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Preface to the Second Edition

It is now 10 years since the first edition of this book appeared in 1980. The
intervening decade has seen tremendous advances take place in mathe-
matics generally, and in number theory in particular. It would seem desir-
able to treat some of these advances, and with the addition of two new
chapters, we are able to cover some portion of this new material.

As examples of important new work that we have not included, we
mention the following two results:

(1) The first case of Fermat’s last theorem is true for infinitely many
prime exponents p. This means that, for infinitely many primes p, the
equation x” + y” = z” has no solutions in nonzero integers with p [
xyz. This was proved by L.M. Adelman and D.R. Heath-Brown and
independently by E. Fouvry. An overview of the proof is given by
Heath-Brown in the Mathematical Intelligencer (Vol. 7, No. 6, 1985).

(2) Let py, p;, and p; be three distinct primes. Then at least one of them is
a primitive root for infinitely many primes g. Recall that E. Artin
conjectured that, if a € Z is not 0, 1, —1, or a square, then there are
infinitely many primes g such that a is a primitive root modulo g. The
theorem we have stated was proved in a weaker form by R. Gupta and
M.R. Murty, and then strengthened by the combined efforts of R.
Gupta, M.R. Murty, V.K. Murty, and D.R. Heath-Brown. An exposi-
tion of this result, as well as an analogue on elliptic curves, is given by
M.R. Murty in the Mathematical Intelligencer (Vol. 10, No. 4, 1988).

The new material that we have added falls principally within the frame-
work of arithmetic geometry. In Chapter 19 we give a complete proof of
L.J. Mordell’s fundamental theorem, which asserts that the group of ra-
tional points on an elliptic curve, defined over the rational numbers, is
finitely generated. In keeping with the spirit of the book, the proof (due in
essence to A. Weil) is elementary. It makes no use of cohomology groups
or any other advanced machinery. It does use finiteness of class number
and a weak form of the Dirichlet unit theorem; both results are proved in
the text.

The second new chapter, Chapter 20, is an overview of G. Faltings’s
proof of the Mordell conjecture and recent progress on the arithmetic of



vi Preface to the Second Edition

elliptic curves, especially the work of B. Gross, V.A. Kolyvagin, K.
Rubin, and D. Zagier. Some of this work has surprising applications to
other areas of number theory. We discuss one application to Fermat's last
theorem, due to G. Frey, J.P. Serre, and K. Ribet. Another important
application is the solution of an old problem due to K.F. Gauss about
class numbers of imaginary quadratic number fields. This comes about by
combining the work of B. Gross and D. Zagier with a result of D. Gold-
feld. This chapter contains few proofs. Its main purpose is to give an
informative survey in the hope that the reader will be inspired to learn the
background necessary to a better understanding and appreciation of these
important new developments.

The rest of the book is essentially unchanged. An attempt has been
made to correct errors and misprints. In an effort to keep confusion to a
minimum, we have not changed the bibliography at the end of the book.
New references for the two new chapters, Chapters 19 and 20, will be
found at the end of those chapters. We would like to thank Toru Nakahara
and others for submitting a list of misprints from the first edition. Also, we
thank Linda Guthrie for typing portions of the final chapters.

We have both been very pleased with the warm reception that the first
edition of this book received. It is our hope that the new edition will
continue to entice readers to delve deeper into the mysteries of this an-
cient, beautiful, and still vital subject.

February 1990 Kenneth Ireland
Michael Rosen

Addendum to Second Edition, Second Corrected Printing

The second printing of the second edition is unchanged except for correc-
tions and the addition of a few clarifying comments. I would like to thank
K. Conrad, M. Jastrzebski, F. Lemmermeyer and others who took the
trouble to send us detatled lists of misprints.

November 1992 Michael Rosen

Notes for the Second Edition, Fifth Corrected Printing

In 1995 Andrew Wiles published a paper in the Annals of Mathematics
which proved the Taniyama-Shimura-Weil conjecture is true for semi-stable
elliptic curves over the rational numbers. Together with earlier results, prin-
cipally the theorem of Ken Ribet mentioned on page 347, this proved
Fermat’s Last Theorem. The most famous conjecture in elementary number
theory is finally a theorem!!!

April 1998 Michael Rosen



Preface

This book is a revised and greatly expanded version of our book Elements of
Number Theory published in 1972. As with the first book the primary audience
we envisage consists of upper level undergraduate mathematics majors and
graduate students. We have assumed some familiarity with the material in a
standard undergraduate course in abstract algebra. A large portion of
Chapters 1-11 can be read even without such background with the aid of a
small amount of supplementary reading. The later chapters assume some
knowledge of Galois theory, and in Chapters 16 and 18 an acquaintance with
the theory of complex variables is necessary.

Number theory is an ancient subject and its content is vast. Any intro-
ductory book must, of necessity, make a very limited selection from the
fascinating array of possible topics. Our focus is on topics which point in the
direction of algebraic number theory and arithmetic algebraic geometry. By a
careful selection of subject matter we have found it possible to exposit some
rather advanced material without requiring very much in the way of technical
background. Most of this material is classical in the sense that is was dis-
covered during the nineteenth century and earlier, but it is also modern
because it is intimately related to important research going on at the present
time.

In Chapters 1-5 we discuss prime numbers, unique factorization, arith-
metic functions, congruences, and the law of quadratic reciprocity. Very little
is demanded in the way of background. Nevertheless it is remarkable how a
modicum of group and ring theory introduces unexpected order into the
subject. For example, many scattered results turn out to be parts of the answer
to a natural question: What is the structure of the group of units in the ring
Z/nZ?

Reciprocity laws constitute a major theme in the later chapters. The law
of quadratic reciprocity, beautiful in itself, is the first of a series of reciprocity
laws which lead ultimately to the Artin reciprocity law, one of the major
achievements of algebraic number theory. We travel along the road beyond
quadratic reciprocity by formulating and proving the laws of cubic and
biquadratic reciprocity. In preparation for this many of the techniques of
algebraic number theory are introduced; algebraic numbers and algebraic
integers, finite fields, splitting of primes, etc. Another important tool in this

vii



viii Preface

investigation (and in others!) is the theory of Gauss and Jacobi sums. This
material is covered in Chapters 6-9. Later in the book we formulate and prove
the more advanced partial generalization of these results, the Eisenstein
reciprocity law.

A second major theme is that of diophantine equations, at first over finite
fields and later over the rational numbers. The discussion of polynomial
equations over finite fields is begun in Chapters 8 and 10 and culminates in
Chapter 11 with an exposition of a portion of the paper “ Number of solutions
of equations over finite fields” by A. Weil. This paper, published in 1948, has
been very influential in the recent development of both algebraic geometry
and number theory. In Chapters 17 and 18 we consider diophantine equations
over the rational numbers. Chapter 17 covers many standard topics from
sums of squares to Fermat's Last Theorem. However, because of material
developed earlier we are able to treat a number of these topics from a novel
point of view. Chapter 18 is about the arithmetic of elliptic curves. It dif-
fers from the earlier chapters in that it is primarily an overview with many
definitions and statements of results but few proofs. Nevertheless, by con-
centrating on some important special cases we hope to convey to the reader
something of the beauty of the accomplishments in this area where much work
is being done and many mysteries remain.

The third, and final, major theme is that of zeta functions. In Chapter 11 we
discuss the congruence zeta function associated to varieties defined over finite
fields. In Chapter 16 we discuss the Riemann zeta function and the Dirichlet
L-functions. In Chapter 18 we discuss the zeta function associated to an
algebraic curve defined over the rational numbers and Hecke L-functions.
Zeta functions compress a large amount of arithmetic information into a
single function and make possible the application of the powerful methods of
analysis to number theory.

Throughout the book we place considerable emphasis on the history of

.our subject. In the notes at the end of each chapter we give a brief historical
sketch and provide references to the literature. The bibliography is extensive
containing many items both classical and modern. Our aim has been to
provide the reader with a wealth of material for further study.

There are many exercises, some routine, some challenging. Some of the
exercises supplement the text by providing a step by step guide through the
proofs of important results. In the later chapters a number of exercises have
been adapted from results which have appeared in the recent literature. We
hope that working through the exercises will be a source of enjoyment as well
as instruction.

In the writing of this book we have been helped immensely by the interest
and assistance of many mathem.atical friends and acquaintances. We thank
them all. In particular we would like to thank Henry Pohlmann who insisted
we follow certain themes to their logical conclusion, David Goss for allowing
us to incorporate some of his work into Chapter 16, and Oisin McGuiness
for his invaluable assistance in the preparation of Chapter 18. We would
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like to thank Dale Cavanaugh, Janice Phillips, and especially Carol Ferreira,
for their patience and expertise in typing large portions of the manuscript.
Finally, the second author wishes to express his gratitude to the Vaughn
Foundation Fund for financial support during his sabbatical year in
Berkeley, California (1979/80).

July 25, 1981 Kenneth Ireland
Michael Rosen
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Chapter 1

Unique Factorization

The notion of prime number is fundamental in number
theory. The first part of this chapter is devoted to proving
that every integer can be written as a product of primes
in an essentially unique way.

After that, we shall prove an analogous theorem in the
ring of polynomials over a field.

On a more abstract plane, the general idea of unique
Sactorization is treated for principal ideal domains.

Finally, returning from the abstract to the concrete, the
general theory is applied to two special rings that will be
important later in the book.

§1 Unique Factorization in Z

As a first approximation, number theory may be defined as the study of the
natural numbers 1, 2, 3, 4, . . .. L. Kronecker once remarked (speaking of
mathematics generally) that God made the natural numbers and all the rest
is the work of man. Although the natural numbers constitute, in some sense,
the most elementary mathematical system, the study of their properties has
provided generations of mathematicians with problems of unending fascina-
tion.

We say that a number a divides a number b if there is a number ¢ such
that b = ac. If a divides b, we use the notation a|b. For example, 2|8, 3|15,
but 6.421. If we are given a number, it is tempting to factor it again and
again until further factorization is impossible. For example, 180 = 18 x 10
=2x9x2x5=2x3x3x2x 5 Numbers that cannot be factored
further are called primes. To be more precise, we say that a number p is a
prime if its only divisors are 1 and p. Prime numbers are very important
because every number can be written as a product of primes. Moreover,
primes are of great interest because there are many problems about them
that are easy to state but very hard to prove. Indeed many old problems
about primes are unsolved to this day.

The first prime numbers are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41,
43, ....One may ask if there are infinitely many prime numbers. The answer
is yes. Euclid gave an elegant proof of this fact over 2000 years ago. We shall
give his proof and several others in Chapter 2. One can ask other questions
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of this nature. Let n(x) be the number of primes between 1 and x. What can
be said about the function n(x) ? Several mathematicians found by experiment
that for large x the function n(x) was approximately equal to x/In(x). This
assertion, known as the prime number theorem, was proved toward the end
of the nineteenth century by J. Hadamard and independently by Ch.-J. de la
Vallé Poussin. More precisely, they proved

n(x)
row XJIN(E)

Even from a small list of primes one can notice that they have a tendency
to occur in pairs, for example, 3 and S5, Sand 7, 11 and 13, 17 and 19. Do
there exist infinitely many prime pairs? The answer is unknown.

Another famous unsolved problem is known as the Goldbach conjecture
(C. H. Goldbach). Can every even number be written as the sum of two
primes? Goldbach came to this conjecture experimentally. Nowadays
electronic computers make it possible to experiment with very large numbers.
No counterexample to Goldbach’s conjecture has ever been found. Great
progress toward a proof has been given by I. M. Vinogradov and L. Schnirel-
mann. In 1937 Vinogradov was able to show that every sufficiently large odd
number is the sum of three odd primes.

In this book we shall not study in depth the distribution of prime numbers
or ‘“‘additive” problems about them (such as the Goldbach conjecture).
Rather our concern will be about the way primes enter into the multiplicative
structure of numbers. The main theorem along these lines goes back essen-
tially to Euclid. It is the theorem of unique factorization. This theorem is
sometimes referred to as the fundamental theorem of arithmetic. It deserves
the title. In one way or another almost all the results we shall discuss depend
on it. The theorem states that every number can be factored into a product of
primes in a unique way. What uniqueness means will be explained below.

As an illustration consider the number 180. We have seen that 180 =
2x2x3x3x5=22%x 3% x 5. Uniqueness in this case means that
the only primes dividing 180 are 2, 3, and 5 and that the exponents 2, 2, and
1 are uniquely determined by 180.

Z will denote the ring of integers, i.e., theset 0, +1, +2, +3,.. ., together
with the usual definition of sum and product. It will be more convenient to
work with Z rather than restricting ourselves to the positive integers. The
notion of divisibility carries over with no difficulty to Z. If p is a positive
prime, — p will also be a prime. We shall not consider 1 or — 1 as primes even
though they fit the definition. This is simply a useful convention. Note that
1 and —1 divide everything and that they are the only integers with this
property. They are called the units of Z. Notice also that every nonzero
integer divides zero. As is usual we shall exclude division by zero.

There are a number of simple properties of division that we shall simply
list. The reader may wish to supply the proofs.



§1 Unique Factorization in Z 3

(1) ala,a # 0.

(2) If alb and bla, thena = +b.
(3) If a]b and b|c, then a|c.

(4) If a]b and a|c, then a|b + c.

Let n e Z and let p be a prime. Then if n is not zero, there is a nonnegative
integer a such that p?|n but p®*! ¥ n. This is easy to see if both p and n are
positive for then the powers of p get larger and larger and eventually exceed n.
The other cases are easily reduced to this one. The number a is called the
order of n at p and is denoted by ord, n. Roughly speaking ord, n is the
number of times p divides n. If n = 0, we set ord, 0 = co. Notice that
ord, n = 0 if and only if (iff) p ¥ n.

Lemma 1. Every nonzero integer can be written as a product of primes.

PROOF. Assume that there is an integer that cannot be written as a product of
primes. Let N be the smallest positive integer with this property. Since N
cannot itself be prime we must have N = mn, where 1 < m, n < N. How-
ever, since m and n are positive and smaller than N they must each be a
product of primes. But then so is N = mn. This is a contradiction.

The proof can be given in a more positive way by using mathematical
induction. It is enough to prove the result for all positive integers. 2 is a
prime. Suppose that 2 < N and that we have proved the result for all
numbers m such that 2 < m < N. We wish to show that N is a product of
primes. If N is a prime, there is nothing to do. If N is not a prime, then
N = mn, where 2 < m, n < N. By induction both m and n are products of
primes and thus so is N. O

By collecting terms we can write n = p{'p%* - - - pam, where the p, are
primes and the a; are nonnegative integers. We shall use the following
notation:

n= (_ 1 )z(n) H pa(p),
p

where &(n) = 0 or | depending on whether n is positive or negative and
where the product is over all positive primes. The exponents a(p) are non-
negative integers and, of course, a(p) = 0 for all but finitely many primes.
Forexample,ifn = 180, we havee(n) = 0,a(2) = 2,a(3) = 2,anda(5) = 1,
and all other a(p) = 0.

We can now state the main theorem.

Theorem 1. For every nonzero integer n there is a prime factorization
n=(— 1)‘(") l‘[ p"”’),
p

with the exponents uniquely determined by n. In fact, we have a(p) = ord, n.
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The proof of this theorem is not as easy as it may seem. We shall postpone
the proof until we have established a few preliminary results.

Lemma 2. If a,beZ and b > 0, there exist q,r € Z such that a = gb + r
with) <r <b.

Proor. Consider the set of all integers of the forma — xb with x € Z. This set
includes positive elements. Let r = a — gb be the least nonnegative element
in this set. Weclaimthat0 < r < b.Ifnot,r = a — gb > bandso0 < a —
(g + Db < r, which contradicts the minimality of . O

Definition. If a,, a,, ..., a, € Z, we define (a,, a,, ..., a,) to be the set of
all integers of the form a,x, + a,x, + -+ + a,x, with x,, x,, ..., x,€ Z.

Let A = (ay, a,;,...,a,). Notice that the sum and difference of two
elements in A4 are again in A. Also, if a € 4 and r € Z, then ra € 4. In ring-
theoretic language, 4 is an ideal in the ring Z.

Lemma 3. If a, b € Z, then there is a d € Z such that (a, b) = (d).

PROOF. We may assume that not both a and b are zero so that there are
positive elements in (a, b). Let d be the smallest positive element in (a, b).
Clearly (d) < (a, b). We shall show that the reverse inclusion also holds.
Suppose that ¢ € (a, b). By Lemma 2 there exist integers g and r such that
¢ = qd + r with 0 < r < d. Since both ¢ and d are in (a, b) it follows that
r=c¢ — qd is also in (a, b). Since 0 < r < d we must have r = 0. Thus
¢ = qd e(d). O

Definition. Let a, b e Z. An integer d is called a greatest common divisor of
aand b if d is a divisor of both a and b and if every other common divisor of
a and b divides d.

Notice that if ¢ is another greatest common divisor of a and b, then we
must have c|dand d|c and so ¢ = +d. Thus the greatest common divisor of
two numbers, if it exists, is determined up to sign.

As an example, one may check that 14 is a greatest common divisor of
42 and 196. The following lemma will establish the existence of the greatest
common divisor, but it will not give a method for computing it. In the
Exercises we shall outline an efficient method of computation known as the
Euclidean algorithm.

Lemma 4. Let a,be Z. If (a, b) = (d) then d is a greatest common divisor of
aandb.

PRrooF. Since a € (d) and b € (d) we see that d is a common divisor of a and b.
Suppose that ¢ is a common divisor. Then ¢ divides every number of the form
ax + by. In particular c|d. 0O
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Definition. We say that two integers a and b are relatively prime if the only
common divisors are =+ 1, the units.

It is fairly standard to use the notation (a, b) for the greatest common
divisor of a and b. The way we have defined things, (a, b) is a set. However,
since (a, b) = (d) and d is a greatest common divisor (if we require d to be
positive, we may use the article the) it will not be too confusing to use the
symbol (a, b) for both meanings. With this convention we can say that g and
b are relatively prime if (a, b) = 1.

Proposition 1.1.1. Suppose that a|bc and that (a, b) = 1. Then a|c.

ProoF. Since (a, b) = 1 there exist integers r and s such that ra + sb = 1.
Therefore, rac + sbe = c. Since a divides the left-hand side of this equation
we have ajc. O

This proposition is false if (a, b) # 1. For example, 6|24 but 6,}3 and
6.48.
Corollary 1. If p is a prime and p|bc, then either p|b or p|c.

ProoF. The only divisors of pare +1and +p. Thus(p, b) = 1 orp;i.e.,either
p|bor pand b are relatively prime. If p| b, we are done. If not, (p, b) = 1and
so, by the proposition, p|c. O

We can state the corollary in a slightly different form that is often useful:
If pis a prime and p Y b and p fc, then p f bc.

Corollary 2. Suppose that p is a prime and that a,b e Z. Then ord, ab = ord ,a
+ ord, b.

PROOF. Let « = ord, a and § = ord, b. Then a = p*c and b = p’d, where
p ¥candp td Thenab = p**#cd and by Corollary 1 p f cd. Thusord, ab =
a + f§ = ord,a + ord, b. O

We are now in a position to prove the main theorem.
Apply the function ord, to both sides of the equation

n= (_ l)s(n) n pam
P
and use the property of ord, given by Corollary 2. The result is
ord, n = &(n) ord,(—1) + Y a(p) ord,(p).
4

Now, from the definition of ord, we have ord,(—1) = 0 and ord,(p) = 0
if p # gand 1 if p = g. Thus the right-hand side collapses to the single term
a(q), i.e., ord, n = a(g), which is what we wanted to prove.
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It is to be emphasized that the key step in the proof is Corollary 1: namely,
if plab, then pla or p|b. Whatever difficulty there is in the proof is centered
about this fact.

§2 Unique Factorization in k[ x]

The theorem of unique factorization can be formulated and proved in more
general contexts than that of Section 1. In this section we shall consider the
ring k[x] of polynomials with coefficients in a field k. In Section 3 we shall
consider principal ideal domains. It will turn out that the analysis of these
situations will prove useful in the study of the integers.

If f, g € k{x], we say that f divides g if there is an 4 € k[x] such that
g=/fh

If deg f denotes the degree of f, we have deg fg = deg f + deg g. Also,
remember that deg f = 0 iff f is a nonzero constant. It follows that f|g and
gl fiff f = cg, where ¢ is a nonzero constant. It also follows that the only
polynomials that divide all the others are the nonzero constants. These are
the units of k[x]. A nonconstant polynomial p is said to be irreducible if
q|p implies that g is either a constant or a constant times p. Irreducible
polynomials are the analog of prime numbers.

Lemma 1. Every nonconstant polynomial is the product of irreducible poly-
nomials.

Proor. The proof is by induction on the degree. It is easy to see that poly-
nomials of degree | are irreducible. Assume that we have proved the result
for all polynomials of degree less than nand that deg f/ = n. If fis irreducible,
we are done. Otherwise f = gh, where | < deg g, deg & < n. By the induc-
tion assumption both g and # are products of irreducible polynomials. Thus
sois [ = gh. O

It is convenient to define monic polynomial. A polynomial fis called monic
if its leading coefficient is 1. For example, x> + x — 3and x> — x* + 3x +
17 are monic but 2x*> — 5 and 3x* + 2x? — | are not. Every polynomial
(except zero) is a constant times a monic polynomial.

Let p be a monic irreducible polynomial. We define ord, f to be the
inte~er a defined by the property that p{ f but that p®* ' ¥ f. Such an integer
mus. exist since the degree of the powers of p gets larger and larger. Notice
thatord, f = 0iff p .k f.

Theorem 2. Let f € k[x]. Then we can write

f = l—[pa“?),
p
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where the product is over all monic irreducible polvnomials and c is a constant.
The constant ¢ and the exponents a(p) are uniquely determined by f; in fact,

a(p) = ord, f.

The existence of such a product follows immediately from Lemma 1. As
before, the uniqueness is more difficult and the proof will be postponed until
we develop a few tools.

Lemma 2. Let f, g e k[x]. If g # O, there exist polynomials h, r € k[x] such
that f = hg + r, where eitherr = Qorr # O and deg r < degg.

Proor. If gl f, simply set h= f/g and r=0. If gk f, let r = f — hg be the
polynomial of least degree among all polynomials of the form f — lg with
€ k[x]. We claim that deg r < degg. If not, let the leading term of r be
ax? and that of g be bx™ Thenr — ab™'x*"™g = f — (h + ab™'x*"™)g has
smaller degree than r and is of the given form. This is a contradiction. [J

Definition. If f,, f5, ..., f, € k[x], tl;en (fi» fa» -, fy) isthe set of all
polynomials of the form fih, + fy3hy + --- + f,h,, where hy, h,, ..., h,
€ k[x].

In ring-theoretic language (fy,f2,....f,) is the ideal generated by
VITULTRNN

Lemma 3. Given f, g € k[ x] there is a d € k[ x] such that (f, g) = (d).

Proor. In the set (f, g) let d be an element of least degree. We have (d) < (f, 9)
and we want to prove the reverse inclusion. Let ¢ € (f, g). If d f ¢, then there
exist polynomials 4 and r such that ¢ = hd + r with deg r < deg d. Since
cand d are in (f, g) we have r = ¢ — hd < (f, g). Since r has smaller degree
than d this is a contradiction. Therefore, d|c and ¢ € (d). O

Definition. Let f, g € k[x]. Then d € k[x] is said to be a greatest common
divisor of f and g if d divides f and g and every common divisor of f and g
divides d.

Notice that the greatest common divisor of two polynomials is determined
up to multiplication by a constant. If we require it to be monic, it is uniquely
determined and we may speak of the greatest common divisor.

Lemma 4. Let f, g € k[x]. By Lemma 3 there is a d € k[x] such that (f, g) =
(d). d is a greatest common divisor of f and g.

ProOE. Since f € (d) and g € (d) we have d|f and d|g. Suppose that 4| fand
that #|g. Then h divides every polynomial of the form f7 + gm with /,m e k[x].
In particular h|d, and we are done. O
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Definition. Two polynomials fand g are said to be relatively prime if the only
common divisors of f and g are constants. In other words, (f, g) = (1).

Proposition 1.2.1. If f and g are relatively prime and f |gh, then f|h.

Proor. If fand g are relatively prime, we have (f, g) = (1) so there are poly-
nomials / and m such that [f + mg = 1. Thus Ifh + mgh = h. Since f
divides the left-hand side of this equation f must divide A. O

Corollary 1. If p is an irreducible polynomial and p|fg, then p|for p|g.

Proor. Since p is irreducible (p, f) = (p) or (1). In the first case p|fand we
are done. In the second case p and f are relatively prime and the result
follows from the proposition. O

Corollary 2. If p is a monic irreducible polynomial and f, g € k[x], we have
ord, fg = ord, f + ord, g.

PrOOF. The proof is almost word for word the same as the proof to Corollary
2 to Proposition 1.1.1. O

The proof of Theorem 2 is now easy. Apply the function ord, to both sides
of the relation

f =c H pu(pl.
14
We find that
ord, f = ord, ¢ + Y a(p) ord, p.
p

Now, since ¢ is a constant ¢ ¢ and ord, ¢ = 0. Moreover, ord, p = 0 if
g # p and | if ¢ = p. Thus the above relation yields ord, /' = a(g). This
shows that the exponents are uniquely determined. It is clear that if the
exponents are uniquely determined by f, then so is c¢. This completes the
proof. O

§3 Unique Factorization in a Principal Ideal Domain

The reader will not have failed to notice the great similarity in the methods
of proof'in Sections 1 and 2. In this section we shall prove an abstract theorem
that includes the previous results as special cases.

Throughout this section R will denote an integral domain.

Definition 1. R is said to be a Euclidean domain if there is a function A from the
nonzero elements of R to the set {0, 1, 2, 3,...} such thatifa,be R, b # 0,
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there exists ¢, d € R with the property a = ¢b + d and either d = 0 or
Md) < Ab).

The rings Z and k[x] are both Euclidean domains. In Z we can take
ordinary absolute value as the function 4; in the ring k[x] the function that
assigns to every polynomial its degree will serve the purpose.

Proposition 1.3.1. If R is a Euclidean domain and I < R is an ideal, then there
is an element a € R such that I = Ra = {ra|r € R}.

