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Preface

In the introduction to the first volume of The Arithmetic of Elliptic Curves
(Springer-Verlag, 1986), I observed that “the theory of elliptic curves is
rich, varied, and amazingly vast,” and as a consequence, “many important
topics had to be omitted.” T included a brief introduction to ten additional
topics as an appendix to the first volume, with the tacit understanding that
eventually there might be a second volume containing the details. You are
now holding that second volume.

Unfortunately, it turned out that even those ten topics would not fit
into a single book, so I was forced to make some choices. The following
material is covered in this book:

I. Elliptic and modular functions for the full modular group.
II. Elliptic curves with complex multiplication.
ITI. Elliptic surfaces and specialization theorems.
IV. Néron models, Kodaira-Néron classification of special fibers,
Tate’s algorithm, and Ogg’s conductor-discriminant formula.
V. Tate’s theory of g-curves over p-adic fields.
VI. Néron’s theory of canonical local height functions.

So what’s still missing? First and foremost is the theory of modular
curves of higher level and the associated modular parametrizations of ellip-
tic curves. There is little question that this is currently the hottest topic
in the theory of elliptic curves, but any adequate treatment would seem to
require (at least) an entire book of its own. (For a nice introduction, see
Knapp [1].) Other topics that I have left out in order to keep this book
at a manageable size include the description of the image of the f-adic
representation attached to an elliptic curve and local and global duality
theory. Thus, at best, this book covers approximately half of the material
described in the appendix to the first volume. I apologize to those who may
feel disappointed, either at the incompleteness or at the choice of particular
topics.

In addition to the complete areas which have been omitted, there are
several topics which might have been naturally included if space had been
available. These include a description of Iwasawa theory in Chapter II,



viii Preface

the analytic theory of p-adic functions (rigid analysis) in Chapter V, and
Arakelov intersection theory in Chapter VI.

It has now been almost a decade since the first volume was written.
During that decade the already vast mathematical literature on elliptic
curves has continued to explode, with exciting new results appearing with
astonishing rapidity. Despite the many omissions detailed above, I am
hopeful that this book will prove useful, both for those who want to learn
about elliptic curves and for those who hope to advance the frontiers of our
knowledge. I offer all of you the best of luck in your explorations!

Computer Packages

There are several computer packages now available for performing compu-
tations on elliptic curves. PARI and SIMATH have many built-in elliptic
curve functions, there are packages available for commercial programs such
as Mathematica and Maple, and the author has written a small stand-alone
program which runs on Macintosh computers. Listed below are addresses,
current as of March 1994, where these packages may be acquired via anony-
mous ftp.

PARI (includes many elliptic curve functions)
math.ucla.edu 128.97.4.254
megrez.ceremab.u-bordeaux.fr 147.210.16.17

(directory pub/pari)
(unix, mac, msdos, amiga versions available)

SIMATH (includes many elliptic curve functions)
ftp.math.orst.edu
ftp.math.uni-sb.de

apecs (arithmetic of plane elliptic curves, Maple package)
math.mcgill.ca 132.206.1.20

(directory pub/apecs)

Elliptic Curve Calculator (Mathematica package)

Elliptic Curve Calculator (stand-alone Macintosh program)
gauss.math.brown.edu 128.148.194.40

(directory dist/EllipticCurve)

A description of many of the algorithms used for doing computations on
elliptic curves can be found in H. Cohen [1, Ch. 7] and Cremona [1].
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many results which are now considered “standard” have been presented as
such. In any case, I claim no originality for any of the unlabeled theorems
in this book, and apologize in advance to anyone who may feel slighted.
Sources which I found especially useful included the following;:

Chapter I  Apostol [1], Lang [1,2,3], Serre [3], Shimura [1]
Chapter II  Lang [1], Serre [6], Shimura [1]

Chapter IV Artin [1], Bosch-Liitkebohmert-Raynaud [1], Tate [2]
Chapter V. Robert [1], Tate [9]

Chapter VI Lang [3,4], Tate [3]

I would like to thank John Tate for providing me with a copy of his
unpublished manuscript (Tate [9]) containing the theory of g-curves over
complete fields. This material, some of which is taken verbatim from Pro-
fessor Tate’s manuscript, forms the bulk of Chapter V, Section 3. In addi-
tion, the description of Tate’s algorithm in Chapter IV, Section 9, follows
very closely Tate’s original exposition in [2], and I appreciate his allowing
me to include this material.

Portions of this book were written while I was visiting the University
of Paris VII (1992), IHES (1992), Boston University (1993), and Harvard
(1994). I would like to thank everyone at these institutions for their hos-
pitality during my stay.

Finally, and most importantly, I would like to thank my wife Susan for
her constant love and understanding, and Debby, Danny, and Jonathan for
providing all of those wonderful distractions so necessary for a truly happy
life.

Joseph H. Silverman

March 27, 1994

Acknowledgments for the Second Printing

I would like to thank the following people who kindly provided correc-
tions which have been incorporated in this second revised printing: An-
drew Baker, Brian Conrad, Guy Diaz, Darrin Doud, Lisa Fastenberg, Benji
Fisher, Boris Iskra, Steve Harding, Sharon Kineke, Joan-C. Lario, Yihsiang
Liow, Ken Ono, Michael Reid, Ottavio Rizzo, David Rohrlich, Samir Sik-
sek, Tonghai Yang, Horst Zimmer.

