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Preface 

Algebraic K-theory is the branch of algebra dealing with linear algebra 
(especially in the limiting case of large matrices) over a general ring R 
instead of over a field. It associates to any ring R a sequence of abelian 
groups Ki(R). The first two of these, Ko and K 1 , are easy to describe in 
concrete terms; the others are rather mysterious. For instance, a finitely 
generated projective R-module defines an element of Ko(R), and an invert
ible matrix over R has a "determinant" in Kl(R). The entire sequence of 
groups Ki (R) behaves something like a homology theory for rings. 

Algebraic K-theory plays an important role in many areas, especially 
number theory, algebraic topology, and algebraic geometry. For instance, 
the class group of a number field is essentially Ko(R), where R is the ring 
of integers, and "Whitehead torsion" in topology is essentially an element 
of K 1 (Z1I"), where 11" is the fundamental group of the space being stud
ied. K-theory in algebraic geometry is basic to Grothendieck's approach 
to the Riemann-Roch problem. Some formulas in operator theory, involv
ing determinants and determinant pairings, are best understood in terms 
of algebraic K-theory. There is also substantial evidence that the higher 
K -groups of fields and of rings of integers are related to special values of 
L-functions and encode deep arithmetic information. 

This book is based on a one-semester course I gave at the University 
of Maryland in the fall of 1990. Most of those attending were second- or 
third-year graduate students interested in algebra or topology, though there 
were also a number of analysis students and faculty colleagues from other 
areas. I tried to make the course (and this book) fairly self-contained, and 
to assume as a prerequisite only the standard one-year graduate algebra 
course, based on a text such as [Hungerford], [Jacobson], or [Lang], and the 
standard introductory graduate course on algebraic and geometric topol
ogy, covering the fundamental group, homology, the notions of simplicial 
and OW-complex, and the definition and basic properties of manifolds. As 
taught at Maryland, the graduate algebra course includes the most basic 
definitions and concepts of category theory; a student who hasn't yet seen 
these ideas could consult any of the above algebra texts or an introduc
tion to category theory such as [Mac Lane]. Since many graduate algebra 
courses do not include much in the way of algebraic number theory, I have 
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included many topics such as the basic theory of Dedekind rings and the 
Dirichlet unit theorem, which may be familiar to some readers but not 
to all. I've tried in this book to presuppose as little topology as possible 
beyond a typical introductory course, and to develop what is needed as 
I go along, but to give the reader a flavor of some of the important ap
plications of the subject. A reader with almost no topology background 
should still be able to follow most of the book except for parts of Sections 
1.6, 1.7, 2.4, 4.4, and 6.3, and most of Chapter 5 (though I would hope 
this book might encourage him or her to take a more systematic course 
in topology). A problem one always has in writing a book such as this 
is to decide what to do about spectral sequences. They are usually not 
mentioned in first-year graduate cours~, and yet they are indispensable 
for serious work in homological algebra and K-theory. To avoid having 
to give an introduction to spectral sequences which might scare. off many 
readers, I have avoided using spectral sequences directly anywhere in the 
text. On the other hand, I have made indirect reference to them in many 
places, so that the reader who has heard of them will often see why they 
are relevant to the subject and how they could be used to simplify some of 
the proofs. 

For the most part, this book tends to follow the notes of the original 
course, with a few additions here and there. The major exceptions are 
that Chapters 3 and 5 have been greatly expanded, and Chapter 6 on 
cyclic homology has been added even though there was no time for it in 
the original course. Cyclic homology is a homology theory for rings which 
may be viewed as the "linearized version" of algebraic K-theory, and it's 
becoming increasingly clear that it is both a useful computational tool and 
a subject of independent interest with its own applications. 

Each chapter of this book is divided into sections, and I have used a 
single numbering system for all theorems, lemmas, exercises, definitions, 
and formulas, to make them easier to locate. Thus a reference such as 
1.4.6 means the 6th numbered item in Section 4 of Chapter 1, whether 
that item is a theorem, a corollary, an exercise, or a displayed formula. 
The exercises are an integral part of the book, and I have tried to put at 
least one interesting exercise at the end of every section. The reader should 
not be discouraged if he finds some of the exercises too difficult, since the 
exercises vary from the routine to the very challenging. 

I have used a number of more-or-less standard notations without special 
reference, but the reader who is puzzled by them will be able to find most 
of them listed in the Notational Index in the back of the book. 

Why This Book? 
The reader might logically ask how this book differs from its "competi

tion." [Bass] remains an important reference, but it is too comprehensive 
to use as a text for an elementary course, and also it predates the defini
tion of K 2 , let alone of higher K-theory or of cyclic homology. My original 
course was based on the notes by Milnor [Milnor], which are highly recom
mended. However, I found that [Milnor] is hard to use as a textbook, for 
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the following three reasons: 

(1) Milnor writes for a working mathematician, and sometimes leaves 
out details that graduate students might not be able to provide for 
themselves. 

(2) There are no exercises, at least in the formal sense. 
(3) The subject has changed quite a bit since Milnor's book was writ

ten. 

For the working algebraist already familiar with the contents of [Milnor] 
who wants to learn about Quillen K-theory and its applications in alge
braic geometry, [Srinivas] is an excellent text, but it would have been far 
beyond the reach of my audience. The notes of Berrick [Berrick] give a 
more elementary introduction to Quillen K-theory than [Srinivas], but are 
rather sketchy and do not say much about applications, and thus again are 
not too suitable for a graduate text. And [LluisP] is very good for an up
to-date survey, but is, as the title says, an overview rather than a textbook. 
For cyclic homology, the recent book by Loday [LodayCH] is excellent, but 
to be most useful requires the reader already to know something about 
K-theory. Also, I do not believe that there is any book available that dis
cusses the applications of algebraic K-theory in functional analysis (which 
are discussed here in 2.2.10-2.2.11,4.4.19-4.4.24,4.4.30,6.3.8--6.3.17, and 
6.3.29-30). Thus for all these reasons it seemed to me that another book 
on K-theory is needed. I hope this book helps at least in part to fulfill that 
need. 
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1 
Ko of Rings 

1. Defining Ko 
K-theoryas an independent discipline is a fairly new subject, only about 
35 years old. (See [Bak] for a brief history, including an explanation of the 
choice of the letter K to stand for the German word Klasse.) However, 
special cases of K -groups occur in almost all areas of mathematics, and 
particular examples of what we now call Ko were among the earliest stud
ied examples of abelian groups. More sophisticated examples of the idea of 
the definition of Ko underlie the Euler-Poincare characteristic in topology 
and the Riemann-Roch theorem in algebraic geometry. (The latter, which 
motivated Grothendieck's first work on K-theory, will be briefly described 
below in §3.1.) The Euler characteristic of a space X is the alternating sum 
of the Betti numbersj in other words, the alternating sum of the dimen
sions of certain vector spaces or free R-modules Hi(Xj R) (the homology 
groups with coefficients in a ring R). Similarly, when expressed in modern 
language, the Riemann-Roch theorem gives a formula for the difference of 
the dimensions of two vector spaces (cohomology spaces) attached to an 
algebraic line bundle over a non-singular projective curve. Thus both in
volve a formal difference of two free modules (over a ring R which can 
be taken to be C). The group Ko(R) makes it possible to define a similar 
formal difference of two finitely generated projective modules over any 
ring R. 

We begin by recalling the definition and a few basic properties of pro
jective modules. Unless we say otherwise, we shall assume all rings 
have a unit, we shall require all ring homomorphisms to be unit
preserving, and we shall always use the word module to mean 
"left module." 

1.1.1. Definition. Let R be a ring. A projective module over R 
means an R-module P with the property that any surjective R-module 
homomorphism a : M -+ P has a right inverse f3 : P -+ M. An equivalent 
way of phrasing this is that whenever one has a diagram of R-modules and 
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R-module maps 
P 

lso 
M~N 

with M ~ N surjective, one can fill this in to a commutative diagram 

P 

9 /' lso 
t/J M ---+ N. 

Indeed, given the diagram-completion property and a surjective R-mod
ule homomorphism 0: : M ---+ P, one can take N = P, cp = idp, and 
1/J = 0:, and the resulting () : P ---+ M is a right inverse for 0:, i.e., satisfies 
0: 0 () = idp. 

In the other direction, suppose any surjective R-module homomorphism 
0: : M ---+ P has a right inverse /3 : P ---+ M, and suppose one is given a 
diagram of R-modules and R-module maps 

P 

lso 
M~N 

with M ~ N surjective. Replacing M ~ N by M E9 P ~ N E9 P 
and cp : P ---+ N by (cp, idp) : P ---+ N E9 P, we may suppose cp is one-to-one, 
and then replacing N by the image of cp and M by 1/J-l(imcp), we may 
assume it's an isomorphism. Then take 0: = cp-l o1/J and the right inverse 
/3 : P ---+ M enables tis to complete the diagram. 

When 0: : M. ---+ P is surjective and /3 : P ---+ M is a right inverse for 0:, 

then p = /3 0 0: is an idempotent endomorphism of M, since 

(/3 0 0:)2 = (/3 0 0:) 0 (/3 0 0:) 

= /3 0 (0: 0 /3) 0 0: 

= /3 0 idp 0 0: = /3 0 0:, 

and then x ~ (o:(x), (l-p)(x)) gives an isomorphism M ~ PE9(l-p)(M). 

Using this observation, we can now prove the fundamental characteriza
tion of projective modules. 

1.1.2. Theorem. Let R be a ring. An R-module is projective if and only 
if it is isomorphic to a direct summand in a free R-module. It is finitely 
generated and projective if and only if it is isomorphic to a direct summand 
in Rn for some n. 

Proof. If P is projective, choose a free module F and a surjective R-mod
ule homomorphism 0: : F ---+ P by taking F to be the free module on some 



1. Defining Ko 3 

generating set for P, and a to be the obvious map sending a generator of F 
to the corresponding generator of P. We are using the universal property of 
a free module: To define an R-module homomorphism out of a free module, 
it is necessary and sufficient to specify where the generators should go. If 
P is finitely generated, then F will be isomorphic to Rn for some n. The 
observation above then shows P is isomorphic to a direct summand in a 
free R-module, which we can take to be Rn for some n if P is finitely 
generated. 

For the converse, observe first that free modules F are projective, since 
given a surjective R-module homomorphism a : M -+ F with F free, one 
can for each generator Xi of F choose some Yi E M with a(Yi) = Xi, and 
then one can define a right inverse to a by using the universal property 
of a free module to define an R-module homomorphism {3 : F -+ M with 
(3(Xi) = Vi. Next, suppose F = PEEl Q and F is a free module. Given a 
surjective R-module homomorphism a : M -+ P, a EEl idQ is a surjective 
R-module homomorphism (M EEl Q) -+ (P EEl Q) = F, so it has a right 
inverse. Now restrict this right inverse to P and project into M to get a 
right inverse for a. Finally, if F = Rn with standard generators Xl> ••• , Xn. 

then P is generated by p(Xi), where P is the identity on P and 0 on Q. 
Thus a direct summand in Rn is finitely generated and projective. D 

We're now almost ready to define Ko of a ring R. First of all, note that 
the isomorphism classes of finitely generated projective modules over R 
form an abelian semigroup Proj R, in fact a monoid, with EEl as the addition 
operation and with the O-module as the identity element. To see that this 
makes sense, there are a few easy things to check. First of all, Proj R is a 
set! (This wouldn't be true if we didn't take isomorphism classes, but in 
fact we have a very concrete model for Proj R as the set of split submodules 
of the Rn , n E N, divided out by the equivalence relation of isomorphism.) 
Secondly, direct sum is well defined on isomorphism classes, i.e., if P ~ P' 
and Q ~ Q', then PEElQ ~ P' EElQ'. And thirdly, direct sum is commutative 
(P EEl Q ~ Q EEl P) and associative «P EEl Q) EEl V ~ PEEl (Q EEl V)) once we 
pass to isomorphism classes. 

In general, though, Proj R is not a group, and may not even have the 
cancellation property 

a+b=c+b:::}a=c. 

It's therefore convenient to force it into being a group, even though this 
may result in the loss of some information. The idea of how to do this is 
very simple and depends on the following, which is just a generalization of 
the way Z is constructed from the additive semigroup of positive integers, or 
QX is constructed from the multiplicative semigroupof non-zero integers, 
or a ring is "localized" by the introduction of formal inverses for certain 
elements. 

1.1.3. Theorem. Let B be a commutative semigroup (not necessarily 
having a unit). There is an abelian group G (called the Grothendieck 
group or group completion of B), together with a semigroup homo-
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morphism cp : S --+ G, such that for any group H and homomorphism 
'IjJ: S --+ H, there is a unique homomorphism (): G --+ H with'IjJ = () 0 cp. 

Uniqueness holds in the following strong sense: if cp' : S --+ G' is any 
other pair with the same property, then there is an isomorphism O! : G --+ G' 
with cp' = O! 0 cp. 

Proof. We will outline two constructions. The simplest is to define G 
to be the set of equivalence classes of pairs (x, y) with x, YES, where 
(x, y) f"V (u, v) if and only if there is some t E S such that 

(1.1.4) x + v + t = u + y + t in S. 

Denote by [(x, y)] the equivalence class of (x, y). Then addition is defined 
by the rule 

[(x, y)] + [(x', y/)] = [(x + x', y + y/)]. 

(It is easy to see that this is consistent with the equivalence relation, and 
that the associative rule holds.) 

Note that for any x and y in S, 

[(x, x)] = [(y, y)] 

since x + y = y + x. Let 0 be this distinguished element [(x, x)]. This is an 
identity element for G, i.e., G is a monoid, since for any x, y, and tinS, 

(x + t, y + t) f"V (x, y). 

Also, G is a group since 

[(x, y)] + [(y, x)] = [(x + y, x + y)] = O. 

We define cp : S --+ G by 

cp(x) = [(x + x, x)], 

and it is easy to see that this is a homomorphism. Note that the image of 
cp generates G as a group, since 

[(x, y)] = cp(x) - cp(y) 

in G. Given a group H and homomorphism 'IjJ : S --+ H, the homomorphism 
() : G --+ H with 'IjJ = () 0 cp is defined by 

() ([(x, y)]) = 'IjJ(x) - 'IjJ(y). 

Alternatively, one may define G to be the free abelian group on gen
erators [x], XES, divided out by the relations that if x + y = z in S, 
then the elements [x] + [y] = [z] in G. Note that [(x, y)] in the previous 
construction corresponds to [x] - [y] in this second construction. The map 
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<p is X 1--+ [x], and of course any homomorphism from S into a group H 
must factor through G by construction. 

To prove the uniqueness, suppose <p' : S -+ G' has the same universal 
property. First of all, <p' (S) must generate G', since otherwise, if Gil is the 
subgroup generated by the image of <p', then there are two homomorphisms 
() : G' -+ G' ED G' / Gil with 

(<p', 0) = () ° <p', 

namely, () = (id, 0) and () = (id, q), q the quotient map. By the universal 
properties for G and G', there must be maps a : G -+ G' with <p' = a ° <p 
and {J : G' -+ G with <p = {J ° <p'. But then a ° {J = id on the image of <p', 
hence on all of G', so a is a left inverse to {J. Similarly {J ° a = id on the 
image of <Pi hence a is also a right inverse to (J, as required. 0 

Remarks. The assignment S - G = G(S) is in fact a functor from the 
category of abelian semigroups to the category of abelian groups, since if 
'Y : S -+ S' is a homomorphism of semigroups, it induces a commutative 
diagram 

S ~ S' 

G(S) ~ G(S'), 

where the arrow at the bottom is uniquely determined by the universal 
property of G( S). 

In fancier language, Theorem 1.1.3 just asserts that the forgetful functor 
F from the category of abelian groups to the category of abelian semigroups 
has a left adjoint, since 

HOmSemigroups(S, FH) ~ HomGroups(G, H). 

This could also have been deduced from the adjoint functor theorem (see 
[Freyd] or [Mac Lane]). 

It is convenient that we do not have to assume that cancellation (x + z = 
y + z =? x = y) holds in S. Indeed, the map <p : S -+ G is injective if 
and only if cancellation holds in S. One of the reasons for introducing 
Grothendieck groups is that semigroups without cancellation are usually 
very hard to handle; yet in many cases their Grothendieck groups are fairly 
tractable. 

1.1.5. Definition. Let R be a ring (with unit). Then Ko(R) is the 
Grothendieck group (in the sense of Theorem 1.1.3) of the semigroup Proj R 
of isomorphism classes of finitely generated projective modules over R. 

Note that Ko is a functor; in other words, if <p : R -+ R' is an R
module homomorphism, there is an induced homomorphism Ko(<p) = <p. : 
Ko(R) -+ Ko(R') satisfying the usual conditions id. = id, (<po.,p). = <P.o.,p •. 
To see this, observe first that <p induces a homomorphism Proj R -+ Proj R' 
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via [Pjl-t [R' ®cp P], for P a finitely generated projective module over R. 
As required, R' ®cp P is finitely generated and projective over R', since if 
P EB Q ~ Rn, then 

And of course, the tensor product commutes with direct sums so we get a 
homomorphism. Functoriality of Ko now follows from functoriality of the 
Grothendieck group construction. 

1.1.6. Example. If R is a field, or more generally a division ring (i.e., 
a skew-field), then any finitely generated R-module is a finitely generated 
R-vector space and so has a basis and a well-defined dimension. This 
dimension is the only isomorphism invariant of the module, so we see 
that Proj R ~ N, the additive monoid of natural numbers. Since the 
group completion of N is Z, Ko(R) ~ Z, with the isomorphism induced 
by the dimension isomorphism Proj R --t N. The inclusion of a field F 
into an extension field F' induces the identity map from Z to itself, since 
dimF/(F' ®F P) = dimF P for any F-vector space P. 

This same example also shows why we only use finitely generated 
projective modules in defining Ko. If R is a field, the same arguments 
show that the monoid of isomorphism classes of count ably generated 
modules is isomorphic to the extended natural numbers N U {oo}, with the 
usual rule of transfinite arithmetic, n + 00 = 00 for any n. This is no longer 
a monoid with cancellation; in fact, any two elements become isomorphic 
after adding 00 to each one. Thus the Grothendieck group of this monoid is 
trivial. A similar phenomenon happens with infinitely generated modules 
over an arbitrary ring; see Exercise 1.1.8. 

1.1.7. Exercise. Let S be the abelian monoid with elements an,m, where 
n E N, and 

{ 
m = 0 if n = 0 or 1, 

mE Z ifn = 2, 

m E Z/2 if n ~ 3. 

The semigroup operation is given by the formula 

an, m + an', m' = an+n" m+m', 

where m + m' is to be computed in Z if n + n' ::; 2 and in Z/2 if n + n' ~ 3. 
(If for instance n = 2 and n' ~ 1, then m is to be interpreted mod 2.) 
We shall see in §1.6 that S is isomorphic to Proj R with R = CIR (S2), the 
continuous real-valued functions on the 2-sphere. Compute G(S) and the 
map <p : S --t G(S). Determine the image of S in G, and show that while 
<p-l(O) = 0, <p is not injective. 
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1.1.8. Exercise (the "Eilenberg swindle"). Show that for any ring 
R, the Grothendieck group of the semigroup of isomorphism classes of 
countably generated projective R-modules vanishes. 

1.1.9. Exercise. Recall that if a ring R is commutative, then every left 
R-module is automatically a right R-module as well, so that the tensor 
product of two left R-modules makes sense. 

(1) Show that the tensor product of two finitely generated projective 
modules is again finitely generated and projective. 

(2) Show that the tensor product makes Ko(R) into a commutative 
ring with unit. (The class of the free R-module R is the unit 
element.) 

2. KO from idempotents 
There is another approach to Ko which is a little more concrete and there
fore often convenient. If P is a finitely generated projective R-module, we 
may assume (replacing P by an isomorphic module) that P $ Q = Rn for 
some n, and we can consider the R-module homomorphism p from Rn to 
itself which is the identity on P and 0 on Q. Clearly p is idempotent, i.e., 
p2 = p. Since any R-module homomorphism Rn --t Rn is. determined by 
the n coordinates of the images of each of the standard basis vectors, it 
corresponds to multiplication on the right (since R is acting on the left) 
by an n x n matrix. In other words, P is given by an idempotent n x n 
matrix p which determines P up to isomorphism. 

On the other hand, different idempotent matrices can give rise to the 
same isomorphism class of projective modules. (When R is a field, the only 
invariant of a projective module P is its dimension, which corresponds to 
the rank of the matrix p. When the characteristic of the field is zero, the 
rank of an idempotent matrix is just its trace.) So to compute Ko(R) from 
idempotent matrices, we need to describe the equivalence relation on the 
idempotent matrices that corresponds to isomorphism of the corresponding 
modules. 

1.2.1. Lemma. H p and q are idempotent matrices over a ring R (of 
possibly different sizes), the corresponding finitely generated projective R
modules are isomorphic if and only if it is possible to enlarge the sizes of p 
and q (by adding zeroes in the lower right-hand corner) so that they have 
the same size N x N and are conjugate under the group of invertible N x N 
matrices over R, GL(N, R). 

Proof. The condition is sufficient since if u E GL(N, R) and upu-l = q, 
then right multiplication by u induces an isomorphism from RN q to RN p. 
So the problem is to prove necessity of the condition. Suppose p is n x n 
and q is m x m, and Rnp ~ Rmq. We can extend an isomorphism 0: : 

Rnp --t Rmq to an R-module homomorphism Rn --t Rm by taking 0: = 0 
on the complementary module Rn(1- p), and by viewing the image Rmq 
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as embedded in Rm. Similarly extend a-l to an R-module homomorphism 
(3 : Rm --t Rn which is 0 on Rm(1 - q). Once we've done this, a is given 
by right multiplication by an n x m matrix a, and (3 is given by right 
multiplication by an m x n matrix b. We also have the relations ab = p, 
ba = q, a = pa = aq, b = qb = bp. The trick is now to take N = n+m and 
to observe that 

(1 ~ p 1 ~ q) 2 = (~ ~) 
(with usual block matrix notation) and that 

(I~P l~q)(~ ~)(I~P l~q) 

= (I~P l~q)(~ ~) = (~ ~). 
Thus (1 ~ p 1 ~ q) is invertible and conjugates pE90 to OE9q. The latter 

is of course conjugate to q E9 0 by a permutation matrix. 0 

Now we can give a simple description of Proj R. 

1.2.2. Definition. Let R be a ring. Denote by M(n, R) the collection of 
n x n matrices over R and by GL(n, R) the group of n x n matrices over 

R. We embed M(n, R) in M(n + 1, R) by a 1-+ (~ ~) (this is a non

unital ring homomorphism) and GL(n, R) in GL(n + 1, R) by the group 

homomorphism a 1-+ (~ ~). Denote by M(R) and GL(R) the infinite 

unions of the the M(n, R), resp. GL(n, R). Note that M(R) is a ring 
without unit and GL(R) is a group. It is important to remember that 
each matrix in M(R) has finite size. Let Idem(R) be the set of idempotent 
matrices in M(R), and note that GL(R) acts on Idem(R) by conjugation. 

Now we can restate Lemma 1.2.1. 

1.2.3. Theorem. For any ring R, Proj R may be identiB.ed with the set 
of conjugation orbits of GL(R) on Idem(R). The semigroup operation is 

induced by (p, q) 1-+ (~ ~). (One only has commutativity and associa

tivity after passage to conjugacy classes.) Ko(R) is the Grothendieck group 
of this semigroup. 

Using this fact we can now show that Ko is invariant under passage from 
R to Mn(R) and commutes with direct limits. We will also construct an 
example of a ring for which Ko vanishes. 

1.2.4. Theorem ("Morita invariance"). Fbr any ring R and any pos

itive integer n, there is a natural isomorphism Ko(R) ~ Ko(Mn(R». 

Proof. Via the usual identification of Mk(Mn(R)) with Mkn(R), 

ldem(Mn(R» = Idem(R) and GL(Mn(R» = GL(R). 
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The result therefore follows immediately from Theorem 1.2.3. 0 

Next we show that Ko is a continuous functor, i.e., that it commutes 
with (direct) limits. A direct system or directed system in a category 
is a collection {Ao:)aEJ of objects, indexed by a partially ordered set I with 
the property that if a, (3 E I, there is some 'Y E I with 'Y ~ a, 'Y ~ (3. 
In addition, one supposes there are morphisms <{)afJ : Aa --+ AfJ defined 
whenever a ~ (3, with the compatibility condition 

<{)fJ'"f 0 <{)afJ = <{)a'"f' a ~ (3 ~ 'Y. 

A (direct) limit for such a system is an object A = limAa, together with -morphisms "pa : Aa --+ A satisfying the compatibility condition "pa = 
"pfJ 0 <{)afJ whenever a ~ (3, with the universal property that compatible 
morphisms 

must factor as ~ o"pa for some ~ : A --+ B. For example, if G is the increasing 
union of an increasing sequence 

G1 ~ G2 ~ ••. 

of subgroups, it is their categorical direct limit in the category of groups 
(with respect to the obvious inclusion maps), and similarly if one replaces 
groups by rings or other algebraic objects. 

1.2.5. Theorem. Let {Ra)aEJ, (OafJ : Ra --+ RfJ)a<f3 be a direct system of 
rings and let R = limRa be the direct limit of the system. Then Ko{R) ~ -lim Ko{Ra). -Proof. Applying K o, we obtain a directed system of abelian groups 
{Ko{Ra))aEJ, (OafJ," : Ko{Ra) --+ Ko{RfJ))a<fJ and thus a limit group 
lim Ko{Ra). By the universal property of the direct limit, there is a natu--ral map limKo{Ra) --+ Ko{R). We want to show this is an isomorphism. -To prove surjectivity, first observe that each p E Idem{R) is a matrix with 
finitely many entries, each one of which must come from some Ra. If 
we choose 'Y greater than or equal to all of these indices a, then p is the 
image of a matrix in Idem{R-r), hence the class [Pj of p in Ko{R) is in 
the image of the natural map Ko{R-r) --+ Ko{R), hence in the image of 
limKo{Ra) --+ Ko{R). Since the [pj, p E Idem{R) , generate Ko{R), this -proves surjectivity. 

Now we prove injectivity. Suppose x E limKo{Ra) and x 1---+ 0 in Ko{R). -We may suppose x comes from Ko{Ra) for some a and is ofthe form [Pj-[q], 
p, q E Idem{Ra). The fact that x 1---+ 0 means that the images of p and of 
q in Idem{R) are stably isomorphic in the sense of (1.1.4). Without loss 
of generality, we may first add on zeroes in the lower right corners of p 
and q, then replace p and q by p EB lr and q EB lr' so that when mapped 
into Idem{R), p and q represent the same element of Proj R, hence are 
conjugate under GL{R). (This is by Theorem 1.2.3.) Once again, the 
matrix that does the conjugating must come from some GL{R-r), 'Y ~ a, 
and then [Pj- [qjl---+ 0 in Ko{R-r), hence x = 0 in the direct limit. 0 
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1.2.6. Example: a ring with vanishing Ko. We shall also use Theorem 
1.2.3 to construct a ring R for which all projective modules are stably 
isomorphic to one another (in the sense of (1.1.4)), hence for which Ko(R) = 
O. Let k be a field and let V be an infinite-dimensional vector space over 
k. Let R = Endk(V). If p, q E Idem(R), then p and q are idempotents in 
some Mn(R). Consider p EB 1 EB 0 and q EB 1 EB 0 in 

Mn+2(R) ~ Endk(kn+2) ®k R ~ Endk(kn+2) ®k Endk(V) 

~ Endk(Vn+2) ~ Endk(V) ~ R, 

since vn+2 and V have the same dimension over k when V is infinite
dimensional. Now 0 ~ rankp ~ dimk(Vn) = ndim V = dim V, and simi
larly 0 ~ rankq ~ dim V, whereas rank lR = dim V. So 

dim V ~ rank(p EB 1 EB 0) ~ dim V + dim V = dim V 

and rank(p EB 1 EB 0) = dim V. Similarly, rank(q EB 1 EB 0) = dim V and 

rank ((1 EB 1 EB l)(p EB 1 EB 0)) = rank ((1- p) EB 0 EB 1) = dim V, 

rank ((1 EB 1 EB 1) (q EB 1 EB 0)) = rank ((1 - q) EB 0 EB 1) = dim V. 

Since p EB 1 EB 0 and q EB 1 EB 0 are idempotent endomorphisms of a vector 
space and have the same rank and corank, they are conjugate. Hence 
p EB 1 EB 0 ~ q EB 1 EB 0 and hence [P] = [q] in Ko(R). 

1.2.7. Exercise: construction of a simple ring for which Ko is not 
finitely generated. Let k be a (commutative) field and define a map 

of rings <Pn : M2n (k) -t M2n+l (k) by a f-t (~ ~). Show that the in

duced map on Ko is multiplication by 2 (when we use the isomorphisms 
Ko(M2n(k)) ~ Ko(k) ~ Z, Ko(M2n+l(k)) ~ Ko(k) ~ Z defined by Theo
rem 1.2.4). Deduce that if A = lim(M2n(k), <Pn), then 

~ 

Note that since matrix rings over fields are simple, A is a limit of simple 
rings and so is simple. (One needs to show that if x E A, then the 2-sided 
ideal generated by x is everything, or that there exist elements aj, bj in A 
with 1 = L-j ajxbj . However, x must lie in (the canonical image of) one 
of the approximating rings M 2n, and one can construct the elements there 
by simplicity of the matrix ring.) 

1.2.8. Exercise: behavior of Ko under Cartesian products. Let 
R = Rl X R2, a Cartesian product of rings. By using the obvious decompo
sitions Idem(R) = Idem(R1 ) x Idem(R2) and GL(R) = GL(R1 ) x GL(R2), 
show that Proj R ~ Proj Rl x Proj R2 and hence that Ko(R) ~ Ko(Rl) EB 
Ko(R2). Generalize to arbitrary finite products. 
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1.2.9. Exercise: construction of rings with quite general count
able torsion-free Ko. 

(1) Use Theorem 1.2.4 and Exercise 1.2.8 to show that if k is a field and 
R is a finite product of r matrix rings over k, then Ko(R) ~ zr. 

(2) Show that a homomorphism zr -+ zr' given by right multiplica
tion by a matrix A E M r , r' (Z) can be implemented by a unital 
homomorphism of rings as in (1) if and only if all the entries of 
the matrix A are non-negative and no row or column of A is iden
tically 0. 

(3) Generalizing Exercise 1.2.7, show that any countable torsion-free 
abelian group can be realized as Ko(R) of a ring. (Write the group 
as an inductive limit of a sequence of finitely generated free abelian 
groups, with maps given by matrices as in (2).) 

3. KO of PIDs and local rings 
We're now ready to begin computing Ko for more rings of practical inter
est. Recall that a PID (principal ideal domain) is a commutative integral 
domain (ring without zero-divisors) in which every ideal can be generated 
by a single element. Standard examples are Z and a polynomial ring in 
one variable over a field. More general polynomial rings will be discussed 
in Chapter 3. 

1.3.1. Theorem. If R is a PID, every finitely generated projective module 
over R is isomorphic to R!" for some unique n, called the rank of the 
module. The rank induces an isomorphism Ko(R) -+ z. 

Proof. Needless to say, this follows from the general structure theorem 
for finitely generated modules over a PID, which we presume most readers 
have seen in an algebra course. However, since there's an easier proof that 
will motivate what we'll do for Dedekind rings, we give it here. Let M be 
a finitely generated projective module over R. We may assume that M is 
embedded in some R!". We argue by induction on n that M is isomorphic 
to Rk for some k ~ n. If n = 0, there is nothing to prove. So assume 
the result for smaller values of n and let 'If" : Rn -+ R be projection on the 
last coordinate. Note that 'If" maps M onto an R-submodule of R, i.e., an 
ideal. If 'If"(M) = 0, then we may view M as embedded in ker'lf" ~ R!"-l 
and use the inductive hypothesis. Otherwise, 'If"(M) is a non-zero ideal and 
so is isomorphic to R as an R-module (by the PID property). So 'If"(M) 
is projective and hence M splits as ker'lf"lM EB R (recall the remarks in 
1.1.1). Since we may view ker'lf"lM as embedded in R!"-t, we may apply 
the inductive hypothesis to conclude that it's isomorphic to Rk', k' ~ n-1. 
So M ~ Rk with k = k' + 1 ~ (n - 1) + 1 = n. 

Finally, we need to know that the rank k of M is well defined. This 
follows from the fact that we may also characterize it as the dimension of 
F ®R Mover F, where F is the field of fractions of R. The calculation of 
Ko is as in 1.1.6. 0 
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Remark. The proof actually showed a little more, namely that every 
submodule M of a finitely generated free R-module is free. We never 
explicitly used the fact that M is projective. 

For any ring R with unit, there is a unique ring homomorphism /, : Z -+ R 
sending 1 to the identity element of R. By Theorem 1.3.1, Ko(Z) ~ Z, so 
we obtain a map /,* : Z -+ Ko(R). The image of this map is the subgroup 
of Ko(R) generated by the finitely generated free R-modules. In general, 
the map /,* need not be injective; in Example 1.2.6, it is even O. 

1.3.2. Definition. The reduced Ko-group of R is the quotient 

Note that we have seen that Ko(R) vanishes if R is a division ring or a 
PID. In general, Ko(R) measures the non-obvious part of Ko(R). We will 
see in the next section that it recaptures a famous classical invariant of 
Dedekind rings. 

Next we compute Ko for local rings (which are not necessarily commu
tative). We begin with a review of some useful general ring theory. 

1.3.3. Definition. A ring R (not necessarily commutative) is local if 
the non-invertible elements of R constitute a proper 2-sided ideal M of R. 
Examples of commutative local rings include k[[tll, the ring of formal power 
series over a field k, and Z(p) , the ring of rational numbers of the form %, 
where p is a prime, b =f 0, and p f b. For an example of a non-commutative 
local ring, let S be any non-commutative unital k-algebra, where k is a 
field, and let 

R = {ao + alt + a2t2 + ... E SUtll : ao E k} . 

Since any power series in R with ao =f 0 is invertible (by the usual algo
rithm for inverting power series), and since the elements in R with ao = 0 
constitute an ideal, R is a local ring. 

1.3.4. Proposition. For a ring R (not necessarily commutative), the 
following are equivalent: 

(a) R has a unique maximal left ideal, and a unique maximal right 
ideal, and these coincide. 

(b) R is local. 

Proof. (b) =} (a). If R is local with ideal M of non-invertible elements, 
no element of R '- M can lie in a proper left ideal or proper right ideal, 
hence M is· both the unique maximal left ideal and the unique maximal 
right ideal. 

Now let's show (a) =} (b). Assume (a) and let x E R. If x does not 
have a left inverse, then Rx is a proper left ideal, which by Zorn's Lemma 
lies in a maximal left ideal, which by (a) is unique. Similarly, if x does not 
have a right inverse, then x lies in the unique maximal right ideal. Thus 
all non-invertible elements lie a proper 2-sided ideal M. 0 
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1.3.5. Corollary. In a local ring, an element with a one-sided inverse is 
invertible. 

Remark. Note that replacing (a) by the condition that R has a unique 
maximal 2-sided ideal gives a very different class of rings in the non
commutative case. A simple ring R (one with no 2-sided ideals other than 
o and R) need not be local; a matrix ring over a field is a counterexample, 
since a sum of singular matrices need not be singular. 

1.3.6. Definition. If R is any ring, the radical (or Jacobson radical) 
of R is the intersection of the maximal left ideals. By Proposition 1.3.4, in 
a local ring, the radical coincides with the maximal ideal. 

1.3.7. Proposition. For any ring R, the radical of R is a 2-sided ideal. 

Proof. If I is a maximal left ideal, the annihilator of R/ I in R certainly 
is contained in I. Hence 

n AnnR(R/I) ~ nI = radR. 
I a max. left ideal I 

On the other hand, 

n 
zER/I,z¥-O 

an intersection of maximal left ideals. So rad R is exactly the intersection 
of the AnnR(R/I), and so is 2-sided. 0 

Remark. The proof showed that the radical of R is the set of elements 
that annihilate all simple left R-modules. One observation we will need 
later is that since every siniple module for Mn(R) is isomorphic to one of 
the form ~ ®R M with M a simple R-module, any matrix all of whose 
entries lie in rad R must annihilate all such modules, hence must be in the 
radical of Mn(R). 

1.3.8. Proposition. For any ring R, the radical coincides with 

{x E R: Va E R, 1- ax has a left inverse} 

and with the intersection of the maximal right ideals. 

Proof. First we show that rad R is contained in the indicated set. If x 
lies in every maximal left ideal, then Rx lies in every maximal left ideal. 
Suppose a E R and 1 - ax does not have a left inverse. Then 1 - ax lies 
in a proper left ideal, hence in a maximal left ideal M. Since ax EM, we 
have 1 EM, a contradiction. 

Conversely, suppose that for all a E R, 1 - ax has a left inverse. Let 
M be a maximal left. ideal. If x fj. M, then Rx + M = R. Thus for some 
a E R, 1 - ax EM, a contradiction. So rad R coincides with 

{x E R: Va E R, 1- ax has a left inverse}. 
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Similarly, we can define the right radical 

r-rad R = n max. right ideals 

= {x E R: Va E R, 1- xa has a right inverse}. 

Since rad R is a right ideal by 1.3.7, if x E rad R and a E R, there is acE R 
with (I - c){l - xa) = 1. This gives (I - xa){l - c) = 1 + xac - cxa, and 
since x E rad R, xac - cxa E rad R. Thus 1 + xac - cxa has a left inverse, 
which shows 1-c has a left inverse. Since it also has a right inverse, namely 
1 - xa, they coincide, and 1 - xa is invertible with inverse 1 - c. Hence 
radR ~ r-radR. By symmetry, r-radR ~ radR and the two coincide. 0 

1.3.9. Theorem (Nakayama's Lemma). Suppose R is a ring and M 
is a finitely generated R-module such that {radR)M = M. Then M = O. 

Proof. Suppose M =/:- O. Pick a set of generators Xl, ... ,Xm for M with 
m as small as possible. (This implies in particular that each Xj =/:- 0.) By 
the assumption that {radR)M = M, there are elements TI, •.• ,Tm inradR 
such that 

Hence 
(I - Tm)Xm = TlXl + ... + Tm-lXm-l. 

By Proposition 1.3.8, 1- Tm is invertible; hence Xm can be expressed as a 
linear combination of XI, .•. , Xm-l' This contradicts the assumption that 
m was as small as possible. 0 

1.3.10. Corollary. If R is a ring, M is a finitely generated R-module, 
and Xl, ... ,Xm EM, then Xl, ... , Xm generate M if and only iftheir images 
XI, ... ,xm generate M/{radR)M as an R/radR-module. 

Proof. The "only if" statement is trivial. Suppose Xl, ... ,Xm generate 
M/{radR)M. Let N = Rxl + ... + RXm ~ M and consider M/N. This 
satisfies the hypotheses of Nakayama's Lemma, so M/N = 0 and M = 
N. 0 

1.3.11. Theorem. If R is a local ring, not necessarily commutative, then 
every projective finitely generated R-module is free with a uniquely defined 
rank. In particular, Ko{R) ~ Z with generator the isomorphism class of a 
free module of rank 1. 

Proof. Note R/ rad R is a division ring D. If M is a finitely generated 
projective R-module, we may assume M EB N = Rk for some k. Then 
M/{radR)M and N/(radR)N are D-modules, hence are free, say ofranks 
m and n, respectively, with m+n = k. Choose basis elements and pull them 
back to elements XI, ••. ,Xm E M, Xm+I, ... ,Xk E N. By Corollary 1.3.10, 
these generate Rk. We want to show that Xl, ..• ,Xk are a free basis for 
Rk. This will show in particular that Xl, ... ,Xm are a linearly independent 
generating set for M, so that M is free with the uniquely determined rank 

rankM = dimDM/{radR)M. 
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Let e1, ... ,ek be the standard free baBis for Rk. Since we now have two 
generating sets for Rk, each can be expressed in terms of the other, and 
there are elements aij, bij E R with 

Thus we get 

so 

k 

ei = ~aijXj, 
j=l 

k 

Xi = ~bijej. 
j=l 

k k 

ei = ~aij ~bjlel' 
j=l 1=1 

k k 

LL(aijbjl - 8il)el = 0, 
j=11=1 

and if A = (aij), B = (bij ), this means (since the el are linearly indepen
dent) that AB = I. Substituting the other way, we get 

k k 

L L(bijajl - 8il )Xl = 0, 
j=11=1 

and since the Xl are linearly independent modulo the radical of R, this 
shows BA - I E Mn(radR) ~ radMn(R) (using the remark following 
1.3.7). By Proposition 1.3.8, BA is invertible, hence B is invertible. Since 
A was a left inverse for B, this shows it is also a right inverse, i.e., BA = I. 
This proves the Xl, ••• ,Xm are a free baBis for Rk. D 

Part of the interest in local rings stems from the importance of localiza
tion aB a technique for studying more general commutative rings. Recall 
that if R is·· a commutative ring, the set Spec R of prime ideals in R be
comes a topological space, called the spectrum of R, when equipped with 
the so-called Zariski topology. The closed sets EJ in this topology are 
parameterized by the ideals I of R, where for I ~ R, 

EJ = {P E SpecR: P 2 I}. 

1.3.12. Proposition. Let R be a commutative ring and let Spec R be 
its prime ideal spectrum. If P is a finitely generated projective R-mod
ule, then P haB a well-defined rank function rank P : Spec R -+ N, and 
this function is continuous. In particular, if R is an integral domain, it is 
constant. Furthermore, for any commutative ring R, there is a splitting 
Ko(R) ~ Z Ee Ko(R). 

Proof. Given P E Spec R, Pp ~ Rp ® R P is a finitely generated projective 
module over Rp, which is a local ring. So by Proposition 1.3.11, it is free 
with a well-defined rank, which is the dimension of the associated module 
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over the field Rp/mp, where mp is the unique maximal ideal of Rp. Since 
mp = Rp ®R ll, the rank at II may also be computed by first taking P/llP, 
which is a module over the integral domain R/ll, then taking the dimension 
of the associated vector space over the field of fractions of R/ll. 

Next we prove continuity of the rank function. One way of seeing this is 
via the idempotent picture. Suppose P is defined by an idempotent matrix 
p E Mn(R). Then rankp P = k if and only ifthe image of pin Mn(R/ll) has 
rank k. Thus rankp P ~ k if and only if every (k + 1) x (k + 1) submatrix 
of p has a determinant in ll. This is clearly a closed condition, since it's 
equivalent to saying II contains certain specific elements of R, and the most 
general closed set in Spec R is of the form {ll : II 2 I} for some ideal I. But 
it's also an open condition since 

rankp ~ k {:=} rank(1 - p) 2:: n - k. 

To prove the final remarks, note that if R is an integral domain, then 
(0) is an open point in SpecR, hence SpecR is connected and rankP must 
be constant. The splitting map Ko(R) -+ Z for a general commutative ring 
is obtained simply by fixing a point II E Spec R and computing the rank 
there. D 

1.3.13. Exercise (The finite generation hypothesis in Nakayama's 
Lemma is necessary). Show from Nakayama's Lemma that if R is a left 
Noetherian ring and (radR)2 = radR, then radR = O. 

Let R be the ring of germs at 0 of continuous functions JR. -+ JR.. Show 
that R is a local ring, with radical the germs of functions 1 with 1(0) = 0, 
and that (radR)2 = radR. (R is not Noetherian, which is why this is 
possible.) 

1.3.14. Exercise. Compute Ko(Z/(m)) in terms of m, for any integer 
m > O. Hint: write m as a product of prime powers and use the Chinese 
Remainder Theorem to get a corresponding splitting of Z/(m) as a product 
of local rings. Then use Theorem 1.3.11 and Exercise 1.2.8. 

4. KO of Dedekind domains 
A particularly rich family of rings for which Ko is interesting are the 
Dedekind domains. We begin with the definition and basic properties of 
these domains, and then proceed to the most important examples, namely, 
the rings of integers in number fields. In this section R will always 
denote a commutative integral domain embedded in its field of 
fractions F. 

1.4.1. Definition. A non-zero R-submodule I of F is called a fractional 
ideal of R if there exists some a E R with aI ~ R. Clearly a non-zero 
ideal of R may be viewed as a fractional ideal; for emphasis, such an ideal 
is called an integral ideal. Also, if ~ E F (a, b E R; a, b #- 0), then 
R( ~) is a fractional ideal since bR( ~) ~ R. Such a fractional ideal is called 
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principal. One can multiply fractional ideals, and under multiplication 
they form an abelian monoid with identity element R. 

1.4.2. Definition. R is called a Dedekind domain or Dedekind ring 
if the fractional ideals under multiplication are a group, i.e., if given a 
fractional ideal I, there is a fractional ideal 1-1 with 1-11= R. Observe 
that necessarily 1-1 = {a E F : aI ~ R}. For if J = {a E F : aI ~ R}, 
then 1-11 ~ R so 1-1 ~ J, but then 

R=II-1 ~IJ~R, 

so II-1 = IJ and 1-1 = I-1IJ = J. 

1.4.3. Definition. Note that the principal fractional ideals are a subgroup 
of the fractional ideals isomorphic to FX / RX . The class group of the 
Dedekind domain R is defined to be 

C(R) = 

{group of fractional ideals} / {group of principal fractional ideals}. 

1.4.4. Proposition. The class group of a Dedekind domain may also be 
identified with the set of R-module isomorphism classes of integral frac
tional ideals. 

Proof. Clearly any fractional ideal is isomorphic to an integral one I 
(via multiplication by some element of R" {a}). And if I = (J)(Ra), 
then multiplication by a implements an R-module isomorphism J ~ I. 
Conversely, if cp : I ~ J is an R-module isomorphism and ao E I" {O}, 
then for any a E I, 

cp(aoa) = aocp(a) = acp(ao), 

so cp(ao)I = aoJ and [1] = [J] in C(R). 0 

1.4.5. Theorem. H R is Dedekind, then every fractional ideal is finitely 
generated and projective. In particular, R is Noetherian. 

Proof. Let I be a fractional ideal. Since 1-11 = R, there are elements 
Xl,' .. , Xn E 1-1 and Yl. ... , Yn E I such that l:~=1 XiYi = 1. If b E I, 
then b = l:(bXi)Yi with bXi E 1-11 = R, so Yl. . .. ,Yn generate I. Thus 
I is finitely generated. Since every ideal of R is finitely generated, R is 
Noetherian. 

But in addition, the homomorphism ~ ~ I defined by (a1,' .. ,an) 1-+ 

l: aiYi splits, with right inverse b 1-+ (bxl. ... , bXn) , by the same calcula
tion. So I is isomorphic to a direct summand in Rn and so is projective by 
Theorem 1.1.2. 0 

1.4.6. Corollary. H R is Dedekind, then every finitely generated projec
tive R-module is isomorphic to a direct sum of ideals. In particular, the 
isomorphism classes of the ideals generate Ko (R). 

Proof. We use the same argument as in the proof of Theorem 1.3.1. 
Let M be a finitely generated projective module over R. We may assume 
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that M is embedded in some Rn. We argue by induction on n that M is 
isomorphic to a direct sum of k ideals for some k ::; n. If n= 0, there 
is nothing to prove. So assume the result for smaller values of n and let 
'!r : Rn -+ R be projection on the last coordinate. Note that '!r maps M onto 
an R-submodule of R, i.e., an ideal. If '!reM) = 0, then we may view M as 
embedded in ker'!r £::! R n - 1 and use the inductive hypothesis. Otherwise, 
'!reM) is a non-zero ideal I and so is projective by Theorem 1.4.5. Hence 
M splits as ker'!rIM E9 I (recall the remarks in 1.1.1). Since we may view 
ker '!rIM as embedded in Rn-l, we may apply the inductive hypothesis to 
conclude that it's isomorphic to a direct sum of k' ideals, k' ::; n - 1. So 
M is a direct sum of k ideals with k = k' + 1 ::; (n - 1) + 1 = n. 0 

Our next goal is to relate Ko(R) to C(R), but first we need to develop 
more of the theory of Dedekind domains. This will also enable us to prove 
a useful characterization of Dedekind domains that will show that the ring 
of algebraic integers in a number field is a Dedekind domain. The next 
theorem generalizes the "fundamental theorem of arithmetic" (unique fac
torization of an integer into primes). 

1.4.7. Theorem. In a Dedekind domain R, every prime integral ideal is 
maximal. And every proper integral ideal can be factored uniquely (up to 
renumbering of the factors) into prime (or maximal) ideals. The group of 
fractional ideals is the free (multiplicative) abelian group on the (non-zero) 
prime ideals. 

Proof. (a) Suppose ° ~ I ~ R and I is prime but not maximal. Then 
there exists an integral ide,al J with I ~ J ~ R. Let K = J- 1Ij since 
I ~ J, K ~ J-IJ = R. Since JK = I and I is prime but J iI, K ~ I. 
But then 1= JK ~ JI ~ RI = I, a contradiction. So I is maximal. 

(b) Existence of factorizations. Let 

C = {proper integral ideals that are not products of prime ideals}. 

If this is empty, we're done. Otherwise, since every ascending chain of 
ideals in R has a maximal element (R is Noetherian by Theorem 1.4.5), C 
has a maximal element I by Zorn's Lemma. I can't be a maximal ideal 
(otherwise it would be prime itself and would have a trivial factorization 
I = I) so I ~ II ~ R for some ideal II. Let 12 = TIl I. This is also an 
ideal in R since I ~ It, and since I ~ It, it is a proper ideal containing I 
properly. Since It and 12 are both strictly bigger than I and I was maximal 
in C, both have factorizations into primes. But since I = ItI2 , multiplying 
gives a factorization of I, a contradiction. 

(c) Uniqueness of factorizations. Suppose PI'" Pm = Ql'" Qn 
with Pi, Qj prime and m ::; n. Then PI ;;> PI'" Pm = Ql'" Qn so 
some Qj lies in Pl. After renumbering if necessary, we may assume Ql ~ 
Pl. Write Ql = SlPl by the Dedekind property (where SI = P11Ql)' 
Multiplying through by P l- l gives P2 ··· Pm = SlQ2'" Qn. Continuing by 
induction, we get down to the case where m = 1, in which case it is clear 
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that we must have n = 1 and Ql = Pl' So factorizations into primes are 
unique. 

(d) Clearly there's a map from the free abelian group on the prime 
ideals into the multiplicative group of the fractional ideals. By (b) above, 
it's surjective. If there is something non-trivial in the kernel, we have 
p{'l ... p;!'r = R for some distinct prime ideals Pj and some nj E Z. If for 

some j, nj < 0, multiply through by prj I. Then we end up with some 
ideal in R having two distinct factorizations, contradicting (c). 0 

1.4.8. Lemma. Let R be any commutative ring and let h, 12 be ideals 
in R. If h + 12 = R, then hI2 = h n 12. 

Proof. Clearly 1112 ~ hnI2. On the other hand, if al E h, a2 E 12, and 
al + a2 = 1, then for x E h n 12, x = alx + a2X E Ilh + hh = 1112, 0 

1.4.9. Lemma. Let R be a Dedekind domain and let I be a fractional 
ideal, J an integral ideal. There exists a E I such that I-la + J = R. 

Proof. Let PI, ... ,Pr be the distinct prime ideals that occur in the fac
torization of J given by Theorem 1.4.7. Choose ai E IPI ... Pi'" Pr with 
ai fJ. I Pl' .. Pro Let a = I: ai· Note aiI - l ~ Pj if j =f. i, but aiI - l 1:. Pi, 
sice otherwise we'd have 

aiI - l ~ n Pj = PI ... Pr by iterated use of (1.4.8), 

hence 
ai E IPl ·· ·Pr, 

a contradiction. Now note that I-la 1:. Pj for any j. It's an integral ideal 
and this says I-la+J can't be divisible by any Pj' But it can't be divisible 
by any other prime ideal, either, by the choice of a, so it can't be a proper 
ideal and must be all of R. 0 

This implies that a Dedekind domain doesn't miss being a PID by very 
much. If R is a PID, any fractional ideal is singly generated. In a Dedekind 
domain, the best one can say along these lines is the following. 

1.4.10. Corollary. If R is a Dedekind domain, any fractional ideal of R 
can be generated by at most two elements. 

Proof. Let I be a fractional ideal, 0 =f. bE I. Let J = bI-l , which is an 
integral ideal. By Lemma 1.4.9, there is some a E I with aI- l + bI- l = R. 
Then I = Ra + Rb. 0 

1.4.11. Lemma. Suppose R is a Dedekind domain and h, 12 are frac
tional ideals for R. Then h EB 12 ~ REB 1112 as R-modules. 

Proof. Choose al =f. 0 in II and let J = alI}l, which is an integral ideal. 
Apply Lemma 1.4.9 with 1= h We get a2 E h such that Ii l a2+alI}1 = 
R. Choose bl E I}l, b2 E IiI with albl + a2b2 = 1. Then 
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showing that (:~ ~:2) is invertible with inverse (~~ ::), and 

gives the desired isomorphism (with inverse given by multiplication by the 
inverse matrix). 0 

1.4.12. Theorem. Let R be a Dedekind domain. Then any projective 
R-module of rank k can be written as Rk- 1 EB I, with I an ideal, and the 
isomorphism class of I is uniquely determined. If P and Q are finitely 
generated projective modules of the same rank k, say P ~ Rk-1 EB 11 and 
Q ~ Rk- 1 EB 12 for ideals 11 and 12, the map [P] - [Q]I--+ I1Ii1 sets up an 
isomorphism from Ko(R) to C(R). In fact, 

[Rk- 1 EB I] 1--+ (k, [ID 

sets up an isomorphism of abelian groups 

Ko(R) ~ Z EB C(R). 

As a commutative ring (see 1.1.9), 

Ko(R) ~ {(k, [ID : k E Z, [I] E C(R)}, 

with the operations 

(1.4.13) { 
(k, [ID + (k', [l'D = (k + k', [I][I'D, 

(k, [1]). (k', [l'D = (kk', [1]k'[I']k), 

rank : (k, [1]) 1--+ k E Z. 

Proof. By Corollary 1.4.6, every finitely generated projective module 
P over R is isomorphic to a direct sum 11 EB ... EB Ik of ideals, and by 
Proposition 1.3.12, P also has a well-defined rank. If I is an ideal, then 
rank 1= dimF(F ®R I) = dimF F = 1, so the rank of P is just the number 
k of ideals in a direct sum decomposition. Using Lemma 1.4.11 iteratively, 
we can rework the decomposition into the form Rk-1 EBI with a single ideal 
I. The only problem is to show that if 

then h ~ 12 as R-modules, or (equivalently, by Proposition 1.4.4) [h] = 
[h] in C(R). Once this is done, the formulae 1.4.13, and the identification 
of Ko(R) with C(R), then follow upon taking the direct sum or tensor 
product of Rk EB I and of Rk' EB l' and applying Lemma 1.4.11 iteratively. 
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So suppose we have an isomorphism 

with inverse (3. Since any R-module map from one ideal to another is given 
by multiplication by an element of F (compare the proof of Proposition 
1.4.4), a and (3 are induced by right multiplication by k x k matrices A 
and B (with entries in F) which are inverses of each other. Now if X is the 
diagonal matrix with diagonal entries (1,1, ... , l,x), where x E II, then 
right multiplication by X maps Rk into Rk-1 EEl 11, hence right multiplica
tion by XA maps Rk into R k- 1 EEl 12 • The rows of XAare the images of the 
standard basis vectors for Rk under this map, so they have their first k - 1 
entries in R and last entry in 12 • Thus expansion of the determinant along 
the last column shows that det(XA) E h Since detX = x, we obtain the 
condition xdetA E 12 for all x E 11 • Similarly ydetB = y(detA)-l E h 
for all y E 12 • So multiplication by det A implements an isomorphism from 
h to 12 • D 

We proceed now to the characterization of Dedekind domains. This will 
eventually make it possible to show that the rings of integers in number 
fields are Dedekind domains. Recall that a subring R of another ring S 
is called integrally closed in S if any element of S which is a root of a 
monic polynomial with coefficients in R actually lies in R. 

1.4.14. Lemma. Let R be a Noetberian integral domain wbich is inte
grally closed in its field of fractions F. Suppose I is a fractional ideal of R. 
Tben {8 E F : 81 ~ I} = R. 

Proof. Since R is Noetherian, I is finitely generated. Let S = {8 E F : 
81 ~ I}. Clearly R ~ S. But if 8 E S, 8 is integral over R, by the following 
argument. Choose generators aj for I. Then there are elements bjk E R 
such that 8aj = ~ bjkak. Thus if B = (bjk), 8 is an eigenvalue of B and 
so is a root of its characteristic polynomial, which is a monic polynomial 
with coefficients in R. Hence 8 E R since R is integrally closed. Thus 
S~R. D 

1.4.15. Lemma. Let R be a Noetberian commutative ring and let I be a 
non-zero proper ideal of R. Tben I contains a product of non-zero prime 
ideals. 

Proof. Suppose the result is false, and let C be the family of non-zero 
proper ideals of R which do not contain a product of non-zero prime ideals. 
Since R is Noetherian, C must contain a maximal element (under inclusion), 
say I. Clearly I is not prime, so there must be a, b E R with ab E I, 
a, b ~ I. We have I ~ 1+ Ra, I ~ 1+ Rb. If 1+ Ra = R, then 
(I +Ra)(I +Rb) = I +Rb ~ I, while on the other hand (I + Ra)(I +Rb) ~ 
1+ Rab ~ I, a contradiction. So I ~ 1+ Ra ~ R. Similarly I ~ 1+ Rb ~ R. 
Since I was maximal in C, 1+ Ra and 1+ Rb do not lie in C. Thus 
1+ Ra :2 Pl· .. Pr. 1+ Rb :2 Q1 ... Qs, for some prime ideals Pj and Qk. 
Then I = (I + Ra)(I + Rb) :2 Pl·· . Pr Q1 ... Qs, a contradiction. D 
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1.4.16. Lemma. Let R be a Noetherian integral domain in which every 
prime ideal is maximal. Let I be a non-zero proper ideal of R. Then there 
exists c E F with c rt. R such that cI <;;; R. 

Proof. Let a =1= 0 in I. Then Ra contains by Lemma 1.4.15 a product of 
non-zero prime ideals, say PI ... Pm, and we may assume m is chosen to be 
minimal with this property. Let P be a maximal ideal containing I. Then 

so some Pj <;;; P, say PI <;;; P. Since all prime ideals are maximal, we have 
PI = P. If m = 1, then I = Ra = P is maximal and a-I rt. R, a-II <;;; R. 
If m ~ 2, then by minimality of m, Ra 1. P2 ••• Pm. Choose bE P2 ••. Pm 
with b rt. Ra, and let c = ~. Then crt. R but 

cI <;;; cPl = a-lbPl <;;; a-I Pl . . ·Pm <;;; a-IRa = R. 0 

1.4.17. Theorem. A commutative integral domain R is Dedekind if and 
only if it has the following three properties: 

(a) Every non-zero prime ideal is maximal. 
(b) R is integrally closed in its field of fractions F. 
(c) R is Noetherian. 

Proof. If R is a Dedekind domain, it satisfies (c) by Theorem 1.4.5 and 
(a) by Theorem 1.4.7. Suppose a E F, a =1= 0, and a is integral over R. 
Then a is a root of some monic polynomial xn + an-l xn- l + ... + ao, where 
ao, ... , an-l E R. Consider M = R + Ra + Ra2 + ... + Ran-I. This is 
an R-submodule of F, and since an = -an_lan- l - ... - ao, it is stable 
under multiplication by a. If we write a = !, p, q E R and q =1= 0, then 
qn-l M <;;; R, so M is a fractional ideal. Multiplying aM <;;; M by M-l 

gives aR <;;; R, so a E R. This shows R is integrally closed. 
Now we show the conditions (a)-(c) imply R is Dedekind. Suppose R 

satisfies (a)-(c) and I is a fractional ideal. Let J = {a E F: aI E R}. We 
want to show I J = R, so that J is an inverse for I. Now I J is an integral 
ideal. Let K = {a E F : aIJ E R}. By definition, K(IJ) = (KJ)I <;;; R, 
so KJ <;;; J. By Lemma 1.4.14, K <;;; R. On the other hand, if IJ ~ R, 
then K ~ R by Lemma 1.4.16, a contradiction. So IJ = R and I is 
invertible. 0 

1.4.18. Theorem. Let F be a number field, i.e., a finite algebraic ex
tension of Q, and let R be the ring of algebraic integers in F, that is, the 
integral closure of Z in F. Then R is a Dedekind domain. 

Proof. We need to check the conditions of Theorem 1.4.17. Condition 
(b) is the easiest. R <;;; F, and if a E F is integral over R, then it is integral 
over Z by "transitivity of integrality," hence already contained in R. So R 
is integrally closed. 

To check (a), let p be a non-zero prime ideal in R. Then p n Z is a 
prime ideal in Z. We claim it can't be zero. Indeed, if b =1= 0 is in p, 
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the product NQ(b)/Q(b) of the conjugates of b (in some Galois extension 
K ;2 F) is ± the constant term of the minimal polynomial of b, which 
by the assumption that b E R has coefficients in Z. Now this product of 
the conjugates of b is a product of b with a product e of other algebraic 
integers, and since be E Z ~ F, e E F and is integral over Z. Hence e E R 
and 0 =f. be E Rb n Z ~ P n Z. Thus p n Z is a non-zero prime ideal in Z, 
i. e., p n Z = (p) for some prime number p. Since F is a finite algebraic 
extension of Q, R/p must be contained in a finite algebraic extension of 
Z/(p n Z) = Z/(p), in other words in a finite field of characteristic p. Since 
a finite integral domain is a field, R/p is a field, i.e., p is a maximal ideal. 

It remains to check (c), i.e., that R is Noetherian. One way of seeing 
this is by using the trace. Recall that if x E F, Tr F /Q (x) is the trace of 
the linear operator of multiplication by x on F, when we regard F as an 
n-dimensional vector space over Q, where n = [F : QJ. The trace pairing 
(x, Y) 1--+ TrF/Q(xy) is a non-degenerate symmetric Q-bilinear pairing on F 
(since for x =f. 0 in F, TrF / Q(XX-1) = n =f. 0). Choose elements AI,.'.' An E 
R which span F over Q. (One may obtain such elements by taking any 
basis elements for F over Q and then multiplying them by suitably large 
(ordinary) integers to kill off any denominators in the coefficients of their 
minimal polynomials.) Then 

x 1--+ (TrF/Q(XA1), ... , TrF/Q(XAn ») 

is an embedding of R into zn. In particular, R is a finitely generated 
Z-module, so any ascending chain of ideals in R is an ascending chain of 
submodules in a finitely generated Z-module, and so terminates (since Z is 
Noetherian). Thus R is Noetherian. 0 

Finally, we show that the Dedekind domains given by Theorem 1.4.18, 
which are the main subject of study in algebraic number theory, have finite 
class groups. The computation of these groups is not easy and is a problem 
of major interest. 

1.4.19. Theorem. Let F be a number field, i.e., a finite algebraic ex
tension of Q, and let R be the ring of algebraic integers in F, that is, the 
integral closure ofZ in F. Then the class group [(oCR) is finite. 

Proof. The proof requires the notion of the norm of an ideal. If I is 
an integral ideal of R, with prime factorization p;"l ... p;!r, then by the 
Chinese Remainder Theorem, 

R/I ~ R/P;"l x··· x R/p-:r. 

Since R/ Pj is a finite field for each j (by the proof of Theorem 1.4.18) and 
R/ p;j clearly has a composition series with nj composition factors, each 
isomorphic to R/Pj , R/P;' is finite with IR/Pjlnj elements, and R/I is 
finite. Thus we can define 

r 

11111 = IR/ II = IR/ P1 1n1 .. ·IR/ Pr Inr = II IIPj lin; . 
;=1 
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It is clear that this norm is multiplicative: 

11111211 = IIhll·III2 11· 
If I happens to be a principal ideal (a), note that since NF/IQ(a) is the 
determinant of the Z-linear operator of multiplication by a on R (which is 
isomorphic to zn as a Z-module), Ra has index I NF/IQ(a) I in R and thus 

II(a)11 = I NF/IQ(a) I. 
Recall from the proof of Theorem 1.4.18 that if P is a prime ideal with 

Pnz = (p), then R/ P is a finite extension of Z/(p) of degree::; n = [F : Q], 
so that IIPII = pi for some j with 1 ::; j ::; n. Thus for any 0 > 0, IIPII ::; 0 
implies p ::; 0 for the corresponding p. On the other hand, for a fixed prime 
number p, there are only finitely many prime ideals PeR with Pnz = (p) 
(namely, those prime ideals occurring in the prime factorization of Rp). So 
putting all of this together, we see there are only finitely many ideals I 
satisfying 11111 ::; O. 

To prove the theorem, it therefore suffices to show that there is a con
stant 0 > 0 such that every element of O(R) has a representative I with 
11111 ::; O. Choose a basis AI, ... ,An for R as a Z-module. (That such a 
basis exists was shown in the proof of Theorem 1.4.18.) Let A be the max
imal absolute value of a conjugate of one of the Aj in C and let 0 = n nAn. 
Choose any element of O(R) and represent it by a fractional ideal of the 
form K = J-1 , with J an integral ideal. We will show there is another 
representative I for the same ideal class with 11111 ::; O. Consider the set 

S = {alAI + ... + anAn : aj E Z, 0::; aj ::; [IIJII-:'].} 
(The square brackets denote the "greatest integer" function.) This set has 

([IIJII-:'] + l)n > IIJII = IRjJI 
elements, so there must by the pigeonhole principle be two elements 'fJ 
and ( of S with the same image in R/ J. Let ~ = 'fJ - ( E J and let 
I = (~)J-1 = (~)K ~ K. This is an integral ideal and (~) = IJ, so that 

IIIIIIIJII = II(~)II = I NF/IQ(~)I· 
On the other hand, since ~ is the difference of two elements of S, we 

may write 

so 

IIIIIIIJII = I NF/IQ(~)I 
= IT la1a (A1) + ... + ana(An) I 

O':F<-+C 

::; IT ( n[IIJII-:']A ) 
O':F<-+C 

::; nnllJllAn = OIIJII, 
proving the desired estimate. 0 
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1.4.20. Exercise (Construction of a non-trivial torsion element in 
a class group). Let R = Z[yC5]. 

(1) Show that R is the algebraic closure of Z in Q( H), so that R is 
a Dedekind domain by Theorem 1.4.18. 

(2) Show that p = (3, 2 + H) is a prime ideal in R. Hint: it's easy 
to see that Rip is a field of 3 elements, so that p is a maximal 
ideal. 

(3) Show that p is not principal. Hint: show that neither of the two 
generators divides the other, and that if there were a single gener
ator a + bH, then 

(a + bH) (c + dH) = 3 for some a, b, c, d E Z, 

and (multiplying by complex conjugates) 

(a2 + 5b2)(c + 5d2 ) = 9. 

lIthe factorization is non-trivial, a2 +5b2 = 3, which is impossible. 
(4) Show that p is an element of order 2 in the class group C(R). Hint: 

by (2), it is not of order 1. Show that p2 = (2 + A). 
(5) In fact, C(R) is the cyclic group of order 2 generated by p, though 

it is hard to prove this by such elementary methods. Can you 
supply a proof? 

(6) Suppose we replace R by the integral closure R' of Z(3) in Q( H). 
This is a localization of R that will have the property that if p is 
a maximal ideal in R', then p n Z(3) = (3). Show that R' is also 
Dedekind and compute its class group. 

1.4.21. Exercise (A ring of algebraic integers that is almost, but 
not quite, Dedekind). Let R = Z[Hl, with field of fractions F = 
Q(A). 

(1) Show that R is not integrally closed in F, so that R is not a 
Dedekind domain, by Theorem 1.4.17. 

(2) Exhibit a fractional ideal in R that does not have an inverse. Is 
this fractional ideal a projective module? 

1.4.22. Exercise. Show that a Dedekind domain R with only finitely 
many prime ideals is a PID, using the following (slightly non-standard) 
sketch: 

(1) Let PI, ... , Pn be a complete list of the distinct maximal ideals. 
Show using the Chinese Remainder Theorem that 

R/radR ~ RIPl x··· x RIPn, 

a finite product of fields. 
(2) Let P be an integral ideal of R. Show using (1) and the fact that 

P has rank 1 at each prime ideal that PI(radR)P is free ofrank 
1, hence principal. 

(3) Lift a generator of PI(radR)P to a generator of P using Corollary 
1.3.10. 
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1.4.23. Exercise (Complete calculation of a non-trivial class 
group). In this exercise, let R = JR[x, y]j(x2 + y2 - 1), the ring of (real
valued) polynomial functions on the circle. 

(1) Show that R is a Dedekind domain. 
(2) If I' is a prime (and thus maximal) ideal in R, show that R/p is 

an algebraic extension of JR, and thus isomorphic to either JR or C. 
Show that both possibilities can occur, and that in the first case, 
I' is of the form (x - a, y - (3), where a, {3 E JR and a 2 + (32 = 1, 
and that in the second case, I' is a principal ideal generated by 
some linear polynomial y + b, where b E JR, Ibl > 1, or x + ay + b, 
where a, bE JR, b2 - a2 > 1. Deduce that the class group Ko(R) is 
generated by the classes of the ideals (x-a, y-(3), where a, {3 E JR 
and a 2 + {32 = 1. 

(3) Show that if 1'1 and 1'2 are prime ideals of the form (x-aj, y-{3j), 
respectively, where aj, {3j E JR and aJ +{3; = 1, j = 1, 2, then 1'11'2 
is a principal ideal, with generator a linear polynomial vanishing 
at both (al, (31) and (a2' (32), if these points are distinct, or else 
the linear polynomial a1X + (31Y - 1, if 1'2 = Pl. Conclude that all 
non-principal prime ideals of R define the same element of the class 
group, and that this element is of order 2, hence that Ko(R) ~ 7/.,/2. 

1.4.24. Exercise (More on class groups of quadratic number 
fields). Let d be a square-free integer and let F = Q(v'd), which is the 
most general quadratic extension of Q. 

(1) Show that the ring R of algebraic integers in F is 7/.,[v'dl, provided 

that d == 2 or 3 mod 4, and is 7/., [lt2v'd] if d == 1 mod 4. (This 

explains Exercises 1.4.20(1) and 1.4.21(1).) 
(2) Let pEN be a (rational) prime. Show that R/(p) is a two

dimensional algebra over the field IF p of p elements, and that there 
are exactly three possibilities for R/(P): 

(a) R/(p) ~ lFp [x]j(x2) contains a nilpotent element. In this case 
we say p is ramified. Show that this case happens exactly 
when p divides d or, if d == 2 or 3 mod 4, when p = 2. 

(b) R/(p) ~ lFp2 is a field, so the principal ideal (p) in R is 
maximal. In this case we say p is inert. 

(c) R/ (p) ~ IF p x IF po In this case we say the prime p splits in 
F. 

(Hint: suppose R = 7/.,[~l with e = d, which is the case if d == 
2 or 3 mod 4. Then R/(p) ~ lFp [x]j(x2 - d), so you just have to 
analyze whether the polynomial x 2 -d has 0, 1, or 2 roots in 7/.,/(p). 
The case d == 1 mod 4 is similar; it's just that the polynomial is 
different. ) 

(3) Show that in case (a), the ramified case, (p) = 1'2 for some prime 
ideal I' of R, and that in case (c), the split case, (p) = 1'11'2 for some 
distinct prime ideals of R. In either case, if R has no elements of 
norm p, then the prime ideals occurring cannot be principal and 
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are thus non-trivial in OCR). Thus show that in the ramified case, 
one gets an element of OCR) of order 2. 

(4) Show how Exercise 1.4.20 fits into this general framework. 

5. Relative KO and excision 
One of the things that makes K-theory so computable and useful is the fact 
that it behaves like a "homology theory" for rings. (The precise connection 
with a cohomology theory for topological spaces will be made in the next 
section.) In particular, when R is a ring containing a two-sided ideal I, 
there is an exact sequence relating Ko(R) , Ko(R/ I), and a certain "relative 
K-group." This exact sequence looks something like the exact sequence in 
cohomology for a pair of topological spaces (X, A): 

Hj (X, A) -+ Hj (X) -+ Hj (A). 

The first aim of this section is to define the relative group Ko(R, I) and 
the exact sequence relating it to Ko(R) and Ko(R/ I). Then we prove an 
algebraic analogue of the excision axiom for homology and develop some 
applications. 

1.5.1. Definition. Let R be a ring and I ~ R an ideal (in this section, al
ways two-sided). The double of R along I is the subring of the Cartesian 
product R x R given by 

D(R, I) = {(x, y) E R x R : x - y E I}. 

Note that if PI denotes projection onto the first coordinate, then there is a 
split exact sequence 

(1.5.2) o -+ I -+ D(R, I) ~ R -+ 0, 

in the sense that PI is split surjective (with splitting map given by the 
diagonal embedding of R in D(R, I)) and that ker PI may be identified 
with I. 

1.5.3. Definition. The relative Ko-group of a ring R and an ideal I is 
defined by 

Ko(R, I) = ker «pd* : Ko(D(R, I)) -+ Ko(R)). 

Relative K-theory is closely linked to the phenomenon that while any 
matrix over R/ I can be lifted to a matrix over R, an invertible matrix 
cannot always be lifted to an invertible matrix. The following lemma will 
also be used in the next chapter. 



28 1. Ko of Rings 

1.5.4. Lemma. Let R be a ring and I ~ R an ideal. Then if A E 

GL(n, R/1), the2nx2nmatrix (~ A~l) liitstoamatrixinGL(2n, R). 

Proof. Note that 

(A 0.) (1 A) (1 0.) (1 A) (0. -1) 0. A-I = 0. 1 _A-l 1 0. 1 1 0. . 

The matrix (~ ~ 1) lifts "as is" to an invertible matrix over R. If B 

and C are any (not necessarily invertible) matrices in Mn(R) lifting A and 
A-I, respectively, then 

are invertible and lift 

Now just multiply. 0 

1.5.5. Theorem. Let R be a ring and I ~ R an ideal. Then there is a 
natural short exact sequence 

Ko(R, I) - Ko(R) ~ Ko(R/ I), 

where q* is induced by the quotient map q : R - R/ I and the map 
Ko(R, I) - Ko(R) is induced by P2 : D(R, 1) - R. 

Proof. For simplicity of notation in the proof, if A is an element of R or 
a matrix with entries in R, we will often denote q(A), the corresponding 
matrix over R/ I, by A. First consider an element [e] - [f] E Ko(R, 1), 
where e = (el' e2), f = (iI, h) E Idem(D(R, I)). The image of [e]- [f] 
in Ko(R x R) ~ Ko(R) x Ko(R) (using (1.2.8)) is ([el] - [iI], [e2] - [hD. 
So 

q* 0 (P2)*([e]- [fD = q*([e2]- [hD = [e2]- [i2]' 

whereas [el]- [iI] = 0 since by assumption [e] - [fl E ker(Pl)*' But since 
e, f E D(R, I), el = e2 and A = i2' Thus 

Hence the image of the first map is contained in the kernel of the second. 
Now suppose e, f E Idem(R) and q*([e]- [fD = [e]- [i] = 0.. Then e 

and i are stably equivalent, so for suitably large r, 
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under GL(R/ I). Replacing e by e E9 lr and I by I E9 l r , we may assume 
j = ge(g)-l for some matrix g E GL(R/I). In general, g will not lift to a 
matrix in GL(R). However, gE9(g)-l does conjugate eE96 to jE96, and lifts 
to a matrix h in GL(R) by Lemma 1.5.4. Thus we may replace I by I E90 
and e by h(e E9 0)h-1 without changing [e] and [I], and reduce to the case 
where e = j. This means (e, f) E Idem(D(R, I)). Then [(e, e)]- [(e, f)] 
is a class in Ko(D(R, I)) which maps to 0 under (Pl)* and to [e] - [I] 
under ~k This completes the proof of exactness. The naturality of the 
sequence (under homomorphisms R - R' sending I - I') is obvious from 
the definition of the maps and from functoriality of Ko. 0 

Remark. In general, the map Ko(R) - Ko(R/I) is not surjective, and 
the map Ko(R, I) - Ko(R) is not injective. The one exception will be 
the case where the ring homomorphism R - R/ I splits. In this case it is 
obvious that the map Ko(R) - Ko(R/ I) is split surjective, and it will also 
turn out (see 1.5.11 below) that Ko(R, I) is the kernel of this map. 

Next we want to prove the analogue of the excision theorem for topo
logical homology. Recall that this says that under suitable hypotheses, 
the relative homology H.(X, A) is unchanged when a large subset U of 
A is removed from both A and X. Under optimal circumstances (for in
stance, for CW-pairs), H.(X, A) ~ iI.(X/A) and thus only depends on 
the "difference" between X and A. The analogous statement for Ko turns 
out to be true, and says that the relative group Ko(R, I) only depends 
on the "difference" between R and R/I, which is measured by I (with its 
structure as a ring without unit). In fact, it turns out that Ko makes 
sense and is functorial even for rings without unit and for non-unital ring 
homomorphisms. With this language, we show that Ko(R, I) ~ Ko(I). 

1.5.6. Definition. Let I be a ring that doesn't necessarily have a unit 
element. The ring obtained by adjoining a unit element to I, denoted 
I+, is as an abelian group just I E9 Z, with multiplication defined by the 
rule 

(x, n) . (y, m) = (xy + ny + mx, mn), 

x, Y E Ij m; n E Z. It is an easy exercise to check that this is indeed a 
ring with unit, the unit element being (0, 1). The notation I+ is suggested 
by topology, where X+ is standard notation for a space X with a disjoint 
basepoint added. 

It is useful to note that if a : I - I' is a homomorphism in the cate
gory of rings without unit, it automatically extends uniquely to a unital 
homomorphism I+ ~ I~. 

Remark. The reader might wonder what happens if I already has a unit 
element, say e. In this case, there is a unital isomorphism a : I+ - I x Z 
(the Cartesian product of rings) defined by 

a(x, n) = (x + ne, n), 
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since 

a «x, n) . (y, m)) = a(xy + ny + mx, mn) 

= (xy+ny+mx+mne, mn) 

= (x+ne, n)· (y+me, m) 

= a(x, n) . a(y, m). 

1.5.7. Definition. Let I be a ring that doesn't necessarily have a unit. 
Note that one has a split exact sequence 

(1.5.8) 

Define 

At first sight, there might appear to be some ambiguity here, since if I has 
a unit, we have given two different definitions of Ko(I). However, by the 
remark above, in this case 1+ ~ I x Z, so Ko(I+) ~ Ko(I) EB Ko(Z), and 
ker P* just picks out the first summand. So the new definition agrees with 
the old one in this case. 

Also, this new definition makes Ko into a functor from the category of 
non-unital rings to abelian groups. This observation is occasionally useful 
even when one wants to deal only with rings with unit. For instance, if R is 
a ring with unit, there is a non-unital homomorphism R --+ Mn(R) defined 

by a 1-+ (~ ~ ). The reader can check that the homomorphism induced 

by this non-unital homomorphism is the Morita invariance isomorphism of 
Theorem 1.2.4. 

1.5.9. Theorem (Excision). If I is a two-sided ideal in a ring R, then 
Ko(R, I) ~ Ko(I) (and thus does not depend on R, only on the structure 
of I as a ring without unit). 

Proof. Define a unital homomorphism 'Y: h --+ D(R, I) by 

(x, n) 1-+ (n· 1, n· 1 + x), x E I, nEZ, 

and note that the diagram 

commutes. Hence 'Y* : Ko(I+) --+ Ko(D(R, I)) sends ker P* to ker(pd*, 
i.e., maps Ko(I) to Ko(R, I). 
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Next we show that this map is surjective. Consider a class tel - [I] E 
Ko(R, I), where e = (e1' e2), 1= (h, h) E Idem(D(R, I)) and [e1] = [h] 
in Ko(R). After replacing e and I by eE91r and IE91r for a suitably large r, 
we may assume that e1 and h are conjugate under GL(R), say e1 = 9h9-1 
for some invertible matrix 9. Replacing (h, h) by (9h9-1, 9129-1), we 
may assume that in fact h = e1. Next, if e is an 8 x 8 matrix, we may 
replace e and I by eE9 (ls - e1,'ls - e1) and-by I E9 (ls - e1, ls - ed. Note 
that there is an invertible 28 x 28 matrix h with entries in R conjugating 
e1 E9 (ls - ed to 1s E9 Os. Conjugating everything by h finally reduces us 
to the case where e = (ls E9 Os, e2), I = (ls E9 Os, h). Since e and I are 
matrices over D(R, I), e2 - (ls E9 Os) and 12 - (ls E9 Os) have entries in I. 
Now [e]- [I] is clearly in the image of Ko(I). 

Finally, we have to show "I" is injective on Ko(I). We may represent a 
general element of Ko(I) by [e]-[/], where 6>, I E Idem(I+) and rankp(e) = 
rank p(f). As above, if I is an r x r matrix, we may stabilize by taking direct 
sums with 1r - I and conjugating, and thus assume 1= 1r , rankp(e) = r. 
We may also assume 9P(e)9-1 = 1r for some 9 E GL(Z). Viewing 9 as an 
element of GL(I+) via the split exact sequence 1.5.8, we may replace e by 
ge9-1 and assume that p(e) = 1r . Now if "I,,([e]- [lrD = 0, this means 

[(lr, e)] = [(lr' 1r)] in Ko(D(R, I)). 

We may stabilize if necessary by increasing r and assume that there is a 
matrix (91, 92) E GL(D(R, I)) with 

Then (1, 91192) E GL(D(R, I)) and 

(91192)e(91192)-1 = 911 (92e92' 1)91 = 9111r91 = 1r. 

Since 91192 == 1 mod I, 91192 lies in GL(I+) and this says tel - [lr] = 0 
in Ko(I), proving that the kernel of "I" is trivial. D 

1.5.10. Examples. 

(a) Suppose R = Z and I = (m), where m > O. Thus R/I = Z/(m). 
Ko(R/ I) was computed in Exercise 1.3.14; the map Ko(R) -
Ko(R/I) is always injective but in general has a free abelian co
kernel of rank k-1, where k is the number of distinct prime factors 
of m. As a ring without unit, I is the free abelian group on a gen
erator t satisfying t2 = mt. Hence I+ ~ Z[t]/(t2 - mt), a fairly 
complicated ring. Ko(I) is not so easy to compute directly, though 
we will find a way to compute it in the next chapter. It turns out 
to be a finite abelian group. 

(b) For applications to topology (see Section 1. 7 below), rings of the 
form R = ZG, the integral ,group ring of a group G, are of partic
ular importance. It is a long-standing conjecture that when G is 
torsion-free, Ko(R) = O. This is known in some cases, for instance 
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when G is free abelian; this case will be treated in Chapter 3. For 
finite groups, Ko(ZG) is often non-trivial and contains interesting 
arithmetic information. Consider the simplest example, when G is 
cyclic of prime order p, say with generator t. Then R = ZG may 
be identified with Z[tl/W - 1). If e = e27ri / p , a primitive p-th root 
of unity, and if 8 = Z[eJ, then 8 is the ring of integers in the cyclo
tomic field QCe)' hence is a Dedekind domain by Theorem 1.4.18. 
There is a surjective homomorphism R --+ 8 defined by sending 
t 1--+ e. Since the cyclotomic polynomial Ip(t) = tp- 1 + ... + t + 1 
is irreducible, any polynomial get) E Z[t] with gee) = 0 must be 
divisible by Ip' In particular, anything in the kernel I of the map 
R --+ 8 must be a multiple of Ip. Note that as an element of R, 
f'; = pip' Thus I in this example is, as a ring without unit, the 
same as in the last example if we specialize to the case m = p. In 
particular, Ko(R, I) = Ko(Z, (p)). It is a result of Rim, which we 
will discuss later on, that the map R --+ 8 induces an isomorphism 
on Ko. In particular, Ko(R) 9:! C(8), the class group of the cy
clotomic field. This is known to be non-zero for primes p :2: 23. 
(See Example 3.3.5(b) below.) The smallest group G for which 
Ko(ZG) is non-trivial is the quaternion group of order 8-in this 
case, Ko(ZG) is of order 2 and an explicit generator is exhibited 
in Exercise 1.7.20(3) below. 

1.5.11. Exercise. The excision theorem may be interpreted as saying 
that the split exact sequence 1.5.2 gives rise to a split exact sequence of 
Ko-groups, the first group of which is Ko(I). The same holds by definition 
in the case of the split exact sequence 1.5.8. Using ideas from the proof of 
the excision theorem, show that if 

0--+ I --+ R --+ RjI --+ 0 

is split exact (i. e., I is an ideal in a ring R, and there is a splitting homo
morphism Rj I --+ R), then 

o --+ Ko(I) --+ Ko(R) --+ Ko(Rj I) --+ 0 

is split exact. 

6. An application: Swan's 
Theorem and topological K -theory 

To many mathematicians, the term K-theory suggests not algebraic K
theory but topological K-theory, an exceptional cohomology theory on 
compact Hausdorff spaces defined using vector bundles. The connection 
between the two comes from specializing what we have done to the case 
where R is a ring of continuous functions. In this context, the Excision 
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Theorem (1.5.9) gives the excision property for this cohomology theory. 
We do not attempt here to cover any of the deep properties of topological 
K-theory, the most fundamental of which is the Bott Periodicity Theo
rem, but we at least give a quick introduction to the fundamentals. This 
provides an interesting application of what we have done so far, as well 
as a useful motivation for a number of results and constructions in future 
chapters. The reader who wants to see more details can consult any of the 
texts [Atiyah], [Husemoller], or [Karoubi]. 

1.6.1. Definition. Let X be a topological space (in most of what we will 
do, assumed to be compact Hausdorff) and let IF = IR or C. A IF-vector 
bundle (in the weakest sense) consists of a topological space E and a 
continuous open surjective map p : E -+ X, with extra structure defined 
by the following: 

a) each fiber p-l(X) of p, x E X, is a finite-dimensional vector space 
over lFj 

b) there are continuous maps 

E xp E -+ E and IF x E -+ E 

which restrict to vector addition and scalar multiplication on each 
fiber. 

Such bundles E ~ X make up a category, in which the morphisms are 
commutative diagrams 

E~E' 

X===X 

for which the map E .L E' is linear on each fiber. 
For any X and any n E N, the category always includes the triviallF

vector bundle of rank n, which is X x r ~ X, where 11"1 is projection 
on the first factor and the vector bundle structure is the obvious one coming 
from the vector space structure on the second factor. 

The category has a binary operation called the Whitney sum, denoted 

EB. By definition, if E ~ X and E' ~ X are IF-vector bundles over X, 
their Whitney sum is defined by 

E EB E' = {(x, x') : x E E, x' E E', p(x) = p'(x')}, 

with the obvious map to X. 
For most purposes we want a more restrictive definition. A (locally 

trivial) IF-vector bundle is a IF-vector bundle in the above sense with 
the additional property that for each x EX, there is a neighborhood 
U of x in X and an isomorphism (in the category of IF-vector bundles) 

1 plp-l(U) 
from p- (U) I U to a trivial bundle of some rank over U. The 
rank of such a bundle is then a continuous function X -+ N defined by 
rank",(E) = dimp-l(x). If X is connected, the rank must be constant. 
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1.6.2. Definition. If X is a compact Hausdorff space, let VectlF(X) de
note the monoid of isomorphism classes (in the category of IF-vector bun
dles) of locally triviallF-vector bundles over X, with an addition opera
tion induced by the Whitney sum. The O-element of this monoid is the 
trivial bundle of rank o. The topological K-theory of X is defined 
by K3(X) = G(VectlF(X)). Sometimes this is denoted simply K(X) or 
KU(X) if IF = C, KO(X) if IF = lR. (The "U" and "0" stand respec
tively for "unitary" and "orthogonal" after the names of isometric linear 
transformations.) We will often suppress mention of IF when it is under
stood from context. If X is connected, the reduced topological K-theory 
is k3(X) = ker (rank: K3(X) -+ Z). 

KO(X) is actually a contravariant functor from the category of compact 
Hausdorff spaces (and continuous maps) to the category of abelian groups. 
This follows from the fact that vector bundles pull back under continuous 

maps. If X L Y is continuous and E ~ Y is a vector bundle over Y, we 
define f* (Y) to be the fiber product 

{(x, e) : x E X, e E E, f(x) = p(e)}, 

with the obvious map to X. The pull-back clearly induces a monoid homo
morphism f* : VectlF(Y) -+ VectlF(X) and thus a map KO(y) -+ KO(X). 

We're now ready for the connection between vector bundles and projec
tive modules that explains the connection between topological and alge
braic K-theory. 

1.6.3. Theorem [Swan2]. Let IF = II or C, let X be a compact Hausdorff 
space, and let R = CIF(X) be the ring of continuous IF-valued continuous 
functions on X (with pointwise addition and multiplication). If E ~ X is 
a (locally trivial) IF-vector bundle over X, let 

r(x, E) = {s : X -+ E continuous I po s = idx} 

be the set of continuous sections of p. Observe that this is naturally an R
module. Then r(X, E) is finitely generated and projective over R, and ev
ery finitely generated projective module over R arises (up to isomorphism) 
from this construction. The map E..,.. r(X, E) induces an isomorphism of 
categories from the category of (locally trivial) vector bundles over X to 
the category of finitely generated projective R-modules. It also induces an 
isomorphism KO(X) -+ Ko(R). 

Proof. Let E ~ X be a (locally trivial) IF-vector bundle over X and let 
r(X, E) be its R-module of sections. For each x E X, there is an open 
neighborhood U over which E looks like a trivial bundle U x lFn for some 
n. The n constant functions ej : U -+ lFn determined by the standard 
basis vectors of lFn clearly generate the sections of this trivial bundle as a 
module over the continuous functions. Since X is compact, we can cover 
X by finitely many such open sets Ui and choose a partition of unity (h) 
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subordinate to the covering. (Thus 0 ~ Ii ~ 1, Ii is supported in Ui , and 
Eli == 1.) Multiplying the ej corresponding to Ui by Ii, we get sections 
eij supported in Ui which clearly extend to all of X by taking them = 0 off 
Ui, and by construction, the eij generate r(X, E) as an R-module. Hence 
r(X, E) is finitely generated. 

Next we show that r(X, E) is projective. Choose generators sj, 1 ~ 
j ~ k, for r(X, E) as an R-module. (These mayor may not be the ones 
we just constructed above.) Consider the trivial bundle X x IFk ~ X and 
construct a morphism cp : X X IFk -+ E by 

k 

(x, Vb . .. ,Vk) I--t L VjSj(X). 
j=1 

Since the Sj(x) span p-l(x) for each x, this vector bundle morphism is 
surjective on each fiber. Define a subbundle of the trivial bundle by E' = 
ker cp , i. e., by E~ = ker CPx. This is also locally trivial since one can check 
that it is trivial over any open set where E is trivial. We claim now that 
E E9 E' ~ X X IFk, which will show that 

hence that r(X, E) is a projective module over R. 
The easiest way to do this is by introducing hermitian metrics, i.e., inner 

products. A hermitian metric on E is a continuous map 

( , ): E Xx E -+ IF 

which restricts to a positive-definite inner product on each fiber of E (bi
linear if IF = JR, sesquilinear if IF = C). Such metrics clearly exist since they 
exist on trivial bundles (use the standard inner product on ]Fn) and can 
be patched together using a partition of unity. Therefore we may choose 
such a metric on E and the metric on» X X IFk coming from the standard 
inner product on IFk. With respect to these metrics, cp has an adjoint cp* 
satisfying the usual relation 

(cpV, w) = (v, cp*w). 

Since cp is surjective on each fiber, cp* will be injective on each fiber, with 
image the orthogonal complement of E = ker cpo So cp* gives an isomor
phism of vector bundles from E to E'l., showing that E E9 E' ~ X X IFk, 
as desired. 

Now we have to show that every finitely generated projective module 
over R corresponds to a vector bundle. Suppose P is such a inodule and 
P E9 Q = ~ ~ C(X, ]Fn). Then we may view P as a collection of functions 
X -+ IFn and let 

E = {(x, Vb ... ,Vn) E X x r: 3s E P with s(x) = (Vb ... ,Vn)}. 
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Define p : E -+ X using projection onto the first factor. It is now quite 
easy to see that E ~ X is a vector bundle. Vector addition and scalar 
multiplication just come from vector addition and scalar multiplication in 
Fn. (These operations map E into itself since P is an R-module.) We need 
only check the local triviality. Given x E X, choose elements e1, ... , er E P 
such that e1(x), . .. , er(x) are a basis for the subspace Ex = p-l(X) of Fn. 
Recall these are vector-valued functions; write ei = (ei, ... , e~). Then 
since e1(x), ... , er(x) are linearly independent, we can choose 1 :=::: iI < 
... < jr :=::: n such that 

(1.6.4) ( 

1 
eil 

e=det : 

e": 
31 

e~ ) 3r 

e": 
3r 

is non-zero at x. We may choose similar elements p, ... , In-r E Q such 
that P(x), ... , r-r(x) are a basis for the image of Q in r at x. (The 
dimensions are complementary since P E9 Q = Rn 9:! C(X, IFn).) From 
the Ik we may construct an (n - r) x (n - r) determinant I, similar to 
(1.6.4), which is non-zero at x. Since e and I are continuous, there is 
some neighborhood U of x in which both e =f:. 0 and I =f:. O. For y E U, 
e1(y), . .. , er(y) are linearly independent and generate a rank-r free sub
module of P. Similarly, P(y), ... , r-r(y) are linearly independent and 
generate a rank-( n - r) free submodule of Q. By dimension counting, these 
must exhaust P and Q, so both P and Q are trivial over U. The statement 
about an equivalence of categories is now easy to check. 0 

Theorem 1.6.3 suggests that we should extend the definition of KO to 
the category of locally compact spaces and proper maps (maps that 
extend continuously to the one-point compactification) by letting KO(y) = 
Ko(CK(Y)), where CK(Y) is the ring of functions vanishing at infinity on 
Y and we are using K-theory for rings without unit, as in Definition 1.5.7. 
The resulting theory is called K-theory with compact supports. See 
Exercise 1.6.14 below for a more geometric definition. 

1.6.5. Proposition. If X is a compact Hausdorff space and A is a closed 
subspace, there is (for IF = either C or JR.) an exact sequence induced by 
the inclusion A '---+ X: 

Proof. Let R = CIF(X), and let I be the closed ideal of functions van-
ishing on A, which as a ring without unit is isomorphic to CK(X ....... A), 
the functions vanishing at infinity on the locally compact space X ....... A. 
By the Tietze Extension Theorem, every continuous function on A is the 
restriction of a continuous function on X, hence R/ I may be identified 
with CIF(A), with the quotient map R -+ R/I identified with restriction 
of functions. The result now follows immediately from Theorem 1.6.3 and 
Theorem 1.5.9. 0 
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Proposition 1.6.5 shows in effect that KO satisfies two of the Eilenberg
Steenrod axioms for a cohomology theory: exact sequences and excision. It 
also satisfies the other key axiom, homotopy invariance, and we prove this 
next by using special properties of Banach algebras. Recall that a Banach 
algebra A is an algebra over 1R or C which also has the structure of a 
Banach space, such that for any a, bE A, lIabll ::; lIalillbli. The principal 
examples for our purposes are Mn(CF(X», X a compact Hausdorff space, 
or Mn (CK (Y», Y a locally compact Hausdorff space. The latter does not 
have a unit. 

1.6.6. Lemma. Let A be a (real or co;m.plex) Banach algebra with unit 
and let x E A with 111- xII < 1. Then for each Q E 1R there is an element 
xet in A with the usual properties (Xl = x, xO = 1, xet . xfJ = xet+fJ ). In 
particular, x is invertible in A. 

Proof. Define xet by the usual binomial power series for (1 + (x - l»et. 
The norm of the n-th term in the series is bounded by the corresponding 
term in the series for (1+lIx-lll)et, which converges absolutely. Since A is a 
Banach space, the series for xet therefore converges absOlutely. The relation 
xet . xfJ = xet+fJ follows as usual from multiplication of the series. 0 

1.6.7. Lemma. Let A be a Banach algebra and let p, q be two idem
potents in A with lip - qll < min (lIpll-2, IIqll-2). Then the projective 
A-modules Ap and Aq are isomorphic. 

Proof. Observe that pAp and qAq are Banach algebras with unit ele
ments p and q, respectively. Since lip - qll < IIpll-2, multiplying by p on 
both sides gives IIp-pqpll < 1, and similarly IIq-qpqll < 1. So x = (pqp)-l 
makes sense in pAp and qpq is invertible in qAq, both by Lemma 1.6.6. Thus 
there is an x E pAp commuting with pqp with x2 (pqp) = p and of course 
with x = xp = px. Observe then that 

(1.6.8) (xq)(qx) = xpqpx = x2(pqp) = p, 

that 

(1.6.9) p(xq) = xq = (xq)q, q(qx) = qx = (qx)p, 

and that 

(1.6.10) 

The equation (1.6.10) says (qx)(xq) is a left unit for qpq in qAq. But since 
qpq is invertible in qAq, (qx)(xq) must be equal to the unit element of 
qAq, which is q. The equations (1.6.8) and (1.6.9), together with this fact, 
imply that right multiplication by qx gives an isomorphism from Aq onto 
Ap, whose inverse is right multiplication by xq (compare the calculation in 
Lemma 1.2.1). 0 
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1.6.11. Corollary (Homotopy invariance of topological K-theo
ry). Let A and B be Banach algebras and let CPt : A -- B, ° ~ t ~ 1, 
be a homotopy of homomorphisms from A to B. (This means exactly 
that there is a homomorphism cP : A -- 0([0, 1], B) which when composed 
with evaluation at t gives CPt.) Then CPo and CPl induce the same map on 
K-theory Ko(A) -- Ko(B). 

Proof. H necessary, adjoin units to A and B and extend CPt to a homotopy 
of unital homomorphisms of unital algebras A+ -- B+. Since Ko(A) <-+ 
Ko(A+) and Ko(B) <-+ Ko(B+), this reduces us to the unital case. For 
simplicity, we therefore assume without loss of generality that A, B, and 
the homomorphisms are unital. For any p E Idem(A), p lies in Mn{A) for 
some n, so we may replace A and B by Mn(A) and Mn(B), respectively. 
(These are still unital Banach algebras, and CPt extends naturally to Mn(A) 
just by application of the homomorphism to each matrix entry separately.) 

Then CPt (P) is a continuous path of idempotents in B. Choose 0 so that 
IIcpt(P)1I ~ 0 for all t. We may partition the interval [0, 1] into subintervals 
such that IIcpt(P) - CP8(P)1I < 0-2 for t, 8 in the same subinterval. By 
Lemma 1.6.7, the class of CPt(P) remains constant in each subinterval, hence 
remains constant in the whole interval. So CPo and CPl induce the same map 
Idem(A) -- Idem(B) and hence the same map on Ko. 0 

1.6.12. Corollary. The functors X '"-'+ VectF(X) and X '"-'+ KO(X) are 
homotopy-invariant functors from the category of compact Hausdorff topo
logical spaces to the category of abelian monoids and the category of abelian 
groups, respectively. In particular, if X is contractible, all vector bundles 
over X are trivial, and KO(X) = 0. 

Proof Specialize to the case of Banach algebras of the form Mn (OF (X». 
Since homotopic idempotents are equivalent, we deduce that the map from 
X to isomorphism classes of direct summands in a trivial bundle of rank 
n over X is a homotopy functor. The rest of the statements follow from 
this. 0 

1.6.13. Example. Corollary 1.6.12 shows that the classification of vector 
bundles, and hence the calculation of KO(X), are homotopy-theoretic in 
nature. Consider for instance the case where X = sn. This is a union of 
two contractible hemispheres joined along the equator sn-l. (H n = 0, the 
hemispheres are single points and the "equator" is the empty set.) Thus 
any rank-r bundle over X is trivial over the hemispheres and determined 
by the homotopy class of the "gluing data" along Y = sn-l, which gives 
an isomorphism between the two trivializations of the bundle coming from 
the two hemispheres. Now an isomorphism between two trivial bundles 
Y x r ~ Y is just given by a continuous map Y -- GL(r, IF). So 
isomorphism classes of rank-r IF-vector bundles over sn are in one-to-one 
correspondence with homotopy classes of maps sn-l -- GL(r, IF). Fur
thermore, by polar decomposition, any matrix in GL(r, IF) can be written 
uniquely in the form up, where u is unitary if IF = C, orthogonal if IF = JR, 
and p is positive-definite self-adjoint. The positive-definite self-adjoint ma-
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trices form a contractible space (since one can write any such matrix as 
eh with h hermitian and use the contraction given by eth , 0 ~ t ~ 1), so 
GL(r, C) has a deformation retraction to U(r) and GL(r, JR) has a defor
mation retraction to O(r). Thus the isomorphism classes ofrank-r IF-vector 
bundles over sn are given by 7rn-1(U(r)) if IF = C, 7rn -1(0(r)) if IF = lR. 
The O-element of the homotopy group corresponds to the trivial bundle. 

Now we can make some computations. O(r) always has two components 
with identity component the rotation group SO(r), and U(r) is connected. 

-0 -0 
Thus 7ro(U(r)) = ° and 7ro(O(r)) ~ '1./2, so KU (Sl) = 0, KO (Sl) ~ 
'1./2. In low dimensions, one can check that 0(1) = {I, -I}, SO(2) ~ Sl, 
SO(3) ~ U 3, SO(4) has S3 x S3 as a double cover, U(l) ~ S1, SU(2) ~ 
S3. Thus, for instance, 

{ 
0, r = 1, 

7r1(0(r)) = 'I., r = 2, 

'1./2, r ~ 3, 

so that VectR(S2) is the monoid described in Exercise 1.1.7. One finds sim-
-0 

Harly that 7r1(U(r)) = 'I. for all r, so that KU (S2) ~ Z. The calculations 
-0 -0 

of K 0 (sn) and of KU (sn) for all n follow from the Bott Periodicity The-
orem, which says that the answer only depends on the value of n mod 8 
in the real case or the value of n mod 2 in the complex case. One obtains 

{ 
0, r:(E 0, 1,2,4 mod 8, 

-0 
KO (sn) = . 'I., r ~ 0,4 mod 8, 

'1./2, r = 1,2 mod 8, 

-0 {O, r odd, 
KU (sn) = 

'I., r even. 

1.6.14. Exercise. Give another description of K-theory with compact 
supports for a locally compact Hausdorff space Y in which ~(Y) is a set 
of equivalence classes of triples (Eo, E1, cp), where Eo and E1 are (locally 
trivial) vector bundles over Y and cp is a morphism of vector bundles Eo -+ 

E1 which is an isomorphism outside of a compact set, and with relations 

(a) [Eo, E1, cp] + [Fo, F1, "p] = [Eo $ Fo, E1 $ FlI cp $ "p], 

(b) [Eo, Ell cp] = [Eo, E1, cp'] if cp = cp' outside of a compact set, 

(c) [Eo, Ell cp] = ° if cp is an isomorphism. 

Impose the necessary equivalence relation to get an isomorphism with our 
old description of K O• Hint: when Y is actually compact, condition (b) 
says that one can forget the cp altogether. In this case, the isomorphism of 
this description of KO with the usual one is given by 

[Eo, E1, cp] 1-+ [Eo]- [E1]. 
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1.6.15. Exercise. Show that if one defines K-j(X) = KO(X x R.i) (using 
K-theory with compact supports) that the short exact sequence of Propo
sition 1.6.5 can be extended to a long exact sequence 

... - K-j(X, A) _ K-j(X) _ K-j(A) _ K-H l(X, A) _ .... 

Hint: the problem is construct the boundary map KO(AxlR) _ KO(X,A). 
This can be done by letting Y be the space (A x (0, 1]) U X, with (a, 1) 
identified with a E X for a E A. (Y is the "open mapping cone" of the 
inclusion A '--+ X.) One gets from Proposition 1.6.5 exact sequences 

KO(A x (0, 1» _ KO(y) - ~(X) 

and 
KO(X , A) _ KO(y) - KO(A x (0, 1]). 

Show using homotopy-in variance and excision that KO(A x (0, 1]) vanishes 
and that KO (X , A) - KO (Y) is an isomorphism. Then splice these exact 
sequences together with the sequence 

KO(X , A) _ KO(X) _ KO(A). 

1.6.16. Exercise (The Karoubi Density Theorem [Karoubi, 11.6. 
15]). Let A and A be (unital) Banach algebras over C, and let,,: A - A 
be a continuous injection of A into A as a dense subalgebra. Extend" 
to matrices in the usual way, by applying it to each entry of the matrix. 
Assume that for all n, if x E Mn(A) and ,,(x) is invertible in Mn(A), then 
x is invertible in Mn(A). 

(1) Show that" induces an isomorphism Ko(A) - Ko(A). Hint for 
the surjectivity: if e is an idempotent in Mn(A), then e can be 
approximated in the topology of A by an element x of Mn(A). 
Show that the spectrum of x in Mn(A) coincides with its spectrum 
in Mn(A), and thus that x has spectrum close to {O, I}. Deduce 
that the Banach subalgebra of Mn(A) generated by x contains an 
idempotent , with ,,(f) close to e, by justifying the definition 

,=_1 r~, 
27ri lr (- x 

where r is a contour in the complex plane encircling the part of the 
spectrum of x close to 1, and excluding the part of the spectrum 
of x close to 0. Then use Lemma 1.6.7. 

(2) Show that the two hypotheses are satisfied if A is the algebra of 
continuous complex-valued functions on a compact subset X of 
IRn (equipped with the sup norm II 11), and if A is the algebra 
of continuously differentiable functions on X, equipped with the 
norm 

"'"A = "'" + "V'". Deduce that "every vector bundle over X has a differentiable struc-
ture." 
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7. Another application: Euler characteristics 
and the Wall finiteness obstruction 

In this final section of Chapter 1, we discuss the algebraic background of 
most of those applications of Ko to topology that do not involve topological 
K-theory. While what we will be doing here is pure algebra, it is worth 
saying a bit about the topological motivation to explain what is going on. 
If X is a path-connected, locally I-connected topological space with fun
damental group G and R = ZG, we can manufacture from X its singular 
chain complex with local coefficients S.(X). This is a chain complex 
of free R-modules which is the same thing as the usual singular chain com
plex of the universal cover X of X, together with the R-module structure 
coming from the action of G on X by covering transformations. Further
more, the chain homotopy equivalence class of the chain complex S.(X) 
only depends on the homotopy equivalence class of the space X. The chain 
complex S.(X) is quite large in general; for most spaces of interest, the 
R-modules in it are not even count ably generated. However, if X is a finite 
CW-complex, then S.(X) is chain homotopy equivalent to the cellular 
chain complex with local coefficients C.(X), a chain complex of free 
R-modules with only finitely many non-zero chain groups and with each of 
these chain groups finitely generated. Thus an obvious necessary condition 
for a space X to be homotopy-equivalent to a finite CW-complex is for 
S.(X) to be chain-homotopy-equivalent to a finitely generated complex of 
free R-modules. 

Under some circumstances, it is easy to check not this condition but 
something weaker, called finite domination. The space X is finitely dom
inated if up to homotopy it is a retract of a finite CW -complex; in other 
words, if there is a finite CW-complex Y and there are maps f : X -t Y, 
9 : Y -t X with 9 0 f ~ idx. An important question is then whether 
this implies that X is homotopy-equivalent to some (other) finite CW
complex. (It is not hard to show that X is homotopy-equivalent to some 
CW-complex (see [Varadarajan, Theorem 3.9] or [Spanier, Ch. 7, Exercise 
G6]), but this complex is not necessarily finite.) This question was an
swered by C. T. C. Wall in an important series of papers. Wall showed 
that if X is finitely dominated, then S.(X) is chain-homotopy-equivalent 
to a finitely generated complex of projective R-modules. The Wall finite
ness obstruction of X is then the "Euler characteristic" of this complex 
in the group Ko(R). Though we will not show here that vanishing of the 
obstruction is sufficient for finiteness (for this see [Wall] or [Varadarajan]), 
it will be clear that it is necessary. The Wall obstruction occurs in many 
problems in geometric topology, such as the question studied by Sieben
mann of when a non-compact manifold is homeomorphic to the interior of 
a compact manifold with boundary. For this and other geometric problems 
related to the Wall obstruction, see [Weinberger, Ch. 1, §1 and §4]. 

We shall now provide an abstract treatment of the Wall finiteness ob
struction for chain complexes of R-modules, as an outgrowth of the classical 
theory of the Euler-Poincare characteristic for topological spaces. Since we 
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don't assume the reader is very familiar with homological algebra, we be
gin with a review of some classical notions and facts. The reader who has 
had a course in homological algebra or homology theory can probably skip 
ahead to 1.7.9 after reviewing the statements of Tl&orems 1.7.4 and 1.7.7. 

1.7.1. Definition. Let R be a ring (with unit). A chain complex of 
R-modules is a pair (G., d), where G. is a Z-graded R-module and d is an 
R-module homomorphism G - G of degree -1 such that tP = O. (In other 
words, d is defined by maps dn : Gn - Gn- 1 such that dn- 1 0 dn = 0.) 
Recall that the homology of such a chain complex is H(G) = kerd/ imdj 
more precisely, Hn = ker dn/ im dn+!. Elements of ker d are called cycles 
and elements of im d are called boundaries. The chain complex is called 
acyclic if H(G) = 0, i.e., if the sequence 

d .. +l C d.. C dn - 1 
... -----+ n -- n-1 -----+ ... 

is exact. 

1.7.2. Definition. If (G., d), (G~, d') are chain complexes of R-modules, 
a chain map between them is an R-module homomorphism ep : G - G' 
of degree 0 intertwining d and d', i. e., is given by maps <{)n : Gn - G~ such 
that d~ 0 <{)n = <()n-1 0 dn. It is immediate that such a ep induces maps on 
homology «). : Hn(G) - Hn(G'). If ep: G - G' and'I/J: G - G' are chain 
maps, a chain homotopy between them is an R-module homomorphism 
8 : G - G' of degree +1 such that 

(1.7.3) 8 0 d + d' 08 = ep - 'I/J. 

Chain homotopy is an equivalence relation on chain maps. We write ep ~ 'I/J 
if there is a chain homotopy between them. A chain homotopy from ide 
to 0 is called a chain contraction, and if such a homotopy exists, G. is 
called chain-contractible. 

Note that (1.7.3) implies that «). = 'I/J. on homology. Indeed if dx = 0, 
then 

«)(x) - 'I/J(x) = 80 d(x) + d' 08(X) = d'(8(X)), 

so that ep(x) and 'I/J(x) lie in the same homology class. Thus if a chain 
complex is chain-contractible, it is acyclic. The converse is false without 
additional conditions. 

If there exist chain maps ep : G - G' and 'I/J : G' - G such that 
'l/Joep ~ ide and epo'I/J ~ ide', then we say G and G' are chain-homotopy
equivalent. This of course implies by our previous remark that ep. is an 
isomorphism on homology with inverse 'I/J*. 

1.7.4. Proposition. If(G., d) is an acyclic chain complex of projective 
R-modules and G. is bounded below, i.e., Gj = 0 for j sufficiently small, 
then G. is chain-contractible. 

Proof. Without loss of generality assume Gj = 0 for j < O. (Otherwise 
reindex.) We construct a contraction Sn : Gn - Gn+! by induction on n 
to satisfy the needed condition 
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At the same time, we also show by induction that ker dn is a direct sum
mand in Cn. To begin the induction, set 8j = 0 for j < 0 and note that 
by the assumptions that Ho( C) = 0 and C-1 = 0, d1 : C1 - Co must be 
surjective. Since Co is projective, d1 must have a right inverse 80, so (*0) 
holds. Furthermore, imd1 = kerdo = Co is projective. 

For the inductive step, assume we've constructed 8j for j < n to satisfy 
(*j) and we know kerdj = imdj+1 is a direct summand in Cj for j < n, 
hence projective by Theorem 1.1.2. We shall construct 8 n to satisfy (*n). 
By inductive assumption, Cn- 1 = (imdn)EBQn-1 for some projective Qn-1. 
On imdn = kerdn-b 8n-2 0 dn-1 = 0, so dn 08n-1 is the identity. Thus, 
by (*n-1), 8n-1 is a right inverse for 

Therefore 8n-1 0 dn is an idempotent endomorphism of Cn with image Qn 
complementary to kerdn, and kerdn = imdn +1 is R-projective. Since 

is surjective, it has a right inverse 8 n. Extend 8n to all of Cn by making 
it 0 on Qn. Then (*n) is satisfied and we've completed the inductive step. 
The Proposition now follows by induction. 0 

1.7.5. Definition. Suppose cp : (C., d) - (C~, d') is a chain map between 
chain complexes of R-modules. Its mapping corie is (C:, d"), where 
Cj' = Cj-1 EB Cj (note the degree shift in the first summand!) and 

d'1(c, c') = (-dj_1c, cp(c) + dj(c')). 

This is a chain complex since 

d'1-1 0 d'1(c, c') = (dj- 2 0 dj- 1c, cp( -dj- 1c) + dj_1 (cp(c) + dj(c'))) 

= (0, -cp 0 dj_1(c) + dj_1 0 cp(c) + 0) = (0, 0). 

1. 7.6. Theorem (Fundamental Theorem of Homological Alge
bra). Suppose 

o - (C~, d') ~ (C., d) L (C:, d") - 0 

is a short exact sequence of chain complexes. (This means a and f3 are 
chain maps and the sequence of R-modules 

o - C~ ~ C,· L C'! - 0 , , 
is exact for each j.) Then there is an induced long exact sequence of 
homology modules 

... - Hj(C') ~ Hj(C) ~ Hj(C") ~ Hj-1(C') - .... 
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Proof. This is the quintessential "diagram chase." First we go through 

the definition of Hj(C") ~ Hj-l(C')i then we go through the proof of 
exactness. Let [x") be a class in H j (C") represented by x" E C'/ with 
d"x" = O. Since (3 is surjective, x" = (3(x) with x E Cj. Since d" o (3(x) = 0 
and (3 is a chain map, (30 d(x) = 0, i.e., d(x) E ker (3 = ima. Hence 
d(x) = a(x') for some x' E Cj-l. We claim d'(x') = 0, so that x' is a 
"cycle," i.e., represents a class in Hj_l(C'). Indeed, since a is a chain 
map, aod'(x') = doa(x') = d2 (x) = O. But a was injective, so d'(x') = O. 
Now let o[x") = [x'). We leave to the reader the simple argument that 
shows this is independent of the choice of x" within its homology class and 
independent of the choice of the lift x of x". 

We proceed now to the proof of exactness. The construction of o[x") 
above gives a*(o[x"]) = [a(x')) = [0), and also shows that if [x") = (3*[x) 
for some [x) E Hj(C), then o[x") = 0 (since d(x) = 0). Also, (3* 0 a* = 0 
since (3 0 a = O. So the image of each map in our sequence is contained in 
the kernel of the next one. 

For the reverse containments, suppose for instance that x E Cj ' d( x) = 0, 
and (3*[x) = 0 in Hj(C"). Then (3(x) = d"(y") for some y" E C'/+1. 
Since (3 is surjective, we may choose y E Cj +1 with (3(y) = y". Since 
d" o (3(y) = (3od(y) = (3(x), x - d(y) E ker (3 = ima, and [x) E ima*. Thus 
ker (3* ~ im a*. 

Next, suppose x E OJ', d"(x) = 0, and o[x") = 0 in Hj_l(C'). By 
the description of 0 above, this means x" = (3(x) with d(x) = a(x') and 
x' = d'(y') , y' E OJ. "Then do a(y') = a 0 d'(y') = a(x') = d(x), so 
x - a(y') E kerd. Since also (3(x - a(y')) = (3(x) = x", this shows [x") = 
(3* [x - a(y')]. Hence kero ~ im(3*. 