Proor. Consider the set of nonnegative integers {i(b)|b € I, b # 0). Since
every set of nonnegative integers has a least element thereisana e/, a # 0,
such that A(a) < A(b) for all be I, b # 0. We claim that I = Ra. Clearly,
Ra < I. Suppose that b € I; then we know that there are elements ¢, d e R
such that b = ca + d, where either d = 0 or A(d) < Aa). Since d = b —
ca € [ we cannot have A(d) < A(a). Thusd = 0 and b = ca € Ra. Therefore,
I = Ra and we are done. O

For elements a,,...,a, € R, define (a,,a,,...,a,) = Ra; + Ra, +
-+ Ra, = {}7., ralr,eR}. (ay,a,,...,a,) is an ideal. If an ideal /
is equal to (ay, ..., a,) for some elements g; € I, we say that I is finitely
generated. If I = (a) for some a € /, we say that / is a principal ideal.

Definition 2. R is said to be a principal ideal domain (PID) if every ideal of R is
principal.

Proposition 1.3.1 asserts that every Euclidean domain is a PID. The con-
verse of this statement is false, although it is somewhat hard to provide
examples.

The remaining discussion in this section is about PID’s. The notion of
Euclidean domain is useful because in practice one can show that many
rings are PID’s by first establishing that they are Euclidean domains. We
shall give two further examples in Section 4.

We introduce some more terminology. If @, b € R, b # 0, we say that b
divides a if a = bc for some ¢ € R. Notation: bla. An element u € R is
called a unit if u divides 1. Two elements a, b € R are said to be associates if
a = bu for some unit u. An element p € R is said to be irreducible if a|p
implies that a is either a unit or an associate of p. A nonunit p € Rissaid to be
prime if p # 0 and p|ab implies that p|a or p|b.

The distinction between irreducible element and prime element is new.
In general these notions do not coincide. As we have seen they do coincide
in Z and k[x], and we shall prove shortly that they coincide in a PID.

Some of the notions we are discussing can be translated into the language
of ideals. Thus a|b iff (b)) < (a). u € R is a unit iff (4) = R. a and b are
associate iff (@) = (). p is prime iff ab € (p) implies that either a €(p) or
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b e(p). All these assertions are easy exercises. The notion of irreducible
element can be formulated in terms of ideals, but we will not need it.

Definition. d € R is said to be a greatest common divisor (gcd) of two elements
a,beRif

(a) d|aand d|b.
(b) d’|a and d’|b implies that d’|d.

It is easy to see that if both d and d” are gcd’s of @ and b, then d is associate
tod’.

The ged of two elements need not exist in a general ring. However,

Proposition 1.3.2. Let R be a PID and a, b € R. Then a and b have a greatest
common divisor d and (a, b) = (d).

Proor. Form the ideal (a, b). Since R is a PID there is an element d such that
(a, b) = (d). Since (a) < (d) and (b) < (d) we have d|a and d|b. If d'|a
and d’|b, then (a) < (d") and (b) < (d’). Thus (d) = (a, b) < (d")and d’|d.
We have proved that d is a gcd of @ and b and that (a, b) = (d). O

Two elements a and b are said to be relatively prime if the only common
divisors are units.

Corollary 1. If R is a PID and a, b € R are relatively prime, then (a, b) = R.

Corollary 2. If R is a PID and p € R is irreducible, then p is prime.

PROOF. Suppose that p|ab and that p ta. Since p t a it follows that the only
common divisors are units. By Corollary 1 (a, p) = R. Thus (ab, pb) = (b).
Since ab € (p) and pb € (p) we have (b) < (p). Thus p|b.

It is easy to see that a prime is irreducible. ]

From now on R will be a PID and we shall use the words prime and
irreducible interchangeably.

We want to show that every nonzero element of R is a product of irredu-
cible elements. The proof is in two steps. First one shows that if a € R,
a # 0, there is an irreducible dividing a. Then we show that a is a product of
irreducibles.

Lemma 1. Let (a,) < (a;) < (a3) S - - - be an ascending chain of ideals. Then
there is an integer k such that (a,) = (a,.)) for 1 =0, 1,2,.... Inother words,
the chain breaks off in finitely many steps.

ProOF. Let I = | & ,(a;). It is easy to see that / is an ideal. Thus I = (a) for
some a € R. But a € | J{"- ,(a;) implies that a € (q,) for some k, which shows
that [ = (a) € (). It follows that I = (@) = (@,+1) = - - -. O
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Proposition 1.3.3. Every nonzero nonunit of R is a product of irreducibles.

ProoF. Leta € R, a # 0, anot a unit. We wish to show, to begin with, that a
is divisible by an irreducible element. If a is irreducible, we are done. Other-
wise a = a,b,, where a, and b, are nonunits. If g, isirreducible, we are done.
Otherwise a, = a,b,, where a, and b, are nonunits. If a, is irreducible, we
are done. Otherwise continue as before. Notice that (a) < (a,) < (a;) < -+~
By Lemma 1 this chain cannot go on indefinitely. Thus for some k, a, is
irreducible.

We now show that a is a product of irreducibles. If a is irreducible, we are
done. Otherwise let p, be an irreducible such that p,|a. Then a= p;c,. If
¢, is a unit, we are done. Otherwise let p, be an irreducible such that p,|c,.
Thena = p,p,c,. If c, is a unit, we are done. Otherwise continue as before.

Notice that (@) = (¢,) < (c;) < - - -. This chain cannot go on indefinitely
by Lemma 1. Thus for some k, a = p,p, - - - p,¢x, Where ¢, is a unit. Since
Ppi ¢ 1s irreducible, we are done. O

We now want to define an ord function as we have done in Sections 1
and 2.

Lemma 2. Let p be a prime and a # 0. Then there is an integer n such that p"|a
but p"*!ya.

Proor. If the lemma were false, then for each integer m > 0 there would be
an element b, such that a = p™b,,. Then pb,, ., = b, so that (b,) = (b,) <
(b;) = - - - would be an infinite ascending chain of ideals that does not
break off. This contradicts Lemma 1. 0

The integer n, which is defined in Lemma 2, is uniquely determined by
pand a. Wesetn = ord, a.

Lemma 3. Ifa,b e Rwitha, b # 0, then ord, ab = ord, a + ord, b.

PROOF. Let a = ord,a and § = ord, b. Then a = p*c and b = p’d with
pkcand pkd Thus ab = p**#cd. Since p is prime p ¥ cd. Consequently,
ord,ab = a + f = ord,a + ord, b. O

We are now in a position to formulate and prove the main theorem of this
section.
Let S be a set of primes in R with the following two properties:

(a) Every prime in R is associate to a prime in S.
(b) No two primes in S are associate.

To obtain such a set choose one prime out of each class of associate
primes. There is clearly a great deal of arbitrariness in this choice. In Z
and k[ x] there were natural ways to make the choice. In Z we chose S to be
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the set of positive primes. In k[ x] we chose S to be the set of monic irreducibie
polynomials. In general there is no neat way to make the choice and this
occasionally leads to complications (see Chapter 9).

Theorem 3. Let R be aPID and S a set of primes with the properties given above.
Then ifa e R, a # 0, we can write

a=ul]p™, (1)
p

where u is a unit and the product is over all p € S. The unit u and the exponents
e(p) are uniquely determined by a. In fact, e(p) = ord, a.

ProOF. The existence of such a decomposition follows immediately from
Proposition 1.3.3.

To prove the uniqueness, let ¢ be a prime in § and apply ord, to both
sides of Equation (1). Using Lemma 3 we get

ord,a = ord, u + ) e(p) ord, p.
14

Now, from the definition of ord, we see thatord, ¥ = O and thatord, p =
0ifg # pand 1if g = p. Thus ord, a = e(q). Since the exponents e(q) are
uniquely determined so is the unit u. This completes the proof. O

§4 The Rings Z[i] and Z[w]

As an application of the results in Section 3 we shall consider two examples
that will be useful to us in later chapters.

Let i = \/:—1 and consider the set of complex numbers Z[i] defined
by {a + bi|a, b € Z}. This set is clearly closed under addition and subtrac-
tion. Moreover, if a + bi, c + die Z[{], then (a + bi)(c + di) = ac +
adi + bci + bdi* = (ac — bd) + (ad + bc)i € Z[i]. Thus Z[i] is closed
under multiplication and is a ring. Since Z[{] is contained in the complex
numbers it is an integral domain.

Proposition 1.4.1. Z[{] is a Euclidean domain.

Proor. For a + bi € Qli] define A(a + bi) = a* + b>.

Let o = a + bi and y = ¢ + di and suppose that y # 0. afy = r + si,
where r and s are real numbers (they are, in fact, rational). Choose integers
m,neZ such that |r — m| < and |s — n| < 4. Set § = m + ni. Then
deZi] and A(afy) =) =@ —mP +(c—n?<i+i=1 Setp=
o — y0. Then peZ[i] and either p =0 or A(p) = A(y((a/y) — 9)) =
ADA(afy) — 8) < FA(H) < AR).

It follows that A makes Z[{] into a Euclidean domain. O
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The ring Z[{] is called the ring of Gaussian integers after C. F. Gauss,
who first studied its arithmetic properties in detail.

The numbers + 1, +i are the roots of x* = 1 over the complex numbers.
Consider the equation x* = 1. Since x3 -1 =(x - DxZ+x+ 1)
the roots of this equationare 1, (=1 + \/—3)/2. Letw = (-1 + /—3)/2.
Then it is easy to check that w? = (=1 — /—3)/2 and that | + w + w?
=0.

Consider the set Z[w] = {a + bw|a, be Z}. Z[w] is closed under
addition and subtraction. Moreover, (@ + bw)(c + dw) = ac + (ad + bc)w
+ bdw? = (ac — bd) + (ad + bc — bd)w. Thus Z[w] is a ring. Again,
since Z[w] is a subset of the complex numbers it is an integral domain.

_We remark that Z[w] is closed under complex conjugation. In fact, since

Vv -3 =\ﬁ_i= —\/§i= - —3 we see that @ = w? Thus if « =

a+bweZ[w], then& =a+ bd = a + bw? = (a — b) — bw € Z[w].

Propesition 1.4.2. Z[w] is a Euclidean domain.

PrOOF. For o = a + bw € Z[w] define A(a) = a* — ab + b%. A simple
calculation shows that A(x) = ag.

Now, let «, f € Z[w] and suppose that B # 0. Then o/ = of/Bf =
r + sw, where r and s are rational numbers. We have used the fact that
BB = A(B) is a positive integer and that aff € Z[w] since a« and B € Z[w].

Find integers m and n such that |[r — m| < { and |s — n| < 1. Then
put y =m + nw. A(@/B) —7y) =@ —m?*—(r — m)s —n) + (s — n)?
<i+i+i<l.

Let p=oa—~yB Then either p=0 or Alp) = ABW(a/B)— 7)) =
ABYM(@/B) — v) < AP). O

From the analysis of Section 3 we know that the theorem of unique
factorization is true in both Z[i] and Z{w]. To go further with the analysis
of these rings we would have to investigate the units and the prime elements.
There are some results of this nature in the exercises.

NOTES

Rings for which the theorem of unique factorization into irreducibles holds
are called unique factorization domains (UFD). The fact that Z is a UFD
is already implicit in Euclid, but the first explicit and clear statement of the
result seems to be in C. F. Gauss’ masterpiece Disquisitiones Arithmeticae
(available in English translation by A. A. Clark, Yale University Press,
New Haven, Conn., 1966). Zermelo gave a clever proof by contradiction,
which is reproduced in the excellent book of G. H. Hardy and Wright
[40]. See also Davis and Shisha [120].

We have shown that every PID is a UFD. The converse is not true. For
example, the ring of polynomials over a field in more than one variable is a
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UFD but not a PID. P. Samuel has an excellent expository article on UFD’s
in [67]. A more elementary introduction may be found in the book of H.
Rademacher and O. Toeplitz [65].

The reader may find it profitable to read the introductory material in
several books on number theory. Chapter 3 of A. Frankel [32] and the
introduction to H. Stark [73] are particularly good. There is also an early
lecture by Hardy [39] that is highly recommended.

The ring Z[{] was introduced by Gauss in his second memoir on biquad-
ratic reciprocity [34]. G. Eisenstein considered the ring Z[w] in connection
with his work on cubic reciprocity. He mentions that to investigate the
properties of this ring one need only consult Gauss’ work on Z[i] and
modify the proofs [28]. A thorough treatment of these two rings is given in
Chapter 12 of Hardy and Wright [40]. In Chapter 14 they treat a generaliza-
tion, namely, rings of integers in quadratic number fields. Stark’s Chapter 8
deals with the same subject [73]. In 1966 Stark resolved a long-outstanding
problem in the theory of numbers by showing that the ring of integers (see
Chapter 6 of this book) in the field O(\/c_i), with d negative, is a UFD when
d=—1,-2, -3, -7, —11, =19, —43, —67, and — 163 and for no other
values of d.

The student who is familiar with a little algebra will notice that a *“ generic”
non-UFD is given by the ring k[x, y, z, w], with xy = zw, where k is a
field. Another example of a non-UFD is C[x,y,z], with x* + y* +
z? = 1, where C is the field of complex numbers. To see this notice that

(x + ivix — iy) =(1 — 2)(1 + 2).

EXERCISES

1. Let ¢ and b be nonzero integers. We can find nonzero integers ¢ and r such that
a = gb + r,where 0 < r < b. Prove that (a, b) = (b, r).

1)

. {(continuation) If r # 0, we can find ¢, and r, such that b = gq,r + r; with 0 <
ry < r.Show that (g, b) = (r, r,). This process can be repeated. Show that it must end
in finitely many steps. Show that the last nonzero remainder must equal (a, b). The
process looks like

a=gb+r, 0<r<b,

b=gqr+r, 0<r, <r,

r=g,ry +r,, 0<r,<ry,
-1 = Qe + Nee 0< ., <r,

M = qee 2T+ 1
Thenr,,, = (a, b). This process of finding (a, b) is known as the Euclidean algorithm.

3. Calculate (187, 221), (6188, 4709), and (314. 159).



Exercises 15

10.
. Show that (a, a + k)|k.
12.

18.
19.

20.

21.

22

. Let d = (a, b). Show how one can use the Euclidean algorithm to find numbers m

and n such that am + bn = d. (Hint: In Exercise 2 we have that d = r,, . Express
ri+, in terms of r, and r, _ . then in terms of r,_, and r, _,, etc.)

. Find m and n for the pairs a and b given in Exercise 3.

. Let a, b, ce Z. Show that the equation ax + by = ¢ has solutions in integers iff

(a, b)c.

. Letd = (a, b) and a = da’ and b = db’. Show that (a', b') = 1.

. Let x4 and y, be a solution to ax + by = c¢. Show that all solutions have the form

x = Xxo + t(b/d), y = y, — t{(a/d), where d = (a, b) and 1€ Z.

. Suppose thatu,v e Z and that (4, v) = 1.Ifu|nand v|n,show that uv|n. Show that this

is false if (u, v) # 1.

Suppose that (4, v) = 1. Show that (u + v, u — v) is either 1 or 2.

Suppose that we take several copies of a regular polygon and try to fit them evenly
about a common vertex. Prove that the only possibilities are six equilateral triangles,
four squares, and three hexagons.

. Let n;, n,,...,n,eZ. Define the greatest common divisor d of n,, n,, ..., n, and
prove that there exist integers m,, m,, ..., m, such that nym; + n,m; + --- +
namg = d.

. Discuss the solvability of a,x; + a;x; + -+ + a,x, = c in integers. (Hint: Use

Exercise 13 to extend the reasoning behind Exercise 6.)

. Prove that g € Z is the square of another integer iff ord,a is even for all primes p.

Give a generalization.

. If (u, v) = 1 and uv = a?, show that both u and v are squares.

. Prove that the square root of 2 is irrational, i.e., that there is no rational number

r = a/b such that r? = 2.
Prove that m is irrational if m is not the nth power of an integer.

Define the least common multiple of two integers a and b to be an integer m such that
alm, bim, and m divides every common multiple of @ and b. Show that such an m
exists. It is determined up to sign. We shall denote it by [a, b].

Prove the following:

(a) ord,[a, b] = max(ord,a, ord,b).
(b) (a, b)[a, b] = ab.

(c) (a + b, [a, b]) = (a,b).

Prove that ord,(a + b) > min(ord,a, ord,b) with equality holding if ord,a #
ord,b.

Almost all the previous exercises remain valid if instead of the ring Z we consider
the ring k[x]. Indeed, in most we can consider any Euclidean domain. Convince
yourself of this fact. For simplicity we shall continue to work in Z.
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23.

24,

25.

26.

27.
28.
29.

30.
31
32.

33.

34.
35.

36.

37.
38.

39.

1 Unique Factorization

Suppose that a® + b* = ¢* with a, b, ce Z. For example, 32 + 4> = 5% and 5% +
122 = 132, Assume that (a, b) = (b, ¢) = (c, a) = 1. Prove that there exist integers u
and v such that ¢ — b = 2u? and ¢ 4+ b = 2v? and (u, v) = 1 (there is no loss in
generality in assuming that b and ¢ are odd and that a is even). Consequently a = 2uv,
b =v? — u? and ¢ = v? + u? Conversely show that if u and v are given, then the
three numbers q, b, and ¢ given by these formulas satisfy a* + b* = c2.

Prove the identities
@ X" =y ==&+ X"y 44 yTh,
(b) Fornodd, x" + y" = (x + p)(x" ™! — x" "2y + x"73p2 — ... 4 "7,

Ifa" — 1is a prime, show that a = 2 and that n is a prime. Primes of the form 27 — |
are called Mersenne primes. For example, 2° — 1 = 7 and 2% — 1 = 31. It is not
known if there are infinitely many Mersenne primes.

If a® + 1 is a prime, show that a is even and that n is a power of 2. Primes of the
form 22° + 1 are called Fermat primes. For example, 22" + 1 = Sand 2?* + 1 = {7.
It is not known if there are infinitely many Fermat primes.

For all odd n show that 8|n* — 1. If 3.k n, show that 6{n® — 1.
For all n show that 30}n> — n and that 42|n” — n.

Suppose thata, b, ¢,d < Z and that (a, b) = (c, d) = 1.If (a/b) + (c/d) = aninteger,
show that b = +d.

Provethat + 4+ --- + rlx is not an integer.
Show that 2 is divisible by (1 + i)* in Z[i].

For o = a + bi € Z[i] we defined A(a) = a? + b?. From the properties of 4 deduce the
identity (a? + b*)(c? + d?) = (ac — bd)? + (ad + bc)*.

Show that a € Z[i] is a unit iff A(e) = 1. Deduce that 1, —1, i, and —i are the only
units in Z[i].
Show that 3 is divisible by (1 — w)? in Z[w].

For o = a + bw € Z[w] we defined A(x) = a* — ab + b2 Show that « is a unit iff
A(@) = 1. Deduce that 1, — 1, w, —w, w?, and —w? are the only units in Z[w].

Define Z[/ —2] as the set of all complex numbers of the form a + b,/ —2, where
a, beZ, Show that Z[./ —2] is a ring. Define A(x) = a* + 2b* fora = a + b/ —2.
Use A to show that Z[,/ —2] is a Euclidean domain.

Show that the only units in Z[\/ —2] are 1 and —1.

Suppose that = e Z[i] and that A(n) = p is a prime in Z. Show that = is a prime in
Z[i]. Show that the corresponding result holds in Z[w] and Z[,/ —2].

Show that in any integral domain a prime element is irreducible.



Chapter 2

Applications of Unique
Factorization

The importance of the notion of prime number should be
evident from the results of Chapter 1.

In this chapter we shall give several proofs of the fact
that there are infinitely many primes in Z. We shall also
consider the analogous question for the ring k[ x].

The theorem of unique prime decomposition is some-
times referred to as the fundamental theorem of arith-
metic. We shall begin to demonstrate its usefulness by
using it to investigate the properties of some natural
number-theoretic functions.

§1 Infinitely Many Primes in Z

Theorem 1 (Euclid). In the ring Z there are infinitely many prime numbers.

PROOF. Let us consider positive primes. Label them in increasing order
Pis P2, Py, ... Thuspy =2, p, =3, p3 =5,etc. Let N = (p,p,---p,) + 1.
N is greater than 1 and not divisible by any p;,i = 1, 2, ..., n. On the other
hand, N is divisible by some prime, p, and p must be greater than p,.

We have shown that given any positive prime there is another prime that
is greater. It follows that the set of primes is infinite. 0

The analogous theorem for k[ x] is that there are infinitely many monic,
irreducible polynomials. If k is infinite, this is trivial since x — a is monic and
irreducible for all a € k. This proof does not work if k is finite, but Euclid’s
proof may easily be adapted to this case. We leave this as an exercise.

Recall that in an integral domain two elements are called associate if they
differ only by multiplication by a unit. We now know that in Z and k[ x] there
are infinitely many nonassociate primes. It is instructive to consider a ring
where all primes are associate, so that in essence there is only one prime.

Let p € Z be a prime number and let Z,, be the set of all rational numbers
a/b, where p t b. One easily checks using the remark following Corollary 1 to
Proposition 1.1.1 that Z, is a ring. a/beZ,, is a unit if there is a ¢/d € Z,
such that a/b-c/d = 1. Then ac = bd, which implies p .t a since p ¥ b and
p & d. Conversely, any rational number a/b is a unitin Z,if p ¥ aand p t b.

17
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Ifa/be Z,, writea = p'a’, where p ¥ a’. Then a/b = p'a’/b. Thus every element
of Z, is a power of p times a unit. From this it is easy to see that the only
primes in Z, have the form pc/d, where ¢/d is a unit. Thus all the primes of
Z, are associate.

EXERCISE

Ifajb e Z,isnota unit, prove thata/b + 1 isa unit. This phenomenon shows why Euclid’s
proof breaks down in general for integral domains.

§ 2 Some Arithmetic Functions

In the remainder of this chapter we shall give some applications of the unique
factorization theorem.

An integer a € Z is said to be square-free if it is not divisible by the square
of any other integer greater than 1.

Proposition 2.2.1. If n € Z, n can be written in the form n = ab?, where a,be Z
and a is square-free.

PROOF. Let n = p{'p3 - - - pi*. One can write a; = 2b; + r;, where r; = O or 1
depending on whether 4; is even or odd. Set a = pi'p?---p' and b =
piiph - pb. Then n = ab® and a is clearly square-free. O

This lemma can be used to give another proof that there are infinitely
many primes in Z. Assume that there are not, and let py, p,, ..., p, be a com-
plete list of positive primes. Consider the set of positive integers less than or
equal to N. If n < N, then n = ab?, where a is square-free and thus equal to
one of the 2' numbers p5'p% --- pit, where ¢; =0 or 1,i =1, ..., l. Notice
that b < \/N There are at most 2’\/—1\7 numbers satisfying these conditions
and so N < 2/N, or N < 2%, which is clearly false for N large enough.
This contradiction proves the result.

It is possible to give a similar proof that there are infinitely many monic
irreducibles in k[ x], where k is a finite field.

There are a number of naturally defined functions on the integers. For
example, given a positive integer n let v(n) be the number of positive divisors
of n and a(i7) the sum of the positive divisors of n. For example, v(3) = 2,
wW6) = 4, and v(12) = 6 and o(3) = 4, o(6) = 12, and o(12) = 28. Using
unique factorization it is possible to obtain rather simple formulas for these
functions.
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Proposition 2.2.2. If n is a positive integer, let n = p{'p5* - - - pi" be its prime
P 14 Py P32 P p
decomposition. Then

@) v(n) = (a, + D(ay + 1) -+ (a, + 1).
() a(n) = ((p3 "' — D/(p, — DU(pZ™ = DApy = 1) -+~
(pi*' = D/(py — 1))

PRrOOF. To prove part (a) notice that m|n iff m = piph--- pf*and 0 < b; < g;
fori=1,2,..., L Thus the positive divisors of n are one-to-one correspon-
dence with the n-tuples (b, b,, ..., b) with0 < b, < g;fori=1,...,/ and
there are exactly (@, + 1)a, + 1)--- (q, + 1) such n-tuples.

To prove part (b) notice that a(n) = Y. p}'p% - - - p}', where the sum is over
the above set of n-tuples. Thus, a(n) = Q5! -, p';‘)(z,,z o PR - Qo P
from which the result follows by use of the summation formula for the geo-
metric series. |

There is an interesting and unsolved problem connected with the function
a(n). A number n is said to be perfect if 6(n) = 2n. For example, 6 and 28 are
perfect. In general, if 2™*! — 1 is a prime, then n = 2"(2™ "' — 1) is perfect,
as can be seen by applying part (b) of Proposition 2.2.2. This fact is already in
Euclid. L. Euler showed that any even perfect number has this form. Thus
the problem of even perfect numbers is reduced to that of finding primes of
the form 2™*! — 1. Such primes are called Mersenne primes. The two out-
standing problems involving perfect numbers are the following: Are there
infinitely many perfect numbers? Are there any odd perfect numbers?

The multiplicative analog of this problem is trivial. An integer n is called
multiplicatively perfect if the product of the positive divisors of n is n%. Such
a number cannot be a prime or a square of a prime. Thus there is a proper
divisor d such that d # n/d. The product of the divisors 1, d, n/d, and n is
already n?. Thus n is multiplicatively perfect iff there are exactly two proper
divisors. The only such numbers are cubes of primes or products of two
distinct primes. For example, 27 and 10 are multiplicatively perfect.

We now introduce a very important arithmetic function, the Mobius u
function. Forne Z*, u(1) = 1, u(n) = 0if nis not square-free, and u(p,p, - -
p) = (— 1)}, where the p; are distinct positive primes.

Proposition 2.2.3. If n > L. Y 4, p(d) = 0.
PROOE. Ifn = pi'p52 - pi',then Y g 1(d) = Y e, ....cp H(PY - - - Pi"), Where the
&; are zero or 1. Thus

Z#(d)=1—1+<£)—(;)+---+(——1)’=(1—1)'=0. O

din

The full significance of the Mobius u function can be understood most
clearly when its connection with Dirichlet multiplication is brought to light.
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Let fand g be complex valued functions on Z*. The Dirichlet product of f
and g is defined by the formula f- g(n) = Zf(dl)g(dz), where the sum is over
all pairs (d,, d,) of positive integers such that d,d, = n. This product is
associative, as one can see by checking that fo (g h)(n) = (fog)o h(n) =
Y f(d})g(d;)h(d;), where the sum is over all 3-tuples (d,, d,, d;) of positive
integers such that d d,d; = n.

