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Preface

Algebraic K-theory is the branch of algebra dealing with linear algebra
(especially in the limiting case of large matrices) over a general ring R
instead of over a field. It associates to any ring R a sequence of abelian
groups K;(R). The first two of these, Ky and K, are easy to describe in
concrete terms; the others are rather mysterious. For instance, a finitely
generated projective R-module defines an element of K (R), and an invert-
ible matrix over R has a “determinant” in K;(R). The entire sequence of
groups K;(R) behaves something like a homology theory for rings.

Algebraic K-theory plays an important role in many areas, especially
number theory, algebraic topology, and algebraic geometry. For instance,
the class group of a number field is essentially Ky(R), where R is the ring
of integers, and “Whitehead torsion” in topology is essentially an element
of K1(Zr), where 7 is the fundamental group of the space being stud-
ied. K-theory in algebraic geometry is basic to Grothendieck’s approach
to the Riemann-Roch problem. Some formulas in operator theory, involv-
ing determinants and determinant pairings, are best understood in terms
of algebraic K-theory. There is also substantial evidence that the higher
K-groups of fields and of rings of integers are related to special values of
L-functions and encode deep arithmetic information.

This book is based on a one-semester course I gave at the University
of Maryland in the fall of 1990. Most of those attending were second- or
third-year graduate students interested in algebra or topology, though there
were also a number of analysis students and faculty colleagues from other
areas. I tried to make the course (and this book) fairly self-contained, and
to assume as a prerequisite only the standard one-year graduate algebra
course, based on a text such as [Hungerford], [Jacobson], or [Lang], and the
standard introductory graduate course on algebraic and geometric topol-
ogy, covering the fundamental group, homology, the notions of simplicial
and CW-complex, and the definition and basic properties of manifolds. As
taught at Maryland, the graduate algebra course includes the most basic
definitions and concepts of category theory; a student who hasn’t yet seen
these ideas could consult any of the above algebra texts or an introduc-
tion to category theory such as [Mac Lane]. Since many graduate algebra
courses do not include much in the way of algebraic number theory, I have
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included many topics such as the basic theory of Dedekind rings and the
Dirichlet unit theorem, which may be familiar to some readers but not
to all. T’ve tried in this book to presuppose as little topology as possible
beyond a typical introductory course, and to develop what is needed as
I go along, but to give the reader a flavor of some of the important ap-
plications of the subject. A reader with almost no topology background
should still be able to follow most of the book except for parts of Sections
1.6, 1.7, 2.4, 4.4, and 6.3, and most of Chapter 5 (though I would hope
this book might encourage him or her to take a more systematic course
in topology). A problem one always has in writing a book such as this
is to decide what to do about spectral sequences. They are usually not
mentioned in first-year graduate courses, and yet they are indispensable
for serious work in homological algebra and K-theory. To avoid having
to give an introduction to spectral sequences which might scare off many
readers, I have avoided using spectral sequences directly anywhere in the
text. On the other hand, I have made indirect reference to them in many
places, so that the reader who has heard of them will often see why they
are relevant to the subject and how they could be used to simplify some of
the proofs.

For the most part, this book tends to follow the notes of the original
course, with a few additions here and there. The major exceptions are
that Chapters 3 and 5 have been greatly expanded, and Chapter 6 on
cyclic homology has been added even though there was no time for it in
the original course. Cyclic homology is a homology theory for rings which
may be viewed as the “linearized version” of algebraic K-theory, and it’s
becoming increasingly clear that it is both a useful computational tool and
a subject of independent interest with its own applications.

Each chapter of this book is divided into sections, and I have used a
single numbering system for all theorems, lemmas, exercises, definitions,
and formulas, to make them easier to locate. Thus a reference such as
1.4.6 means the 6th numbered item in Section 4 of Chapter 1, whether
that item is a theorem, a corollary, an exercise, or a displayed formula.
The exercises are an integral part of the book, and I have tried to put at
least one interesting exercise at the end of every section. The reader should
not be discouraged if he finds some of the exercises too difficult, since the
exercises vary from the routine to the very challenging.

I have used a number of more-or-less standard notations without special
reference, but the reader who is puzzled by them will be able to find most
of them listed in the Notational Index in the back of the book.

Why This Book?

The reader might logically ask how this book differs from its “competi-
tion.” [Bass| remains an important reference, but it is too comprehensive
to use as a text for an elementary course, and also it predates the defini-
tion of K5, let alone of higher K-theory or of cyclic homology. My original
course was based on the notes by Milnor [Milnor], which are highly recom-
mended. However, I found that [Milnor] is hard to use as a textbook, for
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the following three reasons:

(1) Milnor writes for a working mathematician, and sometimes leaves
out details that graduate students might not be able to provide for
themselves.

(2) There are no exercises, at least in the formal sense.

(3) The subject has changed quite a bit since Milnor’s book was writ-
ten.

For the working algebraist already familiar with the contents of [Milnor]
who wants to learn about Quillen K-theory and its applications in alge-
braic geometry, [Srinivas] is an excellent text, but it would have been far
beyond the reach of my audience. The notes of Berrick [Berrick] give a
more elementary introduction to Quillen K-theory than [Srinivas|, but are
rather sketchy and do not say much about applications, and thus again are
not too suitable for a graduate text. And [LluisP] is very good for an up-
to-date survey, but is, as the title says, an overview rather than a textbook.
For cyclic homology, the recent book by Loday [LodayCH] is excellent, but
to be most useful requires the reader already to know something about
K-theory. Also, I do not believe that there is any book available that dis-
cusses the applications of algebraic K-theory in functional analysis (which
are discussed here in 2.2.10-2.2.11, 4.4.19-4.4.24 4.4.30, 6.3.8-6.3.17, and
6.3.29-30). Thus for all these reasons it seemed to me that another book

on K-theory is needed. I hope this book helps at least in part to fulfill that
need.
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1
Ky of Rings

1. Defining K

K-theory as an independent discipline is a fairly new subject, only about
35 years old. (See [Bak] for a brief history, including an explanation of the
choice of the letter K to stand for the German word Klasse.) However,
special cases of K-groups occur in almost all areas of mathematics, and
particular examples of what we now call Ky were among the earliest stud-
ied examples of abelian groups. More sophisticated examples of the idea of
the definition of Ky underlie the Euler-Poincaré characteristic in topology
and the Riemann-Roch theorem in algebraic geometry. (The latter, which
motivated Grothendieck’s first work on K-theory, will be briefly described
below in §3.1.) The Euler characteristic of a space X is the alternating sum
of the Betti numbers; in other words, the alternating sum of the dimen-
sions of certain vector spaces or free R-modules H;(X; R) (the homology
groups with coefficients in a ring R). Similarly, when expressed in modern
language, the Riemann-Roch theorem gives a formula for the difference of
the dimensions of two vector spaces (cohomology spaces) attached to an
algebraic line bundle over a non-singular projective curve. Thus both in-
volve a formal difference of two free modules (over a ring R which can
be taken to be C). The group Ky(R) makes it possible to define a similar
formal difference of two finitely generated projective modules over any
ring R.

We begin by recalling the definition and a few basic properties of pro-
jective modules. Unless we say otherwise, we shall assume all rings
have a unit, we shall require all ring homomorphisms to be unit-
preserving, and we shall always use the word module to mean
“left module.”

1.1.1. Definition. Let R be a ring. A projective module over R
means an R-module P with the property that any surjective R-module
homomorphism & : M — P has a right inverse §: P — M. An equivalent
way of phrasing this is that whenever one has a diagram of R-modules and
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R-module maps
P

ls@
MY N

with M % N surjective, one can fill this in to a commutative diagram

P
o/ Jv(p
M- N

Indeed, given the diagram-completion property and a surjective R-mod-
ule homomorphism « : M — P, one can take N = P, ¢ = idp, and
¥ = a, and the resulting 6 : P — M is a right inverse for a, i.e., satisfies
aof =id P-

In the other direction, suppose any surjective R-module homomorphism
a: M — P has a right inverse 8 : P — M, and suppose one is given a
diagram of R-modules and R-module maps

P

l“’
M-t N

with M % N surjective. Replacing M %N by M& P Y®ide, N & P
and ¢ : P — N by (p, idp) : P — N @ P, we may suppose  is one-to-one,
and then replacing N by the image of ¢ and M by ¥~!(im¢), we may
assume it’s an isomorphism. Then take a = ¢~ 04 and the right inverse
B : P — M enables us to complete the diagram.

When a : M — P is surjective and §: P — M is a right inverse for a,
then p = B o a is an idempotent endomorphism of M, since

(Boa)’=(Boa)o(foa)
=fo(aoB)oa
= Boidpoa=Foa,
and then z — (a(z), (1—p)(x)) gives an isomorphism M = P®(1—-p)(M).

Using this observation, we can now prove the fundamental characteriza-
tion of projective modules.

1.1.2. Theorem. Let R be a ring. An R-module is projective if and only
if it is isomorphic to a direct summand in a free R-module. It is finitely
generated and projective if and only if it is isomorphic to a direct summand
in R™ for some n.

Proof. If P is projective, choose a free module F' and a surjective R-mod-
ule homomorphism « : F' — P by taking F' to be the free module on some
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generating set for P, and « to be the obvious map sending a generator of F'
to the corresponding generator of P. We are using the universal property of
a free module: To define an R-module homomorphism out of a free module,
it is necessary and sufficient to specify where the generators should go. If
P is finitely generated, then F' will be isomorphic to R™ for some n. The
observation above then shows P is isomorphic to a direct summand in a
free R-module, which we can take to be R™ for some n if P is finitely
generated.

For the converse, observe first that free modules F' are projective, since
given a surjective R-module homomorphism « : M — F with F free, one
can for each generator z; of F' choose some y; € M with a(y;) = z;, and
then one can define a right inverse to « by using the universal property
of a free module to define an R-module homomorphism g : F — M with
B(z;) = y;. Next, suppose F' = P & @Q and F' is a free module. Given a
surjective R-module homomorphism a : M — P, a @ idg is a surjective
R-module homomorphism (M & Q) — (P & Q) = F, so it has a right
inverse. Now restrict this right inverse to P and project into M to get a
right inverse for . Finally, if F = R™ with standard generators z1,...,Zp,
then P is generated by p(z;), where p is the identity on P and 0 on Q.
Thus a direct summand in R™ is finitely generated and projective. [

We're now almost ready to define Ky of a ring R. First of all, note that
the isomorphism classes of finitely generated projective modules over R
form an abelian semigroup Proj R, in fact a monoid, with & as the addition
operation and with the 0-module as the identity element. To see that this
makes sense, there are a few easy things to check. First of all, Proj R is a
set! (This wouldn’t be true if we didn’t take isomorphism classes, but in
fact we have a very concrete model for Proj R as the set of split submodules
of the R", n € N, divided out by the equivalence relation of isomorphism.)
Secondly, direct sum is well defined on isomorphism classes, i.e., if P = P’
and Q = @', then P®Q = P'&Q’. And thirdly, direct sum is commutative
(P®Q=Qa P) and associative (PO Q)eV =X Pd (Q & V)) once we
pass to isomorphism classes.

In general, though, Proj R is not a group, and may not even have the
cancellation property

at+b=c+b=>a=c.

It’s therefore convenient to force it into being a group, even though this
may result in the loss of some information. The idea of how to do this is
very simple and depends on the following, which is just a generalization of
the way Z is constructed from the additive semigroup of positive integers, or
Q* is constructed from the multiplicative semigroup of non-zero integers,
or a ring is “localized” by the introduction of formal inverses for certain
elements.

1.1.3. Theorem. Let S be a commutative semigroup (not necessarily
having a unit). There is an abelian group G (called the Grothendieck
group or group completion of S), together with a semigroup homo-
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morphism ¢ : S — G, such that for any group H and homomorphism
9 : S — H, there is a unique homomorphism 6 : G — H with ¢ = 6o .

Uniqueness holds in the following strong sense: if ' : § — G' is any
other pair with the same property, then there is an isomorphism o : G — G’
with ¢’ = ao .

Proof. We will outline two constructions. The simplest is to define G
to be the set of equivalence classes of pairs (z, y) with z, y € S, where
(z, y) ~ (u, v) if and only if there is some ¢ € S such that

(1.1.4) z+v+t=u+y+t inS.

Denote by [(z, y)] the equivalence class of (z, y). Then addition is defined
by the rule

[(@, ]+ [, )| = [z + 2, y + )]

(It is easy to see that this is consistent with the equivalence relation, and
that the associative rule holds.)
Note that for any z and y in S,

(z, )] = (3, ¥)]

since z +y = y+x. Let 0 be this distinguished element [(z, z)]. This is an
identity element for G, i.e., G is a monoid, since for any z, y, and ¢ in S,

(z+t, y+t)~(z,y)
Also, G is a group since
[(z, )] + (¥ 2)] = [(z +y, z+y)] = 0.
We define ¢ : § — G by
o(z) = [(z + =, z)],

and it is easy to see that this is a homomorphism. Note that the image of
@ generates GG as a group, since

[(z, y)] = p(z) — »(y)

in G. Given a group H and homomorphism 1 : § — H, the homomorphism
0 : G — H with 9 = 0 o p is defined by

0 ([(z, v)]) = ¥(z) — %(y)-

Alternatively, one may define G to be the free abelian group on gen-
erators [z], £ € S, divided out by the relations that if z + y = 2 in S,
then the elements [z] + [y] = [2] in G. Note that [(z, y)] in the previous
construction corresponds to [z] — [y] in this second construction. The map
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@ is £ +— [z], and of course any homomorphism from S into a group H
must factor through G by construction.

To prove the uniqueness, suppose ¢’ : S — G’ has the same universal
property. First of all, ¢’(S) must generate G’, since otherwise, if G” is the
subgroup generated by the image of ¢, then there are two homomorphisms
0:G - G oG /G" with

(¢',0)=00¢,

namely, § = (id, 0) and 8 = (id, q), g the quotient map. By the universal
properties for G and G’, there must be maps a : G — G’ with ¢’ =aogp
and B : G’ — G with ¢ = B0 ¢'. But then a0 3 = id on the image of ¢/,
hence on all of G/, so « is a left inverse to 8. Similarly 8o a = id on the
image of ; hence a is also a right inverse to 3, as required. O

Remarks. The assignment S ~» G = G(S) is in fact a functor from the
category of abelian semigroups to the category of abelian groups, since if
v :8 — 8 is a homomorphism of semigroups, it induces a commutative
diagram

s X5 g

where the arrow at the bottom is uniquely determined by the universal
property of G(S).

In fancier language, Theorem 1.1.3 just asserts that the forgetful functor
F from the category of abelian groups to the category of abelian semigroups
has a left adjoint, since

HomSemigroups(Sa FH ) = HomGroups(G7 H )

This could also have been deduced from the adjoint functor theorem (see
[Freyd] or [Mac Lane}).

It is convenient that we do not have to assume that cancellation (z+2 =
y+ 2z = z = y) holds in S. Indeed, the map ¢ : S — G is injective if
and only if cancellation holds in S. One of the reasons for introducing
Grothendieck groups is that semigroups without cancellation are usually
very hard to handle; yet in many cases their Grothendieck groups are fairly
tractable.

1.1.5. Definition. Let R be a ring (with unit). Then Ky(R) is the
Grothendieck group (in the sense of Theorem 1.1.3) of the semigroup Proj R
of isomorphism classes of finitely generated projective modules over R.
Note that Ky is a functor; in other words, if ¢ : R — R’ is an R-
module homomorphism, there is an induced homomorphism Ky(p) = ¢. :
Ky(R) — Ky(R') satisfying the usual conditions id, = id, (9op). = p.ots.
To see this, observe first that ¢ induces a homomorphism Proj R — Proj R’
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via [P] — [R' ®, P), for P a finitely generated projective module over R.
As required, R’ ®,, P is finitely generated and projective over R’, since if
P& Q= R", then

(R'®, P)® (R ®,Q) 2R ®, (P®Q) = (R' ®,R") =R".

And of course, the tensor product commutes with direct sums so we get a
homomorphism. Functoriality of Ky now follows from functoriality of the
Grothendieck group construction.

1.1.6. Example. If R is a field, or more generally a division ring (i.e.,
a skew-field), then any finitely generated R-module is a finitely generated
R-vector space and so has a basis and a well-defined dimension. This
dimension is the only isomorphism invariant of the module, so we see
that Proj R = N, the additive monoid of natural numbers. Since the
group completion of N is Z, Ky(R) ¢ Z, with the isomorphism induced
by the dimension isomorphism ProjR — N. The inclusion of a field F
into an extension field F’ induces the identity map from Z to itself, since
dimp (F' ® P) = dimp P for any F-vector space P.

This same example also shows why we only use finitely generated
projective modules in defining Ky. If R is a field, the same arguments
show that the monoid of isomorphism classes of countably generated
modules is isomorphic to the extended natural numbers NU {oco}, with the
usual rule of transfinite arithmetic, n+ 00 = oo for any n. This is no longer
a monoid with cancellation; in fact, any two elements become isomorphic
after adding oo to each one. Thus the Grothendieck group of this monoid is
trivial. A similar phenomenon happens with infinitely generated modules
over an arbitrary ring; see Exercise 1.1.8.

1.1.7. Exercise. Let S be the abelian monoid with elements a,, ., where
n € N, and

m=0ifn=0o0r1,
meZifn=2,
meZ/2ifn>3.

The semigroup operation is given by the formula

Ap,m + O/, m! = Qnin/,m+m’,

where m+m/ is to be computed in Z if n+n’ <2 and in Z/2if n+n' > 3.
(If for instance n = 2 and n’ > 1, then m is to be interpreted mod 2.)
We shall see in §1.6 that S is isomorphic to Proj R with R = CR(S?), the
continuous real-valued functions on the 2-sphere. Compute G(S) and the
map ¢ : S — G(S). Determine the image of S in G, and show that while
¢~1(0) = 0, ¢ is not injective.
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1.1.8. Exercise (the “Eilenberg swindle”). Show that for any ring
R, the Grothendieck group of the semigroup of isomorphism classes of
countably generated projective R-modules vanishes.

1.1.9. Exercise. Recall that if a ring R is commutative, then every left
R-module is automatically a right R-module as well, so that the tensor
product of two left R-modules makes sense.

(1) Show that the tensor product of two finitely generated projective
modules is again finitely generated and projective.

(2) Show that the tensor product makes Ko(R) into a commutative
ring with unit. (The class of the free R-module R is the unit
element.)

2. Ky from idempotents

There is another approach to Ky which is a little more concrete and there-
fore often convenient. If P is a finitely generated projective R-module, we
may assume (replacing P by an isomorphic module) that P ® Q = R™ for
some n, and we can consider the R-module homomorphism p from R" to
itself which is the identity on P and 0 on Q. Clearly p is idempotent, i.e.,
p? = p. Since any R-module homomorphism R"™ — R" is.determined by
the n coordinates of the images of each of the standard basis vectors, it
corresponds to multiplication on the right (since R is acting on the left)
by an n X n matrix. In other words, P is given by an idempotent n x n
matrix p which determines P up to isomorphism.

On the other hand, different idempotent matrices can give rise to the
same isomorphism class of projective modules. (When R is a field, the only
invariant of a projective module P is its dimension, which corresponds to
the rank of the matrix p. When the characteristic of the field is zero, the
rank of an idempotent matrix is just its trace.) So to compute Ko(R) from
idempotent matrices, we need to describe the equivalence relation on the
idempotent matrices that corresponds to isomorphism of the corresponding
modules.

1.2.1. Lemma. If p and q are idempotent matrices over a ring R (of
possibly different sizes), the corresponding finitely generated projective R-
modules are isomorphic if and only if it is possible to enlarge the sizes of p
and q (by adding zeroes in the lower right-hand corner) so that they have
the same size N x N and are conjugate under the group of invertible N x N
matrices over R, GL(N, R).

Proof. The condition is sufficient since if u € GL(N, R) and upu™! = g,
then right multiplication by u induces an isomorphism from R¥gq to RVp.
So the problem is to prove necessity of the condition. Suppose pisn x n
and q is m X m, and R"p = R™q. We can extend an isomorphism o« :
R"p — R™q to an R-module homomorphism R™ — R™ by taking o = 0
on the complementary module R"(1 — p), and by viewing the image R™q
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as embedded in R™. Similarly extend a~! to an R-module homomorphism
B : R™ — R™ which is 0 on R™(1 — ¢g). Once we've done this, « is given
by right multiplication by an n X m matrix a, and 3 is given by right
multiplication by an m x n matrix b. We also have the relations ab = p,
ba = q, a = pa = aq, b = gb = bp. The trick is now to take N = n+m and

to observe that )
1-p a ({1 O
b 1—-q/ “\0 1

(with usual block matrix notation) and that
1-p @ p 0\/1-p a
b 1-¢gJlo o)\ b 1-4
_(1-p a 0 a\_(0 0
- b 1-¢q/\O0 0/ \O0 q/°

Thus (1 ; p ) _‘f q) is invertible and conjugates p@®0 to 0®¢. The latter

is of course conjugate to ¢ ® 0 by a permutation matrix. 0O
Now we can give a simple description of Proj R.

1.2.2. Definition. Let R be a ring. Denote by M (n, R) the collection of
n X n matrices over R and by GL(n, R) the group of n X n matrices over

R. We embed M(n, R) in M(n+1, R) by a — g 8

unital ring homomorphism) and GL(n, R) in GL(n + 1, R) by the group
@ ). Denote by M(R) and GL(R) the infinite

unions of the the M(n, R), resp. GL(n, R). Note that M(R) is a ring
without unit and GL(R) is a group. It is important to remember that
each matrix in M(R) has finite size. Let Idem(R) be the set of idempotent
matrices in M(R), and note that GL(R) acts on Idem(R) by conjugation.

(this is a non-

homomorphism ¢ —

Now we can restate Lemma 1.2.1.

1.2.3. Theorem. For any ring R, Proj R may be identified with the set
of conjugation orbits of GL(R) on Idem(R). The semigroup operation is
p
0
tivity after passage to conjugacy classes.) Ko(R) is the Grothendieck group
of this semigroup.

induced by (p, q) — ( . (One only has commutativity and associa-

Using this fact we can now show that Kjp is invariant under passage from
R to M,(R) and commutes with direct limits. We will also construct an
example of a ring for which K vanishes.

1.2.4. Theorem (“Morita invariance”). For any ring R and any pos-
itive integer n, there is a natural isomorphism Ko(R) =, Ko(M,(R)).
Proof. Via the usual identification of My (M, (R)) with My, (R),
Idem(M,(R)) = Idem(R) and GL(M,(R)) = GL(R).
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The result therefore follows immediately from Theorem 1.2.3. O

Next we show that K is a continuous functor, i.e., that it commutes
with (direct) limits. A direct system or directed system in a category
is a collection (A, )aer of objects, indexed by a partially ordered set I with
the property that if o, 8 € I, there is some v € I with v > o, v > (.
In addition, one supposes there are morphisms @.g : Ax — Ap defined
whenever a < 3, with the compatibility condition

By ©Pap = Pay alpB<y.
A (direct) limit for such a system is an object A = l_ir_)nAa, together with
morphisms ¥, : A, — A satisfying the compatibility condition ¥, =
¥ © Yap Whenever a < 3, with the universal property that compatible
morphisms

o : Aa — B, §a = &g ° Pap,
must factor as £o1),, for some £ : A — B. For example, if G is the increasing
union of an increasing sequence

GiCG2C--

of subgroups, it is their categorical direct limit in the category of groups
(with respect to the obvious inclusion maps), and similarly if one replaces
groups by rings or other algebraic objects.

1.2.5. Theorem. Let (Ry)acr, (6ap : Ra — Rg)a<p be a direct system of
rings and let R = lim R, be the direct limit of the system. Then Ko (R) =

lim Ko(Ra)-

Proof. Applying K, we obtain a directed system of abelian groups
(Ko(Ra))act, (Bapx : Ko(Ra) — Ko(Rg))a<p and thus a limit group
l_iglKo (Ra)- By the universal property of the direct limit, there is a natu-
ral map li_n)lKo(Ra) — Kp(R). We want to show this is an isomorphism.
To prove surjectivity, first observe that each p € Idem(R) is a matrix with
finitely many entries, each one of which must come from some R,. If
we choose 7 greater than or equal to all of these indices «, then p is the
image of a matrix in Idem(R.,), hence the class [p] of p in Ko(R) is in
the image of the natural map Ko(R,) — Ko(R), hence in the image of
lim Ko(Ra) — Ko(R). Since the [p], p € Idem(R), generate Ko(R), this
proves surjectivity.

Now we prove injectivity. Suppose € lim Ko (Ry) and z — 0 in Ko(R).
We may suppose z comes from Ky (R,,) for some o and is of the form [p]—[q],
D, q € Idem(R,,). The fact that £ — 0 means that the images of p and of
q in Idem(R) are stably isomorphic in the sense of (1.1.4). Without loss
of generality, we may first add on zeroes in the lower right corners of p
and g, then replace p and ¢ by p® 1, and ¢ ® 1., so that when mapped
into Idem(R), p and q represent the same element of Proj R, hence are
conjugate under GL(R). (This is by Theorem 1.2.3.) Once again, the
matrix that does the conjugating must come from some GL(R,), v > a,
and then [p] — [q] — 0 in Ko(Ry), hence z = 0 in the direct limit. O



10 1. Ky of Rings

1.2.6. Example: a ring with vanishing K. We shall also use Theorem
1.2.3 to construct a ring R for which all projective modules are stably
isomorphic to one another (in the sense of (1.1.4)), hence for which Ko(R) =
0. Let k be a field and let V be an infinite-dimensional vector space over
k. Let R = Endg (V). If p, ¢ € Idem(R), then p and ¢ are idempotents in
some M,(R). Consider p®1®0and ¢®1 40 in

Myp12(R) = Endg ("?) @ R = Endi (k"+2) @4 Endg (V)
& Endg(V™*?) = Endi (V) & R,

since V**2 and V have the same dimension over k when V is infinite-
dimensional. Now 0 < rankp < dimg(V") = ndimV = dim V, and simi-
larly 0 < rank ¢ < dim V, whereas rank 1z = dimV. So

dimV <rank{p®140) <dimV +dimV =dimV
and rank(p ® 1 ®0) = dim V. Similarly, rank(¢® 1 ® 0) =dimV and

rank (1010 1) (p®1®0)) =rank ((1 —p) ®06 1) =dimV,
rank (1910 1)(¢d1®0)) =rank (1 - ¢) ®0& 1) =dim V.

Since p® 1@ 0 and ¢ D 1 ® 0 are idempotent endomorphisms of a vector
space and have the same rank and corank, they are conjugate. Hence
p®1®0=qgd 160 and hence [p] = [g] in Ko(R).

1.2.7. Exercise: construction of a simple ring for which Kj is not
finitely generated. Let k be a (commutative) field and define a map
of rings ¢, : Man(k) — Man+1(k) by a — (g 2) Show that the in-
duced map on Kj is multiplication by 2 (when we use the isomorphisms
Ko(Man(k)) & Ko(k) 2 Z, Ko(Man+1(k)) & Ko(k) = Z defined by Theo-
rem 1.2.4). Deduce that if A = li_II)I(M2n (k), ¢n), then

KO(A)=1i_r)n(Z3>Z_2->Z._>...)gZ[%]_

Note that since matrix rings over fields are simple, A is a limit of simple
rings and so is simple. (One needs to show that if € A, then the 2-sided
ideal generated by z is everything, or that there exist elements a;, b; in A
with 1 = 3~ ajzb;. However, z must lie in (the canonical image of) one
of the approximating rings Ma~, and one can construct the elements there
by simplicity of the matrix ring.)

1.2.8. Exercise: behavior of K; under Cartesian products. Let
R = R; x Ry, a Cartesian product of rings. By using the obvious decompo-
sitions Idem(R) = Idem(R;) x Idem(R;) and GL(R) = GL(R,) x GL(Ry),
show that Proj R = Proj R; x Proj Ry and hence that Ky(R) 2 Ko(R1) &
Ko(R3). Generalize to arbitrary finite products.
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1.2.9. Exercise: construction of rings with quite general count-
able torsion-free Kj.

(1) Use Theorem 1.2.4 and Exercise 1.2.8 to show that if & is a field and
R is a finite product of r matrix rings over k, then Ko(R) = Z".

(2) Show that a homomorphism Z" — z given by right multiplica-
tion by a matrix A € M, (Z) can be implemented by a unital
homomorphism of rings as in (1) if and only if all the entries of
the matrix A are non-negative and no row or column of A is iden-
tically 0.

(3) Generalizing Exercise 1.2.7, show that any countable torsion-free
abelian group can be realized as Ko(R) of a ring. (Write the group
as an inductive limit of a sequence of finitely generated free abelian
groups, with maps given by matrices as in (2).)

3. Ky of PIDs and local rings

We’re now ready to begin computing K, for more rings of practical inter-
est. Recall that a PID (principal ideal domain) is a commutative integral
domain (ring without zero-divisors) in which every ideal can be generated
by a single element. Standard examples are Z and a polynomial ring in
one variable over a field. More general polynomial rings will be discussed
in Chapter 3.

1.3.1. Theorem. If R isa PID, every finitely generated projective module
over R is isomorphic to R™ for some unique n, called the rank of the
module. The rank induces an isomorphism Ko(R) — Z.

Proof. Needless to say, this follows from the general structure theorem
for finitely generated modules over a PID, which we presume most readers
have seen in an algebra course. However, since there’s an easier proof that
will motivate what we’ll do for Dedekind rings, we give it here. Let M be
a finitely generated projective module over R. We may assume that M is
embedded in some R™. We argue by induction on n that M is isomorphic
to R for some k < n. If n = 0, there is nothing to prove. So assume
the result for smaller values of n and let w : R — R be projection on the
last coordinate. Note that m maps M onto an R-submodule of R, i.e., an
ideal. If 7(M) = 0, then we may view M as embedded in kerw = R"~!
and use the inductive hypothesis. Otherwise, 7(M) is a non-zero ideal and
so is isomorphic to R as an R-module (by the PID property). So w(M)
is projective and hence M splits as ker |y @ R (recall the remarks in
1.1.1). Since we may view kerm|js as embedded in R"~!, we may apply
the inductive hypothesis to conclude that it’s isomorphic to Rkl, K <n-1.
So M~RFwithk=k+1<(n—-1)+1=n.

Finally, we need to know that the rank k of M is well defined. This
follows from the fact that we may also characterize it as the dimension of
F ®gr M over F, where F is the field of fractions of R. The calculation of
Kpisasin 1.1.6. [
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Remark. The proof actually showed a little more, namely that every
submodule M of a finitely generated free R-module is free. We never
explicitly used the fact that M is projective.

For any ring R with unit, there is a unique ring homomorphism ¢ : Z —» R
sending 1 to the identity element of R. By Theorem 1.3.1, Ko(Z) = Z, so
we obtain a map ¢, : Z — Ko(R). The image of this map is the subgroup
of Ko(R) generated by the finitely generated free R-modules. In general,
the map ¢, need not be injective; in Example 1.2.6, it is even 0.

1.3.2. Definition. The reduced Ky-group of R is the quotient
Ko(R) = Ko(R)/u.(2).

Note that we have seen that Ko(R) vanishes if R is a division ring or a
PID. In general, Ko(R) measures the non-obvious part of Ko(R). We will
see in the next section that it recaptures a famous classical invariant of
Dedekind rings.

Next we compute Ky for local rings (which are not necessarily commu-
tative). We begin with a review of some useful general ring theory.

1.3.3. Definition. A ring R (not necessarily commutative) is local if
the non-invertible elements of R constitute a proper 2-sided ideal M of R.
Examples of commutative local rings include k[[t]], the ring of formal power
series over a field k, and Z;), the ring of rational numbers of the form §,
where p is a prime, b # 0, and p{ b. For an example of a non-commutative
local ring, let S be any non-commutative unital k-algebra, where k is a
field, and let

R={ao+ait+ast®+--- € S[[t] : ao € k}.

Since any power series in R with ag # 0 is invertible (by the usual algo-
rithm for inverting power series), and since the elements in R with ap =0
constitute an ideal, R is a local ring.

1.3.4. Proposition. For a ring R (not necessarily commutative), the
following are equivalent:

(a) R has a unique maximal left ideal, and a unique maximal right
ideal, and these coincide.
(b) R is local.

Proof. (b) = (a). If R is local with ideal M of non-invertible elements,
no element of R~ M can lie in a proper left ideal or proper right ideal,
hence M is both the unique maximal left ideal and the unique maximal
right ideal.

Now let’s show (a) = (b). Assume (a) and let x € R. If z does not
have a left inverse, then Rz is a proper left ideal, which by Zorn’s Lemma
lies in a maximal left ideal, which by (a) is unique. Similarly, if z does not
have a right inverse, then z lies in the unique maximal right ideal. Thus
all non-invertible elements lie a proper 2-sided ideal M. 0O
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1.3.5. Corollary. In a local ring, an element with a one-sided inverse is
invertible.

Remark. Note that replacing (a) by the condition that R has a unique
maximal 2-sided ideal gives a very different class of rings in the non-
commutative case. A simple ring R (one with no 2-sided ideals other than
0 and R) need not be local; a matrix ring over a field is a counterexample,
since a sum of singular matrices need not be singular.

1.3.6. Definition. If R is any ring, the radical (or Jacobson radical)
of R is the intersection of the maximal left ideals. By Proposition 1.3.4, in
a local ring, the radical coincides with the maximal ideal.

1.3.7. Proposition. For any ring R, the radical of R is a 2-sided ideal.

Proof. If I is a maximal left ideal, the annihilator of R/I in R certainly
is contained in I. Hence

N Anng(R/I) C[)I=radR.
I

I a max. left ideal

On the other hand,

Amng(R/T)= ()| Anng(s),
£€R/I, £#0

an intersection of maximal left ideals. So rad R is exactly the intersection
of the Anng(R/I), and so is 2-sided. O

Remark. The proof showed that the radical of R is the set of elements
that annihilate all simple left R-modules. One observation we will need
later is that since every simple module for M, (R) is isomorphic to one of
the form R™ ® g M with M a simple R-module, any matrix all of whose
entries lie in rad R must annihilate all such modules, hence must be in the
radical of M, (R).

1.3.8. Proposition. For any ring R, the radical coincides with
{x € R:Va € R,1 — ax has a left inverse}

and with the intersection of the maximal right ideals.

Proof. First we show that rad R is contained in the indicated set. If z
lies in every maximal left ideal, then Rz lies in every maximal left ideal.
Suppose a € R and 1 — az does not have a left inverse. Then 1 — az lies
in a proper left ideal, hence in a maximal left ideal M. Since ax € M, we
have 1 € M, a contradiction.

Conversely, suppose that for all a € R, 1 — az has a left inverse. Let
M be a maximal left ideal. If z ¢ M, then Rx + M = R. Thus for some
a € R, 1 —ax € M, a contradiction. So rad R coincides with

{x € R:Va € R,1— az has a left inverse}.
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Similarly, we can define the right radical

r-rad R = n max. right ideals
={z € R:Va € R, 1 — za has a right inverse}.

