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Preface

The preface to a textbook frequently contains the author’s justification for
offering the public “another book” on the given subject. For our chosen
topic, the arithmetic of elliptic curves, there is little need for such an apologia.
Considering the vast amount of research currently being done in this area,
the paucity of introductory texts is somewhat surprising. Parts of the theory
are contained in various books of Lang (especially [La 3] and [La 5]); and
there are books of Koblitz ((Kob]) and Robert ([Rob], now out of print)
which concentrate mostly on the analytic and modular theory. In addition,
survey articles have been written by Cassels ([Ca 7], really a short book) and
Tate ([Ta 5], which is beautifully written, but includes no proofs). Thus the
author hopes that this volume will fill a real need, both for the serious student
who wishes to learn the basic facts about the arithmetic of elliptic curves; and
for the research mathematician who needs a reference source for those same
basic facts.

Our approach is more algebraic than that taken in, say, [La 3] or [La 5],
where many of the basic theorems are derived using complex analytic
methods and the Lefschetz principle. For this reason, we have had to rely
somewhat more on techniques from algebraic geometry. However, the geom-
etry of (smooth) curves, which is essentially all that we use, does not require
a great deal of machinery. And the small price paid in learning a little bit of
algebraic geometry is amply repaid in a unity of exposition which (to the
author) seems to be lacking when one makes extensive use of either the
Lefschetz principle or lengthy (but elementary) calculations with explicit
polynomial equations.

This last point is worth amplifying. It has been the author’s experience that
“clementary” proofs requiring page after page of algebra tend to be quite
uninstructive. A student may be able to verify such a proof, line by line, and
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at the end will agree that the proof is complete. But little true understanding
results from such a procedure. In this book, our policy is always to state
when a result can be proven by such an elementary calculation, indicate
briefly how that calculation might be done, and then give a more enlighten-
ing proof which is based on general principles.

The basic (global) theorems in the arithmetic of elliptic curves are the
Mordell-Weil theorem, which is proven in chapter VIII and analyzed more
closely in chapter X; and Siegel’s theorem, which is proven in chapter IX. The
reader desiring to reach these results fairly rapidly might take the following
path:

I and II (briefly review), ITI (§1-8), I'V (§1-6), V (§1),
VII (§1-5), VIII (§1-6), IX (§1-7), X (§1-6).

This material also makes a good one-semester course, possibly with some
time left at the end for special topics. The present volume is built around the
notes for such a course, taught by the author at M.L.T. during the spring term
of 1983. [Of course, there are many other possibilities. For example, one
might include all of chapters V and VI, skipping IX and (if pressed for time)
X.] Other important topics in the arithmetic of elliptic curves, which do not
appear in this volume due to time and space limitations, are briefly discussed
in appendix C.

It is certainly true that some of the deepest results in this subject, such as
Mazur’s theorem bounding torsion over Q and Faltings’ proof of the isogeny
conjecture, require many of the resources of modern “SGA-style” algebraic
geometry. On the other hand, one needs no machinery at all to write down
the equation of an elliptic curve and to do explicit computations with it; and
so there are many important theorems whose proof requires nothing more
than cleverness and hard work. Whether your inclination leans toward
heavy machinery or imaginative calculations, you will find much that re-
mains to be discovered in the arithmetic theory of elliptic curves. Happy
hunting!
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Introduction

The study of Diophantine equations, that is the solution of polynomial
equations in integers or rational numbers, has a history stretching back to
ancient Greece and beyond. The term Diophantine geometry is of more recent
origin, and refers to the study of Diophantine equations through a combin-
ation of techniques from algebraic number theory and algebraic geometry.
On the one hand, the problem of finding integer and rational solutions to
polynomial equations calls into play the tools of algebraic number theory,
which describes the rings and fields wherein those solutions lie. On the other
hand, such a system of polynomial equations describes an algebraic variety,
which is a geometric object. It is the interplay between these two points of
view which is the subject of Diophantine geometry.
The simplest sort of equation is linear:

aX +bY=c a,b,ce”, aorb #0.

Such an equation always has rational solutions. It will have integer solutions

if and only if the greatest common divisor of a and b divides c; and if this

occurs, then one can find all solutions by using the Euclidean algorithm.
Next in order of difficulty come quadratic equations:

aX?+bXY+cY?+dX +eY+f=0 a,...feZ, a,b,orc#0.

They describe conic sections, and by a suitable linear change of coordinates
with rational coefficients, one can transform a given equation into one of the
following forms:

AX*+ BY*=C ellipse

AX? —BY?=C  hyperbola
AX + BY*=0 parabola.
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For quadratic equations, one has the following powerful theorem which aids
in their solution.

Hasse—Minkowski Theorem ([Se 7, IV Thm. 8]). Let f(X, Y)eQ[X, Y] be a
quadratic polynomial. Then the equation f(X, Y) = 0 has a solution (x, y)e Q2
if and only if it has a solution (x, y)€ R* and a solution (x, y)e Q% for every
prime p. (Here Q,, is the field of p-adic numbers.)

In other words, a quadratic polynomial has a solution in Q if and only if it
has a solution in every completion of Q. Now checking for solutions in Q,
will, by Hensel’s lemma, be more or less the same as checking for solutions in
the finite field Z/pZ; and this, in turn, is easily accomplished by using quadra-
tic reciprocity. Let us summarize the steps which go into the Diophantine
analysis of quadratic equations.

(1) Analyze the equations over finite fields. [Quadratic reciprocity]

(2) Use this information to study the equations over complete local fields Q,,.
[Hensel’s lemma] (We must also analyze them over R.)

(3) Piece together all the local information to obtain results for the global
field Q. [Hasse principle]

Where does the geometry appear? Linear and quadratic equations in two
variables define curves of genus 0. The above discussion says that we have a
fairly good understanding of the arithmetic of curves of genus 0. The next
simplest case, namely the arithmetic properties of curves of genus 1 (which
are given by cubic equations in two variables), is our object of study in this
book. The arithmetic of these so-called elliptic curves already presents com-
plexities on which much current research is centered. Further, they provide a
standard testing ground for conjectures and techniques which can then be
fruitfully applied to the study of curves of higher genus and (abelian) varieties
of higher dimension.

Briefly, the organization of this book is as follows. After two introductory
chapters giving basic material on algebraic geometry, we start by studying
the geometry of elliptic curves over algebraically closed fields (chapter III).
We then follow the program outlined above and investigate the properties of
elliptic curves over finite fields (chapter V), local fields (chapters VI, VII), and
global (number) fields (chapters VIII, IX, X). Our understanding of elliptic
curves over finite and local fields will be fairly satisfactory. However, it turns
out that the analogue of the Hasse—Minkowski theorem is false for poly-
nomials of degree greater than 2; this means that the transition from local to
global is far more tenuous than in the degree 2 case. We study this problem in
some detail in chapter X.

The theory of elliptic curves is rich, varied, and amazingly vast. The
original aim of this book was to provide an essentially self-contained intro-
duction to the basic arithmetic properties of elliptic curves. Even such a
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limited goal proved to be too ambitious. The material described above is
approximately half of what the author had hoped to include. The reader
will find a brief discussion and list of references for the omitted topics in
appendix C.

Our other goal, that of being self-contained, has been more successful. We
have, of course, felt free to state results that every reader should be aware of,
even when the proofs are far beyond the scope of this book. However, we
have endeavored not to use such results for making further deductions. There
are three major exceptions to this general policy. First, we have not proven
that every elliptic curve over C is uniformized by elliptic functions (VL.5.1).
This result fits most naturally into a discussion of modular functions, which
is one of the topics which had to be omitted. Second, we have not proven that
over a complete local field, the “non-singular” points sit with finite index
inside the set of all points (VIL.6.2). This can actually be proven by quite
explicit polynomial computations (cf. [Ta 6]), but they are rather lengthy,
and again have not been included due to lack of space. Finally, in the study of
integral points on elliptic curves, we have made use of Roth’s theorem
(IX.1.4) without giving a proof. However, a brief discussion of the proof has
been given in (IX §8), and the reader who then wishes to see the myriad
details can proceed to one of the references listed there.

The prerequisites for reading this book are fairly modest. We assume that
the reader has had a first course in algebraic number theory, and so is
acquainted with number fields, rings of integers, prime ideals, ramification,
absolute values, completions, etc. The contents of any basic text in algebraic
number theory, such as [La 2, Part I] or [Bo-Sh], should more than suffice.
Chapter VI, which deals with elliptic curves over C, assumes a familiarity with
the basic principles of complex analysis. In chapter X we will need a little bit
of group cohomology, but just H® and H!. The reader will find the cohomo-
logical facts needed to read chapter X given in appendix B. Finally, since our
approach is mainly algebraic, there is the question of background material in
algebraic geometry. On the one hand, since much of the theory of elliptic
curves can be obtained through the use of explicit equations and calculations,
we do not want to require the reader to already know a great deal of algebraic
geometry. On the other hand, this being a book on number theory and not
algebraic geometry, it would not be reasonable to spend half of the book
developing from first principles the algebro-geometric facts that we will use.
As a compromise, the first two chapters give an introduction to the algebraic
geometry of varieties and curves, stating all of the facts which we will need,
giving complete references, and providing enough proofs so that the reader
can gain a flavor for some of the basic techniques used in algebraic geometry.

Numerous exercises have been included at the end of each chapter. The
reader desiring to gain a real understanding of the subject is urged to attempt
as many as possible. Some of these exercises are (special cases of) results
which have appeared in the literature. A list of comments and citations for
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the exercises will be found at the end of the book. Exercises with a single
asterisk are somewhat more difficult, and two asterisks signal an unsolved
problem.

References

Bibliographical references are enclosed in square brackets, e.g. [Ta 5, thm. 6].
Cross references to theorems, propositions, lemmas within the same chapter
are given by number in parentheses, e.g. (4.3). Reference to an exercise is given
by (exer. 3.6). References from within one chapter to another chapter or an
appendix are preceded by the appropriate Roman numeral or letter, e.g.
(IV.3.1),(B.2.1).

Standard Notation

Throughout this book, we use the symbols
Z,Q,R,C,F,and Z,

to represent the integers, rational numbers, real numbers, complex numbers,
field with g elements, and /-adic integers respectively. Further, if R is any
ring, then R* denotes the group of invertible elements of R; and if 4 is an
abelian group, then A[m] denotes the subgroup of A consisting of elements
of order m. A more complete list of notation is included on p. 379.



CHAPTER 1

Algebraic Varieties

In this chapter we describe the basic objects which arise in the study of
algebraic geometry. We set the following notation, which will be used
throughout this book.

K a perfect field (i.e. every algebraic extension of K is separable).

K a fixed algebraic closure of K
Giix the Galois group of K/K

For this chapter, we also let m and n denote positive integers.

The assumption that K is a perfect field is made solely to simplify our
exposition. However, since our eventual goal is to do arithmetic, the field K
will eventually be taken as an algebraic extensioti of @, Q,, or F,. Thus this
restriction on K need not concern us unduly.

For a more extensive exposition of the basic concepts which appear in this
chapter, we refer the reader to any introductory book on algebraic geometry,
such as [Har], [Sha 2], [Ful].

§1. Affine Varieties

We begin our study of algebraic geometry with Cartesian (or affine) n-space
and its subsets defined by zeros of polynomials.
Definition. Affine n-space (over K) is the set of n-tuples
A" = A"K) = {P = (x, ..., X,): x;€ K}
Similarly, the set of K-rational points in A" is the set

AYK) = {P = (x4, ..., x,)€eA": x;€K}.
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Notice that the Galois group Gik acts on A"; for o € Ggx and Pe A",
P’ =(x{,...,xJ).
Then A*(K) may be characterized by
A™MK) = {PeA": P’ = P for all 6 € Ggx}.
Let K[X] = K[X, ..., X,] be a polynomial ring in n variables, and let
I = K[X] be an ideal. To each such I we associate a subset of A”,

V;={PeA": f(P)=0forall fel}.

Definition. An (affine) algebraic set is any set of the form V;. If V is an
algebraic set, the ideal of V is given by

I(V) = {feK[X]: f(P) = Ofor all Pe V}.
An algebraic set V is defined over K if its ideal I(V) can be generated by

polynomials in K[X]. We denote this by V/K. If V is defined over K, the set
of K-rational points of V is the set

V(K) = V n A"(K).

Remark 1.1. Note that by the Hilbert basis theorem ([A-M, 7.6]), all ideals
in K[ X7 and K[X] are finitely generated.

Remark 1.2. Let V be an algebraic set, and consider the ideal
I(V/IK)={feK[X]:f(P)=0forall PeV} = I(V)n K[X].
Then we see that V is defined over K if and only if
I(V) = (V/K)K[X].

Now suppose V is defined over K, and let f,, ..., f,,€ K[ X] be generators for
I(V/K). Then V(K) is precisely the set of solutions (x,,..., x,) to the poly-
nomial equations

filX)=-=f(X)=0

with x;,, ..., x,€ K. Thus one of the fundamental problems in the subject of
Diophantine geometry, namely the solution of polynomial equations in ra-
tional numbers, may be said to be the problem of describing sets of the form
V(K) when K is a number field.

Notice that if f(X)e K[X] and Pe A", then for any ¢ € Ggig,

J(P?) = f(Py.

Hence if V' is defined over K, then the action of Ggx on A" induces an action
on V, and clearly

V(K) = {PeV:P° = P for all 0 € Ggx}.
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Example 1.3.1. Let V be the algebraic set in A2 given by the single equation
X2-Y?=1.

Clearly V is defined over K for any field K. Let us assume that char(K) # 2.
Then the set V(K) is in one-to-one correspondence with A'(K) — {0}, one
possible map being

AY(K) — {0} > V(K)
t— (22 + 1)/2t, (2 — 1)/20).

Example 1.3.2. The algebraic set
V. X"+Y'=1
is defined over Q. Fermat’s last “theorem” states that for all n > 3,

_ {(la 0)9 (0’ 1)} n odd
= {{(i 1,0),(0, £1)}  neven.

Example 1.3.3. The algebraic set
V:Y?=X*+17
has many Q-rational points, for example
(=2,3) (5234, 378661) (137/64, 2651/512).

In fact, V(Q) is infinite. See (2.8) and (II11.2.4) for further discussion of this
example.

Definition. An affine algebraic set V is called an (affine) variety if I(V) is a
prime ideal in K[X]. (Note that if V is defined over K, it is not enough to
check that I(V/K) is prime. For example, consider the ideal (X7 — 2X7) in
Q[X,, X,].) Let V/K be a variety (i.e. V is a variety defined over K). Then the
affine coordinate ring of V/K is defined by
K[X]
K[V]= IV/K)

It is an integral domain; and its quotient field, denoted K(V), is called the
function field of V/K. Similarly K[V] and K (V) are defined by replacing K
with K.

Note that since an element fe K[V] is well-defined up to a polynomial
vanishing on V, it induces a well-defined function f: ¥V — K. Now if f(X)e
K[X], then Ggx acts on f by acting on its coefficients. Hence if V is
defined over K, so Gg takes I(V) into itself, then we obtain an action of
Gg/x on K[V] and K(V). One can check (exer. 1.12) that K[V] and K(V)
are respectively the subsets of K[V] and K(V) fixed by Gg. We denote
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the action of ¢ on f by f — f°. Then for all points Pe V,
(f(P)Y = fo(P°).

Definition. Let V be a variety. The dimension of V, denoted by dim(V), is the
transcendence degree of K(V) over K.

Example 1.4. The dimension of A* is n, since K(A") = K(X4, ..., X,). Similar-
ly, if V < A" is given by a single non-constant polynomial equation
f(Xla eeey Xn) = 0’

then dim(V) = n — 1. (The converse is also true, cf. [Har, 1.1.3].) In partic-
ular, the examples (1.3.1), (1.3.2), and (1.3.3) all have dimension 1.

In studying any geometric object, one is naturally interested in knowing
whether it looks reasonably “smooth”. The next definition formalizes this
notion in terms of the usual Jacobian criterion for the existence of a tangent
plane.

Definition. Let V be a variety, P V,and f;, ..., f,,€ K[ X] a set of generators
for I(V). Then V is non-singular (or smooth) at P if the m x n matrix

(0f:/0X(P))1 <i<m, 1<j<n
has rank n — dim(V). If V is non-singular at every point, then we say that V' is
non-singular (or smooth).
Example 1.5. Let V be given by a single non-constant polynomial equation
fXy, ..., X,)=0.
Then dim V = n — 1 (1.4), so Pe V is a singular point if and only if
of/oX,(P) = --- = of/oX,(P) = 0.
Since P also satisfies f(P) = 0, this gives n + 1 equations for the n coordinates
of any singular point. Thus for a “randomly chosen” f, one would expect V to
be non-singular. We will not pursue this idea further, but see (exer. 1.1).
Example 1.6. Consider the two varieties
Vi:Y?2=X34+X and V,:Y?=X3+ X2
Using (1.5) we see that any singular points on V; and V, satisfy respectively:
Vi:3X2+1=2Y=0;
V,:3X%+2X =2Y =0.

Thus ¥ is non-singular, while V, has one singular point, namely (0, 0). The
graphs of V;(R) and V,(R) (Figure 1.1) illustrate the difference.
There is another characterization of smoothness, in terms of the functions
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Figure 1.1

on the variety ¥, which is often quite useful. Let Pe ¥, and define an ideal M,
of K[V] by

M, = {feK[V]: f(P) = 0}.
Notice that M, is a maximal ideal, since there is an isomorphism
K[V]/M,— K given by f — f(P).

The quotient M,/M3 is a finite dimensional K-vector space.

Proposition 1.7. Let V be a variety. A point PV is non-singular if and only if
dimg Mp/M3 = dim V.

Proor. [Har, 1.5.1]. (See exer. 1.3 for a special case.) O

Example 1.8. Consider the point P = (0, 0) on the varieties V; and V, of (1.6).
In both cases, Mp is the ideal of K[ V] generated by X, Y; and M2 is the ideal
generated by X2, XY, Y2. Now for V;, we have

X =Y? - X3=0(mod M}),

so Mp/M} is generated by Y alone. On the other hand, for V¥, there is no non-
trivial relationship between X and Y modulo M2, so Mp/MZ2 requires both X
and Y as generators. Since each ¥, has dimension 1, (1.7) implies that V] is
smooth at P and V, is not.

Definition. The local ring of V at P, denoted K[V]p, is the localization of
K[V] at M,. In other words,

K[V1p = {FeK(V): F = f/g for some f, ge K[V] with g(P) # 0}.

Notice that if F = flge K[V1p, then F(P) = f(P)/g(P) is well-defined. The
functions in K[V ]p are said to be regular (or defined) at P.
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§2. Projective Varieties

Historically, projective space arose through the process of adding “points at
infinity” to affine space. We define projective space as the collection of lines in
affine space of one higher dimension.

Definition. Projective n-space (over K), denoted P" or P*(K), is the set of all
(n + 1)-tuples
(xgs . --» X)EA™?

such that at least one x; is non-zero, modulo the equivalence relation given
by

(x07-~'9xn)~(y0’~--:yn)

if there exists a AeK* with x,= Ay, for all i. An equivalence class
{(Axq, ..., Ax,)} is denoted [x,, ..., X,], and x,, ..., x, are called homoge-
neous coordinates for the corresponding point in P". The set of K-rational
points in P" is the set

P*K) = {[xq, ..., X,]eP": all x;,eK}.
Remark 2.1. Note that if P = [x,, ..., x,] € P*(K), it does not follow that each

x;€ K. However, choosing some i with x; # 0, it does follow that each
x;/x;€ K.

Definition. Let P = [x,, ..., X,] € P"(K). The minimal field of definition for P
(over K), denoted K(P), is the field
K(P) = K(xo/X;, - - -» X,/x;) for any i with x; # 0.
The Galois group Gg/x acts on P" by acting on homogeneous coordinates,
[Xos -5 X, 17 = [x35 -5 X7

(This clearly respects the equivalence relation defining P".) Then one checks
(exer. 1.12) that

P"(K) = {PeP": P’ = P for all o € Ggx},
and
K (P) = fixed field of {o€ Gg/x: P* = P}.

Definition. A polynomial fe K[X] = K[X,, ..., X,] is homogeneous of de-
gree d if

fAX,, ..., 4X,) = ldf(XO, cees Xp)

for all Ae K. An ideal I = K[X] is homogeneous if it is generated by homo-
geneous polynomials.
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Note that for a homogeneous polynomial f, it makes sense to ask whether
f(P)=0 for a point PeP". To each homogeneous ideal I we associate a
subset of P”,

V; = {PeP": f(P) = 0 for all homogeneous feI}.
Definition. A (projective) algebraic set is any set of the form V;. If V is a

projective algebraic set, the (homogeneous) ideal of V, denoted I(V), is the
ideal in K[ X] generated by

{fe K[X]: f is homogeneous and f(P) = 0 for all Pe V'}.

Such a V is defined over K, denoted by V/K, if its ideal I(V) can be generated
by homogeneous polynomials in K[ XT]. If V is defined over K, the set of K-
rational points of V is the set

V(K) = V n P*(K).
As usual, V(K) may also be described by
V(K) = {PeV:P° = Pforall geGgg}

Example 2.2. A line in P? is an algebraic set given by a linear equation
aX +bY +c¢Z =0

with a, b, ce K not all zero. If, say, ¢ # 0, then such a line is defined over any
field containing a/c and b/c. More generally, a hyperplane in P" is given by an
equation

agXo +a, X, + - +a,X,=0

with a;e K not all zero.

Example 2.3. Let V be the algebraic set in P2 given by the single equation
X*+Y2=22

Then for any field K with char(K) # 2, the set V(K) is isomorphic (i.e. struc-
turally identical, see (3.5)) to P*(K), for example by the map

PYK) - V(K)
[s, t] = [s* — t3, 2st, s% + t2].
Remark 2.4. A point of P*(Q) has the form [x,, ..., x,] with x;e Q. Multi-
plying by an appropriate A€ Q, one can clear denominators and common

factors from the x;s. In other words, every PeP"(Q) may be written with
homogeneous coordinates [x,, ..., x,] satisfying

Xgs...» X,€Z and gecd(xg,...,x,) = L.

(Notice the x;’s are actually determined by P up to multiplication by —1.)
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Thus if the ideal of an algebraic set V/Q is generated by homogeneous
polynomials fi, ..., f,€Q[X], then to describe V(Q) means to find the
solutions to the homogeneous equations

fl(XO"",Xn)r' =fm(X05""Xn)=0

in relatively prime integers x, ..., X,.

Example 2.5. The algebraic set

V:X?+ Y2 =322
is defined over Q. However, V(Q) = . To see this, suppose [x, y, z] € V(Q)
with x, y, ze Z and gcd(x, y, z) = 1. Then

x? + y? = 0 (mod 3),

)

x =y = 0 (mod 3).
(Note —1 is not a square modulo 3.) Hence x2 and y? are divisible by 32, so
from the equation for V it follows that 3 also divides z, which contradicts the

assumption that gcd(x, y, z) = 1. This example illustrates one of the funda-
mental tools used in the study of Diophantine equations.

In order to show that an algebraic set V/Q has no Q-rational points, it suffices to
show that the corresponding homogeneous polynomial equations have no non-zero
solutions modulo p for any one prime p (or even one prime power p").

A more succinct way to phrase this is to say that if ¥(Q) is non-empty, then
V(Q,) is non-empty for every p-adic field Q,. Similarly, V(R) would also be
non-empty. One of the reasons that the study of Diophantine equations is so
difficult is because the converse to this statement, the so-called “Hasse prin-
ciple”, does not in general hold. An example, due to Selmer [Sel 1], is the
equation

V:3X3 +4Y3 + 523 =0.
Onc can check that ¥(Q,) is non-empty for every prime p, yet V(Q) is empty.
(See, e.g., [Ca 7, §4]. For other examples, see (X.6.5).)

Definition. A projective algebraic set is called a (projective) variety if its
homogeneous ideal I(V) is a prime ideal in K[ X].

It is clear that P" contains many copies of A". For example, for each
0 < i < n, there is an inclusion
¢i : An ——) P"
(yl’ e yn)—) [yl’ Y25+ Vi-15 la Yis -+ yn]'
If we let H; denote the hyperplane in P" given by X; = 0,
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Hi = {P = [xO, veey xn}e[p":xi = 0};
and let U, be the complement of H,,
U= {P = [xp,..-, x,]€P": x; # 0};

then there is a natural bijection

¢ U— A"
Xo X1 Xi—1 Xi41 Xy
[X0s«ees Xul —><—,—, ey e, — |
X; X XX X;

(Note that for any point of P" with x; # 0, the quantities x;/x; are well-
defined.) Having fixed an i, we will normally identify A" with the set U, in P"
via the map ¢;.

Now let V be a projective algebraic set with homogeneous ideal I(V) <
K[X]. Then V n A" (by which we mean ¢, (V n U))) is an affine algebraic set
with ideal I(V n A") ¢ K[Y] given by

IVAAY = {f(Yy, ..., Yo, L Yo, X f(Xos ..., X)EI(V)).

Notice that the sets U, ..., U, cover all of P", so any projective variety V

is covered by subsets V n Uy, ..., ¥V n U,, each of which is an affine variety

(via the appropriate ¢, ). The process of replacing f(X,,...,X,) by

fY,...., Y, L, Y,...,Y,)is called dehomogenization with respect to X,.
This process can be reversed. For any f(Y)e K[Y], let

Xo X1 Xy Xin Xn)

XiaXi,-.-, Xi ) Xi ,...,X.

i

f*(Xoa""Xn): def<

where d = deg(f) is the smallest integer for which f* is a polynomial. We say
that f* is the homogenization of f with respect to X;.

Definition. Let V be an affine algebraic set with ideal I(V), and consider V as
a subset of P" via the map
veardpn

The projective closure of V, denoted V, is the projective algebraic set whose
homogeneous ideal I(V) is generated by

{f*X): fel(V)}.

Proposition 2.6. (a) Let V be an affine variety. Then V is a projective variety,
and

V=VnA"
(b) Let V be a projective variety. Then V n A" is an affine variety, and either

VAA"=@g or V=VnA~
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(c) If an affine (respectively projective) variety V is defined over K, then V
(respectively V n A" is also defined over K.

Proor. [Har, 1.2.3] for (a) and (b); and (c) is clear from the definitions. g

Remark 2.7. In view of (2.6), each affine variety can be identified with a
unique projective variety. Notationally, it is easier to deal with affine coordi-
nates, so we will often say “let V be a projective variety” and write down
some non-homogeneous equations, with the understanding that V is the
projective closure of the indicated affine variety W. The points of V-W are
called the points at infinity on V.

Example 2.8. Let V be the projective variety given by the equation
V:Y?=X?+17.
Thus we really mean the variety in P? given by the homogeneous equation
Y2Z = X3+ 1723,
the identification being
X=X/Z Y=Y/Z
This variety has one point at infinity, namely [0, 1, 0], obtained by setting
Z = 0. Thus, for example,

V(@Q) = {(x, ) e A%(Q): y* = x> + 17} U {[0, 1, 0]}.

In (1.3.3) we listed several points of V(Q). The reader may verify that the line
connecting any two points of V(Q) will intersect V in a third point of V(Q)
(provided the line is not tangent to V). (See exer. 1.5.) Using this secant-
line procedure, one can actually produce infinitely many points in V(Q),
although this is by no means obvious. The variety V is called an elliptic curve,
and as such it provides the first example of the varieties which will be our
principal object of study in this book. See (II1.2.4) for further discussion of
this example.

Most of the important properties of a projective variety V may now be
defined in terms of the affine subvariety V n A",

Definition. Let V/K be a projective variety, and choose A" c P" so that
V' n A" # . The dimension of V is the dimension of ¥V n A" The function
field of V, denoted K(V), is the function field of V n A*; and similarly for
K(V). (Note that for different choices of A", the different K(V)’s are canon-
ically isomorphic, so we will always identify them. See (2.9) for another
description of K(V).)

Definition. Let V be a projective variety, PeV, and choose A" c P" with
P e A" Then V is non-singular (or smooth) at P if V ~ A" is non-singular at P.
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The local ring of V at P, denoted K[V]p, is the local ring of VA" at P. A
function F € K(V) is regular (or defined) at P if it is in K[V ]p; in this case, it
makes sense to evaluate F at P.

Remark 2.9. The function field of P* may also be described as the subfield of
K(X,, ..., X,) consisting of rational functions F(X) = f(X)/g(X) for which f
and g are homogeneous polynomials of the same degree. Such an expression
gives a well-defined function on P" at all points P where g(P) # 0. Similarly,
the function field of a projective variety V is the field of rational functions
F(X) = f(X)/g(X) such that:

(i) f and g are homogeneous of the same degree:
(i) g¢I(V);
(iii) two functions f/g and f’/g’ are identified if fg' — f'geI(V).

§3. Maps between Varieties

In this section we look at algebraic maps between projective varieties, which
are those maps defined by rational functions.

Definition. Let V; and V, = P" be projective varieties. A rational map from V,
to V, is a map of the form

p:Vi-V,
¢=[f0,""fn]e

where fy, ..., f,€ K(V;) have the property that for every point P € V; at which
fos -- -5 [, are all defined,

$(P) = Lfo(P), ..., fu(P)]€V,.

If ¥, and V, are defined over K, then Gg/ acts on ¢ in the obvious way:
¢°(Py=L15(P), ..., £ (P)].
Notice that we have the formula
#(P)’ = ¢°(P°) forall 6eGgy and PeV;.

Now if there is some Ae K* so that Af;, ..., Af,€ K(V,), then ¢ is said to be
defined over K. (Notice that [ f,, ..., f,] and [Afo, ..., Af,] give the same map
on points.) As usual, it is true that ¢ is defined over K if and only if ¢ = ¢ for
all o€ Gk (cf. exer. 1.12¢).

Remark 3.1. Note that a rational map ¢ : V; — V, is not necessarily a function
on all of ¥;. However, it is sometimes possible to evaluate ¢(P) at points P of
¥, where some f; is not regular by replacing each f; with gf; for an appro-
priate g e K(V,).
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Definition. A rational map

¢ = [fO, ’f;l] : Vl I V2
is regular (or defined) at P e V, if there is a function g€ K(V}) such that

(@) each gf; is regular at P; and
(ii) for some i, (gf;)(P) # 0.

If such a g exists, we set

¢(P) = [(gfo)(P), ..., (9fn) (P)].

(N.B. It may be necessary to take different g’s for different points.) A rational
map which is regular at every point is called a morphism.

Remark 3.2. Let ¥, = P™and V, = P" be projective varieties. Recall (2.9) that

the functions in K(¥;) may be described as quotients of homogeneous poly-

nomials in K[X,, ..., X,,] having the same degree. Thus by multiplying a

rational map ¢ = [ fy, .-, f,] by a homogeneous polynomial which clears the

“denominators” of the f;’s, we obtained the following alternative definition:
A rational map ¢ : V, - V, is a map of the form

¢ =[o(X), ..., 4.(X)],

where

(i) ¢(X)eK[X]=KI[X,, ..., X,.] are homogeneous polynomials, not all in
I(V}), having the same degree; and
(ii) for every fel(V,),

J@o(X), ..., (X)) e I(V)).

Clearly, ¢(P) is well-defined provided some ¢;(P) # 0. However, even if all
¢,(P) = 0, it may be possible to “alter” ¢ so as to make sense of $(P). We
make this precise as follows:

A rational map ¢ = [, ..., 9,1 : Vi = V, as above is regular (or defined) at
PeV, if there exist homogeneous polynomials ¥, ..., ¥, € K[X] such that

@) Yo, ..., ¥, have the same degree,
(i) ¢¥; = Sy; (mod I(Vy)) for 0 < i, j < n, and
(iii) ¥,(P) # O for some i.

If this occurs, we set

$(P) = [¥o(P), ..., Y(P)].

As above, a rational map which is everywhere regular is called a morphism.

Remark 3.3. Let ¢ = [y, ..., ¢,]: P™ — P" be a rational map as in (3.2), where
¢;€ K[X] are homogeneous polynomials of the same degree. Since K[X]
is a UFD, we may assume that the ¢,s have no common factor. Then ¢ is
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regular at a point P e P™ if and only if some ¢,(P) # 0. (Note that I(P™) = (0),
so there is no way to alter the ¢,’s.) Hence ¢ is a morphism if and only if the
¢;’s have no common zero in P™.

Definition. Let V; and V, be varieties. We say that V; and V, are isomorphic,
and write V, ~ V,, if there are morphisms ¢:V; - V, and ¢ : V, — V; such
that ¥ o ¢ and ¢ oy are the identity maps on V; and V, respectively. V;/K
and V,/K are isomorphic over K if such ¢ and ¢ can be defined over K. [N.B.
¢ and y must be morphisms, not merely rational maps.]

Remark 34.If ¢ : V|, - V, is an isomorphism defined over K, then ¢ identifies
V1(K) with V,(K). Hence for Diophantine problems, it suffices to study any
one variety in a given K-isomorphism class of varieties.
Example 3.5. Assume char(K) # 2, and let V' be the variety from (2.3),

V:X*+Y2=22
Consider the rational map

¢: V- Pl
o=[X+2Y]

Clearly ¢ is regular at every point of V except possibly [1, 0, — 1] (i.e. where
X + Z = Y = 0). But using

(X + Z)(X — Z)= — Y2 (mod I(V)),
we have
p=[X+2Z Y]=[X>—Z2% Y(X — Z)]
=[-YLYX-2)]=[-YX-Z]

Thus
#([1,0, —1]) = [0,2] = [0, 1],

so ¢ is regular at every point of V. (Le. ¢ is a morphism.) One easily checks
that the map

y:PloV
W =[S?—T?2ST,$* + T*]
is a morphism and provides an inverse for ¢, so ¥ and P! are isomorphic.
Example 3.6. The rational map
¢: P2 p?
¢ =[X* XY, 2]
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is regular everywhere except at the point [0, 1, 0], where it is not regular (cf.
3.3).

Example 3.7. Let V be the variety
V:Y*Z = X3+ X?Z,
and consider the rational maps
VPl SV $: VP!
Y=0[8*~-THT(S*~THS,T°] ¢=[Y, X]
Here y is a morphism, while ¢ is not regular at [0, 0, 1]. Not coincidently (see
11.2.1), [0, 0, 1] is a singular point of V. Notice that the compositions ¢ oy

and o ¢ are the identity map whenever they are defined, but nonetheless ¢
and i are not isomorphisms.

Example 3.8. Consider the varieties

Vi:X2+Y*=2% V,:X?+Y*=3Z%
They are not isomorphic over @, since V,(Q) = J (2.5), while V;(Q) contains
lots of points. (More precisely, V;(Q) ~ P*(Q) from (3.5).) However, ¥, and
V, are isomorphic over @(\/3), an isomorphism being given by

$: V- W
¢ =[X,Y,/32]

EXERCISES

1.1. Let A, Be K. Characterize the values of A and B for which each of the following
varieties is singular. In particular, as (4, B) ranges over A2, the “singular values”
lie on a one-dimensional subset of A%, so “most” values of (4, B) give a non-
singular variety.

(@) V:Y?Z + AXYZ + BYZ?> = X3.
by V:Y?Z = X3+ AXZ> + BZ® (char K #2).

1.2. Find the singular point(s) on each of the following varieties, and sketch V(R).
(@) V:Y*=X3in A%

(b) V:4X2Y2 = (X? + Y?3in A%
(© V:Y =X*+Y*in A%
(d V:X2+Y2=(Z-1)*in A3,

1.3. Let ¥V c A" be a variety given by a single equation (cf. 1.4). Prove that a point
P eV is non-singular if and only if

dimg Mp/M} = dim V.
[Hint: Let f = 0 be the equation of V; and define the tangent plane to V at P by

T ={(y1>--. )€ A" Y (3f/0X,(P))y; = O}.
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1.4.

1.5.

1.6.

1.7

1.8.

1.9.

Show that the map
Mp/M; x T>K, (g, 9)— Y. (09/0X,(P))y;
is a well-defined perfect pairing of K-vector spaces. Now use (1.5).]
Let V/Q be the variety
V:5X2+6XY +2Y?=2YZ + Z~
Prove that V(Q) = .
Let V/Q be the projective variety
V:Y?=X3+17,
and let P, = (x,, y,) and P, = (x,, y,) be distinct points of V. Let L be the line
through P, and P,.
(a) Show that V n L = {Py, P,, P}, and express P; = (x3, y3) in terms of P, and
P,. (If L is tangent to V, then P; may equal P, or P,.)
(b) Calculate P, for P, = (—1,4)and P, = (2, 5).
(c) Show thatif P, P,e V(Q), then P, e V(Q).
Let V be the variety
V:Y*Z =X3+ 7%

Show that the map

¢: VP ¢ =[X% XY, Z%]
is a morphism. (Notice ¢ does not give a morphism P? — P2)
Let V be the variety

V:Y*Z = X3,

and let ¢ be the map

$: P>V,  ¢=[ST,S3 T3]

(a) Show that ¢ is a morphism.

(b) Find a rational map ¢ : V — P! so that ¢ oy and ¥ o ¢ are the identity map
wherever they are defined.

(c) Is ¢ an isomorphism?

Let K = F,, and let V = P" be a variety which is defined over K.
(a) Show that the g'™-power map

¢ =[X4,..., X%

is a morphism ¢ : V — V. It is called the Frobenius morphism.
(b) Show that ¢ is one-to-one and onto.
(c) Show that ¢ is not an isomorphism.
(d) Show that

{PeV:¢(P) = P} = V(K).

If m > n, prove that there are no non-constant morphisms P™ — P". [Hint: Use
the dimension theorem [Har, 1.7.2].]
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1.10. For each prime p > 3, let V, be the variety in P? given by the equation
V,: X* 4+ Y?=pZ2

(a) Prove that V, is isomorphic to P* over Q if and only if p = 1 (mod 4).
(b) Prove that for p = 3 (mod 4), no two of the Vs are isomorphic over Q.

1.11. (a) Let feK[X,, ..., X,] be a homogeneous polynomial, and let
V={PeP": f(P)=0}
be the hypersurface defined by f. Prove that if a point Pe V is singular, then
of/0Xy(P) = -+ = 0f/0X,(P) = 0.

(Thus in projective space, one can check for smoothness using homogeneous
coordinates.)

(b) Let W < P" be a smooth algebraic set of dimension n — 1. Prove that W is
a variety. [Hint: First use Krull’s Hauptidealsatz ([A-M] p. 122) to show
that W is the zero set of a single homogeneous polynomial.]

1.12. (a) Let V/K be an affine variety. Prove that
K[V]={feK[V]:f° = fforall e Ggx}.

[Hint: One inclusion is clear. For the other, choose some Fe K[X] with
F = f(mod I(V)). Show that the map Ggx — I(V) defined by 6 - F° — F is
a l-cocycle (cf. B §2). Now use (B.2.5a) to conclude that there exists a
Gel(V)such that F + Ge K[X].]

(b) Prove that

P*(K) = {PeP"(K): P = P for all o € G x}.
[Hint: Write P = [x,, ..., x,]. If P = P°, then there is a A, K* such that
x{ = A,x; for 0 < i < n. Show that the map o — 4, gives a 1-cocycle from

Ggx to K*. Now use Hilbert’s theorem 90 (B.2.5b) to find an acK*
so that [ax,, ..., ax,] € P*(K).]

(¢) Let ¢:V; —» V, be a rational map of projective varieties. Prove that ¢ is
defined over K if and only if ¢° = ¢ for every 6 € Gz . [Hint: Use (a) and

(b).]



CHAPTER 11

Algebraic Curves

In this chapter we present the basic facts about algebraic curves (i.e. projec-
tive varieties of dimension 1) which will be needed for our study of elliptic
curves. (Actually, since elliptic curves are curves of genus 1, one of our tasks
will be to define the genus of a curve.) As in Chapter I, we give references for
those proofs which are not included. There are many books where the reader
can find more material on the subject of algebraic curves, for example [Har,
Ch. IV], [Sha 2], [G-H, Ch. 2], [Wa].

We recall the following notation from Chapter I, which will be used in this
chapter. (C is a curve and PeC.)

C/K C is defined over K

K(C), K(C) the function field of C
K[C]p the local ring of C at P

Mp the maximal ideal of K[C],
§1. Curves

By a curve we will always mean a projective variety of dimension 1. We will
generally deal with curves which are smooth. Examples of smooth curves are
provided by P, (1.2.3), and (1.2.8). We start by describing the local rings of a
smooth curve.

Proposition 1.1. Let C be a curve and P C a smooth point. Then K[C]p is a
discrete valuation ring.



22 IL. Algebraic Curves

ProoF. From (I.1.7), Mp/M? has dimension 1 over K = K[C]p/Mp. Now use
[A-M, Prop. 9.2] (or exer. 2.1). O

Definition. Let C be a curve and PeC a smooth point. The (normalized)
valuation on K[C]p is given by

ordp: K[C]p—{0,1,2,...} U {o0}
ordy(f) = max{deZ: fe M§}.
Using ord,( f/g) = ordp(f) — ordp(g), we extend ordp to K(C),
ordp: K(C)— Z L {0}.

A uniformizer for C at P is a function te K(C) with ord(t) = 1 (i.e. a gen-
erator for Mp).

Definition. Let C, P be as above and f € K(C). The order of f at P is ordp( f).
If ordp(f) > 0, then f has a zero at P;if ordp(f) < O, then f has a pole at P. If
ordp(f) =0, then f is regular (or defined) at P, and we can calculate f(P).
Otherwise f has a pole at P, and we write f(P) = c0.

Proposition 1.2. Let C be a smooth curve and f € K(C). Then there are only
finitely many points of C at which f has a pole or a zero. Further, if f has no
poles, then feK.

Proor. [Har, 1.6.5], [Har, I1.6.1], or [Sha 2, III §1] for the finiteness of the
number of poles. To deal with the zeros, look instead at 1/f. The last state-
ment is [Har, 1.3.4a] or [Sha 2, I §5, cor. 1]. O

Example 1.3. Consider the two curves
C,:Y?=X>+X and C,:Y?>=X?+ X2

(Remember our convention (1.2.7) concerning affine equations for projective
varieties. Each of C, and C, has a single point at infinity.) Let P = (0, 0). Then
C, is smooth at P and C, is not (I.1.6). The maximal ideal M, of K[C,]p has
the property that Mp/M3 is generated by Y (1.1.8), so for example

ordp(Y)=1  ordp(X)=2  ordp(QY?*—X)=2.
(For the last, note that 2Y? — X = 2X3 + X.) On the other hand, K[C,], is

not a discrete valuation ring.

The next proposition is useful when dealing with curves over fields of
characteristic p > 0. (See also exer. 2.15.)

Proposition 1.4. Let C/K be a curve, and let t € K(C) be a uniformizer at some
non-singular point Pe C. Then K(C) is a finite separable extension of K(t).
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Proor. K(C) is clearly a finite (algebraic) extension of K(t), since it is finitely
generated over K, has transcendence degree 1 over K, and t¢ K. Now let
x € K(C). We will show that x is separable over K(¢).

In any case, x is algebraic over K(¢), so it satisfies some polynomial relation

a;t'’x’ =0, where ®(T,X)=Y a,T'X'eK[X, T]
Ly L

We may further assume that @ is chosen so as to have minimal degree in X.
(Le. ®(t, X) is a minimal polynomial for x over K(¢).) Let p = char(K). If @
contains a non-zero term a;T'X’ with j # 0 (mod p), then 0®(X, 1)/0X is
not identically 0, so x is separable over K(t). Suppose now that ®(T, X) =
W(T, X¥). We proceed to derive a contradiction.

The main point to note is that if F(T, X)e K[T, X] is any polynomial,
then F(T?, X?)is a p'"-power. This is true because we have assumed that K is
perfect, which implies that every element of K is a p*™-power. Thus if F(T, X)
= Ta; T'X7, then writing a;; = B gives F(T?, X?) = (£4,;T'X/)*. We now
regroup the terms in (T, X) = W(T, X?) according to powers of T (modulo
p):

-1 -1
OT, X) = ¥(T,X7) = Y (z bi,-kT"prp) T =Y 4T, XPT
k=0 \1i,j k=0

Now by assumption, @(z, x) = 0. On the other hand, since ¢ is a unifor-
mizer at P, we have

ordp(@(t, x)’t*) = p ordp(g(t, x)) + k ordp(t) = k(mod p).

Thus each of the terms in the sum Z¢,(t, x)’t* has a distinct order at P, so
every term must vanish:

Polt, X) = (8, X) =+ = 4, (t, x) = 0.

But one of the ¢,(7, X)’s must involve X; and for that k, the relation ¢,(¢, x)
= 0 contradicts the fact that we chose ®(¢, X) to be a minimal polynomial for
x over K(t). (Note that degy (¢, (T, X)) < degx(®(T, X))/p.) This contradiction
completes the proof that x is separable over K(¢). O

§2. Maps between Curves

We start with the fundamental result that for smooth curves, a rational map
is always defined at every point.

Proposition 2.1. Let C be a curve, V = PY a variety, P e C a smooth point, and
¢ : C— V arational map. Then ¢ is regular at P. In particular, if C is smooth,
then ¢ is a morphism.

Proor. Write ¢ =[f,,..., fv] with ;e K(C), and choose a uniformizer
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te K(C)for C at P. Let

n= min {ord, f;}.
0<i<N

Then
ordp(t™"f;) = Oforalli and ordp(t™"f;) = O for some j,
so each t7"f; is regular at P and (¢t7"f;)(P) # 0. Therefore ¢ is regular at P. (]

For examples where (2.1) is false if P is not smooth or C has dimension
greater than 1, see (I.3.6) and (1.3.7).

Example 2.2. Let C/K be a smooth curve and fe K(C) a function. Then f
defines a rational map, which we also denote by f,

f:C-»P!
P> [f(P),1].

From (2.1), this map is actually a morphism. It is given explicitly by

1(P) = Lf(P), 1] if f is regular at P
[, 0] if f has a pole at P.
Conversely, let
$:C—> P!
¢=Lf4g]

be a rational map defined over K. Then either g = 0, in which case ¢ is the
constant map ¢ = [1, 0J; or else ¢ is the map corresponding to the function
f/g€ K(C). Denoting the former map by oo, we thus have a one-to-one
correspondence

K(C)u {00} & {maps C — P! defined over K}.

We will often implicitly identify these two sets.

Theorem 2.3. Let ¢: C, - C, be a morphism of curves. Then ¢ is either con-
stant or surjective.

Proor. [Har, 11.6.8] or [Sha 2, I §5, thm. 4]. O

Now let C; /K and C, /K be curves and ¢ : C; — C, a non-constant rational
map defined over K. Then composition with ¢ induces an injection of func-
tion fields fixing K,

¢*: K(C,) ~ K(Cy)
¢*f =fo¢.
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Theorem 2.4. Let C, /K and C,/K be curves.

(a) Let ¢:C, — C, be a non-constant map defined over K. Then K(C,) is a

finite extension of ¢*K(C,).

(b) Let 1: K(C,) — K(C,) be an injection of function fields fixing K. Then

there exists a unique non-constant map ¢ : C; —» C, (defined over K) such that
* =

(c) Let K < K(C,) be a subfield of finite index containing K. Then there

exists a smooth curve C'/K, unique up to K-isomorphism, and a non-constant

map ¢ : C — C’ defined over K, so that $*K(C') = K.

Proor. (a) [Har, 11.6.8].

(b) Let C, = P¥; and for each i, let g;e K(C,) be the function on C, corre-
sponding to X;/X,. (Relabeling if necessary, we will assume that C, is not
contained in the hyperplane X, = 0.) Then

¢ = [1’ lgl""algN]

gives a map ¢: C, - C, with ¢* = 1. (Note ¢ is not constant, since the g,’s
cannot all be constant and 1 is injective.) Finally, if y = [ f,, ..., fy] is an-
other map with * = 1, then for each i,

filfo = ¥*g; = ¢*g; = 1g;,

which shows that Y = ¢.

(c) [Har, 1.6.12] for the case that K is algebraically closed. The general case
may be done similarly, or it may be deduced from the algebraically closed
case by examining Gg x-invariants. O

Definition. Let ¢ : C; — C, be a map of curves defined over K. If ¢ is constant,
we define the degree of ¢ to be 0; otherwise we say that ¢ is finite, and define
its degree by

deg ¢ = [K(C,): ¢*K(Cy)].

We say that ¢ is separable (inseparable, purely inseparable) if the extension
K(C,)/¢*K(C,) has the corresponding property, and we denote the separable
and inseparable degrees of the extension by deg, ¢ and deg; ¢ respectively.

Definition. Let ¢ : C; — C, be a non-constant map of curves defined over K.
From (2.4a), K(C,) is a finite extension of ¢*K(C,). We define

¢y K(C)) ~ K(Cy)
by using the norm map relative to ¢*,

Oy = (%) 0 Nxc,yprkicyy

Corollary 2.4.1. Let C, and C, be smooth curves, and let ¢ : C; — C, be a map
of degree 1. Then ¢ is an isomorphism.
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ProOF. By definition, deg ¢ = 1 means that ¢*K(C,) = K(C,), so ¢* is an
isomorphism of function fields. Hence from (2.4b), corresponding to the in-
verse map (¢*)~! : K(C,) 3 K(C,), there is a rational map ¢ : C, —» C, such
that y* = (¢*)"!; and since C, is smooth, y is actually a morphism (2.1).
Finally, since (¢ o ¥)* = y* 0 ¢* and (Y 0 §)* = ¢* o Y* are the identity maps
on K(C,) and K(C,) respectively, the uniqueness assertion of (2.4b) implies
that g oy and Y o ¢ are the identity maps on C, and C,, so ¢ and y are
isomorphisms. |

Remark 2.5. The above result (2.4) shows the close connection between
curves and their function fields. This can be made precise by stating that the
following map is an equivalence of categories. (See [Har, I §6] for details.)

_Objects: smooth curves .} _Objects: extensions /K of ]
defined over K transcendence degree 1 with
Maps: non-constant KnK=K

. . \A’\NW . . - -
rational maps (equivalently Maps: field injections fixing
surjective morphisms) K

| defined over K | B B

C/K ~ s K(C)
$:Cy - Cy, o 9* 1 K(Cy) = K(Cy).

Example 2.5.1. Hyperelliptic Curves. We assume char(K) # 2. Let f(x)e
K [x] be a polynomial of degree d, and consider the affine curve C,/K given
by the equation

Co:yz = f(x) = aoxd + alxd—l 4 4 a,.
Suppose that the point P = (x,, y,) € C, is singular. Then
2y0 = fl(xo) = 07

which means that y, = 0 and x, is a double root of f(x). Hence if we assume
that disc( f) # 0, then the affine curve y? = f(x) will be non-singular.

Now, if we treat C, as giving a curve in P? by homogenizing its affine
equation, then one easily checks that the point at infinity will be singular
whenever d > 4. On the other hand, (2.4c) assures us that there exists some
smooth projective curve C/K whose function field equals K(C,) = K(x, y).
The problem is that this smooth curve is not a subset of P2,

For example, let us consider the case d = 4. (See also exer. 2.14.) Then C,
has an affine equation

Co:y* = apx* + a;x® + a,x* + azx + a,.

Consider the map
[1, x, y,x2]: C, —» P3.
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Letting [X,, X;, X5, X5] = [1, x, y, x2], the ideal of the image clearly con-
tains the homogeneous polynomials

F = X3X0 - X12
and
G = X2XZ — agX* — a, X?X, — a, X2 X2 — a; X, X2 — a, X5,

However, the zero set of these two polynomials cannot be the desired curve
C, since it includes the line X, = X, = 0. But if we substitute X? = X, X; into
G and cancel an X¢, we obtain the quadratic polynomial

H - X22 - (10X32 - a1X1X3 - a2XOX3 - a3X0X1 - a4Xg.

Now we claim that the ideal generated by F and H will give a smooth curve
C.

To see this, note first that if X, # 0, then dehomogenization with respect to
X, gives the affine curve (setting x = X, /X,, y = X,/X,, z = X;3/X,)

z=x2  y*=ayz> +a,xz+ ayz + azx + a,.

Substituting the first equation into the second gives us back the original
curve Cy. Thus C, = C n {X, # 0}.

Next, if X, = 0, then necessarily X; = 0, and then X, = i\/a X;. Thus C
has two points {0, 0, + \/% , 1] on the hyperplane X,, = 0. (Note that a, # 0,
since we have assumed that f(x) has degree exactly 4.) To check that C is

non-singular at these points, we dehomogenize with respect to Xj;, setting
u=Xo/X5,v=X,/X3, w=X,/X;. This gives the equations

u=1v* wl=ay+a,v+au+ azuv + au’,

from which we obtain the single affine equation
w2 = ag + a,v + a,v* + azv® + a, ot

Since a, # 0, the points (v, w) = (0, +./4d,) are non-singular. We summarize
the above discussion in the following proposition, which will be used in
chapter X.

Proposition 2.5.2. Let f(x)e K[x] be a polynomial of degree 4 with
disc(f) # 0. There exists a smooth projective curve C = P> with the following
properties.

(i) The intersection of C with A® = {X, # 0} is isomorphic to the affine curve

2
v = fx).
(i) Let f(x) = agx* + -+ + a,. Then the intersection of C with the hyper-

plane {X, = 0} consists of the two points {[0,0, +./a,, 11}.

We next look at the behavior of a map in the neighborhood of a point.
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Definition. Let ¢ : C; —» C, be a non-constant map of smooth curves, and let
P e C,. The ramification index of ¢ at P, denoted e,(P), is given by
e¢(P ) = ordp(@*t4p)s

where t 4 € K(C,) is a uniformizer at ¢(P). Note that e4(P) > 1. We say that ¢
is unramified at P if e4(P) = 1; and ¢ is unramified if it is unramified at every
point of C;.

Proposition 2.6. Let ¢ : C, — C, be a non-constant map of smooth curves.
(a) For every QeC,,

Y. ey(P)=degg.
Ped™1(Q)
(b) For all but finitely many Qe C,,
#¢~1(Q) = degy(¢).

(c) Let ¢ : C, — C; be another non-constant map. Then for all Pe C,,
ewo¢(P) = e¢(P)ew(¢P)

ProoF. (a) [Har, 11.6.9] (take Y = P* and D = (0)), [La 2, I, prop. 21], [Se 9,

I, Prop. 10], or [Sha 2, I1I §2, thm. 1].

(b) [Har, 11.6.8].

(c) Let typ and t,4p be uniformizers at the indicated points. By definition,
t5s®" and  Y*t,ep

have the same order at ¢(P). Applying ¢* and taking orders at P yields

ordp(*t55*") = ordp(We)*t,4p)
which is the desired result. O

Corollary 2.7. A map ¢:C, - C, is unramified if and only if #¢ 1(Q)
= deg(¢g) for all Qe C,.

Proor. From (2.6a), # ¢~ 1(Q) = deg ¢ is equivalent to
Y. e(P)= #47'(Q).
Ped Q)
Since e4(P) > 1, this occurs if and only if each e4(P) = 1. O

Remark 2.8. Proposition 2.6 is exactly analogous to the theorems describing
the ramification of primes in number fields. Thus let L/K be number fields.
Then (2.6a) is the analogue of the Xe; f; = [K : Q] theorem ([La 2, I, prop.
21], [Se 9, I, prop. 10]), (2.6b) is similar to the fact that only finitely many
primes of K ramify in L, and (2.6¢) gives the multiplicativity of ramification
degrees in towers of fields. Of course, (2.6) and the analogous results for
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number fields are both merely special cases of the basic theorems describing
finite extensions of Dedekind domains.
Example 2.9. Consider the map
¢: Pl P!
(X, YD) =[X°(X - Y)* Y°].
Then ¢ is unramified everywhere except the points [0, 1] and [1, 1]. Further,
es([0,1]) =3 and ey([1,1]) =2;
SO
Y. eg(P)=1¢4([0, 1]) + e4([1, 1]) = 5 = deg 4,

Ped 1([0,1])

which is in accordance with (2.6a).

The Frobenius Map

Assume that char(K) = p > 0, and let ¢ = p". For any polynomial f € K[X1],
let 1@ be the polynomial obtained from f by raising each coefficient of f to
the ¢'" power. Then for any curve C/K we can define a new curve C9/K by
describing its homogeneous ideal as follows:

I(C) = ideal generated by { f@: feI(C)}.

Further, there is a natural map from C to C@, called the q'®-power Frobenius
morphism, given by

$:C—C?
d([xg5 -5 x, 1) = [x&, ..., xT].

To see that ¢ actually maps C to C@, it suffices to show that for every
P =[xy, ..., x,]€C, ¢(P) is a zero of each generator @ of I(C?). But

FOPP) = fOxE, ..., x7)
= (f(xgy---» Xp))? since char(K) = p
=0 since f(P) =0,

which gives the desired result.

Example 2.10. Let C be the curve in P? given by the single equation
C:Y?Z = X3 +aX?Z + bZ>.
Then C@ has the equation
C9:Y2Z = X3 + a'X?Z + b'Z°.
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The next proposition describes the basic properties of the Frobenius map.

Proposition 2.11. Let K be a field of characteristicp > 0, q = p’, C/K a curve,
and ¢ : C —» C@ the q™-power Frobenius morphism described above.

(a) #*K(C?) = K(CY' (= {f1: feK(C)}).
(b) ¢ is purely inseparable.
© deg ¢ =gq.

[N.B. We are assuming that K is perfect. If K is not perfect, (b) and (c) remain
true, but (a) must be modified.]

Proor. (a) Using the description (1.2.9) of K(C) as consisting of quotients f/g
of homogeneous polynomials of the same degree, we see that ¢*K(C@) is the
subfield given by quotients

¢$*(flg) = fXS, ..., XD/g(X{, ..., X;).
Similarly, K(C)? is the subfield given by quotients
f(Xos - X)¥9(Xo, - - ., X)L
But since K is perfect, we know that every element of K is a g'"-power, so
K[Xo, ..., X, 1= K[X{, ..., X1

Thus the set of quotients f(X7)/g(X?) and the set of quotients f(X;)?/g(X,)*?
give the exact same subfield of K(C).

(b) Immediate from (a).

(c) Choose te K(C) to be a uniformizer at some smooth point Pe C, so K(C)
is separable over K(t) (1.4). Consider the tower of fields

K(C)
separable | purely
K(C)(1) inseparable
K1) Ky
It follows that K(C) = K(C) (), so from (a),
deg ¢ = [K(C)*(r): K(C)'].

Now t?e K(C)?, so in order to prove that deg ¢ = g, we need merely show
that t9? ¢ K(C)% But if t%? = f for some f € K(C), then

q/p = ordp(t¥?) = q ordp(f),

which is clearly impossible. O

Corollary 2.12. Every map ¥ : C; —» C, of (smooth) curves over a field of
characteristic p > 0 factors as
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A
chepse,

where q = deg, (), ¢ is the q™-power Frobenius map, and J. is separable.

Proor. Let K be the separable closure of y*K(C,) in K(C,). Then K(C,)/K is
purely inseparable of degree g, so K(C,)? c K. But from (2.11a, c),
K(C))? = ¢*(K(C?) and [K(C,):¢*(K(CP)] =q.
Hence by comparing degrees, K = ¢*K(C{?). We now have the tower of
function fields
K(Cy)/$*K(C)Y*K(Cy),
and from (2.4b) this corresponds to maps

A
cherse
N

Y : O

§3. Divisors

The divisor group of a curve C, denoted Div(C), is the free abelian group
generated by the points of C. Thus a divisor D e Div(C) is a formal sum

PeC

with npeZ and np = 0 for all but finitely many PeC. The degree of D is
defined by

degD = ), np.

PeC

The divisors of degree 0 form a subgroup of Div(C), which we denote by
Div®(C) = {DeDiv(C):deg D = 0}.

If C is defined over K, we let Ggy act on Div(C) (and Div®(C)) in the

obvious way,
D’ =3 np(P°).
PeC

Then D is defined over K if D° = D for all 0 € Ggx. (N.B.If D = ny(P}) + -+ +
n,(P) with n,, ..., n, # 0, then to say that D is defined over K does not mean
that Py, ..., P,e C(K). It suffices for Ggx to permute the Ps in an appropriate
fashion.) We denote the group of divisors defined over K by Divg(C), and
similarly for Divg(C).

Assume now that the curve C is smooth, and let f e K(C)*. Then we can
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associate to f the divisor div( f) given by

div(f) = Y, ordp(f)(P).

PeC

(This is a divisor by (1.2).) Now if o € Gz x, then one easily sees that
div(f°) = div(f)°.

In particular, if f e K(C), then div(f)e Divg(C).
Since each ord, is a valuation, we see that the map

div: K(C)* - Div(C)

is a homomorphism of abelian groups. It is analogous to the map which
sends an element of a number field to the corresponding fractional ideal. This
prompts the following definitions.

Definition. A divisor D e Div(C) is principal if it has the form D = div(f) for
some f € K(C)*. Two divisors D, , D, are linearly equivalent, denoted D, ~ D,,
if D, — D, is principal. The divisor class group (or Picard group) of C,
denoted Pic(C), is the quotient of Div(C) by the subgroup of principal
divisors. We let Picg(C) be the subgroup of Pic(C) fixed by Gg. [N.B. In
general, Picg(C) is not the quotient of Divg(C) by its subgroup of principal
divisors. But see (exer. 2.13).]

Proposition 3.1. Let C be a smooth curve and f € K(C)*.
(a) div(f) =0 if and only if feK*.
(b) deg(div(f)) = 0.

Proor. (a) If div(f) =0, then f has no poles, so the corresponding map
f:C — P! (cf. 2.2) is not surjective. Therefore it is constant (2.3), so feK*.
The converse is clear.

(b) [Har, I1.6.10], [Sha 2, III 2, cor. to thm. 1], or see (3.7) below. (]

Example 3.2. On P!, every divisor of degree 0 is principal. To see this,
suppose that D = Tnp(P) has degree 0. Writing P = [ap, fp] € P!, we see that
D is the divisor of the function

[1 (BeX —apY)™.

PeP1

(Note this function is in K(P!) because Zn, = 0.) We have thus proven that
for P!, the degree map

deg: Pic(PY)» 7

is an isomorphism. It turns out that the converse is also true: if C is a smooth
curve and Pic(C) ~ Z, then C is isomorphic to PL.

Example 3.3. Assume that char(K) # 2. Let e,, e,, e;eK be distinct, and
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consider the curve
C:y? =(x —e))(x — e;)(x — ey).

One can check that C is smooth; and it has a single point at infinity, which we
will denote by P,.. Fori = 1,2, 3, let P, = (e;, 0)e C. Then

div(x — ¢;) = 2(P) — 2(P,)
and
div(y) = (Py) + (Py) + (P3) — 3(P,).

From (3.1b) we see that the principal divisors form a subgroup of Div®(C).

Definition. The degree O part of the divisor class group of C, which we denote
by Pic®(C), is the quotient of Div®(C) by the subgroup of principal divisors.
Further, Picg(C) is the subgroup of Pic®(C) fixed by Gg k.

Remark 3.4. Proposition 3.1 and the above definitions may be summarized
by saying that there is an exact sequence
1 - K* - R(C)* 3 Divo(C) - Pic®(C) — 0.

This sequence is the function field analogue of the fundamental exact
sequence in algebraic number theory, which for a number field K reads

TR units) K* o fractional ) (ideal class 51
of K ideals of K group of K )

Now let ¢ : C; — C, be a non-constant map of smooth curves. As we have
seen, ¢ induces maps on the function fields of C, and C,,

o* 3IZ(C2) - IZ(CQ and ¢,: K(C1) g K—(Cz)-

We similarly define maps on the divisor groups as follows.

¢* : Div(C,) — Div(C)) ¢, : Div(C,y) = Div(C,)
@ - Y eP)P) (P)— (¢P),
Ped HQ)

and extend Z-linearly to arbitrary divisors.

Example 3.5. Let C be a smooth curve, f e K(C) a non-constant function, and
f: C — P! the corresponding map (2.2). Then directly from the definitions,

div(f) = f*((0) — (0)).
Proposition 3.6. Let ¢ : C, — C, be a non-constant map of smooth curves.
(a) deg(¢*D) = (deg ¢)(deg D) for all D e Div(C,).
(b) ¢*(div f) = div(g*f) for all feK(Cy)*.
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(c) deg(¢,D)=degD for all D e Div(C,).
(d) ¢, (div f)= div(g, f) for all feK(C))*.
() ¢, 0¢* acts as multiplication by deg ¢ on Div(C,).
() If y: C, > C; is another such map, then
Wod)* =¢*oy* and (Yod),=,00,.

Proor. (a) Follows directly from (2.6a).
(b) Follows from the definitions and the easy fact (exer. 2.2) that for all
PeC,,

ordp(¢*f) = e4(P) ordyp(f).

(c) Clear from the definitions.

(d) [La2,ch. 1, prop. 22] or [Se 9, L, prop. 14].

(e) Follows directly from (2.6a).

{f) The first equality follows from (2.6¢c). The second is obvious. O

Remark 3.7. From (3.6) we see that ¢* and ¢, take divisors of degree 0 to
divisors of degree 0, and principal divisors to principal divisors. They thus
induce maps

¢* : Pic®(C,) - Pic®(C,) and ¢, : Pic°(C,) - Pic°(C,).
In particular, if f € K(C) gives the map f: C — P!, then
degdiv(f) = deg f*((0) — (o0)) = deg f — deg f =0.
This provides a proof of (3.1b).

§4. Differentials

In this section we will discuss the vector space of differential forms on a curve.
This vector space will be useful for two different purposes. First, it will perform
the traditional calculus role of linearization. (See (III §5), especially (111.5.2).)
Second, it will give a useful criterion for determining when an algebraic map
is separable. (See (4.2c) below and its utilization in the proof of (II1.5.5).) Of
course, this latter is also a familiar use of calculus, since a field extension is
separable if and only if the minimal polynomial of each element has non-zero
derivative.

Definition. Let C be a curve. The space of (meromorphic) differential forms on
C, denoted Q, is the K(C)-vector space generated by symbols of the form dx
for x € K(C), subject to the usual relations:

(i) dix + y)=dx +dy for all x, ye K(C);
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(i) d(xy) = xdy + ydx forall x, ye K(C);
(i) da =0 forallaeKk.

Remark 4.1. There is, of course, a more functorial definition of Q. See, for
example, [Mat, ch. 10], [Har, I1.8], or [Rob, II §3].

Let ¢: C, - C, be a non-constant map of curves. Then the natural map
¢* : K(C,) » K(C,) induces a map on differentials
¢* . ch i ch

¢* (Z fidx.-> = Y (¢*f)d(¢*x,).
This map will provide a useful criterion for determining when ¢ is separable.

Proposition 4.2. Let C be a curve.
(@) Qc is a 1-dimensional K(C)-vector space.
(b) Let xe K(C). Then dx is a K(C) basis for Qc if and only if K(C)/K(x) is a
finite separable extension.
(c) Let ¢: C, = C, be a non-constant map of curves. Then ¢ is separable if and
only if the map

¢*:Qc, - Qc,

is injective (equivalently, non-zero.)

Proor. (a) [Mat, 27.A, B], [Rob, 11.3.4], or [Sha 2, III §4, thm. 3].

(b) [Mat, 27.A, B] or [Sha 2, III §4, thm. 4].

(c) Using (a) and (b), choose yeK(C,) so that Q. = K(C,)dy and
K(C,)/K(y) is a separable extension. Note ¢*K(C,) is then separable over
#*K(y) = K(¢*y). Now

¢* is injective < d(¢*y) # 0
<>d(¢*y) is a basis for Q, (from (a))
< K(C,)/K(¢*y) is separable (from (b))
< K(C,)/¢*K(C,) is separable,
where the last equivalence follows because we already know that

$*K(C,)/K(¢*y) is separable. O

Proposition 4.3. Let Pe C, and let te K(C) be a uniformizer at P.
(a) For every weQ. there exists a unique function g€ K(C), depending on o
and t, such that

w = gdt.

We denote g by w/dt.
(b) Let f € K(C) be regular at P. Then df/dt is also regular at P.
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(c) The quantity
ordp(w/dt)

depends only on w and P, independent of the choice of uniformizer t. We call
this value the order of w at P, and denote it by ordy(w).
(d) Let xe K(C) such that K(C)/K(x) is separable and x(P) = 0. Then for all
feK(C),

ordp(f dx) = ordp(f) + ordp(x) — 1.
(¢) For all but finitely many PeC,

ordp(w) = 0.

ProoF. (a) This follows from (1.4) and (4.2a, b).
(b) [Har, comment following I'V.2.1] or [Rob, I1.3.10].
(c) Lett be another uniformizer at P. Then from (b), dt/dt’ and dt'/dt are both
regular at P, so ordp(dt'/dt) = 0. Since
w = gdt = g(dt'/dt)dt,

the desired result follows.
(d) Write x = ut” with n = ordp(x) = 1, so ordp(u) = 0. Then

dx = [nut""! + (du/dt)t"]ds.

Now from (b), du/dt is regular at P, so provided n # 0, the first term domi-
nates. Hence we obtain the desired equality

ord,(f dx) = ordp(fnut" ' dt) = ordp(f) + n — 1.

Finally, if char K = p > 0 and p|n, then we see that (x/u)? € K(C). But since
K(C) is separable over K(x,u), this implies x/ueK, which contradicts
ordp(x) = 1.

(e) Let xe K(C) so that K(C)/K(x) is separable, and write w = f dx. From
[Har, IV.2.2a], the map x : C — P! ramifies at only finitely many points of C.
Hence discarding finitely many points, we may restrict our attention to
points Pe C such that f(P) # 0, o0, x(P) # o0, and x: C — P! is unramified at
P. But the latter two conditions imply that x — x(P) is a uniformizer at P, so

ordp(w) = ordp( fd(x — x(P))) = 0. O

Definition. Let w e Q.. The divisor associated to w is

div(w) = ). ordp(w)(P)eDiv(C).

PeC

Definition. A differential w € Q is regular (or holomorphic) if
ordp(w) = 0 forall PeC.
It is non-vanishing if

ordp(w) <0 for all PeC.
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Remark 4.4. If o, , €Q are non-zero differentials, then (4.2a) implies that
there is a function f € K(C)* so that w; = fw,. Thus

div(w,) = div(f) + div(w,),
which shows that the following definition makes sense.
Definition. The canonical divisor class on C is the image in Pic(C) of div(w) for

any non-zero differential w € Q.. Any divisor in this divisor class is called a
canonical divisor.

Example 4.5. Let us show that there are no holomorphic differentials on P
First, if ¢ is a coordinate function on P!, then
div(dt) = —2(c0).
(To see this, note that for all xe K, t — « is a uniformizer at a, so
ord,(dt) = ord,(d(t — o)) = 0.
However, at co € P1, 1/t is a uniformizer, so
ord(dt) = ord(—t*d(1/t)) = —2.)

Thus dt is not holomorphic. But now for any non-zero w € Qp:, (4.3a) implies
that

deg div(w) = deg div(dt) = —2,

s0 w cannot be holomorphic either.

Example 4.6. Let C be the curve
C:y* = (x —e)(x — ex)(x — e3),
where we continue with the notation of (3.3). Then
div(dx) = (Py) + (Py) + (P3) — 3(P,).
(Note dx = d(x — ¢;) = —x2d(1/x).) We thus see that
div(dx/y) = 0.

Hence dx/y is both holomorphic and non-vanishing.

§5. The Riemann—Roch Theorem

Let C be a curve. We put a partial order on Div(C) as follows.

Definition. A divisor D = Znp(P)e Div(C) is positive (or effective), denoted by
D=0,
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if np 2 0 for every Pe C. Similarly, if D,, D, € Div(C), then we write
D, =D,
to indicate that D, — D, is positive.
Example 5.1. Let f e K(C)* be a function which is regular everywhere except

at one point P € C, and such that it has a pole of order of most n at P. These
requirements on f may be succinctly summarized by the inequality

div(f) = —n(P).
Similarly,
div(f) = (Q) — n(P)
says that in addition, f has a zero at Q. Thus divisorial inequalities are a
useful tool for describing poles and/or zeros of functions.
Definition. Let D € Div(C). We associate to D the set of functions
Z(D) = {feK(C)*:div(f) = —D} u {0}.

#(D) s a finite-dimensional K-vector space (see (5.2b) below), and we denote
its dimension by

£(D) = dimg (D).
Proposition 5.2, Let D e Div(C).
(@) If deg D < O, then
Z([D)={0} and ¢(D)=0.

(b) Z(D) is a finite-dimensional K-vector space.
(c) If D’ e Div(C) is linearly equivalent to D, then

L(D)~ ZL(D); and so (D)= (D).

Proor. (a) Let f € £ (D) with f # 0. Then using (3.1b),
0 =deg div(f) > deg(—D) = —deg D,

sodeg D = 0.
(b) [Har, I11.5.19] or (exer. 2.4).
(c) If D = D' + div(g), then the map

ZL(D)- £(D)
f-/9
is an isomorphism. O
Example 5.3. Let K€ Div(C) be a canonical divisor on C, say

K. = div(w).
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Then each function f e #(K() has the property that
div(f) = —div(w), so div( fw) = 0.

In other words, fw is holomorphic. Conversely, if fw is holomorphic, then
f e Z(Kc). Since every differential on C has the form fw for some f, we have
thus established an isomorphism of K-vector spaces

L(K¢) ~ {weQ: o is holomorphic}.
The dimension #(K.) of these spaces is an important invariant of the curve C.
We are now ready to state one of the most fundamental results in the
algebraic geometry of curves. Its importance, as we will see amply demon-

strated (cf. II §3), lies in its potential for allowing us to describe the functions
on C having prescribed zeros and poles.

Theorem 5.4 (Riemann—Roch). Let C be a smooth curve and K. a canonical
divisor on C. There is an integer g = 0, called the genus of C, such that for
every divisor D € Div(C),

{(D)— (Ko —D)=degD — g + 1.

Proor. For a fancy proof using Serre duality, see [Har, IV §1]. A more
elementary proof, due to Weil, is given in [La 6, Ch. I]. O

Corollary 5.5. (a) £(K¢) = g.
(b) deg Ko =2g — 2.
(c) If deg D > 2g — 2, then

{/(D)y=degD —g + 1.
Proor. (a) Use (5.4) with D = 0. Note that £(0) = K from (1.2), so £(0) = 1.

(b) Use (a) and (5.4) with D = K.
(c) From (b), deg(K: — D) < 0. Now use (5.4) and (5.2a). O

Example 5.6. Let C = P'. Then there are no holomorphic differentials on C
(4.5), so using the identification from (5.3), we see that #(Kc) = 0. Thus by
(5.5a), P! has genus 0, and the Riemann—Roch theorem reads

(D) — £(—2(00) — D) =deg D + 1.
In particular, if deg D > —1, then
{(D)y=deg D + 1.
(See exer. 2.3b.)
Example 5.7. Let C be the curve
C:y? =(x —e))(x — e))(x — e3),
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where we continue with the notation of (3.3) and (4.6). We have seen (4.6) that
div(dx/y) = 0,
so the canonical class on C is trivial (i.e. we may take K. = 0). Hence from
(5.5a),
g ="14Kc)=40) =1,
so C has genus 1. The Riemann-Roch theorem (actually (5.5¢c)) then reads
£(D) =deg D provided deg D > 1.
Let’s look at several special cases.

(i) Let PeC. Then £((P)) = 1. But #((P)) certainly contains the constant
functions. This shows that there are no functions on C having a single
simple pole.

(i) Recall P, is the point at infinity on C. Then ¢(2(P,)) = 2, and {1, x}
provides a basis for £(2(P,.)).

(iii) Similarly {1, x, y} is a basis for £(3(P,)), and {1, x, y, x*} is a basis for
ZL(4(P,))-

(iv) Now the functions 1, x, y, x%, xy, x3, y* are all in £(6(P,.)). But £(6(P,))
=6, so it follows that these functions are K-linearly dependent. Of
course, the original equation used above to define C gives an equation of
linear dependence among them.

The next result says that if C and D are defined over K, then so is #(D).
Proposition 5.8. Let C/K be a smooth curve, and let D € Divg(C). Then £ (D)
has a basis consisting of functions in K(C).

Proor. Since D is defined over K, we have
feZ(D°)=2Z(D) forall fe L(D)and ge Ggy.
Thus Ggx acts on £(D), and the desired conclusion follows from the follow-

ing general lemma. O

Lemma 5.8.1. Let V be a K-vector space, and assume that Ggx acts contin-
uously on V in a manner compatible with its action on K. Let

Vi = Vo = {veV:v° = ve for all € Gg g}
Then
V=~ K ® V.
[L.e. V has a basis of Gg g-invariant vectors.]
Proor. It suffices to show that every ve V is a K-linear combination of

vectors in V. Choose a ve ¥, and let L/K be a finite Galois extension such
that v is fixed by Gg;.. (The fact that Gg acts continuously on ¥ means
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precisely that the subgroup {o € Ggx: v’ = v} has finite index in Gg,. We
take L to be the Galois closure of its fixed field.) Let {a, ..., a,} be a basis for
L/K, and let {0y, ..., 0,} = Gy x. For each 1 < i < n, consider the vector

n
w; = Y ()% = Tracey x(o;v).
j=1

It is clearly Gk g invariant, so w;€ Vx. Now a basic result in field theory [La
2, I, prop. 9] says that the matrix (%), ¢; j<, is non-singular, so each v%
(and in particular v) is an L-linear combination of the w;’s. (For a fancier
proof, see exer. 2.12.) |

We conclude by giving the classic relationship connecting the genus of
curves linked by a non-constant map.

Theorem 5.9 (Hurwitz). Let ¢ : C, — C, be a non-constant separable map of
smooth curves. Then

29, —2 > (deg 9)(29, — 2 + PZ (ey(P) — 1),

eC,
where g, is the genus of C;. Further, equality holds if and only if either:

(i) char(K) = 0; or
(i) char(K) = p > 0 and p does not divide e,(P) for all PeC,.

ProoF. Let weQc,, w # 0, let Pe C,, and let Q = ¢(P). Since ¢ is separable,
#*w # 0(4.2c); we wish to relate ordp(¢*w) and ordy(w). Write w = f dt with
t € K(C,) a uniformizer at Q. Then letting e = es(P), we have ¢*t = us®, where
s is a uniformizer at P and u(P) # 0, co. Hence

P*w = ($*f)d(¢*t) = (#*f)d(us®) = (¢*f) [eus®™ ! + (du/ds)s1ds.
Now ordp(du/ds) = 0 (4.3b), so we see that
ordp(¢*w) = ordp(p*f) + e — 1,
with equality if and only if e # 0 in K. Further,
ordp(¢*f) = e4(P) ordy(f) = e4(P) ordy(w).
Hence adding over P e C, yields

deg div(¢*w) > Pzé [e4(P) ordypy@) + e4(P) — 1]

=) ) efPordg(@)+ Y eyP)—1
QeCy Pegd™1(Q) PeCy

= (deg ¢)(deg div(w)) + PZ‘é ey(P) — 1,
where the last equality follows from (2.6a). Now Hurwitz’ theorem is a conse-
quence of (5.4b), which says that on a curve of genus g, the divisor of any non-
zero differential has degree 2g — 2.
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EXERCISES

2.1

2.2.

23.

24.

2.5.

2.6.

Let R be a Noetherian local domain, M its maximal ideal, and k = R/M. Prove
that the following are equivalent:

(i) R is a discrete valuation ring.

(ii) M is principal.
(iii) dim, M/M? = 1.
(Note this lemma was used in (1.1) to show that on a smooth curve, the local
rings K[C]p are discrete valuation rings.)

Let ¢: C; — C, be a non-constant map of smooth curves, f e K(C,)*, PeC,.
Then

ordyp(f) = e4(P) ordp(¢*f).
Verify directly that each of the following theorems is true for the particular case

of the curve C = P! and a non-constant map ¢ : P! —» PL.
(a) (proposition 2.6) Prove that

Y eyP)=degg  forallQeP';and
Ped '@
#47HQ) = deg,(9) for all but finitely many Q e P1.

(b) Prove the Riemann—Roch theorem (5.4) for P1.
(¢} Prove Hurwitz’ theorem (5.9) for ¢ : P! - PL.

Let C be a smooth curve and D e Div(C). Without using the Riemann—-Roch
theorem, prove:

(a) £(D)is a K-vector space.

(b) Ifdeg D = O, then

/(D)< degD + 1.

Let C be a smooth curve. Prove that the following are equivalent:
(i) C isisomorphic to PL

(ii) C has genus 0.

(iii) There exist distinct points P, Q € C with (P) ~ (Q).

Let C be a smooth curve of genus 1. Fix a basepoint P, e C. Prove the following.
(a) For all P, Qe C there exists a unique R € C such that

(P) +(Q) ~ (R) + (Py).

Denote this R by (P, Q).

(b) The map 6:C x C - C from (a) makes C into an abelian group with
identity P,.

(c) Define a map

k: C - Pic®(C)
P — divisor class of (P) — (P,).
Prove that x is a bijection of sets. Hence k can be used to make C into a group,
P+ Q = k7 (x(P) + x(Q)).

(d) Prove that the group operations on C defined in (b) and (c) are the same.
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2.7.

2.8.

29.

2.10.

211

2.12.