Finally, suppose x' E Cj-l, d'(x') = 0, and a*[x') = 0 in Hj_l(C). Then 
a(x') = d(x) for some x E Cj. Let x" = (3(x). Then d"(x") = (30 d(x) = 
(3oa(x') = 0, so x" defines a class [x") in Hj(C"). From the description of 
0, o[x") = [x'), so kera* ~ imo. This completes the proof of exactness. 0 

1.7.7. Theorem. A chain map between chain complexes of R-modules is 
a chain homotopy equivalence if and only if its mapping cone is contractible. 
If the complexes are bounded below and consist of projective R-modules, 
then it is a homotopy equivalence if and only if the mapping cone is acyclic, 
or if and only if it induces an isomorphism on homology. 

Proof. Let cp: (C., d) -t (C~, d') be a chain map and let (C~, d") be its 
mapping cone. First observe that there is a short exact sequence of chain 
complexes 

o -t (C~, d') -t (C~, d") -t (C.-I, -d) -t O. 

The maps here are the obvious ones: we map Cj to OJ' = Cj - l EEl Cj by 
c' t---+ (0, c'), and we project OJ' onto the first summand Cj-l. The fact that 
these maps commute with the boundary maps is obvious from Definition 
1.7.5. Since changing the sign of d doesn't change the homology of C, we 
obtain from Theorem 1.7.6 an exact sequence 

(1.7.8) ... -t Hn(C") -t Hn-l(C) ~ Hn-l(C') -t Hn-l(C") -t .... 
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Here it is easy to check from the definition of /} that the map Hn - 1(G) --+ 

Hn - 1(G') is just ep •. Thus ep. being an isomorphism in all degrees is equiv
alent to the mapping cone G" being acyclic. Furthermore, if G and G' are 
bounded below and consist of projective modules, then the same is true of 
G". Hence, by Proposition 1.7.4, the mapping cone in this case is acyclic 
if and only if it is contractible. 

It remains to show that ep is a homotopy equivalence if and only if G" 
is contractible. Suppose s" : G" --+ G" is a chain contraction. Then we 
define s : G --+ G, s' : G' --+ G', and'IjJ : G' --+ G by 

s"(e, 0) = (s(e), ... ), 

s"(O, e') = ('IjJ(e'), -s'(e')). 

Sinee d" s" + s" d" = ide", we have 

(e, 0) = (-d 0 see), ... ) + s"( -de, ep(e)) 

= (-d 0 see) + 'IjJ 0 ep(e) - so dee), ... ), 

(0, e') = d"('IjJ(e'), -s'(e')) + s"(O, d'(e')) 

= (-d 0 'IjJ(e'), ep 0 'IjJ(e') - d' 0 s'(e')) + ('IjJ 0 d'(e'), -s' 0 d'(e')) , 

which says 

{ 
- do 'IjJ(e') + 'IjJ 0 d'(e') = 0 "Ie' ('IjJ is a chain map); 

e = -d 0 see) + 'IjJ 0 ep(e) - s 0 dee) "Ie ('IjJ 0 ep ~ ide); 

e' = ep 0 'IjJ(e') - d' 0 s'(e') - s' 0 d'(e') "Ie' (ep 0 'IjJ ~ ide'). 
8' 

In the other direction, suppose ep is a homotopy equivalence with homo
topy inverse 'IjJ, and suppose one has homotopies s from 'IjJ 0 ep to ide and 
s' from ep 0 'IjJ to ide'. Let 

s"(e, e') = (s(e) + 'IjJ(e') + 'IjJ 0 s' 0 ep(e)'IjJ 0 ep 0 see), 

-s'(e') + s' 0 ep 0 see) - (s')2 0 ep(e)). 

We will check that one obtains a chain contraction of G". Note that 

(d" s" + s" d")(e, e') = d" (s(e) + 'I/J(e') + 'IjJ 0 s' 0 ep(e) - 'IjJ 0 ep 0 see), 

-s'(e') + s' 0 ep 0 see) - (s')2 0 ep(e)) 

+ s" (-d(e), ep( e) + d' (e')) 

= (-d 0 see) - do 'IjJ(e') - do 'IjJ 0 s' 0 ep(e) 

+do'IjJoepos(e), epos(e)+epo'IjJ(e') 

+ ep 0 'IjJ 0 s' 0 ep(e) - ep 0 'IjJ 0 ep 0 see) 

-d' 0 s'(e') + d' 0 s' 0 ep 0 see) - d' 0 (s')2 0 ep(e)) 

+ (-s 0 dee) + 'IjJ 0 ep(e) + 'IjJ 0 d'(e') 

+ 'IjJ 0 s' 0 ep( -dee)) + 'IjJ 0 ep 0 s(d(e)) , 

- s' 0 ep(e) - s' 0 d'(e') 

+s' 0 ep 0 s(-d(e)) - (S')2 0 ep(-d(e))). 
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The first coordinate (after some regrouping) is 

= [-d 0 s(c) - so d(c)] + [-d 0 'I/J(d) + 'I/J 0 d'(c')] 

+ [-d 0 'I/J 0 s' 0 <p(c) - 'I/J 0 s' 0 <p 0 d(c)] 

+ [d 0 'I/J 0 <p 0 s(c) + 'I/J 0 <p 0 s 0 d(c)] + 'I/J 0 <p(c) 

= - (d 0 s + s 0 d)(c) + ('I/J 0 <p 0 sod + 'I/J 0 <p 0 d 0 s)(c) 

- 'I/J 0 (d' 0 s' + s' 0 d') 0 <p(c) + 'I/J 0 <p(c) 

= c+'l/Jo<po ('l/Jo<p-ido)(c) 

- 'I/J 0 (<p 0 'I/J - idol) 0 <p(c) 
=c. 

The second coordinate (after some regrouping) is 

= [<p 0 'I/J(c') - d' 0 s'(c') - s' 0 d'(c')] 

+ [<p 0 s(c) + d' 0 s' 0 <p 0 s(c) - <p 0 'I/J 0 <p 0 s(c)] 

+ [-s' 0 <p(c) - d' 0 (s')2 0 <p(c) + <p 0 'I/J 0 s' 0 <p(c)] 

- s' 0 <p 0 s 0 d(c) + (s')2 0 <p 0 d(c) 

= c' + (idol - <p 0 'I/J + d' 0 s') 0 <p 0 s(c) 

+ (<p 0 'I/J - idol - d' 0 s') 0 s' 0 <p(c) 

- s' 0 <p 0 s 0 d(c) + (s')2 0 <p 0 d(c) 

= c' - s' 0 d' 0 <p 0 s(c) 

+ s' 0 d' 0 s' 0 <p(c) 

- s' 0 <p 0 s 0 d(c) + (s')2 0 <p 0 d(c) 

= c' - s' 0 <p 0 (d 0 s + s 0 d)(c) 

+ s' 0 (d' os' + s' od') 0 <p(c) 

= c' - s' 0 <p 0 ('I/J 0 <p - ido)(c) 

+ s' 0 (<p 0 'I/J - idol) 0 <p(c) 

= c'. 

This confirms that s" is a chain contraction of G". 0 

Now we're ready to introduce the connection with Ko(R). 

1.7.9. Definition. A chain complex (G., d) of R-modules is called bound
ed if the modules Gj are non-zero for only finitely many j, and is called of 
finite type if it is bounded and all the Gj are finitely generated. (The 
connection with topology is that the cellular chain complex of a finite 
CW-complex is of finite type, and the cellular chain complex of a finite
dimensional CW-complex is bounded (with non-zero chain groups only in 
the dimensions of the cells of the complex).) 
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If (G., d) is a chain complex of finite type of projective R-modules, we 
define it!! Euler characteristic by 

00 

X(G) = L (-l)jrGj ] (in Ko(R)). 
j=-oo 

Note that this is really a finite sum, and that d is not used in the definition 
of X(G). Also define X(G) to be the image of X(G) in [(oCR). 

1.7.10. Proposition ("Euler-Poincare Principle"). The Euler 
characteristic is additive on short exact sequences of complexes of finite 
type. In other words, if 

o --+ G' --+ G" --+ G --+ 0 

is a short exact sequence of chain complexes of finite type of projective 
R-modules, then X(G") = X(G') + X(G). Furthermore, if (G., d) is a chain 
complex of finite type of projective R-modules, and if all its homology 
modules are projective, then 

00 

X(C) = L (-l)j [Hj (G)]. 
j=-oo 

Proof. Since any short exact sequence of projective modules splits, if 

o --+ G' --+ G" --+ G --+ 0 

is a short exact sequence of chain complexes of finite type of projective 
R-modules, then G'I ~ Gj 9 Gj, hence [Gj'] = [Gj] + [Gj ] and the formula 
X(G") = X(G') + X(G) follows upon taking the alternating sum over j. 

Next, suppose (G., d) is a chain complex of finite type of projective 
R-modules and all the homology modules Hj (G) are R-projective. Let 
Zj = ker(dj : Gj --+ Gj-d, B j = im(dj+l : Gj+! --+ Gj ). We have short 
exact sequences 

o --+ B j --+ Zj --+ Hj --+ O. 

Since Hj is assumed projective, (**) splits, and Zj ~ B j 9 Hj . Since the 
complex is assumed to be of finite type, we may assume (after reindexing) 
that Gj = 0 for j < 0, in which case Go = Zo is projective; hence, since 

Zo ~ Bo 9 Ho, Bo is projective. Thus G1 ~ Bo must split and so 
G1 ~ Bo 9 ZI. This implies ZI is projective, and since ZI ~ Bl 9 HI, 
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B1 is projective. Continuing by induction, all the Bj and Zj are projective 
and all of the above short exact sequences split. Thus we obtain 

[Zj+1] + [Bj] = [Cj +1] (from (*)), 

[Bj] + [Hj ] = [Zj] (from (**)). 

Substituting in the definition of X(C), we obtain 

00 

X(C) = L (-I)j[Cj ] 
j=-oo 

00 

= L (-I)j([Zj] + [Bj - 1]) 
j=-oo 

00 

== L (-I)j([Hj] + [Bj ] + [Bj - 1]) 

00 00 00 

= L (-I)j[Hj] + L (-I)j[Bj] L (-I)j[Bj] 
j=-oo j=-oo j=-oo 

00 

= L (-I)j[Hj ]. 
j=-oo 

o 

1.7.11. Oorollary. The Euler characteristic is well defined on chain 
complexes of projective R-modules which are homotopy-equivalent to com
plexes of finite type of projective R-modules, and is constant on homotopy 
equivalence classes. It is also additive on short exact sequences of such 
chain complexes. 

Proof. Suppose (C., d) is a chain complex of projective R-modules which 
is homotopy-equivalent to a chain complex of finite type (C;, d1 ) of pro
jective R-modules. We define X(C) = X(C1). Of course, to know that 
this makes sense, we need to check that it is independent of the choice 
of C1. If (C~, tP) is another possible choice, then C1 and C 2 are each 
homotopy-equivalent to C, hence are homotopy-equivalent to each other. 
Let cp : C1 -+ C2 be a homotopy equivalence between them and let C3 

be its mapping cone. Since C1 and C2 are of finite type and consist of 
projective R-modules, the same is true of C3. Furthermore, from the short 
exact sequence 

o -+ (C~) -+ (C:) -+ (C~-1) -+ 0 

and Proposition 1.7.10, we obtain that 

But C3 is acyclic by Theorem 1.7.7, so its homology modules are 0 and 
hence X(C3 ) = 0 by Proposition 1.7.10 again. Thus X(C1) = X(C2 ), 
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as required. The same calculation shows that homotopy-equivalent chain 
complexes have the same Euler characteristic. Finally, additivity on short 
exact sequences also follows immediately from Proposition 1.7.10 and the 
fact that short exact sequences of projective modules must split. 0 

We're now finally ready for Wall's theorem. 

1.7.12. Theorem [Wall]. Let (G., d) be a chain complex of projective 
R-modules which is homotopy-equivalent to a chain complex of finite type 
of projective R-modules. Then (G., d) is homotopy-equivalent to a chain 
complex offinite type offree R-modules if and only ifX(G) = 0 in Ko(R). 

Proof. Suppose (G., d) is homotopy-equivalent to (G~, d') of finite type, 
with both complexes consisting of projective modules. By Corollary 1. 7.11, 
X( G) = x( G'); hence X( G) = X( G'). If G' consists of finitely generated free 
modules, then clearly X( G') = 0 so X( G) = O. 

On the other hand, suppose X( G') = O. It will be enough to show G' 
is homotopy-equivalent to a complex of finite type consisting of free R
modules. Suppose Gj = 0 for j outside of an interval {k, k + 1, ... , k + 
n}. Choose projective modules Qn, . .. ,Qo such that G~+n EI1 Qn is free, 
G~+n-1 EI1 Qn EI1 Qn-1 is free, and in general such that G~+j EI1 QH1 EI1 Qj is 
free for 0 :::; j < n. If (T., dT) is chain-contractible, then replacing (G~, d') 
by (G~, d') EI1 (T., ~) doesn't change its homotopy class. So let (Ti, ~j) 
be defined by 

i =/: k + j, k + j - 1, 

i = k + j, k + j - 1, 

with 4'~j : Qj ~ Qj the identity map. This is clearly contractible, so now 

n 

(G~, d") = (G~, d') EI1 EJj(Tl, dTj ) 
j=O 

is homotopy-equivalent to (G~, d') and has free modules in all degrees ex
cept k - 1. Thus 

0= X(G') = X(G") = (-1)k[GL1] (in Ko(R)), 

so G~_1 is stably free. Choose a finitely generated free R-module F such 
that G~_1 EI1 F ~ F. Let (T., ~) be defined by 

Tj = { 
0, 

F, 

j =/: k - 1, k - 2, 

j = k -1, k - 2, 

with 4'-1 : F ~ F the identity map. This is clearly contractible, and 
(G~, d") EI1 (T., ~) now has free modules in all degrees. So (G., d) is 
homotopy-equivalent to a chain complex of finite type of free R-mod
ules. 0 

When R is Noetherian, we can also relate finite generation of a chain 
complex G to finite generation of its homology, as shown in the following 
theorem. 
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1.7.13. Theorem. Let R be a (left) Noetherian ring. If (C., d) is a 
bounded chain complex of projective R-modules, then H j (C) is finitely 
generated over R for all j if and only if C is homotopy-equivalent to a com
plex of finite type of projective R-modules. In particular, if the homology 
modules of C are finitely generated, its Euler characteristic is well defined. 

Proof. One direction is easy. If C is homotopy-equivalent to a complex 
of finite type, then its homology is the same as that of a complex of finite 
type, so we might as well assume C is already of finite type. If R is 
Noetherian and Cj is finitely generated, then its submodule Zj = kerdj 

must also be finitely generated, hence Hj(C), which is a quotient of Zj, is 
finitely generated. Thus all homology modules are finitely generated. 

For the converse, without loss of generality, assume Cj = 0 for j < 0 
and for j > n. We first construct by induction on m, starting at 0 and 
continuing up to m = n, a complex of finite type (OJ, d')j$.m of free R
modules and a chain map 

cP : (C~, d') ~ (C., d) 

which induces isomorphisms on homology through degree m - 1. Of course 
we take OJ = 0 for j < 0 and for j > n. To begin the induction, note 
that since C j - I = 0, Ho(C) = Co/imdi . Choose a finite set of generators 
[Xl],"" [xrl for Ho(C) and representatives X}, ... , Xr E Co. Let Cb be the 
free R-module on generators Y}, .. . ,Yr and let CPO(Yk) = Xk. Since R is 
assumed Noetherian, the kernel Bb of the composite map 

C~ ~ Co ~ Ho(C), 

being a submodule of the finitely generated module Cb, is also finitely gen
erated. Choose generators ZI, ... , Zt for Bb and let Ci be free on generators 

w}, .•• , Wt. Define di so that di(Wk) = Zk. Then Ci ~ Cb is a chain com
plex with Ho(C') = Cb/Bb and CPo induces an isomorphism on Ho. Since 
we want CPo to be the O-degree part of a chain map, we need to define CPI 
so that 

Cb~Co 

commutes. Since CPO(Zk) goes to 0 in Ho(C), we can choose Uk E C}, with 
dl(Uk) = CPO(Zk). So we let CPI(Wk) = Uk and the condition is satisfied. 
This completes the first step in the induction. 

For the inductive step, assume we've constructed a complex of finite type 
of free R-modules (OJ, dj) for j :S m and a chain map cP : C' ~ C which 
is an isomorphism on homology in degrees < m. Continuing as before, 
choose generators [Xl],"" [xrl for Hm(C) and representatives X}, ... , Xr E 

Zm S;;; Cm. Replace the old C:n by its direct sum with the free R-module 
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on generators Yt. ... , Yr and let 'Pm(Yk) = Xk. We keep 'Pm the same on the 
old C;... Similarly, we do not change d~ on the old C;.. and let d~(Yk) = o. 
Then we still have a chain complex and a chain map for j ::; m but now 
'P .. is surjective on Hm. As before, we choose C;"+1 finitely generated and 
free with dm+1 : C;"+1 -t Cm mapping onto the kernel of the composite 

C:n 'Pm, Zm -t Hm(C), 

and define 'Pm+1 as above so that we have a chain map which now is an 
isomorphism in homology through degree m. We continue by induction 
until we've constructed a complex of finite type of free R-modules and a 
chain map 'P : C' -t C which is an isomorphism on homology in degrees 
< n and a surjection in homology in degree n. Of course, since everything 
is zero in degrees > n, 'P .. is actually an isomorphism on homology in all 
degrees except n. 

Now consider the mapping cone (C:, d") of 'P. This is a bounded com
plex of projective R-modules with non-zero chain modules only in degrees 
o through n + 1. By the exact sequence (1.7.8) (in our situation C and 
C' are reversed), C" has only one non-zero homology module, in degree 
n + 1. Repeating the proof of Proposition 1.7.4, we can construct a chain 
contraction of C" through degree n, which shows that d~+1 : C~+1 -t B~ is 
split surjective and thus that Hn+1(C") = Z~+1 = kerd~+1 is R-projective 
and a direct summand in C~+1 ~ C~. Hence we may replace C~ by a pro
jective complement to Hn+1 (C") and thereby make 0' a complex of finite 
type of projective R-modules and 'P .. an isomorphism on homology, hence 
a chain-homotopy equivalence, by Theorem 1.7.7. 0 

Remark. This proof demonstrates clearly the origin of Wall's obstruc
tion. At the last step of our induction, we can either make 'P.. into a 
homology isomorphism in degree n at the expense of making Cn a possibly 
non-free projective module, or we can make O~ free and 'P .. an epimorphism 
on homology in degree n, but in general we can't take On free and at the 
same time make 'P a homotopy equivalence. 

Now for some topological applications. Wall's work on finiteness ob-
. structions for chain complexes arose from the question of when a connected 

space X is homotopy-equivalent to a finite CW -complex. If Y is a finite 
connected CW-complex, Y is locally simply connected (so that covering 
space theory applies) and has a finitely presented fundamental group 71". 

(The fundamental group of the i-skeleton of Y is a finitely generated free 
group surjecting onto 71", and 71" is obtained . from this free group by adding 
in one relation for each 2-cell.) Thus we may form the universal covering Y 
of Y, which carries a free cellular action of 71". The cellular chain complex 
of Y, while not of finite type over Z, may be viewed as a chain complex 
of finite type of free R-modules, where R = Z7I", the integral group ring of 
71". Alternatively, we may think of this complex as the chain complex of Y 
with local coefficients. Thus if X is a space which is homotopy-equivalent 
to Y, it must also have fundamental group 71" (finitely presented), and its 
singular chain complex with local coefficients S.(X), which is a complex of 
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free R-modules but is very far from being of finite type in general, must be 
chain-homotopy-equivalent to a complex of finite type of free R-modules. 

Theorem 1.7.12 now gives a necessary and sufficient condition for S.(X) 
to have this property. Call S.{X) finitely dominated if it is chain
homotopy-equivalent to a complex of finite type of projective R-modules. 
Theorem 1.7.12 says that a finitely dominated complex has a well-defined 
finiteness obstruction in Ko(R), and is chain-homotopy-equivalent to a 
complex of finite type of free R-modules if and only if this finiteness ob
struction vanishes. If R = Z7I' happens to be Noetherian, which is not the 
case for all finitely presented groups 71', but is true say if 71' is a product of 
a finite group and a free abelian group (the group ring of a finite group is 
finitely generated as a Z-module, hence Noetherian, and the group ring of 
71' X zn is a Laurent polynomial ring in n variables over the group ring of 
71'), one can apply Theorem 1.7.13 to see that an R-module chain complex 
C is finitely dominated if and only if it is homologically finite-dimensional 
and its homology groups are finitely generated. 

Wall actually went further than this; he showed that a connected space X 
with finitely presented fundamental group and the homotopy type of a CW
complex is finitely dominated if and only if S.(X) is finitely dominated, 
and has the homotopy type of a finite CW-complex if and only if S.(X) is 
finitely dominated and has vanishing finiteness obstruction. The method 
of proof for the "if" directions is to inductively construct a sequence Yn 

(n 2: 1) of finite CW -complexes by attaching cells, along with maps Yn ---+ X 
which are dominations (resp., homotopy equivalences) "through dimension 
n-1." The proof of Theorem 1.7.13 is an abstract version of this technique, 
in the case where R is Noetherian. In proving homotopy finiteness, the 
finiteness obstruction is precisely the obstruction to having this inductive 
process terminate after a finite number of steps. 

1. 7.14. Example. Let us illustrate a geometric application of Theorems 
1.7.12 and 1.7.13. Suppose xn is a connected non-compact (topological 
or smooth) manifold and one wants to know whether X is homeomorphic 
to the interior of a manifold wn with boundary. Precise necessary and 
sufficient conditions were found by Siebenmann (provided one stays away 
from the problem dimensions 3 and 4 by assuming n :::; 2 or n 2: 6) us
ing surgery theory, but we have done enough now to at least give some 
interesting necessary conditions. 

If wn exists, then it must have the homotopy type of a finite CW
complex, hence so must X, since the inclusion of X into W is a homotopy
equivalence. Furthermore, for each component Nn-l of aw, N must have 
a "collar" neighborhood in W homeomorphic to N x [0, 1), so the corre
sponding "end" of X = w" aw must be homeomorphic to N x (0, 1), 
and in particular must be homotopy-equivalent to the compact manifold N. 
(For a locally compact Hausdorff space X, a neighborhood of infinity 
may be defined to be the complement of a compact set. An end may be 
defined to be a connected component of (3X " X, where (3X is the Stone
Cech or maximal compactification of X (the space of maximal ideals of the 
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algebra of bounded continuous real-valued functions on X). Equivalently, 
an end is an equivalence class of components of neighborhoods of infinity. 
In the present situation, the ends must be in one-to-one correspondence 
with the components of oW.) So the homotopy type of N is determined 
by that of the corresponding neighborhoods of the associated end of X. 

In particular, we now derive a number of necessary conditions for our 
being able to complete X to a compact manifold with boundary. X must 
have finitely many ends, and for each end E of X, if Xi is a sequence of 
connected open neighborhoods of E with Xi'\. E, the fundamental groups 
of the Xi must stabilize to some finitely presented group 1C'l(E) (in the 
sense of the Mittag-Leffler condition, that lim1C'l(Xi) = 1C'l(E), and for 

+--
each i, the images in 1C'l(Xi ) of the 1C'l(Xj ), j 2:: i, eventually stabilize). Let 
R = Z1C'l(E). Then we obtain an inverse system (H.(Xij R)) of homology 
groups with local coefficients in R which must also stabilize to what will 
correspond to H.(Nj R). Thus for a suitable open connected neighbor
hood U of E, 1C'l(U) = 1C'l(E) and H.(Uj R) looks like the homology of a 
compact manifold of dimension n - 1. If for instance 1C'l(E) is finite (this 
is not so essential but it already covers an interesting case), R is Noether
ian and the homology must be finitely generated by Theorem 1.7.13. By 
the same Theorem, the cellular chain complex of U with coefficients in R 
is homotopy-equivalent to a complex of projective modules of finite type. 
Thus the obstruction X(C.(Uj R)) is defined and m1Uit vanish in Ko(R). 
SiebeIlII\.8JlD.'s Theorem says that once this is satisfied, one can put a bound
ary on the end E provided at least that n"# 3, 4, or 5. See [Weinberger, 
§§ 1.5 and 1.6] for a further explanation. The homeomorphism class of 
the boundary to be added is not always uniquely determinedj but the non
uniqueness is also related to K-theory: it is classified by the Whitehead 
torsion invariant to be studied in §2.4 below. 

1.7.15. Remarks. Since this is not a book on topology, we will not 
prove any purely topological results here. However, in the interests of 
completeness, let us say a few more words (without proofs) about Wall's 
original results (in the topological setting) and about one other important 
area of application, the spherical space form problem. 

Wall's work on the finiteness problem was motivated in part by ear
lier work of Swan [Swan1] on the question of when a finitely dominated 
space X, with finite fundamental group 1C' = 1C'l(X) and universal cover it 
homotopy-equivalent to a sphere, can be homotopy-equivalent to a finite 
CW-complex. Swan already realized that at least in this particular situa
tion, an obstruction in Ko(Z1C') plays a fundamental role, and he showed 
how to kill off this obstruction in order to solve a particular geometric prob
lem in which he was interested. This geometric problem was a modified 
version of what is now known as the spherical space form problem: to 
classify compact manifolds Mn, known as spherical space forms, having 
a sphere as universal cover, un ~ sn. Certain obvious examples, such as 
real projective spaces and lens spaces, arise from free orthogonal actions of 
finite groups, and the groups that can act in this way are completely known 
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(see [Wol~). However, a rather subtle question remains: can there be any 
examples of spherical space forms not homotopy-equivalent to examples of 
this type, for instance with fundamental groups (such as the non-abelian 
group of order pq, where p and q are distinct odd primes with pl(q - 1)) 
that cannot have a free orthogonal action on a sphere? 

The answer to this latter question turns out to be ''yes,'' and the question 
of what finite groups can act freely on spheres is now totally understood 
(see [Madsen)). The relevance of the finiteness obstruction comes from 
the following method of attack. We begin by looking at n-dimensional 
CW -complexes X with the desired finite fundamental group 7r, having the 
property that the universal cover X is homotopy-equivalent to a sphere 
sn. This means of course that X must have vanishing homology in degrees 
o < j < n, and infinite cyclic homology in degree n, but in fact, by the basic 
theorems of homotopy theory (the Hurewicz and Whitehead Theorems, to 
be discussed in §5.1 below), this homology condition is not only necessary 
but also sufficient. The study of the homology of X shows then that 7r must 
be a "group with periodic homology" [CartanEilenberg, pp. 357-358], for 
which there is an elegant classification theorem [CartanEilenberg, Ch. XII, 
§11]. It turns out that a necessary and sufficient condition for the existence 
of such a space X is that each Sylow subgroup of 7r be either a cyclic group 
or a generalized quaternion group. 

However, one is still faced with another problem: given the X whose uni
versal cover is homotopy-equivalent to a sphere, is X homotopy-equivalent 
to a (smooth) compact manifold M? If the answer is "yes," then the uni
versal cover of M will be a compact manifold homotopy-equivalent to a 
sphere. By known results on the Poincare Conjecture, the universal cover 
is then actually homeomorphic to a sphere, except perhaps when n = 3. 
(See the remarks following Theorem 2.4.4 below.) 

A detailed sketch of how this problem is attacked may be found in Mad
sen's survey [Madsen]. However, a crucial first step already understood by 
Swan comes from the well-known fact that any smooth compact manifold is 
homotopy-equivalent to a finite CW-complex. Thus if M is to exist in the 
homotopy type of X, the CW -complex X must have vanishing finiteness 
obstruction in Ko(Z7r). This group is known to be finite when 7r is finite, 
but is usually quite hard to compute. For cyclic groups of prime order, 
we began the calculation of this group (in terms of number-theoretic in
variants) in Example 1.5.10, and will complete the calculation in Example 
3.3.5(b) below. 

1.7.16. Exercise (Nontriviality of the finiteness obstruction for 
bounded complexes of free modules). Let R be a ring with unit, P a 
finitely generated projective R-module which is not stably free. 

(a) Show that there is an R-module homomorphism cp: F -+ F, where 
F is a free R-module of countable infinite rank, that is, split sur
jective with kernel ~ P. (This is attributed to Eilenberg, though 
the idea may be older. Compare Exercise 1.1.8.) 
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(b) Deduce that the complex 

···-+O-+O-+F':!""F-+O-+O-+··· 

is homotopy-equivalent to the complex 

but not to a complex of finite length consisting of finitely generated 
free modules. 

1.7.17. Exercise. Show that the condition that R be Noetherian in The
orem 1.7.13 is necessary, by exhibiting a non-Noetherian ring R and a ch~in 
complex of finite type of free R-modules that does not have finitely gen
erated homology. Hint: find a non-Noetherian commutative ring R (not 
an integral domain) containing an element x whose annihilator in R is not 
finitely generated. 

1.7.18. Exercise (Behavior of the finiteness obstruction under 
products). It is of interest to know how homotopy finiteness of X and of 
X x Z are related, when Z is itself a finite CW -complex, for instance, a 
sphere or a projective space. The algebraic analogue of this is to take the 
tensor product of two complexes to obtain a double complex. Note that 
1l"l(X x Z) ~ 1l"l(X) x 1l"l(Z), so that the relevant ring for the geometrical 
problem is 

(a) Show that if (C;, d1 ) and (C;, d1 ) are complexes of projective R
modules and S-modules, respectively, then 

{ 
Cj = EB CJ-k ®z C~, 
dj = :7~~d + (-1)Pid ® d2 on C~ ®z C; 

defines a complex of projective R ®z S-modules, called the total 
complex of the double complex C; ®z C; . 

(b) Show that if (C;, d1 ) is homotopy-equivalent to (0;, (j1) and if 
(C;, d2 ) is homotopy-equivalent to (0;, ([2), then the total com
plex of C; ®z C; is homotopy-equivalent to the total complex of 
0; ®z 0;. (You can either carry the homotopies around, or else 
use a mapping cone argument and Theorem 1.7.7 to reduce to the 
case where one of the complexes is contractible.) 

(c) Deduce that if X(Cl) and X(C2 ) are well defined, so is X(C), and 
that if either X( C 1 ) or X( C2 ) vanishes, so does X( C). 

(d) Suppose S = Z (this is the algebraic analogue of taking Z to be 
simply connected in the geometrical problem). Show that when 
x( C 1 ) is well defined and C2 is of finite type, then 
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where X(G2 ) E Ko(Z) = Z. The topological version of this exercise 
shows that if X is dominated by a finite OW-complex and Z is a fi
nite complex with X(Z) = 0, then X x Z is homotopy-equivalent to 
a finite complex, and that if Z is simply connected with X(Z) =I 0, 
then the Wall obstruction of X xZ is X(Z)x (the Wall obstruc
tion of X). In particular, taking a product with 8 1 kills finiteness 
obstructions, and taking a product with 8 2 multiplies them by 2. 

1.7.19. Exercise (Algebraic finite domination) [Ranicki]. Recall that 
a space X is called finitely dominated if up to homotopy it is a retract of 
a finite OW-complex; in other words, if there is a finite OW-complex Y 
and there are maps 1 : X -+ Y, 9 : Y -+ X with go 1 ~ idx . Now if 
X is literally a retract of a finite OW-complex, in other words, if we can 
arrange to have 9 0 1 = idx , then obviously the singular chain complex 
of X is a direct summand in the singular chain complex of Y, which in 
turn is homotopy-equivalent to the cellular chain complex of Y, which is of 
finite type. Thus in this case it is clear that the singular chain complex of 
X satisfies the hypothesis of Theorem 1.7.12. However, it is perhaps not 
immediately apparent that the same holds true if we only have go 1 ~ idx, 
for then the singular chain complex G. of X is only a direct summand of 
the singular chain complex D. of Y "up to homotopy." 

The following trick for dealing with the general case is due to Ranicki. 

(1) Suppose G. is a chain complex of projective R-modules, bounded 
below (say non-zero only in non-negative degrees) which is a "direct 
summand up to homotopy" of a complex of finite type D. of free 
R-modules. In other words, we assume we are given chain maps 
1 : G. -+ D. and 9 : D. -+ G., as well as a chain homotopy h 
satisfying ide - 9 0 1 = doh + hod. Note that log - (f 0 g)2 = 
do Ihg + 1 hg 0 d, so that 1 hg gives a chain homotopy between log 
and (f 0 g)2. Show that the endomorphism p of EB:'o Di given by 
the matrix 

-d 
1-lg 

Ihg 

o 0 
d 0 
Ig -d 

... ... ) 
is an idempotent, so that its image is a finitely generated projective 
module over R. 

(2) Let c: = EB~=oDj and define a map d' : c: -+ G:_1 by the (i-1)xi 
matrix 

( 

Ig 
-Ihg 
-lh2g 

-d 
1-lg 

Ihg 

o 0 
d 0 
Ig -d 

... ... ) 
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Ihg 
fh2g 

(

1- 19 d 0 0 ... ) 
Ig -d 0··· 

-Ihg 1- Ig d 

if i is odd. Show that (d')2 = 0, so that (C~, d') is a chain complex. 
(3) Define maps cp : Ci -+ C: and'I/J : C: -+ Ci by 

cp(x) = ( ~ ) E C; = Do E9 DI E9 ... E9 Di 

I(x) 

and by 

Show that cp and 'I/J are chain maps and that they give a chain 
homotopy equivalence between C. and C~. (Hint: 'I/J 0 cp = go I, 
which we already know is chain homotopic to the identity. The 
homotopy between cp 0 'I/J and the identity is given by a simple 
"shift" map.) 

(4) Suppose D. is of "dimension n," in other words, that Di = 0 for 
i > n. Thus c: ~ ffij=o Dj for all i ~ n. Show by "truncating" C~ 
that its finiteness obstruction (and thus the finiteness obstruction 
of C.) is well defined, and equal to the class in Ko(R) of the image 
of p from (1). 
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1.7.20. Exercise [Swan1, §6j. The work of Swan discussed in Remarks 
1.7.15 above leads to some interesting examples of finitely generated pro
jective modules over group rings. Suppose G is a finite group of order n 
and let R = ZG, the integral group ring. Define the norm element of R 
by N = L.gEGg. Observe that for any 9 E G, gN = Ng = N, so N is 
central in Rand N 2 = nN. Let r E Z be prime to n, and let Pr be the 
ideal of R generated by rand N. (It doesn't matter whether one takes 
the ideal to be one-sided or two-sided, since Nand r are both centraL) 
Obviously P1 is just R itself. 

(1) Show that Pr is the universal R-module defined by two generators 
u and v and the relations gv = v all 9 E G, N u = rv. (Here u 
corresponds to r and v corresponds to N.) 

(2) Show that Pr ~ Pr , provided r == r' mod n. (Use (1) and define 
the isomorphism by v I-? v', U I-? U' + hv', where r - r' = hn.) 

(3) Show that REB Prr, ~ Pr EB Pr ,. Note the suggestive analogy with 
Lemma 1.4.11! (Again use (1). If u" and v" are the generators of 
Prr" send (0, v") I-? (v, 0), (1, 0) I-? (u, au' + bv'), and (0, u") I-? 

(r'u, c(nu' - r'v')), where a, b, c E Z are suitably chosen.) 
(4) Choose r and r' in (3) to be multiplicative inverses of each other 

mod n, and deduce that Pr EB Pr , ~ R2, hence that Pr and Pr , 

are projective modules whose images in Ko (R) are the negatives 
of each other. In particular, we find that if n = 8 and r = 3, 
then since 32 == 1 mod 8, P3 defines an element of Ko(R) which 
must be either trivial or of order 2. It is known to be of order 2 
and to be a generator of Ko(R) when G = Qs is the quaternion 
group. The projective modules Pr naturally arise in the study of 
the finiteness obstructions coming up in the spherical space form 
problem (as explained above in 1.7.15). 
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Kl of Rings 

1. Defining K 1 

Most courses in linear algebra begin with a discussion of vector spaces and 
dimension, and then go on to a study of automorphisms of vector spaces, 
i. e., linear transformations and their invariants (determinants, canonical 
forms, and so on). The usual development of K-theory for rings follows 
the same pattern. One begins by studying projective modules and their 
stable classification via Ko, and then goes on to the study of the stable 
classification of automorphisms of free and projective modules, in other 
words, to invariants of (invertible) matrices, which are given by the functor 
K 1· 

We will begin with the classical approach to K 1 via matrices, and in 
the next chapter will describe a more category-theoretic approach via the 
study of the category of finitely generated projective modules. 

2.1.1. Definition. Let R be a ring (with unit). Recall the definitions of 
M(R) and GL(R) from 1.2.2. We call an n x n matrix elementary if it 
has 1 's on the diagonal and at most one non-zero off-diagonal entry. More 
precisely, if a E R and i # j, 1 ::; i, j ::; n, we define the elementary matrix 
eij (a) to be the (n x n) matrix with 1 's on the diagonal, with an a in the 
(i, j)-slot, and with O's elsewhere. The subgroup of GL(n, R) generated by 
such matrices is denoted E(n, R). Via the usual embedding of GL(n, R) 
in GL(n + 1, R) (see 1.2.2), E(n, R) embeds in E(n + 1, R). The infinite 
union of the E(n, R) is denoted E(R), and is usually called (by slight abuse 
of language) the group of elementary matrices. 

The following lemma, which summarizes some easy matrix identities, is 
only needed in part at the moment, but is included here for future reference. 

2.1.2. Lemma. The elementary matrices over a ring R satisfy the rela
tions 
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I eij (a)eij (b) = eij(a + b)j 

eij(a)ekl(b) = ekl(b)eij(a), j # k and i # lj 
. eij(a)ejk(b)eij(a)=~ejk(b)=ll = eik(ab), i,~, ~ dis~in~tj 
eij (a)eki(b)eij (a) eki(b) = ekj( -ba), '/,,3, k distmct. 

(a) 

(b) 

(c) 

(d) 

Furthermore, any upper-triangular or lower-triangular matrix with 1 's on 
the diagonal belongs to E(R). 

Proof. The relations are easily checked by matrix multiplication. Sup
pose A = (a;j) E GL(n, R) is upper-triangular with l's on the diagonal. 
Then 

A' = (a~j) = Ael2( -al2)e23( -a23)' .. en-l,n( -an-l,n) 

still is upper-triangular with l's on the diagonal and has O's on the super
diagonal j - i = 1. Let 

This now is upper-triangular with l's on the diagonal and has O's on the 
super-diagonals j - i = 1,2. Continuing by induction, we construct a 
sequence 

A A' A" A(n-l) , , , ... , 

of matrices in G L( n, R), each differing from the previous one by an element 
of E(n, R), each upper-triangular with l's on the diagonal, and with the 
additional property that a~;) vanishes for 0 < j -i :::; k. Thus A(n-l) = In, 
the n x n identity matrix, so A E E(n, R). The lower-triangular case is 
similar. 0 

2.1.3. Corollary. For any matrix A E GL(n, R), the 2n x 2n matrix 

(~ A~l) lies in E(2n, R). 

Proof. Apply the identity 

( A 0) (1 A) (1 0) (1 A) (0 -1) o A-l =. 0 1 -A-l 1 0 1 1 0 
from the proof of Lemma 1.5.4. By Lemma 2.1.2, the first three factors on 
the right lie in E(2n, R). And 

(0 -1) = (1 -1) (1 0) (1 -1) 10 011101' 
hence the last factor on the right is also in E(2n, R), by Lemma 2.1.2 
again. 0 
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2.1.4. Proposition (Whitehead's Lemma). For any ring R, the com
mutator subgroups of GL(R) and of E(R) coincide with E(R). In par
ticular. E(R) is normal in GL(R) and the quotient GL(R)j E(R) is the 
maximal abelian quotient GL(R)ab of GL(R). 

Proof Since E(R) ~ GL(R) , [E(R), E(R)] ~ [GL(R), GL(R)]. Fur
thermore, relation (c) of Lemma 2.1.2 shows that 

provided i, j, and k are distinct. Thus each generator of E(R) is a com
mutator of two other generators and [E(R), E(R)] = E(R). We need only 
show that [GL(R), GL(R)] ~ E(R). Let A, B E GL(n, R). We embed 
GL(n, R) in GL(2n, R) and compute that 

( ABA-1B-1 0) = (AB 0 ) (A-1 0) (B-1 0) o 1 0 B-1A-1 0 A 0 B . 

By Corollary 2.1.3, all the factors on the right lie in E(2n, R), so 

2.1.5. Definition. If R is a ring (with unit), we define K 1(R) to be 
GL(R)ab = GL(R)jE(R). Note that R - K 1(R) defines a functor from 
rings to abelian groups, for if r.p : R -+ S is a (unit-preserving) ring ho
momorphism, r.p induces a map from GL(R) to GL(S) and hence from 
GL(R)ab to GL(S)ab. 

If A, B E GL(R), the product of the corresponding classes [A], [B] E 
K 1(R) may be represented in two convenient ways. On the one hand, 
[A] . [B] = [AB]. On the other hand, one may form the "block sum" 

AEBB = (~ ~). and since 

( A 0) = (AB 0) (B-1 0) 
.OB 010 B' 

Corollary 2.1.3 shows that 

[A EB B] = [AB EB 1] = [AB]. 

One may also interpret K 1 (R) as the group of canonical forms for invert
ible matrices over R under elementary row or column operations (in the 
usual sense of linear algebra). For if A E M(n, R), eij(a)A is the matrix 
obtained from A by adding a times the j-th row to the i-th row (an elemen
tary row operation), and Aeij(a) is the matrix obtained from A by adding 
a times the i-th column to the j-th column (an elementary column opera
tion). Vanishing of K 1(R), for instance, would mean that every matrix in 
GL(R) can be row-reduced or column-reduced to the identity matrix. 
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2.1.6. Exercise: behavior of Kl under Cartesian products. Let 
R = Rl X R2, a Cartesian product of rings. By using the obvious decompo
sition GL(R) = GL(R1) x GL(R2), show that K1(R) ~ K1(R1) x K 1(R2). 
Generalize to arbitrary finite products. (Compare Exercise 1.2.8.) 

2.1.7. Exercise: a ring with vanishing K 1• Let k be a field and let V 
be an infinite-dimensional vector space over k. Let R = Endk(V), Show 
that K1(R) = 1. Hint: V is isomorphic to an infinite direct sum of copies 
of itself. Thus if A E GL(R), one can form 

and regard it also as an element of G L( R). Show that A EB (00 . A) is conju
gate to (00' A), hence that A represents the identity in Kl(R). (Compare 
Example 1.2.6.) 

2.1.8. Exercise: Morita invariance of K 1 • In analogy with Theorem 
1.2.4, show that Kl(Mn(R)) ~ K1(R), for any ring R and any positive 
integer n. 

2.1.9. Exercise: Kl of a direct limit. Show by an argument somewhat 
similar to the proof of Theorem 1.2.5 that if (RoJaEJ, «(}afJ : Ra ~ RfJ)a<fJ 
is a direct system of rings and R = lim Ra is the direct limit of the system, 

--+ 
then K1(R) ~ lim Kl(Ra ). 

--+ 

2. Kl of division rings and local rings 
We now begin to compute Kl for rings of practical interest. In the case of 
a commutative ring, the determinant gives us our first piece of information. 

2.2.1. Proposition. If R is a commutative ring and RX = GL(I, R) is 
its group of units, the determinant det : GL(n, R) ~ R X extends to a split 
surjection GL(R) ~ RX and thus gives a split surjection K1(R) ~ RX. 

Proof. Note that det(A EB 1) = detA, so that the determinants on 
G L( n, R) for various n are compatible with the embeddings of G L( n, R) 
in GL(m, R) for n < m. Since det(AB) = det(A) det(B) , we obtain a ho
momorphism GL(R) ~ R X which must factor through a map GL(R)ab ~ 
RX (since RX is commutative). There is a splitting defined by RX = 
GL(I, R) '--+ GL(R). 0 

Remark. When R is commutative, it is standard to denote the matri
ces of determinant 1 in GL(n, R) by SL(n, R) and in GL(R) by SL(R). 
The notations GL(R) and SL(R) stand for the general linear group and 
special linear group of R, respectively. Note that since each elementary 
matrix has determinant 1, E(R) ~ SL(R). The quotient SL(R)/E(R) is 
denoted SK1(R). 

Now it is easy to compute Kl in the case of a field. 
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2.2.2. Proposition. IfF is a (commutative) field, then SKI (F) is trivial, 
i.e., the determinant induces an isomorphism det : KI(F) -+ FX. 

Proof. This is basically a classical theorem of linear algebra, that any 
matrix can be row-reduced to a triangular matrix. If A = (aij) E G L( n, F), 
then the first column of A can't consist entirely of zeroes, since then the 
matrix couldn't be invertible. So ail =I 0 for some n. If i = 1, fine. If not, 
as in the proof of (2.1.3), 

eli(l)ei1(-I)eli(l) = ( ~ 
-1 
o 

1 
o 

1 
... ) , 

o ... 
o 1 

so premultiplying A by eli(l)eil(-I)eli(l) puts something non-zero into 
the (1, I)-slot. So we may as well assume an =I O. Adding -ailail times 
the first row to the i-th row for i =I 1, we can now kill off all the other 

entries in the first column. This reduces A to the form (a~1 ~,) with 

A' an (n -1) x (n -1) matrix, and of course detA = an detA'. 
We now repeat the same procedure for A', thus changing A by elemen

tary row operations to the form 

with A" an (n-2) x (n-2) matrix. Continuing by induction, we see that A 
can be changed into an invertible upper-triangular matrix via elementary 
row operations. 

Now assume A is an invertible upper-triangular matrix. Adding multi
ples of the last row to the other rows, we can kill off all the entries in the last 
column except for ann' Then adding multiples of the (n -1)-th row to the 
other rows, we can kill off all the entries in the (n-l)-th column except for 
an-I,n-I. Continuing by induction, we can row-reduce A to an invertible 
diagonal matrix D = (dij ). Since elementary row operations don't change 
the determinant, this diagonal matrix D has the same determinant as our 
original matrix A. 

Finally, we have to transform D into a diagonal matrix with at most 
one diagonal entry different from 1. This can be done using Lemma 2.1.3, 
which shows that matrices of the form 

diag(l, ... , 1, a, a-I, 1, ... , 1) 

are elementary. Premultiplying D by such matrices, we transform D into a 
diagonal matrix·with at most one diagonal entry, say the one in the (1, 1)
slot, different from 1. This entry must be the same as the determinant, so if 
A had determinant 1, we see that it can be transformed by elementary row 
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operations into the identity matrix. In other words, SL(n, F) = E(n, F) 
and SKI (F) is trivial. 0 

Remark. Note that the proof above still works to some extent if F is 
replaced by a non-commutative division ring R. The one thing that is 
different is that there is no good definition of a determinant for matrices 
over general non-commutative rings, so that the argument only proves the 
following. 

2.2.3. Proposition. If R is a division ring, the inclusion 

R X = GL(l, R) <-+ GL(R) 

induces a surjection R;b - KI (R). 

Proof. Exactly the same proof shows that every matrix in GL(n, R) 
can be transformed by elementary row operations into a diagonal matrix of 
the form diag(a, 1, ... , 1), in other words, into the image of GL(l, R) in 
GL(n, R). Since KI(R) is abelian, the resulting surjection RX - KI(R) 
factors through R;b = RX /[RX, RX]. 0 

In fact, the same proof works in still greater generality. 

2.2.4. Proposition. If R is a local ring (not necessarily commutative), 
the inclusion RX = GL(l, R) <-+ GL(R) induces a surjection R;b -
KI(R). 

Proof. In the proof above, we only used the fact that R is a division ring 
to show that each row and column of a matrix A = (aij) E GL(n, R) must 
contain an invertible element. However, this is still true over a local ring 
since the non-units constitute the radical. Indeed, if A were to contain a 
row or column all of whose entries were in the radical, then it's obvious A 
couldn't be invertible. (For example, if the i-th row of A had all its entries 
in the radical, then the same would be true for AB for any matrix B, so 
A couldn't have a right inverse. Similarly, if the j-th column had all its 
entries in the radical, then the same would be true for BA for any B, and 
A couldn't have a left inverse.) 0 

Now we get to the main theorem of this section, which is a calculation 
of KI (R) when R is a local ring or division ring. Since we already have an 
upper bound on the size of KI (R) from Proposition 2.2.4, we need a lower 
bound, in other words, a homomorphism out of KI(R) into some abelian 
group, akin to the determinant. The main idea of the construction is due to 
Dieudonnej we have followed the exposition in [Srinivas, (1.6)] (with small 
variations) . 

2.2.5. Theorem. Let R be a local ring, not necessarily commutative. 
Then there exists a unique "determinant" map GL(R) ---T R:b with the 
following properties: 

(a) The determinant is invariant under elementary row operations. In 
other words, if A E G L( n, R) and A' is obtained from A by adding 
a (left) multiple of one row to another row, then det A' = det A. 
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(b) The determinant of the identity matrix is 1. 
(c) If A E GL(n, R) and if a E RX, and if A' is obtained from A 

by (left-)multiplying one of the rows of A by a, then det A' = 
(a) (det A), where a denotes the image of a in R:b . 

The determinant also has the following additional properties: 

(d) If A, B E GL(n, R), then det(AB) = (detA)(detB). 
(e) If A E G L( n, R) and if A' is obtained from A by interchanging 

two of its rows, then detA' = (-I)(detA). 
(f) The determinant is invariant under taking the transpose of a ma

trix. 

Proof. First we check the uniqueness and the fact that (d)-(f) follow 
from (a)-(c). Then we prove the existence by an induction argument. 
Suppose a map det exists satisfying (a)-(c). By Proposition 2.2.4 and 
its proof, any matrix in GL(n, R) can be row-reduced to one of the form 
diag(a, 1, ... ,1). Hence by (a), the determinant is determined by its value 
on such matrices. But by (c), det(diag(a, 1, ... ,1)) = a(det 1), which 
by (b) is just a. Hence (a)-(c) determine det uniquely. Furthermore, if 
E E E(n, R) and EA = diag(a, 1, ... ,1), then we have det A = a, while 
det(AB) = det(EAB) by (a), which can be rewritten as det((EA)B). Since 
premultiplying a matrix by diag(a, 1, ... ,1) amounts to left-multiplying the 
first row by a, we have by (c) that 

det(AB) = det((EA)B) = a(detB) = (det A)(det B), 

proving (d). To check (e), note that if A E GL(n, R) and i < j ::::; n, then 
interchanging the i-th and j-th rows can be accomplished in two steps: pre
multiplying by the elementary matrix eij(l)eji( -1)eij(I), and then mul
tiplying the i-th row by -1. Hence (e) follows from (a) and (c). Finally, 
to check (f), note that by (a) the determinant is equal to 1 on elementary 
matrices, whereas by (d) it is multiplicative. Hence the determinant is un
changed under post multiplication by elementary matrices, in other words, 
elementary column operations. Furthermore, condition (c) implies that for 
aERx, 

det (diag(I, ... , 1, a, 1, ... ,1)) = a. 
Now consider the map det' : A 1---+ det(At), where At is the transpose of A. 
This clearly satisfies (b), and since the transpose of an elementary matrix 
is elementary, det' is also equal to 1 on elementary matrices. Furthermore, 
we have 

det' (AB) = det ((AB)t) = det(Bt At) = det(Bt) det(At) 

= det'(B)det'(A) = det'(A)det'(B), 

since the determinant takes values in an abelian group. So det' satisfies (d), 
and since it is 1 on elementary matrices and a on diag(I, ... ,1, a, 1, ... , 1), 
it satisfies (a) and (c) as well. By the uniqueness of a map satisfying (a )-( c), 
det' must coincide with det, proving (f). 
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Now we proceed to the existence proof. We define detn(A} for A E 
GL(n, R} by induction on n, in such a way that detn+m(AEI1Im} = detn A, 
so that we get a well-defined map on GL(R}. Clearly when n = 1 we 
define detl(a} = a, and properties (a}-(c) are satisfied. So this starts the 
induction. Assume now that we've defined detk for k < n with properties 
(a}-(c) and compatibility for varying k, and let's define detn and show 
that it satisfies (a}-(c) and compatibility with detk for k < n. Let A E 
GL(n, R}, and denote the rows of A by AI, ... ,An. Let bl! . .. ,bn be the 
entries of the first row of A-I. Since A-I A = In, expanding out the matrix 
product gives the relation 

blAl + ... + bnAn = ( 1 0 . . . O) . 

In particular, if we write Aj = (ajl Bj ), where Bj E ~-l, then:Ej bjBj 
=0. 

By an argument already used before in the proof of Proposition 2.2.4, 
an entire row of A-I can't consist of elements of rad R, so at least one of 
the bj's is invertible, say the i-th one. We then obtain 

So adding multiples of the other rows to Ai row-reduces A to the form 

since 

an Bl 

ai-l,l Bi-l 
b-:l , 0 

ai+l,l Bi+l 

ann Bn 

ail + L bilbjajl = bilbi~l + L bilbjajl 
j~ j~ 

= bil L bjajl = bil. 
j 

If relations (a}-(c) are to hold, we see that we must therefore take 
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and we therefore adopt this 88 our definition. The only problem is to 
show that this is independent of the choice of i (subject to the condition 
bi E RX). Suppose i < j and bi, bj E RX. We need to show that 

where 
Bl Bl 

Ci = 11; , Cj = iij 

Now Cj can be obtained from Ci by first permuting the order of the rows 
to get 

B i - 1 

B j 

C= Bi+l 

then changing the i-th row from B j to Bi . Now going from Ci to C involves 
cyclically permuting the j - i rows (Bi+l!"" Bj ). Hence by condition (e) 
for detn-l! detn-l C = (_1)j-i-l detn-l Ci. And Bi = -bi1bjBj+(a 
linear combination of other rows), so by conditions (a) and (c) for detn-l! 

--r detn-l Cj = -bi bj detn-l C and 

88 required. Thus detn is well-defined. 
To complete the proof, we only need to show that detn satisfies (a)

(c) and agrees with detn-l on matrices of the form B $ 1, B any (n-
1) x (n - 1) invertible matrix. Condition (b) is trivially true from the 
definition. As for (a), suppose A' with rows A~, ... , A~ has Aj = Aj for 
j =F i, A~ = Ai + aAk, where a E RX and i =F k. Then A' = eik(a)A, hence 
(A')-l = A-1eik(-a) and the elements b~, ... ,b~ of the first row of (A')-l 
are the same 88 b1 , ••• ,bn except for b~ = bk - bia. If bj E RX for some 
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j =I- k, then we have 

B i - 1 

Bi +aBk 

detnA' = {-1)j-1bj1detn_1 Bi+1 

Bn 
so by (a) for detn_l, detn A' = detn A. The only case we haven't covered 
is where bk and b~ = bk - bia are both invertible and bi lies in rad R for 
i =I- k. In this case, 

and 

Bn 

whereas ii' k = bk (since bia E rad R) and again detn A' = detn A. So this 
confirms property (a) for detn. 

Now we check (c). Suppose A' with rows A~, ... ,A~ has Aj = Aj for 
j =I- i, A~ = aAi, where a E RX. Then A' = di{a)A, with di{a) the diagonal 
matrix with all 1 's on the diagonal except for an a in the {i, i)-slot. Hence 
(A,)-l = A-1di{a-1) and the elements bL ... ,b~ of the first row of {A,)-l 
are the same as bl, ... , bn except for b~ = bia-1 • Again there are two cases. 
If bj E RX for some j =I- i, then we have 

B i - 1 

aBi 

detn A' = {_1)i-1bj l detn-l Bi+l 
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so by (c) for detn-l. detnA' = adetnA. The only case we haven't covered 
is where bi is invertible and bj lies in rad R for j =1= i. In this case, 

B1 

A' ( )i-1b'- -1 d detn = -1 i etn-1 

and 

.. ' 
R; 

Bn 

whereas iii = bia-1 and so again detn A' = detn A. So this confirms 
property (c) for detn. For compatibility with detn-1, note that BE91 can be 
transformed into 1 E9 B by cyclically permuting both the rows and columns, 
hence by (d) and (f), which follow from (a)-(c), detn(BE91) = detn(1E9B). 
The latter is trivially the same as detn-1 B by our definition. So this 
completes the proof. 0 

2.2.6. Corollary. If R is a local ring, not necessarily commutative, then 
the determinant of (2.2.5) induces an isomorphism 

K 1(R) ~R:b' 

Proof. This is immediate from 2.2.4 and 2.2.5, since the composite GL(1, 

R) <-+ GL(R) ~ R:b is just the quotient map RX - R:". 0 

2.2.7. Exercise. (Compare Exercise 1.3.14.) Compute K1(Z/(m» in 
terms of m, for any integer m > O. (Split into local rings and use Exercise 
2.1.6 and Corollary 2.2.6.) 

2.2.8. Exercise. Compute K1(k[t]/(tm», for any field k and for any 
integer m > O. 

2.2.9. Exercise (another approach to a determinant over the 
quaternions). Let nI be the usual ring of quaternions a + bi + cj + dk, 
where a, b, c, d E R and ij = k, i2 = j2 = k2 = -1. Recall that one defines 
a + bi + cj + dk = a - bi - cj - dk. 

a) Show that if one defines N(z) = zz, then N gives a surjective ho
momorphism nIx --+ R~. In particular, the commutator subgroup 
of nIx must lie in the kernel of N. 

b) Show that the kernel of N is exactly the commutator subgroup 
of lHIx. (Hint: show that ie36i-1 = e-j6, and similarlywith i, j, 
k cyclically permuted. Deduce thate2j61 , e2j62 , and e2j6s are all 
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commutators. Show that these generate an open neighborhood of 
1 in N-l(l) ~ S3. But S3 is connected.) Thus lHI:b ~ R.~. 

c) Since JBl is a vector space over R. of dimension 4, lHI may be embed
ded in M4(R.) by the left regular representation, and GLn(lHI) <:.....+ 

G L4n (R.). Composing with the determinant gives a homomorphism 
deta : G Ln (JBl) --+ R. x. Relate this to the Dieudonne determinant 

and to N, and show that N : K 1 (lHI) ~ R.~. 

2.2.10. Exercise (Some rings of interest in operator theory). 
Here is an exercise dealing with some rings (actually, algebras over C) 
of great importance in operator theory and functional analysis. While they 
are not themselves local rings, we will study a "determinant" somewhat 
similar to that which we have constructed above in Theorem 2.2.5, and we 
will make a connection with local rings in the next exercise. 

Let 'H. be an infinite-dimensional separable Hilbert space with an or
thonormal basis el, e2, .... A bounded operator on'H. is called compact 
if it sends the unit ball to a pre-compact set, or equivalently, if it is a limit 
(in norm) of operators offinite rank. It is a well-known fact that the spec
trum of any compact operator consists of 0 and of a sequence of eigenvalues 
tending to O. (This is to be interpreted to mean "counting multiplicities," 
in the sense that no non-zero eigenvalue has infinite multiplicity. Zero itself 
mayor may not be an eigenvalue.) A compact normal operator is diago
nalizable. We denote by JC('H.) the Banach space of all compact operators 
with the operator norm: 

This is a closed two-sided ideal in the algebra 8('H.) of all bounded opera
tors. 

Now if S is a positive bounded operator on 'H., its trace is defined by 

00 

Tr S = ~)Sei' ei) E [0, 00]. 
i=l 

The trace is independent of the choice of orthonormal basis, for if the sum 
converges and e~, e~, ... is another orthonormal basis, then 

00 

= L (Sei, ej)(ej, ei) 
i,j=l 

00 

= L (Sej, ei)(ei, ej) 
i,j=l 
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00 

= ~)Sej, ej). 
j=1 

An immediate consequence is that if U is a unitary operator, Tr S = 
Tr(U* SU). (Compute the trace of U* SU using the original basis and the 
trace of S using the basis {Uej}.) If S = T*T is a positive operator and 
the trace Tr(S) is finite, then (Sei' ei) --+ 0, i.e., IITeili --+ 0, so that {Tei} 
is norm-convergent to 0. Thus T is compact and S is compact. 

If 1 :::; p < 00, the Schatten p-class of 1t is the Banach space CP(1t) of 
operators T for which 

1 

IITllp = (Tr(ITIP»:;; < 00, 

where ITI = (T*T) 1. The Schatten classes consist of compact operators 
since this condition implies ITIP is compact, hence ITI and T are compact. 
It turns out that II lip is a norm and that CP(1t) is complete in this norm. 
Furthermore, CP(1t) ~ cpt (1t) for p :::; p', since (for T compact) T E CP(1t) 
if and only if the sequence of eigenvalues of ITllies in lP. When p = 2, 

00 00 

IITII2 = (Tr(T*T»l = :E{T*Tei' ei) = :E{Tei' Tei), 
i=1 i=1 

so IITII2 = {T, T)HS, where the inner product { , )HS is defined by 

00 

(T, S)iIs = :E{Tei' Sei)' 
i=1 

Thus in this case C2(1t) is a Hilbert space, called the Hilbert space of 
Hilbert-Schmidt operators. In general note that clearly IIATllp = IAlIlTllp 
and IITllp 2': 0. If IITllp = 0, then the positive quadratic form defined by 
ITIP vanishes on all the ei, hence everywhere, so ITIP = 0, ITI = 0, and 
T = 0. The triangle inequality can be verified by showing first that 

IITllp = sup I Tr(TF) I, 
F of finite rank 

1 1 - + - = 1, 
p q 

IlFllq:S) 

where if p = 1 we interpret IlFllq to mean the operator norm of F. (Since 
T F has finite rank, its trace is well defined in the usual sense.) One can 
also check easily that CP(1t) is a two-sided ideal in 8(1t) (though not closed 
in the operator norm). 

The space C1(1t) is called the space of trace-class operators. If T E 

C1(1t), the sum E{Tei, ei) converges absolutely, and defines a linear func
tional Tr T independent of the choice of orthonormal basis (just as before). 
Hence, once again Tr(U*TU) = Tr(T) for U unitary. 



Now let K(H) = e·l?-l+K(H), and similarly let £p(H) = e·l?-l+.ep (H). 
Each of these rings has a unique maximal two-sided ideal, of co dimension 
one. (For instance, K(H) is a two-sided ideal in K(H) of co dimension one, 
so it is maximal even as either a left ideal or right ideal.) 

(1) Complete the proof that II 111 is a norm and that .e1 (H) is complete, 
by showing that for A E B(H) and T E .e1(H), 

I Tr(AB) I ::; IIAlloo IITIIt-

Hint: Use the polar decomposition T = UITI to split AB as 
(AUITI!)(lTI!) and use the Cauchy-Schwarz inequality for ( , )HS. 
Then if T, S E .e1 (H), write T + S = UIT + SI (polar decompo
sition) and estimate Tr(IT + SI) as Tr(U*(T + S)) = Tr(U*T) + 
Tr(U* S) via the above estimate. 

(2) Show that ifT or S is of trace class, then Tr(TS) = Tr(ST). Hint: 
if T is of trace class and S is unitary, this follows from invariance 
of the trace under conjugation by S. Now get the result for all S 
(with T still of trace class) by taking linear combinations. 

(3) Show that K(H) and £p(H) have split surjections onto e inducing 
surjections on K 1. 

(4) (The operator determinant) Let R = l8H) , the trace-class 
operators with identity adjoined. Let R{ = ker(R X -+ eX), and 
call this the group of determinant-class operators. Construct a 
homomorphism det : R{ -+ e x with the property that 

(*) det(eT) = eTr(T) for T E .e1(H). 

(Here the exponential of an operator is constructed via the usual 
exponential power series.) 

Hint: First show that every determinant-class operator D is an 
exponential of a trace-class operator. One can do this by noting 
that every element of the spectrum of D, except perhaps for 1, is 
an eigenvalue of finite multiplicity, and that 1 is the only accu
mulation point of the spectrum. Hence, if Vi is the span of the 
generalized eigenspaces for D corresponding to the eigenvalues A 
with IA - 11 2: 1, one obtains a (not necessarily orthogonal) direct 
sum decomposition of H into two invariant subspaces VI and V2 

for D, where VI is finite-dimensional and the spectral radius of 
(D - 1)lv2 is < 1. Then one can take a logarithm of Dlv2 using 
the usual power series 

1 2 logz = (z -1) - -(z -1) + ... 
2 

and choose any logarithm for the invertible operator Dlv! of finite 
rank (using, say, the Jordan canonical form). 

Next, observe that if T and S are both of trace class and eT = 
eS = D, then if T has eigenvalues Aj and S has eigenvalues JLk, the 
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set {e>.j} must coincide with the set {elLA:}, and the multiplicities 
must match up. On the other hand, Aj ~ 0 and J.tk ~ O. One can 
see from this that again one can find a (not necessarily orthogonal) 
direct sum decomposition of 1-£ into two invariant subspaces VI and 
V2 for both T and 8, where Vt is finite-dimensional and eTlvl = 
eSlvll and where Tlv2 = 81v2. In particular, 

Tr(T)-Tr(8) = Tr(Tlvl)-Tr(8IvJ E 27riZ, so eTr(T) = eTr(S). 

This shows that (*) gives a well-defined definition of det. 
Finally, show that the determinant is multiplicative, i.e., that if 

T and 8 are of trace class, then det(eTeS) = det(eT) det(eS ). On 
can do this using the Campbell-Baker-Hausdorff formula 

{ 1 1 1 } exp tT + s8 + '2ts[T,S] + 12t2s[T, [T,811 + 12 ts2 [8, [8,Tll + ... 

and the fact «2) above) that Tr vanishes on commutators. 
(5) Extend the definition of det to a homomorphism defined on 

ker[GL(R) ~ GL(e)]. 

(Hint: if T E GL(n, R) and T I-t 1 E GL(n, e), then T may be 
viewed as a determinant-class operator on 1-£ ®c en.) 

2.2.11. Exercise (A local ring in operator theory). In this exercise, 
we pursue the use of K-theory in operator theory in the context of local 
rings. Let 1-£ be a complex Hilbert space as in the last exercise and let A be 
some algebra of bounded operators on 1-£, not necessarily with unit. Thus 
A could be 8(1-£) or £,1{1-£). Let R be the ring of formal operator-valued 
power series ao . 1 + ZAI + Z2 A2 + ... , where Aj E A for j ;?: 1 and the 
constant term ao . 1 is a scalar multiple of the identity operator. 

(1) Show that if ao =F 0, then ao . 1 + ZAI + Z2 A2 + ... has an inverse 
in R. Deduce that R is a local ring, with radical the power series 
without constant term. 

(2) If A is a Banach algebra, show that the same holds for R' if we 
define R' similarly using only those power series with a positive 
radius of convergence in z, in other words, with germs at z = 0 of 
analytic operator-valued functions in place of formal power series. 

(3) Let A E 8(1-£). Then 1 - zA has an inverse in R, which is essen
tially (except for the change of variable z I-t z-I) what is called in 
operator theory the resolvent of A. Show that the power series 
for (1 - ZA)-I converges for Izl < IIAII-I . 

(4) Let A = £,1{1-£). Show that the determinant of the last exercise 
defines a homomorphism from (R')X to the group of units in the 
commutative local ring of germs of analytic functions around o. 
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Show also the following useful fact: if A is a trace-class operator, 
fA(Z) = det(l - zA)-l extends to a function of z analytic in the 
whole complex plane except perhaps for countably many isolated 
singularities, and that if Zo is a zero or singularity of fA, then 
ZOI E SpecA. (Actually, more is true; fA is entire analytic, and 
fA(ZO) = 0 if and only if ZOI E SpecA. See [llingrose, Ch. 3) for 
more details.) 

3. K 1 of PIDs and Dedekind domains 
As we did in Chapter 1 in studying K o, we shall proceed from the study 
of K 1 of division rings and local rings to the study of K 1 of the most 
elementary examples of non-local commutative rings. Of particular interest 
are the sorts of rings that occur in algebraic geometry and number theory. 
Here we shall discuss PIDs and Dedekind domains; polynomial rings will 
be dealt with in the next chapter. 

The easiest examples to treat are Euclidean rings. These include Z, 
the Gaussian integers Z[i), Z[-ltY'3), the rings of integers in a few other 
special number fields, and the. polynomial ring k[t) in one variable over a 
field k. To fix notation, we remind the reader of the basic definition. 

2.3.1. Definition. A (commutative) integral domain R is called a Eu
clidean ring or Euclidean domain if there is a norm function I I 
R -+ N with the following properties: 

(i) If a E R, lal = 0 if and only if a = O. 
(ii) If a, bE R, labl = lallbl. 
(iii) (Euclidean algorithm) If a, b E R, b #- 0, then there exist q, 

r E R, called the quotient and remainder, respectively, such 
that a = qb + rand 0 ::; Irl < Ibl. 

In the examples Z, Z[i], Z[-ltY'3), and k[t], the norm function is given 

by the usual absolute value, by la + bil = a2 + b2 , by la + b-1tY'31 = 
a2 - ab+ b2 , and by If(t)I=2degf (with the convention that degO = -00), 
respectively. 

2.3.2. Theorem. If R is a Euclidean ring, then SK1(R) vanishes and 
Kl(R) ~ RX. In fact, for each n, SL(n, R) = E(n, R). 

Proof. Let A = (aij) E GL(n, R). We try to proceed roughly as in the 
proof of Proposition 2.2.2, but the problem is of course that there is no 
guarantee that there will be an invertible entry in a given row or column 
of A. However, the norm function on R gives us a mechanism for doing an 
induction. To illustrate, start with the first column of A. Not all elements 
of this column can be zero, so there is some ail #- 0 and with laill minimal 
subject to this condition. If I ail I = 1, then ail must be a unit. (By the 
Euclidean algorithm, 1 = qail + r with 0 ::; Irl < 1, hence with Irl = 0, 
so r = 0 by (i) of (2.3.1).) If I ail I > 1, then ail is not a unit, and so 
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generates a proper ideal (ail). On the other hand, since A is invertible, the 
ideal generated by the elements of the first column must be all of R, and so 
there is some j ::j:. i with ajl ~ (ail)' Applying the division algorithm gives 
ajl = qail + r, where Irl < laill. Since ajl ~ (ail), r::j:. 0 and thus Irl > O. 
So by subtracting q x (i-th row of A) from the j-th row, we can row-reduce 
A to decrease the minimal norm of a non-zero element in the first column. 
Once we've shown this, then iterating the reduction procedure enables us 
to reduce to the case where there's a unit in the first column. So then 
we can proceed as in the case of R a field and row-reduce A to the form 

(a~l ~/), where all is a unit and A' is of size (n - 1) x (n - 1) and 

invertible. Then we repeat the whole process with A', etc. The rest of the 
proof is identical to that of Proposition 2.2.2. 0 

2.3.3. Corollary. KI(:l) ~ {I, -I}, KI(Z[i]) ~ {I, i, -1, -i}, 
K I (Z[-ltv'3]) ~ {6-th roots oEl}, and KI(k[t]) ~ kX. 

Proof. In the examples of 2.3.1, it's easy to see which elements have 
norm 1. 0 

Theorem 2.3.2 naturally raises the question of whether the same state
ment is true or not for more general PIDs or Dedekind domains. Unfor
tunately, the answer is "no"; there are PIDs with non-zero SKI, though 
they are not so easy to find. (For examples, see [Ischebeck] and [Grayson].) 
Thus it seems the idea of the proof of Theorem 2.3.2 cannot be pushed 
any further. However, there is one general result about KI of Dedekind 
domains that arises as a special case of Bass's general theory of "stable 
range." One may view the vanishing of SKI for a commutative ring R as 
the statement that KI(R) is generated by the image in GL(R) of GL(I, R). 
When this doesn't hold, the next best thing would be for KI (R) to be gen
erated by the image in GL(R) of GL(2, R). Instead of trying to explain 
the general theory (for which one can consult [Bass]), which gives for a ring 
R an estimate on the smallest value of n for which KI (R) is generated by 
the image in GL(R) of GL(n, R), we will give a simplified proof of the one 
case we need. We begin with a lemma which will also be used in Section 5 
of this chapter. Because of Corollary 2.1.3, Lemma 1.5.4 is just a special 
case of the following. 

2.3.4. Lemma. Let R be a ring (with unit) and I a two-sided in R. Then 
for any n, the natural map E(n, R) -+ E(n, RjI) is surjective. 

Proof. By definition, E(n, RjI) is generated by elementary matrices 
eij (a), where a is the image in Rj I of a E R. Such a matrix clearly lifts to 
the elementary matrix eij(a) E E(n, R). 0 

2.3.5. Theorem. Let R be a Dedekind domain. Then KI(R) is generated 
by the image in GL(R) of GL(2, R) (in fact, by the images in GL(R) of 
GL(I, R) and of SL(2, R)). 
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Proof. Let A E GL(n, R) and suppose n ~ 3. We will show that A 

can be row-reduced to a matrix of the form (~ ~,). where A' is of size 

(n - 1) x (n - 1) and invertible. Subtracting ali x (the first column of A) 

from the i-th column then reduces A to the form (~ ~) with B E 

GL(n-1, R), so [A] E KI(R) lies in the image of GL(n-1, R). Induction 
on n then gives the result of the theorem. (We already know the image of 
GL(2, R) is generated by GL(l, R) and by SL(2, R).) 

Now consider the first column of A. Since A is invertible, the ideal 
generated by its entries is all of R. We will show we can do elementary 
row operations on A to put at least one zero in the first column. One 
this is done, the ideal generated by the remaining entries in the column is 
all of R, so adding multiples of the other rows to the row with the zero, 
we can change the zero to a 1. Then if necessary, we may premultiply by 
eli(l)ei1(-l)eli(l) to put the 1 in the (1, l)-slot. Subtracting multiples of 
the first row from the other rows then reduces A to the desired form. 

Let I be the ideal generated by a31, ... ,anI' If I = 0, then a31 = 0 and 
we're already done. If I = R, then subtracting a linear combination of rows 
3 through n from the first row puts a zero in the (1, l)-slot, and we're again 
done. So we may assume I is a proper non-zero ideal. By Theorem 1.4.7, 
we may factor I uniquely into a product of maximal ideals. By the Chinese 
Remainder Theorem, this gives a corresponding factorization of R/ I into 
a product of local rings of the form R/ pk, where P is a maximal ideal. By 
Proposition 2.2.4, SKI(R/pk) = 0, so by Exercise 2.1.6, SKI(R/I) = o. 
In fact, by the method of proof, we know that SL(m, R/I) = E(m, R/I) 
for any m. We will use this fact for m = 2. 

For each element a E R, let a be its image in R/I. Since Ra11 + ... + 
RanI = R, dividing by I gives that (R/I)a11 + (R/I)a21 = R/I. In other 
words, we can find Xl and X2 in R such that xlall + X2a21 = i, or 

det (~l ~2 ) = i. 
-a21 au 

So we have a matrix in SL(2, R/I) = E(2, R/I). By Lemma 2.3.4, it lifts 

to an elementary matrix (~~ ::) in SL(2, R), and blXI + ~X2 = 1 

(here we may have to change the original Xl and X2 within their I -cosets). 
But on the other hand, XlaU +X2a21 -1 E I, so there exist X3,'" ,Xn E R 
with E~=l Xiail = 1. For i ~ 3, we have Xi = xi(blXI + ~X2)' SO we get 
the equation 

XlaU +X2a21 + (X3blx la31 +X3b2x2a31)+" '+(xnblxlanl +xnb2x2and = 1 

or 

Xl (au + X3bl a31 + ... + Xnbl and + X2 (a21 + X3~a31 + ... + xnb2anl) = 1. 

This says exactly that by adding (X3bl) x (the 3rd row) + ... + (Xnbl) x 
(the nth row) to the first row, and by adding (X3b2) x (the 3rd row) + ... + 
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(Xnb2) X (the nth row) to the second row, we can change A so that the ideal 
generated by the new an and a21 is all of R. Then subtracting a linear 
combination of the first and second rows from the last row, we can achieve 
the desired zero. 0 

The above theorem suggests studying, for commutative rings R and 
especially Dedekind domains, the subgroup of 8K1 (R) generated by the 
image of 8L(2, R). The convenient way to do this is in terms of so-called 
Mennicke symbols. 

2.3.6. Theorem. Let R be a commutative ring. 
(1) For a, b E R with Ra + Rb = R, choose c, d E R with ad - be = 1. 

Then thec1assin8K1(R) Of(: :) E 8L(2, R) is independent of 

the choice of c and d, hence can be denoted [a bj without possibility 
of confusion. 8uch an element of 8K1(R) is called a Mennicke 
symbol, and if R is a Dedekind domain, all elements of 8K1(R) 
are of this form. 

(2) [a bj = 1 if a E R X , b E R. 
(3) For a, b E R relatively prime, the Mennicke symbols satisfy the 

relations [a bj = [b aj and [a bj = [a + b)" bj for any ).. E R. 
(4) If Ra1a2 + Rb = R, then [a1 bj. [a2 bj = [ala2 bj. 

Proof. (1) The assertion that the class of (: :) is independent ofthe 

choice of c and d follows immediately from the calculation that if (: : ) , 

(; ;,) E 8L(2, R), then 

(: :) (; ;,)-1 = (: :) (!~ ~b) = (Cd' ~ c'd ~). 
The Mennicke symbols clearly exhaust the image of 8L(2, R) in K 1(R), so 
by Theorem 2.3.5, they exhaust 8K1 (R) if R is a Dedekind domain. 

(2) is clear from the fact that if a E R X and A = (: :) E 8L(2, R), 

then we can subtract 00-1 X (1st row) from the second row to change 

A to the form (~ a~1)' Then multiplying by the elementary matrix 

(a~l ~) makes the matrix strictly upper-triangular, hence elementary. 

For (3), note first that 

(: :) ( ~ 1 ~) = (=: :), 
so [a bj = [-b aj. When we verify (4), it will follow that 

[a bj = [-b aj = [b a][-l aj = [b a] (by (2». 
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Furthermore, 

(a b) (1 0) ( a + bA b) 
C d A 1 = C+dA d ' 

so [a bj = [a + bA bj. 

To check (4), assume Rala2 + Rb = R. Then if ( al 
Cl 

b) (a2 b) dl ' C2 d2 
have determinant 1, 

( a, b 0) (02 0 b)CO 0) Cl dl o 0 1 o 0 1 -al 
0 0 1 C2 0 ~ 0 0 1 

("'02 b alb) C 0 +) = C~2 dl c1b 0 1 
0 d2 0 0 

("'02 b ~1) . = cla2 d1 

C2 0 d2 

(~1 _001 O~) Premultiplying by now keeps the first row the same and 

puts a 1 in the (3, 3)-slot, and further elementary operations reduce the 
matrix to the form 

("~02 ~ n. 
So [al b][a2 bj = [ala2 bj. 0 

2.3.7. Corollary. H R is a Dedekind domain and RIP is a finite field for 
each non-zero prime ideal of R, then SK1(R) is a torsion group. 

Proof. Consider a Mennicke symbol [a bj. If b = 0, then a E RX so 
[a bj = 1 by (2) of the theorem. Similarly, [a bj = 1 if b E RX. If neither is 
the case, (b) is a non-zero proper ideal of R and so is a product of non-zero 
primes ideals Pj by Theorem 1.4.7. Since each RIPj is finite, it follows that 
RI(b) is finite (cf. the beginning of the proof of Theorem 1.4.19). Since the 
image of a in RI(b) is a unit and (RI(b»X is a finite group, there is some 
k with ak == 1 mod (b), and then by (4) of the theorem, 

[a bjk = [ak bj = [1 + bA bj (for some A) = [1 bj = 1 

by (3) and then (2) of the theorem. 0 

This is about as much as one can say about general Dedekind domains. 
However, for the examples of greatest interest in number theory, namely 
the rings R of algebraic integers in number fields (finite extensions of Q), it 
turns out that one can explicitly compute R X and also show that SKl(R) 
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vanishes. The computations for these cases are also of great interest in 
topology because of Example 1.5.1O(b), which shows that the group ring 
of a cyclic group of order p is closely. related to Z[e27ri / PJ, and the following 
Section 4 of this chapter, which shows that Kl of group rings is of great 
importance in topology. We proceed to the calculation of R X , which is a 
famous classical result of Dirichlet. 

2.3.8. Theorem (Dirichlet Unit Theorem). Let F be a number field, 
i.e., a finite algebraic extension of Q, and let R be the ring of algebraic 
integers in F, that is, the integral closure of Z in F. Then R X is finitely 
generated, with torsion subgroup the finite cyclic group of roots of unity in 
F, and with torsion-free part a free abelian group of rank rl + r2 - 1, where 
rl + 2r2 = n = [F : QJ and where rl is the number of distinct embeddings 
of F into R., and r2 is the number of distinct conjugate pairs of embeddings 
of F into C with image not contained in R.. In particular, RX is infinite if 
and only if F is not Q or an imaginary quadratic field. 

Proof. We begin by recalling that by elementary Galois theory, if [F : 
QJ = n, then F must have n distinct embeddings a j into C. In general, a 
certain number of these, say al, ... , a rl' will have image contained in R.. 
The rest occur in complex conjugate pairs; let these be 

So rl + 2r2 = n. Define a map A, called the logarithmic embedding, 
from FX to R.r1 +r2 by 

A(a) = (Al(a), ... ,Ar1 +r2 (a)) 

= (log(lal(a) I), ... , log(lar1 (a) I), 

2log(lar1 +1 (a)l), ... ,210g(lar1 +r2 (a) I)) , 

and note that since NF/IQ(a) = n;=l aj(a), we have the relation 

rl+r2 

10g(1 NF/IQ (a) I) = L Aj(a). 
j=l 

(Incidentally, A is not injective since A( -1) = 0, but we will see shortly that 
A does give an embedding of the torsion-free part of RX.) Furthermore, 
by multiplicativity of the usual absolute value on C or R. and the additivity 
of the logarithm for products, A : FX --+ R.rl +r2 is a group homomorphism 
(the group operation is multiplication in the left-hand group, addition in 
the right-hand one). In particular, since NF/IQ(a) is a unit in Z, hence ±1, 
for a E R X , A restricts to a homomorphism (which we will also denote by 
A) from R X to the hyperplane 

rl+r2 

V = {(Xl, •.. 'xr1 +r2 ): L Xj = O}, 
j=l 
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a real vector space of dimension T1 + T2 - 1. Now a bound on 

implies a bound on the absolute values of the elementary symmetric func
tions of the O'j(a), which are the coefficients of a monic polynomial equation 
satisfied by a, and are ordinary integers. So the inverse image under A of 
any given ball of lRr1 +r+2 is finite, which shows that A(RX )is discrete and 
the kernel of A is finite. 

The kernel of A therefore consists of a E R for which aq = 1 for some 
q, in other words, of roots of unity. On the other hand, since A maps into 
a torsion-free group, all roots of unity in F must lie in the kernel of A, 
and the kernel coincides with the group of roots of unity in F, the torsion 
subgroup of RX. If F = Z, then obviously RX is just {±1}, and coincides 
with the kernel of A. If F is an imaginary quadratic field, then T2 = 1, 
T1 = 0, and V = 0, so again RX = ker A. Furthermore, for general F, since 
the image of A is a discrete subgroup of a real vector space of dimension 
T1 + T2 -1, A(RX) is free abelian ofrank $ T1 + T2 -1, and RX is finitely 
generated. 

It remains only to show that the rank of A(RX,) is precisely T1 + T2-1. 
This is the hard part ofthe proof, since for general F, there may not be any 
obvious elements of RX other than the roots of unity, even if T1 + T2 - 1 
is large. Since A(RX) is a discrete, subgroup of the real vector space V, 
to show that A(RX) has rank equal to the dimension of V is equivalent 
to showing that VjA(RX) is compact, or to showing that there is some 
compact subset K of V whose translates under A(RX) cover V. 

To show this, we first recall that by the proof of Theorem 1.4.18, 
II;~'lt2 O'j gives an embedding 0' of the additive group of R as a lattice 
(discrete cocompact subgroup) in lRr1 x Cr2 . In particular, the volume (in 
the sense of n-dimensional Lebesgue measure) of (lRr1 x cr2)jO'(R) is some 
finite positive constant, say 0 1 • Now if v = (Vb"" Vr1+r2 ) E V, let 

Note also that since ~ Vj = 0, the product of the coordinates eVj is 1. 
Hence eV • O'(R) (where· denotes coordinatewise multiplication) is again 
a lattice in lRr1 x Cr2 of covolume 0 1 • So if Q is a closed cube or ball of 
volume> 0 1 centered at the origin in lRr1 x Cr2 , its image in the quotient by 
eV 'O'(R) must have smaller volume, hence there had to be two points Xl and 
X2 in Q with the same image. In other words, Xl -X2 E eV ·O'(R), so that 2Q 
(the cube or ball with dimensions twice as big) contains a point of eV ·O'(R). 
Let K' be the compact image of 2Q under the map lRr1 x cr2 -+ lRr1 +r2 
defined by taking the logarithm of the absolute value of each coordinate. 
Then we have shown that for all points v E V, v + A(R '- {O}) meets K'. 

This is almost, but not quite, what we want, since we are interested in 
A(RX), not A(R,- {O}) (which is a semigroup but not a group). However, 
if O2 denotes the maximum L1-norm of a point in K', in other words, the 
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maximum value of the sum of the coordinates, then any a E (R" {O}) with 
eV • a(a) E 2Q must satisfy 

However, as observed in the proof of Theorem 1.4.19, there are only finitely 
many integral ideals in R of norm ~ eC2 (for any O2 ), and so up to units 
there are only finitely many possibilities for a, say al, ... , ak. Thus we have 
shown that for any v E V, there is a unit u E R X such that v + A( aj) + A( u) 
meets K' for some j ~ k. Thus there is a compact set K independent of v 
such that v + A( u) meets K for some u E R X , and this proves the theorem. 
(Take K = U~=I(K' - A(aj)).) 0 

It has been shown in [BassMilnorSerre] and in [Milnor, §16] that in fact 
SKI(R) vanishes when R is the ring of algebraic integers in a number field, 
so that Theorem 2.3.8 gives the complete calculation of K I (R) in this case. 
However, this is not an easy theorem and there doesn't seem to be an ele
mentary proof. With less effort, one can prove somewhat less, for instance, 
that SKI (R) is finite. There are quite a number of proofs available, though 
all seem to require some additional tools. One method is to first show that 
SL(2, R) is finitely generated, for instance, by constructing an explicit fun
damental domain for SL(2, R) as a discrete subgroup of a product G of 
rl copies of SL(2, JR) and of r2 copies of SL(2, C). It then follows from 
Theorem 2.3.6 and Corollary 2.3.7 that SKI(R) is finite. 

An alternative argument in [Kazhdan] uses representation theory. One 
can show that for each n, SL(n, R) is a discrete subgroup of a product 
G(n) of rl copies of SL(n, JR) and of r2 copies of SL(n, C), and that the 
quotient G(n)/SL(n, R) has finite invariant measure. On. the other hand, 
Kazhdan shows that for n ;::: 3, the locally compact group G(n) has prop
erty T, i.e., its trivial one-dimensional representation is an isolated point 
in the space of all irreducible unitary representations of the group. Kazh
dan also observes that property T inherits to discrete subgroups of cofinite 
volume and to quotients thereof. Therefore the abelianization SL(n, R)ab 
has property T. However, for a locally compact abelian group A, the ir
reducible unitary representations are just the continuous homomorphisms 
into T, the circle group, so property T means that A = Hom(A, T) is dis
crete. For A discrete, A is compact, so the only way it can also be discrete 
is if it is finite. So SL(n, R)ab is finite for n ;::: 3. In particular, SKI (R), 
which we have seen is a quotient of SL(3, R)ab, is finite. 

2.3.9. Exercise (Finite generation of E(n) and SL(n». 
(1) Show using Lemma 2.1.2(a) that if a ring R is finitely generated as 

a Z-module, then E(n, R) is finitely generated as a group. Deduce 
from Theorem 2.3.2 and Corollary 2.3.3 that SL(n, Z), SL(n, Z[i]) , 
and SL(n,Z[-ItY3 ]) are finitely generated groups for all n. (This 
is not so easy to show directly.) 

(2) Show using Lemma 2.1.2(c) that for any ring R, E(n, R) is its 
own commutator subgroup (i.e., is a perfect group) for n ;::: 3. 
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Also use Lemma 2.1.2(c) to strengthen the result of (1): if a ring 
R is finitely generated as a Z-algebra, then E(n, R) is finitely 
generated as a group for n ~ 3. 

(3) Show that SL(2, Z) = E(2, Z) is not its own commutator sub
group, by exhibiting a homomorphism onto an abelian group. Hint: 
what is SL(2, Z/(2))? 

2.3.10. Exercise (Stabilization of GL(n)/E(n) for Dedekind 
domains). 

(1) Let R be any ring. Show using the proof of Proposition 2.1.4 
that [GL(2, R), GL(2, R)] ~ E(4, R) (when GL(2) is embedded 
in GL(4) as usual). 

(2) Again let R be any ring. Show that the image of GL(2, R) in 
GL(n, R) normalizes E(n, R) if n ~ 3. Hint: first note that the 
image of GL(2, R) normalizes the subgroup El generated by the 
eij(a) with i ::; 2 and j ~ 3, the subgroup El generated by the 
eij(a) with j ::; 2 and i ~ 3, and the subgroup E3 generated by 
the eij(a) with i, j ~ 3. Then use Lemma 2.1.2(c) to show Elo ~, 
and E3 generate all of E(n, R). 

(3) Now let R be a Dedekind domain. By the proof of Theorem 2.3.5, 
if n ~ 3, GL(n, R) is generated by E(n, R) and by the image 
of GL(2, R). Deduce from this fact and from (1) and (2) above 
that for any n ~ 3, E(n, R) is normal in GL(n, R), and that for 
any n ~ 4, GL(n, R)/E(n, R) is the abelianization of GL(n, R). 
(In fact there are cases where E(2, R) is not normal in GL(2, R). 
With somewhat more work, one can show that GL(n, R)/E(n, R) 
is already abelian for n = 3.) 

(4) Deduce from (3) and from part (2) of Exercise 2.3.9 the following 
theorem about finite generation of SL(n, R): if R is a Dedekind do
main which is finitely generated as a Z-algebra, and if SL(2, R)ab is 
finitely generated, then SL(n, R) is finitely generated as a group 
for all n ~ 4. (As remarked in (3), this can be strengthened to 
n ~ 3.) 

2.3.11. Exercise (Non-triviality of Mennicke symbols). The fol
lowing famous example from [BassMilnorSerre] shows there are Dedekind 
domains with non-trivial Mennicke symbols. Let R = R[x, Yl/(x2 +y2 -1), 
the ring of polynomial functions on the circle. This is a Noetherian integral 
domain with field of fractions F = R(x, y)/(x2 + y2 - 1). 

(1) Show that R is a Dedekind domain. (This part of the exercise 
also appeared in Exercise 1.4.23. There are several possible argu
ments, such as checking the original definition or showing that R 
is integrally closed in F and applying Theorem 1.4.17.) 

(2) Observe that (x y) E SL(2, R) and that for any n ~ 2, the 
-y x 
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associated function Sl -? SL(n, R), defined via the formula 

(
X YO) 

(x, y) 1--+ -y X 0 , 
o 0 In-2 

represents a non-trivial element of 71'1 (SL(n, R)) ~ 71'1 (SO(n)) (see 
Example 1.6.13 for the calculation of this fundamental group). 

(3) Argue on the other hand that if g(x, y) E E(n, R), then the 
matrix-valued function (x, y) 1--+ g(x, y) E SL(n, R) must rep
resent 0 in 7l'1(SL(n, R)). Hint: it's enough to check this for el
ementary matrices, for which there's an obvious homotopy to a 
trivial loop. 

~O 

(4) Deduce that there's a homomorphism SK1(R) -? KO (S2) = 
Z/(2) sending [x y] to the non-zero element of Z/(2). 

(5) Show that in fact [x y] is an element of order 2 in SK1(R) by using 
Theorem 2.3.6 to show [x y]2 = 1. 

4. Whitehead groups and Whitehead torsion 
For applications of K1 to topology, just as in the case of the Wall ob
struction, the rings of interest are integral group rings ZG, where G is a 
group which in the applications is the fundamental group of some topolog
ical space. Note that K1 (ZG) always contains certain "obvious" elements, 
namely the images ofthe units ±g, 9 E G. We therefore focus attention on 
the "non-obvious" part of K1(ZG). 

2.4.1. Definition. IfG is a group, its Whitehead group Wh(G) is the 
quotient of K1(ZG) by the image of {±g : 9 E G} S;;; (ZG) X • 

Thus if G is the trivial group, Wh( G) = K1 (Z) / {±1} is trivial by Corol
lary 2.3.3. The rings ZG are in general quite complicated from the ring
theoretic point of view; for instance, in what would appear to be the sim
plest non-trivial case, if G is the cyclic group of tWo elements with generator 
t, the map a+bt 1--+ (a+b, a-b) embeds ZG into the Cartesian product ZxZ 
as what we called in Definition 1.5.1 the double D(Z, (2)) of Z along the 
ideal (2). The units ±1, ±t of ZG correspond in D(Z, (2)) to ±(1, 1) and 
to ±(1, -1), which are all the units of ZxZ, so Wh(G) = SK1 (D(Z, (2))). 
One can show that this vanishes (see Theorem 2.4.3 below), but to do this 
from scratch is a bit involved, and this only handles the case of the simplest 
non-trivial group! Thus the computation of Whitehead groups is usually 
not easy. Nevertheless, the Whitehead groups of finite groups are now 
thoroughly understood, and we refer the reader to [Oliver] for a complete 
treatment. Here we content ourselves with a few elementary results. 

Since it may not be apparent from Definition 2.4.1 that Whitehead 
groups are ever non-zero, we begin with an example. 
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2.4.2. Example. Let G be a cyclic group of order 5, with generator t. 
We shall exhibit an element of infinite order in Wh( G). Let a = 1- t - t-1 

and note that 

(1 - t - rl) . (1 - e - t3 ) = 1 - t - rl - t2 + t3 + t - t3 + rl + t2 

= 1, 

so that a E (ZG) X • Under the homomorphism a : ZG ~ C defined by 
sending t I-t e27ri/ 5 , {±g : 9 E G} maps into the roots of unity and in 
particular into the complex numbers T of absolute value 1. So b I-t la(b)1 
defines a homomorphism from Wh( G) to lR+.. Since 

la(a)1 = 11- e27ri/ 5 - e-27ri/ 5 1 = 11- 2 cos 2; 1 ~ 0.4, 

we deduce that a gives an element ofinfinite order in Wh(G). 

The example may be generalized. Suppose G is any group and we are 
given a homomorphism a : G ~ U (n), the unitary n x n matrices over 
C. This group homomorphism clearly extends to a ring homomorphism 
a : ZG ~ Mn (C), and thus induces a homomorphism 

(Here we have used Morita invariance, Exercise 2.1.8.) But a(±G) ~ U(n), 
which maps to T in K I (C) under the determinant. Hence the absolute value 
of the determinant gives a homomorphism a* : Wh( G) ~ lR+. which can be 
used to detect elements of infinite order in the Whitehead group. Detecting 
elements of finite order in Wh( G) is trickier and requires more sophisticated 
methods. Nevertheless, the technique of Example 2.4.2 in fact detects all of 
Wh( G) for many groups of practical interest, for instance for cyclic groups, 
though we aren't prepared to prove this at the moment. To give an idea of 
what can be done by brute force, we show that the Whitehead group of a 
cyclic group of order two is trivial. (More powerful methods of computation 
use the exact sequences of the next section and Chapter 4.) 

2.4.3. Theorem. The Whitehead group of a cyclic group of order two is 
trivial. 

Proof. We have seen above that this is equivalent to proving that 
SKI (D(Z, (2))) vanishes. Suppose (A, B) E SL (n, D(Z, (2))). This 
means A, B E SL(n, Z) and A - B == 0 mod 2. By Theorem 2.3.2, 
A E E(n, Z). Thus clearly (A, A) E E (n, D(Z, (2))). Multiplying (A, B) 
by (A, A)-I, we see that we may assume A = 1m the n x n identity ma
trix. So suppose A = In and B == In mod 2. If we could row-reduce 
B = (bij ) to the identity matrix by elementary operations involving adding 
even multiples of one row to another row, then it would be clear that 
(1, B) E E (n, D(Z, (2))). . 
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So we try to apply the division algorithm as in the proof of Theorem 
2.3.2. Let (b21, •.. , bn1 ) = (bd. Then b1 is even and bu is odd. We show 
that we can reduce B by elementary operations of the allowable sort so 

that bu = ±1, bl = 0, i.e., B = (~1 ;,). Then we repeat the same 

procedure with B', and so on. Eventually we come down to the case where 
B is upper-triangular with ±l's on the diagonal and even entries above. 
More allowable elementary operations now reduce B to a diagonal matrix 
with ±l's on the diagonal, and since detB = 1, the number of -l's is 
even. To finish the argument, we only have to see what to do with the case 

n = 2, B = (~1 ~1) (since after renumbering ofthe rows and columns 

B is a direct sum of blocks of this type and of some identity matrix). In 

fact the matrix (~1 ~1) is not contained in the subgroup of 8L(2, Z) 

generated by (~ ~) and by (~ ~ ); however, 

is elementary as a matrix over D(Z, (2)) by Corollary 2.1.3. So this com
pletes the argument except for the step about reducing bu to ±1 and bl 

to O. 
For this we note that if Ibul = 1, we can subtract even multiples of 

the first row of B from the other rows and thereby reduce Ib11 to o. If 
Ib11 = 0, then·since (bu) + (bl ) = Z, we must have Ibul = 1. If Ibul > 1 
and Ib11 > 0, there are two cases, depending on which of these is larger. If 
Ibul < Ibll, then by the division algorithm we can write bl = qbu +r with 
o < Irl < Ibul (r can't be 0 since bu and b1 are relatively prime). If q is 
even, then we may reduce the size of Ib11 by adding even multiples of the 
first row to the other rows. If q is odd, then r is odd and we write instead 
bl = (q ± l)bu + (r =f bu ). With the correct choice of the sign, we have 
0< Ir =f bul < Ibul, but q ± 1 is even so we can argue as before. 

In the other case, Ibul > Ib11. Again we apply the division algorithm 
and obtain bu = qb1 + r with 0 < Irl < Ibll and r odd. If q is even, 
this means we can subtract even multiples of other rows from the first row 
to reduce the absolute value of bu. If q is odd, we use the same trick as 
before and write bu = (q ± l)b l + (r =f bl ) with the sign chosen so that 
o < Ir =f bll < Ibll· Again we can subtract even multiples of other rows 
from the first row to reduce the absolute value of bu. After repeating the 
algorithm finitely many times, we eventually come down to the case where 
Ibul = 1. 0 

The reader will presumably agree after seeing this proof that computing 
Whitehead groups from scratch is not very practical. But at least we know 
now that Wh( G) is trivial for some finite groups and infinite for others. 
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In the rest of this section, we will give a brief exposition of the concept 
of Whitehead torsion, which provides the motivation for introducing the 
Whitehead groups. Whitehead torsion gives an algebraic obstruction for 
homotopy equivalences between certain topological spaces to be "simple," 
or of the "obvious" sort. Since for present purposes a homeomorphism is 
to be viewed as an "obvious" sort of homotopy equivalence, Whitehead 
torsion can be used to distinguish homotopy-equivalent spaces which are 
not homeomorphic. 

The most famous application of Whitehead torsion is the "s-cobordism 
theorem," which is the main tool in classifying manifolds in dimension ~ 5. 
So that the reader can appreciate the importance of the Whitehead groups 
for topological problems, we will give the statement here. However, we 
shall not discuss the proof as it will take us too far afield. For details, see 
[MilnorHCT] for the simply connected case and [RourkeSanderson, Ch. 6] 
and [Kervairel] for the general case. 

2.4.4. Theorem ("s-cobordism theorem"-Barden, Mazur, 
Stallings). Let Mn be a connected compact n-manifold of dimension ~ 5 
with fundamental group 71", and consider the family:F of all "h-cobordisms" 
built on M. These are connected compact manifolds wn+1 with exactly 
two boundary components, one of which is Mn and the other of which is 
some other manifold M,n, such that W has deformation retractions onto 
both M and M'. There is a map T : :F --+ Wh( 71"), called the "Whitehead 
torsion," and T induces a natural one-to-one correspondence from :F / rv to 
Wh( 71"), where rv is the equivalence relation induced by homeomorphisms 
W --+ W' which are the identity on M. If W is the ''trivial'' h-cobordism 
W = M x [0, 1], then T(W) = l. 

2.4.5. Corollary. If M n is a connected compact n-manifold of dimension 
~ 5 with fundamental group 71", and if Wh(7I") = 1 (for instance, if M is 
simply connected or if 71" is of order 2), then every h-cobordism built on M 
is homeomorphic (reI M) to a product M x [0, 1]. In particular, the other 
boundary component M' is homeomorphic to M. 

Remarks. We have been deliberately vague about what category of man
ifolds we are dealing with here. In fact, the theorem is valid in all three 
of the major categories of manifolds: topological manifolds and continuous 
maps, PL manifolds and PL maps, and smooth manifolds and Coo maps. 
In the last of these, "homeomorphism" in the theorem is to be interpreted 
as "diffeomorphism." 

One of the main applications of the Corollary, as noticed by Smale, is 
the proof of the Poincare conjecture: that in dimension n ~ 6 (this can 
be reduced to 5 with a little more work), any manifold En homotopy
equivalent to sn is (topologically) homeomorphic to sn. Furthermore, 
the set of diffeomorphism classes of smooth homotopy spheres En is in 
one-to-one correspondence with the group Diffo(sn-l) of isotopy classes 
of diffeomorphims of sn-l. To prove this, cut out two small disks from 
En, viewed as the ''polar caps" of the homotopy sphere. What remains 
is a manifold wn with the homotopy type of a cylinder and with two 
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boundary components each homeomorphic to sn-l. Since n - 1 ;::: 5 and 
sn-l is simply connected, the hypotheses of the Corollary are satisfied and 
there is a homeomorphism (or diffeomorphism, if E is a smooth manifold) 
from W to sn-l X [0, 1] which is the identity on the boundary component 
corresponding to the south polar cap. Hence we can glue the south polar 
cap back in and deduce that En S:! B n U f Bn, a union of two balls glued by a 
homeomorphism (if we're in the topological category) or diffeomorphism (if 
we're in the smooth category) f from sn-l to itself. In addition, it's clear 
that any such f defines a homotopy sphere Bn U f Bn. The equivalence class 
of this homotopy sphere only depends on the isotopy class of f, since an 
isotopy of f's gives an h-cobordism of the corresponding homotopy spheres 
and we can apply the Corollary again. Conversely, if there is an orientation
preserving diffeomorphism from Bn U f Bn to the standard sphere, it is 
not hard to see that there must be an isotopy from f to the identity. 
This explains why the smooth homotopy spheres are parameterized by 
Diffo(sn-l). In the topological category, since Bn is the cone on sn-\ 
any self-homeomorphism f of sn-l extends to a self-homeomorphism F of 
Bn by the simple formula 

F(rx) = rf(x), r E [0, 1], x E sn-l. 

(This is the "Alexander trick.") This yields a homeomorphism from Bn Uf 
Bn to sn, proving the Poincare conjecture. 

The most elementary context in which to discuss "simplicity" of ho
motopy equivalences is that of a finite relative CW-complex (X, A). In 
other words, we assume A is a (Hausdorff) topological space and that X 
is obtained from A by attaching finitely many cells, so that k-cells are al
ways attached before {k + I)-cells and the inclusion A <-+ X is a homotopy 
equivalence. We assume as well that A and X are both path-connected 
and locally simply connected, with the same fundamental group 7r (com
puted with respect to some basepoint Xo in A). Let X and A be the 
universal covers of X and A, which carry free actions of 7r by covering 
transformations, and let R = Z7r be the group ring of 7r. In this situ
ation, the relative homology groups H.(X, Ai Z7r) = H.(X, Ai Z) must 
vanish. However, these may be computed from the cellular chain complex 
C.(X, Ai Z7r) = C.(X, Ai Z), which is the direct sum of one free rank-one 
R-module in degree k for each k-cell added in obtaining X from A. The 
hypothesis that A <-+ X is a homotopy equivalence means (by the White
head and Hurewicz theorems) exactly that this chain complex of finite type 
is acyclic. The Whitehead torsion of the homotopy equivalence will be an 
invariant of the chain complex C.(X, Ai Z7r) defined using one extra piece 
of structure-a choice of basis elements for the free modules Ck(X, Ai R). 
Since the k-chain module contains one free rank-one R-module for each 
geometric k-cell, there is a choice of a basis which is canonical up to an 
element of {±g : 9 E 7r} for each cell. Namely, we choose a basis element 
for the free cyclic submodule corresponding to each cell in X ...... A, and it 
only depends on a choice of orientation for this cell (hence the ± sign) and 
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on a choice of a lift of this cell to a cell in X ....... A (hence the element of 
the covering group). If there are only cells in two consecutive dimensions, 
k - 1 and k, then once we have fixed our basis elements, the differential 
dk : Ck(X, Aj R) --+ Ck-I(X, Aj R) must be given by an invertible n x n 
matrix over R, where n is the number of k-cells or (k -I)-cells. (The num
ber of cells must be the same in both dimensions since H.(X, Aj Q) must 
vanish, hence dimCk_I(X, Aj Q) = dimCk(X, Aj Q).) 

2.4.6. Definition. The Whitehead torsion r(X, A) of the homotopy 
equivalence A <:....t X is the image in Wh( 7r) of the matrix of dk in G L( n, R) 
if k is even, or the inverse thereof if k is odd. Note that while the matrix 
of dk is not well defined as it depends on the choice of basis, the torsion is 
well defined since we have divided out by all possible ambiguities. 

Now consider the general case where C.(X, Aj R) is allowed to be any 
acyclic chain complex of finite type of free R-modules, starting in degree 0, 
with bases chosen for each chain module. By the argument in the proof of 
Theorem 1.7.12, one may increase the ranks of the chain modules (adding 
"cancelling pairs" of cells in consecutive dimensions) so that Bk = Zk =def 

kerdk is free for each k. Then dk defines an isomorphism Ck/Bk --+ Bk-I. 
We choose bases for the non-zero Bk's, taking the basis for Bo = Co to be 
the basis we already have for Co, and idempotents Pk : Ck --+ Bk. Then 
Pk EB dk : Ck --+ Bk EB Bk-I is given by an invertible matrix with entries in 
R, and we let [dkJ be its class in Wh( 7r). (We can suppress the Pk because if 
P~ is another projection from Ck onto Bk, then Pk -P~ vanishes on Bk and 
hence factors through dk. But the matrix of (Pk + S 0 dk) EB dk differs from 
that of Pk EB dk by an elementary matrix, so their classes in KI (R) are the 
same.) The Whitehead torsion r(X, A) of the homotopy equivalence 
A <:....t X is then defined to be the alternating product (since we're writing 
Whitehead groups multiplicatively) I1ddk J(-I)k. 

This is independent of the choice of bases for the Bk's, since if we change 
the choice of basis for Bk by an invertible matrix P, this multiplies the ma
trix for dk+ I by P and the matrix for dk by p-I , so that we get cancellation 
in the alternating product. Notice also that this agrees with our previous 
definition when Cp = 0 for P =I k, k - 1, since Bk = 0 and Bk-I = Ck- b 

so that we can use the same basis for B k- I as for Ck-I. Note finally that 
the fact that we had to stabilize to make all the Bk's free, by adding on 
"cancelling pairs" of cells in consecutive dimensions, does not matter, since 
this kind of geometric stabilization corresponds to passage to the limit from 
GL(n, R) to GL(R) in the definition of K1 . 

There is a geometric definition that corresponds to the algebraic condi
tion of vanishing torsion. 

2.4.7. Definition. The homotopy equivalence A <:....t X is called elemen
tary, or given by an elementary collapse, written X '\.e A, if X is ob
tained from A by attaching two cancelling cells in adjacent dimensionsj in 
other words, iff or some k, X = (AUfBk-l)UgBk. Here f : Sk-2 --+ A is the 
attaching map for the (k - 1 )-cell and we suppose 9 : Sk-I --+ (A U f B k- I ) 
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maps one hemisphere identically onto the (k - 1 )-cell and the other hemi
sphere of Sk-l into A. This is illustrated in the following picture. 

k·j 

A 
/R 

2.4.8. Figure: An elementary collapse 

Note that if I collapses Sk-2 to a point a, this just means that X = AVa Bk 
and one can obviously collapse Bk to the attaching point a. In the general 
case, I extends to a map f: B k - l ~ A and X has a deformation retraction 
down to A collapsing the k-cell down to f(B k - l ), as one can see in Figure 
2.4.8. 

More generally, we say X collapses to A or A expands to X and 
write X ". A or A /' X if 

X ".e Xl ".e X 2 ".e ... ".e A, 

and say the homotopy equivalence A <......t X is simple if it is in the equiva
lence relation generated by"., i.e., if X /' Xl ". X 2 /' ••• ". A (with all 
the collapses and expansions fixing A pointwise). 

2.4.9. Theorem (Geometric characterization of Whitehead tor
sion). In the above context of a finite CW-pair (X, A) with A and X 
Hausdorff, path-connected, and locally simply connected, and where the 
inclusion A <......t X is a homotopy equivalence, the inclusion is simple if and 
only ifT(X, A) = 1 in When). In particular, ifWh(n) = 1, for instance if 
X and A are simply connected or n is of order 2, then every such homotopy 
equivalence A <......t X is simple. 

Furthermore, for fixed A and a fixed element Q E Wh( n), there exists 
a finite CW-pair (X, A) such that the inclusion A <......t X is a homotopy 
equivalence with T(X, A) = Q. 

Prool (Sketch). If X ".e A, then T(X, A) = 1 since the boundary map 
in the cellular chain complex just corresponds to the 1 x 1 matrix (1), as 
one can see from Figure 2.4.8. Next observe that if 

A = Xo <......t Xl <......t X 2 <......t ••• Xn = X 
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and all the inclusions are of finite CW-pairs and are homotopy equivalences, 
then 

r(X, A) = r(X, X n - l ) .•• r(Xlo A). 

This follows from the fact that 

C.(X, Aj R) = C.(X, Xn-Ij R) E9 ... E9 C.(Xlo Aj R) 

and the matrix defining [dk] for (X, A) differs from the direct sum of those 
defining the [dk] for the successive pairs (Xj, Xj-l) by an elementary ma
trix. It follows that the torsion vanishes if X '\. A. The same principle 
also shows the torsion vanishes if A <-+ X is simple, for if for instance 
Xl '\. X ;2 A and Xl '\. X 2 ;2 A, then r(Xlo A) = r(Xlo X)r(X, A) = 
r(Xlo X 2)r(X2, A), so r(X, A) = r(X2' A). The general case follows from 
the same argument by iteration. 

The existence part of the theorem is a direct construction. Given 0: E 
Wh(ll'), realize it by a matrix B E GL(n, R). Then let 

Xl = A V S2 V ... V S2 
""--' 

n times 

and construct X from Xl by attaching n 3-cells so that in the universal 
cover the cellular boundary map is given by 

B : C3 (X, Aj R) ~ Rn -+ Rn ~ C2 (X, Aj R). 

This is possible since 1l'3(Xlo ..4.) is a free R-module on n generators. Then 
(X, A) obviously has the right torsion. 

For the last part of the theorem, one needs to note first that if X' differs 
from X by a homotopy of the attaching maps for the cells reI A, then X can 
be converted to X, by a sequence of expansions and collapses (reI A). For 
this it's enough to consider the case of X = A Ufo Bk and X, = A Uh Bk, 
where 

1 : Sk-l X [0, 1] -+ A 

is a homotopy of attaching maps. Merely define W = AUf (Bk X [0, 1]), 
which is defined by attaching Bk x [0, 1] to A along Sk-l x [0, 1]. Then 
(w, A) is a finite CW-pair: one' can first attach two k-cells to A via 10 and 
ft, then glue in a (k+ I)-cell Bk+1 ~ Bk X [0, 1] via 1 on Sk-l x [0, 1] and 
via the identity maps to the two k-cells along Bk x {O, I}. But W '\.e X 
and W '\.e X' since one can "cancel" the (k + 1 )-cell with either of the two 
k-cells. 

The hardest part of the theorem is to show that if r(X, A) = 1, then 
A <-+ X is simple. For this the idea is to proceed in two steps: first to 
modify X (reI A) by means of elementary expansions and collapses (which 
as we have seen do not affect the torsion) so that all the cells added to A 
to form X are in two consecutive dimensions k and k - 1, then to show 
that each elementary matrix operation applied to 
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has a geometric analogue. Here we only deal with the last part; see [Rourke
SandersonJ or [CohenJ for the full argument. Suppose Xl is obtained from 
A by attaching n (k - i)-cells, and X is obtained from Xl by attaching n 
k-cells via an elementary matrix eij(a). Using the observation about ho
motopies of attaching maps, one can change X by expansions and collapses 
so that for m =f:. j, the m-th k-cell is glued onto the m-th (k - i)-cell as in 
Figure 2.4.8, and the pair of cells collapses down to A. The j-th k-cell is 
glued onto both the j-th (k-l)-cell and the i-th (k-l)-cell. But now since 
the i-th (k -i)-cell can be collapsed down to A (along with the i-th k-cell 
glued onto it), the attaching map for the j-th k-cell can be homotoped 
through A to "unhook" this cell from the i-th (k -i)-cell. So after further 
expansions and collapses, we can assume each k-cell is glued onto exactly 
one (k - i)-cell as in Figure 2.4.8, and the cells can be collapsed in pairs 
down to A. 0 

The concept of Whitehead torsion can be carried over from inclusions 
A ~ X to general homotopy equivalences 1 from one finite (connected) 
CW-complex Xl to another, X 2 • To do this, if 1 is cellular, form the 
mapping cylinder X = OJ = Xl X [0, lJUJX2 (here we use 1 to attach Xl x 
{1} to X 2 ). Since we assumed 1 is cellular, this is a finite CW-complex, and 
since 1 was assumed a homotopy equivalence, it has deformation retractions 
down to the subcomplexes A = Xl X {O} and X 2 • We define r(f) = 
r(X, A). Note that if 1 is actually an inclusion of a finite CW-subcomplex, 
then the pair (X, A) is an expansion ofthe pair (X2' Xl) and so r(f} agrees 
with our' existing definition of r(X2' Xl}. Furthermore, if two homotopy 
equivalences 10 and 11 : Xl --+ X2 are homotopic to one another, then 0h 
is obtained from C Jo by a homotopy of attaching maps, and hence by the 
proof of Theorem 2.4.9, their torsions are the same. 

This makes it possible to definer(f} for a homotopy equivalence 1 which 
isn't cellular. We homotope 1 to a cellular map 10 (this is possible by the 
"cellular approximation theorem") and define r(f) = r(fo}. The result is 
well defined since if we homotope 1 to a different cellular map 11, then 10 ~ 
11 and so r(l1} = r(fo). It also turns out that if 1 is a homeomorphism, 
then r(f} = 1, but this is a hard theorem [ChapmanJ unless 1 is cellular, 
in which case it's a triviality. (If 1 is a cellular homeomorphism, then OJ 
is cellularly isomorphic to Xl X [0, lJ, which clearly collapses to Xd 

For further discussions of the various guises and applications of White
head torsion, see [MilnorWT] and [Weinberger, Ch. 1]. 

2.4.10. Exercise. Extend the proof of Theorem 2.4.3 to show that the 
Whitehead group of any elementary abelian 2-group (product of finitely 
many cyclic groups of order 2) is trivial. 

2.4.11. Exercise (Behavior of Whitehead torsion under prod
ucts). This exercise is in some sense the Kl-parallel of Exercise 1.7.18. 

