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Preface to the First Edition

In recent years, many students have been introduced to topology in high
school mathematics. Having met the Mobius band, the seven bridges of
Konigsberg, Euler’s polyhedron formula, and knots, the student is led to
expect that these picturesque ideas will come to full flower in university
topology courses. What a disappointment “undergraduate topology” proves
to be! In most institutions it is either a service course for analysts, on abstract
spaces, or else an introduction to homological algebra in which the only
geometric activity is the completion of commutative diagrams. Pictures are
kept to a minimum, and at the end the student still does nc ¢ understand the
simplest topological facts, such as the reason why knots exist.

In my opinion, a well-balanced introduction to topology should stress its
intuitive geometric aspect, while admitting the legitimate interest that analysts
and algebraists have in the subject. At any rate, this is the aim of the present
book. In support of this view, I have followed the historical development
where practicable, since it clearly shows the influence of geometric thought
at all stages. This is not to claim that topology reccived its main impetus
from geometric recreations like the seven bridges; rather, it resulted from the
visualization of problems from other parts of mathematics—complex analysis
(Riemann), mechanics (Poincaré), and group theory (Dehn). It is these connec-
tions to other parts of mathematics which make topology an important as
well as a beautiful subject.

Another outcome of the historical approach is that one learns that classi-
cal (prior to 1914) ideas are still alive, and still being worked out. In fact,
many simply stated problems in 2 and 3 dimensions remain unsolved. The
development of topology in directions of greater generality, complexity, and
abstractness in recent decades has tended to obscure this fact.

Attention is restricted to dimensions < 3 in this book for the following
reasons.

(1) The subject matter is close to concrete, physical experience.

(2) There is ample scope for analytic, geometric, and algebraic ideas.
(3) A variety of interesting problems can be constructively solved.
(4) Some equally interesting problems are still open.

(5) The combinatorial viewpoint is known to be completely general.
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The significance of (5) is the following. Topology is ostensibly the study of
arbitrary continuous functions. In reality, however, we can comprehend and
manipulate only functions which relate finite “chunks” of space in a simple
combinatorial manner, and topology originally developed on this basis. It
turns out that for figures built from such chunks (simplexes) of dimension < 3,
the combinatorial relationships reflect all relationships which are topologi-
cally possible. Continuity is therefore a concept which can (and perhaps
should) be eliminated, though of course some hard foundational work is
required to achieve this.

I have not taken the purely combinatorial route in this book, since it
would be difficult to improve on Reidemeister’s classic Einfiihrung in die
Kombinatorische Topologie (1932), and in any case the relationship between
the continuous and the discrete is extremely interesting. | have chosen the
middle course of placing one combinatorial concept—the fundamental group
—on a rigorous foundation, and using others such as the Euler characteristic
only descriptively. Experts will note that this means abandoning most of
homology theory, but this is easily justified by the saving of space and the
relative uselessness of homology theory in dimensions < 3. (Furthermore,
textbooks on homology theory are already plentiful, compared with those on
the fundamental group.)

Another reason for the emphasis on the fundamental group is that it
Is a two-way street between topology and algebra. Not only does group
theory help to solve topological problems, but topology is of genuine help
in group theory. This has to do with the fact that there is an underlying
computational basis to both combinatorial topology and combinatorial group
theory. The details are too intricate to be presented in this book, but the
relevance of computation can be grasped by looking at topological problems
from an algorithmic point of view. This was a key concern of early topologists
and in recent times we have learned of the nonexistence of algorithms for
certain topological problems, so it seems timely for a topology text to present
what is known in this department.

The book has developed from a one-semester course given to fourth year
students at Monash University, expanded to two-semester length. A purely
combinatorial course in surface topology and group theory, similar to the one
I originally gave, can be extracted from Chapters 1 and 2 and Sections 4.3,
5.2, 5.3, and 6.1. It would then be perfectly reasonable to spend a second
semester deepening the foundations with Chapters 0 and 3 and going on to
3-manifolds in Chapters 6, 7, and 8. Certainly the reader is not obliged to
master Chapter 0 before reading the rest of the book. Rather, it should be
skimmed once and then referred to when needed later. Students who have had
a conventional first course in topology may not need 0.1-0.3 at all.

The only prerequisites are some familiarity with elementary set theory,
coordinate geometry and linear algebra, ¢-6 arguments as in rigorous calculus,
and the group concept.
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The text has been divided into numbered sections which are small enough,
it is hoped, to be easily digestible. This has also made it possible to dispense
with some of the ceremony which usually surrounds definitions, theorems, and
proofs. Definitions are signalled simply by italicizing the terms being defined,
and they and proofs are not numbered, since the section number will serve to
locate them and the section title indicates their content. Unless a result already
has a name (for example, the Seifert-Van Kampen theorem) I have not given
it one, but have just stated it and followed with the proof, which ends with
the symbol .

Because of the emphasis on historical development, there are frequent
citations of both author and date, in the form: Poincaré 1904. Since either the
author or the date may be operative in the sentence, the result is sometimes
grammatically curious, but I hope the reader will excuse this in the interests
of brevity. The frequency of citations is also the result of trying to give credit
where credit is due, which I believe is just as appropriate in a textbook as in
a research paper. Among the references which I would recommend as parallel
or subsequent reading are Giblin 1977 (homology theory for surfaces), Moise
1977 (foundations for combinatorial 2- and 3-manifold theory), and Rolfsen
1976 (knot theory and 3-manifolds).

Exercises have been inserted in most sections, rather than being collected
at the ends of chapters, in the hope that the reader will do an exercise more
readily while his mind is still on the right track. If this is not sufficient prodding,
some of the results from exercises are used in proofs.

The text has been improved by the remarks of my students and from
suggestions by Wilhelm Magnus and Raymond Lickorish, who read parts of
earlier drafts and pointed out errors. I hope that few errors remain, but any
that do are certainly my fault. T am also indebted to Anne-Marie Vandenberg
for outstanding typing and layout of the original manuscript.

October 1980 JOHN C. STILLWELL

Preface to the Second Edition

There have been several big developments in topology since the first edition
of this book. Most of them are too difficult to include here, or ¢lse, well written
up elsewhere, so I shall merely mention below what they are and where they
may be found. The main new inclusion in this edition is a proof of the
unsolvability of the word problem for groups, and some of its consequences.
This is made possible by a new approach to the word problem discovered by
Cohen and Aanderaa around 1980. Their approach makes it feasible to prove
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a series of unsolvability results we previously mentioned without proof, and
thus to tie up several loose ends in the first edition. A new Chapter 9 has been
added to incorporate these results. It is particularly pleasing to be able to give
a proof of the unsolvability of the homeomorphism problem, which has not
previously appeared in a textbook.

What are the other big developments? They would have to include the
proof by Freedman in 1982 of the 4-dimensional Poincaré conjecture, and the
related work of Donaldson on 4-manifolds. These difficult results may be
found in Freedman and Quinn’s The Topology of 4-manifolds (Princeton
University Press, 1990) and Donaldson and Kronheimer’s The Geometry of
Four-Manifolds (Oxford University Press, 1990). With Freedman’s proof, only
the original (3-dimensional) Poincaré conjecture remains open. In fact, the
main problems of 3-dimensional topology seem to be just as stubborn as they
were in 1980. There is still no algorithm for deciding when 3-manifolds are
homeomorphic, or even for recognizing the 3-sphere. Since the first printing
of the second edition, the latter problem has been solved by Hyam Rubinstein.
However, there has been important progress in knot theory, most of which
stems from the Jones polynomial, a new knot invariant found by Jones in
1983. For a sampling of this rapidly growing field, and its mysterious con-
nections with physics, see Kauffman’s Knots and Physics (World Scientific,
1991).

Recent developments in combinatorial group theory are a natural continu-
ation of two themes in the present book—the tree structure behind free groups
and the tessellation structure behind Dehn’s algorithm. The main results on
tree structure and its generalizations may be found in Dicks and Dunwoody’s
Groups Acting on Graphs (Cambridge University Press, 1989). Dehn’s algo-
rithm has been generalized to many other groups which act on tessellations
with combinatorial properties like those discovered by Dehn in the hyperbolic
plane (see Group Theory from a Geometrical Viewpoint, edited by Ghys,
Haefliger and Verjovsky, World Scientific, 1991). Both these lines of research
should be accessible to readers of the present book, though a little more
preparation is advisable. I recommend Serre’s Trees (Springer-Verlag, 1980)
and Dehn’s Papers in Group Theory and Topology (Springer-Verlag, 1987). My
own Geometry of Surfaces (Springer-Verlag, 1992) may also serve as a source
for hyperbolic geometry, and as a replacement for the very sketchy account
of geometric methods given in 6.2 below.

Finally, I should mention that this edition includes numerous corrections
sent to me by readers. I am particularly grateful to Peter Landweber, who
contributed the most thorough critique, as well as encouragement for a second
edition.

Clayton, November 1992 JOHN C. STILLWELL
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Introduction and Foundations




2 0 Introduction and Foundations

0.1 The Fundamental Concepts and Problems of
Topology

0.1.1 The Homeomorphism Problem

Topology is the branch of geometry which studies the properties of figures
under arbitrary continuous transformations. Just as ordinary geometry
considers two figures to be the same if each can be carried into the other by
a rigid motion, topology considers two figures to be the same if each can be
mapped onto the other by a one-to-one continuous function. Such figures
are called topologically equivalent, or homeomorphic, and the problem of
deciding whether two figures are homeomorphic is called the homeomorphism
problem.

One may consider a geometric figure to be an arbitrary point set, and in
fact the homeomorphism problem was first stated in this form, by Hurwitz
1897. However, this degree of generality makes the problem completely
intractable, for reasons which belong more to set theory than geometry,
namely the impossibility of describing or enumerating all point sets. To
discuss the problem sensibly we abandon the elusive “arbitrary point set”
and deal only with finitely describable figures, so that a solution to the
homeomorphism problem can be regarded as an algorithm (0.4) which
operates on descriptions and produces an answer to each homeomorphism
question in a finite number of steps.

The most convenient building blocks for constructing figures are the
simplest euclidean space elements in each dimension:

dimension 0: point
dimension 1: line segment
dimension 2: triangle
dimension 3: tetrahedron

We call the simplest space element in n-dimensional euclidean space R” the
n-simplex A". It is constructed by taking n + 1 points Py,..., P,,, in R”
which do not lie in the same (n — 1)-dimensional hyperplane, and forming
their convex hull; that is, closing the set under the operation which fills in
the line segment between any two points. In algebraic terms, we take n + 1
linearly independent vectors OP,,...,OP,,, (where OP; denotes the
vector from the origin O to P;) and let A" consist of the endpoints of the
vectors

xlopl + oot xn+10Pn+1v
where x; + -+ + x,4; = 1 and x; > 0. It is now an easy exercise (0.1.1.1

below) to show that any two n-simplexes are homeomorphic, so we are
entitled to speak of the n-simplex A™.
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Fach subset of m + 1 points from {P,,..., P,,} similarly determines
an m-dimensional face A™ of A". The union of the (n — 1)-dimensional faces
is called the boundary of A", so all lower-dimensional faces lie in the boun-
dary. We shall build figures, called simplicial complexes, by pasting together
simplexes so that faces of a given dimension are either disjoint or coincide
completely. This method of construction, which is due to Poincaré 1899,
will be studied more thoroughly in 0.2. For the moment we wish to claim
that all “natural” geometric figures are either simplicial complexes or
homeomorphic to them, which is just as good for topological purposes.

This claim is supported by some figures which play a prominent role in
this book—surfaces and knots. Surfaces may be constructed by pasting
triangles together, so they are simplicial complexes of dimension 2. For
example, the surface of a tetrahedron (which is homeomorphic to a sphere)
is a simplicial complex of four triangles as shown in Figure 1. The torus
surface (Figure 2) can be represented as a simplicial complex as shown in
Figure 3. The representation is of course not unique, and from this one begins
to see the combinatorial core of the homeomorphism problem, which remains
after the point set difficulties have been set aside. Given a description of a
surface as a list of triangles and their edges, how does one assess its global
form? In particular, are the sphere and the torus topologically different?
In fact we know how to solve this problem (by the classification theorem of
1.3, and 5.3.3), but not the corresponding 3-dimensional problem.

Much of the difficulty in dimension 3 is due to the existence of knots.
We could define a knot to be any simple closed curve %" in R?, but any such

Figure 1

Figure 2
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Figure 3

" is homeomorphic to a circle and its “knottedness” actually resides in the
complement space R®* — . This space is not finitely describable in terms
of simplexes, so we replace R? by, say, a cube and drill a thin tube out of it
following the “knotted part” of )¢ (see Figure 4).

This figure can be divided into small tetrahedra and hence is a finite
simplicial complex representing the knot. The homeomorphism problem for
such figures is extraordinarily difficult; Riemann was perhaps the first to
think about it seriously (see Weil 1979), and it has been solved only recently
(see Hemion 1979, Waldhausen 1978). The solution extends to more general
“knot spaces” obtained by drilling any number of tubes out of cubes, but
not as yet to all the figures which result from pasting knot spaces together.

=

Figurc 4
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It seems very gratifying that the three dimensions provided by nature pose
such a strong mathematical challenge. Moreover, it is known (Markov
1958) that the homeomorphism problem cannot be solved in dimensions
>4, so we have every reason to concentrate our efforts in dimensions < 3.
This is the motivation for the present book. Our aim has been to give solu-
tions to the main problems in dimension 2, and to select results in dimension
3 which illuminate the homeomorphism problem and seem likely to remain
of interest if and when it is solved.

Like other fundamental problems in mathematics, the homeomorphism
problem turns out not to be accessible directly, but requires various detours,
some apparently technical and others of intrinsic interest. The first technical
detour, which is typical, takes us away from the relation “is homeomorphic
to” to the functions which relate homeomorphic figures. Thus we define a
homeomorphism f: .o/ — 7 to be a one-to-one continuous function with a
continuous inverse f ~': % — o (in particular, f is a bijection). Then to say
o/ and # are homeomorphic is to say that there is a homeomorphism
fiod = B

This point of view enables us to draw on general facts about continuous
functions, which are reviewed in 0.1.2. We wish to avoid specific functions
as far as possible, since topological properties by their nature do not reside
in single functions so much as in classes of functions which are *qualitatively
the same ” in some sense. When we claim that there is a continuous function
with particular qualitative features, it will always be straightforward to
construct one by elementary means, such as piecing together finitely many
linear functions. Readers should reassure themselves of this fact before
proceeding too far, perhaps by working out explicit formulae for some of the
examples in 0.1.3 (but not the “map of the Western Europe™!).

ExERcISE (.1.1.1. Show that any two n-simplexes are homeomorphic.

ExeRciSE 0.1.1.2. Construct a homeomorphism between the surface of a tetrahedron
and the sphere.

0.1.2 Continuous Functions, Open and Closed Sets

The definition of a continuous function on R, the real line, is probably familiar.
We shall phrase this definition so that it applies to any space & for which
there is a distance function |P — Q| defined for all points P, Q. If ¥ = R",
which is the most general case we shall ultimately need, and if

P = (Xl,..l,xn),
Q = (.Vl’ e yn)a

we have

P —Ql = /(x; — y)? + - + (x, — y)".
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Then f is continuous at P if for each ¢ > 0 there is a 4 such that

IP-Ql<d = |f(P)—fQl<e ™
The function f is simply called continuous if it is continuous at each point P
in its domain.

Informally, we say that a continuous function sends neighbouring points
to neighbouring points. In fact, if we define the e-neighbourhood of a point
X to be

N(X)={YeL: | X — Y| <e},

then (*) says that any neighbourhood of f(P) has all sufficiently small
neighbourhoods of P mapped into it by f. (An g-neighbourhood of a point is
often called a ball neighbourhood because this is the actual form of the
above set in the “typical” space R®. One can generalize 4", to any figure
in an obvious way. We later consider e-neighbourhoods of curves, which are
“strips” in R? and “tubes” in R?, and e-neighbourhoods of surfaces, which
are “plates.”)

A set O = & in which each point X has an A (X) < O is called open (in
&). Thus any space & is an open subset of itself, and the empty set ¢ is
open for the silly reason that it has no elements to contradict the definition.
More important examples are open intervals {xeR:a < x < b} in the
line R, and cartesian products of them in higher dimensions (rectangles
in R?, “hyperrectangles” in R").

The complement 4 = &% — € of an open set O is called closed (in ).
The key property of a closed set is that it contains all its limit points. X is a
limit point of a set & if every .4 (X) contains a point of & other than X
itself. It is immediate that a limit point X of % cannot lie in the open set
& — %.If X is a limit point of both & and .¥ — 2 then X is called a frontier
point of 2 and & — 2, and the set of frontier points is called the frontier
(of 2 and ¥ — 2). For example, the frontier of an n-simplex A" in R" is
its boundary, while the frontier of a A™ in R®, m < n, is A™ itself.

For every set ./ there is a smallest closed set ./ containing it, and called
its closure, and a largest open set int(s/) contained in it, and called its
interior.

We now review some important properties of continuous functions,
open sets, and closed sets.

(1) (Bolzano-Weierstrass theorem). A closed set € = R" is bounded if and
only if every infinite subset 2 of € has a limit point (in 6).

If % is bounded, enclose it in a hyperrectangle and bisect repeatedly,
each time choosing a half containing infinitely many points of . Doing this
so that all edge lengths of the hyperrectangle — 0 defines a point X whichis a
limit point of Z by construction.

Conversely, if € is unbounded it contains a set 4 = {P;} of points such
that P, is at distance >1 from P,, ..., P,_, for each i, so £ has no limit
point. O
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(2) Two disjoint bounded closed sets €,, €, have a non-zero distance
d(%,, €,) where

d(€,,%6,) = inf{|P; — P,|: P €%, P,€%,}

If d(%,,%,) = 0 choose PP € €, PP €%, for each n so that | P{" — P{|
< 1/n. If €,, €, are disjoint this distance is always >0, hence the sets {P{}
and {P{} are infinite and have limit points P;, P, (by the Bolzano-
Weierstrass Theorem) which are in %, €, respectively since the sets are
closed. But then |P, — P,| > 0, which contradicts the fact that P, P,
are approached arbitrarily closely by P, P{) which are arbitrarily close
to each other. O

A bounded closed set in R" is called compact. (By (1), an equivalent
definition is that a compact set contains a limit point of each of its infinite
subsets.) In many circumstances compact figures are equivalent to finite
ones in the sense of 0.1.1, and this allows combinatorial arguments to be
applied to rather general figures. Two propositions crucial to this “finitiza-
tion” process are:

(3) The continuous image of a compact set is compact.

Let f be a function continuous on a compact set %. By (1) it will suffice
to show that every infinite 2 < f(%) has a limit point in . If not, there is an
infinite set { f(X,)} of points in f(%) with no limit point in f(¥). But {X}
has a limit point X € € by (1), and every neighbourhood of f(X) contains
points f(X,) by the continuity of f, so f(X) is a limit point of { f(X})} and
we have a contradiction. n

(4) A continuous function f on a compact set € = R" is uniformly continuous,
that is, for any € > O there is a & > 0 such that

X -Y[<dé = [f(X)-f(M)i<e
regardless of the choice of X, Ye 6.

Suppose on the contrary that there is no such & for some fixed ¢. Then
there are X,, X5, ...€ % such that A47y(X,) does not map into A" f(X,))
unless & < 1/n. Let X € € be a limit point of {X |, X,, ...}, using (1). Since f
is continuous there is a & > 0 such that A4"4(X) maps into A",,( f(X)).

Now for n sufficiently large we have not only X, € A 4(X), but also
A1l X ) © A 5(X), since X, approaches arbitrarily close to X. Thus
Ny u(X,) maps mto A, ,(f(X)), and in particular f(X,)€ A", (f(X)).
But then A", ,(f(X)) = 4, (f(X,)) and hence 4", ,(X,) maps into A" (f(X,)),
contrary to the choice of X,,. O

For example, a curve ¢ is a continuous map of the compact interval
{0, 1], so by (4) we can divide [0, 1] into a finite number of subintervals (of
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Figure 5

length < 8) whose images (subarcs of ¢) lie in e-neighbourhoods. If ¢ lies in a
figure with reasonable e-neighbourhoods (say e-balls, for & sufficiently
small), these subarcs can be deformed into line segments as in Figure 5.
Thus ¢ is equivalent to a polygonal curve, up to deformation. The notion of
deformation required for this finitization process will be defined precisely
in 0.1.9.

Exercise 0.1.2.1. If f is one-to-one consider the ordering of points on the curve f(%)
induced by the natural order on the line interval 4. Show that if f(%) meets a closed
set " then it has a first point of intersection with %",

ExERCISE 0.1.2.2. The proofs of (1), (2), (3), (4) above use the Axiom of choice (where?).
This can be avoided by giving an explicit rule for choosing a point P(%) from a closed
set ¥ = R". Devise such a rule, starting in R,

Exercise 0.1.2.3. Construct a countable set of ball neighbourhoods in R*, from which
any open set is obtainable as the union of a subset. Deduce a rule for choosing a point
from an open set.

ExErCISE 0.1.2.4. Show that a continuous one-to-one function on a bounded closed set
has a continuous inverse (and hence is a homeomorphism).

EXERcISE 0.1.2.5. Show that an m-simplex is closed in any R", n > m.
Exercisk 0.1.2.6. Show that o/ = .o U {limit points of .} and int(«?) = & — (¥ — o).

Exercise 0.1.2,7 (intermediate-value theorem). If f:[a, b] — R is continuous, prove
that f takes every value between f(a) and f(b).