Let F(X, Y, Z)e K[X, Y, Z] be homogeneous of degree d > 1, and suppose that
the curve C in P2 given by the equation F = 0 is non-singular. Prove that

genus (C) = (d — 1)(d — 2)/2.
[Hint: Define a map C — P! and use (5.9).]

Let ¢ : C; — C, be a non-constant separable map of smooth curves.
(a) Prove that genus (C,) > genus (C,).
(b) Prove that if C, and C, both have genus g, then one of the following is true.
i) g=0.
(ii) g = 1 and ¢ is unramified.
(iii) g > 2 and ¢ is an isomorphism.

Let a, b, ¢, d be square free integers with a > b > ¢, and let C be the curve in P?
given by the equation

C:aX?+bY>+¢Z3+dXYZ =0.

Let P =[x, y, zZ]€ C and let L be the tangent line to C at P.

(@) Show that Cn L = {P, P'}, and calculate P’ = [/, y', z'] in terms of g, b,
c,d, x,y,z.

(b) Show that if Pe C(Q), then P'e C(Q).

(c) Let PeC(Q). Choose homogeneous coordinates for P and P’ which are
integers satisfying ged(x, y, z) = 1 and ged(x', y', z’) = 1. Prove that

|x'y'Z'| > |xyz|.

(Note the strict inequality.)
(d) Conclude that either V(Q) = &, or else V(Q) is infinite.
(e)** Characterize, in terms of g, b, ¢, d, whether V(Q) contains any points.

Let C be a smooth curve. The support of a divisor D = Zn,(P)e Div(C) is the set
of points Pe C for which np # 0. Now let feK(C)* be a function such that
div(f) and D have disjoint supports. Then it makes sense to define

D)= P]_IC JP)y>.

Next let ¢: C;, - C, be a non-constant map of smooth curves. Prove that the
following two equalities are valid in the sense that if one side is well-defined,
then so is the other, and they are equal.

(@ f(¢*D)= (. /)D) for feK(Cy)* DeDiv(C,).

(b) f(¢.D) = (#*/)(D) for [eK(Cy)* DeDiv(Cy).

Let C be a smooth curve and f, g K(C)* functions such that div(f) and div(g)
have disjoint support. (See exer. 2.10.) Prove Weil’s reciprocity law

fdiv(g)) = g(div(f))

in two steps.

(a) Verify it directly for C = P'.

(b) Now prove it for arbitrary C by using the map g: C — P to reduce to the
case already done.

Use the extension of Hilbert’s theorem 90 (B.3.2) which says that
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2.13.

2.14.

2.15.
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H'(Ggyx, GLy(R)) = 0
to give another proof of (5.8.1).

Let C/K be a curve.
(a) Prove that the following sequence is exact.

(b) Suppose that C has genus 1 and that C(K) # &. Prove that the map
Div¥(C) - Pic(C) is surjective.

Let f(x)e K[x] be a polynomial of degree d > 1 with disc(f) # 0, let C,/K be
the affine curve given by the equation

Co:y = f(x) = apx? + a;x* ™' + -+ + ag_1x + a,

and let g be the unique integer satisfyingd —3 <2g <d — 1.
(a) Let C be the closure of the image of C, under the map

[1,x,x%...,x5", y]: C - P2,

Prove that C is smooth and that C n {X, # 0} is isomorphic to C,. C is
called a hyperelliptic curve.

(b) Let f*(v) = ap + a,v + - + ag_v* ! + a,v* = v¥f(1/v). Show that C con-
sists of two affine pieces

Co:y?=f(x) and C,:w?= f*(v),
“glued” together via the maps
Co—C, C,-C,
x, Y= A/x, y/x*Y  (u,0) > (1/u, w/u®™?).

(c) Calculate the divisor of the differential dx/y on C, and use the resuit to show
that C has genus g. Check your answer by applying Hurwitz’ formula (5.9)
to the map [1, x] : C — P!. (Note exercise 2.7 does not apply, since C ¢ P2))

(d) Find a basis for the holomorphic differentials on C. [Hint: Consider the set
{x'dx/y:i=0,1,2,...}. How many elements are holomorphic?]

Let C/K be a smooth curve defined over a field of characteristic p > 0, and let
te K(C). Prove that the following are equivalent:
(i) K(C)is a finite separable extension of K(t).
(i) There exists a point P e C such that ord,(t) is relatively prime to p.
(iii) For all but finitely many points Pe C, t — t(P) is a uniformizer at P.
(iv) t¢ K(C).



CHAPTER 1III

The Geometry of Elliptic Curves

Elliptic curves, our principal object of study in this book, are curves of genus
1 having a specified basepoint. Our ultimate goal, as the title of the book
indicates, is to study the arithmetic properties of these curves. In other words,
we will be interested in analyzing their points defined over arithmetically
interesting fields, such as finite fields, local (p-adic) fields, and global (number)
fields. Before doing so, however, we are well-advised to study the properties
of these curves in the simpler situation of an algebraically closed field (i.e.
their geometry). This reflects the general principle in Diophantine geometry
that in attempting to study any significant problem, it is essential to have a
thorough understanding of the geometry before one can hope to make pro-
gress on the number theory. It is the purpose of this chapter to make an
intensive study of the geometry of elliptic curves over arbitrary algebraically
closed fields. (The particular case of the complex numbers is studied in more
detail in chapter VI.)

We start in the first two sections by looking at elliptic curves given by
explicit polynomial equations, called Weierstrass equations. Using these ex-
plicit equations, we show (among other things) that the set of points of an
elliptic curve forms an abelian group, and the group law is given by rational
functions. Then in section 3 we use the Riemann—Roch theorem to study
arbitrary elliptic curves and to show, in particular, that every elliptic curve
has a Weierstrass equation, so the results of the first two sections in fact apply
generally. The remainder of the chapter studies (in various guises) the al-
gebraic maps between elliptic curves. In particular, since the points of an
elliptic curve form a group, for each integer m there is always a
“multiplication-by-m” map from the curve to itself. As will become apparent
throughout this book, it would be difficult to overestimate the importance of
these multiplication maps in any attempt to study the arithmetic of elliptic
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curves (which will perhaps explain why we devote so much space to them in
this chapter).

§1. Weierstrass Equations

Our main object of study will be elliptic curves, which are curves of genus 1
having a specified basepoint. As we will see in section 3, every such curve can
be written as the locus in P? of a cubic equation with only one point (the
basepoint) on the line at co; i.e., after scaling X and Y, as an equation of the
form

Y2Z + a,XYZ + a;YZ? = X3 + a,X?Z + a,XZ* + acZ>.

Here O = [0, 1, 0] is the basepoint and a;, ..., age K. (It will become clear
later why the coefficients are labeled in this way.) In this section and the next,
we will study the curves given by such Weierstrass equations, using explicit
formulas as much as possible to replace the need for general theory.

To ease notation, we will usually write the Weierstrass equation for our
elliptic curve using non-homogeneous coordinates x = X/Z and y = Y/Z,

E:y? +a;xy + azy = x> + a,x* + a,x + a,,

always remembering that there is the extra point O = [0, 1, 0] out at infinity.
Asusual, if a,, ..., age K, then E is said to be defined over K.

If char(K) # 2, then we can simplify the equation by completing the
square. Thus replacing y by {(y — a, x — a;) gives an equation of the form

E:y? =4x> + byx* + 2b,x + b,
where
b, = a? + 4a,,
b, =2a, + aya,,
be = a% + 4a,.
We also define quantities
bg = atag + 4a,as — a,asa, + a,a3 — a2,
¢y = b3 — 24b,,
cs = b3 + 36b,b, — 216bs,
A = —bZbg — 8b3 — 27b2 + 9b,b,bs,
Jj=ci/A,
o = dx/(2y + a;x + a;) = dy/(3x* + 2a,x + a, — a, ).
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One easily verifies that they satisfy the relations
4bg = b,bs — b2 and 1728A = ¢} — c2.
If further char(K) # 2, 3, then replacing (x, y) by ((x — 3b,)/36, y/216) elimi-
nates the x? term, yielding the simpler equation
E:y*=x3— 27c x — 54cq.
Definition. The quantity A given above is called the discriminant of the

Weierstrass equation, j is called the j-invariant of the elliptic curve E, and w is
the invariant differential associated with the Weierstrass equation.

Example 1.1. It is easy to graph the real locus of a Weierstrass equation.
Some representative examples are shown in Figure 3.1. If A = 0, then we will
see that the curve is singular (1.4). Two sorts of behavior can occur, as
illustrated in Figure 3.2.

With this example in mind, we consider the following situation. Let P =
(x0» ¥o) be a point satisfying a Weierstrass equation

fx, ) =y*+a;xy+asy — x> —a,x* —a,x — ag =0.
Assume that P is a singular point on the curve f(x, y) = 0, so (L.1.5)
0f/0x(P) = df/oy(P) = 0.
Then the Taylor expansion of f(x, y) at P has the form
J(x, y) — f(x0, yo)
= [(y = o) — alx — x0) IL(¥ — o) — B(x — x0)1 — (x — xo)*

for some a, fe K.

Definition. With notation as above, the singular point P is a node if « # . In
this case, the lines



§1. Weierstrass Equations 49

y—Yo=oa(x —Xxo) and y— y,=B(x — xo)

are the tangent lines at P. Similarly, P is a cusp if « = f§, in which case the
tangent line at P is given by

Y — Yo = a(x — X).

To what extent is the Weierstrass equation for an elliptic curve unique? As
we will see (3.1(b)), assuming the line at infinity (i.e. the line Z = 0 in P?) is to
intersect E only at [0, 1, 0], then the only change of variables fixing [0, 1, 0]
and preserving the Weierstrass form of the equation is

x=u’x'+r,
y=u'y + usx’ +1t,

with u, r, s, te K, u # 0. It is now a simple (but tedious) matter to make this
substitution and compute the a; coefficients (and associated quantities) for
the new equation. The results are compiled in Table 1.2.

It is now clear why the j-invariant has been so named; it is an invariant of
the isomorphism class of the curve, and does not depend on the particular
equation chosen. For algebraically closed fields, the converse is true, a fact
which we will establish below (1.4b).

Remark 1.3. As we have seen, if the characteristic of K is different from 2 and
3, then any elliptic curve over K has a Weierstrass equation of a particularly
simple kind. Thus any proof which involves extensive algebraic manipulation
with Weierstrass equations (such as (1.4) below) tends to be much shorter if
K is so restricted. On the other hand, even if one is primarily interested in
characteristic O (e.g. K = @), an important tool is the process of reducing the

Table 1.2

ua; =a, +2s
ulay = a, — sa, + 3r — s*
uday = ay +ra; + 2t
uta, = a, — saz + 2ra, — (t + rs)a, + 3r* — 2st
uay = ag + ra, + r’a, + r® —tay — t* —rta,
ub, = b, + 12r
u*by = b, + rb, + 6r?
ubby = bg + 2rb, + r?b, + 4r°
uBby = bg + 3rbg + 3r’b, + r3b, + 3r*

u*cy = ¢4

ubcl = cq

ul?2A' = A
J=i

Ul =w
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coefficients of an equation modulo p for various primes p (including p = 2
and p = 3). So even for K = Q it is important to understand elliptic curves in
all characteristics. Consequently, we will adopt the following policy. All
theorems will be stated for a general Weierstrass equation. However, if it
makes the proof substantially shorter, we will make the assumption that the
characteristic of K is not 2 or 3, and give the proof in this case. Then, in the
interest of completeness, we will return to these theorems in appendix A and
give the proofs for general Weierstrass equations and arbitrary characteristic.

Now if the characteristic of K is not 2 or 3, we may assume that our elliptic
curve(s) have Weierstrass equations(s) of the form

E:y?=x>+ Ax + B.

This equation has associated quantities

A= —16(44° + 27B%, j=1728(44)%/A.
The only change of variables preserving this form of the equation is

x=u?x’, y=u’y’  for someueK*
and then
u*d = A, uSB’ = B, ul?A’ = A

Proposition 1.4. (a) The curve given by a Weierstrass equation can be classified
as follows.

(1) It is non-singular if and only if A # 0.
(ii) It has a node if and only if A = 0 and c, # 0.
(iii) It has a cusp if and only if A = ¢, = 0.

(In case (ii) and (iii), there is only the one singular point.)

(b) Two elliptic curves are isomorphic (over K) if and only if they have the same
J-invariant.

(c) Let joe K. Then there exists an elliptic curve (defined over K(j,)) with j-
invariant equal to j,.

Proor. (a) Let E be given by the Weierstrass equation

E:f(x,y)=y*+ a;xy + a3y — x> — a,x* — a,x — ag = 0.

We start by showing that the point at infinity is never singular. Thus we look
at the curve in P? with homogeneous equation

FX,Y,2)=Y?Z +a,XYZ + a,YZ?* — X3 — a,X*Z — a,XZ? — a,Z°
=0
and at the point O = [0, 1, 0]. Since
OF[0Z(0)=1#0,

we see that O is a non-singular point on E.
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Next suppose that E is singular, say at Py = (x,, yo).- The substitution
x=x"+x9 y=y -+

leaves A and ¢, invariant (1.2), so without loss of generality we may assume
that E is singular at (0, 0). Then

ag = f(0,0)=0 a, = 9f/0x(0,0) =0 a; = df/oy(0, 0) = 0,
so the equation for E takes the form
E:f(x,y) =y*+ a;xy — a,x* — x> =0.
This equation has associated quantities
¢y =(a? +4a,> and A=0.

Now by definition, E has a node (respectively cusp) at (0, 0) if the quadratic
form y? + a,xy — a,x? has distinct (respectively equal) factors, which occurs
if and only if its discriminant

a? +4a, #0  (respectively = 0).

This proves the “only if” part of (ii) and (iii).

To complete the proof of (i)—(iii), it remains to show that if E is non-
singular, then A # 0. To simplify the computation, we will assume that
char(K) # 2, and consider a Weierstrass equation of the form

E:y? =4x> + byx* + 2byx + bg.
(Cf. (1.3) and (A.1.2a).) Now E is singular if and only if there is a point
(x0, ¥o) € E satisfying

2yo = 12x2 + 2b,x, + 2b, = 0.

In other words, the singular points are exactly points of the form (x,, 0) with
X, a double root of 4x> + b,x* + 2b,x + bg = 0. This cubic polynomial has
a double root if and only if its discriminant (which equals 16A) vanishes,
which completes the proof of (i)-(iii). Further, since a cubic polynomial
cannot have two double roots, E can have at most one singular point.

(b) If two elliptic curves are isomorphic, then the transformation formulas
(1.2) show that they have the same j-invariant. For the converse, we will
assume that char(K) # 2, 3 (cf. (1.3) and (A.1.2b)). Let E and E’ be elliptic
curves with the same j-invariant, say with Weierstrass equations

E:y*=x*+ Ax + B,
E:(y)Y =)+ A4x +B.
Then
(44 /(44° + 27B?) = (44)3/(44"® + 27B),
which yields
A*B? = 4B~
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We look for an isomorphism of the form (x, y) = (u*x’, u®y’), and consider
three cases.

Case 1. A =0(j=0). Then B # 0 (since A # 0), so A’ = 0, and we obtain an
isomorphism using u = (B/B)'S.

Case2. B=0(j = 1728). Then 4 # 0, so B' = 0, and we take u = (4/4')**.

Case 3. AB#0(j#0,1728). Then A'B’ # 0 (since if one of them is zero, then
they both are, contradicting A’ # 0.) Hence taking u = (4/4")* = (B/B)"®
gives the desired isomorphism.

{(c) Assume that j, # 0, 1728, and look at the curve

% 1
Jo— 1728 jo— 1728

E:y?+xy=x3—

One computes
A =j3/(jo — 1728)° and j=j,.
Thus E gives the desired elliptic curve (in any characteristic) provided j, # 0,
1728. To complete the list we use the two curves
E:y’+y=x> A=-21, j=0
E:y*’=x>+x A=-64, j=1728

(Notice that in characteristic 2 or 3, 1728 equals 0, so even in these cases
one of the two curves will be non-singular, and so fill in the one missing value
of j.) O

Proposition 1.5. Let E be an elliptic curve. Then the invariant differential w
associated to a Weierstrass equation for E is holomorphic and non-vanishing
(i.e. div(w) = 0).

Proor. Let P = (x,, yo)€ E and
F(x,y) =y* +a;xy + a3y — x> — a,x* — a,x — ag,
S0

o = d(x — x0)/Fy(x, y) = —d(y — yo)/Fi(x, y).

Thus P cannot be a pole of w, since otherwise F,(P)= F,(P) =0, which
would say that P is a singular point. Now the map

E - P!
[x, », 11 =[x, 1]

is of degree 2, so ordp(x — x,) < 2; and ordp(x — x,) = 2 if and only if the
quadratic polynomial F(x,, y) has a double root. In other words, either
ordp(x — xo) = 1, or else ordp(x — x,) = 2 and F,(X,, yo) = 0. Thus in both
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cases (11.4.3)
ordp(w) = ordp(x — x¢) — ordp(F,) — 1 = 0.

Finally, we must check the point P = O. Let t be a uniformizer at O. Since
ordp(x) = 2 and ordp(y) = 3, x =t7%f and y = t g for functions f and g
satisfying f(0) # 0, oo and g(0) # 0, co. Now

o =dx/F(x,y) = (=2t + 732t 3g + a,;t7% + ay))dt
=((=2f + )29 + a,tf + azt%))dt.

(Here f* = dfjdt (cf. 11.4.3). In particular, (IL4.3b) tells us that f” is regular at
0.) Assuming that char(K) # 2, the function (=2f + tf")/(2g + a,tf + a5t?)
1s regular and non-vanishing at O; and so

ordy(w) = 0.
If char(K) = 2, then the same result follows from a similar calculation (using
o = dy/F,(x, y)) which we will leave for the reader. O

Next we look at what happens when a Weierstrass equation is singular.

Proposition 1.6. If a curve E given by a Weierstrass equation is singular, then
there exists a rational map ¢ : E — P! of degree 1. (1.e. E is birational to P.
Note that since E is singular, we cannot use (11.2.4.1) to conclude that E ~ P!)

Proor. Making a linear change of variables, we may assume that the singular
point is (x, y) = (0, 0). Then checking partial derivatives, we see that the
Weierstrass equation will have the form

E:y?2 +a,xy = x*+ a,x>
Hence the rational map
E-P! (x,y)-[xy]
has degree 1, with inverse
P E  [L,t]—(t2 + ait — a,, 2 + a,t* — ayt).

[Le. Use ¢t = y/x to map to P*, and note that dividing the equation for E by
x? yields t2 + a,t = x + a,, so x and y = xt are both in K(z).] 0
Legendre Form

There is another form of Weierstrass equation which is sometimes conve-
nient.

Definition. A Weierstrass equation is in Legendre form if it can be written as

y? = x(x — )(x — A).
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Proposition 1.7. Assume char(K) # 2.
(a) Every elliptic curve E/K is isomorphic (over K) to an elliptic curve in
Legendre form

E;:y*=x(x—1)(x—2)

for some AcK, A #0, 1.
(b) The j-invariant of E, is

@ =it 1)

JE) = T
(c) The association
K-{0,1}>K
A—j(Ey)

is surjective and exactly six-to-one except above j = 0 and j = 1728, where it is
two-to-one and three-to-one respectively.

Proor. (a) Since char(K) # 2, we know that E has a Weierstrass equation of
the form
y? =4x3 + byx* + 2b,x + bs.

Replacing (x, y) by (4x, 8y) and factoring the cubic yields an equation
¥ =(x —e)(x — e))(x — e3),
where e,, e,, e, € K. Further, since
A = 16(e; — e;)(e; — e3)’(e; — €3)* #0,
the ;s are seen to be distinct. Now the substitution
x=(e; —e))x" + e y=(es—e)*?y’
gives an equation in Legendre form with
ey —

BTUCR, A1#£0,1
€, — €

A=

(b) Calculation.

(c) One can work directly from the formula for j(E,) in (b), an approach that
we leave for the reader. Instead we use the fact that the j-invariant classifies
an elliptic curve up to isomorphism (1.4b). Thus suppose j(E;) = j(E,). Then
E, = E,, so their Weierstrass equations (in Legendre form) are related by a
change of variables

x=u*x"+r y=udy.

x(x —D(x—p= (x +ur—2)<x+r;21><x +ru—22>’

Equating
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there are six ways of assigning the linear terms to one another, and one easily
checks that these lead to six possibilities

1 N B P
}H*al_/h ’ s .
“e{ p 1—1i-1 2 }

Hence 1 — j(E,) is exactly six-to-one unless two or more of these values for u

coincide. Equating them by pairs shows that this only occurs for A = —1 and
A* — A+ 1 =0, for which the set has respectively three and two elements;
these values of 4 correspond respectively to j = 1728 and j = 0. a

§2. The Group Law

Let E be an elliptic curve given by a Weierstrass equation. Remember that
E = P2 consists of the points P = (x, y) satisfying the equation together with
the point O = [0, 1, 0] at infinity. Let L = P? be a line. Then since the
equation has degree three, L intersects E at exactly 3 points, say P, Q, R. (Note
if L is tangent to E, then P, Q, R may not be distinct. The fact that LN E,
taken with multiplicities, consists of three points, is a special case of Bezout’s
theorem [Har, 1.7.8]. But since we will give explicit formulas below, there is
no need to use a general theorem.)
Define a composition law @ on E by the following rule.

Composition Law 2.1. Let P, Q € E, L the line connecting P and Q (tangent line
to E if P = Q), and R the third point of intersection of L with E. Let L' be the
line connecting R and O. Then P ® Q is the point such that L' intersects E at
R,0,and P® Q.

The following diagrams illustrates this rule (Figure 3.3).
We now justify the use of the symbol &@.

Proposition 2.2. The composition law (2.1) has the following properties:
(@) If a line L intersects E at the (not necessarily distinct) points P, Q, R, then

(POQ@R=0.

(b) P® O = Pforall PeL.
(c) P®Q=Q@®Pforall P,QeE.
(d) Let PeE. There is a point of E, denoted ©P, so that

P®(BGP)=0.
() Let P,Q,ReE. Then
PHQYD®R=PDQDR).

In other words, the composition law (2.1) makes E into an abelian group with
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identity element O. We further have:
(f) Suppose E is defined over K. Then

E(K) = {(x,y))eK?:y* + a;xy + a3y = x> + a,x* + a,x + ag} v {0}
is a subgroup of E.

Proor. All of this is easy except for the associativity (e).

(a) Obvious from (2.1). (Or look at Figure 3.3. Note that the tangent line to
E at O intersects E with multiplicity 3 at 0.)

(b) Taking Q = O in (2.1), we see that the lines L and L’ coincide. The former
intersects E at P, O, R, and the latterat R, O, P® 0,so P® O = P.

(c) Clear, since the construction in (2.1) is symmetric in P and Q.

(d) Let the line through P and O also intersect E at R. Then using (a) and (b),

O0=(PRO0)®R=PO®R

(e) Using the explicit formulas given below (2.3), one can laboriously verify
the associative law case by case. We leave this task for the reader. A more
enlightening proof, using the Riemann—Roch theorem, will be given in the
next section (3.4e). For a more geometric proof, see [Ful].

(f) If P and Q have coordinates in K, then the equation of the line connecting
them has coefficients in K. If further E is defined over K, then the third point
of intersection will have coordinates given by a rational combination of the
coefficients of the line and of E, so will be in K. (See (2.3) below for explicit
formulas.) O

Notation. From here on, we will drop the special symbols @ and © and
simply use + and — for the group operations on an elliptic curve E. For
meZ and Pe E, we let

[m]P =P + - + P (mterms) for m > 0,
[0]P =0, and [m]P =[—m](—P)form <O.
As promised above, we now derive explicit formulas for the group opera-
tions. Let E be an elliptic curve with the usual Weierstrass equation
F(x,y)=y? + a;xy + a3y — x> — a,x? —azx — ag =0,

and let Py = (x4, yo) € E. Following the proof of (2.2d), to calculate —F, we
take the line L through P, and O and find its third point of intersection with
E. The line L is given by:

L:x—x,=0.

Substituting this into the equation for E, we see that the quadratic poly-
nomial F(x,, y) has roots y, and y,, where — Py = (x,, ¥). Writing out

F(xo, y) = c(y — yo)(y — ¥0)

and comparing the coefficients of y® gives ¢ =1, and then the coeffi-
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cients of y give yo = —yo — a; X — a5. This yields
— Py = (xo, —yo — a1%0 — @3).

Next we derive a formula for the addition law. Let P, = (x,, y;) and
P, = (x,, y,) be points of E. If x; = x, and y, + y, + a;x, + a3 =0, then
from the above formula P, + P, = 0. Otherwise the line L through P, and P,
(tangent line to E if P, = P,) has an equation of the form

L:y=2x+v.

(Formulas for A and v are given below.) Substituting into the equation for E,
we see that F(x, Ax + v) has roots x,, x,, x5, where Py = (x5, y;) is the third
point of L N E. From (2.2a),

P, +P,+P,=0;
while writing out
F(x, Ax +v) = c(x — x1)(x — x5)(x — x3)
and equating coefficients of x* and x? yields c = —1 and
X, + Xy + x3=4*+ a;4 — a,.

This gives the formula for x5, and substituting into the equation for L gives
y3 = Ax3 + v. Finally, to find P, + P, = — P;, we apply the negation formula
found above to P;. All of this is summarized in the following,

Group Law Algorithm 2.3. Let E be an elliptic curve given by a Weierstrass
equation
E:y* 4+ a;xy + ayy = x> + a,x* + a,x + as.

(a) Let Py = (xg, yo)€E. Then
—Py = (X9, —Yo — a1 Xg — a3).
Now let
P, +P,=P, with P,=(x;,y)€eL.
() Ifx;, =x,and y, + y, + a;x, + a; =0, then
P, +P,=0.

Otherwise, let

— X, — VX
l=)’2 .Vl, v=)’12 Ya2Xq if X, # Xy
xZ “‘xl X2 _xl
1= 3x2 + 2a,%x; + ay — ay,
2y, +a;x, +a;3 ’
=X} + agx; + 2a5 — a3y, .
= lfxl =X2.

2y, +a;x; + a5
(Then y = Ax + v is the line through P, and P,, or tangent to E if P, = P,.)
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(c) P; =P, + P, is given by
Xy =A%+ a4 —a, — x; — x,,
y3= —(A+a)x;—v—as.

(d) As special cases of (c), we have for P, # + P,,

— 2 —
X(P1+P2)=<u> +‘11<y2 yl)_az—x1_x2;

X2 — X¢ X2 — Xq
and the duplication formula for P = (x, y)€E,

x* —b,x? —2bgx — b
2P= 4 6 8
21D = 3 h 2 % 2byx + by’

where b,, b, be, bg are the polynomials in the a;s given in section 1.

Corollary 2.3.1. With notation as in (2.3), we say that a function fe K(E) =
K(x, y)iseven if f(P) = f(—P) for all PeE. Then

fis even ifand only if  feK(x).
Proor. From (2.3), if P = (xo, yo), then —P = (xo, —yo — a3 %o — a3). It is

thus clear that every element of K(x) is even. Suppose now that f'e K(x, y) is
even. Using the Weierstrass equation for E, we can write f as

f(x, y) = g(x) + h(x)y for some g, he K(x).
Then
g(x) + h(x)y = f(x, y) = f(x, =y — a;x — a3)
= g(x) — (¥ + a;x + az)h(x).
Thus
2y + a;x + a3)h(x) = 0.

Since this holds for all (x, y)€ E, it follows that either h = 0, orelse 2 = a, =
a, = 0. But the latter implies that the discriminant A = 0, contradicting our
assumption that the Weierstrass equation is non-singular (1.4a). Therefore
h =0, so0 f(x, y)=g(x)EK(x) O

Example 2.4. Let E/Q be the elliptic curve
E:y?=x*+117.
A brief inspection reveals some points with integer coordinates
P,=(-23) P,=(-1,4 Py=2,5 P,=409 Ps=(823)
and a short computer search gives some others

P =(43,282) P, =(52,375) Py =(5234,378661).
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Using the above formulas, one easily verifies relations such as
Py=[21P,, P,=P,—P;, [B]1P,—-P3=P,.

Of course, there are lots of rational points, too, for example

137 2651 8 109
121F, = <‘6? "_5_17) Pt Pa= (‘5’ *37‘)

Now it is true (but not easy to prove) that every rational point P e E(Q) can
be written in the form

P =[m]P, + [n]P; with m,neZ;

and with this identification the group E(Q) is isomorphic to Z x Z. Further,
there are only 16 integral points P = (x, y)e E (ie. with x, yeZ), namely
{+P,..., £ Pg}. (See [Nag].) These facts illustrate two of the most funda-
mental theorems in the arithmetic of elliptic curves, namely that the group of
rational points on an elliptic curve is finitely generated (the Mordell-Weil
theorem, proven in chapter VIII) and that the set of integral points on an
elliptic curve is finite (Siegel’s theorem, proven in chapter IX).

Now suppose that a Weierstrass equation has discriminant A = 0, so from
(1.4a) it has a singular point. To what extent does the analysis of the composi-
tion law fail in this case? As we will see below, everything is fine provided
we discard the singular point; and in fact the resulting group then has a
particularly simple structure.

The reason we will be interested in this situation is best illustrated by an
example. Consider again the elliptic curve of (2.4),

E:y*=x*+17.

This is an elliptic curve, defined over Q, with discriminant A = 243317,
But we will also be interested in reducing the coefficients of this equation
modulo p for various primes p, and considering it as a curve defined over the
finite field F,. For almost all primes, namely those with A # 0 (mod p), the
“reduced” curve will still be non-singular, and so we will have an elliptic
curve. But for pe{2, 3, 17}, the “reduced” curve will have a singular point.
Thus even when dealing with non-singular curves (for example, defined over
Q), one finds singular curves naturally appearing. We will return to this
reduction process in more detail in chapter VIL

Definition. Let E be a (possibly singular) curve given by a Weierstrass equa-
tion. The non-singular part of E, denoted E,, is the set of non-singular points
of E. Similarly, if E is defined over K, then E,(K) is the set of non-singular
points of E(K).

Recall that if E is singular, then there are two possibilities for the singu-
larity, namely a node or a cusp (determined by whether ¢, = 0 or ¢, # 0, see
(1.4a)).
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Proposition 2.5. Let E be a curve given by a Weierstrass equation with discrimi-
nant A = 0, so E has a singular point S. Then the composition law (2.1) makes
E,, into an abelian group.
(a) Suppose E has a node (so ¢, # 0), and let

y=ox+p and y=a,x+p,

be the two distinct tangent lines to E at S. Then the map

E,,S—>IZ*
y—oayx— By
X, y)>—
y—ox—f,

is an isomorphism (of abelian groups).

(b) Suppose E has a cusp (so ¢, = 0), and let
y=oax+f

be the tangent line to E at S. Then the map

E;,s > Kt

x — x(S)
(x,y) > ——
y—ax—§

is an isomorphism.

Remark 2.6. For a description of E,(K) in case K is not algebraically closed,
see (exer. 3.5).

Proor. We will check that the maps in (a) and (b) are set bijections with the
property that if a line L not hitting S intersects E,; in three (not necessarily
distinct) points, then the images of these three points in K* (respectively K*)
will multiply to 1 (respectively sum to 0). Using this, one easily verifies that
the composition law (2.1) makes E, into abelian group and that the maps in
(a) and (b) are group isomorphisms.

Since the composition law (2.1) and the maps in (a) and (b) are defined in
terms of lines in P2, it suffices to prove the theorem after making a linear
change of variables. We start by moving the singular point to (0, 0), yielding a
Weierstrass equation

2+ a;xy = x> + a,x>.

Let seK be a root of s? + a;s — a, = 0. Then replacing y by y + sx eliminates
the x2 term, giving the equation (which we now write using homogeneous
coordinates) :

E:Y?Z + AXYZ — X3=0.
Note that E has a node (respectively cusp) if A 5 0 (respectively A = 0).
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(a) The tangent linesto Eat S =[0,0,1]are Y=0and Y + AX =0, so we
are looking at the map

_ AX
Ens—')K* [X, Y,Z]—>1+T

It is convenient to make one more variable change, so let
X = A2X’ — A%Y’ Y = 43Y’ zZ=27.
Dropping the primes, this gives the equation
E:XYZ—-(X-Y)p =0

and if we now dehomogenize by setting Y =1 (ie. x = X/Y and z = Z/Y),
this gives
E:xz—(x—13=0

with the map
E,, — K* (x,z) > x.

(Notice the singular point is now out at infinity.) The inverse map is clearly
given by
K* ind Ens [— (t3 (t - l)s/t),

so we have a bijection of sets. It remains to show that if a line (not hitting
[0, 0, 1]) intersects E at (xy, z,), (x5, z,), (X3, z3), then x; x,x; = 1. (See Figure
3.4)) But such a line has the form z = ax + b, and so the three x-coordinates
X4, X5, X3 are the roots of the cubic polynomial

x(ax +b)—(x—1)>3=0.

Looking at the constant term, we see that x, x,x; = 1, as desired.

xz-(x-1)%=0

Figure 3.4
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(b) In this case 4 = 0, and the tangent line to E at S =[0,0,1]is Y =0, so
we are looking at the map

E.,—~K' [X,Y,Z]-X/Y.
Again dehomogenizing by setting Y = 1, we obtain
E:z—x*=0
E,— K" (x,2) > x.

The inverse map is clearly ¢ — (¢, t3). Finally, if the line z = ax + b intersects
E in the three points (x;, y;), | < i < 3, then from the lack of an x? term in

(ax +b) —x*=0,

we see that x; + x; + x3 =0. O

§3. Elliptic Curves

Let E be a smooth curve of genus 1. For example, the non-singular Weier-
strass equations studied in sections 1 and 2 will define curves with this prop-
erty. As we have seen, such Weierstrass curves have a group law associated
to them. Now in order to make a set into a group, clearly an initial require-
ment is to choose a distinguished (identity) element. This leads us to make the
following definition.

Definition. An elliptic curve is a pair (E, 0), where E is a curve of genus 1 and
O e E. (We often just write E for the elliptic curve, the point O being under-
stood.) The elliptic curve E is defined over K, written E/K, if E is defined over
K as a curve and O € E(K).

In order to connect this definition with the material of sections 1 and 2, we
begin by using the Riemann—Roch theorem to show that every elliptic curve
can be written as a plane cubic; and conversely, every smooth Weierstrass
plane cubic curve is an elliptic curve.

Proposition 3.1. Let E be an elliptic curve defined over K.
(a) There exist functions x, y € K(E) such that the map
¢ E—P?
¢ =[x,y 1]
gives an isomorphism of E/K onto a curve given by a Weierstrass equation
C:Y? 4+ a; XY+ a,Y=X>+a,X*+a,X +ag

with coefficients a,, ..., age K; and such that ¢(0) = [0, 1,0]. (We call x, y
Weierstrass coordinate functions on E.)
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(b) Any two Weierstrass equations for E as in (a) are related by a linear change
of variables of the form

X=u)X+r
Y=uY +sulX +1t

withu,r,s,teK, u #0.
(c) Conversely, every smooth cubic curve C given by a Weierstrass equation as
in (a) is an elliptic curve defined over K with origin O = [0, 1, 0].

Proor. (a) We look at the vector spaces Z(n(0)) for n =1, 2, .... By the
Riemann—Roch theorem (specifically (I1.5.5¢) with g = 1),

£(n(0)) = dim £(n(0)) =n foralln > 1.

Thus we can choose functions x, ye K(E) (IL5.8) so that {1, x} is a basis for
Z(2(0)) and {1, x, y} is a basis for £ (3(0)). Note that x must have a pole of
exact order 2 at O, and similarly y must have a pole of exact order 3.

Now #(6(0)) has dimension 6, but it contains the seven functions 1, x, y,
x2, xy, y2, x>. It follows that there is a linear relation

Ay + Ayx + A3y + Agx? + Asxy + Agy? + 4;x° =0,

where by (I1.5.8) we may take A, ..., A,€ K. Note that 4,4, # 0, since
otherwise every term would have a different order pole at 0, and so all the
A;’s would vanish. Replacing x, y by — AgA,x, A¢ A%y and dividing by 4344
gives a cubic equation in Weierstrass form. This gives the desired map

$:E-P? =[x, 1]

whose image lies in the locus C described by a Weierstrass equation. Note
that ¢: E > C is a morphism (IL.2.1) and surjective (I1.2.3). Note also that
#(0) = [0, 1, 0], since y has a higher order pole than x at O.

The next step is to show that the map ¢: E — C = P? has degree 1, or
equivalently, that K(E) = K(x, y). Consider the map [x, 1]: E —» P. Since x
has a double pole at O and no other poles, (IL2.6a) says that this map has
degree 2. Thus [K(E): K(x)] = 2. Similarly, [y, 1]: E - P! has degree 3, so
[K(E): K(y)] = 3. Therefore [K(E): K(x, y)] = 1, since it divides both 2 and
3,s0 K(E) = K(x, y).

Next we show that C is smooth. Suppose C is singular. Then from (1.4d)
there is a rational map ¥ : C — P! of degree 1. Hence the composition
Y o¢: E— P'isamap of degree 1 between smooth curves, so from (I1.2.4.1)
it is an isomorphism. This contradicts the fact that E has genus 1 and P! has
genus 0 (IL5.6). Therefore C is smooth, and now another application of
(I1.2.4.1) shows that the degree 1 map ¢ : E — C is an isomorphism.

(b) Let {x, y} and {x’, y’} be two sets of Weierstrass coordinate functions on
E. Then x and x’ have poles of order 2 at O, and y and y’ have poles of order
3. Hence {1, x} and {1, x} are both bases for £(2(0)), and similarly {1, x, y}
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and {1, x’, y'} are both bases for Z(3(0)). It follows that there are constants
Uy, Uy, 1, 5,, t€ K with u,u, # 0 such that
x=ux+r y=uyy +5,x + 1.

But (x, y) and (x, y') both satisfy Weierstrass equations in which the Y? and
X3 terms have coefficient 1, so u3 = u?. Letting u = u,/u, and s = s,/u® puts
the change of variable formula in the desired form.

(c) Let E be given by a non-singular Weierstrass equation. We have seen (1.5)
that the differential

w=dx/2y + a;x + a3)eQyg

has neither zeros nor poles, so div(w) = 0. But from the Riemann-Roch
theorem (specifically I1.5.5b),

2 genus(E) — 2 = deg div(w).

Hence E has genus 1, so together with the point [0, 1, 0], it is an elliptic
curve. (For another proof of (c) using the Hurwitz genus formula, see exer.
2.7) O

Corollary 3.1.1. Let E/K be an elliptic curve with Weierstrass coordinate
functions x, y. Then

K(E) = K(x,y) and [K(E):K(x)]=2.
Proor. This was proven during the course of proving (3.1a). O

Remark 3.2. Note that (3.1b) does not imply that if two Weierstrass equations

have coefficients in a given field K, then every change of variables mapping

one to the other has coefficients in K. A simple example is the equation
yi=x*+x,

which has coefficients in @. Yet it is mapped to itself by the substitution

’

X = —X y= ly ,7
where i2 = — 1.
Next we use the Riemann—Roch theorem to describe a group law on the
points of E. Of course, this will turn out to be the same group law already
described by (2.1) when E is given by a Weierstrass equation. We start with a

simple lemma, which serves to distinguish P! from curves of genus 1. (For a
generalization, see exer. 2.5.)

Lemma 3.3. Let C be a curve of genus 1, and let P, Qe C. Then
(P)~(@Q) ifandonlyif P=Q.
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ProoF. Suppose (P) ~ (Q), and choose f € K(C) so that
div(f) = (P) — (Q).

Then f e 2((Q)), and by the Riemann—Roch theorem (IL.5.5c),

dim Z((Q)) = L.
But #((Q)) already contains the constant functions, hence feK and
P=9. U
Proposition 3.4. Let (E, O) be an elliptic curve.
(@) For every divisor D € Div°(E) there exists a unique point P € E so that

D ~ (P) — (0).
Let

o:DiVY(E)> E

be the map given by this association.
(b) The map o is surjective.
(c) Let D, D,eDiv%(E). Then

o(D,) = a(D,) if and only if D, ~ D,.
Thus o induces a bijection of sets (which we also denote by o)
o:Pic®(E) 3 E.
(d) The inverse to o is the map
x: E 5 Pic®(E)
P — class of (P) — (0).

(e) If E is given by a Weierstrass equation, then the “geometric group law” on
E arising from (2.1) and the group law induced from Pic®(E) by using o are the
same.

Proor. (a) Since E has genus 1, the Riemann—Roch theorem (I1.5.5¢) says
that

dim £(D + (0)) = 1.
Let fe K(E) be a generator for Z(D + (0)). Since
div(f)> —D — (0) and deg(div(f)) =0,
it follows that
div(f)=—-D —(0) + (P)
for some P e E. Hence
D ~(P)—(0),

which gives the existence of a point with the desired property.
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Next suppose P’ € E has the same property. Then
(P)~D +(0) ~ (P),
so P = P’ from (3.3). Hence P is unique.
(b) For any P€eE,
a((P)—(0)) = P.
(c) Let D,, D,eDiv®(E), and set P, = o(D)). Then from the definition of g,
(Py) — (Py) ~ Dy — D,.

Hence P, = P, certainly implies D, ~ D,. Conversely, if D, ~ D,, then
(P,) ~ (P,), so P, = P, from (3.3).

(d) Clear.

(e) Let E be given by a Weierstrass equation, and let P, Qe E. It clearly
suffices to show that

k(P + Q) = k(P) + x(Q).

[N.B. The first + is addition on E using (2.1), while the second is addition of
divisor classes in Pic%(E).]
Let

XY, Z)=aX +BY +9yZ =0
give the line L in P? going throught P and Q, let R be the third point of
intersection of L with E, and let
XY, Z)=adX +PpY+yYZ=0

be the line L' through R and O. Then from the definition of addition on E
(2.1) and the fact that the line Z = 0 intersects E at O with multiplicity 3, we
have

div(f/Z) = (P) + (@) + (R) — 3(0)

and
div(f'/Z) = (R) + (P + Q) — 2(0).
Hence
(P + Q) —(P)—(Q) + (0) = div(f'/f) ~ O,
sO

K(P + Q) — k(P) — k(@) = 0. O

Corollary 3.5. Let E be an elliptic curve and D = Znp(P)e Div(E). Then D is
principal if and only if Xnp =0 and Z[np]P = O. (Note the first sum is of
integers, the second is addition on E.)

Proor. From (I1.3.1b), every principal divisor has degree 0. Assuming now
D e Div®(E), (3.4a, ¢) implies
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D ~0<d(D)= 0<} [npla((P) - (0)) = O,
which is the desired result since ((P) — (0)) = P. O

Remark 3.5.1. If we combine (3.4) with (I1.3.4), we see that every elliptic curve
E/K fits into an exact sequence

1 - K* > R(E)* & Div(E) S E - 0,

where ¢ is the operation “sum up the divisor using the group law on E”.
Further, (exer. 2.13b) implies that the sequence remains exact if we take
Gi x-invariants:

1 - K* > K(E)* 3 Div(E) 3 E(K) - 0.
(See also (X.3.8).)

We now prove the fundamental fact that the addition law on an elliptic
curve is a morphism. Since addition is a map E x E— E, and E x E has
dimension 2, we cannot use (IL.2.1) directly; but it will play a crucial role in
our proof. One can also give a proof using explicit equations, but the algebra
is somewhat lengthy (see (3.6.1) below).

Theorem 3.6. Let E/K be an elliptic curve. Then the equations (2.3) giving the
group law on E define morphisms

+:ExE—-E and —:E-E
(P, P))—P + P, P> —P.

Proor. First, the subtraction map

()= (x, —y —a;x — a3)

is clearly a rational map E — E. Since E is smooth, it is a morphism (I1.2.1).
Next we fix a point Q # O on E, and consider the “translation-by-Q” map

1:E—>E (P)=P+ Q.

From the addition formula given in (2.3c), this is clearly a rational map; and
so, again by (I1.2.1), it is a morphism. In fact, since it has an inverse, namely
P — P — @, it is isomorphism.

Finally, we consider the general addition map + : E x E — E. From (2.3c)
we see that it is a morphism except possibly at points of the form (P, P),
(P, —P), (P, 0), and (O, P), since for points not of this form, the rational
functions

A=y —yd/lx; —x;) and v=(y;x; — y,x)/(x; — X;)

on E x E are well-defined.
To deal with the four exceptional cases, one can work directly with the
definition of morphism. (See (3.6.1) below.) However, we prefer to let the
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group law assist us. Thus let 7, and 7, be translation maps, as defined above,
for points Q, and Q, respectively. Consider the composition of maps
-1 -1
$:ExE S ExESELESE.
Since the group law on E is associative and commutative (2.2), the net effect
of these maps is as follows:

P, P)—>(P,+Q1, P, +0Q,)»P+Q,+P,+Q,
-P+P+0Q,>P +P,

Thus the rational map ¢ agrees with the addition map wherever they are
both defined.

Further, since the t;s are isomorphisms, it follows from the discussion
above that ¢ is a morphism except possibly at points of the form

(P-Q,P-0Q;) (P-0Q1,—P—-0Q)) (P—-0:,-0Q) (=01,P—-0))

But Q, and @, may be chosen essentially arbitrarily. Hence by varying Q,
and Q,, we can find a finite set of rational maps

¢1’¢2"--a¢n:E X E—>E
such that

(i) ¢, is the addition map given in (2.3c).
(ii) Foreach (P,, P,)eE x E, some ¢; is defined at (P,, P,).
(iii) If ¢; and ¢; are both defined at (P, P,), then ¢(P,, P,) = ¢(P,, P,).

It follows that addition is defined on all of E x E, so it is a morphism. O

Remark 3.6.1. During the course of proving (3.6), we noted that the formulas
in (2.3c) make it clear that the addition map + : E x E — E is a morphism
except possibly at points of the form (P, + P), (P, 0), (O, P). Rather than
using translation maps to circumvent this difficulty, one can work directly
from the definition of morphism using explicit equations. It turns out that
this involves consideration of quite a number of cases; we will do one to
illustrate the method.

Thus let (x;, y;; X3, y,) be Weierstrass coordinates on E x E. We will
show explicitly that addition is defined at points of the form (P, P) with
P # 0 and [2]P # 0. Note that addition is defined in general by the
formulas given in (2.3c):

A=y — y(x2 — xy) V= (y1Xy = Yaxq)f(x2 — xq) =y — Axy
x3=Ar4+ad—a,—x;—x, y3=—(A+a)x;—v—a,

Here 4, v, x5, y; are functions on E x E, and addition is given by the map
[x3,y3, 1]: E x E - E. Thus to show that addition is defined at (P, P), it
suffices to show that A is defined there. But by assumption, both pairs of
functions (x,, y,) and (x,, y,) satisfy the same Weierstrass equation. Sub-
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tracting one equation from the other and factoring yields
V1 = y2)(r1 +y2 +a1x; + ay)
=(x; — X)(x? + x; X, + X3 + ayx; + a,x, + a, — a,y,).
Hence A may also be written as

X XX+ X3+ ay(x + X))+ a,—ary,
nty,+ax; +as

Therefore, if P = (x, y), then

A

3x% + 2a,x + a, — a4,y
y+a;x+a;

MP, P) =

and so A is defined at (P, P) (unless 2y + a,x + a; = 0, which is excluded by
our assumption that [2]P # 0). The reader may deal similarly with the other
cases.

§4. Isogenies

Having now examined in some detail the geometry of individual elliptic
curves, we turn to the study of the maps between them. Since an elliptic curve
has a distinguished zero point, it is natural to single out those maps which
respect this property.

Definition. Let E; and E, be elliptic curves. An isogeny between E, and E, is
a morphism

¢:E - E,

satisfying ¢(0) = O. E, and E, are isogenous if there is an isogeny ¢ between
them with §(E,) # {O}.

Notice that from (I1.2.3), an isogeny ¢ satisfies either ¢(E,) = {0} or
¢(E,) = E,. Thus except for the zero isogeny, defined by [0](P) = O for
all Pe E,, every other isogeny is a finite map of curves. Hence we obtain the
usual injection of function fields (II §2)

¢* : K(E,) » K(Ey);
and the degree of ¢ (deg ¢), separable and inseparable degrees of ¢ (deg,¢ and
deg;¢), and whether ¢ is separable, inseparable, or purely inseparable are de-

fined by the corresponding property for the finite extension K(E,)/¢*K(E,).
By convention, we sct

deg[0] = 0.

Since elliptic curves are groups, the maps between them form groups.
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Thus let
Hom(E,, E,) = {isogenies ¢: E; — E,}.
Then (3.6) implies that Hom(E,, E,) is a group under the addition law
@+ ¥)(P) = ¢(P) + Y/(P).

If E; = E,, then we can also compose isogenies. Thus if E is an elliptic curve,
we let

End(E) = Hom(E, E)
be the ring with addition as above and multiplication given by composition,

(W) (P) = d(Y(P)).

(The fact that the distributive law holds follows from (4.8) proven below.)
End(E) is called the endomorphism ring of E. The invertible elements of
End(E) form the automorphism group. of E, which is denoted Aut(E). The
endomorphism ring of an elliptic curve is an important invariant which we
will study in some detail throughout the rest of this chapter.

Of course, if E, E,, E are defined over a field K, then we can restrict
attention to those isogenies defined over K. The corresponding groups of
isogenies are denoted with the usual subscripts, thus

Homg(E,, E;),  Endg(E),  Autg(E).

Example 4.1. For each me Z we can define an isogeny multiplication by m
[m]:E—-E
in the natural way. If m > 0 then
[m](P)=P+ P+ -+ P (mterms);

if m < 0 then [m](P) = [ —m](— P); and we have already defined [0](P) = O.
That [m] is an isogeny follows easily by induction using (3.6). Notice that if
E is defined over K, then [m] is defined over K. We start our analysis of the
group of isogenies by showing that the multiplication by m map is non-
constant (provided, of course, that m # 0).

Proposition 4.2. (a) Let E/K be an elliptic curve and let me Z, m # 0. Then the
multiplication by m map

[m]:E—E

is non-constant.
(b) Let E, and E, be elliptic curves. Then the group of isogenies

Hom(E,, E,)

is a torsion-free Z-module.
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(c) Let E be an elliptic curve. Then the endomorphism ring End(E) is an
integral domain of characteristic 0.

ProoF. (a) We start by showing that [2] # [0]. From the duplication formula
(2.3d), if a point P = (x, y)€ E has order 2, then it must satisfy

4x3 + b,x> + 2b,x + bg = 0.

If char(K) # 2, this shows immediately that there are only finitely many
such points; and even for char(K) = 2, the only way to have [2] = [0] is
for this polynomial to be identically 0, which means b, = bs = 0, which in
turn implies A = 0. Hence in all cases [2] # [0]. Now, using the fact that
[mn] = [m] o [n], we are reduced to considering the case of odd m.

Assume now that char(K) # 2. Then using long division, one easily verifies
that the polynomial

4x3 + b,x? + 2b,x + bg
does not divide
x4 - b4x2 - 2b6x - b8'

(Le. If it does, then one finds that A = 0. In fact, these two polynomials are
relatively prime (exer. 3.1).) Hence we can find an x,€K so that the former
vanishes to a higher order at x = x, than the latter. Choosing y, € K so that
Py = (x4, yo) € E, the doubling formula then implies that [2]P, = O. In other
words, we have shown that E has a non-trivial point of order 2. But then for
m odd,
[m] P 0= P (o] # 0,

so clearly [m] # [0].

Finally, if char(K) = 2, one can proceed as above using the “triplication
formula™ (exer. 3.2) to produce a point of order 3. We will leave this for the
reader, since later in this chapter (5.4) we will prove a result which includes
the case of char(K) = 2 and m odd.

(b) This follows immediately from (a). Suppose ¢ e Hom(E,, E,) and meZ
satisfy

[mlo¢ = [0].
Taking degrees gives

(deg[m])(deg ¢) = O;
so either m = 0; or else (a) implies that deg[m] > 1, in which case we must
have ¢ = [0].
(c) From (b), End(E) has characteristic 0. Further, if ¢, Y e End(E) satisfy
¢ oy = [0], then

deg g degyy =deg oy =0.
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It follows that either ¢ = [0] or = [0]. Therefore End(E) is an integral
domain. O

For an arbitrary elliptic curve, the only isogenies which are immediately
evident are the multiplication-by-m maps. As a consequence, these maps will
provide one of the most powerful tools at our disposal for studying elliptic
curves.

Definition. Let E be an elliptic curve and meZ, m # 0. The m-torsion sub-
group of E, denoted E[m], is the set of points of order m in E,

E[m] = {PeE:[m]P = 0}.

The torsion subgroup of E, denoted E,,,, is the set of points of finite order,

0

Eors = | E[m].

m=1

If E is defined over K, then E,, (K) will denote the points of finite order in
E(K).

The most important fact about the multiplication-by-m map is that it has
degree m?, from which one can deduce the structure of the finite group E[m].
We will not prove this result here, since it will be an immediate corollary of
our work with “dual isogenies” (cf. §6). However, the reader should be aware
that there is a completely elementary (but rather messy) proof of this fact using
explicit formulas and induction. (See exer. 3.7. For some other approaches,
see exers. 3.8, 3.9.)

Remark 4.3. Suppose that char(K) = 0. Then the map
[ ]:Z- End(E)

is usually the whole story (i.e. End(E) = Z). If End(E) is strictly larger than
Z, then we say that E has complex multiplication. The elliptic curves with
complex multiplication have many special properties. (See appendix C §11
for a brief discussion.) On the other hand, if K is a finite field, then End(E) is
always larger than Z (see V §3).

Example 4.4. Assume char(K) # 2 and let E/K be the elliptic curve
E:y?=x*—x

Then, in addition to Z, End(E) contains an element which we denote [i],
given by '

[l] :(x’ y) - (_x’ ly)

(Here i K is a primitive fourth root of unity.) Thus E has complex multi-
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plication. Clearly [i] is defined over K if and only if ie K. Hence even if E is
defined over K, Endg(E) may be strictly smaller than End(E).

One immediately checks that [i]o[i] = [—1], so we have a ring homo-
morphism

Z[i]— End(E)
m+ ni > [m] + [n]o[il
If char(K) = 0, this is an isomorphism; and so for example
Aut(E) = Z[i]* = {£1, +i}

is a cyclic group of order 4.

Example 4.5. Again assume char(K) # 2, and let a, be K with b # 0 and
r = a* — 4b # 0. Consider the two elliptic curves

E :y?=x3+ax* + bx
E,:Y?=X3—2aX*+rX.

There are isogenies (of degree 2)

¢:E, ~E, ¢:E,>E,
2 y(b — x?) Y2 Y(r—X?
x, y) - (P’—x—z_ X, V) x> 8x?

By a direct computation one can check that dog=[2] on E, and
¢o¢=1[2] on E,. This gives an example of dual isogenies, which we will
discuss in section 6.

Example 4.6. Suppose K is a field of characteristic p with p > 0, and let
g =p". If E/K is an elliptic curve given by a Weierstrass equation, recall
(IT §2) that the curve E¥/K is defined by raising the coefficients of the
equation for E to the g'"-power; and the Frobenius morphism is given by

¢,:E—~>E@
(x, y) = (x4, y).

Since E@ is the zero locus of a Weierstrass equation, it too will be an elliptic
curve provided that the equation is non-singular. But writing everything out
in terms of the Weierstrass coefficients and using the fact that the g"-power
map K — K is a homomorphism, one readily sees that

A(E@) = A(Ey* and j(E)=j(E)".
In particular, the equation for E@ is non-singular.

Now suppose that K = F_ is a finite field. Then the g*®-power map on K is
the identity, so E® = E, and ¢, is an endomorphism of E, called the Frobenius
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endomorphism. The set of points fixed by ¢, is exactly the finite group E(K), a
fact which lies at the heart of Hasse’s proof for estimating # E(K). (See V §1.)

Example 4.7. Let E/K be an elliptic curve and Q€ E. Then we can define a
translation by Q map
g:E—E
P->P+0Q.

This is clearly an isomorphism, since 7_, provides an inverse. Of course, it is
not an isogeny unless Q = O.
Now let

F:E, —E,
be any morphism of elliptic curves. Then the map
¢=1poO0F
is an isogeny (since ¢(0) = 0). We have thus shown that any map
F = 1pp0¢

is the composition of an isogeny and a translation.

An isogeny is a map between elliptic curves which sends O to O. Since an
elliptic curve is a group, it might seem more natural to focus on those
isogenies which are group homomorphisms. In fact, it turns out that every
isogeny has this property.

Theorem 4.8. Let
$:E —E,

be an isogeny. Then

¢$(P+Q)=¢(P)+4(Q) foralP,Q€cE,.

Proor. If ¢(P) = O for all Pe E,, there is nothing to prove. Otherwise, ¢ is a
finite map, so by (I1.3.7) it induces a homomorphism

#, : Pic®(E,) — Pic(E,)
defined by
@, (class of Y ny(P)) = class of Y n,(¢P).
On the other hand, from (3.4) we have group isomorphisms
k;: E; - Pic®(E)
P> class of (P) — (0).

Then, since ¢(0) = O, we have the following commutative diagram:
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E, — Pic%(E,)
Ky
J

E, §—>Pic°(E2).
Since «,, k,, and ¢, are all group homomorphisms, and «, is injective, it
follows that ¢ is also a homomorphism. |
Corollary 4.9. Let ¢ : E; — E, be a non-zero isogeny. Then

ker ¢ = ¢7'(0)

is a finite subgroup.

Proor. It is a subgroup from (4.8) and finite (of order at most deg ¢) from
(I1.2.6a). O

The next three results (4.10, 4.11, 4.12) encompass the basic Galois theory
of elliptic function fields.

Theorem 4.10. Let ¢ : E; — E; be a non-constant isogeny.
(a) For every QeE,,

#¢ Q) = deg, 4.
Further, for every Pe E,,
e4(P) = deg;(¢).

(b) The map
ker ¢ — Aut[K(E,)/¢*K(E,)]

*
T > tf

is an isomorphism. (Here tr_is the translation-by-T map (4.7), and 1% is the
automorphism it induces on K(E,).)
(c) Assume that ¢ is separable. Then ¢ is unramified,

#ker ¢ = deg ¢,
and K(E,) is a Galois extension of ¢*K (E,).

Proor. (a) From (I1.2.6.b) we know that
#¢7(Q) = deg, ¢

for all but finitely many Q€ E,. But for any Q, Q'€ E,, if we choose some
ReE, with ¢(R) = Q' — Q, then the fact that ¢ is a homomorphism implies
that there is a one-to-one correspondence

$7HQ) > ¢7H(Q)
P>P+R
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Hence
#¢ Q) =deg,¢  forall QeE,,
which proves the first assertion.

Now let P, P'eE, with ¢(P)=¢(P)=Q, and let R =P — P. Then
#(R) = 0, so ¢o g = ¢. Therefore, using (I1.2.6¢c) and the fact that t is an
isomorphism,

e4(P) = e40.,(P) = ey(tr(P))e, (P) = e4(P').

Hence every point of ¢ '(Q) has the same ramification index. We compute

(deg, )degid) = deg g = 5. eq(P) (IL.2.6a)
Ped~1(Q)
=(#67(Q)eg(P)  for any Pe¢™'(Q)
= (deg, ¢)ey(P) from above.

Cancelling deg, ¢ gives the second assertion.
(b) First, if Teker ¢ and f e K(E,), then

HPYS) = (o) = ¢*,

since ¢ 0 1, = ¢. Hence as an automorphism of K(E,), t¥ does fix ¢*K(E,),
so the indicated map is well-defined. Next, since

TgO Ty = Tgrr = Tr O Tg,
the map is clearly a homomorphism. Finally, from (a) we have
#ker ¢ = deg, ¢;
while from basic Galois theory,
# Aut(K(E,)/¢*K(E,)) < deg, ¢.

Hence to prove that the map T — 7% is an isomorphism, it suffices to show
that it is injective. But if t¥ fixes K(E,), then in particular every function on
E, takes the same value at T and O. This clearly implies that T = O.

(c) If ¢ is separable, then from (a) we see that

#¢ Q) = deg ¢ forall Qe E,.
Hence ¢ is unramified (I1.2.7), and putting Q = O gives
#ker ¢ = deg ¢.
Then from (b) we find that
# Aut(K (E))/$*K(E,)) = [K(E,): $*K(E,)],
so K(E,)/¢*K(E,) is a Galois extension. O

Corollary 4.11. Let
¢:E,—>E, and VY :E, > E;
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be non-constant isogenies, and assume that ¢ is separable. If
ker ¢ c ker y,
then there is a unique isogeny
A:E, > E;
such that Yy = Ao ¢.

PRrOOF. Since ¢ is separable, (4.10c) says that K(E,) is a Galois extension of
¢*K(E,). Then the inclusion ker ¢ < ker iy and the identification given in
(4.10b) implies that every element of Gal(K(E,)/¢*K(E,)) fixes Y*K(E,).
Hence by Galois theory, there are field inclusions

Y*K(E3) © $*K(E,) = K(E,).

Now (I1.2.4b) gives a map

A:E, > E;
satisfying

$*(A*K(Ey)) = y*K(E,);

and this in turn implies that

Aog =1
Finally, 4 is an isogeny, since

A0) = A(¢(0)) = ¥(0) = 0. a

Proposition 4.12. Let E be an elliptic curve, and let ® be a finite subgroup of E.
Then there is a unique elliptic curve E' and a separable isogeny

¢:E—>FE
such that

ker ¢ = ®.

Remark 4.13.1. The elliptic curve whose existence is asserted in this corollary
is often denoted by the quotient E/®. This clearly indicates the group struc-
ture, but there is no a priori reason why this group should correspond to
the points on an elliptic curve. In fact, the quotient of any variety by a finite
group of automorphisms is again a variety (cf. [Mum, §7]. The case of curves
is done in (exer. 3.13).)

Remark 4.13.2. Suppose that E is defined over K, and that @ is Ggx-invariant.
(Le. If Te®, then T’ € ® for all o€ Ggx.) Then it is actually possible to find
an E’ and a ¢ which are defined over K. (See exer. 3.13¢.)
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ProoF. As in (4.10b), each point T'e® gives rise to an automorphism 1% of
K(E). Let K(E)® be the subfield of K(E) fixed by every element of @. Then
Galois theory says that K(E) is a Galois extension of K(E)® with Galois
group isomorphic to ®.

Now K(E)? is a field of transcendence degree 1 over K, so from (I1.2.4¢)
there is a unique curve C/K and a finite morphism

6. E->C
such that
¢*K(C) = K(E)®.

Next we show that ¢ is unramified. Let PeE and Te®. Then for every
function f e K(C),

f@(P + T)) = ((z7 0 ¢*)f)(P) = (4*)(P) = f($(P)),

where the middle equality uses the fact that ¥ fixes every element of ¢*K (C).
It follows that ¢(P + T) = ¢(P). Now let Q € C, and choose any Pe E with
#(P) = Q. Then

$HQ) > {P+ T:Ted).
But
#071(Q) < deg ¢ = #0,

with equality holding if and only if ¢ is unramified at Q (I1.2.7). Since the
points P + T are distinct as T ranges over the elements of ®, we conclude
that ¢ is unramified at Q; and since Q was arbitrary, ¢ is unramified.

Now apply the Hurwitz genus formula (I1.5.9) to ¢. Since ¢ is unramified,
the formula reads

2 genus(E) — 2 = (deg ¢)(2 genus(C) — 2).

From this we conclude that C also has genus 1; so it becomes an elliptic
curve, and ¢ becomes an isogeny, if we take ¢(0) as the “zero point” on C. []

§5. The Invariant Differential

Let E/K be an elliptic curve given by the usual Weierstrass equation
yi+aixy + asy = x>+ a;x* + a,x + ag.
As we have seen (1.5), the differential

dx

w=——-—¥—€Q
2y +a;x + ay E
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has neither zeros nor poles. We now justify its name of invariant differential
by proving that it is invariant under translation.

Proposition 5.1. With notation as above, for every Q€ E,
* —
50 = O.

(Here 1y is the translation-by-Q map (4.7).)

ProoF. One can prove this proposition by a straightforward (but messy and
unenlightening) calculation as follows. Write x(P + Q) and y(P + Q) out in
terms of x(P), x(Q), y(P), and y(Q) using the addition formula (2.3c). Then use
standard differentiation rules to calculate dx(P + Q) as a rational function
times dx(P), treating x(Q) as a constant. In this way one can directly verify
that (for fixed Q).

dx(P + Q) _ dx(P)
2P+ Q)+ a;x(P+Q)+as 2y(P)+a,x(P)+a;

We leave the details of this calculation to the reader, and instead give a more
illuminating proof.

Since Q; is a 1-dimensional K(E)-vector space (I1.4.2), there is a function
aQeIZ(E)*, depending a priori on Q, so that

50 = ag.
(Note ay # 0 because 1, is an isomorphism.) Now
div(ay) = div(rdw) — div(w)
= 13 div(w) — div(w)
=0 since div(w) = 0 from (1.5).

Hence a, is a function on E with neither zeros nor poles, so by (I1.1.2) it is
constant, ay e K*.
Next consider the map

fE->P!
Q — [ag, 1].

From the calculation sketched above, even without doing it explicitly, it is
clear that a,, can be expressed as a rational function of x(Q) and y(Q). Hence
f is a rational map from E to P! which is not surjective. (It misses both
[0, 1] and [1, 0].) From (I1.2.1) and (I1.2.3), we conclude that f is constant.
Therefore

ag =ag =1 forall QeE,

which is the desired result. O
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Differential calculus is, in essence, a linearization tool. It will come as no
surprise that the enormous utility of the invariant differential on an elliptic
curve lies in its ability to linearize the otherwise quite complicated addition
law on the curve.

Theorem 5.2. Let E and E' be elliptic curves, let @ be an invariant differential on
E, and let

¢,V E > E
be two isogenies. Then
@+ ¥)o=4¢*0+ y*o.

(N.B. The two “plus signs” in this last equation respresent completely different
operations. The first is addition in Hom(E', E), which is essentially addition
using the group law on E. The second is the more usual addition in the vector
space of differentials Qy..)

Proor. If ¢ = [0] or ¢ = [0], the result is clear. If ¢ + y = [0], then using
the fact that

Y* =(—¢)* = ¢*o[—11%
it suffices to check that
[-1]*0 = —o.
Since
[—1(xy) =(x, =y — a,x — aj),

we immediately obtain the desired result

[—17* dx _ dx
2y +ax+ay) 2(—y—a;x—a;)+a;x+a,
dx
2y +a;x+a;

We now assume that ¢, i, and ¢ + ¢ are all non-zero.

Let (x,, y,) and (x5, y,) be “independent” Weierstrass coordinates for E.
By this we mean that they satisfy the given Weierstrass equation for E, but
satisfy no other algebraic relation. (More formally, ([x,, y;, 1], [x,, y2, 1])
gives coordinates for E x E sitting inside P* x P?. Alternatively, (x,, y,) and
(x,, y,) are “independent generic points of E” in the sense of Weil (cf. [Ca
1))

Let

(x35 y3) = (x5, y1) + (X2, ¥2),
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5O x5 and y, are the rational combinations of x,, y;, X,, y, given by the
addition formula on E (2.3c). Further, for any (x, y), let w(x, y) denote the
corresponding invariant differential,

dx

(% y) T2y tax+a;

Then using the addition formula (2.3c) and the standard rules for differentia-
tion, we can express w(xs, y;) in terms of w(x,, y;) and w(x,, y,). This yields
(X3, ¥3) = f(X1, Y15 X2, Y2)O(X1, 1) + g(X15 V15 X2, y2)0(X2, y2),

where f and g are rational functions of the indicated variables. (In doing this
calculation, remember that since x;, y; satisfy the given Weierstrass equation,
the differentials dx; and dy; are related by

(2y; + a,x; + az)dy; = 3x? + 2a,x; + a, — a,y;)dx;.

In this way, w(x,, y5) can be expressed as a K(x;, y;, X, y,) linear com-
bination of dx; and dx,.)

We claim that f and g are both identically 1. Clearly this can be proven by
an explicit calculation, a painful task that we leave for the reader. Instead, we
use (5.1) to obtain the desired result. Suppose we assign fixed values to x, and
¥,, say by choosing some Q € E and setting

x; =x(Q) and y, = y(Q).
Then
dxz = dx(Q) = 09 SO w(x25 yZ) = 0’

while from (5.1),

(X3, y3) = Taw(xl’ V1)

= 0(Xy, yy).

Substituting these in the above expression for w(x;, y3), we find that

JO1, 1, (@), y(Q) = 1

as a rational function in K(x,, y,). Further, this is true for every point Q € E.
It follows that f must be identically 1. Then reversing the roles of x,, y, and
X,, ¥,, We see that the same is true for g.

To recapitulate, we have shown that if

(x3, y3) = (X1, y1) + (x2,y;)  (+ is addition on E),
then
(X3, y3) = 0(x1, y1) + @(x,, y,) (+ is addition in Q).
Now let (x’, y’) be Weierstrass coordinates on E’, and set |

(1 y) =8(x,y) (X2, ) =¥ y) (x5, ¥3) = (¢ + Y)(x', ).
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Substituting this above yields
(wo(g + Y)(x',y) =(wod)(x',y) + (woy)(x',y),

which says exactly that

@+ Vo =¢*o + y*o. O
Corollary 5.3. Let w be an invariant differential on an elliptic curve E. Let
meZ. Then

[m]*w = mo.

Proor. The assertion is true for m = 0 (by definition) and m = 1 (clear). From
(5.2) with ¢ = [m] and yy = [1] we obtain

[m+ 1]*w = [m]*w + o.
The result now follows by (ascending and descending) induction. O

As a first indication of the utility of the invariant differential, we give a new,
less computational proof of part of (4.2a)

Corollary 54. Let E/K be an elliptic curve, and let me Z, m # 0. Assume either
that char(K) = 0 or that m is prime to char(K). Then the multiplication-by-m
map on E is a finite, separable endomorphism.
Proor. Let w be an invariant differential on E. Then from (5.3),

[m]*w = mw # 0,
so certainly [m] # [0]. Further, (I1.4.2c) implies that [m] is separable. O

As a second application, we examine when a linear combination involving
the Frobenius morphism is separable.

Corollary 5.5. Let char(K) = p > 0, let E be defined over F,, let ¢ : E — E be

the q'"-power Frobenius endomorphism (4.6), and let m, ne Z. Then the map
m+ng:E—->E

is separable if and only if p | m.

In particular, the map 1 — ¢ is separable.

Proor. Let w be an invariant differential on E. From (I.4.2c), a map
Y : E — E is inseparable if and only if y*w = 0. We apply this to the map
Y = m + ng. Using (5.2) and (5.3), we compute

(m + ng)*w = mow + ng*w.

But ¢*w =0 because ¢ is inseparable (or by direct calculation, since
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¢*dx = d(x?) = 0), so
(m + ng)*o = mo.

Now mw = 0 if and only if p|m, which gives the desired result.

§6. The Dual Isogeny

Let ¢ : E; — E, be a non-constant isogeny. Then ¢ induces a map (I1.3.7)
¢* : Pic®(E,) - Pic%(E,).
On the other hand, we have group isomorphisms (3.4)
k;: E; > Pic®(E)
P — class of (P) — (0).

Hence we obtain a homomorphism going in the opposition direction to ¢,
namely the composition

E, 5 Pic%(E,) & Pic%(E) S E,.

As we will verify below, this map can be computed as follows. Let Q € E, and
choose any P e E, satisfying ¢(P) = Q. Then

Ki' 0 ¢* 0k,(Q) = [deg 41(P).

It is by no means clear that the homomorphism k;'o¢*oxk, is an
isogeny; that is, given by a rational map. The process of finding a point P
satisfying ¢(P) = Q will involve taking roots of various polynomial equa-
tions. If ¢ is separable, one needs to check that applying [deg ¢] to P causes
the conjugate roots to appear symmetrically. (That this is so is fairly clear if
one explicitly writes out x;* o¢*ok,.) If ¢ is inseparable, this approach
is more complicated. We now show that in all cases, there is an actual isogeny
which can be computed in the manner described above.

Theorem 6.1. Let ¢ : E, — E, be a non-constant isogeny of degree m.
(a) There exists a unique isogeny
¢§ tE, - E;
satisfying
o =[m].
(b) As a group homomorphism, 03 equals the composition
sum

E, - Div(Ey) & Divo(E) 25 E,
Q-(@ —-(0) Y np(P)—>) [np]P.
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Proor. (a) First we show uniqueness. Suppose ¢§ and $’ are two such
isogenies. Then

¢ —¢)o¢ =[m] —[m] = [0]
Singe ¢ is non-constant, it follows from (I1.2.3) that (/3 - q3’ must be constant,
sop=4¢".
Next suppose that ¥ : E, » E, is another non-constant isogeny, say of
degree n, and suppose that we know that ¢ and y exist. Then

(@od)oWog) =gdo[nlog =[nlodoé = [nm].

Thus ¢A0l/; has the requisite property to be m. Hence using (I1.2.12) to
write an arbitrary isogeny ¢ as a compositon, it suffices to prove the existence
of ¢ when ¢ is either separable or the Frobenius morphism.

Case 1. ¢ is separable. Since ¢ has degree m, we have (4.10c)
#ker ¢ = m;
so clearly
ker ¢ < ker[m].

It now follows immediately from (4.11) that there is an isogeny

A

¢:E, > E,
satisfying

$o¢ =[m].

Case 2. ¢ is a Frobenius morphism. If ¢ is the g'®-power Frobenius mor-
phism, and g = p®, then clearly ¢ is the composition of the p**-power Fro-
benius morphism with itself e times. Hence it suffices to prove that ¢ exists if
¢ is the p'®-power Frobenius morphism, and so deg ¢ = p (I1.2.11).

We look at the multiplication-by-p map on E. Let @ be an invariant
differential. Then from (5.3) and the fact that char(K) = p,

[p]*w = pw = 0.

Hence from (I1.4.2c) we conclude that [p] is not separable, so when [p] is
decomposed as some Frobenius morphism followed by a separable map
(I1.2.12), the Frobenius morphism does appear. In other words,

(pl=yo¢°

for some integer e > 1 and some separable isogeny ¥. Then we can take

$=vog.

(b) Let Q€ E,. Then the image of Q under the indicated composition is
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sum{g*(Q) — (0)} = Y [ePIP— Y [efDIT

Ped Q) Te¢1(0)
definition of ¢*

= [deg; ¢]< > P— ¥ T) from (4.10a)

Ped1(Q) Te$1(0)
= [deg;¢lo[#¢47(Q)IP  forany Pe4™'(Q)
= [deg 41P from (4.10a).
But by construction,
Q) = o ¢(P) = [deg 1P,

so the two maps are the same. O

Definition. Let ¢ : E; — E, be an isogeny. The dual isogeny to ¢ is the isogeny
¢A tE, > Ey
given by (6.1a). [This assumes ¢ # [0]. If ¢ = [0], then we set ¢ =1[0]]
The next theorem gives the basic properties of the dual isogeny. From
these basic facts we will be able to deduce a number of very important

corollaries, including a reasonably good description of the kernel of the
“multiplication-by-m” map.

Theorem 6.2. Let
¢:E - E,

be an isogeny.
(a) Let m = deg ¢. Then

$og=[m] on E;
¢od=[m] on E,.
(b) Let A: E, — E; be another isogeny. Then
Tog=gol
(c) Let: E, - E, be another isogeny. Then
F+v=4+9.
(d) ForallmeZ,
(m]=[m] and deg[m]=m>
(e) deg § = deg ¢.

A

() 9 =9.



§6. The Dual Isogeny 87

Proor. If ¢ is constant, then the entire theorem is trivial; and similarly for
(b) or (c) if 4 or ¥ is constant. We will thus assume that all isogenies are
non-constant.

(a) The first statement is the defining property of ¢. For the second, look at

(#odod=¢olm]=[mlog.
Hence ¢ o¢§ = [m], since ¢ is not constant.
(b) Letting n = deg 4, we have
(bodo(rog)=dolnlog=[nlofog = [nm]

Hence from the uniqueness statement in (6.1a),

A A P

PpoAi=A0¢.
(c) Let x;, y;€K(E,) and x,, y,€K(E,) by Weierstrass coordinates. We
start by looking at E, considered as an elliptic curve defined over the field
K(E,) = K(x4, y;). Then another way of saying that ¢ : E, — E, is an isogeny

is to note that ¢(x,, y,) € E,(K(x,, ¥,)), and similarly for (¢ + ¥)(x,, y,) and
¥(x,, y;). Now consider the divisor

D = ((¢ + ¥)(xy, y1)) — (x5 y1)) — (W (xy, y1)) + (O)EDivK(xl,yl)(EZ)'

By definition of ¢ + v, it sums to O, so by (3.5) it is linearly equivalent to 0.
Thus there is a function

feK(xy, y)(E) = K(xy, Y1a X3, ¥2)

which, when considered as a function of x,, y,, has divisor D.

We now switch perspective, and look at f as a function of x,, y,; that
is, f as a function on E, considered as a curve defined over K(x,, y,). Suppose
P, eE,(K(x,, y,)) is a point satisfying ¢(P,) = (x,, y,). Then examining D,
specifically the term —(g4(x,, y,)), we see that f has a pole at P;. (Le.

f(xy, y15 X5, y,) will have a pole if x,, yy, X5, y, satisfy (x,, y,) = d(x;, y,).)
Further,

ordp,(f) = e4(P,).
Similarly, f has a pole at P, if y(P;) = (x,, y,), and a zero if (¢ + Y)(P,) =
(x5, y,)- It follows that as a function of x, y,, the divisor of f has the form
(@ + ¥)*((x2, ¥2)) — 6*((x2, y2)) — ¥*((x2, y2)) + Y n(P) € Divge, 55 (Ey),

where the P;’s are in E;(K). [Le. Zn,(P,) e Divg(E,).] Since this is a divisor of
a function, it sums to 0, so using (6.1(b)) we conclude that

N o N

(@ + ¥)(x2, y2) — (X2, ¥2) — Y(x3, ¥2)

does not depend on (x,, y,). [Le. it is in E,(K).] Putting (x,, y,) = O shows
that it equals O, which completes the proof that

Fri=d+4
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(d) This is true for m = 0 (by definition) and m = 1 (clear). Then using (c) with
¢ = [m] and y = [1], we find that

P N
[m+ 1] = [m] + [1];

so the first assertion holds for all m by (ascending and descending) induction.
Now led d = deg[m] and look at multiplication by d.

[d]=[mlo[m] definition of dual isogeny
= [m?] since [m] = [m].

Since the endomorphism ring of an elliptic curve is a torsion-free Z-module
(4.2b), it follows that d = m>.
(e) Let m = deg ¢. Then using (d),

[m?] = [deg[m]] = [deg(d 0 #)] = [(deg ¢)(deg §)] = [m(deg §)1.

Hence again using (4.2b), we conclude that m = deg §.
(f) Again let m = deg ¢. Then using (a), (b) and (d),

Jop=[ml=[ml=dof=dod

Therefore
$=9. O
Definition. Let A be an abelian group. A function
d:4A-R

is a quadratic form if
(i) d(a) = d(—a)for all ae A4; and

(it) the pairing

AxA-R

(@ B) > d( + B) — d(@) — d(B)
is bilinear.
A quadratic form d is positive definite if
(iii) d() =0 for all e A; and
(iv) d(@)=0 if and only if a = 0.
Corollary 6.3. Let E, and E, be elliptic curves. The degree map
deg:Hom(E,, E,) » Z

is a positive definite quadratic form.

Proor. Everything is clear except for the fact that the pairing

(¢ ¥ = deg(¢ + ¥) — deg(¢) — deg(y))
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is bilinear. But using the injection
[ ]:Z- End(E)),

we have

[{¢, ¥>] = [deg(d + )] — [deg(¢)] — [deg(y)]
TN A A
=@ +¥)o@+y)—dod—yoy
=doy +Jos  from(6.2c).
But again using (6.2c), we see that this last expression is linear in both ¢

and . O

Corollary 6.4. Let E be an elliptic curve and me Z, m # 0.
(a) deg[m] = m?.
(b) If char(K) = 0 or if m is prime to char(K), then

E[m] = (Z/mZ) x (Z/mZ).
(c) Ifchar(K) = p, then either
E[p]={0} foralle=1,2,3,...;0r
E[pl=2Z/p¢Z  foralle=1,2,3,....
(Recall that E[m] is another notation for ker[m], the set of points of E having

order m.)

Proor. (a) This was proven above (6.2d). We record it again here in order to
point out that there are many other ways of proving this fact (e.g., exers.
3.7, 3.8, 3.11), and that the fundamental description of E[m] given in (b)
follows formally from (a).

(b) From the given conditions and the fact that deg[m] = m?, it follows that
[m] is a finite, separable map. Hence from (4.10c),

#E[m] = deg[m] = m>.
Further, for every integer d dividing m, we similarly have
#E[d] = d%.

Writing the finite group E[m] as a product of cyclic groups, one immediately
sees that the only possibility is

E[m] = (Z/mZ) x (Z/mZ).
(c) Let ¢ be the p™-power Frobenius morphism. Then
#E[p°] = deg,[p°]  (4.10a)
= (deg,(bog)  (6.2a)
= (deg,d)°  (IL.2.11b).
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From (6.2¢) and (11.2.11c),
deg § = deg ¢ = p,

so there are two cases. If § is inseparable, then degsq3 =1, s0

#E[p¢] =1 for all e.
Otherwise ¢ is separable, so deg,4 = pand

#E[p°] = p° for all e.
This last is easily seen to imply that

E[p®] = Z/p°Z.

