of the tangent vector to a curve:

d

gl = F.(7'(to)). a

to

d
(FO’Y)/(tO) = (F o). at = Fv
to

On the face of it, the preceding proposition tells us how to compute
the tangent vector to a composite curve in terms of the pushforward map.
However, it is often much more useful to turn it around the other way, and
use it as a streamlined way to compute pushforwards. Suppose F': M — N
is a smooth map, and we need to compute the pushforward map F, at
some point p € M. We can compute F, X for any X € T,M by choosing a
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smooth curve v whose tangent vector at t = 0 is X, and then
F.X = (Fov)'(0). (3.10)

This frequently yields a much more succinct computation of F, especially
if F is presented in some form other than by giving its coordinate functions.
We will see many examples of this technique in later chapters.

Alternative Definitions of the Tangent Space

In the literature you will find tangent vectors to a smooth manifold defined
in several different ways. The most common alternative definition is based
on the notion of “germs” of smooth functions, which we now define.

A smooth function element on a smooth manifold M is an ordered pair
(f,U), where U is an open subset of M and f: U — R is a smooth function.
Given a point p € M, let us define an equivalence relation on the set of
all smooth function elements whose domains contain p by setting (f,U) ~
(9,V) if f = g on some neighborhood of p. The equivalence class of a
function element (f,U) is called the germ of f at p. The set of all germs of
smooth functions at p is denoted by Cp°. It is a real vector space and an
associative algebra under the operations

(£, D)+ (g, V)] = [(f + 9, U N V],
c[(f, U)] = [(ef, U],
[(£;D]l(g: V)] = [(fg, U N V).

(The zero element of this algebra is the equivalence class of the zero function
on M.) Let us denote the germ at p of the function element (f,U) simply
by [f]p; there is no need to include the domain U in the notation, because
the same germ is represented by the restriction of f to any neighborhood
of p. To say that two germs [f], and [g], are equal is simply to say that
f = g on some neighborhood of p, however small.

It is common to define T, M as the vector space of derivations of C° at
p, that is, the space of all linear maps X : C7° — R satisfying the following
product rule analogous to (3.4):

X[fglp = f(p)Xglp + 9(p) X [flp-

Thanks to Proposition 3.6, it is a simple matter to prove that this space
is naturally isomorphic to the tangent space as we have defined it (see
Problem 3-7). The germ definition has a number of advantages. One of
the most significant is that it makes the local nature of the tangent space
clearer, without requiring the use of bump functions. Because there do not
exist analytic bump functions, the germ definition of tangent vectors is the
only one available on real-analytic or complex-analytic manifolds. The chief
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disadvantage of the germ approach is simply that it adds an additional level
of complication to an already highly abstract definition.

Another common approach to defining T,M is to define an intrinsic
equivalence relation on the set of smooth curves in M starting at p, which
amounts to “having the same tangent vector,” and to define a tangent
vector as an equivalence class of curves. For example, one such equiva-
lence relation is the following: If y,: J; =& M and 7: Jo, — M are two
smooth curves such that v;(0) = v2(0) = p, then we say v, ~ 7o if
(foy1)'(0) = (for2)'(0) for every smooth real-valued function f defined in
a neighborhood of p. Problem 3-8 shows that the set of equivalence classes
is in one-to-one correspondence with T, M. This definition has the advan-
tage of being geometrically more intuitive, but it has the serious drawback
that the existence of a vector space structure on T, M is not at all obvious.

Yet another approach to defining the tangent space is based on the trans-
formation rule (3.9) for the components of tangent vectors in coordinates.
One defines a tangent vector at a point p € M to be a rule that assigns a
vector (X L. ¢ ") € R™ to each smooth coordinate chart containing p,
with the property that the vectors assigned to overlapping charts transform
according to (3.9). (This is, in fact, the oldest definition of all, and many
physicists are still apt to define tangent vectors this way.)

It is a matter of individual taste which of the various characterizations
of T,M one chooses to take as the definition. The modern definition we
have chosen, however abstract it may seem at first, has several advantages:
It is relatively concrete (tangent vectors are actual derivations of C*°(M),
with no equivalence classes involved); it makes the vector space structure
on T,M obvious; and it leads to straightforward coordinate-independent
definitions of many of the other geometric objects we will be studying.

Problems

3-1. Suppose M and N are smooth manifolds with M connected, and
F: M — N is a smooth map such that Fi: T,M — Tp)N is the
zero map for each p € M. Show that F"is a constant map.

3-2. Let My, ..., My be smooth manifolds, and let 7;: My x---x My — M;
be the projection onto the jth factor. Show that for any choices of
points p; € M;, i =1,...,k, the map

a: Ty, pp) (M1 x -+ X My) > T, M1 ® - & T, My
defined by

a(X) = (m.X, ..., g X)



3-3.

3-4.

3-5.

3-6.

3-7.

3-8.

Problems 79

is an isomorphism. [Remark: Using this isomorphism, we can rou-
tinely identify T, M and T, N, for example, as subspaces of T(; 4)(M x
N).]

If a nonempty smooth n-manifold is diffeomorphic to an m-manifold,
prove that n = m.

Let C C R? be the unit circle, and let S C R? be the boundary of
the square of side 2 centered at the origin:

§ = {(z,y) : max(|zl, [y[) = 1}.

Show that there is a homeomorphism F: R? — R? such that F(C) =
S, but there is no diffeomorphism with the same property. [Hint:
Consider what F' does to the tangent vector to a suitable curve in C']

Consider S® as a subset of C? under the usual identification of C2
with R*. For each z = (2, 2%) € S3, define a curve v,: R — S® by

'Yz(t) — (eitzl’ eitzQ) .
(a) Compute the coordinate representation of v,(t) in stereographic
coordinates, and use this to show that =y, is a smooth curve.

(b) Compute «,(t) in stereographic coordinates, and show that it is
never zero.

Let G be a Lie group.

(a) Let m: G x G — G denote the multiplication map. Identifying
Tie,e)(G x G) with T.G @ T.G as in Problem 3-2, show that
my: T.G & T.G — T.G is given by m,(X,Y) = X +Y [Hint:
Compute m.(X,0) and m.(0,Y") separately using (3.10).]

(b) Let i: G — G denote the inversion map. Show that i,: T.G —
T.G is given by i, X = —X.

Let M be a smooth manifold. For any point p € M, let C;° denote
the algebra of germs of smooth real-valued functions at p, and let D,
denote the vector space of derivations of C7° at p. Show that T, M is
naturally isomorphic to D,,.

Let M be a smooth manifold and p € M. Let €, denote the set
of smooth curves v: J — M such that 0 € J and 4(0) = p.
Define an equivalence relation on €, by saying that v ~ 7o if
(fom)(0) = (f oy2)'(0) for every smooth real-valued function f de-
fined in a neighborhood of p, and let V,, denote the set of equivalence
classes. Show that the map ®: V, — T, M defined by ®[y] = +/(0) is
well-defined and yields a one-to-one correspondence between V, and
T,M.
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Vector Fields

Vector flelds are familiar objects of study in multivariable calculus. In that
setting, a vector field on an open subset U C R™ is simply a continuous
map from U to R”, which can be visualized as attaching an “arrow” to
each point of U. In this chapter we show how to extend this idea to smooth
manifolds.

We wish to think of a vector field on an abstract smooth manifold M as
a map X that assigns to each point p € M a tangent vector X, € T, M,
together with some assumption of continuity or smoothness. But before we
can think of such an object as a map, we need to define the set that will be
its range. This leads to the definition of the “tangent bundle,” which is the
disjoint union of all tangent spaces at all points of the manifold. In the first
section of the chapter we show how the tangent bundle can be regarded in
a natural way as a smooth manifold in its own right. Then we define vector
fields as continuous maps from the manifold to its tangent bundle, and
show how vector fields behave under the pushforward by a smooth map.

In the next section we define the Lie bracket operation, which is a way
of combining two smooth vector fields to obtain another. Then we describe
the most important application of Lie brackets: The set of all smooth vector
fields on a Lie group that are invariant under left multiplication is closed
under Lie brackets, and thus forms an algebraic object naturally associated
with the group, called the Lie algebra of the Lie group. We describe a
few basic properties of Lie algebras, and compute the Lie algebras of a
few familiar groups. At the end of the chapter we show how Lie group
homomorphisms induce homomorphisms of their Lie algebras, from which
it follows that isomorphic Lie groups have isomorphic Lie algebras.



The Tangent Bundle 81
The Tangent Bundle

For any smooth manifold M, we define the tangent bundle of M, denoted
by T M, to be the disjoint union of the tangent spaces at all points of M:

™ = [] T,M.
peEM

We will write an element of this disjoint union as an ordered pair (p, X),
with p € M and X € T,M (instead of putting the point p in the second
position, as elements of a disjoint union are more commonly written). The
tangent bundle comes equipped with a natural projection map m: TM —
M, which sends each vector in T, M to the point p at which it is tangent:
7(p, X) = p. We will often commit the usual mild sin of identifying T, M
with its image under the canonical injection X — (p, X), and will use any
of the notations (p, X), X, and X for a tangent vector in T, M, depending
on how much emphasis we wish to give to the point p.

The tangent bundle can be thought of simply as a collection of vector
spaces; but it is much more than that. The next lemma shows that TM
can be thought of as a smooth manifold in its own right.

Lemma 4.1. For any smooth n-manifold M, the tangent bundle TM has
a natural topology and smooth structure that make it into a 2n-dimensional
smooth manifold. With this structure, m: TM — M is a smooth map.

Proof. We begin by defining the maps that will become our smooth charts.
Given any smooth chart (U, ¢) for M, let (:1:1, ey w”) denote the coordinate
functions of ¢, and define a map &: 7~ 1(U) — R?® by

6( v’g‘% p) = (2'(p),...,z"(p),v",...,v").

(See Figure 4.1.) Its image set is ¢(U) x R", which is an open subset of R?".
It is a bijection onto its image, because its inverse can be written explicitly
as

¢~ (=)

Now suppose we are given two smooth charts (U, ¢) and (V,4) for M,

and let (m=1(U), @), (~1(V), %) be the corresponding charts on TM. The
sets & (771 (U)Na 1 (V) = o(UNV) x R* and 9 (x~{({U) N7~ (V) =
Y(UNV)xR™ are both open in R?", and the transition map Yol o(UnN
V) x R* - (U NV) x R™ can be written explicitly using (3.9) as

Jo@_l (xl,...,x",vl,...,v")

~1 )
= <§1(:c),...,§"(a:), %(:v)vj, ce %(w)v’) .
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T™ o(U) x R”

)‘63

Figure 4.1. Coordinates for the tangent bundle.

This is clearly smooth.

Choosing a countable cover {U;} of M by smooth coordinate domains, we
obtain a countable cover of TM by coordinate domains {7 ~!(U;)} satisfy-
ing conditions (i)—(iv) of the smooth manifold construction lemma (Lemma
1.23). To check the Hausdorff condition (v), just note that any two points in
the same fiber of 7 lie in one chart, while if (p, X) and (g, Y") lie in different
fibers, there exist disjoint smooth coordinate domains U, V for M such that
p € U and q € V, and then the sets 7=(U) and 7~1(V) are disjoint smooth
coordinate neighborhoods containing (p, X) and (g,Y"), respectively.