Define the function | by I(1) = 1 and l(n) = 0 for n > 1. Then fo [ =
lof=f Define I by I(n)=1 for all neZ*. Then fol(n) = 1Iof(n) =
Zdlnf(d)'

Lemma. [fopu=p-I=10

PROOF. po I(1) = p(DI(1) = 1.1fn > 1, o I(n) = ¥4y, u(d) = 0. The same
proof works for [ o y. ]

Theorem 2 (Mobius Inversion Theorem). Let F (n) Z,,,,, f(d). Thenf(n) =
Y ain H(d)F (n/d).

PROOF. F = fol. Thus Fou = (foI)opu = fo(Iopu) = fol = f This shows
that f(n) = F o pu(n) = Y4, t(d)F (n/d). u

Remark. We have considered complex-valued functions on the positive
integers. It is useful to notice that Theorem 2is valid whenever the functions
take their value in an abelian group. The proof goes through word for word.

If the group law in the abelian group is written multiplicatively, the
theorem takes the following form: If F(n) = [],,/(d), then f(n) = [ Tain
F(n/dy“?,

The Mobius inversion theorem has many applications. We shall use it to
obtain a formula for yet another arithmetic function, the Euler ¢ function.
For ne Z*, ¢(n) is defined to be the number of integers between 1 and n
relatively prime to n. For example, ¢(1) =1, ¢#(5) =4, ¢(6) = 2, and
¢(9) = 6. If p is a prime, it is clear that ¢(p) = p — L.

Proposition 2.2.4. Y, ¢(d) = n.

ProoF. Consider the n rational numbers 1/n, 2/n, 3/n, ..., (n — 1)/n, n/n.
Reduce each to lowest terms; i.e., express each number as a quotient of
relatively prime integers. The denominators will all be divisors of n. If d|n,
exactly ¢(d) of our numbers will have d in the denominator after reducing to
lowest terms. Thus ) , $(d) = n. O

Proposition 2.2.5. If n = p{'p3* - -- p{', then

¢(n) = n(l — (1/pXL — (1/p2))--- (1 — (1/py)).
PROOF. Since n=Y ;, $(d) the Mobius inversion theorem implies that ¢(n) =

Yam Mdn/d =n — 3 in/p+ ¥ n/pip;- - = n(l — (1/pIXL = (1/p2))- -
1 = (1/p.). O
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Later we shall give a more insightful proof of this formula. We shall also
use the Mobius function to determine the number of monic irreducible
polynomials of fixed degree in k[x], where k is a finite field.

§3 Y 1/p Diverges

We began this chapter by proving that there are infinitely many prime
numbers in Z, We shall conclude by proving a somewhat stronger statement.
The proof will assume some elementary facts from the theory of infinite series.

Theorem 3. Z 1/p diverges, where the sum is over all positive primes in Z.

Proor. Let p,, pz, -+« Py be all the primes less than n and define A(n) =
o - l/p) .Since (1 — 1/p)~" = Y2 _,1/pi we see that
An) = 3 (pip% - P,
where the sum is over all [-tuples of nonnegative integers (a,, a,, ..., a,).
In particular, we see that | + 3 + 4 + --- + 1/n < A(n). Thus A(n) - oo as

n — co. This already gives a new proof that there are infinitely many primes.
Next, consider log A(n). We have

log A(n) = ~Zlog(1 -pH= Z Z(mp -1

i=1lm=1

1 )
=pl—1+p2—l+..+p,‘l+z Zz(mp:n)—l_

i=tm=
Now, Zm z(mp."‘) ' < Zm 200" =i ( “)" < 2p; *. Thus log A(n)
<pit+p3! S+ 2p i+ 3t -+ p;3). Tt is well known
that 2, n‘2 converges. It follows that Z . pi* converges. Thus if
Y p~ ! converged, there would be a constant M such that log A(n) < M, or
A(n) < eM. This, however, is impossible since A(n) = co as n — co. Thus
Y p~ ! diverges. O

[t is instructive to try to construct an analog of Theorem 3 for the ring
k[x]. where k is a finite field with g elements. The role of the positive primes
p is taken by the monic irreducible polynomials p(x). The *“size” of a monic
polynomial f(x) is given by the quantity g8/,

This is reasonable because for a positive integer n, n is the number of
nonnegative integers less than n, i.e., the number of elements in the set
{0, 1, 2, ..., n — 1}. Analogously, ¢/ is the number of polynomials of
degree less than deg f(x). This is easy to see. Any such polynomial has the
form agx™ + a,x™ "' + --- + a,,, where m = degf(x) — 1 and a; € k. There
are g choices for a; and the choice for each index is independent of the others.
Thus there are g"*! = q%#/™ such polynomials.
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Theorem 4. ) g~ 4¢P diverges, where the sum is over all monic irreducibles
p(x) in k[x].

PrOOF. We first show that ) g~ %8/ diverges and that ) g~ 2%%/™ con-
verges, where both sums are over all monic polynomials f(x) in k[x]. Both
results follow from the fact that there are exactly ¢" monic polynomials of de-
gree nin k[x]. Consider ) 4e; sy <n g 4/ Thissumisequalto ) n_, g"g ™"
=n+ 1. Thus ) g %&/™ diverges. Similarly, Y 4eq/m<nq 2%/ =
Ym-o0q"q ™ < (1 — 1/g)"". Thus ) g~ 2%8/™ converges.

The rest of the proof is an exact imitation of the proof of Theorem 2.
The reader should fill in the details. 0

§4 The Growth of n(x)

In the introduction to Chapter 1 we defined n(x) as the number of primes p,
1 < p < x. The study of the behavior of n(x) for large x involves analytic
techniques. We will prove in this section several results that require a mini-
mum of results from analysis. In fact only the simplest properties of the
logarithmic function are used.

We begin with the following simple consequence of Euclid’s argument
(Theorem 1) which gives a weak lower bound for n(x). Throughout log x
denotes the natural logarithm of x.

Proposition 2.4.1. n(x) > log(log x), x = 2.

PROOF. Let p, denote the nth prime. Then since any prime dividing p,p, - - - p,
+ 1 is distinct from p,...., p, it follows that p,., < p;---p, + 1. Now
py < 2@Y p, <2 and if p, < 22 then p,,, < 22".2029...22" 4 | =
2712 4 1 « 20" Y 1t follows that mn(2*™) > n. For x > e choose an
integer n so that ¢*" ™" < x < e*™. If n > 3then e"~! > 2" 50 that

n(x) > n(e*" ") > n(e?”) = n(22") = n > log(log x).
This proves the result for x > e°. If x < ¢ the inequality is obvious. O
The method employed in the paragraph following Proposition 2.2.1 to
show that n(x) — oo can also be used to obtain the following improvement
of the above proposition. If n is a positive integer let y(n) denote the set of
primes dividing n.
Propesition 2.4.2. n(x) > log x/2 log 2.

ProoF. For any set of primes S define f(x) to be the number of integers n,
1 < n < x, with y(n) = S. Suppose that S is a finite set with ¢ elements.
Writing such an n in the form n = m?s with s square free we see that m < \/;
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while s has at most 2 choices corresponding to the various subsets of S. Thus

f5(x) < 24 /x. Put n(x) = m so that p,., > x. If S={p,, ..., p,} then
clearly fs(x) = x which implies that x < 2"./x = 2" /x. The result follows
immediately. a

It is interesting to note that the above method can also be used to give
another proof to Theorem 2. For if Z 1/p, converged then there is an n such
that .., 1/p; < 3. If S={p,, ..., p,} then x — fs(x) is the number of
positive integers m < x with y(m) & S. That is, there exists a prime p;,j > n
such that p;|m. For such a prime there are [x/p;] multiples of p; not exceeding
x. Thus

x—fi(x)< Y [f]szi<§,

i>n LPj j>nPj

so that fy(x) = x/2. On the other hand, fs(x) < 2"\/;. These inequalities

imply 2" > \/—32/2 which is false for n fixed and large x.

A function closely related to n(x) is defined by 6(x) = ), log p, the
sum being over all primes at most x. We will use 8(x) to bound n(x) from
above. Put 6(1) = 0.

Proposition 2.4.3. 0(x) < (4 log 2)x.

Proor. Consider the binomial coefficient

2\ (n+ 1) (2n)
nl 1-2...n °

Clearly this integer is divisible by all primes p, n < p < 2n. Furthermore,
since
n (2n 2n
(1 + 1) = ( ) 24 > ( )
j;() J n

2 p<2n
22n > <Hn> > I_I P

p>n

Hence

and therefore

p<2n
2nlog2 > ) logp = 0(2n) — O(n).

p>n

m

Summing this relation forn = 1,2, 4,8,...,2" ! gives
2™ < (log 2)(2"*! - 2)

< (log 2)2m* 1.
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If 2"~ ! < x < 2™ we obtain

0(x) < 02™ < (log 2)2™*! = (4 log 2)2™~!
< (4 log 2)x. O

Corollary 1. There is a positive constant ¢, such that a(x) < c¢,x/log x for
x =2
pP<x

PROOF. 0(x)= ) logp

P> VX
> (log /x)(n(x) — (/X))
> (log \/)_c)n(x) - \/‘; log \/;

Thus
20(x)
n(x) < fog x +/x
X
The result follows by noting that \/§ < 2x/log x for x = 2. O

Corollary 2. n(x)/x - 0 as x — co.

To bound n(x) from below we begin by examining further the binomial
coefficient (7). First of all

)£ (59

On the other hand by Exercise 6 at the end of this chapter we have

2n (2n)! e (12n n
°“‘"(n ) = s Gy = 2, (H - 2[171])

where t, is the largest integer such that p'» < 2n. Thus t, = [log 2n/log p].
Now it is easy to see that [2x] — 2[x] is always 1 or 0. It follows that

2
ord 2n < log Zn'
P\ n log p

Proposition 2.4.4. There is a positive constant ¢, such that n(x) > ¢,(x/log x).

PROOF. By the above we have

»< (™) < [T r
h p<2n
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Thus

2
nlog2< ) t,logp= ) [log n]logp

p<2n p<2n logp

Iflog p > 1 log 2n, i.e, p > /2n, then [log 2n/log p] = 1. Thus

log 2 peam
nlog2< Y [og "]logp+ Y logp
p<vz | logp > U7

< /2nlog 2n + 0(2n).

Therefore 0(2n) > nlog2 — \/ﬂ log 2n. But \/ﬂ log 2n/n approaches 0

as n — oo, so that 0(2n) > Th for some T > 0 and all n sufficiently large.

Writing, for large x, 2n < x <2n+ 1 we have 6(x) = 6(2n) > Tn >

T(x — 1)/2 > Cx for a suitable constant C. Thus there is a constant ¢, > 0

such that 0(x) > ¢, x for all x > 2. To complete the proof we observe that
0(x) = Y logp < n(x) log x.

psx

Thus

0
n(x) > ﬁ > ¢, X .
log x log x

g

The preceding two propositions were first proven by Tchebychef in 1852,
These results are subsumed under the famous prime number theorem which
asserts that in fact n(x)(log x/x) = 1 as x — o0. It is not difficult to see that
this is equivalent to 6(x)/x — | as x — oo. The prime number theorem was
conjectured, in a slightly different form by Gauss at the age of 15 or 16. The
proof of the conjecture was not achieved until 1896 when J. Hadamard and
Ch. de la Vallé Poussin established the result independently. Their proofs
utilize complex analytic properties of the Riemann zeta function. In 1948
Atle Selberg was able to prove the result without the use of complex analysis.

NOTES

There are a multitude of unsolved problems in the theory of prime numbers.
For example, it is not known if there are infinitely many primes of the form
n? + 1. On the other hand we will prove in Chapter 16 that the linear poly-
nomialan + balways represents an infinite number of primes when (¢, b) = 1.
This is the celebrated theorem of Dirichlet on primes in an arithmetic pro-
gression.

It is not known whether there exist infinitely many primes of the form
2V + 1, the so-called Fermat primes, or if there are infinitely many primes of
the form 2 — 1, the Mersenne primes.

Another outstanding problem is to decide whether there are an infinite
number of primes p such that p + 2 is also prime. It is known that the sum
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of the reciprocals of the set of such primes converges, a result due to Viggo
Brun [52].

Good discussions of unsolved problems about primes may be found in
W. Sierpinski [71] and Shanks [70]. Readers with a background in analysis
should read the paper by P. Erdés [31] as well as those of Hardy [38] and
[39].

The key idea behind the proof of Theorem 2 is due to L. Euler. A pleasant
account of this for the beginner is found in Rademacher and Toeplitz [65].

Theorem 3 gives a proof in the spirit of Euler that k[ x] contains infinitely
many irreducibles. This already suggests that many of the theorems in classical
number theory have analogs in the ring k[x]. This is indeed the case. An
interesting reference along these lines is L. Carlitz {10].

The theorem of Dirichlet mentioned above has been proved for k[x], k a
finite field, by H. Kornblum [50]. Kornblum had his promising career cut
short after he enlisted as Kriegsfreiwilliger in 1914. The prime number
theorem also has an analog in k[x]. This was proved by E. Artin in his
doctoral thesis [2].

A good introduction to analytic number theory is Chandrasekharan [112].
In the last chapter of this very readable text a proof of the prime number
theorem is given that uses complex analysis. Proofs that are free of complex
analysis (but not of subtlety) have been given by A. Selberg [215] and
P. Erd6s [133]. For an interesting account of the history of this theorem see
L. J. Goldstein [139]. Finally we recommend the remarkable tract Prim-
zahlen by E. Trost [229]; this 95 page book contains, in addition to many
elementary results concerning the distribution of primes, Selberg’s proof of
the prime number theorem as well as an “elementary” proof of Dirichlet’s
theorem mentioned above. See also D. J. Newman [198].

EXERCISES

1. Show that k[x], with k a finite field, has infinitely many irreducible polynomials.

2. Letpy, py,..., p € Z be primes and consider the set of all rational numbers r = a/b,
a,beZ, such thatord, a > ord, b for i = 1,2,...,t Show that this set is a ring
and that up to taking associates py, p,, ..., p, are the only primes.

3. Use the formula for ¢(n) to give a proof that there are infinitely many primes.
[(Hint: If p,, py, ..., p, were all the primes, then ¢(n) = 1, where n = p,p,---p,.]

4. If a is a nonzero integer, then for n > m show that (a>" + |, @*” + 1) =1 or 2
depending on whether a is odd or even. (Hint: If p is an odd prime and p|a*” + 1,
then pla?” — 1 forn > m.)

5. Use the result of Exercise 4 to show that there are infinitely many primes. (This proof
is due to G. Polya.)

6. For a rational number r let [r] be the largest integer less than or equal to r, e.g,
[31=0,[2] = 2, and [34] = 3. Prove ord, n! = [n/p] + [n/p*] + [n/p°] + ---.

7. Deduce from Exercise 6 that ord, n! < n/(p — 1) and that It < [Lymp" e
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8.

10.

11

22.
23.

24.
25.

26.

27.

Use Exercise 7 to show that there are infinitely many primes. [Hint: (n!)? > n"]
(This proof is due to Eckford Cohen.)

. A function on the integers is said to be multiplicative if f(ab) = f(a)f(b) whenever

(a, b) = 1. Show that a multiplicative function is completely determined by its value
on prime powers.

If f(n) is a multiplicative function, show that the function g(n) = } 4, f(d) is also
multiplicative.

Show that ¢(n) = n Y 4, u(d)/d by first proving that u(d)/d is multiplicative and then
using Exercises 9 and 10.

. Find formulas for Y 4, u(d)¢(d), Y n p(d)*$(d)?, and ¥, u(d)/p(d).

. Let a(n) = Y4, d*. Show that ¢,(n) is multiplicative and find a formula for it.

. If f(n) is multiplicative, show that h(n) = 3 4, p(n/d) f(d) is also multiplicative.
. Show that

(@) Y 40 p(n/d)w(d) = 1 for all n.
(b) Y4 u(n/d)o(d) = n for all n.

. Show that v(n) is odd iff n is a square.

. Show that a(n) is odd iff n is a square or twice a square.
. Prove that ¢(n)p(m) = ¢((n, m))p([n, m]).

. Prove that ¢(mn)d((m, n)) = (m, n)¢(m)¢(n).

. Prove that [, d = n""2.

. Define A (n) = log pifnisa powerof pand zero otherwise. Provethat } ,,, u(n/d) log d

= A(n). [Hint: First calculate Y 4, A(d) and then apply the Mobius inversion
formula.]

Show that the sum of all the integers ¢ such that 1 <t < n and (¢, n) = 1 is in¢(n).

Let f(x) € Z[x] and let y(n) be the number of f(j).j = 1, 2,..., n, such that (f(j), n)
= 1. Show that y(n) is multiplicative and that y(p") = p*~ "¥(p). Conclude that
Y(n) = n [T wp)p.

Supply the details to the proof of Theorem 3.

Consider the function {(s) = Y &, 1/n%. {(s) is called the Riemann zeta function. It
converges for s > 1. Prove the formal identity (Euler’s identity) {(s) = ﬂp (1 -
(1/p*)) 1. If we let s assume complex values, it can be shown that {(s) has an analytic
continuation to the whole complex plane. The famous Riemann hypothesis states
that the only zeros of {(s) lying in the strip 0 < Re s < 1 lie on the line Re s = §.

Verify the formal identities

(@) {s)™! =30, pnyn’.

(b) Us)* = Y2\ myn’.

(©) L6)(s = 1) = 32y aln)/n’.

Show that )’ 1/n, the sum being over square free integers, diverges. Conclude that

[1p<n (1 + 1/p) = 00 as N — co. Since ¢* > 1 + x, conclude that 3, .y 1/p = .
(This proof is due to I. Niven.)



Chapter 3

Congruence

Gauss first introduced the notion of congruence in Dis-
quisitiones Arithmeticae (see Notes in Chapter 1). It is
an extremely simple idea. Nevertheless, its importance
and usefulness in number theory cannot be exaggerated.

This chapter is devoted to an exposition of the simplest
properties of congruence. In Chapter 4, we shall go into
the subject in more depth.

§1 Elementary Observations

It is a simple observation that the product of two odd numbers is odd, the
product of two even numbers is even, and the product of an odd and even
number is even. Also, notice that an odd plus an odd is even, an even plus an
even is even, and an even plus an odd is odd. This information is summarized
in Tables 1 and 2. Table | is like a multiplication table and Table 2 like an
addition table.

Table 1 Table 2
€ QO € o]
< € ¢ [ €
c o €

These observations are so elementary one might ask if anything interesting
can be deduced from them. The answer, surprisingly, is yes.

Many problems in number theory have the form; if fis a polynomial in
one or several variables with integer coefficients, does the equation /= 0
have integer solutions? Such questions were considered by the Greek
mathematician Diophantus and are called Diophantine problems in his
honor.

Consider the equation x> — [17x + 31 = 0. We claim that there is no
solution that is an integer. Let n be any integer. n is either even or odd. If n
is even, so is n? and 117n. Thus n? — 117n + 31 is odd. If n is odd, then n*

28
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and 117n are both odd. Thus n? — 117n + 31 is odd in this case also. Since
every integer is even or odd, this shows that n> — 117z + 31 is never zero.

In Chapter 2 we showed that there are infinitely many prime numbers.
We shall now show that there are infinitely many prime numbers that leave
a remainder of 3 when divided by 4. Examples of such primes are 3, 7, 19,
and 59.

An integer divided by 4 leaves a remainder of 0, 1, 2, or 3. Thus odd
numbers are either of the form 4k + 1 or 4/ + 3. The product of two numbers
of the form 4k + | is again of that form: (4k + )4k’ + 1) = 4(4kk’ + k
+ k') + 1. It follows that an integer of the form 4/ + 3 must be divisible by
a prime of the form 4/ + 3.

Now, suppose that there were only finitely many positive primes of the
form 4/ + 3. This list begins 3,7, 11,19,23,.... Letp, = 7,p, = t1,p; = 19,
etc. Suppose that p,, is the largest prime of this form and set N = 4pp, ---
Pm + 3. N is not divisible by any of the p,. However, N is of the form 4/ + 3
and so must be divisible by a prime p of the form 4/ + 3. We have p > p,,,
which is a contradiction.

There is clearly some common principle underlying both arguments. We
explore this in Section 2.

§2 Congruence in Z

Definition. If a, b, me Z and m 3 0, we say that a is congruent to b modulo m
if m divides b — a. This relation is written a = b (m).

Proposition 3.2.1.

(a) a = a((m).
(b) a = b (m) implies that b = a (m).
(c) Ifa=b(m)and b = c (m), then a = ¢ (m).

PROOF.

(a) a — a = 0 and m|O0.
(b) If m|b — a, then m|a — b.
(c) If m|b — uand m|c — b,then m|c —a = (¢ — b) + (b — a). Od

Proposition 3.2.1 shows that congruence modulo m is an equivalence
relation on the set of integers. If a € Z, let @ denote the set of integers congruent
to a modulo m. a = {ne Z|n = a (m)}. In other words a is the set of integers
of the form a + km.

If m = 2, then O is the set of even integers and 1 is the set of odd integers.

Definition. A set of the form a is called a congruence class modulo m.
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Proposition 3.2.2.

(@) a=">biffa=b(m).
(b) @a# biffanbisempty.
(c) There are precisely m distinct congruence classes modulo m.

PROOF.

(a) If b = a, then aca = b. Thus a = b (m). Conversely, if a = b (m), then
aeb. If ¢ = a (m), then ¢ = b (m), which shows a < b. Since a = b (m)
implies that b = a (m), we also have b < a. Therefore @ = b.

(b) Clearly, ifa n bis empty, then @ # b. We shall show that @ n b not empty
implies that @2 =b. Let ceanb. Then ¢ =a(m) and ¢ = b(m). It
follows that a = b (m) and so by part (a) we have @ = b.

(c) We shall show that0,1,2,..., m — 1 are all distinct and are a complete
set of congruence classes modulo m. Suppose that 0 < k <[ <m k=1
implies that k = [ (m) or that m divides [ — k. Since 0 < [ — k < m this
is a contradiction. Therefore k # I. Now let ae Z. We can find integers
q and r such that a = gm + r, where 0 < r < m. It follows that a = r (m)
and that a = F. O

Definition. The set of congruence classes modulo m is denoted by Z/mZ.
Ifa,,a,,...,a, are a complete set of congruence classes modulo m, then
{a,, a5, ..., a,} is called a complete set of residues modulo m.
For example, {0, 1, 2, 3}, {4,9, 14, — 1}, and {0, I, —2, — 1} are complete
sets of residues modulo 4.

The set Z/mZ can be made into a ring by defining in a natural way addition
and multiplication. This is accomplished by means of the following proposi-
tion.

Proposition 3.2.3. If a=c(m) and b = d (m), then a + b = ¢ + d (m) and
ab = cd (m). ’

Proof. If m|c — a and m|d — b, then m{(c —a) + (d — b) = (c + d) —
(a+b).Thusa+ b=c+d(m).

Notice that ¢d — ab = c(d — b) + b(c — a). Thus mfcd — ab and ab =
cd (m). O

If 4, be Z/mZ, we define @ + b to be a + b and ab to be ab.

This definition seems to depend on a and b. We have to show that they
depend only on the congruence classes defined by a and b. This is easy.
Assume that ¢ = @ and that d = b. We must show that a + b = ¢ + d and
that ab = cd, but this follows immediately from Propositions 3.2.2 and 3.2.3.

With these definitions Z/mZ becomes a ring. The verification of this fact is
left to the reader.
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Table 3 Table 4
Addition Multiplication
0 \ 2 0 1 2
0 0 1 2 0 0o 0 0
| 1 2 0 1 0 1 2
2 2 0 1 2 0 2 1

Tables 3 and 4 give explicitly the addition and multiplication in Z/3Z.
(Bars over the numbers are omitted.) The reader should construct similar
tables for m = 4, 5, and 6.

In discussing arithmetic problems it is sometimes more convenient to
work with the ring Z/mZ than with the notion of congruence modulo m. On
the other hand, it is sometimes more convenient the other way around. We
shall switch back and forth between the two viewpoints as the situation
demands.

We proved earlier that the polynomial x*> — 117x + 31 has no integer
roots. It is possible to generalize this result using some of the material we
have developed.

If a = b(m), then a® = b? (m), a®> = b> (m), and in general a" = b" (m).
It follows that if p(x) € Z[x], then p(a) = p(b) (m). All this is a consequence
of Proposition 3.2.3.

Take m = 2. Then a is congruent to either 0 or 1 modulo 2 and we have
p(a) = p(0) (2) or p(a) = p(1) (2).

If p(x) = apx" + a;x""* + --- + a,_,x + a,, then p(0) = a, and p(1) =
ap + a, + --- + a,. Our calculations yield the following result: If p(x) €
Z[x] and p(0) and p(1) are both odd, then p(x) has no integer roots.

x2 — 117x + 31 has constant term 31, and the sum of the coefficients is
—85, both of which are odd. Other examples are 2x* + 2x + 1 and 3x> +
2x% + x + 3.

§3 The Congruence ax = b (m)

The simplest congruence is ax = b (m). In this section we shall develop a
criterion to test this congruence for solvability, and if it is solvable, give a
formula for the number of solutions.

Before beginning we must give a definition of what we mean by the number
of solutions to a congruence. Quite generally, let f(x,, ..., x,) be a poly-
nomial in n variables with integer coefficients and consider the congruence
f(xy, ..., x,) = 0(m). A solution is an n-tuple of integers (aj, ..., a,) such
that f(a,, a;, --., a;) = 0(m). If (by, ..., b,) is another n-tuple such that
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b; = a;(m)fori =1,...,n,thenitiseasytoseethatf(b,,...,b,) = 0 (m). We
do not want to consider these two solutions as being essentially different. Thus
two solutions (ay, ..., a,) and (b,, ..., b,) are called equivalent if q; = b, for
i=1,...,n The number of solutions to f(x,, ..., x,) = 0 (m) is defined to be
the number of inequivalent solutions.

For example, 3, 8, and 13 are solutions to 6x = 3 (15). 18 is also a solution,
but the solution x = 18 is equivalent to the solution x = 3.

It is useful to consider the matter from another point of view. The map
from Z to Z/mZ given by a — a is a homomorphism. If f(a,, ..., a,) = 0 (m),
then f(a,,...,a,) = 0. Here f(x,,...,x,) € Z/mZ[x,,...,x,] is the poly-
nomial obtained from f by putting a bar over each coefficient of f. One can
now see that equivalence classes of solutions to f(x,, ..., x,) = 0 are in one-
to-one correspondence with solutions to f(x,, ..., x,) = 0 in the ring
Z/mZ. This interpretation of the number of solutions arises frequently.

