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Preface

During the past twenty years many connections have been found between
the theory of analytic functions of one or more complex variables and the
study of commutative Banach algebras. On the one hand, function theory
has been used to answer algebraic questions such as the question of the
existence of idempotents in a Banach algebra. On the other hand, concepts
arising from the study of Banach algebras such as the maximal ideal space,
the Silov boundary, Gleason parts, etc. have led to new questions and to
new methods of proof in function theory.

Roughly one third of this book is concerned with developing some of the
principal applications of function theory in several complex variables to
Banach algebras. We presuppose no knowledge of several complex variables
on the part of the reader but develop the necessary material from scratch.
The remainder of the book deals with problems of uniform approximation
on compact subsets of the space of n complex variables. For » > 1 no
complete theory exists but many important particular problems have been
solved.

Throughout, our aim has been to make the exposition elementary and
self-contained. We have cheerfully sacrificed generality and completeness
all along the way in order to make it easier to understand the main ideas.

Relationships between function theory in the complex plane and Banach
algebras are only touched on in this book. This subject matter is thoroughly
treated in A. Browder’s Introduction to Function Algebras, (W. A. Benjamin,
New York, 1969) and T. W. Gamelin’s Uniform Algebras, (Prentice-Hall,
Englewood Cliffs, N.J., 1969). A systematic exposition of the subject of
uniform algebras including many examples is given by E. L. Stout, The
Theory of Uniform Algebras, (Bogden and Quigley, Inc., 1971).

The first edition of this book was published in 1971 by Markham Pub-
lishing Company. The present edition contains the following new Sections:
18. Submanifolds of High Dimension, 19. Generators, 20. The Fibers Over
a Plane Domain, 21. Examples of Hulls. Also, Section 11 has been revised.

Exercises of varying degrees of difficulty are included in the text and the
reader should try to solve as many of these as he can. Solutions to starred
exercises are given in Section 22.

In Sections 6 through 9 we follow the developments in Chapter 1 of
R. Gunning and H. Rossi, Analytic Functions of Several Complex Variables,
(Prentice-Hall, Englewood Cliffs, N.J., 1965) or in Chapter III of L. Hor-
mander, An Introduction to Complex Analysis in Several Variables, (Van
Nostrand Reinhold, New York, 1966).

I want to thank Richard Basener and John O’Connell, who read the
original manuscript and made many helpful mathematical suggestions and

vil



viil PREFACE

improvements. I am also very much indebted to my colleagues, A. Browder,
B. Cole and B. Weinstock for valuable comments. Warm thanks are due to
Irving Glicksberg. I am very grateful to Jeffrey Jones for his help with the
revised manuscript.

Mrs. Roberta Weller typed the original manuscript and Mrs. Hildegarde
Kneisel typed the revised version. I am most grateful to them for their
excellent work.

Some of the work on this book was supported by the National Science
Foundation.

Providence, R.1I. JOoHN WERMER
June, 1975
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Preliminaries and Notations

Let X be a compact Hausdorff space.

is the space of all real-valued continuous functions on X.

is the space of all complex-valued continuous functions on X.
By a measure u on X we shall mean a complex-valued Baire
measure of finite total variation on X.

is the positive total variation measure corresponding to u.

is |l (X).

is the complex numbers.

is the real numbers.

is the integers.

is the space of n-tuples of complex numbers.

Fix n and let Q be an open subset of C".

is the space of k-times continuously differentiable functions on €,
k=1,2 ..., 00.

is the subset of C*(Q) consisting of functions with compact support
contained in Q.

is the space of holomorphic functions defined on Q.

By Banach algebra we shall mean a commutative Banach algebra
with unit.

Let A be such an object.

is the space of maximal ideals of 2. When no ambiguity arises, we
shall write # for A ). If m is a homomorphism of A — C, we
shall frequently identify m with its kernel and regard m as an
element of /.

Forfin«U, M in 4,

is the value at f of the homomorphism of W into C corresponding
to M.

We shall sometimes write f(M) instead of f(M).

is the algebra consisting of all functions f on .# with fin U. For
xin AU,

is the spectrum of x = {4 € C|A — x has no inverse in U}.

is the radical of 2.

Forz =(z4,...,2,)€C",

=lzil? + Il + o + Iz,

For S a subset of a topological space,

is the interior of S,

is the closure of S, and

is the boundary of S.

For X a compact subset of C”",

1




2 BANACH ALGEBRAS AND COMPLEX VARIABLES

P(X) is the closure in C(X) of the polynomials in the coordinates.
Let Q be a plane region with compact closure Q. Then

A(Q) is the algebra of all functions continuous on Q and holomorphic
on Q.

Let X be a compact space, .# a subset of C(X), and u a measure on X. We
write u L % and say u is orthogonal to & if

ffdyzO forall fin £

We shall frequently use the following result (or its real analogue) without
explicitly appealing to it:

THEOREM (RIESZ-BANACH)

Let & be a linear subspace of C(X) and fix g in C(X). If for every measure
ponX

ul & implies p 1 g,
then g lies in the closure of . In particular, if
u L & implies u =0,

then & is dense in C(X).

We shall need the following elementary fact, left to the reader as

Exercise 1.1. Let X be a compact space. Then to every maximal ideal
M of C(X) corresponds a point x, in X such that M = {f in C(X)| f(x,) = 0}.
Thus #(C(X)) = X.

Here are some examples of Banach algebras.

(a) Let T be a bounded linear operator on a Hilbert space H and let U be
the closure in operator norm on H of all polynomials in 7. Impose the
operator norm on .

(b) Let C'(a, b) denote the algebra of all continuously differentiable
functions on the interval [a, b], with

IfI = max|f| + max|f’].
(a.b) {a.b]

(c) Let Q be a plane region with compact closure Q. Let A(Q2) denote the
algebra of all functions continuous on Q and holomorphic in Q, with

I/l = max | /().

(d) Let X be a compact subset of C". Denote by P(X) the algebra of all
functions defined on X which can be approximated by polynomials in the
coordinates zy, . .., z, uniformly on X, with

I.f = max| f].
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(e) Denote by H*(D) the algebra of all bounded holomorphic functions
defined in the open unit disk D. Put

/1l = suplfl.
D

(f) Let X be a compact subset of the plane. R(X) denotes the algebra of all
functions on X which can be uniformly approximated on X by functions
holomorphic in some neighborhood of X. Take

I 1l = max]|f].
X

(g) Let X be a compact Hausdorff space. On the algebra C(X) of all
complex-valued continuous functions on X we impose the norm

I /1 = max|f].
X

Definition. Let X be a compact Hausdorff space. A uniform algebra on X

is an algebra A of continuous complex-valued functions on X satisfying
(i) A is closed under uniform convergence on X.

(i) A contains the constants.

(iil) A separates the points of X.

Ais normed by | f|| = maxy|f| and so becomes a Banach algebra.

Note that C(X) is a uniform algebra on X, and that every other uniform
algebra on X is a proper closed subalgebra of C(X). Among our examples,
(c), (d), (), and (g) are uniform algebras; (a) is not, except for certain T, and
(b) is not.

If A is a uniform algebra, then clearly

(1) Ix2 = IIx|? for all xe A.

Conversely, let 2 be a Banach algebra satisfying (1). We claim that 2 is
isometrically isomorphic to a uniform algebra. For (1) implies that

x* = fx)l% ..o 13 = ], all n.
Hence

[x]| = lim | x*||'* = max|%|.
k— M

Since W is complete in its norm, it follows that 9 is complete in the uniform
norm on .#, so 9 is closed under uniform convergence on .#. Hence ¥ is a
uniform algebra on .# and the map x — % is an isometric isomorphism from
Ato M.

It follows that the algebra H*(D) of example () is isometrically isomorphic
to a uniform algebra on a suitable compact space.

In the later portions of this book, starting with Section 10, we shall study
uniform algebras, whereas the earlier sections (as well as Section 15) will be
concerned with arbitrary Banach algebras.
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Throughout, when studying general theorems, the reader should keep in
mind some concrete examples such as those listed under (a) through (g), and
he should make clear to himself what the general theory means for the
particular examples.

Exercise 1.2. Let A be a uniform algebra on X and let h be a homo-
morphism of A — C. Show that there exists a probability measure (positive
measure of total mass 1) 4 on X so that

h(f) = Lfdu, all f in L.



2

Classical Approximation Theorems

Let X be a compact Hausdorff space. Let A be a subalgebra of Cg(X)
which contains the constants.

THEOREM 2.1 (REAL STONE-WEIERSTRASS THEOREM)

If W separates the points of X, then W is dense in Cg(X).
We shall deduce this result from the following general theorem:

PROPOSITION 2.2

Let B be a real Banach space and B* its dual space taken in the weak-*
topology. Let K be a nonempty compact convex subset of B¥. Then K has an
extreme point.

Note. If W is a real vector space, S a subset of W, and p a point of S, then p
is called an extreme point of S provided

p=3p,+ P2, P1.p2€S=p, =p,=p.

If Sis a convex set and p an extreme point of S, then0 < § < landp = 0p, +
(1 — 0)p, implies that p, = p, = p.

We shall give the proof for the case that B is separable.

Proof. Let {L,} be a countable dense subset of B. If y € B*, put

L,(y) = y(Ly).
Define

l; = sup L(x).

xeK
Since K is compact and L, continuous, [, is finite and attained; i.e., 3x, € K
with L,(x,) = [;. Put
I, = sup L,(x) over all xe K, with L,x)=1,.
Again, the sup is taken over a compact set, contained in K, so 3x, € K with
Ly(x,) =1, and Li(x;) =1,.
Going on in this way, we get a sequence x,,X,, ... in K so that for each n,
Li(x,) =1;,Lyx,) =15,..., Lx,) =1,
and
loyy =sup L, (x)over xe K with Lix)=1{,...,LJx)=1,.

5



6 BANACH ALGEBRAS AND COMPLEX VARIABLES

Let x* be an accumulation point of {x,}. Then x* e K.
L{x,) = l;for all large n. So L{x*) = I; for all j.
We claim that x* is an extreme point in K. For let
X* =13y + 1y niaeK
l; = Ly(x*) = 3Ly(yy) + 3L1()).
Since
Li(y) <l,j=1,2,Ly(y)) = Li(y2) = ;-
Also,
I, = Ly(x*) = 3Ly(y,)) + 2La(y2).
Since L,(y,) = I, and y, € K, L,(y,) < l,. Similarly, L,(y,) < l,. Hence
Ly(y)) = Ly(ys) = 5.
Proceeding in this way, we get
L(y;) = Ly,) for all k.

But {L,} was dense in B. It follows that y, = y,. Thus x* is extreme in K.
Q.E.D.
Note. Proposition 2.2 (without separability assumption) is proved in
[23, pp. 439-440]. In the application of Proposition 2.2 to the proof of
Theorem 2.1 (see below), Cg(X) is separable provided X is a metric space.
Proof of Theorem 2.1. Let

K = {pe(Ca(X)*|u L Aand |ju] < 1}.

K is a compact, convex set in (Cg(X))*. (Why?) Hence K has an extreme
point g, by Proposition 2.2. Unless K = {0}, we can choose ¢ with ||o|| = 1.
Since 1 € A and so

f ldo =0,

o cannot be a point mass and so 3 distinct points x, and x, in the carrier of g.
Choose g e U with g(x,) # g(x,), 0 < g < 1. (How?) Then

go (1 - g)O'
=g o+ (1 —go = |go| > AN =gl
c=g-0+( glo = |\ga] lgall + (1 — g)all 11 — g)ol

Also,
lgoll + Il — g)oll = fgd|a| + f(l ~ g)do] = f do| = o]l = 1.

Thus o is a convex combination of ga/|go|| and (1 — g)o/|(1 — g)o||. But
both of these measures lie in K. (Why?) Hence
go
og=——.
lgall
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It follows that g is constant a.e. - d|g|. But g(x,) # g(x,) and g is continuous
which gives a contradiction.

Hence K = {0} andsope(Cg(X))*and u 1L A= u = 0. Thus Wis densein
Cr(X), as claimed.

THEOREM 2.3 (COMPLEX STONE-WEIERSTRASS THEOREM)
W is a subalgebra of C(X) containing the constants and separating points. If
(1) felU=fe¥,

then W is dense in C(X).

Proof. Let & consists of all real-valued functions in . Since by (1) &
contains Re f and Im f for each f €U, ¥ separates points on X. Evidently
% is a subalgebra of Cg(X) containing the (real) constants. By Theorem 2.1
£ is then dense in Cg(X). It follows that W is dense in C(X). (How?)

Let X denote the real subspace of C" = {(z, ..., z,) € C"|z; is real, all j}.

COROLLARY 1

Let X be a compact subset of . Then P(X) = C(X).

Proof. Let Abe the algebra of all polynomials in z,, .. ., z, restricted to X.
A then satisfies the hypothesis of the last theorem, and so U is dense in C(X);
ie., P(X) = C(X).

COROLLARY 2

Let I be an interval on the real line. Then P(I) = C(I).

This is, of course, the Weierstrass approximation theorem (slightly
complexified).

Let us replace I by an arbitrary compact subset X of C. When does P(X) =
C(X)? It is easy to find necessary conditions on X. (Find some.) However,
to get a complete solution, some machinery must first be built up.

The machinery we shall use will be some elementary potential theory for
the Laplace operator A in the plane, as well as for the Cauchy-Riemann
operator

li.*.l_a_
210x  oy|’

9
0z

These general results will then be applied to several approximation problems
in the plane, including the above problem of characterizing those X for
which P(X) = C(X).

Let u be a measure of compact support = C. We define the logarithmic
potential u* of u by

1
z—{

@) iH(z) = f log

'du(l )-
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We define the Cauchy transform fi of u by

1
o) fe) = [ o duto
LEMMA 24

The functions

J

are summable - dx dy over compact sets in C. It follows that these functions are
finite a.e. - dx dy and hence that p* and [i are defined a.e. - dx dy.

Since 1/r > |log r| for small r > 0, we need only consider the second
integral.

Fix R > 0 with suppl|u| = {z|lz] < R}.

1 dx dy
= dxd —\d = .
y fll x y{ﬂc_zf I#I(C)} fdlul(o =

For { e supp|yu| and |z] < R, |z — {] < 2R.

dx dy J‘ dx' dy’ J'ZR J’z" db
< — = rdr — = 4znR.
J]ZISR |z — ] |z'| < 2R |Z] 0 o T

1 1
log cH"""‘C’ and f ‘C—_—Z*dw@)

z —

Hence y < 4nR - || u]|. Q.E.D.
LEMMA 2.5
Let F e Cy(C). Then
1 OF dxd
@) o= - [[S 52 aiec
nJ 0z z—(

Note. The proof uses differential forms. If this bothers you, read the proof
after reading Sections 4 and 5, where such forms are discussed, or make up
your own proof.

Proof. Fix { and choose R > |{| with supp F {z||z| < R}. Fix ¢ > 0 and
small. Put Q, = {||lz] < Rand |z — {| > &}.

The 1-form F dz/z — { is smooth on Q, and

Fdz 0| F _ OF dz A\ dz
d(z_c)-‘a—z(z_c)dZ/\dZ—a—z“ z-—C .

By Stokes’s theorem
J‘ d( Fdz ) _ J‘ Fdz
. \Z 4 Q. Z — C
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Since F = 0 on {z||z] = R}, the right side is
Fd 2n .
f Lo f F( + e€)ido,
|

z—(|=cz——c 0

SO

oF dz A 22 .
OFdzNdz [ g 1 ee)ide,
Q. (32 zZ — C 0

Letting ¢ —» 0 we get

f FdzNdz_ k)
|z <R 0z z— C

Since 0F/0z = 0 for |z| > R and since dz A dz = 2idx A dy, this gives

OF dx dy
Foop= O,

1e., (4).
Note. The intuitive content of (4) is that arbitrary smooth functions can be
synthesized from functions

1
f}.(C) = m

by taking linear combinations and then limits.

LEMMA 2.6
Let G e C}(C). Then
1
5) GO = -~ f f AG(z) log dxdy, allleC.
2nJ, |z —

Proof. The proof is very much like that of Lemma 2.5. With Q, as in that
proof, start with Green’s formula

JJ(uAv — vAu)dx dy = Lng (u% - 05;) ds
Q.

and take u = G, v = log|z — (|. We leave the details to you.

LEMMA 2.7

If w is a measure with compact support in C. and if i(z) = 0 a.e. - dx dy, then
u=0. Also if p*(z) = 0 a.e. - dx dy, then u = 0.

Proof. Fix g e C}(C). By (4)

10 dxd
[s0aw - | d#(g)[_; ) ﬂ |
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Fubini’s theorem now gives
1 (fdg, ..
(6) —J—_(Z)u(Z)dx dy = fgd#.
) 0z
Since 4 = 0 a.e., we deduce that

~[gduzO.

But the class of functions obtained by restricting to supp u the functions in
C3(C) is dense in C(supp u) by the Stone-Weierstrass theorem. Hence
u=0.

Using (5), we get similarly for g e C3(C),

1
- fgdﬂ = EJAg(Z)-u*(Z) dx dy

and conclude that u = 0 if u* = O a.e.
As a first application, consider a compact set X < C.

THEOREM 2.8 (HARTOGS-ROSENTHAL)

Assume that X has Lebesgue two-dimensional measure 0. Then rational
functions whose poles lie off X are uniformly dense in C(X).

Proof. Let W be the linear space consisting of all rational functions
holomorphic on X. W is a subspace of C(X). To show W dense, we consider
a measure 4 on X with u 1 W Then f(z) = jdy({)/{ —z=0 for z¢ X,
since 1/{ — ze W for such z,and u 1 W.

Since X has measure 0, i = 0 a.e. - dx dy. Lemma 2.7 yields u = 0.

Hence y L W= u = 0 and so W is dense. QE.D.

As a second application, consider an open set Q = C and a compact set
K < Q. (In the proofs of the next two theorems we shall suppose Q bounded
and leave the modifications for the general case to the reader.)

THEOREM 2.9 (RUNGE)

If F is a holomorphic function defined on Q, there exists a sequence {R,} of
rational functions holomorphic in Q with

R, — F uniformly on K.

Proof.Let Q,,Q,, ... be the components of C\ K. It is no loss of generality
to assume that each Q; meets the complement of Q. (Why?) Fix p; € Q;\ Q.

Let W be the space of all rational functions regular except for possible
poles at some of the p;, restricted to K. Then W is a subspace of C(K) and it
suffices to show that W contains F in its closure.

Choose a measure u on K with g L W. We must show that u 1 F.

Fix ¢ € C*(C), supp ¢ = Q and ¢ = 1 in a neighborhood N of K.
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Using (6) with g = F - ¢ we get

| (oF¢) ~
) - f 2P o)tz ax dy = f Fé du.
Fix j.
d
Az) = o
{—z

is analytic in Q; and

d“f du({)
ﬁ([’j)zk!f‘c—_;ﬁ, k=012....
j

The right-hand side is 0 since ({ — p) " **Ye W and u L W. Thus all
derivatives of /1 vanish at p; and hence /i = 0 in Q;. Thus 2 = 0 on C\ K.
Also, F¢ = F is analytic in N, and so

0
—(F¢$) =0on K.
0z
The integrand on the left in (7) thus vanishes everywhere, and so

deu=JF¢dy=0.

Thusuy L W=pu 1 F. Q.E.D.

When can we replace “‘rational function” by ‘““polynomial” in the last
theorem?

Suppose that Q is multiply connected. Then we cannot.

The reason is this: We can choose a simple closed curve f lying in Q such
that some point z, in the interior of f lies outside Q. Put

1

z—zy

F(z) =
Then F is holomorphic in Q. Suppose that 3 a sequence of polynomials
{P,} converging uniformly to F on . Then
(z — zp)P, — 1 — O uniformly on .
By the maximum principle
(z — zg)P, — 1 — 0 inside S.

But this is false for z = z,.

THEOREM 2.10 (RUNGE)

Let Q be a simply connected region and fix G holomorphic in Q. If K is a
compact subset of Q, then 3 a sequence {P,} of polynomials converging uni-
formly to G on K.
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Proof. Without loss of generality we may assume that C\ K is connected.

Fix a point p in C lying outside a disk {z||z| < R} which contains K. The
proof of the last theorem shows that 3 rational functions R, with sole pole
at p with

R, — G uniformly on K.

The Taylor expansion around 0 for R, converges uniformly on K. Hence we
can replace R, by a suitable partial sum P, of this Taylor series, getting

P

n

— G uniformly on K. QE.D.

We return now to the problem of describing those compact sets X in the
z-plane which satisfy P(X) = C(X).

Let p be an interior point of X. Then every f in P(X) is analytic at p.
Hence the condition

(8) The interior of X i1s empty.
is necessary for P(X) = C(X).

Let Q, be a bounded component of C X. Fix F € P(X). Choose poly-
nomials P, with

P, — F uniformly on X.
Since 0Q, < X,
|P, — P,| — 0 uniformly on 0Q,

as n, m — 0. Hence by the maximum principle
|P, — P,| — 0 uniformly on Q,.

Hence P, converges uniformly on Q; U 0Q, to a function holomorphic on
Q,, continuous on Q; U dQ,, and = F on 9Q,.

This restricts the elements F of P(X) to a proper subset of C(X). (Why?)
Hence the condition

9) C\\X is connected.

is also necessary for P(X) = C(X).

THEOREM 2.11 (LAVRENTIEFF)

If (8) and (9) hold, then P(X) = C(X).

Note that the Stone-Weierstrass theorem gives us no help here, for to
apply it we should need to know that z € P(X), and to prove that is as hard
as the whole theorem.

The chief step in our proof is the demonstration of a certain continuity
property of the logarithmic potential a* of a measure o supported on a
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compact plane set E with connected complement, as we approach a boundary
point z, of E from C\ E.

LEMMA 2.12 (CARLESON)

Let E be a compact plane set with C\ E connected and fix z, € OE. Then 3
probability measures o, for each t > 0 with o, carried on C\\E such that:
Let o be a real measure on E satisfying

19 L c‘

Then
lim | a* do(z) = a*(z,).
t—0

1
log Py d|o)(¢) < oo.

Proof. We may assume that z, = 0. Fix ¢ > 0. Since 0 € 0E and C\E is
connected, 3 a probability measure o, carried on C\ E such that

1
alzlry <|z) <ry} = ?(rz —-ry) forO <r, <r, <t

and o, = 0 outside |z| < t.

If some line segment with 0 as one end point and length ¢ happens to lie
in C\\E, we may of course take o, as 1/t - linear measure on that segment.
(In the general case, construct a,.)

Then for all { e C we have

f log

1
do’,(z) < flog Ep= ICltdo—'(Z)

1 1 11 1
= - . dr=log— + - o
lfo log gy 4r = log g + tfologu —a

The last term is bounded above by a constant A independent of ¢ and |{].
(Why?) Hence we have

1
(11) flog pa— da(z) < logl—z—| + A, all {,allt > 0.

Also, as t — 0, o, — point mass at 0. Hence for each fixed { # 0,

1
do(z) - log m

1
(12) flog P

Now for fixed t Fubini’s theorem gives

13 [ = [{ 1o L

R dG;(Z)} da(().
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By (11), (12), and (10), the integrand on the right tends to log 1/|{| domin-
atedly with respect to |o). Hence the right side approaches

[ 1o 7 datt) = a0
ast — 0, and so
lirg a*(z)do(z) = a*(0). Q.E.D.

Proof of Theorem 2.11. Let « be a real measure on X with o 1 Re(P(X)).
Then

fReC"da(C)=O, n>0

and
flm{"doc=fRe(—iC")doz=0, n >0,
so that
ft" da = 0, n=0.
For |z large,

log( 1 - g) = icn(z)éf",

0

the series converging uniformly for { € X. Hence

flog(l - §) da(l) = ECH(Z)IC" da(() = 0,
z 0

whence
[ Re(log( - g)) da(0) = 0
or
[ 108z ~ t1aat0) - [ 108tz = 0
whence

f loglz — {] da(() = 0,

since o L 1. Since

f logjz — ] da(?)
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is harmonic in C\\ X, the function vanishes not only for large |z|, but in fact
for all zin C\ X, and so

a*(z) =0, ze C\X.
By Lemma 2.12 it follows that we also have
a*(zg) = 0, Zzo€ X,
provided (10) holds at z°. By Lemma 2.4 this implies that
o* = 0ae. -dxdy.
By Lemma 2.7 this implies that « = 0. Hence

(14) Re P(X) is dense in Cg(X).
Now choose ue€ P(X). Fix zo € X with
1
(15) | () < .
12— 29

Because of (14) we can find for each positive integer k a polynomial P, such
that

1
(16) IRe Pz) — |z — zlll <7, zeX
and
(17) Pyzo) = 0.

e‘kPk(z) _ 1
M) = ————

Z_ZO

is an entire function and hence its restriction to X lies in P(X). Hence

(18) [rau=o.
Equation (16) gives
Re kP(z) — klz — zo| = —1,
whence
|e—kl’k(z)| < e—k|z—zo|+l’ ZGX.

It follows that fi(z) > —1/z — z, for all ze X \\{z,}, as k — o0, and also

4
/(@) £ ——, zeX.
|z — zof

Since by (15) 1/|z — z,| is summable with respect to ||, this implies that

Jﬁd""’f du(z)

z — z,

by dominated convergence.
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Equation (18) then gives that

Since (15) holds a.e. on X by Lemma 2.4, and since certainly

f WD _ G for zye X
zZ — ZO

(why?), we conclude that fi = O a.e., so p = 0 by Lemma 2.7. Thus u L P(X)
= u = 0, and so P(X) = C(X). QE.D.

NOTES

Proposition 2.2 is a part of the Krein—-Milman theorem [4, p. 440]. The
proof of Theorem 2.1 given here is due to de Branges [13]. Lemma 2.7
(concerning f1) is given by Bishop in [6]. Theorem 2.8 is in F. Hartogs and
A. Rosenthal, Uber Folgen analytischer Funktionen, Math. Ann. 104 (1931).
Theorem 2.9 is due to C. Runge, Zur Theorie der eindeutigen analytischen
Funktionen, Acta Math. 6 (1885). The proof given here is found in [40,
Chap. 1]. Theorem 2.11 was proved by M. A. Lavrentieff, Sur les fonctions
d’'une variable complexe représentables par des séries de polynomes, Her-
mann, Paris, 1936, and a simpler proof is due to S. N. Mergelyan, On a
theorem of M. A. Lavrentieff, A.M.S. Transl. 86 (1953). Lemma 2.12 and its
use in the proof of Theorem 2.11 is in L. Carleson, Mergelyan’s theorem on
uniform polynomial approximation, Math. Scand. 15 (1964), 167-175.

Theorem 2.1 is due to M. H. Stone, Applications of the theory of Boolean
rings to general topology, Trans. Am. Math. Soc. 41 (1937). See also M. H.
Stone, The generalized Weierstrass approximation theorem, Math. Mag. 21
(1947-1948).



3

Operational Calculus in One Variable

Let & denote the algebra of all functions fon — 7 < 0 < &, with

f6) = i C,e™, i IC,] < .

— @

Exercise 3.1.. AM(¥) may be identified with the circle |{| = 1 and for
f = ZO—OOO C"emﬁ’ ICOI = 1,

fe) = ¥ Cts.

If f € # and f never vanishes on —n < 0 < =, it follows that f # 0 on
M(F) and so that f has an inverse in &, i.e.,

— Z d"eino

~I =

with ' ®,, |d,| < co.

This result, that nonvanishing elements of # have inverses in &, is due to
Wiener (see [11, p. 91]), by a quite different method.

We now ask: Fix f € # and let o be the range of f; i.e.,

c={fO)|—-n<6<mn}

Let @ be a continuous function defined on o, so that ®(f) is a continuous
function on [ — =, 7]. Does ®(f) € F?

The preceding result concerned the case ®(z) = 1/z.

Lévy [10] extended Wiener’s result as follows: Assume that ® is holo-
morphic in a neighborhood of ¢. Then ®(f) € £.

How can we generalize this result to arbitrary Banach algebras?

THEOREM 3.1

Let A be a Banach algebra and fix x € W. Let 6(x) denote the spectrum of x.
If ® is any function holomorphic in a neighborhood of a(x), then ®(%) € N.

Note that this contains Lévy’s theorem. However, we should like to do
better. We want to define an element ®(x) € W so as to get a well-behaved
map: ® - @(x), not merely to consider the function ®(£) on .#. When U is
not semisimple, this becomes important. We demand that

(1) ®(x) = D) on A.

17
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The study of a map ® — ®(x), from H(Q) —» A, we call the operational
calculus (in one variable).

For certain holomorphic functions ® it is obvious how to define ®(x).
Let @ be a polynomial

N
O(z) = ) a,"
n=0

We put
N
) D(x) = ) ax".
n=0
Note that (1) holds. Let ®@ be a rational function holomorphic on a(x),
P(z)
z) = ——,
*9 = 50

P and Q being polynomials and Q(z) # 0 for z € 6(x). Then
Qx)~'eW  (why?)

and we define

@) ®(x) = P(x)-Q(x)~*".

We again verify (1).

Now let Q be an open set with a(x) = Q and fix ® € H(Q). It follows from
Theorem 2.9 that we can choose a sequence {f,} of rational functions
holomorphic in Q such that f, - ® uniformly on compact subsets of Q.
(Why?) For each n, f,(x) was defined above. We want to define

D(x) = lim f(x).

To do this, we must prove

LEMMA 3.2
lim,, ,, f,(x) exist in W and depends only on x and ®, not on the choice

of {fu}-

We need

*Exercise 3.2. Let x €2, let Q be an open set containing o(x), and let
fbe a rational functional holomorphic in Q.

Choose an open set Q, with

ox)cQ, cQ,cQ
whose boundary y is the union of finitely many simple closed polygonal
curves. Then
1

27

@ 10 =5 [ f0- -0 ar
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Proof of Lemma 3.2. Choose 7y as in Exercise 3.2. Then

(1) dt J2) ‘D(t)
) 2mf — Zm.f t—x

X
< 5 J L0 = 00011 = 27 ds

— 0asn — oo,since ||(t — x)~*|| is bounded on y while f, — ® uniformly on y.
Thus

s) lim f,(x) ) de

. \E.D.
n—>w 2m yE—X Q

Now let {F,} be a sequence in H(Q). We write
F,— F in HQ)

if F, tends to F uniformly on compact sets in Q.

THEOREM 3.3

Let A be a Banach algebra, x € U, and let Q be an open set containing o(x).
Then there exists a map t: H(Q) — U such that the following holds. We write
F(x) for 1(F):

(a) 7 is an algebraic homomorphism.

(b) If F, - F in H(Q), then F,(x) - F(x) in .

(c) F(x) = F(&) for all F e H(Q).

(d) If F is the identity function, F(x) =

(e) With y as earlier, if F e H(Q),

F(t)d
Fix) = 2mf o

t—x’

Properties (a), (b), and (d) define t uniquely.

Note. Theorem 3.1 is contained in this result.

Proof. Fix F € H(Q). Choose a sequence of rational functions { f,} € H(Q)
with f, » F in H(Q2). By Lemma 3.2

(6) lim £,(x)

exists in A. We define this limit to be F(x) and 7 to be the map F — F(x).

7 is evidently a homomorphism when restricted to rational functions.
Equation (6) then yields (a). Similarly, (c) holds for rational functions and
so by (6) in general. Part (d) follows from (6).

Part (e) coincides with (5). Part (b) comes from (e) by direct computation.

Suppose now that 7’ is a map from H(Q) to U satisfying (a), (b), and (d).

By (a) and (d), =’ and 7 agree on rational functions. By (b), then 7’ = 7 on
H(Q). QE.D.
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We now consider some consequences of Theorem 3.3 as well as some
related questions.

Let A be a Banach algebra. By a nontrivial idempotent e in W we mean an
element e with e = e, e not the zero element or the identity. Suppose that e
is such an element. Then 1 — e is another. e is not in the radical (why?),
so e # 0 on /. Similarly, {—%e # 0,50 & # 1. But % = ¢, s0 é takes on only
the values 0 and 1 on .. It follows that .# is disconnected.

Question. Does the converse hold ? That is, if ./ is disconnected, must U
contain a nontrivial idempotent?

At this moment, we can prove only a weaker result.

COROLLARY

Assume there is an element x in U such that o(x) is disconnected. Then U
contains a nontrivial idempotent.

Proof. o(x) = K; U K,, where K,, K, are disjoint closed sets. Choose
disjoint open sets Q, and Q,,

K, cQ,, K, cQ,.
Put Q = Q, U Q,. Define F on Q by

F=1o0nQ,, F=0o0nQ,.
Then F € H(Q). Put
e = F(x).

By Theorem 3.3,

e =Fx)=F(x)=e
and
{ 1 on £ Y(K,),

0 onf YK,).
Hence e is a nontrivial idempotent.

Exercise 3.3. Let B be a Banach space and T a bounded linear operator
on B having disconnected spectrum. Then there exists a bounded linear
operator E on B, E # 0, E # I, such that E? = E and E commutes with T

Exercise 3.4 Let U be a Banach algebra. Assume that .# is a finite set.
Then there exist idempotents ey, e,, ..., e, € Uwith e;-e; = 0 if i # j and

with ) "_, e; = 1 such that the following holds:
Every x in U admits a representation

X = Z 'liei + P>
i=1

13

where the A; are scalars and p is in the radical.
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Note. Exercise 3.4 contains the following classical fact: If « is an n x n
matrix with complex entries, then there exist commuting matrices f and y
with f nilpotent, y diagonalizable, and

a=p+7y.

To see this, put A = algebra of all polynomials in &, normed so as to be a
Banach algebra, and apply the exercise.

We consider another problem. Given a Banach algebra 2 and an invertible
element x € A, when can we find y € A so that

x = ¢e¥?

There is a purely topological necessary condition: There must exist f in
C(A) so that

£=¢ on..

(Think of an example where this condition is not satisfied.)
We can give a sufficient condition:

COROLLARY

Assume that a(x) is contained in a simply connected region Q, where 0 ¢ Q.
Then there is a y in Wwith x = €.
Proof. Let @ be a single-valued branch of log z defined in Q. Put y = ®(x).

N(I)n
Y——>e®=zinHQ), asN - owo.
5 n!

Hence by Theorem 3.3(b),

By (a) the left side equals

Hence ¢’ = x.

To find complete answers to the questions about existence of idempotents
and representation of elements as exponentials, we need some more ma-
chinery.

We shall develop this machinery, concerning differential forms and the
0-operator, in the next three sections. We shall then use the machinery to set
up an operational calculus in several variables for Banach algebras, to

answer the above questions, and to attack various other problems.
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NOTES

Theorem 3.3 has a long history. See E. Hille and R. S. Phillips, Functional
analysis and semi-groups, Am. Math. Soc. Coll. Publ. XX X1, 1957, Chap. V.
In the form given here, it is part of Gelfand’s theory [28]. For the result on
idempotents and related results, see Hille and Phillips, loc. cit.



4

Differential Forms

Note. The proofs of all lemmas in this section are left as exercises.

