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Preface

This volume presents answers to some natural questions of a general analytic
character that arise in the theory of Banach spaces. I believe that altogether too
many of the results presented herein are unknown to the active abstract analysts,
and this is not as it should be. Banach space theory has much to offer the prac-
titioners of analysis; unfortunately, some of the general principles that motivate
the theory and make accessible many of its stunning achievements are couched
in the technical jargon of the area, thereby making it unapproachable to one
unwilling to spend considerable time and effort in deciphering the jargon. With
this in mind, I have concentrated on presenting what I believe are basic phenomena
in Banach spaces that any analyst can appreciate, enjoy, and perhaps even use.
The topics covered have at least one serious omission: the beautiful and powerful
theory of type and cotype. To be quite frank, I could not say what I wanted to
say about this subject without increasing the length of the text by at least 75
percent. Even then, the words would not have done as much good as the advice
to seek out the rich Seminaire Maurey-Schwartz lecture notes, wherein the theory’s
development can be traced from its conception. Again, the treasured volumes of
Lindenstrauss and Tzafriri also present much of the theory of type and cotype
and are must reading for those really interested in Banach space theory.
Notation is standard; the style is informal. Naturally, the editors have cleaned
up my act considerably, and I wish to express my thanks for their efforts in my
belralf. I wish to express particular gratitude to the staff of Springer-Verlag, whose
encouragement and aid were so instrumental in bringing this volume to fruition.
Of course, there are many mathematicians who have played a role in shaping
my ideas and prejudices about this subject matter. All that appears here has been
the subject of seminars at many universities; at each I have received considerable
feedback, all of which is reflected in this volume, be it in the obvious fashion of
an improved proof or the intangible softening of a viewpoint. Particular gratitude
goes to my colleagues at Kent State University and at University College, Dublin,
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who have listened so patiently to sermons on the topics of this volume. Special
among these are Richard Aron, Tom Barton, Phil Boland, Jeff Connor, Joe Creek-
more, Sean Dineen, Paddy Dowlong, Maurice Kennedy, Mark Leeney, Bob
Lohman, Donal O’Donovan, and A. “KSU” Rajappa. I must also be sure to thank
Julie Froble for her expert typing of the original manuscript.

Kent, Ohio JOE DIESTEL
April, 1983
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 Some Standard Notations and Conventions

Throughout we try to let W, X, Y, Z be Banach spaces and denote by w, x, y, z
elements of such. For a fixed Banach space X, with norm | ||, we denote by
By the closed unit ball of X,

B, ={xeX: | x| s1},
and by S, the closed unit sphere of X,

Sy =f{xeX: | x| =1}

Again, for afixed X, the continuous dual is denoted by X* and a typical member
of X* might be called x*.

The Banach spaces ¢,, [, (1 <p< =), C(Q) and L,(p) 1= p < = follow standard
notations set forth, for example, in Royden’s “Real Analysis” or Rudin’s “Func-
tional Analysis”; we call on only the most elementary properties of the spaces
such as might be encountered in a first course in functional analysis. In general,
we assume the reader knows the basics of functional analysis as might be found
in either of the aforementioned texts.

Finally, we note that most of the main results carry over trivially from the case
of real Banach spaces to that of complex Banach spaces. Therefore, we have
concentrated on the former, adding the necessary comments on the latter when
it seemed judicious to do so.



CHAPTER I
Riesz’s Lemma and Compactness

in Banach Spaces

In this chapter we deal with compactness in general normed linear spaces.
The aim is to convey the notion that in normed linear spaces, norm-compact
sets are small—both algebraically and topologically.

We start by considering the isomorphic structure of n-dimensional normed
linear spaces. It is easy to see that all n-dimensional normed linear spaces
are isomorphic (this is Theorem 1). After this, a basic lemma of F. Riesz is
noted, and (in Theorem 4) we conclude from this that in order for each
bounded sequence in the normed linear space X to have a norm convergent
subsequence, it is necessary and sufficient that X be finite dimensional.
Finally, we shown (in Theorem 5) that any norm-compact subset K of a
normed linear space is contained in the closed convex hull of some null
sequence.

Theorem 1. If X and Y are finite-dimensional normed linear spaces of the
same dimension, then they are isomorphic.

PROOF. We show that if X has dimension n, the X is isomorphic to /].
Recall that the norm of an n-tuple (a,, a,, ... ,a,) in /] is given by
I(ay, a5, ....a,)[[=la)+|as|+ -+ +a,l.

Let x,, x,, ..., x, be a Hamel basis for X. Define the linear map /: /[ - X
by

I((ay,ay,...,a,)) =ayx, +ayx, + --+ +a,x,.
I is a linear space isomorphism of /' onto X. Moreover, for each
(ay,a,,...,a,)inl],

layx, + azx; + - +a,x,)) < ( max fx)(lagl+ lagl+ -« +la,),

thanks to the triangle inequality. Therefore, 7 is a bounded linear operator.
(Now if we knew that X is a Banach space, then the open mapping theorem
would come immediately to our rescue, letting us conclude that I is an open
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map and, therefore, an isomorphism—we don’t know this though; so we
continue). To prove /™! is continuous, we need only show that 7 is bounded
below by some m > 0 on the closed unit sphere S, of /{'; an easy normaliza-
tion argument then shows that /~! is bounded on the closed unit ball of X
by 1/m.
To the above end, we define the function f: S, =R by
f((ay,a,,...,a,)) =llayx; + azx; + - -+ +a,x,]|.

The axioms of a norm quickly show that f is continuous on the compact
subset S, of R". Therefore, f attains a minimum value m>0 at some

(a), a3, ...,a)) in Sj. Let us assume that m = 0. Then

llalx; + adx, + -+ +alx,||=0
so that a’x, + adx, + --- +alx,=0; since x,, ...,x, constitute a Hamel
basis for X, the only way this can happen is for a) =a9=---=a2=0, a
hard task for any (a?, a3, ... ,a)) € S;;. o

Some quick conclusions follow.
Corollary 2. Finite-dimensional normed linear spaces are complete.

In fact, a normed linear space isomorpbism is Lipschitz continuous in
each direction and so must preserve completeness; by Theorem 1 all
n-dimensional spaces are isomorphic to the Banach space /7.

Corollary 3. If Y is a finite-dimensional linear subspace of the normed linear
space X, then Y is a closed subspace of X.

Our next lemma is widely used in functional analysis and will, in fact, be a
point of demarcation for a later section of these notes. It is classical but still
pretty. It is often called Riesz’s lemma.

Lemma. Let Y be a proper closed linear subspace of the normed linear space X
and 0 <0 <1. Then there is an x4 € Sy for which ||xq— y||> 8 for every
y€evY.

ProOOF. Pick any x € X'\|Y. Since Y is closed, the distance from x to Y is
positive, i.e.,

O<d=inf(lx—z]izer) <2,

therefore, there is a z € Y such that

=zl < 4.
Let
xX—2Zz
Xq

llx =zl
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Clearly x, € Sy. Furthermore, if y €Y, then
x—z
xe = V=i =2~

x __z _lx—zly
lx—zll  dix—zll  flx—z

1
= m”x —(z+x—z|ly) "

—_— T
a member of Y

0
> gd =4. m]
An easy consequence of Riesz’s lemma is the following theorem.

Theorem 4. In order for each closed bounded subset of the normed linear space
X to be compact, it is necessary and sufficient that X be finite dimensional.

ProoF. Should the dimension of X be n, then X is isomorphic to /3
(Theorem 1); therefore, the compactness of closed bounded subsets of X
follows from the classical Heine-Borel theorem.

Should X be infinite dimensional, then S, is not compact, though it is
closed and bounded. In fact, we show that there is a sequence (x,) in Sy
such that for any distinct m and n, ||x,, — x,|| = 1. To start, pick x; € S,.
Then the linear span of x; is a proper closed linear subspace of X (proper
because it is 1 dimensional and closed because of Corollary 3). So by Riesz’s
lemma there is an x, in Sy such that ||x, — ax,|| = 1 for all « € R. The linear
span of x; and x, is a proper closed linear subspace of X (proper because
it’s 2-dimensional and closed because of Corollary 3). So by Riesz’s lemma
there is an x; in Sy such that ||x; —ax, —Bx,||>3 for all a.BE€ER.
Continue; the sequence so generated does all that is expected of it. O

A parting comment on the smallness of compact subsets in normed linear
spaces follows.

Theorem 5. If K is a compact subset of the normed linear space X, then there
is a sequence (x,,) in X such that lim || x,|| = O und K is contained in the closed
convex hull of {x,}.

PROOF. K is compact; thus 2K is compact. Pick a finite 4 net for 2K, i.e.,
pick Xi, ... ,X,q, in 2K such that each point of 2K is within ; of an x;,
1 <i<n(l). Denote by B(x, ¢) the set { y: ||x — y|| < ¢€).

Look at the compact chunks of 2K:[2K N B(x;, Hl ... [2K N
B(x,q).%)]l. Move them to the origin: [2K N B(x),{)]—x;,....[2K N
B(x,1), $)]— X, Translation is continuous; so the chunks move to com-
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pact sets. Let K, be the union of the resultant chunks, i.e.,

= {[2k 0 B(x,})] - x Ju -+ U{[2K 0 B(x,0). )] = %0 } -
K2 is compact, thus 2 K, is compact. Pick a finite 5 net for 2K 2 i.e., pick
Xnq1)+11 -+ »Xn(y i0 2K, such that each point of 2K, is within {5 of an x,,
n(H)+1<i s n(2).
Look at the compact chunks of 2K,:[2K, N B(X,4y+1,16)) --- [2K; N
B(X,3, 15))- Move them to the origin:
[2K2 N B(xn(1)+l’ T%)] T Xny+10 v ,[2K2 N B(xn(l)’ %6')] ~ Xn-

Translation is still continuous; so the chunks, once moved, are still compact.
Let K, be the union of the replaced chunks:

K;= {[2Kzﬁ B(xna)ﬂ"xlé)] ‘xn(1)+x}U eV {[2K2 r‘B("na)’%)]

X} -
K, is compact, and we continue in a similar manner.

Observe that if
x€eK,

2x e 2K,
2x — x,0, € K, for some 1 <i(1) <n(1); so,

4x —2x,4) € 2K,
4x —2x,3, = X, € K3, for some n(1)+1<i(2) < n(2); so,
8x —dx;q, —2x,, € 2K,
8x —4x,q, ~ 2%,y X,y € K4y for some n(2)+1<i(3) <n(3); so,

etc. Alternatively,

'(l) € %KZ’
Xy  Xi)
=2 s =i
Xy iy Xi@)
R pi il ST
It follows that
. i(k)
x = lim
n kgl 2k
andx62~¢_>(0, Xiqry» Xi(2)> * ")QC-Z(O, Xys Xy " * °) a

Exercises
1. A theorem of Mazur. The closed convex hull of a norm-compact subset of a
Banach space is norm compact.

2. Distinguishing between finite-dimensional Banach spaces of the same dimension.
Let n be a positive integer. Denote by /7, /5, and [, the n-dimensional real
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Banach spaces determined by the norms || ||y, || |l;, and || ||, respectively,

I(ar,a;,....a) i =lail+lazl+ - -+ +layl,

1,2
I(ai,az,....8)l, = (|‘11|2 +layP+ -+ la,,lz) )
[I(ay,as, ... ;)| = max{iayl,1a;l, ... ,la,l}.

(i) No pair of the spaces /7, /3, and !/}, are mutually isometric.

(i) If T is a linear isomorphism between /] and /3 or between I and /3, then the
product of the operator norm of T and the operator norm of T~ ! always
exceeds Vn .

If T is a linear isomorphism between /7 and /%, then ||T||||7 || = n.

3. Limitations in Riesz's lemma.

(i) Let X be the closed linear subspace of C[0,1] consisting of those x € C[0,1]
that vanish at 0. Let Y C X be the closed linear subspace of x in X for which
Jax(t) dt = 0. Prove that there is no x € Sy such that distance (x,Y) >1.

(ii) If X is a Hilbert space and Y is a proper closed linear subspace of X, then
there is an x € Sy so that distance (x, Sy) =Vv2.

(iii) If Y is a proper closed linear subspace of /, (1< p <), then there is an
x € Sy so that distance (x,Y)>1.

4. Compact operators between Banach spaces. A linear coperator T: X — Y between
the Banach spaces X and Y is called compact if TBy is relatively compact.

(i) Compact linear operators are bounded. Compact isomorphic embeddings
and compact quotients (between Banach spaces) have finite-dimensional
range.

(ii) The sum of two compact operators is compact, and any product of a
compact operator and a bounded operator is compact.
(iii) A subset K of a Banach space X is relatively compact if and only if for every
e> 0 there is a relatively®compact set K, in X such that
KCeBy+K,.
Consequently, the compact operators from X to Y form a closed (linear)
~ subspace of the space of all bounded linear operators.

(iv) Let T: X =Y be a bounded linear operator, and suppose that for each ¢> 0
there is a Banach space X, and a compact linear operator T,: X — X, for
which

ITxll < IT.x[|+ e
for all x € By. Show that T is itself compact.

(v) Let T: X—>Y be a compact linear operator and suppose S: Z—7Y is a
bounded linear operator with SZ c TX. Show that S is a compact operator.

S. Compact subsets of C(K) spaces for compact metric K. Let (K, d) be any compact
metric space, denote by C(K) the Banach space of continuous scalar-valued
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functions on K.

(i) A totally bounded subset ¥of C(K) is equicontinuous, i.e., given ¢ > 0 there
is a 8 > 0; so d(k, k’) < & implies that | f(k)— f(k')|<efor all f € X"

(ii) If X'is a bounded subset of C(K') and D is any countable (dense) subset of
K, then each sequence of members of ¥ has a subsequence converging
pointwise on D.

(iii) Any equicontinuous sequence that converges pointwise on the set SC K
converges uniformly on S.

Recalling that a compact metric space is separable, we conclude to the Ascoli-

Arzela theorem.

Ascoli-Arzela theorem. A bounded subset X of C(K) is relatively compact if
and only if X'is equicontinuous.

6. Relative compactness in |, (1 < p <o0). For any p, 1 < p <0, a bounded subset
K of I, is relatively compact if and only if

[>2)
lim 3 k|7 =0
nojm=n

uniformly for k € K.

Notes and Remarks

Theorem 1 was certainly known to Polish analysts in the twenties, though a
precise reference seems to be elusive. In any case, A. Tychonoff (of product
theorem fame) proved that all finite-dimensional HausdorfT linear topologi-
cal spaces of the same dimension are linearly homeomorphic.

As we indicate all too briefly in the exercises, the isometric structures of
tinite-dimensional Banach spaces can be quite different. This is as it should
be! In fact, much of the most important current research concerns precise
estimates regarding the relative isometric structures of finite-dimensional
Banach spaces.

Riesz’s lemma was established by F. Riesz (1918); it was he who first
noted Theorem 4 as well. As the exercises may well indicate, strengthening
Riesz’s lemma is a delicate matter. R. C. James (1964) proved that a Banach
space X is reflexive if and only if each x* in X* achieves its norm on By.
Using this, one can establish the following: For a Banach space X to have the
property that given a proper closed linear subspace Y of X there exists an x of
norm-one such that d(x,Y)>=1 it is necessary and sufficient thar X be
reflexive.

There is another proof of Theorem 4 that deserves mention. It is due to
G. Choquet and goes like this: Suppose the Heine-Borel theorem holds in
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X; so closed bounded subsets of the Banach space X are compact. Then the
closed unit ball By is compact. Therefore, there are points x;, ...,x, € By
such that B, cU_,(x; + 1 By). Let Y be the linear span of {x,, x,,...,x,};
Y is closed. Look at the Banach space X/Y; let ¢: X— X/Y be the
canonical map. Notice that ¢(By) € ¢(By)/2! Therefore, p(By) = {0} and
X/Y is zero dimensional. Y = X.

Theorem 5 is due to A. Grothendieck who used it to prove that every
compact linear operator between two Banach spaces factors through a
subspace of c¢,; look at the exercises following Chapter II. Grothendieck
used this factorization result in his investigations into the approximation
property for Banach spaces.

An Afterthought to Riesz’s Theorem

(This could have been done by Banach!)

Thanks to CLff Kottman a substantial improvement of the Riesz lemma
can be stated and proved. In fact, if X is an infinite-dimensional normed
linear space, then there exists a sequence (x,) of norm-one elements of X for
which ||x,, — x,|| >1 whenever m # n.

Kottman’s original argument depends on combinatorial features that live
today in any improvements of the cited result. In Chapter XIV we shall see
how this is so; for now, we- give a noncombinatorial proof of Kottman’s
result. We were shown this proof by Bob Huff who blames Tom Starbird for
its simplicity. Only the Hahn-Banach theorem is needed.

We proceed by induction. Choose x, € X with ||x,|| =1 and take x} € X*
such that ||xf|| =1 = x{x,.

Suppose x§, ..., x¥ (linearly independent, norm-one elements of X*) and
Xy, ...,X, (norm-one elements) have been chosen. Choose y € X so that
x¥y,...,x¥y <0 and take any nonzero vector x common to N *_ kerx?*.
Choose X so that

Iyl <y + Kx||.

Then for any nontrivial linear combination L% ,a,x* of the x* we know
that

k
Z a;x*(y)

i=1

k
L ax?(y+ Kx)

im=]

k
Z axy

i=1

k
Z axt

i=1

< |y + Kx||.

Iyl <

Let x, ., =(y + Kx)||y + Kx||"! and choose x},, to be a norm-one func-

tionai satisfying x¥, ;x, ., =1. Since [Ef_ a,x*(y + Kx)| <|[Ef_ o, x* |||y +
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kx||, x¥,, is not a linear combination of xf, ... ,x#. Also, if 1 <i <k, then

1%k 41 = Xl lei‘(xk+l - xi)l
= [xFxp 0~ xrx|>1

since x*x; =1 and xx; ., <0.
This proof is complete.

Bibliography

Choquet, G. 1969. Lectures on Analysis, Vol. I Integration and Topological Vector
Spaces, J. Marsden, T. Lance, and S. Gelbart (eds.). New York-Amsterdam:
W. A. Benjamin.

James, R. C. 1964. Weakly compact sets. Trans. Amer. Math. Soc., 113, 129-140.
Kottman, C. A. 1975. Subsets of the unit ball that are separated by more than one.
Studia Math., 53, 15-217. '
Grothendieck, A. 1955. Produits tensorials topologiques et espaces nucléaires. Memoirs

Amer. Math. Soc., 16.
Riesz, F. 1918. Uber lineare Funktionalgleichungen. Acta Math., 1, 71-98.
Tychonoff, A. 1935. Ein Fixpunktsatz. Math. Ann. 111, 767-776.



CHAPTER 11
The Weak and Weak* Topologies:

An Introduction

As we saw in our brief study of compactness in normed linear spaces, the
norm topology is too strong to allow any widely applicable subsequential
extraction principles. Indeed, in order that each bounded sequence in X
have a norm convergent subsequence, it is necessary and sufficient that X be
finite dimensional. This fact leads us to consider other, weaker topologies on
normed linear spaces which are related to the linear structure of the spaces
and 10 search for subsequential extraction principles therein. As so often
happens in such ventures, the roles of these topologies are not restricted to
the situations initially responsible for their introduction. Rather, they play
center court in many aspects of Banach space theory.

The two weaker-than-norm topologies of greatest importance in Banach
space theory are the weak topology and the weak-star (or weak*) topology.
The first (the weak topology) is present in every normed linear space, and in
order to get any results regarding the existence of. convergent or even
Cauchy subsequences of an arbitrary bounded sequence in this topology,
one must assume additional structural properties of the Banach space. The
second (the weak* topology) is present only in dual spaces; this is not a real
defect since it is counterbalanced by the fact that the dual unit ball will
always be weak* compact. Beware: This compactness need not of itself
ensure good subsequential extraction principles, but it does get one’s foot in
the door.

The Weak Topology

Let X be a normed linear space. We describe the weak topology of X by
indicating how a net in X converges weakly to a member of X. Take the net
(x,); we say that (x,) converges weakly to x, if for each x* € X*.

* = h *
X xo—hznx X4
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Whatever the weak topology may be, it is linear (addition and scalar
multiplication are continuous) and Hausdorfl (weak limits are unique).

Alternatively, we can describe a basis for the weak topology. Since the
weak topology is patently linear, we need only specify the neighborhoods of
0; translation will carry these neighborhoods throughout X. A typical basic
neighborhood of 0 is generated by an £¢>0 and finitely many members
xi¥,...,x¥ of X*. Its form is

W(O; x;’,...,x,‘:‘,e) = {xe X:x¥x|,...,|xkx| <e}.

Weak neighborhoods of 0 can be quite large. In fact, each basic neighbor-
hood W(O; x},...,x¥, €) of O contains the intersection N}_ kerx}* of the
null spaces kerx* of the x*, a linear subspace of finite codimension. In case
X is infinite dimensional, weak neighborhoods of 0 are big!

Though the weak topology is smaller than the norm topology, it produces
the same continuous linear functionals. In fact, if f is a weakly continuous
linear functional on the normed linear space X, then U= {x:|f(x)| <1} is
a weak neighborhood of 0. As such, U contains a W(0; x¢,...,x*, ¢). Since
f is linear and W(O0, x{, ... ,x*, £) contains the linear space N7 kerx}, it
follows that ker f contains N kerx* as well. But here’s the catch: if the

kernel of f contains N  kerx*, then f must be a linear combination

x¥, ...,x¥ and so f € X*. This follows from the following fact from linear
algebra.
Lemma. Ler E be a linear space and f, g,, ... g, be linear functionals on E

such that kerf 2 N [_ kerg, Then f is a linear combination of the g,’s.
PROOF. Proceed by induction on n. For n=1 the lemma clearly holds.
Let us assume it has been established for k <n. Then, for given
ker f 2 N "*lkerg;, the inductive hypothesis applies to

i=1
flkerg“,’ gl'kerg,”’ eee ’gnlkerg,,ﬂ'

It follows that, on kerg,,,, f is a linear combination ¥}_,a,g; of g;,...,8,;
f—X].,a,g, vanishes on kerg, , ,. Now apply what we know about the case
n =1 to conclude that f —¥7_,a;g; is a scalar multiple of g, , ;. a

It is important to realize that the weak topology is really of quite a
different character than is the norm topology (at least in the case of
infinite-dimensional normed spaces). For example, if the weak topology of a
normed linear space X is metrizable, then X is finite dimensional. Why is this
so? Well, metrizable topologies satisfy the first axiom of countability. So if
the weak topology of X is metrizable, there exists a sequence (x*) in X*
such that given any weak neighborhood U of 0, we can find a rational ¢> 0
and an n(U) such that U contains W(0; x{, ...,x%y,,€). Each x* € Xx*
generates the weak neighborhood W(0; x*,1) of 0 which in turn contains
one of the sets W(0; x7, ..., X w0, x*,1y €)- However, we have seen that this
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entails x* being a linear combination of xf,...,x¥ ). If we let F, be the
linear span of xj,...,x¥, then each F, is a finite-dimensional linear
subspace of X* which is a fortiori closed; moreover, we have just seen that
X*=U ,F,. The Baire category theorem now alerts us to the fact that one
of the F,, has nonempty interior, a fact which tells us that the F, has to be
all of X*. X* (and hence X') must be finite dimensional.

It can also be shown that in case X is an infinite-dimensional normed linear
space, then the weak topology of X is not complete. Despite its contrary
nature, the weak topology provides a useful vehicle for carrying on analysis
in infinite-dimensional spaces.

Theorem 1. If K is a convex subset of the normed linear space X, then the
closure of K in the norm topology coincides with the weak closure of K.

PrROOF. There are no more open sets in the weak topology than there are in
the norm topology; consequently, the norm closure is harder to get into
than the weak closure. In other words 4 'l ¢ 4%,

If K is a convex set and if there were a point x, € K**\ K"l then there
would be an x§ € X * such that

supxdK''l<a< B < x3(xq)
for some a, B. This follows from the separation theorem and the convexity
of K"I. However, x, € K **** implies there is a net (x,) in K such that
xo = weak limx,.
d

It follows that
xX3xo = litiinxgxd,

an obvious contradiction to the fact that x3x, is separated from all the x§x,
by the gulf between a and B. O

A few consequences follow.

Corollary 2. If (x,) is a sequence in the normed linear space for which weak
lim,, x,, = O, then there is a sequence (0,) of convex combinations of the x, such
that lim , ||x,|| = 0.

A natural hope in light of Corollary 2 would be that given a weakly null
sequence (x,) in the normed linear space X, one might be able (through
very judicious pruning) to extract a subsequence (y,) of (x,) whose arith-
metic means n~'L?_,y, tend to zero in norm. Sometimes this is possible
and sometimes it is not; discussions of this phenomenon will appear
throughout this text.

Corollary 3. If Y is a linear subspace of the normed linear space X, then
Fweek — Fl-Il
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Corollary 4. if X is a convex set in the normed linear space X, then K is norm
closed if und only if K is weakly closed.

The weak topology is defined in a projective manner: it is the weakest
topology on X that makes each member of X™* continuous. As a conse-
quence of this and the usual generalities about projective topologies, if  is a
topological space and f: Q — X is a function, then f is weakly continuous if and
only if x*f is continuous for each x* € X*.

Let T: X — Y be a linear map between the normed linear spaces X and Y.
Then T is weak-to-weak continuous if and only if for each y* € Y*, y*Tis a
weakly continuous linear functional on Xj this, in turn, occurs if and only if
y*T is a norm continuous linear functional on X for each y* € Y *.

Now if T: X =Y is a norm-to-norm continuous linear map, it obviously
satisfies the last condition enunciated in the preceding paragraph. On the
other hand, if T is not norm-to-norm continuous, then TB, is not a
bounded subset of Y. Therefore, the Banach-Steinhaus theorem directs us to
a y* € Y * such that y*TB, is not bounded; y*T is not a bounded linear
functional. Summarizing we get the following theorem.

Theorem S. A linear map T: X — Y between the normed linear spaces X and
Y is norm-to-norm continuous if and only if T is weak-to-weak continuous.

The Weak* Topology

Let X be a normed linear space. We describe the weak* topology of X * by
indicating how a net (x}) in X* converges weak* to a member x} of X*.
We say that (x}) converges weak* to x§ € X* if for each x € X,

*y. — 1 *
xXix = h‘linxdx.

As with the weak topology, we can give a description of a typical basic
weak* neighborhood of 0 in X*; this time such a neighborhood is generated
by an £> 0 and a finite collection of elements in X, say x,, ..., x,. The form
is

W05 x1,...,%,, ) = { Xx* € X*1|x*x)],...,|x*x,| <¢}.

The weak* topology is a linear topology; so it is enough to describe the
neighborhoods of 0, and neighborhoods of other points in X* can be
obtained by translation. Notice that weak* basic neighborhoods of 0 are
also weak neighborhoods of 0; in fact, they are just the basic neighborhoods
generated by those members of X** that are actually in X. Of course, any
x** that are left over in X** after taking away X give weak neighborhoods
of 0 in X'* that are not weak* neighborhoods. A conclusion to be drawn is
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this: the weak* topology is no bigger than the weak topology. Like the weak
topology, excepting finite-dimensional spaces, duals are never weak* metriz-
able or weak* complete; also, proceeding as we did with the weak topology,
it’s easy to show that the weak* dual of X* is X. An important consequence
of this is the following theorem.

Goldstine’s Theorem. For any normed linear space X, By is weak™ dense in
Byse, and so X is weak™ dense in X**.

ProorF. The second assertion follows easily from the first; so we concentrate
our attentions on proving B is always weak* dense in By... Let x** € X **
be any point not in B}***". Since B}***" is a weak* closed convex set and
x** & By", there is an x* € X **’s weak* dual X* such that

sup{x"‘y“": y** e B—}“k‘} < x*ex*

Of course we can assume ||x*|| =1; but now the quantity on the left is at
least ||x*|| =1, and so ||x**|| > 1. It follows that every member of By.. falls
inside BYea”, O

As important and useful a fact as Goldstine’s theorem is, the most
important feature of the weak* topology is contained in the following
compactness result.

Alaoglu’s Theorem. For any normed linear space X, By. is weak* compact.
Consequently, weak™* closed bounded subsets of X* are weak* compact.

ProoOF. If x* € B,., then for each x € By, |x*x| <1. Consequently, each
x*€ By. maps B, into the set D of scalars of modulus <1. We can
therefore identify each. member of B,. with a point in the product space
DBx. Tychonof’s theorem tells us this latter space is compact. On the other
hand, the weak* topology is defined to be that of pointwise convergence on
By, and so this identification of By. with a subset of D2~ leaves the weak*
topology unscathed; it need only be established that B . is closed in D%~ to
complete the proof.

Let (x%) be a net in By. converging pointwise on B, to f € D5~ Then it
is easy to see that f is “linear” on B,: in fact, if x,, x, € By and q,, a, are
scalars such that a,x, + a,x, € By, then

flayx; +ayx,) = li‘li‘nxj}‘(alxl +a,x,)
= li;nalx;'(xl)+a2x§(x2)
= li;nalxj(x1)+ li;nazx;(xz)

=a,f(x)+a,f(x;).
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It follows that fis indeed the restriction to B x of a linear functional x’ on X;
moreover, since f(x) has modulus <1 for x € By, this x’ is even in By..
This completes the proof. O

A few further remarks on the weak* topology are in order.

First, it is a locally convex Hausdorff linear topology, and so the
separation theorem applies. In this case it allows us to separate points (even
weak* compact convex sets) from weak* closed convex sets by means of the
weak* continuous linear functionals on X'*, i.e., members of X.

Second, though it is easy to see that the weak* and weak topologies are
not the same (unless X = X**), it is conceivable that weak* convergent
sequences are weakly convergent. Sometimes this does occur, and we will, in
fact, run across cases of this in the future. Because the phenomenon of
weak* convergent sequences being weakly convergent automatically brings
one in contact with checking pointwise convergence on By.., it is not too
surprising that this phenomenon is still something of a mystery.

Exercises
1. The weak topology need not be sequential. Let A C [, be the set {¢,,+ me,:1<m
< n<oo). Then 0 € 4% yet no sequence in A is weakly null.

2. Helly’s theorem.

(i) Given x{, ... ,x} € X*, scalars a,, ... ,a,, and &> 0, there exists an x, € X
for which ||x|| < y + € and such that xfx = a,, ... ,x}x = a,, if and only if for
any scalars 8, ...,8,

n
> axr.

i=1

Z B

im]

<Y

(ii) Let x** € X**, e>0 and xg,...,x¥ € X*. Then there exists x € X such
that ||x|| < ||x**||+ e and xF(x) = x**(x{), ..., x¥(x) = x**(x}).

3. An infinite - dimensional normed linear space is never weakly complete.

(i) A normed linear space X is finite dimensional if and only if every linear
functional on X is continuous.

(ii) An infinite-dimensional normed linear space is never weakly complete. Hint:
Apply (i) to get a discontinuous linear functional ¢ on X*; then using (i),
the Hahn-Banach theorem, and Helly’s theorem, build a weakly Cauchy net
in X indexed by the finite-dimensional subspaces of X* with ¢ the only
possible weak limit point.

4. Schauder’s theorem.
() If T: X > Y is a bounded linear operator between the Banach spaces X and
Y, then for any y* € Y*, y*T € X'*, the operator T*:Y* — X* that takes a

y*€Y* to y*T € X* is a bounded linear operator, called T*, for which
171 =NT*).
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(ii) A bounded linear operator T: X — Y between Banach spaces is compact if
and only if its adjoint T*:Y* — X* is.

(iii) An operator T: X — Y whose adjoint is weak*-norm continuous is compact.
However, not every compact operator has a weak*-norm continuous adjoint.

(iv) An operator T: X — Y is compact if and only if its adjoint is weak*-norm
continuous on weak* compact subsets of Y*.

5. Dual spaces. Let X be a Banach space and E C X*. Suppose E separates the
points of X and By is compact in the topology of pointwise convergence on E.
Then X is a dual space whose predual is the closed linear span of E in X*.

6. Factoring compact operators through subspaces of c,.

(i) A subset X of c, is relatively compact if and only if there is an x € ¢, such
that

1kal < 1%,
holds for all k € X'and all n >1.

(ii) A bounded linear operator T: X — Y between two Banach spaces is compact
if and only if there is a norm-null sequence (x?*) in X* for which

IITx|l < sup|xyx|
n

for all x. Consequently, T is compact if and only if there is a A € ¢, and a
bounded sequence (y,*) in X* such that

ITxI| < sup |, 1?1 y,"x|
n

for all x.

(iii) Every compact linear operator between Banach spaces factors compactly
through some subspace of cy; that is, if T: X—Y is a compact linear
operator between the Banach spaces X and Y, then there if a closed linear
subspace Z of ¢, and compact linear operators 4: X — Z and B: Z — Y such
that T = BA.

Notes and Remarks

The notion of a weakly convergent sequence in L,[0,1] was used by Hilbert
and, in L,[0,1], by F. Riesz, but the first one to recognize that the weak
topology was just that, a topology, was von Neumann. Exercise 1 is due to
von Neumann and clearly indicates the highly nonmetrizable character of
the weak topology in an infinite-dimensional Banach space. The nonmetriz-
ability of the weak topology of an infinite-dimensional normed space was
discussed by Wehausen.

Theorem 1 and the consequences drawn from it here (Corollaries 2 to 4)
are due to Mazur (1933). Earlier, Zalcwasser (1930) and, independently,
Gillespie and Hurwitz (1930) had proved that any weakly null sequence in
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C[0,1] admits of a sequence of convex combinations that converge uni-
formly to zero. The fact that weakly closed linear subspaces of a normed
linear space are norm closed appears already in Banach’s “Operationes
Lineaires.”

The weak continuity of a bounded linear operator was first noticed by
Banach in his masterpiece; the converse of Theorem 5 was proved by
Dunford. Generalizations to locally convex spaces were uncovered
by Dieudonné and can be found in most texts on topological vector spaces.

As one ought to suspect, Goldstine’s theorem and Alaoglu’s theorem are
named after their discoverers. Our proof of Goldstine’s theorem is far from
the original, being closer in spirit to proofs due to Dieudonné and Kakutani;
for a discussion of Goldstine’s original proof, as well as an application of its
main theme, the reader is advised to look to the Notes and Remarks section
of Chapter IX. Helly’s theorem (Exercise 2) is closely related to Goldstine’s
and often can be used in its place. In the form presented here, Helly’s
theorem is due to Banach; of course, like the Hahn-Banach theorem, Helly’s
theorem is a descendant of Helly’s selection principle.

The fact that infinite-dimensional Banach spaces are never weakly com-
plete seems to be due to Kaplan; our exercise was suggested to us by W. J.
Davis.

Alaoglu’s theorem was discovered by Banach in the case of a separable
Banach space; many refer to the result as the Banach-Alaoglu theorem.
Alaoglu (1940) proved the version contained here for the expressed purpose
of differentiating certain vector-valued measures.
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CHAPTER III 5
The Eberlein-Smulian Theorem

We saw in the previous chapter that regardless of the normed linear space
X, weak* closed, bounded sets in X* are weak* compact. How does a
subset K of a Banach space X get to be weakly compact? The two are
related. Before investigating their relationship, we look at a couple of
necessary ingredients for weak compactness and take a close look at two
illustrative nenweakly compact sets.

Let K be a weakly compact set in the normed linear space X. If x* € X*,
then x* is weakly continuous; therefore, x*K is a compact set of scalars. It
follows that x*K is bounded for each x* € X* and so K is bounded.
Further, K is weakly compact, hence weakly closed, and so norm closed.
Conclusion: Weakly compact sets are norm closed and norm bounded.

Fortunately, closed bounded sets need not be weakly compact.

Consider B, . Were B, weakly compact, each sequence in B, would have
a weak cluster point in B, . Consider the sequence o, defined by o, =e,
+ --- +e,, where e, is the kth unit vector in ¢y. The sup norm of ¢, is
rigged so that ||g,)| =1 for all n. What are the possible weak cluster points of
the sequence (o0,)? Take a A € B, that is a weak cluster point of (o,). For
each x* € ¢§, (x*o,) has x*A for a cluster point; i.e., the values of x*o, get
as close as you please to x*A infinitely often. Now evaluation of a sequence
in ¢ at its kth coordinate is a continuous linear functional; call it e¥. Note
that ef(0,) =1 for all n > k. Therefore, efA =1. This holds true for all k.
Hence, A = (1,1,...,1,...) & ¢o. B, is not weakly compact.

Another example: B, is not weakly compact. Since /; = c§ (isometrically),
were B, weakly compact, the weak and weak* topologies on B, would have
to coincide (comparable compact Hausdorff topologies coincide). However,
consider the sequence (e, ) of unit vectors in /;. If A € ¢, thene,A =\, =0
as n 0. So (e,) is weak* null. If we suppose B, weakly compact, then
(e,) is weakly null, but then there ought to be a sequence (y,) of convex
combinations of the e, such that ||y, ||, = 0. Here’s the catch: Take a convex
combination of e,’s—the resulting vector’s /; norm is 1. The supposition
that B, is weakly compact is erroneous.
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There is, of course, a common thread running through both of the above
examples In the first, the natural weak cluster point fails to be in c,; not all
is lost though, because it is in B, . Were B, = B, , this would have been
enough to ensure B, ’s weak compactness. ln the second case, the weak
compactness of B, was denied because of the fact that the weak* and weak
topologies on B; were not the same; in other words, there were more x**’s
than there were x’s to check against for convergence. Briefly, B is smaller
than B, .

Suppose By = By... Naturally, this occurs when and only when X = X**;
such X are called reflexive. Then the natural embedding of X into X** is a
weak-to-weak* homeomorphism of X onto X ** that carries B, exactly onto
Bj,... It follows that B, is weakly compact.

On the other hand, should B, be weakly compact, then any x** € X**
not in B, can be separated from the weak* compact convex set B, by an
element of the weak* dual of X**; i.e, there is an x* € B,. such that

sup x*x( =||x*||=1) < x**x*.
lixli <1

It follows that ||x**|| >1 and so By = Bya..

Summarizing: By is weakly compact if and only if X is reflexive.

Let’s carry the above approach one step further. Take a bounded set 4 in
the Banach space X. Suppose we want to show that A is relatively weakly
compact. If we take A¥*** and the resulting set is weakly compact, then we
are done. How do we find 4**** though? Well, we have a helping hand in
Alaoglu’s theorem: start with 4, look at A***" up in X**, and see what
elements of X** find themselves in 4%°**°. We know that 4%**%" is weak*
compact. Should each element in 4%°**” attually be in X, then 4%**" is just
A% what’s more, the weak* and weak topologies are the same, and so
A™*** is weakly compact.

- So, to show a bounded set A is relatively weakly compact, the strategy is
to look at 4*** and see that each of its members is a point of X. We
employ this strategy in the proof of the main result of this chapter.

Theorem (Eberlein-Smulian). A subset of a Banach space is relatively weakly
compact if and only if it is relatively weakly sequentially compact.

In particular, a subset of a Banach space is weakly compact if and only if it
is weakly sequentially compact.

ProOF. To start, we will show that a relatively weakly compact subset of a
Banach space is relatively weakly sequentially compact. This will be accom-
plished in two easy steps.

Step 1. If K is a (relatively) weakly compact set in a Banach space X and
X * contains a countable total set, then K *<* is metrizable. Recall that a set
F c X* is called total if f(x) =0 for each f € F implies x =0.
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Suppose that K is weakly compact and { x* } is a countable total subset of
nonzero members of X*. The function d: X X X — R defined by

d(x,x) =Y |x¥(x—x")|lIxzl" 27"

is a metric on X. The formal identity map is weakly-to-d continuous on the
bounded set K. Since a continuous one-to-one map from a compact space to
a Hausdorff space is a homeomorphism, we conclude that d restricted to
K X K is a metric that generates the weak topology of K.

Step 2. Suppose A4 is a relatively weakly compact subset of the Banach
space X and let (a,) be a sequence of members of 4. Look at the closed
linear span [a,] of the a,; [a,] is weakly closed in X. Therefore, 4 N[a,] is
relatively weakly compact in the separable Banach space [a,]. Now the dual
of a separable Banach space contains a countable total set: if {d,} is a
countable dense set in the unit sphere of the separable space and {d}*} is
chosen in the dual to satisfy d*d, =1, it is easy to verify that {d*} is total.
From our first step we know that 4 N[a,]"*** is metrizable in the weak
topology of [a,]. Since compactness and sequential compactness are equiva-
lent in metric spaces, 4 N[a,]"*** is a weakly sequentially compact subset
of [a,]). In particular, if a is any weak limit point of (a,), then there is a
subsequence (a;) of (a,) that converges weakly to a in [a,]. It is plain that
(a,) also converges weakly to a in X.