(For a more complete analysis of E[p°] in characteristic p, and its relation-
ship to End(E), see chapter V, §3, 4.) O

§7. The Tate Module

Let E/K be an elliptic curve and m > 2 an integer (prime to char(K) if
char(K) > 0.) As we have just seen (6.4b),

E[m] = (Z/mZ) x (Z/mZ),

the isomorphism being one between abstract groups. However, the group
E[m] comes equipped with considerably more structure. Namely, each
element of the Galois group Gg)x acts on E[m], since if [m]P = O, then
[m](P?) = ([m]P)° = O. We thus obtain a representation

Gix — Aut(E[m]) = GL,(Z/mZ),

where the latter isomorphism involves choosing a basis for E[m]. Individ-
ually, for each m, these representations are not completely satisfactory,
because it is generally easiest to deal with representations whose matrices
have coefficients in a ring having characteristic 0. What we will do is to fit
them together for varying m so as to achieve this end, the motivating example
being the inverse limit construction of the Z-adic integers Z, from the finite
groups Z/¢"Z.

Definition. Let E be an elliptic curve and £eZ a prime. The (£-adic) Tate
module of E is the group

T(E) = im E[/"],
the inverse limit being taken with respect to the natural maps

e[ Erm.

Since each E[/"] is a Z/¢"Z-module, we see that the Tate module has a
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natural structure as a Z,-module. Note that since the multiplication-by-/
maps are surjective, the inverse limit topology on T,(E) is equivalent to the
/-adic topology it gains by being a Z,-module.

Proposition 7.1. As a Z,~module, the Tate module has the following structure.
(a TL(Ey=2Z,%x Z, if ¢ # char(K).
(b) T,(E) = {0} or Z, if p = char(K) > 0.

Proor. This follows immediately from (6.4b, c). O

Now the action of Gz x on each E[¢"] commutes with the multiplication-
by-# maps used to form the inverse limit, so Gik also acts on T;(E). Further,
since the pro-finite group Gi acts continuously on each finite (discrete)
group E[¢"], the resulting action on T,(E) is also continuous.

Definition. The /-adic representation (of Gg x on E), denoted p,, is the map
Pr: Ggjx = Aut(TH(E))
giving the action of Ggx on T;(E) as described above.

Convention. From here on, the number £ will always refer to a prime number
distinct from the characteristic of K.

Remark 7.2. Notice that by choosing a Z,-basis for T,(E) we obtain a
representation

GIZ/K — GL,(Z,);
and then the natural inclusion Z, < Q, gives

Ggix = GL,(Qy).
In this way we obtain a 2-dimensional representation of G over a field of
characteristic 0.
Remark 7.3. The above construction is analogous to the following one, which
may be more familiar. Let

B < K*

be the group of (£")*-roots-of-unity. Then raising to the £**-power gives maps

¢
Ryner = Pyn,s

and we can take the inverse limit as above to form the Tate module of K

T;(p) = lim pn.
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As an abstract group,
T,(w = Z,.
Further, Ggx acts on each p,n, so we obtain a 1-dimensional representation
Gi ~ Aut(T,(w) = Z#.

For K = Q, this cyclotomic representation is surjective, which is equivalent
to the fact that the /-power cyclotomic polynomials are all irreducible over
Q.

The Tate module is also a useful tool for studying isogenies. If

¢.E, > E,

is an isogeny of elliptic curves, then ¢ gives maps

¢:E,[¢"] > E,[¢"],
and so it induces a (Z,-linear) map

¢ T/(E,) > TH(E).
We thus obtain a homomorphism

Hom(E,, E,) » Hom(Ty(E,), T;(E,)).
(Notice if E, = E, = E, then the map
End(E) - End(T,(E))

is even a homomorphism of rings.) It is not hard to show that the
above homomorphism is injective (see exer. 3.12), but to really analyze
Hom(E,, E,) we will need the following stronger result.

Theorem 7.4. Let E, and E, be elliptic curves. Then the natural map
Hom(E,, E;) ® Z; > Hom(T(E,), T/(E,))
¢— o

is injective.

Proor. We start by proving the following statement.
Let M < Hom(E,, E,) be a finitely generated subgroup, and let
*) M% ={¢eHom(E,, E,): [m] 0 € M for some integer m > 1}.

Then M4V is also finitely generated.
To prove (*), we extend the degree mapping to the finite dimensional real
vector space M ® R, which we equip with the natural topology inherited
from R. Then the degree mapping is clearly continuous, so the set

U={¢cM@R:deg¢ < 1}
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is an open neighborhood of 0. Further, since Hom(E,, E,) is a torsion-free
Z-module (4.2b), there is a natural inclusion

Mdiv M ® R,
and clearly
M¥ AU = {0},

since every non-zero isogeny has degree at least 1. Hence M%" is a discrete
subgroup of the finite dimensional vector space M ® R, so it is finitely
generated.

We turn now to the proof of (7.4). Let ¢ e Hom(E,, E,) ® Z,, and suppose
that ¢, = 0. Let

M c Hom(E,, E,)

be a finitely generated subgroup so that ¢e M ® Z,. Then with notation as
above, M4V is finitely generated, so it is also free (since it is torsion-free
{4.2b)). Let

&1 ..., e Hom(E,, E,)
be a basis for M, and write
d=o0,0 + - +ad with oeZ,.
Now choose a,, ..., a,e Z so that
a;=o; (mod<?Z™).
Then the fact that ¢, = 0 implies that the isogeny
Y =[a;]o¢, + -+ [a]opeHom(E,, E,)

annihilates E, [£"]. Tt follows from (4.11) that i factors through [¢"], so there
is an isogeny

AeHom(E,, E;,) with ¢ =[/"]oi
Further, 4 is in MY, so there are integers b;€ Z such that
A=[bJod + -+ [blod,.
Then, since the ¢;s form a Z-basis of M*", we have
a; = {"b,,
hence
o, =0 (mod?").

Since this holds for all n, it follows that all a; = 0, so ¢ = 0. [N.B. The reason
it is so important to use M4 is that it is essential that the Z-basis used to
express ¢, Y, and 4 not depend on the choice of £”.] O
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Corollary 7.5. Let E, and E, be elliptic curves. Then
Hom(El ’ E2)

is a free Z-module of rank at most 4.

Proor. Since Hom(E,, E,) is torsion-free (4.2b), it follows that
rank; Hom(E,, E,) = rankz, Hom(E, E;) ® Z,,

in the sense that if one is finite, then they both are and they are equal. Next,
from (7.4), we have the estimate

rankz, Hom(E,, E;) ® Z, < rankz, Hom(T;(E,), Tz(E,)).
Finally, choosing Z,-bases for T,(E,) and T,(E,), we see from (7.1a) that
Hom(TA(E,), T(E,)) = M,(Z,),

where M,(Z,) is the group of 2 x 2 matrices with Z, coefficients. Since
M,(Z,) has Z ,-rank equal to 4, this gives the desired result. O

Remark 7.6. By definition, an isogeny is defined over K if it commutes with
the action of Gg k. Similarly, we can define

Hom(Ty(E,), T,(E,))

to be the group of Z,-linear maps from T,(E,) to T,(E,) which commute with
the action of Gg as give by the Z-adic representation. Then we have a
homomorphism

Homg(E,, E;) ® Z, > Homg(TH(E,), TH(E,)),

which from (7.4) is injective. It turns out that in many cases this map is
actually an isomorphism.

Theorem 7.7. The natural map
Homg(E,, E;) ® Z; -» Homg(T;(E,), TA(E,))
is an isomorphism if:

(@) ([Ta 7)) K is a finite field,
(b) ([Fa 1]) K is a number field.

The proofs, which make heavy use of abelian varieties of higher dimen-
sions, are unfortunately beyond the scope of this book. Indeed, the methods
used in proving (7.7b) include virtually all of the tools needed for Faltings’
proof of the Mordell conjecture.

To understand what (7.7) says, one should think of the Tate module as a
homology group, specifically as the first homology with Z,-coefficients. Then
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(7.7) gives a characterization of when a map between homology groups
comes from an actual geometric map.

Remark 7.8. Another natural question to ask is how large is the image
p/(Gg/x) in Aut(T;(E)). The following theorem of Serre provides an answer
for number fields. We do not include the proof. (But see (IX.6.3) and exer. 9.7).

Theorem 7.9 (Serre). Let K be a number field and E/K an elliptic curve without
complex multiplication.

(@) p(Ggg) is of finite index in Aut(Ty(E)) for all primes ¢.

(b) p/(Gx k) = Aut(T,(E)) for all but finitely many primes ¢.

Proor. [Se 5] and [Se 6]. O

Remark 7.10. Let E/K be an elliptic curve. Then just as above, the elements
of Endg(E) commute with the elements of G/ in their action on T,(E). If

Endg(E) = Z,

this gives little information; but if E has complex multiplication, then this
forces the action of Ggjx on T,(E) to be abelian (exer. 3.24). In particular,
adjoining the coordinates of /"-torsion points to K leads to explicitly con-
structed abelian extensions, in much the same manner that abelian exten-
sions of Q are obtained by adjoining roots of unity. (See appendix C §11 for a
brief discussion.)

§8. The Weil Pairing

Let E/K be an elliptic curve. For this section we fix an integer m > 2, prime

to p = char(K) if p > 0. We will make frequent use of (3.5), which says that

Zn,(P,) is the divisor of a function if and only if ¥n; = 0 and X[n,]P, = O.
Let Te E[m]. Then there is a function fe K(E) such that

div(f) = m(T) — m(0).
Letting T'eE with [m]T' = T, there is similarly a function ge K(E)
satisfying
div(g) = [m]XT) — [m]*©0)= ) (T'+R)—(R)

Re E[m]

(Note # E[m] = m® (6.4b) and [m*]T’ = 0.) One immediately verifies that
the functions f o [m] and g™ have the same divisor, so multiplying f by an
element of K*, we may assume that

folm]=g™
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Now suppose that Se E[m] is another m-torsion point (S = T is allowed).
Then for any point X € E,

g(X + 8" = f([m]X + [m]S) = f([m]X) = g(X)™.
Hence we can define a pairing
e, : E[m] x E[m] - p,, = m'® roots of unity
by setting
en(S, T) = g(X + 8)/g(X),

where X € E is any point such that g(X + S) and g(X) are both defined and
non-zero. Note that although ¢ is only defined up to multiplication by an
element of K*, ¢,,(S, T) does not depend on this choice. This pairing is called
the Weil e,-pairing. We begin by giving some of its basic properties.

Proposition 8.1. The Weil e,-pairing is:

(a) Bilinear: en(S; + 5,5, T) =e,(S;, T)e(S,, T)
em(Ss Tl + TZ) = em(s9 Tl)em(S’ TZ)’
(b) Alternating: en(S, T) = e, (T, )},

(c) Non-degenerate: If e, (S, T) = 1 for all Se E[m], then T = O;
(d) Galois invariant. For all o € Gg,
e.(S, T) = e,(S° T°);

(€) Compatible: If S€ E[mm'] and Te E[m], then
(S, T) = e, ([m']S, T).

ProoF. (a) Linearity in the first factor is easy.

gX +8,+5,)9X +8,) _
dx+5) g SxDalLT)

(Note how useful it is that in e,(S,, T) = g(Y + S,)/g(Y), we may choose
any value for Y, such as Y = X + §,.) For the second, let f1, f5, f3, 91, 92, 93
be functions as above for T;, T,, and T; = T; + T,. Choose he K(E) with
divisor

en(S1 + 8,5, T) =

div(h) = (T; + T,) — (Ty) — (T) + (0).
Then
div(f3/f1f;) = m div(h),
S0

fs=cfifoh™  for some ce K*.
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Compose with the multiplication-by-[m] map, use f;o[m] = g¥", and take
m™-roots to find
gs = c'g1g>(ho[m]).
Now
93X +5) _g:(X + 8)go(X + S)h([m]X + [m]S)
93(X) 91(X)g>(X)h([m]X)
= em(S, Tl)em(S9 TZ)

em(Sa Tl + TZ) =

(b) From (a) we have
en(S + 1,8 + T) = €,(S, S)en(S, T)en(T, S)en(T, T),

so it suffices to show that ¢, (T, T) = 1 for all Te E[m]. For any Pe E, recall
that 7, : E — E denotes the translation-by-P map (4.7). Then

m—1 m—1
<m<gfomazmzwu—ﬂn—q—ﬂn=a

Hence [ |5 f o 17 is constant; and if we choose some T” € E with [m] T’ =
T, then [ [/ g o fyyr is also constant, because its m™-power is the above
product of f’s. Evaluating the product of g’s at X and X + T" yields

m—1 m—1
H) g X +[1T) = 1__!) g X + [i+ 1]1).
Now cancelling like terms gives
g(X)=g(X + [m]T)=g(X + T),
O
en(T, T) = g(X + T)/g(X) = 1.

() fe,(S, T) = 1forall Se E[m], so g(X + S) = g(X) for all Se E[m], then
from (4.10), g = h o [m] for some function he K(E). But then

(ho[m]y" = g™ = fo[m],
so f = ch™ for some constant ¢ K*. Hence
m div(h) = div(f) = m(P) — m(0),
)
div(h) = (P) — (0).

Therefore P = O (3.3).
(d) Let o€ Ggy. If f, g are the functions for T as above, then clearly 7, g
are the corresponding functions for T°. Then

g°(X° + 89 _ (g(X + S))"
g°(X°) g(x)

[

en(S7, T%) =

= en(S, TY.



98 III. The Geometry of Elliptic Curves

(e) Taking f, g as above, we have

div(f™) = mm'(T) — mm'(0)
and

(go[m1)™ = (f o [mm'])™.
Then from the definition of e,,,. and e,,,

_go[mI(X +8) _g(Y +[m1S) _
emm’(S’ T) - go [m;] (X) g(Y) em([m ]Ss T) D

The basic properties of the Weil pairing imply its surjectivity, as we now
show.

Corollary 8.1.1. There exist points S, T € E[m] such that e, (S, T) is a primitive
m'™-root of unity. In particular, if E{m] < E(K), then p,, = K*.

Proor. The image of e,,(S, T) as S and T range over E[m] is a subgroup of
., say equal to p,. It follows that for all S, Te E[m],
1 =e,(S, T) = e,([d1S, T).

The non-degeneracy of the e,-pairing now implies that [d]S = O; and since
S is arbitrary, we must have d = m. Finally, if E[m] < E(K), then from
the Galois invariance of the e,-pairing we see that e, (S, T)e K* for all
S, Te E[m]. Therefore p,, = K*. O

Recall that if E, and E, are elliptic curves and ¢: E, — E, is an isogeny
connecting them, then there is a dual isogency é: E, — E, going in the other
direction. The following proposition says that ¢ and ¢ are dual (i.e. adjoint)
with respect to the Weil pairing.

Proposition 8.2. Let Se E,[m], Te E,[m], and ¢ : E; — E, an isogeny. Then
en(S, H(T)) = en(d(S), T).
Proor. Let
div(f) =m(T) —m(0) and fo[m]=g™

be as above. Then
em(9S, T) = g(X + 45)/g(X).
Choose a function he K(E) so that
#*(T)) — $*((0)) = (4 T) — (0) + div(h).
Such an h exists because, by (6.1b), qﬁ T is precisely the sum of the points of the
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divisor on the left-hand side of this equality. Now

fo¢
hm

div< > = ¢*div(f) — m div(h)
= m(@T) — m(0),

and

<go¢ )"‘_fo[m]oqb_(fo«ﬁ o [m]
ho[ml) = (ho[m])™ \ h™ ’

Thus from the definition of the e,-pairing,

(gog/ho[m])(X + §)
(go¢/ho[m])(X)

_9@X +¢S)  h((m]X)
9(¢X)  h([mlX + [m]S)

= en(4S, T). O

en(S, §T) =

Let £ be a prime number different from char(K). We would like to fit
together the pairings

em: E[¢"] x E[£™] - pn
foralln =1, 2,... to give an £-adic Weil pairing on the Tate module
e: TH(E) x T/E) > T(w)
Recall that the inverse limits for T,(E) and T,(n) are formed using the maps
E[* 9 E] and ppet S .

Thus to show that the e,.-pairings are compatible with taking the inverse
limit, we must show that for any S, Te E[£"*],

emn(S, TY = en([£1S, [£1T).
But by linearity (8.1a),
epmni(S, TY = epm(S, [£1T);

and then the desired result follows by applying (8.1¢) to (S, [£]1T) with m = £"
and m’ = ¢. This proves that e is well-defined, and it inherits all of the prop-
erties from (8.1) and (8.2), which completes the proof of the following.

Proposition 8.3. There exists a bilinear, alternating, non-degenerate, Galois
invariant pairing
e: Ty(E) x TyE) > Ty(w).

Further, if ¢ : E, — E, is an isogeny, then ¢ and its dual isogeny $ are adjoints
for the pairing.
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§9. The Endomorphism Ring

Let E/K be an elliptic curve. We are interested in characterizing which rings
may occur as the endomorphism ring of E. So far, the following information
has been collected:

(i) End(E) is a characteristic 0 integral domain of rank at most 4 over Z
((420), (7.9)) A
(i) End(E) possesses an anti—inAvolutioAn o0 (6.213, c, f);
(iii) For ¢ eEnd(E), we have ¢peZ, ¢¢ = 0, and ¢¢ = 0 if and only if ¢ = 0
((6.2a), (6.3)).

It turns out that any ring satisfying (i)—(iii) is of a very special sort. After
giving the relevant definitions, we will give the general classification of rings
satisfying (i)—(iii), which may then be applied to the particular case of End(E).

Definition. Let ¢ be a (not necessarily commutative) algebra, finitely gen-
erated over Q. An order # of A is a subring of 4 which is finitely generated
as Z-module and which satisfies Z @ Q = A"

Example 9.1. Let /¥ be a quadratic imaginary field and 0 its ring of integers.
Then for each integer f > 0, the ring Z + f0O is an order of 4. (These are all
the orders of . See exer. 3.18.)

Definition. A quaternion algebra is an algebra of the form
A =Q+ Qo+ QF + Quf
with the multiplication rules

a2, B2eq, a?<0, p2<0, Pa= —ap

Remark 9.2. The quaternion algebras defined above are more properly called
definite quaternion algebras over Q. But since these are the only quaternion
algebras that we will deal with in this book, we will generally drop the
appellation “definite”.

Theorem 9.3. Let # be an integral domain of characteristic O having the
Jollowing properties.

(i) 2 has rank at most 4 (as a Z-module). P P
(ii) 2 possesses an anti-involution « — 8. (Ie.o + p=8& + p, af = p4, & = o,
and for ae”Z, é = a.)
(iii)y For ae AR, ad is a non-negative integer; and ad = 0 if and only if « = 0.

Then R is one of the following three sorts of rings.

(a) # =7
(b) Z is an order in a quadratic imaginary extension of Q.
(c) 2 is an order in a quaternion algebra over Q.
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ProoF. Let o = Z ® Q. Since # is finitely generated (as a Z-module), it
suffices to show that either #" = Q, #/Q is a quadratic imaginary extension,
or X /Q is a quaternion algebra. We extend the anti-involution to X", and
define a (reduced) norm and trace from %" to Q by

No=o0od and Tou=a+ 4.
We make several observations about the trace. First, since
To = N(x — 1) — No. — 1,

T is in Q. Second, the trace is clearly Q-linear. Third, if a € Q, then Ta = 2a.
Finally, if « € " satisfies To = 0, then

0=(x—a)(x — &) = a? — (Tw)a + Noo = a® + Na,

s0 o2 = — Na. Thus for elements with T = 0, either « = 0, or else a2 € Q and
a? < 0.

Now if # = Q, we are done. Otherwise we can choose some ae %, o # Q.
Replacing o by a — 4 Tu, we may assume T = 0. Then from above a? < 0,
so Q(«) is a quadratic imaginary field. If #° = Q(x), we are again done.

Assume now % # Q(«), and choose fe A", f¢ Q(x). As above, we may
replace f§ by

B — 3TB — H(T(xB)/o®)e.

Recalling that Ta = 0 and «?e€ Q*, one immediately verifies that T =
T(aB) = 0. In particular, *> < 0. Further, writing

Ta=TB=T@h) =0 as a=—&p=—paf=—p4
we see by substituting the first two equalities into the third that
oaff = — fo.
Hence
Qfe, f]1=Q + Qa + QF + Qup

is a quaternion algebra. It remains to prove that Q[a, f] = . To do this, it
suffices to show that 1, a, f, «f are Q-linearly independent, since then Q[a, £]
and J¢" will both have dimension 4 over Q.

Suppose

w4+ xa+yp+zaf=0
with w, x, y, ze Q not all zero. Taking traces yields
2w=0, so w=0.
Then multiplying by « on the left and f on the right gives
(xa®)B + (yBH)o + zo’ B = 0,

contradicting the Q-linear independence of 1, «, . (Remember o2, f€Q*)
This completes the proof that #” = Q[a, £]. O
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Corollary 9.4. The endomorphism ring of an elliptic curve is either Z, an order
in a quadratic imaginary field, or an order in a quaternion algebra.

Proor. As indicated above, we have proven all of the facts ((4.2b), (6.2), (6.3),
(6.5)) needed to apply (9.3) to End(E). O

It turns out that if char(K) = 0, then End(E) ® Q cannot be a quaternion
algebra. We will give an analytic proof of this later (V1.6.1b). (See also
exer. 3.18b.) On the other hand, if K is a finite field, then End(E) is always
larger than Z (IV.3.1), and there are always elliptic curves (defined over K)
with End(E) non-commutative (IV.4.1c). The complete description of End(E)
can be found in Deuring’s comprehensive article [De 1].

The following definition and result will be used in the exercises.

Definition. Let p be a prime (or o), and let Q, be the completion of Q at p
(Q, = R). A quaternion algebra " is said to split at p if

A ®Q, = M,(Q,).
(Here M, is the algebra of 2 x 2 matrices.) Otherwise ¢ is ramified at p.
Define the invariant of A" at p by

0 if A" splits at p

inv, " = . .
P {% if A" ramifies at p.

Theorem 9.5. (a) Let A be a quaternion algebra. Then inv,(X") = 0 for all but
finitely many p, and

Yinv, A eZ.
p
(Note that the sum includes p = c0.)

(b) Two quaternion algebras A" and X" are isomorphic (as Q-algebras) if and
only if inv,(A") = inv,(X") for all p.

Proor. This is a very special case of the fact that the central simple algebras
over a field K are classified by the Brauer group Br(K) = H*(Ggx, K¥)
([Se 9, X §5]), and the fundamental exact sequence from class field theory
([Ta 3,§9.61)

0 Br(Q@) » DBr(@,) 222 @/Z -0,
p

where
~ (Q/7 p #
Br(Q,) —
( P) iy, {{0’ %} D = 0.

Quaternion algebras (definite and indefinite) correspond to elements of exact
order 2 in Br(Q). O
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§10. The Automorphism Group

If an elliptic curve is given by a Weierstrass equation, it is in general a
non-trivial matter to determine the exact structure of its endomorphism ring.
For the automorphism group, however, the situation is much simpler.

Theorem 10.1. Let E/K be an elliptic curve. Then its automorphism group
Aut(E) is a finite group of order dividing 24. More precisely, the order of
Aut(E) is given by the following list:
2 ifj(E) #0,1728
4 if j(E) = 1728 and char(K) # 2, 3
6 if j(E) = 0 and char(K) # 2, 3
12 if j(E) = 0 = 1728 and char(K) = 3
24 if j(E) = 0 = 1728 and char(K) = 2.

Proor. We restrict attention to the case char(K) # 2, 3 (see (1.3) and (A.1.2¢)).
Then E is given by an equation

E:y?=x3+ Ax + B,
and every automorphism has the form

x = u’x’' y=uly
for some ue K*. Such a substitution will give an automorphism of E if and
only if

u*4d4=A and u°B=B.

Hence if AB # 0 (so j(E) # 0, 1728), then the only possibilities are u = +1;

while if B =0 (j(E) = 1728) or A = 0 (j(E) = 0), then u satisfies respectively
u* = 1 or u® = 1, so Aut(E) will be cyclic of order 4 or 6. O

1t is worth remarking that the proof of (10.1) actually gives the structure of
Aut(E) as a Gg x-module (at least for characteristic #2, 3). We record this in
the following corollary.

Corollary 10.2. Let E/K be an elliptic curve over a field of characteristic #2,
3, and let n =2 (resp. 4, resp. 6) if j(E) # 0, 1728 (resp. j(E) = 1728, resp.
J(E) = 0). Then as Gg g-modules,

Aut(E) = p,.

Proor. In proving (10.1), we showed that the map
[ Iim—Auwt(E) [y =(CxCy)

is an isomorphism of abstract groups. But this map clearly commutes with
the action of Gg/k, and so it is an isomorphism of Gg x-modules. O
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EXERCISES
3.1. Show that the polynomials
x* — byx? — 2bgx — bg and 4x3 4 b,x% + 2b,x + bg

appearing in the duplication formula (2.3d) are relatively prime if and only if the
discriminant A of the corresponding Weierstrass equation is non-zero.

3.2. (a) Find a triplication formula, analogous to the duplication formula given in
(2.3). (I.e. Express x([3] P) as a rational function of x(P) and a,, ..., d¢.)
(b) Use the result from (a) to show that if char(K) # 3, then E has a non-trivial
point of order 3. Conclude that if gcd(m, 3) = 1, then [m] # [0]. (Warning:
This exercise probably requires a computer with a symbolic processor.)

3.3.  Assume char(K) # 3 and A€ K*. Then the curve
E: X3+ Y3=42°

has genus 1 (exer. 2.7), so together with the point O = [1, —1, 0] it becomes an
elliptic curve.

(a) Show that three points of E add to O if and only if they are collinear.

(b) If P =[X, Y, Z]eE, show that

—P=[Y, X, Z]
and
[2]JP=[-Y(X®+ AZ3, X(Y3 + AZ3), X3Z — Y*Z].

(c) Develop an analogous formula for the sum of two distinct points.
(d) Prove that E has j-invariant 0.

3.4. Referring to example (2.4), express each of the points P,, P,, Ps, P,, P,, Py in the
form [m] P, + [n]P; with m, neZ.

3.5. Let E/K be given by a singular Weierstrass equation.
(a) Suppose that E has a node, and let the tangent lines at the node be
y=ox+f,i=1,2
(i) Ifa,eK, prove that a, e K and

E.(K)~ K*.

(i) If a, ¢ K, prove that L = K(a,, ,) is a quadratic extension of K. From
(), E,s(K) c E, (L) = L*. Show that

E,(K) = {teL*: Ny x(t) = 1}.
(b) Suppose that E has a cusp. Prove that
E(K)~K*.

3.6. Let C be a smooth curve of genus g, PyeC, and n > 2g + 1 an integer. Let
{fosS1s -+ S} be a basis for £ (n(P,)) and

¢ = [f03 -”sfm]:c—) Ipm
the map determined by the f7’s.
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3.7.

38.

(a) Prove that the image C' = ¢(C) is a curve in P™
(b) Prove that the map ¢ : C —» C’ has degree 1.
(c)* Prove that C’ is smooth, and so that ¢ : C - C’ is an isomorphism.

This exercise gives an elementary (highly computational) proof that the
multiplication-by-m map has degree m%. We will assume char(K) # 2, 3, and
take an elliptic curve

E:y*=x>+ Ax + B.
Define division polynomials ,,€ Z[ A, B, x, y] inductively as follows:
=1 Y, =12y,
Y3 = 3x* + 64x% + 12Bx — A?,
Wy = 4y(x® + 54x* + 20Bx® — 54%x® — 44ABx — 8B% — 43),
Vame1 = Yme2¥m = Ym1¥mss (M= 2),
20¥2m = UmWmi2¥m-1 — Ym-2¥ms))  (m 2 2).

(One easily checks that the ,,,’s are polynomials.) Further define polynomials
&, and ©,, by

¢m = x‘/’ri - l//m+1 wmvl
dyw,, = ‘//m+zl//3;—1 - l/’m—2‘/’3;+1-

(a) Prove that ¥, ¢,, y ', (for m odd) and (2y)"'¢,n, G, W,, (for m even) are
polynomials in Z[ 4, B, x, y*]. Hence replacing y? by x> + Ax + B, we will
treat them as polynomials in Z[ A, B, x].

(b) As polynomials in x, show that

$n(x) = x™ + lower order terms,
Y(x)? = m*x™ 1 + lower order terms.

() If A= —16(4A43% + 27B?) # 0, then ¢,(x) and ,(x)? are relatively prime
polynomials (in K[x].)
(d) Again assume A # 0, so E is an elliptic curve. Let P = (x,, yo)€ E. Then |

(6P 0n(P)
LmlP = <~/z,..<P X wm(PP)'

(e) The map [m]: E — E has degree m?.

(a) Let E/C be an elliptic curve. We will later show (VL.5.1.1) that there is a
lattice L = C and a complex analytic isomorphism of groups C/L = E(C).
(N.B. This isomorphism is given by convergent power series, not by rational
functions.) Assuming this, prove that

deg[m] =m?® and E[m] = Z/mZ x Z/mZ.

(b) Let E/K be an elliptic curve with char(K)= 0. Using (a), prove that
deg[m] = m?. [Hint: If K can be embedded in C, there is no problem.
Reduce to this case.]
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3.9

3.10.

3.11

III. The Geometry of Elliptic Curves

Let E/K be an elliptic curve given by a homogeneous Weierstrass equation

F(Xo, X1, X,) =0. (Le. x = Xo/X, and y = X /X, are Weierstrass coordinate

functions.) Let PeE.

(a) Show that [3]P = O if and only if the tangent line to E at P intersects E only
at P.

(b) Show that [3]P = O if and only if the Hessian matrix

((0*F/0X;0X)(P))o<i,ji<2

has determinant 0.
(¢) If char(K) # 3, show that E[3] consists of 9 points.

Let E/K be an elliptic curve with Weierstrass coordinate functions x, y.
(a) Show that the map

¢:E—-P3
¢= [1’ X, ¥, x2]

maps E isomorphically onto the intersection of two quadric surfaces in P3.
In particular, if H = P3 is a hyperplane, then H n ¢(E) consists of 4 points
(counted with appropriate multiplicity.)

(b) Show that ¢(0) = [0, 0, 0, 1], and the hyperplane {T;, = 0} intersects ¢(E) at
the single point ¢(0) with multiplicity 4.

(c) Let P, Q, ReE. Prove P + Q + R = O if and only if ¢(P), ¢(Q), #(R), #(0)
are coplanar.

(d) Let PeE. Prove that [4]P = O if and only if there exists a hyperplane
H < P3 such that H n ¢(E) = {P}. Show that if char K # 2, then there are
exactly 16 such points.

(e) Assume char(K) # 2. Show that after a linear change of variables (over K),
E has a model of the form

T2+ T2=T,T,
T? + aT2 = T, T;.

For what value(s) of « is this model non-singular?
(f) Using the model in (¢) and the addition law described by (c), derive formulas
for — P, P, + P,, and [2] P analogous to those given in (2.3).

Generalize exercise 3.10 as follows. Let E/K be an elliptic curve, and choose a
basis f3, ..., f, for £(m(0)). Then for m > 3, the map

¢ E—pmt
¢= [fl!""fm]

maps E isomorphically onto its image (exer. 3.6).

(a) Show that #(E) is a curve of degree m. (Le. The intersection of ¢(E) and a
hyperplane, counted with multiplicities, consists of m points.) [Hint: Find
a hyperplane which intersects ¢(E) at the single point ¢(0), and show that
it intersects with multiplicity m.]}

(b) LetP,..., P, €E. Prove that P, +--- + P,_, = O if and only if ¢(P,),
.evs $(Py—1), #(0) lie in a hyperplane. (Note that if some of the P/’s coincide,
then we require the hyperplane to intersect ¢(E) with correspondingly
higher multiplicity.)
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312

3.13.

3.14.

3.15.

3.16.

(c)* Let PeE. Show that [m]P = O if and only if there is a hyperplane
H < P™! such that HN@(E)= {P}. If char(K)=0 or char(K)>m,
prove that there are exactly m* such points. Deduce that deg[m] = m?.

Let m > 2 be an integer, prime to char(K) if char(K) > 0. Prove that the natural
map

Aut(E) - Aut(E[m])
is injective except for m = 2, when the kernel is + 1. (Do not use (10.1).)

Generalize (4.12) as follows. Let C/K be a smooth curve, and let Isom(C) denote

the group of isomorphisms from C to itself. (E.g. If C is an elliptic curve, then

Isom(C) contains translation maps and [+1].) Let ® be a finite subgroup of

Isom (C).

(a) Prove that there exists a unique smooth curve C'/K and a finite separable
morphism ¢ : C — C’ such that ¢*K(C’) = K(C)®. (Here K(C)® denotes the
subfield of K(C) fixed by ®, where an element ae® acts on K(C) by
a*: K(C) - K(C))

(b) Let PeC. Prove that

ep(¢) = #{ae®:aP = P},

(c) Prove that ¢ is unramified if and only if every non-trivial element of @ has
no fixed points.

(d) Express the genus of C’ in terms of the genus of C, # ®, and the fixed points
of the elements of ®.

(e)* Suppose that C is defined over K, and that @ is Gz x-invariant. (Le. f a e @,
then a” e ® for all o € Gix.) Prove that it is possible to find a C’ so that C’
and ¢ are defined over K. Further, show that C' is then unique up to
isomorphism over K.

Use the non-degeneracy of the Weil pairing to give a quick proof that the map
Hom(E,, E,) » Hom(T,{E,), TAE,))
is injective. (Note this is not as strong as (7.4).)

Let ¢:E, — E, be an isogeny of degree m, with m prime to char(K) if
char(K) > 0.
(a) Mimic the construction in section 8 to construct a pairing

ey ker ¢ xker¢§—>um.

(b) Prove that e, is bilinear, non-degenerate, and Galois invariant.
(c) Prove that e, is compatible, in tlle sense that if Y : E, - E; is another
isogeny, Peker(y o ¢), and Q e ker(g), then

ey0p(P, Q) = ey (8P, Q).
Alternative Definition of the Weil Pairing. Let E be an elliptic curve. We define a
pairing
é,: E[m] x E[m] - n,,

as follows: Let P, Q € E[m], and choose divisors Dp, Dy in Div®(E) which add to
P and Q respectively. (Le. 6(Dp) = P and 6(Dy) = Q, where g is as in (3.4a).) We
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3.17.

3.18.

3.19.

3.20.

3.21.

III. The Geometry of Elliptic Curves

further assume that Dp and D, are chosen with disjoint supports. Since P and Q
have order m, there are functions fp, f, € K(E) such that

div(fp) =mDp and div(fy) = mD,.
Then we define
En(P, Q) = fp(Dg)/fo(Dp)-

(See exer. 2.10 for the definition of the value of a function at a divisor.)

(a) Prove that &,(P, Q) is well-defined.

(b) Prove that é,(P, Q)ep,,.

(c)* Prove that &, = e,,, where e,, is the Weil pairing defined in section 8. [Hint:
Use Weil reciprocity, exer. 2.11.]

Let & be a quaternion algebra. Show that J¢" is ramified at co. [Hint: M,(R)
contains zero-divisors.]

Let E/K be an elliptic curve, and assume that % = End(E) ® Q is a quaternion

algebra.

(a) Prove thatif p # oo and p # char(K), then )" splits at p. [Hint: Use (7.4).]

(b) Prove that char(K) > 0. [Hinz: Use exer. 3.17 and (9.5a).]

() Prove that 2" is the unique quaternion algebra ramified at precisely co and
char(K).

(dy* Prove that End(E) is the maximal order in . (Le. The integral closure of
Zin X))

Let 2 be a quaternion algebra.

(a) Show that ¥ ® @ = M,(Q).

(b) Show that o ® # =~ M,(Q). (This proves that /# has order 2 in Br(Q).)
[Hint: First show that " ® ¢ is simple (i.e. has no two-sided ideals.) Then
prove that the map

X ®A —»End(H), a®b—(x—>axb)
is an isomorphism.]

Let & be a quadratic imaginary field with ring of integers ¢. Show that the
orders of &~ are precisely the rings Z + 0 for integers f > 0. The integer f is
called the conductor of the order.

Let C/K be a curve of genus 1. For any point OeC, we can associate to the
elliptic curve (C, O) its j-invariant j(C, O). This exercise sketches a proof that the
value j(C, 0) is independent of the choice of the basepoint 0. Thus we can assign
a j-invariant j(C) to any curve C of genus 1. (We assume that char(K) s 2. The
result is still true for char(K) = 2, but the method of proof must be modified and
the ensuing algebra is more complicated.)

(a) Choose a Legendre equation

y =x(x—1(x - 4)

for the elliptic curve (C, 0). Show that the map x : C — P! has degree 2 and
is ramified exactly over the points {0, 1, 4, c0}.
(b) Let O’ e C be another point, and choose a Legendre equation

w? =z(z — 1)(z — p)
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3.22.

3.23.

3.24.

for (C, 0’). Let 7: C — C be the translation-by-O’ map on the elliptic curve
(C, 0). Show that there are constants ae K and be K* such that t*(z) =
a + bx. [Hint: Look at the divisor of 7*(z).]

(c) Let f:P' — P be the map f(z) = a + bt. Prove the f maps the set {0, 1, A}
bijectively to the set {0, 1, u}. [Hint: Compare the ramification of the maps
zotand fox.]

(d) Show that

e /i, 1= 2, 1/(1 = 2), A1 — ), (A — 1)/4}.

[Hint: Consider the six ways of matching {0, 1, A} with {0, 1, u}.]

(¢) Deduce that j(C, O) = j(C, 0'). [Hint: Show that the formula for j(E,) in
(1.7b) does not change if 4 is replaced by any of the six expressions given
in (d).]

Let C be a curve of genus 1 defined over K.

(a) Prove that j(C)e K.

(b) Prove that C is an elliptic curve over K if and only if C(K) # .

(c) Prove that C is always isomorphic (over K) to an elliptic curve defined over
K.

Deuring Normal Form. The following normal form for a Weierstrass equation is

sometimes useful when dealing with elliptic curves over (algebraically closed)

fields of arbitrary characteristic.

(a) Let E/K be an elliptic curve, and assume that either char(K) # 3 or j(E) # 0.
Prove that E has a Weierstrass equation over K of the form

E:y*+oaxy+y=x3  aeck.

(b) For the Weierstrass equation given in (a), show that (0, 0)e E[3].
(c) For what value(s) of a is the equation singular?
(d) Verify that

J(E) = a3(@® — 24)3 (> — 27).
Let E/K be an elliptic curve with complex multiplication over K (i.e. Endg(E) is
strictly larger that Z.) Prove that for all primes £ # char(K), the action of Ggx

on the Tate module T,(E) is abelian. [Hint: Use the fact that the non-trivial
endomorphisms in Endg(E) commute with the action of Gg -]



CHAPTER IV
The Formal Group of an Elliptic Curve

Let E be an elliptic curve. In this chapter we start by studying an “in-
finitesimal” neighborhood of E centered at its origin O. In other words, we
look at the local ring K[E],, and take the completion of this ring at its
maximal ideal. This leads to a power series ring in one variable, say K[z], for
some uniformizer z at 0. We can then express the Weierstrass coordinates x
and y as formal Laurent power series in z. Further, we can write down a
power series F(zy, z,)€ K[z,, z,] which formally gives the group law on E.
Such a power series, which might be described as a “group law without any
group elements”, is an example of a formal group. In the remainder of the
chapter we study in some detail the principal properties of arbitrary (one-
parameter) formal groups. The advantage of suppressing all mention of the
elliptic curve which motivated this study in the first place is that working
with formal power series tends to be fairly easy. Then, of course, having
obtained results for arbitrary formal groups, we can apply them in particular
to the formal group associated to our original elliptic curve.

§1. Expansion around O

In this section we investigate the structure of an elliptic curve and its addition
law “close to the origin”. To do this it is convenient to make a change of
variables, so let

1 1
z=-> and w=—- (sox=£andy=——>.
y Yy w w

The origin O on E is now the point (z, w) = (0, 0), and z is a local uniformizer
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at O (i.e., z has a zero of order 1 at 0.) The usual Weierstrass equation for E
becomes

w=24a,zw + a,22w + azw? + agzw? + agw? (= f(z, w)).

The idea now is to substitute this equation into itself recursively so as to
express w as a power series in z. Thus

w=2+(a,z + a,z%)w + (a3 + a,2)w* + agw?
=23+ (a2 + a,2%)[2% + (a1 2 + a, 22w + (a3 + a,2)w? + agw?]
+ (a3 + a2)[23 + (a,z + a, 22w + (a; + agz2)w? + agw]?

+ ag[2® + (a,z + a, 29w + (a3 + a2)w? + agw’]?

=23+ a,z* + (a? + ay)2° + (a? + 2a,4a, + ay)z®
+ (at + 3ata, + 3a,a; + a3 + a2’ + -
=231+ A,z + A2 + ),
where A,€Z[a,, ..., aq] is a polynomial in the coefficients of E. Of course,

we must show that this procedure actually converges to a power series
w(z)eZ[a,, ..., ag][z], and naturally we want the equality

w(z) = f(z, w(z))

to hold in the power series ring.
To more precisely describe the algorithm for producing w(z), define a
sequence of polynomials by

fl(zs W) = f(Z, W) and fm+1(z’ W) = fm(z’f(zs W))
Then we take
w(z) = Lim f,,(z, 0)

provided this limit makes sense in Z[ay, ..., as][z].
Proposition 1.1. (a) The procedure described above gives a power series
w(z) = z23(1 + A,z + Ay 22 + +-*)eZ[ay, ..., agl[z].
(b) w(z) is the unique power series satisfying
w(z) = [(z, w(z)).
() If Z[ay, ..., as] is made into a graded ring by assigning weights wt(a;) = i,

then A, is a homogeneous polynomial of weight n.

Proor. Parts (a) and (b) are really special cases of Hensel’s lemma, which we
prove below (1.2). To prove the present proposition, use (1.2) with
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R =Z[a,,...,as](z], 1=(2),
Fw) = f(z, w) — w, a=0, =1
Finally, to prove (c) we assign weights to z and w,
wi(z)= —~1 and wtw)= —-3.

Then one sees that f(z, w) is homogeneous of weight — 3 in the graded ring
Zla,,...,aq, 2z, w], hence by an easy induction so is every f,(z, w). In
particular,

fa(,0)=2°(1 + Byz + Byz* + -+ + Byz")

is homogeneous of weight —3, so each B, is homogeneous of weight n in
Z{a,,...,as). Hence the A,’s have the same property, since f,,(z, 0) converges
to w(z) as m — co. O

Lemma 1.2 (Hensel’s Lemma). Let R be a ring which is complete with respect
to some ideal I = R, and let F(w)e R[w] be a polynomial. Suppose that ae R
satisfies  for some integer n > 1)

F(a)eI” and F'(a)e R*.
Then for any a€ R satisfying o = F'(a) (mod I), the sequence
W =a Wyt1 = W, — F(W,)/a
converges to an element b e R satisfying
F(b)=0 and b=a(modlI").

If R is integral domain, then these conditions determine b uniquely.

{We remark that Hensel’s lemma is usually proven for complete local rings,
and generally one uses Newton’s iteration w,.; = w,, — F(w,)/F'(w,). For
this reason, we include a quick proof of (1.2).)

Proor. To ease notation, we replace F(w) by F(w + a)/u, so we are now
dealing with the recursion
wo=0, F()el", F'(0) = 1 (mod I), Wpry = Wy, — F(w,).

Since F(0)eI", it is clear that if weI”, then w — F(w) is also in I™. It follows
that

w,el” forallm> 0.
We now show by induction that
Wy = W,,_; (mod [™*") forallm = 0.

For m = 0, this just says F(0) = 0 (mod I"), which is one of our initial as-
sumptions. Assume now that this congruence is true for all integers less than
m. Let X and Y be new variables, and factor



§1. Expansion around O 113

FX)-FY)=(X—-Y)(F(0)+ XG(X,Y)+ YH(X,Y))
with polynomials G, He R[ X, Y]. Then
W1 — Wy = (Wm - F(Wm)) - (wm—l - F(Wm—l))
= (wm - Wm—-l) - (F(wm) - F(Wm-—l))
= (Wm - Wm—l)[l - F/(O) - WmG(Wma Wm—l)
- Ym-1 H(Wma Wm—l)] el
Here the last line follows from the induction hypothesis and the fact that
F’'(0) = 1 (mod I) and w,,, w,,_, € I". This proves that w,, — w,,_, e I™*" for all
m 2= 0.

Since R is complete with respect to I, it follows that the sequence w,
converges to an element be R; and since every w,el”, bel” also. Further,
taking the limit of the relation w,,, =w, — F(w,) as m— oo yields
b=b— F(b),so F(b)=0.

Finally, to show uniqueness (under the assumption that R is an integral
domain), suppose that also ce I" and F(c) = 0. Then

0=F(b)— F(c)=(b—)(F'(0) + bG(b, c) + cH(b, c)).

If b # ¢, then F'(0) + bG(b, ¢) + cH(b, c) = 0. But bG(b, ¢) + cH(b, c)e I, s0 it
would follow that F’(0)e I. This contradiction shows that b = c. O

Using the power series w(z) from (1.1), we find Laurent series for x and y,

z 1 a

X(2)=——=— — ——a, — asz — (ay + a,a3)z* — -
(2) wo 2z 2 3 (a4 103)
-1 1 a a
V@) =——=—5+5+—+0a3+(a,+aa3)z + .
w(z2) z z z

Similarly the invariant differential has an expansion
w(2) =1+ a;z + (@? + ay)z? + (a3 + 2a,a, + a3)z*
+ (at + 3a2a, + 6a,a; + a3 + 2a,)z* + ") dz.

We note that the series x(z), y(z), and w(z) have coefficients in Z[ay, ..., a¢].
This is clear for x(z) and y(z); while for w(z) it follows from the two
expressions

o(2) dx(z)/dz Y R
- = Z[3,ay, ...,
dz  2y+ax+ay; —22°%+ AL aes1[z]
o(z) dy(z)/dz 3ty

-€Z[3, a5 ..., agl[2],

dz  3x*+2a,x +a, —a;y 3z 4

which show that any denominator is simultaneously a power of 2 and a
power of 3.
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Now the pair (x(z), y(z)) provides a “formal solution” to the Weierstrass
equation

E:y* 4+ a;xy + asy = x> + a,x* + a,x + ag;

that is, a solution in the field of formal power series. If E is defined over a field
K, we might try to produce points of E by taking ze K and looking at
(x(2), ¥(2)). In general, there is no obvious way to attach a meaning to an
infinite series such as x(z). But if K is a complete local field with ring of
integers R and maximal ideal .#, and if the coefficients satisfy a;e R, and if
ze M, then the power series x(z) and y(z) will converge to give a point of
E(K). This gives an injection (the inverse is z = — x(z)/y(z))

M — E(K),

and it is easy to characterize the image as those (x, y) with x ™! € . This map
will be a key tool when we study elliptic curves over local fields in chapter
VIL
Returning now to formal power series, we look for the power series for-
mally giving the addition law on E. Thus let z,, z, be independent indetermi-
nates, and let w; = w(z;) for i = 1, 2. In the (z, w)-plane, the line connecting
(zy, wy) to (z,, w,) has slope
W, —w 75—z}
A=Mzy, z,)=——+ = 2 1eZa,...,a Z1, 2]
( 1 2) z,—z, Z z, -z, [ 1 6][[ 1 2]]

Note that A has no constant or linear term. Letting
v=v(zy,2;) =w, — Az, €”Z[ay, ..., a6] 2y, 25],

the connecting line has equation w = Az + v. Substituting this into the
Weierstrass equation gives a cubic in z, two of whose roots are z; and z,.
Looking at the quadratic term, we see that the third root (say z,) can be
expressed as a power series in z, and z,,

z3 = z3(24, 25)

ali + 0312 - a2v _ 2(14/1\) - 3(16/12\)
1+ ayA + a, 2% + agh®

€Z[ay,...,a6l(z;, 5]

For the group law on E, the points (z, w,), (z,, w,), (z3, w3) add up to zero.
Thus to add the first two, we need the formula for the inverse. In the (x, y)-
plane, the inverse of (x, y) is (x, —y — a;x — a;). Hence the inverse of (z, w)
will have z-coordinate (remember z = —x/y)

=_Zl_22+

x(2) 272 — gz}

i(z) = = N Z cens .
i@ yz)+ax(z)+a; —z3+2a,z7%+ eZlan a6l

This gives the formal addition law
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F(zy, 25) = i(z3(24, 22))
=2z, 42, —a,2,2, — ay(z3z, + z,23)
—(2a;23z, — (aya, — 3a3)222% + 2a53z,23) + -+
€Zlay,..., a6z, 25]-
From the corresponding properties for E we deduce that F(z,, z,) satisfies
F(zy, z,) = F(z3, 24) (commutativity)
F(z,, F(z5, 2)) = F(F(z4, 23), 2) (associativity)

F(z,i(z)) =0 (inverse).

The power series F(z,, z,) might be described as “a group law without any
group elements”. Such objects are called formal groups. We could now con-
tinue with the study of the particular formal group coming from our elliptic
curve, but since it is little more difficult to analyze arbitrary (one-parameter)
formal groups, and in fact the abstraction tends to clarify the situation, we

will take the latter approach. The reader should, however, keep the example
of an elliptic curve in mind when reading the rest of this chapter.

§2. Formal Groups
Let R be a ring.

Definition. A (one-parameter commutative) formal group & defined over Ris a
power series F(X, Y)e R[X, Y] satisfying:

(a) F(X,Y)= X + Y + (terms of degree > 2).

(b) F(X,F(Y,Z))=F(F(X,Y), 2) (associativity).

{c) F(X,Y)=F(Y, X) (commutativity).

(d) There is a unique power series i(T)eR[T] such that F(T,i(T))=0
(inverse).

() F(X,0)=Xand F(0,Y) =Y.

We call F(X, Y) the formal group law of %.
Remark 2.1. It is in fact easy to show that (a) and (b) imply (d) and (e) (exer.

4.1). It is also true that (a) and (b) imply (c) provided that R has no torsion nil-
potents (see exer. 4.2b), but we will only prove this below if char(R) = 0.

Definition. Let (%, F) and (%, G) be formal groups defined over R. A homo-
morphism from F to % defined over R is a power series (with no constant
term) f(T)e R]T] satisfying

JF(X, Y)) = G(f(X), A(Y)).
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& and ¥ are isomorphic over R if there are homomorphisms f: # — % and
g:% — & defined over R with

fe(M) =9(f/(T))=T.

Example 2.2.1. The formal additive group, denoted G,, is given by
FX,Y)=X+Y.

Example 2.2.2. The formal multiplicative group, denoted G, is given by
FX,Y)=X+Y+XY=(1+X){1+Y)— 1
Example 2.2.3. Let E be an elliptic curve given by a Weierstrass equation
with coefficients in R. The formal group associated to E, denoted E, is given
by the power series F(z,, z,) described in section 1.
Example 2.24. Let (%, F) be a formal group. We can define homomorphisms
ml:F->%F

inductively for me Z by

[01(T)=0  [m+ 11(T) = F(Im)(T), T)
[m — 11(T) = F([m](T), i(T)).

One easily checks (by induction) that [m] is a homomorphism. We call [m]
the multiplication-by-m map. The following elementary proposition, which
explains when [m] is invertible, will be of great importance. (The progression
is (2.3) = (3.2b) = (VIL.3.1), and the latter provides a key fact for the proof of
the weak Mordell-Weil theorem (VIIL.1.1).)

Proposition 2.3. Let & be a formal group over R, and let meZ.

(@) [m](T) = mT + (higher order terms).
(b) If me R*, then [m]: F — F is an isomorphism.

Proor. (a) For m = 0 this is a trivial induction using the recursive definition
of [m] and the fact that F(X, Y) = X + Y + ---. Then, from

0=F(T,i(T))=T+iT) + -,

we see that i(T) = — T + ---; and now the downward induction for m < 0 is
also clear.

(b) This follows from (a) and the following lemma, which we will have
occasion to use several times. O

Lemma 2.4. Let ac R* and f(T)e R[T] a power series starting
f(Ty=aT + ---.
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Then there is a unique power series g(T)e R[T] such that f(g(T))=T. It
further satisfies g(f(T)) = T.

Proor. We construct a sequence of polynomials ¢,(T)e R[T] satisfying
f(gT)) = T (mod T**') and ¢,,1(T) = g,(T) (mod T"*").

Then g(T) = Lim g,(T) exists and clearly satisfies f(g(T)) = T.
To start the induction, let g,(T) = a™* T. Now suppose g,_,(T) has been
constructed. We look for 1€ R so that

go(T) = g,—1(T) + AT"
has the desired property. We compute
S(gu(T)) = f(gu-1(T) + AT")
= f(g,—1(T)) + aAT" (mod T™*?)
=T+ bT"+ aAT" (mod T™*)

for some b e R by the induction hypothesis. It thus suffices to take A = —b/a,
which is in R because a € R*. This shows that g(T) exists.

Next, applying g to f(g(T)) = T gives g(f(g(T))) = g(T). This is an iden-
tity in the power-series ring R[g(T)}], so g(f(T)) = T. Finally, if f(h(T)) = T,
then

g(T) = g(f(W(T)) = (g o f)(h(T)) = h(T),
which shows that g(T') is unique. O

§3. Groups Associated to Formal Groups

In general a formal group is merely a group operation, with no actual under-
lying group. But if the ring R is local and complete, and if the variables are
assigned values in the maximal ideal of R, then the power series giving the
formal group will converge. In this section we give some basic facts about the
resulting group. The following notation will be used:

R a complete local ring

M the maximal ideal of R

k the residue field R/.#

F a formal group defined over R, with formal group law F(X, Y).

Definition. The group associated to % /R, denoted F(#), is the set .# with
the group operations
x®zy=F(x,y) (addition) for x, ye M,

Ozx = i(x) (inverse) forxe #.
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Similarly, for n = 1, #(.#") is the subgroup of % (#) consisting of the set .#".

Since R is complete, the power series F(x, y) and i(x) converge in R for
X, ye#; and then the axioms for a formal group immediately imply that
F (M) is a group and F(#") a subgroup.

Example 3.1.1. The additive group G,(.#) is just .# with its usual addition
law. Notice the exact sequence (of additive groups)

05 G (#)>R—k—-0.

Example 3.1.2. The multiplicative group G, (#) is the group of 1-units (i.e.
1 + ) with its usual multiplication. Notice we again have an exact sequence

0- G, (#)>R*>k*—0.

Example 3.1.3. Let E be the formal group associated to an elliptic curve E/K
(2.2.3), where K is the quotient field of R. As we noted in section 1, the power
series x(z) and y(z) give a map

M — E(K)
z > (x(2), y(2)).

From the way the power series for £ was defined, this map gives a homo-
morphism of E(.#) to E(K). As we will see in chapter VII, there is often an
exact sequence

0— E(#) - E(K) - E(k) > 0,
where E is a certain elliptic curve defined over the residue field k. In this way

the study of E(K) is reduced to the study of the formal group E and the study
of an elliptic curve over a smaller (so hopefully simpler) field.

Proposition 3.2. (a) For each n > 1, the map
ﬁ('//{”)/,g'—(,//{"*'l)—),/”"/,//[“'l

induced by the identity map on sets is an isomorphism of groups.

(b) Let p be the characteristic of k (p =0 is allowed). Then every torsion
element of (M) has order a power of p. (See section 6 for a more precise
description.)

ProoF. (a) Since the underlying sets are the same, it suffices to show that the
map is a homomorphism. But for x, y € 4",

X@gy=Flx,y)=x+y+-
= x + y (mod .#?").

(b) We give two proofs of this important fact. Multiplying an arbitrary tor-
sion element by an appropriate power of p, it suffices to prove that there are
no non-zero torsion elements of order prime to p. Thus let m > 1 be prime to
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p (arbitrary if p = 0) and xe #(#) an element with [m](x) = 0. We must
show x = 0.

First, since m is prime to p, we see that m¢ .#. Hence from (2.3b), [m] is an
isomorphism of the formal group /R to itself, so it induces an isomorphism

[m]: F(M) = F(M).

In particular, it has trivial kernel, so x = 0.

For the second proof, we assume that R is Noetherian. We show induc-
tively that xe.#" for all n > 1, which implies x = 0 from Krull’s theorem
(TA-M, Corollary 10.20]). By assumption, x € .#. Suppose x e .#". Look at
the image X of x in F(M")/F (M"*"). On the one hand, X has order dividing
m. On the other hand, # (4")/% (.#"*") has only p-torsion, since from (a) it is
isomorphic to the k vector space .#"/.#"*!. Hence X =0, so xe . #/"*! as
desired. O

§4. The Invariant Differential

We return to the study of a formal group % defined over an arbitrary ring R.
In such a formal setting, a differential form is simply an expression P(T)dT
with P(T)e R[T]. Of particular interest are those differential forms which
respect the group structure of &.
Definition. An invariant differential on % /R is a differential form

o(T) = P(T)dTeR[T]dT
satisfying

wo F(T, S) = w(T).

[In other words, satisfying
where Fy(X, Y)is the partial derivative of F with respect to the first variable.]
An invariant differential as above is said to be normalized if P(0) = 1.

Example 4.1.1. On the additive group G,, an invariant differential is = dT.

Example 4.1.2. On the multiplicative group G,,, an invariant differential is
w=(01+T)'dT=(1~-T+ T? —--+)dT.
Proposition 4.2. Let % /R be a formal group. There exists a unique normalized
invariant differential on % /R, given by the formula
w = Fyx(0, T) 1 dT.

Every invariant differential on & /R is of the form aw for some a€R.
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Proor. Suppose P(T)dTis an invariant differential on #/R. Thus
P(F(T, S))Fx(T, S) = P(T).
Putting T = 0 (remember F(0, S) = S) gives
P(S)Fx(0, S) = P(0).

Since Fx(0,S) =1+ ---, we see that P(T) is determined by P(0), and every
possible invariant differential is of the form aw with ae R and

o(T) = Fy(0, T) 1 dT.

Since this w is normalized, it only remains to show that it is invariant.
Thus we must show that

Fx(0, F(T, 8$)) ' Fy(T, S) = Fx(0, T)™..
To prove this, differentiate the associative law
F(U,F(T,S))=F(F(U, T),S)
with respect to U to obtain (chain rule!)
Fx(U, F(T, S)) = Fx(F(U, T), S)Fx(U, T).
Now putting U = 0 (note F(0, T) = T) yields
Fx(0, F(T, S)) = Fx(T, S)Fx(0, T),
which is the desired result. O

Corollary 4.3. Let &#, %/R be formal groups with normalized invariant dif-
ferentials w4, wg. Let f: F — % be a homomorphism. Then

wgo f = f'Qog.
(Here f'(T) is the formal derivative of the power series, obtained by differen-

tiating f(T) term by term.)

Proor. Let F(X, Y), G(X, Y) be the formal group laws for & and 4. We
verify that wg o f is an invariant differential on #:

g 0 f(F(T, 8)) = we(G(f(T), f(S))) since f is a homomorphism
= wg o f(T) since wy is invariant for .
Hence from (4.2), wg o f equals aw . Comparing initial terms gives a = f7(0).

O

Corollary 4.4. Let % /R be a formal group and peZ a prime. Then there are
power series f(T), g(T)e R[T] such that

[p1(T) = pf(T) + g(TP).
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Proor. Let o(T) be the normalized invariant differential on #. From (2.3a)
we have [p]'(0) = p, so (4.3) implies that

po(T) = wo[p](T) = (1 +--)[p](T)dT.

Since the series (1 +:--) is invertible in R[T], it follows that
[p)(T)epR[T]; hence every term aT" in the series [p](T) satisfies either
aepRorp|n. O

Example 4.5. Let E be the formal group associated to an elliptic curve (2.2.3).
Then in terms of the coefficients of a Weierstrass equation for E, one finds
RUT)=2{T—a,T*+ -} + {—a,T* + (aya, — Ta;)T* +---},
[BUT) =3{T—a,T? + (4a,a, — 13a5)T* + -} + {(a? — 8a,)T* +---}.

§5. The Formal Logarithm

By integrating an invariant differential, one might hope to obtain a homo-
morphism to the additive group. Unfortunately, integration tends to intro-
duce denominators, but at least in characteristic 0 we can proceed fairly well.

Definition. Let R be a ring of characteristic 0, K = R ® Q, and % /R a formal
group. Let

o(T)=1+¢,T+c;T* +¢3T? +---dT
be the normalized invariant differential on % /R. The formal logarithm of

& /R is the power series

logs(T) = fa)(T) - T+c—21T2 +%2T3 +--eK[T].

The formal exponential of % /R is the unique power series expg#(T)e K[ T
satisfying

logz oexps(T) = expg ologx(T) = T.
(Note expg exists and is unique from (2.4).)
Example 5.1. The formal group law and invariant differential of the formal
multiplicative group # = G, are
Fz(X,Y)=X+Y+ XY and wgx(T)=(1+ T)1dT.

Thus its formal logarithm and exponential are given by

logf(T) = J‘(l + T)_l dT: i (__l)n—lTn/n
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and
exp#(T) = Y, T"/n!.
n=1

(Remember that the “identity” is at T = 0, so in terms of the usual series these
series are log(1 + T) and e” — 1.)

Proposition 5.2. Let % /R be a formal group with char(R) = 0. Then
logs: F - G,

is an isomorphism of formal groups over K = R ® Q. (N.B. Due to the de-
nominators in logg, it is not in general an isomorphism over R.)

Proor. Let w(T) be the normalized invariant differential on #/R. Thus
o(F(T, §)) = o(T).
Integrating this with respect to T gives
logzF(T, §) = log#(T) + f(S)

for some “constant of integration” f(S)e K[S]. Taking T = 0 shows that
f(S) = log4#(S), which proves that logs is indeed a homomorphism. Its
inverse is expg, so logg is an isomorphism. ]

Application 5.3. Suppose R is a ring of characteristic 0 and F(X, Y)e R[X, Y]
is a power series satisfying

F(X,F(Y,Z))= F(F(X, Y), Z), F(X,0) =X, FO, Y)=7Y

We note that in constructing the invariant differential, formal logarithm, and
formal exponential, and in proving their basic properties, we used only these
three facts about F(X, Y). Thus letting K = R® Q, we have shown the
existence of power series log(T), exp(T)e K[T] such that

F(X, Y) = exp(log(X) + log(Y)).

In particular, we see that F(X, Y) = F(Y, X). In other words, every one-
parameter formal group in characteristic 0 is automatically commutative.
(For a more precise statement, see exer. 4.2b.)

For certain applications it is useful to have a bound for the denominators
appearing in log and exp. For the former, it is clear from the definition, while
for the latter we use the following calculation.

Lemma 5.4. Let R be a ring with char(R) = 0, and let

fl

AT) =

uMs
2l

be a power series with a,€ R and a, € R*. Then the unique power series satisfy-
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ing f(g(T)) = T (cf. 2.4) can be written

9(T)= %, —','
with b, e R.

Proor. Differentiating f(g(T)) = T gives
f(g(T)g'(T) =1

so evaluating at T = 0 shows that
b, =4¢0)=1/f'(0) = 1/a, eR*.
Differentiating again yields
f'(@(T)g"(T) + f"(g(T))g'(T)* =

Now repeated differentiation will show that for every n > 2, f'(9(T))g™(T)
can be expressed as a polynomial (with integer coefficients) in the variables
f9g(T)), 1 <i<n,and g¥(T), 1 <j<n-— 1. Hence evaluating at T=0
expresses a, b, as a polynomial in a,, ..., a,, b, ..., b,_,.Since a,, b, € R*, an
easy induction now shows that every b, e R. O

Proposition 5.5. Let R be a ring with char(R) = 0, and let # /R be a formal
group. Then

logy(T)=i T" and expg(T) = i

it
witha,,b,eRanda, = b, =

Proor. The expression for logg follows directly from the definition, and then
the above lemma (5.4) shows that expg has the desired form. O

§6. Formal Groups over Discrete Valuation Rings

Let R be a complete local ring with maximal ideal .#, and let #/R be a
formal group. As we have seen (2.2b), the associated group % (.#) has no
torsion of order prime to p = char(R/.#). We now analyze more closely the
p-primary torsion for the case of discrete valuation rings.

Theorem 6.1. Let R be a discrete valuation ring which is complete with respect
to its maximal ideal M, let p = char(R/.#), and let v be the valuation on R. Let
Z /R be a formal group, and suppose that x € F (.#) has exact order p" for some
n=1.(le [p](x) = 0and [p" '](x) # 0.) Then

(x)\n—v(p%i.'
p'—p
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Proor. The statement is automatic (and uninteresting) if char(R) # 0 or
p = 0, since then v(p) = co. We assume this is not the case. From (4.4), we
know that

[p1(T) = pf(T) + g(T");

and from (2.3a), f(T) = T + ---. We prove the theorem by induction on n.
Suppose x # 0 and [p](x) = 0. Thus

0 = pf(x) + g(x*).

Since R is a discrete valuation ring, the only way that the leading term of
pf(x) can be eliminated is to have

v(px) = v(xP).
Hence
u(p) = (p — Dv(x),

which proves the theorem for n = 1.
Now assume that the theorem is true for n, and let x € #(#) have exact
order p"*!. Then

v([p1(x)) = v(pf(x) + g(x*))
= min{v(px), v(x?)}.
But [ p](x) has exact order p", so by the induction hypothesis
v(p)/(p" — p"1) = v([p1(x)).
Therefore
o(p)/(p" — p"") = min{v(px), v(x”)}.
But since v(x) > 0 and n > 1, it certainly is not possible to have
o(p)/(p" — p"') = v(px).
We conclude that
v(P)/(p" — p"™") 2 v(x”) = pv(x),

which is exactly the desired result. O

Example 6.1.1. Let # be a formal group defined over Z,, the ring of p-adic
integers. If p > 3, then (6.1) says that #(pZ,) has no torsion at all; and even
for p = 2 it has at most elements of order 2. The same holds for the ring of
integers in any finite unramified extension of Q,. For a general finite exten-
sion, the determining factor is the ramification degree (which equals v(p) if
one takes a normalized valuation.)

Next we show that #(.#) has a large piece that looks like the additive
group. The idea is to use the formal logarithm to define the map, but the
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presence of denominators means that convergence is no longer automatic.
The following two lemmas will thus be useful.

Lemma 6.2. Let v be a valuation and p € Z a prime with 0 < v(p) < 0. Then for
all integersn = 1,

v(n) < (_"ﬂ
p

-1

Proor. We compute

o= 5[ <"

i=1

- nv(pi (1 — plleerm) < (n— l)v(p)‘ O
_ p—1

Lemma 6.3. Let R be a ring of characteristic 0, complete with respect to a
discrete valuation v, and let p e Z be a prime with v(p) > 0.
(@) Let f(T) be a power series of the form

AT = T" with a,eR.

M8
R

n=1

If xR satisfies v(x) > O, then the series f(x) converges in R.
(b) Let g(T) be a power series of the form

® b
gT)=Y ﬁ"'T" with b,eR and b, eR*
n=1N:

If x € R satisfies v(x) > v(p)/(p — 1), then the series g(x) converges in R, and

v(g(x)) = v(x).

Proov. (a) For a general term of f(x), we have
v(a,x"/n) = nv(x) — v(n) since a,€ R
= nv(x) — (log, n)v(p);

and this last expression goes to oo as n goes to oo. Since v is non-
archimedean, f{x) converges.
{(b) For a general term of the series g(x), we have

v(b,x"/n!) = nv(x) — v(n!) since b,eR
=no(x) —(n— Do(p)/(p— 1) from (6.2)

v(x) + (n — 1){v(x) — M}
p—1
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Hence from the initial assumption on v(x), we have
v(b,x"/n!) » 0 asn— oo, and
v(b,x"/n!) > v(x) forn> 2.

Since v is non-archimedean, the former implies that g(x) converges, and the
latter shows that the leading term predominates. (Note v(b; x) = v(x).) O

Theorem 6.4. Let K be a field of characteristic 0, complete with respect to a
normalized discrete valuation v (i.e. v(K*) = Z), R the valuation ring of K, #
the maximal ideal of R, and peZ a prime with v(p) > 0. Let # /R be a formal

group.
(a) The formal logarithm induces a homomorphism

logg : F(MA)—> K (taken additively).

(b) Let r > v(p)/(p — 1) be an integer. Then the formal logarithm induces an
isomorphism

logg : F (M) 33 G, ().

Proofr. (a) Since
logg F(X, Y)=logs X + loggY

as power series (5.2), it suffices to prove that logg(x) converges for xe.#.
This follows from (5.5) and (6.3a).

(b) Similarly, since logs and expg give inverse homomorphisms as power
series (5.2), it suffices to show that for xe.#’, both loggz(x) and expz(x)
converge and are in .#". This follows immediately from (5.5) and (6.3b). (Note
that since v is normalized, x € 4" is equivalent to v(x) > r.) O

Remark 6.5. If r > v(p)/p — 1, then (6.4) implies that # (") is torsion free,
since G,(.#") certainly is. We thus recover the n = 1 case of (6.1).

§7. Formal Groups in Characteristic p
For this section we let R be a ring of characteristic p > 0.

Definition. Let &, /R be formal groups and f: # — ¢ a homomorphism
defined over R. The height of f, denoted ht(f), is the largest integer h such
that

f(T) = g(T?)

for some power series g(T)e R[T]. (If f = 0, then ht(f) = 00.) The height of
Z, denoted ht(F), is the height of the multiplication by p map [p]: & —» #.
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Example 7.1. If m > 1 is prime to p, then ht([m]) =0, since [m](T) =
mT + --- (2.3a). On the other hand, (4.4) implies that ht([p]) = 1, so the
height of a formal group is always a positive integer.

Proposition 7.2. Let #, %/R be formal groups and f: & — % a homomorphism
defined over R.

(@) If f'(0) = 0, then f(T) = f,(T") for some f,(T)e R[T].
(b) Write f(T) = g(T?") with h = ht(f). Then g'(0) # 0.

Proor. (a) Let wz and wy be the normalized invariant differentials on # and
4. Then

0=71"0)ws(T) since f'(0) =0
= wg(f(T)) from (4.3)
=1+ )f"(T)dT.

Hence f'(T) = 0, s0 f(T) = f,(T?).

(b) Let g = p* and if F(X, Y) = Za;X'Y is the power series for %, let #@
denote the formal group with group law F@(X, Y) = Za,X'Y’. One easily
checks that since char(R) = p, #@ is a formal group. We now show that g is
a homomorphism from #@ to .

g(F9X,Y)=g(F@S, T)Y) writingS?=X,Ti=Y
= f(F(S, T))
= G(f(S), f(T)) since f is a homomorphism
= G(g(59, g(T%)
= G(g9(X), g(Y)).

Hence if ¢g'(0) = 0, then from (a) we would have ¢g(T) = g,(T"). This would
mean that

f(T) = g(T?) = g,(T™™),
contradicting the fact that h = ht(f). Therefore g'(0) # 0. O

Next we show that the height behaves well under composition.

Proposition 7.3. Let #, 9, # /R be formal groups and
Fhebw
a chain of homomorphisms. Then

ht(go f) = ht(f) + hi(g).

ProoF. Write
AT)=f(T™) and g(T) = g,(T").
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Then
go f(T) = g, (fy(T"*"V™) = g, (f,(T?"*""™)),

where f; is obtained from f, by raising each coefficient to the p"@ power.
Since g; and f, have non-zero linear terms (7.2b), it follows that

hi(g o f) = he(f) + ht(g)- a

Finally, we return to the study of elliptic curves, and relate the inseparable
degree of an isogeny to the height of the corresponding map on the formal
groups.

Theorem 7.4. Let K be a field of characteristicp > 0, E,, E, /K elliptic curves,
and ¢ : E, — E, a non-zero isogeny defined over K. Further let f: E, —» E, be
the homomorphism of formal groups induced by ¢. Then

deg;(4) = p".

Corollary 7.5. Let E/K be an elliptic curve. Then
ht(E) =1 or 2.

Proor. We start with two special cases.

Case 1. ¢ is the p'-power Frobenius map. Then deg;¢ = p” (I1.2.11), while
f(T)=T",so ht(f) =r.

Case 2. ¢ is separable. Let @ be an invariant differential on E,/K, and let
o(T) be the corresponding differential on the formal group E,. Since ¢ is
separable, we have ¢*w # 0 (IL.4.2¢), so using (4.3),

0o f(T) = f(0)w(T) # 0.

Hence f7(0) # 0, so ht(f) = 0.

Now from (IL.2.12) every isogeny is the composition of a Frobenius map
and a separable map. The theorem now follows from the above two cases and
the fact that inseparable degrees multiply and heights add (7.3) under
composition.

The corollary is immediate on applying the theorem with ¢ = [p], since
the map [p] has degree p? (I11.6.4a). O

EXERCISES
4.1. Let F(X, Y)eR[X, Y] be a power series satisfying
FX,Y)=X+ Y+ and F(X,F(Y,Z)=F(F(X,Y),Z).

(a) Show that there is a unique power series i(T)eR[T] satisfying
F(T,i(T)) = 0.
(b) Show that F(X,0) = X and F(0, Y) =Y.
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42.

43.

44.

4.5.

(a) Let R = F,[]/(¢?). Show that
FX,Y)=X + Y +eXY?

defines a “non-commutative formal group”. (Le. F satisfies all the properties
of a formal group law except F(X, Y) = F(Y, X).)

(b) Let R be a ring. Show that there exists a non-commutative formal group
defined over R if and only if there is an ¢ € R and integers m, n > 1 such that
me=¢" =0.

Let R be the ring of integers in a finite extension of Z, and let #/R be a formal

group.

(a) Show that for every x € #(.#),

Limit [p"]}(x) = 0.
(by Show that for every aeZ, there exists a unique homomorphism
[o] : F > F with
[«](T)=0aT +---eR[T].

Let R and /R be as in (exer. 4.3), and let h be the height of the formal group
over R/.# obtained by reducing modulo .# the coefficients of the formal group
law for #. Show that there is a finite extension R’ of R with maximal ideal .#’
such that the p-torsion in Z (') is isomorphic to (Z/pZ)*. [ Hint: Use the p-adic
version of the Weierstrass preparation theorem [La 8, Ch. 5, Thm. 11.2].] This
provides an alternative proof of (7.5).

Let E be the elliptic curve y? = x> + Ax.
(a) Let w(z) = £A,z" be the power series for E described in section 1. Prove that

A,=0 unless n=3(mod4).

(b) Let F(X, Y) = XF,(X, Y) be the formal group law for E, where F,(X, Y)isa
homogeneous polynomial of degree n. Prove that

F,=0 unless n=1(mod 4).

(c) Prove the analogous statements for the curve y* = x> + A.



Chapter V

Elliptic Curves over Finite Fields

In this chapter we study elliptic curves defined over a finite field. The most
important arithmetic quantity associated with such a curve is its number of
rational points. We start by proving a theorem of Hasse which says that if K
is a field with g elements, and E/K is an elliptic curve, then E(K) contains
approximately g points, with an error of no more than 2\/5. Following Weil,
we then reinterpret and extend this result in terms of a certain generating
function, the zeta-function of the curve. In the final two sections we study in
some detail the endomorphism ring of an elliptic curve defined over a finite
field, and in particular give the relationship between End(E) and the existence
of non-trivial p-torsion points. The notation for chapter V is:

K a perfect field of characteristic p > 0

q a power of p

§1. Number of Rational Points

Let K be a finite field with g elements and let E/K be an elliptic curve. We
wish to estimate how many points there are in E(K); or equivalently, one
more than the number of solutions to the equation

E:y* +a,xy + a3y = x> + a,x% + a,x + ag

with (x, y)e K. Since each value of x yields at most two values of y, a trivial
upper bound is 2q + 1. But since a “randomly chosen” quadratic equation
has a 509; chance of being solvable in K, one would expect the right order of
magnitude to be g. The following theorem, conjectured by E. Artin in his
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thesis and proved by Hasse in the 1930’s, shows that this heuristic reasoning
is correct.

Theorem 1.1. Let E/K be an elliptic curve defined over the field with q elements.
Then

|#E(K)—q— 1] <2./q.

Proor. Choose a Weierstrass equation for E with coefficients in K, and let
9. E->E
(x, y) = (x% y%)

be the g*"-power Frobenius morphism (ITL.4.6). Since the Galois group Ggx is
(topologically) generated by the q'®-power map on K, we see that for a point
PeE(K),

PeE(K) ifand onlyif  ¢(P)=P.
Thus
E(K) = ker(1 — ¢),
S0
#E(K) = # ker(1 — ¢)
=deg(l —¢)  (IIL.5.5 and I11.4.10c).

(Note the importance of knowing that the map 1 — ¢ is separable.) Since the
degree map on End(E) is a positive definite quadratic form (II1.6.3), and
deg ¢ = q (IL.2.11¢), the following version of the Cauchy—Schwarz inequality
gives the desired result. O

Lemma 1.2. Let A be an abelian group and
d:A-7Z
a positive definite quadratic form. Then for all y, ¢ € A,

ld(y — ¢) — d(¢) — dW)| < 2,/ d(4) d(¥).

Proor. For , g€ 4, let
Ly, ¢) = d(yy — ¢) — d(9) — d(¥).

By definition of quadratic form, L is bilinear. Since d is positive definite, we
have for all m, ne Z,

0 < d(my — ng) = m*d() + mnL(y, §) + n*d(g).

In particular, taking
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m=—L{y,¢) and n=2d()
yields

0 < d(y) [4d(y) d($) — LW, ¢)*].
This gives the desired result provided ¥ # 0, while for y = 0 the original
inequality is trivial. O

Application 1.3. Let K = F, be a finite field with ¢ odd. One can use Hasse’s
result to estimate the value of certain character sums on K. Thus let

f(x) = ax® + bx? + cx + de K[x]
be a cubic polynomial with distinct roots (in K), and let
1. K*—> {i 1}

be the unique non-trivial character of order 2. (Le. x(t) = 1 if and only if tis a
square in K*) Extend y to K by setting x(0) = 0. We wish to use y to count
the K-rational points on the elliptic curve

E:y* =f(x).

Each xe K will yield 0 (respectively 1 or 2) point(s) (x, y)e E(K) if f(x) is a
non-square (respectively zero or a non-zero square) in K. Thus in terms of
we find (remember the point at infinity)

#EK)=1+ x;((x(f(x» +1)
=1+q+ ZKx(f(X))~

Comparing this with (1.1), we have proven

Corollary 1.4. With notation as above,

<2/q.

Noticg that the sum consists of g terms, each + 1. Thus (1.4) says that as x
runs through K, the values of a cubic polynomial f(x) tend to be equally
distributed between squares and non-squares.

2 1fx)

xeK

§2. The Weil Conjectures

In 1949, André Weil made a series of very general conjectures concerning the
number of points on varieties defined over finite fields. In this section we will
state Weil’s conjectures and prove them for elliptic curves.

Let K be a field with g elements; and for each integer n > 1, let K,, be the
extension of K of degree n, so # K, = ¢". Let V/K be a projective variety, so
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V is the set of zeros

fl(an ---’xN) = "'fm(an ~--axN) =0

of a collection of homogeneous polynomials with coefficients in K. Then
V(K,) is the set of points of V with coordinates in K,. We code the number of
such points into a generating function.

Definition. The zeta function of V/K is the power series

Z(V/IK; T)= exp(i(# V(K,,))Zn'j)

(Here if F(T)e Q[ T] is a power series with no constant term, then exp(F(T))
is the power series 2, F(T)"/il.) As usual, if we know Z(V/K; T), then we
can recover the numbers # V(K,) by the formula

1 d
#V(K,) = MWIOg Z(VIK; T)

T=0

The reason for defining Z(V/K; T) in this way, rather than using the more
natural series X(# V(K,))T", will become apparent below.

Example 2.1. Let V = P". Then a point of V(K,) is given by homogeneous
coordinates [x,, ..., xy] With x;e K, not all zero. Two sets of coordinates
give the same point if they differ by multiplication by an element of K}.
Hence

qn(N+1) _ 1 N

#V(K,)="——= 2 q"%
—1 i=0
so
© (N N\
tog 2017k 1) = 3 (3 )T
n=1 \i=0 h
N .
= ZO —log(1 — ¢'T).
Thus

1
(1-T)(1—qT) - (1—g"T)

Z(PY/K; T) =
Notice that in this case the zeta function is actually in Q(T). In general, if
there are numbers a4, ..., o, € C such that

#V(K)=o0af + - ta foralln=1,2,...,
then Z(V/K; T) will be a rational function.

Theorem 2.2 (Weil Conjectures). Let K be a field with q elements and V/K a
smooth projective variety of dimension n.
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(a) Rationality
Z(V/IK; T)e Q(T).

(b) Functional Equation
There is an integer ¢ (the Euler characteristic of V) so that

Z(V/K; 1/g"T) = +4"* T* Z(V/K; T).

