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Preface 

The aim of this book is to give an understandable introduction to the the­
ory of complex manifolds. With very few exceptions we give complete proofs. 
Many examples and figures along with quite a few exercises are included. 
Our intent is to familiarize the reader with the most important branches and 
methods in complex analysis of several variables and to do this as simply as 
possible. Therefore, the abstract concepts involved with sheaves, coherence, 
and higher-dimensional cohomology are avoided. Only elementary methods 
such as power series, holomorphic vector bundles, and one-dimensional co­
cycles are used. Nevertheless, deep results can be proved, for example the 
Remmert-Stein theorem for analytic sets, finiteness theorems for spaces of 
cross sections in holomorphic vector bundles, and the solution of the Levi 
problem. 

The first chapter deals with holomorphic functions defined in open sub­
sets of the space en. Many of the well-known properties of holomorphic 
functions of one variable, such as the Cauchy integral formula or the maxi­
mum principle, can be applied directly to obtain corresponding properties of 
holomorphic functions of several variables. Furthermore, certain properties of 
differentiable functions of several variables, such as the implicit and inverse 
function theorems, extend easily to holomorphic functions. 

In Chapter II the following phenomenon is considered: For n 2: 2, there 
are pairs of open subsets H c Peen such that every function holomorphic 
in H extends to a holomorphic function in P. Special emphasis is put on 
domains G c en for which there is no such extension to a bigger domain. 
They are called domains of holomorphy and have a number of interesting 
convexity properties. These are described using plurisubharmonic functions. 
If G is not a domain of holomorphy, one asks for a maximal set E to which all 
holomorphic functions in G extend. Such an "envelope of holomorphy" exists 
in the category of Riemann domains, i.e., unbranched domains over en. 

The common zero locus of a system of holomorphic functions is called 
an analytic set. In Chapter III we use Weierstrass's division theorem for 
power series to investigate the local and global structure of analytic sets. 
Two of the main results are the decomposition of analytic sets into irreducible 
components and the extension theorem of Remmert and Stein. This is the 
only place in the book where singularities play an essential role. 

Chapter IV establishes the theory of complex manifolds and holomorphic 
fiber bundles. Numerous examples are given, in particular branched and un­
branched coverings of en, quotient manifolds such as tori and Hopf manifolds, 
projective spaces and Grassmannians, algebraic manifolds, modifications, and 
toric varieties. We do not present the abstract theory of complex spaces, but 
do provide an elementary introduction to complex algebraic geometry. For 
example, we prove the theorem of Chow and we cover the theory of divi-
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sors and hyperplane sections as well as the process of blowing up points and 
submanifolds. 

The present book grew out of the old book of the authors with the ti­
tle Seveml Complex Variables, Graduate Texts in Mathematics 38, Springer 
Heidelberg, 1976. Some of the results in Chapters I, II, III, and V of the old 
book can be found in the first four chapters of the new one. However, these 
chapters have been substantially rewritten. Sections on pseudoconvexity and 
on the structure of analytic sets; the entire theory of bundles, divisors, and 
meromorphic functions; and a number of examples of complex manifolds have 
been added. 

Our exposition of Stein theory in Chapter V is completely new. Using only 
power series, some geometry, and the solution of Cousin problems, we prove 
finiteness and vanishing theorems for certain one-dimensional cohomology 
groups. Neither sheaf theory nor a methods are required. As an application 
Levi's problem is solved. In particular, we show that every pseudoconvex 
domain in en is a domain of holomorphy. 

Through Chapter V we develop everything in full detail. In the last two 
chapters we deviate a bit from this principle. Toward the end, a number of 
the results are only sketched. We do carefully define differential forms, higher­
dimensional Dolbeault and de Rham cohomology, and Kahler metrics. Using 
results of the previous sections we show that every compact complex mani­
fold with a positive line bundle has a natural projective algebraic structure. A 
consequence is the algebraicity of Hodge manifolds, from which the classical 
period relations are derived. We give a short introduction to elliptic opera­
tors, Serre duality, and Hodge and Kodaira decomposition of the Dolbeault 
cohomology. In such a way we present much of the material from complex 
differential geometry. This is thought as a preparation for studying the work 
of Kobayashi and the papers of Ohsawa on pseudoconvex manifolds. 

In the last chapter real methods and recent developments in complex an­
alysis that use the techniques of real analysis are considered. Kahler theory is 
carried over to strongly pseudoconvex subdomains of complex manifolds. We 
give an introduction to Sobolev space theory, report on results obtained. by 
J.J. Kohn, Diederich, Fornress, Catlin, and Fefferman (a-Neumann, subeUip­
tic estimates), and sketch an application of harmonic forms to pseudoconvex 
domains containing nontrivial compact analytic subsets. The Kobayashi met­
ric and the Bergman metric are introduced, and theorems on the boundary 
behavior of biholomorphic maps are added. 

Prerequisites for reading this book are only a basic knowledge of calculus, 
analytic geometry, and the theory of functions of one complex variable, as 
well as a few elements from algebra and general topology. Some knowledge 
about Riemann surfaces would be useful, but is not really necessary. The 
book is written as an introduction and should be of interest to the specialist 
and the nonspecialist alike. 
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Chapter I 

Holomorphic Functions 

1. Complex Geometry 
Real and Complex Structures. Let V be an n-dimensional com­
plex vector space. Then V can also be regarded as a 2n-dimensional real 
vector space, and multiplication by i := yCT gives a real endomorphism 
J : V , V with J2 = -idv . If {al, ... ,an} is a complex basis of V, then 
{al' ... ' an, ial, ... , ian} is a real basis of V. 

On the other hand, given a 2n-dimensional real vector space V, every real 
endomorphism J : V , V with J2 = -idv induces a complex structure on V 
by 

(a + ib) . v := a ·'v + b· J(v). 

We denote this complex vector space also by V, or by (V, J), if we want to 
emphasize the complex structure. 

If a complex structure J is given on V, then -J is also a complex structure. 
It is called the conjugate complex structure, and the space (V, J) is sometimes 
denoted by V. A vector v E V is also a vector in V. If z is a complex number, 
then the product z· v, formed in V, gives the same vector as the product z· v 
in V. 

Our most important example is the complex n-space 

en := {z := (z}, ... , zn) : Zi E e for i = 1, ... , n}, 

with the standard basis 

el:= (1,0, ... ,0), ... ,en := (0, ... ,0,1). 

We can interpret en as the real 2n-space 

]R2n = {(x,y) = (x}, ... ,xn,Y}' ... ,Yn) : Xi,Yi E]R for i = 1, .. . ,np, 
together with the complex structure J : ]R2n , ]R2n, given by 

These considerations lead naturally to the idea of "complexification." 

1 A row vector is described by a bold symbol, for instance v, whereas the corre­
sponding column vector is written as a transposed vector: v t. 



2 1. Holomorphic Functions 

Definition. Let E be an n-dimensional real vector space. The com­
plexification of E is the real vector space Ee := EffiE, together with the 
complex structure J : Ee ~ E e, given by 

J(v, w) := (-w, v). 

Furthermore, conjugation ( in Ee is defined by 

C(v, w) := (v, -w). 

Since (oj = -Jo(, it is clear that (defines a complex isomorphism between 
Ee and Ee· 

The complexification of lRn is the complex n-space en identified with 1R2n in 
the way shown above. In this case the conjugation ( is given by 

and will also be denoted by z t-+ z. 

If V = Ee is the complexification of a real vector space E, then the subspace 

Re(V) := {(v,O) : VEE} C V 

is called the real part of V. Since it is isomorphic to E in a natural way, we 
can write V ~ E ffi iE. If V is an arbitrary complex vector space, then V is 
the complexification of some real vector space as well, but this real part is 
not uniquely defined. It is given by the real span of any complex basis of V. 

Example 

Let E be an n-dimensional real vector space and E* := HomlR(E,lR) the 
real dual space of linear forms on E. Then the complexification (E*)e can be 
identified with the space HomlR(E, q of complex-valued linear forms on E. 

In the case E = lRn , a linear form A E E* is always given by 

with some fixed vector a E lRn. An element of the complexification (E*)e is 
then given by v t-+ v· zt with z = a + ib E (lRn)e = en. 

Now let T be an n-dimensional complex vector space and F(T) := HomlR(T, q 
the space of complex-valued real linear forms on T. It contains the subspaces 
T I := Homc(T, e) of complex linear forms and T I := Homc(T, q of complex 
antilinear forms 2. 

2 A real linear map>. : T -t C is called complex antilinear if >.( c . v) = c· >.( v) for 
c E C. Therefore, T' can be viewed as the set of complex antilinear forms on T. 
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Let {al, ... ,an } be a complex basis of T, and bi := iai, for i = 1, ... ,n. 
Let {Ol, ... , on,{31 , ... ,,on} be the basis of T* = HomlR(T, JR.) that is dual to 
{al, ... , an, bl ,···, bn }. Then we obtain elements 

Ai := 0i + i,8i E F(T), i = 1, ... , n. 

Claim. The forms Ai are complex-linear. 

PROOF: Consider an element Z = Zlal + .. +znan E T with Zi = Xd..jYi E C. 
Then 

n n 

Ak(Z) Ak (L Xiai + LYibi) 
i=l i=l 

n n 

= LXiAk(ai) + LYiAk(bi ) 
i=l i=l 

Now the claim follows. • 
It is obvious that the Ai are linearly independent. Therefore, {AI, ... , An} is 
a basis of T/, and P:I, ... , Xn} is a basis of 'fl. 

Since it is also obvious that T'n'f ' = {O}, we see that every element A E F(T) 
has a unique representation 

n n 

A = LCiAi + LdiXi , with Ci,di E C. 
i=l i=l 

Briefly, 
A = A' + A", with A' E T' and )," E 'f'. 

Here A is real; i.e., A E HomJR(T,R) if and only if A" = N. 

Hermitian Forms and Inner Products 

Definition. Let T be an n-dimensional complex vector space. A Her­
mitian form on T is a function H : TxT -+ C with the following 
properties: 

1. v f-t H(v, w) is C-linear for every wET. 
2. H(w,v) = H(v,w) for v,w E T. 

It follows at once that w f-t H (v, w) is C-antilinear for every VET, and 
H(v,v) is real for every vET. If H(v,v) > 0 for every v f. 0, H is called an 
inner product or scalar product. 
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There is a natural decomposition 

H(v, w) = S(v, w) + iA(v, w), 

with real-valued functions S and A. Since 

S(w, v) + iA(w,v) = H(w,v) = H(v,w) = S(v,w) - iA(v,w), 

it follows that S is symmetric and A antisymmetric. 

Example 

If k is a field, the set of all matrices with p rows and q columns whose elements 
lie in k will be denoted by Mp,q(k) and the set of square matrices of order n 
by Mn(k). Here we are interested only in the cases k = JR and k = IC. 

A Hermitian form on en is given by 

H: (z, w) 1--+ zHw t, 

where H E Mn(C) is a Hermitian matrix, i.e., Ht = H. 

The associated symmetric and antisymmetric real bilinear forms S and A are 
given by 

and 
1 

A(z,w)=Im(zHwt) = 2i(zHw t -wHz t ). 

If H is an inner product, then S is called the associated Euclidean inner 
product. 

The identity matrix En yields the standard Hermitian scalar product 

n 

(zlw) =z·w t = Lzvwv. 
/./=} 

Its symmetric part (z I w)2n:= Re«(zlw» is the standard Euclidean scalar 
product. In fact, if we write z = x + iy and w = u + iv, with x, y, U, v E JRn, 
then 

= 

= 

1 -t -t 2(z.w +w·z) 

n 1 
L 2 (vvwv + wvzv) 
v=} 

n 

L(xvuv + YvVv). 
v=1 
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If the standard Euclidean scalar product on lRn is denoted by (-. ·1·· ·)n' we 
obtain the equation 

Balls and Polydisks 

Definition. The Euclidean norm of a vector z E en is given by 

the Euclidean distance between two vectors z, w by 

dist(z, w) := liz - wll. 

An equivalent norm is the sup-norm or modulus of a vector: 

Izl:= max Izvl· 
v=l, ... ,n 

This norm is not derived from an inner product, but it defines the same topo­
logy on en as the Euclidean norm. This topology coincides with the usual 
topology on ]R2n. We assume that the reader is familiar with it and mention 
only that it has the Hausdorff property. 

Definition. Br(zo):= {z E en : dist(z,zo) < r} is called the (open) 
ball of radius r with center zo0 

A ball in en is also a ball in lR2n , and its topological boundary 

8Br(zo) = {z E en : dist(z,zo) = T} 

is a (2n - I)-dimensional sphere. 

Definition. Let r = (rl, ... , Tn) E ]Rn, all Tv > 0, Zo = (ziO), ... , z~») E 
en. Then 

pn(zo, r) := {z E en : Izv - z~O)1 < Tv for v = 1, ... , n} 

is called the (open) polydisk (or polycylindeT) with polyradius r and center 
zoo If r E lR+ and r := (r, ... , r), we write P~(zo) instead of pn(zo, r). 
Then P~(zo) = {z E en : Iz - zol < r}. 

If 0 denotes the open unit disk in e, then pn := Pf(O) = 0 x ... x 0 is 
~ 

n times 
called the unit polydisk around o. 
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We are not interested in the topological boundary of a polydisk. The following 
part of the boundary is much more important: 

Definition. The distinguished boundary of the polydisk pn(zo, r) is 
the set 

Tn(zo,r) = {z E en : Izv - z~O)1 = rv for 1/ = 1, ... ,n}. 

The distinguished boundary of a polydisk is the Cartesian product of n circles. 
It is well known that such a set is diffeomorphic to an n-dimensional torus. 
In the case n = 1 a polydisk reduces to a simple disk and its distinguished 
boundary is equal to its topological boundary. 

Connectedness. Both the Euclidean balls and the polydisks form a base 
of the topology of en. By a region we mean an ordinary open set in en. A 
region G is connected if each two points of G can be joined by a continuous 
path in G. A connected region is called a domain. 

If a real hyperplane in IRn meets a domain, then it cuts the domain into 
two or more disjoint open pieces. For complex hyperplanes in the complex 
number space (which have real codimension 2) this is not the case: 

1.1 Proposition. Let G c en be a domain and 

E := {z = (ZI,"" zn) E en : Zl = O}. 

Then G' := G - E is again a domain. 

PROOF: Of course, E is a closed set, without interior points, and G' = G - E 
is open. Write point,s of en in the form z = (Zl' z*), with z* E en-I. Given 
two points v = (VI, v*) and w = (WI, w*) in G', it must be shown that y 
and w can be joined in G' by a continuous path. We do this in two steps. 

Step 1: Let G = pn(zo, c) be a small polydisk. Then G' is the product of 
a punctured disk and a polydisk in n - 1 variables. Define z := (WI, Y*). 
Clearly, z E G', and we can join VI and WI within the punctured disk, and 
y* and w* within the polydisk. Therefore, y and w can be joined within G '. 

Step 2: Now let G be an arbitrary domain. There is a path <p : I --+ G joining 
y and w. Since <p(l) is compact, it can be covered by finitely many polydisks 
U 1 , ... , Ul such that U).. c G for A = 1, ... , l. 

It is easy to show that there is a 0 > 0 such that for all t', t" E I with 
It' - t"l < 0, <pet') and <p(t") lie in the same polydisk Uk. Then let a = to < 
tl < ... < tN = b be a partition of I with Itj - tj-Ii < 0 for j = 1, ... , N. 
Let Zj := <p(tj) and A(j) E {I, ... , l} be chosen such that U)..(j) contains Zj 

and Zj-l (it can happen that A(jr) = A(h) for jl =I- h). By construction Zj-l 

lies in U)..(j) n U)..(j-l) , and thus U>'(j) n U>'(j-l) - E is always a nonempty 
open set. 
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We join v = Zo E U>'(l) and some point Zl E U>.(l) n U>'(2) - E by a path 
CPl interior to U>'(l) - E. By (1) this is possible. Next we join Zl and a point 
Z2 E U>'(2) n U>'(3) - E by a path CP2 interior to U>'(2) - E, and so on. Finally, 
CPN joins ZN-1 and W = ZN within U>'(N) -E. The composition of cpI, ... , CPN 

connects v and w in G'. • 

Reinhardt Domains 

Definition. The point set 

will be called absolute space, the map r : en ~ JI with r(zl, ... , zn) := 
(lz11, . . . ,lznl) the natural projection. 

The map r is continuous and surjective. For any r E "jI, the preimage 
r- 1(r) is the torus Tn(o, r) . For Z E en, we set Pz := pn(o, r(z)) and 
Tz := Tn(O,r(z)) = r-1(r(z)) (see Figure 1.1). 

Definition. A domain G c en is called a Reinhardt domain if for 
every z E G the torus T z is also contained in G. 

Figure 1.1. A polydisk in absolute space 

Reinhardt domains G are characterized by their images in absolute space: 
r-1r(G) = G. Therefore, they can be visualized as domains in JI. For exam­
ple, both balls and polydisks around the origin are Reinhardt domains. 
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Example 

Let Zo E en, with Iz~O)1 > 1 for v = 1, ... ,no Then T(e i9 . zo) = T(ZO), but 
le i9 • Zo - zol = le i9 - 11 . Izol > le i9 - 11, and for suitable () this expression 
may be greater than C. SO pn (zo, c) is not a Reinhardt domain. 

Definition. Let G c en be a Reinhardt domain. 
1. G is called proper if 0 E G. 
2. G is called complete if Vz E G n (C*)n : Pz c G (see Figure 12). 

Later on we shall see that for any proper Reinhardt domain G there is a 
smallest complete Reinhardt domain 8 containing G. 

(a) 

IZII 
> 

Figure I.2. (a) Complete and (b) noncomplete Reinhardt domain 

Exercises 

(b) 

1. Show that there is an open set B c e2 that is not connected but whose 
image T(B) is a domain in absolute space. 

2. Which of the following domains is Reinhardt, proper Reinhardt, complete 
Reinhardt? 
(a) a 1 := {z E e2 : 1 > IZII > IZ21}, 
(b) G2 := {z E e2 : IZII < 1 and IZ21 < l-Izll}, 
(c) G3 is a domain in e2 with the property • 

Z E G ==:} eit . Z E G for t E R 
3. Let a c en be an arbitrary set. Show that G is a Reinhardt domain 

<=> 39 c r open and connected such that G = T- 1(9). 
4. A domain G c en is called convex, iffor each pair of points z, wE G the 

line segment from Z to w is also contained in G. Show that an arbitrary 
domain a is convex if and only if for every Z E 8a there is an affine 
linear function A : en --* lR with A(Z) = 0 and Ale < O. 
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2. Power Series 
Polynomials. In order to simplify notation, we introduce multi-indices. 

For v = (Vi, ... , Vn ) E zn and Z E en define 

n 

Ivi := L Vi and zV:= zr1 ••• z~n. 
i=i 

The notation V 2: 0 (respectively V > 0) means that Vi > 0 for each i 
(respectively V 2: 0 and Vi > 0 for at least one i). 

A function of the form 

z r--+ p(z) = L avzv , with av E e for Ivl ~ m, 
Ivl~m 

is called a polynomial (of degree less than or equal to m). If there is a v 
with Ivl = m and av =1= 0, then p(z) is said to have degree m. For the 
zero polynomial no degree is defined. An expression of the form avzv with 
av =1= 0 is called a monomial of degree m := Ivl. A polynomial p(z) is called 
homogeneous of degree m if it consists only of monomials of degree m. 

2.1 Proposition. A polynomial p(z) =1= 0 of degree m is homogeneous if 
and only if 

p(>.z) = >.m . p(z), for all >. E c. 

PROOF: Let p(z) = avzv be a monomial of degree m. Then 

The same is true for finite sums of monomials. 

On the other hand, let p(z) = Llvl~N avzv be an arbitrary polynomial with 
p(>.z) = >.m . p(z). Gathering monomials of degree i, we obtain a polyno­
mial Pi(Z) = Llvl=i a"z" with Pi(>'Z) = >.i . Pi(Z). Then for fixed z the two 
polynomials 

N 

>. r--+ p( AZ) = L Pi (z) . Ai and A r--+ Am. p( Z ) 
i=O 

are equal. This is possible only if the coefficients are equal, i.e., Pm(z) = p(z) 
and Pi(Z) = 0 for i =1= m. So P = Pm is homogeneous. _ 

Convergence. If for every v E No a complex number CII is given, one 
can consider the series Lv>o CII and discuss the matter of convergence. The 
trouble is that there is no canonical order on No. 
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Definition. The series Lv>o Cv is called convergent if there is a bi­
jective map cp : N -t No such that L~llc<p(i)1 < 00. Then the complex 
number L~l C<p(i) is called the limit of the series. 

It is clear that this notion of convergence is independent of the chosen map 
cp, and that it means absolute convergence. 

2.2 Proposition. Lv;::>:o Cv is convergent if and only if 

is a bounded set. 

The proof is trivial. 

{ Llcvl: IeNg finite} 
vEl 

2.3 Proposition. If the series Lv;::>:o Cv converges to the complex number 

c, then for each E > a there exists a finite set 10 e No such that: 

1. L jcvl < E, for any finite set KeNo with K n 10 = 0. 
vEK 

2. I L Cv - C I < E, for any finite set I with 10 e I e No· 
vEl 

PROOF: We choose a bijective map cp : N -t No. Then E~l c<p(i) = c, and 
the series is absolutely convergent. For a given E > a there exists an io E N 
such that L~io IC<p(i) I < E and I L;~l c<p(i) - C I < E. 

Setting 10 := 'P( {1, 2, ... , io}), it follows that LVEKlcvl < E for any finite set 
K with K n 10 = 0, and I LVElo Cv - C I < E. 

Then for any finite set I with 10 e I e No, 

ILCv-CI=I(LCv-C)+ L cvl::;ILcv-cl+ L Icvl<2E. 
vEl vElo vEl -10 vElo vEl -10 

• 

Example 

Let ql, ... , qn be real numbers with 0 < qi < 1 for i = 1, ... , n, and q := 
(ql, ... , qn). Then for any v E No, qV = qr1 ••• q~n is a positive real number. 

If I e No is a finite set, then there is a number N such that I e 
{a, 1, ... , N}n, and therefore 
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Since the partial sums are bounded, the series is convergent. It is absolutely 
convergent in any order, and the limit is 

n 1 "'qV-II-~ - l-q·· 
V~O i=l • 

We call this series the generalized geometric series. 

Now let M c en be an arbitrary subset, and {tv : v E No} a family of 
complex-valued functions on M. We denote by IlfvllM the supremum of Ifvl 
onM. 

Definition. The series 2:v>o fv is called normally convergent on M 
if the series of positive real numbers 2:v~ollfvIlM is convergent. 

2.4 Proposition. Let the series 2:v>o fv be normally convergent on M. 
Then it is convergent for any Z EM, and for any bijective map <p : N -+ No 
the series 2::1 f'P(i) is uniformly convergent on M. 

PROOF: If the series is normally convergent, then 2:v>ollv(z)I is convergent 
for any z E M. But then 2:v>o fv(z) is also convergent, and there is a complex 
number f(z) such that 2::1 f'P(i)(Z) converges to f(z), for every bijective 
map <p : N -+ No. 

If an c > 0 is given, there is an io such that 2::io III '1'( i) II M < c. Then 

m m 

I L f'P(i)(Z) I S Lllf'P(i) 11M < c, for m > k 2: io and z E M. 
i=k i=k 

Therefore, 

k ~ 

I L f'P(i)(Z) - f(z) I = I L f'P(i)(Z) I S c, for k 2: i o· 
i=1 i=k+1 

This proves the uniform convergence. • 

Power Series. Let {a v : v E No} be a family of complex numbers, and 
Zo E en a point. Then the expression 

is called a (formal) power series about zoo It is a series of polynomials. If 
this series converges normally on a set M to a complex function f, then as a 
uniform limit of continuous functions f is continuous on M. 
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2.5 Abel's lemma. Let pI ee p e Cn be polydisks around the origin. 3 If 
the power series Z:v>o a"z" converges at some point of the distinguished 
boundary of P, then it converges normally on P'. 

PROOF: Let w E ooP be a point where ~,,>o a"w" is convergent. Then 
there is a constant c such that la"w"l :::; c for an v E No. 
We choose real numbers qi with 0 < qi < 1 such that IZil :::; qilwil for any 
Z = (Zl,"" zn) E pI and i = 1, ... , n. It follows that 

Then lIa"z"lIp' :::; q" . c as well, and from the convergence of the generalized 
geometric series it follows that E,,~o avz" is normally convergent on P'. • 

Definition. We say that a power series ~v>o a,,(z - zo)" converges 
compactly in a domain G if it converges normally-on every compact subset 
KeG. 

2.6 Corollary. Let P e Cn be a polydisk around the origin and w be a point 
of the distinguished boundary of P. If the power series E,,>o a"z" converges 
at w, then it converges compactly on P. -

PROOF: Let K e P be a compact set. Then there is a q with 0 < q < 1 
such that K e q . P ee P. Therefore, the series is normally convergent on 
K. • 

Let S(z) = E,,~o a"z" be a formal power series about the origin, and 

B := {z E Cn : S(z) convergent}. 

2.7 Proposition. The interior BO is a complete Reinhardt domain, and 
S(z) converges compactly in BO. 

PROOF: Let w be a point of BO. There is a polydisk pn (w, c) e BO and 
a point v E pn(w,c:) n (C*)n such that w E Pv(O). Then Tw e B O , and if 
wE (C*)n, then also Pw(O) e BO. 

To see that BO is a complete Reinhardt domain, it remains to show that it 
is connected. But this is very simple. Every point of BO can be connected to 
a point in BO n (c*)n, and then within a suitable polydisk to the origin. 

3 The notation U cc V means that U lies relatively compact in Vj i.e., V is a 
compact set which is contained in V. 
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From these considerations it follows that BO is the union of relatively compact 
polydisks around the origin. Therefore, S(z) converges compactly on BO. • 

The set BO is called the domain of convergence of S(z). 

2.8 Proposition. Let G be the domain of convergence of the power series 
S(z) = 2:v~o avzv . Then 

also converges compactly on G. 

PROOF: Let w be any point of (c*)nnG, and lavwvl ::; c for every v E No. 
H 0 < q < 1 and z = q . w, then 

I Vi Vj Vn I Vj I VI < c Ivl av . VjZl ... Zj '" zn = IZjl . avz - IZjl . Vj . q . 

Now, 

is convergent. Therefore, SZj(z) is convergent, and it follows that SZj is nor­
mally convergent on Pz(O). Since every compact set KeG can be covered 
by finitely many polydisks of this kind, SZj is compactly convergent on P .• 

Definition. Let B c Cn be an open set. A function f : B ---t C is called 
holomorphic if for every Zo E B there is a neighborhood U = U(zo) C B 
and a power series S(z) := 2:v>o av(z - zo)V that converges on U to 
f(z). -

The set of holomorphic functions on B is denoted by O(B). 

It is immediately clear that every holomorphic function is continuous. 

Exercises 

1. Let f, 9 be two nonzero polynomials. Prove that 

deg(f· g) = deg(f) + deg(g). 

2. Let f = fr "'!k be a homogeneous nonzero polynomial. Show that fi is 
homogeneous, for i = 1, ... , k. 
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3. Find the domain of convergence for the following power series: 

00 

I(z,w) = LZw\ g(z,w) = L(zW)k, 
k~O k=O 

4. Determine the limit and the domain of convergence of the series 

F(z,w) = L(2z)V + L zl' )wv . 

v~O I'~O 

5. A polyradius r = (rt. ... ,rn ) E "f/ is called a radius 01 convergence for 
the power series I(z) = Ev>o avzv if I(z) is convergent in P = pn(o, r), 
but not convergent in any polydisk pI = pn(o, r') with P cc P'. 

Prove the following generalization of the root test: 

r is a radius of convergence for I(z) if and only if lim ''\Ilavlrv = 1. 
v~O 

3. Complex Differentiable Functions 
The Complex Gradient 

Definition. Let Been be an open set, Zo E B a point. A function 
I : B -+ e is called complex differentiable at Zo if there exists a map 
a : B -+ en such that the following hold: 

1. a is continuous at Zo. 
2. 1(.,.) = I(zo) + (z - zo) . a(z) t for z E B. 

Complex differentiability is a local property: For I to be complex differen­
tiable at Zo it is sufficient that there is a small neighborhood U = U(zo) c B 
such that the restriction Ilu is complex differentiable at zoo 

3.1 Proposition. II I is complex differentiable at zo, then the value 01 the 
function a at Zo is uniquely determined. 

PROOF: Assume that there are two maps a l and a2 satisfying the condi­
tions of the definition. Then 

(z - zo)' (a1(z) - a 2 (z» t = 0 for every z E B. 

In particular, there is an e > 0 such that the equation holds for z = Zo + tei, 
with tEe, It I < e, and i = 1, ... , n. If a A = (ai).), ... , a~», then 

t· (a~l)(z) - a~2)(z» = 0, for It I < e, z = Zo + tei, and i = 1, ... ,n. 

Because the a~).) are continuous at Zo, it follows that al(zo) = D.2 (zo). • 
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Definition. Let J : B -+ C be complex differentiable at Zoo If there 
exists a representation 

J(z) = !(zo) + (z - zo) . A.(z) t, 

with A. continuous at Zo, then the uniquely determined numbers 

are called the partial derivatives of ! at Zo. The vector 

yo !(zo) := (fZl (zo),· .. , JZn (zo)) = A.(zo) 

is called the complex gradient of ! at Zo. 

Remarks 

1. If ! is complex differentiable at Zo, then J is continuous there as well. 
2. A function J is caUed complex differentiable in an open set B if it is 

complex differentiable at each point of B. Then the partial derivatives of 
! define functions !zv on B. If each of these partial derivatives is again 
complex differentiable at Zo, then J is called twice complex differentiable 
at Zo, and one obtains second derivatives 

By induction, partial derivatives of arbitrary order may be defined. 
3. Sums, products, and quotients (with nonvanishing denominators) of com­

plex differentiable functions are again complex differentiable. 

Weakly Holomorphic Functions. Let Been be an open set, 
Zo E B a point, and! a complex-valued function on B. For w =1= 0 let 
'Pw : e -+ en be defined by 

'Pw() := Zo + (w. 

Then! 0 <Pw () is defined for sufficiently small (. If J is complex differentiable 
at Zo, then we have a representation J(z) = !(zo) + (z - zo) . A.(z) t, with A. 
continuous at zo0 It follows that 

and! 0 'Pw is complex differentiable at ( = 0, with 
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This is the complex directional derivative of 1 at Zo in the direction w. We 
denote it by Dw/(zo). In particular, Iz" (zo) = De.J(zo} for v = 1, ... ,n. 

An arbitrary function I is called partially differentiable at Zo if all partial 
derivatives De ,,1(zo} exist for v = 1, ... ,n. 

A function I is called weakly holomorphic on B if it is continuous and partially 
differentiable on B. Then for Z = (Zl,".' zn) E B and v = 1, ... , n the 
functions 

(H I(Zl,." ,Zv-ll(,zvH, ... ,zn) 

are holomorphic functions of one variable. 

If I is complex differentiable on B, then I is also weakly holomorphic on B. 
Later on we shall see that weakly holomorphic functions are always complex 
differentiable, in contrast to the behavior of real differentiable functions. 

Holomorphic Functions 

3.2 Proposition. Let Peen be a polydisk around the origin, and S(z) = 
Ev~o ayzV a power series that converges compactly on P to a function 1. 
Then I is complex differentiable at 0, with 

IZI (0) = al.O •...• O,· •.• Izn (0) = ao ..... O.I· 

PROOF: We choose a small polydisk PE C C P around the origin such that 
S(z) is normally convergent on PE. But then the series obtained by any 
rearrangement of the terms is also normally convergent, and it converges to 
the same limit. We write 

I(z) = Lavzv 
v~O 

= ao,o •...• o + ZI • L avzr1 - 1 Z~2 ••• z~n 
Vl>O 

V2, •.• ,lIn :2:::0 

Vl=O.V2>O 
113,···,Vn~O 

Vl=· .. =Vn_l=O 
vn>o 

Since the series Al (z), ... , An (z) converge normally on PE to continuous func­
tions, I is complex differentiable at 0, with 1z,,(0) = Ay(O). • 

3.3 Corollary. II Been is an open set, and 1 : B ~ e a holomorphic 
lunction, then I is complex differentiable on B. 
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PROOF: Let Zo E B be an arbitrary point. There is a power series S(w) 
converging compactly near 0 to a holomorphic function 9 such that 

f(zo + w) = g(w) = g(O) + WI' .ell(w) + ... + Wn . .eln(w), 

with continuous functions .ell, ... '~n' It follows that f is complex differen­
tiable at zoo • 

Exercises 

1. Show that there is a function f : Cn ~ C that is complex differentiable 
at every point z = (Zl,"" zn) with Zn = 0, but is nowhere holomorphic. 

2. Prove the following chain rule: If G c Cn is a domain, f : G ~ C a 
complex differentiable function, and <P = (<pi> ... , <Pn) : ~ ~ G a map 
with holomorphic components <Pi, then f 0 <P : ~ ~ C is a holomorphic 
function, with (f 0 <p)'«() = Vf(<p«()). <p'«() t. 

4. The Cauchy Integral 
The Integral Formula. Let r = (rb ... , rn) be an element of IR+., 
P = pn(O,r), T = Tn(O,r), and f a continuous function on T. Then 

defines a continuous function k f : P x T ~ C. 

Definition. 

is called the Cauchy integral of f over T. 

Obviously, Cf is a continuous function on P. 

4.1 Theorem (Cauchy integral formula). Let P, T be as above, and 
U = U(P) be an open neighborhood of the closure of P. If f is weakly holo­
morphic on U, then CflT(z) = fez) for any z E P. 

PROOF: If P = Drl (0) x· .. x Drn (0), we may assume that U = UI X· •• X Un, 

with open neighborhoods Ui = Ui (Dr' (0)), fori = 1, ... , n. 
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Since I is weakly holomorphic, we can fix z' = (Zl' ... , Zn-l) E U 1 X .•. x U n-l 

and apply the Cauchy integral formula in one variable to (n ~ I(z', (n). For 
Zn E Drn (0) it follows that 

I~z',zn) = 2:i ! 
I<nl=rn 

Similarly, for the penultimate variable Zn-l and z" = (Zl,"" Zn-2) E U1 X 

••• X Un -2 we obtain 

( " ) 1 ! I z ,Zn-1! Zn = 211"i 
I~n-d=r .. -l 

and after n steps, I(z) = CfIT(Z), for z E P. • 

4:2 Theorem (power series expansion). Let P = pn(o, r) C en be 
a polydisk and T its distinguished boundary. II I : T -+ e is a continuous 
junction, then there is a power series Ev>o avzv that converges to C,(z) in 
all 01 P. -

The coefficients av 01 this series are given by 

PROOF: Setting 1 := (1, ... ,1) E N~, for z E P and ( E T it follows that 

1 
« - Z)l 

If r = (Tl." ., Tn), then for fixed z E P and arbitrary ( E T we have 

I z-I Iz-I -2 ='qj:= _1 < 1, for j = 1, ... ,n. 
(j Tj 

Since T is compact and I continuous on T, there is a constant M with 
I/«)I ~ M on T. Then Ev;::o (J«)/(V+1 )zv is dominated on T by the 
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convergent series (M/~l) LII>oqll, where q = (qt. ... ,qn), and therefore it 
is normally convergent as a series of functions on T with limit I(t;)/(t; - Z)l. 
We can interchange summation and integration: 

( 1 )n (I(t;) "II 
Gj(z) = 21Ti iT (t; _ Z)l dt; = ~ allz , 

with 

av := (2~i) n l {~~! dt;. 

The series converges for each Z E P. -
4.3 Osgood's theorem. Let Been be an open set. The following state­
ments about a function I : B -? e are equivalent: 

1. f is holomorphic. 
2. f is complex differentiable. 
3. f is weakly holomorphic. 

PROOF: We already know that a holomorphic function f is complex differ­
entiable, and it is trivial that then f is weakly holomorphic. 

On the other hand, let f : B -? e be weakly holomorphic, and Zo E B 
an arbitrary point. There is a small polydisk P around Zo that is relatively 
compact in B. If T is its distinguished boundary, then lip = GilT, and the 
Cauchy integral is the limit of a power series. So f is holomorphic. _ 

In addition, if f is weakly holomorphic on B, Zo E B a point, and Pee B 
a polydisk around Zo, then there is a power series S(z) = Lv>o av(z - zo)V 
that converges to f on all of P. -

Holomorphy of the Derivatives 

4.4 Weierstrass's convergence theorem. Let G c en be a domain, and 
(ik) a sequence of holomorphic functions on G that converges uniformly to a 
function f. Then f is holomorphic. 

PROOF: The limit function is continuous. Let Zo E G be a point, Pee G 
a polydisk around Zo, and T its distinguished boundary. Then 

Since T is compact, we can interchange integral and limit. Thus, for any fixed 
z E P, 
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Since 1 is continuous on T, the Cauchy integral CIIT has a power series 
expansion in P. Therefore, 1 is holomorphic at ZOo • 

4.5 Proposition. Let S(z) = 2:1I~0 allzll be a power series and G its do­
main 01 convergence. Then the limit lunction 1 01 S(z) is holomorphic on G, 
and the lormal derivative 

S () '"""' VI II; -1 Vn Z; Z = ~ all' VjZ! ... Zj ... Zn 
11>0 
IIj>O 

converges to Iz j • In particular, all partial derivatives 01 1 are likewise holo­
morphic. 

PROOF: Since S(z) converges compactly on G, 1 is locally the uniform limit 
of a sequence of polynomials. Then it follows from Weierstrass' theorem that 
1 is holomorphic. But also SZj (z) converges compactly on G, and its limit 
function gj must be holomorphic on G. 

Now let Zo be an arbitrary point of G. Since G is a complete Reinhardt 
domain, there is a polydisk P around the origin with Zo EPee G. We 
define 

f*(z):= 1z
; gj(z!"", Zj-1, (, Zj+l,"" zn) d( + I(z!, ... ,0, ... , zn). 

For the path of integration we take the connecting segment between 0 and 
Zj in the zrplane. Then f* is defined on P. 

Let S (z) = 2::0 Pi (z) be the expansion into a series of homogeneous polyno­
mials. Then SZj (z) = 2::0 (Pi)zj (z), and this series converges uniformly on 
the compact path of integration we used above. Therefore, we can interchange 
summation and integration, and consequently, 

00 

LPi(Z) = I(z), 
i=O 

for z E P. Hence IZ j (zo) = I:j (zo) = gj(zo), • 

4.6 Corollary. Let G c en be a domain and f : B -+ e a holomorphic 
lunction. Then 1 is infinitely complex differentiable in G. 

Let v = (VI, ... , vn ) be a multi-index. Then we use the following abbrevia­
tions: 
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1. v! := VI!··· vn !. 
2. If f is sufficiently often complex differentiable at zo, then 

olvlf 
D V f(zo) := 8 V1 8 v" (zo). 

zl ... Zn 

4.7 Identity theorem (for power series). 

Let fez) = 2::v>o avzv and g(z) = 2::v>o bvzv be two convergent power series 
in a neighborhood U = U(O) c en. If there is a neigborhood V(O) C U with 
flv = glv, then av = bv for all v. 

PROOF: We know that f and 9 are holomorphic. Then DV 1(0) = DVg(O) 
for all v, and successive differentiation gives 

D V f(O) = v! . av and D V g(O) = v! . by. 

• 
4.8 Corollary. Let G c en be a domain, Zo EGa point, and I : B -t e 
a holomorphic function. If I(z) = 2::v>o av(z - zo)'" is the (uniquely deter­
mined) power series expansion near Zo -E G, then 

av = ~ . D V f(zo), for each v E No. 
v. 