Since rad R is a right ideal by 1.3.7,if x € rad R and a € R, thereisac€ R
with (1 — ¢)(1 — za) = 1. This gives (1 — za)(1 — ¢) = 1 + zac — cza, and
since = € rad R, zac — cxa € rad R. Thus 1 + zac — cra has a left inverse,
which shows 1—c has a left inverse. Since it also has a right inverse, namely
1 — za, they coincide, and 1 — za is invertible with inverse 1 — ¢. Hence
rad R C r-rad R. By symmetry, r-rad R C rad R and the two coincide. [1

1.3.9. Theorem (Nakayama’s Lemma). Suppose R is a ring and M
is a finitely generated R-module such that (rad R)YM = M. Then M = 0.

Proof. Suppose M # 0. Pick a set of generators 1, ..., Z,, for M with
m as small as possible. (This implies in particular that each z; # 0.) By
the assumption that (rad R)M = M, there are elements ry, ...,r,, inrad R
such that

Ty, =T1Z1 + - + T T
Hence
A-rp)zm=riz1+ -+ Tm-1Tm—1.

By Proposition 1.3.8, 1 — r,, is invertible; hence z,, can be expressed as a
linear combination of x4, ..., ;1. This contradicts the assumption that
m was as small as possible. [

1.3.10. Corollary. If R is a ring, M is a finitely generated R-module,

and xy,...,Z, € M, then xy,. .., T, generate M if and only if their images
£1,...,%Em generate M/(rad R)M as an R/rad R-module.
Proof. The “only if” statement is trivial. Suppose &y,...,Z,, generate

M/(rad R)M. Let N = Rz; +--- + Rz, C M and consider M/N. This
satisfies the hypotheses of Nakayama’s Lemma, so M/N = 0 and M =
N. O

1.3.11. Theorem. If R is a local ring, not necessarily commutative, then
every projective finitely generated R-module is free with a uniquely defined
rank. In particular, Ko(R) & Z with generator the isomorphism class of a
free module of rank 1.

Proof. Note R/rad R is a division ring D. If M is a finitely generated
projective R-module, we may assume M @ N = R* for some k. Then
M/(rad R)M and N/(rad R)N are D-modules, hence are free, say of ranks
m and n, respectively, with m+n = k. Choose basis elements and pull them
back to elements 1,...,Tm € M, Tymy1,--.,Zx € N. By Corollary 1.3.10,
these generate R¥. We want to show that x,...,zs are a free basis for
R¥. This will show in particular that z1,..., T, are a linearly independent
generating set for M, so that M is free with the uniquely determined rank

rank M = dimp M/(rad R)M.
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Let ey, ..., ex be the standard free basis for R*. Since we now have two

generating sets for R, each can be expressed in terms of the other, and
there are elements a;;, bi; € R with

k k
€; = E a;jTj, Ti= E bi,-ej.
j=1 =1

Thus we get
k k
€ = Z aij ijlela
=1 1=1
$0
k&
D (aijbji — ba)er =0,
j=11=1

and if A = (a;;), B = (bi;), this means (since the ¢; are linearly indepen-
dent) that AB = I. Substituting the other way, we get

k k

30D (bijau — a)z =0,

j=11=1

and since the z; are linearly independent modulo the radical of R, this
shows BA — I € My(rad R) C rad M,(R) (using the remark following
1.3.7). By Proposition 1.3.8, BA is invertible, hence B is invertible. Since
A was a left inverse for B, this shows it is also a right inverse, i.e., BA = 1.
This proves the z1,...,Z, are a free basis for R*. O

Part of the interest in local rings stems from the importance of localiza-
tion as a technique for studying more general commutative rings. Recall
that if R is‘a commutative ring, the set Spec R of prime ideals in R be-
comes a topological space, called the spectrum of R, when equipped with
the so-called Zariski topology. The closed sets E; in this topology are
parameterized by the ideals I of R, where for I < R,

Er={PeSpecR: PDI}.

1.3.12. Proposition. Let R be a commutative ring and let Spec R be
its prime ideal spectrum. If P is a finitely generated projective R-mod-
ule, then P has a well-defined rank function rank P : Spec R — N, and
this function is continuous. In particular, if R is an integral domain, it is
constant. Furthermore, for any commutative ring R, there is a splitting
Ko(R) 2 Z & Ko(R).

Proof. Givenp € SpecR, P, = R, Qg P is a finitely generated projective
module over Ry, which is a local ring. So by Proposition 1.3.11, it is free
with a well-defined rank, which is the dimension of the associated module
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over the field R,/m,, where m; is the unique maximal ideal of R,. Since
my, = Ry Qg p, the rank at p may also be computed by first taking P/pP,
which is a module over the integral domain R/p, then taking the dimension
of the associated vector space over the field of fractions of R/p.

Next we prove continuity of the rank function. One way of seeing this is
via the idempotent picture. Suppose P is defined by an idempotent matrix
p € M, (R). Then rank, P = k if and only if the image of p in M,,(R/p) has
rank k. Thus rank, P < k if and only if every (k 4+ 1) x (k + 1) submatrix
of p has a determinant in p. This is clearly a closed condition, since it’s
equivalent to saying p contains certain specific elements of R, and the most
general closed set in Spec R is of the form {p : p D I} for some ideal I. But
it’s also an open condition since

rankp < k <= rank(1 — p) > n - k.

To prove the final remarks, note that if R is an integral domain, then
(0) is an open point in Spec R, hence Spec R is connected and rank P must
be constant. The splitting map Ko(R) — Z for a general commutative ring
is obtained simply by fixing a point p € Spec R and computing the rank
there. O

1.3.13. Exercise (The finite generation hypothesis in Nakayama’s
Lemma is necessary). Show from Nakayama’s Lemma that if R is a left
Noetherian ring and (rad R)? = rad R, then rad R = 0.

Let R be the ring of germs at 0 of continuous functions R — R. Show
that R is a local ring, with radical the germs of functions f with f(0) =0,
and that (rad R)?2 = rad R. (R is not Noetherian, which is why this is
possible.)

1.3.14. Exercise. Compute Ky(Z/(m)) in terms of m, for any integer
m > 0. Hint: write m as a product of prime powers and use the Chinese
Remainder Theorem to get a corresponding splitting of Z/(m) as a product
of local rings. Then use Theorem 1.3.11 and Exercise 1.2.8.

4. Ky of Dedekind domains

A particularly rich family of rings for which Ky is interesting are the
Dedekind domains. We begin with the definition and basic properties of
these domains, and then proceed to the most important examples, namely,
the rings of integers in number fields. In this section R will always
denote a commutative integral domain embedded in its field of
fractions F.

1.4.1. Definition. A non-zero R-submodule I of F is called a fractional
ideal of R if there exists some a € R with al C R. Clearly a non-zero
ideal of R may be viewed as a fractional ideal; for emphasis, such an ideal
is called an integral ideal. Also, if ¢ € F (a, b € R; a, b # 0), then
R(%) is a fractional ideal since bR(%) C R. Such a fractional ideal is called
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principal. One can multiply fractional ideals, and under multiplication
they form an abelian monoid with identity element R.

1.4.2. Definition. R is called a Dedekind domain or Dedekind ring
if the fractional ideals under multiplication are a group, i.e., if given a
fractional ideal I, there is a fractional ideal I~! with I='] = R. Observe
that necessarily ™! = {a € F : al C R}. Forif J ={a € F : al C R},
then =11 C R so I"! C J, but then

R=II"'CIJCR,

sollI"'=1Jand I"' =I7'1J = J.

1.4.3. Definition. Note that the principal fractional ideals are a subgroup
of the fractional ideals isomorphic to F*/R*. The class group of the
Dedekind domain R is defined to be

C(R) =
{group of fractional ideals}/{group of principal fractional ideals}.

1.4.4. Proposition. The class group of a Dedekind domain may also be
identified with the set of R-module isomorphism classes of integral frac-
tional ideals.

Proof. Clearly any fractional ideal is isomorphic to an integral one I
(via multiplication by some element of R \ {0}). And if I = (J)(Ra),
then multiplication by a implements an R-module isomorphism J — I.
Conversely, if ¢ : I — J is an R-module isomorphism and ag € I \ {0},
then for any a € I,

p(aoa) = aop(a) = ap(ao),
80 p(ap)l = apJ and [I] = [J] in C(R). O

1.4.5. Theorem. If R is Dedekind, then every fractional ideal is finitely
generated and projective. In particular, R is Noetherian.

Proof. Let I be a fractional ideal. Since I~1I = R, there are elements
T1,...,%n € I and y1,...,yn € I such that Y  ziys = 1. If b € I,
then b = ) (bx;)y; with bx; € I~'I = R, so y1,...,yn generate I. Thus
I is finitely generated. Since every ideal of R is finitely generated, R is
Noetherian.

But in addition, the homomorphism R™ — I defined by (ai,...,a,) —
> a;y; splits, with right inverse b — (bzy,...,bz,), by the same calcula-
tion. So [ is isomorphic to a direct summand in R™ and so is projective by
Theorem 1.1.2. O

1.4.6. Corollary. If R is Dedekind, then every finitely generated projec-
tive R-module is isomorphic to a direct sum of ideals. In particular, the
isomorphism classes of the ideals generate Ky(R).

Proof. We use the same argument as in the proof of Theorem 1.3.1.
Let M be a finitely generated projective module over R. We may assume
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that M is embedded in some R™. We argue by induction on n that M is
isomorphic to a direct sum of k ideals for some k < n. If n = 0, there
is nothing to prove. So assume the result for smaller values of n and let
m: R™ — R be projection on the last coordinate. Note that m maps M onto
an R-submodule of R, i.e., an ideal. If (M) = 0, then we may view M as
embedded in kerm = R™! and use the inductive hypothesis. Otherwise,
m(M) is a non-zero ideal I and so is projective by Theorem 1.4.5. Hence
M splits as kerm|ps @ I (recall the remarks in 1.1.1). Since we may view
ker 7t|p as embedded in R™!, we may apply the inductive hypothesis to
conclude that it’s isomorphic to a direct sum of &’ ideals, ¥’ <n —1. So
Misadirect sumof kideals with k=K +1<(n—-1)+1=n. O

Our next goal is to relate K¢(R) to C(R), but first we need to develop
more of the theory of Dedekind domains. This will also enable us to prove
a useful characterization of Dedekind domains that will show that the ring
of algebraic integers in a number field is a Dedekind domain. The next
theorem generalizes the “fundamental theorem of arithmetic” (unique fac-
torization of an integer into primes).

1.4.7. Theorem. In a Dedekind domain R, every prime integral ideal is
maximal. And every proper integral ideal can be factored uniquely (up to
renumbering of the factors) into prime (or maximal) ideals. The group of
fractional ideals is the free (multiplicative) abelian group on the (non-zero)
prime ideals.

Proof. (a) Suppose 0 G I G R and I is prime but not maximal. Then
there exists an integral 1deal JwithI GJG R Let K=J —1J; since
IGJ, KCJ‘IJ R. Since JK = I'and I'is prime but J ¢ I, K C I.
But then I JK C JI G RI = I, a contradiction. So I is maximal.

(b) Existence of factorizations. Let

C = {proper integral ideals that are not products of prime ideals}.

If this is empty, we're done. Otherwise, since every ascending chain of
ideals in R has a maximal element (R is Noetherian by Theorem 1.4.5), C
has a maximal element I by Zorn’s Lemma. I can’t be a maximal ideal
(otherwise it would be prime itself and would have a trivial factorization
I=I)solI C I € S R for some ideal I;. Let Iy = I] 1]. This is also an
ideal in R smce I C I, and since I g I, it is a proper ideal containing I
properly. Since I; and I, are both strictly bigger than I and I was maximal
in C, both have factorizations into primes. But since I = I I, multiplying
gives a factorization of I, a contradiction.

(c) Uniqueness of factorizations. Suppose P, Pp = Q1---Qy
with P;, Q; prime and m < n. Then P, D P;---Pp, = Q1---Qn so
some @; lies in P;. After renumbering if necessary, we may assume @1 C
P,. Write Q; = S, P; by the Dedekind property (where S; = Py 1Q;).
Multiplying through by P~ ! gives Py -+ Py = 51Q2 - - - Q. Continuing by
induction, we get down to the case where m = 1, in which case it is clear
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that we must have n = 1 and @1 = P;. So factorizations into primes are
unique.

(d) Clearly there’s a map from the free abelian group on the prime
ideals into the multiplicative group of the fractional ideals. By (b) above,
it’s surjective. If there is something non-trivial in the kernel, we have
Pt ... P = R for some distinct prime ideals P; and some n; € Z. If for
some j, n; < 0, multiply through by le.""l. Then we end up with some
ideal in R having two distinct factorizations, contradicting (c). O

1.4.8. Lemma. Let R be any commutative ring and let I, I, be ideals
inR. IfI; + I = R, then I1Io = I, N I,.

Proof. Clearly I I; C Iy N I;. On the other hand, if @ € I3, az € Iz, and
ai+ax=1,thenforzx e 1Nly,z=a1x+ax € 1 L+ L] =111,. O

1.4.9. Lemma. Let R be a Dedekind domain and let I be a fractional
ideal, J an integral ideal. There exists a € I such that "'a+ J = R.

Proof. Let Py,..., P, be the distinct prime ideals that occur in the fac-
torization of J given by Theorem 1.4.7. Choose a; € IP; -- .B,--- P, with
a; ¢ IP,---P.. Let a= > a;. Note a;,I71 C P; if j #4, but a; 17 ¢ P,
sice otherwise we’d have

a; It C ﬂPJ = P,--- P, by iterated use of (1.4.8),

hence
a; € IP;.--P,,

a contradiction. Now note that I='a ¢ P; for any j. It’s an integral ideal
and this says I "la+J can’t be divisible by any P;. But it can’t be divisible
by any other prime ideal, either, by the choice of a, so it can’t be a proper
ideal and must be allof R. O

This implies that a Dedekind domain doesn’t miss being a PID by very
much. If R is a PID, any fractional ideal is singly generated. In a Dedekind
domain, the best one can say along these lines is the following,.

1.4.10. Corollary. If R is a Dedekind domain, any fractional ideal of R
can be generated by at most two elements.

Proof. Let I be a fractional ideal, 0 # b € I. Let J = bI~!, which is an
integral ideal. By Lemma 1.4.9, there is some a € I with al~!+bI! = R.
Then I = Ra+ Rb. O

1.4.11. Lemma. Suppose R is a Dedekind domain and I, I, are frac-
tional ideals for R. Then I, ® I = R @ I, I as R-modules.

Proof. Choose a1 # 0in I; and let J = a7 1 which is an integral ideal.
Apply Lemma 1.4.9 with I = I,. We get a2 € I, such that I2_1a2 +a1I1—:l =
R. Choose by € I7Y, by € I;* with a1b; + azby = 1. Then

bl —ag ay as \ _ 1 0
by o by b1 ) \O 1)’
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by

showing that (
bo

9 ) s invertible with inverse | % %2 , and
a1 —bs by

(w1, 22) = (21, T2) (II;; _a2>

a1

gives the desired isomorphism (with inverse given by multiplication by the
inverse matrix). O

1.4.12. Theorem. Let R be a Dedekind domain. Then any projective
R-module of rank k can be written as R*~! @ I, with I an ideal, and the
isomorphism class of I is uniquely determined. If P and @) are finitely
generated projective modules of the same rank k, say P 2 R*~1 @ I, and
Q = R*~' @ I, for ideals I and I,, the map [P] — [Q] — I I, sets up an
isomorphism from Ko(R) to C(R). In fact,

(B o 1] = (k, 1))
sets up an isomorphism of abelian groups
Ko(R) - Z & C(R).
As a commutative ring (see 1.1.9),
Ko(R)={(k, [I]): ke Z, [I]eC(R)},
with the operations

(k, 1)) + (&', [I') = (k + &/, [I][I']),
(1.4.13) (k, (1) - (%', [I]) = (R, [T [I']%),
rank : (k, [I]) — k € Z.

Proof. By Corollary 1.4.6, every finitely generated projective module
P over R is isomorphic to a direct sum I3 @ --- & I of ideals, and by
Proposition 1.3.12, P also has a well-defined rank. If I is an ideal, then
rank I = dimp(F ®g I) = dimp F' = 1, so the rank of P is just the number
k of ideals in a direct sum decomposition. Using Lemma 1.4.11 iteratively,
we can rework the decomposition into the form R*~1 @I with a single ideal
I. The only problem is to show that if

(R* o L)~ (R L),

then I; = I as R-modules, or (equivalently, by Proposition 1.4.4) [[1] =
[I5] in C(R). Once this is done, the formulae 1.4.13, and the identification
of Ko(R) with C(R), then follow upon taking the direct sum or tensor
product of R* @ I and of R* @ I' and applying Lemma, 1.4.11 iteratively.
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So suppose we have an isomorphism
a: (RF1en) = (R*1o1,)

with inverse 3. Since any R-module map from one ideal to another is given
by multiplication by an element of F' (compare the proof of Proposition
1.4.4), o and 3 are induced by right multiplication by k x k matrices A
and B (with entries in F') which are inverses of each other. Now if X is the
diagonal matrix with diagonal entries (1,1,...,1,%), where = € I;, then
right multiplication by X maps R¥ into R*~! @ I;, hence right multiplica-
tion by X A maps RF into R¥~1@I,. The rows of X A are the images of the
standard basis vectors for R* under this map, so they have their first k£ — 1
entries in R and last entry in I. Thus expansion of the determinant along
the last column shows that det(X A) € I5. Since det X = z, we obtain the
condition xdet A € I, for all z € I;. Similarly ydet B = y(det A)~! € I;
for all y € I,. So multiplication by det A implements an isomorphism from
I1 to I2. 0

We proceed now to the characterization of Dedekind domains. This will
eventually make it possible to show that the rings of integers in number
fields are Dedekind domains. Recall that a subring R of another ring S
is called integrally closed in S if any element of S which is a root of a
monic polynomial with coefficients in R actually lies in R.

1.4.14. Lemma. Let R be a Noetherian integral domain which is inte-
grally closed in its field of fractions F'. Suppose I is a fractional ideal of R.
Then{s€ F:sI CI}=R.

Proof. Since R is Noetherian, I is finitely generated. Let S = {s € F:
sI C I}. Clearly R C S. But if s € S, s is integral over R, by the following
argument. Choose generators a; for I. Then there are elements bz € R
such that sa; = ) bjxar. Thus if B = (bjz), s is an eigenvalue of B and
so is a root of its characteristic polynomial, which is a monic polynomial
with coeflicients in R. Hence s € R since R is integrally closed. Thus
SCR. O

1.4.15. Lemma. Let R be a Noetherian commutative ring and let I be a

non-zero proper ideal of R. Then I contains a product of non-zero prime
ideals.

Proof. Suppose the result is false, and let C be the family of non-zero
proper ideals of R which do not contain a product of non-zero prime ideals.
Since R is Noetherian, C must contain a maximal element (under inclusion),
say I. Clearly I is not prime, so there must be a, b € R with ab € I,
a,b¢ I. Wehave I G I+ Ra, I G I+ Rb. If I + Ra = R, then
(I+ Ra)(I+Rb) = I+ Rb 2 I, while on the other hand (I + Ra)(I +Rb) C
I+Rab C I, a contradiction. SoI G I+Ra G R. Similarly I G I+Rb G R.
Since I was maximal in C, I + Ra and I + Rb do not lie in C. Thus
I+RaD P ---P, I+ RbD Qq---Qs, for some prime ideals P; and Q.
Then I = (I + Ra)(I+ Rb) D P,--- P.Q1 -+ Qs, a contradiction. O
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1.4.16. Lemma. Let R be a Noetherian integral domain in which every
prime ideal is maximal. Let I be a non-zero proper ideal of R. Then there
exists ¢ € F with ¢ ¢ R such that ¢I C R.

Proof. Let a # 0 in I. Then Ra contains by Lemma 1.4.15 a product of
non-zero prime ideals, say P - -- P,,, and we may assume m is chosen to be
minimal with this property. Let P be a maximal ideal containing I. Then

PlegRagIQP,

so some P; C P, say P, C P. Since all prime ideals are maximal, we have
Pp=P. Ifm=1,then ] = Ra= P is maximal and a ' ¢ R, a I C R.
If m > 2, then by minimality of m, Ra 2 P, --- P,,. Choose b € Py --- Py,
with b ¢ Ra, and let ¢ = 2. Then c ¢ R but

cICePo=a"P,Ca'P,---P,Ca *Ra=R. O

1.4.17. Theorem. A commutative integral domain R is Dedekind if and
only if it has the following three properties:

(a) Every non-zero prime ideal is maximal.
(b) R is integrally closed in its field of fractions F'.
(¢) R is Noetherian.

Proof. If R is a Dedekind domain, it satisfies (¢) by Theorem 1.4.5 and
(a) by Theorem 1.4.7. Suppose a € F, a # 0, and a is integral over R.
Then a is a root of some monic polynomial " +a,,_12" ! +- - - +ag, where
dag,...,8n—1 € R. Consider M = R+ Ra+ Ra®?+ --- + Ra™ 1. This is
an R-submodule of F, and since a® = —a,_;a""! — --- — ayp, it is stable
under multiplication by a. If we write @ = £, p, ¢ € R and q # 0, then
¢""'M C R, so M is a fractional ideal. Multiplying aM C M by M1
gives aR C R, so a € R. This shows R is integrally closed.

Now we show the conditions (a)—(c) imply R is Dedekind. Suppose R
satisfies (a)—(c) and I is a fractional ideal. Let J = {a € F : al € R}. We
want to show IJ = R, so that J is an inverse for I. Now I.J is an integral
ideal. Let K = {a € F : alJ € R}. By definition, K(IJ) = (KJ)I C R,
so KJ C J. By Lemma 1.4.14, K C R. On the other hand, if IJ G R,
then K 2 R by Lemma 1.4.16, a contradiction. So IJ = R and I is
invertible. 0O

1.4.18. Theorem. Let F' be a number field, i.e., a finite algebraic ex-
tension of Q, and let R be the ring of algebraic integers in F, that is, the
integral closure of Z in F. Then R is a Dedekind domain.

Proof. We need to check the conditions of Theorem 1.4.17. Condition
(b) is the easiest. R C F, and if a € F is integral over R, then it is integral
over Z by “ransitivity of integrality,” hence already contained in R. So R
is integrally closed.

To check (a), let p be a non-zero prime ideal in R. Then pNZ is a
prime ideal in Z. We claim it can’t be zero. Indeed, if b # 0 is in p,
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the product Ngg)/q(b) of the conjugates of b (in some Galois extension
K D F) is + the constant term of the minimal polynomial of b, which
by the assumption that b € R has coeflicients in Z. Now this product of
the conjugates of b is a product of b with a product ¢ of other algebraic
integers, and since bc € Z C F, ¢ € F and is integral over Z. Hence c € R
and 0 # bc € RbNZ C pNZ. Thus pNZ is a non-zero prime ideal in Z,
i.e., pNZ = (p) for some prime number p. Since F' is a finite algebraic
extension of Q, R/p must be contained in a finite algebraic extension of
Z/(pNZ) = Z/(p), in other words in a finite field of characteristic p. Since
a finite integral domain is a field, R/p is a field, i.e., p is a maximal ideal.

It remains to check (c¢), i.e., that R is Noetherian. One way of seeing
this is by using the trace. Recall that if z € F, Trp/q(x) is the trace of
the linear operator of multiplication by x on F, when we regard F' as an
n-dimensional vector space over Q, where n = [F : Q). The trace pairing
(z, y) » Trp/g(zy) is a non-degenerate symmetric Q-bilinear pairing on F
(since for z # 0in F, Trpjg(zz™!) = n # 0). Choose elements Ay, ..., Aq €
R which span F over Q. {(One may obtain such elements by taking any
basis elements for F' over Q and then multiplying them by suitably large
(ordinary) integers to kill off any denominators in the coefficients of their
minimal polynomials.) Then

I (TI‘F/Q(.’L‘)\l), vy TI‘F/Q(.’II)\,,,,))

is an embedding of R into Z™. In particular, R is a finitely generated
Z~module, so any ascending chain of ideals in R is an ascending chain of
submodules in a finitely generated Z-module, and so terminates (since Z is
Noetherian). Thus R is Noetherian. O

Finally, we show that the Dedekind domains given by Theorem 1.4.18,
which are the main subject of study in algebraic number theory, have finite
class groups. The computation of these groups is not easy and is a problem
of major interest.

1.4.19. Theorem. Let F' be a number field, i.e., a finite algebraic ex-
tension of Q, and let R be the ring of algebraic integers in F, that is, the
integral closure of Z in F. Then the class group Ko(R) is finite.

Proof. The proof requires the notion of the norm of an ideal. If I is
an integral ideal of R, with prime factorization P/" --- P"r, then by the
Chinese Remainder Theorem,

R/I= R/P"™ x---x R/P".

Since R/P; is a finite field for each j (by the proof of Theorem 1.4.18) and
R/ P;Lj clearly has a composition series with n; composition factors, each
isomorphic to R/P;, R/P;”' is finite with |R/P;|™ elements, and R/I is
finite. Thus we can define

I7ll = |R/I| = |R/Py|™ - - |R/Pr|™ = T I 2511
j=1
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It is clear that this norm is multiplicative:

Lzl = [Mal - [[22]l-
If I happens to be a principal ideal (a), note that since Ng/g(a) is the
determinant of the Z-linear operator of multiplication by a on R (which is
isomorphic to Z" as a Z-module), Ra has index | Np/g(a)| in R and thus

(@)l = [ Nr/q(a)l.

Recall from the proof of Theorem 1.4.18 that if P is a prime ideal with
PNZ = (p), then R/P is a finite extension of Z/(p) of degree < n = [F : Q),
so that || P|| = p? for some j with 1 < j < n. Thus for any C > 0, ||P|| < C
implies p < C for the corresponding p. On the other hand, for a fixed prime
number p, there are only finitely many prime ideals P C R with PNZ = (p)
(namely, those prime ideals occurring in the prime factorization of Rp). So
putting all of this together, we see there are only finitely many ideals I
satisfying ||I]| < C.

To prove the theorem, it therefore suffices to show that there is a con-
stant C > 0 such that every element of C(R) has a representative I with
[lI]l < C. Choose a basis Ai,...,\, for R as a Z-module. (That such a
basis exists was shown in the proof of Theorem 1.4.18.) Let A be the max-
imal absolute value of a conjugate of one of the A; in C and let C' = n"A".
Choose any element of C(R) and represent it by a fractional ideal of the
form K = J~!, with J an integral ideal. We will show there is another
representative I for the same ideal class with ||I|| < C. Consider the set

S={aM++andn:a; €Z, 0< a; < [|I)|].}
(The square brackets denote the “greatest integer” function.) This set has
1 n
(I1=1+ 0™ > I7]| = |R/J]
elements, so there must by the pigeonhole principle be two elements 7

and ¢ of § with the same image in R/J. Let £ = n—( € J and let
I=(¢§)J' = (§)K ~ K. This is an integral ideal and (§) = IJ, so that

2N = NN = | Nrso(©)l-

On the other hand, since ¢ is the difference of two elements of S, we
may write
. 1
E=a1\ + - +aph,  with |a;] < [|J]|7],

SO

I = [ NF/q(é)]
= [ laic() +-- +ana(Mn)l

o:FC

< JI (allo@a)l+--- + lanllo(n)D)

o:F—C

I (nlii%1a)

o:F—C
< n®||J]|A™ = C|J],
proving the desired estimate. 0

IA
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Exercise (Construction of a non-trivial torsion element in

a class group). Let R = Z[y/-5].

(1)
2

Show that R is the algebraic closure of Z in Q(+/=5), so that R is
a Dedekind domain by Theorem 1.4.18.

Show that p = (3, 2+ +/—5) is a prime ideal in R. Hint: it’s easy
to see that R/p is a field of 3 elements, so that p is a maximal

~ideal.

(3)

(4)
(5)

(6)

1.4.21.

Show that p is not principal. Hint: show that neither of the two
generators divides the other, and that if there were a single gener-
ator a + by/—5, then

(a + bv/—5)(c + dv—5) = 3 for some a,b,c,d € Z,

and (multiplying by complex conjugates)

(a® + 5b%)(c® + 5d%) = 9.
If the factorization is non-trivial, a2 +5b® = 3, which is impossible.
Show that p is an element of order 2 in the class group C(R). Hint:
by (2), it is not of order 1. Show that p2 = (2 + +/=5).
In fact, C(R) is the cyclic group of order 2 generated by p, though
it is hard to prove this by such elementary methods. Can you
supply a proof?
Suppose we replace R by the integral closure R’ of Z(s) in Q(v/-5).
This is a localization of R that will have the property that if p is

a maximal ideal in R/, then p N Z(3) = (3). Show that R’ is also
Dedekind and compute its class group.

Exercise (A ring of algebraic integers that is almost, but

not quite, Dedekind). Let R = Z[/—3|, with field of fractions F' =
Q(v-3).

(1)
(2)

1.4.22.

Show that R is not integrally closed in F, so that R is not a
Dedekind domain, by Theorem 1.4.17.

Exhibit a fractional ideal in R that does not have an inverse. Is
this fractional ideal a projective module?

Exercise. Show that a Dedekind domain R with only finitely

many prime ideals is a PID, using the following (slightly non-standard)

sketch:

(1)

()

3)

Let Py,..., P, be a complete list of the distinct maximal ideals.
Show using the Chinese Remainder Theorem that

R/rad RE R/P; X -+- X R/ Py,

a finite product of fields.

Let P be an integral ideal of R. Show using (1) and the fact that
P has rank 1 at each prime ideal that P/(rad R)P is free of rank
1, hence principal.

Lift a generator of P/(rad R)P to a generator of P using Corollary
1.3.10.
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Exercise (Complete calculation of a non-trivial class

group). In this exercise, let R = R[z, y]/(z2 + y2 — 1), the ring of (real-
valued) polynomial functions on the circle.

(1)
(2)

(3)

1.4.24.
fields).

Show that R is a Dedekind domain.

If p is a prime (and thus maximal) ideal in R, show that R/p is
an algebraic extension of R, and thus isomorphic to either R or C.
Show that both possibilities can occur, and that in the first case,
p is of the form (z — @, y — (3), where a, 8 € R and o? + 8% = 1,
and that in the second case, p is a principal ideal generated by
some linear polynomial y + b, where b € R, |b| > 1, or £ + ay + b,
where a, b € R, b2 — a? > 1. Deduce that the class group Ko(R) is
generated by the classes of the ideals (z—a, y— ), where a, 8 € R
and o2 + (32 =1.

Show that if p; and p2 are prime ideals of the form (z —a;, y—G;),
respectively, where o, 3; € R and oz?+,312 =1,j=1, 2, then p1ps
is a principal ideal, with generator a linear polynomial vanishing
at both (o4, £1) and (a2, B2), if these points are distinct, or else
the linear polynomial cyz + B1y ~ 1, if p2 = p;1. Conclude that all
non-principal prime ideals of R define the same element of the class
group, and that this element is of order 2, hence that KO(R) >7Z/2.

Exercise (More on class groups of quadratic number
Let d be a square-free integer and let F = Q(+/d), which is the

most general quadratic extension of Q.

ey

(2)

®3)

Show that the ring R of algebraic integers in F is Z[\/E], provided
that d = 2or 3 mod 4, and is Z [ 22| if d = 1 mod 4. (This

explains Exercises 1.4.20(1) and 1.4.21(1).)

Let p € N be a (rational) prime. Show that R/(p) is a two-
dimensional algebra over the field F,, of p elements, and that there
are exactly three possibilities for R/(p):

(a) R/(p) = Fplz]/(z?) contains a nilpotent element. In this case
we say p is ramified. Show that this case happens exactly
when p divides d or, if d = 2 or 3 mod 4, when p = 2.

(b) R/(p) = Fy2 is a field, so the principal ideal (p) in R is
maximal. In this case we say p is inert.

(c) R/(p) = Fp x Fp. In this case we say the prime p splits in
F

(Hint: suppose R = Z[¢] with £2 = d, which is the case if d =
2 or 3 mod 4. Then R/(p) = F,[z]/(z% — d), so you just have to
analyze whether the polynomial 22 —d has 0, 1, or 2 roots in Z/(p).
The case d = 1 mod 4 is similar; it’s just that the polynomial is
different.)

Show that in case (a), the ramified case, (p) = p? for some prime
ideal p of R, and that in case (c), the split case, (p) = p1p2 for some
distinct prime ideals of R. In either case, if R has no elements of
norm p, then the prime ideals occurring cannot be principal and
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are thus non-trivial in C(R). Thus show that in the ramified case,
one gets an element of C(R) of order 2.
(4) Show how Exercise 1.4.20 fits into this general framework.

5. Relative K and excision

One of the things that makes K-theory so computable and useful is the fact
that it behaves like a “homology theory” for rings. (The precise connection
with a cohomology theory for topological spaces will be made in the next
section.) 'In particular, when R is a ring containing a two-sided ideal I,
there is an exact sequence relating Ko(R), Ko(R/I), and a certain “relative
K-group.” This exact sequence looks something like the exact sequence in
cohomology for a pair of topological spaces (X, A):

H(X, A) — H¥(X) — H’(A).

The first aim of this section is to define the relative group Ko(R, I) and
the exact sequence relating it to Ko(R) and Ko(R/I). Then we prove an
algebraic analogue of the excision axiom for homology and develop some
applications.

1.5.1. Definition. Let R be a ring and I C R an ideal (in this section, al-
ways two-sided). The double of R along I is the subring of the Cartesian
product R x R given by

DR, I)={(z,yy eRxR:z—yel}

Note that if p; denotes projection onto the first coordinate, then there is a
split exact sequence

(1.5.2) 0—-I—DR,I)2 R0,

in the sense that p; is split surjective (with splitting map given by the
diagonal embedding of R in D(R, I)) and that kerp; may be identified
with I.

1.5.3. Definition. The relative Ky-group of a ring R and an ideal I is
defined by

Ko(R, I) = ker ((p1)« : Ko(D(R, I)) = Ko(R)) .

Relative K-theory is closely linked to the phenomenon that while any
matrix over R/I can be lifted to a matrix over R, an invertible matrix
cannot always be lifted to an invertible matrix. The following lemma will
also be used in the next chapter.
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1.5.4. Lemma. Let R be a ring and I C R an ideal. Then if A €
GL(n, R/I), the 2nx2n matrix (61 A(ll) lifts to a matrix in GL(2n, R).

Proof. Note that

(6 an)=( 1) (L D DG T)

The matrix ((1] _01) lifts “as is” to an invertible matrix over R. If B

and C are any (not necessarily invertible) matrices in M, (R) lifting A and
A~1, respectively, then

1 B d 1 0
o 1) * -C 1
are invertible and lift

(6 7) = (i 1),

Now just multiply. O

1.5.5. Theorem. Let R be a ring and I C R an ideal. Then there is a
natural short exact sequence

Ko(R, I) — Ko(R) = Ko(R/T),
where q, is induced by the quotient map q : R — R/I and the map
Ko(R, I) — Ko(R) is induced by p2 : D(R, I) — R.