(c) Riemann Hypothesis
There is a factorization

P1(T) P2n—1(T)
Po(T)Py(T) -+- Pp(T)

with each P(T)eZ[T]). Further Po(T)=1—-T, P,(T)=1—q"T, and for
each 1 <i<2n— 1, P(T) factors (over C) as

P(T) =[] —o;T) with |ayl = q"
j

Z(VIK;T) =

This conjecture was proposed by Weil [We 3] in 1949, and proven by him
for curves and abelian varieties. The rationality of the zeta function in general
was established by Dwork [Dw] in 1960 using techniques of p-adic func-
tional analysis. Soon thereafter the /-adic cohomology theory developed by
M. Artin, Grothendieck, and others gave another proof of the rationality and
the functional equation. Then in 1973 Deligne ([Del]) proved the Riemann

hypothesis. For a nice overview of Deligne’s proof, see [Ka].
We now prove the Weil conjectures for elliptic curves. Let £ be a prime
different from char(K). Recall that we have a representation (111 §7)

End(E) - End(T,(E))
Y - Yy

If we choose a Z,-basis for T,(E), then we can write ¥, as a 2 x 2 matrix, and
in particular can compute

det(y,), tr(Y)e Z,.
Of course, the determinant and trace do not depend on the choice of basis.

Proposition 2.3. Let e End(E). Then

det(y,) = deg(y) and tr(Y,) =1 + deg(y) — deg(l — ).
In particular, det(y,) and tr(Y,) are in Z and are independent of £.

Proor. Let v,, v, be a Z,-basis for T,(E), and write the matrix of i, for this

basis as
a b
o= 2 d).



§2. The Weil Conjectures 135

Recall there is a non-degenerate, bilinear, alternating pairing (I11.8.3)
e: T,(E) x THE) > T(p).
We compute
e(vy, v))**8¥ = e([deg Y]vy, vy)

= e Y01, 0,)  (IL6.12)
= e(Y,v,, Y,0,) (I11.8.3 and IIL.6.2f)
= e(av, + cv,, bv, + dv,)
= e(vy, v)" 7>
= e(v,, v,)%" ¥,

Since e is non-degenerate, we conclude that deg ¢ = det y,. Finally, for any
2 x 2 matrix A4, a trivial calculation yields

tr(4) =1 + det A — det(1 — A). O
Now let
¢:E->E
be the q"-power Frobenius endomorphism, so as we saw in section 1,

#E(K) = deg(1 — ¢) (IT1.5.5 and 111.4.10c).

Similarly, for each integer n > 1, ¢" is the (¢")""-power Frobenius endomor-
phism, so

# E(K,) = deg(l — ¢").

From (2.3), the characteristic polynomial of ¢, has coefficients in Z, so we
can factor it over C as (say)

det(T — ¢,) = T* ~ tr(¢,) T + det(d,) = (T — o) (T — B).
Further, since for every rational number m/ne QQ,
det((m/n) — ¢,) = det(m — ng,)/n* = deg(m — ng)/n* > 0,

it follows that the quadratic polynomial det(T — ¢,) has complex conjugate
roots. Thus |a| = |f], so from

af = det ¢, = deg ¢ = g,
we conclude that

el = 181 = /4.

Finally we note that the characteristic polynomial of ¢/ is given by

det(T — ¢7) = (T — a") (T — 7).



136 V. Elliptic Curves over Finite Fields

(To compute this, we may put ¢, in Jordan normal form, so it is upper
triangular with « and § on the diagonal.) In particular,

#E(K,) = deg(l — ¢")
= det(l — ¢;) from (2.3)
=1_an_ﬁn+qn,

where «, feC are complex conjugates of absolute value \/c; From this
expression it is easy to verify the Weil conjectures for elliptic curves as
follows.

Theorem 2.4. Let K be a field with q elements and E/K an elliptic curve. Then
there is an ae Z so that

1—aT + qT?

AEED = T a1y

Further
Z(E/K; 1/qT) = Z(E/K; T), and
1—aT+qT*=(1—aT)(1 - BT) with |al=18l=./q.
Proor. We compute

log Z(E/K; T) = 3. (#E(K,))T"/n definition
n=1

= i l—a"—=p"+qg"T"n from above
n=1

—log(1 — T) + log(l — aT) + log(l — BT) — log(l — qT).
Hence

(1 —aT)(1 - BT)
(1-17)(1—qT)’

which has the desired form, since from above o and f are complex conjugates
of absolute value \/c;, and

a=a+ f=tr(d) =1+ q — deg(l — ¢)eZ.

The functional equation is immediate (with ¢ = 0). O

Z(E/K; T) =

Remark 2.5. To see why (2.2¢) is called the Riemann hypothesis, we make a
change of variable and let T = ¢q*. Thus for an elliptic curve we have

_ e l_aq—s+q1—2s
CE/K(S) - Z(E/Ks q ) - (1 _ q_s) (1 _ ql_s) .
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Now the functional equation reads

CE/K(I —5) = CE/K(S)a
which certainly looks familiar. Further, the Riemann hypothesis for
Z(E/K; T) proved above says that if {;(s) = 0, then |¢°| = \/a, so Re(s) = 4.

§3. The Endomorphism Ring

Let K be a field of characteristic p, and let E/K be an elliptic curve. We have
seen (111.6.4) that there are two possibilities for the group of p-torsion points
E[p], namely O and Z/pZ. Similarly, there are several possibilities for the
endomorphism ring End(E) (III §9). The next result shows that the seemingly
unrelated values of E[ p] and End(E) are in fact far from independent.

Theorem 3.1 ([De 1]). Let K be a (perfect) field of characteristic p and E/K an
elliptic curve. For each integer r = 1, let

¢,:E—E" and ¢,:E®) -E

be the p"-power Frobenius map and its dual.
(a) The following are equivalent.

(i) E[p"]1 =0 for one(all)r = 1.
(ii) (ﬁ, is (purely) inseparable for one (all) r = 1.
(ii) The map [p]: E — E is purely inseparable and j(E)€ F ...
(iv) End(E) is an order in a quaternion algebra. (Note End(E) means Endg(E).)
(v) The formal group E/K associated to E has height 2. (cf. IV, §7.)

(b) If'the equivalent conditions in (a) do not hold, then
E[p1=2Z/p"Z  forallr =1,

and the formal group E/K has height 1. Further, if j(E)eF,, then End(E) is an
order in a quadratic imaginary field. (For j(E) transcendental over [, see exer.
5.8)

Definition. If E has the properties given by (3.1a), then we say that E is
supersingular, or that E has Hasse invariant 0. Otherwise we say that E is
ordinary, or that E has Hasse invariant 1.

Remark 3.2.1. There are yet further characterizations of supersingular elliptic
curves which are quite important in various applications. See [Har IV §4] for
a description in terms of sheaf cohomology, and [La 3, app. 2 §5] for one
involving residues of differentials.

Remark 3.2.2. Do not confuse the notions of singularity and supersingularity.
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By definition a supersingular elliptic curve is an elliptic curve, so in particular
it is a non-singular (i.e. smooth) curve.

Proor oF (3.1). For notational convenience, we let ¢ = ¢;.
(a) Since the Frobenius map is purely inseparable (I1.2.11b), we have

deg,(d,) = deg,[p'] = (deg,[p]) = (deg, §)".
Combining this with (IIL.4.10a) yields

#E[p"] = deg,(4,) = deg,(4)’,

from which the equivalence of (i) and (ii) follows immediately.
Next, from (IV.7.4) and the fact that ¢ is purely inseparable, we have

deg; § = (deg;[p])/p = p" &1,

Since ¢ has degree p, this shows that (ii) and (v) are equivalent.

We now prove (ii) = (iii) = (iv) = (ii).
(ii) = (iii). From (ii), it is immediate that [p] = é o ¢ is purely inseparable, so
we must show that j(E) e F,.. We apply (I1.2.12) to the map ¢ : E® — E. Since
¢ is purely inseparable by assumption, it follows from (I1.2.12) and compari-
son of degrees that ¢ factors as

¢ Y
E®»

b

where ¢ is the p't-power Frobenius map on E® and y has degree 1. But then
Y is an isomorphism (I1.2.4.1), so

J(E) = J(E®) = j(Ey>  (cf. IIL4.6).

Hence j(E)eF ..
(iii) = (iv). Suppose End(E) is not an order in a quaternion algebra. We
proceed to derive a contradiction. From (II1.9.4) we see that

# =End(E)® Q

is a number field (either Q@ or quadratic imaginary over Q).

Let E’ be any elliptic curve isogenous to E, say y : E — E'. Since y o [p]
= [p]o ¢ and [p] is purely inseparable on E, comparing inseparability de-
grees shows [ p] is also purely inseparable on E’. Hence

#E'[p] = deg,[p] =1,

so from (i) = (iii) above, j(E')eF,.. This gives the crucial fact that up to
isomorphism, there are only finitely many elliptic curves isogenous to E.
Now choose a prime £e€Z, £ # p, so that £ remains prime in the rings
End(E’) for every E’ isogenous to E. (Since there are only finitely many
possible End(E’)’s, and each is a subring of ¢, it is easy to find such an ¢. See
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exer. 5.5.) From (I11.6.4b),
E[/)=7Z/t'7 x 7/t'Z,
so we can find a sequence of subgroups
O, c®,c--cE with @, Z7//'7Z.

Let E; = E/®; be the quotient of E by ®,; (I11.4.12), so there is an isogeny
E — E; with kernel ®;. From above, there are only finitely many distinct E;’s,
so we can choose integers m, n > 0 such that E,,,, and E,, are isomorphic.
Composing this isomorphism with the natural projection from E,, to E,,..,,
we produce an endomorphism of E,,,
A Ep=S Eppyn 2 E,p.

Note that the kernel of 4 is cyclic of order . (Le. ker() = ®,,,,/®,,.) But £
is prime in the ring End(E,,), so just by comparing degrees we must have
A = uo[¢"*] for some ue Aut(E,). (Also n must be even.) But the kernel of
[£"*] is not cyclic for any n > 0. This contradiction proves the desired result.
(iv) = (ii). Suppose that (ii) is false, so @, is separable for all r > 1. We proceed
to prove that End(E) is commutative, which will contradict (iv) and so give
the desired result.

First we show that the natural map

End(E) - End(T,(E))

is injective. Suppose that y € End(E) goes to 0. Then fromAthe definition of
T,(E) we have y/(E[p"]) = O for all r > 1. Since [p"] = ¢, 0 ¢,, it follows that

ker §, < ker y.

Now the assumption that @, is separable implies that ¥ factors through ¢,
(II1.4.11), so for every r there is a commutative diagram
E _¢’_, E®)
[
v SE
Hence

deg A, = deg y/deg §, = p~" deg y.

Since this holds for every r, and deg 4, is an integer, we see that eventually
. = 0. Therefore = 0.
Next, from (IIL.7.1b), we know that T,(E) is either 0 or Z,. But
T,(E)/pT,(E) = E[p], and by assumption E[p] # 0, so T,(E) = Z, Now
combining this fact with the injection proven above, we have

End(E) <, End(T,(E)) = End(Z,) = Z,,

Therefore End(E) is commutative.
(b) From (II1.6.4c), E[p"] is 0 or Z/p"Z for every r = 1. Hence if condition (i)
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of (a) is false, then we must have
E[p1=Z/pZ forallr > 1.

Further, since (v) is assumed not to hold, (IV.7.5) implies that E/K has height
1.

Suppose now that j(E)e F, and E does not satisfy the conditions in (a). We
can find an elliptic curve E’, defined over a finite field K, which is isomorphic
to E (II1.1.4b). Let #K = p", so ¢, is an endomorphism of E'. Suppose that

¢,€Z < End(E).
Then comparing degrees, it would follow that
¢ =[£p™]
(and necessarily r is even.) But then by (4.10) and (I1.2.11b),
#E[p™] = deg, 4, = 1,

contradicting the assumption that (i) does not hold. Therefore ¢,.¢7Z, so
End(E’) is strictly larger than Z. By assumption, it is not an order in a
quaternion algebra, so from (IIL9.4) the only remaining possibility is an
order in a quadratic imaginary field. Since End(E")  End(E), this completes
the proof. O

§4. Calculating the Hasse Invariant

From (3.1a) we see that up to isomorphism, there are only finitely many
elliptic curves with Hasse invariant 0, since each has j-invariant in F,.. For
p = 2, one can easily check (exer. 5.7) that the only supersingular elliptic
curve is

E:y>+y=x>

For p > 2, the following theorem gives a simple criterion for determining
whether an elliptic curve is supersingular.

Theorem 4.1. Let K be finite field of characteristic p > 2.
(a) Let E/K be an elliptic curve with Weierstrass equation

E:y* =f(x),
where f(x)e K[x] is a cubic polynomial with distinct roots (in K). Then E is
supersingular if and only if the coefficient of x*~* in f(x)?~172 is zero.
(b) Let m = (p — 1)/2, and define a polynomial

H@="3 (';’)ztf.

i=0
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Let A€ K, A # 0, 1. Then the elliptic curve
E:y2=x(x—1)(x—4)

is supersingular if and only if H,(4) = 0. _
(c) The polynomial H,(t) has distinct roots in K. Up to isomorphism, there are
exactly

[p/12] + ¢,
supersingular elliptic curves in characteristic p, where ¢; = 1, and for p > 5,

e,=0,1,1,2 if p=1,5711(mod 12).

Remark 4.1.1. The results of this theorem (and more) are mostly in [De 1].
Our proof of (a) follows [Man 1], and (c) is from [Ig]. For a beautiful
generalization to curves of higher genus, see [Man 1].

Proor. (a) Let g = #K, let
x: K¥— {i 1}

be the unique non-trivial character of order 2, and extend y to K be setting
1(0) = 0. As we have seen (1.3), x can be used to count the number of points of
E,

#EK)=1+q+ ZK 2(f(x)).

Since K* is cyclic of order ¢ — 1, for any ze K we have
x(z) =z94Y2  inK.
Hence

#EK)=1+ Y f(x)e V2 inK.

xekK
But again from the cyclic nature of K*, we have the easy result
. —1 ifqg—1]i
Y, xi = 4
xeK 0 lfq —1 *l.

Since f(x) has degree 3, if we multiply out f(x)“ V7 and sum over xe K, the
only non-zero term comes from x?~!. Hence if we let

A, = coefficient of x?7* in f(x)@ ™V~
then
#EK) =1+ 4,

(Note this equality is taking place in K, so it is actually only a formula for
# E(K) modulo p.)
On the other hand, letting ¢ : E — E be the g"8-power Frobenius endomor-
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phism, we have (cf. §2)
#E(K) = deg(l — ¢)
=1—-a+gq,
where
a=1—deg(l — ¢) + deg ¢.
(Le. [@] = ¢ + $.) Comparing these two expressions for # E(K), we see that

—a=A (as an element of K).

q
Since a is an integer, this shows that
A, = 0<>a=0(mod p).
But ¢ = [a] — ¢, so
a = 0 (mod p)<> ¢ is inseparable (IIL.5.5)
<> E is supersingular (3.1a(ii)).
This proves that
A, = 0<> E is supersingular.
It remains to show that 4, = 0 if and only if 4, = 0. Writing
ST I < f(x) DR (f (R

and equating coefficients (remember f is a cubic) yields
Apr = A AY.

This easily gives the desired result by induction on r.
(b) This is a special case of (a). We need the coefficient of x?~' in
[x(x — D)(x — A)J", so the coefficient of x™ in (x — 1)(x — A)". That

coefficient is
(™ i m m—i
£ ()on(,m Yo

which differs from H,(4) by a factor of (—1)™.
(c) Let 2 be the differential operator

d? d
D=4l — )z +4( -2~ L.

Then by direct calculation and rearranging terms, one finds (remember
m=(p—1)/2)

m m\? .
FH,O=pY. (=2~ 2i)<i> t

In particular, since char(K) = p,
PH,(t)=0 in K[t].
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Hence the only possible multiple roots of H,(t) in Karet=0andt = 1. But

H,0) =1 and H,(1)= (” ; 1) = (—1)" (mod p),

so the roots of H,(t) are indeed distinct; and each root 4 gives an elliptic curve
E;:y* =x(x — 1) (x — A).

Now for p = 3, H,(t) = 1 + ¢, so there is exactly one supersingular elliptic
curve. It has j-invariant j(— 1) = 1728 = 0. We assume now that p > 5. Recall
that the association 4 — j(4) = j(E,) is exactly six-to-one except for j = 0 and
1728, where it is two-to-one and three-to-one respectively (II1.1.7). Further, if
H,(4) = 0, then for every A satisfying j(4) = j(A) we must have H,(1) = 0;
since E; = E,, and the roots of H,(t) give every A for which E; is super-
singular. Let ¢,(j) = 1 if the elliptic curve with j-invariant j is supersingular
over F,, and ¢,(j) = 0 if it is ordinary. Then using the fact that H,(t) has
distinct roots, the above considerations imply that the number of super-
singular elliptic curves in characteristic p > S is

é(? — 2¢,(0) — 38p(1728)> +£,(0) + £,(1728)

p—1 2 1
= T + 581,(0) + ’2*81,(1728)

As we will compute directly below (4.4, 4.5), £,(0) is 0 or 1 according asp = 1
or 2 (mod 3), and ¢,(1728) is 0 or 1 according as p = 1 or 3 (mod 4). Taking
the four possibilities for p (mod 12) gives the desired result. O

Remark 4.2. The differential operator & which we used to prove (4.1c) prob-
ably seems rather mysterious. This operator is called the Picard—Fuchs
differential operator for the Legendre equation

y? =x(x — 1) (x — o).

It arises quite naturally when one looks at the Legendre equation as defining
a family of elliptic curves parametrized by a complex variable ¢ (i.c. an
elliptic surface over P'). For a nice informal discussion of this connection, see
[Cle, §2.10].

Example 4.3. For p = 11,

H@O=+3*+>+1+3t+1
=2 —t+ 1)+ 1) -2+ 5 (mod 11).

The supersingular j-invariants in characteristic 11 arej = 0and j = 1 = 1728.

Example 4.4. For which primes p > 5 is the elliptic curve

E:y?=x>+1
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supersingular? Notice this curve has j(E) = 0. From the criterion of (4.1a), we
must compute the coefficient of x?~! in (x* + 1)*~"2 If p = 2(3), then there
is no x?~! term, so E is supersingular; while if p = 1(3), then the coefficient is
((5=1}%), which is non-zero modulo p, so in this case E is ordinary.

Example 4.5. Similarly we compute for which primes p > 3 the j = 1728
elliptic curve

E:y>’=x*+x

is supersingular. This is determined by the coefficient of x® 2 in
(x? + 1)®*~Y2 which equals 0 if p = 3(4) and (=1}2) if p = 1(4). Hence E is
supersingular if p = 3(4) and ordinary if p = 1(4).

The above examples might suggest that for a given Weierstrass equation
with coefficients in Z, the resulting elliptic curve is supersingular in character-
istic p for half of the primes. This is in fact true provided the elliptic curve has
complex multiplication over @, as the j = 0 and j = 1728 curves do. We will
discuss a more precise result, due to Deuring, in appendix C §11. The next
example shows that for elliptic curves without complex multiplication, such
supersingular primes seem to be quite rare.

Example 4.6. Let E be given by the equation
E:y?> +y=x>—x*>—10x — 20,

so j(E) = —22 313/115. Then either by using the criterion of (4.1a) directly,
or else using (exer. 5.10) and [ B-K, table 3], one finds that the only primes p
< 100 for which E is supersingular in characteristic p are p = 19 and p = 29.
(D. H. Lehmer has calculated that there are exactly 27 primes p < 31500 for
which this E is supersingular.)

It is always true that there are infinitely many primes for which E is
ordinary (exer. 5.11); and if E does not have complex multiplication, then
Serre has shown that the set of supersingular primes for E has density 0
([Se 3]). There is a more precise conjecture, due to Lang and Trotter [L-T7,
which says that for such E,

#{p < x : E/F, is supersingular} ~ c\/;/log X

as x — o0, where ¢ > 0 is a constant depending on E. However, at present the
set in question is not known to be infinite for any elliptic curve not having
complex multiplication.

EXERCISES
5.1.  Verify the Weil conjectures for V = P¥.

5.2. Let K be a finite field, V/K a smooth projective variety of dimension n, and ¢ the
Euler characteristic of V (cf. 2.2b). Show that up to + 1, the function

q **Z(V/K; q7%)

is invariant under the substitution s - n — s.
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5.3.

54.

5.5.

5.6.

5.7.

5.8.

59.

5.10.

511

5.12.

Show that for any square matrix 4,
exp(z (trace A") T"/n) = 1/det(1 — AT).
n=1
Let X be a finite field and E, E’/K elliptic curves.
(a) If E and E’ are isogenous, show that
#E(K) = # E'(K).
(b) Prove the converse. [ Hint: Use (I11.7.7a).]

Let X, ..., #,/Q be quadratic fields and let #,,...,%, be orders in
A1, ..., K. Show that there is a prime £ € Z so that /4, is a prime ideal of %, for
eachi=1,2, ... ,n

Let E, E’/ﬁp be elliptic curves with Hasse invariant 1.
(a) Show that the natural map

Hom(E, E) ® Z, - Hom(T,(E), T,(E)
is injective. [ Hint: Mimic the proof of 111.7.4.]
(b) If End(E) is an order in @(,/ — D), then ./ —-D e @,,.

Show that the only supersingular elliptic curve in characteristic 2 is the curve
with j-invariant 0.

If char K = p and E/K is an elliptic curve with j(E)¢E,, show that End(E) = Z.
[Hints: From (I11.9.4) it suffices to show that End(E) is not an order in a
quadratic imaginary field. Now mimic the proof of (3.1a, (iii) = (iv)).]

Prove the following “mass formula” of Eichler and Deuring:

Z 1 p-1
&5, |AutE[ 24 °
supersinpgular

Let E/F, be an elliptic curve, and ¢: E - E thé q™-power Frobenius endo-

morphism.
(a) Prove that E is supersingular if and only if

tr(¢) = 0 (mod p).

(Here the trace of ¢ is computed in End(T;(E)) for any prime ¢ # p.)
(b) Suppose now that g = p. Prove that E is supersingular if and only if

#EF,)=p+ 1L

Let E be an elliptic curve defined over Q, and fix a Weierstrass equation for E
with coefficients in Z. Show that there are infinitely many primes peZ so that
the reduced curve E/F, has Hasse invariant 1. [Hint: Fix a prime £, look at those
primes p which split completely in the field Q(E[¢]) obtained by adjoining the
coordinates of all Z-torsion points of E to Q, and use exer. 5.10.]

Prove that for every prime p > 3, the elliptic curve

E:y?=x3+x
satisfies
# E(F,) = 0 (mod 4).



CHAPTER VI

Elliptic Curves over C

Evaluation of the integral giving arc-length on a circle, namely jl /1 —x2dx,
leads to an (inverse) trigonometric function. The analogous problem for the
arc-length of an ellipse yields an integral which is not computable in terms of
so-called “elementary” functions. Due to the indeterminacy in the sign of the
square root, the study of such integrals over C leads one to look at the
Riemann surface on which they are most naturally defined. For the ellipse,
this Riemann surface turns out to be the set of complex points on an elliptic
curve E. We thus begin our study of elliptic curves over C by studying certain
elliptic integrals, which are line integrals on E(C). (In fact, the reason that
elliptic curves are so named is because they are the Riemann surfaces as-
sociated to the integrals for the arc-length of ellipses. In terms of their geome-
try, ellipses and elliptic curves actually have little in common, the former
having genus 0 and the latter genus 1.)

This study of elliptic integrals leads to questions which are fairly difficult to
answer if one restricts attention to integrals. But, as with the more familiar
circular functions, it is much easier to develop a theory of the corresponding
inverse functions. (Thus trigonometry is not generally built up around the

function | 1/,/1 — x? dx, but rather its inverse sin(x).) In sections 2 and 3 we
give the rudiments of this theory of elliptic functions, which are those mero-
morphic functions having two R-linearly independent periods. We then
relate this theory back to our original study of elliptic integrals, and use the
relationship to make various deductions about elliptic curves over C. In the
final section we amplify on the remark that the study of elliptic curves over C
essentially encompasses the theory of elliptic curves over arbitrary algebra-
ically closed fields of characteristic 0.

The analytic theory of elliptic functions and integrals is a beautiful, but
vast, body of knowledge. The contents of this chapter represent a very mod-
est beginning in the study of that theory. Further, we have restricted our-
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selves to the function theory of a single elliptic curve. There is another sort of
function theory which is quite important, namely the theory of modular func-
tions, in which one studies functions whose domain is the set of all elliptic
curves over C. (See C §12 for a brief discussion and a list of references.) We
do not touch on the subject of modular functions in this chapter.

§1. Elliptic Integrals
Let E be an elliptic curve defined over C. Since char(C) = 0 and C is algebra-
ically closed, there is a Weierstrass equation for E in Legendre form (I11.1.7),
E:y? = x(x — 1)(x — A).
Then the natural map
E(C) - P!
(e, y) > x
is a double cover ramified over precisely the four points 0, 1, 4, co € P1(C).
Recall (ITI.1.5) that @ = dx/y is a holomorphic differential form on E.
Suppose that we try to define a map
EC)>C
P _f P,
where the integral is along some path connecting O to P. Of course, this map
may not be well-defined. To see why, let P = (x, y), and look at what is
happening in P!.
We are attempting to compute the complex line integral

x dt
L,/t(t— HE—1)

The problem is that this integral is not path-independent, because the square-

Figure 6.1
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Branch Cuts

Figure 6.2

root is not single valued. Thus in Figure 6.1, the integrals ja , L, , j ,O are
not equal.

In order to make the integral well-defined, it is necessary to make branch
cuts. For example, the integral will be path-independent on the complement
of the branch cuts illustrated in Figure 6.2, because in this region it is possible

to define a single-valued branch of \/t(t — 1)(t — 1). More generally, since
the square-root is double-valued, we should take two copies of P*(C), make
the indicated branch cuts (Figure 6.3), and glue them together along the
branch cuts to form a Riemann surface (Figure 6.4). (Note that P*(C)
= C u {00} is topologically nothing more than a 2-sphere.) As is readily seen,
the resulting Riemann surface is a torus. It is on this surface that one should

really study the integral {dt/,/t(t — 1)(z — A); and in fact, elliptic curves first
arose when people began to study such integrals. (The very reason that they

Figure 6.3

A
Figure 6.4
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a B
2%

NN S

Paths in P'(C) Paths on Torus

Figure 6.5

are called elliptic curves is because such “elliptic integrals” arise when one
attempts to calculate the arc-length of an ellipse (exer. 6.13a).)
Returning now to our hypothetical map

E(C)-»C
P j{; ,
it is seen that the indeterminacy comes from integrating across branch cuts in
P! (or around non-contractable loops on the torus). Figure 6.5 illustrates two

closed paths « and B for which the integrals |, w and {;» may be non-zero.
We thus obtain two complex numbers, which are called periods of E,

w1=Jw and w2='[w.
« B

Notice that the paths « and § generate the first homology of the torus. Thus
any two paths from O to P differ by something homologous to n,a + n, g for
some n,, n, € Z, so the integral (g w is well-defined up to addition of a number
of the form n; w; + n,w,. Let

A = {njo, + nyw,:ny, n,eZ}.
We have thus shown that there is a well-defined map
F:E(C)->C/A
P - [ o (mod A).

Further, using the translation invariance of w (IIL5.1), we can easily verify
that F is a homomorphism. (The group law on C/A being induced by ad-
dition on C.) Thus

P+Q P P+Q P Q P o)
f wEJm+J wEJw+J Tﬁﬂ)EJ‘W‘FJ  (mod A).
0 0 P 0 0 0 0

Now the quotient space C/A will be a Riemann surface (i.e. a one-
dimensional complex manifold) if and only if A is a lattice; that is, if and only
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if the periods w,; and w, which generate A are linearly independent over R.
This turns out to be the case; and further, F gives a complex analytic isomor-
phism from E(C) to C/A. However, rather than proving these facts here, we
will instead turn to the study of the space C/A for a given lattice A. In section
3 we will construct the inverse to the mapping F, and show that C/A is
analytically isomorphic to E ,(C) for a certain elliptic curve E, /C. The unifor-
mization theorem (5.1) then says that every elliptic curve E/C is isomorphic
to some E,, from which we will be able to deduce (5.2) that the periods of E/C
are R-linearly independent and that F is a complex analytic isomorphism.
(For a direct proof of the independence, which uses only Stokes’ theorem in
R?, see [Cle, §2.9].)

§2. Elliptic Functions

Let A = C be a lattice; that is, A is a discrete subgroup of C which contains
an R-basis for C. In this section we will study meromorphic functions on the
quotient space C/A; or equivalently, meromorphic functions on C which are
periodic with respect to the lattice A.

Definition. An elliptic function (relative to the lattice A) is a meromorphic
function f(z) on C which satisfies

fz+ o) = f(2) forallweA, zeC.
The set of all such functions is denoted C(A). C(A) is clearly a field.

Definition. A fundamental parallelogram for A is a set of the form
D={a+tio +t,0,:0<1t,,t, <1},

where ae C and w,, w, are a basis for A. Thus the map of sets D - C/A is
bijective. We denote the closure of D in C by D. (A lattice and three different
fundamental parallelograms are illustrated in Figure 6.6.)

Figure 6.6
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Proposition 2.1. An elliptic function with no poles (or no zeros) is constant.

Proor. Suppose that f(z)e C(A) is holomorphic. Let D be a fundamental
parallelogram for A. Then the periodicity of f implies that

sup | f(z)] = sup|f(2)!.
zeC 2eD
But f is continuous and D is compact, so |f(z)| is bounded on D, hence it is

bounded on all of C. Therefore, by Liouville’s theorem ([Ahl, ch. 4, §2.37), f is
constant. Finally, if f has no zeros, look at 1/f. |

Let f be an elliptic function, and let we C. Then, as for any meromorphic
function, we can define

ord, (f) = order of vanishing of f at w, and
res,,(f) = residue of f at w

(cf. [Ahl, ch. 4, §3.2, §5.1]). However, since f is elliptic, we see that the order
and residue of f remain the same if w is replaced by w + w for any w € A. This
prompts the following convention.

Notation. By X, _c;» we mean a sum over we D, where D is a fundamental
parallelogram for A. (By implication, the resulting sum is independent of the
choice of D.)

Notice that (2.1) is the complex analogue of (II.1.2), which says that an
algebraic function without poles is constant. The next theorem and corollary
continue this theme by proving for C/A results analogous to parts of (11.4.8)
and (I11.3.5).

Theorem 2.2. Let fe C(A).
(@ Y res,(f)=0.

weC/A

(b) Y ord,(f)=0.

weC/A

© Y ord,(f)weA.

weC/A

Proor. Let D be a fundamental parallelogram for A such that f(z) has no
poles or zeros on the boundary 0D of D. All three parts of the theorem are
simple applications of the residue theorem [Ahl, ch. 4, thm. 19] applied to
appropriately chosen functions on D.

(a) By the residue theorem,

1
y resw(f)=ﬁjapf(z)dz.

weC/A i
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Now the periodicity of f implies that the integrals along the opposite sides of
the parallelogram cancel, so the total integral around the boundary of D is
Zero.

(b) The periodicity of f(z) implies that f'(z) is also periodic, so applying (a) to
the elliptic function f'(z)/f(z) gives

I
DRt = = i

(c) We apply the residue theorem to the function zf'(z)/f(2)

¥, ordu(fw = 5e J @)z

weC/A
atoy atw;tw,y atwy a
[T [T [ o
27” atwq ato;tw, atw;,

Now in the second (respectively third) integral make the change of variable
z -z — wy (respectively z — w,). Then using the periodicity of f'/f yields

+w +
e f(z) A
ord,(f)w - dz +
D = = 70 %
But for any meromorphic function g(z) the integral
g'2)
2m g(z) o~
is the winding number around 0 of the path
[0,1]-C, t-g(1—1a+th)

and in particular, if g(a) = g(b), then the integral is an integer. Hence the
periodicity of f’(z)/f(z) implies that ¥ ord,,(f)w has the desired form. ]

Definition. The order of an elliptic function is its number of poles (counted
with multiplicity) in any fundamental parallelogram. (Note that from (2.2b),
the order is also equal to the number of zeros.)

Corollary 2.3. 4 non-constant elliptic function has order at least 2.

Proor. If f(z) has a single simple pole, then from (2.2a) the residue at that
pole is 0, so f is actually holomorphic. Now apply (2.1). O

We now define the divisor group Div(C/A) to be the group of formal linear
combinations Z,,. ¢/ #,,(w) With n,,€ Z and n,, = 0 for all but finitely many w.
Then for D = Zn,(w)e Div(C/A), we define

deg D = degree of D = ) n,, and Div®(C/A) = {DeDiv(C/A): deg D = 0}.
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From (2.2b), for any f€ C(A)* we can define a divisor div(f)eDiv®(C/A) by
div(f)= ) ord,(f)(w).

weC/A
Clearly the map div: C(A)* - Div®(C/A) is a homomorphism, since each
ord,, is a valuation. Finally, we define a summation map
sum: Div°(C/A) > C/A  sum(} n,(w)) = ) n,w(mod A).

The following exact sequence encompasses our main results on C/A, as well
as one fact (3.4) to be proven in the next section.

Theorem 2.4. The sequence

1 5 C* > CA* S Divo(C/A) 25 C/A - 0
is exact.

Proor. Exactness on the left is clear, and on the right follows from
sum((w) — (0)) = w. Exactness at C(A)* is (2.1), and exactness at Div®(C/A)
is (2.2c) and (3.4). [l

§3. Construction of Elliptic Functions

In order to show that the results of section 2 are not vacuous, we must
construct some non-constant elliptic functions. By (2.3), any such function
will have order at least 2. Following Weierstrass, we look for a function with
a pole of order 2 at z = 0.

Definition, Let A = C be a lattice. The Weierstrass g-function (relative to A) is
defined by the series

1 1 1
? + ng(Z - w)Z _F
o#0

9z A) =

The Eisenstein series of weight 2k ( for A) is the series
GuN) =Y o

weA
0#0

(For notational convenience, we write @(z) and G,, if the lattice A has been
fixed.)

Theorem 3.1. Let A < C be a lattice.
(@) The Eisenstein series G, for A is absolutely convergent for all k > 1.
(b) The series defining the Weierstrass gp-function converges absolutely and
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uniformly on every compact subset of C — A. It defines a meromorphic function
on C having a double pole with residue 0 at each lattice point and no other poles.
(c) The Weierstrass g-function is an even elliptic function.

Proor. (a) Since A is discrete in C, one easily checks that there is a constant
¢ = ¢(A) so that for all N > 1, the number of lattice points in an annulus
satisfies

#{weA:N <|w| <N+ 1} <cN.

(See exer. 6.2.) Hence

o #{weA:N<|o|<N+1} & ¢
< < .
|w|ze>:A1|w|2k Z‘ N2 N; N2kt

(b) If || > 2|z|, then

zQ2w — 2) 10|z|
<
0?(z — w)?

1 1]
(z—w)? o?|

|lof*

Hence from (a) we see that the series for g(z) is absolutely convergent for
zeC — A, and uniformly convergent on every compact subset of C — A.
Therefore it defines a holomorphic function on C — A; and from the series
expansion it is clear that g(z) has a double pole with residue 0 at each point
of A.

(c) Clearly g (z) = @(—2). (Replace w by —w in the sum.) Since the series for
 is uniformly convergent, we can compute its derivative g'(z) by termwise
differentiation:

pe=-2F s

From this expression it is clear that g’ is an elliptic function, so integrating
yields

Pz + )= p@2) + c(w) forall ze A,

where c(w)e C is independent of z. Now let z = —w/2 and use the evenness
of g (z) to conclude that ¢(w) = 0. O

Next we show that every elliptic function can be expressed in terms of the
Weierstrass g-function and its derivative. (This is the analogue of (I11.3.1.1).)

Theorem 3.2. Let A be a lattice. Then
C(A) = Clp(2), 9'(2)).

(I.e. Every elliptic function is a rational combination of g and g’.)

ProoF. Let f(z) e C(A). Writing
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Figure 6.7

1 1
f@=71@+ (=21 + 70L&~ f(=2)],

we see that it suffices to prove the theorem for odd and even functions. But if
fis odd, then p'f is even, so we are reduced to the case that f is even.
Now if f is even, we have

ord, f=ord_, f

for every we C. Further, we claim that if 2we A, then ord,, f is even. To see
this, differentiate f(z) = f(— z) repeatedly to obtain

fO@2) = (= 1)ifO(—2).
Hence if 2we A, so f@(w) = fP(~w), then this implies that f®(w) = 0 for all
odd i, so ord,, f must be even.

Now let D be a fundamental parallelogram for A, and let H be “half” of D,
so that H is a fundamental domain for (C/A)/{ £ 1}. (Le.

C=H+AU(—H+A).
See Figure 6.7.) The above considerations imply that the divisor of f(z) has
the form

Y, mo[w) + (—w)]

weH

for certain integers n,,. (Note if 2we A, we are using the fact that ord,, f is
even.)
Next consider the function
g2 =[] [p@—pwIi™
weH-0

Since the divisor of g(z) — p(w) is (w) + (—w) — 2(0), we see that f and g
have exactly the same zeros and poles except possibly at w = 0. But then
(2.2b) implies that they have the same order at 0, also. Therefore f(z)/g(z) is a
holomorphic elliptic function, hence is constant (2.1). This proves that f(z)
= ¢cg(2)e C(p(2), ©'(2)). O

In order to prove the converse to (2.2), it is convenient to introduce a
“theta function” for A.
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Definition. The Weierstrass a-function (relative to A) is the function defined by
the product

Z
O'(Z) = O'(Z; A) =2z I I <1 —_ e—(z/m)—(z/w)l/z.
weA (e
w#0

The following lemma gives the basic facts that we will need concerning
a(z). For a further description, see exers. 6.3, 6.4.

Lemma 3.3. (a) The infinite product for o(z) defines a holomorphic function on
all of C. It has simple zeros at each ze A, and no other zeros.
42
(b) e loga(z) = —p(z) forallzeC — A.
(c) For any we A there are constants a, be C such that

o(z + w) = e***g(z)  forallzeC.
Proor. (a) That the infinite product is absolutely and uniformly convergent
on C follows from (3.1a) and standard facts about convergence of infinite
products ([Ahl, ch. 5, §2.3]). The location and order of the zeros is clear by

inspection.
(b) From (a) we can differentiate

log a(z) = log z +2{log<1 _%)_%_%<%>2}

term by term. Its second derivative is, up to sign, exactly the series defining

#(2).
(c) From (3.1¢), ¢(z + w) = @(z). Now integrate twice and use (b) to obtain

log 6(z + w) =logo(z) + az+ b

for constants of integration a, be C. O

Proposition 3.4. Let n,, ...,n,eZ and z,, ..., z,€ C satisfy
Yn,=0 and ) mzeA.
Then there exists an elliptic function f(z)e C(A) satisfying
div(f) = Y mi(z).
More precisely, if we normalize so that ) n;z; = 0, then

f@=]]oz —z)".

Proor. Let A= Xn;z;e A. Replacing n,(z;) + -+ n.(z,) by ny(zy) + -
+ n,(z,) + (0) — (4), we may assume that Zn,z; = 0. Then (3.3a) implies that

@) =Tlo( — z)"
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has the correct zeros and poles; while (3.3c) allows us to compute (for any
weA)

1z + 0)lf(@) = [] =0
— e(az+b)2n,-e—a2niz,»
=1
Therefore f(z)e C(A). 0

We next derive the Laurent series expansion for g(z) about z = 0, from
which we will deduce the fundamental algebraic relation satisfied by g(z) and

o' (2).
Theorem 3.5. (a) The Laurent series for ¢(z) about z = 0 is given by
P@ =27+ Y @k + DGoppz™
k=1

(b) Forall ze C with z ¢ A,
©'(2)? = 4p(2)* — 60G, p(z) — 140G;.

Proor. (a) Provided |z| < |w|, we have

z—o)?-0t=0"*[(1-z/w?*-1]
= i (n+ 1)z" /"2

Substituting this into the series for g(z) and reversing the order of summa-
tion gives the desired result.
(b) We write out the first few terms in various Laurent expansions:

©'(2)> =4z7° — 24G,z7? — 80Gg + -
0P =2"%4+9G,z72 + 15Gg + -+
@) =272 +3G, 2" + .
Comparing these, we see that the function
f(2) = 9'(2)* — 4p(2)* + 60G, p(z) + 140G,

is holomorphic around z = 0 and vanishes at z = 0. But it is also elliptic
relative to A, and from (3.1b) it is holomorphic away from A, hence it is a
holomorphic elliptic function. From (2.1), we conclude that f(z) is identically
zero. O

Remark 3.5.1. It is standard notation to set

g, = g,(A) =60G, and g; = g;(A) = 140G,.
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Then the algebraic relation between g{z) and g'(z) reads
9’2 =4p(2)° — g,0(2) — g5.

Let E/C be an elliptic curve. Since the group law E x E — E is given by
everywhere locally defined rational functions (I1L.3.6), we see in particular
that E = E(C) is a complex Lie group. (Le. It is a complex manifold with a
group law given locally by complex analytic functions.) Similarly, if A = C is
a lattice, then C/A with its natural addition is a complex Lie group. The next
proposition shows that C/A is always complex analytically isomorphic to an
elliptic curve.

Proposition 3.6. Let g, and g, be the quantities associated to a lattice A < C.
(a) The polynomial

S(x) =4x* — g,x — g3
has distinct roots. Its discriminant
A(A) = g3 — 2743

is not zero.
(b) Let E/C be the curve

E:y?=4x> —g,x — g5,
which is an elliptic curve from (a). Then the map
¢:C/A - E < P*(C)

z-[p(2), 9'(2), 1]

is a complex analytic isomorphism of complex Lie groups. (1.e. It is an isomor-
phism of Riemann surfaces which is a group homomorphism.)

ProoF. (a) Let {o;, w,} be a basis for A, and let w3 = w; + w,. Then since
¢'(2) is an odd elliptic function, we see that

P'(@i/2) = —p'(—w,/2) = — p'(w;/2),

50 p'(w;/2) = 0. Hence from (3.5b), f(x) vanishes at each x = p(w,/2), so it
suffices to show that these three values are distinct.

The function p(z) — @(w;/2) is even, hence has at least a double zero at
z = w;/2. But since it has order 2, these are the only zeros (in an appropriate
fundamental parallelogram). Therefore g (w;/2) # @(w;/2) forj # i.
(b) The image of ¢ is contained in E from (3.3b). To see that ¢ is surjective, let
(x, y)e E. Then g(z) — x is a non-constant elliptic function, so from (2.1) it
has a zero, say z = a. It follows that p’(a)®> = y?, so replacing a by —a if
necessary, we obtain g’(a) = y. Then ¢(a) = (x, y).

Next suppose that ¢(z,) = ¢(z,). Assume first that 2z, ¢A. Then the
function @(z) — g(z,) has order 2 and zeros z;, —z,, z,. It follows that
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z, = +z, (mod A); and now

0'(2) = '(2)) = p'(2z) = £ '(zy)

implies that z, = z; (mod A). [Note g'(z,) # 0 from the proof of (a).] Now if
instead 2z, € A, then p(z) — g (z,) has a double zero at z,, and vanishes at z,,
so again we conclude that z, = z; mod A. This proves that ¢ is injective.

Next, in order to show that ¢ is an analytic isomorphism, we compute its
effect on the cotangent space. At every point of E, dx/y is a non-vanishing
holomorphic differential. Since

¢*(dx/y) = dp(2)/p'(2) = dz

is similarly non-vanishing and holomorphic at every point of C/A, we see
that ¢ is a local isomorphism. But ¢ is bijective from above, so this implies
that it is a global isomorphism.

Finally, to see that ¢ is a group homomorphism, let z,, z, e C. From (3.4),
there is a function f(z) € C(A) with divisor

div(f) = (z1 + z5) — (21) = (22) + (0).

Using (3.2), we can write f(z) = F(p(z), 9'(2)) for some rational function
F(X, Y)eC(X, Y); and then considering F(x, y)e C(x, y) = C(E), we have

div(F) = (4(z, + z,)) — (#(zy)) — (¢(22)) + ($(0)).
It follows from (IIL.3.5) that
P(z1 + 23) = ¢(zy) + ¢(2,). O

§4. Maps—Analytic and Algebraic

In this section we investigate complex analytic maps between complex tori. It
turns out that they all have a particularly simply form; and, somewhat more
surprisingly, the maps which they induce on the corresponding elliptic curves
via (3.6b) are actually isogenies (i.e. given by rational functions).

Thus let A; and A, be lattices in C. If aeC has the property that
oA, < A,, then scalar multiplication by «

$.:C/A > C/A;,  4,(2) = az(mod A,)
is clearly a holomorphic homomorphism. We now show that these are essen-
tially the only holomorphic maps.
Theorem 4.1. (a) With notation as above, the association
{aeC:aA; = A,} - {holomorphic maps ¢ : C/A, — C/A, with ¢(0) = 0}

=g,
is a bijection.
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(b) Let E; and E, be the elliptic curves corresponding to the lattices A, and A,
as in (3.6b). Then the natural inclusion

{isogenies ¢ : E, — E,} — {holomorphic maps ¢ : C/A, — C/A, with ¢(0) = 0}

is a bijection.

Proor. (a) If ¢, = ¢, then for all zeC, az = fz (mod A,). Hence the map
z—(x — )z sends C to A,; and since A, is discrete, this map must be
constant. Therefore a = f.

Next let ¢ : C/A; — C/A, be a holomorphic map with ¢(0) = 0. Then, since
C is simply connected, we can lift ¢ to a holomorphic map f:C —» C with
f(0) = 0 so that the following diagram commutes:

c 3¢
Lol
C/A, S C/A,.

Now for any weA,, f(z + w) = f(z) (mod A,) for all ze C. Again using the
discreteness of A,, we see that f(z + w) — f(z) must be independent of z.
Thus

flz+w) =12 forallzeC and all weA,;.

This says that f'(z) is a holomorphic elliptic function, so from (2.1) it is
constant. Therefore f(z) = az + y for some «, y € C. Now f(0) = 0 implies that
y = 0,and f(A;) = A, implies aA; < A,,50 ¢ = ¢,.

(b) First note that since an isogeny is given locally by everywhere defined
rational functions (i.e. it is a morphism), the map induced on the correspond-
ing complex tori will be holomorphic. Thus our association

Hom(E,, E,) - Holom. Map(C/A, C/A,)
is well-defined; and it is clearly injective.
We now prove surjectivity. From (a), it suffices to consider a map of the

form ¢,, where o€ C* satisfies «A; = A,. The induced map on Weierstrass
equations is given by

E, > E,
[50(2, Al)a SO’(Z, AZ)’ 1] hd [@((ZZ, AZ)’ 89/(“2, AZ)’ 1]’

so we must show that p(az, A,) and @'(xz, A,) can be expressed as rational
functions of p(z, A,) and ’(z, A,). But using the fact that aA, < A,, we see
that for any we A,

Pz + ), Ay) = p(az + aw, A,) = p(az, Ay);

and similarly for g'(az, A,). Thus @(oz, A,) and @'(az, A,) are in C(A,). But
C(A}) = Clgo(z, Ay), 9'(z, Ay)) from (3.2), which gives the desired result. []
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Corollary 4.1.1. Let E, /C and E, /C be elliptic curves corresponding to lattices
A, and A, as in (3.6b). Then E, and E, are isomorphic (over C) if and only if A,
and A, are homothetic. (I.e. A, = al, for some o€ C*.)

Proor. Clear from (4.1). O

Remark 4.2. Since the maps ¢, are clearly homomorphisms, (4.1) implies that
every complex analytic map from E, (C) to E,(C) taking O to O is necessarily
a homomorphism. This is the analogue of (II1.4.8), which says that every
isogeny of elliptic curves is a homomorphism.

§5. Uniformization

The uniformization theorem for elliptic curves says that every elliptic curve
over C is parameterized by elliptic functions. The most natural proof of this
fact uses the theory of modular functions; that is, functions on the set of
lattices in C. (For example, g,(A) and g;(A) are modular functions.) The
proof is not difficult, but would take us rather far afield, so we will be content
to merely state the result here and use it to make various deductions.

Theorem 5.1. Uniformization Theorem. Let A, Be C satisfy A3 — 27B? # 0.
Then there exists a unique lattice A < C such that g,(A) = A and g;(A) = B.

Proor. See [Ap, Thm. 2.9, [Rob, 1.3.13], [Shi 1, §4.2], or [Se 7, VII Prop. 5].
O

Corollary 5.1.1. Let E/C be an elliptic curve. Then there exists a lattice A = C,
unique up to homothety, and a complex analytic isomorphism

¢:C/A-EC) ¢ = Loz A), '@z A), 1]

of complex Lie groups.

Proor. The existence is immediate from (3.6b) and (5.1), and the uniqueness is
4.1.1). O

We are now in a position to prove the results left undone in section 1.
Proposition 5.2. Let E/C be an elliptic curve with Weierstrass coordinate func-

tions x, y.
(a) Let a and B be paths on E(C) giving a basis for H,(E, Z). Then the periods

W, = J dx/y and w,= J dx/y
« 8

are R-linearly independent.
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(b) Let A < C be the lattice generated by w, and w,. Then the map
P

F:E(C)-»C/A F(P) = f dx/y (mod A)

(4]

is a complex analytic isomorphism of Lie groups. Its inverse is the map given in
(5.1.1).

ProoOF. (a) From (5.1.1) there exists some lattice A, such that the map

$1:C/A > EQC) 4.2 =[p(z A), 9'(z, A, 1]

is a complex analytic isomorphism. It follows that ¢; ox and ¢;' o f are a
basis for H,(C/A,, Z). Note further that H,(C/A,, Z) is isomorphic to A, via
the map y — {, dz; while the differential dx/y on E pulls back to

1(dx/y) = dp(2)/'(2) = dz
on C/A,. Therefore the periods

wlzjdx/y=f dz and w2=fdx/y=f dz
p ¢ 1oa B $ 108

are a basis for A, so in particular they are R-linearly independent.

(b) We have just shown above that the lattice A; corresponding to E in
(5.1.1) is precisely the lattice A generated by the periods of E. The compo-
sition F o ¢ thus gives an analytic map

(P(2), 9'(z))
Fo¢:C/A—-C/A Fo¢(z) =j dx/y.
o
Since
F*(dz) = dx/y and ¢*(dx/y) = dp(2)/p'(z) = dz,
we see that

(Fod)*dz = dz.

On the other hand, (4.1a) says that any analytic map C/A — C/A has the form
Y,(z) = az for some ae C*. Since Y}(dz) = adz, we see that F o ¢(z) = z. (Le.
Fo¢ is the identity map.) But we already know (3.6b) that ¢ is an analytic
isomorphism; and so F = ¢~ is, too. O

Much of the preceding material can be summarized as an equivalence of
certain categories.
Theorem 5.3. The following categories are equivalent.

(a) Objects: Elliptic curves over C.
Maps: Isogenies.
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(b) Objects: Elliptic curves over C.
Maps: Complex analytic maps taking O to O.
{c) Objects: Lattices A = C, up to homothety.
Maps: Map (A, A,) = {aeC:aA, = A,}.

Proor. The one-to-one correspondence between elliptic curves over C and
lattices (modulo homothety) follows from (3.6b), (5.1.1), and (5.2). The match-
up of the maps in (a), (b), (c) is precisely the content of (4.1). O

Remark 5.3.1. The equivalence of (a) and (b) in (5.3) is a very special case of a
general principle (GAGA [Se 1]), which says (among other things) that any
complex analytic map between projective varieties over C is necessarily given
by rational functions. (For an introductory discussion, see [Har, app. B].)

We now use the uniformization theorem (really (5.1.1)) to make some
general deductions about elliptic curves over C. It is worth remarking that
even without knowing (5.1.1), everything that we are about to prove would at
least apply to those elliptic curves which occur in (3.6b). The uniformization
theorem merely says that this class of curves includes every elliptic curve
over C.

Proposition 5.4. Let E/C be an elliptic curve and m > 1 an integer.
(a) As abstract groups,

E[m] = Z/mZ x Z/mZ.
(b) The multiplication-by-m map [m] : E — E has degree m?.

Proor. (a) From (5.1.1), E(C) is isomorphic to C/A for some lattice A = C.
Hence

1
E[m] = (C/A)[m] = ;A/A ~ (Z/m2)*.

(b) Since char C = 0 and [m] is unramified, the degree of [m] is just the
number of points in E[m] = [m]'{0}. O

Let E/C be an elliptic curve. Notice that (4.1) allows us to identify End(E)
with a certain subring of C. Thus if E(C) =~ C/A as in (5.1.1), then

End(E) = {aeC:aA = A}.

Since A is unique up to homothety (4.1.1), this ring is independent of A. We
now use this description of End(E) to completely characterize the possible
endomorphism rings which can occur. We recall the following definition
from (I1I §9).
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Definition. Let ¢ be a number field. An order # of A is a subring of A
which is finitely generated as a Z-module and satisfies Z ® Q = X".

Theorem 5.5. Let E/C be an elliptic curve, and let w,, , be generators for the
lattice A associated to E by (5.1.1). Then either

(i) End(E) = Z; or
(ii) Q(w,/w,) is a quadratic imaginary extension of Q, and End(E) is isomor-
phic to an order in Q(w, /w,).

ProoF. Let T = w, /w,. Since A is homothetic to Z 4+ Zt (multiply by 1/w,),
we may replace A by Z + Zrt. Let

R ={aeC:aA c A},

so # = End(E) from (4.1). Then for any o € &, there are integers a, b, ¢, d such
that

a=a+bt and ot =c+dr
Eliminating t yields
a? —(a + d)a + bc = 0.

Thus £ is an integral extension of Z.
Now suppose that # # Z, and choose o € £ with a ¢ Z. Then with notation
as above, b # 0, so eliminating « gives a non-trivial equation

bt?2~(a—d)t+c=0.

Therefore Q(t) is a quadratic imaginary (since 7 ¢ R) extension of Q. Finally,
since Z < Q(z) and £ is integral over Z, it follows that £ is an order of Q(z).
d

§6. The Lefschetz Principle

The Lefschetz principle says roughly that algebraic geometry over an arbi-
trary algebraically closed field of characteristic 0 is “the same” as algebraic
geometry over C. One can, of course, make this precise by formulating an
equivalence of suitably defined categories; but we will be content here to give
a more informal presentation.

The first observation to make is that if the given field K can be embedded
in C, then everything proceeds smoothly. For example, if K < C is any field
and if E/K is an elliptic curve, then the fact that [m]: E — E is an algebraic
map (i.e. given by rational functions) implies that E[m] c E(K) c E(C).
Hence using (5.4), we obtain a proof that

E[m] = E(K)[m] = E(C)[m] = (Z/mZ)*.
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Note that the embedding K = C need not be topological (assuming K has
a topology in the first place.) It does not matter that we may have used the
topology of C to reach our conclusions (such as in the analytic isomorphism
E(C) = C/A), as long as our hypotheses and conclusions are purely algebraic.

The second observation is that theorems in algebraic geometry generally
deal with finite (or at worst, countable) sets. For example, any variety is
defined by a finite set of polynomial equations (Hilbert basis theorem), and
each equation has finitely many coefficients. Similarly, an algebraic map
between varieties is given by a finite set of polynomials, each having a finite
number of coefficients. Now suppose that {V;, V,, ...} is a finite (or count-
able) set of varieties defined over some field K of characteristic 0, and suppose
that {¢,, @,, ...} is a finite (or countable) set of rational maps (defined over
K) between various of the V’s. Let K, < K be the field generated over Q by
all of the coefficients of all of the polynomials defining all of the Vs and all of
the ¢;’s. Then trdeg(K,/Q) clearly has cardinality at most that of the natural
numbers, so we can embed K, = C (Zorn’s lemma). Now from the above
discussion concerning subfields of C, we will be able to reduce most algebro-
geometric questions concerning the Vs and ¢;’s to the corresponding ques-
tion over C, where we may be able to profitably employ techniques from
complex analysis and differential geometry.

To illustrate the procedure outlined above, we prove the following.

Theorem 6.1. Let K be a field of characteristic 0 and E/K an elliptic curve.
(@) Let m = 1 be an integer. Then

E[m] = Z/mZ x Z/mZ.

(b) The endomorphism ring of E is either Z or an order in a quadratic imagi-
nary extension of Q. (Compare with (I11.9.4).)

Proor. (a) This is immediate from (5.4) and the Lefschetz principle.

(b) Here we can apply the Lefschetz principle to (5.5), once we note that
End(E) is countably (in fact finitely) generated from (II1.7.5). Alternatively,
even without (II1.7.5), we can argue as follows. If End(E) is neither Z nor
quadratic imaginary, then it contains a finitely generated subring with the
same property. Now applying the Lefschetz principle to the maps in this
subring will contradict (5.5). O

EXERCISES

6.1. Let A= Zw, + Zw, be a lattice, and let 6(z) be an entire function (i.e. holo-
morphic on all of C.) Suppose that there are constants a,, a, € C such that

0(z + w)=a,0(z) and 0(z + w,) = a,0(z) for all zeC.
Prove that

0(z) = be* for some b, ceC.
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6.2.

6.3.

6.4.

VI. Elliptic Curves over C

Let A < C be alattice.

(a) Prove that every fundamental parallelogram for A has the same area. De-
note this area by A(A).

(b) Prove that as R — o0,

#{weA:|o| < R} = A(A)17R? + O(R).

(The big-O constant depends on A, of course.)
(c) Prove that there is a constant ¢ = ¢(A) such that for all R,

#{weA:R<|w|<R+1} <cR.

(a) Prove that forall z, aeC,

a(z + a)a(z — a)

p(2) — pla)= — 0'(2)20'(0)2
[Hint: Compare zeros and poles.]
(b) Prove that
, a(2z)
SO (Z) - . (2)4

(c) Prove that for every integer n, the function o(nz)/a(2)"” is in C(A).
(d) More precisely, prove that

a(nz)
(2"

Define the Weierstrass {-function {(z) (not to be confused with the Riemann
{-function) by the series

=1+ Z{ - Z}

weA {2 — @ w a)

(=1 1{112_“. 1)!} = det(go"” 1)(2))1<n1<n -1

(a) Prove that
d
L logo)=1() and ()= —p(c)
z dz

(b) Prove that
U=2)= -,
and that for all we A,
iz + @) = {() + (),

where #(w) = 2{(w/2) is independent of z.
(c) Prove that the map n: A — C given in (b) is linear.
(d) Write A = Zw, + Zo, with Im(w, /w,) > 0. Prove the Legendre relation
oy n(wy) — oy n(w,) = 2=,

[Hint: Integrate {(z) around a fundamental parallelogram.]
(e) Prove that
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6.5.

6.6.

6.7.

6.8.

o(z + 0) = +e"WEr R g(z),

where the sign is positive or negative according to we2A or w¢?2A
respectively.

(f) Extend 57: A — C to an R-linear map 5 : C — C by identifying A ® ; R with
C. Let

G(z) = e™™I24(z),
Prove that for all we A,

1G(z + w)| = |G(2)I.
Hence |G(z)| defines a real analytic function C/A - R.

Verify the following indefinite integrals.
(@) [p(2)dz =§p'(2) + 1592 + C.
(b) | p(2) dz = 1550"(2) — 5592L(2) + 15932 + C.

For a lattice A = C, let g,(A) and g5(A) be as in (3.3.1), and define
A(A) = g,(A)® — 27g5(A)? and  j(A) = 1728g,(A)°/A(A).
(a) Let aeC*. Prove that
g2(@A) = a *gy(A)  ga(aA) = a”%g5(A);
and so
AA)= o 2AN)  jah) = j(A).

(b) Prove that j(A,) = j(A,) if and only if there is an o € C* such that aA; = A,.
(c) Prove that

iZ+Zi)=1728 and j(Z + Ze™P) =0.

Elliptic curves over R. Let E/C be an elliptic curve corresponding to a lattice

AcC.

(a) Prove that E can be defined over R if and only if there is an a e C* such that
aA is mapping to itself by complex conjugation. [Hint: First show that
JA) =j(A)]

(b) Suppose E is defined over R, and that we have chosen a lattice A for E which
is invariant under complex conjugation. Prove that A(A)e R; and that E(R)
is connected if and only if A(A) > 0.

(c) Let E/C have a Legendre equation

E:y? = x(x — 1)(x — A).

Prove that 1€ R if and only if E can be defined over R and E[2] < E(R).
(d) If E is defined over R and E[2] < E(R), prove that there is a lattice for E
which is rectangular (i.e. of the form Zw, + Zw,i with o, w, €R).

Let 2" /Q be a quadratic imaginary field, 2 the ring of integers of o, and hy the
class number of #. Prove that up to isomorphism, there are exactly hy, elliptic
curves E/C with End(E) = #. If E is such a curve, conclude that j(E) is an
algebraic number satisfying [ 4 (J(E)): # "] < hg. (In fact, A '(j(E)) is the Hilbert
class field of . See (C §11) and the references listed there.)
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6.9. Let E,/C and E,/C be elliptic curves, and assume that E, has complex multi-
plication. Prove that E, is isogenous to E, if and only if

End(E,) ® Q = End(E,) ® Q.

6.10. Let¢: E, — E, be an isogeny of elliptic curves over C, and let a € C* correspond
to ¢ via the equivalence in (4.1). (Ie. E; = C/A; and aA, = A,.) Prove that &
corresponds to the dual isogency ¢ : E, - E;.

Elliptic Integrals. The following exercises (6.11-6.13) develop a minute por-
tion of the classical theory of elliptic integrals.

6.11. Let E/C be an elliptic curve given by a Legendre equation
E:Y?=X(X — )(X — ).
(a) Prove that thereis a ke C — {0, +1} such E has an equation of the form
E:y?=(1 - x3)(1 - k?x?).

[Hint: Let X = (ax + b)/(cx + d) and Y = ey/(cx + d)? for appropriate a, b,
¢, d,eeC.]

(b) For a given value of 4, find all possible values of k. Conversely, given k, find
all values of 4.

(c) Express the j-invariant j(E) in terms of k.

(d) Suppose A€ R. (See exer. 6.7.) Show that k may be chosen so as to satisfy
O<k<l

6.12. Complete Elliptic Integrals. Let E be an elliptic curve given by an equation
E:y? =(1 —x3)(1 — k*x?).

To simplify matters, assume that 0 < k < 1. (See exer. 6.11d.) Define complete
elliptic integrals of the first and second kind to the modulus k by

ldx 1
K(k) = j 5= J {1 = x*)(1 — k*x?)}™*2dx  First Kind
0 0

1 1
E(k) = f ydx = j {1 —x¥)(1 — k*xH)}?dx  Second Kind.
0 0

(This notation is classical. Note that this is the only place in this book where
E(k) will not mean the k-rational points on E.)
(a) Make appropriate branch cuts, and show that the lattice for E is generated
by the periods
1/k

4J.1 {1 =x*)(1 = k*x?)}™dx and 2iJ~ (2 = 1)(1 — kK*x)} 2 dx.

V] 1

(b) Let k' be the complementary modulus defined by k* + k> =1, 0 <k < 1.
Prove that

juk {(x® = (1 — k?x)} dx = J’ {1 — XH)(1 — k*X?)} 12 dx.
1 0
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[Hint: Let x = (1 — k2X%)7™%2] Conclude that the period lattice for the
elliptic curve E/C is generated by 4K (k) and 2iK(k').
(c) Prove the transformation formulas

2./k 1—k 1+k

K|——|=(1+kK(k d K{——-)=———K().
<1+k> ( K@) an (1+k> 2 ®)

[Hint: For the former, use the substitution x = (k + ) X/(1 + kX?).]

6.13. (a) Show that the complete elliptic integrals defined above may also be written
as

/2
K(k) = j (1 — k2 sin? 6)7172 46,

0

/2
E(k) = J (1 — k2 sin? )" 6.

0

(b) Prove that the arclength of the ellipse
x?/a* + y*/b* =1
is given by the complete elliptic integral
4aE(,/1 — (b/a)?)
(We assumea = b > 0.)
(c) Prove that the arclength of the lemniscate

r? = cos 20

is given by the complete elliptic integral 2\/§K(1/\/§). Show that it also
equals 4 [§ (1 — x*)72dx. (Thus the arclength of the lemniscate resembles
the arclength of the unit circle, namely 2r = 4 [} (1 — x*)™2dx.)

6.14. The Arithmetic-Geometric Mean. For a, be R with a > b > 0, we define two
sequences {a,} and {b,} by

a,=a bo=b
Apey = 3@y +b) by =/anb,.
(a) Prove that
0 < apey — bpyy < 3(a, — by).
Deduce that the limit
M(a, b) = Lim g, = Lim b,

exists. M(a, b) is called the arithmetic-geometric mean of a and b.
(b) Prove that

M(a, b) = M(a,, b;) = M(ay, by) =+,
and

M(ca, cb) = cM(a, b).
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(c) Define the integral I(a, b) by

/2

I(a, b) = J (az C082 0+ b2 sin2 0)—1/2 46.
(1]

Show that I(a, b) is related to certain complete elliptic integrals by the

formulas

2. /k
I(a, b) = a_1K<1-|-ik> and I(ay, b)) = a7 K(k).

|:Hint: Take k = a—_ll]
a+b

(d) Prove that
M(a, b)I(a, b) = =/2.

[Hint: Use (c) and (exer. 6.12c) to prove that I(a, b) = I(a,, b,). Then calcu-
late Lim I(a,, b,).] Combining (c) and (d), note that complete elliptic in-
tegrals of the first kind (for 0 < k < 1) may be computed in terms of the
arithmetic-geometric mean.

(e) Prove that the rate of convergence predicted by (a), namely q, — b, <
27"a — b), is far slower than the reality. More precisely, use (b) to show that
it suffices to compute M(a, b) in the case that b > 1; and under this assump-
tion, prove that

an_bn

Zm
A — Dy < 8( ) forallm,n> 0.
In particular, since eventually a, — b, < 1, the sequences {a,} and {b,}
eventually converge doubly exponentially.
(f) Show that

J 1 (1 — 2472 dz = n/2M (/2 1),
1]

and use this equality to calculate the value of the complete elliptic integral.
(It was the observation that these two numbers, calculated independently,
agree to eleven decimal places which led Gauss to initiate his extensive study
of the arithmetic-geometric mean. For a fascinating account of this subject,
see [Cox].)



CHAPTER VII

Elliptic Curves over Local Fields

In this chapter we study the group of rational points on an elliptic curve
defined over a field which is complete with respect to a discrete valuation. We
start with some basic facts concerning Weierstrass equations and “reduction
modulo zn”. This enables us to break our problem up into several pieces; and
then by examining each piece individually, we will be able to deduce a great
deal about the group of rational points as a whole. Unless explicitly stated
otherwise, we will use the following notation.

K a local field, complete with respect to a discrete valuation v
R the ring of integers of K = {xe K : v(x) > 0}

R*  the unit group of R = {xe K : v(x) = 0}

M the maximal ideal of R = {xe K : v(x) > 0}

s a uniformizer for R (i.e. # = nR)

k the residue field of R = R/.#.

We will further assume that v is normalized so that v(n) = 1. Note that by
convention, v(0) = co is assigned a value larger than every real number.
Finally, in keeping with our general policy, we will assume that both K and k
are perfect fields.

§1. Minimal Weierstrass Equations

Let E/K be an elliptic curve, and let
Y24+ a;xy +asy =x3 + a;x? + a,x + ag

be a Weierstrass equation for E/K. Since replacing (x, y) by (4 %x,u"3y)
causes each a; to become u'a;, if we choose u divisible by a large power of =,
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then we can find a Weierstrass equation with all coefficients g; € R. Then the
discriminant A satisfies v(A) = 0; and since v is discrete, we can look for an
equation with v(A) as small as possible.

Definition. Let E/K be an elliptic curve. A Weierstrass equation as above is
called a minimal (Weierstrass) equation for E at v if v(A) is minimized subject
to the condition a,, a,, a;, a4, ag € R. This value of v(A) is the valuation of the
minimal discriminant of E at v.

Remark 1.1. How can one tell if a given Weierstrass equation is minimal?
First, by definition, all of the a;’s must be in R, so in particular the discrimi-
nant A is in R. If the equation is not minimal, then there is a coordinate
change giving a new equation with discriminant A’ = u'>AeR (cf. I11.1.2).
Thus v(A) can only be changed by multiples of 12, so we conclude:

If a;e R and v(A) < 12, then the equation is minimal.
Similarly, since ¢, = u*c, and cg = ubcq, we have:
Ifa;e R and v(c,) < 4 (or v(cg) < 6), then the equation is minimal.

If char(k) # 2, 3, then the converse holds, namely minimality implies either
v(A) < 12 or v(c,) < 4. (See exer. 7.1.) For arbitrary K there is an algorithm of
Tate ([Ta 6]) which will determine if a given equation is minimal.

Example 1.2. Let p be a prime and consider the Weierstrass equation
E:y +xy+y=x>+x2+22x—-9

over the field Q,. This equation has discriminant A = —2'5% and ¢, =
—5-211. Hence using the above criteria (1.1), this is a minimal Weierstrass
equation at p for every prime pe Z.

Proposition 1.3. (a) Every elliptic curve E/K has a minimal Weierstrass
equation.
(b) A minimal Weierstrass equation is unique up to a change of coordinates

x=u*x"+r y=udy +ulsx' +t

withueR* andr, s, teR.
(c) The invariant differential

o =dx/2y + a;x + a3)

associated with a minimal Weierstrass equation is unique up to multiplication by
an element of R*.
(d) Conversely, if one starts with any Weierstrass equation with coefficients
a;e R, then any change of coordinates

x=u*x"+r y=udy +ulsx' +1t

used to produce a minimal Weierstrass equation satisfies u, r, s, te R.
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ProOF. (a) One can easily find some Weierstrass equation with all ;e R, and
among such there is a minimal v(A) since v is discrete.

(b) We know (IT1.3.1b) that any Weierstrass equation for E/K is unique up to
the indicated change of coordinates with ue K* and r, s, t € K. Now suppose
the given equation and the new equation are both minimal. We use the
transformation formulas (I11.1.2). From the definition of minimality, we have
v(A) = v(A’). But u'2A’ = A, so ue R*. From the transformation for by (re-
spectively bg) we see that 4r (respectively 3r%) is in R, hence re R. Now the
transformation for a, gives s€ R, and that for ag gives te R.

(c) Clear from (b}, since @' = uw.

(d) Since u'?A’ = A and v(A’) > v(A) (because the new equation is to be
minimal), we see that v(u) = 0, so ue R. Now the proof in (b) can be repeated
to show that r, s, teR. O

§2. Reduction Modulo n

We next look at the operation of “reduction modulo n”, which we denote by
a tilde. Thus, for example, the natural reduction map R — k = R/zR is de-
noted ¢ — t. Now having chosen a minimal Weierstrass equation for E/K, we
can reduce its coefficients modulo n to obtain a (possibly singular) curve over
k, namely

E:y*+ad,xy+dyy =x>+ a,x* + dgx + dg.

The curve E/K is called the reduction of E modulo n. From (1.3b), since we
started with a minimal equation for E, the equation for E is unique up to the
standard change of coordinates (I11.3.1b) for Weierstrass equations over k.

Next let Pe E(K). We can find homogeneous coordinates P = [xq, Yo, Zo]
with x,, yo, Zo € R and at least one of x, yo, zo in R*. Then the reduced point
P =[%,, Jo, Zo] is in E(k). This gives a reduction map

E(K) — E(k)
PP
{More generally, one can similarly define a reduction map
P"(K) — P"(k).

The above map is just its restriction to E(K) = P?(K).)

Now the curve E/K may or may not be singular (more on this later), but
recall (II1.2.5) that in any case its set of non-singular points, denoted E (k)
forms a group. We define two subsets of E(K) as follows:

EO(K) = {PEE(K) . FE Ens(k)}a
E,(K) = {PeE(K): P = 0}.
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In words, Ey(K) is the set of points with non-singular reduction, and E,(K) is
the kernel of reduction. From (1.3b), they do not depend on which minimal
Weierstrass equation we choose.

Proposition 2.1. There is an exact sequence of abelian groups
0 E(K) = Eo(K) = E,y(k) > 0,

where the right-hand map is reduction modulo 7.

Proor. The group laws on E(K) and E, (k) are defined by taking the inter-
section of the curve with lines in P2. Since the reduction map P?3(K)—
P?(k) takes lines to lines, it follows that Ey(K) is a group, and that the map
Ey(K) - E, (k) is a homomorphism. Exactness at the left and center now
comes directly from the definition of E, (K).

It remains to show that the reduction map is surjective. This will follow
from Hensel’s lemma and the completeness of K. Thus let

f, N =y*+axy+ay—x3—a,x* —a,x —ag=0

be a minimal Weierstrass equation, f(x, y) the corresponding polynomial
with coefficients reduced modulo 7, and P = (a, )€ E, (k) any point. Since P
is a non-singular point of E, we know that either

of

of -

—£(P) #0 or —(P)#0,
0x dy

say the former. (The other case is entirely similar.) Choose any y,e R with

o = B, and look at the equation

Sfx, Yo) = 0.

When reduced modulo =, this equation has a as a simple root, since
(0f/0x)(x, 7,) # 0. Hence by Hensel’s lemma ([La 2, Ch. II, Prop. 2]), the root
o can be lifted to an x, € R such that X, = « and f(x,, yo) = 0. Then the point
P = (x4, yo) € Eo(K) reduces to P. O

Note that if v(A) =0, so A # 0, then E is non-singular, E,, = E, and so
Ey(K) = E(K). In this case (2.1) says that E(K) is built up from two pieces,
E,(K) and E(k). Now E(k) is the set of points on an elliptic curve defined over
a smaller field; and we will often consider the case where k is a finite field, a
situation analyzed in some detail in chapter V.

On the other hand, the following proposition shows that E,(K) is also an
object with which we are already familiar.

Proposition 2.2. Let E/K be given by a minimal Weierstrass equation, let E/R
be the formal group associated to E (IV.2.2.3), and let w(z) € R[[z] be the power
series from (IV.1.1). Then the map
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E(#) - E,(K)

(z 1
- W’_@>

is an isomorphism. (We understand that z = 0 goes to O. For the definition of
the group E(M), see (IV §3).)

Proor. From (IV.1.1b) the point (z/w(z), —1/w(z)), when considered as a
pair of power series, satisfies the Weierstrass equation for E. Since w(z) =
2?(1 + ---)eR[z], it follows that w(z) converges for any ze.#. Hence
(z/w(z), —1/w(2)) is in E(K) for ze.#, and since v(—1/w(z)) = —3v(z), it is
even in E,(K). Thus we have a well-defined map

E(#) - E(K)
z = (z/w(2), —1/w(2)).

Further, in deriving the power series giving the group law on E, we simply
used the group law on E (in the (z, w)-plane) and then replaced w by w(z).
Therefore the map is a group homomorphism. Since w(z) = 0 only for z = 0,
it is injective, so it remains to show that the image is all of E, (K).

Let (x, y)e E,(K). Since (x, y) reduces modulo 7 to the point at infinity on
E(k), we see that v(x) < 0 and v(y) < 0. But then from the Weierstrass equa-
tion y2 + --- = x3 + .., we must have

3v(x) = 2v(y) = —6r
for some integer r > 1. Hence x/y e .#, so the map
E,(K)— E(#)
(e, y) = —x/y

is well-defined. Again because the group law on E(.#) is defined by using the
group law on E, this map is a homomorphism; and it is clearly injective.
Hence we have two injections

E(#)— E,(K) — E(AH)

whose composition is the identity, so they are isomorphisms. O

§3. Points of Finite Order

In this section we analyze the points of finite order in the group E(K).
Although we will prove a stronger result below (3.4), we start with the follow-
ing easy proposition, which will provide a crucial ingredient in the proof of
the weak Mordell-Weil theorem (VIIL.1.1).
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Proposition 3.1. Let E/K be an elliptic curve and m = 1 an integer relatively
prime to char(k).

(@) The subgroup E,(K) has no non-trivial points of order m.

(b) If the reduced curve E/K is non-singular, then the reduction map

E(K)[m] - E(k)
is injective. (Here E(K)[m] denotes the set of points of order m in E(K).)

Proor. From (2.1) we have an exact sequence
0— E(K) > Eo(K) = E,i(k) = 0.

But from (2.2), E,(K) = E(#), where E is the formal group associated to E;
and from our general result on formal groups (IV.3.2b), E(.#) has no non-
trivial elements of order m. This proves (a). Now if E is non-singular, then
Eo(K) = E(K) and E, (k) = E(k), so the m-torsion in E(K) injects into E(k),
which proves (b). O

Application 3.2. The above proposition (3.1) generally provides the quickest
method for finding the torsion subgroup of an elliptic curve defined over a
number field. Thus let K be a number field and K, the completion of K at
some discrete valuation v. Then clearly E(K) injects into E(K,), so by apply-
ing (3.1) for several differents v’s, one can obtain information about the
torsion in E(K). We illustrate with several examples over Q.

Example 3.3.1. Let E/Q be the elliptic curve
E:y’+y=x3—x+1

Its discriminant A = —643 is prime, so E(modulo 2) is non-singular. One
casily checks that E(F,) = {0}, hence from (3.1) we conclude that E(Q) has
no non-zero torsion points.

Example 3.3.2. Let E/Q be the elliptic curve
E:y*=x3+3.
Its discriminant is A = —3°2%, so E(modulo p) is non-singular for every
p = 5. One easily checks that
#E(F;)=6 and #E(F,) =13

Hence E(Q) can have no non-trivial torsion. In particular, the point
(1,2)e E(Q) has infinite order, and so E(Q) is an infinite set, two facts which
are by no means obvious. (For the complete analysis of the rational torsion
points on the curves y?> = x*> + D with De Z, see [Fue] or exer. 10.19.)

Example 3.3.3. Let E/Q be the elliptic curve
E:y?=x3+x,
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whose discriminant is A = —32. The point (0,0)e E(Q) is a point of order 2.
We compute

#E(F)=4  #EF;)=4  #EF;)=8

As can easily be checked (exer. 5.12), # E(F,) is divisible by 4 for every p > 5.
But suppose we look at the actual groups,

E(F3) = {0,(0,0), (2,), 2.2)},
E(F5) = {0,(0,0), (2,0), (3,0)}.
Now a point of E has order 2 if and only if its y-coordinate is zero. Hence
E(Fy) > Z/4Z and E(Fs) =(Z/2Z)%,

s0 (0,0) is the only torsion point in E(Q).

The next result, due to Cassels, gives a precise bound for the denominator
of a torsion point. Following Katz-Lang ([La 5, Thm. II1.3.7]), we give a
proof based on general facts concerning formal groups. For an exposition of
Cassel’s original proof, which involves a careful analysis of division poly-
nomials, see [Ca 1, Thm. 17.2] or [La 5, Thm. IIL.1.5].

Theorem 3.4. Assume char(K) = 0 and p = char(k) > 0. Let E/K be an elliptic
curve given by a Weierstrass equation

E:y* +axy+azy=x3+a,x*> +a,x + a

with all a;e R. (N.B. The equation need not be minimal.) Let P € E(K) be a point
of exact order m = 2.

(a) If mis not a power of p, then x(P), y(P)eR.

(b) If m = p", then

n—1

¥ x(P), i y(P)eR with r= [%]

(Here [ 1] is greatest integer.)

Proor. If the equation for E is not minimal, and (x’, y’) are coordinates for a
minimal equation, then from (1.3d) we see that

v(x(P)) = v(x'(P)) and v(y(P)) = v(y'(P)).

It thus suffices to prove the theorem for a minimal Weierstrass equation.
If x(P)e R there is nothing to prove, so we assume v(x(P)) < 0. Then from
the Weierstrass equation we see that

3v(x(P)) = 2v(y(P)) = —6s for some integer s > 1.

Further, P is in E,(K), the kernel of the reduction map, so under the isomor-
phism of (2.2) it corresponds to the element — x(P)/y(P) in the formal group
E(#). But from (IV.3.2b), E(.#) contains no torsion of order prime to p,
which proves (a).
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To prove (b) we use (IV.6.1). Since —x(P)/y(P) has exact order p” in E(.#),
it follows from (IV.6.1) that

s = o(—x(P)/y(P)) < v(p)/(p" — p"7).
Since 7%* x(P) and ©** y(P) are in R, this gives the desired resuit. O

Application 3.5. Let E/Q be an elliptic curve given by a Weierstrass equation
having coefficients in Z. Let P € E(Q) be a point of exact order m. By embedd-
ing E(Q) into E(Q),) for various primes p, we deduce integrality conditions
on the coordinates of P. Thus if m is not a prime power, then (3.4a) implies
x(P), y(P)eZ. But even if m = p" for some prime p corresponding to a
normalized valuation v, we have

Lo(p)/(p" — p" )1 = [1Ap" — p"H]1=0
unless p = 2 and n = 1. We conclude that x(P), y(P)e Z for every torsion
point P € E(Q) of exact order m > 3. This is best possible, as the example
E:y*+xy=x3+x+1 (—1/4,1/8)eEQ)[2]

shows. For a further discussion of torsion points over number fields, see
(VIII §7).