4.9 Corollary (Cauchy's inequalities). Let G c en be a domain, I : 
G -t e holomorphic, Zo EGa point, and P = pn (zo, r) C eGa polydisk 
with distinguished boundary T. Then 

vI 
ID v l(zo)1 :S --=- . suplfl· 

rV T 

PROOF: Let fez) = 2::v>o av(z - zo)V be the power series expansion of f 
at zoo Then DV I(zo) = v!av and 

av = (2~i) n h «( !~:~V+l d(, 

and therefore 

IDV f(zo)1 < 

(2:!)n I 
[0,211")" 

vI 
< --=-. suplfl· 

rV T 

• 
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The Identity Theorem. Let G c Cn be always a domain. The con­
nectedness of G will be decisive in the following. 

4.10 Identity theorem (for holomorphic functions). 

Let h, h be two holomorphic junctions on G. Ij there is a nonempty open 
subset U c G with It/u = hlu, then h = h· 

PROOF: We consider I := h - h and the set 

N:={ZEG: D"/(z) =0 for all v}. 

Then N =f. 0, since U c N. Let Zo E G be an arbitrary point, and 

j(Z) = L ~D" I(zo)(z - zo)" v. ,,<::0 

the power series expansion of j in a neighborhood V = V(zo) c G. If Zo 
belongs to N, then Ilv == 0, and also V C N. This shows that N is open. 
Because all derivatives D" I are continuous, N is closed. Since G is a domain, 
we get N = G and h = h. • 

Remark. In contrast to the theory of one complex variable, it is not suf­
ficient that 11 and h coincide on a set M that has a cluster point in G. 
Consider for example, G = C2 and M = {(ZI, Z2) : Z2 = o}. The holomor­
phic functions II(ZI,Z2):= Z2(Zl-Z2) and h(zI,z2):= Z2(ZI +Z2) are equal 
on M, but h(O, 1) = -1 and 12(0,1) = 1. 

4.11 Theorem (maximum principle). 

Let j : G -t C be a holomorphic function. Ij there is a point Zo E G such 
that III has a local maximum at zo, then I is constant. 

PROOF: We consider the map t.pw : C -t cn with t.pw«) = Zo + (w, for 
an arbitrary w =f. o. Then I 0 <Pw is a holomorphic function of one complex 
variable, defined near (" = O. Now, since Ij 0 <Pwl has a local maximum at 
the origin, this function must be constant in a neighborhood of the origin. 
But the direction w was chosen arbitrarily, so I also has to be constant in a 
neighborhood of 0 E Cn . The identity theorem implies that I is constant on 
G. • 

Exercises 

1. Prove Liouville's theorem: Every bounded holomorphic function on en 
is constant. 

2. Prove that if IE O(Cn ) and If(z)1 :s c· IIz"lI for some C> ° and some 
1/ E NO', then I is a polynomial of degree at most II/I· 
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3. Let G c en be a domain and f E O(G) not constant. Prove that then 
f(U) c e is open for any open subset U C G. 

4. Let G c en be a domain. A set :F of holomorphic functions on G is called 
locally bounded, if for every z E G there is a neighborhood U(z) C G such 
that { II f II u : f E :F} is bounded. Prove the following: 
(a) (Lemma of Ascoli) If A eGis a dense subset and (fn) is a locally 

bounded sequence of holomorphic functions in G which converges 
pointwise on A, then (fn) is compactly convergent on G. 

(b) (Theorem of Montel) Every locally bounded sequence of holomorphic 
functions in G has a comp~tly convergent subsequence. 

Hint: More or less, you can use the well-known proof from the 1-
dimensional theory. 

5. The Hartogs Figure 
Expansion in Reinhardt Domains. Let r~, r~ be real numbers with 
o < r~ < r~ for 1 :5 v :5 n. We define 

P .- {z E en : Izvl < r~ for all v}, 
Q .- {z E en : r~ < Izvl < r~ for all v}. 

Clearly, P and Q are Reinhardt domains. Let f be a holomorphic function in 
Q. Then for all r E 1"(Q), the Cauchy integral GilT. is a holomorphic function 
in Pr , and therefore a fortiori in P (see Figure 1.3). 

T2 ------~ 

--77-r~~ 
P // I· r I 

I I 

Figure 1.3. Expansion in the polydisk 

5.1 Proposition. The function fr : P ~ C given by fr(z) := GIlT. (z) is 
independent of r. 

PROOF: We have 
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In each variable (v the integrand I(,)/((v-zv) is holomorphic on the annulus 
{(v : r~ < I(vl < r~}. From the Cauchy integral formula for one variable it 
follows that r 1(,) d(v = r 1(,) d(v 

JI(vl=rv (v - Zv JI(vl=r~ (v - Zv 

if r~ < rv :S r~ < r~. This yields the proposition. • 

5.2 Proposition. Let G c Cn be a proper Reinhardt domain, I holomor­
phic on G. Then lor every z E G n (C*) n the Cauchy integral GliTz coincides 
with I in a neighborhood 01 the origin. 

PROOF: G n (c*)n is a Reinhardt domain. Therefore, Go := T(G n (c*)n) 
is a domain in the absolute space. 

Let B := {r E Go : CIIT• coincides with I in the vicinity of O}. Then B 'f 
0, because there is a small r E Go such that Pr(O) c G. 

B is open: If ro E B, we can find sets P, Q as we did at the beginning of this 
section such that ro E Q c Go. Then for r E Q, Ir = GilT. is a holomorphic 
function on P, and independent of r. But Iro coincides with I near the origin. 
Therefore, Q c B. 

Also, Go - B is open. The proof goes as above. Since Go is connected, that 
implies that B = Go. • 

5.3 Corollary. Let G be a proper Reinhardt domain, I holomorphic in G. 
Then there is a power series S(z) which converges in G to I. 

PROOF: Let Zo E G be arbitrarily chosen. Then there is a point w E G n 
(C*)n with Zo E Pw . The holomorphic function g := GIlT", has a power 
series expansion g(z) = Lv>o avzv in Pw ' Since g coincides with I in a small 
neighborhood of the origin,-the coefficients av are those of the Taylor series 
of I about O. Since Zo was arbitrary, it follows that the series converges in 
all of G. By the identity theorem its limit is equal to I. • 

Definition. If G is a proper Reinhardt domain, then 

G~·-.- u 
zEGn(C*)" 

is called the complete hull of G. 
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Remarks 

1. Every complete Reinhardt domain is proper, but the opposite is in general 
false. For n = 1, Reinhardt domains are open disks around 0, and there 
is no difference between proper and complete domains. 

2. The complete hull G of a proper Reinhardt domain G is again a domain 
containing G. And it is Reinhardt: For z E G there is some Zl with 
Z E PZ1 C G. But then also Tz C PZ1 C G. The same argument shows 
that G is complete. 

3. Let G I be another complete Reinhardt domain with G C G I . For z E 

G n (c*)n, z also lies in G I , and by the completeness of G I it follows 
that P Z C G 1. So G c G I, and we see that G is the smallest complete 
Reinhardt domain containing G. 

An immediate consequence is the following: 

5.4 Theorem. Let G be a proper Reinhardt domain and f be holomorphic 
in G. Then there is exactly one holomorphic function 1 in G with fiG = f. 

Hartogs Figures. In tl;1e case n = 1 the situation above cannot appear. 
For n ;::: 2 we can choose sets G and G in Cn such that G ::f G. This reflects an 
essential difference between the theories of one and several complex variables. 

Now let n 2 2, pn the unit polydisk, ql, ... , qn real numbers with 0 < q" < 1 
for v = 1, ... ,n, and 

H = H(q) := {z E pn : IZ11 > ql or Iz~1 < qlJ for I-L = 2, ... ,n}. 

Then (pn, H) is called a Euclidean Hartogs figure (see Figure 1.4). H is a 
proper Reinhardt domain and pn its complete hull. 

(a) 

q21------' 
H 

I ..., 

Figure 1.4. (a) 2-dirnensional, and (b) 3-dimensional Hartogs figure 
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5.5 Hartogs' theorem. Let (pn, H) be a Euclidean Hartogs figure. Then 
any holomorphic function f on H has a holomorphic extension 1 on pn. 

The theorem follows immediately from our considerations above. 

Exercises 

1. For 0 < q < 1 let Gl , G2 c e2 be defined by 

G l .- {(z,w): q < Izl < 1 and Iwl < I}, 

G2 .- {(z,w): Izl < 1 and Iwl < q}. 

(a) Prove that every holomorphic function f on G 1 has a unique repre­
sentation 

00 

f(z,w) = L an(w)zn, with an E 0(0). 
n=-oo 

(b) Prove that every holomorphic function 9 on G2 has a unique repre­
sentation 

00 

g(z, w) = I>n(W)zn, with bn E O(Oq(O». 
n=O 

(c) Use (a) and (b) to prove that every holomorphic function f on G l UG2 

has a unique holomorphic extension to the unit polydisk. 
2. Let G c en be an arbitrary Reinhardt domain, f E O(G). Show that 

there exists a uniquely determined "Laurent series" LVEZn avzv converg­
ing compactly in G to f. 

6. The Cauchy-Riemann Equations 
Real Differentiable Functions. Recall the following from real an­
alysis: 

Let Been be an open set and Zo a point of B. A function f : B -+ IR is called 
differentiable (in the real sense) if there is a real linear form L : en -+ IR and 
a real-valued function r with: 

1. fez) = f(zo) + L(z - zo) + r(z - zo)· 
. r(w) 

2. ll~O /lw/l = O. 

The real linear form D f(zo) := L is called the (total) derivative of f at zoo 
It can be given in the form 
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L : u + iv t-+ u· \7xf(zo) t + v· \7yf(zo) t, 

with \7 xf(zo) = (fXl (zo), ... , fXn (zo)) and \7 yf(zo) = (fYl (zo), ... , fYn (zo)). 
We call C\7xfCzo), \7yfCzo)) the real gradient of fat zo0 

If f = 9 + ih : B ~ e is a complex-valued function, then f is called differen­
tiable (in the real sense), if g and h are differentiable. The (real) derivative 
of f at Zo is defined to be the complex-valued real linear form 

D f(zo) := Dg(zo) + iDh(zo). 

6.1 Proposition. A function f : B ~ e is (real) differentiable at zo if and 
only if there are maps 1).',1)." : B ~ en such that: 

1. 1).' and 1)." are continuous at Zo. 
2. fez) = f(zo) + (z - zo) . I).'(z) t + (z - zo) . I)."(z) t for Z E B. 

The values I).'(zo) and I).II(ZO) are uniquely determined. 

PROOF: (1) Let f be differentiable at Z00 Then there is a complex linear 
form A' and a complex antilinear form A" such that 

D f(zo) = A' + A". 

The decomposition is uniquely determined, and there are vectors I).'(zo) and 
I)."(zo) such that 

A'(w) = w· I).'(zo) t and A"(w) = w· I)."(zo) t. 

Now we define 

S(z) 
, r(z - zo) _ _ 

.- I). (zo) + 211z _ zoll2 . (z - zo), 

1)." (z) "( r(z - zo) ( ) 
.- I). zo) + 211z _ ZOll2 . Z - Zo . 

It is easy to see that 

(a~' and 1)." are continuous at Zo, 
(bY(z) = f(zo) + (z - zo) . I).'(z) t + (z - zo) . I)."(z) t. 

(2) Now let the decomposition be given, and define 

L(w) .- w· 1).' (zo) t + W . 1)." (zo) t, 

r(w) := w· (I).'(z) - 1).' (zo)) t + w· (I).II(Z) - 1)." (zo)) t. 

Since 

I~I~~I ~ 1II).'(z) - I).'(zo)II + III).II(Z) - 1)." (zo)II, 

it follows that f is differentiable at Zo with derivative L. • 
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Wirtinger's Calculus 

Definition. Let f : B ~ e be real differentiable at Zo0 If we have a 
representation 

fez) = f(zo) + (z - zo) . !::J.' (z) t + (z - zo) . !::J." (z) t, 

with!::J.' and!::J." continuous at zo, then the uniquely determined numbers 

and 

~ (zo) = /z., (zo) := e v • !::J." (zo) t 
uZv 

are called the Wirtinger derivatives of f at Zo. 

The complex linear (respectively antilinear) forms (8f)zo : en ~ e and 
(8 f)zo : en ~ e are defined by 

n n 

(8f)zo(w):= I:fz~(zo)wv and (8f)zo(w) := I:fz~(zo)wv, 
v=l v=l 

and the differential of f at Zo by (df)zo := (8 f)zo + (8 f)zo . 

Obviously, Df(zo) = (df)zo. 

If we introduce the holomorphic (respectively antiholomorphic) gradient 

'If:=(fZl,···,fZn) and 'If:=(h1, ... ,hJ, 

then (8f)zo(w) = W· 'If(zo)t and (8f)zo(w) = W· 'If(zo)t. 

6.2 Proposition. Let f be a (complex-valued) function that is real differ­
entiable at Zo. Then 

fz~(zo) = ~(fx.,(zo) - ify.,(zo», 

h~(zo} = ~(fx,,(zo) + ify.,(zo». 

PROOF: Let be L := D f(zo). Then 

fx.,{zo) = L(ev } = (8f)zo(ev) + (8f)zo(ev) = fz.,(zo) + h~(zo) 

and 
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Putting things together we obtain 

Ix,,(zo) - i/ll.,(zo) = 2/z.,(zo) and Ix.,{zo) + i/ll" (zo) = 2!z,,(zo). 

-
Remark. Use these formulas with care! The derivatives Ix" and I"" in 
general are complex-valued. So the equations do not give the decomposition 
of Iz" and /Z" into real and imaginary parts, respectively! 

The Cauchy-Riemann Equations 

6.3 Theorem. Let I : B 4 C be a continuously real differentiable function. 
Then I is holomorphic il and only il /Z" (z) == 0 on B, lor v = 1, ... , n. 

PROOF: (a) If I is holomorphic, then I is complex differentiable at every 
point Zo E B. Comparing the two decompositions 

I(z) = I(zo) + (z - zo) . a(z) t 

and 
I(z) = I(zo) + (z - zo) . a'(z) t + (z - zo) . a"(z) t 

we see that a'(zo) = a(zo) and a"(zo) = O. The latter equation means that 
/z.,(zo) == 0 for v = 1, ... ,n. 

(b) If /z.,(z) == 0, then I is holomorphic in each variable and is consequently 
holomorphic. _ 

Remark. Now the following is clear: If I is holomorphic near zo, then 

n 

(8f)zo = 0 and DI(zo)(w) = (df)zo(w) = (tJf)zo(w) = Llz"(zo)w,,. 
,,=1 

The equation (a f)z = 0 is the shortest version of the Cauchy-Riemann dil­
lerential equations. In greater detail, these are the equations 

/z,,(z) == 0, for v = 1, ... ,no 

Finally, if I = 9 + i h, then we can write the Cauchy-Riemann equations in 
their classical form: 

gx" = hy" and hx" = -gil,,' for v = 1, ... , n. 
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Exercises 

1. Derive the Cauchy-Riemann equations in their classical form. 
2. Let f: G -t e be real differentiable. Prove the formulas 

(fz,,) = Clh" and fz"z,. = /z,.z" for 1/, J.L = 1, ... ,n. 

3. Let G c en be a domain and h, ... ,!k : G -t e holomorphic functions. 
Show that if E;=l klj is constant, then all fJ are constant. 

a2jhl2 ah 2 
Hint: If h is holomorphic, then a ~ = I-a I· 

ZjVZj Zj 

7. Holomorphic Maps 
The Jacobian. Let Been be an open set. A map 

f = (h, ... , fm) : B -t em 

is called holomorphic (respectively real differentiable) if all components fi 
are holomorphic (respectively real differentiable). 

1.1 Proposition. The map f : B -t em is holomorphic if and only if 
for any Zo E B there exists a map ~ : B -t Mm,n(C) with the following 
properties: 

1. ~ is continuous at zoo 
2. f(z) = f(zo) + (z - zo) . ~(z) t, for z E B. 

The value ~ (zo) is uniquely defined. 

PROOF: The map f is holomorphic if there are decompositions 

with ~jJ continuous at zo, for f.L = 1, ... , m. 

Then ~ is given by ~(z) t = (~1 (z) t, ... ,~m(z) t). We leave the further 
details to the reader. • 

Definition. If f : B -t em is holomorphic, then Jr(zo) := ~(zo) is 
called the complex Jacobian (matrix) of f at zoo The associated linear 
map f'(zo) : en -t em is called the (complex) derivative of fat zoo It is 
given by 
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Explicitly, we have 

) 
This matrix is also defined for differentiable maps. 

Definition. If f = g + i h : B -+ Cm is a differentiable map, then the 
real Jacobian matrix JlR,r(zo) E M2m,2n(lR) is the real matrix associated 
to the real linear map 

(Dg(zo), Dh(zo)) : Cn = ]R2n -+ ]R2m. 

The real Jacobian of f = g + ih is given by 

Jlft,r = 

The ]R-linear map Df(z) : Cn -+ Cn is defined by Df(z) := Dg(z) + i Dh(z). 
Setting (8f)z := ((8fdw'" (8fm)z) and (8f)z := ((8fdz,"" (8fm)z) , we 
obtain 

Df(z) = (8f)z + (8f)z. 

7.2 Theorem. A differentiable map f = g + ih : B -+ Cm is holomorphic 
if and only if Df(z) is C-linear for every z E B. 

If f is holomorphic and n = m, then det(JR,r(z)) = Idet Jr(z)j2. 

PROOF: The map f is holomorphic if and only if (8f)z = 0 for every z. Then 
Df(z) = (8f)z, which is complex linear. In this case we have the Cauchy­
Riemann equations 

and therefore 

If n = m, then Jlft,r = ( AC ~ ) with B = -C and A = D, and Jr = 
A+iC. 
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By elementary transformations, 

= det ( A~iC 

det ( A~iC 

= Idet(A + iCW. 

It follows that holomorphic maps are orientation preserving! 
• 

Chain Rules. Let Been be an open set, f : B --t em a differentiable 
map, and 9 a complex-valued differentiable function that is defined on the 
image of f. Then 9 0 f : B --t e is differentiable, and the following holds: 

7.3 Proposition (complex chain rule). 

m m 

(gof)z., = L(gw,. of)· (f/-&)z., + L(gw,. of)· (7,. tv , 
/-&=1 

m m 

(g 0 fhv = L(gw,. 0 f) . (f/-&hv + L(gw,. 0 f) . (7,.)zv· 
/-&=1 

One can use the well-known proof for the chain rule in real analysis, consid­
ering ZII and "'ill as independent variables. 

7.4 Corollary. If f and 9 are holomorphic, then 

(gofhv(z) - 0 (i.e., gof is holomorphic), 
m 

(g 0 f)zv (z) = L 9w,. (f(z» . (f,.)zv (z). 
/-&=1 

The second equation can be abbreviated as 

V(g 0 f)(z) = Vg(f(z» . Jr(z). 

Tangent Vectors. In this paragraph we use the term differentiable for 
infinitely differentiable. 

Definition. A tangent vector at a point z E en is a pair t = (z, w), 
where the direction w of t is an arbitrary vector of en. If the base point 
z is fixed, we simply write w instead of tor (z, w). 

The set T. of all tangent vectors at z is called the tangent space (of en) 
at z. 
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The notation "tangent vector" is motivated by the following: 

Let Been be an open set and I c lR an interval containing 0 as an interior 
point. If a = (a1,"" an) : I -t B is a differentiable path, then a'(O) is the 
direction of the tangent to the curve a at the point a(O). Therefore, 

0(0) := (a(O), a'(O)) 

is called the tangent vector of a at z = a(O). Each tangent vector (z, w) E Tz 
can be written in the form 0(0), e.g., a(t) := z + two 

The tangent space Tz carries in a natural way the structure of a complex 
vector space: 

(z, wd + (z, W2) 

>. . (z, w) 
(z, WI + W2), 

(z, >. . w), for>. E e. 

Every tangent vector t = (z, w) operates linearly on the algebra C(B) of 
differentiable functions on B by 

t(JJ = Df(z)(w). 

This is the directional derivative, also denoted by Dwf(z). If t = 0(0), for 
some differentiable path a, then t[fJ = (J 0 a)'(O), due to the chain rule. 

The operator t: 6"(B) -t lR satisfies the product rule: 

t[f . gJ = t(JJ . g(z) + f(z) . t[gJ. 

In general, a linear operator satisfying the product rule is called a derivation. 
In Chapter IV we will show that the tangent space is isomorphic to the vector 
space of derivations. 

The Inverse Mapping. Let B1. B2 c en be open sets, and r : B1 -t B2 
a holomorphic map. 

Definition. The map r is called biholomorphic (or an invertible holo­
morphic map) if r is bijective and r- 1 holomorphic. 

7.5 Inverse mapping theorem. Consider a point Zo E B1 and its image 
Wo = f(zo). Then the following are equivalent: 

1. There are open neighborhoods U = U(zo) C B1 and V = V(wo) C B2 
such that r : U -t V is biholomorphic. 

2. det Jr(zo) =I- O. 
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PROOF: If flu : U -+ V is biholomorphic, then (flu )-1 0 f = idu and 
1 = det(En ) = det(J(rlu)-l(wo} . Jr(zo» = det(J(rlu)-l(wo» . det(Jr(zo», 
and therefore det(Jr(zo» i- o. 
If det(Jr(zo» i- 0, then also det(Ja,r(zo) = Idet Jr(zo)12 i- O. It follows from 
real analysis that there are open neighborhoods U = U(zo) C B1 and V = 
V(wo) C B2 such that flu: U -+ V is bijective and g := (flu )-1 : V -+ U 
a continuously differentiable map (in the real sense). Then fog = idv is a 
holomorphic map, and if we write f = (/1, ... , / n) and g = (91, ... , gn), then 

n 

0= (fll 0 g)W,. = L«(fIl)ZA 0 g) . (9.x)w,., for v, f.L = 1, ... , n . 
.x=1 

In the language of matrices this means that 

O=Jr' ( V~1 ). 

V9n 

Since Jr is invertible, it follows that V g.x = 0 for each A. Therefore, the map 
g is holomorphic. _ 

7.6 Implicit function theorem. Let Been x em be an open set, f = 
(/1, ... , /m) : B -+ em a holomorphic mapping, and (zo, wo) E B a point 
with f(zo, wo) = 0 and 

det (O/p. (zo, wo) I f.L = 1, ... , m ) i- O. 
OZII v=n+1, ... ,n+m 

Then there is an open neighborhood U = U' X U" c B and a holomorphic 
map g : U' -+ U" such that 

{(z, w) E u' X u" : fez, w) = O} = {(z,g(z») : z E U' }. 

PROOF: We write Jr(zo, wo) = (J' I J"), with J' E Mm,n(C) and J" E 
Mn(C), and define F: B -+ en x em by F(z, w) := (z, fez, w». Then 

det JF(zo, wo) = det (~~ J,,) i- O. 

Therefore, there are open neighborhoods U = U(zo, wo) c B and V = 
V(zo,O) C en +m such that Flu: U -+ V is biholomorphic. Obviously, 
F-1(u, v) = (u, h(u, v». We may assume that U = U' X U" c en x em 
and V = U' x W, with some open neighborhood W = W(O) c em. Defining 
g: U' -+ U" by g(z) := h(z,O), it follows that 
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fez, w) = 0 {:==> F(z, w) = (z,O) 

{:==> (z, w) = F-l(z, 0) 

{:==> w = h(z, 0) = g(z). 

This completes the proof. • 
Remark. We can exchange the coordinates in the theorem. If rk Jr(zo, wo) = 
m, then there are coordinates Zi" .•. , Zi n such that f-l(O) is the graph of a 
map g = g(Zi 1 , •.. , Zi n ) near (zo, wo). 

Exercises 

i 1. Let G= pn C e2 be the unit polydisk and f = (/1, h) : G -4 G a 
holomorphic map with £(0) = O. 
(a) Show that iff(z) = z+ Ln>2 Pn(z) with pairs Pn(Z) = (pin>Cz),p~n)(z)) 

of homogeneous polynomi81s of degree n, then fez) == z. Hint: Use 
Cauchy's inequalities and consider the iterated maps fk = f 0 ••. 0 f 
(k times). 

(b) Show that if f is biholomorphic, then /1, 12 are linear. 
2. Let Gl , G2 c en be two domains. A continuous map f : Gl -4 G2 is 

called proper if for every compact subset K c G2 the preimage f-l(K) 
is a compact subset of Gl . 
(a) Show that every biholomorphic map is proper. Give an example of a 

proper holomorphic map that is not biholomorphic. 
(b) Let Gl and G2 be bounded. Show that a continuous map f : G l -4 G2 

is proper if and only if for every sequence (Zk) in G 1 tending to aG 1 , 

the sequence (f(Zk)) tends to aG2. 
(c) Let G', G" c e be bounded domains and f : G' X G" -4 G2 a 

proper holomorphic map onto a bounded domain G2 c e2 . Show 
that Z r-t fw (z, w) cannot vanish identically on G'. Let Zo E ae' be an 
arbitrary point and (Zk) a sequence in G' tending to ZOo Show that the 
sequence of holomorphic maps 'Pk : Gil -4 G2 with 'Pk(W) := f(Zk, w) 
has a subsequence converging compactly on Gil to a holomorphic 
map 'Po : G" -+ ((:2 with 'Po(G") c aG2. Show that there must exist 
at least one point Zo E aG' such that the corresponding map 'Po is 
not constant. 

3. Use the results of the last exercise to prove that there is no proper map­
ping from the unit polydisk to the unit ball in e2 . 

4. Let G l C en and G2 c em be domains and f: Gl -4 G2 a biholomorphic 
map. Show that m = n. 

5. Let G c en be a domain and D : C(G) -4 IR a derivation, Le., an IR-linear 
map satisfying the product rule at Zo E G. Show that D[f) depends only 
on flu, U an arbitrary small neighborhood of Z00 
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6. Let G c en be a domain, f = (ft, ... , fm) : G -+ em a holomorphic 
mapping, and M := Hz, w) E G x em : w = fez)}. Prove the following: 

If 9 : G x em -+ e is a holomorphic function with glM = 0, then for 
every point (zo, wo) E M there is a neighborhood U and an m-tuple 
(at, ... , am) of holomorphic functions in U such that 

m 

g(z, w) = L a,..(z, w)· (wI' - f,..(z» for (z, w) E U. 
,..=1 

8. Analytic Sets 
Analytic Subsets. Let Been be an arbitrary region. If U c B is 
an open subset, and ft, . .. ,fq are holomorphic functions on U, then their 
common zero set is denoted by 

N(ft, .. ·, fq) = {z E U : ft(z) = ... = fq(z) = OJ. 

Definition. A subset A c B is called analytic if for every point Zo E B 
there exists an open neighborhood U = U(zo) c B and holomorphic 
functions ft, ... , fq on U such that UnA = N(ft,···, fq). 

If Zo is a point of B-A, then we can choose an open neighborhood U = U(zo) 
and holomorphic functions ft, ... ,fq on U such that 

Zo E U' := U - N(ft, .. ·, fq) cUe B. 

Since the zero set N (ft, ... , fq) is closed in U, it follows that B - A is open 
and A closed in B. Therefore, an analytic set in B could have been defined as 
a closed subset A C B such that for any Zo E A there exists a neighborhood 
U and functions ft, ... , fq E O(U) with An U = N(ft,···, fq)· 

Example 

In general, analytic sets cannot be given by global equations. We consider 
the domain G := Gl U G2 with 

Gl .- {z = (Zl,Z2) E e2 : IZll < ~ and IZ21 < I}, 

1 
G2 .- {z = (Z},Z2) E e2 : IZll < 1 and 2' < IZ21 < I}. 

For the analytic set we take A := {(Zl' Z2) E G2 : Zl = Z2} (see Figure 1.5). 

The sets G}, G2 give an open covering of G with An G1 = 0 and An G2 = 
{(z}, Z2) : Zl - Z2 = oJ. So A is an analytic subset of G. 
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Figure 1.5. A not globally defined analytic set 

If f is a holomorphic function in G that vanishes on A, then f can be analyt­
ically continued to the unit polydisk p2, since (P2, G) is a Euclidean Hartogs 
figure (up to the order of the coordinates). Let jbe the continuation. Since 
g{z) := j(z,z) vanishes for! < Izi < 1, it also vanishes for 0 ~ Izl ~ !. 
This means that f vanishes on A = {( Zl , Z2) E G : Zl = Z2}. Any zero set 
of finitely many holomorphic functions in G that vanish on A must contain 
A. So A itself cannot be given by global holomorphic functions. In the next 
chapter we define special domains in en each of which possesses a holomor­
phic function that cannot be analytically extended to a larger domain. Those 
domains are called domains of holomorphy. On .such domains the global rep­
resentation of analytic sets is possible. The proof of this fact is not contained 
in this book, because it requires sheaf theory. One has to show that the 
sheaf of germs of holomorphic functions that vanish on A is "coherent" (cf. 
[GrRe84], Section 4.2). Then every stalk of this sheaf is generated by global 
sections (Cartan's theorem A, cf. Chapter V in this book, and [GrRe79], Sec­
tion IV.5). From that it can be proved that A is the zero set of finitely many 
global holomorphic functions. 

Definition. A subset M of a domain G is called nowhere dense in G 
if the closure of M in G has no interior points. 

Since an analytic set A eGis always closed in G, it is nowhere dense if in 
every neighborhood of every point z E G there are points outside of A. 

8.1 Proposition. Assume that A is an analytic set in a domain G c en. 
If A has an interior point, then A = G. If A is nowhere dense in G, then 
G - A is connected. 

PROOF: To start with we assume that G = B is a ball and that there are 
holomorphic functions It, ... , f q on B with A = N (It, ... , fq). 
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If Zo E B is an interior point of A, we consider an arbitrary complex line L 
through zoo By the identity theorem the functions fi all vanish on L n Band 
therefore in B. 

If A is nowhere dense in Band L an arbitrary complex line, then either 
L nBc A or A has only isolated points on L n B. So .any two points of L n B 
outside of A can be connected in L n (B - A). 

Now let G be an arbitrary domain. If Zo EGis an interior point of A, and 
Wo EGan arbitrary point, then we can join these points by a continuous 
path Q: : [0,1] -+ G. The compact image ofthis path can be covered by finitely 
many balls BeG such that B n A is the zero set of holomorphic functions 
on B. Successively it follows that every ball is contained in A. So A = G. 

If A is nowhere dense in G, then we consider zo, Wo E G - A and use the 
same continuous path. It is clear from above that any point z in the first ball 
B that is not an element of A can be joined in B - A to zoo Applying this 
successively we obtain a curve between Zo and Wo in B - A. • 

If n = 1, then a nowhere dense analytic set consists only of isolated points. 

Bounded Holomorphic Functions. Assume that G c en is a do­
main and A eGa proper analytic subset. 

8.2 Riemann extension theorem. If f is a holomorphic function in 
G - A that is bounded in a neighborhood of every point of A, then f can be 
holomorphically extended to G. 

PROOF: Since A =f. G, A is nowhere dense in G. Let Zo E A be an arbitrary 
point. Then there is a complex line L through Zo that in a neighborhood of 
Zo intersects A only in Zo. 

After a linear change of coordinates we may assume that Zo = 0 and that 
L = Cel is the zl-axis. We can find a polydisk 

P = {z = (Zl'Z') E e x Cn - l : IZll < rlllz'l < r} cc G 

such that An {z : IZll = rl, Iz/l < r} is empty. For any c' E cn-I with 
Ic'l < r, the set D = {z : IZII SrI and Zl = c/} is a I-dimensional disc such 
that DnA contains only isolated points, since otherwise DcA (see Figure 
1.6). By the classical Riemann extension theorem in one variable f can be 
extended to a function j(ZI, Z/) that is holomorphic in Zl. By the classical 
Cauchy integral formula we have 

~ ') 1 1 f((, z') I I I 'I f(ZI,Z = -. ( de, for ZI < rl and z < r. 
2m /(/=r, - Zl 

The integrand on the right side is holomorphic on P. Consequently, the left 
side is differentiable (in the real sense), and since integration and differenti­
ation by Zi can be exchanged, 1 is holomorphic on P. If we carry this out 
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Figure 1.6. Riemann extension theorem 

at every point 210 E A, by the identity theorem we obtain the desired global 
extension of f to G. • 

Regular Points. Let G c en be a domain, and z EGa point. If b, ... , fq 
are holomorphic functions in a neighborhood of z, then we define 

Definition. An analytic set A eGis called regular of codimension 
q at z E A if there is a neighborhood U = U(z} c G and holomorphic 
functions b, ... , fq on U such that: 

1. An U = N(b, .. · ,fq}. 
2. rkz(b,· .. , fq} = q. 

The number n - q is called the dimension of A at z. 

The set A is called singular at z if it is not regular at that point. The 
set of regular points of A is denoted by Reg(A} or A, the set of singular 
points by Sing(A}. 

It is clear that A is open in A, and therefore Sing(A} C A closed. 

8.3 Theorem (local parametrization of regular points). Let A C G 
be analytic, Zo E A a point. A is regular of codimension q at Zo if and only 
if there are open neighborhoods U = U(zo} c G and W = W(O} c en and a 
biholomorphic map F : U -t W such that F(zo} = 0 and 

F(U n A} = {w = (Wl, ... , w n ) E W : wn-q+l = ... = Wn = o}. 

PROOF: Let A be regular at zoo There is an open neighborhood U = U(zo} 
such that A n U = N (b, ... , fq) and rkzo (b, ... ,/q) = q. By renumbering 
the coordinates we can achieve that 
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J (z ) - (J' I JII) (h , ... ,/.) 0 - , 

with J' E Mq,n-q(C), J" E Mq(C), and det J" =1= O. Then define F : U -+ en 
by 

F(Zl, ... , zn) := (Zl -ziO), ... , Zn_q -z~o!..q, h(Zl,"" zn),"" fq(zl,"" zn»). 

Consequently, the Jacobian has the form 

and therefore det JF =1= O. Shrinking U if necessary, we have our biholomorphic 
map F : U -+ W, with F(zo) = 0 and 

w = F(z) for some z E UnA -<==> wn-q+l = ... = Wn = O. 

The other direction of the proof is trivial. II 

Up to this point it is not clear whether or not there exist regular points. In 
Chapter III we will show that the set of singular points of an analytic set 
A is a nowhere dense analytic subset of A. At the moment we want only to 
demonstrate that the zero set of a single holomorphic function contains at 
least one regular point (and then, of course, a nonempty open set of regular 
points). 

8.4 Proposition. Let G c en be a domain, and f a nonconstant holomor­
phic function on G. Then the analytic set N(J) contains a regular point. 

PROOF: The case n = 1 is trivial. Therefore, we assume n > 1. 

If every point of A := N(J) is singular, then 'V fez) == 0 on A. Since f is not 
constant, it is impossible that there is a point z such that DV fez) = 0 for 
every multi-index v. Therefore, we can find a point Zo E A, an integer no, a 
multi-index vo, and some>. E {I, ... ,n} such that 

1. Ivol = no and (Dvo fk (zo) =1= 0, 
2. DV fez) = 0 for every z E A and every II with 1111 ~ no. 

The set M := {z E G : DVo fez), = O} is analytic in G and regular of 
codimension 1 at zoo We may assume that Zo = 0 and M = {z = (Zl' z') E 
G : Zl = O}, making G sufficiently small. 

We have A eM, and we want to show equality near Zo. It is clear that the 
function ( t-+ f«(,O') has exactly one zero at ( = 0, and it follows easily 
from Rouche's theorem that for z' sufficiently close to 0' the functions ( t-+ 

f«(, z') also have exactly one zero. This means that there is a neighborhood 
V = V (0) c U such that V n A = V n M. In particular, Zo is a regular point 
of A. • 
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Definition. A k-dimensional complex submanifold of a domain G C 
en is an analytic set A c G such that A is regular of codimension n - k 
at every point. 

If A eGis a k-dimensional complex submanifold, then for every point Z E A 
there is an open neighborhood U = U(z) c G, an open set week, and a 
holomorphic map <p: W -t U such that: 

1. rkJ<p(w) = k for W E W. 
2. <p(W) = UnA. 
3. <p: W -t UnA is a topological map.4 

The proof follows immediately from the local parametrization theorem. The 
map <p is called a local parametrization. 

Injective Holomorphic Mappings. Let G c en be a domain, and 
f = (ft, ... , fn) : G -t en a holomorphic map. 

8.5 Theorem. If f is injective, then det Jr(z) =F 0 everywhere. 

PROOF: We use induction on n. The case n = 1 is well known. We consider 
the case n > 1 and define h := det Jr. 

Assume that N(h) =F 121. Then there exists an open subset U C G such that 
M := Un N(h) is a nonempty (n - I)-dimensional complex submanifold of 
U. 
We claim that Jr\M == O. To prove this, we assume that there is a point 
Zo E M with Jr(zo) =F O. Without loss of generality, we may assume that 

{}fn ( ) -{} Zo =F o. 
Zn 

Let F : G -t en be defined by F(z', zn) := (z', fn{z', zn)). Then detJF(zo) =F 
0, and there are connected open neighborhoods U of Zo and V ofwo := F(zo) 
such that F : U -t V is biholomorphic. There is a holomorphic map f : V -t 
en - 1 such that 

and we define 

g = (91, ... ,9n-d : W:= {W' E en- 1 (w',w~») E V} -t en- 1 

by g(w') := f(w',w~»). 

4 A map tp : X ~ Y between topological spaces is called topological or a homeo­
morphism if it is continuous and bijective and the inverse mapping tp -1 : Y ~ X 
is also continuous. 
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Since g is injective, we can apply the induction hypothesis and conclude that 
det Jg(wh) :f; O. Now 

Jf(zo) . JF-l (wo) = ( Jf~:O) ) = (Jg~~o) ~). 

Therefore, h(zo) = det JF(ZO) ·det Jg(wo) :f; 0 as well. This is a contradiction. 

We have demonstrated that Jf(Z) = 0 for every Z E M. Since f is holomor­
phic, also Df(z) == 0 on M, and using a local parametrization of M we obtain 
that flM is locally constant. But this is impossible, since f is injective. The 
set N (h) must be empty. _ 

8.6 Corollary. If G c en is a domain, and f : G -t en an injective 
holomorphic mapping, then also f( G) is a domain, and f : G -t f( G) is 
biholomorphic. 

PROOF: Let Wo := f(zo) be a point of G' := f(G). Then det Jf(ZO) :f; 0, 
and there are open neighborhoods U = U(zo) c G and V = V(wo) c en 
such that f : U -t V is biholomorphic. It follows that Wo is an interior point 
of G' and that f- I is holomorphic at Wo0 _ 

Exercises 

1. Prove the following properties: 
(a) Finite intersections and unions of analytic sets are analytic. 
(b) If f: G I -t G2 is a holomorphic map between domains and A C G2 

an analytic set, then f-I(A) c GI is analytic as well. 
(c) If Al C GI and A2 C G2 are analytic sets, then Al XA2 is an analytic 

subset of G l x G2 • 

2. Let U C c;n be an open neighborhood of the origin and A cUbe 
an analytic subset containing the origin. For 1 ::; k ::; n - 1 and I = 
{i l , ... , ik} C {I, ... , n} let PI : en -t e k be defined by 

Prove: If A is regular of codimension n - k at the origin, then there exists 
an I and open neighborhoods V = V(O) C U, W = W(O) C ek such 
that PI : A n V -t W is bijective. 

3. Show that A := {(w, Zl, Z2) E e3 : w2 = ZIZ2} is an analytic set that is 
regular of codimension 1 outside the origin and singular at O. 