(a) Suppose (0;, dl ) and (0;, dl ) are complexes of finite type of based 
free R-modules· and S-modules, respectively, with C; acyclic (so 
that r( 0;) is defined). Show that the total complex of the double 
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complex C; 0z C; of free R 0z 8-modules, 

{ 
Cj = EB CJ-k 0z C~, 
dj = ~7~~d + (-l)Pid 0 d2 on C; 0z C; 

is also based and acyclic. 
(b) Suppose that in the situation of (a), 8 = Z. Show that 

T(C) = T(C1 )X(C2 ), 

where X(C2 ) E Ko(Z) = Z. 
(c) Suppose A ~ X is a homotopy equivalence satisfying the hypothe

ses of Theorem 2.4.9, so that its torsion is defined, and let Z be a 
finite connected and simply connected CW-complex. Show using 
(b) that A x Z ~ X x Z is also a homotopy equivalence satisfying 
the hypotheses of Theorem 2.4.9, and that T(X x Z, A x Z) = 
T(X, A)X(Z). Thus if Z = 8 3 , deduce that A x Z ~ X x Z is 
always simple. 

(d) Show also that in the situation of (a), if X(C2 ) = 0, then T(C) = 0 
regardless of what 8 is. Deduce that if Z = 8 1 , then A x Z ~ X x Z 
is always simple. 

5. Relative K 1 and the exact sequence 
As with K o, we want to be able to relate K1 of a quotient ring R/ I to 
K 1(R) and to some invariants of the ideal I (and the way it is embedded 
in R). In this section, we will define the relative group K 1(R, I) and show 
that the three-term exact sequence of Section 1.5 extends to a six-term 
exact sequence relating Ko and K 1. This will provide us with some more 
computational tools for computing K-groups. 

2.5.1. Definition. Let R be a ring (with unit) and let I be a two-sided 
ideal in R. We define D(R, I) as in 1.5.1 and define the relative K1-group 
of the ring R and the ideal I to be 

K 1(R, I) = ker «P1)* : K 1(D(R, I)) --+ K1(R)). 

Note that this is the exact parallel of Definition 1.5.3. Since it's conve
nient to have another definition closer in spirit to Definition 2.1.5, we now 
prove a relative version of Whitehead's Lemma and rework the definition 
of K 1 (R, I) into a more usable form. 

2.5.2. Definition. Let R be a ring (with unit) and let I be a two-sided 
ideal in R. We define GL(R, I) to be the kernel of the map GL(R) --+ 

GL(R/I) induced by the quotient map R --+ R/I. We define E(R, I) to be 
the smallest normal subgroup of E(R) containing the elementary matrices 
eij(a), a E I. Note that since each such elementary matrix is congruent to 
the identity matrix modulo I, E(R, I) ~ GL(R, I). 
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2.5.3. Theorem (Relative Whitehead Lemma). Let R be a ring 
(with unit) and let I be a two-sided ideal in R. Then E(R, I) is normal in 
GL(R, I) and in GL(R), 

GL(R, I)jE(R, I) ~ Kl(R, I), 

and GL(R, I)jE(R, I) is the center of GL(R)jE(R, I). Furthermore, 
E(R, I) = [E(R), E(R, I)] = [GL(R), E(R, I)]. 

Proof. The first assertion follows from the fact that if A E GL(n, R) 
and B E E(n, R, I), then 

( ABA-l 0) = (A 0) (B 0) (A-l 0) o 1 0 A-l 0 lOA . 

Since (~ A~l) is elementary by Corollary 2.1.3 and by its definition 

E(R, I) is normal in E(R), the right-hand side lies in E(R, I). 
Next suppose (Ab A2 ) E GL(D(R, I)) ~ GL(R x R) and maps to 

the identity element of Kl(R) under (Pd.... This means of course that 
Al E E(R). But then (Al' Ad E E(D(R, I)), since if Al = Ilk ei"j"(ak), 

(Ab A l ) = II ei"j" (ak' ak). 
k 

Multiplying (Ab A2 ) by (Ab Ad-l changes it to the form (1, B) with B E 
GL(R) but without changing its class in K l . Since (1, B) E GL(D(R, I)), 
B == 1 modI and BE GL(R, I). Conversely, every BE GL(R, I) defines 
a class in GL(D(R, I)). So to show GL(R, I)jE(R, I) ~ Kl(R, I), we 
need only check that if B E GL(R, I), then (1, B) E E(D(R, I)) if and 
only if BE E(R, I). For one direction, note that E(R, I) is generated by 
matrices of the form Seij(a)S-l with a E I and S E E(R). But 

and all three factors on the right lie in E(D(R, I)). For the other direction, 
suppose 

r 

(1, B) = II ei"j" (ak' bk) E E(D(R, I)), II ei"j" (ak) = 1 E E(R). 
k=l k 

Note that for each k, 

where 
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Then we have 

II ei,.j,.(ak, bk} = II(8k, 8kTk} 
k k 

= (8l, 81TI811)(82' 8182T28;1811) 

... (8r , 8 182 ", 8rTr ) 

= (1, (81TI8~1}(8182T28;1811) 
... (8182 " ·BrTr 8;1 ... 8;1811» , 

since 8 182 .• ·8r = 1, and we've written our element B as a product of 
generators of E(R, I}. 

Since E(R, I} is normal in GL(R, I} and in GL(R}, [E(R}, E(R, I}] ~ 
[GL(R}, E(R, I}] ~ E(R, I}. Equality holds since E(R, I} is generated by 
matrices of the form 8eij(a}8-1 with a E I and 8 E E(R}, and 

8eij(a}8-1 = [8, eij(a}]eij(a} = [8, eij(a)][eik(I}, ekj(a}] 

E [E(R}, E(R, I}], k '" i,j. 

It remains only to show that GL(R, I}/E(R, I} is the center of GL(R}/ 
E(R, I}. Note first that if A E GL(R, I}, 

(~ A~I) = (~ A~I) 

{G n(~ -A~\A-l»)(: ~r}(-d-l) n. 
d· A Ih 't t' . I (1 A-I) (1 -A-l(A-l}) an smce - aslsennesm, 0 1 '0 1 ' 

and (_(} _ I} ~) lie in E( R, I}, hence this calculation shows that 

(~ A~l) lies in E(R, I}. So if BE GL(R}, 

(ABA~lB-l ~ ~) = [(~ A~l ~), (~~ ~)] 
o 0 1 0 0 1 0 0 B-1 

E [E(R, I}, E(R}] = E(R, I}. 

So GL(R, I} and GL(R} commute modulo E(R, I}. On the other hand, the 
center of G L( R} / E( R, I} must map (under the homomorphism induced by 
the quotient map R - R/ I) to the center of GL(R/ I}, which is trivial. (A 
central matrix must be diagonal with equal diagonal entries, but since for 
a matrix in GL all but finitely many of the diagonal entries are 1, GL(8) 
has trivial center for any 8, in particular for 8 = R/I.} Hence the center of 
GL(R}/E(R, I} is contained in the kernel of the map to GL(R/I}, which 
is GL(R, I}/ E(R, I}. 0 

We're now ready for the main theorem of this section, which is an ex
tension to the left of the exact sequence of Theorem 1.5.5. 
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2.5.4. Theorem. Let R be a ring and I ~ R an ideal. Then there is a 
natural exact sequence 

K1(R, 1) ~ K1(R) ~ Kl(RjI) ~ Ko(R, I) ~ Ko(R) ~ Ko(RjI), 

where q* is induced by the quotient map q : R ""* Rj I and the maps 
Kj(R, 1) ~ Kj(R) are induced by P2 : D(R, I) ~ R. 

Proof. For simplicity of notation in the proof, if A is an element of R or 
a matrix with entries in R, we will often denote q(A), the corresponding 
matrix over Rj I, by A. 

We begin by proving exactness of 

We have seen that any class in K1(R, I) is represented by 

(1, B) E GL(D(R, I)) ~ GL(R x R) 

with BE GL(R, I), so B = i and q*[B] = 1. Conversely, if B E GL(R) 
and q*([B]) = 1, then B E E(RjI). Now if a E RjI, it comes from some 
a E R and eij(a) = q(eij(a)). So each generator of E(RjI) lies in the 
image of E(R) and hence E(RjI) = q(E(R)) (this argument was used 
in Lemma 1.5.4). So B lifts to a matrix C E E(R), and q(BC-l) = 1. 
Then (1, BC-1) E GL(D(R, I)) and [B] = [BC-1] in K1(R) comes from 
[(1, BC-1)] E K1(R, I). 

I) 
Next we have to define the boundary map Kl(Rj1) --t Ko(R, I) and 

prove exactness at Kl(Rj1) and at Ko(R, I). Theorem 1.5.5 will then 
complete the proof. The definition of the boundary map is based on what 
in topology is called a "clutching" construction. Given A E GL(n, RjI) 
(the image of some matrix A E Mn(R), not necessarily invertible), we use 
A to "clutch" together two free modules to get a projective module over 
D(R, 1). In other words, let 

(We are thinking of x and y as 1 x n matrices.) Make this into a module 
over D(R, 1) by letting 

This makes sense since 1'1 = 1'2, hence 

q(r2Y) = 1'2Y = 1'1 (±A) = q(rlx)A. 

Note that if A = q(A) with A E GL(n, R), then 

(x, y) I---T (xA, y) ERn Xi R n ~ D(R, It 
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sets up an isomorphism from Rn x A Rn to a free module of rank n. In 
particular, since we have seen that E(R/I) = q(E(R)), Rn xA Rn is free 
of rank n if A is elementary. For a general A E GL(n, R/I), we can 
always choose BE GL(n, R/ I) such that AEBB is elementary (for instance, 
B = (A)-l works by Lemma 1.5.4 or Corollary 2.1.3), and then 

so that Rn xA Rn is a direct summand in a free module, i.e., a projective 
module. Thus it makes sense to define 

We will show that a is in fact a homomorphism Kl(R/I) ---+ Ko(R, I). 
It maps into Ko(R, I) = ker(Pl)* since 

It is additive on direct sums of matrices since 

and it sends classes of elementary matrices to 0 since if A is elementary, 

alA) = [Rn x A Rn) - [D(R, It) ~ [D(R, It) - [D(R, It) = o. 

More generally, it is well defined on classes in K 1 since if A = Be with 
B E E(R), then 

(x, y) f-+ (xB, y) ERn Xc Rn 

sets up an isomorphism from Rn x A nn to Rn x 6 Rn. Thus we obtain a 
well-defined homomorphism Kl(R/I) ---+ Ko(R, I). Furthermore we have 
already seen that the composite 

is zero. The composite 

a 
Kl (R/1) --+ Ko(R, I) ---+ Ko(R) 

is zero since 

It remains only to check that kera ~ q*(K1(R)) and that 

ker{(P2)* : Ko(R, I) ---+ Ko(R)} ~ a(K1(R/I)). 
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Suppose a([A)) = O. This means that Rn x A Rn is stably isomorphic to a 
free module of rank n, or that for some m, 

After replacing A by A E91m' we may assume that in fact 

Choose an isomorphism 

Then we can define matrices B, C E Mn(R) by (ejB, ejC) = cp(ej, ej), 
where ej is the j-th standard basis vector for Rn, or in other words by 
taking the j-th rows of B and C to be the first and second coordinates 
(respectively) of cp(ej, ej). Then by linearity, cp(u, v) = (uB, vC) for any 
(u, v) E D(R, I)n = ~ xi~' and since for such u and v, it = V, we have 
ilA = C. Since cp is invertible, it is clear that B and C are invertible with 
cp-l(X, y) = (xB-l, yC-l) for (x, y) ERn XA Rn. Thus A = q(B-lC) 
and so kera ~ q.(Kl(R». 

Finally, suppose one has a class in Ko(R, I) going to 0 in Ko(R). This 
means we have a class in Ko(D(R, I» going to 0 under both (Pl). and 
(P2).. Represent the class by [Pj - [D(R, I)n], where P is a projective 
D(R, I)-module such that (Pl).(P) and ~).(P) are stably isomorphic to 
Rn. If necessary, we may add on a free module of rank k to P and replace 
n by n + k so that (Pl).(P) and ~).(P) are both actually isomorphic to 
Rn. Then it is clear that P is of the form ~ x A Rn, and thus 

[Pj- [D(R, I)nj = a([A)). 

This completes the proof. D 

2.5.5. Corollary. (Cf. Exercise 1.5.11.) Let R be a ring, I ~ R an ideal 
such that the quotient map q : R - R/ I splits (in other words, such that 
there exists a ring homomorphism s : R/ I ---+ R with q 0 s = idR / 1). Then 

o ---+ Ko(I) ---+ Ko(R) ---+ Ko(R/ I) ---+ 0 

is split exact. 

Proof. Clearly s. is a splitting for q., by functoriality of Ko. We need 
only show that Ko(I) ---+ Ko(R) is injective. But this follows from the fact 
that s. : Kl (R/ I) ---+ Kl (R) is a splitting for q. : Kl (R) ---+ Kl (R/ I), hence 
a = 0 in the exact sequence of 2.5.4. D 
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2.5.6. Examples. (Cf. Examples 1.5.10.) 

(a) Suppose R = Z and I = (m), where m > o. Then K1(R) ~ {±1} 
by Corollary 2.3.3, while Kl(R/I) was computed in Exercise 2.2.7. 
It is thus possible to compute Ko(I) from the exact sequence. For 
example, suppose m = 2. Then R/ I is the field of two elements 
and (R/I)X = {1}. The exact sequence therefore becomes 

K1(R, I) -+ {±1} -+ {1} ~ Ko(I) -+ Z ~ Z, 

and Ko(I) = o. At the same time, we see that K1(R, I) must 
surject onto {±1}. 

Next, suppose m = p is an odd prime. Then R/ I is the field IFp 
of p elements and (R/ I) x is cyclic of order p - 1. Hence the exact 
sequence becomes 

8 "" K1(R, I) -+ {±1} -+ IF; ~ Ko(I) -+ Z -=+ Z, 

and Ko(I) ~ IF; /{±1}, which is cyclic of order ~. In this case, 
the map K1(R, I) -+ {±1} is trivial. 

As a third example, suppose m = 2r is a power of 2 with r > 1. 
Then R/ I Is a local ring with maximal ideal of index 2, and (R/ I) x 
is an abelian group of order 2r-l. Furthermore, ±1 are distinct 
elements of this group. For instance, if m = 8, then since any odd 
square is == 1 (mod 8), all elements of (R/I)X are of order 2 and 
(R/I)X is a Klein 4-group (Z/(2) x Z/(2)). By Corollary 2.2.6, 
K1(R/I) ~ (R/I) X • The exact sequence has the form 

K1(R, I) -+ {±1} -+ (R/I)X ~ Ko(I) -+ Z ~ Z, 

and Ko(I) ~ (R/I) X /{±1}, an abelian group of order2r - 2 which 
is not necessarily cyclic. Again in this case, the map K1(R, I) -+ 

{ ± 1} is trivial. 
(b) Suppose G is a cyclic group of prime order p, say with generator 

t, and R = ZG is its integral group ring, which may be identified 
with Z[t]/(tP -1). If e = e2"1fi/p , a primitive p-th root of unity, and 
if S = Z[e], then S is the ring of integers in the cyclotomic field 
Q(e), hence is a Dedekind domain by Theorem 1.4.18. There is a 
surjective homomorphism R - S defined by sending t 1-+ e. Since 
the cyclotomic polynomial Jp(t) = tp- 1 + ... + t + 1 is irreducible, 
any polynomial g(t) E Z[t] with g(e) = 0 must be divisible by Jp. 
In particular, anything in the kernel I of the map R -+ S must be 
a multiple of Jp. Note that as an element of R, J'; = PJp. Thus 
I in this example is, as a ring without unit, the same as in the 
last example if we specialize to the case m = p. In particular, 
Ko(R, I) = Ko(Z, (P)) ~ IF; /{±1}, which is cyclic of order ~ 
by (a). We thus have an exact sequence 

K1(R, I) -+ K1(ZG) -+ K1(Z[e]) ~ IF; /{±1} 

-+ Ko(ZG) -+ Ko(Z[e]). 



(2.5.7) 

5. Relative Kl and the exact sequence 99 

If p = 2, then Z[el = Z and this specializes to 

8 -
Kl(R, I) --+ K 1(ZG) --+ {±1} -+ 0 --+ Ko(ZG) --+ O. 

Thus Ko(ZG) = 0 in this case, and of course we already know 
by Theorem 2.4.3 that K 1(ZG) ~ {±1} x G, so that the map 
K 1(ZG) --+ K 1 (Z) is surjective with kernel of order two. 

If p is an odd prime, the cyclotomic field Q( e) has no real embed
dings and ~ conjugate pairs of complex embeddings. Thus by 
the Dirichlet Unit Theorem (Theorem 2.3.8), (Z[e])X is the prod
uct of the group of roots of unity in Q( e), which is of order 2p, with 
a free abelian group of rank ~ - 1 = ~. Granted the fact that 
SK1(Z[e]) vanishes (quoted. but not proved in Section 2.3, though 
we know this at least for p = 3 by Theorem 2.3.2), we obtain the 
exact sequence 

E.::! K 1(R, I) --+ Wh(G) x {±1} x G --+ Z 2 x {±1} x G 
8 - -
-+ 1F; /{±1} --+ Ko(ZG) --+ Ko(Z[eJ) 

or 

E.::! K 1 (R, I) --+ Wh(G) --+ Z 2 

8 - -
-+ 1F; /{±1} --+ Ko(ZG) --+ Ko(Z[eJ). 

If we don't assume the vanishing of SKI (Z[eJ) , then zEj! should 
be multiplied by this group, which we at least know is a torsion 
group (by Corollary 2.3.7). This is almost, but not quite, enough 
information to compute Ko(ZG), the group in which in Wall finite
ness obstruction lives, and the Whitehead group Wh(G). To com
plete the calculation, we need some information about the map 

E.::! 8 Z 2 -+ 1F; /{±1} and also need to extend the exact sequence one 
step to the left and one step to the right. The extension to the 
right involves K -1, to be discussed in the next Chapter, and the 
extension to the left involves K 2 , to be discussed in Chapter 4. 

2.5.S. Lemma (Rim). Let R = ZG, G a cyclic group of order p, an 
odd prime, and let R/I = Z[el, e = e21ri/ p (as in Example 2.5.6(b) above). 

E.::!8 Tben tbe boundary map Z 2 -+ 1F; / {±1} in tbe exact sequence (2.5.7) 
is surjective. 

Proof. Consider the commutative diagram 

K 1 (R) ----+ Kl(Z[eJ) 

1 1 
{±1} ----+ 

8 
----+ Ko(R, I) ----+ Ko(R) 

1 1 
~ Ko(Z, (p» ----+ 0, 
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where the vertical arrows are induced by the homomorphisms ZG - Z 
sending t 1-+ 1 and Z[{l - lFp sending 1 1-+ 1, { 1-+ 1. Since I - (p), the 
vertical arrow Ko(R, I) -+ Ko(Z, (P)) ~ IF; /{±1} is the excision isomor-

phism. Thus a diagram chase shows that K 1(Z[{]) ~ Ko(R, I) is surjective 

if the vertical arrow K1(Z[e]) ~ IF; is surjective. Let 1 ~ k ~ p - 1, so 
that k represents an element of IF;, and suppose kl := 1 (mod p). Let 

ek -1 k 1 
u = e _ 1 = e - + ... + e + 1, 

v = e - 1 = (ek)l - 1 = (ek)l-l + ... + (ek) + 1. ek -1 ek -l 

Then uv = 1 in Z[el and u reduces modulo p to k, which shows K 1 (Z[e]) ~ 
Ko(R, I) is surjective. Furthermore, if 2 ~ k ~ p - 2, then u is of infinite 
order in Z[el x since 

lek -11 
lui = Ie _ 11 > 1 

in this case (e and e-1 are closer to 1 than the other primitive p-th roots 

of 1), so zEj! ~ IF; /{±1} in the exact sequence (2.5.7) is surjective. 0 

2.5.9. Corollary. If R = ZG, G a cyclic group of order p, an odd prime, 
then Wh(G) surjects onto zEj!, and Ko(ZG) injects into the class group 
Ko(Z[e]), e = e27ri/ p • 

Proof. This follows immediately from the exact sequence (2.5.7). 0 

In the last part of this Section, we will now discuss how to find· explicit 
generators for K1(R, I) for some rings of interest in number theory and 
topology. This will help us to get more explicit information about the 
size of this group, and hence to. sharpen the information about Whitehead 
groups in Corollary 2.5.9. The discussion will parallel Theorems 2.3.5 and 
2.3.6. 

2.5.10. Proposition. (Of. Proposition 2.2.1.) Let R be a commutative 
ring and I ~ R an ideal. Then K1(R, I) splits canonically as 

{aER X :a:=1 modI} x SK1(R, I), 

where SK1(R, I) = SL(R, I)/E(R, I) and SL(R, I) is by definition 

SL(R) n GL(R, I). 

Proof. Clearly the determinant gives a split surjection 

det : GL(R, I) - {a E R X : a:= 1 mod I} 

with kernel SL(R, I). Now divide by E(R, I) and use Theorem 2.5.3. 0 
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It is immediately evident that when R is commutative, the first part of 
the exact sequence of Theorem 2.5.4 splits into two exact sequences 

1 -+ {a E R X : a == 1 mod I} -+ R X -+ (R/ I) X, 

2.5.11. Theorem. (Ct Theorem 2.3.5.) Let R be a Dedekind domain 
and I ~ R an ideal. Then SKI (R, I) is generated by the image in S L{ R, I) 
of SL{2, R, I). 

Proof. The method of proof of Theorem 2.3.5 works here as well provided 
we can show that given A = (aij) E SL{n, R, I) with n ~ 3, we can find 
ti E I, 1 ~ i ~ n - 1, such that 

{Note that adding tiX (last row) to the i-th row of A corresponds to mul
tiplying A by a matrix in E{R, I), hence gives a new matrix A' with the 
same class in SK1{R, I). Then once we have arranged to have cla~l + ... + 
Cn-Ia~-ll = 1, we can subtract CianI X (i-th row of A') from the last row 
(this is also an allowable elementary operation since anI E I -recall A' == 1 
mod I) and kill off the entry in the (n, I)-slot.) 

By assumption that A = (aij) E SL{n, R, I), we have an == 1 mod I, 
ail E I for i > 1, and Ran + ... + RanI = R. But then also 

Ran + ... + Ran-II + Ra!l = R, 

since if (anI) is relatively prime to (an, ... , an-l I), so is its square. By 
the proof of Theorem 2.3.5, we can then find t~ E R with 

Set ti = t~anl and we're done. D 

2.5.12. Theorem. Let R be a commutative ring, I ~ R an ideal. 

(I) For a, b E R with Ra+ Rb = R, a == 1 mod I, bEl, choose c, 
d E R with c E I, d == 1 mod I, and with ad - be = 1. (This is 
possible since if ad' - bd = 1, then automatically d' == 1 mod I, 
and abd' - b2d = b, hence ad' - d{abd' - b2d) = ad - be = 1 
with d = d'{1 - bd) == 1 mod I, c = _bd2 E I.) Then the 

class in SK1{R, I) of (: :) E SL{2, R, I) is independent ofthe 

choice of c and d, hence can be denoted [a bh without possibility 
of confusion. Such an element of SK1{R, I) is called a relative 
Mennicke symbol, and if R is a Dedekind domain, all elements 
of SK1{R, I) are of this form. 
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(2) [a b]J = 1 if a E RX, a == 1 mod I, bEl. 
(3) For a, bE R relatively prime with a == 1 mod I, bEl, the relative 

Mennicke symbols satisfy the relations [a b]J = [a + b)" b]J for any 
).. E R, and [a b]J = [a b+a)..]J for any ).. E I (note the asymmetry). 

(4) If a and b E R are relatively prime with a == 1 mod I, bEl, and 
b == ±1 mod a, then [a bjI = 1. 

(5) When both sides are defined, [a b1]J· [a b2]J = [a b1~]J. 

Proof. (1) The proof that [a b]J is well defined is the same as the cor

responding step in the proof of Theorem 2.3.6. If (~ : ), (; !,) E 

SL(2, R, I), then 

( a b) (a b )-1 (a b) (d' -b) ( 1 0) 
cdc' d' = c d -c' a = cd' - c'd 1 ' 

and this lies in E(R, I) since cd' - c'd E I. The Mennicke symbols clearly 
exhaust the image of SL(2, R, I) in K1(R, I), so by Theorem 2.5.11, they 
exhaust SKl(R, I) if R is a Dedekind domain. 

(2) is clear from the fact that if a E RX and [a b]J is defined, then 

( a b) (a 0) (1 a-1b) o a-I = 0 a-I 0 1 ' 

and both factors on the right lie in E(2, R, I), the first by the proof of 
Theorem 2.5.3, and the second since bEl, hence a-1b E I. 

For (3), suppose that (~ :) E SL(2, R, I). If).. E I, then (~ ~) E 

E(2, R, I) and 

so [a b]J = [a b + a)..]J. 
Furthermore, for any ).. E R, 

and since [E(R), E(R, I)j ~ E(R, I), this shows [a b]J = [a + b)" b]J. 
To check (4), assume b = ±1 + ta, t E R, and let q = 1 - a E I. Then 

by (3), 

[a b]J = [a b-ba]J = [a bqjI 

= [a bq - a(tq)]J = [a ± q]J = [a + q ± q]J 

= [1 ±q]J = 1. 
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For (5), assume that [a b1h and [a b2h are defined and that Rb1b2 + 

Ra = R. Then if (~ ~~) and (~ ~~) lie in SL(2, R, I), 

(
a b1 

is conjugate to Cl d1 

o 0 
and 

Since b1 E I, we may eliminate the -b1 from the first row, and with d = d1 -

b1Cl(d; == ~ mod~, [a)b1h[a b2h is represented by the class in SK1(R, 1) 

of 0 d -Cl C2 and thus of its conjugate by the elementary matrix 
o b1b2 a 

( 0 0 1) o 1 0 . 
-1 0 0 
Finally, we compute that 

so that [a b1h[a b2h = [a b1b2]J. 0 

2.5.13. Corollary. (Cf. Corollary 2.3.7.) If R is a Dedekind domain and 
R/ P is a finite field for each non-zero prime ideal of R, and if I is a proper 
ideal of R, then SKI (R, I) is a torsion group. 

Proof. Consider a relative Mennicke symbol [a bh. If a E R X , [a bh = 1 
by (2) of the theorem. If not, (a) is a non-zero proper ideal of R and so is 
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a product of non-zero prime ideals Pj by Theorem 1.4.7. Since each R/ Pj 

is finite, it follows that R/ (a) is finite (cf. the beginning of the proof of 
Theorem 1.4.19). Since the image of bin R/(a) is a unit and (R/(a»X is a 
finite group, there is some k with bk == 1 mod (a), and then by (4) of the 
theorem, 

So [a bjI has order k in SK 1 (R, I). But relative Mennicke symbols generate 
SK1(R, I) by (1) of the theorem. D 

2.5.14. Proposition. Let R = Z[tj/(tP - 1) and I = (tp- 1 + ... + t + 1) 
be as in Example 2.5.6(b), so that R is the group ring of a cyclic group 
G of prime order p and R/I ~ Z[~j, ~ = e21ri/ p , the ring of integers in the 
cyclotomic field Q(~). Then SK1(R, I) ~ SK1(Z, (P». 

Proof. Consider the homomorphism cp : R --t Z defined by t 1--+ 1. It 
is obviously surjective and sends I onto (P). We will show it induces an 

isomorphism SK1(R, I) ~ SK1(Z, (P». For surjectivity, suppose A E 
SL(n, Z, (P». Then A E SL(n, Z) and A-I == 0 mod p, so A-I = pB 
with B E M(n, Z). Let g(s) = det(1 + sB). Then g is a polynomial 
with integer coefficients and g(O) = g(p) = 1, so we can write g(s) = 
1 + s(s - p)h(s) for some h. Since t: = pfp in R, g(fp) = 1 and thus 
1 + fp(t)B lies in SL(n, R, I) and maps to A under cp. This shows cp* is 
surjective on S K 1. 

Now suppose A E SL(n, R, I) and [Ajl--+ 1 in SK1(Z, (P». This means 
cp(A) lies in E(Z, (P». First we show that the map E(R, I) --t E(Z, (P» 
is surjective; this will imply that after changing A within the same class 
in SKl, we may suppose cp(A) = 1. Now a typical generator of E(Z, (P» 
is Ceij(pk)C-1, where C E E(Z), k E Z. We may lift C to a matrix in 
E(R) by the argument in the beginning of the proof of Theorem 2.5.4, and 
we may lift eij(pk) to eij(fp(t)k), so each generator of E(Z, (P» lifts to an 
element of E(R, I), hence every element may be lifted. 

Thus we may assume cp(A) = 1. But the kernel of cp is the augmentation 
ideal of R, which is generated by t-l, so A == 1 mod (t-1). On the other 
hand, we were assuming A == 1 mod fp(t). These two facts together give 
A = 1, since (t - 1) n 1= 0 in R. So cp* is also injective. D 

2.5.15. Corollary. If G is a cyclic group of odd prime order p, then the 
quotient of Wh( G) by its torsion subgroup is free abelian of rank exactly 
~ 2 • 

Proof. By Proposition 2.5.14, SK1(R, I) ~ SK1(Z, (P», which by Corol
lary 2.5.13 is a torsion group. Substituting in (2.5.7), we get the desired 
result. D 

Remark. Note, by the way, that the proof of Corollary 2.5.15 is "elemen
tary" in that it does not depend on the vanishing of SK1(Z[W. However, 
to show that the torsion subgroup of Wh( G) is exactly the group of roots 
of unity in Z[~l, which has order 2p, one needs to prove that SK1(Z[W = 0 



5. Relative Kl and the exact sequence 105 

and that the image of SKl(Z, (P)) in the Whitehead group vanishes. In 
fact, one can even show that SKl(Z, (P)) = o. 
2.5.16. Exercise. Show that if G is a finite abelian group containing an 
element of order m > 4 with m '" 6, then Wh(G) is infinite. Hint: m 
must be divisible by 8, by 9, by 12, or by some odd prime p ~ 5. First 
show that for a cyclic group of one of these orders, there is a unit in the 
integral group ring which under some representation of the group maps to 
a complex number of absolute value > 1. The proof of Lemma 2.5.8 and 
Corollary 2.5.9 basically take care of the case of a cyclic group of order 
an odd prime p ~ 5. Thus you need to find units of infinite order in the 
group rings of cyclic groups of orders 8, 9, and 12. Then reduce the general 
case to these particular cases using the structure theorem for finite abelian 
groups. 

2.5.17. Exercise [Mennickej. Show that for any m > 1, SKl(Z, (m)) 
= O. Here is an outline. The proof requires use of Dirichlet's theorem on 
primes in arithmetic progressions [SerreCourseArith, §VII.4j, which 
asserts that if a, b > 0 and (a, b) = 1, then the arithmetic progression 
a + kb, k e Z, contains infinitely many primes. 

Let R = Z, 1= (m). Choose any element [a bjI of SKl(R, I). We will 
show it is the identity. First use Dirichlet's Theorem to choose a prime 
p == a mod b. Then if cjJ is Euler's phi-function, we have cjJ(P) = p -1, and 
[a bh = [p bjI has exponent dividing p - 1 by the argument of Corollary 
2.5.13. Let qb . .. ,qr be the odd prime factors of p - 1. Using Dirichlet's 
Theorem again, choose primes Pl and 112 with 

Pl == -P mod b, ... , 
112 == -1 mod b, mod qb ... , mod qr. 

Let a' = PlP2. Show that [a bh = [a' bjI; hence it has exponent dividing 
cjJ(a') = (Pl - 1)(112 - 1). Show that this cannot have any qj as a factor, 
and hence that the exponent of [a bjI can't have an odd prime factor and 
so is a power of 2. 

To finish the argument, first suppose b is not a multiple of 4. Then 
applying Dirichlet's Theorem at the beginning modulo 4b instead of modulo 
b, we can also suppose P == 3 mod 4. This means ~ is odd and some odd 
power of b is == -1 mod p. Deduce from (4) of Theorem 2.5.12 that [a bh 
has odd exponent and so is = 1. 

IT b is a multiple of 4, argue similarly, except that if a == 1 mod 4, find 
a prime P == 3 mod 4 with -P == a mod b. 

2.5.18. Exercise. Deduce from Exercise 2.5.17, from Proposition 
2.5.14, from the exact sequence of (2.5.7), and from Corollary 2.3.3, that 
the Whitehead group Wh( G) vanishes if G is a group of order 3. 

2.5.19. Exercise (Relative Kl for split extensions). (Cf. Exercise 
1.5.11.) Show that if 

o ---t I ---t R ---t R / I ---t 0 
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is split exact (i. e., I is an ideal in a ring R, and there is a splitting homo
morphism s : R/I -+ R), then 

1 -+ K1(R, I) -+ K1(R) -+ K1(R/I) -+ 1 

is split exact. (Hint: first show that GL(R) is a semidirect product 

GL(R, 1) )4 GL(R/I). 

Then obtain a splitting of E(R).) 

2.5.20. Exercise (Failure of excision for K 1 ). It is not true in gen
eral that K 1 (R, 1) only depends on the structure of I as a ring without 
unit; it also depends on R. Here is a simple counterexample due to Swan 
[SwanExcision]. Let k be a field and let 

R = { (~ ~) E M2(k)} , R' = { (~ !) E M2(k)} , 

1= { (~ ~).E M2(k) } . 

Note that there are split extensions 

o -+ I -+ R -+ k x k -+ 0, 0 -+ I -+ R' -+ k -+ o. 
Show that R' ~ k[t]/(t2 ), a commutative local ring with maximal ideal I, 
and use Corollary 2.2.6 and Exercise 2.5.19 to show that K 1 (R', I) ~ k 
(here k is viewed as an additive group). 

Show on the other hand that K1(R, I) = 1. Since I is contained in the 
radical of R, you can apply the method of proof of Proposition 2.2.4 to see 
that K 1 (R, I) is generated by the image of {x E R X : x == 1 mod I}. Then 

you can show that (~ ~) E R is always a commutator in RX (except in 

the exceptional case where k has only 2 elements, in which case its image 
in K1(R, I) is still trivial). 

2.5.21. Exercise (The "Congruence Subgroup Problem"). If R is a 
commutative ring, the famous "Congruence Subgroup Problem" for R asks 
if every normal subgroup H of SL(R) is one of the "congruence subgroups" 
SL(R, 1) = {A E SL(R) : A == 1 mod I} for some two-sided ideal I of R. 
First observe that by Theorem 2.5.3 and Proposition 2.5.10, this can be 
the case only if SK1(R, 1) = 1 for all I (for 1= R this says SK1(R) = 1). 
Prove the converse, by proving the following fact [Bass]: 

Theorem (Bass). If R is a ring and H is a normal subgroup ofGL(R), 
then there exists a unique two-sided ideal I of R such that E(R, 1) ~ H ~ 
GL(R, I). 

Hint. If H = 1, then take 1=0. Otherwise, let H(n) = H n GL(n, R). 
This is non-zero and normalized by E(n, R) for some n ;::: 2. Show by 
looking at the commutators 

[(~ ~), (10' ~)], hEH(n),xERn , 
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that H(n + 1) 2 E(n + 1, R, If) for some non-zero ideal 1'. Show that 
H 2 E(R, If). Then let I be the largest two-sided ideal of R such that 
H 2 E(R, I). If H i GL(R, 1), let Hf be the image of H in GL(R/1) , 
repeat the same reasoning with Hf 2 GL(R/ I), and derive a contradiction. 

To prove the uniqueness of I, note that if E(R, I) ~ H ~ GL(R, J), 
then projecting to R/J, we obtain E(R/J, (I + J)/J) = 1, hence I ~ J. 
Thus if E(R, J) ~ H ~ GL(R, I) also, J ~ I and 1= J. 

Deduce from Proposition 2.2.2, from Corollary 2.3.3, and from Exercise 
2.5.17 that the Congruence Subgroup Problem has an affirmative answer 
if R is a field or R = Z. 

2.5.22. Exercise (Non-triviality of relative Mennicke symbols). 
Let R be the Dedekind domain of Exercises 1.4.23 and 2.3.11, i.e., JR[x, y]/ 
(x2 + y2 - 1). It was shown in the second of these Exercises that [x y] 
represents an element of order 2 in SKi (R). By Exercise 1.4.23, I = 
(y, x - 1) is a prime ideal in Rand R/ I S:! R Deduce from 2.5.10 that 
SKi (R, I) ¥- 0, in fact that [x y]r ¥- 0 in SKi (R, I). Is this element also 
of order 2? 
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Ko and Kl of Categories, 

Negative K-Theory 

1. Ko and Kl of categories, GO and Gl of rings 

For many of the applications of K -theory, it is useful to have the notion of 
K-theory for categories and not just for rings. In this more general context, 
the K -theory of a ring R is just the K -theory of the category Proj R of 
finitely generated projective modules over R. Another natural example is 
the topological K-theory of a compact space X, which is the K-theory of 
the category Vect X of (locally trivial, real, or complex) vector bundles 
over X. The identification of this with the K-theory of the ring R = C(X) 
then follows from an equivalence of categories Proj R ~ Vect X. But 
there are also many examples that don't come so directly from rings; for 
instance, if X is a projective algebraic variety, one can consider in a similar 
way the category Vect X of algebraic vector bundles over X. We will see 
many more examples shortly. 

To begin with, we need to place limitations on the sorts of categories we 
will consider. These are of two sorts. On the one hand, the category needs 
to have enough structure so that it makes sense to talk about an object as 
being built up as an extension of smaller objects. There are several ways 
of ensuring this and we've chosen here what seems to be the most stan
dard choice, though not the most general one. In addition, the category 
has to be "small" enough to avoid set-theoretic difficulties when we try to 
make isomorphism classes of objects into a group. Of course, it suffices 
to require that the category be "small" in the usual sense of category the
ory (i.e., for its objects and morphisms to constitute sets), but this seems 
overly restrictive since the natural examples Proj R and Vect X are not 
small categories. This should explain the following definition. Call a cate
gory A preadditive (this term is not entirely standard) if Hom (A, B) is 
an abelian group for each A, B E Obj A, and if composition of morphisms 
is bilinear. Recall first of all that an additive category is a preaddi
tive category A with a distinguished object 0 such that Hom (A, 0) = 0, 
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Hom (0, A) = 0 for each A E Obj A, equipped with a binary operation EB 
which is both the categorical product and the categorical coproduct. An 
abelian category is an additive category in which every morphism has 
a kernel and cokernel, and in which every monomorphism is a kernel and 
every epimorphism is a cokernel. Any abelian category has a notion of 
exact sequences for which the Five-Lemma and Snake Lemma are valid. 
Good general references on abelian categories are [Mac Lane] and [Freyd], 
though we will need very little of the theory developed in these books. 

3.1.1. Definition. A category with exact sequences is a full additive 
subcategory P of an abelian category A, with the following properties: 

(1) P is closed under extensions, i. e., if 

is an exact sequence in A and PI. P2 E Obj P, then P E Obj P. 
(2) P has a small skeleton, i.e., P has a full subcategory Po which is 

small, i.e., such that Obj Po is a set, and for which the inclusion 
Po "--+ P is an equivalence. 

The exact sequences in such a category are defined to be the exact se
quences in the ambient category A involving only objects (and morphisms) 
all chosen from P. 

3.1.2. Examples. 

(1) Any small abelian category, or more generally any abelian category 
with a small skeleton, is a category with exact sequences. Exam
ples include the category of finite-dimensional vector spaces over 
a field F, or the category of finite-dimensional complex represen
tations of a topological group G. To get a small skeleton, take 
{Fn : n E N} in the first case, or {Hom(G, GL(n, C)) : n EN} in 
the second case. When G = Z, the category of finite-dimensional 
complex representations of G may be identified with the category 
of pairs (V, T), where V is a finite-dimensional complex vector 
space and T E Aut V is the image of the generator of G. Another 
similar example is the category of finite-dimensional complex rep
resentations of the monoid N, which may be identified with the 
category of pairs (V, T), where V is a finite-dimensional complex 
vector space and T E End V. 

(2) Let R be a ring. Then Proj R, the category of finitely gener
ated projective R-modules, is a category with exact sequences, 
with small skeleton the set of direct summands in {Rn : n EN}. 
However, this is usually not an abelian category since the coker
nel of a map between projective modules is usually not projective 

(think of the simple case R = Z, Z ~ Z). The category Proj R 
has the additional property, not true for the category of finite
dimensional complex representations of Z, that every short exact 
sequence splits. 
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(3) Let R be a ring and let R-Modfg be the category of finitely gen
erated R-modules. This is an additive subcategory of the abelian 
category of all R-modules, and has as a small skeleton the set of 
quotient modules of the {Rn : n EN}. If R is not left Noetherian, 
this is not an abelian category, since the kernel of a map between 
finitely generated R-modules may fail to be finitely generated. (If 
I is a left ideal of R that is not finitely generated, then Rand R/ I 
are singly generated but the kernel of the quotient map R -+ R/ I 
is not finitely generated, so this morphism doesn't have a kernel in 
the category.) Nevertheless, R-Modfg is always a category with 
exact sequences, since if 

is an exact sequence of R-modules with Ml and M2 finitely gen
erated, one can choose a finite set of elements of M whose images 
in M2 generate M2, and these together with the images of a finite 
set of generators of Ml will generate M. 

(4) Let R be a ring and let R-Modfpr be the category of R-modules 
with a finite-type projective resolution, i.e., R-modules M for 
which there exists an exact sequence 

(3.1.3) o -+ Pn -+ ... -+ Po -+ M -+ 0 

with Pj E Obj Proj R. This is a full additive subcategory of 
R-Modfg, and mayor may not coincide with R-Modfg. If it 
does and R is left Noetherian (so that R-Modfg = R-Modfpr is 
an abelian category), the ring R is said to be (left) regular. For 
a ring to be left regular, it is sufficient (but not necessary) that it 
be left Noetherian and have finite global dimension (which means 
that there exists an N such that every R-module has a projective 
resolution of length ~ N). For the fact that R is left Noetherian 
implies that every finitely generated R-module has a resolution by 
finitely generated projective modules, and the global dimension 
condition then guarantees that every such resolution has length 
~ N. In particular, any PID is left regular (since any submodule 
of a free module is free). Any Dedekind domain R is left regular, 
since R is Noetherian by Theorem 1.4.5, and the proof of Corol
lary 1.4.6 shows that every submodule of a finitely generated free 
R-module is projective. 

The group rings of non-trivial finite groups are not left regular. 
To see this, note that for a non-trivial finite cyclic group Hone 
has Hn(H, Z) -:f. 0 for all odd n, so that the finitely generated 
ZH-module Z cannot have a finite projective resolution. Then if 
G is any non-trivial finite group, we can choose a non-trivial cyclic 
subgroup H ~ G, and it follows from "Shapiro's Lemma" that 
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for all odd n, so that the finitely generated ZG-module ZG ®ZH Z 
cannot have a finite projective resolution. 

We will see in Proposition 3.1.4 below that whether or not R is 
left regular, R-Modfpr is a category with exact sequences. 

(5) Let A be an abelian category in which every simple object is iso
morphic to an element of some set S of objects. (A simple object 
in an abelian category is the natural generalization of a simple 
module over a ring; it is an object M E Obj A (with M =I- 0) such 
that any monomorphism N >--+ M is either 0 or an isomorphism. 
The definition has a number of immediate consequences. If M 
is simple, then EndM is a division ring (Schur's Lemma), and 
any non-zero morphism M --+ M' is necessarily a monomorphism, 
since its kernel N >--+ M can't be an isomorphism, hence must be 
0.) Call the simple objects in A objects of length one, and de
fine inductively (for n ~ 2) the objects of length n to be those 
objects M E Obj A for which there is an exact sequence in A 

with Ml of length n -1 and with M2 E S. We will see in Propo
sition 3.1.5 below that the full subcategory Aft of A consisting of 
objects of finite length, objects M of length ~ n for some n, is a 
category with exact sequences. The Jordan-Holder Theorem holds 
in this context (with the usual proof), i.e., for M of finite length, 
the length £(M) is well-defined, and the simple objects that occur 
in a "composition series" for M are unique up to isomorphism and 
permutation. The category of finite-dimensional representations of 
a (topological) group G is a good example of a category of objects 
of finite length. 

(6) Let X be a compact Hausdorff space. Then VectX is a cate
gory with exact sequences, equivalent to Proj R, R = C(X), by 
Theorem 1.6.3. Here one can work over either ~ or C. 

(7) Let X be a projective algebraic variety [Hartshorne, Ch. I, §2] 
over an algebraically closed field (or more generally a projective 
scheme--see [Hartshorne, Ch. II]--over a commutative Noetherian 
ring). Then Vect X, the category of algebraic vector bundles over 
X, is a category with exact sequences. Since a vector bundle is 
determined by its sections over open sets, Vect X is the same as 
the category of finitely generated locally free Ox-modules, where 
Ox is the sheaf of germs of regular (algebraic) functions over X. 
As such, it may be identified with an additive subcategory of the 
abelian category of Ox-modules. A major difference between this 
example and example (6) is that short exact sequences of algebraic 
vector bundles, unlike short exact sequences of topological vector 
bundles, do not necessarily split. This is due to the fact that in the 
algebraic setting, one does not have partitions of unity, and thus 
it is not possible to mimic the proof of Theorem 1.6.3. 
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A related (usually slightly larger) category with exact sequences 
is CohSh X, the category of coherent sheaves over X j this is 
the category of finitely generated Ox-modules with resolutions by 
modules from VectX. One can show that CohShX is an abelian 
category. Under suitable regularity assumptions (e.g., X a non
singular variety), resolutions of coherent sheaves by locally free 
sheaves will have finite length, and the relationship between the 
two categories VectX and CohShX is then the same as between 
Proj R and R-Modfg when R is a left regular ring. 

3.1.4. Proposition. Let R be a ring and let 

Q {J o -+ Ml --+ M -+ M2 -+ 0 

be a short exact sequence of R-modules. If Ml and M2 have resolutions of 
length n by modules in Proj R (of the form (3.1.3)), then so does M. In 
particular, R-Modfpr (as defined in Example 3.1.2(4)) is a category with 
exact sequences. 

Proof. Choose resolutions 

(.) 'Y~) 'Y~j) (i) 'Y~j) 
0-+ Pn3 --+ ... --+ Po --+ Mi -+ 0, j = 1,2. 

By projectivity of pJ2) , there is a map 6~2) : pJ2) -+ M with f3 0 6~2) = 'Y~2) . 
Then using 'Ya1), we can extend this to a surjection 

60 : Po = pJl) EEl pJ2) _ M 

since two elements of M with the same image in M2 differ by an element 
of a(Ml). Then we have a short exact sequence 

0-+ ker'Ya2) -+ ker60 -+ ker'Ya1) -+ 0 

and we can repeat the process to get a surjection 

61 : PI = p~l) EEl p?) _ ker61. 

Continuing, we eventually get a resolution of M by the Pi = pP) EElPP) . 0 

3.1.5. Proposition. Let A be an abelian category, for instance the cate
gory of R-modules for some ring R, and let 

Q (J o -+ Ml --+ M -+ M2 -+ 0 

be a short exact sequence in A. Assume Ml is of length nl and M2 is of 
length n2 in the sense of Example 3.1.2(5). Then M is of length nl + n2. 
In particular, Aft is a category with exact sequences. 

Proof. The proof is by induction on n2 = l(M2). If this is 0, the result 
is obvious, and if it's 1, this is true by definition. Otherwise, assume the 
result for smaller values of l(M2) and choose an exact sequence 

o -+ N -+ M2 -+ S -+ 0 
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with N of length n2 - 1 and S simple (by definition of £(M2)). Let M' = 
j3-1(N). By inductive hypothesis, £(M') = nl + n2 - 1, and we have a 
short exact sequence 

0-+ M' -+ M -+ S -+ 0, 

so M is of length ni + n2. 0 

Now that we have a reasonable number of examples to work with, we 
are ready to define Ko and KI for categories and Go and GI for rings. 

3.1.6. Definition. Let P be a category with exact sequences with small 
skeleton Po. We define Ko(P) to be the free abelian group on Obj Po, 
modulo the following relations: 

O-(i) [P) = [P') if there is an isomorphism P ~ P' in P. 
O-(ii) [P) = [PI) + [P2) if there is a short exact sequence 

in P. 

Here [P) denotes the element of Ko(P) corresponding to P E Obj Po, and 
O-(i) is really the special case of O-(ii) with PI = O. Note also that since 
every P E Obj P is isomorphic to an object of Po, the notation [P) makes 
sense (by O-(i)) for any object of P. 

We define KI(P) to be the free abelian group on pairs (P, a), where 
P E ObjPo and a E AutP, modulo the following relations: 

1-(i) [(P, a)) + [(P, j3)) = [(P, aj3)). 
1-(ii) If there is a commutative diagram in P with exact rows 

0 ------+ PI ~P~P2 ------+ 0 

II all al a21 II 
0 ------+ PI ~P~P2 ------+ 0, 

where a E AutP, al E Aut PI, and a2 E AutP2, then 

[(P, a)) = [(PI, al)) + [(P2, (2)). 

If R is a ring (with unit), we define Go(R) = Ko(R-Modfg ), GI(R) = 
KI (R-Modfg). 

This definition is justified by the fact that in the case of Example 
3.1.2(2), it gives us back our old definitions of Ko and KI for rings. 

3.1. 7. Theorem. If R is a ring and Proj R is the category of finitely gen
erated projective modules over R, then Ko(R) may be identified naturally 
with Ko(ProjR), and KI(R) may be identified naturally with 
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K I (Proj R). In particular, if R is a division ring, then since Proj R = 
R-Modfg, Go(R) = Ko(R) ~ Z and G1(R) = K1(R) ~ R:b • 

Proof. (1) By their definitions, Ko(R) and Ko(Proj R) are both abelian 
groups with one generator [P] for each isomorphism class of finitely gen
erated projective modules over R. In Ko(R), [P] + [Q] is defined to be 
[P E9 Q], whereas in Ko(Proj R), by relation O-(ii), [P] + [Q] is given by 
[N] for any finitely generated projective module N for which there exists a 
short exact sequence 

O-+P-+N-+Q-+O. 

Since N = P E9 Q clearly has this property, the addition operations in the 
two groups coincide. Finally, we need to see that any relation satisfied in 
one group is satisfied in the other. By the definition of the Grothendieck 
group (cf. Theorem 1.1.3), Ko(R) is the free group on the generators [P] 
modulo the relations [P] = [P'] if P ~ P', [P] + [Q] = [P E9 Q]. These 
relations are satisfied in Ko(Proj R), so we only need check that relation 
O-(ii) of Definition 3.1.6 is satisfied in Ko(R). But if 

is a short exact sequence in Proj R, this sequence must split since P2 is 
projective, and thus P ~ PI E9 P2 , so that 

as required. 
(2) If A E GL(n, R), then A defines an automorphism 0: E Aut(.nn), so 

let us define a map cp : K1(R) -+ K1(Proj R) by [A] 1--+ [(.nn, 0:)]. To show 
this is well defined, suppose A' E GL(n', R) defines 0:' E Aut(.nn'). Recall 
that [A] = [A'] in K1(R) if and only if there is some N ~ n, n', such that 

(A E91N-n) == (A' E91N-n') mod E(N, R). 

But first of all, 

[(Rn , 0:)] = [(RN, 0: E9 1RN-n)] and [(Rn', 0:')] = [(RN, 0:' E9 1 RN-n' )] 

in K1(ProjR) by relation 1-(ii) of Definition 3.1.6. Secondly, if B E 
GL(N, R) defines (3 E Aut(RN) and C E GL(N, R) defines 'Y E Aut(RN), 
then BC E GL(N, R) defines 'Y{3 E Aut(RN) (we are letting matrices act 
on the right), and thus (by 1-(i) of Definition 3.1.6) 

cp([B]. [C]) = cp([BC]) = [(RN, 'Y(3)] = [(RN, 'Y)] + [(RN, (3)], 

which is the same as cp([B]) + cp([C]). So to complete the proof that cp is 
well defined, we need only show that cp([C]) = 1 if C E E(N, R). It suffices 
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to prove this with C = ei;(a), a E R. But note that there is a commutative 
diagram with exact rows 

II II eij(a) 1 II II 
o _ RN-l ~ RN ~ R _ 0, 

where (, is the obvious map from RN- l to the vectors in RN with i-th co
ordinate 0, and 7r is projection onto the i-th coordinate, so that by relation 
l-(ii) of Definition 3.1.6, we have 

Thus cp is well defined, and the proof has shown at the same time that it 
is a homomorphism. 

Now let us show that cp : Kl(R) -+ Kl(ProjR) is an isomorphism. 
(Note by the way that we are writing Kl(R) multiplicatively and Kl(Proj 
R) additively.) To show cp is surjective, it suffices to observe that if P E 
ObjProjR and O! E AutP, then there must be (by Theorem 1.1.2) some 
Q E Obj Proj R and N E N with P EB Q ~ RN. Using relation l-(ii) of 
Definition 3.1.6, we have 

[(P, O!)] + [(Q, lQ)] = [(P EB Q, O! EB lQ)], 

which, since P EB Q ~ RN, lies in the image under cp of GL(N, R). But 
[(Q, lQ)] is the identity element of Kl(ProjR), so this shows [(P, O!)]lies 
in the image of cpo 

So it remains only to show injectivity. Suppose cp([C]) = 0 for some 
C E G L( n, R). This means that if 'Y is the corresponding automorphism 
of ll!', then [( ll!', 'Y)] lies in the subgroup of the free abelian group on all 
pairs [(P, O!)], P E ObjProjR and O! E AutP, generated by the relations 

[(P, O!)] + [(P, .8)]- [(P, 0!.8)], 

[(P, O!)]- [(Pl, 0!1)]- [(P2 , 0!2)] 

associated to l-(i) and l-(ii) of Definition 3.1.6. But these relations can all 
be rewritten as linear combinations of the relations 

[(P, O!)]- [(P EB Q, O! EB lQ)] 

whenever P EB Q ~ Rn, together with the relations associated to l-(i) and 
l-(ii) with all modules not just projective but free. So we can suppose 
[(Rn , 'Y)]lies in the subgroup generated by relations associated to finitely 
generated free modules. 

Since we may take our finitely generated free modules to run over the set 
{ll!' : n EN}, we may identify each automorphism of a free module with 
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the corresponding matrix, and we may suppose that in the free abelian 
group F on generators [A, j], with A E GL(j, R), j E N, [C, n]lies in the 
subgroup generated by the relations 

l-(i') [A, j] + [B, j]- [BA, j] 
corresponding to the relations associated to l-(i), and by the relations 

l-(ii') [A, j + k]- [Ab j]- [A2 , k] 
attached to diagrams 

o ------+ Hi ~ RHk ~ Rk ------+ 0 

II II 
o ------+ Rj ~ RHk ~ Rk ------+ 0, 

corresponding to the relations associated to l-(ii). We may further rewrite 
the relations of type l-(ii') as linear combinations of those of two sorts: 
relations 

l-(ii')-a [A, j] - [BAB-1 , j] 
(corresponding to the case k = 0 above), allowing for arbitrary changes of 
basis, and relations 

l-(ii')-b [( ~l 12)' j + k] - [Ab j]- [A2 , k] 

corresponding to the case where the injection Rj -T RHk is the standard 
one given by the first j coordinates. The quotient of the free abelian group 
F by the subgroup generated by relations l-(i') and l-(ii')-a is clearly the 
direct sum ffij GL(j, R)ab. Dividing by the subgroup generated by the 
relations l-(ii')-b then gives limGL(j, R)ab = GL(R)ab = Kl(R), divided 

---t 
by the additional relation that 

[ (~l 12)] = [( ~1 12)]. 
However, this relation is already satisfied in K1(R), so [C] = 1 E K1(R) 
and <p is an isomorphism. 0 

Let us now examine the meaning of Definition 3.1.6 for the other Ex
amples 3.1.2. When X is a compact Hausdorff space, it is obvious that 
Ko(Vect X) is the Grothendieck group of the semigroup of isomorphism 
classes of vector bundles over X, and may be identified with KO(X). 
K 1(VectX) is a less familiar object, but since VectX ~ ProjR with 
R = C(X) by Theorem 1.6.3, this is the same as Kl(C(X)). It turns out 
(see Exercise 3.1.23 below) that there are exact sequences of abelian groups 

0--7 CIR(X) ~ Kl(VectIRX) --7 KO-1(X) --70, 

0--7 C(X, Z) ~ CC(X) eXPl Kl(VectcX) --7 KU- 1(X) --7 O. 

The example of finite-dimensional representations of a topological group 
G is a special case of Example 3.1.2(5), so we turn to this sort of situation 
next. The following result was pointed out by Grothendieck in his earliest 
investigations of K-theory. 
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3.1.S. Theorem ("Devissage"). Let A be an abelian category in which 
every simple object is isomorphic to one and only one element of some set 
S ~ Obj A. Then 

(1) Ko(Aft) is canonically isomorphic to the free abelian group on the 
set S. 

(2) K1(Aft ) is canonically isomorphic to EBMESK1(EndM). (Since 
for M E S, End M is a division ring, we have K 1 (End M) ~ 
(EndM):b = (AutM)ab by Corollary 2.2.6.) 

Proof. (1) Clearly there is a homomorphism <p from the indicated free 
abelian group F to G = Ko (Aft) , defined by sending a generator [Mj, 
M E S, to the corresponding generator of G. To define an inverse 't/J to 
this homomorphism, if M E Obj A is of finite length, map [M] E G to 
~i[Md E F, where the Mi E S are the composition factors of M (repeated 
according to their multiplicities), which are well defined by the Jordan
Holder Theorem. This gives a well-defined map on G since if 

o -t M' -t M -t Mil -t 0 

is a short exact sequence, the composition factors of M (counting mul
tiplicities) are just the union of the composition factors of M' and the 
composition factors of Mil. We have 't/J 0 <p = IF by the construction. To 
prove that <p 0 't/J = la, we show <p 0 't/J([M]) = [Mj for M E Obj Aft by 
induction on l(M). IT l(M) ~ 1, this is obvious, so assume the result for 
M' with l(M') < l(M), and choose a short exact sequence 

o -t M' -t M -t Mil -t 0 

with Mil E S. By inductive hypothesis, <p 0 't/J([M']) = [M'] and <p 0 

't/J([M"]) = [Mil]. But [M] = [M'] + [Mil], so <p 0 't/J([M]) = [M], and this 
completes the inductive step. 

(2) Let Ass denote the category of semisimple objects in A, i.e., the finite 
direct sums of simple objects. We will define an isomorphism <p : K1(Aft) -t 
EBNESKl(EndN) as follows. Given ME ObjAft and a E AutM, note 
that the largest semisimple subobject Ml of M (this is usually called the 
socIe of M, denoted soc M) exists and must be non-zero, and is necessarily 
a-invariant. So there is an a-invariant canonical finite filtration of M with 
composition factors Mi in Obj AsS' (Take the cokernel of soc M >-+ M, take 
its socle, and keep iterating the construction as many times as necessary.) 
Let ai be the automorphism of the composition factor Mi induced by a. By 
relation l-(ii) of Definition 3.1.6, we have [(M, a)] = ~i[(Mi' ai)]. Now 
each Mi is isomorphic to a direct sum of simple objects N E S with certain 
multiplicities nf, and End Mi ~ TINES Mn~ (End N). So ai may be viewed 
as an element of TINES GL(nf, EndN) (this is really a finite product), and 
thus defines an element [ail of EBNES K1(EndN). We let <p ([(M, a)]) = 
~i[ai]' This defines a homomorphism from the free abelian group on the 
pairs (M, a) to EBNESKl(EndN),and since it is clearly compatible with 
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relations l-(i) and l-(ii) of Definition 3.1.6, it passes to a homomorphism r.p : 
Kl(Aft) -+ E9NESK1(EndN). Furthermore, r.p is clearly surjective, since 
if N E S and a E AutN, r.p([(N, a)]) = [a] E (AutN)ab = K1(EndN), and 
thus the image of r.p contains a set of generators for E9 NES K 1 (End N). 

It remains only to show that r.p is injective. For this it is enough to note 
that the proof of surjectivity of r.p in fact gives a construction of an inverse, 
namely, if Nb ... ,Nk are distinct elements of S and ai E Aut Ni, 

This is well defined since replacing each ai bya conjugate element of Aut Ni 
does not change the K1-class on the right, and 'If; obviously gives a right 
inverse to r.p. To see that 'If; gives a left inverse to r.p, note that with (M, a) 
as above, 

which agrees with (M, a) by the proof ofthe fact that K1(Proj EndNi ) ~ 
K1(EndNi) (Theorem 3.1.7). 0 

The next theorem, also due to Grothendieck, applies to our other main 
classes of examples, and relates R-Modfpr to Proj R and (in the regu
lar case) CohShX to VectX. The version in which we state it, taken 
from [BassHellerSwan], is probably not as general as possible, but will be 
adequate for our purposes. First we need a simple observation about the 
functoriality of Ko and K1, a simple lemma about the "Euler-Poincare 
principle" of §1.7, and a lemma about "resolutions" in a category with 
exact sequences. 

3.1.9. Proposition. Suppose P and M are categories with exact se
quences, and F: P -+ M is an exact functor, i.e., a functor sending short 
exact sequences to short exact sequences. Then F induces homomorphisms 
F. : Ko(P) -+ Ko(M) and F.: K1(P) -+ K1(M). In fact, Ko and Kl are 
functors from the category of all categories with exact sequences and exact 
functors to the category of abelian groups. 

Proof This is immediate from the fact that F sends relations O-(i), 0-
(ii), l-(i), and l-(ii) for P to corresponding relations for M. 0 

3.1.10. Lemma. Let M be a category with exact sequences contained in 
some abelian category A, and assume that if 

0-+ Ml -+ M2 -+ Ms -+ 0 

is a short exact sequence in A and M2 , Ms E Obj M, then Ml E Obj M. 
(In other words, M contains the kernel of each of its morphisms which is 
an epimorphism in A.) Then for any exact sequence 

0-+ Mn -+ ... -+ Ml -+ Mo -+ 0, 
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the Euler characteristic Lj( -1)j[Mj] vanishes in Ko(M). 

Proof. This is true by O-(i) of Definition 3.1.6 if n = 1, and by O-(ii) 
of Definition 3.1.6 if n = 2. So let n > 3 and assume by induction on 
n that the Lemma is true for exact sequences of shorter length. By the 
assumption on M, the kernel K of Ml - Mo lies in M, so we can split 
the given exact sequence into the shorter exact sequences 

0--+ K --+ Ml --+ Mo --+ 0, 

o --+ Mn --+ ••• --+ M2 --+ K --+ O. 

By O-(ii), [K] + [Mo] = [Ml], and by inductive hypothesis, 

n 

[K] - L(-I)j[Mj] = O. 
j=2 

Combining these two equations gives Lj=o(-I)j[Mj]:::; o. 0 

3.1.11. Lemma. Suppose M and P are categories with exact sequences, 
both contained in the same abelian category A, and with P a fun subcat
egory of M. Also assume: 

(1) that for each object M E Obj M, there is a finite resolution by 
objects ofP, i.e., an exact sequence (3.1.3) in M of finite length 
with Pj E Obj P; 

(2) that if 
o --+ Ml --+ M2 --+ M3 --+ 0 

is a short exact sequence in A and M2, M3 E Obj M (resp., Obj P), 
then Ml E Obj M (resp., Obj P). (In other words, M and P each 
contain the kernels of each of their morphisms which are epimor
phisms in A.) 

Then if M' ~ M is a morphism in M and 

o -+ Pn -+ ... -+ Po ~ M -+ 0 

is a resolution of M by objects ofP, one can complete these to a commuting 
diagram in M 

0 --+ ... --+ P~+1 --+ P~ --+ ... --+ P6 ~ M' --+0 

II I anI aol al II 
0 --+ ... --+ 0 --+ Pn --+ ... --+ Po ~M --+0 

whose rows are finite resolutions by objects ofP. 

Proof. Note that Po E9 M' (e:, -a») M is an epimorphism since Po ~ M 
is, hence by hypothesis (2) on M it has a kernel B >-+ Po E9 M' in M. (This 
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is the ''pull-back'' of c and a.) Hence by hypothesis (1) on M, there is an 
epimorphism P~ ~ B. Composing with the maps B --+ Po and B --+ M' 
we get a commuting diagram 

P~~M'-- 0 

~ /' 
ao 1 BIll 

./ 
Po~M--O. 

The remaining aj, j ~ 1, are constructed by induction on j. Suppose 
j ~ 1 and ak has been constructed for 0 ~ k < j. By hypothesis (2) on 

e' e 
M, P~ ---+ M' and Po -4 M have kernels Zb and Zo in M. Then P{ --+ Zb 
and P1 --+ Zo are epimorphisms, and also have kernels in M. Iterating 
the argument, we see we have Zj_l' Zj-l E Obj M and a commutative 
diagram with exact rows 

o - Zj_l - P! 1 3- - ... - P~ .£. M' - 0 

IIresa;-ll a;-lI aoi ai II 
o - Zj-l - Pj - 1 - Po 

e M O. -... - -
Now we just repeat the above construction to fill in the commutative dia
gram 

P! 
3 -- Z~ 1 3- -- 0 

a; 1 resa;-lI II 
Pj -- Zj-l -- O. 

This completes the inductive step, so the induction gives us a commuting 
diagram with exact rows 

O--Z~--p~--··· --P~ 
e' --M' -- 0 

II 1 II 
o -- 0 -- Pn -- ... -- Po ~ M -- O. 

We complete the diagram by using hypothesis (1) to get a finite resolution 
of Z~ by objects of P. 0 

3.1.12. Corollary. Under the same hypotheses as Lemma 3.1.11, if ME 

Obj M and p. ~ M, P~ .£. M are two different finite resolutions of M 
by objects ofP, then Lj(-1)j[Pj ]'P = L/-1)j[PJ1'P in Ko(P). 
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Proof Apply the Lemma to complete the diagram 

0 P" PIJ' 
e" M 0 --+ --+ ... --+ ~ --+ n 

II (Qn,Q~) 1 (Qo,Q~) 1 ill II 
0 --+ Pn EBP~ --+ •.• --+ Po EB PIJ 

eEI1e' 
----t MEBM --+ 0, 

where l::J.. is the diagonal map. Consider a. and a~ as chain maps of bounded 
chain complexes in P: 

a. : P~' -+ p. and a~: P~' -+ P~. 

Note that we have cut off the M's at the end, so that P~', p., and P~ are 
only chain complexes, not exact sequences. Each one is acyclic except at 
the O-th slot and has non-vanishing homology Ho = M. Since a .. and a~ 
are isomorphisms on homology because of the commutative diagram above, 
the mapping cones CQ and CQ' are acyclic (recall Theorem 1.7.7; we are in 
a general abelian category rather than the category of modules over a riIig, 
but otherwise the proof is the same). So by Lemma 3.1.10 (applied in the 
category P), together with the definition of the -mapping cone, we have 

0= X(CQ ) = X(P.) - X(P~'), 0 = X(CQ ,) = X(P~) - X(P~') 

in Ko(P). The result follows immediately. 0 

3.1.13. Theorem ("Resolution theorem"). Suppose M and P are 
categories with exact sequences, both contained in the same abelian cate
gory A, and with P a full subcategory of M. Also asswne: 

(1) that for each object M E Obj M, there is a finite resolution by 
objects ofP, i.e., an exact sequence (3.1.3) in M offinite length 
with Pj E Obj Pi 

(2) that if 
o -+ Ml -+ M2 -+ M3 -+ 0 

is a short exact sequence in A and M2, M3 E Obj M (resp., Obj P), 
then Ml E Obj M (resp., Obj P). (In other words, M and P each 
contain the kernels of each of their morphisms which are epimor
phisms in A.) 

Then the inclusion functor P ~ M induces an isomorphism on Ko. 

Proof. If a category with exact sequences P is a full subcategory of a 
category with exact sequences M, then the inclusion functor" : P ~ M 
is exact, so it induces a map toO on Ko and Kl by Proposition 3.1.9. Using 
the idea of the Euler characteristic from §1.7, we construct an inverse map 
CPo: Ko(M) -+ Ko(P) by CPo: [MlM ~ Lj(-l)j[Pjl'P if 

o -+ Pn -+ ... -+ Po -+ M -+ 0 
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is exact in M, with Pj E Obj P. This is well defined, i.e., independent of 
the choice of resolution, by Corollary 3.1.12. By Lemma 3.1.10, [M)M = 
Lj(-l)j[Pj )M in Ko(M), so ~* o <PO([M)M) = [M)M. On the other hand 
it is clear that <Po 0 ~*([P)p) = <PO([P)M) = [P)p for P E Obj P, so ~* is an 
isomorphism on Ko. 0 

Next we have the analogue of Theorem 3.1.13 for Kl, again following 
[BassHellerSwan). Note that the hypotheses are a bit stronger than those 
of 3.1.13, though they will still be satisfied for all cases of interest. 

3.1.14. Theorem ("Resolution theorem for K l "). Suppose M and 
P are categories with exact sequences, both contained in the same abelian 
category A, and with P a full subcategory of M. Also assume: 

(1) that for each object ME Obj M, there is an epimorphism P --* M 
in A with P an object of P, such that every endomorphism of M 
lifts to an endomorphism of P; 

(2) that if 

P d" P d,,-l Po M 0 ... --+ n ~ n-l ~ ... --+ 0 --+ --+ 

is exact in M with Pj E Obj P, then kerdn E Obj P for some 
(sufficiently large) n; 

(3) that if 

is a short exact sequence in A and M 2 , M3 E Obj M (resp., Obj P), 
then Ml E Obj M (resp., Obj P). (In other words, M and Peach 
contain the kernels of each of their morphisms which are epimor
phisms in A.) 

Then the inclusion functor P <--t M induces an isomorphism on K 1 • 

Proof. First we want to show that every automorphism of an object of 
M lifts to an automorphism of some finite resolution of M by objects from 
P. Then we will be able to apply the same sort ofreasoning as in the proof 
of Theorem 3.1.13. 

So let M E Obj M, a E Aut M. Using (1), choose P --* M with 
P E Obj P so that every endomorphism of M lifts to an endomorphism of 
P. Then consider a EB a-l E Aut(M EB M). By Lemma 1.5.4 (the same 
argument works in a general abelian category), this factors as a product of 
"elementary" automorphisms of the form 

with (3, 'Y E End M. Lifting (3 and 'Y to endomorphisms of P shows that 
a EB a-l lifts to an automorphism of P EB P. Then (P --* M) EB (P --+ 0) 
gives us the first step of our desired resolution of M. The kernel of this 
map P EB P --* M must be an object of M by hypothesis (3), so we can 
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repeat the same constru.;tion over and over to get a (potentially infinite) 
resolution of M by objects of P so that 0: lifts to an automorphism of 
the resolution. Then we can cut off the resolution at some finite stage by 
hypothesis (2). 

The rest of the proof is as in Theorem 3.1.13. We construct an inverse 
<Pl to ". : Kl{P) -+ Kl(M) by mapping [(M, 0:)]1--4 I:/-1)j[(Pj , O:j)], 
where 0:. is an automorphism of the finite resolution p. of M lifting 0:. To 
show this is well defined (and independent of the choice of resolution), we 
use Corollary 3.1.12 applied to the categories of pairs (M, 0:), 0: E Aut M, 
ME Obj M (resp., P), where the morhisms are commutative diagrams 

M -!....- M' 

It is easy to see that the hypotheses of Corollary 3.1.12 apply to this situ
ation, and we finish the proof as in Theorem 3.1.13. D 

In order to apply Theorems 3.1.13 and 3.1.14 to the context of R
modules, we need as a preliminary a familiar fact from homological algebra. 
(See, for instance, [CartanEilenberg, Proposition VI.2.1].) 

3.1.15. Lemma. Let R be any ring (with unit) and let M be an R
module. Then the following are equivalent: 

(a) M has a projective resolution of length n. 
(b) For any R-module N, Ext~+1{M, N) = O. 
(c) The functor N - Ext~{M, N) is right exact. 
(d) For any projective resolution 

d .. +l d" d,,_l do ... -+ Pn+l ---+ Pn ---+ Pn - l ---+ ... -+ Po --'4 M -+ 0, 

imdn = kerdn _ l is projective, and hence the resolution can be 
shortened to 

0-+ imdn -+ Pn - l ~ '" -+ Po ~ M -+ O. 

Proof. (a) :::} (b). Suppose 0 -+ Pn -+ .•. -+ Po -+ M -+ 0 is a 
projective resolution of M. Then by definition, Ext~{M, N) is the j-th 
homology module group of the complex 

HomR (Po, N) -+ ... -+ HomR (Pm N) -+ 0 -+ ... , 

so clearly Ext~+1{M, N) = O. 
(b) :::} (c). Assume Ext~+1(M, N) = O. Given a short exact sequence 
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there is an associated long exact sequence 

ExtR(M, Nd -+ ExtR(M, N2 ) -+ ExtR(M, N a) -+ ExtR+1(M, N l ) = 0, 

and thus the functor N - ExtR(M, N) is right exact. 
(c) ~ (d). To check the projectivity of imdn. we need to show that 

given a short exact sequence 

o -+ Nl -+ N2 -+ Na -+ 0 

and a homomorphism a : imd ... -+ Na, a factors through N 2 • In other 
words, we need to show that the natural map HomR (imdn. N2 ) -+ 
HomR (imdn. Na) is surjective, i.e., that the functor 

N - HomR (im dn. N) 

is right exact. This is immediate from (c) if n = 0, so assume n > O. From 
the short exact sequences 

{ 
0 -+ imdj+1 = kerdj -+ Pj -+ imdj -+ 0, 

0-+ imdl = kerdo -+ Po -+ M -+ 0, 

we obtain exact sequences 

0= ExtR-l(PO, Nj ) -+ ExtR-l(imdb Nj ) 

j > 0, 

-+ ExtR(M, N j ) -+ ExtR(PO, Nj ) = 0, 

ExtR-j(Pj- b N j ) -+ ExtR-j(imdj , N j ) -+ ExtR- j+1(imdj_b N j ) 

-+ ExtR-Hl(Pj_l, N j ) = 0,0 < j ~ n. 

These yield isomorphisms 

ExtR(M, N j ) ~ ExtR-l(imdb Nj) ~ ... ~ Ext1(imd ... _ l , Nj ) 

and thus an exact sequence 

HomR (P ... - b N j ) -+ HomR (imd,.., Nj ) -+ ExtR(M, Nj) -+ O. 

Assuming (c) and using projectivity of p ... - b we obtain a commutative 
diagram with exact rows and columns 

HomR (P ... - b N 2 ) --+ HomR (imd ... , N 2 ) --+ ExtR(M, N2 ) --+ 0 

1 1 1 II 

1 1 II 
o o 0, 

and surjectivity of HomR (imdn. N2 ) -+ HomR (imd ... , N a) follows from a 
diagram chase. 

(d) ~ (a) is trivial. 0 
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3.1.16. Corollary (Grothendieck). Let R be a left Noetherian ring 
(with unit). Then the natural map Kj(R) --* Kj(R-Modfpr ) (induced by 
the inclusion Proj R ~ R-Modfpr together with Theorem 3.1. 7) is an 
isomorphism for j = 0, 1. In particular, if R is left regular, then the nat
ural map Kj(R) --* Gj(R) (induced by the inclusion Proj R ~ R-Modfg 
together with Theorem 3.1.7) is an isomorphism for j = 0, 1. 

Proof. We need only check the hypotheses of Theorems 3.1.13 and 3.1.14. 
It is clear from the definition that every R-module in R-Modfpr has a finite 
resolution by finitely generated projective modules. Furthermore, given an 
epimorphism P - M with P projective, and given an endomorphism a of 
M, we can fill in the diagram 

P -----+ M -----+ 0 

P -----+ M -----+ 0 

by projectivity of P to get a lifting a of a to P, which checks hypothesis (1) 
of Theorem 3.1.14. Next, every epimorphism in Proj R splits, hence has 
kernel which is a direct summand in a projective module, hence has a kernel 
in Proj R. Hypothesis (2) of Theorem 3.1.14 holds by the implication (a) 
=? (d) of Lemma 3.1.15. 

To finish the proof, we need only show that if M and M' have finite 
a 

projective resolutions of finite type and if M - M' is an epimorphism, then 
ker a also has a finite projective resolution of finite type. First of all, if M 
and M' each have projective resolutions of length n, then by the implication 
(a) =? (b) of Lemma 3.1.15, Ext~+1(M, N) = Ext~+1(M', N) = 0 for any 
R-module N. By the long exact sequence associated to the short exact 
sequence 

o --* ker a --* M --* M' --* 0, 

o - Extn+1(M N) --* Extn +1(kera N) --* Extn+2 (M' N) - 0 is exact - R' R , R' - , 
so Ext~+l(kera, N) = 0 and kera has a projective resolution of length n 
by the implication (b) =? (a) of Lemma 3.1.15. If R is left Noetherian, it is 
immediate that ker a in fact has a projective resolution of finite type, since 
we can start with any resolution of ker a by finitely generated free modules 
(such a resolution exists, since any submodule of a finitely generated module 
is finitely generated) and truncate it using the implication (a) =? (d) of 
Lemma 3.1.15. 0 

Remark. The same sort of reasoning shows that if X is a nonsingular 
projective algebraic variety, then the natural map 

Kj(VectX) --* K j (CohShX) 

is an isomorphism for j = 0, 1. We omit the proof since setting up the 
necessary machinery requires knowledge of too much algebraic geometry. 
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Now we are prepared to explain the idea of Grothendieck's original moti
vation for studying the K-theory of categories, namely, for use in studying 
the Riemann-Roch problem. Grothendieck in fact substantially gener
alized both this problem and the form of its solution, but for simplicity we 
will restrict attention here to the classical situation. 

For readers who are unfamiliar with it, we begin with a quick review of 
the terminology of sheaf theory. If X is a topological space, a presheaf 
:F (say of R-modules) over X is a contravariant functor from the category 
of open sets of X (and morphisms given by inclusions) to the category of 
R-modules. The notation r(U, :F) is also used for :F(U), and we refer to 
this module as the sections of :F over U. A sheaf :F of R-modules is 
a special kind of presheaf: one which also satisfies the gluing condition, 
that if {Uj} is a collection of open subsets of X, the restriction map 

j j 

is a bijection. Typical examples of sheaves are the sheaf of germs of contin
uous JR.-valued functions, whose module of sections over U is GlR(U), and 
the structure sheaf Ox of an algebraic variety, whose module of sections 
over a Zariski-open set U is the set of regular (algebraic) functions defined 
in U. These may be viewed as rational functions without poles in U. 

In the category of sheaves over X, the global section functor :F -
r(X, :F) is left exact but not right exact. It has derived functors Hj(X, :F), 
with the properties that HO(X,:F) = r(X,:F) and that a short exact 
sequence of sheaves 

gives rise to a long exact sequence 

We return now to the classical Riemann-Roch problem. Let X be a non
singular projective algebraic variety of dimension lover C, or for short, a 
nonsingular curve. X is a compact connected complex manifold of com
plex dimension 1 and real (or topological) dimension 2, or in other words 
a compact connected Riemann surface, say of genus g. (Recall that the 
genus is a purely topological invariant of the underlying manifold of X that 
doesn't depend on the algebraic structure. It may be defined as the number 
of "holes" in X, or more precisely as! rankH1 (Xj Z) = ! dime Hl(Xj <C).) 

A divisor D on X is just a formal finite Z-linear combination L, njxj 
of points Xj E X, with nj E Z. The divisors D are in bijection with 
isomorphism classes of algebraic line bundles over X via the map L, njxj = 
D I--T CD, where CD is the line bundle whose (algebraic) sections over an 
open set U are the rational functions f over U vanishing to order at least 
-nj at Xj (and thus regular at points x where no; ~ 0). By convention, we 
say f vanishes to order 0 at x if f (x) E ex, and f vanishes to order - k at 
x, k > 0, if f has a pole of order k at x. We make the usual identification of 
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a line bundle with the sheaf of its (algebraic) sections. This is a locally free 
Ox-module of rank 1; in general, locally free Ox-modules of finite rank 
correspond to algebraic vector bundles over X. Note that Cr/ = C-D, in 
the sense that CD 0x C-D = Ox, with 0x the tensor product for sheaves 
(computed pointwise over X). 

The classical Riemann-Roch problem was to compute the dimension 
£(D) of the space r(X; CD) of global (algebraic) sections of CD, for any 
divisor D. We may think of this dimension as a Betti number for sheaf 
cohomology, namely, as dimHO(X, CD). For instance, if D = 0, CD = Ox 
and £(D) = 1 (since any rational function on X without poles must be con
stant by compactness and the maximum principle for analytic functions). 
The Riemann-Roch Theorem (see for instance [Hartshorne, Ch. IV, §1]) 
asserts that 

(3.1.17) £(D) - £(K - D) = deg(D) + 1 - g, 

where CK is the canonical sheaf (the sheaf of algebraic I-forms f(x) dx) 
and the degree of a divisor is defined by deg E nj Xj = E nj. The for
mula (3.1.17) is clear if D = 0, since £(0) = 1, deg 0 = 0, and £(K) = 
dimHO(X, CK) is the dimension of the space of algebraic I-forms on X, 
while by the Hodge Theorem, 

2g = dimHl(X; q 
= dim {harmonic I-forms on X} 

= dim ({holomorphic I-forms on X} 

EB {anti-holomorphic I-forms on X}) 

=dimHO(X, CK)+dimHO(X, CK) 

= 2 dim HO(X, CK), 

so that £(K) = g. 
Let us now sketch a proof of (3.1.17) using Ko(CohShX), the K-theory 

of the category of coherent sheaves on X. Since X is non-singular and of 
(complex) dimension 1, any coherent sheaf :F over X has a resolution of 
length 1 by locally free sheaves: 

(3.1.18) o -+ VI -+ Vo -+ F -+ O. 

Furthermore, Hj (X, F) is finite-dimensional for j = 0, 1 and vanishes for 
j > 1. One may prove this by using the long exact sequence in sheaf 
cohomology associated to (3.1.18) to reduce to the case of a vector bun
dle V. The finite-dimensionality of HO comes from compactness of X and 
Montel's Theorem (which says that the space of holomorphic sections of 
V over X must be locally compact, hence finite-dimensional). The Serre 
duality theorem says dimHI(X, V) = dimHO(X, V 0x CK), where V 
is the "dual" bundle to V (in the case of a line bundle this is just V-I). 
Hence we have finite-dimensionality of HI as well. The vanishing of the 
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cohomology past the (complex) dimension follows, for instance, from Dol
beault's Theorem, which identifies Hj (X, V) with the j-th cohomology of 
the complex of antiholomorphic differential forms with values in V. 

Thus for F a coherent sheaf over X, the Euler characteristic 

<Xl 

X(F) = L Hj (X, F) 
j=O 

is well defined and given just by dimHO(X, F) -dimH1(X, F). For a line 
bundle C, Serre duality gives that 

X(C) = dimHO(X, C) - dimHO(X, C-1 ®x CK). 

In particular, 

teD) - t(K - D) = dimHO(X, CD) - dimHO(X, CK ®x Cr/) = X(CD), 

so the Riemann-Roch Theorem amounts to the statement that 

(3.1.19) x(CD ) - X(Ox) = degD. 

To prove this, note that by the "Euler-Poincare Principle" (cf. Proposi
tion 1.7,10), for any short exact sequence of coherent sheaves 

o -+ F1 -+ F2 -+ F3 -+ 0, 

we have additivity of the Euler characteristic: X(F2) = X(F1) + X(F3)' 
(One may see this by taking the corresponding long exact sequence in 
sheaf cohomology and applying Lemma 3.1.10 in the category of finite
dimensional vector spaces over <C.) It follows that the map F I---t X(F) 
preserves relation O-(ii) of Definition 3.1.6 and thus passes to a homomor
phism X : Ko(CohShX) -+ Z. It will suffice for us to get a better under
standing of this homomorphism. The trick (which was the key contribution 
of Grothendieck) is that even though we were initially only interested in 
X(F) in the case of line bundles, it pays to study X in the larger category 
CohSh X where we have more exact sequences and thus more non-trivial 
relations to help us. 

Let x be a point of X and let D be any divisor. There is a natural 
monomorphism CD -+ C D+x coming from the fact that every section of 
CD is also a section of CD+x' This map is an isomorphism away from x, 
so the quotient sheaf Sx is a coherent sheaf supported only at x. Fur
thermore, if nx is the coefficient of x in D, then for U small enough, 
r(U, cD+x)/r(U, CD) is spanned by 

( 
1 )n",+1 

Zl---t --
z-x 
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in local coordinates, and hence dimr(U, Sz) = 1 if x E U. From this one 
can see that dimHO(X,Sz) = 1, dimHl(X,Sz) = 0, so X(Sz) = 1. Then 
from the exact sequence 

we obtain X(CD+z) = X(CD)+1. Reversing the roles of D and D+x, we get 
X(CD-z) = X(CD) -1. So if D = ~njxj, we get X(CD) = X(Co) + ~nj, 
which is (3.1.19). 

3.1.20. Exercise. Let R be a PID, for instance Z. Show that if M is 
a finitely generated torsion R-module, then [M] = 0 in Go(R) ~ Ko(R) 
(~ Z). Is this necessarily true if R is only a Dedekind domain? 

3.1.21. Exercise. Show that the analogues of Theorem 1.2.4, Exercise 
1.2.8, Exercise 2.1.6 and Exercise 2.1.7 hold for Go and G1• In other words, 
show that Gj is Morita-invariant and that Gj(R x S) ~ Gj(R) E9 Gj(S), 
for j = 0, 1. 

3.1.22. Exercise. Consider the categories Repz of finite-dimensional 
complex representations of Z, which may be identified with the category 
of pairs (V, T), where V is a finite-dimensional complex vector space and 
T E Aut V is the image of the generator, and the category RePN of finite
dimensional complex representations of the monoid N, which may be identi
fied with the category of pairs (V, T), where V is a finite-dimensional com
plex vector space and T E End V. Determine the simple objects in these 
categories and use Theorem 3.1.8 to compute K o and Kl for each category. 

3.1.23. Exercise [Milnor, §7]. Let X be a compact Hausdorff space, and 
recall that Kj(VectnrX) ~ Kj(R) with R = Gnr(X) by Theorem 1.6.3, for 
IF = R or C, j = 0, 1. Show that there are exact sequences of abelian 
groups 
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Here is a sketch of how to proceed. Recall from Exercise 1.6.15 that 

Let S = CF(X X [0, 1]) and let I be the closed ideal of functions vanishing 
on X x {O, I}. Then I ~ cK (X x (0, 1» (as a Banach algebra without 
unit) and from the short exact sequence 

we obtain an exact sequence 

By homotopy invariance of Ko (Corollary 1.6.12), Ko(S) ~ Ko(R), and 
the map on the right may be identified with the diagonal map Ko(R) -t 

Ko(R) E9 Ko(R), which is injective. Furthermore, there is a splitting map 
from the diagonal copy of R inside R x R to S (extend a function on X to 
a function on X x {O, I} which doesn't depend on the second coordinate), 
so that the above exact sequence gives the exact sequence 

K 1(S) -t K 1(VectFX) -t K~(X x R) -t 0, 

where we think of Kl(VectFX) as K 1(R) E9 0 ~ K 1(R) E9 Kl(R). 

Show that the image of K 1(S) -t K 1(R) E9 0 can be identified with 
the classes in K 1(R) represented by matrices in GL(R) ~ C(X, GL(lF)) 
which are homotopic to elementary matrices. Then show that the part of 
SK1(R) coming from matrices homotopic to elementary matrices is triv
ial, and that the classes in RX homotopic to the identity coincide with 
the image of the exponential map CF(X) ~ C(X, GL(I, IF)). (Use the 
idea of Lemma 1.6.6 to show that an element of C(X, SL(n, IF)) (resp., 
C(X, GL(I, IF))) which is close to the identity is an exponential of some
thing in C(X, SL(n, IF)) (resp., C(X, IF)).) Finally, identify the kernel of 
the exponential map CF(X) exp ) C(X, GL(I, IF)) for IF = R, C. 

3.1.24. Exercise. Let p be a prime number and consider the local ring 
R = Z/(P2) with unique maximal ideal 1= (P). 

(1) Show that R is not left regular, by showing that R/ I has a resolu
tion by finitely generated free R-modules for which condition (d) 
of Lemma 3.1.15 is not satisfied for any n. 
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(2) Note that R-Modfg is a category in which R/ I is the unique simple 
object (up to isomorphism), and in which every object has finite 
length. Then use Theorem 3.1.8 to compute Go{R) and G1{R). Is 
the natural map Kj{R) - Gj{R) an isomorphism for j = 07 For 
j = 17 

3.1.25. Exercise (A step toward Grothendieck's generalized Rie
mann-Roch Theorem). Let X be a non-singular projective algebraic 
variety over C, now of dimension n > 1. In this more general setting, a 
divisor D on X is defined to be a formal finite Z-linear combination ~ njXj 
of subvarieties Xj C X of codimension 1, with nj E Z. The divisors D 
are again in bijection with isomorphism classes of algebraic line bundles 
over X via the map ~ njXj = D 1-+ CD, where CD is the line bundle 
whose (algebraic) sections over an open set U are the rational functions f 
over U vanishing to order at least -nj along Xj (and thus regular along 
subvarieties Y of codimension 1 for which ny ~ 0). The generalized 
Riemann-Roch problem, solved by Grothendieck, is to give a formula 
relating X{CD) to X{Ox), analogous to formula (3.1.19). 

(I) Assuming that coherent sheaves over X have finite resolutions by 
locally free sheaves and thus that the natural map Ko{VectX) -
Ko{CohShX) is an isomorphism, and assuming the result of Serre 
that for F a coherent sheaf over X, Hj (X, F) is finite-dimensional 
for j ~ n and vanishes for j > n, show as in the one-dimensional 
case above that the map F 1-+ X{F) preserves relation O-{ii) of Defi
nition 3.1.6 and thus passes to a homomorphism X : Ko{Vect X) ~ 
Ko{CohShX) - Z. 

(2) Let Y be an irreducible subvariety of X of codimension 1, taken 
for simplicity to be non-singular. Show as in the one-dimensional 
case above that there is a short exact sequence of coherent sheaves 

O-CD-Y -CD -SD,Y -0, 

where the quotient sheaf SD, Y is a coherent sheaf supported along 
Y. Note in fact that SD,y ~ CD ®x Oy, where we think of the 
structure sheaf of Y as being extended to a sheaf on X supported 
along Y. Deduce that Xx{C_Y)-Xx{Ox) = -Xy{Oy), or in gen
eral that xx{CD- y ) - XX{CD) = -Xy{['*CD), where [, : Y <-t X 
is the inclusion and [,* CD is the pull-back of CD to a line bun
dle on Y. This suggests a mechanism for proving a generalized 
Riemann-Roch formula by induction on n. 

3.1.26. Exercise (Relative K-groups for categories). Let A and B 
be categories with exact sequences, and let F : A - B be an exact functor, 
so that it defines homomorphisms F* : Kj{A) - Kj{B), for j = 0, 1. 
Define a relative group Ko{F) to be the free abelian group with generators 
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[Ao, AI, aJ corresponding to pairs (Ao, AI) E Obj A x Obj A together with 
a morphism a : Ao -+ Al in A for which F(a) : F(Ao) -+ F(Al) is an 
isomorphism in B, modulo the relations that 

[Ao, All aJ = 0 if a is an isomorphism in A, 
and that if there is a commuting diagram of short exact sequences 

o ----+ Ag ----+ Ao ----+ A~ ----+ 0 

II a"l al a'l II 
0 ----+ Aq ----+ Al ----+ A~ ----+ 0 

and F(a), F(a'), F{a") are isomorphisms in B, then 

[Ao, AI, aJ = [A~, Ai, a'J + [A~, Aq, a"J. 

Define a map Ko{F) ..!!!... Ko{A) by 

[Ao, AI, aJKo(F) 1-+ [AoJKo(A) - [AlJKo(A) 

and show that F. 0 4J = O. 
Assume further that F is what Bass calls "cofinal," in other words that 

given Bl E Obj B, there is some B2 E Obj B with Bl Ef)B2 ~ F{A) for some 
A E Obj A, and also that one can choose the B2 so that F. : End A -+ 

EndF{A) is surjective (this condition is similar to the first condition in 
Theorem 3.1.14). Show that there is an exact sequence 

by imitating arguments from Theorems 1.5.5 and 2.5.4. To define the 
map 8, note that if Bl E Obj B and /31 E Aut{Bl), then with B2 and 
F as above, [Bb /3J = [Bl Ef) B2, /31 Ef) 1B2J in Kl (B) can be replaced by 
[F{A), /3J with A E ObjA and /3 E AutF{A). Then if F. : EndA -+ 

EndF{A) is surjective, /3 lifts to an endomorphism a of A, and we can 
define 8{[F{A), /3)) = [A, A, aJ. One has to check that this is independent 
of the choice of A and a. 

Check that when A = Proj R, I is an ideal in R, B = Proj RI I, and F 
is induced by the quotient map R - RII, then the hypotheses on F are 
satisfied and one recovers the exact sequence of Theorem 2.5.4. 

2. The Grothendieck and 
Bass-HeIler-Swan Theorems 

In this section, we consider the problem of computing the K -theory of 
a ring of polynomials or Laurent polynomials over another ring whose 
K-theory is already known. In the case where R = CF{X) is the ring 
of continuous IF-valued functions on a compact Hausdorff space X {with 
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IF = IR or C), the ring of polynomials R[t] is, by the Stone-Weierstrass 
Theorem, a dense subring of CIF(X x [0,1]) (via specialization oft to a real 
number in [0, 1]). The homotopy invariance theorem for topological K
theory (Corollary 1.6.11) says that the map t 1--+ ° induces an isomorphism 
Ko(ClF(X x [0, 1])) -+ Ko(ClF(X)). Thus it is reasonable to view the map 
on K-theory 

as corresponding to "algebraic homotopy," and to expect this map to be 
an isomorphism for suitable rings R. This turns out to be the case for R 
left regular (Grothendieck's Theorem), though homotopy invariance fails 
in general. 

The case of the Laurent polynomial ring R[t, rl] is more complicated. 
When R = CC(X), there is a map R[t, rl] <-+ CC(X x 8 1 ) defined via 
specialization of t to a complex number of absolute value 1, and the image is 
dense by the Stone-Weierstrass Theorem. On the other hand, in topological 
K-theory, one has the formula 

In complex K-theory, Bott periodicity holds and K-j only depends on j 
modulo 2. Thus if we specialize to j = 1, we have 

Since, by Exercise 3.1.23, KU- 1(X x 8 1) and KU-1(X) are closely re
lated to Kl(CC(X x 8 1 )) and to K 1(R), respectively, and since R[t, rl] 
is dense in CC(X x 8 1), this suggests that perhaps one can expect to have 
K 1(R[t, rl]) ~ K 1 (R) Ef) Ko(R) when R is a nice enough ring. In other 
words, taking Laurent polynomials should correspond to "algebraic desus
pension." Again, this will turn out to be the case for R left regular (the 
Bass-Heller-Swan Theorem). We will also be able to study the extent to 
which this and algebraic homotopy invariance fail for rings which are not 
left regular. Finally, further study of these ideas will also lead to a defini
tion of K -groups extending the exact sequence of Theorem 2.5.4 arbitrarily 
far to the right. 

We begin with a review of two famous theorems of Hilbert, the Basis 
Theorem and the Syzygy Theorem, which together imply that if R is left 
regular, so are R[t] and R[t, rl]. The reader who is already familiar with 
these classical theorems can skip to formulas 3.2.5 and 3.2.6 and to the 
discussion surrounding them. 

3.2.1. Theorem ("Hilbert Basis Theorem"). Let R be a left Noe
therian ring. Then the polynomial ring R[t] is left Noetherian. 

Proof. Let J be a left ideal of R[tl, and consider the sets I, I j of all 
leading coefficients of the polynomials in J (respectively, of the polynomials 
in J of degree::; j). Since J is closed under addition and left multiplication 
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by elements of R, so are I and the I j , hence I and the I j are left ideals of 
R. Since R is left Noetherian, we may choose a finite set of polynomials 

h(t) = a~ltrl + ... + a~ } 
... E J 

fn(t) = a~ntrn + ... + a~ 

whose leading coefficients a~l, ... , a~n are generators of I. Let m = 
maxj deg Ii = ,maxj rj. Then if f(t) = bktk + ... + bo E J, the leading 
coefficient bk of f may be written in the form L:;=I cja?, Cj E R, and if 
k 2:: m, then f(t) - L:;=I Cjtk- rj fj(t) lies in J and has smaller degree than 
f. A simple induction thus shows that J is generated as a left ideal of R[t) 
by h(t), ... , fn(t) and by the polynomials in J of degree < m. If we sim
ilarly choose successively, for j = 0, ... , m - 1, finitely many polynomials 
!A, ... g~j E J of degree ~ j whose leading coefficients generate I j , then it 

is evident that the h ( t), ... , f n ( t) together with the gf ( t) generate J as a 
left ideal of R[t). 0 

3.2.2. Corollary. If R is a left Noetherian ring, then so is the Laurent 
polynomial ring R[t, rl). 

Proof. R[t, rl) is a localization of R[t) , and a localization of a left Noe
therian ring is left Noetherian. For a more explicit proof, let J be a left 
ideal of R[t, t- I ), and let Jo = J nR[t) , which is a left ideal of R[t). (Here we 
think of R[t) as a subring of R[t, r l ).) Using Theorem 3.2.1, choose finitely 
many generators for Jo. Then these also generate J, since for f(t) E J, 
f(t) = rntn f(t), and tn f(t) E Jo for n 2:: 0 sufficiently large. 0 

3.2.3. Theorem ("Hilbert Syzygy Theorem"). If R is a left regular 
ring, then so is R[t). Furthermore, if R has (left) global dimension ~ n, 
then R[t) has (left) global dimension ~ n + 1. 

Proof. By the Basis Theorem, R[t) is left Noetherian. Let M be a finitely 
generated left R[t)-module. By Lemma 3.1.15, to show that M has a reso
lution of finite type by projective R[t)-modules, it will be enough to show 
that there exists a positive integer K such that Ext1i[t](M, N) = 0 for all 
R[t)-modules N, and to prove the final statement about global dimension, 
we only need to show that if R has (left) global dimension ~ n, then K 
can be taken to be n + 2. 

By restriction, any R[t)-module can be considered to be an R-module, 
which comes naturally with an R-module endomorphism 'P defined by left 
multiplication by t. So we can form the short exact sequence 

0--+ R[t) ~R M t®IM-I®'P1 R[t) ~R M --+ M --+ O. 

Suppose that for some k, Ext~(M, N) = 0 for all R-modules N. In fact, 
if R has (left) global dimension ~ n, k can be taken to be n + 1. We have 
an exact sequence 

Ext~[t](R[t) ~R M, N) --+ Ext~tl(M, N) --+ Ext~tl(R[t) ~R M, N). 
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Since R[t] is free as an R-module, Ext~[tJ(R[t]®RM, N) ~ Ext~(M, N) = 

o for j ~ k, so Ext~[tJ (M, N) = 0 for K = k + 1, as desired. 
To complete the proof, we only need to get around one technical point: 

M is assumed to be finitely generated as an R[t]-module, but may not 
be finitely generated as an R-module, so that in the case where R is not 
assumed to have finite global dimension, the definition of left regular ring 
doesn't immediately tell us that M is of finite homological dimension as 
an R-module. The following trick for getting around this may be found in 
[Bass, pp. 634-635], though part of the idea is older. Let Mo be a finitely 
generated R-submodule of M which generates M as an R[t]-module, and 
let Mn = tn Mo + ... + Mo. Then Mn is an increasing sequence of finitely 
generated R-submodules of M and M = limMn. Let 

---+ 

and observe that this is an increasing sequence of R-submodules of Mo. 
Since Mo is finitely generated and R is left Noetherian, there is some no such 
that Qn = Qno for all n ~ no. We claim that for n ~ no, the homological 
dimension of Mn is ~ d, where d is the larger of the homological dimensions 
of Mno and Mno/Mno-l' Indeed, this is true for n = no, and if n > no and 
it's true for n - 1, we can apply the exact sequence 

0--+ Mn- 1 --+ Mn --+ Mn/Mn- 1 --+ O. 

tn-no 
By choice of no and the assumption that n > no, the map Mno / Mno- 1 -

Mn/Mn- 1 has a trivial kernel and thus is an isomorphism. So for any R
module N, we have an exact sequence 

Ext~(Mno/Mno-l, N) --+ Ext~(Mn' N) --+ Ext~(Mn_l' N), 

and since Ext~(Mno/Mno-l, N) = 0 and Ext~(Mn_l, N) = 0, we get that 
Ext~(Mn' N) = O. This proves the claim by induction. 

To complete the proof, one needs to see that the homological dimension 
of M is bounded by 

lim sup hom. dim. Mn ~ d. 

This follows from the "lim 1 -sequence" 
~ 

which comes from the long exact sequence in Ext associated to the short 
exact sequence 

n n 

o 
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3.2.4. Corollary. If R is a left regular ring, then so is R[t, rl]. Further
more, if R has (left) global dimension ~ n, then R[t, rl] has (left) global 
dimension ~ n + 1. 

Proof. Again this follows from the fact that R[t, t- l ] is a localization of 
R[t]. More explicitly, if M is a finitely generated R[t, rl]-module, choose 
generators Xl, ••• , Xn for M and let Ml be the finitely generated R[t]
module they generate. Then M = R[t, rl]IZlR[tj MI, and since R[t, rl] is 
flat over R[t] , 

Hence the homological dimension of Mover R[t, rl] is the same as that 
of Ml over R[t]. 0 

Now we're ready to proceed with the study of the K-theory of R[t] and 
R[t, rl]. Note first of all that there are split short exact sequences 

(3.2.5) o --+ tR[t] --+ R[t] =t R --+ 0, 

(3.2.6) 

so that the K-theory of R[t] or of R[t, rl] contains that of R as a direct 
summand. The basic problem is to study the other summands, if any. It 
turns out that in this context, G-theory behaves better than K-theory, at 
least for rings which are left Noetherian. Hence it is worth saying something 
about the functoriality of G-theory under change of rings. In general, if 
cP : R --+ S is a ring homomorphism, though it induces an exact functor 
from Proj R --+ Proj S, Cp* is usually not exact as a functor from R-Modfg 
to S-Modfg, hence does not induce a homomorphism Gj(R) --+ Gj(S). 
However, if S is flat over R (which is another way of saying Cp* is an 
exact functor), in particular if S is projective as an R-module (via cp), then 
Cp* : Gj(R) --+ Gj(S) is defined. This will be the case, for instance, when 
cp is the obvious injection of R into S = R[t] or R[t, rl]. 

We would like, however, to have maps Gj(R[t]) --+ Gj(R) and 

in spite of the fact that the obvious maps R[t] ~ Rand R[t, rl] ~ R 
are not flat. The device for constructing such maps, due to Grothendieck, 
is based on the ideas that went into the proof of the Resolution Theorem 
(Theorem 3.1.13). We use the fact that R has finite homological dimension 
over R[t] or R[t, rl]. In fact, from the resolutions 

(3.2.7) { o --+ R[t] ..!..,. R[t] ~ R --+ 0, 

0--+ R[t, rl] (t-I)1 R[t, t-l ] ~ R --+ 0, 



2. The Grothendieck and Bass-HeIler-Swan Theorems 137 

we see that R has homological dimension 1 over R[t] and R[t, t-I], and 
thus that if 

o -+ MI -+ M2 -+ Ma -+ 0 

is a short exact sequence of R[t]-modules, there is a corresponding exact 
sequence of R-modules 

(3.2.8) 0 -+ Tor~[t](R, MI) -+ Tor~[t](R, M 2 ) -+ Tor~[t](R, Ma) 

-+ R®R[t] MI -+ R®R[t] M2 -+ R®R[t] Ma -+ 0, 

and similarly with R[t, rl] in place of R[t]. 

3.2.9. Proposition. Let R be a left Noetherian ring. There are well
defined homomorphisms Go(R[tD -+ Go(R) and Go(R[t, rID -+ Go(R) 
defined by 

[M] 1-+ [R®R[t] M] - [Tor~[t](R, M)] 

(or the same formula with R[t] replaced by R[t, rl]). When R is left 
regular, these agree with the usual homomorphisms Ko(R[tD -+ Ko(R) 
and Ko(R[t, t-ID -+ Ko(R). 

Similarly, there are well-defined homomorphisms G I (R[tD -+ G I (R) and 
GI(R[t, rID -+ GI(R) defined by 

[M, 0:]1-+ [R ®R[t] M, 1 ® 0:]- [Tor~[t](R, M), Tor(l, 0:)] 

(or the same formula with R[t] replaced by R[t, rl]) which agree with 
the usual homomorphisms KI(R[tD -+ KI(R) and KI(R[t, rID -+ KI(R) 
when R is left regular. 

Proof. First consider the case of Go and R[t]. The indicated formula 
gives a well-defined homomorphism for two reasons: 

(i) If M is finitely generated as an R[t]-module, then R® R[t] M is finitely 

generated, and also Tor~[t] (R, M) is finitely generated since it may be 
computed from (3.2.7) to be the kernel of multiplication by ton M. This 
is a submodule of M, so it is finitely generated if M is, since we are assuming 
R is left Noetherian, hence R[t] is also left Noetherian by the Hilbert Basis 
Theorem (Theorem 3.2.1). 

(ii) We need to show that the relations in Go are preserved by the map. 
But this follows immediately from the exact sequence (3.2.8) together with 
Lemma 3.1.10. (The hypothesis on the category R-Modfg needed for the 
Lemma follows from the assumption that M is left Noetherian.) 

If R is left regular, then so is R[t] by the Syzygy Theorem (Theorem 
3.2.3). Hence by Corollary 3.1.16, the natural maps Ko(R) -+ Go(R) and 
Ko(R[tD -+ Go(R[tD are isomorphisms. The diagram 

Ko(R[tD ~ Go(R[tD 

1 1 
Ko(R) 

.,. 
---=---+ Go (R) 
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commutes since if M is a finitely generated projective module over R[tj, 

then Tor~[tl{R, M) = 0, hence [Mjl--+ [R®R[tlMj under both of the vertical 
maps in the diagram. 

Exactly the same reasoning works with R[tj replaced by R[t, t-Ij, except 
that now TorI is computed to be the kernel of multiplication by t - 1. The 
proof for GI is also almost exactly the same. 0 

3.2.10. Corollary. Let R be a left Noetherian ring. Then for j = 0, 1, 
Gj{R) sits naturally as a direct summand in G;(R[tl) and in Gj{R[t, rll). 

Proof. If M is a finitely generated R-module, then 

are by (3.2.7) computed as the homology of the complexes 

R[tj ®R M ~ R[tj ®R M, 

So TorI can be seen to vanish and Toro gives back M. Hence the composites 

Gj{R) _ Gj{R[tl) map of Proposition 3.2.9, Gj{R), 

Gj{R) _ Gj{R[t, rll) map of Proposition 3.2.9, Gj{R) 

are the identity. 0 

Now we're almost ready for the first major result of this section, which 
is Grothendieck's Theorem comparing Go for a ring R and for the ring of 
polynomials R[tj or R[t, rlj. It is convenient to begin by first proving the 
version of the theorem for graded modules. Then we will use a trick to go 
back to the ungraded case. 

3.2.11. Theorem. Let R be a left Noetherian ring, viewed as a graded 
ring with trivial grading concentrating everything in degree O. Give the 
polynomial ring R[tl, ... , tr j its usual grading in which the elements tl, ... , 
tr have degree 1. For a (non-negatively) graded left Noetherian ring, let 
G~raded denote Ko of the category of finitely generated graded modules 
M = ffinEZ Mn. Note that because of the finite generation hypothesis and 
the fact that the ring is non-negatively graded, these modules are automat
ically bounded below (i.e., given the module M, there is some no E Z such 
that Mn = ° for n < no). Morphisms in this category are required to pre
serve the grading. Then the exact functor M 1--+ R[tl' ... , tr j ® R M induces 
an isomorphism Go{R) ®z Z[tj ~ G~raded{R) _ Gfaded{R[tt. ... ,trl). 

Proof. First of all, it is obvious that if R is trivially graded, then 

since a finitely generated graded R-module is just a finite direct sum of 
finitely generated graded modules Mn , each concentrated in a single degree, 
and we identify [Mnj E Gfaded{R) with [Mnj ® tn in Go{R) ®z Z[tj. 
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Next, observe that everything we have just done works with graded 
modules as well. In other words, there is a map G3raded (R[tl) -+ G3raded (R) 
defined by sending [M] to [R ®R[tl M]- [Torf[t1(R, M)[-I11, where for N 
a graded module, the symbol N[r] denotes N shifted in degree by r: 

N[r]n ,= Nn+r . 

The degree shift comes from the fact that in the category of graded mod
ules, the resolution (3.2.7) is not as it stands a resolution by graded mod
ules, since multiplication by t increases degree by 1, but we can replace it by 

0-+ R[t][-I] --+ R[t]-+ R -+ o. 
Corollary 3.2.10 holds in the graded context, and tells us that the map 
Gfaded(R[t]) -+ Gfaded(R) is a split surjection, with right inverse tbe map 
[M]I--+ [R[t] ®R M]. Iterating all of this r times, we see that R[t1' ... ,tr] 
has finite homological dimension over R, and that there is a split surjeCtion 

Gfaded(R[t1, ... , trl) -+ G3raded (R) 

defined using higher Tor's. 
For simplicity of notation, let S = R[tl, ... , tr]. So it suffices to show 

that the map Gfaded (R) -+ Gfaded (S) is surjective. Let F be the full 
subcategory of finitely generated "R-flat" graded S-modules, whose ob
jects are graded modules M satisfying Torr (R, M) = 0 for j > O. (For 
instance, when r = 1, these are modules which are t1-torsion-free.) If M 
lies in this subcategory, the map Gfaded(S) -+ Gfaded(R) takes the sim
pler form [Mj 1--+ [R ®s Mj. Because of the long exact Tor sequence, F 
is a category with exact sequences and contains the kernel of each of its 
surjective morphisms. So the hypotheses of the Resolution Theorem (The
orem 3.1.13) are satisfied, and the inclusion of F induces an isomorphism 
Ko(F) ~ Gfaded(S). Now if M is a graded R-module, S ®R M is R-flat, 
so the map Gfaded(R) -+ G~raded(S) naturally factors through Ko(F), and 
it's enough to show that the map Gfaded(R) -+ Ko(F) is surjective. 

Let M be an object of F, thus a finitely generated graded S-module, 
and recall that S is left Noetherian by Theorem 3.2.1. For each integer 
i, let 

Fi(M) = the S-submodule of M generated by M;, j ~ i, 

Qi = Mi/Mi n Fi - 1(M). 

Note that Qi is just the component of R ®s M in degree i, since (using 
multi-index notation) 

00 

Mi nFi- 1 (M) = L L tlMi-;. 
;=1111=; 

(The sum is really finite, since M is bounded below.) Similarly, R®sFi(M) 
vanishes in degrees> i and coincides with R ®s M in degrees ~ i. 
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If Mi = 0 for i < no, then 

and the filtration must terminate at some finite stage, i.e., Fnl (M) = M 
for some nl, since M is finitely generated and Noetherian. Note that there 
is a map of graded 8-modules from 8 ®R Mi to Fi(M), which induces by 
passage to the quotient a surjective map of graded 8-modules 

Here we are viewing Mi and Qi as graded modules concentrated in the 
single degree i. We will show this map is an isomorphism for each i. 

For i < no or i > nl, this is obvious since both sides are zero. Suppose 
we know that Torr(R, Fi(M)) = 0, which is at least the case for i = ni 

since M E Obj F. From the short exact sequence of graded modules 

and the fact that the natural map 

is injective with cokernel Qi, we see first that Torr(R, Fi(M)) = 0 implies 
also Torr(R, Fi(M)/Fi-I(M)) = 0 and 

Then if Ki denotes the kernel of 

tensoring with R gives the exact sequence 

-- R ®s (8 ®R Qi) -- R ®s (Fi(M)/Fi-I(M)) 

II II 
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This shows R ®s Ki = 0, which since Ki is a finitely generated graded 
module forces Ki = O. Hence Fi(M)/ Fi- 1(M) ~ S®RQi, which shows that 
Fi(M)/Fi- 1(M) E Obj-F. Substituting back the fact that Tor2 vanishes, 
we get Torf{R, Fi-I{M)) = O. So by descending induction on i, Ki = 0 
and Torf(R, Fi(M)) = 0 for all i, as desired. 

Now to conclude the argument, note that [M] = L:i[Fi(M)/Fi-l(M)] 
in G~raded{S). But we have seen that Fi{M)/Fi-I(M) ~ R[t] ®RQi, hence 
[Fi (M) / F i - I (M) ] lies in the image of G~raded R for each i, as required. 0 

As we have noted, the next theorem is really due to Grothendieck, 
though this version of it first appeared in [BassHellerSwan]. 

3.2.12. Theorem (Grothendieck). Let R be a left Noetherian ring. 
Then the natural maps Go(R) ~ Go(R[t]) and Go(R) ~ Go(R[t, t-I]) are 
isomorphisms, with inverses given by the maps of Proposition 3.2.9. 

Proof. We begin with the case of R[t]; the case of R[t, rl] will follow. 
We need to show the map Go{R) ~ Go{R[t]) is surjective. The trick is to 
observe that if M is a finitely generated R[t]-module, then M = R[t] ®'I/> N, 
where N is a finitely generated graded R[t, s]-module (we give R[t, s] the 
grading by the total degree of a polynomial) and where ¢ : R[t, s] ~ R[t] 
is the surjective homomorphism sending t f-+ t, s f-+ 1. To see this, note 
that M = R[t]n /Q for some module ofrelations Q ~ R[t]n, and since M is 
finitely generated and R is left Noetherian, Q is finitely generated because 
of the Hilbert Basis Theorem (Theorem 3.2.1). Choose a finite set 

Ii = (hl(t), ... , hn(t)) , 1 5, j 5, m, 

of generators of Q and let d = maxdeghk. Define 

9j = (9j,l{t, s), ... , 9j,n{t, s)) E R[t, s]n, 15, j 5, m, 

by replacing each monomial atl in the hk'S by atl sd-l. Then each 9j,k is 
homogeneous of degree d, and 9j,k f-+ hk under the map ¢ : R[t, s] ~ R[t]. 
Hence if Q' is the submodule of R[t, s]n generated by the 9j,k'S, N = 
R[t, s]n /Q' is a finitely generated graded R[t, s]-module and ¢*(N) = M. 

Observe in addition that the functor ¢* from graded R[t, s]-modules to 
R[t]-modules is exact. Indeed, the tensor product functor is always right 
exact. On the other hand, ¢*(N) may also be written as N/(s -1)N, and 
we have left exactness because if N is a graded R[t, s]-module and N' is a 
graded submodule, and if x = L:;no Xj EN, (s -1)x EN', then 

00 

-xno + L (SXj_1 - Xj) EN', 
j=no+1 

so that xno E N', x no+1 E N', ... , and x E N'. Thus ¢* induces by 
Proposition 3.1.9 a homomorphism Gfaded{R[t, s]) ~ Go{R[t]). 
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Now consider the diagram 

forget grading 1 ,p·l 
Go(R) ----7 Go (R[t]) , 

where the horizontal arrows are induced by the inclusions of R into R[t] 
and R[t, s). This diagram obviously commutes. By Theorem 3.2.11, the 
top horizontal arrow is an isomorphism. From the fact that every finitely 
generated R[t)-module is 'l/J*(N) for some finitely generated graded R[t, s]
module, the right-hand vertical arrow is surjective. Thus the bottom hori
zontal arrow is surjective and we are done. 