Proof. For simplicity of notation in the proof, if A is an element of R or
a matrix with entries in R, we will often denote g(A), the corresponding
matrix over R/I, by A. First consider an element [e] — [f] € Ko(R, I),
where e = (e1, €2), f = (f1, f2) € Idem(D(R, I)). The image of [e] — [f]
in Ko(R x R) = Ko(R) x Ko(R) (using (1.2.8)) is ([e1] — [f1], [e2] — [f2])-

So
gx © (p2)«(le] — [f]) = @ ([e2] — [fa]) = [€2] — [2],

whereas [e1] - [f1] = 0 since by assumption [e] — [f] € ker(p1)«. But since
e, f € D(R, I), é1 = é3 and f; = fo. Thus

[é2] — [f2] = [&1] — [A1] = au([ea] - [A1]) = 0.

Hence the image of the first map is contained in the kernel of the second.
Now suppose e, f € Idem(R) and ¢.([e] — [f]) = [€] — [f] = 0. Then é
and f are stably equivalent, so for suitably large r,
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under GL(R/I). Replacing e by e ® 1. and f by f @ 1, we may assume
f = gé(g)™" for some matrix § € GL(R/I). In general, ¢ will not lift to a
matrix in GL(R). However, §®(§) ! does conjugate ¢d0 to f@0, and lifts
to a matrix h in GL(R) by Lemma 1.5.4. Thus we may replace f by f®0
and e by h{e ® 0)h~! without changing [e] and [f], and reduce to the case
where é = f. This means (e, f) € Idem(D(R, I)). Then [(e, €)] — [(e, )]
is a class in Ko(D(R, I)) which maps to 0 under (p1). and to [e] — [f]
under (p2).. This completes the proof of exactness. The naturality of the
sequence (under homomorphisms R — R’ sending I — I') is obvious from
the definition of the maps and from functoriality of Ko. O

Remark. In general, the map Ko(R) — Ko(R/I) is not surjective, and
the map Ko(R, I) — Ko(R) is not injective. The one exception will be
the case where the ring homomorphism R — R/I splits. In this case it is
obvious that the map Ko(R) — Ko(R/I) is split surjective, and it will also
turn out (see 1.5.11 below) that Ko(R, I) is the kernel of this map.

Next we want to prove the analogue of the excision theorem for topo-
logical homology. Recall that this says that under suitable hypotheses,
the relative homology H,(X, A) is unchanged when a large subset U of
A is removed from both A and X. Under optimal circumstances (for in-
stance, for CW-pairs), Hq(X, A) = H,(X/A) and thus only depends on
the “difference” between X and A. The analogous statement for Ky turns
out to be true, and says that the relative group Ko(R, I) only depends
on the “difference” between R and R/I, which is measured by I (with its
structure as a ring without unit). In fact, it turns out that K, makes
sense and is functorial even for rings without unit and for non-unital ring
homomorphisms. With this language, we show that Ko(R, I) = Ko(I).

1.5.6. Definition. Let I be a ring that doesn’t necessarily have a unit
element. The ring obtained by adjoining a unit element to I, denoted

1., is as an abelian group just I & Z, with multiplication defined by the
rule

(3:7 n) : (ya m) = (zy+ny + mz, mn)’

z,y € Iy m,n € Z. It is an easy exercise to check that this is indeed a
ring with unit, the unit element being (0, 1). The notation I, is suggested
by topology, where X is standard notation for a space X with a disjoint
basepoint added.

It is useful to note that if a : I — I’ is a homomorphism in the cate-
gory of rings without unit, it automatically extends uniquely to a unital
homomorphism I, —* [ -

Remark. The reader might wonder what happens if I already has a unit

element, say e. In this case, there is a unital isomorphism oo : Iy —» I X Z
(the Cartesian product of rings) defined by

afz, n) = (z + ne, n),
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since

a((z, n) - (y, m)) = a(zy + ny + mz, mn)
= (zy + ny + mz + mne, mn)
= (z + ne, n) - (y + me, m)

= a(z, n) - a(y, m).

1.5.7. Definition. Let I be a ring that doesn’t necessarily have a unit.
Note that one has a split exact sequence

(1.5.8) 0—-I—-I,%7Z—0.

Define
Ko(I) = ker (p. : Ko(I1) — Ko(Z) 2 Z).

At first sight, there might appear to be some ambiguity here, since if I has
a unit, we have given two different definitions of Ko(I). However, by the
remark above, in this case I = I x Z, so Ko(I4+) = Ko(I) ® Ko(Z), and
ker p, just picks out the first summand. So the new definition agrees with
the old one in this case.

Also, this new definition makes K into a functor from the category of
non-unital rings to abelian groups. This observation is occasionally useful
even when one wants to deal only with rings with unit. For instance, if R is
a ring with unit, there is a non-unital homomorphism R — M, (R) defined
g’ g . The reader can check that the homomorphism induced
by this non-unital homomorphism is the Morita invariance isomorphism of
Theorem 1.2.4.

byaH(

1.5.9. Theorem (Excision). If I is a two-sided ideal in a ring R, then
Ko(R, I) & Ko(I) (and thus does not depend on R, only on the structure
of I as a ring without unit).

Proof. Define a unital homomorphism v : I, — D(R, I) by
(z,n)—(n-I,n-1+2), z€l, nez,
and note that the diagram

I, — X~ D(R,I)
Pl Pll
Z —— R

commutes. Hence v, : Ko(I+) — Ko(D(R, I)) sends ker p. to ker(p1)«,
i.e., maps Ko(I) to Ko(R, I).
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Next we show that this map is surjective. Consider a class [e] — [f] €
Ko(R, I), where e = (e1, €2), f = (f1, f2) € Idem(D(R, I)) and [e1] = [f1]
in Ko(R). After replacing e and f by e®1, and f@1, for a suitably large r,
we may assume that e; and f; are conjugate under GL(R), say 1 = gfi1g™*
for some invertible matrix g. Replacing (f1, f2) by (9fig™ !, gf2971), we
may assume that in fact f; = e;. Next, if e is an s x s matrix, we may
replace e and f by e® (1; —e€1, 1, —e1) and by f@® (15 —e1, 1s —e1). Note
that there is an invertible 2s X 2s matrix h with entries in R conjugating
e1 ® (1 —e1) to 1, & 0,. Conjugating everything by A finally reduces us
to the case where e = (1, @ 05, €2), f = (1, ® 0, f2). Since e and f are
matrices over D(R, I), e; — (15 ® 0,) and f2 — (15 ® 05) have entries in I.
Now [e] — [f] is clearly in the image of Ko(I).

Finally, we have to show +, is injective on Ky(I). We may represent a
general element of Ko(I) by [e]—[f], where ¢, f € Idem(I) and rank p(e) =
rank p(f). As above, if f is an r xr matrix, we may stabilize by taking direct
sums with 1, — f and conjugating, and thus assume f = 1,, rank p(e) = r.
We may also assume gp(e)g~! = 1, for some g € GL(Z). Viewing g as an
element of GL(I) via the split exact sequence 1.5.8, we may replace e by
geg~! and assume that p(e) = 1,. Now if 7.([e] — [1,]) = 0, this means

[(Lr, €)] = [(1r, 17)] in Ko(D(R, I))-

We may stabilize if necessary by increasing r and assume that there is a
matrix (g1, g2) € GL(D(R, I)) with

911r91_1 = ]-'rv 92692_1 =1,.
Then (1, g7 *g2) € GL(D(R, I)) and

(97 92)e(g7 "g2) ™" = g1 ' (92e95 Vg1 = 97 '1rg1 = 1,

Since g7 g2 =1 mod I, g7 ' g2 lies in GL(I,) and this says [e] — [1,] = 0
in Ko(I), proving that the kernel of v, is trivial. [

1.5.10. Examples.

(a) Suppose R = Z and I = (m), where m > 0. Thus R/I = Z/(m).
Ko(R/I) was computed in Exercise 1.3.14; the map Ko(R) —
Ko(R/I) is always injective but in general has a free abelian co-
kernel of rank k—1, where k is the number of distinct prime factors
of m. As a ring without unit, I is the free abelian group on a gen-
erator t satisfying t* = mt. Hence I, = Z[t]/(t? — mt), a fairly
complicated ring. Ko(I) is not so easy to compute directly, though
we will find a way to compute it in the next chapter. It turns out
to be a finite abelian group.

(b) For applications to topology (see Section 1.7 below), rings of the
form R = ZG, the integral group ring of a group G, are of partic-
ular importance. It is a long-standing conjecture that when G is
torsion-free, Ko(R) = 0. This is known in some cases, for instance
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when G is free abelian; this case will be treated in Chapter 3. For
finite groups, Ko(ZG) is often non-trivial and contains interesting
arithmetic information. Consider the simplest example, when G is
cyclic of prime order p, say with generator t. Then R = ZG may
be identified with Z[t]/(t? — 1). If £ = €2™/? a primitive p-th root
of unity, and if S = Z[¢], then S is the ring of integers in the cyclo-
tomic field Q(¢), hence is a Dedekind domain by Theorem 1.4.18.
There is a surjective homomorphism R — S defined by sending
t — &. Since the cyclotomic polynomial f,(t) =tP~1 +---+t+1
is irreducible, any polynomial g(t) € Z[t] with g(§) = 0 must be
divisible by f,. In particular, anything in the kernel I of the map
R — S must be a multiple of f,. Note that as an element of R,
fg = pfp. Thus I in this example is, as a ring without unit, the
same as in the last example if we specialize to the case m =p. In
particular, Ko(R, I) = Ko(Z, (p)). It is a result of Rim, which we
will discuss later on, that the map R — S induces an isomorphism
on Ky. In particular, Ko(R) = C(S), the class group of the cy-
clotomic field. This is known to be non-zero for primes p > 23.
(See Example 3.3.5(b) below.) The smallest group G for which
K, (ZG) is non-trivial is the quaternion group of order 8—in this
case, Ko(Z@) is of order 2 and an explicit generator is exhibited
in Exercise 1.7.20(3) below.

1.5.11. Exercise. The excision theorem may be interpreted as saying
that the split exact sequence 1.5.2 gives rise to a split exact sequence of
Ky-groups, the first group of which is Ko(I). The same holds by definition
in the case of the split exact sequence 1.5.8. Using ideas from the proof of
the excision theorem, show that if

0—-I—-R—-R/I—0

is split exact (i.e., I is an ideal in a ring R, and there is a splitting homo-
morphism R/I — R), then

0 — Ko(I) = Ko(R) — Ko(R/I) — 0

is split exact.

6. An application: Swan’s
Theorem and topological K-theory

To many mathematicians, the term K-theory suggests not algebraic K-
theory but topological K-theory, an exceptional cohomology theory on
compact Hausdorff spaces defined using vector bundles. The connection
between the two comes from specializing what we have done to the case
where R is a ring of continuous functions. In this context, the Excision
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Theorem (1.5.9) gives the excision property for this cohomology theory.
We do not attempt here to cover any of the deep properties of topological
K-theory, the most fundamental of which is the Bott Periodicity Theo-
rem, but we at least give a quick introduction to the fundamentals. This
provides an interesting application of what we have done so far, as well
as a useful motivation for a number of results and constructions in future
chapters. The reader who wants to see more details can consult any of the
texts [Atiyah], [Husemoller], or {Karoubi.

1.6.1. Definition. Let X be a topological space (in most of what we will
do, assumed to be compact Hausdorff) and let F = R or C. A F-vector
bundle (in the weakest sense) consists of a topological space E and a
continuous open surjective map p : E — X, with extra structure defined
by the following:

a) each fiber p~!(z) of p, = € X, is a finite-dimensional vector space
over F;
b} there are continuous maps

Ex, E—-E and FXE—-FE

which restrict to vector addition and scalar multiplication on each
fiber.

Such bundles E 2 X make up a category, in which the morphisms are
commutative diagrams

E1.p
o
X—X

for which the map E 4, B is linear on each fiber.

For any X and any n € N, the category always includes the trivial F-
vector bundle of rank n, which is X x F* =% X, where m, is projection
on the first factor and the vector bundle structure is the obvious one coming
from the vector space structure on the second factor.

The category has a binary operation called the Whitney sum, denoted

@®. By definition, if E 2 X and E' £ X are F-vector bundles over X ,
their Whitney sum is defined by

E®E ={(z,2'):z € E, ' € E', p(z) =p'(z')},

with the obvious map to X.

For most purposes we want a more restrictive definition. A (locally
trivial) F-vector bundle is a F-vector bundle in the above sense with
the additional property that for each £ € X, there is a neighborhood
U of z in X and an isomorphism (in the category of F-vector bundles)

|p- .
from p~1(U) Z2'@), [ to a trivial bundle of some rank over U. The
rank of such a bundle is then a continuous function X — N defined by
rank,(E) = dimp~1(z). If X is connected, the rank must be constant.
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1.6.2. Definition. If X is a compact Hausdorff space, let Vectp(X) de-
note the monoid of isomorphism classes (in the category of F-vector bun-
dles) of locally trivial F-vector bundles over X, with an addition opera-
tion induced by the Whitney sum. The 0-element of this monoid is the
trivial bundle of rank 0. The topological K-theory of X is defined
by KR(X) = G(Vectg(X)). Sometimes this is denoted simply K(X) or
KUX)if F =C, KOX) if F = R. (The “U” and “O” stand respec-
tively for “unitary” and “orthogonal” after the names of isometric linear
transformations.) We will often suppress mention of F when it is under-
stood from context. If X is connected, the reduced topological K-theory
is KQ(X) = ker (rank : KQ(X) — Z).

K?(X) is actually a contravariant functor from the category of compact
HausdorfI spaces (and continuous maps) to the category of abelian groups.
This follows from the fact that vector bundles pull back under continuous

maps. If X L. ¥ is continuous and E 2 Y is a vector bundle over Y, we
define f*(Y)) to be the fiber product

{(z,e):z€ X, ec E, f(x)=ple)},

with the obvious map to X. The pull-back clearly induces a monoid homo-
morphism f* : Vectp(Y") — Vectp(X) and thus a map K°(Y) — K°(X).

We're now ready for the connection between vector bundles and projec-
tive modules that explains the connection between topological and alge-
braic K-theory.

1.6.3. Theorem [Swan2]. Let F =R or C, let X be a compact Hausdorff
space, and let R = C¥(X) be the ring of continuous F-valued continuous
functions on X (with pointwise addition and multiplication). If E 5 Xis
a (locally trivial) F-vector bundle over X, let

I'(X, E)={s: X — E continuous |pos=idx}

be the set of continuous sections of p. Observe that this is naturally an R-
module. Then I'(X, E) is finitely generated and projective over R, and ev-
ery finitely generated projective module over R arises (up to isomorphism)
from this construction. The map E ~» I'(X, E) induces an isomorphism of
categories from the category of (locally trivial) vector bundles over X to
the category of finitely generated projective R-modules. It also induces an
isomorphism K°(X) — Ko(R).

Proof. Let E % X be a (locally trivial) F-vector bundle over X and let
['(X, E) be its R-module of sections. For each x € X, there is an open
neighborhood U over which E looks like a trivial bundle U x F" for some
n. The n constant functions e; : U — F” determined by the standard
basis vectors of F™ clearly generate the sections of this trivial bundle as a
module over the continuous functions. Since X is compact, we can cover
X by finitely many such open sets U; and choose a partition of unity (f;)
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subordinate to the covering. (Thus 0 < f; < 1, f; is supported in U;, and
3" fi = 1.) Multiplying the e; corresponding to U; by f;, we get sections
ei;j supported in U; which clearly extend to all of X by taking them = 0 off
U;, and by construction, the e;; generate I'(X, E) as an R-module. Hence
I'(X, E) is finitely generated.

Next we show that I'(X, E) is projective. Choose generators s;, 1 <
j <k, for I'(X, E) as an R-module. (These may or may not be the ones
we just constructed above.) Consider the trivial bundle X x F*¥ "% X and
construct a morphism ¢ : X x F¥ — E by

k
(z, v1,--.,0%) — Zvjsj(w).

=1

Since the s;(z) span p~'(z) for each z, this vector bundle morphism is
surjective on each fiber. Define a subbundle of the trivial bundle by E' =
kerp , i.e., by E! = ker ¢,. This is also locally trivial since one can check
that it is trivial over any open set where F is trivial. We claim now that
E @ E' = X x F*, which will show that

I'(X, E) (X, E') =2 T'(X, X x FF) = R¥,

hence that T'(X, E) is a projective module over R.
The easiest way to do this is by introducing hermitian metrics, i.e., inner
products. A hermitian metric on FE is a continuous map

<, ):EXXE—)]F

which restricts to a positive-definite inner product on each fiber of E (bi-
linear if F = R, sesquilinear if F = C). Such metrics clearly exist since they
exist on trivial bundles (use the standard inner product on F*) and can
be patched together using a partition of unity. Therefore we may choose
such a metric on E and the metric on”X x F* coming from the standard
inner product on F*. With respect to these metrics, ¢ has an adjoint ¢*
satisfying the usual relation

(pv, w) = (v, p*w).

Since ¢ is surjective on each fiber, p* will be injective on each fiber, with
image the orthogonal complement of E = kery. So ¢* gives an isomor-
phism of vector bundles from E to E't, showing that E @ E' = X x F¥,
as desired.

Now we have to show that every finitely generated projective module
over R corresponds to a vector bundle. Suppose P is such a module and
PapQ@ = R" 2 C(X, F*). Then we may view P as a collection of functions
X — F™ and let

E = {(z, v1,...,v,) € X xF" : 35 € P with s(z) = (v1,...,vn)}
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Define p : E — X using projection onto the first factor. It is now quite
easy to see that E 5 X is a vector bundle. Vector addition and scalar
multiplication just come from vector addition and scalar multiplication in
F™. (These operations map E into itself since P is an R-module.) We need
only check the local triviality. Given z € X, choose elements el,...,e" € P
such that e!(z),...,e"(z) are a basis for the subspace E, = p~!(z) of F".
Recall these are vector-valued functions; write e = (ei,...,e%). Then
since e!(z),...,e"(z) are linearly independent, we can choose 1 < j; <
-+ < j» < n such that

1 1 1
€ € €jr

(1.6.4) e = det
T r r
€, €, -+ €,

is non-zero at x. We may choose similar elements f1,...,f* " € Q such
that f(x),...,f" () are a basis for the image of @ in F" at z. (The
dimensions are complementary since P & Q = R™ = C(X, F*).) From
the f* we may construct an (n — r) x (n — r) determinant f, similar to
(1.6.4), which is non-zero at x. Since e and f are continuous, there is
some neighborhood U of z in which both e # 0 and f # 0. For y € U,
e'(y),...,e"(y) are linearly independent and generate a rank-r free sub-
module of P. Similarly, f}(y),...,f* "(y) are linearly independent and
generate a rank-(n —r) free submodule of ). By dimension counting, these
must exhaust P and @), so both P and Q) are trivial over U. The statement
about an equivalence of categories is now easy to check. O

Theorem 1.6.3 suggests that we should extend the definition of K° to
the category of locally compact spaces and proper maps (maps that
extend continuously to the one-point compactification) by letting K°(Y) =
Ko(CE(Y)), where CE(Y) is the ring of functions vanishing at infinity on
Y and we are using K-theory for rings without unit, as in Definition 1.5.7.
The resulting theory is called K-theory with compact supports. See
Exercise 1.6.14 below for a more geometric definition.

1.6.5. Proposition. If X is a compact Hausdorff space and A is a closed
subspace, there is (for F = either C or R) an exact sequence induced by
the inclusion A — X:

K°%X < A) - K%(X) — K°(A).

Proof. Let R = C¥(X), and let I be the closed ideal of functions van-
ishing on A, which as a ring without unit is isomorphic to CE(X \ A),
the functions vanishing at infinity on the locally compact space X \ A.
By the Tietze Extension Theorem, every continuous function on A is the
restriction of a continuous function on X, hence R/I may be identified
with CF(A), with the quotient map R — R/I identified with restriction
of functions. The result now follows immediately from Theorem 1.6.3 and
Theorem 1.5.9. O
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Proposition 1.6.5 shows in effect that K° satisfies two of the Eilenberg-
Steenrod axioms for a cohomology theory: exact sequences and excision. It
also satisfies the other key axiom, homotopy invariance, and we prove this
next by using special properties of Banach algebras. Recall that a Banach
algebra A is an algebra over R or C which also has the structure of a
Banach space, such that for any a, b € A, |[ab|| < ||a||||b||. The principal
examples for our purposes are M, (C¥(X)), X a compact Hausdorff space,
or M, (CE(Y)), Y a locally compact Hausdorff space. The latter does not
have a unit.

1.6.6. Lemma. Let A be a (real or complex) Banach algebra with unit
and let © € A with |1 — z|| < 1. Then for each o € R there is an element
z% in A with the usual properties (' =z, 2% = 1, 2 - 28 = 2°+#). In
particular, = is invertible in A.

Proof. Define z* by the usual binomial power series for (1 + (z — 1))®.
The norm of the n-th term in the series is bounded by the corresponding
term in the series for (1+||z—1]|)*, which converges absolutely. Since Ais a
Banach space, the series for ® therefore converges absolutely. The relation
z® - 28 = £2*P follows as usual from multiplication of the series. [

1.6.7. Lemma. Let A be a Banach algebra and let p, q be two idem-
potents in A with ||p — g|| < min (|lp||=2, |lg|=2). Then the projective
A-modules Ap and Aq are isomorphic.

Proof. Observe that pAp and qAq are Banach algebras with unit ele-
ments p and g, respectively. Since ||p — ¢|| < ||p||~2, multiplying by p on
both sides gives ||p—pgp|| < 1, and similarly ||g—gpg|| < 1. Soz = (pqp)‘%
makes sense in pAp and gpq is invertible in gAg, both by Lemma 1.6.6. Thus
there is an x € pAp commuting with pgp with z?(pgp) = p and of course
with £ = zp = px. Observe then that

(1.6.8) (xq)(¢z) = zpgpe = =*(pgp) = p,
that

(1.6.9) p(zq) = zg = (zq)g, q(gz) = gz = (qz)p,
and that

(1.6.10) (92%q)(qpq) = 9=?qpg = 9> (pap)q = qpq.

The equation (1.6.10) says (gz)(zq) is a left unit for gpq in gAg. But since
gpq is invertible in qAq, (¢z)(zq) must be equal to the unit element of
qAgq, which is q. The equations (1.6.8) and (1.6.9), together with this fact,
imply that right multiplication by gz gives an isomorphism from Aq onto
Ap, whose inverse is right multiplication by xq (compare the calculation in
Lemma 1.2.1). O
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1.6.11. Corollary (Homotopy invariance of topological K-theo-
ry). Let A and B be Banach algebras and let ¢ : A —» B, 0 <t <1,
be a homotopy of homomorphisms from A to B. (This means exactly
that there is a homomorphism ¢ : A — C([0, 1], B) which when composed
with evaluation at t gives ¢;.) Then g and ¢; induce the same map on
K-theory Ko(A) — Ko(B).

Proof. If necessary, adjoin units to A and B and extend ¢; to a homotopy
of unital homomorphisms of unital algebras Ay — B,. Since Ky(A) —
Ko(A4) and Ko(B) — Ko(By), this reduces us to the unital case. For
simplicity, we therefore assume without loss of generality that A, B, and
the homomorphisms are unital. For any p € Idem(A), p lies in M, (A) for
some 7, so we may replace A and B by M, (A) and M, (B), respectively.
(These are still unital Banach algebras, and ¢, extends naturally to M, (A)
just by application of the homomorphism to each matrix entry separately.)

Then ;(p) is a continuous path of idempotents in B. Choose C so that
lee(p)|| < C for all t. We may partition the interval [0, 1] into subintervals
such that ||¢:(p) — ps(p)|| < C~2 for ¢, s in the same subinterval. By
Lemma 1.6.7, the class of ;(p) remains constant in each subinterval, hence
remains constant in the whole interval. So g and ¢; induce the same map
Idem(A) — Idem(B) and hence the same map on Ky. O

1.6.12. Corollary. The functors X ~ Vectp(X) and X ~» K%(X) are
homotopy-invariant functors from the category of compact Hausdorff topo-
logical spaces to the category of abelian monoids and the category of abelian
groups, respectively. In particular, if X is contractible, all vector bundles
over X are trivial, and K°(X) = 0.

Proof. Specialize to the case of Banach algebras of the form M, (CF(X)).
Since homotopic idempotents are equivalent, we deduce that the map from
X to isomorphism classes of direct summands in a trivial bundle of rank
n over X is a homotopy functor. The rest of the statements follow from
this. O

1.6.13. Example. Corollary 1.6.12 shows that the classification of vector
bundles, and hence the calculation of K%(X), are homotopy-theoretic in
nature. Consider for instance the case where X = S™. This is a union of
two contractible hemispheres joined along the equator S*~1. (If n = 0, the
hemispheres are single points and the “equator” is the empty set.) Thus
any rank-r bundle over X is trivial over the hemispheres and determined
by the homotopy class of the “gluing data” along Y = S™~!, which gives
an isomorphism between the two trivializations of the bundle coming from
the two hemispheres. Now an isomorphism between two trivial bundles
Y x F* Z% Y is just given by a continuous map ¥ — GL(r,F). So
isomorphism classes of rank-r F-vector bundles over S™ are in one-to-one
correspondence with homotopy classes of maps S*~! — GL(r, F). Fur-
thermore, by polar decomposition, any matrix in GL(r, F) can be written
uniquely in the form up, where v is unitary if F = C, orthogonal if F = R,
and p is positive-definite self-adjoint. The positive-definite self-adjoint ma-
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trices form a contractible space (since one can write any such matrix as
e® with b hermitian and use the contraction given by €**, 0 < ¢ < 1), so
GL(r, C) has a deformation retraction to U(r) and GL(r, R) has a defor-
mation retraction to O(r). Thus the isomorphism classes of rank-r F-vector
bundles over S™ are given by m,—1(U(r)) if F = C, 7,_1(0O(r)) if F = R.
The 0-element of the homotopy group corresponds to the trivial bundle.

Now we can make some computations. O(r) always has two components
with identity component the rotation group SO(r), and U(r) is connected.
Thus 7o(U(r)) = 0 and mo(O(r)) & Z/2, so KU (SY) = 0, KO (S!) =
Z/2. In low dimensions, one can check that O(1) = {1, -1}, SO(2) = S*,
SO(3) = RP?, SO(4) has S% x S% as a double cover, U(1) = S*, SU(2) =
3. Thus, for instance,

0, r=1,
m(O(r)) = Z, r=2,
Z/2, r>3,

so that Vectg(S?) is the monoid described in Exercise 1.1.7. One finds sim-
ilarly that 71 (U(r)) = Z for all r, so that KU 0(S"’) & Z. The calculations

— )

of KO (S™) and of KU (S™) for all n follow from the Bott Periodicity The-
orem, which says that the answer only depends on the value of n mod 8
in the real case or the value of n mod 2 in the complex case. One obtains

0, r#0,1,2,4 mod 8,

I?BO(S") = Z, r=0,4 mod 8,
Z/2, r=1,2 mod 8,

I?[?O gn 0, rodd,

(57) = Z, T even.

1.6.14. Exercise. Give another description of K-theory with compact
supports for a locally compact Hausdorff space Y in which K°(Y) is a set
of equivalence classes of triples (Fy, E1, ¢), where Ey and E; are (locally
trivial) vector bundles over Y and ¢ is a morphism of vector bundles Ey —
E; which is an isomorphism outside of a compact set, and with relations

(a‘) [EOaE1790]+[F07F17¢]=[E0®F0aEIEBFla§0®"/)]a
(b)  [Eo, E1, @] = [Eo, E1, ¢'] if ¢ = ¢’ outside of a compact set,

(c) [Eo, Er, ] =0 if p is an isomorphism.

Impose the necessary equivalence relation to get an isomorphism with our
old description of K°. Hint: when Y is actually compact, condition (b)
says that one can forget the o altogether. In this case, the isomorphism of
this description of K° with the usual one is given by

[Eo, E1, | — [Eo] — [En].
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1.6.15. Exercise. Show that if one defines K—7(X) = K%(X xRY) (using
K-theory with compact supports) that the short exact sequence of Propo-
sition 1.6.5 can be extended to a long exact sequence

s KX NA - KI(X) - K 9(A) - K9P (X NA4) —---.

Hint: the problem is construct the boundary map K°(AxR) — K%(X \A).
This can be done by letting Y be the space (A x (0, 1]) U X, with (a, 1)
identified with @ € X for a € A. (Y is the “open mapping cone” of the
inclusion A — X.) One gets from Proposition 1.6.5 exact sequences

K°(A x (0,1)) = K°(Y) —» K°(X)

and
K°%X < A) = K°(Y) — K°(4 x (0, 1]).

Show using homotopy-invariance and excision that K%(A4 x (0, 1]) vanishes
and that K°(X \ A) — K°(Y) is an isomorphism. Then splice these exact
sequences together with the sequence

K%X \ A) - K%X) — K°(A).

1.6.16. Exercise (The Karoubi Density Theorem {Karoubi, IL.6.
15]). Let A and A be (unital) Banach algebras over C, and let 1 : A — A
be a continuous injection of A into A as a dense subalgebra. Extend ¢
to matrices in the usual way, by applying it to each entry of the matrix.
Assume that for all n, if £ € M,(A) and ¢(z) is invertible in M, (A), then
z is invertible in M, (A).

(1) Show that ¢ induces an isomorphism Ko(A) — Ko(A). Hint for
the surjectivity: if e is an idempotent in M, (A), then e can be
approximated in the topology of A by an element z of M,(A).
Show that the spectrum of z in M,,(.A) coincides with its spectrum
in M, (A), and thus that = has spectrum close to {0, 1}. Deduce
that the Banach subalgebra of M,,(.A) generated by z contains an
idempotent f with +(f) close to e, by justifying the definition

1 ¢

where I is a contour in the complex plane encircling the part of the
spectrum of z close to 1, and excluding the part of the spectrum
of z close to 0. Then use Lemma 1.6.7.

(2) Show that the two hypotheses are satisfied if A is the algebra of
continuous complex-valued functions on a compact subset X -of
R"™ (equipped with the sup norm || ||), and if A is the algebra
of continuously differentiable functions on X, equipped with the
norm

Iflla =71+ IV AL

Deduce that “every vector bundle over X has a differentiable struc-~
ture.”
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7. Another application: Euler characteristics
and the Wall finiteness obstruction

In this final section of Chapter 1, we discuss the algebraic background of
most of those applications of Kj to topology that do not involve topological
K-theory. While what we will be doing here is pure algebra, it is worth
saying a bit about the topological motivation to explain what is going on.
If X is a path-connected, locally 1-connected topological space with fun-
damental group G and R = ZG, we can manufacture from X its singular
chain complex with local coefficients S,(X). This is a chain complex
of free R-modules which is the same thing as the usual singular chain com-
plex of the universal cover X of X, together with the R-module structure
coming from the action of G on X by covering transformations. Further-
more, the chain homotopy equivalence class of the chain complex So(X)
only depends on the homotopy equivalence class of the space X. The chain
complex S,(X) is quite large in general; for most spaces of interest, the
R-modules in it are not even countably generated. However, if X is a finite
CW-complex, then S,(X) is chain homotopy equivalent to the cellular
chain complex with local coefficients C,(X), a chain complex of free
R-modules with only finitely many non-zero chain groups and with each of
these chain groups finitely generated. Thus an obvious necessary condition
for a space X to be homotopy-equivalent to a finite CW-complex is for
Se(X) to be chain-homotopy-equivalent to a finitely generated complex of
free R-modules.

Under some circumstances, it is easy to check not this condition but
something weaker, called finite domination. The space X is finitely dom-
inated if up to homotopy it is a retract of a finite CW-complex; in other
words, if there is a finite CW-complex Y and there are maps f : X — Y,
g:Y — X with go f ~ idx. An important question is then whether
this implies that X is homotopy-equivalent to some (other) finite CW-
complex. (It is not hard to show that X is homotopy-equivalent to some
CW-complex (see [Varadarajan, Theorem 3.9] or [Spanier, Ch. 7, Exercise
G6]), but this complex is not necessarily finite.) This question was an-
swered by C. T. C. Wall in an important series of papers. Wall showed
that if X is finitely dominated, then S,(X) is chain-homotopy-equivalent
to a finitely generated complex of projective R-modules. The Wall finite-
ness obstruction of X is then the “Euler characteristic” of this complex
in the group Ko(R). Though we will not show here that vanishing of the
obstruction is sufficient for finiteness (for this see [Wall] or [Varadarajan]),
it will be clear that it is necessary. The Wall obstruction occurs in many
problems in geometric topology, such as the question studied by Sieben-
mann of when a non-compact manifold is homeomorphic to the interior of
a compact manifold with boundary. For this and other geometric problems
related to the Wall obstruction, see [Weinberger, Ch. 1, §1 and §4].

We shall now provide an abstract treatment of the Wall finiteness ob-
struction for chain complexes of R-modules, as an outgrowth of the classical
theory of the Euler-Poincaré characteristic for topological spaces. Since we
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don’t assume the reader is very familiar with homological algebra, we be-
gin with a review of some classical notions and facts. The reader who has
had a course in homological algebra or homology theory can probably skip
ahead to 1.7.9 after reviewing the statements of Thtorems 1.7.4 and 1.7.7.

1.7.1. Definition. Let R be a ring (with unit). A chain complex of
R-modules is a pair (C,, d), where C, is a Z-graded R-module and d is an
R-module homomorphism C — C of degree —1 such that d? = 0. (In other
words, d is defined by maps d,, : C,, — Cp,_1 such that d,,.; od, = 0.)
Recall that the homology of such a chain complex is H(C) = ker d/ im d;
more precisely, H, = kerd,,/imd, 1. Elements of ker d are called cycles
and elements of im d are called boundaries. The chain complex is called
acyclic if H(C) =0, i.e., if the sequence

d dn_
N B N B s R

is exact.

1.7.2. Definition. If (C,, d), (Cl, d’) are chain complexes of R-modules,
a chain map between them is an R-module homomorphism ¢ : C — C’
of degree 0 intertwining d and d’, i.e., is given by maps ¢, : Cp, — CJ, such
that d}, o ¢, = @Yn—1 0dy,. It is immediate that such a ¢ induces maps on
homology ¢, : H,(C) — H,(C"). If ¢ : C — C' and 9 : C — C’ are chain
maps, a chain homotopy between them is an R-module homomorphism
s:C — C' of degree +1 such that

(1.7.3) sod+d os=¢p—1.

Chain homotopy is an equivalence relation on chain maps. We write ¢ ~ 9
if there is a chain homotopy between them. A chain homotopy from id¢c
to 0 is called a chain contraction, and if such a homotopy exists, C, is
called chain-contractible.

Note that (1.7.3) implies that ¢. = 9. on homology. Indeed if dz = 0,
then

p(z) — P(z) = sod(z) +d 0 s(z) = d'(s(z)),
so that op(x) and ¥(z) lie in the same homology class. Thus if a chain
complex is chain-contractible, it is acyclic. The converse is false without
additional conditions.

If there exist chain maps ¢ : C — C’ and 9 : ¢’ — C such that
o ~ idc and po1p ~ idgr, then we say C and C’ are chain-homotopy-
equivalent. This of course implies by our previous remark that ¢, is an
isomorphism on homology with inverse /..