4. Let AI, A2 be two analytic sets in a neighborhood of the origin in en 
such that 0 E A := Al n A2. Suppose that U n Al :f; U n A2 for every 
neighborhood U of o. Show that A is singular at o. 



Chapter II 

Domains of Holomorphy 

1. The Continuity Theorem 
General Hartogs Figures. The subject of this chapter is the contin­
uation of holomorphic functions. We consider domains in en, for n ~ 2. A 
typical example is the Euclidean Hartogs figure (pn, H), where pn = pn(o, 1) 
is the unit polydisk, and 

H={ZEpn: IZ11>Q1 0r lzlIl<Qllforv=2, ... ,n}. 

Here Q1, .•. , qn are real numbers with 0 < Qll < 1 for v = 1, ... , n. Every 
holomorphic function f on H has a holomorphic extension i on pn. 

Definition. Let g = (91, ... , 9n) : pn -t en be an injective holo­
morphic mapping, P := g(pn) and ii := g(H). Then (p, ii) is called a 
general Hartogs figure. 

We use the symbolic picture that appears as Figure II.l 

Z2, ..• , Zn 

Figure ILL General Hartogs figure 

1.1 Continuity theorem. Let G c en be domain, (P, ii) a general Har­
togs figure with ii c G, f a holomorphic function on G. If GnP is connected, 
then f can be continued uniquely to G U j5. 
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PROOF: Let g : pn -t en be an injective holomorphic mapping such that 
P := g(pn) and ii := g(H). The function h := log is holomorphic in 
H. Therefore, there exists exactly one holomorphic function Ii on pn with 
hlH = h. Since g : pn -t P is biholomorphic, the function 10 := Ii 0 g-l is 
defined on P, and it is a holomorphic extension of IIR- We define 

j(z) := {/(Z) for Z E q, 
lo(z) for z E P. 

Since Gnp is connected and I = 10 on ii, it follows from the identity 
theorem that 1 is a well-defined holomorphic function on G UP. This is the 
desired extension of I. • 

Example 

Let n ~ 2 and pI C C P be polydiscs around the origin in en. Then every 
holomorphic function f on P - pI can be extended uniquely to a holomorphic 
function on P. 

For a proof we may assume that P = pn is the unit polydisk, and pI = 
pn(O,r), with r = (TI! ... ,Tn) and 0 < Tv < 1 for v = 1, ... ,n. It is clear 
that G := P - pI is a domain. 

Given a point Zo = (z~O), ... , z~O») E G with Iz~)1 > Tn, we choose real num­
bers ql, ... , qn as follows: For v = 1, ... , n - 1, let qv be arbitrary numbers, 
with Tv < qv < 1. To obtain a suitable qn, we define an automorphism T of 
the unit disk 0 by 

(_Z(O) 

T«() := z~)( ~ 1 . 

This automorphism maps z~O) onto 0 and a small disk D c {( E e : Tn < 
1(1 < I} around z~) onto a disk KeD with 0 E K. Notice that 0 need not 
be the center of K. We choose qn > 0 such that Dqn (0) C K. 

If we define H := {z E pn : IZll > ql or Izvl < qv for v = 2, ... ,n}, then 
(pn, H) is a Euclidean Hartogs figure. The mapping g : pn -t pn defined by 

is biholomorphic, and (p,ii) = (pn,g(H» is a general Hartogs figure, with 

ii C {z E pn : IZII > Tl or IZnl > Tn} C G. 

Since P n G = G is connected, the continuity theorem may be applied. The 
preceding example is a special case of the so-called Kugelsatz which we shall 
prove in Chapter VI. 
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K 

Figure 11.2. A Hartogs figure for concentric polydises 

Removable Singularities. Let G c en be a domain. If A eGis an 
analytic set and I a holomorphic function on G - A that is locally bounded 
along A, then by Riemann's extension theorem I has a holomorphic extension 
to G. If n 2:: 2 and A is a complex linear subspace of codimension greater 
than or equal to 2, then every function holomorphic on G - A has such an 
extension. 

1.2 Theorem. Let pn = pn(o, 1) be the unit polydisk in en, n 2:: 2, k 2:: 2, 
and 

E := {z = (z}, ... , zn) E en : Zn-k+l = ... = Zn = O}. 

Then every holomorphic lunction I on pn - E can be holomorphically ex­
tended to pn. 

PROOF: Set P' := {z' := (Zl' ... ' Zn-k) : Iz'l < I}, and for 0 < r :s 1 
define P;':= {z" = (Zn-k+l, ... ,Zn) : Iz"l < r}. 

Let p" := P{' and fix an c with 0 < c « 1. Then pn nEe P' X P~', and for 
W E P' the function Iw(z") := I(w, z") is holomorphic on P" - p:,. From 
the example above we know that I w has a holomorphic extension fw to P". 
Now define f: pn -+ e by i(w, z") := iw(z"). On pn - E, i is equal to I 
and is therefore holomorphic. 

For wE P' take a small open neighborhood U = U(w) cc P'. Then K := 
U x OP:' is compact. By the maximum principle we conclude that 

I fez', z") I = I h' (z") I :s Il/z" Ilap:, :s II/IIK < 00, for (z', z") E U X P;' - E. 

From Riemann's extension theorem it follows that i is holomorphic on pn .• 
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1.3 Corollary. For n 2 2, every isolated singularity of a holomorphic func­
tion of Zl, ... ,Zn is removable. 

Riemann's extension theorem is false if we drop the condition "f bounded 
along the analytic set." For example, let G c en be a domain, 9 : G -+ e a 
holomorphic function, and let f : G-N(g) -+ e be defined by fez) := l/g(z). 
Then f is holomorphic on G - N (g) but cannot be extended to any point of 
N(g). 

Things look quite different if there is a little hole in the hypersurface: 

1.4 Proposition. Let n 22, Go C Cn - 1 a domain, g: Go --+ C a contin­
uous function, and r:= {z = (z',zn) E Go xC: Zn = g(z')} the graph of 
g in G := Go x e. In addition, let Zo be a point of rand U = U(zo) eGa 
small neighborhood. 

If f is a holomorphicfunction on (G-r)UU, then f has a unique holomorphic 
extension to G. 

PROOF: The uniqueness of the extension follows from the identity theorem. 
For the proof of existence (which is only a local problem) we may assume 
that Co = {z' E en-I: Iz'l < I} and that there is a q with 0 < q < 1 such 
that Ig(z')1 < q for z' E Co. It also may be assumed that U is connected. 
Then it is clear that G' := (G - r) U U C pn = pn(o, 1) is connected. 

Since g : z' t-+ (z', g(z')) is continuous, U' := g-l (U) is an open neighborhood 
of z~ with (U' x D) nrC U and therefore U' x 0 C C/. For v = 1, ... , n - 1 
let Tv be the automorphism of 0 defined by 

<: _ z(O) 

Tv(() := z~O)<: .::. 1 . 

Then h: pn --+ pn with h(Zl,,,,,Zn):= (T1(Z2), ... ,Tn- 1(zn),zd is holo­
morphic, h(O) = (z~,O), and h({z E pn : IZ11 > q}) C {w E pn : Iwnl > q}. 

Iznl r--,-""""",,-::::.,-....,....-=_ 

q H 

r ' 
U 

'----------__ -+-- L __ 
z~ Iz'l 

Figure 11.2. Extending a holomorphic function across a hypersurface 
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We define ql := q, and for v = 2, ... , n choose qll such that 

b(D x Dq2 (O) x ... x Dqn (0» C u' x D. 

Then (pn,H) with H:= {z E pn : IZll > ql or IZIII < qll for v = 2, ... ,n} 
is a Euclidean Hartogs figure, and (P, ii) = (pn, b(H» is a general Hartogs 
figure, with ii c G' (see Figure II.3). Since P n G' = G' is connected, the 
proposition follows from the continuity theorem. _ 

The Continuity Principle. Sometimes we wish to use a family of 
analytic disks instead of a Hartogs figure. 

Definition. A family of analytic disks is given by a continuous map 
IP : 5 x [0,1] --+ en such that IPt«() := rp«(, t) is holomorphic in D, 
for every t E [0,1]. The set St := IPt(D) is called an analytic disk, and 
bSt := IPt(8D) its boundary. 

Observe that in general bSt is not the topological boundary of St. 

Definition. A !1omain G C en is said to satisfy the continuity prin­
ciple if for any family {St, t E [0, 1]} of analytic disks in en with 
U099 bSt C G and So C G, it follows that U099 St C G. 

Example 

Let pn be the unit polydisk and {St, t E [0, I]} a family of analytic disks 
in en with UO<t<l bSt C pn and So C pn. Because So and the union of all 
boundaries bSt- are compact sets, there is an c: > 0 such that 

U bSt C pn(O, 1 - c) and So c pn(O, 1 - c:). 
0::;t9 

We assume that UO::;t::;l St is not contained in pn, and define 

to := inf{t E [0,1] : St ¢. pn}. 

It is clear that to > 0, Sto ¢. pn, and St C pn for 0 :5 t < to. Then Sto 
contains a point zo = (zlO), ... , z~») E 8pn. If the family of analytic disks is 
given by the map IP : 5 x [0,1] --+ en, and wI' denotes the J.'th coordinate 
function, then fl',t«() := wI' 0 IP«(, t) is continuous on 5 and holomorphic in 
D. Choosing J.' such that Iz~O)1 = 1, there is a (0 E D with fl',to«(o) = zt» and 
Ifl',to«(o)1 = 1. But by the maximum principle we have 

Ifl',t«(o)1 :5 suplfl',tl :5 1 - c, for t < to. 
aD 

Since t t-t il',t«(o) is continuous, a contradiction is reaclled, and therefore pn 
satisfies the continuity principle. 
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Hartogs Convexity. 

Definition. A domain G c en is called Hartogs convex if the following 
holds: If (p, H) is a general Hartogs figure with He G, then PeG. 

An immediate consequence of the definition is the following: 

The biholomorphic image of a Hartogs convex domain is again Hartogs 
convex. 

1.5 Theorem. Let G c en be a domain that satisfies the continuity prin­
ciple. Then G is Hartogs convex. 

PROOF: Let (p, H) be a general Hartogs figure with H C G. We assume 
that it is the biholomorphic image (g(pn),g(H» of a Euclidean Hartogs figure 
(pn, H) with 

H = {z : IZll > ql or Iz,.1 < qjJ for IJ. = 2, ... ,n}. 

In order to define analytic disks we choose some r with ql < r < 1 and 
introduce the affine analytic disks 

Dw := {z = (Zl,Z") E pn = pI X p" : IZll < r and z" = w}. 

Since Dw C pn for every W E P", we can define CPw : 0 x [0, 11 --t en by 
setting CPw«, t) := g(r(, tw). Then a family {Stew) : 0 ~ t ~ I} of analytic 
disks in P is given by 

St(w):= CPw(D x {t}) = g(Dtw ). 

It follows that bSt(w) C G for every w E P" and every t E [0,11, and in 
addition, So(w) = g(Do) c G. The situation is illustrated in Figure 11.4. 

z" 

w 
St{w} bSt{w} 

... 
~ 

Izd 
Figure 11.4. Analytic disks in a Hartogs figure 
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Since G satisfies the continuity principle, we obtain that g(Dw) = SleW) is 
contained in G. This is valid for every W E Pll. Therefore, PeG, and G is 
Hartogs convex. _ 

1.6 Corollary. The unit polydisk pn is Hartogs convex. 

Domains of Holomorphy 

Definition. Let G c en be a domain, J holomorphic in G, and Zo E 
BG a point. The function J is called completely singular at Zo if for 
every connected neighborhood U = U(zo) c en and every connected 
component C of Un G there is no holomorphic function g on U for which 
glc = Jlc. 

Example 

Let G ;= e - {x E R ; x ::; O} and let J be a branch of the logarithm on 
G. Then J is completely singular at z = 0 but not at any point x E R with 
x < O. 

Definition. A domain G c en is called a weak domain oj holomorphy 
if for every point Z E BG there is a function J E O( G) that is completely 
singular at z. 

The domain G is called a domain oj holomorphy if there is a function 
J E O(G) that is completely singular at every point z E BG. 

Examples 

1. Since en has no boundary point, it trivially satisfies the requirements of 
a domain of holomorphy. 

2. It is easy to see that every domain Gee is a weak domain of holomor­
phy; If Zo is a point in BG, then J(z) ;= l/(z - zo) is holomorphic in G 
and completely singular at Z00 

For G = D we can show even more! The function J(z) ;= L~o zu! is 
holomorphic in the unit disk and becomes completely singular at any 
boundary point. Therefore, D is a domain of holomorphy. At the end of 
this chapter we will see that every domain in e is a domain of holomorphy. 

3. If J ; D --+ e is a holomorphic function that becomes completely singular 
at every boundary point, then the same is true for f; pn = D x ... x D --+ 
e, defined by f(Zl, ... , zn) ;= J(zd+···+ J(zn). In fact, ifzo is a bound­
ary point of pn, then there exists an i such that the ith component z1°) is 
a boundary point of D. If f could be extended holomorphically across Zo, 
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then h«() := j(ziO), ... , (, ... , z~») would also have a holomorphic ex­
tension. But then J could not be completely singular at z~O). Therefore, 
the unit polydisk is a domain of holomorphy. 

4. If (pn, H) is a Euclidean Hartogs figure, then H is not a domain of holo­
morphy. 

1. 7 Proposition. Let e c en be a domain. IJ Jor every point Zo E 8e 
there is an open neighborhood U = U (zo) c en and a holomorphic Junction 
J : e u U ~ e with J(zo) = 0 and J(z) i= 0 Jor z E e, then e is a weak 
domain oj holomorphy. 

PROOF: We show that 1/ J is completely singular at zo0 For this assume that 
there is a connected open neighborhood V = V(zo), a connected component 
C c V n e, and a holomorphic function F on V with Fie = (1/1) Ie' 
The set V' := V - N(f) is still connected and contains C. By the identity 
theorem the functions F and 1/ J must coincide in V'. Then F is clearly not 
holomorphic at Zo. This is a contradiction. _ 

1.8 Corollary. Every convex domain in en is a weak domain oj holomor­
phy. 

PROOF: If Zo E 8e, then because of the convexity there is a real linear 
form>. on en with >.(z) < >,(zo) for z E e. We can write>. in the form 

n n 

>.(z) = I: G:"Z" + I: QI/ZI/, with a := (G:I, ... , Cl:n ) i= O. 
,,=1 1/=1 

So ,\ = Re h(z), where h(z) := 2 . L:~=1 G:"Z" is holomorphic on en. 

Since the function J(z) := h(z) - h(zo) is holomorphic on en, J(zo) = 0, and 
J(z) i= 0 on e, the proposition may be applied. -

We will show that every weak domain of holomorphy is Hartogs convex. As 
a tool we need the following simple geometric lemma, which will be useful in 
other situations as well. 

1.9 Lemma (on boundary components). Let e c en be a domain, 
U c en an open set with U n e i= 0 and (en - U) n e i= 0. 

Then en 8C n 8U i= 0 Jor any connected component C of U n e. 

PROOF: We choose points Z1 E C C Un e and Z2 E (en - U) n e. There 
is a continuous path "I : [0, 1] ~ e with "1(0) = Z1 and "1(1) = Z2' Let 
to := sup{t E [0,1] : "I(t) E C} and Zo := "I(to). Clearly, Zo E 8C n e, 
but Zo f/. C. Since C is a connected component of Un G, Zo cannot lie in 
Un e and therefore even not in U. Since "I(t) E U for t < to, it follows that 
Zo E 8U. -
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1.10 Theorem. Let G c Cn be a weak domain of holomorphy. Then G is 
Hartogs convex. 

PROOF: Assume that G is not Hartogs convex. Then there is a general 
Hartogs figure (P, H) with H c G but P n G f P. We choose an arbitrary 
Zo in H and set C := Cpna(zO).l Since H lies in P n G and is connected, it 
follows that He C. FUrthermore, C ~ P. 

Since P n G f 0 and (Cn - G) n P f 0, by the lemma there is a point 
Zl E BC n BG n P (see Figure II.5). 

Figure II.5. G is not Hartogs convex 

Let f be an arbitrary holomorphic function in G. Then fie is also holomor­
phic, and by the continuity theorem it has a holomorphic extension F on P. 
Since P is an open connected neighborhood of Zl, we obtain that f is not 
completely singular at Zl' This completes the proof by contradiction. _ 

It follows, for example, that every convex domain is Hartogs convex. As a 
consequence, we see that every ball is Hartogs convex. 

1.11 Theorem. Every domain of holomorphy is Hartogs convex. 

The proof is trivial. 

For the converse of this theorem one has to construct on any Hartogs convex 
domain a global holomorphic function that becomes completely singular at 
every boundary point, something that is rather difficult. It was done in 1910 
by E.E. Levi in very special cases. The general case is called Levi's problem. 

In 1942 K. Oka gave a proof for n = 2. At the beginning of the 19506 Oka, 
Bremermann, and Norguet solved Levi's problem for arbitrary n. It was gen-

1 We denote by GM(Z) the connected component of M containing z. 
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eralized for complex manifolds (H. Grauert, 1958) and complex spaces (R. 
Narasimhan, 1962). Finally, in 1965 L. Hormander published a proof that 
used Hilbert space methods and partial differential equations. 

Exercises 

1. Prove the following statements: 
(a) Finite intersections of Hartogs convex domains are Hartogs convex. 
(b) If G1 C G 2 C G3 C ... is an ascending chain of Hartogs convex 

domains, then the union of all G; is also Hartogs convex. 
2. Let G c en be a domain, 0 S r < R, and a EGa point. Let U = U(a) C 

G be an open neighborhood and define Q := {w E em : r < Iwl < R}. 
Prove that every holomorphic function on (G x Q) U (U x pm(o, R)) has 
a unique holomorphic extension to G x pm(o, R). 

3. Let 0 < r < R be given. Use Hartogs figures to prove that every holo­
morphic function on BR(O) - Br(O) has a unique holomorphic extension 
to the whole ball BR(O). 

4. For c ~ 0, consider the domain 

Prove that Gc is Hartogs convex if and only if c = O. 
5. Let G c en be a domain and f : G -+ DR(O) c e a function, r = 

{(z, w) E G x DR(O) : w = fez)} its graph. Sow that if there is a 
holomorphic function F in G x D R(O) that is completely singular at every 
point of r, then f is continuous. (With more effort one can show that f 
is holomorphic.) 

6. Show that the "Hartogs triangle" {(z, w) E e2 : Iwl < Izl < I} is a weak 
domain of holomorphy. 

2. Plurisubharmonic Functions 
Subharmonic Functions. Recall some facts from complex analysis of 
one variable. A twice differentiable real-valued function h on a domain Gee 
is called harmonic if hzz(z) == 0 on G. The real part of a holomorphic function 
is always harmonic, and on an open disk every harmonic function is the real 
part of some holomorphic function. 

If D = Dr(a) C e is an open disk and (J : IR -+ IR a continuous periodic 
function with period 21T, then there is a continuous function h : D -+ IR that 
is harmonic on D such that h(reit ) = (J(t) for every t (Dirichlet's principle). 

An upper semicontinuous function cp : G -+ IR U { -oo} is said to satisfy the 
weak mean value property if the following holds: 

For every a E G there is an r > 0 with Dr(a) cc G and 
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for 0 < (} :s; r. 

Remarks 

1. If <p : G -+ lR U { -oo} is an upper semicontinuous function, then the sets 
UI/ := {z E G : <p(z) < v} are open, and therefore <p is bounded from 
above on every compact subset KeG. It follows that the integral in the 
definition always exists. 

2. Harmonic functions satisfy the weak mean value property (even the 
stronger mean value property with "=" instead of ":S;"). 

3. If f : G -+ IC is a nowhere identically vanishing holomorphic function, 
then loglfl satisfies the weak mean value property. In fact, the function 
<p := 10gIJI is harmonic on G - N(J), because it can be written locally 
as Re(log 1), with a suitable branch of the logarithm. And at any point 
Zo E N(J) we have <p(zo) = -00, so the inequality of the weak mean 
value property is satisfied. 

2.1 Proposition. Let <p : G -+ lR satisfy the weak mean value property. If 
<p has a global maximum in G, then <p is constant. 

PROOF: Let a E G be any point with c := <pea) > <p(z) for z E G. We 
choose an r > 0 such that 

Dr(a) cc G and <pea) :s; 2~ 121r <p(a + (}e it ) dt for 0 < (}:s; r. 

Assume that there is abE Dr(a) with <pCb) < <pea). We write b = a + (}eito 

and get 

1 {21r 1 (21r 
<pea) :s; 27f Jo <p(a + (}e it ) dt < 27f Jo <pea) dt = <pea). 

This is a contradiction, so <p must be constant on Dr(a). Now we define the 
set M := {z E G : <p(z) = c}. Obviously, M is closed in G and not empty, 
and we just showed that M is open. So M = G, and <p is constant. _ 

Definition. Let G C IC be a domain. A function s : G -+ lR U { -oo} 
is called subharmonic if the following hold: 

1. s is upper semicontinuous on G. 
2. If Dec G is a disk, h: D -+ lR continuous, hiD harmonic, and h ~ s 

on {) D, then h ~ s on D. 

2.2 Proposition. Let SI/ : G -+ lR U { -oo} be a monotonically decreasing 
sequence of subharmonic functions. Then s := limv -+oo Sv is subharmonic. 
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PROOF: The limit s = limv-4oo Sv = inf{sv} is upper semicontinuous. Let 
Dec G be a disk, h : D 4 IR continuous and harmonic on D, with s :S h 
on aD. For fixed c we consider the compact sets 

Kv := {z E aD : sv(z) ;::: h(z) + c}. 

Then Kv+l C K" and n~=l K" = 0. Therefore, there is a Vo E N with 
K" = 0 for v 2: Vo. This means that for v 2: 110, S" < h + e on aD, and 
therefore the same is true on D. Since the Sv are decreasing, s < h + c on D. 
This holds for every e > 0, and consequently s :S h on D. _ 

2.3 Proposition. Let (So)oEA be a family of subharmonic functions on 
G. If s := sup So ist upper semicontinuous and finite everywhere, then s is 
subharmonic. 

PROOF: If s :S h on aD, where D cc G and h : D 4 IR is continuous 
and harmonic on D, then 8 0 :S h on aD for every Q E A. Since the 8 0 are 
subharmonic, it follows that 8 0 :S h on D for every Q E A. But then 8 :S h 
on D as well. _ 

Examples 

1. Clearly, every harmonic function is subharmonic. 
2. Let s : G 4 IR be a continuous subharmonic function such that -s is also 

subharmonic. Then 8 is harmonic. To show this, we look at an arbitrary 
point a E G and choose an r > 0 such that D := Dr(a) cc G. Then there 
is a continuous function h : D 4 IR with hlaD = 81aD that is harmonic 
on D (Dirichlet's principle). It follows that s :S h on D. But because -h 
is also harmonic, we have -s :S -h on D as well. Together this gives 
s = h on D. 

3. Let J : G 4 IC be a holomorphic function. Then s := loglJI is subhar­
monic. In fact, if J(z) == 0 on G, then we have 8(Z) == -00, and there is 
nothing to prove. Otherwise, s is harmonic on G - N(J), and we have 
only to look at an isolated zero a of f. We choose D = Dr(a) cc G and 
a function h that is continuous on D and harmonic on D, with s :S h 
on aD. We know that s, and therefore also 8 - h, has the weak mean 
value property on D, and it is certainly not constant. So it must take its 
maximum on the boundary aD. This means that s :S han D. 

4. Let G C IC be an arbitrary domain. The boundary distance 6a : G 4 

1R+ U { +oo} is defined by 

oa(z) := sup{r E IR : Dr(z) C G}. 

Claim: s := -log 6a is subharmonic on G. 

PROOF: If G = IC, then s(z) == -00 and there is nothing to prove. 
If G =1= IC, then s is real-valued and continuous. For W E BG we define 
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Sw : G --* lR. by setting sw(z) := -loglz - wi. Then s(z) = sup{sw(z) : 
w E aG}. By Proposition 2.3 the claim follows. • 

The Maximum Principle 

2.4 Theorem. Let s : G --* lR. U { -oo} be a subharmonic function on a 
domain G C C. If s takes its maximum on G, then it must be constant. 

PROOF: Assume that c := sea) ~ s{z) for every z E G. As in the case of 
functions that have the weak mean value property it suffices to show that s 
is constant in a neighborhood of a. If this is not the case, there is a small disk 
D = OrCa) cc G and bEaD with sea) > s{b). Since s is upper semicontin­
uous, there is a continuous function h on aD with s :5 h:5 c and h{b) < c. 
Solving Dirichlet's problem we can construct a harmonic continuation of h 
on D. Now 

1 12
" h{a) = - h{a + re it ) dt < c = sea). 

211" 0 

This is a contradiction. • 
For later use we give the following criterion for a function to be subharmonic: 

2.5 Theorem. Let G C C be a domain and s : G --* lR. U { -oo} an upper 
semicontinuous function. Suppose that for every disk Dec G and every 
function f E OeD) with s < Re(f) on aD it follows that s < Re(f) on D. 
Then s is subharmonic. 

PROOF: Let D = OrCa) cc G, h : D --* IR continuous and harmonic on D, 
and s :5 h on aD. For simplicity we assume a = O. 

For v E N, a harmonic function hv on Dv := O(v/(v-l))r(O) :,) D is given by 

Then (hv) converges on D uniformly, increasing monotonically to h. Further­
more, for every v there is a holomorphic function fv on Dv with Re(fv) = hv ' 

Let c > 0 be given. Then there is a Vo such that Ih - hvl < con D for v ~ Vo. 
Therefore, s < hv +c = Re(fv +c) on aD for v ~ Vo. By definition it follows 
that s < h", + con D. Since (hv) is increasing, it follows that s < h + c and 
therefore s :5 h on D. • 

Differentiable Subharmonic Functions 

2.6 Lemma. Let s : G --* lR. be a «j'2 function such that Szz > 0 on G. Then 
s is subharmonic. 
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PROOF: Let D = Dr(a) cc G and let a continuous function h: D -+ IR be 
given such that h is harmonic on D and s $ h on aD. We define !p := s - h. 

Assume that cp takes its maximum at some interior point Zo of D. Then we 
look at the Taylor expansion of!p at Zo in a small neighborhood about Zo: 

!p(ZO + z) = cp(zo) + 2 ReQ(z) + !Pzz(zo)zz + R(z), 

where Q(z) := CPz(zo)z + ~!Pzz(ZO)Z2 is holomorphic and R(z)jlzI2 -+ 0 for 
Z -+ O. The function t/J(z) := 2ReQ(z) is harmonic, with t/J(O) = O. Since 
it cannot assume a maximum or a minimum, it must have zeros arbitrarily 
close to but not equal to O. On the other hand, !p(zo + z) - !p(zo) $ 0 and 
CPzz(zo)zz > 0 outside z = O. This is a contradiction. Thus r.p must assume 
its maximum on the boundary of D, and s $ h on D. _ 

2.7 Theorem. Let s : G -+ IR be a ~ function. Then s is subharmonic if 
and only if Szz ::::: 0 on G. 

PROOF: (a) Let szz(z) ::::: 0 for every z E G. Then we define Sv on G by 
setting Sv := s + (ljv)zz. Obviously, (sv)zz = Szz + (l/v) > O. Then Sv 
is subharmonic by the above lemma. Since (sv) converges, monotonically 
decreasing, to s, it follows that 8 is subharmonic. 

(b) Let s be subharmonic on G. We assume that szz(a) < 0 for some a E G. 
Then there is a connected open neighborhood U = U(a) c G such that 
8 zz < 0 on U. By the lemma it follows that -8 is subharmonic on U. Then 
8 must be harmonic on U. So 8 zz(a) = 0, contrary to assumption. _ 

Plurisubharmonic Functions. We return to the study of domains in 
arbitrary dimensions. Let G c en be a domain and (a, w) a tangent vector 
at a E G. We use the holomorphic mapping O!a,w : e -+ en defined by 
O!a,w«) := a + (w. 

Definition. Let G c en be a domain. An upper semicontinuous func­
tion p : G -+ lR U { -oo} is called plurisubharmonic on G if for every 
tangent vector (a, w) in G the function 

Pa,w«) := p 0 O!a,w«) = p(a + (w) 

is subharmonic on the connected component G(a, w) of the set O!;,!...(G) c 
C containing O. 

Remarks 

1. Plurisubharmonicity is a local property. 
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2. If 1 E O(G), then logl/l is plurisubharmonic. 
3. If Pl, 112 are plurisubharmonic, then so is Pl + P2. 
4. If P is plurisubharmonic and c > 0, then c . P is plurisubharmonic. 
5. If (Pv) is a monotonically decreasing sequence of plurisubharmonic func­

tions, then P := limv --+oo Pv is also plurisubharmonic. 
6. Let (PQ)QEA be a family of plurisubharmonic functions. If P := sup(pQ) 

is upper semicontinuous and finite, then it is also plurisubharmonic. 
7. If a plurisubharmonic function p takes its maximum at a point of the 

domain G, then P is constant on G. 

The Levi Form 

Definition. Let U c en be an open set, 1 E ~2(U; JR.), and a E U. 
The quadratic form2 Lev(f): Ta ~ JR. with 

Lev (f) (a, w) := L Iz,;%,. (a)wvw~ 

is called the Levi form of 1 at a. 

Obviously, Lev(f) is linear in I. 
Examples 

v,~ 

1. In the case n = 1 we have Lev(s)(a,w) = szz{a)ww. So s is subharmonic 
if and only if Lev(s)(a, w) ~ 0 for every a E G and wEe. 

2. Let I(z) := IIzll2 = E~=l ZiZi. Then Lev(f)(a, w) = IIwll2 for every a. 
3. If 1 E ~2(U; JR.) and e : JR. ~ JR. is twice continuously differentiable, then 

Lev({? 0 I)(a, w) = e"(f(a» '1(8I)a(wW + l(f(a» . Lev (f) (a, w). 

4. If F : U --t V c em is a holomorphic map and 9 E ~(V; JR.), then 

Lev(g 0 F)(a, w) = Lev(g) (F(a), F'(a)(w». 

5. For 1 E ~2(U; JR) the Taylor expansion at a E U gives 

I(z) = I(a) + 2 Re(Qf(z - a» + Lev(f)(a, z - a) + R(z - a), 

where Qf(w) = E~=l /z., (a)wv +! Ev,~ Iz"z" (a)wvw~ is a holomorphic 
quadratic polynomial, and 

lim R(z - a) = O. 
z--+a liz - all2 

2 If H : TxT ~ C is a Hermitian form on a complex vextor space, then the 
associated q'IJ.admtic form Q: V ~ R is given by Q(v) := H(v, v). 
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2.8 Theorem. A function I E lf2(U; JR) is plurisubharmonic il and only if 
Lev(f)(a, w) ~ 0 lor every a E U and every WE Ta. 

PROOF: Let (a, w) be a tangent vector in G and a := aa,w' Then loa(O) = 
I(a) and 

(f 0 a),«O) = Lev(f 0 a)(O, 1) = Lev(f)(a, w). 

Now, I is plurisubharmonic if and only if loa is subharmonic near 0 for any 
a = aa,w' Equivalently, (f 0 a)a(O) ~ 0 for any such a. But this is true if 
and only if Lev (f) (a, w) ~ 0 for any tangent vector (a, w) in G. _ 

2.9 Corollary. Let G1 C en and G2 c em be domains, F : G1 -t G2 
a holomorphic map, and 9 E lf2 (G1 ; JR) plurisubharmonic. Then 9 0 F is 
plurisubharmonic on G 1. 

PROOF: This is trivial, because of the formula in Example 4 above. _ 

Exhaustion Functions. For every domain Gee the function - log 8c 
is subharmonic. In higher dimensions it is in general not true that this func­
tion is plurisubharmonic for every domain G. 

Definition. Let G c en be a domain. A nonconstant continuous func­
tion I : G -t R is called an exhaustion function for G if for c < SUPa (f) 
all sublevel sets 

Gc(f) := {z E G : I(z) < c} 

are relatively compact in G. 

Example 

For G = en, the function I(z) := IIzll2 is an exhaustion function. For G -# en, 
we define the boundary distance 8a by 

8c (z) := dist(z, en - G). 

Then -8a is a bounded, and - log 8c an unbounded, exhaustion function. 
We only have to show that 8c is continuous: 

For every point z E G there is a point r(z) E en - G such that 

8c(z) = dist(z, r(z» ~ dist(z, w) for every wEen - G. 

Then for two arbitrary points u, v E G we have 
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l5G(u) = lIu - r(u)1I < lIu - r(v)1I ~ lIu - vII + l5G(v), 

and in the same way l5G(v) < lIu - vII + 5G(u). 

Therefore, Il5G(u) -l5G(v)1 ~ lIu - vII· 

Definition. A function I E 'C2 ( G; JR) is called strictly plurisubhar­
monic if Lev (f) (a, w) > 0 for a E G, wE Ta , and w:I= o. 

For a proof of the following result we refer to [Ra86], Chapter II, Proposition 
4.14. 

2.10 Smoothing lemma. Let G c en be a domain, I: G -+ JR a continu­
ous plurisubharmonic exhaustion junction, KeG compact, and c > O. Then 
there exists a 'Coo exhaustion junction g : G -+ JR such that: 

1. g ~ I on G. 
2. g is strictly plurisubharmonic. 
3. Ig(z) - l(z)1 < c on K. 

Exercises 

1. Let Gee be a domain. Prove the following statements: 
(a) If I: G -+ e is a holomorphic function, then Ilia is subharmonic for 

a> O. 
(b) If u is subharmonic on G, then uP is subharmonic for pEN. 
(c) Let u ~ -00 be subharmonic on G. Then {z E G : u(z) = -oo} 

does not contain any open subset. 
2. Let Gee be a domain, s t= -00 a subharmonic function on G, P := 

{z E G : s(z) = -oo}. Show that if u is a continuous function on G and 
subharmonic on G - A, then u is subharmonic on G. 

3. Let U c en be open, f: U -+ ek a holomorphic map, and A E Mk(JR) a 
positive semidefinite matrix. Show that r,o(z) := fez) . A . fez) t is pluri­
subharmonic. 

4. Let G = {( z, w) E e2 : Iwl < I zl < 1} be the Hartogs triangle. Prove that 
there does not exist any bounded plurisubharmonic exhaustion function 
on G. 

5. Are the following functions plurisubharmonic (respectively strictly pluri­
subharmonic) ? 

log(1 + IIzII2), for Z E en, 
.- -log(1 - IIzII2), for IIzll < 1, 

IIzIl2e-Re(z,,), for z E en. 

Pl(Z) .­

P2(Z) 
P3(Z) .-

6. Consider a domain G c en and a function I E 'C2 (G). Prove that I is 
strictly plurisubharmonic if and only if for every open .set U C C G there 
is an c > 0 such that I(z) - cllzll 2 is plurisubharmonic on U. 
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3. Pseudoconvexity 
Pseudo convexity 

Definition. A domain G c c;n is called pseudoconvex if there is a 
strictly plurisubharmonic Cfloo exhaustion function on G. 

Remarks 

1. By the smoothing lemma the following is clear: If - log 8G is plurisub­
harmonic, then G is pseudoconvex. 

2. Pseudoconvexity is invariant under biholomorphic transformations. 

3.1 Theorem. If G c c;n is a pseudoconvex domain, then C satisfies the 
continuity principle. 

PROOF: Let p : G -t IR. be a strictly plurisubharmonic exhaustion function. 
Suppose that there exists a family {St : 0 :::; t :::; I} of analytic disks given 
bya continuous mapping i.p: 5 x [0, 1]-t c;n such that So c G and bSt c G 
for every t E [0,1]' but not all St are contained in G. 

The functions po i.pt : 0 -t G are subharmonic for every t with St C G. It 
follows by the maximum principle that plSt :::; maxbS. P for all those t. 

We define to := inf{t E [0,11 : St ~ G}. Then to > 0, Sto c G, and Sto 
meets BC in at least one point zoo We can find an increasing sequence (tv) 
converging to to and a sequence of points Zv E Stv converging to Zoo So 
p(zv) -t Co := sUPG(p), but there is a c < Co such that plbst :::; c for every 
t E [0,11. This is a contradiction. -

3.2 Corollary. If G is pseudoconvex, then G is Hartogs convex. 

The Boundary Distance 

3.3 Theorem. If G c c;n is a Hartogs convex domain, then -log 8G is 
plurisubharmonic on G. 

PROOF: For Z E G and u E en with lIull = 1 we define 

8G,u(z) := sup{t > 0 : Z + TU E C for ITI :::; t}. 

Then oG(z) = inf{8G,u(z) : lIull = I}, and it is sufficient to show that 
- log 8G,u is plurisubharmonic for fixed u. 

(a) Unfortunately, 8G,u does not need to be continuous, but it is lower semi­
continuous: 



3. Pseudoconvexity 61 

Let Zo E G be an arbitrary point and c < 6G,u(zo). Then the compact set 
K := {z = Zo + ru : Irl :5 c} is contained in G, and there is a 6 > 0 such 
that {z : dist{K, z) < 6} c G. 

For z E B.s(zo) and Irl :5 c we have 

lI{z + ru) - (zo + ru)1I = liz - zoll < 6, and therefore 8G,u(z) 2:: c. 

(b) The function -log6G,u is upper semicontinuous, and we have to show 
that 

sec) := -log8G,u(zo + (b) 

is subharmonic for fixed u, zo, b. First consider the case that u and b are 
linearly dependent: b = AU, A =F o. 
Let Go be the connected component of 0 in {( E C : Zo + (b E G}. Then 

6G,u(zo + (b) = sup{t> 0 : Zo + (b + ru E G for Irl :5 t} 
= sup{t > 0 : (+ riA E Go for Irl :5 t} 
= IAI· sup{r > 0 : (+ a E Go for lal :5 r} 

= IAI·8Go{(), 

and this function is in fact subharmonic. 

(c) Now assume that u and b are linearly independent. Since these vectors 
are fixed, we can restrict ourselves to the following special situation: 

n=2, zo=O, b=el, and u=e2. 

Then s«() = -logsup{t > 0 : «(, r) E G for Irl :5 t}. We use holomorphic 
functions to show that s is subharmonic. Let R > r > 0 be real numbers such 
that {(, 0) E G for I( I < R, and let f : DR (0) -t <C be a holomorphic function 
such that s < h:= Ref on 80r (0). We have to show that s < h on OrCO). 

We have the following equivalences: 

s«() < h{() ¢=> sup{t > 0 : {(, r) E G for Irl :5 t} > e-h(C) 

¢=> ((,c.e-f(C»)EGforcED. 

Cd) Define a holomorphic map F by 

Then F is well defined on a neighborhood of the unit polydisk p2 = p2{O, 1). 
It must be shown that F{P2) c G. We already know the following: 

1. F(zl, Z2) E G for IZII = 1 and IZ21 :5 1, because set) < h{t) on 80r (0). 
2. F{zl,O) E G for IZll :5 1, because «(,0) E G for 1(1 :5 r. 
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These facts will be used to construct an appropriate Hartogs figure. First, 
note that 

JF(Zt, Z2) = (: e-f~rzl»)' so det JF(Zl, Z2) -=f O. 

By the inverse function theorem it follows that F is biholomorphic. 

For 0 < a < 1 we define h.s : ((:2 -+ ((:2 by h.s(Zl' Z2) := (Zl, OZ2) and apply h.s 
to the compact set 

Consequently, 

Co := ho(C) = {(Zt,Z2) E ((:2 : (lzll::; 1, Z2 = 0) or (IZll = 1, IZ21 ::; o)}. 

Then F(Co) C G, as we saw above, and therefore C.s C F-l(G). 