0.1.3 Examples of Continuous Maps

Although it is superfluous to introduce another name for functions, we often
call them maps, to emphasize the idea of a function as an image-forming
process. This is particularly appropriate in topology, which owes its existence
to the fact that some visual information is preserved even by arbitrary
homeomorphisms. Homeomorphisms, or topological maps, can be called



0.1 The Fundamental Concepts and Problems of Topology 9

“maps” with some justice, and we extend the usage by courtesy to other
continuous functions (though the continuous function which sends every-
thing to the same point is a poor sort of “map”!).

Interestingly, modern geography has expanded its concept of “map”
to virtually coincide with the general homeomorphism concept. One now
sees maps in which each country is represented by a polygon, with area
proportional not to its actual area, but to some other quantity such as
population. The region being mapped nevertheless remains recognizable,
mainly by the boundary relations between different countries, which are
topologically invariant. Western Europe, for example, is shown in Figure 6.

However, we should not push the geographic analogy too far, as this
can lead to the misconception that topology is just rubber sheet geometry,
in other words, that all homeomorphisms are deformations (defined precisely
as isotopies in 0.1.9). Once we leave the plane most of them are not—it is
quite in order to cut a figure, deform it, and then rejoin, provided that rejoin-
ing restores the neighbourhood of each point on the cut. The torus provides
a good illustration of this cut and paste method. In Figure 7 we cut the torus
along a meridian q, twist one edge of the cut through 27 relative to the other,
then rejoin. A small disc neighbourhood of any point on the cut is separated
into semidiscs at the first step, but reunited after the twist of 2z, so for any
g-neighbourhood on the final torus we can find a §-neighbourhood on the
initial torus which maps into it. The transformation therefore defines a
continuous one-to-one function, as does its inverse, so we have a homeo-
morphism f. It is intuitively clear that f cannot be realized by deformation
alone, in particular b cannot be deformed onto f(b). In fact, when one
studies homeomorphisms of the torus algebraically (6.4) the deformations
are factored out as trivial.

Continuous maps which are not necessarily one-to-one are also important.
For example, a curve is nothing but a continuous map of a line segment. If

Figure 6
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Figure 7

the endpoints have distinct images it is an arc, otherwise a closed curve,
which is also the continuous map of a circle. Points on the arc or closed
curve which are images of more than one point on the line segment or circle
respectively are called multiple points or singularities. For example (see
Figure 8), there is an obvious map of the circle S* into R* which realizes
the figure eight. The figure eight has a double point which in this case is the
image of the two points 7/2, 3n/2 on S'. We refer to a topological map of S!
as a topological S*, otherwise a singular S*. Similarly, one can speak of a
topological disc and singular disc, etc.

An important class of many-to-one maps are covering maps, the paradigm
of which is the covering of ! by R'. This is defined by the function f; R' — S’
which maps successive segments of length 27 onto the circumference of the
unit circle, in other words

f(x) = x mod 2,

where the right-hand side denotes the number y, 0 < y < 2m such that
x =-y + 2nn for some integer n. Covering maps have the property of being
local homeomorphisms, that is, their restrictions to sufficiently small neigh-
bourhoods are homeomorphisms. In particular, the covering of S! by R!
is a homeomorphism on any interval of length <2n. Coverings of 1- and

7
2 3n
2
b4 0 A 0 n
hid
2
3n

ta'

Figure 8
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2-dimensional complexes will be defined precisely later (2.2.1 and 4.3.2);
they turn out to have an elegant group-theoretic interpretation.

0.1.4 Identification Spaces

Every simplicial complex can be embedded in some R™ (0.2), however, it is
not always necessary or natural to do this. The dimension of the ambient
space R"is usually higher than that of the embedded figure, and this leads to
confusion between properties of the embedding and properties of the figure
itself. The problem is that construction inside a given space may involve
bending or intertwining parts in rather arbitrary ways, and to avoid the bias
of a particular method of assembly one should simply list the parts and say
which are to be made equal.

For example, the torus can be constructed from a unit square by joining
opposite sides according to the plan shown in Figure 9. In other words,
points on the perimeter which differ by unit vertical or horizontal translations
become equal. Actually joining opposite sides in R? leads for example to the
torus shown in Figure 10 which treats the curves a and b quite differently,
whereas the original plan is completely symmetrical with respect to @ and b.

The process of “saying points are equal when they’re not” can be formal-
ized by the construction of an identification space whose points are the sets
X ={X,,X,,...} of points X;, X,,... which we want to be equal and

0 b 0
a Q
0 0
b
Figure 9

Figure 10
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whose neighbourhoods A" ,(X) consist of the points in A (X ;) U A (X ) U -,
for sufficiently small e. X is called the result of identifying X,, X,, ....

When the torus is constructed as an identification space of the square
the sets X are either (i) one-element sets (interior points of the square), (ii)
two-element sets (corresponding interior points of opposite sides), or (iii) a
four-element set (corners). The neighbourhoods of these three types of point
are respectively (i) discs, (ii) unions of two semidiscs (=discs), and (iii) the
union of four quarter discs (=disc) which confirms the fact that the torus is
homogeneous—every point has a disc neighbourhood.

A related, but more elegant, construction of the torus is the “plane mod 1.”
One identifies any two points in R* whose x- and y-coordinates differ
by integers. The homogeneity of this space is clear, but it is also clear that
every point is identified with some point in the unit square, from which we
recover the above representation. The map which sends (x, y) € R? to its
equivalence class mod 1 is a covering of the torus by the plane, which we
shall investigate further in 1.4.1 and 6.2.2.

Exercise 0.1.4.1. What is the identification space of R? obtained by identifying points
with the same y-coordinate whose x-coordinates differ by an integer?

0.1.5 The n-ball and the n-sphere

The n-ball is usually defined to be the set
B" = {(XI,.,.,x")eRn:xi’ + .. +x£ < 1}

or any set homeomorphic to it, such as an n-simplex. The frontier of this set is
the (n — 1)-sphere

Sl = {(xy....x)ER X2+ o 4 x2 =1}

In particular, B! is represented by the line segment [—1, 1], and S' by the
unit circle in R2. $° is then the point pair { — 1, 1}. This equatorial pair divides
S! into upper and lower hemi-1-spheres, which are seen to be homeomorphic
to B! by projection onto the x, axis. Thus S' is an identification space of
two B's, obtained by identifying corresponding points on their frontier
S%s (see Figure 11). This construction easily generalizes to n-dimensions
(try it for n = 2), so we have the result that S” is the identification space of
two B™s, obtained by identifying corresponding points on their frontiers.

Figure 11



0.1 The Fundamental Concepts and Problems of Topology 13

ExERCISE 0.1.5.1. Find a homeomorphism between A" and B", and show that it maps
the boundary of A" onto the frontier of B" in R

0.1.6 Manifolds

The most attractive figures from the topological point of view are those which
are homogeneous, in the sense that each point has a neighbourhood homeo-
morphic to the interior of a B" (an open ball) for some fixed n. These are
called the n-dimensional manifolds, or n-manifolds for short.

The simplest examples are R" and S”, whose homogeneity is obvious.
Other examples arise as spaces whose elements are not points (at least, not
in the initial interpretation) but other geometric objects or phases of mech-
anical systems.

A good example is given in Figure 12 which shows the system of two rigid
rods free to rotate about P (which is fixed) and Q, and constrained to move
in a vertical plane. The space of positions of this system is clearly 2-dimen-
sional and homogeneous, but it comes as a surprise to find it is the torus!
The reason is simply that position is uniquely determined by values 0 < 6
< 2rand 0 < ¢ < 2m, as is position on the torus if we interpret 6 and ¢ as
longitude and latitude (see Figure 13).

An example from geometry is the space of all unit tangents to the unit
sphere. Using any reasonable measure of the distance between two tangents,
the space is clearly homogeneous and locally 3-dimensional (for example,
use two coordinates to fix the point of contact with the sphere, one for the
direction of the tangent), hence a 3-manifold. However, there is no obvious
coordinate system for the whole space. In fact this is a manifold we have not
seen before, and it will be identified only in 8.3.4.

Figure 12
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Figure 13

It is less easy to tell, in general, when a figure constructed as an identifica-
tion space is a manifold, and the neighbourhoods of individual points may
have to be checked, as we did for the identification space of the square in
0.1.4. The check in that case revealed a 2-manifold (the torus). On the other
hand, if we identify all three sides of a triangle as in Figure 14, the result ¥
is not a manifold, because a point P on one of the sides has a “book with three
leaves” as neighbourhood (Figure 15) and presumably no neighbourhood
homeomorphic to a disc. We shall not prove this, however, it is possible to
show this complex is not a 2-manifold by computing its fundamental group
(see Chapter 4) and showing that it is unequal to the group of any 2-manifold
by the methods of Chapter 5.

Exercise 0.1.6.1. What is the dimension of the space of all straight lines through the
origin in R3? Describe this manifold as an identification space of S2.

Figure 14

Figure 15
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Figure 16

EXERCISE 0.1.6.2. Show that the complex % above may also be obtained by pasting a
disc onto the figure obtained by identifying the ends of Figurc 16 after a twist of 2n/3.

ExErcISE 0.1.6.3. Show that the only l-manifolds are R! and S*.

0.1.7. Bounded Manifolds

The n-simplex does not appear to be a manifold because we cannot find
open ball neighbourhoods for points on its boundary. Instead, the boundary
points have *“half-n-ball” neighbourhoods, homeomorphic to the open n-
ball minus the open half-space determined by a hyperplane through its
centre. A figure in which every point has either an open n-ball or half-n-ball
neighbourhood is called a bounded n-manifold or n-manifold with boundary.
If we were to prove that the open n-ball and half-n-ball were really not
homeomorphic then we could define the boundary of a bounded n-manifold
in a topologically invariant way as the set of points with half-n-ball neigh-
bourhoods; it would coincide with the boundary we have already defined
for the n-simplex (0.1.1), and we would also know that bounded manifolds
are not manifolds.

These results are correct, however they are not as useful as they seem. In
dimension 2 we can distinguish manifolds from bounded manifolds by the
fundamental group (4.2.1 and 5.3.3), while in dimension 3 the problem is to
distinguish manifolds from each other rather than from bounded manifolds.
We shall therefore adopt the easier course of using “boundary” as a term
which is useful in the discussion of simplicial complexes, without appealing
to its topological invariance, just as we use genuinely nontopological terms
such as “length” and “straight line.” The same applies to “dimension,”
which is in fact intimately related to “boundary.”

The nontopological definitions of these terms are as follows.

The dimension n of a simplicial complex is the maximum dimension
among its simplexes. (Thus » exists automatically for a finite complex. For
an infinite complex its existence is made part of the definition, see 0.2.1). The
boundary 0% of an n-dimensional simplicial complex % is the “mod 2 union”
of the (n — 1)-simplexes occurring as faces in 4. That is, one counts the
number of occurrences (assumed finite, 0.2.1) of a given (n — 1)-simplex as a
face among the simplexes of €, reduces it mod 2, and takes the union of the
(n — 1)-simplexes which are counted once. An example is given in Figure 17.
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Figure 17

If % is the complex shown on the left, then ¢% is given by the figure on the
right because a, b, ¢, d occur twice and e, f, g, h occur once.

0.1.8 Embedding Problems

Next to the homeomorphism problem, the most important type of topo-
logical problem is that of distinguishing different embeddings of one figure in
another. An embedding of 4, in ¥, is a one-to-one continuous map

1%, =6,

Given €, and %, the first question is whether an embedding exists, and then
if there is one, how many? The latter question of course assumes that we only
distinguish embeddings which differ in a topologically significant way.
This will be clarified further in 0.1.9, for the moment we shall illustrate the
kind of results available by looking at embeddings of S! in R!, R%, and R3.

(1) 8! cannot be embedded in R'. An embedding of S is equivalent to a
continuous map

£:10,1] —» R!

which is one-to-one except that f(0) = f(1). This is impossible by the
intermediate-value theorem (Exercise 0.1.2.7).

(2) An embedding of S! in R? is a simple closed curve in the plane. By the
Jordan-Schoenflies theorem (0.3.9) any such curve may be mapped
onto the unit circle by a homeomorphism of R2. Presumably we should
not distinguish embeddings which are equivalent up to homeomorphism
of R?, hence there is only one embedding of S' in R?.

(3) Tt is intuitively clear that there are different embeddings of S! in R3,
namely, different knots. We shall prove in Chapter 4 that there are
infinitely many embeddings, by finding knots 2", J,, ... such that
R® — ", and R’ — &, are nonhomeomorphic for i # j. Then there
certainly cannot be any homeomorphism of R* which maps #"; onto ;.

Exercisk 0.1.8.1. Use an embedding argument to show that R' is not homeomorphic
to R2.
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Exercise 0.1.8.2. Use the Jordan-Schoenflies theorem to show that there are only
finitely many ways to embed a finite graph (1-dimensional simplicial complex) in R2,
If %, denotes the graph with r vertices 1, 2,..., n and edges {i,j} foreach i #j < n,
show that % ; does not embed in R?, but that "5, .# ¢, and #", emhed in the torus.

0.1.9 Homotopy and Isotopy

The homotopy concept captures the notion of deformation of a map. Two
maps f: 6, - ¥,and g: €, — ¥, are called homotopic if there is a continuous
map

h:[0,1] x €, > €,

such that h(0, x) = f(x) and h(1, x) = g(x). We can think of h as a deforma-
tion process over the time interval [0, 1], and the section h.(x) = h(t, x) at
time ¢ as the map into which f has been deformed by time 1.

The most important case is where 4, = S?, so that f and g are closed
curves in %,. For a picture illustrating this case see Figure 133 in 3.1.5. It
turns out that the study of homotopic curves is the most important tool in
the classification of manifolds of dimension < 3. Not surprisingly, a manifold
of small dimension is determined to a large extent by the behaviour of curves
inside it; in particular we can distinguish the sphere and the torus in this way
(see Figure 18). Any curve ¢ on S? is null-homotopic, that is, homotopic to
a point, whereas we can prove that the curve ¢ on the torus is not. The pro-
perty of being null-homotopic is obviously preserved by homeomorphisms,
whence it follows that S? and the torus are not homeomorphic.

A space in which every closed curve is null-homotopic is called simply
connected; so the difference between S° and the torus can also be expressed
by saying that S? is simply connected but the torus is not.

This type of reasoning would not be very useful if each case required an
ad hoc argument that certain curves are not null-homotopic. The power of
the homotopy concept lies in algebraic properties which ultimately permit
us to compute a fundamental group for each complex (0.5.1) and systematically
reduce homotopy questions to group theory.

The group properties depend crucially on the fact that the curve is not
required to be simple at any stage, and in fact the deformation may create
more singularities than were present at the beginning. Only then can one
introduce a product of closed curves, and cancel a closed curve by its inverse.

Figure 18
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Figure 19

The natural product of two curves p, g which begin at P—their concatenation
—will obviously have a multiple point at P (as shown in Figure 19) and the
natural inverse p~ ' of p will lie on top of p but with the opposite orientation
(pp~ ' is then null-homotopic). These ideas are formalized in 3.1.4-3.1.6.

If homotopy is the applied notion of deformation in topology, there is
nevertheless a pure notion, which we call isotopy. An isotopy is a homotopy
h for which every section h, is a homeomorphism (onto its image). In particu-
lar, during an isotopy of a simple closed curve the image remains simple at
every stage.

Isotopy seems to be a more natural notion of deformation, but it is not
algebraically tractable. In the case of simple curves on a 2-manifold the
situation is saved by a theorem of Baer 1928 (6.2.5) which says that simple
curves are isotopic if and only if they are homotopic. This enables us to
classify the embeddings of S' in a 2-manifold by computations in the funda-
mental group.

Isotopy is a suitable equivalence relation for classifying embeddings of
S! in surfaces, but definitely not in R?, since a knot can be isotopic to circle.
The “knotted part” can be shrunk to nothing without acquiring a singu-
larity at any stage. Figure 20 shows an example (Alexander 1932). A better
notion in this case is that of ambient isotopy: two curves in R® are ambient
isotopic if one is mapped onto the other by a homeomorphism of R? isotopic
to the identity map. In particular, ambient isotopic curves must have homeo-
morphic complements, which is not the case for a knot and the circle, as
we shall see in 4.2.5.

ExercisE 0.1.9.1. Show that any homecomorphism of R is isotopic either to the identity
or the map x — —x. What is the situation in R? and R*?

S
Figure 20
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0.2 Simplicial Complexes

0.2.1 Definition and Basic Properties

Recalling the definition of a simplex and its faces in 0.1.1, we define an
n-dimensional simplicial complex (n-complex) 24" to be a union of simplexes
of dimension <n satisfying the following conditions:

(i) Each simplex meets only finitely many others.
(ii) Two simplexes are either disjoint or their intersection is a common face.

It is best to think of cutting the n-simplexes out of R", then assembling
the complex as an identification space, as in 0.1.4. Nevertheless it is also
possible to embed the whole complex in a suitable R™, as we shall see in 0.2.3.

Since an n-simplex is determined by its vertices, an n-complex is determined
by a list of its vertices, together with those subsets of the vertices which cor-
respond to simplexes. Since any face of a simplex is itself in the complex, it
follows that any subset of an element of the list is itself in the list. In particular,
the vertices are listed as the singleton subsets. It is not necessary to give co-
ordinates for the vertices, merely distinct names, since different choices of
coordinates give homeomorphic simplexes and hence homeomorphic
complexes. This description, called a schema, is therefore combinatorial in
the strictest sense of the word.

As an example we write down the schema for the 2-complex shown in
Figure 21, consisting of a triangle with an attached line segment. It is a
consequence of the triangulation and Hauptvermutung results of 0.2.5 that
all homeomorphism questions for 2- and 3-manifolds reduce to combina-
torial questions about schemata.

Condition (i) in the definition of simplicial complex is the local finiteness
condition. It is automatically satisfied when there are only finitely many
simplexes, in which case we call the complex finite. It is clear that a finite
complex is compact, and similarly local finiteness implies local compactness,

P,
Py (P Py, Py}
(P, P}, (P, P3}, (P3P}, {Pg, Py}
{Po}. {Pi} (Pl (Ps}
Py P

Figure 21
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that is, a neighbourhood with compact closure for each point. More im-
portantly, local finiteness implies every point has a simply connected (0.1.9)
neighbourhood, that is, one in which every closed curve is null-homotopic.

A simplex A is simply connected because it is convex (0.1.1). This allows
any curve ¢ in A to be contracted to one of its points P by moving each point
on ¢ along the ray from P so that its distance from P at time ¢, 0 <t < 1,
is a fraction (1 — t) of its initial distance. With local finiteness one can find
an e-neighbourhood of any point P which contains only simplexes Ay, ..., A,
containing P, and then any curve in this neighbourhood can be contracted
to a point by sliding it down rays to a common point of A, ..., A, in the
same way.

The union of the simplexes containing a given vertex P in a complex 4 is
called the neighbourhood star of P. Typical neighbourhood stars are shown
in Figure 22. The neighbourhood star is a suitable combinatorial notion of
aneighbourhood, because it is homeomorphic to the closure of any sufficiently
small e-neighbourhood of P. A homeomorphism is obtained by mapping
each line segment from P to the frontier of the e-neighbourhood linearly
onto its prolongation to the boundary of the simplex in which it lies.

It follows that if € is an n-manifold then each of its neighbourhood stars is
a topological B".

P

(1-complex) (Z-mnifold)
Figure 22

Exercise 0.2.1.1. Show that an infinite complex is not compact.
Exercist 0.2.1.2. Construct a figure in R? which is not locally simply connected.

Exercise 0.2.1.3. In a simplicial n-manifold, show that the faces not containing P in the
neighbourhood star of P constitute a topological 8"~ .

0.2.2 Orientation

A l-simplex A' has a natural orientation as the topological image of the unit
interval [0, 1]. Namely, if f:[0,1] - A! is a topological map we let
f(x) < f(nifx < y. If Py = f(0), P, = f(1) we can describe the orientation
combinatorially by the ordered pair (P, P,) and pictorially by

Py »— - P,.
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In general, we interpret the ordered (n + 1)-tuple (Py,..., P,,1) &8s an
orientation of the n-simplex A" with vertices Py, ..., P,, . Orientations are
equivalent if they differ by an even permutation of the vertices, so there are
in fact two possible orientations, +(Py, ..., P,, ;) which is just (P,,...,
P,.,),and —(Pg,..., P, ), obtained by an odd number of exchanges of
vertices.

In a 2-simplex the orientation can be indicated by a circular arrow as
shown in Figure 23. An orientation of an n-simplex induces an orientation
in each face, simply by omitting the vertices not in that face.

An orientation of an n-complex is an assignment of orientations to its
simplexes. The orientation is coherent if n-simplexes which share an (n — 1)-
dimensional face induce opposite orientations in that face. An example of
what a coherent orientation for a 2-manifold looks like is given in Figure 24.
Intuitively, one can slide a circular arrow all over the surface and match it

Py
@ (Po. P\. Py) = (Py. Py, Po) = (P, Fo, Py)
s
Py
A_)& (Po. Py, P1) = (Py. Py, Po) = (P, Py. Py)
P,

Figure 23

Figure 24

Pl
P,
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Figure 25

with the circular arrow drawn in each triangle. A complex is called orientable
if it has a coherent orientation.

The classic nonorientable figure is the Mobius band (Figure 25). The
reader is invited to triangulate this surface and see why it cannot be oriented
coherently.