The notion of differential form is defined for arbitrary differentiable
manifolds. For our purposes, it will suffice to study differential forms on an
open subset Q of real Euclidean N-space RY. Fix such an Q. Denote by
Xy, ..., Xy the coordinates in R,

Definition 4.1. C*(Q) = algebra of all infinitely differentiable complex-
valued functions on Q.

We write C* for C*(Q).

Definition 4.2. Fix x € Q. T, is the collection of all maps v:C* — C for
which

(a) v is linear.

(b) o(f -g) = f(x)-v(g) + g(x)-v(f), f, g € C™.

T, evidently forms a vector space over C. We call it the tangent space at x
and its elements tangent vectors at x.

Denote by 0/0x|, the functional f — (df /0x;)(x). Then d/0x |, is a tangent
vectorat xforj=1,2,...,n.

LEMMA 4.1

0/0x|y, . - ., 0/0xy|, forms a basis for T,.

Definition 4.3. The dual space to T, is denoted T%.

Note. The dimension of T¥ over Cis N.

Definition 4.4. A 1-form w on Q is a map w assigning to each x in Q an
element of T%.

Example. Let fe C®. For x € Q, put

@d)uv) = u(f), allveT..

Then (df), e T%*.

df is the 1-form on Q assigning to each x in Q the element (df),.

Note. dx,, ..., dxyare particular 1-forms. In a natural way 1-forms may be
added and multiplied by scalar functions.

LEMMA 4.2

Every 1-form w admits a unique representation
N
1

the C; being scalar functions on Q.
23
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Note. For fe C®,
N af
df = ——dx;.
j; dx;

We now recall some multilinear algebra. Let V' be an N-dimensional
vector space over C. Denote by A¥(V) the vector space of k-linear alternating
maps of V x --- x V - C. (“Alternating” means that the value of the
function changes sign if two of the variables are interchanged.)

Define (V) as the direct sum

4V) =AM OANIV)® - @ AYV).

Here A°(V) = Cand A'(V) s the dual space of V. Put A{(V) = Oforj > N.
We now introduce a multiplication into the vector space %4(V). Fix
7€ AXV), 6 € A(V). The map

(S P S TN ) i (ST ' (PR S

isa (k + I)-linear map from V' x --- x V (k + [ factors) — C. It is, however,
not alternating. To obtain an alternating map, we use
Definition 4.5. Let te A%(V), e AY(V), k,l > 1.

LAY (ST S|
1
- mZ(" D*1(rqys - - -5 Cnti) * 0t 1) - - - > Entie+ )

the sum being taken over all permutations 7 of the set {1, 2, ...,k + [}, and
(— 1)" denoting the sign of the permutation 7.

LEMMA 4.3

T A o as defined is (k + 1)-linear and alternating and so € A**'(V).

The operation A (wedge) defines a product for pairs of elements, one in
A¥(V)and one in AY(V), the value lying in A**(V), hence in 4(V). By linearity,
A extends to a product on arbitrary pairs of elements of 4(V') with value in
4(V). For 1€ A°%(V), 6 € 9(V), define © A ¢ as scalar multiplication by 7.

LEMMA 44

Under N, 4(V) is an associative algebra with identity.
%(V) is not commutative. In fact,

LEMMA 4.5

Ifte AX V), ce A'(V), thent A 6 = (—1)"a A 1.
Lete,,...,ey form a basis for A(V).
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LEMMA 4.6
Fix k. The set of elements
e, Ney, N--- Ng

forms a basis for AXV).

We now apply the preceding to the case when V = T, x € Q. Then
AX(T,) is the space of all k-linear alternating functions on T}, and so, fork = 1,
coincides with T%*. The following thus extends our definition of a 1-form.

Definition 4.6. A k-form »* on Q is a map w* assigning to each x in Q an
element of AXT).

k-forms form a module over the algebra of scalar functions on Q in a
natural way.

Let 7 and ¢ be, respectively, a k-form and an I-form. For x € Q, put

™ A al(x) = (x) A a'(x)e A*TI(T).

I<ij<iy<--- < <N,

In particular, since dx,, ..., dxy are 1-forms,
dx; Ndx, N --- \dx;,

is a k-form for each choice of (i, ..., i).
Because of Lemma 4.5,

dx; N dx; = 0 for each j.

Hence dx;, A --- A dx; = 0 unless the i, are distinct.

LEMMA 4.7

Let o* be any k-form on Q. Then there exist (unique) scalar functions
., I on Q such that

w* = Y Ci, - ipdx; A -+ Adx

i1 <ia<-<ik

C

TR

ik

Definition 4.7. AXQ) consists of all k-forms w* such that the functions
Ci, ... i occurring in Lemma 4.7 lie in C*. A°(Q) = C*.

Recall now the map f — df from C* — A}(Q). We wish to extend d to a
linear map AKQ) — A**{(Q), for all k.

Definition 4.8. Let w* e A¥Q), k = 0,1,2,.... Then

o= Y Cpigdx, Ao Adx,,.
iy <. <ig

Define
do* = Y dC;, ---iy Ndx;, A --- Adx
<ik

Note that d maps AKQ) — A**1(Q). We call dw* the exterior derivative
of w*,

[
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For w e AY(Q),
N
w=Y Cdx,
i=1
0C; oC. 0C;
do = “dx; A\ dx; = I I dx; A dx..
) %5,- X; X; i;(aXi 6xj) x; A dx;

It follows that for fe C®,

- ofar\ o (o B
) (Txidx.-) =2 (5(5) - &;(a))dx,- A dx; =0

J i

ddf) = d

i<j i

ord? = 0 on C®. More generally,

LEMMA 438

d? = 0 for every k; ie., if w*e A¥Q), k arbitrary, then d(dw*) = 0.
To prove Lemma 4.8, it is useful to prove first

LEMMA 4.9
Let w* e AXQ), o' e Al(w). Then
do* A o) = do* A o' + (= 1)o* A do'.

NOTES

For an exposition of the material in this section, see, e.g., I. M. Singer and
J. A. Thorpe, Lecture Notes on Elementary Topology and Geometry, Scott,
Foresman, Glenview, Ill., 1967, Chap. V.



5
The 0-Operator

Note. As in the preceding section, the proofs in this section are left as
exercises.

Let Q be an open subset of C".

The complex coordinate functions zy, ..., z, as well as their conjugates
Zy, ..., Z, lie in C®(Q). Hence the forms

dz,,...,dz,, dz,,...,dz,

all belong to AYQ). Fix x € Q. Note that AY(T,) = T¥ has dimension 2n
over C, since C" = R*". If x; = Re(z;) and y; = Im(z;), then

@X)er- (@), (@Yi)ss- -5 ()
form a basis for T*. Since dx; = 1/2(dz; + dz;) and dy; = 1/2i(dz; — dz)),
@dzy)g,---»(dzy)y,  (dZ)),....,(dZ,),

also form a basis for T#*. In fact,

LEMMA 5.1
If we AY(Q), then

i=1

where a;, b;e C*.

Fix fe C*. Since (x,,...,X,, V15 - -, V) are real coordinates in C”",
df = z dx +a—fd
" cf 1 o 1 1 8f _
= d - — = dz;.
z ((3x 2 21) 4t (6xj 220 6yJ %

Definition 5.1. We define operators on C* as follows:

2 _1fo o) o _yo . o
dz;  2\ox; ay|’ 0z; 2\ox; oy

Then for fe C>,

_v ¥ Y i
(1) df = j;a—zdzj + 5z 4%

i

27
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Definition 5.2. We define two maps from C* —» AY(Q), é and 0. For
feC™,
n af _ n af ~
6f = “dZ-, 6 = ‘*:‘dZ-.
1;1 oz; 4 ,-; oz;

Note. of + of = df, if fe C™.
We need some notation. Let I be any r-tuple of integers, I = (iy, i, - -, i),
1 <i; < n,allj. Put

dzy =dz;, A --- Ndz, .

Thus dz; e A"(Q).
Let J be any s-tuple (jy,...,j;), 1 < ji < n,all k, and put

dz; =dz; N--- A\ dz;,.
So dz, e A*(Q). Then
dz; A dz; e A" 5(Q).

For I as above, put |I| = r. Then |J| = s.
Definition 5.3. Fix integers r, s > 0. A™%(Q) is the space of all w € A""%(Q)
such that

w = Za”dzl /\ dEJ,
1,J
the sum being extended over all I, J with |I| = r, |[J| = s, and with each
a;; € C*.

An element of A™%(Q) is called a form of type (r, s). We now have a direct sum
decomposition of each AKQ):

LEMMA 5.2
AHQ) = A Q@A IQ @A THQ @ - @ AYQ).

We extend the definition of d and 0 (see Definition 5.2) to maps from
AKQ) - A** Q) for all k, as follows:
Definition 5.4. Choose »* in A¥w),

o* =Y a;;dz; A dz,

1,J

dw* =Y day; A dz; A dz,,
]

and

0w* =Y day, A dz; A dz,.
17
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Observe that, by (1), if w* is as above,

dw* + dw* = Y day, A dz; A dz, = do*,
1,J

so we have
) 0+0=d

as operators from AXQ) —» A**(Q). Note that if w e A™*, dw € A"** and
0w e A1,

LEMMA 53

0% =0, 9* =0, and 00 = 00 = 0. B
Why is the J-operator of interest to us? Consider 0 as the map from
C* - A'(Q). What is its kernel?
Let fe C*. df = 0 if and only if
of

3) — =0inQ, j=12,...,n.
0z;

Forn = 1 and Q a domain in the z-plane, (3) reduces to

Ei[=0 _a£+'g=

0.
oz o %'y

For f = u + iv, u and v real-valued, this means that

ou  0ov v Ou
ox oy’ ox oy
or u and v satisfy the Cauchy-Riemann equations. Thus here
df = 0in Q is equivalent to fe H(Q).

Definition 5.5. Let Q be an open subset of C". H(Q) is the class of all
f € C* with §f = 0in Q, or, equivalently, (3).

We call the elements of H(Q2) holomorphic in Q. Note that, by (3), f € H(Q)
if and only if f is holomorphic in each fixed variable z; (as the function of a
single complex variable), when the remaining variables are held fixed.

Let now Q be the domain

{zeClzjl <Rj,j=1,...,n},

where R,, ..., R, are given positive numbers. Thus Q is a product of n open
plane disks. Let f be a once-differentiable function on Q; i.e., df /0x; and
df /0y; exist and are continuous in Q,j = 1,...,n.



30 BANACH ALGEBRAS AND COMPLEX VARIABLES

LEMMA 5.4
Assume that 0f/0Zz; =0, j =1, ..., n, in Q. Then there exist constants
A, in C for each tuple v = (vy, ..., v,) of nonnegative integers such that

flo =Y Az,

where z° = z{' - z}?- - - z;", the series converging absolutely in Q and uniformly
on every compact subset of Q.

For a proof of this result, see, e.g., [40, Th. 2.2.6].

This result then applies in particular to every f in H(Q). We call ), A,z
the Taylor series for f at 0.

We shall see that the study of the d-operator, to be undertaken in the next
section and in later sections, will throw light on the holomorphic functions of
several complex variables.

For further use, note also

LEMMA 5.5
If w* e A4Q) and o' € A(Q), then
o(@* N @') = d* A o' + (—1)e* A b0



6
The Equation ou = f

As before, fix an open set Q = C". Given f € A™*(Q), we seek u € A™*
such that

1) Ou=f.
Since 6% = 0 (Lemma 5.3), a necessary condition on f is
) of =0.

If (2) holds, we say that fis d-closed. What is a sufficient condition on f ?
It turns out that this will depend on the domain Q.

Recall the analogous problem for the operator d on a domain Q = R".
If o* is a k-form in A¥Q), the condition

3) do* =0  (wis “closed”)
is necessary in order that we can find some t*~! in A*~}(Q) with
4) dt*=1 = k.

However, (3) is, in general, not sufficient. (Think of an example when
k = 1 and Qs an annulus in R2) If Q is contractible, then (3) is sufficient in
order that (4) admit a solution.

For the d-operator, a purely topological condition on Q is inadequate.
We shall find various conditions in order that (1) will have a solution.
Denote by A" the closed unit polydiskin C":A" = {ze C"||z;| < 1,j = 1,...,n}.

THEOREM 6.1 (COMPLEX POINCARE LEMMA)

Let Q be a neighborhood of A". Fix w € APYQ), g > 0, with 0w = 0. Then
there exists a neighborhood Q* of A" and there exists w* € AP4~ {(Q*) such that

ow* = w in Q*.

We need some preliminary work.

LEMMA 6.2
Let ¢ € C(R?) and assume that ¢ has compact support. Put

1 dxd
o0 = | 6%
RZ

Then ® € C*(R?) and 0®/3C = ¢({), all L.
31
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Proof. Choose R with supp ¢ < {z||z| < R}.

1 dx' dy
o) = dxdy = ~ 7
() f.,.sk"’(z’c—z x dy f.z'-g.sxm Jes

dx' dy’
$C — 2y
R2 z

Since 1/z' € L*(dx’ dy’) on compact sets, it is legal to differentiate the last
integral under the integral sign. We get

dx' dy 0 dx' dy
w0 = [ giow- = = [ Pe- 0™

_ 0_¢ dx dy

= ( ) =
On the other hand, Lemma 2.5 gives that

0
00 = [ GO

Hence 00/0 = ¢. QE.D.

LEMMA 6.3

Let Q be a neighborhood of A" and fix f in C*(Q). Fix j, 1 < j < n. Assume
that
() a—{=0inQ,k=k1,...,ks,eachki;éj.

0z,

Then we can find a neighborhood Q, of A" and F in C*(Q,) such that

(@) OF/3; = finQ,.

(b) OF/0C, =0inQ,, k = k,,...,ks.

Proof. Choose ¢ > 0 so that if z = (z,,...,2,)€ C" and |z,| < 1 + 2¢ for
all v, then z e Q.

Choose ¥ € C*(R?), having support contained in {z|lz| < 1 + 2¢}, with
Y(z) = 1for|z] < 1 + & Put

dx dy
-4

For fixed {, ..., {j=1, {ju1s ---» §u With |{] < 1 + &, all v, we now apply
Lemma 6.2 with

¢(Z) = l//(z)f(Cls"'ij—l9zaCj+1""aCn)a |Z| <1 + 2¢
= 0 outside supp ¥.

1
F(Cls"'scj""’Cn)z_; '// f(CI’ 1 l’zcﬁ-l"" Cn)
R2
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We obtain
oF
ag;

if |}l < 1 + ¢, and so (a) holds with

Croee s oo L) =00) = S o0 G G -5 G

Q, ={{eC,| <1+ ¢ allv}.

Part (b) now follows directly from (5) by differentiation under the integral
sign.
Proof of Theorem 6.1. We call a form

Y Cyydz; A dz,
I

of level v, if for some I and J with J = (jy, j,,..., V), wherej, <j, <--- <,
we have C;; # 0; while for each I and J with J = (j;, ..., j,) wherej, < ---
< jsand j; > v, we have C;; = 0.

Consider first a form w of level 1 such that dw = 0. Then w € AP (Q) for
some p and we have

w=Yadz Ndz;, aeC>Q) foreachl.
1

] 0
0=208w=Y “2di Adz, A dz.

I,k azk

Hence (da,/0z,) dz, A dz, A dz; = 0 for each k and I. It follows that

64'-——0, k>2,alll.
0z,

By Lemma 6.3 there exists for every I, A; in C*(Q,), Q; being some
neighborhood of A", such that

0A; 0A,
2 — =0 k=2 ... n.
oz, a; and 3, , n
Put (I) zzl AI dZI € AP'O(QX).
= 0A
0 = Z—afldék Adz; = .
Lk 0Z

We proceed by induction. Assume that the assertion of the theorem holds
whenever w is of level < v — 1 and consider w of level v. By hypothesis
w e AP(Q) and dw = 0.

We can find forms « and f§ of level < v — 1 so that

w=dz, Na+f (why?).

0 =0w = —dz, A 0a + 0P,
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where we have used Lemma 5.5. So
(6) 0 =dz, A 0a — 0P.
Put
a:IZa“dz,/\dEJ, B =) bydz A dz,.
J 1,J

Equation (6) gives

0
) 0=dz, A Y ZH 4z, Adzy A dz,

1,0,k OZk

ob
— ¥ 2 dz, A dzp A dz,.
7% 0%
Fix k > v, and look at the terms on the right side of (7) containing dz, A dz,.
Because a and f are the level < v — 1, these are the terms:

0
dz, AN M gz A dz A dz,.
0z,
It follows that for each I and J,
day,
— = k )
3, 0, >y

By Lemma 6.3 there exists a neighborhood Q, of A" and, for each I and J,

6_2v=a11’ 62,( =0, k>v.

Put
wy =Y A dz; A dz e APTHQ,),
1,J
- 04
dw, = Y a_” dz, A dz; A dz,

1Jk O0Zg

= Za”dfv /\ dZ, /\ dz‘] + y,
1,J

where y is a form of level <v — 1. Thus
0w, =dz, N o + y.
Hence
v, —w=y—p
is a form of level <v — 1. Also
oy — p) = 00w, — w) = 0.
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By induction hypothesis, we can choose a neighborhood €, of A" and
e AP~ 1Q,) with 0t = y — B. Then
O, —) =00, —0t=0+@F-p-0-p)=o0.

w; — 7 is now the desired w*. Q.E.D.

NOTES

Theorem 6.1 is in P. Dolbeaut, Formes différentielles et cohomologie sur
une variété analytique complexe, I, Ann. Math. 64 (1956), 83-130; II, Ann.
Math. 65 (1957), 282-330. For the proof cf. [40, Chap. 2].
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The Oka—Weil Theorem

Let K be a compact set in the z-plane and denote by P(K) the uniform
closure on K of the polynomials in z.

THEOREM 7.1

Assume that C'\ K is connected. Let F be holomorphic in some neighborhood
Qof K. Then F| is in P(K).

Proof. Let % denote the space of all finite linear combinations of functions
1/(z — a)?, where a € C\Q, p an integer >0. By Runge’s theorem (Theorem
2.9), F| lies in the uniform closure of .# on K. We claim that ¥ < P(K). For
let u be a measure on K, p L P(K). Then for |a| large,

fzdﬂ_zi f(z ..+1) dp = 0.

But the integral on the left is analytic as a function of ¢ in C\ K and, since
C\ K is connected, vanishes for all a in C\\ K. By differentiation,

J’ auz) _ p=1,2,...,aeC\K.

(z—ap 7
Thus u L %, s0 ¥ < P(K), as claimed. The theorem follows.

How can we generalize this result to the case when K is a compact subset
of C",n> 1?

What condition on K will assure the possibility of approximating arbitrary
functions holomorphic in a neighborhood of K uniformly on K by poly-
nomials in zy, ..., z,?

Note that the condition “C\ K is connected” is a purely topological
restriction on K. No such purely topological restriction can suffice when
n > 1. As an example, consider the two sets in C2.

K, = {(¢*,0)0 < 6 < 2n},
K, = {(€” e )0 < 6 < 2n}.

The two sets are, topologically, circles. The function F(z,, z,) = 1/z, is
holomorphic in a neighborhood of K.

Yet we cannot approximate F uniformly on K, by polynomials in z,, z,.
(Why?) On the other hand, every continuous function on K, is uniformly
approximable by polynomials in z,, z,. (Why?)

To obtain a general condition valid in C" for all n, we rephrase the state-
ment “C\ K is connected” as follows:

36
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LEMMA 7.2
Let K be a compact set in C. C\K is connected if and only if for each
x° € C\K we can find a polynomial P such that

(1) |P(x°)| > max|P)|.

Proof. If C\K fails to be connected, we can choose x° in a bounded
component of C\ K and note that (1) violates the maximum principle.

Assume that C\ K is connected. Fix x° e C\ K. Then K u {x°} is a set
with connected complement. Choose points x, = x° and x, # x°. Then

1
fl2) =

zZ— X,

is holomorphic in a neighborhood of K U {x°}. Hence by Theorem 7.1 we
can find a polynomial P, with

1
zZ— X,

P(z) — < -, all ze K U {x,}.

n

For large n, then, P, satisfies (1). Q.E.D.
Definition 7.1. Let X be a compact subset of C". We define the polynomially
convex hull of X, denoted h(X), by

h(X) = {ze C"IQ@)| < max|Q|

for every polynomial Q}.

Evidently h(X) is a compact set containing X.

Definition 7.2. X is said to be polynomially convex if h(X) = X.

Note that X is polynomially convex if and only if for every x° in C"\ X
we can find a polynomial P with

(2 |P(x%)| > mxax|P|.

For X = C,Lemma 7.2 now gives that C\ X is connected if and only if X is
polynomially convex. Theorem 7.1 can now be stated: For X < C, the
approximation problem on X is solvable provided that X is polynomially
convex. Formulated in this way, the theorem admits generalization to C"
forn > 1.

THEOREM 7.3 (OKA-WEIL)

Let X be a compact, polynomially convex set in C". Then for every function f
holomorphic in some neighborhood of X, we can find a sequence {P;} of poly-
nomials in z4, . .., z, with

P; — f uniformly on X .

Note. In order to apply this result in particular cases we of course have to
verify that a given set X is polynomially convex. This is usually quite difficult.
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However, we shall see that in the theory of Banach algebras polynomially
convex sets arise in a natural way.

André Weil, who first proved the essential portion of Theorem 7.3
[L’Intégrale de Cauchy et les fonctions de plusieurs variables, Math. Ann. 111
(1935), 178-182], made use of a generalization of the Cauchy integral
formula to several complex variables. We shall follow another route, due to
Oka, based on the Oka extension theorem given below.

Definition 7.3. A subset IT of C" is a p-polyhedron if there exist polynomials
P,,..., Pgsuch that

M={zeClz) < 1,all jand |P) < 1, k=1,2,...,s}.

LEMMA 7.4

Let X be a compact polynomially convex subset of A". Let O be an open set
containing X. Then there exists a p-polyhedron I1 with X < Il < 0.

Proof. For each x € A"\ 0 there exists a polynomial P, with |P,(x)| > 1
and |P,| < 1on X.

Then |P,| > 1 in some neighborhood A4, of x. By compactness of A"\ 0,
a finite collection A", , ..., A", covers A"\ (. Put

M= {zeA||P, ()| < 1,...,|P.(2)] < 1}.

Ifze X, then zeIl,so X < IL
Suppose that z ¢ 0. If z ¢ A", then z ¢ I1. If z € A", then z € A"\ 0. Hence
z e N, for some j. Hence |P; (z)] > 1. Thus z ¢ I1. Hence I1 < 0. Q.E.D.
Let now IT be a p-polyhedron in C”,

I={zeA|P2) <1, j=1,...,r}.
We can embed IT in C**" by the map
D:z - (z,P(2),...,P(2)).
® maps IThomeomorphically onto the subset of A”*" defined by the equations
Z,+1 — Py(2)=0,...,2,,, — P(2) = 0.

THEOREM 7.5 (OKA EXTENSION THEOREM)

Given f holomorphic in some neighborhood of I1; then there exists F holo-
morphic in a neighborhood of A"*" such that

F(z, P,(2),...,P(2)) = f(2), all zeTl.

The Oka—Weil theorem is an easy corollary of this result.
Proof of Theorem 7.3. Without loss of generality we may assume that
X < A".(Why?) fis holomorphic in a neighborhood ¢ of X. By Lemma 7.4
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there exists a p-polyhedron IT with X < IT < @. Then fis holomorphic in a
neighborhood of IT. By Theorem 7.5 we can find F satisfying

(3) F(z, Pi(2),...,P(2)) = f(2), zell,

F holomorphic in a neighborhood of A"*". Expand F in a Taylor series
around 0,

F(z,Zyi 1552, Zaz ceezpnzintl L ziner

The series converges uniformly in A"*". Thus a sequence {S;} of partial sums
of this series converges uniformly to F on A"*", and hence in particular on
@(IT). Thus

Siz, Py(2),...,PA2)

converges uniformly to F(z, P,(2), ..., P(z)) for z € I, or, in other words,
converges to f(z), by (3). Since Sz, Py(2), ..., P/z)) is a polynomial in z for
each j, we are done.

We must now attack the Oka Extension theorem. We begin with a general-
ization of Theorem 6.1.

THEOREM 7.6

Let I1 be a p-polyhedron in C" and Q a neighborhood of Il. Given that
¢ € APUQ), g > 0, with 0¢ = 0, then there exists a neighborhood Q, of T1 and
Y € APT7YQ,) with oy = ¢.

First we need some definitions and exercises.

Let Q be an open set in C" and W and open setin C*. Letu = (uy,...,u,) be
a map of W into Q. Assume that each u; € C*(W).

Exercise 7.1. Let ae C*(Q), so a(u) e C*(W). Then

d{a(u)} = i ga(u)du + da (u)du

j=1

Both sides are forms in A}(W).
Let Q, W, and u be as above. Assume that each u; € H(W). For each

I=(y...,0)J =(-.-,js put
du; = du;, N du, A\ --- A du;,

and define du; similarly. Thus du; A du;e A™5(W).
Fix w e A™(Q),

w = Z a”dzl /\ di_,.
1,J
Definition 7.4

o) =Y a;,(u)du; A duy e AS(W).
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Exercise 7.2. d(w(u)) = (dw)(u) and d(w(u)) = (0w)(u).
We still assume, in this exercise, that each u; is holomorphic.
Proof of Theorem 7.6. We denote

PXgy1,....q) = {ze Al < Lj=1,...,r},

the g; being polynomials in z,, ..., z,. Every p-polyhedron is of this form.
We shall prove our theorem by induction on r. The case r = 0 corresponds
to the p-polyhedron A* and the assertion holds, for all k, by Theorem 6.1.
Fix r now and suppose that the assertion holds for this r and all k and all
(p, 9),q > 0.Fix nand polynomials p,,. .., p,, in C" and consider ¢ € A»4(Q),
Q some neighborhood of P'(p,, ..., p,+ ). We first sketch the argument.
Step 1. Embed P"(py, ..., p,+;) in P"*(p,, ..., p,) by the map u:z —
(z, pr+ 1(2)). Note that p,, ..., p, are polynomials in z,, .. ., z,, ; which do not
involve z,, ;. Let £ denote the image of P*(p,, ..., p,+) under u. = denotes
the projection (z, z,4,) — z from C"*! — C". Note = - u = identity.
Step 2. Find a 0-closed form @, defined in a neighborhood of

Pn+l(p1’ .. -apr)
with @, = ¢(n) on X.

Step 3. By induction hypothesis, 3% in a neighborhood of P**!(p,, ..., p,)

with 0¥ = @,. Put ¢y = W(u). Then
0y = (0¥ w) = ®,(u) = ¢.

As to the details, choose a neighborhood Q, of P'p,, ..., p,+;) with
Q, = Q.Choose A € C*(C"),A = 1onQ,, A = Ooutside Q. Put ® = (4 - ¢)(n),
defined = 0 outside ™ }(Q).

Let y be a form of type (p, q) defined in a neighborhood of P**(p, ..., p,).
Put
4) D, =D — (2441 — Pr+:1(2) 1
Then @, = ® = ¢(n) on X.

We want to choose y such that @, is -closed. This means that

00 = (Zn+1 — Pr+1(z))3X
or

- oD
5 oy =——.

(zn+ 1~ DPr+ l(z))

Observe that 0@ = 5(}5(7:) = 0 in a neighborhood of Z, whence the right-

hand side in (5) can be taken to be 0 in a neighborhood of Z and is then in
C* in a neighborhood of P"*1(p,, ..., p,). Also

= oo
a{(zn+l — Pr+ I(Z))} =0

By induction hypothesis, now, Jy satisfying (5). The corresponding @, in (4)
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is then d-closed in some neighborhood of P**!(p,, ..., p,). By induction
hypothesis again, 3a (p, g — 1) for ¥ in a neighborhood of P"*}(p,, ..., p,)
with 0¥ = ®@,. As in step 3, then, making use of Exercise 7.2, we obtain a
(p, g — 1) form y in a neighborhood of P*(p,, ..., p,+,) With 0y = ¢.

QE.D.
We keep the notations introduced in the last proof.
LEMMA 7.7
Fix k and polynomials q,, . . .,q,inz = (z4, ..., zy). Let f be holomorphic in a

neighborhood W of T1 = P*q,, ..., q,). Then 3F holomorphic in a neighbor-
hood of I = P**1(q,, ..., q,) such that

F(z, q,(2)) = f(2), all zeTIl.

[Note that if z € I1, then (z, q,(z)) € IT".]

Proof. Let T be the subset of IT' defined by z;,; — q,(z) = 0. Choose
¢ € C3(n~(W)) with ¢ = 1 in a neighborhood of .

We seek a function G defined in a neighborhood of IT’ so that with

F(z,zy4+1) = 0z, 24 1) f(2) — (Zk41 — 9,1(2)G(z, 244 y),

F is holomorphic in a neighborhood of IT. We define ¢ -f = 0 outside
1~ }(W). We need 0F = 0 and so

fgd’ = (241 — ‘11(2))66
or
f0¢

(©) (zk+1 — 94(2) @

Note that the numerator vanishes in a neighborhood of Z, so w is a smooth
form in some neighborhood of IT". Also dw = 0. By Theorem 7.6, we can thus
find G satisfying (6) in some neighborhood of IT'. The corresponding F now
has the required properties. Q.E.D.

Proof of Theorem 7.5. py, ..., p, are given polynomials in z, ..., z, and
II = P¥(py, ..., p,). f is holomorphic in a neighborhood of Il. For j =
1,2, ..., r we consider the assertion

A(j) : 3F; holomorphic in a neighborhood of P pisys---sp)

such that F(z, p,(2),...,p{2) = f(2),allzeIl.

A(1) holds by Lemma 7.7. Assume that A(j) holds for some j. Thus F; is
holomorphic in a neighborhood of P**/(p;,,, ..., p,). By Lemma 7.7,
3F;,, is holomorphic in a neighborhood of P"*/*!(p;,,, ...,p,) with
Fj+ I(C’ pj+ l(z)) = Fj(()’ C € P"+J(pj+ 150> pr)’ and C = (27 Zpt1s-ees Zn+j)'

By choice of F;.

Ffz,ps(2),...,pf2) = f(z), allzinTL
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Hence
Fii1(z,p4(2), ..., pf2), Pj+1(2)) = f(2),  allzinIL
Thus A(j + 1) holds. Hence A(1), A(2), ..., A(r) all hold. But A(r) provides
F holomorphic in a neighborhood of A"*" with
F(z,py(2),...,p(2) = f(2), all zin IT. Q.E.D.
Exercise 7.3. Let 2 be a uniform algebra on a compact space X with

generators g, ..., g, (i.e., U is the smallest closed subalgebra of itself con-
taining the g;). Show that the map

X = (gl(x)v ] gn(x))

maps .# () onto a compact, polynomially convex set K in C”, and that this
map carries 2 isomorphically and isometrically onto P(K).

Exercise 7.4. Let X be a compact set in C". Show that .#Z(P(X)) can be
identified with h(X). In particular, if X is polynomially convex, .#(P(X)) = X.

NOTES

Theorem 7.5 and the proof of Theorem 7.3 based on it is due to K. Oka,
Domaines convexes par rapport aux fonctions rationelles, J. Sci. Hiroshima
Univ. 6 (1936), 245-255. The proof of Theorem 7.5 given here is found in
Gunning and Rossi [30, Chap. 1].
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Operational Calculus in Several Variables

We wish to extend the operational calculus established in Section 3 to
functions of several variables. Let A be a Banach algebra and x4, ..., x, €.
If P is a polynomial in n variables

P(Zl""’zn) = ZAVZ‘I}I"'Z;:"’
v

it is natural to define

Plxy,..,x) = Y AXT - xre U

We then observe that if y = P(x,, x,,..., X,), then

(1) $ = P(%X;,...,%X,)on 4.
Let F be a complex-valued function defined on an open set Q < C". In
order to define F(%,, ..., X,) on .# we must assume that Q contains
Definition 8.1. o(x, . . ., X,), the joint spectrum of X1, . .., X,,is {(£;(M), ...,

2 AM))M € M}.
When n = 1, we recover the old spectrum a(x). You easily verify

LEMMA 8.1

(Ay,...,A,) in C"liesin o(xy,..., x,) if and only if the equation

Z yix; — 4)

has no solution y,,...,y,e .

We shall prove
THEOREM 8.2

Fix x4, ..., x, €. Let Q be an open set in C" with a(x, ..., x,) = Q. For
each F € H(Q) there exists y € Wwith
) (M) = F(X,(M),...,X,(M)), allMe A.

Remark. This result is, of course, not a full generalization of Theorem 3.3.
We shall see that it is adequate for important applications, however, When
A is semisimple, we can say more. In that case y is determined uniquely by (2)
and we can define

F(xy,...,%,) = ).

43
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Now H(€) is an F-space in the sense of [23, Chap. IT]. Hence by the closed
graph theorem (loc. cit.), the map
F - F(x,,...,X,)

is continuous from H(Q) — A. Thus

COROLLARY

If Wis semisimple, F ; — F in H(Q)implies that F (x4, ..., x,) = F(xy, ..., X,)
in 2.
We shall first prove our theorem under the assumption that

Xy,...,X, generate A ; i.e., the smallest closed subalgebra
of A containing x,, ..., x, coincides with 2.

©)

LEMMA 83

Assume (3). Then o(x,, ..., X,) is a polynomially convex subset of C".
Proof. Fix z° = (22, ..., z%) with

|Q(z%)| < max|Q|,  all polynomials Q,

where ¢ = a(x,..., X,).

/\
max|Q| = max|Q(, ..., £,)| = max|Q(x,, ..., x,)
4 M M

< 190Gy, ..., x)l.

Hence the map x:Q(xy,..., x,) = O(z°) is a bounded homomorphism
from a dense subalgebra of A — C. (Check that y is unambiguously defined.)
Hence y extends to a homomorphism of A — C, so IM, € A with y(f) =
f(M,), all f €. In particular,

x(x)=%(My) or z)=%(My), j=1L...,n

Thus z° € 0. Hence ¢ is polynomially convex. Q.E.D.
Exercise 8.1. Let F be holomorphic in a neighborhood of AY with

FQ =) CLy - 4w
Given that y,, ..., yye U, max 49| < 1,all j. Then
2O

converges in .

Proof of Theorem 8.2, assuming (3). Without loss of generality ,||x;| < 1 for
all j. By Lemma 8.3, 6 = a(x4, ..., x,) is polynomially convex, and ¢ = A".
By Lemma 7.4, 3 a p-polyhedron Il with 6 =« I1 =« Q, I1 = P*(py, ..., p)).
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Fix ¢ € H(Q). By the Oka extension theorem, 3® holomorphic in a neighbor-
hood of A"*” with

D(z,,...,2,,p1(2),...,P(2) = P(2), zell.