Providence, Rhode Island February, 1999



Contents

Preface
Computer Packages
Acknowledgments

Introduction

CHAPTER I
Elliptic and Modular Functions

§1. The Modular Group

§2.  The Modular Curve X (1)

83. Modular Functions

84. Uniformization and Fields of Moduli

85.  Elliptic Functions Revisited

86. g-Expansions of Elliptic Functions

§7. g-Expansions of Modular Functions

§8.  Jacobi’s Product Formula for A(7)

89. Hecke Operators

§10. Hecke Operators Acting on Modular Forms

§11. L-Series Attached to Modular Forms
Exercises

CHAPTER II
Complex Multiplication

§1. Complex Multiplication over C

§2. Rationality Questions

83. Class Field Theory — A Brief Review

§4. The Hilbert Class Field

85. The Maximal Abelian Extension

86. Integrality of j

§7.  Cyclotomic Class Field Theory

§8. The Main Theorem of Complex Multiplication

89. The Associated Grossencharacter

§10. The L-Series Attached to a CM Elliptic Curve
Exercises

vii
viii
viii

14
23
34
38
47
55
62
67
74
80
85

95

96
104
115
121
128
140
151
157
165
171
178



xii

CHAPTER III
Elliptic Surfaces

81.  Elliptic Curves over Function Fields

§2.  The Weak Mordell-Weil Theorem

§3.  Elliptic Surfaces

84. Heights on Elliptic Curves over Function Fields

85.  Split Elliptic Surfaces and Sets of Bounded Height

86. The Mordell-Weil Theorem for Function Fields

§7. The Geometry of Algebraic Surfaces

88. The Geometry of Fibered Surfaces

89. The Geometry of Elliptic Surfaces

§10. Heights and Divisors on Varieties

§11. Specialization Theorems for Elliptic Surfaces

§12. Integral Points on Elliptic Curves over Function Fields
Exercises

CHAPTER IV

The Néron Model

§1.  Group Varieties
§2.  Schemes and S-Schemes
§3.  Group Schemes
84.  Arithmetic Surfaces
§5. Néron Models
§6. Existence of Néron Models
§7. Intersection Theory, Minimal Models, and Blowing-Up
§8. The Special Fiber of a Néron Model
§9. Tate’s Algorithm to Compute the Special Fiber
§10. The Conductor of an Elliptic Curve
§11. Ogg’s Formula
Exercises
CHAPTER V

Elliptic Curves over Complete Fields

§1.
§2.
§3.
§4.
§5.
§6.

Elliptic Curves over C

Elliptic Curves over R

The Tate Curve

The Tate Map Is Surjective

Elliptic Curves over p-adic Fields

Some Applications of p-adic Uniformization
Exercises

Contents

187

188
191
200
212
220
230
231
236
245
255
265
274
278

289

290
297
306
311
318
325
338
350
361
379
389
396

408

408
413
422
429
438
445
448



Contents

CHAPTER VI
Local Height Functions

§1. Existence of Local Height Functions

§2. Local Decomposition of the Canonical Height

83. Archimedean Absolute Values — Explicit Formulas

§4. Non-Archimedean Absolute Values — Explicit Formulas
Exercises

APPENDIX A

Some Useful Tables

§1.
§2.

§3.

Bernoulli Numbers and ((2k)
Fourier Coefficients of A(7) and j(7)
Elliptic Curves over Q with Complex Multiplication

Notes on Exercises

References

List of Notation

Index

xiii

454

455
461
463
469
476

481
481

482
483
484
488
498

504



Introduction

In the first volume of The Arithmetic of Elliptic Curves, we pre-
sented the basic theory culminating in two fundamental global results,
the Mordell-Weil theorem on the finite generation of the group of rational
points and Siegel’s theorem on the finiteness of the set of integral points.
This second volume continues our study of elliptic curves by presenting six
important, but somewhat more specialized, topics.

We begin in Chapter I with the theory of elliptic functions and modular
functions for the full modular group I'(1) = SLy(Z)/{%1}. We develop this
material in some detail, including the theory of Hecke operators and the L-
series associated to cusp forms for I'(1). Chapter II is devoted to the study
of elliptic curves with complex multiplication. The main theorem here
states that if K/Q is a quadratic imaginary field and if E/C is an elliptic
curve whose endomorphism ring is isomorphic to the ring of integers of K,
then K (](E)) is the Hilbert class field of K; and further, the maximal
abelian extension of K is generated by j(E) and the z-coordinates’ of the
torsion points in E(C). This is analogous to the cyclotomic theory, where
the maximal abelian extension of QQ is generated by the points of finite
order in the multiplicative group C*. At the end of Chapter II we show
that the L-series of an elliptic curve with complex multiplication is the
product of two Hecke L-series with Gréssencharacter, thereby obtaining at
one stroke the analytic continuation and functional equation.

The common theme of Chapters III and IV is one-parameter families
of elliptic curves. Chapter III deals with the classical geometric case, where
the family is parametrized by a projective curve over a field of characteristic
zero. Such families are called elliptic surfaces. Thus an elliptic surface
consists of a curve C, a surface £, and a morphism 7 : € — C such that
almost every fiber 7~1(t) is an elliptic curve. The set of sections

{maps o : C — € such that Too(t) = t}

T If j(E) = 1728 or j(E) = 0, one has to use z° or z° instead of z.
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to an elliptic surface forms a group, and we prove an analogue of the
Mordell-Weil theorem which asserts that this group is (usually) finitely
generated. In the latter part of Chapter III we study canonical heights
and intersection theory on £ and prove specialization theorems for both
the canonical height and the group of sections.