0.2.3 Realization in Euclidean Space

Any n-complex can be embedded in R*"*1,

To motivate the proof, first consider how to embed a 1-complex in R3.
A topological embedding is certainly possible if we simply bend the edges to
avoid collisions, but a rectilinear embedding is also possible if we place the
vertices on a suitable twisted curve. There are many curves with the property
that no four points on them are coplanar, so chords meet only when they
have a common endpoint, and hence can serve as edges for the 1-complex.
One such curve is given by the parametric equations

X =t y = t2, z=13
for if distinct points ty, t,, 3, t, lie on the plane
ax + by + ¢z = d,
they are four distinct roots of the cubic equation

at +bt> +ct? =d

which is impossible.

The argument readily generalizes to embed an n-complex in R*"*!. We
put vertices on the curve

X1 :[’ XZ:tz, ey Xon+1 =t2n+1

and then no 2n + 2 distinct vertices lie in a common hyperplane, as this
would imply an equation of degree 2n + 1 with 2n + 2 distinct roots. It
follows that two n-simplexes (each determined by n + 1 vertices) meet only
if they have vertices in common. Since the simplex determined by the com-
mon vertices is itself in the complex, we have an embedding. t
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The above proof was found by Leigh Samphier. Other proofs use only
linear algebra (one using the above curve may be found in Giblin 1977),
but they are slightly longer. In any case, the result that an mth degree equa-
tion has <m roots may be proved using the mean-value theorem of calculus,
and hence is quite elementary.

The dimension 2n + 1 cannot be lowered. We saw this for n =1 in
Exercise 0.1.8.2. Van Kampen 1932 proved the generalization of this fact
for the “complete n-complex” on 2n + 3 vertices.

Exercise 0.2.3.1. Show that one turn of the helix x = cost, y = sint, z =t also has
the property that no four points are coplanar.

0.2.4 Cell Complexes

Viewing a figure as a simplicial complex is one way to assemble it from
cells, in this case simplexes. Taking a cell to be any figure homeomorphic to a
simplex, we can also consider more complicated methods of assembly,
perhaps involving identification of the boundary of a cell with itself. For
example, the construction of the torus by identifying sides of the square may
be viewed as a 2-dimensional cell structure with one 0-cell (the vertex 0), two
1-cells (the edges a and b) and one 2-cell (the square) as shown in Figure 26.
In general, a cell complex is constructed by first assembling the O-cells;
then attaching the 1-cells by identifying their boundaries with O-cells to form
the 1-skeleton; then attaching the 2-cells by mapping their boundaries onto
the 1-skeleton to form the 2-skeleton; and so on. These stages for the above
cell structure for the torus are shown in Figure 27. If the attaching maps are

0 b 0
a a
0 0
b
Figure 26

(1)

Figure 27
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sufficiently simple, as they will be in all the cases we consider, it is possible
to reduce a cell decomposition to a simplicial decomposition by elementary
subdivision. An elementary subdivision of a 1-cell is the introduction of a
new interior O-cell, an elementary subdivision of a 2-cell is the introduction
of an interior 1-cell connecting 0O-cells, and in general one m-cell is divided
into two by the introduction of a new interior (m — 1)-cell spanning an
(m — 2)-sphere in its boundary.

For example, the cell decomposition of S? into two hemispheres can be
made simplicial by the series of elementary subdivisions of 1-cells and 2-
cells shown in Figure 28. Conversely, one can view the initial cell decom-
position as the result of amalgamating certain cells in a simplicial decom-
position (reverse the arrows). Since all the cell decompositions we use can be
viewed in this way, it will not be necessary to make our definitions of cell
complex and elementary subdivision any more formal, since in the last
resort one can always view cells and the dividing cells inside them as unions
of simplexes in a simplicial decomposition. The point of considering cell
complexes at all is to minimize the number of cells, which usually helps to
shorten computations.

Exercise 0.2.4.1. Obtain the two decompositions of the torus in Figure 29 by elementary
subdivision of the square cell structure. Which of them is simplicial ?

Figure 29
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EXERCISE 0.2.4.2. The harvcentric subdivision of a simplex A" is obtained by introducing
anew vertex at the centre of mass (the barycentre) of each face, and then introducing all
simplexes of dimension <n determined by the enlarged set of vertices. Why is this a
subdivision? (Hint: Generalize the theorem that the medians of a triangle are con-
current.)

Show that by repeating barycentric subdivision a sufficient number of times in a
finite n-complex, the diameter of all simplexes may be made less than a given ¢ > 0.

Exercise 0.2.4.3. Making the obvious interpretation of barycentric subdivision for
arbitrary l-cells, not necessarily straight, show that the second barycentric subdivision
of a 1-dimensional cell complex is simplicial.

EXERCISE 0.2.4.4. Show that the boundary and orientability character of a simplicial
complex are invariant under elementary subdivision.

0.2.5 Triangulation and Hauptvermutung

QOur definition of a manifold in 0.1.6 depended on the notions of neighbour-
hood and homeomorphism, and it is by no means clear that every n-manifold
is a simplicial complex. However, this is true for n < 3. For n = 1 it is clear,
since the only 1-manifolds are R' and S'; for n = 2 it was proved by Rado
1924; and for n = 3 by Moise 1952. A simplicial decomposition of a manifold
is also called a triangulation, and proofs that 2- and 3-manifolds possess
triangulations may be found in Moise 1977.

We shall bypass these theorems by confining our attention to figures which
are simplicial complexes. As pointed out in 0.1.1, we shall certainly not miss
any reasonable figures with this approach. It is also possible to give purely
combinatorial criteria for 2- and 3-complexes to be manifolds. For 2-
manifolds these are given in 1.3.1, and for 3-manifolds in 8.2..1 and 8.2.2.

Finally, one can give a combinatorial definition of homeomorphism
using the notion of elementary subdivision. Two simplicial complexes are
certainly homeomorphic if they possess isomorphic schemata (schemata
which are identical up to renaming of vertices). More generally, they are
homeomorphic if their schemata become isomorphic after finite sequences of
elementary subdivisions, in other words, if they have a common simplicial
refinement. We say that two complexes are combinatorially homeomorphic
if this is the case. We might naively expect a common simplicial refinement
to follow from superimposing the two simplicial decompositions of the
manifold, if indeed the two manifolds are the same. However, one must
bear in mind that in mapping one decomposition onto the other rectilinearity
may be lost, so that two edges, for example, may intersect in infinitely many
points. (The superimposition error has a distinguished history, being first
committed by Riemann 1851 in discussing the connectivity of surfaces.)

The Hauptvermutung (main conjecture) of Steinitz 1908 states that
homeomorphic manifolds are combinatorially homeomorphic. It is known
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to be correct for manifolds of dimension <3, in fact it is a rather easy con-
sequence of the triangulation theorems. We shall derive the Hauptvermutung
for triangulated 2-manifolds as a consequence of the classification theorem in
1.3.7 and 5.3.3.

With the proofs of triangulation and Hauptvermutung we are entitled to
say that the homeomorphism problems for 2- and 3-manifolds are purely
combinatorial questions. To answer them, however, we need combinatorial
tools from group theory, and it turns out to be easier to develop these tools
directly, without appeal to Hauptvermutung. This is the route we shall take
in this book, particularly for 3-manifolds. The theory of 2-manifolds under
elementary subdivisions is presented in Chapter 1, but before it can be
completed we need the group theory of Chapters 2 and 3, which also serves
for higher dimensions.

0.3 The Jordan Curve Theorem

0.3.1 Connectedness and Separation

The statement, as a theorem, that every simple closed curve in R? separates
it into two regions (Jordan 1887) was important in the history of topology
as the first moment when an “obvious™ fact was seen to require proof. As
is well-known, Jordan’s own proof was faulty, and this has only added to the
theorem’s reputation for subtlety. The first rigorous proof was given by
Veblen 1905, and a variety of lengthy proofs have been reproduced in
textbooks. A very short and transparent proof is given in Moise 1977, and
we reproduce it below, slightly modified. Little use will actually be made of
the theorem, but it is an excellent example of the process of reducing general
topology to combinatorial topology.

The first step is to reduce the general notion of connectedness to one in
terms of polygonal curves. This reduces questions about general curves to
questions about polygonal curves, for which the separation properties are
easily proved.

The key proposition is the following:

Let P, Q €0, an open set in R". Then the following statements are equivalent.

(i) P, Q are the endpoints of a polygonal arc < 0.
(ii) P, Q are the endpoints of an arc <.
(1) P, Q lie in an open set (' < ¢ which is not the union of two disjoint non-
empty open sets.

(iif) = (i). Consider the set of all points R which are connected to P by a
finite chain of open balls 4,, ..., %, < (. That is

Pe#,, Re%B,, and B,nHB,.1 # O.
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These points R obviously constitute an open set (', < @. If (0 # O, then
¢ — Op1s also open, because any ball < ¢ which 1s partly in O is entirely in
Op, hence any S € ¢ — (p has its ball neighbourhoods in ¢ — Op.

Then if Q ¢ Cp the set ¢' decomposes into disjoint nonempty open sets
¢~ Opand O ~ (€0 — Op), which is a contradiction. Thus Q is connected
to P by a finite chain of open balls, and hence by a polygonal arc.

(i) = (ii) is trivial.

(i) = (ii1). Let a be an arc connecting P and Q, and let ¢" be an open set
= a, obtained as the union of ball neighbourhoods in @ of all the points in a.
If ¢” decomposes into disjoint open sets ¢, ¢, . .., let X be the first point of
a not in @” (Exercise 0.1.2.1). Then X lies on the frontier of ¢ and cannot
belong to any open set disjoint from ", so we have a contradiction. O

In general topology an open set € is called connected if it is not a disjoint
union of nonempty open sets. This is also expressed by saying ¢ has only
one component, the component containing a given point P being the (p con-
structed above. Thus we have just proved that a connected open set ¢ < R”
has the stronger property of being arc connected, that is, any two points in @
are the endpoints of an arc in ¢; and furthermore the arc can be assumed
polygonal.

A set & contained in a set & separates points P, Q€ ¥ — % if any arc
from P to Q in &2 meets &. If 2 — & is open (as it will be if Z is open and &
is a closed set, such as a curve), then an equivalent statement (by the above
proposition) is that P and Q lie in distinct components of & — .

From now on we refer to a simple closed curve in R? as a Jordan curve.

Exercise 0.3.1.1. Show that ¢, = {Q e ¢: P, Q arc the endpoints of an arc <@} =
{Q e C: P, Q arc the endpoints of a polygonal arc < ¢},

0.3.2 The Polygonal Jordan Curve Theorem

A polygonal Jordan curve p separates R* into two components

The open set R* — p has at most two components, determined by the
components of A" — p, where .4/ is a strip neighbourhood of p in R%. For
any point P € R? is connected to one “side” of .4 by a line segment, and
any point in .4~ — p is connected to cither P, or Q, by a polygonal arc in
A" — p (see Figure 30).

We now prove that R* — p has at least two components.

Consider a family of parallel lines | in a direction different from that of
any segment of p. Intuitively, P is outside p if it lies on an unbounded segment
ofan! — p, or in general if one crosses p an even number of times in order to
reach P from an unbounded segment of an | — p (see Figure 31). (Touching
a vertex as shown does not count as a crossing.) The points PeR?* — p
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Figure 30
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Figure 31

with this property obviously constitute an open set ¢, and the points with the
contrary property constitute an open set £ (the “inside™). Since ¢ and ¥
are disjoint by definition, R? ~ p has at least two components, and therefore
exactly two. O

We define a polygon 2 to be a region in R* consisting of a polygonal
curve p and its inside. The next section deals with separation in polygons.

Exercise 0.3.2.1. Show that the polygon 2 determined by a polygonal Jordan curve p
may be triangulated, by first dividing it into convex polygons. Deduce that

p = 0% = frontier of #

and that the inside of p is the interior of 2.
Exercise 0.3.2.2. Show that a polygonal arc does not separate R?,

Exercise 0.3.2.3. Show that a semidisc (half 2-ball, cf. 0.1.7) may be separated by an arc.

0.3.3 O-graphs

A figure 7 consisting of a polygonal Jordan curve p and a simple polygonal
arc p; connecting points Q, S on p, and elsewhere lying in the interior of the
polygon 2 determined by p, is called a 0-graph.

If 7 is a O-graph and p,, p, denote the arcs into which p is divided by Q, S,
then p, separates an interior point P, of p, from an interior point P, of p, in 2.
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Asin 0.3.2, the components of R* — J are determined by the components
of &7 — 7, where A is a strip neighbourhood of J in R2. The latter com-
ponents are

(i) a strip 475 around the “outside” of p
(ii) a strip 4", commencing on the “inside” of p,
(iii) a strip .4#", commencing on the “inside” of p,.

Strips (ii) and (iii) continue up the sides of p, (see Figure 32) and either close
into separate strips or (somehow!) join into one. In fact there must be three
separate strips by 0.3.2, since they are pairwise separated from each other by
polygonal Jordan curves p; U p;.

Now extend p; to the outer frontier of 4" by transverse segments at
each end, to become p (see Figure 33). Then (# u A7) — p) consists of two

Figure 32

Figure 33
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components, determined by .4, and .4",, which contain P, and P, res-
pectively. Thus there is no arc from P, to P, in (# U .A4";) — p5, and a
fortiori none in 2 — ps.

In other words, p; separates P, from P, in 2. O

0.3.4 Arcs Across a Polygon

If P, Q, R, S are points in cyclic order on the boundary p of a polygon 2, and
a is a simple arc from P to R which elsewhere lies in int(2), then a separates
Q from S in 2.

Since p is polygonal, points Q’, S’ € int(#) sufliciently close to @, S res-
pectively can be connected to them by line segments in int(#). Furthermore,
these line segments will miss a if they are sufficiently short, since the closed
scts Q, S, a are nonzero distances apart by 0.1.2(2). Thus if Q, S are not separa-
ted by a, neither are Q’, §" and they then lie in the same component of the
open set # — (p u a). It follows from 0.3.1 that @', §’ are connected by a
polygonal arc in 2 — (p U a), so Q, S are connected by a polygonal arc p,
in # — a, which meets p only at Q, S. We can assume p5 is simple, since loops
can be omitted, so we have a 6-graph (see Figure 34).

Then, by 0.3.3, p; separates P from R in £, contrary to the existence of
the arc a connecting them. O

Corollary. If a,, a, are two simple arcs from P to R in int(#), disjoint except
at P, R, and if a, is the first arc encountered on an arc p from Q to S in int(P),
then a, is the last encountered.

Suppose on the contrary that the first and last points encountered (which
exist by exercise 0.1.2.1) X, Y both lie on a, as in Figure 35. Let p, be the
subarc of p from @ to X; let a be the subarc of a, from X to Y; and let p, be
the subarc of p from Y to S. Then p; U a U p, is an arcin £ — a, connecting
Q to S, contrary to the fact that a, separates these points. O

S
Figure 34
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Figure 35

0.3.5 The Jordan Separation Theorem

If ¢ is a Jordan curve in R?, then R* — ¢ is not connected.

Since ¢ is compact by 0.1.2(3), we can assume it lies in the interior of a
square ABCD < R Let A'D’ be the left-most vertical in the square which
meets ¢, and B'C’ the rightmost. They exist, otherwise there would be
vertical disjoint from ¢ but at zero distance from it, contrary to 0.1.2(2).
Now choose points P, R where ¢ meets A'D’, B'C’ respectively, and con-
struct the hexagon APDCRB (see Figure 36). This polygon contains ¢ in its
interior except at P and R.

We now define a point Z which intuitively lies “inside” ¢, and prove that
¢ separates it from d(ABCD).

Let ¢, ¢, be the two arcs into which ¢ is divided by P, R, where c, is the
first encountered on a vertical from Q €int(4'B’) to Seint(D'C’). Let X
be the last point at which this vertical meets ¢,, and Y the first point below
X at which it meets ¢,. X, Y exist by the corollary in 0.3.4. Then let Z be any
point in int(X Y) (see Figure 37).

Now if Z lies in the same component of R* — ¢ as any point on (4BCD)
there is a polygonal arc connecting them by 0.3.1, and hence a polygonal

A A B’ B
/
\
\ ¢
) R
P
D D C C

Figure 36



32 0 Introduction and Foundations

Figure 37

Tk

Figure 38

simple arc a between Z and a point W # P, R on the boundary of the hexagon.
P, R divide this boundary into upper and lower parts. If, say, W is on the
upper part we construct the #-graph shown in Figure 38 by uniting a with
ZS. By hypothesis a does not meet ¢, and ZS does not meet ¢, s0o au ZS
does not meet ¢,. But by 0.3.3, a u ZS separates P from R, contrary to the
existence of the arc ¢, connecting them.

The argument is completely analogous when W is on the lower part. [

0.3.6 Arcs in a Polygon

Let P,Q, R, S be points in cyclic order on the boundary of a polygon % and
let ay, a, be disjoint simple arcs which lie in int(2) except that a, begins at P
and a, ends at R. Then Q and S are not separated by a, U a, in 2.

Since Q, §, a,, a, are disjoint closed sets, there is some minimum distance
& > 0 between them, by 0.1.2(2). We now pave R? with rectangular “bricks”
of diameter <§/2 in the pattern shown in Figure 39. This paving has the
property that any finite (arc) connected union ./ of bricks has a boundary
consisting of disjoint Jordan curves, and by paving so that 02 does not pass
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Figure 40

through a corner or touch (as distinct from cross) an edge of a brick, the same
is true for o/ N P

Now let o7, consist of the bricks which meet a,, or meet bricks which meet
a,. Then a; < int(/,) but &, does not meet a,, since the distance between
ay, ay is >0 (see Figure 40). The Jordan curves which constitute 8(.7, N 2)
do not meet a, except for a segment X Y containing P in §%. The boundary
arc a of .o/, N 2 complementary to XY therefore runs in £ from the point
X between Q and P to the point Y between P and S. Thusif p, is the subarc of
02 from Q to X and if p, is the subarc of % from Y to §, then the arc
p1 v awv p,connects Qto Sin 2 — (a, U a,). d

By moving py, p, into int(#) by a sufficiently small distance, and removing
any loops, we can connect @, S by a simple polygonal arc which is in int(%)
— (a; U a,) except at its endpoints.

0.3.7 No Simple Arc Separates R?

If a is a simple arc in R?, then R* — a has only one unbounded component
because a is bounded. We show that R* — a has no bounded component.

If there is a bounded component # of R? — aits frontier is a closed subset
of a. The minimal subarc of a containing the frontier of # therefore has its
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endpoints on the frontier. This subarc will then also separate R?, so we may
as well assume that the endpoints T, T of a are on the frontier of # to begin
with.

Since T, T are limit points of the connected set & they cannot be separated
by any curve disjoint from 8. We now derive a contradiction by constructing
such a curve.

We use the method of 0.3.5 to enclose a in a polygon £ whose boundary
meets a at exactly two points P, R, not necessarily the endpoints T, T’ of a.
By the concluding remark of 0.3.6 there is a polygonal arc p from Q to S in
int(#) which misses the subarcs a;, a, of a from P to T and R to T’ res-
pectively (see Figure 41).

Figure 4]

Let a; be the subarc of a from P to R, and let ¥ and W be the first and last
points of p on a;. Let p; be the subarc of p from @ to V; let a’ be the subarc
of a, from V to W; and let p, be the subarc of p from W to S. Then by 0.3.4
p1 U d U p, separates P from R in 2, and hence T from T, since T is con-
nected to P and T’ to R. However, p, U @' U p, does not meet 4, since p,, p,
lie in the unbounded component of R? and o' = a, so we have a contra-
diction. Ol

The above theorem depends crucially on the fact that a simple arc is
the topological image of a closed interval, and hence has endpoints. The
topological image of an open interval can obviously separate RZ—for
example, an infinite straight line.

Exercisk 0.3.7.1. Give an example of the topological image of an open interval which is
bounded and separates R2.

ExErcisk 0.3.7.2. Show that an open disc cannot be separated by a simple arc and deduce
that the boundary of a bounded 2-manifold is topologically invariant (cf. 0.1.7 and
Exercise 0.3.2.3.).

EXERCISE 0.3.7.3. Where does the above proof assume that a is simple?



0.3 The Jordan Curve Theorem 35

0.3.8 The Jordan Curve Theorem

If ¢ is a Jordan curve in R%, then R* — ¢ has exactly two components.

Since we know from 0.3.5 that R? — ¢ has at least two components, one
of which is unbounded, it will suffice to show that there is only one bounded
component.

Enclose ¢ in a polygon # as in 0.3.5, so that ¢ meets 62 at exactly two
points P and R, and let ¢y, ¢,,Q, S, p = 08, X, Y, Z also be as in 0.3.5 (see
Figure 42). In addition, let U be the first point at which p meets ¢ (on ¢, by
definition of ¢,) and V the last (on ¢,, by 0.3.4). Let p, = QU let a, be the
subarc of ¢; from U to X; let p, = XY; let a, be the subarc of ¢, from Y to
V; and let p; = VS. Then if there is any bounded component #' of R? — ¢
other than the one # containing Z, a = p, v a, v p, v a, U p; does not
meet it. However, a separates P from R by 0.3.4, so the frontier of 4’ cannot
contain both P and R. But then the frontier of %’ lies in an arc of ¢, which is
impossible by 0.3.7. O

Figure 42

Exercise 0.3.8.1. Show that a simple closed curve on S? separates it into two com-
ponents, and that a simple curve in R? which goes to infinity at both ends (make a
suitable definition of this) separates R? into two components.