For 0 < e < min(o, 1 - 0) we define a neighborhood U€ of C.s by U€ := 

{(Zl,Z2) E ([2 : (IZll < l+e, IZ21 < e) or (l-e < IZII < l+e, IZ21 < o+e)}. 

If we choose e small enough, then U€ C F-l(G). 

Finally, we define H€ := hil(U€ n P2) n p2 (see Figure II.6). Then 

H€ = {(Z},Z2) E p2 : (Zl,OZ2) E u€np2} 

= {(Zl, Z2) E (:2 : (IZll < 1, IZ21 < i) or (1 - e < IZII < 1, IZ21 < I)}. 

l-e 

C 

Figure 11.5. Construction of the Hartogs figure 

Since (P2,H€) is a Euclidean Hartogs figure, (F 0 h.s(p2),F o--h.s(H€» is a 
general Hartogs figure with F 0 ho(H€) C F(U€ n p2) C G. Since Gis Hartogs 
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pseudoconvex, it follows that F 0 h.;(P2) C G. This is valid for every a < 1. 
But p 2 = UO<';<1 h.;(P2). Therefore, F(p2) C G, which was to be shown. _ 

3.4 Theorem. The following properties of a domain G c en are equivalent: 

1. G satisfies the continuity principle. 
2. G is H artogs pseudoconvex. 
3. - log Ja is plurisubharmonic on G. 
4. G is pseudoconvex. 

PROOF: 

(1) ~ (2) is Theorem 1.5, 
(2) ~ (3) is Theorem 3.3, 
(3) ~ (4) follows from the smoothing lemma, 
(4) ~ (1) was proved in Theorem 3.1. 

Properties of Pseudoconvex Domains 

-
3.5 Theorem. If GI , G2 c en are pseudoconvex domains, then GI n G2 is 
pseudoconvex. 

PROOF: The statement is trivial if one uses Hartogs pseudo convexity. _ 

3.6 Theorem. Let GI C G2 C ... c en be an ascending chain of pseudo­
convex domains. Then G := U::I Gv is again pseudoconvex. 

PROOF: This follows immediately from the continuity principle. _ 

3.7 Theorem. A domain G c en is pseudoconvex if and only if there is an 
open covering (U.).EI of G such that U. n G is pseudoconvex for every LEI. 

PROOF: 

"~" is trivial. The other direction will be proved in two steps. At first, we 
assume that G is bounded. 

For any point Zo E 8G there is an open set U. such that Zo E U. and Gnu. 
is pseudoconvex. If we choose a neighborhood W = W(zo) C U. so small 
that dist(z, 8U.) > dist(z, zo) for every z E WnG, then oa(z) = 6anu.(z) on 
WnG. This shows that there is an open neighborhood U = U(8G) such that 
-log6a is plurisubharmonic on Un G (we use the fact that 8G is compact). 
Now, G - U cc G. We define 
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c:=sup{-log8G(z): zEG-U}, 

and 
p(Z) := max ( -log 8G(z), IIzl12 + C + 1). 

Then p is a plurisubharmonic exhaustion function, and by the smoothing 
lemma, G is pseudoconvex. 

If G is unbounded, we write it as an ascending union of the domains 
Gv := Bv(O) n G. Each Gv is bounded and satisfies the hypothesis, so is 
pseudoconvex. Then G is also a pseudoconvex domain. _ 

Exercises 

1. Suppose that G1 c en and G2 c em are domains. 
(a) Show that if G1 and G2 are pseudoconvex, then G1 x G2 is a pseu­

doconvex domain in en+m 

(b) Show that if there is a proper holomorphic map f : G1 -+ G2 and G2 

is pseudoconvex, then G 1 is also pseudoconvex. 
2. Let G c en be a domain and (! : G -+ JR a lower semicontinuous positive 

function. Prove that 

G := {(z', w) E G x e : Iwl < (!(z')} 

is pseudo convex if and only if - log (! is plurisubharmonic. 
3. A domain G c en is pseudoconvex if and only if for every compact set 

KeG the set 

Kpi := {z E G : p(z) ~ s~pp for all plurisubharmonic functions p on G} 

is relatively compact in G. 

4. Levi Convex Boundaries 
Boundary Functions 

Definition. Let G c en be a domain. The boundary of G is called 
smooth at Zo E BG if there is an open neighborhood U = U(zo) c en 
and a function (! E 'ff'OO(U;lR) such that: 

1. Un G = {z E U : (!(z) < O}. 
2. (d(!)z =1= 0 for z E U. 

The function (! is called a local defining function (or boundary function). 

Remark. Without loss of generality we may assume that (!Yn 1= O. Then 
by the implicit function theorem there are neighborhoods 
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U' f (' (0) _ ( (0) (0) (0)) trn-l ltD o ZO' Xn - ZI , ... , Zn-l' Xn E ~ X n., utI of Y~) E JR, 

and a «foo function "( : U' -+ UtI such that {(z', Xn, Yn) E U' X UtI : [!(z', Xn + 
iYn) = O} = {(z', Xn, "(z', xn)) : (z',xn) E U'}. 

Making the neighborhood U:= {(z',xn + iYn) : (z',xn) E U' and Yn E UtI} 
small enough and correcting the sign if necessary, one can achieve that 

Un G = {(z', Xn + iYn) E U : Yn < "(z', xn)}. 

In particular, Un BG = {z E U : [!(z) = O} is a (2n - I)-dimensional 
differentiable sub manifold of U. 

4.1 Lemma. Let BG be smooth at Zo, and let [!1, [!2 be two local defining 
functions on U = U (zo). Then there is a «foo junction h on U such that: 

1. h > 0 on U. 
2. [!1 = h . [!2 on U. 
3. (d[!dz = h(z) . (d[!2)z for z E Un BG. 

PROOF: Define h := eI/ [!2 on U - BG. After a change of coordinates, we 
.have Zo = 0 and [!2 = Yn. Then get) := [!1(Z',Xn + it) is a smooth function 
that vanishes at t = o. Therefore, 

where 

is smooth. 

[!1 (z', zn) g(Yn) - g(O) 

= IoYn g'(8) d8 = Y: . 101 g'(tYn) dt 

= [!2(Z',Xn + iYn)· h(z',zn), 

h( I .) 11 B[!1 ( , .) d Z,Xn+IYn = ~ Z,Xn+ltYn t 
o UYn 

For Z E BG we have (d[!dz = h(z) . (de2)z. Therefore, h(z) =f. 0, and even 
greater than 0, since h(z) 2': ° by continuity. _ 

4.2 Theorem. Let G cc en be a bounded domain with smooth boundary. 
Then BG is a differentiable submanifold, and there exists a global defining 
function. 

PROOF: We can find open sets Vi CC Ui c en, i = 1, ... , N, such that: 

1. {Vi, ... , VN } is an open covering of BG. 
2. For each i there exists a local defining function [!i for G on Ui . 
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3. For each i there is a smooth function 'Pi : Ui -+ IR. with 'PilVi == 1, 
'Pilcn-u; == 0, and 'Pi :::=: 0 in general. 

Define 'P := Li 'Pi (so 'P > 0 on 8G) and 'l/Ji := 'Pi/'P. Then Li 'l/Ji == 1 on 
aG. The system of the functions 'l/Ji is called a partition of unity on aG. 

The function e := L;:1 'l/Jiei is now a global defining function for G. We 
leave it to the reader to check the details. _ 

The Levi Condition. For the remainder of this section let Gee en 
be a bounded domain with smooth boundary, and e : U = U( 8G) -+ IR. a 
global defining function. Then at any Zo E aG the real tangent space of the 
boundary 

Tzo(8G) := {v E Tzo : (de)zo(v) = O} 

is a (2n - 1 )-dimensional real subspace of Tzo' The space 

is called the complex (or holomorphic) tangent space of the boundary at Zoo 

It is a (2n - 2)-dimensional real subspace of Tzo, with a natural complex 
structure, so an (n - I)-dimensional complex subspace3 . 

Definition. The domain G is said to satisfy the Levi condition (respec­
tively the strict Levi condition) at Zo E 8G if Lev(e) is positive semidef­
inite (respectively positive definite) on Hzo(8G). The domain G is called 
Levi convex (respectively strictly Levi convex) if G satisfies the Levi con­
dition (respectively the strict Levi condition) at every point Z E aG. 

Remark. The Levi conditions do not depend on the choice of the boundary 
function, and they are invariant under biholomorphic transformations. 

If el = h· e2, with h> 0, then for Z E 8G, 

So on Hz(8G) the Levi forms of el and e2 differ only by a positive constant. 

Affine Convexity. Recall some facts from real analysis: 

A set M c IR.n is convex if for every two points x, y EM, the closed line 
segment from x to y is contained in M. In that case, for each point Xo E 
IR.n - M there is a real hyperplane H c IR.n with Xo E Hand M n H = 0. 

This property was already used in Section 1. 

3 Hz(8G) is often denoted by T;,O(8G). 
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If a E ]Rn, U = U(a) is an open neighborhood and <p: U ~ lR is at least lf2, 
then the quadratic form 

Hess(<p)(a, w) := L <Pxvx,. (a)wVwtl 

is known as the Hessian of <p at a. 

4.3 Proposition. Let G cc ]Rn be a domain with smooth boundary, and 
e a global defining function with (de)x i= 0 for x E BG. Then G is convex if 
and only if Hess(e) is positive semidefinite on every tangent space Tx (BG). 

PROOF: Let G be convex, and Xo E BG an arbitrary point. Then T := 

Txo(BG) is a real hyperplane with TnG = 0. For wET and a(t) := xo+tw 
we have 

(e 0 a)"(O) = Hess(e)(Xo, w). 

Since e(xo) = 0 and eo a(t) ~ 0, it follows that {! 0 a has a minimum at 
t = O. Then ({! 0 a)"(O) ~ 0, and Hess(e) is positive semidefinite on T. 

Now let the criterion be fulfilled, assume that 0 E G, and define {!e by 

For small c: and large N the set Go := {x : (!e(x) < O} is a domain. We have 
Go C Gol C G for c:' < c:, and Uoo Go = G. Therefore, it is sufficient to 
show that Go is convex. 

The Hessian of (!o is positive definite on Tx(aG) for every x E BG. Thus this 
also holds in a neighborhood U of BG. If c: is small enough, then BGe C U. 
We consider 

S:= {(x, y) E Go X Ge : tx + (1 - t)y E Go, for 0 < t < I}. 

Then S is an open subset of the connected set Go xGe . Suppose that S is not a 
closed subset. Then there exist points xo,yo EGg and a to E (0,1) with toxo+ 
(1- to)yo E aGo. So the function t H eg 0 a(t), with a(t) := txo + (1- t)yO, 
has a maximum at to. Then (eooa)"(to) :S 0 and Hess(eo)(a(to),xo-Yo) :S O. 
This is a contradiction. _ 

A domain G = {e < O} is called strictly convex at Xo E BG if Hess({!) is 
positive definite at Xo. This property is independent of {! and invariant under 
affine transformations. 

Now we return to Levi convexity. 

4.4 Lemma. Let U c en be open and <p E ce'2 (U j ]R). Then 

Lev(<p)(z, w) = ~ (Hess(<p)(z, w) + Hess(<p)(z, iw». 
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PROOF: This is a simple calculation! • 

4.5 Theorem. Let Gee en be a domain with smooth boundary. Then the 
following statements are equivalent: 

1. G is strictly Levi convex. 
2. There is an open neighborhood U = U (oG) and a strictly plurisubhar­

monic function (J E 'i&'OO(U;lR) such that Un G = {z E U : (J(z) < O} 
and (d(J)z =I 0 for Z E U. 

3. For every z E oG there is an open neighborhood W = W(z) c en, 
an open set V C en, and a biholomorphic map F : W -+ V such that 
F(WnG) is convex and even strictly convex at every point ofF(WnoG). 

PROOF: 

(1) => (2) : We choose a global defining function e for G, and an open 
neighborhood U = U(oG) such that e is defined on U with (de)z =I 0 for 
z E U. Let A > 0 be a real constant, and eA := eAe - 1. Then eA is also a 
global defining function, and 

The set K := oG X s2n-l is compact, and 

Ko := {(z, w) E K : Lev(e)(z, w) ::::; O} 

is a closed subset. Since Lev(e) is positive definite on Hz(oG), we have 
(oe)z(w) =I 0 for (z, w) E Ko. Therefore, 

M .- min Lev(e)(z, w) > -00, 
K 

C minl(oe)z(wW > O. 
Ko 

We choose A so large that A . C + M > O. Then 

Lev(eA)(Z, w) = A· [Lev(e)(z, w) + AI(oe)z(w)1 2 ] 2 A· (M + AC) > 0 

for (z, w) E Ko, and 

for (z,w) E K - Ko. 

So Lev(eA)(Z, w) > 0 for every z E oG and every wEen - {OJ. By conti­
nuity, eA is strictly plurisubharmonic in a neighborhood of aGo 

(2) => (3) : We consider a point Zo E oG and make some simple coordinate 
transformations: 
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By the translation Z H W = Z - Zo we replace Zo by the origin, and a 
permutation of coordinates ensures that (JWl (0) i= O. 

The linear transformation 

gives Ul = W· Y' (J(O) t, and therefore 

(J(U) 2Re(u·Y'(e ow)(0)t)+ terms of degree ~2 

2 Re (u . Jw(O) t . Y' (J(O) t) + terms of degree ~ 2 

2 Re (w . Y' (J(O) t) + terms of degree ~ 2 

2 Re( ud + terms of degree ~ 2. 

Finally, we write (J(u) = 2 Re(ul + Q(u» + Lev({J)(O, u) +"', where Q is a 
quadratic holomorphic polynomial, and make the biholomorphic transforma-
tion 

It follows that 

(J(v) = 2 Re(vd + Lev({J)(O, v) + terms of order ~ 3. 

By the uniqueness of the Taylor expansion 

1 
e(v) = D{J(O)(v) + 2Hess({J)(O, v) + terms of order ~ 3, 

and therefore Hess({J)(O, v) = 2· Lev(e)(O, v) > 0 for v i= ° (in the new 
coordinates). Everything works in a neighborhood that may be chosen to be 
convex. 

(3) =:} (1) : This follows from Lemma 4.4: 

The latter property is invariant under biholomorphic transformations. • 

A Theorem of Levi. Let G cc en be a domain with smooth boundary. 
If G is strictly Levi convex, then it is easy to see that G is pseudoconvex. 
We wish to demonstrate that even the weaker Levi convexity is equivalent 
to pseudo convexity. For that purpose we extend the boundary distance to a 
function on en. 

for Z E G, 
for Z E BG, 
for z ~ G. 
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4.6 Lemma. -de is a smooth defining function for G. 

PROOF: We use real coordinates x = (Xl"," XN) with N = 2n. It is clear 
that G = {x : -dc(x) < a}. 

Let Xo E DG be an arbitrary point and (l : U(xo) -t IR a local defining 
function. We may assume that {lXN (xo) f. O. Then by the implicit function 
theorem there is a product neighborhood U' x U" of Xo in U and a smooth 
function h : U' -t IR such that 

{(X',XN) E U' x U" : (2(X',XN) =O} = {(x',h(x')) : x' E U'}. 

It follows that 0 = V'x/{2(x', hex')) + (2xN(X', hex'»~ . V'h(x'). 

At the point (x', h(x'» E DG the gradient V' (l(x', h(x'» is normal to DG 
and directed outward from G. Every point y in a small neighborhood of the 
boundary has a unique representation y = x + t . V' (2(x) , where t = -dc(Y) 
and x is the point where the perpendicular from y to DG meets the boundary. 
Therefore, we define the smooth map F : U' x IR -t IRN by 

y = F(x', t) := (x', hex'»~ + t· V' (l(x', h(x'». 

Then there are smooth functions A and b such that 

, ( E N - l + t· A(x') V'X/{l(X', hex'»~ t ) 

JR.,F(X ,t) = V' hex') + t . b(x') &.>XN (x', h(x'» , 

and therefore 

det J]R,F(X', 0) det ( EN -1 -{lxN (x', h(x'» . V' hex') t ) 

V' hex') /?XN (x', h(x'» 

= (' ('» d (EN - l -V'h(x') t ) 
{lxN x,hx . et 0' 1+IIV'h(x')1I2 

/?XN (x', h(x'»(l + IIV'h(x')II2) f. O. 

It follows that there exists an c: > 0 such that F maps U' x (-c:, c:) difIeo­
morphically onto a neighborhood W = W(xo), and U' x {a} onto DG n W. 
Moreover, since dc(x + t . V' (l(x» = -t for It I < c: and c small enough, it 
follows that de = (-t) 0 F- l is a smooth function near DG. If p' is defined 
by p'(x',t) := (x',O), then the projection 

p=p'oF- l :x+t'V'{l(X)HX, forxEDG, 

is a smooth map, and de is given by dc(Y) = (j. IIy - p(y)II, where (j = 1 
for y E G and (j = -1 elsewhere. 

For y (j. DG we have 
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N 

lIy - :(y) II . t;(Yk - Pk (y)) (8kv - (Pk)y,,(y)) 

= lIy - :(Y)II . [Yv - Pv(y) - (y - p(y) I Py,,(Y») N] , 

and therefore 
(T 

V'de(y) = lIy _ p(y)1I . [y - p(y) - Dp(y)(y - p(y»]. 

Since (J(p(y» == 0, it follows that Dp(y)(V' (J(p(y))) = o. But y - p(y) is a 
multiple of V' (J(p(y». Together this gives 

y - p(y) V' e(p(y» 
V'de(y) = (T. lIy - p(y) II = ± IIV' e(p(y»U· 

If y tends to 8G, we obtain that V'dG (y) =/: o. • 
E.E. Levi showed that every domain of holomorphy with smooth boundary is 
Levi convex, and locally the boundary of a strictly Levi convex domain G is 
the "natural boundary" for some holomorphic function in G. Here we prove 
the following result, which is sometimes called "Levi's theorem". 

4.7 Theorem. A domain G with smooth boundary is pseudoconvex if and 
only if it is Levi convex. 

PROOF: 

(1) Let G be pseudoconvex. The function -de is a smooth boundary function 
for G, and - log dG = -log 8e is plurisubharmonic on G, because of the 
pseudoconvexity. We calculate 

112 
Lev( -logde)(z, w) = dG(z) . Lev( -dG)(z, w) + dG(z)2 ·1(8(dG»z(w)1 . 

This is nonnegative in G. If Z E G, W E Tz , and (8(dG»z(w) = 0, it follows 
that Lev( -dG)(z, w) :::=: O. This remains true for Z ~ 8G, so -dG satisfies 
the Levi condition. 

(2) Let G be Levi convex, and suppose that G is not pseudoconvex. Then in 
any neighborhood U of the boundary there exists a point Zo where the Levi 
form of - log 8e has a negative eigenvalue. This means that there is a vector 
Wo such that 

ep((O) = Lev(log8G)(zo, wo) > 0, for ep(e) := log8G(zo + (wo)· 

Consider the Taylor expansion 

ep«() 1 2 2 ep(O) + 2 Re( ep<C0)( + 2ep(dO)( ) + epa(O) 1(1 + ... 
ep(O) + Re(A( + B(2) + >'1(1 2 + ... , 
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with complex constants A, B and a real constant A > o. 
We choose a point Po E 8G with dG(Zo) = IIpo - zoll, and an arbitrary c > O. 
Then an analytic disk t/J : De(O) ---t en can be defined by 

t/J«) := Zo + (wo + exp(A( + B(2)(po - zo). 

We have t/J(O) = Po, and we wish to show that t/J«) E G, for 0 < 1(1 < c and 
e sufficiently small. 

Since c,o«) ~ c,o(O) + Re(A( + B(2) + (A/2)1(12 near ( = 0, it follows that 

dG(zo + (wo) = exp(c,o«)) 

> exp(c,o(O))·1 exp (A( + B(2) I· exp(~1(12) 
> dG(zo)·1 exp (A( + B(2) 1 

= lIexp (A( + B(2) (Po - zo)lI, 

for ( small and # O. This means that we can choose the c in such a way 
that t/J«) E G, for 0 < 1(1 < e. The analytic disc is tangent to 8G from the 
interior of G. 

Now I«) = da(t/J«)) is a smooth function with a local minimum at ( = O. 
Therefore (8dG)po(t/J'(O)) = (81)0(1) = 0, and 

I«) = Re U<dO)(2) + 1<,1(12 + terms of order ~ 3. 

Since Re U«(0)e2it ) + 1<, ~ 0 for every t, it follows that 

Lev(dG)(Po,t/J'(O)) = la(O) > O. 

This is a contradiction to the Levi condition at Po, because -dG is a defining 
function for G. • 

Exercises 

1. Prove Lemma 4.4. 
2. Assume that G CC (:2 has a smooth boundary that is Levi convex outside 

a point a that is not isolated in {)G. Show that G is pseudoconvex. 
3. Assume that G C (:2 is an arbitrary domain and that S eGis a smooth 

real surface with the following property: In every point of S the tangent 
to S is not a complex line. Prove that for every compact set KeG there 
are arbitrarily small pseudoconvex neighborhoods of S n K. 

4. Assume that G cc (:2 is a domain with smooth boundary. Then G 
is strictly Levi convex at a point Zo E {)G if and only if the following 
condition is satisfied: 

There is a neighborhood U = U(zo), a holomorphic function c,o : 0 ---t U 
with c,o(O) = Zo and c,o'(O) # 0, and a local defining function (J on U such 
that «(J 0 c,o)«) > 0 on 0 - {O} and (e 0 c,o)a(O) > O. 
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5. Let Gee en be a domain with smooth boundary. If G satisfies the strict 
Levi condition at Zo E 8G, then prove that the following hold: 
(a) There is no analytic disk <p: D ~ en with 

<p(O) = Zo and lim 6G(<p«(» = O. 
(~o 1I<p«() - <p(O)1I2 

(b) There are a neighborhood U = U(zo) and a holomorphic function I 
in U with Gn {z E U : I(z) = O} = {zo}. 

6. A bounded domain G c en is called strongly pseudoconvex if there are 
a neighborhood U = U(8G) and a strictly plurisubharmonic function 
(! E ~2(U) such that GnU = {z E U : {!(z) < O}. Notice that a strongly 
pseudoconvex domain does not necessarily have a smooth boundary! 

Prove the following results about a strongly pseudoconvex bounded d~ 
main G: 
(a) Gis pseudoconvex. 
(b) If G has a smooth boundary, then G is strictly Levi convex. 
(c) For every z E 8G there is a neighborhood U = U(z) such that UnG 

is a weak domain of holomorphy. 
7. Let G c en be a pseudoconvex domain. Then prove that there is a family 

of domains Gv C G such that the following hold: 
(a) Gv CC Gv+1 for every 1/. 

(b) U~l Gv = G. 
(c) For every 1/ there is a strictly plurisubharmonic function Iv E 

~OO(Gv+l) such that Gv is a connected component of the set 

{z E GV+l : Iv(z) < O}. 

5. Holomorphic Convexity 
Affine Convexity We will investigate relationships between pseudocon­
vexity and affine convexity. Let us begin with some observations about convex 
domains in RN. 

Let .!L' be the set of affine linear functions I : RN ~ R with 

I(x) = alXl + ... + aNxN + b, all ... ,aN, bE R. 

If M is a convex set and Xo a point not contained in M, then there exists 
a function I E .!it with I(xo} = 0 and 11M < O. For any c E R, the set 
{x E RN : I(x) < c} is a convex half-space. 

Definition. Let M C RN be an arbitrary subset. Then the set 

H(M) := {x E RN : I(x) :5 s"'ff I, for all f E .!L'} 
is called the affine convex hull of M. 
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5.1 Proposition. Let M,M1 ,M2 C]RN be arbitrary subsets. Then 

1. Me H(M). 
2. H (M) is closed and convex. 
3. H(H(M)) = H(M). 
4· If Ml C M2 , then H(Md C H(M2)' 
5. If M is closed and convex, then H(M) = M. 
6. If M is bounded, then H (M) is also bounded. 

PROOF: (1) is trivial. 

(2) If Xo (j. H(M), then there is an f E .!£ with J(xo) > sUPM J. By conti­
nuity, J(x) > SUPM J in a neighborhood of Xo. Therefore, H(M) is closed. 

If Xo, Yo are two points in H(M), then they are contained in every convex 
half-space E = {x : J(x) < SUPM f}, and also the closed line segment from 
Xo to Yo is contained in each of these half-spaces. This shows that H(M) is 
convex. 

(3) We have to show that H(H(M)) C H(M). If x E H(H(M)) is an arbi­
trary point and f an element of .!£, then J(x) ~ sUPH(M) J ~ sUPM J, by 
the definition of H (M). 

(4) is trivial. 

(5) Let M be closed and convex. If Xo (j. M, then there is a point Yo E M 
such that dist(xo, M) = dist(xo, Yo) (because M is closed). Let Zo be a point 
in the open line segment from Xo to Yo. Then Zo (j. M, and there is a function 
J E .!£ with J(zo) = 0 and JIM < O. Since t M f(txo + (1 - t)yo) is a 
monotone function, it follows that J(xo) > 0 and therefore Xo (j. H(M). 

(6) If M is bounded, there is an R > 0 such that M is contained in the closed 
convex set BR(O). Thus H(M) c BR(O). • 

Remark. H(M) is the smallest closed convex set that contains M. 

5.2 Theorem. A domain G C ]RN is convex if and only if K cc G implies 
that H(K) cc G. 

PROOF: Let G be a convex domain, and M CC G a subset. Then H(M) is 
closed and contained in the bounded set H(M). Therefore, H(M) is compact, 
and it remains to show that H(M) C G. If there is a point Xo E H(M) - G, 
then there is a function f E .!£ with J(xo) = 0 and fie < O. It follows that 
sUPM f < 0, and f(xo) > SUPM f· This is a contradiction to Xo E H(M). 
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On the other hand, let the criterion be fulfilled. If Xo, Yo are two points of G, 
then K := {Xo, Yo} is a relatively compact subset of G. It follows that H(K) 
is contained in G. Since H (K) is closed and convex, the closed line segment 
from Xo to Yo is also contained in G. Therefore G is convex. _ 

Holomorphic Convexity. Now we replace affine linear functions by 
holomorphic functions. 

Definition. Let G C c;n be a domain and KeG a subset. The set 

K = KG := {z E G : /f(z)/ :5 s~/f/, for all f E O(G) } 

is called the holomorphically convex hull of Kin G. 

5.3 Proposition. Let G C c;n be a domain, and K, Kl, K2 subsets of G. 
Then 

1. KCK. 
2. 8 is closed in G. 
3. K=K. 
4. If Kl C K 2 , then Kl C K;. 
5. If K is bounded, then K is also bounded. 

PROOF: (1) is trivial. 

(2) Let Zo be a point of G - K. Then there exists a holomorphic function 
f on G with If(zo)/ > sUPKIf/. By continuity, this inequality holds on an 
entire neighborhood U = U(zo) c G. So G - K is open. 

(3) sUPR/f/ :5 sUPK/f/· 

(4) is trivial. 

(5) If K is bounded, it is contained in a closed polydisk pn(o, r). The coordi­
nate functions Zv are holomorphic in G. For z E K we have /zv/ :5 SUPK/zv/ :5 
r. Hence K is also bounded. _ 

Definition. A domain G C c;n is called holomorphically convex if 
K cc G implies that K cc G. 
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Example 

In C; every domain is holomorphically convex: 

Let K cc G be an arbitrary subset. Then K is bounded, and it remains 
to show that the closure of K is contained in G. If there is a point Zo E 

K - G, then Zo lies in aR naG. We consider the holomorphic f~nction 
f(z) := l/(z - zo) in G. If (ZII) is a sequence in K converging to zo, then 
If(zlI)1 ~ sUPKlfl ~ sUPKlfl < 00. This is a contradiction. For n ~ 2, we 
will show that there are domains that are not holomorphically convex. But 
we have the following result. 

5.4 Proposition. If G c c;n is an affine convex domain, then it is holo­
morphically convex. 

PROOF: Let K be relatively compact in G. Then H(K) cc G. If Zo is a 
point of G - H(K), then there exists an affine linear function A E C with 
A(ZO) > sUPK A. Replacing A by A - A(O) we may assume that A is a homo­
geneous linear function of the form 

A(Z) = 2 Re(alzl + ... + anzn). 

Then f(z) := exp(2 . (alzl + ... + anzn)) is holomorphic in G, and If(z)1 = 

exp(-X(z)). Therefore, If(zo)1 > sUPKlfl, and Zo E G - K. This proves K cc 
G. • 

In general, holomorphic convexity is a much weaker property than affine 
convexity. 

The Cartan-Thullen Theorem. Let G C c;n be a domain, and 
c > 0 a small real number. We define 

G/Z := {z E G : 8a (z) ~ c}. 

Here are some properties of the set G £: 

1. If z E G, then there is an c > 0 such that 8G(z) ~ c. 
Therefore, G = U£>o G/Z. 

2. If Cl ~ C2, then GEl:::> G£2' 

3. GE is a closed subset of c;n. In fact, if Zo E c;n - GE , then 8G(zo) < c 
or Zo ¢ G. In the latter case, the ball B£{zo) is contained in c;n - GE • If 
Zo E G - G/Z and 8 := 8a(zo), then B£-.s(zo) C c;n - G/Z. So c;n - GE is 
open. 

5.5 Lemma. Let G C c;n be a domain, KeG a compact subset, and f a 
holomorphic function in G. If KeG £, then fOT any 8 with 0 < 8 < c there 
exists a constant C > 0 such that the following inequality holds: 
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PROOF: For 0 < 6 < E, G' := {z E G : dist(K,z) < 8} is open and 
relatively compact in G, and for any z E K the closed polydisk pn(z,6) is 
contained in G' c G. If T is the distinguished boundary of the polydisk and 
III ~ Con G', then the Cauchy inequalities yield 

-
5.6 Theorem (Cartan-Thullen). IIG is a weak domain 01 holomorphy, 
then G is holomorphically convex. 

PROOF: Let K cc G. We want to show that K cc G. Let E .­

dist(K, en - G) ~ dist(K, en - G) > O. Clearly, K lies in Ge . 

We assert that the holomorphically convex hull K lies even in Ge . Suppose 
this is not so. Then there is a Zo E K - Ge . Now let I be any holomorphic 
function in G. In a neighborhood U = U(zo) c G, I has a Taylor expansion 

I(z) = L all(z - zot, with all = ~DII I(zo). 
1/. 

"2':0 

The function z H a,,(z) := ~D" I(z) is holomorphic in G. Therefore, 
lall(zo)1 ~ sUPKlall(z)l. By the lemma, for any 6 with 0 < 6 < E there 
exists a C > 0 such that sUPKlall(z)1 ~ CI61"1, and then 

On any polydisk pn(zo,8) the Taylor series is dominated by a geometric 
series. Therefore, it converges on P = pn (zo, E) to a holomorphic function f 
We have I = 1 near zo, and then on the connected component Q of Zo in 
P n G. Since P meets G and en - G, it follows from Lemma 1..9 that there 
is a point Zl E P n aQ naG. Then I cannot be completely singular at Zl. 
This is a contradiction, because I is an arbitrary holomorphic function in G, 
and G is a weak domain of holomorphy. _ 

Exercises 

1. Let G1 C G2 c en be domains. Assume that for every I E O( Gd there 
is a sequence of functions I" E O(G2 ) converging compactly on G l to I. 
Show that for every compact set K C G1 it follows that KG2 nGl = KG\. 
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2. Let F : G1 -+ G2 be a proper holomorphic map between domains in en, 
respectively em. Show that if G2 is holomorphically convex, then so is 
G1 . 

3. Let G c en be a domain an~ c G be a closed analytic disk with 
boundary bS. Show that S C (bS) G. 

4. Define the domain G c e2 by G := p2(0, 1) - P2(0, 1/2). Construct the 
holomorphically convex hull KG for K := {(z!, Z2) : ZI = 0 and IZ21 = 
3/4}. Is KG a relatively compact subset of G? 

5. Let F be a family of functions in the domain G. For a compact subset 
KeG we define 

KF := { z E G : If(z)1 ~ s~plfl for all f E F} . 

The domain G is called convex with respect to F, provided that KF is 
relatively compact in G whenever K is. Prove: 
(a) Every bounded domain is convex with respect to the family 'tfO(G) 

of all continuous functions. 
(b) The unit ball B = B1 (0) is convex with respect to the family of 

holomorphic functions zi· z~ with V,j-t = 1, ... ,n and k,l E No. 

6. Singular Functions 
Normal Exhaustions. Let G c en be a domain. If G is holomorphically 
convex, we want to construct a holomorphic function in G that is completely 
singular at every boundary point. For that we use "normal exhaustions." 

Definition. A normal exhaustion of G is a sequence (Kv) of compact 
subsets of G such that: 

1. K" cc (K"+lt, for every v. 
2. U::1 K" = G. 

6.1 Theorem. Any domain G in en admits a normal exhaustion. If Gis 
holomorphically convex, then there is a normal exhaustion (K v) with K" = 
K" for every v. 

PROOF: In the general case, K" := pn(o, v) n GIl" gives a normal exhaus­
tion. If Gis holomorphically convex, K" cc G for every v. We construct a 
new exhaustion by induction. 

Let Ki := R 1. Suppose that compact sets Ki, ... , K~_l have been con­
structed, with Rj = Kj for j = 1, ... , v-I, and Kj cc (K/+lt. Then 

there exists a >,(v) EN such that K~_l C (K).(,,)t. Let K~ := K).(,,). 
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It is clear that (K~) is a normal exhaustion with K~ = K~. • 

Unbounded Holomorphic Functions. Again let G c en be a 
domain. 

6.2 Theorem. Let (Kv) be a normal exhaustion 01 G with Kv = K v, 
)..(/1) a strictly monotonic increasing sequence 01 natural numbers, and (ZIl) 
a sequence 01 points with ZIl E K)..(Il)+l - K)..(Il). 

Then there exists a holomorphic lunction I in G such that I/(zll)1 is un­
bounded. 

PROOF: The function I is constructed as the limit function of an infinite 
series I = E:=l Iw By induction we define holomorphic functions III in G 
such that: 

1. 1IIlIK).(I') < 2-1l for J.L ~ 1. 
,,-I 

2. 111l(zll)1 > /1 + 1 + LlfJ(zll)1 for /1 ~ 2. 
j=l 

Let II := o. Now for /1 ~ 2 suppose that 11, ... ,1,,-1 have been constructed. 
Since ZIl E K)..(Il)+l - K)..(Il) and K)..(Il) = K)..(Il) , there exists a function 9 
holomorphic in G such that Ig(zll)1 > q := sUPK).(I') Igl. By multiplication by 
a suitable constant we can make 

Ig(z,,)I> 1 > q. 

If we set III := gk with a sufficiently large k, then I" has the properties (1) 
and (2). 

We assert that E" II-' converges compactly in G. To prove this, first note 
that for KeG an arbitrary compact subset, there is a /10 E N such that 
K C K)..("o). By construction SUPK if" 1 < 2-" for /1 ~ J.Lo. Since the geo­
metric series E,. 2-" dominates E I" in K, the series of the I" is normally 
convergent on K. This shows that f = EI-'I" is holomorphic in G. Moreover, 

I/(z,,)1 > 1/,,(zJ1.)I- Lllv(zJ1.)1 
v¥" 

> J.L + 1 - L TV (since zJ1. E K)..(v) for v> J.L) 

> J.L (since LTV = 1). 
v~l 

It follows that I/(z,,)1 -+ 00 for J.L -+ 00. • 
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The following is an important consequence: 

6.3 Theorem. A domain G is holomorphically convex if and only if for 
any infinite set D that is discrete in G there exists a junction f holomorphic 
in G such that If I is unbounded on D. 

PROOF: (1) Let G be holomorphically convex, D c G infinite and discrete. 
Moreover, let (Kv) be a normal exhaustion of G with Kv = Kv. Then Kv nD 
is finite (or empty) for every v E N. We construct a sequence of points z/A E D 
by induction. 

Let Zl ED - Kl be arbitrary, and >'(1) EN minimal with the property that 
Zl lies in K A(1)+l' Now suppose the points Zl, •.• , Z/A-l and the numbers 
>'(1), ... , >'(J.L - 1) have been constructed such that 

Zv E K A(v)+l - KA(v), for v = 1, ... , J.L - 1. 

Then we choose z/A E D - K A(/A-l)+1 and >'(J.L) minimal with the property 
that z/A lies in K A(/A)+1' By the theorem above there is a holomorphic function 
fin G such that If(z/A)I -+ 00 for J.L -+ 00. Therefore, If I is unbounded on D. 

(2) Now suppose that the criterion is satisfied, and K cc G. Then KeG, 
and we have to show that K is compact. Let (zv) be any sequence of points 
in K. Then 

sup{lf(Zv)1 : v E N} $ suplfl < 00, for every f E O(G). 
, K 

Therefore, {zv : v E N} cannot be discrete in G. Thus the sequence (zv) 
has a cluster point Zo in G. Since K is closed, Zo belongs to K. SO G is 
holomorphically convex. _ 

Sequences. For a domain G c en we wish to construct a sequence that 
accumulates at every point of its boundary. 

6.4 Theorem. Let (Kv) be a normal exhaustion of G. Then there exists 
a strictly monotonic increasing sequence >'(J.L) of natural numbers and a se­
quence (z/A) of points in G such that: 

1. z/A E KA(/,)+l - KA(/A) , for every J.L. 
2. If Zo is a boundary point of G and U = U(zo) an open connected neigh­

borhood, then every connected component of U n G contains infinitely 
many points of the sequence (z/A)' 

PROOF: This is a purely topological result, since we make no assumption 
about G. The proof is carried out in several steps. 
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(1) Let B = {BII : v E N} be the countable system of balls with rational 
center and rational radius meeting 8G. Every intersection BllnG has at most 
countably many connected components. Thus we obtain a countable family 

C = {C,.. : 3v E N such that C,.. is a connected component of BII E 8}. 

(2) By induction, the sequences )"(J.l) and (z,..) are constructed. Let ZI be 
arbitrary in C1 - K 1 • Then there is a unique number ),,(1) such that Zl E 

K>.(l)+I - K>'(l)' 

Now suppose Zl, ... ,Zj.I-l have been constructed such that 

Zj E Cj n (K>'(j)+l - K>.(j))' for j = 1, ... , J.l- 1. 

We choose zp. E Cp. - K>.(,..-l)+I and )"(J.l) as usual. That is possible, since 
there is a point W E BII (,..) n 8C,.. n 8G if C,.. is a connected component of 
BII(,..) n G. Then en - K>'(j.I-l)+I is an open neighborhood of wand contains 
points of Cw 

(3) Now we show that property (2) of the theorem is satisfied. Let Zo be a 
point of 8G, U = U(zo) an open connected neighborhood, and Q a connected 
component of Un G. We assume that only finitely many z,.. lie in Q, say 
Zl, ... , Zm. Then 

are open connected sets that contain no Zw Obviously, Q* is a connected 
component of G n U* . 

There is a point Wo in U* n 8Q* n 8G, and a ball BII C U" with Wo E B II . 
Then BII n G c U* n G. Moreover, BII n G must contain a point Wl E Q*. 
The connected component C* of WI in BII n G is a subset of the connected 
component of Wl in U* n G. But C* is an element C"'o of C. By construction 
it contains the point zj.lo' That is a contradiction. Infinitely many members 
of the sequence belong to Q. • 

6.5 Theorem. If G is holomorphically convex, then it 'is a domain of holo­
morphy. 

PROOF: Let (KII ) be a normal exhaustion of G with ](11 = KII and choose 
sequences )"(J.l) EN and (z,..) in G such that zj.I E K>.(,..)+l - K>.(j.I)' We may 
assume that for every point Zo E 8G, every open connected neighborhood 
U = U(zo), and every connected component Q of Un G there are infinitely 
many z,.. in Q. 