Now consider the case of Go(R) --t Go(R[t, rl]). We must show that 
this map is also surjective. Since R[t, t- l ) is flat over R[t] (as an R[t]
module, R[t, t- l ] = lim rn R[tJ, and rn R[t) is free over R[t]) , the 

--+n-too 
inclusion R[t) <-+ R[t, rl] induces a homomorphism 

by [M] f-+ [R[t, rl) Q9R[tj M]. The map Go(R) --t Go(R[t, rl]) obviously 
factors through this map. Since we have seen that Go{R) --t Go{R[t]) is an 
isomorphism, we only need to show that Go{R[t]) --t Go{R[t, rl]) is surjec
tive. But if M is a finitely generated R[t, rl]-module, M = R[t, rl]n I S 
for some finitely generated module of relations S. (We are using Corol
lary 3.2.2.) Multiplication by tk induces an automorphism of R[t, t-l]n, 
and for large enough k, it will kill off all negative powers of t in a fi
nite set of generators for S. Thus for large enough k, tkS ~ R[t)n, 
and M ~ tk R[t, t-l]n ItkS is extended from a finitely generated R[t)
module. This shows Go{R[t]) --t Go{R[t, t-l]) is surjective, completing 
the proof. D 

3.2.13. Corollary. Let R be a left regular ring. Then the natural map 
Ko{R[t]) -+ Ko{R) induced by (3.2.5) and the natural map Ko{R[t, rl]) -+ 

Ko{R) induced by (3.2.6) are isomorphisms. Alternatively, Ko{tR[t]) and 
Ko{{t - l)R[t, t-l]) (computed in the sense of Ko for rings without unit) 
vanish. 

Proof. This follows from combining Theorem 3.2.12, Corollary 3.1.16, 
and Proposition 3.2.9. D 

Remark. For rings which are not left regular, the maps Ko{R[t]) -+ 

Ko{R) and Ko{R[t, rl]) -+ Ko{R) can have a non-zero kernel. For an 
example of the former phenomenon, see Exercise 3.2.24. The kernel of the 
map Ko{R[t, rl]) -+ Ko(R) actually consists of two different parts, both 
of which can be non-zero. The first is related to the kernel of Ko{R[t]) -+ 

Ko{R)j the second is the functor K_1{R) which will be studied in the next 
section. 
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3.2.14. Definition. If R is any ring with unit, we define NKj(R), j = 0 
or 1, to be the relative K-group Kj(R[t], tR[t]). By the split short exact 
sequence (3.2.5), this is the same as the kernel of the map on K-theory 

induced by R[t] ~ R. (Recall Exercises 1.5.11 and 2.5.19.) Corollary 
3.2.13 states that N Ko(R) vanishes if R is left regular. 

Next we come to the study of KI and G I . We would like to show as in the 
case of Ko that GI(R[tD ~ GI(R) for R left Noetherian, so that NKI(R) 
vanishes if R is left regular. The case of Laurent polynomials will now be 
a bit different, since as we remarked at the beginning of this section, there 
is reason to believe KI(R[t, rID should be related to KI(R) ffi Ko(R), not 
just to KI(R). 

First we have the analogue of Theorems 3.2.11 and 3.2.12 for G I . 

3.2.15. Theorem. Let R be a left Noetherian ring, viewed as a graded 
ring with trivial grading, and let R[tl' ... , tT] be given its usual grading. For 
a (non-negatively) graded left Noetherian ring, let Giraded denote KI of the 
category of flnitely generated graded modules M = EBnEZ Mn. (Morphisms 
in this category are required to preserve the grading.) Then the exact 
functor M f-+ R[tl,"" tTl ®R M induces an isomorphism GI(R) ®z Z[t] ~ 
Giraded(R) -> Giraded(R[tl, ... ,tT])' 

Proof. For simplicity of notation, let 8 = R[tl' ... , tT]' As in the proof of 
Theorem 3.2.11, it suffices to show that the map Giraded(R) -> Graded (8) 
is surjective. As in the proof of Theorem 3.2.11, let :F be the full sub
category of the category of finitely generated R-flat graded 8-modules, 
whose objects are graded modules M satisfying Torr (R, M) = 0 for j > 
O. These include the finitely generated free graded modules, and any 
graded morphism lifts to a morphism of a free graded module. As in 
the proof of Theorem 3.2.11, the hypotheses of the Resolution Theorem 
(Theorem 3.1.14) are satisfied, and the inclusion of:F induces an isomor-

phism KI(:F) ~ Giraded(8). Also the map Giraded(R) -> Graded(S) 
naturally factors through KI (:F), and it's enough to show that the map 
Giraded(R) -> KI(:F) is surjective. 

Furthermore, by the method of the proof of Theorem 3.2.11, it is enough 
to consider classes in KI(:F) defined by an automorphism a of 8 ®R M, 
where M is a graded R-module. Then since a is required to be grading
preserving, a induces an automorphism of (8 ®R M)n = M, and since M 
generates 8®RM as an 8-module, a is determined by its restriction to M, 
i.e., a = l®aIM' Thus the map Giraded(R) -> Giraded(8) is surjective. 0 

3.2.16. Theorem (Grothendieck Theorem for G1). Let R be a left 
Noetherian ring. Then the natural map G1(R) -> GI(R[t]) is an isomor
phism, with inverse given by the map of Proposition 3.2.9. 
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Proof. As in the proof of Theorem 3.2.12, we consider the diagram 

Gyraded(R) _ Gfaded(R[t, s]) 

forget grading 1 

where the horizontal arrows are induced by the inclusions of R into R[t] 
and R[t, s]. This diagram obviously commutes. By Theorem 3.2.15, the 
top horizontal arrow is an isomorphism. So it will be enough to show that 
the vertical arrow on the right is surjective. This is a bit more delicate 
than in the case of Go since we need to consider not just modules but also 
their automorphisms. But W : R[t, s]--+ R[t] factors through the inclusion 
R[t, s] <--.t R[t, s, s-1], so closer examination shows that the right-hand side 
of the diagram above can be factored as 

Gfaded(R[t, s]) 

'\, 
.p.1 Gfaded(R[t, s, S-1]) 

/' 
G1 (R[t]), 

where Gyraded(R[t, s, s-1]) is defined using Z-graded modules that are not 
necessarily bounded below. (If N is a graded R[t, s, s-1]-module, then 
multiplication by s induces isomorphisms Nj --+ Nj - 1 for all i, so N can't 
be bounded below unless it's the zero module.) Furthermore, if M is an 
R[t]-module, then R[s, S-1] ®R M can be given the structure of a graded 
R[t, s, s-1]-module F(M) (in which t acts by the original action of t com
posed with multiplication by s), and the functors w. andF are inverses to 
one another, defining an equivalence of the category of finitely generated 
R[t]-modules with the category of finitely generated graded R[t, s, s-1]_ 
modules. So 

Gfaded(R[t, s, S-'1]) --+ G1(R[t]) 

is an isomorphism and we need only see that 

Gyraded(R[t, s]) --+ Gfaded(R[t, S, S-1]) 

is surjective. 
Thus let N be a finitely generated graded R[t, s, s-1]-module and let 

a be a grading-preserving automorphism of N. Let P = E9:'=o Nn be the 
R[t, s]-module generated by No. Then P is finitely generated and a maps 
P into itself, and N = R[t, s, S-1]®R[t,s] P. Since obviously a = l®(alp), 
this shows [N, a] is in the image of Gfaded(R[t, s]). So 

Gyraded(R[t, s]) --+ Gfaded(R[t, s, S-1]) 

is surjective. 0 
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3.2.17. Corollary. If R is a left regular ring, then the natural map 
Kl(R[t]) -+ Kl(R) is an isomorphism. In other words, NKl(R) = O. 

Proof This follows from combining Theorem 3.2.16, Corollary 3.1.16, 
and Proposition 3.2.9. 0 

We come now to the case of the Laurent polynomial ring R[t, rl]. We 
begin with Gl and then go on to K l . 

3.2.18. Proposition. Let R be a left Noetherian ring. Then there is a 
natural embedding ofGl(R) tB Go (R) as a direct summand in Gl(R[t, t- l ]) 
via 

~ : ([M, a], [M']) 1-+ [R[t, rl] ®R M, 1 ® a] + [R[t, rl] ®R M', t ® 1] . 

The left inverse W to ~ is given by Gl(R[t, rl]) -+ Gl(R) as defined 
in Proposition 3.2.9, together with the following map Gl(R[t, rl]) -+ 

Go(R): Let N be a finitely generated R[t, rl]-module, f3 E Aut N, and 
let N' be a finitely generated R[t]-submodule of N that generates N as 
an R[t, rl]-module. Then for suitably large k, t kf3 maps N' into it
self, and coker«tkf3)INI) is a finitely generated R-module. Map [N, f3] E 
Gl(R[t, rl]) to 

[coker«tk (3)INI)] - k[coker(tIN/)] E Go(R). 

Proof It is clear that ~ defines a homomorphism, and we already ver
ified in Corollary 3.2.10 that it embeds Gl(R) in Gl(R[t, t- l ]) as a direct 
summand. It therefore suffices to check that the indicated formula gives a 
well-defined homomorphism Gl(R[t, rl]) -+ Go(R), and that the compos
ite w 0 ~ is the identity. 

The first problem is to show that, given a finitely generated R[t, t- l ]_ 
module N and f3 E AutN, [coker«tk f3)INI)] - k[coker(tINI)] E Go(R) is 
independent of the choice of N' and of k. First of all, suppose N' is fixed 
and t kf3 maps N' into itself. Note that (tkf3INI) is an injective R[t]-module 
homomorphism since it is the restriction of an automorphism of N. If we 
replace k by k + j, j > 0, then tk+i f3( N') ~ t k f3( N') ~ N', and t k f3 induces 
an isomorphism 

N' jti N' -+ t kf3(N')jtk+i f3(N'). 

Hence, in Go(R), we have 

In particular, iterating this with f3 = 1 shows that 

[coker(ti INI)] = j[coker(tINI)]' 

and so 

[coker«tk+i (3)IN' )]-(k+j)[coker(tIN/)] = [coker«tk,B)INI )]-k[coker(tINI )]. 
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Thus for fixed N' we have independence of k. 
Now suppose Nil is another finitely generated R[t]-submodule of N that 

generates N as an R[t, t-l]-module. Then 

00 00 

N = U ejN' = U ejN", 
j=O j=O 

so for suitably large j, t j Nil ~ N'. If we choose k large enough so that tk f3 
maps N' and Nil into themselves, then (tHk f3)N" ~ t j Nil n (tkf3)N' ~ N' 
and in Go(R) we have 

or 
[N' f(tkf3)N'] + [N' ft j Nil] = [N' ft j Nil] + [Nil f(tkf3)N"], 

so [N' f(tkf3)N'] = [Nil f(tkf3)N"]. This proves independence of the choice 
of N' and shows W is well defined. 

Next we have to show that W is a homomorphism. If f3 and 'Y are two 
automorphisms of N, and if we choose k large enough so that tk f3 and tk'Y 
both map N' into itself, then (t2k f3'Y)N' ~ (tkf3)N' n (tk'Y)N' ~ N', so in 
Go(R) we have 

[N' f(t2k f3'Y)N'] = [N' f(tk'Y)N'] + [(tk'Y)N' f(t2kf3'Y)N'] 

= [N' f(tk'Y)N'] + [N' f(tkf3)N'], 

showing that W([N, f3'Y]) = W([N, f3]) + W([N, 'Y])' It remains to show that 
W is additive on short exact sequences. Suppose 

is a short exact sequence of finitely generated R[t, ell-modules, and f3 
is an automorphism of N2 that maps Nl onto itself and that induces an 
automorphism 'Y of N3 • Choose a finitely generated R[t]-submodule N~ of 
N2 that generates N2 as an R[t, ell-module. Let Nf = N~ n Nlo and let 
N~ be the image of N~ in N3 . Then Nf and N~ are finitely generated and 
generate Nl and N 3 , respectively. If we choose k so that t k f3 maps N~ and 
Nf into themselves, then if x E Nf n (tkf3)N~, we have (tkf3)-lx E Nl nN~ 
(since Nl is stable under (tkf3)-l), which is Nf. Hence Nf n (tkf3)N~ = 
(tkf3)Nf and so in Go(R), 

[N~f(tkf3)N~] = [N~f (N{ + (tkf3)N~)] + [(N{ + (tkf3)N~) f(tkf3)N~] 
= [N~f(tk'Y)N~] + [Nfl (N{ n (tkf3)N~)] 
= [N~f(tk'Y)N~] + [NfI(tkf3)N{]. 

It follows that w([N3 , 'Y]) + w([Nl , f3IN1 ]) = w([N2, f3]), so W is additive 
on short exact sequences. 
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Finally, we show that the composite'll 0 q> is the identity. If M and M' 
are finitely generated R-modules and 0: E AutM, then 

'110 q> ([M, 0:], [M'D = 'II ([R[t, elJ 0R M, 100:] 

as required. 0 

+ [R[t, elJ 0R M', t 01]) 

= ([M, o:J + [M', IJ, 

[coker(10 o:)IR[tj®RM] + [coker(t 01)IR[tj®RM']) 

= ([M, o:J + 0, 0 + [M'D = ([M, 0:], [M'J) , 

3.2.19. Theorem. Let R be a left Noetherian ring. Then the embedding 
q> ofGl(R) EBGo(R) into Gl(R[t, rID, defined in Proposition 3.2.18, is an 
isomorphism. 

Proof. We need to show that q> is surjective. The intuitive idea is 
easy to explain. Suppose [N,.BJ E Gl(R[t, rID is defined by a finitely 
generated R[t, t-lJ-module and .B E AutN. We need to show that if 
[N,.BJ 1-+ 0 in Go(R), then [N,.BJ comes from a class in Gl(R). Let 
N' be a finitely generated R[tJ-submodule of N that generates N as an 
R[t, rlJ-module, and suppose for simplicity that .B maps N' into itself. 
The statement that [N, .BJ 1-+ 0 in Go(R) then means that [N' / .B(N')J = 0 
in Go(R). If N' / .B(N') were literally the zero-module, this would mean that 
.B restricts to an automorphism of N'. But then N = R[t, rlJ 0R[tj N' 
and.B = 10 .BIN" which shows that [N, .BJ lies in the image of the map 
Gl(R[tJ) --+ Gl(R[t, t-lJ). Since (using Theorem 3.2.16) we have a com
mutative diagram 

Gl(R) 

~1 ~ 
Gl(R[tD ---+ Gl(R[t, t-lD, 

this shows [N, .Bl is in the image of Gl (R). 
To make this argument rigorous takes a bit of work, and can be done in 

a number of ways. The easiest is probably to appeal to the method of proof 
of Theorem 3.2.16, which shows that we can take N' = R[tJ 0", P, with 
P a finitely generated graded R[t, s, s-lJ-module, and that .B extends to a 
gradedautomorphismofR[t, t-l, s, s-lJ0R[t,s,s-ljP, Instead of assuming 
that [N, .BJ 1-+ 0 in Go(R), we'll make no assumption on .B and show how 
to write [N, .BJ in terms of elements in the image of q>. First multiply .B by 
a suitably high power of t so that .B maps N' into itself. Then there will be 
an induced grading-preserving endomorphism jj of P. Let P' = ffi:'=o Pn 
be the graded R[t, sJ-submodule of P generated by the elements of degree 
OJ jj maps P' into itself. 

By the method of proof of Theorem 3.2.15, we may reduce to the case 
where P' = R[t, sJ0RM, M a finitely generated graded R-module, and jj is 
determined by a graded endomorphism 0: of M. But then N = R[t, r l J0R 
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M and {3 induces a on the quotient M ~ N/(t-l)N. Since {3 is invertible, 
a is in fact an automorphism of M. We may identify N with EBnEz tn M 
and write {3(tnx) = 'EjEz{3j(x)tn+j for x E M, where almost all of the 
{3j(x) are 0, and 'Ej {3j(x) = a(x). From this one can see M is an iterated 
extension of R-modules Mj on which {3 takes the simple form tjaj, and we 
have 

jEZ 

jEZ 

= L ~ ([Mj, ajl, j[Mj]) , 
jEZ 

which shows ~ is surjective. 0 

3.2.20. Corollary (Bass-HeIler-Swan). Let R be a left regular ring. 
Then there is a canonical isomorphism K1(R[t, rl]) ~ K1(R) EB Ko(R). 

Proof. This follows from combining Theorem 3.2.19, Corollary 3.1.16, 
and Proposition 3.2.9. 0 

Since we are also interested in rings which are not left regular or even left 
Noetherian, it will be convenient to try to analyze K1(R[t, rl]) directly, 
without going through the intermediary of G-theory. This will lead to 
another proof of the Bass-Heller-Swan Theorem (Corollary 3.2.20) as well 
as a motivation for the definition of negative K-theory in the next section. 

3.2.21. Lemma ([BassHellerSwan]). Let R be a ring. Then 

(a) Any matrix B E GL(R[t]) can be reduced, modulo GL(R) and 
E(R[t]), to a matrix of the form 1 + At, where A is a nilpotent 
matrix with entries in R. . 

(b) Any matrix B E GL(R[t, rl]) can be reduced, modulo GL(R) 

( tn 0) and E(R[t, t- l ]), to a matrix of the form 0 1 (1 + A(t -1», 
where A is a matrix with entries in R and A(I- A) is nilpotent. 

Proof. (a) Write B = Bo +tBI + ... +tdBd' where the B j are matrices 
with entries in R. We will first show by induction that B can be reduced 
to something with d ~ 1. So assume d > 1. Then if '" stands for "is equal 
to, modulo GL(R) and E(R[t])," we have 
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(since we can add a multiple of the bottom row to the top row) 

(since we.can subtract tx (the last column) from the first column). 

Now we have something of degree::::; d-l. Continuing by induction, B can 
be reduced to something with d ::::; l. 

If we can reduce to d = 0, the assertion of the Lemma is obvious. Oth
erwise, we can reduce to the case d = 1, and assume B = Bo + tB1. Since 
B is invertible as a matrix over R[t), Bo must be invertible. Factoring out 
Bo, we reduce B to the form 1 + At. This must be invertible as a matrix 
over R[t), so we have B-1 = Co + tC1 + ... + trCr for some Cj's and some 
integer r. Multiplying out the equation 

we obtain the equations 

... , 

o = ACr- 1 + Cr = Cr- 1A + Cr, 0 = ACr = CrA. 

Solving inductively, we obtain Co = 1, C1 = -A, ... , Cj = (-A)j, and A 
is nilpotent since Ar+1 = o. 

(b) Since we are allowed to multiply B by a power of t, we may suppose B 
involves only non-negative powers of t. Then we may repeat the same trick 
and come down to the case where B = Bo + tB1 = (Bo + B1) + (t -1)B1. 
Since B is invertible as a matrix over R[t, r 1), Bo+B1 must be invertible. 
Factoring out Bo + B1, we reduce B to the form 1 + A( t - 1) = 1 - A + At. 
This must be invertible as a matrix over R[t, r1), so after multiplying by 
a power of t it has an inverse which is a matrix over R[t). By the same 
reasoning as in (a), (1 - A)A is nilpotent. 0 

3.2.22. Theorem (Bass-HeIler-Swan). Let R be a ring. Let Nil R be 
the category whose objects are pairs (P, A), where P is a finitely generated 
free R-module and A is a nilpotent endomorphism of P. The morphisms 
(P, A) --+ (Pi, A') are R-module homomorphisms T : P --+ pi such that 
A'T = TP. Note that Nil R is a category with exact sequences, and Ko 
of this category contains an obvious homomorphic image of Z coming from 
the full subcategory of objects with A = o. Then 

(a) K1(R[t]) = K 1(R) EI1 NK1(R), where NK1(R) is canonically iso
morphic to Ko(Nil R). (The notation Ko means Ko divided out 
by the canonical image ofZ.) 

(b) There is a natural splitting of K1(R[t, r1]) as K 1(R) EI1 Ko(R) EI1 
NK1(R) EI1 NK1(R). The two copies of NK1(R) come from the 
embeddings R[t) '--+ R[t, t-1) and R[r1) '--+ R[t, r1). 
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Proof. (a) We already know there must be a splitting 

and (a) of Lemma 3.2.21 shows that NK1(R) is the image in Kl(R[t]) of 
matrices of the form 1 + At, A nilpotent. We define a map NK1(R) --. 
Ko(Nil R) by (when A is a nilpotent n x n matrix) 

NK1(R) 3 [1 + At] ~ [(Rn, A)] E Ko(Nil R). 

To check that this is well defined, note that if 1 + At is conjugate to 1 + 
A't under GL(n, R[t]), then sending t ~ 1, we see 1 + A is conjugate to 
1 + A' under GL(n, R), hence A is conjugate to A' under GL(n, R) and 
[(Rn, A)] = [(Rn, A')] in Ko(Nil R). Furthermore, if we replace 1n+Atby 
the (n+k) x (n+k) matrix (In +At) EB(lk), this corresponds to replacing A 
by A EB Ok and [(Rn, A)] by [(Rn, A)] + [(Rk, 0)]. This element is different 
in K o, but the same in Ko, so the map NK1(R) --. Ko(Nil R) is well 
defined. Finally, the map is a homomorphism since 

[1 + At] + [1 + A't] = [(1 + At) EB (1 + A't)] = [1 + (A EB A')t] 

~ [(Rn , A)] + [(Rn , A')]. 

To show the map is an isomorphism, we construct its inverse by the 
obvious formula [(Rn, A)] ~ [1 + At]. Note that [1 + At] indeed defines a 
class in NK1(R), since for any nilpotent A, 1 + At E GL(R[t]) and maps 
to 1 in G L( R) under the homomorphism defined by t ~ O. Since we know 
all classes in NK1(R) can be represented in the form [1 + At], we will be 
done if we can show that the map is indeed well defined. Clearly the class 
of 1 + At doesn't change if we replace A by A EB Ok (which corresponds to 
changing our class in Ko(Nil R) by something in the canonical image of 
IE). So we only need to check additivity on exact sequences. Suppose 

is a short exact sequence of finitely generated free R-modules and we have 
nilpotent endomorphisms Aj E End(Pj ) such that A2al = alA!, A3a2 = 

a2A2' This means that also (1 + A2t)al = al (1 + Alt) and (1 + A3t)a2 = 
a2(1 + A2t), so 

and we're done. 
(b) The maps cP and W from Proposition 3.2.18 can be defined in K

theory instead of in G-theory, by exactly the same formulas. The only 
point that needs checking is that the second component of W indeed sends 
Kl (R[t, rl]) into Ko(R) and not just into Go(R). To check this, we use the 
fact that the cokernel of the map Kl(R) --. Kl(R[t, rl]) is described by 
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Lemma 3.2.2I(b) 88 being generated by matrices of the form I+A(t-I) with 
A an nxn matrix over R and (I-A)A nilpotent. Equivalently, A = P+N, 
where P is idempotent, N is nilpotent, and P and N commute with each 
other. To see this, suppose Ar(I - At = o. Then since the polynomials 
xr and (1 - xt are relatively prime in Z[x], there are polynomials p(x) 
and q(x) with integer coefficients such that p(x)xr +q(x)(1 - xt = 1. 
Let P = p(A)Ar. Then 1 - P = q(A)(I - A)r and since Ar(I - At = 
0, P(I - P) = O. This shows P is idempotent, and P is a polynomial 
in A. If N = A - P, then N is also a polynomial in A, so P and N 
commute with one another. Furthermore, N = A (1- p(A)Ar-l) and 
N = (A -1) + (1- P) = (1 - A) (-1 + q(A)(I- At-I), so N is divisible 
by both A and 1 - A, hence divisible by A(I - A), hence nilpotent. But 
then R[t]n / (1 + A(t -1)) R[t]n ~ imP is projective 88 an R-module. So 
K1(R) Ee Ko(R) naturally embeds 88 a direct summand in KI(R[t]). 

The cokernel of this embedding is once again described by Lemma 3.2.21 
(b) 88 being generated by matrices of the form 1 + (P + N) (t - 1), where 
P is idempotent, N is nilpotent, and P and N commute with one another. 
Thus 1 + (P + N) (t - 1) corresponds to a pair of nilpotent matrices, P N 
and (1- P)N. These correspond to the two copies of NK1(R). The rest 
of the proof is just 88 in part (a). 0 

Remark. This explains a commonly used notation: the group NK1(R) 
is often called Nil R because of (a) of the theorem. 

3.2.23. Exercise (Non-triviality of NKI). Let k be a commutative 
field, and let R = k[tJl(t2 ). 

(a) Show that R is a local ring and thus corp.pute Ko(R) and KI(R). 
(b) Let s be another indeterminate and compute the group of units R[s] x 

in R[s]. 
(c) From the exact sequence (split on the right) 

deduce that N K I (R) is not finitely generated (88 an abelian group). (Recall 
that since the ring R[s] is commutative, R[s]X "--+ Kl(R[s]).) 

3.2.24. Exercise (Non-triviality of NKo). Let k be a commutative 
field, and let S = k[t2 , t3 ]. 

(a) From the split exact sequence 

and the long exact K-theory sequence coming from the short exact sequence 

compute Ko(S). (Hint: use Exercise 3.2.23(a) and the fact that k[t] is a 
Euclidean ring.) 
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(b) Let s be another indeterminate and similarly use the short exact 
sequences 

0-+ t2k[t, s) -+ S[s) t::; k[s) -+ 0 

and 
0-+ t2k[t, s) -+ k[t, s) -+ k[t, s)/(t2) -+ 0 

to relate Ko(S[s)) and thus NKo(S) to NKl(R) in Exercise3.2.24(c). (Re
call that Ko(S[s)) ~ Ko(S)ffiNKo(S).) Use Grothendieck's Theorem which 
implies that Ko(k[t, s)) = O. Deduce that N Ko(S) is not finitely generated 
(as an abelian group). 

3.2.25. Exercise. Give another proof of Corollaries 3.2.17 and 3.2.20 
from Theorem 3.2.22, by showing that the group NKl described in that 
Theorem has to vanish if R is left regular. (Hint: if A is an n X n matrix 
over R and Ar = 0, it gives a filtration of the free module Rn by 

0= imAr ~ imAr-l ~ ... ~ imA ~ Rn. 

If R is left regular, the subquotients can be resolved by finitely generated 
projective modules.) 

3.2.26. Exercise. Let R be any ring. 

(1) Show that NKl(R[t, rl)) contains NKl(R)ffiNKo(R) as a direct 
summand. You can do this by computing Kl(R[t, rl, s)) two 
ways. 

(2) [Vorst) A ring R is called j-regular if Kj(R[tl, ... , t r )) ~ Kj(R) 
for any r. By Corollary 3.2.17, a left regular ring is i-regular. 

Show that NKl(R[t)) = 0 implies NKl(R[t, t- l )) = 0, by not
ing that a nilpotent matrix over R[t, rl) is of the fonn rn x 
(a nilpotent matrix over R[t)). Then deduce from (1) that if R is 
i-regular, NKo(R) = O. 

(3) Iterating the result of (2), prove the multivariable version of this, 
that i-regularity implies O-regularity. (However, there are O-regular 
rings which are not i-regular.) 

3.2.27. Exercise. 

(1) Show from the Bass-Heller-Swan Theorem that if 7r is any group, 
then Wh(7rxZ) ~ Wh(7r)ffiKo(Z7r)ffi(NKl (Z7r))2. (We are mixing 
additive and multiplicative notation here.) 

(2) Deduce that the Whitehead group of any free abelian group van
ishes. (Hint: Z[tl, tIl, ... , t r , t;l) is regular. Why?) 

(3) See if you can find a topological interpretation of the fonnula in 
(1), and in particular a relationship between Wall finiteness ob
structions for spaces with fundamental group 7r and Whitehead 
torsion obstructions for spaces with fundamental group 7r X Z. 

3.2.28. Exercise. Let k be a (commutative) field. Show that Corollary 
3.2.20 applied with R = k amounts to the assertion that SKl vanishes for 
the PID k[t, t- l ). Can you prove this directly using the results of Chap
ter 2? 
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3.2.29. Exercise [Farrellj. Let R be a ring, and view NKl(R) as being 
represented by classes of nilpotent matrices N over R, as in Theorem 3.2.22. 

(1) Fix an integer n, and let /'n : R[tnj <-+ R[tj be the inclusion. Note 
that R[tj is a free R[tnj-module of rank n, and thus that an r x r 
matrix over R[tj gives rise to an rn x rn matrix over R[tnj. In 
this way a transfer map /,~ : Kl(R[t]) ~ Kl(R[tn]) is defined. 
Show that /,~ 0 (/'n)* is multiplication by n on Kl (R[tn]) (if we use 
additive notation). 

(2) Suppose N is a nilpotent r x r matrix over R, so that 1 + Nt 
represents a typical element of NKl(R). Show that /'~(1 + Nt) is 
given by the block matrix 

(3) 

1 0 0 Ntn 
N 1 0 0 

M= 0 N 

0 0 1 0 
0 0 N 1 

Let A be the strictly lower-triangular block matrix 

1 0 0 0 
N 1 0 0 

A= 0 N 

0 0 1 0 
0 0 N 1 

Show that if N n = 0, then A-l M is strictly upper-triangular and 
hence elementary, and thus that /'~([1 + Nt]) = 0 in Kl(R[tn]). 
Conclude that if N K 1 (R) is finitely generated, then there is some 
integer no such that /,~ = 0 on NKl(R) for all n ~ no. 

(4) Using (1), deduce that if there is a prime p such that multiplication 
byp is injective on NKl(R), then /,~o(/'n)*([l+Ntn]) i- 0 for n = pi 
a power of p and for all nilpotent matrices N. 

(5) Conclude from (3) and (4) that if NKl(R) is finitely generated and 
non-zero, there can be no prime p such that multiplication by p is 
injective on NKl(R), which contradicts the structure theorem for 
finitely generated abelian groups. Therefore if NKl(R) i- 0, then 
NKl(R) is not finitely generated. 

3. Negative K-theory 
One immediate consequence of the Bass-HeUer-Swan Theorem (Theorem 
3.2.22) is that for any ring R, 
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This motivates the following inductive definition: 

3.3.1. Definition. For any ring R, K-1{R) is defined to be the cokernel 
of the natural map Ko{R[t])E9Ko{R[rl]) - Ko{R[t, t-1]). (Since we have 
defined Ko even for rings without unit, it is not necessary here to assume 
that R has a unit.) By Corollary 3.2.20, K_1{R) vanishes if R is left 
regular. Then for any n ~ 1, we define K_n{R) to be the cokernel of the 
natural map K-(n-l) (R[t]) E9K_(n-l) (R[t-1]) _ K-(n-l) {R[t, t- l ]). Note 
that this is functorial in R, since K_n{R) is a natural direct summand in 
Ko{R[h, tIl, ... , tn, t~l]). We also define NK_n{R) to be the cokernel 
of the natural map K_n{R) - K_n{R[t]). (Because of the splitting map 
R[t] - R sending t 1-+ 0, K_n{R[t]) splits as K_n{R) E9 NK_n{R).) By 
iterated use of the Syzygy Theorem (Theorem 3.2.3) and Corollary 3.2.20, 
K_n{R) and NK_n{R) vanish for all n if R is left regular. 

The following theorem shows that Theorem 3.2.22 has an exact analogue 
for Ko, using the new functor K_ I . 

3.3.2. Theorem. For any ring R, there is a natural splitting 

where the two copies of NKo{R) come from the embeddings 

Proof. Theorem 3.2.22 says that for any ring, Ko{R) naturally sits as a 
direct summand in KI{R[tb tIl]). It also says that for any ring S, there 
is a natural exact sequence 

and the cokernel of the map on the right splits. Let us put these two 
statements together, but taking S = R[tl' tIl]. Then Ko{R) naturally sits 
as a direct summand in KI{S), and similarly Ko (R[t]), Ko{R[rl]), and 
Ko{R[t, rl]) naturally sit as direct summands in KI{S[t]), in Kl{S[t- I ]), 
and in KI{S[t, rl]), respectively. Furthermore, the diagram 

o ~ Ko{R) ~ Ko{R[t]) E9 Ko{R[rl]) ~ 

II 1 1 
o ~ KI{S) ~ KI{S[t]) E9 KI{S[rl]) ~ 

~ Ko{R[t, rl]) ~ K_I{R) ~ 0 

II --- Ko{S) ~O 



3. Negative K-theory 155 

clearly commutes. The bottom row is exact, and the top row is exact on 
the right by definition of K_1(R) and on the left since Ko(R) -t Ko(R[t]) 
is split injective. Let us show that the top row is also exact at Ko{R[t]) EB 
Ko{R[rl]), and that the top exact sequence splits on the right. To prove 
the first of these statements, note that by commutativity of the diagram, 
the kernel of Ko{R[t]) EB Ko{R[rl]) -t Ko(R[t, t- l ]) may be identified 
with the intersection in KI{8[t]) EBKl(8[t-l]) of the images of Ko{R[t]) EB 
Ko{R[rl]) and of KI(8). This is obviously Ko(R). To construct a splitting 
map K_1{R) -+ Ko{R[t, rl]), note that the projection of KI{8[t, rl]) 
onto Kl (8) EB N KI (8) EB N KI (8) killing Ko(8) restricts to a projection of 
Ko{R[t, rl]) onto Ko{R) EBNKo{R) EBNKo{R) killing K_ 1{R), hence the 
latter must split off as a direct summand. 0 

Note that iteration of the same argument clearly proves the following. 

3.3.3. Theorem ("Fundamental Theorem of Algebraic K-
Theory"). For any ring R and any n ~ 1, there is a natural splitting 

K_(n_I){R[t, rID 
~ K-(n-l){R) EB K_n{R) EB NK_(n_I){R) EB NK_(n-l) (R), 

where the two copies of NK_(n_I){R) come from the embeddings R[tj c......t 

R[t, rlj and R[rlj c......t R[t, r1j. 

The advantage of the construction of the functors K_n{R) is that it now 
gives us a way of extending the exact sequence of an ideal arbitrarily far to 
the right, and thus a way of computing Ko{RjI) from information about 
R and the ideal I. 

3.3.4. Theorem. Let R be a ring with unit, and let I be a two-sided ideal 
in R, viewed as a ring without unit. Then the exact sequence of Theorem 
2.5.4 extends to an exact sequence 

•.. -+ Ko{R) ~ Ko{RjI) ~ K_1{I) 

~ K_1{R) ~ K_1{RjI) ~ K_2{J) ~ ... , 

where "* and q* are the maps induced by the inclusion " : I c......t R and by 
the quotient map q : R - Rj I. 

Proof. Take 8 = R[t, rlj and J = I[t, rlj. To avoid unnecessary 
extra notation, again denote the inclusion J c......t 8 by " and the quotient 
map 8 -+ 8jJ ~ (RjI)[t, t-1j by q. Then J :9 8, and by Theorem 2.5.4, 
there is a natural exact sequence 

KI(8) ~ KI(8jJ) ~ Ko(J) ~ Ko(8) ~ Ko(8jJ). 

On the other hand, we have natural embeddings of Ko{R) in K 1(8), 
Ko{RjI) in KI{8jJ), K_1{I) in Ko{J), etc., as direct summands, and 

KI(8) ~ KI{8jJ) Ko{J) ~ Ko(8) ~ Ko{8jJ) 

r r r r r 
Ko{R) 

q. 
--+ Ko(RjI), 
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commute. We also have a commutative diagram with exact rows and 
columns 

0 ~ KI(R) ~ Kl(R[t]) Ell Kl(R[rl]) ~ 

II q·1 q·1 
0 ~ KI(R/1) ~ KI((R/I)[t]) Ell KI((R/I)[t- 1]) ~ 

II 81 81 
0 ~ Ko(I) ~ Ko(I[t]) Ell Ko(I[rl]) ~ 

II £·1 £·1 
0 ~ Ko(R) ~ Ko(R[t]) Ell Ko(R[rl]) 

II q·1 q·1 
0 ~ Ko(R/I) ~ Ko((R/I)[t]) Ell Ko((R/I)[t- l ]) ~ 

KI(R[t, rl]) - Ko(R) 0 ... ~ --+ ~ 

q·1 II 
~ KI((R/I)[t, rl]) - Ko(R/I) ~ 0 --+ 

81 II 
Ko(I[t, rl]) - K_I(I) 0 ... ~ --+ ~ 

£·1 II 
Ko(R[t, rl]) - K_I(R) 0 ... ~ --+ ~ 

q·1 II 
~ Ko((R/I)[t, t-I]) ~ K_I(R/I) ~ o. 

A diagram chase now gives the desired exact sequence as far as the 
K_I(R/I), but we can iterate the construction to include K-2 terms and 
eventually K -n terms for all n. 0 

3.3.5. Examples. (Cf. Examples 1.5.10 and 2.5.6.) 

(a) Suppose R = Z and I = (m), where m > o. Then R/I is a product 
of k local rings, where k is the number of distinct prime factors 
of m, and we determined earlier that Ko(R/ I) ~ Zk and that the 
map Ko(R) ---+ Ko(R/ I) may be identified with the diagonal map 
Z ---+ Zk. The cokernel of this map is free abelian of rank k - 1. 
Since R is a PID, it is certainly a regular ring, hence K_I(R) = o. 
Therefore the exact sequence of the ideal terminates with Ko(R) ---+ 

Ko(R/ I) ---+ K-I (I) ---+ 0, and K-I (1) is free abelian ofrank k - 1. 
Looking at the rest of the exact sequence (and using the fact 

that all negative K-groups of R must vanish) also shows that 
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K_n(Rj I) ~ K_n- 1 (I) for n ~ 1. We can use this fact to compute 
the rest of the negative K-groups of I. For instance, suppose m 
is square-free, i.e., a product of distinct primes. Then Rj I is a 
product of fields, hence is left regular, so all the negative K -groups 
of Rj1 must also vanish. Hence K_n(l) = 0 for n ~ 2, though 
K_ 1(1) will be non-zero if k > 1. 

IT, say, m = p2 with p prime, then Rj I is local but not regular 
(see Exercise 3.1.24). Thus K_l(l) = 0 from the exact sequence, 
but, at least a priori, Rj I could have plenty of negative K-groups. 
However we have an exact sequence 

0-+ m -+ Zj(p2) -+ lFp -+ 0, 

where m = pZjcY) is the maximal ideal of Zj(P2). Since m2 = 0, 
it is easy to see that for any n, 

m[tl' tl1, ... , tn, t~l] =radZj(p2)[tlo tl1, ... , tno t~l], 

with quotient lFp[t1, tl1, ... , tn, t~l]. By the argument of Theo
rem 1.3.11 (see Exercise 3.3.6 below), the map 

Ko (Zj(P2)[tlo tl1, ... , tn, t~l]) -+Ko (lFp[tlo tl1, ... , tn, t~l]) 
~Z 

(by iterated use of Corollary 3.2.13) 

is injective, hence all negative K-groups of Rj1 vanish. Hence 
K_n(l) = 0 for all n ~ 1. 

(b) Suppose G is a cyclic group of prime order p, say with generator 
t, and R = ZG is its integral group ring, which may be identified 
with Z[tlf(tP -1). IT e = e21ri/p , a primitive p-th root of unity, and 
if S = Z[el, then S is the ring of integers in the cyclotomic field 
Q(e), hence is a Dedekind domain by Theorem 1.4.18. There is a 
surjective homomorphism R - S defined by sending t I--t e. We 
have seen that the kernel I of the map R -+ S is, as a ring without 
unit, the same as in the last example if we specialize to the case 
m = p. Thus from the calculation in (a) above, K_n(l) = 0 for all 
n ~ 1. From the exact sequence 

Ko(R) -+ Ko(S) -+ K-l(l) = 0, 

we conclude that the map Ko(R) -+ Ko(S) is surjective. On the 
other hand, by Corollary 2.5.9, the map Ko(R) -+ Ko(S) is in
jective, so we conclude that Ko(ZG) ~ Ko(Z[eJ). Thus the "Wall 
obstruction group" for G is trivial if and only if the cyclotomic field 
Q(e) has class number 1. It is known that his happens if and only 
if p ::; 19 [Washington, Ch. 11]. From the fact that S is a Dedekind 
domain, hence a regular ring, and· from the exact sequence 

0= K_n(l) -+ K_n(R) -+ K_n(S) = 0, 

K_n(ZG) = 0 for n > O. 
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It ~s perhaps worth mentioning a geometric application of negative K
theory. This involves the concept, which has been increasingly important 
in geometric topology during the, last several years, of topology with 
control. For simplicity, we consider one of the simplest illustrations of 
this idea, as developed in [Pedersen]. Namely, we consider h-cobordisms 
W between two manifolds M and M' as in Theorem 2.4.4, but this time 
with a control map P : W -+ IRk. The control map p is required to be 
proper, and its restriction to either M or M' is required to be surjective. 
Of course, none of the manifolds W, M, or M' will be compact. We use 
the map p to measure "distances," that is, we define 

"dist" (x, y) = Ip{x) - p{Y)I. 

Then we require that W have bounded fundamental group, i.e., that 
there be a fixed constant C such that for every x, yEW, and for every 
homotopy class of paths from x to y, there be a representative for the 
class of length < Ip{x) - p(y) I + C, and similarly that null-homotopic loops 
be contractible within a set of diameter < C + the diameter of the loop. 
The result of [Pedersen] then gives a necessary and sufficient condition 
for a "bounded" h-cobordism W to have a bounded product structure, in 
terms of an invariant in K_k+1{Z7rl{W)), provided that dim W > 5. (Here 
K-k+1 refers to Wh if k = 0 and to K-k+1 if k > 1.) H k = 0, this reduces 
to the usual s-cobordism theorem (Theorem 2.4.4). 

Of course, one way a bounded h-cobordism can arise is from a compact 
h-cobordism W' with fundamental group 7r x Zk. The projection of the 
fundamental group onto Zk induces a map p' : W' -+ Tk, and taking 
coverings, we get a map 

p = P' : W' = W -+ 'i'k = IRk. 

Theorem 1.1 of [pedersen] identifies the associated invariant as the image 
of the original Whitehead torsion in Wh{7r x Zk). But there are controlled 
non-compact problems that do not arise so simply from compact situations. 

3.3.6. Exercise. 
(1) Fill in the details of the argument copied from Theorem 1.3.11, 

that if S is a ring and if J is an ideal of R contained in rad R, then 
the map Ko{S) -+ Ko{SjJ) induced by the quotient map S -+ SjJ 
is injective. 

(2) Let R be a local ring, not necessarily commutative, and let I = 
rad R. Assume Ik = 0 for some k. Let 

S = R[tl, tIl, ... , tn. t~l], J = I[t!, tIl, ... , tn. t~l]. 

Show that SjJ is left regular and deduce that NKn{SjJ) = 0 for 
all n ~ 1 and that K-n{SjJ) = 0 for all n > o. 

(3) Conclude from (1) that the map Ko{S) -+ Ko(SjJ) is injective. 
Deduce that NK_n{R) = 0 for n ~ 0 and that K_n{R) = 0 for 
n>O. 
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3.3.7. Exercise. Use the results of the last exercise to show that for a 
finite product of local rings all of whose radicals are nilpotent, all negative 
K-groups must vanish. Apply this to the ring 7l../(m) to complete the 
calculation of the negative K-groups of (m) ~ 7l.. for an arbitary positive 
integer m. 

3.3.8. Exercise [KaroubiAlgOp). Let R be a complex Banach algebra 
(with unit), and observe that C(SI, R) is also a Banach algebra with point
wise multiplication of functions and with norm 

11111 = sup III(t)ll· 
tESl 

We have an isometric inclusion R <-+ C(SI, R) as constant functions. 

(1) For all tESt, the evaluation map at t induces a retraction 

C(SI, R) --4 R. 

Show that the induced map on K o is independent of t, hence that 
Ko(R) sits as a direct summand in Ko(C(St, R)) in a canonical 
way. (Use Corollary 1.6.11.) Define 

K~Of(R) = ker (Ko(C(St, R)) --4 Ko(R)) . 

(2) There is a map R[t, rl) <-+ C(St, R) obtained by viewing a Lau
rent polynomial as a function of t E SI (identified with the unit cir
cle in the complex plane). This induces a map K_l(R) --4 K~Of(R). 

Now if R is a Banach algebra, so is Mn(R) for all n, so GL(n, R) 
= (Mn(R))X is an open subset of Mn(R) by Lemma 1.6.6. It there
fore has a natural topology making it a locally_contractible topolog
ical group. Let GL(n, R)O denote the connected component of the 
identity in GL(n, R). This contains E(n, R) since each elementary 
matrix eij (a) is path-connected to the identity via the path eij (ta ), 
o ~ t ~ 1. Let GL(R)O = limGL(n, R)o. Then this is a normal 

--+ 
subgroup of GL(R) and the quotient is abelian since GL(R)O :2 
E(R). It is customary to define KiOP(R) = GL(R)/GL(R)o. 

Show (see [Blackadar), Theorem 8.2.2) that there is a functorial 

isomorphism () : KiOP(R) ~ K~Of(R). This is constructed as 
follows. 

(a) If u E GL(n, R), then u EI7 u-1 E E(2n, R) ~ GL(2n, R)O 
(Corollary 2.1.3). Choose z E C ([0, 27rJ, GL(2n, R)O) with 
z(O) = I 2n , z(27r) = u EI7 u-1 • Then let an idempotent p E 

C (St, M 2n(R)) = M 2n (C(St, R)) be defined by p(eit ) = 
z(t)(In EI7 On)z(t)-I. (This is indeed a continuous function 
of eit , not just a function of t, since z(O) and z(27r) both 
commute with In EI7 On.) Define 

(}([u)) = [P)- [(In EI7 On)). 
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Since pel) = (In E9 On), 

9([u]) E ker (Ko (C(81, R») --+ Ko (R») = K~f(R). 

First show that this is independent of all choices and gives a 
homomorphism with respect to the block sum operations E9 
on K~op and on K~f. 

(b) Next, to prove injectivity of 9, suppose 9([u]) = O. Stabilizing 
u if necessary, reduce to the case where p is conjugate to 
In E9 On in GL(2n), say 

h(eit )p{t)h(eit)-l = (In 0) o On 

for some h E C (81, GL(2n, R)). Then show h(eit)z(t) = 

(ZlJt) Z2~t») for some Zl, Z2 E C ([0, 271"], GL(n, R)) and 

deduce that u E GL{n, R)O, so that [u] = 0 in K~OP{R). 
(c) Finally, to prove surjectivity of 9, show that every element of 

K:of may be represented in the form [P]- [(In E9 On)]. 
(3) Let A = C(B, B-1}, the commutative Banach algebra of absolutely 

convergent Laurent series (with norm coming from £l(Z)). There 
is a norm-decreasing homomorphism A --+ C(81) with dense im
age obtained by viewing a Laurent series as a function of u E 8 1 

(identified with the unit circle in the complex plane). Show.that 
K~f{A) ~ KO(81 x 8 1) ~ Z and that the map K-1 (A) --+ K~f(A) 
is surjective. 

(4) Let R be a complex C*-algebra, that is, a norm-closed subalgebra 
of the bounded operators 8(1i) on some complex Hilbert space 1i 
which is invariant under the involution * sending an operator to 
its adjoint. Then if bE R X, b*b E RX and is strictly positive, so 
Ibl = (b*b)! E R X (argue as ill Lemma 1.6.6) and we have a polar 
decomposition b = Iblu in R with u unitary. In particular, u and 
u-1 each have norm 1. 

Now if R is a C*-algebra, so is Mn(R) for each n. (If R acts 
on a Hilbert space 1i, Mn{R) acts on cn ® 1i.) Show that if bE 
GL{n, R), there is a path joining Ibl to the identity in GL(n, R), 
and hence the class of b in K~OP{R) may be represented by the 
unitary u = Ibl- 1b. Then show that with A as above, BI-+ u defines 
a continuous (in fact norm-decreasing) homomorphism cp : A --+ 

Mn(R) sending [B], which generates K~OP{A), to [b] E K~OP(R). 
(5) From (2) and (3) above, from commutativity of the diagram 

K-1(A) ---+ K:of{A) ~ 
Q!! 

K~OP(A) 

~·l ~·l ~·l 
K_1(R) ---+ K~f(R) ~ 

Q!! 
K~OP(R), 
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and from the fact that cp can be chosen to have any desired class 
in K~OP(R) in its image, deduce that the map K_1(R) _ K:oi(R) 
is surjective. 

(6) If X is a compact Hausdorff space, the algebra R = CC(X) is a C*
algebra. (It may be represented, for instance, on a Hilbert space 
of the form L2(X, /1-), with /1- a measure on X of full support.) 
Deduce that K_1(R) - KU-1(X). This provides many examples 
of commutative rings with complicated K_1. 

3.3.9. Exercise. (Cf. Exercise 3.2.27.) 

(1) Show from Theorem 3.3.2 that if 7r is any group, then 

(2) Deduce that the Wall obstruction group Ko vanishes for free abeli
an groups but is non-zero for 7r x Z if K_1 (Z7r) =F o. (An example 
of a finite abelian group with this property is given in the next 
Exercise.) 

3.3.10. Exercise. Let G and H be finite cyclic groups of orders 2 and 
3, respectively, so that G x H is cyclic of order 6. Note that Z(G x H) = 
ZG ®z ZH. From the exact sequences 

o -+ 2Z -+ ZG ~ Z -+ 0, 

o -+ 3Z -+ ZH -+ Z[w] -+ 0, 

where w = -lti3 , deduce the exact sequences 

0-+ ZG ®z 3Z -+ Z(G x H) -+ ZG ®z Z[w]-+ 0, 

o -+ 6Z -+ ZG ®z 3Z ~ 3Z -+ 0, 

o -+ 2Z ®z Z[w] -+ ZG ®z Z[w] ~ Z[w] -+ o. 

Note also that there is an exact sequence 

0-+ 2Z ®z Z[w]-+ Z[w]-+ lF4 -+ O. 

Compute from these and from the fact that Z[w] is a PID that K_l(Z(G x 
H)) ~ K_1(6Z) is infinite cyclic and that K-n(Z(G x H)) = 0 for n ~ 2. 

The groups K_n (Z7r) have been computed for arbitrary finite groups 
7r by Carter [Carter], and it turns out that K_n (Z7r) is always finitely 
generated for n = 1 and vanishes for n ~ 2. Furthermore, torsion can 
occur in K_l, but it is always of exponent 2. 



4 
Milnor's K2 

1. Universal central extensions and H 2 

For the reader who might have been alarmed by the category-theoretic 
approach of the last chapter, this chapter, which discusses Milnor's K2 
functor, will seem a comforting retreat to more familiar territory. However, 
we will need to refer to the homology of a group, at least in order to speak 
of H2 • Since group homology will be needed in a more serious way in 
the next chapter anyway, we provide a brief introduction to the subject 
later in this section. The reader who wants a more serious approach to 
the homology theory of groups and its applications should consult a source 
such as [Brown] or [CartanEilenberg]. 

First, though, we begin with the theory of universal central extensions, 
as developed in [Kervaire2] and [Milnor, §5]. This a cute and fairly self
contained topic in group theory, but it's hard to see at first what it has 
to do with K-theory. Roughly speaking, the idea here is that K-theory 
for rings is supposed to measure "abelian" invariants of the highly non
commutative group GL(R}. For example, K 1(R} is defined by taking 
the abelianization of GL(R}, in other words, the quotient of this group 
by its commutator subgroup E(R}. Since E(R} is its own commutator 
subgroup (Proposition 2.1.4), repeating this process with E(R} doesn't 
yield anything. However, the deep structure of linear algebra over R 
should be connected with the deep structure of the group E(R}, in other 
words the relations satisfied by its generators eij (a). One way of measur
ing these is by looking at extensions of E(R} by abelian groups. There 
turns out to be a universal such extension St(R}, and the (abelian) ker
nel of the map St(R} _ E(R} is Milnor's K 2(R}. Even when R is a 
field, this turns out to be an interesting invariant with lots of number
theoretic significance. But since the number-theoretic applications of K2 
are described quite nicely in [Milnor], we have only touched on the most 
important of these and have chosen to emphasize some other applications 
instead. 
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Universal Central Extensions. 

4.1.1. Definition. Let G be any group, and let A be an abelian group. 
A central extension of G by A is a pair (E, cp), where E is a group 
containing A as a central subgroup, and cp : E - G is a surjective ho
momorphism whose kernel is exactly A. Alternatively, in the language of 
exact sequences, a central extension of G by A is a short exact sequence 

l-A-E~G-l 

with A central in E. 

Remark. There are still those who call the above a central extension of 
A by G, but the terminology above is more in keeping with the formalism 
of group cohomology, since it turns out that the central extensions of G 
by A are classified by H2 (G, A) (and everyone agrees that here one should 
put the G before the A!). 

4.1.2. Definition. Next we note that central extensions of G (by ar
bitrary abelian groups) form a category. H (E, cp) and (E', cp') are cen
tral extensions of (the same group) G, a morphism of central extensions 
(E, cp) _ (E', cp') is a commutative diagram 

cp' 
E'-G. 

A central extension (E, cp) of G by A is called trivial if it is isomorphic in 
the category of central extensions of G to G x A ~ G, where Pl is projec
tion on the first factor. A central extension (E, cp) of G is called universal 
if, for any other central extension (E', cp') of G, there is a unique morphism 
(E, cp) - (E', cp'). Not every group has a universal central extension, but 
if it has one, then it is clear from the definition that any twp universal cen
tral extensions must be isomorphic (in the category of central extensions 
of G). 

4.1.3. Theorem. A group G has a universal central extension if and 
only if it is perfect, that is, G = [G, G]. When this is the case, a central 
extension (E, cp) of G is universal if and only if the following two conditions 
hold: 

(i) E is perfect, that is, E = [E, El, and 
(ii) all central extensions of E are trivial. 

(Roughly speaking, condition (i) says that E is not too big, and condition 
(ii) says that it is not too small.) 
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If G is perfect and 
1-tR-tF-tG-tl 

is a presentation of G (i.e., a short exact sequence with F a free group), 
then the universal central extension (E, cp) may be constructed as E = 
[F, F)j[F, RJ, with cp the quotient map 

[F, F)/[F, R)- [F, F)/R= [FIR, FIR) = [G, G) = G. 

Proof. If G is not perfect, it means it has a non-trivial abelian quotient, 
say A. Let 'l/J : G -t A be the quotient map. Now if (E, cp) is a central 
extension of G, we can construct two distinct morphisms from (E, cp) to 
the trivial extension G x A ~ G, namely (cp, 1) and (cp, 'l/J 0 cp) (here 
1 : E -t A is the trivial map sending everything in E to the identity of 
A). This shows that (E, cp) cannot be universal. Hence, for G to have a 
universal central extension, G must be perfect. 

Now assume G is perfect with presentation 

1-tR-tF-tG-t1. 

We will show first that any central extension of G satisfying (i) and (ii) is 
universal. Then to complete the proof, we will show that 

[F, F)j[F, R) - [F, F)j R = G 

is a central extension satisfying (i) and (ii). This will show in particular that 
every perfect group has a universal central extension, and since universal 
central extensions are unique and non-perfect groups do not have universal 
central extensions, every universal central extension must satisfy (i) and 
(ii). 

So assume (E, cp) is a central extension of the perfect group G satisfying 
(i) and (ii), and let (E', cp') be any other central extension of G. Suppose 
'l/J, 'l/J' : (E, cp) -t (E', cp') are two morphisms of central extensions. For 
x E E, cp' 0 'l/J(x) = cp(x) = cp' 0 'l/J'(x), hence 'l/J(x) = cx'l/J'(x) for some 
element Cx of the kernel A' of cp' : E -t G. Similarly, if y E E, then 
'l/J(y) = Cy'l/J'(y) for some cy E A'. So 

'l/J ([x, y)) = ['l/J(x), 'l/J(y)) = [cx'l/J'(x), Cy'l/J'(y)) = ['l/J'(x), 'l/J'(y)) = 'l/J' ([x, y)). 

(In this calculation we have used the fact that A' is central in E'.) Hence 
'l/J and 'l/J' coincide on commutators. Since E = [E, E) by (i), 'l/J and 'l/J' 
coincide on all of E. This shows there can be at most one morphism from 
E to E'. 

We still need to construct a morphism from E to E'. Let E" = E x G E' , 
that is, 

E" = {(x, y) E E X E' : cp(x) = cp'(y)}. 

Since cp and cp' are surjective, projection Pi on the first factor is a surjective 
homomorphism E" _ E. The kernel of Pi is obviously isomorphic to the 
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kernel A' of <p', and so is central. So Pl : E" - E is a central extension 
of E. By (ii), this central extension is trivial, which says that there is a 
homomorphism E -+ E' commuting with the projections onto G. This 
means there is a morphism of central extensions from E to E'. Since E' 
was arbitrary and we already showed that morphisms from E to E' are 
unique, thus E is a universal central extension of G. 

Finally, let E = [F, Fl/[F, RJ, with <p the quotient map 

[F, F]/[F, R]- [F, Fl/R = [FIR, FIR] = [G, G] = G. 

To begin with, note that E ~ El = F/[F, RJ, which also projects onto G 
via the quotient map <Pl : F/[F, R] - FIR = G, and <P is the restriction 
of <Pl to E. (Since R ~ F, [F, R] ~ R, and [F, R] is also normal in F.) 
Note that the kernel of <Pl is contained in RI[F, RJ, hence commutators 
of elements of the kernel with elements of El lie in [F, Rl/[F, R], which 
is trivial. Thus the kernel of <Pl is central in El and (E, <p), (El' <Pl) are 
central extensions of G. We need to verify properties (i) and (ii) for E. 

Directly from the definition of E and E l , we see that El has E as 
its commutator subgroup. On the other hand, since <P and <Pl are both 
surjective onto G, El is generated by E together with the kernel of <Pl, 
which is central. So 

and E is perfect. (Here, as usual, Z(El ) denotes the center of E l ; the letter 
Z comes from the German Zentrum.) This proves (i). 

As far as (ii) is concerned, let 

1-+A-+E2~E-+l 

be any central extension of E. This induces an extension E3 = El XGE2 ~ 
El of E l , where 

This is actually a central extension. Indeed, the kernel of Pl : E3 -+ El is 
clearly isomorphic to the kernel of <P 0 'ljJ : E2 -+ G. But since E = [E, E], 
'ljJ ([E2' E2]) = ['ljJ (E2) , 'ljJ (E2)] = [E, E] == E, and thus E2 = [E2' E2]· A. 
Also, 'ljJ ([E2' ker <P 0 'ljJ]) ~ [E, ker <p] = 1, so [E2' ker <P 0 'ljJ] ~ A. Thus for 
x E ker <P 0 'ljJ and s, t E E 2, xsx-l = SZl and xtx-l = tZ2 for some central 
Zl and Z2, and x[s, t]x- l = [xsx-l, xtx-l] = [SZl' tZ2] = [s, t]. Thus x 
commutes with [E2' E2]. Since x also commutes with A (A is central), it 
commutes with all of E 2, and E3 is a central extension of E l . 

Since F is free, we can fill in the diagram 

F 

1 
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to get a homomorphism F -t E3 lifting the quotient map F """* EI. This 
amounts to a homomorphism 0 : F -t E2 such that for x E F, cp 0 'Ij; (0 (x)) 
coincides with the image of x in G ~ FIR. So O(R) ~ kercp 0 'Ij; ~ Z(E2 ), 

and 
o ([F, R]) ~ [0 (F) , 0 (R)] ~ [E2' Z(E2)] = 1. 

Hence 0 descends to a map 0 : F/[F, R] = EI -t E2 which, together with 
the identity map on El, gives a splitting EI -t E3 = EI xG E2 of Pl. 
Restricting to E then gives a trivialization of'lj; : E2 -t E, verifying (ii). 
Thus we have constructed a universal central extension of G. 0 

4.1.4. Remark. Of the conditions in Theorem 4.1.3 for checking when 
one has a universal central extension, (i) is fairly straightforward, but (ii) 
is rather difficult to check (without using machinery from group homology 
theory, which will make it possible to restate the condition in the form 
H 2 (E, Z) = 0). However, the proof of Theorem 4.1.3 gives the following 
additional piece of information which is sometimes useful. Suppose G is a 
perfect group and (E', cp') is a central extension of G satisfying (i). Then 
if (E, cp) denotes the universal central extension of G, there is a unique 
morphism 'Ij; of central extensions from E to E', and 'Ij; must map E onto E' 
and the abelian group ker cp onto the abelian group ker cp'. Thus condition 
(i) (without condition (ii)) at least guarantees that one has a quotient of 
the universal central extension. 

To see this, note that since E' = [E', E'], to prove surjectivity of 'Ij;, it's 
enough to show that every commutator is in the image. Let x', y' E E'. 
Then we can choose x, y E E such that cp(x) = cp'(x'), cp(y) = cp'(y'), and 
it follows from the relation cp = cp' o'lj; that x' = 'Ij;(x)Zl, y' = 'Ij;(Y)Z2 for 
some Zl, Z2 E ker cp'. Since Zl and Z2 are central, 

[x', y'] = ['Ij;(X)ZI' 'Ij;(Y)Z2] = ['Ij;(x), 'Ij;(y)] = 'Ij; ([x, y]), 

and thus 'Ij; is surjective. Furthermore, if z' E ker cp' and 'Ij;(z) = z', then 
cp' 0 'Ij;(z) = 1, hence cp(z) = 1, which shows that 'Ij;-l(kercp') ~ kercp. The 
other inclusion is trivial. 0 

4.1.5. Examples. Let G and 0 be connected Hausdorff topological 
groups and P : 0 -t G a continuous surjective homomorphism with dis
crete kernel D ~ o. Since D is normal in 0, for each d ED, we have a 
continuous map g I-t gdg- l from 0 to D. Since 0 is connected and D is 
discrete, this map must be constant, and thus gdg- l = d for all d E D, 
g E 0, i.e., D is central. So 0 is a central extension of G. If 0 is also 
perfect, which is easy to check in many examples, then it is a quotient of 
the universal central extension. 

In particular, let's take 0 = SU(2), the group of matrices (::jj ~) 
with a, f3 E C, lal2 + 1f31 2 = 1. G will be SO(3), the group of rotations 
(orthogonal linear transformations of determinant 1) of Euclidean 3-space. 
o and G are clearly connected and Hausdorff; in fact 0 is clearly home
omorphic to the unit sphere in C2 , or to S3, which is simply connected. 
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The Lie algebra of G is defined to be the 3-dimensional real vector space 

9 = {X E M2(C): xt = -X, TrX = o} 

= { ( ix. y +: iZ) : x, y, Z E JR} . 
-y+~z -~x 

We can make this into a Euclidean space via the inner product 

(X, Y) = -Tr(XY), 

since this pairing is clearly symmetric and bilinear, and it's positive-definite 
since for X E g, 

(X, X) = - Tr(XX) = Tr (X. (xt)) ;::: 0, 

with equality only if X = O. Note that G acts on 9 by conjugation, since 
if g E G and X E g, 

Furthermore, G preserves the inner product on 9 since 

(gXg-I, gYg-1) = _Tr(gXg-1gYg-1) = -Tr(gXYg-1) 

= -Tr(XY) = (X, Y). 

So we obtain a homomorphism p from G to the connected component of 
the identity in the orthogonal group of g, in other words, if we identify 
9 with JR3, to G. This homomorphism is easily seen to be surjective. Its 
kernel D consists of matrices g which commute with everything in g, and 
thus with everything in 

9 + ig = {X E M2 (C) : Tr X = O}, 

and thus with all of M2 (C). (Any matrix differs by a scalar multiple of the 
identity from a traceless matrix.) So 

D = G n {scalar matrices in M2(Cn = { (~ ~), (~1 ~1)} ~ Zj2, 

and thus G is a central extension of 80(3) by Zj2. However, G is perfect, 
since the Implicit Function Theorem shows that the image of the commu
tator map G x G -t G, (g, h) I-t ghg-1h-1, contains an open neighborhood 
of the identity, and thus generates G. SO G is a quotient of the universal 
central extension of G. 

There are many other "naturally occurring" pairs (G, G) giving quo
tients of the universal central extensions of matrix groups. For instance 
(this example will be important later), let G = 8L(n, JR) = E{n, JR), which 
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is a perfect connected matrix group for any n ~ 2. Then because of polar 
decomposition, G = SO(n) . exp.6n. where.6,.. is the vector space of n x n 
symmetric matrices with trace zero, and so G has the rotation group SO(n) 
as a deformation retract. In particular, 

{ 
Zforn=2 

7r1(G) ~ 7r1(SO(n)) ~ Z/2 for n ~ 3. 

Thus for n ~ 3, the universal covering group G of G is a non-trivial double 
cover, and is again perfect (since the commutator subgroup contains an 
open neighborhood of the identity, and thus is all of G). Incidentally, one 
can show that the topological group G cannot itself be realized as a group 
of real or complex matrices. Thus the universal central extension of SL(IR) 
is non-trivial, and the kernel of this universal central extension has Z/2 as 
a quotient group. Later we will come back to this from the point of view 
of K2 (1R). 

Homology of Groups. Next we give a quick introduction to the ho
mology of groups, which is an essential tool both for translating the theory 
of universal central extensions into something computable and for defining 
and understanding the higher K -groups which will appear in Chapter 5. 

4.1.6. Definition. Let G be any group. A (left) G-module M is an 
abelian group equipped with a (left) action of G by automorphisms, satis
fying the usual conditions 9 . (h· m) = (gh) . m, 1 . m = m for g, h E G, 
m E M, or equivalently, a left R-module, where R = ZG is the group ring of 
G. Note that any such M may also be made into aright G-module if we 
define m -: 9 =def g-1 . m, though there is one source of possible confusion: if 
G is abelian, then R is a commutative ring, and we customarily make any 
left module for such a ring into a right module by defining m . r =def r . m, 
and this convention disagrees with the previous one. When it makes a dif
ference, we will specify which right action we are using. We will denote by 
Z the trivial G-module which is Z as an abelian group and with 9 . n = n 
for all 9 E G, n E Z. (In this case, when G is abelian, the two right actions 
agree.) 

4.1.7. Definition. Let G be any group, MaG-module. We define the 
homology and cohomology groups of G with coefficients in M as 
follows. First note that we can construct a free resolution of the trivial G
module Z by letting Pj = ZG3+1, the free abelian group on the (j + 1)-st 
Cartesian product of G with itself, for j ~ 0, and defining boundary maps 
dj : Pj -+ Pj - 1, j ~ 1, by 

j 

dj(90, 91, ... , 9j) = ~)_1)k(gO' g1, ... , g,., ... , gj), 
k=O 

where 9k indicates that gk is omitted. The augmentation c : Po -+ Z· is 
defined by 9 I-t 1, and it is a trivial calculation to check that 
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d'+l +1 dj . dj 1 dl g ... ~ Pj = ZG3 ~ Pj -1 = ZG3 ----=---. ... ~ Po = ZG ---+ Z ---+ 0 

(4.1.8) 

is exact. Furthermore, the boundary maps d j are clearly both left and right 
G-module maps for the diagonal actions 

(gO, gl, ... , gj). 9 = (gOg, g1g, ... , gjg). 

(Note that the right action used here is the same as the left action if 
G is abelian, and is in general not the same as the ''flipped left action" 
m 7 g=g-1· m .) 

The homology groups of G with coefficients in M are the homology 
groups of the complex 

C.(G, M) = p. ®:w M ~ ZG· ®z M, 

and the cohomology groups of G with coefficients in M are the 
homology groups of the dual complex 

C·(G, M) = HomzG(P., M) ~ Homz(ZG·, M). 

(Here we are always using the left module structure on M. To identify 
Pj ®ZG M with ZGj ®z M, we view Pj as the free right ZG-module on gen
erators (1, g1, ... , gj). To identify Hom:w(pj, M) with Homz(ZGj, M), 
we let F E Hom:w(Pj , M) correspond to 1 E Homz(ZGj, M), where 

l(g1, ... , gj) = F(l, gl, g1g2, ... , g1g2··· gn), 

F(go, ... , gj) = go· l(g(/gl, g11g2, ... , gj':'1gj)·) 

The lowest-dimensional parts of these complexes are of particular inter
est, so we write them out explicitly: 
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() ds 2 d2 d1:g®m ..... g·m-m M C. G, M: ... - 7l.G ®z M - ZG ®z M , , 

dn «gl, ... , gn) ® m) = (g2g1 1, ... , gng11) ® gl . m 
n 

+ :~:)-1)j(91' ... , §j ... , gn) ® m, 
j=l 

M dO:cfJm(g)=g.m-m, Homz(ZG, M) 

d 1 2 d2 

- Homz(7l.G , M) - ... , 
~ /(gO, ... , gn) = go . l(gl, ... , gn) 

n 

+ L( -1)j l(gO, ... , gj-1gj,· . . , gn) 
j=l 

+ (_1)n+1 I(go, ... , gn-1). 

Note that when the G-action on M is trivial, d1 == 0 and ~ == 0, so 
Ho(G, M) = HO(G, M) = M. Also in this case, we have 

d2 «gl, g2) ® m) = (g2g1 1 - g2 + gl) ® m, 

so H 1(G, M) = 7l.G ®z M/imd2 = Gab ®Z M, while H1(G, M) is simply 
Hom(G, M). 

More generally, when the action of G on M can be arbitrary, we· see 
that Ho(G, M) = MG, the quotient of M by the submodule generated by 
the elements g. m - m, g E G, m E M. Similarly, HO(G, M) = MG, the 
elements of M left fixed by all elements of G. The 1-cocycles I E Zl (G, M) 
are functions I : G -+ M such that go . l(gl) - l(gOgl) + I(go) = 0 
for all go, gl E G, or such that I(gogd = I(go) + go . I(gd. The 1-
coboundaries are those ofthe special sort I(g) = g·m-m for some mE Mj 
H1(G, M) is the quotient of Zl(G, M) by this subgroup. Similarly, 2-
cocycles I E Z2 (G, M) are functions I : G x G -+ M such that go . 
l(gl, g2) - l(gogl, g2) + I(go, glg2) - I(go, gl) = 0 for all go, gl, g2 E G. 

While we will not develop that much of the homology theory of groups, 
we present at least a few tools for computing homology and cohomology 
and develop the relationship between H2 and H2 and the theory of central 
extensions. The first basic facts are contained in the following proposition. 

4.1.9. Proposition. Let G be a group. For each k ~ 0, M - Hk(G, M) 
and M - Hk (G, M) are (covariant) functors on the category of G-modules~ 
If M is a projective G-module, then Hk(G, M) = 0 for all k > O. Similarly, 
if M is an injective G-module, then Hk(G, M) = 0 for all k > O. H 

Q (j 
0-+ M1 -+ M2 -+ Ma -+ 0 

is a short exact sequence of G modules, there are associated long exact 
sequences 

... .!!:.." Hk+1(G, Ma) ~ Hk(G, M 1) ~ Hk(G, M 2 ) 

.!!:.." Hk(G, Ma) ~ Hk-1(G, M 1) ~ ... 
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and 

... ~ Hk-1(G, M 3 ) ~ Hk(G, M1) ~ Hk(G, M2 ) 

~ Hk(G, M3 ) ~ Hk 1 (G, Mt} ~ ... 

Proof. It is obvious from the definition that homology and cohomology 
are functorial. If M is a free ZG-module, with a free basis indexed by a 
set I, then for any right ZG-module N, N 0zG M is naturally isomorphic 
to N 1 , and so tensoring with M preserves exactness. A similar argument 
applies if M is a direct summand in a free module. Thus, if M is projective, 
since the complex p. is exact, so is p. 0zG M, and so H k (G, M) = 0 for all 
k > o. Similarly, if M is injective, then HomzG(·, M) preserves exactness 
and so HomzG(P., M) is exact, so that Hk(G, M) = 0 for all k > O. The 
statement about long exact sequences follows immediately from Theorem 
1.7.6 (the Fundamental Theorem of Homological Algebra), since a short 
exact sequence of G-modules yields short exact sequences 

and 

of chain complexes. 0 

4.1.10. Corollary. IfG is a group and M is a G-module, then homology 
of M can be computed from a projective resolution of M, while cohomology 
can be computed from an injective resolution. More precisely, if 

is exact and each N j is G-projective, then H.(G, M) is the homology of 
the complex Z 0w N •. Similarly, if 

is exact and each N j is G-injective, then H· (G, M) is the homology of the 
complex Nf. 

Proof. This follows by iteration, splitting the resolution into a series 
of short exact sequences and using Proposition 4.1.9 over and over again. 
For instance, consider the case of a projective resolution N. of M. First 
consider the short exact sequence 
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From this we obtain a long exact sequence of homology groups, but since 
No is projective, Hk(G, No) = 0 for k > O. Thus 

for k ?: 2, and similarly there is an exact sequence 

o -T Hl(G, M) -T Ho(G, Nl/(imd2 )) 

~ Ho(G, No) -t Ho(G, M) -t O. 

On the other hand, we have an exact sequence 

( 4.1.11) 

and Nl is projective. Repeating the argument, 

for k ?: 3, and we obtain an exact sequence 

o -T H2 (G, M) ~ H1(G, Nl/(imd2 )) -T Ho(G, N 2 /(imd3» 

(d2 )*) Ho(G, N 1) -T Ho(G, Nl/(imd2 )) -T O. 

Putting this together with (4.1.11), we see that Hl(G, M) and Ho(G, M) 
are the lowest-degree homology groups of the complex Ho (G, N.) ~ Z ®:w 
N •. Then we continue inductively to compute H2(G, M), and so on. 0 

For future applications, the following easy consequence of Corollary 
4.1.10 is often useful. 

4.1.12. Corollary ("Shapiro's Lemma"). Let G be a group and let 
H ~ G be a subgroup of G. Let M be an H-module. Then there are 
natural isomorphisms 

for all j. 

Proof. Choose a ZH-projective resolution N. of M. By Corollary 4.1.10, 
H.(H, M) is the homology of the complex Z ®ZH N •. However, if gi is a 
set of representatives for the right H-cosets in G, then ZG is a free right 
ZH-module with basis gi, so ZG ®ZH N. = ffii gi ® N. is a ZG-projective 
resolution of ZG ®ZH M. Thus H.(G, ZG ®ZH M) is the homology of the 
complex 

Z ®ZG ZG ®ZH N. ~ Z ®ZH N., 

which proves the result. 0 

For purposes of studying central extensions, we will be particularly in
terested in homology and cohomology of G-modules with trivial G-action. 
These are related by the following. 
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4.1.13. Theorem ("Universal Coefficient Theorem"). Let G be a 
group and let M be an abelian group, viewed as a G-module with trivial 
G-action. Then there are short exact sequences 

o -+ Ext~ (Hk- l (G, Z), M) -+ Hk(G, M) -+ Homz (Hk (G, Z), M) -+ 0 

for all k, which split (though not in a natural way). In particular, 

H2 (G, M) = 0 for all G-modules M with trivial G-action 

if and only if the abelianization ofG is free (abelian) and H2 (G, Z) = O. 

Proof. Recall that H. = H. (G, Z) was defined to be the homology 
of p. ®ZG Z. However, since p. is a G-projective resolution of Z, by 
Corollary 4.1.10 we can also compute it as the homology of the complex 
C. = Z ®ZG p. ~ ZG·. On the other hand, H·(G, M) is the homology 
of HomzG(P., M) ~ Homz(ZG·, M) ~ Homz(C., M) with the dual dif-

ferential. Let Zk = ker(Ck ~ Ck-l) and B k- l = im(Ck ~ Ck-l), so 
that Hk(G, Z) = Zk/Bk. Note that Ck is a free abelian group; hence its 
subgroups Zk and Bk are also free. We have short exact sequences 

o -+ Zk -+ Ck ~ Bk-l -+ 0 

and 
o -+ Bk -+ Zk -+ Hk -+ O. 

Since Bk-l is free abelian, the first of these splits, and so goes under the 
functor Homz(-' M) to a (split) short exact sequence 

di, 1 
0-+ Homz(Bk- b M) ~ Homz(Ck, M) ---t Homz(Zk, M) ---t O. 

(4.1.14) 

Exactness of the second is not preserved in general, but from the definition 
of Ext there is an exact sequence 

o -+ Homz(Hk, M) -+ Homz(Zk, M) 

-+ Homz(Bk, M) -+ Ext~(Hk' M) -+ O. 

(4.1.15) 

Now note that (4.1.14) may be viewed as giving a short exact sequence of 
chain complexes 

0-+ Homz(B.- b M) -+ Homz(C., M) ---t Homz(Z., M) ---t 0, 

where the outside chain complexes have vanishing differentials. So from 
the Fundamental Theorem of Homological Algebra, we obtain a long exact 
homology sequence 

... -+ Homz(Zk-b M) ---t Homz(Bk- b M) 

-+ Hk(G, M) ---t Homz(Zk, M) ---t Homz(Bk, M) -+ .... 
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Substituting from (4.1.15) we obtain the desired short exact sequence 

o ~ Ext~ (Hk-1 (G, Z), M) ~ Hk(G, M) ~ Homz (Hk (G, Z), M) ~ o. 

The sequence splits since (4,1.14) splits (though not naturally). 
To prove the last statement, recall that H1(G, Z) is the abelianization of 

G. Hence Ext~ (H1 (G, Z), M) vanishes for all M if and only if H1(G, Z) 
is Z-projective, i.e., free abelian. Similarly, Homz (Ha (G, Z), M) vanishes 
for all M if and only if Ha (G, Z) vanishes. 0 

Now it is time to make the connection between group homology and the 
theory of extensions. This follows from the following basic classification 
theorem, due originally to Ellenberg and Mac Lane. The theorem has a 
version for non-central extension extensions and even a version for exten
sions by a non-abelian normal subgroup, but in the interests of simplicity 
we stick with the simplest case, which is all we will need for applications 
to K-theory. 

4.1.16. Theorem. Let G be a group and let A be an abelian group. 
Then the isomorphism classes of parameterized central extensions of G by 
A, that is, triples (E, <p, £), where (E, <p) is a central extension of G and 
£ : A ~ E is an isomorphism of A with ker <p, naturally form an abelian 
group Ext(G, A), in which the trivial extension gives the O-element. This 
group is naturally isomorphic to Ha(G, A), where we view A as a trivial 
G-module. Hence every central extension of G by A is trivial if and only if 
Ha(G, A) =0. 

Proof. We should make precise what we mean by isomorphism; two 
triples (E, <p, £) and (E', <p', £') are isomorphic if and only if there is an 
isomorphism of central extensions from E to E' compatible with £ and £', 

i. e., a commutative diagram with exact rows 

1----+A~E~G----+1 

II II II II 
" <p' 1 ----+ A ----+ E' ----+ G ----+ 1. 

Next, we explain the group structure on Ext(G, A). If (E1' <P1, £1) and 
(Ea, <Pa, £a) are central extensions ofG by A, we define their Baer sum as 
follows. First let E = E1 XG Ea, i.e., {(x, y) EEl X Ea : <P1(X) = <pa(Y)}· 
Note that this group comes with a natural surjection <p : E - G given by 
<p(x, y) = <P1(X) = <pa(Y). The kernel of <p is central, but it's too big; it's 
isomorphic to A x A. Therefore we define 

(4.1.17) Es = E/ {(£1 (a), -£a (a)) : a E A}. 

Note that <p factors through Es and gives a map <ps : Es - G. The kernel 
of <ps is central and is given by 
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so we can define an isomorphism /'a : A ~ ker tpa by 

£a(a) = [(/'1 (a), £2 (0))] = [(£1 (0) , /'2 (a))] . 

(Here we use the relation that [(/'1 (-a) , £2 (a))] = 0.) We define 

This addition operation is actually commutative, since if we define (E4' tp4, 
/'4) similarly but with El and E2 interchanged, then we have a commutative 
diagram 

1-A~Ea~G-1 

II II II II 
1-A~E4~G-1 

with 1/J defined by the "flip." It is easy to verify that the Baer sum is asso
ciative on isomorphism classes of central extensions, that the isomorphism 
class of the trivial extension 

(G x A, PI, i2), 

where PI is projection on the first factor and i2 is injection into the second 
factor, acts as an identity with respect to the Baer sum, and that the class 
of (E, tp, /,) has as its inverse (E, tp, -£). Thus we obtain an abelian group 
Ext(G, A) of parameterized central extensions of G by A, in which the 
trivial extension gives the O-element. 

Now we want to set up an isomorphism between Ext(G, A) and H2(G, 
A). First we define a map CI> : Ext(G, A) ~ H2(G, A), then we'll define the 
inverse map W : H2(G, A) ~ Ext(G, A). Start with a class in Ext(G, A) 
represented by (E, tp, £). Choose a (set-theoretic) section s : G ~ E, that 
is, a map such that tp 0 s = idG. We may suppose that s(lG) = IE. For 
g, hE G, tp(s(gh)) = tp(s(g))tp(s(h)), so we can define a map 1 : GxG ~ A 
by 

s(gh) = £ 0 I(g, h)s(g)s(h). 

Since IE = s(lG), I(g, 1G) = l(lG, g) = 0 and I(g, g-l) = l(g-1, g) for 
all 9 E G. IT g, h, kEG, then s(gh)s(k) = £ 0 I(g, h)s(g)s(h)s(k), while 
s(g)s(hk) = /, 0 I(h, k)s(g)s(h)s(k), so the associative rule gives 

/, 0 I(g, hk)£ 0 I(h, k)s(g)s(h)s(k) = £ 0 I(g, hk)s(g)s(hk) = s(ghk) 

= £ 0 I(gh, k)s(gh)s(k) = £ 0 I(gh, k)£ 0 I(g, h)s(g)s(h)s(k), 

or I(g, hk) + I(h, k) = I(gh, k) + I(g, h). (We write products multi
plicatively in E but additively in A.) Comparison with the formulas in 
Definition 4.1.7 shows that this is precisely the condition for 1 to define a 2-
cocycle in Z2(G, A). So we let CI>([(E, tp, /,)]) = [I] E H2(G, A). Of course, 
it is not immediately obviously that this is independent of the choice of s. 
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But if s' is some other choice for s, then we must have s'(g) = s(g)1, 0 u(g) 
for some map u : G -+ A. Then if I' is the 2-cocycle defined by s, we have 

s(gh)1, 0 u(gh) = s'(gh) = I, 0 I'(g, h)s'(g)s'(h) 

= I, 0 I'(g, h)1, 0 u(g)1, 0 u(h)s(g)s(h), 

and comparison with the definition of I gives 

I(g, h) + u(gh) = I'(g, h) + u(g) + u(h), 

which says that I' differs from I by the coboundary of u. Hence I' and I 
define the same cohomology class and <Jl is well defined. 

To show that <Jl is a homomorphism, note first that <Jl sends the 0-
element of Ext(G, A) to the O-element of H2(G, A), since when (E, cp, 1,) = 
(G x A, PlI i 2 ), we can take s = h, which gives I = O. Next we show 
that <Jl respects the Baer sum. Given (Ell CPl, I,t) and (E2' CP2, 1,2), choose 
corresponding sections Sl and S2 giving cocycles h and 12, and let E = 
El XG E2 and E3 be as in (4.1.17). Note that s = (Sll S2) gives a section 
of (E, cp) which descends to a section S3 for E3. Then if g, hE G, we have 

s3(gh) = [(sl(gh), s2(gh))] 

= [(Sl(g)Sl(h)l,l 0 h(g, h), s2(gh)1,2 0 h(g, h))] 

= S3(g)S3(h)[(1,1 0 h(g, h), 1,2 0 h(g, h))] 

= S3(g)S3(h)1,3 (h(g, h) + h(g, h)), 

so that the cocycle h defined by S3 is just h + h. This shows that <Jl is 
additive. 

To complete the proof, we show that <Jl is bijective. First suppose 
<Jl([(E, cP, 1,)]) = O. This means that if we choose a section I as above, 
the corresponding cocycle I is the coboundary of some u : G -+ A, i.e., 

I(g, h) = u(gh) - u(g) - u(h), g, hE G. 

Replacing s by s', where s'(g) = s(g)(1, 0 u(g))-t, we have 

s'(gh) = s(gh)(1, 0 u(gh))-l 

= s(g)s(h)1, 0 (f(g, h) - u(gh)) 

= s(g)s(h)1, (u(gh) - u(g) - u(h) - u(gh)) 

= s'(g)s'(h), 

so s' is a homomorphism, which shows (E, cP, 1,) is trivial. Thus <Jl is injec
tive. 

Now we construct a right inverse \II for <Jl, showing that <Jl is surjective. 
Let IE Z2(G, A), which we can take (by changing it within its cohomology 
class) to be normalized so that 1=0 on {1G} x G and on G x {1G} (this 
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implies f(g, g-l)) = j(g-l, g)) and let E = G x A as a set, but with the 
following binary operation: 

(gl, ad . (g2, a2) = (gl . g2, al + a2 - j(gl, g2)). 

Since f is normalized, (la, OA) acts as an identity element with respect to 
the operation .. Furthermore, we have from the cocycle identity 

«gl, al) . (g2, a2)) . (g3, a3) = (gi . g2, al + a2 - f(gI, g2)) . (g3, a3) 

= (gi . g2 . g3, al + a2 + a3 - f(gI, g2) - f(gl . g2, g3)) 

Also, 

= (gl . g2 . g3, al + a2 + a3 - f(g2, g3) - f(gl, g2 . g3)) 

= (gl, ad . (g2 . g3, a2 + a3 - f(g2, g3)) 

= (gl, at) . «g2, a2) . (g3, a3)) . 

(g, a) . (g-I, -a + f(g, g-l)) = (la, OA), 

(g-l, -a + f(g, g-l)) . (g, a) = (la, OA), 

so E is a group with respect to .. Define cp : E --+ G to be projection on 
the first factor and define /, : A --+ E by /'(a) = (la, a). Then it is clear 
that cp and /, are homomorphisms and that /'(A) is central in E and equal 
to the kernel of cpo Furthermore, s : G --+ E defined by s(g) = (g, 0) is a 
section which gives rise to the cocycle f since 

s(gh) = (gh, 0) = (g, 0) . (h, f(g, h)) = s(g)s(h)/'(f(g, h)), 

so 'If : [fl 1-+ [(E, cp, /')l is a right inverse to ~, showing that ~ is bijec
tive. 0 

4.1.18. Corollary. HG is a perfect group, then a central extension (E, cp) 
of G is universal if and only if HI (E, Z) = 0 and H 2 (E, Z) = o. 

Proof. This follows immediately from Theorems 4.1.3,4.1.13, and 4.1.16. 
(Note that a group is perfect if and only if its HI vanishes.) 0 

In fact, one can go a bit further. 

4.1.19. Theorem. Let G be a perfect group. Then the kernel of the 
universal central extension (E, cp) of G is naturally isomorphic to A = 
H2 (G, Z), and under the isomorphisms 

Ext(G, A) ~ H2(G, A) ~ Homz (H2 (G, Z) , A) 

defined by Theorems 4.1.16 and 4.1.13, the class of (E, cp) corresponds 
to the identity map H2(G, Z) --+ A. (The Ext term vanishes since HI 
vaJlishes. ) 

The proof of this theorem requires developing some of the theory of how 
homology and cohomology behave under group extensions. To do this in 
the greatest generality requires the theory of spectral sequences and would 
take us a bit too far afield in homological algebra. However the following 
special case of the theory can be done directly. 
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4.1.20. Theorem ("Infiation-Restdction Sequence"). Let G be a 
group, N a normal subgroup, and A a G-module. Then there is a natural 
exact sequence 

0-+ H1(GIN, AN) ~ H1(G, A) ~ H1(N, A)G/N 

~ H2(GIN, AN) ~ H2(G, A). 

Here ''res'' comes from restriction of cocycles from G to N and ''inf'' denotes 
inflation, composition of cocycles on GIN with the quotient map G .!4 
GIN. The action of GIN on H1(N, A) is induced from the conjugation 
action of G on N and from the action of G on A. If G acts trivially on A 
and N is central in G, the exact sequence simplifies to 

0-+ H1(GIN, A) ~ H\G, A) ~ H1(N, A) 

~ H2(GIN, A) ~ H2(G, A), 

where the map H1(N, A) ~ Hom(N, A) ~ H2(GIN, A) sends u: N -+ A 
to the class ofuoJ, where J E Z2(GIN, A) is a cocycle defining the central 
extension of GIN by N as in Theorem 4.1.16. 

Proof. Note that AN is a GIN-module, since if 9 E GIN, a E AN and 
q(g) = g, then g. a =def g. a will not change if we replace 9 by gn, n E N. 
If u : GIN -+ AN is a l-cocycle, then u 0 q : G -+ AN is a l-cocycle, since 
for g, hE G, 

u 0 q(gh) = u(gk) = u(g) + g. u(k) = u 0 q(g) + g. (u 0 q(h». 

Furthermore, if u 0 q is the coboundary of some a E A, then u(g) = g. a - a, 
hence taking 9 E N shows that a E ANand u is the coboundary of a. Thus 

H1(GIN, AN) ~ H1(G, A) is injective. 
It is clear that there is a homomorphism H1(G, A) ~ H1(N, A). To 

show that the image is fixed by GIN, consider a l-cocycle u : G -+ A and 
let 9 E G, 9 = q(g), n E N. Then 

(g. (resu»(n) =def g. u(g-1ng) = g. (u(g-1) + g-1 . u(ng» 

= g. (_g-1. u(g» + g. g-1. u(ng) 

= -u(g) + u(ng) = u(n) + n· u(g) - u(g). 

Thus g. (resu) differs from resu by the coboundary of u(g), and so 9 fixes 
the cohomology class of res u. 

That resoinf: H1(GIN, AN) -+ H1(N, A) is 0 is trivial. We must show 
that if a l-cocycle u : G -+ A restricts on N to the coboundary of some 
a E A, then u is up to a coboundary the inflation of a cocycle on GIN with 
values in AN. Replacing u by u -lia, we may suppose u vanishes on N. 
Then for 9 E G and n E N, u(gn) = u(g)+g·u(n) = u(g) +0 = u(g), so u is 
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constant on cosets of N. Furthermore, u takes values in AN, since we then 
have (by normality of N) u(g) = u(ng) = u(n) + n· u(g) = 0 + n· u(g) = 
n . u(g), so u is the inflation of a cocycle GIN ~ AN. 

We prove the last part of the theorem only in the case where A is a 
trivial G-module, which is the only case we'll need for applications. The 
general case works the same way but the calculations involved are much 
messier. We define the map 8 : Hl(N, A)G/N ~ H2(GIN, A). Let u : 
N ~ A be a 1-cocycle, i.e., a homomorphism, which is invariant under 
conjugation by elements of G. (Since A is abelian, u is automatically fixed 
under conjugation by elements of N.) Fix a section s : GIN ~ G with 
s(lG/N) = 1G. We define 'I/J: GIN x GIN ~ A by 

'I/J(iJ, h) = u(S(h)-ls(iJ)-ls(iJh)). 

The same calculation as in Theorem 4.1.16 shows that 'I/J is a 2-cocycle with 
values in A, and that its cohomology class doesn't depend on the choice of s. 
We define 8([u]) to be the class of 'I/J; it is obvious that 8 is a homomorphism 
of abelian groups. Note that in the important special case when N is 
central, the condition that u be G-invariant is vacuous, and 'I/J is just u 0 f, 
where f : GIN x GIN ~ N is the cocycle determined by s and the central 
extension of GIN by N, so in this case 8: Hl(N, A) ~ H2(GIN, A) is just 
composition with the class of f. It is also clear in general that 'I/J vanishes 
identically if s is a homomorphism. Let's show next that 8 vanishes on 
the image of res. Suppose u : G ~ A is a homomorphism; we denote 
its restriction to N by the same letter. Define a map v : GIN ~ A by 
v(iJ) = u(s(iJ)). Then 

ov(iJ, h) =def v(iJ) + v(h) - v(iJh) 

= u(s(iJ)) + u(s(h)) - u(s(iJh)) = -'l/J(iJ, h), 

so 'I/J is a coboundary and 8(resu) = O. 
In the other direction, if u : N ~ A is a homomorphism fixed under 

conjugation by elements of G and 8(u) = 0, then'I/J as defined above is a 
coboundary, say of some -v: GIN ~ A. In other words, 

U(S(h)-lS(iJ)-lS(iJh)) = -v(iJ) - v(h) + v(iJh). 

We may suppose V(lG/N) = O. Let u(g) = v(iJ) + u(S(iJ)-lg). Then 
it is clear that u agrees with u on N and that for 9 E G and n EN, 
u(gn) = u(g) + u(n). Finally we have 

u(gh) = v(iJh) + u(s(iJh)-lgh) 

= v(iJ) + v(h) + u(s(h)-lS(iJ)-ls(iJh)) + u(s(iJh)-lgh) 

= v(iJ) + v(h) + u(s(h)-lS(iJ)-lgh) 

= u(h) + v(iJ) + u(h-1 s(iJ)-lgh) 

= u(h) + u(g), 
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since u is invariant under conjugation by h, and thus' u is a homomorphism 
extending u and u = res U. 

It remains to prove exactness at H2(G/N, A). First of all, info8 = 0, 
for if u : N -+ A is a homomorphism fixed under conjugation by elements 
of G and t/J is defined as above, then 

inf t/J(g, h) =def u(S(h)-l S(iJ)-l s(iJh» 

= u(S(h)-lh) + u(h-1s(iJ)-ls(iJh» 

= u(s(h)-lh) + u(s(iJ)-ls(iJh)h-1) 

= u(S(h)-lh) + u(S(iJ)-lg) + u(g-l s(iJh)h-1) 

= u(s(h)-lh) + u(s(iJ)-lg) + u(h-1g-1S(iJh» 

= 8v(g, h), 

where v(g) = u(S(iJ)-lg). Finally, suppose t/J E Z2(G/N, A), which we 
may suppose is normalized to vanish when one of its arguments is lGIN, 
and inf t/J is a coboundary, say 8v with v : G -+ A. We need to show that 
the class of t/J is in the image of 8. What we are given translates into the 
condition 

t/J(iJ, h) = v(g) + v(h) - v(gh). 

Since the left-hand side vanishes when 9 or h lies in N, this says in par
ticular that v restricted to N is a homomorphism, and that v (gn) = 
v(ng) = v(g) + v(n) for n E N. Thus the restriction of v defines a class in 
H1(N, A)GIN. The class 8(vIN) is defined by the cocycle 

Then 

(t/J - t/J')(iJ, h) = v(s(iJ» + v(s(h» - v(s(iJ)s(h» - v(S(h)-lS(iJ)-ls(iJh». 

Since n = s(h)-ls(iJ)-ls(iJh) E N, the identity v(s(iJ)s(h» + v(n) 
v(s(iJ)s(h)n) gives 

(t/J - t/J')(iJ, h) = v(s(iJ» + v(s(h» - v(s(iJh» = 8(v 0 s)(iJ, h), 

and [t/J] = 8(vIN), as desired. 0 

Proof of Theorem 4.1.19. Let G be a perfect group, let (E, cp) be a 
perfect central extension of G with kernel ker cp = K, and let A be a trivial 
E-module. The exact sequence of Theorem 4.1.20 becomes 

Now for (E, cp) to be the universal central extension of G, E must be 
perfect and H2 (E, A) must vanish for every A. So this can happen only 
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if Hl(K, A) = Homz(K, A) ~ H2(G, A) is an isomorphism for every A. 
But by Theorem 4.1.13, H2(G, A) ~ Homz (H2 (G, Z), A), so we must 
have 

Homz(K, A) ~ Homz (H2 (G, Z), A) 

for every abelian group A, which is only possible if K ~ H2 (G, Z). Fur
thermore, from the description of a in Theorem 4.1.20, we see that the 
2-cohomology class of the extension of G by K must correspond to an 
isomorphism H2 (G, Z) --+ K, which we can take to be the identity after 
reparameterizing K. 0 

Remark. Milnor in [Milnor] gives a different proof of Theorem 4.1.19, 
by identifying the kernel of the map [F, F]/[F, R] -I> [F, Fl/ R in Theorem 
4.1.3 directly with H2 (G, Z). This comes from applying the analogue in 
homology of Theorem 4.1.20 to the group extension 

l--+R--+F--+G--+1. 

This basically concludes the discussion of the relationship between cen
tral extensions and homology. However, for future use in studying the 
homology of groups such as SL and GL, we mention a few more basic facts 
about group homology. 

4.1.21. Definition. If H ~ G is a homomorphism of groups and A is 
a G-module (viewed also as an H-module via a), there are induced maps 
a. : H.(H, A) --+ H.(G, A). (Merely take the complex defining H.(H, A) 
and apply a to each copy of H.) When a is the inclusion of a subgroup, 
this map is commonly called corestriction, since it is the analogue in 
homology of H·(G, A) ~ H·(H, A). However, when H is of finite index 
r = [G : H] in G, there is also a natural map in the other direction, 
called the transfer, sometimes denoted Tr~ or a!. This may be defined 
as follows. Note that ZG is naturally the free ZH-module on the set H\G, 
so that if A is a free ZG-module, Ho(H, A) ~ Ho(G, A)H\G. (This uses 
the fact that H\ G is a finite set, since in general we only get a direct sum 
of copies of Ho(G, A), not a direct product.) Thus there is a diagonal 

r times 

map Ho(G, A) --+ Ho(H, A) ~ Ho(G, A)H\G, given by a t-+ (~), 
called the transfer. In general, we can resolve A by free ZG-modules, use 
Corollary 4.1.10, and do this to each step of the resolution. 

There is another equivalent way of defining corestriction which is some
times useful. Namely, we can use Shapiro's Lemma (Corollary 4.1.12), 
which sets up a natural isomorphism Hj(H, A) ~ Hj(G, ZG 0ZH A). The 
map a. is easily seen to be the composition of this isomorphism with the 
map Hj(G, ZG 0ZH A) --+ H.(G, A) induced by the map of G-modules 
ZG 0ZH A -I> ZG 0zc A ~ A coming from the fact that A is a G-module 
and not just an H-module. 
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4.1.22. Proposition. If a : H C-..+ G is the inclusion of a subgroup of 
finite index r = [G : H] and A is a G-module, then a. 0 a l is multiplication 
by r on H.{G, A). 

Proof. If A is free, then Ho{H, A) ~ Ho{G, A)H\~ and 

r times r times 
I{ ..-""--.. ~ a. 0 a' a) = a. (a, ... , a) = a + ... + a = ra. 

In general, we can resolve A by free ZG-modules, use Corollary 4.1.10, and 
apply this at each step of the resolution. 0 

4.1.23. Theorem. If G is a finite group of order r and A is a G-module, 
then Hj{G, A) is a group of exponent r for each j > 0, and Hj{G, Z) is a 
finite abelian group of exponent r for each j > O. 

Proof. Let H be the trivial one-element subgroup of G. Then Ho{H, A) 
= A and Hj{H, A) = 0 for j > 0 (this is obvious from Definition 4.1.7). 
Applying Proposition 4.1.22 to the inclusion a of H into G, we see that 
a. oal is multiplication by r on Hj{G, A), while of course this composite is 
zero for j > O. So multiplication by r on Hj{G, A) acts by zero for j > O. 
This proves the first statement. 

Furthermore, the abelian groups Pj in (4.1.8) are finitely generated if G 
is finite. So each Hj{G, A) is finitely generated if A is finitely generated, 
in particular if A = Z. Since a finitely generated abelian group of finite 
exponent is finite, the last statement follows. 0 

4.1.24. Corollary. Let G be a finite group, let p be a prime dividing the 
order ofG, and let Pp be a Sylow p-subgroup ofG. Then for each j >0, 
the natural map Hj{Pp, Z) - Hj{G, Z) is surjective onto the p-priroary 
part. In particular, if Hj{Pp, Z) = 0, then Hj(G, Z) has no p-torsion, and 
if Hj{Pp, Z) = 0 for each p dividing the order ofG, then Hj{G, Z) = O. 

Proof. Apply Proposition 4.1.22 to the inclusion a : Pp C-..+ G. Thus 
a. 0 a! is multiplication by [G: Ppj, which is relatively prime to p, and is 
thus an isomorphism on the p-primary part of Hj{G, A) for j > O. So a. 
is surjective on the p-primary part. 0 

4.1.25. Exercise. Let G be a cyclic group of finite order r, and identify 
ZG with Z[tl/W -1), where t is a generator of G. Show that 

... .!!...,. ZG (t-l») ZG.!!...,. ZG (t-l») ZG ~ Z _ 0, 

where N is multiplication by 1 + t + ... + t r - 1 , gives a free resolution of the 
trivial G-module Z. Deduce that Hj(G, Z) = 0 for j positive and even, and 
that Hj(G, Z) ~ G for j positive and odd. Show also that Hj{G, Z) = 0 
for j positive and odd, and that Hj(G, Z) ~ G for j positive and even. 
The generator of H2{G, Z) corresponds to the non-trivial central extension 

O-Z ~Z-Z/r -0. 
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4.1.26. Exercise. Let V be the Klein 4-group, the subgroup 

{ ( ~ ~ ~), (~1 ~1 ~), (~1 ~ ~), (~ ~1 ~)} 
o 0 1 0 0 1 0 0 -1 0 0 -1 

of 80(3). (The "V" stands for Vie'TYruppe, German for "4-group.") 

(1) Show by direct calculation that H2(V, Z) e:! Z/2, and deduce from 
Theorem 4.1.13 that 

Determine which elements of this group correspond to the various 
groups of order 8 which are central extensions of V by Z/2. 

(2) Examples 4.1.5 may be interpreted as exhibiting Z/2 as a quotient 
of H2(80(3), Z). Show that the inclusion V ~ 80(3) induces a 
non-zero map Z/2 e:! H2(V, Z) --+ H2(80(3), Z) which is a split
ting for this Z/2 factor, by noticing that the inverse image V of V 
in 8U(2) is the quaternion group Q of order 8. (Since Q is non
abelian, this means the central extension of 80(3) is non-trivial 
on the subgroup V.) 

(3) Show that H1(Q, Z) ~ V (this is almost trivial) and that H2 (Q, Z) 
= 0 (it helps to construct a suitable resolution). Thus the quotient 
map Q --+ V induces an isomorphism on Hl but is not surjective 
onH2 • 

4.1.27. Exercise. This exercise will exhibit an interesting finite example 
of a universal central extension. 

(1) Let G be the subgroup of 80(3) consisting of rotations mapping 
a regular icosahedron to itself. Since G acts transitively on the 20 
faces of the icosahedron, and each face is an equilateral triangle, 
and there are clearly 3 rotations stabilizing each face (the identity 
and rotations by 27r /3 in either direction about an axis through 
the center of the face), G is a group of order 60. It is clear that the 
stabilizer 8, of a face is a Sylow 3-subgroup and that the stabilizer 
8v of a vertex is a Sylow 5-subgroup. 

(2) Show that one may position the icosahedron so that two of the 
edges are parallel to each of the three coordinate axes in R3. De
duce (by looking at the effect of rotatioI;l.S by 7r around these axes) 
that G contains the group V e:! Z/2 x Z/2 of Exercise 4.1.26 as a 
Sylow 2-subgroup. 

(3) From Exercise 4.1.25, H 2 (8/l Z) = 0 and H2 (8v , Z) = O. From 
Exercise 4.1.26, H 2(V, Z) e:! Z/2. Deduce from Corollary 4.1.24 
that H2 (G, Z) has order at most 2. 

(4) Show that G is perfect. In fact it is isomorphic to the simple group 
A5 , and is the smallest non-trivial perfect group. (One way to do 
this is to divide the 30 edges of the icosahedron into 5 equivalence 
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classes of 6 edges each, where each equivalence class consists of 
the edges pointing in directions parallel or perpendicular to the 
direction of a given edge. Then you just need to show that G acts 
faithfully, i. e., without kernel, by permutations of the 5 equivalence 
classes. Since A5 is the only subgroup of S5 of order 60, this shows 
G is isomorphic to the simple group A5') 

(5) From (2) and (3), deduce that H2(G, Z/2) has order at most two, 
and that either H2 (G,Z) = 0 or else G has exactly one non-trivial 
central extension by Z/2. In this latter case, show that this must 
be the universal central extension of G. 

(6) Let G be the inverse image of Gin SU(2). This is a central exten
sion of G by Z/2, called the binary icosahedral group. It is a 
group of order 120. Show that G --t G is not trivial, by using (2) 
of this Exercise and (2) of Exercise 4.1.26. 

(7) Deduce from (4) and (5) that G is the universal central extension 
of G, that H 2(G, Z) ~ Z/2, and that G is perfect. (For another 
proof that G is the universal central extension of G, you can show 
that H2(G, Z) = 0 using (3) of Exercise 4.1.26.) Since SU(2) 
can be topologically identified with S3, it follows that SU(2)/G 
is a compact 3-manifold such that 7rl(SU(2)/G) is perfect, hence 
with H1(SU(2)/G) = O. It follows from Poincare duality that 
H2(SU(2)/G) = 0 as well. Thus SU(2)/G has the same homology 
groups as S3, and is known as the Poincare homology 3-sphere. 

4.1.28. Exercise. This exercise will provide some more finite examples 
of universal central extensions. 

(1) Show from the identity 

and its transpose that if F is a field with more than 3 elements (so 
that there is an element d E FX with ~ =F 1), then SL(2, F) = 
E(2, F) is a perfect group. 

(2) Show that if lFq is a finite field with q elements, then SL(2, lFq) 
has order q(q2 - 1). Note that in fact the restriction in (1) on the 
cardinality of F is necessary, since SL(2, 1F2) ~ S3 and SL(2, 1F3) 
is a solvable group of order 24. 

(3) From (1) and (2), SL(2, 1F4) is a perfect group of order 4(15) = 60. 
Show that it is isomorphic to the group G ~ A5 of Exercise 4.1.27 
by showing that G acts faithfully as a permutation group of the 
set of 5 elements 

Deduce from Exercise 4.1.27 that H2(SL(2, 1F4 ), Z) has order 2, so 
that its universal central extension is an extension by Z/2. 
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(4) From (1) and (2), SL(2, 1F5) is a perfect group of order 5(24) = 
120 = 3· 5 . 23. Clearly the Sylow 3-subgroups and Sylow 5-
subgroups of this group are cyclic. Show that the Sylow 2-sub
groups are isomorphic to Q, which has vanishing H2 by (3) of 
Exercise 4.1.26. Deduce that H2(SL(2, 1F5)' Z) = 0 and that Gis 
its own universal central extension. In fact SL(2, 1F5) is isomorphic 
to the binary icosahedral group G of Exercise 4.1.27. 

(5) GL(3, 1F2 ) = SL(3, 1F2 ) is a perfect group of order (23 - 1)(23 -
2)(23 - 4) = 7·6·4 = 3·7·8. Clearly the Sylow 3-subgroups and 
Sylow 7-subgroups of this group are cyclic. Show that the group 
of upper-triangular matrices with 1's on the diagonal is a Sylow 2-
subgroup isomorphic to a dihedral group of order 8. Deduce that 
H2(SL(3, 1F2), Z) is a finite abelian 2-group, and see if you can 
compute it. 

4.1.29. Exercise. Show that group homology commutes with direct lim
its (cf. Theorem 1.2.5). In other words, if (GO:)O:EI, (()0:{3 : Go: -+ G{3)o:<{3 is 
a direct system of groups, if G = lim Go: is the direct limit of the system, 

---+ 
and if M is a G-module (hence also a Go:-module for each a, via the map 
Go: -+ G), then there are natural isomorphisms 

for each j. The key to this is the observation that each element of Pi ®za M 
involves only finitely many group elements, and thus comes from some Go:. 

The corresponding statement for cohomology is false, i. e., in general 
Hi(G, M) -# lim Hi (Go:, M). --
4.1.30. Exercise. Let G be an abelian group (written additively for 
purposes of this exercise), and choose an exact sequence 

o -+ Fl -+ Fo -+ G -+ 0, 

where Fo and Fl are free abelian groups. (In other words, choose a free 
resolution of G as a Z-module.) Let A be a trivial G-module. The exact 
sequence of Theorem 4.1.20 becomes 

0-+ Hom(G, A) -+ Hom(Fo, A) -+ Hom(FI, A) 

-+ H2(G, A) -+ H2(Fo, A). 

Comparing this with the exact sequence coming from the definition of Ext, 

0-+ Hom(G, A) -+ Hom(Fo, A) -+ Hom(FI, A) -+ Exti(G, A) -+ 0, 

deduce that 
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Then using Theorem 4.1.13 and the fact that for an abelian group, 

H1(G, Z) ~ G (in a natural way), 

deduce that inf gives an injection 

Hom(H2(G, Z), A) <.....+ Hom(H2(Fo, Z), A). 

This being true for all A, deduce that the natural map 

must be surjective. 

4.1.31. Exercise. Let F be the free abelian group on generators tt, t2, ... , 

R=ZF~Z[tl' tl1, t2, tal, ... , tm t~ll. 

Construct a free resolution for the trivial R-module Z of the form 

(IT you can't see how to do this in general, first try the special cases n = 1 
and n = 2.) Use this resolution to compute H.(F, Z). Deduce that there 
are natural isomorphisms 

• 
H.(F, Z) ~ A F, 

where the right-hand side denotes the exterior algebra on F (viewed as a 
free Z-module). 

4.1.32. Exercise. 

(1) By Exercises 4.1.30 and 4.1.31, if G is a finitely generated abelian 
group, written in the form Fo/ F1, where Fo is free on n generators, 
then there is a surjection 

2 

H2(Fo, Z) ~ A(Fo) - H2(G, Z). 

Show that this map factors through 1\2 (G). IT G is written with 
multiplicative instead of with additive (Z-module) notation, then 
1\ 2 (G) is the universal abelian group generated by elements 9 /\ h, 
g, h E G, with 9 /\ 9 = 1, such that the map (g, h) 1-+ 9 /\ h is 
bilinear, i. e., 

Note that these relation imply (g /\ h)-l = h /\ g, g, h E G. 
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(2) Deduce from Exercises 4.1.29 and 4.1.31 that for any torsion-free 
abelian group G, there is a natural isomorphism 

(3) Suppose G = G1 EB (7l.,/k), where k > 1 and G1 is an abelian group 
written additively. Show that 

Deduce using the structure theorem for finitely generated abelian 
groups and induction on the number of finite cyclic summands that 
there is a natural isomorphism 

for any finitely generated abelian group. Then use Exercise 4.1.29 
to conclude that this is valid for any abelian group. Note that this 
calculation is consistent with the calculation that H2(V, Z) ~ Z/2 
in Exercise 4.1.26(1). 

2. The Steinberg group 
We're now ready to apply the theory of the previous section to the perfect 
group E(R) of matrices over a ring R. Recall from Lemma 2.1.2 that this 
has generators eij ( a ), i =f=. j, a E R, satisfying the relations 

1 
eij(a)eij(b) = eij(a + b); 

eij(a)ekl(b) = ekl(b)eij(a), j =f=. k and i =f=. I; 

eij(a)ejk(b)eij(a)=:ejk(b)=ll = eik(ab), i,~, ~ dis~in.ct; 
eij(a)eki(b)eij(a) eki(b) = ekj( -ba), ~,J, k dIstmct. 

(a) 

(b) 

(c) 

(d) 

4.2.1. Definition. Let R be a ring. For n 2: 3, we define St(n, R), the 
Steinberg group of order n over R, to be the free group on generators 
Xij(a), i =f=. j, 1 :::; i, j :::; n, a E R, divided by the relations 

1 
Xij(a)Xij(b) = Xij(a + b); 

Xij(a)xkl(b) = Xkl(b)xij(a), j =f=. k and i =f=. I; 

Xij(a)Xjk(b)xij(a)=:Xjk(b)=: = xik(ab), i,~, ~ diS~i~ct; 
Xij (a)xki(b)Xij (a) Xki(b) = Xkj( -ba), ~,J, k dIstmct. 

(a) 

(b) 

(c) 

(d) 

It is immediate that St( n, R) is a perfect group and that there is a unique 
surjective homomorphism 'Pn : St(n, R) - E(n, R) satisfying Xij(a) f--+ 
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eij(a). Clearly there are natural maps St(n, R) --+ St(n + 1, R). However, 
unlike the situation with the maps GL(n, R) --+ GL(n + 1, R), it is not 
clear that these are injective (and in fact this is not always the case). We 
let St(R), called simply the Steinberg group of R, be the inductive limit. 
In other words, this is the universal group on generators Xij ( a), i =F j, 
1 ~ i, j < 00, a E R, satisfying the above relations. By construction, there 
is a canonical map <P : St(R) - E(R) (the limit of the <Pn as n --+ 00). 

The definition can be simplified a bit because relation (d) is redundant. 
By relation (a), Xij(a)-l = Xij( -a). Multiplying (c) on the left by Xij(a)-l 
and on the right by Xij (a), we obtain 

(using (b) and the fact that i, j, k were assumed distinct), which is the 
same as (d) if we renumber indices and replace b by a, a by -b. Thus it 
suffices to assume (a), (b), and (c). 

Note also that the group St(R) is functorial in R, since if a: R --+ S is 
a homomorphism of rings, there is a unique map from the free group on 
generators Xij(a), a E R, to St(S) sending Xij(a) to Xij(a(a)), and since 
this is compatible with the relations in St(R), it factors through a map 
a. : St(R) --+ St(S). 

4.2.2. Definition. Let R be a ring. We let K 2(R) = ker(<p : St(R) -
E(R)). This is functorial in R since the groups E(R) and St(R) and the 
homomorphism <p are functorial. 

The rationale for this definition is that K 2(R) vanishes precisely when 
all relations among matrices in E(R) follow from the "obvious" relations of 
Definition 4.2.1. Thus K 2(R) measures the "non-obvious" relations among 
elementary matrices over R, just as K1(R) measures the failure of general 
invertible matrices to be expressible in terms of elementary matrices. 

4.2.3. Lemma. Let R be a ring and 3 ~ n < 00. The subgroup of 
St(n, R) generated by all Xij(a), a E R, with i < j is nilpotent, and <Pn 
restricted to this subgroup is an isomorphism onto the upper-triangular 
subgroup of E(n, R). Thus K 2(R) has trivial intersection with the sub
group ofSt(n, R) generated by all Xij(a), a E R, with i < j. 

Proof. Let N(n, R) be the subgroup ofSt(n, R) generated by all Xij(a), 
a E R, with i < j. This contains the subgroup Nl generated by all Xlj(a), 
a E R, 1 < j ~ n. By relations (a) and (b), Nl is abelian and Rn-l surjects 
onto Nl via 

But under <Pn, Nl maps to the upper-triangular matrices with l's on the 
diagonal whose other non-zero entries are all in the first row, so the com
position Rn-l _ Nl lPn, E(n, R) is injective and <Pn must be injective on 
N 1 • By relation (c), N(n, R) normalizes N 1 • Let N2 be the subgroup of 
St(n, R) generated by all Xij(a), a E R, with i < j and i = 1 or 2. Then 
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N2/Nl is generated by the images of the X2j(a), a E R, 2 < i ~ n. Argu
ing as before, the group generated by these is also abelian and an image of 
Rn-2, and maps to the upper-triangular matrices with l's on the diagonal 
whose other non-zero entries are all in the second row. So 'Pn is injective 
on this group as well and so on N2 • Continuing inductively, one sees that 
N(n, R) is an iterated extension of abelian groups and maps isomorphi
cally under 'Pn to the group of upper-triangular n x n matrices with l's on 
the diagonal. 0 

4.2.4. Theorem. Let R be a ring. Then K2(R) = ker('P : St(R) -+ E(R)) 
is an abelian group, and is precisely the center Z(St(R)) of St(R). Thus 
St(R) is a central extension of E(R). 

Proof. Let x E Z(St(R)). Then 'P(x) must commute with 'P(y) for all 
y E St(R), and since 'P is surjective, 'P(x) E Z(E(R)). But E(R) has trivial 
center, since an n x n matrix can't commute with each eij(l) unless it is 
a diagonal matrix and all its diagonal entries are equal, and E(R) consists 
of infinite matrices whose diagonal entries are eventually 1. So 'P(x) = 1, 
showing that Z{St(R)) ~ K2(R). 

For the reverse inclusion, suppose x E K 2(R), and write 

x = Xidl (al)'" Xi .. j., (an), where eidl (al)" . ei.,j., (an) = 1 

in E(R). Choose N larger than all the indices it, ... , in, il,'" ,in' Then 
for any l ~ n, any k < N, and any a E R, 

-1 {XkN(a), k::f. ill 
xidl{al)xkN(a)xidl(al) = () () 

XilN ala XkN a, k = iz, 
so x normalizes the subgroup AN generated by the xkN(a), k < N and 
a E R. But by Lemma 4.2.3, the restriction of 'P to AN is injective. So for 
yEAN, 'P(xyx-ly-l) = 'P(x)'P(Y)'P(X)-l'P(y)-l = 'P{Y)'P(y)-l = 1 and 
xyx-ly-l = 1. This shows x commutes with xkN(a) for any N larger than 
all the indices it, ... , in and il, ... ,in, for any k < N, and for any a E R. 
Since these generate St(R) because of relation 4.2.1{c), x is central. Thus 
K2(R) ~ Z(St(R)). 0 

4.2.5. Example. Let R be any ring, and let 

Then 

x = (X12(I)X2l(-I)X12(1))4. 