Chapter IV continues our study of one-parameter families of ellip-
tic curves in a more general setting. We replace the base curve C' by a
scheme S = Spec R, where R is a discrete valuation ring. The generic fiber
of the arithmetic surface £ — S is an elliptic curve E defined over the
fraction field K of R, and its special fiber is a curve & (possibly singular,
reducible, or even non-reduced) defined over the residue field k of R. We
prove that if ¢ — S is a minimal proper regular arithmetic surface whose
generic fiber is F, and if we write € for the part of € that is smooth over S,
then € is a group scheme over S and satisfies Néron’s universal mapping
property. In particular, F(K) = E(R); that is, every K-rational point on
the generic fiber F extends to an R-valued point of £&. We also describe the
Kodaira-Néron classification of the possible configurations for the special
fiber € and give Tate’s algorithm for computing the special fiber. At the
end of Chapter IV we discuss the conductor of an elliptic curve and prove
(some cases of) Ogg’s formula relating the conductor, minimal discrimi-
nant, and number of components of C.

In Chapter V we return to the analytic theory of elliptic curves. We
begin with a brief review of the theory over C, which we then use to analyze
elliptic curves defined over R. But the main emphasis of Chapter V is on
elliptic curves defined over p-adic fields. Every elliptic curve E defined
over C is analytically isomorphic to C*/¢% for some ¢ € C*. Similarly,
Tate has shown that if £ is defined over a p-adic field K and if the j-
invariant of E is non-integral, then E is analytically isomorphic to K*/¢”
for some ¢ € K*. (It may be necessary to replace K by a quadratic
extension.) Further, the isomorphism E(K) = K*/q¢” respects the action
of the Galois group G/, a fact which is extremely important for the
study of arithmetic questions. In Chapter V we describe Tate’s theory
of g-curves and give some applications.

The final chapter of this volume contains a brief exposition of the
theory of canonical local height functions. These local heights can be used
to decompose the global canonical height described in the first volume
[AEC, VIII §9]. We prove the existence of canonical local heights and give
explicit formulas for them. Local heights are useful in studying some of the
more refined properties of the global height.

As with the first volume, this book is meant to be an introductory text,
albeit at an upper graduate level. For this reason we have occasionally made
simplifying assumptions. We mention in particular that in Chapter II we
restrict attention to elliptic curves whose ring of complex multiplications
is integrally closed; in Chapter III we only consider elliptic surfaces over
fields of characteristic 0; and in Chapter IV we assume that all Dedekind
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domains and discrete valuation rings have perfect residue fields. Possibly
it would be preferable not to make these assumptions, but we feel that the
loss of generality is more than made up for by the concomitant clarity of
the exposition.

Prerequisites

The main prerequisite for reading this book is some familiarity with the ba-
sic theory of elliptic curves as described, for example, in the first volume.
Beyond this, the prerequisites vary enormously from chapter to chapter.
Chapter I requires little more than a first course in complex analysis. Chap-
ter II uses class field theory in an essential way, so a brief summary of class
field theory has been included in (IT §3). Chapter III requires various clas-
sical results from algebraic geometry, such as the theory of surfaces and
the theory of divisors on varieties. As always, summaries, references, and
examples are supplied as needed.

Chapter IV is technically the most demanding chapter of the book.
The reader will need some acquaintance with the theory of schemes, such
as given in Hartshorne [1, Ch. IT] or Eisenbud-Harris [1]. But beyond that,
there are portions of Chapter IV, especially IV §6, which use advanced
techniques and concepts from modern algebraic geometry. We have at-
tempted to explain all of the main points, with varying degrees of precision
and reliance on intuition, but the reader who wants to fill in every detail
will face a non-trivial task. Finally, Chapters V and VI are basically self-
contained, although they do refer to earlier chapters. More precisely, the
interdependence of the chapters of this book is illustrated by the following
guide:

y Ch. II
Ch. VI |Ch. HI] ———5 ICh. IV|
™ 4

The dashed line connecting Chapter III to Chapter IV is meant to indicate
that although there are few explicit cross-references, mastery of the subject
matter of Chapter III will certainly help to illuminate the more difficult
material covered in Chapter IV.

References and Exercises

The first volume of The Arithmetic of Elliptic Curves (Springer-Verlag,
1986) is denoted by [AEC], so for example [AEC, VIIL.6.7] is Theorem 6.7
in Chapter VIII of [AEC]. All other bibliographic references are given by
the author’s name followed by a reference number in square brackets, for
example Tate [7, theorem 5.1]. Cross-references within the same chapter
are given by number in parentheses, such as (3.7) or (4.5a). References
from within one chapter to another chapter or appendix are preceded by
the appropriate Roman numeral or letter, as in (IV.6.1) or (A §3). Exercises
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appear at the end of each chapter and are numbered consecutively, so, for
example, exercise 4.23 is the 23" exercise at the end of Chapter IV.

Just as in the first volume, numerous exercises have been included at
the end of each chapter. The reader desiring to gain a real understanding of
the subject is urged to attempt as many as possible. Some of these exercises
are (special cases of) results which have appeared in the literature. A list
of comments and citations for the exercises will be found at the end of the
book. Exercises marked with a single asterisk are somewhat more difficult,
and two asterisks signal an unsolved problem.

Standard Notation
Throughout this book, we use the symbols

Z, Q, R, C, Fy, and Z,

to represent the integers, rational numbers, real numbers, complex num-
bers, field with g elements, and p-adic integers respectively. Further, if R
is any ring, then R* denotes the group of invertible elements of R; and if A
is an abelian group, then A[m] denotes the subgroup of A consisting of all
elements with order dividing m. A more complete list of notation will be
found at the end of the book.