We now turn to the converse. We start with an observation: if E is a
finite-dimensional subspace of X**, then there is a finite set E’ of Sy. such
that for any x** in E

x#t

2| 3 "smax{lx""xﬂ:x*EE’}.
In fact, Sy is norm compact. Therefore, there is a finite 1 net F=
{xt*, ...,xy*} for Sg. Pick x¥, ... ,x} € Sy. so that

Xp*xx>3.
Then whenever x** € S, we have
X**xk = x}r*xr + (x**x,j‘ - x,f‘*x,’:')
zi-i=1
for a suitable choice of k.

This observation is the basis of our proof.

Let A be a relatively weakly sequentially compact subset of X; each
infinite subset of A has a weak cluster point in X since 4 is also relatively
weakly countably compact. Consider 42", 42 js weak* compact since
A, and therefore 4", is bounded due to the relative weak sequential
compactness of 4. We use the strategy espoused at the start of this section

to show A is relatively weakly compact; that is, we show 4¥°*" actually lies
in X.
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Take x** € A%%*", and let x{* € Sy.. Since x** € 4*°%*" each weak*
neighborhood of x** contains a member of 4. In particular, the weak*
neighborhood generated by e=1 and x{, { y** € X**: |(y** — x**)(x})|
<1}, contains a member a, of 4. From this we get

|(x** = ay ) ()] <1.
Consider the linear span [x**, x** — q,] of x** and x** —a; this is a
finite-dimensional subspace of X**. Our observation deals us xJ, ..., x5
€ Sy« such that for any y** in [x**, x** — a,],

”y"”Smax{]y**(xk ):1<k<n(2)}.

x** is not going anywhere, i.e., it is still in 4***"; so each weak*
neighborhood of x** intersects A. In particular, the weak* neighborhood
about x** generated by } and x}, x¥,...,x%,, intersects 4 to give us an a,
in 4 such that

|Gt = an) ()L (e = @) (e [ (60 = ) () )| <3

Now look at the linear span [x** x** —a,, x** — a,] of x**, x** — q,,
and x** —a,. As a finite-dimensional subspace, [x**, x** — g,, x** — a,]
provides us with X3 41, ... s X3 iR Sy« such that

lLy**
2

for any y** € [x**, x** —a,, x** — a,).

Once more, quickly. Choose a; in 4 such that x** — a; charges against
X}, ..., X} for no more than } value. Observe that the finite-dimensional
linear space [x**, x** —a,, x** — a,, x** — a,] provides us with a finite
subset x¥3) .15 -, Xqy i0 Sy« such that

Iy**
2

< max{|y**(x,‘:‘)| l<k< n(3)}

< max{|y**(xf)|:1<k <n(4))

for any y** € [x**, x** —a;, x** —a,, x** — a,].

Where does all this lead us? Our hypothesis on 4 (being relatively weakly
sequentially compact) allows us to find an x € X that is a weak cluster point
of the constructed sequence (a,) C 4. Since the closed linear span [a,] of
the a, is weakly closed, x € [q,]. It follows that x** — x is in the weak*
closed linear span of {x** x**—a;, x**—a,,...}. Our construction of
the x}* and the g, assures us that

* %
220 < quplyencs) 1)
2 m
holds for any y** in the linear span of x**, x** —a,,x**~a,,.... An

easy continuity argument shows that (1) applies as well to any y** in the
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weak* closed linear span of x**, x** — a,, x** — a,, .... In particular, we
can apply (1) to x** — x. However,

|Gers =) ()| < (2% = @) (x3) [+ [xm(a,) ~ x5 (x)]
< % + as little as you please

if m<n(p), p<k and you take advantage of the fact that x is a weak
cluster point of (a,). So x** — x = 0, and this ensures that x** = x is in X.
(m]

Exercises

1. The failure of the Eberlein-Smulian theorem in the weak* topology. Let T be any
set and denote by /,(T’) the set of all functions x: I — scalars for which

Ixlh= X |x(y)|<oo.
yer

5,(T') is a Banach space whose dual space in /(T'), the space of bounded
scalar-valued functions on I’ normed by the sup norm; the action of p € /_(T") =
1,(T)* on x € [|(T') is given by

o(x)= quv(v)X(v)

(i) If T is an uncountable set, then B, r, is weak* compact but not weak*
sequentially compact.

ii) If T is infinite, then B « contains a weak* compact set that has no
1(T) p
nontrivial weak* convergent sequences.

2. Weakly compact subsets of |, are norm separable.

(i) Weak* compact subsets of X* are metrizable in their weak* topology
whenever X is separable.

(ii) Weakly compact subsets of /, are norm separable.

3. Gantmacher’s theorem. A bounded linear operator T: X — Y between the Banach
spaces X and Y is weakly compact if TB is weakly compact in Y.

(i) A bounded linear operator T: X - Y is weakly compact if and only if
T**( X*‘) g Y‘

(ii) A bounded linear operator T: X — Y is weakly compact if and only if T* is
weak *-weak continuous from Y* to X*.

(iii) A bounded linear operator T: X — Y is weakly compact if and only if T* is.

(iv) A Banach space X is reflexive if and only if its dual X* is.
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Notes and Remarks

Smulian (1940) showed that weakly compact subsets of Banach spaces are
weak'y sequentially compact. He also made several interesting passes at the
converse as did Phillips (1943). The proof of the converse was to wait for
Eberlein (1947). Soon after Eberlein’s proof, Grothendieck (1952) provided
a considerable generalization by showing that relatively weakly sequentially
compact sets are relatively weakly compact in any locally convex space that
is quasi-complete in its Mackey topology; in so doing, Grothendieck noted
that Eberlein’s proof (on which Grothendieck closely modeled his) required
no tools that were not available to Banach himself, making Eberlein’s
achievement all the more impressive.

As one might expect of a theorem of the quality of the Eberlein-Smulian
theorem, there are many generalizations and refinements.

The most common proof of the Eberlein-Smulian theorem, found, for
instance, in Dunford and Schwartz, is due to Brace (1955). Those who have
used Brace’s proof will naturally see much that is used in the proof
presented here. We do not follow Brace, however, since Whitley (1967) has
given a proof (the one we do follow) that offers little room for conceptual
improvement. Incidentally, Pelczynski (1964) followed a slightly different
path to offer a proof of his own that uses basic sequences; we discuss
Pelczynski’s proof in Chapter V.

Weakly compact sets in Banach spaces arc plainly different from general
compact Hausdorff spaces. Weakly compact sets have a distinctive char-
acter: they are sequentially compact, and each subset of a weakly compact
set has a closure that is sequentially determined. There is more to weakly
compact sets than just these consequences of the Eberlein-Smulian theorem,
and a good place to start learning much of what there is is Lindenstrauss’s
survey paper on the subject (1972). Floret’s monograph also provides a
readable, informative introduction to the subject.

Bibliography

Bourgin, D. G. 1942. Some properties of Banach spaces. Amer. J. Math., 64,
597-612.

Brace, J. W. 1955. Compactness in the weak topology. Math. Mag., 28, 125-134.

Eberlein, W. F. 1947. Weak compactness in Banach spaces, I. Proc. Nat. Acad. Sci.
USA, 33, 51-53.

Grothendieck, A. 1952. Criteres de compacité dans les espaces fonctionnels généraux.
Amer. J. Math., 74, 168—-186.

Floret, K. 1980. Weakly Compact Sets. Springer Lecture Notes in Mathematics,
Volume 801. New York: Springer-Verlag.

Lindenstrauss, J. 1972. Weakly compact sets—their topological properties and the
Banach spaces they generate. Proceedings of the Symposium on Infinite Dimen-
sional Topology, Annals of Math. Studies, no. 69, 235-263.



Bibliography 23

Pelczynski, A. 1964. A proof of Eberlein-Smulian theorem by an application of basic
sequences. Bull. Acad. Polon. Sci., 12, 543-548.

Phillips, R. S. 1943. On weakly compact subsets of a Banach space. Amer. J. Math.,
65, 108-136.

Smulian, V. L. 1940. Uber lineare topologische Raume. Mat. Sbornik N.S., 7(49),
425-448.

Whitley, R. J. 1967. An elementary proof of the Eberlein-Smulian theorem. Math.
Ann., 172, 116-118.



CHAPTER IV
The Orlicz-Pettis Theorem

In this chapter we prove the following theorem.

The Orlicz-Pettis Theorem. Let Z,x, be a series whose terms belong to the
Banach space X. Suppose that for each increasing sequence (k,) of positive
integers

n
weak lim Y x,
n j=1 4

exists. Then for each increasing sequence (k, ) of positive integers

n

norm lim Y x,
n j=1 /

exists.

Put succinctly, the Orlicz-Pettis theorem says that weak subseries conver-
gence implies subseries convergence in Banach spaces.

Our proof relies on the theory of the Bochner integral, and its success
derives from the marvelous measurability theorem of Pettis. It is the
exposition of the theory of the Bochner integral that occupies most of our
time in this chapter; however, with the payoff including the Orlicz-Pettis
theorem, our work will be highly rewarded.

Start by letting (£, =, n) be a probability space and X be a Banach space.
We first establish the ground rules for measurability.

f: Q@ - Xis called simple if there are disjoint members E,, ..., E, of = and
vectors X,, ...,x, € X for which f(w)=X_;xg(w)x; holds for all w € Q,
where x ¢ denotes the indicator function of the set E C Q. Obviously such
functions should be deemed measurable. Next, any function f: € — X which
is the p-almost everywhere limit of a sequence of simple functions is
p-measurable. The usual facts regarding the stability of measurable func-
tions under sums, scalar multiples, and pointwise almost everywhere conver-
gence are quickly seen to apply. Egoroff’s theorem on almost uniform
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convergence generalizes directly to the vector-valued case—one need only
replace absolute values with norms at the appropriate places in the standard
proof.

A function f: Q@ — X is scalarly p-measurable if x*f is p-measurable for
each x* € X*. A crucial step in this proof of the Orlicz-Pettis theorem will
have been taken once we demonstrate the following theorem.

Pettis Measurability Theorem. A function f: Q@ — X is p-measurable if and
only if f is scalarly p-measurable and there exists an E € Z with p(E) = 0 such
that f(Q\ E) is a norm-separable subset of X.

PrOOF. It is plain to see that a p-measurable function f: Q@ — X is scalarly
p-measurable and p-essentially separably valued. We concentrate on the
converse. Suppose f:§ — X is scalarly p-measurable and E€ X can be
found for which p(E)=0 and f(Q\E) is a separable subset of X. Let
{x,:n =1} be a countable dense subset of f(2\ E). Choose {x}*:n>1} C
Sy« in such a way that x¥x,=||x,|. Given w € Q\E it is plain that
| f(w)|l = sup,|x¥(f(w))]. It follows that || f(-)|| is p-measurable. Similarly
for each n, || f(-)— x,|| is p-measurable. ,

Let e> 0 be given. Look at [|| f(w)— x,|| < €] = E, (we prefer o use the
probabilists’ notation here; so [||f(w)—x,||<e] is {w €Q:||f(w)—x,|| <
¢}). Each E, is almost in 2 (and, if p is complete, actually does belong to X),
and so for each n there is a B,€Z such that p(E,AB,)=0. Define
g:2— Xby

x, ifweB\(B,U---UB,_,),
g(w)={0 ifweUs,

It is clear that ||g(w)— f(w)||<e for any w outside of both E and
uU,(E,AB,).

We have shown that given > 0 there is a countably valued function g
and a p-null set N, €2 such that g assumes distinct values on disjoint
members of = and such that f and g are uniformly within & of each other on
Q\ N,. Giving a little (of @) to get a little (and make g simple) quickly
produces a sequence of simple functions converging p-almost everywhere to
f, which completes the proof. ]

Now for the Bochner integral.
If f: @ — X is simple, say f(w) =L]_,xz(w)x;, then for any E € =

/E fdp= Y p(ENE)x,.

im=1

A p-measurable function f: @ — X is called Bochner integrable if there exists
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a sequence of simple functions ( f,) such that
tim [ |/, (@)~ £ (w)]ldu (@) =0.
In this case [¢fdp is defined for each E € X by
J fau=tim [ f,du.

Our first result regarding the Bochner integral is due to Bochner himself and
is in a sense the root of all that is “trivial” about the Bochner integral.

Bochner’s Characterization of Integrable Functions. A p-measurable function
f: Q = X is Bochner integrable if and only if [g|| f|ldu < co.

ProoF. If fis Bochner integrable, then there’s a simple function g such that
Jallf — glldp < 7; it follows that

Jusdp< fif = gldp+ flighdp < oco.

Conversely, suppose f(and so |If|]) is p-measurable with [|| f]ldp < oo.
Choose a sequence of countably valued measurable functions ( f,) such that
I f = f,ll =1/n, p-almost everywhere. Here a peek at the proof of the Pettis
measurability theorem is acceptable. Since || f,(-)|| < || f(-)||+1/n almost all
the time, we see that [|| f,||dp < oo. For each n write f, in its native form

f(@)= 3 x5, (0)%nm

m=1

where E, ;N E, ;=@ whenever i # j, all E, , belong to 2, and all the x,, ,,
belong to X. For each n pick p, so large that

[y .

1
flld <

me=p,+1

What is left of f, is £ 1X £, ,Xn, m = &> @ simple function for which

2
Jif-glidus=.
[is Bochner integrable, and this proof is complete. ]

In a very real sense Bochner’s characterization of Bochner-integrable
functions trivializes the Bochner integral, reducing as it does much of the
development to the Lebesgue integral. This reduction has as a by-product
the resultant elegance and power of the Bochner integral. We'll say a bit
more about this elsewhere and restrict our attentions herein to a few
more-or-less obvious consequences of the work done to this point.
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Corollary

1. (Dominated Convergence Theorem). If (f,) are Bochner-integrable X-val-
ued functions on Q, f:Q — X is the almost everywhere limit of (f,) and
1£,()Il < g(+) almost all the time and for all n, where g € L (p), then f is
Bochner integrable and [,||f — f,lldp — 0 and [.f,dp — [fdp for each
EeX.

2. If f is Bochner integrable, then || [gfdp| < [g||f||dp holds for all E € Z.
Consequently, [cfdp is a countably additive p-continuous X-valued set
function on Z.

ProoF. Part 1 follows from Bochner’s characterization and the scalar
dominated convergence theorem: || f,(-)— f(-)|| < 2g(-) almost all the time.
Part 2 is obvious if fis simple and simple for other f. [}

One noteworthy conclusion to be drawn from 2 above is the fact that if f
is Bochner integrable, then { [gfdu: E € 2} is a relatively compact subset of
X. In case f is a simple function, this follows from the estimate || [ fdu| <
follflldr < oo and the resulting boundedness of { [pfdu: EE€Z} in the
finite-dimensional linear span of the range of f. For arbitrary Bochner-inte-
grable f: € — X one need only pick a simple g: & — X for which fg|| f — glldp
is very small to see that { [ fdu: E€2Z} is closely approximable by
{ fegdp: E €2}, a totally bounded subset of X. Of course this says that
given & > 0 each vector in { [ fdp: E € 7 can be approximated within £/2
by a vector in the totally bounded set { [pgdu: E€ X}, 50 { [pfdu: E€Z}
is itself totally bounded.

Now for the proof of the Orlicz-Pettis theorem.

Let’s imagine what could go wrong with the theorem. If Z, x, is weakly
subseries convergent (i.e., satisfies the hypotheses of the Orlicz-Pettis theo-
rem) yet fails to be norm subseries convergent, it’s because there’s an
increasing sequence (k,) of positive integers for which (Z'f_lxkj) is not a
Cauchy sequence in X. This can only happen if there is an ¢>0 and an
intertwining pair of increasing sequences (j,) and (/,) of positive integers
for which j; </, < j, <I, <--- satisfying |[El~; x, || > € for all n. The series
=,y, formed by letting y, =X/ x, is a subseries of Z,x, and so is weakly
summable in X; in particular, (y,) is weakly null. On the other hand,
Iyl > € for all n. In short, if the Orlicz-Pettis theorem fails at all, it jis-
possible to find a weakly subseries convergent series =, y, for whichd| 5, || > €
holds for all n. Preparations are now complete; it’s time for4the main course.

Let £ be the compact metric space { —1,1}™ of all sequences (s, ) of signs
e, = 1 1. Let 2 denote the o-field of Borel subsets of . Let u be the product
measure on {—1,1}"V resulting from the identical coordinate measures on
{ — 1,1} that assign to each elementary even. { --1} and {1} the probability 1.
The reader might recognize (2, =, p) as the Cantor group with its resident
Haar measure. No matter—we have a probability measure space and a
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natural function f: @ — X, namely, if (e,) is a sequence of signs, €, = +1,
then

f((en)) = weak h':‘n kEI & V-

Of course the weak subseries convergence of 2, y, is just what is needed to
make sense of f’s definition for any (e,)<€ {—1,1}N. Each coordinate
function is continuous on A so that f is scalarly p-measurable on A to ..
Moreover, the range of f is contained in the (weakly) closed linear span of
the vectors y,; so f(§) is separable. Pettis’s measurability theorem applies to
f; f is p-measurable. Finally, the range of f is contained in the weak closure
of (¥, c a€xx: A is a finite set of positive integers, ¢, = +1 fork € A}, a set
easily seen to be weakly bounded; f is itself weakly bounded, hence
bounded. Bochner’s characterization theorem applies to show f is Bochner
integrable with respect to .

Let’s compute. Let E, be the set of all sequences € of +1’s, whose nth
coordinate e, is 1; E, €2 and [ fdp = y,/2. The sequence (y,) is weakly
null and sits inside the relatively norm compact set {2 [ fdu: E€ ). It
follows that each subsequence of (y,) has a norm convergent subsequence
whose only possible limit is 0 since ( y,) is weakly null. In other words, (y,)
is norm null! This is a very difficult thing for ( y,) to endure: || y,|| > ¢ > 0 for
all n and lim, || y,|| = 0, a contradiction. '

Exercises

1. Weakly countably additive vector measures are countably additive. Let 2 be a
o-field of subsets of the set 2 and X be a Banach space. Show that any weakly
countably additive measure F: 2 — X is countably additive in the norm topology
of X.

By means of a counterexample, show that the aforementioned result fails if =
is but a field of sets.

2. The Pettis integral. Let (2,2Z,n) be a probability measure space and X be a
Banach space. A function f: 2 — X is called scalarly measurable if x*f is measura-
ble for each x* € X*; f is called scalarly integrable if x*f € Ll(p,) for each
x*e X*.

(i) If f: @ - X is scalarly integrable, then for each E € = there is an x3* € X**
such that
L ot . * d
xgrxt = [ x*f(w) dp(o)

holds for each x* € X*.

(i) If f: @ — X is bounded and scalarly measurable, then f is scalarly integrable
and each of the x2* from (i) is weak* sequenually continuous on X*,
We say that f is Pettis integrable if each x£* is actually in X, in which case we
denote x g by Pettis [fdpu.
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(iii) If f is Pettis integrable, then the map taking EF €2 into Pettis [ofdp is
countably additive. Bochner-integrable functions are Pettis integrable.

A Banach space X is said to have Mazur’s property if weak* sequentially
continuous functionals on X* are actually weak* continuous, i.e., belong to X.

(iv) If X has Mazur’s property, then bounded scalarly measurable X-valued
functions are Pettis integrable.

(v) Separable Banach spaces enjoy Mazur’s property, as do reflexive spaces.
Let T be a sct and denote by ¢y (T") the Banach space of all scalar-valued
functions x on I" for which given &> 0 the set

{veT:ix(v)|>e}
is finite; x € co(T') has norm sup, ¢ r|x(y)[; s0 co(T')* =/ (T).
i) co(P) has Mazur’s property.
(vii) /. does not have Mazur’s property.
3. A theorem of Krein and Smulian. The object of this exercise is to prove the

following:

Theorem (Krein-Smulian). The closed convex hull of a weakly compact subset
of a Banach space is weakly compact.
Let K be a weakly compact set sitting inside the Banach space X.
(i) X may be assumed to be separable. Do so!

(ii) The function ¢: K — X defined by
o(k)=k

is Bochner integrable with respect to every regular Borel measure defined on
(K, weak).

(iii) The operator /,: C(K, weak)* — X defined by
I, (1) = Bochner [@(k) du(k)
is weak*-weak continuous.

(iv) The closed convex hull of X lies inside of I,,( B¢ x, weaky*)-

4. The bounded multiplier test. A series 2 ,x, in a Banach space X is unconditionally
convergent if and only if for any (z,) €/, the series =1, x,, converges.

Notes and Remarks

The story of the Orlicz-Pettis theorem is a curious one. Proved by Orlicz in
the late twenties, it was lost to much of its mathematical public for most of
a decade because of a fluke. In the (original) 1929 Polish edition of Banach’s



30 IV. The Orlicz-Pettis Theorem

“QOperationes Lineaires,” note was made of Orlicz’s theorem; on translation
into French the note on Orlicz’s theorem was not amended either to indicate
that with the passage of time the proof had already appeared or to include
exact bibliographic data. As a result, when Pettis was writing his thesis, he
found himself in need of a proof of the Orlicz-Pettis theorem; in addition to
providing said proof, Pettis gave several basic applications of the result.
These applications are the bulk of Exercises 1 and 2.

Our proof is due to Kwapien (1974). It was shown to us by Iwo Labuda
and Jerry Uhl. Somehow it is appropriate that there be a proof of the
Orlicz-Pettis theorem that depends ultimately on Pettis’s measurability
theorem, since so much of Pettis’s mathematical work was concerned with
the subtle interplay between the weak and norm topologxes in separable
Banach spaces.

That the Krein-Smulian theorem (Exercise 3) can be derived from the
theory of the Bochner integral seems to be due to Dunford and Schwartz.
The reader will no doubt realize that Mazur’s theorem (to the effect that the
closed convex hull of a norm-compact set is norm compact) can also be
derived in this fashion.

There are other proofs of the Orlicz-Pettis theorem, and we will present
two of them in later chapters.

It is noteworthy that Grothendieck (1953) and McArthur (1967) have
proved the Orlicz-Pettis theorem in locally convex spaces.

We mention in passing that the failure of Pettis’s “weak measures are
measures” theorem for algebras of sets (indicated in Exercise 1) has been
investigated by Schachermayer, who has discovered a number of non-o-
complete Boolean algebras where Pettis’s theorem holds. Schachermayer
goes on to give several interesting characterizations of this phenomena and
pose a number of problems related to it.

Finally, we must mention that Kalton (1971, 1980) has underlined the
separable character of the Orlicz-Pettis theorem by proving a version of the
theorem in topological groups. Picking up on Kalton’s lead, Anderson and
Christenson (1973) have established a permanent link between subseries
convergence in a space and the measure-theoretic structure of the space.

For an informative, lively discussion of the Orlicz-Pettis theorem we
recommend both Kalton’s lecture and Uhl’s lecture as reported in the
proceedings of the Pettis Memorial Conference.
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CHAPTER V
Basic Sequences

In any earnest treatment of sequences and series in Banach spaces a
featured role must be reserved for basic sequences. Our initial discussion of
this important notion will occupy this whole chapter. A foundation will be
laid on which we will build several of the more interesting constructs in the
theory of sequences and series in Banach spaces.

Let’s give a brief hint of what’s planned. After introductory remarks
about bases and basic sequences, we show how Mazur proved the existence
of basic sequences in any infinite-dimensional Banach space and take
immediate advantage of thase ideas to present Pelczynski’s proof of the
Eberlein-Smulian theorem. The Bessaga-Pelczynski selection principle will
then be derived and, after a brief discussion of weakly unconditionally
Cauchy series, this principle will be applied to characterize spaces contain-
ing isomorphs of ¢,. Here we must mention that the Orlicz-Pettis theorem is
rederived along with an improvement thereof in spaces without ¢, sub-
spaces. Finally, we see that c,’s appearance or absence in a dual coincides
with /_’s and use this to describe still another sharpening of the Orlicz-
Pettis theorem, this time in duals without ¢, subspaces. It’s a full program;
so it’s best that we get on with it.

A sequence (x,) in a Banach space X is called a Schauder basis (or basis)
for X if for each x € X there exists a unique sequence («,,) of scalars such
that

n
x=]im Z akxk.
nok=1

It is easy to see that a Schauder basis consists of independent vectors. Of
great importance to our goals is the notion of basic sequence: a basic
sequence in a Banach space X is a sequence (x,,) that is a basis for its closed
linear span [x,].

Of some note is the fact that if (x,) is a Schauder basis for the Banach
space X, then each of the coefficient functionals x}:¥ a,x, - a,, that go
hand in hand with the x,,, is continuous on X. Indeed, let S denote (for the
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moment) the linear space of all scalar sequences (s, ) for which lim X7 _ s, x,
exists in X. We define |||(s,,)||| to be sup, ||£7 -5, x,|. Using the uniqueness of
expansions with respect to the system (x,), one sees that the operator
B:(S,I-ID = (X, |I-l) given by B(s,) = lim, X} _,s,x, is a norm-decreasing,
one-to-one, linear operator from S onto X. B is in fact an isomorphism. To
see why this is so, we need only show that (S, [||-|l) is a Banach space and
appeal to the open mapping theorem. Now (S, |||-|I) is quickly seen to be a
normed linear space; so completeness is the issue at hand. Let (y,) = ((s,,;))
be a ||| |||-Cauchy sequence in S. Since

n

Z (Spi - sqi)xi

i=1

= 2{I1y, = Yl

I5pi = Sgil x| < 2 sup

n

(s,:), converges for each i. Let (s;) be the sequence of scalars obtained by
letting p = o0 : s, = lim ,5,,. Let r be an index so chosen that for p > r, ||y,
-yl <&, € a preassigned positive number. In light of the definition of S’s
norm, we see that whenever p > r,|[X]_,(s,;, —s,)x,||<e for all n. Since
¥, =(s,;) €S, there is a cutoff n, such that whenever m,n>n, with m>n
say, ||IL/,s,:X;]l <& It is now easy to see (after letting p — o0) that for
m,n=n,weget, form=nzn,

m
Z sl‘xi

i=n

< 3e,

and so s=(s;)€ S, too, and is in fact the limit of the sequence (y;) =
((s,;), »1) from S. Now that B’s isomorphic nature has been established, it
is clear that, for any k > 1, the coefficient functional x; is continuous as

zanxn
n

laelllxll < 211871

A space with a basis is always separable, and it is indeed the case that
most of the natural separable Banach spaces have bases. It ought to be, in
fact, it must be pointed out that finding a basis for a well-known space is not
always an easy task. A few examples will be cited; proofs will not be
presented.

In the case of the classical separable sequence spaces c, and /, (for
1< p <), the sequence (e,) of unit coordinate vectors

e,,=(o,0,...,0, 1, 0,0,

nth place
is a basis. This is easy to show. In the case of c, the space of convergent
sequences, we must supplement the sequence (e,) with the constant se-
quence 1=(,1,...,1,...); the sequence (1,¢,,e,,...) is a basis for c.
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What about function spaces? Here life becomes more complicated. In the
case of C[0,1], J. Schauder showed that the Schauder basis is a basis, where
the terms of the basis are given as follows:

1

fi(1)=1 forallz€]0,1].

|

f,(t)=1t foreacht€[0,1]

2t for eacht € [0,1],

fs(‘)={2_21 for each r € [4,1].

>IN

4r  foreacht€[0,}],
fo(t)={2—4t foreachze [4,1],
0 forz>4. ‘

0 fort <},
fs(t)={41-2 foreachre [1,1],
4—4r foreachre [3,1].

—

b3
Generally, if n>1 and 1<i < 2", then we can define f,. ,,, as follows:

farsian (1) =£,(2"t +1—i) whenever 2" +1—i€[0,1].
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In the case of L,[0,1], where 1 < p < oo, the Haar basis is given by

1
fi(t)=1 forall t €[0,1].
ob——o
-1
L—
o—— 1O = oD~ g ).
2
-1 —
‘—
ot ()= ()= e 1 (0.
11
4 2
[l § pe—
1
Ja(@)=cy 3 (1) ce 1 (1).
{IEEE

-1 —
Generally, if n>1 and 1 <i <2", then f,., is given by
forri(1) = Cl(zi—z)/z"*',(2i—1)/2~+'1(‘)"‘ C((zi—l)/z"“,zl'/z'”l(')-

It is now well known that there are separable Banach spaces without
bases. Per Enflo (1973), the first to find such a space, looked inside ¢, and
was duly rewarded.

Therefore, the fact that a separable Banach space has a basis does provide
some structural information about the space. Unfortunately, unless the
space and/or the basis packs extra punch, little can be derived from this
minimal, yet hard-to-achieve, bit of information.

C[0,1] has a basis. This is of interest— nor because it registers C[0,1] as a
member of the “basis club,” but because C[0,1] plays a central role in the
theory of Banach spaces, and so the fact that it has a basis can on occasion
be exploited. One special property of C[0,1] that indicates the kind of
exploitation possible is its universality among separable Banach spaces:
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every separable Banach space is isometrically isomorphic to a closed linear
subspace of C[0,1]. C[0,1]'s universality, in tandem with the fact that C[0,1]
has a basis, pays off.

The ‘Haar system is a basis for all the Lp, l<p<oo.Forl<p<oo,itis
more: it is an unconditional basis; i.e., not only does each member of the
space have a unique series expansion in terms of the basis, but the series is
unconditionally convergent. The spaces spanned by unconditional bases
enjoy finer structural properties than spaces without unconditional bases;
the exercises hint at a few of the added pleasures. Incidentally, the Haar
system is not an unconditional basis for L,[0,1]; in fact, L,[0,1] does not
have an unconditional basis of any kind.

It is worth remarking that showing the Schauder and Haar systems are
bases for the spaces indicated above is not difficult; to establish the
unconditionality of the Haar system (in case 1 < p < co) is highly nontrivial.

Oftentimes, whether a space has a basis is in itself difficult to answer, and
even on responding to this question, the possibility of the existence of an
unconditional basis looms large. For instance, it was not until 1974 that
Botschkariev showed that the disk algebra has a basis: the Franklin system
(i.e., the Gram-Schmidt orthogonalization of the Schauder system in the
Hilbert space L,[0,1]); soon thereafter, Pelczynski showed that the disk
algebra does not have an unconditional basis. Each proof has real claims to
depth. Again, the Franklin system was shown by Wojtaszczyk to be an
unconditional basis for the classical Hardy space H'(D) of functions
analytic inside the disk and with integrable boundary vaiues; it is an
absolute must to point out that earlier, Maurey in a real tour de force of
analytical know-how had shown that H!(D) has an unconditional basis
without explicitly citing one. After Carleson had had some clarifying effect
on the question, Wojtaszczyk got into the act. None of these developments
has the faintest resemblance to “ecasy” mathematics, not the work of
Wojtaszczyk, or Carleson, or Maurey, especially not Maurey!

Bases are important; bases with added features, even more so. Basic
sequences are likewise important, especially for general structure-theoretic
studies. Since our purpose is, to some extent, the study of convergence of
sequences and series and the effect thereof on the structure of a Banach
space, it- is not too unbelievable that basic sequences will occupy some of
our attention. How does one recognize a basic sequence?

The basic test is provided by our first real result.

Theorem 1. Let (x,) be a sequence of nonzero vectors in the Banach space X.
Then in order that (x,) be a basic sequence, it is both necessary and sufficient
that there be a finite constant K > 0 so that for any choice of scalars (a,)
and any integers m < n we have

m
Z a;x;

i=1

n=1

<K

n
Z a;x;

i=1
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The proof is easy but well worth the time to be carefully studied. We present
it in all its important (and perhaps in a few of its other) details.

PRrOOF. Suppose (x,) is a basis for its closed linear span [x,] and define
Pk :[xn] - [xn] by

Pk(zanxn) = E apXy,.
n
Each P, is a bounded linear operator [since each of the coordinate function-
als x* (1< j<k) is continuous], and for any x €[x,], we have x=

lim, _, _ P, x. It follows from the Banach-Steinhaus theorem that sup,|| P, || <
0. Thus, should m <n and ¥, a,x, € X, then

m
Z ApXy
k=1

= szakxk
k

= PmPnZakxk
k

n
=P, Z Qp Xy
k=1

<2l

n
Z ap Xy
k=1

< sup||Z,||-
n

n
Z Ay Xy
k=1

Let K = sup,|| P,
Now suppose (x,) is a sequence of nonzero vectors for which there is a
K > 0 such that whenever m < n,

m
Z a;Xx;

i=1

i=1
holds. Plainly, if a vector x has a representation in the form X, a,x, =

lim,Y7_,a,x;, that representation is unique; this follows, for instance, from
the fact that for any j, k > 1,

Jt+k
la;lllx Nl =lla;x,| < K|| 3 a,x, |,
i=j
so that
la;| < ”Tl"’ > a;x; "
Mhixj

Regarding representable elements, we notice that each vector in the linear
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span of the x,, is clearly representable, by a finite sum in fact. The condition
that whenever m <n,

<K

°n
Z a;x;

i=1

m

Z a;x;
i=1
ensures that the operators P,,, from the linear span of {x,} to itself; given
by P,(Xa;x,)=XL}.,a,x,, are bounded linear operators each of whose
operator norms are < K; it follows that each P, has a bounded linear
extension, still called P,, projecting {x,:n>1] onto [x,:1<n<m]=
lin{ x,, ... ,x,, }. A noteworthy effect of this is the continuity of the “coordi-
nate functionals” x} defined on the span of {x,} by x¥(Z,a,x,) = a,; the
x¥ have unique extensions to all of [x,:n>1], too, given by x¥(x)x, =
P, (x)— P,_,(x). Now we’re ready for some action. We claim that every
element of [x,] has a representation (necessarily unique, as we have seen) in
the form lim, X} _,a,x,=X,a,x,. Let x€[x,] and e> 0 be given. Then
there is a o € lin{x,, ...,x,(,,}, for some n(e), such that ||x - || <e. But
now if n > n,, then

lx — P,xl| < |lx — ol|+ llo — Pol|+ || Po — P,x]|

= llx = ol + I = o|+||P,(c — x)|
<e+||Plle<s (1+ K)e.
It follows that x = lim, P, x = im X7 _, x¥(x)x,. m]

As an application of Theorem 1 we prove that every infinite-dimensional
Banach space contains a subspace with a basis. We follow S. Mazur’s lead.

Lemma 2. Let F be a finite-dimensional linear subspace of the infinite-dimen-
sional Banach space X, and let e > 0. Then there is an x € X such that ||x|| =1
and

iyl s (1+ e}y + Ax|| (1)
for all y € F and all scalars \.

PROOF. Assuming (as we may) that e <1, pick a finite e/2 net { y,, ...,y }
for S, and select y{*, ..., y¥ in Sy. so that y*y,=1 for i=1,2,... k. Take
any x in Sy for which yfx = yfx =--- = yx = 0. This x will do. In fact, if
y € Sg, then there is a y, within £ /2 of y; find that y,. Take any scalar A and
compute

Iy + Axll > fly; + Axll= 11y = yll = lly; + Axll— £

€ 1
Zyi‘(}’i+7\x)—5=1—§2—l+e.

This shows (1) in case || y|| =1; homogeneity takes care of therestof F. O
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Corollary 3. Every infinite-dimensional Banach space contains an infinite-
dimensional closed linear subspace with a basis.

PROOF. Let X be the ambient space and € > 0. Choose a sequence (¢,) of
positive numbers such that 1. ;(1+¢,)<1+e¢ Take x, €S, and pick
x, €S, such that

llxll < (1+&)llx + Ax,)|

for every scalar multiple x of x,; a look at the preparatory lemma will tell
you where to look for x,. Let F be the linear span of x, and x,. Pick x; € S,
such that

Ixll < (1+&;)11x + Axy||

for every x in F; again, a look at the preparatory lemma should help in the
selection of x;. Continue. The sequence (x,) so generated is basic with basis
constant <1+ ¢. What’s more, if P, is the nth projection operator, then
12, <TIZ, (1 + &) o

A short detour seems well advised at this juncture. This detour is
suggested by A. Pelczynski’s proof of the Eberlein-Smulian theorem via
basic sequences. This proof, of which Whitley’s is a sympathetic cousin,
builds on a modification of Mazur’s construction of basic sequences.

Lemma 4. Let B be a bounded subset of the Banach space X and x§* € X**
be a point of B*°K* in X** such that ||x** — b||> 8 > 0 for all b € B. Then
there exist a sequence (x,) in B and an x§ € X* such that ’

1. lim,x3x, = x3*x& = ||xg*|/2.

2. (x, — x§™*) is a basic sequence in X **.

3. Should xg* #0, then x3* &[x,— x3*), the closed linear span of
(x, = x3*).

ProoF. Choose (c,), o 50 that 0 < ¢, <1 for all n > 0 and so that whenever
1<p<g<oo,II7;(1-¢)>1~c,.
Take any x§ € X* such that x§*x§ > ||x¢*||/2. By hypothesis, there is an

X, € B such that
|xdx;, — xF*x¥| <1.
Let E, denote the 1-dimensional subspace of X** spanned by x, — x&*; Sk,

is compact, and so we can pick a c¢,/3 net ey,...,eyq, for Sg. Let
xf, ..., X%, be chosen from Sy. in such a way that

2!
lxre>1- 3.
By hypothesis, there is an x, € B so that

8¢,
|x3x, — x3*x3| < 3, [xFx3 = x3*xF), .| X XayXs — X3 * XNyl < —=

6
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all hold. Notice that for any e € E, and any scalar ¢ we get

le+e(x; = x3*) || = (1= c)llell. 2)

Homogeneity of the norm allows us to prove (2) for e € Sg, and conclude to
its validity for all members of E,. Two possibilities come to mind: |¢| <2 /8
and |¢| > 2/8. First, |t| <2/8: pick e; so that |le —e,|| <c¢;/3 and look at
what happens.

lle+(x2 = xg*) | =|(e + 1(x2 — x§*))(x#)]

> |xfe,|— t(xy — x&*)(xF)| — IxFlllle — el

=l=¢,=(1-¢)llell
The second possibility, || > 2/8, is easy, too:

2
lle +1(x = x§*) | = Flix, = x3*I1= llel

2
2 58— llell =2=1=1> (1~ ) lell.

Let’s check up on a linear combination of x, — x* and x, — x§*, say
t(x; — xg*)+1,(xg, x3*). Letting e in (2) be #,(x; — x§*), we get

"tl(.xl —x(’;"")+tz(x2 —x3*) " >(1- cl)"tl(xl - xg*) "

Suppose we repeat the above procedure.

Let E, denote the 2-dimensional subspace of X** spanned by x; — x3*
and x, — x3*. There are elements ey, ... ey € Sg, (not necessarily related
to the ¢, /3 net) which form a ¢, /3 net for Sg,. Pick xf, ... ,x%, € Sy« s0
that

)
|x¥e;|>1— 3
By hypothesis, there is an x; € B such that
* A A 1 * 8c2
[xgx3 — xg*x51 <3, [xfxs = xg*xFl ..o 1X X2 X3 — XF*xFpl < 6
all hold. Notice that for any e € E, and any scalar ¢ we have
le+t(x; = x3*) | = (1= c2)lell. (3)

We leave the verification to the reader; actually two possibilities ought to
come to mind (on reducing the problem to |le||=1), and each is handled
precisely as before with only the names being changed. If a linear combina-
tion 7;(x; — x§*)+t,(x, — xF*)+t;(x; — x}¥*) is under consideration, then
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(3) tells us [on letting e = £, (x; — xF*)+1,(x, — x3*), naturally] that

3 2
Z ti(xi'—x(’)k*

Z ti(xi_xa‘*)
i=1

i=1

=(1-¢)

Proceeding thusly, we find a sequence (x,) in B such that for all n >1,
g, = X33l <o

and for which given 1 < p < g < oo and scalars ¢, ... ,¢

’q’
V4 q-1 1
S o (x-x) = 1T 125
i=p

q
= 1—c. Zti(xi_x(’;*)
i=

! i=1

It is now plain that we can find (x,) and x§ to satisfy 1 and 2. To see that

should xg* # 0, we could achieve 3 as well, we must notice that

o0

(N closed linear span {x, — x3*, x,,, — x&*,...} = 0;

k=1
so eventually the subspaces [x, — x§*], .., expel x§* from their premises. If
done at k = k,, just look at the sequence (x, .4 ),»1 S B; it achieves 1, 2,
and 3. O

Now we are ready for the Eberlein-Smulian theorem.