To check that 7 is smooth, we just note that its coordinate representation
with respect to charts (U, ) for M and (n=*(U),$) for TM is w(z,v) =
x. O

The coordinates (z%,v") defined in this lemma will be called standard
coordinates for TM.

& Exercise 4.1. Show that TR™ is diffeomorphic to R?".
O Exercise 4.2. Suppose F': M — N is a smooth map. By examining the

local expression (3.6) for F in coordinates, show that F.: TM — TN is a
smooth map.

Vector Fields on Manifolds

Now we can define the main concept of this chapter. If M is a smooth
manifold, a vector field on M is a section of the map 7: TM — M. More
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Figure 4.2. A vector field.

concretely, a vector field is a continuous map Y : M — T M, usually written
p — Yy, with the property that

7I’OY=IdM, (4.1)

or equivalently, Y, € T,M for each p € M. (We write the value of Y at
p as Y}, instead of Y'(p) to be consistent with our notation for elements of
the tangent bundle, as well as to avoid conflict with the notation Y (f) for
the action of a vector on a function.) You should think of a vector field on
M in the same way as you think of vector fields in Euclidean space: as an
arrow attached to each point of M, chosen to be tangent to M and to vary
continuously from point to point (Figure 4.2).

We will be primarily interested in smooth vector fields, the ones that
are smooth as maps from M to TM. In addition, for some purposes it is
useful to consider maps from M to TM that would be vector fields except
that they might not be continuous. A rough vector field on M is a (not
necessarily continuous) map Y: M — T'M satisfying (4.1).

If Y: M — TM is a rough vector field and (U, (z')) is any smooth
coordinate chart for M, we can write the value of Y at any point p € U in
terms of the coordinate basis vectors:

0

Y, =Y'p) 5| -
P

(4.2)

This defines n functions Y¢: U — R, called the component functions of Y’
in the given chart.

Lemma 4.2 (Smoothness Criterion for Vector Fields). Let M be a
smooth manifold, and let Y : M — TM be a rough vector field. If (U, (z*))
is any smooth coordinate chart on M, then'Y is smooth on U if and only
if its component functions with respect to this chart are smooth.

Proof. Let (z%,v') be the standard coordinates on 7~*(U) C TM associ-
ated with the chart (U, (¢)). By definition of standard coordinates, the
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coordinate representation of Y: M — T'M on U is
Y(z) = (z4,...,2" Yi(2),...,Y"(2)),

where Y7 is the ith component function of ¥ in z*-coordinates. It follows
immediately that smoothness of Y in U is equivalent to smoothness of its
component functions. O

Example 4.3. If (U, (xl)) is any smooth chart on M, the assignment

P —
ozt |,

determines a smooth vector field on U, called the ith coordinate vector field
and denoted by 8/0z¢. (It is smooth because its component functions are
constants.)

Example 4.4. Let 6 be any angle coordinate on a proper open subset
U C S' (see Problem 1-6), and let d/df denote the corresponding coor-
dinate vector field. Because any other angle coordinate g differs from 6
by a constant in a neighborhood of each point, the transformation law for
coordinate vector fields (3.8) shows that d/df = d/df on their common
domain. For this reason, there is a globally defined vector field on S! whose
coordinate representation is d/df with respect to any angle coordinate. It
is a smooth vector field because its component function is constant in any
such chart. We will denote this global vector field by d/d8, even though,
properly speaking, it cannot be considered as a coordinate vector field on
the entire circle at once.

The next lemma shows that every tangent vector at a point can be
extended to a smooth global vector field.

Lemma 4.5. Let M be a smooth manifold. If p € M and X € T,M, there
is a smooth vector field X on M such that X, = X.

Proof. Let (z') be smooth coordinates on a neighborhood U of p, and let
X'9/0z'|, be the coordinate expression for X. If ¢ is a smooth bump

function supported in U and with ¥(p) = 1, the vector field X defined by

~ P(@X 5=, qel,
qa= Tolq
0, q € supp ¥,
is easily seen to be a smooth vector field whose value at pis equal to X. O

Just as for functions, the support of a vector field Y is defined to be the
closure of the set {p € M : Y, # 0}. A vector field is said to be compactly
supported if its support is a compact set.

If U is any open subset of M, the fact that T,U is naturally identified
with T, M for each p € U (Proposition 3.7) allows us to identify TU with
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the subset 7=1(U) C TM. Therefore, a vector field on U can be thought
of either as a map from U to TU or as a map from U to T M, whichever is
more convenient. If Y is a vector field on M, its restriction Y|y is a vector
field on U, which is smooth if Y is.

We will use the notation J(M) to denote the set of all smooth vector
fields on M. (Some authors use X(M) instead of T(M).) It is a vector space
under pointwise addition and scalar multiplication:

(@Y +bZ), = aY, +bZ,.

The zero element of this vector space is the zero vector field, whose value at
eachp € M is 0 € T, M. In addition, smooth vector fields can be multiplied
by smooth real-valued functions: If f € C*°(M) and Y € T(M), we define
fY: M —TM by

(fY)p = f(p)Yp.
The next exercise shows that these operations yield smooth vector fields.

O Exercise 4.3. If Y and Z are smooth vector fields on M and f,g €
C™(M), show that fY + gZ is a smooth vector field.

O Exercise 4.4. Show that T(M) is a module over the ring C*°(M).

For example, the basis expression (4.2) for a vector field Y can also be
written as an equation between vector fields instead of an equation between
vectors at a point:

. 0
Y = S/Z ~
ox?
where Y is the ith component function of Y in the given coordinates.

An essential property of vector fields is that they define operators on the

space of smooth real-valued functions. If Y € T(M) and f is a smooth real-

valued function defined on an open set U C M, we obtain a new function
Y f: U — R, defined by

Yf(p)=Ysf

(Be careful not to confuse the notations fY and Y f: The former is the
smooth wvector field obtained by multiplying Y by f, while the latter is
the real-valued function on M obtained by applying the vector field Y
to the smooth function f.) Because the action of a tangent vector on a
function is determined by the values of the function in an arbitrarily small
neighborhood, it follows that Y f is locally determined. In particular, for
any open set V.C U, (Y f)ly =Y (flv).

This way of viewing vector fields yields another useful criterion for a
vector field to be smooth.
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Lemma 4.6. Let M be a smooth manifold, andletY : M — T'M be a rough
vector field. Then'Y is smooth if and only if for every open set U C M and
every f € C°(U), the function Y f: U — R is smooth.

Proof. Suppose Y is a rough vector field for which Y f is smooth whenever
f is smooth. If (a:l) are any smooth local coordinates on U C M, we can
think of each coordinate x* as a smooth function on U. Applying Y to one
of these functions, we obtain

. - 4
Yz' = YJEEJ—. (a:’) =Y"

Because Yz! is smooth by assumption, it follows that the component func-

tions of Y are smooth, so Y is smooth. Conversely, suppose Y is smooth,

and let f be a smooth real-valued function defined in an open set U C M.

For any p € U, we can choose smooth coordinates (z*) on a neighborhood

W C U of p. Then for z € W, we can write

0

qu»=:(ywx>5;

)1=7@ 5w,

Since the component functions Y* are smooth on W by Lemma 4.2, it
follows that Y f is smooth on W. Since the same is true in a neighborhood
of each point of U, Y f is smooth on U. ]

One consequence of the preceding lemma is that a smooth vector field
Y € T(M) defines a map from C°°(M) to itself by f — Y f. This map is
clearly linear over R. Moreover, the product rule (3.4) for tangent vectors
translates into the following product rule for vector fields:

Y(fg)=fYg+gY/ (4.3)

as you can easily check by evaluating both sides at an arbitrary point
p € M. In general, a map Y : C®(M) — C=(M) is called a derivation (as
distinct from a derivation at p, defined in Chapter 3) if it is linear over R
and satisfies (4.3) for all f,g € C=°(M).

The next proposition shows that derivations of C*°(M) can be identified
with smooth vector fields.

Proposition 4.7. Let M be a smooth manifold. A map Y: C*(M) —
C™(M) is a derivation if and only if it is of the form Yf = Y f for some
smooth vector field Y € T(M).

Proof. We just showed that every smooth vector field induces a derivation.
Conversely, suppose Y: C®(M) — C°(M) is a derivation. We need to
concoct a vector field Y such that Yf = Y f for all f. From the discussion
above, it is clear that if there is such a vector field, its value at p € M must
be the derivation at p whose action on any smooth real-valued function f
is given by

Yof = (45)(p).
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Figure 4.3. Vector fields do not always push forward.

The linearity of Y guarantees that this expression depends linearly on f,
and evaluating (4.3) at p yields the product rule (3.4) for tangent vectors.
Thus the map Y,: C*°(M) — R so defined is indeed a tangent vector, i.e.,
a derivation of C*°(M) at p.

To show that the assignment p — Y, is a smooth vector field, we will
use Lemma 4.6. If f € C>°(M) is a globally defined smooth function, then
Y f =Yf is certainly smooth; we need to show that the same thing holds for
a smooth function defined only on an open subset of M. Suppose therefore
that U C M is open and f € C(U). For any p € U, let ¥ be a smooth
bump function that is equal to 1 in a neighborhood of p and supported in
U, and define f ¥ f, extended to be zero on M \ supp®. Then Y f =Y f
is smooth, and is equal to Y f in a neighborhood of p by Proposition 3.6.
This shows that Y f is smooth in a neighborhood of each point of U. O

Because of this result, we will sometimes ¢dentify smooth vector fields on
M with derivations of C°°(M), using the same letter for both the vector
field (thought of as a smooth map from M to TM) and the derivation
(thought of as a linear map from C*° (M) to itself).

Pushforwards of Vector Fields

If F: M — N is a smooth map and Y is a vector field on M, then for each
point p € M, we obtain a vector F.Y, € Tpp)N by pushing forward Y.
However, this does not in general define a vector field on N. For example,
if F' is not surjective, there is no way to decide what vector to assign to a
point g € N\ F(M) (Figure 4.3). If F is not injective, then for some points
of N there may be several different vectors obtained as pushforwards of Y’
from different points of M.

If F: M — N is smooth and Y is a vector field on M, suppose there
happens to be a vector field Z on N with the property that for each p € M,
F.Y, = Zp(,)- In this case, we say the vector fields Y and Z are F-related.
(See Figure 4.4.)

Here is a useful criterion for checking that two vector fields are F-related.
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M

Figure 4.4. F-related vector fields.

Lemma 4.8. Suppose F: M — N is a smooth map, Y € T(M), and
Z € T(N). Then Y and Z are F-related if and only if for every smooth
real-valued function f defined on an open subset of N,

Y(foF)=(Zf)oF. (4.4)
Proof. For any p € M and any smooth real-valued f defined near F(p),
Y(f o F)p) = Yy(f o F) = (F.Y,)f,
while

(Zf) o Fp) = (Zf)(F(p)) = Zrp) [-

Thus (4.4) is true for all f if and only if F,Y, = Zp(,) for all p, i.e., if and
only if Y and Z are F-related. O

Example 4.9. Let F: R — R? be the smooth map F(t) = (cost,sint).
Then d/dt € T(R) is F-related to the vector field Z € T(R?) defined by

0 0
Z=T— —y—.
Oy Y or
< Exercise 4.5. Prove the claim in the preceding example in two ways:
directly from the definition, and by using Lemma 4.8.