Put V1 =Xp5--e5Yn= Xps Yn+1 =pl(x19---9xn)’-"’yn+r = pr(xl"'-axn)-
We verify that max ,|y;| < 1,j = 1,2,...,n + r. By Exercise 8.1,

T Oy Gy () (p )

converges in A to an element y, where ) ,C,{” is the Taylor expansion of
® at 0 and p(x) denotes p{x, ..., x,). Then

IM) = B(Xy(M),...., £,(M), p,(X(M)), ..., pX(M)))
= (%, (M),...,%(M)), allMe .4,

since (X,(M), ..., X,(M))e ¢ < I1. We are done.

If we now drop (3), ¢ is no longer polynomially convex. Richard Arens and
Alberto Calderon fortunately found a way to reduce the general case to the
finitely generated one.

Let x,...,x, €U, let W be an open set in C" containing a(xy, ..., X,),
and fix F € H(W). For every closed subalgebra W’ of A containing elements
Epyovs & Of A, let oy (&g, - .-, &) denote the joint spectrum of &, ..., &
relative to U'.

Assertion. 3C,, ..., C,, € A such that if B is the closed subalgebra of A
generated by x4, ..., x,, Cy, ..., C,, then

@ op(Xy,...,X%,) = W.

Grant this for now. Let 7 be the projection (zy, ..., Zys Zut 15 -« - s Zntm) —
(z4,...,2,) of C*"*™— C" Because of (4), og(xy,.--»%;, C1,...,Cp) ©
1~ }(W). Define a function ¢ on n~ (W) by

D2y 32y ZnttseeesZnim) = F(Zy,...,2,).

Thus ¢ is holomorphic in a neighborhood of og(x4, ..., x,, Cy, ..., C,), and
so, by Theorem 8.2 under hypothesis (3) applied to B and the set of generators
X1s -5 Cp, Jy € B with

P=¢%,....%,Cq,...,Cp)
= F(X,,...,X,) on .#(B).
If M € #, then M N B € #(B) and hence j(M) = F(%,(M), ..., £,(M)). We
are done, except for the proof of the assertion.

Let A, denote the closed subalgebra generated by x,..., x, and put
0o = Oy (X1, ..., X,). If 6y = W, take B = U, . If not, consider { € o, \ W.
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Since { ¢ 0(xy,...,X,), IV1,...,yn€ Wsuch that Y1_, yix; — () =1
Denote by ({) the closed subalgebra generated by x;, ..., X,, Vi, -5 Vu-
Then 3 neighborhood A4, of { in C such that if « € A7, then ) ; y{x; — o) is
invertible in A({). It follows that if & € A7, then a ¢ oy (xy, - . ., X,).

By compactness of o, \ W, we obtain in this way a finite covering of o \ W
by neighborhoods .#",. We throw together all the corresponding y; and call
them C,,...,C,, and we let B be the closed subalgebra generated by
Xgy.verXp> Cqy ...y Cp. Note that ag(xy, ..., X,) € 0o. (Why?) If a € 65\ W,
then « lies in one of our finitely many 4", and so Ju;, ..., u, € B such that
Y ;ufx; — o) is invertible in B. Hence a ¢ og(x;, . .., x,). Thus op(x, ..., X,)
< W, proving the assertion. Thus Theorem 8.2 holds in general.

As a first application we consider this problem. Let 2 be a Banach algebra
and x € A. When does x have a square root in 2, i.e.,, when can we find
y € A with y? = x?

An obvious necessary condition is the purely topological one:

%) Iye C(A) with y*> = X on A.
Condition (5) alone is not sufficient, as is seen by taking, with D = {z||z| < 1},
A = {fe AD) f'(0) = 0}.

Then z2 e U, z ¢ A, but (5) holds. However, one can prove

THEOREM 8.4

Let A be a Banach algebra, a € . and assume that 3h € C(M) with h* = é.
Assume also that & never vanishes on M. Then a has a square root in .

We approach the proof as follows: First find a,, ..., a, € WA such that
3F holomorphic in a neighborhood of a(a, a,, . .., a,) in C"* with F? = z,.
By Theorem 8.2, 3y € A, with § = F(4, a,, ..., a,)on 4. Then y> = don /4.
If A is semisimple, we are done. In the general case, put p = a — y*. Then
p € rad A. Since y? = 4, y*isinvertible and p/y? € rad . Then (y./1 + p/y?)?
= y*(1 + p/y*) = a, so y /1 + p/y* solves our problem provided that
1+ p/y* e W. It does so by

Exercise 8.2. Let 2 be a Banach algebra and x € rad . Then 3{ € A with
(*?=1+xand{=1on.4.

We return to the details.

LEMMA 8.5

Given a as in Theorem 8.4, 3a,, ..., a, € Wsuch that if K = o(a, a,, ..., a,)
< C", then we can find H € C(K) with H?> = z, on K.
Proof. In the topological product .# x .# put

S = {(M, M")|n(M) + h(M") = 0},
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where h is as in Theorem 8.4. S is compact and disjoint from the diagonal.
(Why?) Let x = (M, M})€eS. Since M| # M,, 3b, € A with bM,) —
b (M) # 0. By continuity b (M) — b(M’) # 0 for all (M, M’) in some
neighborhood A", of x in S. By compactness, 4",,, ..., A, cover S for a
suitable choice of x,, ..., x,. Puta; = b, ,j=2,...,n. Put

K =o0(a,a,,...,a,)

and fix z = (a(M), a,(M), ..., a,(M)) € K.
We define a function H on K by H(z) = h(M). To see that H is well defined,
suppose that for (M, M) e M x M,

(6) aM) = aM’), a{M)=aM’), j=2,...,n

(M, M) ¢ S, for this would imply that (M, M’) e A", for some j, denying
(6). Hence h(M) # —h(M’). By (6), h*(M) = h*(M’). Hence h(M) = h(M’), as
desired. It is easily verified that H is continuous on K, and that H? = z,.

Q.E.D.

Proof of Theorem 8.4. It only remains to construct F holomorphic in a
neighborhood of K with F? = z,.

For each x € K and r > 0, let B(x, r) be the open ball in C" centered at x
and of radius r. If x = (a4, ..., ®,) € K, a; # 0. Hence Ir > 0 and F, holo-
morphic in B(x, r), with F2 = z, in B(x, r). By compactness of K, a fixed r
will work for all x in K. This is not enough, however, to yield an F holo-
morphic in a neighborhood of K with F? = z,. (Why not?) But we can
require, in addition, that F, = H in B(x,r) n K. Put Q = (), «B(x, r/2).
For { € Q, define F({) = F,({) if { € B(x, r/2), x € K. To see that this value is
independent of x € K, suppose that { € B(x, r/2) n B(y, r/2), x, y € K.

Then y € B(x, r) n K. Hence F,(y) = H(y). Also, F (y) = H(y). Hence F,
and F, are two holomorphic functions in B(x, r) N B(y, r/2) with F? = F} =
zy there and F, = F, at y. So F({) = F,({). (Why?) Thus F € H(Q) and
F?=12z,in Q. QE.D.

Theorem 8.4 holds when the square-root function is replaced by any one
of a large class of multivalued analytic functions. (See the Notes at the end of
this section.)

As our second application of Theorem 8.2, we take the existence of
idempotent elements.

THEOREM 8.6 (SILOV IDEMPOTENT THEOREM)

Let Nbe a Banach algebra and assume that M4 = M O M ,, where M and
My are disjoint closed sets. Then e € W with e* = e and é =1 on M and
e=0on,.

LEMMA 8.7

Jay, ..., ay € Wsuch that if G is the map of M — CN : M — (4;,(M), ...,
an(M), then &(M ) N &(M3) = .
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The proof is like that of Lemma 8.5 and is left to the reader.

Proof of Theorem 8.6. By the last Lemma, Ja,, ..., ay €, so that a(.#,)
and (4 ,) are disjoint compact subsets of CV. Choose disjoint open sets
W, and W, in C" with d(#)) =« W}, j = 1,2. Put W = W; U W, and define
Fin WbyF =1on W, and F = Oon W,. Then F € H(W). By Theorem 8.2,
3t e U with y = F(a,,...,d4,) on .#. Then y=1on #,, ) =0 on .4,.
We seek uerad U so that (y + u)> = y + u. Then e = y + u will be the
desired element.

The condition on u <

7N W+ Qy—-1Nu+p=0,

where p = y? — yerad A.
The formula for solving a quadratic equation suggests that we set
2y —1 2y—1
T2 "2

where ( is the element of A, provided by Exercise 8.2, satisfying

C’

u=

4p 5
2 1 —
F=1 @y = 1) and 4

We can then check that u has the required properties, and the proof is
complete.

L.

I

COROLLARY 1

If A is disconnected, U contains a nontrivial idempotent.

COROLLARY 2

Let U be a uniform algebra on a compact space X. Assume that M is totally
disconnected. Then A= C(X).

Note. The hypothesis is on .#, not on X, but it follows that if ./ is totally
disconnected, then ./# = X.

Proof of Corollary 2. If x,, x, € X, x; # Xx,, choose an open and closed set
My in M with x, € My, x, ¢ M. Put M, = M \M,. By Theorem 8.6,
JeeU,é=1on.#,and é= 0on .#,. Thus eis a real-valued function in 2,
which separates x; and x,. By the Stone-Weierstrass theorem, we conclude
that A = C(X).

COROLLARY 3

Let X be a compact subset of C". Assume that X is polynomially convex and
totally disconnected. Then P(X) = C(X).

Proof. The result follows from Corollary 2, together with the fact that
M(PX)) = X.
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NOTES

Theorem 8.2 was proved for finitely generated algebras by G. E. Silov,
On the decomposition of a commutative normed ring into a direct sum of
ideals, A.M.S. Transl. 1 (1955). The proof given here is due to L. Waelbroeck,
Le Calcul symbolique dans les algébres commutatives, J. Math. Pure Appl. 33
(1954), 147-186. Theorem 8.2 for the general case was proved by R. Arens
and A. Calderon, Analytic functions of several Banach algebra elements,
Ann. Math. 62 (1955), 204-216. Theorem 8.4 is a special case of a more
general result given by Arens and Calderon, loc. cit. Theorem 8.6 and its
corollaries are due to Silov, loc. cit.

Our proof of Theorem 8.4 has followed Hormander’s book [40, Chap. 3].

For a stronger version of Theorem 8.2 see Waelbroeck, loc. cit., or N.
Bourbaki, Théories spectrales, Hermann, Paris, 1967, Chap. 1, Sec. 4.



9
The Silov Boundary

Let X be a compact space and & an algebra of continuous complex-
valued functions on X which separates the points of X.
Definition 9.1. A boundary for # is a closed subset E of X such that

|f(x)] < max|f], allfe #xeX.
E

Thus, for example, if D is the closed unit disk in C and £ the algebra of all
polynomials in z, restricted to D, then every closed subset of D containing
{z||z] = 1} is a boundary for 2.

THEOREM 9.1

Let X and F be as above. Let S denote the intersection of all boundaries for
& . Then S is a boundary for &.

Note

(a) It is not clear, a priori, that S is nonempty.

(b) S is evidently closed.

(c) It follows from the theorem that S is the smallest boundary, i.e., that
S is a boundary contained in every other boundary.

LEMMA 9.2

Fix x € X \S. 3 a neighborhood U of x with the following property: If B is a
boundary, then B\ U is also a boundary.

Proof. x ¢ S and so 3 boundary S, with x ¢ S,. For each y € S, choose
fyeF withfi(x) = 0,f(y) = 2.

Ay = {If;] > 1} is a neighborhood of y. Then 3y,, ..., y, so that 4", U
U Ny, D S, Write f; for f, . Put

U={fil<l,...,Ifl <1}

Then U is a neighborhood of xand U n S, = (.

Fix a boundary f and suppose that S\ U fails to be a boundary. Then
If € F maxy|f| = 1, with max;\ gyl f| < 1.

Assertion. Jn so that maxy|f"f] < 1l,i=1,...,k.

Grant this for now. Since S, is a boundary, we can pick X € §, with
| f(X)| = 1. By the assertion, |f{X)| < 1,i=1,...,k.

Hence X € U, denying U n S, = &. Thus f\U is a boundary, and we
are done.

50
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To prove the assertion, fix M with maxy|f;] < M,i=1,..., k. Choose n
so that (maxg\ g|f])"- M < 1. Then |f"f;| < 1 at each point \U for every
i.On U, |f"fil < 1 by choice of U. Hence the assertion.

Proof of Theorem 9.1. Let W be an open set containing S. For each x €
X \ W construct a neighborhood U, by Lemma 9.2. X \ W is compact, so
we can find finitely many such U,, say U,,..., U,, whose union covers
X\W.

X isaboundary. By choiceof U, X \U, isa boundary. Hence (X/U,)\ U,
is a boundary, and at last X* = X\(U; v U, u --- u U,) is a boundary.
But X* < W. Hence if f € &, maxy|f| < supy|f]|. Since W was an arbitrary
neighborhood of S, it follows that S is a boundary. (Why?)

Note. What properties of # were used in the proof?

Let 9 be a Banach algebra. Then 91 is an algebra of continuous functions
on .4, separating points. By Theorem 9.1 3a (unique) boundary S for 9 which
is contained in every boundary. .

Definition 9.2. S is called the Silov boundary of U and is denoted S(2).

Exercise 9.1. Let Q be a bounded plane region whose boundary consists
of finitely many simple closed curves. Then S(4(Q)) = topological boundary
0Q of Q.

Exercise 9.2. Let Y denote the solid cylinder = {(z, ) € C x RHzI <10
<t <1} Let A(Y) = {f € C(Y)| for each t, f(z, t) is analytic in |z|] < 1}.
Then SQ(Y)) = {(z, t)|lz2 = L0 <t < 1}.

Exercise 9.3. Let Y be asin Exercise 9.2 and put Z(Y) = {f € C(Y)|f(z, 1)
is analytic in |z| < 1}. Then S(£(Y)) = Y.

Exercise 9.4. Let A% = {(z, )€ C?|lzZ| < 1, |w| < 1} and A(A?) = {f €
C(A?)|f € H(Q), where Q = interior of A?}. Show that SAA%) =T =
{(z, w)|lz| = |w| = 1}. Note that here the Silov boundary is a two-dimensional
subset of the three-dimensional topological boundary of A%,

Exercise 9.5. LetB" = {ze C"|) -, |z|* < 1}andA(B") = {f € C(B")| fe
H(Q), Q = interior of B"}. Show that S(2(B")) = topological boundary of B".

Note that in all these examples, as well as in many others arising naturally,
the complement .# \.S®) of the Silov boundary in the maximal ideal space
is the union of one or many complex-analytic varieties, and the elements of
9l are analytic when restricted to these varieties.

We shall study this phenomenon of “analytic structure” in .# \S®I) in
several later sections.

We now proceed to consider one respect in which elements of ¥ act like
analytic functions on .Z \ S).

Let Q be a bounded domain in C. We have

(1) For Fe A(Q), x € Q, |F(x)| < max|F]|.
Q

The analogous inequality for an arbitrary Banach algebra U is true by
definition: For f e, x € A,

|/ () < max|f].
S
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However, we also have a local statement for 2(Q). Fix x € Q and let U be a
neighborhood of x in Q. Then
) For F e A(Q), |F(x)|] < max|F].

ou

The analogue of (2) for arbitrary Banach algebras is by no means evident.
It is, however, true.

THEOREM 9.3 (LOCAL MAXIMUM MODULUS PRINCIPLE)
Let U be a Banach algebra and fix x € M \SQ). Let U be a neighborhood
of x with U < M \S®Q). Then for all f €,

) |/ (x)] < max]|f].
ou

LEMMA 94

Let X be a compact, polynomially convex set in C" and U, and U, be open
setsin C"with X <« U, v U,.Ifhe HU, n U,), then 3 a neighborhood W
of X and hje HW n U)),j = 1,2, so that

hy —hy,=hin WnU,nU,.

Proof. Write X = X; U X,, where X is compact and X; < U;,j =1, 2.
Choose f; € CF(U,;) with 0 < f; < 1 and f; = 1 on X,. Similarly, choose
f,€CZU,). Thenf; + f, > 1 on X, and so f; + f, > 0 in a neighborhood
V of X. In V define

S h
YA+ 2 fi+f

Then n,,n, € C*(V),n; + n, = lin V;and suppn; < U;,j = 1, 2. With no
loss of generality, U; = U; n V. Define functions H;in C*(U;),j = 1, 2 by

H, =nhin U, nU,, H, =0in U,\U,.

Hy= —nhin Uy nU,, H,=0in U,\U,.
Then

Hl—H2=(r’1+r,2)h=hinU mUZ'

Hence 6H1 = 0H,in U; n U,. Let f be the (O, I)-formin U, L U, defined
by f = 0H,in U,, f = 0H, in U,. Then fis d-closed in U,; U U,. We can
choose a p-polyhedron IT with X < IT =« U, u U,. By Theorem 7.6, then,
3 a neighborhood W of IT and F € C*(W) with 6F = f in W,

Puthj=H;— FinU;nW,j=1,2.Thenh; —h, =hinU;, nU, n W,
andah—f f—OmUnWsoheH(UnW)]—lz QE.D.
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LEMMA 9.5
Let K be a compact set in CY and U, and U, open sets with
4) U,uU, oK,
(5 U, nU,c{Rezy <0} and 3h, e HU,), h,e H(U,)
with
6  h —hy= lozglzl inU,nU, and KnU,c {Rez, <O0).

Then 3F holomorphic in a neighborhood of K with F = 1onK n {z; =0} n U,
and |F| < 1 elsewhere on K.
Proof. By (5) we havein U, n U,,

z,hy — z,h, = logz, so e*h = z,e7h2,
It follows that if we define
e™in U,,
f= o
ze5"2 in U,,
then fe H{U, v U,). Also
7 f never vanishes on K\\({z; = 0} n U,).

Assertion. 3¢ > 0 such that if ze K\ ({z, = 0} n U,), then f(z) lies
outside the disk {|jw — ¢| < &}.
Assume first that ze U,. Then

z, =e *™f s0zh,=e M. ph,f,

or z;hy =C- f, with Ce H(U,). Hence z, = fe=% = f + kf2, with
k € H(U,). By shrinking U, we may obtain k| < M on U,, M a constant.
Since Re z; < 0 by (6), we have, at z,

0 > Re f + Re(kf?) > Re f — | fI?lkl
> Re f — M|f]*.
Put f(z) = w = u + iv. Then
u— Mu?+1v¥) <0,

and so

1\z 1
U—W + v° > 7.

Thus f(z) lies outside the disk:
‘ 1 1
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On the other hand, K\U, is compact and f # 0 there. Hence for some
r>0,|f(z)) > rif ze K\U,. The assertion now follows.
Let D, be the disk {jw — ¢| < ¢} just obtained and put

€
f-¢
By choice of D,, F is holomorphic in some neighborhood of K. Also on

{z;,=0}nU,, F=1 since f =0, and everywhere else on K, |F| <1
since |f — ¢ > . Q.E.D.

F=-—

LEMMA 9.6

Let U be a Banach algebra, T a closed subset of # and U and open neighbor-
hood of T. Suppose that 3¢ € W with éd=10nT|d <1 on UN\T Then
D eAwith® = 1on T,|®| < 1 on M \T.

Proof. T and .#\U are disjoint closed subsets of .#. Hence 3g,, ...,
g, € W such that if §:.4 - C" ! is the map m — (&,(m), ..., £,(m)), then
g(T) n &M \U) = &. (Why?)

Put g, =¢ — 1. Then g, =0 on T and Re g, <0 on U\T Let now
G : M — C" be the map sending m — (&,(m), g,(m), ..., &,(m)). The G(A) =
o(gy, - - -, g, We have

8) G(T) is a compact subset of {z; = 0},
9 G(T) is disjoint from G(.#\U),
(10) G(UNT) < {Re z, < 0}.

Choose a neighborhood A of G(T) in C" with A N G(.4\U) = &. It is
easily seen that 3 an open set D, in C" such that

(11) DyuA > G(#)  and Dy A < {Rez, <0}.

By a construction used in the proof of Theorem 8.2, 3C4, ..., C,, € Usuch
that if B is the closed subalgebra generated by g, ..., 8, Cir---5 Cps
then o5(gq,...,2,) < Do U A.

Puto = o(gy, ..., 8n Cy, ..., C,y) = C""™ and let 6 be the polynomially
convex hull of ¢ in C"*™, Let = be the natural projection of C**™ on C”".

Since o < o524, -..> 80> Cys--->Cp), and since the latter set is poly-
nomially convex because g4, ..., C,, generate B, 6 < 0g(g1, .-, &u> C1, - -»
C,,), and so

n(8) = n(0p(g1s---» Cr)) = 58155 80)-
Thus n(6) = D, U A, and so
(12) 6 < n Y(Dy) un”HA).
Because of (11) we have

(13) n~ }Dy) nn”Y(A) = {Rez, <0}.
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Now 6 is polynomially convex and (log z,)/z, is holomorphicin ™ !(Dgy) N
7~ !(A). Lemma 9.4 then yields a neighborhood W of 6, and h, € H(r~ (D)
N W), h, € H(n™ Y(A) » W) such that

log z,
1
We now apply Lemma 9.5 with 6 = K, U, = n~}(Dy) n W, and U, =
n~1(A) n W.Since ¢ < 6, hypotheses (4) and (5) hold. By choice of A and (10),
G(M) N A = {Re z; < 0}, whence 6 n n~}(A) = {Re z; < 0}. So hypothe-
sis (6) also holds. We conclude the existence of F holomorphic in a neighbor-
hoodof s with F = 1on {z; = 0} n n~}YA) n (A) n oand |F| < 1elsewhere
on g.
By Theorem 8.2, 3® € A with

DM) = F@,(M),...,2,M),C\(M),...,C (M)

for all M € 4. For M e T, the corresponding point of ¢ is in {z; = 0} N
1~ Y(A), so & (M) = 1. For M € .4 \T, the corresponding point of ¢ is not
in {z, = 0} n 7 1(A), so |D(M)| < 1. QE.D.

Proof of Theorem 9.3. Suppose that (3) is false. Choose x, € U with | f(x,)| =
maxg | f|. Then

(14) |/ (xo)l > malXIfAI-

h, —h, = inn YD) " YA AW

Without loss of generality, f(x,) = 1. Let T = {y e U|f(y) = 1}. Then T is
compact and cU. Put ¢ = 4(1 + f). Then ¢ €A, $ =1 on T, |§| < | on
U\T.

Lemma 9.6 now supplies ® €, with ® =1 on T, |®| <1 on .4 \T
Since U = .4 \S®), we get that |®| < 1 on SQI). This is impossible, and so
(3) holds. Q.E.D.

Note. Some, but not all, of the following exercises depend on Theorem 9.3.

Exercise 9.6. Let 2 be a Banach algebra and assume that S() # ..
Show that the restriction of 9 to S() is not uniformly dense in C(SQY)).

Exercise 9.7. Let A be a Banach algebra and assume that SQI) # ..
Show that S®) is uncountable.

Exercise 9.8. Let 2 be a Banach algebra and fix p e S@I). Assume that p
is an isolated point of S®I), viewed in the topology induced on SQI) by ..
Show that p is then an isolated point of /.

THEOREM 9.7

Let N be a uniform algebra on a space X. Let Uy, U,, ..., U, be an open
covering of M. Denote by £ the set ofall f in C(AM) such that forj = 1,...,
S, flu, lies in the uniform closure of QIIU Then & is a closed subalgebra of
C(/fl) and $(¥) < X.

Proof. The proof is a corollary of Theorem 9.3. We leave it to the reader as
*Exercise 9.9.
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Exercise 9.10. Is Theorem 9.3 still true if we omit the assumption U <=
MN\SQ)?

NOTES

Theorem 9.1 is due to G. E. Silov, On the extension of maximal ideals,
Dokl. Acad. Sci. URSS (N.S.) (1940), 83-84. The proof given here, which
involves no transfinite induction or equivalent argument, is due to Hor-
mander [40, Theorem 3.1.187]. Theorem 9.3 is due to H. Rossi, The local
maximum modulus principle, Ann. Math. 72, No. 1 (1960), 1-11. The proof
given here is in the book by Gunning and Rossi [30, pp. 62-63].
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Maximality and Rad6’s Theorem

Let X be a compact space and 2 a uniform algebra on X. Denote by | ||
the uniform norm on C(X). Note that if x, y € U, then x + y € C(X), so that
|x + y|| is defined.

LEMMA 10.1 (PAUL COHEN)
Let ab e U. Assume that
1 +a+b| <1.

Then a + b is invertible in .
Note. When b = 0, this of course holds in an arbitrary Banach algebra.
Proof. Put f = a + b. We have

Il +a+b| <1, hence |1 +a + b| < 1,
whence
Il+a+b+1+a+b|<2 or k=|1+Ref|| <1.
For all xe X, then
1 + Re f(x)| < k.

This means that f(x) lies in the left-half plane for all x, which suggests that
for small ¢ > 0,

1 + ¢f (%)
lies in the unit disk for all x. Indeed,
11+ ef(x))> =1+ &2 f(x)> + 2eRe f(x)
<1+ ce* + 2de,

wherec = || f||?andd = —1 + k < 0. Hence for smalle > 0, |1 + &f(x)| < 1
for all x, or |1 + &f|| < 1, as we had guessed.
It follows that &f is invertible in U for some ¢ and so f'is invertible. Q.E.D.
We shall now apply this lemma to a particular algebra. Let D = closed
unit disk in the z-plane and I the unit circle. Let A(D) be the space of all
functions analytic in D and continuous in D. Put

Ay = AD)Ir

and give A, the uniform norm on I'. A, is then isomorphic and isometric to
A(D) and is a uniform algebra on I'. The elements of 2, are precisely those
functions in C(I') that admit an analytic extension to |z| < 1.
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A, is approximately one half of C(I'). For the functions
et n=0,+1,+2,...

span a dense subspace of C(I'), while 2, contains exactly those ¢™ with
n>0.

Exercise 10.1. Put g =)  c,e"’, where the c, are complex constants.
Compute the closed algebra generated by 2, and g, i.e., the closure in C(I')
of all sums

N

Y ag’, a,eN,.

v=0

THEOREM 10.2 (MAXIMALITY OF U,)

Let B be a uniform algebra on I" with
A, = B< CI).

Then either A, = Bor B = C(I).
We shall deduce this result by means of Lemma 10.1 as follows. Assuming
B # A, we construct elements u, v € B with

(1 I1+z-u+zo| <1,

where z = €. Then we conclude that zu + zv is invertible in B, when z is
invertible in B. Hence B > ™, n = 0, +1, +2,...,s0o B = C(I'), as required.
To construct u and v we argue as follows: For each h € C(T'), put
1 2n . .
hy=— h(e'®)e=*0 d6, k=0,+1,+2,....
2n J,
Exercise 10.2. Let h € C(I'). Prove that h € %, if and only if h, = 0, for all
k <O.
Suppose now that B # U,. Hence g € B with g, # 0, for some k < 0.
Without loss of generality we may suppose that g_; = 1. (Why?)
Choose a trigonometric polynomial T with

(2) lg — Tl < 1.

We can assume T_, = 1, or

-2

N
T=YTz+z'+) Tz
N 0
Hence

-2 N
T=Y T2 "' +1+2z) T2
-~ 0
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where P and Q are polynomials in z. Equation (2) gives
lzg = zT| <1 or  [2Q —g)+zP + 1| <.

Also, Q — ge B, P € B, so we have (1), and we are done.

THEOREM 10.3 (RUDIN)

Let & be an algebra of continuous functions on D such that
(@) The function z is in &.
(b) & satisfies a maximum principle relative to I :

|G(x)| < mralel, allxeD, Ge &

Then ¥ < A(D).

Proof. The uniform closure of . on D, written 2, still satisfies (a) and (b).

Put B = U|-. Because of (b), B is closed under uniform convergence on I'
and by (a), %, = B. So Theorem 10.2 applies to yield B = A, or B = C(I).

Consider the map g — G(0) for g € B, where G is the function in A with
G = gonT. By (b), G is unique. The map is a homomorphism of B — C and
is not evaluation at a point of I'. (Why?) Hence B # C(I'), and so B = .

Fix FeU. FlreA,, so IF* € A(D) with F = F*on I'. F — F* then e U
and by (b) vanishes identically on D. So F € A(D) and thus A = A(D), whence
the assertion.

Now let X be any compact space, .# an algebra of continuous functions
on X, and X, a boundary for % in the sense of Definition 9.1; i.e.,, X, is a
closed subset of X with

) lg(x)] < maxg|, allge¥ xeX.
Xo

LEMMA 10.4 (GLICKSBERG)

Let E be a subset of X, and let f € & and f = 0 on E. Then for each x € X
either

(@) f(x)=0,o0r
(b) |g(x)| < SupX()\E|gL a” ge "(f
Proof. Fix ge . Then f-ge ¥ Fix xe X with f(x) # 0. We have
(/g)(x)| < max]|fg| = sup|fg|
Xo Xo\E
<sup |f]- sup |gl.
Xo\E Xo\E
Hence
lg(x)| < K sup |g],
Xo\E
where K = |f(x)| ™" - supx,~glf|. Applying this to g",n = 1,2,... gives
n — n < K n = K Il.
lg()I" = Ig"(x)| < ;y\pElg I ( XsygElgI)

Taking nth roots and letting n — oo gives (b). Q.E.D.
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Consider now the following classical result: Let Q be a bounded plane
region and z, a nonisolated boundary point of Q. Let U be a neighborhood
of z, in C.

THEOREM 10.5

Let fe A(Q) and assume that f = 0 on 0Q N U. Then f = 0 in Q.
If we assume that

@) 3 a sequence {z,} in C\Q with z, > z,,

then Lemma 10.4 gives a direct proof, as follows.
Put X = Q, # = A(Q). Then dQ is a boundary for . Put E = 0Q n U.
With z, as in (4), put

1

z—z,

gu(2) =

Then g, € Z. If¢ > 0is small enough, we have for all x € Q with |x — zy| < ¢,

|ga(x)| > sup |g,l
IQ\E

for all large n. Hence the lemma gives f(x) = O for all x e Q with |x — zg| < ¢,
andso f = 0. Q.E.D.
If we do not assume (4), the conclusion follows from

THEOREM 10.6 (RAD()’S THEOREM)

Let h be a continuous function on the disk D. Let Z denote the set of zeros of h.
If h is analytic on D\Z, then h is analytic on D.

Proof. We assume that Z has an empty interior. The case Z # (¥ is treated
similarly.

Let £ consist of all sums

N

Y ah, a, € A(D).

v=0
If fe %, f is analytic in |z| < 1 except possibly on Z, so
(5 | f(x)] < max|f}, all xe D.

ruz
We apply Lemma 104 to ¥ with X, =T U Z, E = Z. Since h € ¥ and

h = 0 on Z we get by the lemma

(6) lg(x) < sgplgl, allge &,

if x e D\ Z, since then h(x) # 0.
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By continuity, (6) then holds for all x € D. Thus % satisfies the hypotheses
of Theorem 10.3, and so ¥ < A(D). Thus h is analytic on D. QE.D.

Note that Theorem 10.5 follows at once from Radd’s theorem.

For future use we next prove

THEOREM 10.7

Let A be a uniform algebra on a space X with maximal ideal space M.
Let f € W satisfying
@ |fl=1o0n X.
(b) Oe f(A).
(c) Faclosed subset Ty of T having positive linear measure such that for each
A € Ty there is a unique point q in X with f(q) = A.

Then
7 For each z, € D there is a unique x in M with f(x) = z,.
(8) If ge U, 3G analytic in D such that

g=G(f) onf'D).
Proof. For each measure p on X, let f (1) denote the induced measure on I';
ie,for S < T,
FW(S) = u(f1S).

where £ 71(S) = {xe X|f(x)e S}.
Since by (b), f(.#) contains 0, and by (a), f(X) < T, it follows that f(.#)
> D.(Why? See Lemma 11.1.) Fix p, and p, in .# with

S(p1) = f(p2) = 2, eb.
We must show that p; = p,. Suppose not. Then Ig € A with g(p,) = 1 and

g(p,) = 0. Choose, by Exercise 1.2, positive measures u, and u, on X with

h(pj)=fhduj, all he ¥,

forj=1,2.
Let G be a polynomial. Then

f G d(f (uy)) = f G(f) dpy = G(f(py)

and similarly for u,. Hence f(1;) — f(u,)is a real measure on I annihilating
the polynomials. Hence f(u;) — f(u;) = 0. (Why?)

Since by (c), f maps f ~!(T',) bijectively on I, it follows that p, and u,
coincide when restricted to f ~}(I'y). Hence the same holds for the measure

guy and gu,.
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Put 4; = f(gu;),j = 1, 2. Then 4, and 4, coincide when restricted to I',.
For a polynomial G we have

f Gdi, = f G(/)g du; = G/ (p)(py).

Hence by choice of g,
[6ai = ce.
Thus
9) JGd(,ll — A) = G(zy), allG.

It follows that the measure (z — z;) d(4, — 4,) is orthogonal to all poly-
nomials. By the theorem of F. and M. Riesz (see [7, Chap. 4]), 3k € H! with

(z — z)d(A, — 4;) = kdz.

It follows that k = 0 on I'y. Since I', has positive measure, k = 0. (See
[38,Chap.4])Butz — z; # OonI,soi; — 4, = 0, contradicting (9). Hence
p1 = p,,and (7) is proved.

It follows from (7) that if g €2, 3G continuous on D, with g = G(f)on
f~Y(D). It remains to show that G is analytic.

Fix an open disk U with closure U = D. Let % be the algebra of all func-
tions

G=g(f™ "), ge¥,
restricted to U.

Choose x € U.f ~}(U)is an open subset of .# with boundary f ~*(dU), and
[ ef 1)

By the local maximum modulus principle, if h e U,
lh(f~'()] < max ||
S-1@u)

or
|H(x)| < max|H|
ou

if H = h(f " ')e % Note also that z = f(f "!)e &

Theorem 10.3 (which clearly holds if D is replaced by an arbitrary disk) now
applies to the algebra ¥ on U. We conclude that ¥ < A(U), and so G =
g(f 1) is analytic in U for every g € 2.

Thus G is analytic in D, whence (8) holds. QE.D.
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NOTES

Lemma 10.1 and the proof of Theorem 10.2 based on it are due to Paul
Cohen, A note on constructive methods in Banach algebras, Proc. Am.
Math. Soc. 12 (1961). Theorem 10.2 is due to the author, On algebras of
continuous functions, Proc. Am. Math. Soc. 4 (1953). Paul Cohen’s proof of
Theorem 10.2 developed out of an abstract proof of the same result by
K. Hoffman and I. M. Singer, Maximal algebras of continuous functions,
Acta Math. 103 (1960). Theorem 10.3 is due to W. Rudin, Analyticity and the
maximum modulus principle, Duke Math. J. 20 (1953). Lemma 104 is a
result of I. Glicksberg, Maximal algebras and a theorem of Rado, Pacific J.
Math. 14 (1964). Theorem 10.6 is due to T. Rad6 and has been given many
proofs. See, in particular, E. Heinz, Ein elementarer Beweis des Satzes von
Radé-Behnke-Stein—Cartan. The proof we have given is to be found in the
paper of Glicksberg cited above. Theorem 10.7 is due to E. Bishop and is
contained in Lemma 13 of his paper [8].
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Analytic Structure

Let D denote the closed unit disk and consider the algebra A(D).