The Eberlein-Smulian Theorem (Pelczynski Style). Let B be a bounded
subset of the Banach space X. Then the following statements about B are
equivalent:

1. The weak closure of B is not weakly compact.

2. B contains a countable set C with no weak limit point in X.

3. There’s a basic sequence (x,) in B such that for some x§ € X*, lim,x$x,
>0.

4. B is not weakly sequentially compact in X.

ProoF. Statement 1 implies 3. By statement 1 there must exist an x3* €
X**\ X in the weak* closure of B up in X**. Notice that d(x3*, B) >
d(x}*, X)> 0. Applying Lemma 4, we find a sequence (x,) in B and an
x& € X* such that

(i) lim, x3x, = x§*x§ > | x3*1l/2.
(i) (x, — x3*) is a basic sequence in X **.
(iii) x§* € [x, — x§*] = closed linear span of {x, — x3*},.,.

Let Z=[x3* {x,},51] Since x¢* is not in [x,], nor is it in [X, — x&*],
each of these subspaces is of codimension 1 in Z. Therefore, there are
bounded linear projections 4, P: Z — Z such that PZ=[x,] and AZ =[x,
— x¢*], where Ax}*=0= Px3*. Obviously, if z**€ Z, then there’s a
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scalar #,.. =1 such that z** — Pz** = tx§*; therefore, if z** € [x, — xF*],
Z** = Az** = APz**. By symmetry, PAx = x for any x €[x,]. It follows
that P maps [x, — x§*] onto [x,] in an isomorphic manner. Since P(x, —
x3*)=x, for all n, (x,) is a basic sequence which satisfies lim,x3x, >
l1x§1l/2 > 0, thanks to (i).

Statement 3 implies 2. Let C = {x,}, where (x,) is the basic sequence
alluded to in 3. The inequality lim, x3x, >0 eliminates the origin as a
potential weak limit point of C, yet the origin serves as the only possible
weak limit point of any basic sequence. The verdict: C has no weak limit
points.

That 2 implies 1 and 4 is plain; therefore, we concentrate on showing that
4 in the absence of 2 is contradictory. The assumption of statement 4 leads
to a sequence ( y,) of points of B, none of whose subsequences are weakly
convergent to a member of X. Since no subsequence of (y,) is norm
convergent, we can pass to a subsequence and assume that { y,} is norm
discrete; { y,} has a weak limit point x, in X —after all, we are denying 2.
X¢ is not a norm limit point of { y, }; so, with the exclusion of but a few y,,
we can assume d(xg,{y,}) > 0. We can apply Lemma 4 again to extract a
subsequence (x,) from (y,) so that (x, — x,) is a basic sequence. Remem-
ber we’re denying 2; so {x,} has a weak limit point, bur x, is the only
candidate for the position since (x, — x,) is basic! (x,) converges weakly to
X, Which is a contradiction to 4. a

More mimicry of Mazur’s technique provides us with a utility-grade
version of a principle for selecting basic sequences due to Bessaga and
Pelczynski (1958). Though we will soon be presenting the complete unex-
purgated story of the Bessaga-Pelczynski selection principle, the following
milder form is worth pursuing at this imprecise moment.

Bessaga-Pelczynski Selection Principle (Utility-Grade). Ler (x,) be a weakly
null, normalized sequence in the Banach space X. Then (x,) admits of a basic
sequence.

PROOF. Let (¢,), ( be a sequence of positive numbers each less than 1 for
which [12.,(1-¢,)>1—¢,

Suppose that in our quest for a basic subsequence we have fought our
way through to choosing x,, , x,, , ..., x, Withn, <n, <--- <n,, of course.
Let Y(k) be the linear span of x,, ...,x,, .

Pick z,,...,z, in Sy, so that each y € Sy,, lies within ¢, /4 of a z.
Correspondingly, there are z¥, ... ,z% in Sy. so that z*z, >1—¢, /4 for each
i=1,2,...,m. Eventually we run across an x, , where Mgy > ny, for
which |z{*x, | |23%, | ...,lz¢px,, | are all less than €, /4. We claim that
forany y € Sy( xy and any scalar a,

Iy + ax,, I = (1= &)yl (4)
Sound familiar? It should. A quick peek at what we did in Corollary 3 or in
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Lemma 4 will tell the story: (x,, ) is a basic subsequence of (x,,). Let’s venfy
(4) (again). Two possibilities come to mind: laj <2 and |a| = 2. If |a] <2,
then on picking z; (1 £/ < m) so that ||y — z,|| <e, /4, we see that

Iy +ax,, llz|z*(y +ex,, )|

2 |z¥z)= |z (y ~ 2)| = |z (ax,,,,)

€
> (1- %)=ty - zi-21zr,,, |

€ € 28
2 (1-%)-% - 21 g = (1- el

If |a) > 2, then
Iy +ax, , | =lallix,,, 1= Xl =2-1= (1—¢)lyl (]

The natural bases for classical spaces play a central role in the study of
Banach spaces, and the ability to recognize their présence (as a basic
sequence) in different circumstances is worth developing. For this reason we
introduce the notion of equivalent bases.

Let (x,) be a basis for X and (y,) be a basis for Y. We say that (x,) and
(¥,) are equivalent if the convergence of ¥,a,x, is equivalent to that of
Znanyn‘

Theorem 5. The bases (x,) and (y,) are equivalent if and only if there is an
isomorphism between X and Y that carries each x,, tv y,.

ProOF. Recall that in our-earlier comments about bases-we-renormed X-by
taking any x = X s, x,, and defining |||x||| by

Z skxkl

Result: An isomorph of X in which (x,) is still a basis but is now a
“monotone” basis, i.e., [[[Z7_ 5, Xkl < E72 s, x|l for any m, n > 1. Notice
that if (x,) and (y,) are equivalent, then they are equivalent regardless of
which equivalent norm is put on their spans. So we might as well assume
each is monotone to begin with; we do so and now look at the operator
T: X—Y that takes X,a,x, to ¥,a,y, (what other operator could there
be?); T is one to one and onto. T also has a closed graph; this is easy to see
from the monotonicity of each basis. T is an isomorphism and takes x,, to
»,- Enough said about the necessity of the condition; sufficiency requires but
a moment of reflection, and we recommend such to the reader. (m]

lxil= Sup |

Equivalence of bases is a finer gradation than the isomorphic nature of
their spans. Indeed, Pelczynski and Singer showed that anv infinite-dimen-
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sional Banach space admitting a basis has uncountably many nonequivalent
bases! What’s the situation with natural bases for special spaces? How can
we recognize them? For some bases, satisfactory answers are known. One
such case is the unit vector basis of c¢,. Corollary 7 below characterizes c;’s
unit vector basis, and Theorem 8 gives an elegant application to the theory
of series in Banach spaces. ‘

A series X, x, is said to be weakly unconditionally Cauchy (wuC) if, given
any permutation = of the natural numbers, (X} _,x,,) is a weakly Cauchy
sequence; alternatively, £, x, is wuC if and only if for each x* € X'*,
T, lx%x,| < co.

Theorem 6. The following statements regarding a formal series ¥ x, in a
Banach space are equivalent:

1. £,x, is wuC.
2. There is a C > 0 such that for any (t,) €l

n
Y X,

k=1

sup

n

< Csuplt,|.

n

3. For any (1,) € ¢y, L,t,X, converges.
4, There is a C > O such that for any finite subset A of N and any signs + we
have ||X, c 5 £ x|l <C.

PrOOF. Suppose 1 holds and define 7: X* — [, by
Tx* = (x*x,, )

T is a well-defined linear map with a closed graph; therefore, 7 is bounded.
From this we see that for any (7,) € B, and any x* € By.,

n
x* ¥ 1%,
k=1

=|(t1,-++,2,,0,0,...)(Tx*)|

<|IT}

Part 2 follows from this.
If we suppose 2 holds and let (7,) € ¢,, then keeping m <n and letting
both go off to oo, we have

n
P L X

k=m

<C sup |f|—0

m<k<n

from which 3 follows easily. C
If 3 holds, then the operator T: ¢, — X defined by

T(1,) = Xt,x,

cannot be far behind; part 3 assures us that T is well-defined. T is plainly
linear and has a closed graph. T is bounded. The values of T on B, are
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bounded. In particular, vectors of the form ¥, . 5 + x,, where A ranges over
the finite subsets A of N and we allow all the +’s available, are among the
values of T on B_, and that is statement 4.
Finally, if 4 is in effect, then for any x* € B,. we have
x* Y tx,= Y, +x*x,

nel nel

Y tx,

nel

< <C

for any finite subset A of N and any choice of signs +. That £, |x*x,| < oo
follows directly from this, and along with it we get part 1. o

Corollary 7. A basic sequence for which inf,||x,|| >0 and ¥ ,x, is wuC is
equivalent to the unit vector basis of c,.

PrOOF. If (x,) is a basic sequence and ¢, x,, is convergent, then (X} _,z,x,)
is a Cauchy sequence. Therefore, letting n tend to infinity, the sequence
n—1

n
tllxll ={| X texe = X tex,
k=1 k=1

tends to 0; from this and the restraint inf,||x,|| > 0, it follows that (¢,) € ¢,,.
On the other hand, if (x,) is a basic sequence and ¥, x, is wuC, then

Y,.t.x, converges for each (z,) € ¢,, thanks to Theorem 6, part 3.
Consequently, a basic sequence (x,) with inf,||x,|| >0 and for which

Y., x, is wuC is equivalent to the unit vector basis of c,. m]

Theorem 8. Let X be a Banach space. Then, in order that each series ¥, x,, in
X with ¥,|x*x,| < oo for each x* € X* be unconditionally convergent, it is
both necessary and sufficient that X contains no copy of c,.

PrOOF. If X contains a copy of ¢, then the series corresponding to X,e,,
where e, is the nth unit coordinate vector, is wuC but not unconditionally
convergent.

On the other hand, if X admits a series £,x, which is not unconditionally
convergent yet satisfies ¥, |x*x,| <oo for each x* € X*, then for some
sequences ( p,),(q,) of positive integers with p, <q, <p,<gq,<---, we
have inf, |7~ ) x,|| > 0. Letting y, = £~ . Xk» We see that (y,) is weakly null
and inf, ] y,|| > 0. Normalizing ( y,), we keep the weakly null feature and can
utilize the Bessaga-Pelczynski selection principle and Corollary 7 to find a
basic subsequence of (y,) equivalent to c,’s unit vector basis. Theorem 5
takes over: a copy of ¢, is contained in X. O

The above results of Bessaga and Pelczynski can be used to give another
proof of the Orlicz-Pettis theorem. Indeed, a weakly subseries convergent
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series L, x, in a Banach space is wuC in that space. Should ¥ x, not be
subseries convergent, three increasing sequences (p,), (g,), and (r,) of
positive integers could be found with p, < g, < p, <g, <---, such that the

sequence ( y,) given by

n
Y= X %,
1= Pn

satisfies || y,|| = e > 0 for some judiciously chosen e. Now L, y, is a subseries
of ¥,x, and so is weakly subseries convergent too. In particular, (y,) is
weakly null and inf,||y,|| > 0; there is a subsequence (z,) of (y,) that is
basic. A look at Corollary 7 will tell you that (z,) is equivalent to the unit
vector basis (e,) of ¢, yet a further look will convince you that ¥ e, is not
weakly convergent. This flaw proves the theorem.

The study of a sequential problem ofttimes reduces to analysis inside
some space with a basis, and approximation in terms of expansions with
respect to this basis plays an important role in the study under way.
Frequently useful in such ventures is the notion of a block basic sequence:
Let (x,) be a basis for a Banach space, (p,) and (g,) be intertwining
sequences of positive integers (i.e., p;<¢, <p,<¢g,<---), and y, =
Lf=, a;x; be nontrivial linear combinations of the x; we call the sequence
(¥,) a block basic sequence taken with respect to (x,), or simply a block
basic sequence. It is easy (and safe) to believe that ( y,) is basic (just look at
Theorem 1). The following results of Bessaga and Pelczynski establishes the
fundamental criterion for locating block basic sequences.

Bessaga-Pelczynski Selection Principle. Let (x,) be a basis for X and
suppose (xY) is the sequence of coefficient functionals. If (y,,) is a sequence in
X for which

lim||y,||> 0

m

and

limx}y, =0 foreachn,
m

then ( y,) has a subsequence that is equivalent to a block basic sequence taken
with respect to (x,,).

PROOF. First, we find a way of ensuring that a constructed basic sequence is
equivalent to an existent one. We prove a stability result of enough interest
by itself that we call it Theorem 9.

Theorem 9. Let (z,) be a basic sequence in the Banach space X, and suppose
(z7) is the sequence of coefficient functionals (extended to all of X in a
Hahn-Banach fashion). Suppose ( y,) is a sequence in X for which T ||z*| || ||z,
= Yall <1. Then ( y,) is o basic sequence equivalent 1o (z,,).
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In fact, if we define T: X - X by
Tx =Yz (x)(2, = ¥u)s
n

then ||T|| <X, llz*|lllz, — y,ll <1. It follows that (/+T+T?*+ --- +T")
converges in operator norm to (I — T)~!; 1 — T is a bounded linear opera-
tor from X onto X with a bounded inverse. Of course, (I —T)(z,) = y,.

Back to the Bessaga-Pelczynski selection principle, let K > 0 be chosen so
that for any m,n >1

m m+n
Y oax |<K| Y awx.|.
k=1 k=1

By passing to a subsequence, we might as well assume that |}y, || = € > 0 for
all n. With but a slight loss of generality (none of any essential value), we
can assume that ||y, || =1 for all m. Now we get on with the proof.

Since (x,,) is a basis for X, y, admits an expansion,

h= Zx:(yl)xn'
n

Hence there is a g, such that

00

> xF(y1)x,

k=q +1

<

1
4K2*’
Since lim,, x¥( y,,) = O for each n, there is a p, >1= p, such that

Q1

Z x/t(ypz)xk
k=1

| 1
< .

|~ ak2¢

Again, (x,) is a basis for X; so y, admits a representation,

Yy, = 2 Xx(,.) %,

Hence there is a q, > g, such that

> o}

Z xZ(ypz)xk

k=g, +1

<

1
4K2*’
Once more, appeal to the assumption that lim , x*y,, = 0 for each n to pick a
Pp3 > P, such that
92

E xl?(.)’p;)xk

k=1

1
<—.
4K2°

Got your p’s and ¢’s straight? Let
Gn+1

Zn = Z xlr(yp,,ﬂ)xk‘
k=gq,+1
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Note that
qn+1 0
1=lly,,.ll= (E + X + X )xk“(ypm)xk
k=1 k=gq,+1 k=q,,+1
qn [> o)
< (Z + X )x;:(y,,m)xk +liz,|l
k=1 k=g, +1

1,
4K2n+2 4K2n+2

It follows that ||z,|| > 1 for all n. (z,) is a block basic sequence taken with
respect to (x,) and has the same expansion constant K as does (x,); i..,
whenever k < j, we have.

k
Z Qa;z;
i=1

From this and the fact that ||z,|| > 1 we see that the coefficient functionals of
(z,) satisfy ||z¥|| < 4K. Now we look to Theorem 9:

2lzrllz, = v, N < 4K XMz, = yp, I
n n

= +lz,ll-

J
E Qa;z;

i=1

<K

4qn o0
<4KY (Z + X )xt(y,,n,,)xk
n k=1 k=g, +1

54KE( 1 _, 1)

4K2n+l 4K2n+2
1 1
—E(2n+2+2n+2)-5' o

For a quick application of the selection principle we present the following
theorem of Bessaga and Pelczynski.

Theorem 10. The following are equivalent:

1. X* contains a copy of c,.
2. X contains a complemented copy of .
3. X* contains a copy Z of |, for which
a. Z is isomorphic to |, when Z is given the relative weak* topology of X*
and | has its usual weak* topology as 1,*s dual.
b. There is a projection P: X* — X* which is weak*-weak* continuous
and for which PX* = Z.

PROOF. Only the derivation of 2 from 1 needs proof.
Our derivation of 2 will turn on the following property of /;: if I, is a
quotient of the Banach space X, then l, is isomorphic to a complemented



V. Basic Sequences 49

subspace of X. The easy proof of this can be found in Chapter VII, but
insofar as it is key to the present situation, a word or two is appropriate. Let
Q: X — I, be a bounded linear operator of X onto /;; by the open mapping
theorem there is a bounded sequence (b,) in X for which Qb, =e,. The
sequence (b,) is equivalent to the unit vector basis of /;; furthermore, if
R:Il,— X is defined by Re,=b,, then QR is the identity operator. From
this it follows that RQ: X — X is a bounded linear projection from X onto
[b,], a space isomorphic to /,.

Let T: ¢, = X* be an isomorphism and denote, as usual, by (e,) the unit
vector basis of ¢y. Look at T*: X** =/, and let S'=T*|,; for any x € X,
Sx = (Te,(x), Te,(x),...). Since T is an isomorphism, T* is a quotient
map. By is weak* dense in By.. thanks to Goldstine’s theorem; therefore,
S(By) is weak* dense in T*By., a neighborhood of the origin in /. It
follows that for some sequence (A,) of scalars bounded away from O and
some sequence (x,) in By, the Sx, are weak* close to the A e, where e is
the nth unit vector in /;. How close? Well, close enough to ensure that
lim,(Sx,)(e,) =0 for each k and that the (Sx,)e,) are bounded away
from zero. The norm of Sx, is kept away from zero by its value on e,; also
the values of e, on the Sx, tend to zero as n goes off toward infinity. By the
Bessaga-Pelczynski selection principle, (Sx,) must have a subsequence
(Sx,,) that is equivalent to a block basic sequence taken with respect to the
unit vector basis of /;. But it is easy to see that block bases built out of /;’s
unit vectors are equivalent to the original unit vector basis of /; and, in fact,
span a subspace of /;, complemented in /; and, of course, isomorphic to /,.

Therefore, S followed by a suitable isomorphism produces an operator
from X onto a space isomorphic to /,. X admits /, as a quotient. /; is
isomorphic to a complemented subspace of X. m]

Now to return to series in Banach spaces we note the following:

Corollary 11. In order that each series L, x¥ in the dual X* of a Banach space
X for which L,|x}x| < oo for each x € X be unconditionally convergent, it is
both necessary and sufficient that X* contain no isomorphic copy of 1.

PRrROOF. If X* contains an isomorphic copy of /_, then it contains a weak*
isomorphic copy Z of /, as described in part 3 of Theorem 10. Looking at
the unit vectors of ¢, as they appear in Z, they look just as they do in
1,:X,e, is weak* unconditionally convergent in /_, to 1 but certainly not
norm convergent to anything; the same can be done in Z.

On the other hand, if ¥,|x}x| <oo for each x € X, then (X}.,x¥) is a
weak* Cauchy sequence in X*, and so

n
weak* lim ) x?
" k=1
exists by Alaoglu’s theorem. Furthermore, if (¢,) € ¢, then X, |t,x7(x)| < o0
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for each x € X and

n
weak* lim ). f,x¥
nok=1

exists as well. An operator is “born”; define T: ¢, = X* by

n
T((z,)) = weak* lim Y 1, x¥.
" ok=1
T is linear and has closed graph; hence, T is a bcunded linear operator.
Regardless of the finite set A of positive integers considered or of the choices
of signs + made,

Y oxxr|=

nel

3,0

nel

<|IT|-

T, x¥ is wuC. If X* does not contain /_, it cannot contain ¢, by Theorem
10; in such a case, L, x}* is unconditionally convergent by Theorem 8. 0O

Just as Theorem 9 ensures that sequences close to basic sequences are
themselves basic, our next result tells us that if a basic sequence spans a
complemented subspace and if you nudge the sequence with delicate enough
stroke, then the resulting sequence is basic and spans a complemented
subspace.

Theorem 12. Let (z,,j be a basic sequence in the Banach space X with
coefficient functionals (z¥). Suppose that there is a bounded linear projection
P: X — X onto the closed linear span [z,] of the z,,. If (y,) is any sequence in
X for which

LIPIHIzHz, = pall <1,
n

then (y,) is a basic sequence equivalent to (z,) and the closed linear span | y,]
of the y, is also complemented in X.

PROOF. Since P is a linear projection with nontrivial range, |P||>1. It
follows then from Theorem 9 that (y,) is a basic sequence equivalent to
(z,)- The condition set forth in the hypotheses is easily seen to be just what
is needed to prove that the operator 4: X = X defined by

Ax=x—Px+ Y zX¥(Px)y,
n

satisfies |4 — I|| <1. Therefore, A is an isomorphism of X onto itself. It is
easy to see that A4z, = y,. Finally, if we look at Q = APA !, then we should
see that Q2 = APA™'APA~'= APPA~'= APA™' = Q; since the range of Q
is [y, ], the proof is complets. 0O



V. Basic Sequences 51

We remark that Theorem 12 finds frequent use in the study of the
structure of Banach spaces; in fact, we will have an opportunity to apply it
in a somewhat typical situation in Chapter VII.

There is a more-or-less natural sequence of events that precedes the
application of Theorem 12 in special spaces. Suppose, for instance, you're
working in the space /, (some finite p >1). One way to produce a comple-
mented subspace of /, is to build vectors in the following fashion: Take

sequences (m,) and (n,) of positive integers with
lsm <n<my<n,<---<my<n,<m, ., -,

and build nonzero blocks

Ny
by=Y a €.
J=my
Then the closed linear span of the b, is isomorphic to /  (this is not hard to
see), the sequence (b, /||b,|]) is a basic sequence equivalent to the unit
vector basis (e, ) of /,, and the closed linear span of the b, is complemented
inl,.

Ix’;deed, only the last of these statements needs any real demonstration.
The basic sequence (b, /||b,||) has a companion sequence (8*) of coefficient
functionals defined on all of /, (after suitably extending via the Hahn-Banach
theorem). If x €/,, then Px =X, B¥(X}kxe;)b, /||b,|| defines a bounded
linear projection P:/, — I, whose range is the closed linear span of the b,.

It is one of the more pleasant facts of life that many of the situations in
which one wants to find a complemented copy of !, somewhere, there is a
sequence like b, near by, close enough in fact to apply Theorem 12.

Exercises
1. Renorming spaces to improve basis constants. Let (x,) be a basis for the Banach

space X.

(i) Show that X can be given an equivalent norm |||- ||| such that for any scalars
a,a,,...,a,,4a,..,-..,4d,, we have

m
Z a;x;

i=1

<

n
E a;Xx;

i=1

(ii) Suppose (x,,) is an unconditional basis for X. Show that there is a constant
K >0 so that given any permutation = of the natural numbers and any
x=Y x¥(x)x, € X, we have

L

Zx;(,,)(x)x,,(,,)
n
(iii) Show that if (x,) is an unconditional basis for X, then-X can be renormed
so that, whenever # is a permutation of the natural numbers and x =

Zx () |
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L, x¥(x)x, € X, we have

Zx:(n)(x)xw(n) <
n

L (x)x,

(iv) If (x,) is an unconditional basis for X, x€ X, and ¢=(¢,) €/, then
X, t,x¥(x)x, € X. Show that there exists a constant K > 0 such that for
any x=X,x}(x)x, € X and any (1,) € B, , we have

Lot (x)x, |< K Exr(ox,

(v) If (x,) is an unconditional basis for X, then X can be renormed so that for
any x € X and any (¢,) € B,_, we have

Lo x¥(x)x,
n

<

Lxr(x)x,

2. The unit vector bases of ¢y and I,.

(i) A normalized basic sequence (x,,) is equivalent to the unit vector basis of
¢, if and only if there is a constant K > 0 such that

n
2 CiXi

i=1

<K sup |cl
l<sisn

holds for any n and any scalars c;, ¢5, ... ,C,.

(ii) A normalized basic sequence ( x,,) is equivalent to the unit vector basis of /;
if and only if there is a constant K > 0 such that

n n
> |c,-|sl<‘ Y ax,
i=1

=1
holds for any »n and any scalars ¢y, c,, ... ,c,.

(iii) Any time there is an x* € Sy. such that x*x, > 8 > 0 for some fixed § and
all terms x,, of a normalized basic sequence (x,), then (x,) is equivalent to
the unit vector basis of /;. :

3. Shrinking bases and boundedly complete bases. Let (x,) be a basis for X and
(x*) be the coefficient functionals.

(i) (x}) is always a basis for its closed linear span in X*; further, (x}) is a
“weak* basis” for X*, i.e., each x* € X* has a unique representation in
the form x* = weak* lim,X7_,a, x2.

(ii) Each of the following is necessary and sufficient for (x}*) to be a basis for
X*:
(a) The closed linear span of {x}:n>1} is X™*.
(b) lim,,||x*||,, = O for each x* € X*, where ||x*||, is the norm of x* when
x* is restricted to the linear span of {x,,q,Xx,,,,...}.
A basis having the properties enunciated in (ii) is called shrinking. A
companion notion to that of a shrinking basis is that of a boundedly complete
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>

basis; the basis (x,) is called boundedly complete whenever given a sequence
(a,) of scalars for which {¥}_ ,a,x,:n>1} is bounded, then lim,¥X}_,a,x,
exists.

(iii) If (x,) is a shrinking basis for X, then (x}*) is a boundedly complete basis
for X*.

. Boundedly complete bases span duals. Let (x,) be a boundedly complete basis

for X, let (x¥) denote the sequence of coefficient functionals, and let [x}]
denote the norm-closed linear span of the x¥ in X*.

(i) Show that for each x** € X** the series
Lx**(x¥)x,
n

converges to an element of X. [ Hint: A diagonal argument can be used to
find a sequence (y,) in By such that lim,x?y, = x**x} holds for k =
1,2, .... This lets one realize vectors of the form L., x**(x*)x; as limits
of vectors that look like X x*(y,)x;; these vectors—and hence their
limits—all lie inside a fixed ball of X.]

(ii) The map P that takes an x** in X** to the vector X, x**(x*)x,in Xis a
bounded linear projection on X** that has for a kernel {x**e
X**: x**x*=0 for all x*€[x}]}.

(iii) X is isomorphic to [x*]*.
(iv) (x}) is a shrinking basis for [x}].

NB One can conclude from this exercise and its predecessor that a basis ( y,) for
a space Y is shrinking if and only if the sequence (y,*) of coefficient functionals
is a boundedly complete basis for Y*.

Bases spanning reflexive spaces. Let X be a Banach space with basis (x,) whose
coefficient functionals will be denoted by (x¥). X is reflexive if and only if (x,)
is shrinking and boundedly complete.

. Unconditional bases. Let X be a Banach space with an unconditional basis (x,,).

(i) If (x,) is not boundedly complete, then X contains an isomorphic copy of
Co- .

(i) If (x,) is not shrinking, then X contains an isomorphic copy of /,.

[ Hints: The renorming of Exercise 1(v) helps matters in each case. Similarly, it
helps to know what to look for if you are looking for ¢,’s unit vector basis or /,’s
unit vector basis; a peek at Exercise 2 may be worth your while.]

‘(ili) A Banach space with ar unconditional basis is reflexive if and only if the

space contains no copy of ¢, or /;.

. Weak* basic sequences. Let X be a separable Banach space. A sequence (y,*) in

X* is called weak* basic provided that there is a sequence (y,) in X so that
(Vs ¥¥) is a biorthogonal sequence (y2y,=S$,,) and for each y* in the
weak *-closed linear span of the y* we have y* = weak* lim,Z7_,y*(y;) y/*-
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If (x¥) is a weak*-null normalized sequence in X*, then (x;) admits a
subsequence (y,*) that is weak™* basic.
[Hint: Pick e,> 0, e,<1 so that ¥,e, and I1,(1 —¢,) ' <oo. Using Helly’s
theorem and X’s separability, extract a subsequence (y,*) of (x}) ana locate an
increasing sequence ( F,) of finite subsets of Sy so that the linear span of U, F, is
dense in X in such a way as to simultaneously achieve (a) given ¢ €
Lin{ y*, ...,»*}, llpll=1, there is x € F, so that x — ¢ has functional norm <
e,/3 onlin{yf,...,y"} and (b) |y, (x)|<e,/3, x € F,]

. Unconditionally converging operators. Let X and Y be Banach spaces. A bounded

linear operator T: X — Y is said to be wunconditionally converging if £ Tx, is
unconditionally convergent whenever ¥, x,, is weakly unconditionally Cauchy; T
is called completely continuous if T maps weakly convergent sequences into norm
convergent sequences; 7T is called weakly completely continuous if T maps weakly
Cauchy sequences into weakly convergent sequences.

(i) A bounded linear operator T: X — Y fails to be unconditionally converging
if and only if there is a subspace S of X isomorphic to ¢, such that the
restriction T|g of T to S is an isomorphism.

(ii) Weakly compact operators and completely continuous operators are weakly
completely continuous; in turn, weakly completely continuous operators
are unconditionally converging.

. Auerbach bases. If X is an n-dimensional Banach space, then there exist

Xiy...,X, €Sy and x¥, ... ,x* € Sy. satisfying x*x; = §,;. [ Hint: On choosing
X1, .-+ yX, € Sy so as to maximize the determinant D(x,, ... ,x,), with respect to
somc designated coordinate system, think of Cramer’s rule.]

A Banach space is reflexive if each subspace with a basis is. It is an easy
consequence of the Eberlein-Smulian theorem that a Banach space is reflexive if
and only if each of its separable closed linear subspaces is. In this exercise we
outline a proof that leads to the claim of the exercise.

(i) A set G in the dual Y* of a Banach space Y is called norming if for each
y €Y, |lyll=sup{|g(»)|: g €G, |igll=1}. If G is a norming set in Y* and
(y,) is a normalized sequence in Y for which lim, g(y,) =0 for each g € G,
then (y,) has a basic subsequence, with first term y, if you please.

(ii) If X is a (separable) Banach space containing a weakly Cauchy sequence
that isn’t weakly convergent, then X contains a subspace with a nonshrink-
ing basis.

[Hint: Let x** be the weak*lim,x,, where (x,) is weakly Cauchy but not
weakly convergent, and set x¥* = x#* — x,_, for n > 2. Applying (i) to (y,) =
(x3*), Y=X** and G = X*, obtain a basic subsequence (x;}*) of (x3*) with
xp*=x{* Let Zy =[x, ], Z,=[x}*], and Z3 =[xy* ], all taken up in X**.
Then Z,C X, Z,C Z,, dim(Z,/Z;)=1, Z,C Z,, and dim(Z, /Z,) =1. Show
Z, and Z, are isomorphic. Now using the fact that (x,,) has no weak limit in X,
show that (x}*) and (x;* ) are not shrinking bases.]

Ri+1
(iii) If X is a (separable) Banach space containing a sequence (x,,) in B, having
no weak Cauchy subsequence, then X contains a subspace with a non-
shrinking basis.
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[ Hint: Pick a countable norming set G in Sy., using the attainable assump-
tion of X’s separability, diagonalize, and use (i) on an appropriate sequence of
differences of the distinguished sequence (x,,).]

11. Subspaces of I, (1< p <o) or ¢o. If X=1, (1< p <o) or X =y, then every
infinite-dimensional closed linear subspace Y of X contains a subspace Z
isomorphic to X and complemented in X.

Notes and Remarks

Schauder bases were introduced by J. Schauder who, in addition to noting
that the unit coordinate vectors form a basis for the spaces ¢, and /, (if
1 < p < 0), constructed the Schauder basis for the space C[0,1]. Schauder is
also responsible for the proof that the Haar system forms a basis for L,[0,1}
if 1< p<oo.

The automatic continuity of coefficient functionals was first noted by
Banach whose method of proof has been the model for all further improve-
ments. It’s plain from the proof where the ideas behind Exercise 1 were
born. Theorem 1 was known to Banach, as was Corollary 3. On the one
hand, the proof of Theorem 1 appears in Banach’s “Operationes Lineaires,”
whereas only the statement of Corollary 3 is to be found there. Indeed, it
was not until 1958 before any claim to a proof of Corollary 3 was made, at
which time three proofs appeared! M. M. Day (1962), B. Gelbaum (1958),
and C. Bessaga and A. Pelczynski (1958) each gave correct proofs of
Corollary 3. Interestingly enough it is probable that none of these proofs
was the one known to Banach; it seems likely that Banach knew of Mazur’s
technique for producing basic sequences, and it is that technique that we
follow here. The first exposition of Mazur’s technique for the general
mathematical public is found in a 1962 note of A. Pelczynski. In any case,
this technique has found numerous applications since, with the exercise on
weak™* basic sequences being typical; the result expressed in Exercise 7 is
due to W. B. Johnson and H. P. Rosenthal.

From Theorem 6 on, the results of this chapter are right out of the
Bessaga-Pelczynski classic, “Bases and unconditional convergence in Banach
spaces.” The influence that paper has on this chapter is, or ought to be,
plain. : '

It is an arguable choice to include as exercises, rather than as part of the
text, the results of R. C. James (1950, 1951, 1982). In any case, it is certain
that this material is now accessible to the hard-working student, and so,
with a few hints provided, we have chosen to reward :.at student with
Exercises 3 to 6. It is a fact that the material of these exercises is
fundamental Banach space theory and the stymied student would do well to
take an og¢casional peek at the originator’s words on these topics, particu-
larly his wonderful exposition in the American Mathematical Monthly,
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(1982). Actually, regarding Exercise 4, the fact that boundedly complete
bases span duals was first noted by L. Alaoglu (1940).

Exercise 9 is due to Auerbach and, as yet, has no perfect infinite-dimen-
sional analogue. On the one hand, not all separable Banach spaces even
have a basis, whereas, on the other hand, those that do, need not have a
basis where both the basis members and the coefficient functionals have
norm one; each of these facts were first found to be so by Enflo (1973).
However, there is another notion that offers a viable alternative for generali-
zation, the notion of a Markushevich basis. A biorthogonal system
(x;, x¥); e, 1s called a Markushevich basis for the Banach space X if the span
of the x; is dense in X and the span of the x} is weak* dense in X*.
Separable Banach spaces have long been known to have (countable)
Markushevich bases; whether one can choose the sequence (x,, x¥),., so
that ||x,|| =1=||x*|| as well is still unknown. The best attempt has been by
R. Ovsepian and A. Pelczynski (1975), modified by Pelczynski, to prove that
if X is a separable. Banach space and &€ > 0, then there exists a (countable)
Markushevich basis (x,, x}), - for X for which ||x,||||x¥|| <1+ € for all n.

Exercise 10 outlines the proof of a theorem of Pelczynski, following his
footsteps quite closely. The use of bases to characterize reflexivity has been
one of the more fruitful pastimes of general basis theory. In addition to
James’s results (outlined in these exercises) and Pelczynski’s, we cite the
beautiful (and useful) result of M. Zippin (1968): If X is a separable Banach
space with a basis, then X is reflexive if and only if each basis of X is shrinking
if and only if each basis of X is boundedly complete.
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CHAPTER VI
The Dvoretsky-Rogers Theorem

Recall that a normed linear space X is a Banach space if and only if given
any absolutely summable series X, x,, in X, lim X} _,x, exists. Of course, in
case X is a Banach space, this gives the following implication for a series
L, x,: if L, |lx,|l < oo, then ¥, x, is unconditionally convergent; that is, L, x . .\
converges for each permutation 7 of the natural numbers.

What of the converse? Our memories of calculus jar the mind to recall
that for a series of scalars to be absolutely convergent, it is both necessary and
sufficient that the series be unconditionally convergent. This fact, in tandem
with the equivalence of coordinatewise convergence with norm convergence
in any finite-dimensional Banach space, bootstraps to prove that in any
finite-dimensional Banach space, unconditionally convergent series are abso-
lutely-convergent.

In infinite-dimensional Banach spaces the situation is readily seen to be
quite different. For instance, in ¢, if we look at x, = e, /n, where e, is the
nth unit vector, then ¥, x, converges unconditionally to the member (1,/n)
of co; of course, ||x,||=1/n, and so L, x, i§-not absolutely convergent.
Similar examples can be constructed in any of the.classical Banach spaces.
(An aside: The aforementioned examples are not always trivially discovered;
a particularly trying case is /,.) The Polish founders of Banach space theory
were led to conjecture that in every infinite-dimensional Banach space there
is an unconditionally convergent series L, x,, for which L, ||x,| = co.

In 1950, A. Dvoretsky and C. A. Rogers established this conjecture’s
validity. Within a very short while, A. Grothendieck (1956) was able to give
a substantially different proof of the Dvoretsky-Rogers theorem; in fact,
Grothendieck went so far as to classify those Frechet spaces (i.e.,.complete
metric locally convex spaces) for which unconditionally convergent series
are absolutely convergent. The proof we give below is modeled on ideas of
Grothendieck but follows a bit more direct path to the Dvoretsky-Rogers
theorem. The ideas used will appear again later. Presently, we are concerned
with the proof of the following.
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Dvoretsky-Rogers Theorem. If every unconditionally convergent series in the
Banach space X is absolutely convergent, then X is finite dimensional.

Let 1 < p <oo and X, Y be Banach spaces.

We say that the bounded linear operator 7: X =Y is absolutely p-sum-
ming [denoted by T €I1,(X;Y)] if given any sequence (x,) from X for
which ¥, |x*x,|? < oo, for each x* € X*, we have L, ||Tx,||? < cc.

A number of remarks about the notation of an abselutely p-summing
operator are in order.

Suppose (x,) is a sequence in X for which ¥, |x*x,|” <oo for each
x* € X*. Then the mapping from X* to /, that takes an x* to the sequence
(x*x,) is well-defined, linear, and, having a closed graph, cortinuous.
Consequently, there is a C > 0 such that

1/p
sup {Elx*x,,l"} <C. 1)
Ix*|i<1 " n

Now, a straightforward argument shows that if we consider the linear space
of sequences (x,) in X for which X, |x*x,|? < o0, for each x* € X *, then the
resulting space, called here l;"““(X ), is a Banach space with the norm

1(x,) lz=x) = inf{ € > 0: (1) holds} .

Next, we have the space /;"°"(Y) of all sequences in Y for which
ZIy,l17 <oo. /;%°"8(Y) is a Banach space with the norm

1/p
1O g = ( Zlinal?)
n

An operator T: X =Y is absolutely p-summing if and only if (Tx,)€
LI""8(Y') whenever (x,) € l;"""(X ). This is trivial. Not much harder is the
fact that if T: X — Y is absolutely p-summing, then the linear operation that
takes an (x,) in 1‘"“’"(X ) to (Tx,) in I;"°"¥(Y) has a closed graph and is,
therefore, a bounded linear operator—call it 7. We define the absolutely
p-summing norm 7,(T) of T to be the operator norm of T viewed as an
operator from / ‘"““( X) to I“'°“‘( Y). A bit of care reveals that the collection
of Tisa closed linear subspace of the Banach space of all bounded linear
operators from /**( X) to £;7°"(Y). From this it follows that I'1,(X;Y) is
a Banach space in the norm =,. Further, it is easy to see that if T is
absolutely p-summing, then

7,(T) = inf{ p > 0: inequality (2) holds for any x,, x,,...,x, € X },

( i IITx,-II”)W <psup ( i lx"xilp)l/p (2

i=1 Bye \im1

A fundamental result linking measure theory to the theory of absolutely
p-summing operators is the following.
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Grothendieck-Pietsch Domination Theorem. Suppose T: X >Y is an abso-
lutely p-summing operator. Then there exists a regular Borel probability
measure p. defined on By. (in its weak* topology) for which

ITx? <72 (T) [ x*x17 du(x*)
By
holds for each x € X.

PROOF. Suppose x,, ...,x, € X. Define the function

.....

by

.....

Each f, . is weak* continuous on By., and the collection C = { f,|
€ C(By.,weak*): x,,...,x, € X} is a convex cone in C(By.,weak*), each
of whose members is somewhere nonnegative—this last fact being due to
the absolutely p-summing nature of 7. Now C is disjoint from the convex
cone N = { f € C(By.,weak*): f(x*) <0 for each x* € B,.}, and this
latter cone has an interior. Therefore, there is a nonzero continuous linear
functional p € C(By.,weak*)* (i.e., regular Borel measures on B,. in its
weak* topology) such that

ffdﬂ=n(f)505u(g)=fgdn,

for f € N, g € C. The measure p has the distinction of being nonpositive on
strictly negative functions; therefore, it is nonnegative on strictly positive
functions, and it follows that p is a nonnegative measure. Normalizing p
gives a probability measure. Also, i is nonnegative on C; so [f, dpu >0 for
each x € X. But this just says that

ITxll? < 72 (T) [ 1x*x|? dp(x*),
’ Bx.
which is what was wanted. (]

Let’s look at the above inequality a bit closer.
Let T: X — Y be absolutely p-summing. As a bounded linear operator, T
satisfies the inequality

NTx|l < 1T 1Mllx ()l o
for each x € X, where we may interpret each x € X as acting (continuously)
on (By.,weak*). However, in light of the Grothendieck-Pietsch domination

theorem there is a regular Borel probability measure p on (By.,weak*) for
which

x|l < m, (T)|x () ) (3)
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holds for each x € X. Inequality (3) tells us that T acts in a continuous
linear fashion from X to Y even when X is viewed as sitting in L,(p). If we
let X, denote the closure of X in L,(p), then we can find a unique
continuous linear extension P: X, =Y of T to all of X,,. Let G: X — X, be
the natural inclusion mapping of X in its original norm into X,, the
L,(p)-completion of X. G is a continuous linear operator too. One more
thing: T = PG. Pictorially, the diagram

T
X- Y
G\ 2P

X,

commutes. :

There are two things about G that must be mentioned.