§4. The Action of Inertia

In this section we will reinterpret the injectivity of torsion (3.1b) in terms of
the action of Galois. We set the following notation:

K™ the maximal unramified extension of K,
I, the inertia subgroup of Gg/x.

Since the unramified extensions of K correspond to the extensions of the
residue field k, G/ has a decomposition

1 - Ggjgnr = Ggjx = Gy — 1

I f
I, Gl_c/k

In words, the inertia group I, is the set of elements of Gix which act trivially
on the residue field k. (For these basic facts about local fields, see e.g. [Fro §7]
or [La 2, Ch. I, IT]. Remember that K and k are both assumed to be perfect.)

Definition. Let T be a set on which Gg x acts. We say that X is unramified at v
if the action of I, on X is trivial.

Recall that if E/K is an elliptic curve, then we have seen (III §7) that Gk
acts on the torsion subgroups E[m] and the Tate modules T,(E) of E.
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Proposition 4.1. Let E/K be an elliptic curve, and suppose that the reduced
curve E/k is non-singular.

(a) Let m = 1 be an integer relatively prime to char(k) (i.e. v(m) = 0). Then
E[m] is unramified at v.

(b) Let £ # char(k) be a prime. Then T,(E) is unramified at v.

Proor. (a) Take a finite extension K'/K so that E[m] < E(K’), and let
R’ = ring of integers of K’
M' = maximal ideal of R’

k' = residue field of R" = R’/ 4’

'

v’ = valuation on K'.

By assumption, if we take a minimal Weierstrass equation for E at v, then its
discriminant A satisfies v(A) = 0 (since E/k is non-singular.) But v’ restricted
to K is just a multiple of v, so v'(A) = 0. Hence the Weierstrass equation is
also minimal at v/, and E/k’ is non-singular. Now (3.1b) implies that the
reduction map

E[m] - E(k))
is injective.
Let oel, and P e E[m]. We must show that P? = P. From the definition of
the inertia group, ¢ acts trivially on E(k’), so

F_P=F_F=0

But P° — P is clearly in E[m], so from the injectivity proven above we

conclude P° — P = 0.

(b) This follows immediately from (a) and the definition T,(E) = L(i_m E[¢"].
O

There is a converse to this proposition, known as the criterion of Néron—
Ogg—Shafarevich, which characterizes when E/k is non-singular in terms of
the action of the inertia group on torsion points. We will return to this in
section 7, after first studying the reduced curve E more closely.

§5. Good and Bad Reduction

Let E/K be an elliptic curve. Then from our general knowledge of Weierstrass
equations (II1.1.4), the reduced curve E is one of three types. We classify E
according to these possibilities.

Definition. Let E/K be an elliptic curve, and let E be the reduced curve for a
minimal Weierstrass equation.
(a) E has good (or stable) reduction over K if E is non-singular.
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(b) E has multiplicative (or semi-stable) reduction over K if E has a node.

(c) E has additive (or unstable) reduction over K if E has a cusp.

In cases (b) and (c), E is naturally said to have bad reduction. If E has
multiplicative reduction, then the reduction is said to be split (respectively
non-split) if the slopes of the tangent lines at the node are in k (respectively
not in k).

It is quite easy to read off the reduction type of an elliptic curve from a
minimal Weierstrass equation.

Proposition 5.1. Let E/K be an elliptic curve with minimal Weierstrass equation
Y2+ a;xy + azy = x> + ayx* + agx + ag.

Let A be the discriminant of this equation and c, the usual combination of the
a;’s (cf. 111 §1).
(a) E has good reduction if and only if v(A) = O (i.e. Ae R*). In this case E/k is
an elliptic curve.
(b) E has multiplicative reduction if and only if v(A) > 0 and v(c,) =0 (ie.
Ae M and c, € R¥). In this case E, is the multiplicative group,

E, (k) = k*.
() E has additive reduction if and only if v(A) >0 and v(c,) >0 (ie
A, c e M). In this case E, is the additive group,

E (k) = k*.

Proor. The type of reduction ~for E follows from (I11.1.4) applied~to~the
reduced Weierstrass equation E over the field k. Then the group E, (k) is
given by (I11.2.5). O
Example 5.2. Let p > 5 be a prime. Then the elliptic curve

E :y*=x+px?+1
has good reduction over Q,,, while

E:y*=x*+x*+p
has (split) multiplicative reduction over Q,, and

Ey:y2=x3+p

has additive reduction over Q,. Notice that E; has good reduction over

Q p(f/[_J), since the given equation is then not minimal. (Make the substitution

x=Ypx,y= \2/1_) y".) On the other hand, E, still has multiplicative reduc-
tion over any extension of @Q,. This is in fact true in general; after extending
the ground field, additive reduction turns either multiplicative or good, while
the latter two do not change. (See (5.4) below.) This suggests the origins of the
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CEINTS CLINY3

terms “stable”, “semi-stable”, “unstable”, although they do have quite precise
definitions in terms of the stability of points on moduli space. (For a high-
powered account of the general theory, see [M-F1].)

Even if an elliptic curve E/K has bad reduction, it is often useful to know
whether it attains good reduction over some extension of K. We give this
property a name.

Definition. Let E/K be an elliptic curve. E has potential good reduction over
K if there is a finite extension K'/K so that E has good reduction over K'.

Example 5.3. If K is a finite extension of Q,, and if E/K has complex multi-
plication, then E has potential good reduction. (See exer. 7.10.)

The next result explains how reduction type behaves under field extension,
and the one immediately following provides a useful characterization of when
an elliptic curve has potential good reduction.

Proposition 5.4 (Semi-stable reduction theorem). Let E/K be an elliptic curve.
(a) Let K'/K be an unramified extension. Then the reduction type of E over K
(i.e. good, multiplicative, or additive) is the same as the reduction type of E over
K'

(b) Let K'/K be any finite extension. If E has either good or multiplicative
reduction over K, then it has the same type of reduction over K'.

(c) There exists a finite extension K'/K so that E has either good or (split)
multiplicative reduction over K'.

Proposition 5.5. Let E/K be an elliptic curve. Then E has potential good
reduction if and only if its j-invariant is integral (i.e. if j(E)€ R).

Proor oF (5.4). (a) For arbitrary K this follows from Tate’s algorithm [Ta 6].
We will assume char(k) = 5, so E has a minimal Weierstrass equation over
K of the form

E:y>=x3+ Ax + B.
Let R’ be the ring of integers in K’, v’ the valuation on K’ extending v, and
x=@Px" y=w)y

a change of coordinates producing a minimal equation for E over K. Since
K'/K is unramified, we can find u e K with (u/u’) € (R')*. Then the substitution

x=u’x"  y=udy
also gives a minimal equation for E/K’, since
v'(2A) = v'((W) T2 A).

But this new equation has coefficients in R, so by the minimality of the
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original equation over K, we have v(u) = 0. Hence the original equation is
also minimal over K'. Since v(A) = v'(A) and v(c,) = v'(c4), using (5.1) we see
that E has the same reduction type over K and K.

(b) Take a minimal Weierstrass equation for E over K, with corresponding
quantities A and ¢,. Let R’ be the ring of integers in K, v’ the valuation on K’
extending v,

x=ulx"+r y=udy +sulx' +1t
a change of coordinates giving a minimal Weierstrass equation for E over K'.
For this new equation the associated A’ and c; satisfy
0<v'(A)=v'™*2A) and 0 <0v'(cy) =0 *cy).
From (1.3d) we also have ue R’, hence
0 < v'(w) < min{750'(4), 1v'(ca)}-

But for good (resp. multiplicative) reduction we have v(A) = 0 (resp. v(cy) = 0)
(5.1a, b), so in both cases v'(1) = 0. Hence

v'(A) = v'(4) and v'(c) = v'(cy),

so again using the characterization in (5.1), E has good (resp. multiplicative)
reduction over K'.

(c) We assume char(k) # 2, and extend K so that E has a Weierstrass equa-
tion in Legendre normal form (II1.1.6)

E:y*=x(x—1)(x — 1), A#0, L
(For char(k) = 2, see (A.1.4a).) For this equation,
ca=16(A>— A1+ 1) and A =164%(1— 1)

We consider three cases.

Casel. AeR, A #0,1(mod .#). Then A€ R*, so the given equation has good
reduction.

Case 2. AeR, A=0 or 1 (mod .#). Then Ae # and c,e R*, so the given
equation has (split) multiplicative reduction.

Case 3. A¢R. Choose the integer r > 1 so that 7A€ R*. Then the substitu-
tion x = n7"x’, y = n~ ¥y’ (where we replace K by K(n'/?) if necessary) gives
a Weierstrass equation

() = ¥ = ) = 7A)

for E with integral coefficients, A’e .#, and ¢, € R*, so E has (split) multiplica-
tive reduction. O
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Proor oF (5.5). As above, we assume char(k) # 2 and extend K so that E has
a Weierstrass equation in Legendre form (I111.1.6)

E:y?=x(x—1(x—2), A#0, 1.
(For char(k) = 2, see (A.1.4b).) By assumption, j = j(E)e R; and A is related to
Jj by
1 =i =P —ji2a - Ar=0.
From this equation and the integrality of j it is immediate that

AeR and A#0orl(mod.#),

so the given Legendre equation has integral coefficients and good reduction.

Conversely, suppose E has potential good reduction. Let K'/K be a finite
extension so that E has good reduction over K’, let R’ be the ring of integers
of K', and let A’ and ¢, be the quantities associated to a minimal Weierstrass
equation for E over K'. Since E has good reduction over K’, we have
A’ e(R’)*, and hence

J(E) = (ci)’/NeR".
But j(E)e K, since E is defined over K, hence j(E)e R. O

§6. The Group E/E,

Recall that the group E,(K) consists of those points of E(K) whose reduction
to E(k) is not a singular point. Further, from (2.1), E,(K) is made up of two
pieces that we have analyzed fairly closely, namely E, (k) and the formal
group E,(K) = E(#). We are left to study the remaining piece, the quotient
E(K)/Ey(K).

The most important fact about this quotient is that it is finite. As the
theorem given below indicates, one can actually say quite a bit more. Unfor-
tunately, a direct proof, working explicitly with Weierstrass equations, is
quite lengthy. Since even the simplifying assumption char(k) > 5 leads to a
long case-by-case proof, we will not give one here (but see exer. 7.7). If the
residue field k is finite, then the mere finiteness of E(K)/E,(K) can be proven
by an easy compactness argument (exer. 7.6).

Theorem 6.1 (Kodaira, Néron). Let E/K be an elliptic curve. If E has split
multiplicative reduction over K, then E(K)/Ey(K) is a cyclic group of order
v(A) = —v(j). In all other cases, E(K)/Ey(K) is a finite group of order at
most 4.

Corollary 6.2. The subgroup Ey(K) is of finite index in E(K).
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Proor. The finiteness of E(K)/E,(K) follows from the existence of the Néron
model, which is a group scheme over Spec(R) whose generic fiber is E/K. The
specific description of E(K)/Ey(K) comes from the complete classification of
the possible special fibers of a Néron model. One can also give an elementary
(but lengthy) proof by doing explicit computations using Weierstrass equa-
tions. See (C §15) for a further discussion O

Our most important application of (6.2) will be in the proof of the criterion
of Néron—Ogg—Shafarevich, which we give in the next section. Another inter-
esting application is the following.

Proposition 6.3. Let K be a finite extension of Q, (so char(K) =0 and k is a
Sfinite field). Then E(K) contains a subgroup of finite index which is isomorphic
to R™ (i.e. taken additively).

ProoF. From (6.2), E(K)/Ey(K) is finite; and from (2.1), E,(K)/E,(K) is iso-
morphic to E,(k), which is finite since k is finite. Hence it suffices to prove
that E,(K) has a subgroup of finite index isomorphic to R*. Now E,(K) is
isomorphic to the formal group E(.#) (2.2). Further, from (IV.3.2a), E(.#) has
a filtration

E(#t) > E(M?) = E(M3) > -

and each quotient E(.#")/E(.#'*') is isomorphic to .#'/.#**!, which is also
finite since k is finite. Finally, for an appropriate r (IV.6.4b), the formal
logarithm map provides an isomorphism

EM) % M =7"R (taken additively),

which gives the desired result. O

§7. The Criterion of Néron—Ogg—Shafarevich

If an elliptic curve E/K has good reduction, and m > 1 is an integer prime to
char(k), then we have seen that the torsion subgroup E[m] is unramified (4.1).
Various partial converses were proven by Néron, Ogg, and Shafarevich, and
these were vastly generalized by Serre and Tate. We follow the exposition in
[S-T].

Theorem 7.1 (Criterion of Néron—Ogg—Shafarevich). Let E/K be an elliptic
curve. The following are equivalent.

(a) E has good reduction over K.

(b) E[m] is unramified at v for all integers m > 1 relatively prime to char(k).
(c) The Tate module T,(E) is unramified at v for some (all) primes ¢ with
¢ # char(k).
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(d) E[m] is unramified at v for infinitely many integers m = 1 relatively prime
to char(k).

Proor. We have already proven (a)=(b) (4.1), and clearly (b)=>(c)=(d).
(Note that T,(E) being unramified is the same as E[¢"] being unramified for
all n > 1.) It remains to prove that (d) implies (a).

Assume (d) holds. Let K™ be the maximal unramified extension of K.
Choose an integer m satisfying

(i) m is relatively prime to char(k);
(ii) m > # E(K™)/Eo(K™);
(iii) E[m] is unramified at v.

Such an m exists, since we are assuming (d), and E(K™)/E,(K™) is finite from
(6.2).
Now consider the two exact sequences

0 — Eo(K™) > E(K™) = E(K™)/Eo(K™) > 0
0= E;(K™) = Eo(K™) - E, (k) - 0.

(Note k is the residue field of the ring of integers in K™.) Since E[m] < E(K™),
we see that E(K™) has a subgroup isomorphic to (Z/mZ)*. But from (ii),
E(K™)/Ey(K™) has order strictly less than m. It follows from the first exact
sequence that we can find a prime ¢ dividing m so that Ey(K™) contains a
subgroup (Z/¢£Z)*. Now look at the second exact sequence. From (3.1a),
E,(K™) has no non-trivial /-torsion, so we conclude that E, (k) has a sub-
group isomorphic to (Z/£Z)*.

Now suppose that E has bad reduction over K™. If the reduction is multi-
plicative, then from (5.1b),

E, (k) = (k)*;
but then the /-torsion in E, (k) would be Z/¢Z. Hence this type of reduction
cannot occur. Similarly, if E has additive reduction over K™, then from (5.1¢),

E, (ky=k  (taken additively),

which has no /-torsion at all. This eliminates multiplicative and additive
reduction as possibilities, so all that remains is for E to have good reduction
over K™, Finally, since K™/K is unramified, we conclude (5.4a) that E has
good reduction over K. O

Corollary 7.2. Let E,, E, /K be elliptic curves which are isogenous over K. Then
either they both have good reduction over K, or neither one does.

ProoF. Let ¢ : E; = E, be a non-zero isogeny defined over K, and let m > 2
be an integer relatively prime to both char(k) and deg ¢. Then the induced map

¢ : E;[m] > E;[m]
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is an isomorphism of Gk x-modules, so in particular either both are unrami-
fied at v, or neither one is. Now use (7.1, a <>d). Od

Another immediate corollary of (7.1) is a criterion, in terms of the action of
inertia, for when an elliptic curve has potential good reduction.

Corollary 7.3. Let E/K be an elliptic curve. Then E has potential good reduc-
tion if and only if the inertia group I, acts on the Tate module T,(E) through a
finite quotient for some (all) prime(s) £ # char(k).

Proor. Suppose E has potential good reduction. Then there is a finite exten-
sion K'/K so that E has good reduction over K. Extending K’', we may
assume K'/K is Galois. Let v’ be the valuation on K’ and I, the inertia group
of K'. From (7.1), I, acts trivially on T,(E) for any ¢ # char(k). Hence the
action of I, on T;(E) factors through the finite quotient I,/I,.. This proves one
implication.

Assume now that for some £ # char(k), I, acts on T,(E) through a finite
quotient, say I,/J. Then the fixed field of J, which we denote K, is a finite
extension of K™ = K'». Hence we can find a finite extension K'/K so that K’
is the compositum

K’ =K'K™.
Then the inertia group of K’ is equal to J, and by assumption J acts trivially
on T,(E). Now (7.1) implies that E has good reduction over K'. O
EXERCISES

7.1. Assume that char(k) # 2,3.
(a) Let E/K be an elliptic curve given by a Weierstrass equation with coeffi-
cients a;€ R. Prove that the equation is minimal if and only if either
v(A) < 12 or v{c,) < 4.
(b) Let E/K be given by a minimal Weierstrass equation of the form

E:y*=x*+ Ax+B.

Prove that E has

(i) good reduction <443 + 27B?e R¥;
(ii) multiplicative reduction<>443 + 27B*c # and ABe R*;
(ili) additive reduction<> A4, Be 4.

7.2. Let E/K be an elliptic curve with j-invariant j(E)e R. Prove that the minimal
discriminant A of E satisfies

v(A) < 12 + 120(2) + 6v(3).
7.3. Describe all Weierstrass equations

E:y* +a;xy+ a3y = x>+ a,x% + azx + a4
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74.

15.

7.6.

7.17.

78.

79.

with a;eZ and A # 0 for which E(Q) contains a torsion point P satisfying
x(P)¢ Z. [Hint: cf. (3.5).]

Let E/K be an elliptic curve given by a minimal Weierstrass equation, and
define subsets of E(K) by

E,(K) = {PeE(K): v(x(P)) £ —2n} U{O0}.

(a) Prove that each E,(K) is a subgroup of E(K).
(b) Prove that forn > 1,

E(K)/E,+(K) = k™.

Show that the following elliptic curves have good reduction over the indicated
field by writing down a minimal Weierstrass equation over that field.

(@ E:y>*=x>+x Q,(n), n® = 2.

(b) E:y*+y=x> Q;(m), n* = 3.

© E:y*=x3+x2-3x—2  Qsxn),n*=5.

Assume that K is locally compact for the topology induced by the discrete
valuation v. (This is equivalent to the assumption that k is finite, cf. [Ca 8, §7].)
The following steps provide a proof of (6.2) for such fields.

(a) Use v to define a topology on P¥(K), and show that P¥(K) is compact for
this topology.

(b) Let E/K be an elliptic curve and E(K) = P?(K) the inclusion coming from a
minimal Weierstrass equation. Prove that with the induced topology, E(K)
is compact; and that the translation map 7, : E(K) — E(K) is continuous for
any Pe E(K).

(c) Prove that E,(K) is an open subset of E(K). (It is also a closed subset!)

(d) Prove that E(K)/Ey(K) is finite.

The following examples illustrate some special cases of (6.1). We assume
throughout that char(k) # 2, 3. Let E/K be an elliptic curve given by a Weier-
strass equation

E:y?=x%+ Ax + B.

(a) If v(4) = 1 and v(B) = 1, then E(K) = E,(K).
(b) If v(4) = 1 and v(B) > 2, then E(K)/E,(K) = Z/27.

[Hint: If P, Q ¢ Eo(K), use the addition formula to show that P 4 Q € Ey(K).]
(c) Ifv(A) = 2 and v(B) = 2, then E(K)/Ey(K) is either 0 or Z/3Z.

Let E/K be an elliptic curve and m an integer relatively prime to char(k). Prove
that

Eo(K™)/mEo(K™) = 0.

Let E/K be an elliptic curve with potential good reduction, let m > 3 be an

integer relatively prime to char(k), and let K(E[m]) be the field obtained by

adjoining to K the coordinates of the points of E[m].

(a) Prove that the inertia group of K(E{m])/K is independent of m. [Hint: For
each prime £ # char(k), let £/ =/ if £ > 3 and ¢’ =4 if / = 2. Show that
p,(I,) has trivial intersection with the kernel of the map

Aut(T/(E)) » Auw(T(E)/" T/E)) = GL,(Z/¢'Z).
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Characterize the inertia group of K(E[m])/K in terms of the kernels of the
various p;’s.]
(b) Prove that K(E[m])/K is unramified if and only if E has good reduction at v.
(c) Prove that K(E[m])/K is tamely ramified if char(k) > 3.

7.10. Let K be a finite extension of Q,, R the ring of integers of K, and E/K an elliptic
curve with complex multiplication. Prove that j(E)e R. [Hint: Use the descrip-
tion of the maximal abelian extension K of K provided by local class field
theory to prove that the action of Ggax on T,(E) factors through a finite
quotient. Then apply (exer. 3.24), (7.3), and (5.5).]

7.11. Use (exer. 3.21) to prove (5.4c) and (5.5) in characteristic 2.



CHAPTER VIII
Elliptic Curves over Global Fields

Let K be a number field and E/K an elliptic curve. Our main goal in this
chapter is to prove the following result.

Mordell-Weil Theorem. The group E(K) is finitely generated.

The proof of this theorem consists of two quite distinct parts, the so-called
“weak Mordell-Weil theorem” (§1) and the “infinite descent” using height
functions (§3, 5, 6). We also give a separate proof of the descent step in the
simplest case (§4), where the general theory of height functions can be re-
placed by explicit polynomial calculations.

From the Mordell-Weil theorem we see that the Mordell-Weil group E(K)
has the form

E(K) = E,(K) x Z’,

where the torsion subgroup E,, . (K) is finite and the rank r of E(K) is a non-

negative integer. For any given elliptic curve, it is possible to describe quite

precisely the torsion subgroup (§7). The rank is much more difficult to com-

pute, and in general there is no known procedure which is guaranteed to

yield an answer. We will return to this question in more detail in chapter X.
The following notation will be used for the next three chapters.

K a number field

My a complete set of inequivalent absolute values on K
My the archimedean absolute values in My

M2 the non-archimedean absolute values in My

v(x) = —log|x|, for absolute values ve My

ord, normalized valuation for ve Mg (ie. ord, (K*) = Z)
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R the ring of integers of K = {xe K : v(x) > 0 for all ve Mg}
R* the unit group of R = {xe K : v(x) = 0 for all ve MY}
K, the completion of K at v for ve Mg

R,, M, k, the ring of integers, maximal ideal, and residue field asso-
ciated to K, for ve MQ.

Finally, in those situations where it is important to have the absolute values
in My coherently normalized, such as the theory of height functions, we will
always adopt the “standard normalization” as described in section 5.

§1. The Weak Mordell-Weil Theorem

Our goal in this section is to prove the following result.

Theorem 1.1 (Weak Mordell-Weil Theorem). Let K be a number field, E/K
an elliptic curve, and m > 2 an integer. Then

E(K)/mE(K)
is a finite group.

For the rest of this section, E/K and m will be as in the statement of (1.1).
We start with the following reduction lemma.

Lemma 1.1.1. Let L/K be a finite Galois extension. If E(L)/mE(L) is finite,
then E(K)/mE(K) is also finite.

Proor. Let @ be the kernel of the natural map E(K)/mE(K) — E(L)/mE(L).
Thus
® = (E(K)NmE(L))/mE(K),

so for each P (mod mE(K)) in ®, we can choose a point Qpe E(L) with
[m]Qp = P.(Qp need not be unique, of course.) Having done this, we define a
map of sets (which is not in general a group homomorphism)

Ap: Gpx — E[m], Ap(0) = Q5 — Qp.
(Notice that Q% — Qp is in E[m], since
[m1(Qp — Qp) = ([M]Qp)" — [M]Qp = P* — P = 0.

The map 4, is actually a 1-cocycle; see section 2.)
Suppose now that A, = Ap. for two points P, P’ € E(K) n mE(L). Then

(Qp— Q) =Qp— Qp for all o€ G,
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50 Qp — Qp € E(K). Therefore
P — P =[m]Qp — [m]Qp emE(K), so P = P’ (mod mE(K)).
This proves that the association
® - Map(Gyx, E[m]), P Ay,

is one-to-one. But G, x and E[m] are finite sets, so there are only a finite
number of maps between them. Therefore @ is finite.
Finally, the exact sequence

0—- ® — E(K)/mE(K) — E(L)/mE(L)
nests E(K)/mE(K) between two finite groups, so it too is finite. O

In view of (1.1.1), it suffices to prove the weak Mordell-Weil theorem (1.1)
under the additional assumption that

E[m] < E(K).

For the remainder of this section we will assume, without further comment,
that this inclusion is true.

The next step is to translate the putative finiteness of E(K)/mE(K) into a
statement about a certain field extension of K. For this purpose, we use the
following tool.

Definition. The Kummer pairing
k: E(K) x Ggx — E[m]

is defined as follows. Let PeE(K), and choose any QeE(K) satisfying
[m]Q = P. Then

k(P,0)=Q° — Q.

Proposition 1.2. (a) The Kummer pairing is well-defined.

(b) The Kummer pairing is bilinear.

(c) The kernel of the Kummer pairing on the left is mE(K).

(d) The kernel of the Kummer pairing on the right is Gg,., where
L= K([m]'E(K))

is the compositum of all fields K(Q) as Q ranges over the points of E(K)

satisfying [m]Q € E(K).
Hence the Kummer pairing induces a perfect bilinear pairing

E(K)/mE(K) x G x — E[m],
where L is the field given in (d).

Proor. Most of this proposition follows immediately from basic facts con-
cerning group cohomology. (See section 2.) We will give a direct proof here.
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(a) We must show that «(P, ¢) is in E[m] and does not depend on the choice
of Q. For the former,

[mlk(P,0) =[m]Q° — [m]Q=P"—P=0

since P e E(K) and o fixes K. For the latter, note that any other choice has the
form Q + T for some Te E[m]. Then

@Q@+Ty-Q+N=Q0+T"-Q-T=0"-0,

because by assumption E[m] < E(K), so o fixes T.
(b) The linearity in P is obvious. For the other side, let ¢, 7€ Ggx. Then

K(P,ot)=0"—Q0=(Q"—QF + Q" — Q = «(P, 6] + x(P, 7).
But (P, o) E[m] is contained in E(K), so it is fixed by .
(c) Suppose PemE(K), say P = [m]Q with Q € E(K). Then any o € G/ fixes
0, so0
k(P,o)=0Q°—Q =0.
Conversely, suppose k(P, 0) = O for all 6eGgx. Thus choosing Qe E(K)
with [m]Q = P, we have
Q=0 for all o € Ggjk.
Therefore Q € E(K), so P = [m]QemE(K).
(d) Suppose o€ G, Then
k(P,0)=0"—Q =0,
since Q€ E(L) from the definition of L. Conversely, suppose o€ Ggx and
k(P, ) = O for all Pe E(K). Then for every Q € E(K) satisfying [m]Q € E(K),
0 =x([m]Q,0)=0° — Q.

But L is the compositum of K(Q) over all such @, so ¢ fixes L. Hence o € Gg;;..

Finally, the last statement of (1.2) is clear from what precedes it, once we
note that L/K is Galois because Gg  takes [m] ™ E(K) to itself. (Alternatively,
from (d), Gg,, is the kernel of the homomorphism

Ggx — Hom(E(K), E[m]), o - «(:,0),

80 it is a normal subgroup.) |

Using (1.2), we see that the finiteness of E(K)/mE(K) is equivalent to the
finiteness of the extension L/K. The next step is to analyze this extension.
Our main tool will be (VIL3.1), which we restate after making appropriate
definitions.

Definition. Let K be a number field and E/K an elliptic curve. Let ve Mg be a
discrete valuation (i.e. ve M2). Then E is said to have good (respectively bad)
reduction at v if E has good (respectively bad) reduction when considered
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over the completion K, (cf. VII §5). Taking a minimal Weierstrass equation
for E over K,, we denote the reduced curve over the residue field by E, /k,.
[N.B. It may not be possible to choose a single Weierstrass equation for E
over K which is simultaneously minimal for all K,. However, this can be
done if K = Q. For further details, see section 8.]

Remark 1.3. Take any Weierstrass equation for E/K,
E:y* + a;xy + a3y = x> + a,x? + a,x + aq,

say with discriminant A. Then for all but finitely many ve M2, we have
v(a) =0 fori=1,...,6 and v(A) = 0.

Now for such v, the given equation is already a minimal Weierstrass equa-
tion, and the reduced curve E,/k, is non-singular. This shows that E has good
reduction at v for all but finitely many ve M.

Proposition 1.4 (restatement of VIL3.1b). Let ve M2, and suppose that
v(m) = 0 and E has good reduction at v. Then the reduction map

E(K)[m] - E,(k,)
is injective.
We are now ready to analyze the extension L/K.

Proposition 1.5. Let
L= K([m]™'E(K))
be the field defined in (1.2d).
(@) L/K is an abelian extension of exponent m. (I.e. Gy is abelian and every

element has order dividing m.)
(b) Let

S = {ve My : E has bad reduction at v} U {ve Mg : v(m) # 0} U MY.

Then L/K is unramified outside S. (I.e. If ve Mg and v¢ S, then L/K is unrami-
fied at v.)

Proor. (a) This follows immediately from (1.1), which implies that there is an
injection
Gy x ~ Hom(E(K), E[m])
g - k(-,0)

(b) Let ve My with v¢ S, let Q € E(K) satisfy [m]Q € E(K), and let K’ = K(Q).
It suffices to show that K’/K is unramified at v, since L is the compositum of
all such K'. Let v' e M. be a place of K’ lying above v, and let k. /k, be the
corresponding extension of residue fields. Since E has good reduction at v
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(remember v ¢ S), it certainly has good reduction at v’ (take the same Weier-
strass equation). Thus we have the usual reduction map

E(K') - E,(k,),

which we denote as usual by a tilde.
Now let I, = Ggx be the inertia group for v'/v, and let o€l, . By
definition of inertia, o acts trivially on E,.(k},), so

— ~

F=0=0-0=0.
On the other hand,

[m](Q° — Q) = ([m]Qy — [m]Q =0,

since [m]Q € E(K). Thus Q° — Q is a point of order m which is in the kernel of
the “reduction modulo v” map. It follows from (1.4) that

0°—0=0.
This proves that Q is fixed by every element of the inertia group I, hence

K’ = K(Q) is unramified over K at v'. Since this holds for every v over v, and
for every v¢ S, we have proven that K'/K is unramified outside S. O

To complete the proof of the weak Mordell-Weil theorem, all that remains
is to show that any field extension L/K satisfying the conditions of (1.5) is
necessarily a finite extension. The proof of this fact relies on the two funda-
mental finiteness theorems of algebraic number theory, namely the finiteness
of the ideal class group and the finite generation of the group of S-units.

Proposition 1.6. Let K be a number field, S — My a finite set of places contain-
ing Mg, and m = 2 an integer. Let L/K be the maximal abelian extension of K
having exponent m which is unramified outside of S. Then L/K is a finite
extension.

Proor. Suppose the proposition were true for some finite extension K’ of K,
where S’ is the set of places of K’ lying over S. Then LK'/K’, being abelian of
exponent m unramified outside S’, would be finite; and so L/K would also be
finite. It thus suffices to prove the proposition under the assumption that K
contains the m™®-roots of unity p,,.

Similarly, we may increase the set S, since this only has the effect of making
L larger. Using the fact that the class number of K is finite, we can thus add a
finite number of elements to S so that the ring of S-integers

Rs={aeK:v(a) > O0forallve My, v¢S}

is a principal ideal domain. We may also enlarge S so that v(m) = 0 for all
vES.

Now the main theorem of Kummer theory says that if a field (of character-
istic 0) contains p,,, then its maximal abelian extension of exponent m is
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obtained by adjoining m™-roots. (See any basic text on field theory, for
example [Bi §2] or [Ar, theorem 25]; or do exer. 8.4.) Thus L is the largest
subfield of

K(("/t_ztaeK)

which is unramified outside S.
Let ve Mg, v¢S. Looking at the equation

X" —a=0
over the local field K,, and remembering that v(m) =0, it is clear that
K,(7/a)/K,, is unramified if and only if
ord,(a) = 0 (mod m).

(Recall ord, is the normalized valuation associated to v.) Now when adjoin-
ing m™-roots, it is only necessary to take one representative for each class in
K*/(K*)™. We conclude that

L=K(a:aeTy),
where
Ty = {ae K*/(K*)": ord,(a) = 0 (m) for all ve My, v¢S}.

To finish the proof, it thus suffices to show that the set T is finite.
Consider the natural map

R¥ - T;.

We claim that it is surjective. To see this, suppose ae K* represents an
element of T. Then the ideal aRj is the m™®-power of an ideal in Rg, since the
prime ideals of Rg correspond to the valuations v¢ S. Since Ry is a principal
ideal domain, there is a be K* so that aRg = b™Rg, Hence there is a ue R so
that

a=ub™

Then a and u give the same element of Ty, so R¥ surjects onto T;. Now the
kernel of this map certainly contains (R¥)™, so we have a surjection

R3/(R3)" » Ts.

(It is actually an isomorphism.) But Dirichlet’s S-unit theorem [La 2, V §1]
says that R¥ is finitely generated, so this proves that Ty is finite, and thereby
completes the proof of the proposition. O

The three propositions proven above may now be combined to give our
main result.

PROOF OF THE WEAK MORDELL-WEIL THEOREM (1.1). Let L = K([m] 'E(K))
be the ficld defined in (1.2d). Since E[m] is finite, the perfect pairing given in
(2.1) shows that E(K)/mE(K) is finite if and only if G is finite. Now (1.5)



196 VIII. Elliptic Curves over Global Fields

shows that L has certain properties, and (1.6) shows that any extension of K
with those properties is a finite extension, which gives the desired result.
(Note that the set S of (1.5b) is a finite set; cf. (1.3).) O

Remark 1.7. The heart of the proof of the weak Mordell-Weil theorem lies in
the assertion that the field L = K([m] 'E(K)) is a finite extension of K. We
proved this by first showing (1.5) that it is abelian, of exponent m, and
unramified outside a certain finite set S < My. The desired result then fol-
lowed from the basic Kummer theory of fields given in the proof of (1.6). It is
worth pointing out that instead of (1.6), we could have used the more general
theorem of Minkowski which asserts that there are only finitely many exten-
sions of K of bounded degree which are unramified outside of S. To apply
this in the present instance, note that for any Q e [m]™! E(K), the field K(Q)
has degree at most m* over K. (The Gg conjugates of Q all have the form
Q + T for some TeE[m].) It follows from Minkowski’s theorem that as Q
ranges over [m] ' E(K), there are only finitely many possibilities for the fields
K(Q). Hence their compositum K ([m] *E(K)) is a finite extension of K.

Remark on Effectivity

Let E/K be an elliptic curve with E[m] < E(K), let S = My be the usual set of
bad places for E/K (as in (1.5b)), and let L/K be the maximal abelian exten-
sion of K having exponent m which is unramified outside S. Then from (1.2)
and (1.5), the Kummer pairing induces an injection

E(K)/mE(K) - Hom(G g, E[m]).

Now it is possible to make the proof of (1.6) completely explicit, and so
exactly determine the finite group G i (see exer. 8.1). Thus one can describe
all of the elements of the group Hom(Gy , E[m]), and the crucial question
becomes that of determining which of these elements come from points of
E(K)/mE(K). It is this last question for which there is at present no known
effective procedure for answering. We will examine this problem in more
detail in chapter X. There we will exhibit a smaller group into which
E(K)/mE(K) injects, and see what can be said about the cokernel. Let us also
note that this is the only point at which the Mordell-Weil theorem is ineffec-
tive; if one can produce generators for E(K)/mE(K), then one can find gen-
erators for E(K). (See (3.2) and exer. 8.18))

§2. The Kummer Pairing via Cohomology

In this section we reinterpret the Kummer pairing of §1 in terms of group
cohomology. The methods used here will not be used again until chapter X,
and may be omitted by the reader wishing to proceed directly to the proof of
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the Mordell-Weil theorem. For the basic facts on group cohomology which
we will use, see appendix B and/or the references listed there.
We start with the short exact sequence of Gg x-modules,

0— E[m] — E(R)™ EK) -0,

where m > 2 is a fixed integer. Taking Ggx cohomology yields a long exact
sequence which starts

0» EK[m - EK 9  EK

s HY(Gig, Em]) » H(Gg o E(K)™S H' (G o E(K)).

Now from the middle of this long exact sequence we can extract the following
short exact sequence, which we call the Kummer sequence for E/K:
E(K) s
— —
mE(K)

H'(Gg, E[m]) - H*(Ggx, E(K))[m] - 0.

(As usual, for any abelian group A, A[m] denotes the m-torsion subgroup of
A)

From general principles, the connecting homomorphism & is computed as
follows. Let P e E(K) and choose some Q € E(K) satisfying [m]Q = P. Thena
1-cocycle representing 6(P) is given by

c: Ggx — E[m]
Ce = QG - Q
But this is exactly the Kummer pairing defined in §1,
¢, = K(P, a).

(This assumes we use the same Q for both sides, of course.)
Now suppose that E[m] is contained in E(K). Then

H'(Ggx, E[m]) = Hom(Gg ¢, E[m]),
so in this case we have an injective homomorphism given by
E(K)/mE(K) <> Hom(Ggx, E[m])
P x(P, ).

This provides an alternative proof of (1.2abc).

Similarly, we can use the inflation-restriction sequence (B.2.4) to obtain a
quick proof of reduction lemma (1.1.1). Thus if L/K is a finite Galois exten-
sion (say with E[m] < E(L)), then we have a commutative diagram

0 — @ - E(K)mE(K) — E(L)/mE(L)
9 ) ! )
0 — H'(Gyx. Elm]) > H'(Gyx E[m]) S H(Ggyp, E[m]).

Since Gy x and E[m] are finite groups, the cohomology group H Y(Gyx, E[m])
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is finite, so @ is finite also. (The map A, : G x — E[m] defined in the proof of
(1.1.1) is a cocycle whose cohomology class is precisely the image of Pe® in
HI(GL/K’ E[m]))

Returning now to the general case, we reinterpret (1.5b) in terms of
cohomology.

Definition. Let M be a Gg-module, ve MY a discrete valuation, and
I, = Ggx the inertia group for v. A cohomology class { € H'(Gg g, M) is said
to be unramified at v if it is trivial in H"(1,, M).

Proposition 2.1. Let
S = {ve My : E has bad reduction at v} U {ve Mg : v(m) # 0} U Mg.
Then the image of E(K) in H'(Ggx, E[m]) under the connecting homomor-

phism 6 consists of cohomology classes which are unramified at every ve M,
véSs.

Proor. Let P e E(K), and as above let

be a cocycle representing 6(P), where [m]Q = P. Then from (1.5b), the field
K(Q) is unramified over v. (Note that the proof of (1.5b) did not use the
assumption that E[m] is contained in E(K).) Hence I, acts trivially on Q, so
foralloel, c, = 0. O

The Kummer Sequence for Fields

The exact sequences derived above are analogous to the usual ones related to
Kummer theory for a field. To make the analogy clear, we briefly recall the
relevant facts. Corresponding to the multiplication-by-m sequence for E used
above is the exact sequence of Gg x-modules

lop,>K*SK*>1,
where the map denoted m is raising to the m™-power. Taking Gg coho-
mology yields a long exact sequence, from which we extract
L K*/(K*)" 5 H' (G ) > H (G K*)
Now Hilbert’s famous “theorem 90” (B.2.5) asserts that
HI(GE/K’ K*) =0,

so the connecting homomorphism ¢ is an isomorphism. This is in marked
contrast to the situation for elliptic curves, where the non-triviality of
H*(Gg g, E(K)) provides much added complication. (See chapter X.) Collect-
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ing the above facts, and using an explicit computation of the connecting
homomorphism, we have the following.

Proposition 2.2. There is an isomorphism
0 K*[(K*)" 5 H'(Gg ks P
given by
d(a) = cohomology class of {a — o°/a},

where a e K* satisfies a™ = a.

§3. The Descent Procedure

Our main goal in this chapter is to prove that E(K), the group of rational
points on an elliptic curve, is finitely generated. So far, we know (1.1) that the
quotient group E(K)/mE(K) is finite. It is easy to see that this is not enough.
For example, R/mR = 0 for every integer m > 1, but R is certainly not finitely
generated. Similarly, if E/Q),, is an elliptic curve, then (VIL6.3) says that E(Q,)
has a subgroup of finite index isomorphic to the additive group Z,. Hence
E(Q,)/mE(Q,) is finite and E(Q,) is not finitely generated.

An examination of these two examples shows that the problem occurs
because of the large number of elements in the group which are divisible by
m. The idea used to finish the proof of the Mordell-Weil theorem is to show
that on an elliptic curve over a number field, the multiplication by m map
tends to increase the “size” of a point; and that there are only finitely many
points with small “size”. This will bound how high a power of m can divide a
point, and so eliminate problems such as in the above examples. Of course,
all of this is very vague until we explain what is meant by the “size” of a point.

In this section we will axiomatize the situation and describe the type of size
(or height) function needed to prove that an abelian group is finitely gen-
erated. Then in the next section we will define such a function on an elliptic
curve in the simplest case, and use explicit formulas to prove that it has the
desired properties. This will suffice to prove a special case of the Mordell-
Weil theorem (4.1). After that, we will turn back to the general case and
develop the theory of height functions in sufficient generality to both prove
the Mordell-Weil theorem (6.7) and be useful for future applications.

Proposition 3.1 (Descent theorem). Let A be an abelian group. Suppose there is
a “height” function

h:4-R

with the following three properties:
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(i) Let Qe A. There is a constant C,, depending on A and Q, so that for all
PeA,

h(P + Q) < 2h(P) + C,.

(i) There is an integer m = 2 and a constant C,, depending on A, so that for
allPeA,

h(mP) > m*h(P) — C,.
(iii) For every constant C,,
{PeA:h(P) < C;}
is a finite set.

Suppose further that for the integer m in (ii), the quotient group A/mA is finite.
Then A is finitely generated.

Proor. Choose elements Q,, ..., Q,€ A to represent the finitely many cosets
in A/mA. Now let Pe A. The idea is to show that by subtracting an appropri-
ate linear combination of @, ..., Q, from P, we will be able to make the
height of the resulting point less than a constant which is independent of P.
Then Q,, ..., Q, and the finitely many points with height less than this
constant will generate A.

Write

P =mP, + Q, forsome 1 <i; <r.
Continuing in this fashion,

Py =mP;, + Q;,,
Pn—l = mP,, + Qi,.'
Now for any j, we have

h(P) < %[h(ij) + G,] from (ii)
1
= %’Z‘[h(Pj—l -0;,)+ Gl

1 .
< —5[2h(P) + G+ C;] from (i)

where we take C; to be the maximum of the constants from (i) for Q = —Q,,
1 <i < r. Note that C{ and C, do not depend on P.

Now use the above inequality repeatedly, starting from P, and working
back to P. This yields
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2 \" 1 2 4 21

2 \" Ci+C
Z VY wpy+ L2
<<m2> ()+m2—2

< 27"h(P) + (C] + C,y)/2 since m = 2.
It follows that by taking n sufficiently large, we will have (say)
h(P,) <1+ (Cy + G)/2.

Since (from above)
P=m"P,+ ) m'Q,,
=1

it follows that every P € A is a linear combination of the points in the set

{01,....0}v{QeA:h(Q) <1+ (Cf + )2}

From (iii), this is a finite set, which proves that A is finitely generated. O

Remark 3.2. What is needed to make the descent theorem effective; that is, to
allow us to find generators for the group A? First, we must be able to calculate
the constants C; = C,(Q,) for each of the elements Q,, ..., Q, € A representing
the cosets of 4/mA. Second, we must be able to calculate the constant C,.
Third, for any constant C;, we must be able to determine the elements in the
finite set {Pe A : h(P) < C;}. The reader may check (exer. 8.18) that for the
height functions which we will define on elliptic curves (§4, 5, 6), all of these
constants are effectively computable provided we can find elements of E(K)
which generate the finite group E(K)/mE(K). Unfortunately, at present
there is no known procedure which is guaranteed to give generators for
E(K)/mE(K). We will return to this question in chapter X.

§4. The Mordell-Weil Theorem over Q

In this section we will prove the following special case of the Mordell-Weil
theorem.

Theorem 4.1. Let E/Q be an elliptic curve. Then the group E(Q) is finitely
generated.

We will, of course, soon be ready to prove the general case (6.7). But it
seems worthwhile to give the proof of (4.1) first, since in this case the neces-
sary height computations using explicit formulas are not too cumbersome.
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Fix a Weierstrass equation for E/Q of the form
E:y?=x3>+ Ax+ B
with A, BeZ. From (1.1) we know that E(Q)/2E(Q) is finite, so to use the
descent theorem (3.1), we need to define a height function on E((Q).

Definition. Let teQ and write ¢t = p/q as a fraction in lowest terms. The
height of t, denoted H(¢), is defined by

H(t) = max{|p|, |ql}.

Definition. The height on E(Q) (relative to the given Weierstrass equation) is
the function

h,: E(Q) - R

log H(x(P)) ifP#0

hs(P) = {0 ifP=0.

Notice h,(P) is always non-negative.

The following lemma gives us the necessary information about this height
function

Lemma 4.2. (a) Let Py E(Q). There is a constant C,, depending on P,, A, B, so
that for all Pe E(Q),
h (P + Po) < 2h,(P) + C;.

(b) There is a constant C,, depending on A, B, so that for all P E(Q),

h([2]P) = 4h(P) — C,.
(c) For every constant Cs, the set

{PeE(Q@): h(P) < Cs}

is finite.
Proor. (a) Taking C, > max{h,(P,), h.([2]P,)}, we may assume P, # O and
P # 0, + P,. Then writing

a b a, b
P=(X,Y)=<ﬁ,ﬁ) Po=(x0’YO)=<d_§,‘J§>

(where the indicated fractions are in lowest terms), the addition formula
(I11.2.3d) reads

_ 2
x(P + Py) =<y yo) — X — Xg-

.X“‘xo

Now multiplying this out and using that P and P, satisfy the Weierstrass



§4. The Mordell-Weil Theorem over Q 203

equation yields
(xxo + A)(x + xo) + 2B — 2yy,
(x = xo)?
_(aay + Ad*d})(add + aod?) + 2Bd*d¢ — 2bdbyd,
- (ad3 — aod?)?
In computing the height of a rational number, cancellation between

numerator and denominator can only decrease the height, so we find by an
easy estimation that

H(x(P + Py)) < C{ max{la|?, |d[* |bd|},

x(P + Py =

where C; has a simple expression in terms of A4, B, a,, by, d,. Since
H(x(P)) = max{|al, |d|*}, this is exactly what we want except for the pres-
ence of the [bd|. But since P is on the curve,

b? = a® + Aad* + Bd®,
$O
Ib| < C{ max{|a|*?, |d|*}.
Using this above yields
H(x(P + Py)) < C; max{|a|?, |d|*} = C; H(x(P))?%,

and now taking logarithms gives the desired result.

(b) By choosing C, = 4h,(T) for each of the points Te E(Q)[2], we may
assume that [2]P # O. Then writing P = (x, y), the duplication formula
(II1.2.3d) reads

x* —2A4x* — 8Bx + A*
4x® + 44Ax + 4B

x([2]1P) =

It is convenient to define homogeneous polynomials
F(X,Z)= X*—2AX2?Z? —8BXZ3 + A*Z*,
G(X,Z)=4X3Z + 44AXZ> + 4BZ*.

Then if we write x = x(P) = a/b as a fraction in lowest terms, x([2] P) can be
written as a quotient of integers

x([2]P) = F(a, b)/G(a, b).

However, in contrast to (a), we are looking for a lower bound for H(x([2]P)),
so it will be important to bound how much cancellation can occur between
numerator and denominator.

The idea is to use the fact that F(X, 1) and G(X, 1) are relatively prime
polynomials, so they generate the unit ideal in Q[X]. This implies that
identities of the following sort exist.
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Sublemma 4.3. Let A = 443 + 27B?,
F(X,Z)=X*—-24X?Z* - 8BXZ? + A*Z*,
G(X,Z)=4X3Z + 4AXZ* + 4BZ*,
fi(X, Z) = 12X?Z + 16AZ3,
g.(X,Z)=3X3—-54XZ* — 21BZ?,
(X, Z) = 4443 + 27B*) X3 — 44°BX*Z
+ 44343 + 22B)XZ? + 12B(A® + 8BH)Z°,
9.(X, Z) = ABX® + A(54% + 32B})X?*Z
+ 2B(134% + 96B%)XZ? — 34%(A® + 8B»)Z>.
Then the following identities hold in Q[ X, Z]:
filX, 2)F(X, 2) — g,(X, Z)G(X, Z) = 4AZ"
f-(X, Z)F(X, Z) + g,(X, Z)G(X, Z) = 4AX".
Proor. Since F(X, Z) and G(X, Z) are relatively prime homogeneous poly-
nomials (provided A # 0), it is clear a priori that identities of this sort will
exist. To check the validity of the two given identities is at worst a tedious

calculation, which we leave for the reader. (To actually find the polynomials
f1, 91, 2 92, one can use the Euclidean algorithm or the theory of resultants.)

O
We return to the proof of (4.2b). Let
0 = ged(F(a, b), G(a, b))
be the cancellation in our fraction for x([2] P). From the equations
fi(a, b)F(a, b) — g,(a, b)G(a, b) = 4Ab7
f2(a, b)F(a, b) + g,(a, b)G(a, b) = 4Ad’,
we see that J divides 4A. Hence we obtain the bound
0] < 44|,
and so
H(x([2]P)) > max{F(a, b), G(a, b)}/|4A|.
On the other hand, the same identities give the estimates
[4Ab7| < 2 max{fi(a, b), g(a, b)} max{F(a, b), G(a, b)},
[4Aa’| < 2 max{f,(a, b), g,(a, b)} max{F(a, b), G(a, b)}.
Now looking at the expressions for f;, f5, g;, and g, in (4.3), we have

max{fl(a, b)’ gl(a’ b)’fz(aa b)s gz(a’ b)} S C max{la,39 Ibls}a
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where C is a constant depending on A and B. Combining the last three
inequalities yields
max{|4Aa’|, [4Ab7|} < 2C max{|a|?, |b|*} max{F(a, b), G(a, b)},
and so cancelling max {|a(?, |b|*} gives
max{F(a, b), G(a, b)}/|4A| = (2C)~! max{|al, |b|}.
Since max{|al, |b|} = H(x(P)), this gives the desired estimate
H(x([2]P)) = (2C)" H(x(P)).
(¢) For any constant C, the set
{teQ:H(t) < C}

is clearly finite. (It certainly has fewer than (2C + 1)? elements.) But given any
value for x, there are at most two values of y for which (x, y) is a point of E.
Therefore

{PeE(Q): h(P)< C3}

is also a finite set. [

Proving (4.1) is now just a matter of fitting together what we have already
proven.

PrOOF OF (4.1). From (1.1), E(QQ)/2E(Q) is finite. Now (4.2) says that the height
function

h:EQ)-R

satisfies the conditions necessary to apply the descent theorem (3.1) (with
m = 2). The conclusion from (3.1) is that E(Q) is finitely generated. O

§5. Heights on Projective Space

In order to use the descent theorem (3.1) to prove the Mordell-Weil theorem
in general, it is necessary to define a height function on the K-rational points
of an elliptic curve. It is possible to proceed in an ad hoc manner using
explicit equations, as in the last section; but rather than do this, we will
instead develop the general theory of height functions, from which will follow
all of the necessary properties plus considerably more. Since our elliptic
curves are given as subsets of projective space, in this section we will study a
certain height function defined on all of projective space; and then in the next
section we will examine its properties when restricted to the points of an
elliptic curve.

Example 5.1. Suppose P e P¥(Q). Since Z is a principal ideal domain, we can
find homogeneous coordinates for P, say
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P=[xg,..., Xy}
which satisfy
Xos...» Xy€EZ and ged(xg, ..., xy) = 1.
Then'a natural measure of the height of P would be
H(P) = max{|xo|, ..., |xnl}.
Notice that with this definition, it is clear that for any constant C, the set
{PePMQ):H(P) < C}

is a finite set. (It has fewer than (2C + 1)"*! elements.) This is the sort of
finiteness property needed to apply the descent theorem (3.1).

Now in trying to directly generalize (5.1) to arbitrary number fields, one
runs into difficulty when the ring of integers is not a principal ideal domain.
We thus take a somewhat different approach, for which purpose we now
specify more precisely how the absolute values in My are to be normalized.

Definition. The set of standard absolute values on Q, which we again denote
by Mg, consists of the following:

(i) Mg contains one archimedean absolute value, given by
|x], = usual absolute value = max{x, —x}.

(ii) For each prime peZ, Mg contains one non-archimedean (p-adic) ab-
solute value, given by

n

P 5l = " fora,beZ, ged(p, ab) = 1.

p

The set of standard absolute values on K, denoted M, consists of all absolute
values on K whose restriction to Q is one of the absolute values in Mg.

Definition. For v e My, the local degree at v, denoted n,, is given by
n, = [K,:Q,]

(Here K, and Q, denote, as usual, the completion of the indicated field with
respect to the absolute value v.)

With these definitions, we can state the two basic facts from algebraic
number theory which will be needed.

Extension Formula 5.2. Let L/K/Q be a tower of number fields, and ve M.
Then

Y n,=[L:K]n,.

weMp
wlv

(Here w|v means that w equals v when restricted to K.)
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Product Formula 5.3. Let xe K*. Then

IT Ixlr=1.

ve Mg

For proofs of these two formulas, see [La 2, IT §1 and V §1].
We are now ready to define the height of a point in projective space.

Definition. Let Pe PY(K) be a point with homogeneous coordinates
P =[xg,..., Xx], x;eK.
The height of P (relative to K) is defined by
He(P)= [] max{xol, ..., [xxl}".

ve Mg

Proposition 5.4. Let P e P¥(K).
() The height Hg(P) does not depend on the choice of homogeneous coordi-
nates for P.

(b) Hg(P) = 1.
(c) Let L/K be a finite extension. Then
Hy(P)= HK(P)[L:K)-

ProOF. (a) Any other choice of homogeneous coordinates for P has the form
[Axq, ..., Axy] for some Ae K*. Then using the product formula (5.3), we
have
[T max{|ix;,}" = [] IAlrmax{|x],}" = ][] max {|x;],}"
veMg i ve Mg i veMg i
(b) For any point in projective space, one can find homogeneous coordinates
so that one of the coordinates is 1. Then every factor in the product defining
Hg(P)is at least 1.
(c) We compute
Hy(P) = n max{lxi|w}"w

weMp

[T I max{|xl}™  sincex;eK
veMg weML
wiv

[1 max{ Xl ) K from (5.2)

veMg

= Hy (P~ X, O

Il

Remark 5.5.If K = Q, then Hg agrees with the more intuitive height function
given in (5.1). Thus let PeP¥(Q), and choose homogeneous coordinates
[xo, ..., xy] for P so that x;€ Z and ged(x,, ..., xy) = 1. Then for every non-
archimedean absolute value ve Mg, we have |x;|, < 1 for alli and |x;], =1
for at least one i. Hence in the product for Hg(P), only the term for the
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archimedean absolute value contributes, so
Hg(P) = max{|Xgle, - -» | Xnlo}-
In particular, it follows that
{PeP¥(Q): Hg(P) < C}

is a finite set for any constant C. One of our goals is to extend this result to
Hy, and we will actually prove something even stronger (5.11).

It is sometimes easier to use a height function which is not relative to a
given field. In view of (5.4c), the following definition makes sense.

Definition. Let P e PY¥(Q). The (absolute) height of P, denoted H(P), is defined
as follows. Choose any field K such that Pe PY(K). Then

H(P) = H(P)V®:@  (positive root).

We now investigate how the height changes under mappings between
projective spaces. We recall the following definition (cf. 1.3.3).

Definition. A morphism of degree d between projective spaces is a map
F:PN > pM
F(P) = [fo(P), .... fu(P)],

where f,, ..., ,r€ Q[X,, ..., Xy] are homogeneous polynomials of degree d

with no common zero in Q other than X, = -+ = Xy = 0. If F can be written
with polynomials f; having coefficients in K, then F is said to be defined over
K.

Theorem 5.6. Let
F:PN - pM
be a morphism of degree d. Then there are constants C, and C,, depending on
F, so that for all points P P¥(Q),
C,H(P)* < H(F(P)) < C,H(P).
Proor. Write F = [f, ..., fy] with homogeneous polynomials f;, and let

P =[xy, ..., xy]€P¥(Q). Choose some number field K contining x, ..., Xy
and all of the coefficients of all of the fs. Then for each ve My, let

|Pl, = max {|x[,}, |F(P)l,= max {|f(P).},

O<igN oO<js<M

and

|F|, = max{|al, : a is a coefficient of some f;}.
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Then from the definition of height,
Hy(P)= [ IPl;’ and Hx(F(P)= [] IF(P)I,

ve Mk veMk
so it makes sense to define
Hg(F)= [] IFI3.

veMg

(Le. Hg(F) = Hg([ay, a,, ...]), where the a;’s are the coefficients of the f’s.)
Finally, we let C,, C,, ... denote constants which depend only on M, N and d,

and set
1 ifve Mg
ev) = {0 ifve MQ.
(To illustrate the utility of ¢(v), we note that the triangle inequality can be
concisely written as

ltl 44 tn|u < ns(“’max{|t1|v, cees It,,lv}

for all ve My, both archimedean and non-archimedean.)
Having set notation, we turn to the proof of (5.6). The upper bound is
relatively easy. Let v € M. The triangle inequality yields

|f(P)l, < CI|F|,|PI;,

since f; is homogeneous of degree d. Here C, could equal the number of terms
in f;, which is at most ("5 9) (i.e. this is the number of monomials of degree d in
N + 1 variables). Since this holds for each i, we find

|F(P)l, < Ci”|F|,|Pl;.

Now raise to the n,-power, multiply over all ve My, and take the [K : Q]*'-
root. This yields the desired upper bound

H(F(P)) < C;H(F)H(P)".
(Note that
Y ewn,= )Y n,=[K:Q] from (5.2).)

veMg veM;
It is worth mentioning that in proving this upper bound, we did not use the
fact that the f;’s have no common non-trivial zero. But for the lower bound
we will certainly need this fact, since otherwise there are easy counter-
examples (see exer. 8.10).
Thus we now assume that the set

{Qe AN Q) :fo(Q) = = fu(@) = 0}

consists of the single point (0,...,0). It follows from the Nullstellensatz
([Har, 1.1.3A]) that the ideal generated by f, ..., iy in Q[ X,, ..., Xy] con-
tains some power of each of X,,..., Xy, since each X; also vanishes at
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(0,...,0). Thus for an appropriate integer e > 1, there are polynomials
9;€ Q[X,, ..., Xy] such that

M
Xt = zgiifi foreachO <i < N.
i=0

Replacing K by a finite extension, we may assume that each
g;€ K[ X, ..., Xy]. Further, by discarding all terms except those which are
homogeneous of degree e, we may assume that each g; is homogeneous of
degree e — d. Let us set the further reasonable notation

|G|, = max{|b|,: b is a coefficient of some g,;}

Hy(G) = ] IGI-
ve Mg
(We note that e and Hg(G) may be bounded in terms of M, N, d, and Hg(F),
although to give a good bound is not at all an easy task. See (5.7) for a
discussion. For our purposes it is enough to note that e and Hg(G) do not
depend on the point P.)
Recalling that P = [x,, ..., xy], the equations described above imply that
for each i,
|x;]5 =

3. a,(P)P)

v

< G5 max {|g,(P)fi(P)l,}.
0<jEM

<j<

Now taking the maximum over i gives

IPly< G max {lg,(P)I.}|F(P).

0<jSM

0<i<N
But since each g; has degree e — d, the usual application of the triangle
inequality yields

lg4(P)l, < C5¥IGI,|P[;™.
(Here C, may also depend on e; but as mentioned above, e may be bounded
in terms of M, N, and d.) Substituting this in above and multiplying through
by |P|47¢ gives
IPI; < C5™1Gl, | F(P)l,;

and now the usual raising to the n,-power, multiplying over ve My, and
taking the [K : Q]'""-root yields the desired lower bound. O

Remark 5.7. As indicated during the proof of (5.6), in the inequality
C,H(Py < H(F(P)),

the dependence of C, on F is not at all straightforward. Precisely, C, can be
given in terms of the coefficients of certain polynomials whose existence is
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guaranteed by the Nulistellensatz. Now the Nullstellensatz can be made
completely mechanical by the use of elimination theory, but using this
method directly leads to a very poor estimate. For an explicit version of the
Nullstellensatz where an effort has been made to give good estimates for the
coefficients, see [M—-W].

We also record the special case of (5.6) corresponding to an automorphism
of P¥,

Corollary 5.8. Let A GLy,,(Q), so matrix multiplication by A induces an
automorphism A : PY — P". Then there are constants C, and C,, depending on
the entries of the matrix A, so that for all Pe P¥(Q),

C,H(P) < H(AP) < C,H(P).
Proor. This is (5.6) for a morphism of degree 1. O

We next investigate the relationship between the height of the coefficients
of a polynomial and the height of its roots.

Notation. For xe @, let
H(x) = H([x, 1]).
Similarly, if x € K, then
H(x) = Hg([x, 1]).

Theorem 5.9. Let
fIT)=aoT?+a, T + -+ a; = ao(T — ay) (T — a) € Q[T]
be a polynomial of degree d (i.e. ag # 0). Then

274 ﬁ H(x) < H([aq, ..., a]) <2471 ﬁ H(a).
=1 =1

Proor. First note that the inequality to be proven remains unchanged if f(T)
is replaced by (1/a,)f(T). It thus suffices to prove the result under the as-
sumption that a, = 1.

Let K = Q(a,, ..., ), and for ve My, set

) = 2 ifve Mg
=1 ifve M.

(Note this notation differs from that used in the proof of (5.6). In the present
instance, the triangle inequality reads

Ix + yl, < e()max{|x|, |yl,}  forveMy,x, yekK.
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Of course, if ve M2 and |x|, # |y|,, then it is an equality.) We will now prove
that

e(v)” l_[max{lcx lo» 1} < max {|a;,} <e@)'™! Hmax{loclv, 1}.

0<ig

Once this is done, raising to the n,-power, multiplying over ve My, and
taking [K : @]'"-roots gives the desired result.

The proof is by induction on d = deg(f). Ford = 1, f(T) = T — a4, so the
inequality is clear. Assume now that we know the result for all polynomials
(with roots in K) of degree d — 1. Choose an index k so that

logly = o], forall0 <j<d,
and define a polynomial
g(T) = (T —ay)(T— oty (T — 2411) (T — )
=by T+ b, T2+ +byy.
Thus f(T) = (T — a,)g(T), so comparing coefficients yields
a;=b;,—ob;,_,.

(This holds in the entire range 0 < i< difwesetb_, = b, =0)
We now prove the upper bound stated above.
max {|a;,} = max {|b; — ob;_4l,}
0<i<d 0<i<d

< g(v) max {|b;,, |abi—1l,} triangle inequality

o<i<d

< ¢(v) max {|b;|,} max{|oyl,, 1}
d

<i<

() H max {|al,, 1} induction hypothesis
=1 applied to g.

Next, to prove the lower bound, we consider two cases. First, if o |, < &(v),
then by the choice of the index k,

d
Hlmax{locj|,,, 1} < max{|oy,, 1}¢ < &(v)?,
=

so the result is clear. (Remember a, = 1.) Next, suppose that |o,], > &(v).
Then

max {|a;|,} = max {|b; — oab;y1,}
o<i<d o<i<d

2¢)” max {|b;],} max{jol,, 1}.
0<i<d-1

Here the last line is an equality for ve M2, while for ve MY we are using the
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calculation
max {lbi - “kbi—1|u} 2 (Joyl, — 1) max {|bi|v}
0<i<d 0<i<d-1

>8(U)_1Iak|v ma'): {|b1|v}
-1

o0si<

since |o |, > &(v) = 2.

Now applying the induction hypothesis to g gives the desired lower bound,
which completes the proof of (5.9). O

Our first application of (5.9) will be to show that there are only finitely
many points of bounded height in projective space. To do this, we will need
to know that the action of Galois does not affect the height of a point.

Lemma 5.10. Let Pe PY(Q) and o € Gg q. Then

H(P°) = H(P).
Proor. Let K/Q be a field with Pe PY(K). o gives an isomorphism ¢: K = K°,
and it likewise identifies the sets of absolute values,

[ MK 13 MKG

v— 1.
(Le. For xe K and ve Mg, |x°|,- = |x|,.) Clearly ¢ also gives an isomorphism
K, K%, s0 n, = n,. We now compute
Hy-(P) = [] max{|x|,}™

we Mg,

[] max{|x{].}""

veMg

[] max{|x;|,}"

veMg
= Hy(P).
Since [K : Q] = [K?: Q], this is the desired result. O

Theorem 5.11. Let C and d be constants. Then the set
{(PePY@):HP)<C and [Q(P):Q]<d}
contains only finitely many points. In particular, for any number field K,
{PePM(K): Hy(P) < C}
is a finite set. (Recall (1 §2) that Q(P) is the minimal field of definition for P.)

Proor. Let P e PY¥(Q). Take homogeneous coordinates for P, say
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P =[xg,...5 Xx)»

with some x; = 1. Then Q(P) = Q(x,, ..., Xy), and we have the easy estimate

Hgpy(P) = l_[ max {|x;|,}"

veMQ(P)OSiéN
> max < [T max{|xi,, 1}"”)
0<iSN \veMqp

0<i<N

Thus if H(P) < C and [Q(P): Q] < d, then
max H(x)<C and max [Q(x):Q] <d

0<i<N 0<i<N
It thus suffices to prove that the set
{xeQ:H(x)<C and [Q(x):Q]<d}

is finite (Le. We have reduced to the case N = 1.)

Suppose x€ @ is in this set, and let e = [Q(x): Q], so e < d. Further let
X = Xq, X, ..., X, be the conjugates of x (in @), so the minimal polynomial of
x over Q is

FAT) = (T = %)) (T=x) = T+, T + - + ,€Q[T].

Now
H(La,...,a) <2 [[H(x) from (59)
j=1

=2°1H(x)* from (5.10)
<(C¢¥ since H(x) < Cande <d.

Since the a;’s are in Q, it is now clear that for given C and d there are only
finitely many possibilities for the polynomial f.(T). (L.e. We are using the
special case of the theorem with K = @, for which it is easy to prove. See (5.1,
5.3).) Since for a given polynomial there are at most d elements in our set, this
proves that the set is finite. O

Remark 5.12. Tracing through the proof of (5.11), it is easy enough to give an
upper bound, in terms of C and d, for how many points are in the set
{PeP¥@):HP)< C and [Q(P):Q]<d}.
(See exer. 8.6a.) More difficult is to give a precise asymptotic estimate for
#{PeP¥(K): Hx(P) < C}

as a function of C for C — co. Such an estimate has been given by Schanuel.
(See [Scha] or [La 7, Ch. 3, §5].)
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§6. Heights on Elliptic Curves

In this section we use the general theory of heights as developed in the
previous section to define height functions on elliptic curves. The main
theorems (6.2, 6.4) exhibit the interplay between the height of points and the
addition law on the elliptic curve. As an immediate corollary, we will deduce
the remaining results needed to prove the Mordell-Weil theorem for arbi-
trary number fields (6.7).

It is convenient to use the “big-O” notation.

Notation. Let f, g be two real-valued functions on a set &. Then we write
f=g+0)
if there are constants C, and C, so that
C,<f(P—gP)<C, for all Pe &#.

If only the lower (respectively upper) inequality is satisfied, then we naturally
write f = g + O(1) (respectively f < g + O(1)).

Let E/K be an elliptic curve. Recall (I1.2.2) that any non-constant function
f e K(E) determines a surjective morphism (which we also denote by f)

f: E > P!
p [1,0] if P is a pole of f
5
[f(P), 1]  otherwise.

It would be reasonable to define a height function on E(K) by setting
H(P) = H(f(P)). However, the height function H tends to behave multi-
plicatively (as in (5.6) for example), while for our purposes it will be more
convenient to have a height which behaves additively. This prompts the
following definitions.

Definition. The (absolute logarithmic) height on projective space is the
function
h:PYMQ)-> R
h(P) = log H(P).
Notice that from (5.4b), h(P) = O for all P.

Definition. Let E/K be an elliptic curve and f € K(E) a function. The height on
E (relative to f) is the function

h;: E(K) - R
hs(P) = h(f(P)).
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We start by transcribing the finiteness result from section 5 into the current
setting.

Proposition 6.1. Let E/K be an elliptic curve and feK(E) a non-constant
function. Then for any constant C,

{PeE(K): h/(P) < C}
is a finite set.
Proor. The function f gives a finite-to-one map of the set in question to the
set
{QePY(K): H(Q) < ¢“}.
(Note that since f e K(E), any P e E(K) will go to a point f(P)eP*(K).) Now
apply (5.11) to this last set. d

The next theorem gives a fundamental relationship between height func-
tions and the addition law on an elliptic curve.

Theorem 6.2. Let E/K be an elliptic curve and let f € K(E) be an even function
(i.e. fo[—1] = f). Then for all P, Q € E(K),

he(P + Q) 4+ hy(P — Q) = 2hy(P) + 2hy(Q) + O(1).

(Here the constants inherent in the O(1) depend on the elliptic curve E and the
function f, but are of course independent of P and Q).

Proor. Choose a Weierstrass equation for E/K of the form
E:y*=x>+ Ax+ B.

We start by proving the theorem for the particular function f = x. The
general case will then be an easy corollary.

Since h.(0) = 0 and h,(— P) = h.(P), the result clearly holds if P = O or
Q = 0. We now assume that P, Q # O, and write

X(P) = [xl’ 1], X(Q) = [x2’ 1]5
X(P+Q)=[x31), x(P—Q) =[x, 1]

(Here x5 or x, may equal oo if P = 4+ Q.) Now the addition formula (II1.2.3d)
and a little bit of algebra yield the relations
2(x; + x,)(A + x,x,) + 4B
(ty + %)% — 4x,%,
(x1x, — A)* — 4B(x; + x,)
(x1 + x2)* — 4x,x, .

X3+X4=

X3x4 =
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Define a map g : P2 - P2 by
g([t, u, v]) = [u? — 4tv, 2u(At + v) + 4Bt?, (v — At)> — 4Btu].
Then the formulas for x; and x, show that there is a commutative diagram

EngExE

! 1

o P'xP! P!'xP! g
l |
Pz 5 p2

where
GP,Q)=(P+Q,P—-0Q)
and the vertical map o is the composition of the two maps

E x E—- P! x P! and P! x P! —» P2
(P, Q) = (x(P), x(Q)) ([o1s Bids [225 Bo1) = [B1Bas 41 By + 03By, 2y 5]

(The idea here is to treat £, u, v as 1, x; + x,, x;X,. Then g([t, u, v]) becomes
[L, x5 + x4, X3%4].)

The next step is to show that g is a morphism, so as to be able to apply
(5.6). By definition (cf. 1.3.3), this means we must show that except for ¢ =
u = v = 0, the three homogeneous polynomials defining g have no common
zeros. Suppose now that g([t, u, v]) = [0, 0, 0]. If t = 0, then from

w? —4v=0 and (v— At)> — 4Btu =0,

we see that u = v = 0. Thus we may assume that ¢ # 0, and so it makes sense
to define a new quantity x = u/2t. (Intuition:; If we write t, u, v as 1, x; + x,,
X;X,, then the equation u? — 4tv = 0 becomes (x; — x,)2 =0, 50 x; = x, =
u/2t. In other words, we are now dealing with the case that P = 3 Q.) Notice
that the equation u? — 4tv = 0 can be written as x* = v/t. Now dividing the
equalities
2u(At + v) +4Bt? =0 and (v — At)> —4Btu=0

by t? and rewriting them in terms of x yields the two equations

Y(x) = 4x(4 + x?) + 4B = 4x3 + 4Ax + 4B = 0,

P(x) = (x? — A)> — 8Bx = x* — 2Ax> — 8Bx + A% = 0.

[These polynomials should be familiar. Their ratio ¢(X)/y(X) is exactly the
rational function which appears in the duplication formula (II1.2.3d).] To
show that (X) and ¢(X) have no common root, one need merely verify the
formal identity already used in (4.3),

(12X + 164)¢(X) — 3X3 — SAX — 2TB)Y(X) = 4(4A3 + 27B2) # 0.

(Note how the non-singularity of the Weierstrass equation plays a crucial
role here.) This completes the proof that g is a morphism.
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We return to our commutative diagram, and compute
h(a(P + Q, P — Q)) = h(c 0 G(P, Q))
= h(goa(P, Q)
= 2h(c(P, Q)) + O(1) from (5.6),

since g is a morphism of degree 2. Now to complete the proof of (6.2) for
f = x, we will show that for all R,, R, € E(K) there is a relation

h(a(Ry, Rz)) = he(Ry) + he(R5) + O().
Then using this relation twice, once on each side of the equation
h(e(P + Q, P — Q)) = 2h(a(P, Q)) + O(1),

will give the desired resuit.
One immediately verifies that if either R, = O or R, = O, then k(6(R,, R;))
equals h.(R,) + h(R,). Otherwise, we may write

x(Rl) = [ala 1} and x(RZ) = [az, 1]’
and so
h(6(Ry, Ry) =h([1,0; + a3, ;2,]) and  h(R,) + h(R;) = h(ay) + h(ay).

Then from (5.9) applied to the polynomial (T + «,)(T + a,), we obtain the
desired estimate

h(o;) + h(ay) — log 4 < h([1, o0y + 05, &3 05 ]) < h(ey) + h(e,) + log 2.
Finally, to deal with the case of an arbitrary even function fe K(E), we
prove that
h; = 3(deg f)h, + O(1).

From this, (6.2) follows immediately by multiplying the known relation for A,
by 3(deg f). Thus the following lemma will complete the proof of (6.2). [0

Lemma 6.3. Let f, g€ K(E) be even functions. Then
(deg g)h; = (deg /)h, + O(1).

Proor. Let x, ye K(E) be Weierstrass coordinates for E/K. The subfield of
K(E) consisting of even functions is exactly K(x) (IT1.2.3.1), so we can find a
rational function p(X)e K(X) so that there is a commutative diagram
x E f
pt 4 pt.
Hence using (5.6) and the fact that p is a morphism (11.2.1),
h; = h,0p = (deg p)h, + O(1).
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But from the diagram,
deg f = deg x deg p = 2 deg p,

so we find

2h,; = (deg f)h, + O(1).
The same reasoning for g yields

2h, = (deg g)h, + O(1),
and combining these last two equalities gives the desired result. d
Corollary 6.4. Let E/K be an elliptic curve and f € K(E) an even function.
(@) Let Q€ E(K). Then for all P e E(K),

hy(P + Q) < 2hy(P) + O(1),

where the O(1) depends on E, f, and Q.
(b) Let meZ. Then for all Pe E(K),

he([m]P) = m*h (P) + O(1),
where the O(1) depends on E, f, and m.

ProoF. (a) This follows immediately from (6.3), since h (P — Q) > 0.

(b) Since f is even, it suffices to consider m > 0. Further, the result is trivial
for m = 0, 1. We finish the proof by induction. Assume it is known for m — 1
and m. Replacing P, Q in (6.3) by [m] P, P, we find

he([m + 1]P) = —hy([m — 1]P) + 2h([m]P) + 2k (P) + O(1)

= (—(m — 1> + 2m? + 2)h(P) + O(1) by the induction
hypothesis

= (m + 1)*h(P) + O(1). O

Remark 6.5. The above results (6.3, 6.4) are clearly also true for an odd
function f, since then f?2 is even, and one easily checks that hp. = 2h,.
Although we will not prove it, they are true for arbitrary fe K(E) “to within
¢”. To be precise, say for (6.4b), it is true that for every ¢ > O there are
inequalities

(1 — eym*h, — O(1) < hyo[m] < (1 + eym*h, + O(1),

where now the O(1) depends on E, f, m, and &. (See exer. 9.14c. For a proof in
a much more general setting, see [La 7, Ch. 4, Cor. 3.5].)

Remark 6.6. Theorem 6.2 seems to say that the height function h, is “more or
less” a quadratic form. In section 9 we will see that there is an actual quadra-
tic form, called the canonical height, which differs from h, by a bounded
amount.
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It should be clear that we now have all the tools needed to complete the
proof of the Mordell-Weil theorem.

Theorem 6.7 (Mordell-Weil theorem). Let K be a number field and E/K an
elliptic curve. Then the group E(K) is finitely generated.

Proor. Choose any even, non-constant function f € K(E), for example the x-
coordinate function on a Weierstrass equation. The Mordell-Weil theorem
will now follow immediately from the weak Mordell-Weil theorem (1.1)
with m = 2 and the descent theorem (3.1), once we show that the height
function

has the following three properties.

(i) Let Q€ E(K). There is a constant C;, depending on E, f, and Q, so that
for all Pe E(K),

he(P + Q) < 2h(P) + C,.
(ii) There is a constant C,, depending on E and f, so that for all Pe E(K),
h([21P) > 4hy(P) — C,.
(iii) For every constant Cj,
{PeE(K): h,(P) < Cj3}
is a finite set.

But (i) is a restatement of (6.4a), (ii) is immediate from the m = 2 case of (6.4b),
and (iii) is just (6.1). This completes the proof of the Mordell-Weil theorem.

a

§7. Torsion Points

The Mordell-Weil theorem implies that the group of rational torsion points
on an elliptic curve is finite. Of course, this also follows from the correspond-
ing result for local fields.

Since an elliptic curve over a number field K can be treated as an elliptic
curve over the completion K, for each ve My, the local integrality conditions
for torsion points (VII.3.4) can be pieced together to give the following global
statement.

Theorem 7.1. Let E/K be an elliptic curve with Weierstrass equation
Y2+ a;xy +azy = x>+ a,x? + a,x + ag

such that all of the a;’s are in R. Let P € E(K) be a point of exact order m = 2.
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(@) If mis not a prime power, then
x(P), y(P)eR.
(b) If m = p" is a prime power, for each ve M let

ord
r,= [E;%J ([ ]is greatest integer).

Then
ord,(x(P)) = —2r, and ord, (y(P)) = —3r,.
In particular, x(P) and y(P) are v-integeral if ord,(p) = 0.

The following corollary was proven independently by Lutz and Nagell,
who had discovered divisibility conditions somewhat weaker than (7.1).

Corollary 7.2 ([Lut], [Nag]). Let E/Q be an elliptic curve with Weierstrass
equation

y?=x3+Ax+B, A,BelZ
Suppose P € E(Q) is a non-zero torsion point. Then
() x(P), y(P)eZ.
(b) Either [2]1P = O, or else y(P)* divides 44* + 27B>.
Proor. (a) Let P have exact order m. If m = 2, then y(P) = 0, so x(P)e Z since
it is the root of a monic integral polynomial. If m > 2, then the result follows
immediately from (7.1), since the quantity r, in (7.1b) is necessarily 0.

(b) We assume that [2]P # O, so y(P) # 0. Then applying (a) to both P and
[2]P, we have x(P), y(P), x([2P])e Z. Let

#(X) = X*—24X? — 8BX + A*

and
Y(X)=X3>+ AX + B.

Then the duplication formula (I11.2.3d) reads
x([2P]) = $(x(P))/44 (x(P)).
On the other hand, we have the usual polynomial identity (4.3)
JX)(X) — g(X)P(X) = 44° + 27B.

(Ie. f(X) =3X? + 44 and g(X) = 3X* — 54X — 27B.) Now put X = x(P),
and use the duplication formula and the fact that y(P)* = y/(x(P)) to obtain

Y(PY[4f(x(P))x([21P) — g(x(P))] = 44° + 27B>.

Since all quantities in this equation are integers, the result follows. |
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Remark 7.3.1. A glance at the proof of (7.2b) will show that we actually
proved that any point P e E(Q) such that x(P) and x([2]P) are both integers
has the property that y(P)? divides 443 + 27B2. The same argument works
for number fields. Further, even if x(P) or x({2]P) is not integral, any bound
for their denominators (such as (7.1b)) will give a corresponding bound for
y(P) (see exer. 8.11).

Remark 7.3.2. Recall (VI1.3.2) that in practice, one of the quickest methods
for bounding the torsion in E(K) is to choose various finite places v for which
E has good reduction, and then use the injection (VIL3.1)

E(K,)[m] - E(k,)

for m relatively prime to char(k,).

Example 7.4. The Weierstrass equation
E:y?> =x3 —43x + 166

has

443 + 27B? = 425984 = 21513,
Hence any torsion point in E(Q) has its y-coordinate in the set

{0, +1, £2, +4, £8, +16, +32, +64, +128}.

A little bit of work with a calculator reveals the points

{3, £8),(=5, +16),(11, +32)}.

On the other hand, since E has good reduction modulo 3, we know that
E, . (Q) injects into E(F;) (cf. VIL.3.2); and one checks that # E(F;) = 7. This
still does not prove anything, since the divisibility condition in (7.2b) is only
necessary, not sufficient. But now using the doubling formula for P = (3, 8),
one finds

x(P)=3, x([21P)= -5 x([4]P)=11, x([8]P)=3.

Hence [8]P = + P, so P is a torsion point of exact order 7 or 9. (It doesn’t
have order 3, since x(P) # x([2]P).) From above, the only possibility is order
7, so we conclude that E,(Q) is a cyclic group of order 7 consisting of the six
points listed above together with O.