Exercise 11.1. The maximal ideal space of A(D) is naturally identified
with D, and the Silov boundary of A(D) is oD.

Fix fin A(D). f(éD) is a certain compact set. Let W be a component of
C\ f(éD). The following facts are classical:

(a) If f takes some value in W at a point of D, then ftakes on every value

in W.

(b) If Ay e W, {z € D|f(z) = Ao} is finite.

Now let A be an arbitrary Banach algebra, .# its maximal ideal space, and
X its Silov boundary. How can we generalize properties (a) and (b)? The
first is easy.

LEMMA 11.1

Let f € Wand let Wbe a component of C\ f(X). Fix Ay € W. If f takes the
value Ay on M, then it takes on every value in Won M.
Proof. Let

1) Wi ={ieWI(f — )" 'el}.

W, is open. (Why?) Also, W, is a closed subset of W. For let A* € W and let
/1, € Wy and A, > A* as n — oo. Suppose that A* ¢ W,. It follows that 3p* € ./
with f(p*) = A*. (Why?) Also (f — 4,)” ' €. Then

max|(f — 4)~1 = [(f - A~ (P

— 0 asn — o0.

A*— 2,
But 4, —» A* and A* ¢ f(X), and so
@ max|(f — 4)"

is bounded as n — oo. This contradiction shows that 1* € W;.

Thus W, is an open and closed subset of W. Also 4, ¢ W;. Hence W, is
empty and so the assertion of the lemma holds.

On the other hand, condition (b) does not hold in general. (Think of an
example.)

In fact, condition (b) has extremely strong implications for the structure
of M.

Definition 11.1. Let A be a Banach algebra, .# its maximal ideal space,
and pe .. Let ® be a one-to-one continuous map from |z| < 1 into 4

64
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with ®(0) = p such that, for every he A, h o @ is analytic in |z] < 1. We
then call the set {®(z)||z| < 1} an analytic disk through p.
The main result of this section is the following:

THEOREM 11.2

Let N be a uniform algebra on a space X and M its maximal ideal space.
Fix fe Wand let W be a component of C\ f(X). Assume that there exists a set
of positive plane measure G = W so that

f710) = {pedlf(p) = 4}

is a finite set for each A € G.
Then each point p in

f7IW) = {qe M f(q)e W}

has a neighborhood in .4 which is a finite union of analytic disks through p.
Notation. For each subset S of W

f7US) ={pe A f(p)eS},
and for each A e W, # f ~!(A) = the number of points in f ~(4).

LEMMA 11.3

Let A be a uniform algebra on a space X and M its maximal ideal space.
Fix f € Wand let Wbe a component of C\ f(X). Fix a closed disk D in W. If
J is a connected component of f ~*(D) such that f(J) meets D, then f(J)=D.

Proof. For each closed set K < .# denote by A(K) the uniform closure on
K of the restriction of Ato K. A(K) is a uniform algebra on K and K has a
natural embedding in .Z(A(K)).

©) MA(f~1(D) = f~1(D). (Why?)

The topological boundary of f ~*(D)is contained inf ~ }(0D). Let p e f ~ (D).
By the local maximum modulus principle we get

lg(p)l < max |g|, all g in .
£~ 1@D)

Hence we have

) SQUf D)) = (D).
Let J be a connected component of f ~!(D). We claim that
©) M) = J.

Let m be a homomorphism of A(J) — C. Denote by i the homomorphism
induced by m on . Then me .#. In fact, me f~'(D). Suppose that 7 ¢ J.
Since J is a connected component of f ~!(D), we can choose an open and closed
subset J' of f ~}(D) with J = J'and /i ¢ J'. Then Je e A(f ~ }(D)) with e(fir) = 1
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and e = O on J'. (Why?) Hence we can find ¢’ in A with ¢’ nearly 1 at i and ¢’
nearly 0 on J'. Thus, regarding e’ as an element of (J),

Im(e)] = le'i)] > maxie'] = lle'lluq)-

This contradicts the fact that m has norm 1 as linear functional on U(J). So
m e J. This yields (5). We next claim that

(6) SQUJ) = f~YéD) N J.
Otherwise, 3y in J\ f ~ (D) and g, in A(J) with

lgoy)| > max_|gol.
J A f-1(@D)

It follows that we can take g in U with the same property.
We can choose a set Q open and closed in f ~ (D), containing J, and lying
in a prescribed neighborhood of J. In particular, we can choose Q so that

gl > max gl
Qn f-1(@D)

Since Q is open and closed, we can find e e A(f (D)) with e = 1 on Q and
e =0onf Y(D)\Q. Then

leg(y)) > max |eg].
Qnf l(0D)

Also eg = 0 onf~1(0D)\ Q. Thus
leg(y)l > max [eg].
£~'@D)

But eg € A(f ~!(D)) and so the last inequality contradicts (4). Thus (6) holds.
It follows that f maps S((J)) into dD. Since f(J) meets D, Lemma 11.1
applied to A(J) gives that f maps J onto D. Since f(J) is closed, f(J) o D.
QE.D.
Notation. Forj = 1,2,...put W, = {ze W|# [ '(2) = j}. G; = G n W,
where G is the set occurring in Theorem 11.2.

LEMMA 11.4

For each j, G; is measurable.

Proof. 1t suffices to show that H n W; is measureable for each closed set
H < G.Fix such an H. Put V; = {ze H|#f ~'(z) < j}.

We claim each V; is closed. For fix j and choose a sequence of points
Xy, X3, ... in V; with x, — x*. Since H is closed, x* € H and so f ~'(x*) is
finite. Let p,, ..., p; be the elements of f ~!(x*). Choose disjoint neighbor-
hoods U; of p; fori = 1, ..., l and then choose a closed disk D centered at x*
with f~Y(D) = | )i, U,. It follows that f ~ (D) splits into [ disjoint closed
sets. For each v let J, be the connected component of f ~!(D) which contains
py.- Then J4, ..., J,are mutually disjoint. For each v, x* € f(J,) and hence, by
the last Lemma, f(J,) © D. Hence for all large n, each J, contains a point
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Py With f(p,,) = x,. Hence # f~'(x,) > I. Since x, €V, this gives that
I < j.Hence x* e V;. Thus V;is closed as clalmed Since H r\ W, = V,\V_4,
H n W, is measureable. Q.E.D.

Now G = U;?":l G; and m(G) > 0, where m is two-dimensional Lebesgue
measure. It follows that for some k, m(G,) > 0. We fix such a k.

Then 3z, € G, such that z, is a point of density of G,. It follows that we can
find arbitrarily small » > 0 such that the circle |z — z,| = r meets G, in a set
of positive linear measure. Let p, ..., p, be the points in f ~ (zo)

Choose a closed disk D centered at z, so small that (D) splits into k
disjoint closed sets, each containing one of the p;, and such that D n G,
has positive linear measure. Let J, denote the component of f ~ }(D) which
contains p,, for v=1,... k.

LEMMA 115

(i) For each v f maps J, n f~Y(D) one-one onto D.
(i) If ge W and 1 <v <k, 3D, analytic on D with g = ®(f) on
J,n fYD).

(i) f~'D) = J3=1 I,

Proof. By choice of D 3 a closed set B, on dD such that B, = G, and B,
has positive linear measure. Fix z € B,,.

Foreachvz, = f(p,) € f(J,)andsof(J,) o D by Lemma 11.3. Hence there
is at least one point in each J, which f maps onto z. But z € G, so there is
exactly one such point g, € J, with f(q,) = z, for each v. Since z€dD, q, €
SQU(J,)). (Why?)

Fix v. We may regard (J,) as a uniform algebra defined on SQ(J,)).
Without loss of generality, D is the unit circle. Since B, has positive linear
measure, we can then apply Theorem 10.7 to 2(J,) and conclude (i) and (ii).

To show (iii) we suppose that Ix € £~ (D) with x ¢ Uv J,. Let K be the
connected component of f ~ (D) through x. For each v, K is disjoint from J, .
Also by Lemma 11.3, z, € f(K). Hence f ~!(z,) contains more than k points,
which is a contradiction. So (iii) holds. Q.E.D.

We require the following exercise.

Exercise 11.2. Let T be a bounded linear transformation of a Banach
space Y into itself. Assume that T is one-to-one, and the range of T is closed,
and the range of T has codimension &, where a may be finite or co. Then for all
bounded linear transformations T’ with |T’ — T sufficiently small, the
range of T’ has codimension .

LEMMA 11.6

For each e W, # f () < k.
Proof. Let D be as in Lemma 11.5. Choose a compact subdisk A of D,
centered at z,. For each v, put

U,=f"YAnJ,.
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Because of (iii) in Lemma 11.5, U, is an open subset of .#. Put

k
My =M\ U,.
v=1

Then ./, is compact and f # z, on .#,. Without loss of generality, z, = 0
andso f # Oon ./4,.

Each x e .#, has an open neighborhood U, such that 1/f is uniformly
approximable on U, by polynomials in f. Let U,,, ..., U,, be a finite subset
covering .# . Then, putting Uy, ; = U, ,

Up ooy Uy Ursgs oo Upss

together form an open covering of ./Z.

For each i, denote by 2{(U,) the uniform closure on U; of the restriction of
Ato U,. Denote by .# the algebra consisting of all g in C(.#) such that g|U; €
A(U;) for each i, 1 < i < k + I. Theorem 9.7 yields that .# is a closed sub-
algebra of C(.#) and that §(¥) < X.

Assertion. Let Fe % and assume that F(p) = 0,1 < j < k. Then F/f,
appropriately defined at the p;, belongs to £.

Fix i < k. We must show that F/f e A(U,). Since F € ¥, 3F,e A with
F, - F uniformly on U;. By Lemma 11.5, (ii), 3®, analytic on A, continuous
on A, with

Fn:(Dn(f) on Ui'

Since F, converges uniformly on U;, and hence on U, ®, converges uniformly
on A to some function ®. Then ® is analytic on A and continuous on A. We
have

F=®f) on U,.

Also ®(0) = 0. We can find a sequence P; of polynomials with P(z) — ®(z)/z
uniformly on A. Hence P{f) converges uniformly on U; to a continuous
function which equals ®(f)/f = F/fon U;\{p;}. So F/f eA(U,), as desired.
Fori=k+1,...,k + 1, 1/f is uniformly approximable on U; by poly-
nomials in f. Hence again F/fis in A(U,), as desired. Hence F/fis in ¥, and
the Assertion is proved.

It follows that if (f) denotes the ideal in . generated by f, then the quotient
algebra .#/(f) has dimension k. (Why?)

If $ € £, we put ||¢p|| = maxg y|¢|. In this norm, & is a Banach space. For
each A € W, we define the linear transformation

T:g—>(f—4)-g

of ¥ - &.For each A€ W, T, is one-to-one and has closed range. (Why?)
Put B(4) = codimension of the range of T,. Exercise 11.2 gives that f is
locally constant on W. Hence f is constant on W. Also B(0) = k. Thus we get
that Z/(f — A) has dimension k for each A€ W. This means that if 1€ W,
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then 3 linear functionals «, on % and elements e, in ¥ so that for each g e &
there is some G € ¥ with

k
g=G-(f =N+ Yol e,
v=1
Fix q € 4 with f(q) = A. Then

glg) = Zlev(q)av(g)

for every g e &. Hence ¢, as a functional on %, is a linear combination of
oy, ..., 0. It follows that there exist at most k points g € .# with f(q) = A
(Why?) This proves the Lemma.

LEMMA 11.7

W, is an open set and W \W, is a discrete set.

Proof. Because of the preceding Lemma, f ~*(1) is a finite set for each A € W
and so we may replace G by Win all the preceding results.

We have W = ( Ji_, W,. Suppose m(W) > 0 for some [ < k. By Lemma
11.6, (with W in place of G), this implies that # f ~!(4) < I for each 1 € W.
But W, is not empty, so we have a contradiction. Hence m(W)) = 0 for each
I < k and so m(W \W,) = 0. Hence each point z € W, is a point of density of
W,. By Lemma 11.5, (i), (with Win place of G) some disk centered at z is
contained in W,. So W, is open.

For each z in W, denote by p,(z), .. ., p(z) the points in f ~!(z) ordered in
some fashion. Fix z, € W, and choose g in U taking distinct values at the
points py(z4), . .., pi(z,). For z € W, put

0@) = [1(&(pd2) — gp2))*.
i<j

Because of Lemma 11.5, (ii), Q is analytic on W,. Also Q(z,) # 0.

Let { be a boundary point of W, in W. Then there are less than k points in
Y. Tt follows that as z — {, ze W, Q(z) = 0. (Why?) We set Q = 0 on
W \W,. Then Q is continuous on W, analytic on {4|Q(4) # 0}. Hence by
Radé’s theorem (Theorem 10.6), Q is analytic in W. Also Q is not identically
zero in W. Hence the zero-set of Q in Wis discrete and so W \W, is discrete.

Q.E.D.

Proofof Theorem 11.2. Fixp e f~}(W). We must construct a neighborhood
of p which is a finite union of analytic disks through p, in the sense of De-
finition 11.1. If pe £~ *(W,), Lemma 11.5 gives that there exists a single such
disk serving as a neighborhood of p.

Suppose next p ¢ £ ~!(W,) and put 4, = f(p). Since Q, defined above, is not
identically zero, we can find a disk D centered at A, such that Q # 0 on the
punctured disk D' = D\ {4,}.
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For each ze D', f ~'(z) consists of k distinct points p,(z), ..., pu(z). Let
0y, ...,0; be the elementary symmetric functions of g(p,(z)), ..., g(p(2)).
The o; are analytic and bounded in D’ and so extend to 4, to be analytic on
all of D. We have

(7) g —o(f)g + -+ (=Da(f)=0o0n f*

Consider the multiple-valued analytic function z — w(z) defined on D by the
equation

) wE— 2w + -+ (= Dralz) = 0.

Let X be the Riemann surface of this function. We may regard z and w as
analytic functions on . Then z provides a k-to-1 covering map of = N z~ (D)
on D’. In general, the map z is branched at points of X over 4,.

Fix ¢€ X Nz~ (D). 3k points in f ~!(D’) where f takes the value z(¢) and g
assumes distinct values at these points, since Q # 0 in D’. In view of (7) and
(8) 3 unique y e f (D) with f(y) = 2(¢) and g(y) = W(é)

Let t denote the map: & —» yof £ N z~!(D’)into f ~ }(D’). One easily verifies
that 7 is continuous, one-to-one and onto.

Let A,, ..., A, denote the connected components of Z. Then each A; is
conformally equivalent to a disk, and each A; contains a unique point ¢;
with z(¢;) = 4o, and z maps A; N z7'(D’) in a finite- sheeted way onto D’
As & — & with Le A, 1(E) approaches a point g in f ~ }(4,) where g depends
only on j. We define r(é ) = q. Thus defined, 7 is a continuous one-one map
of A; into f (D). Alsof‘l(D) = (J5=1 1A)

It is easy to verify that for each h in 2, k(1) is analyticon £ n z~ }(D’). Since
h is bounded, h(t) is analytic on all of . Hence each t(A;) is an analytic disk
through t(¢;). For certain j, ©({;) = p. The union of all the corresponding
7(A;) is then the desired neighborhood of p.

Theorem 11.2 is proved.

NOTES

Theorem 11.2is essentially contained in Section 5 of the paper by E. Bishop,
Holomorphic completions, analytic continuations and the interpolation of
semi-norms, Ann. Math. 78 (No. 3), (1963). The use of Exercise 11.2 in a
similar situation is due to T. W. Gamelin.

I am indebted to Brian Cole for pointing out to me an omission in my
original version of the argument, concerning the measureability of the sets W;.
Brian Cole, Richard Basener and R. Loy independently showed how to
handle the measureability problem.
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Algebras of Analytic Functions

Let Q be a domain in C and let A, be an algebra of analytic functions on Q.
Assume that 2, separates points on Q and contains the constants.
Let K be a compact set = Q and write U for the closure of 2, in the norm

/1 = max |f].

A is thus a uniform algebra on K. Our problem is to describe the maximal
ideal space .4 of A.

It can of course occur that A = C(K), in which case .# = K. This happens,
for instance, if Q is the annulus a; < |z| < a, and K is the circle |z| = ¢,
where a; < ¢ < a,, and U, consists of all analytic functions on Q. (Why?)

On the other hand, take Q again to be the annulus a, < |z| < a, and K to
be the circle |z| = ¢, but now take 2, to consist of all polynomials in z. Now
A turns out to consist of all those functions in C(K) that extend analytically
to the disk |z| < ¢. Thus .# here is the closed disk |z| < c.

We shall now study the general case. For simplicity we shall assume K
to be the union of a finite number of simple closed analytic curves, or analytic
arcs, contained in Q.

THEOREM 12.1

Let U, be an algebra of analytic functions on Q and let K be as described.
Let U denote the uniform closure of Wy on K and let M be the maximal ideal
space of .

Then each point p in M \K has a neighborhood in M which is a finite union
of analytic disks through p.

We shall see in Section 13 that this result admits interesting applications to
questions of uniform approximation on compact sets in C".

We now make the following simplifying assumption, to be removed at the
end of the proof:

(I) Felements g,, ..., g, in A, which generate A.

We shall deduce Theorem 12.1 from the following theorem: For f € A
and z € C put

f Y2 ={pet|f(p) =z}

THEOREM 12.2

Fix f € W,. Then the set of all z € C such that f ~'(z) is infinite has plane
measure 0.

71
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We shall need

Exercise 12.1. Let Q be a plane domain and fix z, € Q. For each compact
subset K on Q there exists a constant r,0 < r < 1, so that the following holds:
Iff € HQ)and |f| < 1 on Qand if f vanishes at z, to order 4, then

|f] < r*on K.
Definition. Let f be a polynomial
Y e
1
in n complex variables z,, .. ., z,, where I denotes an n-tuple (v,,v,, ..., v,) of
nonnegative integers and
2=z

We call f a unit polynomial if max,|c;| = 1.
We say fis of degree (d,,...,d,) if for all I = (v{,...,v,), v; < d;, all j.

LEMMA 12.3

Let f be a unit polynomial in one complex variable z of degree k and let o be a
positive number. Put

Q = {z]zl < LIf(2) < o}

Then m(Q) < 48a, where m denotes plane Lebesgue measure.
Proof. Let {4, ..., {, be the roots of f with modulus <2and {,, 4, ..., {, the
remaining roots. Then without loss of generality

(1) f@=Cz—-1C) (=00 =) ') (1 = () 2)
Hence for |z] = 1,
@ <ICIA + 15D+ 1A + [y ™H - (1 + 1647 < ICP3%.

It follows that the modulus of each coefficient of fis < |C|3*. (Why?)
Since f'is a unit polynomial we conclude that

) 1 <|C|3* or IC)~* < 3%
Also, by (1) we have for ze Q,
ICllz = Lyl -+ lz = Sl < ol = (Gow) ™27 oo )T = (G) 7 P2l ™!
< ok 2Kt < 2k,
Combining this with (2) we get
lz =1z =] < (6a)  for zeQ.
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Put Q, = projection of Q on the x-axis. Put a; = Re {;, 1 <j < t. Then for
X € QO’
€) e —ayl e fx — o] < (60).

We now appeal to the following:
*Exercise 12.2. Let «y,..., o, be real numbers and P(x) = (x — a;) -
(x — o). Fix M and put
S = {x||P(x)] < M}.

Then the linear measure of § < 4- M!'/",
Let u denote linear measure. The exercise applied to (3) gives

Qo) < (6" - 4.

For o < §, this gives u(Q,) < 24a. For o> % uQ,) <2 <240 So
Q) < 240, and we conclude that m(Q) < 48a. Q.E.D.

LEMMA 124

Let Q be a plane domain and K a compact subset. Let W, be an algebra of
analytic functions on Q. Put ||¢| = maxg|¢|, all ¢ € A, .

Fix f, g € W,. Then there exists r,0 < r < 1, and ¢ > 0 such that for each
pair of positive integers (d, e) we can find a unit polynomial F, , in two variables
of degree (d, e) such that

1Fpf; )l < ctre-rte

Proof. Choose a subregion Q, of Q, with K = Q, and Q, a compact subset
of Q. Choose ¢o > 1 with |f] < ¢, Ig] < ¢o on Q. Also fix some z, € Q,.
Consider an arbitrary polynomial

d e
Fizyw)= Y Y cpmz'w™
n=0m=0
Put h = F(f, g).

The requirement that h should vanish at z, of order A imposes A linear
homogeneous conditions on the ¢, and hence has a nontrivial solution if
A <(d+1)-(e +1). We may assume that the corresponding polynomial
F = F, . is a unit polynomial. Now

d—}f(zo)=0, v=0,1,2,...,4— 1.
dz’
Exercise 12.1 applied to h,Q,, and z, gives

|h] < max |h|-r* on K.
Q

On Q,,
Bl < 3 caml | /1"g™ < (d + 1)(e + 1)- 5"
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Hence, for large c,
lhll < @+ 1)(e + Dcd*er* < **°r*  foralld,e. QE.D.

Proof of Theorem 12.2. Fix g € N, and put, for each ze C, S(z) = {we
Cldm e 4 with m(f) = z and m(g) = w}. Thus S(z) is the set of values g
takes on f ~!(z).

By Lemma 12.4, for each (d, e) there is a unit polynomial F of degree (d, )
andr,0 < r < 1, and ¢, independent of d, e, so that

4 IF(f gl < ct*e-r.
Fix ry with r < ry < 1. Then there exists d, with
cdre.rte < e forde > d,.

Henceforth we assume that d,e > d,.

Fix ze C and we S(z). Equation (4) gives
©) |F(z, w) < 5.
(Why?)

Now

F(z, w) Z Glzw'.

Without loss of generality we can suppose that || f|| < 1, so that S(z) is
empty unless z € D = {z|z| < 1}.
Since F is a unit polynomial, 3j such that G = G; is a unit polynomial of
degree d.
Put
T(d,e) = {ze D||G(2)| < r§"?}.

By Lemma 12.3 with a = r§?, m(T(d, e)) < 48rg/>.
Assertion 1. If z; € D\ T(d, e), then 3 unit polynomial B of degree e with

|B(w)| < rie/? for all we S(z,).
For put
A(W) = F(215 W)a

where F is as above. Then A is a polynomial of degree e having one co-
efficient G(z,), with

(6) IG(z,)] > r§"2.
Also, by (5)
(7 |A(w)| < rée if we S(z,).

Dividing A by the modulus of its largest coefficient, we get a polynomial B
with the properties claimed in Assertion 1. For each e put

= {z|ze D\T(d, ¢) for infinitely many d}.
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Assertion 2. Fix e and fix z* e D. If z* € H,, then S(z*) has at most e
elements.

Since z* € H,, for arbitrarily large d, z* € D\T(d, e). Let {d;} be such a
sequence of d’s, = 0.

By Assertion 1, for each j3 unit polynomial B; of degree e with

(8) IB{w)| < r§<? for each w e S(z*).

Since the B; have fixed degree e and are unit polynomials, there is a sub-
sequence of {B;} converging uniformly on D to a polynomial B*. Then B*
is a unit polynomial of degree e. Since d; — oo and r, < 1, (8) yields

B*w) =0 for each w e S(z*).

It follows that S(z*) contains at most e elements, proving Assertion 2.
It follows that for every e,

{z € C|S(z) is infinite} = D\ H,.

Assertion 3. m(D\H,) < 48r¢>.
To prove Assertion 3, observe that if z € D\ H,, then z € T(d, e), for all d
from some point on, so

©9) D\H,< () () Td.e.
k=dod=k

But for each fixed d,
m(T(d, e)) < 48r§>.

Since the right-hand side in (9) is the union of an increasing family of sets,
each set being of measure <48r§?, we get m(D\.H,) < 48r¢?, proving the
assertion.

PutS,, = {z|S(z)isinfinite}. Then S, , = D\ H,for each e, so by Assertion
3, m(S;,) < 48r§?. Since ry < 1 and e is arbitrary, m(S, ,) = 0.

This now holds for each g € A,, in particular for the generators g, ..., g,
of (I).

Fix z, with f~!(z,) infinite. Since g, ..., g, together separate points, 3j
such that g; takes infinitely many values of f ~'(z,); i.., zo € S f.g; Thus

{zlf ~(2) is infinite} = () S, .
j=1

Since each summand on the right has measure 0, we conclude that
m{z|f ~(z) is infinite} = 0. QE.D.
Proof of Theorem 12.1. Fix p, € .4 \ K. We shall exhibit a neighborhood

of py in ./ which is a finite union of analytic disks through p,.
Assertion. There is an fe U, so that f(p,) € C\ f(K).
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Choose f; € Uy, f; not a constant. Then

{pe K| fi(p) = fi(po)}
is a finite set. Choose f, € A, with f, # f,(p,) on this set. Define

_ f1(2) — fi(po)
£2(2) = falpo)

Restricted to K, Q, being meromorphic, omits some value 7.
Putf = f, — nf, € U,. If f(K) 3 f(p,), then for some ze K,

£1(2) = nf2(2) = fi(po) — nf2(po)s

0(2)

N

f1(2) = fi(po) = n(f2(2) — f1(po))-

If f5(z) — f2(po) = O, then also fi(z) = fi(p,), contrary to the choice of f,.
So Q(z) = n, contrary to the choice of . Hence fsatisfies the assertion.

Now let W be the component of C\ f(K) containing f(p,). By Theorem
12.2, f ~'(z) is a finite set for almost all z in W, Theorem 11.2 now yields that
pohasaneighborhood as desired. This proves Theorem 12.1, under hypothesis
(I). Now drop (I).

Fix f e U, and pick z e C\ f(K). Suppose that f~!(z) is infinite; i.e.,
I{p;}iZ, in A with f(p;) = z, all j. Without loss of generality, 2, is closed
under uniform convergence on some compact set containing K in its interior.
Then 3g € A, such that g separates points on {p;}. (Why?)

Let A, be the algebra of all polynomials in f and g, and 2, its uniform
closure on K. Then U, satisfies (I). Hence the assertion of Theorem 12.1 is
valid for 2, . This implies in particular that

A={pesaU)f(p) =z}

is a finite set. But each p; induces a point of .#(2,), and since g separates the
p;» these points are distinct. Thus A is infinite, which is a contradiction.
Hencef ~!(z) was finite, and so Theorem 11.2 applies as before. Thus hypothe-
sis (I) was irrelevant. Q.E.D.

NOTES

Theorem 12.1 in the special case when Q is an annulus and K a concentric
circle in Q is due the author, The maximum principle for bounded functions,
Ann. Math. 69, No. 3 (1959). In a more general form than the one given here,
it is proved in E. Bishop, Analyticity in certain Banach algebras, Trans. Am.
Math. Soc. 102 (1962), and in Holomorphic completions, analytic continua-
tions and the interpolation of seminorms, Ann. Math. 78 (1963). The proof
given here is the one in the latter paper. An independent proof of the theorem
is due to H. Royden, Algebras of bounded analytic functions on Riemann
surfaces, Acta Math. 114 (1965).
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Approximation on Curves in C”

Let K be a simple closed curve (homeomorphic image of a circle) in C”,
and J a Jordan arc (homeomorphic image of a closed interval) in C". We wish
to describe the polynomially convex hulls h(K) and h(J).

For n = 1 this description can be given at once. (What is it?)

For n > 1 we need the notion of an “analytic variety,” which, roughly
speaking, is a subset of C" locally definable by analytic equations.

Definition 13.1. Let Q be an open set in C" and V a relatively closed subset
of Q. V is an analytic subvariety of Q if for each x° € V we can find a neighbor-
hood N of x° in C" and functions ¢, ..., ¢, € H(N) such that

VAN ={xeN|p{x)=0,j=1,...,s}.

The reader may consult the book of Gunning and Rossi [30, Chaps, II and
IIT], for a good introduction to the subject of analytic varieties. Here we shall
only encounter analytic varieties whose complex dimension equals 1.

Definition 13.2 Let V be as above and fix x° € V. Assume that after some
analytic change of coordinates in a neighborhood N of x° to new coordinates
Z,,...,Z,, we have for some integer k,

VAN ={xeN|Z{x)=0,j=1,2,...,n—k}.

Then x° is a regular point on V., k is independent of the choice of coordinates
and is the dimension of V at x°. We say that V has dimension k if at each regular
point of V the dimension is k.

Note that the set of regular points on a one-dimensional analytic sub-
variety V constitutes a (possibly disconnected) Riemann surface, and that the
complement of this is in V is a discrete subset of V.

Now choose a and b witha < 1 < band let W be the annulus a < |z| < b.
Let I"be thecircle [z| = 1. Letf], ..., f, be functions analytic in W and assume
the f; together separate points on W. Denote by K the image in C" of I" under
the map z — (fi(2), . .., fu(2))-

A set K obtained in this way we call an analytic curve in C".

THEOREM 13.1

Let K be an analytic curve in C". Then h(K)\K is a one-dimensional
analytic subvariety of some open set in C".

Note. (K)\K may be empty. (Give an example.)

Proof. Let U, be the algebra of all polynomialsinf, ..., f,, regarded as an
algebra of functions on W. Let U denote the uniform closure of A, on I.
Theorem 12.1 then applies and yields that if .# = .#(Q), then every point in

77
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A \T has a neighborhood in .# which is a finite union of analytic disks.
(Recall Definition 11.1.)

Each f; may be regarded as a continuous function on .#, and the f; together
separate points on ..

The image of .# in C" under the map f:M — (fi(M), ..., f,(M)) is h(K).
(Why?)

Fix x° € h(K)\ K. Then 3IM° € .4 \T with f(M°) = x°. Let U be a neigh-
borhood of M° in .# which is a finite union of analytic disks, D, ..., Dy.
Then the union of the f(D;),j = 1, ..., k, is a neighborhood U* of x% in h(K).

Fix j, 1 <j < k. By the definition of an analytic disk, 3 a one-to-one
continuous map @ from |A| < 1 onto D; such that h(®) is analytic in |[4] < 1
for every heW. Define z(A) = f(®(), i =1,...,n Then the map 1 —
(z4(4), ..., z,(4)) is a one-to-one continuous map of |A| < 1 onto f(D;), and
each z; is an analytic function in || < 1.

Denote by B(x, r) the open ball in C" of center x and radius r.

*Exercise 13.1. Fix j and put D = D;. For small ¢ > 0, f(D) n B(x°, ¢)
is a one-dimensional analytic subvariety of B(x?, ¢).

Exercise 13.2. For small ¢ >0, U* n B(x° ¢) is a one-dimensional
analytic subvariety of B(x?, ¢).

Let Q be the union of all the balls B(x°, ¢) obtained in Exercise 13.2 as x°
varies over h(K)\(K). We may assume that each B(x°, ¢) is disjoint from
K. Hence h(K)\ K is a closed subset of Q, and, by choice of the B(x°, ¢),
h(K)\ K is a one-dimensional analytic subvariety of Q. Q.E.D.

Now let W be an open neighborhood in C of the unit interval I:0 < x < 1,
let fi,...,f, be functions analytic in W, and assume that the f; together
separate points on W. Denote by J the image in C" of I under the map

z = (fi(2), ..., ful2)).

A set J obtained in this way we call an analytic arc in C".

THEOREM 13.2
Let J be an analytic arc in C". Then J is polynomially convex.

COROLLARY

Let J be an analytic arc in C". Then P(J) = C(J).
Definition 13.2. Let X be a compact set in C". R(X)is the set of all f € C(X)
such that 3 polynomials A and B, with B # O on X and f = A/B on X.

LEMMA 13.3

Let X be a compact set in C" such that Ry(X) is dense in C(X). Fix x° €
C"\\X. Then 3 polynomial F with F(x°) = 0 and F # O on X.

Proof. Suppose not. Then every polynomial vanishing at x° has a zero on
X. So if f = A/B € Ro(X), then B(x°) # 0. We define a map ¢ :f — A(x°)/
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B(x°) from Ry(X)— C. ¢ is well defined and |¢(f) < maxy|f|. (Why?)
¢ is then a bounded homomorphism of Ry(X) — C and so extends to a
homomorphism of C(X) - C. Hence 3x' € X with ¢(f) = f(x!),all f € C(X).
Letting f be the coordinate functions z;, we conclude that x® = x*. This is a
contradiction. Q.E.D.

LEMMA 134

Let J be an analytic arc in C". Then Ry(J) is dense in C(J).

Proof. Fix a coordinate function z, and put S = z,(J). Since S is the
analytic image of an interval, S has plane measure 0. It follows by Theorem
2.8 that 3 rational functions f, with poles off S and lim, _, ., £,({) = { uniformly
on §S.

For each v, f, - z, € Ro(J). Hence z, lies in the uniform closure of Ry(J) on
J. By the Stone—Weierstrass theorem we get the assertion.

Proof of Theorem 13.2. Put V = h(J)\\J. We must show that V = (J.

The proof of Theorem 13.1 applies to analytic arcs just as well as to
analytic curves, and so V is an analytic subvariety of an open set Q in C".

Fix a regular point x° € V. By Lemmas 13.3 and 13.4, 3 polynomial F
with F # 0 on J and F(x°) = 0.

Fix a regular point x° € V. By Lemmas 13.3 and 13.4, 3 polynomial F with
F # 0on J and F(x°) = 0.

Since J is a smooth arc, J has arbitrarily small simple connected neighbor-
hoods in C". (Why?) Choose such a neighborhood U with F # 0 in U.
Then 3H € C(U) with F = ¢ in U.

Next define V, as the subset of V consisting of all points whose distance from
J > e. V. is compact and its boundary in V lies in U, if ¢ is small. Since V is a
one-dimensional analytic variety, it is easily seen that we can find a compact
set W, with V, = W, = V such that the boundary of W, in V, 0W,, is a finite
union of simple closed curves and 6W, = U. For small ¢, x° € W,.

Exercise 13.3. Let V' be a one-dimensional analytic subvariety of a region
Qin C"and ¢ € H(Q). Let W be an open subset of ¥ whose boundary dW is
a finite union of simple closed curves oriented positively with respect to W.

Show the following: If x° € W and x° is a regular point of V and if ¢(x°) = 0
and ¢ # 0 on OW, then var argz¢ # 0.

Hint. Make a suitable triangulation of W and use the argument principle
on each triangle.

Recall that F = ¢ in U and hence on 6W,. It follows that var argoy, F =0,
whence, by Exercise 13.3, F cannot vanish at x°. This contradiction shows
that V = ¢, as desired.

Proof of Corollary. Since J is polynomially convex and every f € Ry(J) is
holomorphicin a neighborhood of J, Ry(J) = P(J) by the Oka—-Weil theorem.
But R(J) is dense in C(J) by Lemma 13.4. Hence P(J) = C(J), as claimed.