First, G is a weakly compact operator; that is, G takes By into a weakly
compact set in X,. If p >1, then this follows from the reflexivity of X,. If
p =1, then one need only notice that G is the restriction to X of the
inclusion operator taking C(By.,weak*) into L,(p); on its way from
C(By«,weak*) into L;(p), the inclusion operator passes through L,(u)—
making it, and G, weakly compact.

Next, G is completely continuous; that is, G takes weakly convergent
sequences to norm convergent sequences. In fact, if (x,) is a weakly
convergent sequence in X and x,= weaklim,x,, then there is an M >0
such that ||x,|| < M for all n and x*x, = lim, x*x, for each x* € X* as well.
Viewing X as acting on B,., we get lim, x,(x*) = x,(x*) for each x* € B,.
and |x,(x*)|< M holding for each x* € B,.. By Lebesgue’s bounded
convergence theorem, this gives us

li'll'n"Gx,, - Gxo“z,,(,;) = li:n llx,(-)— xo(‘)"L,,(u) =0.

Reflect for a moment on these developments. Since the operator P: X, =Y
is weakly continuous as well as continuous, the above properties of G are
passed along to 7. T is weakly compact and completely continuous.

What if T: X —»Y is absolutely p-summing and S:Y — Z is absolutely
r-summing? Each is weakly compact and completely continuous. It follows
that for any bounded sequence (x,) in X, (7x,) admits of a weakly
convergent subsequence; so (S7x,) admits of a norm convergent subse-
quence. ST(B) is relatively norm compact. Consequently, we have the
following theorem.

Theorem. If 1< p<oo and X is infinite dimensional, then the identity
operator on X is not absolutely p-summing.

Alternatively, if 1 < p < oo and T,||x,||” < oo holds whenever ¥ ,|x*x,|? <
oo for each x* € X *, then X is finite dimensional.
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The Dvoretsky-Rogers theorem follows easily from this. How? Well
consider any Banach space X in which the unconditional convergence of a
series implies its absolute convergence. X cannot contain any isomorph of ¢,
since we saw earlier that ¢, admits of non-absolutely convergent uncondi-
tionally convergent series. It follows from the Bessaga-Pelczynski ¢, theorem
that X, x, is unconditionally convergent whenever ¥, |x*x,| <oo for each
x* € X*; hence, if X|x*x,| <oo for each x* € X*, then }]|x,|| <oo. But
this is tantamount to the identity operator on X being absolutely 1-sum-
ming,.

Exercises

1. Hilbert-Schmidt operators and absolutely 2-summing operators. Let E and F be
Hilbert spaces with complete orthonormal systems (e;);<; and (/) <, respec-
tively. An operator T: E — F is called a Hilbert-Schmidt operator if

¥ (e, )| < oo,
1,7

where (,) will be used to denote the inner product.

(i) Show that L,||Te,||> =X, ,(Te;, /)| =Z,IT*fl* and conclude that the
quantity £, ;(Te;, fj)l2 is independent of the complete orthonormal systems
(e);en(f});e, Naturally, we consider for a Hilbert-Schmidt operator T
the functional (T, ,KTe;, f;)|*)'/? and call this functional the Hilbert-Schmidt
norm of T, denoted by o(T).

(ii) Every finite-rank bounded linear operator from E to F is a Hilbert-Schmidt
operator, and every Hilbert-Schmidt operator is the limit in Hilbert-Schmidt
norm of a sequence of finite-rank operators. Consequently, since ||T'|| < o(T),
every Hilbert-Schmidt operator is compact. Notice that not every compact
operator S: E — F is a Hilbert-Schmidt.

(iii) Every absolutely 2-summing operator T: E — F is a Hilbert-Schmidt opera-
tor with m,(T') > o(T). [ Hint: You might notice that as a consequence of (i),
T is a Hilbert-Schmidt operator precisely when ¥,||Te;||?<oo for each
complete orthonormal system (e;); <, in E.]

@iv) If T: E— F is a Hilbert-Schmidt operator, then T can be realized in the
form ’

Tx =Y, A(X,ex)fns

where (A,) €/,, (e,) is an orthonormal sequence in E and (f,) is an
orthonormal sequence in F, and |(A,)|l; = o(T).

(v

~—

Every Hilbert-Schmidt operator 7: E — F is absolutely 2-summing with
o(T) = m(T).

2. m(X;Y)Cm(X;Y), 1< p<q<oo. Show that if 1 < p < g<oo and T is abso-
lutely p-summing, then T is absolutely g-summing with 7 (T) < m,(T).
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3. Composition of absolutely summing operators. Suppose r,s>1and 1/r+1/s=1.
If RET],(X;Y) and S €[1,(Y; Z), then SR €I1,(X; Z), and

q(SR)svrf(R)g(S).

4. The composition of absolutely 2-summing operators. If G: X >Y and 4:Y — Z are
absolutely 2-summing, then AG: X — Z is nuclear (i.e, can be written in the
form AGx = Z,A,x3(x)z,, where (A,) € Iy, (lx3]]) € ¢, and (||z,]l) € co).

S. Absolutely p-summing operators on c,. A bounded linear operator T: E — F is
called p-nuclear ( p >1) whenever T can be written in the form Tx = X%_, x*(x) y,,
where (x¥) € E* and (y,) C F satisfy

1/p
Ylx¥? <o and  sup ( Zly*y”l"’) <o0.
n lly*i<s1* n
Here 1/p +1/p’=1, and in case p =1, the condition on the sequence ( y,) just
requires that ||y,|| = 0.
Show that any absolutely p-summing operator T: ¢, — X is p-nuclear.

Notes and Remarks

In case p =1 or 2, the absolutely p-summing operators were introduced and
studied by A. Grothendieck (1956) in his infamous resumé. For general p,
A. Pietsch (1967) is responsible for the initial study of the class of absolutely
p-summing operators. It is to Pietsch that we owe the final form of the
Grothendieck-Pietsch domination theorem, though Grothendieck’s contri-
bution in this regard is not to be slighted. Who is to be given the lion’s share
of credit is not at issue; rather, it is the result that counts, and the
domination theorem is a basic one at that. Introducing measures where
none were apparent is the theme of the theorem,; the effects in Banach space
theory (and abstract analysis in general) are only now beginning to be felt.
We refer the reader to Pelczynski’s (1976) lectures on applications of
summing operators in the study of spaces of analytic functions or to J.
Diestel’s (1980) remarks regarding the absolutely 2-summing operators for a
hint at the power provided by the machinery of the theory of absolutely
p-summing operators.

Incidentally, our proof of the domination theorem is probably due to B.
Maurey; we “discovered” it after several sessions of reading papers by him
in various volumes of the Maurey-Schwartz seminar notes. It is practically
the same as the proof found in Lindenstrauss-Tzafriri 1.

As mentioned in the text, we have followed Grothendieck’s approach to
the Dvoretsky-Rogers theorem. Their original proof proceeded from the
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Dvoretsky-Rogers lemma: Let B be an n-dimensional normed linear space;
then there exist points x,, ... ,x, of norm one in B such that for each i < n and

all real t,, ... ,t,,
< (1+\/ -1 )
n

Their proof is particularly recommended to the geometrically minded stu-
dents. From this lemma, Dvoretsky and Rogers were able to build, for any
preassigned nonnegative sequence (¢,) in /,, an unconditionally convergent
series L, x, in the infinite-dimensional Banach space for which ||x,||=¢,.

A decade after the Dvoretsky-Rogers lemma had been discovered, A.
Dvoretsky returned to this topic and formulated his famous spherical
sections theorem: For each infinite-dimensional normed linear space F and
each n >1 and each € > 0 there is a one-to-one linear mapping T of l5 into F
such that ||T||\T~ || <1+ &. This result has had a profound effect upon the
directions taken by Banach space theory and, with developments related to
the theory of absolutely p-summing operators, has played an important role
in the disposition of numerous old problems in Banach space theory.

The Dvoretsky e-spherical sections theorem was the object of an extensive
study by T. Figiel, V. Milman, and J. Lindenstrauss (1977). By-products of
their efforts include a new proof of the Dvoretsky-Rogers theorem and the
easiest existing proof of the spherical sections theorem.

Exercise 1 is mentioned in passing by Grothendieck; a much finer thing
can be said and will be said in the exercises following Chapter VII. Exercise
5 is due to C. Stegall and J. R. Retherford (1972); their paper is filled with
important connections between operator theory and the classification of
Banach spaces. Exercise 3 is a very special case of a result of A. Pietsch
(1967), and Exercise 4 was known to A. Grothendieck (1956).

Related to issues raised in this chapter is the notion of an absolutely
( P, g)-summing operator and particularly the work of B. Maurey and A.
Pelczynski (1976), who give criteria for the composition of ( p;, g;)-summing
operators to be compact.

i
3 1x,

Jj=1

i 1/2
Y t}) .

Jj=1
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CHAPTER VII
The Classical Banach Spaces

To this juncture, we have dealt with general theorems concerning the nature
of sequential convergence and convergence of series in Banach spaces.
Many of the results treated thus far were first derived in special cases, then
understood to hold more generally. Not too surprisingly, along the path to
general results many important theorems, special in their domain of applica-
bility, were encountered. In this chapter, we present more than a few such
results. ‘

There are three main objectives we hope to achieve in this chapter. First,
we hope to reveal something of the character of Banach spaces that have
likely already been encountered by the student and provide insight into just
how the weak and norm topologies interact with familiar concepts in these
more familiar acquaintances. Again, the classical Banach spaces play a
central role in the development of general Banach space theory; coming to
grips with their special properties is of paramount importance if one is to
appreciate how and why this is so. Lastly, many of the more interesting
phenomena to be discussed in these deliberations require some deeper
understanding of the geometry of the classical spaces before these phenom-
ena can be recognized as natural.

Weak and Pointwise Convergence of Sequences in
C(Q)

The heart and soul of this section are each devoted to proving the following
two theorems.

Theorem 1. Let Q be any compact Hausdor(f space, and let ( f,) be a sequence
of continuous scalar-valued functions defined on Q.

1. In order that ( f,) be weakly convergent in C(Q) to f € C(R), it is necessary
and sufficient that sup,||f, ||, < o0 and f(w) = lim, f,(w) for each w € Q.
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2. In order that ( f,) be a weak Cauchy sequence in C(R), it is necessary and
sufficient that sup,||f,|l,, < oo and lim, f,(w) exist for each w € Q.

Theorem 2 (Baire’s Classification Theorem).

1. Let Q be any topological space each closed subset of which is of the second
category in itself. Then any bounded scalar-valued function on Q which is
the pointwise limit of a sequence of continuous scalar-valued functions on
has a point of continuity in each nonvoid closed subset of @ (relative, of
course, to the closed subset).

2. Let Q be a separable metric space and f be a bounded scalar-valued function
defined on Q. If f has a point of continuity in each nonvoid closed subset of Q
(relative to the closed subset), then there exists a uniformly bounded
sequence of continuous scalar-valued functions on @ converging pointwise

tof.

The proof of part 1 of Theorem 1 is easy. We need to recall that the
members of C()* act on C() like integration via regular Borel measures
on £. This in mind, suppose f, f, € C(R) (n =1) satisfy f(w)=1lim, f,(w)
for each w € @, where sup,|| f,|l.. <oo. Each regular Borel measure p is a
linear combination of (at most) four probability regular Borel measures
(thanks to the Hahn-Jordan decomposition theorem). Therefore, to check
that f = lim,, f, (weakly), it is enough to check that [fdu = lim,, [f, dp holds
for regular Borel probability measures p, and this is clear from Lebesgue’s
bounded convergence theorem. On the converse side, we notice that weak
convergence of a sequence ( f,) implies boundedness in any Banach space;
so f = weaklim,, f, in C(R) ensures sup,|| f,|l,, < oo. Further, for each. ”"39
the point charge (or puint evaluation or point mass or Dirac 8- functiviial)
8., whose value at f € C(Q) is

8,(f)=f(w),
is clearly in C(2)*; that lim,, f,(w) = f(w), for every w € Q,_clearly follows
from this and with it part 1.
The proof of part 2 is similar to that of part 1. In fact, if lim,, f,(w) exists
for each w € Q, where (f,) is a uniformly bounded sequence of continuous
functions defined on £, then

lim fn frdp = f(z lim f, dp

holds for each p € C(R)*, by Lebesgue’s bounded convergence theorem,
and so (f,) is weakly Cauchy in C(f). Conversely, weakly Cauchy se-
quences are always bounded in norm, and a careful test again with the §,
shows that weakly Cauchy things in C(Q) are pointwise Cauchy (hence,
convergent).

Theorem 1 has an easy proof and many applications. The proof of
Theorem 2 lies deeper, and its applications are correspondingly more subtle.
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Baire’s category theorem is at the base of our considerations with the aim
being the proof of the following result of which Theorem 2 (part 1) is an
easy consequence.

Let Q be a topological space, each closed subset of which is of the second
category n itself, and ( f,) be a (uniformly bounded) sequence of continuous
scalar-valued functions converging pointwise on Q. Then the set of points
w € Q, where (f,) is equicontinuous, is a dense Fg-subset of .

Let’s see why this is so.

TaKe any e> 0 and let U(¢) be the (open) subset of & consisting of all
those w for which there is an open set D(w) in £ containing w such that if
W', w”’ € D(w), then |f, («")— f,(w”)| <e holds for all n. Plainly, as ¢ de-
creases, so too do the sets U(e). We claim that U(¢) is dense in Q for each .
Of course, the points of N %_,U(1/m) are precisely the points of equicon-
tinuity of the sequence ( f,); so once our claim has been established, we will
be done with the present task.

Let O be any open set in £. Let

En,m = {w€5: Ifm("’)'fn(“’“ﬁ %}

and let

Since each f, is continuous, all the sets E, , and F, are closed subsets of Q.
Moreover, the assumption that lim,, f,(w) exists for each w € @ (and hence
for each w € O) certainly lets us conclude that

UF,=0.
p

Well! There must be a p so that F, has nonempty interior (in 0). This
(relative) interior necessarily intersects O in an open subset of & —call it V;
we may choose V" small enough that any point of V belongs to F,, too. Let
wy € F,NV. Of course, for m,n> p we have [ fn(@)— f(w)] <e/6 for all
w € V. Hence, for n > p we have

1 (o) = fu(@)] < |, (wo) = £y (wo)| + | (w6) = £y (@)| + 1, (@) = fu(@)]

£
S—+-+-=
6

£
2 s

oo
™

so long as w € V. We can achieve strict inequality by shrinking V" a bit; this
shrinking can be done since f, is continuous. Notice that there are only
finitely many »n smaller than p; so (after possibly p shrinkings) we can find
an open subset ¥ about w, (contained in F, N O) such that for any n >1 and
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anywe€V
(@)= fu(@)| <5

Of course, such things force V to be a part of U(e); U(e)N O is not empty,
and this (because of O’s arbitrariness) yields U(e)’s density.

What of Theorem 2 (part 2)? Let f be a bounded real-valued function (we
leave to the reader’s imagination what variations in theme must be sought
after in the complex case) defined on the separable metric space £ having a
point of continuity in each nonvoid closed subset (relative to that closed
subset) of Q. We will show that there is a sequence (f,) of continuous
real-valued functions defined on £ for which f(w)=1lim, f,(w) holds for
each w € Q. This we do in two steps: first, we show that for each real
number y, the set [f> y]={we€Q: f(w)>y} is an F,-set in Q; then
(building on our first step and the faith inherent therein) we’ll show that any
such f must be the uniform limit of a sequence of functions each of the first
Baire class (i.e., pointwise limit of a sequence of continuous functions).

Step 1. For each real number y, [ f > y]is an #,-set in Q.

Suppose that z > y. Take any w € Q. Either w€[f> y]lor wE[f < z].
For any nonempty closed subset F of £, there is a point w, € F at which f|
is continuous. If ws€[f > y], then there is an open set U(wg) in
containing wp such that FNU(wg)C[f > y]. Should w, find itself in
[f < z], then there would be an open set U(w) in {2 containing w such that
FNU(wg) S [f < z]. Whatever the situation may be, each nonempty closed
subset F of & contains a proper closed subset Fi( = F\U(w,)) such that
F\ F, is contained entirely in either [f > y] or [f <&l

Can F, be nonvoid? Well, yes! But if F; is nonempty, then there is a
closed set F, properly contained in F; such that F\\ F, is contained in either
[f>ylor[f<z].

Can F, be nonvoid? If so, there is a closed set F; properly contained in F,
such that F,\ F; is contained in either [ f > y] or [ f < z].

Proceeding in this manner we generate a transfinite sequence (F;: £ < the
first uncountable ordinal) of closed subsets of @ (with F, =Q) for which
whenever F; is nonempty, F;,, is a closed proper subset of F, for which
F\F,,, is a subset of either [f> y] or of [f <z]; in case 7 is a limit
ordinal, we have Fo=nN,. ,,F€.

Here is where we use our hypotheses. Q is assumed to be a separable
metric space. Therefore, there is a first F, after which F, = F,,,=--- . By
construction, F, is empty. Therefore,

2= U (R\F..),

§<n

where each F\ F;,, is contained in either [ f < y] or [ f > z]. Each of the sets
F\F,, is an #}
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What have we done? We have represented  as the union of two
#,-subsets: one formed by taking the (countable) union of those F\ F;,,
contairied in [ f > y]; the other formed by taking the (countable) union of
those F,\ F; ., contained in [f < z].

Let z, N\ y. For each n, set @ = 4, U B,, where 4, and B, are # -subsets
of @ such that A, C[f>y] and B,c[f<z,]. A=U,A4,, B=nN,B,, and
C=nN,[f <z,] are sets worth watching. First, C=[f < y]; so CU[f > y]
= Q. Further, AU B is a decomposition of £ into disjoint sets satisfying
A=V, A, c[f>y]land B=N _,B,cN,[f<z,]=C. It follows that 4=
[f> y],and so [f > y] is an F-set.

Step 1 has been taken.

The argument above can be modified to show that for each real y, [ f < y]
is an #,-subset of Q, too.

Step 2. If f is a bounded real-valued function defined on metric space Q
for which [f < y] and [f > y] are &, -sets regardless of the choice of real
number y, then f is of the first Baire class. We'll sneak up on this one bit by
bit.

To start, notice that the indicator function ¢, of a closed subset F of a
metric space { is of the first Baire class (think about it). Moreover, if S is an
#, in the metric space {2, then there is a (bounded) function g of the first
Baire class such that § = [g > 0]; indeed, if S = U, F, (F, closed, F, C F,,),
then g =¥,27"cy is the absolute sum of bounded functions of the first
Baire class (and so of the same first Baire class) with [g > 0]=S.

To work! Take a bounded real-valued function f on Q for which [f > y]
and [f <z] are & -sets regardless of y, z. Suppose for this argument that
0 < f(w)<1 holds for any w € Q. Take an n>1. For m=0,1,...,n—-1,
look at the %y-sets [f<m/n], [(m+1)/n< f]; for each we can find
bounded real-valued functions g;,, g, of the first Baire class such that

[rs2]=lsn50] ana [2EL<r]=[gr=<0].

n
The functions

g = sup(gn.0)
" sup(g;,,0)+sup(g.,0)
are also bounded, of the first Baire class, and satisfy
go(w)=g(w)=---=g, 1(€)=0, gu(w)=-=g, (0)=1

whenever m/n < f(w) < (m+1)/n with g,,(w) somewhere between 0 and
1. Consequently,

g(w)=n""(go(w)+ - +g,_1(w))
is a bounded function of the first Baire class defined on € within 1/n of f
throughout . f is a uniform limit of such as g. f is itself of the first Baire
class.

All’s well that ends well.
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The Classical Nonreflexive Sequenceé Spaces

Some Special Features of ¢, /;, /.

Presently we derive a few of the most basic structural properties of the
nonreflexive sequence spaces ¢, /;, and /; we also discuss in some detail
the dual of /. Again, our main purpose is to gain insight into the very
special nature of the spaces ¢y, /;, and /. The properties on which we
concentrate are categorical (i.e., homological) in nature and as such find
frequent application in matters sequential. '

Our first result says that /_ is “injective.”

Theorem 3 (R. S. Phillips). Let Y be a linear subspace of the Banach space X
and suppose T:Y — I is a bounded linear operator. Then T may be extended
to a bounded linear operator S: X — | having the same norm as T.

PROOF. A bit of thought brings one to observe that the operator 7 must be
of the form

Ty=(y*y)

for some bounded sequence (y*) in Y*. If we let x* be a Hahn-Banach
extension of y* to all of X, then the operator

Sx=(x2x)

does the trick. O

Supposing /_ to be a closed linear subspace of a Banach space X, we can
extend the identity operator I:/_ —/_ to an operator S: X —/_ with
|IS]| =1. The operator S is naturally a norm-one projection of X onto I,
thus providing us with an alternative description of Phillips’s theorem: / is
complemented by a norm-one projection in any superspace.

¢, enjoys a similar property to that displayed by /_, at least among its
separable superspaces.

Theorem 4 (A. Sobczyk). Whenever ¢, is a closed linear subspace of a
separable Banach space X, there is a bounded linear projection P from X onto
CO.

PROOF (W. Veech). Let ey denote the nth coordinate functional in /, = ¢Z; -
for each n, let x¥ be a Hahn-Banach extension of e* to all of X. . .,
Look at F= {x* € By.: x* vanishes on c¢,}. Any weak* limit point of
{xnx} belongs to F; indeed, if x* be such a limit point of {x*}, then the
value of x* at any unit vector e,, must be arbitrarily closely approximated
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by infinitely many of the numbers {x*(e,,): n € N }—only one of which is
not zero.
Define d: X* X X* — [0, 0) by

d(x*, y*)=227"|(x* = y*)(x,)],

where (x,) is a sequence dense in Sy. Notice that 4 generates a topology on
X* that agrees on Bjy. with the weak* topology.

As noted above, any weak* limit point of the sequence (x}) is in F. With
the metrizability of F in our hands, we can restate this in the following (at
first glance obscure) fashion: given any subsequence ( y,*) of (x}) there is a
subsequence (z;r) of (y¥) which is weak* convergent to a point of F.
Alternatively, the sequence (d,) of real numbers given by d, = d-distance of
x* to F has the property that each of its subsequences has a null subse-
quence. The result: lim,d-distance (x}*, F)=0.

For each n pick a z} € F close enough to x¥ (in the d-metric) thai
lim,d(z}, x¥)= 0. This just says that 0 = weak*lim,,(x}* — z*). Now define
P: X > cyby Px = (x}x — z}x); P is the sought-after projection. 0

Similar to the case of /,, the *“separable injectivity” of ¢, has another side
to it: if Y is a linear subspace of a separable Banach space X and T:Y — ¢ is
a bounded linear operator, then there is a bounded linear operator S: X — ¢,
extending T to all of X. To see why this is so, we use the Phillips theorem to
extend T:Y — [ to a bounded linear operator R: X — /. The separability
of X implies that of the closed linear span Z of RX U ¢,. But now Sobczyk’s
theorem ensures the existence of a bounded linear projection P: Z — ¢, of Z
onto c,. Let S= PR.

‘We turn now to a brief look at /,. It too possesses some striking mapping
properties. In the case of /,, the “ projectivity” of /; comes about because of
the strength of its norm. Face it: the norm of a vector ¥,t,e, in /, is as big
as it can be (|[X,1,e,ll = L,|t,] if respect for the triangle inequality and the
“unit” vector is to be preserved. As a consequence of this, we note the
following theorem.

Theorem 5. If X is any Banach space and T: X — I, is a bounded linear
operator of X onto l; then X contains a complemented subspace that is
isomorphic to l,. Moreover, among the separable infinite-dimensional Banach
spaczs, the above assertion characterizes I, isomorphically.

As is only fair, we start with the proof of the first assertion. Suppose
T: X — I, is as advertised. By the open mapping theorem there is a bounded
s&8quence (x,) in X such that Tx,=e, Consider the bounded linear
operator S: /; — X that takes e, to x, —the existence of a unique such S is
obvious. Clearly, TS:!/, -/, is naught else but the identity on /, and
“factors” through X. It follows that ST: X — X is a bounded linear opera-
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tor whose square [STST = S(TS)T=ST] is itself and whose range is
isomorphic to the closed linear span of the x,. But if (¢,) is any scalar
sequence with only finitely many nonzero terms, then

Yt =| X tse,
n n

1

=Xt Tx,
n

= TE ’nxn
n

Ztnxn
n

<7

=Tl

2t,Se,
n

- uTul

S Z tnen
n

Z’nen
=ITIISIX It,l-
n

<|ITIusi

It follows that the closed linear span of the x,, is isomorphic to /;, and the
first assertion has been demonstrated.

To prove the second, we need a couple of facts about /; that are of
interest in themselves. The first is a real classic, due to Banach and Mazur:
every separable Banach space X admits of a continuous linear operator
Q:1,—> X of I, onto X. In fact, if we let (x,) be a sequence in By that is
dense in B, then we can define the operator Q:/; = X by Qe, = x,,; it is
again a consequence of the strength of /;’s norm that Q is a well-defined
bounded linear operator. If x € By is given, then we can find an x,, so that

1
e=x, 1< 555,
and

2~ x,) <.
Next pick n, > n, such that
1
"2("" = X,,)= X, " s 2.22°
so that

||4(x = X, )—2x,, " < ~21—2 .
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Continue in this vein with the k th choice producing an n, > n,_,>--- >n,
for which

k-1 k=2
"2 (x—x,)-22x, — - =2x,  —x,, “5?
The result is that
2l—k 22—k 1 l
"X-' Xn, ~ Xnpy T T T 2Ky, T Xy "S Zk'
It follows from this that the vector
—_ 1 1 1
e—e,,l+5e,,z+;e,,3+~-+?e,,k+| - €1l

is carried by Q right onto x.

Returning to our second assertion, we see now that if X is a separable
infinite-dimensional Banach space with the property that X is isomorphic to
a complemented subspace of any separable space of which X is a quotient,
then X is isomorphic to a complemented subspace of /,. What are the
complemented irfinite-dimensional subspaces »of /,? Well, all of them are
isomorphic to /,. Of course, this takes proof, and we set forth to prove this
now. We follow the direction of Pelczynski in this matter.

The first thing to show is the following.

Theorem 6 (Pelczynski). Every infinite-dimensional closed linear subspace of
1, contains a complemented subspace of |, that is isomorphic to I,.

PROOF. Let Z be an infinite-dimensional closed linear subsgace of /;.

Choose any z; in Z having norm one. Let k; be chosen so that the
contribution of the coordinates of z, past k, to the norm of z, amounts to
no more than §.

Since Z is infinite dimensional, there is a z, in Z of norm one the first &,
coordinates of which are zero. Let k, be chosen so that the contribution of
the coordinates of z, beyond k, to the norm of z, amounts to no more than j.

Again, since Z is infinite dimensional, there is a z; in Z of norm onc the
first k, of whose coordinates are zero. Let k; be chosen so that the
contribution of the coordinates of z; past k; to the norm of z; amount to no
more than .

The inductive step is clear.

Agree that k, = 0. Let

k’l
b= X z,,e,
ka1 +1
where z, ; denotes the jth coordinate of z, and e; denotes the jth unit
vector. Notice that the closed linear span [b,] of {b,} is isometric to /; and
is the range of a norm-one projection P. Moreover we have ||z, — b,|| not
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exceeding 27 "~! for any n. Let (b*) be the sequence in [b,]* biorthogonal
to (b,); we have

1 < 1 _ 1 .
ball = Nzall = llz, = bull 1 —27""1
Consider the operator T: /; =/, defined by
Tx=x— Px+ Y b*(Px)z,.

oIl =

Since Px € [b,} and (b}) is biorthogonal to (b,) with [b,] isometric to /,, we
see that (b*Px) € /,; it follows that T is well-defined, bounded, and linear.
Moreover, if x €/, and ||xj|; <1, then

I = Tl = | Px - Lor(P)z,

<PIXIBKIIB, = z,ll
n

SZ 122__n N =Y (@-1)""'<1

Therefore, ||/ — T|| <1. It follows easily from this that 7T"! exists as a
bounded linear operator on /;; i.e., T is an isomorphism of /; onto itself. To
see what T~ ! looks like, just consider the equation

[1-(1-T)XU-T)"=1,

and you can see that 7-!'=Y (I —T)". Clearly, T takes [b,] onto [z,]; so
[z,] is isomorphic to /;. Finally, Q = TPT! is a bounded linear projection
of /,onto[z,]C Z. O

With Theorem 6 in hand we are ready to finish the proof of the second
assertion of Theorem 5. Before proceeding with this task, we establish some
notational conventions. Suppose ( X,) is a sequence of Banach spaces. Then
(X, X,); denctes the Banach space of all sequences (x,), where x, € X, for
each n, ||(x,)|| =Z,lIx,|| <oo. It is plain that if each X, is isomorphic to /;
with a common bound for the norms of the isomorphisms, then (X, X)), is
isomorphic to /,. Sometimes (X, X,,), is denoted by (X, ® X,® - - - ),. Also, if
X and Y are Banach spaces, then X X Y is isomorphic to (X GBY)l Now we
finish off Theorem 5.

Let X be an infinite-dimensional complemented subspace of /; (recall this
is what we have been able to conclude about any Banach space X with the
property that it is complemented in any space of which it is a quotient). We
will assume that the symbol “ ~” will signal the existence of an isomor-
phism between the left- and right-hand extremities. If Y is a complement of
X, then /) ~ (X@©Y),. By Theorem 6, there are closed linear subspaces Z,
and Z of X that are complemented in /; such that X ~ (Z,®2Z); and Z, ~ /,.
The punch line comes from the “Pelczynski decomposition method”; all of
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the following are easy to see:
L~(XeY)~(Z®ZaY),

= ((llez)1$y)1
~(h®ZeY),
~(LheLhe - ®ZaY),
~((XeY),®(X®Y),® - - ®ZOY),
~(XoX® --- ), o(YOY® --- ), ®ZDY),
~(XoXx® --- ), 0(YOY® ---),0Z),
~((XxeoY),0(X0Y),® --- ©Z),
~(Lele® ---82Z),
~( 18Z )1
~(z0z )1
~ X

This completes the proof of Theorem 5.

The fanciest of our footwork is done. We have seen that both ¢, and /
share injective-type properties while /;’s strength of norm ensures that every
separable Banach space occurs as a quotient of /; (with Theorem 5 telling us
that /, is the smallest such space in some sense). We will in the next few
sections follow up on more sequentially oriented properties of these spaces,
but it seems that this is as likely a place as any to discuss one more space
that naturally enters the study of the spaces ¢, /;, and /_ :ba, the dual of
1. Curiously it will be through the study of ba that two of the most striking
sequential properties of these spaces will be unearthed.

Take an x* € [%. Then for each A C N, the characteristic function of A, ¢,
belongs to /., and so we can evaluate x*(c,). It is easy to see that x*(c, ) is

an additive function of A; furthermore, given any pairwise disjoint subsets
AL A,, ..., A, of N we have

n n
T x| = ¥ x%, sgnx*cy,

i=1 i=1

n
=x*( Y sgn X*CA,.'CA,)

i=1
<[lx*},
because [[Z7_,sgn x*cs ‘€4 ll, <1. So members of /3 lead us naturally to
finitely additive measures whose total variation is bounded. This natural
intrusion of finitely additive measures into the study of /_ (through duality)
is worth spending some time on; it is even worth exploring in some
generality.
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Suppose Q is a set and = is a o-field of subsets of Q. Denote by B(Z) the
Banach space of bounded, Z-measurable scalar-valued functions defined on
Q with the supremum norm ||-||,, and denote by ba(Z) the Banach space of
bounded additive scalar-valued measures defined on 2 with variational
norm |-||,. We plan to show that B(Z)* =ba(Z) with the action of a
p €ba(Z) given by means of integration. It is plain that a computation
virtually identical to that of the previous paragraph gives a member of
ba(Z) for each member of B(X)*, namely, p(E)= x*(cg). Moreover,
llell; < llx*|l. Next, if u € ba(Z), we can define an integral [dp in such a way
that every f € B(Z) can be integrated. How? Start with a simple function
f=X]_.a,c,,wherea,, a,,...,a,are scalars and 4,, 4,, ..., 4, are disjoint
members of Z; then [fdp is defined in the only sensible way:

n n
ffdl“_‘f > a,cq dp= > a;p(4;).
i=1 i=1
Observe that if || f||, <1, then
[ ]
|ffdl" = Zaip‘(Ai)l

i=1

= i lalln(4,)|

i==1

n
< sup Iaiizlﬂ(Ai)l .

l<isn =1

<lplly-
It is now clear that fdp acts in a linear continuous fashion on the simple
functions modeled on = endowed with the supremum norm. As such it can
be uniquely extended to the uniform closure of this class in a norm-preserv-
ing fashion; the uniform closure of these simple functions is just B(Z).
Whatever the extension is, we call its value at an f € B(Z) “[fdp.”

To summarize, start with an x* € B(Z)*, define p € ba(Z) by p(A4)=
x*(c,), and note that ||p||; <||x*|l. Observe that p generates [du, which
precisely reproduces the values of x*. Moreover, [du as a functional has
functional norm no more than ||¢||,- We have proved the following theorem.

Theorem 7. The dual of B(X) is identifiable with the space ba(Z) under the
correspondence

x*€ B(Z)* o peba()
given by
x“‘f=/fdu.

Furthermore, ||x*| = ||p||,-
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The alert reader will notice that the above repi sentation theorem is really
quite formal and cannot be expected to produce much of value unless we go
quite a bit deeper into the study of finitely additive measurss. Tt:- calls for
a few words about bounded additive measures; in other werds, we digress
for a bit. We hope to make one overriding point: a scalar-valued measure
being bounded and additive is very like a countably additive measure and is
not (at least for the purposes we have in mind) at all pathological.

For instance, suppose p € ba(Z) and let (A4,) be a sequence of disjoint
members of =. For each n we have

i (A4 < llpl;

k=1
so that

Xlu(4,) <l

and £, p(4,) is an absolutely convergent series. The point is that u adds up
disjoint sets—even countably many of them—it just may not be judicious
enough to add up to the most pleasing sum.

In reality the fact that © u(A,) and p(U,4,) might disagree is not p’s
“lack of judgment” but a failure on the part of the underlying o-field Z.
Suppose, for the sake of this discussion, that u has only nonnegative values.
Then for any sequence (A4,) of pairwise disjoint members of 2 we have

Z"ZM(A,.)S#(L”JA,.)-

That strict- inequality above might occur is due to the “featherbedding”
nature of unions in Z. If we look at the proper model for the algebra , then
on that model p is countably additive. This statement bears scrutiny.

Recall the Stone representation theorem. It says that for any Boolean
algebra s/ there is a totally disconnected compact Hausdorff space Q, for which
the Boolean algebra & () of simultaneously closed and open subsets of Qs
isomorphic (as a Boolean algebra) to .

Start with Z, pass to Qy, then to #(Z). p has an identical twin i working
on & (2), but fi has better working conditions than u. In fact, if (K,) is a
sequence of disjoint members of ¥ (2) whose union K belongs to & (2),
then (since K is compact and each K, is open) only a finite nuiaber of the
K, are nonvoid! i is countably additive on % (Z) and so has a unique
(regular) countably additive extension to the o-field of subsets of Qg
generated by & (2). )

What happened? To begin with, if we have a sequence (A4,) of disjoint
members of = and we look at U, 4, = 4, each 4, and 4 correspond to a K;
and K in &#(2). The isomorphism between 2 and #(X) tells us that K is the
supremum in the algebra #(Z) of the K,. However, K is not (necessarily)
the union of the K,. No; in fact, Stone showed that whenever you take a



The Classical Nonreflexive Sequence Spaces 79

family {K,},e 4 Of “clopen” sets in the Boolean algebra &#(Z), then the
supremum of the K,—should such exist in &(Z)—must be the closure of
the union. It follows that K =U, K, over in Q5. Returning to our 4,,, we see
that p’s value at the union of the A4, included not only ¥,u(A,) but in a
phantom fashion g(X \ U,K,). This justifies the claim of featherbedding on
part of union in Z.

What about integrals with respect to members of ba(Z)? They respect
uniform convergence and even some types of pointwise convergence. Of
course, one cannot expect them to be line Lebesgue integrals without
countable additivity. On the. other hand, one is only after integrating
members of B(Z) wherein uniform convergence is the natural mode of
convergence; so this is not too great a price to pay.

Finally, it ought to be pointed out that members of ba(Z) are like
countably additive measures: if u € ba(Z) and (4,,) is a sequence of disjoint
members of =, then there is a subsequence (B,) of (A4,) such that p is
countably additive on the o-field # generated by the B,. Why is this?
Suppose p has all its values between 0 and 1. Let K and N be infinite
disjoint subsets of the set N of natural numbers. Then either L, . xp(A4,) or
L, e ni(4,) is less than or equal to 4. Whichever the case, call the infinite
subset N; and let B, be 4, where n, is the first member of N,. Now break '
N \{n,} into two disjoint infinite subsets K and N; either L, . xu(4,) <%
or I, e yi(A,) <. Whichever the case, call the indexing set N, and let B,
be A,,, where n, is the first index occurring in N,. Repeat this procedure,
and a bit of thought will show that the resulting sequence (B,) satisfies our
claim for it.

1%, Schur’s Theorem about /;, and the Orlicz-Pettis
Theorem (Again).

We saw in the preceding section that /¥ is not quite so unwieldy as might be
guessed. In this section a few of the truly basic limiting theorems regarding
1* are derived. They include the Nikodym-Grothendieck boundedness
theorem, Rosenthal’s lemma and Phillips’s lemma. From this list we show
that in /, the weak and the norm convergences of sequences coincide—an
old fact discovered by Schur in 1910. Then we derive the Orlicz-Pettis
theorem much as Orlicz and Pettis did in the 1930s.

Throughout this discussion € is a set, = is a o-field of subsets of €, and
ba(Z)=B(Z)* is the space of bounded, finitely additive scalar-valued
measures defined on =. For p € ba(Z) the variation |u| is the member of
ba(Z) whose value at a member E of = is given by

Iul(E) = sup{ Z|u(E,)|},

where the supremum is taken over all finite collections {E,,...,E,} of
pairwise disjoint members of = contained in E. Of course, |u|(2) is just the
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variational norm ||p||, of p. It is noteworthy that for any £ € 2 we have
sup |p(F)|<|ul(E) <4 sup |u(F)|.
Fel FeZX
FCE FCE

The left side holds trivially, whereas the right follows from considering for a
fixed E €2 and a given partition # of E into a finite number of disjoint
members of 2 the real and imaginary parts of each value of u on members
of # and checking the positive and negative possibilities of each.

Let us start our more serious discussion with a fundamental bounding
principle.

Nikodym-Grothendieck Boundedness Theorem. Suppose = (u,:t€T} is
a family of members of ba(Z) satisfying
sup |u,(E)| < o0
t

for each E € 2. Then
sup_ u,(E)| < co.

t,Ee

PrOOF. Should the conclusion fail, there would be a sequence (p,) of
members of # for which

sup i (E)|=co.
nEeX

Suppose such is the case.

Observe: If p >0, then there is an n and a partition {E, F} of @ into
disjoint members of Z such that both |, (E)|, |u,(F)| > p. In fact, choose n
and E so that E € 2 and

1. (E)|> sgplﬂk(9)|+p.
>ThenA
|1 (N E)| =1, (E) = p,(2)|
2|u,(E)| = |ua(R)]> p.