It is important to remember that for a given smooth map F: M — N
and vector field Y € T(M), there may not be any vector field on N that is
F-related to Y. There is one special case, however, in which there is always
such a vector field, as the next proposition shows.

Proposition 4.10. Suppose F: M — N is a diffeomorphism. For every
Y € T(M), there is a unique smooth vector field on N that is F-related to
Y.
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Proof. For Z € T(N) to be F-related to Y means that F.Y, = Zp(, for
every p € M. If F is a diffeomorphism, therefore, we define Z by
Zq = F*(YF71(q)).

It is clear that Z, so defined, is the unique (rough) vector field that is
F-related to Y. To see that it is smooth, we just expand the definition in
smooth local coordinates, using formula (3.6) for the pushforward:

OFJ , 0
Zy=—— (F Y)Y (F () =/ -
The component functions of Z are smooth by composition. O

In the situation of the preceding lemma we will denote the unique vector
field that is F-related to Y by F.Y, and call it the pushforward of Y by F.
Remember, it is only when F' is a diffeomorphism that F,Y is defined.

Vector Fields on a Manifold with Boundary

If M is a smooth manifold with boundary, the tangent bundle 7'M is defined
in exactly the same way as on a manifold, as the disjoint union of the
tangent spaces at all points of M. An argument entirely analogous to that
of Lemma 4.1 shows that T'M has a natural topology and smooth structure
making it into a smooth manifold with boundary; if (U, (z?)) is any smooth
boundary chart for M, it is easy to verify that the standard coordinate chart
(7r_1 ), (zi, vi)) is a boundary chart for TM. Just as in the manifold case,
a vector field on M is a smooth section of 7: TM — M. All of the results
of this section hold equally well in that case, although for simplicity we
have stated them only for manifolds.

Lie Brackets

In this section we introduce an important way of combining two smooth
vector fields to obtain another vector field.

Let V and W be smooth vector fields on a smooth manifold M. Given
a smooth function f: M — R, we can apply V to f and obtain another
smooth function Vf (cf. Lemma 4.6). In turn, we can apply W to this
function, and obtain yet another smooth function WV f = W(V f). The
operation f — WV f however, does not in general satisfy the product rule
and thus cannot be a vector field, as the following example shows.

Example 4.11. Let V = 8/0x and W = §/0y on R?, and let f(z,y) = z,
g(z,y) = y. Then direct computation shows that VW(fg) = 1, while
fVWg+gVWf=0,s0 VW is not a derivation of C*°(R?).
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We can also apply the same two vector fields in the opposite order,
obtaining a (usually different) function WV f. Applying both of these op-
erators to f and subtracting, we obtain an operator [V,W]: C*(M) —
C° (M), called the Lie bracket of V and W, defined by

V,Wlf=VWf-WV{.
The key fact is that this operation is a vector field.

Lemma 4.12. The Lie bracket of any pair of smooth vector fields is a
smooth vector field.

Proof. By Proposition 4.7, it suffices to show that [V, W] is a derivation of
C*(M). For arbitrary f,g € C*(M), we compute

ViWI(fg) =V(W(fg)) —W(V(fg))
=V(fWg+gW§)-W(fVg+gVf)
=VfWg+ fVWg+VgWf+gVWF§
—WfVg—-fWVg-WgVf—-—gWVFf
= fVWg+gVW[f—fWVg—gWVFf
= fIV,Wlg + gV, W]f. O

We will describe one significant application of Lie brackets later in this
chapter, and we will see others in Chapters 12, 18, 19, and 20. Unfor-
tunately, we are not yet in a position to give Lie brackets a geometric
interpretation; that will have to wait until Chapter 18. For now, we develop
some of their basic properties.

The value of the vector field [V, W] at a point p € M is the derivation at
p given by the formula

V. Whf =V (Wf) = Wp(VS).

However, this formula is of limited usefulness for practical computations,
because it requires one to compute terms involving second derivatives of f
that will always cancel each other out. The next lemma gives an extremely
useful coordinate formula for the Lie bracket, in which the cancellations
have already been accounted for.

Lemma 4.13. Let V,W be smooth vector fields on a smooth manifold M,

and let V. = Vi9/0x* and W = WI0/dx’ be the coordinate expressions

for V. and W in terms of some smooth local coordinates (:L") for M. Then
[V, W] has the following coordinate expression:

V,W] = (Viawj Wiaw) i,

oxI

ozt ozt

(4.5)
or more concisely,

V,W] = (VW’ - WV9) ai (4.6)

xd



Lie Brackets 91

Proof. Because we know already that [V, W] is a smooth vector field, its
values are determined locally: ([V, W]f)|lv = [V, W](f|v). Thus it suffices
to compute in a single smooth chart, where we have

0 [ 0f\ .0 [ .0f
v.wif=v ozt (W 8xj) W 0xJ (V 83:1')

W7 of i OV Of e O°F
ozt OxJ OxtOxI OxI Oxt Ozi ozt
WD 0 oV of
Ozt OxzI Oxi Oz’

where in the last step we have used the fact that mixed partial derivatives
of a smooth function can be taken in any order. Reversing the roles of the
dummy indices ¢ and j in the second term, we obtain (4.5). a

One trivial application of formula (4.5) is to compute the Lie brackets
of the coordinate vector fields (9/0z¢) in any smooth chart: Because the
component functions of the coordinate vector fields are all constants, it
follows that [0/0z,8/8z%] = 0 for any ¢ and j. (This also follows from
the definition of the Lie bracket, and is essentially a restatement of the
fact that mixed partial derivatives of smooth functions commute.) Here is
a slightly less trivial computation.

Example 4.14. Define smooth vector fields V,W € T (R?) by

0 0 0
= Ir— J— 1N—
1% x8x+3y+$(y+ )8z’
0] 3}
Then formula (4.6) yields
o} o 7] 3] 3]
VW] = V()5 + V) g~ W) — W5~ Wialy+ 1)
3] 7] 3} 6 3]
=09 15 ~lac % Wt V5
__o_ 9o
oz Y9z

Lemma 4.15 (Properties of the Lie Bracket). The Lie bracket
satisfies the following identities for all VW, X € T(M):

(a) BILINEARITY: For a,b € R,
[aV + bW, X] = a[V, X] + b|W, X],
(X, aV + bW] = a[X, V] + b[X, W].
(b) ANTISYMMETRY:

[V, W] = ~[W, V.
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(¢) JACOBI IDENTITY:
VW, X+ W, [X, V] + [X, [V, W] = 0.
(d) For f,g € C>(M),
[fV,gW] = fglV. W]+ (fVgW — (gW f)V. (4.7)

Proof. Bilinearity and antisymmetry are obvious consequences of the
definition. The proof of the Jacobi identity is just a computation:

[V.W, X]If + W, [ X, V]I f + [X, [V, W]If
= VIW. X]f - W, XV + W[X, VIf
~ (X, VIWf+ X[V, WIf - [V.W]Xf
—VWXf-VXWf-WXVf+XWVf+WXVf-WVXS
CXVWf+VXWf+XVWf - XWVf-VWXf+WVXS.

In this last expression all the terms cancel in pairs. Part (d) is an easy
consequence of the definition, and is left as an exercise. a

& Exercise 4.6. Prove part (d) of the preceding lemma.

Proposition 4.16 (Naturality of the Lie Bracket). Let F: M — N
be a smooth map, and let V1,Vo € T(M) and Wy, Wy € T(N) be vector
fields such that V; is F-related to W; fori=1,2. Then [V}, V3] is F-related
to [Wl, WQ]

Proof. Using Lemma 4.8 and the fact that V; and W; are F-related,
ViVa(fo F) = Vi(Waf) o F) = (WiWaf) o F.
Similarly,
VoVi(fo F) = (WoWif)oF.
Therefore,

Vi, Vol(fo F) = ViVa(f o F) = VaVi(f o F)
= (WiWaf)o FF — (WoWif)o F
= ([Wy1,Wy]f)o F. O

Corollary 4.17. Suppose F: M — N is a diffeomorphism and Vi, Vs €
T(M). Then F,[Vi, V5] = [Fi Vi, F V).

Proof. This is just the special case of Proposition 4.16 in which F' is a
diffeomorphism and W; = F, V. Ol
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The Lie Algebra of a Lie Group

The most important application of Lie brackets occurs in the context of Lie
groups. Suppose G is a Lie group. Any g € G defines maps Ly, Ry: G — G,
called left translation and right translation, respectively, by

Ly(h) = gh, R,(h) = hg.
Because L, can be written as the composition of smooth maps
G5 axG5 G,

where ¢4(h) = (g, h) and m is multiplication, it follows that L, is smooth.
It is actually a diffeomorphism of G, because Ly-1 is a smooth inverse for
it. Similarly, Ry: G — G is a diffeomorphism. Observe that, given any two
points g¢1,g2 € G, there is a unique left translation of G taking g; to gs,
namely left translation by gog; !, Many of the important properties of Lie
groups follow, as you will see below and repeatedly in later chapters, from
the fact that we can systematically map any point to any other by such a
global diffeomorphism.

A vector field X on G is said to be left-invariant if it is invariant under all
left translations, in the sense that it is Lg-related to itself for every g € G.
More explicitly, this means

(Lg)s Xy = Xgg,  forallg,g €G. (4.8)

Since Ly is a diffeomorphism, this can be abbreviated by writing (Ly).X =
X for every g € G.

Because (Lg)«(aX 4+ bY) = a(Ly)«X + b(L,).Y, the set of all smooth
left-invariant vector fields on G is a linear subspace of T(M). But it is much
more than that. The central fact is that it is closed under Lie brackets.

Lemma 4.18. Let G be a Lie group, and suppose X and Y are smooth
left-invariant vector fields on G. Then [X,Y] is also left-invariant.

Proof. Since (Lg)«X = X and (Ly).Y =Y by definition of left-invariance,
it follows from Corollary 4.17 that

(Lo)s[X, Y] = [(Lg)« X, (Lg).Y] = [X,Y].
Thus [X,Y] is Lg-related to itself, i.e., is left-invariant. O

A Lie algebra is a real vector space g endowed with a map called the
bracket from g x g to g, usually denoted by (X,Y) — [X,Y], that satisfies
the following properties for all X, Y, Z € g:

(i) BILINEARITY: For a,b € R,

[aX +bY, Z] = a[X, Z] + b[Y, Z],
[Z,aX +bY]| =a[Z,X] + b[Z,Y].
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(ii) ANTISYMMETRY:
X,Y]=-[Y,X].
(iii) JACOBI IDENTITY:
(X, [Y,Z]|+[Y,[Z, X]| + [Z,[X,Y]] = 0.

Notice that the Jacobi identity is a substitute for associativity, which does
not hold in general for brackets in a Lie algebra.