We now return to the number of solutions of the congruence ax = b (m).

Let d > O be the greatest common divisor of a and m. Set a’ = a/d and
m’ = m/d. Then a’ and m’ are relatively prime.

Proposition 3.3.1. The congruence ax = b (m) has solutions iff d|b. If d|b, then
there are exactly d solutions. If x, is a solution, then the other solutions are
given by xo + m', xq +2m', ..., xo + (d — )m'.

Proor. If x, is a solution, then ax, — b = my, for some integer y,. Thus
axy, — my, = b. Since d divides ax, — my,, we must have d|b.

Conversely, suppose that d|b. By Lemma 4 on page 4 there exist integers
Xy and yg such that ax, — myy = d. Let ¢ = b/d and multiply both sides of
the equation by c. Then a(xyc) — m(ypc) = b. Let x, = xpc. Then axg =
b (m).

We have shown that ax = b (m) has a solution iff d|b.

Suppose that x, and x, are solutions. ax, = b (m) and ax, = b (m) imply
that a(x, — xo) = 0(m). Thus m|a(x, — x,) and m’'|a'(x, — x,), which
implies that m'|x, — x, or x, = xo + km’ for some integer k. One easily
checks that any number of the form x, + km’ is a solution and that the solu-
tions xg, Xo + M, ..., Xo + (d — )m’ are inequivalent. Let x, = xo + km’
be another solution. There are integers r and s such that k = rd + s and
0 <s<d Thus x; = xg + sm" + rm and x, is equivalent to x, + sm’.
This completes the proof. O

As an example, let us consider the congruence 6x = 3 (15) once more. We
first solve 6x — 15y = 3. Dividing by 3, we have 2x — Sy = 1.x =3,y =1
is a solution. Thus x, = 3 is a solution to 6x = 3 (15). Now, m = 15 and
d = 3 so that m" = 5. The three inequivalent solutions are 3, 8, and 13.

We have two important corollaries.

Corollary 1. If a and m are relatively prime, then ax = b (m) has one and only
one solution.
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PROOF. In this case d = 1 so clearly d|b, and there are d = 1 solutions. [

Corollary 2. If p is a prime and a % 0 (p), then ax = b (p) has one and only one
solution.

ProOF. Immediate from Corollary 1. O

Corollaries 1 and 2 can be interpreted in terms of the ring Z/mZ. The
congruence ax = b (m) is equivalent to the equation ax = b over the ring
Z/mZ.

What are the units of Z/mZ? ae Z/mZ is a unit iff ax = 1T is solvable.
ax = 1(m)is solvable iff d| 1, i.e., iff a and m are relatively prime. Thus a is a
unit iff (a, m) = 1, and it follows easily that there are exactly ¢(m) units in
Z/mZ [see page 20 for the definition of ¢(m)].

If pis a prime and a@ # O is in Z/pZ, then (a, p) = 1. Thus every nonzero
element of Z/pZ is a unit, which shows that Z/pZ is a field.

If m is not a prime, then m = m;m,, where 0 < m,, m, < m. Thusm; # 0,
m, # 0, but m,m, = mym; = m = 0. Thereforée Z/mZ is not a field.

Summarizing we have

Proposition 3.3.2. An element a of Z/mZ is a unit iff (a, m) = 1. There are
exactly ¢(m) units in Z/mZ. Z/mZ is a field iff m is a prime.

Corollary 1 (Euler’s Theorem). If (a, m) = 1, then a®™ = 1 (m).

PRrOOF. The units in Z/mZ form a group of order ¢(m). If (a, m) = 1, ais a
unit. Thus @*™ = T or a®™ = 1 (m). O

Corollary 2 (Fermat’s Little Theorem). If p is a prime and p ¥ a, thena?™! =
1(p).

ProoF. If p f a, then (a, p) = 1. Thus a®® = 1 (p). The result follows, since
for a prime p, ¢(p) = p — 1. O

It is possible to generalize many of the results in this section to principal
ideal domains.

The notions of congruence and residue class can be carried over to an
arbitrary commutative ring. The first part of Proposition 3.3.1 is valid in a
PID; i.e., ax = b (m) has a solution iff d|b and the solution is unique iff a
and m are relatively prime. The only difference is that the number of solutions
need not be finite. In any case, using this result one proves in analogy to part
of Proposition 3.3.2 that if R is a PID and m e R is not zero or a unit, then
R/(m) is a field iff m is a prime.

In particular, if & is a field, then k[x]/(f(x)) is a field iff f(x) is irreducible.
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§4 The Chinese Remainder Theorem

When the modulus m of a congruence is composite it is sometimes possible
to reduce a congruence modulo m to a system of simpler congruences. The
main theorem of this type is the so-called Chinese remainder theorem
(Theorem 1), which we prove below. This theorem is valid for any PID (in
fact, even more generally). However, we shall continue to work in Z and leave
to the reader the relatively simple exercise of carrying over the proof for
PID’s.

Lemma 1. Ifa,, ..., a are all relatively prime to m, then so is aa; - - - a,.

PROOF. ;€ Z/mZ is a unit. Thus so is d,a, - - - @, = a,a, - -- a,- By Proposition
3.3.2,a,a, - - - a, is relatively prime to m. O

Another proof goes as follows. If a,a, --- a, was not prime to m, there
would be a prime p that divides them both. p|a,a, - - - a, implies that p|a, for
some i. It follows that (a;, m) # 1, which contradicts the hypothesis.

Lemma 2. Suppose that a,, ..., a, all divide n and that (a;, a;) = 1 for i # j.
Then a a, - - - a, divides n.

PrOOF. The proof is by induction on . If t = 1, there is nothing to do. Sup-
pose that t > 1 and that the lemma is true for t — 1. Then a,a;---a,-,
divides n. By Lemma 1, , is prime to a,a, - - - 4, ;. Thus there are integers r
and s such that ra, + sa,a, --- ¢,_, = 1. Multiply both sides by n. Inspection
shows that the left-hand side is divisible by a,a; - - - 4, and the result follows.

a

Theorem 1 (Chinese Remainder Theorem). Suppose that m = mym; ---m,
and that (m;, mj) = 1 for i # j. Let by, by, ..., b, be integers and consider the
system of congruences:

x=b,(m),x=b,(my),...,x =b,(m,).

This system always has solutions and any two solutions differ by a multiple
of m.

PROOF. Let n; = m/m;. By Lemma 1, (m;, n;) = 1. Thus there are integers r; and
s; such that r;m; + s;n; = 1. Let ¢; = s;n;. Then ¢; = | (m;) and ¢; = 0 (m))
forj #i.

Set xo = Yi_, be;, Then we have x, = bie;(m;) and consequently
Xo = b; (m;). x4 is a solution.

Suppose that x, is another solution. Then x; — xo = 0(m,;) for i =
1,2, ..., t. In other words, m,, m,, ..., m, divide x; — x,. By Lemma 2,
m divides x; — x,. O
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We wish to interpret Theorem 1 from a ring-theoretic point of view. If
Ry, R,, ..., R, are rings, then R, ® R, @ --- ® R, = S, the direct sum of
the R;, is defined to be the set of n-tuples (r, 75, ..., r,) with r; € R;. Addition
and multiplication are defined by (r, ry, ..., 1) + (P, 15, ..o ) = () +
o oeostp+rand (ry, ray oo, 1) (K 1y, oo 1) = (ryr, rarhy, oo, rarh).
The zero element is (0, 0, .. ., 0) and the identity is (1, 1,..., 1). u€ S is a unit
iff thereisa ve S such that uv = 1. If u = (u,, ..., u,) and v = (v, ..., v,),
then uv = 1 implies that u;v; = 1 fori = 1,..., n. Thus y, is a unit for each i.
Conversely, if u; is a unit for each i, then u = (u,, u,,...,u,)is a unit. For a
ring R we denote the group of units by U(R). U(R,) x U(R,) x --- x U(R,)
is the set of n-tuples (u,, u,, ..., u,), where u; € R;. This is a group under
component-wise multiplication. We have shown

Proposition3.4.1. I[f S=R, ® R, ®--- ® R, then U(S) = U(R,) x U(R,)
x U(R;3) x ---x U(R,).

Let m;, m,, ..., m, be pairwise relatively prime integers. ; will denote the
natural homomerphism from Z to Z/m;Z. We construct a map ¥ from Z to
ZimZ ® Zim,Z @ --- @ Z/m, Z as follows: Y(n) = (Y,(n), Y,(n), ...,
y,(n)) for all ne Z. It is easy to check that ¢ is a ring homomorphism. What
are the kernel and image of ?

(5, by, ...,B) =y iff y(n)=Db, fori=1,...,t; ie, n=b;(m;) for
i=1,...,t The Chinese Remainder Theorem assures us that such an n
always exists. Thus y is onto.

Y(n) =0ifn=0(m,),i=1,...,t, iff nis divisible by m = mym, --- m,.
This is immediate from Lemma 2. Thus the kernel of  is the ideal mZ.

We have shown

Theorem 1. The map  induces an isomorphism between Z/mZ and Z|m,Z &
Zim,2 ® ---® Z/m,Z.

Corollary. U(Z/mZ) = U(Z/m,Z) x U(Z/m,Z) x --- x U(Z/m,Z).

ProOOF. Immediate from Theorem 1’ and Proposition 3.4.1. O

Both sides of the isomorphism in the above corollary are finite groups.
The order of the left-hand side is ¢(m) and the order of the right-hand side is
$(m,)(m3) - - - $(m,). Thus $(m) = Glm,)b(msy) - - - d(m,)

Let m = p{'p%* - - - p{* be the prime decomposition of m. We have ¢(m) =
B(p1IP(pY) - - - ¢(py"). For a prime power, p°, ¢(p?) = p* — p°~ ', because
the numbers less than p® and prime to p° are prime to p. Since p*/p = p*~!
numbers less than p® are divisible by p, p* — p*~! numbers are prime to p.
Notice that p* — p*~' = p*(1 — 1/p). It follows that ¢(m) = m [] (1 — 1/p).
We proved this formula in Chapter 2 in a different manner.
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Let us summarize. In treating a number of arithmetical questions, the
notion of congruence is extremely useful. This notion led us to consider the
ring Z/mZ and its group of units U(Z/mZ). To go more deeply into the struc-
ture of these algebraic objects we write m = p{'p3 - -- p{* and are led, via the
Chinese Remainder Theorem, to the following isomorphisms:

ZimZ =~ Z/p2Z @ Z/p%Z @ - ® Z/piZ,
U(Z/mZ) ~ U(Z/pZ) x U(Z/p$Z) x --- x U(Z(p{Z).

For prime powers it is possible to push the investigation much further.
This is the subject of Chapter 4.

NOTES

It would be useful for the reader to consult other treatments of the basic
material given here. See, for example, the very readable book of Davenport
[22] and (again) Hardy and Wright [40]. See also Niven and Zuckerman
[61], T. Nagell [60], E. Landau [52] and Vinogradov [77].

An interesting discussion of the various possible ways of arranging this
material can be found in P. Samuel, “Sur l'organization d’un cours
d’arithmetique,” L’Enseignment Math., 13, (1967),223-231. A more advanced
discussion of congruences is given in the first chapter of Borevich and
Shafarevich [9]; this book also shows how the theory of congruences is
useful in determining whether equations can be solved in integers. We
mention also the beautiful treatment by J. P. Serre {69].

Historically the notion of congruences was first introduced and used
systematically in Gauss’ Disquisitiones Arithmeticae. The notion of con-
gruence is a wonderful example of the usefulness of employing the “right”
notation.

As far as the Chinese Remainder Theorem is concerned we note that
Hardy and Wright [40] note that R. Bachman [4] notes that Sun Tsu was
aware of this result in the first century A.D. The theorem is capable of vast
generalizationﬁ. Properly formulated it holds in any ring with identity.
Surprisingly it is no more difficult to prove in general than in the special
case we have given (see Proposition 12.3.1).

EXERCISES

1. Show that there are infinitely many primes congruent to — 1 modulo 6.
2. Construct addition and multiplication tables for Z/5Z, Z/8Z, and Z/10Z.

3. Let abc be the decimal representation for an integer between 1 and 1000. Show that
abc is divisible by 3 iffa + b + ¢ is divisible by 3. Show that the same result is true if
we replace 3 by 9. Show that abc is divisible by 11 iff a — b + ¢ is divisible by 11.
Generalize to any number written in decimal notation.
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12.

13.
14.

17.

19.
20.

21.
22,
23.

24.

. Show that the equation 3x? + 2 = y? has no solution in integers.
. Show that the equation 7x* + 2 = p* has no solution in integers.

. Let an integer n > 0 be given. A set of integers a,, a,, ..., gy, is called a reduced

residue system modulo n if they are pairwise incongruent modulo n and (a;, n) = 1
foralli.If (a, n) = 1,provethataa,, aa,, ..., aa,y, is again a reduced residue system
modulo n.

. Use Exercise 6 to give another proof of Euler’s theorem, a®™ = 1 (n) for (a, n) = 1.

. Let pbe an odd prime. If ke {1, 2, ..., p — 1}, show that there is a unique b, in this

set such that kb, = 1 (p). Show that k # b, unlessk =lork =p — 1.

. Use Exercise 7 to prove that (p — 1)! = —1 (p). This is known as Wilson's theorem.
. If n is not a prime, show that (n — 1)! = 0 (n), except when n = 4.

. Leta,, a,, ..., a4, beareduced residue system modulo n and let N be the number of

solutions to x? = 1 (n). Prove that a,a, -+ - ay = (= 1)V (n).
Let (Z ) = pl/(k!(p — k)!) be a binomial coefficient, and suppose that p is a prime.
If 1 £k <p — 1, show that p divides (i) Deduce (a + 1)» = a” + 1 (p).

Use Exercise 12 to give another proof of Fermat’s theorem, a?"' =1 (p) if p-t a.

Let p and g be distinct odd primes such that p — 1 divides ¢ — 1. If (n, pq) = 1,
show that n?~ ! = 1 (pgq).

. For any prime p show that the numeratorof 1 + £ +  + --- + 1/p — Lis divisible

by p. (Hint: Make use of Exercises 8 and 9.)

. Use the proof of the Chinese Remainder Theorem to solve the system x = 1 (7),

x=49),x=3(5).

Let f(x)eZ[x] and n = py'p3*--- p{*. Show that f(x) = 0 (n) has a solution iff
f(x) =0 (p¥) has asolutionfori=1,2,...,¢t

. Let N be the number of solutions to f(x) = 0 (n) and N, be the number of solutions

to f(x) = 0 (p™). Prove that N = N,N,---N,.
If p is an odd prime, show that 1 and — 1 are the only solutions to x? = 1 (p?).

Show that x? = 1 (2%) has one solution if b = 1, two solutions if b = 2, and four
solutions if b > 3.

Use Exercises 18-20 to find the number of solutions to x? = 1 (n).
Formulate and prove the Chinese Remainder Theorem in a principal ideal domain.

Extend the notion of congruence to the ring Z[i] and prove that a + bi is always
congruent to 0 or | modulo 1 + i.

Extend the notion of congruence to the ring Z[w] and prove that a + bw is always
congruent to either —1, 1, or O modulo | — w.
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25. LetA=1— weZ[w] Ifae Z[w]and a = 1 (1), prove that a® = 1 (9). (Hint: Show
first that 3 = —w?4%)

26. Use Exercise 25 to show thatif & n,{ € Z[w] are not zeroand & + 1 + {* = 0,then
A divides at least one of the elements &, n, {.



Chapter 4
The Structure of U(Z/nZ)

Haring introduced the notion of congruence and discussed
some of its properties and applications we shall now go
more deeply into the subject. The key result is the existence
of primitive roots modulo a prime. This theorem was used
by mathematicians before Gauss but he was the first to
give a proof. In the terminology introduced in Chapter 3
the existence of primitive roots is equivalent to the fact
that U(Z[pZ) is a cyclic group when p is a prime. Using
this fact we shall find an explicit description of the group
U(Z/nZ) for arbitrary n.

§1 Primitive Roots and the Group Structure
of U(Z/nZ)

If n = p3'p% ... pi, then, as was shown in Chapter 3, U(Z/nZ) = U(Z/p'Z)
x .-+ x U(Z/pZ). Thus to determine the structure of U(Z/nZ) it is sufficient
to consider the case U(Z/p°Z), where p is a prime. We begin by considering
the simplest case, U(Z/pZ).

Since Z/pZ is a field, it will be helpful to have available the following
simple lemma about fields.

Lemma 1. Let f(x) € k[x], k a field. Suppose that deg f(x) = n. Then f has at
most n distinct roots.

Proor. The proof goes by induction on n. For n = 1 the assertion is trivial.
Assume that the lemma is true for polynomials of degree n — 1. If f(x)
has no roots in k, we are done. If a is a root, f(x) = g(x}(x — &) + r, wherer
is a constant. Setting x = o« we see that r = 0. Thus f(x) = g(x}(x — a)
and deg gq(x) = n — 1. If B # a is another root of f(x), then 0 = f(f) =
(B — «)q(B), which implies that g(8) = 0. Since by induction g(x) has at
most n — 1 distinct roots, f(x) has at most n distinct roots. (]

Corollary. Let f(x), g(x)ek[x] and degf(x) =degg(x) =n. If f(a) =
gla;) for n + 1 distinct elements ay, a,, ..., %y, Uy y, then f(x) = g(x).

Proor. Apply the lemma to the polynomial f(x) — g(x). O

39
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Proposition 4.1.1. xP"! — 1 =(x — )(x = 2)---(x — p + 1) (p).

Proor. If a denotes the residue class of an integer a in Z/pZ, an equivalent
way of stating the propositionisx? ! — T = (x = I)(x = 2)--- (x = (p = 1))
in Z/pZ[x]. Let f(x) = (x*" ' = D) = (x = Dx = 2)--- (x = (p — 1)). f(x)
has degree less than p — 1 (the leading terms cancel) and has the p — 1 roots

1,2,...,p — 1 (Fermat’s Little Theorem). Thus f(x) is identically zero. []

Corollary. (p — I)! = —1(p).
ProOoOF. Set x = 0 in Proposition 4.1.1. O

This result is known as Wilson’s theorem. It is not hard to prove that if
n > 4 is not prime, then (n — 1)! = 0 (n) (see Exercise 10 of Chapter 3).
Thus the congruence (n — 1)! = — 1 (n) is characteristic for primes. We shall
make use of Wilson’s theorem later when discussing quadratic residues.

Proposition 4.1.2. If d|p — 1, then x* = 1 (p) has exactly d solutions.
PrOOF. Letdd’ = p — 1. Then
xP7l -1 xH* -1

d

P el =0T T2+ x4 = g(x)

Therefore

xP7— 1= (x* = Dg(x)
and

x?" -1 = (x4 = Dg(x).

If x* — T had less than d roots, then by Lemma 1 the right-hand side would
have less than p — 1 roots. However, the left-hand side has the p — 1 roots
1,2,...,p — 1. Thus x! = 1 (p) has exactly d roots as asserted. O

Theorem 1. U(Z/pZ) is a cyclic group.

PrOOF. For d|p — 1 let y(d) be the number of elements in U(Z/pZ) of order
d. By Proposition 4.1.2 we see that the elements of U(Z/pZ) satisfying
x? =T form a group of order d. Thus ) |, ¥(c) = d. Applying the MGbius
inversion theorem we obtain y(d) = ) ., p(c)d/c. The right-hand side of this
equation is equal to ¢(d), as was seen in the proof of Proposition 2.2.5.
In particular, Y(p — 1) = ¢(p — 1), which is greater than 1 if p> 2. Since
the case p = 2 is trivial, we have shown in all cases the existence of an element
[in fact, ¢(p — 1) elements] of order p — L. (]

Theorem 1 is of fundamental importance. It was first proved by Gauss.
After giving some new terminology we shall outline two more proofs.
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Definition. An integer a is called a primitive root mod p if a generates the
group U(Z/pZ). Equivalently, a is a primitive root mod p if p — 1 is the
smallest positive integer such that a?~! = 1 (p).

As an example, 2 is a primitive root mod 5, since the least positive residues
of 2,22 23 and 2* are 2,4, 3,and 1. Thus 4 = 5 — 1 is the smallest positive
integer such that 2" = 1 (5).

For p = 7, 2 is not a primitive root since 2* = 1 (7), but 3 is since 3, 32,
33, 34, 35 and 3° are congruent to 3, 2, 6,4, 5, and 1 mod 7.

Although Theorem 1 shows the existence of primitive roots for a given
prime, there is no simple way of finding one. For small primes trial and error
is probably as good a method as any.

A celebrated conjecture of E. Artin states that if a > 1 is not a square, then
there are infinitely many primes for which a is a primitive root. Some progress
has been made in recent years, but the conjecture still seems far from resolu-
tion. See [35].

Because of its importance, we outline two more proofs of Theorem 1. The
reader is invited to fill in the details.

Let p — 1 = ¢5'¢q%* - - - ¢ be the prime decomposition of p — 1. Consider
the congruences

(1) x7 = 1(p).
(2) x™ = 1(p).

Every solution to congruence 1 is a solution of congruence 2. Moreover,
congruence 2 has more solutions than congruence 1. Let g; be a solution to
congruence 2 that is not a solution to congruence 1 and set g = g,g, - g,.
g; generates a subgroup of U(Z/pZ) of order gf'. It follows that g generates a
subgroup of U(Z/pZ) of order ¢5'q%*---q{* = p — 1. Thus g is a primitive
root and U(Z/pZ) is cyclic. '

Finally, on group-theoretic grounds we can see that y(d) < ¢(d) for
dlp — 1.Both Y 4y, ¥(d)and } 4, P(d)areequaltop — 1.1t follows that
Y(d) = ¢(d) for all d|p — 1. In particular, Y(p — 1) = ¢(p — 1). For p > 2,
¢(p — 1) > 1, implying that y(p — 1) > 1. The result follows.

The notion of primitive root can be generalized somewhat.

Definition. Leta,n € Z.aissaid tobea primitive root mod n if the residue class
of a mod n generates U(Z/nZ). 1t is equivalent to require that a and n be
relatively prime and that ¢(n) be the smallest positive integer such that
a®™ = 1 (n).

In general, it is not true that U(Z/nZ) is cyclic. For example, the elements
of U(Z/8Z) are 1, 3,57 and 12 =1,32=1,5% =1, 72 = 1. Thus there is
no element of order 4 = ¢(8). It follows that not every integer possesses
primitive roots. We shall shortly determine those integers that do.
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Lemma 2. If p is a prime and 1 < k < p, then the binomial coefficient (}) is
divisible by p.

PROOF. We give two proofs.

(a) By definition

p p! p

Now, p divides p!, but p does not divide k! (p — k)! since this expression
is a product of integers less than, and thus relatively prime to p. Thus p
divides (§).

(b) By Fermat’s Little Theorem a®~ ! = 1 (p) if p t a. It follows that a” =
a (p) for all a. In particular, (1 + a)’ =1+ a=1+ a”(p) for all a.
Thus (1 + x)? — 1 — x? = 0 (p) has p solutions. Since the polynomial
has degree less than p it follows from the corollary to Lemma [ that
(I + x)» — 1 — x? is identically zero in Z/pZ[x]

p-1 p
l+xPf—1-xF= Z ()xk.
k=1
Thus (8) = 0 for 1 < k < p — 1, implying that p|(?). The only interest
in this proof is that we do not assume any information on (§). 0O

Lemma 3. If! > 1 and a = b (p"), then a” = b® (p'*1).

PrOOF. We may write a = b + ¢p', ce Z. Thus a? = b° + (5)b? " 'cp' + A4,
where A is an integer divisible by p'* 2. The second term is clearly divisible
by p'*!. Thus a” = b* (p'*1). a

Corollary 1. If [ > 2 and p # 2, then (1 + ap)* > =1 + ap'~ ' (p') for all
ael.

PROOF. The proof is by induction on I For | = 2 the assertion is trivial.
Suppose that it is true for some | > 2. We show that it is then true for { + 1.
Applying Lemma 3 we obtain

(1+ap)?™" = (1 +ap'™ 'y (')

By the binomial theorem

(1+ap™y =1+ ([;)ap'"‘ + B,
where Bis asumof p — 2 terms. Using Lemma 2 it is easy to see that all these
terms are divisible by p'* 2!~ 1) except perhaps for the last term, a”p”'~ 1.
Since [ >2, 1 +2(l—-1)>1+1,and since also p>3, p(l - 1) =1+ L
Thus p'*'|Band (1 + ap)’ "' =1 4+ ap' (p'*!), which is as required. [
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Before starting a second corollary we need a definition.

Definition. Let a, n € Z and (a, n) = 1. We say a has order e mod n if e is the
smallest positive integer such that a® = 1 (n). This is equivalent to saying
that @ has order e in the group U(Z/nZ).

Corollary 2. If p # 2 and p } a, then p'~ ' is the order of 1 + ap mod p'.

PrOOF. By Corollary 1, (1 +ap)” ' =1 + ap' (p'*?), implying that (1 +
ap)”' "' =1 (p') and thus that | + ap has order dividing p'~ . (1 + ap)?' "’ =
1 + ap'™ ! (p') shows that p'~ 2 is not the order of 1 + ap (it is here we use the
hypothesis p t a). The result follows. O

We are now in a position to extend Theorem 1. It turns out that we shall
have to treat the prime 2 separately from the odd primes. The necessity of
treating 2 differently from the other primes occurs repeatedly in number
theory.

Theorem 2. If p is an odd prime and l€ Z*, then U(Z/p'Z) is cyclic; i.e., there
exist primitive roots mod p'.

PROOF. By Theorem | there exist primitive roots mod p. If g € Z is a primitive
root mod p, then soisg + p. If g ' =1 (p?), then (g + p)P ' =47 ' +
(p—Dg? 2p=1+(p— 1)g* 2p(p?). Since p? does not divide (p — 1)
x g~ 2p we may assume from the beginning that g is a primitive root mod p
and that g*~ ' # 1 (p?).

We claim that such a g is already a primitive root mod p'. To prove this it
is sufficient to prove that if g" = 1 (p'), then ¢(p") = p'~' (p — )|n.

g°"' = 1 + ap, where p f a. By Corollary 2 to Lemma 3, p' ! is the order
of 1 + ap mod p. Since (1 + ap)" = 1 (p') we have p'~!|n.