Now let f be holomorphic in G and unbounded on D := {Zp. : J.l EN}. It is 
clear that f is completely singular at every point Zo E 8G. • 
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Remark. It is not necessary that a completely singular holomorphic func­
tion is unbounded. In 1978, D. Catlin showed in his dissertation that if 
Gee en is a holomorphically convex domain with smooth boundary, then 
there exists a function holomorphic in G and smooth in a neighborhood of G 
that is completely singular at every point of the boundary of G. 

Exercises 

1. A domain Gee en is holomorphically convex if and only if for every 
z E 8G there is a neighborhood U(z) such that Un G is a domain of 
holomorphy. 

2. Let G1 C en and G2 c em be domains of holomorphy. If f : G 1 -+ em is 
a holomorphic mapping, then f- 1(G2 ) n G1 is a domain of holomorphy. 

3. Find a bounded holomorphic function on the unit disk 0 that is singular 
at every boundary point. 

7. Examples and Applications 
Domains of Holomorphy 

7.1 Proposition. Every domain in the complex plane e is a domain of 
holomorphy. 

PROOF: We have already shown that every domain in e is holomorphically 
convex. Therefore, such a domain is also a domain of holomorphy. _ 

7.2 Theorem. The following statements about domains G E en are equiv­
alent: 

1. G is a weak domain of holomorphy. 
2. G is holomorphically convex. 
3. For every infinite discrete subset D C G there exists a holomorphic func­

tion f in G such that If I is unbounded on D. 
4. G is a domain of holomorphy. 

The equivalences have all been proved in the preceding paragraphs. Fur­
thermore, we know that every domain of holomorphy is pseudoconvex. Still 
missing here is the proof of the Levi problem: Every pseudoconvex domain 
is holomorphically convex. We say more about this in Chapter V. 

Every affine convex open subset of en is a domain of holomorphy. The n-fold 
Carte:lian product of plane domains is a further example. 

7.3 Proposition. If G b ... ,Gn C e are arbitrary domains, then G := 

G1 X ... x Gn is a domain of holomorphy. 



7. Examples and Applications 83 

PROOF: Let D = {Zp. = (zf, ... , zt:) : J1. E N} be an infinite discrete subset 
of G. Then there is an i such that (zf) has no cluster point in Gi , and there 
is a holomorphic function f in G i with liml'-tool f{zf) I = 00. The function i 
in G, defined by i(Zb"" zn) := f{zi), is holomorphic in G and unbounded 
on D. • 

Remark. The same proof shows that every Cartesian product of domains 
of holomorphy is again a domain of holomorphy. 

Complete Reinhardt Domains. Let G c Cn be a complete Rein­
hardt domain (see Section I.1). We will give criteria for G to be a domain of 
holomorphy. For that purpose we define a map log from the absolute value 
space "f/ to IRn by 

Definition. A Reinhardt domain G is called logarithmically convex if 
10gr{Gn (c*)n) is an affine convex domain in IRn: 

Remark. For z = (Zl,"" zn) E G we have logr(z) = (IOgIZll, ... , 10gIZn/). 
If z E (C*)n, then IZil > 0 for each i, and logr(z) is in fact an element of ]Rn. 

7.4 Proposition. The domain of convergence of a power series S(z) = 
EII~o allzll is logarithmically convex. 

PROOF: Let G be the domain of convergence of S(z), and M := 10gr(G n 
(c*)n) c IRn. We consider two points x, y E M and points z, w E G n (c*)n 
with logr(z) = x and logr(w) = y. If A> 1 is small enough, AZ and AW still 
belong to G n (c*)n. Since S(z) is convergent in AZ, AW, there is a constant 
C > 0 such that 

lalll· AIIII 'Izill :::; C and lalll· AIIII 'Iwlll :::; C, for every 1I E No. 

Thus 
la,,1 . AI"I . Izilit ·lw"1 1- t :::; C, for every 1I and 0 :::; t :::; 1. 

It follows from Abel's lemma that S{z) is convergent in a neighborhood of 

Zt:= (lzlltlwill-t, ... , IZnltlwnll-t). 

This means that Zt E G and tx + (1 - t)y = logr{zt) E M, for 0 :::; t :::; 1. 
Therefore, M is convex. _ 
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7.5 Proposition. Let G be a complete Reinhardt domain. If G is logarith­
mically convex, then it is holomorphically convex. 

PROOF: Let K be a relatively compact subset of G. Since G is a complete 
Reinhardt domain and K a compact subset of G, there are points Zl, ... ,Zk E 
G n (c*)n such that 

k 

KeG' := U pn(O, qi) C G, where qi := r(zd· 
i=l 

We consider the set .L = {m(z) = ZV : v E No} of monomials, which is a 
subset of O(G). For z E pn(O,qi) and m E.L we have 

Im(z)l = Izvl < qf = Im(qi)l· 

Let Z := {ZIt ... ,Zk}. Then for z E R it follows that 

Im(z)l ~ suplml ~ suplml ~ suplml, for every m E .L. 
K G' Z 

Suppose that R is not relatively compact in G. Then R has a cluster point 
Zo in aG, and it follows that Im(zo)1 ~ supzlml, for every m E .L. 

Let h(z) := logr(z), for z E (c*)n. Since G is logarithmically convex, the 
domain Go := h(G n (c*)n) c an is affine convex. For the time being we 
assume that Zo E (c*)n. Then:xo := h(zo) E aGo, and there is a real linear 
function 'x(x) = alXl + ... + anXn such that 'x(x) < 'x(xo) for x EGo. 

Let x = logr(z) be a point of Go, and U E an with Uj ~ Xj for j = 1, ... , n. 
Then eUj ~ e:l:j = IZjl, and therefore (since G is a complete Reinhardt do­
main) w = (eUl , ... , eUn ) E G n (c*)n and U E Go. In particular, 

'x(x) - naj = 'x(x - nej) < 'x(:xo), for every n E N. 

Therefore, aj ~ 0 for j = 1, ... , n. 

Now we choose rational numbers Tj > aj and define X(x) := rlXl + .. ·+rnxn. 
If we choose the rj sufficiently close to ai, the inequality X(qi) < X(:xo) 
holds for i = 1, ... , k, and it still holds after multiplying by the common 
denominator of the r j. Therefore, we may assume that the r i are natural 
numbers, and we can define a special monomial mo by mo(z) := Z~l ... z~n. 
Then 

I ( -)1 - );(qil < );("0) - I (z)1 1:0 • - 1 k moz. -e e - mo 0, ~,r~- , ... , . 

So Imo(zo)1 > supzlmol, and this is a contradiction. 

If Zo ¢ (C*)'\ then after a permutation of the coordinates we may assume 
that zi°) ... zfO) :/= 0 and zf~l = ... = z~) = O. We can project on the space 
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e! and work with monomials in the variables ZI, ... , Z!. Then the proof goes 
through as above. _ 

Now we get the following result: 

7.6 Theorem. Let G c en be a complete Reinhardt domain. Then the 
following statements are equivalent: 

1. G is the domain of convergence of a power series. 
2. G is logarithmically convex. 
3. G is holomorphically convex. 
4. G is a domain of holomorphy. 

PROOF: We have only to show that if G is a complete Reinhardt domain 
and a domain of holomorphy, then it is the domain of convergence of a power 
series. By hypothesis, there is a function J that is holomorphic in G and 
completely singular at every boundary point. In Section I.5 we proved that 
for every holomorphic function in a proper Reinhardt domain there is a power 
series S(z) that converges in G to f. By the identity theorem it does not 
converge on any domain strictly larger than G. _ 

Analytic Polyhedra. Let G c en be a domain. 

Definition. Let U C G, VI"'" Vk c e open subsets, and !I, . .. , Jk 
holomorphic functions in G. The set 

P:={ZEU: Ji(Z)EVi, fori=l, ... ,k} 

is called an analytic polyhedron in G if Pee U. 

If, in addition, VI = ... = Vk = 0, then one speaks of a special analytic 
polyhedron in G. 

Remark. An analytic polyhedron P need not be connected. The set U 
in the definition ensures that each union of connected components of P is 
also an analytic polyhedron if it has a positive distance from every other 
connected component of P. 

7.7 Theorem. Every connected analytic polyhedron P in G is a domain of 
holomorphy. 

PROOF: We have only to show that P is a weak domain of holomorphy. 
If Zo E {)P, then there is an i such that Ji(ZO) E {)Vi, Therefore, fCz) .­
(fi(Z) - Ji(ZO))-1 is holomorphic in P and completely singular at Zo0 _ 
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Example 

Let q < 1 be a positive real number, and 

P:= {z = (ZbZ2) E e2 : Izd < 1, IZ21 < 1 and IZI' z21 < q}. 

Then P (see Figure II.7) is clearly an analytic polyhedron, but neither affine 

q 
1 1---....-

q 

Figure 11.1. An analytic polyhedron 

convex nor a Cartesian product of domains. So the analytic polyhedra enrich 
our stock of examples of domains of holomorphy. 

We will show that every domain of holomorphy is "almost" an analytic poly­
hedron. 

7.8 Theorem. If G c en is a domain of holomorphy, then there exists 
a sequence (P,,) of special analytic polyhedra in G with P" cc P,,+l and 
U::l P" = G. 

PROOF: Let (K,,) be a normal exhaustion of G with K" = K". If z E 

8K,,+1 is an arbitrary point, then z does not lie in Kv C (K"+lt, and 
therefore not in K". Hence there exists a function f holomorphic in G for 
which q := SUPK If I < If(z)l. By multiplication by a suitable constant we 
obtain q < 1 < If(z)l, and then there is an entire neighborhood U = U(z) 
such that If I > 1 on U. 

Since the boundary 8K"+1 is compact, we can find finitely many open neigh­
borhoods U",j of Z",j E 8K"+1, j = 1, ... , k", and corresponding functions 
f",j holomorphic in G such that If",jl > 1 on Uv,j, and 8K,,+1 C U~:l U",j' 
We define 

P" := {z E (K,,+lt : If",j(z)1 < 1 for j = 1, ... , kv}. 

Clearly, Kv C P" c (Kv+1t. Furthermore, M := K,,+l - (U",l U'" U Uv,kJ 
is a compact set with P" C M c (K"+1t. Consequently, P" cc K v+1' Thus 
P" is a special analytic polyhedron in G. It follows trivially that the sequence 
(P,,) exhausts the domain G. • 
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In the theory of Stein manifolds one proves the converse of this theorem. 

Exercises 

1. If R is a domain in the real number space lRn, then 

TR = R+ ilRn := {z E en : (Re(Zl)' . .. ,Re(Zn» E R} 

is called the tube domain associated with R. Prove that the following 
properties are equivalent: 
(a) R is convex. 
(b) TR is (affine) convex. 
(c) TR is holomorphically convex. 
(d) T R is pseudoconvex. 
Hint: To show (d) => (a) choose Xo, Yo E R. Then the function ep«) := 
-lnb"TR(xo+«Yo -xo) is subharmonic in D. Since b"TR(X+iy) = b"R(X), 
one concludes that t ~ -lnb"R(xo + t(yO - xo)) assumes its maximum 
at t = 0 or t = 1. 

2. Let G c en be a domain. A domain G c en is called the envelope 01 
holomorphy of G if every holomorphic function 1 in G has a holomorphic 
extension to G. Prove: 
(a) If R c lRn is a domain and H(R) its affine convex hull, then G := 

H(R) + ilRn is the envelope of holomorphy of the tube domain G = 
R+ ilRn. 

(b) If G c en is a Reinhardt domain and G the smallest logarithmi­
cally convex complete Reinhardt domain containing G, then G is the 
envelope of holomorphy of G. Hint: Use the convex hull of logr(G). 

3. Construct the envelope of holomorphy of the domain 

Gq := p2(O, (l,q» U p2(O, (q, 1»). 

4. A domain G c en is called a Runge domain if for every holomorphic 
function 1 in G there is a sequence (PI') of polynomials converging com-
pactly in G to I. . 
Prove that the Cartesian product of n simply connected subdomains of 
e is a Runge domain in en. 

5. A domain G c en is called polynomially convex if it is convex with 
respect to the family of all polynomials (cf. Exercise 5.5). Prove that 
every polynomially convex domain is a holomorphically convex Runge 
domain. 

8. Riemann Domains over en 
Riemann Domains. It turns out that for general domains in en the 
envelope of holomorphy (cf. Exercise 7.2) cannot exist in en. Therefore, we 
have to consider domains covering en. 
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Definition. A (Riemann) domain over Cn is a pair (G,1I') with the 
following properties: 

1. G is a connected Hausdorff space.4 

2. 11' : G -+ Cn is a local homeomorphism (that is, for each point x E G 
and its "base point" z := 1I'(x) E Cn there exist open neighborhoods 
U = U(x) c X and V = V(z) C Cn such that 11' : U -+ V is a 
homeomorphism) . 

Remarks 

1. Let (G, 11') be a Riemann domain. Then G is pathwise connected, and 
the map 11' : G -+ Cn is continuous and open. The latter means that the 
images of open sets are again open. 

2. If (Gv, 11' v) are domains over Cn for v = 1, ... ,l, and Xv E Gv are points 
over the same base point zo, then there are open neighborhoods Uv = 
Uv(xv) c Gv and a connected open neighborhood V = V(zo) C Cn such 
that 1I'vlu" : Uv -+ V is a homeomorphism for v = 1, ... ,l. 

Examples 

1. If G is a domain in cn, then (G,idG) is a Riemann domain. 
2. The Riemann surface of .,fi. (without the branch point) is the set 

G:= {(z,w) EC* xC: w2 =z}. 

If G is provided with the topology induced from C.. x C, then it is a 
Hausdorff space. The mapping cp : C.. -+ G defined by ( H «(2, () is 
continuous and bijective. Therefore, G is connected. The mapping cp is 
called a uniformization of G. 

Now let 11' : G -+ C be defined by 1I'(z, w) := z. Clearly, 11' is continuous. If 
(zo, wo) EGis an arbitrary point, then zo =I 0, and we can find a simply 
connected neighborhood V(zo) C C ... Then there exists a holomorphic 
function f in V with j2(z) == z and f(zo) = woo We denote fez) by .,fi.. 
The image W := f(V) is open, and the set 1I'-1(V) can be written as the 
union of two disjoint open sets 

U± := {(z, ±f(z)) : z E V} = (V x (±W)) n G. 

Let j(z) := (z, fez)). Then i: V -+ G is continuous, and 1r 0 j(z) == z. 
The open set U := U + is a neighborhood of (zo, wo), with i(v) = U and 
i 0 1I'(z, w) = (z, w) on U; that is, 1I'lu : U -+ V is topological. Hence 
(G, 11') is a Riemann domain over C. 

4 A general topological space X is said to be connected if it is not the union of 
two disjoint nonempty open sets. A space X is called pathwise connected if each 
two points of X can be joined by a continuous path in X. For open sets in en 
these two notions are equivalent. 
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The space G can be visualized in the following manner: We cover e with 
two additional copies of e, cut both these "sheets" along the positive 
real axis, and paste them crosswise to one another (this is not possible 
i~ 1R3 without self intersection, but in higher dimensions, it is). This is 
illustrated in Figure II.S. 

Figure II.S. The Riemann surface of Vi 

8.1 Proposition (on the uniqueness oflifting). Let (G, 11') be a domain 
over en and Y a connected topological space. Let Yo E Y be a point and 
'l/Jl,'l/J2 : Y ~ G continuous mappings with 'l/Jl(YO) = 'l/J2(YO) and 11' 0 'l/Jl = 
11' 0 'l/J2. Then 'l/Jl = 'l/J2' 

PROOF: Let M := {y E Y : 'l/Jl(Y) = 'l/J2(Y)}' By assumption, Yo E M, 
so M =I 0. Since G is a Hausdorff space, it follows immediately that M is 
closed. Now let Y E Y be chosen arbitrarily, and set x := tPl (y) = tP2(Y) and 
z := lI'{x). There are open neighborhoods U = U{x) c G and V = V(z) c 
en such that 11' : U ~ V is topological, and there is an open neigborhood 
W = W(y) with 'I/J>.{W) c U for ,\ = 1,2. Then 

'l/Jllw = (lI'IU)-l 011' 0 'l/Jllw = (lI'IU)-l 011' 0 'l/J21w = tP2lw, 

and therefore W c M. Hence M is open, and since Y is connected, it follows 
that M = Y. • 

Definition. Let zo E en be fixed. A (Riemann) domain over en with 
distinguished point is a triple 9 = (G, 11', xo) for which: 
1. (G,lI') is a domain over en. 
2. Xo is a point of G with lI'(xo) := Zoo 
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Definition. Let 9j = (Gj ,7rj,Xj) be domains over en with distin­
guished point. We say that {h is contained in 92 (denoted by {h -< 92 ) 
if there is a continuous map cp : G1 -+ G2 with the following properties: 

1. 7r2 0 cp = 7rl (called "cp preserves fibers"). 
2. cp(xt} = X2· 

8.2 Proposition. If 91 -< 92, then the fiber preserving map cp : G1 -+ G2 
with CP(X1) = X2 is uniquely determined. 

This follows immediately from the uniqueness of lifting. 

8.3 Proposition. The relation "-<" is a weak ordering; that is: 

1. 9 -< 9. 
2. 91 -< 92 and 92 -< 93 :=} 91 -< 93· 

The proof is trivial. 

Definition. Two domains 91, 92 over en with fundamental point are 
called isomorphic or equivalent (symbolically 91 ~ 92) if 91 -< 92 and 
92 -< 91. 

8.4 Proposition. Two domains 9j = (Gj , 7rj,Xj), j = 1,2, are isomorphic 
if and only if there exists a topological 5 fiber preserving map cp : G1 -+ G2 

with cp(xt} = X2· 

PROOF: If we have fiber preserving mappings CPl : G 1 -+ G2 and CP2 : G 2 -+ 
G}, with CP1(X1) = X2 and CP2(X2) = Xl, it follows easily from the uniqueness 
of fiber preserving maps that CP2 0 CPl = idOl and CPl 0 CP2 = idG2. The other 
direction of the proof is trivial. _ 

Definition. A domain 9 = (G, 7r, xo) with 7r( xo) = Zo is called schlicht 
if it is isomorphic to a domain 90 = (Go, idoo, zo) with Go c en. 

8.5 Proposition. Let 9j = (Gj , idG; ,Xj), j = 1,2, be two schlicht domains 
with G1, G2 c en. Then 91 -< 92 if and only if G1 C G2 · 

Example 

5 Recall that a "topological map" is a homeomorphism! 
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Let Gl := {(Z,W) E C 2 : W2 = zandz =f O} and 71'l(Z,W):= z. Then 
Ql = (Gr,7I'1,(1, 1)) is the Riemann surface of..;z, with distinguished point 
(1,1). The domain Ql is contained in the schlicht domain Q2 = (C,ide, 1), by 
'P(z, w) := z. But the two domains are not isomorphic. 

Union of Riemann Domains. We begin with the definition of the 
union of two Riemann domains. Let Qj = (Gj , 71'j, Xj), j = 1,2, be two Rie­
mann domains over cn with distinguished point, and Zo := 71'l(xd = 71'2(X2). 
We want to glue G l , G 2 in such a way that Xl and X2 will also be glued. 

To get a rough idea of the construction, assume that we already have a 
Riemann domain Q = (G, 71', xo) that is in some sense the union of Ql and 
02' Then there should exist continuous fiber preserving maps 'PI : Gl -t G 
with 'Pl(Xl) = xo, and <P2 : G2 -t G with 'P2(X2) := Xo. If a : [0,1] -t G l 

and {J : [0,1] -t G2 are two continuous paths with 0'(0) = Xl, {J(O) = X2 and 
71'1 0 a = 71'2 0 {J, then 1'1 := <PI 0 a and 1'2 := 'P2 0 {J are continuous paths in G 
with 71' 0 1'1 = 71' 0 1'2 and 1'1 (0) = 1'2(0) = Xo. Due to the uniqueness of lifting, 
it follows that 1'1 = 1'2. This means that aCt) and {J(t) have to be glued for 
every t E [0,1]. Unfortunately, this is an ambiguous rule. For example, we 
could say that X E G l and Y E G2 have to be glued if 71'1 (X) = 71'2(Y). Then 
the desired property is fulfilled, but it may be that there are no paths a from 
Xl to X and {J from X2 to y with 71'1 0 a = 71'2 0 {J. 

Therefore, we proceed in the following way: Start with the disjoint union 
G l U G2 , and take the "finest" equivalence relation'" on this set with the 
following property: 

1. Xl '" X2. 
2. If there are continuous paths a : [0,1] -t G l and {J : [0,1] -t G2 with 

0'(0) = Xl, {J(O) = X2, and 71'1 0 0'= 71'2 0 {J, then 0'(1) '" {J(1). 

One can equip G := (G l U G2 )/ '" with the structure of a Riemann domain. 
This will now be carried out in a more general context. 

Let X be an arbitrary set. An equivalence relation on X is given by a partition 
!!C = {Xv: v E N} of X into subsets with: 

1. UVEN XII = X. 
2. XII n XJL = 0 for v =f J1.. 

The sets Xv are the equivalence classes. 

Now let a family (3r;,)"El of equivalence'relations on X be given with 3r;, = 
{X~, : v" EN"} for LEI. We set N := TI"El No and 

Xv := n X~" for v := (VJ"El EN. 
"El 
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Then &: = {Xv: l/ E N} is again an equivalence relation (simple exercise), 
and it is finer than any ~. This means that for every LEI and every v E N, 
there is a v. EN. with Xv eXt,. 

We apply this to the disjoint union X = UAEL GA , for a given family (QA)AEL 
of Riemann domains g A = (G A' 7r A, X A) over en with distinguished point. An 
equivalence relation on X is said to have property (P) if the following hold: 

1. X A '" XII' for A, (} E L. 
2. If 0 : [O,lJ -* GA and {3 : [O,lJ -* Gg are continuous paths with 0(0) '" 

{3(0) and 7rA 00 = 7rg 0 {3, then 0(1) '" {3(1). 

We consider the family of all equivalence relations on X with property (P). 
It is not empty, as seen above in the case of two domains. Therefore we can 
construct an equivalence relation (as above) that is finer than any equivalence 
relation with property (P). We denote it by "'p. It is clear that 7rA(x) = 7rg (Y) 
if X EGA' yEGg, and X "'P y. The relation "'P also has property (P), and 
the elements of an equivalence class Xv all lie over the same point z = z(Xv). 
We define G := X! "'P and 7f(Xv) := z(Xv). The equivalence class of all X A 
will be denoted by x. 
8.6 Lemma. Let y E G A and X E Gil be given with 7rg (x) = 7rA(Y) =: z. If 
we choose open neighborhoods U = U(y) eGA' V = Vex) eGg, and an open 
connected neighborhood W = W (z) such that 7r A : U -* Wand 7r 11 : V -* W 
are topological mappings, then for cP := (7rg IV)-1 07rA : U -* V the following 
hold: 

1. cp(y) = x. 
2. If x '" p y, then cp(y') '" p y' for every y' E u. 

PROOF: The first statement is trivial. Now let 0 : [O,lJ -* W be a con­
tinuous path with 0(0) = z and 0(1) = 7rA(y') for some y' E U. Then 
{3 := (7r>.IU)-1 00 and "I := cp 0 {3 are continuous paths in U and V with 
{3(0) = y "'p x = cp(y) = "1(0) and 7rA 0 {3 = 7rg 0 cp 0 {3 = 7rg 0 'Y. Therefore, 
y' = {3(1) "'p 'Y(1) = cp(y'). • 

8.1 Theorem. There is a topology on G such that 

g:= (G,7f,x) 

is a Ri~mann domain over en with distinguished point X, and all maps CPA : 
G A -* G with 

CPA(X) := equivalence class of x 

are continuous and fiber preserving. 
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PROOF: (1) Sets of the form cp,\(M) for M open in G,\ together with G 
constitute a base of a topology for G. To see this it remains to show that the 
intersection of two such sets is again of this form. 

Let McG,\ and NeG (! be open subsets. Then 

cp,\(M) n cp(!(N) = CPo(N n cp;l (cp,\ (M))). 

But cp;l(cp'\(M)) is open in G(}. In fact, let x E cp;l(cp'\(M)) be given, and 
Y E M be chosen such that cp,\(y) = CPo(x) (and therefore y I'Vp x). Let z := 
1I"'\(Y) = 1I"(}(x). Then there exist open neighborhoods U = U(y) and V = V(x) 
and an open connected neighborhood W = W(z) such that 11",\ : U ~ Wand 
11"(}: V ~ W are topological mappings. Let cp:= (1I"oIV)-1 011",\: U ~ V. By 
the lemma, cp(y) = x and cp(y') "'P y' for every y' E U. 

So V' := cp(MnU) is a neighborhood of x in Go, and since cp,,(cp(y')) = cp),(y') 
for every y' E U, it follows that V' c cp;l(cp,\(M». 

Consequently, every CP)' is a continuous map. 

(2) Remark: Since every y EGis an equivalence class cp),(x), we have 

M = U cp,\(cp~l(M» for any subset MeG. 
),EL 

(3) 1r : G ~ en is continuous: Let V c en be an arbitrary open set, and 
M := 7f-l(V). Then cp~l(M) = 1I"~I(V) is open in G)" and therefore M = 

U),EL cp,\(cp~I(M)) is open in G. 

(4) G is a Hausdorff space: Let Yt. Y2 E G with Yl :f: Y2, and Zl := 7f(yt}, 
Z2 := 7f(Y2)' 

There are two cases. If Zl :f: Z2, then there are open neighborhoods V1(Zl) 
and V2(Z2) with VI n V2 = 0. Then 7f- I(Vl) and 7f- I(V2) are disjoint open 
neighborhoods of YI and Y2. If Zl = Z2, then we choose elements Xl E G,\, 
X2 E G(} with Cp,\(XI) = YI and cp(}(X2) = Y2, and since Xl and X2 are not 
equivalent, the above lemma implies that there are disjoint neigborhoods of 
YI and Y2· 

(5) G is connected: Let Y = cp,\(x) be an arbitrary point of G. Then there is 
a continuous path Q : [0, 1] ~ G). that connects the distinguished point x). 

to x. Then CP)' 0 Q connects x to y. 
(6) 7f is locally topological: Let Y = cp).(x) be a point of G, and z = 7f(y) = 
11"). (x). Then there exist open neighborhoods U = U(x) c G). and W = 
W(z) c en such that 11"), : U -+ W is a topological mapping. if := cp).(U) 
is an open neighborhood of y, with 7f(if) = 1I"),(U) = W. In addition, 7flu is 
injective, since 1r 0 cp). = 7r). and 1I").lu is injective. 
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(7) Clearly, the maps cp).. : G).. -+ a are fiber preserving, and it was already 
shown that they are continuous. _ 

Now 9 has the following properties: 

1. {h -< 9, for every A E L. 
2. If 9* is a domain over en with 9).. -< 9* for every A, then 9 -< 9*. 

PROOF: (of the second statement) 

If 9* is given, then there exist fiber preserving mappings cpl : G).. -+ G*. We 
introduce a new equivalence relation ~ on the disjoint union X of the G).. by 

x ~ x' : ~ x E G).., x' E Gu and cpl(x) = cp~{X'). 

It follows from the uniqueness of lifting that ~ has the property (P). Now we 
define a map cp : a -+ G* by 

cp(cp)..{X)) := cpl{x). 

Since'" p is the finest equivalence relation with property (P), cp is well defined. 
Also it is clear that cp is continuous and fiber preserving. _ 

Therefore 9 is the smallest Riemann domain over en that contains all do­
mains 9)... 

Definition. The domain 9 constructed as above is called the union of 
the domains 9).., and we write 9 = U)..EL 9)... 

Special cases: 

1. From 91 -< 9 and 92 -< 9 it follows that 91 u 92 -< 9 .. 
2. From 91 -< 92 it follows that 91 u 92 ~ 92. 
3. 9u9~9. 
4. 91 U 92 ~ 92 U 91. 
5. 91 U (92 U 93) ~ (91 U 92) U 93' 

Example 

Let ~h = (Gb 7r1, xd be the Riemann surface of .jZ with distinguished point 
Xl = (1, 1) and 92 = (G2' id, X2) the schlicht domain 

G2 = { Z E e : ~ < Izl < 2 } 

with distinguished point X2 = 1. 

Then 91 U 92 = (a, 7r, xo), where a = (G l U G2)/ "'p. 

Let Y E 7r11(G2 ) C G1 · Then we can connect y to the point Xl by a path 
a in 7r11 (G2 ), and 7rl{Y) to X2 by the path 7rl 0 a in G2 . But Xl "'P X2, so 
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Y I'V P 11"1 (y) as well. This shows that over each point of G2 there is exactly 
one equivalence class. 

Now let Z E e - {O} be arbitrary. The line through z and 0 in e contains a 
segment Q : [0,1) -+ e* that connects z to a point z· E G2. There are two 
paths QllQ2 in G l with 11"1 OQl = 11"1 OQ2 = Q. Since Ql(l) "'P Q2(1), it 
follows that Ql(O) "'p Q2(O). 

Then it follows that {h u g2 = (e - {O}, id, 1). 

Exercises 

1. For t = (t l , ... , tn) E "f/ define iPt : en -+ en by 

n.. ( ). (itl itn) 'J.'t Zl,.··, Zn .= e Zl, ... , e Zn. 

A Riemann domain g = (G, 11", xo) is called a Reinhardt domain over 
en if 1I"(xo) = 0 and for every t E "f/ - (C'")n there is an isomorphism 
CPt : g -+ g with 11" 0 CPt = iPt 0 11". Prove: 
(a) If G c en is a proper Reinhardt domain, then g = (G, id, 0) is a 

Reinhardt domain over en. 
(b) Let Gll G2 c e2 be defined by 

G l .- p2(0, 1) - {(z,w) : Izi = ~ and Iwl S ~}, 

G2 .- {(z,w) E p2(0, 1) : Iwl < ~}. 

Gluing G l and G2 along {(z, w) : ~ < Izl < 1 and Iwl < ~} one 
obtains a Riemann domain over e2 that is a Reinhardt domain over 
e2 , but not schlicht. Show that this domain can be obtained as the 

union of gl = (Gl , id, (~,~)) and g2 = (G2, id, (~,~»). 
2. Let J = {O, 1,2,3, ... } c No be a finite or infinite sequence of natural 

numbers and Pi = pn (Zi' ri), i E J, a sequence of polydisks in en. 
Assume that for every pair (i,j) E J x J an "incidence number" Cij E 
{O, I} is given such that the following hold: 
(a) Cij = Cji and Cii = 1. 
(b) Cij = 0 if Pi n Pj = 0. 
(c) For every i > 0 in J there is a j < i with Cij = 1. 
(d) If Pi n P j n Pk # 0 and Cij = 1, then Cik = Cjk. 

Points Z E Pi and w E Pj are called equivalent (z '" w) if z = wand 

Cij = 1. Prove that G := U Pi / '" carries in a natural way the structure 
of a Riemann domain over en. 

Let 11" : G -t en be the canonical projection and suppose that there is a 
point Zo E niEJ Pi· Is there a point Xo E G such that (G, 11", xo) can be 
written as the union of the Riemann domains (Pj , id, zo)? 
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9. The Envelope of Holomorphy 
Holomorphy on Riemann Domains 

Definition. Let (G, 7r) be a domain over en. A function I : G -+ e 
is called holomorphic at a point x E G if there are open neighborhoods 
U = U(x) c G and V = V(7r{x» C en such that 7rlv : U -+ V is 
topological and 1 0 (7rlv)-1 : V -+ e is holomorphic. The function I is 
called holomorphic on G if I is holomorphic at every point x E G. 

Remark. A holomorphic function is always continuous. For schlicht do­
mains in en the new notion of holomorphy agrees with the old one. 

Definition. Let (ij = (Gj ,7rj,Xj), j = 1,2, be domains over en with 
distinguished point, and (il -< (i2 by virtue of a continuous mapping 
<.p : Gl -+ G2 . For every function I on G2 we define IIG1 := 1 0 <.p. 

9.1 Proposition. II I: G2 -+ e is holomorphic and (il -< 92, then IIG1 is 
holomorphic on GI . 

PROOF: Trivial, since <.p is a local homeomorphism with 11"2 0 <.p = 7rl. • 

Definition. 
1. Let (G, 7r) be a domain over en and x EGa point. If I is a holo­

morphic function defined near x, then the pair (I, x) is called a local 
holomorphic lunction at x. 

2. Let (Gl,7rI), (G2,7r2) be domains over en, and Xl E G I, X2 E G2 

points with 7rl {xt} = 7r2(X2) =: z. Two local holomorphic functions 
(II, Xl)' (12, X2) are called equivalent if there exist open neighbor­
hoods Ul(Xl) C Gl , U2(X2) C G2, V(z), and topological mappings 
7rl : UI -+ V, 7T2: U2 -+ V with II 0 (7rllvJ-l = h 0 (7r2Iu2)-1. 

3. The equivalence class of a local holomorphic function (I, x) is denoted 
by Ix. 

Remark. If (II)X1 = (h)x2' then clearly, II(XI) = h(x2)' In particular, 
if Gl = G2 , 7Tl = 7r2, and Xl = X2, then it follows that II and 12 coincide in 
an open neighborhood of Xl = X2. 
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9.2 Proposition. Let (Gl. 7rd, (G2,7r2) be domains over en, a,\ : [0, 1] ~ 
G,\ continuous paths with 7r} oat = 7r2oa2. Additionally, let f'\ be holomorphic 
on G,\, for.x = 1,2. If (ft)OII(O) = (12) 012(0), then also UdOlI (1) = (12) 012(1)' 

PROOF: Let M := {t E [O,IJ : UdOI(t) = (h)o2(t)}. Then M", 0, since ° E M. It is easy to see that M is open and closed in [0,1], because of the 
identity theorem for holomorphic functions. So M = [0,1]. • 

9.3 Proposition. Let 9j = (Gj ,7rj,Xj), j = 1,2, be domains over en with 
distinguished point, and 91 -< 92. Then for every holomorphic function f on 
G1 there is at most one holomorphic function F on G2 with FIG I = f, i.e., 
a possible holomorphic extension of f is uniquely determined. 

PROOF: Let F}, F2 be holomorphic extensions of f to G2. We choose neigh­
borhoods U,\(x,\) c G,\ such that the given fiber-preserving map cp : G1 ~ Gz 
maps U} topologically onto U2. We have Fj ° cplul = flu l , for j = 1,2, and 
therefore F11u2 = F21u2. It follows that (Fdx2 = (F2)X2' Since each point of 
G2 can be joined to X2, the equality FI = F2 follows. • 

Envelopes of Holomorphy 

Definition. Let 9 = (G, 7r, xo) be a domain over en with distinguished 
point and § a nonempty set of holomorphic functions on G. 

Let (Q,\hEL be the system of all domains over en with the following 
properties: 

1. 9 -< 9'\ for every .x E L. 
2. For every f E § and every .x E L there is a holomorphic function 

F,\ on G,\ with F'\IG = f. 
Then H~(Q) := U'\EL 9'\ is called the § -hull of 9. 

If $ = a(G) is the set of all holomorphic functions on G, then H(9) := 
HO(G)(Q) is called the envelope of holomorphy of g. If $ = {J} for 
some holomorphic function f on G, then H,(9) := H{!}(Q) is called the 
domain of existence of the function f. 

9.4 Theorem. Let 9 = (G,7r,xo) be a domain over en, $ a nonempty set 
of holomorphic functions on G, and H~(Q) = (G,rr,Io) the §-hull. Then 
the following hold: 

1. 9 -< H~(Q). 
2. For each function f E § there exists exactly one holomorphic function 

F on G with FIG = f. 
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3. /191 = (G 1,71"1, xd is a domain over en such that 9 -< 91 and every lunc­
tion lEg: can be holomorphically extended to G1 , then 91 -< H§(Q). 

PROOF: H$(Q) is the union of all Riemann domains 9>. = (G>., 7f>., x>.) to 
which each function lEg: can be extended. We have fiber-preserving maps 
i.p>. : G -t G>. and CP>. : G>. -t C. 

Let "'P be the finest equivalence relation on X := U>'EL G>. with property 

(p).6 Then C is the set of equivalence classes in X relative to "'p. We define 
a new equivalence relation ~ on X by 

x ~ x' : ~ x E G>., x' E G/J' 7f>.(x) = 7f/J(x' ), and for each IE:F 
and its holomorphic extensions F1 , F2 on G>., respectively G/J' 

we have (F>.)x = (F/J)x l • 

Then ~ has property (P): 

(i)For any A we can find open neighborhoods U = U(xo), V = V(x>.), and 
W = W(7f(xo» such that all mappings in the following commutative dia­
gram are homeomorphisms: 

Then for lEg: and its holomorphic extension F>. on G>. we have that 
F>. 0 (7f>.IV)-l = F>. 0 i.p>. 0 (7fIU)-l = 10 (7fIU)-l is independent of A. 
Therefore, all distinguished points x>. are equivalent. 

(iiJf a : [0,1] -t G>. and {3 : [0,1] -t G /J are continuous paths with a(O) :::= {3(O) 
and 7f>. 0 a = 7fe 0 {3, then (F>.)o(o) = (Fe)!3(o), It follows that (F>')o(l) = 
(Fe)!3(l) as well, and therefore a(l) ~ {3(1). 

Since 9 -< 9>. and 9>. -< H§(Q), it follows that 9 -< H:F(Q). Furthermore, the 
fiber preserving map cp := CP>. 0 i.p>. does not depend on A. 

Now let a function lEg: be given. We construct a holomorphic extension 
F on C as follows: 

If Y E C is an arbitrary point, then there is a A ELand a point V>. E G >. 
such that y = CP>.(y>.), and we define 

If y = CP/J(Ye) as well, then V>. "'p Y/J, and therefore V>. ~ Yi' as well. It follows 
that F>.(y>.) = Fi'(Ye), and F is well defined. 

6 For the definition of property (P) see page 92. 
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We have F 0 cp = F 0 cp).. 0 '{J).. = F).. 0 '{J).. = f on G. This shows that F is 
an extension of f, and from the equation F 0 cp).. = F>. it follows that F is 
holomorphic (since cp >. is locally topological). 

The maximality of H.?(9) follows by construction. • 
The $-hull H$(9) is therefore the largest domain into which all functions 
f E $ can be holomorphically extended. 

9.5 Identity theorem. Let 9j = (Gj , 7rj, Xj), j = 1,2, be domains over 
en, and 9 = (G, Jr, x) the union of 91 and 92. Let Ii : Gj -t e be holomor­
phic functions and 9 = (G, 7r, x) a domain with 9 ~ 9j for j = 1, 2 such that 
hlo = 1210. Then there is a holomorphic function 1 on G with 110; = Ii, 
for j = 1,2. 

PROOF: Let f := hlo = 1210, and $ := {fl· Since 91 ~ H$(Q) and 
92 ~ H$(9), it follows that 91 u 92 ~ H$(Q). 

Let lbe a holomorphic extension of f to 8 (where H$(Q) = (8,1i',x), and 

1:= l1G· Then 

(110;) 10 = 110 = (JIG) 10 = flo = f· 

Therefore, 110; is a holomorphic extension of f to Gj • Due to the uniqueness 

of holomorphic extension, lIo; = Ii for j = 1,2. • 

Pseudo convexity. Let pn C en be the unit polydisk, (pn, H) a Eu­
clidean Hartogs figure, and <P : pn -t en an injective holomorphic map­
ping. Then (<p(pn), <P(H» is a generalized Hartogs figure. l' = (pn, <P, 0) and 
1£ = (H, <P, 0) are Riemann domains with 1£ ~ 1'. We regard the pair (1',1£) 
as a generalized Hartogs figure. 