If g is a Lie algebra, a linear subspace h C g is called a Lie subalgebra of
g if it is closed under brackets. In this case b is itself a Lie algebra with the
restriction of the same bracket.

If g and b are Lie algebras, a linear map A: g — Y is called a Lie
algebra homomorphism if it preserves brackets: A[X,Y] = [AX, AY]. An
invertible Lie algebra homomorphism is called a Lie algebra isomorphism.
If there exists a Lie algebra isomorphism from g to §, we say that they are
isomorphic as Lie algebras.

¢ Exercise 4.7. Verify that the kernel and image of a Lie algebra
homomorphism are Lie subalgebras.

O Exercise 4.8. If g and § are finite-dimensional Lie algebras and A: g —
b is a linear map, show that A is a Lie algebra homomorphism if and only
if A[E;, E;] = [AFE;, AE;] for some basis (E1, ..., E,) of g.

Example 4.19 (Lie Algebras).

(a) The space T(M) of all smooth vector fields on a smooth manifold M
is a Lie algebra under the Lie bracket by Lemma 4.12.

(b) If G is a Lie group, the set of all smooth left-invariant vector fields
on G is a Lie subalgebra of 7(G) and is therefore a Lie algebra.

(c) The vector space M(n,R) of n x n real matrices becomes an n?-

dimensional Lie algebra under the commutator bracket:
[A, Bl = AB — BA.

Bilinearity and antisymmetry are obvious from the definition, and
the Jacobi identity follows from a straightforward calculation. When
we are regarding M(n,R) as a Lie algebra with this bracket, we will
denote it by gl(n,R).

(d) Similarly, gl(n,C) is the 2n?-dimensional (real) Lie algebra obtained
by endowing M(n,C) with the commutator bracket.

(e) If V is a vector space, the linear space gl(V) of all linear maps from
V to itself becomes a Lie algebra with the commutator bracket:

[A4, Blx = A(Bz) — B(Az).
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(Lg)s

Figure 4.5. Defining a left-invariant vector field.

Under our usual identification of n x n matrices with linear maps
from R™ to itself, gl(R™) is the same as gl(n,R).

(f) Any vector space V becomes a Lie algebra if we define all brackets
to be zero. Such a Lie algebra is said to be abelian. (The name comes
from the fact that brackets in most Lie algebras, as in the preceding
examples, are defined as commutators in terms of underlying asso-
ciative products; so “abelian” refers to the fact that all brackets are
zero precisely when the underlying product is commutative.)

Example (b) is the most important one. The Lie algebra of all smooth
left-invariant vector fields on a Lie group G is called the Lie algebra of
G, and is denoted by Lie(G). (We will see below that the assumption of
smoothness is redundant; see Corollary 4.21.) The fundamental fact is that
Lie(@G) is finite-dimensional, and in fact has the same dimension as G itself,
as the following theorem shows.

Theorem 4.20. Let G be a Lie group. The evaluation map ¢: Lie(G) —
T.G, given by e(X) = X, is a vector space isomorphism. Thus Lie(G) is
finite-dimensional, with dimension equal to dim G.

Proof. We will prove the theorem by constructing an inverse for €. For each
V € T.G, define a (rough) vector field V on G by

Vy = (Ly).V. (4.9)

(See Figure 4.5.) If there is a left-invariant vector field on G whose value
at the identity is V, clearly it has to be given by this formula.

First we need to check that V' is smooth. By Lemma 4.6, it suffices to
show that V f is smooth whenever f is a smooth real-valued function on an
open set U C G. Choose a smooth curve v: (—¢,¢) — G such that y(0) = e
and v/(0) = V. Then for g € U,

(VF)(9) = Vof = (Lg)V)f = V(f o Lg) =7 (0)(f o Ly)
d

== . (f o Lgoy)(2).
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If we define ¢: (—¢,e) x G — R by ¢(t,g) = foLgon(t) = flgv(t)),
the computation above shows that (V f)(g) = dp/8t(0, g). Because ¢ is a
composition of group multiplication, f, and v, it is smooth. It follows that
9¢/0t(0, g) depends smoothly on g, so V f is smooth.

Next we need to verify that V is left- invariant, which is to say that
(Lp)« Vg = th for all g,h € G. This follows from the definition of V' and
the fact that Ly o Ly = Lyg:

(Ln)eVg = (Ln)e(Lg)sV = (Lng).V = Vig.

Thus V € Lie(G).
Finally, we check that the map 7: V — V is an inverse for €. On the one
hand, given a vector V € TG,

e(r(V)) =e(V) = (V), = (Le)V =V,

which shows that € o 7 is the identity on T.G. On the other hand, given a
vector field X € Lie(G),

T(g(X))g = T(Xe)g = Xe‘g = (Lg)*Xe = X,
which shows that 70 = Idpie(q)- O

Given any vector V € T.G, we will consistently use the notation V to
denote the smooth left-invariant vector field defined by (4.9).

It is worth observing that the preceding proof also shows that the
assumption of smoothness in the definition of Lie(G) is unnecessary.

Corollary 4.21. Every left-invariant rough vector field on a Lie group is
smooth.

Proof. Let V be a left-invariant rough vector field on a Lie group G. The
fact that V is left-invariant implies that V = V., which is smooth. g

Example 4.22. Let us determine the Lie algebras of some familiar Lie
groups.

(a) Fuclidean space R™: Left translation by an element b € R™ is given by
the affine map Ly(z) = b+, whose pushforward (Lj). is represented
by the identity matrix in standard coordinates. Thus a vector field
V'i9/8z! is left-invariant if and only if its coefficients V¢ are constants.
Because the Lie bracket of two constant-coefficient vector fields is zero
by (4.5), the Lie algebra of R™ is abelian, and is isomorphic to R"
itself with the trivial bracket. In brief, Lie(R™) = R"™.

(b) The circle group S': In terms of appropriate angle coordinates, each
left translation has a coordinate representation of the form 6 — 6+c.
Thus the vector field d/df defined in Example 4.4 is left-invariant,
and is therefore a basis for the Lie algebra of S!. This Lie algebra is
1-dimensional and abelian, and therefore Lie(S!) & R.
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(c) The n-torus T® = S! x --- x §': A similar analysis shows that
(8/06",...,0/86™) is a basis for Lie(T™), where 8/86" is the an-
gle coordinate vector field on the ith S factor. Since the Lie brackets
of these coordinate vector fields are all zero, Lie(T™) = R™.

The Lie groups R?, S!, and T" are abelian, and as the discussion above
shows, their Lie algebras turn out also to be abelian. This is no accident:
The Lie algebra of any abelian Lie group is abelian (see Problem 4-18).
Just as we can view the tangent space as a “linear model” of a smooth
manifold near a point, the Lie algebra of a Lie group provides a “linear
model” of the group, which reflects many of the properties of the group.
Because Lie groups have more structure than ordinary smooth manifolds,
it should come as no surprise that their linear models have more structure
than ordinary vector spaces. Since a finite-dimensional Lie algebra is a
purely linear-algebraic object, it is in many ways simpler to understand
than the group itself. Much of the progress in the theory of Lie groups has
come from a careful analysis of Lie algebras.

We conclude this chapter by analyzing the Lie algebra of the most im-
portant nonabelian Lie group of all, the general linear group. Theorem 4.20
gives a vector space isomorphism between Lie(GL(n,R)) and the tangent
space to GL(n, R} at the identity matrix. Because GL(n,R) is an open sub-
set of the vector space gl(n, R), its tangent space is naturally isomorphic to
gl(n,R) itself. The composition of these two isomorphisms gives a vector
space isomorphism Lie(GL(n,R)) & gl(n, R).

Both Lie(GL(n,R)) and gl(n,R) have independently defined Lie algebra
structures—the first coming from Lie brackets of vector fields and the sec-
ond from commutator brackets of matrices. The next proposition shows
that the natural vector space isomorphism between these spaces is in fact
a Lie algebra isomorphism.

Proposition 4.23 (Lie Algebra of the General Linear Group). The
composition of the natural maps

Lie(GL(n,R)) — T;, GL(n,R) — gi(n,R) (4.10)

gives a Lie algebra isomorphism between Lie(GL(n,R)) and the matriz
algebra gl(n,R).

Proof. Using the matrix entries X;: as global coordinates on GL(n,R) C
gl(n, R), the natural isomorphism 77, GL(n,R) «— gl(n, R) takes the form

Al 9

: 8X;f — (Aj).

In
(Because of the dual role of the indices %, j as coordinate indices and matrix

row and column indices, in this case it is impossible to maintain our con-
vention that all coordinates have upper indices. However, we will continue
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to observe the summation convention and the other index conventions as-
sociated with it. In particular, in the expression above, an upper index “in
the denominator” is to be regarded as a lower index, and vice versa.)

Let g denote the Lie algebra of GL(n,R). Any matrix A = (A;) €
gl(n,R) determines a left-invariant vector field A € g defined by (4.9),
which in this case becomes

Since Lx is the restriction to GL(n,R) of the linear map A — XA on
gl(n,R), its pushforward is represented in coordinates by exactly the same
linear map. In other words, the left-invariant vector field A determined by
A is the one whose value at X € GL(n,R) is

o
Ax = XiA]
R OXE|

T = (Lx).A = (L), (4) af(l

(4.11)

Given two matrices A, B € gl(n,R), the Lie bracket of the corresponding
left-invariant vector fields is given by
~ ~ 0 7]
A, B| = |X; AT — XIB?
14, 5] [ Foxp T 8Xp]

- XiAiaf@ (Xqu) a)acp - XpBga)a(P (X AJ) afw

0
oX?
0
oxXy’
where we have used the fact that 0X?/0X} is equal to 1 if p = i and
g = k, and 0 otherwise, and A; and B} are constants. Evaluating this last
expression when X is equal to the identity matrix, we get

0
8X t

0
J pk _ YPrPRY
_XABraz XBAk

= (X;4lBf - XiBlAY) -

[4,B],, = (4Bf - Biaf)

This is the vector corresponding to the matrix commutator bracket [A, B].
Since the left-invariant vector field [A, B] is determined by its value at the
identity, this implies that

[4,B] = [4,B),

which is precisely the statement that the composite map (4.10) is a Lie
algebra isomorphism. O

There is an analogue of this result for abstract vector spaces. If V is any
finite-dimensional real vector space, recall that we have defined GL(V) as
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the Lie group of invertible linear transformations of V', and gl(V) as the
Lie algebra of all linear transformations. Just as in the case of GL(n,R),
we can regard GL(V') as an open submanifold of gl(V'), and thus there are
canonical vector space isomorphisms

Lie(GL(V)) = Tia GL(V) — gl(V). (4.12)

Corollary 4.24. If V is any finite-dimensional real vector space, the
composition of the canonical isomorphisms in (4.12) yields a Lie algebra
isomorphism between Lie(GL(V)) and gl(V).

© Exercise 4.9. Prove the preceding corollary by choosing a basis for V
and applying Proposition 4.23.

Induced Lie Algebra Homomorphisms

The importance of the Lie algebra of a Lie group stems, in large part,
from the fact that each Lie group homomorphism induces a Lie algebra
homomorphism, as the next theorem shows.