CHAPTER I

Elliptic and Modular Functions

In most of our previous work in [AEC], the major theorems have been of
the form “Let E/K be an elliptic curve. Then E/K has such-and-such
a property.” In this chapter we will change our perspective and consider
the set of elliptic curves as a whole. We will take the collection of all
(isomorphism classes of) elliptic curves and make it into an algebraic curve,
a so-called modular curve. Then by studying functions and differential
forms on this modular curve, we will be able to make deductions about
elliptic curves. Further, the Fourier coefficients of these modular functions
and modular forms turn out to be extremely interesting in their own right,
especially from a number-theoretic viewpoint. We will be able to prove
some of their properties in the last part of the chapter.

This chapter thus has two main themes, each of which provides a
paradigm for major areas of current research in number theory and alge-
braic geometry. First, when studying a collection of algebraic varieties or
algebraic structures, one can often match the objects being studied (up
to isomorphism) with the points of some other algebraic variety, called a
moduli space. Then one can use techniques from algebraic geometry to
study the moduli space as a variety and thereby deduce facts about the
original collection of objects. A subtheme of this first main theme is that
the moduli space itself need not be a projective variety, so a first task is to
find a “natural” way to complete the moduli space.

Our second theme centers around the properties of functions and dif-
ferential forms on a moduli space. Using techniques from algebraic geom-
etry and complex analysis, one studies the dimensions of these spaces of
modular functions and forms and also gives explicit Laurent, Fourier, and
product expansions. Next one uses the geometry of the objects to define
linear operators (called Hecke operators) on the space of modular forms,
and one shows that the Hecke operators satisfy certain relations. One then
takes a modular form which is a eigenfunction for the Hecke operators
and deduces that the Fourier coefficients of the modular form satisfy the
same relations. Finally, one reinterprets all of these results by associating
an L-series to a modular form and showing that the L-series has an Euler
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product expansion and analytic continuation and that it satisfies a func-
tional equation.

§1. The Modular Group

Recall [AEC VI1.3.6] that a lattice A C C defines an elliptic curve E/C via
the complex analytic map
C/A — EA(C): y* = 42° — gz — g3
z— (p(z;A),9'(2; A)).

pz;A) =5+ ( Z_w)2”;1‘2‘)

weA
w#0

is the Weierstrass p-function relative to the lattice A. (See [AEC VIL,§3].)
Further, if A; and A, are two lattices, then we have

Here

Ep, =/c En, if and only if A1 and A, are homothetic.

(See [AEC VI.4.1.1]. Recall A; and Ay are homothetic if there is a num-
ber ¢ € C* such that A1 = cAg.)

Thus the set of elliptic curves over C is intimately related to the set
of lattices in C, which we denote by L:

L = {lattices in C}.
We let C* act on £ by multiplication,
cA = {ew: w € A}.
Then the above discussion may be summarized by saying that there is an
injection
{elliptic curves defined over (C}
C-isomorphism

L/C* <

According to the Uniformization Theorem for Elliptic Curves (stated
but not proven in [AEC VL.5.1]), this map is a bijection. One of our goals
in this chapter is to prove this fact (4.3). But first we will need to describe
the set L/C* more precisely. We will put a complex structure on L/C*,
and ultimately we will show that £/C* is isomorphic to C.

Let A € L. We can describe A by choosing a basis, say

A= ZU.)I +ZWQ.

Switching w; and ws if necessary, we always assume that the pair (wq,w;)
gives a positive orientation. (That is, the angle from w; to w; is positive
and between 0° and 180°. See Figure 1.1.)
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An Oriented Basis for the Lattice A
Figure 1.1

Since we only care about A up to homothety, we can normalize our
basis by looking instead at

Ia_z9 g

wa wo
Our choice of orientation implies that the imaginary part of w; /ws satisfies
Im(wi/w2) >0,
which suggests looking at the upper half-plane
H= {7 e C:Im(r) > 0}.
We have just shown that the natural map

H— L/C*,
T— AN, =Z74+7Z

is surjective. It is not, however, injective. When do two 7’s give the same
lattice? We start with an easy calculation.
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Lemma 1.1. Leta,b,c,d € R, 7€ C, 7 ¢ R. Then

" <a7+b) _ (ad = bo) Im(r)

er+d) et +dJ?

PRrROOF. Let 7 = s+it. Multiplying numerator and denominator by c¢7 +d,
we find

ar+b _ {ac|t]? + (ad + bc)s + bd} + {(ad — be)t}i
cr+d ler + d)? ’
O
The ambiguity in associating a 7 € H to a lattice A lies in choosing an
oriented basis for A. Suppose that we take two oriented bases,

A = Zuw + Zwy = Zw) + Zws,.
Then there are integers a, b, c,d,a’,b’,c’,d’" so that

W] = awy + bwa, wy = d'wy + bW,
wh = cwy + dwa, wy = cwy + d'wj.

Substituting the left-hand expressions into the right-hand ones and using
the fact that w; and wy are R-linearly independent, we see that

a b a b\ (10
¢ d d d) \0 1)
Further, using Lemma 1.1 (with 7 = w;/w2) and the fact that our
bases are oriented, we find that

0 < Im (w{) — Im (aw1 + bw2> _ (ad — be) Im(wy /wa)

wh cwy + dws le(wr/w2) + d|?

and so
ad — bc > 0.

In other words, the matrix { ¢ b) is in the special linear group over Z,
cd

(Z Z) € Sly(Z) = {(: g) :a,ﬂ,w,&EZ,aé—,@’y:I}.

This proves the first half of the following lemma.
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Lemma 1.2. (a) Let A C C be a lattice, and let wy,wy and w},wy be two
oriented bases for A. Then
w) = awy + bws

Wl = cwn + du for some matrix (Z Z) € SLy(Z).

(b) Let 11,72 € H. Then A,, is homothetic to A, if and only if there is a

matrix
ar; + b

et +d

(Z 2) € SL»(Z) such that Ty =

(c) Let A C C be a lattice. Then thereis aT € H such that A is homothetic
to A, =Z1 + 7.