9.6 Proposition. Let (G, 7r) be a domain over en, (1',1£) a generalized 
Hartogs figure, and Xo EGa point for which 1£ -< 9 := (G, 7r, xo). 

Then every holomorphic function f on G can be extended holomorphically to 
9U'P. 

The proposition follows immediately from the identity theorem. 

Definition. A domain (G,1I") over en is called Hartogs convex if the 
fact that (1', 1i) is a generalized Hartogs figure and Xo EGa point with 
1£ -< 9 := (G, 7r, xo) implies 9 U l' ~ 9. 

A domain 9 = (G, 7r, xo) over en is called a domain of holomorphy ifthere 
exists a holomorphic function f on G such that its domain of existence 
is equal to 9. 
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Remark. If G c en is a schlicht domain, then the new definition agrees 
with the old one. 

9.7 Theorem. 

1. If 9 = (G, 11", xo) is a domain over en and $ a non empty set of holo­
morphic functions on G, then H,(9) is Hartogs convex. 

2. Every domain of holomorphy is Hartogs convex. 

PROOF: Let (P,1I.) be a generalized Hartogs figure with 11. -< H,(9). Then 
every function f E $ has a holomorphic continuation to H,(9) UP. There­
fore, H,(Q) UP -< H,(9). On the other hand, we also have H ~(9) -< 
H,(9) UP. So H$(9) U P ~ H$(9). • 

A Riemann domain (G, 11") is called holomorphically convex if for every infinite 
discrete subset D C G there exists a holomorphic function f on G that is 
unbounded on D. 

9.8 Theorem (Oka, 1953). If a Riemann domain (G, 11") is Hartogs pseu­
doconvex, it is holomorphically convex (and therefore a domain of holomor­
phy). 

This is the solution of Levi's problem for Riemann domains over en. We 
cannot give the proof here. . 

It seems possible to construct the holomorphic hull by adjoining Hartogs 
figures (cf. H. Langmaak, [La60]). It is conceivable that such a construction 
may be realized with the help of a computer, but until now (spring 2002) no 
successful attempt is known. We assume that parallel computer methods are 
necessary. 

Boundary Points. In the literature other notions of pseudoconvexity 
are used. We want to give a rough idea of these methods. 

Definition. Let X be a topological space. A filter (basis) on X is a 
nonempty set 'R of subsets of X with the following properties: 

1. 0 ¢ 'R. 
2. The intersection of two elements of 'R contains again an element of 

the set 'R. 

Example 

1. If Xo is a point of X, then every fundamental system of neighborhoods 
of Xo in X is a filter, called a neighborhood filter of Xo. 
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2. Let (xn) be a sequence of points of X. If we define SN := {xn n ~ 
N}, then 'R := {S N : N E N} is the so-called elementary filter of the 
sequence (xn ). A filter is therefore the generalization of a sequence. 

Definition. A point Xo E X is called a cluster point of the filter 'R if 
Xo E A, for every A E 'R.. The point Xo is called a limit of the filter 'R if 
every element of a fundamental system of neighborhoods of Xo contains 
an element of 'R. 

For sequences the new notions agree with the old ones. 

If f : X ~ Y is a continuous map, then the image of any filter on X is a 
filter on Y, the so-called direct image. 

Definition. Let (G, 11") be a Riemann domain over c;n. An accessible 
boundary point of (G, 11-) is a filter 'R on G with the following properties: 

1. 'R. has no cluster point in G. 
2. The direct image 1f('R.) has a limit Zo E c;n. 
3. For every connected open neighborhood V = V(zo) C c;n there is 

exactly one connected component of 1f-1 (V) that belongs to 'R. 
4. For every element U E 'R there is a neighborhood V = V(zo) such 

that U is a connected component of 1f-1(V). 

Remark. For a Hausdorff space X the following hold: 

1. A filter in X has at most one limit. 
2. If a filter in X has the limit xo, then Xo is the only cluster point of this 

filter. 

(for a proof see Bourbaki, [Bou66J, §8.1) 

Therefore, the limit Zo in the definition above is uniquely determined. 

There is an equivalent description of accessible boundary points that avoids 
the filter concept. For this consider sequences (X.,) of points of G with the 
following properties: 

1. (X.,) has no cluster point in G. 
2. The sequence of the images 1f(X.,) has a limit Zo E en. 
3. For every connected open neighborhood V = V(zo) C c;n there is an 

no E N such that for n, m ~ no the points Xn and Xm can be joined by a 
continuous path 0: : [0, 1J -+ G with 1f 0 0:([0, 1]) C V. 

Two such sequences (X.,), (y.,) are called equivalent if: 

1. lim.,-too 7r(X.,) = lim.,-too 1f(Y.,) = Zoo 

2. For every connected open neighborhood V = V(zo) there is an no su<:h 
that for n, m ~ no the points Xn and Ym can be joined by a continuous 
path a : [O,lJ -+ G with 1f 0 aerO, 1]) C V. 
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An accessible boundary point is an equivalence class of such sequences. 

Let 8G be the set of all accessible boundary points of G. Even if G is schlicht, 
this set may be different from the topological boundary aG. There may be 
points in aG that are not accessible, and it may be happen that an accessible 
boundary point is the limit of two inequivalent sequences. 

We define G := GU8G. If ro = [xnl is an accessible boundary point, we define 
a neighborhood of ro in G as follows: Take a connected open set U c G 
such that almost all Xn lie in U and 7r(U) is contained in a neighborhood 
of Zo := limn-too 7r(xn). Then add all boundary points r = [Ynl such that 
almost all Yn lie in U and limn-too 7r(Yn) is a cluster point of 7r(U). With this 
neighborhood definition G becomes a Hausdorff space, and * : G -+ en with 

{
7r(X) ifxEG, 

*(x) := lim 7r(xn) if x = [xnl E 8G, 
n-too 

is a continuous mapping. 

Definition. A boundary point r E 8G is called removable if there is 
a connected open neighborhood U = U(r) C G such that (U, *) is a 
schlicht Riemann domain over en and 8G n U is locally contained in a 
proper analytic subset of U. 

A subset M C 8G is called thin if for every ro E M there is an open 
neighborhood U = U(ro) C G and a nowhere identically vanishing holo­
morphic function f on U n G such that for every rEM n U there exists 
a sequence (xn) in Un G converging to r such that limn--->oo f(xn) = O. 

Example 

Let G c en be a (schlicht) domain and A eGa nowhere dense analytic 
subset. Then every point of A is a removable boundary point of G' := G - A. 

The points of the boundary of the hyperball Br(O) c en are all not removable. 

Let B be a ball in the affine hyperplane H = {(zo, ... , zn) E en+! : Zo = I}, 
and G c en +1 - {O} the cone over B. Then every boundary point of G is 
not removable, since locally the boundary has real dimension 2n + 1. The set 
M := {O} is thin in the boundary, as is seen by choosing f(zo, . .. , zn) := Zoo 

Analytic Disks. Let (G,7r) be a Riemann domain over en. If rp: D -+ G 
is a continuous mapping, * 0 rp : D -+ en holomorphic, and (* 0 rp)' «() # 0 for 
( E D, then S := rp(D) is called an analytic disk in G. The set bS := rp(oO) 
is called its boundary. 
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Let I := [0,1] be the unit interval. A family (St)tEI of analytic disks cpt(D) 
in G is called continuous if the mapping (z, t) f-t CPt(z) is continuous. It is 
called distinguished if St C G for 0 ~ t < 1 and bSt C G for 0 ~ t ~ 1. 

Definition. The domain G is called pseudoconvex if for every distin­
guished continuous family (8t )tEI of analytic disks in G it follows that 
81 C G. 

The domain G is called pseudoconvex at r E 8G if there is a neighborhood 
U = U (r) C G and an c > 0 such that for every distinguished continuous 
family (St)tEI of analytic disks in G with *(St) C BE(*(r)) it follows 
that St n U c G for tEl. 

As in Cn one can show that a Riemann domain is pseudoconvex if and only 
if it is Hartogs pseudoconvex. 

9.9 Theorem (Oka). A Riemann domain (G,7T) is pseudoconvex if and 
only if it is pseudoconvex at every point r E 8G. 

9.10 Corollary. If (G, 7T) is a domain of holomorphy, then G is pseudo­
convex at every accessible boundary point. 

The converse theorem is Oka's solution of Levi's problem. 

Finally, we mention the following result: 

9.11 Theorem. Let (G,7I") be a Riemann domain over cn, and M C 8G 
a thin set of nonremovable boundary points. If G is pseudoconvex at every 
point of 8G - M, then G is pseudoconvex. 

PROOF: See [GrRe56J, §3, Satz 4. • 
Exercises 

1. Prove that a Reinhardt domain 9 over Cn must be schlicht if it is a 
domain of holomorphy. 

2. Prove that if (G,7T) is a Reinhardt domain, then for every J E O(G) 
there is a power series 8(z) at the origin such that f(x) = S(7T(X» for 
xE G. 

3. Prove that the envelope of holomorphy of a Reinhardt domain is again a 
Reinhardt domain. 

4. Prove that the Riemann surface of the function J(z) = log(z) has just 
one boundary point over 0 E C. 

5. Find a schlicht Riemann domain in C2 whose envelope of holomorphy is 
not schlicht. 

6. Construct a Riemann domain 9 = (G, 7T, xo) over C2 such that for all 
X,Y E 7T- 1 (7T(XO» and every J E O(G) the equality J(x) = J(y) holds. 
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7. Let (G,7I') be a Riemann domain and (G,7r) its envelope of holomorphy. 
If f is a holomorphic function on G and Fits holomorphic extension to 
G, then f(G) = F(C). 

8. Consider 

G .- {(z, w) : ~ < Izi < 1, Iwl < 1 } 

- {(reit,w) : ~ < r < 1, t > 0 and lwl = _t_}. 
2 - l+t 

Determine the envelope of holomorphy of G. 
9. Let G c en be a domain and p : G -+ lit a plurisubharmonic function. 

If Zo is an accessible boundary point of B := {z E G : p(z) < c} cc G, 
then B is pseudoconvex at Zo, in the sense of the last paragraph. 



Chapter III 

Analytic Sets 

1. The Algebra of Power Series 
The Banach Algebra Bt . In this chapter we shall deal more exten­
sively with power series in Cn • Our objective is to find a division algorithm 
for power series that will facilitate our investigation of analytic sets. 

We denote by C[z] the ring of formal power series 2:v>o avzv about the 
origin. Let R+ be the set of n-tuples of positive real numbers. 

Definition. Let t = (tl, ... , tn) E R+ and f = 2:v>o avzv E C[zl We 
define the "number" IIflit by -

IIflit := { ~v2:olav/t" 

Let Bt := {J E C[z] : IIflit < oo}. 

if this series converges, 
otherwise. 

Remark. One can introduce a weak ordering on R+ if one defines 

(tl, ... ,tn)S(t~, ... ,t~):¢::=:> t i St;fori=I, ... ,n. 

For fixed f, the function t H IIflit is monotone: If t S t*, then IIflit S IIflit o • 

Definition. A set B is called a complex Banach algebra if the following 
conditions are satisfied: 

1. There are operations 

+ : B x B ~ B, .: C x B ~ Band 0 : B x B ~ B 

such that 
(a) (B, +, .) is a complex vector space, 
(b) (B, +, 0) is a commutative ring with 1, 
(c) c· (J 0 g) = (c . J) 0 9 = f 0 (c . g) for all f, 9 E Band c E C. 

2. To every fEB a real number Ilfll ~ 0 is assigned that has the 
properties of a norm: 
(a) lie· fll = Icl·llfll, for c E C and fEB, 
(b) Ilf + gil S Ilfll + IlglI, for f, 9 E B, 
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(c) IIfll = 0 ~ f = O. 
3. IIf 0 gil :s: IIfll· IIgll. for f, g E B. 
4. B is complete; i.e., every sequence in B that is Cauchy with respect 

to the norm has a limit in B. 

1.1 Theorem. Bt = {J E C[z~ : IIflit < oo} is a complex Banach algebra 
for any t E 1R+. 

PROOF: Clearly, C[z] is a commutative C-algebra with 1. Straightforward 
calculations show that II ... lIt satisfies the properties (2a), (2b), (2c) and (3). It 
follows that Bt is closed under the algebraic operations, and all that remains 
to be shown is completeness. 

Let (1),) be a Cauchy sequence in Bt with 1>., = E,,>o a~~)zv. Then for every 
c > 0 there is an n = n(c) E N such that for all >., J.L -? n, 

~)a~~) - a;:)lt" = IIfA - fl-'lIt < c. 
,,~o 

Since tV = tr1 ••• t!;.n # 0, it follows that 

c 
I a~'\) - a;:) I < t" for every v E No· 

For fixed v, (a~'\» is therefore a Cauchy sequence in C which converges to a 
complex number a". 

Let f := Ev~o avzv. This is an element of C[z]. 

Given J > 0, it follows that there exists an n = n(8) such that 

LI a~'\) - a~'\+") It" < ~ for>. ? nand J.L E N. 
,,~o 

Let I c No be an arbitrary finite set. For any>. ? n there exists a J.L = J.L(>') E 

N such that EVElla~'\+") - a"lt" < 8/2, and then 

LI a~'\) - av It" < 8, for>. ? n. 
vEl 

In particular, 111>.. - flitS: 8. Thus 1>., - f (and then also J) belongs to B t , 

and (f>..) converges to f. • 

Expansion with Respect to Zl. For the following we require some 
additional notation: 

If v E No, t E 1R+, and z E cn, write 
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V=(Vl,V'), t=(tl,t'), and Z=(ZI,Z'). 

An element I = E",~o a",z'" E C[z] can be written in the form 

00 

1= L f>..z~, with f>..(z') = L a(.~.vl){z'V'. 
A=O v' ~o 

The series f>.. are formal power series in the variables Z2, ... ,Zn' We call this 
representation of I the expansion 01 I with respect to ZI' Now the following 
assertions hold: 

00 

1. IE Bt {=} f>. E Bt' for all ~, and LIlf>..lltd~ < 00. 

2. IIzl' flit = tJ. . IIfllt, for s E No-

PROOF: 

(1) Since we are dealing with absolute convergence, it is clear that 
00 

IIflit = 2)f>.lkt~. 
A=O 

(2) We have z]'· I = E~=o f>..z~+s. The right side is the unique expansion of 
Z]' . I with respect to ZI. Now the formula can be easily derived. _ 

Convergent Series in Banach Algebras. Let B be a complex 
Banach algebra and (fA) a sequence of elements of B. The series E~I!.x 
converges to an element fEB if the sequence Fn := E~=l IA converges to 
I with respect to the given norm. 

1.2 Proposition. Every I E B with III - III < 1 is a unit in B with 

1-1 = ~(1 - f)A and III-III ::; 1- II~ _ III' 

PROOF: Let c := III - III. Then 0 ::; c < 1, and the convergent geometric 
series E~=o cA dominates the series L~=o(1 - f)A. As usual, it follows that 
this series converges to an element 9 E B. We have 

n n 

(1 - (1 - f)) . 2)1 - f)A 
A=O 

n n+l 
2:::(1- f)A - 2:::(1- f)A 
A=O A=1 

1- (1 - f)n+l. 

As n tends to infinity we obtain f . 9 = 1 and 11911 ::; L~o cA = 1/(1 - c:). _ 
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Convergent Power Series. A formal power series I = Lv>o avzv is 
called convergent if it is convergent in some polydisk P around the origin. In 
that case there exists a point t E P n 1R+., and since I converges absolutely 
at t, it follows that I E Bt . On the other hand, if I E Bt , then by Abel's 
lemma I converges in P = pn(o, t). 

1.3 Theorem. 

1. Hn ;= {f E C[z] 3t E 1R+. with 1I/IIt < oo} is the set 01 convergent 
power series. 

2. Hn is a C-algebra. 
3. There is no zero divisor in Hn: II I· g = 0 in Hn , then 1=0 or 9 = O. 

We have already proved the first part, and then the second part follows easily. 
The last part is trivial, since C[z] contains no zero divisors. 

Remark. If I is convergent and 1(0) = 0, then for every E > 0 there is 
atE 1R+. with II/lIt < E. In fact, since 1(0) = 0, we have a representation 
1= Zd1 + ... + znln. If 1I/IIt < 00, then also Il/illt < 00 for i = 1, ... , n, and 

n n 

1I/IIt = L tilililit :s; max(tb· .. , t n ) . Lilli lit-
i=1 i=1 

This expression becomes arbitrarily small as t -t o. 

When we go from B t to H n , we lose the norm and the Banach algebra 
structure, but we gain new algebraic properties: 

1. I E Hn is a unit {::::::} 1(0) '" O. 

PROOF: One direction is trivial. For the other one suppose that 1(0) '" o. 
Then 9 ;= 1·/(0)-1 - 1 is an element of Hn with g(O) = O. So there 
exists a t with IIglit < 1, and 1·1(0)-1 is a unit in B t . Thus I is a unit 
in Hn. • 

2. The set m ;= {f E Hn : 1(0) = O} of all nonunits in Hn is an ideal: 
(a) h,h Em=> h + hEm. 
(b) IE m and hE Hn => h· 1 E m. 

An ideal a in a ring R is called maximal if for every ideal b with a C b C R 
it follows that a = b or b = R. 

One can show that in any commutative ring with 1 :j:. 0 there exists a maximal 
ideal. If a c R is maximal, then R/ a is a field. 

1.4 Theorem. The set m 01 nonunits is the unique maximal ideal in Hn , 

and Hn/m ~ C. 

PROOF: If a c Hn is a proper ideal, then it cannot contain a unit. Therefore, 
it is contained in m. The homomorphism <p : Hn -t C given by 1 t--t 1(0) is 
surjective and has m as kernel. • 
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Distinguished Directions. An element I E Hn is called Zl -regular 01 
order k if there exists a power series lo(zt} in one variable such that: 

1. I(Zl, 0, ... ,0) = zf . lo(zt}. 
2. 10(0) i: O. 

If I is zl-regular of some order, I is called zl-regular. 

Let I(z) = E~=o f>.zr be the expansion of I with respect to Zl. Then I is 
zl-regular of order k if and only if 10(0') = ... = lk-l(O') = 0 and Ik(O') i: o. 
I is zl-regular if and only if I(Zl, 0, ... ,0) ¢ O. 

We often need the following properties: 

1. I is a unit in Hn <==* I is zl-regular of order O. 
2. If />.. is zl-regular of order k)." for>. = 1,2, then It . h is zl-regular of 

order kl + k2 • 

There are elements I i: 0 of Hn that 1(0) = 0 which are not zl-regular, even 
after exchanging the coordinates. 

Definition. Let e = (C2,"" Cn) be an element of en-I. The linear 
map ffc : en ~ en with 

is called a shear. 

The set E of all shears is a subgroup of the group of linear automorphisms 
of en, with ffO = idcn. 

We can write ffc(Z):= Z + Zl' (0, e). In particular, we have ffc(et} = (l,e). 

1.5 Theorem. Let IE Hn be a nonzero element. Then there exists a shear 
ff such that I 0 ff is Zl -regular. 

PROOF: Assume that I converges in the polydisk P. If we had I(Zb z') = 0 
for every point (Zb z') E P with Zl i: 0, then by continuity we would have 
1= 0, which can be excluded. Therefore, there exists a point a = (aI, a') E P 
with al i: 0 and I(a) i: O. We define e := (al)-l . a' and ff := ffc . Now, 

So f 0 ff(Zl. 0') ¢ 0, and f 0 ff is zl-regular. • 
Remark. If It, . .. ,I, are nonzero elements in Hn , then I := It ... II i: 0 
converges on a polydisc P, and there exists a point a E P with I(a) i: 0 and 
al ¥ O. As in the proof above we obtain a shear ff such that It 0 ff, ••• , b 0 ff 

are zl-regular. 
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Exercises 

1. Let I(z) = Lv2:o avzv be a formal power series. 

(a) Prove the "Cauchy estimates": I E B t ~ lavl ::; IIIIIt/tV for 
almost every v. 

(b) Prove that if there is a constant C with lavlsv ::; C, then IE B t for 
t ::; s. 

(c) Let In(z) = Lv>o av,nzv be a sequence of power series with IIIniis ::; 
C. If every sequence (av,n) converges in C to a number av , then 
show that (fn) is a Cauchy sequence in Bt converging to I(z) = 
LU2:o avzu , for every t ::; s. 

2. The Krull topology on Hn is defined as follows: A sequence (fn) converges 
in Hn to I if for every kEN there is an no with I - In E mk for n ~ no. 
What are the open sets in Hn? Is Hn with the Krull topology a Hausdorff 
space? 

3. Let B be a complex Banach algebra with 1. Show that for every I E B 
the series exp(f) = L;=:'=o r In! is convergent, and that exp(f) is a unit 
in B. 

4. If I is a formal power series and I = L~=OPA its expansion into homo­
geneous polynomials, then the order of I is defined to be the number 

ord(f) := min{s E No : Ps t= O}. 

Now let (fn) be a sequence of formal power series such that for every 
kEN there is an no with ord(fn) ~ k for n ::::: no· Show that E;=:'=1 In is 
a formal power series. Use this technique also for the following: 

If 91, ... , 9m are elements of Hn with ord(9d ~ 1, then 

Lap. wp. I--t L aP.(91 (z), ... ,9m(Z))P. 
p.2:0 p.2:0 

defines a homomorphism <p: Hm -+ Hn of complex algebras. 

2. The Preparation Theorem 
Division with Remainder in Bt . Let a fixed element t E lR+. be 
chosen. When no confusion is possible we write B in place of Bt , B' in place 
of Bt " and II I II in place of II I lit- The ring of polynomials in ZI with coefficients 
in B' is denoted by B'[ZI]. 

2.1 Weierstrass Formula in B t • Let I and 9 = L~=OgAZf be two 
elements 01 B. Assume that there exists an s E No and a real number e with 
o < e < 1 such that 98 is a unit in B' and II zf - 9 . 9;; 111 < e . tf . 
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Then there exists exactly one q E B and one r E B'[ZIJ with deg(r) < s such 
that 

with 

and 

f = q. 9 + r, 

1 
IIrll < Ilfll· 1 _ EO· 

PROOF: Let us first try to explain the idea of the proof. If h E B, then there 
is a unique decomposition h = qh ·zf +rh, where rh E B'[ZIJ and deg(rh) < s. 
lf 9 is given, we define an operator T = Tg : B -+ B by 

T(h) := 9 . g;1 . qh + rho 

lfT were an isomorphism, then f = T(T- 1 f) = g. (g;l· qr_1 f )+rr- 1 f would 
be the desired decomposition. One knows from Banach space theory that T is 
an isomorphism if idB - T is "small" in some sense. Since lI(idB - T)(h)1I = 
II zf - gg; 111 . IIqh II, one can, in fact, conclude from the hypothesis of the 
theorem that idB - T is "small." Now T- 1 = E~o{idB - T)A. Since (idB­
T)0 f = f and (idB - T) 1 f = (zf - gg; 1 )qf, we obtain the following algorithm: 

Inductively we define sequences fA' qA, r A beginning with fo = f = ziqo + ro· 
lf fA = ZfqA + rA has been constructed for some ), ~ 0, then we define 

and obtain qA+l and r A+l by the unique decomposition 

1>.+1 = zfqA+l + r>.+l, r>.+1 E B'[ztJ with deg(T>.+d < s. 

If we define q := E~=o g;lqA and r := E~=o TA, then 

00 00 

00 

00 

L (gg;lqA + rA) = g. q + T. 
A=O 
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When using this algorithm we do not need the abstract transformation T 
and the Banach theory of such transformations. However, it is necessary to 
prove the convergence of all of the series that were used. 

For this let h := -(zl- gg;I). Then IIhll < c' ti and gg;1 = zl + h. 

From J>.. = zlq).. + r).. it follows that Ilr)..1I ~ Ilf)..1I and IIq)..1I ~ tIs. IIf)..lI· 
Furthermore, from f)..+! = -h· q).. it follows that 

11/>-.+111 ~ Ilhll·lIq)..1I < c ·llf)..ll· 

Thus IIf)..11 < c).. ·/1111 and "£'::=0 f).. converges. 

Since 
IIg;1q)..11 < c)..tI S llg;111·llfll and Ilr)../i < c).. IIfll , 

the series q = "£'::=0 g;1q).. and r = "£'::=0 r).. also converge. 

The estimates for /lgsql/ and 11111 follow readily: 

00 00 1 
~ Lllq)..11 ~ tlSllfll' Lc).. = tlSllfl/· 1-c' 

)..=0 )..=0 
00 1 

< Ll/r)..1/ ~ Ilfl/· 1-c' 
)..=0 

I/rl/ 

It still remains to show uniqueness. Assuming that there are two expressions 
of the form 

it follows that 

and 

lI(ql - q2)gszfll < lI(ql - q2)gszf + (rl - r2)11 
I/(ql - q2)gsh/l 

< c' tf ·1I(q1 - q2)gsll 
= c ·1I(ql - q2)gszfll· 

2.2 Corollary. If the assumptions of the theorem are satisfied and if in 
addition f E B'[ZlJ, 9 E B'[ZlJ, and deg(g) = s, then q E B'[ZlJ with q = 0 
or deg(q) = deg(f) - s. 

PROOF: Let d := deg(f). For d < s we have the decomposition f = O· g+ f· 
Hence we have to consider only the case d ~ s. 
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We assume that deg(fJ') :::; d for f.J. = 0, ... ,A. Then deg(q~) :::; d - s, and 
therefore 

deg(f~+d = deg(J~ - r~ - gg;lq~) :::; max(d, s - 1, s + (d - s» = d. 

Hence deg(!A) :::; d and deg(q~) :::; d-s for all A. It follows that deg(q) :::; d-s, 
and from f = g. q + r we can conclude that deg(q) = d - s. • 

The Weierstrass Condition. We use the notation from above. 

Definition. Let s E No. An element 9 = E~o g~z~ E B satisfies the 
Weierstrass condition (or W-condition) at position s if: 
1. g8 is a unit in B'. 
2. /lzi - gg;I/1 < !ti. 

Let R be an integral domain.! A polynomial f(u) = fsus + fs_1Us-1 + ... + 
It u + fo E R[u] is called monic or normalized if fs = 1. A polynomial 
f E B'[zd is normalized if and only if it is zl-regular of some order k :::; s. 

2.3 Weierstrass preparation theorem in Bt • If 9 E B satisfies the W­
condition at position s, then there exists exactly one normalized polynomial 
wE B'[zd of degree s and one unit e E B such that 9 = e . w. 

PROOF: We apply the Weierstrass formula to f = zi. There are uniquely 
determined elements q E B and r E B'[ZI] with zi = q. 9 + r and deg(r) < s 
(we choose an c < ! such that IIzi - gg;111 < ctv. 

But then zi - gg;1 = (q - g;l)g + r is a decomposition in the sense of the 
Weierstrass formula. Therefore, we have the estimate 

IIgsq -111 :::; t1Sllzi - gg;I/1' -11 < -Ie < l. 
-c -c 

That means that gsq and hence q is a unit in B. Let e:= q-l and w:= zi -r. 
Then w is a normalized polynomial of degree s, and e· w = q-l(zi - r) = g. 

If there are two decompositions 9 = el(zi - rt} = e2(zi - r2), then 

From the uniqueness condition in the Weierstrass formula it follows that 
el = e2 and rl = r2' • 

2.4 Corollary. If 9 is a polynomial in ZI, then e is also a polynomial in 
ZI· 

1 An integral domain is a commutative nonzero ring in which the product of two 
nonzero elements is nonzero. 
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PROOF: We use the decomposition zf - gg-;1 = (q - g-;l)g + r. From the 
Weierstrass formula it follows that 

Ilrll ~ IIzi - gg;II1' _1_ < tf. _c:_ < tf. 
1-c: 1-c: 

Since Ws = 1, it is also true that 

IIzi - ww;111 = IIzi - wll = IIrll < tf· 
Therefore, 9 = e . w + ° is a decomposition in the sense of the Weierstrass 
formula, and the proposition follows from Corollary 2.2. • 

The Weierstrass preparation theorem serves as a "preparation for the exami­
nation of the zeros of a holomorphic function." If the function is represented 
by a convergent power series g, and there exists a decomposition 9 = e·w with 
a unit e and a "pseudopolynomial" W(ZI' z') = zf + Al (z')zf-l + ... + As{z'), 
then 9 and w have the same zeros. However, the examination of w is simpler 
than that of g. 

Weierstrass Polynomials. Now we turn to the proof of the Weierstrass 
formula and the preparation theorem for convergent power series. 

The ring Hn is an integral domain with 1. If IE Hn and I(z) = I:r=o f>..(z')zt 
with f>.. = 0 for A > s, then I is an element of the polynomial ring Hn-dzl]. 
If Is =I 0, then deg(f) = s. If I is normalized and I>.{O') = 0 for A < s, then 
I is zl-regular exactly of order s, and l(z},O') = zf, 

Definition. A normalized polynomial w E Hn-dzl] with deg{w) = s 
and w{z}, 0') = zf is called a Weierstrass polynomial. 

We have seen that a normalized polynomial wE Hn - 1 [zI! with deg{w) = s is 
a Weierstrass polynomial if and only if it is zl-regular of order s. It follows 
easily that the product of two Weierstrass polynomials is again a Weierstrass 
polynomial. 

If 9 = e· w is the product of a unit and a Weierstrass polynomial of degree s, 
then we also have that 9 is zl-regular of order s, since the unit e is zl-regular 
of order O. We now show that conversely, every zl-regular convergent power 
series is the product of a unit and a Weierstrass polynomial. 

2.5 Theorem. Let 9 E Hn be zl-regular 01 order s. Then lor every c: > 0 
and every to E R+ there exists at:::; to such that 9 lies in Bt , gs is a unit 
in Bt" and IIzf - gg-;ll1t :::; c:. tf· 

PROOF: Let 9 = 'Er=og>.zt be the expansion of 9 with respect to Zl. Then 
g>.(O') = 0 for A = 0,1, ... , s - 1 and gs(O') =I- O. 

Since 9 is convergent, there exists a tl :::; to with IIglitl < 00. Then g>. E Bt~ 
for all A, and in particular, 
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fez') := gs(O')-lgs(Z') - 1 E Bt~. 

Now, f(O') = 0. Thus there exists a t2 :::; t1 such that IIflitl < 1 for all t :::; t2' 
Therefore, g8 is a unit in Bt" and 9 an element of B t . 

Let h := zf - gg;l. Then h E B t for all t :::; t 2, and we have an expansion 
h = L~=o h).z; with hs = 0, h). = _g).g;l for A =I: s, and h).(O') = ° for 
A = O,l, ... ,s - 1. 

If t1 > ° is sufficiently small, then 

00 (Xl 

II L h).z~ lit ~ t1+1 ·11 L h).zt-s - 1 1It2 < tf . ~, 
).=s+l ).=8+1 

for all t = (t1' t') :::; t2. And since h).(O') = ° for A = 0, ... , s - 1, for every 
small t1 there exists a suitable t' such that 

8-1 8-1 

II L h).z~ lit = Lllh).lkt~ < tf . ~. 
).=0 ).=0 

Consequently, /lhll t :::; € . tf. • 
Remark. In a similar manner one can show that if gl, ... , gN E C[z] are 
convergent power series and each gi is zl-regular of order Si, then for every 
€ > 0 there is an arbitrary small t E lR~ for which 

gi E B t , (gi)s; is a unit in Bt' and IIZ~i - gi(gi);.lli :::; €. t~;. 

Weierstrass Preparation Theorem 

2.6 Theorem (Weierstrass division formula). Let 9 E Hn be zl-regular 
of order s. Then for every f E Hn there are uniquely determined elements 
q E Hn and r E Hn-dzd with deg(r) < s such that 

f = q. 9 + r. 

If f and 9 are polynomials in Zl with deg(g) = s, then q is also a polynomial. 

PROOF: There exists atE lR+ and an E with 0 < E < 1 such that f and 9 
lie in Bt , g8 is a unit in Bt', and IIzf - gg;ll1t :::; €. tf, It then follows from 
the division formula in Bt that there exist q and r with f = q. 9 + r. 

Let two decompositions of f be given: 
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We can find atE IR+. such that f, qI, q2, r}, r2 lie in Bt and 9 satisfies the 
W-condition in Bt . From the Weierstrass formula in Bt it follows that ql = q2 
and rl = r2. • 

2.7 Theorem (Weierstrass preparation theorem). Let 9 E Hn be Zl­

regular of order s. Then there exists a uniquely determined unit e E Hn and 
a Weierstrass polynomial wE Hn-dzll of degree s such that 

9 = e ·w. 

If 9 is a polynomial in Zl, then e is also a polynomial in Zl. 

PROOF: There exists atE IR+. such that 9 satisfies the W-condition in Bt . 

The existence of the decomposition g = e . w with a unit e and a normalized 
polynomial w of degree s therefore follows directly from the preparation the­
orem in Bt . Since 9 is zl-regular of order s, the same is true for w. So w is a 
Weierstrass polynomial. 

Now, w has the form w = zl-r, where r E Hn-I[Zll and deg(r) < s. Thus, if 
there exist two representations 9 = el(zi - rl) = e2(zi - r2), it follows that 
zf = ell. 9 + rl = e21 . g + r2· The Weierstrass formula implies that el = e2, 
rl = r2 and therefore WI = W2. • 

Exercises 

1. Write a computer program to do the following: Given two polynomials 
f(w, x, y) (of degree n in wand degree m in x and y) and g(w, x, y) with 
g(w, 0, 0) = w S , the program uses the Weierstrass algorithm to determine 
q and r (up to order m in x and y) such that f = q . 9 + r. 

2. Let f : pn-l X D -+ C be a holomorphic function and 0 < r < 1 be a real 
number such that ( H f (z' , () has no zero for z' E pn-l and r :S I (I < l. 
Then prove that there is a number k such that for every z' E pn-l 
the function ( H f(z', () has exactly k zeros (with multiplicity) in D. 
Use this statement to give an alternative proof for the uniqueness in the 
Weierstrass preparation theorem. 

3. Show that the implicit function theorem for a holomorphic function f : 
en xC -+ e with f(O) = 0 and fZn (0) =f. 0 follows from the Weierstrass 
preparation theorem. 

3. Prime Factorization 
Unique Factorization. Let I be an arbitrary integral domain with 
1. Then 1* := 1- {O} is a commutative monoid with respect to the ring 
multiplication, and the set IX of units of I is an abelian group. 
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Let a, b be elements of 1*. We say that a divides b (symbolically a I b) if there 
exists e E 1* with b = a . e. We can also allow the case b = O. Then every 
element of 1* divides 0, and a unit divides every element of I. 

Definition. Consider an element a E 1* - I x . 

1. a is called irreducible (or indecomposable) if from a = al . a2 (with 
at, a2 E 1*) it follows that al E IX or a2 E IX. 

2. a is called prime if alaIa2 implies that alaI or ala2· 

Irreducible and prime elements can be defined in an arbitrary commutative 
monoid. In 1* every prime element is irreducible, and in some rings (for 
example, in Z or in lR[X]) it is also the case that every irreducible element is 
prime. In zlRJ one can find irreducible elements that are not prime. 

Definition. I is called a unique factorization domain (UFD) if every 
element a E ]X can be written as a product of finitely many primes. 

One can show that the decomposition into primes is uniquely determined up 
to order and multiplication by units. In a UFD every irreducible element is 
prime and any two elements have a greatest common divisor (gcd). 

Every principal ideal domain2 is a UFD, and in this case the greatest common 
divisor of two elements a and b can be written as a linear combination of a 
and b. For example, Z and K[X] (with an arbitrary field K) are principal 
ideal domains. So in particular, qX] is a UFD. 

Gauss's Lemma. Let I be an integral domain. Two pairs (a, b), (e, d) E 
I x 1* are called equivalent if ad = be. The equivalence class of a pair (a, b) 
is called a fraction and is denoted by a/b. The set of all fractions has the 
structure of a field and is denoted by Q(1). We call it the quotient field of I. 

The set of polynomials f (u) = ao +al u+· .. +an un in u with coefficients ai E I 
constitutes the polynomial ring Ilu]. The set IO[u] of monic polynomials in 
Ilu] is a commutative monoid. Therefore, we can speak of factorization and 
irreducibility in 1° [u]. 

3.1 Gauss's lemma). Let I be a unique factorization domain and Q = 
Q(I). If WI, W2 are elements of QOlu] with WIW2 E IO[u], then w).. E IOlu] for 
A = 1,2. 

PROOF: For A = 1,2, w).. = a)..,o + a)..,lu + ... + a)..,s"._IUs.>.-l + us.>. with 
a)..,1/ E Q. Therefore, there exist elements d).. E I such that d).. . w).. E Ilu]. We 
can choose d).. in such a way that the coefficients of d).. . w).. have no common 
divisor (such polynomials are called primitive). 

2 A principal ideal domain is an integral domain in which every ideal is generated 
by a single element. 
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We define d := d1d2 and assume that there is a prime element p with pi d. 
Then p doesn't divide all coefficients d)..a)...v of d>. . w>.. Let /-L>. be minimal 
such that p t d>.a>..I'Jo.' Then 

(d1wJ)(d2W2) = ... + U1'1+1'2 (dal,l'l a2.1'2 + something divisible by p) + .... 

Since J is a UFD, p doesn't divide (d1al.I'J(d2a2,!'J. So the coefficient of 
Ul'l +1'2 is not divisible by p. But since WIW2 has coefficients in J, every divi­
sor of d must divide every coefficient of d . WIW2 = (d1wt}(d2w2)' This is a 
contradiction!3 

When d has no prime divisor, it must be a unit. But then d1 and d2 are also 
units, and w>. = d-;:l(d>.w>.) belongs to JO[u]. _ 

3.2 Corollary. Let J be a unique factorization domain. 

1. Jfa E JO[u] is prime in Q[uJ, then it is also prime in [O[u]. 
2. Jf a E [O[u] is reducible in Q[uJ, then it is reducible in JO[u]. 
3. Every element of JO[u] is a product of finitely many prime elements. 
4. Jf a E [O[u] is irreducible, it is also prime. 

PROOF: 1. Let a E JO[u] be a prime element in Q[u]. If a divides a product 
a'a" in [O[u], then it does so in Q[u]. Therefore, it divides one of the factors 
in Q[u]. Assume that there is an element bE Q[u] with a' = abo By Gauss's 
lemma b E JO[u]. This shows that a is prime in [O[u]. 

2. Let a E JO[u] be a product of nonunits all a2 E Q[u]. If Ci E Q is the 
highest coefficient of ai, then CIC2 = 1, c;lai E QO[u] and a = (c11at}(c21a2)' 
By Gauss c;lai E [O[u], and these elements cannot be units there. So a is 
reducible in JO[u]. 

3. Every element a E JO[u] is a finite product a = al ... al of prime elements 
of Q[u]. One can choose the ai monic, as in (2). Using Gauss's lemma several 
times one shows that the ai belong to [O[u]. By (1) they are also prime in 
JO[u]. 

4. Let a E [O[u] be irreducible. Since it is a product of prime elements, it 
must be prime itself. _ 

Remark. In the proof we didn't use that [ is a unique factorization do­
main. We needed only the fact that Q[u] is a UFD (since Q is a field) and 
the statement of Gauss's lemma: If all a2 E QO[u] and ala2 E [O[uj, then 
ai E [O[uj for i = 1,2. 

3 The original version of Gauss's lemma states that the product of primitive poly­
nomials is again primitive. The reader may convince himself that this fact can 
be derived from our proof. 



3. Prime Factorization 119 

Factorization in Hn. Now the above results will be applied to the case 
I=Hn. 

Definition. Let 1 E H n , f = E~op~ be the expansion of f as a 
series of homogeneous polynomials. One defines the order of 1 by the 
number 

ord(f) := min{A E No : p~ =F O} and ord(O) := 00. 