For an arc J in the complex plane, P(J) = C(J) whether or not J is analytic,
by Theorem 2.11. For n > 1, Theorem 13.2 no longer holds for arbitrary
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arcs (homeomorphic images of a closed interval) in C". We shall give an
example in C>.

If y is an arc in the plane, denote by 2, the algebra of functions continuous
on the Riemann sphere S* and analytic on S*\y. For smooth arcs y, U,
reduces to the constants. It is not clear, a priori, whether or not there exist
arcs y such that 2, contains nonconstant functions.

LEMMA 13.5

If'y has positive plane measure, then U, contains enough functions to separate
points on S?; in fact, three functions in %, do so.

Note. To obtain an arc y having positive plane measure one can proceed
like this: Choose a compact, totally disconnected set E on the real line,
having positive linear measure. E x E is then a compact, totally disconnected
subset of R? having positive plane measure. Through every compact, totally
disconnected subset of the plane an arc may be passed, as was shown by
F. Riesz [Sur les ensembles discontinus, Compt. Rend. 141 (1905), 6507]; y can
be such an arc.

The first example of an arc of positive plane measure was found by Osgood
in 1903 by a different method.

Proof. Put

dx dy

o= [ 74

F() » 0as{ — ooandlim,,, { - F({) # 0.(Why?) Hence F is not a constant.
Fix {, € y. The integral defining F({,) converges absolutely. (Why?) We
claim that F is continuous at {,. For put

1
-, z| < R,
s={z "
0, |7>R
for R some large number. Then g € L'(R?).
1 1
F0 - Feor= [ - L Jara
[F(£) (o)l Py e y

~ [ g -0~ g — Loldxdy =0 as 1o,
Y
since g € LY(R?). Hence the claim is established. Thus F € C(S?), and since F
evidently is analytic on S*\7, F € 4,,.
Fix now a,b € S*\y with F(a) # F(b). Then F,,Fy € A,, where
F(z) — F(a) F(z) — F(b)

Fy(z) = z——a—’ Fi(z) = Z — b
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Fix distinct points z,, z, € S2. It is easily checked that if F(z,) = F(z,), then
either F, or F separates z; and z,. Hence F, F,, and F; together separate
points on S2. Q.E.D.

We now define an arc J, in C? as the image of a given plane arc y having
positive plane measure under the map { — (F({), F,({), F5(0)).

THEOREM 13.6

J o is not polynomially convex in C3. Hence P(J,) # C(J,).
Proof. Fix {, € S*\\7. Then x° = (F({,), F1({o), F3(o)) ¢ Jo. Yet if P is any
polynomial on C3,

|P(x°)| < max|P|.
Jo

For f = P(F, F,, F5)€ A,, so by the maximum principle
|/ (L)l < max|f],
Y

as asserted. Hence x° e h(J,)\J,, and we are done.

*Exercise 13.4. If ¢ is a nonconstant element of P(J,), then ¢(J,) is a
Peano curve in C, i.e,, contains interior points. In particular, the coordinate
projections of J,, z,(J,), are points or Peano curves.

NOTES

Theorems 13.1 and 13.2 were first proved by the author, The hull of a curve
in C", Ann. Math. 68 (1958). They were generalized and given new proofs by
E. Bishop and H. Royden in the papers cited in the Notes for Section 12.
The hypothesis of analyticity was weakened to differentiability by E. Bishop
(unpublished). A proof for the differentiable case was given by G. Stolzenberg,
Uniform approximation on smooth curves, Acta Math. 115 (1966). We have
followed Stolzenberg in the proof of Theorem 13.2. Various other generaliza-
tions of Theorems 13.1 and 13.2 have also more recently been given by other
authors, in particular by L. A. Markusevic, J.-E. Bjork, and H. Alexander.
Lemma 13.4, for differentiable curves, is due to H. Helson and F. Quigley,
Existence of maximal ideals in algebras of continuous functions, Proc. Am.
Math. Soc. 8 (1957).

The example of an arc J, in C* which is not polynomially convex is due to
the author, Polynomial approximation on an arc in C3, Ann. Math. 62 (1955).
The nonconstant function F in 4, used in Lemma 13.5 was found by Denjoy.
A modification of the construction of J, which provides a nonpolynomially
convex arc in C? is due to W. Rudin, Subalgebras of spaces of continuous
functions, Proc. Am. Math. Soc. 7 (1956). The fact that for every arc J < C,
P(J) = C(J), was first proved by J. L. Walsh in [72]. For an exposition of
work related to this Section the reader may consult Gamelin’s paper [27].
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Uniform Approximation on Disks in C"

As the two-dimensional analogue of an arc in C”, we take a disk in C”
defined as follows. Let D be the closed unit disk in the {-plane and letf}, ..., f,
be continuous functions defined on D. Assume that the map { — (f;({), ...,
£.(0)) is one to one on D. The image D of D under this map we call a disk in C".

Our problem is to give conditions on D in order that P(D) = C(D). A
necessary condition is

(1) D is polynomially convex in C".

Condition (1) is clearly not sufficient.
We make the simplifying assumption that

2 [ =20

Whenf,, ..., f, are merely assumed continuous, we do not know sufficient
conditions. Let us now suppose that the f; have continuous first partials in a
neighborhood of D; ie., { = { + iy and df;/0¢ and 0f;/0n exist and are
continuous. Then

THEOREM 14.1
Assume (1) and (2), and that

(3) for every {, € D,Z—fg (o) # O for some j.
Then P(D) = C(D).

Note. The conclusion is equivalent to saying that the space of polynomials
infy, f5, ..., f, is dense in C(D). Observe that if (3) fails for each {, in some
open subset of D, then every function that is a uniform limit on D of poly-
nomials in f;, ..., f, is analytic there, whence P(D) # C(D). Condition (3)
is thus a natural restriction.

LEMMA 14.2
Fix a in D. 3 a neighborhood Q of D in C" and 3h € H(Q) such that
@) h = (z, — a)h, in Q with h, € H(Q), and

(5) 3Jacircular sector T : —g <0 <-,0 <r < &such that (D) n T = {0}.

Proof. By 3), 3f = f;, 1 < j < n, with f{a) = & /6l(a) # 0.1f { D,
fQ =f(a@) + f{a)( — a) + fAa){ — a) + O({ — al).

82
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Then
¢ =a)(f) —ﬁz —fa —-a) _ ¢ — al* + O(C — al?)
4
Put
_ o zi—f(a) — fla)(z, — a)
g(zb--"zn)— (Zl a) f;{a) .
Thus for (e D

g0, KO = =1L = al* + O(C — al?).
Hence g is a polynomial such that
(6) gy) =0,  wherey = (f1(a), f2(a),. .., fx(a)),
and
(7)  Reg(x) < 0for xe D\{y} and x in some neighborhood U of y in C".
Because of (7) we can find an open set V in C” such that
UuVobh and Reg<0inUnV.

Also D is polynomially convex by (1). By Lemma 9.4, 3¢ € H(U), y € H(V)
with

logg=y—¢inUnV,

where we may have had to shrink U and V a bit first. Hence ge® = ¢” in
U n V. The right side € H(V) and the left side € H(U). Hence the function
h defined by

h=e"inV, h=ge?inU
is holomorphic in U U V. Put k = €. Then
(8) h =kgin U, ke H(U) and k # O there.
) h#0  onD\{y}.

Sincez, — a # 0on D except at y, we may assume without loss of generality
that z; — a # O in V. Put

h

Zl —a.

h1=

Then h; € H(V). Also g/(z; — a) is a polynomial, and so by (8) h, € H(U).
Hence h, e HU v V).

Putting Q = U u V, we see that (4) holds. Without loss of generality,
k(y) = 1. By (8), h — g = (k — 1)g, whence

1
h— —
(10) lh — gl < ﬁlgl
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in some neighborhood U, of y with U, < U, except at y. Fix x in U, and
x # y. By (7) Re g(x) < 0. Hence for w in the sector —7/4 < argw < m/4,
w — g(x)| > (1 /ﬁ)lg(x)l. Because of (10), this means that h(x) lies outside
the sector.

On the other hand, D\\U, is a compact subset of D avoiding y. By (9)
h # 0on D\\U,,and soforsome ¢ > 0, |h| > ¢on D\U,. Hence everywhere
on D\{y} the value of h lies outside the sector T given in (5), whence (5)
holds. Q.E.D.

Denote by U the uniform closure on D of the algebra of polynomials in
fis -+ fn- Again fix a in D.

LEMMA 14.3
3¢, e WU, n=1,2,...with
1
(11) lim ¢,(0) = o (e D\{a}.
b .
12) a0 < C—ar all { e D, all n, where b is a constant.

Proof. With h and h, as in (4), put

1
Ie) = (@) =
Since h, and h are holomorphic in a neighborhood of D and h(z) # 1/n in
some neighborhood of D for n large, by (5), ¥/, is holomorphic in a neighbor-
hood of D for n large. Hence the restriction of , to D lies in P(D), using the
fact that D is polynomially convex. Put f({) = (f1(0), . .., f,({)). It follows that
U (f) e W Put ¢(0) = Y. (f(0), L € D. Thus ¢, € U. Also for { € D, { # a,

1
€ = ah(f(O) = 1/n

lim ¢,(¢) = lim h,(f(0))

using (4).
J constant ¢ such that for w outside T, defined in (5), and for all n

1
‘w - ~‘ > c-|wl.
n
By (5) it follows that

W) - [ O e,



UNIFORM APPROXIMATION ON DISKS IN C” 85

or
1
’h(f(C)) - ’ > |l — allh(f (D),
whence
1
90 < - m, ({eD.
Thus (11) and (12) hold. Q.E.D.

Proof of Theorem 14.1. 1t suffices to show that A = C(D).

Consider a measure u on D orthogonal to 2. We shall show that u = 0.

We know by Lemma 2.4 that | d|u|(z)/|{ — al < oo for almost all a in D.
Fix such an a. Choose ¢, as in Lemma 14.3. By (12), then, ¢, € L!(|u|), and by
(11) and (12), ¢, — 1/{ — a pointwise on D\ {a} and dominatedly with
respect to |u|. Hence

au@) .
PO — jim f $u0) du(?).

Since ¢, € A and p L A, the right-hand side is O for all n. Hence

J Cd“(o =0  foralmost all ain D.
—a

Also, since (€ A, 1/ — ae W for |a] > 1 and so

du(C)
{—a

=0 for |a] > 1.

Hence

J du(l) =0 for almost all a in C,
{—a
and so u = 0 by Lemma 2.7. We are done.

Note. We did not use the full strength of (3) in the proof, but only that (3)
holds for almost all ¢, € D.

The natural question arises: What higher-dimensional analogues can be
given for Theorem 14.1, with disks replaced by compact sets lying on smooth
submanifolds of C" whose real dimension is >2? To answer this question,
entirely new techniques are required. Up to now we have been able to base all
our applications of the d-operator on the simple properties of that operator
proved in Sections 6 and 7.

For the higher-dimensional generalizations of Theorem 14.1 we shall need
a much deeper study of the d-operator, made since 1958 by Morrey, Kohn,
and Hoérmander. We shall develop the necessary machinery in Section 16
and apply it in Section 17.
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NOTES

Theorem 14.1 is due to the author, Polynomially convex disks, Math. Ann.
158 (1965). Only the case n = 2 is treated there, but the method is the same
as that given here for general n. The use made of the Cauchy transform of a
measure in the proof of the theorem goes back to E. Bishop’s work on
rational approximation in the plane. Theorem 14.1 was extended from disks
to arbitrary smooth 2-manifolds by M. Freeman, Some conditions for
uniform approximation on a manifold, Function Algebras, Scott, Foresman,
Glenview, Il1., 1965.



15

The First Cohomology Group of a Maximal
Ideal Space

Given Banach algebras U, and U, with maximal ideal spaces .#, and .# ,,
if , and A, are isomorphic as algebras, then .# | and .#, are homeomorphic.
It is thus to be expected that the topology of .#(2) is reflected in the algebraic
structure of 2, for an arbitrary Banach algebra 2.

One result that we obtained in the direction was this: .# is disconnected
if and only if A contains a nontrivial idempotent.

We now consider the first Cech cohomology group with integer coefficients,
HY(, Z), of a maximal ideal space .#.

For decent topological spaces Cech cohomology coincides with singular
or simplicial cohomology. We recall the definitions. Let X be a compact
Hausdorff space. Fix an open covering # = {U,} of X, a running over some
label set. We construct a simplicial complex as follows: Each U, is a vertex,
each pair (U,, Uy) with U, n Uy # & is a l-simplex, and each triple
(U,, Up, U with U, n Uy n U, # Fisa2-simplex. A p-cochain (p = 0, 1, 2)
is a map c? assigning to each p-simplex an integer, and we require that c?
be an alternating function of its arguments; e.g., ¢!(Uy, U,) = —c'(U,, Up).

The totality of p-cochains forms a group under addition, denoted C?(%).

Define the coboundary 6:CP(%) — CP* (%) as follows: For ¢° e CO(%),
(Uq, Up) a 1-simplex,

8¢®%(U,, Up) = c®(Up) — (U,
For ¢! e C'(%),(U,, Uy, U,) a 2-simplex,
3¢\ (U,, Uy, Uy) = c'(U,, Up) + ¢'(Uy, Uy + ¢'(U,, U,).

clisa 1-cocycle if 5c' = 0. The set of all 1-cocycles forms a subgroup Z* of
CY(%), and 5C°(%) is a subgroup of Z'. We define H'(%, Z) as the quotient
group Z\(%)/5C°(%). We shall define the cohomology group H'(X, Z) as
the “limit” of HY(%, Z) as %« gets finer and finer. More precisely

Definition 15.1. Given two coverings % and ¥~ of X, we say “¥" is finer
than %" (¥~ > %) if for each V, in ¥"Ip(x) in the label set of % with V, = Ug,.

Note. ¢ is highly nonunique.

Under the relation > the family & of all coverings of X is a directed set.
We have a map

U — HYU, Z)

of this directed set to the family of groups H(%, Z).
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For a discussion of direct systems of groups and their application to
cohomology we refer the reader to W. Hurewicz and H. Wallman, Dimension
Theory (Princeton University Press, Princeton, N.J., 1948, Chap. 8, Sec. 4)
and shall denote this reference by H.-W.

To each pair % and ¥~ of coverings of X with ¥~ > % corresponds for
each p a map p:

Co) - CA(7),

where pc?(V,y, Vays -+ -5 Vo) = PUpagys - - - » Uggay)s @ being as in Definition
15.1.

LEMMA 15.1
p induces a homomorphism K* : H U, Z) - H(V, Z).

LEMMA 15.2

K™ depends only on % and ¥, not on the choice of ¢.

For the proofs see H.-W.

The homomorphisms K*” make the family {H?(%, Z)|%} into a direct
system of groups.

Definition 15.2. H'(X, Z) is the limit group of the direct system of groups
{H' U, 2)\U}.

3 a homomorphism K*:HY (%, Z) - HY(X, Z) such that for ¥~ > % we
have

(1) K" o K*¥ = K™,

(See H.-W.)
Our goal is the following result: Let A be a Banach algebra. Put

A~! = {xe Alx has an inverse in A}

and
exp A = {x e Alx = ¢ for some ye A}.

A~ ! is a group under multiplication and exp 2 is a subgroup of A~ 1.

THEOREM 15.3 (ARENS-ROYDEN)

Let M = MQ). Then H (M, Z) is isomorphic to the quotient group
A~ !/exp A.

COROLLARY

Ile(,//l, Z) = 0, then every invertible element x in W admits a representa-
tionx = e’, yeU.

Exercise 15.1. Let A= C(I'), I' the circle. Verify Theorem 15.3 in this
case.
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Exercise 15.2. Do the same for A = C(I), I the unit interval.
In the exercises, take as given that H(I', Z) = Z and H'(I, Z) = {0}.

THEOREM 15.4

Let X be a compact space. 3 a natural homomorphism
n:C(X)"' > HY(X, Z)

such that n is onto and the kernel of n = exp C(X).

Proof. Fix f € C(X)~!. Thus f # 0 on X. We shall associate to f an
element of H'(X, Z), to be denoted n( f).

Let = {U,} be an open covering of X. A set of functions g, € C(U,) will
be called (f, %)-admissible if

(2) f=e=inU,
and
A3) lg.(x) — g <m  forx,yin U,.

Such admissible sets exist whenever f(U,) lies, for each «, in a small disk
excluding 0. Equations (2) and (3) imply that g; — g, is constant in U, n Uy.

Now fix a covering % and an (f, %)-admissible set g,. Then 3 integers h,;,
with

1

ﬁ(g” —8) =hyin U,n Uy

The map h:(U,, Uy) - h,g is an element of C'(%); in fact, h is a 1-cocycle.
For given any 1-simplex (U,, Uy, U,)
oh(U,, Uy, U,) = hyy + hg, + h,,

1

=2—m{ga—ga+gy—gg+ga—gy}=0

at each pointof U, n Uy n U,.
Denote by [h] the cohomology class of h in H(%, Z).

(4)  [h] is independent of the choice of {g,} and depends only on f and %.
For let {g,} be another (f, %)-admissible set. By (2) and (3), 3k, € Z with
g.(x) — gJx) = 2mik, for xe U,.

The cocycle b’ determined by {g,} is given by

1
hep = (U, Up) = 5—(85(x) — (X))
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(xe U, Up). Hence
hyy = h,p + Ok,
where k is the 0-cochain in C°(#) defined by k(U,) = k,. Thus [h'] = [h], as

desired.
We define

na(f) = [h]
and
n(f) = K*([h) e H'(X, Z).
Using (1) we can verify that 5(f) depends only on f, not on the choice of the
covering %.
(5) n maps C(X)™ ! onto H(X, Z).

To prove this fix £ € H(X, Z). Choose a covering % and a cocyle h in
C'(%) with K*([h]) = & Put hy, = h(U,, U,). Since X is compact and so an
arbitrary open covering admits a finite covering finer than itself, we may
assume that % is finite, # = {U,, U,, ..., U}.

Choose a partition of unity y,, | < a <'s, with supp y, = U,, x, € C(X),
and ) 5-, x, = 1. For each k define

S

g =2mi ) hyx(x) forxeU,,

v=1

where we put h,, = O unless U, meets U,. Then g, € C(U,). Fixx e U; n U,.
Note that unless U, meets U, N U}, x,(x) = 0. Then

(gk - g])(x) = 27”2 Xv(x)(hvk - hvj)'

Since h is a 1-cocycle, hy, + h,; + hy = 0 whenever U, n U, " U; # .
Hence in U; n Uy,

g — g = 2niZthjk = 2mihy,.
Define f, in U, by f, = e*. Then f,e C(U,) and in U, n Uy,

& — egﬂ—g, — eZniha,ﬁ — 1

a

Thus f, = f; in U, n Uy, so the different f, fit together to a single function
f in C(X). Also,

f,=e=nU, and g — 8« = 2mih,; in U, 0 Uj.
From this and the definition of 5, we can verify that n(f) = K¥([h]) = ¢&.
(6) Fix fin the kernel of #. Then fe exp C(X).
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For 5(f) is the zero element of H'(X, Z). Hence 3 covering ¥~ such that if
h is the cocycle in C!(¥") associated to f by our construction, then the
cohomology class of h is 0; i.e., if

f=¢e=in U,
then 3H e C°(¥") such that
g — 8 = 2mi(Hy — H,)in V,n V.
Then
g — 2niH, = g, — 2niH, in V, 0 V}.

Hence 3 global function G in C(X) with G = g, — 2niH, in V, for each o.
Then f = ¢% and we are done.

Since it is clear that 7 vanishes on exp C(X), the proof of Theorem 15.4 is
complete.

Note. We leave to the reader to verify that # is natural.

Now let X be a compact space and .# a subalgebra of C(X). The map 5
(of Theorem 15.4) restricts to ¥~ ! = {f e Z|1/f € &}, mapping ¥ !
into HY(X, 2Z).

Definition 15.3. .% is full if

(a) n maps <! onto H'(X, Z).

(b) xe £~ ! and n(x) = 0 imply Jye Z, with x = ¢”.

Next let X be a compact polynomially convex subset of C".

Definition 15.4. #(X) = {f € C(X)|d neighborhood U of X and 3F € H(U)
with F = f on X}.

H(X) is a subalgebra of C(X).

LEMMA 15.5

H(X) is full.

Proof. Fix y € HY(X, Z). Then 3 a covering % of X and a cocycle h € C}(%)
with K*([h]) = 7.

Without loss of generality, we may assume that

U = {U,n X|1 <a < s}, each U, open in C".
(Why?)

For each « choose y, € C&(U,), with Y5_, x, = 1 in some neighborhood
Nof X.Puth,y = (U, n X, Uy n X) € Z. Fix a and put for x € U,,

gX) = 2mi Y, h,x,(x),
1

v=

where h,, = Ounless U, n U, # J.Then g, € C*(U,), and, as in the proof of
Theorem 15.4, we have in U, n Uy N N,

(7) 8 — 8 = 27'El.haﬁ.
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Hence dg; — 0g, = 0in U, n U, N N, so the dg, fit together to a d-closed
(0, 1)-form defined in N.

By Lemma 7.4 3 a p-polyhedron IT with X < IT = N. By Theorem 7.6
3 a neighborhood W of IT and u € C*(W) with

(8) ou = 0g, in Wn U,.

Put V,=U,nW, 1 <a<s Then Z = {V,n X|l <a<s}.
Put g, = g, — uin V,. Then g, € H(V,), by (8). Also, by (7),

1 ’ !’ 1 .
Tm(gﬂ_ga)zﬁ;(gﬁ—ga):haﬂln V.n V;z

Define f = e%= in V, for each o. In V, n ¥}, the two definitions of f are
%= and efs = Bt 2mihas — pfa

Hence f is well defined in | J, ¥, and holomorphic there, so f|y € #/(X)
and, in fact, € (#(X))" .

g — 8 = 2mih,5, whence n(f) = K%([h]) = y. We have verified (a) in
Definition 15.3.

Now fix f € (#(X))~ ! withn(f) = 0. Let F be holomorphic in a neighbor-
hood of X with F = f on X.

Since 7(f) = 0, nqg(f) = 0 for some covering %. Choose a covering of X
by open subsets W, of C", 1 < a < s, such that

©) W > U

(10) 3G, e HW,) with F = ¢% in W,.
(11) IG(x) = G < forx,ye W,.
(12) If W,n W, # &, then W, n W; meets X.

Let # ={W,nX|l <a<s} nyf)=0, so ny{f)=0. Hence 3
integers k, such that if (W, n X) n (W; n X) # &, then in (W, n X) N
(W X),

1
2mi

Now fix « and p with W, n W, # &. By (12), (W, n X) n (W n X) # .
Hence, by (13),

(13) (Gs — G,) = ky — k,.

Gy — G, = 2mik; — 2mik, in W, n Wy n X.
Also, because of (10) and (11),
Gy — G, is constant in W, n W;.

Hence
Gy — G, = 2niky — 2mik, in W, " W,
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or
G, — 2mik, = G, — 2nik, in W, A W,.
Hence 3G € H(| ), W,) with G = G, — 2mik, in W, for each «. Then
F=e%in () W,

Since G|y € #(X), we have verified (b) in Definition 15.2. So the lemma is
proved.

LEMMA 15.6

Let & be a finitely generated uniform algebra on a space X with X = M (¥).
Then & is full [as subalgebra of C(X).]

Proof. By Exercise 7.3 it suffices to assume that ¥ = P(X), X a compact
polynomially convex set in C".

By the Oka-Weil theorem #(X) = P(X). Fix y € H'(X, Z). By the last
lemma, 3f € (#(X))"! with n(f) = y. Then f e(P(X))"!. Thus n maps
(P(X))"! onto H(X, Z). Now fix f € (P(X))~ ! with n(f) =0, and fix ¢ > 0.
Choose a polynomial g with

lg—fll<e< ig{lflfl,

the norm being taken in P(X). Put h = (f — g)/f. Then |h| < 1 and g =
f(1 — h). Hence 1 — h € exp C(X) (why?) and so n(1 — h) = 0. Hence

ng =n(f)=0.

But g e (#(X))” !, whence by the last lemma 3g" € #(X) with g = 8",

Also,1 — h = ¢*for some k € P(X),since ||h| < 1.(Why?)Hence f = e*
so f € exp(P(X)). Thus P(X) is full. Q.E.D.

To extend this result to a uniform algebra 2 that fails to be finitely gener-
ated, we may express U as a “limit” of its finitely generated subalgebras. For
this extension we refer the reader to H. Royden, Function algebras, Bull.
Am. Math. Soc. 69 (1963),281-298. The following is proved there (Proposition
11):

LEMMA 15.7

Let & be an arbitrary uniform algebra on a space X with X = M(Z).
Then & is full.

Proof of Theorem 15.3. Put X = ./ and let . be the uniform closure of A
on X. Then X = .#(¥). By Lemma 15.7 & is full [as subalgebra of C(X)].

Let x € A~ L. Then % € (C(X)) *. Define a map ® of A~ ' into H'(X, Z) by

O(x) = n(%).
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We claim @ is onto H'(X, Z). Fixy € H'(X, Z). Since £ is full, 3 € ¥~ ! with
n(f) = 7. Choose ¢ > 0 with infy|f| > ¢, and choose g € Uwith |g — f| < ¢
on X. Then geA™', g= f(1 —(f —2)/f). and sup,l(f — 8)/f| < 1.
Hence 3b € C(X) with 1 — (f — 8)/f = €’ and so %(g) = 5(f) = 7. Thus
®(g) = y, so @ is onto, as claimed.

Next we claim that the kernel of ® = exp . Since one direction is clear,
it remains to show that x € A~ ! and ®(x) = 0 implies that x € exp 2.

Then fix x e A~ ! with &(x) = n(%) = 0. Since .# is full and £e L1,
IF € ¥ with £ = eF. Since F is in the uniform closure of U, e* is in the uniform
closure of functions e, h € A.

Hence 3g = ¢" with he A and

1% — 8| < Linf]%] on X.
X

Then

1 3 1
5| > 2infl£|, — <.
18l >3 Xfl | S0 < 2 Infy]
Hence uniformly on X,

1—%g7 ' =12—8l-1g7" <3

It follows that for large n, ||(1 — xg~!)"|*"* < 2, and so the series
i 1 1 —1\n
g (1 —xg™")

converges in A to an element k. Since

log(l — 2z) = — Z—l z", lz| <1,
1 n

k = log(xg ™), so that xg ! = ¢*. Hence x = ¢**" € exp 2. Hence the kernel
of @ is exp U, as claimed.

® thus induces an isomorphism of A~ ! /exp Aonto H'(X, Z), and Theorem
15.3 is proved.

Note. No analogous algebraic interpretation of the higher cohomology
groups H?(M, Z), p > 1, has so far been obtained. However, one has the
following result:

THEOREM 15.8 _

Let U be a Banach algebra with n generators. Then H?(#,C) = 0,p > n.

This result is due to A. Browder, Cohomology of maximal ideal spaces,
Bull. Am. Math. Soc. 67 (1961), 515-516. Observe that if A has n generators,
then .# is homeomorphic to a subset of C" and hence that the vanishing of
HP(, C) is obvious for p > 2n.
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NOTES

For the first theorem of the type studied in this section (Theorem 15.4)
see S. Eilenberg, Transformations continues en circonférence et la topologie
du plan, Fund. Math. 26 (1936) and N. Bruschlinsky, Stetige Abbildungen und
Bettische Gruppen der Dimensionszahl 1 und 3, Math. Ann. 109 (1934).
Theorem 15.3 is due to R. Arens, The group of invertible elements of a
commutative Banach algebra, Studia Math. 1 (1963), and H. Royden, Func-
tion algebras, Bull. Am. Math. Soc. 69 (1963). The proof we have given follows
Royden’s paper.



16
The J-Operator in Smoothly Bounded Domains

Let Q be a bounded open subset of C". We are essentially concerned with
the following problem: Given a form f of type (0, 1) on Q with df = 0, find
a function u on Q such that du = f.

In order to be able to use the properties of operators on Hilbert space in
attacking this question, we shall consider L?-spaces rather than (as before)
spaces of smooth functions.

L*(Q) denotes the space of measurable functions u on Q with [ [u]* dV <
o0, where dV is Lebesgue measure.

L} ,(Q) is the space of (0, 1)-forms

f= 21 f;dz;,

where each f; € L*(Q). Put | f|> = >_,| f}|>. Analogously, L3 ,(Q) is the space
of (0, 2)-forms

i<j

where each ¢;;€ L*(Q).

We shall deﬁne an operator T, from a subspace of L*(Q) to L§ () such
that T, coincides with d on functions that are smooth on Q.

Definition 16.1. Let ue L*(Q). Fix ke L*(Q) and fix j, 1 < j < n. We say

0
sy
0z;

if for all g e CF(2) we have

—f gng fkdv
Q

Note. Thus k = du/0z; in the sense of the theory of distributions. If u is
smooth on Q, then k = du/dz; in the usual sense.
Definition 16.2

Dy, = {ueLz(Q)l for each j, 1 < j < n 3k;e L¥(Q) with gfu = kj}.
Zj
Forue 9y,

"
Tu=Y g_ﬁdz,.eLg_l(Q).

i=109Zj

96
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Fix Y%_, f;dz;witheach f; € LXQ). df;/0z, and 0f,/0Z; are defined as distribu-
tions.
Definition 16.3

< _ ofi O :
D = = dz. 2 () kg2 1 )
So {f ;; f’dZ’ELOJ!aE,‘ azje (Q), al j,k}
For f € %,
o, U\ . - 12
= v (Y _ k) gz A dze L2 Q)
Sof ,;k (azk oz, dz N dz;€ Lo 5(8)

Note that S, coincides with 8 on smooth forms f. Note also that if u € Dr,
then Tou € Y5,, and

(1) So- Ty =0.
Now let Q be defined by the inequality p < 0, where p is a smooth real-

valued function in some neighborhood of Q. Assume that the gradient of
p # 0on 0Q. We impose on p the following condition:

) Forall ze 0Q, if (£,,...,¢,)e C"and ) 0p/0z|(z)¢; = 0,
Jj
then
p .
%(62] 0z, (Z)Cjﬁk = 0.

THEOREM 16.1

Let p satisfy condition (2). For every g € L§ {(Q) with Sog = 0,3u € D1, such
that

(a) Tou = g, and

(b) f W dV < e f g2 dv,
Q Q

if Q< {zeC"||lz| < R}.
We need some general results about linear operators on Hilbert space.
Let H, and H, be Hilbert spaces, and let A be a linear transformation from
a dense subspace 2 4 of H, into H,.
Definition 16.4. A is closed if for each sequence g, € %,,

2, g and Ag,— h

implies that ge 9, and Ag = h.
Definition 16.5

Do = {x€ Hy|3x* € H, with (Au, x) = (u,x*) forallue Z,.}
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Since 2, is dense, x* is unique if it exists. For x € Z 4., define A*x = x*.
A*is called the adjoint of A. & 4«is a linear space and A* is a linear transforma-
tion of 4. > H;.

PROPOSITION

If A is closed, then 9 4+ is dense in H,. Moreover, if B € H, and if for some
constant 6

(A B < oISl

forallfe Y,.,then fe 2,.

For the proof of this proposition and related matters the reader may
consult, e.g., F. Riesz and B. Sz.-Nagy, Lecons d’analyse fonctionelle, Buda-
pest, 1953, Chap. 8.

Consider now three Hilbert spaces H,, H,,and H 5 and densely defined and
closed linear operators

T:H, - H, and S:H, > H;.
Assume that
(3) S-T=0;

e, forfe 9;, Tf e Y5 and S(Tf) = 0.
We write (u, v); for the inner product of u and v in H;, j = 1, 2, 3, and
similarly |lu| ; for the norm in H;.

THEOREM 16.2

Assume 3 a constant ¢ such that for all f € Dr. N Dy,

(*) IT* 13 + IS5 = Sl f13-
Then if g e H, with Sg = 0, Ju € 94 such that

4 Tu=g
and

5 < !

(5) full, < Ellgliz-

Proof. Put Ng = {he %|Sh = 0}. Ny is a closed subspace of H,. (Why?)
We claim that if g € N, then

1
(6) I8, £)al < IT*S 1l - gl

for all f € Dy..
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To show this, fix f€ Py..
f=f+/f"  wheref L Ng, f"€Ns.

By (x) we have | T*f"|l; = c|| /"], Then

(£ 8)2l = 10/, 8)2l < llgll2- 1L/"]l2 < % gz IT* "+

But T#*' = 0,forif h € @,(Th, f') = (h, T*f’) and the left-hand side = 0,
because /' L Ngwhile S(Th) = 0by (3). Hence T*f = T*f", and so (6) holds,
as claimed.

We now define a linear functional L on the range of T* in H, by

L(T*) = (/82  f€%r., g fixed in N;.
By (6), then,

ILT*I < gl T

It follows that L is well defined on the range of T* and that | L] < (1/¢)|gll,-
Hence du € H, representing L; i.e.,

L(T*f) = (T*f, u),,

and |lul|; = ||L||. It follows by the proposition that u € &, and

(/. 8)2 = (T*f,u)y = (f, Tu)z,

all f € Dr..

Hence g = T, and ||lu]|; < (1/c)|lgll,. Thus (4) and (5) are established.

Q.E.D.

It is now our task to verify hypothesis (*) for our operators Ty and S, in
order to apply Theorem 16.2 to the proof of Theorem 16.1. This means that
we must find a lower bound for | T¥f || + ||Sof|%. For this purpose it is
advantageous to use not the usual inner product on L*(Q) but an equivalent
inner product based on a weight function.

Let ¢ be a smooth positive function defined in a neighborhood of Q. Put
H, = L*Q) with the inner product

(fig) = f fge~*adv.

Similarly, let H, be the Hilbert space obtained by imposing on L{ ,(Q) the
inner product

X fidz), Zn: gjdfj) =J. (2": fjgj)e“"dV.
j=1 2 Q\j=1

=1
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Finally define H; in an analogous way by putting a new inner product on
L3 ,(Q). Then
TO:H1_>H2’ SO:HZ—‘)HS'

It is easy to verify that 2, 9, are dense subspaces of H; and H,, re-
spectively, and that T, and S, are closed operators. Our basic result is the
following: Define C} (@) = {f = Y-, f;dz;| each f;€ C' in a neighbor-
hood of Q.}

THEOREM 16.3
Fix fin C§ (Q). Let f € D1y " Ds,,. Then
¢

1%
6zjazke

(M) ITEfI} + 1Sef13 = ZL fif
J.k

J
+3 aﬁ‘
ik vYQ

2 0 azp
-0 4y 7 9P -s4s
¢ +§Lnfff"az,azke ’

J

dS denoting the element of surface area on 0.
Suppose for the moment that Theorem 16.3 has been established. Put

8z = ¥ ) = I

Then 0%¢/0z;0z, = 0 if j # k, =1 if j = k. The first integral on the right in
(7) is now

3 [ 1gpeeav = 1112

The second integral is evidently >0. Now

%p
2

fif=0 ifzggfj=00n oQ,
7 0z,

by (2). Hence (7) gives

®) ITS112 + 1Sef 13 = 1113,
if
©) 591 _ 0ono0

7 0z .