Now let n, be the first positive integer for which there is a partition
{ E, F} of & into disjoint members of = for which

[ (B e, (F)| > 2.
One of the quantities
sup_|u,(ENB)|, sup _|p,(F N B)|
n,BeX n,BeX

is infinite. If the first, set B, = E and G, = F; otherwise, set B, = F and
G,=E.
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Let n, > n, be the first such positive integer for which there is a partition
{ E, F} of B, into disjoint members of = such that

|8, CE) | | (F)] > |0y (G1)] +3.
One of the quantities
sup |p,(ENB)|, sup |u,(F N B)|
n,BelX n,BeX

is infinite. Should it be the first of these, set B, = E and G, = F; . _._rwise,
set B,=Fand G, =

Continue.

We obtain a sequence (G,) of pairwise disjoint members of 2 and a
strictly increasing sequence (7, ) of positive integers such that for each k >1

k-1
le,,(Gk)|> > Il»‘nk(Gj)|+k+1~
j=1

Relabel (p,,,) by (ps)-
Partition the set N of natural numbers into infinitely many disjoint

infinite subsets N, N,, ... . The additivity of |u,| gives

=]
L il U 6} <imiUs,)
k=1 nen, n
< |ml(R).
It follows that there is a subsequence (G, ) of (G, )y » , such that
oo
mll( U Gk,) <1

i=1

Repeat the above argument; this time work with |, | instead of |u,| and

(Gy,)i» ; instead of (G ), . You'll find a subsequence (G, ) of (Gy )i,
such that

“"k,’( U Gk,]) <

Repeat with |p, | replacing |p, | and (G, )122 in lieu of (Gy ), »-
Let G, denote 'the first member of the ith subsequence so generated
(m, =1, mz—kl,m3——k ..). Then for each j,

m,,,,]( U Gm,) <
i=j+1

If we let
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then
j-1 o
|t (D)|= u,,,( UéG.,v6,v U G,
i=1 imj+1
Jj—1 00
z|nm,(cm,)—»m,(uG,,,) o[ 0 .
i=1 im=j+1
Jj—-1 )
2|n,, (G, )|- Z|#m,(G,..,)|—IM,,.,I( U Gmi)
i=1 im 41
ijToo,
a contradiction. O

Rosenthal’s lemma is our next stop. It provides the sharpest general
disjointification principle there is.

Rosenthal’s Lemma. Let (pn,) C ba(Z) be uniformly bounded. Then given
€> 0 and a sequence (E,) of disjoint members of = there is an increasing
sequence (k,, ) of positive integers for which

Il‘k,,l( U Ek,) <e
Jj*n
for all n.
ProoOF. We may assume that sup,,|p,,(Y,E,) <1.

Partition N into an infinite number of infinite (disjoint) subsets (N, ). If
for some p there is no k € N, with

I”‘kl( U E;|2¢,
jek
JEN,
then for each k € Np we have
el U E;j|<e.
J*k
JEN,

Enumerating N, will produce the sought-after subsequence. Wha. if no such
p arises? Well, then it must be that for each p there’s a kl, (S Np for which

U E |ze.
i*k,

€N,

|I‘-k,|
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Notice that

e (UE )+ e, (UENUEL, ) = e (U ) <1,

which, since
U Ej c UEn\UEk,,’
Jj*k, n n
JEN,
gives us
|l-"k,|(UEk,,) <l-e
n
for all p.

Repeat the above argument starting this time with the sequences p), = p,
and E; = E, ; our starting point now will be the inequality

ol UE;) <1-e.
n

Proceeding as above, either we arrive immediately at a suitable subsequence
or extract a subsequence ( ji ) of (k,) for which another & can be shaved off
the right side of the above inequality making

l"’jk’l(UEjk,,) s1-2e -
n
hold for all p. (]

Whatever the first n is that makes 1— ne <0, the above procedure must
end satisfactorily by n steps or face the possibility that 0 <1 — ne <0.

From Rosenthal’s lemma and the Nikodym-Grothendieck boundedness
theorem we derive another classic convergence theorem pertaining to /X.

Phillips’s Lemma. Letr p, € ba(2V) satisfy lim,pu,(A)=0 for each ACN.
Then

tim 3 |, ({j})|=0.

ProOF. The Nikodym-Grothendieck theorem tells us that sup,||p,|| < o,
and so the possibility of applying Rosenthal’s lemma arises.

Were the conclusion of Phillips’s lemma not to hold, it would be because
for some & > 0 and some subsequence [which we will still refer to as (p,)] of
(m,) we have

Llea({i})]=68

for all n.
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Let F, be a finite subset of N ¥ ¢ which

i (F)]> 8.
Using the fact that (u,(A)) is null for each A, choose n, > n; =1 so that

T |wa,({J))] <8

JE€FR

Next, let F, be a finite subset of N\ F; for which
(B2} X i, ({5))]

z%(};!#n,({j})l— Z len((D)]
2%(68—8)—‘-8.

Using the fact that (u,(A)) is null for each A, choose n; > n, so that

o |aa,({5))] =8

JERUF

Let F, be a finite subset of N\(F; U F,) for which
ko (B) =zt X e (4]

24 Zha (D= Z I (U))
>1(66-8)=a.

Our procedure should now be clear. We extract a subsequence (»,) of
(u,) and a sequence (F,) of pairwise disjoint finite subsets of N for which
given n

Lln{{7)]= 68,
X Im{iDl<s,
JERU - UF,_;
and
b, (E)| > 8.
Rosenthal’s lemma allows us to further prune (»,) and (F,) so as to attain

i U £) <3

k+n
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On so refining, we see that

v,,(E‘JFm)

w(E)+v,( U F.

m#n

> (E)| =1 U E,)

m#n

a

>8—

N
N| o

Schur’s Theorem. In I;, weak and norm convcrgences of sequences coincide.

PrROOF. Fach x €1/, defines a p, € ba@¥)=/%=I¥* by looking at x’s
image p, under the natural imbedding of /, into /**, where for any A, p (4)
is given by
p(8)= X x(n), x=(x(n)) €.
nel
Should (x,) be a weakily null sequence in /,, then the corresponding
sequence (g, = ) in ba(2") satisfies
limp,(A)=1lim Y x,(m)
n n

meA

=limx,(x,) =0.
n

Phillips’s lemma now tells us that

0=1tim [, ({})] = lim E|x, ()] = Limiix, . O
J . no "

Okay, it is time for the Orlicz-Pettis theorem again—only this time we
prove it in much the same way Orlicz and Pettis did it in the first place using
Schur’s theorem except that we use Phillips’s lemma.

PROOF OF THE ORLICZ-PETTIS THEOREM. As usual, there is some initial
footwork making clear that if anything could go wrong with the Orlicz-
Pettis theorem, it would happen where a weakly subseries convergent series
X,x, could be found for which ||x,||=&>0 holds for all n. This proof
shows that whenever ¥, x,, is weakly subseries convergent, there is a subse-
quence (x, ) of (x,) that is norm null.

Whatever goes on with the series L, x,, all the action happens in the
closed linear span [x,] of the x,; so we may as well assume that X is
separable. For each n choose an x* € By. such that x*x, = ||x,,||. Since X is
separable, By. is weak* compact and metrizable (the proof of this will be
given later in detail; however, a look at step 1 of the proof of the
Eberlein-Smulian theorem ought to be convincing of this fact). Therefore,
there is a subsequence (y*) of (x*) which is weak* convergent, say, to y;
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let (y,) be the corresponding subsequence of (x,). L, y, is weakly subseries
convergent. Therefore, ( y,) is weakly null. It follows that for very large n,
(¥ = ¥&)y,) is very close to || y,|l. Since the series Ly, is weakly subseries
convergent, for any A C N the series L, .5y, converges weakly to some
0, € X. Define u, €1 at AC N by

a(8) = (¥ = 33 ) (o).
Because yf = weak*lim y*,lim u,(A) = 0 for each A C N. Phillips’s lemma
concludes that lim, X, |u,({ k})| = 0. But (y* — yFXy,) = p.({n}) with the
left side being a good approximation of || y,|| for n big and the right side
being a good approximation of 0 for n big. Enough said. O

Weak Compactness in ca(X) and L,(p)

Let Q be a set and 2 be a o-field of subsets of . Denote by ca(Z) the linear
subspace of ba(Z) consisting of the countably additive measures on Z. It is
clearly the case that ca(Z) is a closed linear subspace of ba(Z) if the latter is
normed by ||p}l, = sup{|e(E)|: E € 2}; from this and the inequality ||u|| .
<llull, = variation of p=|u() < 4||pll,,, we see that (ca(Z),||ll,) is a
Banach space. Further, it is a standard exercise that |p| € ca(Z) whenever
€ ca(2).

It is our purpose in this section to derive criteria for weak compactness in
ca(Z). On doing so, we will derive the classical conditions for a subset of
L,(p) to be weakly compact and recognize both ca(2) and L,(p) as Banach
spaces in which weakly Cauchy sequences are weakly convergent. The
Kadec-Pelczynski theorem, recognizing the role of /,’s unit vector basis in
nonweakly convergent sequences in L,(p), will be given its due attention,
and the Dieudonné-Grothendieck criterion for weak compactness in rca(Z)
will be established. Here rca(2) denotes the space of regular members of
ca(2Z), where 2 is the Borel o-field of subsets of a compact Hausdorff space
Q. A well-known consequence of this and Phillips’s lemma, i.e., weak*
convergent sequences in /% are weakly convergent, will finish this section.

We begin our discussion with an idea of Saks. Take a nonnegative
A € ca(2). For 4, B € X define the pseudo A-distance between 4 and B by

d\(4,B)=\(A4AB),
where AAB = (A\ B)U(B\ A) is the symmetric difference of 4 and B. The
seed of Saks’s idea is in the following easily proved resuit.

Theorem 8. (2, d,) is a complete pseudometric space on which the operations
(A4,B)—> AUB, (A, B)— (AN B), and A— A° are all continuous (the first
two as functions of two variables).

Saks’s program is to study convergence of sequences of countably addi-
tive measures on 2 by means of viewing the measures as continuous
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functions on pseudometric spaces of the (Z, d,) ilk; particularly useful in
this connection is the completeness of (Z, d,) since it brings to mind the
Baire category technique, a technique mastered by none more thoroughly
than Saks.

Completeness being so crucial to the implementation of Saks’s scheme, we
would be remiss if we didn’t say at least a few words toward the proof of the
completeness aspect of Theorem 8 (other assertions can be safely left to the
enjoyment of the careful reader).

To see that (=, d,) is complete, notice that for 4, B &€ =z,

d}\(A’ B) = "cA - CB”Ll(/\)'

Therefore, if (A4,) is a dy-Cauchy sequence in Z, (c,) is norm Cauchy in
L,(A), hence convergent in L,(A)-mean to some f € L,(A). Passing to an
appropriate subsequence will convince you that f is itself of the form c, for
some A € =. Of course, A is the d,-limit of (A4,).

Naturally, if p € ba(Z) is continuous on (Z, d)), we say p is A continuous.
Notice that A-continuity of p automatically implies p is itself in ca(Z). In
this connection it is noteworthy that the A continuity of p € ba(Z) is just
saying that p satisfies the condition: for each & > 0 there is a § > 0 such that
|n(E)— p(F)| < & whenever |A(E)—A(F)|=|A(EAF)|<8$; in particular,
whenever A(E) < 8, then |u(E)| < ¢, and so p is absolutely continuous with
respect to A. The converse is also true; i.e., if p is absolutely continuous with
respect to A, then p is a continuous function on (2, d,).

Suppose X'is a family of finitely additive scalar-valued measures defined
on X. We say (for the moment) that X'is equi-A-continuous at E € X if for
each €> 0 there is a 8§ >0 such that if F€X and d,(E, F)<§, then
Iw(E)—p(F)| <& for all p€ X uniformly equi-A-continuous on Z if for
each £> 0 there is a 8 > 0 such that given E, F € 2 with d,(E, F) <6, then
[n(E)—pu(F)| <€ for all p € X', uniformly countably additive provided for
each decreasing sequence (E,) of members of = with N E, =& and each
e> 0 there is an N, such that |u(E,)| < € for n beyond N, and all p € X",

The momentary excess of verbiage is eliminated by the next theorem.

Theorem 9. Let X be a family of finitely additive scalar-valued measures
defined on Z. Then the following are equivalent (TFAE).

1. Xis equi-A-continuous at some E € Z.
2. Xis equi-\-continuous at @ .
3. Xis uniformly equi-A-ccatinuous on Z.

Moreover 1 to 3 imply that X'is uniformly countably additive.

PROOF. Suppose 1 holds. Let £ > 0 be given and choose 8 > 0 so that should
B € = be within 8 of E, then |u(B)—p(E)|<eforallpe X
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Notice that if A€ 2 and A(A4) <8, then A((EU A)AE)<A(A4)< 8 and
A((EN\A)AE) < A(A) < 4. It follows that if 4 € 2 and A(A4) <6, then
(A =|p(AVE)—p(E\4)|
<|p(AVE)—p(E)|+|u(E)-p(E\4)
<e+e=2¢

for all p € X", This is 2.
Next, if C, D€ £ and

A(C\D)+A(D\C)=A(CAD) <38,
then for all p € X#"'we have
(€)= p(D)|=|u(C\D)-p(D\C)|

<|u(C\D)|+|p(D\C)|
<2e+2e=4e,

and now 3 is in hand.
The last assertion follows from 3 and A’s countable additivity.
From now on a J’satisfying 1 to 3 will be called uniformly A-continuous;,
sometimes this is denoted by X" <fA and sometimes by
un

lim wu(E)=0 uniformlyforpe X" O
A(E)—0

A bit more about uniformly countably additive families is in order.

Theorem 10. Let ¥ C ca(Z). Then TFAE:

1. If (E,) is a sequence of disjoint members of Z, then for each e > 0 there is
an n, such that form=nx=n_,

f: "'(Ei)

i=n

<&

forallpe X,
2. If (E,) is a sequence of disjoint members of Z, then for each € > O there is
an n_ such that for n > n,,

f: I"(Ei)

i=n

<Ee

forallpe X
3. If (E,) is a sequence of disjoint members of Z, then for each ¢ > 0 there is
an n_ such that forn>n,,

lb(E)|<e
forallpe X'.
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4. If (E,) is u monotone increasing sequence in Z, then for each ¢ > 0 there is
en n_such that if m,n = n,, then

ln(E,)-n(E,)|se
for all p € X,
5. If (E,) is a monotone decreasing sequence in 2, then for each € > 0 there is
an n, such that if m,n = n_, then

lu(£,)—u(E,)|<e
for all p€ X
6. Xis uniformly countably additive on Z.

PrOOF. The proof is purely formal and proceeds as with one measure at a
time with the phrase “for all p € X" carefully tacked on; for this reason we
go through the proof that 3 implies 1, leaving the details of the other parts
of proof to the imagination of the reader.

Suppose ( E, ) is a sequence of disjoint members of Z for which 1 failed;
then there would be an & > 0 such that for any N there wouldbemy 2 ny = N
with an accompanying u, € X for which

my \l my )
.U'N( U E:)l.z Z MN(E,')
i=ny i i=ny

> €.

mire. Let £ =01, E. Letv, =p,.
Next, take N =m, +1 and choose m, = n, = N, again according to the
dictates above. Let F, be U ;",3,,215,, and let v, = p .

Our procedure is clear; we generate a sequence (F,) of pairwise disjoint
members of = along with a corresponding sequence (v, ) in % for which

, vi(F)lze,
thereby denying 3. O

Formalities out of the way, we recall from the first section that we proved
the following: let ( X, d) be a complete ( pseudo) metric space, and let ( f,) be
a sequence of continuous scalar-valued functions defined on X. Suppose that for
each x € X, lim,, f,(x) exists. Then {x € X:(f,) is equicontinuous at x } is a
set of the second category in X.

An almost immediate consequence of this is the following classical result.

Vitali-Hahn-Saks Theorem. Let (u,) be a sequence in ca(Z) each term of
which is A-continuous, where \ is a nonnegative member of ca(Z). Assume that
lim,p,(E) = p(E) exists for each E € Z. Then {p,} is uniformly A-continu-
ous and p is both A-continuous and countably additive.

PrOOF. Viewing the p, as functions on the complete pseudometric space
(=, d,), we can apply the cited result from the first section. The equicon-
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tinuity of the family {p,} on a set of second category implies its equicon-
tinuity at some E € 3 and brings Theorem 9 into play. ]

Another “oldie-but-goodie”:

Nikodym’s Convergence Theorem. Suppose (11,,) is a sequence from ca(Z) for
which

li:nn..(E)'-'u(E)

exists for each E € Z. Then {p,} is uniformly countably additive and p €

ca(2).

ProoF. Consider the absolutely convergent series

|1al(-)
Z @ )7
in ca(X); its sum A € ca(Z) is nonnegative, and together {pu,} and A fit
perfectly in the hypotheses of the Vitali-Hahn-Saks theorem. Its conclusion
suits {u, } and p well. O

Weak convergence in ca(Z)? No, we haven’t forgotten!

Theorem 11. A sequence (p,) in ca(Z) converges weakly to p € ca(Z) if and
only if for each E € 2, p(E) = lim,p,(E).

PROOF. Since the functional » = »( E) belongs to ca(Z)* for each E€ X,
the necessity of p( E)=lim,u,(E) for each E € £ is clear.

Suppose for the sake of argument that p( E) = lim ,u,( E) holds for each
E € 3. Now Nikodym’s boundedness theorem allows us to conclude that
the p, are uniformly bounded, and so sup,|u,(§) < oo. It follows that the
series

is absolutely convergent in the Banach space ca(Z); let A be its sum. For
each n there is an f, € L,(A) such that

u,.(E)=fEf,.d?\,

this thanks to the Radon-Nikodym theorem. Similarly, thereis an f € L,(A)
such that

u(E)=[EfdA
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for each E €3. Since sup,|p,(R)<oco and ||f,ll, =|p.K), (f,) is an
L,-bounded sequence. Since p(E) = lim,p,(E) holds for each E € Z,

Jfedr=1im [f,gax

holds for each simple function g. But the collection of all simple g is dense
in L_(A) so that an easy e/2+ ¢/2 = ¢ argument shows

ffhdx=1i:nff,,hd)\

holding for all A € L_(A) = L,(A)*. It follows that ( f,) converges weakly to
fin L (), which in turn implies that () converges weakly to p in ca(Z). O

Immediate from the above is the following corollary.

Corollary. A sequence (f,) in L,(\) converges weakly to f in L,(A) if and
only if [¢fd\ =lm, [;f, d\ for each E € 2.

In tandem with the Vitali-Hahn-Saks-Nikodym convergence principles
the above proofs suggest the following important theorem.

Theorem 12. Weakly Cauchy sequences in ca(Z) are weakly convergent.
Consequently, for any A € ca*(Z), weakly Cauchy sequences in L,(\) are
weakly convergent.

PROOF. Let (1,) be a weakly Cauchy sequence in ca(Z). Since each E € 2
determines the member v = v(E) of ca(Z)*, lim,p,(E)=pn(E) exists for
each E € =. The Vitali-Hahn-Saks-Nikodym clique force p to be a member
of ca(Z). The just-established criteria for weak convergence in ca(Z) make p
the weak limit of (u,).

The second assertion follows from the first on observing again that for
A eca*(Z), L(A) is a closed subspace of ca(Z). o

We are closing in on weak compactness criteria for both ca(Z) and L, ().
The next lemma will bring these criteria well within our grasp.

Lemma. Let &/ be an algebra of sets generating = and suppose {p,} is a
uniformly countably additive family for which lim,p,(E) exists for each
E € o. Then lim . ,(E) exists for each E € 2. ‘

PROOF. Look at A= {E €3:lim,p,(E) exists}. By hypothesis, &/ C A.
We claim that A is a monotone class; from this it follows that A =3,
proving the lemma.

Let (E,,) be a monotone sequence of members of A with E,, — E. By the
uniform countable additivity of the p,,

u,.(E)=ligmn(Em)
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uniformiy in »; one need only glance at and believe in Theorem 10 to sec
this. So given ¢ > § there is an m such that

o (En)—pa.(E)ise
for all n. But (¢, (E,)), converges; so there is an N, such that if p,g> N,
then

""p(Em)“p*q(Em)% <e.
Plainly

ey (E) = g(E)| = 3¢

should p, ¢ exceed N,. It follows that (u,(£)) is a convergent sequence. O

Theorem 13. Le: X be a subset of ca(X). Then TFAE:

1. Xis relatively weakly compact.

2. Xis bounded and uniformly countably additive.

3. XWis bounded and there is a ) € ca*(Z) such that X'is uniformly }\—conunu-
ous.

PROOF. Suppose Xis relatively weakly compact. Then there is an 2 >0
such that ||ufl, < M for all p € X¥". We claim that given ¢ > 0 there is a finite
set {py, ..., } C X and a 8> 0 suck that |p;E), |1, [(E), ..., lu,l(E)<é
implies |u(E)| < e for all p € X . Indeed if this were not the case, then there
would be a bad € > 0 for which no such finite set or § > 0 exists. Take any
1, € X. There must be E; € 2 and p, € Xfor waich

Inl(Ey) <3, k2 (Ey)|>e.
Further there must be £, € 2 and p; € X’such that

I8 (Ey), Imol( Ey) <% and  |u,(E,)| > e.

Continuing in this fashion, we get a sequence () in ¥"and a sequence (E, )
in 2 such that

E,)s -l E,) <277 and |p,, (E,)|>e. 1)

Passing to a subsequence, we can arrange that (u,) converges weakly to
some p € ca(2); if (n,) denotes the indices of this extracted subsequence
and we replace E,, by E, _ _,, then for the weakly convergent sequence we
can assume (1) as well. fet A= 2,27 "p,}; by the Vitali-Hahn-Saks theo-
rem, {u,} is uniformly A-continuous. -But A(E,) tends to 0. Therefore,
lim,p,(E,) =0 uniformly in n, a hard thing to do in light of |p,,, ,(E,)| > ¢
for all n; that is, we reach a contradiction.’

Our claim is established; we now use the claim to show how 1 implies 3.
From the claim we see that there is a sequence (»,) in ) such that if
[v,KE)=0 for all n, then {u(E)|=0 for all p€ ¥". If we look at A =
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¥,27"|»,| € ca*(Z), then it is plain that each p in ¥'is A-continuous. Were ¥~
not uniformly A-continuous, there would exist an ¢> 0, a sequence (E,) of
members of =, and a sequence (p,) from X such that even though 0=
lim A(E,), |u,(E,)| = ¢ for all n. Passing to a subsequence, we could as well
assume the sequence (p,) is weakly convergent to a p € ca(Z). But this
would say something which, in view of Theorem 11 and the Vitali-Hahn-Saks
theorem, is not possible.

It follows that 1 implies 3.

Since Theorem 9 tells us that 3 implies 2, we aim for 1 with 2 in hand.
Suppose Xis bounded and uniformly additive. Take a sequence (u,) from
X, and let A=X, 2 "|p,|€ca*(Z). For each n, let f, be the Radon-
Nikodym derivative of p, with respect to A. Since each f, is the pointwise
limit of a sequence of simple functions, there is a countable collection
T, c = such that f, is measurable with respect to the o-field &, generated by
T,. Look at U,T, =T, and let =/ be the algebra generated by I'. Both I' and
< are countable. An easy diagonal argument produces a subsequence (g),)
of (r,) that converges on each member of 7. It follows from our lemma
that (u,) converges on each member of the o-field () generated by 7.
Therefore, (f,’) converges weakly in L,(A,o(%)), a subspace of L,(A).
Hence, (f,) converges weakly in L;(\) and so (p,) converges weakly in
ca(2). The Eberlein-Smulian theorem comes to our rescue to conclude that
Xmust be relatively weakly compact. ]

An immediate consequence of the above corollary and the Radon-
Nikodym theorem is the following.

Theorem (Dunford - Pettis). Let A € ca*(Z) and X'be a subset of L,(A). Then
TFAE:

1. Xis relatively weakly compact.

2. Xis bounded and the indefinite integrals of members of X are uniformly
countably additive.

3. sup; e #|lfll; < oo, and given € >0 there is a 8 > 0 such that if A(A) <6,
then [,|fld\ <¢€ forallf € X.

Corollary (Kadec-Pelczynski). Suppose X is a nonweakly compact bounded
subset of L,(\), where A is a nonnegative member of ca(Z). Then X contains a
sequence ( f,) which is equivalent to the unit vector basis of I,.

PROOF. By the Dunford-Pettis theorem, we know that the measures
{J(,fdX\: f € X} are not uniformly countably additive on =. Therefore,
there is a sequence (f,) in &, a disjoint sequence (E,) in =, and a § >0
such that for all n,

fE'f,,ldA>8.
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By Rosenthal’s lemma we can (pass to an appropriate subsequence so as to)
assume that

8
dA>68 and d\ < .
S fu <3
J*

n

If (v,) €/, then

o oo
E Ynfn 2 E Ynanu,,,E,,,
n=1 1 n=1 1
o0 oo
2 Z f IY,,f,,IdA- Z YnanU,,,.,,E,,
n=1 En n=1 1
é
28 |val— 5 vl
n n
8
_5§|Yn|‘ o

As one can quickly gather from the above corollary, the Dunford-Pettis
criterion is a powerful tool in the study of L; and its subspaces; when
combined with some ideas from basis theory, this power is displayed in'a
stunning dichotomy for subspaces of L,[0,1], also discovered by Kadec and
Pelczynski. An exposition of this dichotomy, following closely along the
original path cleared by its discoverers, is our next task.

Theorem (Kadec-Pelczynski). Let X be a nonreflexive subspace of L,[0,1].
Then X contains a subspace complemented in L, and isomorphic to I,.

To help us get started, we first provide a way of producing complemented
copies of /, inside L,[0,1].

Lemma. Let (f,) be a sequence from L,[0,1], and suppose that for each ¢ > 0
there is an n, such that the set {t:|f, ()| 2 €l f, |} has measure <e. Then
(f,) has a subsequence (g,) such that (g, /||8,|] is a basic sequence equivalent
to I\’s unit vector basis and for which the closed linear span [g,] of the g, is
complemented in L,[0,1].

PROOF OF LEMMA. We first take care to see just what the set {¢:|f(¢)| >
€| f]l; } having measure < e entails. Call this set E. Then

I, _ nlf@, ¢ 1fQ)I
L= e Lo

-1- Ol gy oq—e,

urer<enm I
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Therefore, under the hypotheses of the lemma, we can find E; and n, so
that

)\(El)<z1;
and
/ Ifnl( )l _1—
E Ilf,.,ll 42’

Next, applying thé hypowneses again-and. keeping the absolute continuity
of integrals in mind, we can find E, and n, > n, so that

ME) <5,
j' Ifnz( )I l
E, Ilf,.,ll 4%’
and
f |fn,(t)l ’
E IIf.,‘Ii 43'

Continually applying such tactics, we generate a subsequence (g,) of (f,)
and sets E, so that

|8, (1)| 1
L g 4

and

eI AQ) 1
dt < .
‘/E,,kg] "gk" 4”+l

Now we disjointify: let
o0
A,=EN U E,
k=n+1

and set

8.(1)

hn(t)— "g " XA
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Some computations:

&n
En__p
lgall "

|g.()] lea (0] ,
<), a+ [ e

1 o le. (D] ,
< 4n+1 + E Lk -

P HgAl

1 & 1 1
< + X <
4n+l kel 4k+1 4

Therefore,

12 ||l = fA

Zf IEAGI f: /Ek lg. (D] ,

8.l k=nt1

1 1
=>1- -
4n+l k-§+1 4k+l

1
I—F'

8n h,
gl b 1Al

1
S;‘*(l—llhnll)sz:-

& _ _h,

h...
ll8all

<

Some reflections:

The h,, are disjointly supported nonzero members of L,[0,1]; therefore,
(h,/|lh,|D is a basic sequence in L,[0,1] equivalent to the unit vector basis
of /;, [h,]is complemented in L,[0,1] by means of a norm-one projection P,
and the coefficient functionals ¢ of (h,) extend to members of L,[0,1]*
having norm one. All this was noticed in our earlier work.

.Our computations alert us to the proximity of the g,, on normalization, to
the 4,, on normalization. In particular,

n

== <
HgAI il 2:

An appeal to Theorem 12 of Chapter V concludes the proof of the lemma. O

E:HPHH¢:H
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Now for the proof of the main theorem we start with the nonweakly
compact closed unit ball B, of X. Let 0 <p <1 and set, for any f € L,[0,1]},

a(f,w)=sup{ | £ (0)lde: M(E) =}

If ay(p)=sup, ¢ ,a(f, ), then the nonreflexivity of X is reflected by the
conclusion that

a* = lim a,(p)>0.
»—0

Therefore, we can choose f, € By, measurable sets E, € [0,1], and p,, > 0
such that

limp, =0,

[ (0ldt =,
E,

and

lima(f,, p,) = a*.
Consider the functions f,’ given by

fn'(’) = fn(t)XE (’)'

Notice that given e > 0 there is an n, so that the set {#: | £, ()| 2 el f, I} <&
in other words, we have estabhshed the hypotheses of our lemma. Rewarded
with the conclusions of that lemma, we can find an increasing sequence (k)
of positive integers such that the sequence ( f{ ) satisfies the following: first,
(f£, /1 f£ D is a basic sequence equivalent to the unit vector basis of l,, and
second, the closed linear span [f; ] of the f; is complemented in L,[0,1]
(and, of course, isomorphic to /,).

Letgn=fk,,’ gn fk’and gn _gn-‘gn

Of course, {g, :n 21} is relatively weakly compact in L,[0,1]; so with
perhaps another turn at extracting subsequences, we may assume (g,’) is
weakly convergent. Now notice that we’ve located a sequence g, in By that
can be expressed in the form

8 =88

where (g.) spans a complemented /, in L,[0,1] and (g;’) is weakly conver-
gent. It is important to keep in mind that neither the g, nor the g’ need find
themselves in X. Regardless, we show that some suitable modification of the
g., when normalized, are close enough to X to ensure the applicability nf
Theorem 12 of Chapter V, thereby establishing the existence in X of an
isomorphic copy of /; that is complemented in L,[0,1].

Since (g’) is weakly convergent, (g5, — 85,+1) is weakly null; thanks to
Mazur’s theorem, there is a sequence (h}) of convex combinations of
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(g%, — g5.+1) tending to zero in norm. We may assume h’ to be of the
an g2n+1 g n
following form: for some k; <k, <--- <k, <---,

. km-i-l_l
hmp= X a™ (g5~ &5iu1)s
i=k,
where, naturally, a{” + --- +a{™ =1 and all the a are >0. It is im-
portant to keep tabs on the vectors
kmu‘l
b= X a™(g3-8.1)
i=kn
and
km+l_l
hm= >z ai™ (82— 8ri41)-
ik

In particular, we should notice that

h, =h, +h},
that due to the nature of the sums involved in the definition of 4/, the
closed linear span of the 4}, is a complemented copy of /; found inside the

closed linear span of the g, itself a complemented subspace of L,[0,1], and
that each 4, belongs to X. What is important here is the fact that

0 = lim||A| = lim||A,, — h[|I.
n m

It follows that passing to a subsequence of the 4,,, we can force (||A,, — k., |)
to tend to zero as quickly as we need to. How quickly ought we shoot for?
Well, quickly enough to apply Theorem 12 of Chapter V. A word of
warning in this connection. The 4/, span a complemented copy of /; in
L,[0,1], but only on normalization do we get the vector basis of this copy;
not to worry, since ||4,,|| is close to ||A},|| for m large enough. This remark in
hand, Theorem 12 of Chapter V ought to be applied easily.

If © is a compact Hausdorff space, then C()* can be identified with the
space rca(Z) of regular Borel measures defined on Q. Recall that a measure
p € rca(Z) precisely when for any Borel set B in , |u|(B) = sup{|p[(K): K
is a compact subset of B}.

Theorem 14 (Dieudonné-Grothendieck). Ler @ be a compact Hausdorff
space and X be the o-field of Borel subsets of 2. Suppose X'is a bounded subset
of rca(Z).

In order for X to be relatively weakly compact, it is both necessary and
sufficient that given a sequence (O,) of disjoint open subsets of Q, then

limp(0,)=0
n

uniformly for p € X'.
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PrOOF. Necessity is clear from the uniform countable additivity of rela-
tively weakly compact subsets of ca(Z).

To establish sufficiency we will mount a two pronged attack by proving
that should the bounded set X satisfy lim,u(0,)=0 uniformly for any
sequence (0,) of disjoint open sets in &, then

1. Given ¢ > 0 and a compact set K C Q there is an open set U of Q containing
K for which

I(UNK) <e

forallpe X
2. Given ¢ >0 and an open set U C Q there exists a compact set K C U for

which

II(UNK) <&

forallpe X

In tandem 1 and 2 will then be used to derive the relative weak
compactness of 2¢". Before proceeding, it is worthwhile to make a couple of
points: first, conditions 1 and 2 obviously say that X"is “ uniformly regular”
with 1 expressing uniform outer regularity and 2 expressing uniform inner
regularity; second, although we do not pursue this here, each of 1 and 2 by
itself is equivalent to the relative weak compactness of X', and so their
appearance in the present proof ought not to be viewed as at all accidental.
On with the proof.

Suppose 1 fails. Then there is a compact set K, and an g, > 0 such that
for any open set ¥ containing K, we can find a u,, € X'for which

ey (V' \Ko) > -
Starting with £ we know that there is a 4, € X’such that
IR\ Ko) > €.
Since u, is regular there is a compact set K, € 2\ K, such that

€
|I‘1(K1)|>70-

Notice that K, and K, are disjoint compact sets so there are disjoint open
sets Y and Z that contain K, and K, respectively. By regularity, Z can be
chosen to satisfy

€
Il(Z\K1) < 7

Let U;=Z and V; =Y. Then
Uc@\V, Kchch=8 KcU=2Z
It follows that

€
I (U\K,) < To
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so that
o (U)] = |1y (K| = 11 (UN\K)

Back to the well once again. V] is an open set containing K. Hence there
is a p, € H’such that

|12l Vl__\KO) > &.
Regularity of p, gives a compact set K, C V)\ K, such tha:
€
|, (Ky)|> 70 .

K, and K, are disjoint compact sets, and so they can be enveloped in
disjoint open sets Y and Z; again the regularity of p, allows us also to
assume that

€
It (Z\K,) < "Zo-
Let Uy=Z NV, and ¥, =Y N ¥,. Then °
LeV\W, K,cV,cV, K,cl,cZ
So

2l UNK,) < ol Z\K,) < 2

and
12 (Gy)] = |2 (K| = 02 (UN\ K )

Our procedure is clearly producing a sequence (U,) of disjoint open sets
and a corresponding sequence (p,) of members of X for which |u,(U,)| 2
€, /4, a contradiction.

Before establishing 2, we make a fuel stop:

2’. Given e> 0 there exists a compact set K C Q such that
Iwl(@\K) <e
forallpe x.

If not, then there exists ¢, > 0 such that for any compact set X € Q there
is a pgx € H'with

Irkl(@\K) > &.
Starting with the compact set &, there is a p; € X'for which
[1l(2) > &.
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Since u, is regular, there is a compact set K, C £ for which
|1y (K7)|> =)

By 1 there is an open set ¥ containing K, for which

& 1
I(V\KD) <7 5
for all p € X. Let U, be an open set satisfying

K, cU cUch.
Then
— 1
(TNK) < 2 5
for all p € #'and
1 (U)] 2 |y (K| = 1D\ K1)
_%_ 5%
2 38 4
Next, there is a g, € X’such that
[12(R\K}) > €.

It follows that

12(@\T,) = 182\ Ky ) — (TN K, )
€
> &y — ’é‘ .

Since p, is regular, there is a compact set X, C Q\T, such that
1/ &
w2 (K5)|2 5(30“ ‘8‘)
Of course, K, and U, are disjoint; so there is an open set ¥, for which
K,cV, s cN\O;
and for which (using 1)
g 1
WI(V\K,) <
for all u € X". Now pick an open set U, for which
K,cbclhcb,.
Notice that U, and U, are disjoint,

— €
W(ONK,) <5
for all p € X", and

12 (Uy)| 2 |12 (K3)| = 182D\ K>)

>_1_( __)_"_OLZ_
2\%7 %) a2
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The inductive procedure should be clear. Again, we produce a sequence
(U,) of disjoint open sets and a corresponding sequence (p,) of members of
X for which |u,(U,)| = g, /4, again, a contradiction.

Now to establish 2, we know by 2’ that given &€ > 0 there is a compact set
F c Q such that

Iwl(@\F) <e

for all p € ¥". Given an open set U, (2\U)N F is compact, and so by 1
there’s an open set V containing (2\U )N F for which

I(V\[(2\U)NF]) <e
holds for all p€ X#". Let K= F\V. Then K cU N F and
[H(UNK) < g @\ F)+pl(V\[(\U)N F]) < 2e.

1 and 2 have been established. Now we show that X'is relatively weakly
compact. By the Eberlein-Smulian theorem we can restrict our attention to
the case where ¥'can be listed in a single sequence (p,). each term of which
can be assumed to be A-continuous with respect to a fixed A € rca™*(Z). Let
f, denote the Radon-Nikodym derivative du, /dA of p, with respect to A;
(f,) is a bounded sequence in L,(A).

Were X not relatively weakly compact, then we could find an ¢>0, a
subsequence (g,,) of (f,), and a sequence (B,) of Borel sets in £ for which

A(B") s 2n+1
yet
[, 18 (@)lar(@) = &
for all n. By regularity, we can enlarge the B, slightly to open U, and obtain
1
AMG) <55
and
f |8aldA = €
Un

for all n. Looking at ¥V, =U %_,U,, we get a decreasing sequence (V,) of
open sets with

LmA(V,)=0
and

[1gdar=e
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for each n. By 2 we have that for each n there is a compact set K, C ¥, such
that

€
d\ <
S Jdr =

for all k. Looking at F,=K,N --- N K, € K, CV,, we see that

[lgdr= [ 1gdah=[  Is.ldA,

which, since V,\ F, € (V;\ K;)U - - - U(V,\K,)), is less than or equal to
n n

[lgddr= X [ IgldAze= ¥

Va k=1"Vi\Ky k=1

The sequence (F,) is a decreasing sequence of compact sets whose A

measures tend to 0; consequently, N , F, is a compact set of A-measure 0. By
1 there is an open set W containing N , F, such that for all &,

[ madrsg.
W\nN,F,

4 4

2k+1 2°

Since A(N ,F,) =0,

-4
fw|gk|d)\ <3

for all k. But W is an open set containing N ,F,; so there is an m such that
F,, c W from which we have

€ €
> sfpmlg,,ldxs/u)gmtdks 7
another contradiction. At long last we’re home free! O

One striking application of the Dieudonné-Grothendieck criterion in
tandem with the Phillips lemma is to the study of /. To describe this next
result of Grothendieck, we need to notice the following about /: [ is
isometrically isomorphic to C(K), where K is the Stone space of the Boolean
algebra 2N of all subsets of the natural numbers. This is an easy consequence
of the Stone representation theorem and the Stone-Weierstrass theorem.
After all, in the notation of the second section, /_ is just B(2N). Now the
map that takes a simple function I]_,a,c, in B(2V) to the function
ri.1a;c4 (Where 4 — A is the Stone representation of 2V as the algebra of
clopen subsets of K ) in C(K) is a well-defined linear isometry on the simple
functions. The domain of the map is dense, and its range is also (thanks to
K ’s total disconnectedness and the Stone-Weierstrass theorem). Therefore,
the isometry extends to a linear isometry of B(2N)=1/_ onto C(K).

Theorem 15 (Grothendieck). In 1%, weak* convergent sequences are weakly
convergent.
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PrROOF. Let K be as described in the paragraph preceding the statement of
the theorem and suppose that (u,) is weak* null in C(K)*. We show that
{g,} is relatively weakly compact. From this it follows that (u,) is weakly
null.

Suppose such is not the case. Then the Dieudonné-Grothendieck criterion
provides us with an &£ > 0 and a sequence (O,) of open disjoint subsets of K
and a subsequence (»,) of (n,) for which we always have

l”n(on)l 2 €.