PROOF. (a) This was done above.
(b) Using (a), we find that
A., is homothetic to A,
== 71y + Z = Zat, + Za for some a € C*,
To = aaT; + ba ab
= f € SL2(Z),
{ 1= carm +da oF some (c d) 2(2)
aty + b

= To = .
2 CTl+d

Conversely, if 5 = (a7 +b)/(c7'1 +d), let @ = ¢ +d. Then again using (a),
we find
al., =Z(am +b) + Z(crn +d) =Zm + Z = A,,.

Hence A,, and A,, are homothetic.
(c) Write A = w1Z + weZ with an oriented basis and take 7 = w; /wa.
O

In view of Lemma 1.2(b), it is natural to define an action of SLy(Z)
on H as follows:

at +b ab
fYT_CT+d for v = (cd> € SLy(Z) and 7 € H.

The fact that 7 is in H follows from Lemma 1.1, and the fact that this de-
fines a group action is an easy calculation. This action gives an equivalence
relation on the points of H, and Lemma 1.2(b) tells us what the cosets are.
There is a bijection

SLy(Z)\H °"&eseme g/cx,
T —— A,

We can actually do a little bit better, since the matrix

2= (3 4)

acts trivially on H.
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Definition. The modular group, denoted I'(1), is the quotient group
I'(1) = SLy(Z) /{+1}.

Although T'(1) is the quotient SLy(Z)/{£1}, we will generally just
write down matrices and leave it to the reader to remember that (_01 _01)
is equal to ((1) (1)) For an explanation of the notation I'(1), see exercise 1.6
where we define groups I'(V) for all integers N > 1.

Remark 1.3. Note that &1 are the only elements of SLy(Z) which fix H.
For suppose that v = (‘é 3) satisfies y7 = 7 for all 7 € H. This means

that
e’ —(d—a)T—b=0 for all 7 € H,

from which we conclude that ¢ = b =0 and a = d. Hence v = +1.

Remark 1.4. The group I'(1) contains two particularly important ele-
ments, which we will denote

0 -1 11
§= (1 0 ) ’ T= (0 1) '
Their action on H is given by

S(T):—%, T(r)=71+1.

Notice also that the elements S and ST = ((1) “11) have finite order,

2 3
2 (0 —1Y\" _ 3 (0 -1\ _
S_(l 0) =1 and (ST) —(1 1) =1,
so I'(1) contains finite subgroups of order 2 and 3.

The next proposition provides us with a good description of the quo-
tient space I'(1)\H.

Proposition 1.5. Let F C H be the set
F={reH:|r|>1 and |Re(r)| <3}

(See Figure 1.2 for a picture of ¥ and some of its translates by elements
of I'(1).)

(a) Let T € H. Then there is a y € I'(1) such that y7 € J.

(b) Suppose that both T and v are in F for some v € I'(1), v # 1. Then
one of the following is true:
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11

F and Some of Its '(1)-Translates

Figure 1.2
(i) Re(t)=—%1 and ~yr=7+1;
(ii) Re(r)=%1 and yr=7-1
(iii) ] =1 and 7 =-1/T.

(c) Let T € F, and let

I(r) = {’y el(l):yr= T}
be the stabilizer of 7. Then

{1,S} ifr =1;

() = {1,8T,(ST)?*} ifr=p= e?i/3;
{1,TS,(TS)?} ifT=—p=e""%
{1} otherwise.
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PROOF. (a) We prove something stronger. Let I be the subgroup of I'(1)
generated by S = ((1) _01) and T = ((1) %), and let 7 € H. We will prove
that there is a v € IV such that y7 € .
For any v = ('(’; g) € I'(1), Lemma 1.1 says that
Im(7)

Write 7 = s + it. Since t > 0, it is clear that
ler +d|? = (es +d)? + (ct)? — 00 as |¢| + |d| — oo.

Hence, for our fixed 7, there is a matrix 79 € I’ which mazimizes the
quantity Im(y7). Next, since T"7 = 7 + n, we can choose an integer n so
that

|Re(T"’yOT)| < %
We set v = T™vy and claim that y7 € F.

Suppose to the contrary that y7 ¢ F. By construction, |Re('y7')| < %,
so we must have |y7| < 1. But then

_Im(y7)
Iyr[?
contradicting the choice of o7 to maximize Im(vo7). This contradiction

shows that y7 € F, which completes the proof of (a).

(b,c) We may assume that Im(y7) > Im(7), since otherwise we replace

the pair 7,7 by the pair y7,v~1(y7). Writing v = (g Z) as usual, we

have

Im(SvT)

> Im(y7) = Im(yo7),

I
Im(7) < Im(y7) = W’Lf-d)TQ’ so et +d| <1

Since Im(7) > %\/5, we must have |¢| < 2/\/3, so |c|] < 1. Replacing v
by —~ if necessary, it suffices to consider the cases ¢ =0 and ¢ = 1.

Then a =d =1 and yv7 = 7+ b. Since
|Re(r)| < 4 and |Re(y7)| = |Re(r +b)| < &,

it follows that

By assumption, |7| > 1 and |7 +d| < 1. Writing 7 = s+ it, this means that

b=+1 and Re(t) =F

(SIS

1<s?+¢2  and (s+d)?+t2<]

SO
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1<s?4+t2<1-2ds—d*=1-d(d+1)—d(2sF1).

Since d € Z, the quantity d(d + 1) is non-negative. Similarly since |s| < 1,
the quantity d(2s F 1) is non-negative for one of the choices of +/— sign.
We conclude that

7| =82 +t* =1 and d(2s+d) =0.