1.7.4. Proposition. If (C,, d) is an acyclic chain complex of projective
R-modules and C, is bounded below, i.e., C; = 0 for j sufficiently small,
then C, is chain-contractible.

Proof. Without loss of generality assume C; = 0 for j < 0. (Otherwise
reindex.) We construct a contraction s, : Cp, — Cpry1 by induction on n
to satisfy the needed condition

(*n) Sn—10dn + dny1 08y = idg,.
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At the same time, we also show by induction that kerd, is a direct sum-
mand in C,. To begin the induction, set s; = 0 for j < 0 and note that
by the assumptions that Hyo(C) = 0 and C_; =0, d; : C7; — Cp must be
surjective. Since Cjy is projective, d; must have a right inverse sg, so (%g)
holds. Furthermore, imd; = ker dqg = Cy is projective.

For the inductive step, assume we’ve constructed s; for j < n to satisfy
(*;) and we know kerd; = imd;,, is a direct summand in C; for j < n,
hence projective by Theorem 1.1.2. We shall construct s, to satisfy (*,).
By inductive assumption, C,,_; = (imd,,)®Q,,—1 for some projective Q1.
On imd, = kerd,_1, sSp_20d,_1 =0, so d, o 8,_1 is the identity. Thus,
by (*p—1), Sn—1 is a right inverse for

dy :C, —imd, C Cp_1.

Therefore s,_; o d,, is an idempotent endomorphism of C,, with image Q.
complementary to kerd,, and kerd,, = imd, . is R-projective. Since

dn+1 . Cn+1 — im dn+1 = ker dn

is surjective, it has a right inverse s,,. Extend s, to all of C,, by making
it 0 on Q. Then (x,) is satisfied and we’ve completed the inductive step.
The Proposition now follows by induction. 0O

1.7.5. Definition. Suppose ¢ : (C,, d) — (C., d') is a chain map between
chain complexes of R-modules. Its mapping cone is (C7, d”), where
C} = Cj—1 ® C} (note the degree shift in the first summand!) and

d‘ljl(c’ CI) = (_dj—lc, (P(c) + d;(c,))
This is a chain complex since

di_jodj(c, ¢) = (dj_z 0 dj_1c, p(—dj_1¢) + d;_; ((c) + dj(c)))
= (01 —po dj—l(c) + d;'—l ° (P(C) + O) = (Oa 0)

1.7.6. Theorem (Fundamental Theorem of Homological Alge-
bra). Suppose

0— (Cl, d) 2 (Ch, d) D (€2, d) > 0

is a short exact sequence of chain complexes. (This means o and (3 are
chain maps and the sequence of R-modules

00 5¢ Ll —o

is exact for each j.) Then there is an induced long exact sequence of
homology modules

e Hy(C) 25 Hy(€) P Hy(C") % Hia(C) = -
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Proof. This is the quintessential “diagram chase.” First we go through

the definition of H;(C") 2, H;_1(C"); then we go through the proof of
exactness. Let [z"] be a class in H;(C") represented by z” € Cj with
d"z" = 0. Since S is surjective, " = #(x) with z € C;. Since d’of(x) =0
and 3 is a chain map, o d(z) = 0, i.e., d(z) € ker 3 = ima. Hence
d(z) = a(z’) for some 2’ € Cj_;. We claim d'(z') = 0, so that 2’ is a
“cycle,” i.e., represents a class in H;_1(C”). Indeed, since o is a chain
map, aod'(z') = do a(z’) = d*(z) = 0. But o was injective, so d'(z') = 0.
Now let 9[z"] = [z/]. We leave to the reader the simple argument that
shows this is independent of the choice of 2’ within its homology class and
independent of the choice of the lift = of z”.

We proceed now to the proof of exactness. The construction of d[z"]
above gives a.(d[z"]) = [a(z’)] = [0], and also shows that if [z"] = B[]
for some [z] € H;(C), then d[z"] = 0 (since d(x) = 0). Also, By o, =0
since B o a = 0. So the image of each map in our sequence is contained in
the kernel of the next one.

For the reverse containments, suppose for instance that z € Cj, d(z) = 0,
and B,[z] = 0 in H;(C"). Then f(z) = d"(y") for some y"” € C7,;.
Since 8 is surjective, we may choose y € Cj;1 with B(y) = y”. Since
d" o B(y) = Bod(y) = B(x), z—d(y) € ker 8 = im ¢, and [z] € im a,. Thus
ker 8, C im «,.

Next, suppose z € C7, d"(z) = 0, and 9[z"] = 0 in H;_,(C'). By
the description of & above, this means ¢” = B(z) with d(z) = a(z’) and
' = d(y), ¥ € Cj. Then doa(y') = aod(y) = az') = d(z), so
z — a(y’) € kerd. Since also 8(z — a(y')) = B(z) = z", this shows [z'] =
Bz — a(y’)]. Hence ker 9 C im §,.

Finally, suppose z’ € Cj_1, d'(z’) =0, and a.[z’] = 0in H;_;(C). Then
a(z') = d(z) for some z € C;. Let " = B(x). Then d"(2") = fod(x) =
Boa(z') =0, so =" defines a class [z”] in H;(C"”). From the description of
9, 0[z"] = ['], so ker o, C im 8. This completes the proof of exactness. [l

1.7.7. Theorem. A chain map between chain complexes of R-modules is
a chain homotopy equivalence if and only if its mapping cone is contractible.
If the complexes are bounded below and consist of projective R-modules,
then it is a homotopy equivalence if and only if the mapping cone is acyclic,
or if and only if it induces an isomorphism on homology.

Proof. Let ¢ : (C,, d) — (C., d') be a chain map and let (C7, d”) be its
mapping cone. First observe that there is a short exact sequence of chain
complexes

0—(C.,d)— (Cl,d") — (Coe—1, —d) — 0.
The maps here are the obvious ones: we map C; to C} = C;_1 & CJ'~ by
¢ +— (0, ¢'), and we project C} onto the first summand Cj;_;. The fact that
these maps commute with the boundary maps is obvious from Definition
1.7.5. Since changing the sign of d doesn’t change the homology of C, we
obtain from Theorem 1.7.6 an exact sequence

(1.7.8) -+ — Hp(C") = Hp_y(C) D Ho_1(C") = Hoa(C") — -+
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Here it is easy to check from the definition of d that the map H,_,(C) —
H,_1(C") is just ¢.. Thus ¢. being an isomorphism in all degrees is equiv-
alent to the mapping cone C” being acyclic. Furthermore, if C and C’ are
bounded below and consist of projective modules, then the same is true of
C". Hence, by Proposition 1.7.4, the mapping cone in this case is acyclic
if and only if it is contractible.

It remains to show that ¢ is a homotopy equivalence if and only if C”

is contractible. Suppose s” : C" — C” is a chain contraction. Then we
defines:C - C,s:C' > C’',and ¥ :C’' = C by

s"(c, 0) = (s(c), --+),
§"(0, ¢) = ((¢), =5'(¢')).
Since d"s" + s"d" = idcr, we have
(c, 0) = (=dos(c), ) + s"(—de, ¢(c))
=(—dos(c)+vop(c)—sod(c), ),
(0, ) = d"(¥(c'), —5'(c')) + s"(0, d'(c))
= (=do¢(c), potp(c)) —d 0 5'(c)) + (Y o (), =5’ 0 d'(¢)),
which says
—dop(c)+pod(c) =0V (¢ is a chain map);
c=—dos(c)+yPoyp(c)—sod(c) Ve (wogo%*idc);
d=pop(cd)—d o () -5 od ()Y (pot = idcr).
In the other direction, suppose ¢ is a homotopy equivalence with homo-

topy inverse 3, and suppose one has homotopies s from 1 o ¢ to idc and
' from ¢ 09 to idcr. Let

s"(c, ) = (s(c) + ¥(c) + Yo s’ o p(c)popos(c),
~s'() + 5" 0pos(c) — ()2 0 p(c)) -
We will check that one obtains a chain contraction of C”. Note that
(d"s" + 5"d")(c, ) = d" (s(c) +¥(c') + 9 o5 o p(c) —Popos(c),
—s/(¢) + 8/ 0o 5(c) — ()2 0 (c))
+ " (=d(c), p(c) +d'(c))
= (—dos(c) —doy(c) —doypos op(c)
+dowopos(c), pos(c)+pop(c)
+@otpos’op(c) —popopos(c)
—d' os'(d) +d o5 opos(c)—d o(s)?0p(c))
+(—sod(c) +yop(c) +yod(c)
+1 o5’ op(—d(c)) + 9 opos(d(c)),
—soplc)—sod(c)
+8' 000 s(=d(c)) - ()2 0 p(~d(c)))..
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The first coordinate (after some regrouping) is

— [~do s(e) - sod(e)] + [~doB(c) + pod'(¢)
+-doos o ()~ o8 o pod(o)]
+1dopopos(e) +poposodl)] +¥op(c)
—(dos+sod)(c)+ (Yoposod+popodos)(c)
—Yo(dos +s od)oyp(c)+1opc)
—c+popo(hop—ida)(c)
— o (poth—ide) o p(c)

=CcC.

The second coordinate (after some regrouping) is

— lpo9(e) —d os/(¢) — s o d(c)]
+[pos(c)+d os opos(c)—porpoypos(c)
4[5 0 p(e) —d' o (520 p(e) + oo s 0 ()]
— S oposod(e) +(s)?opodc)

=c + (ider —pop+d os')opos(c)

+(pot—ider —d o) o5’ o p(c)

—Soposodl)+(s) opodc)
=c —sod opos(c)

+8 od o5 op(c)

— soposed(d) + ()0 pod(d

=c —s opo(dos+sod)(c)

+8o(dos +s od)op(c)

=c —sopo(Pop—ids)(c)

150 (pot — ider) o 90

=c.

This confirms that s” is a chain contraction of C”. O
Now we're ready to introduce the connection with Ko(R).

1.7.9. Definition. A chain complex (C,, d) of R-modules is called bound-
ed if the modules C; are non-zero for only finitely many j, and is called of
finite type if it is bounded and all the C; are finitely generated. (The
connection with topology is that the cellular chain complex of a finite
CW-complex is of finite type, and the cellular chain complex of a finite-
dimensional CW-complex is bounded (with non-zero chain groups only in
the dimensions of the cells of the complex).)
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If (C., d) is a chain complex of finite type of projective R-modules, we
define its Euler characteristic by

x(©) = Y (-1)°[C] (in Ko(R)).

j=—00

Note that this is really a finite sum, and that d is not used in the definition
of x(C). Also define %(C) to be the image of x(C) in Ko(R).

1.7.10.  Proposition (“Euler-Poincaré Principle”). The Euler
characteristic is additive on short exact sequences of complexes of finite
type. In other words, if

0-C'-C"-C—-0

is a short exact sequence of chain complexes of finite type of projective
R-modules, then x(C") = x(C")+ x(C). Furthermore, if (C,, d) is a chain
complex of finite type of projective R-modules, and if all its homology
modules are projective, then

[o o)

x(©) = Y (~V[H;(C)l

j=—00

Proof. Since any short exact sequence of projective modules splits, if
0-C'-C"-C—-0

is a short exact sequence of chain complexes of finite type of projective
R-modules, then C} = C; & Cj, hence [C}] = [C]] + [C;] and the formula
x{C") = x(C") + x(C) follows upon taking the alternating sum over j.

Next, suppose {C,, d) is a chain complex of finite type of projective
R-modules and all the homology modules H;(C) are R-projective. Let
Zj = ker(dj : Cj — Cj_l), Bj = im(dj+1 . Cj+1 4 CJ) We have short
exact sequences

(*) 0— Zj+1 — Cj+1 —d—JiI—) BJ — 0,
(=) 0—-Bj—Z; - H; —0.

Since Hj is assumed projective, () splits, and Z; = B; ® H;. Since the
complex is assumed to be of finite type, we may assume (after reindexing)
that C; = 0 for j < 0, in which case Cy = Zj is projective; hence, since

Zo & By & Hy, By is projective. Thus C; s, By must split and so
C: = By ® Z;. This implies Z; is projective, and since Z; = B; & Hj,
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B, is projective. Continuing by induction, all the B; and Z; are projective
and all of the above short exact sequences split. Thus we obtain

[Zj+1] + [B;] = [Cj4a]  (from (%)),

[Bj] + [Hj] = [Z;] (from (¥%)).
Substituting in the definition of x(C), we obtain

x(C) = Z (-1)7[C5]
= Z (=1)([Z;] + [Bj-1])
=Y (=1 ([H,] + [B;] + [Bj-1])

j=—o0

= Y i+ Y (1B S (-1)(B)]

j:—oo j:—oo j:—oo

= Y (-1Y[H;). O

j=—o0

1.7.11. Corollary. The Euler characteristic is well defined on chain
complexes of projective R-modules which are homotopy-equivalent to com-
plexes of finite type of projective R-modules, and is constant on homotopy
equivalence classes. It is also additive on short exact sequences of such
chain complexes.

Proof. Suppose (C,, d) is a chain complex of projective R-modules which
is homotopy-equivalent to a chain complex of finite type (CZ, d') of pro-
jective R-modules. We define x(C) = x(C!). Of course, to know that
this makes sense, we need to check that it is independent of the choice
of C. If (C?, d?) is another possible choice, then C' and C? are each
homotopy-equivalent to C, hence are homotopy-equivalent to each other.
Let ¢ : C1 — C? be a homotopy equivalence between them and let C3
be its mapping cone. Since C' and C? are of finite type and consist of
projective R-modules, the same is true of C3. Furthermore, from the short
exact sequence

0—(C2) = (C3) = (Cey) = 0

and Proposition 1.7.10, we obtain that
x(C?) = x(C?) — x(C).

But C? is acyclic by Theorem 1.7.7, so its homology modules are 0 and
hence x(C3) = 0 by Proposition 1.7.10 again. Thus x(C') = x(C?),
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as required. The same calculation shows that homotopy-equivalent chain
complexes have the same Euler characteristic. Finally, additivity on short
exact sequences also follows immediately from Proposition 1.7.10 and the
fact that short exact sequences of projective modules must split. O

We're now finally ready for Wall’s theorem.

1.7.12. Theorem [Wall|. Let (C., d) be a chain complex of projective
R-modules which is homotopy-equivalent to a chain complex of finite type
of projective R-modules. Then (C,, d) is homotopy-equivalent to a chain
complex of finite type of free R-modules if and only if (C) = 0 in Ko(R).

Proof. Suppose (C,, d) is homotopy-equivalent to (C{, d’) of finite type,
with both complexes consisting of projective modules. By Corollary 1.7.11,
x(C) = x(C"); hence x(C) = x(C’). If C’ consists of finitely generated free
modules, then clearly x(C’) =0 so x(C) =0.

On the other hand, suppose X(C’) = 0. It will be enough to show C’
is homotopy-equivalent to a complex of finite type consisting of free R-
modules. Suppose C; = 0 for j outside of an interval {k, k+1,..., k +
n}. Choose projective modules Qn, ..., Qo such that C} ., & Qy is free,
Crin_1DQn®Qn—1 is free, and in general such that C} , , ©Q;+1©Q; is
free for 0 < j < n. If (T, dr) is chain-contractible, then replacing (C}, d')
by (C., d') & (T,, d¥) doesn’t change its homotopy class. So let (T, dT)
be defined by
i — 0, i#k+j4k+j5-1,

i—{Qj, 7'=k+.7’k+.7_1’

with d’fij : Q; — Q; the identity map. This is clearly contractible, so now

n
(ci,d") =(C,, d)o P(T, d")
=0
is homotopy-equivalent to (C}, d') and has free modules in all degrees ex-
cept k — 1. Thus

0=%(C) =x(C") = (-1)*[Ci1] (in Ko(R)),

so Cj/_, is stably free. Choose a finitely generated free R-module F' such
that Cy_, @ F = F. Let (T,, d¥) be defined by

T 0, j#k“lak*27
f‘{ﬂ j=k—-1k~-2,

with df_, : F — F the identity map. This is clearly contractible, and
(c?, d"y ® (T, d¥) now has free modules in all degrees. So (Cs,, d) is
homotopy-equivalent to a chain complex of finite type of free R-mod-
ules. O

When R is Noetherian, we can also relate finite generation of a chain
complex C to finite generation of its homology, as shown in the following
theorem.
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1.7.18. Theorem. Let R be a (left) Noetherian ring. If (C., d) is a
bounded chain complex of projective R-modules, then H;(C) is finitely
generated over R for all j if and only if C is homotopy-equivalent to a com-
plex of finite type of projective R-modules. In particular, if the homology
modules of C are finitely generated, its Euler characteristic is well defined.

Proof. One direction is easy. If C is homotopy-equivalent to a complex
of finite type, then its homology is the same as that of a complex of finite
type, so we might as well assume C is already of finite type. If R is
Noetherian and C; is finitely generated, then its submodule Z; = kerd;
must also be finitely generated, hence H;(C), which is a quotient of Z;, is
finitely generated. Thus all homology modules are finitely generated.

For the converse, without loss of generality, assume C; = 0 for j < 0
and for 7 > n. We first construct by induction on m, starting at 0 and
continuing up to m = n, a complex of finite type (C’;-, d')j<m of free R-
modules and a chain map

p:(Ce, d) = (Cs, d)

which induces isomorphisms on homology through degree m — 1. Of course
we take C]’. =0 for j < 0 and for j > n. To begin the induction, note
that since Cj_; =0, Ho(C) = Cp/imd;. Choose a finite set of generators
[#1],- .., [zr] for Hp(C) and representatives x1,...,z, € Co. Let Cj be the
free R-module on generators y,...,y, and let wo(yx) = k. Since R is
assumed Noetherian, the kernel B} of the composite map

Ch 2% Cy — Hy(0),

being a submodule of the finitely generated module Cj, is also finitely gen-
erated. Choose generators 2y, . . ., 2; for By and let C] be free on generators

d,
wi, ..., w;. Define d} so that dj (wx) = zx. Then C} — Cj is a chain com-
plex with Ho(C") = Cj/Bj and ¢o induces an isomorphism on Hy. Since
we want g to be the 0-degree part of a chain map, we need to define ¢;
so that

C:’l _L)Cl

d’ll dll
c, £ ¢

commutes. Since pg(2x) goes to 0 in Hy(C), we can choose u; € C1, with
di(ukr) = @o(2k). So we let ¢1(wg) = ux and the condition is satisfied.
This completes the first step in the induction.

For the inductive step, assume we’ve constructed a complex of finite type
of free R-modules (C}, d;) for j < m and a chain map ¢ : ¢’ — C which
is an isomorphism on homology in degrees < m. Continuing as before,
choose generators [z1], ..., [z,] for H,(C) and representatives z1,...,z, €
Zm C Cp. Replace the old C}, by its direct sum with the free R-module
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on generators ¥y, . . . , ¥ and let ©m(yx) = zx. We keep ¢y, the same on the
old C”,. Similarly, we do not change d;,, on the old C;, and let d,,(yx) = 0.
Then we still have a chain complex and a chain map for j < m but now
. is surjective on H,,. As before, we choose C7, ,; finitely generated and
free with dy4+1 : Cpy .y — Cm, mapping onto the kernel of the composite

C! £ Zm — Hp(C),

and define @,,1 as above so that we have a chain map which now is an
isomorphism in homology through degree m. We continue by induction
until we’ve constructed a complex of finite type of free R-modules and a
chain map ¢ : C' — C which is an isomorphism on homology in degrees
< n and a surjection in homology in degree n. Of course, since everything
is zero in degrees > n, ¢, is actually an isomorphism on homology in all
degrees except n.

Now consider the mapping cone (C7, d”) of ¢. This is a bounded com-
plex of projective R-modules with non-zero chain modules only in degrees
0 through n + 1. By the exact sequence (1.7.8) (in our situation C' and
C' are reversed), C" has only one non-zero homology module, in degree
n + 1. Repeating the proof of Proposition 1.7.4, we can construct a chain
contraction of C” through degree n, which shows that d], , : C;/,.; — By is
split surjective and thus that H,41(C") = Z],, = kerd,, ,; is R-projective
and a direct summand in C}/,; = C,. Hence we may replace C;, by a pro-
jective complement to H,,41(C") and thereby make C' a complex of finite
type of projective R-modules and ¢, an isomorphism on homology, hence
a chain-homotopy equivalence, by Theorem 1.7.7. O

Remark. This proof demonstrates clearly the origin of Wall’s obstruc-
tion. At the last step of our induction, we can either make ¢, into a
homology isomorphism in degree n at the expense of making C,, a possibly
non-free projective module, or we can make Cj, free and ¢, an epimorphism
on homology in degree n, but in general we can’t take C,, free and at the
same time make ¢ a homotopy equivalence.

Now for some topological applications. Wall’s work on finiteness ob-
structions for chain complexes arose from the question of when a connected
space X is homotopy-equivalent to a finite CW-complex. If Y is a finite
connected CW-complex, Y is locally simply connected (so that covering
space theory applies) and has a finitely presented fundamental group .
(The fundamental group of the 1-skeleton of Y is a finitely generated free
group surjecting onto 7, and 7 is obtained-from this free group by adding
in one relation for each 2-cell.) Thus we may form the universal covering Y
of Y, which carries a free cellular action of . The cellular chain complex
of Y, while not of finite type over Z, may be viewed as a chain complex
of finite type of free R-modules, where R = Zm, the integral group ring of
7. Alternatively, we may think of this complex as the chain complex of YV
with local coefficients. Thus if X is a space which is homotopy-equivalent
to Y, it must also have fundamental group = (finitely presented), and its
singular chain complex with local coefficients S,(X), which is a complex of



52 1. Kj of Rings

free R-modules but is very far from being of finite type in general, must be
chain-homotopy-equivalent to a complex of finite type of free R-modules.

Theorem 1.7.12 now gives a necessary and sufficient condition for S,(X)
to have this property. Call S.(X) finitely dominated if it is chain-
homotopy-equivalent to a complex of finite type of projective R-modules.
Theorem 1.7.12 says that a finitely dominated complex has a well-defined
finiteness obstruction in K, (R), and is chain-homotopy-equivalent to a
complex of finite type of free R-modules if and only if this finiteness ob-
struction vanishes. If R = Zn happens to be Noetherian, which is not the
case for all finitely presented groups 7, but is true say if 7 is a product of
a finite group and a free abelian group (the group ring of a finite group is
finitely generated as a Z-module, hence Noetherian, and the group ring of
m X Z™ is a Laurent polynomial ring in n variables over the group ring of
), one can apply Theorem 1.7.13 to see that an R-module chain complex
C is finitely dominated if and only if it is homologically finite-dimensional
and its homology groups are finitely generated.

Wall actually went further than this; he showed that a connected space X
with finitely presented fundamental group and the homotopy type of a CW-
complex is finitely dominated if and only if S.(X) is finitely dominated,
and has the homotopy type of a finite CW-complex if and only if So(X) is
finitely dominated and has vanishing finiteness obstruction. The method
of proof for the “if” directions is to inductively construct a sequence Y,
(n > 1) of finite CW-complexes by attaching cells, along with maps ¥, — X
which are dominations (resp., homotopy equivalences) “through dimension
n—1." The proof of Theorem 1.7.13 is an abstract version of this technique,
in the case where R is Noetherian. In proving homotopy finiteness, the
finiteness obstruction is precisely the obstruction to having this inductive
process terminate after a finite number of steps.

1.7.14. Example. Let us illustrate a geometric application of Theorems
1.7.12 and 1.7.13. Suppose X™ is a connected non-compact (topological
or smooth) manifold and one wants to know whether X is homeomorphic
to the interior of a manifold W™ with boundary. Precise necessary and
sufficient conditions were found by Siebenmann (provided one stays away
from the problem dimensions 3 and 4 by assuming n < 2 or n > 6) us-
ing surgery theory, but we have done enough now to at least give some
interesting necessary conditions.

If W™ exists, then it must have the homotopy type of a finite CW-
complex, hence so must X, since the inclusion of X into W is a homotopy-
equivalence. Furthermore, for each component N™®~! of W, N must have
a “collar” neighborhood in W homeomorphic to N x [0, 1), so the corre-
sponding “end” of X = W ~ W must be homeomorphic to N x (0, 1),
and in particular must be homotopy-equivalent to the compact manifold N.
(For a locally compact Hausdorff space X, a neighborhood of infinity
may be defined to be the complement of a compact set. An end may be
defined to be a connected component of 3X ~\ X, where X is the Stone-
Cech or maximal compactification of X (the space of maximal ideals of the
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algebra of bounded continuous real-valued functions on X). Equivalently,
an end is an equivalence class of components of neighborhoods of infinity.
In the present situation, the ends must be in one-to-one correspondence
with the components of 9W.) So the homotopy type of N is determined
by that of the corresponding neighborhoods of the associated end of X.

In particular, we now derive a number of necessary conditions for our
being able to complete X to a compact manifold with boundary. X must
have finitely many ends, and for each end FE of X, if X; is a sequence of
connected open neighborhoods of E with X; \, E, the fundamental groups
of the X; must stabilize to some finitely presented group = (F) (in the
sense of the Mittag-Leffler condition, that limm, (X;) = m(F), and for
each 4, the images in m (X;) of the m1(Xj), j > ¢, eventually stabilize). Let
R = Zm;(E). Then we obtain an inverse system (Hq(X;; R)) of homology
groups with local coefficients in R which must also stabilize to what will
correspond to He(N; R). Thus for a suitable open connected neighbor-
hood U of E, m(U) = m1(E) and He(U; R) looks like the homology of a
compact manifold of dimension n — 1. If for instance 71 (E) is finite (this
is not so essential but it already covers an interesting case), R is Noether-
ian and the homology must be finitely generated by Theorem 1.7.13. By
the same Theorem, the cellular chain complex of U with coefficients in R
is homotopy-equivalent to a complex of projective modules of finite type.
Thus the obstruction %(C.(U; R)) is defined and must vanish in Ko(R).
Siebenmann’s Theorem says that once this is satisfied, one can put a bound-
ary on the end F provided at least that n # 3, 4, or 5. See [Weinberger,
§§ 1.5 and 1.6] for a further explanation. The homeomorphism class of
the boundary to be added is not always uniquely determined; but the non-
uniqueness is also related to K-theory: it is classified by the Whitehead
torsion invariant to be studied in §2.4 below.

1.7.15. Remarks. Since this is not a book on topology, we will not
prove any purely topological results here. However, in the interests of
completeness, let us say a few more words (without proofs) about Wall’s
original results (in the topological setting) and about one other important
area of application, the spherical space form problem.

Wall’s work on the finiteness problem was motivated in part by ear-
lier work of Swan [Swanl] on the question of when a finitely dominated
space X, with finite fundamental group 7 = m(X) and universal cover X
homotopy-equivalent to a sphere, can be homotopy-equivalent to a finite
CW-complex. Swan already realized that at least in this particular situa-
tion, an obstruction in Ko(Z=) plays a fundamental role, and he showed
how to kill off this obstruction in order to solve a particular geometric prob-
lem in which he was interested. This geometric problem was a modified
version of what is now known as the spherical space form problem: to
classify compact manifolds M™, known as spherical space forms, having
a sphere as universal cover, M™ & §". Certain obvious examples, such as
real projective spaces and lens spaces, arise from free orthogonal actions of
finite groups, and the groups that can act in this way are completely known
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(see [Wolf]). However, a rather subtle question remains: can there be any
examples of spherical space forms not homotopy-equivalent to examples of
this type, for instance with fundamental groups (such as the non-abelian
group of order pg, where p and ¢ are distinct odd primes with p|(g — 1))
that cannot have a free orthogonal action on a sphere?

The answer to this latter question turns out to be “yes,” and the question
of what finite groups can act freely on spheres is now totally understood
(see [Madsen]). The relevance of the finiteness obstruction comes from
the following method of attack. We begin by looking at n-dimensional
CW-complexes X with the desired finite fundamental group =, having the
property that the universal cover X is homotopy-equivalent to a sphere
S™. This means of course that X must have vanishing homology in degrees
0 < j < n, and infinite cyclic homology in degree n, but in fact, by the basic
theorems of homotopy theory (the Hurewicz and Whitehead Theorerms, to
be discussed in §5.1 below), this homology condition is not only necessary
but also sufficient. The study of the homology of X shows then that m must
be a “group with periodic homology” [CartanEilenberg, pp. 357-358], for
which there is an elegant classification theorem [CartanEilenberg, Ch. XII,
§11]. It turns out that a necessary and sufficient condition for the existence
of such a space X is that each Sylow subgroup of m be either a cyclic group
or a generalized quaternion group.

However, one is still faced with another problem: given the X whose uni-
versal cover is homotopy-equivalent to a sphere, is X homotopy-equivalent
to a (smooth) compact manifold M? If the answer is “yes,” then the uni-
versal cover of M will be a compact manifold homotopy-equivalent to a
sphere. By known results on the Poincaré Conjecture, the universal cover
is then actually homeomorphic to a sphere, except perhaps when n = 3.
(See the remarks following Theorem 2.4.4 below.)

A detailed sketch of how this problem is attacked may be found in Mad-
sen’s survey [Madsen]. However, a crucial first step already understood by
Swan comes from the well-known fact that any smooth compact manifold is
homotopy-equivalent to a finite CW-complex. Thus if M is to exist in the
homotopy type of X, the CW-complex X must have vanishing finiteness
obstruction in Ko(Z7). This group is known to be finite when 7 is finite,
but is usually quite hard to compute. For cyclic groups of prime order,
we began the calculation of this group (in terms of number-theoretic in-
variants) in Example 1.5.10, and will complete the calculation in Example
3.3.5(b) below.

1.7.16. Exercise (Nontriviality of the finiteness obstruction for
bounded complexes of free modules). Let R be a ring with unit, P a
finitely generated projective R-module which is not stably free.

(a) Show that there is an R-module homomorphism ¢ : F — F, where
F is a free R-module of countable infinite rank, that is, split sur-
jective with kernel = P. (This is attributed to Eilenberg, though
the idea may be older. Compare Exercise 1.1.8.)
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(b) Deduce that the complex
i 00 F S F 500>
is homotopy-equivalent to the complex
o> 0-20—-P—-0-20-0—>---,

but not to a complex of finite length consisting of finitely generated
free modules.

1.7.17. Exercise. Show that the condition that R be Noetherian in The-
orem 1.7.13 is necessary, by exhibiting a non-Noetherian ring R and a chain
complex of finite type of free R-modules that does not have finitely gen-
erated homology. Hint: find a non-Noetherian commutative ring R (not
an integral domain) containing an element x whose annihilator in R is not
finitely generated.

1.7.18. Exercise (Behavior of the finiteness obstruction under
products). It is of interest to know how homotopy finiteness of X and of
X x Z are related, when Z is itself a finite CW-complex, for instance, a
sphere or a projective space. The algebraic analogue of this is to take the
tensor product of two complexes to obtain a double complex. Note that
(X x Z) =2 m1(X) x m1(Z), so that the relevant ring for the geometrical
problem is

ZTl']_(X X Z) = Z[ﬂ'l(X) X 7!‘1(Z)] = Zﬂ']_(X) ®z Z7T1(Z)

(a) Show that if (C2, d') and (C1, d') are complexes of projective R-
modules and S-modules, respectively, then

Ci= @ Cir®zC},

k=—oc0

d; =d' ®id+ (-1)*id®d®> on C} ®zC?

defines a complex of projective R ®z S-modules, called the total
complex of the double complex C! ®z C2.

(b) Show that if (CZ, d') is homotopy-equivalent to (C!, d') and if
(C?, d?) is homotopy-equivalent to (CZ, d?), then the total com-
plex of C! ®z C? is homotopy-equivalent to the total complex of
Cl ®z C2. (You can either carry the homotopies around, or else
use a mapping cone argument and Theorem 1.7.7 to reduce to the
case where one of the complexes is contractible.)

(c) Deduce that if x(C') and x(C?) are well defined, so is x(C), and
that if either x(C') or x(C?) vanishes, so does x(C).

(d) Suppose S = Z (this is the algebraic analogue of taking Z to be
simply connected in the geometrical problem). Show that when
x(C?) is well defined and C? is of finite type, then

X(C) = X(CHx(C?),
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where x(C?) € Ky(Z) = Z. The topological version of this exercise
shows that if X is dominated by a finite CW-complex and 7 is a fi-
nite complex with x(Z) = 0, then X x Z is homotopy-equivalent to
a finite complex, and that if Z is simply connected with x(Z) # 0,
then the Wall obstruction of X x Z is x(Z)x (the Wall obstruc-
tion of X). In particular, taking a product with S kills finiteness
obstructions, and taking a product with $2 multiplies them by 2.

1.7.19. Exercise (Algebraic finite domination) [Ranicki]. Recall that
a space X is called finitely dominated if up to homotopy it is a retract of
a finite CW-complex; in other words, if there is a finite CW-complex Y
and there are maps f : X - Y, g:Y — X with go f ~ idx. Now if
X is literally a retract of a finite CW-complex, in other words, if we can
arrange to have g o f = idx, then obviously the singular chain complex
of X is a direct summand in the singular chain complex of Y, which in
turn is homotopy-equivalent to the cellular chain complex of Y, which is of
finite type. Thus in this case it is clear that the singular chain complex of
X satisfies the hypothesis of Theorem 1.7.12. However, it is perhaps not
immediately apparent that the same holds true if we only have go f ~ idy,
for then the singular chain complex C, of X is only a direct summand of
the singular chain complex D, of Y “up to homotopy.”
The following trick for dealing with the general case is due to Ranicki.

(1) Suppose C, is a chain complex of projective R-modules, bounded
below (say non-zero only in non-negative degrees) which is a “direct
summand up to homotopy” of a complex of finite type D, of free
R-modules. In other words, we assume we are given chain maps
f:Co = Dy and g : Dy — C,, as well as a chain homotopy h
satisfying idoc —go f =doh+hod. Note that fog— (fog)?=
do fhg+ fhgod, so that fhg gives a chain homotopy between fog
and (f o g)2. Show that the endomorphism p of @;°, D; given by
the matrix

fg -d 0 0
—fhg 1-fg d O
—-fh’g  fhg fg —d

is an idempotent, so that its image is a finitely generated projective
module over R.

(2) Let C] = @, D; and defineamap d’ : C; — C;_, by the (i—1)xi
matrix

fa —d 0 0
—fhg 1—fg d O
~fh*9  fhg fg —d



7. Another application: the Wall finiteness obstruction 57

if ¢ is even,

1-fg d 0 0
fhg fg -d 0
fh*g —fhg 1—-fg d

if i is odd. Show that (d’)? = 0, so that (C,, d’) is a chain complex.
(3) Define maps ¢ : C; — C] and ¥ : C] — C; by

0
0
(p(ﬂ))= . GCI=D0®D1€B@D1
f(z)
and by
Zo
) . .
Y1 . | =h'g(zo) + hi=lg(z1) 4 - -+ + hg(zi—1) + 9(x;) € C;.
Z;

Show that ¢ and 1 are chain maps and that they give a chain
homotopy equivalence between C, and C,. {Hint: pop = go f,
which we already know is chain homotopic to the identity. The
homotopy between ¢ o 7 and the identity is given by a simple
“shift” map.)