0.3.9 The Jordan-Schoenflies Theorem

To strengthen the Jordan curve theorem we might ask whether the inside of
a Jordan curve ¢ is in fact a topological disc. This was already suggested by
the Riemann mapping theorem of Riemann 1851, though not actually proved
until Schoenflies 1906, 1908. In fact one has the even stronger result that a
Jordan curve can be mapped onto a circle by a homeomorphism of the
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whole of R?, and any homeomorphism of R? is isotopic to either the identity
or a reflection. Thus there is only one way to embed an S! in R? from the
topological point of view.

The proofs of these theorems can be obtained with machinery similar to
that used above, but rather than take up more space we simply refer the
reader to Moise 1977.

In higher dimensions this extension of the Jordan curve theorem breaks
down, in particular for an S? in R?. It remains true that the sphere separates
the space into two components, but neither need be homeomorphic to the
components obtained with the standard embedding. Thus there are topo
logically distinct embeddings of S* in R?. Some of these will be studied in
42.6.

0.4 Algorithms

0.4.1 Algorithmic Problems

Strictly speaking, it is more logical to define the notion of “algorithm”
before we do anything else, but to understand the purpose of algorithms one
needs to know the kind of problems they are intended to solve. Typical
algorithmic problems are

(i) Decide whether a natural number n is prime.
(ii) Decide whether an algebraic function f is integrable in terms of ele-
mentary functions
(iii) Decide whether two schemata X, X, define homeomorphic simplicial
complexes.

Each of these problems consists of an infinite set of questions which can be
effectively enumerated as finite expressions (words) in some finite alphabet.
For example (i) is

{Is 1 prime?, Is 2 prime?, Is 3 prime?, ...}

and its questions, like those of the other two, can be expressed in the alphabet
of the ordinary typewriter keyboard. The purpose of an algorithm is to
answer the questions in a systematic, mechanical way.

An algorithm is therefore a computer, the first general definition of which
was given by Turing 1936 (and independently by Post 1936). The Turing
formulation, now known as the Turing machine, illustrated in Figure 43,
involves a finite alphabet ./ = {blank. S, ..., S,}, a finite set of internal
states 2 = {qy, ..., gn}, @ read/write head and a tape. The tape is infinite
and divided into squares, each of which can carry a single alphabet symbol.
Only finitely many squares are nonblank at any time, and the initial tape
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S, .« .« Tape

g; | Head

Control

Figure 43

expression (input) represents the question being asked. The read/write head
begins on the leftmost symbol of the question, and it is directed to perform a
sequence of atomic acts at unit time intervals by the internal control, which is
initially in state g,. An atomic act is uniquely determined by the pair

(4:, S;) = (current internal state, scanned symbol)
and it is of three possible types:

(a) Replace §; by S, move one square to the right, go into state g, or
(b) Replace §; by S,, move one square to the left, go into state g;, or
(c) Halt.

The set & of responses to the (g;, S;) situations possible for a given ./
and 2 therefore completely determines the behaviour of the machine, and
we may identify a machine M with a list of such responses, or more precisely
with a triple (&7, 2, #) where #: o/ x 2 — o/ x {left, right} x 2 U {halt}
1s the response function.

M answers the input question after a finite number of atomic acts by
halting on some specified expression, say 1 for “yes” and 0 for “no.” M solves
a problem by correctly answering all questions in it.

Experience and certain theoretical arguments (Turing 1936) suggest that
Turing machines precisely capture the notion of algorithm, but there is no
question of proof since we are trying to formalize an informal notion. Thus
when we claim that a problem is unsolvable, the statement actually proved
is that no Turing machine solves the problem.

The formal notion was slow to appear because until the twentieth century
it was taken for granted that algorithms existed, the only problem was to
find them. As Hilbert put it: “ We must know! We shall know!” If one expects
to find an algorithm there is no need to define the class of all algorithms—
this is necessary only if nonexistence is to be proved.

Perhaps the first to claim nonexistence of an algorithm was Tietze
(Tietze 1908, p. 80), who said of finitely presented groups: “Die Frage, ob
zwei Gruppen isomorph sein, [ist] nicht allgemein losbar” (The question
whether two groups are isomorphic is not generally solvable). This problem,
which arose from the homeomorphism problem (see 0.5.1) was eventually
proved unsolvable by Rabin 1958.
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The main objective of the present book is to find algorithms to solve
topological problems, so the formal theory of unsolvability is left to the final
chapter. However, along the way we shall point out where algorithms are
unknown, or known to be nonexistent, and also indicate the reasons why
unsolvability occurs in topology.

0.4.2 Recursively Enumerable Sets

The Turing machine concept formalizes all computational notions, including
the notion of effective enumeration we used to define algorithmic problems.
The most convenient procedure is to subsume all notions under that of the
partial recursive function (p.r. function): viewing the input to a machine M
as the argument x of a function, the expression on the tape when (and if)
M halts is taken as the function value ¢,(x). Since M need not halt for all
inputs, ¢,, is generally only a “partial” function.

An algorithm may then be defined as a p.r. function ¢, whose domain is
a set of questions Q, and such that

1 if the answer to Q is “yes,”
¢M(Q) = . LT3 tH
0 if the answer to Q is “no.

Thus a problem is just the domain of a p.r. function.

This glib definition does not seem to be what we originally had in mind,
so let us see why the domain of a p.r. function ¢,; can indeed be effectively
enumerated. Observe first of all that the words in the alphabet of M can be
effectively enumerated as w,, w,,...; first list the one-letter words, then
the two-letter words, and so on. We can similarly enumerate all computations
of M; first the one-step computations on input words of length 1, then the
two-step computations on input words of length <2,and so on;and whenever
a w, is found to lead to a halting computation, we place it on another list #.
Then % is an effective enumeration of the domain of ¢,,. The domain of a p.r.
function is called a recursively enumerable set (r.e. set).

Although the complement of an r.e. set with respect to the set of all words
is enumerable, it need not be recursively enumerable. This remarkable fact
can even be illustrated by a natural example—the homeomorphism problem
for finite complexes.

The set of all pairs (X;, Z;) of combinatorially homeomorphic schemata
can be recursively enumerated by a machine which systematically tries all
elementary subdivisions, halting when isomorphic refinements of X;, X;
are obtained. However, we cannot recursively enumerate the complement
of this set, as this would yield a recursive enumeration of non-combinatorially
homeomorphic pairs. Such an enumeration is unknown, and with good
reason—by enumerating both the set and its complement until we found a
given pair (Z;, T;) we could decide whether X;, X; were combinatorially
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homeomorphic, whereas this problem is known to be unsolvable (Markov
1958).

0.4.3 The Diagonal Argument

The diagonal argument was first used by du Bois-Reymond 1874 and Cantor
1891 to show that certain collections of objects could not be enumerated.
Despite the negative conclusions drawn from the argument, it is in fact highly
constructive, and this makes it equally suitable for proving nonexistence of
effective enumerations.

For example, Cantor proves that one cannot enumerate all sets & of
natural numbers. Namely, any enumeration ¥, ¢;, 45, ... fails to include
the “diagonal set”

D ={n:n¢ 9}

because 2 differs from the set &, with respect to the number n (ne ¥, =
ngD,n¢ $,=ne).

Cantor needs & only as a counterexample to an assumed enumeration
of all ¥, but its nature becomes more interesting when we have a specific
list of sets %, &,, Y3, ... . In particular, we can obtain an effective enumera-
tion of the r.e. sets by effectively enumerating the descriptions of Turing
machines, and % is then a specific non-r.e. set. The surprise 1s that

A" = complement of ¥ = {n:ne ¥}

is r.e.! One performs a giant computation which looks at each step of each
Turing machine computation, and whenever a number n is found in ¢, it
is placed in %",

Thus the effectivized diagonal argument yields an r.e. set ¥ of natural
numbers whose complement is not r.e.. Then there is no algorithm for deciding
membership of £, since any algorithm would immediately yield a recursive
enumeration of the complement of "

A is the direct source of all known unsolvability results in mathematics.
Such results are obtained by showing that Turing machines can be simulated
by various mathematical systems, and then showing that solutions of certain
problems in these systems would imply algorithms for deciding membership
of ). The first, and most direct simulation was obtained by Post 1947 by
means of finitely presented semigroups. Post was able to conclude from this
that the word problem for semigroups (see 0.5.7) was unsolvable. Novikov
1955 did the same for groups, and this paved the way for the unsolvability of
the homeomorphism problem proved by Markov 1958. See Chapter 9.

All these problems inherit the asymmetric character of # —the “yes”
answers can be effectively enumerated, but not the “no” answers. The process
of enumerating the “yes” cases is sometimes called a semidecision procedure,
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and it invariably consists of searching systematically through computations
until one with the desired result is found. The enumeration of homeomorphic
pairs (Z;, X;)in 0.4.2 is an example, and others will be mentioned in 0.5.8.

0.5 Combinatorial Group Theory

0.5.1 The Fundamental Group

In 0.1.9 we sketched the ideas of product and inverse for closed curves in a
complex €. Given a fixed origin P for the curves (the choice of which is
arbitrary if % is arc connected), we call curves p, p’ equivalent if there is a
homotopy between them which leaves P fixed. The equivalence class of p is
denoted by [p]. Then the natural product - for curves (concatenation) extends
in a well-defined way to equivalence classes by

(1] [p2] = [p1p2]

and this product inherits the obvious associativity of concatenation. There
is an identity element 1, represented by the “point path” P, and most im-
portantly

(pP)-lp '1=0pp'1=1
so that [p~!] is the inverse [p]~ ! of [p]. The homotopy between pp~!
and P which proves this is suggested by Figure 44.

Thus we have a group 7,(¥) of equivalence classes of closed paths in %,
called the fundamental group (Poincaré 1895). A rigorous construction of
7, is given in 3.1. It is clear that the fundamental group is invariant under
homeomorphisms, so one way to prove ¢, and %, are nonhomeomorphic is
to prove (%) # m,(%,).

This idea is made feasible by the fact that we can read off a “ finite presenta-
tion” of 7,(%) from a finite cell decomposition of ¥. The method is to use
the finitization process sketched in 0.1.2 to deform all paths onto the 1-
skeleton of €. All paths in the 1l-skeleton are homotopic to products of
finitely many generating paths a,, ..., a,; hence a,,...,a, generate all

v

Figure 44
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paths in %, up to homotopy. Any homotopy between paths then reduces to a
scries of elementary deformations across the cells Ay, ..., A, in the 2-skeleton
of €. If we let r{a;) denote the null homotopic path which runs from P to
A;, round dA; and back to P, then the relations

r{a;) =1

completely determine 7,(%¥). The details of this construction are carried out
rigorously in 3.2-3.4 and 4.1.

ExerCISE 0.5.1.1. Show that any closed edge path with origin P in the I-complex

N

is homotopic to a product of ¢!, af?, where

0.5.2 Generators, Words, and Relations

The above sketch of the fundamental group is intended to suggest that the
proper way to view groups in combinatorial topology is in terms of “genera-
tors” and “relations.” We shall now drop the topological interpretation and
discuss generators and relations in purely combinatorial terms.

A generator is a letter g;, and it has a formal inverse a; !. A word is any
finite sequence

afials - ait

of generators or their inverses, so that each ¢; = T 1, where g;"! denotes q;.

The product w,w, of words wy, w, is the concatenation of the correspond-
ing sequences, in other words, the result of writing w,, then w,. Since con-
catenation is trivially associative, this is an associative product.

We abbreviate the product g;a; - - - a; (n factors) by af. The empty word is
denoted by 1, so that 1w = wl = w for any word w.

A relation is an equation r = 1 where r is a word (called a relator in this
context), and words w, w' are called equivalent with respect to relations
r; = lifwis convertible to w’ by a finite sequence of operations of the following

types

(1) insertion or deletion of a subword r jo
(i1) insertion or deletion of a subword a;a; ! or a; !a;.

The relations a;a; ' = a; 'a; = 1 implicit in (ii) are called trivial relations,
and words equivalent by trivial relations alone are called freely equivalent.
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The equivalence class of w (with respect to a fixed set of relations) is
denoted by [w], and we extend the product operation to equivalence classes
by setting

[wil-[wy] = [wyw,].
This product is well-defined, for if w) is equivalent to w,, then w)w, is equiv-
alent to w,w,, since the operations which convert w; to w] are indifferent to
the presence of w, concatenated on the right. Thus the product is independent

of the choice of representative for the first factor, and similarly for the second
factor.

0.5.3 Group Presentations

The structure {a,, a,,...; ¥, r,....» of equivalence classes of words in the a;
with respect to the relations r;, under the product operation, is a group G.

The product in G inherits associativity from the associativity of con-
catenation:

wil([wo1lws]) = [wi1Iwaws] = [wiwaws] = ([w1[wa]) [wsl.

The identity element is [1] because

[(1][w] = [1w] = [w] = [w][1]
and the inverse of [w] exists, because if

=aj - ai
and we set w™ ! = a; % ---q; " it is clear that ww™! is freely equivalent to
1, so

[wllw™'] = [ww '] =[1]

and we can let [w] ™! = [w™1]. O

We usually drop the equivalence class brackets and simply speak of the
element w of G. This has the same advantages as speaking of the “rational
number 4” when we really mean the rational number {$, %,2,...}.

The expression {a;, d;,...: "y, F3,...» is called a presentation of G. Of
course, a group G has many presentations, but we do not distinguish a
presentation from G itself except to point out properties of G which are
evident from some presentations but not from others. For example, G is
finitely presented if it has a presentation in which the sets {a;} and {r;} are
finite. Some finite presentations of well-known groups are

Z=<a;—>
Z, = {a;a%®)
Z, x Z3 = {a, b;a%, b® aba”'b™'>.
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When a relation r; = 1 is written more naturally as some other equation
r; = ri we sometimes write this equation in the presentation in place of r;.
For example, Z, x Z, is better expressed as {a, b; a, b®, ab = ba).

The theory of groups in terms of generators and relations is largely self-
contained, however it is sometimes useful to interpret relations more con-
ventionally in terms of normal subgroups and quotients. We now review
these notions.

Exercise 0.5.3.1. Does the trivial group {1} have a presentation? Does every group have
a presentation?

0.5.4 Coset Decomposition, Normal Subgroups

If H is a subgroup of G the sets
Hg = {hg:he H}

for g € G are called right cosets of G modulo H. They constitute a partition
of G, called the right coset decomposition, because if Hg |, Hg, have a common
element

higy = h29,
then
9291 ' =h;'hyeH
in which case
H = Hg,g91'
and
Hg, = Hg,.

Thus cosets are either equal or disjoint.
H is called normal if

gHg ' = H foreachgeg,

where gH and gHg ™! are defined in the obvious analogy to Hg. Normal

subgroups are characterised by the following proposition.

Any normal subgroup N of G is of the form N(v,, v,, .. .) consisting of elements
expressible by words

1
* H gkvﬁtg,zl s V;€G
k=1

and called the normal subgroup generated by vy, v, ...€ G.
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N(vy, 05, ...) is a subgroup because products and inverses of words of
the form (*) are again of this form. To show normality, let

£

x = Mg, vjge !
$O
gxg ' = g(g,v5eg g™

= Hy(giv5ge Ng

= [(gg)vi(gg:) ™" € N(vy, 02, .. ).
Hence gNg~*' < N and by repeating the argument with g~ ' in place of G
we get g~ 'Ng < N. But

g'Ngc N = NgcgN = NcgNg™’

which is the reverse containment, hence gNg~' = N.

Conversely, any normal subgroup N of G is of the form N(vy, v, .. ).
Namely, let v,, v,, ... be all the elements of N. Then vj’e N = g, g, teN
(by normality) = Ig, v%’g, ' € N since N is a subgroup, and anyelementv;e N
is a trivial product of this form. O

The proposition may be interpreted as saying that the operations required
to generate a normal subgroup N of G from an arbitrary set {v, v,, .. .} eG
are inverses, products, and conjugates by arbitrary elements of G. Thus when
we speak of generating a normal subgroup we include the operation of con-
jugation, in contrast to generating a group which requires only inverses and
products.

0.5.5 Quotient Groups and Homomorphisms

The cosets of G modulo a normal subgroup N are made into a group G/N
by setting
Ng,-Ng; = Ngi1g,.

The group properties are inherited from G and we only have to show that
the product is well-defined. Any representative of Ng, has the form xg, for
some x € N, and if we use xg, instead of g, the product is

N(xg,)g, = (Nx)g.192
= Ng19;
since Nx = N because x € N. If we use another representative xg, of Ng,
we get
Ng.(xg,) = g1Nxg, by normality
= g{Ng, since Nx =N
= Ng,g, by normality.

Thus the product is independent of the choice of representatives. O
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¢:G - G/N defined by ¢(g) = Ng is an example of a homomorphism,
that is,

#(g192) = dg1)P(g2)
&(1) = 1.

It is called the canonical homomorphism of G onto G/N. The kernel of ¢,
ker(¢) = {g: ¢(g) = 1}, is equal to N.

Conversely, if ¢ is any homomorphism of G onto a group G', then ker(¢) is a
normal subgroup N of G and G' = G/N.

If x € ker(¢), then gxg~! € ker(¢) also, because

Plgxg™") = dId(g™") = dgg™") = $(1) = L.
Thus gNg~! = N, and by the argument of 0.5.4, N is normal. Now
B(x1) = Pp(xz) < Plx)P(x)" ! =1

< Plx;x; ') =1
< x;x;'eN
< x;€Nx,

if and only if x;, x, are in the same coset of G mod N. Thus distinct elements
of G’ correspond to distinct cosets of G modulo N, in fact ¢(x) corresponds
to Nx, so ¢ can be identified with the canonical homomorphism: G — G/N,
and hence G’ with G/N. d

This proposition yields the standard test for ¢ to be an isomorphism (one-
to-one homomorphism), namely ker(¢) = {1}. We have constructed an
isomorphism between G’ and G/N in effect by setting N, the kernel of ¢,
equal to 1.

Unless we are interested in the isomorphism itself we do not distinguish
between corresponding elements in isomorphic groups. For example, if
there is an isomorphism of G into G’ (a monomorphism or embedding) we
are likely to say G is a subgroup of G'. The kind of isomorphism most likely
to interest us is one from a group onto itself, called an automorphism (see
for example 7.1). The automorphisms of a group G themselves constitute a
group, under composition, called the automorphism group of G.

0.5.6 Dyck’s Theorem (Dyck 1882)

G={<ay,,as,...;r;r,...0 is the quotient of F = {ay, a,,...; — (called
the free group on generators a,, a,, . ..) by its normal subgroup N(r,,r,, ...).

Since the function ¢: F — G which sends an element of F to its equivalence
class in G is clearly a homomorphism, with kernel equal to the set of words
equivalent to 1, it will suffice to show that the kernel equals N(ry, r5,...).
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Certainly, any Ilg,rf<g, ' € N is equal to 1 in G, since each r; = L. Con-
versely, suppose a word w = 1 in G. We shall show that each insertion or
deletion of rf! in w can be accomplished by multiplying w by g; 'rif'g,
for some g, .

Note firstly that deletion of /! can always be accomplished by insertion of
ri ! next to it, followed by cancellation (which is valid in F). Thus it remains
to deal with insertions.

Let w = uv — ur;v be the insertion of r; between the factors u, v of w.
We can obtain the same result by multiplying w by v™'r;v, since ur;v is
freely equivalent to uv- v~ rjo.

Repetition of this process for each insertion in the sequence required to

convert wto 1 gives a word

— 1. ek

wllg, “rikgi
which is freely equivalent to 1, and therefore
w = Hg,r;*g; ' inF
sothat w e N(ry, r,,...). O

Dyck’s 1882 paper is the beginning of combinatorial group theory as a
subject, and the first to recognize the fundamental role of free groups. Dyck
viewed free groups as the most general groups, since any other group is
obtainable by imposing relations on them. The explanation of relations in
terms of normal subgroups and quotients suggests a reconstruction of
combinatorial group theory in more conventional algebraic terms. This can
indeed be done, including the definition of free groups themselves, but it
proves to be an object lesson in the impotence of abstract algebra. All sub-
stantial theorems in combinatorial group theory still require honest toil with
words and relations, and the best labour-saving device turns out to be the
topological interpretation of 0.5.1, rather than algebra.

Exercise 0.5.6.1. If G is any group show that the result of adding relations v; = 1,
v, =1,...,t0 Gis G/N(vy, v,, .. .).

0.5.7 The Word Problem and Cayley Diagrams

When a group G arises as a fundamental group, as in 0.5.1, null-homotopic
paths correspond to words w which equal 1 in G. Thus the problem of
deciding null-homotopy (contractibility to a point) is reduced to deciding
whether a given word w = 1 in G. Even though we can compute a presenta-
tion of G, this problem is not trivial, and its fundamental importance for
topology and group theory was first recognized by Dehn 1910, who called it
the word problem.
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Early topologists, such as Poincaré, Tietze, and Reidemeister, frequently
commented on the difficulty of group-theoretic problems in topology, on
occasion (Reidemeister) saying that the fundamental group seemed merely to
translate hard topological problems into hard group-theoretic problems.
This pessimism was vindicated when Novikov 1955 proved that the word
problem (for specific, finitely presented G) was unsolvable. Novikov’s proof
1s based on the idea of Post 1947 of simulating Turing machines by systems
of generators and relations. A word corresponds (roughly) to the tape
expression on a Turing machine M, and the relations permit the word to be
changed to reflect the atomic acts of M. (The technical difficulty, which is
absent in the semigroup case, is the presence of relations ¢;a; ' = a; 'a;, = 1
which do not correspond to acts of M. See Chapter 9.)