Let n = p'~'n. Then ¢" = (g )" = g" (p), and therefore g" = 1 (p).
Since g is a primitive root mod p, p — 1|n. We have proved that
p'~Yp — 1)|n, as required. O

Theorem 2'. 2! has primitive roots for | = 1 or 2 but not for | > 3. If| > 3, then
{(=1)°5la =0, 1 and 0 < b < 2'"2} constitutes a reduced residue system
mod 2% It follows that for | > 3, U(Z/2Z) is the direct product of two cyclic
groups, one of order 2, the other of order 2~ 2,

PROOF. | is a primitive root mod 2,and 3 is a primitive root mod 4. From now
on let us assume that | > 3.

We claim that (1) 53 * = 1 4+ 2/ 1 (2". This is true for / = 3. Assume that
it is true for | > 3 and we shall prove it is true for [ + 1. First notice that
(14279 =1+2"+2%"%and that 21 — 2 > | + 1 for | > 3. Applying
Lemma 3 to congruence (1), we get (2) 527" =1 + 2/ 2'*Y). Our claim is
now established by induction.
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From (2) we see that 5*'"* = 1 (2'), whereas from (1) we see that 52'* #
1 (2'). Thus 2'~ 2 is the order of 5 mod 2.

Consider the set {(—1)*5’la =1, 2 and 0 < b < 2'7?}. We claim that
these 2'~! numbers are incongruent mod 2. Since ¢(2") = 2!~ ! this will
show that our set is in fact a reduced residue system mod 2".

If (= 1)5° = (= 1)¥5Y (2, 1 = 3, then (—1)? = (= 1)* (4), implying that
a = a' (2). Thus a = «'. Going further, a = «’ implies that 5 = 5°'(2") or that
5P~ = 1 (2Y). Therefore, b = b’ (2'~ %), which yields b = b'.

Finally, notice that (—1)?5° raised to the 2'~2 power is congruent to 1
mod 2'. Thus 2! has no primitive roots if { > 3. 0

Consider the situation mod 8. 1, 3, 5, and 7 constitute a reduced residue
system. We have 5° = 1, 5! = 5, —5% = 7,and —5' = 3. Table 1 represents
the situation mod 16. The second row contains the least positive residues of
the powers of 5, and the third row those of the negative powers of 5.

Table 1

Theorems 2 and 2’ permit us to give a fairly complete description of the
group U(Z/nZ) for arbitrary n.

Theorem 3. Let n = 2°p5'p% - - - pi" be the prime decomposition of n. Then
U(Z/nZ) ~ U(Z/2°Z) x U(Z/p}'Z) x --- x U(Z/p}'Z).

U(Z/p*Z) is a cyclic group of order p*~ '(p; — 1). U(Z/2°Z) is cyclic of order
1 and 2 for a = | and 2, respectively. If a = 3, then it is the product of two
cyclic groups, one of order 2, the other of order 2°~ 2.

PrOOF. Theorems 2, 2', and Theorem 1’ of Chapter 3. g

We conclude this section by giving an answer to the question of which
integers possess primitive roots.

Proposition 4.1.3. n possesses primitive roots iff n is of the form 2, 4, p°, or 2p°,
where p is an odd prime.

PrOOF. By Theorem 2’ we can assume that n # 2',1 > 3.If nis not of the given
form, it is easy to see that n can be written as a product m;m,, where (m,, m,)
= 1 and m,, m, > 2. We then have that ¢(m,) and ¢(m,) are both even and
that U(Z/nZ) ~ U(Z/m,Z) x U(Z/m,Z). Both U(Z/m,Z) and U(Z/m,Z)
have elements of order 2, but this shows that U(Z/nZ) is not cyclic since a
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cyclic group contains at most one element of order 2. Thus n does not possess
primitive roots.

We already know that 2, 4, and p” possess primitive roots. Since U(Z/2p°Z)
= U(Z)2Z) x U(Z/p*Z) = U(Z/p°Z) it follows that U(Z/2p"Z) is cyclic;
i.e., 2p” possesses primitive roots. O

§2 nth Power Residues

Definition. If m, ne Z*, ae Z, and (a, m) = 1, then we say that a is an nth
power residue mod m if X" = a (m) is solvable.

Proposition 4.2.1. If me Z™ possesses primitive roots and (a, m) = 1, then a is
an nth power residue mod m iff a®™* = 1 (m), where d = (n, ¢p(m)).

PROOF. Let g be a primitive root mod m and a = g%, x = ¢g*. Then the con-
gruence x" = a (m) is equivalent to g"* = ¢® (m), which in turn is equivalent
to ny = b (¢ (m)). The latter congruence is solvable ifl d|b. Moreover, it is
useful to notice that if there is one solution, there are exactly d solutions.

If d|b, then g®m/d = gbétmid = | (i), Conversely, if a®™¢ = | (m), then
g*#™" = 1 (m), which implies that ¢(m) divides b¢(m)/d or d|b. This proves
the result. O

The proof yields the following additional information. If x" = a (m) is
solvable, there are exactly (n, ¢(m)) solutions.

Now suppose that m = 2¢p$' - - - p{’. Then x" = a (m) is solvable iff the
system of congruences

x'=a2),x"=aPg),....x" = a(pf)

is solvable. Since odd prime powers possess primitive roots we may apply
Proposition 4.2.1 to the last ! congruences. We are reduced to a consideration
of the congruence x" = a (2°). Since 2 and 4 possess primitive roots we may
further assume that e > 3.

Proposition 4.2.2. Suppose that a is odd, e > 3, and consider the congruence
" = a(2°). If nis odd, a solution always exists and it is unique.

If n is even, a solution exists iff a = 1 (4), a®>* ™" = 1(2°), where d =
(n, 2°72). When a solution exists there are exactly 2d solutions.

PrOOF. We leave the proof as an exercise. One begins by writinga = (- 1)*$
(2°)and x = (—1)’57 (2°). 0O

Propositions 4.2.1 and 4:2.2 give a fairly satisfactory answer to the ques-
tion; When is an integer a an nth power residue mod m? It is possible to go
a bit further in some cases.
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Proposition 4.2.3. If p is an odd prime, pXa, and pkn, then if x" = a(p) is
solvable, so is x" = a (p°) for all e > 1. All these congruences have the same
number of solutions.

ProoOF. If n = 1, the assertion is trivial, so we may assume n > 2. Suppose
that x" = a (p°) is solvable. Let x, be a solution and set x; = x, + bp®. A
short computation shows x7 = x% + nbp®x3~ ' (p°*'). We wish to solve
x" = a(pe*!). This is equivalent to finding an integer b such that nx3~'b =
((a — x8)/p°) (p). Notice that (a — x})/p® is an integer and that p fnxj™!.
Thus this congruence is uniquely solvable for b, and with this value of b,
X =a@th)

If x" = a (p) has no solutions, then x" = a (p°) has no solutions. On the
other hand, if x" = a (p) has a solution, so do all the congruences x" = a (p®),
as we have just seen. By the remark following Proposition 4.2.1 the number
of solutions to x" = a (p°) is (n, ¢ (p)) provided one solution exists. If p ' n, it
is easy to see that (n, ¢ (p)) = (n, ¢ (p°)) for all e > 1. This concludes the
proof. O

As usual the result for the powers of 2 is more complicated.

Proposition 4.2.4. Let 2 be the highest power of 2 dividing n. Suppose that a is
odd and that x" = a 22'*") is solvable. Then x" = a (2°) is solvable for all
e > 21 + 1 (and consequently for all e > 1). Moreover, all these congruences
have the same number of solutions.

PrOOF. We leave the proof as an exercise. One begins by assuming that
x" = a(2™),m > 2l + 1, hasasolution x,. Let x; = x, + b2™~!. One shows,
by an appropriate choice of b, that x] = a (2"*!). O

Notice that x2 = 5(22) is solvable (for example, x = 1) but that x? =
5(2%) is not. On the other hand, one can prove easily from the proposition
that if @ = 1 (8), then x? = a (2°) is solvable for all e and conversely.

NoTEes

Lemma 1 and its important consequence, Proposition 4.1.1, are due to
J. Lagrange (1768).

Fermat’s theorem [that a?~! = 1 (p) if p¥a] was first proved by Euler.
Wilson’s theorem was stated by E. Waring and proved by Lagrange.

The important result on the existence of primitive roots modulo a prime
was asserted by Euler and, as we have mentioned, was first proved by Gauss.
The proofs of this result can be modified to prove the more general assertion
that a finite subgroup of the multiplicative group of a field is cyclic, ie., is
generated by one element.
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There are a number of interesting conjectures related to primitive roots.
The celebrated conjecture of E. Artin asserts that given an integer a that is
not a square, and not — 1, there are infinitely many primes for which a is a
primitive root. In the case a = 10 this goes back to Gauss and amounts to
asserting the existence of infinitely many primes p such that the period of the
decimal expansion of 1/p has length p — 1. (See Chapter 4 of Rademacher
[64] for an introduction to the theory of decimal expansions.) For an excellent
survey article devoted to the Artin conjecture and related questions, see
Goldstein [35].

Lehmer [54] discovered the following curious result. The first prime of
the form 326n? + 3 for which 326 is not a primitive root must He bigger
than 10 million. He mentions other results of the same nature. It would be
interesting to see what is responsible for this strange behavior.

Given a prime p, what can be said about the size of the smallest positive
integer that is a primitive root mod p? This problem has given rise to a lot
of research. One contribution, due to L. K. Hua, is that the number in ques-
tion is less than 2™ " 'p'’2, where m is the number of distinct primes dividing
p — 1. For a discussion of this problem and a good bibliography, see Erdés
[31]. For other interesting results and problems see [76] and [12].

There exist many investigations into the existence of sequences of con-
secutive integers each of which is a kth power modulo p. Consider primes of
the form kt + 1. A basic result due to A. Brauer asserts that if m is a given
positive integer, then for all primes p sufficiently large there are m consecutive
integers r,r + 1,...,r + m — | all of which are kth powers modulo p. The
question of finding the least such r for given p and m is a problem of current
interest. For this, and a discussion of other open questions in this area, see
the article by Mills [59].

Given a prime p, what can be said about the size of the smallest positive
integer that is a nonsquare modulo p? An interesting conjecture is the
following: For a given n the integer in question is smaller than \’/E for all
sufficiently large p. For more discussion, see P. Erdés [31] and Chapter 3
of Chowla [18].

Finally, we mention that an analog of the Artin conjecture on primitive
roots has actually been proved in the ring k[x] by H. Bilharz [8]. Bilharz
proved his theorem under the assumption that the Riemann hypothesis
holds for the so-called congruence zeta function (see Chapter 11). This was
actually proved several years later by A. Weil. In recent years C. Hooley was
able to prove that Artin’s orginal conjecture was correct under the assump-
tion that the extended Riemann hypothesis holds in algebraic number fields
[46]. For u discussion of the classical Riemann hypothesis and its conse-
quences, see Chowla [ 18]. No one at present seems to have the slightest idea
as to how to prove the Riemann hypothesis for number fields so that it seems
clear that Hooley is not about to have the same good luck that Bilharz
enjoyed.
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4 The Structure of U(Z/nZ)

EXERCISES

L.
2.
3.

10.

11
12.

13.

14.

15.

16.

18.
19.
20.

21.

Show that 2 is a primitive root modulo 29.
Compute all primitive roots for p = 11, 13, 17, and 19.

Supposethat aisa primitive root modulo p”", pan odd prime. Show that aisa primitive
root modulo p.

. Consider a prime p of the form 4: + 1. Show that a is a primitive root modulo

p iff — a is a primitive root modulo p.

. Consider a prime p of the form 4t + 3. Show that a is a primitive root modulo

p iff — a has order (p — 1)/2.

. If p = 2" + 1l is a Fermat prime, show that 3 is a primitive root modulo p.

. Suppose that p is a prime of the form 8¢ + 3 and that ¢ = (p — 1)/2 is also a prime.

Show that 2 is a primitive root modulo p.

. Let p be an odd prime. Show that a is a primitive root module p iffa?~ "9 1 (p) for

all prime divisors gof p — 1.

. Show that the product of all the primitive roots modulo p is congruent to (— 1)~

modulo p.

Show that the sum of all the primitive roots modulo p is congruent to u(p — 1)
modulo p.

Provethat 1¥ + 2¢ + .- + (p — )* = 0 (p)if p — Lrkand —1 (p)if p — 1]k

Use the existence of a primitive root to give another proof of Wilson’s theorem
(p—D!'= —1(p).

Let G be a finite cyclic group and g € G a generator. Show that all the other generators
are of the form g*, where (k, n) = 1, n being the order of G.

Let A be a finite abelian group and a, b € A elements of 6rder m and n, respectively.
If (m, n) = 1, prove that ab has order mn.

Let K be a field and G < K* a finite subgroup of the multiplicative group of K.
Extend the arguments used in the proof of Theorem 1 to show that G is cyclic.

Calculate the solutions to x> = 1 (19) and x* = 1 (17).

. Use the fact that 2 is a primitive root modulo 29 to find the seven solutions to

x7 = 1(29).
Solve the congruence 1 + x + x> + --- + x® = 0(29).
Determine the numbers a such that x® = a(p) is solvable for p = 7, 11, and 13.

Let p be a prime and d a divisor of p — 1. Show that the dth powers form a subgroup
of U(Z/pZ) of order (p — 1)/d. Calculate this subgroup for p = 11,d = 5; p = 17,
d=4;p=19,d = 6.

Ifgisa primitive root modulo pandd|p — 1,show thatg"*~""* has order d. Show also
that ais adth power iffa = g* (p) for some k. Do Exercises 16-20 making use of these
observations.
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22. If a has order 3 modulo p, show that 1 + a has order 6.

23. Show that x2 = —1(p) has a solution iff p = 1 (4) and that x* = —1 (p) has a
solution iff p = 1 (8).

24. Show thatax™ + by" = c(p) has the same number of solutions as ax™ + by" = c(p),
wherem' = (m,p — 1)and n’ = (n,p — 1).

25. Prove Propositions 4.2.2 and 4.2.4.



Chapter 5

Quadratic Reciprocity

If p is a prime, the discussion of the congruence x* = a (p)
is fairly easy. It is solvable iff a'?~'"2 = 1 (p). With this
fact in hand a complete analysis is a simple matter.
However, if the question is turned around, the problem is
much more difficult. Suppose that a is an integer. For
which primes p is the congruence x* = a (p) solvable?
The answer is provided by the law of quadratic reciprocity.
This law was formulated by Euler and A. M. Legendre
but Gauss was the first to provide a complete proof.
Gauss was extremely proud of this result. He called it
the Theorema Aureum, the golden theorem.

§1 Quadratic Residues

If (a, m) = 1, a is called a quadratic residue mod m if the congruence x? =
a (m) has a solution. Otherwise a is called a quadratic nonresidue mod m.

For example, 2 is a quadratic residue mod 7, but 3 is not. In fact, 12, 22,
32,4%, 5% and 67 are congruent to 1, 4, 2, 2, 4, and 1, respectively. Thus 1, 2,
and 4 are quadratic residues, and 3, 5, and 6 are not.

Given any fixed positive integer m it is possible to determine the quadratic
residues by simply listing the positive integers less than and prime to m,
squaring them, and reducing mod m. This is what we have just done for
m=7.

The following proposition gives a less tedious way of deciding when a
given integer is a quadratic residue mod m.

Proposition 5.1.1. Let m = 2°p$* - - - p{' be the prime decomposition of m, and
suppose that (a,m) = 1. Then x* = a (m) is solvable iff the following conditions
are satisfied:

(a) Ife = 2, thena = 1(4).
Ife > 3,thena =1 (8).
(b) For each i we have a®i~ "2 = 1 (p,).

PROOF. By the Chinese Remainder Theorem the congruence x* = a (m) is
equivalent to the system x? = a (29), x> = a (p%"), ..., x* = a (p").

50
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Consider x? = a (2°). 1 is the only quadratic residue mod 4, and 1 is the
only quadratic residue mod 8. Thus we have solvability ifa = 1 (4) ife = 2
and a = 1 (8) if e = 3. A direct application of Proposition 4.2.4 shows that
x? = a (8) is solvable iff x* = a (2°) is solvable for all e > 3.

Now consider x* = a (p{"). Since (2, p;) = 1 it follows from Proposition
4.2.3 that this congruence is solvable iff x* = a(p,) is solvable. To this
congruence apply Proposition 4.2.1 withn = 2,m = p,and d = (n, ¢ (m)) =
(2, p — 1) = 2. We obtain that x* = a (p;) is solvable iff a'?~ 172 = 1 (p,).

This result reduces questions about quadratic residues to the cbrrespond-
ing questions for prime moduli. In what follows p will denote an odd prime.

Definition. The symbol (a/p) will have the value 1 if ¢ is a quadratic residue
mod p, — 1 if a is a quadratic nonresidue mod p, and zero if p|a. (a/p) is called
the Legendre symbol.

The Legendre symbol is an extremely convenient device for discussing
quadratic residues. We shall list some of its properties.

Proposition 5.1.2.

(a) a'?~ "% = (a/p) (p).
(b) (ab/p) = (a/p)(b/p).
(c) Ifa = b(p), then (a/p) = (b/p).
Proor. If pdivides a or b, all three assertions are trivial. Assume that p } a and
that p t b.
We know that a?” ! = 1 (p); thus (a®~ "2 + D@~ V2 — ) =g ! —~
= 0 (p). It follows that a'?~ "2 = +1 (p). By Proposition 5.1.1, a2 =
1 (p) iff a is a quadratic residue mod p. This proves part (a).
To prove part (b) we apply part (a). (ab)®~ "2 = (ab/p) (p) and (ab)?~ 12
= g7 2pe= 2 = (a/p)(b/p) (p). Thus (ab/p) = (a/p)b/p) (p), which im-

plies that (ab/p) = (a/p)b/p).
Part (c) is obvious from the definition. d

Corollary 1. There are as many residues as nonresidues mod p.*

PrOOF. a'?~!¥2 = (p) has (p — 1)/2 solutions. Thus there are (p — 1)/2
residuesand p — 1 — ((p — 1)/2) = (p — 1)/2 nonresidues. O

Corollary 2. The product of two residues is a residue, the product of two
nonresidues is a residue, and the product of a residue and a nonresidue is a
nonresidue.

ProoF. This all follows easily from part (b). O

* In the remainder of this chapter “residues ™ and “nonresidues ™ refer to quadratic residues and
quadratic nonresidues.
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Corollary 3. (— 1)*~ 12 = (—1/p).

PROOF. Substitute ¢ = —1 in part (a). O

Corollary 3 is particularly interesting. Every odd integer has the form
4k + 1 or 4k + 3. Using this one can restate Corollary 3 as follows: x2 =
— 1 (p) has a solution iff p is of the form 4k + 1. Thus —1 is a residue of the
primes 5, 13, 17, 29, ... and a nonresidue of the primes 3,7, 11, 19, .... The
reader should check some of these assertions numerically.

One is led by this result to ask a more general question. If a is an integer,
for which primes p is a quadratic residue mod p? The answer to this question
is provided by the law of quadratic reciprocity to whose statement and proof
we shall soon devote a great deal of attention.

Corollary 3 enables us to prove that there are infinitely many primes of
the form 4k + 1. Suppose that p,,p,,.. ., p,area finite set of such primes and
consider (2p,p, - pm)*> + 1. Suppose that p divides this integer. —1 will
then be a quadratic residue mod p and thus p will be of the form 4k + 1. pis
not among the p; since (2p,p; --- p.)> + 1 leaves a remainder of 1 when
divided by p;. We have shown that every finite set of primes of the form
4k + 1 excludes some primes of that form. Thus-the set of such primes is
infinite.

To return to the theory of quadratic residues, we are now going to intro-
duce another characterization of the symbol (a/p) due to Gauss.

Consider S = {—(p— 1)/2, —(p — 3)/2, ..., =1, 1, 2,..., (p — 1)/2}.
This is called the set of least residues mod p. If p ¥ a, let u be the number of
negative least residues of the integers a, 24, 3a,...,((p — 1)/2)a. For example,
let p=7and a=4 Then (p—1)/2=3,and 1-4,2-4, and 3-4 are con-
gruent to -3, 1, and — 2, respectively. Thus in this case 4 = 2.

Lemma (Gauss’ Lemma). (a/p) = (— 1)~

PrROOF. Let +m, be the least residue of la, where m, is positive. As | ranges
between 1 and (p — 1)/2, u is clearly the number of minus signs that occur in
this way. We claim that m; # m, if l #kand | <1, k < (p — 1)/2. For, if
m,; = m,, then la = +ka (p), and since p } a this implies that | + k = 0(p).
The latter congruence is impossible since | # k and |l + k| < [l] + k] <
p — 1. It follows that the sets {1, 2, ..., (p — 1)/2} and {m, m,, ..., m,_y )}
coincide. Multiply the congruences 1-a= +m, (p), 2-a= tm,(p), ...,
(p — 1)/2)a = +m,_ ), (p). We obtain

p—1 -2 — ufP 1
(—2—>!a“’ ) =(_1)< 3 )!(p).

This yields a'?~'""2 = (—1)* (p). By Proposition 5.1.2, a®?~ "2 = (a/p) (p).
The result follows. O

Gauss’s lemma is an extremely powerful tool. We shall base our first
proof of the quadratic reciprocity law on it. Before getting to that, however,
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we can use it immediately to get a characterization of those primes for which
2 is a quadratic residue.

Proposition 5.1.3. 2 is a quadratic residue of primes of the form 8k + | and
8k + 7. 2 is a quadratic nonresidue of primes of the form 8k + 3 and 8k + 5.
This information is summarized in the formula

(2) =(- 1)(p1— /8
p

Proor. We leave to the reader the task of showing that the formula is equiva-
lent to the first two assertions.

Let p be an odd prime (as usual) and notice that the number u is equal to
the number of elements of the set 2-1,2-2, ..., 2-(p — 1)/2 that exceed
(p — 1)/2. Let m be determined by the two conditions 2m < (p — 1)/2 and
2m + 1) > (p — 1)/2. Then u = ((p — 1)/2) — m.

If p = 8k + 1, then (p — 1)/2 = 4k and m = 2k. Thus pu = 4k — 2k = 2k
is even and (2/p) = 1.

Ifp=8k+ 7, then(p—1)2=4k +3,m=2k+ l,and p =4k + 3 —
(2k + 1) = 2k + 2 is even. Thus (2/p) = 1 in this case as well.

Ifp =8k +3,then(p — 1)2 =4k + I,m=2k,andpu =4k + 1 — 2k =
2k + lis odd. Thus (2/p) = —1.

Finally, if p=8k + 5, then (p —1)/2=4k+ 2, m=2k + 1, and
u=4k + 2 — (2k + 1) = 2k + lis odd. Thus (2/p) = — | and we are done.

O

As an example, consider p = 7 and p = 17. These primes are congruent
to 7 and 1, respectively, mod 8, and indeed 32 = 2 (7) and 62 = 2 (17). On
the other hand, p = 19 and p = 5 are congruent to 3 and 5, respectively, and
it is easily checked numerically that 2 is a quadratic nonresidue for both
primes.

One can use Proposition 5.1.3 to prove that there are infinitely many
primes of the form 8k + 7. Let p,, . .., p,, be a finite collection of such primes,
and consider (4p,p, ---p,.)> — 2. The odd prime divisors of this number
have the form 8k + 1 or 8k + 7, since for such prime divisors 2 is a quadratic
residue. Not all the odd prime divisors can have the form 8k + 1 (prove it).
Let p be a prime divisor of the form 8k + 7. Then pis not in the set {p,, p,,.. .,
p.} and we are done.

§2 Law of Quadratic Reciprocity

Theorem 1 (Law of Quadratic Reciprocity). Let p and q be odd primes. Then

@) (=1/p) = (=)= 1.
(b) (2/p) = (=D~ "%,
(©) (p/g)a/p) = (=17 /a2,
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We are going to postpone the proof until Section 3. In Chapter 6 we shall
prove the theorem once again from a different standpoint, and also indicate
something of its history. It is among the deepest and most beautiful results of
elementary number theory and the beginning of a line of reciprocity theorems
that culminate in the very general Artin reciprocity law, perhaps the most
impressive theorem in all number theory. It would take us far outside the
compass of this book to even state the Artin reciprocity law, but in Chapter 9
we shall state and prove the laws of cubic and biquadratic reciprocity.

Parts (a) and (b) of Theorem 1 have already been proven and some of
their consequences discussed. Let us turn our attention to part (c).

If either p or g are of the form 4k + 1, then ((p — 1)/2)((q¢ — 1)/2) = 0(2).
If both p and ¢ are of the form 4k + 3, then ((p — 1)/2)((g — 1)/2) =1 (2).
This permits us to restate part (c) as follows:

(1) I either p or g is of the form 4k + 1, then p is a quadratic residue mod gq
iff g is a quadratic residue mod p.

(2) Ifboth p and q are of the form 4k + 3, then p is a quadratic residue mod ¢
iff ¢ is a quadratic nonresidue mod p.

As a first application of quadratic reciprocity we show how, in conjunction
with Proposition 5.1.2, it can be used in numerical computations of the
Legendre symbol. A single example should suffice to illustrate the method.

We propose to calculate (79/101). Since 101 = 1 (4) we have (79/101) =
(101/79) = (22/79). The last step follows from 101 = 22 (79). Further,
(22/79) = (2/79)(11/79). Now 79 = 7 (8). Thus (2/79) = 1. Since both 11
and 79 are congruent to 3 mod 4 we have (11/79) = —(79/11) = —(2/11).
Finally 11 = 3 (8) implies that (2/11) = — 1. Therefore (79/101) = 1;i.e., 79
is a quadratic residue mod 101. Indeed, 33 = 79 (101).

The next application is perhaps more significant. We noticed earlier that
— 1 is a quadratic residue of primes of the form 4k + 1 and that 2 is a quad-
ratic residue of primes that are either of the form 8k 4 1 or 8k + 7. If a is an
arbitrary integer, for what primes p is a a quadratic residue mod p? We are
now in a position to give an answer. To begin with, we consider the case
where ¢ = g, an odd prime.

Theorem 2. Let q be an odd prime.

(a) Ifq = 1(4), then q is a quadratic residue mod p iff p = r (q), wherer is a
quadratic residue mod g.