(4) Suppose D, is of “dimension n,” in other words, that D; = 0 for
i > n. Thus C] = @;_, D; for all i > n. Show by “truncating” C{
that its finiteness obstruction (and thus the finiteness obstruction
of C,) is well defined, and equal to the class in Ko(R) of the image
of p from (1).
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1.7.20.

K of Rings

Exercise [Swanl, §6]. The work of Swan discussed in Remarks

1.7.15 above leads to some interesting examples of finitely generated pro-
jective modules over group rings. Suppose G is a finite group of order n
and let R = Z@, the integral group ring. Define the norm element of R

by N =

deag. Observe that for any g € G, gN = Ng = N, so N is

central in R and N? = nN. Let r € Z be prime to n, and let P, be the
ideal of R generated by r and N. (It doesn’t matter whether one takes
the ideal to be one-sided or two-sided, since N and r are both central.)
Obviously P; is just R itself.

(1)

(2)
(3)

(4)

Show that P, is the universal R-module defined by two generators
u and v and the relations gv = v all g € G, Nu = rv. (Here u
corresponds to r and v corresponds to N.)

Show that P, & P, provided r = v’ mod n. (Use (1) and define
the isomorphism by v + v', u — u’ + ht/, where r — v’/ = hn.)
Show that R ® P, & P, ® P,.. Note the suggestive analogy with
Lemma 1.4.11! (Again use (1). If " and ¢” are the generators of
P,.., send (0, v") — (v, 0), (1, 0) — (u, av’ + bv'), and (0, u”) —
(r'"u, e(nu' — r'v")), where a, b, c € Z are suitably chosen.)
Choose r and 7’ in (3) to be multiplicative inverses of each other
mod n, and deduce that P, @ P = R?, hence that P, and P
are projective modules whose images in Ko(R) are the negatives
of each other. In particular, we find that if n = 8 and r = 3,
then since 32 = 1 mod 8, P; defines an element of Ko(R) which
must be either trivial or of order 2. It is known to be of order 2
and to be a generator of Ky(R) when G = Qg is the quaternion
group. The projective modules P, naturally arise in the study of
the finiteness obstructions coming up in the spherical space form
problem (as explained above in 1.7.15).
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K of Rings

1. Defining K,

Most courses in linear algebra begin with a discussion of vector spaces and
dimension, and then go on to a study of automorphisms of vector spaces,
i.e., linear transformations and their invariants (determinants, canonical
forms, and so on). The usual development of K-theory for rings follows
the same pattern. One begins by studying projective modules and their
stable classification via Ky, and then goes on to the study of the stable
classification of automorphisms of free and projective modules, in other
words, to invariants of (invertible) matrices, which are given by the functor
K;.

We will begin with the classical approach to K; via matrices, and in
the next chapter will describe a more category-theoretic approach via the
study of the category of finitely generated projective modules.

2.1.1. Definition. Let R be a ring (with unit). Recall the definitions of
M(R) and GL(R) from 1.2.2. We call an n x n matrix elementary if it
has 1’s on the diagonal and at most one non-zero off-diagonal entry. More
precisely, if a € R and i # j, 1 <i,j < n, we define the elementary matrix
eij(a) to be the (n x n) matrix with 1’s on the diagonal, with an a in the
(2, j)-slot, and with 0’s elsewhere. The subgroup of GL(n, R) generated by
such matrices is denoted E(n, R). Via the usual embedding of GL(n, R)
in GL(n + 1, R) (see 1.2.2), E(n, R) embeds in E(n + 1, R). The infinite
union of the E(n, R) is denoted E(R), and is usually called (by slight abuse
of language) the group of elementary matrices.

The following lemma, which summarizes some easy matrix identities, is
only needed in part at the moment, but is included here for future reference.

2.1.2. Lemma. The elementary matrices over a ring R satisfy the rela-
tions
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eij(a)ei;(b) = eij(a+ b); (a)
eij(a)er(b) = exi(b)eij(a), j#kandi#l; (b)
eij(a)ejk(b)eij(a) e (D)™t = ewx(ab), 1,4,k distinct; (c)

eij(a)eri(b)es; (@) e ()™t = ex;j(—ba), 1,3,k distinct. (d)

Furthermore, any upper-triangular or lower-triangular matrix with 1’s on
the diagonal belongs to E(R).

Proof. The relations are easily checked by matrix multiplication. Sup-
pose A = (a;;) € GL(n, R) is upper-triangular with 1’s on the diagonal.
Then

A’ = (ai;) = Aerz(—a12)ez3(—az3) - - en—1,n(—an_1,n)

still is upper-triangular with 1’s on the diagonal and has 0’s on the super-
diagonal j —i = 1. Let

A" = (a55) = A'er(—ai3)ean(—a3y) - €n—2,n(—0n_3.0)-

This now is upper-triangular with 1’s on the diagonal and has 0’s on the
super-diagonals j — ¢ = 1, 2. Continuing by induction, we construct a
sequence

A AL A", AD

of matrices in GL(n, R), each differing from the previous one by an element
of E(n, R), each upper-triangular with 1’s on the diagonal, and with the
additional property that ag-c) vanishes for 0 < j—i < k. Thus A®~D =1,,,
the n x n identity matrix, so A € E(n, R). The lower-triangular case is
similar. 0

2.1.3. Corollary. For any matrix A € GL(n, R), the 2n X 2n matrix

(‘3 Ao_l) lies in E(2n, R).

Proof. Apply the identity

A 0 (1 A 1 0 1 A 0 -1

0 A1) \o 1)\-41 1/)\0 1/\1 0O
from the proof of Lemma 1.5.4. By Lemma 2.1.2, the first three factors on
the right lie in E(2n, R). And

0 -1\ _ (1 -1\ /1 0\ (1 -1

1 0/7\0 1 11 0 1)’
hence the last factor on the right is also in E(2n, R), by Lemma 2.1.2
again. 0O
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2.1.4. Proposition (Whitehead’s Lemma). For any ring R, the com-
mutator subgroups of GL(R) and of E(R) coincide with E(R). In par-
ticular. E(R) is normal in GL(R) and the quotient GL(R)/E(R) is the
maximal abelian quotient GL(R),p of GL(R).

Proof. Since E(R) C GL(R), [E(R), E(R)] C [GL(R), GL(R)]. Fur-
thermore, relation (¢) of Lemma 2.1.2 shows that

eij(a) = leix(a), ekj(l)]

provided 4, j, and k are distinct. Thus each generator of E(R) is a com-
mutator of two other generators and [E(R), E(R)] = E(R). We need only
show that [GL(R), GL(R)] € E(R). Let A, B € GL(n, R). We embed
GL{n, R) in GL(2n, R) and compute that

ABA7'B-! 0\ _(AB 0 A1 0\ (B! 0
0 17\ 0 B'A1 0 A 0 B/’
By Corollary 2.1.3, all the factors on the right lie in E(2n, R), so

ABA™'B"'e€ E(R). O

2.1.5. Definition. If R is a ring (with unit), we define K;(R) to be
GL(R)., = GL(R)/E(R). Note that R ~» K;(R) defines a functor from
rings to abelian groups, for if ¢ : R — S is a (unit-preserving) ring ho-
momorphism, ¢ induces a map from GL(R) to GL(S) and hence from
GL(R)ab to GL(S)ab.

If A, B € GL(R), the product of the corresponding classes [4], [B] €
K;(R) may be represented in two convenient ways. On the one hand,
[4] - [B] = [AB]. On the other hand, one may form the “block sum”

A

0 .
A®dB= (0 B),and since

A 0\ (AB 0 Bl 0
0 B) 0.1 0 B)’
Corollary 2.1.3 shows that
[A® B]=[AB& 1] = [AB].

One may also interpret K (R) as the group of canonical forms for invert-
ible matrices over R under elementary row or column operations (in the
usual sense of linear algebra). For if A € M(n, R), e;;(a)A is the matrix
obtained from A by adding a times the j-th row to the i-th row (an elemen-
tary row operation), and Ae;;(a) is the matrix obtained from A by adding
a times the i-th column to the j-th column (an elementary column opera-
tion). Vanishing of K;(R), for instance, would mean that every matrix in
GL(R) can be row-reduced or column-reduced to the identity matrix.
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2.1.6. Exercise: behavior of K; under Cartesian products. Let
R = Ry X R3, a Cartesian product of rings. By using the obvious decompo-
sition GL(R) = GL(R]_) X GL(Rg), show that Kl(R) = Kl(Rl) x K3 (Rz)
Generalize to arbitrary finite products. (Compare Exercise 1.2.8.)

2.1.7. Exercise: a ring with vanishing K;. Let & be a field and let V'
be an infinite-dimensional vector space over k. Let R = Endg(V). Show
that K3 (R) = 1. Hint: V is isomorphic to an infinite direct sum of copies
of itself. Thus if A € GL(R), one can form

A0
oo-A=(0 A )

and regard it also as an element of GL(R). Show that A® (co- A) is conju-
gate to (0o - A), hence that A represents the identity in K;(R). (Compare
Example 1.2.6.)

2.1.8. Exercise: Morita invariance of K;j. In analogy with Theorem
1.2.4, show that K;(M,(R)) = K;(R), for any ring R and any positive
integer n.

2.1.9. Exercise: K; of a direct limit. Show by an argument somewhat
similar to the proof of Theorem 1.2.5 that if (Ra)aer, (0ap : Ra — Rg)a<s
is a direct system of rings and R = 1113 R,, is the direct limit of the system,
then K;(R) = lim K (Ra)-

2. K of division rings and local rings

We now begin to compute K for rings of practical interest. In the case of
a commutative ring, the determinant gives us our first piece of information.

2.2.1. Proposition. If R is a commutative ring and R* = GL(1, R) is
its group of units, the determinant det : GL(n, R) — R* extends to a split
surjection GL(R) — R* and thus gives a split surjection K;(R) — R*.

Proof. Note that det(A @ 1) = det A, so that the determinants on
GL(n, R) for various n are compatible with the embeddings of GL(n, R)
in GL(m, R) for n < m. Since det(AB) = det(A) det(B), we obtain a ho-
momorphism GL(R) — R* which must factor through a map GL(R)ab —
R* (since R* is commutative). There is a splitting defined by R* =
GL(1, R) — GL(R). O

Remark. When R is commutative, it is standard to denote the matri-
ces of determinant 1 in GL(n, R) by SL(n, R) and in GL(R) by SL(R).
The notations GL(R) and SL(R) stand for the general linear group and
special linear group of R, respectively. Note that since each elementary
matrix has determinant 1, E(R) C SL(R). The quotient SL(R)/E(R) is
denoted SK;(R).

Now it is easy to compute K; in the case of a field.
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2.2.2. Proposition. IfF is a (commutative) field, then SK,(F) is trivial,
i.e., the determinant induces an isomorphism det : K1(F) — F*.

Proof. This is basically a classical theorem of linear algebra, that any
matrix can be row-reduced to a triangular matrix. If A = (a;;) € GL(n, F),
then the first column of A can’t consist entirely of zeroes, since then the
matrix couldn’t be invertible. So a;; # 0 for some n. If ¢ = 1, fine. If not,
as in the proof of (2.1.3),

0 1
eri(Dein(—1)ew(1) = _:1 é 0 ,
0o ... 0 1

so premultiplying A by ej;(1)e;;(—1)e1;(1) puts something non-zero into
the (1, 1)-slot. So we may as well assume a;; # 0. Adding —a; a7 times
the first row to the i-th row for ¢ # 1, we can now kill off all the other

entries in the first column. This reduces A to the form 61 * ) with

0 A
A’ an (n — 1) x (n — 1) matrix, and of course det A = a;; det A’.
We now repeat the same procedure for A’, thus changing A by elemen-
tary row operations to the form

aixp ¥ *
0 a9 =
0 0 A"

with A” an (n—2) x (n—2) matrix. Continuing by induction, we see that A
can be changed into an invertible upper-triangular matrix via elementary
row operations.

Now assume A is an invertible upper-triangular matrix. Adding multi-
ples of the last row to the other rows, we can kill off all the entries in the last
column except for a,,. Then adding multiples of the (n — 1)-th row to the
other rows, we can kill off all the entries in the (n — 1)-th column except for
Gn-1,n—1. Continuing by induction, we can row-reduce A to an invertible
diagonal matrix D = (d;;). Since elementary row operations don’t change
the determinant, this diagonal matrix D has the same determinant as our
original matrix A.

Finally, we have to transform D into a diagonal matrix with at most
one diagonal entry different from 1. This can be done using Lemma 2.1.3,
which shows that matrices of the form

diag(1,...,1,a,a71,1,...,1)

are elementary. Premultiplying D by such matrices, we transform D into a
diagonal matrix with at most one diagonal entry, say the one in the (1, 1)-
slot, different from 1. This entry must be the same as the determinant, so if
A had determinant 1, we see that it can be transformed by elementary row



64 2. Kj of Rings

operations into the identity matrix. In other words, SL(n, F) = E(n, F)
and SK;(F) is trivial. O

Remark. Note that the proof above still works to some extent if F is
replaced by a non-commutative division ring R. The one thing that is
different is that there is no good definition of a determinant for matrices
over general non-commutative rings, so that the argument only proves the
following,.

2.2.3. Proposition. If R is a division ring, the inclusion
R* = GL(1, R) — GL(R)

induces a surjection R} —» K1(R).

Proof. Exactly the same proof shows that every matrix in GL(n, R)
can be transformed by elementary row operations into a diagonal matrix of
the form diag(a, 1, ..., 1), in other words, into the image of GL(1, R) in
GL(n, R). Since K;(R) is abelian, the resulting surjection R* —» K;(R)
factors through R} = R*/[R*, R*]. O

In fact, the same proof works in still greater generality.

2.2.4. Proposition. If R is a local ring (not necessarily commutative),
the inclusion R* = GL(1, R) — GL(R) induces a surjection R} —»
K;(R).

Proof. In the proof above, we only used the fact that R is a division ring
to show that each row and column of a matrix A = (a;;) € GL(n, R) must
contain an invertible element. However, this is still true over a local ring
since the non-units constitute the radical. Indeed, if A were to contain a
row or column all of whose entries were in the radical, then it’s obvious A
couldn’t be invertible. (For example, if the i-th row of A had all its entries
in the radical, then the same would be true for AB for any matrix B, so
A couldn’t have a right inverse. Similarly, if the j-th column had all its
entries in the radical, then the same would be true for BA for any B, and
A couldn’t have a left inverse.) O

Now we get to the main theorem of this section, which is a calculation
of K;(R) when R is a local ring or division ring. Since we already have an
upper bound on the size of K;(R) from Proposition 2.2.4, we need a lower
bound, in other words, a homomorphism out of K;(R) into some abelian
group, akin to the determinant. The main idea of the construction is due to
Dieudonné; we have followed the exposition in [Srinivas, (1.6)] (with small
variations).

2.2.5. Theorem. Let R be a local ring, not necessarily commutative.
Then there exists a unique “determinant” map GL(R) — R} with the
following properties:

(a) The determinant is invariant under elementary row operations. In

other words, if A € GL(n, R) and A’ is obtained from A by adding
a (left) multiple of one row to another row, then det A’ = det A.
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(b) The determinant of the identity matrix is 1.

(c) If A € GL(n, R) and if a € R*, and if A’ is obtained from A
by (left-)multiplying one of the rows of A by a, then det A’ =
(@)(det A), where a denotes the image of a in R};,.

The determinant also has the following additional properties:

(d) If A, B € GL(n, R), then det(AB) = (det A)(det B).

(e) If A € GL(n, R) and if A’ is obtained from A by interchanging
two of its rows, then det A’ = (—1)(det A).

(f) The determinant is invariant under taking the transpose of a ma-
trix.

Proof. First we check the uniqueness and the fact that (d)—(f) follow
from (a)-(c). Then we prove the existence by an induction argument.
Suppose a map det exists satisfying (a)-(c). By Proposition 2.2.4 and
its proof, any matrix in GL(n, R) can be row-reduced to one of the form
diag(a, 1,...,1). Hence by (a), the determinant is determined by its value
on such matrices. But by (c), det(diag(a,l1,...,1)) = a(detl), which
by (b) is just @. Hence (a)—(c) determine det uniquely. Furthermore, if
E € E(n, R) and EA = diag(a,1,...,1), then we have det A = @, while
det(AB) = det(EAB) by (a), which can be rewritten as det((EA)B). Since
premultiplying a matrix by diag(a, 1,...,1) amounts to left-multiplying the
first row by a, we have by (c) that

det(AB) = det((EA)B) = a(det B) = (det A)(det B),

proving (d). To check (e), note that if A € GL(n, R) and i < j < n, then
interchanging the i-th and j-th rows can be accomplished in two steps: pre-
multiplying by the elementary matrix e;;(1)e;;(—1)e;;(1), and then mul-
tiplying the i-th row by —1. Hence (e) follows from (a) and (c). Finally,
to check (f), note that by (a) the determinant is equal to 1 on elementary
matrices, whereas by (d) it is multiplicative. Hence the determinant is un-
changed under postmultiplication by elementary matrices, in other words,
elementary column operations. Furthermore, condition (c) implies that for
a € R%,
det (diag(1,...,1,a,1,...,1)) =a.

Now consider the map det’ : A — det(A?), where At is the transpose of A.
This clearly satisfies (b), and since the transpose of an elementary matrix
is elementary, det’ is also equal to 1 on elementary matrices. Furthermore,
we have

det’(AB) = det ((AB)") = det(B*A") = det(B") det(A")
= det’(B)det'(A) = det’(A)det’(B),
since the determinant takes values in an abelian group. So det’ satisfies (d),
and since it is 1 on elementary matrices and @ on diag(1,...,1,a,1,...,1),

it satisfies (a) and (c) as well. By the uniqueness of a map satisfying (a)—(c),
det’ must coincide with det, proving (f).
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Now we proceed to the existence proof. We define det,(A) for A €
GL(n, R) by induction on n, in such a way that det,+m(A®1,,) = det, A,
so that we get a well-defined map on GL(R). Clearly when n = 1 we
define dety(a) = @, and properties (a)—(c) are satisfied. So this starts the
induction. Assume now that we’ve defined dety for £ < n with properties
(a)—(c) and compatibility for varying k, and let’s define det,, and show
that it satisfies (a)—(c) and compatibility with dety for kK < n. Let A €
GL(n, R), and denote the rows of A by Ay,..., A,. Let by,...,b, be the
entries of the first row of A~1. Since A4 = 1,,, expanding out the matrix
product gives the relation

blA1+-~-+bnAn=(1 0o ... 0)
In particular, if we write A; = (a1 Bj ), where B; € R*™!, then ), b;B;
=0.
By an argument already used before in the proof of Proposition 2.2.4,

an entire row of A~! can’t consist of elements of rad R, so at least one of
the b;’s is invertible, say the i-th one. We then obtain

b7y By 4+ -+ + b7 0 1Bi—1 + Bi + b b1 Big1 + -+ + b, b B = 0.
So adding multiples of the other rows to A; row-reduces A to the form
( an B, \
a;—1,1 Bia

1
b; o |,
ai41,1 Bitr

\ ar;,n B'n /

since

a; + Zbi_lbjafjl = bi_lbiail + Z b;lbjajl
J#i J#i

= bz_l ijajl = b,i.l.
J
If relations (a)—(c) are to hold, we see that we must therefore take
B,

det, A = (—l)i‘ll;;l det,—1 | B; {,

B,
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and we therefore adopt this as our definition. The only problem is to

show that this is independent of the choice of ¢ (subject to the condition
b; € R*). Suppose i < j and b;, b; € R*. We need to show that

(_1)15';_1 detn—l Cz = (-l)jl_)]-_l detn~1 Cj,
where
B; B,

Ci = Bz ) Cj = Bj

B, B,

Now Cj; can be obtained from C; by first permuting the order of the rows
to get
(51
Bi1
B;
c=|Bin |,
B;
\ B, /

then changing the i-th row from B; to B;. Now going from C; to C involves
cyclically permuting the j — i rows (Bj41,...,B;). Hence by condition (e)
for det,_;, det,—3C = (—1)i~*"ldet,—_; C;. And B; = —b;'b;B;+(a
linear combination of other rows), so by conditions (a) and (c) for det,-1,
det,,_1 Cj = —I_);IB]' det,,—; C and

(—1)‘7'1_)]-_1 dety, 1 Cj = (_1)_7'—11_)]'—151:—151. det,_1 C
= (—1)il_);11_)1:_15j det,,—1 C;
= (—-1)“7){1 det,_1 C;,

as required. Thus det,, is well-defined.

To complete the proof, we only need to show that det, satisfies (a)—
(c) and agrees with det,—; on matrices of the form B @ 1, B any (n —
1) x (n — 1) invertible matrix. Condition (b) is trivially true from the
definition. As for (a), suppose A’ with rows Aj,..., A}, has A} = A; for
Jj #1, A} = A; + aAy, where a € R* and i # k. Then A’ = e;jx(a)A, hence
(A")~! = A~'e;1(—a) and the elements b}, ..., b, of the first row of (4’)~1
are the same as b1,...,b, except for b}, = by — b;a. If b; € R* for some
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j # k, then we have
(5
B;_;
B; + aBy,

det, A’ = (=1)"'b7 det,—y | Binr

—

B;

\ B /
so by (a) for det,_, det, A’ = det,, A. The only case we haven’t covered

is where by, and b}, = by — b;a are both invertible and b; lies in rad R for
i # k. In this case,

B,
det,, A’ = (—1)*1%} " detn_y E:I ;

5.

B,
detn, A = (—=1)*"15; det,_y 73:; )

B,

whereas b'y, = by, (since b;a € rad R) and again det,, A’ = det, A. So this
confirms property (a) for dety,.

Now we check (c). Suppose A’ with rows A,..., A}, has A; = A; for
j #1i, AL = aA;, where a € R*. Then A’ = d;(a)A, with d;(a) the diagonal
matrix with all 1’s on the diagonal except for an a in the (%, i)-slot. Hence
(A1 = A~'d;(a"!) and the elements b,, ..., b/, of the first row of (4’)~!
are the same as by, ..., b, except for b} = b;a~!. Again there are two cases.
If b; € R* for some j # i, then we have

(B;‘\

B,
aB,-

detn AI = (_1)]—15;1 detn_l Bi+1 ,
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so by (c) for det,,—1, det, A’ = adet, A. The only case we haven’t covered
is where b; is invertible and b; lies in rad R for j # i. In this case,

B,

——

det, A’ = (~=1)2%; " detp—y | B |,
B,
B

det, A= (=1)"18;det,_; | B; |,

B,
whereas o'; = b;a~! and so again det, A’ = det, A. So this confirms
property (c) for det,. For compatibility with det,,—1, note that B®1 can be
transformed into 1® B by cyclically permuting both the rows and columns,
hence by (d) and (f), which follow from (a)—(c), det,(B®1) = det,, (16 B).
The latter is trivially the same as det,_; B by our definition. So this
completes the proof. O

2.2.6. Corollary. If R is a local ring, not necessarily commutative, then
the determinant of (2.2.5) induces an isomorphism

Ki(R) = R},

Proof. This is immediate from 2.2.4 and 2.2.5, since the composite GL(1,
de
R) — GL(R) < R}, is just the quotient map R* — R}. O

2.2.7. Exercise. (Compare Exercise 1.3.14.) Compute K;(Z/(m)) in
terms of m, for any integer m > 0. (Split into local rings and use Exercise
2.1.6 and Corollary 2.2.6.)

2.2.8. Exercise. Compute K;(k[t]/(t™)), for any field k£ and for any
integer m > 0.

2.2.9. Exercise (another approach to a determinant over the
quaternions). Let H be the usual ring of quaternions a + ¥ + ¢j + dk,
where a, b, ¢, d € R and ij = k, i2 = j2 = k2 = —1. Recall that one defines
a+bi+cj+dk=a—bi—cj—dk.
a) Show that if one defines N(2) = 2%, then N gives a surjective ho-
momorphism H* — ]R_’,‘_. In particular, the commutator subgroup
of H* must lie in the kernel of N.
b) Show that the kernel of N is exactly the commutator subgroup
of HX. (Hint: show that ie?%i—1 = =9, and similarlywith i, j,
k cyclically permuted. Deduce thate2i%:, ¢2i% and e%/% are all
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commutators. Show that these generate an open neighborhood of
1in N~1(1) = $3. But S® is connected.) Thus H}} = RX.

c) Since H is a vector space over R of dimension 4, H may be embed-
ded in My(R) by the left regular representation, and GL,(H) —
GL4,(R). Composing with the determinant gives a homomorphism
detg : GL,(H) — R*. Relate this to the Dieudonné determinant

and to N, and show that N : K, (H) = R}.

2.2.10. Exercise (Some rings of interest in operator theory).
Here is an exercise dealing with some rings (actually, algebras over C)
of great importance in operator theory and functional analysis. While they
are not themselves local rings, we will study a “determinant” somewhat
similar to that which we have constructed above in Theorem 2.2.5, and we
will make a connection with local rings in the next exercise.

Let H be an infinite-dimensional separable Hilbert space with an or-
thonormal basis ey, e2,.... A bounded operator on H is called compact
if it sends the unit ball to a pre-compact set, or equivalently, if it is a limit
(in norm) of operators of finite rank. It is a well-known fact that the spec-
trum of any compact operator consists of 0 and of a sequence of eigenvalues
tending to 0. (This is to be interpreted to mean “counting multiplicities,”
in the sense that no non-zero eigenvalue has infinite multiplicity. Zero itself
may or may not be an eigenvalue.) A compact normal operator is diago-
nalizable. We denote by X(H) the Banach space of all compact operators
with the operator norm:

ITlleo = sup ||ITE].
&<t

This is a closed two-sided ideal in the algebra B(H) of all bounded opera-
tors.

Now if S is a positive bounded operator on H, its trace is defined by

oo

TcS = Z(Sei, e;) € [0, oo].

=1

The trace is independent of the choice of orthonormal basis, for if the sum

converges and €}, €5, ... is another orthonormal basis, then

o0 o0 oo
S5 0 =3 (3 60 ), )
i=1 i=1 \j=1

o0

= Z <Seia 6;-)(6_’7-, ei)
i,j=1
oo

,j=1
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<i (S}, €Y iy e >

i=1

o0
-
=D (8¢, &)
j=1
An immediate consequence is that if U is a unitary operator, TrS =
Tr(U*SU). (Compute the trace of U*SU using the original basis and the
trace of S using the basis {Ue;}.) If S = T*T is a positive operator and
the trace Tr(S) is finite, then (Se;, e;) — 0, i.e., || Te;|| — 0, so that {Te;}
is norm-convergent to 0. Thus T is compact and S is compact.

If 1 < p < oo, the Schatten p-class of H is the Banach space LP(H) of
operators T for which

ITllp = (Tr (TI7))* < oo,

where |T| = (T*T)%. The Schatten classes consist of compact operators
since this condition implies |T'|P is compact, hence |T'| and T are compact.
It turns out that || ||, is a norm and that £P(H) is complete in this norm.
Furthermore, £P(H) C L£¥ (H) for p < p/, since (for T compact) T € LP(H)
if and only if the sequence of eigenvalues of |T'| lies in I?. When p =2,

o) =)
3 *
ITll; = (Tx (T*T))? =) (T*Tei, &) = ) _(Tes, Tes),
i=1 i=1

80 ||T||2 = (T, T)us, where the inner product { , )ug is defined by

oo

(T, S)us = Y _(Te;, Sey).

i=1

Thus in this case £2(H) is a Hilbert space, called the Hilbert space of
Hilbert-Schmidt operators. In general note that clearly ||AT||, = |A|||T|p
and ||T|, > 0. If |T||, = O, then the positive quadratic form defined by
|T'|P vanishes on all the e;, hence everywhere, so [T|? = 0, |T| = 0, and
T = 0. The triangle inequality can be verified by showing first that

1
ITlp=_  sup |THTF)|, =
F of finite rank b

1Fllg<1

+==1,

where if p = 1 we interpret ||F||, to mean the operator norm of F'. (Since
TF has finite rank, its trace is well defined in the usual sense.) One can
also check easily that £P(H) is a two-sided ideal in B(H) (though not closed
in the operator norm).

The space £L!(H) is called the space of trace-class operators. If T' €
L1(H), the sum > (Te;, e;) converges absolutely, and defines a linear func-
tional Tr T independent of the choice of orthonormal basis (just as before).
Hence, once again Tr(U*TU) = Tr(T') for U unitary.
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Now let K(H) = C-14+K(H), and similarly let £P(H) = C-1+LP(H).
Each of these rings has a unique maximal two-sided ideal, of codimension
one. (For instance, K(H) is a two-sided ideal in X(H) of codimension one,
so it is maximal even as either a left ideal or right ideal.)

1)

(2)

®3)
(4)

Complete the proof that || ||; is a norm and that £1(H) is complete,
by showing that for A € B(H) and T € L*(H),

| Tr(AB)| < [|Alloo | Tl1.

Hint: Use the polar decomposition T = U|T| to split AB as
(AU|T|%)(|T)?) and use the Cauchy-Schwarz inequality for { , )gs.
Then if T, S € L1(H), write T + S = U|T + S| (polar decompo-
sition) and estimate Tr(|T + S|) as Te(U*(T + S)) = Te(U*T) +
Tr(U*S) via the above estimate.

Show that if T or S is of trace class, then Tr(T'S) = Tr(ST). Hint:
if T is of trace class and S is unitary, this follows from invariance
of the trace under conjugation by S. Now get the result for all §
(with T still of trace class) by taking linear combinations.

Show that K(H) and £P(H) have split surjections onto C inducing
surjections on Kj.

(The operator determinant) Let R = £(H), the trace-class
operators with identity adjoined. Let R = ker(R* — C*), and
call this the group of determinant-class operators. Construct a
homomorphism det : R — C* with the property that

* det(eT) = €™ for T € L1 (H).

(Here the exponential of an operator is constructed via the usual
exponential power series.)

Hint: First show that every determinant-class operator D is an
exponential of a trace-class operator. One can do this by noting
that every element of the spectrum of D, except perhaps for 1, is
an eigenvalue of finite multiplicity, and that 1 is the only accu-
mulation point of the spectrum. Hence, if V1 is the span of the
generalized eigenspaces for D corresponding to the eigenvalues A
with |A — 1| > 1, one obtains a (not necessarily orthogonal) direct
sum decomposition of H into two invariant subspaces V; and V,
for D, where V; is finite-dimensional and the spectral radius of
(D — 1)]y, is < 1. Then one can take a logarithm of D|y, using
the usual power series

1
logz:(z—l)—é(z—1)2+---

and choose any logarithm for the invertible operator D|y, of finite
rank (using, say, the Jordan canonical form).

Next, observe that if T and S are both of trace class and eT =
e® = D, then if T has eigenvalues A; and S has eigenvalues py, the
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set {€*} must coincide with the set {e#*}, and the multiplicities
must match up. On the other hand, A\; — 0 and px — 0. One can
see from this that again one can find a (not necessarily orthogonal)
direct sum decomposition of H into two invariant subspaces V; and
V; for both T and S, where V; is finite-dimensional and eT|y, =
e°|v,, and where T}y, = S|v,. In particular,

Te(T) —Tx(S) = Te(T|v; ) —Tr(S|v) € 2miZ, so e™T) = ™),

This shows that (x) gives a well-defined definition of det.

Finally, show that the determinant is multiplicative, i.e., that if
T and S are of trace class, then det(eTe5) = det(e”) det(e’). On
can do this using the Campbell-Baker-Hausdorff formula

etTesS —

1

exp {tT +88+ %ts[T, S) + Etzs[T, [T, S]] + %tsz[s, (S, T]) +--- }

and the fact ((2) above) that Tr vanishes on commutators.
(5) Extend the definition of det to a homomorphism defined on

ker[GL(R) — GL(C)].

(Hint: if T € GL(n, R) and T — 1 € GL(n, C), then T may be
viewed as a determinant-class operator on H ®¢ C™.)

2.2.11. Exercise (A local ring in operator theory). In this exercise,
we pursue the use of K-theory in operator theory in the context of local
rings. Let H be a complex Hilbert space as in the last exercise and let A be
some algebra of bounded operators on H, not necessarily with unit. Thus
A could be B(H) or £L1(H). Let R be the ring of formal operator-valued
power series ag - 1 + zA; + 2243 + - -+, where A; € A for j > 1 and the
constant term ag - 1 is a scalar multiple of the identity operator.

(1) Show that if ag # 0, then ap - 1 + 2A4; + 22Az + - -+ has an inverse
in R. Deduce that R is a local ring, with radical the power series
without constant term.

(2) If A is a Banach algebra, show that the same holds for R’ if we
define R’ similarly using only those power series with a positive
radius of convergence in z, in other words, with germs at z = 0 of
analytic operator-valued functions in place of formal power series.

(3) Let A € B(H). Then 1 — zA has an inverse in R, which is essen-
tially (except for the change of variable z — z~!) what is called in
operator theory the resolvent of A. Show that the power series
for (1 — zA)™! converges for |z| < ||A4]~1.

(4) Let A = L'(H). Show that the determinant of the last exercise
defines a homomorphism from (R')* to the group of units in the
commutative local ring of germs of analytic functions around 0.
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Show also the following useful fact: if A is a trace-class operator,
fa(z) = det(1 — zA)~! extends to a function of z analytic in the
whole complex plane except perhaps for countably many isolated
singularities, and that if 2y is a zero or singularity of f4, then
25! € Spec A. (Actually, more is true; f4 is entire analytic, and
fa(zo0) = 0 if and only if z;' € Spec A. See [Ringrose, Ch. 3] for
more details.)

3. Kj of PIDs and Dedekind domains

As we did in Chapter 1 in studying Ky, we shall proceed from the study
of K; of division rings and local rings to the study of K; of the most
elementary examples of non-local commutative rings. Of particular interest
are the sorts of rings that occur in algebraic geometry and number theory.
Here we shall discuss PIDs and Dedekind domains; polynomial rings will
be dealt with in the next chapter.

The easiest examples to treat are Euclidean rings. These include Z,
the Gaussian integers Z]i], Z[%@], the rings of integers in a few other
special number fields, and the polynomial ring k[t] in one variable over a
field k. To fix notation, we remind the reader of the basic definition.

2.3.1. Definition. A (commutative) integral domain R is called a Eu-
clidean ring or Euclidean domain if there is a norm function | | :
R — N with the following properties:
(i) fa€ R, |a|=0if and only if a = 0.
(ii) If @, b € R, |ab] = |al|b].
(iii) (Euclidean algorithm) If a, b € R, b # 0, then there exist g,
r € R, called the quotient and remainder, respectively, such
that a = gb+r and 0 < |r| < |b].
In the examples Z, Z[i], Z[‘—l'gﬂ'@], and k[t], the norm function is given
by the usual absolute value, by |a + b| = a? + b2, by |a + b:lj;ﬂél =

a? — ab+ b?, and by |f(t)|=29°8 (with the convention that deg0 = —o0),
respectively.