Using the regularity of the », and X total disconnectedness, we can (and do)
assume that the Q, are clopen as well. Now we take note and make use of
the fact that the Boolean algebra 2V is o-complete in the sense that every
countable collection of elements in 2™ has a least upper bound therein; this
o-completeness is of course shared by the Stone algebra of clopen subsets of
K and allows us to unravel the procedure described in the second section,
The Classical Nonreflexive Sequence Spaces.- More precisely we can define
v, € ba(2V) by

in(A)=vn(::r;0k)

for any A C N. Since (»,) is weak* null and sup, ¢ A0, is a clopen set in K
for any A C N,

0 =limy,(C, =lim#,(A)

UPk e a0k )
for any A. It follows from the Phillips lemma that

0=li;n)k:I1‘n({k})l
= h'lln g‘yn(ok)‘,

a contradiction. ]

Weakly Convergent Sequences and Unconditionally
Convergent Series in L,[0,1] (1< p <o0)

In this section we present a couple of the finer aspects of “Sequences and
series in Banach spaces” in case the terms live in L,[0,1] for 1 < p <o0. We*
give complete proofs of the pertinent facts only in case 1< p <2; what
happens (and why) in case p > 2 is outlined in the exercises. To be frank,
this latter case causes only minor difficulties once the case 1< p<2 is
understood. In addition, the situation in which unconditionally convergent
series in Lp [0,1], for 1 < p <2, find themselves is one of the central themes
of present-day “Sequences and series in Banach spaces”; so special atten-
tion to this case seems appropriate.
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We start this section with the beautiful Khinchine inequalities, proceed
directly to Orlicz’s theorem about the square summability of uncondition-
ally convergent series in L,[0,1] for 1< p <2, pass to a proof of Banach
and Saks that weakly convcrgent sequences in L,[0,1] for 1< p <2 admit
subsequences whose arithmetic means are norm convergent and close with
Szlenk’s complementary result to the same effect as that of Banach and Saks
in case p == 1.

Recall the definition of the Rademacher functions; each acts on [0,1] and

has values in [ — 1,1]. The first r; is just 1 everywhere. The second, r,, is 1 on
[0,3)and ~1on([},1}; ;is1on[0,})and[3,3) but —1 on [,3)and [3,1].
Get the piciure? Okay.

Theerem (Khinchine’s Inequalities). Ler (r,), ., denote the sequence of
Rademacher functions. Then for each 1< p < oo there is a constant k, >0
stich that

2 172
k;l(zai) S"Zairi
i i P

holds, for any finite sequence (a;) of reals.

1,2
< kp(Za,-z)

Proor. The Rademacher functions are orthonormal over [0,1] and belong
to L_[0,1] with sup norm 1. Consequently, we need only show the existence
of constants in the following situations:

) if2< p, then we need to show there is a K > 0 such that |[X,a;7]|, <
KZal)/.

(ii) If 1< p <2, then we need to show there is a k > 0 such that k(X,a})"/?
<|Ea;nll,-

Let’s establish Khinchine’s inequalities for p > 2 then. Again the monotonic-
ity of the L,-norms lets us concentrate on p an even integer, say p = 2l,
where / >1 15 a whole number. Look at

Sn = z airi
i=1
and take the integral over [0,1] of its pth power. We write down what

results; the reader is advised to reflect on what’s written down in light of the
binomial (and multinomial) formula!

fO‘S:(r)dt=f0's:'(t)dr

gt

i=1

= ... q° L N ]
ZAal.....ajail : ai/fril ril’9
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@y, ...,a; are positive integers,

Ya =21,
(g + -+ +a))
ay,.a (al)! .. (aj)! >
and iy, ...,i, are different integers between 1 and n. Thinking about the fact
that the r; (under the last integral sign above) are the Rademacher functions,

we see that the form of [S? is really considerably simpler than at first
guessed, namely,

A

= [c20_ /

since [r .- r"/ is 0 or 1 depending on the existence of odd powers
@y, ...,a; or nonexistence thereof. Of course, in this form of [S?, we know
that Bl, ..., B; are positive integers and LB, = /. Writing [S? again, we have

/SP— Zp’A 2ﬁ|... ,ﬂj_
,ﬂ Bio- ﬁ_, 'j

We wish to apply Holder’s inequality; so we estimate the ratios

Azp,.. 28, _ ) (B)---(B)
Ap,..8,  (2B)!---(2B)! (1"
_ @NQ@1-1)--- (+1)()H(By)! -~ (B)!
(251)‘ °t (Bl +1)(Bl)! T (25,) o (B, +1)(Bj)!(1)!
_ @0)QI=1)---(1+1)
@) (B, + 1) (28) - (B, +1)

L@DEI=Y--- (141 _ (2D)(21=1)--- (1+1)
281...28 2B+ +B;

This gives
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From this we see that
1721

(fse) "= (fs2)
(]

i=1
and (i) has been established.

To establish (ii), we have need of an old friend: Liapounov’s inequality.
Recall what this says: If f >0 belongs to all the L,[0,1] for p >0, then
log fof? is a convex function of p > 0.

Liapounov’s inequality is an interesting consequence of Holder’s inequal-
ity that ought to be worked out by the reader. Let’s get on with (ii). We are
only concerned with 1 < p <2. PickA; and A, so that A, A, >0,A, + A, =1
and pA, +4A, =2. Then

n
( ) ) IS,
i=1

<|ISIZM|IS,113*:  (by Liapounov’s inequality)

n 17274,
sus,,u;:*l{ﬁ ( )» a?) ] ;
i=1
by (i). On dividing both sides by the appropriate quantity we get (with
careful use of pA; +4A,=2)

4~/ (T a?) <1,

and with it (ii). a

Let 1< p <oo and suppose that ¥, f, is unconditionally convergent in
L,(0,1). Let 7, denote the nth Rademacher function. By the bounded
multiplier test if (a,) is a sequence of numbers with |a,| <1 for all n, then
there is a K > 0 such that

n

Y afi] <K

k=1 p

for all n. It follows that if 0 < ¢ <1, then

[1E 06| s=| £ n(os] <k
0 k=1 k=1 »

holds for all n. Khinchine’s inequality alerts us to the fact that there is an
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A > 0 such that for any scalar sequence { 8,) we have

Z ﬁk’ké .

15=1 P

3

n 1/
(): Bz) <A
k=1

Combining these observations, we conclude that

Ll[kZ::Isz(S)]p/z ds stlAP
=Ap‘/(;l/(‘)l
=A”](;1J:)l

< A"flKP di = APK?.
0

14

ds
P

Z IACIA
k=1

4
dtds

S (1)
k=1

2 fk(S)rk(t)i ds d
k=1

Summarizing we get the following fact.

General fact. If ¥, f, is unconditionaliy convergent in Lp(O,l), then there is
a C > 0 such that

fol(zk:f,f(t))p/zdt <C.

Our way is paved to prove the following.

Theorem (Orlicz). Let 1< p <2 and suppose that ¥, f, is unconditionally
convergent in L,(0,1). Then

YIfll2 < oo.
k

PrROOF. Let n be any positive integer. Then if $+1/g=1/p, we have
n » 1/p
| X 1) =lawa)l,
k=1

<[(fe(®) I (a}7?, ....d37,0,0,..) |,

for any d,, ... ,d, = 0. A bit of computation shows that g=2p/(2— p). On
taking pth powers, we have for the same d that

- n 2 pP/2) n
kzl TAQIEA (El IAG] ) ( Y d2ep

V(22— p)/2
k=1 )
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Term-by-term integration gives

L » n 2-p)/2 N 2 p/2
[ L ol aas| £aer) " [ £ nof]
0 k=1 k=1 0 \k=1
n 2-p)/2
s(Zaen] Ve
k=1

where C was awarded us as an upper bound for the integral involved
through the graces of our general fact. It now follows that if r is conjugate
to 2/(2— p), then

(ot =

Computing what exactly it means for r to be such as it is, we see that
r=2/p and so

n n 2/p
> ||f/<”§=( > fllfk(l)rdt) <C"<oco.
k=1 k=1"0

The arbitrary nature of n and the fixed nature of C force

YlAIE <. o

Thedrem (Banach-Saks). Suppose 1< p <2.If (f,) is a weakly null sequence
in L,[0,1], then ( f,) admits a subsequence fi,) for which {72 fi || = o(n*’?).

PROOF. Since (f,) is weakly null, we may as well assume that each f, has
norm <1. Because 1 < p <2, it is easy to convince yourself that there is a
constant 4 > 0 for which

la + b|? < |a|? + pla|®~'bsign(a)+ A|b|” (2)

holds regardless of the real numbers a, b considered. Now, let S, = f; = f;.
Choose k, > k, so that

LUOF sign(£(0)f (1)
Let S, = fi, + fi, Choose k; >k, so that
L1800 sign($,(0) i, (1)
The path to the choice of (k,) ought to be clear. Notice that
IS5 51,205 + 2 [ 18,-1()F ™ sign(8,1(0) fe (1) i

+ Al fi 7

1
<-—.
p

1
<-.
p
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as follows from inequality (2) in the obvious fashion,
<|IS,-illf +1+ 4.
Running through this last inequality a few times gives

4
=[S, 15 <[ISI5 +C(n—1)<Cn

i=1

for some C >1. This, though is what we wanted, since it tells us that

<CVPpl/p, O

i=1

Corollary. If 1< p <2, then any bounded sequence in L,[0,1] admits a
subsequence whose arithmetic means converge in norm.

PROOF. If (g,) is a bounded sequence in L,[0,1], then (g,) admits a
subsequence (g,, ) weakly convergent to some g0 € L,[0,1]—this thanks to
the reflexivity of the L, in question. On replacing ( g,,) by (8m, 80), we find
ourselves with a sequence (fa) = (8m,— 8o) that satisfies the hypotheses of
the Banach-Saks theorem. The conclusion of that theorem speaks of a
subsequence ( f; ) of (f,) for which

n
ka, SCnl/”
=1

for all n and some C >0 independent of n. What does this mean for
(&m, — 80)? Well,

1 n
( n Igl B~ 80 )

l n
=13 Z (gmk _80)
na !

p

=1 s Cn-pV/p.
n

Z fe,

What about p =1? Again, weakly null sequences admit of subsequences
whose arithmetic means .converge in norm to zero. Here, however, we have
the opportunity to use the weak-compactness criteria developed in the third
section, Weak compactness in ca(Z) and L,(p)—an opportunity not to be
denied.

First, we provide a small improvement on the argument given in the
Banach-Saks theorem in case of L,[0,1] to prove that if (f,) is a weakly null
sequence in L,[0,1], then there is a subsequence (fx,) for which

ka

l-l

lim sup
"< <

As before, we assume || £,]|, <1 for all n and that (f,) is weakly null. Let
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k, =1 and choose k, > k, so that
[ 7O (0) de <3
Next, let k5 > k, with
L1 0) de, [ S (01 (1) e <3.
Again, let k, > k, be chosen so that
L0 0 dt, [ 1) d, [ () (1) de <.
The extraction procedure should be clear. Let j, <--- < j,. Then

z:fk" ): Wi I +2 % f fo o,

i=1 <l<isn

Sn+22": Z(j,)-l=n+22 i1

im21=1 . jim2 Ji
<n+2n=73n.
The assertion we are after follows quickly from this. a

Diagonal Lemma. Ler (f,) be a weakly null sequence in L,[0,1}. Then for
each &> 0 there is a subsequence (g8,,) of ( f ) such that

Z &

1-1

fim sup

k ny<---<ng

ProOF. We may assume that || f, ||, <1 for all n. Let m, n be positive integers
and set

E,.= {t:]f,,(z)|2m};

on so doing, notice that (if A denotes Lebesgue measure)
1
nh = nt2 ntzmAEmn’
= [[UOI2 [ (0] mA(E,..)

or

1

AMEn )<

The set { f,: n 21} is relatively weakly compact in L,[0,1]; so the Dunford-

Pettis criterion supplies us with an % >0 for which [¢|f,(¢)|dt<¢e/3

whenever A(E) < 7. In tandem with the simple calculation m¢de above, we
find that there is an m so that

A RS

mg. A
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for all n. Define f, by
f,(t) ift€E, ,,
7= -
otherwise.

It is plain that £,(£)—7,(t) is just £,C\;/. 1y < mo)» 20d 80 f, = f,€ moB; (g 1.
Thanks to the weak compactness of mB, |, ), we can find an increasing
sequence (n,) of positive integers and an h € my B, o ; such that

h=weak lim f, =7, ;
k — o0

our earlier remarks let us assume even more, namely,
1 & -
% Z (o, =)= 1] =0
Jj= 2

Smce (fo,— f,, ) converges weakly to h in L,[0,1], the same holds true in
L,[0,1); but (f ) is weakly null in L,[0,1]; so —h= weakhmkf,, It now
follows from the fact that

W= [ |fa(0)]dt < e/3 for all k, that ||A, < e/3.
E,

mo, ny

lim sup
k i< <iy

Putting all the parts together, we have that if k is big enough, then

1 ¢ ; 1 ¢ ;
; .Zl(f""l—fn’/)— ?jgl(f""l—f"'/)-h

j=

€

55,
2

sup
jl<... <il¢

sup
1 h< o <i

which tells us that for the same large k,

1 &
sup ;):fn,
i< <[ C =1 Y
k ) 1 &
< sup |l X (A —F )=k +— Z i, I+ 1Al
ih<es<ig j=1 4 1 pj-l 4
<e.
8« = f,,) is our subsequence. O

Theorem (Szlenk). In L,[0,1], every weakly convergent sequence has a subse-
quence whose arithmetic means are norm convergent.

PROOF. We suppose that (f,) is a weakly null sequence in B, (0.1 1f the
many virtues claimed of the diagonal lemma are to be believed, then we can
find a sequence (n,(/)){2, of strictly increasing sequences of positive
integers, each subsequent sequence a subsequence of its predecessor such
that for any / we have

fim sup

ko ip<-ee <ig

1 X
PR e
Jj=1 1
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Of course, the subsequence we are looking for is precisely the sequence (g,)
whose mth item is f, (m). Let’s check it out: If k >/, then

{

Zg,_ Z 23,

;=1 j-1+1 1
104 k-1
<z -anj =7 z_llf,.,‘,(l'*'J)
j= i= 1
Now
. k-1
lim Z g || < im Z g ||+ hm — Y £ I+ ))
k= oo -1 k= oo k -1 k=1
J 1 J J 1

The first of these dominating terms (l—i—n—lk ~llA/K)E 1 g)ll) is O; after all,
k > [ fixes / but lets k go wild! The second dominating term is no more than
1/1 because of the diagonal lemma. But this gives us

regardless of what the / is. It must be that

fim —Egj _<_—ll-

k — o0 j"l

—

Ly
lim || g; |l =0. O
koo |l k = J .
Exercises
1. The Dunford- Pettis property. A Banach space X enjoys the Dunford-Pettis

property if given weakly null sequences (x,) and (x7) in X and X*, respectively,
then lim, x}*(x,)=0.

(i) A Banach space X has the Dunford-Pettis property if and only if for any
Banach space Y, each weakly compact linear operator 7: X =Y is com-
pletely continuous, i.e., takes weakly convergent sequences in X to norm
convergent sequences in Y.

(ii) For any compact Hausdorff space €, C(f) has the Dunford-Pettis prop-
erty. (Hint: Think of Egorov’s theorem.)

(iii) If X* has the Dunford-Pettis property, then so does X.

. Operators on c¢,. The bounded linear operators from c, to a Banach space X

correspond precisely to the weakly unconditionally Cauchy series in X.

(i) A bounded linear operator T': ¢, — X is weakly compact if and only if the
series L, Te, is weakly subseries convergent.

(ii) A bounded linear operator T: ¢, — X is compact if and only if the series
¥, Te, is norm subseries convergent.
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3. Operators into l,. The bounded linear operators from a Banach space X into /,
correspond precisely to the sequences (x¥) in X* for which X, |x¥x| < co, for
each x € X, i.e., the weakly unconditionally Cauchy series in X*.

(i) An operator T: X — [, is weakly compact if and only if the series T, x?* is
weakly subseries convergent in X*.

(ii) An operator T: X — [, is compact if and only if the series £,x* is norm
subseries convergent in X*.

4. Operators into c,. The bounded linear op=rators from a Banach space X into ¢,
correspond precisely to the weak* null sequences in X*.
(i) A bounded linear operator T: X — ¢, is a weakly compact operator if and
only if the sequence (T *ey) is weakly null in X™*.
(ii) A bounded linear operator T: X — ¢, is a compact operator if and only if
the sequence (7T *e) is norm null in X*.
(iii) For X any of the spaces ¢g, /o, I, (1< p <), L,[0,1] 1<p <o), or
ba(Z) there exists a noncompact linear operator from X into c,.

(iv) Every bounded linear operator from / to ¢, is weakly compact; therefore,
¢, is not isomorphic to a complemented subspace of /.

S. Operators on l,. The bounded linear operators from /; to a Banach space X
correspond precisely to the bounded sequences in X.

(i) A bounded linear operator T:/, = X is weakly compact if and only if the
set {Te,: n 21} is relatively weakly compact.

(ii) A bounded linear operator T:/, — X is compact if and only if the set
{Te,: n 21} is relatively norm compact.

6. The sum operator: a universal nonweakly compact operator.

(i) The operator o: [, = [, defined by

()= X 1)

i=1
is a nonweakly compact bounded linear operator.

(ii) A bounded linear operator T: X — Y is not weakly compact if and only if
there exist bounded linear operators S:/, — X and U:Y — [/ such that
UTS = o. [ Hint: Pelczynski’s proof of the Eberlein-Smulian theorem gives
an inkling of how to find a bounded sequence (x,) whose image is basic
and satisfies y*Tx, > 8 for some y* € Y*. The operator S is induced by
(x,) and leaves little choice as to how U is to be defined.]

7. A universal noncompact operator.

(i) The formal identity operator i:/; — [, is a noncompact bounded linear
operator that has the sum operator ¢ as a factor.

(ii) A bounded linear operator B: X — Y is not compact if and only if there
exist bounded linear operators J: [, = X and W:Y — I such that WBJ =i.
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[Hint: In case B is weakly compact but not compact, aim the
Bessaga-Pelczynski selection principle toward inducing a weakly compact
operator from /, into X.]

8. Edgar’s ordering of Banach spaces, I. Following G. A. Edgar, a partial ordering
of Banach spaces can be defined: Given Banach spaces X and Y, we say that
X<Yif X=NregxnT** '(Y).

(i) Banach space X satisfies Mazur’s condition (weak* sequentially continuous
functionals on X** are in X) if and only if X <¢,.

(ii) ¢ < X if and only if ¢, is isomorphic to a subspace of X.
9. Edgar’s ordering of Banach spaces, I1.

(i) X<l if and only if any x** € X** which is weak* continuous on
bounded weak* separable subsets of X* is in X.

(ii) /., < X if and only if /, is isomorphic to a subspace of X.

10. The Yosida- Hewitt decomposition theorem. Let & be a set and Z be a o-field of
subsets of . Suppose p, » € ba(Z). Define

(vo)(E)= s (m(F)+»(E\F)}.

CE,Fe

(i) p Vv » € ba(Z). Further, if n € ba(Z) satisfies n(E) 2 u(E) and n(E) 2 »(E)
for all E€ X, then n(E) > (p Vv)XE) for all E€ X.
(ii) If p,» € ca(Z), then p Vv » € ca(2).
We say n € ba(Z) is purely finitely additive if given a countably additive x on
= for which |uf E) < |nK E) holds for each E € Z, then p = 0.

(iii) Let p € ba(Z). Then p can be written in the form p=p + p,,, where
u €ca(Z) and p,q, is a purely finitely additive member of ba(Z). [ Hint:

By considering g,
- lul+#)_(lnl—#)
B ( 2 2 ’

as the difference of two members of ba*(Z), one need only consider
nonnegative p. Now let I' C ca*(Z) be the set {y€ca*(Z): y(E) <p(E)
for all E€X}. Choosing v, €T so that v,(2) 7sup{y(Q):y€T} and
letting p, =y, Vy, V - -+ Vy,, notice that lim,p( E) exists for all E € X.]

(iv) If Q is the set N of natural aumbers and = is the o-field of all subsets of ,
then any purely finitely additive measure on 2 vanishes on finite sets.

11. Edgar’s ordering of Banach spaces, I11.

(i) X</, if and only if any x** € X** such that x**(weak* L, x¥)=
X,x**x* for each weakly unconditionally Cauchy series £, x¥ in X*,
belongs to X.

(i) /; < X if and only if X is nonrefiexive.
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12. Pelczynski’s property V. A Banach space X has property V whenever given any
Banach space Y, every unconditionally converging operator 7: X — Y is weakly
compact.

(i) For any compact Hausdorfl space Q, C(2) has property V. (Hint: Use the
Dieudonné-Grothendieck criterion and Gantmacher’s theorem.)

(ii) If X has property V, then a subset K of X* is relatively weakly compact
whenever

limx*x, =0 uniformly for x* € K
n

for any weakly unconditionally Cauchy series ¥, x,. [ Hint: The condition
cited implies not only the boundedness of the linear operator T: X — /(K
defined by (Tx)(x*)= x*x but also the fact that T is unconditionally
converging.]

(iii) If X* has property V, then weak* null sequences in X** are weakly null.
(Hint: Phillips’s lemma is worth keeping in mind.)
(iv) The converse of (ii) also holds.

(v) If X has property V, the weakly Cauchy sequences in X* are weakly
convergent. ( Hint: Schur’s lemma is worth keeping in mind.)

13. Relatively disjoint families of measures. Let Q be a set, 2 be a o-field of subsets
of © and 0 < e < 8. A sequence (u,) in ca(Z) is called (8, €)-relatively disjoint if
sup,|n, () < oo and there exists a sequence ( E,) of pairwise disjoint members
of = such that for each n

Ik, (E,)>8 and Y |n,l(E,)<e.

m+#n

The sequence () is called relatively disjoint if it is (8, €)-relatively disjoint for
some choice of £ and §.

Relatively disjoint sequences in ca(Z) are basic sequences equivalent to the
unit vector basis of /; with a closed linear span that is complemented in ca(Z).

14. Phillips’s lemma and limited sets. A subset B of a Banach space X is limited if
lim,x*x = 0 uniformly for x € B whenever (x}) is a weak* null sequence in
X*.

(i) Limited sets are bounded.
(ii) Relatively compact sets are Limited.
(iii) In separable Banach spaces limited sets are relatively compact.
(iv) The set {e,: n >1} of unit coordinate vectors is limited in /, but not in ¢,

15. A theorem of Buck. In a finite-dimensional Banach space, a bounded sequence
each subsequence of which has norm convergent arithmetic means is itself
convergent.

16. Weakly null sequences in c,. If (x,) is a weakly null sequence in ¢, then (x,)
has a subsequence each subsequence of which has norm-null arithmetic means.
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17. C[0,1] fails the weak Banach-Saks property.

(i) For fixed positive integer k, show that there exists a nonnegative sequence

(gn)nzl in Bc(o 1} such that
(@) gr()=0if t&(k—1)/k,k/(k+1)).

(b) lim, g¥(¢) =0, for all r €[0,1}.
) If ny<n,;< <nk, then there is a 7,€(0,1] such that g,,l(to)—

8:,(10) == gn,('o) =1
(ii) Following (i), prove that the sequence ( f,) defined by
fu=gnt g+t

is a weakly null sequence in C[0,1] for which given n; <n, <
Ry <0 <Ny, we have (fn. + o +fn2,,,)(t) 2% for all r €{0,1].

18. Orlicz’s theorem in L,, p>2. Let p>2.
(i) There is M > 0 so that for any real numbers a, b

-<n,,<

|al” + pbla|? 'sgna + M|b)* <|a+ b|*.

(i)) There is M > 0 so that for any f, g in L,[0,1]

1 1 1
L@ de+ m[1g(0F de < [(17(1)+og(0)] ar

() (i ()

holds for some sign o = +1. _
(iii) From (ii) derive Orlicz’s theorem for p > 2, i.e,, if L, f, is an uncondition-
ally convergent series in L,[0,1], then L[|/, I5 < co.
19. The Banach-Saks theorem for L,, p>2. Let p>2 and denote by [p] the
greatest positive integer < p. ‘

(i) There are 4, B > 0 such that for any real numbers a, b
(r]

la+ b|? <|a|” + pla|” 'bsgna + A|b|? + B Y |a]” /||’
Jj=2

(ii) If (f,) is a weakly null sequence in L,[0,1], then (f,) has a subsequence
(g,) such that

f e

i=1

n—1

Z g.(t)

-1

dt

r<]’

n-1

/
sgn( > g.-(t))gn(r)df

=1

i=1
P=J

|gn(t)|1 dt'

"_

1
g,(t)

+Af0’|g"(r)| dr+ B Z ap

(iii) The subsequence (g,) extracted in (ii) satisfies an estimate [|Z]_ gl , < Myn
for some M > 0.
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20. Absolutely p-summing operators in_Hilbert spoce,

(i) Using Khinchine’s inequalities, prov :hat the natural inclusion map i : [, -
1, is absolutely 1-summing.

(ii) Let H, K be Hilbert spaces. Recall that 2 bounded linear operator 7: H —» K
is a Hilbert-Schmidt operator when 7" admits a representation in the form
Tx=XY,A(x,h,)k,, where (A,) € i3, (k,) > an orihonormai sequence in
H and (k,) is an orthonormal sequence 1. X. Show that every Hilbert-
Schmidt operator has the natural inclusic.: «ap i:{; — [, as a factor.

Consequently, every Hilbert-Schmidt cpa-ator is absolutely 1-summing
and the absolutely p-summing operators o H to K coincide with the
Hilbert-Schmidt class for every 1 < 5 < 2.

21. Weakly compai_-t sets in L,; [0,1] and the Dunfora-Fettis property for L,[0,1].
(i) Weakly compact sets in L [0,1] are norm separable.
(i) If X'is a weakly compact subset of L {{.7], then for each ¢> 0 there is a
measurable set B C [0,1] whose complenzci't has measure less than ¢ such
that { fcg: f € X'} is relatively norm compact in L_[0,1].
(iii) L,[0,1] has the Dunford-Pettis property.

22. Cotype 2. A Banach space E has cotype 2 if there exists a ¢(E) > 0 such that
given x;, x,, ..., X, € E; then

n

Y n(n)x,

i=1

n 12 . 2 \12
(i}_:lnxiu’) < c(E)( A dt)

where (r,) is the sequence of Rademacher functions.

(i) If E has cotype 2, then m,(X; E)=m,(X; £} for any 2 < p <co and any
Banach space X.

(ii) Hilbert spaces have cotype 2.

(iii) Let H, K be Hilbert spaces and 1 < p < 0. Then 7,(H; K) coincides with
the class of Hilbert-Schmidt operators from H to K. '

(iv) If 1< p <2, then L,(0,1) has cotype 2.

Notes and Remarks

Banach proved Theorem 1 in case  is a compact metric space; however, his
proof carries over to the general case. Once the dual of C(Q) is known as a
space of measures, the weak convergence or weak Cauchyness of a sequence
is easily recognized. Banach was in position to recognize this (at least in case
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Q is a compact metric space) being close to Saks and Tecognizing the
relevance of integration 1f:cory

Theorem 2 is due to R. Baive: It provides an elegant internal characteriza-
tion of functions of the -1 *-ie class. For an enjoyable read we recom-
mend HausdorfP’s discus:‘on o Baire's classification scheme of the bounded
Borel functions. - »

Theorem 3 is duc to K. .. Phillips (1940) and c¢an be found in his
contribution: “On linear rransformations,” a paper filled with still delicious
tidbits. The injeciivity of /_, is shared by other Banach spaces including
1,(T')- and L_(p)-spaces The complete characterization of spaces comple-
mented by a ‘norm-one projection in any superspace was obtained by
L. Nachbin (1950), D. Goodner (1950), and J. L. Kelley (1952) in the real
case and M. Hasumi (1958) in the complex case. Their result is a Banach
space X is complemented by « norm-gne projection in any shp‘er space if and
only if there exists a. sxiremuiéy disconnected compact Hausdorff space @ such
that X is isometrically iscmorphic to C(R). If you relax the demand that the
projection be of ncrm o-e, tiien you are face to face with a long-standing
open problem in Banach space theory Which Banach spaces are comple-
mented in arry su,,ef\'pace"

Theorem 4 is a maivelous discovery of A. Sobczyk (1941). Naturally,
Sobczyk’s proor diffcrs foom the proof of Veech presented in the text.
Another proof, due o A, Pzlezynski and found in his “Projections in certain
Banach spaces” {196u), i« strongly recommended, too.

The statement of Theorem 4 actually characterizes ¢, among the separable
Banach spaces; i.€., any infinite-dimensional separable Banach space com-
plemented in any scparaile super space is isomorphic to ¢g. That this is so is
an admurabie achievermneist of modern Banach space theory with the deciding
blow being struck by & Fipp.s 11977, ‘

The fact that every separabie fianach space is a quotient of /; is, as we’ve
already noted in the tcxt, due to S. Banach and S. Mazur (1933). The
corollary fact that /, is the unique “projective” object among the separable
infinite-dimensional Banach spaces seems to be due to J. Lindenstrauss. G.
Kothe has extended the result to nonseparable spaces.

The description of B(Z)* is due to T. H. Hildebrandt (1934) and, -
independently, G. Fichtenholtz and L. V. Kantorovich (1934), The paper of
K. Yosida and E. Hewitt (1952) is must reading in coming to understand the
exact nature of individual members of ba(Z); Exercise 10 is due to Yosida
and Hewiit. : . )

Each of the results of the secuon on /%, Schur’s theorem about /,, and the
Orlicz-Pettis theorem is a “name” theorem; each has earned its place as
such. The Nikodym boundedness theorem in ca(Z) was already referred to
in Dunford and Schwartz as a “striking improvement of the principle of
uniform boundedness” in that space. Grothendieck’s generalization spent
some years in surprising anonymity, although it appeared in his widely
ignored Sad Pauio lecture notes from the mid fifties.
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Rosenthal’s lemma was instrumental in H. P. Rosenthal’s (1970) study of
operators on C(2) spaces, where  is an extremally disconnected compact
Hausdorff space. Using variations on a common theme of disjointification,
Rosenthal showed that nonweakly compact operators on such C() fix a
copy of [, and that a dual containing a copy of ¢,(I’) also contains a copy
of I_(T). Exercise 13 is to be found in this study. We follow Kupka’s
approach in the text but recommend the reader treat himself to a reading of
Drewnowski’s generalization (1975) of the Rosenthal lemma.

Our presentation of many of the results of this chapter was inspired by an
unpublished manuscript of J. Jerry Uhl, Jr., accompanied by many enjoy-
able conversations with that individual regarding this material. This is
especially true of Phillips’s lemma and Schur’s theorem, two grand old
interchange-of-limits jewels. Incidentally, the original objective of Phillips’s
lemma was part (d) of Exercise 14.

Everything that appears in the third section, Weak Compactness in ca(Z)
and L,(p), save the results of M. 1. Kadec and A. Pelczynski (1962) is at
least stated in Dunford and Schwartz, and to a greater or lesser extent we
have followed the spirit of their presentation. It was R. E. Huff who pointed
out the proof of Theorem 9 and its natural similarity to many of the
“continuity at a point implies global continuity” style results that occur in
topological algebra.

M. Fréchet introduced the metric d, and O. Nikodym took over the study
of (2, d,). The upshot of Nikodym’s efforts is the fundamental Nikodym
convergence theorem.

G. Vitali (1907) showed that if (f,) is a sequence of Lebesgue-integrable
functions on [0,1] which converge almost everywhere to f, then [}f(s)ds
and lim,, [Jf,(s) ds exist and are equal if and only if the indefinite integrals
of the f, are uniformly absolutely continuous with respect to Lebesgue
measure. H. Hahn proved that if (f,) is a sequence of Lebesgue-integrable
functions on [0,1] and if lim,, [ f,(s) ds exists for every measurable set E,
then the indefinite integrals are uniformly absolutely continuous and con-
verge to a set function continuous with respect to Lebesgue measure. These
set the stage for the Vitali-Hahn-Saks theorem proved in the generality set
forth herein by S. Saks, by much the same method as employed here.

The weak sequential completeness of ca(Z) and L,(A) is an easy conse-
quence of the Vitali-Hahn-Saks and Nikodym convergence theorems.

Theorem 13 is due in the main to V. M. Dubrovskii (1947); we follow
Dunford and Schwartz in principle for our presentation. Naturally the
Dunford-Pettis theorem can be found in their memoir “Linear operations
on summable functions” (1940).

The paper of M. 1. Kadec and A. Pelczynski (1962) analyzes the structure
of subspaces of L,[0,1] for p > 2 in addition to containing the gems treated
in the text. Among the noteworthy results contained in Kadec-Pelczynski is
their proof that Hilbertian subspaces of L,[0,1] are complemented whenever
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p =2, and their discovery that regardless of p >1, if X is a complemented
infinite-dimensional subspace of L,[0,1), then either X is isomorphic to I, or X
contains a complemented subspace isomorphic to 1,.

The Kadec-Pelczynski alternative for subspaces of L,[0,1] was substan-
-tially improved by H. P. Rosenthal (1970). In his quest to know all there is
to know about subspaces of L,[0,1], Rosenthal discovered the following.

Theorem (Rosenthal). Let X be a closed linear subspace of L,[0,1). X is
reflexive if and only if X does not contain 1] uniformly; in which case, X is
isomorphic to a subspace of L,[0,1] for some 1< p <2.

The proof of this theorem depends on some diabolically clever change-
of-density arguments that evolve from the Grothendieck-Pietsch domination
scheme. It was an analysis of Rosenthal’s argument that, in part, put
B. Maurey and G. Pisier on the right path toward their “Great T'heorem.”

The Dieudonné-Grothendieck theorem was proved in a special case by
J. Dieudonné and given general treatment by A. Grothendieck in his
Canadian Journal of Mathematics memoir (1953). It was there that the
Dunford-Pettis property was first isolated and the results of Exercise 1
derived. Theorem 15 is also found in this basic contribution; spaces X with
the property that weak* null sequences in X* are weakly null are often
called Grothendieck spaces.

Khinchine’s inequalities are an old and venerable contribution due to
A. Khinchine. It is only recently that S. Szarek and U. Haagerup found the
best constants in these inequalities.

Our presentation of Orlicz’s theorem follows W. Orlicz’s original proof
(1930); Exercise 18 indicates the modification necessary in case p > 2.
Actually with a bit of tender love and care Orlicz’s proof can te made
to prove the following: Suppose L,f, is a series in L,[0,1] for whic
X,e,f, converges for almost all sequence (e, ) of signs m {£1)}". Then
ool AL ll527Pe 101 < 0o, Here cotype L,[0,1]1=2 if 1< p < 2, whereas cotype
Lo, 1] = p if p > 2. In light of our ﬁrst proof of the Orlicz-Pettis theorem, it
seems ﬁtting that this sharpening of Orlicz’s theorems apparently involves
some apparent relationship to the behavior of sums of independent random
variables having values in a Banach space.

The application of Khinchine’s inequalities to p-summing operators was
first broached by A. Pelczynski (1967) and A. Pietsch (1967).

The Banach-Saks phenomenon in L,[0,1] for 1 < p < oo has a curious tale
accompanying it. In their original note Banach and Saks (1930) make
special mention of the failure of the phenomenon in L,[0,1]; indeed, they
claim to produce a weakly null sequence in L,[0,1] without any subse-
quences having norm convergent arithmetic means. Of course, W. Szlenk’s
proof (1965) bares the Banach-Saks slip.

We cannot leave our discussion of the Banach-Saks-Szlenk theorem
without recalling the now celebrated discovery of J. Komlés (1967): Given a



122 VII. The Classical Banach Spaces

bounded sequence (f,) in L,[0,1] there exists an f € L,[0,1] and a subse-
quence (g,) of (f,) such that each subsequence (h, ) of (g,) satisfies
n
f=lim 1 Y h, almost everywhere.
n n .

That C[0,1] fails the so-called weak Banach-Saks property was first
shown by J. Schreier; we take our proof (Exercise 17) from J. Bourgain’s
(1979) penetrating study of operators on C(£2) that fix copies of C(a) for
varnous ordinals a.

Tihe uncovering of the sum operator as a universally nonweakly compact
operator was the work of J. Lindenstrauss and A. Pelczynski (1968) while
W. 8. Johnson (1971) used this to show the universality of the formal
identity i: /, = I, as a noncompact operator.
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CHAPTER VIII
Weak Convergence and Unconditionally

Convergent Series in Uniformly Convex
Spaces

In this chapter, we prove three results too stunning not to be in the
spotlight. These results are typical of the most attractive aspects of the
theory of Banach spaces in that they are proved under easily stated,
commonly understood hypotheses, are readily appreciated by Banach spacers
and non-Banach spacers alike, and have proofs that bare their geometric
souls.

The fundamentally geometric concept underlying each of the results is
that of uniform convexity. Recall that a Banach space X is uniformly convex
if given > O there is a 8 > 0 such that whenever x, y € Sy and ||x — y|| =,
then ||(x + y)/2|| <1— 8. An illustration should enlighten the reader as to
the origin of the name.

Since the notion of uniform convexity involves keeping (uniform) control
of convex combinations of points on the sphere, we worry only about real
Banach spaces.

Let X be a (real) uniformly convex Banach space. For 0 < e <2 let 8(¢)
be defined by

8, (e) = inf{l— ""—422" L x, y € Sy, |Ix — yll = 8}-

The function 8,:[0,2] — [0,1] is called the modulus of convexity of the space
X and plainly 8,(e) >0 whenever e> 0. Often we suppress X’s role and
denote the modulus by just §(¢). Naturally, the modulus of convexity plays
a key role in all that we do throughout this chapter.

Our attention throughout this chapter will be focused on the following
three theorems:

Theorem 1 (S. Kakutani). Every bounded sequence in a uniformly convex
Banach space admits of a subsequence whose arithmetic means are norm
convergent.
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Theorem 2 (M. Kadet). If ¥, x, is an unconditionally convergent series in the
uniformly convex space X, then

25(lIx,|l) <oo.

Theorem 3 (N. and V. Gurarii). If the normalized Schauder basis (x,,) spans
a uniformly convex space X, then there is a p>1 and an A> 0 such that
r,a,x, € X whenever (a,)€l,

Zanxn
n

< d/(a,)ll,-

We start by studying 8; more precisely, we show

1. 8(e) =inf(1—|(x + y)/2||: x, y € By, |lx — yll = ¢},
2. 8(¢;) < 8(e,) whenever 0 <¢ <e, <2,
3. 8(¢)) /& < 8(ey) /€, whenever 0 <g <&, <2.

These facts follow from the corresponding facts about uniformly convex
Banach spaces of finitely many dimensions and the following more or less
obvious consequence of the definition of the modulus of convexity:

8(e) = inf{ 8, (&) : Y is a finite-dimensional subspace of X }.

This in hand we will prove statements 1, 2, and 3 for finite-dimensional X;
as one might expect, the compactness of closed bounded sets eases the proof
of each claim.

In each of the next three lemmas, X is a finite-dimensional uniformly

convex space.
Lemma 4. §(e) = inf{1—1I(x + y)/2|I: lIxll, Iyl <1, [lx = yll = £}.

PrROOF. We begin with a remark about local maxima for linear functionals:
whenever @ € Sy. achieves a local maximum at x € Sy, then |p(x)| is a global
maximum for |@| on Sy.

Why is this so? Well, take any > 0 and find u € S, so that p(u)>1—e.
If A is close enough to 0, then

X+ |Alu .
o e+ Alu] ot

o(x+AJu) =@(x)+Ale(u) <[lx +|A|ullo(x)
and

Mg (u) < (Ix + Ajull - 1) (x) < Mle(x)]-
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From this we conclude that |p(x)[> @(u#)>1—e. & is arbitrarily choser
after the identity of x has been established; so |p(x)|=1.
Now let’s see that 8(¢) is indeed the quantity:

+
inf{1-[ 252 |: x, v € By lx -yl = e}

What we show is that the above inf is attained (in the presence of the added
hypothesis that dim X < co) when on the unit sphere.
Let 0 < £ <2 and choose x, y € By so that

llx + yll = sup{llu+vll: u,v € By, |lu—v||=¢}.

Assume that j|x|| < ||y|| (so ||y|l # 0).
First we show that j|y|| is necessarily 1. In fact, if we let ¢ = (1—||y|)/2,
then 0 < ¢ < 1. Considering the vectors

(1-2)x+cy (1-c)(y)+ex
TN et d = —-.
Il and h Y] |

we find that x,, y; € By and ||x, — y,|| = &. Therefore,
g+ pll < llx + pll-

X,

Bur
Iy + 2l = S flx + ]
RGN 7 -

Since || || <1, it follows from this last inequality and our choice of x, y that

ilyil =1
Having ascertained that || y|| =1, what about x? Of course, if [|x|| =1, too.
then we are done. Suppose ||x|| <1. Pick ¢ € Sy. so that

x+y )
=1.
"’(nx+yu
For any z € By with ||z — y|| = € we have

plz+y)<llz+yl<sllx+yll=9(x+y),

and so

o(z) <o(x).