(b) Ifq = 3 (4), then q is a quadratic residue mod p iff p = +b? (4q), where b
is an odd integer prime to q.

PROOF. If ¢ =  (4), then by Theorem | we have (q/p) = (p/q). Part (a) is thus
clear.

If g = 3 (4), Theorem 1 yields (¢/p) = (- 1)~ "3(p/q). Assume first that
p = +b? (4q), where b is odd. If we take the plus sign, we get p = b* = 1 (4)
and p = b% (q). Thus (—1)"" "2 = 1 and (p/q) = 1, giving (g/p) = 1. If we
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take the minus sign, then p = —b?> = —1 =3(4) and p = —b?(q). The
first congruence shows that (— 1)~ '72 = — 1. Thesecond shows that (p/q) =
(=b*/q) = (—1/g)(b/g)* = (—1/q) = —1 since q = 3 (4). Once again we
have (¢4/p) = 1.

To go the other way, assume that (4/p) = 1. We have two cases to deal
with:

(1) (=D®"""? = —1and (p/q) = — 1.
@) (=1"""2 = L and (p/g) = 1.

In case 2 we have p = b2 (q) and p = 1 (4). b can be assumed to be odd
since if it is even we can use b’ = b + g instead. If b is odd, then b* = 1 (4)
and p = b? (4) and thus p = b? (4q), as required.

In case | we have p = 3 (4) and p = —b? (q). The last congruence follows
since g = 3 (4) implies that every nonresidue is the negative of a residue
(prove it). Again, we may assume that b is odd. In that case —b* = 3 (4) so
p = —b*(4) and p = —b? (4¢). This concludes the proof. O

Take g = 3 as a first illustration. By part (b) of Theorem 2 we must find
the residues mod 12 of the squares of odd integers prime to 3. 12, 52, 7%, and
112 are all congruent to 1. Thus 3 is a quadratic residue of primes p congruent
to +1 (12) and a quadratic nonresidue of primes congruent to +5 (12).

Next consider g = 5. Since 5 = 1 (4) we are in the simpler part (a) of
Theorem 2. 1 and 4 are the residues mod 5, and 2 and 3 the nonresidues. Thus
Sis a residue of primes congruent to 1 or 4 mod 5 and a nonresidue of primes
congruent to 2 or 3 mod 5.

“ Numbers congruent to b mod m™ and * numbers of the form mk + b™ are
shorthand expressions describing the set {b, b +m, b + 2m, ...}. This set is
an arithmetic progression with initial term b and difference m. In our in-
vestigations so far we have seen that the answer to the question for which
primes p is a a quadratic residue has been for those primes p that occur in a
certain fixed, finite number of arithmetic progressions. This situation is
entirely general. Instead of stating this result as a theorem (the statement
would be very complicated) we shall work out a few numerical examples.

For a = =3, (=3/p) = (—1/p)(3/p). Thus —3 is a quadratic residue
mod p if either (= 1/p) = 1 and (3/p) = lor (—1/p) = —1l and 3/p) = — L.

By our previous results the first case obtains when p =1 (4) and p =
+1 (12). If p= —1 (12), then p = —1 (4). The only primes that satisfy
both congruences are = 1 (12).

In the second case p=3(4)and p= +5(12). If p=5(12), then p =1 (4).
Thus the only primes that satisfy both these congruences are = — 5 (12).

Summarizing, — 3 is a quadratic residue mod p iff p is congruent to 1 or
—5mod 12.

Now consider a = 6. Since (6/p) = (2/p)(3/p) we again have two cases:
(2/p) = tand (3/p) = 1 or (2/p) = —1 and (3/p) = — 1. The first case holds
if p=1,7(8)and p = 1, 11 (12). The only two pairs of congruences that are
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compatible are p = 1 (8) and p = 1 (12),and p = 7 (8) and p = 11 (12). By
standard techniques (see Chapter 3) the primes satisfying these congruences
are congruent to 1 or 23 mod 24.

In the second case we have to consider p = 3, 5(8) and p = 5, 7 (12).
Separating these into four pairs of congruences we see that the only solutions
are congruent to 5 and 19 mod 24.

Summarizing, 6 is a quadratic residue mod piff p = 1, 5, 19, 23 (24).

As a numerical check we see for the primes 73, 5, 19, and 23 that 152 =
6(73), 12 =6(5),52 =6(19),and 112 = 6 (23).

As a final application of the quadratic reciprocity law we investigate the
question; if a is a quadratic residue mod all primes p not dividing a, what
can be said about a? If a is a square, it is a residue for all primes not dividing a.
It turns out that the converse of this statement is true as well. In fact, we shall
soon prove an even stronger result. First, however, it is necessary to define
and investigate briefly a new symbol.

Definition. Let b be an odd, positive integer and a any integer. Let b =
PPz Pm» Where the p; are (not necessarily distinct) primes. The symbol

(a/b) defined by (b> _ (.;i) (f) <pi)

is called the Jacobi symbol.

The Jacobi symbol has properties that are remarkably similar to the
Legendre symbol, which it generalizes. A word of caution is useful. (a/b) may
equal 1 without a being a quadratic residue mod b. For example, (2/15) =
(2/3)(2/5) = (= 1)(=1) = 1, but 2 is not a quadratic residue mod 15. It is
true, however, that if (a/b) = — 1, then a is a quadratic nonresidue mod b.

Proposition 5.2.1.

(@) (ay/b) = (a/b) if &, = a; (b).
(b) (a,a3/b) = (a,/b)ay/b).
©) (a/bib;) = (a/b,Xa/b,).

PROOF. Parts (a) and (b) are immediate from the corresponding properties
of the Legendre symbol. Part (c) is obvious from the definition. O

Lemma. Let r and s be odd integers. Then

@) (rs — /2 =((r — 1)/2) + ((s — 1)/2) (2).
(b) (r*s* — D)/8 = ((r* — 1)/8) + (s> ~ 1)/8) (2).

PrOOF.Since (r — I)}(s — 1) =0(@4)wehavers — 1 =(r — 1) + (s — 1) (4).
Part (a) follows by dividing by 2.
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r? — 1 and s? — 1 are both divisible by 4. Thus (r> — 1)(s* — 1) = 0(16)
andris? — 1 = (r? — 1) + (s — 1) (16). Part (b) follows upon dividing by 8.

0O
Corollary. Let ry, r,, ..., r, be odd integers. Then
@) Y7y (ri— D2 =(ryry--ry = 1)/2(2).
(b) Y7y (rf = DB =(rir3 oo~ D/B(2).
PrOOF. The proof is a simple induction on m, using the lemma. O

Proposition 5.2.2.

@) (=1/b) = (1)t~ 12
(b) (2/b) = (—1)®*~ 18,

(c) Ifais odd and positive as well as b, then

a\[b

A2 — (—yta= vi2ne-1y2)

(5)e) - -
PROOF.

(=1/6) = (= 1/p)(=1pa) -+~ (= 1/pg) = (= 172 (=)o 172
= (- I)Z(p.-— 12,

By the lemma Y (p; — 1)/2=(p\ps--Pm— 1)/2=(b— 1)/2(2). This
proves part (a).

Part (b) is proved in exactly the same way.

Now ifa = q,4, - - - q,, then

a\(by _ a\(Pi\ _ T i ai = 1 2)0ep = 1/2)
3 = ()(E) - v -

The product and sum range over 1 <i < land | <j < m. Again using the
lemma we have

i~ WN\flgi— 1D\ _(@a—-1)(p—1
£z () (#5) =45,

_fla=1\/(b—-1)
Y

This proves part (c). O

The Jacobi symbol has many uses. For one thing, it is a convenient aid for
computing the Legendre symbol. We now use it to prove the following
theorem.

Theorem 3. Let a be a nonsquare integer. Then there are infinitely many
primes p for which a is a quadratic nonresidue.
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PROOE It is easily seen that we may assume that a is square-free. Leta = 2°q,q,
---q,, where the g; are distinct odd primes and e = 0 or 1. The case a = 2
has to be dealt with separately. We shall assume to begin with thatn > 1, i.e.,
that a is divisible by an odd prime.

Letl,l,,..., 1 beafinite set of odd primes not including any ¢;. Let s be
any nonresidue mod g,, and find a simultaneous solution to the congruences

x = 1), i=1,...,k,

x=1(8),
x = 1(q,), i=12,....,n— 1.
x = 5 (4n),

Call the solution b. b is odd. Suppose that b = p,p,--- p,, is its prime
decomposition. Since b = 1 (8) we have (2/b) = 1 and (g,/b) = (b/q;) by
Proposition 5.2.2. Thus (a/b) = (2/b)*(q,/b) - - (qu-1/bXqu/b) = (b/q,) - --
(b/gn- 1 Xb/q,) = (1/q1) - - (1/,— 1 N5/q) = — 1.

On the other hand, by the definition of (a/b), we have (a/b) = (a/p,)a/p,)
---(a/p,). It follows that (a/p;) = —1 for some i.

Notice that [; does not divide b. Thus p;¢ {I,, I, ..., L}.

To summarize, if a is a nonsquare, divisible by an odd prime, we have
found a prime p, outside a given finite set of primes {2, I, I,, ..., I}, such
that (a/p) = — 1. This proves Theorem 3 in this case.

It remains to consider the casea = 2. Let [, ..., |, be a finite set of primes,
excluding 3, for which (2/I;) = —1. Let b = 8,1, --- I, + 3. b is not divisible
by 3 or any /;. Since b = 3 (8) we have (2/b) = (— )®*~ 18 = _ 1. Suppose
that b = p,p, - - - p,, is the prime decomposition of b. Then, as before, we see
that (2/p;) = —1 for some i. p;¢ {3, I, I;, ..., I}. This proves Theorem 3
fora = 2. O

§3 A Proof of the Law of Quadratic Reciprocity

Gauss found eight separate proofs for the law of quadratic reciprocity. There
are over a hundred now in existence. Of course, they are not all essentially
different. Many just differ in small details from others. We shall present an
ingenious proof due to FEisenstein. For a somewhat more elementary and
standard proof, see [61].

A complex number{ is called an nth root of unity if {" = 1 for some integer
n > 0. If n is the least integer with this property, then { is called a primitive
nth root of unity.

The nth roots of unity are 1, 2"/ 2rim2 2rimin=1  Among these
the primitive nth roots of unity are ¢/>"/"* where (k, n) = 1.

If { is an nth root of unity and m = [ (n), then {™ = {'. If { is a primitive
nth root of unity and {™ = (', then m = [ (n).
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These elementary properties are easy to prove.

Consider the function f(z) = e2™? — ¢~ 2% = 2jsin 2nz. This function
satisfies f(z + 1) = f(2) and f(—2) = —f(z). Also, its only real zeros are
the half integers. In other words, if r is a real number and 2r ¢ Z, then f(r) # 0.

We wish to prove an important identity involving f(z), but first we need
an algebraic lemma.

Lemma. If n > 0 is odd, we have
n—1
x" =yt = [](*x — (%), where{ = e*™".
k=0

PROOF. 1,{,(%,...,{" ! are all roots of the polynomial z* — 1. Since there are
n of them and they are all distinct we have 2" — 1 = [[f24 (z — {¥). Let
z = x/y and multiply both sides by y". We get x" — y" = [[i24 (x — {*y).

Since n is odd as k runs over a complete system of residues mod n, so does
—2k. Thus

n—1i

X" =yt = [l(x =%y

k=0

Il

— C—(l+2+---+n~1)nﬁl(ckx . C—ky)
k=0

n—1
= [](¢*
k=0
In the last step we have used the fact that 1 + 2 +3 + .-+ (n — 1) =
n((n — 1)/2) is divisible by n. d

Proposition 5.3.1. Ifnisa positive odd integer and f (z) = *™* — e~ 2™, then
fnz) _ Kt ( ) ( k)
z—-)

J (@) kl]l / n
PROOF. In the lemma, substitute x = ¢*™ and y = ¢~ 2", We see that

n—1{ k

f(nz) = Hf(z + ——).
k=0 n

Notice that f(z + k/n) = f(z + k/n — 1) = f(z — (n — k)/n). As k goes
from(n + 1)/2ton — 1, n — k goes from (n — 1)/2 to 1. Thus

) )

f(2) k=1 k=(n+1)2

n—-1)/2
nf(z+§) il f( “)
= k=(n+1)/2

s u

i
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Proposition 5.3.2. If p is an odd prime,a€ Z, and p ¥ a, then

-1

PROOF. As in the lemma of Section 1, la = +m, (p), where1 < m, < (p — 1)/2.
Thus la/pand +m,/p differ by an integer. This implies that f (la/p) = f(+m,/p)
= 1f(my/p).

The result now follows by taking the product of both sides as I goes from
1 to (p — 1)/2 and applying Gauss' lemma. O

We are now in a position to prove the law of quadratic reciprocity. Let p
and g be odd primes. Then by Proposition 5.3.2

(p—-1)/2 lq q (p—1)/2 |
) -0 G)
tl=—[1 14 p II=_[1 / 14
By Proposition 5.3.1

fQlp) 3" <£ n_i) ([_g)
fampy mglfp+q fp q)

Putting these two equations together we have

O\~ ( m) (1_'ﬁ)
(p)_ mljx n 4 / poa)

In the same way we find

@)= G G

Since f(m/q — I/p) = —f(l/p-— m/q) we see that

(_ 1)((p— 1)/2)(q— 1)/2)(ﬂ) = <B>
p q
(E)(f{) = (= 1)tp= 1120 =102),
q/\p

The proof is complete. O

and therefore that

We conclude this chapter by giving an equivalent formulation of the law
of quadratic reciprocity.

Proposition 5.3.3. Let p and q be distinct odd primes and a > | an integer.
Then the following assertions are equivalent

(@) (p/gXg/p) = (—1)\r7 2@,

() If p = +q(4a), p k a, then (a/p) = (a/q).
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PROOEF. In order to show (a) implies (b) it is enough, by multiplicativity, to
show that (b) holds when a is prime. For a = 2 the result follows from Propo-
sition 5.1.3. If a is an odd prime then by (a) (a/p) = (— 1){?~ V2= D2y /gy
If p = g (4a) then (p/a) = (g/a) so that

a

a -
(;> — (_ 1)((p— 1)/2){a—~ H/D(%) — (___ 1)(lp— 1)/ 2)(a~- l)/2)( - l)((q- 1)/2)(a l)ll)(_q_)

= (— 1)t Ve a- z»m(f
4

But p = ¢ (4a) implies p + ¢ — 2 = 0(4) and the result follows. If, on the
other hand p = —g¢ (4a), a similar calculation shows

(f) = (—1)ta- n/2>up+q)/z)(f)_
14 q

Since p + q = 0 (4) the result also holds in this case.
To show that (b) implies (a) suppose first of all that p > g and p = q (4).
The p = q + 4a,a > 1. Thus

o= Z“f‘) ( ()) -6)-6)-059-(5)

If p=1(4) then (p/q) = (g/p) which gives (a). If p = 3 (4) then g =3 (4)
and we obtain (p/q) = —(g/p) which is part (a) in that case. Finally if p =
—¢g (4) then, p + g = 4u and

(@ -C)-0)-6)-()-(5)-C)

Thus (p/q) = (q/p) which is the assertion of part (a) since in this case at least
one of p or g must be congruent to 1 modulo 4. The proof is complete. [J

Note that by part (b) of the above proposition we see that if (r, 4a) = 1
the quadratic character of «a is the same for all primes in the arithmetic
progression r + 4dat, t € Z. In Chapter 16 we will see that infinitely many
such primes exist. Note also that the quadratic character of a prime of the
form r + 4at is the same as that for a prime of the form —r + 4at. It was in
this form that Euler first discovered this most remarkable law.

NOTES

Kronecker has pointed out that the law of quadratic reciprocity follows
immediately from a conjecture of Euler contained in the paper “Theoremata
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circa divisores numerorum in hac forma pa® + gb* contentorum”™ (1744~
1746). It also appears explicitly in a later paper of Euler entitled *“ Observa-
tiones circa divisionem quadratorum per numeros primos.” Using sufficient
conditions for the solvability of the equation ax? + by? + cz* = 0 (see
Proposition 17.3.2). Legendre (1785) was able to prove the result in special
cases. For example, the consideration of x? + py? = ¢z? where p = 1(4)
and ¢ = 3 (4) leads to the conclusion that if ¢ is a square modulo p then p
is a square modulo g. The first complete proof of the theorem is due to Gauss
who recorded the date of the proof in his diary on April 8, 1796. During his
lifetime Gauss published six proofs of this remarkable law. The proof we
have given in this chapter is taken from Eisenstein’s paper “ Applications de
I'’Algebre a I’Arithmetique transcendante.” Kummer in an historical study
of the laws of reciprocity, refers to this proof as one of the most beautiful of
all the proofs (“... einen der schonsten Beweise dieses von den ausgezeich-
netsten Mathematikern viel bewiesenen Theorems ...”). Replacing the
trigonometric function by certain elliptic functions Eisenstein was able,
without much more difficulty, to prove the laws of cubic and biquadratic
reciprocity as well.

Throughout the nineteenth century various mathematicians including
Cauchy, Eisenstein, Dirichlet, Dedekind, and Kronecker gave new proofs
to the law of quadratic reciprocity. By 1921 there were, according to P.
Bachman, 56 known proofs. Even in recent times new proofs continue to
appear. See, for example, the papers by M. Gerstenhaber [128] and R. Swan
[75]. On the other hand, the first proof of Gauss has been reconsidered
recently by E. Brown [99].

The Jacobi symbol is one generalization of the Legendre symbol. For an
interesting generalization in another direction, see the paper of P. Cartier
[14].

Quadratic reciprocity can be formulated in rings other than Z. Dirichlet
proved such a theorem for the ring of Gaussian integers Z[i]. D. Hilbert was
able to prove that quadratic reciprocity held for any algebraic number field,
a result that was an important stepping stone to class field theory. In another
direction it can be shown that reciprocity holds for the ring k[ x]. where k is a
finite field. See Artin [2] and Carlitz [ 10]. This result had already been stated
(though not proved) by Dedekind in 1857.

The generalization of Theorem 3 to higher powers was discovered first by
E. Trost in 1934.* Later it was stated as a conjecture by S. Chowla and sub-
sequently proven by N. C. Ankeny and C. A. Rogers.t They proved that if
x" = a (p) has a solution for all but a finite number of primes p, then either

= b"or n|8 and a = 2"8b". When n is square-free and (a, n) = 1, the result
can be shown to follow from the Eisenstein reciprocity law as was done by
J. Kraft and M. Rosen [211]. Their proof will be given in Chapter 14. See

* Zur Theorie der Potenzreste. Nieuw Arch. Wiskunde. 18, (1934). 15 61.
1 A conjecture of Chowla. Ann. Math., 8§3. No. 3 (1951), 541-550.
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also H. Flanders [134] where the result is generalized to the case of algebraic
number fields and algebraic function fields of one variable over a finite field.

EXERCISES

1.
2.

10.

16.

17.

Use Gauss’ lemma to determine (3), (%), (), and (— 1/p).

Show that the number of solutions to x* = a (p) is given by 1 + (a/p).

. Suppose that pta. Show that the number of solutions to ax? + bx + ¢ = 0(p) is

given by 1 + ((b> ~ 4ac)/p).

. Prove that } 22| (a/p) = 0.
. Prove that } 224 ((ax + b)/p) = 0 provided that p }a.

. Show that the number of solutions to x2 — y? = a (p) is given by

1

-
2 1+ (G + a)p)).

y=0

. By calculating directly show that the number of solutions to x> — y2 = a(p) is

p—1if p¥aand 2p — 1 if pla. (Hint: Use the change of variables u = x + y,
r=x-y)

. Combining the results of Exercises 6 and 7 show that

"i‘ (yZ + a) _ {—-1, ifpka,
y=o \ P p-1, ifpla

. Prove that 123252...(p — 2)2 = (= 1)*** Y2 (p) by using Wilson's theorem.

Let ry,ry. ..., rpe )2 be the quadratic residues between 1 and p. Show that their
product is congruent to 1 (p) if p = 3 (4) and congruent to —1 (p)if p = 1 (4).

. Suppose that p = 3 (4) and that ¢ = 2p + 1 is also prime. Prove that 2 — 1 is not

prime. (Hinr: Use the quadratic character of 2 to show that q|2? — 1.) One must
assume that p > 3.

. Let f(x)e Z[x]. We say that a prime p divides f(x) if there is an integer n such that

plf(n). Describe the prime divisors of x? + 1 and x? — 2.

. Show that any prime divisor of x* — x? + 1 is congruent to | modulo 12.

. Use the fact that U(Z/pZ) is cyclic to give a direct proof that (—3/p) = 1 when

p = 1(3). [Hint: There is a p in U(Z/pZ) of order 3. Show that (2p + 1) = —3.]

. If p = 1(5). show directly that (5/p) = 1 by the method of Exercise 14. [Hint: Let p

be an element of U(Z/pZ) or order S. Show that (p + p*)? + (p + p*) — 1 =0,
etc.]

Using quadratic reciprocity find the primes for which 7 is a quadratic residue. Do the
same for 15. .

Supply the details to the proof of Proposition 5.2.1 and to the corollary to the lemma
following it.
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18. Let D be a square-free integer that is also odd and positive. Show that there is an
integer b prime to D such that (b/D) = —1.

19. Let D be as in Exercise 18. Show that Z (a/D) = 0, where the sum is over a reduced
residue system modulo D (see Exercise 6 of Chapter 3). Concludeé that exactly one
half of the elements in U(Z/DZ) satisfy (a/D) = 1.

20. (continuation) Let a,,a,,...,a4py2 be integers between 1 and D such that
(a;, D) = 1and (a/D) = 1. Prove that D is a quadratic residue modulo a prime p /' D,
p=1(4)iff p = q; (D) for some i.

21. Apply the method of Exercises 19 and 20 to find those primes for which 21 is a
quadratic residue. [Answer: Those p = 1,4, 5, 16, 17, and 20 (21).]

22. Use the Jacobi symbol to determine (113/997), (215/761), (514/1093), and (401/757).

23. Suppose that p = 1 (4). Show that there exist integers s and ¢ such that pf = 1 + s2,
Conclude that p is not a prime in Z[i]. Remember that Z[i] has unique factorization.

24. If p = 1 (4), show that p is the sum of two squares; i.e., p = a* + b* witha,be Z.
(Hint: p = af with « and B being nonunits in Z[i]. Take the absolute value of both
sides and square the result.) This important result was discovered by Fermat.

25. An integer is called a biquadratic residue modulo p if it is congruent to a fourth
power. Using the identity x* + 4 = ((x + 1)? + 1)((x — 1)* + 1)show that —4isa
biquadratic residue modulo p iff p = 1 (4).

26. This exercise and Exercises 27 and 28 give Dirichlet’s beautiful proof that 2 is a
biquadratic residue modulo p iff p can be written in the form 4% + 64B%, where
A, Be Z.Suppose that p = 1 (4). Then p = a® + b? by Exercise 24. Take a to be odd.
Prove the following statements:
@) (a/p) = L.
(b) ((a + b)/p) = (— 1)~ 18,
(©) (a + b)* = 2ab (p).
(d) (@ + b~ 12 = (2ab)*~V"* (p).
[Hint: 2p = (a + b)* + (a — b)*.]

27. Suppose that f is such that b = af (p). Show that 2 = — 1 (p) and that 2~ 1/* =
fnb/l (P)

28. Show that x* = 2 (p) has a solution for p = 1 (4) iff p is of the form A% + 64B2.

29. Let(RR)be the number of pairs(n, n + 1)intheset1,2,3,..., p — lsuchthatnand
n + 1 are both quadratic residues modulo p. Let (NR) be the number of pairs
(n,n + l)intheset 1,2,3,..., p — L such that nisa quadratic nonresidueand n + 1
is a quadratic residue. Similarly, define (RN) and (NN). Determine the sums
(RR) + (RN),(NR) + (NN),(RR) + (NR), and (RN) + (NN).

30. Show that (RR) + (NN) — (RN) — (NR) = Y EZ}(n(n + 1))/p. Evaluate this sum
and show that it is equal to — 1. (Hint: The result of Exercise 8 is useful.)

31. Use the results of Exercises 29 and 30 to show that (RR) = {(p — 4 — &), where
£ = (___ 1)(p— 1)/2‘

32. If p is an odd prime show that (2/p) = [ ]! 22 cos(2mj/p). Use this result to give
another proof to Proposition 5.1.3.
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33. Use Proposition 5.3.2 to derive the quadratic character of — 1.
34. If p is an odd prime distinct from 3 show that (3/p) = [[%,*"2 (3 — 4 sin®(2nj/p)).

35. Use the preceding exercise to show that 3 is a square modulo p iff p is congruent to 1
or — 1 modulo 12.

36. Show that part (c) of Proposition 5.2.2 is true if a is negative and b is positive (both
still odd).

37. Show that if a is negative then p = ¢ (4a), p Y a implies (a/p) = (a/q).

38. Let p be an odd prime. Derive the quadratic character of 2 modulo p by verifying the
following steps, involving the Jacobi symbol:

° (g)z(8;p)=(pi8)=<nf8)=(pi8)'

Generalize the argument to show that

(E)z( a ) a> 0, pta
p p—4a




Chapter 6

Quadratic Gauss Sums

The method by which we proved the quadratic reciprocity
in Chapter 5 is ingenious but is not easy to use in more
general situations. We shall give a new proof'in this chapter
that is based on methods that can be used to prove higher
reciprocity laws. In particular, we shall introduce the
notion of a Gauss sum, which will play an important role
in the latter part of this book.

Section 1 introduces algebraic numbers and algebraic
integers. The proofs are somewhat technical. The reader
may wish to simply skim this section on a first reading.

§1 Algebraic Numbers and Algebraic Integers

Definition. An algebraic number is a complex number a that is a root of a
polynomial agx" + a;x""! + a,x""* + --- +a, = 0, where a,, a,, ay, ... .,
a,eQ,and a, # 0.

An algebraic integer w is a complex number that is a root of a polynomial
x"+bx""'+..-+ b, =0,where by, by,...,b,eZ

Clearly every algebraic integer is an algebraic number. The converse is
false, as we shall see.

Proposition 6.1.1. A rational number r € Q is an algebraic integer iff r € Z.

PRrOOF. If r € Z, then r is a root of x — r = 0. Thus r is an algebraic integer.