We shall show below that (9) holds whenever f € Z7: N D, andfis C'ina
neighborhood of Q. Thus Theorem 16.3 implies that (8) holds for each smooth
fin Dz 0 D,
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We now quote a result from the theory of partial differential operators,
which seems plausible and is rather technical. We refer for its proof to [39],
Proposition 2.1.1.

PROPOSITION

Let f € D15 N Ds, (with no smoothness assumptions). Then 3a sequence
{f,} with f,€ Dr; " Ds, and f, in C' in a neighborhood of Q such that as
n— oo,

Ifo=Sl2=0. T8 fa = TES 11 =0, Sofa — Soflls 0.

Since (8) holds when fis smooth, the proposition gives that (8) holds for all
fe€Drsn D,

Theorem 16.2 now applies to Ty and S, with ¢ = 1. It follows from (4) and
(5) that if g = Y"_, g;dZ;€ H,, and if Sog = 0, then Ju in H, with Tou = g
and [lull, < |gll,. Thus

f lul*e=?dV < J lgl?e~¢dV.
Q Q
Now if Q = {ze C"||z| < R}, then

Llulz av = L et e dv

gj lul2e=?- X dV < e’”f lgl2e~¢dV
Q Q

< & f gl v,
(9]

and so (b) holds. Thus Theorem 16.1 follows from Theorem 16.3.
From now on p is assumed to satisfy (2) and Q is defined by p < 0. We also
shall write T and S instead of T, and S,. Let us now begin the proof of (7).

LEMMA 16.4
Let f=)"_,f;dz;€ C§ \(Q). If f € Dy, then
& .0
©) Y f2E = 0o0noQ
=177 0z

and

n P ~
(10) T = - ) ed’g (fie™?).

j=1 J

Proof. Let h be a function in C? in a neighborhood of Q and h > 0. Put
R =h-p.
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Fix z € 0Q and choose (¢,,...,¢,) satisfying
OR

(1) L 5 @ =0
j:
Then at z,
*R 0 [, dp oh
0z; 0z, T 0z, Oz; 0z
oh ¢ 0* 0%h oh o
Pl T, 2
0z 0z; 0z;0z,  0z;0Z, 0z; 0z,
Hence

oh 0
el

sz

+hz a-f§k+ Z a_éfk

oh
(i)

Now (11) implies that Y {0p/oz;)¢; = 0 on 0Q. Also dp/dz, = dp/oz,
whence ) (0p/0z,)¢, = 0 on Q. Since p = 0 on Q and h > 0 there, (2)
implies that

2

O0R
(12) On@QZ 'R _ffk>0 ify —¢;=0.
z; 0z 7 0z;

Now choose a function h as above with h = 1/|grad p|in a neighborhood of
0Q.Then R = h- p = p/|grad p| there, whence |grad R| = 1 on 6Q. Also Q is
defined by R < 0 and (12) holds.

The upshot is that we may without loss of generality suppose that
lgrad p| = 1 on 0Q. It then holds that grad p is the outer unit normal to 0Q at
each point of 0. The divergence theorem now gives for every smooth
function v on Q,

ov ap
13 —dV = —dS
(13) a 0X; J:m 6x
for all real coordinates x,,..., x,, in C". Hence for 1 < j < n,

(14) f QdV f v—aﬁdS
oQ

dz Z;
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Now fix f = Y1 f;dz; € C§ 4(Q), and fix u € C'(Q). Then with ( , ); de-
noting the inner product in H; as defined above,

(Tu, f), = (Z%dz,, ijdzj)
2

j 0%j j
du
= —J/i e""’dV.
J‘n(;azjfj)
Fix j. Then
ou

—_fe—d)dV
00z;"’

(2 wrenay— [l (Feo
“Laz,-(“f’e ydv Luazj(f;e ydv

op 0
= e~ P d4dS — — (f.e NdV.
J:muf]e ("J‘Zjd Jﬂuafj(f;e )dv,

where we have used (14). Hence we have
J .
(T fr= = [ Wl £ e | av
Q j 521

+J:m u(Zf—J Z—;j)e“”ds.

J

Now if f€ Dy, it follows that we also have
(Tu, f), =f uT*fe *dV.
Q
Since the last two equations hold for all u in C'(Q), we conclude that
)
(15) Y 7,22 = 0 on 8Q,
7 0z;
which yields (9), and that

— 0
THe ™ = =¥ = (™)

=-) (% (fie~?), whence (10). Q.E.D.
j 0Zj

Define an operator 6; by



104 BANACH ALGEBRAS AND COMPLEX VARIABLES

Fix fe C} ,(Q) 0 Zr.. By (10), T*f = —) . 8,f;, and so

(16) 113 = 3, [ 8,8,-5ueav.
JkvQ
Now fix 4,Be C'(Q). Applying (14) with v = ABe % and j = v gives
0 - _
J- T(ABe“”)dV:J ABe""’g_ﬂdS.
a0z, o 0z,

Hence

?TAEe-MV: —f A—ai-(ée-d’)dwf AEe—¢a—f’ds
Qazv Q azv 20 62v

- _f A<Sv_Be""dV+J. AB P o0 4s.
a Q 0z

v

Writing [, ( ) for [( Je~?dV and similarly for Q, we thus have

(17 0A— 62p

B=—| 45.B B——.
. fn 3, +LnABa

Putting A = o,w, B = v, and v = j in (17) gives

0 — op
18 J'—_éw-5=—J'5w-5-v+ oW D —.
(18) Qazj(k) IR a 0z;
Direct computation gives for all u
0 0 *¢

[, )0 s

S0
0 0%d ow
Hence
0 _ ¢ ow) _

(19) J.n - ‘ég;(&kW) v = nggj‘é‘z—;wv - J.n 6"(6—2J)D

Putting 4 = v, B = 0w/0Z;, and v = k in (17), we get

v ow ow ow dop
(20) J‘QEE; a—zl = —J; 05"(6_2) + J.anva—z_—" g;,

J
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which combined with the complex conjugate of (19) gives

21 f - i O W) = 2¢ 0

1) a az,.( W = 62 azk v * 62
P J‘vawap+ v ow
02,0z, az,‘  0%; 0%, Jq0z, 0Z;

Combining (21) with the complex conjugate of (18) gives

— 0% v ow
S0-6w = w 77
(22) L oW L dz,05, "+ )40z, o,
ow ap — 0p
Jari ot ] o os
By (16),
T =Y f 5. S dnte.
JikvQ
SO
of; ofe
(23) IT* |} = — ===
! QJZ,( 0z, f’ﬁ‘ Qj,zkazk 0z;
5Jf op — . 0p
— f—_ — + 1) o f—.
fanj% 10z; 0z, an,% e, 0z;
Assertion.
o dp
Zf’@z 7z, }Z,‘ff"a a7, on o
For, by (9),

ap
;fka-Zk—OonGQ.

Hence the gradient of the function ), f,(0p/0z,) is a scalar multiple of grad p.
Hence 3 function 4 on 0Q with

or
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Multiplying byfj and summing over j gives

5fk aP _ op _

Jk j J

Complex conjugate now gives the assertion. The last term on the right
in (23)

e 0
=Lﬂ(;5,,f,‘)(2fja—£) ~0, by(©.

Equation (23) and the assertion now yield

LEMMA 16.5
Fix f€ Dr. 0 C§ Q). Then

02 af; 9 - 0
ey ITIE=[ Tt ff. fike+ Z;{ia—{” Zkfjf"az.gfk'

Q jk Q jk

LEMMA 16.6
Fix f€ 95 0 C§ ((Q). Then
Ak of; o
25) ISFI2 = f CUcy
3 Q,Zk a5 0%, 0z

Proof. Since f e C} ,(Q),
Sf=df =Y (Z % dz,,) A dz,

C 1 (%% an
a<p

0z, 0z

Hence

AT A
15715 = LM oz, az,,)( )

7z, o0z,
afﬁ f o,
Qagﬁ Qaz:ﬁ a_Z.ﬁ
_f Uy e *J‘ o 5fﬁ
Qa<p 6fa azp Qa<p 62,, 52

which coincides with (25). Q.E.D.



0-OPERATOR IN SMOOTHLY BOUNDED DOMAINS 107

Proof of Theorem 16.3. Adding equations (24) and (25) gives (7).

Note. The proof of Theorem 16.1 is now complete.

In the rest of this section we shall establish some regularity properties of
solutions of the equation du = f, given information on f.

LEMMA 16.7
Put B = {z € C"||z| < 1}. Thereexists a constant K such that forw € C*(C"),

)}

i

(26) w(0)| < K{Ilwlle(B) + sup(max
B i |0

Proof. 1t is a fact from classical potential theory that if f € CP(R"), then

dx
Ix — yN =%’

27) f)y=C| Af
RN

where C is a constant depending on N and dx is Lebesgue measure on R".
Now let y € C*(C"), supp y < B, and ¥ = 1 in |z| < 3. Then by (27) with
y=0and f = yw,

W(0) = (w)(0) = f AGw)E(x) dx,

n

where we put E(x) = C/|x|*"~ 2. Thus

W(0)=Il +212+13,

where

I, :JAx-wde,
I, =wa-xde,
and

I, = J. (grad y, grad w)E dx.

With x; the real coordinates in C", we have
[ = [waBrax = = [ wie,p,ax

SO 12 = _I w Zi(xxiE)xi dx.
Since y,, and Ay vanish in a neighborhood of 0 and supp y = B, we have,
with K a constant,

1| < K”W“L2(B)a llzl < K“W”L2(B)-
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Also,

0w
Iy = f 4(2 - )xE dx
3 5 02,0Z;

0 ow 0
Zf ( W)Xde— —4ZJ.§E (xE) dx.

Since 0E/dx;€ L' locally, we have

|15 < Ksup(max gw
Equation (26) follows. QE.D.

Choose y € C*(C"), x > 0, x(y) = 0 for |y| > 1, and | y(y)dy = 1, where
we write dy for Lebesgue measure on C". Put y,(y) = (1/e2")x(y/e). Then for
every ¢ > 0,

2€C7(CY),  x(y)=0for |y >¢

Jarydy =1
Let now u e L*(C") and put

uy(x) = f ux — y,() dy.

Note that this integral converges absolutely for all x. We assert that
(28) u,e C*(C".
(29) u,—»uin LAC", ase—0.

(30 If u is continuous in a neighborhood of a closed ball, then u, —» u
uniformly on the ball.

The proofs of (28), (29), and (30) are left to the reader.

LEMMA 16.8

Let B= {zeC"||z| < 1}. Let u e L*B). Assume that for each j, du/0z,,
defined as distribution on B, is continuous. (Recall Definition 16.1.) Then u is
continuous and (26) holds with w = u.

Proof. Fix x€C" and r > 0 and put B(x,r)={zeC"|z — x| <r}. A
linear change of variable converts (26) into

Extend u to all of C" by putting u = 0 outside B. Then u € L*(C"). For each
p > 0,put B, = {z||z| < p}. Fix R < 1 and fix r < 1 — R. For each x € By,
then, B(x, r) = Bg,, = B’

ow
62
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Fix xe Bg. If ¢, ¢ > 0, u, — u, € C*(C"). Equation (31) together with
B(x, r) c B’ gives

Now, by (29), llu, — u.llL,p)— 0 as ¢, & — 0. Also, it is easy to see that
0u,/0z; — 0u,/0z; — 0 uniformly on B’ as ¢, ¢ — 0. Hence u,(x) — u,(x) > 0
uniformly for x € Bg. Hence U = lim,_, , u, is continuous in Bg. Also, by (29),
u, = uin L*(B). Hence U = u and so u is continuous in Bg. It follows that u
is continuous in B, as claimed.

Fix ¢ > 0 and p < 1. Then, by (31),
As e — 0,u,0) —> u(0), llu,l L5, — lullL,s,,and du,/0z; —» du/dZ; uniformly
on B, for each j. Hence
ou )}

Ou,  Ou,
0z; 0z;

lu(x) — u(x)] < K{r‘_"llue Ul 2wy + 7 sUp (max

- | Ou,
|u0)] < K{P "lucll L2,y + P Sllilp(mé.lxié—_-

Jo10zj)

0z,
Letting p — 1, we get that (26) holds with w = u. Q.E.D.

lu(0)| < K{ “"ullLas, psup(max

LEMMA 16.9
Let Q be a bounded domain in C" and u € L*(Q). Assume that for all j,

0
(32) a_ 0 as a distribution on Q.
0z;

Then ue HQ).
Proof. Define u = 0 outside Q. Then u € L?(C"). By a change of variable, we
get

u(z) = f Oz — O dL.

Fix j. Note that (0{x.(z — {)}/0z)) = — (O{x(z — {) }/BZ-. Hence

(xe(z — 0 dL.

0
= [0 2 e - yar = - fuor

Fix z € Qand choose ¢ < dist(z, 0Q). Put g({) = y,(z — ). Thensuppgisa
compact subset of Q. By (32),

0
JuoF wa-o

Thus du,(z)/0z; = 0. Hence u, € H(CQ).
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Fix a closed ball B’ = Q. By (32), du/0z; is continuous in a neighborhood of
B’ and so, by (30), u, — u uniformly in B’ as ¢ - 0. Hence u € H(B'). So
u € H(Q). Q.E.D.

NOTES

The fundamental result of this section, Theorem 16.1, is due to L. Hérman-
der. It is proved in considerably greater generality in Hormander’s paper,
L? estimates and existence theorems for the d-operator. We have followed the
proof in that paper, restricting ourselves to (0, 1)-forms. The method of
proving existence theorems for the d-operator by means of L? estimates was
developed by C. B. Morrey, The analytic embedding of abstract real analytic
manifolds, Ann. Math. (2), 68 (1958), and J. J. Kohn, Harmonic integrals on
strongly pseudo-convex manifolds, I and II, Ann. Math. (2), 78 (1963) and
Ann. Math. (2), 79 (1964). These methods have proved to be powerful tools in
many questions concerning analytic functions of several complex variables.
For such applications the reader may consult, e.g., Hérmander’s book An
Introduction to Complex Analysis in Several Variables [40, Chaps. IV and V].

In Section 17 we shall apply Theorem 16.1 to a certain approximation
problem.



17
Manifolds Without Complex Tangents

Let X be a compact set in C" which lies on a smooth k-dimensional (real)
submanifold ¥ of C". Assume that X is polynomially convex. Under what
conditions on X can we conclude that P(X) = C(X)?

If ¥ is a complex-analytic submanifold of C", it does not have this property.
On the other hand, the real subspace Xy of C" does have this property. What
feature of the geometry of X is involved ?

Now fix a k-dimensional smooth submanifold Z of an open set in C”, and
consider a point x € X. Denote by T, the tangent space to X at x, viewed as a
real-linear subspace of C".

Definition 17.1. A complex tangent to X at x is a complex line, ie., a
complex-linear subspace of C" of complex dimension 1, contained in T,.

Note that if £ is complex-analytic, then it has one or more complex tangents
at every point. whereas Xz has no complex tangent whatever.

Definition 17.2. Let Q be an open set in C" and let X be a closed subset of
Q. X is called a k-dimensional submanifold of Q of class e if for each x, in X we
can find a neighborhood U of x, in C" with the following property: There

exist real-valued functions py, p,, ..., P2,— in C4(U) such that
ZNU={xeUlpx)=0,j=1,2,...,2n — k},
and such that the matrix (dp;/0x,), where x;, x,, ..., X,, are the real co-

ordinates in C", has rank 2n — k.
Exercise 17.1. Let X, p,, ..., pan—i, be as above and fix x° € Z. If there
exists a tangent vector & to X at x° of the form

n 0
&= Cjaz
j=zx !0z,

such that &(p,) = 0, all v, then T has a complex tangent at x°.

THEOREM 17.1

Let T be a k-dimensional sufficiently smooth submanifold of an open set in C".
Assume that £ has no complex tangents.

Let X be a compact polynomially convex subset of . Then P(X) = C(X).

Note 1. “Sufficiently smooth” will mean that Z is of class e with e >
(k/2) + 1. It is possible that class 1 would be enough to give the conclusion.

Note 2. After proving Theorem 17.1, we shall use it in Theorem 17.5 to
solve a certain perturbation problem.

Sketch of Proof. To show that P(X) = C(X) we need only show that
P(X) contains the restriction to X of every u € C*(C"), since such functions
are dense in C(X).

111
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Fix u € C*(C"). By the Oka-Weil theorem it suffices to approximate u
uniformly on X by functions defined and holomorphic in some neighborhood
of X in C". To this end, we shall do the following:

Step 1. Construct for each ¢ > 0 a certain neighborhood w, of X in C" to
which Theorem 16.1 is applicable.

Step 2. Find an extension U, of uly to w, such that U, is “small” in w,.

Step 3. Using the results of Section 16, find a function V; in w, such that
0V, = 0U, in w, and supy|V, - 0 as ¢ - 0.

Once step 3 is done, we write

Us=(Ue- Ve)+ Vsinws'
Then U, — ¥, is holomorphic in w,, since 6(U, — V,) = 0 by step 3. Since
supy|V,| = 0, this holomorphic function approximates u = U, as closely as
we please on X.

Definition 17.3. Let Q be an open set in C" and fix F € C*(Q). F is plurisub-
harmonic (p.s.) in Q if

" 9°F ~
1 (25 =20
( ) j,kz=1 aZJ azk ( )é}ék
if zeQ and (¢,,...,&,)e C".
F is strongly p.s. in Q if the inequality in (1) is strict, except when (&4, ..., &,)
= 0.
LEMMA 17.2

Let Z be a submanifold of an open set in C" of class 2 such that X has no
complex tangents. Let d be the distance function to X; i.e., if x € C", d(x) is the
distance from x to X. Then 3 a neighborhood w of X such that d* € C*(w) and
d? is strongly p.s. in w.

Exercise 17.2. Prove the smoothness assertion; i.e., show that d? is in C?
in some neighborhood of .

Proof of Lemma 17.2. Let U be a neighborhood of  such that d € C(U).

Fix z, € X. We assert that

n aZ(dZ) _
@ i.k2=:1 m (20)6iéx > 0

for all £ = (§,,...,¢&,) with £ # 0.

Without loss of generality z, = 0. Let T be the tangent space to X at 0 and
put d(z, T) = distance from z to T.

*Exercise 17.3

3 d*(z) = d*(z, T) + o(z?).
Also
4) d*(z, T) = H(z) + Re A(2),
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where H(z) = ) 7,- 1 huzZ is hermitean-symmetric and A is a homogeneous
quadratic polynomial in z.
Equations (3) and (4) imply that
n dZ)
= H(2).
) X 5 o, Ot = HE)

Now
d*(z, T) + d%(iz, T) = 2H(z).

If z # O, either z or iz ¢ T, since by hypothesis T contains no complex line.
Hence H(z) > 0. Because of (5), this shows that (2) holds.
It follows by continuity from (2) that

n 02d2
5y ()

jk=102;0Z

(Z)éjék > 0

for all z in some neighborhood of £ and ¢ # 0. QE.D.
From now on until the end of the proof of Theorem 17.1 let £ and X be as
in that theorem and let d be as in Lemma 17.2.

LEMMA 17.3

There exists an open set w, in C" containing X such that w, is bounded and
6) Ifzew,, then d(z) < e.
(7 Ifzoe X and |z — zy| < €/2, then z € w,.
(8) I afunction u, in C* in some neighborhood of @, such that w, is defined by
u(z) < 0.
9) u, =0 ondw, and grad u, # 0 on dw,.
(10) u, is p.s. in a neighborhood of @,.

Proof. Choose w by Lemma 17.2 so that d? is strongly p.s. in . Next choose
p € C3(w) with B = 1 in a neighborhood of X and 0 < f < 1. Let Q be an
open set with compact closure such that

suppfcQcQc o
Since d? is strongly p.s. in w, we can choose ¢ > 0 such that
¢ =d>—ep

is p.s. in Q. Further, choose ¢ so small that (z) = 1 for each z whose distance
from X < & Next, choose an open set Q,; with

suppfcQ, =Q, = Q.
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Assertion. Ju e C*(C") such that u is p.s. in Q; and

2
(11) |u—¢|<%oan.

We proceed as in the last part of Section 16. Choose y € C*(C"), x > 0,
x(y) = 0for [yl > 1 and | x(y) dy = 1. Put y4(y) = (1/6*")x(y/5) and put

Balx) = f x — Vnly) dy,

where we have defined ¢ = 0 outside Q.
Then, as in Section 16, if 6 is small,

(12) $5€ C*(C").
(13) ¢s; — ¢ uniformly on Q, as § — 0.

Also for each (¢,,...,&,)eC" zeQ,:

3¢, . pe ]
y % (e - | {z ¢ (z—y)éjék}Xo(y)dyZO.

jk 62162" jk 5zj 52k
since ¢ is p.s. in €. Hence
(14) ¢51s p.s. in Q.

Choose & such that |¢ — ¢, < £2/4 on Q, and put u = ¢;. Thus the
assertion holds.

Since u € C*(C"), a well-known theorem yields that the image under u of
the set grad u = 0 has measure 0 on R. Hence every interval on R contains a
point ¢ such that the level set u = ¢ fails to meet the set grad u = 0. Choose
such a t with

—3e? <t < -1

Define

w, = {x€Qlu(x) < t}.

We claim that w, has the required properties. Put
u, =u —t.

Then o, = {x € Q,Ju, < 0}. It is easily verified that w, < supp . It follows
that u, = 0 on dw,.

Since u = t on w,, it follows by choice of ¢ that grad u, and hence grad u,,
#0 on 0w,. Thus (8) and (9) hold and (10) holds since u is p.s. in Q;.

Equations (6) and (7) are verified directly, using (11) and the fact that
-2 <t < —¢*/4

Thus the lemma is established. This completes step 1.
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LEMMA 174

Fix a compact set K on Z. Let u be a function of class C¢ defined on Z. Then
3 a function U of class C* in C" with
(a) U=uonK.
(b) 3 constant C with

]

=

Proof. We first perform the extension locally.
Fix x, € Z. Choose an open set Q in C" such that x, € Q, and choose real
functions p; such that

EAQ={xeQp(x) = = pu(x) = 0},

where each p; is of class C* in Q and such that u has an extension to C*(€2),
again denoted u.

We assert that 3 a neighborhood w, of x, and 3 integers v, v,, ..., v, such
that the vectors

< C-d(z27 !, allz,j=1,...,n

((3ij apw’) j: 1,.”’n

- LA ] - b
0z, 0z, |«

form a basis for C" for each x € w.
Put

op ap,

= ... =1,...,m.
& (621 62,,),“, Y "

Suppose that &, ..., &, fail to span C". Then 3¢ = (cy, ..., c,) # 0 with

Yr_ 1 ¢f{0p,/0z;)) =0, v=1,...,m. In other words, the tangent vector to

C" at x,

i 0
i € 62
annihilates pq, ..., p,., and hence by Exercise 17.1 £ has a complex tangent
at x4, which is contrary to assumption.
Hence &4, ..., &, span C", and so we can find vy,...,v, with &, ,..., &,

linearly independent. By continuity, then, the vectors

ap,, dap :
\J \J —_
(——1621,...,—162"); j=1...,n

are linearly independent, and so form a basis for C”, for all x in some neighbor-
hood of x,. This was the assertion.
Relabel p,,,...,p,, to read p,,..., p,. Define functions hy, ..., h, in

w, by
ou Ou " op;
(a—zl az) Z )(azl’“ ) X € Do-
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Solve for h{x). All the coefficients in this n x n system of equations are of
classe — 1,50 h; € C*~ }(w,). We have

ou= Y h;0p;in w,.

=

1

Putu, = u — )"~ hip;. Sou; = uon X, and

oh; - p;.

M=

Ou, =0u— Y hop;— Y Oh-p;= —
i i=1 i

n

1

In the same way in which we got the h;, we can find functions h;;in C*~ *(w,)
with

Since dp;, .. ., dp, are linearly independent at each point of w,, the same
is true of the (0, 2)-forms dp; A dp; with i < j.

0= 3= 5( S b, 5,),.) _ z(z h,.,.ap,.) A dp,
i=1 i\j
= Z (hij - hji)'apj A épi‘
i<j
Hence h;; = hj; for i < j. Put
1
U =u; + EZ hijpip;.
L)
Sou, =uonZand
~ ~ 1 =
Ouy = — Zi@hi “pi + 2_!izja(hij)pipj + R,
where
1 = 1 _
R =2 hip;0p; + 5 hip;0p;
2 ij 2 ij
l ) [
i j
sO
= 1 ~
Ouy = =Y Ohy;- pip;.
2! ij
We define inductively functions h; on wg, I a multiindex, by

Bh’ == Z h’](’_apj,
j=1
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and we define functions uy, N = 1,2,...,e — 1, by

(="
hip;,
N! ,,lzz,v o1

Uy = Uy +

where I = (By,..., B, Il =ZB;, pr=pi"--- pi». Then hye CNay) if
lI| = N, and uy € C° Mw,).
We verify

Y. Oh;-py, for each N.
By slightly shrinking w, we get a constant C such that |p,(z)] < Cd(z)" in
, if [I| = N, and hence there is a constant C,; with

0
5’;-”(2);3 C,de, j=1,....nzewm,.

In particular, u,_; € C*(wo), 4,_; = u on X, and

|

aue— 1

A < C,d(z)} !, C, depending on w,.
J

Also, u = 0 on an open subset of @, implies that u,_; = O there.

For each x, € K we now choose a neighborhood w,, in C" of the above
type. Finitely many of these neighborhoods, say, wy, ..., »,, cover K.

Choose ¥y, ..., xz € C*(C") with supp y, = ®,, 0 < x, < 1, and Y 5_, 1,
=1on K.

By the above construction, applied to yu in place of u, choose U, in
Cl(w,) with U, = yuin T N w,, supp U, = supp x.u, and

(*) la;_]"(z)}s C,-d(z°™ ", zew,, j=1,...,n
I Z

J

‘Since supp U, = w,, we can define U, = 0 outside w, to get a C*-function
in the whole space, and (*) holds for all z in C".
Put U =)%_, U,. Then Ue C'(C"), and for ze K,

Uz) = Y UJ2) = ) 22)u(2) = u@) Y xx = ulz).
a=1 a=1 a

For every z,
ou £ U,
a',( ) a; oz, (@,
so, by (¥),
ou _
— (@) <g-C-dz)F where C = max C,. Q.E.D.
621 1<a<g

This completes step 2.
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Proof of Theorem 17.1. It remains to carry out step 3.

Without loss of generality, ¥ is an open subset of some smooth k-dimen-
sional manifold X, such that the closure of X is a compact subset of X,. It
follows that the 2n-dimensional volume of the e-tube around X, ie.,
{x e C"d(x) < &}, =0(e*" ¥ as e — 0.

Fix ¢ and choose the set w, by Lemma 17.3. By (6), ®, < ¢-tube around X,
so the volume of w, = O(e*" ).

By (8), (9), and (10), Theorem 16.1 may be applied to w,, where we take
p = u,.

Given that u is in C*(C"), by Lemma 17.4 with K = X we can find U, in
C!(C") such that for all z and j,

ou
l—_e < Cd(z)*™! and U,=uonX.
0z;
By (6) this implies
ou
(15) — < Cef 7 in w,.
0z;

Putg = 0U,. Then dg = 0in w,. By Theorem 16.1, 3V, in L*(,) such that,
as distributions, 0V, = g; i.e.,

ov, oU
16 L=t 1j
(16) 0z; o0z;’ &l
and
n 2
(17) f |n|2dVgC'J (Z oU, )dV.
o, o, \j=110Z;

Equations (15) and (17) and the volume estimate on w, give
(18) f |V)2dV < Crg¥e~2*2nk

By (16) and Lemma 16.8, V, is continuous in w,. Further, fix x € X and put
B, = ball of center x, radius ¢/2. Lemma 16.8 implies that

&€

il

(19) [Vix)l < K{B_"ll VillL2s,y + Bsup(max —
Bx i 10z;

But B, = w, by (7), so (18), (15), and (16) give
(20) [V(x) < K{ec™ ' "% + g},

where K is independent of x. Thus if e > k/2 + 1, supy|V,] > 0ase— 0.
Step 3 is now complete. Theorem 17.1 is thus proved.
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As an application of Theorem 17.1, we consider the following problem:
Let X be a compact subset of C" and f, . . ., f, elements of C(X). Let

[fisos flX]

denote the class of functions on X that are uniform limits on X of poly-
nomials in f}, ..., f;. The Stone-Weierstrass theorem gives

[Zysees2ys2ys. s 2,0 X] = C(X).

We shall prove a perturbation of this fact. Let Q be a neighborhood of X
and let Ry, ..., R, be complex-valued functions defined in Q. Denote by R
the vector-valued function R = (R, ..., R,).

THEOREM 17.5
Assume that 3k < 1 such that

(21) |R(z1) — R(z,)| < klz; — z,] ifz,,2,eQ.
Assume also that each R;e C"**(Q). Then
[Z4se. 2021 + Ryse.os 2, + RJX] = C(X).

Note. Equation (21) is a condition on the Lipschitz norm of R. No such
condition on the sup norm of R would suffice.

Exercise 17.4. Put X = closed unit disk in the z-plane and fix ¢ > 0.
Show that 3 a function Q, smooth in a neighborhood of X, with |Q] < &
everywhere and [z, Z + Q|X] # C(X).

Let ¢ denote the map of Q into C2" defined by

®D(z) = (z,Z + R(2))

and let X be the image of Q under ®@. Evidently Z is a submanifold of an open
set in C2" of dimension 2n and class n + 2. Since n + 2 > (2n/2) + 1, the
condition of “sufficient smoothness” holds for X.

LEMMA 17.6

X has no complex tangents.

Proof. If £ has a complex tangent, then 3 two tangent vectors to X differing
only by the factor i.

With d® denoting the differential of the map ®, we can hence find £,
n € C" different from O so that at some point of Q,

(22) d®(n) = i dD(C).

Let R, denote the n x n matrix whose (j, k)th entry is R ;/0z, and define R,
similarly. For any vector o in C”,

dd(o) = (a, & + R, + R;).
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Hence (22) gives

(n,7 + R + Ra) = i€, € + R.L + RS).
It follows that n = i£ and
(23) E+ RE=0.
By Taylor’s formula, for ze Q, 6 € C", and ¢ real,

R(z + €0) — R(z) = R,e0 + R;el + ole).
Applying (21) with z, = z + €6, z, = z, and letting ¢ — O then gives
(24) IR0 + R.0| <k|6|.
Replacing 6 by if gives
(24)) IR,0 — R,B| < k|0).

Equations (24) and (24') together give

(25) IR;0] < k|| for all 0 e C",
and this contradicts (23). Thus £ has no complex tangent. Q.E.D.
LEMMA 17.7

®(X) is a polynomially convex compact set in C*".
Proof. Put A = [z,,...,2,,Z; + Ry,...,Z, + R|X],

A, =[24,-..522.X 1], where X; = O(X).

The map @ induces an isomorphism between U and ;. To show that X is
polynomially convex is equivalent to showing that every homomorphism of
A, into C is evaluation at a point of X, and so to the corresponding state-
ment about W and X.

Let h be a homomorphism of Ainto C. Choose, by Exercise 1.2, a proba-
bility measure yu on X so that

h(f)=L fdy, allfedL

Put h(z) = o, i=1,...,nand o = (&, ..., ®,). Choose an extension of R
toamap of C"to C"such that (21) holds whenever z, z, € C". This can be done
by a result of F. A. Valentine, A Lipschitz condition preserving extension of a
vector function, Am. J. Math. 67 (1945).

Define for all ze X,

fi2) = '21 (z; — a)((Z; + R(2)) — (& + R{(a))).
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Since z; and z; + Ry(z) € W and «; and R,(a) are constants, f/ € A. Evidently
h(f) = 0. Also, for z € X,

10 = 3 l— ol + 3 (5 - 2)(R(E) ~ Reo)

The modulus of the second sum is <|z — «||R(z) — R(a)| < klz — |, by (21).
Hence Re f(z) > O for all z € X, and Re f(z) = 0 implies that z = «. Also,

0= Reh(f)=LRefd;4.

It follows that « € X and that p is concentrated at o. Hence h is evaluation at
o, and we are done.

Proof of Theorem 17.5. We now know that ®(X) is a polynomially convex
compact subset of £ and that X is a submanifold of C?" without complex
tangents. Theorem 17.1 now gives that P(®(X)) = C(®(X)), and this is the
same as to say that

(24522421 + Ry,...,Z, + R,|X] = C(X). Q.E.D.

NOTES

A result close to Theorem 17.1 was first announced by R. Nirenberg and
R. O. Wells, Jr., Holomorphic approximation on real submanifolds of a
complex manifold, Bull. Am. Math. Soc. 73 (1967), and a detailed proof was
given the same authors in Approximation theorems on differentiable sub-
manifolds of a complex manifold, Trans. Am. Math. Soc. 142 (1969). They
follow a method of proof suggested by Hormander. A generalization of
Theorem 17.1 to certain cases where complex tangents may exist was given
by Hérmander and the present author in Uniform approximation on compact
sets in C", Math. Scand. 23 (1968). Theorem 17.5 is also proved in that paper,
the case n = 1 of Theorem 17.5 having been proved earlier by the author
in Approximation on a disk, Math. Ann.155 (1964), under somewhat weaker
hypotheses. Various other related problems are also discussed in the papers
by Nirenberg and Wells and by Hérmander and the author. Further results in
this area are due to M. Freeman. The proof of Lemma 17.4 is due to Nirenberg
and Wells. (For recent work, see Wells [74].)

An elementary proof of Theorem 17.5, based on a certain integral trans-
form, has recently been given by Weinstock in [73].
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Submanifolds of High Dimension

In Sections 13, 14 and 17 we have studied polynomial approximation on
certain kinds of k-dimensional manifolds in C". In this Section we consider the
case k > n. Let T be a k-dimensional submanifold of an open set in C" with
n < k < 2n. Let X be a compact set which lies on X and contains a relatively
open subset of Z.

LEMMA 18.1
P(X) # C(X).
We first prove

LEMMA 18.2

Let S be a set in C" homeomorphic to the n-sphere. Then h(S) # S.

Proof. h(S) = #(P(S)). The algebra P(S) has n generators and hence by
Theorem 15.8 the n’th cohomology group of .#(P(S)) with complex coeffici-
ents vanishes. But H"(S, C) # 0. Hence S # h(S).

Proof of Lemma 18.1. Choose a set S = X with S homeomorphic to the n-
sphere. By the last Lemma h(S) # S and so P(S) # C(S). Since an arbitrary
continuous function on S extends to an element of C(X), this implies P(X)
# C(X). QE.D.

We should like to explain the fact that arbitrary continuous functions on X
cannot be approximated by polynomials, in terms of the geometry of X as
submanifold of C".