'P{ x) = ( ( ~ ~) ( ! 1 ~) (~ ~ ) ) 4 

=(~1 ~)4=(~ ~), 
so x E K2(R) and hence x is central in St(R). It will turn out that when 
R = Z, x has order 2 and generates K2(Z), 

We are almost ready for the main theorem of this section, but first we 
prove a number of easy group-theoretic identities. 
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4.2.6. Lemma. Let G be a group and let u, v, w E G. Denote the 
commutator uvu-1v-1 by [u, v]. Then 

(a) [u, v] = [v, U]-l. 
(b) [u, v][u, w] = [u, vw][v, [w, u]]. 
(c) (Jacobi identity) lfG' = [G, G] is commutative, then 

[u, [v, w]][v, [w, u]][w, [u, v]] = 1. 

Proof. (a) is trivial. For (b), note that 

[u, vw][v, [w, ull = u(VW)u-l(vW)-lV(wuw-lu-l)V-l(UWU-lW-l) 

= (uv)( WU-1W-1V-1)( vwuw-1 )U-1V-1 (uwu-1w-1) 

= [u, v][u, w]. 

For (c), first rewrite (b) as 

[v, [w, u]] = [u, VW]-l[U, v][u, w]. 

Cyclically permuting u, v, w and multiplying gives (provided commutators 
commute) 

[u, [v, w]][v, [w, u]][w, [u, vll 
= [w, uvtl[W, u][w, v][u, vwtl[U, v][u, w][v, wu]-l[v, w][v, u] 

= Ow, uvtl[u, VW]-l[V, wutl) ([w, u][u, w][w, v][v, w][u, v][v, u]) 

= [uv, w][wu, v][vw, u] 
= UVW(V-lU-lW-lWUV)(U-lW-lV-lVWU)w-lv-lU-l 

= 1. 0 

4.2.7. Theorem. Let R be a ring. Then St(R) is the universal central 
extension of E(R). 

Proof. By Theorem 4.2.2, St(R) is a central extension of E(R), and 
relation 4.2.1(c) shows St(R) is a perfect group. By Theorem 4.1.3, it 
suffices to show that every central extension of St(R) is trivial. Let (U, 'Ij;) 
be a central extension of St(R). If x, y E St(R) and we choose X, Y E U 
with 'Ij;(X) = x and 'Ij;(Y) = y, then [X, Y] is independent of the choices 
of X and Y, since changing X or Y by an element of Z(U) will not affect 
the commutator. Thus it makes sense to refer to ['Ij;-l(x), 'Ij;-l(y)] as a 
well-defined element of U. We will define a splitting map s : St(R) -+ U to 
'Ij; by sending 

for suitable x and y. 
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4.2.8. Lemma. In this situation, if j =I- k, i =I- l, and a, b E R, then 

Proof. Choose h distinct from i, j, k, l and choose 

Then [u, v] E 1/J-l(xij(a)). There must be elements c, c' E Z(U) such that 
cuw = wu, c'vw = wv. Then 

[lu, v], w] = (UVU-lV-l)w(vuv-lu-l)W-l 

= (uvu-1)c'W(uV-1)(U-1W-1) 

= C'UVU-lW(UV-l)(W-lu-lC-l) 

= c'c-1uv(CW)(W-1V-1(C')-1)U-1 

= (uvw)(W-1V-1U-1) = 1. 0 

4.2.9. Lemma. In this situation, if h, i, j, k are distinct and a, b E R, 
then 

Proof. By relations 4.2.1, 

[Xhj(a), xjk(b)] = [xhi(l), xik(ab)] = xhk(ab) in St(R). 

Choose u E 1/J-l(Xhi(I)), v E 1/J-l (Xij (a)), and w E 1/J-l(Xjk(b)). Then 
[u, v] E 1/J-l(xhj(a)), [v, w] E 1/J-l(xik(ab)), and [u, w] = 1 by Lemma 
4.2.8. Furthermore, [u, v] commutes with u, with v, and with [v, w] by 
Lemma 4.2.8. So if G is the group generated by u, v, w, [G, G] is commu
tative. Now apply (c) of Lemma 4.2.6. We obtain 

[u, [v, w]][v, [w, u]][w, [u, v]] = 1, 

or since [w, u] = 1, flu, v], w] = [u, [v, w]], which is what we want. 0 

Proof of Theorem 4.2.7 (continued). Recall that we want to define a 
splitting map S : St(R) -+ U. Since St(R) is given by generators and re
lations, it will be enough to define elements Sij (a) E U, i =I- j and a E R, 
satisfying the same relations as the Xij(a) E St(R). Then there will be a 
unique homomorphism S : U -+ St(R) sending Xij(a) 1-+ Sij(a), and pro
vided we choose Sij(a) E 1/J-l(xij(a)), S will split 1/J and thus demonstrate 
that (U, 1/J) is a trivial extension. 

So let a E R, i =I- j. Choose k distinct from i and j and define 
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By Lemma 4.2.9, this is an element of t/J-I (Xij (a)) independent of the 
choice of k. We will show that the elements Sij(a) satisfy the relations 
4.2.1. Lemma 4.2.8 immediately gives relation 4.2.1(b). To check 4.2.1(a), 
let a, b E R and choose k distinct from i and j. Choose U E t/J-I(Xik(l)), 
v E t/J-I(xkj(a)), W E t/J-I(Xkj(b)). Then by Lemma 4.2.6(b), 

Sij(a)sij(b) = [u, v][u, w] = [u, vw][v, [w, u]]. 

But [w, u] commutes with v by Lemma 4.2.8 and vw E t/J-I (Xkj (a + b)), so 

which by definition is sij(a+b). Finally, we need to check relation 4.2.1(c), 
but this follows immediately from Lemma 4.2.9. 0 

4.2.10. Corollary. If R is any ring, there is a natural isomorphism 
K 2(R) - H2(E(R), Z). 

Proof. This follows immediately from Theorems 4.1.19 and 4.2.7. 0 

4.2.11. Remark. Something that comes out of the construction used 
in the proof of Theorem 4.2.7 is that if x and y are commuting elements 
of E(R), then [cp-l(x), cp-l(y)] is a well-defined element of St(R) which 
maps to [x, y] = 1 under cp, in other words, an element of K2(R). In fact, 
this is the most useful way of constructing elements in K 2 (R), and under 
favorable circumstances, K 2 (R) is generated by such elements. 

A case of particular interest is when R is a commutative ring. Then the 

units of R, RX, form an abelian group, and for u E RX, (~ u~l) E 

E(2, R) by Corollary 2.1.3. 

4.2.12. Definition. Let R be a commutative ring, and let u, v E RX. 
The Steinberg symbol {u, v} is defined to be the element [cp-l(dI2 (U)), 
cp-l(dI3 (V))] of K2(R) (as in Remark 4.2.11), where 

(
u 0 0) (V 0 0) dI2 (U) = 0 u-l 0 , dI3(V) = 0 1 0 . 
o 0 1 0 0 v-I 

(Since dI2 (U) and d13(v) commute in E(R), this indeed defines an element 
of K2(R).) 

Note from the identities used in Corollary 2.1.3 that 

dI2 (U) = e12( u)e21 (_u- l )eI2(u)eI2( -1)e21 (1)eI2( -1), 

dI3 (V) = e13( v)e31 (_v-l )eI3( v)eI3( -1)e31 (1)eI3( -1), 

so that if we define Wij(U) E St(R) and hij(u) E St(R) by' 
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then 

and 

The Steinberg symbols can also be described in terms of group homology. 
Note that if G is a free abelian group on two generators s and t, then 
ZG ~ Z[t, rt, s, S-l], and the trivial G-module Z has the free resolution 

'7IG (8-1,1-t) '7IG '7IG (t-1,8-1) '7IG t ...... 1, 8 ...... 1 '71 o --+ fLJ ) fLJ EB fLJ ) fLJ ) fLJ. 

Furthermore, if a is the automorphism of G interchanging t and s, then 
the following diagram commutes: 

o -----+ ZG 
(8-1,1-t) 

ZGEBZG 
(t-1,8-1) 

ZG 
t ...... 1, 8 ...... 1 

Z ) ) ) 

II -ul (~ ~)l ul II 
0 -----+ ZG 

(8-1,1-t) 
) ZGEBZG 

(t-1,8-1) 
) ZG 

t ...... 1, 8 ...... 1 
Z. ) 

Thus H.(G, Z) is the homology of the complex 

02 0 o --+ Z --+ Z --+ Z, 

with a acting by -1 on the first Z and interchanging the two summands 
in the Z2, and in particular H 2 (G, Z) is free abelian on a generator that 
is sent to its inverse if we interchange t and s. Thus H2 (G, Z) is naturally 
isomorphic to A 2 G, the alternating tensor product or second exterior power 
(this is a special case of the result of Exercise 4.1.31). The commuting 
elements d12 (U) and d13 (V) of E(R) define a map (}; : G --+ E(R) with t 1-+ 

d12 (U), S 1-+ d13 (V), and (};. sends the canonical generator t 1\ s of H2(G, Z) 
to the Steinberg symbol {u, v} in H2(E(R), Z) ~ K2(R). In fact, the 
diagonal matrices in E(3, R) are an abelian subgroup isomorphic to (RX)2 
(the determinant must be 1, so the (3, 3)-entry is determined by the (1, 1) 
and (2, 2)-entries), generated by elements of the form d12 (U) and d13 (V). 
By Exercise 4.1.32, H2«RX)2, Z) ~ A2«RX)2), which evidently contains 
(R X x {1}) 1\ ({1} x RX) as a direct summand. The subgroup of K2(R) 
generated by the Steinberg symbols is the image of (RX x {1}) 1\ ({1} x RX) 
in H2(E(R), Z) ~ K2(R). 

4.2.13. Example. Of course, the whole definition would be a little silly 
if {u, v} were always trivial. However, if u = v = -1 and R = 1R, then 
d12 (U) and d13 (V) generate a Klein 4-group in 80(3) C 8L(3, 1R) (see 
Exercise 4.1.26), and the inverse image of this 4-group in the universal 

..---...--
covering group 8U(2) C 8L(3, 1R) is a quaternion group Q. The same 
holds if we first embed 8L(3, 1R) in 8L(n, 1R) for any n > 3 and then take 
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~ 

the universal cover 8L(n, 1R), since the embedding 80(3) ~ 8L(n, 1R) 
induces an isomorphism on 71"1 and thus the induced mapping 8U(2) -+ 
~ 

8L(n, 1R) is injective (compare Example 1.6.13 and Examples 4.1.5). Since 
~ 

lim8L(n, 1R) is a quotient group of St(IR), this proves that {-I, -I} maps -to an element of order 2 in the corresponding quotient of K2(1R). In fact this 
quotient group splits (see (2) of Exercise 4.1.26, or else note that by Lemma 
4.2.14 below, {-I, -I} can have order at most 2), so {-I, -I} E K2 (1R) 
has order exactly 2. 

4.2.14. Lemma. Let R be a commutative ring. The Steinberg symbol 

mapRx xRx g K 2 (R) is skew-symmetric and bilinear, that is, {u, v} = 
{v, U}-l and {UIU2, v} = {Ul' V}{U2' v}. 

Proof. This is immediate from the homology approach, since as men
tioned above and proved in Exercise 4.1.32, H2(G, Z) ~ 1\2(G) for G an 
abelian group. Alternatively, we can check this directly from the definition 
above, since 

<p(w23(1)) = (~ ~ ~). 
o -1 0 

Thus <p(w23(1)) conjugates d12 (U) to d13(U) and vice versa. To prove skew
symmetry, note that 

{v, u} =def [<p-l(d12(v)), <p-l(d13(U))] 

= [W23(1)<p-l(d13( V))W23(1)-1, W23(1)<p-l(d12( U))W23(1)-1] 

= W23(1)[<p-l(d13(v)), <p-l(d12(u))]W23(1)-1 

= w23(I){u, V}-lW23(1)-1 = {u, v}-l. 

Here we have used Lemma 4.2.6(a) and the fact that K 2(R) is central in 
St(R). 

To prove bilinearity, note that by Lemma 4.2.6(b), 

{u, VIV2} =def [<p-l(d12(U)), <p-l(d13(VlV2))] 

= [<p-l(d12(U)), <p-l(d13(Vt))<p-l(d13(V2))] 

= [<p-l(d12(U)), <p-l(d13(Vt))][<p-l(d12(U)), <p-l(d13(V2))] 

[<p-l(d13(Vl)), [<p-l(d13(V2)), <p-l(d12(u))]r1 

= {u, Vl}{U, V2}[<p~1(d13(Vl))' {u, V2}-lt1 

= {u, vd{u, V2}, 

again since K 2(R) is central. Bilinearity in the other variable follows from 
the skew-symmetry. 0 

Most of the rest of this section will be taken up with calculations using 
the relations (4.2.1), in order to give a slightly more convenient descrip
tion of the Steinberg symbols and in order to prove that they satisfy two 
additional relations. These relations are important for the applications of 
K 2(R) in the next section. 
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4.2.15. Lemma. If R is any ring and U E R X , the elements 

Wij (u) =def Xij (U)Xji( _u-1 )Xij (U), hij (u) =def Wij( U)Wij (-1) 

of St(R) defined in 4.2.12 satisfy 

(Wij(u))-l = (Wij( -u)), Wij(U) = Wji( _u-1), 

hij (l) = 1. In addition, ifu, v E R X and k =f.l, i =f. j, then 

1 
Wij(V), i, j, k, l all distinct, 

-1 Wlj( -u-1v), k = i, i, j, l all distinct, 
Wkl(U)Wij(V) (Wkl(U)) = ( ) k . .. k -11 d' t' t Wil -VU , = J, z, J, GId 1S 1nc , 

( -1 -1) k .. l Wji -U VU , = z, J = . 

Proof. To begin with, by (4.2.1)(a), 

Wij(U)Wij( -u) = Xij(U)Xji( _u-1 )Xij(U)Xij ( -U)Xji(U-1 )Xij( -u) 

= Xij(U)Xji( _u-1 )Xji(U-1 )Xij( -u) 

= Xij (U)Xij (-u) = 1, 

so (Wij(U))-l = Wij(-U). In particular, hij (l) = wij(l)wij(-I) = 1. The 
fact that Wkl(U) and Wij(V) commute if i, j, k, l are all distinct is obvious 
from (4.2.1)(b). Next suppose i, j, l are all distinct and k = i. We have by 
(b), (c), and (d) of (4.2.1) 

Wil(U)Xij(V) (Wil(U))-l 

Similarly 

= Xil( U)Xli( _u-1 )Xil( u) (Xij( v)) Xil( -U)Xli( u-1 )Xil( -u) 

= Xil( U)Xli( _u-1) (Xij( v» Xli ( u-1 )Xil (-u) 

= Xil(U) (Xlj (-U-1V)Xij (v») Xil(-U) 

= Xij( -V)Xlj( -U-1V)Xij(V) 

= Xlj(-U-1v). 

Wil(U)Xji(-V-1) (Wil(U))-l 

= Xil( U)Xli( _u-1 )Xil( u) (Xji( _v-I») Xil (-U)Xli( u-1 )Xil( -u) 

= Xil(U)Xli( _u-1) (Xjl(V-1U)Xji( _V-I» Xli(U-1)Xil( -u) 

= Xil(U) (Xji(V-1)Xjl(V-1U)Xji(-V-1» Xil(-U) 

= Xjl( -v-1U)Xji(V-1 )Xjl(V-1U)Xjl(V-1U)Xji( _V-I) 

= Xji(V-1)Xjl(V-1U)Xji(-V-1) 

= Xjl(V-1U). 
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So 

and 

Wil(U)Wij(V) (Wil(U))-l = Wil (U)Xij (V)Xji(-V-1)Xij (V) (Wi/(u))-l 

= Xlj( -u-1V)Xjl(V-1U)Xlj( -u-1v) 

= Wlj(-U-1v) 

Wil(U)Wji(V) (Wil(U))-l = Wil(U)Xji(V)Xij(-V-1)Xji(V) (Wi/(u))-l 

= Xjl( -VU)Xlj( u-1V-1 )Xjl( -Vu) 

= Wjl(-VU), 

which gives the second and third relations. 
Finally, to get the last relation, choose I distinct from i and j and note 

that by what we've already proved, Wij(V) = Wil(I)Wlj(V)Wil(-I). So 

Wij(U)Wij(V) (Wij(U))-l = Wij(U) (Wil(I)Wlj(V)Wil(-I)) (Wij(u))-l 

= Wjl( -u-1)W/i(vU-1)Wjl(U-1) 

= Wji( -u-1VU-1). 

Taking U = v in this relation gives 

4.2.16. Corollary. If R is a commutative ring and u, v E RX, then 

In other words, if we identify RX with a subgroup of E(R) via U 1-+ d12(U), 
then h12 gives a section RX - St(R), and the Steinberg symbol is the 
inverse of the associated cocyc1e in Z2(RX, K2(R)) as defined in the proof 
of Theorem 4.1.16. 

Proof. We have 

{U, v} = [h12(U), h13 (V)] 

= h12(U)h13(V)(h12(U))-1(h13(v))-1 

= h12(U)W13(V)W13( -1) (W12(I)W12( -u)) W13(I)W13( -v) 

= h12(U)W13(V) (W32 (l)w32( -u)) W13( -v) 

= h12 (U)W12(V)W12(-VU) 

= h12(U)W12(V)W12( -1)w12(I)w12( -vu) 

= h12(U)h12(V)(h12(VU))-1. 0 
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4.2.17. Theorem. H R is a commutative ring, the Steinberg symbol map 

R X x RX hl K 2 (R) satisfies the additional relations 

(a) {u,-u}=lforuERx , 
(b) {u, 1- u} = 1 for U E RX, 1- U E RX. 

Proof. (a) By Corollary 4.2.16, we need to show that h12( U)h12( -u) = 
h12( _u2). But by the last identities of Lemma 4.2.15, 

h12(U)h12( -u) = W12(U)W12( -1)W12( -U)W12( -1) 

= W21(U-2)W12(-I) 

= W12( -U-2)W12( -1) = h12( _u2). 

(b) By Corollary 4.2.16, we need to show that 

But 

h12(U)h12(1 - u) 

=W12(U)W12 ( -1)W12(1 - U)W12( -1) 

=W12(U)W21(I)W12(1- U)W12( -1) 

=W12(U)X21(I)X12( -1)X21(I)W12(1 - U)W12( -1) 

= (W12(U)X21(I)W12( -u» W12(U)X12 ( -1)W12(1 - u) 

(W12(U - I)X21(I)W12(1 - u» W12( -1) 

=X12( -U2)W12(U)X12( -1)W12(1 - U)X12( -(1 - u)2)W12( -1) 

=X12( -U2)X12(U)X21( -U-1)X12(U) 

X12( -1)W12(1 - U)X12( -(1 - U)2)W12( -1) 

=X12(U - U2)X21( -U-1)X12(U -1)W12(1- U)X12( -(1- U?)W12(-I) 

=X12(U - U2)X21(-U-1)X12(U -1)X12(1- u) 

X21 (-(1 - U)-l )X12(1 - U)X12( -(1 - u)2)W12( -1) 

=X12(U - U2)X21( -U-1)X21( -(1- U)-1)X12(U - U2)W12( -1) 

=X12(U - U2)X21( -u-1(1- u)-1)X12(U - U2)W12( -1) 

=W12(U(I- U»W12( -1) = h12 (U - u2). 0 

4.2.18. Corollary. If R is a finite field, all Steinberg symbols vanish in 
K2(R). 

Proof. Let R = IFq, the finite field of q elements. Since IF: is cyclic of 
order q - 1, we may choose a generator U for IF:, and by bilinearity of the 
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symbol map, it suffices to prove that {u, u} = 1 (we are using multiplicative 
notation for K 2 ). By skew-symmetry of the Steinberg symbol, {u, u} = 
{u, u}-1, i.e., {u, u} has order at most 2. H q is a power of 2, then -1 = 1 
in Fq , so by (a) of the Theorem, {u, u} = {u, -u} = 1. H q is odd, then 
by bilinearity and (a) of the Lemma, 

.t! .t! {u, u} = {u, -u}{u, -I} = {u, -1} = {u, u 2 } = {u, u} 2 • 

So if 9 is even, we again conclude that {u, u} = 1. H 9 is odd, then 
-1 is not a perfect square in Fq • Suppose we can choose W E F: such 
that neither w nor 1 - w is a perfect square in F q' By (b) of the Theorem, 
{w, 1 - w} = 1. But since neither w nor 1 - w is a perfect square, they 
are both odd powers of u, so {w, 1 - w} is an odd power of {u, u} and 
{u, u} = 1. So it's enough to show a suitable w exists. Since -1 is not a 
perfect square in F q, we need to show there is a w, not a perfect square, 
such that w - 1 is a perfect square. But such a w exists, since otherwise 
adding 1 to a perfect square would always give a perfect square in Fq , and 
1,2, ... , -1 would all be perfect squares, a contradiction. 0 

4.2.19. Example. If R = Z, then RX has only two elements, 1 and -1. 
We saw in Example 4.2.13 that {-I, -I} has order 2, and this is the only 
non-trivial Steinberg symbol, since {u, v} = 1 if u = 1 or v = 1. In this 
particular case, relation (b) of Theorem 4.2.17 is vacuous and relation (a) 
is trivial. As mentioned in Example 4.2.5, the element 

of St(Z) also lies in K 2 (Z). However 

by Corollary 4.2.16, and since WI2(1) = (WI2(-I))-1 and hI2(1) = 1 by 
Lemma 4.2.15, the left-hand side simplifies to 

So the element of K 2(Z) constructed in Example 4.2.5 is the same as 
{-I, -I}. 

For more complicated rings, the relations in Theorem 4.2.17 are more 
interesting. For instance, if R = Z[e], where e = l +i4 is a primitive 6-th 
root of unity, then RX is a cyclic group of order 6 generated bye, and the 
group of Steinberg symbols is generated by {e, e}, which can have order 
at most 2. But 1- e = (= e-1, so 1 = {e, 1- 0 = {e, e-1} = {e, 0-1, 
so {e, 0 = 1. It follows that {-I, -I} = {e3 , e3 } = 1 in K2(R). Since 
R <..-t C, this shows for instance that the map on K2 induced by the inclusion 
R <..-t C kills {-I, -I}. 
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4.2.20. Exercise. Show that in Corollary 4.2.16, h12 can be replaced by 
hij for any i -# j. In other words, if R is a commutative ring and u, v E RX, 
then 

hij(uv) = hij(u)hij(v){u, V}-l. 

(Use the relations in Lemma 4.2.15.) 

4.2.21. Exercise. Show that Corollary 4.2.16 implies that if R is a com
mutative ring, the subgroup of K 2 (R) generated by the Steinberg symbols 
contains the image of the corestriction map 

where R X ~ E(2, R) ~ E(R) via d12 : U 1--+ (~ U~l)' By Exercise 

4.1.32, H2(R X, Z) ~ A 2(RX), so in general one can't expect the map 
H2(RX, Z) -+ H2(E(R), Z) to be injective; at the very least one has to 
factor H2(RX, Z) ~ A 2(RX) by the relations of Theorem 4.2.17. Show also 
by looking at the case of R = Z that the corestriction map H2(R X , Z) -+ 

H 2 (E(R), Z) need not be surjective. 

4.2.22. Exercise. Let R be the Dedekind domain Z[VDj, the ring of 
integers in the real quadratic field Q( VD) with DEN square-free and 
not congruent to 1 mod 4. By Theorem 2.3.8, R X is the product of the 
2-element group {±1} and an infinite cyclic group. Compute the quotient 
of (RX) ® (RX) by the relations of skew-symmetry and of Theorem 4.2.17. 
(First show relation (b) is vacuous; in other words, there is no v E RX with 
1 - v E RX, since a + bVD can only be a unit if a2 - Db2 = ±1.) 

4.2.23. Exercise: Morita invariance of K 2 • Show that for any ring, 
there is a natural identification of E(Mn(R)) with E(R), and thus of the 
universal central extension of the former with the universal central exten
sion of the latter. Obtain a "Moritainvariance" isomorphismK2 (Mn (R)) ~ 
K2(R). 

4.2.24. Exercise: a ring with vanishing K 2 • Let k be a field and let 
V be an infinite-dimensional vector space over k. Let R = Endk(V). Show 
that K 2 (R) = 1. Hint: V is isomorphic to an infinite direct sum of copies 
of itself. Thus if A E K 2 (R) ~ St(R), one can form "00' A" by replacing 
each Xij(a) in the expression for A by Xij(OO . a) (cf. Exercise 2.1.7) and 
regard it also as an element of K2(R). Show that AE9(oo·A) is conjugate to 
(oo·A), hence that A represents the identity in K2(R). (Compare Example 
1.2.6 and Exercise 2.1.7.) 

3. Milnor's K2 
In the last section, we defined K 2 (R) both in terms of the Steinberg group 
and in terms of homology of E(R). We also showed how to construct 
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elements of K 2 (R) (when R is commutative) using Steinberg symbols. In 
this section, we show how K2 fits into the general framework of algebraic K
theory, via an exact sequence linking it with Kl and Ko and via a number 
of applications. The functor K2 is unfortunately difficult to compute, but 
we deduce some information about it at least when R is a field. 

4.3.1. Theorem. Let R be a ring and I ~ R an ideal. Then there is a 
natural exact sequence 

K 2(R) ~ K2(R/1) ~ Kl(R, I) ~ Kl(R) ~ Kl(R/I) 

~ Ko(R, I) ~ Ko(R) ~ Ko(R/I), 

where q* is induced by the quotient map q : R -;, R/ I, extending the exact 
sequence of Theorem 2.5.4 to the left. 

Proof We need to define the map K2(R/I) ~ Kl(R, 1) and to verify 
exactness at Kl(R, I) and at K2(R/I). We have a commutative diagram 
with exact rows and columns 

1 

1 
1 -+ E(R, I) -+ GL(R,1) -+ Kl(R, I) -+ 1 

1 1 II 
1 K 2(R) St(R) 'PH GL(R) Kl(R) 1 -+ -+ ---+ -+ -+ 

II q·l q·l q·l q·l II 
1 -+ K2(R/I) St(R/I) 

'PHil 
GL(R/I) Kl(R/I) l. -+ ----+ -+ -+ 

The map q* : St(R) ~ St(R/ I) is surjective, since if a E R/ I is q(a) for 
a E R, then q*(xij(a)) = Xij(a), and thus every generator of St(R/I) is in 
the image of q*. Therefore we can define 8 by the usual "snake" process: 
if x E K 2 (R/I), write x = q*(y) for some y E St(R), chosen by lifting 
each Xij(a) appearing in an expression for x to Xij(a), where a E q-l(a). 
Then <PR(Y) E E(R) and maps to 1 in GL(R/1) (by commutativity of 
the diagram and exactness of the bottom line). SO <PR(Y) E GL(R, I) 
and we define 8(x) to be its class in GL(R, I)/E(R, 1) ~ Kl(R, I). To 
show this is well defined, suppose x = xidl (0,1) ... Xirjr (ar ) and let Y = 
xidl(al)···Xirjr(ar ) and Y' = xidl(ai)···Xirjr(a~), where ak = q(ak) = 
q(aD. We need to show that <PR(Y) and <pR(Y) differ by an element of 
E(R, I), hence have the same class in Kl(R, I). Let bk = a~ - ak E I. 
Then 
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and 

'PR(Y') = eidl (aD··· eirir(a~) = eidl (bdeidl (ad··· eirir (br)eirir (ar) 

= eidl (b1) (eidl (adeidl (~) (eidl (a1))-1) 

x (eidl (a1)eidl (a2)eidl (b2) (eidl (a2))-1 (eidl (ad)-l) 

... 'PR(Y), 

so 'PR(Y) and 'PR(Y) differ by an element of the normal subgroup of E(R) 
generated by the eii(b), bEl, i.e., by an element of E(R, 1). Thus 8 : 
K2(R/I) -+ K1(R, I) is well defined. 

Now we check exactness. The composite 

K2(R) ~ K2(R/I) ~ K1(R, I) 

is trivial, since if Y E K2(R) and x = q*(y), then 'PR(Y) = 1 and thus 
8(x) = ['PR(Y)] is trivial. Conversely, if 8(x) = 1, this means we can choose 
Y E St(R) such that x = q*(y) E K2(R/I) and 'PR(Y) E E(R, I), i.e., 
'PR(Y) is a product of terms of the form 

(eidl (adeidl (a2)· .. eiri)ar)) eii(b) (eidl (a1)eidl (a2) ... eiriJar))-l . 

Changing Y if necessary by an element of K2 (R), this means we can assume 
Y is a product of terms of the form 

(xidl (a1)xidl (a2) ... xirir (ar)) xii (b) (Xili1 (adxidl (a2) ... Xirir (ar ))-1 , 

bEl. As we saw above, we are free to replace Xii (b) by xii(O) = 1, 
which then shows Y can be made trivial after modification by an element 
of K 2(R). So ker(8) ~ im(q*). 

It remains to check exactness at K1(R, I). The composite 

K2(R/I) ~ K1(R, I) - K1(R) 

is 1, since if x E K2(R/I) and we choose Y E K2(R) with x = q*(y) 
as above, then 'PR(Y) E E(R) and maps to 1 in K1(R) = GL(R)/E(R). 
Conversely, if 9 E GL(R, I) and the image [g] of 9 in K1(R, I) maps to 
1 in K1(R), this means 9 E E(R). So 9 = 'PR(Y) for some Y E St(R). If 
x = q*(y) E St(R/I), then 'PR/I(X) = q*(g), which is 1 since 9 E GL(R, I). 
So x E ker('PR/I) = K2(R/I), and 8(x) = [g] by construction. 0 

So far, we have not been able to compute K2 in very many examples, 
though at least we've produced examples of rings where it is or is not 
trivial (Example 4.2.13 and Exercise 4.2.24). Our aim next is to study 
K2 in the case of a (commutative) field. Unlike K1 and Ko which are not 
particularly interesting for fields, this is a decidedly non-trivial subject with 
a lot of applications. However, following ideas in [Keune], Theorem 4.3.1 
now gives a way to relate the calculation of K2 of a field to a problem about 
Kl, which can be studied using the theory of relative Mennicke symbols 
from Theorem 2.5.12. 
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4.3.2. Lemma. It F is a field, there is a natural epimorphism a : 
K2(F) - SK1(F[t], (t2 - t)). 

Proof. Let R = F[t), which is a PID, and let J = (t2 - t) ~ R. Then 
RjJ = F[tJl(t2 - t) ~ F x F, with the quotient map q : R - F x F 
corresponding to evaluation at 0 and at 1. By Corollary 2.3.3, K1(R) = FX, 
and the map 

is obviously the diagonal map, which is injective. Furthermore, since the 
map R - F corresponding to evaluation at 0 is split surjective via the 
inclusion of constant polynomials, we get a splitting K 2 (R) ~ K 2 (F) x 
NK2(F) as in Theorem 3.2.22. The map 

is obviously the diagonal injection on the K 2 (F) factor, so the cokernel is a 
quotient of K2 (F). Then a gives an isomorphism of this quotient of K2 (F) 
onto K1(R, J) = SK1(R, J) (since any unit in F[t) is actually a unit in F, 
and thus can't be == 1 mod J unless it is equal to 1). 0 

In fact, one can show that K 2 (R) ~ K 2 (F), and a is an isomorphism 
of K2(F) onto SK1(F[t], (t2 - t)). This makes the calculation of K2(F) 
essentially equivalent to the calculation of the relations among the relative 
Mennicke symbols from Theorem 2.5.12. (See Proposition 4.4.2 below.) 

The key to getting more information is the following theorem, which can 
be proved either using calculations in the Steinberg group (for a proof along 
these lines, see [Milnor, §9]) or else using homology, as in [Hutchinson), on 
which the following proof is based. 

4.3.3. Theorem. If F is a field, then K 2 (F) is generated by Steinberg 
symbols. 

Proof. Recall that in the case of a field, E(n, F) = SL(n, F) (Propo
sition 2.2.2). By Definition 4.2.12 and Exercise 4.2.21, the subgroup of 
K 2 (F) generated by the Steinberg symbols is precisely the image of the ;:::;i: ::;'::x(:, :X~Zl(~ HtL(f' Z)l:::-~X~~: 

o 0 a-1b-1 
except in the case of a few finite fields of small cardinality, the corestriction 
maps 

are all surjective; in fact H2(SL(n, F), Z) - H2(SL(n + 1, F), Z) is an 
isomorphism for n ~ 3. Since K2(F) = ~H2(SL(n, F), Z) (Exercise 
4.1.29), this will prove the theorem and a bit more. We split the proof into 
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several steps; the Theorem is obtained by combining Propositions 4.3.6 and 
4.3.11 and Theorem 4.3.12. The first Lemma involves some of the same 
ideas as Theorem 4.1.20. It (and similar results) is actually most easily 
proved using the theory of spectral sequences, but we give a direct proof, 
at least for the case we need. 0 

4.3.4. Lemma. Let G = N ~ H be the semidirect product of a normal 
subgroupN byagroupH, andletM beaG-module. HHp(H, Hq(N, M)) 
= 0 for all p and q with p + q = j, then Hj(G, M) = o. 

Proof. This is clear if j = 0, since 

Ho(H, Ho(N, M)) = (M/{n* -1: n EN}) /{h* -1: hE H} 

= M/{g* -1 : 9 E G} = Ho(G, M). 

The general case is reduced to this case by induction on j, using resolutions. 
For example, we do the cases j = 1 and j = 2, which we will need below. 
Start by choosing an exact sequence of G-modules 

o --+ Ml --+ Fo --+ M --+ 0, 

with Fo free, and note that Fo is free not just as a G-module but also as 
an N-module. The corresponding exact sequences in N-homology and in 
G-homology give 

j ~ 1, 

as well as the exact sequences 

0--+ Hl(N, M) --+ Ho(N, M l ) --+ Ho(N, Fo) --+ Ho(N, M) --+ 0, 

0--+ Hl(G, M) --+ Ho(G, Mt} --+ Ho(G, Fo) --+ Ho(G, M) --+ O. 

Split the first of these into two exact sequences 

0--+ Hl(N, M) --+ Ho(N, Mt} --+ K --+ 0, 

o --+ K --+ Ho(N, Fo) --+ Ho(N, M) --+ o. 
Applying H-homology and assuming that Ho(H, Hl(N, M)) = 0 and 
Hl(H, Ho(N, M)) = 0, we see that 

Ho(G, Mt} ~ Ho(H, Ho(N, M l )) ~ Ho(H, K) 

and that there is a short exact sequence 

0--+ Ho(H, K) --+ [Ho(G, Fo) ~ Ho(H, Ho(N, Fo))] 

--+ [Ho(G, M) ~ Ho(H, Ho(N, M))] --+ o. 

Comparing this with the exact sequence in G-homology, we see that Hl(G, 
M) = o. Also, replacing M by Ml lowers j by 1 and enables us to repeat 
the same trick, thus proving the Lemma by induction. 0 
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4.3.5. Lemma. If F is a field, T ~ FX x F X is the group of diagonal 
matrices in GL(2, F), and B ~ T ~ F is the group of upper-triangular 
matrices in GL(2, F), then if F is infinite, the corestriction map 

H.(T, Z) -+ H.(B, Z) 

coming from the inclusion of the diagonal matrices is an isomorphism. For 
finite F, this map is still an isomorphism in degrees 1 and 2 if F has more 
than 2 elements. 

Proof Note that B ~ F X x Aff(F), where the first factor corresponds 
to the scalar matrices, and the second factor, the affine group or "ax + b 

group" of F, is the group of matrices of the form (~ ~ ). The group B 

acts transitively on the set F by letting the scalar matrices act trivially and 
letting Aff(F) act by affine transformations. The stabilizer of the point 0 
for this action is just the subgroup T. Consider the short exact sequence 
of B-modules 

o -+ M -+ ZF ~ Z -+ 0, 

where ZF denotes the free abelian group on the set F, with B-action 
coming from the B-action on the set F, a sends each point of F to 1 E Z, 
and M = ker a. Since B acts transitively on F with T as one of the 
stability groups, ZF ~ ZB ®ZT Z as a B-module, and by Corollary 4.1.12, 
H.(B, ZF) ~ H.(T, Z). By the remarks in Definition 4.1.21, the map 
a,. can be identified with the corestriction map in the Lemma. So the 
Lemma will follow from the exact sequence of Proposition 4.1.9 if we can 
show that H.(B, M) = O. For this we apply Lemma 4.3.4, so we need 
to show H.(T, H.(F, M)) = O. Since Hq(F, ZF) = 0 for q > 0 and 
Ho(F, ZF) -+ Ho(F, Z) is an isomorphism, Hq(F, M) ~ Hq+1(F, Z). For 
instance, Ho(F, M) ~ F (and this isomorphism respects the T-module 
structure). If F has more than 2 elements, then there is some a -# 1 in FX, 
and a -1 is invertible in F. So F/(a - l)F = 0 and Ho(T, Ho(F, M)) = 

O. Similarly, since T is abelian, (~ ~) must act by the identity on 

all homology groups Hs(T, Ho(F, M)), whereas a-I is invertible, and 
thus the homology groups are all O. When F is infinite, the fact that 
Hs(T, Hq(F, M)) = 0 for all q can be derived from this; for instance, if 
F has characteristic 0, F is torsion-free as an abelian group, and thus 
Hq(F, M) ~ Hq+1(F, Z) ~ Aq+1(F) by Exercises 4.1.29 and 4.1.31, and 
a similar argument applies, since a E F X c Aff(F) acts on A q+1(F) by 
aq+1 but must act on homology by the identity. As pointed out by Suslin 
[SuslinLNM], a slightly different argument is required in the case F is of 
positive characteristic p. In this case F is a vector space over IF p and 
it's enough to show that Hs(T, Hq(F, lFp )) = 0 for all q > O. In this 
case, it turns out that H,.(F, lFp ) ~ S(F) ® A(F) (F viewed as a vector 
space over IF p, the generators of the exterior algebra having degree 1 and 
those of the symmetric algebra having degree 2) if p -# 2 and H,.(F, lFp ) ~ 
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S(F) (with generators in degree 1) if p = 2. (See also (2) of Exercise 
4.1.32.) If F is infinite, one can still prove vanishing of the cohomology 
by the same sort of argument as before. If F is finite with more than 2 
elements, we still have vanishing of Ho(B, M) and of Hs(T, Ho(F, M)) 
for all 8. Since the quotient map B -+ T induces a left inverse to the 
corestriction map, we only need to show vanishing of Ho(T, H1(F, M)) or 
of Ho(Fx, H2(F, Z)) = Ho(F X, 1\ 2(F)) to get an isomorphism through 
degree 2. Now a E F X acts on 1\2(F) by multiplication by a2, so vanishing 
of Ho(FX, H2(F, Z)) when F has at least 4 elements follows from the fact 
that there is an element a E FX with a2 -1 invertible. And when F has 3 
elements, H2 (F, Z) = 0 so the vanishing is automatic. 0 

4.3.6. Proposition. If F is any field, the corestriction map 

coming from the inclusion of the diagonal matrices is surjective. 

Proof We consider the action of G = GL(2, F) on X = ]Pl(F) = 
F U {oo} by linear fractional transformations. (This may be defined by 
letting G act linearly on F2 and taking the induced action on ]Pl(F) = 
(F2 '- {(O, On) / FX .) Note that G acts transitively on points of X, on 
ordered pairs of distinct points, and on ordered triples of distinct points. 
(When F = lF2' X has exactly 3 points and G may be identified with the 
symmetric group of this set.) Let Cn be the free abelian group on ordered 
(n + i)-tuples (xo, ... , xn ) of distinct points of X, which is a G-module 
via the G-action on X. Define e : Co -+ Z by sending each x E X to 1 and 
define dn : Cn+! -+ Cn by 

n+l 

dn(xo • ... , xn ) = L(xo, ... , Xk, ... , xn ). 

k=O 

Note that dn 0 dn+! = 0 and eO d1 = 0, so that (C., d) ~ Z -+ 0 is a 
chain complex. If F is infinite, this a;ugmented complex C. ~ Z -+ 0 is 
algebraically the same as the augmented ordered simplicial chain complex 
of an infinite simplex, which is well known to be acyclic. (Or one can easily 
check this directly, see [Hutchinson, Lemma 11: let Z E kerdn _ 1 . Then z is 
a finite sum of terms (x~, ... , x~) and we can choose x distinct from those 
xj's which appear. If y is obtained from z by replacing each (x~, ... , x~) by 
(x, x~, ... , x~), then dn+1y = z.) If F is finite, the complex is still exact 
at Co and ClI and exact at C2 if F has at least 3 elements. (However, 
the Proposition is true for F = IF 2 anyway since in this case G ~ S3 and 
H2(G, Z) = 0 by Corollary 4.1.24 and Exercise 4.1.25.) 

So assume F has at least 3 elements and look at the long exact homology 
sequences of the short exact sequences 

(4.3.7) o -+ Mo -+ Co ~ Z -+ 0, 
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(4.3.8) 

(4.3.9) 

Let B be the upper-triangular subgroup of G, T the diagonal subgroup, 
and Z the center (scalar matrices). Since G is triply transitive on X, and 
B stabilizes 00, T stabilizes (00,0), and Z stabilizes (00,0, 1), we may 
identify the G-modules Co with ZG ®;w Z, C1 with ZG ®ZT Z, and C2 with 
ZG®zzZ. Thus, by Corollary 4.1.12 and the comments in Definition 4.1.21, 
we may identify H.(G, Co) with H.(B, Z), the map 10* with corestriction 
H.(B, Z) ~ H.(G, Z), H.(G, C1) with H.(T, Z) ~ H.(Fx x FX, Z), 
and H.(G, C2 ) with H.(Z, Z) ~ H.(Fx, Z). Since do: C1 -t Co sends 

(00,0) 1-+ (0) - (00) = w-1 • (00) - (00), 

we see that 

H.(G, Cd ~ H.(T, Z) ~ H.(B, Z) ~ H.(G, Co) 

is z 1-+ cores(w· z - z). Similarly, d1 : C2 -t C1 sends 

(00,0, 1) 1-+ (0, 1) - (00, 1) + (00,0) = 91' (00, 0) - 92' (00, 0) + (00,0) 

for suitable 91, 92 E G, so 

is z 1-+ cores(911 . z - 921 . Z + z), which since Z is central is just 

cores - cores + cores = cores. 

After making these substitutions, we obtain from (4.3.7) and (4.3.8) the 
exact sequences 

(4.3.7') ... -t Hj+1(G, Z) ~ Hj(G, Mo) -t Hj(B, Z) 

~ Hj(G, Z) ~ Hj - 1(G, Mo) -t ... 

and 

(4.3.8') 
{) 

... -t Hj +1(G, Mo) ----t Hj(G, M1) -t Hj(T, Z) 

~ Hj(G, Mo) ~ Hj - 1(G, M1) -t .... 

By Lemma 4.3.5, the corestriction map H2(T, Z) ~ H2(B, Z) is an 
isomorphism. So we only need to show H 2 (B, Z) ~ H 2 (G, Z) is sur
jective, which by the exact sequence (4.3.7') means we need to show that 



3. Milnor's K2 207 

a : Hl(G, Mo) -+ H1(B, Z) in (4.3.7') is injective. The image of this 
map is 

ker (Hl(B, Z) ~ H1(G, Z)) = ker (T ~ Gab = FX) ~ FX. 

From (4.3.7') and the facts that H1(B, Z) ~ H1(G, Z) is surjective 
and Ho(B, Z) ~ Ho(G, Z) is an isomorphism, Ho(G, Mo) = O. From 
(4.3.8'), we have the exact sequence 

H1(G, Ml).!!... H1(T, Z) ~ T ~ H1(G, Mo) 

~ Ho(G, Mt} -+ Ho(T, Z) ~ Z ~ Ho(G, Mo) = O. 

From (4.3.9), we have the exact sequence 

{} 
(4.3.9') H1(Z, Z) -+ H1(G, M1) ---+ Ho(G, M2 ) 

-+ Ho(Z, Z) ~ Z ~ Ho(G, Mt} -+ O. 

Thus Ho(G, M1) is cyclic, and since by (4.3.8'), 

Ho(G, Mt} -+ Ho(T, Z) ~ Z 

is surjective, this latter map must be an isomorphism. Thus H1(T, Z) ~ 

T ~ H1(G, Mo) is surjective. Since the composite 

{j 0 dt. : H1(Z, Z) ~ { (~ ~): a E F X } 

-+ H1(T, Z) ~ {( ~ ~): a, bE F X } 

is the corestriction map, which is inclusion of the scalar matrices, im {j 

contains the scalar matrices, and T ~ H1(G, Mo) kills the scalar ma
trices. Since we already concluded that do* is surjective and that im a = 
Tn 8L(2, F), this means a must be injective. 0 

4.3.10. Lemma. IfF is any field, there is a natural splitting 

for n ~ 3. H F has at least 4 elements, there is an analogous fact for n = 2: 

and the corestriction map of Proposition 4.3.6 maps onto the first factor in 
this decomposition. 

Proof. For any n, GL(n, F) is the semidirect product of the scalar ma
trices, isomorphic to FX, and of the normal subgroup 8L(n, F). So the 
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inclusion of the scalar matrices, together with the determinant map, gives a 
split copy of H2 (Fx, Z) inside H2 (GL(n, F), Z). Also, we know SL(n, F) 
is perfect for n ~ 3, and this also holds for n = 2 if F has at least 4 elements, 

by Exercise 4.1.28(1). Since the composite SL(n, F) '-+ GL(n, F) ~ F X 

is trivial, the corestriction map 

has its image contained in the complement of the split copy of H2 (FX, Z). 
It in fact surjects onto this complement, and gives an isomorphism of the 
complement with Ho(F X, H2 (SL(n, F), Z)), by an argument similar to 
that in Lemma 4.3.4, since H1(FX, H1 (SL(n, F), Z)) = O. (This is where 
we use the fact that SL(n, F) is perfect.) 

To conclude the proof, we need to show that F X acts trivially on 

for n ~ 3. The case n = 2 follows from the next Proposition, since it will 
turn out that the corestriction map 

induced by A '-+ (~ (det ~) -1) is surjective. Since matrices of the 

form (~ ~ ~), a E FX, give another complement to SL(3, F) inside 
o 1 a 

GL(3, F) which commutes with matrices of the form (~ (det~)-1). 
A E GL(2, F), the conjugation action of F X on H2 has to be trivial. The 
case of larger n will then follow from the Stability Theorem (Theorem 
4.3.12). 0 

4.3.11. Proposition. IfF is a field with more than 7 elements, then the 
corestriction map 

induced by A '-+ (~ (det~)-1) is surjective, and H2 (SL(3, F), Z) is 

generated by Steinberg symbols. If F has more than 3 elements, the core
striction map is still surjective except perhaps for p-torsion, p the charac
teristic of the field. 

Proof. The general idea is similar to that of Proposition 4.3.6. Consider 
the action of G = SL(3, F) on X = ]P'2(F), the set of one-dimensional 
subspaces of F3. Again let en be the free abelian group on ordered (n + 1)
tuples (xo, ... , xn) of distinct points of X, but with the extra condition 
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that ifn ~ 2, no three Xj'S are colinear. This is a G-module via the G-action 
on X. Define c : Co -+ Z and dn : Cn+1 -+ Cn, getting an augmented chain 
complex as in the proof of Proposition 4.3.6. If F is infinite, this augmented 
complex C • ...:.. Z -+ 0 is acyclic by almost the same proof as before. If F is 
finite, the complex is still exact at Co and Cl . Note that G acts transitively 
on X, with the stability group at [e3] (eI, e2, e3 the usual basis vectors for 
F3) 

P = { (¢ (det~)-l): A E GL(2, F), Y E F2}, 

transitively on ordered pairs of distinct points in X, with the stability group 
at ([e2], [e3]) 

PI = {(:~ ~2 ~ -1) : aI, a2 E FX , YI, Y2 E F} , 
Y2 0 (ala2) 

and transitively on ordered generic triples of distinct points in X, with the 
stability group at ([el], [e2] , [e3]) 

We proceed as in the proof of Proposition 4.3.6, using short exact se
quences of the form (4.3.7-4.3.9) and the corresponding long exact se
quences in homology. The substitutes for (4.3.7'-4.3.9') in our context 
are as follows: 

(4.3.7") 8 
•.. -+ Hj+1(G, Z) -+ Hj(G, Mo) -+ Hj(P, Z) 

~ Hj(G, Z) ~ Hj_l(G, Mo) -+ ... , 

(4.3.8") ... -+ Hj+1(G, Mo) ~ Hj(G, Md -+ Hj(Pl , Z) 

~ Hj(G, Mo) ~ Hj-l(G, Ml ) -+ ... , 

and 

(4.3.9") Hl(F X x F X , Z) -+ Hl(G, Md ~ Ho(G, M2 ) 

-+ Ho(FX x F X , Z) ~ Z ~ Ho(G, Md -+ o. 

We also compute do. and dl • as in the proof of Proposition 4.3.6. Since 
do : Cl -+ Co sends 

(
1 0 

W= 0 0 
o -1 
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we see that 

is z 1-+ cores(w . z - z). Similarly, dl : C2 ~ Cl sends 

([elJ, [e2J, [e3]) 1-+ ([e2J, [e3]) - ([elJ, [e3]) + ([elJ, [e2]) 

= ([e2], [e3]) + 91 . ([e2J, [e3]) - 92 . ([e2], [e3]) 

with 

( 0 1 0) (0 1 0) 91 = 0 0 1 ,92 = -1 0 0 E G, 
1 0 0 0 0 1 

so 
H.(G, C2) ~ H.(F X x F X, Z) ~ H.(P1 , Z) ~ H.(G, Cd 

is z 1-+ cores(911 . z - 9:;1 . z + z). 
The proof is then exactly the same as that of Proposition 4.3.6, with the 

following exceptions: 

(1) Since G is perfect, H1(G, Z) = O. Assuming F has at least 4 
elements, 8L(2, F) is also perfect, so Hl(P, Z) ~ FX. One also 
has H1(Pb Z) ~ F X x FX. 

(2) The idea of the proof will be to show that 

is surjective, by using (4.3.7") and showing that 

is injective (a is automatically surjective since Hl(G, Z) = 0). So 
one needs to know as well that 

H (H Z) cores H (P Z) 
2 , - 2 , 

is surjective, where 

H = { (~ (det~)-l): A E GL(2, F)} ~ GL(2, F). 

Since P = H ~ F2, we need an analogue of Lemma 4.3.5. This is 
proved with the same technique, the only difference being that the 
action of GL(2, F) on F2 is by A·e = (det A)Ae. So a scalar matrix 

(~ ~) acts by multiplication by a3 instead of by multiplication 

by a as in the proof of Lemma 4.3.5. This is no problem as long as 
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IFX I does not divide 6, in particular, if F has at least 8 elements. 
For a smaller finite field of characteristic p, it's still true that 

is an isomorphism, since H.(F2 , Z[~]) vanishes except in degree 0 
(by Theorem 4.1.23). 

(3) In the last step of the proof, one has to examine the composite 

This time, this is not the corestriction map (which is an isomor
phism) but rather the map z 1--+ cores(g11 . z - gil. Z + z). If 
we identify the H1 groups with groups of diagonal matrices, this 
becomes the map 

G ~ (ab~-l) 
1--+ (~o 0 0) ((ab)-l ~ 

~ (ab~-l ~ 0 

= (b~2 ~ ~). 
o 0 b 

On the other hand, the map (do). : H 1(Pl, Z) - H 1 (P, Z) be
comes the map 

(
a 0 
o b 
o 0 

0) (a o 1--+ 0 
(ab)-l 0 

~G 

o 
(ab)-l 

o 

whose kernel is precisely the image of the previous map. So 0: is 
again an isomorphism as in the proof of Proposition 4.3.6. 

The fact that H2(SL(3, F), Z) is generated by Steinberg symbols now fol
lows from combining this result with Proposition 4.3.6. 0 

4.3.12. Theorem (Stability for K 2 ). If F is a field, the corestriction 
maps H2(SL(n, F), Z) - H2(SL(n + 1, F), Z) and H2(GL(n, F), Z) -
H2(GL(n+ 1, F), Z) are isomorphisms for n ~ 3 if F is infinite, and are at 
least surjective after inverting the characteristic of the field if F is finite. 
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Hence (for an infinite field) K2(F) ~ H2(SL(3, F), Z) and is generated by 
Steinberg symbols. 

Proof. Because of Lemma 4.3.10 and the fact that the split copy of 
H2(FX, Z) in H2(GL(n, F), Z) clearly maps to the corresponding copy in 
H2(GL(n + 1, F), Z), while Ho(FX, H2(SL(n, F), Z)) maps to 

Ho(FX, H2(SL(n + 1, F), Z)), 

it is enough to treat the case of GL(n). The proof of surjectivity, or of 
surjectivity after inverting the characteristic of the field if F is finite, is 
virtually identical to the proof of Proposition 4.3.11, except that we use 
the action of GL(n + 1, F) on X = pn(F), the set of one-dimensional sub
spaces of Fn+l. (Inverting the characteristic trivially yields the analogue 
of Lemma 4.3.5, that the corestriction map 

1 1 
H.(GL(n, F), Z[-]) -+ H.(GL(n, F) ~ F n, Z[-]) 

p P 

is an isomorphism, since Fn is a p-group and thus its homology with coef
ficients in Z[~] vanishes by Corollary 4.1.24. For an infinite field, the old 
proof still works.) Note incidentally that surjectivity of the corestriction 
map H2(SL(3, F), Z) -+ H2(SL(n + 1, F), Z) implies because of Proposi
tion 4.3.11 that the latter is generated by Steinberg symbols. 

The proof of injectivity is only slightly more delicate. For this part of 
the argument, assume F is infinite, let G = GL(n + 1, F), and let Ck be 
the free abelian group on ordered (k + I)-tuples (xo, ... , Xk) of distinct 
points of X = pn(F), but with the extra conditions that if k ~ 2, no three 
x/s are colinear, if k ~ 3, no four x/s are coplanar, etc. This yields an 
augmented complex C. ~ Z -+ 0 which is acyclic by almost the same 
proof as before. As in the proof of Proposition 4.3.11, let P = Po be 
the stabilizer of [en+l], PI the stabilizer of ([en], [en+l]), P2 the stabilizer 
of ([en-I], [en], [en+l]), etc. Then Co ~ ZG ®zP Z, C1 ~ ZG ®ZPl Z, 
C2 ~ ZG ®ZP2 Z, C3 ~ ZG ®zP3 Z, C4 ~ ZG ®ZP4 Z. By Corollary 4.1.12 
(Shapiro's Lemma), H.(G, Cj) ~ H.(Pj , Z) for j ~ 4, and by the analogue 
of Lemma 4.3.5, the corestriction maps 

H.(GL(n, F) x F X, Z) -+ H.(P, Z), 

H.(GL(n -1, F) x F X x F X, Z) -+ H.(Pl, Z), 

H.(GL(n - 2, F) x F X x F X x F X, Z) -+ H.(P2, Z), etc. 

are isomorphisms. SoH2(P, Z) ~ H2(GL(n, F), Z)ffi(FX®FX)ffiA2(FX). 
We again use the exact sequences (4.3.7"-4.3.9"), so we need to show the 
image of H2(G, Mo) -+ H2(P, Z) does not meet the copy of H2(GL(n, F), Z) 
in the latter. 

Now the composite 
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induced by d1 is given by z 1-+ cores(91 1 . z - 921 . Z + z) and ~he composite 

H.(PI, Z) ---- H.(G, Mo) ---- H.(P, Z) 

induced by do is given by z 1-+ cores(w . z - z), as in the last proof. A 
long diagram chase then shows that the map HI (P2, Z) ---- Hl(G, M 1) is 
surjective and that the map Ho(G, M3 ) ---- HO(P3 , Z) ~ Z is an isomor
phism, hence that the map H1(P3 , Z) ---- Hl(G, M2) is surjective. So the 
kernel of the map H1(P2, Z) ---- Hl(G, Ml)' which by the exact sequence 
(4.3.9") is the image of the map Hl(G, M2) ---- H1(P2, Z), is also the im
age of the map H 1(P3 , Z) ---- H 1 (P2 , Z). A calculation shows that this 
coincides with the kernel of the map H1(P2, Z) ---- H1(P1, Z). So the map 
H2(G, Mo) ---- Hl(G, M 1 ) must be zero and H2(PI, Z) ---- H2(G, Mo) is 
surjective. Finally, the image of the map 

in the exact sequence (4.3.7") is the same as the image of (do)* : H 2 (P1 , Z) 
---- H 2 (P, Z). From the description of (do)* as coreso(w* - 1), this has 
trivial intersection with the copy of H2 (GL(n, F), Z) in the latter, which 
proves what we wanted. 0 

4.3.13. Corollary. If F is a finite field (with the possible exception of 
lF2), then K 2 (F) = O. 

Proof. By Corollary 4.2.18, all Steinberg symbols vanish, yet K2(F)[~1 
(where p is the characteristic of F) is generated by Steinberg symbols 
by Theorem 4.3.3. On the other hand, for any n ~ 3, SL(n, F) is a 
finite group, so H2(SL(n, F), Z) is a finite abelian group by Theorem 
4.1.23, whose p-primary part comes from the Sylow p-subgroup by Corol
lary 4.1.24. Now if the order of F is q = pT, the order of SL(n, F) is 

(qn _ l)(qn _ q) ... (qn _ qn-2)qn-l = q1+2+ oo+(n-l)(qn -1) ... (q2 - 1), 

so the largest power of p dividing this is q1+2+ oo +(n-l), which is the order 
of the subgroup N(n, F) of upper-triangular matrices with l's down the 
diagonal. Thus N(n, F) is a Sylow p-subgroup of SL(n, F). However, by 
Lemma 4.2.3, there is a homomorphism N(n, F) ---- St(n, F) which splits 
the canonical map <p : St(n, F) ---- SL(n, F) over N(n, F). This shows 
that the central extension <p : St(F) ---- SL(F) is trivial over N(F) = 
limN(n, F), and thus that the p-primary part of K 2 (F) vanishes. 0 
--+ 

4.3.14. Remark. In fact there are no exceptional cases; K 2 (F) vanishes 
for any finite field. To prove this for F = lF2 , one can merely note that 
H2 (SL(3, F), Z) is a finite abelian 2-group (see Exercise 4.1.28(5)), and 
then use Theorem 4.3.12 to deduce that K 2 (F) is a 2-group. The argument 
in the proof of Corollary 4.3.13 then shows that K 2 (F) has to vanish. 

With somewhat more work, Proposition 4.3.6, Proposition 4.3.11, and 
Theorem 4.3.12 can be turned into a proof of the following famous (and 
difficult) theorem of Matsumoto. 
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4.3.15. Theorem (Matsumoto). IfF is any (commutative) field, Ka(F) 
is the free (multiplicative) abelian group Symb( F) on generators {u, v}, 
u, v E FX, subject to the relations of bilinearity in both variables and the 
relation {u, 1 - u} = 1. 

Proof [Hutchinson]. First of all, the given relations imply the other rela
tions we know about, namely skew-symmetry ({u, v} = {v, u}-1) and the 
relation {u, -u} = 1, since 

hence 

and 

{u, v} = {u, v}{u, -u} = {u, -uv} 

= {uvv-l, -uv} = {uv, -uv}{v-1, -uv} 

= {v, -UV}-1 = {v, U}-1{V, _V}-1 

= {v, U}-1. 

Next, because of Corollary 4.2.18, Corollary 4.3.13, and Remark 4.3.14, 
the case where F is finite is already proved. So it's enough to show that 
when F is infinite, Ho(FX, Ha(GL(2, F), Z» has the indicated presenta
tion, and that corestriction maps this isomorphically onto Ha(GL(3, F), 
Z). By Lemma 4.3.10, it's enough for the second statement to show that 
the corestriction map Ha(GL(2, F), Z) -- Ha(GL(3, F), Z) is injective. 

We begin with the first step, the identification of Ha(G, Z), G = GL(2, 
F), with the direct sum of Aa(FX) and the group Symb(F) on symbols 
{u, v}, u, v E FX satisfying the indicated relations. For this we have to 
go back to the exact sequence (4.3.7') in the proof of Proposition 4.3.6 and 
identify the image of the map Ha(G, Mo) __ Ha(B, Z) ~ Aa(FX x FX). 
We also need to use the short exact sequences 

(4.3.16) ~ o -- Ma -- Ca --+ Ma -- 0, 

(4.3.17) 

and the corresponding exact sequences (4.3.16') and (4.3.17') in homology, 
in addition to (4.3.7-4.3.9). Since the orbits of G on 4-tuples and 5-tuples 
of distinct points in P1(F) all have stablizer Z ~ FX, one finds that 

H.(G, Ca) ~ EB H.(F X, Z)· {x}, 
x#o, 1,00 
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and computing (d2) .. and (d3) .. as in the proof of Proposition 4.3.6 yields 
that 

(d2) .. : H.(G, C3 ) -+ H.(G, C2) = H.(Z, Z) 

is the O-map and that 

Since Ho{G, C4 ) -+ Ho{G, M3 ) is surjective, the cokernel Ho{G, M2) of 
the map Ho(G, M3 ) -+ Ho(G, C3 ) is the same as that of the map (d3 ) .. : 

Ho{G, C4 ) -+ Ho{G, C3), i.e., Ho{G, M2) is the free abelian group P{F) 
on generators {x}, x E F ...... {O, I}, subject to the relations that for Xl :f X2, 

Furthermore, since (dd. coincides with the corestriction map H.{Z, Z) 
-+ H.{T,Z), which is a split injection, a simple diagram chase yields split 
short exact sequences 

2 

0-+ /\(F X) -+ H2{G, Ml ) -+ Hl{G, M2) -+ O. 

We also know that the map (do). : H2(T, Z) -+ H2{B, Z) ~ H2(T, Z) 
~ 

is given by coreso(1 - w .. ), so when we identify H2{T, Z) with 1\2 (T), 
the cokernel of (do) .. can be computed to be AS2{FX) EB I\\F X). (Here 
AS2{FX) denotes the second antisymmetric tensor power, i.e., (FX ® 
FX)/(x ® y + y ® x).) 

Now consider the commutative diagram with exact rows and columns 

Chasing the diagram, we see that the cokernel of the map H2 {G, Mo) -+ 

H2{B, Z), which is H2(G, Z), is the direct sum of I\2{FX), corresponding 
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to the split copy of FX in G, and the cokernel of a certain map P(F) -
AS2(FX). Disentangling the various identifications made (see [Hutchinson, 
pp. 188-190]) shows that this map sends {x} E P(F) to (1- X-I) I\. X-I. 
(I\. denotes the antisymmetric tensor product.) Thus 

Ho(FX, H2(SL(2, F), Z)) ~ AS2(FX x F X)/(l- z) I\. z : z E F X '- {I}), 

which is exactly the group with generators {x, y} subject to bilinearity, 
antisymmetry, and the relation {I - z, z} = 1. 

To finish the proof, it's enough to show that the corestriction map 
H2(GL(2, F), Z) - H3(GL(3, F), Z) is an injection. The proof is quite 
similar to that of the injectivity part of Theorem 4.3.12. As in that proof we 
let G = GL(3, F) and let Cj be the free abelian group on distinct (j + 1)
tuples of points in 1P'2 (F) such that no three are colinear if j ~ 2. However, 
in this case we have P2 = (FX)3 (the diagonal matrices) and we can take P3 
to be the stabilizer of ([ed, [e2], [e3], [el + e2 + e3]), which is just the group 
Z ~ F X of scalar matrices. The map (d2). : H.(P3, Z) - H.(P2, Z) turns 
out to be the O-map since P3 is central. So the proof proceeds as before, 
except that this time it turns out that the map HI(G, M2)- HI (P2, Z) is 

the O-map, HI (P2, Z) ~ HI(G, MI) ~ (FX)3, and the map H2(G, Mo) -
HI(G, MI) has image ~ FX. Write H2(P, Z) ~ H2(GL(2, F) x FX, Z) as 

2 2 

Symb(F) EB /\(FX) EB(FX ® FX) EB /\(F X) 
, .. ' ~ 

.H2(GL(2,F),Z) H2(FX,Z) 

and H2(PI, Z) ~ H2«FX)3, Z) as A2«FX)3). Then coreso(w -1) sends 

(a, b, c) I\. (a', b', c') 1--+ ({a, b,-IC'} - {a', b-Ic}, cl\.c' - bl\.b', 

a' ® b-Ic - a ® b,-lc' + c ® b' + b' ® c 

-c'®b-b®c', bl\.b' -CI\.C'). 

Thus the cokernel of do. : H 2 (Pb Z) - H 2 (P, Z) is isomorphic to 
2 

Symb(F) EB /\(FX). 

Going back to the commutative diagram with exact rows and columns 

H2 (Pb Z) 

1 ~do. 

H2(G, Mo) --- H2(P, Z) --- H2(G, Z) ~ HI(G, Mo) 

1 
F X 

1 
o 
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we see that H2(G, Z) is the cokernel of a certain map FX -+ Symb(F) EB 
1\ 2 (F X). A messy diagram chase shows that this map is actually the O-map 
(in other words, the image of H2 (G, Mo) in H2 (P, Z) is contained in the 
image of do .. ), so H2(G, Z) ~ Symb(F) EB 1\2(FX), as asserted. 0 

4.3.18. Exercise. Show that K2(R1 x R2) ~ K2(R1 ) EB K2(R2) for any 
two rings Rl and R2 • 

4.3.19. Exercise. This exercise concerns K 2 (Z/(m)) when m is a positive 
integer. 

(1) Show from Theorem 4.3.1 and Exercise 2.5.17 that a proof that 
K 2 (Z) ~ Z/2 (see Exercise 4.3.20 below) would imply that 
K 2 (Z/(m)) has order at most 2 for any positive integer m, and 
would have to be generated by the Steinberg symbol { -1, -I}. 

(2) If p is an odd prime and r > 1, R = Z/(pr) is a local ring, and the 
quotient of this ring by its maximal ideal is the field IFp = Z/(P). 
Observe that RX is a group of order pr-l(p - 1), and that the 
quotient map R -IFp induces a map R X -+ IF; which must be an 
isomorphism after inverting elements of order a power of p. Thus 
this map splits. Show also that RX contains an element of order 
pr-l, hence that its Sylow p-subgroup is cyclic. Since IF; is cyclic 
of order prime to p, deduce that RX ~ IF; EB Z/(pr-l) is cyclic. 

(3) Show by an analogue of the argument in the proof of Corollary 
4.2.18 that all Steinberg symbols must be trivial for R = Z/(pr), 
p an odd prime. 

(4) Deduce from (3), from the Chinese Remainder Theorem, and from 
Exercise 4.3.18 that all Steinberg symbols are trivial for Z/(m), m 
odd. Deduce from (1) that a proof that K 2(Z) ~ Z/2 would imply 
that K 2 (Z/(m)) is trivial for m odd. (It is known that {-I, -I} 
is non-trivial in K 2(Z/(2r )), r > 1.) 

4.3.20. Exercise. This exercise concerns K2(Z), A proof that K2(Z) 
~ Z/2 is given in [Milnor, §1O]. We outline here another method of attack. 

(1) Apply the same method of proof used in the proof of Theorem 
4.3.12 to show that for any n ~ 4, the corestriction map 

is surjective. Use the action of SL(n + 1, Z) on 

x = {a E Zn+l : Zal + ... + Zan+l = Z} /{±I}. 

Identify points of X with vectors in zn+1 (up to a sign), and let 
Ck be the free abelian group on ordered (k + I)-tuples of distinct 
points in X, with the extra condition that any subset consisting 
of ::; n + 1 such vectors should be a set of rows in a matrix in 
GL(n + 1, Z). The rest of the proof should be extremely similar 
to that of Theorem 4.3.12. 
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(2) The same ideas apply to the cases n = 2 and n = 3j however, 
things are more complicated because of the fact that 8L(2, Z) is 
not perfect. In fact, it is a classical fact that 8L(2, Z) is generated 
by the elements 

T = (1 1) 
-1 0 

(this follows immediately from Theorem 2.3.2 and the relations 
eI2(1) = 8T- I , e21(1) = 8-IT)j furthermore, this gives a presen
tation of 8L(2, Z) as an amalgamated free product 

(The freeness is proved using the action of 8L(2, Z) on the upper
half plane--see [SerreTrees, p. 35].) Thus H I (8L(2, Z), Z) is the 
free abelian group on 8 and T satisfying the same relations, and 

so is cyclic of order 12. Examining the action of (~1 ~) on 

8L(2, Z), show that HI (GL(2, Z), Z) is isomorphic to (Z/2)2, with 
one of generators coming from 8L(2, Z). 

(3) Plugging the results of (2) into the argument of (1), show that 
H2(8L(n, Z), Z) is a finite 2-group for n = 3 or 4. (In fact, it is 
(Z/2)2 in both cases, but the corestriction map 

is not an isomorphism [vandenKallen].) 
(4) Deduce from (1) and (3) that K 2(Z) is, up to at worst a finite 

2-group, generated by the Steinberg symbol {-I, -I}. Careful 
analysis shows in fact that there is nothing else. Since we know that 
this Steinberg symbol is an element of order 2 (Example 4.2.13), 
K2 (Z) is of order 2. 

4. Applications of K 2 

In this section we discuss applications of K2 in several quite different fields. 
First are the rather direct applications to K I calculations that follow from 
the long exact sequence of Theorem 4.3.1. Then we briefly introduce the 
applications of K2 to number theory, which have attracted considerable 
recent attention. Finally, we mention some applications of K2 in analysis 
and topology. 

Computing Certain Relative K I Groups. One of the first applica
tions of K2 follows from Corollary 4.3.13 and Remark 4.3.14. Namely, we 
obtain a new proof of the following. 
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4.4.1. Theorem. Let R be the ring of integers in a number field, and let 
p be a non-zero prime ideal in R. Then SKI(R, p) = 1. 

Proof. We use the exact sequence of Theorem 4.3.1: . 

K 2(Rlp) -+ SK1(R, p) -+ SK1(R) -+ SKI (RIp)· 

Since Rip is a finite field (see the proof of Theorem 1.4.18), SKI (Rip) 
vanishes by Proposition 2.2.2 and K 2(Rlp) vanishes by Corollary 4.3.13 
and Remark 4.3.14. So SKI(R, p) ~ SKI (R). This vanishes by [Milnor, 
Corollary 16.3]. While this is a hard result, vanishing of SK1(R) is elemen
tary when R is a Euclidean ring (Theorem 2.3.2), so for instance we obtain 
relatively elementary proofs of the vanishing of SKI (R, p) when R = Z or 
R = Z[i] or R = Z[-ltY'3]. Proving this directly is not so easy even when 
R = Z (the proof sketched in Exercise 2.5.17 uses Dirichlet's Theorem on 
primes in arithmetic progressions). 0 

Similarly, we already know from Lemma 4.3.2 that when F is a field, 
there is a close relationship between K 2 (F) and SKI (F [t], (t2 - t) ). In fact, 
granted the non-trivial fact (which we haven't proved) that K 2 (R) ~ K 2 (F) 
for R = F[tJ, Matsumoto's Theorem for F is basically equivalent to a proof 
that there are no non-trivial relations (i.e., relations not consequences of 
the relations in Theorem 2.5.12), among the relative Mennicke symbols for 
SK1(F[t], (t2 - t)). 

4.4.2. Proposition [Keune]. The map a: K 2(F) -+ SKI(R) of Lemma 
4.3.2, where R = F[t] and I = (t2 - t), maps 

{a,b}1-+ [1+(a_1)(b~1)2 (t2 -t) (1+(b-1)t)(t2 -t)L. 

Proof. Using the notation of Lemma 4.2.15, let 

a(t) = WI2(a)x~~((a - 1)t)W~21( -a), -I} 
f3(t)=W21(-a )X21((1-a )t)W21(a ) 

in St(R). 

Then a(O) = wI2(a)wI2(-a) = 1 and f3(O) = w21(-a-1)w21(a-1) = 1. Let 

'Y(t) = a(t)x21 (a-1 )f3(t)X21 (_a-1 )XI2( (a - 1)t), 

so that 'Y(O) = X21 (a-1 )X21 (-a-I) = 1. Then 

'Y(1) = wI2(a)xI2(a -1)wI2(-a)x21(a-1) 

w21(-a-1)x21(1- a-1)w21(a-1)x21(-a-1)xI2(a -1) 

= wI2(a)xI2( -1)x21(a-1 )XI2( -a)xI2(a) 

x21(-a-1)x21(1- a-1)x21(a-1)xI2(-a)xI2(a -1) 

= wI2(a)xI2( -1)X21 (a- I )X21 (_a-1 )X21 (1)XI2( -1) 

= wI2(a)xI2( -1)X21(1)XI2( -1) 

= wI2(a)wI2(-1) = hI2(a). 
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So if 8(t) = b(t), h13(b)], 8(0) = [1, h13(b)] = 1 and 8(1) = [h12(a), h13(b)] 
= {a, b}. Thus 8( {a, b}) can be computed by tracing what happens 
when we apply the "snake" process in the proof of Theorem 4.3.1 to 
8(t) E St(R). Now 

'PR(h13(b)-y(t)-1 h13(b)-1) 

(
b 0 0) ( * = 0 1 0 (a- 1 - 1)2(t2 - t) 
o 0 b-1 0 

(b-1 0 0) 
010 
o 0 b 

-(a _1)2(t2 - t) O~) 
1 + (a -1)t 

o 

~ (b~l(a~l _:1)2('2 - ') -b(a - 1)2(t2 - t) 
1 + (a -1)t 

o 

The result then follows after simplifying. 0 
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Keune [Keune] used this to obtain a new proof of Matsumoto's Theorem 
along the following lines: 

(1) First prove that there are no non-trivial relations (i.e., relations 
not consequences of the relations in Theorem 2.5.12), among the 
relative Mennicke symbols for SK1(R, I). This is done in [Bass, 
Ch. VI, §2]. 

(2) Then show that K2 (F) is generated by Steinberg symbols, i.e., the 
natural map 't/J : Symb(F) -+ K2(F) is surjective. This uses only 
the easier part (surjectivity) of Theorem 4.3.12. 

(3) Then construct a map p : SK1 (R, I) -+ Symb(F) using the pre
sentations of the two groups. 

(4) Check by direct calculation that 8o't/Jop is the identity on generators 
of SK1(R, I), using Proposition 4.4.2. 

(5) It follows that 8 and 't/J have to be injective, proving in particular 
Theorem 4.3.15. 

We omit the details since we have not proved the hard fact that the relations 
of Theorem 2.5.12 give a presentation for SK1(R, I). We see also that this 
fact must be of difficulty comparable to that of Matsumoto's Theorem. 

K2 of Fields and Number Theory. The study of K2 of fields is in
timately connected with certain questions in number theory. The reader 
who wants to learn more about this relationship is referred to [Milnor, §11 
and §14-§16] and to [Srinivas, §8 (The Mercurjev-Suslin Theorem)] for a 
much deeper discussion, but we will try here to sketch at least a few basic 
ideas. To motivate everything, recall that our proof (Example 4.2.13) of the 
non-triviality of {-1, -1} E K 2(R) depended on the use of the quaternions 
Ill. In addition, as related circumstantial evidence, recall that {-1, -1} is 
trivial in K 2 (C) (Example 4.2.19), and that there is no non-trivial finite
dimensional division algebra over C (Ill ®IR C ~ M2(C)). And note as wen 
that we have shown that K2(Fq) = 1 for any finite field Fq , while it is a clas
sical fact due to Wedderburn that there are no non-commutative finite di
vision algebras. An these facts suggest a close relationship between K2 (F) 
for a field F and the existence of non-commutative finite-dimensional di
vision algebras over F, which is measured by the Brauer group Br(F), an 
important invariant of the arithmetic of the field. We will see that group 
homology makes an appearance in this subject as well. 

Before getting to the quaternion and division algebras, we start with 
something quite classical, and in fact closely related (see [SerreCourseArith, 
Ch. III]). As a by-product of our work, we will obtain a proof of the Law 
of Quadratic Reciprocity. 

4.4.3. Definition. Let F be a field of characteristic :f:. 2. The Hilbert 
symbol of F is the map ( , )F : FX x F X -+ {±1} defined as follows: 
if a, b E FX, (a, b)F = 1 if there exist x, y, Z E F, not all zero, such 
that Z2 = ax2 + by2, and ( a, b) F = -1 otherwise. It is clear that ( a, b) 
only depends on the images of a and b in FX j(FX)2. (Here (FX)2 is the 
subgroup of F X consisting of perfect squares.) Thus the Hilbert symbol is 
identically 1 if every element of F is a perfect square, for instance, if F is 
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algebraically closed. It is also clear that if F = JR, (a, b)F = 1 if and only 
if a and b are not both negative. 

4.4.4. Lemma. Let F be a field of characteristic", 2, and let a, bE FX. 
The Hilbert symbol (a, b) F is 1 if and only if a lies in the image of the 
norm map N : F( Vb) x -t FX . 

Proof. If b = c2 is a perfect square in F, then F( Vb) = F and N is 
the identity, so the condition is always satisfied. But in this case c2 = 
a·02 + b· 12 so (a, b)F = 1. So suppose b is not a perfect square in F. 
Then F(Vb) = {x + yVb: x, y E F} and 

N (F (v'b) X) = {x2 - by2 : x, y E F, not both O}. 

If a = x 2 - by2, then x 2 = a· 12 + by2, so (a, b)F = 1. Conversely, if there 
exist x, y, z E F, not all zero, such that z2 = ax2+by2, then ax2 = z2_by2. 
We can't have x = 0, since then N(z+yVb) = 0 and z+yVb = 0 (the norm 
is the product of the conjugates, so it vanishes only on the O-element), so 

a = N(z+yVb) = N (Z+YVb). 
x 2 X 

Thus a lies in the image of the norm map N : F( Vb) X -t FX. 0 

4.4.5. Proposition. Let F be a field of characteristic", 2, and suppose 
that for any quadratic extension F( Vb) of F, N(F( Vb) X) has index at most 
2 in FX. Then the Hilbert symbol (a, b)F, for a, b E F X, only depends 
on the Steinberg symbol {a, b} E K 2 (F), and defines a homomorphism 
K 2 (F) -t {±1}. 

Proof. Because of Matsumoto's Theorem (4.3.15), it's enough to show 
the Hilbert symbol satisfies the relations in Symb(F). Obviously the Hil
bert symbol is symmetric (or anti-symmetric, since it takes values in {±1}). 
Ifa", 0,1, then (a, 1-a)F = 1 sincea·12+(1-a).12 = 12. So we have only 
to prove bilinearity in the first variable. If (ab b)F = 1 and (a2' b)F = 1, 
then by Lemma 4.4.4, al and a2 lie in the image of the norm map N : 
F(Vb)X -t FX, hence so does their product. Similarly, if (aI, b)F = 1 and 
(a2, b)F = -1 or vice versa, then one of al and a2 lies in the image of the 
norm map but the other does not, so their product cannot lie in the image 
of the norm map and (ala2, b)F = -1. Finally, if (aI, b)F = (a2, b)F = -1, 
then b cannot be a perfect square in F, and al and a2 both represent non
trivial elements of the quotient group F X jN(F(Vb) X). However, by the 
hypothesis on F, this quotient group has only two elements, so al a2 is 
trivial in FXjN(F(Vb)X) and (ala2, b)F = 1. 0 

The hypothesis of Proposition 4.4.5 appears very special, but is satisfied 
in a non-trivial case of great interest, that of a local field. 
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4.4.6. Theorem. Let F be a local field of characteristic :f; 2, that is, JR, 
C, a finite extension of the p-adic numbers Qp, or the field IFq((t)) offormal 
Laurent power series over a finite field IFq (with q not a power of 2). Then 
for any non-trivial quadratic extension F(v'b) of F, N(F(v'b)X) has index 
exactly 2 in FX. 

Proof. When F = C, there are no non-trivial quadratic extensions. 
When F = JR, there is only one, namely C, and N(z) = Izl2 for z E C, so 
N (C X) = JR~, which has index 2 in JR x. Thus we may assume F is non
archimedean. Let R be the ring of integers in F and let p be its maximal 
ideal. The finite field Rip is called the residue-class field. Any quadratic 
extension P = F( v'b) of F is also a non-archimedean local field with its 
own ring of integers R and maximal ideal '.J1. Without loss of generality 
we may assume b E R X and b ffi p2. Choose generators 7f E R of p and 
ff E R of '.J1. The quadratic extensions are of two types: unramified, 
that is, those for which [RI'.J1 : Rip] = 2, and ramified, those for which 
[RI'.J1 : RIp] = I (these are the only two possibilities since it is easy to see 
that [RI'.J1 : RIp] :$ [F : F] = 2). Note that FX ~ {7fn U : nEZ, U E RX} 
and F(v'b)X ~ {ffnv : nEZ, v E RX}. Then it turns out that in the 
unramified case, N(RX) = RX and N(ff) = 7f2U for some u E RX, whereas 
in the ramified case, N(ff) = 7fU for some u E RX and N(RX) is of index 2 
in RX. In either case, N(F(v'b)X) has index 2 in FX. 

To prove this, we have to do a calculation. Since we're assuming the 
characteristic of F is not 2, the extension F( v'b) is separable with Galois 
group G = Gal(F( v'b)1 F) cyclic of order 2, with generator a : v'b 1--+ 

-v'b. First suppose F = lFq((t)) with q odd. Then equating coefficients 
of power series shows that any element b = L:o biti of R with leading 
coefficient bo = I is a perfect square, so there are only two kinds of non
trivial quadratic extensions of F: P = IF q2 (( t)), corresponding to taking b 
to be a constant power series b = bo ffi (IF;) 2 (this is the unramified case), 
and P = IF q ( ( v'bJ) ), corresponding to taking b = b1 t (the ramified case). 
Since N : IF;2 --+ IF; is surjective, it is easy to compute that N(RX) = RX 

and N(t) = t 2 in the first case, whereas in the second case, N( v'bJ) = -b1t 
but RX IN(RX) ~ IF; l(lF;)2. In either case, N(PX) has index 2 in FX. 

It remains to deal with the case where F is non-archimedean of char
acteristic 0, i.e., a finite extension of the p-adic numbers Qp for some p. 
In this case we can use the fact that the power series for the exponential 
and logarithm functions converge in a small enough disk and give an iso
morphism of groups from some small compact open subgroup U of R to a 
compact open subgroup eU of RX. Similarly, the exponential map gives an 
isomorphism from (hU +(}2U, with, say, (}l = I+v'b, ()2 = I-v'b, to an open 
a-invariant subgroup V of Rx. View px, RX , and V as G-modules via 
the action of a. If we consider the maps N : x 1--+ xa(x), a : x 1--+ xa(x)-l, 
then by Exercise 4.1.25, the chain complex whose maps are alternately N 
and a gives a calculation of the G-homology, where G = {I, a}, with H 2n , 

n> 0, being ker N/ima, and with H2n+1' n > 0, being kera/imN. Note 
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that ker a consists of the fixed points for a, which just gives the intersec
tion with F. Also, in the case of the G-module px, ima = ker N, i.e., 
H2n (G, PX) = 1, n > O. This is the simplest case of Hilbert's "Theorem 
90" -in this case, the proof is immediate, since obviously im a ~ ker N, 
while if 

N(xo + Xl Vb) = X5 - bx~ = 1, 

then either Xo = 1 and Xl = 0, so Xo + Xl Vb = 1, or else 

Xo + Xl v'b = (bXl + (xo - 1) v'b) (bXl - (xo - 1) v'b) -1 

= a (bXl + (xo -1) v'b) . 
Consider the long exact homology sequences (Proposition 4.1.9) applied to 
the short exact sequences of G-modules 

(4.4.7) 

(4.4.8) 1 - V - Ie - A - 1, 

where A is a finite abelian group since V is open in the compact group RX • 

From (4.4.7) we obtain for n large the exact sequence 

(4.4.7') 
H2n(G, Z) = 1- H2n- l (G, RX) _ H2n- l (G, PX) - H2n- l (G, Z) ~ G 

_ H2n- 2(G, RX) _ H2n- 2(G, PX) = 1. 

Since by construction G permutes (h and (h Shapiro's Lemma (Corollary 
4.1.12) shows that H.(G, V) ~ H.(1, U), so the higher homology vanishes. 
Thus from (4.4.8) we obtain for n large the exact sequences 

(4.4.8') ! H2n(G, V) = 1 - H2n(G, RX) - H2n (G, A) 

- H2n- l (G, V) = 1, 

H2n- l (G, V) = 1 - H2n- l (G, RX) - H2n- l (G, A) 

- H2n- 2(G, V) = 1. 

Since A is finite, H2n(G, A) and H2n- l (G, A) are finite and (non-canonical
ly) isomorphic (this is a consequence of the fact that for an endomorphism 
of a finite abelian group, the kernel and cokernel are non-canonically iso
morphic). So by (4.4.8'), H2n(G, RX) and H2n- l (G, RX) are finite and 
non-canonically isomorphic. Substituting in (4.4.7'), we see that 

H2n- l (G, PX) = kera/imN = F X /N(PX) 

has the same order as G, namely 2. One can also see from (4.4.7') that there 
are two cases, the unramified case where H2n- l (G, PX) - H2n- l (G, Z) ~ 
G is an isomorphism and 
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and the ramified case where H2n- l (G, PX) -+ H2n- l (G, Z) ~ G is the 
O-map and 

has order 2. 0 

Proposition 4.4.5 and Theorem 4.4.6 can often be used to construct non
trivial homomorphisms from K2 of a field to {±1}. For instance, in the 
case of Q, we obtain the following. 

4.4.9. Theorem. K 2 (Q) is a direct limit of finite abelian groups, and 
K 2 (Q) ®z Z/2 is an infinite direct sum of cyclic groups of order two, one 
for each prime number p. The Hilbert symbol ( , )Qp of the p-adic numbers, 
when restricted to Q, kills the summands of K 2 (Q) corresponding to primes 
other than p, and maps the summand corresponding to ponto {±1}. The 
Hilbert symbol ( , )R of the real numbers, when restricted to Q, is given 
by the product formula 

( , )R = II (, )Qp. 
p prime 

The product converges in the sense that for a, b E Q X, (a, b )Qp = 1 for all 
but finitely many values of p. 

Proof (partially attributed by Milnor to Tate [Milnor, §U]). By Theorem 
4.3.12, K 2 (Q) is generated by Steinberg symbols; furthermore, by the Fun
damental Theorem of Arithmetic, QX is generated by -1 (of order 2) and 
by the prime numbers p (linearly independent and each of infinite order). 
For each positive integer m, let Am be the subgroup of K 2 (Q) generated 
by Steinberg symbols {u, v} with u, v E Z, lui, Ivl ::; m. Then Am is an 
increasing sequence of groups and K 2(Q) = limAm. Note that Al is the 

----+ 
subgroup generated by {-I, -I}, which we know to have order exactly 2. 
(It can't have order greater than 2, but it maps to an element of order 2 in 
K 2 (1R) by Example 4.2.13.) Since any integer can be factored into primes, 
Am = Am- l if m is not prime. Also, A2 = Al since {2, -2} = 1 by 
4.2.17(a) and {2, -I} = {2, 1- 2} = 1 by 4.2.17(b). For p an odd prime, 
again {p, -p} = 1 and {p, 1 - p} = 1 by Theorem 4.2.17, so that {p, p} 
and {p, p-l} coincide with {p, -I}, which has order at most 2. We claim 
there is a surjective homomorphism F; -+ Ap/Ap_l' given by x 1--+ {x, p} 
mod A p- 1 for x = 1, ... ,p-1. This will show Ap/Ap-l is finite cyclic with 
order at most p - 1. Indeed, if x and y are positive integers ::; p - 1 and 
xy = kp + r, where the remainder r is a positive integer::; p - 1, then 

1 = {kP , 1- kP } = {kP , .!....-}, 
xy xy xy xy 

or by bilinearity, 

{kp, r}{kp, xy}-l{xy, r}-l{xy, xy} = 1. 
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Since x, y, k, r ::; p - 1, this shows 

{p, r Hp, xy} -1 = 1 mod Ap - I , 

or {xy, p} = {r, p} mod Ap - I , and so the homomorphism is well defined. 
It's surjective since {p, p} and {p, -I} coincide with {p, p-l} = {p-l, p}. 

By Proposition 4.4.5 and Theorem 4.4.6, (, )Qp defines a homomor
phism from K 2 (Q) to {±1}. Next we show that ( , )Qp is non-trivial on 
Ap and, for p an odd prime, also trivial on Ap- I . For the case p = 2, it's 
enough (by Lemma 4.4.4) to note that -1 is not a square in Q2, and also 
does not lie in N(Q2(A)X). Indeed, 

Q~ = {2n : n E Z} x {±1} x U, 

where U = {u E Z~ : u == 1 mod 4} [SerreCourseArith, §I.3.2], so -1 is 
not a square or a sum of two squares (i. e., a norm from Q2 ( A)) in Q~ , 
and (-1, -lh~2 = -1. 

Now suppose p is an odd prime. We claim (-1, -1)Qp = +1, which will 
show (-1, -1)Qp is trivial on Al = A2 • To see this, note that 

Q; = {pn : n E fl.} x IF; x U, 

where U = {u E fl.; : u == 1 mod p} (again see [SerreCourseArith, §I.3.2]). 
One can solve the equation x2 + y2 = -1 in IF P' since either -1 is a square 
mod p (when p == 1 mod 4), hence is a square in Qp, or else -1 is not a 
square mod p, lFp(A) = IFp2, and N: IF;2 -IF; is surjective. In either 
event, it follows from Lemma 4.4.4 that (-1, -1)Qp = 1. Furthermore, 
p is not a square in Qp, and Qp(.v'P) is a ramified quadratic extension of 
Qp, so that Z; /N(Zp(';p) X) is of order 2 by the proof of Theorem 4.4.6. 
Since everything in U '----t fl.; is a square, there is some positive integer 
k with 1 ::; k ::; p - 1 such that the image of k in F; '----t Z; is not in 
N(Zp(';p)X), and (k, p)Qp = -1. Thus ( , )Qp is non-trivial on Ap. On 
the other hand, if k and m are positive integers relatively prime to p, we 
claim that (k, m)Qp = +1. Indeed, if m or k is a square mod p, then it is 
also a square in Qp and this is obvious, whereas otherwise Qp( y'm) is an 
unramified quadratic extension of Qp, so that Z; /N(Zp(y'm)X) = 1 and 
k E N(Zp(y'm)X). In particular, this shows ( , )Qp is trivial on Ap- I . Since 
Ap/Ap-1 is cyclic and we see now that the various ( , )Qp's are linearly 
independent homomorphisms to {±}, it follows by induction on p that Ap 
is a direct sum of cyclic groups, each of even order, one for each prime 
pi ::; p, and that we may arrange for ( , )Q~ to be trivial except on the 
summand corresponding to p'. Passing to the limit, we get the desired 
structure theorem for K 2(Q). 

It remains to prove the product formula for ( , )R. Since ( , )R gives a 
homomorphism from K 2 (Q) to {±1}, it follows from the structure theorem 
just proved that it must be a product of ( , )Ql 's for various primes l. So we 
just need to check that each ( , )Ql occurs in the expansion. By bilinearity 
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and skew-symmetry of Steinberg symbols, it's enough to check the formula 
on {-1, -1}, on {-1, p} for p prime, and on {q, p} for p and q prime. We 
already know {-1, p} and {p, p} coincide in K 2 (Q) and that {2, 2} = 1, 
so we can dispense with the generators {2, 2} and {-1, p} for p prime. We 
know (-1, -1)R = (-1, -1)Q2 = -1 and (-1, -1)Qp = 1 when p is an 
odd prime, so ( , )Q2 must occur in the expansion of ( , )IR. Also, for any 
primes p and q, we have (q, p)1R = 1. On the other hand, given any prime 
I, then either p is a square in Ql , in which case (q, p)Qz = 1 for any q, or 
else Ql (.;P) is a quadratic extension of Ql. If this extension is unramified, 
which is the case if the image of p is not a square in lFl' in particular if I 
is odd and p =II, then N(ZI(';p) X) = Zr but I tj. N(ZI(.;P)X). So we see 
that (q, p)Qz = 1 for I odd, q =II and p =II, and (q, p)Qq = (p, q)Qq = -1 
for p =I q, q odd and p not a square mod q. If I = 2, then p is a square in 
Q2 x exactly when p == 1 mod 8. If p == 3, 5, 7 mod 8, then p is a square 
mod 2 but not a square in Q2 x, so Q2 (.;P) is a ramified extension of Q2. 
In this case, for q an odd prime, q E N (Q2 (.;P) X) exactly when q == 1 or 
-p mod 4. The extension Q2( J2) of Q2 is also ramified, and for q an odd 
prime, q E N(Q2(J2)X) exactly when q == ±1 mod 8. We still have to 
compute (-1, p)Qlp = (p, p)Qp for p odd. This is 1 exactly when -1 is a 
square mod p, which happens if and only if p == 1 mod 4. 

Now we can check that each ( , )Ql' I odd, occurs in the expansion of 
( , )R. For p an odd prime, (p, P)QI = 1 except perhaps for I = 2 and I = p. 
We have (p, p )Qp = -1 exactly when p == 3 mod 4, and (p, p )Ql2 = -1 
exactly when p == 3,5,7 mod 8 and p ¢. 1 or -p mod 4, i.e., when p == 3 
mod 4. So since we already know ( , )Ql2 occurs in the expansion of ( , )IR, 
( , )QI must also occur for I == 3 mod 4 to give the correct value on {I, I}. 
Similarly, for p an odd prime, (p, 2)QlI = 1 except perhaps for I = 2 and 
I = p. We have (p, 2)Q2 = -1 exactly when p == ±3 mod 8, so since 
we already know ( , )Q2 occurs in the expansion of ( , )R, ( , )QI must 
also occur for I == 5 mod 8 to give the correct value on {I, 2}. Finally, 
suppose p is a prime with p == 1 mod 8. We can show by induction on 
p that ( , )Qp must occur in the expansion of ( , )IR. Suppose inductively 
that ( , )QI occurs in the expansion of ( , )R for all I < p. (To start the 
induction, this is true for p = 17 since no smaller prime is == 1 mod 8.) 
Since p == 1 mod 8, p is a square in Q2 x , so (q, P)Q2 = 1 for any prime q. 
For q =I p odd, (q, P)QI = 1 except perhaps for I = q and/or I = p. Also, 
(q, p)Qq = -1 exactly when p is not a square mod q, and (q, p)Qlp = -1 
exactly when q is not a square mod p. If there is a prime q < p for which 
p is not a square mod q, then since we already know ( , )Qq occurs in the 
expansion of ( , )IR, ( , )Qp must also occur to give the correct value on 
{q, pl· 

So we need to show there is a prime q < P for which p is not a quadratic 
residue mod q. The following proof of this by contradiction is due to Gauss 
[Gauss, Disquisitiones Arithmeticte, §129]. Namely, let m = [.;P]. Since 
p ~ 17, 2m+ 1 < p. If p is a quadratic residue for all odd primes q < p, then 
it is also a quadratic residue modulo all odd prime powers < p (because of 
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Exercise 4.3.19(2», and since P == 1 mod 8, P is also a quadratic residue 
modulo any power of 2. From this one can see that any prime power q8 < P 
must divide 

p(p _ 12)(P _ 22 ) ••• (P _ m2) 

at least as many times as it divides (2m + I)!. Indeed, q8 divides [2';p] 
of the numbers 1, 2, ... , 2m + 1, and qB must divide P - j2 for some j since 
P is a quadratic residue mod qB. Gauss now argues that q8 must divide at 

least [2';tl] of the numbers 

~(P - 1), 2(P - 4), ~(P - 9), 2(P - 16), ... , 2(P - m2) or ~(P - m2). 

This is clear if qB = 2 or 4, since ~(P-l), ~(P-9), ... are all divisible by 4. 
But also [T) of these terms are divisible by 8, etc., so 2 divides the product 
of these terms as often as it divides (2m + I)!. H q is an odd prime, then 
in any consecutive qB integers j, there must be two for which q8 divides 

P - j2, and thus q8 must divide at least [2';tl] of the numbers P - p, 
1 ~ j ~ m. Thus, putting all this together, we see that TIj:o(P - j2) is 
divisible by (2m + I)!. But 

(2m + I)! = (m + 1)(m + 2)m(m + 3)(m - 1) ... (2m + 1)(1) 

= (m + 1)[(m + 1)2 - 1)[(m + 1)2 - 4)··· [(m + 1)2 - m2), 

so since TIj:l (P - j2) is divisible by (2m + I)!, we see that 

1 P - 1 P - 4 P - m 2 

m + 1 (m + 1)2 - 1 (m + 1)2 - 4 (m + 1)2 - m2 

is an integer. Since m + 1 > ..;p, however, all factors in this product are 
less than 1, and this is a contradiction of the assumption that P was a 
quadratic residue modulo all smaller primes. Thus ( , )Qp must also occur 
in the expansion. 0 

4.4.10. Corollary (Gauss' Law of Quadratic Reciprocity). Ifp and 
q are odd primes not both == 3 mod 4, then P is a square mod q if and 
only if q is a square mod p. If p and q are odd primes both == 3 mod 4, 
then p is a square mod q if and only if q is not a square mod p. 

Proof. This follows immediately from the product formula 

1 = (q, p)1R = (q, p)(b(q, p)Qq(q, p)Qp II (q, P)QI' 
I prime 
1#2,q,p 

The terms with 1 =F 2, q, P are all = 1, and the term (q, P)Q2 is 1 unless 
P and q are both == 3 mod 4, in which case it's -1. Finally, we've seen 
(q, p)Qq is 1 exactly when P is a square mod q, and (q, p)Qp is 1 exactly 
when q is a square mod p. 0 

Now we can explain the connection between K2 and the Brauer group. 
We start with the case of the Hilbert symbol, which is related to algebras 
of quaternions. 
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4.4.11. Definition. Let F be a field of characteristic", 2 and let a, b E 
FX. The quaternion algebra AF(a, b) is the (non-commutative) ass0-

ciative algebra over F obtained by dividing the free associative algebra on 
two generators x, Y over F by the relations x2 = a, y2 = b, xy = -yx. 
For example, when F = R and a = b = -1, x 1-+ i and y 1-+ j give an 
isomorphism from AF(a, b) to the Hamilton quaternions IHL In general, it 
is clear that AF(a, b) has dimension 4 as a vector space over F, with basis 
1, x, y, xy, and that F is precisely the center of AF(a, b) (here we are using 
the condition that the characteristic be '" 2). 

4.4.12. Lemma. Let F be a field of characteristic", 2 and let a, b E FX . 
If (a, b)F = 1, then AF(a, b) 9:! M2(F), whereas if (a, b)F = -1, then 
AF(a, b) is a non-commutative division algebra. 

Proof. If (a, b)F = 1, then either a and b are both perfect squares in 
FX, or else we may assume that b is not a square but a E N(F(.,fb)X). In 
the first case, suppose a~ = a and b~ = b. Then the matrices 

X=(ao 0), o -ao 
y=(O bo) 

bo 0 

satisfy the same relations as x and y, and so define an isomorphism x 1-+ X 
and y 1-+ Y from AF(a, b) to M2(F). In the second case, suppose a = 
u2 - 002 • Then the matrices 

X- , _ (-u -00) 
v u Y = (~ ~) 

satisfy the same relations as x and y, and so define an isomorphism x 1-+ X 
and y 1-+ Y from AF(a, b) to M2(F). 

Now suppose (a, b)F = -1. Then in particular, b is not a perfect square 
in FX. Define an F-linear automorphism - of AF(a, b) by requiring 
that I = 1, x = -x, fi = -y, xy = -xy = yx. Then - is an alge
bra anti-automorphism (i.e., it reverses the order of multiplication) and if 
Uo, Ul, U2, Ua E F, 

(Uo + UlX + U2Y + uaxy)(uo + UlX + U2Y + uaxy) 

= (uo + UlX + U2Y + uaxy)(uo - UlX - U2Y - uaxy) 

= ~ - u~a - u~b+u~ab. 

Thus if the quadratic form u~ - u~a - u~b + u~ab is definite (i.e., is 0 only 
if all the u's are 0), this shows AF(a, b) is a division algebra, and if not, 
AF(a, b) contains a zero-divisor. However, if u~ - u~a - u~b + u~ab = 0, 
then a(u~ - u~b) = u~ - u~b, or 

If one side of this equation vanishes, so does the other, and so all the u's are 
O. Otherwise, this shows a E N(F(.,fb)X), contradicting the assumption 
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that (a, b)F = -1. So the quadratic form ug - u~a - u~b + u~ab is definite 
and A( a, b) is a division algebra. 0 

Thus Proposition 4.4.5 can be reinterpreted as saying that existence 
of non-trivial quaternion algebras can be used to prove non-triviality of 
elements of K 2 • This seems consistent with the philosophy behind Example 
4.2.13, where Hamilton's quaternions l8l were used to prove non-triviality 
of K 2(R). 

In fact, even for fields not satisfying the somewhat stringent hypothesis 
of Proposition 4.4.5, the Hilbert symbol can be viewed as giving a non
trivial homomorphism 

(a, b)F 1-+ [AF(a, b)] 

from K 2 (F) to another group, but the difference in this case is that the 
target group is no longer {±1} but rather the abelian group which one can 
provisionally call Quat(F), with generators being the isomorphism classes 
of quaternion algebras AF(a, b), and relations 

[AF(a, b)][AF(a', b')] = [AF(a", btl)] 

if 
AF(a, b) ®F AF(a', b') ~ M2(AF(a", btl)). 

Instead of working out the details of this theory, which we leave to 
the reader as an exercise (Exercise 4.4.28 below), we go on to the natural 
generalization, which is the theory of the Brauer group of a field F. 

4.4.13. Definition. Let F be a field. A finite-dimensional F-algebra 
A (associative and with unit, but in general not commutative) is called 
central simple if its center is exactly A . 1 and it has no two-sided ideals 
other than 0 and all of A. The classical Wedderburn structure theory 
implies that any such algebra A is F-isomorphic to Mn(D), for some n ~ 1 
and some finite-dimensional F -division algebra D with center F. The D 
is uniquely determined up to isomorphism, since DOP ~ EndA(M) for any 
simple A-module M. It is easy to see that the tensor product A ®F B 
of two central simple F-algebras A and B, with multiplicative structure 
determined by 

is again central simple. 
Call two central simple F -algebras A and B stably isomorphic if for 

some r and 8, Mr(A) ~ Ms(B) (as F-algebras). Since we may assume 
A = Mnl(Dd and B = Mn2 (D2) for some division algebras Dl and D2, 
this is equivalent to assuming Mrnl (D1 ) ~ Msn2 (D2), which is possible 
if and only if Dl ~ D 2 • Thus each stable isomorphism class of central 
simple F -algebras contains a unique isomorphism class of central division 
algebras. The Brauer group of F, denoted Br(F), is the set of stable 
isomorphism class of central simple F-algebras, with product coming from 
the tensor product of algebras. This is obviously an abelian monoid with 
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identity element [F]; it is a group since if AOP denotes A with multiplication 
reversed, then 

A ®F AOP ~ EndF(A) 

via the identification (a®bOP ) (c) = acb, so that [A][AOP] = [EndF(A)] = [F] 
or [AOP] = [A]-I. For example, the anti-automorphism constructed in the 
proof of Lemma 4.4.12 shows that for a quaternion algebra, 

so that [AF(a, b)] has order at most 2 in Br(F). By Lemma 4.4.12, it has 
order exactly 2 if and only if (a, b) F = 1. 

If F is an extension field of F and A is a central simple F -algebra, then A 
is said to be split by F if F ®F A is F-isomorphic to Mn(F) for some n. It 
is a classical fact that every central simple F-algebra is split by some finite 
Galois extension of F. One can define a relative Brauer group Br(F; F) 
out of the stable isomorphism classes of F-split central simple F-algebras, 
and Br(F) = Br(F; F) if F is a separable closure of F. 

Brauer groups are actually cohomology groups of Galois groups in dis
guise, because of the following result. 

4.4.14. Theorem. If F is a finite Galois extension of a field F, and if 
G = Gal(F/F), then there is an isomorphism H2(G, FX) _ Br(F; F) 
which sends the class of a (normalized) 2-cocycle w to [AF(W)], where 
AF(W) is the "crossed product" which as an F-vector space is FG, but 
with "twisted" multiplication: UuX = a(x)uu, uuup = w(a, p)uup. (Here 
Uu is the basis element of AF(W) corresponding to a E G.) 

Proof. First we check that the indicated multiplication makes AF(W) 
into a central simple F-algebra, whose isomorphism class only depends on 
the cohomology class of w. Then we show that AF(W) is a matrix algebra 
over F if and only if W is a coboundary, and that every element of Br(F; F) 
can be realized as some AF(W). Finally we check that [w] 1-+ [AF(W]) 
defines a homomorphism H2(G, FX) _ Br(F; F). First of all, AF(W) is 
an associative algebra because of the 2-cocycle identity (recall the formulas 
in Definition 4.1. 7) 

which gives 

w(a, p)w(ap, e) = a(w(p, e))w(a, pe), 

(uuup)u~ = (w(a, p)uup)u~ = w(a, p)w(ap, e)uup~ 

= a(w(p, e))w(a, pe)uup~ 

= a(w(p, e))uuup~ 

= uuw(p, e)up~ 

= uu(upu~). 
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Since we've normalized our cocycle to have w(l, 0') = w(u, 1) = 1, U1 = 1 
is a unit element, and u;;l = UIT-1W(U, 0'-1)-1. Notice also that AF(W) has 
dimension IGI = [F: F] over F and thus dimension [F: F]2 over F. 

Next we check that AF(W) is a central simple F-algebra. Clearly F lies 
in the center. On the other hand, if z = EITEG XITUIT is central, then for 
any y E F we obtain 

so YXIT = xITu(y) for all u. Since for any 0' :f:. 1 we can choose y with y :f:. 
u(y), this implies X IT = 0 for all 0' :f:. 1, so z E F. Then since z commutes 
with U IT for all 0', we see z E F. This proves F is precisely the center . 
To check simplicity, suppose I is a proper ~sided ideal in AF(w), and 
let R = AF(w)/I. Then the quotient map AF(W) --. R must be injective 
when restricted to the copy of F inside AF(w), so R is an algebra over F 
with invertible generators uIT again satisfying the relations uITx = u(x)uIT , 
uITup = w(u, p)uITp, X E F and 0', pEG. Now the inner automorphism 
Ad uIT of R given by conjugation by uIT restricts to 0' on F, and since the 
u's are linearly independent over F, the uIT's are linearly independent over 
F (acting on the left). Thus dimF R = [F : F]2 = dimF AF(W), so I = 0 
and AF(W) is simple. 

Next we observe that the F-isomorphism class of AF(W) only depends 
on the cohomology class of win H2(G, FX). Indeed, suppose we replace 
W by w' = d1(cp)w, where cP : G --. FX is an arbitrary map (which we can 
assume sends IG to IF). Then we can define a linear isomorphism from 
AF(w') to AF(W) by U~ 1-+ cp(u)uIT (and by the identity on F). Since 

and 

(cp(U)UIT ) (cp(p)up) = cp(u)u(cp(p»uITup 
= tp(u)u(cp(p»w(u, p)uITp 

= (cp(u)u(cp(p»cp(up)-lW(U, p» (cp(up)uITp) 

= d1(cp)(u, p)w(u, p) (cp(up)uITp) = w'(u, p) (cp(up)uITp ), 

multiplication is preserved and we get an algebra isomorphism from AF(w') 
to AF(W), 

Note also that if W = 1, then AF(W) ~ EndF(F) ~ M[p:Fl(F), since 
in this case we have an isomorphism <P : AF(W) --. EndF(F) defined by 
<p(x)y = xy, <p(uIT)y = u(y) for x, y E F. (This is compatible with the 
multiplication in AF (I) since 

<p(UIT)<p(X)y = <p(uIT)(xy) = u(xy) = u(x)u(y) 
= <p(u(x»(u(y» = <p(u(x»<p(uIT)(y) 
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and since uuup = uup in this case, and thus 

The map iP must be an isomorphism by dimension-counting.) 
Conversely, if there is an isomorphism'll from AF(W) to AF(l), then 

the elements Vu = w-1(uu), a E G, and elements x' = '11-1 (x), x E 

F, satisfy the relations vuvp = vup , vuX' = (a(x))'vu. Since any two 
maximal commutative subfields of a matrix algebra are conjugate to one 
another, there must be an automorphism a of AF(W) sending x' to x. Let 
Wu = a(vu). Then we have the relations wuwp = wup, WuX = a(x)wu, 
while on the other hand uuup = w(a, p)uup, UuX = a(x)uu. So each 
uuw;;l commutes with every element of F. Since F is maximal abelian 
in EndF(F) ~ AF(l) and thus in AF(w), there are elements <p(a) E F X 
such that uuW;;l = <p(a). From this it easily follows that w = d1(<p). Thus 
AF(W) is a matrix algebra over F (and represents the identity in the Brauer 
group) if and only if [w] = 1 in H2(G, FX). 

Next suppose we have some central simple algebra A' = Mr(D) repre
senting a class in Br(F; F). Since A' is split by F, so is D, i.e., F ®F D ~ 
Endp(V) for some finite-dimensional F-vector space V. Then the central
izer of F in A = EndD(V) must consist only of F and dimF(A) = [F: F]2. 
So A represents the same class in Br(F; F) as A' and has the same di
mension as any AF(w), and F is maximal abelian in A. Furthermore, any 
F -automorphism a E G of F can be extended to an inner automorphism 
of A. (To see this, look at the orbits of AX on HomF(F, A) ~ F ®F A ~ 
M[F:F)(F).) SO there must be elements Uu of A, a E G, with UuX = a(x)uu 
for all x E F. Since uuup must differ from uup by an element of the central
izer of F in A, which is F itself, we must have uuup = w(a, p)uup for some 
w : G x G - Fx. The associative law in A forces w to obey the cocycle 
identity, and the F-linear span of the uu's is a quotient of AF(W). Since we 
have already noted that this algebra is simple, A = AF(W) by dimension 
counting. 

To conclude the proof, we need to see that the map [w]1--+ [AF(W)] is mul
tiplicative, in other words, that AF(W) ®F AF(W' ) is stably isomorphic to 
AF(WW' ). This will show that [w]1--+ [AF(W)] is an injective homomorphism 
H2(G, FX) _ Br(F;F). Now AF(W) ®FAF(W' ) is generated by a copy of 
F ® F F (which looks like a direct sum of n = [F : F] copies of F), together 
with elements Uu ® u~ with a, pEG. Choose a partition 1 = L:~=l ei of 
1 into orthogonal minimal idempotents in F ® F F. We can index these 
idempotents by elements of G so that conjugation by Uu ® 1 sends ep to 
eup and conjugation by 1 ® u~ sends ep to epu-l. Then one can see that 
A = AF(W) ®F AF(W' ) is isomorphic to Mn(A'), where A' = elAel. In 
particular, A' contains the el(uu ®u~)el' which satisfy the same relations 
as the generators of AF(WW' ), and by simplicity of the latter and dimen
sion counting, A' = AF(WW' ) so that A ~ Mn(AF(WW' )). This proves that 
[w]1--+ [AF(W)] gives a homomorphism H2(G, FX) _ Br(F; F). Since this 
homomorphism is surjective with trivial kernel, it's an isomorphism. 0 
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Remark. Although Theorem 4.4.14 was only formulated for finite Galois 
extensions, it is easy to see that it can be applied to infinite Galois exten
sions by passing to the limit. In particular, Br(F) ~ H2(G, FX), where F 
is a separable closure of F (the inductive limit of a maximal chain of finite 
Galois extensions, which exists by an application of Zorn's Lemma). 

Using Theorem 4.4.14, we can now generalize Proposition 4.4.5, and 
construct more homomorphisms from K 2(F) to various torsion groups. 
We begin with some classical facts about Galois cohomology which are of 
independent interest. 

4.4.15. Theorem. Let F be any field and let F be any finite Galois 
extension of F with Galois group G = Gal(F : F). Note that this acts on 
F and on F X byautomorphisms. Then Hl{G, FX) = 1. 

Proof. Let u : G -+ FX be a 1-cocycle. Since the elements of G are 
linearly independent over F as maps from F to itself, there is some x E F X 
for which 

y = 'E u(u)u(x) =f. O. 
ITEG 

Then for pEG, 

p(y) = 'E p(u(u))p(u(x)) 
ITEG 

= L U(p)-lU(pU)(PU(x)) 
ITeG 

= u(p)-l L u{u')u(x') = U(p)-ly, 
IT/eG 

so u{p) = p{y-l)y = d'l(y-l)(p) and u is a coboundary. 0 

4.4.16. Corollary ("Hilbert's Theorem 90"). Let F be any field and 
let F be any finite cyclic Galois extension of F. Let 0' be a generator 
of G = Gal(F : F). Then any element in the kernel of the norm map 
N: FX -+ FX is of the form xu(X)-l for some x E Fx. 

Proof. If y E kerN, then there is a unique 1-cocycle u : G -+ F X 

sending 1 to 1 and 0' to y. (The cocycle identity forces u{u2) = yu{y), 
u{u3 ) = U{U2)u2{y) = yu{y)u2(y), etc., and then if n = [F: F] = IGI, 

u(un) = yu(y)u2{y) .. , un-ley) = N{y). 

Since N(y) = 1, this agrees with u(1) = 1 and u is well defined.) By 
the Theorem, u is a coboundary, which just says y = xu(X)-l for some 
x E Fx. 0 

4.4.17. Theorem (Kummer). Let n be a positive integer, and let F be 
a field of characteristic 0 or of characteristic p not dividing n, containing a 
primitive n-th root of unity e. H F is a sufficiently large Galois extension 
of F with Galois group G = Gal( F : F), in particular if F is a separable 
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closure of F, then there is an isomorphism <p: FX I(Fx)n - Hom(G, J.Ln), 
where J.Ln is the multiplicative group of n-th roots of unity, defined by 
<p(y)(a) = a(y)y-l, where yn = x in P. (Note that y is well defined 
up to multiplication by a power of e, and since e E F, a(ei)e-i = 1 so 
that this definition is independent of the choice of y. Furthermore, a(y) 
must differ from y by a root of unity, so that a(y)y-l E J.Ln, and we get a 
homomorphism G - J.Ln since 

because of the fact that a fixes all roots of unity.) 

Proof. Consider the short exact sequence of G-modules 

- xt--+xn -1 _ J.Ln _ F X -----+ F X _ 1. 

This gives an exact sequence 

HO(G, J.Ln) = J.Ln _ HO(G, PX) = F X ~ F X 

~ Hl(G, J.Ln) = Hom(G, J.Ln) _ Hl(G, PX), 

and the last group in this sequence vanishes by Theorem 4.4.15. The The
orem follows upon decoding the definition of the connecting map 8. 0 

4.4.18. Theorem. Let n be a positive integer, and let F be a field of 
characteristic 0 or of characteristic p not dividing n, containing a primitive 
n-th root of unity e. Then there is a homomorphism, sometimes called the 
"norm residue symbol" or "Galois symbol," K 2(F) -{n-torsion in Br(F)} 
defined as follows. Use Theorem 4.4.14 to identify Br(F) with H2( G, PX), 
where P is a separable closure of F and G = Gal(P I F). View the Kummer 
isomorphism of Theorem 4.4.17, <p: F X I(Fx)n - Hom(G, J.Ln), as taking 
its values in Hom(G, Zln) = Hl(G, Zln), by identifying e with 1 mod n, 
and let f3 : Hl(G, Zln) - H2(G, Z) be the "Bockstein homomorphism," 
i. e., the connecting map in the long exact cohomology sequence of the short 
exact sequence of G-modules 

o-Z ~ Z- Zin-O. 