@ attains its maximum value on B, N(y + €Sy) at x. Suppose that we let
U={u€Sy:y+eu€ By\Sy}. U is relatively open in S, and contains
(x — y)/e. By what we have just done, ¢ attains its maximum value
throughout U at (x — y)/e. Our opening remark alerts us to the fact that |p|
attains its global maximum on Sy at (x — y)/e. Plainly |p((x— y)/€)| =1.
Recalling that e = ||x — y||, we are left with the possibilities that p(x — y) =
[Ix — yll or ¢(x — y)= —||x — y||. The first of these possibilities is ruled out
by our supposition that ||x|| <1; indeed,

o(x)=1p((x+y)+(x=y)) =3(Ix + yll+ Iy — xl) = {2y} =1
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makes sense if (x — y)=||x — y|| and forces ||x|| =1. The second possibil-
ity, p(x — y) = — ||x — y||, is then the reality of the situation. This firmly in
mind, take any z € By with ||z — y||=¢. Then

lo(z=»)<lo(x—y)l=¢

SO
—e=¢(x-y)<o(z-y)
and
o(x) <9(z2).
But then
p(x+y)<e(z+y),
forcing

lz+ yll = llx + yli.
In short, should ||x|| <1, then any z € By such that jjz — y|| = ¢ satisfies
llz + y|l = ||x + y|I. Our poor first choice of x just has to be replaced by a z
in Sy such that ||z — y||=e. mi

An important consequence of the above is the nondecreasing nature of 8.
Lemma 5. 8 is a nondecreasing function of ¢ in [0,2].

PROOF. Let 0 <¢, <e, <2.
Pick x, y € Sy so that ||[x — y||=¢, and |[x + y||=2(1 — 8(e;)). Let c=
(e, —£)/2e,. 0 <c<1. Set

x;=(1=¢c)x+cy and y;=(1-c)y+ex.
Plainly x,, y, € By and it is quickly checked that ||x; — y,|| = ¢,. Further-
more, ||x, + ]l = l|x + y|I; so by the previous lemma we see that

+
8(81)51— X1Th

] el LM o

Lemma 6. Let 8,(s) be defined for 0 < s by
8,(s)= inf {max{|lu+sv|,|lu—sv)}—-1}.
U,vESy

Then f(s) = 6,(s)/s is nondecreasing on [0, o) and
8(e) 1

e 5f( 2(1 —88(8)) )

ProoF. Fixing u, v € Sy momentarily and letting g, ,(s) be defined by
gu,u(s) = max{ "“ + svl|, "u - SD"} -1,
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we see that g, , is a convex function on [0, co) that vanishes at 0. Therefore,
whenever 0 <s <t,

R

s ,)

t

t—s s s
=< _t—gu.u(o)-'-?gu,v(’) = ?gu,v(t)'

Consequently, g, ,(s)/s is nondecreasing for s € [0, c0). Taking infima, we
find that f(s)/s is nondecreasing, too.
Now we establish the beautiful formula

8(e) _ f( )
€ 2(1- 8(8))
Let 0 <e<2 be given. Choose x, y€ Sy, so that ||x— y||=e and
I(x + y)/2]| =1—8(e). Let
x+y xX—y
= and v= .
flx + il lx + yll

t
gu,u(S)=g.,,u(

Of course,

& &

We consider s = ||v]]. Since ||u + vll =1/[1-8(¢)),

S (s)<luzivffr—=Ill—1=|u+|lv

v
— -1
IIUII llell "

_ 1 1= 8(e)
1-68(e) 1-68(e)”
On the other hand, we can pick 4’ and v’ so that ||u’|| =1, ||v']| = s and
max{||u’+ V||, |lu’— v’||} =1+ 8,(s) =1/a. Letting
x'=a(u’+v’) and y' =a(u’ —v)

we get x’, y'€ By and ||x’ — y’|| = 2as. It follows that

8(2as) <1— || XY
1
R TN )
_ 8(s)
1+8(s)

Since t/(1+1¢) is increasing on [0, 00) and 8,(s) < 8(&)/[1- 8(¢)), the last
quantity above is
8(e)/[1-8(e)]
1+8(e)/[1-8(e)]

=5(e).
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Ah ha! 8 is nondecreasing. Should 8(2as) = §(¢), then

- 8i(s)
8(e) < m

So’

8(e) < 8,(s)(1-58(e)),
or

8(e)
1=5(2) <8,(s).

On the other hand, §(2as) < 8(5) ensures that 2as < ¢ so that

_1_ _8(e)

8,(s) 1>=—-1= 1=6(c)

as an easy computation involving s = ¢ /2(1 — 8(¢)) shows. The upshot of all
this is that thanks to 6’s monotonicity,

8,(s)= 8(e)

1-68(e)”

It is pretty straightforward to derive the sought-after formula from this. O
Theorem 2 is now an immediate consequence of the next lemma.

Lemma 7. Let x,X,,...,x, € X satisfy max,_ |- &x,||<2. Then
T8kl <1.
PROOF. We suppose of course that the x; are nonzero.
Let e, =1 and S, = ¢, x,.
Let &, be the sign that produces the longer vector of g x; + €,x,, ie,
e, =1 if |lx; + %, 2 |lx; — x,|| and &; = =1 if [|lx; — X5 > ||x; + x,l.
Let S, = ¢,x; + &, x,.
Consider the vectors

x = Sz and y - S2 —252)62

IS |
then x, y € B, so that
x +
|52 | <1-801x— ).

If we look to the definition of x and y, then this last inequality quickly
translates 1nio

1152 — &3, ( 2||x,l )
1Sl 121
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which in turn is the same as

2(1x,lI ) lxall _ IS;l— 1Ssll
8 <1- .
( I1S:Ml TR

We record this fact in the more convenient form

20,1} e

Pursuing things a bit further, we notice that 2/||S,|| =1 so that

2
sl sl
< -
il

"52" "qu

by the monotonicity of 8(e)/e. It follows that

IIXzII)
28(11x,1) < 1S, 116 2
Getting expressions (1) and (2) together but eliminating the middle man,
we get
28(l1xl1) < ISal= Sy lI-

Let ¢, be the sign that produces the longer vector S, + &;x;; i.e., &5 =1 if
118, + x50l 2 IS, — x3]l, but &5 = =1 if ||S, + x;3]| <||S; — X3l
Let S; = S, + e;x;. As we did above, we now are ready to set

S, S3 —2€3x,4
x=—2 and y=2_373
IS31 YETSI

Proceed along a parallel to that followed above, and on arrival at your
planned destination you ought to find

28(|lx51) < 1S5l 1S -

After repeating this argument a number of times and making the usual
allowances for S, (set it = 0), we have in our telescopic sights the following

28(jlxyl) < 15311 = 11 Soll

28(lIx,ll) < 1,11 1154
28(Jlx5]l) < I1Sall = 1Sl

28()1x, /1) < NS, I1—= 1S, ll- 0

In making our way to the proof of Kakutani’s Theorem 1 the following
result of V. P. Milman and B. J. Pettis plays an important role. Its
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exceedingly short proof is due to J. Lindenstrauss and L. Tzafriri and serves
as an excellent example of the clarity of view improving with the years.

Theorem (Milman-Pettis). U;:i,’onnl)z convex Banach spaces are reflexive.

PROOF. Let x** € Sy... Select a net (x;),¢p from By such that x** =
weak*lim ;x,; such a net exists through the good graces of Goldstine’s
theorem. Since 2x** is the weak* limit of the doubly indexed net (x, +
X4)(a,4< pxp and the norm in X** is weak* lower semicontinuous, we
know that lim , ,+||lx, + x4l = 2. The uniform convexity of X allows us to
conclude that lim, ;4 |lx, — x4l = 0. Since X is complete, (x,) converges
in norm to a member of X; this can only be x**. o

PrOOF OF THEOREM 1. In light of the Milman-Pettis theorem and the
Eberiein-Smulian theorem, it is enough to show that each weakly null
sequence (x,) of terms from B, admits of a subsequence having norm-con-
vergent arithmetic means.

Let (x,) be such a sequence.

Let 8 be the bigger of 1— 8(3) and 2.

Let m, = 2.

If ||x,|| <4, then [|(x, + x3)/2|| < 2 < 6; in this case we let m, = 3.

If ||x,]| > %, then there is an m > 2 so that ||x; — x,, || > 4.
In fact, were ||x, — x,,|| <% for all m > 2, then we would have for any x* in
B. that

|x*x,| = lim|x*x, — x*x,,| < im||x, — x,,]| <}.
m m
Let m, be the first m > 2 for which ||x, - x| 2 1. Since x,,, x,,, € By we
have |(x,, + x,,)/2|<1-8(})<8.
In any case we can choose m, > m, so that
X, + X

2 <4.

Let my=m, +1.

Iflx, Il < %, then||(x,,, + x,,, +1)/2|| <} 3<0.Inthiscaseletm, =m; +1.

If ||xm || >3, then there is an m,> m; so that 1%, = X, Il = 3. Since
Xy Xm aremewe have

Xy + X,
2

In any case we can choose m, > m; so that

<1-8(4) <0.

Xom +x
[ =

Letmy=m, +1.
Continue in this vein.
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We obtain a subsequence (x,,, ) of (x,,) for which given any k
X, < 26.

Before proceeding to the next step, we take note of a fact about the
modulus of convexity which follows by means of an easy normalization
argument involving statement 1 cited in the proof of Kadel’s theorem,
namely, the fact that whenever ||x — y|| = emax(||x]}, || y|]), then ||x + y|| <

2(1 — 8(e)ymax(|| x|}, Il ¥ID)-
Let (x}) be the sequence defined by

X
" Mak-1

1 .
2x, = Xy ¥ Xy 5

[IxL] < @ for all k. Moreover, (x.) is weakly null.

Let m;(1)=2.

If ||x}|| < 8/2, then ||(x} + x})/2| < 36,/4 < 62,

If ||x|| > 6/2, then there is an m > 2 so that ||x} — x1|| > 8/2. Indeed,
were ||x} — x! || < 8/2 for all m > 2, then for any x* € By. we would have

|x*x}] = lim|x*x} — x*x} | < Tim||x} — x} || < 8/2.
m m

Now, once ||x} — x1,|| = 6,/2, we have that ||x} + x.,||/2 < (1 §(3)), and so
llx} + xhll < 2(1— 8(4))max([I x5, lx51l) <267,
In any case there is a first m,(1) > m;(1) = 2 for which
= 2
”x}"la) = x},,z(l)" <262

The attentive reader can see how we now go about selecting
my(1), m4(1), ..., in an increasing fashion [with m,;{(1) = m,(1)+1] so as to
ensure that

1 1 2
"xmz,-.m + xmzna)" <26

holds for all n.
Let (x2) be the sequence given by

2_ 1 1
2x" Xmam-1(1) + xmz,,(l)‘

Then ||x2|| < 62 for all n. Moreover, (x?2) is weakly null.
Proceeding as before, we can select an increasing sequence (m,(2)) of
indices with m,(2) = 2 so that for every n

2 2 3
"xmz"_l(z) + "mz"a)" <26°.
Let (x3) be the sequence defined by
3,2 2
2%y = Xims 1@ T Xima )

The iteration seems clear enough: at the pth stage we have a sequence
(x?) of vectors each of norm < 7 and such that weaklim,x? =0. We select
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an increasing sequence (m,(p)) of indices [with m,(p)=2] in such a
manner that

P p p+l
||xm2n—-l(P) + xmzn(P)" <26 °

This lets us define the sequence (x?*!) by

P+l — P 4
2x] Xz r(p) T Xmsn(p)

and on so doing obtain a weakly null sequence each term of which has norm
<@r*l
Now to keep careful books, we tabulate

1
x1=3(x,, +x,,)
2 1 1
Xi= ‘5("»1,(1) + xmz(l))
—1(1 1
2 ( 2 ("mz,.lu)-l + xmzm,a>)+ 2 ("mz..,a)—l + xmz,,a)))

=1
= 4("mz...<1)—1 Xy T Xmy-1F xmz,.,u))’

where we note that the indices in this last expression are strictly increasing
as one proceeds from left to right. If we continue to backtrack, we find that
for any p >1 the vector x{ is representable in the form

xf = 2"’(x,l(p)+x,z(p)+ +x/2P(P))

where 1</,(1)<,(1) <, (2)<1,(2) <l3(2) <l4(2)--- . Further, we have
arranged things so that if ¢ < p and 1 <i <2779, then the average of the ith
block of 29 members of X1pys -+ 3 Xlyp(p)

-9 “ee
2 (x‘u-l)zq»l(l’)+ + x’,zq(P))

is a member of the sequence (x7) and as such has norm < 9.
Letn,=1,n,=1,(1),ny=1,(1),ns=10,2),ns=1,(2),....
Take any k >1 and suppose r%' < k < (r +1)29. Then

X, + - +x, I <]x, + - +x,0 |
r
+ E "x"(;-mv et x",za"ln
J=2

a5

nrq
<(27-1)+(r—1)299 +29.
It follows that

Xy o+ x, q_ —1)29949 q
Iim || — 2 slen'(z 1)+(r 1)2%6 + 2
. k ce K k k

=0. O
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Before embarking on the proof of Theorem 3, we wish to make a point
about the inclination of a basic sequence. If (x,) is a basic sequence, then
the inclination of (x,) is the number

k = inf distance(S[x‘_m%],[xk: k> n]),
n

where [ A] denotes, as usual, the closed linear span of 4. Our point is just
this: if the basic sequence (x,) has basis constant K and inclination k, then
kK =1.

In fact, we know that for any scalars by, ...,b,,b,.1, - b, that
m m+n .
2 bix; SKI Z bix; |;
i=1 i=1

'so that should XL, b,x; € Sy, then regardless of b,,, ,,....b,,,,, we would
have

m m m+n
= Zbixi K| Zbixi" E bix, |
i=1 i=1 imm+1
It follows that
m m+n
K's| X bx,— X bx
i=1 i=m+1

or

K '<k, thatis,1<Kk.

On the way toward establishing equality, take any vector of the form
Yminb.x; and look at X%, b,x; € [x,, ...,x,,]. Suppose L., b,x; #+ 0. Then

=]
m
Z bx;
i=1
m
E b;x;

i=1

distance ,[xj:j>m] 2 k.

Therefore, recalling an idea of Banach, we can find an x* such that

x* vanishes on [x;: j > m],

m m
x"‘( )> bixi) =| X b,
i=1

i=1
dlstance( Y bx/'
i=1

s

and

llx*l=

’

be

i=1

L > |
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a number <1 /k. It follows that

m+n

P, 3 bx,

=1

m
Z b;x;

i=1

-_-x*( 3 b,.xi) =x*( mi”bixi)

=] i=1

m+n

E bx;

i=1
From this we see that ||P, || <1/k, and so, keeping in mind the fact that
K =sup, || P,|l, we see that k <1/K or Kk <1.

Now suppose we have a normalized basic sequence (x,) that spans a
uniformly convex space. Suppose (x,) has a basic constant K and, corre-
spondingly, an inclination of k =1/K. Let p be chosen so that

(2[1 - slxnl,.ax(k)].)p <2.
Since given x, y € Sy for which ||x — y|| = k we have
Ix + yll <2(1- 8, (K)),
it follows that the continuous functions ¢(t) and x(¢) given by
() =lIx+ol”,  x(1)=1+1¢*
satisfy @(1) < x(1); consequently, there is an n > 0 so that
lx+ ey} <1+1¢7,

whenever ||1 — ¢|| < 9. Of course, we can assume 1) is very small, say 9 <1.

<1
=%

Claim. For any finitely nonzero sequence (a,,) of scalars we have
2 Zanra| slian 1. )
m

The proof of this claim (and, consequently, of Theorem 3) will be an
induction on the number / of nonzero terms in vectors of the form ¥/_,a,x;.
For /=1, expression (3) is plainly so. So suppose (3) holds for vectors
L,a,x, that have no more than / nonzero a,, where / >1, and consider a
vector X b, x,., where [/ +1 of the b,, are nonzero. For sanity in notation,
we assume we are looking at a vector !%1b,x,, where all the b, are nonzero.
Of course, if just one of the coefficients exceeds the left side of (3) in
modulus, then we are done; so we need to see what happens when all / +1
of the b, satisfy

Ll
'h|<:2

1+1
> b,.x,.".
i=1
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For 1 < j <, consider the vectors

J 1+1
=Y bx;, X bx;=z,.
i=1 i=j+1
Plainly,
I1+1
;41— 1l Wzl = 2,0l < = Zlb X
o

for j=1,2,...,l, where z,,, =0 and y,,, =X/t1b.x,. It follows easily that
for some spec1a1 hl=sj=<l

1+1

> || 2 bixi 4
i=1

We suppose that || y;|| 2 ||z;]| and for reasons of homogeneity assume || y;|| =1.
Since

lyll= izl < 5

1+1
Z bx;, = vtz
i=1
it follows that
I+1
Zl bix, || < lyll+ izl < 2.
-

Expression (4) assures us that

/1+1
[1=1z,ll =iyl = iz, |||s Y bx;
jm=]1
In light of (3) this tells us that
141 l’v 7 »
( X bix, ”) = (31 + 2)1)
4
—(ny
=(3) |+ ||"z "

< (3)’(uy,-nf' +liz1?)  [(3) enters here]

( be ) +( Iil b;x; )p,

which by our inductive hypothesis,

<||(b1. byo-.,8,,0,0,...) [

+ "(0,...,0, bj+13---9bl+l90"")‘"i

=l
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Exercises

1.

No trees grow in uniformly convexifiable spaces. A finite tree in the Banach space
X is a set of elements of the form {x,,x,,X;,...,%X;n_;}, where for each
plausible index k& we have
Xkt Xk
Xy 5 .
The height of the finite tree {x;,x,,x3,...,X,n_} is the integer n —1. If the
finite tree { x, x,, X3, ... ,X,n_ } also satisfies the conditions
Ixe = x4l = 8, llxg = X2 4ll = 8
for all plausible k, then it is called a 8-tree of height n —1. A Banach space X has
the finite tree property if there is a § > 0 such that B, contains é-trees of arbitrary
heights.

(i) Uniformly convex spaces do not have the finite tree property.
(ii) The finite tree property is an isomorphic invariant.

(iii) If there is a constant K > 0 such that for each n, a one-to-one linear operator
T,: I} — X can be found with ||T, |7, 'l ¢(r,p): 17y < K, then X has the finite
tree property.

. An analysis. of Kakutani’s proof of Theorem 1. Suppose we are given a positive

integer m > 2. We say the Banach space X has property 4,, if X is reflexive and
there is a, 0 < a <1, such that given a weakly null sequence (x,) in By we can
find n, < -+ <n,, such that

| m
Z X,, | < am sup ||x,,k||.
k=1 1<k<m

We noticed in the above proof that uniformly convex spéces have 4,.
@) If my>2m, and X has 4, , then X has 4,, .
(ii) If X has 4, for some m > 2, then X enjoys the Banach-Saks property.

. Kakutani’s theorem via the (Gurarii)® theorem,

(i) If (x,) is a bounded sequence in a Banach space X and (X7 .,k 'x,), ., is
norm convergent, then so, too, is the sequence (n 'L}_,x,),,, norm
convergent.

(ii) Derive Kakutani’s theorem from the (Gurarii)? theorem, (i), and the results
of Chapter VL

. Upper and lower | -estimates of (Gurarii)® type. Suppose there are constants 4 > 0

and p >1 so that given a normalized basic sequence (x,) in the Banach space X,
then

(@) I, < 4| Sarx, | < 42a)

p 1 +(p")"!=1 holds for all scalar sequences (a,). Show that each normalized
basic sequence in X is boundedly complete.



138 VIII. Weak Convergence and Unconditionally Convergent Series

Notes and Remarks

At the instigation of J. D. Tamarkin, J. A. Clarkson (1936) introduced the
class of uniformly convex spaces. His avowed purpose, admirably achieved,
was to prove the following theorem.

Theorem (J. A. Clarkson). If X is a uniformly convex Banach space and
/:10,1] = X has bounded variation, then

)= tim LUER)=1()
£(0) = Jim S22 2L

exists almost everywhere.
Furthermore, should f be absolutely continuous, then for all t,

£(2) = £(0)+ ( Bochner) jo "f(s) ds.

By way of exhibiting nontrivial examples of uniformly convex spaces,
Clarkson established “Clarkson’s inequalities” and, in so doing, proved that
"L,[0,1] is uniformly convex whenever 1< p <oco. It’s a short trip from the
uniform convexity of L,[0,1] to that of L,(p), for any p and 1< p <oo.

Since the appearance of uniformly convexity on the scene, many im-
portant classes of function spaces have been thoroughly researched with an
eye to sorting out the uniformly convex members. It has long been known,
for instance, that if 1 < p < oo and X is a uniformly convex space, then the
space L,(p, X) is uniformly convex for any p; the discovery of this fact
seems to be due to E. J. McShane (1950). Indeed, McShane gave a proof of
the uniform convexity of L,(p, X) which in order to encompass the
vectorial case considerably simplified the existing proofs for plain old
L,(p).

,A complete characterization of the uniformly convex Orlicz spaces, re-
gardless of whether the Orlicz norm or the Luxemburg norm is used, has
been obtained through the efforts of W. A. J. Luxemburg, H. W. Milnes
(1957), B. A. Akimovit (1972), and A. Kaminska (1982).

The Lorentz spaces have proved to be somewhat more elusive. The spaces
L, , are uniformly convexifiable whenever they are refiexive, i.e., if 1< p,
g <oo; whether these spaces are uniformly convex in certain of their
naturally occurring norms remains an enigma of sorts. For the Lorentz
spaces L, ,, 1. Halperin (1954) has given some criteria for the uniform
convexity; in the case of the Lorentz sequence spaces d(a, p), Z. Altshuler
(1975) proved that their uniform convexity is equivalent to their uniform
convexifiability and gives criteria in terms of the weight a for such.

The Schatten classes C, were shown to be ‘'uniformly convex whenever
1< p <oo by C. A. McCarthy (1967). J. Arazy (1981) has proved that for a
separable symmetric Banach sequence space E the associated Schatten
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unitary matrix space Cj is uniformly convexifiable if and only if E is; Arazy
leaves open the determination of whether C; is uniformly convex when E is,
however.

The reflexivity of uniformly convex spaces was established independently
by D. P. Milman (1970) and B. J. Pettis (1939). For some reason, Milman’s
role in this matter is more widely known; in any case, the original proofs
by Milman and Pettis vary greatly. Milman’s proof was an'early model
upon which S. Kakutani (1939) made substantial improvements; both
J. Dieudonné (1942) and A. F. Ruston (1949) effected further streamlining
with Dieudonné’s proof quite close in spirit (if not in execution) to the proof
given in this text. We owe to J. Lindenstrauss and L. Tzafriri (1977, 1979)
the proof found in these pages.

Pettis’s approach to the Milman-Pettis theorem is often a surprise to
present-day -mathematicians: he calls upon finitely additive measures for
help. Actually, the main idea behind Pettis’s proof comes from H. H.
Goldstine (1938) who used the idea in establishing “Goldstine’s theorem™;
since Pettis’s proof is so different from the others, we discuss it a bit further.

Here is the setup: realize that for any Banach space X, X* is always
(isometrically isomorphic to) a closed linear subspace of I ( By ). Therefore,
following the directions provided us by Chapter VII, any x“' €(X*)* has
a Hahn-Banach extension to a member x of /,(By)* which we know to be
ba(28x). It follows that x** has the form

x*of = ] f(x)dx(x),

for all f € [ (By); moreover, ||x**|| = |x By). So far the fact that B, is the
closed unit ball of a Banach space has been exploited but sparingly. Look at
x*and x~

x"'--'l—-—-—'+x x'-!xj-—-_x
2 2

which are both nonnegative members of ba(2%x). Of course, x = x* — x;

for E < By define pE = — E and consider g(E)=x*(E)+x (pE). pisa

nonnegative member of ba(2%x) for which

x**x* =-[n x*(x)dp(x)

holds for all x* € X*. Moreover, ||x**|| = n(By). Using the integration with
respect to finitely additive measures that was developed in Chapter VIL, it is
now easy to prove Goldstine’s theorem.

What about the Milman-Pettis theorem? Well, suppose X is uniformly
convex and x** € S,... There is a sequence (x¥) in Sy. with x**(x¥) at
least 1—-1/n and, naturally, one locates a sequence (x,) in Sy for which
x¥(x,)=1; the uniform convexity of X can (and should) be used to see that
each x, is unique in S, with respect to the condition x3x, =1. All this is a



140 VIII. Weak Convergence and Unconditionally Convergent Serie

rather typical warm-up for the main effort of this proof: show x** € X. We
assert; with Pettis, that (x,) is a Cauchy sequence with limit x**; of course,
we represent x** by p 4 la Goldstine. '

Let £> 0 be given and look at B,(e)= {x € By:||x — x,|| <&}. By uni-
form convexity, there is a §, > 0 so that for any x* € X* if x€ Sy, y € By,
x*x =||x*|, and ||x — y|| = ¢, then x*y < (1— §)||x*||. Now integrating x*
over By = B,(e)U[ B4\ B,(¢)] ought to lead to the estimate p(By\ B,(¢)) <
(n8,)"'. From this one’ quickly deduces that for m, n large enough, B, (&)
and B,(¢) intersect, i.e., (x,) is a Cauchy sequence. Suppose its limit is
denoted by x,. Then By(¢) contains B,(e/2) for all n sufficiently large,
allowing us to conclude that B,\ B,(¢) has p-measure zero. Now it is easy to
see that x, = x**. In fact, if x* € X*,

[x**x* — x*xo| = f X*xdu(x)—f x*xqdp(x)
By By

< f [x*x — x*xo|dp(x)
By

= + =f [x*x — x*xo|dp(x)
By(e) By\ By(e) Bo(t‘)‘

<lix*l € n(Bo(e)) <lix*|le,
which completes our proof.

We have repeated Kakutani’s original proof with nary a change to be
found. An alternative proof, building on the (Gurarii)? theorem, is indicated
in the exercises; it was shown to us by D. J. H. Garling in 1978. The exercise
andlyzing Kakutani’¢ proof is inspired by work of J. R. Partington (1977).

T.Nishiura and D. Waterman first demonstrated that a Banach space with :
the Banach-Saks property is reflexive. Other proofs have been offered,
notably by J. Diestel (1975) and D. van Dulst (1978); still another can be
found in the exercises following Rosenthal’s dichotomy. A. Baernstein II
(1972) gave the first example of a reflexive Banach space that does not have
the “Banach-Saks property; C. Seifert (1978) showed that the dual of
Baernstein’s space has the Banach-Saks property leaving open the question
of just what property is dual to the Banach-Saks property. In affairs of a
Banach-Saks nature, the wise thing is to consult the works of B. Beauzamy
(1976, 1979), whe gives apt characterizations of the Banach-Saks property,
the Banach-Saks-Rosenthal property, and the alternating-signs Banach-Saks
property.

M. Kadet (1956) first proved Theorem 2; however, we follow T. Figiel’s
(1976) lead in this matter with A. T. Plant’s (1981) hints along the way
being of obvious help. The attentive reader will, no doubt, be suspicious of
possible connections between Kade&’s result and Orlicz’s theorem found in
Chapter VII. In fact, if 1 < p < o0, then Theorem 2 encompasses Exercise 20
of Chapter VII. This follows from the determination [by Hanner (1956)] of
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the asymptotic behavior of the modulus of convexity of L,(p); precisely, for
any nontrivial measure p,

e ifl<px<2,
61"(“)(8) - {e" if2< p<oo,

where “ ~” indicates that we are detailing asymptotic behavior up to a
constant for & close to zero.

While Kadet’s result does not cover the case of L,(p) (as Orlicz’s theorem
does), it does give very sharp information about uniformly convex spaces
once accurate estimates have been made regarding their moduli of convex-
ity.

For Orlicz spaces, R. P. Maleev and S. L. Troyanski (1975) have given the
tightest possible estimates for the moduli of convexity; moreover, their
estimates involve, in a natural way, the generating Orlicz function.

Though the moduli of convexity for Lorentz sequence spaces have been
worked out by Z. Altshuler (1975, 1980), the problem for Lorentz function
spaces remains wantonly open.

In a striking tour de force of Rademacher know-how, N. Tomczak-
Jaegermann (1974) has shown that for 1< p <oo, the C, classes have
moduli that behave like the L,(p)-spaces. Ms. Tomczak actually proves
more: C, has cotype 2, if 1 < p <2, and cotype p, if 2 < p < c0. Furthermore,
she shows that the dual of any C*-algebra has cotype 2.

Following B. Maurey and G. Pisier (1976), we say that a Banach space X
has cotype p if there is a constant X > 0 for which

n 1 n P
lx P < K2 [ X n(e)x, | dr
i=1 0li=1
for any finite set { x,, ...,x, } in X; here, as usual, the functions r, ... ,r, are

the first n Rademacher functions. Thanks to J. P. Kahane (1968), we can
paraphase cotype p as follows: a Banach space X has cotype p provided
Zj|x,||? converges whenever ¥,0,x, is convergent for almost all sequences
(o,) of signs 6, =+1 in {—1,1}V, where { —1,1}" is endowed with the
natural product measure whose coordinate measures assign each singleton
the fair probability of 1.

Although the precise definition of cotype did not appear on the mathe-
matical scene until the early seventies, W. Orlicz’s original results regarding
unconditionally convergent series in L,[0,1] already had delved into- the
-notion; in fact, with but a bit of doctoring Orlicz’s proofs show that L,[0,1]
has cotype 2 in case 1 < p < 2 while it has cotype p for p > 2. What relation
then, if any, does the cotype of a uniformly convex space bear to its
modulus of convexity? In answering this question we pass over some of the
most beautiful and richest terrain in the theory of Banach spaces; the
ambitious reader would do well to study the fertile land we are treading.
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Our response starts by recalling the notion of uniform smoothness: a
Banach space X is said to be uniformly smooth whenever the limit
i 1+ 0= ]
(-0 t
exists uniformly for all x, y € S,. This notion was studied extensively by
V. L. Smulian (1941), who showed that X is uniformly smooth if and only if
X* is uniformly convex and X is uniformly convex if and only if X* is
uniformly smooth. Along the way, Smulian also showed that if X* is
uniformly smooth [in fact if we only ask that lim, _, ,(]|x + tu]|— ||x||) /¢ exist
uniformly for y € S, for each x € Sy], then X is reflexive; thus, yet another
proof of the reflexivity of uniformly convex spaces emerges. Now uniformly
smooth spaces have a modulus of their own, a modulus of smoothness
whose value for any 7 > 0 is given by

p(f)ssup{"x;y”+"x;y"—I:xeSx,||y||=f}.

A surprising development relating the modulus of convexity of X* and the
modulus of smoothness of X took place in the early days of Lindenstrauss:
forO<e<2and for0 <7 <o

TE
px(7)= sup { = —8y.(e)}.
x O<ex<2 { 2 x }
From this formula, Lindenstrauss was able to deduce that whenever
L,p(llx,l) < oo, then ¥,0,x, converges for some sequence (o,) of signs
o, = * 1. In passing it should be recalled that G. Nordlander had shown in
1960 that the modulus-of convexity always satisfies

fim 8(:) <o0;
e—0 €

consequently, Hilbert space is as convex as possible; as one might expect,
Hilbert space is also as smooth as possible. Lindenstrauss showed that
if a Banach space X has an unconditional basis and is as convex and smooth
as Hilbert space, X is isomorphic to Hilbert space. He asked if such were so
for any Banach space.

T. Figiel and G. Pisier (1974) gave much more in response to
Lindenstrauss’s query than was asked for. Recall that L,([0,1], X) is uni-
formly convex if X is—thanks to McShane—how does the modulus of
convexity of L,([0,1], X') compare with that of X? Figiel and Pisier showed
that L,([0,1], X) has a modulus of convexity which is asymptotically the
same as that of X; i.e, there are constants ¢, C > 0 such that

c< lim 8,001 0(2) <Tm 8,([0,1], X)(e)

: <C.
e—s0 3x(e) e—0 3x(e)
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Therefore, if X is as convex as possible, so too is L,([0,1], X') and similarly
for X* and L,([0,1], X*)= L,([0,1], X)*. But now the Kadet theorem
comes into play. Using it, Figiel and Pisier conclude that for a Banach space
X that is maximally smooth and convex one has the following analogue to
Khintchine’s inequalities: there is a K >0 so that for any finite set

{xp....,x,}in X
n 1/2 Al 2 172 " 1/2
K“(aniuz) s(f T r(1)x, dt) SK(anmz) ;
0 i=1

i=1

i=1

however, S. Kwapien (1972) had already noticed that such an inequality is
enough to identify X as among the isomorphs of Hilbert space.

What Figiel and Pisier had shown however was more. In light of Kahane’s
discovery that (fIZr.,r:(t)x,||2dt)/? and ([FIXr r,(¢)x,||? dt)'/P are
equivalent expressions, the fact that L,([0,1], X') and X are equally convex
may be translated to the statement that if X has a modulus of convexity of
power type 8(&)=¢” for some p>2, then X also has cotype p. Again,
Kadet’s theorem now allows one to conclude that if ¥ 0,x, is convergent
even for almost all choices (o,) of signs, then X |ix,||? <oo; indeed,
¥,0,x,’s convergence for almost all choices of signs is tantamount to the
unconditional convergence of X,r,®x, in L,([0,1], X).

The story is not yet over. In fact, we have left the best part of this
particular tale to the last. In a remarkable chain of developments; R. C.
James had introduced the super reflexive Banach spaces; P. Enflo (1972)
had shown them to be precisely those spaces which can be equivalently
normed in a uniformly convex manner (which might as well be our
definition), or precisely those spaces which can be equivalently normed in a
uniformly smooth manner, or precisely those spaces which can be equiva-
lently normed in a simultaneously uniformly convex and uniformly smooth
manner; and G. Pisier had shown that every uniformly convexifiable
Banach space has an equivalent norm which is uniformly convex with power
type modulus of convexity.

For the case of Banach lattices there are finer notions than cotype (and
type) that have allowed for a very fine gradation of the classical function
spaces. For the rundown on these events the reader is referred to the
monograph of W. B. Johnson et al. (1979) and the appropriate sections of
the Lindenstrauss-Tzafriri books. With particular attention to the Lorentz
spaces, J. Creekmore (1981) has computed the type and cotype of the
L, ,-spaces, and N. Carothers (1981) has gone on to solve the more difficult
problem of the type and cotype of the L, ,, spaces.

Theorem 3 is due to V. I. Gurarii and N. I. Gurarii (1971); our proof
follows their lead all the way. As noted in the exercises, the existence of
upper and lower /,-estimates for all normalized basic sequences is a tight
restriction indeed. Actually, the restriction is much tighter than one might
glean from the exercises; in fact, R. C. James (1972) has shown that in order
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for the conclusion of Theorem 3 to apply in a Banach space X, it is
necessery (and, from Theorem 3, sufficient) that X admit an equivalent
uniformly convex norm.
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CHAPTER IX
Extremal Tests for Weak Convergence of

Sequences and Series

This chapter has two theorems as foci. The first, due to the enigmatic
Rainwater, states that for a bounded sequence (x,) in a Banach space X to
converge weakly to the point x, it is necessary and sufficient that x*x =
lim, x*x, hold for each extreme point x* of B,.. The second improves the
Bessaga-Pelczynski criterion for detecting c,’s absence; thanks to Elton, we
are able to prove that in a Banach space X without a copy of c, inside it,
any series X, x,, for which I,|x*x,| < oo for each extreme point x* of By. is
unconditionally convergent.

The inclusion of these results provides us the opportunity to present the
geometric background that allows their proof. This is an opportunity not to
be missed! The Krein-Milman theorem and its converse due to Milman,
Bauer’s characterization of extreme points, and Choquet’s integral represen-
tation theorem are all eye-opening results. Each contributes to the proof of
Rainwater’s theorem.

The approach to Elton’s theorem requires a discussion of some of the
most subtle yet enjoyable developments in geometry witnessed in the recent
past. Our presentation is based on the Bourgain-Namioka “Superlemma.”
From it we derive another result of Bessaga and Pelczynski, this one to the
effect that in separable duals, closed bounded convex sets always have
extreme points. Using Choquet’s theorem and the Bochner integral, we then
show that dual balls with a norm separable set of extreme points are norm
separable. This arsenal stockpiled, we describe the delightful arguments of
Fonf that serve as a necessary but engaging prelude to the proof of Elton’s
theorem.

Rainwater’s Theorem

Our interests in representation theory are quite mundane. We want to be
able to fest convergence in the weak topology with but a minimum of muss
or fuss; more particularly, we want to be able to test weak convergence of
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sequences by the most economical means available and integral representa-
tion theory opens several avenues of approach to such possibilities.

For the remainder of this section, E will be a real locally convex
Hausdorff linear topological space with topological dual E*.

Before starting with the famous theorem of Krein and Milman, we recall
that a point x of a convex set K is called extreme if x cannot be written
as a convex combination Ay +(1—A)z, 0 < A <1, of two distinct points y, z
of K.

The Krein-Milman Theorem. Let K be a nonempty compact convex subset of
E. Then K has extreme points and is, in fact, the closed convex hull of its
extreme points.

PROOF. We start by introducing the notion of “extremal subset.” A subset
A of a convex set B is extremal in B if 4 is a nonvoid convex subset of B
with the property that should x, y€ B and Ax+(1—A)y € A4 for some
0 <A <1, then x, y € A. Of course, an extremal set with but one element
consists of an extreme point. Naturally, we are looking for small extremal
subsets of K.

Let £ be the collection of all nonempty closed extremal subsets of K
(plainly, K € §); order ¢ by K, < K, whenever K, C K. The compactness of
K along with a bit of judicious Zornication produces a maximal K, € §. We
claim K|, is a singleton. Indeed, if x, y € K, are distinct, there is a linear
continuous f on E with f(x) < f(»). KoN{z: f(z)=max f(K,)} is then a
proper closed extremal subset of K, a contradiction.

K has extreme points. .

Let C be the closed convex hull of the set of extreme points of K. Can
K\C have any points? Well, if x € K\C, then there is a linear continuous
functional f on E such that max f(C) < f(x). Looking at {z € K: f(z)=
max f(K)}, we should see a closed extremal subset of K which entirely
misses C. On the other hand, each closed extremal subset of K contains an
extreme point on K, doesn’t it? This completes our proof. O

~ Suppose C is a compact subset of E and let p be a regular Borel
probability measure on C. We say a point x of E is represented by p (or is the
barycenter of p) if for each f € E* we have

f(x)= fc f(c)ap(c).

To be sure of our footing, we prove that every regular Borel probability
measure on a reasonable compact set has a barycenter.

Theorem 1. Suppose the closed convex hull K of a closed set F(C E) is
compact. Then each regular Borel probability measure p on F has a unique
barycenter in K.
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ProoF. The restriction f| of any f € E* to F is plainly p-integrable for any
regular Borel probability measure p on F. Take any such pu. We claim that
the hyperplanes

{er:f(x)=ijdp} =E, f€E*

intersect K in a common point.
Since K is compact, we need only show that given f;, ... ,f, € E*, then

KNE,NE, N - NE 0.

From this the existence of a barycenter (for u) in K follows. Consider the
operator T: E - R" given by Ty = (f(¥),...,/,(»)); TK is compact and
convex, T being linear and continuous. Should (frfidp, ..., [rf,dp) not
belong to 7K, then there would be a functional a = (a, ...,a,) ER"" =R"
such that

sup{a-Ty: ye K} <a-(ff1dp.,...,ff,,dp.).
F F
Let g=2%7_,a,f;. Then

SUP{g(y)zyEK}=sup{ Z":aifi(y)tyGK}

im=]

=sup{a-Ty: y€K }

<a-(ff1dp,...,ff;,dp.)
): ffdn fZafdn fgdu

i=1

<sup{g(y):yeF}
<sup{g(y):y€K};
this is a contradiction, and the proof is complete. a

Uniqueness of barycenters is, or ought to be, obvious.

With an eye to Banach spaces it ought to be recalled that whether you are
looking at a Banach space in its norm topology, a Banach space in its weak
topology, or the dual of a Banach space in its weak* topology—in each case
the fact is that the closed convex hull of a compact set is compact, too.

Being the barycenter of a regular Borel probability measure that lives on
a given compact set C in E means being some sort of average of points of C.
More precisely, we have the following theorem.

Theorem 2. For any compact subset C in E, a point x of E belongs to the
closed convex hull of C if and only if there exists a regular Borel probability
measure p on C whose barycenter (exists and) is x.
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PrROOF. If p is a regular Borel probability measure on C and has x as its
barycenter, then for any f € E* we know

f(x)= jc fdp < sup f(C) < supf(coC).