Solution of the word problem for G is equivalent to the construction of
a figure € called the Cayley diagram of G, introduced for finite groups by
Cayley 1878 and for infinite groups by Dehn 1910. If G is generated by
ay, d,, ..., then €5 is a graph with a vertex P, for each distinct g € G and an
oriented edge labelled a; from P, to P,, for each generator q;,. It follows that
each vertex has exactly one outgoing, and one incoming, edge for each
generator. Examples (labelling each vertex g instead of P, for simplicity) are
given in Figure 45. The last example is constructed by noting that there are
six distinct elements g = 1, b, b?, a, ab, ab?, then multiplying each of these
by a, b and using the defining relations to reduce each product to one of the
six forms already chosen.

Figurc 45
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Each word

— %1, .. gtk
- aix alk

determines a path from P; to P, by following the labels ;,..., a; in
succession, with or against the arrow according as the exponent ¢ is +1 or
— 1. Tt follows that w = 1 if and only if the path is closed.

Thus if € can be effectively constructed we have a solution of the word
problem for G.

Conversely, if the word problem for G can be solved, we can construct €.

Effectively list the words of G as wy, w,, ... and as each w; appears, use
the solution of the word problem to decide whether w; = any w; earlier on
the list (see if w;w; ' = 1). If not, put w; on a second list. The second list is
then an effective enumeration of the distinct elements of G, which we use as
labels for the vertices of €.

As each vertex P, is constructed, we again use the solution of the word
problem to find which of the words w;q; is equivalent to a w, already on the
second list (if an equivalent is not found, one will be found later by repeated
checking as the second list grows). For each such word we construct an
oriented edge labelled 4, from P, to P, , = P,, . This is an effective process
which eventually gives cach vertex and edge in €. |

Since G has many different presentations, ¥ is not unique. However,
if there is a solution to the word problem for one finite presentation of G
there is a solution for any other finite presentation of G, hence the effective
constructibility of ¥; does not depend on the presentation chosen.

Exercise 0.5.7.1. Prove the last remark.
EXERCISE 0.5.7.2. Show that {w:w = | in G} is r.e. when G is finitely presented.
Exercisk 0.5.7.3. Sketch the Cayley diagram of the free group F, = {a, b; - -).

ExXERCISE 0.5.7.4. Describe the Cayley diagrams of the free abelian groups 7 x Z x ... x
Z={ay,.... a,:aa; = aa; (i, j < m)) as figures in R™.

Exercise 0.5.7.5. Figure 46 shows the Cayley diagram of a group. Why is this group
nonabelian?

Show that the group is the group of symmetries of an equilateral triangle.

0.5.8 Tietze Transformations

Tietze transformations are simply the obvious ways of transforming a finite
presentation {dy, ..., Gps Fis - oy Pap-
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Figure 46

T,: Add a relation r,, {(=1) which is a consequence of r,, ..., r,. (That
is, r,4 1 18 equivalent to 1 with respect to the relations vy = --- =r, = L.
We write this r, ..., F, = 7p4y.)

T,: Add a generator a,,. , together with a relation

Auryr =Wy, ..., 4,
which defines it as a word in the old generators.

The inverse transformations, which we denote by T;!, T3 !, can also be
applied when meaningful.

Tietze’s Theorem. Any two finite presentations of a group G are convertible
into each other by a finite sequence of Tietze transformations.

Suppose G has presentations {day, ..., Gmy; ¥y, ...,y and {aj, ..., ap;
ry, ..., ray, which we abbreviate to {a;; r(a;)> and {a;; ri(a;)>. We use the
notation w(x;) to express the fact that w is a word in the letters x;, and denote
the result of substituting a word y; for x; in w(x;) by w(y,).

Since both presentations denote the same group, there are words «; in
ay, 4, ... representing the a; and hence satisfying the relations r(«;). Then
the r,(a;) = the ri(«;) since all relations in the g; are consequences of the
r{a;). Similarly there are words ¢, in d}, a5, . .., representing the q;, and the
ri{a;) => the r(a,).

We can therefore make the following modifications of the group presenta-
tion by Tietze transformations:
{ai; ria:))
- <ag; ria), r{a)y by T, since the ria;) = the ri(a))
= Cag, agrifa), o), a; = a;y by T,
- {a, ai; rj(ai)a r;-(aé), rj(a;)’ a;=oy byT,
- Lay, a; ra), ri{a), a; = @ by T7!
- {a;, a;; rj(ai)a "}(GE), a;=aj, a4 =0y byT ™)
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since the relations a; = o; are true in the group and hence consequences
of the relations already present. But (*) is symmetric with respect to
primed and unprimed symbols, so it could equally well be obtained from
{aj; ri(a;)). By reversing the latter derivation we obtain

Cairia)y = (*) = Lai; rifap). o

Since we can effectively enumerate all consequences of a given finite set of
relations, and hence all possible sequences of Tietze transformations which
can be applied to a given presentation, Tietze’s theorem shows that we can
effectively enumerate all finite presentations of a given group. Thus the
problem of deciding when two presentations are the same, the isomorphism
problem of Tietze 1908, is similar to the word problem—in both cases we can
effectively enumerate the pairs of equal objects, and the difficulty is to find
the pairs of unequal objects. It actually follows from basic results of recursive
function theory (see Rogers 1967) that the two problems are of the same
degree of unsolvability, that is, a solution of one would effectively yield a
solution of the other. (In particular, the isomorphism problem is unsolvable.)
In individual cases, however, the isomorphism problem is usually harder to
solve than the word problem.

On the positive side, the Tietze theorem is often a slick way to prove
existence of algorithms or semidecision procedures. For example, if G has a
property that can be recognized from one of its presentations we can eventu-
ally verify this property by enumerating all the presentations of G. Examples
of such properties are:

(i) being abelian (all generators commute)

(ii) being finite (all relations of the form g;a; = a)
(iii) being a specific finite group (relations given by multiplication table)
(iv) being free (no relations).

Exercise 0.5.8.1. Show that {a, b; abab™'> = {c, d; c2d*).

ExERCISE 0.5.8.2. Suppose that infinitely many consequence relations or new generators
can be added in a transformation of type T, or T, respectively. Deduce that any two
presentations of the same group are then convertible to each other by a finite sequence
of Tietze transformations.

Exercist 0.5.8.3. Give an algorithm for finding «; and =« from two presentations
{a;;: ria)y and (ai: ri{a)> of the same group. (This gives a “uniform” solution to
Exercise 0.5.7.1.)
Exercise 0.5.8.4. If G has a finite presentation, show that in any presentation

G = <a11-‘~san;r1’r2"“>

all but a finite number of relations are superfluous.
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0.5.9 Coset Enumeration

As a final example of the way finiteness can be discovered by systematically
enumerating words, consider the case of a subgroup H of a finitely presented
group G. If the set of cosets Hg for g € G is finite, H is said to be of finite index
in G. In this case there is a finite set {g,, ..., gx} Of coset representatives such
that

G = Hg, v --uHg,.
We now show how to find such a set, if one exists.

G = Hg, v --- v Hg, if and only if the set {Hg,, ..., Hg,} is closed under
right multiplication by the generators of G and their inverses. That is

Hg;a; = some Hyg;, Hg;a; ' = some Hg;.

for each generator ay, ..., a, of G. Now assuming H is effectively enumer-
able, we can verify the equality of two cosets by enumerating their members,
along with an enumeration of equal words in G, until we find a common
element.

It therefore suffices to enumerate all the finite sets {g,, ..., gi} in G, and
for each one try to verify that {Hg,, ..., Hg,} is closed under right multi-
plication by looking for equal pairs Hg;a;, Hg; and Hg;a; ', Hg;-. Eventu-
ally such a verification will succeed. O

A more practical version of the above idea is known as the Todd-Coxeter
coset enumeration method (Todd, Coxeter 1936).
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54 1 Complex Analysis and Surface Topology
1.1 Riemann Surfaces

1.1.1 Introduction

Topology may have had its tentative beginnings in isolated thoughts of
Descartes, Leibniz, and Euler, but it was Riemann who brought the subject
into the mainstream of mathematics with his inaugural dissertation in
Gottingen in 1851. His introduction of the Riemann surface in that year
showed the indispensable role of topology in questions of analysis, and thus
ensured the future cultivation of the subject by the mathematical community,
if only for the service of analysis. In fact, of course, Riemann surfaces were
quickly seen to be of interest in themselves, and were the source of two ideas
of profound significance in later topology-—connectivity and covering spaces.

It hardly does Riemann justice to present only the topological aspects of
his theory, however, limitations of space aside, it may be worthwhile to avoid
the heavy burden of analysis found in texts on Riemann surfaces. The next
section therefore presents a purely topological notion of Riemann surface,
the branched covering of the sphere. Just a few words of motivation may be of
value before we start.

In complex function theory it is convenient to treat the value oo as just
another number, as far as possible, and one therefore completes the complex
number plane by a point at infinity. The completed plane may be viewed as a
sphere, since stereographic projection from the north pole N of a sphere
resting on the plane at the origin O establishes a continuous one-to-one
correspondence between the finite points P’ of the plane and the points
P # N on the sphere. The point N itself is naturally reckoned to correspond
to «o (Figure 47).

A complex function w(z) can then be viewed as a map of the sphere onto
itself, but of course the map need not be one-to-one, even for algebraic
functions such as z2. In a natural sense, w(z) = z? maps the sphere twice onto
itself except at O and oo, since any other value of w is the square of two distinct
values +\/v_v and ~\/;. In fact, if we divide the z-sphere into hemispheres

Figure 47
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by any meridian (say, the one corresponding to the imaginary axis) then
both are mapped onto the whole z-sphere by squaring (Figure 48).

If we were to place the z-sphere so that each point lay above its image
on the w-sphere the result would be what we call a 2-sheeted cover of the
w-sphere with branch points O and oo. We cover the w-sphere with two
spheres, each slit along a meridian, and identify the edges according to the
labels a and b shown in Figure 49. The slit spheres are the sheets. The points
O and o have the property that a small circuit around them on the covering
surface is not closed —it passes from one sheet to the other as if on a ramp—
nevertheless each of these points has a disc neighbourhood, the perimeter of
which is obtained by making two circuits around the branch point (Figure 50).

Thus the covering surface is a genuine surface from the topological point
of view; unfortunately our psychological need to force the identified edges to-
gether in ordinary space, causing a line of intersection, tends to obscure this
fact.

>
e
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Figure 50
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The “two-valued function” z = ﬁ can be viewed as a single-valued
function if its domain is taken to be the covering surface instead of the w-
sphere—the values in each hemisphere of the z-sphere occur as w moves
over each sheet. The general purpose of Riemann surfaces in function theory
is to provide domains on which all algebraic functions become single-valued.

1.1.2 Branched Coverings of the 2-sphere

It is easy to see that the Riemann surface for w = z%, and in fact any example
with only two branch points, is topologically a sphere. The interest in the
theory stems from the fact that topologically different surfaces occur when
there are more branch points.

In general a branched covering of the 2-sphere is determined by a finite
set of branch points P, ..., P,, a sheet number n, and specification of the
way the sheets join up around the branch points. To do this, each branch
point P; is associated with a permutation

= (kys ks u ky)

of the integers 1,2, ..., n, the interpretation of which is that an anticlockwise
circuit of P; starting on sheet j ends on sheet k;. These permutations must
satisfy a consistency condition which is obtained as follows.

Take a point P # P, ..., P, and not on the same great circle as any pair
P, P,(when P, P, are antipodal choose the great circle joining them arbitrarily)
and connect it to Py, ..., P, by great circle arcs a4, ..., a,, (Figure 51).

We cut the sheets along these arcs and identify their edges according to
the permutations 7; in order to form the covering. Then since P is not a branch
point, any circuit around P must begin and end on the same sheet. Assuming
the subscripts are chosen so that Py, ..., P, is the order of branch points
around P, the permutation determined by a circuit around Pis n m, -+ 7@
and hence the consistency condition is

m?>

MMy My = |
172 m

where 1 denotes the identity permutation.

Figure 51
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(This equation says that =,, ..., m, are arbitrary, which corresponds
to the fact that loops around P,, ..., P, are not related by any nontrivial
homotopies on $* — {P,,..., P,}. In the language of Chapter 4, such loops
freely generate the fundamental group of S2 — {P,, ..., P,}.)

If the surface is to be connected we need =, .. ., 7, to generate a permuta-
tion which sends i to j for each i, j < n--in other words, to generate a
transitive permutation group—since this says that any sheet is connected
to any other. The group generated by n,,. .., x,, is called the monodromy group
of the covering. This term was originally introduced by Hermite 1851 to
denote the group of substitutions of the corresponding algebraic function
mduced by circuits around its branch points.

Now to see that the construction does produce non-spherical surfaces it
suffices to look at 2-sheeted coverings with an even number of branch points
(> 2). We shall place all branch points on a meridian and permute the sheets
along arcs which connect the branch points in pairs. Thus with four branch
points we have Figure 52.

To see the topological form of this surface more clearly we peel off the outer
sphere and place it opposite the inner sphere (Figure 53). Then when the
identified edges are pasted together we get a surface homeomorphic to the
torus (Figure 54). It is easy to see how to construct any surface of the form in
Figure 55 by this method. The more surprising fact is that any Riemann sur-
face is homeomorphic to one of these forms—a result which was proved by
Clifford 1877—indeed it is far from clear that any arbitrary Riemann surface
can even be embedded in R3.

Figure 53
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Figure 54

Figure 55

We shall deduce Clifford’s result as a corollary of the general classification
of surfaces in 1.3, a result first proved rigorously by Dehn and Heegaard
1907. Before doing so, it is of interest to look at some earlier attempts to
classify surfaces.

Exercise 1.1.2.1. Show that the Riemann surface for
w? = (1 — 2%)(1 — k?z2?) k* #£0,1

is topologically a torus.

EXERCISE 1.1.2.2. Is there a 2-sheeted cover with an odd number of branch points?

1.1.3 Connectivity and Genus

The property which distinguishes a torus topologically from the sphere
is the presence of a nonseparating closed curve a (Figure 56). Any points P, Q
outside a on the torus can be connected by an arc which does not meet
a, whereas any closed curve separates the sphere by the Jordan curve theorem.
In general the connectivity of a surface can be measured by the maximum
number of disjoint closed curves which can be drawn on the surface without
separating it. This number is called the genus of the surface (German:
Geschlecht), a term introduced by Clebsch. Surfaces of different genus

Figure 56
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genus 2 genus 3

Figure 57

(Figure 57) are necessarily nonhomeomorphic and Riemann satisfied him-
self that the converse is also true. A somewhat unsatisfactory proof was offered
by Jordan 1866a.

A similar result had already been obtained by M&bius 1863 in fact Mdbius
was the first to classify surfaces into normal forms. Despite his discovery of
the famous one-sided surface which bears his name, Mobius’s classification
deals only with two-sided surfaces. He takes the surface to be smoothly em-
bedded in R*—an assumption which now strikes us as rather restrictive—
and slices it into thin pieces by a family of parallel planes. He then argues that
if the planes are suitably inclined and sufficiently close together the pieces
will be three possible forms of perforated sphere (Figure 58), which he denotes
(a), (ab), and (abc) respectively, where a, b, ¢ are the boundary curves. The
surface is then represented as a formal sum of such terms, for example
Figure 59 is («) + (ab) + (¢) + (bed) + (d). By introducing the symbol
(abed .. .) for the sphere with perforations bounded by a, b, ¢, d, ... and

h 2] ¢

Figure 58

Figure 59
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computation rules which reflect permissible ways of pasting or cutting
perforated spheres, M&bius is able to bring any surface into the form

(a,a,---a,) + (a1a,---a,)

which 1s the normal form surface of genus n — 1 shown in Figure 60.

The normal form for Riemann surfaces obtained by Clifford 1877 is similar
to the Mébius form, but obtained by joining together two copies of the per-
forated disc (Figure 61), along corresponding boundaries. The final variation
of the surface, due to Klein 1882a, is the sphere with handles, Figure 62.
This picturesque term has now become standard.

Figure 60

00 0

Figure 61

Q
O

Figure 62

ExEercISE 1.1.3.1. M§bius’s rules are
(xaja,...)+ (xbyby...) =(aja,...byb, ...},

where x, a,, a,, ..., by, b, ... are all different and elements may be permuted inside
their brackets.

(1) Interpret the transformations LHS (left-hand side) > RHS and RHS — LHS
geometrically.
(2) Use the rules to show that the surface in Figure 63 has genus 4.
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1.1.4 Branched Coverings of Higher Dimension

Potential theory in three dimensions gives rise to branching phenomena
like those encountered in complex function theory (indeed the latter is related
to 2-dimensional potential theory, as is well known). Instead of branch points
one has branch curves, and if R® is completed by a point at infinity the result
is the 3-sphere, S*. Appell 1887 gave an example from potential theory of a
covering of R* branched over a circle, and Sommerfeld 1897, also working
in potential theory, introduced the term “Riemann spaces” for branched
coverings of R,

Branched coverings of R* (or S%) were first studied for their own sake in
Heegaard 1898, where they were used as a means of constructing 3-dimen-
sional manifolds. Proceeding by analogy with the 2-dimensional case,
Heegaard takes a point P not on the branch curves, and connects it to each
branch curve by a conical surface. Since the branch curves may be linked
or knotted it is not generally possible to prevent these cones intersecting
themselves or each other. The best one can do is to position P and the
branch curves so that, when viewed from P, no crossing poinr of the curves is
more than double, in which case the intersection lines on the cones will also
be double (Figure 64). For each piece of a cone, a curve which pierces it and

P
Figure 64
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loops around its edge defines a permutation of the sheets, where each sheet is
a copy of R® or S3.

The typical 3-dimensional sheet minus its branch curves is far more
complicated topologically than the 2-sphere minus a finite set of points,
and one cannot formulate consistency conditions on the permutations until
the relations between loops in the complement of a linked system of curves
are known. The problem in cffect is to determine the fundamental group of
such a space.

This problem was solved by Wirtinger around 1904 and it was the first
significant result in the mathematical theory of knots (see 4.2.3). Knowing
the relations which the permutations had to satisfy, Wirtinger was able to
give a procedure for finding all n-sheeted covers over a given system of branch
curves. Namely, enumerate all finite sets of permutations on n letters, check
whether they satisfy the consistency relations when associated with cone
pieces, then see if they generate a transitive permutation group. The first
exposition of Wirtinger’s method, and its analogy with the determination of
Riemann surfaces, is in Tietze 1908,

(Wirtinger was led to branched coverings in studying the singularities
of functions of two complex variables. In fact, he arrived at a 3-sheeted
covering branched over the trefoil knot, with permutations (12), (23), (31)
associated with the three pieces of the cone from, of all things, Cardan’s
formula for the solution of cubic equations! An account of this example
appears in Brauner 1928.)

While it is possible to enumerate the branched covers of the 3-sphere,
there is no obvious method for deciding when two are the same, as one can
do for Riemann surfaces by computing the genus (see 1.3.7, 1.3.8).

We shall see in 1.3 that the spheres with handles include all orientable
closed surfaces, so branched covers of the 2-sphere (indeed, 2-sheeted covers
alone) are a completely general method of constructing orientable surfaces.
Branched covers of the 3-sphere attained a similar significance when
Alexander 1919b proved that they include all orientable closed 3-manifolds.
(He also proved the generalization to n dimensions.) An interesting recent
result, found independently by Hilden 1974 and Montesinos 1976, is that
3-sheeted covers suffice and that the branch set can be a single (knotted)
curve.

1.2 Nonorientable Surfaces

1.2.1 The Mdbius Band

This surface appears to be the independent discovery of Listing and Mébius,
both of whom mentioned it in unpublished manuscripts in 1858. Its para-
doxical properties—one side and one edge—never fail to astonish those
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Figure 65

meeting it for the first time; nevertheless it is hard to see why such a simple
surface (Figure 65) was not discovered until 1858. Twisted bands occur
frequently as decorative borders in Roman mosaics and searches have been
made for Mébius bands among them, without success (of course any band
with an odd number of half twists is topologically a Moébius band). One
might also look at the history of belt-driven machinery, since at some stage
it was realized that a belt with a half twist wears evenly on “both” sides.

The property of one-sidedness seems to assume that the surface is em-
bedded in ordinary space, however, an intrinsic counterpart to this property
was found by Klein 1876. Klein imagines a small oriented circle (the
indicatrix) placed on the surface, then transported round an arbitrary closed
curve. If there is a curve which brings the indicatrix back with its orientation
reversed then the surface is called nonorientable. The Mobius band has this
property, see Figure 66, as does any surface containing a Mébius band.
Conversely, any nonorientable surface contains a Mdbius band, namely,
a strip neighbourhood of a curve which reverses the indicatrix.

Figure 66
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1.2.2 The Projective Plane

The plane of projective geometry is constructed by adding a line at infinity
to the ordinary plane, with the property that each ordinary line has one
point on the line at infinity. This surface can be realized topologically by
resting a hemisphere on the plane and considering projection from the centre
of the sphere (Figure 67). This establishes a continuous one-to-one corre-
spondence between the finite points P’ of the plane and the interior points P
of the hemisphere. Lines in the plane correspond to great semicircles on the
hemisphere, so the requirement that each line have exactly one point at
infinity forces diametrically opposite points on the boundary of the hemi-
sphere (which represents the line at infinity) to be identified.

Then by projecting the hemisphere vertically onto the plane we obtain
the projective plane in the form of a disc with boundary divided into two
halves identified as in Figure 68. This will be called the canonical polygon
(in this case a 2-gon) for the projective plane.