All of the above discussion has focused on characterizing the torsion sub-
group of a given elliptic curve. Another sort of question one might ask is the
following. Given a prime p, does there exist an elliptic curve E/Q such that
E(Q) contains a point of order p? The answer in general is no. For example,
E(Q) can never contain a point of order 11, a fact which is by no means
obvious. Such a statement, which deals uniformly with the set of all elliptic
curves, naturally tends to be more difficult to prove than a result such as (7.2),
in which the bounds obtained become weaker as the elliptic curve is varied.
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The definitive characterization of torsion subgroups over Q is given by the fol-
lowing theorem, whose proof is unfortunately far beyond the scope of this book.

Theorem 7.5 (Mazur [Maz 1], [Maz 2]). Let E/Q be an elliptic curve. Then the
torsion subgroup E, . (Q) is one of the following fifteen groups:
Z/INZ I<KN<10 or N=12
727 x Z]2NZ 1< N <4
Further, each of these groups does occur as an E, Q). (For an example of
each possible group, see exer. 8.12.)

For arbitrary number fields, there is the following result of Manin.

Theorem 7.6 ([(Man 2]). Let K/Q be a number field and pe Z a prime. There is
a constant N = N(K, p) so that for all elliptic curves E/K, the p-primary
component of E(K) has order dividing p~.

Taken together, (7.5) and (7.6) provide the best evidence to date for the
following longstanding conjecture.

Conjecture 7.7. Let K/Q be a number field. There is a constant N = N(K) so
that for all elliptic curves E/K,

IEtors(K)I < N

Remark 7.8. For those torsion subgroups which are allowed in Mazur’s
theorem (7.5), it is a classical result that the elliptic curves E/K having the
specified torsion subgroup all lie in a 1-parameter family. For example, the
curves E/K with a point P € E(K) of order 7 all have Weierstrass equations of
the form

V2 4+ (1 +d—d)xy+ (d*—d)y = x>+ (d* — d)x? P =(0,0)
with
deKand A =d7(d — 1)7(d> — 8d* + 5d + 1) # 0.

(See exer. 8.13a, b. A complete list is given in [Ku].) In general, the elliptic
curves E/K with a point P € E(K) of order m > 4 are parametrized by the K-
rational points of another curve, called a modular curve. (See appendix C §13
and exer. 8.13c)

§8. The Minimal Discriminant

Let E/K be an elliptic curve. For each non-archimedean absolute value
ve M2, we can find a Weierstrass equation for E,

2 — 3 2
yv + al,vxvyv + a3,uyv - xv + aZ,vxv + a4,uxv + a6,v’
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which is a minimal equation for E at v. Let A, be the discriminant of this
equation.

Definition. The minimal discriminant of E/K, denoted @, is the (integral)
ideal of K given by

Dk = H pordas),

st}g

Here p, is the prime ideal of R associated to v. Thus P catalogs the
valuation of the minimal discriminant of E at every place ve My. In a certain
sense, it is a measure of how arithmetically complicated the elliptic curve E is.

We now ask whether it is possible to find a single Weierstrass equation
which is simultaneously minimal for every ve M2. Let
VP4 a,xy+ asy=x3+ a,x* + a,x + ag

be any Weierstrass equation for E/K, say with discriminant A. Then for each
ve Mg we can find a change of coordinates

x=u3xt)+rv y=u3yv+svu5xu+tv
which gives the minimal equation listed above. As usual, the two discrimi-
nants are related by
A = ul?A,.

Hence if we define an ideal, depending on A, by the equation

—ordy(uy
8y =TT prese,

st}g

then the minimal discriminant can be written

@E/K = (A)a?-

Lemma 8.1. With notation as above, the ideal class of K corresponding to a, is
independent of A.

Proor. Take another Weierstrass equation for E/K, say with discriminant A’
Then A = u'2A’ for some ue K*, so directly from the definitions we see that

(A)ai? = D = (B)ay® = (A) [(W)aa]"2.
Hence a, = (u)a,. O

Definition. The Weierstrass class of E/K, denoted ag, is the ideal class of K
corresponding to any ideal a, as in (8.1).

Definition. A global minimal Weierstrass equation for E/K is a Weierstrass
equation



§8. The Minimal Discriminant 225

V24 a,xy + asy = x> + ayx* + a,x + ag

for E/K such that a,, a,, as, a4, ag € R and the discriminant A of the equation
satisfies Dg,x = (A).

Proposition 8.2. There exists a global minimal Weierstrass equation for E/K if
and only if ag;x = (1).

Proor. Suppose E/K has a global minimal Weierstrass equation, say with
discriminant A. Then %, x = (A), so with notation as above,

12 ord,(a,) = ord,(Zg ) — ord,(A) = 0.

Hence a, = (1), so g, = class of a, = (1).

Conversely, suppose agx = (1). Choose any Weierstrass equation for E/K,
say with coefficients a;€ R and discriminant A; and as above, for each ve Mg
let

x=ulx,+1, y=uyy, +s,ux,+t,

be a change of variables which produces a minimal equation at v, say with
coefficients a; , and discriminant A,. We may clearly assume that u, = 1 and
r,=s,=1t,=0 for all but finitely many v, say for all v not in some set
S = M. Note also that all of u,, r,, s,, t, are v-integral (VIL.1.3d).
By definition, the fact that a;x = (1) means that the ideal
l_[ p«l:rdu(uu)

veMg
is principal, generated by some ue K*. Then
ord,(u) = ord,(u,) for all ve M.

Now by the Chinese remainder theorem [La 2, Ch. I, §4], there are elements
r, 5, t € R so that for the finitely many ve S, we have

ord,(r —r,), ord,(s — s,), ord,(t — t,) > max {ord,(uia;,)}.
i=1,2,3,4,6

Now consider the new Weierstrass equation for E/K given by the change
of coordinates

x=u’x'+r y=udy +su’x +1t,
which has coefficients a; and discriminant A’. Then A = u'?A’, so from above
ord,(A') = ord,(u"'2A) = ord,((u,/u)'*A,) = ord,(A,).

Thus the new equation is globally minimal provided that its coefficients are
all integral. But this is easily checked using the transformation formulas
(IT1.1.2). If v ¢S, then ord,(u) = 0, so each a; is v-integral, since it is a poly-
nomial in 7, s, t, a, ..., as. For veS, we illustrate the argument for a5, the
other coefficients being done similarly. Thus
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ord,(u*a,) = ord,(a, — sa; + 3r — s?)
=ord,[u}ay, — (s — s,)(@, + 5+ 5,) + 3(r —1,)]

= ord, (47 a,,,),

where the last line follows from the previous one by the choice of , s and the
non-archimedean nature of v. Since

ord,(u) = ord,(u,) and ord,(a,,) >0,

this gives the desired result. O

Corollary 8.3. If K has class number 1, then every elliptic curve E/K has a
global minimal Weierstrass equation. In particular, this is true for K = Q. (The
converse is also true; see exer. 8.14.)

Example 8.4. The equation
yi=x*+16
has discriminant A = —21233, It is not minimal at 2. The substitution
x =4x’ y=8y +4
gives the global minimal equation
VP +y =)
Example 8.5. Let K = @(\/—vl() , so K has class number 2, the class group

being generated by the prime ideal p = (5, ./ —10). Consider the elliptic
curve E/K given by the equation

E:y?=x*+125.

This equation has discriminant A = —24335°, so it is already minimal at
every prime of K except possibly for the prime p, which lies over 5. (See
VII.1.1.) For p, the change of coordinates

x=(/—102x  y=(/-100y
gives an equation
() = () —27°
which has good reduction at p. Hence
Dk = (243%)
and
ag/x = ideal class of p.

In particular, there is no global minimal Weierstrass equation for E/K.
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Remark 8.6. If K has class number 1 and E/K is an elliptic curve, then one
can find a global minimal Weierstrass equation for E/K by finding local
minimal equations (e.g. by using Tate’s algorithm [Ta 6]) and then following
the proof of (8.2). There is also an algorithm, due to Laska ([Las 1]), which is
both fast and easy to implement on a computer.

Even if R has class number greater than 1, it is often useful to know that an
elliptic curve E/K has a global Weierstrass equation which is in some sense
“almost minimal”. The following proposition gives one possibility. (For an-
other, see exer. 8.14c.)

Proposition 8.7. Let S = My be a finite set of absolute values containing Mg
and all places dividing 2 and 3. Further assume that the ring of S-integers Ry is
a principal ideal domain. Then every elliptic curve E/K has a model

E:y>’=x*+ Ax+ B
with A, Be Ry and discriminant A = —16(443 + 27B?) satisfying
‘@E/KRS = ARs.

(Such a Weierstrass equation might be called S-minimal.)

Proor. Choose any Weierstrass equation for E/K of the form

E:y?=x*+ Ax + B,
and let A = —16(443 + 27B?). For each ve My, v¢S, choose a u,e K* so
that the substitution

x=ux  y=uy
gives a minimal equation at v. Thus

(D) = v(A) — 120(u,) for all ve Mg, véS.
Since Ry is a principal ideal domain, there is a ue K* such that
v(u) = v(u,) for all ve Mg, v¢S.
Then the equation
E:y*=x>+u*Ax +u °B

has the desired property. O

§9. The Canonical Height

Let E/K be an elliptic curve and f € K(E) an even function. Theorems 6.2 and
6.4 say that the height function h, is more or less a quadratic form, at least
“up to 0(1)”. André Néron asked whether one could find an actual quadratic
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form which differs from h; by a bounded amount. He constructed such a
function by writing it as a sum of “quasi-quadratic” local functions ([Né¢ 3]).
At the same time, Tate came up with a simpler global definition. We will give
Tate’s construction here. (See appendix C §18 for a discussion of local height
functions.)

Proposition 9.1 (Tate). Let E/K be an elliptic curve, f € K(E) a non-constant
even function, and P € E(K). Then the limit

L s 4-N N
deg() Sim4 i ([21P)

exists, and is independent of f.

Proor. We show that the sequence is Cauchy. From (6.4b) with m = 2, there
is a constant C so that for all Q € E(K),

Ih([21Q) — 4h(Q)I < C.
Now let N = M = 0 be integers. Then
[47Vhp([2Y]1P) — 4~ Mh,([2M] P)|

N-1
= n;M 47" hy([2711P) — 47"h([2]P)

N-1
< Y 47U R([21]P) — 4hy([2"]P)]

n=M
N-1

< Y 4771C  using Q = [2"]P above
n=M

< C/4M+1.

This shows that the sequence 4 Vh([2¥]P) is Cauchy, so it converges.
Next suppose g € K(E) is another non-constant even function. Then from
(6.3),

(deg g)h, = (deg )k, + O(1),
$O
(deg )4~ h,([2V]P) — (deg /)4 Vhy([2]P) = 470(1) » 0
as N — co. Hence the limit does not depend on the choice of the function f.

O

Definition. The canonical (or Néron—Tate) height on E/K, denoted h or hy, is
the function

h:E(K)->R
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defined by

1

h(P) = deg

Lim4~¥h([2V]P).
f N—-w
(Here f € K(E) is any non-constant even function.)

Remark 9.2. From (9.1), the canonical height is well-defined and is indepen-
dent of the choice of f.

Theorem 9.3 (Néron—Tate). Let E/K be an elliptic curve and h the canonical
height on E. B
(a) Forall P, Qe E(K),

h(P + Q) + h(P — Q) = 2h(P) + 2h(Q) (parallelogram law).
(b) Forall PeE(K) and meZ,
h([m]P) = m*h(P).
(c) A is a quadratic form on E. (In other words, h is even, and the pairing
{, Y>:EKK)x EK)-R
<P, Q) = h(P + Q) — h(P) — h(Q)

is bilinear)
(d) Let Pe E(K). Then h(P) > 0, and

h(P)=0 if and only if P is a torsion point.
(e) Let fe K(E) be an even function. Then
(deg f)h = h; + O(1),

where the O(1) depends on E and f.
Further, if i : E(K) — R is another function which satisfies (€) for some non-
constant function f and (b) for any one integer m > 2, then k' = h.

Proor. We will start by proving (¢), and then return to (a)—(d).
(¢) In the course of proving (9.1), we found a constant C (depending on the
choice of f) so that for all integers N > M > 0 and all points P € E(K),

[4"Vh ([2V]P) — 4™ Mh([2M]P)| < C/4M*.
Taking M = 0 and letting N — oo gives the desired estimate
|(deg /)A(P) — hy(P)| < C/4.
(a) From (6.2), we have
he(P + Q) + hy(P — Q) = 2hy(P) + 2h;(Q) + O(1).
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Replace P, Q by [2¥]P, [2V]Q, multiply through by 47N and let

1
deg (f)

N — o0. The O(1) term disappears, and we obtain
h(P + Q) + h(P — Q) = 2h(P) + 2h(Q).
(b) From (6.4b),
h([m]P) = m*h,(P) + O(1).

As usual, replace P by [2V]P, multiply by 47", and let N — oo. (Alternative

proof: Use (a) and induction on m.)

(c) It is a standard fact from linear algebra that a function satisfying the

parallelogram law is quadratic. For completeness, we include a proof.
Putting P = O in the parallelogram law (a) shows that A(—Q) = A(Q), so A

is even. By symmetry, it suffices to prove that

(P+R,0)=<P,0>+<R,Q),
which in terms of 4 becomes
AP+ R+ Q) —h(P + R) — h(P + Q) — A(R + Q) + A(P) + h(R) + h(Q) = 0.
Now four applications of the parallelogram law (and the evenness of /) give
A(P+R+ Q)+ h(P+ R — Q) —2h(P + R) — 2h(Q) = 0,
A(P—R+ Q)+ h(P+ R — Q) —2h(P) — 2h(R — Q) = 0,
AP — R+ Q)+ A(P + R + Q) — 2h(P + Q) — 2h(R) = 0,
2h(R + Q) + 2h(R — Q) — 4A(R) — 4h(Q) = 0.
The alternating sum of these four equations is the desired result.
(d) The first conclusion is clear, since h;(P) > 0 for all functions f and all

points P. For the second, note that one implication is immediate; since if P is
a torsion point, say with [m]P = O for some m > 1, then (b) implies that

h(P) = m™2h([m]P) = m™2h(0) = 0.
Conversely, let Pe E(K’) for some finite extension K'/K, and suppose that

h(P) = 0. Then for every integer m, h([m]P) = m*A(P) = 0. Hence from (c)
there is a constant C so that for every me Z,

he({m]P) = |(deg f)A([m]P) — hy([m]P)| < C.
Thus the set {P, [2]P, [3]P, ...} is contained in
{QeE(K"): h(Q) < C}.

But from (6.1), the latter is a finite set, so P must have finite order.
Finally, to prove uniqueness, suppose /' satisfies

RWo[ml=m*h and (degf)h = h,+ O(1)
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for some integer m > 2. Repeated application of the first equality yields
Ro[m"]=m*k for N=1,2,....

Further, since A also satisfies (e), we have

R —h=o0().
Hence
R =m 2k o[m"]
=m Pho[m"] + 0(1))
=h+m2¥0(1) since A satisfies (b).
Letting N — oo yields &' = A. O

Remark 9.4. Notice that the Mordell-Weil theorem implies that R ® E(K) is
a finite dimensional real vector space, while (9.3c,d) implies that £ is a
positive definite quadratic form on the quotient group E(K)/E,.(K). [Here
E,s(K) is the torsion subgroup of E(K).] Now E(K)/E,,.(K) sits as a lattice
in R® E(K), so it would appear to be clear that the extension of A to
R ® E(K) is also positive definite. This is true, but as was pointed out by
Cassels, one must use more than just (9.3c, d).

Lemma 9.5. Let V be a finite dimensional real vector space, and let L= V be a
lattice. Suppose q:V — R is a quadratic form which has the following
properties:

(i) Let Pe L. Then q(P) =0 if and only if P = 0.
(i1) For every constant C,

{PeL:q(P)< C}
is a finite set.

Then q is positive definite on V.
Proor. Choose a basis for V so that for X = (x,, ..., x,)€ V, ¢ has the form
s t
q(X) = Zl xi2 - ; xs2+i5

where s + t < r = dim(V). (See, e.g. [VAW, §12.7] or [La 8, Ch. X1V, §3,§7].)
This basis gives an isomorphism V = R"; let u be the measure on V corres-
ponding to the usual measure on R". We now need the following elementary
result, which is due to Minkowski:

Let B<c V be a convex set which is symmetric about the origin. If u(B) is
sufficiently large, then B contains a non-zero lattice point.

For a proof, see for example [H-W, thm. 447] or [La 2, Ch. 5, §3]. Now look
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at the sets
s t
B(e, ) = {X =(xy,...,x)€V:Y x?<eand ) x%,; < 5}.
i=1 i

They are convex and symmetric about the origin for any ¢, 6 > 0. Let
A =inf{q(P): PeL, P # 0}

From (i) and (ii), we have 4 > 0.

Now suppose that g is not positive definite on V, so s <r. Then from
Minkowski’s theorem, the set B(34, d) contains a non-zero lattice point P if 6
is sufficiently large. (The volume of B(34, d) is infinite if s + ¢t < r, and grows
like 82 as § — oo if s + t = r.) But then

s t
dP)= 3 2= 3 Xk, < i,
=1 i=1 2

contradicting the definition of 4. Therefore q is positive definite on V.
O

Proposition 9.6. The Néron—Tate height is a positive definite quadratic form on
the vector space R ® E(K).

Proor. This follows from (9.5) applied to the lattice E(K)/E,,(K) inside
R ® E(K). Condition (i) of (9.5) is exactly (9.3c, d); while condition (ii) of (9.5)
follows from (9.3€), which says that bounding 4 is the same as bounding hy,
and then applying (6.1). 0

We now have the following quantities associated to E/K:

R ® E(K) a finite dimensional vector space,
a positive definite quadratic form on R ® E(K),
E(K)/E,,(K) a lattice in R ® E(K).

Now in such a situation, an extremely important invariant is the volume of a
fundamental domain for the lattice, computed with respect to the metric
induced by the quadratic form. (For example, the discriminant of a number
field K is the volume of its ring of integers with respect to the quadratic form
x — traceg g(x?). Similarly, the regulator of K is the volume of its unit group,
using the logarithm mapping and the usual metric on Euclidean space.)

Definition. The Néron—Tate pairing on E/K is the bilinear form
{, Y:E(K)x E(K)-»R
defined by
<P, Q> = h(P + Q) — h(P) — h(Q).
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Definition. The elliptic regulator of E/K, denoted Ry, is the volume of a
fundamental domain for E(K)/E,,.(K), computed using the quadratic form h.
In other words, choose P,, ..., P,e E(K) to generate E(K)/E,,(K). Then
R = det({P;, P))<i<, -
1<j<r
(If r = 0, we set Ry, = 1 by convention.)
As an immediate corollary to (9.6), we obtain:

Corollary 9.7. The elliptic regulator is always positive.

Remark 9.8. We have defined the elliptic regulator using the absolute height.
Sometimes it is defined using the height relative to the given field K. As is
immediately clear, this new regulator would differ from the old regulator by a
factor of [K : Q7"

Since ﬁ(P) > 0 for all non-torsion points Pe E(K), a natural question to
ask is how small can A(P) be? One would like to say that A(P) must be large if
the elliptic curve is “complicated” in some sense. The following precise con-
jecture is a slight generalization of a conjecture of Lang [La 5, p. 92].

Conjecture 9.9. Let E/K be an elliptic curve with j-invariant jg and minimal
discriminant Dgx. There is a constant ¢ > 0, depending only on [K : Q], so that
for all non-torsion points P € E(K),

h(P) > ¢ max{h(jg), log NP5k 1}-

Note that the strength of the conjecture lies in the fact that the constant c is
independent of both the elliptic curve E and the point P. Such estimates have
applications to counting integral points on elliptic curves (see (IX.3.5) for a
discussion). Conjecture 9.9 is known to be true if one restricts attention to
elliptic curves whose j-invariant is integral; and more generally such an
estimate exists with the constant ¢ depending on [K : @] and the number of
prime ideals dividing the denominator of jg. (See [Sil 1] and [Sil 5] for
details. A special case is given in exer. 8.17.)

§10. The Rank of an Elliptic Curve
It follows from the Mordell-Weil theorem (6.7) that the Mordell-Weil group
E(K) of an elliptic curve E/K can be written in the form

E(K) = E,(K) x Z".

As we have seen (§7), the torsion subgroup E, (K) is relatively easy to
compute, both in theory and in practice. The rank r is much more mysterious,
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and an effective procedure for determining it in all cases is still being sought.
There are very few general facts known concerning the rank of elliptic curves,
but there are a number of fascinating conjectures. In this section we will
briefly discuss some of these conjectures. (See chapter X for a description of
some of the methods which have been developed for actually computing the
group E(K).)

The rank of a “randomly chosen” elliptic curve over Q tends to be fairly
small, and it is quite difficult to produce such curves of even moderately high
rank. None the less, there is the following “folklore” conjecture.

Conjecture 10.1. There exist elliptic curves E/Q of arbitrarily large rank.

The principal evidence for this conjecture comes from work of Shafarevich
and Tate ([Sha—T]), who show that the analogous result is true for function
fields (i.e. when Q is replaced by the field of rational functions F,(T')). Néron
has constructed an infinite family of elliptic curves over Q having rank at
least 11 (C.20.1.1), and Mestre ([ Mes 2]) has produced examples with higher
rank. For example, Mestre shows that the elliptic curve

y* — 246xy + 36599029y = x> — 89199x? — 19339780x — 36239244

has rank at least 12 over Q; and his ideas can be used to produce curves of
even higher rank. (However, they do not seem well-suited to producing
infinite families of such curves.)

Attached to an elliptic curve E/K is a certain Dirichlet series L x(s), called
the L-series of E/K. (See (exer. 8.19) and (C §16) for the definition of Lgx.) For
the moment, it is enough to know that the definition of L k(s) involves only
the number of points on the reduction E(k,) for each finite place ve M.
There is a conjecture, due to Birch and Swinnerton-Dyer, which says that
Lg(s) has a zero at s =1 whose order exactly equals the rank of E(K).
Further, the leading coefficient in the Taylor series expansion of Lg(s)
around s = 1 should be expressable in terms of various global arithmetic
quantities associated to E(K), including the elliptic regulator Rg . Thus in
some sense, the conjecture of Birch and Swinnerton-Dyer is a version of the
Hasse principle which applies to elliptic curves, since it (hypothetically)
shows how information about the v-adic behavior of E for all places ve My
determines global information such as the rank of E(K) and the elliptic
regulator Ry . (For a more detailed discussion of L-series and the conjecture
of Birch and Swinnerton-Dyer, including some of the progress made in prov-
ing it, see appendix C §16.)

In addition to having an effective method for computing the rank of an
elliptic curve, it would be good to have a theoretical description of just how
large a generating set need be. Based partly on analogy with the problem of
computing generators for the unit group of a number field .and partly on a
number of very deep conjectures in analytic number theory, Serge Lang has
suggested the following.



§10. The Rank of an Elliptic Curve 235

Conjecture 10.2 (Lang [La 9]). Let E/Q be an elliptic curve of rank r. Then
there is a basis Py, ..., P, for the free part of E(Q) satisfying

ﬁ(Pi) < C,| Dy g|**e foralll <i<r.
1Q

Here h is the canonical height on E (cf. §9), Dy,q is the minimal discriminant of
E/Q (cf. §8), and C, is a constant depending only on ¢. (Lang’s conjecture is
actually more precise, see [La 9].)

Since A is the logarithmic height, (10.2) says that the x-coordinates of the
generators might grow exponentially with the discriminant of the curve.
(Similarly, the height H(u) of a generator for the unit group in a real quadra-
tic field seems to grow exponentially with the discriminant of the field. Of
course, it is easy to choose a sequence of such fields for which H(u) grows
polynomially; but on average, one expects the growth to be exponential.) The
expected exponential behavior for elliptic curves is illustrated by the follow-
ing example of Bremner and Cassels [Br—C]. They show that the elliptic
curve

y?=x3+877x
has rank 1, and the x-coordinate of a generator P is given by
x = (612776083187947368101/7884153586063900210)2.
To compare this example with Lang’s conjecture, we compute
log h(P)/log| g q| ~ 0.2,

which is well within the suggested bound of 1 + e.

EXERCISES

8.1. Let E/K be an elliptic curve, m > 2 an integer, # the ideal class group of K,
and

S = {ve M} : E has bad reduction at v} U {ve Mg : v(m) # 0} U M.

Assuming that E[m] < E(K), prove the following quantitative version of the
weak Mordell-Weil theorem:

rankz;,z(E(K)/mE(K)) < 2#S8 + 2 rankg,,z #x[m].
8.2. Foreach integer d > 1, let E,/Q be the elliptic curve
E;:y? =x3—d%x.
Prove that
E,(Q) = finite group x Z'
for some integer

r < 2v(2d),
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where v(N) denotes the number of distinct primes dividing N. [Hint: Use exer-
cise 8.1.]

Let E/K be an elliptic curve and L/K an (infinite) algebraic extension. Suppose

that the rank of E(M) is bounded as M ranges over all finite extensions M/K

contained in L.

(a) Prove that E(M) ® Q is finite dimensional (as a Q-vector space.)

(b) Assume further that L/K is Galois and E, (L) is finite. Prove that E(L) is
finitely generated.

Assume that p,, < K. Prove that the maximal abelian extension of K of expo-
nent m is the field

K(a'™: aeK).

[Hint: Use (2.2), which in this case says that every homomorphism y: Ggx = Ry,
has the form y(o) = a°/« for some ae K*.]

Let ¢e H'(Ggx, M) be unramified at ». Prove that there is a 1-cocycle
¢: Ggx = M in the cohomology class of ¢ such that ¢, = 0 for all o€ 1,. [Hint:
Use the inflation-restriction sequence (B.2.4) for I, = Gi/x.]

Prove Kronecker's theorem: Let x € @*. Then H(x) = 1 if and only if x is a root
of unity. (This is the multiplicative-group version of (9.3d).)

(a) Give an explicit upper bound, in terms of N, C, and d, for the number of
points in

{PeP¥@): H(P) < Cand [Q(P): Q] < d}.
(b) Let
(N, C) = #{PePN(K): H(P) < C}.
Prove that
Vo(N,C) ~ CY*  J{(N +1)  as C - oo,

where {(s) is the Riemann {-function. (For more about v¢(N, C), see (5.12).)

Prove the following standard facts about height functions.
(a) H(x;x;" *xy) < H(x,)H(x;) -~ H(xy).
(b) Hxy + x5 + - + xy) < NH(x)H(x,) "+ H(xy).
(¢) For P = [x,,...,xy]ePYand @ = [y,, ..., yuJ€P¥, let-
P*Q = [Xo Yo, X015 -+ vs XiVj - -» Xy yu] € PHVHMIN,
Then
H(P*Q) = H(P)H(Q).

(The map (P, Q) — P*Q is the Segre embedding of P¥ x PM in PMN+M*N Gee
[Har, exer. 1.2.141.)
(d) For P =[x, ..., xy] PV, let

PO =[fo(P),..., fu(P)]eP¥,
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where M = ("3 — 1, and fy(X), ..., fu(X) are the M possible monomials of
degree d in the N + 1 variables X, ..., Xy. Then

H(PY) = H(PY = H([x¢, ..., xE]).

(The map P — P9 is the d-uple embedding of P¥ in PM. See [Har, exer.
12.12])
(e) If x # 0, then

H(1/x) = H(x).
(f) Let K be a number field and let x,, ..., xy€ K be algebraic integers. Then

H([Xo, ..., xy]) < max H(x,)*'®,
0<i<N

Let xo, ..., xy € K, and let b be the fractional ideal of K generated by x,, ..., Xy.
Then

Hi([x0, ..., xy]) = (Nx/@b)_1 H max {|xi|v}""-

veMZ O<i<N

Let F be the rational map (1.3.6) which is a morphism at every point except
[0, 1, 0],

F:P? - p?
[x, y, 2] = [x% xy, z%].
Prove that for all constants C, & > 0, there is a point P e P?(Q) so that
H(F(P)) < CH(P)**.

In particular, (5.6) becomes false if the map F is merely required to be a rational
map.

Prove the following generalization of (7.2) to arbitrary number fields.
Let E/K be an elliptic curve given by an equation

y?=x>+Ax+ B

with 4, BeR, and let A = 443 + 27B2. Let Pe E(K) be a point of exact order
m = 3, and let ve M§.
(a) If m = p" is a prime power, then

—6r, < ord,(y(P)?) < 6r, + ord,(A),

[ ord,(p) ]
ry = n n—1 |°
p—p

(b) If m = 2p" is twice a prime power, then

0 < ord,(y(P)*) < 2r, + ord,(A),

where

where r, is as in (a).
(c) If mis not of the form p” or 2p”, then

0 < ord,(y(P)?) < ord,(A).
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For each of the following elliptic curves, calculate E,, (Q).
@@ y*=x>-2

b) y*=x>+38

© y2=x3+4

(d) y*>=x3+4x

© y—y=x>~x

) y*= x3+1

(& y*+y=x>—x+137

(h) ¥*+ Txy = x>+ 16x

0 y*+xy+y=x>—xr—14x+29
(G) y*+ xy=x*—45x + 81

(k) y* + 43xy — 210y = x* — 210x?

M y?=x3—4x

(m) y? + xy — 5y = x> — 5x?

(n) y*+ 5xy — 6y = x> — 3x?

(0) ¥* + 17xy — 120y = x> — 60x2

(a) Let E/K be an elliptic curve and P e E(K) a point of order at least 4. By an
appropriate change of coordinates, show that E has an equation of the form

E:y* +uxy + vy = x* + vx*

with u, ve K and P = (0, 0).

(b) Show that there is a one-parameter family of elliptic curves E/K with a K-
rational point of order 6. [Hint: Set [3]P = [—3]P in (a), and find how u
and v must be related.] Same question for points of order 7; order 9; order
12,

(c) Show that the elliptic curves E/K with a K-rational point of order 11 are
parameterized by the K-rational points of a certain elliptic curve.

(a) Generalize (8.2) as follows. Let E/K be an elliptic curve, and let a by any
integral ideal in the ideal class ag . Then there is a Weierstrass equation for
E with coefficients a; € R and discriminant A satisfying

(A) = Dy a'.

(b) Suppose that E/K has everywhere good reduction and the class number of
K is relatively prime to 6. Then E/K has a global minimal Weierstrass
equation.

(c) Every elliptic curve E/K has a Weierstrass equation with coefficients a;e R
and discriminant A satisfying '

|NK/QA| < |Disc K/QIGINK/Q*@E/KL

(Qualitatively, this says that one can find a Weierstrass equation whose non-
minimality is bounded solely in terms of K. Such an equation might be
called quasi-minimal.)

(d) Let b be any ideal class of K. Prove that there is an elliptic curve E/K such
that @z = b. In particular, if K does not have class number 1, then there
exist elliptic curves over K which do not have global minimal Weierstrass
equations. (This gives a converse to (8.3).)
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Prove that there are no elliptic curves E/Q having everywhere good reduction.

[Hints: Take a Weierstrass equation with integral coefficients and discriminant
A = +1. Show a, is odd, so ¢, = 1(8). Substitute ¢, = u & 12 into ¢3 — ¢2 =
1728. Show u = 3v and ¢4 = 9w. Then w = 2 or 3t Rule out the former by
finding w (mod 8), and the latter by showing that it leads to v and w being
infinitely 3-divisible.]

Show that the conclusion of (9.5) is false if the quadratic form q is not required
to satisfy the finiteness condition (ii).

Fix non-zero integers 4, B with 443 + 27B% # 0. For each d # 0, let E;/Q be
the elliptic curve
E;:y*=x+d*Ax + d*B.

Prove that for all square-free integers d # 0:
(a) j is independent of d;
(b) log |Zgql = 6 log |d| + O(1); X
(c) Every Pe E,(Q) satisfies either [2]P = 0 or h(P) > Llog |d]| + O(1).
(d) For all but finitely many square-free integers d, the torsion subgroup of

E,(Q) is one of {0}, Z/2Z, or (Z/2Z).
(Here the O(1)’s may depend on A4 and B, but they should be independent of d.
This exercise provides a proof of conjecture 9.9 for the family of curves E;.)
[Hint for (c): If P = (r, s)e E,(Q), then P’ = (r/d, s/d*¥*)e E,. Show that h(P) =
I;(P’), that either s = 0 or h (P’) is greater than {log|d|, and that Iﬁ —5h| is
bounded.]

Let E/K be an elliptic curve given by a Weierstrass equation
E:y*=x3+ Ax + B.

(a) Prove that there are absolute constants c¢; and c, such that for all points
Pe E(K),

|h([2]P) — 4h(P)| < ¢, h([4, B, 1]) + ¢,.

Find explicit values for ¢, and c,. [Hint: Combine the proofs of (4.2) and
(5.6), keeping track of the dependence on the constants. In particular, notice
that the use of the Nullstellensatz in (5.6) can be replaced by the explicit
identities given in (4.3).] 3

(b) Find absolute constants ¢, and c, so that for all points P e E(K),

|4h.(P) — h(P)| < ¢3h([4, B, 1]) + c,.

[Hint: Use (a) and the proof of (9.1).] 3
(c) Prove that for all integers m > 1 and all points P, Q € E(K),

Ih([m]P) — m*h (P)] < 2(m* + 1) (c3h([4, B, 11) + c4);
and

h (P + Q) < 2h (P) + 2h,(Q) + 5(c3h([A, B, 11) + c,).
[Hint: Use (b) and (9.3).]
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(d) Let @4, ..., Q, be a set of generators for E(K)/2E(K). Find absolute constants
¢s, ¢g, and ¢, so that the set of points P € E(K) satisfying

ho(P) < cs max {h(Q)} + csh([4, B, 1]) + ¢;

contains a complete set of generators for E(K). [Hint: Follow the proof of
(3.1), using (c) to evaluate the constants that appear.]
The L-Series Attached to an Elliptic Curve. Let E/Q be an elliptic curve, and
choose a global minimal Weierstrass equation

Y +axy+ a3 =x%+ a;x% + agx + ag

for E/Q (cf.8.3). For each prime p, let A, be the number of points on the reduced
curve £ mod p (remember to include the point at infinity); and let

t,=1+p— A4,
The L-Series associated to E/Q is defined by the Euler product

Le)= [T A =t,p™7" [] A—t,p~+p'>)7"
PIA(E) PLA(E)

(a) If Lg(s) is expanded as a Dirichlet series Zc,n ™%, show that its p'™ coefficient
(for p prime) satisfies ¢, = t,,.

(b) If E has bad reduction at p (so p divides A(E)), prove thatt, =1, —1, 0or 0
according as the reduced curve E (mod p) has a node with tangents whose
slopes are rational over F,, a node with tangents quadratic over [,, or a
cusp (cf. exer. 3.5).

(c) Prove that the Euler product for Lg(s) converges for all seC with
Re(s) > 3/2. [Hint: Use (V.1.1).]

(There are a number of important conjectures concerning the L-series
attached to elliptic curves. See appendix C §16.)



CHAPTER IX

Integral Points on Elliptic Curves

An elliptic curve may have infinitely many ratioual points, although the
Mordell-Weil theorem at least assures us that the group of rational points is
finitely generated. Another natural Diophantine question is that of determin-
ing, for a given (affine) Weierstrass equation, which rational points actually
have integral coordinates. In this chapter we will prove a theorem of Siegel
which says that there are only finitely many such integral points. Siegel gave
two proofs of his theorem, which we present in sections 3 and 4. Both proofs
make use of techniques from the theory of Diophantine approximation, and
so do not provide an effective procedure for actually finding all of the integral
points. However, his second method of proof reduces the problem to that of
solving the so-called “unit equation”, which in turn can be effectively resolved
using transcendence theory. We will discuss this method, without giving
proofs, in section 5.

Unless otherwise specified, the notations and conventions for this chapter
are the same as those for chapter VIII. In addition, we set the following
notation:

H, Hy height functions (see VIII §5)

n,=[K,:Q,] local degree for ve My (see VIII §5)

S < My generally a finite set of absolute values containing My
Ry the ring of S-integers of K

Rs={xeK:v(x) > 0forallve Mg, v¢S}
R¥ the unit group of Rg.
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§1. Diophantine Approximation

The fundamental problem in the subject of Diophantine approximation is
the question of how closely an irrational number can be approximated by a
rational number.

Example 1.1. For every rational number p/q, we know that the quantity
I(p/q) — \/5 | is positive; and since Q is dense in R, an appropriate choice of
p/q will make it as small as desired. The problem is to make it small without
taking p and q too large. The next two elementary results illustrate this idea.

Proposition 1.2 (Dirichlet). Let o € R with a ¢ Q. Then there are infinitely many
p/q € Q such that

Proor. Let Q be a large integer, and look at the set

{ga — [q0]:q=0,1,...,Q}.

(Here [ ] means greatest integer.) Since « is irrational, this set consists of
Q + 1 distinct numbers in the interval between 0 and 1; so by the pigeon-hole
principle there are integers 0 < ¢, < ¢, < Q satisfying

(12 — [g10]) — (g2 — [g20])| < 1/Q.

Hence
[‘ha]_[‘h‘x]_a < 1 < 1 .
92 — 41 (92 —9)Q (42 —4q4)
This provides one rational approximation to a with the desired property, and
by increasing Q one can clearly obtain infinitely many. O

Remark 1.2.1. A result of Hurwitz says that the 1/¢* in (1.2) can be replaced
by l/ﬁqz, and that this is best possible. (See, e.g., [H-W, thm. 195].)

Proposition 1.3 (Liouville [Liou]). Let aeQ be of degree d > 2 over Q (i.e.
[Q(): Q] = d). There is a constant C > 0, depending on a, so that for all
rational numbers p/q,

Proor. Let

f(T) = aon + al ’de_1 + -+ adEZ[T]
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be the minimal polynomial for a. Let
C,=sup{f(t)ia—1<t<a+1}.
Suppose now that

p
——a

q

Then from the mean value theorem,

)

On the other hand, q°f(p/q)€ Z; and f(p/q) # 0 since f can have no rational

roots. Hence
p
q‘f <A>
q

Combining the last two inequalities gives

<L

f<£> - f(a)\ <c
q

14
——uf.
q

=1

B — 2 %7
q q
which holds for all p/q if we take C = min{1/C,, 1}. O

Remark 1.3.1. Liouville used his theorem to prove the existence of transcen-
dental numbers. (See exer. 9.2.) Note that it is quite easy to find the constant
C in Liouville’s theorem explicitly in terms of «. This is in marked contrast to
the results which we will consider below.

Proposition (1.2) says that every real number can be approximated by
rational numbers to within 1/¢2, while proposition (1.3) says that an algebraic
number of degree d can be approximated no closer than C/q“. For quadratic
irrationalities, there is little more to say; but if d > 3, then one naturally asks
what the best exponent is. There is also no particular reason to restrict the
approximating values to Q; it is useful to allow them to range over any fixed
number field K. Finally, in measuring how close the approximation is, any
absolute value should do.

Definition. Let 7(d) be a positive real-valued function on the natural num-
bers. A number field K is said to have approximation exponent 1 if the
following condition holds:

Let ae K, d = [K(x): K], and ve My an absolute value on K extended
in some fashion to K(x). Then for any constant C, there exist only
finitely many x € K satisfying the inequality

[x — &, < CHg(x)™™.
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Thus the elementary estimate of Liouville’s theorem (1.3) says that Q has
approximation exponent 7(d) =d + ¢ for any ¢ > 0. This result has been
successively improved by a number of mathematicians. We give a short list.

Liouville 1851 td)y=d+¢
Thue 1909 td)y=4d+1+¢
Siegel 1921 1d)=2/d +¢
Gelfond, Dyson 1947 1(d) = \/ﬁ +e
Roth 1955 td)y=2+e.

In view of (1.2), Roth’s result is essentially best possible, although it is not
unlikely that the ¢ can be replaced by some function &(d) such that ¢(d) — 0 as
d - c0. We should also mention that Mahler showed how to handle several
absolute values at once, and W. Schmidt ([Schm 2, Ch. VI]) dealt with the
more difficult problem of simultaneously approximating several irrationals.

The main ideas which go into the proof of Roth’s theorem are quite
beautiful; and, at least in theory, relatively elementary. Unfortunately, to
develop those ideas fully would take us rather far afield. Hence rather than
include the complete proof, we will be content to state here the result that we
will be using. Then, in section 8, we will briefly sketch the proof of Roth’s
theorem without actually giving any of the myriad details.

Theorem 1.4 (Roth’s Theorem). For every ¢ > 0, every number field K has
approximation exponent

t1d)=2+e

Proor. See §8 for a brief sketch. A nice exposition for K = @ and the usual
(archimedean) absolute value is given in [Schm 2, Ch. V7; the general case is
in [La 7, Ch. 7]. O

Example 1.5. How do theorems on Diophantine approximation lead to
results concerning Diophantine equations? Consider the simple example of
solving the equation

x*—2y’=a

in integers x, yeZ, where aeZ is fixed. Suppose (x, y) is a solution with
y # 0. Let { be a primitive cube root of unity, and factor the equation as

(G-2) )5 -3) -5

The second and third terms in the product are bounded away from 0, so we
obtain an estimate

iwﬁlg._c_s
y [yl
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for some constant C independent of x and y. Now from (1.4), or even Thue’s
original theorem with t(d) = 3d + 1 + ¢, we see that there are only finitely
many possibilities for x and y. Hence the equation

x}—2y’=a

has only finitely many solutions in integers. This type of argument will
reappear in the proof of (4.1). (See also exer. 9.6.)

Remark 1.6. The statement of (1.4) says that there exist only finitely many
elements of K with a certain property. This phrasing is especially felicitous,
because the proof of (1.4) is not effective. In other words, there is no effective
procedure which is guaranteed to produce all of the elements in this finite set.
(See (8.1) for a discussion of why this is so.) We note that as a consequence, all
of the finiteness results which we will prove in sections 2 and 3 are ineffective,
since they rely on (1.4). (Similarly, in (1.5), the proof yields no explicit bound
for |x| and |y| in terms of a.) However, there are other methods, based on
estimates for linear forms in logarithms, which are effective. We will discuss
these, without proof, in section 5.

§2. Distance Functions

A Diophantine inequality such as
|x — af, < CHyg()™™

consists of two pieces. First, there is the height function Hg(x), which is an
arithmetic measure of the size of x. We have already studied height functions
and their transformation properties in some detail (VIII §5, 6). Second, there
is the quantity |x — «|,, which is a topological measure of the distance from x
to a (i.e. in the v-adic topology). In this section we will define a notion of
v-adic distance on curves, deduce some of its basic properties, and reinterpret
the Diophantine approximation result from section 1 in terms of this
distance.

Definition. Let C/K be a curve and P, Qe C(K,). Let ty € K,(C) be a function
with a zero of order e > 1 at Q. The (v-adic) distance from P to Q, denoted
d,(P, Q), is given by

d,(P, Q) = min{|ty(P)|;", 1}.
(Of course, if P is a pole of t,, then |ty(P)|, = o0, so we naturally set

d,(P,Q) = 1)

Remark 2.1. Clearly the distance function d, has the right qualitative pro-
perty; d (P, Q) is small if P is v-adically close to Q. On the other hand, it
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certainly depends on the choice of ¢, so possibly a better notation would be
d,(P, ty). However, since we will only use d, to measure the rate at which two
points approach one another, the following result will show that all of our
theorems make sense.

Proposition 2.2. Let Qe C(K,), and let t, and ty be functions vanishing at Q.
Then with the notation of (2.1),
. logd,(P,ty)

Limit = 1.
Pec(k,) log d (P, ty)
P-Q

(Here P— Q means PeC(K,) approaches Q in the v-adic topology; i.e.,
d,(P, ty) = 0.)

Proor. Let ty and t, have zeros of order e and e’ respectively at Q. Then the
function ¢ = (tp)*/(to)® has neither a zero nor a pole at Q. Hence |§(P)|, is
bounded away from 0 and o0 as P — Q;so as P — Q,

logd,(P,tp) . log|$(P)l; 0
log d,(P,ty) log d,(P, ty)

Next we examine the effect of finite maps on the distance between points.
The crucial observation is that it depends on the ramification of the map,
rather than on its degree (compare (2.3) with (VIIL5.6)).

Proposition 2.3. Let C,, C,/K be curves and f : C; — C, a finite map defined
over K. Let Q € C,(K,), and let e;(Q) be the ramification index of f at Q (cf. 11
§2). Then

log d,(f(P), f(Q)) _

Limit = e/(Q).
PeCy(K,) log dv(P’ Q) f(Q)
P—Q

Proor. Let t,€K,(C;) and 4 € K,(C,) be uniformizers at the indicated
points. By definition of ramification index, we can write

trgo f =tg9s,

where ¢ € K,(C,) has neither a zero nor a pole at Q. It follows that |#(P)|, is
bounded away from 0 and oo as P - Q. Therefore

log d,(f(P), f(Q)) _ log |t;g(f(P)l,

log d,(P, Q) log [to(P)l,
_ ¢(Q)log |19(P)|, + log |$(P)],
log |to(P)],
- ¢.(0) as P-Q. 0

Finally, we reinterpret (1.4) in terms of distance functions.
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Corollary 2.4 (of 1.4). Let C/K be a curve, f € K(C) a non-constant function,
and Qe C(K). Then

Liminf 128 % Q)

recy log He(f(P) =~
P-Q

(Here P — Q means that P approaches Q in the v-adic topology. We obviously
do not allow P = Q. If Q is not a (v-adic) accumulation point of C(K), then we
define the Lim inf to be 0.)

Proor. Replacing f by 1/f if necessary, we may assume that f(Q) # co. (Note
that Hg((1/f)(P)) = Hg(f(P)).) Then from the definition of d,, we may take

d,(P, Q) = min{| f(P) — f(Q)l;", 1},
where e > 1 is the order of vanishing of the function f — f(Q) at Q. Hence
.. logd,(P,Q) . .  log|f(P)— f(O)l,
e g H(J(P) ~ g elog H(f(P)

—Liminf {“’g(Hx(f (P)IA(P) — fQ) T}‘
log Hy(/(P)

e pog
Now if we take
T=2+g¢,
then (1.4) implies that
Hx(f(P)F1f(P)— f(Q)l, = 1
for all but finitely many P e C(K). Therefore

. . . logd, (P, Q) T 2+¢
Liminf —————> —(— = ————,
p-o log Hy(f(P)) e e
Since ¢ > 0 is arbitrary, and e > 1, this gives the desired resuit. O

§3. Siegel’s Theorem

In this section we will prove the following theorem of Siegel, which represents
a significant improvement on the Diophantine approximation result (2.4).

Theorem 3.1 (Siegel). Let E/K be an elliptic curve with # E(K) = oo, f € K(E)
a non-constant even function, ve My, and Q € E(K). Then

log d,(P

peEk)y  hp(P)

he(P)> o0
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Remark 3.1.1. Although we will only prove (3.1) for even functions, it is in fact
true in general. (See exer. 9.14d.)

Before giving the proof of (3.1), let us give some indication of just how
strong a theorem it is.

Corollary 3.2.1. Let E/K be an elliptic curve with Weierstrass coordinate func-
tions x and y, let S = My be a finite set of places containing Mg, and let Rg be
the ring of S-integers of K. Then

{PeE(K): x(P)eRg}

is a finite set.

Proor. We apply (3.1) with the function f = x. Thus suppose that P, P,, - €
E(K) is a sequence of distinct points with x(P;)€ Rg. From the definition of
the height it follows that

1 nl) .
h(P;) = mvgs log max{1, |x(P)[}*};

since for the terms with v¢S, we have |x(P)|, < 1. Hence by choosing a
subsequence of the P’s, we may assume that
h.(P) < #8-log |x(P)|, for all i,

where ve S is a fixed absolute value. (Note that n, < [K : Q].) In particular,
|x(P,)|, — oo. Since the only pole of x is at O, it follows that d,(P;, 0) — 0.

Now since x has a pole of order 2 at O, we can take as our distance
function

d,(P;, 0) = min{|x(P)l, ', 1}.
Then for all sufficiently large i, we have
—logd,(F,0) _ 1
ha(P) T 2#S

But this contradicts (3.1), which says that the left-hand side must approach 0
asi— oo. O

Clearly the proof of (3.2.1) can be applied to any even function, not just x,
since (3.1) is given for all even functions. However, one can actually reduce
the case of arbitrary (not necessarily even) functions to the special case given
by (3.2.1). This reduction step is also important in its own right, since it is
used both in Siegel’s second proof of finiteness (4.3.1) and with the effective
methods provided by linear forms in logarithms (5.7).

Corollary 3.2.2. Let C/K be a curv= of genus 1, and let fe K(C) be a non-
constant function. Let S and Rg be as in (3.2.1). Then
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{PeC(K): f(P)eRs}
is a finite set. Further, (3.2.2) follows formally from (3.2.1).

Proor. We are clearly proving something stronger if we extend the field K
and enlarge the set S. We may thus assume that C(K) contains a pole Q of f.
Then (C, Q) is an elliptic curve over K; let x and y be coordinates on a
Weierstrass equation for (C, Q), which we may take in the form

y*=x>+ Ax + B.
Now feK(C) = K(x, y) and [K(x, y): K(x)] = 2, so we can write
_ 40 + Yy
n(x)

with polynomials ¢(x), ¥(x), n(x)e K[x]. Further, since ordy(x) = —2,
ordy(y) = —3, and ordy(f) < 0, it follows that

2 deg n < max{2 deg ¢, 2 deg ¥ + 3}.

fx,y)

(Le. This is the condition for f to have a pole at Q.) Next we compute

(fn(x) — $(x))* = (Y (x)y)* = Y(x)*(x* + Ax + b).

Writing this out as a polynomial in x with coefficients in K[ f'], we see that
the highest power of x will come from one of the terms f?7(x)?, ¢(x)?, or
¥(x)?x3. From above, the first of these has lower degree (in x) than the latter
two, while the leading terms of ¢(x)? and (x)?>x> cannot cancel, since they
have different degrees. It follows that x satisfies a monic polynomial over
K[f] (Le. x is integral over K[ f].) Multiplying this polynomial by an
appropriate element of K to “clear denominators”, we have shown that x
satisfies a relation

aox™ + ay (f)x¥ 1+ +ay_ 1 (f)x + an(f) =0,

where a,€ Ry and a;( f)e Rg[ f] for 1 < i < N. Enlarging the set S, we may
further assume that a, € R¥.

Now suppose that Pe C(K) satisfies f(P)e Rg. Then P is not a pole of x,
and the relation

apx(PYY + a(f(P)x(PY'"! + - + ay—1 (f(P))x(P) + ay(f(P)) = 0

shows that x(P)is integral over Rg. Since also x(P)e K, and Ry is integrally
closed in K, it follows that x(P)e Rg. This proves that

{PeC(K): f(P)eRs} = {PeC(K): x(P)eRs};

and so the finiteness assertion of (3.2.2) follows from the finiteness result given
in (3.2.1). o

Example 3.3. Consider the Diophantine equation

y?= x>+ Ax + B,
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where A, BeZ and 443 + 27B? # 0. The above corollary (3.2.1) says that
there are only finitely many solutions with x, y e Z. What does (3.1) say in this
situation, say if we take Q = O, f = x, and v the archimedean absolute value
on (7

Label the non-zero rational points P;, P,, ... in order of non-decreasing
height, and write

x(P) = a;/b;e Q
as a fraction in lowest terms. Then
log d,(P,, 0) = 4 log min{|b;/a;|, 1}

and

h.(P,) = log max{|ay], |b;|}.
(Note that the 1/2 appears because 1/x has a zero of order 2 at 0.) Now (3.1)
implies that

. min{log |b;/a;], 0} —o.

i~ max{log |a;|, log |b;|}

Similarly, letting Q be a point with x(Q) = 0, we have
log d,(P;, Q) = log min{|a;/b,], 1}
(with a factor of 1/2 if B = 0); so again from (3.1) we obtain

min{log |a,;/b,|, 0} _
i~ max{log |a;], log|b} ~

Now from these two limits, it is an easy matter to deduce that

log |a;| 1
ivw 10g|b;] -

In other words, when looking at the x-coordinates of the rational points on
an elliptic curve, the numerators and the denominators tend to have about
the same number of digits. This is clearly much stronger than the assertion of
(3.2), which merely says that there are only finitely many points where the
denominator is 1.

Remark 3.4, Although Siegel’s theorem (3.2) is not effective, which means that
it does not yield an explicitly computable upper bound for the height of all
integral points, it can be made quantitative in the following sense (see, e.g.,
[Ev-S]):

For a given non-singular Weierstrass equation, there is a constant N, which can
be explicitly calculated in terms of the field K and the coefficients of the equa-
tion, such that the equation has no more than N integral solutions.

A subtler Diophantine problem, conjectured by Serge Lang, is to give an
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intrinsic relationship between the number of integral points and the rank of
the Mordell-Weil group.

Conjecture 3.5 ([La 5, p. 140]). Let E/K be an elliptic curve, and choose a
quasi-minimal Weierstrass equation for E/K,

E:y*=x>+Ax+ B

(cf. exer. 8.14c). Let S = My be a finite set of places containing Mg, and let Ry
be the ring of S-integers in K. There exists a constant C, depending only on
K, such that

#{PeE(K): x(P)e Ry} < C#Strank EK)

This conjecture is known to be true if one restricts attention to elliptic curves
with integral j-invariant; and more generally, it holds for a constant C de-
pending on both K and the number of primes of K for which j(E) is not
integral. (See [Sil 7].)

We now turn to the proof of (3.1). In broad outline, the argument goes as
follows. From the theorem on Diophantine approximation (2.4) we have a
bound, in terms of the height of P, on how fast P can approach Q. Suppose
now that we write P = [m]}P’ + R and Q = [m]Q’ + R. Then the distance
from P’ to Q' is about the same as the distance from P to Q (using (2.3), since
the map P — [m]P + R is unramified); while the height of P’ is much smaller
than the height of P. Now applying (2.4) to P’ and @', we will obtain a better
estimate; and taking m large enough gives the desired result.

ProoF oF (3.1). Choose a sequence of distinct points P,e E(K) so that

P.
L 10gdPQ) . logd(P,Q)
o0 hy(P,) PeE(K) h.(P)

hg(P)— 00

Since d,(P, Q) < 1 and h(P) > 0 for all points Pe E(K), we have L <O0. It
thus suffices to prove that L = 0.

Let m be a large integer. From the (weak) Mordell-Weil theorem (VIIIL
1.1), the group E(K)/mE(K) is finite. Hence some coset contains infinitely
many points of the sequence P, Choosing a subsequence, which we again
denote P, we can write

P, = [m]F, +R,

where P}, Re E(K) and R does not depend on i. Using the standard pro-
perties of height functions, we compute

m2h,(P)) = h([m]P) + O(1)  (VIIL 6.4b)
= he(P,— R) + 0(1)
< 2h,(P) + O(1) (VIIL 6.4a),

where the O(1) is independent of i.
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Next we do an analogous computation with distance functions. If P; is
bounded away from Q (in the v-adic topology), then log d,(P;, Q) is bounded,
so clearly L = 0. Otherwise, we can choose a subsequence so that P,— Q.
Then [m]P;, - Q — R, so the sequence P/ must have one of the m? possible
m'™-roots of Q — R as an accumulation point. Thus by again taking a subse-
quence, we can find a Q' € E(K) so that

Pl—-»Q and Q=[m]Q +R.

Note that the map E — E defined by P —» [m]P + R is everywhere unrami-
fied (II1. 4.10c). This lets us use (2.3) to compute

. logd,(P, Q)
Lim—————— =1,
o log d,(Pl, Q)

Combining this with the height inequality from above yields the following.
(Note that the log d, expressions are negative, which reverses the inequality.)

logd(P, @) _ . _log dy(FP;, Q)

L=Li > .
m o Tm?h,(P!) + O(1)

i~ hf(Pi)
Now we apply the theorem on Diophantine approximation (2.4) to the
sequence P/ € E(K), which v-adically converges to Q' € E(K). This yields

. logdy(F;, Q)
Liminf ————"——"> —
iro  [K:QJhs(F)

(Note that the [K:Q] factor, which in any case is not important, arises
because h; is the absolute height, while (2.4) is stated using the relative height
H,.) Using this result in the above inequality for L, we obtain

_4[K:@]

m2

2.

L>

But K is fixed, while the choice of m was arbitrary. Therefore L > 0, which is
the desired conclusion. 0

§4. The S-Unit Equation

The proof of Siegel’s theorem given in the last section is a special case of
Siegel’s general result that there are only finitely many S-integral points on
any curve of genus at least 1. (See [La 7, ch. 8, thm. 2.4].) Siegel also gave a
second proof, which applies only to a more restricted set of curves. However,
the set of curves treated does include all elliptic curves. Further, the method is
important, because when combined with results on linear forms in logarithms
(see section 5), it leads to an effective procedure for finding all S-integral
points. For this reason, we will now present Siegel’s alternative proof.

The idea of the proof is to reduce the problem of solving for S-integral
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points on a curve to the problem of solving several equations of the form
ax + by =1

in S-units. We start by giving a quick sketch of how the solution of this S-unit
equation can be reduced to the Diophantine approximation theorem (1.4). It is
this ineffective step which can be replaced by the effective results in section 5.

Theorem 4.1. Let S = My be a finite set of places, and let a, be K*. Then the
equation
ax +by=1

has only a finite number of solutions in S-units x, y € R¥.

INEFFECTIVE PROOF (SKETCH). Let m be a large integer. By Dirichlet’s S-unit
theorem ([La 2, V §1]), the group R¥/(R¥)" is finite; let ¢, ..., ¢, € R¥ be coset
representatives. Then any solution (x, y) to the original equation can be
written as

x=cX" y=c¥Y"
for some X, Y e R¥ and some choice of ¢;, ¢;. Thus (X, Y) is a solution to the
equation
aciXm + ijYm = 1.
Since there are only finitely many choices for ¢;, c;, it certainly suffices to
prove that for any «, f€ K*, the equation
aX™ 4+ Y™ =1

has only finitely many solutions with X, Y e Rg.
Suppose that there were infinitely many such solutions. Then, since

Hy(Y) = [] max{L, | Y[},

veS

we can find some v € S so that for infinitely many of the solutions,
Y], > He(Y)/K: @73,
(Note that n, < [K:@].) Let
Y= — Bl

We will specify below which m™ root to take. The idea is that if m is large
enough, then X/Y provides too close an approximation to 7.
We can factor our equation as

X 1
gﬂm(v'@:m

Since there are supposed to be infinitely many solutions, we may assume
Hg(Y) is very large; and so | Y|, will also be large. Then from the equality
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X

7"('}’

I 1

Len,, v ]O!le,,,

we see that X/Y must be close to one of the {y’s; so replacing y by one of its
conjugates, we may assume that | X/Y — y|, is quite small. But then for { # 1,
|X/Y — {vy|, cannot be too small, since

| X/Y = Oyl 2 v = O, — 1 X/Y — ],
Hence we can find a constant C, > 0, independent of X/Y, so that

IX/Y — 9], < G| Y[;™

(See exer. 9.5.) Finally, from the expression

o X/Y)" =(1/Y)" - B,
one easily deduces that

Hg(X/Y) < CHk(Y),

where C, depends only on «, 8, and m. Now combining all of the above
estimates, we find

|X/Y ~ yl, < CHy(X/Y) ™K Q1%5,

But if we take any m > 2[K : Q] #38, then Roth’s theorem (1.4) says that there
are only finitely many possibilities for X/Y. Further, since

Y"=(X/Y)"+ B)"' and X =(X/Y)Y,

each ratio X/Y corresponds to at most m possible pairs (X, Y). This con-
tradicts our initial assumption that there are infinitely many solutions, and so
completes the proof of (4.1). O

Remark 4.2.1. Notice the great similarity in the method of proof for Siegel’s
theorem (3.1) and the S-unit equation (4.1). In both cases one starts with a
point in a finitely generated group (P € E(K) for the former, (x, y)e R¥ x R¥
for the latter). Next one uses the “multiplication-by-m” map to produce a new
point whose height is much smaller, but which is a close approximation to
another point defined over some finite extension of K. Finally one invokes a
theorem on Diophantine approximation, such as (1.4), to complete the proof.

Remark 4.2.2. The proof of (4.1) given above is ineffective, since it makes use
of Roth’s theorem (1.4). But just as for Siegel’s theorem, it is possible to make
(4.1) quantitative; that is, to give an upper bound for the number of solutions.
A priori, one would expect such a bound to depend on both the field K and
the set of primes S. In fact, it is possible to prove the following analogue for
the S-unit equation of Lang’s conjecture (3.5) for elliptic curves. The proof,
which we do not include, is fairly intricate.

Theorem 4.2.3 (Evertse [Ev]). Let S « My be a finite set of places containing
%, and let a, be K*. Then the equation
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ax +by=1

has at most 3 x T W*2#S solutions in S-units x, y € RE.

To see most clearly the analogy with (3.5), note that R¥ is a finitely generated
group of rank #S — 1. Thus the bound in conjecture (3.5) takes the form
Crank (RY)+rank (BKN*1 while the bound in (4.2.3) can be written as C™"* R)+1,
We now give Siegel’s reduction of S-integral points on hyperelliptic curves
to solutions of the S-unit equation. Although we will not do so, the reader
should note that every step in this reduction process can be made effective.

Theorem 4.3 (Siegel). Let f(x)e K[x] be a polynomial of degree d > 3 with
distinct roots (in K). Then the equation
y* = f(x)

has only finitely many solutions in S-integers x, y € Ry.

Proor. Clearly we are proving something stronger if we take a finite exten-
sion of K and enlarge the set S. Thus we may assume that f splits over K, say

f(x) =alx —ay)...(x — o)
with «; € K ; and then make S sufficiently large so as to satisfy the following:
(i) aeR$;
(i) o; —a;€ R¥ for all i # j;
(iii) Ry is a principal ideal domain.

Now suppose that x, y € Ry satisfy y* = f(x). Let p be a prime ideal of Rj.
Then p can divide at most one x — o, since if it divides both x — o; and
x — aj, then it divides a; — «;, contradicting assumption (ii). Further, from (i),
p does not divide a. It follows from the equation

Y2 =a(x —oy)...(x — ay)

that ord,(x — «;) is even, and so the ideal (x — ;)R is the square of an ideal
in Rg. But from (iii), Ry is a principal ideal domain. Hence there are elements
z;€ Rg and units b; € R¥ so that

. 2
x —a; = b;z{.

Now let L/K be the extension of K obtained by adjoining to K the square
root of every element of R¥. Note that L/K is a finite extension, since
R¥%/(R¥)? is finite from Dirichlet’s S-unit theorem. Further let T = M, be the
set of places of L lying over elements of S, and let Ry be the ring of T-integers
in L. Now each b, is a square in Ry, say b, = 7, so

x —o; = (Biz;)*.

Taking the difference of any two of these equations yields

o; — o; = (Bizi — Biz;)(Bizi + B;z;).
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Note that a; — «; € R¥, while each of the two factors on the right is in Ry. It
follows that each of these factors is a unit,

Biz; + Bizje R¥ forall i #j.
Now we use Siegel’s identity:
Bizi + Bazy _ Brza £ Bazs -1
Bizy — B3z Bizy — Bazs
This is a sum of two elements of R¥ totaling 1, hence from (4.1) there are only

finitely many choices for

Bizi + Bz, nd Bizy — Bz,

—_—  a .
Bizy — Bz Bizi — B3z

Multiplying these two numbers, there are only finitely many possibilities for

%y — 0y
(B1z1 — B3z3)*’
hence only finitely many for
Bizy — Bszs,

and so only finitely many for

1 -
Bz, = 5[(ﬁ121 — Bsz3) + ‘E;Zj__;;i‘zz]-

But
X =0y + (ﬁ121)2,

so there are only finitely many possible values of x; and then for each x, at
most two y’s. O

Corollary 4.3.1. Let C/K be a curve of genus 1, and let f € K(C) be a non-
constant function. Then there are only finitely many points P € C(K) such that

f(P)eRs.

Proor. Using the reduction procedure given in (3.2.2), it suffices to consider
the case that f is the x-coordinate on a Weierstrass equation. But that case
is covered by (4.3). O

§5. Effective Methods

In 1949, Gelfond and Schneider independently solved Hilbert’s problem con-

cerning the transcendence of w2, They actually proved the following strong
transcendence criterion.
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Theorem 5.1 (Gelfond, Schneider). Let o, B Q with a # 0, 1 and f¢ Q. Then
of is transcendental.

Gelfond rephrased his result in terms of logarithms. If «,, a, € Q* and if
log o, and log a, are linearly independent over Q, then they are linearly
independent over Q. He further showed that one could give an explicit lower
bound for |, log a; + f, log a,| whenever this quantity is non-zero, and
noted that many Diophantine problems could be solved if one knew an
analogous result for sums of arbitrarily many logarithms. Such a theorem
was proven by A. Baker in 1966. The proof is quite involved, so we will be
content to just quote the following version.

Theorem 5.2 (Baker). Let oy, ..., a,e K* and §, ..., B,€ K. For any constant
K, define

T(K) = T(1; 0yy e nns Oy Bis---» B) = h([1, By, -, ﬁn])h([l, Ayseees o, ])

(N.B. These are logarithmic height functions.) Fix an embedding K < C, and
let || be the corresponding absolute value. Assume that

filogoa, + -+ fB,loga, #0.

Then there are effectively computable constants C, k > 0, depending only on n
and [K : Q], such that

|B; log oy + -+ + B, log a,| > C™™.
Proor. See [Ba] or [La 5, VIII, Thm. 1.1]. |

Remark 5.2.1. We have restricted ourselves in (5.2) to the case of an archi-
medean absolute value. There are analogous results in the non-archimedean
case, although minor technical difficulties arise due to the fact that the p-adic
logarithm is only defined in a neighborhood of 1. See (5.6) below for a further
discussion.

It is not immediately clear how Baker’s theorem (5.2) can be applied to give
a bound for the solutions to the S-unit equation. We start with the following
elementary lemma. (See also exer. 9.8.)

Lemma 5.3. Let V be a finite dimensional vector space over R. Given any
basis e = {e,, ..., e,} for V, let || be the sup norm with respect to e. (.e.
Ixlle = [|Zx;¢;|| = max{|x;|}.) Suppose that f={f,,..., f,} is another basis.
Then there are constants c,, ¢, > 0, depending on e and f, so that for all xeV,

crllxlle < lxlle < ezllx e

Proor. Let 4 = (a;) be the change of basis matrix from e to f, so ¢; =
Za;f; and let || Al = max{|a;|}. Then for any x =Zxe;eV, we have
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X = inei = inaijf}, SO

Z XiQi;
1

This gives one inequality, and the other follows by symmetry. ]

l[x[lg = max { } < nmax {|ay|} max {|x;|} = n| A [ x].
j ij i

We apply (5.3) to the following situation. Let S < My be a finite set of
places containing My, let s = # 8§, and choose a basis a4, ..., o, for the free
part of R¥. Then every o€ R¥ can be written uniquely as

Mg—1

o= ol o]
for integers m,, ..., m,_, and a root of unity {. Define the size of a (relative to
{al’ ces as—l}) by
m(ax) = max{|m;|}.

Lemma 5.4. With notation as above, there are constants ¢y, ¢, > 0, depending
only on K and S, such that for every o€ R§,

¢ h(a) < m(a) < ¢, h().

Proor. Let § = {v,, ..., v}, and let n; = n, be the local degree corresponding
to v;. Consider the S-regulator homomorphism

ps: R§— R
a—(ny0,(@), ..., noy(a))-

Notice that the image of pg lies in the hyperplane H = {x; + ‘- + x, = 0};
and by Dirichlet’s S-unit theorem, it actually spans H. Let |- |, be the sup
norm on R® relative to the standard basis, and let ||-], be the sup norm
relative to the basis {pg(«;), ..., ps(as—1), (1, 1,..., 1)}. (Le. {ps(;)} spans H,
and we have added one extra vector in order to span all of R®.) From (5.3),
there are constants c,, ¢, > 0 such that

cillxlly <l xll, €l xlly for all x e R®

Now let ae RE, and write pg() = Zm;pg(2;). Then directly from the defi-
nitions, we have

lps(@)ll, = max{|m,|} = m(a),

lps@) I, = max{n;|v;(@)|},
and

hg(e) = Y max {0, —n;v,(e)}.

(Note that the sum for hy(«) need only run over the absolute values in S, since
v(e) = 0 for all v¢S.) We must now find a way to compare ||pg(a)], with
hy(@).
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More generally, for any x = (x,, ..., x,)€ H, we can compare | x||, with
h(x) = £ max{0, —x;}. First, since max{0, —x;} < |x;|, we have the obvious
estimate

h(x) < sllx);.
On the other hand, if we sum the identity
x; = max {0, x;} — max{0, —x;}
for 1 <i < s and use the fact that x e H (i.e. Zx; = 0), we obtain
0 = h(—x) — h(x); and so h(x) = h(—x).
Therefore
2h(x) = h(x) + h(—x)

=Y (max{0, —x;} + max{0, x;})

=Y Ix

> max{|x}

= llxll;-

Thus 4| x|; < h(x) < s| x||;; and combining this with the above results gives
an estimate of the desired form,

(c1/9)hx(@) < m(a) < 2¢; hg(a). O

We are now ready to show how the solution of the S-unit equation can be
reduced to the problem of bounds for linear forms in logarithms.

Theorem 5.5. Fix a, be K*. There exists an effectively computable constant
C = C(K, S, a, b) such that any solution («, f)€ R¥ x R¥ to the S-unit equation

an+ bf =1
satisfies H(o) < C.

Proor. Let («, f) be a solution, and choose the absolute value v in S for which
|at], is largest. Then, since |a|,, = 1 for all w¢ S, we have

|o]tK Qs > T max {1, |afjr} = Hgl(o);
weS
and hence
lael, = H(a)".

(Here, as usual, s = #38.)
To simplify our discussion, we will now assume that v is archimedean.
(This will certainly be true, for example, if S = Mg. For arbitrary S, see the
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discussion in (5.6) below.) The mean value theorem applied to the function
log x yields

log x — log y‘ < 1
x—y | min{lx|, |y}’
We use this with x = aa, y = —bf, x — y = 1, and obtain
|log ao — log bB| < min{|aal, |ax — 1|} 7*
< 2(lalH@") ™

(For the last line, we have assumed that |a| > 2/|a|, since otherwise we have
the excellent bound H(a) < |af* < (2/]al)’)
Now let a;, ..., a,_, be a basis for R} as above, and write
a=Caft.oa and B= ot
Substituting this into the above inequality yields
2" (m; — m}) log o; + log(al/bl")| < ¢, H(®)™ ",

where here and in what follows, the constants c,, c,, ... are effectively com-
putable and depend only on K, S, a, and b.
From the equality ax + bf = 1, one easily obtains an estimate

|h(@) — h(B)I < ¢z
and now applying (5.4) yields
cam(e) < m(B) < cum(a).
(Since we may clearly assume that m(x), m(f) = 1.) In particular,
Im; — m| < m(a) + m(B) < csh(w).
Letting gq; = m; — m; and y = a{/b{’, we now have an inequality
|q, log oy + +** + g5 log oy + log y| < ¢, H(a)™ '

with ay, ..., a4, y fixed and q4, ..., g, integers satisfying |¢;| < csh().
Now use Baker’s theorem (5.2). Th1s gives a lower bound of the form

lg log oty + -+ + g5y log oy + log y| = ¢6”,
where
= h([l’ qls LR qs—l])h([L al, ey as—l’ y])x,
and « is a constant depending only on K and s. But from above,

h([1, 4y, ..., qs-1]) =log max{1,|qyl, ..., |qs— |} < log(csh(a)).

Combining the upper and lower bounds for the linear form in logarithms and
using this estimate yields
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c7‘log(c5h(a)) < CIH(d)_ l/s.

(Note that the basis a,, ..., a,_, depends only on the field K and the set S, so
it is alright to absorb the h([1, «,, ..., %,_;, y])* exponent into the ¢,.) Now a
little bit of algebra gives

H(o) < cgh(a);
and since h(x) = log H(x), this implies the desired bound for H(«). O

Remark 5.6. In order to make the argument given in (5.5) apply to a non-
archimedean absolute value, it is necessary to make some minor technical
alterations. The main difficulty is that the logarithm function in the p-adic
case only converges in a neighborhood of 1. What one does is to take a sub-
group of finite index in R¥ which is generated by S-units which are p-adically
close to 1, together with a uniformizer for p. Then, assuming that |a|, is
sufficiently large, one shows that ao/bp is p-adically close to 1. Now applying
the above argument to some power of aa/bf will give a well-defined linear
form in p-adic logarithms, and from then on the argument goes just the same.
For the final step, of course, one must use a p-adic analogue of Baker’s
theorem. (For more details of this reduction step, see for example [La 5,
Vi§l])

Remark 5.7. In order to obtain an effective bound for those points on an
elliptic curve which satisfy f(P)e Rg, where f is an arbitrary non-constant
function, it is also necessary to make the reduction step given in (3.2.2)
effective. This essentially involves giving an effective version of the Riemann—
Roch theorem, which has been done by Coates ([Co]). As the reader might
guess from the number of reduction steps involved, the effective bounds
which come out of the current proofs are quite large. To indicate their
magnitude, we quote the following two results. (See also [Ko-T], (7.2) and

(7.4))

Theorem 5.8. (a) (Baker [Ba, p. 45]) Let A, B, C, DeZ satisfy
max{A, B, C, D} < H, and assume that
E:Y*=AX*+BX*+CX+D
is an elliptic curve. Then any point P = (x, y)€ E(Q) with x, y € Z satisfies
max{|x|, |y|} < exp((L0°H)'**).

(b) (Baker, Coates [Ba—C]) Let F(X, Y)eZ[X, Y] be an absolutely irreduc-
ible polynomial such that the curve F(X, Y) = 0 has genus 1. Assume that F has
degree n, and that its coefficients all have absolute value at most H. Then any
solution F(x, y) = 0 with x, y € Z satisfies

maX{|x|, |_V|} < €Xp eXp exp((zH)lonIO).
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Linear Forms in Elliptic Logarithms

Rather than reducing the problem of integral points on an elliptic curve to
the question of solutions to the S-unit equation, and thence as above to
bounds for linear forms in logarithms, one can work directly with the analy-
tic parameterization of the elliptic curve. We will now briefly indicate how
this is done in the simplest case.

Let E/Q be an elliptic curve given by a Weierstrass equation

E:y*=4x —g,x — g5
with g,, g5 €Z. We are interested in bounding the height of points P e E(Q)
which satisfy x(P)e Z. Let
¢:C/A - E(C)

be the analytic parameterization of E(C) given by the Weierstrass g-function
(cf. VL 5.1.1). We fix a basis {w,, w,} for the lattice A. Let

y:EC)-C

be the map inverse to ¢ which takes values in the fundamental parallelogram
centered at 0. (Thus ¢ is the elliptic exponential map, and choosing a funda-
mental parallogram for the elliptic logarithm  is comparable to choosing a
principal value for the ordinary logarithm function.)

Fix a basis P, ..., P, for the free part of E(Q). Then given any point
PeE(Q), we can write P=¢q,P, + -+ q,P,+ T for certain integers
41, ---»q, and a torsion point T € E, . (Q). It follows that

Y(P) = qy(P) + - + q¥(P) + ¢(T) (mod A),
so there are integers m; and m, such that
Y(P)=q,¥(P) + -+ q¥(P) + Y(T) + mw; + myw,.

Now suppose that P is a large integral point; that is, x(P)e Z and |x(P)| is
large. Then P is close to O (in the archimedean topology), and so ¥/ (P) is close
to 0. More precisely, since ¢(z) = x(4(z)) behaves like z™2 for z close to 0, we
see that

WP < oy |x(P)™* = ¢, Hx(P) ™.

(Recall that if xe Z, x # 0, then H(x) = |x|. The constant ¢, will depend on g,
and g;.)

On the other hand, using the quadracity and positive definiteness of the
canonical height (VIIL. 9.3 and VIIL. 9.6), we can estimate

log H(x(P)) = h,(P) = 2h(P) + O(1)
=2h(Y. q;P; + T) + O(1)

> ¢, max{|q;|}?,
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where ¢, will depend on E and the choice of the basis P,, ..., P,. (See exer.
9.8.) Substituting this above, we obtain an upper bound for our linear form
in elliptic logarithms:

90 (P) + -+ + g (B) + Y(T) + myo; + myw,| < cymlel?,
Further, since w, and w, are R-linearly independent, it is casy to see that
max{|m,|, |m,|} < c, max{|q;|},
where ¢, depends on E, {P,}, 0y, and w,. Thus we finally obtain
g:9(P) + -+ + g ¥(B) + W(T) + my 0, + myo,| < 57,

with q= max{[qIL cer Iqus lmlla lm2l}

Now any lower bound C ™™ for the left-hand side satisfying t(q)/q* - 0 as
q — oo will give the desired finiteness result. The first effective estimate of this
sort was proven by Masser ([Mas]) in the case that E has complex multipli-
cation. The general case was dealt with by Wiistholz ([Wi 1], [Wii 2]), who
had to overcome great technical difficulties associated with the necessary
zero and multiplicity estimates.

It remains to discuss the question of effectivity. The reduction to linear
forms in ordinary logarithms via the S-unit equation is fully effective. It is
possible to give an explicit upper bound for the height of any S-integral point
of E(K) in terms of easily computed quantities associated to K, S, and E. One
of these quantities, for example, will be a bound for the heights of generators
for the unit group R*. Now in the analogous reduction to linear forms in
elliptic logarithms, one similarly chooses a set of generators for the Mordell-
Weil group E(K); and the bound for the integral points then depends on the
heights of these generators. Unfortunately, as we have seen (cf. VIIL 3.2 and
Ch. X), the proof of the Mordell-Weil theorem is not effective. Thus although
the approach to integral points on elliptic curves via elliptic logarithms seems
much more natural than the roundabout route through the S-unit equation,
it is likely to remain ineffective until an effective proof of the Mordell-Weil
theorem is found.

§6. Shafarevich’s Theorem

Recall that an elliptic curve E/K has good reduction at a finite place ve My if
it has a Weierstrass equation whose coefficients are v-integral and whose
discriminant is a v-adic unit (cf. VII §5).

Theorem 6.1 (Shafarevich [Sha]). Let S = My be a finite set of places con-
taining MZ. Then up to isomorphism over K, there are only finitely many
elliptic curves E/K having good reduction at all primes not in S.
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Proor. Clearly we are proving something stronger if we enlarge S. We may
thus assume that S contains all primes of K lying over 2 and 3. Further, we
may enlarge S so that the ring of S-integers Ry has class number 1.

Now under these assumptions, (VIIIL. 8.7) says that any elliptic curve E/K
has a Weierstrass equation of the form

E:y>?=x3+Ax+ B A, BeRg,

with discriminant A = —16(44° + 27B?) satisfying ARg = P Rs. (Here
Dgx is the minimal discriminant of E/K. Cf. (VIII §8).) Note that if E has
good reduction outside of S, then ord,(Zgx) = 0 for all primes v not in §; and
so A will be in R.

Assume now that we are given a sequence of elliptic curves E, /K, E,/K, ...,
each of which has good reduction outside of S. Associate to each E; an
equation as above with coefficients A4;, B;e Ry and discriminant A;e R¥. We
break the sequence of E;’s into finitely many subsequences according to the
residue class of A, in the finite group R¥/(R¥)!2. Restricting attention to one
such subsequence, we may assume that A, = CD}? for a fixed C and some
D;eRE.

Now the formula A = —16(443 + 27B?) implies that for each i, the point
(—124;/D¢, 72B;/D$) is an S-integral point on the elliptic curve

Y? = X3+ 27C.
Siegel’s theorem (3.2.1) says that there are only finitely many such points, and
so only finitely many possibilities for 4,/D# and B,/D?. But if
A;/D} = 4;/D} and B;/Df = B;/Df,
then the change of variables
x = (D Dj)zx, y= (Di/Dj)ayl

gives an isomorphism from E; to E;. Hence the sequence of E;’s contains only
finitely many K-isomorphism classes of elliptic curves. Od

Example 6.1.1. There are no elliptic curves E/Q having everywhere good
reduction (exer. 8.15). For a complete list of the 24 curves E/Q having good
reduction outside of {2} and the 784 curves E/Q having good reduction
outside of {2, 3}, see [B—K, Table 4]. Similar lists have also been compiled
for various quadratic number fields; see for example [Las 2] and [Pi].

Shafarevich’s theorem (6.1) has a number of important applications. We
will content ourselves with the following two corollaries.

Corollary 6.2. Fix an elliptic curve E/K. Then there are only finitely many
elliptic curves E'/K which are K-isogenous to E.

Proor. If E and E’ are isogenous over K, then (VIL7.2) says that E and E’
have the same set of primes of bad reduction. Now apply (6.1). d
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Corollary 6.3 (Serre). Let E/K be an elliptic curve with no complex multiplica-
tion. Then for all but finitely many primes £, the group of {-torsion points
E[¢] has no non-trivial G g-invariant subgroups. [1.e. The representation of
Gix on E[/] is irreducible.]

Proor. Suppose that ®, = E[/] is a non-trivial Ggx-invariant subgroup.
Since E[¢] = (Z/{Z)*, ®, is necessarily cyclic of order /. Further, from
(II1.4.12), there exists an elliptic curve E,/K and an isogeny ¢,: E - E, de-
fined over K with ker(¢,) = @,.