(See also Exercise 1.4 in this chapter) 

Then the following hold: 

1. ord(f) ~ 0 for every 1 E Hn. 
2. ord(f) = 0 ~ f is a unit. 
3. ord(JI . h) = ord(JI) + ord(12)· 

3.3 Theorem. Hn is a unique factorization domain. 

PROOF: We proceed by induction on n. 

For n = 0, Hn = e is a field, and every nonzero element is a unit. In this 
case there is nothing to show. 

Now suppose that the theorem has been proved for n - 1. Let f E Hn he a 
nonunit, f =F o. If f is decomposable and 1 = h ·12 is a proper decomposition, 
then ord(f) = ord(ft} + ord(12), and the orders of the factors are strictly 
smaller than the order of f. Therefore, f can be decomposed into a finite 
number of irreducible factors. 

It remains to show that an irreducible f is prime. Assume that f I hh, with 
fA E (Hn)* for A = 1,2. There exists a shear (j such that h 0 (j, 12 0 (j and 
f 0 (j are zl-regular. If we can show that f 0 (j divides one of the 1~ 0 u, then 
the same is true for f and fA. Therefore, we may assume that h, 12, and f 
are zl-regular. 

By the preparation theorem there are units el, e2, e and Weierstrass polyno­
mials WI,W2,W such that h = el·WI, h = e2·W2, and f = e·w. Thenw divides 
WIW2. If WIW2 = q . w with q E Hn, then the division formula says that q is 
uniquely determined and a polynomial in Zt. So w divides WtW2 in H~_t[zll. 
Since w is irreducible in Hn, it must also be irreducible in H~_dzl]. By the 
induction hypothesis H n - 1 is a UFD, and therefore w is prime in H~_l[Zl]. It 
follows that wlwi or wlw2 in H~_t[zt] and consequently in Hn. This means 
that fiJI or 1112 in Hn. • 

Hensel's Lemma. Let w E Hn[u] be a monic polynomial of degree s. 
There is a polydisk P around 0 E en where all the coefficients of w converge to 
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holomorphic functions. Therefore, we can look at W as a parametrized family 
of polynomials in one. variable u. By the fundamental theorem of algebra 
w(O, u) splits into linear factors, and the same is true for every w(z, u) with 
z E P. We now show that such splittings are coherently induced by some 
splitting of W in H~[u], at least in a neighborhood of O. 

3.4 Hensel's lemma. Let w(O, u) = TI~=l (u - CA)S). be the decomposition 
into linear factors (with CII f CIJ for v f JL and SI + ... + Sl = s). Then there 
are uniquely determined polynomials WI,'" ,WI E H~[ul with the following 
properties: 

1. deg(wA) = SA, for>. = 1, ... , l. 
2. W>..(O,u) = (u-c>..)s).. 
3. W = WI· ... ·WI. 

PROOF: We proceed by induction on the number l. The case 1 = 1 is trivial. 
We assume that the theorem has been proved for l - 1. 

First consider the case w(O, 0) = O. Without loss of generality we can assume 
that Cl = O. Then w(O, u) = us, . h(u), where h is a polynomial over C with 
deg(h) = S - Sl and h(O) f O. So W is u-regular of order SI, and there exists 
a unit e E H~[ul and a Weierstrass polynomial WI with W = e . WI. Since 
WI (0, u) = us', it follows that 

I 

e(O, u) = h(u) = II (u - cAY>'· 
>"=2 

By induction there are elements Wz, ... ,WI E H~[ut with deg(w>..) = S>.., 
w>..(O,u) = (u - c>..)s>. and e = Wz" ·WI. Then W = WIWZ" 'WI is the de­
sired decomposition .. 

If w(O,O) f 0, then we replace W by w'(z,u) := w(z,u + Cl) and obtain a 
decomposition w' = w~ ... wf as above. Define 

This gives a decomposition w = WI ... WI in the sense of the theorem. The 
uniqueness statement also follows by induction. • 

The Noetherian Property. Let R be a commutative ring with 1. 
An R-module is an abelian group M (additively written) together with a 
composition R x M -+ M that satisfies the following rules: 

1. r(xt + X2) = rXl + rX2 for r E Rand Xl,X2 EM. 
2. (rl + r2)x = rlX + r2X for rl, rz E R and x E M. 
3. rl(rZx) = (rlr2)x for rl, rz E R and x E M. 
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4. 1· x = x for x E M. 

These are the same rules as those for vector spaces (and the elements of 
a module are sometimes also called vectors). However, it may happen that 
rx = 0 even if r #- 0 and x #- O. Therefore, in general, an R-module has no 
basis. So-called free modules have bases by definition. -An example is the free 
module Rq := R x ... x R (q times), with a basis of unit vectors. An example 
of a nonfree module is the Z-module M := Zj6Z, where 2 . 3 = 2 . 3 = O. 

If M is an R-module, then a submodule of M is a subset N c M with the 
following properties: 

1. x,yEN ==} x+yEN. 
2. r E R and x EN==} rx E N. 

A submodule of an R-module is itself an R-module. 

Example 

The ring R is also an R-module. The composition is the ordinary ring mul­
tiplication. In this case the submodules of R are exactly the ideals in R. An 
R-module M is called finite if there is a finite set {Xl, ... , X n } C M such 
that every x E M is a linear combination of the Xi with coefficients in R. The 
free module W is obviously finite. But Zj6Z is also finite, being generated 
by the class T. 

Definition. An R-module M is called noetherian if every submodule 
N C M is finite. 

A ring R is called noetherian if it is a noetherian R-module. This means 
that every ideal in R is finitely generated (in the sense of a module). 

3.5 Proposition. Let R be a noetherian ring. Then any ascending chain 
of ideals 

10 C II C 12 C ... c R 

becomes stationary, i.e., there is a ko such that h = Iko for k ;::: ko. 

PROOF: The set J := U~o Ik is obviously an ideal. Since R is noetherian, 
J is generated by finitely many elements II, ... , IN. Each Iv lies in an ideal 
h". If ko = max(kl"" ,kN), then all Iv are elements of Iko' So Ik = Iko for 
k;::: ko. • 

3.6 Theorem. If R is a noetherian ring, then Rq is a noetherian R-module. 

PROOF: We proceed by induction on q. 



122 III. Analytic Sets 

The case q = 1 is trivial. Assume that q 2 2 and the theorem has been proved 
for q - 1. Let M C RQ be an R-submodule. Then 

1:= {r E R : 3r' E RQ-l with (r,r') EM} 

is an ideal in R and as such is finitely generated by elements rl, ... ,rl. For 
every r), there is an element r~ E RQ-l such that r), := (r)" r~) lies in M. 

The set M' := M n ({O} x RQ-l) can be identified with an R-submodule 
of Rq-l, and by the induction assumption it is finite. Let r), = (0, r~), A = 
l + 1, ... ,p, be generators of M'. 

An arbitrary element x E M can be written in the form x = (Xl, x') with 

Xl E I. Then Xl = I:~=l a),r)" a), E R, and 

1 1 

x- La)'r)' = (O,x' - La),r~) EM'. 
),=1 ),=1 

That is, there are elements al+l> ... , ap E R such that 

I p 

x-La)'r)'= L a),r),. 
),=1 ),=1+1 

Hence {rl' ... , r p} is a system of generators for M. • 

3.7 Ruckert basis theorem. The ring Hn 01 convergent power series is 
noetherian. 

PROOF: We proceed by induction on n. For n = 0, Hn = C, and the 
statement is trivial. We now assume that n 2 1 and that the theorem has 
been proved for n - 1. Let I C Hn be a nonzero ideal and 9 =J 0 an element 
of I. Without loss of generality we can further assume that 9 is zl-regular of 
order s. 

Let 1> = 1>g : Hn -+ (Hn_d S be the Weierstrass homomorphism, which is 
defined in the following manner: For every 1 E Hn there are uniquely defined 
elements q E Hn and r = ro + rlzl + ... + rs_lzf- l E Hn- 1[Zl) such that 
1 = q . g + r. Let 1>(1) := (ro, ... ,rs-r). 

Now, 1> is an Hn_l-module homomorphism. By the induction hypothesis 
Hn- 1 is noetherian, and so (Hn_I)S is a noetherian Hn_I-module. Since M := 

1>(1) is an Hn_1-submodule, it is finitely generated. Let r), = (r~t), ... , r~~ . .\), 
A = 1, ... , l, be generators of M. 

If 1 E I is arbitrary, then 1 = q·g+r with r = rO+rlzl + .. . +rs-lz:-l, and 
there are elements al, ... , al E Hn - l such that (ro, rl, .. ·, rs-r) = 1>g(l) = 

I:~=l a),r),. Hence we obtain the representation 
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The set {g, r(l}, ••• , r(l)} with r(A) = r6A ) + riA) Zl + ... + r~~.\ z:-l is a system 
of generators of I. • 

Exercises 

1. Prove that O(C) is not a UFD. 
2. Let M be a finite Hn-module, and m c Hn the maximal ideal. If M = 

m . M, then M = O. 
3. Let f : pn-l X D ---+ e be a holomorphic function such that for every 

z' E pn-l there is a unique solution Zn = cp(z') E D of the equation 
f(z', zn) = O. Use function theory of one variable to show that cp is 
continuous, and use Hensel's lemma to show that cp is holomorphic. 

4. Let f E Hn be zl-regular, f = e . w with a unit e and a Weierstrass 
polynomial w E Hn-dzlJ. Prove that f is irreducible in Hn if and only 
if w is irreducible in H n - l [ZlJ. 

5. Show that f(z, w) := z2 - w2 (1- w) is irreducible in the polynomial ring 
C[z, wJ and reducible in Hn. 

6. Let f E Hn be given with fZi (0) =I- 0 for some i. Prove that f is irreducible 
in Hn. 

4. Branched Coverings 
Germs. Let Been be an open set and Zo E B a fixed point. A local 
holomorphic function at Zo is a pair (U, f) consisting of an arbitrary neigh­
borhood U = U(zo) c B and a holomorphic function f on U. Two such 
functions f : U ---+ e and 9 : V ---+ e are called equivalent if there is a neigh­
borhood W = W(zo) c Un V such that flW = glW. The equivalence class 
of a local holomorphic function (U, f) at Zo is called a germ (of holomorphic 
functions) and is denoted by fzo- The value f(zo) as well as all derivatives of 
f at Zo (and therefore the Taylor series of f at zo) are uniquely determined 
by the germ. On the other hand, if a convergent power series at Zo is given, 
then this series converges in an open neighborhood of Zo to a holomorphic 
function f, and the germ of f determines the given power series. So the set 
Ozo of all germs of holomorphic functions at Zo can be identified with the e­
algebra of all convergent power series of the form L..,>o(Z-zo)v. This algebra 
is isomorphic to the algebra Hn and has the same algebraic properties. 

Let fzo =I- 0 be any element of Ozo with f(zo) = O. Then there are a neigh­
borhood U(zo) c B, a neighborhood W(O) C en - l , a holomorphic function 
e on U, and holomorphic functions al, ... , as on W such that after a suitable 
change of coordinates the following hold: 
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1. e(z) -=I 0 for every z E U. 
2. fez) = e(z)· w(z - zo) for W(WI' w') = wi + al(w')zf-1 + ... + as(w'). 

Pseudopolynomials. A pseudopolynomial of degree s over a domain 
G c en is a holomorphic function W in G x e that is given by an expression 

with hI. ... , hs EO, where 0 = O( G) denotes the ring of holomorphic 
functions on G. The set of pseudopolynomials of any degree over G will be 
written as OO[u). 

We begin with several remarks on the algebraic structure. 

4.1 Proposition. If G is a domain, i.e., a connected open set, then the 
ring 0 = O( G) is an integral domain. 

PROOF: We need to show only that 0 has no zero divisors. Assume that 
II, h are two holomorphic functions on G with both fi 1= O. Since G is a 
domain, their zero sets are both nowhere dense in G, and there is a point 
z E G with lI(z)· h(z) -=I O. So II· h 1= O. • 

It also follows that OO[u) is free of zero divisors. We denote by Q the quo­
tient field of O. Then the group Q[u)X of units in the integral domain Q[u) 
consists of the nonzero polynomials of degree O. If 0* c 0 is the multiplica­
tive subgroup of not identically vanishing holomorphic functions on G, then 
Q[u)X nO = 0*. 

4.2 Proposition. If WI,W2 E QO[u) are pseudopolynomials with WI . W2 E 
OO[u), then Wl,W2 E OO[u). 

PROOF: If W = US + (fI/gdus - 1 + ... + (fs/gs) is an arbitrary element of 
QO[u), then for all z E G the germs gi,z are not O. 

For a moment we omit the i. If the quotient of fz and gz is holomorphic, i.e., 
fz = hz · gz with hz E Oz, then hz is uniquely determined and there is a ball 
B around z in G such that hz comes from a holomorphic function h on B 
and the equation f = h . 9 is valid in B. If we take another point z' E B, 
the germ of h at this point is the quotient of the germs of f and 9 at this 
point. So z H hz(z) defines a global holomorphic function h on G. We write 
h = fig. 

Thus, if Wz := US + ((fdz/(gdz)us - I + ... + ((fs)z/(gs)z) lies in O~[u) for 
every z E G, then W E OO[u]. 

Now we apply Gauss's lemma in the unique factorization domain Oz ~ Hn. 
Let W := WI . W2. Then (wdz . (W2)z = Wz E O~[u] for every z E G. Conse­
quently, the coefficients of (Wi)z are holomorphic, and by the remarks above 
this means that Wi E OO[u). • 
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The following is an immediate consequence of the above two propositions: 

4.3 Theorem. Let G E en be a domain. Then OO[u] is a factorial monoid; 
i.e., every element is a product of finitely many primes. 

Euclidean Domains 

Definition. An integral domain I is called a Euclidean domain if there 
is a function N : I* -+ No with the following property (division with 
remainder): For all a, bEl, b =I- 0, there exist q, rEI with 

1. a=q·b+r, 
2. r = 0 or N(r) < N(b). 

The function N is called the norm of the Euclidean domain. 

Examples 

1. Z is a Euclidean domain with N(a) := lal. 
2. If k is a field, then k[x] is a Euclidean domain, by N(f) := deg(f). 

Every Euclidean domain I is a principal ideal domain and thus factorial. If 
a, b are elements of I, then the set of all linear combinations 

r . a + s . b =I- 0, r, s E I, 

has an element d with N(d) minimal. The element d generates the ideal 
a = {ra + sb : r, s E I} and is a greatest common divisor of a and b. It is 
determined up to multiplication by a unit. 

Now assume again that G is a domain in en, 0 = O(G), and Q = Q(O}. Then 
Q[u] is a Euclidean domain. If Wt,W2 are pseudopolynomials in OO[u], there 
is a linear combination in W = rIwI + r2w2 t= 0 in Q[u] with minimal degree. 
It can be multiplied by the product of the denominators of the coefficients in 
rl and r2. Then rt, r2, and ware in O[u], and W is a greatest common divisor 
of WI, W2. 

The Algebraic Derivative. Let 0 and Q be as above. If W E OO[u] 
has positive degree, then it has a unique prime decomposition W = WI ... W,. 
The degree of each Wi is positive. We say that W is (a pseudopolynomial) 
without multiple factors if all the Wi are distinct. 

The (algebmic) derivative of a pseudopolynomial is defined as follows. If 
W = E~=oa"u", then D(w}:= E~=I v· a,,· u,,-I. Thus 

D(WI +W2) 
D(WI ·W2) 

D(wt} + D(W2), 
D(wt} . W2 + WI . D(W2}. 
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4.4 Theorem. An element W E OO[uJ is without multiple factors if and 
only if a greatest common divisor of wand D{w) is a function h E 0·. 

PROOF: If W has the irreducible Wi as a multiple factor, then D{w) is also 
divisible by Wi. This is also true in Q[u]. So a greatest common divisor is 
certainly not a function h E 0·. 

Assume now that W = TIi Wi has no multiple factor. Then 

D{w) = LWl···D(Wi)···WI. 
i 

If the degree of the greatest common divisor 'Y of wand D{w) is positive, then 
'Y is a product of certain Wi. So at least one Wi divides both wand D{w). Then 
Wi divides WI ... D(wd··· WI and hence D(wi). This is not possible, because 
D{wi) has lower degree. So the degree of the greatest common divisor is 0, 
and therefore it is a function h E 0·. • 

Symmetric Polynomials. 

Definition. A polynomial p E Z[Ul, ... , us] is called symmetric if for 
all i, j we have P(Ul, ... , Ui,·.· Uj, ... , us) = p(Ul' ... ' Uj, ... , Ui,· .. , us)· 

There are the elementary symmetric polynomials 0"1, ... , 0" s defined as follows: 

O"l(Ul, ... ,Us) Ul+···+Us, 
0"2{Ut. . .. , us) = Ul (U2 + ... + us) + U2{U3 + ... + us) + ... + Us-l us, 

The following result is proved, e.g., in the book [vdW66]. 

4.5 Theorem. If p E Z[Ul, ... , us] is symmetric, then there is exactly one 
polynomial Q{yt. ... , Ys) E Z[Yl, ... , Ys] such that p = Q(O"l, ... , O"s). 

The Discriminant. Consider the special symmetric polynomial 

pv(ut. ... ,us) = II(ui _Uj)2 
i<j 

(square of the Vandermonde determinant). Since it is symmetric, there is 
a uniquely determined polynomial QV(Yl, ... ,Ys) with integral coefficients 
such that 
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Definition. If w = US + hI (Z)us- I + ... + hs{z) is a pseudopolynomial 
in OO[u], then ~w = Qv( -hI, h2,"" (-l)Shs) is called the discriminant 
of w. It is a holomorphic function in G, and we denote its zero set by Dw' 

It is well known from the theory of polynomials that 

where WI, ... , Ws are the zeros of the polynomial u H w(u, z). So ~w(z) = 0 
if and only if there is a pair i =I- j with Wi = Wj. 

Assume now that w is without multiple factors. Then there is a linear combi­
nation of wand D{w) that is a function hE 0·. We restrict to a point z E G 
with h{ z) =I- O. Then the greatest common divisor of w{ u, z) and D{ w)( u, z) 
is 1. This means that w(u, z) has no multiple factors; i.e., the zeros of w(u, z) 
are all distinct. So ~w(z) =I- 0, and Dw is nowhere dense. 

Example 

Let G c en be a domain, a, b holomorphic functions in G, and w{u, z) := 
u2 - a(z) . u + b(z). In this case 

PV(UI' U2) = II (Ui - Uj)2 = (UI - U2)2 = (UI + U2)2 - 4· UI • U2· 

i<j 

6 w (z) = Qv(a(z), b(z» = a(z? - 4b{z). 

If z E G and ~w(z) =I- 0, there are two different solutions of w(u,z) = O. 

Hypersurfaces. We use the theory of pseudopolynomials to study ana­
lytic hypersurfaces. Such analytic sets are locally the zero set of one holomor­
phic function. Assume that 1 is a holomorphic function in a connected neigh­
borhood of the origin in en+! that is not identically O. Without loss of gener­
ality we may assume that A = N(f) contains the origin. Then a generic com­
plex line f through 0 meets A in a neighborhood of 0 only at the origin. After 
a linear coordinate transformation, f = {( U, z) : z = O} is the first coordinate 
axis. By the Weierstrass preparation theorem 1(0,0) = e(O,O) . W(O,O) in the ring 
Hn+I' where e(O,O) is a unit in Hn+!, and w(O,O) E Hn[u] a Weierstrass poly­
nomial. We can represent the germs locally by holomorphic functions. Thus 
there is a domain G c en containing 0, and a disk D = {u E e : lui < r} 
such that in U := D x G there are a holomorphic function e that does not 
vanish in U and a pseudopolynomial w over G with 1 = e· win U. We may 
assume that A n (aD x G) = 0. Therefore, the zero set of 1 in U is that of 
w. 
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We can decompose w into prime factors. Using the fact that any power of a 
prime factor vanishes at the same points as the prime factor does, we may 
assume that w is without multiple factors. Then the discriminant ~w is not 
identically zero in G. We set Dw = {z E G : ~w(z) = O}. 

4.6 Theorem (on branched coverings). If Zo E G - DW1 there are a 
neigborhood W = W(zo) c G - Dw and holomorphic functions JI, ... , fs in 
W with fi(z) =I- h(z) for i =I- j and z E W such that 

w(u, z) = (u - JI(z))··· (u - fs(z)) in ex w. 
There are fewer than s points over any point Zo E Dw (see Figure III. 1 ). 

u 

A 

Figure 111.1. A branched covering over G 

A point z E G above which there are fewer than s points is called a branch 
point. All points of the discriminant set Dw are branch points. Over all other 
points our set A is locally the union of disjoint graphs of holomorphic func­
tions, and is therefore regular. 

PROOF: For Zo E G - Dw the polynomial w(u, zo) has s distinct roots. 
We write w(u, zo) = (u - Cl)··· (u - cs ), where the Ci all are distinct. If 
w(u, z) = US + h1(z)Us - 1 + ... + hs(z), then the germ 

wZo := u 2 + (hdzou s - 1 + ... + (hs)zo 

is a polynomial over Ozo ~ Hn. By Hensel's lemma it has a decomposition 
wZo = Wl,zo ... ws,zo with the following properties: 
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1. Wi,zO(U, ZO) = U - Ci for i = 1, ... , s. 
2. deg(wi,zo) = 1. 

We have Wi,zo = U - ri, with ri E Hn. There are a connected neighborhood 
W(zo) c G - Dw and holomorphic functions It, ... , fs in W such that the 
power series ri converge to Ii- Since the germs of wand (u - It)··· (u - fs) 
coincide at Zo, it follows from the identity theorem that 

wlcxw = (u - It)··· (u - fs), 

and since We G-Dw, it also follows that fi(Z) =I- fj(z) for i =I- j and Z E W . 

• 
Examples 

1. Let G = C and W = zI - Z2. Then the discriminant is given by ~w(Z2) = 
4z2 , and Dw = {O} C C. If Z2 E C*, there is a neighborhood W C C - Dw 

where ..jZ2 is well defined. There we have W = (Zl - ..jZ2) . (Zl + ..jZ2). 
This gives a surface above C that is a connected unbranched 2-sheeted 
covering over C-{O}. The point 0 is a branch point. This is the (branched) 
Riemann surface of "fZ. The unbranched part was already discussed in 
Section 11.8. 

2. A completely different situation is obtained if we take W = zI - z~ 
(Zl - Z2) . (Zl + Z2). The discriminant is 4z~ in this case, and the discrim­
inant set Dw is again the origin in C. The set A consists of two distinct 
sheets, which intersect above 0, and both are projected biholomorphically 
onto C. The set A - {O}, i.e., A without the branch point, is no longer 
connected. 

3. In higher dimensions the situation is even more complicated. Let us con­
sider the analytic set A = N(f), where f(z!, . .. ,zn) = Z:l + ... + z~n 
with Si ~ 2 for i = 1, ... , n. This is a very simple holomorphic function. 
The derivatives are fZi = Si . z;i- 1 , and their joint zero set consists only 
of 0 E cn. So all other points of A are regular. 

Every line £ through the origin lies completely in A, or f has a zero of 
order S with s ~ min(s!, ... , Sn) on £ at the origin. Therefore, there is 
no line that intersects A in 0 transversally. From this one can conclude 
that 0 is in fact a singular point of A (see, for example, Exercise 8.2 in 
Chapter I). 

Now we look on f: cn -+ C as a fibration with general fiber 

At = {z E Cn : Zfl + ... + z~n = t}. 

Then A = Ao has an isolated singularity, while all other sets At are 
regular everywhere. We call the family (AdtEC a deformation of A. 



130 III. Analytic Sets 

The Unbranched Part. We assume that G c en is a domain and 
w(u, z) a pseudopolynomial over G of degree s. We set G' = G - Dw , 

A = ((u,z) E ex G : w(u,z) = O}, 

and A' = AIG' the part of A over G'. Then A' is an unbranched covering of 
G'. It is an n-dimensional submanifold of e x G', and we have the canonical 
projection 7r : A ~ G. If (uo, zo) E A' is a point, there is a small neighborhood 
B = B(uo, zo) c A' that is mapped by 7r holomorphically and topologically 
onto a ball around Zo in G'. We also call B a ball. The holomorphic map 
(7rIB)-I : 7r(B) ~ en+! is a local parametrization of A'. A complex function 
fin B is called holomorphic if f 0 (7rIB)-I is holomorphic. In particular, the 
components of 7r itself are holomorphic functions on B. 

For holomorphic functions in B we have the same properties as for holomor­
phic functions in a domain of en. For example, the identity theorem remains 
valid, and we obtain the following results: 

4.7 Proposition. Assume that Al is a connected component of A' and that 
M is an analytic subset of AI. Then M = AI, or M is nowhere dense in AI. 

4.8 Proposition. Iff is a holomorphic function on A', and Al a connected 
component of A', then either f vanishes identically on Al or its zero set is 
nowhere dense in AI. 

4.9 Proposition. Let Al again be a connected component of A'. Assume 
that M is a nowhere dense analytic set in Al and that f is a holomorphic 
function in Al - M that is bounded along M. Then f has a unique holomor­
phic extension to AI. 

Decompositions. We consider the interaction between the decomposi­
tion of a pseudopolynomial into irreducible factors and the decomposition of 
its zero set into "irreducible" components. 

4.10 Proposition. Let G c en be a domain and w(u,z) a pseudopolyno­
mial over G without multiple factors. Then w is irreducible if and only if the 
intersection of its zero set A with e x (G - E) is connected for every nowhere 
dense analytic subset E C G which contains the discriminant set Dw. 

PROOF: Since locally over G' = G - Dw the set A' = AIG' looks like a 
domain in en, a nowhere dense analytic set does not disconnect A', locally 
and globally. Therefore, we may assume that E = Dw. 

If w is not irreducible, every factor Wi defines an analytic set Ai over G - Dw· 
The intersection of different Ai is empty. SO AI(G - Dw) is not connected. 
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If, on the other hand, AIG' has the connected components Ai, i = 1, ... , s, 
with s > 0, then for any point z E G - Dw there is a ball BeG - Dw around z 
such that AilB splits into graphs of holomorphic functions 1; : j = 1, ... , Si· 
In each case we form the pseudopolynomial Wi = (u - II) ... (u - fs i )' The 
zero set of this Wi is exactly AiIB, and it determines Wi and vice versa. So 
over the intersection of two different balls the pseudopolynomials must be 
the same, and thus we obtain global holomorphic functions Wi in G - Dw' If 
z E Dw, then there is a neighborhood W of z such that Ail(W - Dw) c AIW 
is a bounded set. So the coefficients of Wi are bounded over this neighborhood 
and extend holomorphically to G. We also denote this extension by Wi, and 
for reasons of continuity it follows that W = WI' .. WS' -

If the Wi are the irreducible factors of w, we call their zero sets Ai the irre­
ducible components of A. The sets A~ = AilG' are the connected components 
of AIG'. 

4.11 Proposition. Assume that W* ,ware pseudopolynomials without mul­
tiple factors over a domain G and that A* = {w· = O} c A = {w = O}. Then 
w' is a factor of w. 

PROOF: Let D denote the union of the discriminants of w· and w. It is 
a nowhere dense analytic set in G. Over G - D we decompose the two 
unbranched coverings into connected components. There we have A· = 
Al U··· U As· and A = Al U'" U As with s* S s. This yields pseudopolyno­
mials over G - D that extend to pseudopolynomials WI, ... , Ws over G, with 
w· = WI ... Ws. and W = WI ... Ws' This implies the result. _ 

The following result is proved analogously. 

4.12 Proposition. Assume that W is free of multiple factors and that A = 
{w = O} is the disjoint union of two nonempty sets M', M" that are closed in 
C x G. Then there are pseudopolynomials w' , w" over G with M' = {w' = O}, 
M" = {w" = O}, and w' . w" = w. 

PROOF: The construction is first carried out outside Dw. We set G' = 
G - Dw and use the fact that every nonempty open subset of A' = AIG' 
must be a union of connected components of A'. If W = WI'" W s is the 
decomposition into irreducible factors, then we may assume that there is an 
s· with 0 S s· S s such that for w' = WI" .ws* and w" = Ws*+1 .,. Ws we 
have M'IG' = {(u, z) E C X G' : w'(u, z) = O} and M"IG' = {(u, z) E 
ex G' : w"(u, z) = O}. 

It is now essential that in a continuous family f (u, z) of holomorphic functions 
of one variable u the zeros depend continuously on the family parameter z 
("continuity of roots"). We omit the proof here. If we apply this fact (and 
the equations A = M' U M", W = w' . w"), we get that the sets M'IG' and 
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M"IG' are not empty (i.e., 0 < s* < s) and that their closures in C x G are 
M', respectively Mil. • 

Projections. In the next section we will investigate zero sets of several 
holomorphic functions. Here we begin with the simplest case, the common 
zero set N of a pseudopolynomial w over G c en and an additional holomor­
phic function f in a neighborhood of A = {(u, z) E ex G : w(u, z) = O}. 
Our method involves the projection of N to G. 

4.13 Proposition. Assume that f = f( u, z) is a continuous function on A 
that is holomorphic outside of e x Dw and does not vanish identically in a 
neighborhood of any point of A. Then the projection of N = {j = w = O} to 
G is an analytic set N' = {f = O}, where f is a holomorphic function in G 
that does not vanish identicclly. -

PROOF: If z E G - Dw, we have a ball BeG - Dw around it such that 
over B our w has the form w( u, z) = (u - h (z)) ... (u - fs (z)). The function 
f does not vanish identically on any graph u = k Consequently, 

l(z) := f(h(z), z)··· f(Js(z), z) 

does not vanish identically. In the usual way we obtain the holomorphic 
function f in the entire set G - Dw' It is bounded along Dw' So it extends 
to a holomorphic function in G. • 

Now consider the following situation: Assume that G is a domain in en and 
that w is a pseudopolynomial over G without multiple factors. Let f be a 
holomorphic function in a neighborhood of A = {w(u, z) = O} c e x G that 
does not vanish identically on any open subset of A and define 

N:= ((u,z) E e x G : w(u,z) = f(u,z) = O}. 

Denote by N' the projection of N to G. 

We want to give a definition for "unbranched points" of N. The difficulty is 
that there may exist such unbranched points of N lying in the set of branch 
points of w. 

4.14 Proposition. For any point Zo E Nt there is an arbitrarily small 
linear coordinate change in Zl, ... ,Zn such that thereafter the line parallel to 
the Zl -axis through Zo intersects N' in Zo as an isolated point. 

In such coordinates there is a neighborhood U(zo) C G, a domain G' in 
the space en- 1 of the variables z' = (Z2,"" zn), and a pseudopolynomial 
W'(Zl, z') over G' such that {(Zl' z') E C xG' : W'(Zl, z') = O} = N' n U. 

PROOF: A "small" linear change of the coordinates Zl,"" Zn means here 
. that the transformation is very near to the identity. Since L does not vanish 
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identically, after a small generic coordinate transformation the line parallel 
to the zl-axis through Zo intersects N' in Zo as an isolated point. And then 
it is also clear that U, G', and w' with the desired properties exist. _ 

Let us now assume that we have chosen a point Zo E N' and suitable coordi­
nates as above, and that U, G', and w' have also been chosen. 

Definition. In the given situation, a point (u, z) E N n (C x U) is 
called an unbranched point of N if zEN' - C x Dw' and there is a 
neighborhood V = V(z) c N' - C x Dw' with a holomorphic function 9 
on V such that N n (C x V) is the graph {u = g(w) : w E V}. (Figure 
111.2 shows the situation.) 

u 

A 

Z2 . 

...... 

o examples of unbranched points ~ 
ex D.." 

Figure 111.2. Branched and unbranched points of N 

4.15 Theorem. In the given situation, in every neighborhood of an arbi­
trary point (Ul,Zl) of N n (C x U) there are unbranched points of N. 

PROOF: We may assume that Zl EN' - (C x Dw')' Then we take a small 
neighborhood W = E X U1 of (Ul, Zl) such that the following hold: 

1. U1 c U - (C x Dw')' 
2. (Ul, Zl) is the only point of A above Zl in W. 
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3. The set A n W is defined by a pseudopolynomial w· over UI. 

Setting N{ c N' n U{ to be the image set of W n N under the canonical 
projection 11' : W -t UI, take U1 so small that N{ = N' nUl. 

We restrict w· to N~ and replace possible multiple factors by one factor at a 
time. So we obtain a new pseudopolynomial WI without multiple factors over 
N~ such that 

NnW = {( u, z) E E x Nf : WI (u, z) = O}, E a suitable disk. 

Arbitrarily near to (UI, zt) we can find points (U2, Z2) E NnW lying over 
N~ - DW1 ' All of these points are unbranched points of N, since we can find 
neighborhoods W2(U2, Z2) C Wand U2(Z2) C U1 with the same properties as 
Wand Ul. Now choose U2 so small that it contains no point of DWl and that 
wIIN' n U2 decomposes into linear factors. Then every sheet of AI(N' n U2 ) 

with the property that it contains points of N is a graph over N' n U2 • • 

Exercises 

1. Prove that every symmetric polynomial in UI,.'" Us can be written as a 
polynomial in the power sums Sk := u~ + ... + u!. 

2. Calculate the discriminant of a cubic polynomial. 
3. Let D := Dr(O) C e and I be a holomorphic function in an open neigh­

borhood of D without zeros in aD. If I has in D the ~eros Cl,.'" Cs 

(some of them may be equal), then 

4. Let I : D x pn -t e be a holomocphic function in the variables 
u, z}, ... , Zn' Assume that I is u-regular of order s and that for every 
z E pn the function U M I(u, z) has exactly s zeros udz), ... , us(z) 
(with multiplicity) in D. Show that the coefficients of the "pseudopoly­
nomial" w(u,z) := rr;=l(U - Uj(z» are holomorphic. 

5. Prove the "continuity of roots": Let I (u, z) be u-regular at the origin. 
Show that there is an r > 0 such that if g(z) is a function defined in a 
neighborhood of 0 with Ig(z)1 < rand I(g(z), z) = 0, theng is continuous 
at O. 

6. A complex function I on an analytic set A in a domain G c en is called 
holomorphic if it is locally the restriction of a holomorphic function in 
the ambient space. 
(a) Let A := ({w, z) E e2 : w2 = Z3} be the Neil parabola. There is 

a bijective holomorphic parametrization of A given by w = t 3 and 
Z = t2 . Describe the holomorphic functions on A as functions of the 
parameter t. Is there a meromorphic function on A that has a pole 
at 00 with main part tm ? 
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(b) Show that the analytic set A = {(w, ZI, Z2) E C3 : W2 = ZIZ2} is 
not regular at the origin. Consider the holomorphic map (t1, t2) t-+ 

(tIt2, ti, t~). It is a "two-to-one" map. Describe the local holomorphic 
functions on A in tl, t2. 

7. Prove that there is a topological holomorphic map from C* onto A := 

{(w, z) E C2 : w2 = ZIZ2}. 
8. Prove that there is no topological holomorphic map from C· onto the 

"elliptic surface" A:= {(w,z) E C2 : w2 = (z2 -1)(z2 - 4)}. 
9. Define the pseudopolynomial wE O(C2 )[u) by w(u, Zl, Z2) := u2 - U· Zl 

and determine the discriminant set and the irreducible components of 
A := {w = O}. Let! on A be defined by !(U,Zl,Z2) := Z2 . (u - 1). 
Consider N:= {J = w = O} C C3 and determine the projection N' C C2 

and the set of unbranched points of N. 

5. Irreducible Components 
Embedded-Analytic Sets. We wish to study general analytic sets. 
Since it is easier to work with pseudopolynomials than with arbitrary holo­
morphic functions, we introduce the notion of "embedded-analytic sets." 
These are subsets of the common zero set of finitely many pseudopolyno­
mials, and they are not a priori analytic by definition. But later on, it will 
turn out that they are indeed analytic. 

Assume that G c Cn- d = {z' = (Zd+ 1, ... , Zn)} is a domain and that 
Wi(Zi; z'), i = 1, ... , d, are pseudopolynomials over G without multiple fac­
tors. The zero sets of the single Wi intersect transversally4 in Cd x G. We 
denote by D C G the union of the d discriminant sets belonging to the Wi. 

We call it the union discriminant set. We put 

A := {(z!, ... ,Zd, z') : Wi(Zi; z') = 0, for i = 1, ... ,d and z' E G}. 

Over any ball BeG - D the set AlB consists of finitely many disjoint 
holomorphic graphs. Every graph is contained in a connected component Z 
of AI(G - D). We call the closure of Z in A an irreducible embedded-analytic 
component of .Ii. 

Definition. If A is defined as above, any union of finitely many ir­
reducible embedded-analytic components of A is called an embedded­
analytic set of dimension n - d. 

4 Two submanifolds M, N C en intersect transversally at a point z E M n N if 
the entire space is spanned by vectors that are tangent to M or N at z. In our 
case the common zero set of the pseudopolynomials Wi contains enough vectors 
to span en. Therefore, we say that these zero sets intersect transversally. 
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By definition any embedded-analytic set A can be decomposed into finitely 
many irreducible components. 

The surrounding set A :J A is not uniquely determined. Sometimes we can 
make A smaller by throwing away those irreducible factors of Wi that do not 
vanish identically on A. Then the Wi are uniquely determined by A. 

5.1 Proposition. Assume that A is an embedded-analytic set in A C Cd X G 
and that f is a holomorphic function in a neighborhood of A that does not 
vanish identically on any open subset of A. If N = {z E A : fez) = oJ, 
then for any point Zo E N there is an arbitrarily small linear change of the 
coordinates z' such that the affine space parallel to the (Zl,"" Zd+t)- "axis" 
through Zo intersects N in an isolated point. If Zl E N is any point near 
zo, then there are unbranched points of N arbitrarily near Zl. At all of these 
points N is a submanifold of dimension n - d - 1. 

PROOF: We proceed as in the proof for the last theorem of the previous 
section. The procedure to find unbranched points will be denoted by (*). 

First we construct the projection f of f, which is holomorphic in G. For this 
observe that if D is the union discriminant set of the polynomials WI, ... ,Wd 
and z' E G - D, we always have the same number of points ZI, ... ,Zs in A 
over z'. We set fez') = f(zl)'" f(zs) and obtain f, which is holomorphic on 
G - D. Since it is bounded along D, we can extend it holomorphically to G. 
Therefore, the projection set is N' = {[(z') = OJ. 

Assume now that z~ EN'. Then, after an arbitrarily small linear coordinate 
change in the variables z', the line L parallel to the Zd+l-axis through z~ 
intersects N' in an isolated point. Then by Weierstrass's theorem we can 
find a neighborhood U = U(z~) c G, a domain G', and a pseudopolynomial 
w' (Zd+1, z") over G' without multiple factors such that Un N' is equal to the 
set {z' = (Zd+1' z") E C X G' : W'(Zd+l, z") = OJ, with z" = (Zd+2,"" zn). 

Since the space Cd x L intersects N at Zo in an isolated point, it remains to 
prove the existence of unbranched points. We apply (*) to N n (Cd x U) and 
prove in the same way as before that for points ZI EN n (Cd x U) there are 
unbranched points of N arbitrarily near to ZI' Of course, at these points N 
is a submanifold of dimension n - d - 1. • 

For the following we use the same notation and hypotheses as above. 

5.2 Theorem. Let N' c G be the projection of N. For every point Zo = 
(zo, z~) ENe Cd X G, after a suitable linear change of the coordinates z' 
there is a neigborhood U = U(z~) c G, a domain G' in the space of the 
variables Zd+2, ... ,Zn, and a pseudopolynomial w' over G' without multiple 
factors such that; 

1. N' n U = {w' = O}. 
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2. N n (Cd x U) is an embedded-analytic set of dimension n - d - 1. 