Returning to the construction using the hemisphere, we can derive an
elegant realization of the projective plane due to Klein and Schlafli 1874.
Namely, identify all diametrically opposite points of the sphere. Since every
point above the equator is identified with one below, we can omit the points
above the equator, in which case we have precisely the original construction.
Klein and Schldfli’s construction shows the complete homogeneity of the
projective plane, in particular the line at infinity (the equator) is no different
from any other line. It also exhibits the sphere as a 2-sheeted unbranched
cover of the projective plane (see 1.4).

It is intuitively plausible that the projective planc cannot be embedded in
R3, though a rigorous proof of this was not available until the Alexander

Figure 67

Figure 68
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Figure 69

duality theorem appeared in Alexander 1923a. The best one can do in R?
is to divide the boundary of the canonical polygon into four equal arcs &/,
a’, a', a’, then join the identified arcs along a single line of intersection
(Figure 69).

The top part of this surface is called a crosscap, and we often describe the
surface as a sphere with crosscap, meaning that a disc has been removed
from the sphere and replaced by a crosscap.

ExerciSE 1.2.2.1. Show that if a disc is removed from the projective plane the result
is a Mobius band. (In other words, a crosscap is a Mdbius band.)

1.2.3 The Klein Bottle

This surface, introduced by Klein 1882a, is the easiest to visualize among the
closed nonorientable surfaces. However, like the others, it cannot be realized
in R* without intersecting itself. One begins with a cylinder whose ends
are identified with opposite orientations, and joins them together as in Figure
70. If we slit the cylinder along a line b parallel to the axis we obtain the Klein
bottle as a rectangle with the edge identifications of Figure 71. This is a more
impartial representation of the surface, since it is easily converted to other

Figure 70
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Figure 72

forms which look quite different when we attempt to realize them in R3,
For example, see Figure 72. This is called the two-crosscaps form and it is
taken as the canonical polygon for the Klein bottle. The physical realization
of the two crosscaps is achieved as in Figure 73. If we now paste along a’
we get the crosscaps in Figure 74, in the same way the crosscap was produced
for the projective plane.
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Figure 73

Figure 74
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Exercise 1.2.3.1 (Hilbert and Cohn—Vossen 1932), Show that the Klein bottle can be
constructed by diametric point identification of a (centrally symmetric) torus.

Exercise 1.2.3.2 (Dyck 1888). Show that the surface in Figure 75 is also a Klein bottle.

N

Figure 75

Exercist 1.2.3.3. Find a curve on the Klein bottle which separates it into two Mobius
bands.

EXERCISE 1.2.3.4. Show that the Klein bottle minus a disc is a “nonorientable handle”
(Figure 76) and that this figure can be deformed isotopically in R? into that shown in
Figure 77.

Figure 76

Figure 77
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1.2.4 Dyck’s Classification of Nonorientable Surfaces

Dyck 1888 gave a classification of nonorientable surfaces analogous to the
classification of orientable surfaces, in which crosscaps take the place of
handles. His proof is not really satisfactory; however, it introduces the
important result

crosscap + handle = 3 crosscaps.

Recalling that a crosscap is just a Mdbius band (Exercise 1.2.2.1). Dyck’s
result can be explained intuitively by attaching a handle to a M&bius band,
then dragging one end of it round the band to make a nonorientable handle
(Figure 78). The nonorientable handle is just a perforated Klein bottle, joined
to the Mébius band along its boundary; in other words, we have two cross-
caps joined to a third.

BN EN N
SRS NSS

It follows that for any surface on which handles and crosscaps both appear
we can remove the handles in favour of crosscaps. The hard part is to show
that these are the only features a surface can have.

The formal version of Dyck’s theorem, which we prove in the next section,
is that any closed nonorientable surface can be represented as a polygon with
edges identified as in Figure 79. The successive pairs g;, a; with the same
orientation are interpreted as crosscaps, as is understandable from the
construction of the two-crosscap form of the Klein bottle in 1.2.3.

Figure 79
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1.3 The Classification Theorem for Surfaces

1.3.1 Combinatorial Definition of a Surface

The precise definition and classification of surfaces from a combinatorial
point of view was first given by Dehn and Heegaard 1907. They define a
closed surface to be a finite 2-dimensional simplicial complex in which each
edge is incident with two triangles and the set of triangles incident with a given
vertex P can be ordered A, A,, ..., A, so that A; has exactly one edge ¢; in
common with A, ;, A, has exactly one edge ¢, in common with A, and these
are the only common edges. Such a neighbourhood complex, the com-
binatorial equivalent of a disc, is called an umbrella by Lefschetz 1975. (See

Figure 80.)

Figure 80
This definition obviously includes all the surfaces we have considered so
far. In particular, the branch points on a triangulated Riemann surface have

umbrella neighbourhoods, so Riemann surfaces will be included in our
classification.

1.3.2 Schemata

It will be convenient to build surfaces from polygons other than triangles,
SO we now go to an alternative definition. A (finite) closed surface is a (finite)
set of polygons with oriented edges identified in pairs. Such a system is called
a schema. This definition is equivalent to the former, for if the polygons are
given sufficiently fine simplicial decompositions, which are compatible on
identified edges, then each edge in the decomposition will be either an
interior edge on a polygon, hence incident with two triangles, or else a pair
of subedges identified by the schema, hence also incident with two triangles.
Similarly, vertices P’ introduced by the decomposition will automatically
have umbrella neighbourhoods when they lie in the interior of polygons, and
they will get them as the result of pasting “half-umbrella” neighbourhoods
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when they lie on a polygon edge (Figure 81). Vertices P in the original schema
also get umbrella neighbourhoods since the “corners” of the schema which
come together at P can be arranged in a cyclic sequence in which each has one
edge in common with its successor (Figure 82). This is because each edge in
the schema is identified with exactly one other.

A portion of the boundary of a polygon with the form in Figure 83, which
we shall represent symbolically by aba ™ 'b ™! (reading labels and orientations
clockwise), will be called a handle. The reason for this becomes clear when we
cut it from the rest of the polygon and paste the identified edges (Figure 84).

Similarly, a portion like that in Figure 85, which we shall represent
symbolically by aa or a?, will be called a crosscap (cf. 1.2.2).
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Figure 81
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Figure 82

Figure 83
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Figure 85

1.3.3 Reduction to a Single Polygon with a Single Vertex

Assuming the polygons in the schema define a connected surface, it will be
possible to amalgamate them all into a single polygon by a sequence of
pastings along identified edges of separate polygons. We say the resulting
polygon has a single vertex if its edge identifications bring all vertices into
coincidence. For example, the standard schemata for the torus and Klein
bottle have this property (Figure 86). On the other hand, the schema for the
sphere has two distinct vertices P, Q (Figure 87). This schema is exceptional
in having only a “cancelling pair” of edges, aa~ . In any other schema with

Figure 86

P

Q
Figure 87
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more than one pair of identified edges and more than one vertex it is possible
to reduce the number of vertices as follows.

Divide the apparent vertices of the polygon into equivalence classes
of vertices which are identified with each other, then, assuming there are
> 2 equivalence classes, consider an edge @ whose endpoints P, Q belong to
different classes. Then the construction in Figure 88 reduces the number
of vertices in the equivalence class of Q by 1 (assuming there are at least 2)
and by repeating we can reduce the class of Q to one member, at which time
0 will be the endpoint of a cancelling pair, which can be closed up, eliminating
this class entirely (Figure 89). We similarly eliminate other cquivalence classes
until only one remains.

Q
h
a ¢ .
cut along ¢ 3 5
paste along a ! p -':Q
/’a/ 4/7
P P P
Figure 88
b ho : h
2
Figure 89

When we have only one vertex, it continues to be the only one when the
polygon is cut from vertex to vertex and pasted along some identified edges.
All the constructions which follow involve only operations of this type, so
we can assume there is only one vertex throughout the remainder of the
construction.

1.3.4 Crosscap Normalization

All identified pairs of like-oriented edges can be replaced by adjacent pairs
(crosscaps) by the operation in Figure 90. Notice that any adjacent pairs
alrcady present (on the dotted lines) remain adjacent after this operation,
so all pairs of like-oriented edges can be replaced by adjacent pairs if the
operation is repeated.
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cut along ¢

paste along a

Figure 90

1.3.5 Handle Normalization

If any pairs of oppositely oriented edges remain after 1.3.4 they must occur
as “crossed pairs”

ca...b..at o b

in the boundary of the polygon. For if, say, ...a...a”'... is not separated

by any other pair of oppositely oriented edges we have Figure 91, where
each edge in « is identified with another edge in «, and each edge in f is
identified with another edge in f. This is because all like-oriented edges were
made adjacent in 1.3.4. But then it is impossible for the two ends of a to be
identified, contrary to 1.3.3.

We now replace two crossed pairs by a handle as in Figure 92. It is easily
verified that any other oppositely oriented pairs in the boundary remain
oppositely oriented under this operation, so if all pairs in the original polygon
are oppositely oriented the result of repeating the operation as long as
possible is a sphere with » handles (Figure 93).

(l+ +tl
Figure 91
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Figure 93

1.3.6 Metamorphosis of Handles into Crosscaps

In the general case, crosscap normalization followed by handle normalization
yields a boundary consisting of both crosscaps and handles. The boundary
must then contain a sequence

...aabch ¢ L.

which we convert to three crosscaps as follows. First do as shown in Figure
94, then replace the three like-oriented pairs by adjacent pairs as in 1.3.4.

g b
cut along d ¢ b
paste along a - N )
¢
d
Figurc 94

This will not disturb the dotted part of the boundary, and the handle will
not reappear if crosscaps are normalized in the right order. One order which
works is: b, ¢, d.

It follows that if the original polygon contains any like-oriented edges
in its boundary it can be converted into a sphere with n crosscaps (Figure 95).

Figure 95
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1.3.7 The Normal Forms for Classification

The procedure of 1.3.3-1.3.6, which is due to Brahana 1921, reduces any
finite closed surface to one of the forms in Figure 96, called the sphere with n
handles, sphere with n crosscaps and sphere respectively, and denoted sym-
bolically by a,b,a; 'b; ! --a,b,a, 'b, ", ata3 - -- a? and aa™'. We shall later
(4.2.1 and 5.3.3) prove rigorously that these surfaces are topologically distinct.
The proof develops the group theory which one can sense lurking behind the
above construction and its symbolism. In the meantime we shall use the
classical invariants for distinguishing surfaces, without attempting more than
an intuitive proof of their topological invariance.

(ii)

4 ., i)

Figure 96

1.3.8 Euler Characteristic and Orientability

The Euler polyhedron formula (Euler 1752)
V-E+F=2

where V, E, F are the numbers of vertices, edges, and faces, is valid for any
schema which represents the sphere. One proves this by observing that the
quantity ¥V — E + F is invariant under elementary subdivisions

(a) division of an edge into two by a new vertex
(b) division of a face into two by a new edge
and their inverses.

(Namely, in (a) V and E both increase by 1, 1n (b) E and F both increase by 1.)
It follows that any schema equivalent to the sphere schema (iii) by these
operations has the same value of V — E + F,namely2 — 1 + 1 = 2.

The value ~f V — E + F, which we call the Euler characteristic, for the
schemata (1; and (i) is

) V-E+F=1-21+1=2—-2n
(i) V-E+F=1—-n+1=2—-n
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so none of these surfaces is equivalent to the sphere under elementary sub-
divisions. In fact the Euler characteristic distinguishes the individual
schemata in (i) by their different handle numbers n, and the individual
schemata in (ii) by their different crosscap numbers 7.

To distinguish the schemata in (i) from those in (ii) we need a means of
computing the orientability character of the surface from a schema. The
method is to triangulate the schema, then orient each triangle with a
circular arrow. The oriented triangle induces orientations in its edges, as
shown in Figure 97. The orientation of the whole surface is called coherent if
each edge receives opposite orientations from the two triangles incident with
it, and the surface is called orientable if it has a coherent orientation. A co-
herent orientation carries over to a triangulation obtained by elementary
subdivision in the obvious way, for example see Figure 98, and thus the
orientability character, like the Euler characteristic, is an invariant of
schemata under elementary subdivisions.

)
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r g

Figure 97
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Figure 98

Now it is not difficult to find coherent orientations for the spheres with
handles, and likewise one finds triangulations of the spheres with crosscaps
which cannot be coherently oriented. The sphere itself is of course orientable.
Thus all the normal forms can be distinguished by Euler characteristic and
orientability character, as far as equivalence under elementary subdivisions is
concerned. Since the normal form of any schema is obtained using only
elementary subdivisions, it follows in particular that the normal form of any
schema can be read directly from its Euler characteristic and orientability
character.

To prove the topological invariance of these combinatorial invariants
one needs a way to move from one triangulation of the surface to another.
The difficulty is that triangulations are not necessarily “straight,” so if two
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triangulations are superimposed we may have edges which intersect at
infinitely many points (think of x sin 1/x and the x-axis). It seems reasonable
to expect that the intersections could be reduced to a finite number by de-
formation of one of the triangulations, but this is awkward to prove. (It is
done in Kerekjarto 1923.) When it is done, however, one gets a decomposition
of the surface obtainable from both the given triangulations by elementary
subdivision, and hence with the same Euler characteristic and orientability
character as both. This proves that Euler characteristic and orientability
character are independent of the triangulation initially chosen.

Exercise 1.3.8.1. Identify the surfaces with schemata a,a,---a,a;'a;'---a; "' and
aa, - Ay ga,a; ey ata,,

EXERCISE 1.3.8.2. Let & be an actual euclidean polyhedral surface. Define the curvature
k(P) of .F at a vertex P to be (2n minus the sum of the face angles incident with P).
Then show that

Y k(P) = 2rn x (Euler characteristic of #).
vertices P
(For polyhedra homeomorphic to the sphere, this is Descartes’s version of the Euler
polyhedron formula; known in 1639 but not published until the 1850s.)

1.3.9 Bounded Surfaces

A bounded surface is a finite 2-dimensional simplicial complex in which each
edge is incident with one or two triangles and the triangles incident with a
vertex form either an umbrella or a half-umbrella, that is, a sequence
Ay A,, ..., Ay in which each A; has exactly one edge in common with A;, |,
and these are the only common edges. It is easily seen that the free edges—
those incident with only one triangle—form one or more closed curves, which
we call the boundary curves of the surface.

The corresponding notion of schema is one in which cach edge of a
polygon is identified with at most one other, and it follows by simplicial
decomposition of the schema that the free polygon edges likewise form one
or more closed curves. In fact, by making the simplicial decomposition
sufficiently fine one obtains a thin annulus from the triangles incident with a
given boundary curve (it cannot be a Mdbius band, since it has two edges).
Starting with these annuli, and amalgamating disjoint pieces of the schema
along identified edges, one obtains a schema consisting of a single polygon
with “holes” bounded by the boundary curves, and an outer boundary
consisting of edges identified in pairs.

We can then repeat the construction of 1.3.3-1.3.7, taking care that all
cuts in the polygon avoid the holes, and obtain one of the normal forms in
Figure 99, called the sphere with handles and holes, sphere with crosscaps
and holes, and sphere with holes respectively.
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) by . (i)

Figure 99

Thus any bounded surface can be regarded as a closed surface with
perforations. An interesting property of the perforated surfaces is that
they are all embeddable in R, To see this, take a canonical polygon without
holes and perforate it in the neighbourhood of its single vertex by cutting off
the corners. The corners cut off form a disc, like slices of a pie, and the portions
of edges which remain can be physically pasted together in R* to form bands
attached to the body of the polygon. Examples are shown in Figure 100.

Figure 100
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As these examples show, handles yield double bands, crosscaps yield
Mobius bands, and of course any extra perforations yield single untwisted
bands. These forms of the perforated surfaces were used by Dehn and
Heegaard 1907 in their proof of the classification theorem.

If the perforated surface is thought of as lying in the hyperplane x = 0
of (x, y, z, t)-space, one can close it by a cone of line segments from any point P
off x = 0 to the boundary curve of the surface, thus realizing the closed sur-
face without self-intersections in R*.

ExErcISE 1.3.9.1. Show that the normal forms of bounded surfaces are distinguished
from each other by Euler characteristic, orientability character, and number of boundary
curves.

Exercise 1.3.9.2. By suitable cuts in the perforated polygons show that the normal
forms can be expressed

(l) chlwl_l U Wmcmwr; 1alblal— 1blﬂ1 e anbnanﬂ 1b; 13

(i) wierwy - Wy 'a? -k,
(i) wicwi o wcwy !

m 3

where ¢y, ..., ¢, are the boundary curves.

EXerCisE 1.3.9.3. If # denotes the “standard” sphere with handles in R, with one
perforation (Figure 101), show that # can be isotopically deformed into its disc-with-
bands form (Figure 102). (Hint: Stretch the perforation so that it sends a “tentacle™
into each of the handles.) Deduce that # can be turned inside-out in R3.

Figure 101

Figure 102
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EXERCISE 1.3.9.4. Show how the models of nonorientable surfaces with self-intersections
in R3 can be viewed as embeddings in R* if a fourth coordinate is introduced by applying
colour. with varying intensity, to the surface.

1.4 Covering Surfaces

1.4.1 The Universal Covering Surface

An interesting consequence of the representation of a surface % by a polygon
was discovered by Schwarz in 1882. Schwarz observed that if one takes
infinitely many copies of % and joins them to each other (rather than to
themselves) along the identified edges then the result is a simply-connected
surface & which is an unbranched covering of % . In fact, if # is not the sphere
or projective plane then % is homeomorphic to the plane.

L &2

(I{L l i

Figure 103
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F is called the universal covering surface of %, and its construction is
most easily seen in the case of the torus. In this case it is possible to imagine
the plane covering the surface quite literally (Hilbert and Cohn-Vossen
1932). We take the canonical polygon for the torus (Figure 103) then paste
infinitely many copies together along the like-labelled edges to form a plane
(Figure 104). Now to cover the torus with the plane we first roll up the plane
into an infinite cylinder with circumference a (Figure 105) then wrap the
cylinder round a torus of axis b like an infinite snake swallowing its tail
infinitely often (Figure 106). The result is an infinite-sheeted covering of the
torus without any branch points (Figure 107). Each sheet is a copy of the
canonical polygon for the torus, namely one of the squares from which we
originally assembled the plane.

Figure 107

EXERCISE 1.4.1.1. Associate each sheet in the obvious way with an ordered pair {m, n)
of integers m, n € Z. Then describe the permutations of the sheets induced by crossing
the lines a, b on the torus as permutations of Z x Z.
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1.4.2 The Universal Cover of an Orientable Surface of Genus > 1

It will suffice to construct the universal cover of the orientable surface %,
of genus 2, whose canonical polygon 2, is the octagon (Figure 108), which
folds up into the closed surface as shown in Figure 109. %, is not only
sufficient to illustrate the difficulties of the general case, it is also sufficient
in a technical sense, because any orientable surface of higher genus is a (finite-
sheeted) cover of %, and the universal covering surface covers any other
covering surface—hence the name “universal.” These technical points are
explored in the exercises below.

Figure 109

We now construct the universal cover of #,.

Since the eight corners of the octagon meet at a single point on % ,,
eight octagons must meet at each vertex of the tessellation which represents
the universal covering surface. Furthermore, the labelling of edges at a vertex
must be the same as on % ,, namely Figure 110.

It is certainly possible to produce this cycle of edges by putting eight
copies of 2, together, since the eight wedges at the vertex correspond to the
different corners of #,. In fact, assuming we cannot flip the #,’s over, this
is the only way eight 22,’s can be joined at a vertex. Because each label g; or
b; occurs only twice in the boundary of #,, once with the interior of 2,
on its left and once with the interior of 2, on its right; so there is exactly one
way to attach one 2, to another along a given edge.
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Figure 110

Thus if we begin with a single 2, , with vertices on a circle %, say, thereis a
topologically unique way to complete the neighbourhood of each vertex of
#, with further (noncongruent!) copies of #,, whose new vertices we can
assume to lie on a larger circle %, concentric with ¢, (Figure 111). (We
interpolate vertices on %,, too close together to show in the diagram, so as
to make each polygon an octagon.) We then proceed to complete the neigh-
bourhood of all vertices on %, similarly, with the new vertices lying on a
circle %,, and so on. By choosing the radius of %, to tend to 0 as n — oo we
obtain a tessellation with the required vertex neighbourhoods covering the
whole plane.

Figure 11

The covering of # , by the plane is then defined by mapping each octagon
in the tessellation onto #, by a continuous function which is one-to-one
except where it is required to identify boundary points, and making the
functions for adjacent polygons agree on the common edges. a

Naturally we cannot use regular octagons in the euclidean plane for this
construction, but in any case we need only the topological properties of the
tessellation, and irregular octagons in the euclidean plane are the most
direct means of demonstrating its existence. In the noneuclidean plane of
hyperbolic geometry there are regular octagons with corner angles of size
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n/4 (in fact of any size < the value for euclidean regular octagons) so it is
possible for these regular octagons to meet eight at each vertex, and hence
to tessellate the hyperbolic plane. This observation was made by Poincaré
after he learned of the universal covering surface in a letter from Klein (Klein
1882b), and he developed it into a powerful tool with this model of the hyper-
bolic plane as the open unit disc with circles orthogonal to the boundary as
“straight lines.”

The work of Poincaré and Klein in this period was devoted to automorphic
functions and Fuchsian groups, to which we briefly turn in the next section,
but it contained implicitly some fundamental results of surface topology.