Theorem 4.25. Let G and H be Lie groups, and let g and b be their Lie
algebras. Suppose F': G — H is a Lie group homomorphism. For every
X € g, there is a unique vector field in §y that is F-related to X. With this
vector field denoted by F,. X, the map Fy: g — b so defined is a Lie algebra
homomorphism.

Proof. If there is any vector field Y € b that is F-related to X, it must
satisfy Y. = F, X, and thus it must be uniquely determined by
Y = F.X..
To show that this Y is F-related to X, we note that the fact that F is a
homomorphism implies
F(99') = F(9)F(¢') = F(Lyg') = Lr(g)F(g)
- FOLg :LF(g) oF
= F,o (Lg)* = (Lp(g))* o F,.
Thus
F.Xg=F.(Lg)«Xe = (Lp(g))xFuXe = (LF(g))+Ye = Yp(q).-

(See Figure 4.6.) This says precisely that X and Y are F-related.

For each X € g, let F, X denote the unique vector field in b that is F-
related to X . It then follows immediately from the naturality of Lie brackets
that F,[X,Y] = [F.X, F.Y], so F, is a Lie algebra homomorphism. a

The map F,: g — b whose existence is asserted in this theorem will
be called the induced Lie algebra homomorphism. Note that the theorem
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G H
/(Lg)* /(LF(g))*

Figure 4.6. The induced Lie algebra homomorphism.

implies that for any left-invariant vector field X € g, F, X is a well-defined
smooth vector field on H, even though F may not be a diffeomorphism.

Proposition 4.26 (Properties of the Induced Homomorphism).

(a) The homomorphism (Idg)x: Lie(G) — Lie(G) induced by the identity
map of G is the identity of Lie(G).

(b) If F1: G — H and Fy: H — K are Lie group homomorphisms, then
(F2 o Fl)* = (Fg)* o} (Fl)*Z Lle(G) — Lle(K)

(¢) Isomorphic Lie groups have isomorphic Lie algebras.

Proof. Both of the relations (Idg)* = Id and (Fz 0 F1). = (F2)« © (F1)«
hold for pushforwards. Since the value of the induced homomorphism on
a left-invariant vector field X is determined by the pushforward of X.,
this proves (a) and (b). If F: G — H is an isomorphism, (a) and (b)
together imply that F, o (F7!) = (FoF™!) =1d = (F!) oF,, so
F,: Lie(G) — Lie(H) is an isomorphism. O

Problems

4-1. Show that TS! is diffeomorphic to S* x R.

4-2. EXTENSION LEMMA FOR VECTOR FIELDS: Let M be a smooth man-
ifold, and suppose Y is a smooth vector field defined on a closed
subset A C M. (This means that Y: A — TM is a map satisfying
moY =1dy, and for each p € A, there is a neighborhood V,, of p in
M and a smooth vector field ¥ on V, that agrees with Y on V,N A.)
If U is an open set containing A, show that there exists a smooth
vector field Y € T(M) such that Y|4 =Y and suppY C U.



4-4.

4-5.

4-6.

4-7.

4-8.

4-10.

4-11.

Problems 101

. Let M be a nonempty manifold of dimension n > 1. Show that T(M)

is infinite-dimensional.

Show by finding a counterexample that Proposition 4.10 is false
if we assume merely that F is smooth and bijective but not a
diffeomorphism.

For each of the following vector fields on the plane, compute its co-
ordinate representation in polar coordinates on the right half-plane
{(z,y) : z > 0}.

0 0

(a) V—m8—g+y8—g.
.2 2y 9
() X=(z*+vy )(%.

Show that there is a smooth vector field on S? that vanishes at exactly
one point. [Hint: Try using stereographic projection.]

Let M, N be smooth manifolds, and let f: M — N be a smooth map.
Define F: M — M x N by F(z) = (z, f(x)). Show that for every
V € T(M), there is a smooth vector field on M x N that is F-related
to V.

Let My,..., My be smooth manifolds, and for each i = 1,...,k, let
;s My X -+ - X M — M; be the projection onto the ith factor. Show
that for every X € T(M;), there is a smooth vector field on M; x
-+« X M} that is m;-related to X.

. Let F': M — N be a local diffeomorphism. Show that for every ¥ €

T(N), there is a unique smooth vector field on M that is F-related
toY.

Define a (rough) vector field V on S* by letting V, = +.(0), where
7. is the curve of Problem 3-5. Show that V' is smooth and nowhere
vanishing.

For each of the following pairs of vector fields V, W defined on R3,
compute the Lie bracket [V, W].

) , 0 )

(a') V:ya_az_Qxy a—y; Wzag-y—.
0 0
(b) V—x@—y%, W—y%—za—g.

. Show that R3 with the cross product is a Lie algebra.
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4-13.

4-14.

4-15.

4-16.

4-17.

4-18.

4-19.

4. Vector Fields

Let A be an associative algebra over R. A derivation of A is a linear
map D: A — A satisfying D(zy) = (Dz)y+z(Dy) for all z,y € A. If
D, and D; are derivations of A, show that [Dy, D3] = DyoDgy—DgoDy
is also a derivation. Show that the set of derivations of A is a Lie
algebra.

Let A C T(R?) be the subspace with basis {X,Y, Z}, where
0 0 v 0 0 0 0

Y9: oy’ “or " oz Yoy Yoz
Show that A is a Lie subalgebra of T(R?), which is isomorphic to R3
with the cross product.

Prove that up to isomorphism, there are exactly one 1-dimensional
Lie algebra and two 2-dimensional Lie algebras. Show that all three
algebras are isomorphic to Lie subalgebras of gl(2,R).

Let g be a Lie algebra. A linear subspace h C g is called an ideal in
gifforevery X ehand Y € g, [X,Y] €b.

(a) If his anideal in g, show that the quotient space g/ has a unique
Lie algebra structure such that the projection 7: g — g/h is a
Lie algebra homomorphism.

(b) Show that a subspace h C g is an ideal if and only if it is the
kernel of a Lie algebra homomorphism.

(a) If g and b are Lie algebras, show that g x b is a Lie algebra,
called a product Lie algebra, with the bracket defined by

[(X, Y)a (le Yl)] = ([X’ Xl] ) [Yv YI]) .

(b) If G and H are Lie groups, prove that Lie(G x H) is isomorphic
to Lie(G) x Lie(H).

If G is an abelian Lie group, show that Lie(G) is abelian. [Hint: Show
that the inversion map i: G — G is a group homomorphism, and use
Problem 3-6.]

Let G and H be Lie groups, and suppose that F': G — H is a Lie
group homomorphism that is also a smooth covering map. Show that
the induced homomorphism Fy: Lie(G) — Lie(H) is an isomorphism
of Lie algebras.



5
Vector Bundles

In the preceding chapter we saw that the tangent bundle of a smooth
manifold has a natural structure as a smooth manifold in its own right.
The standard coordinates we constructed on T'M make it look, locally, like
the Cartesian product of an open subset of M with R™. As we will see later
in the book, this kind of structure arises quite frequently—a collection
of vector spaces, one for each point in M, glued together in a way that
looks locally like the Cartesian product of M with R™, but globally may be
“twisted.” Such a structure is called a vector bundle.

The chapter begins with the definition of vector bundles and descriptions
of a few examples. The most notable example, of course, is the tangent
bundle to a smooth manifold. We then go on to discuss local and global
sections of vector bundles (which correspond to vector fields in the case of
the tangent bundle), and a natural notion of maps between bundles, called
bundle maps.

At the end of the chapter we give a brief introduction to the terminology
of category theory, which puts the tangent bundle in a larger context.

Vector Bundles

Let M be a topological space. A (real) vector bundle of rank k over M is a
topological space E together with a surjective continuous map 7: £ — M
satisfying:
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) U x R¥
=

Figure 5.1. A local trivialization of a vector bundle.

(i) For each p € M, the set E, = 7~ 1(p) C F (called the fiber of E over
p) is endowed with the structure of a k-dimensional real vector space.

(ii) For each p € M, there exist a neighborhood U of p in M and a
homeomorphism ®: 7=1(U) — U x R¥ (called a local trivialization of
E over U), such that the following diagram commutes:

U x R*

\/

(where 1 is the projection on the first factor); and such that for each
q € U, the restriction of ® to E; is a linear isomorphism from E, to
{q} x R* =~ R* (Figure 5.1).

If M and E are smooth manifolds, 7 is a smooth map, and the local trivi-
alizations can be chosen to be diffeomorphisms, then E is called a smooth
vector bundle. In this case, we will call any local trivialization that is a
diffeomorphism onto its image a smooth local trivialization.

A rank-1 vector bundle is often called a (real) line bundle. Complez vector
bundles are defined similarly, with “real vector space” replaced by “complex
vector space” and R* replaced by CF in the definition. We will not have
occasion to treat complex vector bundles in this book, so all of our vector
bundles will be understood without further comment to be real.
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The space F is called the total space of the bundle, M is called its base,
and 7 is its projection. Depending on what we wish to emphasize, we some-
times omit some or all of the ingredients from the notation, and write “E is
a vector bundle over M,” or “E — M is a vector bundle,” or “r: E — M
is a vector bundle.” If U C M is any open set, it is easy to verify that the
subset E|y = 7~ 1(U) is again a vector bundle with the restriction of 7 as
its projection map, called the restriction of E to U.

If there exists a local trivialization over all of M (called a global trivial-
ization of E), then F is said to be a trivial bundle. In this case, E itself is
homeomorphic to the product space M x R*. If E — M is a smooth bundle
that admits a smooth global trivialization, then we say that E is smoothly
trivial. In this case E is diffeomorphic to M x RF, not just homeomorphic.
For brevity, when we say that a smooth bundle is trivial, we will always
understand this to mean smoothly trivial, not just trivial in the topological
sense.

Example 5.1 (Product Bundles). One particularly simple example of a
rank-k vector bundle over any space M is the product manifold E = M xR*
with 7 = 71 : M x R¥ — M as its projection. This bundle is clearly trivial
(with the identity map as a global trivialization). If M is a smooth manifold,
then M x R* is smoothly trivial.

Although there are many vector bundles that are not trivial, the only
one that is easy to visualize is the following.

Example 5.2 (The Mobius Bundle). Let I = [0,1] C R be the unit
interval, and let p: I — S! be the quotient map p(x) = €?***, which iden-
tifies the two endpoints of I. Consider the “infinite strip” I x R, and let
m1: I x R — I be the projection on the first factor. Let ~ be the equiva-
lence relation on I x R that identifies each point (0,y) in the fiber over 0
with the point (1, —y) in the fiber over 1; in other words, the right-hand
edge is given a half-twist to turn it upside-down, and then is glued to the
left-hand edge. Let E = (I x R)/~ denote the resulting quotient space, and
let ¢: I x R — F be the quotient map (Figure 5.2).