2.3.2. Theorem. If R is a Euclidean ring, then SKi(R) vanishes and
K;(R) = R*. In fact, for each n, SL(n, R) = E(n, R).

Proof. Let A = (a;;) € GL(n, R). We try to proceed roughly as in the
proof of Proposition 2.2.2, but the problem is of course that there is no
guarantee that there will be an invertible entry in a given row or column
of A. However, the norm function on R gives us a mechanism for doing an
induction. To illustrate, start with the first column of A. Not all elements
of this column can be zero, so there is some a;; # 0 and with |a;; | minimal
subject to this condition. If |a;;| = 1, then a;; must be a unit. (By the
Euclidean algorithm, 1 = ga;; + r with 0 < |r| < 1, hence with |r| = 0,
so r = 0 by (i) of (2.3.1).) If |a;;| > 1, then a;; is not a unit, and so
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generates a proper ideal (a;). On the other hand, since A is invertible, the
ideal generated by the elements of the first column must be all of R, and so
there is some j # i with a1 ¢ (a;1). Applying the division algorithm gives
aj1 = ga; +r, where |r| < |a;|. Since aj1 ¢ (ai1), 7 # 0 and thus |r| > 0.
So by subtracting g x (i-th row of A) from the j-th row, we can row-reduce
A to decrease the minimal norm of a non-zero element in the first column.
Once we've shown this, then iterating the reduction procedure enables us
to reduce to the case where there’s a unit in the first column. So then
we can proceed as in the case of R a field and row-reduce A to the form
al *
0o A
invertible. Then we repeat the whole process with A’, etc. The rest of the
proof is identical to that of Proposition 2.2.2. O

, where a;; is a unit and A’ is of size (n — 1) x (n — 1) and

2.3.3. Corollary. K;(Z) = {1,-1}, Ki(Z[i]) = {1,i, -1, —i},
K (2[=1£1Y3]) = {6-th roots of 1}, and Ki(k[t]) = k.

Proof. In the examples of 2.3.1, it’s easy to see which elements have
norm 1. O

Theorem 2.3.2 naturally raises the question of whether the same state-
ment is true or not for more general PIDs or Dedekind domains. Unfor-
tunately, the answer is “no”; there are PIDs with non-zero SK;, though
they are not so easy to find. (For examples, see [Ischebeck] and [Grayson].)
Thus it seems the idea of the proof of Theorem 2.3.2 cannot be pushed
any further. However, there is one general result about K; of Dedekind
domains that arises as a special case of Bass’s general theory of “stable
range.” One may view the vanishing of SK; for a commutative ring R as
the statement that K (R) is generated by the image in GL(R) of GL(1, R).
When this doesn’t hold, the next best thing would be for K;(R) to be gen-
erated by the image in GL(R) of GL(2, R). Instead of trying to explain
the general theory (for which one can consult [Bass]), which gives for a ring
R an estimate on the smallest value of n for which K (R) is generated by
the image in GL(R) of GL(n, R), we will give a simplified proof of the one
case we need. We begin with a lemma which will also be used in Section 5
of this chapter. Because of Corollary 2.1.3, Lemma 1.5.4 is just a special
case of the following.

2.3.4. Lemma. Let R be a ring (with unit) and I a two-sided in R. Then
for any n, the natural map E(n, R) — E{(n, R/I) is surjective.

Proof. By definition, E(n, R/I) is generated by elementary matrices
e;;(a), where @ is the image in R/I of a € R. Such a matrix clearly lifts to
the elementary matrix e;;(a) € E(n, R). O

2.3.5. Theorem. Let R be a Dedekind domain. Then K;(R) is generated
by the image in GL(R) of GL(2, R) (in fact, by the images in GL(R) of
GL(1, R) and of SL(2, R)).
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Proof. Let A € GL(n, R) and suppose n > 3. We will show that A
can be row-reduced to a matrix of the form (1) Z, , where A’ is of size
(n—1) x (n — 1) and invertible. Subtracting a;; X (the first column of A)
from the i-th column then reduces A to the form (1) g with B €
GL(n—-1, R), so [4] € K1(R) lies in the image of GL(n — 1, R). Induction
on n then gives the result of the theorem. (We already know the image of
GL(2, R) is generated by GL(1, R) and by SL(2, R).)

Now consider the first column of A. Since A is invertible, the ideal
generated by its entries is all of R. We will show we can do elementary
row operations on A to put at least one zero in the first column. One
this is done, the ideal generated by the remaining entries in the column is
all of R, so adding multiples of the other rows to the row with the zero,
we can change the zero to a 1. Then if necessary, we may premultiply by
e1i(1)es(—1)e1;(1) to put the 1 in the (1, 1)-slot. Subtracting multiples of
the first row from the other rows then reduces A to the desired form.

Let I be the ideal generated by as;,...,a,;. If I =0, then ag; = 0 and
we'’re already done. If I = R, then subtracting a linear combination of rows
3 through n from the first row puts a zero in the (1, 1)-slot, and we’re again
done. So we may assume [ is a proper non-zero ideal. By Theorem 1.4.7,
we may factor I uniquely into a product of maximal ideals. By the Chinese
Remainder Theorem, this gives a corresponding factorization of R/I into
a product of local rings of the form R/P¥, where P is a maximal ideal. By
Proposition 2.2.4, SK;(R/P*) = 0, so by Exercise 2.1.6, SK;(R/I) = 0.
In fact, by the method of proof, we know that SL(m, R/I) = E(m, R/I)
for any m. We will use this fact for m = 2.

For each element a € R, let a be its image in R/I. Since Ray; +---+
Ray1 = R, dividing by I gives that (R/I)a11 + (R/I)a21 = R/I. In other
words, we can find x; and z2 in R such that £1a11 + &2a91 = 1, or

det ( d’fl 72 ) =1.
—a21 Qa1
So we have a matrix in SL(2, R/I) = E(2, R/I). By Lemma 2.3.4, it lifts

to an elementary matrix Ty T2 4y, SL(2, R), and biz1 + baz2 = 1

b b
(here we may have to change the original z; and z, within their I-cosets).
But on the other hand, z1a11 +x2a21 — 1 € I, so there exist z3,...,z, € R

with 35 ; zia;1 = 1. For ¢ > 3, we have z; = z;(biz1 + baz2). So we get
the equation

T1a11 +T2a21 + (230121031 +T3b2T2a31) + - - -+ (Tnb1Z1an1 +Tnb2Z2an1) =1
or
z1(a11 + x3biasy + - - - + Tpbran1) + T2(ag) + z3boaszy + - - + Tpboan:) = 1.

This says exactly that by adding (z3b1) X (the 3rd row) + - - - + (2nb1) X
(the nth row) to the first row, and by adding (z3b2) X (the 3rd row)+---+
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(znb2) X (the nth row) to the second row, we can change A so that the ideal
generated by the new a;; and a9 is all of R. Then subtracting a linear
combination of the first and second rows from the last row, we can achieve
the desired zero. [J

The above theorem suggests studying, for commutative rings R and
especially Dedekind domains, the subgroup of SK;(R) generated by the
image of SL(2, R). The convenient way to do this is in terms of so-called
Mennicke symbols.

2.3.6. Theorem. Let R be a commutative ring.
(1) Fora, b € R with Ra+ Rb= R, choose ¢, d € R with ad — bc = 1.

Then the class in SK;(R) of (z Z € SL(2, R) is independent of

the choice of ¢ and d, hence can be denoted [a b| without possibility
of confusion. Such an element of SK;(R) is called a Mennicke
symbol, and if R is a Dedekind domain, all elements of SK;(R)
are of this form.

(2) [@a )j=1ifac R*,beR.

(3) For a, b € R relatively prime, the Mennicke symbols satisfy the
relations [a b] = [b a] and [a b] = [a + b\ b] for any A € R.

(4) If Raiaz + Rb = R, then [a1 b] . [a2 b] = [a1a2 b]

Proof. (1) The assertion that the class of (Z b) is independent of the

d

choice of ¢ and d follows immediately from the calculation that if (Z 2) ,

dl

a b\(a b\ ' _[a b\(d -b\_ 10
c dj\c d " \e dJ\-c a ) \ed-cdd 1)
The Mennicke symbols clearly exhaust the image of SL(2, R) in K;(R), so

by Theorem 2.3.5, they exhaust SK;(R) if R is a Dedekind domain.

(2) is clear from the fact that if a € R* and A = (; Z) € SL(2, R),

X (1st row) from the second row to change

(;‘, b) € SL(2, R), then

then we can subtract ca™!

A to the form <a b

0 a“l)' Then multiplying by the elementary matrix

-1
aO 2 makes the matrix strictly upper-triangular, hence elementary.

For (3), note first that

(e a)(ho)-(32)
so [a b] = [—b a]. When we verify (4), it will follow that
[a ] =[-b a]=[b al[-1 a] =[b a] (by (2)).
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(26 D=(an o).
so [a b] = [a + bX b].

To check (4), assume Rajaz + Rb = R. Then if o b (2 b
(5] d1 Co d2

Furthermore,

have determinant 1,
ay b 0 as 0 b 10 0
(61 d1 0 0 1 0 0 1 —a
0 0 1 Co 0 d2 0 0 1
aiaz b aib 0
= CiQ2 d1 Clb 1
c2 0 d2 0

aias b 0
= C102 d1 -1 .
C2 0 d2

1 0 O
Premultiplying by [0 0 1
0 -1 0
puts a 1 in the (3, 3)-slot, and further elementary operations reduce the

matrix to the form
ajaz b 0
* * 01].
0 01

So [a1 b][az b] = [a,lag b] d

2.3.7. Corollary. If R is a Dedekind domain and R/P is a finite field for
each non-zero prime ideal of R, then SK;(R) is a torsion group.

now keeps the first row the same and

Proof. Consider a Mennicke symbol [a¢ b]. If b = 0, then a € R* so
[@ b] = 1 by (2) of the theorem. Similarly, [a b] =1 if b € R*. If neither is
the case, (b) is a non-zero proper ideal of R and so is a product of non-zero
primes ideals P; by Theorem 1.4.7. Since each R/P; is finite, it follows that
R/(b) is finite (cf. the beginning of the proof of Theorem 1.4.19). Since the
image of a in R/(b) is a unit and (R/(b))* is a finite group, there is some
k with ¢* =1 mod (b), and then by (4) of the theorem,

[a B)F =[a* b]=[1+bX b (for some \) =1 b]=1

by (3) and then (2) of the theorem. O

This is about as much as one can say about general Dedekind domains.
However, for the examples of greatest interest in number theory, namely
the rings R of algebraic integers in number fields (finite extensions of Q), it
turns out that one can explicitly compute R* and also show that SK;(R)
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vanishes. The computations for these cases are also of great interest in
topology because of Example 1.5.10(b), which shows that the group ring
of a cyclic group of order p is closely related to Z[e?™*/?], and the following
Section 4 of this chapter, which shows that K, of group rings is of great
importance in topology. We proceed to the calculation of R*, which is a
famous classical result of Dirichlet.

2.3.8. Theorem (Dirichlet Unit Theorem). Let F' be a number field,
i.e., a finite algebraic extension of Q, and let R be the ring of algebraic
integers in F, that is, the integral closure of Z in F. Then R* is finitely
generated, with torsion subgroup the finite cyclic group of roots of unity in
F, and with torsion-free part a free abelian group of rank r1 +re —1, where
r1 + 2rs =n = [F : Q] and where 7, is the number of distinct embeddings
of F into R, and rs is the number of distinct conjugate pairs of embeddings
of F into C with image not contained in R. In particular, R* is infinite if
and only if F is not Q or an imaginary quadratic field.

Proof. We begin by recalling that by elementary Galois theory, if [F :
Q] = n, then F must have n distinct embeddings o; into C. In general, a
certain number of these, say o1,...,0,,, will have image contained in R.
The rest occur in complex conjugate pairs; let these be

Ori+1s: 9 O0rytray 6r1+1a s :6"!'1+'r2-

So r; + 2ry = n. Define a map ), called the logarithmic embedding,
from F* to R™*72 by

AMa) = (Aa(a);- -5 Ary 1y (a))
= (log(lo1(a)]), .- -, log(|ow, (a) ),
210g(|071+1(a)|), (RS 210g(|0'r1+r3 (a)l)) ’

and note that since Np/q(a) = [T}, 0;(a), we have the relation

T1+72

log(| Nr/g(@))) = D Ai(a).

Jj=1

(Incidentally, X is not injective since A(—1) = 0, but we will see shortly that
A does give an embedding of the torsion-free part of R*.) Furthermore,
by multiplicativity of the usual absolute value on C or R and the additivity
of the logarithm for products, A : F* — R™ %" ig 3 group homomorphism
(the group operation is multiplication in the left-hand group, addition in
the right-hand one). In particular, since Ng/g(a) is a unit in Z, hence +1,
for a € R*, A restricts to a homomorphism (which we will also denote by
A) from R* to the hyperplane

T1+T2

V={(Z1,. -y Tritry) : Z z; = 0},

=1
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a real vector space of dimension r; + 72 — 1. Now a bound on

(lox(@)l;-- -5 low+rs (a)])

implies a bound on the absolute values of the elementary symmetric func-
tions of the o;(a), which are the coeflicients of a monic polynomial equation
satisfied by a, and are ordinary integers. So the inverse image under A of
any given ball of R™*7+2 is finite, which shows that A(R*) is discrete and
the kernel of A is finite.

The kernel of A therefore consists of a € R for which a? = 1 for some
g, in other words, of roots of unity. On the other hand, since A maps into
a torsion-free group, all roots of unity in F must lie in the kernel of ),
and the kernel coincides with the group of roots of unity in F, the torsion
subgroup of R*. If F' = Z, then obviously R* is just {£1}, and coincides
with the kernel of A. If F' is an imaginary quadratic field, then ro = 1,
r1 =0, and V = 0, so again R* = ker . Furthermore, for general F, since
the image of A is a discrete subgroup of a real vector space of dimension
71+ 72 — 1, A\(R*) is free abelian of rank < r; + 7> — 1, and RX is finitely
generated.

It remains only to show that the rank of A(R*) is precisely r; +rs—1.
This is the hard part of the proof, since for general F, there may not be any
obvious elements of R* other than the roots of unity, even if r{ + 79 — 1
is large. Since A(R*) is a discrete subgroup of the real vector space V,
to show that A(R*) has rank equal to the dimension of V is equivalent
to showing that V/A(R*) is compact, or to showing that there is some
compact subset K of V' whose translates under A\(R*) cover V.

To show this, we first recall that by the proof of Theorem 1.4.18,
H?:J{” o; gives an embedding o of the additive group of R as a lattice
(discrete cocompact subgroup) in R™ x C"2. In particular, the volume (in
the sense of n-dimensional Lebesgue measure) of (R™ x C"2)/o(R) is some
finite positive constant, say C;. Now if v = (v1,...,Vp 4r,) €V, let

e’ = (e, ...,e"ri+2) € R s R™ x C™2,

Note also that since Y v; = 0, the product of the coordinates e is 1.
Hence e’ - o(R) (where - denotes coordinatewise multiplication) is again
a lattice in R™ x C" of covolume C;. So if @ is a closed cube or ball of
volume > C] centered at the origin in R™ xC"2, its image in the quotient by
€Y -o(R) must have smaller volume, hence there had to be two points z; and
Z2 in @ with the same image. In other words, z1 —z2 € €”-0(R), so that 2Q)
(the cube or ball with dimensions twice as big) contains a point of €” -o(R).
Let K’ be the compact image of 2Q under the map R™ x C™? — R™*7"2
defined by taking the logarithm of the absolute value of each coordinate.
Then we have shown that for all points v € V, v + A(R \ {0}) meets K'.
This is almost, but not quite, what we want, since we are interested in
A(RX), not A(R ~ {0}) (which is a semigroup but not a group). However,
if Cy denotes the maximum L'-norm of a point in K’, in other words, the



3. Kj of PIDs and Dedekind domains 81

maximum value of the sum of the coordinates, then any a € (R~ {0}) with
e’ - o(a) € 2Q must satisfy

|Nr/q(a)l < €.

However, as observed in the proof of Theorem 1.4.19, there are only finitely
many integral ideals in R of norm < €2 (for any C3), and so up to units
there are only finitely many possibilities for a, say ay, ..., ax. Thus we have
shown that for any v € V, there is a unit v € R* such that v+ A(a;) + A(u)
meets K’ for some j < k. Thus there is a compact set K independent of v
such that v+ A(u) meets K for some u € R*, and this proves the theorem.

(Take K = U}_, (K" — Mg;)).) O

It has been shown in [BassMilnorSerre| and in [Milnor, §16] that in fact
SK;(R) vanishes when R is the ring of algebraic integers in a number field,
so that Theorem 2.3.8 gives the complete calculation of K;(R) in this case.
However, this is not an easy theorem and there doesn’t seem to be an ele-
mentary proof. With less effort, one can prove somewhat less, for instance,
that SK;(R) is finite. There are quite a number of proofs available, though
all seem to require some additional tools. One method is to first show that
SL(2, R) is finitely generated, for instance, by constructing an explicit fun-
damental domain for SL(2, R) as a discrete subgroup of a product G of
r1 copies of SL(2, R) and of ry copies of SL(2, C). It then follows from
Theorem 2.3.6 and Corollary 2.3.7 that SK;(R) is finite.

An alternative argument in [Kazhdan] uses representation theory. One
can show that for each n, SL(n, R) is a discrete subgroup of a product
G(n) of r, copies of SL(n, R) and of ry copies of SL(n, C), and that the
quotient G(n)/SL(n, R) has finite invariant measure. On. the other hand,
Kazhdan shows that for n > 3, the locally compact group G(n) has prop-
erty T, i.e., its trivial one-dimensional representation is an isolated point
in the space of all irreducible unitary representations of the group. Kazh-
dan also observes that property T inherits to discrete subgroups of cofinite
volume and to quotients thereof. Therefore the abelianization SL(n, R)ap
has property T. However, for a locally compact abelian group A, the ir-
reducible unitary representations are just the continuous homomorphisms
into T, the circle group, so property T means that A = Hom(A, T) is dis-
crete. For A discrete, Ais compact, so the only way it can also be discrete
is if it is finite. So SL(n, R),p is finite for n > 3. In particular, SK;(R),
which we have seen is a quotient of SL(3, R)ap, is finite.

2.3.9. Exercise (Finite generation of E(n) and SL(n)).

(1) Show using Lemma 2.1.2(a) that if a ring R is finitely generated as
a Z-module, then E(n, R) is finitely generated as a group. Deduce
from Theorem 2.3.2 and Corollary 2.3.3 that SL(n,Z), SL(n, Z[i]),
and SL(n, Z[_—L‘éﬂ@]) are finitely generated groups for all n. (This
is not so easy to show directly.)

(2) Show using Lemma 2.1.2(c) that for any ring R, E(n, R) is its
own commutator subgroup (i.e., is a perfect group) for n > 3.
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Also use Lemma 2.1.2(c) to strengthen the result of (1): if a ring
R is finitely generated as a Z-algebra, then E(n, R) is finitely
generated as a group for n > 3.

Show that SL(2, Z) = E(2, Z) is not its own commutator sub-
group, by exhibiting a homomorphism onto an abelian group. Hint:
what is SL(2, Z/(2))?

Exercise (Stabilization of GL(n)/E(n) for Dedekind

domains).

(1)

(2)

(3)

(4)

2.3.11.

Let R be any ring. Show using the proof of Proposition 2.1.4
that [GL(2, R), GL(2, R)] C E(4, R) (when GL(2) is embedded
in GL(4) as usual).

Again let R be any ring. Show that the image of GL(2, R) in
GL(n, R) normalizes E(n, R) if n > 3. Hint: first note that the
image of GL(2, R) normalizes the subgroup E; generated by the
e;j(a) with ¢ < 2 and j > 3, the subgroup E; generated by the
eij(a) with j < 2 and ¢ > 3, and the subgroup E3 generated by
the e;;j(a) with ¢, j > 3. Then use Lemma 2.1.2(c) to show Ej, Ej,
and Ej5 generate all of E(n, R).

Now let R be a Dedekind domain. By the proof of Theorem 2.3.5,
if n > 3, GL(n, R) is generated by E(n, R) and by the image
of GL(2, R). Deduce from this fact and from (1) and (2) above
that for any n > 3, E(n, R) is normal in GL(n, R), and that for
any n > 4, GL(n, R)/E(n, R) is the abelianization of GL(n, R).
(In fact there are cases where E(2, R) is not normal in GL(2, R).
With somewhat more work, one can show that GL(n, R)/E(n, R)
is already abelian for n = 3.)

Deduce from (3) and from part (2) of Exercise 2.3.9 the following
theorem about finite generation of SL(n, R): if R is a Dedekind do-
main which is finitely generated as a Z-algebra, and if SL(2, R),p is
finitely generated, then SL(n, R) is finitely generated as a group
for all n > 4. (As remarked in (3), this can be strengthened to
n>3.)

Exercise (Non-triviality of Mennicke symbols). The fol-

lowing famous example from [BassMilnorSerre] shows there are Dedekind
domains with non-trivial Mennicke symbols. Let R = R[z, y]/(z%+y*—1),
the ring of polynomial functions on the circle. This is a Noetherian integral
domain with field of fractions F = R(z, y)/(z® + 3> — 1).

(1)

(2)

Show that R is a Dedekind domain. (This part of the exercise
also appeared in Exercise 1.4.23. There are several possible argu-
ments, such as checking the original definition or showing that R
is integrally closed in F' and applying Theorem 1.4.17.)

Observe that (_xy Z;:) € SL(2, R) and that for any n > 2, the
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associated function S — SL(n, R), defined via the formula

T vy 0
(Z, y) = -y z 0 »
0 0 1,9

represents a non-trivial element of 1 (SL(n, R)) £ 71(SO(n)) (see
Example 1.6.13 for the calculation of this fundamental group).

(3) Argue on the other hand that if g(z, y) € E(n, R), then the
matrix-valued function (z,y) — g¢(z, y) € SL(n, R) must rep-
resent 0 in 71(SL(n, R)). Hint: it’s enough to check this for el-
ementary matrices, for which there’s an obvious homotopy to a
trivial loop.

(4) Deduce that there’s a homomorphism SK;(R) — KO (82) =
Z/(2) sending [z y] to the non-zero element of Z/(2).

(5) Show that in fact [z y] is an element of order 2 in SK;(R) by using
Theorem 2.3.6 to show [z ¢|* = 1.

4. Whitehead groups and Whitehead torsion

For applications of K; to topology, just as in the case of the Wall ob-
struction, the rings of interest are integral group rings ZG, where G is a
group which in the applications is the fundamental group of some topolog-
ical space. Note that K;(ZG) always contains certain “obvious” elements,
namely the images of the units g, g € G. We therefore focus attention on
the “non-obvious” part of K;(ZG).

2.4.1. Definition. If G is a group, its Whitehead group Wh(G) is the
quotient of K1(ZG) by the image of {+g: g € G} C (ZG)*.

Thus if G is the trivial group, Wh(G) = K;(Z)/{=£1} is trivial by Corol-
lary 2.3.3. The rings ZG are in general quite complicated from the ring-
theoretic point of view; for instance, in what would appear to be the sim-
plest non-trivial case, if G is the cyclic group of two elements with generator
t, the map a+bt — {a+b, a—b) embeds ZG into the Cartesian product ZxZ
as what we called in Definition 1.5.1 the double D(Z, (2)) of Z along the

“ideal (2). The units +1, 3¢ of ZG correspond in D(Z, (2)) to +(1, 1) and
to (1, —1), which are all the units of Z x Z, so Wh(G) = SK; (D(Z, (2))).
One can show that this vanishes (see Theorem 2.4.3 below), but to do this
from scratch is a bit involved, and this only handles the case of the simplest
non-trivial group! Thus the computation of Whitehead groups is usually
not easy. Nevertheless, the Whitehead groups of finite groups are now
thoroughly understood, and we refer the reader to [Oliver] for a complete
treatment. Here we content ourselves with a few elementary results.

Since it may not be apparent from Definition 2.4.1 that Whitehead
groups are ever non-zero, we begin with an example.
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2.4.2. Example. Let G be a cyclic group of order 5, with generator t.
We shall exhibit an element of infinite order in Wh(G). Let a = 1 ~t—¢1!
and note that

A=t—t) Q- -t =1—-t—t -2+ +t -3+t 1 42
=1,

so that ¢ € (ZG)*. Under the homomorphism a : ZG — C defined by
sending ¢t — €?™/% {+g : g € G} maps into the roots of unity and in
particular into the complex numbers T of absolute value 1. So b — |a(b)|
defines a homomorphism from Wh(G) to RX. Since

. ) 2
la(a)| = |1 - e?™i/5 — e=2mi/5) = |1 — 2cos —:;I| =~ 0.4,

we deduce that o gives an element of infinite order in Wh(G).

The example may be generalized. Suppose G is any group and we are
given a homomorphism « : G — U(n), the unitary n X n matrices over
C. This group homomorphism clearly extends to a ring homomorphism
a : ZG — M,(C), and thus induces a homomorphism

a, : K1(ZG) — K1(M,(C)) = K;(C) = C*.

(Here we have used Morita invariance, Exercise 2.1.8.) But o(+G) C U(n),
which maps to T in K; (C) under the determinant. Hence the absolute value
of the determinant gives a homomorphism o, : Wh(G) — R} which can be
used to detect elements of infinite order in the Whitehead group. Detecting
elements of finite order in Wh(G) is trickier and requires more sophisticated
methods. Nevertheless, the technique of Example 2.4.2 in fact detects all of
Wh(G) for many groups of practical interest, for instance for cyclic groups,
though we aren’t prepared to prove this at the moment. To give an idea of
what can be done by brute force, we show that the Whitehead group of a
cyclic group of order two is trivial. (More powerful methods of computation
use the exact sequences of the next section and Chapter 4.)

2.4.3. Theorem. The Whitehead group of a cyclic group of order two is
trivial.

Proof. We have seen above that this is equivalent to proving that
SK; (D(Z, (2))) vanishes. Suppose (4, B) € SL(n, D(Z, (2))). This
means A, B € SL(n,Z) and A~ B = 0 mod 2. By Theorem 2.3.2,
A € E(n, Z). Thus clearly (4, A) € E (n, D(Z, (2))). Multiplying (4, B)
by (A, A)~!, we see that we may assume A = 1,, the n x n identity ma-
trix. So suppose A = 1, and B = 1,, mod 2. If we could row-reduce
B = (b;;) to the identity matrix by elementary operations involving adding
even multiples of one row to another row, then it would be clear that
(1, B) € E (n, D(Z, (2)))-
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So we try to apply the division algorithm as in the proof of Theorem
2.3.2. Let (ba1,-..,bn1) = (b1). Then by is even and b;; is odd. We show
that we can reduce B by elementary operations of the allowable sort so
that by, = £1, by = 0, i.e., B = (3;1 e
procedure with B’; and so on. Eventually we come down to the case where
B is upper-triangular with +£1’s on the diagonal and even entries above.
More allowable elementary operations now reduce B to a diagonal matrix
with +1’s on the diagonal, and since det B = 1, the number of —1’s is
even. To finish the argument, we only have to see what to do with the case
n=2 B= -0

’ 0 -1
B is a direct sum of blocks of this type and of some identity matrix). In

). Then we repeat the same

(since after renumbering of the rows and columns

fact the matrix ( 0 _01) is not contained in the subgroup of SL(2, Z)

generated by ((1) %) and by (; (1)), however,

(((1) (1)), (—01 _01)>=(1, ~e(, -1

is elementary as a matrix over D(Z, (2)) by Corollary 2.1.3. So this com-
pletes the argument except for the step about reducing by; to 1 and b
to 0.

For this we note that if |bj;] = 1, we can subtract even multiples of
the first row of B from the other rows and thereby reduce |b;| to 0. If
|b1| = 0, then since (b11) + (b1) = Z, we must have |by1| = 1. If |by1] > 1
and |b;] > 0, there are two cases, depending on which of these is larger. If
|b11] < |b1], then by the division algorithm we can write by = gbiq +r with
0 < |r] < |b11| (r can’t be O since by; and by are relatively prime). If g is
even, then we may reduce the size of |b;| by adding even multiples of the
first row to the other rows. If ¢ is odd, then r is odd and we write instead
by = (¢ £ 1)b11 + (r F b11). With the correct choice of the sign, we have
0 < |r F b11| < |b11], but ¢ £ 1 is even so we can argue as before.

In the other case, |b11] > |b1]. Again we apply the division algorithm
and obtain b;; = ¢gby + 7 with 0 < |r| < |b1]| and r odd. If g is even,
this means we can subtract even multiples of other rows from the first row
to reduce the absolute value of by;. If ¢ is odd, we use the same trick as
before and write byy = (g + 1)by + (r F b;) with the sign chosen so that
0 < |r Fb1| < {b1]|. Again we can subtract even multiples of other rows
from the first row to reduce the absolute value of b1;. After repeating the
algorithm finitely many times, we eventually come down to the case where
|11l =1. O

The reader will presumably agree after seeing this proof that computing
Whitehead groups from scratch is not very practical. But at least we know
now that Wh(G) is trivial for some finite groups and infinite for others.
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In the rest of this section, we will give a brief exposition of the concept
of Whitehead torsion, which provides the motivation for introducing the
Whitehead groups. Whitehead torsion gives an algebraic obstruction for
homotopy equivalences between certain topological spaces to be “simple,”
or of the “obvious” sort. Since for present purposes a homeomorphism is
to be viewed as an “obvious” sort of homotopy equivalence, Whitehead
torsion can be used to distinguish homotopy-equivalent spaces which are
not homeomorphic.

The most famous application of Whitehead torsion is the “s-cobordism
theorem,” which is the main tool in classifying manifolds in dimension > 5.
So that the reader can appreciate the importance of the Whitehead groups
for topological problems, we will give the statement here. However, we
shall not discuss the proof as it will take us too far afield. For details, see
[MilnorHCT] for the simply connected case and [RourkeSanderson, Ch. 6]
and [Kervairel] for the general case.

2.4.4. Theorem (“s-cobordism theorem”—Barden, Mazur,
Stallings). Let M™ be a connected compact n-manifold of dimension > 5
with fundamental group 7, and consider the family F of all “h-cobordisms”
built on M. These are connected compact manifolds W™t! with exactly
two boundary components, one of which is M™ and the other of which is
some other manifold M'", such that W has deformation retractions onto
both M and M'. There is a map 7 : F — Wh(n), called the “Whitehead
torsion,” and 7 induces a natural one-to-one correspondence from F/ ~ to
Wh(r), where ~ is the equivalence relation induced by homeomorphisms
W — W' which are the identity on M. If W is the “trivial” h-cobordism
W =M x [0, 1], then 7(W) = 1.

2.4.5. Corollary. If M™ is a connected compact n-manifold of dimension
> 5 with fundamental group w, and if Wh(w) = 1 (for instance, if M is
simply connected or if & is of order 2), then every h-cobordism built on M
is homeomorphic (rel M) to a product M x [0, 1]. In particular, the other
boundary component M’ is homeomorphic to M.

Remarks. We have been deliberately vague about what category of man-
ifolds we are dealing with here. In fact, the theorem is valid in all three
of the major categories of manifolds: topological manifolds and continuous
maps, PL manifolds and PL maps, and smooth manifolds and C* maps.
In the last of these, “homeomorphism” in the theorem is to be interpreted
as “diffeomorphism.”

One of the main applications of the Corollary, as noticed by Smale, is
the proof of the Poincaré conjecture: that in dimension n > 6 (this can
be reduced to 5 with a little more work), any manifold ¥™ homotopy-
equivalent to S™ is (topologically) homeomorphic to S™. Furthermore,
the set of diffeomorphism classes of smooth homotopy spheres X" is in
one-to-one correspondence with the group Diff(S™!) of isotopy classes
of diffeomorphims of S”~1. To prove this, cut out two small disks from
¥, viewed as the “polar caps” of the homotopy sphere. What remains
is a manifold W™ with the homotopy type of a cylinder and with two
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boundary components each homeomorphic to $”~!. Since n — 1 > 5 and
S"—1 is simply connected, the hypotheses of the Corollary are satisfied and
there is a homeomorphism (or diffeomorphism, if ¥ is a smooth manifold)
from W to 8™~ x [0, 1] which is the identity on the boundary component
corresponding to the south polar cap. Hence we can glue the south polar
cap back in and deduce that X" = B™U; B", a union of two balls glued by a
homeomorphism (if we're in the topological category) or diffeomorphism (if
we’re in the smooth category) f from S"~! to itself. In addition, it’s clear
that any such f defines a homotopy sphere B" Uy B”. The equivalence class
of this homotopy sphere only depends on the isotopy class of f, since an
isotopy of f’s gives an h-cobordism of the corresponding homotopy spheres
and we can apply the Corollary again. Conversely, if there is an orientation-
preserving diffeomorphism from B™ Uy B™ to the standard sphere, it is
not hard to see that there must be an isotopy from f to the identity.
This explains why the smooth homotopy spheres are parameterized by
Diffp(S™~1). In the topological category, since B" is the cone on s
any self-homeomorphism f of S”~1 extends to a self-homeomorphism F' of
B™ by the simple formula

F(rz) =rf(z), r€][0,1],ze€ 8" .

(This is the “Alexander trick.”) This yields a homeomorphism from B™ Uy
B™ to S™, proving the Poincaré conjecture.

The most elementary context in which to discuss “simplicity” of ho-
motopy equivalences is that of a finite relative CW-complex (X, A). In
other words, we assume A is a (Hausdorff) topological space and that X
is obtained from A by attaching finitely many cells, so that k-cells are al-
ways attached before (k+ 1)-cells and the inclusion A — X is a homotopy
equivalence. We assume as well that A and X are both path-connected
and locally simply connected, with the same fundamental group 7 (com-
puted with respect to some basepoint zo in A). Let X and A be the
universal covers of X and A, which carry free actions of 7 by covering
transformations, and let R = Zm be the group ring of 7. In this situ-
ation, the relative homology groups Ho(X, A; Zr) = H,(X, A; Z) must
vanish. However, these may be computed from the cellular chain complex
Co(X, A; Zr) = Co(X, A; Z), which is the direct sum of one free rank-one
R-module in degree k for each k-cell added in obtaining X from A. The
hypothesis that A < X is a homotopy equivalence means (by the White-
head and Hurewicz theorems) exactly that this chain complex of finite type
is acyclic. The Whitehead torsion of the homotopy equivalence will be an
invariant of the chain complex Cq(X, A; Zm) defined using one extra piece
of structure—a choice of basis elements for the free modules Cix(X, A; R).
Since the k-chain module contains one free rank-one R-module for each
geometric k-cell, there is a choice of a basis which is canonical up to an
element of {£g : g € 7} for each cell. Namely, we choose a basis element
for the free cyclic submodule corresponding to each cell in X \ A, and it
only depends on a choice of orientation for this cell (hence the + sign) and
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on a choice of a lift of this cell to a cell in X \ A (hence the element of
the covering group). If there are only cells in two consecutive dimensions,
k — 1 and k, then once we have fixed our basis elements, the differential
di : Cr(X, 4; R) — Cr—_1(X, A; R) must be given by an invertible n x n
matrix over R, where n is the number of k-cells or (k —1)-cells. (The num-
ber of cells must be the same in both dimensions since H, (X, 4; Q) must
vanish, hence dim Cx_; (X, 4; Q) = dim Cr(X, 4; Q).)