EXERCISE 1.4.2.1. The n-sheeted cyclic cover of # ; is defined by taking n coaxial copies of
#,. cutting them through one of the handles (Figure 112), then identifying the
boundaries of the cuts cyclically (ith on the ieft with (i 4+ 1)th on the right, nth on the
left with first on the right). By computing the Euler characteristic of the cover, show that
it can be an orientable surface of arbitrary genus > 1, if n is suitably chosen.

Figure 112

EXERCISE 1.4.2.2. Give an alternative description of the n-sheeted cyclic cover of #,
as n copies of .2, joined together, and hence show how it is covered by the universal
covering surface of .7 ,.

1.4.3 Fuchsian Groups

The monodromy group was the first group to appear in topology, as a means
of specifying the way the sheets of a Riemann surface permute around the
branch points. We can also speak of the monodromy group of an unbranched
covering, the generating permutations now being the permutations of the
sheets induced by crossing one of the canonical curves on the surface, that is,
one of the edges of its canonical polygon. This permutation can be viewed
as an automorphism of the tessellation of the covering surface. For example,
the two generating automorphisms of the rectangular tessellation of the
plane which covers the torus are simply vertical and horizontal translatiors
of lengths a and b respectively (Figure 113), and the monodromy group is
therefore the free abelian group of rank 2. The automorphisms of the uni-
versal covers of surfaces of higher genus can also be viewed as (noneuclidean)
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h

Figure 113

translations if one uses regular tessellations of the hyperbolic plane. Other-
wise, one can define an automorphism to be a one-to-cne continuous
map of the tessellation onto itself which preserves labels and orientations.

Such groups of automorphisms were first studied in complex function
theory, notably by Poincaré and Klein from 1882 onwards after their initial
discovery by Fuchs. Thus the terms automorphic functions and Fuchsian
groups. Space does not permit us to give an account of this vast and interesting
theory (see Magnus 1974, or Fricke and Klein 1897, 1912) except to say that it
arises naturally from algebraic functions so a connection with surface
topology is to be expected. This connection was emphasized by Klein
from the beginning, though in the then immature state of topology one did not
pursue theorems about surfaces for their own sake, but only as a tool of
function theory. Consequently, the first group-theoretic results about
surfaces appear only as special cases of results on Fuchsian groups.

Since our interest is only in this special case, we shall immediately
specialize the methods of Fuchsian groups to deal just with the tessellations
obtained from universal coverings of orientable surfaces.

Let #, denote the orientable surface of genus n whose canonical polygon
is 2, (Figure 114). The universal cover of %, is obtained by tessellating the
plane with copies of the 4n-gon #2, so that 4n of them meet at each vertex.
As we observed for n = 2 in 1.4.2, there is a unique way of doing this. In
anticipation of Chapters 3 and 4 we shall denote the automorphism group
of the universal cover by = (#,). We now show that

nl(‘?n) = <a]’ bl’ . ..,a,,,b,,: albla;lb;l . "anbnan_]br:1>'

Figure 114
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To discuss automorphisms of the tessellation we introduce the notion
of an edge path. An edge path is a finite sequence of oriented edges of the
tessellation d, d,, .. ., d, such that

final point of d; = initial point of d; , ;.

It can be uniquely determined relative to its initial vertex by the corre-
sponding sequence of edge labels a; or b;, provided with exponents + 1 or — 1
to indicate whether the edge is traversed according to, or against, its given
orientation. This is because each vertex has exactly one incoming and one
outgoing edge for each label. We shall consider edge paths in this relative
sense so they can be identified with elements in the free group generated by
the a;’s and b;’s.

If we fix a vertex P of the tessellation, an automorphism is determined by
the vertex P’ to which P is sent. For any vertex Q is determined relative to P
by an edge path ¢ from P to Q, and since any automorphism preserves labels
and orientations the image Q' of Q is found at the end of the same edge path
q from P’. But P’ in turn is determined by an edge path p’ from P, so the auto-
morphism group is naturally isomorphic to the group of edge paths p’
modulo closed paths.

This group is generated by the single edge pathsa,, b,....,qa,, b, which are
automatically subject to the relations

aa7' =a7'q; =1 and bb ' =b'h, =1 (n

saying that a path out and back along an edge returns to its starting point,
and also to the relation

abya; byt -aub,ay byt =1 )

the left-hand side of which, r,, is a circuit round #,. To show that (2) is in
fact the defining relation of the group we have to show that any closed edge
path is equivalent to the trivial path under the relations (1) and (2).

But it is clear that any closed path can be contracted to its initial point
by a finite sequence of operations.

(a) Pulling out portions of the form pp~! (Figure 115), where the inverse
p~ !is p written backwards with all exponents reversed. This is obtainable
from the relations (1).

Figure 115
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Figure 116

(b) Pulling a portion of the path from one side of a polygon to the other
(Figure 116). This means replacing the portion p by pr¥, where r} is a
cyclic permutation of r,, and hence it is obtainable by application of

). O

This result was obtained independently by Poincaré 1882 and Klein
1882c as a special case of the presentation of Fuchsian groups. Its first explicit
application to surface topology was made by Poincaré 1904, in a study of
curves on surfaces. We lay the foundations for this study in Chapters 3 and 4,
and carry it out in Chapter 6. In the meantime, Exercise 1.4.3.2 will serve to
explain the connection.

EXERCISE 1.4.3.1. Show that the edge complex of the tessellation forming the universal
cover of #, can also be interpreted as the Cayley diagram of n,(#,).

ExERcISE 1.4.3.2. Show that a path on %, covered by an edge path p in the tessellation

contracts to a point on %, just in case p is closed.

1.4.4 The 2-sheeted Cover of a Nonorientable Surface

Every nonorientable surface has an orientable surface as a 2-sheeted cover.

The most intuitive way to see this is to take the perforated form of the
sphere with »n crosscaps, namely the disc with » Mabius strips attached
(Figure 117). This surface has the 2-sheeted cover % shown in Figure 118,
which is evidently orientable because of its “two-sidedness.” Then to cover
the closed surface one attaches two discs along the boundary curves of %,
covering the single disc needed to close the nonorientable surface. [

Figure 117
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Figure 118

It follows that the universal covers of the orientable surfaces also cover
the nonorientable surfaces. The universal covering surfaces are therefore the
sphere (for the sphere itself, and the projective planc) and the plane. All the
covers we have discussed in this section are unbranched, and indeed this will
be the predominant type from now on. Unbranched covers came to the fore
in the 1920s when Reidemeister discovered important group-theoretic
applications (see 4.3) and since then the word “covering” has been taken to
refer to them.

The combinatorial definition of an unbranched covering will be given in
4.3. The idea is that the covering surface must project continuously onto
the underlying surface in a way which is locally one-to-one. That is, the
projection is one-to-one when restricted to sufficiently small neighbourhoods
on the covering surface. It is precisely in the neighbourhoods of branch
points where this condition fails for Riemann surfaces—if a small disc is
removed around each branch point one obtains an unbranched covering of
the perforated sphere by a perforated orientable surface.

EXERCISE 1.4.4.1. Show that any nonorientable surface can be obtained by diametric
point identification of either a sphere with handles or a torus with handles.
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90 2 Graphs and Free Groups

2.1 Realization of Free Groups by Graphs

2.1.1 Introduction

Free groups first appeared in mathematics as subgroups of the modular
group in complex function theory. When Dyck 1882 pointed out the funda-
mental role of frece groups in combinatorial group theory, as the most
general groups from the point of view of generators and relations, his picture
of them remained the function-theoretic one —a tessellation of the unit disc
by curvilinear triangles whose sides were circular arcs orthogonal to the disc
boundary. The first mathematician to study free groups in their own right
and discover significant theorems about them was Jakob Nielsen (see Nielsen
1918, 1919, 1921), in fact the term “free group™ did not appear until Nielsen
1924a. Nielsen’s technique is partly geometric (based on the length of words
and “cancellation,” see exercise 2.2.4.1 below), however, it suppresses the
natural geometric structure of a free group by imposing a “linear ” appearance
on the elements as strings of letters.

The appropriate geometric framework for describing free groups, the
“two-dimensional” one of graphs, was first exploited in unpublished work of
Max Dehn. According to Magnus and Moufang 1954, Dehn used this method
to obtain the first proof that subgroups of free groups are free. When Schreier
1927 published his algebraic proof of the theorem he concluded the paper
by describing the graph-theoretic interpretation of his construction. Schreier
had been influenced by ideas of Reidemeister, who published the first full
treatment of free groups on a graph-theoretic basis in Reidemeister 1932.

Reidemeister’s treatment has influenced ours, however we have used
the graph-theoretic framework even in the elementary stages to explain
the notion of reduced word and to solve the word problem. This not only
serves to unify the exposition, but vividly illustrates the dual view of a group
as fundamental group of a space and automorphism group of a covering
space, which will be a continuing theme in the chapters to follow.

It should be emphasized that the fundamental group is needed only in
a combinatorial sense for the results on free groups below. Indeed the proofs
could be viewed as mere translations of arguments about letters, words,
and cancellation if it were not for the fact that the graph-thcoretic form is
more natural. However, since the topological invariance of certain groups will
be needed later, the next chapter contains a topologically invariant con-
struction of the fundamental group and its computation for graphs.

2.1.2 Graphs, Paths, and Trees

We shall interpret a graph in its broadest sense as an arbitrary collection of
points (vertices) joined by lines (edges). Thus we admit examples such as
those in Figure 119, in which more than one line may connect a given pair
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Figurc 119

of points, and the two endpoints of a line may coincide. In the latter case,
the two directions in which a line may be traversed cannot be distinguished
by the order of the endpoints, so it is necessary to adjoin a notion of orienta-
tion in order to fully describe the concept of path in a graph.

Accordingly, the formalization of these concepts is as follows: A graph
consists of two sets {P;} and {e;} of elements called vertices and edges
respectively, subject to certain incidence relations. Each edge e; is a pair
{e; !, e/ '} of oriented edges called the positive and negative orientation of
e;, and ¢, 1s incident with two vertices X ; and Y called respectively the initial
point and final point of e/! (and referred to collectively as endpoints). The
vertices X ; and Y, can also be described as the final point and initial point,
respectively, of e; '. When we write an edge without a superscript the orienta-
tion is understood to be positive.

A path pina graph % is a finite sequence d,. d,, ..., d,, of oriented edges of
% such that

final point of d; = initial point of d,

fori=12,...,m— 1. Wewritep =d,d, ---d, and also write p; = pp, if
pr=dy---d,, p,=d,---d, and py =d,---d,d,---d, The number of
oriented edges in the sequence is called the length of the path. A path p =
did,---d, is closed if

final point of d,, = initial point of d,

and reduced if no two successive oriented edges are opposite orientations of
the same edge. Such a subpath ¢/ 'e; ' or e 'e; ' is called a spur. For con-
venience we also admit a single vertex to be a closed path (which is therefore
reduced). The inverse of a path p = d,d,---d,, is the path p~ ! =4, ...
dy 'd; Y, where d ! denotes the result of reversing the exponent of d;.

A graph is connected if there is a path between any two of its vertices. A
tree 1s a connected graph containing no reduced closed paths other than
vertices. If one looks at a typical tree, such as Figure 120, then the proposition
which follows is obvious; however we give a careful proof, in view of its
fundamental importance.

Path Uniqueness Property of Trees. Any two vertices in a tree are connected
by a unique reduced path.

If there are vertices P, Q connected by different reduced paths p,, p, in a
tree 7 we can assume that one of these paths is a path of minimal length
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Figure 120

between P and @, and that no other pair of vertices are connected by a non-
unique reduced path of smaller length.

Since p,, p, contain no spurs by hypothesis, whereas the closed path
p.p; * must, since  is a tree, the spur can only occur as the last oriented
edge in p, and the firstin p; !, that is, if the last oriented edge in both p, and p,
is the same; or similarly if the first oriented edge in both p,, p, is the same. In
the former case we can omit this last edge d from both paths p,, p,, obtaining
shorter nonunique reduced paths p}, p, from P to the initial point of d,
contrary to hypothesis. In the latter case, omission of the first edge of both
P1» P, leads to a similar contradiction. O

The converse of this proposition is immediate, hence the path uniqueness
property can also be used to define trees. Two important equivalents of this
property can be derived with the help of the notion of path equivalence.
Paths p, p’ are called equivalent if p’ results from p by a finite number of in-
sertions or removals of spurs between successive oriented edges or at the end-
points. In particular, the reduced form of p is equivalent to p, so since path
uniqueness says that two paths p, p” between the same endpoints have the
same reduced form we have

(1) Paths in a tree with the same initial and final point are equivalent. In
particular
(2) Any closed path is equivalent to its initial vertex.

But (2) in turn implies that the graph is a tree, because if the reduced form
of the closed path is not a single vertex we have a contradiction to the de-
finition of a tree. Thus all three properties are equivalent.

2.1.3 The Cayley Diagram of a Free Group

Given a free group F with free generators a,, a,, ... we can construct a tree 7
which is the Cayley diagram of F. The edges of & are assigned orientations
and labels a,, a,, ... so that each a; occurs exactly twice at a given vertex,
once on an incoming edge and once on an outgoing edge. The typical vertex
of 7 will be imagined to look like Figure 121, though this picture cannot be
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o a;

ai a;

Figure 121

taken quite literally if there is more than a countable infinity of generators.
An explicit construction of 7, which at the same time shows it to be a tree,
is as follows:

Step 1. Draw the typical vertex and its neighbouring edges (Figure 121),
with the free endpoints lying on a circle 4.

Step k + 1. Assuming all the free endpoints of the graph constructed up
to the stage k lie on a circle %, attach edges to each free vertex so as to com-
plete its neighbourhood star to the form (Figure 121), but so that all new
free endpoints lie on a circle €, , outside %, . Figure 122 shows the construc-
tion when the vertex on %, is the initial point of an outgoing a;, the construc-
tion is similar for an incoming q;.

Figure 122

Assuming that there is no nontrivial reduced closed path inside %,
(which is certainly true for k = 1), the same is true inside %, , ,, since any path
inside %, | is separated by ¥, into paths inside €, and single edges or spurs
between %, and €, ;. Thus it follows by induction on k that no %, contains
a nontrivial reduced closed path, and hence the graph 7 obtained by uniting
all graphs within the €,’s is a tree, since any path in F must lie in some

%k‘ D

The paths in J which emanate from some fixed vertex correspond
naturally to elements of F. The word corresponding to a given path is read
by taken the labels on successive edges in the path and giving them ex-
ponents + 1 or — 1 according as the edge is traversed with the assigned orien-
tation or its opposite. Conversely, there is exactly one path from a given vertex
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corresponding to a given word, since there is exactly one edge at each vertex
for each of the generators a;" ', ;" '. A product p,p, of paths p,, p, corre-
sponds to the product of words read from p,, p, respectively. In particular,
the paths which correspond to the trivial products ¢;' 'a;”' and a; 'a;"!
are exactly the spurs, so the notion of equivalence of words in a free group
(0.5.2) agrees with that for paths (2.1.2).

The paths which correspond to the identity element 1 are the closed
paths, since it is exactly these which reduce to a single vertex. (These include
the paths of the form pp ™!, so the group element corresponding to p~ ! is the
inverse of the element corresponding to p.) It follows that once a particular
vertex is chosen to represent 1, all the other vertices represent distinct
elements of F. so .7 is indeed its Cayley diagram.

EXERCISE 2.1.3.1. If the cardinahty of the set {a,. a,, ...} is too large for the graph to be
actually embeddcd in the plane, how should “inside %, ” and “outside ¢~ be interpreted
so as to retain the property that %, separates paths inside %, ., into paths inside %,
and single edges and spurs?

Exprcisk 2.1.3.2. In the noneuclidean geometry of the hyperbolic plane (sce also 6.2)
equilateral triangles exist with (equal) angles of arbitrary size < n/3. In particular, there
is an equilateral triangle A whose angles are n/4, so the hyperbolic plane can be paved
with copies of A, eight of which surround each vertex in the tessellation. If we select
any vertex P, take alternate cdges emanating from P, ending at P, P,. Py, P, say,
again take alternate edges emanating from these P; (starting with those which lead back
to Pg) then repeat the process at the free endpoints of the new edges, etc., then the
resulting graph is a tree. Prove this, and deduce that there is a pair of rigid motions of
the hyperbolic planc which gencrate the free group F, on two generators.
Gengcralize the construction to obtain the free group on n gencrators F,.

2.1.4 Solution of the Word Problem for Free Groups

The construction of the Cayley diagram in 2.1.3 is effective (relative to the
generating set, at any rate), hence it yields an algorithm for the solution of the
word problem. Namely, trace the path in 7 corresponding to a given word
in F and sce if it is closed. More generally, one can compute a normal form
equivalent of a given word w, the reduced word p(w), by constructing the path
p corresponding to w and finding its reduced form by removing spurs.
Because of the uniqueness of reduced paths (2.1.2), the result is independent
of the order in which spurs are removed. The corresponding algebraic pro-
cess, cancellation of terms g,a; ! or a; 'a;, therefore leads to a unique reduced
word regardless of the order of operations, and w = [ in F if and only if
plw) = 1.

Thus simple cancellation (in any order) is an algebraic algorithm for
the solution of the word problem in F. This confirms the commonsense im-
pression that one decides whether a given clement equals 1 in F simply by
cancelling as much as possible.
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EXERCISE 2.1.4.1. If paths are taken to emanate from the centre of the circle €, in 2.1.3,
show that the reduced form of a path p has length equal to the index k of the circle €,
containing p’s final point.

2.1.5 Spanning Trees

A spanning tree .7 of a graph 4 is a tree contained in % which includes all the
vertices of 4.

Every connected graph % contains a spanning tree.

To give a constructive proof we shall assume that ¢ has at most a countable
infinity of edges €,, %5, ... .

Step 1. Select any vertex P,, and for each vertex P; of 4 which is one edge
distant from P, choosc one edge (say, the one with least index) between P,
and P; to put in 7. The result is a star we call .7 ,.

Step k + 1. Let 7, be the tree constructed up to the end of step k. For
each vertex P; of 4 which is not in .7, and which is one edge distant from a
vertex of 7, choose the edge of least index connecting P; to .7, and add this
edge to 7. The resulting graph .7, ; is also a tree, by the argument used
in 2.1.3.

The tree 7 is the union of the 7, for k=1,2,3,.... .7, contains all
vertices connected to P, by a path of length <k, so every vertex of % is in
some 7 ; (by connectedness) and hence in .7 O

The above proof can be repeated verbatim for any graph whose edges are
indexed by a well-ordered set, hence the result is true for an arbitrary graph,
assuming the axiom of choice.

EXERCISE 2.1.5.1. (For readers familiar with the axiom of choice). Prove that the existence
of a spanning tree in an arbitrary graph implies the axiom of choice.

EXERCISE 2.1.5.2. Show that the two-dimensional lattice graph (Figure 123) has a
spanning tree homeomorphic to the rcal line (that is, every vertex meets two edges).

Figure 123
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2.1.6 The Fundamental Group of a Graph

The fundamental group n,(%) of a graph % is defined combinatorially
in terms of the relation of path equivalence given in 2.1.2: we choose a vertex
P of % and consider the equivalence classes of closed paths which begin and
end at P. If [ p] denotes the equivalence class of such a path p, we define the
product of equivalence classes by

[pd-Cpad = [pipa]l

This product is well-defined on equivalence classes, since changing the
representative of one factor by insertion or removal of spurs merely changes
the representative of the product by insertion or removal of spurs.

1t is clear that [p] ! = [p '] and that the identity element 1 is the class
of paths whose reduced form is P itself. Thus n,(%) is indeed a group.

EXERCISE 2.1.6.1. Show that we are entitled to omit mention of P in the notation for the
fundamental group of a connected graph by proving that choice of any other vertex P’
as the origin for closed paths leads 1o an isomorphic group.

2.1.7 Generators for the Fundamental Group

We use a spanning tree .7 of % to find a canonical equivalent of each closed
path p from P.

For each vertex P, of ¥ we construct an approach path w;, namely the
unique reduced path in 7 from P to P,. Then for each edge ¢; = P; P, of 4
consider the closed path

a; = wie;wy !
Any closed path p from P is equivalent to a product of the a;’s or their inverses,
in fact if

p=eiei---en (whereeache; = +1)

1

1s such a path then p is equivalent to

En
in

ailai---a

because the approach paths to and from ¢!, ef* respectively are just P
itself (= 1) and the approach paths between successive edges cancel.

Notice that if ¢; is in .7 then g, is a closed path in the tree 4 and hence

equivalent to P. We can therefore omit these g; and take the generators for

7,(%) to be just the [a;] which correspond to edges e; not in 7. J

ExercCISE 2.1.7.1. Show that the number of edges not in a spanning tree .7 of % is inde-
pendent of the choice of 7.
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2.1.8 Freeness of the Generators

To prove that the generators [a;] just obtained for n,(%) are free we first
simplify the graph by shrinking the spanning tree 7 to a single vertex P.
Only the edges e; not in 7 then remain, as loops attached to P, and we call the
resulting graph a bougquet of circles, 2 (Figure 124).