Because p o m; is constant on each equivalence class, it descends to a
continuous map 7: E — S!. A straightforward (if tedious) verification
shows that this makes E into a smooth real line bundle over S!, called the
Mobius bundle. (One local trivialization of E is obtained in an obvious way
from the restriction of the identity map to (0,1) x R, which descends to
the quotient to yield a homeomorphism from 7—1(S* \ {1}) to (0,1) x R.
It takes a bit more work to construct a local trivialization whose domain
includes the fiber where the gluing took place. Once this is done, the two
local trivializations can be interpreted as coordinate charts defining the
smooth structure on E. Problem 5-2 asks you to work out the details.
Later in the book, Problem 9-18 will suggest a more powerful approach.)
For any r > 0, the image under ¢ of the rectangle I x [—r,r] is a smooth
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I xR E

™ l m
Sl

°
~
[
3

Figure 5.2. (Part of) the Mobius bundle.

compact manifold with boundary called the Mdbius band; you can make a
paper model of this space by gluing the ends of a strip of paper together
with a half-twist.

The most important examples of vector bundles are tangent bundles of
smooth manifolds.

Proposition 5.3 (The Tangent Bundle as a Vector Bundle). Let
M be a smooth n-manifold and let TM be its tangent bundle. With its
standard projection map, its natural vector space structure on each fiber,
and the smooth manifold structure constructed in Lemma 4.1, TM 1is a
smooth vector bundle of rank n over M.

Proof. Given any smooth chart (U, ) for M with coordinate functions
(z*), define a map ®: 7~} (U) — U x R™ by

@(vié%p) = (p, (v',...,v")). (5.1)

This is obviously linear on fibers and satisfies 7, 0 & = 7. The composite
map

7 HU) D U x R 2L o) x R
is equal to the coordinate map @ constructed in Lemma 4.1. Since both @
and ¢ xIdg~ are diffeomorphisms, so is ®. Thus ® satisfies all the conditions
for a smooth local trivialization. O

Any bundle that is not trivial, of course, will require more than one local
trivialization. The next lemma shows that the composition of two smooth
local trivializations has a simple form where they overlap.
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Lemma 5.4. Let m: E — M be a smooth vector bundle, and suppose
®: 7Y U) - U xR* and ¥: 771(V) = V x R¥ are two smooth local
trivializations of E such that U NV # @. There exists a smooth map
7: UNV — GL(k,R) such that the composition ®o ¥~1: (UNV) x R —
(UNV) x RF has the form

® o ¥ (p,v) = (p, 7(p)V),
where T(p)v denotes the usual action of the k x k matriz 7(p) on the vector
v € R,
Proof. The following diagram commutes:

UNV) xR <L 71U nV) -2 (UNV) x R

T T m

|

unv, (5.2)

where the maps on top are to be interpreted as the restrictions of ¥ and
® to 7~} (U N V). It follows that 71 o (® 0o ¥~!) = my, which means that
® o ¥U~1(p,v) = (p,o(p,v)) for some smooth map o: (UNV) x RF — RF.
Moreover, for each fixed p € U NV, the map v = o(p,v) is a linear
isomorphism of R¥, so there is a nonsingular k x k matrix 7(p) such that
o(p,v) = 7(p)v. It remains only to show that the map 7: UNV — GL(k,R)
is smooth.

To see this, write the matrix entries of 7(p) as 7}(p), so that 7(p)v =
7i(p)v7e;. Note that 7}(p) = n*(c(p,e;)), where e; is the jth standard
basis vector and 7*: R¥ — R is projection onto the ith coordinate. This
is smooth by composition. Since the matrix entries are (global) smooth
coordinates on GL(k,R), this shows that 7 is smooth. |

The smooth map 7: UNV — GL(k, R) described in this lemma is called
the transition function between the local trivializations ® and . (This is
one of the few situations in which it is traditional to use the word “function”
even though the range is not R or R*.) For example, if M is a smooth
manifold and ® and ¥ are the local trivializations of TM associated with
two different smooth charts, then the transition function between them is
just the Jacobian matrix of the coordinate transition map.

Like the tangent bundle, vector bundles are often most easily described
by giving a collection of vector spaces, one for each point of the base man-
ifold. In order to make such a set into a smooth vector bundle, we would
first have to construct a manifold topology and a smooth structure on
the disjoint union of all the vector spaces, and then construct the local
trivializations and show that they have the requisite properties. The next
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lemma provides a shortcut, by showing that it is sufficient to construct the
local trivializations, as long as they overlap with smooth transition func-
tions. The proof is basically an adaptation of the proofs of Lemma 4.1 and
Proposition 5.3. (See also Problem 5-4 for a stronger form of this result.)

Lemma 5.5 (Vector Bundle Construction Lemma). Let M be a
smooth manifold, and suppose that we are given

o for each p € M, a real vector space E, of some fived dimension k.

Let E = [{,cp Ep, and let m: - — M be the map that takes each element
of Ep to the point p. Suppose furthermore that we are given

e an open cover {Uy}taca of M;

e for each o € A, a bijective map ®o: 71 (Uy) — Us x RF whose
restriction to each E, is a linear isomorphism from E, to {p} x R* =
Rk;

o for each o, 8 € A such that Uy, NUp # @, a smooth map 7a5: Uy N
Us — GL(k,R) such that the composite map ®, o @El from (Uy N
Ugs) x R to itself has the form

B0 05t (p,0) = (P, Tap(P)V). (5.3)

Then E has a unique smooth manifold structure making it into a smooth
vector bundle of rank k over M, with © as projection and the maps ®,, as
smooth local trivializations.

Proof. For each point p € M, choose some U, containing p; choose a
smooth chart (V},, p,) for M such that p € V,, C U,; and let V,, = ¢, (V,) C

R™ (where n is the dimension of M). Define a map @,: 7~ 1(V,) = V, x R
by @p = (¢p x Idgr) 0 By

1d ~
77V, 25 v, x RE 22 o RE

We will show that the collection of all such charts {(771(V},),®,) :p € M}
satisfies the conditions of the smooth manifold construction lemma (Lemma
1.23), and therefore defines a smooth manifold structure on E.

As a composition of bijective maps, ¢, is bijective, and its image is an
open subset of R” x RF = R***_ For any two points p and g, it is easy to
check that

@p (W_l(vp) N 7T~1(Vq)) = pp(Vp N Vg) x R,

which is open because ¢, is a homeomorphism onto an open subset of R".
Wherever two such charts overlap, we have

Dp ogaq_l = (pp x Idge) 0 4 ocbgl o (g x Idge) ™.

Since @, x Idgk, ¢4 x Idg«, and @, o® ! are all diffeomorphisms, this com-
position is a diffeomorphism. Thus conditions (i)—(iii) of Lemma 1.23 are
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satisfied. Because the open cover {V, : p € M} has a countable subcover,
(iv) is satisfied as well.

To check the Hausdorff condition (v), just note that any two points in
the same space Ej, lie in one of the charts we have constructed; while if
£ € E, and n € E; with p # g, we can choose V,, and V; to be disjoint
neighborhoods of p and ¢, so that the sets 7=1(V},) and 7~1(V}) are disjoint
coordinate neighborhoods containing £ and 7, respectively. Thus we have
defined a smooth manifold structure on E.

With respect to this structure, each of the maps @, is a diffeomorphism,
because in terms of the coordinate charts (7~1(V,),&p) for E and (V, x
R¥, ¢, xIdg«) for V, xR¥ the coordinate representation of ®,, is the identity
map. The coordinate representation of 7, with respect to the same chart
for E and the chart (V,, ¢,) for M, is 7(z,v) = z, so 7 is smooth as well.
Because each ®, maps E, to {p} x R, it is immediate that 7 o ®, = m,
and ®,, is linear on fibers by hypothesis. Thus ®,, satisfies all the conditions
for a smooth local trivialization.

The fact that this is the unique such smooth structure follows easily from
the requirement that the maps ®, be diffeomorphisms onto their images: If
E represents the same set E/' with another topology and smooth structure
satisfying the conclusions of the lemma, the identity map from F to E is
locally equal to @1 o®, and therefore is a local diffeomorphism between E
and E. Because it is a bijective local diffeomorphism, it is a diffeomorphism,
and thus the two smooth structures are identical. O

Local and Global Sections of Vector Bundles

Let m: E — M be a vector bundle over a manifold M. A section of E
(also sometimes called a cross section) is a section of the map =, ie., a
continuous map o: M — E satisfying m oo = Id . Specifically, this means
that o(p) is an element of the fiber E, for each p € U. A local section of
E is a section o: U — E defined only on some open subset U C M (see
Figure 5.3). To emphasize the distinction, a section defined on all of M will
sometimes be called a global section. Note that a local section of E over
U C M is the same as a global section of the restricted bundle E|y. If M
is a smooth manifold and F is a smooth vector bundle, a smooth section of
E is a (local or global) section that is smooth as a map between manifolds.

Just as with vector fields, for some purposes it is useful also to consider
maps that would be sections except that they might not be continuous.
Thus we define a rough section of E over a set U C M to be a map
o: U — E (not necessarily continuous) such that m oo = Idy. A “section”
without further qualification will always mean a continuous section.

The zero section of E is the global section {: M — E defined by

¢(p)=0¢€ E, foreachpe M.
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Figure 5.3. A local section of a vector bundle.

As in the case of vector fields, support of a section ¢ is the closure of the
set {p € M : o(p) # 0}.

¢ Exercise 5.1. Show that the zero section of any smooth vector bundle
is smooth. [Hint: Consider ® o, where ® is any smooth local trivialization.]

If E - M is a smooth vector bundle, the set £(M) of all smooth
global sections of E is a vector space under pointwise addition and scalar
multiplication:

(c101 + c202)(p) = c101(p) + c202(p).

In addition, just like vector fields, smooth sections can be multiplied by
smooth real-valued functions: If f € C*°(M) and o € E(M), we obtain a
new section fo defined by

(fo)(p) = f(p)o(p)-

¢ Exercise 5.2. If 0,7 € &(M) and f,g € C*°(M), show that fo + g7 €
E(M).

¢ Exercise 5.3. Show that (M) is a module over the ring C*°(M).

Lemma 5.6 (Extension Lemma for Vector Bundles). Let7: E — M
be a smooth vector bundle over a smooth manifold M, and suppose o: A —
E is a smooth section of E defined on a closed subset A C M (in the sense
that o extends to a smooth section in a neighborhood of each point). For
any open set U containing A, there exists a smooth section ¢ € E(M) such
that 5|4 = o and suppo C U.

¢ Exercise 5.4. Prove the preceding lemma.
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For a smooth vector bundle £ — M, the notations I'(E), C*(M; E),
and E(M) are all in common use for the space of smooth global sections of
E. We will generally prefer the latter notation, using the script letter cor-
responding to the name of a bundle to denote its space of smooth sections.
For example, we have already defined T(M) to mean the space of smooth
sections of the tangent bundle TM. Besides being concise, this notation
has the advantage that it adapts easily to spaces of local sections, with

E(U) denoting the space of smooth local sections of E over a fixed open
set U C M.

Example 5.7 (Sections of Vector Bundles).
(a) For a smooth manifold M, sections of TM are vector fields on M.

(b) If E = M x R is a product bundle, there is a natural one-to-one
correspondence between (smooth) sections of E and (smooth) func-
tions from M to RF: A function F: M — R* determines a section
F: M — M xR* by F(z) = (z, F(z)), and vice versa. In particular,
C*(M) can be naturally identified with the space of smooth sections
of the trivial line bundle M x R.