Then send {u, v} E K 2(F) to 

where we think of v as giving a map of G-modules Z _ px with 1 1--+ v. 
(This map is equivariant since v is fixed by the Galois group.) Note that 
(u, v) is an n-torsion class since <p(u) is an n-torsion class. (Note: the map 
( , ) as we've defined it depends on the choice of a primitive n-th root of 
unity e. This choice is canonical if n = 2 but not otherwise; to remove this 
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dependence on the choice of~, one can give a fancier definition with values 
in H2(G, /l-~2).) 

Furthermore, (u, v) = 1 if and only if v lies in the image of the norm 
map N : F( u ~) x -+ FX. (This explains the name "norm residue symbol.") 

Proof. The indicated formula for (u, v) is clearly bilinear in each vari
able. So by Theorem 4.3.15, it's enough to show that (u, 1 - u) = 1 if 
u -# 0, 1; anti-symmetry (or symmetry in the case n = 2, which was the 
case of the Hilbert symbol, since (±l)-l = ±1) will follow automatically. 
Incidentally, the continuation of the cohomology exact sequence used in 
the proof of Theorem 4.4.17 has the form 

which shows that H2(G, /l-n) can be identified with the n-torsion in 

Next we show (in analogy with Lemma 4.4.4) that (u, v) = 1 if and only 
if v lies in the image of the norm map N : F(u~)X -+ FX. Of course, 
if u E (Fx)n, then any v E FX is a norm, while cp(u) = 1 so (u, v) = 1 
for any v. So we can assume F(u~) is a proper Galois extension of F, 
say of degree d, where din, and the conjugates of u~ in F(u~) are u~j 
with j = 0, ~, ... , (d-d1)n. Let H = Gal(F(u~)IF), which is a cyclic 

quotient of G of order d, say with generator u mapping u~ to u~lj. Then 
cp(u) factors through H and cp(u)(u) = ~lj, or if we identify /l-n with Zin 
and use additive notation, cp(u)(u) = ~. So the cohomology class (u, v) 
factors through H2(H, F(u~)X), which by the proof of Theorem 4.4.6 is 

just F X IN (F ( u!. ) X). Under this isomorphism, (u, v) just goes to the 

class of v in FX IN (F (u!. ) X), proving our claim. 

Now we prove that (u, 1- u) = 1. We may assume as before that the 
conjugates of u~ in F(u!.) are u~j with j = 0, ~, ... , (d~l)n. So for v E F, 

d-l 
1· IT 1 .+iE. N(v-une) = (v-un~' d) 

j=O 

and 
n-l lj-l 

IT 1· IT 1 . 
Vn - U = (v - Une) = N(v - un~·). 

i=O i=O 

If we take v = 1, this shows 1 - u is a product of norms, hence a norm, 
and so (u, 1- u) = 1. 0 

Remark. Mercurjev and Suslin have shown that this map is actually an 
isomorphism from K 2 (F) ®zZln to the n-torsion in Br(F). However this 
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is quite a difficult result and we refer the reader to [Srinivas, §8] for the 
proof. We merely remark here that the map of Theorem 4.4.18 generalizes 
the map of Proposition 4.4.5 or the map sending {u, v} to the class in the 
Brauer group of the quaternion algebra AF (u, v). See some of the exercises 
at the end of this section. 

Almost Commuting Operators. As pointed out by Larry Brown 
[LBrown2], there is an interesting appearance of K2 in operator theory, 
having to do with determinants of multiplicative commutators of almost 
commuting operators. This subject was first studied by Helton and Howe 
[HeltonHowe]. To discuss this application, we begin with a quick discussion 
of K2 of rings of continuous functions. 

4.4.19. Theorem [Milnor, §7]. Let X be a compact Hausdorff space, let 
IF = JR. or C, and let R be a dense topological subalgebra ofCF(X) with the 
property that R is complete in its own FrOChet topology (stronger than the 
norm topology) and that if fER and f has an inverse in C'i (X), then f has 
an inverse in R. (The main cases of interest are either R = C'i (X) or R = 
COO(X, IF) with X a compact manifold.) Then iflF = JR., Ko(R) ~ KOO(X), 
K1(R) is an extension of KO-l(X) by the connected component of the 
identity in RX, and K 2(R) surjects onto KO-2(X). Similarly, iflF = C, 
Ko(R) ~ KOO(X), K1(R) is an extension of KU-1(X) by the connected 
component of the identity in RX, and K 2(R) surjects onto KU-2(X). 

Proof. The part about K o and Kl is proved in Exercise 3.1.23 in the case 
R = C'i(X). But, as noticed by Karoubi, basically the same proof works 
under the weaker hypothesis given here, which is enough to guarantee that 
the analogu~ of Theorem 1.6.3 and of Lemmas 1.6.6 and 1.6.7 will hold. So 
we just need to prove the part about K 2 • Since K 2 (R) is the kernel of the 
universal central extension of E(R), it will be enough by Remark 4.1.4 to 
construct a perfect central extension of E(R) with kernel Ki2 (X). First we 
note that E(R) is the connected component of the identity in SL(R). The 
inclusion one way is obvious, since every elementary matrix eij (a) can be 
homotoped to the identity via eij(ta), t E [0, 1]. The converse is proved by 
Milnor [Milnor, Lemma 7.4] by using the continuity of the usual procedure 
(see the proof of Proposition 2.2.2) for writing a matrix in SL(n, IF) as 
a product of elementary matrices. This shows that if one has a function 
X -+ SL(n, IF) which lies in Mn(R) and is sufficiently close to the identity, 
then it is a product of elementary matrices eij(a(t)) with each function a 
close to the identity in the topology of R. 

So we need to construct a perfect central extension of SL(R)O (the 
path-component of the identity) by Ki2 (X). Because of Examples 4.1.5, 
it's enough to construct a surjection from 7l'1(SL(R)O) to Ki2(X). Now 
SL(CF(X)) = limC(X, SL(n, IF)), and a loop in this space can be viewed -as an element of limC(Sl x X, SL(n, IF)). From this one can see that -7l'1(SL(C'i(X))O) is the kernel of the map 

[SI x X, limSL(n, IF)] ~ [X, limSL(n, IF)], - -



238 4. Milnor's K2 

where [A, B] denotes the set of homotopy classes of continuous maps from 
A to B. Now [X, limSL(n, IF)] is naturally isomorphic to Ki1(X) (see 

~ 

Exercise 3.1.23 again), and similarly [S1 x X, limSL(n, IF)] is naturally 
~ 

isomorphic to Ki1(S1 x X) = Ki1(X) EBKi2(X). So 7r1(SL(CIF(X))O) ~ 
Ki2(X). If R is only a dense subalgebra of CF(X), the same holds since 
SL(n, R) is a dense subspace of the path space C(X, SL(n, IF)) having the 
same fundamental group. 0 

4.4.20. Example. We are now ready for Brown's application of K 2(R), 
where R is a ring such as in Theorem 4.4.19. Though everything could be 
done in greater generality, we concentrate here on the case R = coo(S1, C), 
which illustrates all the main phenomena. Suppose we have a complex 
Hilbert space 1t and two invertible operators A and B in 1t such that the 
commutators AA * - A * A, BB* - B* B, AB - BA, and AB* - B* A are all 
in the trace-class operators 1:}(1t) (see Exercise 2.2.10). Then the images 
modulo the compact operators 7r(A) and 7r(B) of A and B modulo the 
compact operators and their adjoints 7r(A*) 'and 7r(B*) generate a com
mutative subalgebra of 8(1t)j1C(1t) which is also closed under the adjoint 
operation *. By the basic structure theory of such algebras, the norm clo
sure A of this algebra C[7r(A), 7r(A*), 7r(B), 7r(B*)] is *-isomorphic to an 
algebra C(X), for some compact subset Xc C2 called the joint essential 
spectrum of A and B. (This is the set of points (Z1' Z2) E C2 for which 
7r(A - Z1 . 1) and 7r(B - Z2 . 1) generate a proper ideal of A.) Suppose for 
instance that X is a smoothly embedded closed curve in C2 , so that we may 
also think of X as S1. This is the case, for instance, if 1t = L2 (S1), where 
we think of S1 as the unit circle in the complex plane, A is multiplication 
by z (the identity function S1 - C), and B is the operator sending zn to 
c,.,.zn, where the c,.,.'s are non-zero and bounded and L:~=-oo(Cn - Cn-1) 

converges absolutely. (In this example A-1 = A* and AB - BA = AT, 
where T = B - A-1 BA is a diagonal operator with eigenvalues c,.,. - c,.,.+1') 

Now by suitably closing the algebra of (non-commuting) polynomials 
in A, A*, B, B*, and the elements of 1:,1(1t), we get a Frechet algebra !2t 
(sitti:p.g inside 8(1t)) that fits into a short exact sequence 

(4.4.21) 

where the "symbol map" s sends A and B to the functions induced on X 
by the coordinate functions Z1 and Z2 on C2 • The algebra !2t is what's called 
in [HeltonHowe] an almost-commuting algebra. 

The problem now arises of computing the operator determinant 

det(ABA-1B-1), 

where det is defined in Exercise 2.2.10. This is well defined since 

s(ABA -1 B-1) = s(A)s(B)s(A)-1S(B)-1 = 1, 

and thus ABA -1 B-1 == 1 mod C1. 
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4.4.22. Proposition [LBrown2]. Suppose one is given an almost-com
muting algebra s.2l as in (4.4.21) and A and B are invertible operators in 
s.2l. (One doesn't need to assume anything about the space X.) Then 
det(ABA-l B-1 ) only depends on the Steinberg symbol {s(A), s(B)} E 
K 2 (R), and in fact is the image of this element under the composite 

where a is the connecting map in the K-theory exact sequence of (4.4.21), 
and det is the operator determinant. 

Proof. We need to compute a({s(A), s(B)}) according to the recipe in 
the proof of Theorem 4.3.1. By Corollary 4.2.16, 

This obviously lifts to 

in St(s.2l), whose image in GL(s.2l) is the matrix 

So 

det 0,,* ° a( {s(A), s(B)}) = det (~ ABA ~1 B-1 ) 

= det(ABA -1 B-1). D 

4.4.23. Corollary ([HeltonHowe], [LBrown1]). If one is given an almost
commuting algebra s.2l as in (4.4.21) (but without having to assume anything 
about the essential joint spectrum X), and A and B are invertible operators 
in s.2l, the determinant invariant det(ABA -1 B-1 ) only depends on f = s(A) 
and on 9 = s(B) in COO(X), and so can be written d(f, g). It is defined for 
any invertible functions f and gin COO(X) which lift to invertible operators 
in s.2l, and satisfies the following formal properties: 

(1) d(1, g) = d(g, 1) = 1, 
(2) d(hh, g) = d(h, g)d(h, g), 
(3) d(f, g) = d(g, f)-I, d(f, ±f) = 1, 
(4) d(f, 1- f) = 1 (assuming f and 1- f are both invertible). 

Proof. Everything except the relation d(f, f) = 1 follows immediately 
from Proposition 4.4.22 and Theorem 4.2.17. Since det(AAA-IA-l) = 
det 1 = 1, we also have d(f, f) = 1. D 
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4.4.24. Remarks. (1) Given an invertible function f E Coo(X), the 
question of when there is an invertible operator A E m with s(A) = f de
pends on another K-theoretic invariant of (4.4.21), the Brown-Douglas
Fillmore index invariant 'Y : K- 1 (X) -+ Z. In the simplest case 
where X = 8 1 , this just depends on the winding number of f as a map 
8 1 -+ ex (see Exercise 4.4.30 below). Indeed, the "stable" obstruction 
to lifting f to an invertible element of m is given by the boundary map 
a: Kl(Coo(X)) -+ Ko(.c1 ('J-l)) ~ Z of Theorem 2.5.4, and it is easy to see 
that this map must be trivial on the connected component of the identity 
in G£(Coo(X)), since if s(A) = f, s(eA ) = ef and eA is invertible. So using 
Theorem 4.4.19 applied to the structure of K1 (COO (X)), a factors through 
K- 1(X) and gives a map 'Y. We also know that if 'Y(f) =J 0, then there is 
no invertible A with s(A) = f. The converse is true as well, since in this 
case we can remove the stabilization in the proof of Theorem 2.5.4, using 
the fact that a matrix of operators can be viewed as a single operator. 

Thus Brown [LBrown1] observed that 

d: (f, g) 1-+ deto~* o8({f, g}) 

is a map satisfying all of the above relations except for d(f, f) = 1, which 
is now replaced by d(f, f) = (-1)1'(f) (which seems more natural from the 
point of view of K2)' The determinant invariant is the restriction of d to 
pairs (f, g) with 'Y(f) = 'Y(g) = O. 

(2) The original proof of Corollary 4.4.23 was operator-theoretic and 
considerably more complicated, and also obscured the relationship between 
the determinant invariant and K 2 • This shows the power of K-theoretic 
methods. 

(3) Helton-Howe and Brown actually gave a formula for d in the case 
where X = 8 1, which shows as a consequence that K 2 (COO (81)) has 
to be extremely complicated. (In other words, the kernel of the map 
K2(Coo(81 )) -+ KU-2(81 ) = Z of Theorem 4.4.19 has to be quite large.) 
The formula is 

d(f ) - ~ Jfax ~ - ay ~ d ( 
Qi. a- Qi. a- ) 

,g-exp 2' - m, 
7ft f9 

where j and 9 are smooth extensions of f and g from the circle to the 
disk, and m is Lebesgue measure on the disk multiplied by the integer 
-'Y(z), where z is the standard generator of K-1(81). This formula involves 
derivatives, which suggests that K2(C(81 )) may be rather different from 
K2(Coo(81 )). 

Pseudo-isotopy. Finally, we briefly mention an application of K2 in 
the topology of manifolds, which has been worked out by Hatcher, Wag
oner, and Igusa. This will involve an obstruction group Wh2 (G), which 
is a certain quotient of K2(ZG), where G is the fundamental group of the 
manifold in question. 
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4.4.25. Definition. Let G be a group and let R = ZG be its integral 
group ring. Let Wa be the subgroup of St(R) generated by all Wij(g), 
9 E G, where Wij(g) is defined as in 4.2.12. The second Whitehead 
group of G is by definition 

Note that if G is trivial, R = Z and Wa is the group generated by 
the wij(l)'s. Since by Exercise 4.3.20, K2(Z) ~ Z/2, with a generator 
that by Example 4.2.19 can be written as WI2(1)4, K 2(Z) c W{l} and 
Wh2 ({1}) = 1. 

When G is of the form Z x H, then ZG ~ ZH[t, t- l ], and in analogy 
with the Bass-Heller-Swan Theorem, Theorem 3.2.22, one can show that 
K 2(ZG) ~ K 2(ZH)E9K1(ZH)E9{NK-terms). This gives a decomposition of 
Wh2{G) as Wh2 {H)E9Wh{H)E9{NK-terms). If H is trivial, the NK-terms 
vanish and one obtains Wh2{Z) = 1. However, this calculation shows that 
Wh2(G) does not vanish in general, since Wh2{Z x Zip) :2 Wh{Z/p) i= 1 
for p a prime ~ 5. 

Wh2 (G) shows up in topology basically in the following way. Suppose 
Mn is a compact connected smooth manifold with n sufficiently large (some 
of the theorems in this area work for n ~ 5, others only for n ~ 7), and for 
simplicity suppose M is without boundary. It is often interesting to be able 
to compute '7ro{Diff{M», the group of components of the diffeomorphism 
group of M, or in other words, the group of isotopy classes of diffeomor
phisms. (By definition, two diffeomorphisms are said to be isotopic if they 
lie in the same path-component of the diffeomorphism group. This group 
is locally contractible, so in particular, the path-components are the same 
as the components.) For instance, as we saw in the discussion following 
Corollary 2.4.5, '7ro{Diff{sn-I» parameterizes the set of smooth structures 
on sn, since every homotopy n-sphere is obtained by gluing two standard 
n-balls by means of a diffeomorphism of sn-l. 

However, it is difficult to tell in practice when two diffeomorphisms ho 
and hI are isotopic to each other. It is often easier to tell when they are 
pseudo-isotopic, meaning that there is a diffeomorphism of the cylin
der M x [0,1] restricting to ho on M x {O} and to hI on M x {I}. Of 
course, if there is an isotopy ht from ho to hI, then h(m, t) = (ht(m), t) 
defines a pseudo-isotopy, but a pseudo-isotopy comes from an isotopy only 
if it is "level-preserving," i.e., sends M x {t} to itself for all t E [0, 1]. 
Understanding the difference between isotopy and pseudo-isotopy depends 
on being able to compute '7ro(P(M», where P(M) is the pseudo-isotopy 
space of M, that is, the group of diffeomorphisms h of M x [0, 1] restricting 
to the identity on M x {O}. A famous theorem of Cerf [Cer~ showed that 
if M is simply connected, then P(M) is path-connected. Since P{M) acts 
continuously on Diff (M) QY h· 9 = hlg and the orbit of the identity consists 
of all diffeomorphisms pseudo-isotopic to the identity, this shows that this 
set is path-connected, i.e., that any two pseudo-isotopic diffeomorphisms 
are isotopic to each other in the simply connected case. 
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The problem arises as to what happens when M has a non-trivial fun
damental group, say 1r. The answer is related to algebraic K-theory, as 
shown by the following result of Hatcher and Wagoner: 

4.4.26. Theorem [HatWag]. If M n , n ~ 5, is a smooth compact con
nected manifold without boundary and with fundamental group 1r, then 
there is a surjection of1ro(P(M)) onto Wh2 (1r}. 

Remark. In some cases, [HatWag] also computed the kernel of the map 
1ro(P(M}} -t Wh2 (1r} and identified it with a Wh1 obstruction. However, 
one has to read the literature with caution since there was a mistake in the 
original results that was later corrected in [Igusa]. 

Since the proof of Theorem 4.4.26 is extremely complicated, we content 
ourselves here with only a brief hint of some of the ideas involved, in order 
to see the connection between P(M} and K 2 • The starting point of the 
proof is an observation of Cerf that P(M} is homotopy-equivalent to the 
space E(M} of functions I : M x [0,1] -t [0, 1] which are smooth, have 
no critical points, and satisfy I(x, O} = ° and I(x, I} = 1 for all x E M. 
The homotopy equivalence is simply the map that sends h E P(M} to 
I : (x, t) 1-+ 112 0 hex, t}, where P2 : M x [0, 1] -t [0, 1] is projection onto 
the second coordinate. A homotopy inverse E(M} -t P(M} to this map is 
constructed by fixing a Riemannian metric on M and sending I E E(M) to 
the pseudo-isotopy constructed from its gradient flow. So given h E P(M), 
its obstruction in Wh2 (1r) will be constructed using a path It of smooth 
functions M x [0, 1] -t [0, 1] with 10 = 112 and II = 10 0 h. If this path can 
be deformed to one with no critical points, then h must lie in the identity 
component of P(M). One starts by using the usual ideas of differential 
topology to deform I to a "generic" function with non-degenerate isolated 
critical points, and then analyzes what happens as one goes from one critical 
point to the next (so far this is like the start of the proof of the h-cobordism 
theorem). In the simplest case where are the critical points are either of 
index i or index i + 1, one gets for each t a realization of M x [0, 1] as being 
obtained from M x [0, 1] by attaching i-handles and (i + I)-handles. Since 
M x [0, 1] is topologically a product, these handles have to cancel as far as 
their effect on (1r -equivariant) homology of the universal cover is concerned, 
so one gets an intersection matrix A(t) in GL(Z1r) measuring how the i
handles (coming from critical points of index i) are cancelled by the (i + 1)
handles. For t close to 0, A(t) is the identity matrix; near t = 1 it is a 
product of a permutation matrix and a diagonal matrix with entries of the 
form ±g, 9 E 1r; and in between it changes finitely many times by certain 
elementary matrices ejk(±g). So if one takes the Steinberg generators 
Xjk(±g) corresponding to the ejk(±g), one finds that their product gives 
rise to an element of St(Z1r) which lifts A(I). Using Lemma 4.2.15, one can 
find another lift of A(I) as a product of the Wjk(±g)'S, and so as an element 
of W7l"' Dividing, one gets an element of K2 (Z1r) which is well defined 
modulo W7I"' i.e., an element of Wh2(1r). One can show that this element 
doesn't change under smooth deformation, so it gives an obstruction to 
being able to deform I to a function without critical points. 
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4.4.27. Exercise (Practice with the homological definition of the 
Brauer group). Use Theorem 4.4.14 to show that Br(JR.) is cyclic of order 
2, with generator [lffi], and that the Brauer group of a finite field is trivial. 
(Hint: any finite extension of a finite field IF q is Galois and cyclic, with 
Galois group generated by the Frobenius automorphism x I-t xq • Similarly, 
the only finite extension of JR. is C, with cyclic Galois group generated by 
complex conjugation. For a cyclic group, the Galois cohomology is easy to 
compute as in the proof of Theorem 4.4.6.) 

4.4.28. Exercise (The "quaternion algebra symbol"). Let F be a 
field and let Quat(F) be the subgroup of Br(F) generated by the quaternion 
algebras AF(a, b). Since, as remarked in Definition 4.4.13, [AF(a, b)] has 
order 2 whenever the Hilbert symbol (a, b)F is non-trivial, Quat(F) is an 
abelian group of exponent 2, and thus a direct sum of cyclic groups of 
order 2. Show directly that {a, b} I-t [AF(a, b)] gives a homomorphism 
K2(F) -- Quat(F). Then show that this map coincides with the norm 
residue symbol of Theorem 4.4.18 in the case n = 2, e = -1. 

4.4.29. Exercise. Generalize the result of Exercise 4.4.28 by showing that 
the norm residue symbol of Theorem 4.4.18 coincides with the map sending 
{a, b} to the class in the Brauer group of the central simple F -algebra of 
dimension n2 with generators x and y satisfying the relations xn = a, 
yn = b, and xy = eyx. Hint: let P = F(b*) and rewrite this central simple 
F-algebra as the algebra determined by a class in H2(Gal(FjF), PX). 

4.4.30. Exercise (The "Toeplitz algebra"). This exercise will con
struct an explicit almost-commuting algebra of the form (4.4.21) with 
X = SI for which one can compute the determinant invariant of Corol
lary 4.4.23. 

(1) Let L2(SI) denote the (complex) L2-space of the unit circle SI 
in C, with respect to normalized Lebesgue measure 2~d(}. If z : 
SI __ SI is the identity map, then L2(SI) has {zn : n E Z} as 
an orthonormal basis. Let'H = H2, the "Hardy space," be the 
Hilbert subspace of L2(SI) with orthonormal basis {zn : n ~ O}, 
and let p be orthogonal projection L2(SI) --'H. Let I E coo(SI), 
and define the Toeplitz operator Tf on'H by Tf(g) = p(fg) for 
9 E 'H, where Ig is the ordinary pointwise product. Note that if 
I is "analytic," i.e., has no non-zero negative Fourier coefficients, 
then Tf is simply multiplication by I. Show that Tj = T[. where 
1 is the complex conjugate of I, and that the commutator of Tf 
and Tg , for I, 9 E coo(SI), is a trace-class operator. (You will 
need the fact that the Fourier coefficients en of a Coo function are 
"rapidly decreasing," i.e., that for any positive integer k, enlnlk -
o as n -- ±oo.) Deduce that the algebra m generated by the Tf, 
I E Coo (SI ), together with all trace-class operators on 'H, is an 
almost-commuting algebra with symbol map s : Tf I-t I. 
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(2) Show that for this example, the index invariant, of Remark 4.4.24 
(1) is (with a suitable choice of orientations) given by 

,(f) = -(winding number of f) = ~~ Isl j(~1' 
for I E Coo (81 , eX). Thus Tf is invertible if and only if (f(z) f:. 0 
for all z E 8 1 and ,(f) = 0). 

(3) Let 
d: (f, g) f-+ deto". o8({f, g}) 

as in Remark 4.4.24(1). Show by explicit computation that d(z, z) 
= -1. Then using the fact that Coo (81, eX) I ker, is infinite cyclic 
with z as generator, deduce the relation d(f, I) = (-1)'Y(f). 

(4) When I, 9 : 8 1 -t e and ,(f) = ,(g) = 0, then I and 9 have 
continuous logarithms log(f) and log(g). Show [HeltonHowe] using 
the Campbell-Baker-Hausdorff formula (cf. Exercise 2.2.10) that, 
in this case, 

det(TfTgTj1T;1) = exp (Tr (l1og(f)l1og(g) -l1og(g)l1og(f»)) . 

Show that if the Fourier coefficients of log(f) and of log (g) are 

aj and bj , respectively, that this gives exp (Ei=_ooia-jbj). In 
particular, the determinant invariant is highly non-trivial on the 
kernel of the map K2(COO(81)) -t KU-2(81 ) ~ Z. 

4.4.31. Exercise (K2 of Laurent polynomial rings and Wh2). 

Show that if R is a ring, then K1(R) is a direct summand in K2(R[t, r1]). 
Here is a suggestion of how to proceed. First suppose one has a class in 
K 1(R) represented by some matrix a E GL(n, R). Using Morita invariance 
of K2 (Exercise 4.2.23), one can replace R by Mn(R) and suppose a E RX. 
Let 8 be the subring of R[t, r1] generated by 1, a, a-1, t, and r1. Then 
8 is commutative and a, t E 8 x , so the Steinberg symbol {a, t} is well 
defined in K2(8). Map the class of a in K 1(R) to the image in K2(R) of 
{a, t}, and show that this gives a well-defined homomorphism from K 1(R) 
to K2(R[t, r1]). 

To get a homomorphism in the other direction, note that R[t, r1] ~ 
R[s, t]/(st - 1), and use the boundary map in Theorem 4.3.1: 

K2(R[t, r1]) -t K1(R[s, tJ, (st - 1)) 

composed on one side with the map K 1 (R[s, t], (st-1)) -t K1(R) induced 
by mapping R[s, t] to R and on the other side with the map K2(R) -t 

K2(R[t, r1]) induced by a suitable inclusion of R into R[t, r1]. 
Use the identification of K1(R) as a direct summand in K2(R[t, r1]) to 

get an identification of Wh( 7r) as a direct summand of Wh2 (Z x 7r). Deduce 
from Theorem 4.4.26 that for high-dimensional connected closed manifolds 
M with 7r1(M) ~ Z x Zip, P(M) is not path-connected. 



5 
The +-Construction 

and Quillen K -Theory 

1. An introduction to classifying spaces 
When the subject of algebraic K-theory first grew up, considerable effort 
went into the search for definitions of "higher K-functors" K i , i ~ 2, that 
would fit nicely into exact sequences such as that of Theorem 4.3.1. This 
effort led to Milnor's definition of K 2 , given in the last chapter, and to 
the study of its properties. However, for a while there seemed to be no 
good way to define the expected functors K i , i ~ 3. (With hindsight, 
we now know that one could have given a straightforward definition of 
K3(R) as H3(St(R), Z), for reasons which will be apparent in Theorem 
5.2.7 and Corollary 5.2.8, but it's hard to see how one could have arrived 
at this without giving at the same time a reasonable definition of Ki for 
all i ~ 3.) This situation changed dramatically with the work of Daniel 
Quillen in the early 1970s, for which he was awarded the Fields Medal 
(the highest international honor in mathematics) in 1978. Quillen had 
the idea that one should try to construct the higher K-functors not one 
at a time but all at once, as the homotopy groups of a topological space 
(or, from a more sophisticated point of view, as the homotopy groups of a 
"generalized space" or "spectrum"). Thus one should have spaces K(R) for 
any ring Rand K(R, I) for any ring R together with a two-sided ideal I, 
well defined up to homotopy equivalence, so that one could define Ki (R) = 
7ri(K(R)) and Ki(R, I) = 7ri(K(R, I)). Of course, these would be required 
to coincide with the classical definitions when i = 0 or 1, and R - K(R), 
(R, I) - K(R, I) should be functors into the homotopy category of spaces 
(in which the morphisms are homotopy classes of continuous maps). The 
desired long exact sequence 

should then arise as the long exact homotopy sequence of a fibration (this 



246 5. The +-Construction and Quillen K-Theory 

will be explained below in Theorem 5.1.24) 

K(R, I) -+ K(R) -+ K(RjI). 

Quillen managed to carry out this program, in fact giving two very 
different constructions of the functor R - K(R), which he called the +
construction and the Q-construction. Since Quillen did his original 
work, the +-construction has remained basically unchanged, though there 
are now a whole slew of alternate versions of the Q-construction, sometimes 
called "infinite loop machines" (see [Adams]). Each of these constructions 
has its own advantages and disadvantages, and much of the power of K
theory comes from the rather hard theorem that they all give naturally 
equivalent functors. The one feature of all the constructions, however, is 
that they depend on the notion of a classifying space. Our objective 
in the first section of this chapter is to explain the notion of a classifying 
space and some of the algebraic topology needed to understand the general 
framework of Quillen's program. The rest of the chapter will focus on the 
details of the simplest of Quillen's constructions, the +-construction. The 
student who really wants to thoroughly learn about higher K-theory also 
needs to learn about the Q-construction, the proof that the +-construction 
and the Q-construction are equivalent, and the "resolution theorem," "de
vissage theorem," and "localization theorem" (these are the analogues for 
higher K-theory of the main results of Chapter 3), but these are difficult 
results and are well treated in §§2-7 of [Srinivas], so we will not do more 
than to give a very quick sketch of them in §3 below. 

From the facts that K 1(R) = GL(R)ab ~ H1(GL(R), Z) and that 
K2(R) ~ H2([GL(R); GL(R)], Z), it should already be apparent that for 
any reasonable definition of a space K(R) that would give rise to the K
groups Ki(R), the homology of K(R) (as a topological space) should some
how be related to the homology of GL(R) (as a group). In fact, we will see 
that for any group G, one can construct a space BG, called the classifying 
space of the group G, whose homology as a space is identical to the homol
ogy of G as a group. The idea of the +-construction is then to construct 
K(R) as a suitable modification of the classifying space BGL(R). A con
sequence will be that for all i ~ 1, there is a natural transformation, the 
Hurewicz map, from Ki(R) to Hi(GL(R), Z), which is an isomorphism 
for i = 1 and is the first main tool for calculating Ki(R) for i ~ 2. 

Since we don't assume that the reader has had a course in homotopy 
theory, and since such courses don't always go into the theory of classifying 
spaces, we begin with some preliminaries on the theory of fibrations and 
CW-complexes. A reader with a strong background in topology can skip 
ahead at this point to the statement of Theorem 5.1.15 and Definition 
5.1.16, and can then go on to the next section of the chapter. The next few 
results were known in various forms by work of Hurewicz and Steenrod, 
but in the generality stated here were proved by Dold in the very elegant 
paper [Dold]. 

5.1.1. Definition. If E and B are topological spaces and p : E -+ B is 
a continuous map (in applications, always also open and surjective), then 
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a continuous map S : B - E with p 0 S = idB is called a section of p. If 
A ~ B, a halo around A (Dold's terminology) is a set V with A ~ V ~ B 
such that there is a continuous function I : B - [0, 1] with I = 1 on A, 
I = ° on the complement of V. For instance, B itself is a halo around 
o (take I = 0), and if Al and A2 are disjoint and closed in B, and B 
is normal, in particular if B is compact Hausdorff, Al has a halo which 
doesn't meet A2 (Urysohn's Lemma). We also write PA : EA - A for 
Plp-l(A) : p-l{A) _ A. We say P : E - B has the section extension 
property if whenever A ~ B and S : A - EA is a section of PA which 
extends to a section s' of Pv for some halo V around A, then s (though 
not necessarily s') extends to a section s of p. Sometimes in this context s 
is called a local section of P and s is called a global section. 

If E = B x F for some space F and if P is projection onto the first 
factor, then sections of P are of the form y 1--+ (y, I(y)) for continuous 
maps I : B - F. Thus the section extension property in this case is 
equivalent to a Tietze-like extension property for maps into F. 

5.1.2. Lemma. If E = B x F for some contractible space F and if p : 
E - B is projection onto the first factor, then p has the section extension 
property. 

Proof. Let h : F x [0, 1]- F be a contraction, that is, a map such that 
there is a point Xo E F with h{x, 1) = x, h{x, 0) = Xo for all x. Let A ~ B, 
let V be a halo around A, and let I : B - [0, 1] with I = 1 on A, 1=0 
on the complement of V. If s is a section of PA which extends to a section 
s' of Pv, let g and g' be the corresponding maps into F and define a global 
extension 9 of g by 

{
xo, y fj. V, 

g{y) = h{g'{y), I{y)), y E V. 0 

5.1.3. Lemma. If p : E - B is a continuous map with the section 
extension property and I : B - [0, 1] is continuous, then Pw has the 
section extension property, where W is the open set 1-1 «0, 1]). 

Prool [Dold]. Suppose g : W - [0, 1] is continuous and s is a section 
of P over the open subset g-l«O, 1]) of W (which is of course also open in 
B). We need to find a sections of Pw which agrees with s on A = g-l{l). 
Inductively we construct sections Sn, n = 2, 3, ... , of p so that Sn converges 
on W to s. This will be done by guaranteeing at each step that Sn+l = Sn 
on I-l«~, 1]) (this ensures that the sequence sn{x) is eventually constant 
for x E W) and that Sn = S on l-l«n~I' 1]) ng-l«n~l, 1]) (this ensures 
that the sequence sn{x) eventually agrees with s{x) for x E W n g-l{l)). 
To start the induction, we need a section S2 agreeing with s where I > l 
and g > !. The pointwise product Ig is continuous on all of B (if we 
define it to be ° on the complement of W), and s extends from the set 
where I > l and g > ! to the halo in B where I g > 0, so s has a global 
extension S2 by the section extension property for p. For the inductive 
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step, assume we've constructed 82, ... , 8 n with the correct properties. We 
need to construct 8 n+1 agreeing with 8 n on f-l((~, 1]) and with 8 on 
f-l((n~2' l])ng-l((n~l' 1]). Choose a continuous and decreasing function 
(it can be piecewise linear) kn : [0, 1] -7 [n~2' ~] with kn(t) = ~ ift ~ n;;:l, 
kn(t) = n~2 if t 2: n~l' Let An = {x E W : f(x) > kn(g(x))} and let 
Vn = {x E W : f(x) > n~1 kn(g(x))}. Now 8 n and 8 agree on the set where 
both f > n~ 1 and 9 > n;;: 1 , so we can define a section of p over An by 
using 8 n where f > n~1 and by using 8 where 9 > n;;:l. (One or the other 
of these inequalities,holds everywhere on An.) It will be enough to extend 
to a halo and then use the section extension property for p. Now if 

hn(x) = (n + l)f(x) - nkn(g(x)) 
kn(g(x)) 

for x E Vn " An, hn(x) = ° for x i Vn, and hn(x) = 1 for x E An, then 
hn is continuous on all of B. Thus Vn is a halo for An and we can do the 
inductive step using the section extension property. D 

5.1.4. Theorem [Dold]. Let B be a paracompact HausdoriI space, let E 
and F be HausdoriI spaces, and suppose P : E -7 B is an open continuous 
surjective map with the property that each x E B has a neighborhood 
Ux such that there is a homeomorphism CPx : p-l(Ux ) ~ Ux x F with 
Plp-l (U",) = PI 0 CPX' (Here PI denotes projection onto the first factor.) 
Assume F is contractible. Then the map P is a homotopy equivalence. In 
fact, one can choose a section 8 of P such that there is a homotopy from 
idE to 8 0 P which is ''vertical,'' that is, commutes with p. 

Proof. The key to the proof is to construct a global section of p. For 
this purpose it is enough to show that P has the section extension property 
(then take A = 0). Since B is paracompact, the given covering {UX},:EB 
of B can be refined to a covering {Va}aEA so that there is a partition of 
unity fa subordinate to {Va}. (This means that each fa is a continuous 
function B -7 [0, 1], that supp(fa) ~ Va, and that Ea fa = 1.) Then 
by Lemma 5.1.2, each Pvc< has the section extension property. Next, by 
Lemma 5.1.3, we can replace each Va by f.;I((O, 1]), and each PVc< will still 
have the section extension property. Let A ~ B, and suppose A = g-l(l), 
where 9 : B -7 [0, 1] is continuous. Suppose 8 is a section of Pv, where 
V = g-I((O, 1]). We have to show that 81A has an extension to a global 
section of p. Let F be the set of pairs (T, 8T), where T is a subset of 
the index set A and 8T is a section of PVUVT extending 81A. Here VT is 
shorthand for UaET Va' Order F by 

(T, 8T) ~ (T', 8TI) {:} T ~ T' and 8TI extends 8T. 

Then F is non-empty, since it contains (0, 8), and every chain in F clearly 
has an upper bound, so by Zorn's Lemma, F has a maximal element 
(8, 88)' We claim V U V8 = B. If not, choose {3 with V,a not contained in 
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v U Vs. Define h: V,8 -+ [0, 1] by 

h( ) - . (1 g(x) + ~a:ES !a:(X)) 
x - mIll, !(3(x) . 

Then h > ° on (VUVs )nv,8, where ss is defined. So by the section extension 
property for V(3, there is a section s' of PV,a extending the restriction of ss 
to h-l (l), a set containing An V,8. Now define a section s" of P over 
V U Vs U V,8 by letting sex) = ss(x) off V,8 and on the part of V,8 where 
hex) = 1, and letting sex) = s'(x) on the part of V(3 where hex) < 1. Then 
(8 U {,B}, s") E F, contradicting maximality of (8, ss). Hence ss is a 
global section extending slA and B has the section extension property. In 
particular, P has a global section s. 

To complete the proof, we will show there is a vertical homotopy from 
idE to sop. Since po s = idB, this will show in particular that p is a 
homotopy equivalence. Note that the argument we just gave also shows 
that Pl : E XB E x [0, 1] -+ E x [0, 1], where E XB E = {(x, y) E E x E : 
p(x) = p(y)} and Pl is the projection Pl(X, y, t) = (x, t), has the section 
extension property. (E is not necessarily paracompact, but the covering 
of B used above pulls back to a covering of Ex [0, 1] with a partition of 
unity.) Let 

A = Ex {O, 1} ~ V = E x ([0, i) U (i, 1]) ~ E x [0, 1]. 

Then V is a halo around A and 

{
(x, x, t), t < i, 

lex, t) = 3 
(x, so p(x), t), t>"4 

is a section of (Pl)V. By the section extension property, the restriction of 
this section to A has a global extension. Composing with projection on the 
second copy of E, we get the desired vertical homotopy. 0 

Our reason for going through the proof of Theorem 5.1.4 will be to prove 
the next result. 

5.1.5. Theorem. Let G be any group. Suppose Xl and X2 are con
tractible Hausdorff G-spaces, that is, contractible Hausdorff topological 
spaces equipped with a actions of G by homeomorphisms, such that G acts 
freely and properly discontinuously on Xj (i.e., such that for all x E Xj, 
there exists a neighborhood Uz ofx such that g·uznuz =f 0 only for 9 = 1), 
and such that the quotient spaces Xj/G are paracompact, j = 1, 2. (Recall 
that any of the following is automatically paracompact: any compact Haus
dorff space, any second-countable locally compact Hausdorff space, or any 
CW-complex.) Then the quotient spaces XdG and X 2 /G are homotopy
equivalent. 

Proof. If X is Hausdorff and G acts freely and properly discontinuously 
on X, then the quotient map q : X -+ X/G is easily seen to be a local 
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homeomorphism and a covering map with G as group of covering transfor
mations. (If U", is a neighborhood as in the statement of the theorem, then 
q : U", - q(U",) is a homeomorphism and q(U",) is evenly covered, with 
q-l(q(U",)) = llgEG 9 . U",.) In particular, X/G is Hausdorff. Incidentally, 
if X is also a nice enough space, say locally contractible, X/G is locally 
contractible with X as a simply connected, and thus universal, covering 
space, and with G as its fundamental group. 

Now suppose one has two G-spaces Xl and X 2 as in the theorem, for 
which the quotient spaces are paracompact. Let ql : Xl - Xl/G and 
q2 : X 2 - X 2/G be the quotient maps. Let X = Xl X X 2 , equipped with 
the product topology and the diagonal action g. (Xl, X2) = (g. Xl, g. X2). 
Then X is again Hausdorff and contractible, and the action of G on X 
is also free and properly discontinuous. It will be enough to show that 
the projection map Pl : X - Xl induces a homotopy equivalence Ph : 
X/G - Xl/G. (Then by symmetry, P2 induces a homotopy equivalence 
X/G - X 2 /G, and Xl/G and X 2 /G are each homotopy-equivalent to 
X / G, hence homotopy-equivalent to each other.) Since Pl commutes with 
the G-actions on X and Xl. it induces a map Pl* : X/G - Xl/G. This 
map satisfies the hypotheses of Theorem 5.1.4, with F = X 2, since X2 is 
contractible, Xl/G is paracompact, and X/G is locally a product. Hence 
Ph is a homotopy equivalence by Theorem 5.1.4. D 

Our next objective will be to prove existence of spaces X as in Theorem 
5.1.5, but from this point on in the chapter, we will need to use some basic 
algebraic topology of CW-complexes. While we won't give a course on the 
subject here, we will at least for the reader's convenience summarize some 
of the main theorems and give references and some sketches of proofs. 

5.1.6. Definition. Let (X, A) be a pair of topological spaces, so that 
X is a topological. space and A ~ X. Fix a point Xo in A, called the 
basepoint. The nth (relative) homotopy group (or set) of (X, A), 
denoted 7rn(X, A, xo) or 7rn(X, A) if the basepoint is understood or irrel
evant, is the set of homotopy classes of maps Bn _ X with restriction 
mapping 8Bn = sn-l to A and some fixed basepoint in sn-l to Xo. When 
A = {xo}, this is the same thing as 7rn(X) = 7rn(X, xo), the set of homo
topy classes of maps of sn = Bn / sn-l to X which send the basepoint of 
sn to the basepoint Xo of X. When the basepoint of X is understood or 
irrelevant, the notation 7rn(X) is usually used. For n 2': 1, 7rn(X, xo) is 
a group, and for n 2': 2 it is an abelian group, where the group structure 
comes from thinking of Bn as the n-cube and "stacking" two copies of B n 
on top of one another, then mapping the larger cube which is the union 
of the original cubes to X by mapping each half separately. Similarly, the 
relative groups 7rn(X, A) are groups if n 2': 2 and abelian groups if n 2': 3. 
There is an exact sequence, called the long exact homotopy sequence 
of the pair (X, A), of the form 
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where i* is induced by the inclusion, a comes from restricting a map 
(Bn, sn-l) ~ (X, A) to sn-\ and the map 7l"n(X) ~ 7l"n(X, A) comes 
from thinking of 7l"n(X) as 7l"n(X, {xo}) and taking the map induced by the 
inclusion of {xo} into A. For further details, see [Spanier, Ch. 7, §2] or 
[Whitehead, Ch. IV, §§1-3]. 

If X is path-connected, then 7l"n(X, xo) ~ 7l"n(X, Xl) for any two base
points Xo and Xl. However, one gets an isomorphism 

for each homotopy class of paths from Xo to Xb and the isomorphisms 
obtained this way may differ, so if X is not simply connected, the isomor
phism is not canonical in general. In this way the group 7l"l(X, xo) operates 
on 7l"n(X, xo) for all n. A space is said to be simple if this action is trivial 
(for any choice of basepoint). 

A space X is called O-connected if it is path-connected, I-connected 
if it is path-connected and simply connected (i.e., path-connected and 
7l"l(X, xo) = 0 for any choice of basepoint), n-connected if it is path
connected and 7l"j(X) = 0 for all j ~ n, or equivalently, if every map sj ~ 
X, j ~ n, is homotopic to a constant map. Similarly, a pair (X, A) is called 
relatively n-connected if every map (Bj, Sj-l) ~ (X, A), j ~ n, is ho
motopic relative to Sj-l to a map into A. This is equivalent to assuming 
A meets every path-component of X and that 7l"j(X, A, xo) = 0 for every 
j ~ n and for every choice of basepoint. (Again, see [Spanier, Ch. 7, §2].) 

5.1.7. Definition. A pair of spaces (X, A) is called a relative CW
complex if A is closed in X and there is a filtration of (X, A) by closed 
subspace pairs (Xk, A), called skeleta, where XO is obtained from A by 
adding O-cells (i.e., taking the disjoint union with a discrete space), Xk is 
obtained from X k - l by attaching k-cells, the skeleta exhaust X, and X has 
the weak topology determined by the skeleta. If A is empty, we just say X 
is a CW-complexj this means XO is discrete, Xl is obtained from XO by 
attaching 1-cells, etc., and a set in X is closed if and only if its intersection 
with each closed cell is closed. 

There is an obvious notion of CW-subcomplex, which is required to be 
closed in the original complex. The skeleta (Xk, A) are (relative) CW
subcomplexes of (X, A). (X, A) is said to have dimension n if it has at 
least one n-cell but X k = X for k ~ nj it is said to be finite if there are 
only finitely many cells or countable if there are only countably many 
cells. A map (X, A) ~ (Y, B) between relative CW-complexes is called 
cellular if it sends Xk to yk for each k. 

Now we summarize the main homotopy-theoretic facts about CW-com
plexes. 

5.1.S. Theorem ("Homotopy Extension Theorem"). If (X, A) is a 
relative CW-complex, then the inclusion of A into X is a colibration, i.e., 
given a homotopy h: A x [0, 1] ~ Y, where Y is any space, and given any 
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extension Ho of ho to a (continuous) map X -+ Y, there is an extension 
H : X x [0, 1] -+ Y of h which coincides with Ho on X x {O}. 

Sketch of proof. This is proved (as is almost any theorem about CW
complexes) by induction over the skeleta. The key step is to handle the case 
where X is obtained from A by attaching an n-cell, i. e., X = AUf Bn, where 
f : sn-l -+ A. Then the theorem reduces to being able to define a map 
H : Bn x [0, 1] -+ Y when H is prescribed on (Bn x {O}) U (sn-l x [0, 1]). 
One visualizes Bn x [0, 1] as a cylinder, and H is already prescribed on 
the side and base of this cylinder. So we define H by first retracting the 
cylinder to the side and base and then using the already-defined map there. 
The retraction may be defined by projecting down from some point above 
(see Figure 5.1.9(a)). 0 

/\ 

[0,1] 

x 

5.1.9. Figure: 

(a) A retraction to the base 
and sides of a cylinder 

(b) Attaching a single 
m-cell to A 
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5.1.10. Theorem. If (X, A) is a relative CW-complex witb cells only of 
dimension ~ n (wbere n ~ 1), tben (X, A) is (n - I)-connected. 

Sketch of proof. Again, this is basically reduced by induction to the 
case where X = AUf Bm for some m ~ n, where f : sm-I - A is 
an attaching map. Then A has a neighborhood V in X which has a de
formation retraction down to A, and so that X " V is homeomorphic to 
Bm (see Figure 5.1.9(b)). Suppose k ~ n - 1 and one is given a map 
9 : (Bk, Sk-I) _ (X, A). One can prove using the Simplicial Approxi
mation Theorem that (Bm, sm-I) is (m -I)-connected. Then using this 
fact one can compress f (reI Sk-I) into V. Finally, compress f down to A 
using the deformation retraction from V to A. D 

5.1.11. Corollary. If (X, A) is a relative CW-complex, tben tbe map 
1rn(Xk, A) - 1rn(X, A) is surjective for k = n and an isomorphism for 
k > n. (Here we suppose n ~ 2 unless A is a single point, so tbat tbe 
bomotopy sets are groups.) 

Proof. Since X is obtained from Xk by attaching cells of dimension 
~ k + 1, (X, Xk) is k-connected by the theorem, and thus (for any choice 
of basepoint in A), 1rn(X, Xk) = 0 for n ~ k. Splicing the long exact 
homotopy sequences of the pairs (X, A), (X, Xk), and (Xk, A) gives the 
long exact sequence of the triple (X, Xk, A): 

1rn+1(X, Xk) ~ 1rn(Xk, A) -1rn(X, A) _ 1rn(X, Xk), 

from which the result follows. D 

5.1.12. Theorem ("Cellular Approximation Theorem"). Any map 
(X, A) - (Y, B) between relative CW-complexes is bomotopic (reI A) to 
a cellular map, and existence of a bomotopy between two cellular maps 
between relative CW-complexes implies existence of a cellular bomotopy 
between tbem. 

Sketch of proof. Again this is done by induction on skeleta, using the 
Homotopy Extension Theorem (Theorem 5.1.8) and Theorem 5.1.10. For 
details, see [Whitehead, Ch. II, Theorem 4.6] or [Spanier, Ch. 7, §6]. D 

5.1.13. Theorem ("Whitehead's Theorem"). A CW-complex X is 
contractible if and only if it is connected and 1rn(X, xo) = 0 for all n (for 
some choice of a basepoint xo). A relative CW-complex (X, A) is rela
tively contractible if and only if A meets every patb component of X and 
1rn(X, A, xo) = 0 for any cboice of a basepoint and for any n. A map f : 
X - Y between connected CW-complexes X and Y is a bomotopy equiv
alence if and only if it induces an isomorpbism 1rn(X, xo) ~ 1rn(Y, f(xo)) 
for some (bence for all) Xo EX. 

Sketch of proof. First we give the idea of the contractibility result in 
the absolute case. Suppose X is a connected CW -complex and we choose 
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the basepoint Xo in the O-skeleton. Assume 7rn (X, xo) = 0 for all n. First 
contract the O-skeleton to xo, which is possible since X is path-connected. 
One can extend the homotopy to all of X using the Homotopy Extension 
Theorem (Theorem 5.1.8). Then contract the I-skeleton down to the 0-
skeleton, using the fact that X is simply connected, and again extend 
the homotopy to all of X. Doing the homotopies in sequence, one has a 
homotopy from idx to a map sending the I-skeleton to Xo. Continue this 
process one skeleton at a time, and pass to the limit. The limiting map 
is continuous by definition of the weak topology, and gives a contraction 
of X. The relative case is quite similar but just technically a little more 
complicated. 

Next consider the case of a map f : X ---T Y between connected CW
complexes X and Y. Let Zf = (X x [0, 1]) Uf Y be its mapping cylinder. 
Then f is a homotopy equivalence if and only if the inclusion of X into Z f 
(as X x {O}) is a homotopy equivalence. Fix a basepoint Xo in the O-skeleton 

of X. If f is a homotopy equivalence, then certainly f* : 7rn(X, xo) ~ 
7rn (Y, f(xo)) is an isomorphism for all n. Conversely, if this condition is 
satisfied, first homotope f to a cellular map I' using Theorem 5.1.12; then 
f; is also an isomorphism for all n. This is equivalent to saying that the pair 
(Z!" X) is n-connected for all n. But the pair can be given a relative CW
structure so I' is a homotopy equivalence by the first part of the theorem. 
Then f is a homotopy equivalence since it is in the same homotopy class 
as 1'. 

For more details, see [Spanier, Ch. 7, §6] or [Whitehead, Chs. II, IV, and 
V]. 0 

To do any sort of calculations of homotopy groups, one needs to have a 
few basic cases with which to get started, and then one can try to apply 
exact sequences or other homological machinery. The key to this is to relate 
homotopy groups to homology groups, which are much easier to calculate. 
Recall that if (X, A) is a relative CW-complex, the singular homology 
groups H.(X, A; R) coincide with the cellular homology groups, which 
are the homology groups of a chain complex C.(X, A; R) with Ck(X, A; R) 
the free R-module on the relative k-cells of (X, A), and with boundary 
maps determined by the attaching data of the cells. The link between 
homotopy and homology is then given by the following. 

5.1.14. Theorem (The "Hurewicz Theorem"). Let (X, A) be a 
pair of spaces with basepoint Xo E A. There are natural transforma
tions (each usually called the "Hurewicz map") 7r.(X, A) ---T H.(X, A; Z), 
7r.(X) ---T H.(X; Z), defined by sending the homotopy class of a map 
f: (Bn, sn-l) ---T (X, A) to f*([Bn, sn-l]), where [Bn, sn-l] is the stan
dard generator of the infinite cyclic group Hn (Bn, sn-l; Z), or by sending 
the homotopy class of a map f : sn ---T X to f*([sn]), where [sn] is the 
standard generator of the infinite cyclic group Hn(sn; Z). The Hurewicz 
map factors through HO(7rl(X), 7r.(X)) (group homology here!) in the 
absolute case, or through HO(7rl(A), 7r.(X, A)) in the relative case. 

If X is n-connected, n 2: 0, then Hj(X; Z) = 0 for j ::; n, and the 
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Hurewicz map induces an isomorphism from 7rI(X, XO)ab to H I(X; Z) (if 
n = 0) or from 7rn +1(X, xo) to Hn+1(X; Z) (if n > 0). Conversely, if X 
is i-connected and Hj(X; Z) = 0 for j :::; n, n > 1, then X is in fact 
n-connected. 

Similarly, if X and A are path-connected and (X, A) is n-connected, 
n:::: 1, then Hj(X, A; Z) = 0 for j :::; n, and the Hurewicz map induces an 
isomorphism from HO(7rI (A, xo), 7rn +I(X, A)) to Hn+1(X, A; Z). 

Sketch of proof. It is clear that the Hurewicz map is well defined and 
natural, and also easy to see that it takes the same value on [f] and on 
b]' [f], where [,] is the class of some loop in 7rI(X, xo) (absolute case) or 
7rI(A, xo) (relative case). Thus the Hurewicz map kills everything of the 
form [f]- b] . [f], which means it factors through HO(7rI(X), 7r.(X)) or 
HO(7rI(A), 7r.(X, A)). 

The hard parts are therefore the isomorphism theorems. The complete 
proof is quite tricky and requires proving the absolute and relative theo
rems simultaneously by induction on n. (See [Spanier, Ch. 7, §§4-5] or 
[Whitehead, Ch. IV, §§6-7].) However, we can at least give a hint of how 
to proceed. The fact that 7rI(X, XO)ab ---7 HI (X; Z) is an isomorphism for 
path-connected spaces is relatively elementary and can be done directly 
from the definition of singular homology. This is used to start the induc
tion. Then one possible strategy is to use the fact that taking the loop 
space of a (pointed) space shifts all the homotopy groups down by 1, so 
that X is n-connected if and only if OX is (n - 1 )-connected. Thus if X 
is n-connected, n :::: 1, Hj(OX; Z) = 0 for j :::; n - 1 and the Hurewicz 
map 7rn +I(X) = 7rn (OX) ---7 Hn(OX; Z) is an isomorphism. Thus if one 
can relate the homology of X to that of OX (which can be done using the 
so-called Serre spectral sequence), one can hope to show that the Hurewicz 
map 7rn +I(X) ---7 H n+1(X; Z) is an isomorphism. 

Let us sketch another sort of proof for the absolute case when X is 
a CW-complex. Suppose X is an n-connected CW-complex with n :::: 
1, and choose a basepoint Xo in the O-skeleton XO of X. By the proof 
given above of Theorem 5.1.13, there is a homotopy from idx to a map 
which collapses the n-skeleton xn to Xo. Thus X is homotopy-equivalent 
to the complex X, = XI xn with one-point n-skeleton and thus with no 
(reduced) cellular j chains for j :::; n, and Hj(X; Z) ~ Hj(X'; Z) vanishes 
for j :::; n. Furthermore, the (n + I)-skeleton X,n+I of X, is a wedge 
of sn+1 'so Suppose we know the absolute Hurewicz Theorem for such a 
space (surjectivity is obvious, and injectivity can be proved by a direct 
geometrical argument, as in [Whitehead, Ch. I, §3]). Now consider the 
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commutative diagram 

(X,n+2 X,n+l) 1l"n+2 , -- H (X,n+2 X,n+l. Z) n+2 , , 

81 81 
1l"n+1 (X,n+1) -- H (X,n+1. Z) n+1 , 

1 1 
1l"n+l (X,n+2) -- H (X,n+2. Z) n+1 , 

1 1 
1l"n+l(X') -- Hn+1(X'; Z). 

Then the first horizontal map is surjective, since each generator of the 
relative Hn+2 comes from an (n + 2)-cell which gives a class in the rela
tive 1l"n+2-grouP, and the second horizontal map is an isomorphism, since 
X,n+1 is a wedge of spheres. As for the vertical maps, the image of the 
first in each column is the kernel of the second, and the last is an isomor
phism. (In the case of homology, this is because all cellular (n + I)-chains 
come from the (n + 1)-skeleton, and all cellular (n + I)-boundaries must 
be boundaries of chains from the (n + 2)-skeleton. In the case of homo
topy, this follows from Corollary 5.1.11.) So the Hurewicz map is certainly 
surjective in degree n + 1 for X' and thus for X. To prove injectivity, 
suppose g: (sn+1, *) ---+ (X,n+\ xo) maps to 0 in Hn+1(X'; Z), and thus 
in Hn+1(X,n+2; Z). Then the homology class [g] corresponding to 9 in 
Hn+1(X,n+1; Z) is the boundary of some cellular (n + 2)-chain in X,n+2, 
i. e., of some linear combination of (n + 2 )-cells in X'. Then using surjectiv
ity of the relative Hurewicz map for (X,n+2, X,n+1), we see there is a class 
in 1l"n+2(X,n+2, X,n+1) mapping to the class of gin 1l"n+1(X,n+1), and the 
image of the class of 9 vanishes in 1l"n+1(X,n+2) and thus in 1l"n+1(X'). 0 

We return now to the subject of "classifying spaces." 

5.1.15. Theorem. Let G be a group. Then there exists a contractible 
OW-complex X on which G acts freely and cellularly (hence properly dis
continuously) with a OW-complex as quotient space. 

Proof. The construction follows Eilenberg and Mac Lane [EilMacL, p. 
369]. In their terminology, XjG is called a K(G, I)-space. 1 Let Xo = G 
(with the discrete topology; this is of course a O-dimensional CW-complex) 
and inductively define Xn = X n- 1 * G for n ~ 1, where * denotes the 
"join" of spaces. Intuitively, the join A * B of two non-empty spaces A 
and B is constructed by taking disjoint copies of A and B which are in 
"general position" in some big Euclidean space and taking the union of 
all line segments joining a point in A to a point in B. More precisely, 

IThe construction was later generalized by Milnor [MilnorUB] to the case where G 
is a topological group. 
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A * B is, as a set, the quotient space A x B x [0, 1]/ "', where'" is trivial 
on A x B x (0, 1) and (a, b, 0) '" (a, b', 0), (a, b, 1) '" (a', b, 1), for all 
a, a' E A and for all b, b' E B. (The equivalence classes of the (a, b, t), 
t E [0, 1] should be viewed as a line segment from a E A to b E B. Note 
that if B consists of a single point, A * B is just the cone on A with B as 
the cone point.) G acts on Xo = G by left translation and inductively on 
Xn = Xn- l *G by g·(x, g', t) = (g·x, gg', t) (this action on Xn- l xGx [0, 1] 
preserves'" and so descends to the quotient space Xn- l * G). Note that 
the action is obviously free. There is a G-equivariant embedding of Xn- l 
in Xn sending x E Xn- l to the equivalence class of the (x, g, 0), 9 E G, 
and we let X = lim Xn with the obvious free G-action. Then we can 

--t 

make the Xn's, and X = X oo , into CW-complexes for which the G-action 
preserves the cellular structure, with the additional properties that Xn has 
dimension n and is a subcomplex of Xm for m > n. The closed j-cells, 
j ~ n, of Xn will be the closed j-cells of Xn- l (provided j ~ n - 1), 
together with the joins Ej-l * 9 of a closed (j - I)-cell Ej-l of Xn- l 
with a point in G, together with a copy of the points of G if j = O. The 
cells of X are just the union of the cells of the Xn's. It is easy to see 
that there is a unique CW-topology on Xn or on X compatible with the 
cellular structure. (Recall that in this topology, a set is closed if and only 
if its intersection with each closed cell is closed.) The CW -structure is 
countable if and only if G is a countable group. Since the action of G sends 
each cell homeomorphically onto another, the action of G is continuous 
and cellular, and so is properly discontinuous. Thus the quotient spaces 
Xn/G and X/G are also CW-complexes. So we only need to show that X 
is contractible. While it's possible to construct an explicit contraction of 
X (cf. [Dold, pp. 252-253], which uses a slightly different topology on the 
join), for our purposes it will be enough to show by induction on n that for 
n ;::: 1, Xn is (n - I)-connected and the CW-pair (Xn' Xn-d is relatively 
(n - I)-connected. Since X = limXn, it will follow that X is n-connected 

--t 

for all n, hence contractible by Theorem 5.1.13. To start the induction, Xl 
is path-connected, that is, O-connected, since its O-cells are two copies of 
G, and there is a I-cell joining any O-cell in the first copy of G to any O-cell 
in the second copy of G. (To join two O-cells in the same copy of G by an 
arc, join them each to the same O-cell in'the other copy of G.) Similarly it 
is clear that Xn is path-connected for each n ;::: 1, hence that X is path
connected. Let's also observe that Xn is simply connected for n;::: 2-since 
Xn is the union of the Xn- l * 9 for 9 E G, joined along Xn-l, and since 
Xn- l is path-connected and each Xn- l * 9 is a cone, hence contractible, 
this follows from Van Kampen's Theorem. For the inductive step, suppose 
n ;::: 3 and suppose we know Xn- l is (n - 2)-connected. Because of the 
Hurewicz Theorem (Theorem 5.1.14), to show Xn is (n - I)-connected, it 
is enough to show that iIj(Xn; Z) vanishes for j ~ n-1. This follows from 
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the Mayer-Vietoris sequence 

Hj+1(Xn; Z) -+ Hj(Xn- l ; Z) -+ EBHj(cXn- l ; Z) = 0 
gEG 

-+ Hj(Xn; Z) -+ Hj-l(Xn~l; Z) 

and the inductive hypothesis. Then from the exact sequence 

the pair (Xn, X n- l ) is relatively (n - 1)-connected. Passing to the limit, 
X is n-connected for all n and thus contractible. 0 

5.1.16. Definition. If G is a group and X is a G-space as in Theorem 
5.1.5, so that X is contractible, G acts freely and properly discontinuously 
on X, and X/G is paracompact, we write EG for X and BG for X/G, 
and call BG = X/G a classifying space for G. The existence of such a 
space is guaranteed by Theorem 5.1.15. Note that there is a slight abuse of 
notation here, since BG is not uniquely defined (up to homeomorphism); 
however, by Theorem 5.1.5, it is well defined up to homotopy equivalence. 

5.1.17. Examples. If G is the trivial group, any contractible paracom
pact space, in particular, a point, or any Euclidean space, or any con
tractible CW-complex, is a classifying space for G. The infinite join con
struction in the proof of Theorem 5.1.15 gives Xo = pt, Xl = c(Xn-t}, and 
thus one can see by induction on n that Xn = an, the n-simplex. Thus 
this construction yields an "infinite simplex" for EG = BG. Note that this 
is not the simplest choice for BG, which of course is a one-point space. 

If G = Z, then G acts freely and properly discontinuously on EG = R, 
with quotient space BG homeomorphic to Sl. Once again, the construction 
the proof of Theorem 5.1.15 gives a much more complicated model for BG. 
And there are still other models for BG which have a different "look," for 
instance, the Mobius band. 

This example may be generalized: if G = Fn , the free group on n gen
erators, then there is a model for BG which is a wedge of n circles. The 
universal cover EG of this space is a tree on which G acts freely. Con
versely, if EG can be taken to be a tree (i. e., a contractible one-dimensional 
CW-complex), then G is a free group. For related facts and ideas, see 
[SerreTrees]. 

If G is a two-element cyclic group, then the construction the proof of 
Theorem 5.1.15 does in fact give the simplest possible CW-model for BG. 
Namely, we can identify G with SO, and then Xn = X n- l * So. For any 
space A, A * So is the union of two copies of the cone on A joined along A, 
or in other words the suspension ~A of A. So by induction one sees that 
Xn = ~sn-l = sn, and Xn/G = Sn/(antipodal map) = !F(R). Thus 
EG is the "infinite sphere" and BG the "infinite real projective space." 
There is another model for BG which is also interesting: if 'Ii is an infinite
dimensional real Hilbert space, then the orthogonal group O('Ii) is known 
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to be contractible with respect to two different topologies that make it into 
a topological group: the weak operator topology (for which this fact is due 
to Dixmier and Douady) and the norm topology (for which this fact is due 
to Kuiper). The center of O{1£) consists of the scalar operators ±1, and 
the quotient group PO{1£) = O{1£)j{±l} (using either of the topologies 
on O{1£)) is a classifying space for {±1}. 

5.1.18. Proposition. The classifying space construction gives a functor 
B from the category of groups and group homomorphisms to the cate
gory of topological spaces (or the full subcategory of CW-complexes) and 
homotopy classes of continuous maps. 

Prool. Suppose a : G --+ H is a homomorphism of groups. Then a 
clearly induces a map a* from G * G * ... * G (n times) to H * H * ... * H 
(n times). Since a*(g . x) = a{g) . a*{x), we obtain an induced map 
from {G;I< G * ... * G)jG to (H * H * ... * H)jH. Letting n --+ 00, we 
get a map Ba : BG --+ BH, and it is clear from the construction that 
B{a 0 (3) = B{a) 0 B{(3) , B{id) = id. D 

Before proceeding further with the theory of classifying spaces we need 
to return to our review of basic algebraic topology. 

5.1.19. Definition. A continuous map of topological spaces p : E --+ B 
is called a fibration if it has the homotopy lifting property, that is, if 
for any homotopy h: X x [0, 1]--+ B and any continuous map Ho : X --+ E 
such that ho = p 0 Ho, there is a continuous map H : X x [0, 1] --+ E with 
H{x, 0) = Ho{x) such that po H = h. We call Ho and H lifts of ho and 
of h, respectively. For each x E B, p-l(X) is called the fiber of p over x. 
The space B is called the base space of the fibration and the space E is 
called the total space. 

5.1.20. Proposition. The following are fibrations: 

(1) The projection p : E x F --+ B onto the first factor in a product 
space (with the product topology). The fiber over any point is 
homeomorphic to F in this case. 

(2) Any covering space E --+ B. The fiber over any point is discrete in 
this case. 

(3) The map p : P B --+ B, where P B is the path space of a compactly 
generated (Hausdorff) space B relative to a basepoint bo, i.e., the 
set of continuous maps "{ : [0, 1] --+ B with "{{O) = bo, and PC'Y) = 
"{(I). In this case, the fiber over bo is OB, the loop space of B 
(relative to boY. 

Proof. (I) Given a homotopy h: X x [0, 1]--+ B and a continuous map 
Ho: X --+ BxF such that ho = poHo, we can write Ho(x) = (ho{x), I{x)) 
with I : X --+ F. Then define the continuous map H : X x [0, 1] --+ B x F 
by H(x, t) = (ht(x), I(x)), and H(x, 0) = Ho{x). 

(2) The homotopy lifting property for a covering is obtained by chopping 
[0, 1] into subintervals. Given h : X x [0, 1] --+ B, the image of heX x 
[tj, tj-l]) will be contained in a set over which p is of the form (1) with 
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F discrete, provided tj - tj-l is small enough. So we choose a suitable 
partition of [0, 1] and first lift h over X x [0, h], then lift h over X x [h, t2], 
etc. See [Spanier, Ch. 2, §2] or [Whitehead, Ch. I, §7] for more details. 

(3) Given a homotopy h : X x [0, 1] - B and a continuous map Ho : 
X - PB such that ho = poHo, Ho(x) : [0, 1]- B with Ho(x)(O) = bo and 
with Ho(x)(I) = ho(x). We need to define H : X x [0, 1] x [0, 1] - B with 
H(x, t, 0) = Ho(x)(t) and with H(x, 1, s) = hex, s), H(x, 0, s) = boo The 
desired H can be constructed as in the proof of the Homotopy Extension 
Theorem (Theorem 5.1.8). 0 

5.1.21. Proposition. Let X and Y be compactly generated (Hausdorff) 
spaces, and let I : X - Y be a continuous map. Tben tbere is a commu
tative diagram 

X, -L yl 

lpx lpy 
X~Y 

witb Px and py bomotopy equivalences and witb py 0 I' bomotopic to a 
fibration. (Tbus any map in tbe category of compactly generated spaces is 
bomotopic to a composite of bomotopy equivalences and fibrations.) 

Prool. Let Y' be the space of continuous maps [0, 1]-Y, let 

X' = {('Y, x): 'Y E yl, X E y, 'Y(I) = I(x)} , 

and define py and px by pyC'Y) = 'Y(I), pxC'Y, x) = X. Then clearly we 
have a commutative diagram as indicated, if we let f'C'Y, x) = C'Y). The 
map py is a homotopy equivalence with homotopy inverse Cy sending any 
y E Y to the constant path at y. (Clearly py 0 Cy = idy. On the other 
hand, there is a homotopy h from idy, to Cy opy given by htC'Y)(s) = 'Y(t), 
8 ~ t, and 'Y(s), s ~ t.) Similarly, the map px is a homotopy equivalence 
with homotopy inverse 9 : x I-t (Cy(f(x», x). We only need to show that 
p : C'Y, x) I-t 'Y(O) is a fibration X, - Y, since this map is homotopic to 
py 0 I' as in the previous proposition. Suppose Z is some other space and 
one has a homotopy h : Z x [0,1] - Y as well as a lift Ho : Z - X' 
of ho. We need to construct a lift H : Z x [0, 1] - X' of h extending 
Ho. Let's write H(z, t) = C'Y(z, t), x(z, t», Ho(z) = C'Yo(z), xo(z». Here 
'Yo(z)(l) = I(xo(z», h(z, 0) = 'Yo(z)(O). Then we need to arrange to have 
'Y(z, t)(I) = I(x(z, t», h(z, t) = 'Y(z, t)(O), 'Y(z, 0) = 'Yo(z) , x(z, 0) = 
xo(z). Let x(z, t) = xo(z), so that we want 'Y(z, t)(l) = 1 0 xo(z). Once 
again, the desired map 'Y can be constructed by the method of proof of 
Theorem 5.1.8. 0 

The simplest examples offibrations are those listed in Proposition 5.1.20, 
so in order to have more examples it is important to know that with mild 
conditions on the base space, a map that is locally a fibration is globally a 
fibration. 
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5.1.22. Theorem (Hurewicz). Let B be a paracompact Hausdorff 
space, let p : E -+ B be a continuous map, and suppose that B can 
be covered by open sets U such that the restriction of p to p-l(U) is a 
fibration for each U. Then p is a fibration. 

Sketch of proof. This result is technically difficult, but the ideas are quite 
similar to those in the proof of Theorem 5.1.4. We will not go through the 
details since we will not need this theorem in what follows; instead see 
[Spanier, Ch. 2, §7] or [Dold]. D 

We conclude our review of algebraic topology with a discussion of the 
homotopy properties of fibrations, since we will need to make use of these 
in Sections 2 and 3 of this chapter. 

5.1.23. Proposition. Let p : E -+ B be a fibration, and suppose B is 
path-connected. Then for any two points bo and bl in B, the corresponding 
fibers Fo = p-l(bo) and Fl = p-l(bl ) have the same homotopy type. (This 
explains why it is customary to refer to "the" fiber of a fibration.) 

Proof. Choose a path "( : [0, 1] -+ B with "(0) = bo, "(I) = bl . Replac
ing p by "(. (P), that is, the map 

{(t, x) E [0, 1] x B : p(x) = "(t)} -+ [0, 1] : (t, x) ~ t, 

which it's easy to see is again a fibration, we may assume that B = [0, 1] 
and bo = 0, bl = 1. Now define h : E x [0, 1] -+ B = [0, 1] by h(x, t) = 
min(p(x) + t, 1), and define k : E x [0, 1] -+ B = [0, 1] by h(x, t) = 
max(p(x) - t, 0). Define Ho : E -+ E and Ko : E -+ E both to be the 
identity map. Then Ho lifts ho and Ko lifts ko, so by the homotopy lifting 
property, there are lifts H : E x [0, 1] -+ E with H(x, 0) = x and with 
poH(x, t) = min(p(x) +t, 1) and K : Ex [0, 1] -+ E with K(x, 0) = x and 
with p 0 K(x, t) = max(p(x) - t, 0). Then Hl : Fo -+ Fb Kl : Fl -+ Fo, 
and these maps are homotopy inverses of each other since H t 0 K t , K t 0 H t 
are homotopies to the identity maps (on Fl and on Fo, respectively). D 

5.1.24. Theorem. Let p: E -+ B be a fibration with B path-connected, 
and let bo E B, F = p-l(bo), Xo E F. There is an exact sequence, called 
the long exact homotopy sequence of the fibration p: 

... -+ 71"n+1(B, bo) ~ 71"n(F, xo) ~ 71"n(E, xo) 

~ 71"n(B, bo) ~ 71"n-l(F, xo) ---+ •••• 

Here i. is induced by the inclusion i : F '-+ E and p. is the map on 
homotopy groups induced by p. The sequence is natural (with respect to 
maps of fibrations). 

Proof. The desired sequence is obtained from the long exact homo
topy sequence of the pair (E, F); all we need to do is to show that p. : 
71"n(E, F, xo) -+ 71"n(B, bo) is an isomorphism for all n. To prove surjec
tivity, suppose one is given a class in 71"n(B). View it as being given by 
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a map hI : (Bn, 8 n- 1 ) -t (B, bo). Since Bn is contractible, there is 
a homotopy h from hI to the constant map ho : Bn -t {bolo Choose 
any lifting of ho and apply the homotopy lifting property; this gives a 
class in 7rn(E, F, xo) mapping to the given class in 7rn(B, bo). To prove 
injectivity when n 2': 2 (so that 7rn (E, F, xo) is a group), suppose one 
is given Go : (Bn , 8n -1, *) -t (E, F, xo), and suppose its image un
der p* is null-homotopic. Let 9 be a homotopy from 90 = poGo to a 
constant map Bn -t Xo. By the homotopy lifting property, there is a 
lift G of 9 extending Go, and so Go is the trivial class in 7rn (E, F, xo). 
The reader can easily provide the special arguments needed to show that 
7ro(E, F, xo) = 0 = 7ro(B, bo) and to show that p* is injective in dimension 
1. 0 

5.1.25. Corollary. Ifp: E -t B is a covering map, then 7rn(E) ~ 7rn(B) 
for all n > 1 (with respect to any choice Xo of a basepoint in E and with 
respect to the basepoint bo = p(xo) of B). Furthermore, if E and B are 
path-connected and F = p-l(bo), then F is discrete and there is an exact 
sequence of sets 0 -t 7rl(E, xo) -t 7rl(B, bo) -t F -t o. 

Proof. In any covering, the fiber over any point is discrete. The rest 
follows as a special case of Theorem 5.1.24, using the fact from Proposition 
5.1.20(2) that p is a fibration. 0 

5.1.26. Examples. A key example of the situation of Corollary 5.1.25 
comes from the case E = EG, B = BG, p the quotient map. Since 
p is a covering and E is contractible, we see that 7rn (BG) = 0 for n > 1. 
Conversely, given a connected CW-complex Y with 7rl(Y, Yo) = G for some 
choice of basepoint and with 7rn (Y, Yo) = 0 for n > 1, the universal covering 
of Y has all homotopy groups equal to 0, hence is contractible by Theorem 
5.1.13. So Y is a classifying space for G. 

Let us give a few other examples of homotopy exact sequences of fibra
tions. Let X be a (compactly generated Hausdorff) space with basepoint 
Xo and let OX be the loop space of X relative to this basepoint. Without 
loss of generality, we may assume X is path-connected. Let P X be the 
path space of X relative to the basepoint Xo. By Proposition 5.1.20(3), 
the projection p : PX -t X is a fibration with fiber OX. But PX is con
tractible, since any path can be shrunk to its initial point Xo. Thus from 
Theorem 5.1.24, we recover the fact that 7rn (OX) ~ 7rn +1(X) for all n. 

As another example, consider the Hopf fibration p : 8 3 -t 8 2 , which 
comes from viewing 8 3 as the group 8U(2) and 8 2 as the homogeneous 
space G/H, where H is a maximal torus in G (a circle group). Since the 
quotient map p is locally the projection onto one factor of a product, 
p is a fibration by Theorem 5.1.22. The fiber over the identity coset is 
H ~ 8 1, which has contractible universal cover JR. So by our first example 
7rn (81 ) = 0 for n > 1 (and of course 7rl (81 ) = Z). So the long exact 
sequence has the form 

... -t 0 -t 7rn (83) -t 7rn (82) -t 0 -t ... -t 0 -t 7r3(83) ~ 7r3(82) 

-t 0 -t 7r2(83) -t 7r2(82) -t 7rl(81) =Z -t O. 
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Since the n-sphere is (n - I)-connected, 71"2(83) = 0, and by the Hurewicz 
Theorem (Theorem 5.1.14), 71"3(83) ~ Z, 71"2(82) ~ Z. It follows that 
71"3(82) ~ Z, with generator p*(idsa) = p, and that 7I"n(83) ~ 7I"n(82) for 
n > 3. In particular, this example makes it clear that 7I"n(X) need not 
vanish when X is a CW-complex of dimension less than n. 

Finally, we return to one more aspect of classifying spaces, namely their 
homology. (We have already computed their homotopy groups in Example 
5.1.26.) 

5.1.27. Theorem. Let G be any group and let BG be a classifying space 
for G. If M is any abelian group with trivial G-action, then there is a nat
ural isomorphism between H.(G, M) (group homology) and H.(BG; M) 
(singular homology). The same holds for any G-module if we interpret 
H.(BG; M) as homology with local coefficients (for the definition, see 
[Spanier, Ch. 5, Exercise Set I] or [Whitehead, Ch. VI, §§1-4]). 

Proof. We use the CW-model for BG constructed in the proof of Theo
rem 5.1.15. Then over each cell of BG, there is a family of cells of EG which 
is permuted simply transitively by G. So the cellular chain complex of BG 
with coefficients in Z, C.(BG), may be identified with C.(EG) ®ZG Z, 
where we think of the cellular chain complex of EG as being a complex 
of free ZG-modules. Similarly, if we use any G-module M as (local) co
efficients, C.(BG; M) may be identified with C.(EG) ®za M. However, 
since EG is contractible, C.(EG) is acyclic (except in dimension 0), and 
so gives a resolution of Z by free ZG-modules. Recall that H.(G, M) was 
defined in 4.1.7 to be the homology of the complex p. ®ZG M, where p. 
was another specific resolution of Z by free ZG-modules. However, any two 
resolutions of Z by free ZG-modules must be chain homotopy-equivalent 
by Theorem 1.7.7 and the method of proof of Lemma 3.1.11, so p. ®ZG M 
and C.(EG) ®;w M are also chain homotopy-equivalent and have the same 
homology. 

See also [Whitehead, Ch. VI, §3] for more details. D 

5.1.28. Exercise. Let 

1 ---T N ~ G ~ GjN ---T 1 

be a short exact sequence of groups (so that N is a normal subgroup of G 
and i is the inclusion map). Show that there is a corresponding fibration 
of classifying spaces q* : BG ---+ B(GjN) with fiber BN, and that the 
long exact homotopy sequence of this fibration recovers the original exact 
sequence in dimension 1 and is trivial in all other dimensions. 

5.1.29. Exercise. Let X be any path-connected space which is nice 
enough for covering-space theory to apply, for instance a CW-complex. 
Show from the Hurewicz Theorem (Theorem 5.1.14) that if X is the univer
sal cover of X, 7I"2(X) ~ H 2 (X; Z). Also deduce that if Hj(X; Z) vanishes 
for j ~ n, n ~ 2, then 7I"j(X) vanishes for 2 ~ j ~ n. Conclude that if X 
is an n-dimensional connected CW-complex and if Hj(X; Z) vanishes for 
j ~ n, then X is a classifying space for 71"1 (X). 
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5.1.30. Exercise. Let G be the group with presentation 

(a, b I aba-1 = b2 ). 

Construct a connected 2-dimensional CW-complex X with fundamental 
group G having one O-cell, two I-cells, and one 2-cell. (Attach a 2-cell 
to 8 1 V 8 1 to kill the element aba-1b-2 in 7r1 (81 V 8 1) = free group on 
generators a, b.) Apply the criterion in Exercise 5.1.29 to show that X is 
a model for BG. (You only need to show that X has no cellular 2-cycles.) 
Incidentally, the commutator subgroup of G is isomorphic to Z[!l, so this 
example shows that the commutator subgroup of the fundamental group 
of a finite CW-complex need not be finitely generated. 

5.1.31. Exercise. This exercise will show that sometimes one can get 
information on the Hurewicz map past the dimension in which it must be 
an isomorphism by the Hurewicz Theorem (Theorem 5.1.14). 

(1) Let X be any CW-complex with skeleta Xi. Show that the rela
tive Hurewicz map 7rj+1(Xj+1, Xi) __ Hi+1(Xi+1, Xij Z) is split 
surjective for all j ~ 1, with a natural splitting. (Hint: 

Hi+1 (Xi+1, Xi j Z) 

is the free abelian group on the (j + I)-cells of X.) 
(2) Let X be an n-connected CW-complex, with n ~ 1. Show that 

the Hurewicz map 7rn +2(X) -- Hn+2 (Xj Z) is surjective. Here is 
an outline of how to proceed. As in the proof of Theorem 5.1.14, 
one can assume X n+1 is a wedge of 8 n+1 's. First prove the result 
for xn+2, by looking at the commutative diagram 

7r (xn+2 xn+1) n+2 , 

1 1 
o -+ Hn+2(Xn+2 j Z) -+ Hn+2(xn+2, xn+1j Z) -+ Hn+1(xn+1 j Z) 

and using (1). 
(3) Now deduce the result for X from the result for xn+2. 

5.1.32. Exercise (A universal property of classifying spaces). 
Let G be a group and let BG = EG/G be a classifying spaCe for G, with 
a fixed basepoint *. Let X be a paracompact path-connected space with 
basepoint Xo which is nice enough for covering space theory .to apply, for 
instance a CW-complex. There is obviously a map from [X, BG], the set 
of homotopy classes (reI xo) of basepoint-preserving maps f : X -- BO, to 
Hom(7r1(X, xo),G), defined by sending any map f to the induced map on 
fundamental groups. (This induced map depends only on the homotopy 
class of f.) . By covering space theory, the latter can be identified with the 
set CovG(X) of normal coverings of X with covering group G. Show that 
in this way one obtains isomorphisms 

[X, BG] ~ Hom(7r1(X, xo), G) ~ CovG(X). 
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To prove surjectivity, suppose one is given a homomorphism 71"1 (X, xo) --+ G 
or equivalently a covering space X --+ X with G as the group of covering 
transformations. Form the fiber product X, = X XG EG. Using Theo
rem 5.1.4, show that X, is homotopy-equivalent to X. Projection onto the 
second factor gives a map X' --+ BG, and composition with the homotopy 
equivalence X --+ X, gives the desired'map X --+ BG. To prove injectivity, 
suppose /0, II : X --+ BG, both sending Xo to *, induce isomorphic cov
erings of X. When X is a CW -complex, one can construct a homotopy / 
between them by viewing /0 and II as defining a map 

(X x {O}) U{xo}x{O} ({xo} x [0, 1]) U{xo}X{I} (X x {I}) --+ BG 

and extending over the rest of X x [0, 1] one cell at a time using obstruction 
theory. Alternatively, one can do this with more general spaces X using 
the section extension property. 

2. Quillen's +-construction 
and its basic properties 

In this section, we will use the topological machinery developed in the last 
section to construct functors R - K(R), (R, I) - K(R, I) into the homo
topy category of CW-complexes with basepoint (in which the morphisms 
are homotopy classes of based continuous maps). Then we will define Ki(R) 
to be 7I"i(K(R», Ki(R, I) to be 7I"i(K(R, I». By convention, we can take 
K(R, R) = K(R), K(R, 0) = *, a space reduced to its basepoint. We want 
to do this in such a way as to guarantee the following basic properties: 

5.2.1. Requirements. 

(1) Ki(R) defined this way agrees with our previous definitions for 
o ~ i ~ 2. 

(2) Ki(R, I) defined this way agrees with our previous definitions for 
i = 0,1. 

(3) The maps of K-groups induced by a homomorphism agree with 
our previous ones (in the cases where (1) and (2) apply). 

(4) The"inclusion i : I'-+ R and the quotient map q : R - R/I give 
rise to a fibration 

K(R, I) ~ K(R) ~ K(R/ I), 

where this notation means that q* is a fibration with fiber K(R, I). 

The effect of these requirements will be that we will obtain higher K
groups Ki(R) and Ki(R, I) for all'i, with an exact sequence extending that 
of Theorem 4.3.1. 

The basic tool for doing this is the following construction of Quillen. 
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5.2.2. Theorem (Quillen). Let X be a connected OW-complex with 
basepoint xo, say, chosen from the O-skeleton, and let 7r be a perfect normal 
subgroup of 7r1 = 7r1(X, xo) (thus 7r = [7r,7r] = [7r1' 7r]). Then one may 
obtain a new OW-complex X+ by attaching only 2-cells and 3-cells to X, 
so that the pair (X+, X) satisfies the following conditions: 

(1) The map 7r1(X, xo) -t 7r1(X+, xo) induced by the inclusion is just 
the quotient map 7r1 -t 7rt/7r. 

(2) The pair (X+, X) is homologically acyclic; that is, for any 7rt/7r
module M (viewed as a local coefficient system on X and on X+), 
H.(X+, X; M) = o. 

Note that (2) implies: 

(2') For any covering space X+ of X+, if X is the corresponding cov
ering space of X, then 

H.(X+, X; Z) = O. 

Furthermore, X+ is unique in the following sense: given any other OW
complex Xi containing X as a subcomplex and satisfying these same con
ditions, even if (Xi, X) is allowed to contain relative cells of arbitrary 
dimensions, there is a homotopy equivalence X+ -t xi which is homo
topic to the identity on X. 

5.2.3. Remark. In the situation of Theorem 5.2.2, if X is the cover
ing space of X with fundamental group 7r and covering group 7rt/7r, then 
7r2(X+) ~ H 2(X; Z). Indeed, X is a subcomplex of X+, the universal 
cover of X+. By the corollary of the Hurewicz Theorem in Exercise 5.1.29, 
7r2(X+) ~ 7r2(X+) ~ H 2 (X+; Z). However, the inclusion X '-t X+ in
duces an isomorphism on homology by property (2') of the +-construction. 

Note also that it is not quite essential for X in this Theorem to be a 
CW-complex, since in any event (X+, X) will be a relative CW-complex 
and we can use the relative form of Whitehead's Theorem. However, in all 
cases where we'll use the +-construction, X will at least have the homotopy 
type of a CW-complex. 

Proof of Theorem 5.2.2. Choose generators for 7r. Then each generator 
defines a homotopy class of a map gi : (81, *) -t (X, xo) which is trivial 
on homology, since the Hurewicz map in dimension 1 kills all commutators 
and 7r = [7r, 7r]. Let Y be the CW-complex obtained from X by attaching 
one 2-cell e~ for each i E A, using the attaching map gi : 8B2 = 8 1 -t X. 
Clearly the inclusion X '-t Y has property (l)j that is, the induced map 
on fundamental groups is the quotient map 7r1 -t 7rt/7r. Let X '-t Y be 
the covering spaces with covering group 7rt/7r, so that Y is the universal 
covering of Y and X has fundamental group 7r. Thus H 1(Xj Z) ~ 7ra b = O. 
Since Y is obtained from X and Y is obtained from X by attaching 2-cells, 
H.(Y, X; Z) is concentrated in degree 2, where it is the free abelian group 
on the [en and similarly H.(Y, X; Z) is concentrated in degree 2, where 
it is the free Z(7rt/7r)-module on the [en Since the connecting map 

8: H 2 (y, X; Z) -t H 1(X; Z) = 0 
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is trivial, H.{Yj Z) differs from H.{Xj Z) by taking the direct sum with 
EBiEA Z{7rt/7r)[e~1 in degree 2. Furthermore, since Y is simply connected, 
by Theorem 5.1.14, the generator [e~1 is in the image of the Hurewicz map 
for Y and thus for Y (by pushing back down). Choose hi : (82 , *) ~ 
(Y, xo) mapping under the Hurewicz map to [e~1 E H2 {Y). Now construct 
X+ from Y by attaching one 3-cell e~ for each i E A, using the attaching 
map hi : 8B3 = 8 2 ~ Y. We claim it has the desired properties. (1) 
is clear, since it was already true for Y and attaching 3-cells has no ef
fect on the fundamental group. To check (2), choose any 7rt/7r-module M 
(viewed as a local coefficient system on X and on X+). Then H.{Yj M) 
differs from H.{Xj M) by taking the direct sum with EBiEA M[e~1 in de
gree 2. Since H.{X+, Yj M) is concentrated in degree 3, where it is given 
by EBiEAM[e~l, and since by construction 8[e~1 = [en H.{X+, Xj M) 
vanishes as desired. 

It remains to prove the uniqueness statement. Suppose the CW-pair 
(xt, X) also satisfies (1) and (2) of the statement of the Theorem. Let 
i1 : X ~ xt be the inclusion. We will extend i1 over the 2-cells and 
3-cells added to X to construct X+, and show that we can do this to get 
a homotopy equivalence h : X+ ~ xt which is the identity on X. First 
we need to extend i1 to a map g : Y ~ xt. Since Y was obtained from 
X by attaching 2-cells using the attaching maps gi : 8 1 ~ X, i1 can be 
extended to a map g : Y ~ xt provided each i1 0 gi is null-homotopic. 
Since [gil E 7r and (i1)* kills 7r, this condition is satisfied and we can choose 
an extension g : Y ~ xt of i 1 . Note that g induces an isomorphism 
on fundamental groups and so there is an induced map 9 : Y ~ xt of 
universal covers. Then since X+ was obtained from X by attaching 3-
cells using the attaching maps hi : 8 2 ~ Y, g can be extended to a map 
h : X+ ~ xt provided each go hi is null-homotopic. Let us apply Remark 
5.2.3 to xtj it says that 

7r2{Xt) ~ 7r2{Xt) ~ H2{Xtj Z) ~ H2{Xj Z). 

Thus go hi will be null-homotopic provided it corresponds to the trivial 
homology class in H2 {Xj Z). But the image of hi in homology is [e~1 by 
construction, which is 8[e~1 and thus a boundary, so gohi is null-homotopic 
and we can extend g to a map h : X+ ~ xt. Let h be the lifted map on 
universal covers (extending g). To show h is a homotopy equivalence, it 
suffices by Theorem 5.1.13 to show that h induces isomorphisms on homo
topy groups. Since we already know h is an isomorphism on fundamental 
groups, it is enough to show that h induces isomorphisms on 7rj, j ;::: 2, 
or is a homotopy equivalence. Now in our construction we can assume g 
and h are cellular maps, so the mapping cylinder of h is a CW -complex Z. 
To show h is a homotopy equivalence, we need to show that the OW-pair 
(Z, X+) is relatively j-connected for all j. By the relative Hurewicz The
orem (Theorem 5.1.14), since everything is simply connected, it's enough 
to show Hj{Z, X+j Z) = 0 for all j, which in turn is equivalent to saying 
that h is a homology equivalence. But this is guaranteed by the fact that 
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h is the identity on X together with the acyclicity of the pairs (X+, X), 
-+ -(Xl' X). 0 

For future purposes we need to know a bit more about the +-construc
tion, in particular the following. 

5.2.4. Proposition. The +-construction of Theorem 5.2.2 is functorial. 
In other words, given a map of connected OW-complexes I : X --+ Y, a 
perfect normal subgroup 7r x of 7r1 (X), and a perfect normal subgroup 7ry 
Of7r1(Y) with 7ry :2 1*(7rx), I induces a map 1* : X+ --+ Y+, where X+ is 
constructed as in Theorem 5.2.2 using 7rx, and Y+ is similarly constructed 
from Y using 7ry. Furthermore, 1* is uniquely determined up to homotopy, 
1* = id if X = Y and 7rx = 7ry, and (g 0 1)* = g* 01* when this makes 
sense. 

Proof. The proof of this is similar to the proof of uniqueness in Theorem 
5.2.2. Namely, we need to show that iy 0 I extends over the 2-cells and 
3-cells added to X to form X+. Here iy is the inclusion of Y into Y+. 
First we note that iy 0 I induces on fundamental groups the composite 

7r1(X) ~ 7r1(Y) --+ 7r1(Y)/7ry. Since 7ry :2 1*(7rx), 7rx lies in the kernel 
of this map, which means exactly that for each 2-cell e~ added to X with 
attaching map gi, the composite iy 0 I 0 gi is null-homotopic. Thus we may 
extend over the 2-cells of X+ to get a map 

X U e~Ly+ 
gi:iEA 

extending iy 0 f. Next we need to extend I' over the 3-cells of X+. As in 
the proof of Theorem 5.2.2, the condition for being able to do this is for 
each f' Ohi to be null-homotopic, where hi is the attaching map of e~. And 
as before, we use the fact that 7r2(Y+) ~ H2(Y; Z), where Y is the cover of 
Y with fundamental group 7ry and covering group 7r1(Y)/7rY. Since each 
hi bounds in homology, so does I' 0 hi, and thus we can extend over the 
3-cells to get our desired map 1* : X+ --+ Y+. 

Since there seems to be some arbitrariness in this construction, we still 
need to show that 1* is well defined up to homotopy, which will imply that 
1* is the identity when X = Y and 7rx = 7ry. Suppose one has two maps 
1*, r; : X+ --+ y+ extending I· To construct a homotopy between them, 
let P1 : X x [0, 1] --+ X be projection on the first factor view 1*, I; and 
I 0 P1 as defining a map 

(X+ x {O}) UXx{O} (X x [0, 1]) UXX{l} (x+ x {I}) --+ Y+. 

If we can extend this to a map X+ X [0, 1] --+ Y+, we will have the desired 
homotopy from 1* to I;. But the proof that such an extension exists is 
the same as before; we merely need to extend over the cells e~ x (0, 1) and 
e~ x (0, 1), and the homotopy-theoretic obstruction to be able to do this is 
the same as before. 0 
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5.2.5. Example. Suppose X is the Poincare homology 3-sphere of Exer
cise 4.1.27. Recall that this is the quotient of 8 3 by a certain finite perfect 
group 7r of homeomorphisms. (In fact, 7r is a central extension of A5 by 
Z/2.) Applying the +-construction of Theorem 5.2.2 to the pair (X, 7r), we 
obtain a 3-dimensional complex X+ which is simply connected (since 7r was 
all of 7rl(X)) and which has the same homology as X, thus the same ho
mology as 8 3 • Since X+ is simply connected and Hj(X+; Z) = 0 for j < 3, 
the Hurewicz Theorem (Theorem 5.1.14) implies that X+ is 2-connected 
and that the Hurewicz map 7r3(X+) -+ H3(X+; Z) = Z is an isomorphism. 
Choose a map 9 : 83 -+ X+ which corresponds to a generator of 7r3(X+). 
Then by definition of the Hurewicz map, 9 induces an isomorphism on ho
mology. Since 8 3 and X+ are simply connected, this implies (as in the 
proof of Theorem 5.2.2) that 9 also induces an isomorphism on homotopy 
groups, and so 9 is a homotopy equivalence by Theorem 5.1.13. Thus from 
the homotopy point of view, X+, as characterized by properties (1) and 
(2) of Theorem 5.2.2, ''is'' 8 3 . Of course, the particular model for X+ 
constructed in the proof of Theorem 5.2.2 need not be a manifold, and is 
not necessarily homeomorphic to 8 3 . (Even if it were a manifold, it is not 
known if every 3-manifold homotopy-equivalent to 8 3 is homeomorphic to 
8 3 • This is the famous Poincare Conjecture.) 

Exactly the same proof in higher dimensions shows that if X is a ho
mology n-sphere, that is, a path-connected space (say with the homotopy 
type of a CW-complex) with the same homology groups as 8 n (n 2: 3), then 
X+ is homotopy-equivalent to 8 n . Here to start the construction, we ob
serve that since H1(X, Z) = 0, 7r = 7rl(X) can have no abelian quotients, 
and so is perfect, so that we can apply the +-construction to the pair 
(X, 7r). 

Now we are ready to use the +-construction to define Quillen's higher 
K-theory. 

5.2.6. Definition. Let R be any ring with unit. Define K(R) to be 
the product BGL(R)+ x Ko(R), where BGL(R) is defined as in Defini
tion 5.1.16, the +-construction on BGL(R) is taken relative to the per
fect subgroup E(R) of GL(R), and Ko(R) is given the discrete topol
ogy. If 'P : R -+ 8 is a homomorphism of rings, there is an induced 
homomorphism of groups 'P* : GL(R) -+ GL(8) and thus (by Propo
sition 5.1.18) an induced map 'P* : BGL(R) -+ BGL(8) and thus (by 
Proposition 5.2.4) an induced map 'P* : BGL(R)+ -+ BGL(8)+. We de
fine the induced map 'P* : K(R) -+ K(8) to be the product of the map 
'P* : BGL(R)+ -+ BGL(8)+ with the map 'P* : Ko(R) -+ Ko(8). We 
define the K-groups of R to be Ki(R) = 7ri(K(R)) , where all homotopy 
groups are computed relative to a basepoint in BGL(R)+ x {O}. (If we 
use the construction for BGL(R) given in the proof of Theorem 5.1.15, 
then there is a natural choice for a basepoint of BGL(R), namely the im
age of 1GL(R) E GL(R) = Xo. This then gives a natural choice for a 
basepoint in BGL(R)+ x {O}.) Worries about choices of basepoint will 
be lessened by Theorem 5.2.12 below. Note that since BGL(R)+ is path-
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connected, 7ro(K(R)) = Ko(R) by construction. Furthermore, 7rl(K(R)) = 
7rl(BGL(R)+) = 7rl(BGL(R))/E(R) = GL(R)/E(R) = K1(R), so this 
definition of K -groups is at least consistent with our previous definition of 
Ko and K 1. In fact, the basic features of this situation are captured in the 
following Theorem. 

5.2.7. Theorem. Let G be a group with perfect commutator subgroup 
7r, and let B7r+ and BG+ be constructed as in Theorem 5.2.2 relative to 
the perfect subgroup 7r of 7r = 7rl(B7r) and of G = 7rl(BG). Then B7r+ is 
a normal covering space of BG+ with covering group G/7r = Gab. 

Furthermore, let -ft- be the universal central extension of 7r. Then there 
are natural isomorphisms 

Also, 7rj(BG+) ~ 7rj(B-ft-+) for j ;::: 3. 

Proof. The isomorphism 7rl(BG) ~ G/7r = Gab comes immediately from 
property (1) in the statement of Theorem 5.2.2. Note also that B7r is 
a normal covering of BG with covering group G/7r = Gab. (This is a 
restatement of Exercise 5.1.28; alternatively, n ~ G acts freely and properly 
discontinuously on EG, so EG/n is a model for Bn, and then EG/n -+ 

BG = EG/G is clearly a normal covering of BG with covering group 
G/n.) When we attach 2-cells and 3-cells to BG to construct BG+, lifting 
to the covering space Bn results in adding 2-cells and 3-cells to Bn to kill 
the fundamental group and preserve the homology (because of property 
(2') in the statement of Theorem 5.2.2). Thus the construction of BG+ 
automatically induces a construction of B7r+ and hence Bn+ is a normal 
covering space of BG+ with covering group G/n = Gab. In particular, 
nj(Bn+) ~ 7rj(BG) for j ;::: 2, by Corollary 5.1.25. 

Now B7r+ is simply connected, so by the Hurewicz Theorem, n2(Bn+) ~ 
H2(Bn+; Z) ~ H2(Bn; Z) (using property (2) of the +-construction). By 
Theorem 5.1.27, this may be identified with H2(n, Z), and so n2(BG+) ~ 
H 2 (n, Z). 

Finally, consider the universal central extension 

where we have used Theorems 4.1.3 and 4.1.19. This gives rise by Exercise 
5.1.28 to a fibration 

The group -ft- is also perfect by Theorem 4.1.3, so we can perform the 
+-construction to B-ft- as well as to B7r. By Proposition 5.2.4, there is 

a map B-ft-+ ~ Bn+ which extends the map B-ft- ~ Bn, and it is 
unique up to homotopy. Just as in the case of Bn+, B-ft-+ is simply 
connected. However, since H2(B-ft-+; Z) ~ H2(-ft-, Z) = 0 by Corollary 
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4.1.18, the Hurewicz Theorem imples that B-ft-+ is 2-connected and that 
7rs(B-ft-+) ~ Hs(B-ft-+j Z) ~ Hs(-ft-, Z). To finish the proof, we need only 
show that B-ft-+ ~ B7r+ induces an isomorphism on 7rs. Since our spaces 
and maps are only defined up to homotopy anyway, for this purpose we may 
first convert q. : B-ft-+ ---+ B7r+ into a fibration by using Proposition 5.1.21. 
Let F be the (homotopy) fiber of q* j it fits into a long exact sequence 

From this we see that F is path-connected and that 

is an isomorphism. Consider the commutative diagram of fibrations 

1 
F ---t B-ft-+ 

Bq 
---t 

q. 
---t 

1 
where the two vertical maps are homology isomorphisms killing the perfect 
fundamental groups -ft- and 7r, by the basic properties of the +-construction. 
The composite 

BH2 (7r, Z) ---+ B-ft- ..!!.:4 B7r 

is null-homotopic, hence the map of BH2 (7r, Z) into B-ft-+ becomes null
homotopic after mapping into B7r+, and by the homotopy lifting property 
we obtain a map BH2 (7r, Z) --+ F compatible with the other maps of the 
diagram. It is also easy to see that this map is an isomorphism on 7r1. On 
the other hand, by Exercise 5.1.32 (the universal property of classifying 
spaces), there is a map F --+ BH2 (7r, Z) in the other direction inducing 
the inverse isomorphism on 7r1. and the composite BH2 (7r, Z) --+ F --+ 

BH2 (7r, Z) is an isomorphism on 7r1. hence on all homotopy groups by 
Corollary 5.1.25, hence is a homotopy equivalence by Theorem 5.1.13. So 
the homotopy and homology groups of F contain those of BH2 (7r, Z) as 
direct summands, and the other summands vanish at least in dimension 
1 by our 7r1 calculation. We claim the other summands are trivial in all 
dimensions, or basically that F can be taken to be BH2 (7r, Z). lithis is so, 
then from the the long exact homotopy sequence of the fibration, we will 
have 7rj(B-ft-+) ~ 7rj(B7r+) ~ 7rj(BG+) for j ~ 3, and thus in particular 
7rs(B7r+) ~ 7rs(B-ft-+) ~ Hs(-ft-, Z). (For this last fact, it is only necessary 
to show that 7rj(F) vanishes for j = 2,3.) 

Let E = B-ft-+, the total space of the fibration q., let B = B7r+ be 
the base of the fibration, and let Bo = B7r, Eo = q;1(Bo). Recall that 
the CW-pair (B, Bo) has (relative) cells only in dimensions 2 and 3 and 
is acyclic. We claim this implies the pair (E, Eo) is acyclic. Indeed, if 
B1 is the space made from B by attaching only the 2-cells e~ (i. e., the 
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2-skeleton of the pair) and El = q;l(Bd, then since Bl '- B is a disjoint 
union of open 2-cells which are contractible, the fibration El -+ Bl must 
be homotopically the same as the projection (Bl '- B) x F -+ Bl '- B over 
this set. So using excision and the Kiinneth formula, 

H.(El, Eo; Z) ~ H.(Bl X F, Bo x F; Z) ~ E9Z[e~l ®z H.(F; Z). 
i 

Similarly, 

H.(E, El ; Z) ~ H.(B x F, Bl X F; Z) ~ E9Z[e~l ®z H.(F; Z). 
i 

The exact homology sequence of the triple (E, El , Eo) now reduces to 

••• -t Hk+3(E, Eo; Z) -t E9 Z[e~l ®z Hk(F; Z) 
i 

~ E9Z[e~l ®z Hk(F; Z) -t Hk+2(E, Eo; Z) -t •••• 
i 

The boundary map {} comes from gluing two product fibrations where the 
3-cells are attached to B l , and since {}[e~l = [en it is easy to see that 
this map is an isomorphism. Hence H.(E, Eo; Z) is trivial. But since we 
may assume Bir ~ Eo ~ E = Bir+ and the pair (Bir+, Bir) is acyclic by 
the basic property of the +-construction, the exact sequence of the triple 
(E, Eo, Bir) imples that (Eo, Bir) is also acyclic. 

We're now reduced to the following commutative diagram of fibrations 

BH2(7r, Z) - Bir 
Bq - B7r 

1 1 II 
F - Eo 

q. - B7r. 

This gives the commutative diagram of fundamental groups 

from which we see that the map Bir -+ Eo induces an isomorphism on fun
damental groups. By Exercise 5.1.32 (the universal property of classifying 
spaces) again, there is a map Eo -+ Bir in the other direction inducing 
the inverse isomorphism on 7rl, and as before, by Theorem 5.1.13 the com
posite Bir -+ Eo -+ Bir is a homotopy equivalence. So the homotopy and 
homology groups of Eo contain those of Bir as direct summands. 

To prove that 7r j (F) vanishes for j ~ 2 we proceed by contradiction. 
Let F and Eo be the universal covers of F and of Eo. By the homotopy 
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sequence of the fibration, the maps 1rj(F) -4 1rj(Eo) are isomorphisms. 
By the Hurewicz Theorem, if some 1rj(F) is non-zero and we choose the 
smallest j for which this happens, then Hk(Eoj Z) = 0 for k < j but 
Hj(Eoj Z) # o. It's not hard to see from the fact that Bfr is homotopically 
a retract of Eo that then the map Bfr -4 Eo is homology isomorphism in 
degrees k < j but not in degree k. This contradicts acyclicity of (Eo, Bfr), 
so 1rj(F) must vanish for j 2: 2, so that 1rj(B1r+) ~ 1rj(B1r+) ~ 1rj(BG+) 
for j 2: 3. D 

5.2.8. Corollary (Quillen, Gersten [Gersten1]). The Quillen K-groups 
Ki(R) of Definition 5.2.6 satisfy properties (1) and (3) of 5.2.1. Fur
thermore, there is a natural isomorphism K3(R) ~ H3(St(R), Z), and 
Ki(R) ~ 1ri(BE(R)+) for i 2: 2, Ki(R) ~ 1ri(B St(R)+) for i 2: 3. 

Proof. Let G = GL(R), 1r = E(R), and fr = St(R). These groups 
satisfy the conditions of Theorem 5.2.7, so we see that there are natural 
isomorphisms K2(R) ~ H2(E(R), Z), K3(R) ~ H3(St(R), Z), Ki(R) ~ 
1ri(BE(R)+) for i 2: 2, Ki(R) ~ 1ri(B St(R)+) for i 2: 3. D 

5.2.9. Remark. The hard part of the proof of Theorem 5.2.7, which 
unfortunately is needed to prove that K3(R) ~ H3(St(R), Z), was to show 
that there is a fibration 

If we had known this from the beginning, the theorem would be fairly easy. 
There is a faster way to prove this, if one is willing to use more obstruction 
theory (as developed in [Spanier, Ch. 8] or [Whitehead, Ch. V, VI, and IX]). 
Namely, it is a fact from obstruction theory that for any abelian group A, 
fibrations 

BA-+E-+X 

over any reasonable path-connected space X, with the extra condition of 
"simplicity," that 1rl(X) should act trivially on 1rl(BA) = A, are classified 
by H2(Xj A). (When X = B1r and E = Bfr, such fibrations correspond to 
group extensions 

1 -4 A -4 fr -4 1r -4 1, 

and the simplicity condition amounts to assuming that the extension is 
central. As we saw in Theorem 4.1.16, central extensions of 1r by A are 
classified by H2(1r, A), and if X = B1r, H2(Xj A) ~ H2(1r, A) by Theorem 
5.1.27.) Since the inclusion B1r -4 B1r+ is a homology isomorphism, the 
class of the fibration 

BH2(1r, Z) -+ Bfr Bql B1r 

in H2(B1rj H2(1r, Z)) ~ H2(1r, H2(1r, Z)) has a unique extension to a class 
in H2(B1r+j H2(1r, Z)), which corresponds to a fibration 
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(5.2.10) 

with E 2 Bfr = p-l(B7r'). As in the proof above, the fact that (B7r+, B7r) is 
acyclic implies that (E, Bfr) is acyclic. But the fact that the characteristic 
class of (5.2.10) in H2(B7r+j H2(7r, Z)) corresponds to the identity map 
on H2 (7r, Z) (cf. Theorem 4.1.19) implies that in the long exact homotopy 
sequence 

H2(7r, Z) ~ 7r2(B7r+) ~ 7rl(BH2(7r, Z)) = H2 (7r, Z) 

-t 7rl(E) -t 7rl(B7r+) = 0, 

the connecting map {) is an isomorphism and thus 7rl(E) = O. This together 
with the fact that (E, Bfr) is acyclic implies by the uniqueness part of 
Theorem 5.2.2 that E is homotopy-equivalent to Bfr+, which is what we 
needed to prove. 0 

One would like to know that the choice of basepoint in BGL(R)+ is 
inconsequential, and that one can move the basepoint around at will, which 
means that one would like to show that BGL(R)+ is a simple space (in 
other words, that its fundamental group K 1(R) acts trivially on the higher 
homotopy groups, which are the higher K-groups). We will take care of all 
of these things at the same time. 

5.2.11 Definition. Let X be a space with basepoint Xo. Then X is called 
an H-space if there is a "multiplication" map I' : X x X -t X with 
J.t(xo, xo) = Xo for which Xo acts as an identity up to homotopy, in other 
words if the maps x I-t J.t(xo, x) and x I-t J.t(xo, x) are homotopic to the 
identity. X is called an H-group if in addition the multiplication is asso
ciative up to homotopy (J.to (J.t x idx) ~ J.t0 (idx x J.t) reI (xo, xo, xo), i.e., 
X is an H-monoid) and if there is an "inversion" map." : X -t X with 
.,,(xo) = xo, J.t0 (idx x.,,) ~ idx and 1'0 (." x idx ) ~ idx reI (xo, xo). 

Of course, the prototype of such a space is a topological group, but 
there are many H-spaces and H-groups that are not homotopy-equivalent 
to topological groups, at least in any obvious way. The multiplication in the 
Cayley numbers makes 8 7 into an H-space which is not an H-group (homo
topy associativity fails). Certain facts about topological groups persist for 
H-spaces and H-groups: for instance, the fundamental group (computed at 
the basepoint xo) is abelian, and acts trivially on higher homotopy groups. 
The proofs of these facts are easy and will be omitted herej for details, 
see [Spanier, Ch. 1, §5] and [Whitehead, Ch. III, §§3-4]. Thus a space 
with non-abelian fundamental group, or a non-simple space, cannot have 
an H-space structure. 

5.2.12. Theorem. Let R be a ring, and define a group homomorphism 

I' : GL(R) x GL(R) -t GL(R) 

by sending A = (aij) and B = (bij ) to the matrix I'(A, B) with (i, j)-entry 
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{ 
0, if i ~ j mod 2, 

II.(A B) .. = aill.i±!, ifi == j == 1 mod 2, 
,.. ,IJ 2 2 

b ii., if i == j == 0 mod 2. 
22 

(Note that J-L(A, B) is conjugate to the block direct sum A $ B by a per
mutation matrix.) Let BJ-L be the induced map on classifying spaces 

B (GL(R) x GL(R» = BGL(R) x BGL(R) --t BGL(R) 

and let J-L. be the induced map on the +-constructions 

B (GL(R) X GL(R»+ ~ BGL(R)+ x BGL(R)+ --t BGL(R)+. 

Then J-L. is a homotopy-associative homotopy-commutative H-space struc
ture on BGL(R)+. In particular, BGL(R)+ is a simple space. 

Proof. First of all, E(R) x E(R) is a perfect normal subgroup of the 
fundamental group of 

B (GL(R) x GL(R» = BGL(R) x BGL(R), 

so B (GL(R) X GL(R»+ is defined, and it coincides with BGL(R)+ x 
BGL(R)+ by the uniqueness part of Theorem 5.2.2. As we indicated be
fore, if we use the model for classifying spaces constructed in the proof 
of Theorem 5.1.15, BGL(R) and BGL(R)+ come with a canonical base
point Xo. It satisfies J-L(xo, xo) = Xo, but BGL(R) cannot have an H-space 
structure since its fundamental group is non-abelian. Now if A = (aij), 

and similarly 

{ 
aill.i±!, 

J-L(A, l)ij = 2: .. 
UIJ' 

if i == j == 1 mod 2, 

otherwise, 

{
aiL, if i == j == 0 mod 2, 

J-L(I, A)ij = 2 2 • 
8ij , otherwIse. 

To show J-L is an H-space structure, we have to show that the maps 
induced by 1 : A ~ J-L(A, 1) and r : A ~ J-L(I, A) are homotopic to the 
identity reI basepoint, as self-maps of BGL(R)+. Since the two cases are 
almost identical, we do only the first. The map induced by 1 : A ~ J-L(A, 1) 
on 11"1 (BG L( R» is clearly not the identity (it is the funny map we have just 
written down), but it induces the identity on H1(BGL(R)j Z) = K 1(R) 
since it sends any A E 1I"1(BGL(R» to one of its conjugates. In fact, 
suppose A E GL(n, R). Then with respect to the usual embedding of 
GL(n, R) into GL(2n, R), l(A) = Pn AP,;I, where Pn is the permutation 
matrix in GL(2n, R) corresponding to the permutation 
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{ 
2i - 1, if i ::; n, 

i E {1, ... , 2n} t--+ 2(' )'f 1 . 2 
~ - n, 1 n + ::; ~::; n. 

Since inner automorphisms act trivially on group homology, it follows that 
l. acts trivially on any homology class in 

H.(GL(R), Z) ~ H.(BGL(R); Z) ~ H.(BGL(R)+; Z) 

in the image of H.(GL(R, n), Z). Since group homology commutes with 
direct limits (Exercise 4.1.29), H.(GL(R), Z) = limH.(GL(R, n), Z), and 

--+ 
thus l. acts trivially on homology. From the characterization of l. in Propo-
sition 5.2.4, together with the characterization of the +-construction, we see 
l. is a homotopy equivalence. We also see from Theorem 5.2.2 and Proposi
tion 5.2.4 that for n ~ 3 (so that E(n, R) is perfect and one may apply the 
+-construction to BGL(n, R» that l. : BGL(n, R)+ -+ BGL(2n, R)+ 
coincides with the map induced by the usual inclusion of GL(n, R) into 
GL(2n, R). Hence l. is homotopic to the identity. 

Finally, we show p.. is homotopy-commutative and homotopy-associative. 
To show homotopy commutativity, we have to show the maps induced 
by (A, B) t--+ J.t(A, B) and by (A, B) t--+ J.t(B, A) on the +-construction 
are homotopic to one another. The proof is almost the same as above 
since again there is a permutation matrix conjugating one to the other 
for A, B E GL(n, R). And the proof of homotopy associativity is also 
almost the same, except that one has to compare the maps induced by 
(A, B, e) t--+ J.t(J.t(A, B), e) and by (A, B, e) t--+ J.t(A, J.t(B, e)). 0 

5.2.13. Remarks. For some purposes, we need the basepoint Xo of 
BGL(R)+ to be a "strict" unit, that is, for J.t.(x, xo) = J.t.(xo, x) = Xo 
for any x. However, this can always be achieved by changing J.t. within its 
homotopy class. Secondly, it is also useful to extend the H-space structure 
on BGL(R)+ to such a structure on K(R) = BGL(R)+ x Ko(R). For this 
purpose we merely use the product of the multiplication J.t. on BGL(R)+ 
with the usual addition on the abelian group Ko(R). 

Finally, we need to explain how to define relative groups in higher K
theory in order to get a natural exact sequence 

... -+ Ki+l(R, I) ~ Ki(R, I) -+ Ki(R) 

-+ Ki(R/I) ~ K i- 1(R, I) -+ .... 