We now look at several subcases.

Then v = (‘f Bl), and since |7| = 1, we have

% > |Re(y7)| = |Re(a — 77| = |a — s|.

Hence one of the following three cases holds:

a=0, Islgé, 7| =1, ~v=2_, T = —1/7;
azla S-:%, T==p ’Y=TSa 7(_ﬁ)=_ﬁv
a=-1, s=-3, T=p  7=(ST)? P = p.

c=1,d=1,s:—%‘

ThenT:pand'y:(‘faII),so
—1 a+
T=a- = .
v P p

Since yv7 € JF, this leads to two cases:

a=0, v=05T, P = p;

a=1, 7=<%(1’), p = —p.

c=ld=—1s=1

Then 7= —p, v = (‘f _a_'l_ 1 ,and ¥y7 = a + 7, so just as in the previous

case there are two possibilities:

a=0, y=(TS)? Y(=p) = —p;

a=-1, v=(7" %), v-p=r
O
The geometric description of the quotient space I'(1)\H provided by
Proposition 1.5 can be used to give a quick proof of the following purely
algebraic fact.
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Corollary 1.6. The modular group I'(1) is generated by the matrices
0 -1 1 1
S-<1 O) and T~<0 1).
PROOF. As in the proof of Proposition 1.5(a), we let I be the subgroup
of I'(1) generated by S and T. Fix some 7 in the interior &, such as 7 = 2i.
Let v € T'(1). From the proof of (1.5a) there is a v/ € T such that v'(y7) €

J. Thus 7 is in the interior of F, and (7'vy)7 isin F. We conclude from (1.5b)
that 77" = 1. Therefore v = v/~! € I/, which proves that I'" = I'(1). O

Remark 1.6.1. It is in fact true that I'(1) is the free product of its sub-
groups (S) and (ST) of orders 2 and 3. See exercise 1.1.

§2. The Modular Curve X (1)

The quotient space I'(1)\H classifies the set of lattices in C up to homoth-
ety. Proposition 1.5 provides a nice geometric description of I'(1)\H. The
vertical sides of the fundamental domain F are identified by T, and the
two arcs of the circle || = 1 are identified by S, as shown in Figure 1.3.
Making these identifications, we see that as a topological space, I'(1)\H
looks like a 2-sphere with one point missing. Our next tasks are to supply
that missing point, define a topology, and make the resulting surface into
a Riemann surface.

Rather than adding a single point to I'(1)\H, we will give a more gen-
eral construction which is useful for generalizing the results of this chapter.

Definition. The ezxtended upper half-plane H* is the union of the upper
half-plane H and the QQ-rational points of the projective line,

H* =HUPY(Q) = HUQU {cc}.

One should think of P!(Q) as consisting of the rational points on the real
axis together with a point at infinity. The points in P1(Q) are called the
cusps of H*.

There is a natural action of I'(1) on P'(Q) defined by

a b\|lz| |ar+by
c d)|y| |ex+dy|’
(Here we use m to denote homogeneous coordinates for a point in P(Q).)
Thus I'(1) acts on the extended upper half-plane H*. We define
Y(1) =T(1)\H and X(1) =T(1)\H".

The points in the complement X (1) \ Y(1) are called the cusps of X(1).
We now show that X (1) has only one cusp and calculate its stabilizer.
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topological

The Geometry of I'(1)\H

Figure 1.3

Lemma 2.1. (a)
X(1)NY(1) = {oo}.

(b) The stabilizer in T'(1) of co € H* is

I(o0) = {((1) Il’) € F(l)} = (the subgroup of I'(1) generated by T).

PROOF. (a) Let [5] € P(Q) be any point in H* \ H. Since = and y are
homogeneous coordinates, we may assume that x,y € Z and ged(z,y) = 1.
Choose a,b € Z so that ax + by = 1. Then

(5 Yo o[- f)

Therefore every point in H* \ H is equivalent (under the action of I'(1))

((t)))ooWe have (‘Cz 3) {(1)] = [(1)] if and only if ¢ = 0. Hence (‘é g) has the

form ((1) ll’) O

Topologically, X (1) looks like a 2-sphere. To make this precise, we
need to describe a topology on X (1). We start by giving a topology for H*.
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Some Open Sets in H*

Figure 1.4

Definition. The topology of H* is defined as follows. For 7 € H, we take
the usual open neighborhoods of 7 contained in H. For the cusp oo, we
take as a basis of open neighborhoods the sets

{r €eH:Im(7) > k} U {0} for every k > 0.
For a cusp 7 # oo, we take as a basis of open neighborhoods the sets
{the interior of a circle in H tangent to the real axis at 7} U {r}.

(See Figure 1.4.)

Remark 2.2.1. For any cusp 79 # oo, Lemma 2.1(a) says that there is
a transformation v € I'(1) with yoo = 7. Then one easily checks that v
sends a set of the form {Im(7) > k} to the interior of a circle in H tangent
to the real axis at 79. (See exercise 1.2.) In other words, the fundamental
neighborhoods of oo and of the finite cusps are sent one-to-another by the
elements of I'(1).

Remark 2.2.2. From the definition, it is clear that distinct points of H*
have disjoint neighborhoods. Hence H* is a Hausdorff space. It is also clear
from (2.2.1) that the elements of I'(1) define homeomorphisms of H*.

The next lemma will help us describe the topology on the quotient
space X (1) = T(1)\H*. It will also be used later to define a complex
structure on X (1).
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Lemma 2.3. For any two points 11,7 € H*, let
I(r1,72) ={y €T(1) : 771 = 72},
and similarly, for any two subsets U1,Us C H*| let
I(Uy,U) = {y €T (1) : 7U1 N Uz # 0}.