Figure 124

A given product p(a;) of as in % becomes the corresponding product
ple;) of e’s in &, and p(e;) = 1in 2 if and only if p(a;) = 1 in %, for any spur
e;e; ' or e/ 'e; in p(e;) corresponds to a;a; ! or a; 'a; in p(a;), which can like-
wise be cancelled, and any spur in % maps to either the vertex of 4, or to a
spur in 4. But the only spurs in 4 are of the form e,e; ! or ¢; 'e;, so a product

ple;) equals 1 only if p(e;) = 1 in the free group generated by e, e,, ... . In
other words, [e,], [e,],... are free generators for m,(#), and hence
a1, [a,], ... are free generators for n,(%). O

The shrinking process we have just used is an instance of collapsing, a
method of trimming unnecessary fat from a space without changing its funda-
mental group (for a general definition, see 3.3). The simpler form of the
collapsed space makes the fundamental group easier to survey.

2.1.9 The Tree as the Universal Covering Graph of the Bouquet of
Circles

In the above we have found realizations of the free group F in terms of two
graphs which represent opposite extremes in structure—the tree and the
bouquet of circles. The Cayley diagram of F is a tree, while the bouquet
realizes F as the group of equivalence classes of closed paths.

The geometric relationship between these two can be grasped if one
observes that the neighbourhood of the single vertex in the bouquet looks like
a typical vertex in the Cayley diagram 7 (Figure 125). Relative to a given
vertex of .7, we shall let &' ' and & ! respectively denote the outgoing and
incoming edges labelled ¢;, and they will be said to cover the ¢; ' and ¢!

respectively in the bouquet 4. Thus for a given vertex Pin 7 there is a unique
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in.7:

Figure 125

& ! covering a given e ! in #. In turn, an e ! which follows ¢! in a path p
in 2 is covered by a unique &' relative to the final point of the &'
covering ¢!, Continuing in this way we obtain a unique path j from
Pin 7 which will be said to cover the path p in . Conversely, a given path
emanating from P covers a unique path p in 4.

In short, .7 exhibits all the paths of Z in “unrolled” form.  is called the
universal covering graph of 4, and it may be compared with the universal
covering surface of 1.4. A universal covering is always simply connected, and
therefore easier to survey, provided it can be effectively constructed at all.
However its construction is equivalent to solving the word problem for the
fundamental group (in this case via the Cayley diagram), so it is possible
only when the solution to the word problem exists.

The paths § and p are of course just Cayley diagram and fundamental
group realizations of the same group element from F. We can also interpret
p more abstractly as the “rigid motion™ of 7~ which sends a given vertex
P at the end of the path p, from P to the end of the path jp; from P. F can
therefore also be realized as a group of motions or automorphisms of .7,
and in this context we describe it as the covering motion group (German:
Deckbewegungsgruppe). The “motion” terminology is an extrapolation from
the situation with the universal covering surface, where the auto'morphisms
can be realized by genuine rigid motions in the sense of euclidean or non-
euclidean geometry. (Exercise 2.1.3.2 shows that this interpretation is also
possible for finitely generated free groups.)

The most elementary, but nevertheless instructive, example of a universal
covering graph is the covering of the circle by the line (Figure 126). In this
case the motions of 7~ are translations by an integer multiple of the generating
translation, which conforms with the fact that F isisomorphic to the additive
group of integers.

Figure 126
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Exercise 2.1.9.1. Show that an automorphism of .7 in the above sense can be char-
acterized as a one-to-one map of .7~ onto itself which

(1) preserves endpoints (combinatorial equivalent of continuity),
(1) preserves labels (including orientation),

2.2 Realization of Subgroups

2.2.1 Covering Graphs

A graph ¢ is said to cover a graph % if there is a map ¢: % — 4 (called the
covering map or projection) from the vertices and oriented edges of Z onto
the vertices and oriented cdges, respectively, of 4 with the following
properties:

(1) ¢ preserves endpoints, that is, if an oriented edge ¢; in ¢ has initial point
)?J-jmd final point 17], then ¢(¢;) has initial point (p(ij) and final point
o).

(2) (P(e)) ' = Ple; ).

(3) Il ¢(P) = P, and ¢;, ¢, ... are the oriented edges with initial point
P, and if &, ¢;,, ... are the oriented edges with initial point P;, then
¢ maps the collection {¢, } one-to-one onto the collection {e; }.

Condition (3) is a “local homeomorphism™ condition which says that
the neighbourhoods of corresponding vertices look alike.

When we speak of a graph % covering a graph ¢ we have in mind a
particular covering map ¢: 4 — %, but in practice this map can be adequately
represented by labelling and orienting the edges in 4, as we have done with
the universal covering graph in 2.1.9. Each edge labelled e; in 4 is mapped
to the single edge labelled ¢; in %, with preservation of endpoints and orienta-
tion. Another example is shown in Figure 127. This 4 is called the universal
abelian cover of @, for reasons which will become more apparent later.

€ ¢y (3]
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~
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~
~
5
|
~
>
Q

Figure 127
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The local homeomorphism condition (3) implies that a path p in 4 is
covered by a unique path fin ¢ starting from a given vertex P. The proofis by
“lifting” the successive oriented edges ¢;, e;, . .. of p to covering edges exactly
as in 2.1.9. If 4 is a connected graph and p is a path between an arbitrary
pair of vertices P;, P; then the paths § which cover p set up a one-to-one
correspondence between the vertices P{Y), P2 and P‘,“, 133-2’. ...in 4
which cover P; and P; respectively. Thus the number of vertices in % which
cover a given vertex in % (and similarly the number of edges which cover a
given edge) is a constant, called the sheet number of the covering (another
carryover from the theory of covering surfaces).

It will be convenient to use the following notational convention in dis-
cussing coverings: X will denote any element in & which covers the particular
element X of %. Particular instances of X will be distinguished, if they have
to be, as ¥, ¥@

2.2.2 The Subgroup Property

The definition of covering in 2.2.1 is geometrically motivated, in particular
by the example of covering surfaces, however it is also significant from the
viewpoint of the fundamental group.

Condition (3) implies that the paths covering spurs in 4 are exactly the
spurs in ¢, therefore equivalent paths in % are covered by equivalent paths
in 4 and conversely. If we choose a vertex P in % as the initial point for closed
paths p, we then have a one-to-one correspondence between the elements
[p] of n,(%) and the equivalence classes [p] of (not necessarily closed)
covering paths pin 4 which emanate from some fixed vertex P©' covering P.

Conditions (1) and (2) respectively say that ¢ sends products to products
and inverses to inverses, so the correspondence between path classes is in
fact a monomorphism

Gy 771((;) — (%)

when restricted to the closed path classes in %. In other words, 7,(%) is
isomorphic to a subgroup of m,(%). We shall not distinguish between (%)
and the image of ¢,,.

The classes of closed paths p in % which lift to nonclosed paths from
P in 4 can be classified according to the final point P of the covering
path p. This classification is in fact the right coset decomposition of n,(%)
modulo 7,(%). It follows that the number of cosets, by definition the index
of (%) in 7,(%), is the sheet number of the covering.

If [ p), [p'] are in the same coset we have gp = p’ for some [g] € 7,(%).
But then §' = §p, where § runs from P© to P9 by hypothesis; hence p'
and j have the same initial point P, and the same final point PY which
must cover P since p, p’ have final point P.
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Conversely, if p, § run from P to the same vertex PY covering P, then
p and p’ end at P, so [p], [p'] are elements of n,(¥), and [p’][p]:1 is the

e ]

projection of the closed path p'p~", hence an element of =,(¥%). Thus

[p1lp) " = [g]l e ny(D), or [p]=[g][p], which means [p], [p] are
in the same right coset. O

Consider the example of the universal abelian cover in 2.2.1 (Figure 128).
The closed paths from P‘® in 4 are exactly those for which the sum of the
exponents on both e, and e, is zero. Such terms do indeed constitute a
subgroup of the free group F, generated by e,, e,, known as the commutator
subgroup K,. Thus K, = 7,(%) and since any spanning tree for 4 omits

€, €5
3 S
> >
€y €1 €y
A A o
~ 5] ()
G > >
€y €, e
L 3 » A
¢y €3
> >
po
Figure 128

infinitely many edges, 2.1.7 and 2.1.8 tell us that the commutator subgroup
of F, is an infinitely generated free group (an unpublished result of Artin
from the 1920s). The vertices of 4 are determined by paths e7e? as (m, n)>
runs through all ordered pairs of integers, which confirms the fact that the
elements eTe} are a set of right coset representatives for F, modulo K,.

EXERCISE 2.2.2.1. Prove that K, is the normal subgroup generated by the commutator
e1e,e; 'e; !, (The geometric cquivalent of this statement is that any closed path in &
is equivalent to a product of paths of the form shown in Figure 129, or their inverses.)

po

Figure 129
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2.2.3 Realization of an Arbitrary Subgroup of a Free Group

Given a free group F, we realize it as 7,(¥%) where % is a bouquet of circles
with vertex P, as in 2.1.8. Then if G is a subgroup of F, 2.2.2 tells us that a
realization of G as n,(%) where 4 covers % must have a vertex PY covering
P for each right coset of F modulo G, one of which, P9, corresponds to G
itself.

Since % is a covering, each vertex PY will have exactly one out-going
and one incoming edge labelled e; for each generating circle e; in %. But this
means a connected % is uniquely determined, because the outgoing edge ¢;
from the vertex corresponding to the coset G[ p] must end at the vertex
corresponding to the coset G[ pe;].

The  we have just described is indeed such that 7,(%) = G.

A path p from P in 9 which covers p in 4 leads to the vertex P corre-
sponding to the coset G[ p]. Thus p is closed just in case G[ p] = G, that is,
if [p] € G, and 2.2.2 then tells us that n,(%) is isomorphic to G. J

Just as we speak of a “covering ¢~ when a covering map ¢: 9 — ¥ is
actually meant, we shall also speak of a subgroup G of F being realized by
& when we really mean that ¢: 4 — % induces a monomorphism ¢, : 7,(%) —
7,(%), where n,(9) = G and n,(%4) = F.

The example in Figure 130 is the covering ¢: % — % which realizes the
subgroup F, (generator e,) of F, (generators ey, e,): It is clear that the powers
of e, are exactly the closed paths in % covered by closed paths from P in
&. This € has no nontrivial automorphisms, so a covering graph need not be
at all “homogeneous,” as the universal cover and universal abelian cover
may have tended to suggest. We shall see in 2.2.7 that a normal subgroup G
yields a cover whose automorphism group is F/G.

Figure 130

ExXERcISE 2.2.3.1. Generalize the construction of 4 to the case where F is realized by an
arbitrary graph 4.
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2.2.4 The Nielsen—-Schreier Theorem

Every subgroup of a free group is free.

This follows immediately from 2.2.3. Given any subgroup G of a free
group F, we realize G as n,(%) for some graph %. G is then a free group, since
the fundamental group of any graph is free (2.1.8).

The above proof is so slick it seems almost like magic. Perhaps the best
way to explain how the result falls out is that when a group is realized as the
fundamental group of a space, the notion of subgroup is exactly what is
realized by the notion of covering space. This general fact (given the
appropriate general notion of covering) was first observed by Reidemeister
1928, and we shall apply it to groups which are not necessarily free in
Chapter 4.

Nevertheless, the cleverness of the covering space proof has some inbuilt
disadvantages. Firstly, it requires the coset decomposition of F modulo G.
It is not clear how to effectively construct this when G is given, say, by a set
of generators. Without it, the proof does not supply a set of free generators for
G. Secondly, it obscures the fact which one feels to be the intuitively correct
basis of the Nielsen-Schreier theorem, namely, that elements g,, g,, ... ofa
free group F generate a free subgroup because they cannot cancel except for
trivial reasons.

These disadvantages are absent from Nielsen’s proof (Nielsen 1921),
which tackles the problem head-on in a way which is delightfully free of
abstract technicalities. The reader does not even have to know what a group
is, since the problem is posed as one of computation with products of non-
commuting factors a,, . . ., a,,, each one of which has an inverse a;” ! satisfying
a;a7 ' = a; 'a, = 1. The following exercise breaks down Nielsen’s proof
into simple steps.

13

Exercisk 2.2.4.1. Consider the free group F and a subgroup G generated by elements
uy,,..,u,of F. For convenience we shall assume that whenever a word w is a member of
aset of generators so is w™ !. A product of generators will be called proper if no generators
w, w ! occur as adjacent terms. A transformation of ; into a proper product

u; = w; OT U = Ul

is called a Nielsen transformation.

(1) fuy, ..., u, generaric G and u; results from u; by a Nielsen transformation, prove
that uy, ...,y Ui, Uiy, ..., U, also generate G. The length /(w) of a word w is the
number of letters (with exponent +1 or —1) in the reduced word p (w). A Nielsen
transformation is called length-reducing when

Huzy < Hu).

(2) Describe how a finite sequence of length-reducing Nielsen transformations can be

used to obtain a set of generators v,. ..., v, (p < n) for G with the property

I(v;v;) = I(r;) for a proper product v;v; *)
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so that no generator cancels more than half of another. The possibility remains
that a generator v; of even length may have both left and right halves cancelled in a
proper product v, v;v;. Let v; = [;r; be the decomposition into halves and suppose
that

veo=xl v; = oty

(3) Show that the 7" in v, can be replaced by ry, and the r7 ' in v; by I, by Nielsen

transformations. The latter transformations, which obviously preserve length,
may be called cancellation-reducing, because

(4) If v, = x;r; then v, does not cancel the left half of r,. Why? (Similarly v} = [;y;
does not cancel the right half.)

(5) Order the words in the letters of G so that each has only finitely many predecessors,
and do not admit a cancellation-reducing Nielsen transformation unless the word
removed (7' or r7 ') is replaced by a word (r; or I; respectively) carlier in the
ordering.

(6) Show that by suitably interweaving finite sequences of cancellation-reducing
and length-reducing Nielsen transformations one can obtain a set of generators
wy,....w, (g < p) for G with the properties (*) and

Iwywiwj) > I(wy) + I(w;) — I(w;) for a proper product wiw;w;. (*%)

(7) Deduce that G is freely generated by wy. ..., w,.

EXERCISE 2.2.4.2. Assuming a well-ordering of the words in the letters of G, extend the

above argument to the infinitely generated case.

ExERcIsE 2.2.4.3 (Nielsen 1921). If G = F show that the generators w,, ..., w, found in
2.2.4.1 must all be single letters. Deduce that g is independent of the initial choice of
generators u,, . .., u, (q is called the rank of F. Its invariance can also be proved by linear
algebra if F is first “abelianized,” see 5.3.2).

EXERCISE 2.2.4.4. Give an algorithm which decides whether the generators of a subgroup
generate freely.

EXERCISE 2.2.4.5 (Nielsen 1921). The generalized word problem for a free group F is to

decide, given words uy, . .., u, and w, whether w is in the subgroup G of F generated by
uy, ..., u,. Derive an algorithm for the generalized word problem using the generators
wy, ..., w, found for G in 2.2.4.1. (It follows that the elements of F can be effectively

divided into cosets modulo G.)

2.2.5 The Schreier Index Formula

Suppose that F has rank ri and G has index i in F. Then the rank of G is given by
rg =irp —i+ 1.

Since F has rank rpitisrealized as n, of a bouquet % of rpcirclese,, ..., ¢,,.
This means that there are rp outgoing edges (labelled e,, ..., ¢,,) from each
vertex in the covering graph % which realizes G. Since G has index i in F
there are i vertices in % and hence ir, edges.
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Now a spanning tree for a graph with i vertices has (i — 1) edges (since the
first edge takes two vertices and each subsequent edge takes one more)
hence there are

irp —(i— D =irp—i+1
edges of @ not in the spanning tree. By 2.1.7 and 2.1.8 this is the number, r, of
free generators of n,(%) = G. |

The Schreier formula can be rewritten i = (rg — 1)/(rp — 1). Then if
rp is given, the fact that i must be an integer > 0 excludes certain values of 7
from being the ranks of subgroups of finite index in F (in particular, all values
rg < rp). A subgroup G whose rank is one of the excluded values must there-
fore be of infinite index, so the covering graph method for finding free
generators of G involves an unnecessary detour into the infinite when com-
pared with the Nielsen method, quite apart from the problem of finding coset
representatives in the first place. This should be kept in mind when reading
the next section,

EXERCISE 2.2.5.1. To what extent can the Schreier formula be considered valid for
infinite values of rp, rg, or i?

2.2.6 Schreier Transversals

The proof of the Nielsen-Schreier theorem in Schreier 1927 is a little more
searching than the one given in 2.2.4. Schreier also finds free generators for
the subgroup G by means of a special system of coset representatives. His
method refines the use of coset representatives for determining subgroups
in Reidemeister 1927, but it begs to be interpreted in terms of spanning trees.
In fact, the method is simply an algebraic translation of the method used for
finding generators of 7,(%) in 2.1.7, as Schreier himself points out.

Let F again be realized as n,(%), where % is a bouquet of circles, and let
4 be the covering which realizes the subgroup G of F. As we saw in 2.2.2,
the vertices of % correspond to the right cosets of G in F. Thus if we choose
a spanning tree .7 of & the coset corresponding to a given vertex P’ can be
associated with the unique reduced path fin.7 from P to P, and if p is the
(closed) path in % covered by p, its equivalence class [ p] is a representative
of the coset in question. Because of the fact that an initial segment of a reduced
path in .7 from P“ is itself such a path (ending at a different vertex),
the system of coset representatives [ p], taken as reduced words, has the
property that any initial segment of a member of the system is another
member of the system. Such a system of cosct representatives is called a
Schreier transversal.

Conversely, any Schreier transversal corresponds to a spanning tree 7 of 4.

Z 1s found by lifting the reduced form, p say, of each coset representative
[ p] to its covering path p from P in 4. The paths § must constitute a tree,
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because any nontrivial closed path would involve two different initial
segments j, and j, ending at the same vertex PY), and then the initial segments
p,; and p, would give two different representatives of the same coset. The
tree spans because each vertex corresponds to a distinct coset. O

Now let us adapt the construction of free generators from 2.1.7 to the
situation where a Schreier transversal is known. We shall assume reduced
words are used throughout, so that equivalence class brackets [ ] can be
dropped. The coset representative of an element x of F will be denoted X,
and the elements of F which are themselves coset representatives will be
denoted wy, w,, ... (so W; = w;). The free generators of F will be ¢, e,, ...
so that each vertex of 4 has outgoing edges labelled e, e, ... . If the edge
é; from P9 to P® is not in the spanning tree 7 determined by the Schreier
transversal then it yields a generator

a; = W;e;wy ',

where W; is the unique reduced path in .7 from P to PY, and hence covering
some clement w; of the Schreier transversal, and W, is the unique reduced
pathin 7 from P to P®, the final point of W;¢;, hence covering the element
(wje;) of the Schreier transversal. Thus ¢;; can be expressed

= wiew;e) !

a ij

as an element of F.

We therefore obtain all the free generators of G by letting w; run through
Wy, Wy, ... and ¢; through e, e,, ... . In doing so, of course, we produce
expressions w;e(w;¢;)” ' corresponding to edges ¢; in the spanning tree 7.
Such an expression represents a closed path in 4 and therefore has reduced
form 1, so it may be immediately discarded.

EXERCISE 2.2.6.1. Use the Schreier method to find free generators for the commutator
subgroup K, of F,.

2.2.7 Normal Subgroups and Cayley Diagrams

If F is realized as 1, of a bouquet of circles 4, the covering 4 which realizes
a normal subgroup G of F is the Cayley diagram of F/G, and F/G is also the
covering motion group. Thus any group H can be realized as a covering motion
group.

We saw in 0.5 that any H with generators ey, e,, ... has the form F/G
where F is the free group generated by ey, e,, ... and G is a normal subgroup
of F. Now it is immediate from the definition and elementary properties of
Cayley diagrams that
(1) The Cayley diagram of F/G is a covering 4 of the bouquet %.

(2) The subgroup of F realized by the covering is G (closed paths in the
Cayley diagram are just the elements of G).
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(3) The automorphism group of the Cayley diagram of any group H is H
itself.

On the other hand, we know from 2.2.3 that the covering Z of ¢ which
realizes a given subgroup G of F is unique, hence if we construct the covering
4 for a normal subgroup G we must get the Cayley diagram of H = F/G,
so H is also the covering motion group. ]

This theorem is illustrated by the covering % in 2.2.2 which realizes the
commutator subgroup K, of F,. It is obvious that % is the Cayley diagram
of the free abelian group on two gencrators, which is indeed equal to F,/K,.

The interpretation of Cayley diagrams brought to light by the theorem
suggests we should regard graph coverings in general (at [east when 4 is a
bouquet of circles) as generalized Cayley diagrams. In fact, some authors
call coverings of the bouquet of circles Schreier coset diagrams, since they
were first used in Schreier 1927. Exercise 2.2.7.1 below yiclds a geometric
characterization of the coset diagrams which are Cayley diagrams.

In 2.2.4 we pointed out that the nonconstructiveness of the Schreier
method for finding free generators via a set of coset representatives could be
overcome by the Nielsen method when the subgroup G was finitely generated.
When G is also normal (but # {1}) then F/G is in fact finite (see Exercise
2.2.7.2), and we can proceced more directly to make Schreier’s method
effective. Namely, if F/G is defined by relators we use the method of 0.5.7 to
effectively construct the Cayley diagram % of F/G, then construct a tree 7
spanning 4 by the method of 2.1.5. The Schreier generators wiedw;e) !
can then be read from the edges of % which are not in 7.

This is the situation where Schreier’s method is most often useful. Of
course, it can also be applied to subgroups G of infinite index when the
coset diagram is apparent and easy to survey, as is the case with the com-
mutator subgroup.

EXERCISE 2.2.7.1. A covering % of % is called regular if the paths in € which cover a given
closed path p in % are either all closed or all nonclosed. Show that this property is
equivalent to the normality of the subgroup realized by the covering,
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