5.2.14. Definition. Let R be a ring and let I be a two-sided ideal in 
R. We define K(R, I) to be the homotopy fiber of the map q. : K(R) -+ 

q.(K(R)) ~ K(R/I) induced by the quotient map q: R -+ R/I. (By"ho
motopy fiber," we mean we convert the map into a fibration using Proposi
tion 5.1.21 and then take "the" fiber of the fibration, which is well defined 
up to homotopy equivalence by Proposition 5.1.23.) Then the homotopy 
exact sequence of the fibration q., spliced together with the exact sequence 
of Theorem 2.5.4, gives a natural exact sequence 
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~ Ki(R/I) ~ Ki-1(R, I) ~ .... 

It is also clear that all the conditions (5.2.1) are now satisfied for the higher 
K-groups. 

5.2.15. Exercise. Let R be any ring. Show using Theorem 5.2.7 and 
Corollary 5.2.8 that the Hurewicz maps for BGL(R)+, BE(R)+, and 
B St(R)+ give homomorphisms (also usually called Hurewicz maps) hGL : 
Ki(R) ~ Hi(GL(R), Z) for i ~ 1, hE : Ki(R) ~ Hi(E(R), Z) for i ~ 2, 
hst : Ki(R) ~ Hi(St(R), Z) for i ~ 3. Here hGL is an isomorphism in 
degree 1, hE is an isomorphism in degree 2, and hst is an isomorphism 
in degree 3. Show that hGL = cores ohE and that hE = 'P* 0 hst , where 
'P : St(R) ~ E(R). Also show using Exercise 5.1.31 that hE is surjective 
in degree 3 and that hst is surjective in degree 4. 

5.2.16. Exercise. Let G = A5 , the alternating group on 5 letters, which 
by Exercise 4.1.27(4) is isomorphic to the symmetry group of a regular 
icosahedron and by Exercise 4.1.28(3) is also isomorphic to SL(2, lF4 ). Let 
G be its universal central extension, which by Exercise 4.1.27(7), is an 
extension of G by a group of order 2 and by Exercise 4.1.28(4) is also 
isomorphic to SL(2, lF5)' Since G and G are perfect, one may apply the 
+-construction to BG and to BG. 

(1) As we observed in Exercise 4.1.27(7), G naturally sits inside of 
SU(2), which in turn may be identified with the group Sp(l) of 
quaternions of modulus 1, which topologically is the same as S3. 
Let S(lHI=) denote the inductive limit lim S4k-l with the obvious 

---+ 
CW-structure, where we identify S4k-l with the unit sphere in 
lHIk. Since S4k-l is (4k - 2)-connected, taking the limit as k ~ 00, 

we see by Theorem 4.1.13 that S(lHI=) is contractible. Note that 
Sp(l) acts freely on S4k-l (by left quaternionic mUltiplication), 
with quotient IP'k-l(lHI). Show that by dividing out by G ~ Sp(I), 
one gets a fibration 

Sp(I)/G ~ S4k-l /G ~ IP'k-l(lHI), 

or by passage to the limit as k ~ 00, 

(5.2.17) Sp(I)/G ~ BG ~ 1P'=(1HI). 

Here Sp(I)/G is the Poincare homology 3-sphere of Exercise 4.1.27. 
Show that the universal cover of the fibration (5.2.17) is a fibration 

(5.2.18) 
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(2) Observe that ]P>OO(]H[) has a OW-structure with cells only in dimen
sions divisible by 4 and with exactly one cell in each such dimen
sion, so that Hn(]P>OO(]H[); Z) is free abelian if n is a multiple of 4 
and vanishes otherwise. In fact it is well known that the cohomol
ogy ring of ]p>00 (]H[) is a polynomial ring on a single generator in 
degree 4. From this and the "Gysin sequences" (see [Spanier, Oh. 
5, §7] or [Whitehead, Oh. VII, §5]) of (5.2.17) and of (5.2.18) (since 
the fiber is a homology sphere), deduce that the homology of Gis 
periodic, with 

A { 0, n == 0, 1, 2, mod 4} 
Hn(BG; Z) ~ Z/120, n == 3 mod 4 ,n > O. 

(The number 120 is IGI, and comes from comparing the two se
quences, using the fact that the projection Sp(l) ~ Sp(I)/G is a 
covering map which is 120-to-l.) 

(3) Use (1) and (2) to compute 11"1.11"2, and 11"3 for BG+ and for BG+, 
hence for BGL(2, lF4 )+ and for BGL(2, lF5)+. 

(4) As mentioned in Example 5.2.5, (Sp(I)/G)+ ~ S3, so that by 
Proposition 5.2.4, applying the +-construction to the map Sp(I)/G 
~ BG of (5.2.17) gives a map S3 ~ BG+. Show that this map 
is still compatible with the fibration of (5.2.17), so that one gets a 
fibration (up to homotopy equivalence) 

(5.2.17+) S3 ~ BG+ ~ ]P>OO(]H[). 

To see how this works, it is easiest to begin first with the case of 
the fibration 

which comes from taking two copies of (Sp(I)/G) x B4 and gluing 
them together along S3 using the covering map S3 ~ Sp(I)/G. 
Applying the +-construction "fiberwise" gives a fibration over S4 
with fibers homotopy-equivalent to S3 where the "clutching map" 
in 1I"3(fiber) is 120 times the generator of 1I"3(fiber) ~ 1I"3(S3) ~ Z. 
Extend this argument to the case of ]p>k-l(]H[) as the base and pass 
to the limit. Deduce that there is a long exact sequence 

... ~ 1I"n(S3) ~ 1I"n(S3) ~ 1I"n(BG+) ~ 1I"n_l(S3) ~ 1I"n_l(S3) ~ .... 

Since it is known that 1I"n(S3) is finite for n > 3, and since 11"3 (BG+) 
was computed in (3) above, it follows that 1I"n(BG+) is finite for 
all n. 

5.2.19. Exercise. Let Sn be the n-th symmetric group and let An be the 
n-th alternating group. We let Soo = limSn, Aoo = limAn. Since An is 

---+ ---+ 
simple, and thus certainly perfect, for n ~ 5, it makes sense to apply the 
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+-construction to Sn and to An (for n ~ 5), with respect to the perfect 
group An, and to Soo and to Aoo (with respect to Aoo). 

(1) For any ring R, show that the inclusion of the permutation matrices 
gives homomorphisms Sn -+ GL(n, R), An -+ E(n, R), and thus 
maps BSt -+ BGL(R)+, BAt -+ BE(R)+. 

(2) Compute as much as you can about the groups 1fn(BSt). In par
ticular, compute them for n = 1, 2 and try to get bounds on them 
for n = 3, 4. One relevant fact is a famous (and difficult) theorem 
of Schur, published in 1911, which implies that the corestriction 
map H2 (An, Z) -+ H 2 (Sn, Z) is an isomorphism for n = 5 and for 
n ~ 8 (though not for n = 6 or 7), and that H 2 (Sn, Z) ~ Z/2 for 
n ~ 2. 

5.2.20. Exercise. Let F = lFq, q = pd, P a prime, be a finite field. 
By Corollary 4.3.13 and Remark 4.3.14, St(F) = E(F) = SL(F), and 
thus, by Corollary 4.2.8, the Hurewicz map K3(F) -+ H3(SL(F), Z) is 
an isomorphism. By an analogue of Theorem 4.3.12, one can show that 
this group is finite. Show (following Quillen) that it has order relatively 
prime to p. Here is an outline: to show that K3(F) has order relatively 
prime to p, it is enough to show (why?) that H3(GL(F), lFp ) = O. Let 
N(n, F) be as in Corollary 4.3.13, the group of upper-triangular n x n 
matrices over F with 1's on the diagonal, and let D(n, F) ~ (Fx)n be 
the diagonal subgroup of GL(n, F). It is enough to show (why?) that 
Ho(D(n, F), H3(N(n, F), lFp )) = 0 for sufficiently large n. This can be 
proved, even for all n, by methods like those of Lemma 4.3.5, except for 
a few fields of small cardinality (q = 2, 3, 4, or 8). In the exceptional 
cases, one can still show that H3(GL(F), lFp ) vanishes by embedding F 
in a suitable extension field F' with [F' : F] relatively prime to p and 
considering the induced inclusion GL(F) -+ GL(F') and the map in the 
other direction coming from viewing F' as sitting in M[F/:Fj(F). 

3. A survey of higher K -theory 
In the last section of this chapter, we survey some of the things that are 
known about the higher K-groups Ki(R). Since the methods used in de
ducing some of the major results are quite complicated, we omit most of 
the proofs. The reader who wants to learn more should consult the survey 
articles in [LluisP] or a more comprehensive source such as [Srinivas]. 

Products. The Steinberg symbol map R X xRx -+ K 2 (R) in the case of 
a commutative ring R may be viewed as a special case of a kind of product 
operation K1(R) x K1(R) -+ K 2 (R). To generalize this to the higher K
groups, one would like some sort of product map BGL(R)+ x BGL(R)+ -+ 

BGL(R)+ that would induce a product structure on the homotopy groups. 
The H-space structure we defined in §2, since it corresponds to the block 
direct sum of matrices, really corresponds to "addition." (This is slightly 
confusing, since the group operation on K 1 (R) is usually written multi-
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plicatively, but when we extend the H-space structure to K{R), we use 
addition on Ko{R).) When R is commutative, however, there should be 
another operation on K-theory, extending the "multiplication" on Ko{R) 
corresponding to the tensor product. (See Exercise 1.1.9.) It is this struc
ture which is related to the Steinberg symbol map RX x RX ---+ K 2 {R). 
More generally, when R and S are rings which are not necessarily commu
tative, the tensor product of projective modules gives a "multiplication" 
Ko{R) ® Ko{S) ---+ Ko{R ®z S), where R ®z S is given the obvious mul
tiplication (a ® b) (c ® d) = ac ® bd. When R is commutative, one has a 
ring homomorphism R ®z R ---+ R given by the multiplication, and this 
can be used to turn this "external" product into an "internal" one. (N.B.: 
For any ring, multiplication defines a homomorphism of abelian groups 
R ®z R ---+ R, but this is a ring homomorphism only when R is commu
tative.) Similarly there are products Ko{R) ® K 1{S) ---+ K 1{R ®z S) and 
Kl{R)®Ko{S) ---+ K1{R®zS) which can be turned into "internal" products 
when R = S is commutative. The product Ko{R) ® Kl (S) ---+ Kl (R ®z S) 
is defined on generators [PJ ® [BJ, where P is a finitely generated projec
tive R-module and B E GL{m, S), as follows. Note that P ® sm is a 
finitely generated projective R®zS-module, and that if PfBQ ~ R"', then 
(P ® sm) fB (Q ® sm) ~ (P fB Q) ® sm ~ (R ®z s)nm. Send [PJ ® [BJ to 
the class of (lp®B)fB{lQ®lm) E GL{nm, R®zS). It is an easy exercise 
to see that this gives a well-defined product. 

5.3.1. Theorem [LodayJ. Let R and S be rings. Then there is a natural 
bilinear, associative product operation 

(for i, j ~ 0) which agrees with the usual products when i = 0 or j = 
O. When R is commutative, this together with the multiplication map 
R ®z R ---+ R makes EBi Ki{R) into a graded commutative ring. (Graded 
commutativity means that raj· [bJ = (-l)ij[bJ· [aJ for [aJ E Ki, [bJ E K j .) 

Proof (Sketch). The idea is to define a map 

BGL{R)+ A BGL{S)+ ~ BGL{R ®z S)+ 

and to extend it to a map 

K{R) A K{S) ~ K{R ®z S). 

Recall here that the "smash product" X A Y of based spaces (X, xo) and 
(Y, Yo) is the based space obtained from X x Y by collapsing (X x {Yo}) u 
{{xo} x Y) to a point. The desired product structure will then be defined 
as follows. Given based maps a : Si ---+ K{R), b: sj ---+ K{S) representing 
classes in Ki{R) and Kj{R), we define the product raj· [bJ as the homotopy 
class of the composite 

Si+j = Si A sj ~ K{R) A K{S) ~ K{R ®z S). 
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The definition of '" is based on a construction similar to that in the proof 
of Theorem 5.2.12. If we fix a bijection N x N --+ N, it gives an identification 
of Roo®zSoo with (R®zS)oo (here Roo means a free R-module of countably 
infinite rank, etc.), and thus a group homomorphism GL(R) x GL(S) --+ 

GL(R®zS). Applying the +-construction via Proposition 5.2.4, we obtain 
a map 

BGL(R)+ 1\ BGL(S)+ ~ BGL(R ®z S)+. 

Changing the bijection N x N --+ N used in this construction only changes 
the map by conjugation by a permutation matrix, and one can show this 
does not change the homotopy class of ",. Naturality is clear, and bilinearity 
and associativity are easy to check (using the fact that the homotopy class 
of '" is independent of the bijection chosen N x N --+ N). 

Suppose now that R is commutative. Then the ring homomorphism 
R ®z R --+ R coming from multiplication induces a map m : K( R ®z R) --+ 

K(R). We obtain a composite m 0 '" : K(R) 1\ K(R) --+ K(R). Because 
of associativity and bilinearity of the product, this makes ffii Ki(R) into a 
graded ring. To prove that this ring is graded commutative, let u be the 
"flip" automorphism of R ®z R. This induces a map u+ : K(R ®z R) --+ 

K(R®zR). Given based maps a : Si --+ K(R), b : sj --+ K(R) representing 
classes in Ki(R) and Kj(R), we consider the diagram 

~ K(R)I\K(R) ~ K(R®zR) 

lu lu+ 
sHj = sj 1\ Si ~ K(R) 1\ K(R) ~ K(R ®z R) 

Here s and u are the obvious "flip" maps. 

m -
m -

K(R) 

II 
K(R). 

The leftrhand square is commutative by definition, and the middle square 
is homotopy-commutative by naturality of ",. The right-hand square is 
homotopy-commutative since mult ou = mult (recall R is commutative). 
On the other hand, the map s is easily seen to have degree (-l)ij, since 
the flip on ]Ri x ]Rj is orientation-preserving if and only one of i and j is 
even. So the homotopy class of the composite along the top line of the 
diagram differs from that along the bottom line of the diagram by a factor 
of (_l)ij. 0 

Remark. A calculation in [Loday] shows that the above product, when 
specialized to a product Kl(R)®zKl(R) --+ K 2(R) and restricted to RX ®z 
RX, differs from the Steinberg symbol pairing of the last chapter by a sign. 

K -Theory of Fields and of Rings of Integers. Because of their 
importance in arithmetic, as well as the fact that all rings are algebras 
over Z and many rings commonly encountered are algebras over fields, it is 
natural to begin the study of higher K-theory with the K-theory of fields 
and of rings of integers in number fields. Even in these "elementary" cases, 
the calculation of the higher K -groups is quite difficult and in most cases 
incomplete. Nevertheless, there are a number of important results known, 
and a number of conjectures (true in many special cases) which would link 
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the K-theory of fields and of rings of integers to important problems in 
number theory and algebraic geometry. No discussion of higher K-theory 
would be complete without some mention of these results and conjectures, 
which have provided most of the impetus for recent work in the subject. 
A more detailed survey (again with most proofs omitted) may be found in 
Soule's article in [LluisPj. 

The first major result on the higher K-theory of fields was due to Quillen. 

5.3.2. Theorem [QuillenFinFdj. The K-groups Ki(lFq ) of a finite field 
IF q are finite cyclic for all i > o. They vanish for i ~ 2 even, and have order 
IK2k- 1 (lFq ) I = qk - 1 for i = 2k - 1 ~ 1 odd. 

Some ideas from the proof. While it would take too much algebraic 
topology to explain Quillen's method of proof, we should mention at least 
some of the ideas involved. Quillen's result was actually somewhat more 
precise, since he managed to compute the precise homotopy type of 
BGL(lFq )+, showing that it is the fiber in a fibration (up to homotopy) 

(5.3.3) 

where BU is the classifying space for (complex) topological K-theory. This 
is the (path-connected) space, uniquely defined up to homotopy equiva
lence, with the property that for any paracompact space X, there is nat
ural bijection between [(O(X) and the set [X, BUj of homotopy classes of 
continuous maps X ---> BU. From Bott periodicity, one knows that the 
homotopy groups of BU are 7ri(BU) = 0, i = 2k -1 ~ 1 odd, 7ri(BU) ~ z, 
i = 2k ~ 2 even. For any connected compact space X, the map 9q induces a 
map [(0 (X) ---> [(O(X) which is natural in X. The map 9q is determined by 
this "cohomology operation" on K-theory, which is given by x I-t 'l/Jq(x)-x, 
where 'l/Jq is what is known as the q-th Adams operation on KO(X). This 
in turn is characterized by the properties that 'l/Jq is a ring homomorphism 
(recall KO(X) is a ring with unit, where the product comes from the tensor 
product of vector bundles), and that 'l/Jq(x) = xq if x E KO(X) is the class 
of a line bundle. Note that 'l/Jq preserves the dimension of a vector bundle, 
and thus passes to a well-defined self-map of reduced K-theory, which is 
the kernel of the dimension homomorphism KO(X) ---> KO(pt) = Z. From 
these axioms it is easy to see that under the identification of [(0 (S2k) with 
Z, 'l/Jq corresponds to multiplication by qk. (Choose a map (S2)k ---> S2k of 
degree 1, and observe that the generator of [(0 (S2k) pulls back to a multi
ple of a virtual bundle of the form n:=l (Xi -1), where the Xi are complex 
line bundles pulled back from the S2 factors. But 

which shows 'l/Jq must multiply the generator of [(0 (S2k) by qk.) Thus (9q)* 
must be multiplication by qk - 1 on 7r2k(BU) ~ Z, and the calculation of 
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the homotopy groups of BGL(lFq )+ follows from the long exact homotopy 
sequence (Theorem 5.1.24) of the fibration (5.3.3). 

While we do not have the tools here to construct the fibration (5.3.3), we 
can at least indicate where the crucial map bt : BGL(lFq )+ ---+ BU comes 
from. Since BU is simply connected, it is enough by Proposition 5.2.4 
to construct a map bq : BGL(lFq ) ---+ BU, or in other words, an element 
of the reduced K-theory of BGL(lFq ). This is constructed by passage to 
the limit from (compatible) classes in j(O(BGL(n, lFq» for each n. Now 
if G is a group and one has a finite-dimensional representation p : G --t 
GL(N, q, it immediately gives rise to a vector bundle on BG, namely 
the fiber product EG Xa eN, where G acts on eN via p. (Recall by 
Definition 5.1.16 that EG is the contractible universal cover of BG.) So we 
need a suitable virtual representation (that is, a formal difference of two 
finite-dimensional complex representations) of G L( n, IF q). This in turn is 
constructed by the mechanism of Brauer lifting. Instead of constructing 
the virtual representation, we use that fact that representations of a finite 
group are characterized by their characters, and so construct instead a 
virtual character on G, that is, the difference of two characters. This 
is a complex-valued function on G, constant on conjugacy classes. The 
crucial result is the following. 

5.3.4. Theorem (J. A. Green). Let G be a finite group, and let p: G--t 
GL(n, iFp ) be a finite-dimensional representation of G over the algebraic 
closure of the field of p elements, p a prime. Fix an isomorphism a : iF; <-+ 

ex of the multiplicative group of iFp with the complex roots of unity of 
order prime to p. Let e-i(g), i = 1, ... , n be the eigenvalues of p(g) for 
9 E G, counted with multiplicities, so that the character of p is given by 
Tr p(g) = 6(g) + ... + e-n(g). Then 9 1-+ a 0 6(g) + ... + a 0 e-n(g) is a 
(complex-valued) virtual character of G, called the Brauer lift l<7(p) of p. 
The Brauer lift is additive on short exact sequences of representations. In 
other words, if 

o --t p' --t p --t p" --t 0 

is a short exact sequence of representations over iFp , then l<7(p) = l<7(p') + 
l<7 (p"). 

Proof. This depends on a famous theorem of Brauer (see [Jacobson, II, 
§5.12]), which implies that a complex-valued function on G, constant on 
conjugacy classes, is a virtual character if and only of its restriction to each 
nilpotent subgroup is a virtual character. Because of this and the fact that 
9 1-+ a 0 6 (g) + ... + a 0 e-n (g) is a class function, we can immediately reduce 
to the case where G is nilpotent. But a finite nilpotent group is the direct 
product of its Sylow subgroups, so we may assume G = H x K, where H 
is nilpotent with order IHI relatively prime to p, and with K a p-group. If 
9 E G, we can write 9 = hk with h E H and k E K, and p(k) E GL(n, iFp ) 

is unipotent (since the minimal polynomial of p( k) is of the form xpr - 1 
and we are in characteristic p) and commutes with p(h). Thus p(g) has 
the same eigenvalues as p(h), and l<7(p) factors through H. So without loss 
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of generality, we may replace G by H and assume G is nilpotent of order 
prime to p. 

However, if the order of G is relatively prime to p, then representations of 
G over iF p are completely reducible. If G is abelian, every representation is 
therefore a direct sum of characters, and the result is obvious. Furthermore, 
if p is induced from a one-dimensional representation X of a subgroup H, 
then it is clear that lCT (p) as defined in the the Theorem is just the character 
of the representation of G induced from the character 0' 0 X of H. To 
conclude the proof, we note that if G is nilpotent, an easy induction shows 
every irreducible representation is ''monomial,'' i.e., induced from a one
dimensional representation of a subgroup (again see [Jacobson, II, §5.12]), 
and so applying the last observation, we see lCT (p) is the character of a 
monomial representation over C. The additivity property comes from the 
fact that given a short exact sequence as in the theorem, the eigenvalues 
of p(g) are the union of the eigenvalues of p'(g) and of p"(g). 0 

Some ideas from the proof of Theorem 5.3.2 (continued). Now we can 
explain the construction of the map bq • Fix 0' : iF; <---t CX as in Theorem 
5.3.4. Start with the identity representation 

The Brauer lift lCT(idn) is a complex-valued virtual character of GL(n, lFq) 
by Theorem 5.3.4, and by the formula for lCT, lCT(idn){l) = n, i.e., it has 
dimension n. So lCT(idn) - n is a virtual character of dimension 0 and thus 
gives rise to a virtual vector bundle of dimension 0 on BGL(n, lFq), and so 
to a map b~ : BGL(n, lFq) - BU. The diagram 

BGL(n, lFq ) 

1 II 
b.,+l 

BGL(n+ 1, lFq ) ~ BU 

commutes, at least up to homotopy, since for 9 E GL(n, lFq), its image in 

GL(n+ 1, lFq) is (~ ~), and 

lCT(idn+1) (~ ~) - (n + 1) = lCT(idn)(g) - n. 

So passing to the limit we obtain the desired map bq : BGL(n, lFq) - BU. 
Furthermore, we can see immediately that the composite gq 0 bq is null
homotopic, for if 9 E GL(n, lFq), the set of eigenvalues of 9 is invariant 
under Gal(iFp/lFq), which is generated by the Frobenius automorphism x 1-+ 

xq, and thus from the defining property of t/Jq, t/Jq(BlCT(idn)) = BlCT(idn), 
and gqobq is null-homotopic. From this one can see at least that bt induces 
a map from BGL(lFq)+ to the homotopy fiber of gq. The bulk of Quillen'S 
proof consists of showing that this induced map is a homology isomor-
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phism, and thus a homotopy equivalence by the Hurewicz and Whitehead 
Theorems. 0 

5.3.5. Remark. A perhaps disappointing corollary of the computation 
of the K-groups of a finite field is that in this case, the ring structure of 
Theorem 5.3.1 is quite trivial: the product Ko(lFq) ® Ki(lFq) ~ Ki(lFq) 
is just the usual action of Z on any abelian group, and all other products 
vanish for dimensional reasons (the non-trivial K-groups are in odd degree, 
and the product of two elements of odd degree has even degree and thus 
vanishes). 
5.3.6. Corollary [QuillenFinFd]. If F is any algebraic extension oflFp, 
then Ki(F) vanishes for i ~ 2 even, and Ki(F) = Ki(lFp)Gal(Fp/F) for 
i = 2k - 1 ~ 1 odd. Furthermore, 

K2k-l(lFp) ~ EeQz/Z,. 
I"FP 

Proof. Any algebraic extension F of IF p is an increasing union of finite 
fields lFqr Now it is evident that the constructions of Theorem 5.1.15 and 
of Theorem 5.2.2 are compatible with increasing unions, so that 

Ki(F) = 1fi(BGL(F)+) = 1fi(~BGL(lFq;)+) 

= ~1fi(BGL(lFq;)+) = ~Ki(lFqj)' 

which gives 0 for i ~ 2 even and gives limj-+oo Z/ (qj -1) for i = 2k -1 ~ 1 
odd. In the case of F = IF P' the llj are all the powers of p, indexed by 
the multiplicative ordering on N. Thus the l-primary part of K2k-l(lFp) 
vanishes for l = p (since the p-primary part of K2k-l(lFq) vanishes for q 
any power of p, by Theorem 5.3.2) and for l oF p is an increasing union of 
cyclic groups of orders In; with nj ~ 00, in other words Qz/Z,. 0 

The state of knowledge about the K-theory of other fields is quite in
complete. To phrase some results in a reasonable way, it is necessary to 
pass to K-theory with finite coefficients, which is useful in other con
texts, anyway. Setting up the foundations of this theory requires more 
homotopy theory than we have developed, but we will at least state the 
main properties. 

5.3.7. Theorem (cf. [Browder]). For any positive integer k ~ 2, there 
are functors R "-"+ Ki(Rj Z/k) from rings to abelian groups and functors 
(R, I) "-"+ Ki(R, Ij Z/k) giving exact sequences as in Definition 5.2.14. 
These fit into natura110ng exact sequences 
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(and similarly for the relative groups), where k here means multiplication 
by k on Ki(R). For i ~ 2, the K-groups with coefficients in Z/k may be 
defined by 

the set of homotopy classes of maps into BG L( R)+ from the "Moore space" 
M~ obtained by attaching an i-cell onto Si-l by a map OBi = Si-l -+ Si-l 

of degree k. (A similar definition applies to the relative groups.) 
For i ~ 1, there is a natural Hurewicz map 

which is the "mod k" analogue of the map haL of Exercise 5.2.15. 

Partial sketch of proof. The groups Ki(Rj Z/k) were first introduced by 
Browder [Browder], who used [M~, BGL(R)+] as the definition for i ~ 2 
and Ki(R)®zZ/k as the definition for i ~ 1. This gives the "correct" groups 
in degrees ~ 2 but is somewhat unsatisfactory in low degrees for general 
rings, since it leads to failure of the long exact sequences below degree 2. 
(This was not a problem for Browder since he was mostly interested in 
fields.) However, there are various ways of remedying this by "dimension-

shifting." With this approach, the boundary map Ki(Rj Z/k) ~ Ki-1(R) 
is induced by the inclusion of Si-l into M~, and the exact sequence comes 
from the exact sequence dual to that in Definition 5.1.6. For example, a 
class in K i - 1 (R) lies in the image of 0 if and only if the corresponding map 
Si-l -+ BGL(R)+ extends over M~, which by definition of M~ happens if 
and only if its homotopy class is torsion of order dividing k. The "reduction 
mod k" map Ki(R) -+ Ki(Rj Z/k) is induced by a map M~ -+ Si. The 
Hurewicz map is defined by noting that Hi(M~j Z/k) ~ Z/k, so that any 
map f : M~ -+ BGL(R)+ sends the "mod k fundamental class" of M~ to 
a class in Hi(GL(R)j Z/k) only depending on the homotopy class of f. 

Another method is to show, using the fact that BGL(R)+ is an H-space, 
that there is a self-map of BGL(R)+ which induces multiplication by k on 
the homotopy groups. Then one can take the homotopy fiber of this map 
and use its homotopy groups, shifted in degree by 1, as the K-groups with 
coefficients in Z/ k. The desired long exact sequences 

then follow immediately from the long exact sequence of a fibration (The
orem 5.1.24). A "dimension-shifting" technique is needed to deal with 
negative K -theory to incorporate it into the same framework. Standard 
techniques of algebraic topology can be used to show that the two ap
proaches yield the same mod-k K -groups. D 

Now we can state some of the remarkable results of Suslin about K
theory of certain fields. 
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5.3.8. Theorem [SuslinAlgCl). Any inclusion of algebraically closed fields 
induces an isomorphism of mod-k K -groups. Thus the mod-k K -groups 
of an algebraically closed field of characteristic p are the same as for lFp , 

and so can be read off from Corollary 5.3.6 and from the exact sequence of 
Theorem 5.3.7. 

Remark. From the exact sequence of Theorem 5.3.7, it is immediate that 
if F is a field, then 

K 1{F; Z/k) ~ FX/{FX)k 

(this group already appeared in Theorems 4.4.17 and 4.4.18). This vanishes 
for algebraically closed fields for all k, but will be non-trivial if some element 
of F does not have a k-th root in F. Thus one cannot expect an inclusion 
of an algebraically closed field in another field to induce an isomorphism 
of mod-k K -groups unless the extension field is also algebraically closed. 

5.3.9. Theorem [SuslinLoc). Let BU and BO be the classifying spaces 
for (complex and real, respectively) topological K -theory. The vector bun
dles 

EGL{n, C) XGL(n,iC) Cn over BGL{n, C) 

and 
EGL{n, 1R) XGL(n,lR) IRn over BGL{n, 1R) 

give rise to maps BGL{C) - BU and BGL{IR) - BO, and thus to maps 
BGL{C)+ - BU and BGL{IR)+ - BO. These maps induce isomorphisms 
on mod-k homotopy groups, so that for all k ~ 2 and i > 0, 

{ 
Z/k, i even, 

Ki{Cj Z/k) ~ '1ri{BU; Z/k) ~ 0, i odd 

and 

{ 
Z/k, i == ° mod 4, 

Ki(lR; Z/k) ~ '1ri{BO; Z/k) ~ 0, i == 1, 2,3 mod 4 (k odd); 

if k is even, there are suitable Z/2's coming from the groups '1ri{BO) ~ Z/2 
for i == 1, 2 mod 8. 

The other fields of greatest interest are number fields F, that is, finite 
extensions of Q. Since such a field is the field of fractions of a Dedekind 
ring R, namely the ring of algebraic integers in F, it turns out that the 
K-theory of F can be computed from that of R and of finite fields (see 
Theorem 5.3.28 and Example 5.3.29 below). So we next focus attention 
on rings of integers. For the ordinary integers Z, some specific facts are 
known. We mentioned previously (Exercise 4.3.20) that K2 {Z) is cyclic of 
order 2, with generator {-1, -1}. 

5.3.10. Theorem [LeeSzc). K3{Z) is cyclic of order 48. 
5.3.11. Theorem [Ad). The Hurewicz map K4 (Z) - H4 {St{Z), Z) is an 
isomorphism. The Hurewicz map K5{Z) - H5(St{Z), Z) has cokernel of 
order 2 and finite kernel. 
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In addition, there are two important general theorems about the higher 
K-theory of rings of integers. 

5.3.12. Theorem [QuillenFinGen). If R is the ring ofintegers in a finite 
extension field F over Q, then Ki(R) is finitely generated for all i. 

5.3.13. Theorem [Borel). Suppose R is the ring of integers in a finite 
extension field F over Q. Write [F : QJ = n = rl + 2r2, where rl is the 
number of distinct embeddings of F into JR, and r2 is the number of distinct 
conjugate pairs of embeddings of F into C with image not contained in JR. 
For i ~ 2, 

{ 
0, i even, 

Ki(R) 0z JR ~ JRr, +r2 , i == 1 mod 4, 

JRr 2, i == 3 mod 4, 

Quillen's Finite Generation Theorem (5.2.12) and Borel's Theorem 
(5.3.13) taken together should be viewed as a higher-degree version of 
the Dirichlet Unit Theorem (Theorem 2.3.8), which showed that K1(R) 
is finitely generated, with K1(R) 0z JR ~ JRr,+r2 -1. The upshot of these 
theorems as far as the K-theory of Z is concerned is that Ki(Z) is finite 
for all i ~ 2 except when i ~ 1 mod 4, in which case Ki(Z) is a product 
of an infinite cyclic group and a finite abelian group. A bit is known about 
the finite groups that appear, in terms of both upper and lower bounds on 
their sizes, but there is no simple pattern, and there is evidence that the 
orders of these finite groups are at least in part related to the Bernoulli 
numbers. (A few examples: it is shown in [Browder) that KSk+3(Z) con
tains a direct summand isomorphic to Z/48, and it is shown in [Soule) that 
K 22 (Z) surjects onto Z/691.) 

Even in the case of the ring of integers R in a general number field F, 
there seems to be a close link between the K -groups of R and arithmetic 
properties of the field F, in particular the zeta-function of the field (F(S). 
This is the meromorphic function of S obtained by analytic continuation of 
the Dirichlet series 

1 
(F(S) = L: 1-1 1-8 

prime ideals p I' 

1 
" - Res> 1, 
L..J I Is' 

nonzero ideals a a 

where II'I denotes the norm of an ideal as defined in the proof of Theorem 
1.4.19, and we sum over non-zero ideals of R. When F = Q, this is the 
usual Riemann zeta-function. The functional equation of (F, together with 
Borel's Theorem (5.3.13), gives rise to the following suggestive observation 
of Lichtenbaum: 

5.3.14. Proposition [Licht, Corollary 2.3). The rank of K2k+1 (R) is 
equal to the order of the zero of (F (s) at s = -k. 

In fact, many special values and residues of (F (s) seem closely related to 
the orders of the finite summands in the K -groups of R; for some details, 
see [Licht). For example, in the case of the Riemann zeta-function, 

((-1) = -~ = -2. IK2 (Z)I. 
12 IK3 (Z)1 
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The connection with the Bernoulli numbers comes from the classical iden
tity 

B2k 
«-2k+ 1) = - 2k . 

Pursuing this matter further leads to relationships between K-theory and 
etale cohomology in algebraic geometry, and to recent conjectures of Beilin
son. For a survey of this whole cycle of ideas, see [Rama). 

The Q-Construction and Results Proved with It. Along with 
the +-construction which we have already discussed, Quillen gave another 
method for constructing a space K(R) whose homotopy groups are the 
higher K -groups of R. This method is now usually known as the Q
construction. Quite a number of variants of the method are known; for 
a survey of some of them, see [Adams, Chs. 2 and 3). Much of the power 
of higher K-theory comes from playing off the +-construction against the 
Q-construction, for on the face of things, they look very different. The 
proof that the two constructions give the same K-groups is quite difficult 
and involved; one version of the proof may be found in [Srinivas, Ch. 7), 
and another proof is sketched in [Adams, §3.2). While we will not attempt 
to go into details of these points, we will explain roughly how to construct 
K-groups via Quillen's original Q-construction, and will mention a few of 
the key theorems proved with this construction. For a much more extensive 
treatment, see §§3-7 of [Srinivas). 

To define the Q-construction, we need a slightly more general notion of 
classifying space than that given in Definition 5.1.16. 

5.3.15. Definition. Let e be a small category, that is, a category whose 
objects form a set. The classifying space Be of e is defined to be a 
CW-complex with one O-cell for each object of e, and for n ~ 1, with one 
n-cell for each diagram 

X h X 12 in X 
0- 1-"'- n 

in e, where the Xi'S are objects of e, the Ii's are morphisms in e, and we 
exclude the case where two consecutive Xi'S are equal and the morphism 
between them is the identity morphism. The n-cell associated to 

X h X 12 in X 
0- 1-"'- n 

is attached in the obvious fashion to any cell of smaller dimension that can 
be obtained by deleting some Xi and, if i =F 0 or n, replacing Ii and Ii+l 
by Ii+l 0 Ii- (Any time this leads to an identity morphism, one cancels 
it.) Note that a functor between small categories induces a cellular map 
between their classifying spaces. 

5.3.16. Examples. 

(1) He has only one object *, and Homc(*, *) = G is a group, then Be 
has a single O-cell *, one I-cell for each 9 =F 1 in G, and one n-cell 
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for each n-tuple of elements of G none of which are the identity. 
Thus if G = {I, g} is the cyclic group of order 2, BC has exactly 
one cell of each dimension. In this case, it is not hard to see that 
BC is lRlPoo , the infinite real projective space. In general, it is not 
hard to see that BC coincides with the model for BG constructed 
in Theorem 5.1.15. 

(2) If C has exactly two objects, 0 and 1, and if C has exactly one 

morphism 0 L 1 other than the identities ido and id1, then BC 
has two O-cells and one I-cell joining them, so that BC = [0, 1]. 

(3) It is immediate from the definition of the cells of BC that path
components of BC correspond exactly to connected components of 
the objects of C, where we say two objects lie in the same connected 
component if there is a morphism between them. 

5.3.17. Lemma (G. Segal). If C and 'D are small categories, and if 
F, G : C -+ V are functors, and there is a natural transformation F -+ G, 
then BF, BG : BC -+ B'D are homotopic. Thus if C has either an initial 
or a final object, then BC is contractible. 

Proof (Sketch). A natural transformation F -+ G may be viewed as a 
functor C x {O, I} -+ 'D, where {O, I} is the category of example 5.3.16(2). 
It thus induces a map 

B(C x {O, I}) = BC x B{O, I} = BC x [0, 1]-+ B'D 

restricting to BF on BC x {O} and restricting to BG on BC x {I}, in other 
words a homotopy from BF to BG. If C has a final object *, then we may 
view * as itself being a subcategory of C with only one object and only 
one morphism, and B* is a single point. There is a natural transformation 

from C ~ C to C ---+ * '--+ C, so the identity map on BC is homotopic to a 
map factoring through a point, and BC is contractible. The case where C 
has an initial object is analogous. 0 

5.3.18. Corollary. An equivalence of categories yields a homotopy equiv
alence of classifying spaces. 

Proof. This is immediate from the definition of equivalence and from 
Lemma 5.3.17. 0 

Now we can give the Q-construction of the higher K-groups. 

5.3.19. Definition [Quillen]. Let P be a category with exact sequences 
(as defined in Definition 3.1.1). An admissible monomorphism in P is 
a morphism P >-+ P' that can be completed (on the right) to a short exact 
sequence 

O-+P>-+P'-+P"-+O 

in P, and an admissible epimorphism is a morphism P - P' that can 
be completed (on the left) to a short exact sequence 

O-+p"-+P-P'-+O 
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in 1'. Define Q(1') to be the category with the same objects as 1', with 
morphisms HomQ("p)(PI , P2 ) the set of all equivalence classes of diagrams 

PI - Q >--+ P2 , 

where _ and >--+ are, respectively, an admissible epimorphism and an ad
missible monomorphism. For example, since we may take Q = PI, any 
split injection gives a morphism in Q(1'). Two such diagrams are to be 
identified if there is a commutative diagram 

PI - Q- P2 

II 1~ II 
PI - Q' - P2 • 

To compose arrows, given 

PI - Q >--+ P2 

and 
P2 - Q' >--+ P3 , 

form 
PI - Q XP2 Q' >--+ P3 • 

Note that strictly speaking, Q(1') is not necessarily a small category as 
it stands, but we can replace it by an equivalent small subcategory, and by 
Corollary 5.3.18, the classifying space of this subcategory is well defined up 
to homotopy equivalence. With this understanding, we write BQ(1') for 
this space. The K-groups of l' are defined to be K i(1') =def lI"i+I(BQ(1'», 
computed with respect to the natural basepoint corresponding to the 0-
object. (Since there is a morphism in Q(1') from the O-object to any other 
object, BQ(1') is path-connected.) 

If R is a ring and l' is the category of finitely generated projective 
modules over R, we write simply Ki(R) and Q(R) for Ki(1') and Q(1'), 
respectively. 

Of course, it would be desirable to know that this definition agrees with 
our earlier definitions of Ko and KI for categories in Definition 3.1.6, and 
with Definition 5.2.6 for rings. In fact this is the case for Ko of categories 
and for general K -groups of rings, though there are known to be some cases 
of categories for which Definition 3.1.6 and Definition 5.3.19 give different 
K I-grouPS. Fortunately we are really only interested in the case of rings, 
where the two competing definitions of higher K-groups coincide. We state 
this result as a theorem, but as the proof is quite difficult and involved, we 
refer the reader to [Srinivas, Ch. 7] and to [Adams, §3.2]. 

5.3.20. Theorem (Quillen-see [Srinivas, Theorem 7.7]). For any ring 
R, there is a natural homotopy equivalence flBQ(R) -t K(R), inducing 
natural isomorphisms between the K-groups of Definition 5.3.19 and those 
oE Definition 5.2.6. 
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The one part of this result that is elementary is the proof that 

7fl(BQ(R» ~ Ko(R) 

([Quillen, §2, Theorem 1] and [Srinivas, Example 4.10]), which actually 
works for categories: 7fl(BQ(P» ~ Ko(P) for any category P with exact 
sequences. Each object P of P defines a loop in BQ(P), since there are 
two distinct paths from the basepoint to the O-cell of BQ(P) corresponding 

to P, corresponding to the two morphisms 0 - P ~ P and 0 - 0 ~ P 
in Q(P). It is easy to see that sending [P] to the class of this loop gives a 
map Ko(P) -+ 7fl (BQ(P», and only slightly harder to see that this is an 
isomorphism. 

The principal advantage of the Q-construction over the +-construction is 
that it can be applied not only to the finitely generated projective modules 
over a ring but also to more general categories. Even if one is only interested 
in the K-groups of a ring R, the easiest approach to computing the K
groups is often to find other categories of R-modules for which the K
groups are computable, then to relate these to Kj(R). The reader may 
find many examples of this technique in [Quillen] and [Srinivas]. The first 
basic tool is the following (cf. Proposition 3.1.9). 

5.3.21. Lemma. If F : P -+ M is an exact functor between categories 
with exact sequences, then F induces a map BQF : BQ(P) -+ BQ(M), 
and in particular induces maps F. : Ki(P) -+ Ki(M). 

Proof. Since F preserves exact sequences, it induces a functor QF : 
Q(P) -+ Q(M), and thus a map between classifying spaces by 5.3.15. 0 

5.3.22. Example. For an example of 5.3.21, note that a homomorphism 
cp : R -+ S of rings induces an exact functor cp. : Proj R -+ Proj S by 
P 1-+ S ® R P. The exactness here depends on the fact that every short 
exact sequence of projective modules splits. We conclude that cp : R -+ S 
of rings induces maps cp. : Ki(R) -+ Ki(S), 

Now we may generalize the G-groups of Chapter 3 as follows. 

5.3.23. Definition [Quillen]. Let R be a ring. (Often one wants to 
assume that R is left Noetherian, which ensures that any submodule of 
a finitely generated R-module is finitely generated.) Define Gi(R) (or 
K:(R» by Gi(R) =def Ki(R-Modrg). The obvious inclusion functors 
Q(Proj R) '--+ Q(R-Modfpr) '--+ Q(R-Modrg) (see Examples 3.1.2(3) and 
(4» give natural homomorphisms Ki(R) -+ Ki(R-Modfpr) -+ Gj(R). 

Note that in general, a ring homomorphism cp : R -+ S does not in 
general induce an exact functor R-Modrg ~ S-Modrg. However, M 1-+ 

S ® R M is exact if S is flat over R, so in this case we obtain a map 
cp. : Gi(R) -+ Gi(S). If S is finitely generated as an R-module via cp, then 
each finitely generated S-module may be viewed as a finitely generated R
module, and without any flatness assumption we obtain an exact functor 
S-Modrg ~ R-Modrg and maps cp. : Gi(S) -+ Gi(R), known as the 
transfer homomorphisms. 
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Now we can state some of the results proved using the Q-construction. 
These include analogues of all the major results of Chapter 3. In many 
cases, the method is more powerful than the result may indicate, and with 
more work can be used to prove something more delicate. 

5.3.24. Theorem ("Devissage"-cf. Theorem 3.1.8). Let A be an 
abelian category in which every simple object is isomorphic to one and 
only one element of some set S ~ Obj A, and let Ass, Aft be the full 
subcategories of semisimple objects (finite direct sums of simple objects) 
and objects of finite length, respectively. Then the inclusion Ass <-+ Aft 
induces isomorphisms 

E9 Ki(End,A(M)OP) -+ Ki(Aft). 
ME8 

Remarks on the proof. See [Quillen, Theorem 4J and [Srinivas, Theorem 
4.8J. It is convenient to slightly generalize the notion of category with 
exact sequences so as to cover Ass (which isn't closed under extensions in 
A)j then there are two steps, to show BQ(Ass) -+ BQ(Aft) is a homotopy 
equivalence, and then to observe that 

Ki(Aft) ~ E9 Ki(End,A(M)OP). 0 
ME8 

5.3.25. Theorem ("Resolution theorem"-cf. Theorem 3.1.13). 
Suppose M and P are categories with exact sequences, both contained in 
the same abelian category A, and with P a full subcategory of M. Also 
assume: 

(1) that for each object M E Obj M, there is a finite resolution by 
objects ofP, i.e., an exact sequence (3.1.3) in M of finite length 
with Pj E ObjPi 

(2) that if 

is a short exact sequence in A and M2 , M3 E Obj M (resp., Obj P), 
then Ml E Obj M (resp., Obj P). (In other words, M and Peach 
contain the kernels of each of their morphisms which are epimor
phisms in A.) 

Then the inclusion functor P <-+ M induces isomorphisms of K -groups. 

Remarks on the proof. See [Quillen, Theorem 4J and [Srinivas, Theorem 
4.8]. 0 

5.3.26. Corollary. For any ring R, the inclusion functor Proj R <-+ 

R-Modfpr induces isomorphisms of K -groups. Thus if R is a left regu
lar ring, the inclusion functor Proj R <-+ R-Modfg induces isomorphisms 
Ki(R) -+ Gi(R) for all i. 
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5.3.27. Theorem ("Localization Theorem"). Let A be a small abelian 
category and let B be an additive subcategory closed under taking subob
jects, quotients, and extensions in A. Under these hypotheses, there is 
a well-defined quotient abelian category AlB with the same objects as A 
and with morphisms obtained from those of A by inverting morphisms with 
kernels and cokernels in B, and the natural functors 

B ~ A ---- AlB 

induce a fibration (up to homotopy) 

BQ(B) -t BQ(A) -t BQ(AIB) 

and thus a long exact sequence of homotopy groups 

Remarks on the proof. See [Srinivas, Appendix B] for a description of 
the construction of AlB and [Quillen, Theorem 5] and [Srinivas, Theorem 
4.9] for the theorem itself. 0 

5.3.28. Corollary. If R is a Dedekind domain with field of fractions F, 
there is a long exact sequence 

... -t Ki+l (F) -t 

p<lR maximal 

Remarks on the proof. This comes from applying the Localization Theo
rem to the case where A is the category of finitely generated R-modules and 
where B is the category of finitely generated torsion R-modules. The K
groups of A are Gi(R) ~ Ki(R) by Corollary 5.3.26. The K-groups of Bare 
the direct sums of the K -groups of the Rill's, by Theorem 5.3.24. The cat
egory AlB can easily be identified with the category of finite-dimensional 
vector spaces over F, so its K -groups are those of F and the result fol
lows. 0 

5.3.29. Example. We may apply Corollary 5.3.28 to the case where F is 
a number field, and R is the ring of integers in F. Then the Rill's are all 
finite fields, so their K-groups are finite and vanish in even degrees (> 0) 
by Theorem 5.3.2. So applying Theorems 5.3.12 and 5.3.13, we see that the 
K-groups of Fare countably generated as abelian groups, with Ki(F)@zQ 
a Q-vector space of dimension 1 if i = 0, 00 if i = 1, 0 if i ~ 2 is even, 
rl + r2 if i ~ 5 is == 1 mod 4, and r2 if i ~ 3 is == 3 mod 4. 

In fact, since the K-groups of finite fields vanish in even degrees (> 0), 
• the long exact localization sequence splits into shorter exact sequences. For 
instance we have 
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o ~ K2 (Z) ~ Z/2 -+ K2(Q) -+ E9 IF; 
p prime 

-+{±l}~QX~ E9 Z~O. 
p prime 

The last of these sequences contains in it the calculation of K 2 (Q) (cf. 
Theorem 4.4.9) as well as the Fundamental Theorem of Arithmetic, which 
says in effect that QX ~ {±1} x ESp prime Z. 

5.3.30. Theorem (Fundamental Theorem--cf. Theorem 3.2.22). 
Let R be ring and (as in Theorem 3.2.22) let Nil R be the category whose 
objects are pairs (P, A) consisting of a finitely generated projective module 
P over R and a nilpotent R-endomorphism A of P. The K-groups of 
Nil R naturally split as Ki(R) EEl Nili(R). Furthermore, there are natural 
isomorphisms 

Ki(R[t]) ~ Ki(R) EEl Nili-I(R), 

Ki(R[t, t-I]) ~ Ki(R) EEl Ki-I(R) EEl Nili-I(R) EEl Nili-I(R). 

Traditionally one writes NKi(R) for Nili-I(R). 
If R is left regular, all the Nil-groups and negative K -groups of R vanish, 

and Ki(R[t]) ~ Ki(R), Ki(R[t, rl]) ~ Ki(R) EEl Ki-I(R) for all i. 

Remarks on the proof. See [Quillen, Theorem 8] and [Srinivas, Theorem 
5.2] for the case where R is left regular, which is considerably easier. In this 
case, vanishing of the Nil-groups follows from tht Resolution and Devissage 
Theorems, and for the Fundamental Theorem itself, because of Corollary 
5.3.6, we can replace Ki by Gi and work with the abelian category of finitely 
generated modules, then apply Theorem 5.3.27 (Localization). The general 
case requires a modification of the Localization Theorem for categories 
with exact sequences which are not abelian, which is harder to state. See 
[Gersten2] and [Srinivas, Theorem 9.8]. 0 

Applications. Since the groups Ki(R) for i 2: 3 are defined in a some
what indirect way compared with the groups Ki(R) for i ::; 2, it is harder 
to find direct applications of them. Nevertheless, these groups also appear 
in algebraic geometry, number theory, topology, and analysis. A quick 
sketch of some of the presumed applications in number theory and alge
braic geometry appeared in the subsection on "K-theory of fields and of 
rings of integers." Other applications to algebraic geometry have to do with 
analogues of the Riemann-Roch Theorem for higher-dimensional algebraic 
varieties (recall Exercise 3.1.25) and with the so-called Chow ring of a va
riety. We will say just a bit about these topics now; for more details on the 
algebraic geometry background of the subject, see [Hartshorne, Appendix 
A], and for more details on how K-theory comes in, see [Srinivas, §§5, 8, 
and 9]. 

The Chow ring is an analogue for algebraic varieties (or schemes) of the 
cohomology ring of a topological space, particularly in the case of a man
ifold. It gathers information about algebraic subvarieties and how they 
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intersect with one another. More precisely, if X is an irreducible algebraic 
variety of dimension n over a field k (say C), the Chow ring CHe(X) is 
a commutative graded ring, with CHk(X) constructed as the free abelian 
group on the (Zariski-)closed irreducible subvarieties of X of codimension 
k, modulo a certain equivalence relation called rational equivalence. The 
ring structure on CHe(X) comes from intersection: if Y is a closed sub
variety of codimension p and if Z is a closed subvariety of codimension q, 
then one ''wiggles'' Y and Z within their respective equivalence classes so 
that they intersect properly (that is, in a finite union of irreducible subvari
eties each of codimension p+ q), and [Y]. [Z] is the class of this intersection, 
counted with suitable (possibly negative) multiplicities attached to the var
ious intersection components, in CHp+q(X). For example, if X = nm(C), 
CHe(x) ~ Z[y]/(yn+1), the truncated polynomial ring on a generator y in 
degree one, corresponding to the subvariety Y = ]p'n-l(C) ~ ]p'n(C) = X 
(a hyperplane section). In this case, all hyperplane sections are in the 
same rational equivalence class, and yi corresponds to the intersection of 
j generic linear hyperplanes, which if j ~ n is just the class of the linear 
subvariety nm-j(C) ~ ]p'n(C) = X. 

For a general non-singular variety X, it is clear that CHO(X) is the free 
abelian group on [X], hence ~ Z, and that CH1(X) is a group of equiv
alence classes of divisors on X, which is known to coincide with Pic(X), 
the group of isomorphism classes of algebraic line bundles, via the corre
spondence D ~ CD discussed in Exercise 3.1.25. It is rather easy to show 
that Pic(X) ~ Hl(X, o.~), where 0.; is the sheaf of germs of invertible 
algebraic functions. (See [Hartshorne, Ch. III, Exercise 4.5].) For a long 
time, it was an open problem to give a comparable description of the higher 
Chow groups CHk(X) as cohomology groups of some sort. 

This problem was solved by Quillen in the case of non-singular varieties, 
or more precisely, regular schemes X of finite type over a field k, using 
the higher K -groups of the variety. The answer (known as Bloch's for
mula, see [Quillen, Theorem 5.19] and [Srinivas, Corollary 5.27]) is that 
CHk(X) ~ Hk(X, ICk,X), where ICk,X is the sheaf given by "sheafify
ing" the presheaf U ~ Kk(U), for U a Zariski-open subset of X. Since 
it is easy to see that ICk, x is the constant sheaf Z when k = 0 and the 
sheaf 0; when k = 1, Bloch's formula generalizes the classical formulas 
CHO(X) ~ HO(X, Z) ~ Z and CH1(X) ~ Hl(X, 0;) ~ Pic(X). The 
case of singular varieties is substantially more complicated, but it is now 
clear that the study of the higher Chow groups C Hk (X) is inextricably 
linked with higher algebraic K-theory. 

For somewhat related reasons, the higher K -groups of a variety are also 
related to the Riemann-Roch problem, discussed in Exercise 3.1.25, of com
puting the Euler characteristic map X : Ko(Vect X) -+ Z, the reason being 
that Ko(Vect X) is related to the higher K-groups on subvarieties of X via 
repeated use of the long exact K -theory sequences. Alternatively, one can 
see this via the fact (see [Hartshorne, Appendix A]) that in the case of a 
non-singular projective variety, the map X can be shown to factor through 
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a "Chern character" map 

Ko(VectX) ~ CH-(X) ®z '0, 

while the higher higher Chow groups are related to higher algebraic K
theory via Bloch's formula. For more on this topic, see Gillet's survey in 
[LluisP). 

We conclude this section with a discussion of a nice geometric description 
of higher algebraic K-theory, due to Max Karoubi, which can be used 
to relate algebraic K-theory to problems about flat vector bundles. This 
particular description of the +-construction will also be useful in the next 
chapter-see Exercise 6.2.25. 

5.3.31. Definition [KaroubiHomCyc). Let G be a group whose commuta
tor subgroup is perfect; the main case of interest will be where G = GL(R) 
for some ring R. Let X be a CW-complex. A virtual flat G-bundle over 

X is a diagram E ~ Y .L X, where E and Y are CW-complexes, 7r is a 
Galois covering map with covering group G, and f is a fibration with acyclic 
fibers, that is, whose fibers have vanishing reduced integral homology. We 
will mostly be interested in the case where Y and X are connected, in which 
case E ~ Y is determined by a map 7rl(Y) ~ G (unique up to conjugacy). 

Two virtual flat G-bundles over X, E ~ Y .L X and E' ~ Y' Lx, 
are said to be equivalent if there is a virtual flat G-bundle El ~ Y1 A X 
and a commutative diagram 

(1' (1" 

Y--+Y1-Y' 

II II 
/ / ' Y--+X-Y' 

such that u*(Ed ~ E, u'*(E1 ) ~ E'. This relation is obviously reflexive 
and symmetric. 

5.3.32. Theorem [KaroubiHomCyc, Appendice I). Let G be a group 
whose commutator subgroup is perfect and let X be a CW-complex. Then 
equivalence of virtual fIat G-bundles over X is an equivalence relation, and 
the equivalence classes are in natural bijection with the set of homotopy 
classes of maps X ~ BG+. In particular, taking G = GL(R), the equiva
lence classes of virtual fIat G-bundles over Si are in natural bijection with 
Ki(R) for i ~ 1. 

Proof. First we need to prove transitivity. Suppose one has virtual bun
dles E over Y, E' over Y', E" over Y", El over Y1, and E2 over Y2, and 
commutative diagrams 

(1' (1" 

Y--+Y1-Y' 
p p' 

Y' --+ Y2 - Y" 

II II II II 
/ / ' Y--+X-Y' /' /" 

Y' --+ X - Y" 



298 5. The +-Construction and Quillen K-Theory 

such that a*(E1) ~ E, a'*(E1) ~ E', P*(E2) ~ E', p'*(E2) ~ E". We may 
assume from the homotopy point of view (using mapping cylinders) that a' 
and p are the inclusions of y' as sub complexes of Y1 and Y2 , respectively. 
Then form Z = Y1 UY2 • Since !I and h are each extensions of f' : Y' - X, 
they together define a map 9 : Z - X. Replacing Z be a homotopy
equivalent complex, we may assume 9 is a fibration, and it will still have 
acyclic fibers. Now we have a commutative diagram 

Y~Z~ Y' 

We might as well assume X is connected, in which case E1 and E2 are 
determined by maps 71"1 (Y1 ) - G and 71"1 (Y2 ) - G which we can assume 
coincide on the image of 7I"1(Y'). By Van Kampen's Theorem, 7I"1(Z) = 
71"1 (Y1 ) * 71"1 (Y2 ), so we obtain a uniquely determined map 71"1 (Z) - G 

im 11"1 (Y') 

and thus a flat G-bundle E3 over Z. By construction, the pull-backs of E3 
to Y and Y" are equivalent to E and E", respectively, and so E and E" 
are equivalent. Thus equivalence is indeed an equivalence relation. 

Next, we associate to a virtual flat G-bundle E ~ Y .L X over X a 
map X - BG+ as follows. Without loss of generality we may assume X is 
connected (otherwise work separately on each component). Since the fiber 

F of Y .L X is acyclic, 71"1 (F) is perfect, and its image in 71"1 (Y) is a perfect 

normal subgroup. Since Y .L X kills this subgroup and is a homology 

equivalence, by Theorem 5.2.2 we may identify Y .L X (up to homotopy 
equivalence) with the inclusion Y <---+ Y+, where the +-construction is 
performed with respect to the image of 71"1 (F). Now E ~ Y corresponds 
to a map 7I"1(Y) - G or to a map of spaces Y - BG. By Proposition 
5.2.4, there is an induced map y+ = X - BG+. 

Next we claim that the homotopy class of the induced map y+ = X -

BG+ only depends on the equivalence class of E ~ Y .L X. Indeed, if E 
is equivalent to E' via a diagram 

y~ 

II 
Y-Lx~Y' 

such that a*(El) ~ E, a'*(E1) ~ E', then we obtain ahomotopy-commuta-
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tive diagram 
y 0' 

Yl 
0" Y' ----+ ~ 

II 111 II 
Y ~ X f' Y' ~ 

1 1 1 
BG+=BG+ BG+, 

which is exactly what we need. Thus we have a well-defined map from 
equivalence classes of virtual flat G-bundles over X to [X, BG+). This 
map is surjective, since given 9 : X -+ BG+, we can assume from the 
homotopy point of view that BG ~ BG+ is a fibration, and then form the 
pull-back fibration g* L : Y -+ X. Since L is a homology equivalence, this 
will have acyclic fibers. It also comes with a commutative diagram 

Y ----+ BG 

defining a G-bundle over Y, and so we get a virtual flat G-bundle over X 
mapping to the homotopy class of g. 

Finally, we need to show that if E ~ Y .L X and E' ~ Y' L X 
define homotopic maps X -+ BG+, then they are equivalent. We have a 
homotopy-commutative diagram 

y~ BG 

1f 1· 
x~ BG+ 

If' I· 
y,~ BG. 

As before construct the pull-back fibration g*L : Z -+ X, which has acyclic 

fibers. From the diagram, Y ~ BG and Y' ~ BG are both pulled back 
from Z -+ BG, so E and E' are equivalent. 

IfG = GL{R), then BGL{R)+ is simple (Theorem 5.2.12), so in comput
ing homotopy classes of maps X -+ BG+ with X a connected OW-complex, 
it doesn't matter whether one uses based or unbased maps. Thus the last 
statement follows. D 

5.3.33. Remark. In the case where G = GL{R), one can define a flat 
virtual GL{R)-bundle over X from any flat virtual R-bundle over X. One 
of these is defined the same way, except that we require E ~ Y to have 
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fibers which are finitely generated projective modules over R, with cover
ing transformations that are R-module automorphisms. If X is a finite 
CW-complex, it is not too hard to show [KaroubiHomCyc, III] that every 
virtual GL(R)-bundle over X comes from a Hat virtual R-bundle, basically 
because every map X --7 BGL(R)+ will factor through BGL(n, R)+ for 
some sufficiently large n. Similarly [KaroubiHomCyc, §3.12], one can show 
that the product of Theorem 5.3.1 comes from a tensor product operation 
on Hat virtual R-bundles. 

Note that Theorem 5.3.32 and Remark 5.3.33, taken together, now give 
a somewhat more concrete way to visualize classes in Ki(R), namely, as 
equivalence classes of Hat R-bundles on homology spheres. Furthermore, 
the pairing Ki(R) x Hi(GL(R), A) --7 A, with A an abelian group, defined 
by pairing the image of a K -theory class under the Hurewicz homomor
phism with a cohomology class, may be viewed more geometrically: given 

a virtual Hat G-bundle E ~ X .L Si with J a fibration with acyclic fibers, 
and given c E Hi(GL(R), A), we obtain J;(c) E Hi(X, A). Since X is a 
homology sphere, there is a "fundamental class" [X] E Hi(X, Z) mapping 
to the fundamental class of Si, and we merely take the pairing (c, [Xl). 

5.3.34. Exercise (Suslin [SuslinAlgCl]). Let F be an algebraically closed 
field and let L 2 F be any extension field of F. 

(1) Show that the natural map Ki(F) --7 Ki(L) is injective for all 
i. (Hint: L = lim R, where R ranges over the finitely gener

--t 

ated F-subalgebras over L, directed by inclusion. Since K-theory 
commutes with direct limits, Ki(L) = limKi(R), and any ele-

--t 

ment of the kernel of Ki(F) --7 Ki(L) must lie in the kernel 
of Ki(F) --7 Ki(R) for some finitely generated commutative F
algebra R. Using Hilbert's Nullstellensatz [Jacobson, II, §7.11], 
show that the inclusion map F <---+ R has a splitting R --7 F, and 
thus that the map Ki(F) --7 Ki(R) is split injective for all i.) 

(2) Show by example that Ki(F) --7 Ki(L) need not be injective if F 
is not algebraically closed, and examine where the above argument 
breaks down. 

5.3.35. Exercise. Use the Localization Theorem (5.3.27) applied to the 
Euclidean ring R = Z[i] (the Gaussian integers) to find a short exact se
quence relating K2(Z[i]) to K2(Q[i]). 

5.3.36. Exercise. Let F be an infinite field. Show, using techiniques 
similar to those in Exercise 5.3.34, that if K is a purely transcendental field 
extension of F, the inclusion F <---+ K induces an injection on all K -groups. 
Hint: first reduce to the case of transcendence degree 1, so that K = F(t). 
View K as an inductive limit of rings R obtained by inverting finitely 
many irreducible polynomials in F[t]. Show, using the assumption that F 
is infinite, that for such a ring R, the inclusion F <---+ R has a splitting, and 
then deduce the result. 
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5.3.37. Exercise. Let F be a field. By Theorem 5.3.30, Ki(F[t]) £=! Ki(F) 
for all i. 

(1) Let a E F and consider the ring R = F[t, (t - a)-l] obtained from 
F[t] by inverting t - a. Use the Localization Theorem (5.3.27) to 
show that Ki(R) £=! Ki(F) EB Ki-1(F). (Initially you only get an 

exact sequence, but a splitting for the boundary map Ki(R) ~ 
Ki- 1 (F) can be obtained via the map Ki- 1 (F) -+ Ki- 1 (R) in
duced by the inclusion, followed by the product (in the sense of 
Theorem 5.3.1) with the class of t - a in RX £=! K1(R).) 

(2) Generalize (1) to show that if at. ... , an are distinct elements of 
F, then 

n 

Ki (F [t, (t - al)-l, ... , (t - an)-l])£=! Ki(F) EB EBKi-1(F). 
j=l 

(3) If F is algebraically closed, show that the rational function field 
F(t) is the direct limit of the rings considered in (2). Deduce a 
calculation of Ki(F(t)) in terms of the K-theory of F. 

(4) What would be different in the calculation of Ki(F(t)) if F is not 
algebraically closed? How is Exercise 5.3.36 relevant here? 

5.3.38. Exercise. Deduce from Remark 5.3.33 and the surjectivity of 
the map K 2 (lR) -+ K~OP(lR) £=! KO(82 ) the perhaps surprising fact that 
there is a CW -complex with the integral homology of 8 2 admitting a flat 
real vector bundle which is topologically stably non-trivial. (For readers 
who know about characteristic classes, the non-triviality is detected by the 
second Stiefel-Whitney class W2') 

5.3.39. Exercise. Compute the groups Ki(iFpj Z/k) for the algebraic 
closure iF p of the field of p elements, p a prime, in the two cases where k 
is a power of p and where k is relatively prime to p. Compare the results 
with Suslin's calculations (Theorem 5.3.9) in the case of C. 

5.3.40. Exercise. Let D be a division algebra of dimension d2 over its 
center F. (For instance, if D is a quaternion algebra, d = 2.) Show using 
the "transfer map" (which comes from the forgetful functor from finitely 
generated left D-modules to finitely generated left F-modules) that the 
natural maps 

are isomorphisms if k is relatively prime to d. (See for example [GSR] and 
its review in Mathematical Reviews 58, #852.) 



6 
Cyclic homology and its 

relation to K -Theory 

1. Basics of cyclic homology 
In this chapter, we introduce the reader to the homology theory for algebras 
known as cyclic homology. As we shall see in the next section, cyclic 
homology may be viewed as the "linearization" of K-theory, in the same 
sense in which the matrix ring Mn(R) is the "linearization" of the general 
linear group GL(n, R). For motivation, it is useful to think of the case 
where the ring R is lR or C. Then GL(n, R) is a Lie group, and the space 
BGL(n, R)+ giving rise to the higher K-groups is by its construction an 
H-space whose homology agrees with the homology of this Lie group (never 
mind for the moment that we are forgetting the topology!). On the other 
hand, one of the basic principles of Lie theory is that the best way to 
study Lie groups (which are "non-linear" objects) is often by way of their 
Lie algebras (which can be studied using linear algebra). For example, 
it is a famous result that for any compact Lie group G with Lie algebra 
g, the topological cohomology He(Gj lR) (here we are just thinking of G 
as a space and ignoring the group structure) is canonically isomorphic to 
the Lie algebra cohomology He(gj lR), which can at least in principle be 
computed using only finite-dimensional linear algebra. This suggests that 
some construction with the Lie algebra Mn(R) of GL(n, R) ought to yield 
a reasonable approximation to the K -theory of R, at least in the limit as 
n -+ 00. While the actual construction of cyclic homology and of the Chern 
character which relates it to K-theory is a bit roundabout, this philosophy 
turns out to be basically correct. 

Hochschild Homology. Cyclic homology is in fact a modification of 
a better-known homology theory for algebras, known as Hochschild homol
ogy. We begin by defining the latter, and then by discussing the defini
tion(s) of cyclic homology and the relationship between the two homology 
theories. The connection with K -theory will be saved for the next section 
of this chapter. 
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6.1.1. Definition. Let k be a commutative ring and let R be a k-algebra. 
(In practice, k will usually be either Z, in which case R is just an arbitrary 
ring, or a field. While it is possible to generalize the theory to the non
unital case, we will always assume here that R has an identity.) We write 
Rfj!}n for 

R®kR···®k R . , ' .. 
n factors 

The Hochshild homology of R (here k is understood, since it plays a role 
in the definition) is by definition the homology HH.(R) of the complex 

( ) & .. +2 R®n+2 &,,+1 R®n+l &" R®n &,,_1 &1 R C.R: ... -- -- ----+ -- ••• --+, 

where R®n+1 occurs in degree n and the boundary map b is the k-linear 
map defined by the formula 

bn(ao®al®·· ·®an) = b~(ao®al®·· ·®an)+(-l)n(anao®al®·· ·®an-d, 

(6.1.2) 

where 

Since the differential is k-linear, HHi(R) is a k-module for each i (though 
usually not an R-module). It is useful to note, however, that if R is commu
tative, b' and b commute with multiplication by R on the left, so HHi(R) 
is an R-module. 

The fact that b2 = 0 is fairly easy to check here, since we can rewrite bn 

as E:=o(-l)idf, where 

Then 

but for j < i, 

(6.1.3) 

so each term occurs twice with opposite signs. 

i < n, 
i=n. 

This rather ad hoc definition has an· explanation which makes it seem 
somewhat more canonical. 
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6.1.4. Proposition. Let k be a commutative ring and let R be a k-algebra 
which is projective as a module over k (this is of course automatic if k is a 
field). The Hochschild homology H H.(R) is just Tor~®kRop (R, R), where 
R;'P denotes R with multiplication reversed, and we identify two-sided R
modules with left or right modules for R ®k ROP. 

Proof. Clearly we can think of right R-modules as left ROP-moduies and 
of left R-modules as right ROP-modules, and thus of two-sided R-modules 
as left or right modules for R ®k ROP. Thus R is both a left and a right 
module over R ®k ROP. To compute Tor~®kRop (R, R), we need to choose 
a projective resolution over R ®k ROP of one copy of R, then tensor this 
resolution over R ®k R;'P with another copy of R, and take the homology 
of the resulting complex. 

First let's verify that 

B.(R) : 
b' b' 'b' b' 
n+2 R®n+2 n+l R®n+l bn R®n n-l 1 R ... ---t ---t ---+ ---t ••. ---t , 

with b' defined as in (6.1.2), is a projective resolution of R in the category 
of right R ®k ROP-moduies. Here the right action of x ® y E R ®k ROP on 
(ao ® al ® ... ® an) E R®n+l is given by 

It is obvious that b' commutes with the module action, and (b')2 = 0 by 
another application of (6.1.3). Furthermore, since R is projective as a 
module over k, so are its tensor powers, and we see that 

is projective over R ®k ROP for n :2: 2. So we need only show that B.(R) is 
acyclic. For this we show it is chain-contractible as a complex of k-modules 
(recall Definition 1.7.2). Define Sn-l : R®n ~ R®n+l by 

(6.1.5) 

This is k-linear (though not R ®k ROP-linear) and it's easy to check that 
sb' + b's = id, so B.(R) is acyclic. Thus we have a projective resolution of 
R. 

Now we can corn"pute Tor~®kRop (R, R) as the homology of 

(where we first knock off the final R from B.(R)). The n-th term of this 
complex is 
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and the differential is given by 

ao ® al ® ... ® an ~ (ao ® al ® ... ® an ® 1) ®R0kRop 1 

1-+ b~+l (ao ® al ® ... ® an ® 1) ®R0kRop 1 

= b~(ao ® al ® ... ® an) 

+ (-1t(ao ® al ® ... ® an) ®R0kRop 1 

= b~(ao ® al ® ... ® an) 

+ (-1t(anao ® al ® ... ® an-I) 

= dn(ao ® al ® ... ® an). 

Thus our complex for computing Tor~0kRop (R, R) is just C.(R), and the 
result follows. 0 

6.1.6. Corollary. If R = k is a. commutative ring (viewed as an alge
bra over itself), HHo(R) = R and HHi(R) = 0 for i > O. For a general 
k-algebra, HHo(R) = R/[R, R]. (Here [R, R] denotes the k-submodule of 
R generated by commutators.) If R is a commutative k-algebra, then 
HHI(R) ~ O!b(R), the universal k-module on elements al da2, where 
aI, a2 E R, subject to the relations that al da2 is k-biJinear in al and 
a2 and that a2 1-+ da2 is a k-Jinear derivation. (The subscript "ab" here is 
to distinguish this from a variant of this construction to be introduced in 
Definition 6.1.38 below') 

Proof. For any k-algebra R, HHo(R) is by definition just R/bl (R02), 
and bl(ao ® al) = aOal - alaO = [ao, all. So HHo(R) = R/[R, R]. If R is 
commutative this is simply R. And if R = k, R ®k ROP = R. Since R is 
projective as a module over itself, the higher Tor's vanish. 

As for the statement about HHI(R) in the commutative case, we have 
already noted that bl == 0 if R is commutative, so in this case 

HHI(R) = (R®k R)/imb2 

Note that 

= (R ®k R) jspan {aoal ® a2 - ao ® ala2 + a2aO ® al I 
ao, at, a2 E R}. 

1®ala2==al®a2+a2®al mod imb2 . 

Hence if we write al da2 for the image in the quotient of al ® a2, then the 
fact that we have divided out by the image of b2 means exactly that we are 
requiring a2 1-+ da2 to be a k-linear derivation. 0 

6.1.7. Examples. (a) Let R = k[t] be a polynomial ring in one vari
able. This is free over k (with basis the monomials ti), hence certainly k
projective. Also R = ROP (since R is commutative) and R ®k ROP ~ k[t, s]. 
As a k[t, s]-module, R is just k[t, sl/(t - s). So 

(t-s) 
k[t, s] ---+ k[t, s] '""* R 
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is a R ®k ROP-projective resolution of R, and thus H HI (R) ~ H Ho(R) ~ 
R, HHi(R) = 0 for i > 1. 

(b) Another perhaps more interesting example is R = k[tJl(t2), some
times called the algebra of dual numbers over k. Here R is free of rank 2 
over k and R®k ROP = S ~ k[t, s]/(t2, s2). As a module over this ring S, 
R is S/(t - s), but, this time, multiplication by t - son S has a non-zero 
kernel (the ideal generated by t+s). For computing the Tor-group, we can 
use the periodic S-projective resolution 

S (t-s) S (t+s) S (t-s) S R 
••• --+ ~ ~ ~ - • 

Tensoring this with R gives the complex 

o 2t 0 
•.• --+ R --+ R - R --+ R, 

from which we see that HHi(R) ~ R for all i if k 2lF2 , while HHi(R) has 
rank lover k for all i > 0 if 2 is invertible in k. 

Just as with K-theory, one also has relative groups for pairs (R, I), 
where I is a two-sided ideal in R, and a long exact sequence relating the 
relative groups to the absolute groups. 

6.1.8. Definition. Let k be a commutative ring and let R be a k-algebra, 
I a two-sided ideal in R. There is an obvious surjective map of chain 
complexes C.(R) -+ C.(R/I). We denote the kernel by C.(R, I) and its 
homology groups by HH.(R, I). By Theorem 1.7.6, there is a long exact 
sequence, called the long exact sequence of the pair (R, I): 

.•• --+ HHn+I(R/1) ~ HHn(R, I) --+ HHn(R) 

--+ HHn(R/I) ~ HHn-I(R, I) --+ •••• 

6.1.9. Examples. Let R = k[t] be a polynomial ring in one variable, and 
let 1= (t). Then R/I ~ k and so by the results of Corollary 6.1.6 and Ex
ample 6.1.7(a), together with the long exact sequence of 6.1.8, HHi(R, I) 
vanishes for i > 1 and is isomorphic to R when i = 1, to I (the kernel of the 
map R -+ R/ I) for i = O. Similarly, H Ho (R, I) can always be identified 
with I when R is commutative. 

When R = k[tJl(t2) and I = (t), again R/I ~ k. Now Example 6.1.7(b) 
together with the long exact sequence of 6.1.8 shows that HHi(R, I) is 
non-zero for all i. For instance, if 2 is invertible in k, H Hi (R, 1) has rank 
lover k for all i 2: O. 

Cyclic Homology. While it will turn out that there are natural maps 
Ki(R) -+ HHi(R) which can be used in the study of K-theory, these are 
rarely close to being isomorphisms. (For instance, if R is commutative, then 
regardless of the choice of the ground ring k, we have HHo(R) = R, which 
usually bears no resemblance to Ko(R). Furthermore, though k and k[t] 
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have the same K-theory if k is regular, we have seen that the Hochschild 
homology of these two algebras is different in degree 1.) To get some
thing closer to K-theory, we need to introduce the cyclic homology groups. 
These were originally defined by Connes (in two different ways, one fairly 
computational [Connesl] and one more in the spirit of homological algebra 
[Connes2]), by Loday and Quillen [LodayQuil], and by Feigin and Tsygan 
(see especially [Tsy]). The theory has since been simplified and reworked, 
especially by Hood and Jones [HoodJones]. Aside from the original papers, 
good sources are the short survey by Cartier [Cartier] (quite readable but 
a little out of date) and the very comprehensive book of Loday [LodayCH]. 

6.1.10. Definition. Let k be a commutative ring and let R be a k-algebra. 
We retain the notation of Definition 6.1.1. Let tn: R®n+1 _ R®n+1 be 
defined by 

tn(ao ® al ® ... ® an) = (-I)n(an ® ao ® al ® ... ® an-l). 

Note that (tn)n+1 = 1, so that tn gives rise to an action of a cyclic group of 
order n + 1 on R®n+l. (This is the origin of the name "cyclic homology.") 
The linear operator N n = 1 + tn + (tn )2 + ... + (tn)n is called the norm 
operator on R®n+l. We also introduce the map Bn : R®n+l _ R®n+2 

defined by Bn = (1- tn+d 0 Sn 0 N n, where Sn is as defined in (6.1.5). The 
cyclic double complex CC •• (R) of R is the diagram 

1 bs I-b; Ibs 

N2 R®3~ R®3~ R®3~ -j=2 

Ib2 I-b; 1 b2 
j=1 

Nl R®2~ R®2~ R®2~ -
1 b1 I-b~ 1 b1 

j=O -!!2- R ~ R -!!2- R ~ ... , 
in which the even-numbered vertical columns are copies of the Hochschild 
complex C.(R) of (6.1.1), and the odd-numbered vertical columns are sim
ilar but with b replaced by -b' (recall (6.1.2) for the definitions). The 
horizontal rows consist of alternating copies of N and 1 - tj note from Ex
ercise 4.1.25 that these rows are complexes from which one can compute 
the homology of the the cyclic group action on R®n+l. 

6.1.11. Lemma. The cyclic double complexCC •• (R) of Definition 6.1.10 
is a true "double complex," in that the rows and columns are chain com
plexes (of k-modules) and each square anticommutes. 

Proof. We've already observed that the horizontal rows are complexes 
(for computing cyclic group homology) and that the even-numbered ver
tical rows are complexes (for computing Hochschild homology). The odd
numbered vertical rows are not only complexes but in fact exact, since up 
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to sign, they are copies of the acyclic complex B.(R) from the proof of 
Proposition 6.1.4. So we need to check the relations 

We go back to the definitions 

n 

bn = L:(-l)idf, 
i=O 
n-l 

b~ = L:(-l)idf, 
i=O 

{. ao ® ... ® aiai+l ® ... ® an. 
df(ao ®al ® ... ®an) = 

anao ® al ® ... ® an-b 

i < n, 
i =n. 

Thus dO 0 tn = (-l)ntf,'!, and for i < n -1, 

tn-l 0 df(ao ® al ® ... ® an) = tn-l(ao ® ... ® aiai+l ® ... ® an) 

= (-l)n-l(an ® ao ® ... ® aiai+1 ® ... ), 

df+1 0 tn(ao ® al ® ... ® an) = (-l)ndf+1 (an ® ao ® al ® ... ® an-l) 

= (-l)n(an ®ao ® ... ® aiai+l ® ... ) 

= -tn-l 0 df(ao ® al ® ... ® an). 

Similarly, 

tn-l 0 cf,!-l(aO ® al ® ... ® an) = tn-l(aO ® al ® ... ® an-lan) 

= (-l)n-l(an_lan ® ao ® ... ® an-2), 

cf,! 0 tn(ao ® al ® ... ® an) = (-l)ncf,!(an ® ao ® al ® ... ® an-d 

= (-l)n(an_lan ® aO ® ... ® an-2) 

= -tn-l 0 cf,!-l(ao ® al ® ... ® an). 

Thus 

n 

bn 0 (1 - tn) = L:( -l)idf 0 (1 - tn) 
i=O 

n 

= b~ + (-l)ncf,! - (-l)ncf,! - L:( _l)i (-tn-l 0 df-l) 
i=l 

n-l 
= b~ - L:( -l)itn_l 0 df 

i=O 
= b~ - tn-lb~ = (1 - tn-d 0 b~. 
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This proves the first of the desired relations. As for the other, note first 
that 

Thus 

dr:' 0 ti = (dr:' 0 t ) 0 ti - 1 
1. n 'l. n n 

= { (tn-l 0 di-l) 0 t~-l, 
(-l)n dn 0 ti - 1 

n n , 

i > 0, 

i = 0, 

{ 
(-l)it~_l odi_i , j ~ i, 

= (_l)i t i 0 dn 0 ti - i 
n-l 0 n' j > i, 

{ 
(-l)i ~-l 0 di-i , 

= (_l)Hn ti 0 dn 0 ti - i- 1 
n-l n n , 

_ { (-l)i t~_l 0 di-i , 
- n++l ·-1 n (-1) 3 t;.-lodHn-i+l' 

n-ln-l 

j ~ i, 

j > i, 

j ~ i, 

j > i. 

b~oNn = LL(-l)idiot~ 
i=O i=O 

= ( L (_l)Hi ~-l 0 di-i) 
O~i~i~n-l 

+ '" (l)n+i+i -l .. .1-1 .J1t 
~ - ~n-l 0 uHn-i+l 

O~i<i~n-l 

(~~_l) 0 (~(-lt+Hi di+n-i + ~(_l)Hi di-i) 
3=0 '~3 "~.3 

= Nn - 1 obn . 0 

Now we're ready to define cyclic homology. There are various versions, 
depending on whether one chooses the double complex of Definition 6.1.10 
to live in the first quadrant, in the upper half-plane, or mostly in the second 
quadrant. 

6.1.12. Definition. Let k be a commutative ring and let R be a k
algebra. The cyclic homology HC.(R) (which implicitly depends on the 
choice of the ground ring k as·well) is the homology of the total complex 
associated to the cyclic double complex CC •• (R) of R, chosen to live in the 
first quadrant. (The notation HC, which is starting to become standard, 
stands for the French "homologie cyclique.") In other words, HC.(R) is 
the homology of the chain complex (concentrated in non-negative degrees) 
whose term in degree n is 

n 

(6.1.13) E9 CCi,i(R) = E9R®i+1, 
i+i=n i=O 
i,i:2:0 
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and whose boundary map is the sum of all the maps in the diagram of 
(6.1.10) from something of total degree n to something of total degree 
n -1. (Lemma 6.1.11 guarantees that this boundary map has square = 0.) 
In particular, 

HCo(R) = Rj {im (b1: R®2 --+ R) + im (1 - to: R --+ R)} 

= Rj [R, R] ~ HHo(R). 

(Since to is the identity map on R, im(1 - to) = 0.) Similarly, because of 
the fact that the bottom row of the double complex of Definition 6.1.10 is 
acyclic, CC1,0 doesn't contribute to HC1(R), and 

HC1 (R) = 

ker (b1: R®2 --+ R) j {im (b2: R®3 --+ R®2) + im (1 - t1: R®2 --+ R®2)} , 

which is the quotient of HH1(R) by the image of the map which is the 
quotient of HH1(R) by the image of the map induced by 1- t1. We will 
get to the general relationship between HC.(R) and HH.(R) shortly. 

We will also need certain modifications of HC.(R) known as HC;(R) 
and as HP.(R) (the notation HP stands for the French "homologie [cy
clique] periodique"). To define HP, we use the same construction as for 
HC, but dropping the condition that i ~ 0 and replacing E9 by n in 
(6.1.13) (this makes a difference since one now has infinitely many terms 
with the same total degree). In other words, HP.(R) is the homology of 
the chain complex whose term in degree n is 

00 00 

(6.1.14) II CCn-j,j(R) = II R®i+1. 
j=o j=o 

This complex is obviously periodic with period 2, as only the parity of n 
matters, and thus HP.(R) is called the periodic cyclic homology of R. 
Finally, H C; (R) is the homology of the subcomplex of this complex where 
we only take terms with i ~ 1, in other words, the homology of the chain 
complex whose term in degree n is 

00 00 

(6.1.15) II CCn_j,j(R) = II 
j:2:n-1 j=ma.x(n-1,0) 

6.1.16. Example. Suppose R = k, the commutative ground ring. Then 
R®n+1 ~ k, generated as a k-module by 1®1®· . ·®1, so tn is multiplication 
by (-1)n. Thus 1 - tn is 0 for n even, multiplication by 2 for n odd, 
and Nn is multiplication by n + 1 for n even, 0 for n odd. Similarly, 
b~ = I:;':~(-1)n and bn = I:;=0(-1)n. Thus bn = 0 for n odd and b~ = 0 
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for n even. So CC •• (k) collapses to 

10 1-1 10 

3 k~ k~ k~ f---j=2 

11 10 11 
0 k~ k~ k~ f---j=l 

10 1-1 10 

j=O 
1 k~ k~ k~ f---

Here the odd-numbered columns are acyclic and the even-numbered col
umns are acyclic except at the bottom, so we claim only the even-numbered 
terms in the bottom row contribute to (any of the three forms of) the cyclic 
homology. We check this for HP., which is the hardest case. An element of 
the associated complex of total degree n is an infinite sequence a = {aj} j'?O 

of elements of k, where aj is located in the (n - j)-th row and j-th column 
of the double complex. Note that the differentials from terms of odd total 
degree to terms of even total degree vanish, so if n is odd such an element 
is a cycle. But then a is the boundary of 

(0, -ao, a1 + 2ao, -a2 + 3a1 + 6ao, ... ). 

If n is even, there are no boundaries, but if a is a cycle, we have 

which enables us to solve inductively for al, a2, .. , in terms of ao. Thus the 
space of even-dimensional cycles is a free module of rank one. Similar cal
culations work for HC. and HC;. So HCn(k) = HPn(k) = HC;;(k) = 0 
for n odd, HPn(k) ~ k for all n even, HCn(k) ~ k for all n even and 
non-negative, and HC;;(k) ~ k for all n even and non-positive. Some of 
the original motivation for the development of cyclic homology as a "lin
earized version" of K-theory derives from the observed similarity between 
the groups HPn(k) and the topological K-groups KU-n(pt). 

6.1.17. Remark. For the same reasons as with Hochschild homology, it 
is obvious that R - HC.(R) (or HC;(R) or HP.(R» is a functor on the 
category of k-algebras. Also, just as in the case of Hochschild homology, 
if I is a two-sided ideal in R, the complex defining any of the three kinds 
of cyclic homology for R surjects onto the corresponding complex for Rj I. 
The kernel of the map of complexes can therefore be used to define relative 
cyclic homology groups HC.(R, I), HC;(R, I), and HP.(R, 1) that fit 
into long exact sequences such as that of Definition 6.1.8. 
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6.1.1S. Definition. The Connes periodicity operator is the self-map 
S of the cyclic double complex CC •• (R) that shifts everything two columns 
to the left. This induces self-maps of the complexes used to define HC.(R), 
HC;(R), and HP.(R), as well as maps on the corresponding homology 
groups. With slight abuse of notation, we customarily denote all of these 
maps by S. 

It is obvious that S: HP.(R) -+ HP.- 2 (R) is an isomorphism. However, 
while S is surjective as a self-map on the double complex defining HC.(R), 
it has a non-trivial kernel, namely the columns numbered i = 0 and i = 1. 
Since the column numbered i = 1 is acyclic, the total complex 

EB CCi,j(R) 
i+j=n 

i=O or 1 

has the same homology as the column numbered i = 0, which is a copy of 
the Hochschild complex. Thus we obtain the following. 

6.1.19. Theorem (Connes). Let k be a commutative ring and let R be 
a k-algebra. There is a functorial long exact sequence 

... ~ HCn_ 1(R) ~ HHn(R) ~ HCn(R) 

S B 
~ HCn- 2(R) ---+ HHn_1(R) ---? •••• 

Here the map I comes from the inclusion of the Hochschild complex into 
the cyclic double complex as the O-th column. This map is always an 
isomorphism for n = 0 and a surjection for n = 1. 

Proof. This follows from applying Theorem 1.7.6 to the short exact se
quence of chain complexes coming from the map S of double complexes. 
The map I in the long exact sequence initially comes from the inclusion 
of the columns numbered i = 0 and i = 1, but since the column num
bered i = 1 is acyclic, it doesn't have any effect. Since HCn(R) = 0 and 
HHn(R) = 0 for n < 0 (for any k-algebra R), the exact sequence begins 
with 

and with 

so that I is always an isomorphism for n = 0 and a surjection for n = 1. 0 

6.1.20. Examples. (a) First consider the case where R = k is the ground 
ring. By Corollary 6.1.6, HHo(k) ~ k and HHn(k) = 0 for n > O. Since I 
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is surjective in degree 1 by Theorem 6.1.19, HC1(k) = O. Then one sees by 

induction on n that HCn(k) ~ HCn- 2(k) must be an isomorphism when 
n is even and n ~ 2, and that HCn(k) must vanish for n odd. This is in 
keeping with Example 6.1.16. 

(b) Now take R = k[t], a polynomial ring in one variable. By Example 
6.1.7(a), HH1(R) ~ Rand HHn(R) = 0 for n > 1. We have an exact 
sequence 

0= HH2 (R) ~ HC2 (R) ~ HCo(R) 

~ HH1(R) ~ HC1(R) ~ HC_1(R) = 0, 

so a computation of HCo(R) ~ R ~ R ~ HH1(R) will yield a calculation 
of HC1(R) and HC2(R). Then since the Hochschild homology vanishes 
past degree 1, the higher cyclic homology groups must be periodic with 
period 2. 

To compute the map B, we need to trace through the proof of Theorem 
1.7.6 in this context. H x E R, it defines an element of Co,o(R) and thus a 
class in HCo(R). To see where this maps under B, note that x is the image 
under S of the corresponding element of C2,o(R). Under the differential 
No, this maps to element corresponding to x in C1,o(R) ~ R. Now the 
map -b~: R®2 -t R sends ao ® al to -aoal. Thus -1 ® x E C1,l(R) maps 
to x E C1,o(R), but it also maps under 1- h to -(1 ®x+x® 1). Thus B 
sends the element corresponding to x to the Hochschild homology class of 
the I-cycle -(1 ® x + x ® 1). So far this discussion is completely general 
and applies to any R. 

H we specialize now to the case where R = k[t], the identification of 
R with HH1(R) ~ n!b(R) in Corollary 6.1.6 is via f(t) 1--+ f(t)dt. On 
the other hand, B sends x = tm to the image of -(1 ® x + x ® 1), in 
other words, to -ld(tm) + tm dl = -d(tm) = -mtm-1dt. Thus in this 
case B:HCo(R) -t HH1(R) viewed as a map R -t R corresponds to 
tm 1--+ _mtm- 1, the derivative (up to sign). The kernel and cokemel of 
B now depend on the ground ring. H k 2 Z, the only polynomials with 
derivative = 0 are the constants, so HC2(R) ~ k. H k 2 Q, then B is 
surjective and so the odd cyclic homology of R = k[t] vanishes. On the 
other hand, if k = Z, then HC1(R) ~ EBm>oZ/m. 

Now that we've seen how HC.(R) is related to Hochschild homology, we 
shall study the relations among the three different versions of cyclic homol
ogy, and see how the other two also relate to Hochschild homology. Again, 
the basic tool is the shift map S on the cyclic double complex. H we trun
cate the double complex on the right instead of on the left (corresponding 
to the choice giving HC;), then S becomes injective instead of surjective, 
with cokemel the complex concentrated in the columns numbered 0 and 1. 
So Theorem 6.1.19 is replaced by the following. 
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6.1.21. Theorem. Let k be a commutative ring and let R be a k-algebra. 
There is a functorial commutative diagram whose rows are exact sequences: 

1 1 

HC;;(R) s HC;;_2(R) -+ HHn- 2(R) -+ -+ -+ ... 

II 1 1 
s 

-+ HC;;(R) -+ HPn- 2(R) -+ HCn- 2(R) -+ .... 

Proof Consider the shift map S restricted to the part of the cyclic 
double complex with columns numbered ~ 1, viewed either as a self-map of 
this truncated double complex, or as a map into the whole double complex 
(living in both the first and second quadrants). In the first case the cokernel 
is the complex concentrated in the columns numbered 0 and 1, which gives 
rise to the Hochschild homology HH, and in the second case, it is the 
complex concentrated in non-negative degrees, which gives rise to HC. 
Applying Theorem 1.7.6, we get the two exact sequences of the theorem. 
The vertical maps between them come from the obvious inclusions of double 
complexes. 0 

Another relationship between periodic and non-periodic cyclic homology 
comes from the fact that the complex giving rise to H P is the direct limit 
(under the shift map S) of copies of the complex giving rise to H C-, and 
the inverse limit of copies of the complex giving rise to H C (recall that 
formulas (6.1.14) and (6.1.15) involve (infinite) products, whereas (6.1.13) 
involves (finite) sums). Since homology commutes with direct limits but 
not necessarily with inverse limits, we may deduce the following. 

6.1.22. Theorem. Let k be a commutative ring and let R be a k-algebra. 
Then HP.(R) ~ lim HC;(R), and also HP.(R) surjects onto lim HC.(R). 

- +--S s 
(However in the second case there may be a non-zero kernel.) The map 
HP.(R) -+ limHC.(R) is an isomorphism if the Mittag-LefBer condi-

+-
s 

tion is satisfied, that is, if for each n, sj (HCn+2j (R)) is independent of j 
for j sufficiently large ("how large" may depend on n). 

Proof The first statement is immediate from the fact that homology 
commutes with direct limits. The second statement comes from the fact 
that the complex E. (R) giving rise to H p. (R) is the inverse limit of trun
cated complexes E!(R) corresponding to shifts under S of the complex for 
computing HC.(R). Furthermore, E!(R) surjects onto E!-l(R). A class in 
lim HCn(R) is represented by a sequence {Zi}, where Zi E E~(R), d(zi) = 0 
+--
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in E~_l (R), and Zi maps to Zi-l modulo boundaries. In other words, there 
are elements Ci E E~H(R) such that Zi maps to Zi-l + d(Ci-I). We can 
inductively lift Ci to an element c~H E E~"tll ~R). Then if we replace Zi by 
Zi +d(C~+I)' we can, without changing the homology class of Zi, arrange for 
Zi to map to Zi-l (exactly). This shows the homology of limE~(R), i.e., 

+--
HPn(R), surjects onto lim HCn(R). 

+-
s 

Finally, suppose the Mittag-Leffler condition is satisfied, and suppose 
a class in HPn(R) maps to 0 in limHCn(R). Let the given class be the 

+-
s 

homology class ofa cycle {Zi} in limE~(R), where Zi E E~(R), d(Zi) = 0 in 
+--

E~_I(R), and Zi maps to Zi-l. Since the class maps to 0 in ~HCn(R), we 
s 

may suppose each Zi is a boundary. Without loss of generality (otherwise 
start the sequence {E!(R)} further out), we may assume (by the Mittag
Leffler condition) that the maps Hn+l(Ei(R» -+ HnH(Ei-I(R» are all 
surjective. We need to inductively choose Ci E E~H (R) such that d(Ci) = Zi 
and Ci maps to Ci-l in E~+\(R)j then d({Ci}) = {Zi} and so our class is 
trivial in HPn(R). To begin the induction, choose any CI with d(CI) = Zl' 

Assuming ClI ... , em are constructed so that d(Ci) = Zi and Ci maps to Ci-l 

for i ~ m, choose any C E E:.thR) such that d(c) = Zm+l. Then C maps 
to an element d E E:-H(R) and d(c') = d(em) = Zm, so em - d is a cycle. 
Since the map HnH(EmH(R» -+ HnH(Em(R» is surjective, there is a 
cycle x E E:.tl(R) mapping to its homology class, and we may assume 
that in fact x maps to em - d. Then if emH = C + x, d( cm+d = ZmH and 
emH maps to em, completing the inductive step. 0 

6.1.23. Corollary. Let k be a commutative ring and let R be a k-algebra. 
H HHn(R) = 0 for n sufficiently large, then 

HP.(R) ~ lim HC.(R). 
+-
s 

Proof. By Theorem 6.1.19, S is an isomorphism from HCn+2(R) to 
HCn(R) for n sufficiently large. Hence the Mittag-Leffler condition is sat
isfied, and the result follows from Theorem 6.1.22. 0 

Alternatively, we may reformulate things in the form of universal coef
ficient theorems as stated in [HoodJones). 

6.1.24. Theorem. Let k be a commutative ring and let R be a k-algebra. 
View the various cyclic homology groups as graded modules over the poly
nomial ring k[u) , where the generator u has degree -2 and corresponds to 
the Connes S-operator. Then HP.(R) ~ k[u, u-l ) ®k[u] HC;(R). If k 
is a field, there is a natural short exact sequence (which splits, but only 
non-canonically) 

0-+ (k[u, u- l1/uk[uJ) ®k[u] HC;(R) -+ HC.(R) 

-+ TOrk[u] (k[u, u-l1/uk[u), HC;_l(R») -+ O. 
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Proof. The assertion that HP.(R) ~ k[u, u- l ] ®k[uj HG;(R) is just 
a reformulation of the first statement of Theorem 6.1.22. For the sec
ond statement, first observe that if E;(R) is the complex for computing 
HG;(R), then the complex for computing HG.(R) may be identified with 
(k[u, u-I]/uk[uJ) ®k[uj E;(R). Now we have a short exact sequence of 
chain complexes 

0--+ E;;(R) ~ k[u, u-l ] ®k[uj E;;(R) 

--+ (k[u, u-1Jluk[uJ) ®k[uj E;;(R) --+ 0, 

and applying Theorem 1.7.6 gives an exact sequence (which also appeared 
in Theorem 6.1.21) which sandwiches HG.(R) between two copies (one 
shifted in degree by 1) of 

Assuming k is a field, taking the cokernel and kernel of this map gives the 
tensor and Tor terms in the statement of the theorem. The sequence splits 
(non-canonically) since the image of the boundary map on the complex 
(k[u, u-1J) ®k[uj E;(R) is a free k[u]-module. Thus on this image one can 
choose a splitting to the boundary map, which induces a splitting of the 
exact sequence. 0 

Next we discuss a number of simplified ways for computing cyclic ho
mology groups, the first of which was actually used in [Connes1] to define 
cyclic homology in the first place. 

6.1.25. Definition. Let k be a commutative ring and let R be a k-algebra. 
Let G;(R) be the chain complex with G~(R) = R®n+l /(1 - tn)R®n+l, 
where tn is defined in Definition 6.1.10, and where the differential is induced 
by bn : R®n+l --+ R®n. To see that this makes sense, recall that by Lemma 
6.1.11, bn 0 (1 - tn) = (1 - tn-I) 0 b~. Thus bn maps the image of 1 - tn 
into the image of 1- tn-l and passes to the quotient. It gives a legitimate 
differential since we also had bn - l 0 bn = O. We define H;(R) to be the 
homology of the complex C;(R)j clearly this is a functor of the k-algebra 
R. 

6.1.26. Theorem. Let k be a commutative ring and let R be a k-algebra. 
If k ;2 Q, there is a canonical isomorphism HG.(R) ~ H;(R) induced by 
the quotient maps GGo, n(R) --+ G~(R). 

Proof. Clearly, mapping CGo,n(R) onto G~(R) and sending GCi,n(R) 
to 0 for i i 0 gives a map of chain complexes, from the complex computing 
HG.(R) to the one computing H;(R). The kernel of this map of complexes 
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is the total complex of the double complex 

1 b3 l-b; 1 b3 

j=2 im(l - t2) l-t2 R03~ R03~ f----

1 b2 l-b~ 1 b2 
j=l im(l - tl) 

l-tt R02~ R02~ f----

1 b1 l-b~ 1 b1 

j=O im(l - to) 
l-to 

R No R 
l-to 

f---- f---- f----

The rows of this double complex are Q-vector spaces with maps alternating 
between 1 - tj and N j . Since (tn)n+1 = 1 and the polynomial tn+1 - 1 
factors in Q[t] as (t - 1)(1 + ... + tn ), 1 - tj and N j are (up to invertible 
scalar factors) the projections onto complementary subspaces. Thus each 
row is acyclic, and so it is easy to see that the whole total complex of the 
double complex is acyclic. Applying Theorem 1.7.6, we see that our map 
of complexes induces an isomorphism on homology. 0 

6.1.27. Examples. 
(1) If R = k, R0n+1 ~ k, with generator 1 ® 1 ® ... ® 1. Also, tn acts 

on this element by multiplication by (_l)n. So (1- tn)R0n+1 = 0 
if n is even, and if 2 is invertible in k, (1 - tn)R0n+1 = R0n+1 
if n is odd. Thus C~(R) = R0n+l/(1 - tn)R0n+l is isomorphic 
to k for n even, 0 for n odd, and H~(R) is isomorphic to k for n 
even, 0 for n odd. If k ;;2 Q, Theorem 6.1.26 now gives a quicker 
reconfirmation of the result of (6.1.16). 

(2) Suppose k ;;2 Q and as in Example 6.1.7(b), let R = k[tJ/(t2 ), the 
ring of dual numbers over k. Then R0n +1 is a free k-module of 
rank 2n +1 , with basis all tensor products of sequences of t's and 1 's. 
Since the map R -+ k obtained by sending t 1--+ 0 is split, C;(R) 
contains C;(k) as a direct summand, and HC.(R) ~ HC.(k) EB 
H;(R, I), where I is the ideal generated by t and C~(R, I) is 
spanned by the images of tensor products of sequences of t's and 
l's containing at least one t. If such a sequence contains a 1, it can 
be moved by a cyclic permutation to one of the form s ® 1, and 
bn(s ® 1) = b~_l(S) ® 1. Thus C~(R, I) splits as a direct sum of 
the complex generated by the t ® t ® ... ® t in even degrees and the 
complex generated by images of tensor products of sequences of t's 
and l's containing at least one t and at least one 1. The latter is 
acyclic since the b' complex is acyclic, so we find that HCn(R) has 
rank 2 for n even, rank 0 for n odd. 

(3) More generally, the same calculations as in (2) prove the following. 
Suppose k ;;2 Q and R is a k-algebra with an augmentation (surjec-
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tive algebra homomorphism) R - k. Then k Co...+ k·l gives a split
ting of R as k . 1 E9 J, where J is the augmentation ideal (the kernel 
of the augmentation). We have HG.(R) ~ HG.(k) E9 H:(R, J), 
and H:(R, J) may be obtained as the homology of the complex 
G:(R, J) obtained by dividing G:(R) by the span of all elemen
tary tensors containing a 1 as one of the factors. 

Another convenient approach to cyclic homology is through "mixed 
complexes," first popularized in [Kassel] (though they appeared earlier in 
disguise-see the history in [LodayCH, p. 87]). These have the advantage 
of being applicable even in finite characteristic, yet of being easier to handle 
than the bicomplexes we have discussed up till now. 

6.1.28. Definition. A mixed complex (G., b, B) is a chain complex 
(G., b) (where b is the differential lowering degree by 1), together with 
an additional differential B raising degree by 1 and anticommuting with 
b (so that b2 = 0, B2 = 0, and Bb + bB = 0). If k is a commutative 
ring and R is a k-algebra, the cyclic mixed complex of the k-algebra 
R is the Hochschild complex (C.(R), b) of Definition 6.1.1, together with 
the additional differential B introduced in Definition 6.1.10. That this 
terminology is consistent (in other words, that the cyclic mixed complex is 
indeed a mixed complex) follows from the following lemma. 

6.1.29. Lemma. If k is a commutative ring and R is a k-algebra, the 
cyclic mixed complex of R is indeed a mixed complex, that is, B2 = 0 and 
Bb+bB=O. 

Proof. First of all, since Nn+1 0 (1 - tn+d = 1 - t:+~ = 0, we see that 

Next, because of Lemma 6.1.11 and the relation sb' + b's = id, we have 

B n- 1 0 bn = (1 - tn) 0 Sn-l 0 Nn - 1 0 bn 

= (1 - tn) 0 Sn-l 0 b~ 0 Nn 

as required. 0 

= (1 - tn) 0 Nn - (1 - tn) 0 b~+1 0 Sn 0 Nn 

= -bn+1 0 (1 - tn+d 0 Sn 0 Nn 

= -bn+1 0 Bn> 

6.1.30. Theorem. If k is a commutative ring and R is a k-algebra, the 
cyclic homology of R, together with its module structure over the polyno
mial ring k[u], where the generator u has degree -2 and corresponds to the 
Connes S-operator, may be computed from the cyclic mixed complex as 
follows. HC.(R) is naturally isomorphic to the homology of the complex 
k[u, u-1]/uk[u] ®k C.(R) with differential a = 1 ®b+u®B, with grading 
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coming from the grading on C.(R) and the requirement that u have degree 
-2. In other words, elements of degree n in the complex are given by sums 

[~l 
Lu-j ®Xj 
j=O 

with Xj E Cn - 2j (R), and the differential has degree -1 since u lowers 
degree by 2 but B raises it by 1. Similarly, H C; (R) and H p. (R) are 
naturally isomorphic to the homologies of the complexes with the same 
differential and with elements of the same form, except that the sums are 
now allowed to be formal infinite sums, with j running from -00 to 0 in 
the case of HC;(R), and running from -00 to 00 in the case of HP.(R). 

Proof. We give the proof for HC; the arguments for HC- and HP are 
similar. First consider the following double complex MC •• (R): 

i=O i = 1 i=2 i=3 

lb4 lba 1 b2 1 b1 

j=3 R®4 B2 R®3 B1 R®2 Bo R +---- +---- +----

(6.1.31) 
j=2 

1 ba 1 b2 1 b1 

R®3 B1 R®2 Bo 
R +---- +----

1 b2 1 b1 

j=1 R®2 Bo 
R +----

1 b1 

j=O R 

filled out with zeroes whenever i > j. By Lemma 6.1.29, this indeed satisfies 
the requirements for a double complex, and evidently the associated total 
complex is exactly the complex described in the statement of the theorem. 
Now consider the map If> sending x E MCi,j(R) = Cj-i(R) to x E9 sNx E 

CC2i,j-i(R) E9 CC2i- 1,j-i+l(R). This is not a map of double complexes 
since it doesn't respect the bigrading; however it induces a homomorphism 
of total complexes, preserving degree and commuting with the differentials, 
since 

which maps under If> to Bx E9 sNBx E9 bx E9 sNbx E CC2i- 2,j-i+l(R) E9 
CC2i-3,j-i+2(R) E9CC2i,j-i-l(R) E9CC2i- 1,j-i(R). We can omit the term 
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sNBx since N(l- t) = 0 and thus NB = N(l- t)sN = O. On the other 
hand, 

a(~(x)) = a(x EB sNx) 

= bx EB (1- t)sNx EB Nx - b'sNx 

= bx EB Bx EB Nx - b'sNx 

E CC2i,j-i-l(R) EB CC2i- 2,j-i+1(R) EB CC2i- l ,j-i(R). 

The Bx terms in CC2i-2,j-i+l(R) and the bx terms in CC2i,j-i-l(R) 
clearly agree, so we have only to compare the terms N x - b' sN x and sNbx 
in CC2i- l ,j-i(R). These agree since 

sNbx = s(Nb)x = s(b' N)x = (sb')Nx = (1- b's)Nx = Nx - b'sNx. 

Thus we indeed get a chain map. 
To finish the proof we only need to show ~ induces an isomorphism on 

homology. Since ~ is obviously injective, we can do this by showing that 
its cokernel is acyclic and then applying Theorem 1.7.6. But the formula 
for ~ shows that the cokernel of ~ may be identified with the sub complex 
of the total complex of the double complex CC •• (R) consisting of the odd
numbered columns. Since these columns are acyclic (because of the fact 
that we proved B.(R) is acyclic in the course of the proof of Proposition 
6.1.4), we are done. 0 

Remarks. The advantage of the "mixed complex" approach can be seen 
from comparing the double complexes CC •• (R) and MC •• (R). The latter 
has only about half as many summands in each total degree, which makes 
it more efficient for calculation. 

The astute reader will no doubt notice that we have used the letter 
B twice, once for Connes' map HCn-l(R) ~ HHn(R) and once for the 
horizontal boundary maps in the double complex MC •• (R). This is not ac
cidental, since (6.1.31) makes clear that HC1(R) is the quotient of HH1(R) 
by the image of the map induced by Bo from HCo(R) to HH1(R). More 
generally we have the following. 

6.1.32. Lemma. The boundary map B in the Connes exact sequence 
6.1.19 may be realized as follows in terms of the double complex MC •• (R). 
If a class in HCn-l(R) is represented by a sum x of elements Xij E 

MCij(R), i + j = n - 1, j ~ i, with b(Xij) + B(Xi+l,j-l) = 0, then 
its image in HHn(R) is represented by the class of BXO,n-l in R®n+1. 

Proof. Under the isomorphism from HC.(R) to the homology of the 
total complex of MC •• (R), the shift operator S corresponds to the self
map of MC •• (R) shifting everything one unit down and one unit to the left. 
Thus B is the connecting map produced by Theorem 1.7.6 from the short 
exact sequence of complexes coming from this shift map on MC •• (R). 
Recall how this map is produced: we lift x to an element of the middle 
complex, and measure the extent to which this lifted element fails to be 
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a cycle. Now in our case, we have an obvious lifting of x, obtained by 
shifting x one unit up and one unit to the right. Since x was a cycle and 
the diagram is periodic, the obstruction is given by the Hochschild class of 
B . R'8m+1 0 xo, n-I In . 

There are cohomology theories dual to Hochschild and cyclic homology, 
which in fact show up more often in the literature than the corresponding 
homology theories. Even though we won't be using these as much, for the 
sake of completeness we record the basic definitions. 

6.1.33. Definition. Let k be a commutative ring and let R be a k-algebra. 
The Hochshild cohomology of R (with respect to the ground ring k) is by 
definition the (co)homology HH·(R) of the complex C·(R) dual to C.(R). 
In other words, C·(R) = Homk(C.(R), k), with the differential of degree 
+1 dual to b. Thus HHO(R) consists of k-linear maps cp: R -+ k vanishing 
on the image of bb in other words, satisfying the relation cp( aOal) = cp( al ao) 
for ao, al E R. Such a map is called a trace, after the most famous 
example, the usual trace Mn(k) -+ k. 

6.1.34. Definition. Let k be a commutative ring and let R be a k-algebra. 
The dual cyclic double complex CC··(R) of R is the double cochain 
complex given by Homk(CC··(R), k), with the obvious dual differentials. 
Two cases are now of interest: that where the complex is chosen to live in 
the first quadrant, in which case the cohomology of the total complex is 
called HC·(R), the cyclic cohomology of R, and that where the complex 
is chosen to live in both the first and the second quadrants, in which case 
the cohomology of the total complex is called H p. (R), the periodic cyclic 
cohomology of R. Note that in the second of these cases, we use an infinite 
sum and not a product. As before we have an S-operator, dual to the one 
on homology, but it increases degree by 2. Similarly we have a Connes 
cyclic cochain complex (C!(R), b*) obtained by taking Cf(R) to be the 
k-submodule of the Hochschild cochains cn(R) which are invariant under 
the operator dual to tn. The cohomology of this complex is denoted H!(R). 
Cocycles cp : R'z,n+1 -+ k in Cf(R) are sometimes called n-multitraces. 
They satisfy the conditions first written down in [Connesl]: 

n 

2:) -l)icp(ao, ... , aiai+b···, an+1) + (-It+ I cp(an+1 ao, ab ... , an) = 0 
i=O 

6.1.35. Theorem (Connes). Let k be a commutative ring and let R be 
a k-algebra. There is a functorial long exact sequence 

... ~ HCn+1(R) ~ HHn+1(R) ~ HCn(R) 

~ HCn+2 (R) ~ HHn+2(R) -+ .... 
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Furthermore, Hpn(R) = ~Hcn+2j(R). Finally, if k ;2 Q, then there is 
s 

a natural isomorphism H~(R) -+ Hpe(R). 

Proof. The first part is exactly dual to Theorem 6.1.19. The second 
statement follows from the fact that the complex computing Hpe(R) is 
naturally isomorphic to the direct limit under S of a sequence of copies of 
the complex computing HCe(R). The last statement is precisely dual to 
Theorem 6.1.26. 0 

To conclude this subsection, we discuss the Hochschild homology and 
cyclic homology of algebras of matrices. The results will be vital when 
we attempt to link Hochschild homology and cyclic homology to K-theory, 
since studying the K-theory of a k-algebra R requires studying the algebra 
Mn(R) of n x n matrices over R in the limit as n -+ 00. 

Before working things out systematically in general, let's begin with 
the case of HHo. Recall that by Corollary 6.1.6, for a general k-algebra 
R, HHo(R) = R/[R, R]. Now consider the matrix algebra Mn(R). It is 
spanned by elements Eij(a), a E R, where this notation denotes the matrix 
with an a in the (i, j)-slot, and with O's elsewhere. (We've used a capital 
"E" to distinguish this from the similar but different matrix eij (a) of Defi
nition 2.1.1.) Note that Eij(a)Ejl(b) = Eil(ab) and that Eij(a)Eml(b) = 0 
if j =f. m. Thus we find that 

j =f. m, i =f. l, 
j = m, i =f.l, 
j =f. m, i = l, 
j = m, i = i. 

This shows that each Eij(a) with i =f. j is a commutator, and that the 
images of Eii(ab) and of Ejj(ba) coincide in 

Furthermore, we see that the usual trace (the sum of the diagonal entries) 
of [Eij(a), Eml(b)] is either 0 or ab - ba E [R, R]. So the usual trace 
Mn(R) -+ R, followed by the quotient map R -+ HHo(R) = R/[R, R], 
sends [Mn(R), Mn(R)] to 0 and maps 

isomorphically onto HHo(R) = R/[R, R]. This, together with the fact that 
the higher Hochschild groups should be viewed in some sense as "derived 
functors" of H Ho, suggests the following result. 

6.1.36. Theorem (Morita invariance of Hochschild homology). 
Let k be a commutative ring and let R be a k-algebra. Let Mn(R) be the 
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k-algebra of n X n matrices over R. Tben tbere are natural isomorpbisms 
HHm(Mn(R)) --+ HHm(R) induced by tbe "generalized trace" 

Tr: Mn(R)®mH --+ R®mH 

given by (tbe unique k-linear extension of) tbe map 

Tr (Eioio (ao) ® Eidl (al) ® ... ® Eimim (am)) 

= { ao ® al ® ... ® am, 
0, 

jo = iI, jl = i2, ... , jm = io, 

otberwise. 

Proof. First let's show that Tr is a chain map from the Hochschild com
plex of Mn(R) to the Hochschild complex of R. Since bm = ~;:o( -l)ldi, 
it's enough to show Trodi = di 0 Tr, and it's enough to check this on 
elements of the form 

Eioio (ao) ® Eidl (ad ® ... ® Eimim (am). 

The result now follows by considering separately the case where jo 
iI, jl = i2, ... , jm = io, in which case both formulas give the same answer, 
and the case where these equalities are not all satisfied, in which case both 
Tr 0d! and di 0 Tr vanish on this element. So Tr is a chain map. 

Secondly, it is obvious that the inclusion of R as a non-unital subalgebra 
of Mn (R) (via a 1--+ Ell (a)) induces an injection t of the Hochschild complex 
for R into that for Mn(R), and that Tr provides a splitting for this inclusion. 
So the maps HHm(Mn(R)) --+ HHm(R) induced by the generalized trace 
are split surjections. We need to show that the kernel of the generalized 
trace is an acyclic subcomplex of the Hochschild complex of Mn (R). 

For this purpose we introduce a homotopy operator as follows. Define a 
map h = ~;:O(_l)lhl : Mn(R)®mH --+ Mn(R)®m+2, where 

hi (Eioio(aO) ® Eidl (al) ® ... ® Eimim (am)) 

= Dioil ... Dil_lil (Eiol(ao) ® Ell (al) ® ... ® Ell (at) ® Elil (1) 

®Eil+dl+l (aIH) ® ... ® Eimim (am)) . 