Then, for all 71,79 € H*, there exist open neighborhoods U,,Us C H*
of 11, To respectively such that

I(Ul, UQ) = I(Tl,TQ).

(In other words, if yU; and Uy have a point in common, then necessar-
ily v = 12.)

Proor. For any a, 3 € I'(1) we have
I(ary, B12) = BI(11,72)a™? and  I(aUy,BUs) = BI(Uy,Uz)a™t.

It thus suffices to prove the lemma for any I'(1)-translates of 7; and 9.
Using (1.5a) and (2.1a), we may assume that

1,72 € F* =FU {0}

From (1.5) and (2.1), we have a good description of how I'(1) acts on H*
and F*, as illustrated in Figure 1.2. We consider three cases, depending on
whether or not our points are at oc.

From (1.5) (or Figure 1.2) we see that I(F,JF) is finite; explicitly,
I(F,9) = {1,T,TS,TST,(TS)* S,ST,STS, (ST)?>, T~ '}.
Let
§= Interior( U 'y?)‘

~EI(F.F)

Then G is an open subset of H containing F. Further, I(G, 9) is finite, since

169 U ImFvndH= U @'
Y1,72€1(F.F) Y1, 72€1(F,F)

Next we observe that if v € 1(9,9) \ I(711,72), so y71 # T2, then we
can find open sets V,,, W, in H satisfying

Y€V, meW, and V,NW,=0.
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Let
Utv=9n (] 'V, U2=8n [) W,
Y€I1(S,9) v€I(S,9)
YEI(T1,72) YEI(T1,72)

By construction, 71 € Uy and 75 € Us, so
I(7y,12) C I(Uy, Us).
Suppose that they are not equal, say v € I(Uy,Uz) \ I(7y,72). Then
v € I(S,9) N I(11,72), andso v € I(y'V,,W,) = I(V,,W,)y.

But V,NnW, =0, so 1 ¢ I(V,,W,). This contradiction shows the other
inclusion and completes the proof that I(1,, ) = I(Uy, Us).

T1€9,T2=OO

Let U; be an open disk centered at ;. As in the proof of Proposition 1.5,
we observe that the quantity

Im(T)
k=k(U1)= sup Im(yr)= su —ts
(T relfj)l () relg)l ler + d|?
VEr(1) (2 3)erq)

is finite. (Note that if 7 = s + it € Uy, then s and ¢ are bounded, so
ler+d|? = (cs+d)?+(ct)* — oo as |c|+]|d] — oo uniformly in T € Uy.)
Now

Uy ={r € H:Im(7) > k} U {oo}
will be a neighborhood of co satisfying

AU NUz =0 for all v € T'(1).

Hence
I(Ul, Uz) = @ = I(Tl,Tg).

Uso = {7 € H:Im(7) > 2} U {o0}.
From (1.5) (or Figure 1.2) we see that the only elements of I'(1) which

take some point in Uy to another point in Uy, are powers of T'. Hence
from (2.1b) we conclude that

I(Uoo,Uso) = {T* € T(1) : k € Z} = I(00, 0).
O
Next we define a topology on X(1) and use Lemma 2.3 to show that
X (1) is a Hausdorff space. Note that this fact requires proof; it is not
immediate from the fact that H* is Hausdorff. (See exercise 1.3.)
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Definition. Let
¢:H* — T(1)\H* = X(1)
be the natural projection. The quotient topology on X (1) is defined by the
condition that U C X (1) is open if and only if ¢~ (U) is open. Equivalently,
it is the weakest topology for which ¢ is continuous. Note that ¢ is also an
open map, that is, it takes open sets to open sets. For if W C H* is open,
then so is
N eW) = | W
y€el(1)
Proposition 2.4. X(1) with its quotient topology is a compact Hausdorff
space.

ProOOF. We start by checking that X (1) is compact. Let {U;}icr be an
open cover of X(1). Then {¢_1(Ui)}z‘el is an open cover of H*. In par-
ticular, some ¢~1(U;) contains oo, say oo € ¢~ 1(U;,). By definition of the
topology on H*, there is a constant k > 0 so that

¢~ (U;,) D {r € H:Im(7) > Kk} U {o0}.

Hence the set ¥\ ¢~1(U;,) is compact (it is closed and bounded), so there
is a finite subcover

FNo N U;,) S (Uy)U--- U™ (UL,).

Then U;, U---UU,, covers X(1).

Next we verify that X (1) is Hausdorfl. Let z;,z2 € X (1) be distinct
points, and let 7,72 € H* be points with ¢(7;) = z;. Then yr; # 7 for
all v € I'(1), so in the notation of (2.3), I(11,72) = @. From (2.3), there
are open neighborhoods U;,Us C H* of 7y, 7 satisfying I(Uy,Us) = 0.
Then ¢(U1), p(Uz) are disjoint neighborhoods of z1, x2. ]

Making X (1) into a compact Hausdorff space is a good start, but recall
that our ultimate goal is to give X (1) a complex structure. We recall what
this means.

Definition. Let X be a topological space. A complex structure on X is
an open covering {U; };er of X and homeomorphisms

Y 1 U; = 9 (U;) c C

such that each %;(U;) is an open subset of C and such that for all 7,5 € I
with U; N U; # 0, the map

Pi o7t L (Ui N U;) — (Ui N U;)

is holomorphic. The map ¥; is called a local parameter for the points in U;.
A Riemann surface is a connected Hausdorff space which has a complex
structure defined on it.
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Theorem 2.5. The following defines a complex structure on X (1) which
gives it the structure of a compact Riemann surface of genus 0:

Let z € X(1), choose 1, € H* with ¢(7,;) = z, and let U, C H* be a
neighborhood of T, satisfying

I(U,,Uy) = I(12).