Were x not in coC, there would be an f € E* violating f(x) < sup f(coC).
Conversely, suppose x €co(C). Then there is a net (0,), ¢ p of members
of co(C) converging to x. Each g, is of the form
o, =2 aly? (finite sum),
where a? > 0, L,a¢ =1, and y¢ € C. Let p, be the regular Borel probability
measure

Bg= Zafb‘yd,
i

where §, € C(C)* is the usual evaluation functional at ¢ € C. Directed as
they are by the same set D as the net (6,), < p, the p, form a net with values
in the weak* compact set B )« and as such have a convergent subnet
(#;);es With a limit p that is quickly seen to also be a regular Borel
probability measure on C. Naturally, x is the barycenter of y; in fact, if
f € E* is given, then

£(x) = limf(a,)

= tim [ f(c) du,(c) = [ 7(c) du(c). 0

Now for a real touch of elegance we characterize the extreme points of a
compact set by means of their representing measures.

Theorem 3 (Bauer’s Characterization of Extreme Points). Let K be a non-
empty compact convex subset of E. A point x of K is an extreme point of
K if and only if 8, is the only regular Borel probability measure on K that
represents x.

PRrROOF. If x € K is not an extreme point, then there are y, z € K with y + z
so that x = 1y + {2z. Plainly, 1§, + 14, is a regular Borel probability measure
on K that represents x and differs from &, .

Suppose x is an extreme point of K and p is 4 regular Borel probability
measure on K that represents x. We claim that u(C) =0 for each compact
subset C of K'\{x}. The only alternative is that u(C) > 0 for some compact
set C € K\ {x}. An easy compactness argument shows that there is a point
y in this C for which (U N K)> 0 for each neighborhood U of y in E.
Letting U be a closed convex neighborhood of y for which x € U N K, we
get a particularly interesting nonempty compact convex proper subset
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UN K of K. Why is U N K of interest? Well, its p-probability cannot be 1
because p represents x € U N K, yet its p-probability is not 0! 0 < u(U N K)
<1. If we define p; and p, by

p(BNUNK) (B)=p.(Bn(UnK)°)
w(UNnK) 2 1-p(UNnK)
we get regular Borel probability measures on K. Let x, be the barycenter of

p, and x, be the barycenter of p,. Each of x; and x, belongs to K; x, is in
U N K and so is not x. On the other hand,

p=p(UNK)p, +(1-p(UNK))p,,

p(B) =

forcing
x=p(UnK)x;+(1-p(UNK))x,,

which is a contradiction. ]

Corollary 4 (Milman’s Converse to the Krein-Milman Theorem). Let K be a
compact convex subset of E. If K is the closed convex hull of a set Z, then
every extreme point of K lies in Z’s closure.

PROOF. Suppose x is an extreme point of K =co(Z). Then x is the bary-
center of a regular Borel probability measure p that lives on Z (Theorem 2).
We can extend p to all of K by making u(B)=p(B N Z) (it is plain that
this makes sense) for Borel sets B C K. The resulting measure still represents
x. But now Bauer’s theorem enters the foray to tell us that p must be §,;
since p is supported by Z, it follows that x € Z. o

We start now on our way to Choquet’s theorem.

For a compact convex subset K of E we denote by A(K) the space of all
affine continuous real-valued functions defined on K; f € C(K) is affine if
fx+A=-1)y)=tf(x)+(1—1)f(y) for all x,ye K and all ¢, 0<¢<1.
A(K) is a closed linear subspace of C(K) whose members separate the
points of K. Among the members of A(K) the discerning viewers will surely
find the constants.

Let f € C(K) and define f: K — (— 00, 0) by

f(x)=inf{h(x):h€ A(K),f<h}.

Lemma S. For f, g € C(K) we have

1. f is a concave, bounded, upper semicontinuous function on K; hence f is
Borel measurable and universally integrable on K with respect to the class of
all regular Borel measures on K.

2.f</.

3. f=fif and only if f is comcave.
4 frg<f+g bufvg=f+g ifgec AK), andrf=rf,if0<r<oo.
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PrOOF. Parts 1 and 2 are plain, simple calculations and are corollaries to
well-known facts.

Part 3 is not so direct. Suppose f is concave. Let K = {(x,r)€
Kx(—o00,00): f(x)2r}. K,is closed and convex since f is continuous and
concave. Suppose there is an x, € K such that f(x;) < f(xo). It follows that
there is a real-linear continuous functional A on E X R such that

Sul”"(K,L)'< Ap< )‘((xo, f (xo)))
for some fixed real value A, of A. In particular,

A((x0, 1(x0))) < A((x0,  (x0)))-
It follows that

0< A((O,f (xo)"f(xo)))
and from this that for any a > 0,
0<A((0,a)).
Of course, from this we see that for any x € X,
A((x,t)) > tooast— +o0.

The continuity of A((x,-)) for each x € K now tells us that given x € K
there is an r, € (— 00, 00) such that

A((x, 1)) = A
Notice that
A((x, 7)) =A((x,r))
if and only if
0=A((0,r=r"))=(r—r)A((0,1)),
which, in light of the fact that A((0,1)) > 0, holds if and only if
r=r’.

It follows that the association x — r, is a well-defined function h: K — R.
We claim for 4 the following:

a. f<h.

b. h(xg) < f(x,)-
c. h€ A(K), i.e, h is affine and continuous.

Of course, a, b, and c together contradict the definition of f and compel us
to reject any alternative to f = f.

a. Take x € K. Th¢n (x, f(x)) € K,. Thus,
A((x, £(x)) < Ao =A((x, h(x)));

SO

0 <A((0, h(x)=f(x))) = (h(x)= f(x))A((0,1)).
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b. Similarly,
A((xg,h(x0))) =Ao < }‘((xmf(xo)));

S0
0 < (f (x0) = h(x0))A((0,1)).
c. If x,ye Kand 0 < <1, then
AM(x+(1=1)y, th(x)+ (1= 1)h(y))) = A((x, h(x)))
+(1-0)A((r, h(»)))
=ty +(1—-1)Ag=A,
=A(tx+(Q=1)y,h(tx+(1—1)y))).
As in a and b, we can conclude that
0=A((0,1))(th(x)+(1—1)h(p)=[h(tx+(1-1)y)]),
and the affinity of 4 is established.
Finally, 4 is continuous. Let (x,), be a net in K converging to x. Let
r, = h(x,) and r = h(x). Notice that (r,) is a bounded net of reals. In fact,

otherwise, there’d be a subsequence (7, ) such that |r, | = co. From this we
see that

X
0= lim 22 = lim)\(( %1
n Ty

n rd,,

)) =A((0,1))>¢C
The boundedness of (7,;) implies that any subset has a further subnet that
converges; if (rd ) is a subnet of (r;), then there is a subnet (r, )Q that
converges to some real ry- Now,

A((x, 7)) =A((x, h(x))) =X,
=X = )\((xdq, h(xdq)))
=>‘((xd 2 Ta, )) - A((x”o))'

r=ry and h(xd ) — h(x). The continuity of A is established.
Part 4 involves some relatively straightforward computations which are
just as well left to the reader’s diligence. O

Lemma 6. Let K be a nonempty compact convex metrizable subset of E. Then
C(K) contains a strictly convex member.

PROOF. The metrizability of K ensures the separablhty of C(K) and hence
that of ACK'). Let (h,) be a dense sequence in SA(K), define h = E,,hf,/Z"
The M-test assures us that h € C(K). Plainly, A is convex. In fact, & is
strictly convex. Indeed, if x, y € K and x # y, then there is an n so that
h,(x)# h,(y)—remember A(K) separates the points of K. If we now
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consider 0 <t <1 and let s =1-1, then
h2(tx + sy) = t2h2(x)+ s2h2(y)+2sth,(x)h,(y)

= th}(x)+ sh2(y) = st [, (x) = b, ()]’
<thi(x)+sh2(y).

It follows that A too satisfies the strict inequality
h(tx+sy) <th(x)+sh(y),

i.e., h is strictly convex. 0

We are ready for the real highlight of this section: Choquet’s theorem. It
is from this remarkable theorem that we derive the result of Rainwater.

Choquet’s Integral Representation Theorem. Ler K be a nonempty compact
convex metrizable subset of a locally convex Hausdorff space E. Then each
point of K is the barycenter of a regular Borel probability measure that is
concentrated on the extreme points of K.

More precisely, if x € K, then there is a regular Borel probability measure p
defined on K for which p (extreme points of K)=1 and for which given any
f € A(K),

f(x)=]xf(k)dn(k).

ProOF. First things first. The set of extreme points of K is a Borel set. In
fact, the complement of this set is easily seen to be

®©
U (b +iz=x:y. € K d(x, p),d(x, ) 2 1),
n=1
where 4 is a metric generating K’s topology. The point of this remark
should be well-taken: The set of extreme points of K is a @-set, and so
p(extreme points of K) =1 makes sense for any Borel measure p.

Now on to the proof proper.

Let x € X, and let h € C(K) be strictly convex. Define F,: linear span
{A(K), h} > (— o0, 0) by

F.(a+1th)=a(x)+1th(x).
Clearly F, is linear on its indicated domain.
Define p: C(K) = (— o0, 0) by
p()=7(x).

p is a sublinecar, positively homogeneous functional on C(K).

Claim. p dominates F, on the linear span of A(K) and A.
To see the claim’s basis, look at a vector a + th. If £ 2 0, then F,(a + th)
= g(x)+th(x)=a + th(x) = p(a + th). If 0>, then a + th is concave; so
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Fa + th) = a(x)+ th(x) < a(x)+ th(x) =a + th(x) = p(a + th). Either
way the claim is well-founded.

The Hahn-Banach theorem now lets us extend F, to all of C(K') keeping
the domination by p as a control. Call the extension F,, too, and study it for
a bit. First, note that if g € C(K) and g = 0, then — g <0 so that

- E(g)=F(-g)sp(-g)=—3g(x)=<0,

and F,(g) = 0. F, is a positive linear functional on C(K): F, is represented
by a positive regular Borel measure p on K. Since F (1) =1, the measure p is
. a probability measure. Of course, u represents x. In fact, if f € 4(K), then

f(x)= E(f) = [ f(k) du(k).
It remains to be seen that p (extreme points of K)=1. This we do in two
steps:

L fh(k)dp(k)= fh(k)dp(k).
II. {x € K: h(x)= h(x)} consists of only extreme points of XK. .

1. h(x)=F,(h)= [hdp < [hdp < [adp for all a € A(K ) such that h < a.
It follows that for each such a,

5(x)=fhdnsfh—dpsfadu=f';(a)é&(k)==a(x),

and so by definition of 4 we get all the quantities to the left of fadu the
same, including fAdp and [hdp.

II. If x is a nonextreme point of K, then there are distinct points y, z € K
such that x =y + 1z. Since A is strictly convex,

h(x)ah(l+_£)<h_(_y_)_+!z_(_z_

2 2 2 2
h(y) h(z) _-(rtz\_~
S+ sh( 3 ) h(x).
This completes the proof. n]

Now as a corollary to the Choquet theorem, we present Rainwater’s
theorem.

Rainwater’s Theorem. Let X be a Banach space and (x,) be a bounded
sequence in X. Then in order that (x,) converge weakly to x € X, it is both
necessary and sufficient that x*x = lim,x*x, holds for each extreme point x*
of B X

ProOF. We take two small steps before arriving at the finish. Before
the first, we notice that the theorem need only be proved for real Banach
spaces X.
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Our first step entails proving the theorem in case X is a separable Banach
space. For such a space, By. is weak* compact, convex, and metrizable.
Therefore, we are set up for Choquet’s .heorem should we find a way to use
it—and be sure we will! Suppose (x,,) is a bounded sequence in X such that
x*x = lim,x*x, holds for each extreme point x* of By., where x is the
hoped-for weak limit of (x,). Take any x* € B.. Then Choquet’s theorem
gives us a regular Borel probability measure p on By.(weak*) such that

a(x*)= f a(y*)dp(y*)
ex B X*
for each a € A(By.(weak*)) where ex B. denotes the set of extreme points
of B.. Viewing members of X as being in A(By.(weak*)), we get

xx"‘=f . x(,v*)d.u(y*)=j; R limx,(y*) du(y*)
ex Bys X By N

~hmf #(y*) dp(y*) =limx,(x*)
ex By
by the boundedness of (x,) and Lebesgue’s bounded convergence theorem.
It follows that x is the weak limit of (x,,).
For a general Banach space X, we suppose (x,,) is a bounded sequence in
X and x is an element of X such that

limx"‘x,l =Xx*x

holds for every extreme point x* of By.. Let X, be the closed linear span of
{x,:n=1}U{x}. Then X0 is a separable Banach space. We claim that x.is
the weak limit of (x,) in XO, once verified, the Hahn-Banach theorem
assures us that (x,) converges to x weakly in X, too. To show that x is the
weak limit of {x,) in X,,, we will show that y*x = lim , y*x,, for each extreme
point y* of By, and then apply the known venty of the theorem for
separable spaces.

Well, take any extreme point y* of By,. Let HB(y*) denote the set of all
x* € By. such that x*|, = y*. It is easy to see that HB(y*) is a nonempty
convex weak* compact subset of By.; furthermore, since y* is an extreme
point of By,, HB(y*) is an extremal subset of By.. It follows that HB(y*)
contains some extreme point z* of By.; of course, now we know that

— . s
Y¥*x=2z%x= h:nz*x,,—h'xlny*x,,. O

wollary. A bounded sequence (xnj in the Banach space X is weakly Cauchy
and only if lim,x*x, exists for each extreme point x* of B ..

.OOF. It need only be remarked that a sequence (x”) is weakly Cauchy if
d only if given increasing sequences (k,) and (j,) of positive integers the
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sequence (x, —x; ) is weakly null. In light of Rainwater’s theorem, this
remark is enough to prove the corollary.

Elton’s Theorem

Rainwater’s theorem gives a strong hint of the control extreme points of a
dual ball exercise on weak convergence. There is a corresponding result in
the theory of series due to John Elton. It can be formulated as follows: for a
Banach space X to be without ¢, subspaces it is necessary and sufficient that
X, x, converges whenever ¥, |x*x,| < oo for each extreme point x* of By..
The purpose of this section is to prove this elegant result of Elton.

We start the section with a treatment of the Superlemma. Though we
need only the weak* version of this stunning geometric fact, a complete
exposition hurts no one. We then apply the Superlemma to derive a theorem
of Bessaga and Pelczynski to the effect that in separable dual spaces, closed
bounded convex sets have extreme points; here we follow Isaac Namioka’s
lead. This having been done, we supply a natural criterion for the dual of a
Banach space to be separable, namely, that the dual ball have a norm-sep-
arable set of extreme points; Choquet’s theorem plays an important role
here. After all the groundwork has been laid, we pass to a proof of Fonf’s
theorem: whenever the dual of a Banach space has only countably many
extreme points the space is ¢, rich. From here it is clear (though not easy)
sailing to Elton’s theorem.

We start with a lemma discovered initially in its second, or weak*, version
by Isaac Namioka and sharpened by Jean Bourgain. This mild-looking
lemma of Namioka and Bourgain is known to its public as “Superlemma”!

A slice of a set is the intersection of the set with a half-plane.

Superlemma. Let C, C,, and C, be closed bounded convex subsets of the
Banach space X and let € > 0. Suppose that

1. G, is a subset of C having diameter < €.
2. Cis not a subset of C,.
3. C is a subset of co(Cy U C,).

Then there is a slice of C having diameter < € that intersects C,.

PrOOF. For 0 < r <1 define
D'.= {(l—)\)xo-f-xxl:rS)\Sl,XOECO,XIECl}.
Each D, is convex, D, contains C —this is just 3—and D, = C;.
Notice that for » > 0, D, does not contain C..To wit: since we’ve supposed
C¢ C,, there must be an x* € X* such that

supx*C; <supx*C;
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were C C D, (r > 0), then we would have
supx*C < supx*D,
= supx*D,
< (1= r)supx*C, + rsupx*C,
< (1= r)supx*C + rsupx*C,,
which leads to the conclusion that
supx*C < supx*C,.

Now notice that C\ D, < D)\ D, and D\ D, is dense in D\ D,. Take
x € D)\ D,. Then x is in Dy; so x is a convex combination (1— A)x, + Axy,
where x,€C, and x, €C,. x is not in D,; so 0 <A <r. It follows that
l1x — xoll = Allxg — x,|l < rsup{|ly — z||: y € Gy, 2 € C;} = rd. But now ob-
serve that any y in C\ D, can be approximated by an x in D)\ D, as closely
as you please; each such x is itself within ré of a point in C,. The upshot of
this is that the diameter of C\ D, is < 2r8 + diamC,,.

If we choose r > 0 to be very small indeed, then 28 +diamC, < ¢&; now
the fact that C\ D, is nonvoid allows us to pick a slice of C disjoint from D,.
Since C, is a subset of D,, C,\ D, is nonempty; so we can even pick our slice
of C to contain a given poim of C)\ D,. Let it be done. m|

Of great value in studying duals is the following:

Superlemma (Weak* Version). Let K, K, and K, be weak™* compact convex
subsets of X* and let ¢ > 0. Suppose that

1. K, is a subset of K having diameter < e.
2. K-is not a subset of K.
3. K is a subset of co( K, U K)).

Then there is a weak* slice of K of diameter < € that intersects K ;.

The proof of the weak* version of the Superlemma is virtually identical
with that of the Superlemma itself; certain minor modifications need to be
made. These are that the sets D, are of the form

D,={(1-A)x3+AxF:r<sAs<l,x €K, xt €K, }.

The D, are weak* compact and convex with Dy = co(K, U K,); (3) tells us
that D, contains K. Now when we separate K from K, we can do so with a
weak* continuous linear functional, if we wish. In any case, the end result is
the same: for r >0, K is not a subset of D,. Next, a computation [here
things are a bit quicker because K € co(Ky U K;)]. As in the proof of the
Superlemma, we see that the diameter of K\ D, is strictly less than
2rsup{|lud — utll: ud € K, uf € K, }+diam K,,; on choosing r very small,
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we arrange things so that K\ D, has diameter <e. K, is a subset of D, so
K\ D, is nonempty. Taking a point x} of K,\ D, and slicing in a weak*
continuous fashion by the separation theorem, we obtain a weak* slice of K
that contains x§ and is contained in K\ D,. This is the slice we want!

Theorem 7. Let X be a separable Banach space with separable dual X*. Then
the identity map id x on K is weak *-norm continuous at a weak* dense 9y set
of points of K whenever K is a weak* compact subset of X*.

PrROOF. For each £¢> 0 let A, be the union of all W N K, where Wis a
weak * open set in X * for which the norm diameter of W N K is < e. Plainly
each A4, is weak* open in XK. Moreover, the points of weak*-norm continuity
of id x are exactly those of N, 4, ,,. Should we show that each 4, is weak*
dense in K, then Baire’s category theorem will let us conclude that N , 4, ,
is weak* dense, too, and, of course, a weak* %; in K.

X* is separable; so we can find a sequence (x}(¢)) in X* such that

K=L"J(K A (xr +§B,,.)).

Each of the sets K N(x}* +(e/2)By.) is weak* closed; hence, Baire’s
category theorem assures us that if we let W, be the relative weak* interior
of K N(x}+(e/2)By.) in K, then U W, is weak* dense in K. Since the W,
clearly have norm diameter < ¢, they are among those sets that go into
making A, what it is, which, in part, is weak* dense in K. 0

X Theorem 7 is due to Isaac Namioka and so is Theorem 8.

Theorem 8. Let X be a separable Banach space with separable dual X*. Let K
be a weak* compact convex subset of X*. Then the set of points of weak*-norm
continuity of the identity map id y of K meets the set ext K of extreme points of
K in a set that is a dense Gy-subset of (ext K, weak™*).

PROOF. We already know from Theorem 7 that id , has lots of points of
weak*-norm continuity in (K,weak*)—a dense %;-set of them in fact. In
proving the present result, we will follow the lead of the proof of Theorem 7
and apply the weak* version of Superlemma to pull us through any
difficulties encountered.

To start with, for each € > 0 let B, be the set

{u* € ext K: u* has a neighborhood W * in (K, weak*) with ||-|| diam <e}.

Each B, is open in (ext K,weak®); we claim that each is dense therein as
well.

Let W* be a weak* open subset of X* that intersects ext K; of course
W*Next K***" is nonempty, too. By Theorem 7, the set of points
of weak*-norm continuity of idgggwa+ is a dense %;-subset of
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(ext K¥** weak*). It follows that there must be a weak* open set V' * in
X * such that ¥ * intersects ext K “***" in a nonvoid subset of W * Nnext K"
having norm diameter < ¢/2, say. Define K, and K as follows:

K, = weak* closed convex hull of V'* Next K=
and

K, = weak* closed convex hull of ext K cak” \V*.

K, is weak* compact and convex and so is K;. The norm diameter of K|, is
< &/2, and K, is contained in K. Since the set ext KV \ V is weak * closed
in K, it is weak* compact; Milman’s theorem alerts us to the fact that
ext K; Cext K***"\ V' *. On the other hand, X is the convex hull of K, U K,
and V* does intersect ext K*°**". Hence K, does not contain K, and the
stage has been set for the entrance of Superlemma. On cue Superlemma
produces a weak* slice S* of K having norm diameter < ¢ that intersects K|,
and misses K. $* contains a point u* of ext K in its weak* interior. Since
S* has norm diameter <e, we know that u* € B,. Finally, notice that
ext K**"\ V' * c K, a set disjoint from S*; therefore, u* cext K Ny *
C W*, and so u* € W*, t00. u* € BN W* and B, is dense in ext K"k,

Naturally, the points of weak*-norm continuity of id ; inside ext K are
precisely those points that find themselves in N, B, /,. It suffices, therefore,
to note that in the weak* topology ext K is a Baire space. Why is this so?
Well, X is separable so weak* ¢ompact subsets of X* are weak* metrizable.
Further, we saw in the proof of Choquet’s theorem that in a metrizable
compact convex set the complement of the set of extreme points is a
countable union of closed sets; the set of extreme points is a F5. Of course,
@5-subsets of completely metrizable spaces are Baire spaces, as the usual
proof of the Baire category theorem so obviously indicates. The proof of
Theorem 8 is complete. O

Okay, let X* be separable and let C be a nonempty closed bounded
convex subset of X*. C’s weak* closure K is weak* compact and convex,
and Theorem 8 applies to K. Let Z be the set of points of weak*-norm
continuity of id ;. Take a z* & Z. Since C is weak* dense in K, there is a net
(x¥)pin C that converges to z* in the weak* topology—actually we have a
sequence in C converging to z* because K is weak* metrizable. Of course,
z* being a point of weak*-norm continuity assures us that z* is the norm
limit of (x})p, too. But C is norm closed; so z* € C.

We have just demonstrated the following.

Theorem 9 (Bessaga-Pelczynski). In separable dual spaces, nonempty closed
bounded convex sets have extreme points.

Our next stepping stone involves recognizing a separable dual by how
many extreme points its dual ball has. Here’s the main result. .
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Theorem 10. Let X be a separable Banach space and suppose the set ext By.
of extrere points of By. is a norm separable set. Then X* is separable.

PROOF. Several ingredients provide just the right mix to make a proof to
Theorem 10. We present them in more-or-less arbitrary order.

1. Let S be a separable metric space and Y be a Banach space. Suppose
f:S—>Y is a continuous bounded function and p is a probability Borel
measure defined on S. Then f is Bochner integrable with respect to p.

We denote by C,(S) the Banach space of all continuous bounded
real-valued functions defined on the separable metric space S and by 2(S)
the convex set of all probability Borel measures defined on S. Take special
note of the inclusion of #(S) within B, 5., making it natural to consider
2(S) in its weak* topology.

2. Let S be a separable metric space and Y be a Banach space. Suppose
f:§$—Y is a continuous bounded function. Then the map I;: #(S)—->Y
given by I,(p) = Bochner [fdp is weak*-weak continuous.

In fact to show I, is weak*-weak continuous, it suffices to show that y*I,
is weak* continuous on #(S) for each y* € Y *. Since

y*I,(n)=y*ffdu=fy*fdu,

a useful property of the Bochner integral, this weak* continuity is an
immediate consequence of y*f’s membership in C,(S) for each y* € Y *.

Closer to the spirit of the theorem itself is item 3.

3. Let S be a norm-separable subset of By.. Then the norm Borel subsets
of S and the sets of the form S N B, where B is weak* Borel subset of By.
coincide. '

Let % denote the collection of all subsets of S having the form S N B,
where B is a weak* Borel subset of By.. % contains a base for the norm
topology of S, namely, sets S N B, where B is a closed ball of X*. Take a
norm open set U in S. Each x'€ U is contained in the interior of a closed
ball B, for which S N B, c U. Since S is separable, a countable number of
closed balls B, are needed to cover U. Of course, U is therefore a member of
%. It follows that all the norm Borel subsets of S belong to %, and 3 is
proved.

We are now ready to prove Theorem 10. S will be used to denote the set
ext By. in the norm topology, and the . function f encountered in 1 and 2 will
be the formal identity from S into X*. As we saw in 1 and 2, I/ is
weak*-weak continuous from £(S) into X *.

Take a point mass §, € #(S): [,(§,)=f(s)=s€ES.

Take a convex combination X7_;a,5; of point masses:

’/( i aiss,-) = Z a,f(s;) €co(S).

i=1 i=1
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Take a weak* limit p € 2(S) of convex combinations (u,), of point
masses: I, (p) = I,(weak* lim pp,) = weaklim 5 I, (1) €co(S) ek

Of course, each p € GQ(S) is such a weak* limit; so we get I,(.?(S)) s
containment in co(S) , the weakly closed convex hull of S. By Mazur’s
theorem, I,(#(S)) is contamed in the norm closed convex hull of S and so
is norm separable.

Now let us see that By. is itself contained in I,(#(S)).

Take x* € By.. X is separable making B,. weak* metrizable and ext By.
a weak* @,-subset of B,.. By Choquet’s theorem there is a regular Borel
probability measure p on ext B,. with

ex=[ () ()

ext By«

part 3 assures us that we need not worry about whether we are speaking
about the Borel sets of S in the norm topology or the weak* topology. Of
course, the Bochner integral [cfdu is actually at work above, and the

formula above jllS( says
X*x = d HLx

for each x € X; in other words, x* = [sfdu = I.(p).

orm

By.C I,(P(S)) cco(S) . a

Our next lemma, due to John Elton, indicates the severe limitations on
the separability of the set of extreme points. Its proof will soon make
another appearance.

Lemma 11. Let X be a separable real Banach space and suppose that the set
ext By. of extreme points of By. can be covered by a countable union of
compact sets. Then X can be renormed so that its new dual unit ball has but
countably many extreme points.

PrROOF. Let (K,) be a sequence of compact subsets of X* (each contained
in By.) for which
ext By. € UK,,.
n

Let (e,) be a sequence of positive numbers for which 1> ¢ >¢,>--- >¢,
>eg,,,° -+ — 0. For each n let %, be a finite ¢, /2 net for K. Define ||| x]|| by

lxli=sup U {1+ e)lf(x)]: f € %)

n=1

lllx|ll satisfies ||x]| < |l|x}ll < (1+ ¢)||x|| and so is an equivalent norm on X.
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Obviously, By« C By, - i* Not so obvious is the fact that
By.C (x* € X*:||x*|| <1).

To see that this is so, suppose otherwise. Then there exists an x3 € X* for
which

lxdll =1=Ixgl-
Pick x3* € X** such that
Mxd*ll=1=x3*(xg).

Plainly |[xd*||=1, too. Now the set {x*€ X*:|x*||=1=x3*x*} is a
nonempty closed convex subset of X*. By Theorem 10, X * is separable; so
by Theorem 9, the set {x* € X*:||x*||=1= xJ*x*} has an extreme point,
say x*. x* belongs to K,, for some m; therefore, [|x¥ — x%|| < ¢,, /2 for some
xy € % . Of course,

x3*(xn) = x3*(xz) = xg*(x —x3)
>1—(fzﬂ),
and so
xg*((1+e,)x%)> (1+ e,,,)(l - %’") >1.

x&* has committed the gravest of mathematical sins: while proclaiming that
llxd*Nl =1, x¢* has achieved a value >1 at an element, (1+¢,,)x}, having
Il |l length no more than 1.

Next we notice that for each n, (1+¢,)%, is a subset of By ., and
that, in fact, By, .,,+ is the weak* closed convex hull of U,(£(1+¢,)%,).
Why is this last assertion so? Well, if there were an x* in B, x, -In* absent
from the weak* closed convex hull of U,(+(1+¢,)%,), then there would
exist a weak* continuous linear functional x € X of |||-||| length 1 and an
e>0so that x*x =1, yet(1+¢,)y¥x)|<l—eforallnand ally¥ € £, A
look at the definition of |||x||| will establish our assertion.

Since U, (+(1+¢,)#,) generates By ,,.;)»» Milman’s theorem assures us

that each extreme point of By ., belongs to U(x(1+e,) %) ek
Let’s look and see where the weak* limit points of U,(+(1+¢,)%,) fall.
Take a weak* convergent sequence (#}) the terms of which belong to
U, (£(1+¢,)%). If (u}) repeatedly returns to one of the sets +(1+¢,)%,,
then it is clear from the finiteness of %, that the weak* limit of (u}) is also
in +(1+¢,)%,. Otherwise, there is an increasing sequence (n,) of positive
integers and a subsequence (v}) of (uf) for which v} € +(1+e¢,, )%, . By
our judiciously placed constraints on (e,) we see that |weak*limo}|| <1;
therefore, [||[weak* limo}||| <1 and weak*limv} is nor an extreme point of
B x y-+! In other words, all extreme points of B x, .y« are in the countable
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sei

U2 +e,) ). o

We zare rapidly closing in on the finis of Elten’s theorem. One giant step is
coniained in the next beautiful resuit of V. Fonf.

Thecrerr ¥2. Let X be a separable real Banach space of infinite dimension
whose dual unit ball has but countably many extreme points. Ther X contains
an isomorpk of c,.

PROOF. Suppose extBy.= {+x*},,, and let 1>¢g>¢e>--->¢, 0.
Define a new norm on X by

= st x-S TETT RS ™)

Then {||-|Il is a norm on X satisfying {lx|| < |l|xlil <(1+ ¢)l||x]| for all x.
Correspondingly, By« C B x .;p» © (1 + &) By.. As in Lemma 11, we claim
that By. C {x*:|||x*||| <1}. (Were this not so, therc would be an x} € X*
for which ||x3|| =1=||xJ||. Take xF* € X** such that xF*x§ =1=|xZ*||.
Plainly, ||x*|l =1, too. By. has but a countable number of extreme points;
so Theorem 10 ensures the separability of X*; Theorem 9 now assures us of
the presence of an extreme point x¥ in the norm closed bounded convex set
{x*:|jx*||=1=xd*x*}. Since this set is extremal in By., x} is in the list
{£ x¥ )}, Therefore, x7 =+ x7, and so (1+¢, )x has||-||-length 1. But
this gives |x§*(x; )| =1+¢, >1, a contradiction.

An easy separation argument shows that B . ... i1s the weak* closed
convex hull of {+(1+ A )x"‘ n>1}; so extB ., is contained in
{£(+e)xr:n2 1} thanks to Milman’s theorem. A weak* conver-
gent sequence taken from the set { +(1+¢,)x}: n>1} converges either to a
point of the set or to a point of By. (which cannot be an extreme point of
B( x.i-ipe)s it follows that all the extreme points of B )~ find themselves
in {£(1+¢,)x}:n=1}. In other words, there is a subsequence (y) of
(x*¥)and a subsequence (8,) of (&,) such that

ext By e € {£(1+8,)pr:n21).

A key consequence of the above development is this: given a finite-dimen-
sional subspace F of (X, ||| ||) there is an np such that

ext B s S { £ 1+ 8,) 1 r hicnsn,

Since every member of ext Bg ., has an exiension that’s extreme in
B x y-p+s it is clear that each extreme point of B .+ is of the form
a,(1+38,)y¥|r for some n and signg,. This, in tandem with the nondecreas-
ing nature of the linear subspaces of F* spanned by {+(1+8,)y%:1<m
< n}, will soon produce the required n .
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We now build a normalized sequence (x,,) in (X, |||- |ID-

Take any x, € X such that |||x,||| =1. The collection {x*:|||x*||=1=
x*x,} is a nonempty extremal weak* compact convex subset of By .+
as such it contains an extreme point of By ..y»—say 0, (1+8, ).
course, |(1+ 8, ) y(x;)| =

Take x, € Xsuch that |ux2||| =1 and yff(x;) =--- = y(x,) = 0. Let F be
the linear span of x, and x,. Pick n, > n, so that

ext B e & {i(1+ 8n)yn*|F}lsn5nz‘

Take x; € X such that |||x;|| =1 and y*(x3) = -+ = y,*(x;) = 0. Let F be
the linear span of x,, x,, and x;. Pick n; > n, so that

ext Bp e S {£(1+ 8n)y:|l~'}lsnsn3'

Et cetera.
It is easy to see that (x,) is a monotone basic sequence, i.e., for any
J, k >1 we have
Jj+k

Ea"k

=1

Zax

i=1

Let Z=[x,],,, be the closed linear span of the x,. Then B, ,.,)» has
but countably many extreme points, each a restriction of some extreme
point of By e+ to Z. List the extreme points of B .+ as {£z}}.
Keeping in mind the origins of the extreme points of B x ,.,)+» tWo key
properties of (z¥) come to the fore:

First, any weak* limit point of { + z¥} that does not belong to { + z}}
has ||| ||| length <1.
Second, given any n there is a k(n) such that z}x,, = 0 for all m = k(n).

Now we take dead aim on finding a ¢, in Z.

Setn, =1.

Suppose coefficients 7,, ... ,n, have been chosen so carefully that
n

Z o;N; X,

i=1

<2

for any signs o0,,0,,...,0,, yet for some signs oy, ...,0" we have

n
E o n;x;

i=1

n-1

Z o n;x;

i=1

We show how to pick 1, ;.
Set

”A

Z onx;+0,,1hx,

i=1

o)}

Bn+l = min{max{h >0:

i=1
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where the minimum is taken over all 2"*!(n +1)-tuples (o,,0,, ... ,0,,,) of
signs. Just what does B,., signify? Well, given signs o,,...,0,,0,,, the
function ¢ :[0, 00) — [0, o) defined by

n
Z o x; + 0, 1hx,
i=1

o(h)=

is continuous and nondecreasing [since (x,) is monotone] and has value
X701, x,|| at O. Therefore, the number B, ., has the property that any
number h bigger than B, . ; opts for some (n + 1)-tuple of signs (5, ...,5,.,)
such that

<

n
Z Ei"ixi + an+1hxn+l
i=1

n
Z ;0 X;

i=1

This is mind (along side our hopes for 1, ;), we choose A, ; > 0 so that for
any (n +1)-tuple (o,, ... ,6,,,) of signs

n
Yonx,+0,.(Br+ A1) x| <2

ik

yet for some (n + 1) tuple of signs (4, ... ,d,,,) we have

n

E annixi
i=1
Set M1 = Bn+l + An+l'

Plainly, we have built the series X n,x, to be a wuC. Can it converge
unconditionally? If so, then the set {¥,0,7,x,:(0,) is a sequence of signs}
would be a relatively norm compact set in Z; of course, our choice of n, =1
and the monotonicity of (x,) assures us that for any sequence (o,) of signs
we have ||E,0,1,x,ll 2 1.

Here is the hitch: if K is a compact subset of {z € Z:|||z||| =1}, then
there is an N so that each z=YX,t,x, € K is actually of the form z=
TN_.t,x,. The contradiction attendant to this fact for the set {,0,1,x,:(d,)
is a sequence of signs} will prove that Z contains a divergent wuC and so a
copy of ¢, by the Bessaga-Pelczynski theorem of Chapter V.

Let’s establish the aforementioned striking feature of norm-compact
subsets K of {z€ Z: |||z|jl =1} by supposing it did not hold and deriving a
suitable contradiction. Were K a norm compact subset of {z € Z: |||z||| =1}
that does not depend on but a finite number of the x,,, then there would be
a sequence (u,) in K and a sequence (u}) among the extreme points. of
B z .+ €ach uy of the form of z2 (o, = £ 1) for some subsequence (z¢)
of (z}) such that

n
Z a‘ni‘xi + 6n+l(ﬂn+l + An+l)xn+l

i=1

<

ugu, = |llu,ll.

The compactness of K and the compact metric nature of ( B, I|I,m).,weak"')
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allows us to assume that

Uy = norm hzn u,

and

ud = weak* limu}
n

both exist. Of course, |||ud]l| <1; so

luolll = Timljju, || = limuu,,,

yet

limuru, = ug (uo) < llug il Mluolll < luolll- o

Lemma 13. Let (x,) be a normalized basis for the Banach space X and
suppose that ¥.,|x*x,| < oo for each x* € ext By.. Then the sequence (x}) of
coefficient functionals is a basis for X*.

ProOF. First, we take special note of the following: if (u;) is a normalized
block basis built on (x,), then (u,) is weakly null. In fact, since |ju,|| =1, the
u,; have uniformly bounded coefficients in their expansions according to the
basis (x,). Because we have assumed that ¥, |x*x,| <oo for each extreme
point x* of By., we can conclude that (x*u;) is null for each extreme point
x* of By«. Now we need only apply Rainwater’s theorem.

Now we show that lim,,||x*P, — x*||=0 for each x* € X*, where P,,:
X — X is the mth expansion operator with respect to the basis (x,),
P.(X,a,x,)=Xr_,a,x,. Butx* is always the weak* limit of the sequence
(x*P,); so the only thing that can go wrong with lim || x*P,, — x*|| = 0 for
each x* € X* would have to be the existence of an x} such that the
sequence (x§P,) is not even Cauchy. For such an x} we could find an
increasing sequence (m, ) of positive integers such that

* Y
|8n,..~ %80, > &

for all n and some &> (. Correspondingly, there is for each »n a y, € B, such
that

[(x8Pm,.., = x8Pn ) ()] = [x8 ((Pn.., = Pu)vn)| > .

Look at u, = (P,  — P, )v,). The sequence (u,) is a block basic sequence
built from (x,), |lu,]| > &/||x&|| for all n, and ||u,|| < 2sup,,||P,,|I. In light of
our opening remarks, (u,) must be weakly null yet |x¥u,|> ¢ for all n,
which is a contradiction. It follows that lim,,|[x*P, — x*||=0 for each
x*e X*
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As a point of fact, we are done. The expansion operators P,, have adjoints
P2} : X* - X* whose form is given by

. m
(P2x*)(x)=(x*P,)(x) = X x*(x;)x*.
i=1
Since ||PX|| =||P,l| < sup,,||P,l| < oo, the sequence (x¥) satisfies the crite-
rion for basic sequences; (x}) is a basis for its closed linear span. In light of
the previous paragraph the closed linear span of (x}) is all of X* —remem-
ber PXx* = x*P,,. O

One last step:

Theorem 14. Suppose that the Banach space X has a normalized basis (x,,)
for which L, |x*x,| < oo for each extreme point x* of By.. Then X contains a

copy of c,.

PROOF. Lemma 13 assures us that the sequence (x*) of coefficient function-
als is itself a basis for X*. Consequently, the operator T: /, — X* given by
T(t,)=ZX,t,x} is a well-defined bounded linear one-to-one operator from /,
into X*. Denote by (e,) the usual sequence of unit coordinate vectors in /.

If there is an N such that T'|, ,  is an isomorphism, then (x}), y is
equivalent to the unit vector basis of /. It is easy to deduce from this that
(x,), > v is equivalent to ¢,’s unit vector basis.

-If there is no N for which Tl[e » is an isomorphism, then it’s easy to
manufacture a normalized block basis (u,) with respect to (e,) in /; such
that ||Tu,|| <27"; these u, are of the form

qn
= Z Si€;s

i-pl
R

where1< p, <q, <p,<gq,<--- and Efz |s5;| =1. Of course, (u,) is equiv-
alent to the unit vector basis of /; and the closed linear span U of the u,, is
itself an isomorphic copy of /,. Further T(B,) is a relatively compact subset
of X*.

Let y, € X be the vector y, =Xfz, sign(s;)x; and consider the closed
linear span Y of the y,; we are going to find a ¢, inside Y. (y,) is a basis for
Y. Since X,|x*y,| <oo for each extreme point x* of B,. and since each
extreme point of B,. admits of an extreme extension in By., L, |y*y,| <o
for each extreme point y* of By.. Notice that the sequence (y*), where
yr= Tu,,|,,, is biort<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>