(Here Dii is the usual "Kronecker delta," 1 if i = j and ° otherwise.) Thus, 
for example, ho (Eioio (ao)) = Eio 1 (ao) ® Elio (1) and 

bl 0 ho (Eioio(ao)) = { Eioio(ao) - El1 (ao), ~o = ~o, 
Eioio (ao), to # )0, 

which is just id - t 0 Tr applied to Eioio (ao). More generally, we find that 
d;'H 0 hi = hi 0 tt;-V if p > l + 1 (this is fairly obvious since hi does not 
change the last tensor factors) and that 

d;'+l 0 hi (Eioio (ao) ® Eidl (al) ® ... ® Eimim (am)) 

dQH (Eiol(ao) ® Elio (1) ® Eidl (al) ® ... ® Eimim (am)) 

= Eioio (ao) ® Eidl (ad ® ... ® Eimim (am), p = l = 0, 

~t~ (Eiol(aO) ® El1 (al) ® ... ® El1 (am) ® Elim(l)) 

DioimDioil ... Dim_lim 

= El1 (ao) ® E l1 (al) ® ... ® El1 (am) 

p= m+ 1, l =m. 
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Thus dQH 0 ho = id and d!:tt 0 hm = /, 0 Tr. Finally, we see that 

dj+l 0 hi (Eioio(aO) ® Eidl (al) ® ... ® Eimim (am» 

= 8ioi1 ... 8il_lil djH (Eiol(ao) ® Ell (ad ® ... 

and that 

®Ell(a,) ® Elil(l) ® Eil+dl+l(al+d ® ... ® Eimim(am)) 

= 8ioi1 ... 8il_lil Eiol(ao) ® Ell (al) ® ... 

® Elil (a,) ® Eil+dl+l (al+d ® ... ® Eimim (am) 

= djH 0 h,- l (Eioio(ao) ®Eid1(al) ® ... ®Eimim(am)) 

~+l 0 hi (Eioio(ao) ® Eidl (al) ® ... ® Eimim(am)) 

= 8ioil ... 8il_lil ~H (Eiol(ao) ® Ell (ad ® .. . 

®Ell(a,) ® Elil(l) ® Eil+dl+l(a'H) ® ... ® Eimim(am)) 

= 8ioi1 ... 8il_lil Eiol(ao) ® Ell (ad ® ... ® Ell (apap+d ® ... 

® Ell (a,) ® Elil(l) ® Eil+dI+1(a'H) ® ... ® Eimim(am) 

= 8ipip+lh,-l (Eioio(ao) ® Eidl (ad ® ... 

®Eipip+1 (apap+l) ® ... ® Eimim (am») 

= h'-l 0 ~ (Eioio(ao) ® Eidl (al) ® ... ® Eimim (am)) 

if p < l. So on Mn(R)®mH, 

m+l m m m-l 

b 0 h + hob = :L: :L:( -l)P+I~H 0 hi + :L: :L: (-l)p+lh, 0 ~ 
p=o 1=0 p=O 1=0 

m+l 

= id - /, 0 Tr+ :L: ± (djH 0 hldjH 0 hi-I) + 0 + 0 
1=1 

=id-/,oTr, 

and thus /, 0 Tr is chain homotopic to the identity. D 

6.1.37. Theorem (Morita invariance of cyclic homology). Let k be 
a commutative ring and let R be a k-algebra. Let Mn(R) be the k-algebra 
oEn x n matrices over R. Then the generalized trace oETheorem 6.1.36 in
duces natural isomorphisms HCm(Mn(R)) -+ HCm(R), HC;;;.(Mn(R)) -+ 

HC;(R) , HPm(Mn(R)) -+ HPm(R), Hcm(Mn(R» -+ Hcm(R), and 
Hpm(Mn(R)) -+ Hpm(R). 

Proof By the proof of Theorem 6.1.36, the generalized trace commutes 
with each summand dj in the Hochschild differential b, and not only with 
the full differential. Thus it also commutes with b' . It is also clearly 
invariant under cyclic permutations and thus commutes with tm and Nm . 

So it induces maps of the cyclic double complex and of the dual cyclic 



1. Basics of cyclic homology 325 

double complex, and thus maps of all the cyclic homology and cohomology 
groups. Again these maps are splittings for the map the other way induced 
by the non-unital inclusion of R into Mn(R) via a ~ Eu(a). 

We still need to show that the maps on cyclic homology groups induced 
by the generalized trace are isomorphisms. For the groups HC., this follows 
easily from Theorem 6.1.36, since HCm ,= 0 for m < 0 and HCo = HHo 
by Theorem 6.1.19. This enables us to prove the result by induction on m, 
starting with the case m = o. Assuming that HCm(Mn(R)) -+ HCm(R) 
is an isomorphism for m < mo, we note that Theorem 6.1.19 gives us a 
commutative diagram with exact columns 

HCmo - l (Mn(R)) -----+ HCmo-l(R) 

Bl Bl 
HHmo(Mn(R)) -----+ HHmo(R) 

Ii Ii 
HCmo(Mn(R)) -----+ HCmo(R) 

81 81 
HCmo - 2 (Mn(R)) -----+ HCmo- 2 (R) 

Bl Bl 
HHmo-l(Mn(R)) -----+ HHmo-l(R). 

Applying Theorem 6.1.36 and the inductive hypothesis, we see that the two 
horizontal arrows on the top and the two horizontal arrows on the bottom 
are isomorphisms. Thus by the Five-Lemma, HCmo(Mn(R)) -+ HCmo(R) 
is an isomorphism. Similar arguments can be given for HC· using Theorem 
6.1.35, and then one gets an isomorphism HP·(Mn(R)) -+ Hp·(R) by 
taking limits. 

It remains to handle HC; and HP •. One way to do this is to show first 
that Tr induces isomorphisms on H p •. When the Mittag-Leffler condition 
is satisfied, this follows from the result for HC. together with Theorem 
6.1.22; even when this is not the case, one can show with a little more 
homological algebra that the kernel of the map HP. -+ limHC. can be 

+--
8 

identified with liml HC., and thus Tr induces an isomorphism on this as 
+--

8 
well. Then one gets an isomorphism on HP. by the Five-Lemma, and from 
this one gets an isomorphism on HC; by Theorem 6.1.21 and the Five
Lemma. Alternatively, one can check directly as in the proof of Theorem 
6.1.36 that Tr is a homotopy equivalence on the relevant cyclic double 
complexes. 0 

Connections with "Non-commutative de Rham Theory." Much 
of the motivation for the study of Hochschild and of cyclic homology comes 
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from the case where R is commutative and can be viewed as an algebra 
of smooth functions on a manifold or an algebraic variety X. In this case, 
the Hochschild or cyclic homology of R is closely related to the de Rham 
cohomology of X, the closed differential forms modulo the exact forms 
(those that are exterior derivatives of other forms). This suggests studying 
a calculus of "non-commutative differential forms" over an arbitrary k
algebra. The following framework for doing so was basically developed in 
[KaroubiHomCyc]. For a more recent survey, see [Cuntz]. 

6.1.38. Definition. Let k be a commutative ring and let R be a k-algebra. 
Let R denote the quotient k-module Rj(k ·1). (In most cases of interest, R 
splits as k·1 EEl R for some k-submodule R of R, isomorphic to R. This is of 
course automatic if either R is an augmented k-algebra, in which case we 
can take R to be the augmentation ideal, or if k is a field.) The algebra 
of non-commutative differential forms nR over R is by definition the 
universal (associative but not necessarily commutative) k-algebra generated 
by a copy of R and by symbols {da : a E R}, subject to the conditions 
that the identity 1 of R also be an identity for the whole algebra nR and 
that a f-t da be a k-linear derivation (in other words, that it be k-linear 
and satisfy d(ao' ad = dao . al + ao· dal for ao, al E R). (These relations 
imply that d1 = 0, since d1 = d(l ·1) = d1 ·1 + 1 . d1 = d1 + dl.) Note 
that any element of nR can be written as a linear combination of elements 
of the form ao dal'" dan, since dx· y = -x· dy + d(xy) and thus we can 
always move factors from R to the left. The algebra nR is N-graded, via 
the grading 

deg(ao dal ... dan) = n. 

There is a linear operator d : nR ---> nR defined by 

d(ao dal ... dan) = daOdal ... dan = 1· dao'" dan, 

and clearly d2 = O. In fact, d is a graded derivation; if Wl is homogeneous 
of a certain degree, then 

To relate Hochschild homology and cyclic homology to differential forms, 
we begin by noting that as a graded k-module, nR is naturally isomorphic 
to ffi:'=o R 0k R0n , via the identification 

(Note that for x E R, dx only depends on the image x of x in R. Thus 
there is a natural map from ffi:'=o R 0k R0n onto nR. To show that it is 
an isomorphism, introduce the operator d and a multiplication in the set of 
tensors in the obvious way; then the map must be injective by universality.) 
We introduce another operator b : nR ---> nR, lowering the degree by 1, by 
the condition 

b(w dx) = (_l)deg w[w, x], wE nR, x E R. 
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One has to check that b is well defined, in other words, that if Wo dxo = 
W1 dX1, then [wo, xo] = [WI, Xl]' But in fact, under the above identification 
of OR with the tensor algebra, b is just the ordinary Hochschild boundary 
(for the "reduced Hochschild complex," in which we divide out by the span 
of all elementary tensors containing a 1 except in the first slot), since 

b(xodx1 ... dxn) = (_1)n-1 [XO dX1··· dxn-1, xn] 

= (_1)n-1 (XO dX1" . dxn-dXn + (-ltxnxodx1" ·dXn-I, 

and by induction on n we can write 

Thus 

(dX1 ... dXn-1) Xn =( _1)n-1 x1 dX2 ... dXn 
n-1 

+ 2) -It-Hjdx1''' d(xjxj+1)'" dxn. 
j=l 

n-1 
+ 2) -l)jxo dX1 ... d(XjXj+1)'" dXn 

j=l 
+ (-It(xnxo) dX1 ... dXn-1, 

which corresponds exactly to (6.1.2), and the homology of the complex 

... ~ on R ~ on-1 R ~ ... 

is just the Hochschild homology of the k-algebra R. 

6.1.39. Definition. Let k be a commutative ring and let R be a k-algebra. 
The non-commutative de Rham homology H~e R(R) of R (with re
spect to k) is the (co)homology of the (co)chain complex (O:bR, d), where 
O:bR is the quotient of OR by the k-submodule generated by all graded 
commutators W1 W2 - (-1 )deg Wl deg W2 W2W1 with W1 and W2 homogeneous. 
The d here is the map induced by d on the quotient; it makes sense since 
the original d in Definition 6.1.38 is a graded derivation. Note for example 
that O~bR = R/[R, R] = HHo(R), that 

O!bR = 0 1 R/ (xdy - dy· x: X, y E R), 

and so on. Also note that on(k) = 0 for n > 0, so that H~e R(k) = 0 for 
n > O. The reader familiar with exterior calculus on manifolds will recall 
that if R = COO(X) for some manifold X, then the exterior differential 
forms on X are a graded-commutative algebra generated by R and by dR, 
and are thus a quotient of O:bR by universality. However, though Hde R is 
closely related to ordinary de Rham cohomology for manifolds and algebraic 
varieties, it is almost always different from the latter. 

The connection with cyclic homology is now the following. To avoid 
worrying about the correct definition of "reduced groups" (see [LodayQuil, 
§4] for a more complete discussion) we deal for simplicity with the case of 
an augmented k-algebra. 
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6.1.40. Theorem (Karouhi [KaroubiHomCyc]). Let k ;2 Q be a com
mutative ring and let R be an augmented k-algebra witb augmentation 
ideal I, so tbat HH.(R) ~ HH.(k) Ea HH.(R, I), and similarly witb 
HO. Tben for n > 0, tbere is a natural isomorpbism from H~e R(R) 
to tbe kernel oftbe map B : HOn(R, I) -t HHn+1(R) of Tbeorem 6.1.19. 
When n = 0, H;1e R(R) is naturally isomorpbic to tbe kernel of tbe map 
B: HOo(R) -t HH1(R). 

Proof. First of all, we use the hypothesis that k ;2 Q to replace HO. by 
H;. We already saw that the normalized Hochschild complex of R can be 
identified with (OR, b). Let C;(R) be the quotient of O;(R) by the graded 
k-submodule generated by all elementary tensors ao ® a1 ® ... ® an with 
some aj = 1. Since 

bn(1 ® a1 ® ... ® an) = (a1 ® ... ® an) + (1 ® ... ) 

+ (-1t(an ®a1 ® ... ®an-1) 

= (1- tn-1)(a1 ® ... ® an) + (1 ® ... ), 

this submodule is b-invariant and C;(R) is also a chain complex. The com
plex C;(R) corresponds to the "cyclicization" of the normalized Hochschild 
complex and is also evidently isomorphic to the quotient of the Hochschild 
complex of the non-unital ring I by 1 - t, so it computes H;(R, I) ~ 
HO.(R, I). We map OR to C;(R) by sending Xo dx1 ... dxn to the image 
of Xo ® Xl ® ... ® xn . The image of d in OR is generated by things of the 
form dx1 ... dxn = 1 dx1 ... dxn. which goes to ° in the reduced complex 
C;(R). From the calculation in Definition 6.1.38, any commutator [w, xl 
goes to something in the image of b. Similarly, any graded commutator 
wdx - (_1)degwdx. w, with w = XOdx1" ·dxn, can be rewritten as 

(Xo dx1··· dxn) dx - (-1)ndx. Xo dx1··· dxn 

= xOdx1·· . dxn dx + (-1t+1d(xxo)dx1" ·dxn + (-1txdxo" ·dxn· 

The second term on the right is in the image of d and thus goes to 0, and 
the sum of the other two terms goes to 

Xo ® ... ®xn ®x+ (-1)nx®xo ® ... ®xn = (1- tn+1)(xo ® ... ®xn ®x), 

which goes to ° in O;(R). So we get an induced map O:bRjd(O:bR) -t 
C;(R)jb(C;(R». This map is in fact a k-linear isomorphism, except for 
an extra factor of k·1 on the left in degree 0, since it has an inverse induced 
from the obvious map C;(R) -t ORjd(OR) together with the observation 
that the image of b maps into the k-submodule generated by (graded) 
commutators. 

We'll now use our isomorphism O:bRjd(O:bR) ~ C;(R)jb(C;(R» to 
get the desired isomorphism on homology. By definition, H~e R(R) is the 
kernel of the map induced by d on O:bRjd(n:b1 R). This goes over in 
C~(R)jb(C~+1(R» to the kernel of the map induced by Sn (see (6.1.5». 
Now consider the action of tn on I®n. Since k ;2 Q, I®n splits as the 
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direct sum of the kernel of 1 - tn, which we can identify with C;(R), and 
a complementary space on which 1 - tn is invertible. Thus the Connes 
operator Bn = (1 - tn+!) 0 Sn 0 Nn differs only by the invertible scalar 
factor of n+ 1 from the map induced by Sn on C;'(R) /b( C;'+l (R)). It follows 
that H~e R(R) corresponds exactly to the submodule of C;,(R)/b(C;,+!(R)) 
killed by the map induced by B. We claim this is (for n > 0) exactly the 
kernel of the map B : HCn(R, 1) -t HHn+!(R). For this we represent 
a class in HCn(R, 1) by a cycle in C;,(R), viewed as a sub complex of 
the O-th column of MC •• (R). By Lemma 6.1.32, the image of our class 
under the Connes B-map is given by the map induced by B on our cycle in 
C;,(R), and so the theorem follows. The only difference in degree 0 is that 
C6(R)/b(Cf(R)) should be replaced by C6(R)/b(Cf(R)), which explains 
why we need to replace HCo(R, I) by HCo(R). 0 

6.1.41. Exercise. Let k be a commutative ring and let R be a k-algebra. 
Show from Theorem 6.1.21 that the maps 

S: HC;;(R) -t HC;;_2(R) 

and HC;;(R) -t HPn(R) are isomorphisms for n S O. 

6.1.42. Exercise. Let k be a field of characteristic 0 and let R = k[t]. 
(1) Show from Theorem 6.1.22 and Corollary 6.1.23 that the map 

HPn(R) -t HCn(R) is an isomorphism for n > 0, so that HPn(R) 
vanishes for n odd and is 9:! k for n even. Deduce that HC1(R) is 
infinite-dimensional (as a vector space 0ver k) but that HC;;(R) 
vanishes for all other odd n. 

(2) Now compute HC;(R) as a module over k[u] and verify the rela
tions of Theorem 6.1.24. 

(3) Compute H~e R(R) directly from the definition, and verify the re
sult of Theorem 6.1.40 for this example. 

6.1.43. Exercise. Let k be a field of characteristic 0 and let R = k[v, v-I], 
the Laurent polynomial ring in one variable. 

(1) Argue as in Example 6.1.7(a) to compute HH.(R). 
(2) Compute HC1(R) by dividing HH1(R) by the image of 

B : HCo(R) 9:! R -t HH1(R) , 

as in Example 6.1.20(b). Show that HC1(R) is one-dimensional 
and that its generator may be identified with v-1dv, the "logarith
mic derivative" of v. 

(3) Now apply Theorem 6.1.19 to show that HCn(R) is one-dimension
al for all n ~ 1. Show from Theorem 6.1.22 and Corollary 6.1.23 
that the map HPn(R) -t HCn(R) is an isomorphism for n > 0, so 
that HPn(R) 9:! k for all n. 

(4) Compute HC;(R) as a module over k[u] and verify the relations 
of Theorem 6.1.24 for this example. 

(5) Compute H~e R(R), and verify the result of Theorem 6.1.40 for 
this example. 
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6.1.44. Exercise (Additivity of Hochschild and cyclic homology 
for direct products of rings). Let k be a commutative ring and let 
R = Rl X R2 be the direct product of k-algebras Rl and R2. Show that 
HH.(R) ~ HH.(Rl) ED HH.(R2), and similarly for HC., HP., etc. 

6.1.45. Exercise. Let k be a commutative ring and let G be a group. 
Then we can form the k-algebra R = kG. 

(1) Show that HH.(kG) can be naturally identified with the group 
homology H.(G, M), where M denotes kG viewed as a G-module 
via the action of G on itself by conjugation. 

(2) Then show that M decomposes as a direct sum of submodules 
supported on the conjugacy classes of G, and thus that HH.(kG) 
splits up as such a direct sum as well. 

(3) Show that the summand of M associated to the conjugacy class of 
an element 9 EGis isomorphic as a kG-module to kG ®kCG(g) k, 
where CG(g) is the centralizer of 9 in G (or the stabilizer of 9 for 
the conjugation action). Deduce from Shapiro's Lemma (Corollary 
4.1.12) that 

HH.(kG) ~ EBH.(CG(g), k), 
(g) 

where (g) runs over the conjugacy classes of G. Note that the 
group homology H.(G, k) corresponds to the conjugacy class of 
the identity element. 

(4) If k = C and G is a finite group, then kG splits as a direct sum 
of matrix algebras over C corresponding to the various irreducible 
representations of G, and we can alternatively use this decom
position and Morita in variance (Theorem 6.1.36) to compute that 
HH.(kG) vanishes except in degree 0, where it has dimension equal 
to the number of irreducible representations. (Here you need the 
result of Exercise 6.1.44.) Show that the two methods for com
puting Hochschild homology agree in this case (using some of the 
basics of representations of finite groups as found say in Chapter 
5 of [Jacobson, II]). 

6.1.46. Exercise. Let k be a commutative ring and let R = k[eJ/(e2 -e), 
the universal unital k-algebra generated by a single idempotent e. Note 
that any element of R can be written uniquely in the form a(1- e) + be. 

(1) Show that OR is the universal associative R-algebra on one addi
tional generator de satisfying e . de = de· (1 - e). 

(2) Assuming that 2 is invertible in k, show that the images of de and of 
e·de vanish in O!bR, hence that Hge R(R) ~ Rand Hfe R(R) = O. 
(Caution: O:bR is obtained by dividing out by the k-submodule 
generated by graded commutators, not by the ideal generated by 
graded commutators, so the fact that OR is generated as an R
algebra by de, plus the fact that the image of de vanishes in n!bR, 
do not imply that n:bR vanishes in degrees > 0.) 
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(3) For k :2 Q, compute n:bR and thus compute H~e R directly. Ver
ify the conclusions of Theorem 6.1.40 for this example. (You can 
compute the cyclic homology using Exercise 6.1.44.) 

6.1.47. Exercise. Let k ~ F ~ L be fields, with F algebraically closed. 
Viewing F and L as k-algebras, show that the induced maps on Hochschild 
and on cyclic homology HH.(F) ---t HH.(L) and HC.(F) ---t HC.(L) are 
injective. (Duplicate the argument of Suslin in Exercise 5.3.34.) Is this still 
true if one drops the assumption on F? 

6.1.48. Exercise. Let k be a field, so that Proposition 6.1.4 is applicable. 
Show that if R is any k-algebra, HHn(R[u, u-1]) ~ HHn(R) tfJHHn- 1 (R). 
(Exercise 6.1.43 gives a special case of this. Hint: tensor together a res
olution of R as an R ®k ROP-module with a resolution of k[u, u-1] as a 
k[u, u-1] ®k k[u, u-1]OP-module to get a double complex from which you 
can compute the Tor-groups.) 

This suggests that there should be a chain map 

which induces a split injection on Hochschild homology. Such a map is 
given explicitly by 

ao ® al ® ... ® an I--t -uao® (u-1 ® al ® ... ® an - al ® u-1 ® ... ® an 

+ ... + (-Ital ® ... ®an ®u-1). 

Check that this is a chain map and that when followed by the augmentation 
map sending u I--t 1, it induces the O-map HH.(R) ---t HH.+l(R). 

6.1.49. Exercise. Let k be a field and let R be a k-algebra. Using Exer
cise 6.1.48, show by induction on n that HCn- 1 (R[u, u-1]) ~ HCn- 1 (R) tfJ 
HCn- 2 (R), that the map 

splits up as a direct sum of B : HCn_1(R) ---t HHn(R) and of B : 
HCn- 2 (R) ---t HHn-1(R), and that the shift map S for R[u, u-1] splits up 
as a direct sum of two copies of the shift map for R, one shifted in degree 
by 1. When k has characteristic 0, so that HC. ~ H:, the split injection of 
HCn(R) ~ H~(R) into H~+l(R[u, u-1]) is given by the chain map given 
by the same formula as in Exercise 6.1.48. 

2. The Chern character 
The aim of this section is to construct homomorphisms from K -groups 
to cyclic homology groups, which go under the general name of "Chern 
characters." We begin with the classical theory that motivated these, and 
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then describe first the theory for Ko (which is a little more concrete), and 
then the theory for the higher groups. 

The Classical Chern Character. When Chern did his work on the 
theory of so-called "characteristic classes," neither K-theory nor cyclic ho
mology had been invented yet. Nevertheless, much of what he did to define 
the "Chern character" will be applicable to our setting, so we start with 
a sketch of the classical theory. Suppose X is a compact smooth manifold 
and p : E --+ X is a smooth complex vector bundle over X. (This means 
it is a C-vector bundle in the sense of Definition 1.6.1, with the added re
quirement that E have the structure of a smooth manifold and that all the 
structure maps be Coo.) Chern showed how to use the notion of "curva
ture" of the bundle to define classes en(E) E HJ~R(X, q, the de Rham 
cohomology of X, which can be put together to get an invariant called the 
Chern character 

Ch(E) E Hd~eR(X' q =def E9HJ~R(X, q 
n~O 

which has the useful properties that Ch(El EB E2 ) = Ch(E1) + Ch(E2 ), 

Ch(El ® E2 ) = Ch(E1) U Ch(E2 ). It then follows fairly easily that Ch 
extends to a ring homomorphism from KUO(X) to Hd~eR(X' q. One can 
then (after replacing de Rham cohomology by tech cohomology) extend 
the definition to arbitrary compact spaces X (since any vector bundle on a 
compact space is the pull-back under a continuous map of a smooth vector 
bundle on a manifold), and even show that for general compact spaces, 
the Chern character Ch induces a ring isomorphism from KUO(X) ®z C to 
Heven(x, q. Some of the details can be found in [Karoubi, Chapter V.3]. 

While a complete discussion of the classical Chern character would re
quire too much of a digression into differential geometry, it is worth ex
plaining the main idea in the construction of Ch(E) in order to motivate 
the algebraic theory that will follow. Following the method of proof of 
Theorem 1.6.3, one can show first that smooth vector bundles over X cor
respond (via the correspondence between E and its module roo(X, E) of 
smooth sections) exactly to finitely generated projective modules, not over 
CC(X), but over the ring of smooth functions R = CCO(X). In particular, 
any smooth vector bundle E is a direct summand in a trivial bundle, say 
of rank k. This now gives us a way to differentiate smooth sections of E, 
though it depends on a choice of an embedding of E as a direct summand 
in a trivial bundle. Observe that smooth sections of a rank-k trivial bun
dle are just k-tuples of smooth functions on X. So if s E roo(X, E), we 
can define its "derivative" Ds to be the result of viewing s as a k-tuple 
of functions (iI, ... , ik), taking the exterior derivatives diI, ... , dfk, and 
projecting back down (to the space of "E-valued I-forms"). However, even 
though d2 fJ = 0, the result of applying D twice is usually non-zero, since 
there is no reason why d should commute with the projection ponto E. 
The operator D2 is basically what is called the curvature of E. We may 
view it as a k x k matrix of (ordinary scalar-valued) differential 2-forms 
onX. 
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If we think of p as an idempotent matrix in Mk (R), then we may compute 
the curvature as follows. We take the exterior derivative of a matrix of 
forms by differentiating each of its entries (so that dp is a k x k matrix 
of differential I-forms on X), and we denote matrix multiplication by·. 
First of all, since p . p = p, differentiating gives dp . p + p . dp = dp, or 
dp· (1- p) = p. dp, an identity we will need later. Similarly, for a section 
s of E, s = p. s and ds = dp· s + p. ds, or (1 - p) . ds = dp· s. Thus 

D2 S = (p 0 d 0 p)2 S 

= (p 0 d)(P· ds) 

=p. (dp.ds+p.d2s) 

= (p. dp) . ds = (dp· (1 - p)) . ds 

=dp·((I-p).ds) 

= dp· (dp· s) 

= (dp· dp) . s. 

In other words, the actions of D2 on the image of p (the sections of E) is 
given by left multiplication by dp· dp. Since we want to think of the curva
ture of E as being 0 on the image of 1-p (the sections of the complement), 
the curvature of E (computed for this particular choice of p) is really left 
multiplication by 

(6.2.1) dp· dp· p = dp· (1 - p) . dp = p. dp· dp. 

The component of the Chern character of E in degree 2n is now obtained 
(up to a certain scalar normalizing factor which we won't worry about at 
the moment) by taking the de Rham cohomology class of 

(6.2.2) 

(Here we've again used the trick of moving all the p's across the dp's.) Of 
course, for the de Rham class to make sense, we have to check that this 
form is closed, but 

d (Tr (p. (dp)2n)) = Tr ((dp)2n+l) 

= Tr ((dp. p + p. dp) . (dp)2n) 

= Tr ((1- p) . (dp)2n+l) + Tr (p. (dp)2n+l) 

and 

Tr (p. (dp)2n+l) = Tr (p2 . (dp)2n+l) 

= Tr (p. (dp)2n+l . (1- p)) 

= Tr ((1- p) . p. (dp)2n+l) = 0, 
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and similarly with the other term. Here in the last step we've used the 
fundamental property of the trace, which is invariance under cyclic permu
tations. 

Since the curvature depends on the choice of the projection p, it is also 
important to check that the result of this procedure gives an invariant of 
E and doesn't depend on the choices made. The classical argument for 
this is based on "homotopy invariance." Namely, suppose Pt, 0 ~ t ~ 1, 
is a one-parameter family of idempotents, so that the vector bundles they 
define are all equivalent to one another (by Corollary 1.6.12). We show 
that the de Rham class of Tr (Pt' (dpt)2n) doesn't change with t. It is 
obviously enough by calculus to show that the derivative of this form (with 
respect to t) is exact, hence represents 0 in de Rham theory. If Pt denotes 
the derivative of Pt with respect to t, then dPt is the derivative of dpt with 
respect to t, and thus (leaving the subscript t's off the p's for simplicity of 
notation) 

2n ! (Tr (p. (dp)2n)) = Tr (p. (dp)2n) + ~Tr (p. (dp)i-l . dp. (dp)2n-i) . 

Since p2 = p, we have p. p + p. P = P or p. p = p. (1 - p). Thus 

Tr (p. p. (dp)2n) = Tr (p. p' p. (dp)2n) 

and similarly 

= Tr (p. p. (1- p) . (dp)2n) 

= Tr (p. p. (dp)2n . (1- p)) 

= Tr (1- p) . p. p. (dp)2n) = 0, 

Tr (1- p) . p. (dp)2n) = O. 

So the first term in the derivative vanishes. The remaining terms add up 
to something exact, since 

2n 2n 
LTr (p. (dp)i-l . dp· (dp)2n-i) = LTr (dp)2n-i. p' (dp)i-l . dp) 
i=l i=l 

= fTr (dP)2n-1. (1- p, 
i=l p, 

i Odd) ) ·d· 
i even P 

= n Tr (dp)2n-l . dp) , 

which is exact. This completes the proof that the Chern classes are ho
motopy invariants of p. From this it is not too hard to see that they only 
depend on the isomorphism class of the vector bundle E. 

6.2.3. Example. To show how this works, let's note that the set of rank
one self-adjoint idempotents in M 2 (C) may be identified with the set of 
one-dimensional subspaces of (;2 (since there is a unique projection onto 
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each subspace annihilating the orthogonal complement), or in other words 
with JP>l(C) ~ S2. Thus if X = JP>l(C) ~ S2, there is a smooth idempotent 
map p : X -+ M2 (C) corresponding to this identification, and p will define a 
one-dimensional complex vector bundle E, which (modulo a trivial bundle) 
is the generator of KO(S2) ~ z. If we view S2 as {x = (Xl! X2, X3) E ]R3 : 

:E x~ = I}, the map p may be given by 

Then 

and 

So 

p·dp·dp 

= ~ (-i(l + Xl) dx2 A dx3 + (X2 + iX3)( -dXl A dX2 + i dXl A dx3) *) 
4 * * ' 

which has trace 

Since this integrates to something non-zero over S2, Ch(E) :f:. O. Note that 
we could not detect non-triviality of E merely from Tr(p), which is = 1. 

The Chern Character on Ko. Now we go back to the case of a gen
eral k-algebra R and study ways of detecting non-zero elements of Ko(R) 
using cyclic homology. There are various Chern characters, depending on 
what one wants to use as the target of one's homomorphism from Ko(R): 
HHo(R) = HCo(R), HPo(R) ~ HCC;(R), or Hge R(R). These are related 
by the homomorphisms .that rel!}te these various cyclic homology groups. 

We begin by discussing the simplest of these maps, the one into H Ho(R) 
= HCo(R). Unfortunately it is not always powerful enough to be very 
useful. 

6.2.4. Definition. Let R be any ring (with identity). The trace map 
Tr : Ko(R) -+ R/[R, R] (by Corollary 6.1.6 and Theorem 6.1.19, this is 
HHo(R) = HCo(R) for any choice of a ground ring k) is defined to be the 
map induced by sending the class of an idempotent p E Mn(R) to the image 
of its trace (the sum of the diagonal entries) in the quotient R/[R, R]. 



336 6. Cyclic homology and its relation to K-Theory 

6.2.5. Proposition. If R is any ring, the trace map Ko(R) -+ R/[R, R] 
as just defined is well defined and is a homomorphism, which is functorial 
in the ring R. 

Proof. Obviously 'fr(p) doesn't change if we enlarge the matrix p by 
adding D's in the lower right, and clearly 'fr is functorial in R. By Lemma 
1.2.1 and the universal property (Theorem 1.1.3) of the Grothendieck group, 
to show that we have a well-defined homomorphism on Ko, it is enough to 
show that 'fr is conjugation-invariant and additive under block direct sums. 
The latter is obvious, so we just need to see that if 9 E G L( n, R) and p is 
an idempotent in Mn(R), then 'fr(gpg-l) = 'fr(P). The proof is the same 
as in elementary linear algebra. We let b = pg-l and need to show the sum 
of the diagonal entries of gb differs from the sum of the diagonal entries of 
bg = p by a sum of commutators. Let bij and gij be the respective matrix 
entries of b and g. Then the i-th diagonal entry of gb is Ej gijbji and the 
j-th diagonal entry of bg is Ei bjigij. Thus the difference between the sum 
of the diagonal entries of gb and the corresponding sum for bg is 

~ (~9i;b;i) -~ (~b;iY#) 
= L (gijbji - bjigij) = L (gij, bji] E [R, R]. 0 

i,j i,j 

6.2.6. Examples. 

(1) If R is a field, Ko(R) ~ Z and 'fr is the usual trace. Since 'fr{ln ) = 
n, the map 'fr : Ko(R) -+ R has as its image the canonical image 
of Z in R. Thus 'fr is injective if and only if R is of characteristic 
O. It is surjective if and only if R = IFp for some prime number p. 

(2) If R = CC(X) for some compact Hausdorff space X, so that 
Ko(R) ~ KUO(X), then any idempotent p E Mn(R) is just a con
tinuous function from X to the idempotent matrices over C, for 
which the ordinary trace is just the rank of the idempotent. This 
must be locally constant, so that 'fr just gives the rank function 

rank: KUo(X) -+ HO(X, Z) = C(X, Z) ~ C(X, C) = R. 

Thus if X is connected, 'fr takes its values in Z and vanishes on 
[(O(X). 

(3) If R = Mn{k) is a matrix algebra over,a field k, Ko(R) ~ Z with 
generator corresponding to a rank-one idempotent in R, and 'fr is 
again the usual trace. So again the map 'fr : Ko(R) -+ R has as 
its image the canonical image of Z in R. 

(4) Let k be a commutative ring, let G be a group, and let R = kG. By 
Exercise 6.1.45, HHo{R) can be identified with the free k-module 
on the conjugacy classes in G. If G is a finite group and k = C, 
then R splits as a direct sum of matrix algebras and 'fr is injective, 
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and in fact Tr induces an isomorphism Ko(R) ®z C --+ HHo(R). 
On the other hand, if G is cyclic of prime order and k = Z, then 
Ko(R) is computed in Example 3.3.5(b) to be the finite class group 
of the associated cyclotomic field. Since HHo(R) is torsion-free, 
the trace map vanishes on Ko(R) in this case. 

(5) Here is maybe a more interesting example of the trace map. Let k 
be a field and let 

where rPn : M2n (k) --+ M2,,+1 (k) is defined by a I--t (~ ~) as in 

Exercise 1.2.7. It was computed in that Exercise that Ko(R) ~ 
Z[~). Now if the characteristic of k is not 2, we can define a map 
"pn : M2n(k) --+ k to be 2-n times the usual trace. Since"pn 
vanishes on commutators and "pn = "pn+1 0 rPn, the maps "pn give a 
well-defined map on the inductive limit: 

"p : R/[R, R) --+ k. 

When k is of characteristic 0, the composite "p 0 Tr can be seen 
to be just the identity map Z[!j -+ Z[~) c Q ~ k, and thus Tr is 
injective. 

To get a more powerful Chern character, we next show that the trace 
map factors through H Po(R) or HCi) (R) via the canonical map H Po(R) --+ 

HCo(R). The canonical map HCi)(R) --+ HPo(R) is always an isomor
phism by Exercise 6.1.41. However, since S is an isomorphism on HP.(R), 
the Chern character into HPo(R) can be viewed as mapping into HP2n(R) 
for any n ~ 0, and can then be mapped into HC2n(R), giving some
thing that looks much more like the classical Chern character into even
dimensional de Rham cohomology. 

6.2.7. Proposition. Let k be a commutative ring. For any k-algebra R, 
there is a homomorphism Ch : Ko(R) --+ HCi)(R) ~ HPo(R) called the 
Chern character, functorial in R, such that Tr : Ko(R) --+ HCo(R) is just 
the composite ofCh followed by the canonical map HPo(R) --+ HCo(R). 
The map Ch is uniquely determined by these properties. 

Proof. Let A = k[eJl(e2 - e), the universal unital k-algebra generated 
by a single idempotent e. Since any element of A can be written uniquely 
in the form a(1 - e) + be, A factors naturally as a direct product of rings 
k x k, and (by the result of Exercise 6.1.44), the cyclic homology groups 
of A are just direct sums of two copies of the cyclic homology groups of 
k. By Example 6.1.16, the canonical map HPo(k) --+ HCo(k) ~ k is an 
isomorphism, and so is HPo(A) --+ HCo(A) ~ k(f)k. Thus the Proposition 
is true for A. 

Now recall that Ko(R) is generated as an abelian group by classes [f), 
where f is an idempotent in Mn(R) for some n. Note that f defines a unital 
homomorphism cp : A --+ Mn(R) sending e to f, and the class [f) E Ko(R) is 
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just the image under 'P* of the class [e] E Ko(A), followed by the canonical 
isomorphism Ko(Mn(R)) --+ Ko(R) of Theorem 1.2.4. Therefore we can 
define Ch([f]) by first taking Ch([e]) E HPo(A) to be the inverse image of 
Tr([e]) E HCo(A) under the isomorphism HPo(A) --+ HCo(A), and then 
letting Ch([f]) = 'P*(Ch([e])) E HPo(Mn(R)), followed by the isomorphism 
HPo(Mn(R)) --+ HPo(R) provided by Theorem 6.1.37. Then from the 
commutative diagram 

Ko(A) 
cpo 

Ko(Mn(R)) 
Q; 

Ko(R) ---t ---t 

ChI 

HPo(A) 
cpo 

HPo(Mn(R)) 
Q; 

HPo(R) ---t ---t 

Q;I I I 
HCo(A) 

cpo 
HCo(Mn(R)) 

Q; 
HCo(R), ---t ---t 

we see that Tr([f]) is the image of Ch([f]) under the canonical map H Po(R) 
--+ HCo(R). 

It is clear that if there is any functorial map Ch : Ko(R) --+ HCC; (R) ~ 
HPo(R) with the property stated in the Proposition, then it must agree 
with this one (since Ko(R) is generated by elements coming from Ko(A), 
and HPo(A) --+ HCo(A) is an isomorphism). To complete the proof we 
only need to see that the Chern character as we've defined it is a homo
morphism, since functoriality is automatic from our definition. For this 
purpose it is enough to show that Ch is additive on the submonoid of 
Ko(R) generated by classes of idempotents. But any two elements in this 
submonoid of Ko(R) can be written in the form [h], [h] for some com
muting idempotents h, h in some Mn(R). If we consider the universal 
k-algebra B = k[el' e2l/(e~ - el, e~ - e2) on two commuting idempotents, 
then there is a unique homomorphism B --+ R with ej I-t Ii, and so by 
functoriality it is enough to show Ch is additive for B. Since B also splits 
as a direct product of (4) copies of k, HPo(B) --+ HCo(B) is an isomor
phism and additivity of Ch for B follows from additivity of the trace Tr. 
Thus the result follows. D 

6.2.8. Remark. A similar technique (working with the universal exam
ple A) shows that one can construct functorial Chern characters Ko(R) --+ 

HC2n (R) for any n. We have not listed this fact as a separate proposi
tion since it's really contained in Proposition 6.2.7: we merely compose 
Ch : Ko(R) --+ HPo(R) with the canonical map HPo(R) --+ HC2n(R) 
coming from (S-lt. Again, the fact that sn : HC2n(A) --+ HCo(A) is 
an isomorphism shows that the Chern character Ko(R) --+ HC2n (R) is 
uniquely determined. Furthermore, since B : HC2n (A) --+ HH2n+1(A) is 
the O-map for any n (the Hochschild homology of A is concentrated in de
gree 0), we see by functoriality that the image of the Chern character lies in 
the kernel of B. Thus, when k 2 Q (at least for augmented algebras-this 
restriction is really not necessary), we can by Theorem 6.1.40 think of the 
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Chern character, after forgetting the image of Ko(k) in Ko(R), as mapping 
into even-dimensional de Rham homology. This makes the Chern character 
as we've defined it look much more like the classical Chern character. 

6.2.9. Example. Let k = C, let X be a compact Coo manifold, and let 
R = Coo(X) be the k-algebra of smooth functions on X. Then Ko(R) ~ 
KUO(X). Recall that there is a quotient map from n:bR onto n e X, the 
usual exterior differential forms on X, which induces a homomorphism 
~ : H~e R(R) --t Hde R(X). We want to show that there are universal 
constants en =j:. 0 (independent of X) such that for any smooth vector 
bundle E over X defined by an idempotent p E Mj(R), 

Here Ch2n denotes the component of Ch in H~~ R(R) (viewed as in Remark 
6.2.8 above) and the right-hand side is the de Rham class of the indicated 
differential form, as in the earlier section on the classical Chern character. 

When n = 0, there is nothing to prove, since by Example 6.2.6(2), 
Cho([E]) = Trp = rankE. So assume n > o. Again look at the uni
versal example A = C[e]/(e2 - e), which corresponds to taking X = So. 
Then Ch2n ([e]) must be a multiple of the generator of H~~ R(A) (which 
is one-dimensional). One can take the generator to be the class of the 
"non-commutative differential form" e· (de )2n, so there is a universal con
stant en (computed in [KaroubiHomCyc, §II.20]) for which Ch2n([e]) = 
en [e. (de)2n] in H~~ R(A). By functoriality, Ch2n([P]) = en [p. (dp)2n] in 
H~~ R(Mj(R)). Applying Tr and then ~, we see that 

~ 0 Ch2n([E]) = en [Tr (p. (dp)2n)] . 

6.2.10. Examples. (a) Suppose k is a field of characteristic 0 and R = 
k[t]. By Example 6.1.20(a), HC2n (R) ~ k for n > 0, while HCo(R) = R 
is of infinite rank over k. Also, S : HC2(R) --t HCo(R) = R is injective, 
with image k· 1. Since Ko(R) ~ z, it's easy to see that Ch2n is injective 
for any n, and is an isomorphism after tensoring over Z with k when n > 0 
(though not for n = 0). In this case, HPo(R) is smaller that HCo(R), but 
gives a better approximation to Ko(R). 

(b) Let fl. be a square-free integer with fl. t= 1 mod 4, and let k = Z, 
R = Z[e]/(e - fl.), which is the ring of integers in Q(va) and thus a 
Dedekind domain. (See Exercise 1.4.24.) A calculation similar to that in 
Example 6.1.7(b) shows that if S = R®z R;>P, R has a resolution as an S
module that is periodic of period 2, by free S-modules of rank 1. From this, 
one sees that HH2n (R) = 0 for n > 0 and that HH2n+1(R) is a finite group 
(isomorphic to (Z/2fl.)(J)(Z/2)) for n ~ O. In fact, we can think of HH1(R) 
as the R-module generated by ~ subject to the relation 2e ~ = dfl. = 0 
(which imples 2fl.~ = 0 since fl. = e), and B : HCo(R) ~ R --t HH1(R) 
annihilates Z and sends e to~. So from the Connes exact sequence, 
HC2(R) is torsion-free of rank 2 and HC1(R) is a finite abelian group. 
Plugging this back into the exact sequence and continuing by induction, 
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we find that HC2n(R) is torsion-free of rank 2 and HC2n+1(R) is a finite 
abelian group for all n ~ O. On the other hand, Ko(R) is the class group of 
Q( va), which is finite, so Ch2n is trivial on Ko(R) for all n. In fact, since 
HH2n(R) = 0 for n > 0, S : HC2n+1(R) -+ HC2n- 1(R) is surjective for 
all n > 0, so the Mittag-LefRer condition is satisfied for odd-degree cyclic 
homology. Hence by Theorem 6.1.22, HPeven(R) ~ limHCeven(R), and 

+-s 
Ch : Ko(R) -+ HCr; (R) is trivial on Ko(R). 

(c) The calculation in Example 6.2.3 doesn't really depend on the use 
of Coo functions, since all the functions that appeared were polynomials. 
Thus if R = IR[Xl, X2, Xg]/(}: x~ -1), the calculation we have already done 
shows there is an element of Ko(R) detected by Ch2 and not by Cho. 

The Chern Character on Higher K -Theory. The Chern character 
on higher K-theory gives homomorphisms from the higher K-groups, as 
defined using the +-construction, to cyclic homology groups. We will men
tion along the way an earlier precursor of the Chern character, called the 
"Dennis trace map," which maps into Hochschild homology. AB pointed 
out in [HoodJones], to define the Chern character on higher K-theory cor
rectly, it is really best to work with HC; rather than with HC •. First 
we need to define the "assembly maps" for group rings, which have other 
interesting applications, anyway .. (See the last subsection of §6.3.) 

6.2.11. Definition. Let G be a group and let k be a commutative 
ring. The assembly map H.(G, k) --+ HH.(kG) is defined by identi
fying HH.(kG) as in Exercise 6.1.45 with H.(G, kG) (with G acting by 
conjugation) and taking the map on homology induced by the inclusion 
k·1 '-+ kG. AB shown in Exercise 6.1.45, this map is a split injection. 
To be more explicit, it corresponds to the inclusion into the Hochschild 
complex of kG of the subcomplex C.(G) spanned (over k) by elementary 
tensors of the form go ® gl ® ... ® gn with gi E G, gOgl ... gn = 1. This does 
not give exactly the same complex for computing H. (G, k) that we gave in 
Definition 4.1.7, but another equivalent one coming from tensoring over G 
with k on the right the resolution of k as a trivial (right) G-module given by 

(6.2.12) 
b' 

••• ---+ 

giEG 
gogl"'g,,=1 

b' b' ~ k (go ® gl ® ... ® gn) ---+ ••• ---+ L...J kgo = k, 
go=1 

with the G-module structure given by 

(The complex (6.2.12) is acyclic since (6.1.5) again gives a contracting ho
motopy.) The assembly map H.(G, Z) --+ HH.(kG) is defined to be the 
map H.(G, Z) --+ H.(G, k) induced by the canonical map ofrings Z -+ k, 
followed by the above assembly map. The assemoly map H.(G, k) --+ 

HC.(kG) is the assembly map in Hochschild homology followed by the 
canonical map of Connes, I: HH.(kG) --+ HC.(kG). 



2. The Chern character 341 

There is also a "shifted assembly map" H.(G, k) ~ HC.+2j (kG) which 
when followed by the periodicity operator sj gives the above map, but 
since this is turn comes from the assembly map on HP. and on HC; we 
mention these first. The "shifted assembly map" on HC. will then be the 
assembly map H.(G, k) ~ HC;(kG) followed by the maps 

s-j 
HC;(kG) ~ HP.(kG) ~ HP.+2j (kG) ~ HC.+2j (kG). 

~ 

To define the assembly map H.(G, k) ~ HC;(kG), we note that just 
as the Hochschild complex of a ring R can be included as the O-th column 
of the cyclic double complex of R, the complex C.(G) can be included as 
the O-th column of a double complex CC; (G) with columns indexed by 
the integers::; 1, with even columns given by C.(G), with odd columns 
the same as (6.2.12) except that the sign of the differential is changed, and 
with horizontal maps defined using N and 1 - t. (The key point here is 
that C.(G) is invariant under the cyclic operators tn, since, in a group, 
9091···9n = 1 implies 9n9091··· 9n-l = 1.) The double complex CC;(G) 
is a subcomplex of the double complex used to compute HC;(kG), and 
making this double complex into a single complex as in (6.1.15) gives us 
homology groups HC;(G) which naturally map to HC;(kG). (Similarly 
we get groups HC.(G) mapping to HC.(kG) and HP.(G) mapping to 
HP.(kG).) On the other hand, we can show, following [KaroubiHomCyc, 
Proposition 2.22), that 

00 

HC;;(G) ~ II Hn+2j(G, k), 

and similarly 

[~) 

HCn(G) ~ LHn- 2j (G, k), 
j=O 

j=O 

00 

HPn(G) ~ II Hn+2j(G, k). 

j=[~J 

To prove this, introduce the double complex of free right G-modules 

(6.2.13) 

lb~ 1 b" - 3 

I-h 
I.:gOglg2=1 k (gO ® 91 ® 92) 

Nl 
I.:gOglg2=1 k (90 ® gl ® 92) +--- +---

lb; l-b;' 
No 

I.: gOg1 =1 k (90 ® 91) 
I-to 

I.: gOg1 =1 k (go ® 9d +--- +---

i=O i = 1, 
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where the even-numbered columns are copies of (6.2.12) with the last k 
left off, and the odd-numbered columns are similar except that we leave 
off the last term ±cf,:!-l in the formula for b' . Note that (6.2.13) ®kG k is 
precisely CC;{G). On the other hand, it is easy to see that all the columns 
of (6.2.13) are acyclic, except for the j = 0 row in the even columns. So 
the same argument as in the proof of Example 6.1.16 shows that if we 
make (6.2.13) into a single complex as in (6.1.15), we get a product of free 
G-module resolutions of k, shifted in degrees by 2. This gives the desired 
result HC;;{G) ~ rr~oHn+2j{G, k). Now it is easy to see how to define 
the assembly mapj it is the obvious injection of H.{G, k) into this product. 
In particular the assembly map is split injective, and the assembly map 
in Hochschild homology is just the assembly map in H C; followed by the 
canonical map HC; - H H •. 

6.2.14. Definition. Let k be a commutative ring and let R be a k-algebra. 
For convenience let G = GL{R). The Dennis trace map is the collection 
of homomorphisms Kn{R) - HHn{R), n ~ 1, defined as the composites 

Kn{R) = 7rn{BG+) Hurewicz) Hn{BG+j Z) ~ Hn{G, Z) 

assembly) HHn{kG) ~ HHn{R). 

The Chern character (on higher K-theory) is the collection of homomor
phisms Kn{R) - HC;;{R), n ~ 1, defined as the composites 

Kn{R) = 7rn{BG+) Hurewicz) Hn{BG+j Z) ~ Hn{G, Z) 

assembly) HC;;{kG) ~ HC;;{R). 

In both cases the first map is the Hurewicz map of Exercise 5.2.15. The 
second map is defined in Definition 6.2.11. The map ~ is obtained by 
passing to the limit as r - 00 in the following simple construction: since 
GL{r, R) ~ Mr{R), there is an obvious algebra homomorphism 

CPr : kGL{r, R) - Mr{R) 

obtained by sending k to k· 1 and any group element to itself (viewed as 
an element of Mr{R)). Thus by Theorems 6.1.36 and 6.1.37 we obtain 
composites 

or 
HC;;{kGL{r, R)) ~ HC;;{Mr{R)) ~ HC;;{R). 

9i 

Then we can check that the diagram 

HHn{kGL{r, R)) 

1 
HHn{kGL{r + 1, R)) 
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commutes, and similarly with HC;. As pointed out in [LodayCH,p. 267], 
there is a slight subtlety here, since the map GL{r, R) Co..4 GL{r + 1, R) is 

obtained by a ~ (~ ~ ), and we need to check that the 1 added in the 

lower right doesn't affect the class we get in HHn{R). The point however 
is that 

(6.2.15) Tr (( ~ ~) ® ... ® (aD ~)) = Tr{ao®·· ·®an )+I® .. ·®1, 

and the term 1 ® ... ® 1 comes from the image of the map HHn{k) -+ 

HHn{R), which is 0 for n ~ 1. The Dennis trace map and the Chern 
character Ch are functorial in R since each individual map in the composites 
is functorial. 

Definitions 6.2.11 and 6.2.14 are so abstract and complicated that it 
would be nice to have a much more concrete idea of what the Chern char
acter does, especially on K 1. It turns out that there is a quite simple 
description for the case of Kll similar to the one we found in Example 
6.2.9 in the case of Ko. To find it, we again introduce a "universal exam
ple," the Laurent polynomial ring, or alternatively, the group ring of an 
infinite cyclic group. 

6.2.16. Theorem. Let k be a commutative ring and let R = k[v, v-1] 

be the Laurent polynomial ring on one variable v. By Exercise 6.1.43(1) 
(this part doesn't require any assumption on k), HHn{R) = 0 for n > 1 
and HH1{R) is the free R-module on a generator dv. The Dennis trace 
map sends the class ofv E R X ~ K 1{R) to v-ldv E HHl{R) ~ O!b{R), 
the "logarithmic derivative" of v. 

Now assume k is a field of characteristic o. Then by Exercise 6.1.43, 
HC;{R) is as a k[u]-module isomorphic to a direct sum of two copies of 
k[u], one of which has been shifted to have its generator in degree 1. This 
generator may be chosen to map to v-ldv in HHl{R), and this determines 
it uniquely. The Chern character sends [v] E K 1{R) to this generator of 
HC1{R), and the shifted Chern character Kl{R) -+ HC2j+1{R) may be 
viewed as (up to a non-zero constant) mapping to the class in H~J+~{R) of 

the non-commutative differential form (v- l dv)2j+1. 

Proof. Let G be the infinite cyclic group with generator v. Then G ~ R X 

and kG = R. So to compute the Dennis trace map or the Chern character 
on [v], we only need to look at the assembly map for G. (The map ~ for 
G in Definition 6.2.14 is just the identity map.) In Hochschild homology, 
it sends [v] to the class of the cycle corresponding to v in C1 {G), which is 
just v-1 ®v. When we identify HHl{R) with O!b{R), this element goes to 
v-l ®v. In cyclic homology, it sends [v] to a class in HC1{R) mapping to 
v-ldv in HHl{R), and this class is unique by Exercise 6.1.43 if k is a field 
of characteristic O. 

Now consider the shifted Chern character Kl{R) -+ HC2j+1{R). Since 
HC2j+1{k) = 0, we may view this as mapping into HC2j+1{R, I), where I 
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is the augmentation ideal generated by v-1, and it also maps into the kernel 
of B : HC2i+l(R) -+ HH2i+2(R) since HHn(R) = 0 for n > 1. So the 
shifted Chern character may be viewed as a map Kl(R) -+ H~;+~(R). It 
must be non-zero, since Si takes us back to the (unshifted) Chern character. 
But if k is a field of characteristic 0, H~;+~(R) is one-dimensional (by 
Exercise 6.1.43(5)). So we only need to show that the non-commutative 
differential form (v- l dv)2i+l defines a non-zero class in this group (cf. 
[KaroubiHomCyc, Proposition 2.34]). First let's show that its image (in 
O:b(R)) is in the kernel of d. Since v-lv = 1, 

and thus (since d is a graded derivation) 

Then 

d (v- ldv)3 = d (v- ldv)2 . (v-ldv) + (v- ldv)2 . d (v-ldv) 

= _ (v- ldv)4 , 

and so by induction 

in OR. But in O:b(R), even powers of a form of degree 1 vanish since they 

are graded commutators, and thus (v- ldv)2i+l defines a class in H~J+~(R). 
There are a few ways to show this class is non-zero. One, used in 

[KaroubiHomCyc, Proposition 2.34], is to show that it can map to a non
zero class in the de Rham cohomology of S2i+l. Another is to rewrite 

( -ld )2i+l -ld -ld -ld v v =V V·V v·····v v 

= v-ldv ((v-ldv. V-l) dv)i 

= (-1)iv- ldv (d(v-l)dv)i, 

which corresponds to the class in H~i+l (R) of 

(_1)iv- l ®v ®v- l ®v ® ... ®v- l ®v. 

Tracing the definition of S through the isomorphism of HC. with H;, 
one can check that under Si this goes to a non-zero multiple of the class 
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of V-I ® V, which corresponds to a generator of HC1(R). We adopt still 
another approach used in [LodayCH, Lemma 8.4.8], which is to write down 
a specific class [a] in HC1(R) which maps to a non-zero multiple of the 
class of (v- 1dv)2i+1 for each j. Since HC1(R) is one-dimensional and [a] 
maps to the generator V-I ® V of HCI (R), [a] generates HCI (R) and thus 

(v- I dv)2i+1 generates H~;+~(R) for each j. To write down the class [a], 
recall H C; (R) is the homology of C. (R) [lu]] with respect to the differential 
1®b+u®B. It is actually more convenient to reduce and use the normalized 
Hochschild complex (isomorphic to OR) introduced in Definition 6.1.38 
in place of C.(R)j this doesn't change the result. Then the class [a] is 
represented by the formal power series 

(6.2.17) a = (v-1 ® v) - u(v-1 ® V)®2 + 2u2(v- 1 ® V)®3 

_ 6u3(v- 1 ® v)®4 + .... 

To check that this works, note that 

b(v-l®v® ... ®V-I®V) = (1®v- l ®v®.·.®v-l ®v) 

- (v®1®v- l ®v® ... ®v-l ®v) 

+ ... - (1 ®v®v-l ® ... ®v®v-1). 

Here the terms represented by··· all contain a 1 past the first slot, and so 
represent 0 in the normalized complex. On the other hand, 

so 

B (v- l ® v)®i = (1- t)sN (v-1 ® v)®i 

= j(1- t) (1 ® (v- l ® v)®i -1 ® (v ® v-l)®i) 

=j (1® (v- l ®v)®i -1® (V®V-l)®i) 

+ terms going to 0 in the reduced complex 

= jb (v- l ® v)®i+l , 

and a is a cycle in the reduced mixed complex. The image of [a] in H~;+~(R) 
is evidently 

which differs from (v-1dv)2H I by a factor of j!. This is non-zero since we 
are in characteristic O. 0 
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6.2.18. Corollary. Let k be a commutative ring and let R any com
mutative k-algebra. Then the Dennis trace map vanishes on SKI(R) 
and sends any 9 E RX ~ KI (R) to the "logarithmic derivative" of g, 
g-Idg E HHI(R) ~ n!b(R). 

Now assume k is a field of characteristic 0 and let R be any k-algebra. 
For 9 E GL(n, R), the shifted Chern character KI(R) - HC2i+1(R) sends 
[g] E KI(R) to a non-zero multiple (not depending on 9 or R) of the class 

in H~;+~(R) of the non-commutative differential form Tr ((g-ldg)2i+1). 

Proof. If 9 E GL(n, R), then [g] E KI(R) is the image in KI(Mn(R)) 
of [v] E KI(k[V, v-I]) under the unique k-algebra homomorphism CPg : 
k[v, v-I] _ Mn(R) with v 1-+ g, followed by the Morita isomorphism 

KI (Mn(R)) ~ KI (R) of Exercise 2.1.8. By naturality of the Dennis trace 
map and the Chern character, we therefore have commutative diagrams 

and 

Dennis 1 
'l'g. 

-+ 

Dennis 1 

KI(k[v, V-I]) ~ KI(Mn(R)) 

Chi Chi 
HC1 (k[v, V-I]) ~ HC1(Mn(R)) 

e! 
---+ 
Morita 

e! 
---+ 
Morita 

e! 
-+ 

Tr 
HC1 (R), 

and we can apply Theorem 6.2.16 to the vertical arrows on the left. We 
conclude for instance that the Dennis trace map sends any 9 E R X ~ KI(R) 
to g-Idg E HHI(R) ~ n!b(R). 

The next step is to see that the diagrams 

KI(Mn(R)) 
e! 

KI(R) KI(Mn(R)) 
Q< 

KI(R) ---+ --=--t 
Morita Morita 

Dennis 1 Dennis 1 Chi Chi 
HHI(Mn(R)) 

Q< 

HHI(R) HC1(Mn(R)) ~ HC1(R) --=--t 
Tr Tr 

commute. This will then imply the statement about the shifted Chern char
acter. For this we have to look back at the isomorphisms Tr of Theorems 
6.1.36 and 6.1.37. They have natural inverses defined by the non-unital 
inclusion of R into the upper left-hand corner of Mn(R), whereas the iso-

morphism KI(Mn(R)) ~ KI(R) has an inverse given by 9 1-+ (~ ~). 
While these don't appear to be the same because of the 1 in the lower right, 
the calculation in (6.2.15) again shows that the diagram commutes. 
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To conclude the proof, we have to show that if R is commutative, the 
Dennis trace map vanishes on SK1(R). Note that if 9 E SL(n, R), then 
the corresponding class in HH1(Mn (R)) is the image under <(Jg. of the 
Hochschild class of v-I ® v, in other.words the class of g-1 ® g. So we 
need to show that Tr(g-I ® g) is trivial in HH1(R) ~ n!b(R). This is a 
consequence of the "cofactor expansion" of determinants from elementary 
linear algebra. Let h = g-1 and let h ij be its (i, j)-entry. Since detg = 1, 
hji is (-l)i+j times the determinant of the submatrix of 9 obtained by 
deleting the i-th row and j-th column, which is exactly the coefficient of gij 

when we write det 9 as a polynomial in the matrix entries. Since det 9 = 1, 
differentiating gives 

ij 

=def Tr (h ® g). 0 

Remark. Even when one assumes nothing about k and R, the proofs 
of Theorem 6.2.16 and Corollary 6.2.17 still yield formulas for the Dennis 
trace map and the Chern character on Kl (R)j they are only slightly harder 
to use. Given 9 E GL(n, R), the Dennis trace map applied to [g] yields 
the Hochschild class in HH1(R) of Tr(g-I ® g), and the Chern character 
applied to the same class yields Tr (<{Jg.[aJ) , where <(Jg : k[v, v-1]-+ Mn(R) 
sends v to 9 and [a] E HC1(k[v, V-I]) is given by (6.2.18). 

6.2.19. Examples. (a) If R = k, then HC1(R) vanishes, so the Chern 
character vanishes identically on K 1 (k). Furthermore, H Hn (k) vanishes for 
n > 0, so the Dennis trace map cannot detect any of the higher K -theory of 
k. While these facts may seem unfortunate, they have one advantage, which 
is that for general k-algebras R, the Chern character on K1 (R) ignores the 
image of Kl(k) in KI(R), and thus only detects the "interesting" part of 
Kl (R). Similarly the Dennis trace map on Kn(R), n > 0, ignores the image 
of KI(k) in KI(R). 

(b) If k = Z and R is the ring of integers in a real quadratic number 
field, for example, R = k[~] with e = ~ a square-free positive number 
(¢ 1 mod 4), then as we saw in Example 6.2.1O(b), HH1(R) is a non
trivial finite group. In this case, the Dennis trace map on KI(R) ~ R X 

has a large kernel but is not identically 0. In this case R X is the product 
of {±1} by an infinite cyclic group, by a special case of the Dirichlet Unit 
Theorem (Theorem 2.3.8). For example, if ~ = 2 and we consider the 
fundamental unit u = ~ + 1 (with inverse ~ - 1), then u-1du = (~- 1)~, 
which is an element of order 4 in HH1(R). 

(c) Let k be an algebraically closed field of characteristic 0, C for exam
ple, and let R = k(t), the field of rational functions over R in one variable 
t. As in Example 6.1.7(a), one finds that HHn(R) vanishes for n > 1, and 
since any non-zero element of R can be written uniquely as a product of 
an element of k X and a finite product of (positive or negative) powers of 
polynOlnials of the form t - a, a E k, we see HH1(R) ~ n!b(R) can be 
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identified with a free R-module on one generator dt. By partial fractions, 
any element of HHl(R) is a k-linear combination of terms of the form 
(t - a)mdt, where m E Z. Such a differential can be "integrated" exactly 
when m =f. -1, so HCl(R), which is the cokernel of d: R -4 n~b(R), is the 
free k-vector space on the basis {(t - a)-ldt : a E k}. The Dennis trace 
map Kl(R) ~ RX -4 HHl(R) kills k X and sends (t-a)m to its logarithmic 
derivative m(t - a)-ldt. While this is far from an isomorphism, the map 
Chl : Kl(R) ~ RX -4 HCl(R) has each basis element of HCl(R) in its 
image, and induces an isomorphism from (RX /kX) ®z k onto HCl(R). By 
the remarks in (a), this is the best for which one could possibly hope. 

(d) Let k=Cand 

R = C[xo, Xl, X2, X3l/(X~ + x~ + x~ + x~ - 1), 

the ring of polynomial functions on 8 3 . There is an element of 8Kl (R) 
defined by the element 

in 8£(2, R). Under the obvious inclusion of R into CC(83 ), this element 
maps to a generator of 

so it must have infinite order. An alternative way of checking this is to use 
the Chern character Kl (R) -4 Hge R(R), followed by the obvious map into 
the de Rham cohomology HJe R(83) of 83• Note that it is essential here to 
use HC3 and not just the Dennis trace map into HHl(R), since we know 
from Corollary 6.2.18 that the latter vanishes identically on 8Kl (R). 

To do the calculation, we need to show that 

But 

-ld (XO-iXl 9 g= . 
X2 - ~X3 

which with the complex notation Zo = xo+ixt, Zl = X2+ix3, Zo = XO-iXl, 
Zl = X2 - iX3 becomes simply 
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and 

Tr ( (g-ldg) 3) = 3(wo - WO) /\ Wl /\ Wl 

= 12Imwo /\ ReWl /\ Imwl 

= 12(xodxl - XldxO + X3dx2 - X2 dx3) 

/\ (X2dxO + X3dxl - XOdX2 - Xl dx3) 

/\ (X2dxl - X3dxO - Xldx2 + XO dX3) 

= 12 ((X~X3 + X~X3 + X3X~ + XOXlX2 - XlXOX2 + x~) 
dxo /\ dXl /\ dX2 

+ ( ... ) dxo /\ dXl /\ dX3 + ( ... ) dxo /\ dX2 /\ dX3 

+ ( ... ) dXl /\ dX2 /\ dX3) 

= 12 (X3dxO /\ dXl /\ dX2 - X2dxO /\ dXl /\ dX3 + ... ) . 
This is a multiple of the usual volume form on S3 so its integral is non-zero. 
Thus our element of SKl has infinite order. 

6.2.20. Exercise. Show that Tr : Ko(R) -+ R/[R, R] is injective if k is 
a field of characteristic 0 and R is a finite-dimensional semisimple algebra 
over k. (By Wedderburn theory, R splits as a direct sum of matrix algebras 
over division algebras. You can reduce to the case where all the division 
algebras are fields by going up to a splitting field.) Can you describe the 
kernel of Tr when k is a field of characteristic p? 

6.2.21. Exercise. Show that Tr and Ch are additive on direct products 
of k-algebras. In other words, if R = Rl X R2 as in Exercise 6.1.44, show 
that the trace and Chern character maps for R split up as direct sums of 
the corresponding maps for Rl and R2. 

6.2.22. Exercise. Show how to define a relative Chern character 
K.(R, J) -+ HC;(R, 1), where relative cyclic homology is defined in Re
mark 6.1.17. 

6.2.23. Exercise. Let k be a field of characteristic 0 and let R = 
k[u, u-l , v, v-l]. Compute HH.(R) and show that it vanishes past de
gree 2. (R is the group ring of a free abelian group on two generators u 
and v, so you can use Exercise 6.1.45.) Show that the Steinberg symbol 
{u, v} E K 2(R) has infinite order by showing that it maps under the Den
nis trace map to a non-zero element of H H2 (R), which is a vector space 
over k and thus a torsion-free abelian group. 

In this problem you need to trace through Definition 6.2.14. In this 
regard, note first that the Hurewicz map is just the corestriction map 
K 2(R) = H2(E(R), Z) -+ H2(GL(R), Z). 
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6.2.24. Exercise. Let k be a field and let R be a k-algebra. Show how 
to define a Chern character K-l(R) -+ HC=l(R) ~ HPodd(R), using 
the result of Exercise 6.1.49. Can you find an example where this Chern 
character is non-zero? (Recall Ko(R) EB K-l(R) is a direct summand in 
Ko(R[u, u-1 J), and note (as a consequence of the result of Exercise 6.1.49) 
that HPeven(R[u, u-1J) ~ HPeven(R) EB HPodd(R). You just need to show 
the pieces match up under the Chern character for Ko(R[u, u-1J).) 

One can similarly define a Chern character K_n(R) -+ HC=n(R) ~ 
HP_n(R) for all n ~ 1. Note that it is essential here to use HC- or HP, 
since HC vanishes in negative degrees. 

6.2.25. Exercise. Use Theorem 5.3.32 and Remark 5.3.33, which identify 
Kn(R) with equivalence classes of virtual fiat R-bundles over sn, to give 
another, perhaps more concrete, approach to the Chern character. (If X 
is a homology n-sphere, a fiat R-bundle over X corresponds to a map 
X -+ BGL(R). The "fundamental class" of X then maps to a class in 
Hn(GL(R), Z), which we can map to HC;;(R) by the assembly map.) 

3. Some applications 
Our aim in this last section is to give a few examples that show how the 
Chern character can be used to study problems in K-theory. We have 
deliberately chosen fairly simple examples to illustrate some of the possible 
ideas, and the interested reader is invited to look for more complicated and 
more interesting examples either in the current mathematical literature (in 
which cyclic homology and the Chern character are "hot" subjects) and on 
his or her own. 

Non-vanishing of Class Groups and Whitehead Groups. Since 
some of the oldest applications of algebraic K-theory come from the study 
of class groups of number fields or of finiteness obstructions and Whitehead 
torsion in topology, it seems natural to look for applications of cyclic ho
mology to these classical areas. Unfortunately, first tries don't seem very 
promising, since in many cases of interest (such as Examples 6.2.1O(b) and 
6.2.19(b)), the Dennis trace map and Chern character turn out to be trivial 
or almost trivial. For example, if we take k = Z and R to be the ring of 
integers in a number field (a finite extension of IQ), then R is a Dedekind do
main and a finitely generated free k-module. So HCo(R) ~ H Ho(R) ~ R 
is torsion-free and Tr : Ko(R) -+ R cannot detect any of Ko(R), which is 
a torsion group. In fact, Example 6.2.10(b) shows that for many quadratic 
fields, HCC; (R) is also torsion-free and thus even the more sophisticated 
Chern character Ch: Ko(R) -+ HCC;(R) cannot detect any of Ko(R). 

The following idea for getting around these difficulties was suggested by 
Karoubi [KaroubiNumThy], and involves K-theory with finite coefficients 
as introduced in Theorem 5.3.7. However, as we noted there, the definition 
of K-theory with finite coefficients in [Browder) is not the correct one in 
low degrees for general rings R. Since we will need a group Kl(R; Zln) 
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fitting into an exact sequence 

(6.3.1) 

a more suitable definition in general is to take 

where M~ is the 2-dimensional Moore space with fundamental group Zin. 
(For example, M? ~ JP'2(R).) However, since this definition is a bit hard 
to deal with and our purpose here is just to work out a few examples 
in which R is a Dedekind domain, we will use a somewhat ad hoc sub
stitute with an easier definition, without proving that it coincides with 
K 1(Rj Zln)/imSK1(R). 

6.3.2. Definition. Let R be a Dedekind domain with field of fractions P, 
and let n > 1 be a positive integer. Define a group U(Rj Zln) as follows: 

U(Rj Zln) = {a E px I 
there is a fractional ideal I of R with In = (an I (FXf . 

This is a group under multiplication since if In = (a) and In = (b), then 
(I-l)n = (a-I) and (IJ)n = (ab). Note there is a natural surjective 
homomorphism of U(Rj Zln) onto the set of n-torsion elements of C(R), 
since any n-torsion element of C(R) is represented by a fractional ideal I 
with In a principal fractional ideal. In the other direction, if a E px and I 
is a fractional ideal with In = (a), then [I] is an n-torsion element in C(R), 
while, in addition, a modulo (Fx)n determines I up to principal fractional 
ideals since if In = (a) and In = (abn), then (JI-l)n = (bn) = (b)n, hence 
JI-l = (b) by unique factorization ofideals (Theorem 1.4.7). Furthermore, 
the kernel of the map U(Rj Zln) --t C(R) is 

{a E px I 
there is a principal fractional ideal I of R with r = (an I (pXf 

= {a E px 13b E Px, (bt = (an I (pXf 
=RX/(Rxf· 

So we have a natural exact sequence 

R X ~ R X _ U(Rj Zln) _ C(R) ~ C(R), 

reminiscent of (6.3.1). The map U(Rj Zln) - C(R), though sometimes 
a split surjection, cannot have a natural splitting since there is no natural 
way to choose generators for principal ideals. 

For future use, note that we may give an alternative description of 
U(Rj Zln) using only R and not P as 

U(Rj Zln) = {a E R" {O} : 31 ~ R, In = (an I (R" {O} t . 
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Here R, {O} is only a monoid (under multiplication) and not a group:but 
the "quotient" makes sense as a group anyway, since for a E R, {O}, an - 1 

is a multiplicative inverse for a modulo n-th powers. 
Similarly, we define 

U (R' ZI ) _ {a E R, {O} : a invertible mod n, 31 ~ R, In = (a)} 
1 , n - {a E R, {O}: a invertible mod n}n , 

and this is also a group under multiplication with an obvious (injective) 
map to U(Rj Zln). The image is the inverse image in U(Rj Zln) of the 
n-torsion classes in C(R) represented by [1] with I ~ R, 1+ (n) = R. 

Now we want to introduce Hochschild homology and cyclic homology 
with finite coefficients. 

6.3.3. Definition. Let k = Z and let R be a k-algebra. The Hochschild 
complex of R with coefficients mod n is defined to be 

C.(Rj Zln) =def C.(R) ®z Z/(n), 

with boundary map induced by the Hochschild boundary b. The cyclic 
double complex of R with coefficients mod n is defined similarly to be 

CC •• (Rj Zln) =def CC •• (R) ®z Z/(n). 

It is clear that one has a short exact sequence of chain complexes 

0--+ C.(R) ~ C.(R) -t C.(Rj Zln) --+ 0, 

and similarly a short exact sequence of cyclic double complexes 

0--+ CC •• (R) ~ CC •• (R) -t CC •• (Rj Zln) --+ 0, 

so that taking homology in the usual way, we obtain Z/(n)-modules 

HH.(Rj Zln), HC.(Rj Zln), and so on, 

as well as natural exact sequences (coming from Theorem 1.7.6) 

... ~ HHj(R) ~ HHj(R) -t HHj(Rj Zln) 

~ HHj_1(R) ~ HHj(R) -t ••• , 

and similarly for cyclic homology. 

6.3.4. Proposition. Let R be a Dedekind domain, and suppose n > 1 
is invertible in the field of fractions F of R (i.e., n is not divisible by the 
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characteristic of F). We view R as a k-algebra with k =::l. Let Ul (Rj ::lIn) 
be the subgroup of U(Rj ::lIn) defined in Definition 6.3.2. Then there is a 
natural homomorphism, which we can think of as the "mod-n trace map," 
<p: Ul(Rj ::lIn) --t HHl(Rj ::lIn) making the diagram 

Xl--tXft 
--+ RX 

commute. 

Proof. Since multiplication by n is injective on R, the boundary map 

HHl(Rj ::lIn) !!... HHo(R) = R is trivial and thus 

From our description of HHl(R) as O!b(R), HHl(Rj ::lIn) is therefore the 
universal RI(n)-module on generators da, a E R, for which a I--T da is a 
linear derivation. Let a E R ....... {O} with (a) = In and a invertible mod n be 
as in the definition of Ul (Rj ::lIn). By assumption there is an a' E R ....... {O} 
with aa' - 1 E (n). Define <p to be the "logarithmic derivative mod n," in 
other words, <p(a) = a'da in HHl(Rj ::lIn). We have to see that this is well 
defined and multiplicative. First of all, a' is determined up to an element 
of (n) so a'da in HHl(Rj ::lIn) only depends on a. Secondly, if we change 
a to aen with e E Rand e invertible mod n, say ce' -1 E (n), then a'c'n is 
an inverse for aen mod n and 

in HHl(Rj ::lIn), so that the "logarithmic derivative mod n" for aen is 
the same as for a. Thus <p is well defined. It is multiplicative since if 
aa' -1 E (n) and bb' -1 E (n), then a'b' is an inverse for ab mod nand 

a'b'd(ab) = a'b' (adb + bda) = (aa')b'db + (bb')a'da = b'db + a'da 

in HHl(Rj ::lIn). Thus we have a well-defined homomorphism. 
The commutativity of the diagram is obvious, since if a is actually in

vertible and not just invertible mod n, then we can take <p(a) = a-lda. 0 

6.3.5. Corollary. Let R be the ring of algebraic integers in some number 
field F. Then <p as defined in Proposition 6.3.4 gives a homomorphism from 
a subgroup of the n-torsion subgroup of C(R) to 

Proof. First of all, R is of characteristic 0 so we have no trouble on this 
account. By Proposition 6.3.4, <p gives a homomorphism Ul(Rj ::lIn) --t 
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H Hl (Rj Z/n) extending the logarithmic derivative map Tr : R X / (RX)n -+ 

HHl(Rj Z/n), while we observed before that Ul(Rj Z/n)/ imRx is just 
the group of n-torsion classes [I] in C(R) represented by ideals I :::! R with 
1+ (n) = R. 0 

While what we have done is quite elementary, it may perhaps be sur
prising that it sometimes yields some non-trivial information about class 
groups of number fields. 

6.3.6. Example. As in Example 6.2.1O(b), let ~ be a square-free integer 
with ~ ¢. 1 mod 4, and let R = Z[~l/(e - ~), which is the ring of integers 
in F = Q(v'K). We computed in Example 6.2.1O(b) that HHl(R) is the 
R-module generated by df, subject to the relation 2, df, = 0, which as 
an abelian group is (Z/2), df, EB (Z/2~)df,. Thus HHl(Rj Z/n) vanishes 
identically if n is relatively prime to 2~, and Corollary 6.3.5 is useless for 
studying torsion in C(R) of order prime to 2~. However, we can sometimes 
detect torsion of order dividing 2~. 

For simplicity assume further that we are in the imaginary quadratic 
case, i.e., ~ = -D < O. Then by the Dirichlet Unit Theorem (Theorem 
2.3.8), R X is just the group of roots of unity in R, which (excluding the 
case of the Gaussian integers) is just {±1}. Since d(-I) = 0, {a-lda I 
a E RX} vanishes and we get a map from a certain subgroup of C(R) into 
HHl(Rj Z/n). For example, let D = 129 == 1 mod 4, so ~ = -D == 3 
mod 4, and let n = 6. Modulo 5, e + 129 becomes e -1 = (' - 1)(, + 1), 
so (5) splits in R into a product of two prime ideals each of norm 5, p± = 
(5, 1±,) = (5, 11±,). By trial and error, we can find that x2+129y2 = 56 
has the solution x = 4, y = 11, so that 4 ± 11, has norm 56 and p± are the 
only possible prime divisors of (4+11,). Thus (4+11,) = P':pt-a for some 
a. Since p_p+ = (5) and 5 does not divide 4 + 11', either a = 0 or a = 6. 
Since (11 - ,)2 = -129 + 121 - 22, = -2(4 + 11'), it follows that in fact 
p~ = (4+ 11,). Since NF / Q (4+ 11,) = 56 == 1 mod 6, 4+ 11, is invertible 
mod 6 (with inverse -2 + ') and defines an element of Ul(Rj Z/6) which 
under cp maps to (-2 + ')d( -2 - ') = (2 - ')df" which is an element of 
order 6. Thus C(R) contains an element of order a multiple of 6. 

6.3.7. Example. Here is an example with a cubic field. Suppose D > 1 
is a positive square-free integer, and F = Q( W). Then it is not too hard 
to show that if D ¢. ±1 mod 9, then the ring of algebraic integers in F is 
exactly R = Z[,], where e = D. Also, direct calculation shows that 

NF/Q(a + b, + ~2) = a3 + Db3 + D 2c3 - 3Dabc. 

Suppose for instance that D = 182 = 2 . 7 . 13. A little trial and error with 
the norm formula shows that NF / Q (17 -3,) = -1 and that NF / Q (5-2,) = 
-113 . The first of these formulas shows that 17 - 3, E RX. By the Dirichlet 
Unit Theorem (Theorem 2.3.8), R X is the product of a free abelian group 
by the roots of unity in R, and the latter just consist of ±l. If we take 
n = 3, then 17 - 3, maps to 1 in R/(3), but 17 - 3, cannot be the cube of 
another unit (since expanding out (a + b, + ~2)3 gives a constant term of 
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a3 + b3 D + C3 D2 + 6abcD, which is congruent to a3 mod D and thus mod 7, 
but 17 is not congruent to a cube mod 7). Thus 17 - 3~ generates the free 
abelian part of R X modulo cubes, and the image of RX in (R/(3)) x is just 
±l. The polynomial x 3 -182 factors over IFll as (x + 3)(x2 - 3x + 9), and 
the discriminant of the quadratic factor is not a quadratic residue mod 11, 
so (11) splits in R as PiP2, where Pi = (11, ~ + 3) has norm 11 and where 
P2 = (11, e - 3~ + 9) has norm 112. Since 11 and 112 are not cubic residues 
mod 7, they cannot be norms of elements of R, and so Pi and P2 cannot 
be principal ideals. The fact that NF / Q (5 - 2~) = -113 , together with the 
fact that 5 - 2~ is not divisible by 11, then implies that (5 - 2~) = p~, and 
thus Pi gives an element of C(R) of order 3, for which P2 gives the inverse 
(since their product is a principal ideal). 

We find that H Hi (R) is the R-module on a generator df, satisfying 
3edf, = 0, so H Hi (Rj Z/3) is elementary abelian of rank 3. (Its generators 
as an abelian group are df" ~ df" and edf,.) From what we said earlier, the 
image of R X in HHi(Rj Z/3) is trivial. Under the map of Corollary 6.3.5, 
[Pi] maps to the logarithmic derivative of 5-2~, which mod 3 is -1+~ and 
has inverse 1+~ +e. So [Pi] 1-+ (1+~ +e)df" an element of HHi(Rj Z/3) 
of order 3. In fact it is known that C(R) is an elementary abelian group 
of order 27 in this case, but it seems impossible to detect the whole group 
with such a simple-minded technique. 

Idempotents in C*-Algebras. A very pretty application of the Chern 
character to the problem of studying idempotents in C*-algebras was given 
in [Connes1], and this has sparked a whole Hurry of activity in using the 
Chern character in problems of functional analysis. In this subsection we 
will present some necessary background material and then Connes' argu
ment. 

6.3.8. Definition. A (concrete) C*-algebra is an algebra A of boun
ded operators on a (complex) Hilbert space 'H., such that A is closed in 
the operator norm (for the action of operators on 'H.), and such that A 
contains the Hilbert space adjoint operator a* for each of its elements a. 
Note that a 1-+ a* is a conjugate-linear anti-automorphism of A, and that 
A is a Banach algebra under the operator norm. An element a of A is 
called self-adjoint if a = a* and is called positive if it is of the form b* b 
for some other operator b. (If such an operator b exists at all on 'H., one 
can choose one lying in A, as a consequence of the Spectral Theorem to 
be mentioned below.) There is a partial order defined on the self-adjoint 
elements of A by saying that a ~ b if and only if a - b is a positive element. 

For simplicity we shall suppose A contains the identity operator 1 on 
'H., which is then a unit element for A. By the Spectral Theorem for 
self-adjoint operators on a Hilbert space, if a E A is self-adjoint, then its 
spectrum (the set of complex numbers>' for which a - >'1 is not invertible) 
is a compact subset X of JR, contained in [0, 00) if a is positive, and if f is 
a continuous function on X, f (a) makes sense as an operator and also lies 
in A (in fact in the C*-subalgebra generated by a and 1). Also, the element 
f(a) will be self-adjoint if f is real-valued, positive if f ~ 0. In this way 
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one gets an isomorphism f I-t f(a) from the algebra C(X) of continuous 
complex-valued functions on X to the C*-subalgebra of A generated by a 
and 1. It also follows that every self-adjoint element of a C* -algebra is a 
difference of two positive elements. (Write a = f(a) - [f(a) - aj, where 
f(x) = max(x, 0).) An idempotent e E A is called a projection if it is 
also self-adjoint; this means exactly that e is the orthogonal projection onto 
some subspace of 1i. 

6.3.9. Example. The simplest examples of (non-commutative) C*-alge
bras are the matrix algebras Mn (C) , which may be identified with the 
algebras of all linear operators on a finite-dimensional Hilbert space. In 
Mn(C), the self-adjoint elements are the hermitian matrices, and the posi
tive elements are the positive semidefinite matrices. 

Similarly, if A is a C*-algebra on a Hilbert space 1i, then Mn(A) is a C*
algebra acting on the direct sum Hilbert space 1i E9 ... E91i (n summands). 

The example of immediate interest to us comes from the case where G is 
a group (usually countable) and 1i = £2(G), the Hilbert space completion 
of the group ring CG, with respect to the inner product making G into an 
orthonormal basis. Elements of G act on 1i = £2 (G) by left multiplication, 
so we can identify them with operators on 1i satisfying g* = g-1. Thus 
the closed linear span of the elements of G is a C*-algebra on 1i, called the 
reduced (or regular) C*-algebra of the group, denoted C;(G). The 
action of the complex group ring CG on 1i is clearly faithful (since we can 
recover a group ring element from its action on la, the identity element of 
G viewed as a basis vector of 1i), and thus C; (G) contains a natural copy 
ofCG. 

6.3.10. Definition. Recall from Definition 6.1.33 that a trace on an 
algebra A (over C, say) is a linear map r.p : A --+ C such that r.p(aOa1) = 
r.p(a1ao) for all ao, a1 E A. If A is a C*-algebra, we call the trace self
adjoint if it maps self-adjoint elements into JR., positive if it is self-adjoint, 
and also maps positive elements into [0, 00), normalized if r.p(1) = 1. Note 
for example that the usual trace Tr on Mn(C) is positive, since Tra is the 
sum of the eigenvalues of a, and if a is positive semidefinite, its eigenvalues 
are all non-negative. But Tr is not normalized unless n = 1; it sends 1 to 
n. 

A positive trace on a C* -algebra A is called faithful if, whenever a E A 
satisfies a 2: 0 but a -=I 0, then r.p( a) > O. For example, the usual trace 
on Mn(C) is faithful since a matrix which is positive semidefinite and not 
identically zero must have at least one positive eigenvalue. 

6.3.11. Example. Let 1i = £2(G), C;(G) be as in Example 6.3.9, and 
define a map r.p : C;(G) --+ C by r.p(a) = (a· la, 1a), where ( , ) denotes 
the inner product on 1i. If a = b*b, then 

r.p(a) = (b*b. la, 1a) = (b. la, b· 1a) 2: 0, 

so r.p is positive. Also, for any group elements g, hE G, 

{ 
1 if gh = la, 

r.p(gh) = (gh· la, 1a) = (gh, 1a) = 0 otherwise. 
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Since gh = IG if and only if 9 and h are inverses, in which case also hg = IG, 
we see that cp(gh) = cp(hg). Since elements of G generate C;(G) as a C*
algebra, it follows that cp is a positive trace. We claim it is also faithful. If 
a E A, then a· IG E 1£, and is thus an £2 formal linear combination Eg cgg 
of elements of G, and we may identify a with this element of £2(G) since 
the action of a on any other element h of G is given by 

a· h = Lcg(gh). 
9 

In this way we naturally identify C; (G) with a linear subspace of 1£. (Cau
tion: this subspace is usually not closed in the topology of 1£.) Then we 
see that if a :/: 0, 

cp(a*a) = (a*a· IG, IG) = (a· IG, a· IG) = Ila· IGI12 > 0, 

and thus cp is faithful. 

The notion of positivity, together with the pairing between HCo and Ko, 
can be used to get a little more information about Ko of many C*-algebras. 

6.3.12. Proposition (Kaplansky). Let A be a C*-algebra, and let e E A 
be an idempotent. Then there is a projection pEA such that Ae and Ap 
are isomorphic projective modules over A. In particular, e and p represent 
the same class in Ko(A). 

Proof. One can do the proof completely algebraically, but to get a better 
impression of what is going on, suppose A is acting on a Hilbert space 1t. 
Then the image of e must be a closed subspace V of 1£, and with respect 

to the decomposition 1£ = V $ V.l. of 1£, e must have the matrix (~ ~) , 
where a: V.l. - V is a bounded operator. Then 

* (1 0) e = a* 0 ' 
* _ (1 + aa* 0) 

ee- 0 0' 

and in particular, the spectrum of ee* is contained in {O} U [1, 00). Thus 
if f(O) = 0 and f(t) = 1 for t ~ 1, f is continuous on the spectrum of ee* 
and thus p = f(ee*) lies in A and is a self-adjoint projection with the same 
range as e. Now ep = p and pe = e, so right multiplication by p gives an 
isomorphism Ae - Ap, with inverse given by right multiplication bye. 0 

6.3.13. Corollary. Let A be a C*-algebra with a unit 1, and let cp be 
a positive trace on A. Then the map it induces Ko(A) - C has image 
contained in R. Furthermore, the image under cp of the classes of idempo
tents in A is contained in [0, cp(I)]. Thus, if in addition cp is normalized 
and faithful, and if cp takes integer values on self-adjoint projections, then 
A contains no idempotents other than 0 and 1. 

Proof. By Proposition 6.2.5, any trace cp on A (positive or not) induces 
a homomorphism Ko(A) - C. Now Ko(A) is generated by classes of 
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idempotents in matrix algebras Mn(A) over A, and each Mn(A) is itself a 
C*-algebra to which we can apply Proposition 6.3.12. So each idempotent 
is equivalent to a self-adjoint projection on which cp by assumption takes 
a non-negative value. Furthermore, if e is an idempotent in A equivalent 
to the self-adjoint projection p in A, then 1 - p ;::: 0, so cp(1) - cp(p) ;::: O. 
Thus if cp is positive and normalized, 0 ~ cp(p) = cp( e) ~ 1. Finally, if cp is 
faithful and e :/:- 0, 1, then p :/:- 0, 1- p:/:- 0, and so cp(p) :/:- 0, 1. Hence if 
cp(p) is an integer, we have a contradiction. 0 

6.3.14. Lemma. Let 1£ be a separable infinite-dimensional Hilbert space, 
and let :F(1£) C £1 (1£) C 1C(1£) be the algebras of finite-rank, trace-class, 
and compact operators on 1£, respectively. (These are all ideals in the 
algebra 8(1£) of bounded operators on 1£; the definitions of £1 and of 1C 
may be found in Exercise 2.2.10.) Then the inclusion maps 

induce isomorphisms on Ko for rings without unit, and the operator trace 
Tr : £1(1£) ~ e induces an isomorphism KO(£I(1£» ~ Z. 

Proof. Since Mn(1C(1£» ~ 1C(1£ ® en) ~ 1C(1£) (recall 1£ is infinite
dimensional, so 1£ ® en ~ 1£), and similarly with the others, it is not 
necessary to pass to matrices in the definition of Ko. Let f: C b c R:, 
be the algebras with unit adjoined (in other words, obtained by adding on 
multiples of the identity operator on 1£). Then each idempotent in any of 
these algebras f:, b, R:, is either of finite rank or of finite corank, and any 
two idempotents of the same finite rank or corank are conjugate (by an 
invertible operator in f:). Furthermore, if two idempotents are conjugate 
by an invertible operator in f:, they must have the same rank and corank. 
So the result follows when we compute from the split exact sequences 

1 - - -o ~ :F, £ , 1C ~ :F, £1, 1C t:+ e ~ 0 

using excision. 0 

Now we are ready for the argument of Connes, which shows that the 
hypotheses of Corollary 6.3.13 are satisfied for certain group C*-algebras 
of interest. We shall only give the argument for free groups, but similar 
arguments can be given for many other infinite torsion-free groups. 

6.3.15. Theorem [Connes1, I, §1, Lemma 6 and Corollary 7]. Let G be 
a free group on n generators gb ... , gn, where n;::: 1. (We allow n = oo.) 
Then A = C;(G) contains no idempotents other than 0 and 1. 

Proof Let E be the set of two-element subsets {g, ggj} of G, where the 
two elements differ by multiplication on the right by one of the generators 
gj. When we write the two elements of G in such a subset as reduced words 
in the generators and their inverses, then one will have length one less than 
the other. Note that we may identify G with the vertices of a "tree" 
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(a connected and simply connected one-dimensional simplicial complex), 
the so-called "Cayley graph," for which E is the set of edges, and that 
G acts on E by left translation. Define a map 1jJ : G " {la} - E by 
1jJ(ggt) = {g, ggt}, where 9 is obtained from the given reduced word 
w = ggt by deleting the last letter gt, whatever it happens to be. By what 
we said above, 1jJ is a bijection. Note that if g, hE G, then 1jJ(gh) = g1jJ(h) 
except when cert~n cancellation occurs, and in particular, for fixed g, this 
holds for all but finitely many h E G. 

Let 'Ho = 12(G) and let 'HI = 12(E) EB C. We let G act on 'Ho and 
on £2(E) by left translation. Since E is in natural bijection with G x 
{gl, ... , gn}, 12(E) is as a representation space for G just a multiple of 
12 (G), and the action of G extends to an action of the C* -algebra com
pletion A. We also let A act on the C summand in 'HI by the degenerate 
representation A - 0 (not by the trivial representation G - 1, which 
does not extend continuously to an action of A if n > 1). We will use 
these actions to show that the normalized trace cp on A of Example 6.3.11 
(which we already know is positive and faithful) takes only integer values 
on Ko(A). 

Let u : 'Ho - 'HI = 12 (E) EB C be the unitary operator defined by 

g~ { 
(0, 1), 

(1jJ(g),O), 

g= la, 

g:F 1a· 

(Since this is a bijection of orthonormal bases, it extends uniquely to an 
isometry of'Ho onto 'HI') Let Tr be the usual trace for trace-class operators 
on 'Ho. We claim that for a E CG c A, a - u-1au is a finite-rank operator 
acting on 'Ho, and 

(6.3.16) Tr(a - u-1au) = cp(a). 

But if 9 E G, 9 - u-1gu has finite rank since 1jJ(gh) = g1jJ(h) for all but 
finitely many h E G. If 9 = la, then since 1a acts as the identity on 
12(E) but as 0 on C, 1a - u-11au is a rank-one projection, and (6.3.16) 
holds. If 9 :F la, then (u-1gu)la = u-1g(0, 1) = 0, while if h :F 1a has 
the reduced word expression h = hogt, then 1jJ(h) = eh = {ho, hogt} E E 
and (u-1gu)h = u-lgeh coincides with h if 1jJ(gh) = g1jJ(h) and otherwise 
is a different element of G. Thus (g - u-1gu)h is in any event either 0 or 
else an element of G other than h, and Tr(g - u-lgu) = 0 = cp(g) so again 
(6.3.16) holds. 

Since a ~ a-u-1au takes finite-rank values on CG c A and is continu
ous in the operator norm, it maps A into the compact operators lC = lC('Ho) 
on 'Ho. It also preserves self-adjointness. If B denotes the C*-algebra on 
'Ho generated by A and by lC, then B contains lC as a closed 2-sided ideal, 
and the quotient B / lC is isometric to A. (To prove this, one needs to know 
that An lC = O. This can be proved easily by contradiction: each operator 
in A commutes with right translations by elements of G, but since each 
compact self-adjoint operator is diagonalizable, if A n lC were non-zero, 
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then it would contain a self-adjoint operator with a non-zero eigenfunction 
~, which would then have to generate a one-dimensional representation of 
G under right translation. Thus ~ would have to transform on the right 
according to a character of G, so 1~(g)1 would be constant, which is im
possible since G is infinite and we need have to have ~ E £2(G).) Now let 
D = D(B, K), the double of B along K as defined in Definition 1.5.1. We 
see that 

a 1-+ (a, u-1au) 

is a splitting of the exact sequence 

O-K-D-B/K~A-O 

different from the standard splitting given by the diagonal map. Because 
of Lemma 6.3.14, it thus induces a map 

Ko(A) - Ko(D) ~ Ko(A) EB Ko(K) ~ Ko(A) EB Z 

whose first component is the identity and whose second component is a 
map Ko(A) - Z. IT we can show that this map coincides with the map 
induced by <p, then we'll be done by Corollary 6.3.13. 

Let 
A = {a E A: a - u-1au is of trace class on 1£0}, 

equipped with the norm 

(See Exercise 2.2.10 for the definition of the Schatten I-norm II lit on the 
trace-class operators £1(1£0).) Then CG ~ A and A is clearly a vector 
space closed under the *-operation. But in fact A is an algebra since if 
a, bEA, 

and £1(1£0) is a two-sided ideal. In fact the same calculation shows 

so adding the inequality 
lIabll ~ Ilalillbll, 

we see 

and A is a normed algebra. It is complete since the trace-class operators 
are complete in the Schatten I-norm. A simple estimate shows that the 
equality (6.3.16) holds not only on CG but on A. 

Next we show that the inclusion A'-+ A satisfies the hypotheses of the 
Karoubi Density Theorem (Exercise 1.6.16). Since C ~ A, A is certainly 
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a dense subalgebra of A. We need to show that if a E Mn(A) and a is 
invertible in Mn(A), then it is invertible in Mn(A). With slight abuse of 
notation (u should really be replaced by u ® 1, where 1 E Mn(C)), this 
amounts to showing that a-I - u-Ia-Iu is of trace class if a - u-Iau is 
of trace class. But since the trace-class operators are an ideal, the latter 
implies 1 - a-Iu-Iau = a-I(a - u-Iau) is of trace class, and then 

a-I _ u-Ia-Iu = -(1 - a-Iu-Iau)(u-Ia-Iu) 

is also of trace class. Thus the hypotheses of Exercise 1.6.16 are satisfied, 
and the inclusion A <-+ A induces an isomorphism on Ko. 

Let V be the double of A + C,1(1iO) along the ideal C,1(1iO), so that we 
have the commutative diagram 

0 ----+ C,1(1iO) ----+ V ~ A----+ 0 

II nl nl nl II 
0 ----+ /C ----+ D ~A ----+ 0, 

with the arrows to the left given by a 1---+ (a, u-Iau). Now just as before, 
because of Lemma 6.3.14, we have a map 

Ko(A) -+ Ko(V) ~ Ko(A) EB KO(c,I) ~ Ko(A) EB Z, 

whose second component is a map Ko(A) -+ Z. However, the map 

Ko(V) -+ Z 

is induced by (a, a') 1---+ Tr(a-a'). (Recall that the map must vanish on the 
diagonal, and it is correct on elements of the form (0, e) since by Lemma 
6.3.14, the usual operator trace induces the isomorphism KO(C,I) -+ Z.) 
Thus the map Ko(A) -+ Z is induced by a 1---+ Tr(a - u-Iau), which we 
have seen coincides with cpo Since, by Exercise 1.6.16, the inclusion A <-+ A 
induces an isomorphism on Ko, cp can only take integral values on Ko(A), 
and the conclusion of the Theorem follows from Corollary 6.3.13. 0 

6.3.17. Remark. If n = 1 in Theorem 6.3.15, then G = Z and £2(G) can 
by Fourier analysis be identified with L2(T), where T is the unit circle in 
the complex plane. Under this identification (given by the Fourier trans
form), C;(G) goes over the algebra C(T) of continuous functions on the 
circle, acting on L2 by multiplication. So the fact that C; (G) contains no 
idempotents other than 0 and 1 is due merely to the fact that the circle is 
connected. However, if n 2: 2, it is known that C;(G) is simple [Powers] 
(and of course highly non-commutative). For a while it was an open prob
lem as to whether any simple unital C*-algebra must contain a projection 
other than 0 and 1, and Theorem 6.3.15, first proved by Mihai Pimsner and 
Dan Voiculescu by a different method, provided one of the first examples 
where the answer is "no." That this would be such an example was first 
conjectured by Richard Kadison. The proof of Connes is based on earlier 
ideas of Joachim Cuntz. 
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Group Rings and Assembly Maps. The last application of cyclic 
homology which we will discuss concerns the (higher) K-theory of group 
rings. We will see that an analogue of the construction in Definition 6.2.11 
gives an "assembly map" into the K-theory of a group ring, and that in 
some cases the injectivity of this map may be deduced from comparing it 
with the corresponding assembly map in cyclic homology, using the Chern 
character. The assembly map tends to give many interesting classes in the 
K -theory of group rings, and under optimal circumstances it actually gives 
a complete calculation of the K-theory. 

Unfortunately, the assembly map for K-theory is not as easy to define 
as the one for cyclic homology, in part because the definition of the higher 
K-groups is already rather intangible, and depends on homotopy theory. 
Thus a homotopy definition for the assembly map in higher K-theory is 
more or less inevitable. 

The assembly map for Ko and Kl is more concrete but less interesting, 
so we begin with these cases first. If R is a ring (at the moment not 
required to be commutative) and G is a group, and if RG denotes the group 
ring of Gover R (this is just R ®z ZG, with the obvious tensor product 
multiplication), then the assembly map for RG will roughly speaking be 
a map from the homology of G with coefficients in the K-theory of R 
into the K-theory of RG. In lowest degrees it is clear how to proceed: 
Ho(G, Kn(R)) ~ Kn(R) maps into Kn(RG) via the map of K-groups 
induced by the inclusion L: R ~ RG. Similarly, H1(G, Kn(R)) ~ Gab ®Z 
Kn(R) maps to K n+1 (RG) by sending the class of g ® x, where g E G and 
x E Kn(RG), to the Loday product (see Theorem 5.3.1) [g] . x, where [g] 
is the class of g viewed as an element of (RG) x ~ GL(I, RG) in K1(RG). 
Putting the two of these together, we have a map 

(6.3.18) 

While one might be inclined to dismiss this as a little formal nonsense, a 
few special cases make it clear that this is an interesting map: 

(a) If G = Z, then RG = R[t, r 1], where t is a generator of t. 
The assembly map then becomes a map Kn(R) EB Kn-1(R) -+ 

Kn(R[t, r 1]), which one recognizes as the map of the Bass-Heller
Swan Theorem (Theorems 3.2.22 and 3.3.3) and of its general
ization to higher K-theory by Quillen (Theorem 5.3.30). These 
theorems, among the most important in K-theory, assert that the 
assembly map in this case is always split injective, and that it is 
an isomorphism if R is left regular. 

(b) If R = Z and G is arbitrary, then Ko(Z) = Z and Kl(Z) = {±1}. 
The assembly map 

is just the obvious map of Gab X {±1} into Kl (ZG), and the co
kernel of this map is Wh(G), which measures the failure of the 
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assembly map to be surjective. The assembly map into K1(ZG) is 
always injective, however. To see this, note that the assembly map 
is functorial in the group G, so that the map G - Gab induces a 
commutative diagram 

Gab X {±1} 

II 
Gab X {±1} 

assembly for G 
) 

assembly for Gab 
----=----+1 Kl (ZGab). 

But ZGab is a commutative ring and thus 

so the assembly map is an injection for Gab and thus for G. 
(c) If R = lFp and G = Zip is cyclic of order p (this case is in some 

sense the opposite extreme of the "characteristic 0" situation), then 
RG = lFp[t]/W - 1) = lFp[t]/(t - 1)P is a local ring so K1(RG) ~ 
(RG)X ~ IF; X (1 + I), where I is the radical, the ideal generated 
by t - 1. As an abelian group this is isomorphic to IF; X lF~-l. The 
assembly map is split injective with the cokernel a vector space 
over IF p of dimension p - 2. 

When G is a free group, then there is a model for BG which is a 
one-dimensional CW-complex, and all higher homology of G vanishes, so 
(6.3.18) gives a perfectly reasonable notion of an assembly map in K-theory 
for RG. Reasoning by analogy from the case G = Z suggests that this as
sembly map should always be split injective, and should be an isomorphism 
for nice enough R. This is in fact the case [Wald]. However, for general 
groups G, it should be necessary to take the higher homology of G into 
account in the assembly map. Now we run into a problem, since higher 
K-theory is defined in terms of homotopy groups rather than homology 
groups, and thus there is no way to map homology of G directly to K
theory of RG. 

A full explanation of the way out of this difficulty would require two 
complicated bits of machinery: "spectra" in algebraic topology and "spec
tral sequences" in homological algebra. To avoid these we'll be a bit vague 
about the general theory, though we will mention some concrete results 
that can be understood directly. 

Recall first that to any ring R we attached in Chapter 5 a topological 
space K(R) (chosen to be a CW-complex, and defined up to homotopy 
equivalence), with the property that the K -groups of R are the homotopy 
groups of K(R). However, the homotopy type of the space K(R) actu
ally carries more information than just the K -groups alone. This extra 
information is encoded in the functor 

(6.3.19) X- [X, K(R)] 
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(the notation on the right indicates the homotopy classes of maps X _ 
K(R», which was given a more concrete interpretation in Theorem 5.3.32. 
In analogy with Proposition 1.6.5, one can show that this functor satisfies 
an excision property, and can be identified with the O-th term HO(X, K(R» 
of a "generalized cohomology theory" H·(X, K(R» on the category of 
CW-complexes. This theory will satisfy all of the usual Eilenberg-Steenrod 
axioms for a cohomology theory (cf. [Spanier, Ch. 5, §4] or [Whitehead, 
Ch. XII, §7]) except for the "dimension axiom" which gives its values on 
a point. (The theory is not completely determined without imposing some 
extra natural conditions, but one can arrange for it to have the property 
that H·(pt, K(R» ~ K_.(R) for all • E Z.) 

A general principle of algebraic topology (discussed in [Whitehead, Ch. 
XII, §7]) is that each generalized cohomology theory is dual to a unique gen
eralized homology theory. We will need the homology theory H.(X, K(R» 
dual to the cohomology theory just described, which satisfies the property 
that H.(Pt, K(R» ~ K.(R) for all • E Z. The definition of the homol
ogy theory unfortunately requires the notion of a spectrum, but roughly 
speaking, 

(6.3.20) H. (X, K(R)) ~ 11'. (X+ /\ K(R)) . 

Here X+ denotes X with a disjoint basepoint added so that we get an 
"unreduced" homology theory instead of a "reduced" one. (This isn't quite 
right since one needs to "stabilize" the homotopy groups to ensure that 
excision holds, but it conveys the correct idea. For actually computing 
H.(X, K(R», one rarely needs the definition anyway since usually one 
can get by with the fact that Hn(Si, K(R)) ~ Hn-i(pt, K(R)) ~ Kn-i(R) 
together with various functorial properties.) 

Now we can finally define the assembly map. The trick is that we have 
to replace the homology of G with coefficients in the K -theory of R, which 
is canonically isomorphic to H.(BGj K.(R)), by a generalized homology 
group. (An aside intended only for the reader who knows about spec
tral sequences: in fact, H.(BGj K.(R)) will be a good approximation to 
H.(BG, K(R», in the sense that there is an "Atiyah-Hirzebruch-type" 
spectral sequence converging to it with H.(BGj K.(R)) as its E 2-term.) 

6.3.21. Definition. Let R be a ring and let G be a group. The assembly 
map 

H.(BG, K(R)) - K.(RG) 

is the map on (stable) homotopy groups induced by the composite 

(6.3.22) 

where Bt+ : BG+ - BGL(RG)+ is the map on classifying spaces induced 
by the inclusion 

t: G '--+ GL(l, RG) '--+ GL(RG), 
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followed by the canonical map BGL(RG) -t BGL(RG)+, and where IL is 
the Loday product (see Theorem 5.3.1). 

If there is a model for BG which is a one-dimensional CW -complex, then 
one can show that 

Hn(BG, K(R)) ~ Ho(G, Kn(R)) E9 H1 (G, Kn- 1 (R)) 

and that the above definition coincides with (6.3.18). In general, things 
are not so simple, but part of the relationship between H.(BG, K(R)) and 
ordinary homology is reflected in the following. 

6.3.23. Lemma. Let R be a PID (e.g., Z or a field). Then there is a 
natural transformation of homology theories 

H.(*, K(R)) - H.(*i Z) 

which when * is a point is an isomorphism Ho(pt, K(R)) -t Z and is 0 on 
Hn(pt, K(R)), n #- 0, and which for general spaces is at least a surjection 
after tensoring with Q. 

Sketch of proof. Since homology theories are in natural one-to-one cor
respondence with cohomology theories, it is really only necessary to define 
a natural transformation of cohomology theories 

H·(*, K(R)) - H·(*i Z). 

On HO, this will simply be the map 

no(*, K(R)) ~ [X, K(R)]-t [X, Z] ~ HO(*i Z) 

induced by the obvious map 

K(R) = Ko(R) x BGL(R)+ -t Z 

which collapses BGL(R)+ to a point and sends each element of Ko(R) to 
its "rank" in Z. One can now show this extends to a map of cohomology 
theories in a natural way. In proving this, one uses the fact that since R is a 
regular ring, the negative K -groups of R vanish, from which it follows by an 
induction on dimension that Hn(x, K(R)) = 0 for n > dimX. As for the 
last statement, recall by (6.3.20) that H.(X, K(R)) is the stable homotopy 
of X+ 1\ K(R). However, it is known that the Hurewicz map induces a 
rational isomorphism from stable homotopy to ordinary homology, so that 

H.(X, K(R)) ®z Q ~ iI.(x+ 1\ K(R); Q). 

The right side now splits up by the Kiinneth Theorem, and our natural 
transformation is just projection onto the summand H.(Xi Q). 0 

Up till now, none of what we have said in this subsection has anything 
to do with cyclic homology, but at the same time we haven't yet proven 
anything about K-theory of group rings. Now we can use cyclic homology 
to prove something about non-triviality of the assembly map. In what 
follows, one could replace HC- by HH and Ch by Tr without affecting 
the conclusion. 
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6.3.24. Theorem. Let k be either Z or a field of characteristic 0, and let 
G be a group. Then the following diagram rationally commmutes 

H.(BG, K(k)) assembly I K. (kG) 

1 1 Ch 

H.(G, k) 
assembly 
--~I HC;(kG). 

Here the map on the left is the one given by applying Lemma 6.3.23 to 
BG and using Theorem 5.1.27 to identify the homology of BG with that of 
G. The assembly map on the bottom is given by Definition 6.2.11. Since 
(when k = Z) these two maps are, respectively, a rational surjection and a 
split injection, it follows that Kn(ZG) ®z Q contains a copy of Hn(G, Q). 

Sketch of proof. After tensoring with Q, the assembly map just becomes 
the map in rational homology induced by (6.3.22), and the map on the left 
becomes projection onto the summand Hn(G, Q). Thus the composite of 
the natural rational splitting of the map on the left with the map on top 
is just the map on rational homology induced by B,,+. The definition of 
the Chern character in (6.2.14) now identifies this with the assembly map 
and so the diagram commutes. (The characteristic 0 assumption is needed 
to make sure that Tr : Ko(R) -+ R is rationally injective.) The assembly 
map on cyclic homology is a split injection by (6.2.11). 0 

While Theorem 6.3.24 begins to show the importance of the assembly 
map for the study of K-theory of group rings, it is by no means the final 
word on the subject. A much more impressive recent result, with a proof 
that would take at least another whole volume to explain in detail, is the 
following. 

6.3.25. Theorem [BoHsMad]. Let G be a group such that Hi(G, Z) is 
finitely generated for each i. Then the assembly map H.(BG, K(Z)) -+ 

K.(ZG) is an injection after tensoring each side with Q, and thus 

Kn(ZG) ®zQ 

contains not only a copy of Hn(G, Q) (as promised by Theorem 6.3.24) but 
also a copy of 

EB Hn - 1- 4i (G, Q). 
l<i<[n-l] 

- - 4 

Here, to get from the first assertion to the last one needs to use Borel's 
calculation of K.(Z) ®z Q (Theorem 5.3.13). The method of proof of 
Bokstedt, Hsiang, and Madsden is vaguely related to that of Theorem 
6.3.24, but requires first replacing K -theory of rings by "K -theory of spaces" 
and cyclic homology by a more complicated topological analogue. It would 
be nice also to be able to say something about surjectivity of the assem
bly map, but it's unlikely anything in this direction could be proved using 
analogues of the Chern character. Nevertheless, the fact that one can say 
anything at all about the size of K -groups of group rings already proves 
the usefulness of cyclic homology. 
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6.3.26. Exercise. Let R be any ring and take k = /l. By modify
ing the construction in Definition 6.2.14, construct a Dennis trace map 
Ki(R; /lIn) -+ HHi(R; /lIn) and a Chern character map Ki(R; /lIn) -+ 

HG:i(R; /lIn), i ~ 2. (The restriction i ~ 2 makes it possible to use The
orem 5.3.7 here.) Show how these could be used (at least in principle) to 
detect torsion in K1(R), even when HH1(R) and HC1(R) are torsion-free. 

6.3.27. Exercise. Try to extend to the relative case the idea presented 
here for detecting torsion elements of class groups with the trace map. 
Here is a sketch of how to proceed. If R is a Dedekind domain with field 
of fractions F and if a is an ideal in R, one can describe Ko(R, a) in terms 
of a relative class group constructed from ideals I of R which are relatively 
prime to a, modulo those of the form (a), where a == 1 mod a. The ideal 
I gives n-torsion in this group if In = (a) for such an a, and one is led to 
consider 

{a E R '-. {O} : a == 1 mod a, 31::9 R, In = (a)} 
{a E R '-. {O} : a == 1 mod a} n 

and to look for a kind of "logarithmic derivative" detecting elements in this 
group. See if you can find an example where your invariant is non-zero. 

6.3.28. Exercise. This exercise illustrates the use of the Chern charac
ter to prove non-triviality of a class in higher K-theory of a field. While 
for K2 one could give another proof using the Matsumoto relations, sim
ilar arguments also apply to Kn for n > 2 where such a technique is not 
available. 

Let k be a field of characteristic 0, and let F be a field extension of 
k of transcendence degree at least 2. Let t, s E F be algebraically inde
pendent over k. Viewing F as a k-algebra, show that the differential form 
t-1s-1dtds E OR represents a non-zero class in H~e R(F). (You may need 
to use facts about k-linear derivations of a field extension F, as found for 
example in [Jacobson, II, Proposition 8.17].) Show that this class is basi
cally the image of the Steinberg symbol {t, s} under the Chern character, 
and thus deduce that {t, s} must be an element of K 2 (F) of infinite order. 

6.3.29. Exercise (Cyclic homology and the Helton-Howe invari
ant). As in Exercise 4.4.30, let 21 be the "Toeplitz algebra" generated by 
the Toeplitz operators Tf , f E coo(Sl), together with e1(H), where H is 
the Hardy Hilbert space on Sl. Let Tr be the usual operator trace. Show 
that the map 

(J, g) t--7 Tr(TfTg - TgTf) 

studied in [HeltonHowe] defines a map H C1 (COO (Sl )) -+ e, which may be 
identified with the composite ofTr: HCo(21, e1(H)) -+ e with the bound
ary map in the long exact sequence of the ideal e1(H) in 21. Composing 
with the Chern character Ch : K1(COO(Sl)) -+ HC1(COO(Sl)), we obtain 
a map K1(COO(Sl)) -+ e. (Recall that by Theorem 4.4.19, K1(COO(Sl)) is 
just (coo(Sl))X = coo(Sl, eX).) Analyze this map and compare it with 
the calculations in Exercise 4.4.30. 
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6.3.30. Exercise (More on the image of the trace on idempo
tents). Suppose r is a subgroup of finite index m in a group G. Show that 
in this case, there is a natural inclusion map L : C; (r) ~ C; (G) making 
C;(G) into a free module ofrank mover C;(r). Thus we have an injection 
t: C;(G) ~ Mm(C;(r)) and a transfer map t. : Ko(C;(G)) -+ Ko(C;(r)) 
such that t. 0 L. is multiplication by m. Show that if <Pr and <PG are the 
traces on C;(r) and C;(G) as defined in Definition 6.3.11, extended in the 
obvious way to matrices, then <PG 0 L = <Pr and <Pr 0 t = m<pG. Conclude 
that if the image of (<pr). on Ko(C;(r)) is contained in Z, then the image 
of <PG on Ko(C;(G)) is contained in the rational numbers with denomina
tors dividing m. Explain what this means when r is the trivial group and 
G is finite. Then use Theorem 6.3.15 to get a conclusion about groups with 
a free subgroup of finite index. 

6.3.31. Exercise. Let G be a perfect group, so that one can apply the 
+-construction to BG. Note that the inclusion L : G ~ GL(ZG) induces 
a map BL+ : BG+ -+ BGL(ZG)+, closely related to the assembly map. 
Show that the diagram 

7rn(BG+) 
(BL+). 

I 7rn(BGL(ZG)+) = Kn(ZG) 

Hurewicz 1 1 Ch 

Hn(G, Z) 
assembly 

HC;;(ZG) I 

commutes, and show how this can be used to prove non-triviality of some 
of the K-groups of ZG. For example, if G = 8L(2, F5) (the non-trivial 
central extension of A5 by '1./2), use this result and Exercise 5.2.16 to show 
that K3(ZG) contains an element of order 120. 
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