2.4.6. Definition. The Whitehead torsion 7(X, A) of the homotopy
equivalence A — X is the image in Wh(r) of the matrix of di, in GL(n, R)
if k is even, or the inverse thereof if k is odd. Note that while the matrix
of d, is not well defined as it depends on the choice of basis, the torsion is
well defined since we have divided out by all possible ambiguities.

Now consider the general case where Co(X, A; R) is allowed to be any
acyclic chain complex of finite type of free R-modules, starting in degree 0,
with bases chosen for each chain module. By the argument in the proof of
Theorem 1.7.12, one may increase the ranks of the chain modules (adding
“cancelling pairs” of cells in consecutive dimensions) so that By = Z; =gef
ker dy, is free for each k. Then dj, defines an isomorphism Cj/By — Bg—i.
We choose bases for the non-zero By’s, taking the basis for By = Cp to be
the basis we already have for Cy, and idempotents py : Cy, — Bi. Then
pr @ dy, : Cy, — By, @ By_1 is given by an invertible matrix with entries in
R, and we let [d] be its class in Wh(7). (We can suppress the pj, because if
p}, is another projection from Cy onto By, then pi — pj, vanishes on By and
hence factors through dj. But the matrix of (px + s o di) @ di, differs from
that of py @ dy, by an elementary matrix, so their classes in K; (R) are the
same.) The Whitehead torsion 7(X, A) of the homotopy equivalence
A — X is then defined to be the alternating product (since we'’re writing
Whitehead groups multiplicatively) [T, [dx]D".

This is independent of the choice of bases for the By ’s, since if we change
the choice of basis for By by an invertible matrix P, this multiplies the ma-
trix for dx41 by P and the matrix for di. by P~1, so that we get cancellation
in the alternating product. Notice also that this agrees with our previous
definition when C, = 0 for p # k, k — 1, since By = 0 and By_; = Cg-1,
so that we can use the same basis for By_1 as for Cx_1. Note finally that
the fact that we had to stabilize to make all the By’s free, by adding on
“cancelling pairs” of cells in consecutive dimensions, does not matter, since
this kind of geometric stabilization corresponds to passage to the limit from
GL(n, R) to GL(R) in the definition of K.

There is a geometric definition that corresponds to the algebraic condi-
tion of vanishing torsion.

2.4.7. Definition. The homotopy equivalence A — X is called elemen-
tary, or given by an elementary collapse, written X \¢ A4, if X is ob-
tained from A by attaching two cancelling cells in adjacent dimensions; in
other words, if for some k, X = (AUsB*~1)U,B*. Here f : $¥=2 — Ais the
attaching map for the (k — 1)-cell and we suppose g : $¥~! — (AU B¥~1)
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maps one hemisphere identically onto the (k — 1)-cell and the other hemi-
sphere of §*¥~! into A. This is illustrated in the following picture.

2.4.8. Figure: An elementary collapse

Note that if f collapses S¥=2 to a point a, this just means that X = AV, B*
and one can obviously collapse B* to the attaching point a. In the general
case, f extends to amap f : B*"! — A and X has a deformation retraction
down to A collapsing the k-cell down to f(B*~1), as one can see in Figure
2.4.8.

More generally, we say X collapses to A or A expands to X and
write X \\Aor A /" X if

X\eXI\eXZ\e"'\eA;

and say the homotopy equivalence A — X is simple if it is in the equiva-
lence relation generated by \, i.e., if X /' X; \, Xo 7 --- \( A (with all
the collapses and expansions fixing A pointwise).

2.4.9. Theorem (Geometric characterization of Whitehead tor-
sion). In the above context of a finite CW-pair (X, A) with A and X
Hausdorff, path-connected, and locally simply connected, and where the
inclusion A — X is a homotopy equivalence, the inclusion is simple if and
only if 7(X, A) = 1 in Wh(n). In particular, if Wh(r) = 1, for instance if
X and A are simply connected or 7 is of order 2, then every such homotopy
equivalence A — X is simple.

Furthermore, for fixed A and a fixed element a € Wh(r), there exists
a finite CW-pair (X, A) such that the inclusion A — X is a homotopy
equivalence with (X, A) = a.

Proof (Sketch). If X \. A, then 7(X, A) = 1 since the boundary map
in the cellular chain complex just corresponds to the 1 x 1 matrix (1), as
one can see from Figure 2.4.8. Next observe that if

A=X0‘-—>X1HX2'—>---X1L=X
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and all the inclusions are of finite CW-pairs and are homotopy equivalences,
then

(X, 4) =7(X, Xp-1)--- (X1, A).
This follows from the fact that

Cu(X, A; R) = Co(X, Xn_1; R)® -~ ® Co(X1, 4; R)

and the matrix defining [dj] for (X, A) differs from the direct sum of those
defining the [dj] for the successive pairs (X, X;_1) by an elementary ma-
trix. It follows that the torsion vanishes if X \, A. The same principle
also shows the torsion vanishes if A — X is simple, for if for instance
X1 \, X 2 A and X1 \ X2 2 A, then ’T(Xl, A) = T(X]_, X)T(X, A) =
(X1, X2)7(Xa, A), so 7(X, A) = (X3, A). The general case follows from
the same argument by iteration.

The existence part of the theorem is a direct construction. Given a €
Wh(~), realize it by a matrix B € GL(n, R). Then let

Xi1=AVvS?v...v §?
N ——

n times

and construct X from X; by attaching n 3-cells so that in the universal
cover the cellular boundary map is given by

B: C3(X, A; R) = R" — R" = Cq(X, A; R).

This is possible since 73 ()?’1, /i) is a free R-module on n generators. Then
(X, A) obviously has the right torsion.

For the last part of the theorem, one needs to note first that if X’ differs
from X by a homotopy of the attaching maps for the cells rel A, then X can
be converted to X’ by a sequence of expansions and collapses (rel A). For
this it’s enough to consider the case of X = AUy, B* and X’ = AUy, B¥,
where

f:8F1x[0,1]— A

is a homotopy of attaching maps. Merely define W = A Uy (B* x [0, 1]),
which is defined by attaching B* x [0, 1] to A along S*~! x [0, 1]. Then
(W, A) is a finite CW-pair: one can first attach two k-cells to A via fp and
f1, then glue in a (k +1)-cell B¥+! = Bk x [0, 1] via f on $¥~! x [0, 1] and
via the identity maps to the two k-cells along B* x {0, 1}. But W \ X
and W\ X’ since one can “cancel” the (k+ 1)-cell with either of the two
k-cells.

The hardest part of the theorem is to show that if 7(X, A) = 1, then
A — X is simple. For this the idea is to proceed in two steps: first to
modify X (rel A) by means of elementary expansions and collapses (which
as we have seen do not affect the torsion) so that all the cells added to A
to form X are in two consecutive dimensions k and k — 1, then to show
that each elementary matrix operation applied to

dy : Cx(X, A; R) = R™ — R™ = Cy_1(X, 4; R)
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has a geometric analogue. Here we only deal with the last part; see [Rourke-
Sanderson| or [Cohen] for the full argument. Suppose X; is obtained from
A by attaching n (k — 1)-cells, and X is obtained from X; by attaching n
k-cells via an elementary matrix e;j(a). Using the observation about ho-
motopies of attaching maps, one can change X by expansions and collapses
so that for m # j, the m-th k-cell is glued onto the m-th (k — 1)-cell as in
Figure 2.4.8, and the pair of cells collapses down to A. The j-th k-cell is
glued onto both the j-th (k—1)-cell and the i-th (k—1)-cell. But now since
the i-th (k — 1)-cell can be collapsed down to A (along with the i-th k-cell
glued onto it), the attaching map for the j-th k-cell can be homotoped
through A to “unhook” this cell from the i-th (k — 1)-cell. So after further
expansions and collapses, we can assume each k-cell is glued onto exactly
one (k — 1)-cell as in Figure 2.4.8, and the cells can be collapsed in pairs
downto A. O

The concept of Whitehead torsion can be carried over from inclusions
A — X to general homotopy equivalences f from one finite (connected)
CW-complex X; to another, X;. To do this, if f is cellular, form the
mapping cylinder X = Cy = X; %[0, 1]Us X3 (here we use f to attach X; x
{1} to X3). Since we assumed f is cellular, this is a finite CW-complex, and
since f was assumed a homotopy equivalence, it has deformation retractions
down to the subcomplexes A = X; x {0} and Xo. We define 7(f) =
7(X, A). Note that if f is actually an inclusion of a finite CW-subcomplex,
then the pair (X, A) is an expansion of the pair (X2, X;) and so 7(f) agrees
with our existing definition of 7(X3, X;). Furthermore, if two homotopy
equivalences fy and f; : X3 — X3 are homotopic to one another, then Cp,
is obtained from Cj, by a homotopy of attaching maps, and hence by the
proof of Theorem 2.4.9, their torsions are the same.

This makes it possible to define 7(f) for a homotopy equivalence f which
isn’t cellular. We homotope f to a cellular map fp (this is possible by the
“cellular approximation theorem”) and define 7(f) = 7(fo). The result is
well defined since if we homotope f to a different cellular map f;, then fo ~
f1 and so 7(f1) = 7(fo). It also turns out that if f is a homeomorphism,
then 7(f) = 1, but this is a hard theorem [Chapman] unless f is cellular,
in which case it’s a triviality. (If f is a cellular homeomorphism, then Cf
is cellularly isomorphic to X; X [0, 1], which clearly collapses to X;.)

For further discussions of the various guises and applications of White-
head torsion, see [MilnorWT] and [Weinberger, Ch. 1].

2.4.10. Exercise. Extend the proof of Theorem 2.4.3 to show that the
Whitehead group of any elementary abelian 2-group (product of finitely
many cyclic groups of order 2) is trivial.

2.4.11. Exercise (Behavior of Whitehead torsion under prod-
ucts). This exercise is in some sense the K;j-parallel of Exercise 1.7.18.

(a) Suppose (C1, d*) and (C!, d') are complexes of finite type of based

free R-modules and S-modules, respectively, with C1 acyclic (so

that 7(C?) is defined). Show that the total complex of the double
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complex Cl ®z C? of free R ®z S-modules,

oo
Cj= @ C;—k ®ZCI%7

k=—o00
dj=d' ®id+ (—1)Pid®d> on C, ®zC?

is also based and acyclic.
(b) Suppose that in the situation of (a), S = Z. Show that

T(C) = T(CH)x(C?),

where x(C?) € Ko(Z) = Z.

(c) Suppose A — X is a homotopy equivalence satisfying the hypothe-
ses of Theorem 2.4.9, so that its torsion is defined, and let Z be a
finite connected and simply connected CW-complex. Show using
(b) that Ax Z — X x Z is also a homotopy equivalence satisfying
the hypotheses of Theorem 2.4.9, and that 7(X x Z, A x Z) =
7(X, A)x(Z). Thus if Z = S3, deduce that Ax Z — X x Z is
always simple.

(d) Show also that in the situation of (a), if x(C?) = 0, then 7(C) =0
regardless of what S is. Deduce that if Z = S', then AxZ — XxZ
is always simple.

5. Relative K; and the exact sequence

As with Ky, we want to be able to relate K; of a quotient ring R/I to
K;(R) and to some invariants of the ideal I (and the way it is embedded
in R). In this section, we will define the relative group K;(R, I) and show
that the three-term exact sequence of Section 1.5 extends to a six-term
exact sequence relating Ko and K;. This will provide us with some more
computational tools for computing K-groups.

2.5.1. Definition. Let R be a ring (with unit) and let I be a two-sided
ideal in R. We define D(R, I) as in 1.5.1 and define the relative K;-group
of the ring R and the ideal I to be

Kl(R, I) = ker ((pl)* : Kl(D(R, I)) — Kl(R)) .

Note that this is the exact parallel of Definition 1.5.3. Since it’s conve-
nient to have another definition closer in spirit to Definition 2.1.5, we now
prove a relative version of Whitehead’s Lemma and rework the definition
of K;(R, I) into a more usable form.

2.5.2. Definition. Let R be a ring (with unit) and let I be a two-sided
ideal in R. We define GL(R, I) to be the kernel of the map GL(R) —
GL(R/I) induced by the quotient map R — R/I. We define E(R, I) to be
the smallest normal subgroup of E(R) containing the elementary matrices
eij(a), a € I. Note that since each such elementary matrix is congruent to
the identity matrix modulo I, E(R, I) C GL(R, I).
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2.5.3. Theorem (Relative Whitehead Lemma). Let R be a ring
(with unit) and let I be a two-sided ideal in R. Then E(R, I) is normal in
GL(R, I) and in GL(R),

GL(R, I)/E(R, I) = K\(R, I),
and GL(R, I)/E(R, I) is the center of GL(R)/E(R, I). Furthermore,
E(R, I) = [E(R), E(R, I)] = [GL(R), E(R, I)]

Proof. The first assertion follows from the fact that if A € GL(n, R)
and B € E(n, R, I), then

(" 9-(2 2)E D)

Since (61 A(ll) is elementary by Corollary 2.1.3 and by its definition

E(R, I) is normal in E(R), the right-hand side lies in E(R, I).

Next suppose (A;, 42) € GL(D(R, I)) C GL(R x R) and maps to
the identity element of K;(R) under (p;).. This means of course that
A, € E(R). But then (4;, A;) € E(D(R, I)), since if Ay = [], €i,j.(ar),

(A1, A1) =[] eiie (ar, ax).
k

Multiplying (A;, A2) by (A1, A;)~! changes it to the form (1, B) with B €
GL(R) but without changing its class in K. Since (1, B) € GL(D(R, I)),
B=1 mod I and B € GL(R, I). Conversely, every B € GL(R, I) defines
a class in GL(D(R, I)). So to show GL(R, I)/E(R, I) = K;(R, I}, we
need only check that if B € GL(R, I), then (1, B) € E(D(R, I)) if and
only if B € E(R, I). For one direction, note that E(R, I) is generated by
matrices of the form Se;;(a)S~! with a € I and S € E(R). But

(1, Seij(a)S'l) = (S, S)e,-j(O, a)(S‘l, S_l)

and all three factors on the right lie in E(D(R, I)). For the other direction,
suppose

(1, B) = [ esnse o be) € BDR, 1)), [[eonse(ax) =1 € E(R).
k=1 k

Note that for each k,

€irr (ks Ok) = €3y (Tks k)€, (0, b — ax) = (Sk, Sk)(1, Tk),
where

Sk = eikjk(ak) < E(R), T, = eikjk(bk - ak), by —ax € 1.



94 2. K; of Rings

Then we have

Heikjk (ak’ bk) = H(Sk, Ska)
k k

= (S1, S1T1S7)(S2, 818:TxS85187Y)
e (S’” 5'152 ces STTT)
= (1, (S1TS7 1) (815212871 SY)
-+ (81828, T8 - ..52—151—1)) ,

since 5152---S, = 1, and we’ve written our element B as a product of
generators of E(R, I).

Since E(R, I) is normal in GL(R, I) and in GL(R), [E(R), E(R, I)] C
[GL(R), E(R, I)] C E(R, I). Equality holds since E(R, I) is generated by
matrices of the form Se;;(a)S~! with a € I and S € E(R), and

Seij(a)S™" =[S, eij(a)les;(a) =[S, eij(a)]lein(L), exj(a)]
€ [E(R), E(R, I)], k#4,j.

It remains only to show that GL(R, I)/E(R, I) is the center of GL(R)/
E(R, I). Note first that if A € GL(R, I),

(-G
G600y D)

- —A-1(A—
a.ndsinceA—lhasitsentriesinI,(1 4 1),(1 A7H(A 1)),

0 1 0 1
and (__ ( Al__ 1) (1)) lie in E(R, I), hence this calculation shows that
(’g Aql) lies in E(R, I). So if B € GL(R),

ABA™'B™! 0 0 A 0 0 B o 0
0 1 0)l=f[{0o A4 0o],l0 1 o
( 0 0 1) [(0 0 1) (0 0 B-l)]
€ [E(R, I), E(R)] = E(R, I).

So GL(R, I) and GL(R) commute modulo E(R, I). On the other hand, the
center of GL(R)/E(R, I) must map (under the homomorphism induced by
the quotient map R —» R/I) to the center of GL(R/I), which is trivial. (A
central matrix must be diagonal with equal diagonal entries, but since for
a matrix in GL all but finitely many of the diagonal entries are 1, GL(S)
has trivial center for any S, in particular for S = R/I.) Hence the center of
GL(R)/E(R, I) is contained in the kernel of the map to GL(R/I), which
is GL(R, I)/E(R, I). O

We’re now ready for the main theorem of this section, which is an ex-
tension to the left of the exact sequence of Theorem 1.5.5.
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2.5.4. Theorem. Let R be a ring and I C R an ideal. Then there is a
natural exact sequence

Ki(R, I) » K1(R) 2 Ky (R/T) 2 Ko(R, I) = Ko(R) 2 Ko(R/I),

where ¢, is induced by the quotient map ¢ : R —» R/I and the maps
K;(R, I) » K;(R) are induced by pz : D(R, I) — R.

Proof. For simplicity of notation in the proof, if A is an element of R or
a matrix with entries in R, we will often denote g(A), the corresponding
matrix over R/I, by A.

We begin by proving exactness of

K1(R, I) = Ki(R) = K1(R/I).
We have seen that any class in K1 (R, I) is represented by
(1, B) € GL(D(R, I)) C GL(R x R)

with B € GL(R, I), so B = i and ¢.[B] = 1. Conversely, if B € GL(R)
and ¢,([B)]) = 1, then B € E(R/I). Now if & € R/I, it comes from some
a € R and e;;(@) = g(eij(a)). So each generator of E(R/I) lies in the
image of E(R) and hence E(R/I) = ¢(E(R)) (this argument was used
in Lemma 1.5.4). So B lifts to a matrix C € E(R), and ¢(BC~') = 1.
Then (1, BC™!) € GL(D(R, I)) and [B] = [BC~!] in K;(R) comes from
[(1, BC™Y)] € K1(R, I).

Next we have to define the boundary map K;(R/I) 2, Ko(R, I) and
prove exactness at K;(R/I) and at Ko(R, I). Theorem 1.5.5 will then
complete the proof. The definition of the boundary map is based on what
in topology is called a “clutching” construction. Given A € GL(n, R/I)
(the image of some matrix A € M, (R), not necessarily invertible), we use

A to “clutch” together two free modules to get a projective module over
D(R, I). In other words, let

R" x ; R* = {(z, y) € R" x R" : § = zA}.

(We are thinking of x and y as 1 x n matrices.) Make this into a module
over D(R, I) by letting

(r1, r2) - (z, y) = (112, r2y).
This makes sense since 7; = 73, hence
q(ray) = oy = 71 (24) = q(r1z)A.
Note that if A = g(A) with A € GL(n, R), then

(z, y) — (zA, y) € R" x; R" =2 D(R, I)"
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sets up an isomorphism from R" x 4 R" to a free module of rank n. In
particular, since we have seen that E(R/I) = q(E(R)), R™ x ;4 R" is free
of rank n if A is elementary. For a general A € GL(n, R/I), we can

always choose B € GL(n, R/I) such that A® B is elementary (for instance,
B = (A)™! works by Lemma 1.5.4 or Corollary 2.1.3), and then

(B x4 B) @ (R" X B") & R*" x jo 5 3" 2 D(R, I™,

so that R® x 4 R™ is a direct summmand in a free module, i.e., a projective
module. Thus it makes sense to define

8[4) = [R" x 4 R"] - [D(R, I)"] € Ko(D(R, I)).

We will show that 8 is in fact a homomorphism K;(R/I) — Ko(R, I).
It maps into Ko(R, I) = ker(p1). since

(p1)+(9[A]) = (p1)+([R" x4 R"]) ~ (p1)+(ID(R, I)"]) = [R"] - [R"] = 0.
It is additive on direct sums of matrices since
(R™ x4 R™) @ (R"™ x5 R™) & R* x 405 R*",
and it sends classes of elementary matrices to 0 since if A is elementary,
d[A] = [R™ x 4 R"] — [D(R, I)"] = [D(R, I)"] — [D(R, I)"] = 0.
More generally, it is well defined on classes in K; since if A = BC with

B € E(R), then
(z,y) — (zB, y) € R" xs R"

sets up an isomorphism from R™ x 4 R™ to R™ x5 R". Thus we obtain a
well-defined homomorphism K;(R/I) — Ko(R, I). Furthermore we have
already seen that the composite

Ki(R) 25 Ki(R/T) 2 Ko(R, I)
is zero. The composite
Ky(R/T) 2 Ko(R, I) — Ko(R)
is zero since
(p2)+(B[A]) = (P2)+([R" x 4 R™]) — (p2)« ((D(R, I)"]) = [R"] - [R"] = 0.
It remains only to check that ker & C ¢.(Ki(R)) and that

ker {(p2)s : Ko(R, I) — Ko(R)} C O(K1(R/I)).
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Suppose A([A]) = 0. This means that R™ x ; R™ is stably isomorphic to a
free module of rank n, or that for some m,

R" x ; R ® D(R, I)™ = D(R, I)™*™.
After replacing A by A & 1,,, we may assume that in fact
R" x; R" =2 D(R, I)".
Choose an isomorphism
¢:D(R, )" =R" xj R — R" x4 R".

Then we can define matrices B,C € M,(R) by (e;B, ¢;C) = ¢(e;, €;),
where e; is the j-th standard basis vector for R™, or in other words by
taking the j-th rows of B and C to be the first and second coordinates
(respectively) of (e;, e;). Then by linearity, ¢(u, v) = (uB, vC) for any
(u, v) € D(R, I)™ = R™ xj R™, and since for such u and v, % = 9, we have
BA = C. Since ¢ is invertible, it is clear that B and C are invertible with
¢ Yz, y) = (B!, yC?) for (z,y) € R® x; R*. Thus A = ¢(B~'C)
and so ker 8 C q.(K1(R)).

Finally, suppose one has a class in Kq(R, I) going to 0 in Ko(R). This
means we have a class in Ko(D(R, I)) going to 0 under both (p,). and
(p2)«. Represent the class by [P] — [D(R, I)"], where P is a projective
D(R, I)-module such that (p1).(P) and (p2)«(P) are stably isomorphic to
R™. If necessary, we may add on a free module of rank &k to P and replace
n by n + k so that (p1).(P) and (p2)«(P) are both actually isomorphic to
R™. Then it is clear that P is of the form R™ x 4 R", and thus

[P] ~ [D(R, I)"] = 8([A]).

This completes the proof. 0O

2.5.5. Corollary. (Cf. Exercise 1.5.11.) Let R be a ring, I C R an ideal
such that the quotient map q : R - R/I splits (in other words, such that
there exists a ring homomorphism s : R/I — R with qo s = idg/r). Then

0— Ko(I) = Ko(R) — Ko(R/I) — 0

is split exact.

Proof. Clearly s, is a splitting for g., by functoriality of Ky. We need
only show that Ko(I) — Ko(R) is injective. But this follows from the fact
that s. : K1(R/I) — K:(R) is a splitting for g, : K1(R) — K (R/I), hence
0 = 0 in the exact sequence of 2.5.4. O
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2.5.6. Examples. (Cf. Examples 1.5.10.)

(a)

(b)

Suppose R = Z and I = (m), where m > 0. Then K;(R) & {+1}
by Corollary 2.3.3, while K; (R/I) was computed in Exercise 2.2.7.
It is thus possible to compute Ko(I) from the exact sequence. For
example, suppose m = 2. Then R/I is the field of two elements
and (R/I)* = {1}. The exact sequence therefore becomes

KR I - {1} - {1} S k() -2 >z,

and Ko(I) = 0. At the same time, we see that K;(R, I) must
surject onto {£1}.

Next, suppose m = p is an odd prime. Then R/I is the field F,
of p elements and (R/I)* is cyclic of order p — 1. Hence the exact
sequence becomes

Ki(R, 1) — {1} - F} 2 Koy() ~ 2 > 2,

and Ko(I) = F)‘/{£1}, which is cyclic of order 2= Tn this case,
the map K;(R, I) — {£1} is trivial.

As a third example, suppose m = 27 is a power of 2 with r > 1.
Then R/I is a local ring with maximal ideal of index 2, and (R/I)*
is an abelian group of order 2"~1. Furthermore, &1 are distinct
elements of this group. For instance, if m = 8, then since any odd
square is = 1 (mod 8), all elements of (R/I)* are of order 2 and
(R/I)* is a Klein 4-group (Z/(2) x Z/(2)). By Corollary 2.2.6,
K (R/I) = (R/I)*. The exact sequence has the form

Ki(R, I) — {£1} = (R/D)* > Ko(I) » 2 S Z,

and Ko(I) & (R/I)* /{£1}, an abelian group of order 2"~2 which
is not necessarily cyclic. Again in this case, the map K;(R, I) —
{£1} is trivial.

Suppose G is a cyclic group of prime order p, say with generator
t, and R = ZG is its integral group ring, which may be identified
with Z[t]/(t? — 1). If £ = e2™*/P, a primitive p-th root of unity, and
if $ = Z[¢], then S is the ring of integers in the cyclotomic field
Q(£), hence is a Dedekind domain by Theorem 1.4.18. There is a
surjective homomorphism R — S defined by sending ¢ — £. Since
the cyclotomic polynomial f,(t) =t?~1+--- +¢+1 is irreducible,
any polynomial g(t) € Z[t] with g(¢) = 0 must be divisible by f,.
In particular, anything in the kernel I of the map R — S must be
a multiple of f,. Note that as an element of R, fg = pfp. Thus
I in this example is, as a ring without unit, the same as in the
last example if we specialize to the case m = p. In particular,
Ko(R, I) = Ko(Z, (p)) = Fy/{x1}, which is cyclic of order P;—l
by (a). We thus have an exact sequence

Ky(R, I) — K1(ZG) — Ki1(2Z[g]) > FX /{%1}
— Ro(ZG) — Ko(Z[t).
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If p = 2, then Z[¢] = Z and this specializes to
Ki(R, I) = K1(ZG) — {1} 2 0 - Ko(2G) — 0.

Thus K¢(ZG) = 0 in this case, and of course we already know
by Theorem 2.4.3 that K;(ZG) = {£1} x G, so that the map
K;(ZG) — K1(Z) is surjective with kernel of order two.

If p is an odd prime, the cyclotomic field Q(£) has no real embed-
dings and p;—l conjugate pairs of complex embeddings. Thus by
the Dirichlet Unit Theorem (Theorem 2.3.8), (Z[£])* is the prod-
uct of the group of roots of unity in Q(¢), which is of order 2p, with
a free abelian group of rank p;—l —-1= p—;—é Granted the fact that
SK;(Z[€]) vanishes (quoted but not proved in Section 2.3, though
we know this at least for p = 3 by Theorem 2.3.2), we obtain the
exact sequence

Ki(R, I) » Wh(G) x {+1} x G —» Z*%" x {1} x G
2 ) [{£1} — Ko(ZG) — Ko(Z[E))
K:(R, I) » Wh(G) — 27"
2 B {21} — Ko(ZG) — Ko(Z[E)).

If we don’t assume the vanishing of SK;(Z[¢]), then 77" should
be multiplied by this group, which we at least know is a torsion
group (by Corollary 2.3.7). This is almost, but not quite, enough
information to compute Kj (ZG), the group in which in Wall finite-
ness obstruction lives, and the Whitehead group Wh(G). To com-
plete the calculation, we need some information about the map
z= 2, F,/{%1} and also need to extend the exact sequence one
step to the left and one step to the right. The extension to the
right involves K_1, to be discussed in the next Chapter, and the
extension to the left involves K3, to be discussed in Chapter 4.

Lemma (Rim). Let R = ZG, G a cyclic group of order p, an

odd prime, and let R/I = Z[¢], £ = e2™/? (as in Example 2.5.6(b) above).

Then the boundary map Z°7 2 Fx/{£1} in the exact sequence (2.5.7)
is surjective.

Proof. Consider the commutative diagram

K\(R) —— K1(Z[)) —2— Ko(R,I) —— Ko(R)

| ! ! !

)y — Fx 2 Kz, () — 0,
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where the vertical arrows are induced by the homomorphisms ZG — Z
sending ¢t — 1 and Z[{] —» F, sending 1 — 1, £ — 1. Since I — (p), the
vertical arrow Ko(R, I) — Ko(Z, (p)) = F\/{£1} is the excision isomor-
phism. Thus a diagram chase shows that K (Z[¢]) 2 Ky (R, I)is surjective

if the vertical arrow Kj(Z[¢]) 3, F is surjective. Let 1 <k <p—1, s0
that k represents an element of ¥, and suppose kl =1 (mod p). Let

k_
u=££_11=§k"1+---+§+1,

- kL _
=g =S @

Then uv = 1 in Z[¢] and u reduces modulo p to k, which shows K; (Z[¢]) 3,

Ko(R, I) is surjective. Furthermore, if 2 < k < p — 2, then u is of infinite
order in Z[£]* since

_ 18 -1

lu| = 25—

€ -1

in this case (£ and ¢! are closer to 1 than the other primitive p-th roots

of 1), so 7% 2 F,/{%1} in the exact sequence (2.5.7) is surjective. [J

>1

2.5.9. Corollary. If R = ZG, G a cyclic group of order p, an odd prime,
then Wh(G) surjects onto Z*7*, and Ky(ZG) injects into the class group
Ko(Z[g)), & = e*m/2.

Proof. This follows immediately from the exact sequence (2.5.7). O

In the last part of this Section, we will now discuss how to find explicit
generators for K;(R, I) for some rings of interest in number theory and
topology. This will help us to get more explicit information about the
size of this group, and hence to sharpen the information about Whitehead
groups in Corollary 2.5.9. The discussion will parallel Theorems 2.3.5 and
2.3.6.

2.5.10. Proposition. (Cf. Proposition 2.2.1.) Let R be a commutative
ring and I C R an ideal. Then Ky (R, I) splits canonically as

{a€ R*:a=1 mod I} x SK1(R, I),
where SK1(R, I) = SL(R, I)/E(R, I) and SL(R, I) is by definition
SL(R)NGL(R, I).
Proof. Clearly the determinant gives a split surjection
det : GL(R,I) » {a € R* :a=1 mod I}

with kernel SL(R, I). Now divide by E(R, I) and use Theorem 2.5.3. [
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It is immediately evident that when R is commutative, the first part of
the exact sequence of Theorem 2.5.4 splits into two exact sequences

l1—-{a€R*:a=1 mod I} — R* — (R/I)*,

SKl(R, I) hund SK]_(R) g SK1(R/I)

2.5.11. Theorem. (Cf Theorem 2.3.5.) Let R be a Dedekind domain
and I C R an ideal. Then SK,(R, I) is generated by the image in SL(R, I)
of SL(2, R, I).

Proof. The method of proof of Theorem 2.3.5 works here as well provided
we can show that given A = (a;;) € SL(n, R, I) with n > 3, we can find
t; € 1,1 <i<n-—1,such that

R(ai; +t1ap1) + -+ R(@n-11 + tn—1an1) = R.

(Note that adding ¢;x (last row) to the i-th row of A corresponds to mul-
tiplying A by a matrix in E(R, I), hence gives a new matrix A’ with the
same class in SK;(R, I). Then once we have arranged to have c1a}; +- -+
Cn—105,_1 1 = 1, we can subtract c;a,; % (i-th row of A’) from the last row
(this is also an allowable elementary operation since a,; € I—recall A’ =1
mod I) and kill off the entry in the (n, 1)-slot.)

By assumption that A = (a;;) € SL(n, R, I), we have a;; =1 mod I,
a;1 € I fori>1, and Raq; + - - -+ Ra,, = R. But then also

Raj1+---+ Ranp—11 +Ra,2,1 = R,

since if (an1) is relatively prime to (@11,...,an-11), S0 is its square. By
the proof of Theorem 2.3.5, we can then find t; € R with

R(an +t103;) + -+ + R(@n-11 + tn-10%;) = R.

Set t; = tian; and we’re done. O

2.5.12. Theorem. Let R be a commutative ring, I C R an ideal.

(1) Fora, b€ R with Ra+ Rb=R,a=1 mod I, b € I, choose c,
dec Rwithcel,d=1 mod I, and with ad — bc = 1. (This is
possible since if ad' — bc’ = 1, then automatically d’ =1 mod I,
and abd' — b%c’ = b, hence ad' — c/(abd' — b*c') = ad —bc = 1
withd = d'(1-=bc) = 1 modI, ¢ = —bc’®> € I.) Then the
classin SK1(R, I) of (Z 3) € SL(2, R, I) is independent of the
choice of ¢ and d, hence can be denoted [a b|; without possibility
of confusion. Such an element of SK1(R, I) is called a relative
Mennicke symbol, and if R is a Dedekind domain, all elements
of SK1(R, I) are of this form.
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(2) [aby=1ifae R*,a=1 modI,bel.
(3) Fora, b€ R relatively prime witha =1 mod I, b € I, the relative
Mennicke symbols satisfy the relations [a bl; = [a+ b\ b]r for any
A € R, and [a b1 = [a b+a)] for any A € I (note the asymmetry).
(4) Ifa and b € R are relatively prime witha=1 mod I, b € I, and
b= =41 mod a, then [a b]; = 1.
(5) When both sides are defined, [a ] - [a b2]r = [a biba]1.

Proof. (1) The proof that [a b]r is well defined is the same as the cor-

responding step in the proof of Theorem 2.3.6. If (Z 2), (Z, ;,) €
SL(2, R, I), then

a b\({a b\ ' _[(a b\ (d -b)\_ 1 0

c dj\d d) “\ec d)\-¢ a ) \ed-dd 1)’
and this lies in E(R, I) since cd’ — ¢’d € I. The Mennicke symbols clearly
exhaust the image of SL(2, R, I) in K;(R, I), so by Theorem 2.5.11, they

exhaust SK;(R, I) if R is a Dedekind domain.
(2) is clear from the fact that if @ € R* and [a b]; is defined, then

(6 2)=6 )6 ")

and both factors on the right lie in E(2, R, I), the first by the proof of
Theorem 2.5.3, and the second since b € I, hence a~'b € I.

For (3), suppose that (Z 3) € SL(2, R, I). If A € I, then (é ;‘) €
E(2, R, I) and

a b 1 A\ _(a b+l
c dJ\0 1) \c d+X)’
so [a bl =[a b+als.
Furthermore, for any A € R,

1 0\f{a b 1 0\ _ (a+bX b
-2 1)\c dJ\X 1) \c+drx 4}’
and since [E(R), E(R, I)] C E(R, I), this shows [a b]; = [a+ b\ b];.