Since each such E, is isogenous to E, (6.2) says that the E,’s fall into finitely
many K-isomorphism classes. Suppose that E, =~ E,. for two primes ¢ and ¢".
Then the composition

gives an endomorphism of E of degree

(deg ¢;)(deg ;) = ¢

But by assumption, End(E) = Z, so every endomorphism of E has degree n?
for some neZ. This shows that £ = /', and so the E,’s are pairwise non-
isomorphic for distinct primes /. Therefore there are only finitely many
primes 7 for which such a ®, and E, can exist. O

Example 6.4. For K = Q, results of Mazur ([Maz 2]) and Kenku ([Ke]) give
a far more precise statement than (6.2). They show that for a given elliptic
curve E/Q, there are at most eight Q-isomorphism classes of elliptic curves
E'/Q which are Q-isogenous to E. Further, if ¢: E - E’ is a Q-isogeny for
which ker(¢) is a cyclic group, then either

1<degg <19, or degge{21,25,27, 37,43, 67,163},

It is no coincidence that those d’s for which Q(,/ —d) has class number 1
appear as possibilities for deg ¢. This is because the class number 1 condition
allows the elliptic curve E corresponding to the lattice

Z+7ZG+ 3 —4d)
via (VI 5.1.1) to be defined over Q. (See C. 11.3.1.) Now one need merely note
that multiplication by ./ —d gives an isogeny from E to itself whose kernel @

is cyclic of order d and defined over Q. Then E — E/® is a cyclic isogeny of
degree d.

Remark 6.5. An examination of the proof of (6.1) reveals an interesting possi-
bility. If one had some other proof of (6.1) which did not use either Siegel’s
theorem or Diophantine approximation techniques, then one could deduce
that the equation

Y?=X*+D
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has only finitely many solutions X, YeRg. For given such a solution, the
equation

P2P=x3—-Xx-Y
would be an elliptic curve with good reduction outside of
S U {primes dividing 2 and 3}.

Hence assuming (6.1), there would be only finitely many such curves, and one
could argue back to the finiteness of the number of pairs (X, Y). Building on
this idea, Parshin ([Pa]) showed how a generalization of (6.1) to curves of
higher genus (which had already been conjectured by Shafarevich [Sha 1])
could be used to prove Mordell’s conjecture that curves of genus greater
than 1 have only finitely many rational points. The subsequent proof of
Shafarevich’s conjecture by Faltings ([Fa 1]) completed this chain of reason-
ing. Faltings’ proof (together with Parshin’s idea) also gives a proof of Siegel’s
theorem (3.2) which does not involve the use of Diophantine approximation.

§7. The Curve Y2 = X3+ D

Many of the general results known or conjectured about the arithmetic of
elliptic curves were originally noticed and tested on various special sorts of
equations, such as the one given in the title of this section. For example, long
before the work of Mordell and Siegel led to general finiteness results such as
(3.2), many special cases had been proven by a variety of methods. (See, e.g.,
[Mo 4, Ch. 26].) We give two examples where the complete set of solutions
can be obtained by relatively elementary means.

Propeosition 7.1. (a) The equation
y2=x347

has no solutions in integers x, ye Z.
(b) (Fermat) The only integral solutions to the equation

yz = x3 _ 2
are (x, y) = (3, +95).
ProOF. (a) Suppose that x, ye Z satisfy y?> = x> + 7. First, note that x must

be odd, since no integer of the form 8k + 7 is a square. Now rewrite the
equation as

P2+ 1=x3+8=(x+2)(x*—2x + 4).
Since x is odd,

x2=2x +4=(x—1)?+ 3 =3 (mod 4),
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s0 we can choose a prime p = 3 (mod 4) which divides x> — 2x + 4. But then
y* + 1 = 0 (mod p), which is not possible.
(b) Suppose we have a solution x, ye Z to y*> = x* — 2. Factor the equation

as
Y+ -/ ==X
Since the ring R = Z[,/ —2] is a principal ideal domain, and the greatest

common divisor of y + ./ —2 and y — ./ —2 (in R) clearly divides 2,/ —2,
we see that y + / —2 can be written as
y+\/——72 = 3 or /=20 or 203

for some { € R. Applying complex conjugation gives
y—-2 = 0 or — /20 or 203
and now taking the product yields
X = Y42 = (0 or 2(0? or 40>

Since {{ € Z, this shows that only the first case is possible, so

y+/-2=0 and y—/-2=C
Subtracting these equations gives
/2= -0 =-0@C+L+ D).
Now write { = a + b\/———Z with a, b € Z. Substituting this above yields

2/ —2=2./—2b(3a% — 2b?),
so using the fact that a and b are rational integers, we must have
b=+1 and 3a*>—-2b%>= +1.

Therefore (a, b) = (£ 1, +1) (with independent + signs); and working back,
these lead to the values (x, y) = (3, +5). O

Remark 7.1.1. It is worth remarking that the result in (7.1b) is far more
interesting than that of (7.1a). This is because the Mordell-Weil group (over
Q) of the elliptic curve y? = x* + 7 turns out to be trivial, so (7.1a) is really a
reflection of the fact that the equation has no rational points. On the other
hand, the Mordell-Weil group of y? = x> — 2 is infinite cyclic (cf. exer. 10.19),
so (7.1b) says that in its infinite set of rational points, there are only two
integral points.

Baker applied his methods to obtain an explicit upper bound, in terms of
D, for the integral solutions of y?> = x> + D. This bound was refined by Stark,
who proved the following.
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Theorem 7.2 (Stark [Sta]). For every ¢ > O there is an effectively computable
constant C,, depending only on g, so that the following holds. Let DeZ, D # 0.
Then every solution x, y e Z to the equation

y:=x*+D
satisfies

log max{|x|, |y|} < C,ID|**=.

Example 7.3. Stark’s estimate (7.2) gives a bound for x and y which is slightly
worse than exponential in D. One naturally would like to know whether this
is the correct order of magnitude. A number of people have conducted com-
puter searches for large solutions (see, e.g., [Lal] or [Hal]). Among the
interesting examples found were

378,661% = 5234% + 17
911,054,064 = 939,787% — 307
149,651,610,6212 = 28,187,351 + 1090.

Although these examples show that x and y can be quite large in comparison
to D, a close examination of his data led M. Hall to make the following
conjecture, which was subsequently partly generalized by Lang.

Conjecture 7.4. (a) (Hall [Hal]): For every & > 0 there is a constant C,, de-
pending only on ¢, so that the following holds. Let De Z, D # 0. Then every
solution x, ye Z to the equation

y2=x*+D
satisfies

|x| < C,D**e.

(b) (Hall-Lang [La 9]) There are absolute constants C, k > 0 such that if
E/Q is an elliptic curve given by a Weierstrass equation

y2=x3+Ax+B  A,BeZ,
and if Pe E(Q) is an integral point (i.e. x(P)€ Z), then
|x(P)| < C max{|A4|, |B|}".

The evidence for these conjectures is fragmentary. They are true for func-
tion fields (Davenport [Dav] for (7.4a) and Schmidt [Schm 1] for (7.4b)).
Further, Vojta ([Voj]) has shown how (7.4a) is a consequence of his very
general Nevanlinna-type conjectures for varieties over number fields; but
Vojta’s conjectures seem well beyond the reach of current techniques. (Also
see exer. 9.10.) Aside from this, very little is known. It is worth pointing out
that the effective techniques in section 5 seem intrinsically incapable of lead-
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ing to estimates like (7.4). Let us explain what the problem is, say for the
equation y? = x3 4+ D.

In performing the reduction to the S-unit equation, one deals with a num-
ber field K whose discriminant looks like a power of |D|. Now the Brauer—
Siegel theorem says that log(hgRg) ~ 4 log di as [K : Q]/log dx — 0, where
hy is the class number, Ry is the regulator, and d is the absolute discriminant
of K. (See, e.g., [La 2, Ch. XVI].) In general there is no reason to expect the
class number of K to be large, so the best that one can hope for is to find a
bound for the regulator which is a power of |D|. Since the regulator is a
determinant of the logarithms of a basis for the unit group R*, the resulting
bounds for the heights H(x;) of generators ;€ R* will be exponential in |D|.
This eventually leads to an exponential bound for x and y as in (7.2).

There is a similar problem in trying to prove (7.4) by using linear forms in
elliptic logarithms or by following Siegel’s method of proof as in (3.1) (even
assuming that one could find a strong effective version of Roth’s theorem). Of
course, neither of these methods is effective, since the Mordell-Weil theorem
is not effective. But in any case, it seems likely (cf. VIIL. 10.2) that the best
possible upper bound for generators of the Mordell-Weil group of y* =
x* + D will have the form fz(P) < C|DJ*. Here h is a logarithmic height, so
again this will lead to a bound for the x-coordinate of integral points which
is exponential in | D|.

The problem in both cases can be explained most clearly by the analogy
given in (4.2.1). In solving the S-unit equation and in finding the integral
points on an elliptic curve, one is initially given a finitely generated group
(R¥ x R&, resp. E(K)) and a certain exceptional subset (solutions to
ax + by = 1, resp. points with x(P) e Ry). The first step is to choose a basis for
the finitely generated group and express the exceptional points in terms of
this basis. Now the problem that arises in trying to prove (7.4) (or the
analogous estimate for the S-unit equation) is that in general, the best upper
bound (conjecturally) obtainable for the heights of the basis elements is
exponentially larger than the desired bound for the exceptional points! The
moral of this story, assuming the validity of the various conjectures, is that a
randomly chosen elliptic curve is unlikely to have any integral points at all.

§8. Roth’s Theorem—An Overview

In this section we give a brief sketch of the principal steps which go into the
proof of Roth’s theorem (1.4). None of these steps are particularly deep, but
the details needed to make them rigorous are quite lengthy. (See [Schm 2]
or[La 7, Ch.7].)

We assume given an a €K, a ve My, and real numbers C, ¢ > 0. It is desired
to prove that there are only finitely many x € K satisfying

Ix — al, < CHg(x)"2™"
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Step I: An Auxiliary Polynomial

For any given integers m, d,, ..., d,,, one uses elementary estimates and the
pigeon-hole principle to construct a polynomial

P(X,,...,X,)eR[X,,..., X,]

of degree d; in X; which vanishes to fairly high order (in terms of m and the
d;’s) at the point (o, ..., ®). Further, one shows that P can be chosen with
coefficients having fairly small heights, the bound for the heights being given
explicitly in terms of «, m, and the d’s.

Step II: An Upper Bound for P

Suppose now that we are given elements x,, ..., X,,€ K satisfying
|x; —al, < CHg(x;)™>® forl<i<m

Then using the Taylor series expansion for P(Xy, ..., X,,) around («, ..., a)
and the fact that P vanishes to high order at (a,..., ), one shows that
|P(xy, ..., Xn)l, is fairly small.

Step III: A Non-Vanishing Result (Roth’s Lemma)

Suppose that the degrees dy, ..., d,, are fairly rapidly decreasing (the rate of
decrease depending on m), and suppose that x,, ..., x,,€ K have the property
that their heights are fairly rapidly increasing (the rate of increase depending
onmandd,,...,d,). Suppose further that P(X,, ..., X,,)e R[X,, ..., X, ] has
degree d; in. X; and coefficients whose heights are bounded in terms of d, and
h(x,). Then one shows that P does not vanish to too high an order at
(X15eees Xp)

This is the hardest step in Roth’s theorem. In Thue’s original theorem, he
used a polynomial of the form P(X, Y) = f(X) + g(X)Y, and obtained an ap-
proximation exponent t(d) = 3d + &. The improvements of Siegel, Gelfond,
and Dyson used a general polynomial in 2 variables. It was clear at that time
that the way to obtain t(d) = 2 + ¢ was to use polynomials in more variables;
the only stumbling block was the lack of a non-vanishing result such as the
one we have just described.

The proof of Roth’s lemma is by induction on m, the number of variables in
the polynomial P. If P factors as

P(X,, ..., X,) = FX)G(X,, ..., X,),

then the induction proceeds fairly smoothly. Of course, this is unlikely to
happen. What one does is construct differential operators &; so that the
generalized Wronskian determinant det(Z2;P) is a non-zero polynomial
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which does factor in the above fashion. It is then a fairly delicate matter to
estimate the degrees and heights of the coefficients of the resulting poly-
nomial, and show that they have not grown too large to allow the inductive
hypothesis to be applied.

Step IV: The Final Estimate

Suppose that the inequality
|x — af, < CHg(x) 2™

has infinitely many solutions x € K. We derive a contradiction as follows.
First choose a value for m depending on ¢, C, and [K(x): K]. Second
choose x4, ..., x,,€ K in succession satisfying

[x; —af, < CHK(xi)_z_s,

such that Hg(x,) is large (depending on m), and Hg(x;,,) > Hg(x;)" for some
constant x depending only on m. Third choose a large integer d, (depending
on m and the Hg(x;)’s), and then choose d,, ..., d,, in terms of d, and the
Hg(x;)s. We are now ready to apply the results detailed above.

Using step I, choose a polynomial P(X, ..., X,,) of degree d; in X; which
vanishes to high order at («, ..., ®). (The order of vanishing will depend on m
and the d;s.) From step III, P does not vanish to too high an order at

(X1, ..., Xn), SO we choose a low-order non-vanishing partial derivative
gp
ai1+--- +ip
Z=%Px,...,x #0
0Xjr...0X}m (<1 g

From step I1, |z|, is fairly small. On the other hand, since z # 0, one can use
the product formula to show that |z|, cannot be too small. Specifically, one
shows that |z|, = Hg(z)™! (cf. exer. 9.9). Now using elementary (triangle
inequality) estimates, one finds a lower bound for Hg(z)™*. Combining this
with the upper bound provided by step II, some algebra gives a contradic-
tion. It follows that the inequality

|x — al, < CHg(x)>™

has only finitely many solutions.

Remark 8.1. Examining the above proof sketch, especially the sequence of
choices in step IV, it is clear why one does not obtain an effective procedure
for finding all x e K satisfying |x — «|, < CHg(x)"?7%. What the proof shows
is that one cannot find a long sequence of such x;’s with heights growing
sufficiently rapidly, where the terms “long sequence” and “sufficiently rapid-
ly” can be made completely explicit in terms of K, «, ¢, and C. The problem is
that the required growth of the height of each x; is given in terms of the height
of its predecessor. What this boils down to is that if one can find a large
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number of good approximations to « whose heights are sufficiently large,
then one can obtain a bound for all of the other possible good approxi-
mations to « in terms of the approximations one has. Unfortunately, the
bounds which come out of Roth’s theorem are so large, it is highly unlikely
that there will be even a single good approximation to o of the requisite
height.

Using a slight elaboration of the argument given above, it is even possible
to give explicit constants C, and C,, depending on K, «, ¢ and C, such that
the inequality

|x — al, < CHg(x)7>™
has at most C, solutions xeK satisfying Hg(x) > C,. (See [Mig], for
example.) Further, it is most unlikely that there are any solutions at all with
Hg(x) > C,. But the proof of Roth’s theorem does not preclude the existence
of these large solutions, and it provides no tools with which to find them if
they exist!

EXERCISES

9.1. Let (¢(n)),=1..,... be a sequence of positive real numbers. We say that a number
a€R is g-approximable (over Q) if there are infinitely many p/q e Q satisfying

{e — p/ql < 1/q4(q).

(E.g. Roth’s theorem (1.4) says that no element of Q is n
(a) Prove that for any ¢ > 0,

1*2_approximable.)

{eeR: ais n'**-approximable}

is a set of measure 0.
(b) More generally, prove that if the series X1/4(n) converges, then

{aeR:ais ¢-approximable}
is a set of measure 0.

9.2. (a) Use Liouville’s theorem (1.3) to prove that the number £2™™ is tran-
scendental.
(b) More generally, let (e(n)),-, »,... be a sequence of real numbers with the
property that for every d > 0, there is a constant C; > 0 such that

e(n) = C;n* foralln=1,2,....

Prove that for every integer b > 2, the sequence b~ *® defines a transcen-
dental number.

9.3. For each integer m # 0, let
Nm) = #{(x,y)eZ*:y* = x* + m}.

(N(m) is finite from (3.2).)

(a) Prove that N(m) can be arbitrarily large. [Hint: Choose an m, so that
y? = x3 4+ m, has infinitely many rational solutions, and then clear the
denominators of a lot of them.]
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9.4.

9.5.

9.6.

9.7.

(b) More precisely, prove that there is an absolute constant ¢ > 0 such that
N(m) > c(log [m])'?

for infinitely many me Z. [Hint: Use height functions to estimate the size
of the denominators cleared in (a).]

(c)** Prove that N(m) is unbounded as m ranges over sixth-power-free integers
(i.e. integers divisible by no non-trivial sixth power).

Let E/Q be an elliptic curve, and suppose that Pe E(Q) is a point of infinite
order. For each prime pe Z for which E has good reduction, let n, be the order
of the reduced point P in the finite group E(F,). Prove that there are only finitely
many positive integers which do not occur as an n, for some prime p. [Hint:
You will need the strong form of Siegel’s theorem. Specifically, see (3.3).]

(@) Let f(T)=aoT"+ - + a,e Z[T] be a polynomial with a,a, # 0 and dis-
tinct roots &, ..., £,€C. Let A = max{|al, ..., |a,]}. Prove that for every
teQ,

LSO} = 2r24) " min{lt — &, ..., |t = &I}

(b) Let f(T)=aqT"+ -+ a,e K[T] be a polynomial with distinct roots
&y, &,eK. Let S © My be a finite set of places of K, each extended in some
fashion to K. Prove that there is a constant C;, depending only on f and §,
so that for every te K,

[ min{L, [f(Ol} > C; J] max {1, |t = &i+}-
veS veS 1<i<n

(c) Find an explicit expression for C, which involves only n and
Hy([ag, ---, a,))

(a) Let F(X, Y)eZ[X, Y] be a homogeneous polynomial of degree d > 3 with
non-zero discriminant. Prove that for every non-zero integer b, Thue's
equation

F(X,Y)=b

has only finitely many solutions (x, y)e Z2. [Hint: Let f(T) = F(T, 1), and
write b = F(x, y) = y"f(x/y). Now use (exer. 9.5a) and (1.4).]

(b) More generally, let F(X, Y)eK[X, Y] be a homogeneous polynomial of
degree d = 3 with non-zero discriminant, and let S « My be a finite set of
places containing Mg. Prove that for every b e K*, the equation

F(X,Y)=b

has only finitely many solutions (x, y)e Rg x Rg. B
(c) Let f(X)e K[X] be a polynomial with at least two distinct roots (in K), let
S « My be as in (b), and let n > 3 be an integer. Prove that the equation

Y™ = f(X)

has only finitely many solutions (x,y)eRg x Rg. [Hint: Mimic the
proof of (4.3) until you end up with a number of equations of the form
aW” + bZ" = ¢, and then use (b).]

Let E/K be an elliptic curve without complex multiplication. Prove that for
every prime ¢, the representation of Gz on the Q,-vector space T)(E) ® U is
irreducible.
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9.8.

9.9.

9.10.

IX. Integral Points on Elliptic Curves

(a) Let | -| be the usual Euclidean norm on R", and let {v,, ..., v,} be a basis for
R". Prove that there is a constant ¢ >0, depending only on n and
{vy, ..., v,}, such that

”Zaivi“ =c max{lail}'

(b) Let A = R" be a lattice. Prove that there exists a basis {v,, ..., v,} for A and

a constant ¢, > 0 depending only on n so that

“Zaiui | > cnz | a;v; I12.

[Hint: Ideally, one would like to choose an orthogonal basis for A. This may
not be possible, but mimic the Gram—Schmidt process to find a basis which
is as orthogonal as possible.]

(c) Let|-|l; and |||, be norms on R (Le. They satisfy |v]| > 0, ||v| = 0if and
only if v = 0, |lav]| < |a||v|, and ||v + w| < ||v| + [|w].) Prove that there
are constants ¢,, ¢, > 0 such that

cillvlly <ol <ellvly  forallveR.

Deduce that an estimate as in (a) holds for any norm on R".

(d) Let Q be a positive definite.quadratic form on R". Prove that there is a
constant ¢ > 0, depending on n and Q, such that for any integral lattice
point (ay, ..., a,)eZ" < R",

0@y, ...,a,) = cmax{|al, ..., a,|}*

(e) Let E/K be an elliptic curve and P,, ..., P, a basis for the free part of E(K).
Prove that there is a constant ¢ > 0, depending on E and Py, ..., P,, such
that for all integers m,, ..., m,,

h(m,P, + - + m,P) > c max{|m,|, ..., |m,|}>

LetzeK, z #0.
(a) Prove that for any ve My,

|zl, > Hg(x) ™"

(b) More generally, prove that for any (not necessarily finite) set of absolute
values S © My,

[‘[s min{1, |z} > Hy(2)™".

(This lemma, trivial as it appears, lies at the heart of all known proofs in
Diophantine approximation and transcendence theory. In its simplest guise,
namely for K = Q, it asserts nothing more than the fact that there are no
positive integers less than 1!)

Prove that there is an (absolute) constant C > 0 such that the inequality
0<y*— %% < Clixl
has infinitely many solutions (x, y)€ Z2. [Hint: Verify the identity
(t2=5%((t+9>+4) — (¢ + 6t — 11)> = —1728(t — 2).

Then take solutions to u?2 — 2v> = — 1, and set t = 2u — 9. This leads to a value
C=432,/2 + gforany e > 0.]
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9.11.

9.12.

9.13.

9.14.

(a) Letd = 2 (mod 4) and D = d3 — 1. Prove that the equation
y2=x*+D

has no solutions x, ye Z.
(b) For each of the primes p in the set {11, 19, 43, 67, 163}, find all solutions
x, yeZ to the equation

yr=x*—p.

[Hint: Work in the ring R = Z[4(1 + ./ —p)]. Note that R is a principal
ideal domain, and 2 does not split in R.]

Let E/Q be an elliptic curve given by a Weierstrass equation
E:y* +a;xy+ayy = x>+ a,x* + a,x + ag

with a,,...,aseZ. Let Pe E(Q) be a point of infinite order; and suppose that for
some integer m > 1, x([m] P)e Z. Prove that x(P)e Z. (This result is often useful
in searching for integral points on elliptic curves of rank 1. See the next exercise
for an example.)

Let E/Q be the elliptic curve given by the equation
E:y>’+y=x>—x.

Assume as given that E(Q) has rank 1. (See exer. 10.9 for a proof of this fact.)

(a) Prove that E,,(Q) = {0}, and hence that E(Q) = Z.

(b) Prove that (0, 0) is a generator for E(Q). [Hint: Make a sketch of E(R), and
show that (0, 0) is not on the identity component. Use (exer. 9.12) to con-
clude that a generator for E(Q) must be an integer point on the non-identity
component, and find all such points.]

(c) Find all of the integer points on E. [Hint: Let P = (0, 0). Suppose [m] P is
integral. Write m = 2°n with n odd, and use (exer. 9.12) to show that [n]P is
integral. Use an argument as in (b) to find all possible values for n, and then
do some computations to find the possible a’s.]

(d) Solve the following classical number theory problem: Find all positive
integers which are simultaneously the product of two consecutive positive
integers and the product of three consecutive positive integers.

Let C/K be a curve, and let f, g€ K(C) be non-constant functions.
(a)* Prove that
h(P
Limi 2P _dee /.
Fe® h(P) degyg

(b) Prove that for every ¢ > 0 there exists a constant ¢ = c(f, g, €) such that
|(deg g)h,(P) — (deg f)h,(P)| < ehy(P) + ¢  forall Pe C(K).

(c) Suppose that C is an elliptic curve. Prove that there is a constant
¢ = c(f, m, ¢) such that
|h([m]P) — m*h(P)| < ehy(P) + ¢  forall PeC(K).

(Note that f need not be even. Compare with (VIIIL 6.4b).)
(d) Prove that (3.1) is truetfor any non-constant function f € K(E). Use this to
prove (3.2.2) directly, without reducing first to (3.2.1).



CHAPTER X
Computing the Mordell-Weil Group

A better title for this chapter might have been “Computing the Weak
Mordell-Weil Group”, since we will be concerned solely with the problem of
computing generators for the group E(K)/mE(K). However, given generators
for E(K)/mE(K), a finite amount of computation will always yield generators
for E(K). (See (VIIL3.2) and (exer. 8.18).) Unfortunately, there is no compar-
able algorithm currently known which is guaranteed to give generators for
E(K)/mE(K) in a finite amount of time!

We start in section 1 by taking the proof of the weak Mordell-Weil
theorem given in (VIII §1) and making it quite explicit. In this way the
computation of E(K)/mE(K) (in a special case) is reduced to the problem of
determining whether each of a certain finite set of auxiliary curves, called
homogeneous spaces, has a single rational point. Then the question of whether
a given homogeneous space has a rational point may often be answered
either affirmatively, by finding such a point; or negatively, by showing, for
example, that it has no points in some completion K, of K.

The next two sections develop the general theory of homogeneous spaces
(for elliptic curves). Then in section 4 we apply this theory to the problem of
computing E(K)/mE(K); or, more generally, E'(K)/#¢(E(K)) for any isogeny
¢: E — E'. Again this computation is reduced to the problem of the existence
of a single rational point on certain homogeneous spaces. The only impedi-
ment to solving this latter problem occurs if some homogeneous space has a
K,-rational point for every completion K, of K, yet none-the-less has no
K-rational points. Unfortunately this precise situation, the failure of the so-
called Hasse Principle, can certainly occur. The extent of its failure is quanti-
fied by the elements of a certain group, called the Shafarevich—Tate group.
The question of an effective algorithm for the computation of E(K)/mE(K) is
thus finally reduced to the problem of giving a bound for divisibility in the
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Shafarevich—Tate group (or even better, proving the conjecture that is is
actually a finite group).

In the last section we illustrate our general theory by studying in some
detail the family of elliptic curves given by the equations

Ep,:Y?=X3+DX DeQ.

In particular, we find the torsion subgroup and an upper bound for the rank
of E(Q), give a large class of examples for which E,(Q) has rank 0, and show
that in certain cases E;(Q) has an associated homogeneous space which
violates the Hasse principle. (I.e. The homogeneous space has points defined
over R and Q, for every prime p, but has no Q-rational points.)

Unless explicitly stated to the contrary, the notation for this chapter will be
the same as that of chapter VIIL In particular, K will be a number field and
My a complete set of inequivalent absolute values for K. However, as in-
dicated in the text, this requirement is dropped in sections 2, 3, and 5 of this
chapter, where K is allowed to be an arbitrary (perfect) field.

§1. An Example

For this section we let E/K be an elliptic curve, m > 2 an integer, and we
assume that E[m] < E(K). Recall (VIII §1) that under this assumption there
is a pairing
k: E(K) x Ggjx — E[m]
defined by
k(P,0)=0Q° -0,
where Qe E is chosen so that [m}Q = P. Since the kernel of k on the left is
mE(K) (VIIL.1.2), we may also think of x as giving a homomorphism
0 : E(K)/mE(K) - Hom(Gg /g, E[m])
o(P)(0) = (P, 9).
(This is the connecting homomorphism for the long exact sequence in group
cohomology; see (VIII §2).)
Next we note that E[m] < E(K) implies that p, = K* (IIL8.1.1). This
follows from the basic properties of the Weil pairing (III §8)
em: E[m] x E[m] - p,,

which we will use extensively below.

Finally, since p,, = K*, Hilbert’s theorem 90 (B.2.5¢) says that every homo-
morphism Ggx — I, has the form ¢ — /B for some fe K* with f"e K*. In
other words, we have an isomorphism (cf. VIII §2)

Og s K*/K*" — Hom(Ggk, M)



278 X. Computing the Mordell-Weil Group

defined by
ox(b)(0) = B°/B,

where fe K* is chosen so that ™ = b. (Notice the close resemblence in the
definitions of 5 and d. This is no coincidence. d, is the connecting homo-
morphism for the Kummer sequence associated to the group variety E/K,
and Jg is the connecting homomorphism for the Kummer sequence as-
sociated to the group variety G,,/K.)

Using the above maps, we can now make the argument in the proof of the
weak Mordell-Weil theorem much more explicit, and in this way derive
formulas which will allow us to compute the Mordell-Weil group in certain
cases. We start with a theoretical description of this method.

Theorem 1.1. (a) With notation as above, there is a bilinear pairing
b: E(K)/mE(K) x E[m] - K*/K*™
such that
en(0(P), T) = ox(b(P, T)).

(b) The pairing in (a) is non-degenerate on the left.

(c) Let S « My be the set of infinite places, together with the finite primes at
which E has bad reduction and the primes dividing m. Then the image of the
pairing in (a) lies in the subgroup of K*/K*™ given by

K(S, m) = {be K*/K*™: ord,(b) = 0 (mod m) for all v¢ S}.

(d) The pairing in (a) may be computed as follows: For each Te E[m], choose
Junctions fr, gr € K(E) satisfying the conditions

div(fy) = m(T) —m(0),  fro[m]=gr.
(See the definition of the Weil pairing in (111 §8).) Then provided P # T,
b(P, T) = f7(P) (mod K*™).

LIf P =T, one can use linearity. For example, if [2]T+# O, then b(T, T) =
fr(=T)™. More generally, choose any other point P e E(K) with P # T, and
set b(T, T) = f(T + P)fr(P)™'.]

Remark 1.2. Why do we say that (1.1) provides formulas with which to try to
compute the Mordell-Weil group? First, the group K (S, m) in (b) is finite (see
the proof of (VIIL1.6)); and in fact it is quite easy to compute explicitly.
Second, the functions f; in (c) are also fairly easy to compute from the
equation of the curve. Now, the fact that the pairing in (a) is non-degenerate
on the left means that in order to compute E(K)/mE(K), it is “only” necessary
to do the following. Fix generators T, and T, for E[m]. Then for each of the
finitely many pairs

(by, by)e K(S, m) x K(S, m),
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see if it is possible to solve the equations

b,zT = fr,(P) byz3 = fr,(P)

with points (P, z,, z,)€ E(K) x K* x K* To be even more explicit, we can
express the function f; in terms of Weierstrass coordinates x and y; and then
we are looking for a solution (x, y, z,, z,)e K x K x K* x K* satisfying the
simultaneous equations

yi+axy + azy = x>+ a,x* + a,x + ag

b,zT = fT,(X, ) b,z3 = sz(xa ¥).

These equations give a new curve, called a homogeneous space for E/K. (See
§3 for more details.) What we have done is reduce the problem of calculating
E(K)/mE(K) to the problem of the existence or non-existence of a single
rational point on each of an explicitly given finite set of curves. Now fre-
quently many of these curves can be immediately eliminated from consid-
eration, because they have no points over some completion K, of K (which
is an easy matter to check). On the other hand, a short search (by hand or
computer) will often uncover rational points on some of the others. If in this
way one can deal with all of the homogeneous spaces in question, then the
determination of E(K)/mE(K) is complete. The problem that arises is that
occasionally a homogeneous space will have points defined over every com-
pletion K,, but never-the-less have no K-rational points. It is this situation,
the failure of the Hasse principle, which makes the Mordell-Weil theorem
ineffective.

Remark 1.3. Notice that the condition div(f;) = m(T) — m(0) in (1.1d) is
only enough to specify f; up to multiplication by an arbitrary element of K *.
But the equality f;o[m] = g7 with gr€ K(E) means that in fact f; is well-
determined up to multiplication by an element of K*™. Thus the value f;(P)
in (1.1d) does give a well-defined element of K*/K*™.

We now proceed to the proof of (1.1), after which we will study the case
m = 2 in more detail, and use it to compute E(K)/2E(K) for an example.

Proor ofF 1.1. (a) Hilbert’s theorem 90 (B.2.5¢) shows that the pairing is
well-defined. The bilinearity follows from the bilinearity of the Kummer
pairing (VIII.1.2b) and the bilinearity of the Weil e,,-pairing (IIL.8.1a).

(b) To prove non-degeneracy on the left, we suppose that b(P, T') = 1 for all
Te E[m]. This means that for all Te E[m] and all ¢ € Gg,

e x(P,0), T)=1.

Now the non-degeneracy of the Weil pairing (II1.8.1c) implies that x(P, 6)=0
for all o; so from (VIIL.1.2¢), Pe mE(K).

(c) Let B = b(P, T)"™. Tracing through the definitions, we see that the field
K(p) is contained in the field L = K([m] 'E(K)) described in (VIIL.1.2d).
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From (VIII.1.5b), the extension L/K is unramified outside S. But it is easy to
see that if ve M is a finite place with v(m) = 0, then the extension K(f)/K is
ramified at v if and only if

ord,(f™) = 0 (mod m).

(Here ord, : K*—> Z is the normalized valuation associated to v.) This says
precisely that b(P, T)e K(S, m).

(d) Choose Q€E so that P = [m]Q, and feK* so that b(P, T) = f". By
definition, we have (for all o € G ),

en(05(P)(0), T) = 0x(b(P, T))(0),
en(Q° — 0, T) = B°/B,
gr(X + Q% — Q)/gr(X) = B°/B,
9r(Q)/gr(Q) = B°/B  putting X = Q.

Since Jy is an isomorphism, it follows that g-(Q)™ = ™ (mod K*™). (Note
that gr(Q)" = f7(P) is in K*.) Therefore

fr(P) = fro[m](Q) = g-(Q)" = " = b(P, T) (mod K*"). O

We now consider the special case m = 2, which is by far the easiest to work
with. Under our assumption that E[2] < E(K), we may take a Weierstrass
equation in the form

P2 =(x—e)(x — e))(x — e3) with e, e,, e;€ K.

Thus T, = (ey, 0), T, = (e,, 0), T3 = (e, 0) are the three non-trivial 2-torsion
points. Letting T = (e, 0) represent any one of these points, we claim that the
function f7 specified in (1.1d) is f3(x, y) = x — e. This function certainly has
the correct divisor,

div(x — ¢) = 2(T) — 2(0).
On the other hand, as one can easily check,
x0[2] —e=(x*—2ex —2e*+2(e; + e, +e3)e—(eje, + e e5 +e,e3))%/(2y)%,

so x — e does have both properties needed to be f7.
Now suppose that we have chosen a pair (b,, b,)eK(S, 2) x K(S, 2), and
wish to determine whether there is a point P € E(K)/2E(K) satisfying

b(P,T,)=b, and b(P,T,) =b,.

There will be such a point if and only if there is a solution (x, y, z,, z,) €
K x K x K* x K* to the system of equations

y2=(x—e1)(x—e2)(x—e3), bﬂ%:x_ep bzz§=x_ez‘

We now substitute the latter two equations into the first, and define a new
variable z; by y = a,a,2,2,z,, which is permissible since b,, b,, z; and z,
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take non-zero values. This yields the three equations
b,b,z2 = x — ey, bz2=x—e,, byzi=x—ey;
and finally eliminating x gives the pair of equations
bz22 —b,z2=e,—e;, byz? —bbyzi=e;—e;.

We now have a finite set of such equations, one for each pair (by, b,), and
may use whatever techniques are at our disposal (e.g. v-adic, computer
search, etc.) to determine whether they each do or do not have a solution.
Notice that if we do find a solution, then the corresponding point in
E(K)/2E(K) is immediately recoverable from the equalities

x=bz3 + e y=bbyz,z,25.

Finally, we must deal with the fact that we can not use the definition
b(P, T) = fr(P)if it should happen that P = T. In other words, there are two
pairs (b,, b,) which do not arise from the above procedure, namely the pairs
(b(Tla Tl)5 b(Tla TZ)) and (b(T29 Tl)> b(T27 ’TZ)) They may be Compl‘Ited by
linearity as
b(Tu T) = b(Tl’ T, + T)b(Ty, Tz)_1
= b(T, Ts)b(Tn Tz)_l
= (e; — e;3)/(e; — e3);

and similarly
b(T,, Tp) = (e; — es)/le; — ey).

We summarize this entire procedure in the following proposition.

Proposition 1.4 (Complete 2-Descent). Let E/K be an elliptic curve given by a
Weierstrass equation

y2 = (x — e)(x — e,)(x — e3) withe,, e,, e;e K.

Let S © My be a set of places of K including all archimedian places, all places
dividing 2, and all places at which E has bad reduction. Further let

K(S,2) = {be K*/K*?:ord,(b) = 0 (mod 2) for all v¢S}.
There is an injective homomorphism
E(K)/2E(K) - K(S,2) x K(S,2)
defined by
(x —e;, x—ey) if x #eq, €,
((ey —e3)/les —e)), ey —€3) if x=¢e

(e, — ey, (e —e3)/le; —ey) if x=e,

1, 1) if x =00 (i.e.if P =0).

= (x’ ,V)_’
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Let (by, b,)eK(S,2) x K(S,2) be a pair which is not the image of one
of the three points O, (ey, 0), (e5,0). Then (by, b,) is the image of a point
P = (x, y)e E(K)/2E(K) if and only if the equations

b,z22 — b,z =e, — ¢,
b12% - b1b22§ =€3 — €

have a solution (z,, z,, z;)€ K* x K* x K; if such a solution exists, then one
can take

P=(x,y) = (b,z} + ey, b1by2,2,23).
Proor. As explained above, this is a special case of (1.1). O

Example 1.5. We now use (1.4) to compute E(Q)/2E(Q) for the elliptic curve
E:y? = x® — 12x? + 20x = x(x — 2)(x — 10).
This equation has discriminant
A = 409600 = 21452,

and so has good reduction except at 2 and 5. Reducing the equation modulo
3, one easily checks that # E(F,) = 4. Since E[2] c E,(Q), and E,,,(Q)
injects into E(F5) (VIL3.1), we see that

E.0rs(@Q) = E[2].
Now let § = {2, 5, 0} = Mg; then a complete set of representatives for
Q(S, 2) = {be Q*/Q*?: ord,(b) = 0 (mod 2) for all p¢ S}
is given by the set
{£1, £2, +£5, +10},

which we will identify with Q(S, 2). Next consider the map
E(Q)/2E(Q) - Q(S, 2) x Q(S, 2)
given in (1.4), say with
e, =0, e, =2, and e; = 10.

There are 64 pairs (by, b,)e Q(S, 2) x Q(S, 2); and for each pair we must
check to see if it comes from an element of E(Q)/2E(Q). For example, using
(1.4) we can compute the image of E[2] in Q(S, 2) x Q(S, 2):

0-(1,1) (0,05 -2 (2,02 -1 (10,0)—>(10,2).
It remains to determine, for each other pair (b, b,), whether the equations
byz2 —b,z2 =2 b,z2 —b;b,z3 =10 (*)

have a solution z,, z,, z;€Q. (For example, if b; <0 and b, > 0, then ()
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Table 10.1
b, by 1 2 5 10 1 -2 -5 —10
1 0 (18, —48)® Q°
2| a® Q2 | (20,60° ] (10, 0@ ®
o a, ° a ° R
10 5 5
~1 ], -39 | 209 Qs ®
—2 e @ [ 002 | -p° @
-5 Q ® Q o) R
~10 5

clearly has no rational solutions, since the first equation will not even have a
solution in R.)

Proceeding systematically, we list our results in table 10.1. The entry for
each pair (b,, b;) consists of either a point of E(Q) mapping to (b,, b,), or
else a (local) field over which the equations (*) have no solution. (Note
that if (z,, z,, z3) is a solution to (), then the corresponding point of E(Q)
is (b,z% + e,, byb,z,2,25).) The circled numbers in the table refer to the
notes which explain each entry. Finally, we note that since the map
E(Q)2EQ) - Q(S, 2) x Q(S, 2) is a homomorphism, it is not necessary to
check every pair (b,, b,). For example, if both (b,, b,) and (b}, b3) come from
E(Q), then so does (b, b’, b,b%). Similarly, if (b,, b,) does and (b’, b,) does
not, then (b, b}, b, b’,) does not. This observation can substantially reduce the
amount of computation necessary.

(1) Ifb; <O and b, > 0, then b,z2 — b,z3 = 2 has no solutions in R.

(2) If b, < 0and b, < 0, then b, z? — b, b,25 = 10 has no solutions in R.

(3) The 2-torsion points {0, (0,0),(2,0),(10,0)} map respectively to
{(1, 1), (5, —2), (2, —1),(10, 2)}.

(4) (b4, by) = (1, —1): By inspection, the equations

24+22=2 z22+4+22=10
have the solution (1, 1, 3). This gives the point (1, —3) e E(Q).

(5) Adding (1, —3)e E(Q) to the non-trivial two-torsion points corresponds
to multiplying their (b, b,)’s. This gives the pairs (5, 2), (2, 1), and
(10, —2) in Q(S, 2) x Q(S, 2), which correspond to (20, 60), (18, —48),
and (10/9, —80/27) in E(Q).

(6) by #0 (mod 5) and b, =0 (mod 5): The first equation in () implies
that z, and z, must be 5-adically integral. Then the second equation
shows that z, = 0 (mod 5), and so from the first equation we obtain
0 = 2 (mod 5). Therefore (x) has no solutions in Q.

(7) The eight pairs in (6) are Q5 non-trivial. (I.e. There are no Q5 solutions to
(*).) If we multiply them by the Q-trivial pair (5, 2), we obtain eight more
Q, non-trivial pairs.
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8) (by, by) = (1, 2): The two equations in (*) are
22 -2z2=2 and z?-222=10.

Since 2 is a quadratic non-residue modulo S, the second equation
implies that z; = z; =0 (mod 5). But then the second equation gives
0 = 10 (mod 25). Therefore there are no solutions in Q.

(9) Taking the Qs-non-trivial pair (1,2) from (8) and multiplying by the
seven Q-trivial pairs already in the table gives seven new Qs-non-trivial
pairs which fill the remaining entries.

Conclusion. E(Q) @ Z x Z/27Z x Z/2Z.

§2. Twisting—General Theory

For this section (and the next) we drop our requirement that K be a number
field, so K will be an arbitrary (perfect) field. As we saw in section 1 while
trying to compute the Mordell-Weil group of an elliptic curve E, we were led
to the problem of the existence or non-existence of a single rational point on
various other curves. These other curves are certain twists of E, called homo-
geneous spaces. In this section we will study the general question of twisting
which, since it is no more difficult, we will develop for curves of arbitrary
genus. Then in the next section we will look at the homogeneous spaces
associated to an elliptic curve.

Definition. Let C/K be a smooth curve (projective, as always.) The isomor-
phism group of C, denoted Isom(C), is the group of isomorphisms from C to
itself (defined over K). As usual, Isom(C) is the subgroup of Isom(C) consist-
ing of isomorphisms defined over K. (To ease notation, we will write the
composition of maps multiplicatively; thus «f instead of x 0 8.)

Remark 2.1. The group we are denoting Isom(C) is usually called the auto-
morphism group of C, and denoted Aut(C). However, if E is an elliptic curve,
then we have defined Aut(E) to be the group of isomorphisms from E to E
taking O to O. Thus Aut(E) # Isom(E) since, for example, Isom(E) contains
the translations 7, : E — E. We will describe Isom(E) more fully in section 5.

Definition. A twist of C/K is a smooth curve C’/K which is isomorphic to C
over K. We generally identify two twists if they are isomorphic over K. The
set of twists of C/K, modulo K-isomorphism, is denoted Twist(C/K).

Now let C'/K be a twist of C/K. This means that there is an isomorphism
¢: C’ > C defined over K. To measure the failure of ¢ to be defined over K,
we might consider the map

¢ Ggjx —~ Isom(C) Co=¢7¢7"
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It turns out that £ is a 1-cocycle; and the cohomology class of ¢ is uniquely
determined by the K-isomorphism class of C’. Further, every cohomology
class comes from some twist of C/K. In this way Twist(C/K) may be identi-
fied with a certain cohomology set. We now prove these statements.

Theorem 2.2. Let C/K be a smooth curve. For each twist C'/K of C/K, choose
an isomorphism ¢ : C' - C and define amap ¢, = ¢°¢~* e Isom(C) as above.
(@) ¢isal-cocycle.(I.e. For all o, t€ Ggig,

$or = (S0)°E:)

We denote the corresponding cohomology class in H'(Gg , Isom(C)) by {£}.
(b) The cohomology class {&} is determined by the K-isomorphism class of C’,
independent of the choice of ¢. We thus obtain a natural map

Twist(C/K) - H'(Gg k, Isom(C)).

() The map in (b) is a bijection. In other words, the twists of C/K (up to
K-isomorphism) are in one-to-one correspondence with the elements of the
cohomology set H'(Gg x, Isom(C)).

Remark 2.3. We emphasize that the group Isom(C) is often non-abelian (this
is always the case for elliptic curves). Hence H'(Ggx, Isom(C)) is in general
only a pointed set, not a group. (See B §3.) However, if Isom(C) has a G-
invariant abelian subgroup A, then H'(Ggk, A) is a group, and its image in
H'(Gg/g, Isom(C)) will give a natural group structure to some subset of
Twist(C). In the next section, we will apply this observation when C is an
elliptic curve, taking for A the group of translations.

PROOF. (a) &y = ¢7°¢™" = (¢°9 7 ($97") = (&,)'éx

(b) Let C"/K be another twist of C/K which is K-isomorphic to C'. Choose
a K-isomorphism y:C” - C. We must show that the cocycles ¢%¢!
and Yy ! are cohomologous. By assumption, there is a K-isomorphism
6:C” — C'. Consider the element a = ¢y ! € [som(C). We compute

YY) = GOY WY = 407y
= @' 0 = (79 )PP ) = (¢7¢ ).
This proves that ¢°¢~! and Yy~ are cohomologous.
(c) Suppose that C'/K and C"/K are twists of C/K which give the same
cohomology class in H'(Gg, Isom(C)). This means that if we choose K-
isomorphisms ¢:C’— C and ¢ : C" — C, then there is a map a€Isom(C)

such that

a’(YyY) = (¢°¢ o for all o€ Gy
(Le. The cocycles for ¢ and  are cohomologous.) We now consider the map
0:C" — C' defined by 0 = ¢ . It is a K-isomorphism, and we wish to
show that it is actually defined over K. For any ¢ € Gk, we compute
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0° = (@) (@Y°) = (¢°) (@79 o) = ¢ ) = 6.
Therefore C” and C’ are K-isomorphic, and so give the same element of
Twist(C/K). This proves that the map Twist(C/K) - H'(Gg, Isom(C)) is
injective.

To prove surjectivity, we start with a 1-cocycle ¢: Ggx — Isom(C), and
construct a curve C'/K and an isomorphism ¢ : C’ — C such that ¢, = Pt
To do this we consider a field, denoted K (C),, which is isomorphic (as a field
over K) to K(C), say by an isomorphism Z : K(C) - K(C)g The difference
between K(C) and K (C); lies in the action of Galois; on K(C); it is twisted by
&. In other words, for all fe K(C) and o€ Gi/x

Z(f) = Z(f°¢0)

(Here we are thinking of f as giving a map f: C —» P! (cf. 11.2.2), and f?¢,
is composition of maps. Equivalently, the map &,: C — C induces a map
&*: K(C) » K(C), and f¢, is just another notation for £*(f1°).)

Having given the action of Gg/x on K (C),, we may consider the fixed field
F c K(C)g consisting of all elements of K(C), fixed by Gg/x. We now show in
several steps that this field & is the function field of the desired twist of C.

(i) FAK=K

Suppose that Z(f)e # n K. In particular, since Z induces the identity on K,
fe K. Now the fact that Z(f)e & combined with the fact that f is a constant
function (and so unaffected by isomorphisms of C) implies

Z(N)=Z(fY =Z(f°E) = Z(S°).
Since this holds for all o € Gg/x, it follows that fe K.
(i) K = K (©C)
This is an immediate consequence of (IL.5.8.1) applied to the K-vector space
K(C)..

It follows from (ii) that &# has transcendence degree 1 over K; so using (i)
and (I1.2.5), there exists a smooth curve C'/K such that # = K(C’). Further,
(i) implies that K(C)=KF = K(C)¢ >~ K(C), so C’ and C are isomorphic
over K (I1.2.4.1). In other words, C’ is a twist of C, and the final step in
proving surjectivity is to show that it gives the cohomology class {¢}.

(iii) Let ¢:C'—> C be a K-isomorphism corresponding (I1.2.4b) to the
isomorphism

Z:K(C)-> K(C); = KF = K(C)).

(Ie. p* = Z.) Then for all 6 € Ggx, &, = §°9 7.
Having identified ¢* with Z, the relation Z(f)” = Z(f¢,) used in defining
the map Z can be rewritten as (f@)° = f?&,¢. In other words, for all f'e K(C),

J70° = (f9) = f°8q9.

But this implies that ¢ = £_¢, which is exactly the desired result. O
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Example 2.4. Let E/K be an elliptic curve, K (ﬁ) a quadratic extension of K,
and y : Ggx — { + 1} the quadratic character associated with K(\/E)/K. (Le.

x(o) = ﬁ"/\/;i. Note that char(K) # 2.) Then we can define a cocycle
¢: Gk~ Isom(E) &, = [x(0)].

Let C/K be the corresponding twist of E/K. We now find an equation for
C/K.

_ Choosing a Weierstrass equation for E/K of the form y? = f(x), we write
K(E) = K(x, y) and K(C) = K(x, y),. Since [ —1](x, y) = (x, —y), the action
of g € Gg/x on K(x, y), may be summarized by

\/E" = x(a)\/E, x=x, y° =0y

Thus the functions x’ = x and y = y/\/g in K(x, y); are fixed by Gg g, hence
are in K(C). They satisfy the equation

dy’? = f(x),
which is the equation of an elliptic curve defined over K. Further, the identi-
fication (x', y') — (x/, y’ﬂ ) shows that this curve is isomorphic to E over
K (ﬁ )- It is now an easy matter to check that the associated cocycle is &, and
so verify that we have found an equation for C/K. C is called the twist of E by

the quadratic character y. We will return to this example in more detail in
section 5.

§3. Homogeneous Spaces

Recall from (VIII §2) that associated to an elliptic curve E/K, we have a
Kummer sequence

0 — E(K)/mE(K) - H'(Gg/x, E[m]) > H'(Gg)x, E)[m] - 0.

The proof of the weak Mordell-Weil theorem hinged on the essential fact
that the image of the first term inside the second consists of elements which
are unramified outside a certain finite set of primes. In this section we analyze
the third term in this sequence by associating to each element of H'(Ggx, E)
a certain twist of E called a homogeneous space. Rather than starting with the
cohomology, we will begin by defining homogeneous spaces and describing
their basic properties. After this will come the cohomological interpretation,
which says that homogeneous spaces are those twists which correspond to
cocycles with values in the group of translations.

Definition. Let E/K be an elliptic curve. A (principal) homogeneous space for
E/K is a smooth curve C/K together with a simply transitive algebraic group
action of E on C defined over K. [I.e. A homogeneous space for E/K really
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consists of a pair (C, ), where C/K is a smooth curve and
u:CxE->C
is a morphism defined over K with the following three properties:

(i) u(p,0O)=p forall peC.

(i) p(u(p, P), Q) = u(p, P+ Q) forallpeCand P, Q€E.
(iii) For all p, g€ C there is a unique P € E satisfying u(p, P) = q.]

We will often denote u(p, P) with the more intuitive notation p + P. Then
property (i) is just the associative law, (p+ P)+Q=p+ (P + Q). Of
course, one has to determine from context whether + means addition on E or
the action of E on C.

In view of the simple transitivity of the action, we may also define a
subtraction map on C by the rule

v:iCx C—-E
v(q, p) = (the unique P € E such that u(p, P) = q).

As we will see below, v is also a morphism and defined over K. (This also
follows from elementary intersection theory on C x C. Note that it is not
even clear a priori that v is a rational map.) As with u, we will often write
v(g, p) as g — p.

One immediately verifies that addition and subtraction on a homogeneous
space have the right properties.

Lemma 3.1. Let C/K be a homogeneous space for E/K. Then for all p, ge C
and P,Q€E:

(a) up,0)=p and v(p,p)=0.

(b) u(p,v(g, p))=q and v(u(p, P),p)=P.
(© v(u(q, @), u(p, P)) = u(v(g, p), @ — P).
[1.e. Using the alternative notation,

(@) p+0=p and p—p=0.

(b) p+@—-p=q and (p+P)—p=P.
(© @+9-(p+P)=@—-p+Q-—-P

In other words, using the + and — signs provides the right intuition.]
Proor. (a) The equality u(p, O) = p is part of the definition of homogeneous
space. Now using this and the definition of v,

i, 0) = p = u(p, v(p, p));
so the simple transitivity implies that v(p, p) = O.
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(b) The relation u(p, v(q, p)) = q is the definition of v. Then, from

w(p, v(u(p, P), p)) = u(p, P),

we conclude that v(u(p, P), p) = P.
(c) We start with

q = u(p, v(g, P))-
Adding on Q gives
(g, Q) = p(p, v(g, p) + Q)
=up, P+v(@.p+Q—P
= w(u(p, P),v(q, p) + Q — P).
From the definition of v, this is equivalent to

v(u(g, Q), u(p, P)) = v(g,p) + Q — P. O

Next we show that a homogeneous space C/K for E/K is always a twist of
E/K, so we may apply the results of the previous section. We also charac-
terize the addition and subtraction on C in terms of a given K-isomorphism
E — C; this will enable us to prove that the subtraction map is a K-
morphism.,

Proposition 3.2. Let E/K be an elliptic curve, and let C/K be a homogeneous
space for E/K. Fix a point p, € C, and define a map
#:E-C O(P) = p, + P.

(@) 0 is an isomorphism defined over K(py). In particular, C/K is a twist of
E/K.
(b) ForallpeC and P<E,

p+P=00"'p) + P).

(Note that the first + is the action of E on C, while the second + is addition on
E)
(c) Forallp,qeC,

q—p="07"(q)— 67 (p)
(d) The subtraction map
v:Cx C—oE Vg, p)=q—7p
is a morphism defined over K.
Proor. (a) The action of E on C is defined over K. Hence for any o€ Gg
satisfying pg = po, we have
8P =(po + Py’ =p§ + P° = po + P7 = 0(P°).
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This shows that 6 is defined over K(p,). Further, the simple transitivity of the
action implies that 6 has degree 1; hence by (I1.2.4.1), 6 is an isomorphism.

(b) 00 (W +P)=po+6'(p)+ P=p+P.

(We are using the fact that 7!(p) is the unique point of E which gives p when
added to p,.)

() 07 () — 07 (p) = (po + 07'(9)) — (Po + 67 (P)) = q — p.

(d) The fact that v is a morphism follows from (c). (Note that subtraction on
E is a morphism (II1.3.6).) To check that v is defined over K, we let 6 € Ggx
and use (c) to compute

@—py=0"@—-0"(p)
— 07 (@ — 07 (p)"
=[po+ 071 (@1 — [po + 07 (D"
-
(The second and third equalities follow from the facts that subtraction on E is

defined over K and the action of E on C is defined over K.) This completes
the proof that v is defined over K. O

Definition. Two homogeneous spaces C/K and C’/K for E/K are equivalent if
there is an isomorphism 6 : C — C’ defined over K which is compatible with
the action of E on C and C’. [In other words, for all pe C and P E,

O(p+ P)=0(p) + P.]

The equivalence class containing E, acting on itself by translation, is called
the trivial class. The collection of equivalence classes of homogeneous spaces
for E/K is called the Weil-Chdtelet group for E/K, and is denoted WC(E/K).
(We will see below why it is a group.)

We now characterize the trivial homogeneous spaces.

Proposition 3.3. Let C/K be a homogeneous space for E/K. Then C/K is in the
trivial class if and only if C(K) is not empty.

Proor. If C/K is in the trivial class, then there is a K-isomorphism 6: E — C,
and so 0(0)e C(K).
Conversely, suppose that p, € C(K). Then from (3.2a), the map
0:E-»C OP)=py+ P

is an isomorphism defined over K(p,) = K. The necessary compatibility con-
dition on 0 is

Po+(P+Q)=(po+P)+Q,

which is part of the definition of homogeneous space. O
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Remark 3.4. Notice that (3.3) says that the problem of checking the triviality
of a homogeneous space is exactly equivalent to answering the fundamental
Diophantine question of whether a given curve has any rational points. Thus
our next step, namely the identification of WC(E/K) with a certain co-
homology group, may be regarded as the development of a tool to help us
study this difficult Diophantine problem.

Lemma 3.5. Let 8: C/K — C’/K be an equivalence of homogeneous spaces for
E/K. Then

0(q—0(p)=q—p  forallp,qeC.

Proor. This is just a matter of grouping points so that the additions and
subtractions are defined.

0(q) — 0(p) = ([0(q) + (p — @)1 — 0(p)) + (g — p)
=0lg+(P—q9]—-0(p)+(@—p)=q—p. a

Theorem 3.6. Let E/K be an elliptic curve. There is a natural bijection
WC(E/K) > H(Gg/x, E)
defined as follows:
Let C/K be a homogeneous space, and choose any point p, e C. Then
{C/K} - {0 - p§ — po}-

(Here the brackets indicate an equivalence class.)

Remark 3.6.1. Since H'(Ggx., E) is a group, (3.6) defines a group structure
on the set WC(E/K). One can also give the group law on WC(E/K) geometri-
cally, without using cohomology (exer. 10.2), which is in fact the way it was
originally defined ([We 5]).

Proor. First we check that the map is well-defined. It is immediate that
0 - pf — po 1s a cocycle:
P — Po = (P5" — Po) + (Po — Po) = (PG — Po)* + (Po — Po)-
Now suppose that C'/K is another homogeneous space which is equivalent
to C/K. Let 8:C — C’ be a K-isomorphism giving the equivalence, and let
Po€C’. Then using (3.5), we compute
PG — po = 0(pg) — 0(po)
= (p5 — Po) + [(B(po) — P6)” — (B(po) — Po)]-

Hence the cocycles pg — p, and pg — p, differ by the coboundary generated
by 0(po) — Pp € E, so they give the same cohomology class in H*(Ggx, E).
Next we check injectivity. Suppose that the cocycles p§ — p, and py — pj
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corresponding to C/K and C’/K are cohomologous. Thus there is a point
P, e E such that

P3 — po = (P5 — po) + (P§ — Py)  for all o e Ggig.
Consider the map
0:C->C"  0(p)=po+(p—po) + F.

It is clear that 6 is an isomorphism (over K), and that it is compatible with the
action of E. To see that 0 is defined over K, we check

0(p)" = pg + (p” — po) + Fg
=po + (P” — po) + Po
+ [(p5 — Po) + P5 — Po — (P5 — Po)]
= 0(p°).
This proves that C and C’ are equivalent.
Finally we prove surjectivity. Thus let {: Ggx — E be a 1-cocycle repre-
senting an element in H'(Ggx, E). If we embed E in Isom(E) by sending Pe E
to the translation t,elsom(E), then we may look at the image of ¢ in

H'(Ggg, Isom(E)). From (2.2), there is a curve C/K and a K-isomorphism
¢ : C — E such that for all o € G,

¢° 0 ¢~! = translation by —¢&,.

(The reason we use — ¢ instead of ¢ will become apparent below.)
Define a map

piCxE->C  up, P)=¢""(¢(p) + P).

We now show that this gives C/K the structure of a homogeneous space over
E/K, and that the cohomology class associated to C/K is {¢&}.

First, to see that u is simply transitive, let p, ge C. Then by definition,
u(p, P) = q if and only if ¢ (é(p) + P) = q; and so the only choice for P is
P = ¢(q) — #(p). Second, to check that u is defined over K, we let g€ Ggx
and compute

u(p, PY = (7)(¢°(p°) + P°)
= ¢~ ([g(p°) + &) + PT &)
= u(p’, P°).

Third, to compute the cohomology class associated to C/K, we may choose
any poeC and look at the cocycle ¢ — pJ — p,. In particular, if we take
Po = ¢71(0), then

Ps —Po =(¢)7(0) — ¢7'(0)
=¢7H0 + &)~ ¢7(0)
=£,.
This completes the proof of (3.6). |
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Example 3.7. Let E/K be an elliptic curve and K(\/a)/K a quadratic exten-
sion (so char(K) # 2.) Suppose that Te E(K) is a non-trivial point of order 2.
Then the homomorphism

$:Ggx—E
R {0 if /d° = /d
T if\/d°=—./d
is a 1-cocycle. We will now construct the homogeneous space corresponding

to the element {£} € H'(Ggx, E).
Since T'e E(K), we may choose a Weierstrass equation for E/K of the form

E:y?=x*>+ax*+bx  with T=(0,0).
Then the translation-by-T map has the simple form
TT(P) = (X, J’) + (0’ 0) = (b/x’ _by/xl)

Thus if o € Ggx represents the non-trivial automorphism of K(\/J )/K, then
the action of ¢ on the twisted field K(E), may be summarized by

f" = —ﬂ, x®=b/x, y°= —by/x%
We must find the subfield of K(\/g )(x, y), fixed by o.

The functions
Jdx/y and \/d(x — b/x)

are easily seen to be invariant. Anticipating the form of our final answer, we
will consider instead the functions

z=/dx/y and w=/d(x — b/x)(x/y).
To find the relation that they satisfy, we compute
d(w/z?)? = (x — b/x)* = (x + b/x)?> — 4b
= ((y/x)* — a)* — 4b = (d/z* — a)* — 4b.
Thus (z, w) are affine coordinates for the hyperelliptic curve
C:dw? = d? — 2adz* + (a® — 4b)z*.

(For general facts about hyperelliptic curves, see (I1.2.5.1) and (exer. 2.14).)
We claim that C/K is the twist of E/K corresponding to the cocycle &.

First, recall from (I1.2.5.1) that C will be a smooth affine curve provided
that the polynomial d? — 2adz? + (a® — 4b)z* has four distinct roots (in K).
Further, (I1.2.5.2) says that if this quartic polynomial has distinct roots, then
there is a smooth curve in P? which has an affine piece isomorphic to C; and
further, this smooth curve will consist of C together with the two points
[0, 0, +./a? — 4b, 1] out at infinity. (N.B. The projective closure of C in P2
is always singular.) Now it is easy to check that the quartic has distinct roots
if and only if b(a? — 4b) # 0. On the other hand, since E is non-singular, we
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know that A(E) = 16b*(a* — 4b) # 0. Therefore C is an affine piece of a
smooth curve in P3; and to ease notation, we will also use C to denote this
smooth curve C < P3.

Next, we have the map (defined over K (\/E )
$:E—C
(x, ) = (& W) = (/dx/y, /d(x — b/)(x/y)?).

Note that since
x/y = xy/y* = y/(x* + ax + b),
¢ may also be written as

axw=< V/dy ¢mf‘”)

x2+ax+b’x2+ax+b
This allows us to evaluate
$0,00=(0, —\/d) and ¢(0) = (0,/d).
To show that ¢ is an isomorphism, we compute its inverse:
\/Ew/zz =x — b/x = 2x — (x + b/x)
=2x — ((y/x)? — a) = 2x — (d/z> — a).
This gives x in terms of z and w, and then y = ﬁx/z. Thus
¢1:C—>E

( . \/Ew—azz+d dw—a\/ﬁzz+d\/§
2z, W) 222 ’ 223 ‘

Since C and E are smooth, ¢ is an isomorphism (I1.2.4.1).
Finally, to compute the element of H'(Gg, E) corresponding to C/K, we
may choose any point pe C and compute the cocycle

o->p"—p=¢"(p°)— ¢ (D)
For instance, we may take p = (0, \/E)e C.Clearly p° — p=01if f = \/2
On the other hand, if f 7= —\/3, then from above

p°—p =970, —/d) - $71(0, /d) = (0, 0).

Therefore p”~p=2¢, for all oeGgy, so {C/K}e WC(E/K) maps to
{&} e H'(Gg ., E). [Of course, it was just “luck” that we obtained an equality
p° — p = &,. In general, the difference of these two cocycles would be some
coboundary.]

We conclude this section by showing that if C/K is a homogeneous space
for E/K, then Pic®(C) may be canonically identified with E. This means that
E is the Jacobian of C/K. Since every curve C/K of genus 1 is a homogeneous
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space for some elliptic curve E/K (exer. 10.3), this shows that the abstract
group Pic®(C) can always be represented as the group of points on an elliptic
curve. The analogous result for curves of higher genus, in which Pic®(C) is
represented by an abelian variety of dimension equal to the genus of C, is
considerably harder to prove.

Theorem 3.8. Let C/K be a homogeneous space for an elliptic curve E/K.
Choose a point py e C, and consider the summation map

sum: Div®(C) » E
Znp) = Z[n]1(p; — po)-
(@) There is an exact sequence
— — div __, sum
1 - K* - K(C)* - Div®’(C) - E - 0.

(b) The summation map is independent of the choice of the point p,.
(c) The summation map commutes with the natural action of Gg on Div®(C)
and E. Hence it gives an isomorphism of Gg x-modules (also denoted sum)

sum: Pic’(C) 3 E.
In particular.

Pic(C) = E(K).

Proor. (a) Using (I1.3.4), we see that we must check that sum is a surjective
homomorphism and has as kernel the set of principal divisors. It is clear that
sum is a homomorphism. Let Pe E and D = (p, + P) — (p,) € Div®(C). Then
sum(D) = ((po + P) — Po) — (Po — Po) = P,

SO sum is surjective.

Next let D = Zn(p,)eDiv%(C) satisfy sum(D)= 0. Then the divisor
Zn,(p; — po) € Div%(E) sums to O, so (I11.3.5) it is principal, say

Yndp; — po) = div(f)  for some fe K(E)*.
We have an isomorphism
¢$:C—~E  ¢(p)=p— po;
and so by (I1.3.6b),
div(g*f) = ¢* div(f) = Y. n¢*((p: — po)) = Y nip) = D.

Therefore D is principal.
Finally, if D = div(g) is principal, then

Y. np: — po) = (¢71)* div(g) = div(($™")*g);

and so sum(D) = O. This shows that the kernel of sum is the set of principal
divisors.
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(b) Let sum’: Div®(C) —» E be the summation map defined using the base-
point py € C. Then

sum(D) — sum'(D) = Y [n]((p: — po) — (i — D))
= Z [(n1(po — po)
=0,

since Zn; = deg(D) = 0.
(c) Let o€ Ggx. Then

sum(D)” = 3 [n1(p{ — pg) = sum(D"),

since from (b) we know that the sum is the same if we use pg as our basepoint
instead of p,. Now from (a) and the definition of Pic®(C), we have a group
isomorphism sum : Pic’(C) — E, and the fact that sum commutes with Gg
says precisely that it is an isomorphism of Ggx-modules. Finally, the last
statement in (3.8¢) follows by taking Gk g-invariants. O

§4. The Selmer and Shafarevich—Tate Groups

We return now to the problem of calculating the Mordell-Weil group of an
elliptic curve E/K defined over a number field K. As we have seen (VIIL.3.2
and exer. 8.18), it is enough to find generators for the finite group E(K)/mE(K)
for any one integer m = 2.

Suppose that we are given another elliptic curve E'/K and a non-zero
isogeny ¢:E — E’' defined over K. (For example, we could always take
E' = E and ¢ = [m].) Then there is an exact sequence of Gi x-modules,

0-E[¢]>ESE -0,

where E[¢] denotes the kernel of ¢. Taking Galois cohomology yields the
long exact sequence
0> EK - EK 5 EK
s
- HI(GE/K; E[¢]) > HI(GE/K» E) - HI(GE/K, E)—;
and from this we form the fundamental short exact sequence
0 E'(K)/$(E(K)) > H'(Gx, E[4]) » H' (G, E)[$1 >0, (%)

Note that (3.6) says that the last term in (*) may be identified with the ¢-
torsion in the Weil-Chatelet group WC(E/K).

The next step is to replace the second and third terms of (*) with certain
finite groups. This is accomplished by local considerations. For each ve Mg,
we fix an extension of v to K, which serves to fix an embedding K < K,
and a decomposition group G, c Ggx. Now G, acts on E(K,) and E'(K,);
and so repeating the above argument yields exact sequences
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0 E'(K,)/$(E(K,) > H'(G,, E[$]) » H'(G,, E)[$] 0. (*.)

Now the natural inclusions G, = Ggx and E(K) < E(K,) give restriction
maps on cohomology, and so we end up with the following commutative
diagram (where we have replaced each H!(G, E) by the corresponding Weil-
Chatelet group):

0~ EK)EK) > H'Ggx E[4]) > WCEK)F] -0
! ! ! (%)

0- l;[l "(K,)/$(E(K,)) H HY(G,, E[¢]) - H WC(E/K,)[4]- 0.
Our ultimate goal is to compute the image of E’'(K)/¢(E(K)) in
H'(Gg)x, E[#]); or equivalently, the kernel of the map

H'(Ggix, E[¢]) > WC(E/K)[4].

Now using (3.3), this last problem is the same as determining whether certain
homogeneous spaces possess a K-rational point, which may be a very difficult
question. On the other hand, by the same reasoning, the determination of
each local kernel

ker{H'(G,, E[¢]) » WC(E/K,)[¢]}

is straightforward; since the question of whether a curve has a point over a
complete local field K, reduces (by Hensel’s lemma) to checking whether it
has a point in some finite ring R,/.#¢ (for some easily computable integer e),
and so requires only a finite amount of computation. This prompts the
following definitions.

Definition. Let ¢ : E/K — E’/K be an isogeny as above. The ¢-Selmer group of
E/K is the subgroup of H'(Ggx, E[¢]) defined by

SP(E/K) = ker{H (Gxyx» EL4]) — H WC(E/K.,)}

ve Mg

The Shafarevich—Tate group of E/K is the subgroup of WC(E/K) defined by

I.H(E/K)=ker{WC(E/K)—+ 11 WC(E/K,,)}.

veMg

Remark 4.1.1. Since the exact sequences (+,) given above depend on choosing
an extension of each ve My to K, it may appear that the groups SYE/K) and
III(E/K) will depend on that choice. However, in order to determine whether
an element of WC(E/K) becomes trivial in WC(E/K,), one must check
whether the associated homogeneous space (which is a curve defined over K)
has any points defined over K,. This last question is clearly independent of
any choice of extension of v to K, since v itself determines the embedding of K
in K,. Therefore S¥(E/K) and II(E/K) depend only on E and K. (Alterna-
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tively, one can check directly on cocycles that the cohomological definition of
S® and II does not depend on the extension of the v's to K. We will leave this
for the reader. See also (exer. B.6).)

Remark 4.1.2. A good way to think of III(E/K) is as the group of homo-
geneous spaces for E/K which possess a K -rational point for every ve My.
Le. The homogeneous spaces which are everywhere locally trivial.

Theorem 4.2. Let ¢ : E/K — E'/K be an isogeny of elliptic curves defined over
K.
(a) There is an exact sequence

0 - E'(K)/¢(E(K)) - SY(E/K) - II(E/K)[4] - O.
(b) The Selmer group S®E/K) is finite.

Proor. (a) This is immediate from the diagram (**) and the definition of the
Selmer and Shafarevich—Tate groups.

(b) Notice that if E = E’ and ¢ = [m], then the finiteness of S™(E/K) implies
the weak Mordell-Weil theorem. On the other hand, in order to prove that
S®(E/K) is finite for a general map ¢, we must essentially reprove the weak
Mordell-Weil theorem. The argument goes as follows.

Let ¢eSY(E/K), and let ve My be a finite place of K not dividing
m = deg(4) such that E'/K has good reduction at ». We claim that & is
unramified at v. (See (VIII §2) for the definition of an unramified cocycle.)

To check this, let I, = G, be the inertia group for v. Since & e SY(E/K), we
know that ¢ is trivial in WC(E/K,). Hence from the sequence (*,) given
above, there is a point Pe E(K,) such that

& ={P°— P} for all 6 €G,.

(Note that P’ — Pe E[¢]).) In particular, this holds for all ¢ in the inertia
group. But if g€, then looking at the “reduction modulo v” map E — E,
yields

F—P=p_F=0
since by definition inertia acts trivially on E,. Thus P° — P is in the kernel of

reduction modulo v. But P° — P is also in E[#], which is contained in E [m];
and from (VIIL1.4), E(K)[m] injects in E,. Therefore P° = P, and so

&,={P"—P}=0 foralloel,.

This proves that every element in S¥Y(E/K) is unramified at all but a fixed,
finite set of places ve Mg. The finiteness of S?(E/K) now follows from the
next lemma. O

Lemma 4.3. Let M be a finite (abelian) Gg x-module, S = My a finite set of
places, and define
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H'(Ggx, M; S) = {¢e H (Ggjx, M) : £ is unramified outside S}.
Then H'(Gg x, M; S) is finite.

ProoF. Since M is finite and Gk acts continuously on M, there is a sub-
group of finite index in Gk which fixes every element of M. Using the
inflation-restriction sequence (B.2.4), we see that it is alright to replace K by a
finite extension, so we may assume that the action of Ggx on M is trivial.
Then

H'(Ggik, M; S) = Hom(Gg ¢, M; S).

Now let m be the exponent of M (i.e. mx = 0 for all xe M); and let L/K be
the maximal abelian extension of K having exponent m which is unramified
outside of S. Since M has exponent m, the natural map

Hom(Gpx, M) » Hom(Gg ¢, M; S)

is clearly an isomorphism. But from (VIIL.1.6), L/K is a finite extension.
Therefore Hom(Gg ¢, M; S) is finite. O

We record as a corollary the main fact about the Selmer group derived
during the course of proving (4.2). (Note that by (VIL.7.2), isogenous elliptic
curves have the same set of primes of bad reduction.)

Corollary 4.4. Let ¢ : E/K — E'/K be as in (4.2), and let S = My be a finite set
of places containing

Mg v {v: E has bad reduction at v} U {v: v divides deg(¢)}.
Then
SE/K) = H'(Gg> E[¢]; 9).

Remark 4.5. At least in theory, and often in practice, the Selmer group is
effectively computable. The point is that the finite group H'(Ggx, E[4]; S)
may be effectively computed. Then to determine whether a given element
¢e H(Ggx, E[#]; S) is in SYY(E/K), one takes the corresponding homoge-
neous space {C/K}e WC(E/K) and checks whether C(K,) # J for each of
the finitely many v € S. This last problem may be reduced, by Hensel’s lemma,
to a finite amount of computation.

Example 4.5.1. We reformulate the example of section 1 in these terms
(leaving some details to the reader). Thus let E/K be an elliptic curve with
E[m] < E(K), let S = M be the usual set of places, and let K(S, m) be as in
(1.1c). Choosing a basis for E[m], we may identify E[m] with p,, X p,, (as
Gi x-modules); and then

H'(Ggx, E[¢]; S) = K(S, m) x K(S, m).
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(Le. Use the isomorphism K*/K*™— H'(Gg,n,)) Restricting atten-
tion now to the case m = 2, the homogeneous space associated to a pair
(by, by)e K(S, m) x K(S, m)is the curve in P3 given by the equations (cf. (1.4))

v L2 2 _ 2 2 2 _ 2
C:byzi — byz; = (e; — e))z5 byzi — by byz3 = (e3 — e,)z5.

For any given pair (b,, b,), it is now an easy matter to check if C(K,) # ¢ for
each ve S, and so to calculate S®(E/K). For example, the conclusion of (1.5)
may be summarized by stating that for the curve

E:y* = x? — 12x? — 20x,
SP(E/Q) = (Z/2Z)* and II(E/Q)[2] = 0.

(The conclusion about II follows from the exact sequence (4.2a), since in (1.5)
we actually showed that every element of S?(E/Q) is the image of a point of
E@))

Suppose now that we have computed the Selmer group S¥XE/K) for some
isogeny ¢. Thus each ¢ e SY(E/K) corresponds to a homogeneous space C:/K
which has a point defined over every local field K,. Suppose further that we
are lucky and can show that III(E/K)[¢] = 0. This means that on each of the
curves C, we are able to find a K-rational point. It follows from (4.2a) that
E'(K)/¢(E(K)) = SYXE/K), and all that remains is to explain how to find
generators for E'(K)/¢(E(K)) in terms of the points we found on each C,(K).
This is accomplished by the following proposition.

Proposition 4.6. Let ¢ : E/K — E'/K be an isogeny, let & be a cocycle represent-
ing an element of H'(Ggx, E[4]), and let C/K be a homogeneous space repre-
senting the image of & in W C(E/K). Choose an isomorphism 8 : C — E (defined
over K) satisfying

6° 007" = (translation by &)  for all o€ Ggjx.

(a) The map 0 8:C — E'is defined over K.

(b) If PeC(K), and so {C/K} is trivial in WC(E/K), then the point
$00(P)e E(K) maps to & under the connecting homomorphism 6 : E'(K) —»
Hl(GE/K, E[¢]).

Proor. (a) Let 0eGgx and PeC. Then, since ¢ is defined over K and

¢, € E[¢], we have

(o 8(P)) = ($00)(P°) = $(6(P°) + &) = ¢ 0 O(P°).

Therefore ¢ o 0 is defined over K.
(b) This is just a matter of unwinding definitions. Thus

d(¢06(P)), = O(P) — 6(P) = O(P) + ¢, — O(P) = ¢,. O

Remark 4.7. We have been working with arbitrary isogenies ¢ : E — E’. Butin
order to compute the Mordell-Weil group of E’, we need generators for
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E'(K)/mE'(K) for some integer m; just knowing E'(K)/¢(E(K)) is not enough.
The solution to this dilemma is to consider also the dual isogeny ¢ : E' — E.
Using the procedure outlined above, one computes both Selmer groups
SHE/K) and SHE'/K), and then, with a little bit of luck, one finds
generators for the two groups E'(K)/¢(E(K)) and E(K)/¢(E’(K)). Having
done this, it is then a simple matter to obtain generators for E(K)/mE(K)
(where m = deg ¢) by using the following elementary exact sequence (note

$o¢ =[m]):
L EW] | EK) 4 EK)  EK)
HE(K)[m]) $(EK)) mEKK) HE(K))

Example 4.8. Two-isogenies. We are going to illustrate the above theory by
completely analyzing the case of isogenies of degree 2. Let ¢: E — E' have
degree 2. Then the kernel E[¢] = {0, T} is defined over K, so T € E(K). Thus
E has a K-rational 2-torsion point, so by moving that point to (0, 0), we can
find a Weierstrass equation for E/K of the form

E:y* = x>+ ax? + bx.

Now let S « My be the usual set of places. Identifying E[¢] with p, (as
Gg x-modules), we see that K*/K*? >~ H'(Gg, E[4]); and so

H'(Ggx, E[4]; S) = K(S,2)

(using the notation of (1.1c) and (4.3).) More precisely, if de K(S, 2), then
tracing through the above identifications shows that the corresponding

cocycle is
i {0 if /d =./d
T if/d =—/d.

The homogeneous space C,/K associated to this cocycle was computed in
(3.7); it is given by the equation

C,:dw? = d? — 2adz? + (a* — 4b)z*.

Now in order to compute the Selmer group S¥(E/K), we need merely check if
C,(K,) # & for each of the finitely many de K(S, 2) and veS.
Next, E’//K has a Weierstrass equation of the form

E:Y?=X3—2aX?+ (a* — 4b)X,
where the isogeny ¢ : E — E' is given by the formula (IT1.4.5)
#(x, y) = (y*/x2, y(b — x?)/x?).

In (3.7) we gave an isomorphism 6 : C, - E (defined over K(\/E )). Comput-
ing the composition ¢ o 0 yields the map

$06:C,> F $ 0 0(z, w) = (d/z%, dw/z>)

described in (4.6). Finally, just as was done in (1.4) (see also exer. 10.1), one
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can compute the connecting homorphism

é: E'(K)— H'(Ggix, E[4]) = K*/K*?

6(0)=1, 5(0,0)=a?—4b,and (X,Y)=X ifX #0, co.
We summarize the preceding discussion in the following proposition.
Proposition 4.9, (Descent via Two-Isogeny.) Let E/K and E'/K be elliptic
curves given by equations
E:y*=x34ax*+bx and E:Y?=X>-—2aX?+ (a®> —4b)X;
and let
$:E—>E  $(x,y) = (y/x% yb — x*)/x?)
be the isogeny of degree 2 with kernel E[¢] = {0, (0, 0)}. Let
S = Mg U {primes dividing 2b(a*> — 4b)}.
There is an exact sequence
0 E(K)/H(EK)) > K(S, 2) » WC(E/K)[4]
01
0,0) > a> — 4b d-{C,/K},

X, Y)» X
where C,;/K is the homogeneous space for E/K given by the equation

C,:dw? = d? — 2adz* + (a* — 4b)z*.
The ¢-Selmer group is then

SHE/K) = {deK(S,2): CiK,) # & forallveS}.

Finally, the map

V:Ci—E Yz, w) = (d/z%, dw/z>)
has the property that if Pe C,(K), then

(Y(P)) = d (mod K*?).

Remark 4.9.1. Note that since the isogenous curve E' in (4.9) has the same
form as E, everything in (4.9) applies also to the dual isogeny ¢ : E' — E.
Then, using the exact sequence in (4.7), we may be able to compute
E(K)/2E(K).

Remark 4.9.2. If E/K is an elliptic which has a K-rational 2-torsion point,
then E also has an isogeny of degree 2 defined over K (I111.4.5). Thus the
procedure described in (4.8) may be applied to any elliptic curve with
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E(K)[2] # 0. In particular, (4.9) in some sense subsumes (1.4), where we had
assumed that E[2] < E(K).