Fix x° € £ and a neighborhood U of x° on X. We shall try to construct an
analytic disk E in C" whose boundary lies in U. In other words, we seek a
one-one continuous map @ of |z| < 1 into C" with ® analytic in |z| < 1 and
®(|z| = 1) = U. Wethentake E = ®(|z] < 1). Then every function approxim-
able by polynomials uniformly on U extends analytically to E and hence
P(X) # C(X) whenever X contains U.

Example. Let T be the 3-sphere |z,|> + |z,/> = 1 in C? and fix x° € X.
Without loss of generality, x° = (i, 0). We shall describe a family of analytic
disks near x° each with its boundary lying on X.

Fix t > 0 and define the closed curve y, by:

zy=i/1 =%z, =t |{| = 1.

7, lies on X and bounds the analytic disk E, defined:

Zy = i\/ 1 - t2522 = tCa ICI <L

Ast — 0,7y, = Xo.

122
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We wish to generalize this example. Let 2"~ ! be a smooth (class 2)
(2n — 1)-dimensional hypersurface in some open set in C"and fix x° e £~ 1,
Let U be a neighborhood of x° on X271,

THEOREM 18.3

3 an analytic disk E whose boundary OE lies in U.

Note. After proving this theorem, we shall prove in Theorem 18.7 an
analogous result for manifolds of dimension k with n < k. The method of
proof will be essentially the same, and looking first at a hypersurface makes it
easier to see the idea of the proof. By an affine change of complex coordinates
we arrange that x° = 0 and that the tangent space to £2"~ ! at 0 is given by:
y1 = 0, where x;, ¥1, X2, V2, - - - » Xu» Vy are the real coordinates in C". Then
2"~ 1 is described parametrically near O by equations

zy =Xy + ih(x, Wy, ..., W)
2 =W,

(1)
Zy = W,,

where x; €R, (W,,...,w,)€C" ! and h is a smooth real valued function
defined on R x C"~! with h vanishing at 0 of order 2 or higher.

We need some definitions.

Definition 18.1. Put I' = {{||{| = 1)}. A function f in C(T') is a boundary
function if 3F continuous in [{| < 1 and analyticin [{| < 1 with F = fonT.

Given u defined on I', we put

d .
0= E(u(e'e)).

Definition 18.2. H is the space of all real-valued functions u on I" such that

u is absolutely continuous, u € L*(T') and 1 € L¥T). For u€ H,, we put

lully = llullgz + fa] g2

Normed with | |4, H, is a Banach space. Fix u € H,.

u=a,+ ) a,cosnd + b,sin nb.
n=1
Since i € L%, Y ¢ n*(aZ + b?) < oo and s0 Y ¥ (la,| + |b,|) < oo.
Definition 18.3. For u as above,

Tu = ) a,sinnb — b, cos nf.

n=1
Observe the following facts:
(2) Ifu,veH,, then u + iv is a boundary function provided u = — Tb.
(3) IfueH, then Tue H, and || Tu|, < ||ull;-.
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Definition 18.4. Let w,, ..., w, be smooth boundary functions and put
w = (w,,...,w,). wis then a map of I"into C"~!. For xe H,,

A,x = —T{h(x, w)},

where h is as in (1). A,, is thus a map of H, into H,.

Let U be as in Theorem 18.3 and choose é > 0 such that the point des-
cribed by (1) with parameters x; and w lies in U provided |x,| < é and
wil<d,2<j<n

LEMMA 184

Let w,, ..., w, be smooth boundary functions with |w;| < 6 for all j and such
that w, is schlicht, i.e., its analytic extension is one-onein|{| < 1. Put A = A,,.
Suppose x* € Hy, |x*| < 0 on I" and Ax* = x*. Then 3 analytic disk E with OE
contained in U.

Proof. Since Ax* = x*, x* = — T{h(x*, w)}, and so x* + ih(x*, w) is a
boundary function by (2). Let ¥ be the analytic extension of x* + ih(x*, w)
to |{| < 1. The set defined for |{| < 1 by z; = ¥({), z, = wy(0), ..., z, = w,(0)
is an analytic disk E in C". 0E is defined for |{| = 1 by z; = x*({) + ih(x*(0),
w(0), z, = wy(0), ..., z, = wy({) and so by (1) lies on X2"~!. Since by hy-
pothesis [x*| < é and |w;| < 6 for all j, 0E = U. Q.E.D.

In view of the preceding, to prove Theorem 18.3, it suffices to show that
A = A, has a fix-point x* in H, with |x*| < é for prescribed small w. To
produce this fix-point, we shall use the following well-known Lemma on
metric spaces.

LEMMA 18.5

Let K be a complete metric space with metric p and ® a map of K into K
which satisfies )

p(@(x), ®(y)) < ap(x, y), allx,yeK,

where a is a constant with 0 < « < 1. Then ® has a fix-point in K.

We give the proof as Exercise 18.1.

As complete metric space we shall use the ball in H, of radius M, B, =
{x € H,||Ix]|; < M}. We shall show that for small M if |w| is sufficiently small
and A = A4,,, then

(4) A maps B, into By,.
(5) 3a,0 < a < 1, such that

|lAx — Ayll; < allx — yll, forall x, y € By,.
Hence Lemma 18.5 will apply to A.
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We need some notation. Fix N and let x = (x4, ..., xy) be a map of I" into
RY such that x; € H, for each i.

[N
X = (xla ) XN)’ ]x| = |xil2
i=1
Ixlly = \/f |x|? df + \/J x| d6
r r

xl., = sup|x|, taken over I.

Observe that ||x||, < C||x|,, where C is a constant depending only on N.
In the following two Exercises, h is a smooth function on RY which vanishes
at 0 of order >2.

*Exercise 18.2. 3 constant K depending only on h such that for every
map x of I into RN with ||x||, < 1,

1Al < K(lIxIly)*.

*Exercise 18.3. 1 constant K depending only on h such that for every pair
of maps x, y of " into RY with ||x|, < I, [y, < 1,

IhGx) = Rl < Klix = yll(lxll + vl

Fix boundary functions w,, ..., w, as earlier and put w = (w,, ..., w,).
Then w is a map of I' into C" ™! = R*"~2,

LEMMA 18.6

For all sufficiently small M > 0 the following holds: if |w|l; < M and
A = A, then Amaps By into By and 30,0 < o0 < 1, suchthat |Ax — Ay||; <
allx — yll; for all x, y € By,.

Proof. Fix M and choose w with |w||; < M and choose x € By,;. The map
(x, w) takes T" into R x C"! = R?"~ 1 If M is small, ||(x, w)|, < 1. Since
(x, w) = (x, 0) + (0, w),

G, Wiy < 11, O)Iy + 10, Wy = lIxIly + [wlly-
By Exercise 18.2,
Ih(x, Wil < K(l(x, W)l 1)* < K(llxlly + Iwll;)* < K(M + M)? = 4M°K.
lAx]ly = | T{h(x, w)iI; < llh(x, w)ll, < 4M>K.

Hence if M < 1/4K, |Ax||; < M. So for M < 1/4K, A maps B, into By,.
Next fix M < 1/4K and w with ||w|; < M and fix x, y € B,. If M is small,
[(x, W), < 1and [|(y, )l < L.

Ax — Ay = T{h(y, w) — h(x, w)}.

Hence by (3), and Exercise 18.3, [[Ax — Ayll; < |h(y, w) — h(x, w)ll; <

Klx, w) =@ wlilx, wi + 1, wil) < Klix = yll(lxly + vl +
2|wll;) < 4MK]|x — y||;. Put « = 4MK. Then o« < 1 and we are done.



126 BANACH ALGEBRAS AND COMPLEX VARIABLES

Proof of Theorem 18.3. Choose M by Lemma 18.6, choose w with ||w]|,
< Mandput A = A4,,. In view of Lemmas 18.5 and 18.6, 4 has a fix-point x*
in B,,. Since for xe H,, ||x|, < C|x|l;, where C is a constant, for given
& > 03M such that x* € B,, implies |x*| < d on I'. By Lemma 18.4 it follows
that the desired analytic disk exists. So Theorem 18.3 is proved.

We now consider the general case of a smooth k-dimensional submanifold
Tk of C" with k > n. Assume 0 € =¥ Denote by P the tangent space to * at 0,
regarded as a real-linear subspace of C". Let Q denote the largest complex-
linear subspace of P.

Exercise 18.4. dim.Q > k — n.

Note. It follows that, since k > n, ¥ has at least one complex tangent at 0.

It is quite possible that dim.Q > k — n. This happens in particular when
Q is a complex-analytic manifold, for then dim¢Q = k/2, and k/2 > k — n
since 2n > k.

We impose condition

(6) dim.Q = k — n.

Exercise 18.5. Assume (6) holds. For each x in Z* denote by Q, the largest
complex linear subspace of the tangent space to £* at x. Show that dim. Q, =
k — n for all x in some neighborhood of 0.

THEOREM 18.7

Assume (6). Let U be a neighborhood of 0 on Z*. Then 3 an analytic disk E
whose boundary OE lies in U.

Note. When k=2n—1, k—n=n—1 and since dimcQ <n —1,
Exercise 18.4 gives that dim.Q = n — 1. So (6) holds. Hence Theorem 18.7
contains Theorem 18.3.

LEMMA 18.8

Assume (6). Then after a complex-linear change of coordinates * can be
described parametrically near 0 by equations

Zy =X Fih(Xq o ooy Xom—k> Wis v o s Wi—p)
Zy = Xy + ih‘z(xl, e Xop—ks Wiy oo v Wk—n)
(7) Zoan—-k = X2n-k + ith—k(xla sy Xop—ks W5 e e Wk—n)

Zoan—-k+1 — Wi

Zp = Wi—p

where Xy, ..., Xon—x€ER, Wy, ..., w_,€Cand hy, ..., h,,_, are smooth real-
valued functions defined on R*" % x C*~" = R¥ in a neighborhood of 0 and
vanishing at 0 of order >2.
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Proof. Put z; = x; + iy; for 1 < j < n. The tangent space P to Tk at 0 is
defined by equations:

Y alx; + bjy; =0, v=1,2,...,2n—k
j=1

where aj, b} are real constants. We chose complex linear functions

Lz)= Y cjz;, v=12..2n—k
j=1

where ¢} are complex constants such that _; a}x; + b}y; = Im L*(z) for
each v. So P is given by the equations:

Im L(z) = 0, v=1,2,...,2n — k.

We claim that L', ..., L?>"~* are linearly independent functions over C.
For consider the set Q; = {ze C"|L*(z) = O for all v}. Q, is a complex
linear subspace of P. If the L” were dependent, dimc.Q, > n — (2n — k) =
k — n, contradicting (6). So they are independent. We define new coordinates
Z, ...,Z,in C" by a linear change of coordinates such that Z, = L" for
v=1,...,2n — k.PutZ, = X, + iY,. Then P has the equations

i=Y==Y,,=0
Without loss of generality, then, P is given by equations:
®) yi=Y2=+"=Ya-x=0.

Let x; = xt), y; = yj{t), 1 <j < n, t€R¥ be alocal parametric representa-
tion of ¥ at 0 with t = 0 corresponding to 0. Since P is given by (8),att = 0
dyj/ot, = 0y;/ot, = --- = dy;/ot, = 0,j = 1,2,..., 2n — k. Since the Jacob-
ian of the map:

t = (xy(t), y1(8), - - ., X4(t), yult))

at t = 0 has rank k, it follows that the determinant

xy G}
ot o
%, ox,
ot, oty
0.
0Yan-i+1 Yan—k+1 7
ot, oty
0Yn 0Yn
ot oty t=0
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Hence we can solve the system of equations:

Xy = x4(t)

Xp = X,(1)

Van-k+1 = Yan—k+1(0), t=1(ty,..., 1)

Yn = Yull)

fort,,...,tyinterms of x,, ..., X,, Van—x+1> - - -, Vo lOcally near 0. Let us put
Uy = Xop—k+15 -5 Ug—n = Xy,
Uy = Yan—k+15++++ Ukmn = Vn-

Put x = (xy, ..., Xon-s), U = (Uq, ..., U_,), vV =(vy,...,0_,). Then para-
metric equations for Z* at 0 can be written:

x1 = xl

y1 = hy(x,u,0)

Xon—k = X2n—k
Yoan-k = h2n-k(x9 u, U)
Xon—k+1 = Ui

Yan-k+1 = Uy

Xp = Ug—n
Yn = Uk—n>

where each h;is a smooth function on R¥, in a neighborhood of 0. In view of (8),
each h; vanishes at 0 of order >2. Setting

u; + iv; = w;, j=12...,k—n,

we obtain (7). Q.E.D.
We sketch the proof of Theorem 18.7:
With hy, ..., hy,_, as in (7), we put

h(x, w) = (hy(x, W), ..., hyp_i(x, W)).

h is a map defined on a neighborhood of 0 in R¥ and taking values in R*"~*,
We shall use this vector-valued function h in the same way as we used the
scalar-valued function h of (1) in proving Theorem 18.3.

Fix smooth boundary functions wy, ..., w,_, on I" such that w, is schlicht
and put w = (Wy, ..., we_,). We seek a map x* = (x¥,...,x5,_,) of I' -
R2"~k such that

x* + ih(x*, w)
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admits an analytic extension Y = (¥4, ..., ¥,,_;) to |{] < 1 which takes
values in C2"~* Then the subset of C" defined for |{| < 1 by

2y = Y10, s Zank = VaniD): Zan—i+1 = Wil0)s .-, 2o = Wi (0
is an analytic disk E in C" whose boundary JE is defined for |{| = 1 by

Zy = XT + ihl(X*a W): sy Zop—k = x;n—k + ith—k(X*5 W)’

Zyp—k+1 = Wis oo ey Zp = Wiy

and so in view of (7), JE lies on T,

We construct the desired x* by a direct generalization of the proof given
for Theorem 18.3. In particular we extend the definition 18.3 of the operator
T to vector-valued functions u = (uy, ..., us) by: Tu = (Tu,, ..., Tuy). We
omit the details.

What can be said if Z is a smooth k-dimensional manifold in C" with k = n?
It is clear that no full generalization of Theorem 18.7 is possible in this case,
since the real subspace Xz of C" is such a submanifold and there does not
exist any analytic disk in C" whose boundary lies on X.

What if ¥ is a compact orientable n-dimensional submanifold of C"?
When n = 1, this means that Z is a simple closed curve in C and so X is
itself the boundary of an analytic disk in C. Whenn > 1, we still see by reason-
ing as in the proof of Lemma 18.2 that h(X) # X. However, there need not
exist any point p € ¥ with the property that every neighborhood of p on £
contains the boundary of some analytic disk. This happens, in particular,
when X is the torus: |z| = 1,|w| = 1in C2. This torus contains infinitely many
closed curves which bound analytic disks in C2, but these curves are all
“large.”

A striking result, due to Bishop, [9], is that if  is a smooth 2-sphere in
C?, ie., a diffeomorphic image of the standard 2-sphere, satisfying a mild
restriction, then X contains at least two points p such that every neighbor-
hood of p on X contains the boundary of some analytic disk.

NOTES

This section is due to E. Bishop, Differentiable manifolds in complex
Euclidean space, Duke Math Jour. 32 (1965).

Given a k-dimensional smooth compact manifold X in C*, it can occur that
there exists a fixed open set ¢ in C" such that every function analytic in a
neighborhood of £, no matter how small, extends to an analytic function in 0.
This phenomenon for k = 2n — 1 was discovered by Hartogs. For k = 4,
n = 3 an example of this phenomenon was given by Lewy in [46] and treated
in general by Bishop in his above mentioned paper, as an application of the
existence of the analytic disks he constructs. Substantial further work on this
problem has been done. We refer to the discussion in Section 4 of R. O. Wells’
paper, Function theory on differentiable submanifolds, Contributions
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to Analysis, a collection of papers dedicated to Lipman Bers, Academic
Press (1974), and to the bibliography at the end of Wells’ paper.

In the present Section we studied the problem of the existence of analytic
varieties of complex dimension one whose boundary lies on a given manifold
2. What can be said about the existence of analytic varieties of dimension
greater than one whose boundary lies on £? In particular, let M~ ! be a
smooth odd-dimensional orientable compact manifold in C" of real dimen-
sion 2k — 1. When is M?*~! the boundary of a piece of analytic variety, i.e.
when does there exist a manifold with boundary Y (possibly having a
singular set) such that the boundary of Y is M?*"! and YN\M?*"! is a
complex analytic variety of complex dimension k? When k = 1, M*~!isa
closed Jordan curve and Y exists only in the case that M~ ! fails to be
polynomially convex and in that case Y is the polynomially convex hull of
M?2¥~1 This situation was, in effect, treated in Section 13 above. For arbitrary
integers k the problem was recently solved by R. Harvey and B. Lawson in
[32],[33]. For k > 1 the relevant condition on M?*~! is expressed in terms of
the complex tangents to M2¢~1,
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Generators
Let A be a uniform algebra on a compact space X. Fix f}, ..., f, € Wand
denote, as earlier, by
[fl’ L] afle]

the smallest closed subalgebra of 2 which contains the constants and
fioooosfi- U [f1s - > fil X] = U, we say the f; are a set of generators for 2.
In earlier sections we obtained criteria for a set f1, . .., f; to be a set of gener-
ators for the algebra C(X). Here we shall study the case when U = A(D), the
disk algebra, and more generally the case & = A(B), where B is the closed
ball in C":
|24 + -+ lza* < 1,

and A(B) consists of all functions continuous in B and analytic in B.

Fixf, ..., fi € A(B). Write ffor the map: x — (f1(x), . . ., fi(x)) of Binto C*.
As necessary conditions for fi, ..., f; to be a set of generators for A(B) we
have

(1) fseparates points on B. Note that this implies k > n.
(2) Foreachae B, the matrix (0fi/0zj),1 <j<n,1<i<khasranknata.

If this fails for some q, then 3(c, ..., ¢,) € C", not all ¢; = 0, with

n

Y ¢{0f,/0z;) = 0

i=1

ata,a = 1,2, ..., k. If the f; are generators, it follows that ) }_, c{(0g/0z;) = 0
at a for all g in A(B), which is false. So (2) is necessary.

(3) The image f(B) of B in C* is polynomially convex.

This follows from the fact that B is the maximal ideal space of A(B). (Why?)
So by Exercise 7.3, (3) holds.

The three necessary conditions (1), (2), (3) by themselves are not sufficient,
as we shall show by an example later on. To obtain sufficient conditions, we
shall require regularity of the f; on the boundary of B. We begin with the
strongest regularity requirement:

(4) Each f; is analytic on 0B.

This implies that there is an open set ¢ with B < 0 such that the f; extend
analytically to 0.

0z

]

) <%> has rank n at all points of 0B.
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THEOREM 19.1

Let B be the closed unit ball in C" and let fi, ..., f, € A(B). Assume (1)
through (5) hold. Then the f; are a set of generators for A(B).

First we shall prove this result by a classical method due to K. Oka and
H. Cartan and then we shall see to what extent weaker hypotheses suffice.
It will turn out, in particular, that for n = 1 the polynomial convexity con-
dition (3) is a consequence of the other conditions. In fact, we shall prove

THEOREM 19.2

Let D be the closed unit disk in the z-plane and fix fi, .. ., f, € A(D). Assume
that

(6) The f; together separate points on D.
(7) Je > 0 such that each f; extends analytically to |z] < 1 + e.
(8) For each zo €D, f'{z,) # O for some j.

Then fi, ..., f is a set of generators for A(D).

We shall see by example that the analagous statement is false for n > 1.

Let Q be an open set in CY and V an analytic subvariety of Q in the sense of
Definition 13.1. A function F defined on V is said to be analytic on V if for
each point p € V we can find a neighborhood U of p in C" and a function F*
analytic in U such that F* = Fon U n V.

Proposition. Let A be the open unit polydisk in C¥, V an analytic subvariety
of A and F an analytic function defined on V. Then 3 an analytic function G on A
with F = Gon V.

For a proof, see R. Gunning and H. Rossi, [30], Theorem 18, Chapter VIII,
Section A.

Proof of Theorem 19.1. Without loss of generality, | f}| < } on B for each j.
By (4) 3¢ > 0 such that each f; is analytic in |z|] < 1 + &. Without loss of
generality, the map f'is one-one in |z| < 1 + & Suppose instead there were a
sequence &, — 0 and pairs of distinct points p,, g, in |z] < 1 + ¢, with
f(p,) = f(g,)- Let p,q be limit points of the sequences {p,}, {q,}. Then
p,qeBand f(p) = f(q). By (1), p = g. But by (5) f'is locally one-one in some
neighborhood of p, contradicting f(p,) = f(q,) for large n.

So we can choose ¢ > 0 with fone-one in |z| < 1 + &. In view of (2) and (5)
we may further suppose that at each z%in |z| < 1 + & we have:

9 3., ....f such that the map: z - (f},(2), ..., f;(2)) is biholomorphic
from some neighborhood of z° into C".

Fix ae C" with 1 < |a] < 1 + & We claim 3 polynomial Q such that
(10) 10(f (@)l > max|Q(f).
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Otherwise, f(a) lies in the polynomia]ly convex hull of f(B) which by (3) is
f(B). Hence 3b € B with f(b) = f(a). Butfis one-onein|z| < 1 + ¢ whichisa
contradiction. So 3Q satisfying (10).

Put g, = O(f). By (10), |g.(a)l > maxpg|g,|. Without loss of generality,
lg.(a)l > 1 > maxg|g,|. Since we can replace g, by (g,)° with p a positive
integer, we may as well assume that |g,(a)] > 2 and maxglg,| < 3. Choose a
neighborhood N, of a with |g,| > 2 in N,. We can do this for each a with
1 + (¢/2) < la| < 1 + 2e. By compactness some finite set N, ..., N, _covers
{z]l + (¢/2) <)zl <1 + 3¢}. We define a map ® of |z| < 1 + 3¢ » C*** by
D(z) = (fi(2), - .., fil2), a,(2)s - - - » €a(2)). Then @ is one-one on |z| < 1 + 3.

Let A be the open unit polydisk in C*** and put

= (@(z] < 1 + 2) N A.

We claim that V is a relatively closed subset of A. For choose p, € V with
p, — p€A. Then p, = ®(z,) and |z,| < 1 + (¢/2) for all n. Else z,€ N, for
some j, sO |g,(z,)| > 2, contradicting that ®(z,)€A. Hence {z,} has an
accumulation point z with |z| < 1 + (¢/2), and so we may assume that z, — z.
Then ®(z,) » ®(z) and so p = ®(z). Thus p € V. The claim is thus correct.

Next we claim that V is locally defined by analytic equations and hence is an
analytic subvariety of A. Fix p € V. Then p = ®(z°) for some z%in|z| < 1 + 3e.
Because of (9), in some neighborhood of z° each z, is an analytic function of
fiws - - - ;.- Hence each component of @ is an analytic function of f},, ..., fj, .
in a neighborhood of z°. Hence V is defined by analytic equations in some
neighborhood of p, as claimed.

Fora = 1,..., n, we define a function Z, on V by

Zp) = z(®"'(p)).

Then Z, is an analytic function on V. By the Proposition, 3 a function G,
analytic on A with G, = Z, on V.

Now ®(B) is a compact subset of ®(|z| < 1 + 3¢). Also, since |fj] < 3 on B
foralljand|g,| < Lon Bforalli,®B) = A.So ®(B)is a compact subset of V.
Fix a. The Taylor series at O representing G, in A converges uniformly on
®(B). Hence a sequence of polynomials in the functions fi, ..., fi, 84,5 - - - » &a,
converges uniformly on B to G,(®). But G(®) = Z,(®) = z,. Since each g, is
a polynomial in the f;, it follows that z, € [ fi, . . ., fy| B]. Finally, polynomials
inz,,...,z,are dense in A(B). So [f}, ..., filB] = A(B). Q.E.D.

We shall deduce Theorem 19.2 from Theorem 19.1 by means of the follow-
ing Lemma.

LEMMA 19.3.

Let fi,...,f,€ A(D) and assume (6), (7), (8). Then f(D) is polynomially
convex.
Proof. Because of (6), (7), (8) we can choose ¢; > 0 and put

D, ={z]zl <1 + &},
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such that each f; is analytic in a neighborhood of D, and f is a one-one
regular map in that neighborhood. Put

71 = f(@Dy).

Then y, is an analytic curve in C* and so by Theorem 13.1, h(y;)\y, is an
analytic subvariety of some open set in C*. Put

y = f(@D).
Since f(D;) < h(y,), y < h(y;) and hence h(y) < h(y,). Put
V = h(y)\f(D).

To prove our Lemma, it suffices to show that V'is empty.

f(D)is a compact subset of h(y,)\7, and the variety h(y,)\7, has a discrete
set of singular points. Hence the set A of singular points belonging to f(D) is
finite (possibly empty).

Let now p be a boundary point of V, i.e, pe V\V. Then p € f(D).

Assertion 1. p e A.

Suppose p¢ A. We have p = f(a) where |a| < 1. If |a| < 1, for some
8 >0, f(lz — al < d) is a neighborhood of p in h(y,). Since pe V, 3ge V n
f(lz — a| < &), which is a contradiction. So |a| = 1. Again for some 6 > 0,
f(lz — a| < ) is a neighborhood of p and so 3g,€ V with g, — p and so
dn = f(z,) where z, — a. Since g, ¢ f(D), |z,| > 1 for all n.

Thus we have obtained a sequence z, € C, |z,| > 1 and z, - a with |a| = 1
such that f(z,) € h(y). We shall show that this leads to a contradiction. Choose
r,1 <r <1+ &, such that the set f(1 < |z| < r) contains no singular point
of h(y;)\y;.Put S = {z|l < |z| < randf(z) € h(y)}.Forlargen, z,€ Sandso S
is non-empty.

Assertion 2. S is open.

Fix a € S. Then f(a) is a non-singular point of h(y,;)\y; and so f(D,) is a
neighborhood of f(a) in h(y,). On the other hand, f(a) € h(y)\y and so by
Theorem 13.1 3 an analytic disk E through f(a) contained in A(y). It follows
that E contains a neighborhood of f(a) in f(D,). Hence 3 a neighborhood of
a in C which f maps into E and so for all z sufficiently close to a, f(z) € h(y)
and so ze S. Thus S is open as claimed.

Evidently S is relatively closed in 1 < |z| < r and so, since S is nonempty,
S = {z]l <|z| <r}. Let Q be a polynomial in k variables and put g =
O(fis..-»fi) For each z in 1 < |z| <r,f(z)eh(y) and so

10(f ()] < max|Q)],

or

lg(z)l < maxg|.
D

By the maximum principle for analytic functions, it follows that g is a con-
stant. But this is absurd. So the supposition that p¢ A is untenable, and
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Assertion 1 is established. Hence the boundary ¥V \Vof Vis a finite set. By the
maximum principle for analytic varieties we have for each polynomial Q and
each y e V,|0(y)] < maxyp-|Q]. Thus V = h(V \V). But a finite set is its own
hull. Hence V is empty. QE.D.

Proof of Theorem 19.2. Since (6), (7), (8) hold, the f; satisfy (1), (2), (4), (5).
By the Lemma just proved, (3) also holds. Hence Theorem 19.1 applies and
gives the assertion. Q.E.D.

It is possible to relax the hypothesis that the f; are analytic on 0B (resp. 6D),
and to assume instead that they are smooth on dB. We proceed to state, with-
out proof, some theorems in this direction and to give references to the
literature.

Definition. Fix a positive integer o. A°(B) is the class of functions g in
A(B) such that for each multi-index I = (iy, ..., i,), with [I| = Y"_, i,

oVlg
0z - -0zl

A(B)

for all I with |I| < 0.
In [11], R. Blumenthal proved

THEOREM

Letf,, ..., f, € AY(D). Assume (6) and (8). Then the fjare generators for A(D).

The resultsin [11] are, in fact, more general than this theorem. Blumenthal
makes use of the following generalization of Lemma 19.3, due to J.-E.
Bjork, [10].

THEOREM

Let fy,...,fr€ AND) and assume f separates points on D. Then f(D) is
polynomially convex.

The following generalization of Theorem 19.1 was proved by Sibony and
the author in [61], and given a simpler proof by H. Rossi and J. Taylor in [55].

THEOREM

Let B be the closed unit ball in C". Let f, . .., f, € A*(B). Assume (1), (2), (3)
and (5). Then the f; are a set of generators for A(B).

It is not possible to drop condition (3) from this theorem, as the following
example shows.

Example 1. For each ¢t > 0 put

B, = {zeC3

1
|z4)? + 1z, + 7 lz5* <2 + t}.

Put B, = {z€ C3|z; = 0and |z,|* + |z,|* < 2}. For z € C3, define f,(z) = z,,
f2(2) = 212, + z3, f3(2) = 2123 — z; + 22,25 and put f = (f}, f3, f3). The
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Jacobian determinant of fdoes not vanish on B, and f'separates points on By,.
Hence for ¢ sufficiently small, f separates points on B, and the matrix (9f;/0z;)
has rank 3 at each point of B,. Fix such a t and choose ¢t < %. Note that, after
a complex linear change of coordinates, B, becomes the unit ball in C3,
Conditions (1), (2), (4), (5) hold for B, and f3, f,, f3. We claim f(B,) is not
polynomially convex.

For each 0, 0 < 0 < 2m, (¢ e~ 0)eB,. Hence (¢, 1, 0)€ f(B,). Put
X = {(¢" 1,0)0 < 6 < 2xn}. (0, 1, 0) e h(X), but (0, 1, 0) ¢ f(B,) for if (0, 1, 0)
= f(zy, 25, 23), then z; = 0, hence z; = 1. But since t < 4, this implies
(z1, 22, z3) ¢ B,. So f(B,) is not polynomially convex. Thus (3) fails here.

Finally, we show by the following example that our three necessary con-
ditions (1), (2), (3) are not sufficient, not even for the case of the unit disk D.

Example 2. Put ¢(z) = exp[—(1 + z/1 — z)]. Then ¢ is a bounded
analytic function on D and continuous on dD\{1} and |¢| = 1 on dD\{1}.
Put

fi=E=1)¢.fr=0—-1)" 4,
setting f,(1) = f>(1) = 0. Put f = (f1,f>). Direct calculation shows that
f1,f» € AY(D) and that f}, f, satisfy (1) and (2). In view of Bjork’s result in [10],
stated above, (D) is polynomially convex and so (3) holds.
Fix g € [ f1, f2ID] with g(1) = 0. Then 3 constants ¢{? 1 < i,j < k,, so that

kn
P, = z Cg!)(fl)l(fzy - g
i,j=0
uniformly on D. Since g(1) = 0, we may suppose ci3 = 0 for all n. Hence we
can write P, = Q, - ¢ with Q, € A(D). On 0D

0, = P,¢ — g¢ uniformly.

Hence 3Q € A(D)withgd = QondD.Theng = Q - ¢. Since not every g € A(D)
with g(1) = 0 admits such a representation (Why?), [ f;, f>|D] # A(D). Thus
conditions (1), (2), (3) fail to assure that the f; are generators. Q.E.D.

NOTES

The method of proof of Theorem 19.1 as well as the Proposition is given by
H. Cartan, Séminaire E.N.S., 1951-1952, Ecole Normale Supérieure, Paris.
Theorem 19.2 was first proved by the author, Rings of analytic functions,
Annals of Math. 67 (3), May, 1958, (Appendix and Theorem 1.1). The proofs
of Theorem 19.2 and Lemma 19.3 given here are due to Brian Cole. Example
2 is given in [61].
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The Fibers Over a Plane Domain

Consider a uniform algebra U on a compact space X having maximal ideal
space M. Fix f € A. Consider an open set Wcontained in C\ f(X). For each
A in W the fiber over A shall mean {p € M|f(p) = A}. In Section 11 we saw
that if f ~!(W) is non-empty and if for sufficiently many A in W the fiber over 4
is a finite set, then f ~!(W) possesses analytic structure.

In this Section we shall study f ~*(W) without assuming the existence of
finite fibers. We first show that in the general case every compact space can
occur as a fiber.

Let T be a compact space and let D be the closed unit disk. Put X = T
x 0D. Thus

X ={t2teT,|z| = 1}.

Let A be the algebra of all continuous functions g defined on X such that for
each teT, g(t,) is the boundary function of some function G, which is
analytic on |z| < 1 and continuous on D. U is evidently a uniform algebra on
X and its maximal ideal space M is naturally identified with T x D. (Why?)
Define f € Aby f(t, z) = z for all (¢, z) € X. Then f(t, a) = a also for each a
with |a| < 1. f(X) = 0D. Let W be the open unit disk. Then W < C\ f(X).
For each Ae W, f~!(1) = {(t, A)|t € T}. Thus each fiber (1) is homeo-
morphic to T, and so T can occur as fiber, as claimed.

We next show that, in the general case, f ~ }(W) may be non-empty and yet
contain no analytic disk. The reader might try to construct such an example
before proceeding to the following theorem.

THEOREM 20.1
There exists a uniform algebra Won a compact metric space X, with maximal
ideal space M and 3f € Wsuch that
(1) f(X) is the unit circle.
(2) f(M) contains {z||z| < 1}.
(3) M contains no analytic disk.

Proof. Let D, be the disk |z| < 1, and D,, D,,... copies of the disk
|zl <2. Let I = Dy x D; x D, x ---be the topological product of all
these disks. Then IT is a compact metrizable space. A point of IT can be
denoted (z, {}, {3, ...), where |z| < 1,|{;| < 2, allj.

We denote the coordinate functions by z, {,, {,,.... Each coordinate
function is continuous on IT.

137
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Choose a countable dense subset {g;} of |z| < 1. We denote by Y the subset
of IT consisting of all points (z, {5, {,, .. .) satisfying

f=z-a,3=z—a,,...

Y is thus the common null-set of a family of continuous functions on I1, and
so Y is closed and hence compact. Let A(Y) denote the uniform algebra on Y
spanned by all polynomials P(z, {,,...,{,), n = 1,2,...,1in the coordinate
functions. Put X = {(z, {;, {5, ...) € Y|lz| = 1}. We claim that X is a bound-
ary for A(Y) in the sense of Definition 9.1.

Fix n and consider the variety V, = {(z,(y,....{ )}l =z—a; 1<
j < n}in C"*1 Let A denote the polydisk in C"*! consisting of all points
(zo» 215 ---»2) With |zo| < 1, |z <2 for 1 <j<n V, N A is an analytic

subvariety of A. Let (z°, 3, . . ., {%) be a boundary point of ¥V, n A. If |2°] # 1,
then |(9] = 2forsomej. But|(}|> = |z° — a;| < 2,50 this cannot occur. Hence

@) WV, "Bz, .... L)zl = 1.

Consider a polynomial P in n + 1 variables and let g = P(z, {y,...,(,)
be the corresponding element of A(Y). Fix y = (z° (%, ¢2,...)e Y. Then
(%25, ...,(%€eV, n A By the maximum principle on ¥, and (4) we can
choose (z/, {}, ..., {,) in V, with |z'| = 1, such that

lgy)l = 1P (3, ..., OO < [P, LY, o GO

We next choose {4, {h12,...80 that y = (2, {4, ..., 00, Chvqy . )E Y.
Then |g(y)| < |g(y')l. Since y’ € X, it follows that X is a boundary for A(Y), as
claimed.