Suppose that re Q and that r is an algebraic integer; i.e., r satisfies an
equation x" 4+ b x""!' + ... + b, = 0 with by, ..., b,eZ. r = c/d, where
¢,d € Z and we may assume that ¢ and d are relatively prime. Substituting c/d
into the equation and multiplying both sides by 4" yields

" +bic"'d+---+b,d"=0.
It follows that d divides ¢" and, since (d, ¢) = 1, that d{c. Again, since

(d,c) = lit follows thatd = +1,and sor = ¢/d isin Z.
It follows, for example, that £ is not an algebraic integer. O

The main results of this section are that the set of algebraic numbers forms
a field and that the set of algebraic integers forms a ring. We need some
preliminary work.

66
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Definition. A subset IV < C of the complex numbers is called a @ module if

(a) y,, v, €V implies that y, + y,e V.

(b) ye V and r e Q implies that rye V.

(c) There exist elements y,, y,,..., 7, € V such that every y € V has the form
Yoy riyi with re Q.

More briefly, ¥V < C is a Q module if it is a finite dimensional vector
space over Q.

If y1, ¥2. ..., 1€ C, the set of all expressions Y i ri¥i, Fys Fay ..., HEQ
is easily seen to be a Q2 module. We denote this @ module by [y, y5,---, Y]

Proposition 6.1.2. Let V = [y,, y,, ..., 7], and suppose that a € C has the
property that ay €V for all ye V. Then a is an algebraic number.

PROOF. ay;e V for i=1,2,..., 1. Thus ay; = ) j_, a;;3;, where a;;eQ. It
follows that 0 = )i, (a;; — 6;;2)y;, where &;; =0 if i #j and 6;; =1 if
i = j. By standard linear algebra we have that det(a;; — 6;;a) = 0. Writing
out the determinant we see that o satisfies a polynomial of degree I with
rational coefficients. Thus « is an algebraic number. O

Proposition 6.1.3. The set of algebraic numbers forms a field.

PROOF. Suppose that «; and «, are algebraic numbers. We shall show that
oo, and o, + o, are algebraic numbers.

Suppose that af + roi”! +r,ai"2 +---+r,=0 and that of +
s107 ' + 50772 4+ -+ + 5, = 0, where r;, 5;€Q. Let V be the Q module
obtained by forming all @ linear combinations of the elements oo, where
0<i<nand0<j<mForyeV wehave a;ye V and a,ye V (prove it).
Thus we also have (a; + a,)ye V and (x,a,)y € V. By Proposition 6.1.2 it
follows that both a, + a5 and a,a, are algebraic numbers.

Finally, if « is an algebraic number, not zero, we must show that a™ ' is
an algebraic number. Suppose that aya" + a,a" "' + --- + a, = 0, where
the a,€ Q. Then a,a™" + a,_ 2~ "™V + ... + gy = 0. The result follows.

O

1

To prove that the set of algebraic integers form a ring it is necessary only to
alter the above proofs slightly.

Definition. A subset W < C is called a Z module if

(a) y,, 7, € Wimplies that y; + y,e W.
(b) Thereexist elementsy,,y,,...,y,€ W such thatevery y € Wis of the form
!, b;y; with b;e Z.

Proposition 6.1.4. Let W be a Z module and suppose that w € C is such that
wye W forallye W. Then w is an algebraic integer.
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Proor.The proof proceeds exactly as in Proposition 6.1.2, except that now
the a;;€ Z. The equation det(a;; — J,;w) = 0 when written out shows that
w satisfies a monic equation of degree ! with integer coefficients. Thus w is an
algebraic integer. a

Proposition 6.1.5. The set of ulgebraic integers forms a ring.

Proor. The proof follows from Proposition 6.1.4 in exactly the same way in
which Proposition 6.1.3 follows from Proposition 6.1.2. We leave the details
to the reader. il

Let Q denote the ring of algebraic integers. If w,, w,, y € Q, we say that
w; = w; () (w, is congruent to w, modulo y) if w; — w, = ya with a € Q.
This notion of congruence satisfies all the formal properties of congruence
in Z.

Ifa,b,ce Z,c # 0,thena = b (c)is ambiguous since it denotes congruence
in Z and in Q. The ambiguity is only apparent, however. If a — b = ca with
a € Q, then « is both a rational number and an algebraic integer. Thus a is an
ordinary integer by Proposition 6.1.1.

The following proposition will be useful.

Proposition 6.1.6. If w,, w, € Qand pe Z is a prime, then
(@) + @)’ = wf + Wi (p).

PROOF. (w; + w,)” = Y 1. o (Dwlwi % By Lemma 2, Chapter 4, we have
pl(®) for 1 < k < p — 1. The result follows from this and the fact that Q
is 4 ring. u

A root of unity is a solution to an equation of the form x" — 1 = 0. Thus
roots of unity are algebraic integers, and so are Z linear combinations of roots
of unity.

We conclude this section by presenting several important properties of
algebraic numbers. If a is an algebraic number then clearly any nonzero
polynomial f(x) in Q[x] of smallest degree for which f(a) = 0 must be
irreducible.

Proposition 6.1.7. If a is an algebraic number then o is the root of a unique
monic irreducible f(x) in Q[x]. Furthermore if g(x)e Q[x], g(«) = O then

S()1g(x).

PrOOF. Let f(x) be any monic irreducible with f(a) = 0. We prove the
second assertion first. If f(x) \ g(x) then (f(x), g(x)) = 1. By Lemma 4,
Section 2, Chapter 1 we may write f(x)h(x) + g(x)t(x) = 1 for polynomials
h(x), t(x) e Q[x]. Putting x = « gives a contradiction. Uniqueness now fol-
lows immediately. O
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The polynomial defined in Proposition 6.1.7 depends therefore only
upon a. It is called the minimal polynomial of a. If the degree of the minimal
polynomial is n, then a is called an algebraic number of degree n. If f(x) is
irreducible of degree n, then, using the fundamental theorem of algebra and
Exercise 16 we see that f(x) is the minimal polynomial for each of its n roots.
If «, B are roots of f(x) then « and B are said to be conjugate.

The set of complex numbers g(a)/h(a) where g(x), h(x) e Q[x], h(x) # O
forms a field denoted by Q(x). Denote by Q[a] the ring of polynomials in «
with rational coefficients. Then one has the following important result.

Proposition 6.1.8. If x € Q then Q(x) = Q[x].

ProoF. Clearly Q[a] < Q(a). If h(a) € Q[a], h(a) # O, then by Proposition
6.1.7, f(x) } h(x), where f(x) is the minimal polynomial of a. Thus (f(x),
h(x)) = 1 so that by Lemma 4, Section 2, Chapter 1, s(x) f(x) + t(x)h(x) =1
for elements s(x), t(x) € @[x]. Put x = a so that t(x)h(a) = 1. Thus h(x) "' e
Qla]. If Be Q(a) then B = g(a)h(x) ™! for g(x), h(x) e Q[x] and the above
shows that ff e Q[a]. O

Corollary. If o is an algebraic number of degree n then [Q(a): Q] = n.

ProOoOF. By the proposition it is enough to show [Q[a]: Q] = n. Since
f(a) = 0 it is easily seen that 1, ..., «" ' span Q[a]. If on the other hand
g +a o+ -+ a,. 2" ' =0, gq;eQ, then g(x) =0 for g(x) =ay +
a;x + --- + a,_x"~'. Then, by Proposition 6.1.7,f (x)| g(x). But deg(g(x)) <
deg(f(x)) which implies that ay = a; = a4, = -+ = a,_, = 0. Therefore
l,a,...,a" ! are linearly independent over Q. O

§2 The Quadratic Character of 2

Let { = ™8, Then  is a primitive eighth root of unity. Thus0 = {8 — 1 =
(Z* = 1)(¢* 4 1). Since {* # | we have {* = — 1. Multiplying by {~? and
then adding (™2 to both sides yields {? + {~2 = 0. This equation is also
easily derived from the observation that {* = ™% = |.

The quadratic character of 2 will now be derived from the relation

C+"2=03+2+02=2

Let t = { + ¢~ ! and notice that { and t are algebraic integers. We may
thus work with congruences in the ring of algebraic integers.
Let p be an odd prime in Z and notice that

= (tz)(lJ‘ ty2 _ 2(p—1)12 = (2/])) ([’)

It follows that t” = (2/p)t (p). By Proposition 6.1.6, 7? = ({ + {"')P =
&+ 7P (p).
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Remembering that (8 = 1 we have (? + {P={+{ 'forp= +1(8)
and (P + (7P = {3 + {73 for p = +3(8). The result in the latter case may
be simplified by observing that (* = —1 implies that {* = —{~!. Thus
P4+ P= -+ Yif p= +3(8). Summarizing,

b rp 4P ifp=+1(8),
i {—r, ifp=+3(8).
Substituting this result into the relation 7% = (2/p)t (p) yields
2 2 1
(-1 = (E)r (p). wheree =" — @

Multiply both sides of the congruence by t. Then

(12 = (3)2 ()
14

(=1y= <2) (p).
p

This last congruence implies that (2/p) = (—1), which is the desired
result.

Euler (1707-1783), in an early paper, proved that 2 is a quadratic residue
modulo primes p = 1 (8). His method contains the key idea of the above
proof.

Euler assumed that U(Z/pZ) is a cyclic group. Gauss was the first to give a
rigorous proof of this fact (see Theorem 1, Chapter 4). Let 1 be a generator of
U(Z/pZ) and set y = A*~'¥8 Then y has order 8, so that y* = —Tand y? +
y~2 = 0. Therefore, (y + y~")? = y2 + 2 + y~2 = 2. This shows that 2 is a
square in U(Z/pZ), which is equivalent to 2 being a quadratic residue
modulo p.

If p # 1 (8), this proof cannot get started. However, the theory of finite
fields enables us to carry through to a complete proof of quadratic reciprocity
using Euler’s idea. We shall develop the theory of finite fields in Chapter 7.

implying that

§3 Quadratic Gauss Sums

Given the relation ({ 4+ {~')? = 2 of Section 2, one might ask if there is a
similar relation when 2 is replaced by an odd prime p. The answer is yes, and,
moreover, the full law of quadratic reciprocity follows from this new relation
by using the method of Section 2.

Throughout this section { will denote ¢2*¥?, a primitive pth root of unity.
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Lemma 1. Y 7= {* is equal to p if a = 0 (p). Otherwise it is zero.

PROOF. If a = 0 (p), then {* =1, and so Y ’Zq (™ = p. If a # 0(p), then
{*# land Y725 (" = (" — DI = 1) = 0. O

Corollary. p~! Y720 ("™ = §(x, y), where 8(x, y) =1 if x = y(p) and
o(x, y) = 0ifx # y (p).

ProOOF. The proof is immediate from Lemma 1. 0O

All summations for the remainder of this section will be over the range zero
to p — L. It will simplify notation to avoid writing out this fact each time.

Lemma 2. ), (¢/p) = O, where (1/p) is the Legendre symbol.

PrOOF. By definition (0/p) = 0. Of the remaining p — 1 terms in the sum-
mation, half are + 1 and half are — 1, since by Corollary 1 to Proposition
5.1.2, there are as many quadratic residues as quadratic nonresidues mod p.

O

We are now in a position to introduce the notion of Gauss sum.
Definition. g, = Y, (t/p);™ is called a quadratic Gauss sum.

Proposition 6.3.1. g, = (a/p)g;.

PrOOF. If a = 0 (p), then {* = 1 for allt,and g, = ) (¢/p) = 0 by Lemma 2.
This gives the result in the case that a = 0 (p).
Now suppose that a # 0 (p). Then

(-3 G- (-

We have used the fact that ar runs over a complete residue system mod p
when ¢ does and that (x/p) and {* depend only on the residue class of x

modulo p.
Since (a/p)? = 1 when a # 0(p) our result follows by multiplying the
equation (a/p)g, = g, on both sides by (a/p). O

From now on we shall denote g, by g. It follows from Proposition 6.3.1
that g2 = g2 if a # 0 (p). We shall now deduce this common value.

Proposition 6.3.2. g2 = (— 1)~ 2p,

PrOOF. The idea of the proof is to evaluate the sum ), g,g_, in two ways.
Ifa # 0 (p), then g,g_, = (a/p)(—a/p)g® = (—1/p)g*. If follows that

1
;gag—a = (7)(11 - hg*.
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Now, notice that

ez

Summing both sides over a and using the corollary to Lemma 1 yields

WHIEDD) (%)(ﬁ)o(r »p=(p - Dp.

Putting these results together we obtain (— 1/p)(p — 1)g = (p — 1)p. There-
fore, g> = (—1/p)p. a

Let p* = (= 1)~ 12p, The equation g* = p* is the desired analog of the
equation 12 = 2. Let g # p be another odd prime. We proceed to prove the

law of quadratic reciprocity by working with congruences mod q in the ring
of algebraic integers:

g' = (’L)g (4)-
q

Using Proposition 6.1.6 we see that

g' = (Z (é)i’)q =X <I;)qé"' = ¢, (4).

It follows that ¢* = g, = (¢/p)g (9) and so

(=

Multiply both sides by g, and use ¢* = p*:

4\ = (P5)
(p)p <q>n (4),

Thus

which implies that

and finally
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To see that this result is what we want simply notice that

_\p-1n2
<’L*) = (__1) P (E) = (— 1)~ br2p- 1)/2)(3)'
q q q q

The notion of quadratic Gauss sum that we have used can be considerably
generalized. We shall present some of these generalizations after developing
the theory of finite fields. Cubic Gauss sums will be used to prove the law
of cubic reciprocity, and quartic Gauss sums will be used to prove biquad-
ratic reciprocity.

§4 The Sign of the Quadratic Gauss Sum*

According to Proposition 6.3.2, the quadratic Gauss sum has value i\/p if
p=1(4)and iiﬁ if p = 3 (4). Thus the value of g(y) is determined up to
sign. The determination of the sign is a much more difficult problem. The
conjecture that the plus sign holds in each case was made by Gauss and re-
corded in his diary in May 1801. It was not until four years later that he found
a prool. On August 30, 1805 Gauss recorded in his diary that a proof the
“very elegant theorem mentioned in 1801” had finally been achieved. He
wrote to his friend W. Olbers on September 3, 1805 that seldom had a week
passed for four years that he had not tried in vain to prove his conjecture.
Finally according to Gauss “Wie der Blitz einschldgt, hat sich das Rithsel
geldst . .." (as lightning strikes was the puzzle solved).

Subsequently proofs were found by Dirichlet, Cauchy, Kronecker,
Mertens, Schur, and others. In this section we present one of Kronecker’s
proofs.

As in the previous section { = ¢*™/?. Then 1,{, ..., {?~ ! are the roots of
x? — 1.

Proposition 6.4.1. The polynomial 1 + x + -+ + xP™ ' is irreducible in

QLx].

PrOOF. By Exercise 4 at the end of this chapter (“Gauss’ lemma ™) it is enough
to show that 1 + x + --- 4+ x?~! has no nontrivial factorization in Z[x].
Suppose, on the contrary, that 1 + x + x* + -+ + x?~! = f(x)g(x) where
S (x), g{x) € Z[ x] and each has degree greater than one. Putting x = 1 gives
p = f(1)g(1). Therefore we may assume g(1) = 1. Using a bar to denote
reduction modulo p we conclude that g(I) # 0. On the other hand since
pl(®.j=1,...,p — 1, we have x* — 1 = (x — 1)? (p) and division of both
sides by x —1 shows that | +x+---+x""!'=(x — 1)’ ! (p). By
Theorem 2, Chapter t and Proposition 3.3.2 it follows that g(x) = (x — 1) (p)
for some positive integer s. However, this contradicts the fact that g(1) # 0),
and the proof is complete.

* In this section the Gauss sum g will be denoted by g(7) with x(t) = (¢.p) by definition.
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Combining the above proposition with Proposition 6.1.7 we see that if
g(¢) = 0 for g(x)e Q[x] then I + x + --- + x?7 '|g(x). This observation
will be useful later.

Proposition 6.4.2. [ [{7,"2 ({37! — (T2 D)2 = (—)le- 12,

PROOF. One has x? — 1 = (x — 1) [[?2{ (x — {). Divide by x — 1 and put
x = 1 to obtain p = [], (1 — {"), where the product is over any complete set
of representative of the nonzero cosets modulo p. The integers +(4k — 2),

k=1,2,...,(p — 1)/2 are easily seen to be such a system of residues. Thus
p_n(l V4k Z)I—[(l (4k—2))
— H(C (2k n CZk l)n("Zk T _ —(Zk l))
= (_ l)(p— 1)i2 n (glk 1 C (2k - l)) ,
all the products being over k = 1,2,...,(p — 1)/2. ]

Proposition 6.4.3.

{p~1)2 fp=1@1)
v2k -1 -(2k-1) vPooup X
[« —¢ )= {z\/;, ifp=3@4).

ProoOF. By Proposition 6.4.2 we have only to compute the sign of the product.
The product is

k=1

(p—1)2
jtr- 2 n 25 n( 2)”

k=1

But sin((4k — 2)/p)nr < O if (p + 2)/4 < k < (p — 1)/2. 1t follows that the
product has (p — 1)/2 — [(p + 2)/4] negative terms and this is easily seen
tobe(p — 1)/4or(p — 3)/4according as p = 1 (4) or p = 3 (4), respectively.
The result follows immediately. a

By Proposition 6.3.2 and Proposition 6.4.2 we know that

(p—-1)2

90 = ¢ ﬂ @t =), )

where ¢ = + 1. The evaluation of the Gauss sum is completed by Proposition
6.4.3 if we can show that ¢ = + 1. The following argument of Kronecker
shows that this is the case. See also Exercise 22.

Proposition 6.4.4. ¢ = +1.

Proor. Consider the polynomial

(p-1)2

Sflx) = Z;((J)V’—F ﬂ (xF71 = xRy, 2



Notes 75

Then f() = 0 by (1) and f(1) = 0 by Lemma 2. By the comment preceding
Proposition 6.4.2 and the fact that 1 + x + --- + x?" ' and x — 1 are rela-
tively prime we conclude that x” — 1] f(x). Write f(x) = (x” — 1)h(x) and
replace x by ¢° to obtain

(p=1y2

-1
F‘Z Z(j)ej: —¢ l_l (e(Zk—l): _ ez(p‘(2k“l))) — (epz _ l)h(e’). (3)
j=1 k=1

The coefficient of z/»~ 72 on the left-hand side of (3) is easily seen to be

p=1 0 fyjlp= N2 (p-1)2
LT T - oy,
=1

(p — /D! K
On the other hand by Exercise 21 the coefficient of z?~ "2 on the right-hand
side of (3) is pA/B where p 4 B, A and B being integers. Equating coefficients,
multiplying by B((p — 1)/2)! and reducing modulo p shows that

p—1 p— 1 (p—1)/2
YT = c( 5 )! [T @k-2)(p)
j=1 k=1

(p=1)/2

#2-4-6---(p—1) [ @k—-1)
k=1

J

=e(p—- 1!
= —¢(p)

using Wilson’'s theorem (corollary to Proposition 4.1.1).
By Proposition 5.1.2 j*~ 2 = ¥(j) (p) so one has
p—1
2P === —e(p)
j=1
and therefore

e=1(p).

Since ¢ = + 1 we conclude finally that ¢ = 1. This concludes the proof. []
The result may be stated as

Theorem 1. The value of the quadratic Gauss sum g(y) is given by

b ifp =14,
g(’()—{i\/-, if p = 3 (4).

NoTEs

In the famous eleventh supplement to L. Dirichlet’s Vorlesungen iiber Zahlen-
theorie [127] (1893) R. Dedekind introduced the concept of an algebraic
number (§164) as well as that of an algebraic integer (§173). However the use
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of certain algebraic integers such as Gauss sums to prove the law of quadratic
reciprocity occurs much earlier with Eisenstein, Jacobi, and others. Among
the various proofs of this theorem given by Gauss, the fourth (1811) and the
sixth (1818) are of central importance. The fourth proof is a corollary to
Gauss’ remarkable calculation of the value of the classical Gauss sum.
While, as we mentioned in Section 6 he proved this result in 1805, it was not
until 1811 that he published the proof in his famous paper “Summierung
gewisser Reihen von besonderer Art” [34]. In this paper he shows more
generally that if n is any positive integer then )74 ¢ has the value ﬁ
or iﬁ according as n = 1 (4) or n = 3 (4). Here { = ¢2"/. The argument
is quite ingentous. The proof can be found in English in Nagell [60], pp.
174-180. It is not difficult to derive quadratic reciprocity from this result
(see, for example, Dirichlet [125], pp. 253-256).

The sixth and last of Gauss’ published proofs of the law of quadratic
reciprocity was published in 1818 under the title *Neue Beweise und Er-
weiterungen des Fundamentalsatzes in der Lehre von den Quadratischen
Resten™ [34], pp. 496-510. He mentions in the introduction to this paper that
for years he had searched for a method that would generalize to the cubic and
biquadratic case and that finally his untiring efforts were crowned with success
(... die unermiidliche Arbeit wurde endlich von gliicklichem Erfolge
gekront.”). The purpose of publishing this sixth proof, he states, was to bring
to a close that part of the higher arithmetic dealing with quadratic residues
and to say, in a sense, farewell (*... und so diesem Teile der héheren Arith-
metik gewissermassen Lebewohl zu sagen.”) In this proof Gauss considers
the polynomial fi(x) = Y 4 x(t)x* and proves, without using roots of
unity, that I + x + -+ + X"~ divides f,(x)*> — (=D~ P2p as well as
1) = {4/p) f1(x). Reciprocity follows by noting that f,(x) = f,(x)? (¢). The
proof we have given in Section 3 amounts to putting x = {, in the above and
working with congruences in the ring of algebraic integers. This observation
was made (at least) by Cauchy, Eisenstein, and Jacobi (in alphabetical order)
and represents the stepping stone to the study of the higher reciprocity laws
via Gauss sums.

The beginning student will do well to study several of the classical intro-
ductions to the theory of algebraic numbers. Aside from Dirichlet and
Dedekind mentioned above, we cite E. Landau [165] and E. Hecke [44]. In
recent times there have appeared many texts of varying levels of difficulty.
We mention here W. Adams and L. Goldstein [84], LeVeque [180], and
H. Pollard and H. Diamond [63]. Hecke's book has just appeared in English
(Algebraic Number Theory, Springer-Verlag, 1981).

EXERCISES
I. Show that \/2 + /'3 is an algebraic integer.

2. Let a be an algebraic number. Show that there is an integer n such that nx is an
algebraic integer.



Exercises 77

14.
15.

17.
18.

. If « and f§ are algebraic integers, prove that any solution to x? + ax + f = Ois an

algebraic integer. Generalize this result.

. A polynomial f(x) € Z[x] is said to be primitive if the greatest common divisor of its

coefficients is 1. Prove that the product of primitive polynomials is again primitive.
[Hint:Letf(x) = agx" + a,x"~ ' + -+ + a,andg(x) = box™ + b,x" ' 4+ ... + b,
be primitive. If pis a prime, let a; and b; be the coefficients with the smallest subscripts
such that p ta; and p ¥ b;. Show that the coefficient of x'*/ in f(x)g(x) is not divisible
by p.] This is one of the many results known as Gauss’ lemma.

. Letabeanalgebraicinteger and f(x) € Q[ x] be the monic polynomial of least degree

such that f(a) = 0. Use Exercise 4 to show that f(x)e Z[x].

. Let x? + mx + neZ[x] be irreducible and « be a root. Show that Q[«] =

{r + sa|r,s€ Q} is a ring (in fact, it is a field). Let m* — 4n = D2 D, where D is
square-free. Show that Q[«] = Q[\/D].

. (continuation) If D = 2, 3 (4), show that all the algebraic integers in D[\/B]

have the form a + b\/B, where q,be Z. If D = 1 (4), show that all the algebraic
integers in @[\/B] have theforma + b((—1 + \/5)/2), where a, be Z.[Hint: Show

that r + s\/B satisfies x? — 2rx + (r? — Ds?) = 0. Thus by Exercise 5, r + s\/E is
an algebraic integer iff 2r and r? — Ds? are in Z].

. Let w = e2™/3, w satisfies x> — 1 = 0. Show that (2w + 1)®> = —3 and use this to

determine (—3/p) by the method of Section 2.

. Verify Proposition 6.3.2 explicitly for p = 3and p = 5;i.e.,, write out the Gauss sum

longhand and square.

. Whatis Y 22{ g,?
. By evaluating Y, (1 + (t/p)){" in two ways prove thatg = Y, 2.
. Write ¢,(t) = {*. Show that

(a) m = w::(—t) = ‘I’—a(t)'
(b) (l/p) Za l!/a(t - S) = 6(’7 S)'

. Let f beafunction from Z to the complex numbers. Suppose that p is a prime and that

f(n+p)= f(n) for all neZ. Let f(a) = p~ 'Y, f(tW_,(t). Prove that f(t) =
Y. S(@) (). This result is directly analogous to a result in the theory of Fourier
series.

In Exercise 13 take f to be the Legendre symbol and show that f(a) = p~'g_,.

Show that |} 7., (t/p)] < \/E log p. The inequality holds for the sum over any range.
This remarkable inequality is associated with the names of Polya and Vinogradov.
[Hint: Use the relation (t/p)g = g, and sum. The inequality sin x > (2/n)x for any
acute angle x will be useful.]

. Let « be an algebraic number with minimal polynomial f(x). Show that f(x) does

not have repeated roots in C.
Show that the minimal polynomial for \3/5 isx? — 2.

Show that there exist algebraic numbers of arbitrarily high degree.
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19.
20.

21.

22.

6 Quadratic Gauss Sums

Find the conjugates of cos 2r/S5.

Let F be a subfield of C which is a finite dimensional vector space over Q of degree n.
Show that every element of F is algebraic of degree at most n. [ Note: That an element
exists with degree exactly n is more difficult to prove (see Exercise 17, Chapter 12).]

Let f(x) =Y 2 0a,x"/n! and g(x) = Y 2o b,x"/n! be power series with a, and
b, integers. If p is a prime such that pla; for i=0, ..., p— | show that each
coefficient ¢, of the product f(x)g(x) =) ¥ qc,x" for t =0, ..., p— 1 may be
written in the form p(A4/B), p} B.

Show that the relation ¢ = 1 (p) in Proposition 6.4.4 can also be achieved by replac-
ing x by 1 + t instead of €°.