(Such a U, exists from Lemma 2.3 with 7y = 75 = 7, and U, = Uy N Us.)
Then

I(7:)\Uz C X(1)

is a neighborhood of z, so {I(7;)\Us} is an open cover of X(1).

Let r = #I(7;), and let g, be the holomorphic isomorphism

z€X (1)

g H— {ze€C:|z| <1}, gI(T)=%_

Then the map
Yo H(1e)\Ue — €, 9o (8(7)) = gu(7)"

is well defined and gives a local parameter at z.

We may take 7, = 0o, so I(1;) = {T*}. Then

Yz L(1)\Uz — C, Yo (¢(T)> = {8%” jfc‘ﬁé:g i 227

is well defined and gives a local parameter at x.
Remark 2.5.1. If I(7,) = {1}, then the natural map
¢: Uz — I(7:)\Uz C X(1)
is already a homeomorphism, so
Yo =¢" " (1e)\Uy — Us

is a local parameter at z. Thus the only real complication occurs when z
equals ¢(7), ¢(p), or ¢(co). (See also exercise 1.4.)
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Remark 2.5.2. The following commutative diagrams illustrate the defi-
nitions of the local parameters ¢, : I(7,)\U, — C.

Ue -5 I(m)\Us Ue -2 I(m)\Us
lgz l'lpz Goo \ Jfl’x
c =z C C
T Tz T
T # 00, g.(1)= — T =00, goo(T)=¢€2

PROOF (of Theorem 2.5). We already know that X (1) is a compact Haus-
dorff space (2.4), and it is clearly connected due to the continuous surjec-
tion ¢ : H* — X(1). Further, an inspection of Figure 1.2 shows that X (1)
has genus 0. (For those who dislike such a visual argument, we will later
give an explicit map j : X(1) — P!(C). See (4.1) below. The interested
reader can check that our proof that j is analytic does not depend on the
a priori knowledge that X (1) has genus 0. Then the elementary argument
described in exercise 1.11 shows that j is bijective, hence an isomorphism.)
By construction, the set

is a neighborhood of . We must verify that the maps
Y I(1:)\Uz — C

are well-defined homeomorphisms (onto their images) and that they satisfy
the compatibility conditions for a complex structure.

We begin with a lemma which shows that the function g,(7) behaves
nicely with respect to the transformations in I(7;).

Lemma 2.6. Let a € H, let R : H — H be a holomorphic map with
R(a) = a, and let g(7) = (7 — a) /(7 — @). Suppose further that

T times

———
Ro---oR(T)=T71

and that r > 1 is the smallest integer with this property. Then there is a
primitive r*"-root of unity ¢ such that

g(RT) = Cg(T1) for all T € H.

PROOF. Note that g is an isomorphism

g:H = {zeC:|z| <1}
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with g(a) = 0, so the map
G=goRog':{ze€C:|z|<1} —{2€C:|z] <1}

is a holomorphic automorphism of the unit disk with G(0) = 0. It follows
that G(z) = cz for some constant ¢ € C. (See, e.g., Ahlfors [1].) Since
the r-fold composition G o --- o G(2) = z and r is chosen minimally, we
conclude that c is a primitive rt"-root of unity. O

We resume the proof of Theorem 2.5. Suppose first that x # co. Note
that from (1.5), I(7,) is cyclic, say generated by R. Then (2.6) implies that

9 (R7) = Cg(T) for all 7 € H,
where ( is a primitive r*P-root of unity. Hence
Yo ($(R7)) = g2 (RT)" = (" g2(7)" = . (6(7)),

50 1, is well defined on the quotient I(7;)\U,.
Next we check that i, is injective. Let 71,75 € U,. Then

Yo (0(11)) = U2 (d(72)) <= g2(11)" = gu(m2)"
< g,(11) =('gs(m2) for some 0 <<,
= g.(11) = g.(R'my) for some 0 <i < r,
— 71 =Ry, forsome0<i<r,
< (1) = ¢(12).

Hence v, is injective. Finally, it is clear from the commutative diagram
given in (2.5.2) that both v, and ¢, ! are continuous, since the maps @, g,
and z — 2" are all continuous and open. Therefore v, is a homeomorphism.

The case = oo is similar. From (2.1b) we know that I(co) = {T*}
consists of the translations 7 — 7 + k for k € Z. Hence ¢, (¢(7)) = *™7
is well defined and injective on the quotient I(c0)\Us. And, as above, ¥,
and ;! are continuous, since both ¢ and 7 — 2™ are continuous and
open. Hence v, is a homeomorphism.

It remains to check compatibility. First let z,y € X (1) with z,y # oo.
Then

vy oty (2) =Py od0 (e 09)  (2) = gpr 09 (zlm) _

Now g, and g;' are holomorphic, so the only possible problem would be
the appearance of fractional powers of z. Let ¢ be the primitive r,*-root
of unity such that g,(R,7) = Cg(7). Then using the fact that g oy = ¢
for any v € I'(1), we find

9y’ 0g; ' (¢2) = YyogoRy 0g, ' (2) = Yy 0ogog;l(z) = 9y’ 0g; '(2).
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It follows that g,’ o g7 !(z) is a power series in 2=, which proves that the
composition ¥, 093 !(z) is holomorphic. (Note the importance of knowing
that ¢ is a primitive r,*P-root of unity.)
By exactly the same computation, taking g..(7) = exp(2mir), the
function
o 0 1(2) = exp (2mig; 1 (21/7)

is holomorphic.

Finally, we note that

gy (T+1) = ¢y 0o T(7) = ¥y 0 &(7) =