The restriction of A(Y) to X is then a uniform algebra W on X. It is easy to
see that #(A) = Y, and we leave it to the reader to verify this.

Take for fthe coordinate function z. Then f € Wand f(X) is the unit circle.
Put M = A Q). f(M) is'the unit disk.

We assert that M contains no analytic disk. Suppose there were such a
disk E. This means that there is a continuous one-one map ® of || < 1 onto
E such that h o @ is analytic in |1| < 1 for all he .

Suppose first that fis not constant on E and put F = fo®. Then F isa
non-constant analytic function, and so F(|4| < ) contains an open disk. In
that disk there are infinitely many of the a;. For each such j choose 4; in
|A] < 3 with F(2;) = a;. Fix .

Since (} =z —a;= f — aj, ({;o ®)* = F — a; and so the derivative F’
of F vanishes at ;. Hence F’ vanishes infinitely often in |A| < ,and so Fisa
constant. This is a contradiction. Hence f'is constant on E.

Thus for some a € D, f ~ (a) contains E. We claim, however, that for each
zo in Dy, f ~1(z°) is totally disconnected, and once this has been shown we
shall have a contradiction.

Let G; be the two-element group {1, —1} fori = 1, 2,... and let G be the
topological product: G = [][Z; G;. An element of G is a sequence g =
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(21, 85,-.)whereeach g; = 1 or = — 1. G is a compact, totally disconnected
Hausdorff space. We shall construct a homeomorphism of G onto f ~!(z,).

Each point x € f 7'(z,) has the form x = (zo, wy, wy,...), w3 =z, — g
for all j. We only consider the case when z, # a; for all j and so w; # 0 for
all j. The case z, = a; for some j is similar.

Fix x' = (z9, Wi, W3, ...)€ f ~(z,). For each g = (g, g,,...)€G, map
g — gx = (2o, 8:1W1, g2W5, . . .). Note that gx’ again belongs to f ~*(z,). It is
easy to verify that the map: g — gx’ maps G onto f ~ (z,) and that the map is
one-one and continuous. Since G is compact, the map is a homeomorphism
and since G is totally disconnected, f ~(z,) is totally disconnected, as claimed.
We are done.

Definition 20.1. Let U be a uniform algebra on a compact space X, with
maximal ideal space M. Fix f, g € U. For each { € C put

Z(;f,g) = sup lgl,
V(4]

where f ~1(() = {pe M|f(p) = {}-

We shall study Z as a function of {.

Example. In the situation we considered in Section 11 f~}(W) is an n-
sheeted Riemann surface X lying over W. Fix g and put Z({) = Z((; f, g)-
For each z, € W with the exception of a discrete set 3 neighborhood U of z,
such that f ~1(U) = Q, U --- U Q, where each (; is a region on X lying one-
sheeted over U. For { € U denote by p{({) the unique point in Q; lying over (.
Then for e U

Z() = 1n;g"Ig(pi(C))l.
Hence
log Z({) = 1n;fg(n{loglg(pi(C))I}-

Now for each i, g(p;) is an analytic function of { for { € U. Hence for each i,
log|g(p;)| is subharmonic in U. It follows that log Z is subharmonic in U.

It now turns out that this phenomenon of subharmonicity always occurs,
even when the maximal ideal space contains no analytic structure.

THEOREM 20.2

Let A be a uniform algebra on a space X with maximal ideal space M. Fix
f €W. Let W be an open subset of C\\ f(X). Fix g e Wand put Z({) = Z((; f, 2).
Suppose Z({) # O for some { € W. Then log Z is subharmonic in W.

Proof of Theorem 20.2. Fix {, € W and let {, — {,. Assume Z({,) — t. We
claim Z({,) > t. Choose p, € f~1({,) with |g(p,)] = Z({,). Let p be an accumu-
lation point of {p,}. Then |g(p) =t and so Z({,) > t. Thus Z is upper-
semicontinuous at {,, and so everywhere in W.
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Suppose log Z fails to be subharmonic on W. Then 3{,e W and r > 0
such that the disk |{ — | < r lies in W and
2n

%) 1 log Z({, + re'®) df < log Z((,).
2n J,

Since Z is upper-semicontinuous, we can choose a sequence {h,} of
functions continuous on |{ — {,| < r which decrease pointwise to Z there.
Without loss of generality, each h, is smooth and positive. By monotone
convergence,

2n 2n

log h,({o + re®)d0 — | log Z({, + re') do,
0 0

as n — oo, and hence for large n, by (5),

12 )
(6) — | logh,(, + re®)df < log Z((o).
2n J,
Fix such an n. Choose U harmonic in |{ — {,| < r with U = —log h,

on |{ — {,| = r and let V denote the harmonic conjugate of U. Since log h,, is
smooth, V is continuous on [{ — {,| < r. Putyy = eV*%.

Yisanalyticin [l — {,| < r,continuousin|{ — | < r. Also, [y()|h, () = 1
on |{ — {,| = r. It follows that

(7) WOIZEO) <1 on|l—{f=r
W(Co)l = exp{—— anog hCo + re) de} > e~ 'o8 %0,
2n Jo
by (6), so
(8) W(CNZ(Co) > 1+ b for some b > 0.

We can approximate { uniformly on | — {,| < r by polynomials, so 3 a
polynomial P such that [P({)|Z({) < 1 + bon |{ — {,| = r, while |P({o)IZ((o)
>1+b.

PutN = f~ ¢ — ol < r). The boundary of N is contained inf ~ }(|{ — {,|
=r). Now k = P(f)-geU. Choose x,€ f~({,) with |g(x,) = Z({,). Then
lk(xo)l = [P Z(o) > 1 + b. If x€ON, { = f(x) lies on | — ol =r. So
k)| = [P lg(x)| < IP(0)Z() < 1 + b.This contradicts the local maximum
modulus principle for A. So log Z is subharmonic in W. Q.E.D.

In the example given in Theorem 20.1, we saw that the fibers were homeo-
morphic to the Cantor set, hence uncountable. What can be said if the fibers
are at most countably infinite?

THEOREM 20.3

Let N be a uniform algebra on a compact space X having maximal ideal
space M. Let f € Wand let W be a component of C™\ f(X). Suppose that for all
A € Wthe fiber over A is at most countable. Then unlessf ~ (W) = @, there is an
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open dense subset of f (W) which can be given the structure of a one-dimen-
sional complex analytic manifold so that the functions in 2 become analytic
there.

This result is given by R. Basener, A condition for analytic structure,
Proc. Amer. Math. Soc., vol. 36 (1972).

Consider now the following example: B is the closed unit ball in C2, A(B) is
the uniform algebra on 0B consisting of all continuous functions on B which
extend to B to be analytic on B. Here X = 0B, M = AM(A(B)) = B.

Fix f € A(B) and choose Ae C\f(X). f~!(4) = {{eB|f({) = A}. Since
A¢ f(X),f~Y(7) = B.Sof ~'(J)is a one-dimensional analytic subvariety of B.
Also f~1(4) is compact. Hence f ~ (1) is empty.

Thus: whenever 4 € C\ f(X), the fiber over 4 is empty. To get something
interesting we must consider instead of functions in the algebra, i.e., maps of
M — C, pairs of functions, i.e., maps of M — C2,

Let f}, f, € A(B) and put F = (f3, f,). F maps B — C2. In general, if z € C?,
the fiber of the map F over z,

F~Y(z) = {{eBIF() = z}

is a finite set. To see this, put z = (z,, z,) and put V; = {{ € B|f;({) = z,}.
In general, V; is a one-dimensional variety with boundary and F~!(z)

= {{e V| f2(0) = z,} is finite.

Fix next ¢ € A(B) and put V(¢) = {{ € B|¢({) = 0}. In general, V(¢) is a
one-dimensional analytic variety with boundary on 0B. Hence we have the
following maximum principle: if g € A(B) and y € V(¢), then

&) lg(y)) < max |g|.
V(¢) n B

In what follows, let 2 be a uniform algebra on a compact space X with
maximal ideal space M. We impose upon U the following condition, which
generalizes (9).

For each ¢ € Uput V(¢) = {pe M|¢(p) = 0}.

(10) If ¢ e Wand g e, then the restriction of g to V(¢) satisfies the maxi-
mum principle relative to V(¢) n X.
Also, for f}, f, e Wand F = (f,,f,) and z € C?, put
F~!(z) = {pe M|F(p) = z}.

Using (10) as a hypothesis, Basener, in A Generalized Silov Boundary and
Analytic Structure, Proc. Amer. Math. Soc., vol. 47 (1975), and independently
Sibony, obtain a result on analytic structure of dimension n > 1 in M. We
state the result when n = 2.

THEOREM 204

Assume (10), Let f;, f, € Wand put F = (f1, f,). Let W be a component of
C*\\F(X). Assume that F ~'(z) is a finite set for z in some set of positive measure
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in W. Then either F~ (W) =@ or F~ (W) can be given the structure of an
analytic space of complex dimension 2 such that every function in Wis analytic
on F~Y{(W).

NOTES

Theorem 20.1 is due to B. Cole, One point parts and the peak point con-
jecture, Ph.D. dissertation, Yale University (1968).

The proof of Theorem 20.2 is due to K. Oka, Domaines d’holomorphie,
Jour. Sci. Hiroshima University 7 1937). The theorem was given by the
author, Subharmonicity and Hulls, Pac. Jour. of Math. 58 (1975), and
used there to prove the existence of analytic structure in certain polynomially
convex hulls.



21
Examples of Hulls

Let X be a compact set in C" and h(X) its polynomially convex hull. Assume
that A(X)\X is non-empty. Does A(X)\ X contain some analytic variety?

In earlier Sections we studied some cases where the answer was Yes. In
1963 Gabriel Stolzenberg gave an example in C? where the answer was No.
We next give a modification of Stolzenberg’s example.

Let X be a compact set in C". Recall the algebra Ry(X), occurring in
Section 13, which consists of all f € C(X) such that 3 polynomials A and B
with B # Oon X and f = A/B on X.

Definition 21.1. R(X) is the uniform closure of Ry(X) on X. h(X), the
rationally convex hull of X, is the set of all y in C" such that every polynomial
which vanishes at y has a zero on X.

Exercise 21.1. h,(X) can be naturally identified with the maximal ideal
space of R(X).

Let S be a closed subset of |{| < 1 which contains the unit circle. Denote by
Dy, D,, ... the components of the complement of S in |{| < 1. For each i, put

H; = {(z,w)e C*zeD;, w| = 1},
K; = {(z,w) e C?|lz| = 1,we D;}.

Let B denote the unit bicylinder in C? and 0B its topological boundary. We
can picture each H; or K; as a solid torus lying in dB. We denote

Xs = aB\ UH, v Ki'
i=1
Thus X is obtained from 8B by removing this family of “solid tori.” Another
representation of X is this:

Xs = {(z,w)z€S, w| = 1} U {(z, w)|lz| = 1, weS}.

THEOREM 21.1

Assume that S has no interior. Then h(X) contains no analytic disk.

Note. It remains to be seen whether h,(X) is properly larger than X or
coincides with Xg. We shall look at this question below.

Proof of Theorem 21.1. Suppose E is an analytic disk contained in h,(X).
Either z or w is not a constant on E. Suppose z is not constant. Then z(E)
contains interior in C and so the z-projection of h,(Xs) has interior points. On
the other hand, this z-projection is contained in S. To see this, consider
(o, Wo) E (X ). If zo ¢ S, then z — z, # 0 on Xg. But z — z, vanishes at
(zo, Wo), and this contradicts the definition of h,(X). So z, €S, as claimed.

143
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Since S has no interior, by hypothesis, we have a contradiction. Thus E

cannot exist. Q.E.D.
Let now S be a closed subset of |{| < 1 which contains the unit circle and
let D;, H;, K;,i = 1,2,... be defined as above. We write X = Xj.

LEMMA 21.2

Fix p in B. If p ¢ h(X), then for some n, pe h(| )i, H; U K)).

Proof. Since p ¢ h(X), 3 polynomial Q with Q(p) =0 and Q # 0 on X.
Since Q is continuous and X = B\, H; U K;, we can choose n with
Q #0ondB\|Ji-; H; U K,.

Denote by V the connected component of the zero-set of Q containing p.
Then VN dB < (Ji-; H; U K;. Let f be a polynomial. The maximum
principle applied to V gives

|f(p)| < max|f| < sup|f]
V noB

taken over | )=, H; U K;. Hence pe h(| Ji-, H; U K)). Q.E.D.

THEOREM 21.3

We can choose S, as above, such that h(Xg) # Xs and h(Xs) contains no
analytic disk.

Proof. We shall construct a sequence of disjoint open disks Dy, D,, ...
contained in |{| < 1 such that if we set

s = (< )\ UDs,

Hi = {(Z’ W)|ZED1'7 |W| = 1}’
K; = {(z, w)||z| = 1, we D;}, then
(1) S lacks interior.

(2) For each n,

0¢h<UH,~ v Ki>.
i=1

In view of the Lemma, (2) implies that O € h,(Xs) and hence 0 € h,(X )\ Xs.
In view of Theorem 21.1, (1) and (2) then yield the theorem.

Choose a countable dense subset {a;} of |{| < 1, avoiding 0. We claim 3
disjoint open disks D;,i = 1, 2, ... contained in |{| < 1 such that for each n
we have:

(3) aje (D, for 1<j<n,
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and

@ 0¢ h(_

Cs=

1]

H;u Ki>.
1

Fix r, with 2r,/la;|*> < 1. Put G(z, w) = (z — a,)(w — a,)/a?. Put D, =
{It — a,] <r,}. Then G(0) = 1. For (z, wye H; U K, |G(z, w)| < 2r,/|a,|?
< 1. Hence 0 ¢ h(H, v K,).

Suppose now that disjoint open disks D, ..., Dy have been chosen so that
(3) and (4) hold forn = 1, 2, ..., 5. Also assume that dD; does not meet {a;}
for 1 <i <. Let a be the first of the a; not contained in Ule D;. By (4),3
polynomial P with |[P() > 1 and |P| <% on ()i, H;UK,. Put A=
maxg|P|. Choose k such that

(4

<1
|al?

and choose r with
2
lal?
Put Dy, = {|{ — a| < r}. We may assume that D, , fails to meet  Ji_, D;
and that 0D, ; does not meet {a;}. Put Q(z, w) = (P(z, w))*(z — a)(w — a)/a’.
Then |Q(0)] > 1;0n ( Ji-; H; U K;
) -4

< 1.
|al®

10l <

On H,,, U K,,, either |z —a| <ror|w—a|l <rso|Q <% 2r/la]* < 1.
So

s+1

0¢h<U H;,u K,-).
i=1

By choice of Dy, 1, a4 € Uf:} D;. So (3) and (4) hold for D, ..., Dy, Dy, ;.

Thus by induction the desired sequence D;, i = 1, 2, ... exists, satisfying (3),

(4) for each n. Then ( J{2, D, contains every a;. Since {a;} is dense in the disk, S

lacks interior. Thus (1) and (2) hold, and we are done.

Exercise 21.2. Let X be a compact subset of C". Then R(X) is generated by
n + 1 functions. (See the Notes for this Section.)

Let X be the set constructed in Theorem 21.3. By Exercise 21.2, R(X)
is generated by three functions g,, g,, g3. Denote by Y the image in C* of X5
under the map g = (g, g,, g3). By Exercise 21.1, h,(X) is the maximal ideal
space of R(X). Hence h(Y), the polynomially convex hull of Y in C3, is the
image of h,(X ) under g. Because of the choice of X, it follows that h(Y) # Y
and that h(Y) contains no analytic disk.

We next turn to the following question: let X be a compact set in C”. Is
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there some relation between the topological dimension of X and the topo-
logical dimension of A(X)? Exercise 9.4 above yields that the two-dimension-
al torus T = {(z, w)|lz] = |w| = 1} in C? has as its polynomially convex hull
the 4-dimensional bicylinder A%,

A recent example of Vitushkin shows the following:

THEOREM 21.4

There exists a compact totally disconnected set K in C? such that h(K)
contains the unit bicylinder B.
Notation. For any set S, diam S denotes the diameter of S.

LEMMA 21.5
Let T be the torus

{zw)lz —al = o |w— bl = B}

in C2, let Q be a neighborhood of T and fix ¢ > 0. Then 3a finite set of tori
T, ..., Ty, pairwise disjoint, such that

(5) T,<cQk=1,...,s
(6) diam T, <g k=1,...,s.

) h<0 T> S KT,

Proof. Fix n even and put g, = a + ae*™*" fork = 1,2,...,n. Fixr >0
such that the disks |z —a,) <r, k= 1,...,n, together cover the circle
|z — a] = o and such that no three of these disks have a common point. We
choose n large enough so that r < ¢/3.

Fix p* with § < B*.

We construct a family of tori 4,,k = 1, ..., n,asfollows: Fork = 2,4,...,n,
put
Ay = {(z, Wiz — al =r,Iw — b = B}.

Fork=1,3,...,n— 1, put
Ay = {z,w)lz — &l = r,|w — b| = B*}.

By taking n large and S* close to 8, we assure that 4, < Q for each k.

Assertion 1. The A, are pairwise disjoint.

Assume that A; N A, # &.Then the z-projections of A;and A, intersect, so
{lz—ajl=r}n{lz—al#B.Hence k =j+ 1 or k=j—1and so k is
even and j is odd, or conversely. Suppose the former. The w-projections of A4,
and A; intersect. But the first is [w — b| = f and the second is |w — b| = B*.
So we have a contradiction, and the Assertion holds.

Assertion 2. h(| Ji-; 4,) 2 h(T).
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It suffices to show that T< h(| Ji-; 4,). Fix (z, w)e T Then |z — a| = «,
so Jdk with |z — a,] < r. Also |w — b| = B. Hence (z, w) € h(A,). (Why?) Thus
(z, w)eh(Ji=1 A)), so the Assertion is proved.

Fix now k even, 2 < k <n. Put b, = b + fe*™™ for v=1,...,m. Fix
p > 0 such that the disks |w — b,| < p,v = 1, ..., m together cover |w — b|
= f and such that no three of these disks have a common point. We choose m
so large that p < ¢/3. Fix r* with r < r* < ¢/3. We construct the family of
tori A;,, v =1,..., mdefined as follows: Forv=2,4,... ,m,

Akv= {lZ— akl =r} X {lw_bvl =p}
Forv=13,....,m—1,

A ={lz — al =r*} x {lw = b| = p}.
By choosing m large, we assure that 4,, = Qforeach v. Arguing as above, with

A, replacing T and with the roles of z and w interchanged, we see that

(8) The A,, are pairwise disjoint.

©) h( QIA,W> 2 h(Ay).

By a similar argument, we construct tori 4,,,v = 1, ..., m for k odd such
that (8) and (9) hold. Without loss of generality, m, p, r* are independent of k.

Assertion 3. h( )i, =, Aw) 2 W(T).

Indeed, the set of the left is polynomially convex and by (9) contains 4, for
each k, hence contains Uﬁz 1 A,. Hence the set on the left contains h(U;= 1 Ay
and so by Assertion 2 contains h(T).

Since r* < ¢/3, p < ¢/3, diam A4,, < ¢ for each k, v. We relabel {A4,,lk, v}
as Ty,..., T,. By construction the T; satisfy (5) and (6), and Assertion 3

gives (7). QE.D.
LEMMA 21.6
3 a sequence {K,} of compact subsets of C? such that
(10) K,.. € K, for all n.
(11) h(K,) 2 B for all n.

(12) For each n with n > 1 3 disjoint closed sets K", ..., K\ such that
diam K" < 1/n for each j and o~ ; K¢ = K,,.

Proof. Let T' denote the torus |z| = 1, |w| = 1 and let K, be a compact
neighborhood of T!. Then h(K,) o B.

By the last Lemma choose disjoint tori T3, . . ., T2, such thateach T7 < K,
diam T? < % for each j and

(13) h<U Tf) 2 WT') =B.
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Next choose disjoint compact neighborhoods K7 of T7 for all j such that
each K? < K, and diam K? < 3. Put K, = ()2, K;. Then K, < K,
h(K,) 2 h(| J; T?) 2 B. So (11), (12) hold for n = 2.

Fix now j, 1 < j < n,. By the last Lemma construct disjoint tori T}, ...,
T3, such that T} < K7 for each k, diam T3, < § for each k and

(14) h< ¥, T;k> S 72,
k=1

Next choose compact disjoint neighborhoods K3, of T}, for all k, such that
each K3, = K7 and diam K3, < § for all k. Put

n2 Sj
K; = U UK?k-

j=1k=1

Then K3 < K,. Also h(K3;) 2 T for each j by (14) and so h(K3) > | J; T3,
whence

hWQQ%UTﬁzB

by (13). Hence (11), (12) hold for n = 3.
Proceeding by induction, we obtain the desired sequence {K,}. Q.E.D.
Proof of Theorem 21.4. Choose a sequence of sets {K,} satisfying (10), (11),
(12). Put

K = () K,.
n=1
Then K is a non-empty compact set in C2. We claim that h(K) = B.
Fix a polynomial P and fix ¢ > 0. Choose a neighborhood U of K with

sup|P| < max|P| + &.
U K

Choose n such that K, < U. Since h(K,) 2 B,

max|P| < max|P| < sup|P| < max|P| + e.
B Kn U K
Since ¢ was arbitrary, maxg|P| < maxg|P], and since this is valid for every P,
B < h(K), as claimed.
Let now Y be a connected component of K. Fix n. Then Y < K,,. Since Y
is connected, (12) gives that Y = K{” for some j and so diam Y < 1/n. It
follows that Y is a single point. Hence K is totally disconnected. Q.E.D.

NOTES

Stolzenberg’s example is given in G. Stolzenberg, A hull with no analytic
structure, Jour. of Math. and Mech. 12 (1963). Theorems 21.1 and 21.3
were given by the author, On an example of Stolzenberg, Symposium on
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Several Complex Variables, Park City, Utah (1970), Lecture Notes in Mathe-
matics 184, Springer-Verlag. A detailed description of h,(Xg) was given by
R. Basener, On rationally convex hulls, Trans. Amer. Math. Soc. 182 (1973).
Further properties of these sets are given by A. Debiard and B. Gaveau,
Frontiere de Jensen d’une algebre de fonctions, C. R. Acad. Sc. Paris 280
(20 January 1975).

A solution of Exercise 21.2 is to be found in A. Browder’s book [15], p. 16.
The fact that for an arbitrary compact plane set X R(X) has two generators
was discovered by K. Hoffman and E. Bishop, and the general result is due to
H. Rossi, Holomorphically convex sets in several complex variables, Ann.
of Math. 74 (1961), Section 3.

In the Problems section of Function Algebras, Proceedings of a Sym-
posium held at Tulane University (1965), Scott, Foresman and Co., W. Rudin
raised the question: “Suppose D = C", and D is the maximal ideal space of
the algebra of all fin C(D) which are holomorphic in D. Is the (real) dimension
of the Silov boundary at least n?”

Theorem 21.4, which treats a related problem, is due to A. G. Vitushkin,
On a problem of Rudin, Doklady Akademii Nauk SSSR 213 (1973). In
that paper, the set K is constructed so as to have Hausdorff dimension = 2.



22

Solutions to Some Exercises

Solution to Exercise 3.2. Choose relatively prime polynomials P and Q with
0 # 0in Qsuch thatf = P/Q. ForteC,
f(O) = f(x) _ Qx)P(2) — P(X)Q(1)
t—x Q(Q(x)(t — x)
F(x,t)
2(1)Q(x)’

where F is a polynomial in x and ¢,

N .
=—— ) ajt)x,

0(x) j=0

where each g; is holomorphic in Q. Hence

f@Q—-fx), _ 1 N{ }j_
L p—— dt_Q(x)j;, J;aj(t)dt x/ =0,

since each a; is analytic inside y. Also jy dt/t — x = 2zi. (Why?) Hence the
assertion.

Solution to Exercise 9.9. We must prove Theorem 9.7 and so we must show
that (%) < X.

S(#) is a closed subset of .#. Suppose Ix, in §(£)\ X. Choose an open
neighborhood V of x,, in M with V N X = . We may assume that V < U;
for some j. Since x, € S(¥), If € £ with

max| f| < sup|f|,
MN\V 14
and so
max| f| < sup| f].
oV 14
Since f € ¥, 3f, € A with f, - funiformly on V. Hence for large n,

max|f,| < sup|f,l
ov 14

Since V < 4\ X and S(Q) < X, this contradicts Theorem 9.3. The assertion

follows.
Solution to Exercise 12.2. We assert that if R(x) = x" + a;x" "' + --- + a,
is a monic polynomial of degree n, then

*). max |R() > —

—1<x<1 -2

150
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For
eio +e —i0

R(C059)=cos"0+alcos"_19+---=( 5 ) + T,

where T is a trigonometric polynomial of degree <n — 1. It follows that

1 " —in@ — 1
o f—n R(cos B)e™ ™ df = o
Since
‘— R(cos 0)e ™ ® d9’ < max |R(x),
—-1<x<1
we get ().

Define a map ¢: R — [0, 2] as follows: Let u represent linear measure and
suppose, without loss of generality, that u(S) > 0. Put

2
X) = — €S,y < x}, all xe R.
( W) p{ylyes,y < x}
As is easily seen, then, ¢ is continuous and nondecreasing on R. Also, ¢ is
constant on intervals complementary to S. Hence ¢(S) = ¢(R) = [0, 2].
Also
(**) lp(xy) — @lx2)l < 2 X2 — x4l allx;x,.
u(S)
Fix x € S. Then, by (**),

2 1
p(x) — Play)l - - 1p(x) — Pla)] < (—) |P(x)|
B(S)
2 t
< (m) M

ly = dy)l -1y — dlo)l < ( (ZS))I M

Since ¢(S) = [0, 2] this gives, for all y € [0, 2],

Note that (*) holds, by translation, when [ — 1, 1] is replaced by [0, 2]. Apply
this result to R(y) = (y — ¢(y)) - - - (y — (). It gives

1 2\
—_ < |— - <4.-M .E.D.
5= (,u(S)) M or usS)<4-M Q.E.D

Solution to Exercise 13.1. (Cf. [6, p. 107].) f(D) is represented in C" by a
system of equations

1) z;=F), j=1,...,n
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where the F; are analytic in || < 1 and the map: 4 — (F,(4), ..., F,(4)) is
one-to-one. We may assume that x° corresponds to 4 = 0; i.e., x° = (F,(0),
F,(0), ..., F,(0). Without loss of generality, F, is not a constant. Hence for
some k > 1 the derivative F{P(0) # 0 while F{(0) = 0 forj < k.

If k = 1, F, is one-to-one in some neighborhood U of 0. Then 3 holo-
morphic functions ¢; such that F; = ¢ (F,)in U,j = 2, ..., n. It follows that
in some neighborhood of x°, f(D) is given by equations

Z; — $3(z)) =0,...,2, — ¢,(z;) = 0,

and so the assertion of the exercise holds.

If k > 1 we have to work a bit harder. We observe that 3G holomorphic
and one-to-one in a neighborhood of 0 with F; = G*. We may suppose that
F(0) = 0. Then for small > 0 3 neighborhood U of 0 such that for each ¢
with 0 < |{| < & 3 precisely k points 4; in U with

Fl('ll) = F1('12) == Fl(lk) = C

Consider X = {(F,(4), ..., F,(A)|A € U}. X is a closed subset of the domain
Q:lz < din C".

We shall show that X is an analytic subvariety of Q.

Let h be a holomorphic function in Q. For each { in 0 < |¢| < é J exactly k
points p,(0), ..., pi() in £ with z,-coordinate {. Put

k
)] PyX,0) = [T (X = h(p{Q).

The elementary symmetric functions of h(p,()),..., h(p({)) are single-
valued analytic functions of { in 0 < |{| < &, bounded for |{| < /2, and hence
with removable singularity at { = 0. Hence

PX,0) = X*+ A,(OX* ' + - + AL,

the A; being holomorphic functions in |{| < d. As { — 0, p{(() — x° for each i.
Hence, letting { — 0, we get

3) X+ 4,00 X7 + -+ A4,(0) = (X — h(x°)~.

Now fix z° = (29, ...,20) e Q\Z.

Assertion. 3H holomorphic in Q with H(z°) # 0and H = O on X.

First assume that z$ # 0. Then p,(z9), ..., p«(z?) are distinct points in Z.
we can hence find h holomorphic in Q with h(z°) = 0 and h(p(z9)) = i,
1<i<k

Forz = (z,,...,2,)€Q, put

H(z) = Py(h(2), z;) = h"z) + A,(z))h* " 1(2) + - - + Aulzy).
Then H is holomorphic in Q and, by (2), H vanishes on X.
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The equation
P(X,z29 =0

has by choice of h the roots 1, 2, . . ., k and hence no other roots. In particular,
0 is not a root. Hence A4,(z9) # 0. It follows, since h(z°) = 0, that H(z°) # 0,
as desired.

Assume next that z? = 0. Choose h holomorphic in Q with h(z°) = 0
h(x°) # 0. Again put H(z) = P,(h(z), z,). As before, H = 0 on Z. By (3),

A0) = (= 1¥(r(x%) # O,

so H(z%) = A4,(0) # 0, as desired.

Let & be the collection of all functions f holomorphic in Q which vanish
on X. Because of the assertion just proved, the common zero set of all
functions in & is precisely X. By an elementary theorem about analytic
varieties (Theorem 3 on p. 86 in [6]), that zero set is an analytic subvariety
of Q. Thus 3 finitely many holomorphic functions in a ball B centered at x°
whose common zero set in B is £ n B and hence is (D) n B. We are done.

Solution to Exercise 13.4. Since ¢ € P(J,), ¢(F, F,, F3)is the restriction to
y of an element ¢* of A,,. Then ¢(J,) = ¢$*(y), so we must show that ¢p*(y)is a
Peano curve. We claim that for every f €., f(y) = f(S*). This will do it,
for ¢*(S%) > ¢*(S>*\\7), which is an open set since ¢* is analytic on S2\ .

To prove the claim, suppose the contrary. Then 3a € S2 \y with f'(a) ¢ f (7).
Letz; = g, z,, ..., z, be the finite zeros on S? of f — f(a). Each z; € S$*\.
Put

V) = f(z) f(a)
Ul(z—zj)

Y vanishes at infinity but nowhere else on S. Put

V(i) = i var arg .
2n |z]=r

For large r, V(r) > 0 since Y(o0) = 0. V is continuous for all r since ¥ has no
finite zeros. V(0) = 0 and V takes on only integer values. This is a contradic-
tion, and we are done.

Solution to Exercise 17.3. Denote by x,, ..., x,, the real coordinates in C".
Since a rotation preserves everything of interest to us, we may assume that
T is given by

X, =X,=---=x=0, l=2n-k

Since d*(x) > 0 for all x and d*(0) = 0, we have d(d*)/dx; = 0 at x = O for
all j, and so

d*(x) = Q(x) + o(lx|?),
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— 2n
where Q(x) = Y ?7_, a;jx;x;, a;; € R. Then

1
0(x) = Y a;xx; + R(x),

i,j=1
R(x) being a sum of terms a;x;x; with i or j > I. Note that a;; = a;;, alliand j.
Assertion. R = 0.
We define a bilinear form [ , ] on C" by
2n

.yl = % apx;.

i,j=1
This form is positive semidefinite, since [x, x] = Q(x) > 0 because d*> > 0.
Also the form is symmetric, since a;; = a;;.
Fix x*e C"withx* = (0, ..., 1, ..., 0), where the 1 is in the ath place and
the other entries are 0. Then [x% x*] = a,. If « > [, then x*€ T
If x € T, then d*(x) = o(|x|?), so Q(x) = 0. Fix « > I. Then [x% x*] = 0. It
follows that [x% y] = Oforally € C".(Why?)In particular,a,; = [x* x*] =0
for all 8. Hence R = 0, as claimed. Thus
]
(a) v Qx) = ) a;xx;.
i,j=1
If x is in the orthogonal complement of T and if |x| is small, then the unique

nearest point to x on X is 0, so d*(x) = |x|%. Thus if x = (x;, X5, ..., X},
0,...,0),d*x) = Y', x2 s0

(b) 0(x) = i xt.
Equations (a) and (b) yield that
0w = 3 5
for all x. But Y {_; x? = d*(x, T). So

d?(x) = d*(x, T) + o(|x|?). QE.D.

Solution to Exercise 18.2. For simplicity, we denote all constants by the
same letter C. By hypothesis we have |h(t)] < Clt|* for t e RY, || < 1. We
regard x as a map from (0, 2r) - R". For fixed 6 in (0, 27),

Ih(x(0))* < CIx(0)* < C(lIx]l)* < C(lIxIl;)*
Hence

2n
1) f <) d8 < C(lIx]|,)*.

o
Also |, (t)] < Clt| for [t] < 1. Writing dx;/d0 = X;, this gives

4
d6

(h(X(B)))’ = ‘Z hy (x(6))x:(6)

< Y CXO)x40)] < Clixllo LI%AO).
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Hence
d 2 N
‘E(h(xw))) < C(lIx[1,)? Y 1%40)1%,
i=1
and so
2n d 2
2 fo 70 (h(x(0))| d6 < Clix||} - lIx]3.
(1) and (2) together give [|h(x)|; < C(l|x]{)*. QE.D.
Solution to Exercise 18.3. Fix t,t' eRN, |t| < 1, |t| < 1. We claim
(1) |h(t) — k() < C(t] + 1E'DIe — £).
For
1
|h(t') — h(t) = } J; ;is{h(t + s(t' — t))} ds
1(N
= f {Zhn(’ + s(t’ — )(t; — t,-)} ds
0 (i=1
1( N
< J {Z lh (¢ + s(t' — t))|}|t’ — t| ds.
0 (i=1
Also
lh (Ol < CIg]  for |¢] < 1.
Hence
|h(t') — h(t)] < C(|t] + 1ENt" — tl, i.e., (1).
Fix 6. By (1)

[h(x(0)) — h(y O < C(x(©O)] + I¥O))(x(6) — ¥(O))
< Cllixlle + Iylo)(Ix = yl)
< Cllxlly + lyl)dix = yl).

Since this holds for all 6, we have

2 [h(x) — h(W)ll2 < C(Ix]ly + Iyl )Ulx = ylly).
Also for fixed 0,

d
2p ) — h(y)}‘ = ’Z h () (% = 3i) + X (B (x) — hy, ()

< Z C|x||55i - Yz| + Z Clx — J’”)’:I

< X Clixlll% = 3l + X Clix = yllalyil
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Hence

{r

So we have

() U

Putting (2) and (3) together, we get the assertion. Q.E.D.

d 2 1/2
7 — h(y)} dﬂ} < Clixlly 1% = il

+ Clx = ylls X 19ille < Clixllillx = ylly + Cllx = ylly - Iyl

d 2 1/2
7o) — h)} de} < Clixlly + Iyl - l1x = ;.
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