I f(x)=x"+ax""'+---+a, aeZ and p is a prime such that pla;, i =

1,...,n p*Ya, show that f(x) is irreducible over @ (Eisenstein’s irreducibility
criterion).



Chapter 7
Finite Fields

We have already met with examples of finite fields,
namely, the fields Z|pZ, where p is a prime number.
In this chapter we shall prove that there are many more
finite fields and shall investigate their properties. This
theory is beautiful and interesting in itself and, moreover,
is a very useful tool in number-theoretic investigations.
As an illustration of the latter point, we shall supply yet
another proof of the law of quadratic reciprocity. Other
applications will come later.

One more comment. Up to now the great majority
of our proofs have used very few results from abstract
algebra. Although nowhere in this book will we use very
sophisticated results from algebra, from now on we shall
assume that the reader has some familiarity with the
material in a standard undergraduate course in the subject.

§1 Basic Properties of Finite Fields

In this section we shall discuss properties of finite fields without worrying
about questions of existence. The construction of finite fields will be taken
up in Section 2.

Let F be a finite field with ¢ elements. The multiplicative group F* of F
has ¢ — 1elements. Thus every element « € F* satisfies the equation x7™! = |
(in this context 1 stands for the multiplicative identity of F and not the integer
1), and every element in F satisfies x? = x.

Proposition 7.1.1.
x?—x=[](x - a).

aeF
PrOOE. Both polynomials are to be considered as elements of F[x].
Every element a € F is a root of x? — x. Since F has ¢ elements and since
the degree of x? — x is g, the result follows. O

Corollary 1. Let F < K, where K is a field. An element € K is in F iff o = a.

PROOF. of = « iff « is a root of x? — x. By Proposition 7.1.1, the roots of
x? — x are precisely the elements of F. dJ

79
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Corollary 2. Iff(x) divides x? — x, then f(x) has d distinct roots, where d is the
degree of f(x).

PrOOF. Let f(x)g(x) = x? — x. g(x) has degree ¢ — d. If f(x) has fewer than
d distinct roots, then by Lemma 1 of Chapter 4, f(x)g(x) would have fewer
than d + (¢ — d) = g distinct roots, which is not the case. |

Theorem 1. The multiplicative group of a finite field is cyclic.

Proor. This theorem is a generalization of Theorem 1 in Chapter 4. The proof
is almost identical.

Ifd|g — 1, then x* — 1 divides x?~! — | and it follows from Corollary 2
that x! — 1 had d distinct roots. Thus the subgroup of F* consisting of ele-
ments satisfying x? = 1 has order d.

Let (d) be the number of elements in F* of order d. Then Zd,, Y(c) =d.
By the M&bius inversion formula

d
Y(d) = ) pu(e) ~ = ¢(d).
cld &

In particular, y(q — 1) = ¢(¢g — 1) > 1, unless we are in the trivial case
g = 2. This concludes the proof. O

The fact that F* is cyclic when F is finite allows us to give the following
partial generalization of Proposition 4.2.1.

Proposition 7.1.2. Let o € F*. Then x" = a has solutions iff 9™ "4 = 1, where
d = (n,q — 1). If there are solutions, then there are exactly d solutions.

PrOOE. Let y be a generator of F* and set « = y“ and x = »”. Then x" = a is
equivalent to the congruence ny = a(q — 1). The result now follows by
applying Proposition 3.3.1. O

It is worthwhile to examine what happens in the extreme cases n|q — 1
and (n,q — 1) = L

If n|g — 1, then there are exactly (¢ — 1)/n elements of F* that are nth
powers, and if a is an nth power, then x" = « has n solutions.

If (n, ¢ — 1) = 1, then every element is an nth power in a unique way;
i.e.,, for a € F*, x" = o has one and only one solution.

We have investigated the structure of F*. Now we turn our attention to
the additive group of F.

Lemma 1. Let F be u finite field. The integer multiples of the identity form a
subfield of F isomorphic to Z/pZ for some prime number p.

ProOF. To avoid confusion, let us temporarily call ¢ the identity of F* instead
of 1. Map Z to F by taking n to ne. This is easily seen to be a ring homo-
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morphism. The image is a finite subring of F, and so in particular it is an
integral domain. The kernel is a nonzero prime ideal. Therefore, the image is
isomorphic to Z/pZ for some prime p. O

We shall identify Z/pZ with its image in F and think of F as a finite
dimensional vector space over Z/pZ. Let n denote that dimension and let
W, w,,...,0,bea basis. Then every element w e F can be expressed uniquely
in the form a,0, + a,w, + - -+ + a,w,, where a;€ Z/pZ. It follows that F
has p" elements. We have proved

Proposition 7.1.3. The number of elements in a finite field is a power of a prime.

If e is the identity of the finite field F, let p be the smallest integer such that
pe = 0. We have seen that p must be a prime number. It is called the charac-
teristic of F. For o € F we have pa = p(ex) = (pe)a = 0-a = 0. This observa-
tion leads to the following very useful proposition.

Proposition 7.1.4. If F has characteristic p, then (x + B)*" = o™ + p** for all
«, B € F and all positive integers d.

PrOOF. The proof is by induction on d. For d = 1, we have
2zt (p
oS (=
k=1

All the intermediate terms vanish because p|(§)for1 < k < p — 1 by Lemma
2 of Chapter 4.

To passfromdtod + 1just raise bothsides of (x + B)** = a™ + p""to the
pth power. O

Suppose that F is a finite field of dimension n over Z/pZ. We want to find
out which fields E lie between Z/pZ and F. If 4 is the dimension of E over
Z/pZ, then it follows by general field theory that d|n. We shall give another
proof below. It turns out that there is one and only one intermediate field
corresponding to every divisor d of n.

Lemma 2. Let F be aﬁéld. Then x' — 1 divides x™ — 1 in F[x] iff | divides m.
ProOF. Let m = gl + r, where 0 < r < L Then we have

=1 x -1 X =1

X

X -1 T ox=-1 x-U

Since (x% — D/(x' — 1) = (N1 + ()72 + - + x' + 1, the right-
hand side of the above equation is a polynomial iff (x" — D)/(x' — 1) is a
polynomial. This is easily seen to be the case iff r = 0. The result follows.
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Lemma 3. If a is a positive integer, then a' — 1 divides a™ — 1 iff | divides m.

ProoF. The proof is analogous to that of Lemma 2 with the number a playing
the role of x. We leave the details to the reader. O

Proposition 7.1.5. Let F be a finite field of dimension n over Z/pZ. The subfields
of F are in one-to-one correspondence with the divisors of n.

PROOF. Suppose that E is a subfield of F and let d be its dimension over Z/pZ.
We shall show that d|n.

Since E* has p® — 1 elements all satisfying x”'~!' — 1, we have that
xP*~1 — 1 divides x?"~! — 1. By Lemma 2, p? — 1 divides p" — 1 and con-
sequently, by Lemma 3, d divides n.

Now suppose that d|n. Let E = {a e F|aP* = «}. We claim that E is a
field. For if a, § € E, then '

1

@) (@ + By = o™ + B = a + .
(b) By = o™ = uf

() ™'y =@ ' =a 'fora #0.

In step (a) we made use of Proposition 7.1.4.

Now E is the set of solutions to x? — x = 0. Since d|n, we have p —
1|p" — 1 and x?"!' — 1]x”"~! — 1 by Lemmas 2 and 3. Thus x” — x divides
x”" — x, and by Corollary 2 to Proposition 7.1.1, it follows that E has p?
elements and so has dimension d over Z/pZ.

Finally, if E' is another subfield of F of dimension d over Z/pZ, then the
elements of E’ must satisfy x» — x = 0; i.e.,, E' must coincide with E. O

Let F, denote a finite field with g elements. To illustrate Proposition 7.1.5,
consider Fqq¢ (we shall show in Section 2 the existence of such a field).
Since 4096 = 2'? we have the following lattice diagram:

F40%

4N
Va4
S

2,272

Fy
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§2 The Existence of Finite Fields

In Section 1 we proved that the number of elements in a finite field has the
form p", where p is a prime. We shall now show that given a number p” there
exists a finite field with p" elements. To do this we shall need some results
from the theory of fields that connect our problem with the existence of
irreducible polynomials. Then we shall prove a theorem going back to
Gauss (again!) that shows that Z/pZ[x] contains irreducible polynomials
of every degree.

Let k be an arbitrary field and f(x) be an irreducible polynomial in k[x].
We then have

Proposition 7.2.1. There exists a field K containing k and an element o € K such
that f(a) = 0.

PrOOF. We proved in Chapter 1 that k[x] is a principal ideal domain. It
follows that (f(x)) is a maximal ideal and thus k[x]/(f(x)) is a field. Let
K' = k[x1/(f(x)) and let ¢ be the homomorphism that maps k[x] onto K’
by taking an element to its coset modulo (f(x)). We have the diagram

k[x] —— K

ko —2— ¢k

¢(k) is a subfield of K'. We claim that it is isomorphic to k. It is enough to
show that ¢ restricted to k is one to one. Let a € k. If ¢(a) = 0, then a e (f(x)).
Ifa # 0, it is a unit and cannot be an element of a proper ideal. Thus a = 0,
as was to be shown.

Since ¢ is an isomorphism of k we may identify k with ¢(k). When this is
done we relabel K’ as K.

Let « be the coset of x in K. Then 0 = ¢(f(x)) = f($(x)) = f(a); ie., a
is a root of f(x) in K. O

We denote the field K constructed in the proposition by k(). The following
proposition about k(x) will be useful.

n

Proposition 7.2.2. The elements 1,0, «?, ..., a" " ! are a vector space basis for

k() over k, where n is the degree of f(x).

The proof of this proposition is the same as that of Proposition 6.1.8 and
its corollary. One replaces @ by k and the complex number « of that proposi-
tion by the above a.

To turn the matter around, the proposition shows that if we want to find
a field extension K of k of degree n, then it is enough to produce an irreducible
polynomial f(x) € k[x] of degree n.
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In Z/pZ[ x] there are finitely many polynomials of a given degree. Let Fy(x)
be the product of the monic irreducible polynomials in Z/pZ[x] of degree d.

Theorem 2
X" = x =[] Fax).
din
Proor. First notice that if f(x) divides x?" — x, then f(x)? does not divide
x?" — x. This follows since if x?" — x = f(x)2g(x) we obtain

=1 = 2f(x) f'(x)g(x) + f(x)*g'(x)

by formal differentiation. This is impossible since it implies that f(x) divides 1.

It remains to prove that if f(x) is a monic irreducible polynomial of degree
d, then f(x)|x"" — x iff d|n.

Consider K = Z/pZ(«), where a is a root of f(x), as in Proposition 7.2.2.
It has dimension d over Z/pZ and thus p* elements. The elements of K satisfy
xP' —x=0.

Assume that x*" — x = f(x)g(x). Then o" = a. If bya®" ' + b,a?" % +
-+« 4+ b, is an arbitrary element of K, then

by P4+ b)) =by @) o+ by =b T+ -+ by

Hence the elements of K satisfy x?” — x = 0. It follows that x** — x divides
x?" — x, and by Lemmas 2 and 3 of Section 1 d divides n.

Assume now that d|n. Since «” = a and f(x) is the monic irreducible
polynomial for a, we have f(x)|x?* — x. Since d|n we have x?* — x|x?" — x
again by Lemmas 2 and 3 of Section 1. Thus f(x)|x”" — x. O

Let N, be the number of monic irreducible polynomials of degree d in
Z/pZ[ x]. Equating the degrees on both sides of the identity in the theorem
yields

Corollary 1. p" = Y, dN,.

Corollary 2. N, = n~"' Yy, u(n/d)p’.
PrOOF. Apply the Mobius inversion formula (Theorem 2 of Chapter 2) to the
equation in Corollary 1. O

Corollary 3. For each integer n > 1, there exists an irreducible polynomial of
degree n in Z/pZ[ x].

PROOF. N, = n~'(p" — --- + pu(n)) by Corollary 2. The term in parentheses
cannot be zero since it is the sum of distinct powers of p with coefficients 1
and —1. |

Summarizing, we have

Theorem 3. Let n > 1 be an integer and p be a prime. Then there exists a finite
field with p" elements.
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§3 An Application to Quadratic Residues

In Chapter 6 we proved the law of quadratic reciprocity using Gauss sums
and the elements of the theory of algebraic numbers. We shall now give an
exceptionally short proof along the same lines using the theory of finite fields.

Let p and ¢ be distinct odd primes. Since (p, q) = 1 there is an integer
n (for example, p — 1)such that¢" = | (p). Let F be a finite field of dimension
n over Z/qZ. Then F* is cyclic of order ¢" — 1. Let y be a generator of F*
and set 1 = y9"~ Y2 Then 1 has order p. Define 1, = Y 724 (t/p)A™, where
aeZ. The element 7, of F is an analog of the quadratic Gauss sums intro-
duced in Chapter 6. Set 7, = t. Then the proofs of Propositions 6.3.1 and
6.3.2 can be used to show that

() 7, = (a/p)r.
(2) .L.Z = (_1)(!7—\)/2[-7_

In relation 2, p is the coset of p in Z/qZ. Let p* = (— 1)~ W2p Then
relation 2 can be written as t* = p*. This relation implies that (p*/q) = 1
iff 1€ Z/qZ. By Corollary 1 to Proposition 7.1.1, this is true iff 7 = 7. Now,

(2 Op) )=

By relation 1 we have 1, = (¢/p)t. Thus t* = ©iff (¢/p) = L.

We have proved that
*
<ﬂ) =1 iﬁ(ﬂ) =1
q 14

This is the law of quadratic reciprocity.

A proof that (2/¢) = (— 1)’ 178 can be given using the same technique.
In Chapter 6 we gave Euler’s proof that (2/g) = 1ifqg = 1 (8). Ifg £ 1 (8). it
is nevertheless true that ¢ = 1 (8). In this case one can carry through the
proof working in a finite field F of dimension 2 over Z/qZ. We leave the details
to the reader.

NOTES

The first systematic account of the theory of finite fields is found in Dickson
[25], although E. Galois had axiomatically developed a number of their
properties much earlier in his note “Sur la théorie des nombres™ [33]. As
the existence of a finite field with p” elements is equivalent to the existence of
an irreducible polynomial of degree n in the ring F[x] we must include Gauss
once again as a founder. In his paper * Die Lehre von den Reste™ he derives
the formula we have given for the number of irreducibles of degree n (see

[34D.
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The use of finite fields to give a proof of quadratic reciprocity has been
observed by a number of mathematicians, e.g., Hausner [43] and Holzer
[45, pp. 76-78].

Our treatment of finite fields throughout this book is much more elemen-
tary than is usual in modern times. Most treatments first develop the full
Galois theory of fields and apply the general results of that theory to the
special case of finite fields. This is done in A. Albert’s compact book [1].
The advantage of Albert’s book for those readers already familiar with the
theory of fields is that he discusses finite fields extensively in his last chapter
and provides a very long bibliography on the subject. Many interesting
references are provided.

EXERCISES

1. Use the method of Theorem 1 to show that a finite subgroup of the multiplicative
group of a field is cyclic.

2. Let R and C be the real and complex numbers, respectively. Find the finite subgroups
of R* and C* and show directly that they are cyclic.

3. Let F be a field with g elements and suppose that g = 1 (n). Show that for o€ F*
the equation x" = « has either no solutions or n solutions.

4. (continuation) Show that the set of @ € F* such that x" = a is solvable is a sub-
group with (g — 1)/n elements.

5. (continuation) Let K be a field containing F such that [K: F] = n. Forallae F*
show that the equation x" = « has n solutions in K. [Hint: Show that ¢" — 1 is
divisible by n(g — 1) and use the fact that o9~ = 1.]

6. Let K o F be finite fields with [K : F] = 3.Show thatif« € F is not asquarein F, it is
not a square in K.

7. Generalize Exericse 6 by showing that if « is not a square in F, it is not a square in
any extension of odd degree and is a square in every extension of even degree.

8. In a field with 2" elements what is the subgroup of squares?

9. If K o F are finite fields, |F| = q,x€ F, g = 1 (n), and x" = « is not solvable in F,
show that x" = a is not solvable in K if (n, [K: F]) = 1.

10. Let K o F be finite fields and [K : F] = 2. For f € K show that 8' “9¢ F and more-
over that every element in F is of the form ' *9for some f € K.

11. With the situation being that of Exercise 10 suppose that a € F has order ¢ — 1. Show
that there is a f € K with order 4> — 1 such that 8**¢ = a.

12. Use Proposition 7.2.1 to show that given a field k and a polynomial f(x) € k[x] there
is a field K o k such that [K: k] is finite and f(x) = (x —o;)(x — o) - (x — )
in K[x].

13. Apply Exercise 12 to k = Z/pZ and f(x) = x*" — x to obtain another proof of
Theorem 2.



Exercises 87

14.

15.

20.

21

22,

23.

24.

Let F be a field with g elements and n a positive integer. Show that there exist
irreducible polynomials in F[x] of degree n.

Let x" — 1 € F[x], where F is a finite field with g elements. Suppose that (g, n) = 1.
Show that x” — 1 splits into linear factors in some extension field and that the least
degree of such a field is the smallest integer f such that ¢/ = 1 (n).

. Calculate the monic irreducible polynomials of degree 4 in Z/2Z[x].

. Let g and p be distinct odd primes. Show that the number of monic irreducibles of

degree ¢ in Z/pZ[x] is g~ '(p* — p).

. Let pbea prime withp = 3 (4). Show that the residue classes modulo p in Z[i]forma

field with p? elements.

. Let F be a finite field with g elements. If f(x) € F[x] has degree t, put | f| = ¢'. Verify

theformalidentity } ;| f]7* = (1 — ¢' %)~ !. The sum s over all monic polynomials.

With the notation of Exercise 19 let d( /) be the number of monic divisors of f and
o(f) = ¥, 191, where the sum is over the monic divisors of f. Verify the following
identities:

@ Y dNDIf 17 =(0-¢"")"2

®) YoM =0 ~q") 1 —g*9)"

Let F be a field with g = p" elements. For ae F set f(x) = (x — a)(x — af) x
(x — ") .- (x —a”""").Show that f(x) € Z/pZ[ x]. Inparticular,a 4+ o +--- + o'
and xaPa?’ - - - a”" " are in Z/pZ.

(continuation) Set tr(a) = a + o + --- + «*" . Prove that
(a) tr(a) + tr(B) = tr(a + f).

(b) tr(ax) = a tr(z) for ae Z/pZ.

(c) There is an a € F such that tr(a) # 0.

(continuation) For a € F consider the polynomial x* — x — a € F[x]. Show that
this polynomial is either irreducible or the product of linear factors. Prove that the
latter alternative holds iff tr(a) = 0.

Suppose that f(x)eZ/pZ[x] has the property that f(x + y)= f(x) +
f(»eZ/pZ[x, y]. Show that f(x) must be of the form agx + a,x” + a,x* +
e 4 ap, xpm_



Chapter 8

Gauss and Jacobi Sums

In Chapter 6 we introduced the notion of a quadratic
Gauss sum. In this chapter a more general notion of
Gauss sum will be introduced. These sums have many
applications. They will be used in Chapter 9 as a tool
in the proofs of the laws of cubic and biquadratic reci-
procity. Here we shall consider the problem of counting
the number of solutions of equations with coefficients in a
finite field. In this connection, the notion of a Jacobi sum
arises in a natural way. Jacobi sums are interesting in their
own right, and we shall develop some of their properties.

To keep matters as simple as possible, we shall confine
our atlention to the finite field 7[pZ = F, and come back
later to the question of associating Gauss sums with an
arbitrary finite field.

§1 Multiplicative Characters

A multiplicative character on F, is a map y from F} to the nonzero complex

numbers that satisfies

x(ab) = y(a)y(b) foralla, beF}.

The Legendre symbol, (a/p), is an example of such a character if it is

regarded as a function of the coset of a modulo p.

Another example is the trivial multiplicative character defined by the

relation g(a) = 1 forallae F}.

It is often useful to extend to domain of definition of a multiplicative
character to all of F,. If y # ¢, we do this by defining x(0) = 0. For ¢ we
define £0) = 1. The usefulness of these definitions will soon become ap-

parent.

Proposition 8.1.1. Let x be a multiplicative character and a € F. Then

@ «(1)=1
(b) x(a)isa(p — 1)st rogt_ofunity.
(©) xa™") =y~ = y(a).

88
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[In part (a) the 1 on the lefi-hand side is the unit of F,, whereas the 1 on
the right-hand side is the complex number 1. The bar in part (c) is complex
conjugation.]

PROOF. (1) = x(1-1) = x()yx(1). Thus x(1) = 1, since x(1) # 0.

To prove part (b), notice that a? "' = 1 impliesthat 1 = (1) = y(a*™') =
aay ™t

To prove part (c), notice that 1 = y(1) = y(a™'a) = y(a™ Yy(a). This
shows that y(a™!) = y(a)~!. The fact that x(a)™' = y(a) follows from the
fact that y(a) is a complex number of absolute value 1 by part (b). O

Proposition 8.1.2. Let y be a multiplicative character. If y # ¢,then ), x(t) = 0,
where the sumis over allt € F,. If y = &, the value of the sum is p.

ProOEF. The last assertion is obvious, so we may assume that y # ¢. In this
case there is an a € F} such that y(a) # 1. Let T = Z, %(t). Then

()T =Y. y@x(t) = ¥, xla) = T.

The last equality follows since at runs over all elements of F, as t does.
Since y(@)T = T and y(a) # 1 it follows that T = 0. O

The multiplicative characters form a group by means of the following
definitions. (We shall drop the use of the word multiplicative for the re-
mainder of this chapter.)

(1) If y and A are characters, then g4 is the map that takes a € F} to y(a)A(a).
(2) If x is a character, x~ ! is the map that takes a € F¥ to y(a)~ !

We leave it to the reader to verify that yA and y~! are characters and
that these definitions make the set of characters into a group. The identity
of this group is, of course, the trivial character .

Proposition 8.1.3. The group of characters is a cyclic group of order p — 1.
Ifae F}and a # 1, then there is a character x such that y(a) # 1.

ProOF. We know that F} is cyclic (see Theorem 1 of Chapter 4). Let g € F}
be a generator. Then every a € F} is equal to a power of g. If a = g' and x
is a character, then y(a) = ¢(g)". This shows that y is completely determined
by the value yx(g). Since x(g) is a (p — 1)st root of unity, and since there are
exactly p — 1 of these, it follows that the character group has order at most
p— L

Now define a function A by the equation A(g¥) = e2™® P~ [t is easy
to check that 1 is well defined and is a character. We claim that p — 1 is the
smallest integer n such that A" = ¢. If 1" = ¢, then A"(g) = &(g) = 1. However,
(g) = Ag)" = e*™ ™= Tt follows that p — 1 divides n. Since 4™ (a) =
Ma)P~ ' =A@~ ') = A(1) = 1 we have *~ ! = ¢&. We have established that
the characters ¢, 4, A2,..., A7~ 2 are all distinct. Since by the first part of the
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proof there are at most p — 1 characters, we now have that there are exactly
p — 1characters and that the group is cyclic with 4 as a generator.

If ae F¥ and a # 1, then a = g' with p — 1y Let us compute A(a).
Ma) = Ag)' = e2™P=1 % | This concludes the proof. a

Corollary. If ae F}¥ and a # 1, then ), y(a) = O, where the summation is
over all characters.

PROOF. Let § = Zz %(a). Since a # 1 there is, by the theorem, a character A
such that A(a) # 1. Then

Ma)S =Y Ma)y(a) = Y. Ay(a) = S.

The final equality holds since Ay runs over all characters as  does. It follows
that (A(a) — 1)S = 0 and thus S = 0. d

Characters are useful in the study of equations. To illustrate this, con-
sider the equation x" = a for a € F}. By Proposition 4.2.1 we know that
solutions exist iff a?~ "4 = {, where d = (n, p — 1), and that if a solution
exists, then there are exactly d solutions. For simplicity, we shall assume that
ndivides p — L. Inthiscased = (n,p — 1) = n.

We shall now derive a criterion for the solution of x" = a using characters.

Proposition 8.1.4. Ifa € F¥,n|p — 1,and x" = a s not solvable, then there is a
character y such that

(@ " ==
(b) x(a) # 1.

PRrROOF. Let g and A be as in Proposition 8.1.3 and set x = A?~ """ Then
2(g) = AP~ VIngy = A(g)P~ " = ¢2"i" Now a = ¢' for some [, and since
x" = a is not solvable, we must have n ¥l Then x(a) = x(g)' = e*™"™ # 1.
Finally, y" = A?7! =& 0

ForaeF,, let N(x" = a) denote the number of solutions of the equation
x" = a. If n|p — 1, we have

Proposition 8.1.5. N(x" = a) = Y n. x(a) where the sum is over all characters
of order dividing n.

ProoF. We claim first that there are exactly n characters of order dividing n.
Since the value of y(g) for such a character must be an nth root of unity, there
are at most n such characters. In Proposition 8.1.4, we found a character
4 such that y(g) = e*™. It follows that & x x*...,x" ' are n distinct
characters of order dividing n.

To prove the formula, notice that x" = 0 has.one solution, namely,
x = 0.Now Y ,n_, 2(0) = 1,since £(0) = 1 and 4(0) = O for x # ¢.
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Now suppose that a # 0 and that x" = a is solvable; i.e, there is an
element b such that b" = a. If z" = ¢, then y(a) = y(b") = x(b)" = y"(b) =
e(b) = 1. Thus ) ,._, x(a) = n, which is N(x" = a) in this case.

Finally, suppose that a # 0 and that x" = a is not solvable. We must
show that ) .., x(a) = 0. Call the sum T. By Proposition 8.1.4, there is a
character p such that p(a) # 1 and p" = &. A simple calculation shows that
p(a)T = T (one uses the obvious fact that the characters of order dividing n
form a group). Thus (p(a) — 1)T = O0and T = 0, as required. O

As a special case, suppose that p is odd and that n = 2. Then the theorem
says that N(x* = a) = | + (a/p), where (a/p) is the Legendre symbol. This
equation is easy to check directly.

In Section 3 we shall return to equations over the field F .

§2 Gauss Sums

In Chapter 6 we introduced quadratic Gauss sums. The following definition
generalizes that notion.

Definition. Let ¢ be a characteron F,and a € F,. Set g(x) = Y, x(t)<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>