To check (4), assume b= +1+ta,t € R, and let g=1—a € I. Then
by (3),

[a b]; =[a b—ba]r = [a bglr
=[a bg—a(tg)lr=[a xqli=[a+q xdq|:
=[1 £q1=1
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For (5), assume that [a b]; and [a bs]; are defined and that Rbibs +

Ra=R. Then1f< bl)and a g>hemSL(2RI),

d 0 —62
0 1
—by 0 a

a 0 -1 0
via the elementary matrix [ 0 0 -1 |,

is conjugate to (cl

and

1 00 1 0 co a b O d 0 —co
—cids 1 0 010 caa d 0 0 1 0
bo 01 0 0 1 0 0 1 —b, 0 a
1 0 C2 ad2 b1 —acz
-—-Cldz 1 —0102d2 Cld2 d]_ —C1C2
b 0 bacp+1 b 0 a

ad2 - b262 bl 0
= c1d2(—ad2 +1-— Czbz) di —bicrdy —cicp
bg(adz - b202 - 1) b1b2 a

1 b 0
= 0 d1 - b1c1d2 —CicC2 |.
0 b1b2 a

Since b; € I, we may eliminate the —b; from the first row, and with d = d; —
bicids =1 mod I, [a bils[a be)s is represented by the class in SK;(R, I)

1 0 0
of (O d —cica | and thus of its conjugate by the elementary matrix

0 blbz a
0 01
0 10
-1 0 0

Finally, we compute that

0 01 1 0 0
0 10 0 d —C1C2
-1 00 0 b1 2 a

0 -1 a b1b2 0

1 0 = —C1C2 d 0

0 0 0 0 1
so that [a b1]1[a b2]I = [a blbz][. (]

2.5.13. Corollary. (Cf. Corollary 2.3.7.) If R is a Dedekind domain and
R/P is a finite field for each non-zero prime ideal of R, and if I is a proper
ideal of R, then SK; (R, I) is a torsion group.

0
0
1

Proof. Consider a relative Mennicke symbol [a b};. Ifa € R, [a b]; =1
by (2) of the theorem. If not, (a) is a non-zero proper ideal of R and so is
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a product of non-zero prime ideals P; by Theorem 1.4.7. Since each R/P;
is finite, it follows that R/(a) is finite (cf. the beginning of the proof of
Theorem 1.4.19). Since the image of b in R/(a) is a unit and (R/(a))* is a
finite group, there is some k with ¥ =1 mod (a), and then by (4) of the
theorem,

[a b =[a b*]=1.

So [a b]; has order k in SK; (R, I). But relative Mennicke symbols generate
SKi(R, I) by (1) of the theorem. O

2.5.14. Proposition. Let R = Z[t]/(t? ~1) and [ = (P71 + .-+t + 1)
be as in Example 2.5.6(b), so that R is the group ring of a cyclic group
G of prime order p and R/I = Z[¢], & = €2™/? the ring of integers in the
cyclotomic field Q(§). Then SK1(R, I) = SK1(Z, (p)).

Proof. Consider the homomorphism ¢ : R — Z defined by ¢ — 1. It
is obviously surjective and sends I onto (p). We will show it induces an
isomorphism SK;(R, I) = 8K, (Z, (p)). For surjectivity, suppose A €
SL(n, Z, (p)). Then A € SL(n,Z) and A—1=0 mod p,so A—1=pB
with B € M(n, Z). Let g(s) = det(1 + sB). Then g is a polynomial
with integer coefficients and g(0) = g(p) = 1, so we can write g(s) =
1 + s(s — p)h(s) for some h. Since f2 = pf, in R, g(fp) = 1 and thus
1+ fp(t)B lies in SL(n, R, I) and maps to A under ¢. This shows ¢, is
surjective on SKj.

Now suppose A € SL(n, R, I) and [A] — 1 in SK1(Z, (p)). This means
©(A) lies in E(Z, (p)). First we show that the map E(R, I) — E(Z, (p))
is surjective; this will imply that after changing A within the same class
in SK,, we may suppose ¢(A) = 1. Now a typical generator of E(Z, (p))
is Ce;j(pk)C~1, where C € E(Z), k € Z. We may lift C to a matrix in
E(R) by the argument in the beginning of the proof of Theorem 2.5.4, and
we may lift e;;(pk) to e;;(fp(t)k), so each generator of E(Z, (p)) lifts to an
element of F(R, I), hence every element may be lifted.

Thus we may assume p(A) = 1. But the kernel of ¢ is the augmentation
ideal of R, which is generated by t—1,80 A =1 mod (t—1). On the other
hand, we were assuming A =1 mod f,(t). These two facts together give
A=1,since (t—1)NI=0in R. So ¢, is also injective. O

2.5.15. Corollary. If G is a cyclic group of odd prime order p, then the
quotient of Wh(G) by its torsion subgroup is free abelian of rank exactly
b

Proof. By Proposition 2.5.14, SK; (R, I) = SK;(Z, (p)), which by Corol-
lary 2.5.13 is a torsion group. Substituting in (2.5.7), we get the desired
result. O

Remark. Note, by the way, that the proof of Corollary 2.5.15 is “elemen-
tary” in that it does not depend on the vanishing of SK;(Z[§]). However,
to show that the torsion subgroup of Wh(G) is exactly the group of roots
of unity in Z[¢], which has order 2p, one needs to prove that SK1(Z[£]) =0
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and that the image of SK;(Z, (p)) in the Whitehead group vanishes. In
fact, one can even show that SKi(Z, (p)) =0.

2.5.16. Exercise. Show that if G is a finite abelian group containing an
element of order m > 4 with m # 6, then Wh(G) is infinite. Hint: m
must be divisible by 8, by 9, by 12, or by some odd prime p > 5. First
show that for a cyclic group of one of these orders, there is a unit in the
integral group ring which under some representation of the group maps to
a complex number of absolute value > 1. The proof of Lemma 2.5.8 and
Corollary 2.5.9 basically take care of the case of a cyclic group of order
an odd prime p > 5. Thus you need to find units of infinite order in the
group rings of cyclic groups of orders 8, 9, and 12. Then reduce the general
case to these particular cases using the structure theorem for finite abelian
groups.

2.5.17. Exercise [Mennicke]. Show that for any m > 1, SK;(Z, (m))
= 0. Here is an outline. The proof requires use of Dirichlet’s theorem on
primes in arithmetic progressions [SerreCourseArith, §VII.4], which
asserts that if ¢, b > 0 and (a, b) = 1, then the arithmetic progression
a + kb, k @ Z, contains infinitely many primes.

Let R = Z, I = (m). Choose any element [a b]; of SK;(R, I). We will
show it is the identity. First use Dirichlet’s Theorem to choose a prime
p =a mod b. Then if ¢ is Euler’s phi-function, we have ¢(p) = p— 1, and
[@ blr = [p b]; has exponent dividing p ~ 1 by the argument of Corollary
2.5.13. Let q1,...,q, be the odd prime factors of p — 1. Using Dirichlet’s
Theorem again, choose primes p; and ps with

pp=—p modbdb, modg, ..., modgq,,

pp=-1 modbd, modgq, ..., mod g,.

Let o’ = p1p2. Show that [a b]; = [a’ b]s; hence it has exponent dividing
#(a’) = (p1 — 1)(p2 — 1). Show that this cannot have any g; as a factor,
and hence that the exponent of [a b]; can’t have an odd prime factor and
so is a power of 2.

To finish the argument, first suppose b is not a multiple of 4. Then
applying Dirichlet’s Theorem at the beginning modulo 4b instead of modulo
b, we can also suppose p = 3 mod 4. This means ”T_l is odd and some odd
power of bis = —1 mod p. Deduce from (4) of Theorem 2.5.12 that [a b|;
has odd exponent and so is = 1.

If b is a multiple of 4, argue similarly, except that if a =1 mod 4, find
a prime p =3 mod 4 with —p=a mod b.

2.5.18. Exercise. Deduce from Exercise 2.5.17, from Proposition
2.5.14, from the exact sequence of (2.5.7), and from Corollary 2.3.3, that
the Whitehead group Wh(G) vanishes if G is a group of order 3.

2.5.19. Exercise (Relative K; for split extensions). (Cf. Exercise
1.5.11.) Show that if

0—-I—>R—R/I—>0
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is split exact (i.e., I is an ideal in a ring R, and there is a splitting homo-
morphism s : R/I — R), then

1 — Ki(R, I) = Ki(R) = Ki(R/I) - 1
is split exact. (Hint: first show that GL(R) is a semidirect product
GL(R, I) x GL(R/I).
Then obtain a splitting of E(R).)

2.5.20. Exercise (Failure of excision for K;). It is not true in gen-
eral that K;(R, I) only depends on the structure of I as a ring without
unit; it also depends on R. Here is a simple counterexample due to Swan
[SwanExcision]. Let k be a field and let

{5 2w - 2w}
I= {(g g) = Mz(k)} :

Note that there are split extensions
0—-I—->R—okxk—0, 0-I—-R —=k—0.

Show that R’ = k[t]/(t?), a commutative local ring with maximal ideal I,
and use Corollary 2.2.6 and Exercise 2.5.19 to show that Ky(R', I) &£ k
(here k is viewed as an additive group).

Show on the other hand that K;(R, I) = 1. Since [ is contained in the
radical of R, you can apply the method of proof of Proposition 2.2.4 to see
that Ky (R, I) is generated by the image of {x € R* : z =1 mod I}. Then
(1] 117 € R is always a commutator in R* (except in
the exceptional case where k has only 2 elements, in which case its image
in K;(R, I) is still trivial).

2.5.21. Exercise (The “Congruence Subgroup Problem”). If Risa
commutative ring, the famous “Congruence Subgroup Problem” for R asks
if every normal subgroup H of SL(R) is one of the “congruence subgroups”
SL(R,I)={A € SL(R) : A=1 mod I} for some two-sided ideal I of R.
First observe that by Theorem 2.5.3 and Proposition 2.5.10, this can be
the case only if SK1(R, I) =1 for all I (for I = R this says SK1(R) = 1).
Prove the converse, by proving the following fact [Bass]:

you can show that

Theorem (Bass). If R is a ring and H is a normal subgroup of GL(R),
then there exists a unique two-sided ideal I of R such that E(R, I) C H C
GL(R, I).

Hint. If H = 1, then take I = 0. Otherwise, let H(n) = H N GL(n, R).
This is non-zero and normalized by E(n, R) for some n > 2. Show by
looking at the commutators

[(8 (1))’(1; 316)]’ h € H(n), z € R",
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that H(n + 1) 2 E(n+ 1, R, I') for some non-zero ideal I’. Show that
H D E(R, I'). Then let I be the largest two-sided ideal of R such that
H D E(R,I). If H € GL(R, I), let H' be the image of H in GL(R/I),
repeat the same reasoning with H' O GL(R/I), and derive a contradiction.

To prove the uniqueness of I, note that if E(R, I) C H C GL(R, J),
then projecting to R/J, we obtain E(R/J, (I + J)/J) =1, hence I C J.
Thus if E(R, J) C H CGL(R,I)also, JC I and I = J.

Deduce from Proposition 2.2.2, from Corollary 2.3.3, and from Exercise
2.5.17 that the Congruence Subgroup Problem has an affirmative answer
if Ris a field or R = Z.

2.5.22. Exercise (Non-triviality of relative Mennicke symbols).
Let R be the Dedekind domain of Exercises 1.4.23 and 2.3.11, i.e., Rz, y]/
(z? + y?> — 1). It was shown in the second of these Exercises that [z y]
represents an element of order 2 in SK;(R). By Exercise 1.4.23, I =
(y, z — 1) is a prime ideal in R and R/I = R. Deduce from 2.5.10 that
SK;(R, I) # 0, in fact that [z y]; # 0 in SK,(R, I). Is this element also
of order 27
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Ky and K; of Categories,
Negative K-Theory

1. Ky and K of categories, Gy and Gy of rings

For many of the applications of K-theory, it is useful to have the notion of
K-theory for categories and not just for rings. In this more general context,
the K-theory of a ring R is just the K-theory of the category ProjR of
finitely generated projective modules over R. Another natural example is
the topological K-theory of a compact space X, which is the K-theory of
the category Vect X of (locally trivial, real, or complex) vector bundles
over X. The identification of this with the K-theory of the ring R = C(X)
then follows from an equivalence of categories ProjR = Vect X. But
there are also many examples that don’t come so directly from rings; for
instance, if X is a projective algebraic variety, one can consider in a similar
way the category Vect X of algebraic vector bundles over X. We will see
many more examples shortly.

To begin with, we need to place limitations on the sorts of categories we
will consider. These are of two sorts. On the one hand, the category needs
to have enough structure so that it makes sense to talk about an object as
being built up as an extension of smaller objects. There are several ways
of ensuring this and we’ve chosen here what seems to be the most stan-
dard choice, though not the most general one. In addition, the category
has to be “small” enough to avoid set-theoretic difficulties when we try to
make isomorphism classes of objects into a group. Of course, it suffices
to require that the category be “small” in the usual sense of category the-
ory (i.e., for its objects and morphisms to constitute sets), but this seems
overly restrictive since the natural examples Proj R and Vect X are not
small categories. This should explain the following definition. Call a cate-
gory A preadditive (this term is not entirely standard) if Hom (A, B) is
an abelian group for each A, B € Obj A, and if composition of morphisms
is bilinear. Recall first of all that an additive category is a preaddi-
tive category A with a distinguished object 0 such that Hom (4, 0) = 0,
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Hom (0, A) = 0 for each A € Obj A, equipped with a binary operation &
which is both the categorical product and the categorical coproduct. An
abelian category is an additive category in which every morphism has
a kernel and cokernel, and in which every monomorphism is a kernel and
every epimorphism is a cokernel. Any abelian category has a notion of
exact sequences for which the Five-Lemma and Snake Lemma are valid.
Good general references on abelian categories are [Mac Lane| and (Freyd],
though we will need very little of the theory developed in these books.

3.1.1. Definition. A category with exact sequences is a full additive
subcategory P of an abelian category A, with the following properties:

(1) P is closed under extensions, i.e., if
0P —-P—-P—0

is an exact sequence in A and Py, P> € ObjP, then P € ObjP.

(2) P has a small skeleton, i.e., P has a full subcategory Py which is
small, i.e., such that Obj P, is a set, and for which the inclusion
Py — P is an equivalence.

The exact sequences in such a category are defined to be the exact se-
quences in the ambient category A involving only objects (and morphisms)
all chosen from P.

3.1.2. Examples.

(1) Any small abelian category, or more generally any abelian category
with a small skeleton, is a category with exact sequences. Exam-
ples include the category of finite-dimensional vector spaces over
a field F', or the category of finite-dimensional complex represen-
tations of a topological group G. To get a small skeleton, take
{F™ : n € N} in the first case, or {Hom (G, GL(n, C)) : n € N} in
the second case. When G = Z, the category of finite-dimensional
complex representations of G may be identified with the category
of pairs (V, T'), where V is a finite-dimensional complex vector
space and T € Aut V is the image of the generator of G. Another
similar example is the category of finite-dimensional complex rep-
resentations of the monoid N, which may be identified with the
category of pairs (V, T'), where V is a finite-dimensional complex
vector space and T' € End V.

(2) Let R be a ring. Then ProjR, the category of finitely gener-
ated projective R-modules, is a category with exact sequences,
with small skeleton the set of direct summands in {R" : n € N}.
However, this is usually not an abelian category since the coker-
nel of a map between projective modules is usually not projective
(think of the simple case R = Z, Z 2 Z). The category Proj R
has the additional property, not true for the category of finite-
dimensional complex representations of Z, that every short exact
sequence splits.
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Let R be a ring and let R-Modgg be the category of finitely gen-
erated R-modules. This is an additive subcategory of the abelian
category of all R-modules, and has as a small skeleton the set of
quotient modules of the {R" : n € N}. If R is not left Noetherian,
this is not an abelian category, since the kernel of a map between
finitely generated R-modules may fail to be finitely generated. (If
I is a left ideal of R that is not finitely generated, then R and R/I
are singly generated but the kernel of the quotient map R — R/I
is not finitely generated, so this morphism doesn’t have a kernel in
the category.) Nevertheless, R-Modygg is always a category with
exact sequences, since if

0—-M; —>M-—> My —0

is an exact sequence of R-modules with M; and M; finitely gen-
erated, one can choose a finite set of elements of M whose images
in M> generate M>, and these together with the images of a finite
set of generators of M; will generate M.

Let R be a ring and let R-Modg,: be the category of R-modules
with a finite-type projective resolution, i.e., R-modules M for
which there exists an exact sequence

(3.1.3) 0—-P,—-->FP-M-0

with P; € ObjProjR. This is a full additive subcategory of
R-Modygg;, and may or may not coincide with R-Modgg. If it
does and R is left Noetherian (so that R-Modg; = R-Modygp, is
an abelian category), the ring R is said to be (left) regular. For
a ring to be left regular, it is sufficient (but not necessary) that it
be left Noetherian and have finite global dimension (which means
that there exists an N such that every R-module has a projective
resolution of length < N). For the fact that R is left Noetherian
implies that every finitely generated R-module has a resolution by
finitely generated projective modules, and the global dimension
condition then guarantees that every such resolution has length
< N. In particular, any PID is left regular (since any submodule
of a free module is free). Any Dedekind domain R is left regular,
since R is Noetherian by Theorem 1.4.5, and the proof of Corol-
lary 1.4.6 shows that every submodule of a finitely generated free
R-module is projective.

The group rings of non-trivial finite groups are not left regular.
To see this, note that for a non-trivial finite cyclic group H one
has H,(H, Z) # 0 for all odd n, so that the finitely generated
ZH-module Z cannot have a finite projective resolution. Then if
G is any non-trivial finite group, we can choose a non-trivial cyclic
subgroup H C G, and it follows from “Shapiro’s Lemma” that

Ho(G, ZG ®zu T) = H,(H, Z) # 0
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for all odd n, so that the finitely generated ZG-module ZG @z Z
cannot have a finite projective resolution.

We will see in Proposition 3.1.4 below that whether or not R is
left regular, R-Modgy,, is a category with exact sequences.
Let A be an abelian category in which every simple object is iso-
morphic to an element of some set S of objects. (A simple object
in an abelian category is the natural generalization of a simple
module over a ring; it is an object M € Obj.A (with M # 0) such
that any monomorphism N »— M is either 0 or an isomorphism.
The definition has a number of immediate consequences. If M
is simple, then End M is a division ring (Schur’s Lemma), and
any non-zero morphism M — M’ is necessarily a monomorphism,
since its kernel N — M can’t be an isomorphism, hence must be
0.) Call the simple objects in .A objects of length one, and de-
fine inductively (for n > 2) the objects of length n to be those
objects M € Obj A for which there is an exact sequence in 4

0-M; > M-—>M;—0

with M; of length n — 1 and with M € S. We will see in Propo-
sition 3.1.5 below that the full subcategory Ag of A consisting of
objects of finite length, objects M of length < n for some n, is a
category with exact sequences. The Jordan-Ho6lder Theorem holds
in this context (with the usual proof), i.e., for M of finite length,
the length £(M) is well-defined, and the simple objects that occur
in a “composition series” for M are unique up to isomorphism and
permutation. The category of finite-dimensional representations of
a (topological) group G is a good example of a category of objects
of finite length.

Let X be a compact Hausdorff space. Then Vect X is a cate-
gory with exact sequences, equivalent to Proj R, R = C(X), by
Theorem 1.6.3. Here one can work over either R or C.

Let X be a projective algebraic variety [Hartshorne, Ch. I, §2]
over an algebraically closed field (or more generally a projective
scheme—see [Hartshorne, Ch. II}—over a commutative Noetherian
ring). Then Vect X, the category of algebraic vector bundles over
X, is a category with exact sequences. Since a vector bundle is
determined by its sections over open sets, Vect X is the same as
the category of finitely generated locally free Ox-modules, where
Ox is the sheaf of germs of regular (algebraic) functions over X.
As such, it may be identified with an additive subcategory of the
abelian category of Ox-modules. A major difference between this
example and example (6) is that short exact sequences of algebraic
vector bundles, unlike short exact sequences of topological vector
bundles, do not necessarily split. This is due to the fact that in the
algebraic setting, one does not have partitions of unity, and thus
it is not possible to mimic the proof of Theorem 1.6.3.
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A related (usually slightly larger) category with exact sequences
is CohSh X, the category of coherent sheaves over X; this is
the category of finitely generated Ox-modules with resolutions by
modules from Vect X. One can show that CohSh X is an abelian
category. Under suitable regularity assumptions (e.g., X a non-
singular variety), resolutions of coherent sheaves by locally free
sheaves will have finite length, and the relationship between the
two categories Vect X and CohSh X is then the same as between
Proj R and R-Modg; when R is a left regular ring.

3.1.4. Proposition. Let R be a ring and let
0-M SME M0

be a short exact sequence of R-modules. If M, and M, have resolutions of
length n by modules in Proj R (of the form (3.1.3)), then so does M. In
particular, R-Modgy, (as defined in Example 3.1.2(4)) is a category with
exact sequences.

Proof. Choose resolutions

[€)]

(7) .
PO X, M; —0, j=1,2

0 pp 2, A,

By projectivity of Péz), there is a map 6(()2) : Pé2) — M with 8 06((,2) = 7((]2).

Then using 7(()1)’ we can extend this to a surjection

bo:Po=PNoP® M

since two elements of M with the same image in M, differ by an element
of a(M;). Then we have a short exact sequence

0 — ker 7(()2) — ker 8 — ker 731’ -0

and we can repeat the process to get a surjection
6 : Py = PM @ P® _ ker6,.

Continuing, we eventually get a resolution of M by the P; = P}I)GBPJ@ . O

3.1.5. Proposition. Let A be an abelian category, for instance the cate-
gory of R-modules for some ring R, and let

0-M SME M,—0

be a short exact sequence in A. Assume M, is of length n; and M is of
length 1y in the sense of Example 3.1.2(5). Then M is of length ny + ns.
In particular, Agq is a category with exact sequences.

Proof. The proof is by induction on ny = £(M3). If this is 0, the result
is obvious, and if it’s 1, this is true by definition. Otherwise, assume the
result for smaller values of £(M3) and choose an exact sequence

0-N->-M->S5-0
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with N of length ny — 1 and S simple (by definition of £(M) ). Let M’ =
B~Y(N). By inductive hypothesis, £(M’) = n; + na — 1, and we have a
short exact sequence

0—-M —-M-—S—0,

so M is of length ny +ns. O

Now that we have a reasonable number of examples to work with, we
are ready to define Ky and K; for categories and Gy and G for rings.

3.1.6. Definition. Let P be a category with exact sequences with small
skeleton Py. We define Ko(P) to be the free abelian group on Obj Py,
modulo the following relations:

0-(i) [P] = [P'] if there is an isomorphism P = P’ in P.
0-(ii) [P] = [P1]+ [P] if there is a short exact sequence

0-P —-P—->P,—0

in P.

Here [P] denotes the element of Ky(P) corresponding to P € Obj Py, and
0-(i) is really the special case of 0-(ii) with P; = 0. Note also that since
every P € Obj P is isomorphic to an object of Py, the notation [P] makes
sense (by 0-(i)) for any object of P.

We define K;(P) to be the free abelian group on pairs (P, a), where
P € ObjPy and o € Aut P, modulo the following relations:

1-(1) [(P, )]+ (P, B)] =[(P, aB)].

1-(ii) If there is a commutative diagram in P with exact rows

O—— P, P -2, P 0
I N A
0 s, P, —— P —"— P, 0,

where a € Aut P, a; € Aut P, and ay € Aut Py, then
(P, @)] = [(P1, a1)] + [(P2, a2)]-
If R is a ring (with unit), we define Go(R) = Ko(R-Modg), G1(R) =

K1(R-Modg,).

This definition is justified by the fact that in the case of Example
3.1.2(2), it gives us back our old definitions of K and K; for rings.

3.1.7. Theorem. IfR is a ring and Proj R is the category of finitely gen-
erated projective modules over R, then Ky(R) may be identified naturally
with Ko(ProjR), and K;(R) may be identified naturally with
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K;(ProjR). In particular, if R is a division ring, then since ProjR =
R—Modfg, Go(R) = KO(R) = 7 and Gl(R) = K]_(R) = R:b'

Proof. (1) By their definitions, Ko(R) and Ko(Proj R) are both abelian
groups with one generator [P] for each isomorphism class of finitely gen-
erated projective modules over R. In Ky(R), [P] + [Q] is defined to be
[P & Q], whereas in Ko(ProjR), by relation 0-(ii), [P] + [Q] is given by
[N] for any finitely generated projective module N for which there exists a
short exact sequence

0—-P—->N-Q—0.

Since N = P & Q clearly has this property, the addition operations in the
two groups coincide. Finally, we need to see that any relation satisfied in
one group is satisfied in the other. By the definition of the Grothendieck
group (cf. Theorem 1.1.3), Ko(R) is the free group on the generators [P]
modulo the relations [P] = [P'] if P = P/, [P]+[Q] = [P ® Q]. These
relations are satisfied in Ko(Proj R), so we only need check that relation
0-(ii) of Definition 3.1.6 is satisfied in Ko(R). But if

0—-P >P—>P—0

is a short exact sequence in Proj R, this sequence must split since P is
projective, and thus P = P, @ P, so that

[Pl =[P ® P =[P] +[P2] in Ko(R),

as required.

(2) If A € GL(n, R), then A defines an automorphism a € Aut(R"), so
let us define a map ¢ : K;(R) — K1(ProjR) by [A] — [(R", a)]. To show
this is well defined, suppose A’ € GL(n/, R) defines o/ € Aut(R™ ). Recall
that [A] = [A] in K;(R) if and only if there is some N > n, n', such that

(A®1y_pn) = (A ®1y_n) mod E(N, R).
But first of all,
[(R", @) = [(R", a®1pn-n)] and [(R™, )] =[(R", o/ @ lgn-w)]
in K1(ProjR) by relation 1-(ii) of Definition 3.1.6. Secondly, if B €
GL(N, R) defines 8 € Aut(R") and C € GL(N, R) defines y € Aut(R"),

then BC € GL(N, R) defines 78 € Aut(R") (we are letting matrices act
on the right), and thus (by 1-(i) of Definition 3.1.6)

¢([B]- [C]) = »(IBC]) = [(RY, v)] = [(R™, ] + [(RY, B)),

which is the same as ¢([B]) + ¢([C]). So to complete the proof that ¢ is
well defined, we need only show that ¢([C]) = 1if C € E(N, R). It suffices
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to prove this with C = e;;(a), a € R. But note that there is a commutative
diagram with exact rows

0 —— RN-' —~ RN T L,R-—5 0
H | ol
0 —— RV-! — RN "> R » 0,

where ¢ is the obvious map from RV~ to the vectors in RN with i-th co-
ordinate 0, and 7 is projection onto the i-th coordinate, so that by relation
1-(ii) of Definition 3.1.6, we have

[(RY, eij(a)] = [(RY™Y, 1gw-1)] + [(R, 1R)] = [(RY, 1gw)].

Thus ¢ is well defined, and the proof has shown at the same time that it
is a homomorphism.

Now let us show that ¢ : K;(R) — K;(ProjR) is an isomorphism.
(Note by the way that we are writing K;(R) multiplicatively and K, (Proj
R) additively.) To show ¢ is surjective, it suffices to observe that if P €
ObjProjR and a € Aut P, then there must be (by Theorem 1.1.2) some
Q € ObjProjR and N € N with P® Q = RN. Using relation 1-(ii) of
Definition 3.1.6, we have

[(P, @)] + (@, 1)l = [(P @ Q, a® 1q)],

which, since P & Q = R, lies in the image under ¢ of GL(N, R). But
(@, 1g)] is the identity element of K;(Proj R), so this shows [(P, &)] lies
in the image of ¢.

So it remains only to show injectivity. Suppose ¢([C]) = 0 for some
C € GL(n, R). This means that if v is the corresponding automorphism
of R™, then [(R™, )] lies in the subgroup of the free abelian group on all
pairs [(P, a)], P € ObjProj R and o € Aut P, generated by the relations

(P, )] + [(P, B)] - [(P, ap)),

(P, )] — [(Py, 01)] = [(P2, a2)]

associated to 1-(i) and 1-(ii) of Definition 3.1.6. But these relations can all
be rewritten as linear combinations of the relations

(P, 2)] - [(P®Q, a®1q)]

whenever P @ QQ = R™, together with the relations associated to 1-(i) and
1-(ii) with all modules not just projective but free. So we can suppose
[(R™, «)] lies in the subgroup generated by relations associated to finitely
generated free modules.

Since we may take our finitely generated free modules to run over the set
{R™ : n € N}, we may identify each automorphism of a free module with



116 3. Kp and K; of Categories, Negative K-Theory

the corresponding matrix, and we may suppose that in the free abelian
group F on generators [4, j|, with A € GL(j, R), j € N, [C, n] lies in the
subgroup generated by the relations

1"(1:’) [A’ .7] + [B’ .7] - [BA, J]
corresponding to the relations associated to 1-(i), and by the relations
1'(”’) [Aa Jj+ k] - [A19 J] - [A2’ k]
attached to diagrams
0 » RF —— Ritk T, Rk > 0
I - R
0 — RF —— Ritk T RF > 0,

corresponding to the relations associated to 1-(ii). We may further rewrite
the relations of type 1-(ii') as linear combinations of those of two sorts:
relations

1-(id')-a [4, 5] - [BAB™, j]
(corresponding to the case k = 0 above), allowing for arbitrary changes of
basis, and relations

1-(#')-b [(‘il £2> ) J +k] — [A1, j} — [A2, K]

corresponding to the case where the injection R/ — R’*¥ is the standard
one given by the first j coordinates. The quotient of the free abelian group
F by the subgroup generated by relations 1-(¢') and 1-(éi')-a is clearly the
direct sum €, GL(j, R)ab- Dividing by the subgroup generated by the
relations 1-(é4’)-b then gives im GL(j, R)ab = GL(R)ab = K1 (R), divided
by the additional relation that

Ay 0] _[(4 O

* A2 - 0 A2 ’
However, this relation is already satisfied in K;(R), so [C] =1 € Ki(R)
and ¢ is an isomorphism. O

Let us now examine the meaning of Definition 3.1.6 for the other Ex-
amples 3.1.2. When X is a compact Hausdorff space, it is obvious that
Ky(Vect X) is the Grothendieck group of the semigroup of isomorphism
classes of vector bundles over X, and may be identified with K°(X).
K;(Vect X) is a less familiar object, but since Vect X = ProjR with
R = C(X) by Theorem 1.6.3, this is the same as K;(C(X)). It turns out
(see Exercise 3.1.23 below) that there are exact sequences of abelian groups

exp

0 — CR(X) = K;(VectgX) —» KO™Y(X) =0,
0— C(X, Z) 2= CC(X) =22, K,(VectcX) — KU(X) — 0.
The example of finite-dimensional representations of a topological group
G is a special case of Example 3.1.2(5), so we turn to this sort of situation
next. The following result was pointed out by Grothendieck in his earliest
investigations of K-theory.
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3.1.8. Theorem (“Devissage”). Let A be an abelian category in which
every simple object is isomorphic to one and only one element of some set
S C Obj.A. Then

(1) Ko(Agq) is canonically isomorphic to the free abelian group on the
set S.

(2) K1(Aaq) is canonically isomorphic to @ ,,cg K1(End M). (Since
for M € 8, End M is a division ring, we have K;(End M) =
(End M)}, = (Aut M),y by Corollary 2.2.6.)

Proof. (1) Clearly there is a homomorphism ¢ from the indicated free
abelian group F to G = Ky(Aq), defined by sending a generator [M],
M € S, to the corresponding generator of G. To define an inverse 1 to
this homomorphism, if M € Obj.A is of finite length, map [M] € G to
>;[M;] € F, where the M; € S are the composition factors of M (repeated
according to their multiplicities), which are well defined by the Jordan-
Holder Theorem. This gives a well-defined map on G since if

0O—-M -sM-M'->0

is a short exact sequence, the composition factors of M (counting mul-
tiplicities) are just the union of the composition factors of M’ and the
composition factors of M". We have i) o ¢ = 1p by the construction. To
prove that @ o1 = 1g, we show ¢ o Y([M]) = [M] for M € Obj.Ag by
induction on £(M). If £(M) < 1, this is obvious, so assume the result for
M’ with £(M’) < £(M), and choose a short exact sequence

0-M ->M-—->M'-0

with M” € S. By inductive hypothesis, ¢ o ¥([M']) = [M'] and ¢ o
P(IM"]) = [M"]. But [M] = [M'] + [M"], so ¢ o ¢([M]) = [M], and this
completes the inductive step.

(2) Let Agg denote the category of semisimple objects in A, i.e., the finite
direct sums of simple objects. We will define an isomorphism ¢ : K;(Ag) —
@Dnes Ki(End N) as follows. Given M € Obj.Aa and a € Aut M, note
that the largest semisimple subobject My of M (this is usually called the
socle of M, denoted soc M) exists and must be non-zero, and is necessarily
a-invariant. So there is an a-invariant canonical finite filtration of M with
composition factors M; in Obj Ass. (Take the cokernel of soc M »— M, take
its socle, and keep iterating the construction as many times as necessary.)
Let «; be the automorphism of the composition factor M; induced by a. By
relation 1-(ii) of Definition 3.1.6, we have [(M, a)] = Y ;[(M;, o;)]. Now
each M; is isomorphic to a direct sum of simple objects N € § with certain
multiplicities n,Y, and End M; 2 [ e 5 My~ (End N). So o; may be viewed
as an element of [y .5 GL(nY, End N) (this is really a finite product), and
thus defines an element [a;] of @y g K1(End N). We let ¢ ([(M, a)]) =
Y ;ley]. This defines a homomorphism from the free abelian group on the
pairs (M, a) to Py K1(End N), and since it is clearly compatible with



118 3. Kjp and K; of Categories, Negative K-Theory

relations 1-(i) and 1-(ii) of Definition 3.1.6, it passes to a homomorphism ¢ :
K1(Aa) —» @nes Ki(End N). Furthermore, ¢ is clearly surjective, since
if N € S and a € Aut N, o([(N, a)]) = [a] € (Aut N),p = K1(End N), and
thus the image of ¢ contains a set of generators for @ g K1(End N).

It remains only to show that ¢ is injective. For this it is enough to note
that the proof of surjectivity of ¢ in fact gives a construction of an inverse,
namely, if Ny,..., Nj are distinct elements of S and a; € Aut N;,

+f-[(n)]

This is well defined since replacing each a; by a conjugate element of Aut N;
does not change the K;j-class on the right, and 1 obviously gives a right
inverse to ¢. To see that 9 gives a left inverse to ¢, note that with (M, a)
as above,

pop((M, @) = Y v(od) = [(@Ni, @detai)] :

which agrees with (M, a) by the proof of the fact that K; (Proj End N;) =
K;(End N;) (Theorem 3.1.7). O

The next theorem, also due to Grothendieck, applies to our other main
classes of examples, and relates R-Modg,, to ProjR and (in the regu-
lar case) CohSh X to Vect X. The version in which we state it, taken
from [BassHellerSwan], is probably not as general as possible, but will be
adequate for our purposes. First we need a simple observation about the
functoriality of Ko and K3, a simple lemma about the “Euler-Poincaré
principle” of §1.7, and a lemma about “resolutions” in a category with
exact sequences.

3.1.9. Proposition. Suppose P and M are categories with exact se-
quences, and F : P — M is an exact functor, i.e., a functor sending short
exact sequences to short exact sequences. Then F' induces homomorphisms
F,: KQ(P) — K()(M) and F, : Kl(P) — Kl(M) In fact, Ky and K, are
functors from the ca<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>