Example 4.10. We now use (4.9) to compute E(Q)/2E(Q) for the elliptic curve
E:y?=x3—6x*+ 17x.

This equation has discriminant A = —147968 = —2°172, so our set § is
{00,2,17}, and we may identify Q(S,2) with {+1, +2, +£17, +34}. The
curve which is 2-isogenous to E has the equation

E:Y?=X3+12X% - 32X;
and for d e Q(S, 2), the corresponding homogeneous space is

C,:dw? = d? + 12dz* — 3224,

From (4.9), the point (0, 0)e E(Q) maps to §(0,0) = —32 = —2 (mod Q*?),
so —2e SY(E/Q). We now check the other possible values for d.

d=2 C,:2w? = 4 + 2472 — 3274

Dividing by 2 and letting z = Z/2 gives the equation
C,:wr=2+32%-Z*4

which by inspection has the rational point (Z, w) = (1, 2). Then using (4.9),
the point (z, w) = (4, 2)e C,(Q) maps to ¥(3, 2) = (8, 32)e E'(Q); and as pre-
dicted by the theory, §(8, 32) = 8 = 2 (mod Q*2).

d=17 Cyq: 17w? = 172 + 12-172% — 322%,

Suppose that C,,(Q,,) # &. Since ord,,(17w?) is odd and ord,,(32z%) is

even, we see that necessarily z, we Z,. But then the equation for C, , implies

first that z = 0 (mod 17), then that w = 0 (mod 17), and finally that 172 =

0 (mod 173). This contradiction shows that C,,(Q,,) = &, so 17¢ SY(E/Q).
We now know that

1, —2,2eSYE/Q) and 17¢SYE/Q).
Since SY(E/Q) is a subgroup of Q(S, 2), it follows that SY(E/Q) = {+ 1, +2}.
We have also shown that E'(Q) surjects onto S¥(E/Q), and so from (4.2a),
HI(E/Q)[¢] = 0.
We now repeat the above computation with the roles of E and E’ reversed.
Thus for de Q(S, 2), we look at the homogeneous space

Cj:dw? = d? — 24dz? + 272z%.

As above, the point (0, 0) € E(Q) maps to 5(0, 0) = 272 = 17 (mod Q*?). Next,
if d < 0, then clearly C)(R) = (J,s0 d ¢ SYXE'/Q). Finally, for d = 2, if we let
z = Z/2, then C; has the equation
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Cy:2w? =4 —127Z% + 17Z*.

But if C3(Q,) # O, then necessarily Z, we Z,; and then from the equation for
C; we deduce successively Z =0 (mod 2), w=0 (mod 2), 4 =0 (mod 23).
Therefore C;(Q,) = &, and so 2¢S‘ E'/Q). Hence S‘¢’(E’/®) = {1,17} and
II(E'/Q)[¢] = 0.

To recapitulate, we now know that
E(Q)/$(E(Q) = (Z/22)* and E(Q)/$(E(Q)) = Z/2Z,

the former being generated by {(0, 0), (8, 32)} and the latter by {(0, 0)}. The
exact sequence (4.7) then yields

E(Q)/2E(Q) = (Z/27)* =~ E(Q)/2E(Q);
and so
E@QxFQ)x~7 x 7/22.

Remark 4.11. In all of the examples up to this point, we have been lucky in
the sense that for every locally trivial homogeneous space that has appeared,
we have been able to find (by inspection) a global rational point. Another
way to say this is that we have yet to see a non-trivial element in the
Shafarevich—Tate group. The first examples of such spaces are due to Lind
[Lin] and (independently, but shortly later) Reichardt [Rei], who proved
that the curve

2w? =1-—17z*

has no Q-rational paint. (One easily checks that it has a point defined over
every Q,.) We will prove a more general result below (6.5). Shortly thereafter,
Selmer [Sel 1] made an extensive study of the curves ax® + by® + cz3 = 0,
which are homogeneous spaces for the elliptic curves x> + y* + dz® = 0. He
gave many examples of locally trivial, globally non-trivial homogeneous
spaces, of which the simplest is

3x* +4y* + 523 =0.

It is a difficult problem, in general, to divide the Selmer group into the
piece coming from rational points on the elliptic curve and the piece giving
non-trivial elements in the Shafarevich-Tate group. At present, there is no
algorithm known which is guaranteed to solve this problem. The procedure
which we now describe will often work in practice, although it tends to lead
to fairly elaborate computations in algebraic number fields.

Recall that for each integer m = 2 there is an exact sequence (4.2a)

E(K) > $™(E/K) - I(E/K)[m] — 0;

and the finite group S™(E/K) is effectively computable, at least in theory
(4.5). If we knew some way of computing III(E/K)[m], then we would be able
to find generators for E(K)/mE(K), and thence for E(K). Unfortunately, a
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general procedure for computing II(E/K) [m] is still being sought. However,
for each integer n > 1 we can fit together the above exact sequences to form a
commutative diagram

E(K) —» S™)E/K) - II(E/K)[m"] - 0
lid ! | mult. by m" !

E(K)— S™(E/K) — I(E/K)[m] — 0.

Now at least in principle, the middle column of this diagram is effectively
computable. This allows us to make the following refinement to the exact
sequence in (4.2a).

Proposition 4.12. Let E/K be an elliptic curve. For integers m =2 2 and n > 1,
let S™"™(E/K) be the image of S™E/K) in S™(E/K). Then there is an exact
sequence.

0 — E(K)/mE(K) —» S™"(E/K) —» m" III(E/K)[m™] = 0.
Proor. Immediate from the commutative diagram given above. d

Now to find generators for E(K), one can apply the following procedure.
Compute successively the relative Selmer groups

S™(E/K) = §™ Y(E/K) > §™(E/K) > S™IE/K) > ---
and the rational-point groups
Tion ) (E/K) & T, 2)(E/K) @ Tip,3(E/K) = -,

where T, ,(E/K) is the subgroup of S"™(E/K) generated by all points
P e E(K) with height h.(P) < r. Eventually, with sufficient perserverence, one
hopes to arrive at an equality

S(m‘")(E/K) = T('m,r)(E/K)

Once this occurs, then one knows that m" II(E/K)[m"] = 0, and that the
points with height s, (P) < r generate E(K)/mE(K). The problem is that, as
far as is known, there is nothing to prevent II(E/K) from containing an
element which is infinitely m-divisible; that is, a £ I(E/K), & # 0, such that
for every n > 1 there is a £, € llI(E/K) such that £ = m"&,. If such an element
were to exist, then the above procedure would never terminate! However,
opposed to such a gloomy scenario is the following optimistic conjecture.

Conjecture 4.13. Let E/K be an elliptic curve. Then III(E/K) is finite.

This conjecture is not known to be true for a single elliptic curve! Note that
the successful carrying out of the procedure described above will only show
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that the m-primary component of II is finite; this has of course been done in
many cases. (For example, we showed that for the elliptic curve in (4.10),
II(E/Q) has trivial 2-primary component.)

We close by quoting the following beautiful result of Cassels, which says
something quite interesting about the order of this group which is not yet
known to be finite.

Theorem 4.14 ([Ca 3], [Ta 2]). Let E/K be an elliptic curve. There exists an
alternating, bilinear pairing

I: I(E/K) x T(E/K) > Q/Z

whose kernel is precisely the group of divisible elements of 1. (I.e. If I'(o, ) =0
for all Belll, then there exist arbitrarily large integers N and elements oy lIll
such that « = Nay.)

In particular, if W(E/K) is finite (or, more generally, if any p-primary
component of I(E/K) is finite), then its order is a perfect square. (See exer.
10.20.)

§5. Twisting—Elliptic Curves

Again we let K be an arbitrary (perfect) field, and let E/K be an elliptic curve.
As we have seen (2.2), if we consider E merely as a curve and ignore the
basepoint O, then the twists of E/K correspond to the elements of the
(pointed) cohomology set H'(Gg/, Isom(E)). Now Isom(E) has two obvious
subgroups, namely Aut(E) and E, where we identify E with the set of trans-
lations {tp} in Isom(E). Notice also that Aut(E) naturally acts on E. The next
proposition describes Isom(E).

Proposition 5.1. The map
E x Aut(E) - Isom(E)
(P,a) > tp00

is » bijection of sets. It identifies Isom(E) with the product of E and Aut(E)
twisted by the natural action of Aut(E) on E. [l.e. Isom(E) is the set
E x Aut(E) with the group law

(P, %) (Q, B) = (P + aQ, 0 f).]
Proor. Let ¢ e Isom(E). Then 7_4,0 ¢ € Aut(E), so writing

¢ = 140) 0 (1-4(0)0 )

shows that the map is surjective. On the other hand, if 1,02 = 750§, than
evaluating at O gives P = (, and then also « = f. This proves injectivity.
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Finally, the twisted nature of the group law follows from the calculation

TpO®0TH0B =Tp0T,p0x0f. |

We have already made an extensive study of those twists of E/K arising
from translations, namely the group H'(Gg, E) = WC(E/K) studied in sec-
tions 3 and 4. We now look at the twists of E/K coming from isomorphisms
of E as an elliptic curve; that is, isomorphisms of the pair (E, O). In other
words, we consider the twists of E/K corresponding to elements of
H'(Ggjx, Aut(E)). We start with a general proposition, and then (for
char(K) # 2, 3) derive explicit equations.

Remark 5.2. In the literature, the phrase “let C be a twist of E” often means
that C corresponds to an element of H' (G, Aut(E)). More properly, such a
C should be called a twist of the pair (E, O), since the group of isomorphisms
of (E, O) with itself is precisely Aut(E). However, one can generally resolve
any ambiguity from context without too much trouble.

Proposition 5.3. Let E/K be an elliptic curve.
(a) The natural inclusion Aut(E) < Isom(E) induces an inclusion

H'(Ggx, Awt(E)) = H' (Ggyx, Tsom(E)).
Identifying the latter set with Twist(E/K) by (2.2), we will denote the former by
Twist((E, 0)/K).
(b) Let C/K € Twist((E, 0O)/K). Then C(K) # J, and so C/K can be given the
structure of an elliptic curve over K. [N.B. C is not generally K-isomorphic to
E. Contrast with (3.3).]

(c) Conversely, if E'/K is an elliptic curve which is isomorphic to E over K, then
E'/K represents an element of Twist((E, O)/K).

Proor. (a) Let i : Aut(E) — Isom(E) be the natural inclusion. From (5.1), there
is a homomorphism j : Isom(E) — Aut(E) such that joi = 1. It follows that
the induced map

H"(Gg/x, Aut(E)) > H'(Gg ¢, Isom(E))

is one-to-one. B
(b) Let ¢: C - E be an isomorphism defined over K such that the cocycle

co¢°o0d!

represents the element of H'(Ggy, Aut(E)) corresponding to C/K. Then
#°od1(0) = 0, so

¢7'(0)=¢"1(0)  for all o€ Gg.

Hence ¢ '(0)e C(K), so (C, $™'(0)) is an elliptic curve defined over K.
(c) Let ¢: E' - E be an isomorphism of elliptic curves defined over K. In
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particular, ¢(0’) = O, where O € E(K) and O’ € E'(K) are the respective zero
points of E and E'. Then for any o € Gg/x,

¢’0¢™1(0) = ¢°(0) = 40y = 0° = 0.
Thus ¢°o¢ leAut(E), so the cocycle corresponding to E’/K lies in
H'(Ggjx, Aut(E)) as desired. O

If the characteristic of K is not 2 or 3, then the elements of Twist((E, 0)/K)
can be described quite explicitly.

Proposition 5.4. Assume that char(K) # 2, 3, and let
2 if j(E)#0,1728
n=<4 ifj(E)=1728
6 if j(E)=0.

Then Twist((E, 0)/K) is canonically isomorphic to K*/K*".
More precisely, choose a Weierstrass equation

E:y?=x>+Ax+ B

for E/K, and let De K*. Then the elliptic curve E,e Twist((E, O)/K) corre-
sponding to D (mod K*") has the Weierstrass equation

(i) Ep:y*=x>+ D*Ax + D3B if j(E) #0, 1728;
(i) Ep: y? = x® + DAx if J(E) = 1728 (s0 B = 0);
(iii) Ep:y? = x* + DB if J(E) = 0 (so 4 = 0).

Corollary 5.4.1. Define an equivalence ~ on the set K x K* by
(D)~ (j’, D)  if j=]j and D/D'e(K*N'?,

where n(j) = 2 (resp. 4, resp. 6) if j # 0, 1728 (resp.j = 1728, resp. j = 0). Then
the K-isomorphism classes of elliptic curves E/K are in one-to-one corre-
spondence with elements of the quotient

K x K*/~.

Proor. From (I11.10.2), we have an isomorphism
Aut(E) = p,
of G /x-modules. It follows from (B.2.5¢c) that
Twist((E, 0)/K) = H'(Ggx, Aut(E)) = H'(Ggx, 1) = K*/K*".

The calculation of an equation for the twist Ej, is straightforward. The case
J(E) # 0, 1728 was already done in (2.4). We will do j(E) = 1728 here, and
leave j(E) = O for the reader.

Thus let D e K*, choose a fourth root 6 € K of D, and define a cocycle

E:Ggx— M £, = 8%/d.
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We also fix an isomorphism

[ 1:pe—>Aw(E)  [C1(x p) = (x, Ly).

Then Ej, corresponds to the cocycle o — [,] in H '(Gg/x» Aut(E)).
Now the action of G ¢ on the twisted field K(E); is given by

=80 xT=8x ¥y =
The subfield fixed by Ggk thus contains the functions
X=62% and Y=951y,
and these functions satisfy the equation
Y?=DX3 + AX.

This gives the desired equation for the twist E;/K, and the substitution
(X, Y)=(D"'X’, D"'Y’) puts it into the required form.

The corollary follows by combining the proposition and (5.3c) with

(I11.1.4bc), which says that up to K-isomorphism, the elliptic curves E/K are
in one-to-one correspondence with their j-invariants j(E)e K. O

§6. The Curve Y2 = X3 + DX

Many of the deepest theorems and conjectures in the arithmetic theory of
elliptic curves have had as their testing grounds one of the families of curves
given in (5.4i, ii, iii). To illustrate the theory that we have developed, let us see
what we can say about the family of elliptic curves E/Q with j-invariant
J(E) = 1728.

One such curve is given by the equation

yE=x*+x;
and then from (5.3) and (5.4) we see that every such curve has an equation
E:y?> =x*+ Dx,

where D ranges over representatives for the cosets in @*/Q**. Thus if we
specify that D be a fourth-power-free integer, then it is uniquely determined
by E. Notice that the equation for E has discriminant A(E) = —64D?, so E
has good reduction at all primes not dividing 2D.

Let p be a prime not dividing 2D, and consider the reduced curve E over
the finite field F,. From (V.4.1), E is supersingular if and only if the coefficient
of x?~1in (x* + Dx)®~ V72 is zero. In particular, if p = 3 (mod 4), then E/F, is
supersingular; and so from (exer. 5.10) we conclude that

#EF,)=p+1 forallp=3(mod 4).

(See exer. 10.17 for an elementary derivation of this result.)
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Next we recall (VIL.3.5) that if p # 2 and E has good reduction at p, then
E,..(Q) injects into the reduction E(F,). It follows from above that # E,,.,(Q)
divides p + 1 for all but finitely many primes p = 3 (mod 4); hence #E,, . (Q)
divides 4. Since (0, 0)e E(Q)[2], the only possibilities for E,,(Q) are Z/2Z,
(Z/2Z)?, and Z/4Z.

Now E[2] < E(Q) if and only if the polynomial x> + Dx factors com-
pletely over Q, so if and only if —D is a perfect square. Similarly, E(Q) will
have a point of order 4 if and only if (0, 0) e 2E(Q). The duplication formula
for E reads

x(2P) = (x? — D)?/(4x> + 4Dx),
so we see that
(0,0) = [2](D'?, (4D%)'™).

Hence assuming that D is a fourth-power-free integer, we conclude that
(0, 0)e 2E(Q) if and only if D = 4; in which case (0, 0) = [2](2, +4).

Next, since E(Q) contains a 2-torsion point, we may use (4.9) to try to
calculate E(Q)/2E(Q). E is isogenous to the curve

E:Y?=X3-4DX
via the isogeny
¢$:E-E  4(x,y) = (y*/x* y(D — x*)/x?).

The set S « Mg consists of co and the primes dividing 2D; and for each
de Q(S, 2), the corresponding homogeneous space C,;/Q e WC(E/Q) is given
by the equation

C;:dw? =d? — 4Dz*,
Similarly, working with the dual isogeny ¢: E' > E leads to the homoge-
neous spaces C;/Q € WC(E'/Q) with equations

C;:dW? =d* + DZ*.

(Actually (4.9) leads to the equation dW? = d% + 16DZ*, but we are free to
replace Z by Z/2.)

Let v(2D) be the number of distinct primes dividing 2D. Since Q(S, 2) is
generated by — 1 and the primes dividing 2D, we have the estimate

dim, E(Q)/2E(Q) < 2 + 20(2D) — dim, E(Q)[$] + dim, ¢(E(Q)[2]).

Now clearly E(Q)[$] = Z/2Z. Next, to deal with the other two terms, we
consider two cases.

(1) E@)[2] =z7/27.
Then #(E(Q)[2]) = 0 and dim, E(Q)/2E(Q) = rank E(Q) + 1.
Q) E(@Q)[2] > 2727z x Z/27.
Then #(E(Q)[2]) = Z/2Z and dim, E(Q)/2E(Q) = rank E(Q) + 2.



§6. The Curve Y2 = X3 + DX 311

Substituting these values into the above inequality yields in both cases the
estimate

rank E(Q) < 20(2D).

Notice that we have not yet checked any of the homogeneous spaces C, or
C; for local triviality. But by inspection, if d < 0, then either C;(R) = J or
Ci(R) = . Thus our estimate may be cut by 1, giving the slight improve-
ment

rank E(Q) < 2v(2D) — L.

We summarize the preceding discussion in the following proposition.

Proposition 6.1. For each fourth-power-free integer D, let E,/Q be the elliptic
curve

Ep:y* =x*+ Dx.

Z/47 ifD=4

(@) Ep ors(Q) 2! Z/2Z x Z/2Z if —D is a perfect square
Z)27 otherwise.

(b) rank Ep(Q) < 20(2D) — 1.

Let us now restrict attention to the special case that D = p is an odd prime.
Then the following proposition gives a complete description of the resulting
Selmer groups and deduces corresponding upper bounds for the rank of E(Q)
and the dimension of III(E/Q)[2].

Proposition 6.2. For each odd prime p, let E,/Q be the elliptic curve
E,:y*=x>+ px,

and let ¢ : E, — E, be the isogeny of degree 2 with kernel E,[¢] = {0, (0, 0)}.

(a) E, (@) = 2/27.

(b) S9E,/Q) = Z/27.

727 if p=17,11 (mod 16)
SY(E,/Q) =! (Z2Z)* if p=3,5,13,15(mod 16)
(Z)22)® if p=1,9 (mod 16).
0 if p=17,11 (mod 16)
(c) rank E,(Q) + dim, INE/Q)[2] =< 1 if p=3,5,13, 15 (mod 16)
2 if p=1,9 (mod 16).

Proor. To ease notation, we let E = E, and E' = E,.
(a) This was proven above (6.1a).
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(b) As usual, we take representatives {+1, +2, +p, +2p} for the cosets in
Q(S, 2). From (4.7), the images of the 2-torsion points in the Selmer groups
are given by

—peSPE/Q) and peSHE/Q).

Further, if d < 0, then by inspection C)(R) = &, so d ¢ SO(E'/Q).

Next we consider the homogeneous space

Cy:2W? =4 + pZ*.
If (Z, W)e Cy(Q,), then necessarily Z, WeZ,; and then we conclude that
Z =0 (mod 2), so W = 0 (mod 2), so 0 = 4 (mod 8). Therefore C5(Q,) = &,
and hence 2 ¢ S9(E'/Q). We now know that
peSHE/Q)  —1,+2, —p, —2p¢ SUE/Q),

from which it follows that SP(E'/Q) = {1, p} = 7/27.

It remains to calculate S?(E/Q); and from the form the answer takes, it is
clear that there will be many cases to consider. The best approach is to
consider the various deQ(S, 2), and check for which primes the homoge-
neous space C, is locally trivial. Note that from (4.9), d will be in S?(E/Q) if
and only if C4(Q,) # & and Cy(Q,) # . (Le. It suffices to check whether C,
is locally trivial at the primes p and 2.) We will make frequent use of Hensel’s
lemma (exer. 10.12), which gives a criterion for when a solution of an equa-
tion modulo g" lifts to a solution in Q,.

C_,:w”+1=4pz*

(@) If (z, weC_,(Q,), then necessarily z, weZ,, and so w?= —1 (mod p).
Conversely, by (exer. 10.12), any solution to w? = — 1 (mod p) will lift to a
point in C_,(Q,). Therefore

C.1Q)# I < p=1(mod4).

(ii) From (i), we may assume that p=1 (mod 4). If p = 1 (mod 8), we let
(z, w) = (Z/4, W/8). Then our equation becomes W? + 64 = pZ*, and the
solution (Z, W) = (1, 1) to the congruence

W2 + 64 = pZ* (mod 8)

lifts to a point in C_,(Q,). Similarly, if p = 5 (mod 8), then we let (z, w) =
(Z/2, W/2); and again we have a solution (Z, W) = (1, 1) to a congrunce

W? + 4 = pZ* (mod 8)

which lifts to a point in C_,(Q,). This proves that if p = 1 (mod 4), then
C,(Q #d.
Combining the results of (i) and (ii) yields

—1eS9E/Q) < p=1(mod4).

d= -2 C_,:w? +2=2pz*
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@) If (z, w)eC_,(Q,), then z, weZ, and w? = —2 (mod p). Conversely, a
solution to w? = —2 (mod p) lifts to a point of C_,(Q,). Therefore

C,Q)#JJ <= p=1,3(modS3)

(i) If (z, w)eC_,(Q,), then z, weZ, and w =0 (mod 2). Letting (z, w) =
(Z,2W), we must check if there are any solution Z, WeZ, to the
equation

2W? + 1 = pZ*.
From (i), it suffices to consider those primes p = 1, 3 (mod 8). Now the

congruence 2W? + 1 = pZ* (mod 16) has no solutions if p = 11 (mod 16),
S0

p=11(mod 16) = C_,(Q,) = .

On the other hand, in order to use (exer. 10.12), we must find solutions
modulo 2° = 32 if we want to lift them to points in C_,(Q,). The follow-
ing table gives solutions (Z, W) to the congruence

2W? + 1 = pZ* (mod 32)

for each of the remaining values of p (mod 32).

p (mod 32) 1 3 9 17 19 25
z,w) ©, 1) G, 11) (1,2) (3,0 (1,3) G2

Combining (i) and (ii), we have proven that

—2eSYE/Q) < p=1,3,9(mod 16).
d=2 C,:w?=2—2pz*

This is entirely similar to the case d = —2 just completed. A point
(z, w)e C,(Q,) will have z, we Z,, and w? = 2 (mod p), and any such solution
will lift, so

CQ)#F < p=1,7(mod3)

Now if p = 1 (mod 8), then from above —1, —2eS¥(E/Q), so certainly
2e SY(E/Q). It remains to consider the case p = 7 (mod 8).
A point (z, w)e C,(Q,) will have (z, w) = (Z, 2W) with Z, We Z, and

2W?=1-—pZ*.

There are no solutions modulo 16 if p = 7 (mod 16). On the other hand, if
p = 15 (mod 16), then the solutions

2:32=1—p-1*(mod 32) if p=15(mod 32),
2-12=1—p-1*(mod 32) if p = 31 (mod 32),
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lift to points in C,(Q,). Putting all of this together, we have shown that
2eSPE/Q) < p=1,9,15(mod 16).

We have now determined exactly which of —1, +2 are in SY(E/Q) in
terms of the residue of p modulo 16. Since also —pe SY(E/Q), it is now a
simple matter to reconstruct the table for SY(E/Q) given in (b). [In fact, one
obtains even more information, namely a precise list of which elements of
Q(S, 2) are in SE/Q).]

(c) We use (4.7) and (4.2a) to compute

dim, E'@)[$1/$(E(@)[2]) + dim, E(Q)/2E(Q)
= dim, E'(Q)/$(E(Q)) + dim, E(Q)/$(E(Q))
= dim, SY(E/Q) — dim, II(E/Q)[4]
+ dim, SYE//Q) — dim, TI(E/Q)[$].
From (a), we see that
E@I[41/4E@)[2]) = Z/2Z and E(Q)2E(Q) = (2/22)* "< F@,
Further, since E(Q)/$E/(Q) = S“£’(E’/@) ~ 7/27 from (b), the exact sequence
(4.2a) implies that III(E'/Q)[¢] = 0. Hence the exact sequence
0 - II(E/Q) [¢] — WI(E/Q)[2]  M(E/Q)[§] = 0

gives

dim, II(E/Q)[2] = dim, II(E/Q)[4];
and combining this with the above results yields
1 + (1 + rank E(Q)) = dim, S9(E/Q) + dim, S"”’(E’/@) — dim, II(E/Q)[2].
Now (c) is immediate from the calculation of S¥Y(E/Q) and SP(E'/Q) given in
(b). O
Corollary 6.2.1. There are infinitely many elliptic curves E/Q with

rank EQ)=0 and MI(E/Q)[2]=0.

Proor. From (6.2), the elliptic curves y*> = x> + px with p = 7, 11 (mod 16)
have this property. O

Remark 6.3. One of the consequences of (6.2) is that if p is a prime with p =
5 (mod 8), then the elliptic curve
E,:y*=x*+px

has rank at most 1. Further, examining the proof of (6.2), it will have rank 1 if
and only if the homogeneous space
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C_:w?+1=4pz*

has a Q-rational point; and if there is such a point, then we can find a point of
infinite order in E(Q) by using the map (cf. 4.9)

doy:C_,»E  Joy(z, w) = (w/4z?, ww? + 2)/82°).

Taking the first few values for p, one does indeed find a point in C_,(Q), and
these give the points of infinite order in E(Q) listed in the following table.

p 5 13 29 37
x,y)  (1/4,9/8)  (9/4,51/8)  (25/4,165/8)  (22801/900, 3540799/27000)

Suppose that we knew, a priori, that the Shafarevich—Tate group III(E,/Q)
were finite; or even that its 2-primary component were finite. Then the
existence of the Cassels’ pairing (4.14) would imply in particular that
dim, II(E,/Q)[2] is even, and so that E,(Q) has rank 1 for all primes p =
5 (mod 8). (This would also follow from a conjecture of Selmer ([Sel 2]) con-
cerning the difference in the number of “first and second descents”. It is also a
consequence of the conjectures of Birch and Swinnerton-Dyer (C.16.5). The
fact that rank E,(Q) = 1 has been verified numerically for all such primes less
than 1000 ([Br—C]). To give the reader an idea of the magnitude of the
solutions which can occur, we mention that for p = 877, the Mordell-Weil
group of the elliptic curve

y*=x*+877x
has as generators the points (0, 0) and (x,, y,), where x, = r*/s? with
r =612, 776, 083, 187, 947, 368, 101
and
s =17, 884, 153, 586, 063, 900, 210.

Similarly, if p = 3, 15 (mod 16) and the 2-primary component of II[(E,/Q)
is finite, then (6.2) and (4.14) again imply that E,(Q) has rank 1. The fact that
the rank is 1 in these cases may be verified numerically by searching for
points in C_,(Q) and C,(Q) respectively. (See, for example, the tables in
[B-Sw 1].)

Remark 6.4. If p =7, 11 (mod 16), then (6.2c) says that E,(Q) has order 2;
while if p = 3, 5, 13, 15 (mod 16), then (6.2c) combined with the reasonable
conjecture that II(E,/Q)[2*] is finite tells us that E (Q) = Z/2Z x Z.In the
remaining case, namely p = 1 (mod 8), there appear to be two possibilities.
First, E,(Q) might have rank 2. This can certainly occur. For example, the
curves

y2=x*+73x and y*=x>+ 89x
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both have rank 2, independent points being given by
(9/16, 411/64), (36, 222)e E,3(Q)
and
(25/16, 765/64), (4/9, 170/27) € Eqo(Q).

Second, E,(Q) might have rank 0, which would mean that II(E,/Q)[2] =
(Z/2Z)*. (Note that rank E,(Q) = 1 is precluded if we assume that Il is finite.)
The following proposition gives a fairly general condition under which the
second possibility holds. It also provides our first examples of homogeneous
spaces which are everywhere locally trivial, but have no global rational
points.

Proposition 6.5. Let p = 1 (mod 8) be a prime for which 2 is not a quartic
residue.
(a) The curves

w2+ 1=4pz* w2+2=2pz* wr4+2p*=2

have points defined over every completion of Q, but have no Q-rational points.
(b) The elliptic curve

E,:y*=x+px
satisfies

rank E,(Q) =0 and II(E,/Q)[2] = (2/22)>

Remark 6.5.1. Any prime p = 1 (mod 8) can be written as p = A% + B? with
A, Be Z satisfying AB = 0 (mod 4). A theorem of Gauss, which we will prove
below (6.6), says that 2 is then a quartic residue modulo p if and only if
AB = 0 (mod 8). Thus for example, 2 is a quartic non-residue for the primes

17 =12 + 42 41 = 5% + 42 97 =9% +42 193 = 7% + 123

and so these primes satisfy the conclusions of (6.5).

Proor. During the course of proving (6.2b), we showed that the Selmer group
SY(E,/Q) = Q*/Q*? is given by {+1, +2, +p, +2p}. Further, —p is the
image of the 2-torsion point (0, 0)e E,(Q). Thus in order to show that
II(E,/Q)[¢] has order 4, it suffices to prove that the homogeneous spaces
C_,, C,;, and C_, have no Q-rational points. These are the three curves listed
in (a); and so once we prove that they have no Q-rational points, all of (6.5)
will follow from (6.2). The following proof is based on ideas of Lind and
Mordell ([Lin], [Ca 7]. See also [Rei], [Mo 3], and [B-Sw 1].)

Case I.
Cip: tw?=2-2pz*
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Suppose that (z, w)e C,(Q). Writing z and w in lowest terms, we see that
they necessarily have the form (z, w) = (r/t, 2s/t%), where r, s, t € Z satisfy

+2s2 =t* —pr* and gcd(r,s,t) = 1.

Let g be an odd prime dividing s. Then (p|q) = 1, so (q|p) = 1 by quadratic
reciprocity. (Here (a|b) is the Legendre symbol.) Since also (2| p) = 1, we see
that (s|p) = 1, so (s2|p)s = 1. (Le. s is a quartic residue modulo p.) Now the
above equation implies that (4+2|p), = 1. But —1 is always a quartic residue
for p = 1 (mod 8), while by assumption 2 is a quartic non-residue modulo p.
This contradiction proves that C,,(Q) = &.

Case I1.
C_,:—w?>=1-4pz*

Writing (z, w)e C_,(Q) in (almost) lowest terms as (z, w) = (r/2t, 5/2t%), we
have

sP4+ 4t =pr*t  ged(r, )= 1.

(We do not preclude the possibility that r is even.) Since p = 1 (mod 4), there
are integers A = 1 (mod 2) and B = 0 (mod 2) such that

p=A?+ B2
It is then a simple matter to verify the identity
(pr? + 2Bt?)? = p(Br? + 2t%)* + A%s?,
from which we obtain the factorization
(pr* + 2Bt* + As)(pr* + 2Bt — As) = p(Br® + 2t*)%.

Now it is not difficult to check that ged(pr? + 2Bt? + As, pr* + 2Bt*> — As)
is either a square or twice a square. (Up to a multiple of 2, it equals
gcd(4, 5)2) Hence the above factorization implies that there are integers u
and v satisfying

pr® + 2Bt* + As = pu? 2pu?
pr2+2Bt*F As = v* or W?
Bri+2t2 = w 2up.

Eliminating s from these equations, we obtain the two systems
2pr? + 4Bt? = pu* + v?
Br? + 2t% = uv;
and
pr? + 2Bt = pu® + v?
Br? + 2t* = 2uv.
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Now the fact that p = 1 (mod 8) and 2 is a quartic non-residue modulo p
means that B = 4 (mod 8). (This will be proven below (6.6).) Reducing our
two systems of equations modulo 8, it is now a simple matter to verify that in
both cases, any solution must satisfy r = ¢t = 0 (mod 2). This contradicts our
original assumption that gcd(r,t) =1, and so completes the proof that
C.(@Q=ga. a

We now prove the theorem of Gauss giving the quartic character of 2
which was used above. The proof that we give is taken from [Mo 3].

Proposition 6.6. Let p be a prime, p = 1 (mod 8). Write p = A* + B? as a sum
of two squares. Then

@2Ip)s = (=142,
(Le. 2 is a quartic residue modulo p if and only if AB = 0 (mod 8).)

Proor. Using the fact that 42 + B2 = 0 (mod p), we compute
(A + B)P~12 = (24B)?~ 14 (mod p)
= 20~ 4 )P~ DB Q=12 (mod p).
In terms of residue symbols, this becomes
(4 + Blp) = (= 1)®~ V32| p)4(A| p).

By symmetry, we may assume that A is odd; and then the fact that p =
1 (mod 4) implies that

(4]p) = (plA) = (B*t4) = L.

Hence

(4 + Blp) = (=1)"" 12| p)s.
Finally, we observe that

(4 + Blp) = (pl4 + B) = (2|4 + B)(2p|4 + B)
= (2|4 + B) = (— 1) “+»*- 18,
since the identity
2p=(A+ B)?*+ (A — B)*  implies that 2p|4 + B) = 1.
Substituting this above yields
2Ip)y = (—1),

where

e=((A4+ B)?—1)/8 — (p — 1)/8 = AB/4. O
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EXERCISES

10.1.

10.2.

10.3.

10.4.

Let ¢: E/K — E'/K be an isogeny ofA degree m of elliptic curves over an arbi-
trary (perfect) field. Assume that E'[$] < E'(K). Generalize (1.1) as follows.
(a) Prove that there is a bilinear pairing

b: E(K)/$(E(K)) x E'[$1 - K(S, m)
defined by
4(84(P), T) = d¢(b(P, T)).
(Here e, is the generalized Weil pairing (exer. 3.15), and 041 E'(K) —
H'(Ggx, E[#]) is the usual connecting homomorphism.)
(b) Prove that this pairing is non-degenerate on the left.
(c) For TeE'[¢], let f1, gr€ K(E') be functions satisfying
div(fp) =m(T) —m(©0)  frod=g}.
Prove that
b(P, T) = fz(P) (mod K*™) provided P # O, T
(d) In particular, if deg(¢) = 2, so E'[$] = {0, T}, then
b(P, T) = x(P) — x(T) (mod K*2).
(We thus recover part of (4.9).)

Let K be an arbitrary (perfect) field, let E/K be an elliptic curve, and let C, /K

and C,/K be homogeneous spaces for E/K.

(a) Prove that there exists a homogeneous space C;/K for E/K and a
morphism

¢:C1 X CZ_’C3
defined over K such that for all p, € Cy, p,€C,, and P,, P,€E,
¢(py + Pi,py + P)) = ¢(p1,pr) + P, + P

(b) Prove that C, is unique up to equivalence of homogeneous spaces.
(c) Prove that

{Ci} +{Co} = {C3},
the sum taking place in WC(E/K).

Let C/K be a curve of genus 1 defined over an arbitrary (perfect) field.

(a) Prove that there exists an elliptic curve E/K such that C/K is a homo-
geneous space for E/K. [Hint: Use exercise 3.22 to show that C/Ke
Twist(E/K). Then find an element {£} € H'(Gg/x, Aut(E)) so that C/K is a
homogeneous space for the twist of E by £.]

(b) Prove that E is unique up to K-isomorphism.

Let K be an arbitrary (perfect) field and E/K an elliptic curve.
(a) Prove that there is a natural action of Autg(E) on WC(E/K) defined as
follows:
Let {C/K, u} e WC(E/K) and o € Autg(E). Then
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10.5.

10.6.

10.7.

10.8.

10.9.
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{C/K, u}* = {C/K, po(l x a)}.
[Le. Take the same curve C, but define a new action of E on C by the rule

u*(p, P) = u(p, oP).]

(b) Conversely, if {C/K, p} and {C/K, y'} are elements of WC(E/K), prove that
there exists an a € Autg(E) such that u’ = po(1 x a).

(¢) Conclude that for a given curve C/K of genus 1, there are only finitely
many non-equivalent ways of making C/K into a homogeneous space. In
particular, if j(C) # 0, 1728, then there are at most two. (See also exer. B.5.)

Let ¢: E/K — E'/K be a separable isogeny of elliptic curves defined over an

arbitrary (perfect) field K, and let C/K be a homogeneous space for E/K. Then

the finite group E[¢] acts on C; let C' = C/E[¢] be the quotient curve (exer.

3.13).

(a) Prove that C' is a curve of genus 1 defined over K.

(b) Prove that C'/K is a homogeneous space for E'/K; and that under the
natural map ¢: WC(E/K) - WC(E'/K), we have ¢{C/K} = {C'/K}.

(¢) In particular, if {C/K} e WC(E/K)[4], then C’ is isomorphic to E’ over K.
Prove that this isomorphism can be chosen so that the natural projection
C - C/E[¢] =~ E' is the map ¢ o 0 defined in (4.6a).

W C Over Finite Fields. Let K be a field with g elements.
(a) Let C/K be a curve of genus 1. Prove that
|#C(K)—q - 11<2/q.

[Hint: Let ¢:C - C be the g"™-power Frobenius map, and consider the
map

C—E p-p—4¢(p),

where C/K is a homogeneous space for E/K. Now mimic the proof of
(v.1.1).]
(b) Let E/K be an elliptic curve. Prove that WC(E/K) = 0.

WC Over R. Let E/R be an elliptic curve.

(a) Prove that WC(E/R) ~ Z/27.

(b) Find an equation for a homogeneous space representing the non-trivial
element of WC(E/R) in terms of a given Weierstrass equation for E.

Let E/K be an elliptic curve, m > 2 an integer, and assume that E[m] = E(K).
Let ve My be a prime not dividing m. Prove that the restriction map

WC(E/K)[m] - WC(E/K,)[m]
is surjective. [Hint: Show that the map on the H!(*, E[m])’s is surjective.]

Let E/K be an elliptic curve, let T'e E[m], and suppose that the field L = K(T')
has maximal degree, namely [L: K] = m? — 1. Consider the chain of maps

é res
a: E(K) - H'(Ggjx, E[m]) ~ H'(Ggp, E[m]) » H' (G 1, B) = L*/L*™.
Seemlés T)
(Here e,, is the Weil pairing.)
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(@) Let freL(E) be as in (1.1d). (Ie. div(fy) = m(T) — m(0) and fro[m]e
L(E)*™.) Prove that

a(P) = fr(P) (mod L*").
(b) Prove that for all Pe E(K),
Nyx(a(P))e K*™.

(c) Let S = M, be a set of places of L containing all archimedean places, all
places dividing m, and all places at which E/L has bad reduction. Show that
if Pe E(K) and ve M, with v ¢S, then

ord,(a(P)) = 0 (mod m).

(d) For m = 2, prove that the kernel of « is exactly 2E(K). Hence in this case
there is an injective homomorphism from E(K)/2E(K) into the group

{ae L*/L*?: Ny ,x(a)e K** and ord,(a) = 0 (mod 2) for all v¢ S}
given by the map
P — x(P) — x(T).

This map may often be used to compute E(K)/2E(K).
[Hint: Write out x(P) — x(T) = (r + sx(T) + tx(T)?), and use the resulting
relations onr, s, t € K to show that P is in 2E(K).]

(e) Use (d) to compute E(Q)/2E(Q) for the curve

E:y>+y=x>—x

[Hint: Let K/Q be the totally real cubic extension generated by a root of
4x3 — 4x + 1 = 0. Start by showing that K has class number 1, and that
every totally positive unit in K is a square.]

10.10. Let C/K be a curve of genus 1, and suppose that C(K,) # & for every ve M.
Prove that the map
Divg(C) - Picg(C)
is surjective. [ Hint: Take Galois cohomology of the exact sequence
1 - K* - K(C)* - Div(C) - Pic(C) — 0.
Use Noether’s generalization of Hilbert’s theorem 90,
HI(GE/K, K(C)*) =0,

and the (cohomological version) of the Brauer—Hasse—Noether theorem
([Ta §9.6]), which says that an element of H (G x, K*) is trivial if and only if
it is trivial in H*(Gg x,, K7) for every ve My.]

10.11. Index and Period in WC. Let K be an arbitrary (perfect) field, E/K an elliptic
curve, and C/K a homogeneous space for E/K. Define the period of C/K to be
the exact order of {C/K} in WC(E/K); and the index of C/K to be the degree
of the smallest extension L/K for which C(L) # . (E.g. (3.3) says precisely
that the period equals 1 if and only if the index equals 1.)

(@) Prove that the period may also be characterized as the smallest integer
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10.12.

10.13.

10.14.

10.15.
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m > 1 for which there exists a point pe C such that p’ — pe E[m] for
every o € Gg k-

(b) Prove that the index may also be characterized as the smallest degree
among the positive divisors in Divg(C).

(c) Prove that the period divides the index.

(d) Prove that the period and the index are divisible by the same set of primes.

(e)* Give an example with K = Q showing that the period may be strictly
smaller than the index.

(f) Prove that if K is a number field, and if C/K represents an element of
I(E/K), then the period and the index are equal. [Hint: Use (a), (b), (c),
and exer. 10.10.]

Hensel’s Lemma. The following version of Hensel’s lemma is often useful for
proving that a homogeneous space is locally trivial. Let R be a ring which is
complete with respect to a discrete valuation v.

(a) Let f(T)eR[T] and a, € R satisfy

v(f(ao)) > 20(f"(ao))-
Define a sequence a, € R by
Upi1 = Gy — f(a,)/f"(ay).
Prove that {a,} converges to an element a€ R satisfying
fl@=0 and wv(a— ag) > v(flao)/f'(ap)’) > 0.
(b) Now let F(X,,...,Xy)eR[X,..., Xy], and suppose that the point
(ay, ..., ay)e R satisfies
v(F(ay, ..., ay)) > 20((0F/0X;)(ay, ..., ay))

for some 1 < i < N. Then F has a root in R".
(c) Show that the curve

3X3 +4Y3+523=0
in P? has a point defined over @, for every prime p.

Use (1.4) to compute E(Q)/2E(Q) for each of the following elliptic curves.
(@) E:y?>=x(x— 1)(x + 3).
(b) E: y? = x(x — 12)(x — 36).

Use (4.9) to compute E(Q)/2E(Q) for each of the following elliptic curves.
(@) E:y* = x>+ 6x* + x.

(b) E:y* = x3 + 14x? + x.

(© E:y*=x>+9x>—x.

Let E/K be an elliptic curve, £ € H' (Ggx, Aut(E)), and E, the twist of E corre-
sponding to &. Let ve My be a finite place for which E has good reduction.
Prove that E; has good reduction at v if and only if £ is unramified at v. (See
VIII §2 for the definition of unramified.) [ Hint: If the residue characteristic is
not 2 or 3, then one can easily use explicit Weierstrass equations. In general,
use the criterion of Néron—Ogg—Shafarevich (VIL.7.1).]
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10.16.

10.17.

10.18.

10.19.

10.20.

Let E/K be an elliptic curve, let De K* be such that L = K (\/B) is a quadratic
extension of K, and let E,,/K be the twist of E/K given by (5.4(i)). Prove

rank E(L) = rank E(K) + rank E(K).

Let p = 3 (mod 4) be a prime, and let De F}.
(a) Show directly that the equation

C:v*=u*—4D

has p — 1 solutions (u, v)elF, x F,. [Hint: Since p = 3 (mod 4), the map
u - u* is an automorphism of F}.]
(b) Let E/IF, be the elliptic curve

E:y*=x*+ Dx.
Use the map
¢:C—>E  $u,v)=0Gw? + v),1u@?® + v)
to prove that
#EF,)=p+ 1

Do a computation analogous to that of (6.2) to determine the Selmer groups

and a bound for the ranks of the following families of elliptic curves E/Q. (Here

p is an odd prime.)

(a) E:y? = x® + 2px. (The curve with p = 41 has rank 3))

(b) E:y* = x> + p*x.

Let E/Q be an elliptic curve with j(E) = 0.

(a) Prove that there is a unique sixth-power-free integer D such that E is given
by the Weierstrass equation

E:y*=x3+D.
(b) Let p = 2 (mod 3) be a prime not dividing 6D. Prove that
#E([Fp) =p+ L

(c) Prove that #E, . (Q) divides 6.

(d) More precisely, show that E,(Q) is given by the following list.
1 D is not a square or a cube
Z/2Z Disacube, D # 1

Z/3Z Disasquare,D # 1

7/6Z D =1, —432.

Eos(@) =

Let A be a finite abelian group, and suppose that there exists a bilinear,
alternating, non-degenerate pairing

T:AxA-Q/Z

Prove that # A is a perfect square.
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Elliptic Curves in Characteristics 2 and 3

In this appendix we prove some of the results for elliptic curves in character-
istics 2 and 3 which were omitted in the main body of the text. To simplify the
computations, we start by giving normal forms for the Weierstrass equations
of such curves.

Proposition 1.1. Let E/K be a curve given by a Weierstrass equation. Then
under the boxed assumptions, there is a substitution

x=ux+r y=udy +u’sx’+t withueK*andr,s teK

such that E/K has a Weierstrass equation of the indicated form.

(a) | char K # 2,3

‘ 4a3
Pexaxta A= 162 = 1T

(b) [char K=3 and j(E)#0 |

yVP=x3+a,x>+as A= —adag j= —a3/as

[charK=3 and j(E)=0]

yV=x*+ax+as A= —a} j=0

(c) fchar K=2 and j(E) ;ém

V2+xy=x>4+a,x>+as A=as j=1/ag
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[charK=2 and j(E)=0 |

2+ asy = x> + a,x + ag A=a} j=0.

Proor. (a) See (I1I §1).
(b) Take a general Weierstrass equation and complete the square on the left.
This gives an equation of the form

y2=x3+ a,x? + a,x + ag
with invariants
A =adla: —adag—a3 j=ai/A

(Remember that char K = 3.) If j = 0, then a, = 0, so the equation already
has the right shape. On the other hand, if j # 0, then a, # 0; and so the
substitution x = x’ + a,/a, will eliminate the linear term.

(c) Again starting with a general Weierstrass equation

y2 4 a;xy +a; = x> + a,x* + a, + ag,
one easily computes (in characteristic 2)
j=ai*/A.
If j # 0,50 a; # 0, then the substitution
x=aix' +azfa;  y=aly +(aia, + a3)/aj

gives an equation in the desired form. Similarly, if j = a; =0, then the
substitution

/

x=x+a, y=y

will have the desired effect.

(Note that there is no deep theory involved in finding these substitutions.
One merely looks at the transformation formulas (II1.1.2), sets various coeffi-
cients equal to 0 or 1, and chooses appropriate u, r, s, t.) O

It is now a simple matter to complete the proofs of (III.1.4) and (II1.10.1),
parts of which we restate here.

Proposition 1.2. (a) A curve given by a Weierstrass equation is non-singular if
and only if the discriminant of the equation is non-zero.

(b) Two elliptic curves E/K and E'/K are isomorphic over K if and only if they
have the same j-invariant.

(c) Let E/K be an elliptic curve. Then Aut(E) is a finite group of order

2 if jJ(E) # 0, 1728
4 if j(E)= 1728 and char K # 2,3
6 if j(E)=0and char K # 2,3
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12 if j(E) =0= 1728 and char K = 3

24 if j(E) = 0= 1728 and char K = 2.
(See also exercise A.1.)
Proor. (a) From the proof of (IIl.1.4a), all that remains is to show that if
char(K) = 2 and A = 0, then the curve is singular. But this is immediate from
the normal forms given in (1.1c).
(b), (c) Again referring to the proofs of (I1I1.1.4b) and (II1.10.1), we need only

deal with the cases of char(K) = 2 or 3. We use the normal forms given in
(1.1b,c) and consider 4 cases.

Case I. char K = 3 and j(E) # 0. E and E’ have Weierstrass equations of the
form

Y2 =x3+ a,x* + a,.
The only substitutions preserving this sort of equation are

x=ulx  y=udy.

Since j(E) = j(E'), we have aay = a7 ag # 0, so taking u® = a,/a, will give an
isomorphism from E to E'. Further, if E = E’, then we must have u? = 1, so
Aut(E) = {+1}.

Case I1. char K =3 and j(E) = 0. E and E' are given by equations of the
form
Y2 =x*+ a,x + ag.
The substitutions preserving this form look like
x=ux+r y=udy

Note we have a,, a, # 0. Then an isomorphism from E to E’ is given by
choosing u and r to satisfy

u*=dyfa, 1+ aur+ag—ubds=0.

Further, if E = E/, then an automorphism of E has u* =1 and r* + a,r +
(1 — u?)ag = 0. Since a, # 0, there are exactly 12 such pairs (4, r) making up
Aut(E).

Case 111. char K = 2 and j(E) # 0. In this case E and E’ are given by equa-
tions of the form
P2+ xy=x>+a,x? + a.
The substitutions preserving this form look like
x=x y=y +sx.

Since j(E) = j(E'), we have g, = ag # 0, so an isomorphism from E to E' is
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given by taking s to be a root of the equation
s’+s+a,+d,=0.
Similarly, the automorphisms of E are obtained by taking se {0, 1}.

Case IV.char K = 2 and j(E) = 0. E and E’ have equations of the form
Vi +azy=x>+a,x + ag,
and allowable substitutions look like
x=ulx+5 y=udy +u’sx +1t.

By assumption, as, a3 # 0, so to map E to E', we choose u, s, t to satisfy the
equations

w=dsla;  s*+azs+a,—uta,=0
t? + ast + s® + ays® + ag — ubdy = 0.

Finally, the automorphism group of E is given by the set of triples (u, s, t)
satisfying the equations

w=1 s*4+ays+(1—wa, =0 t*+ast+s°+a,5*°=0.
Since ay # 0, we see that Aut(E) has order 24. ]
The next proposition gives a normal form for Weierstrass equations which

is similar to Legendre form, but is valid in characteristic 2. Having done this,
we can then easily complete the proofs of (VIL.5.4c) and (VILS5.5).

Proposition 1.3 (Deuring Normal Form). Let E/K be an elliptic curve over a
field with char K # 3. Then E has a Weierstrass equation over K of the form

E,:y*+oaxy+y=x> «aek, a®#27.
This equation has discriminant and j-invariant

A=a3-27 j=a@a®—24)>3/(a® - 27).
Proor. The computation of A and j for E, is an exercise. In order to show
that E has an equation of the form E,, one can find appropriate substitutions.

However, using (1.2b), we have a quicker route available. Thus let e K be a
solution to the equation

233 — 24)° — (o3 — 27)j(E) = 0.

Since char(K) # 3, we see that «® # 27, so E, will be an elliptic curve with the
same j-invariant as E. If follows from (1.2b) that E and E, are isomorphic
(over K). O

Corollary 1.4. Let E/K be an elliptic curve defined over a local field. (1.e. K is
given with a discrete valuation.)
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(a) There exists a finite extension K'/K such that E has either good or split
multiplicative reduction over K'.
(b) E has potential good reduction if and only if its j-invariant is integral.

PRroor. Let R be the ring of integers of K, .# its maximal ideal, and k = R/.#
its residue field. From the proofs of (VIL.5.4c) and (VIL.5.5), we are left to deal
with char(k) = 2. In any case, we may assume that char(k) # 3. Replacing K
by a finite extension, we choose an equation for E in Deuring normal form

E:y’+oaxy+y=x3 a#27.
This equation has
co=a@®—24) and A=o>-27.

(a) We consider three cases.

Casel. aeR,a® # 27 (mod #). Then A # 0 (mod .#), so the given equation
has good reduction.

Case II. aeR, «®* =27 (mod #). Then A=0 ‘mod .#) and ¢, = 81 #
0 (mod .#), so by (VILS5.1b), the given equation for E has multiplicative
reduction. To obtain split multiplicative reduction then requires, at worst,
taking a quadratic extension of K.

Case 111. a¢ R. Let = be a uniformizer for R, and choose an integer r > 1 so
that n"a € R*. Then the substitution x = n~2"x’, y = n~ 3y’ gives an equation

Vi Xy + n¥y =x"3,
where f = n"a € R*. This equation has
cy = B(B* — 24n™) = p* # 0 (mod .#)
and
A =7 — 277*) = 0 (mod %),

so again from (VIL5.1b), it has multiplicative reduction. Further, the reduced
curve is given by y(y + Bx) = x*(mod .#), so the reduction is split multi-
plicative. '

(b) By assumption, j(E) and « are related by

a3 — 24)> — (&3 — 27)j(E) = 0.

From this equation and the integrality of j(E), we see that « is integral.
Further, since the characteristic of k is different from 3, we have o #
27 (mod .#). Thus the Deuring normal equation has integral coefficients and
good reduction. |
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EXERCISES

Al

A2

A3

A4

Let E/K be an elliptic curve with j(E) = 0. Strengthen (1.2) by showing that the

automorphism group of E may be described as follows:

(a) If char(K) = 3, then Aut(E) is the twisted product of C, (a cyclic group of
order 4) and C;. C, is a normal subgroup, and C, acts on C, in the unique
non-trivial way.

(b) If char(K) = 2, then Aut(E) is the twisted product of C; and a quaternion
group. The quarternion group is a normal subgroup; and if we write the
quaternion group as {+1, +i, +j, £k}, then a generator for C, acts by
permuting i, j, and k.

Let K be a field of characteristic 2, and let E/K be an elliptic curve with j(E) # 0
given by a Weierstrass equation
y2 + xy = x> + a,x* + aq.

Let & e H'(Gg k. Aut(E)) = Hom(Gg g, Z/2Z), and let L/K be the corresponding
quadratic extension. Show that the twist of E by & (cf. (X §5)) is given by an
equation

y? + xy = x> + (a, + D)x* + ag,
where De K and L/K is the Artin—Schreier extension generated by a root of
?—t—D=0.

Let E/K be an elliptic curve with Weierstrass coordinate functions x and y.
Show that the differential dx is holomorphic if and only if char(K) =2 and
J(E)=0.

Let E/K and E'/K be elliptic curves over a not necessarily perfect field K. Suppose
that j(E) = j(E'). Prove that E and E' are isomorphic over a separable extension
L of K of degree dividing 24. If j(E) # 0, 1728, then L can be chosen to have
degree 2.



APPENDIX B
Group Cohomology (H° and H?)

In this appendix we give the basic facts about group cohomology which are
used in chapter VIII §2 and chapter X. Since only H® and H! are needed in
this book, we have restricted our attention to these two groups. The reader
desiring more information about group cohomology might look at [A-W],
[Gru], [Se 8], or [Se 9].

§1. Cohomology of Finite Groups

Let G be a finite group, and let M be an abelian group on which G acts. We
denote the action of 6 € G on me M by m — m°. Then M is a (right) G-module
if the action of G on M satisfies

mt=m (m+m)yP=m"+m° (m°f=m"

If M and N are G-modules, a G-homomorphism is a homomorphism ¢: M — N
of abelian groups commuting with the action of G; that is

#(m°) = p(m)’ for allme M and o€ G.
For a given G-module, one is often interested in calculating the largest sub-
module on which G acts trivially.
Definition. The 0™ cohomology group of the G-module M, denoted MY or
H°(G, M), is defined by

H°(G,M)={meM :m° =mfor all € G}.

It is the submodule of M consisting of all G-invariant elements.
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Let
o-PrimMiNSO

be an exact sequence of G-modules. (l.e. ¢ and  are G-module homomor-
phisms with ¢ injective, ¥ surjective, and Image(@) = Kernel(i).) Then one
easily checks that taking G-invariants gives another exact sequence

0- P%—» M% - N¢;
but the map on the right need no longer be surjective. In order to measure
this lack of surjectivity, we make the following definitions.
Definition. Let M be a G-module. The group of 1-cochains (from G to M) is
defined by
CY(G, M) = {maps ¢£: G > M}.
The group of 1-cocycles (from G to M) is given by
ZNG, M) ={¢eCY (G, M): &, =& + & forall 0, 1€ G).
The group of 1-coboundaries ( from G to M) is defined by
B'(G, M) = {£e CY(G, M) : there exists an me M such that
, =m’ —mforall e G}.

One easily checks that BY(G, M) = Z!(G, M). Then the 1% cohomology group
of the G-module M is the quotient group

HY(G, M) = Z*(G, M)/B*(G, M).
In other words, H*(G, M) is the group of 1-cocycles ¢ : G - M, modulo the
equivalence relation that two cocycles are identified if their difference is of the
form ¢ - m® — m for some me M.
Remark 1.1. Notice that if the action of G on M is trivial, then
H°(G,M)=M and HYG, M)=Hom(G, M).
These both follow immediately from the definitions; for the latter, the

1-cocycles are homomorphisms, and all of the 1-coboundaries are 0.

Let ¢ : M — N be a G-module homomorphism. Then composition with ¢
clearly takes Z!(G, M) to Z*(G, N) and B'(G, M) to B!(G, N). Thus ¢ induces
a map on cohomology ¢ : H*(G, M) - H'(G, N).

Proposition 1.2. Let
0-P -?-) M -'I—I) N-0

be an exact sequence of G-modules. Then there is a long exact sequence
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0 H%(G, P) » H%(G, M) - H%(G, N) > H'(G, P) » H'(G, M) - H(G, N),

where the connecting homomorphism d is defined as follows.
Let ne H°(G, N) = N€. Choose an me M such that y(m) = n, and define a
cochain £ e C1(G, M) by

(&, =m’ —m.
g

Then in fact &€ ZX(G, P), and 5(n) is the cohomology class in H'(G, P) of the
1-cocycle &.

Proor. A straightforward (but tedious) diagram chase, which we leave to the
reader (exer. B.1). (Or see any of the references listed above.) O

Suppose now that H is a subgroup of G. Then any G-module M is auto-
matically an H-module. Further, if £ : G - M is a 1-cochain, then by restrict-
ing the domain of £ to H, we obtain an H-to-M cochain. It is clear that this
process takes cocycles to cocycles and coboundaries to coboundaries, and so
we obtain a restriction homomorphism

Res: HY(G, M) - H'(H, M).

Suppose further that H is a normal subgroup of G. Then the submodule M¥
of M consisting of the elements fixed by H has a natural structure of
G/H-module. Now let ¢:G/H — M* be a 1-cochain from G/H to M®. Then
composing with the projection G — G/H and with the inclusion M¥ = M
gives a G-to-M 1-cochain

G—G/HSMIc M.

Again it is easy to see that if £ is a cocycle or coboundary, then the new G-to-
M cochain has the same property. Hence we obtain an inflation homo-
morphism

Inf: H'(G/H, M¥) > H*(G, M).

Proposition 1.3. Let M be a G-module and let H be a normal subgroup of G.
Then the following sequence is exact.

0 - H'(G/H, M5 H'(G, M)™S H\(H, M),

Proor. From the definitions, it is clear that Res o Inf = 0.

Next let &: G/H — M" be a 1-cocycle with Inf{¢} = 0. (We use braces {-} to
indicate the cohomology class of a cocycle.) Thus there is an me M such that
&, =m° —mfor all 6eG. But £ depends only on ¢ (mod H), so m® —m =
m™ — mfor all te H. Thus m* — m = 0 for all te H, so me M¥, and hence ¢
is a G/H-to-M ™ coboundary.

Finally, suppose that ¢ : G — M is a 1-cocycle with Res{¢} = 0. Thus there
is an me M such that £, =m" —m for all Te H. Subtracting the G-to-M
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coboundary ¢ - m® — m from &, we may assume that £, = 0 for all te H.
Then the cocycle condition applied to g€ G and te H yields

Co =& + &= ¢

Thus £, depends only on the class of ¢ in G/H. Next, since H is normal, there
is a v’ € H such that 61 = 7'¢. Then using the cocycle condition again together
with the fact that £ is a map on G/H gives

éa= ér’a = éarz é; + étz ét:'

This proves that ¢ gives a map from G/H to M*, and so {¢} e H(G/H, M?).
d

§2. Galois Cohomology

Let K be a perfect field (as usual), let K be an algebraic closure of K, and let
G x be the Galois group of K over K. Recall that Gk is equal to the inverse
limit of Gy as L varies over all finite Galois extensions of K. Thus Ggx is a
profinite group (inverse limit of finite groups), and as such it comes equipped
with a topology in which a basis of open sets around the identity consists of
the collection of normal subgroups having finite index in Ggy. (Le. The
subgroups which are kernels of maps Gg x — G, for finite Galois extensions
L/K)

Definition. A (discrete) Gk x-module is an abelian group M on which Ggx acts
such that the action is continuous for the profinite topology on Gix and the
discrete topology on M. (Equivalently, the action of Ggx on M has the
property that for all me M, the stabilizer of m,

{oeG:m° =m},

is a subgroup of finite index in Gg/x.) Since all of our Ggx-modules will be
discrete, we will normally just refer to them as Gi x-modules.

Example 2.1.1. K and K* with the natural action of Ggx are Ggx-modules.
This is because for any xe K, K(x)/K is a finite extension, so the stabilizer
of x will have finite index.

Example 2.1.2. More generally, let /K be any (abelian) algebraic group.
Then & = 2(K) is a Ggx-module, since again the coordinates of any point of
2 will generate a finite extension of K.

The 0™-cohomomogy of a Gix-module is defined just as in the case of
finite groups.
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Definition. The 0'™-cohomology of the Gg-module M is the group of Ggx-
invariant elements of M,

M%x = H%(Ggx, M) = {meM :m° = mfor all 6 € Gg¢}.

We could also define H! exactly as in the case of finite groups, but instead
we use the fact that our group is profinite and our module discrete in order to
put some restriction on the allowable cocycles.

Definition. Let M be a Gix-module. A map ¢ : Ggx = M is continuous if it is
continuous for the profinite topology on Ggx and the discrete topology on
M. (Le. If for each me M, ™' (m) contains a subgroup of finite index of Ggx.)
We define the group of continuous 1-cocycles from Ggjy to M, denoted
Z},(Ggx, M), to be the group of continuous maps ¢ : Ggx — M satisfying
the cocycle condition

éd‘f = 6; + ét'

(This is a subgroup of the full group of 1-cocycles Z*(Ggx, M).) Notice that
since M is discrete, any coboundary ¢ — m? — m will automatically be con-
tinuous. The 1*-cohomology of the Gg x-module M is defined by

H'(Ggjx, M) = Zcon(Giix, M)/B* (Ggix, M).
Remark 2.2. Just as in the case of finite groups, if Ggx acts trivially on M,
then we have
H°(Ggx, M)=M and H'(Ggy, M) = Hom,,, (Ggx, M).
(Here Hom,,,,, means the group of continuous homomorphisms.)
The fundamental exact sequences (1.2) and (1.3) in the cohomology of finite
groups carry over word-for-word to the profinite case.
Proposition 2.3. Let
0->P A M s, N-0
be an exact sequence of G x-modules. Then there is a long exact sequence
0— H%Ggx, P) > H%(Ggx, M) - H%(Ggig, N)
% B! Geeo P) ~ H! (G M) > H' (G, N),
where the connecting homomorphism ¢ is defined as in (1.2).

Now let M be a Gg,-module, and let L/K be a finite Galois extension.
Then G, is a subgroup of Ggk of finite index, and so M is naturally a Gg),-
module. This leads to a restriction map on cohomology,

Res: H'(Ggx, M) - H*(Gg ., M).
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Further, Gg,, is a normal subgroup of Ggy, the quotient being the finite
group Gy k. The invariant submodule M%* has a natural structure of Gy -
module. Then any 1-cocycle ¢: Gy —» M Gir becomes a (continuous) Ggx
1-cocycle via the composition

¢ _
Giix = Gpx > M%< M.
This gives an inflation map

Inf: HY(Gyx, M%) > H'(Ggx, M).

Proposition 2.4. With notation as above, there is an exact sequence

nf es
0= HY(Gy e, M%) 5 HY(Gi g, M) > H(Giyr, M).
Proor. Virtually identical to the proof of (1.3). O

The next proposition gives fundamental facts about the cohomology of the

additive and multiplicative groups of a field.
Proposition 2.5. Let K be a field.
(@) H' Gy, K*) = 0.
(b) (Hilbert Theorem 90)

H'(Ggx, K*) = 0.
(c) Assume that char(K) does not divide m (or char(K) = 0). Then

HI(GE/K’ um) = K*/E*m

Proor. (a) [Se 9, Ch. X, Prop. 1].

(b) [Se 9, Ch. X, Prop. 2].
(c) Consider the exact sequence

1—+um—>IZ*ﬁIZ*——+1
of Gg x-modules. Applying (2.3) yields the long exact sequence
B _
= K* 5 K* 5 H'(Ggyx, i) — H' (Gix, K*) .

From (b), H'(Ggx, K*) = 0, which gives the deisred result. O

§3. Non-Abelian Cohomology

Again we start with a finite group G and a group M on which G acts, but now
we no longer require that M be abelian. (To emphasize this fact, we will write
M multiplicatively.) As above, the 0™®-cohomology group of M is defined to be
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the subgroup of G-invariant elements:
H°(G, M) =M%= {meM :m° = mfor all 6 e G}.
Further, we define the set of 1-cocycles of G into M to be the set of maps
&:G-M satisfying &, = (£,)°¢, forallg, t€G.

[N.B. The 1-cocycles do not in general form a group. The non-commutativity
of M may prevent the product of two cocycles from being a cocycle.] We say
that two 1-cocycles & and { are cohomologous if there is an me M such that

meé, ={,m foralloeG.

One easily checks that this gives an equivalence relation on the set of
1-cocycles. The 1%-cohomology set of M, denoted H'(G, M), is the set of
1-cocycles modulo this relation. We note that H'(G, M) has a distinguished
element, namely the equivalence class of the identity cocycle. It is thus a
pointed set; that is, a set with a distinguished element.

Continuing as in section 2, we say that the Galois group Ggx acts dis-
cretely on a (possibly non-abelian) group M if the stabilizer of any element of
M is a subgroup of finite index in Gg. We can again define a continuous
1-cocycle from Ggx to M to be amap ¢ : Ggx — M which satisfies the cocycle
condition and is continuous for the profinite topology on Ggy and the
discrete topology on M. Two cocycles £ and { are again deemed cohomolog-
ous if m°¢, ={,m for some meM, and the 0™-cohomology group and
1%*-cohomology set of M are defined as above by

H°(Ggjx, M) = M« = {me M :m° = mfor all 6 € G},
and

set of continuous 1-cocycles from Ggx to M

HY(Ggy, M) = -
(Gigx: M) equivalence of cohomologous 1-cocycles

Example 3.1. If /K is any algebraic group, then there is a natural action of
Ggx on 9 = 2(K); and as explained above (2.1.2), this action will be discrete.
Clearly

HO(GE/K, 2) = 9(K)

is the subgroup of K-rational points. The structure of the set H'(Gg, 2) is
harder to describe, but for the special case of the general linear group there is
the following generalization of Hilbert’s Theorem 90.

Proposition 3.2. For all integers n = 1,

H'(Ggx, GL,(K)) = {1}.

Proor. [Se 9, Ch. X, Prop. 3].
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EXERCISES

B.1.
B.2.

B.3.

B4.

BS5.

B.6.

Prove that the sequence in (1.2) is exact.

Let G be a finite group and M a G-module.
(a) If G has order n, prove that every element of H'(G, M) is killed by n.
(b) If M is finitely generated as a G-module, prove that H'(G, M) is finite.

Let G be a finite group, M a G-module, and H a normal subgroup of G.

(a) Show that there is a natural action of G/H on H'(H, M).

(b) Prove that the image of the restriction map Res: H*(G, M) —» H(H, M) lies
in the subgroup of H!(H, M) fixed by G/H. This allows (1.3) to be refined to

f
0 — H'(G/H, M®)5 H'(G, M) = H'(H, M)¢'™.

Let M be a (discrete) Gg x-module. If F/L/K is a tower of fields, then there are
inflation maps

HY(Gyyx, M%) > H'(Gpjx, M),
Prove that these form a direct system, and that there is an isomorphism
H'(Ggjx, M) = Lim H'(G, M),

where the direct limit is taken over all finite Galois extensions L/K. (This pro-
vides an alternative definition for the cohomology of G, x-modules.)

Let G be a finite group, and let E and A4 be groups on which G acts. Assume that
E is abelian, and that A4 acts on E in a manner compatible with the action of G.
(Le. (ax)” = a°x? for all e 4, xe E, and o€ G.) The twisted product of E and A,
denoted E x A, is the group whose underlying set is E x 4, and whose group
law is given by

(x, W) % (y, B) = (x(ay), ).
Notice that G acts on E x A via (x, o)’ = (x°, ).
(a) Prove that there are exact sequences

l1>E-ExA->A-1
and
1 > ES»>(Ex A)¢—> A% 1.

(b) Any ae A% gives a, G-isomorphism «: E — E, and so induces an automor-
phism of H(G, E). Show that two elements ¢, &, e HY(G, E) have the same
image under the natural map H'(G, E) » H*(G, E x A) if and only if there is
an o€ A% such that aé, = &,.

Let G be a finite group, M a G-module, and H, and H, subgroups of G. Suppose
further that H, and H, are conjugate. (Le. H, = 6H,0 ! for some o€ G.) Prove
that the restriction maps

Res: H'(G, M) - H'(H,, M) and Res:H!(G, M)— H(H,, M)

have the same kernel.



APPENDIX C

Further Topics: An Overview

In this volume we have tried to give an essentially self-contained introduction
to the basic theory of the arithmetic of elliptic curves. Unfortunately, due to
limitations of time and space, many important topics have had to be omitted.
This appendix contains a very brief introduction to some of the material
which could not be included in the main body of the text. Further details may
be found in the references listed at the end of each section.

Since the ten topics covered in this appendix were originally supposed to
form chapters XI through XX of this book, they have been numbered as
sections 11 through 20. The contents of appendix C are as follows:

§11. Complex Multiplication 338
§12. Modular Functions 342
§13. Modular Curves 351
§14. Tate Curves 355
§15. Néron Models and Tate’s Algorithm 357
§16. L-Series 360
§17. Duality Theory 364
§18. Local Height Functions 364
§19. The Image of Galois 366
§20. Function Fields and Specialization Theorems 367

§11. Complex Multiplication

The Kronecker—Weber theorem says that the maximal abelian extension Q%
of Q is generated by roots of unity; and so the class field theory of Q is given
explicitly by an isomorphism
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G@ab/@ = H Z:
p

The theory of complex multiplication provides a similar description for the
abelian extensions of quadratic imaginary fields.

Let &' /Q be a quadratic imaginary field, Z < £ the ring of integers of £,
and €7/ (Z) the ideal class group of £. If we fix an embedding " < C, then
each ideal A of Z is a lattice A = C, and we can consider the elliptic curve
C/A. From (V1.4.1),

End(C/A) = {eeC:aA = A} = X.

Further, (VI.4.1.1) says that up to isomorphism, C/A only depends on the
ideal class {A} e €/(%).

Conversely, suppose that E/C satisfies End(E) >~ #£. Then (VL5.1.1) implies
that E(C) = C/A for a unique ideal class {A}e%/(%). We have proven the
following.

Proposition 11.1. With notation as above, there is a one-to-one correspondence
between ideal classes in €¢(R) and isomorphism classes of elliptic curves E/C
with End(E) =~ X.

Corollary 11.1.1. (a) There are only finitely many isomorphism classes of ellip-
tic curves E/C with End(E) =~ 4.

(b) Let E/C be an elliptic curve with End(E) = . Then j(E) is algebraic over
Q.

ProoF. (a) Clear from (11.1), since €Z(%) is finite.

(b) Let 0 € Aut(C/Q). Then End(E°) =~ End(E) = . It follows from (a) that
{E°: 6 € Aut(C/Q)} contains only finitely many isomophism classes of elliptic
curves. Since j(E°) = j(E)°, we see that the set {j(E)” : 0 € Aut(C/Q)} is finite.
It follows that j(E) is algebraic over Q. O

Actually, we can say quite a bit more about the j-invariant of an elliptic
curve with complex multiplication. For any {A} € €/(Z), let us denote the j-
invariant of C/A by j(A).

Theorem 11.2 (Weber, Fueter). Let {A} € €4(%).

(@) j(A) is an algebraic integer.

(b) [ (j(A): 7] = [Q(j(A): Q]

(c) The field # = A °(j(A)) is the maximal unramified abelian extension of
A . (Le. # is the Hilbert class field of A".)

(d) Let {A}, ..., {A,} be a complete set of representatives for €¢(Z). Then
J(AY), ..., j(A,) form a complete set of G4 conjugates for j(A).

Proor. (a) The original proof of the integrality of j(A) uses the theory of
modular functions. (See, for example, [Shi 1, §4.6] or [La 3, ch. 5, thm. 4].) An
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algebraic proof (which generalizes to higher dimensions) can be given using
the criterion of Néron—Ogg—Shafarevich ([Se-T, thm. 6]. See also (exer.
7.10).)

(b), (), (d) [La 3, ch. 10, thm. 1], [Se 4], or [Shi 1, thm. 5.7]. O

Example 11.3.1. Suppose that E/Q is an elliptic curve with complex multipli-
cation, and suppose that End(E) is the full ring of integers £ in the field
A = End(E) ® Q. (Note that 4" is necessarily quadratic imaginary (VL5.5).)
Since j(E) € Q, it follows from (11.2c) that

H = H(j(E) = A;

and so J has class number 1.

Conversely, if o#°/Q is a quadratic imaginary field with class number 1,
then (11.2bc) implies that for any {A}eé/(#), we have j(A)e Q. (E.g. We
could take A = £.) Hence C/A is (analytically) isomorphic to an elliptic curve
E/Q with j(E) = j(A) and End(E) = £.

Now Baker, Heegner, and Stark have shown that there are exactly 9
quadratic imaginary fields whose ring of integers has class number 1, namely
@(\/—_d) forde{1,2,3,7,11, 19,43, 67, 163}. Hence there are only 9 possible
j-invariants for elliptic curves E defined over Q for which End(E) is the full
ring of integers in End(E) ® Q.

Remark 11.3.2. If we relax the requirement that End(E) be the full ring of
integers of ", and allow it to be an arbitrary order of .#", then End(E) will
have the form End(E) >~ Z + f % for some f e Z (exer. 3.20). One can show in
this case that

[A((E): H] = #CL(Z + [R),

where €£(Z + f %) is the group of projective (Z + f%)-modules of rank 1. In
particular, if j(E)e Q, then ¥4(Z + f#) = (1); and one can then check that
there are only four possibilities with f > 2, namely

Q/-1),Q+/-3), /-7 with f = 2,

Q(/—3) with f = 3.

Combining this with (11.3.1), we see that up to isomorphism over Q, there are
exactly 13 elliptic curves E/Q having complex multiplication. Of course, each
Q-isomorphism class contains infinitely many Q-isomorphism classes (X.5.4).
(For example, the family of curves E/Q with End(E) =~ Z[./ — 1] is studied in
(X §6).)

Returning now to the situation in (11.2), let {A} € €¢(#). Then from (11.2),
the Galois group G, 4 acts on X '(j(A)). This action can be described quite
precisely in terms of the Artin map.

and
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Theorem 11.4 (Hasse). Let {A} € 6¢(#) and # = A (j(A)) be as in (11.2). For
each prime ideal p of A’, let Frob(p)e Gy, 4 be the Frobenius element corre-
sponding to p. Suppose that there is an elliptic curve (defined over ) with j-
invariant j(A) which has good reduction at all primes of H# lying over p. Then

SO = j(A-p),
(Here A-p~! is the usual product of fractional ideals of A"\

Proor. [La 3, ch. 10, thm. 1], [Se 4], or [Shi 1, thm. 5.7]. O

Suppose now that E/K is an elliptic curve with complex multiplication
over K. (Le. Endg(E) # Z.) Then the fact that Ggx and Endg(E) commute
with one another in their action on the Tate module T,(E) will imply that the
action of Gg is abelian. (This is essentially Schur’s lemma. See exer. 3.24.)
Thus the field K(E,,,) obtained by adjoining to K the coordinates of all of the
torsion points of E will be an abelian extension of K.

Let us return now to the case that A e €7(%), # = H#(j(A)), and E/H# is an
elliptic curve with j-invariant j(A). Then #(E,,,) is an abelian extension of
#, but it will not in general be an abelian extension of J#". However, it turns
out that #(E,,,) contains #*, and #(E,,)/#® is an abelian extension
whose Galois group is (generally) a product of groups of order 2. In order to
produce " itself, we instead adjoin (essentially) just the x-coordinates of
the torsion points.

To make this precise, for any elliptic curve E/K, let us define a Weber
Sunction on E/K to be a morphism defined over K of the form

¢i: E - E/Aut(E) = P!,

(For the definition of the quotient curve E/Aut(E), see (exer. 3.13).) Classi-
cally, if E is given by a Weierstrass equation

E:y?=4x>—g,x—g;  g5,9:€C

with discriminant A = g3 — 2742, then one defines the Weber function quite
explicitly by the formula

(9293/8)x(P) if j(E) # 0, 1728
#5(P) =1 (g3/M)x(P)*  if j(E) = 1728
(g3/A)x(P)*  ifj(E)=0.

Notice that although g, and g, are allowed to be in C, the map ¢, : E — P! is
independent of the choice of Weierstrass equation for E, and will thus be
defined over any field of definition for E.

Theorem 11.5. Let A" be a quadratic imaginary field, & < A its ring of
integers, and let E/C be an elliptic curve with End(E) =~ 4.

(a) The maximal unramified abelian extension of A" is A (j(E)).

(b) The maxi.ial abelian extension A" of A  is given by
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%‘ab = %(J(E), ¢E(T)’ TEEtors)'

[L.e. X is the field obtained by adjoining to A" the j-invariant of E and the
value of a Weber function at all of the torsion points of E.]

Proor. (a) This is a restatement of (11.2¢).
(b) [La 3, ch. 10, thm. 2], [Se 4], or [Shi 1, cor. 5.6]. |

Remark 11.6. Let {A} be any ideal class of £, for example A = £. Then in
(11.5), we could take E to be the elliptic curve with E(C) = C/A given by the
Weierstrass equation

E:y* =4x — g,(A)x — g5(A).

(For the definition of g,(A) and g;(A) in terms of power series, see (VI §3).)
Then the Weber function

$r:C/A>C

is given analytically by

(92(A)g3(A)/AA) p(z, A) ifj(A) # 0, 1728

#a(@) = {(92(A)*/AN) p (2, AY if j(A) = 1728

(9:(A)/AN) (2, A if j(A) = 0.
Now (11.5) says that o is generated by j(A) and ¢, (t) for te QA < C. Thus
A% is given explicitly by the values of an analytic function evaluated at
points of finite order on the complex torus C/A. Notice the similarity with

the situation over Q, where Q% is generated by the values of the analytic
function ¢(z) = e>™* at the points of finite order on the cylinder C/Z.

Remark 11.7. Just as in (11.4), one can use the Artin map to describe the
action of Gy 4 on the elements ¢g(T) which generate X “*/¢". See, for
example, [Shi 1, thm. 5.4] or [La 3, ch. 10, lemma 1 and thm. 3].

References. [La 3], [Se 4], [Shi 1]. For generalizations to abelian varieties,
see [Shi—T], [Se-T], [La 10].

§12. Modular Functions

As we have seen (V1.5.1.1), every elliptic curve E/C is analytically isomorphic
to a complex torus C/A, where A = C is a lattice which is determined up to
homothety by E. Associated to the lattice A are the Eisenstein series G,,(A),
discriminant A(A), and j-invariant j(A). One easily verifies the homogeneity
properties (exer. 6.6)

Gu(aA) = "2 Gpu(A)  A(@A) = a7 2A(A)  j@A) = j(A).
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These functions have as their domain the space of lattices. Using homoge-
neity, it is enough to study them in the space of lattices modulo homothety.
In order to do this, we set the following notation:

H = {reC:Im(z) > 0}
AN=7Z+ 7t forteH
Gu() = Gu(A) Al =AA)  j(@) =j(A)

Clearly every lattice A is homothetic to A, for some teH. In order to
describe when two 7’s give the same lattice, we note that the modular group

SLy(Z)={(¢Y:a,b,c,deZ, ad — bc = 1}

acts on H by linear fractional transformation
y=0C5HH-H y(r) = (at + b)/(ct + d).
This action is described by the following proposition.
Proposition 12.1. (a) The group SL,(Z) acts properly discontinuously on H.
(b) The region
F ={teH:|Re()| <}and|t| > 1}
is a fundamental domain for H/SL,(Z). (I.e. The natural map # — H/SL,(Z) is
surjective, and its restriction to the interior of & is injective.)
(c) Let
S=@ ) and T=( 1)

Then S? = 1,(ST)* = 1, and SL,(Z) is the free product of the cyclic groups of
order 2 and 3 generated by S and ST. In particular, S and T generate SL,(Z).

Proor. [Ap, thm. 2.1, 2.3], [Se 7, VII §1]. O

Corollary 12.1.1. Every lattice A = C is homothetic to a lattice A, for some
TeF.

Figure 12.1 illustrates the fundamental domain % and its translates under
various elements of SL,(Z).
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