Local and Global Frames

Let E — M be a vector bundle. If U C M is an open set, local sec-
tions oy,...,0r of E over U are said to be independent if their values
o1(p),...,ok(p) are linearly independent elements of E, for each p € U.
Similarly, they are said to span E if their values span E, for each p € U. A
local frame for E over U is an ordered k-tuple (o1,...,0%) of independent
local sections over U that span E; thus (o1(p),...,ok(p)) is a basis for the
fiber E, for each p € U. It is called a global frame if U = M. A local or
global frame is said to be smooth if each section o; is smooth. We will often
use the shorthand notation (o;) to denote a frame (o1, ..., o%).

Local frames are intimately connected with local trivializations, as the
next two examples show.

Example 5.8 (Global Frame for a Product Bundle). If E = M xR*
is a product bundle, the standard basis (e1,...,ex) for RF yields a global
frame (€;) for E, defined by €;(p) = (p, e;). If M is a smooth manifold, this
global frame is smooth.

Example 5.9 (Local Frames and Local Trivializations). Suppose
7: E — M is a smooth vector bundle. If ®: 7=}(U) — U x R* is a smooth
local trivialization of E, we can use the same idea as in the preceding
example to construct a local frame for E. Define maps o1,...,0x: U - E
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by oi(p) = @7} (p,e;) = &~ o &i(p):

7 1(U) _® U x Rk
U.

Then o; is smooth because @ is a diffeomorphism, and the fact that 7,0® =
7 implies that

mooi(p) =mo® '(p,e;) =m(p &) =p,

so 0; is a smooth section. To see that (o;(p)) forms a basis for E,, just
note that @ restricts to a linear isomorphism from E, to {p} x R¥, and
®(04(p)) = (p, e;), which forms a basis for {p} x R¥. We say that this local
frame (o0;) is associated with ®.

Proposition 5.10. Fvery smooth local frame for a smooth vector bundle
18 assoctated with a smooth local trivialization as in Example 5.9.

Proof. Suppose that (o;) is a smooth local frame for E over an open set
U C M. We define a map ¥: U x R¥ — 7=}(U) by

T (p, (v',...,0%)) =vioi(p). (5.4)

The fact that (o;(p)) forms a basis for E, at each p € U implies that ¥
is bijective, and an easy computation shows that o; = ¥ o ¢;. Thus if we
can show that ¥ is a diffeomorphism, then ¥~! will be a smooth local
trivialization whose associated local frame is (o;).

Since ¥ is bijective, to show that it is a diffeomorphism it suffices to
show that it is a local diffeomorphism. Given ¢ € U, we can choose a
neighborhood V' C M of q over which there exists a smooth local trivi-
alization ®: 7~1(V) — V x R*, and by shrinking V if necessary we may
assume that V' C U. Since ¢ is a diffeomorphism, if we can show that
® o W|y gk is a diffeomorphism from V' x RF to itself, it follows that ¥ is
a diffeomorphism from V x R¥ to 7=(V):

k Plvxms &

VxR V x R*

(V)

T T

e
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For each smooth section o;, the composite map ®oo;|y: V — V x RF is
smooth, and thus there are smooth functions o}, ..., of: V — R such that

®o0i(p) = (p, (07 (0),---, 07 (1)) -
On V x R¥, therefore,

do ¥ (p, (v',...,0%)) = (p, (vl (p),...,v'0F (D)),

which is clearly smooth. 4

To show that (® o ¥)~! is smooth, note that the matrix (¢} (p)) is in-
vertible for each p, because (c;(p)) is a basis for E,. Let (Tf (p)) denote the
inverse matrix. Because matrix inversion is a smooth map (see Example
2.7(a)), the functions 77 are smooth. It follows from the computations in
the preceding paragraph that

(@0 0) " (p, (w',.. .,wk)) = (p, (wifil(p), o ,wiTik(p))) ,

which is also smooth. O

Corollary 5.11. A smooth vector bundle is trivial if and only if it admits
a smooth global frame.

Proof. Taken together, Example 5.9 and Proposition 5.10 show that there
exists a smooth local trivialization over an open subset U C M if and only
if there exists a smooth local frame over U. The corollary is just the special
case of this statement when U = M. O

Corollary 5.12. Let m: E — M be a smooth vector bundle of rank k, let
(V, ) be a smooth chart on M, and suppose there exists a smooth local
frame (0;) for E over V. Then the map @: 7= 1(V) — o(V) x R¥ given by

g (v'os(p) = (z'(p), ..., z"(p), 0", .., 0")
s a smooth coordinate map for E.

Proof. Just check that ¢ is equal to the composition (p x Idgx) o ®, where
® is the local trivialization associated with (¢;). As a composition of
diffeomorphisms, it is a diffeomorphism. O

Just as smoothness of vector fields can be characterized in terms of their
component functions in any smooth chart, smoothness of sections of vector
bundles can be characterized in terms of local frames. Suppose (o;) is a
smooth local frame for F over some openset U C M. If 7: M — E is a
rough section, the value of 7 at any point p € U can be written

7(p) = 7 (p)os(p)

for some uniquely determined numbers (7'(p),...,7"(p)). This defines k
functions 7*: U — R, called the component functions of T with respect to
the given local frame.
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Lemma 5.13 (Local Frame Criterion for Smoothness). Letn: E —
M be a smooth vector bundle, and let 7: M — E be a rough section. If (o;)
is a smooth local frame for E over an open subset U C M, then T is smooth
on U if and only if its component functions with respect to (o;) are smooth.

Proof. Let ®: m~}(U) — U x R* be the local trivialization associated with
the local frame (o;). Because ® is a diffeomorphism, 7 is smooth on U if
and only if ® o7 has the same property. It is straightforward to check that
dor(p) = ( , (7'1 (p),...,7%(p))), where (%) are the component functions
of 7 with respect to (o), so ® o 7 is smooth if and only if the component
functions 7° are smooth. a

¢ Exercise 5.5. If E — M is any vector bundle, show that a rough section
of E is continuous if and only if its component functions in any local frame
are continuous.

It is worth remarking that Lemma 5.13 applies equally well to local
sections, since a local section of E over an open set V C M is a global
section of the restricted bundle E|y .

The correspondence between local frames and local trivializations leads
to the following uniqueness result characterizing the smooth structure on
the tangent bundle of a smooth manifold.

Lemma 5.14. Let M be a smooth n-manifold. The smooth manifold struc-
ture on TM constructed in Lemma 4.1 is the unique one with respect to
which m: TM — M is a smooth vector bundle of rank n over M and all
coordinate vector fields are smooth local sections.

Proof. Suppose TM is endowed with some smooth structure making it
into a smooth rank-n vector bundle for which the coordinate vector fields
are smooth sections. Over any smooth coordinate domain U C M, the
coordinate frame (0/9z") is a smooth local frame, so by Proposition 5.10
there is a smooth local trivialization ®: n~}(U) — U x R™ associated
with this local frame. Referring back to the construction of Example 5.9,
it is easy to see that this local trivialization is none other than the map
® constructed in Proposition 5.3. It follows from Corollary 5.12 that the
standard coordinate chart @ = (¢ x Idy) o @ belongs to the given smooth
structure. Thus the given smooth structure is equal to the one constructed
in Lemma 4.1. O

If M is a smooth manifold, we will use the term local frame for M to
mean a local frame for the tangent bundle TM, or in other words an n-
tuple of independent vector fields that span T M over some open subset of
M. A global frame for M is defined similarly. For example, the coordinate
vector fields (8/8z*) form a smooth local frame over any smooth coordinate
domain, called a coordinate frame.
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A smooth manifold M is said to be parallelizable if it admits a smooth
global frame. By Corollary 5.11, this is equivalent to T'M being a trivial
bundle.

Because it has a global coordinate frame, R is parallelizable. Many more
examples are provided by the following proposition.

Proposition 5.15. FEvery Lie group is parallelizable.

Proof. If G is a Lie group, any basis for Lie(G) is a smooth global frame
for G, as is easily verified. O

The proof of this proposition shows that in fact every Lie group has a
global frame consisting of left-invariant vector fields. We will call any such
frame a left-invariant frame.

Because they are Lie groups, S* and T" are parallelizable. (We exhibited
left-invariant frames for them in Example 4.22.) It turns out that S* and
S7 are parallelizable as well, as you will be asked to show in Problems 5-10
and 8-21. However, despite the evidence of these examples, most smooth
manifolds are not parallelizable. The simplest example of a nonparalleliz-
able manifold is S?, but the proof of this fact will have to wait until we have
developed more machinery (see Problem 14-22). In fact, it was shown in
1958 by Raoul Bott and John Milnor [BM58] using more advanced meth-
ods from algebraic topology that S!, S3, and S7 are the only spheres that
are parallelizable. Thus these are the only positive-dimensional spheres
that can possibly admit Lie group structures. The first two do (see Exam-
ple 2.7(g) and Problem 8-19); but it turns out that S” has no Lie group
structure (see [Bre93, page 301]). A remarkable theorem of Joseph Wolf
[Wol71, Wol72] shows that the only compact, simply connected manifolds
that are parallelizable are products of Lie groups and copies of S”.

Bundle Maps

Ifr: E— M and n’: E/ — M’ are two vector bundles, a bundle map from
E to E’' is a pair of continuous maps F: E — E’ and f: M — M’ such
that 7’ o F = fom:

Jo

LS SRE
M — M,
f
and with the property that for each p € M, the restricted map F|g,: E, —
E} o is linear. When the manifolds and vector bundles are smooth, it is
called a smooth bundle map if both F and f are smooth. We often refer to
F itself as the bundle map, and say that F' covers f. A bijective bundle
map F: E — E’' whose inverse is also a bundle map is called a bundle
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isomorphism; if F is also a diffeomorphism, it is called a smooth bundle
isomorphism. If there exists a (smooth) bundle isomorphism between E
and E’, the two bundles are said to be (smoothly) isomorphic.

In the special case in which both E and E’ are vector bundles over the
same base manifold M, a slightly more restrictive notion of bundle map is
usually more useful. A bundle map over M is a bundle map covering the
identity map of M, in other words, a continuous map F': E — E’ such that
7o F =,

E F

N

and whose restriction to each fiber is linear. If F: E — E’ is a bundle map
over M that is also a (smooth) bundle isomorphism, then we say that E
and E’ are (smoothly) isomorphic over M.

E

/
!

¢ Exercise 5.6. Show that a smooth rank-k vector bundle over M is trivial
if and only if it is smoothly isomorphic over M to the product bundle M xR*.

O Exercise 5.7. Suppose F': M — N is a smooth map. Show that
F.: TM — TN is a smooth bundle map.

Suppose E — M and E’ — M are smooth vector bundles over M, and
let E(M), &'(M) denote their spaces of smooth sections. If F: E — E’ is
any smooth bundle map over M, then composition with F induces a map
from E(M) to & (M), also denoted by F, as follows:

(F(0))(p) = F(a(p))- (5.5)

In other words, F'(¢) is just the composition F oo. It is easy to check that
F(o) is a section of E’, and it is smooth by composition.

Because a bundle map is linear on fibers, the resulting map on sections
F: &(M)— &'(M) is linear over R. In fact, it satisfies a stronger linearity
property. A map F: E(M) — &' (M) is said to be linear over C*° (M) if for
any smooth functions uy, us € C*°(M) and smooth sections 01,02 € E(M),

F(uyoq + ug02) = w1 F(01) + uaF(02).

It follows easily from the definition (5.5) that the map on sections induced
by a bundle map is linear over C°°(M). The next proposition shows that
the converse is true as well.

Proposition 5.16. Let 7: E — M and n': E' — M be smooth vector
bundles over a smooth manifold M, and let E(M), &' (M) denote their
spaces of sections. A map F: E(M) — &'(M) is linear over C°(M) if
and only if there is a smooth bundle map F: E — E' over M such that
F(o)=Foo forallo € E(M).
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Proof. We noted above that the map on sections induced by a smooth
bundle map is linear over C°°(M). Conversely, suppose F: E(M) — &'(M)
is linear over C°°(M). First we will show that F acts locally: If o1 = o>
in some open set U C M, then F(o1) = F(o2) in U. Writing 7 = oy — 09,
it suffices by linearity of F to assume that 7 vanishes in U and show that
F(r) does too. For any p € U, let ¢p € C*°(M) be a smooth bump function
that is supported in U and is equal to 1 at p. Because ¥ is identically zero
on M, the fact that F is linear over C*°(M) implies

0= F(gr) = ¥3(r).

Evaluating at p shows that F(7)(p) = ¥(p)F(r)(p) = 0; since the same is
true for every p € U, the claim follows.

Next we show that F actually acts pointwise: If o1(p) = o2(p), then
F(o1)(p) = F(o2)(p). Once again, it suffices to assume that 7(p) = 0 and
show that F(7)(p) = 0. Let (01,...,0%) be a smooth local frame for E in
some neighborhood of p, and write 7 in terms of this frame as 7 = u‘o; for
some smooth functions u’ defined near p. The fact that 7(p) = 0 means
that u!(p) = --- = u*(p) = 0. By the extension lemmas for vector bundles
and for functions, there exist smooth global sections &; € £(M) that agree
with o; in a neighborhood of p, and smooth functions ' € C*°(M) that
agree with u* in a neighborhood of p. Then since 7 = u’5; near p, we have

F(r)(p) = F(@'a:)(p) = @' (p)F(@:)(p) = 0,

which proves the claim.

Define a bundle map F': E — E’ as follows. For any p € M and v € E,,
let F'(v) = F(v)(p) € E,, where ¥ is any global smooth section of E such
that v(p) = v. The discussion above shows that the resulting element of
E;, is independent of the choice of section. This map F clearly satisfies
7' o F = 7, and it is linear on each fiber because of the linearity of F. It
also satisfies F oo (p) = F(o)(p) for any o € E(M) by definition. It remains
only to show that F' is smooth. It suffices to show that it is smooth in a
neighborhood of each point.

Given p € M, let (0;) be a local frame for E on some neighborhood of
p. By the extension lemma, there are global sections ¢; that agree with o;
in a (smaller) neighborhood U of p. Shrinking U further if necessary, we
may also assume that there exists a smooth local frame (07}) for £ over U.
Because J maps smooth global sections of E to smooth global sections of
E’, there are smooth functions A] € C*°(U) such that ¥ (5;) |y = Ao}

For any ¢ € U and v € E,, we can write v = v'o;(q) for some real
numbers (v!,...,v*), and then

F (v'oi(@)) = F (v'&,) (a) = v'F () (q) = v'AL(q)0)(q),

because v'5; is a global smooth section of E whose value at q is v. If ® and
@’ denote the local trivializations of E associated with the frames (¢;) and
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(o1), respectively, it follows that the composite map ® o Fo®~!: U xR* —
U x R™ has the form

P oFod ! (g, (vl, ... ,vk)) = (q, (Az1 (v ..., A;”(q)vi)) ,

which is smooth. Because ® and ®’ are diffeomorphisms, this shows that
F is smooth on 7~ 1(U). O

Later, after we have developed more tools, we will see many examples of
smooth bundle maps. For now, here are two elementary examples.

Example 5.17 (Bundle Maps).

(a) If X is a smooth vector field on R3, the cross product with X defines a
map from T (R3) to itself: ¥ — X x Y. Since it is linear over C*° (R3)
in Y, it determines a bundle map from TR3 to TR3.

(b) Similarly, the Euclidean dot product with X defines a map from
T (R%) to C> (R®), which is linear over C* (R®) and therefore
determines a bundle map from TR3 to the trivial line bundle R® x R.

Because of Proposition 5.16, we will frequently use the same sym-
bol for both a bundle map F: E — E’ over M and the linear map
F: &(M) — &(M) that it induces on sections, and we will refer to a map
of either of these types as a bundle map. Because the action on sections is
obtained simply by applying the bundle map pointwise, this should cause
no confusion. In fact, we have been doing the same thing all along. For
example, we use the same notation X — 2X to denote both the operation
of multiplying vectors in each tangent space T, M by 2, and the operation
of multiplying vector fields by 2. Because multiplying by 2 is a bundle map
from TM to itself, there is no ambiguity about what is meant.

It should be noted that most maps that involve differentiation are not
bundle maps. For example, if X is a smooth vector field on M, the deriva-
tion X : C°(M) — C°°(M) is not a bundle map from the trivial line bundle
to itself, because it is not linear over C'*°. Similarly, for a fixed vector field
X, the map Y — [X,Y] is a linear map from T(M) to itself, but it is not a
bundle map because it satisfies (4.7) instead of linearity over C*°(M). As
a rule of thumb, a linear map that takes smooth sections of one bundle to
smooth sections of another is likely to be a bundle map if it acts pointwise,
but not if it involves differentiation.

Categories and Functors

Another useful perspective on the tangent bundle is provided by the theory
of categories. In this section we summarize the basic definitions of category
theory. We will not do much with the theory in this book, but we mention
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it because it provides a convenient and powerful language for talking about
many of the mathematical structures we will meet.
A category C consists of three things:

e a class of objects;

o for each pair X,Y of objects a set Hom¢(X,Y) whose elements are
called morphisms;

e and for each triple X,Y,Z of objects a map called composition:
Hom¢(X,Y) x Home(Y, Z) —» Homc(X, Z), written (f,g) — go f.

The morphisms are required to satisfy the following properties:
(i) ASSOCIATIVITY: (fog)oh = fo(goh).

(ii) EXISTENCE OF IDENTITIES: For each object X in C, there exists
an identity morphism Idx € Homc(X, X), satisfying Idy of = f =
foldx for all f € Homc(X,Y).

A morphism f € Homc(X,Y) is called an isomorphism in C if there exists
a morphism g € Hom¢(Y, X) such that fog=1Idy and go f =Idx.

Example 5.18 (Categories). In most of the categories that one meets
“in nature,” the objects are sets with some extra structure, the morphisms
are maps that preserve that structure, and the composition laws and iden-
tity morphisms are the obvious ones. Some of the categories of this type
that will appear in this book (implicitly or explicitly) are listed below. In
each case, we describe the category by giving its objects and its morphisms.

e SET: Sets and maps.

e TOP: Topological spaces and continuous maps.

e TM: Topological manifolds and continuous maps.

e SM: Smooth manifolds and smooth maps.

e VB: Smooth vector bundles and smooth bundle maps.
e VECTR: Real vector spaces and real-linear maps.

e VECT¢: Complex vector spaces and complex-linear maps.
e GROUP: Groups and group homomorphisms.

e AB: Abelian groups and group homomorphisms.

e LIE: Lie groups and Lie group homomorphisms.

e lie: Lie algebras and Lie algebra homomorphisms.

The reason we are careful to use the word “class” instead of “set” for the
collection of objects in a category is that some categories are “too large” to
be considered sets. For example, in the category SET, the class of objects is
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the class of all sets; any attempt to treat this class as a set in its own right
leads to the well-known Russell paradox of set theory. (See the Appendix
to [Lee00] or almost any book on set theory for more.)

The most important construction in category theory is the following. If
C and D are categories, a covariant functor from C to D is a rule F that
assigns to each object X in C an object F(X) in D, and to each morphism
f € Hom¢(X,Y) a morphism F(f) € Homp(F(X), F(Y)), so that identities
and composition are preserved:

F(ldx) = Idg(x); F(goh)=3(g)oTF(h).

We will also need to consider functors that reverse morphisms: A con-
travariant functor ¥ from C to D assigns to each object X in C an
object F(X) in D, and to each morphism g € Hom¢(X,Y) a morphism
F(g) € Homp(F(Y), F(X)), such that

F(ldx) = Idg(x); F(goh)=TF(h)oTF(g).

If the functor is understood, it is common for the morphism induced by a
covariant functor to be denoted by g, instead of F(g), and that induced by
a contravariant functor by g*.

¢ Exercise 5.8. Show that any (covariant or contravariant) functor from
C to D takes isomorphisms in C to isomorphisms in D.

One trivial example of a covariant functor from any category to itself is
the identity functor, which takes each object and each morphism to itself.
Another example is the forgetful functor: If C is a category whose objects
are sets with some additional structure and whose morphisms are maps
preserving that structure (as are all the categories listed in Example 5.18
except the first), the forgetful functor F: C — SET assigns to each object
its underlying set, and to each morphism the same map thought of as a
map between sets.

More interesting functors arise when we associate “invariants” to classes
of mathematical objects. For example, Proposition 4.26 shows that the as-
signment G — Lie(G), F — F, is a covariant functor from the category of
Lie groups to the category of Lie algebras. If we define TOP,, to be the cat-
egory whose objects are pointed topological spaces (i.e., topological spaces
together with a choice of base point in each) and whose morphisms are
continuous maps taking base points to base points, then the fundamental
group is a covariant functor from TOP, to GROUP.

The discussion in this chapter has given us another important example of
a functor: The tangent functor is a covariant functor from the category SM
of smooth manifolds to the category VB of smooth vector bundles. To each
smooth manifold M it assigns the tangent bundle TM — M, and to each
smooth map F': M — N it assigns the pushforward F,: TM — TN, which
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is a smooth bundle map by Exercise 5.7. The fact that this is a functor is
the content of parts (b) and (¢} of Lemma 3.5.

Problems

o-1.

5-2.

5-3.

5-4.

3-6.

If E is a vector bundle over a topological space M, show that the
projection map 7: E — M is a homotopy equivalence.

Prove that the space E constructed in Example 5.2, together with
the projection m: E — S!, is a smooth rank-1 vector bundle over S!,
and show that it is nontrivial.

Let m: E — M be a smooth vector bundle of rank k& over a smooth
manifold M. Suppose {Uqy }aca is an open cover of M, and for each
o € A we are given a smooth local trivialization ®,: 771 (U,) — Ug x
R* of E. For each a, 3 € A such that U,NUp # @, let Tag: UsNUg —
GL(k,R) be the transition function defined by (5.3). Show that the
following identity is satisfied for all «, 3,7 € A:

Tap(P)T8+