PROOF: We use the notation and results from the proof above. Thus the 
first statement is clear. We set ~+! := w'. Restricting the Wi to Cd x (N'nU) 
and projecting them down to Cd X G', we get pseudopolynomials ~i(Zi;Z") 
over G'. Then N n (Cd x U) is in the joint zero set of ~l, .. · .!l::!d+l. Let 
A be the union of those irreducible components of this set that contain the 
unbranched points of N. Since N is the closure of unbranched points, it 
follows that N n (Cd+! x G') cA. By the mapping theorem that we prove 
in the next paragraph, every irreducible component of A is in N. So we have 
the desired equality. -

Images of Embedded-Analytic Sets. Assume that G = Cd X G' c 
Cn is a domain and A eGan irreducible embedded-analytic set over G'. 

5.3 Mapping theorem. Let G1 = Cdl x Gt c Cnl be a domain, Al C Gl 

an embedded-analytic set over Gt, F a holomorphic mapping from a neigh­
borhood of A C G into G1 such that F(U) C Al for some nonempty open 
subset U C A. Then F(A) CAl. 

PROOF: We denote by D c G the union of the discriminant sets of the 
Wi(Zi, z') that define the surrounding set A for A. It is sufficient to prove 
that F(A n (Cd x (G' - D») c AI. Since we can connect two points of 
A n (Cd x (G' - D» by a chain of arbitrarily small balls, it is enough to give 
the proof for such a ball. So we may replace A by a ball in Cn - d and may 
assume that F is defined in a neighborhood of B. 

Let Al be an embedded-analytic set in 

Al = {Wl(Wl, w') = ... = Wd l (Wdp w') = OJ. 

Then Wi oFlu == 0, and by the identity theorem Wi oFIB == O. So F(B) CAl. 

For an arbitrary point v E Gt we choose a small transformation of the 
coordinates in Cdl such that Al is also embedded in a set Ar = {wr = ... = 
wdl = OJ. The transformation can be made arbitrarily small, and we can do 
it so that 

Al n AI n (Cdl x {v}) = Al n (Cdl x {v}). 

Then Al is given by the infinite set of holomorphic equations Wi = 0, wi = 0, 
v E Gt . If F maps a nonempty open part of B into AI, then by the identity 
theorem Wi 0 F = wi 0 F == 0, and consequently F(B) C AI. This completes 
the proof. _ 

Remark. Assume that A is an analytic set in a domain G C cn and that 
Zo is a point of A. If Zo is a regular point of dimension n - d, then there is a 
neighborhood U = U(zo) c G such that An U is an embedded-analytic set. 
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In fact, there is a neighborhood U with holomorphic functions 11, ... ,/d such 
that N(/I, ... , Id) = An U and the rank of the Jacobian is d everywhere. 
We may assume that 

det (fi)Zj (zo) I i. == 11'" . , dd ) =F O. J ,,,., 

Then thetransformationF(zl,'" ,zn) = (/I(z), ... ,/d(Z),Zd+l,'" ,zn) maps 
a neighborhood of Zo biholomorphically onto a neighborhood of the image 
point. If the inverse is given by 

z = F-l(w) = (gl (w), ... , gd(W), Wd+lo' .. ,wn ), 

then A is given by the equations 

Zl = gl (0, ... ,0, Zd+l,"" zn), 

So A n U is an embedded-analytic set. 

Local Decomposition. We use embedded-analytic sets to show that an 
arbitrary intersection of analytic sets is again an analytic set. 

First we consider the following situation. Let G c en be a domain and Zo E G 
a point. Assume that at Zo a set ,9' of local analytic functions I is given such 
that 

1. For every lEY there is a connected open neighborhood U(zo) C G 
with I E O(U) and I ~ O. 

2. I(zo) = O. 

We want to construct a "maximal" analytic set S* in a neighborhood 
U*(zo) C G such that for each zero set N of finitely many elements I E ,9' 
there is a neighborhood V = V(zo) c G with S* n V c N n V. Then S* is 
uniquely determined near Zo and can be considered as the common zero set of 
the functions lEY. It may be nontrivial even if the domains of definition of 
the functions I tend to the point zoo For example, if,9' is the set of the func­
tions In(z) := zi'/(l-nzIl, defined on Un := {z E en : Re(zl) < lin}, then 
S* is the analytic set {Z1 = O} in an arbitrary neighborhood of 0, whereas 
the intersection of the Un does not contain any neighborhood of the origin. 

We employ the results from the beginning of this section several times and 
carry out an induction on the codimension of the embedded-analytic sets 
obtained from the functions lEY. 
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(A) We begin with one arbitrarily chosen function IE .7. The equation 1= 0 
gives an analytic setS S of codimension 1. We decompose S into irreducible 
components Si in a neighborhood U(zo) (given by pseudopolynomials in C x 
C'), and we choose the neighborhood U so small that the Si stay irreducible 
in the whole neighborhood. 

(B) Next we try to obtain codimension 2. If every function lEY vanishes 
identically near Zo on Si, we leave Si unchanged (and have it as a codimension 
1 component for our S*). Otherwise, there is an l' E Y that does not vanish 
identically in any small neighborhood of Zo on Si. We apply Theorem 5.2: 
After an arbitarily small linear change of the coordinates z' the set Si n {I' = 
O} is a finite union of irreducible embedded-analytic sets Sij of codimension 
two, which stay irreducible if we pass to some smaller neighborhood ofzo. The 
Sij are embedded in the zero set of two pseudopolynomials w~j (Zl j Z3, •.. , zn) 
and W~(Z2j Z3, •.. , zn). 

(C) Now codimension 3 follows. For this we need consider only the Sij. 
Leave Sij unchanged if every I vanishes .on Sij (and get codimension 2 
components for S"). Otherwise, find an 1" E .7 not vanishing identically 
on Sij, and (after an arbitrarily small coordinate change of the variables 
z" = (Z3, •.. , zn)) the set Sij n {I" = O} is the union of a finite set of 
irreducible embedded-analytic sets Sijk, given in the zero set of three pseu­
dopolynomials W~k(ZA; Z4, .. " zn), A = 1,2,3. 

(D) Continuing, it is possible to obtain components of codimension 1, 2, 
... , n - 1, and finally one reaches dimension O. If there is a I-dimensional 
component S = Sil ... i n _ 1 such that not every I E .7 vanishes on S, we 
have to replace S by the one-point set {zo}. Then the procedure stops. Only 
finitely many steps were necessary. 

We obtained a finite system .70 of local holomorphic functions I, 1', I", .. . 
and a finite system A of irreducible embedded-analytic sets Si, Sij, Sijk, .. . 

and may assume that they all are defined in one neighborhood U(zo) c C, 
that every SEA of dimension d is embedded in a set Cn - d X Cd' and that 
the union discriminant sets Ds C Cd C Cd belong to the embedding of S. 
The necessary linear coordinate change in z, can be made at the beginning 
of the procedure, i.e., once for all steps of the procedure. 

If SEA is an irreducible embedded-analytic set that has an open part in the 
union of the other sets of A, then it also has an open part in an irreducible 
S' E A, S' =1= S. It follows by the mapping theorem that it is completely 
contained in S'. Then we simply throw it away and denote the new system 
again by A. After finitely many steps we have that the intersection of every 

5 An exact definition of dimension and codimension of analytic sets will be given 
later. Here we use embedded-analytic sets, for which the dimension has already 
been defined. An analytic hypersurface is obviously embedded-analytic. 
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S with the union of the rest of A is nowhere dense in S. Moreover, the points 
of S over Ds are nowhere dense in S. 

We denote by S* = USE.A S the union of all remaining components. Then 
S* is given by the finitely many holomorphic functions / E .9'0. Therefore, 
it is an analytic set. If .Y C .9' is an arbitrary finite subset, then in a small 
neighborhood of Zo every / E .Y vanishes at every z E S*. So S* C N(.Y). 
Obviously, S* is uniquely determined by this property. 

Finally, we want to show that the decomposition into irreducible embedded­
analytic sets is unique. For that we use the notion of regularity for points of 
embedded-analytic sets just as in the analytic case. Clearly, the intersection 
of two different Si E A contains no regular point. So the points of every 
SEA are regular if they are not in such an intersection and not over D A. . . . 
We denote the set o/regular points of S* by S* and set S = SnS* for SEA. 
Then for SEA the sets S are the connected components of S*. Since the 
set S* is uniquely determined in a neighborhood of zo, this is also true for 

its connected components. And since the closure of S is S, the irreducible 
embedded-analytic components S are .also uniquely determined near zoo 

5.4 Theorem. The intersection 0/ (even infinitely many) analytic sets is 
an analytic set and is locally a finite union 0/ components that are irreducible 
embedded-analytic sets. This decomposition is locally uniquely determined. 

PROOF: Let {A. : tEl} be a family of analytic sets in a domain G C c;n, 
and Zo E A := n.EI A. an arbitrary point. We consider the system .9' of all 
local holomorphic functions / such that: 

1. / is defined in an open neighborhood U of Zo (depending on f). 
2. / '1= 0 near zoo 
3. There is an tEl such that / vanishes near Zo on A •. 

As above, Zo is contained in an analytic set S* that is the union of irreducible 
embedded-analytic sets S and that is given by a finite subsystem .9'0 C .9'. 

If z is a point of A that is sufficiently near zo, then every / E .9'0 is defined at 
z and vanishes on some A. and consequently at z. This shows that A C S* in 
a neighborhood of zoo On the other hand, let z be a point in the intersection 
of S" with a small neighborhood of zoo Any analytic set A. is given by finitely 
many holomorphic functions It, ... '/N that belong to the system .9'. Then 
by construction every /~ vanishes on every embedded-analytic component S 
of S .. , in particular at z. Therefore, S* C A. for all t. Thus S* is contained 
in the intersection A of the A., and we have the equality A = S" near zoo 
Since S" is an analytic set that has a unique decomposition into irreducible 
embedded-analytic sets, this completes the proof. _ 
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Analyticity. Now we are able to prove the following result, which we 
announced at the beginning of the section: 

5.5 Proposition. Every embedded-analytic set A in a domain Cd x G c en 
is an analytic set. 

PROOF: As in the last part of the proof of the mapping theorem, it follows 
that the embedded-analytic set A is given as the joint zero set of infinitely 
many holomorphic functions. Theorem 5.4 shows that A is an analytic set. -

Consequently, every analytic set has locally a unique decomposition into ir­
reducible analytic components. 

The Zariski Topology. We prove that the system of all analytic sets 
has the properties of the system of closed sets of a topology. 

5.6 Theorem. The system A of all analytic sets in a domain G c en has 
the following properties: 

1. G and the empty set belong to A. 
2. If Al , ... , Al E A, then also A = U!=l Ai E A. 
3. If I is an index set and {A. : £ E I} a collection of analytic sets in G, 

then A = n.El A. is also an analytic set in G. 

PROOF: 

(1) G is defined by the zero function, and 0 by the constant function 1. 

(2) Let z E A = Al U ... U AI. Then in a neighborhood U(z) there are 
holomorphic functions Ai : i = 1, ... , I j = 1, ... , di , such that for all i we 
have 

Un Ai = N(Al,"" Ad;)' 
It follows that UnA = N(Jl,il ... Ail: ji = 1, ... , di ). 

3) This is Theorem 5.4. -
So the analytic sets are the closed sets of a topology in G. We call this 
topology the (analytic) Zariski topology of G. It plays an important rule in 
complex algebraic geometry. 

Global Decompositions. Assume that G c en is a domain and A c G 

an analytic subset. We call A irreducible if the set of regular points A C A is 
connected. It follows that A has the same dimension d at all regular points. 
This number d is called the dimension of A and is denoted by dim(A). Every 
irreducible embedded-analytic set is also an irreducible analytic set. 

5.7 Theorem. Every analytic set A has a unique decomposition into count­
ably many irreducible analytic subsets Ai' The covering .rd = {Ai : i = 
1,2,3, ... } is locally finite. 
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PROOF: We decompose A into connected components. Let A' be such a 
component. It has dimensiond in all of its points. 

We consider a point Zo E A that lies in A'. In a neighborhood U = U(zo) c 
G we have a decomposition of A into finitely many irreducible embedded­
analytic components Al , ... , Am. By Ai we denote the set of points of Ai 
that are not over the union discriminant set. Some d-dimensional Ai meet 
A'. Their union A * is contained in A' and dense in A' n U. Hence, the closure 
of A* in U is equal to A' n U. But A* is an analytic set. 

From this it follows that A' is an analytic set, that only finitely many A' 
intersect U, and that the union of all A' is A (as it is locally). Since the 
topology of G is countable, it follows that the set of the A' is countable. _ 

5.8 Corollary. If A is irreducible and A = Al U A2 , where Al , A2 are 
arbitrary analytic sets, then A = Al or A = A2 . 

Sometimes this condition is used as the definition of irreducibility. 

5.9 Proposition. Let A, BeG be irreducible analytic sets. If there is an 
open set U c G such that A n U =f. 0 and A n U c B n U, then A C B. 

PROOF: This is an immediate consequence of the mapping theorem. _ 

Another corollary is the following: 

5.10 Identity theorem (for analytic sets). Let A, BeG be irreducible 
analytic sets. If there is a point Zo E A n B and an open neighborhood U = 
U (zo) c G with A n U = B n U, then A = B. 

5.11 Proposition. Let A, BeG be analytic subsets with A c B. If A is 
irreducible, then A is contained in some irreducible component of B. 

PROOF: Let B = UAEA BA be the unique decomposition into irreducible 
components. We can choose an open set U C G and a finite set {>'l, ... , AI} c 
A such that UnA =f. 0 is irreducible and UnB = (UnBA\)U·· ·u(UnBA,). 
Then UnA = UnA n B = (U nAn BAJ u ... u (U nAn BAI)' Thus there 
is an index j such that UnA = UnA n BAj , so UnA c un B Aj • It follows 
that A is contained in B A j' -

Now we can generalize the notion of the dimension to arbitrary analytic sets. 

Definition. If A eGis an analytic set with irreducible components 
Ai, then dim(A) := SUPi dim(Ai} is called the (complex) dimension of A. 
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In general, the dimension of an analytic set can be 00. But if GI cc G is a rel­
atively compact subdomain, then only finitely many irreducible components 
intersect GI. So the dimension of A n GI is finite. 

An analytic set is called pure-dimensional of dimension d if all its irreducible 
components have the same dimension d. 

Exercises 

1. Let A be an analytic set near the origin in en. Assume that every ir­
reducible component of A has dimension ~ 1. Show that there exists 
a neighborhood U = U(O) such that An U is the union of irreducible 
one-dimensional analytic sets containing o. 

2. Consider A := {(z}, Z2) E e2 : z~ = z~ + zn. Show that A is irreducible, 
but A has a nontrivial decomposition into irreducible components in a 
small neighborhood of the origin. 

3. Let AI, A2 c en be analytic sets. Prove that Al - A2 is analytic. 
4. Let {Ai : i E N} be a locally finite family of irreducible analytic. sets in 

a domain G c en. Suppose that Ai <t. Aj for i =F j and prove that the 
Ai are the irreducible components of their union. 

6. Regular and Singular Points 
Compact Analytic Sets. Our goal is to prove the following simple 
proposition. 

6.1 Proposition. IIG c en is a domain and A eGan irreducible compact 
analytic set, then A consists 01 a single point. 

We first prove a lemma. 

6.2 Lemma. II I is a holomorphic junction in a neighborhood 01 A, then 
IIA is constant. 

PROOF: We assume that the dimension of A is n - d. Since A is compact, 
there is a point Zo E A where III takes its maximum. After a linear coordinate 
change there is a neighborhood U = U(zo) c G and a domain G' c en - d 

such that A n U is an embedded-analytic set over G'. Denote by D c G' the 
union discriminant set. Over every z" E G' - D our A n U has s points. The 
point Zo lies over some z~ E G' and we may assume that it is the only point 
of A n U over z~. 

It remains to construct the elementary symmetric functions associated with 
IIAnu over G' - D. For this, if Zl, .•• , Z" are mapped onto z", we define 
li(z") := O'i(f(ZI), ... ,/(z,,». These functions are holomorphic on G' - D 
and bounded along D. So they extend to holomorphic functions in G'. The 
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absolute value of every extension takes on its maximum at z~. By the max­
imum principle each such is constant in G'. Since the values of f can be 
reconstructed from the values of the fi, it follows that f is constant over G', . . 
in particular in some open subset of A. Since A is connected, it follows that 
f is constant on A and then by continuity also on A. _ 

PROOF of the proposition: All coordinate functions Zi must be constant on 
A. So A is a single point. _ 

A consequence is that every compact analytic subset A c G consists of only 
finitely many points. 

Embedding of Analytic Sets. Assume that A eGis an analytic set 
in a domain G c en, that 0 E A, and that the plane P = {Zd+ 1 = ... = 
Zn = O} intersects A in an isolated point. 

6.3 Theorem. In a neighborhood U(O) the set A is an analytic subset of 
an embedded-analytic set of dimension n - d that is defined over a domain G' 
in the space of variables z' = (Zd+1,' .. ' zn). If the set of (n - d)-dimensional 
regular points is dense in A, then A is itself an embedded-analytic set. 

Remark. No coordinate transformation is necessary for this statement! 

PROOF: By definition, A is the zero set N(/t, ... , iN) of finitely many 
holomorphic functions in a neighborhood of o. Since An P = {O} is isolated, 
there is an i such that Ii does not vanish identically in any neighborhood 
of 0 on the zl-axis. Consequently, Ii is zl-regular, and we can apply the 
Weierstrass preparation theorem, which implies that A is locally contained 
in the zero set of a pseudopolynomial W(Zl; Z2, ... ,Zn)' 

Now we proceed by induction on d. In the case d = 1 there is nothing to prove. 
If d > 1 we consider the projection 11" : en -t en- 1 with z 1-+ Z' = (Z2, • •. ,zn). 

To h, ... , f N there are associated as usual holomorphic functions L2 , ••• , LN 
of z' such that 

1I"({W = h = ... = fN = OJ) = A := {z' : f (z') = ... = f (z') = O} 
-2 -N 

in some neighborhood of O. 

The intersection of P' = {z' : Zd+l = ... = Zn = O} with A contains 0 as an 
isolated point. So we have for A the same situation, but with one dimension 
fewer. By the induction hypothesis it follows that there are pseudopolynomi­
als W2,'" ,Wd such that A locally is contained in the set {W2(Z2;Z") = ... = 
Wd(Zd; z") = OJ. By exchanging ZI with Z2, we obtain a pseudopolynomial 
WI(ZI; z") such that A is contained in {WI = W2 = ... = Wd = OJ. 
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If the regular points of dimension n - d are dense in A, we can take the union 
A * of those irreducible components ofthe embedded analytic set that contain 
such a regular point. Then A * and A are identical. This completes the proof . 

• 
Remark. This result is also known as the "embedding theorem of Remmert 
and Stein." 

Again we consider a domain G c cn, an analytic set A c G, and a domain 
G' c Cn- d such that 7r(G) C G' (where 7r : z t-t z' = (Zd+1,"" zn»). Suppose 
that there exists a domain G* c G such that for every z' E G' there exists a 
neighborhood U = U(z') cc G' with (Cd x U) n G* CC (Cd X U) n G and 
(Cd x U) n A C G*. Then the following holds. 

6.4 Proposition. If the set of regular (n - d)-dimensional points of A is 
dense in A, then A is an embedded-analytic set over G'. 

PROOF: We take an arbitrary point Zo E G'. It follows from the hypotheses 
that the set (Cd x {zo}) n A is compact and analytic. Therefore, it consists 
of finitely many points. Each of these points has a neighborhood such that 
the restriction of the set A to this neighborhood is an embedded-analytic set 
over a neighborhood of zoo By multiplying the pseudopolynomials by the same 
distinguished variable belonging to our various points we obtain d uniquely 
determined pseudopolynomials over a neighborhood U'(zo) C G' such that 
A n (Cd x U') is just their joint zero set. But these pseudopolynomials glue 
together to form global pseudopolynomials over G'. • 

Regular Points of an Analytic Set. Assume again that G C Cn is 
a domain, and A eGan analytic set. 

6.5 Theorem. For any Zo E A there is a fixed neighborhood U(zo) C G 
with finitely many holomorphic functions iI, ... , IN whose joint zero set is 
An U such that for all d at every regular point z E An U of dimension n - d 
the rank of their Jacobian at z is equal to d. 

It is remarkable that this statement is also true for a singular point Zo of A. 

PROOF: After applying a linear coordinate transformation in en we can 
find a neighborhood U = U(zo) c G such that An U is a finite union of 
irreducible embedded-analytic components. To give these in the canonical 
form a further coordinate transformation is not necessary. We denote by 
A' the union of all (n - d)-dimensional irreducible components of A n U 
and choose pseudopolynomials Wl, ... ,Wd of minimal degree such that A' is 
contained in the common zero set of the Wi' 

Let jj C A' be the set of points that lie over the union discriminant set 
D A'. Its dimension is equal to n - d - 1. Now we carry out the proof in 
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several steps and construct sets Db D2 , ... , Dn-d+l = 0 with D i +1 C Di 
and dim(13 i ) = n-d-i. We begin with 131 := D. The Jacobian of WI, ... ,Wd 
has rank d in A' - 131 (implicit function theorem). 

Next we decompose Dl into irreducible components ex and choose, if possi­
ble, in each ex a point Zx where A' is regular. We can make U so small that 
only finitely many ex occur in U. Then we apply another linear transforma­
tion in en that is near the identity such that in a small neighborhood of any 
z.\ the set A' can be written as an (n - d)-dimensional holomorphic graph 

{z : Zi = h,i(Zd+l,"" zn) for i = 1, ... , d}. 

Finally, we apply a linear transformation that is very near the identity to 
the variables Z1, ... ,Zd such that for every A and every point z in A' above 
(Z~I" .. ,z~) the first d coordinates of z are distinct. 

Now we use Proposition 6.4. In the new coordinates (and in a slightly 
smaller neighborhood, which we again denote by U) the set A' is again an 
embedded-analytic set contained in the common zero set of pseudopolynomi­
als WI, ... , Wd. We choose Wi with minimal degree. We can assume that the 
components of 131 are still irreducible in U, and that the points z.\ are still 
in U. In a neighborhood of Zx we have a decomposition 

with wA,i(Z.\) =I- O. So the Jacobian determinant of W1"",Wd with respect 
to the variables Z1,' .. ,Zd does not vanish at any z).. We denote the zero 
set of this Jacobian in 131 n U by D2 • It has dimension n - d - 2, and 
WI, .. ' ,Wd,Wl, ... ,Wd have rank d on A' - 132 • 

Now apply the same procedure to 132 and obtain an (n - d - 3)-dimensional 
133 and continue in this way until reaching 13n-d+l = 0. 

By putting all of the pseudopolynomials together, in a small neighborhood 
U of Zo we get holomorphic functions ft,.··, Id, Id+l,' .. , IN (with N = 
(n - d + 1) . d) whose rank is d in every regular point of A' n U. Since the 
pseudopolynomials always were chosen with minimal degree, it follows that 
A' = N(ft, ... , IN) near zo° 

Now set A + = A n U - A'. It is the union of the remaining irreducible com­
ponents of AnU. We may assume that U is so small that A+ is the common 
zero set of finitely many holomorphic functions 91, ... ,98 in U. Multiplying 
the h by the 9j yields finitely many holomorphic functions in U that de­
scribe the set An U. No point of A' n A+ is a regular point of A. For every 
zEA' - A+ there is a 9j that does not vanish there. So the rank of the 
Jacobian of the Ii . 9j is equal to d at every nonsingular point of A' - A + . 
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The same procedure can be used for every d and the corresponding A', and 
consequently, in finitely many steps we obtain a neighborhood of Zo and 
holomorphic functions in this neighborhood with the desired properties. _ 

The Singular Locus. From the preceding theorem we conclude the 
following: 

6.6 Theorem. The set Sing(A) of singular points of an analytic set A is 
again an analytic set. 

PROOF: The intersection of two irreducible components of A belongs to 
Sing(A). The union S of all these intersections is an analytic set. 

Assume that Zo is a point of an irreducible component A' of A and dim(A') = 
n - d. Then there is a neighborhood U = U(zo) c G with holomorphic 
functions iI, .. . , f N vanishing exactly on A' n U such that their Jacobian 
has rank d in each of the regular points. Let S* be the analytic set of all 
points of A' n U where all d x d minors of the Jacobian vanish. Clearly, S* is 
contained in Sing(A') n U. On the other hand, at any point of Sing(A') n U 
the Jacobian of iI, ... , fN cannot have rank d. So Sing(A') n U = S*, and 
Sing(A') is analytic in G. 

The union of S and the sets Sing(A') for all irreducible components A' is the 
set Sing(A). It is analytic, since the union is locally finite. _ 

The set Sing(A) is called the singular locus of A. 

Extending Analytic Sets. Let G c cn be a domain. 

6.7 Lemma. Let Zo = (ziO), ... , z~O») C C n be an arbitrary point and E = 

{z : Zi = z;O) for i = 1, ... , d} an affine plane of codimension d containing 
Zo. If A eGis an irreducible analytic set of positive dimension that is not a 
subset of E, then there is an open dense subset C C Cd such that 

fe(zl, ... , Zn) := Cl (Zl - ziO») + ... + Cd(Zd - z~O») 

does not vanish identically on A for every c = (Cl' ... , Cd) E C. In particular, 
for any hyperplane Ho C C n containing E there is a hyperplane H arbitrarily 
close to Ho and also containing E such that dim(Ai) :s; dim(A) - 1 for every 
irreducible component Ai of A n H. 

PROOF: We define cp : Cd ---+ o(cn) by cp(c) := fe. This is a C-linear map, 
and V := {c E Cd : felA == O} is a linear subspace. Suppose that V = Cd. 
Then (Zi - ziO»)IA == 0 for i = 1, ... , d, and therefore ACE. This is a 
contradiction, and consequently, V must be a proper subspace of Cd. For any 
c in the open dense subset C := Cd - V, fe does not vanish identically on A. 
Thus He := {z : fe(z} = O} is a hyperplane containing E. _ 
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Our main tool for extending analytic sets is the following. 

6.8 Proposition. If E = {z E en : ZI = ... = Zd = o} is an (n - d)­
dimensional plane and A an analytic set in G - E, whose irreducible compo­
nents all have dimension n - d + l with ° < I < d, then the closure A of A in 
G is an analytic set in G. 

PROOF: The proposition is of a local nature. We may assume that A is 
irreducible and 0 E EnG. It is enough to construct a continuation of A into 
a neighborhood of o. 

Let c = (0, ... ,0, Cd+!, ... , en) be an arbitrary point of EnG. We consider 
the following family of (d - I)-dimensional planes through c: For 

A ( I i = 1, ... ,n - d + l) M (If") = aij . _ 1 d _ l E n-d+l,d-l IV J - , ... , 

we have the linear map LA : ed - l -+ en - d+l and define 

P(c, A) := c + {(w', LA(W')) : w' E Cd-I}. 

So P( c, A) consists of vectors w = (WI, ... ,Wd-l, Wd-/+1, ... ,wn ) with 

d-l 

Wd-l+i Laij· Wj for i = 1, ... ,l, 
j=1 d-l 

Wd-/+i Cd-/+i + Laij . Wj for i = l + 1, ... ,n - d + l. 
j=1 

Then every P(c, A) meets E exactly in c = (0, ... ,0, Cd+l, ... , cn ). If 0 is the 
zero matrix, then P(c) := P(c, 0) is the plane ed-1x{(O, ... ,0,Cd+b ... ,cn )}. 

In the next chapter we will introduce Grassmannian manifolds and a topology 
on the set of linear subspaces (with fixed dimension) of a given vector space. 
In our case it follows that a neighborhood of c + Po is given by the set of all 
planes P = c+P with PEB(O x en - d+l ) = en. This shows that every (d-l)­
dimensional plane through c that is near P(c, 0) is of the form P(c, A). 

We choose real numbers ° < Tl < T2 and T > ° so small that the "shell" 

s = {z = (z',z") E ed - l x en - d+1 : Tl < IIz'll < T2 and Iz"l < T} 

is a relatively compact open subset of G. Only finitely many irreducible com­
ponents Ai of A enter S. We can find a hyperplane HI containing E that 
intersects the Ai not at all or in codimension 1. Let Aij be the finitely many 
irreducible components of HI n Ai that enter S. We can find another hyper­
plane H2 containing E that intersects all Aij at most in codimension 2. We 
continue this procedure running through the irreducible components of the 
Aij n H2 . After finitely many steps we have n - d + l hyperplanes such that 
their intersection P is a plane P( c, A) that meets An S in at most finitely 
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many points. By the above lemma we can choose this plane arbitrarily near 
Po := P(c). 

Now apply a linear coordinate transformation very near to the identity that 
leaves E invariant and maps our plane P(c, A) onto Po and replace the 
transformed shell S by a new shell S' (in the new coordinates) that is a little 
bit smaller such that S' is contained in the old (transformed) S. This can be 
done so that as' n Po n A = 0. 

Earlier we proved that A is an embedded-analytic set in a neighborhood of 
the points of the intersection A n Po n S' over a domain G' in the space of 
variables Zd-l+l, . .. ,Zn' So there is a small closed ball B C Cn - d+ 1 around 
the origin such that (Cd - l x B) n as' n A remains empty, every irreducible 
component of (Cd - 1 x B) n S' n A enters Po n S', and every plane through 
a point of B and parallel to Po intersects A n S' in at most finitely many 
points. 

E S' 

c 

o 

An Bo 

Figure III.3. Intersecting A with Bo and Po 

Now, the set Bo := {z' E ed - l : IIz'lI < r2} x B is a neighborhood of 
the origin in en, and each of our parallel planes through points of B - E 
meets A n Bo in a compact analytic set and therefore in at most finitely 
many points (cf. Figure III.3). At all of these points the set A is locally 
an embedded-analytic set over B. By multiplying the pseudopolynomials by 
the same distinguished variable that we-obtained for the different intersection 
points over the same base point in B - E, we have that An (ed- 1 x (B - E)) is 
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an embedded-analytic set over B - E. The coefficients of the corresponding 
pseudo polynomials over B - E are bounded along E. Hence, they can be 
analytically extended to B. This means that A n (Bo - E) has a unique 
analytic continuation to Bo. • 

The proposition just proved is also true if A c G - E is an analytic set, whose 
irreducible components all have dimension greater than n - d, since we can 
write A as a finite union of pure-dimensional analytic sets. As a consequence 
we have the following theorem. 

6.9 Theorem of Remmert-Stein. Assume that G c en is a domain, 
KeG an (n - d)-dimensional analytic subset, and A an analytic subset of 
G - K all components of which have dimension> n - d. Then the closure A 
of A in G is an analytic set in G. 

PROOF: If Zo E K is a regular point, then K can be transformed in a 
neighborhood of Zo to a plane E. So A is analytic in a neighborhood of Zo 
and therefore in all regular points of K. We can replace K by the set KI of 
singular points of K, which is analytic again and has lower dimension. By 
the same argument we show that A is analytic at all regular points of K I . 

Continuing in this way we prove that A is analytic in G. • 

This theorem first was proved by R. Remmert and K. Stein; see [ReSt53]. 

The Local Dimension. We show how our results are linked with the 
classical dimension theory of analytic sets. 

Let G c en be a domain, A eGan analytic set, and Zo E A a point. There 
is an open neighborhood U = U(zo) c G such that UnA is a finite union 
of irreducible analytic components AI, ... , AI. If we choose U small enough, 
then the Ai are uniquely determined. 

Definition. In the given situation the uniquely determined number 

dimzo(A):= max dim(A.x) 
,\=1, ... ,1 

is called the (local) dimension of A at Zoo 

The set A has dimension 0 at Zo E A if and only if there is an open neigh­
borhood U = U(zo) c G such that UnA = {zo}. 

6.10 Proposition. Let k := dimzo (A) be positive. Then k is the smallest 
number with the property that there are holomorphic functions II, ... ,ik in 
a small neighborhood U of Zo such that Zo is isolated in AnN (II, ... , ik). 

PROOF: If dimzo (A) = k, then there must be at least one k-dimensional 
irreducible component A' of A at Zo. 
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If f is any holomorphic function near zo, then either flA' == 0 (and therefore 
AnN (I) still k-dimensional) or A' n N (I) is (k - 1 )-dimensional. So at least 
k functions are required. 

On the other hand, by Lemma 6.7 we can find a holomorphic function h 
near Zo that does not vanish identically on any irreducible component A' of 
dimension k at Zoo It follows that A' n N(h) has dimension k - 1 for all 
such components A'. We can repeat this process, and after k steps we reach 
dimension zero, so that Zo is isolated in An N(h,···, /k). _ 

Definition. If A has dimension k at zo, then any system {h,·.·, /k} of 
holomorphic functions with AnN (h, ... , /k) = {zo} is called a pammeter 
system for A in Zo. 

6.11 Ritt's lemma. Let B c A be closed analytic sets in a domain G c 
en. Then B is nowhere dense in A if and only if dimz (B) < dimz (A) for 
every Z E B. 

PROOF: Let the criterion be fulfilled, and Zo be an arbitrary point of B. 
Then there exists an open neighborhood U of Zo in G and a parameter system 
{II, ... ,fk} on U for B at Zoo Since dimzo (A) > k, it is not possible that Zo is 
isolated in AnN(h, ... , fk). This means that (A-B)nN(h, .. ·, fk)nW =f:. 0 
for every neighborhood W = W(zo). So B is nowhere dense in A. 

On the other hand, let B be nowhere dense in A, and Zo a point of B. In a 
small neighborhood U of Zo we have unique decompositions into irreducible 
components: 

B n U = BI U ... U Bm and A = Al U ... U A l . 

Every component Bi is contained in a component Aj(i) , and for any open 
neighborhood W = W(zo) we have (Aj(i) - B i ) n W =f:. 0, because otherwise, 
there would exist points Z E W n Bi where B is dense in A. So dim(Bi ) < 
dim(Aj(i) for all i. It follows that dimzo(B) < dimzoCA). _ 

Let G c en be a domain, A eGan analytic set, and Zo E A a point. If 
dimzo CA) = k, then the number n - k is called the codimension of A at zoo 

6.12 Second Riemann extension theorem. Suppose that n 2:: 2 and 
that the analytic set A c G has everywhere at least codimension 2. Then any 
holomorphic function f on G - A has a holomorphic extension to G. 

PROOF: We may assume that A is irreducible of codimension d 2:: 2. If Zo 
is a regular point of A, then there is a neighborhood U of Zo such that UnA 
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is biholomorphically equivalent to an open subset of a linear subspace E of 
codimension d. By the theorem on removable singularities (see Section 11.1) 
J can be holomorphically extended to Zoo 

We repeat this procedure. Beginning with the set Sing(A), which has codi­
mension d + 1, after finitely many steps only a set of isolated points remains. 
Since I can also be extended to these points, we obtain the desired result. _ 

Exercises 

1. Let A l , A2 c en be analytic sets. Show that dim(A 1 n A2) ;:::: dim(Al) + 
dim(A2 ) - n. 

2. Assume that G c en is a domain and I a nonconstant holomorphic 
function on G. Prove that there is an at most countably infinite set 
Z C e such that Ac := {z E G : J(z) = c} is regular for c E e - z. 

3. Let G c en be a domain and A eGan analytic set. Prove that for any 
k ;:::: 0 the closure of the set Ak := {z E A : dimz(A) = k} is either 
empty or is a pure k-dimensional analytic subset of G. 

4. Let G c en be a domain and ft, ... , 1m holomorphic functions on G. 
Denote by N the common zero set N(ft, . .. ,1m). Show that if the rank 
of the Jacobian of ft, ... , 1m at some point Zo E N is equal to r, then 
there is a neigborhood U = U(zo) c G and a closed submanifold M C U 
of dimension less than or equal to n - r such that UnA eM. 

5. Let A be an analytic set in a domain G c en. For every point Zo E A 
the set Izo(A) := {(f)zo E Ozo : IIA == O} is an ideal in Ozo. Show that 
there are a neighborhood U of Zo and holomorphic functions ft, ... , fk 
on U such that: 
(a) AnU=N(ft, ... ,fk). 
(b) Izo(A) is generated by the germs (fdzo,···, (fk)zo. 
Show that the vector space 

n 

Tzo(A) = {w E en : Lw,Jz,,(zo) = 0 for every I E Izo(A)} 
v=l 

has dimension n - rkzo (f 1, ... , I k). It is called the Zariski tangential space 
of A at zoo 

6. Let A be defined as in Exercise 5, and suppose that Zo is a regular point 
of A. Show that Tzo(A) is the set of tangent vectors nCO) (see Section 
1.7), where a : I -+ en is differentiable, a(I) C A, and a(O) = zoo 

7. Let A be an analytic set in a domain G c en, and let Zo E A be an 
arbitrary point. The embedding dimension of A at Zo is the smallest 
integer e such that there is an open neighborhood U = U(zo) and a 
closed submanifold M C U of dimension e with An U eM. It is denoted 
by embdimzo(A). Prove that Z H embdimz(A) is upper semicontinuous 
on A, and that embdimzo(A) = dimdTzo(A)). 

8. Consider the analytic set A = {w = exp(l/z)} C {(w, z) E e2 : z -IO}. 
Determine the closure of A in e2 . 



Chapter IV 

Complex Manifolds 

1. The Complex Structure 
Complex Coordinates. Let X ~e a Hausdorff space, i.e., a topological 
space satisfying the Hausdorff separation axiom. Sometimes such a space is 
also called a separated space or a T2-space. Hausdorff spaces are the most 
common in topology (for example, every metric space is a Hausdorff space), 
but non-Hausdorff spaces do arise, in particular in algebraic geometry. The 
space en with the Zariski topology is not Hausdorff. 

We think that a space X is too big if there exists a discrete subset with the 
cardinality of the continuum. Therefore, we demand that the topology of X 
have a countable base. In this case X is said to satisfy the second axiom 
of countability. Obviously, en has a countable basis. A metric space has a 
countable basis if and only if it contains a countable dense subset. 

A Hausdorff space X is called locally compact if every point x E X has a 
compact neighborhood. ~f X is compact, then it is also locally compact. If 
X is locally compact, but not compact, then X can be made compact by 
adjoining just one point (Alexandrov's one-point compactification). Every 
Hausdorff space that is locally homeomorphic to an open subset of en is 
locally compact. So, for example, every Riemann domain over en is locally 
compact. 

Definition. An open covering "1/ = {Vv : 1/ E N} of a Hausdorff space 
X is called a refinement of the covering %' = {U, : tEl} of X if there 
is a map r : N -t I (the refinement map) with 

Vv C Ur(v) for every 1/ E N. 

The refinement map is not uniquely determined, but we can fix it once and 
for all. 

A covering "1/ = {Vv : 1/ E N} is called locally finite if each x E X has a 
neighborhood U = U(x) such that U meets only finitely many Vv ' 

Definition. A Hausdorff space X is called paracompact if every open 
covering %' of X has a locally finite open refinement "1/. 

Every compact space is paracompact. Furthermore, every locally compact 
space with countable basis is paracompact. 
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For the moment we only assume that X is a Hausdorff space. 

Definition. An n-dimensional complex coordinate system (U, <p) in X 
consists of an open set U C X and a topological map <p from U onto an 
open set Been. 

If p E X is a point, then every coordinate system (U, <p) in X with p E U 
is called a coordinate system at p. The entries Zi in z = <p(p) are called the 
complex coordinates of p (with respect to (U, <p)). 

If f is a complex function in U, we can consider it as a function of the complex 
coordinates Zl, ... , Zn, by 

Two (n-dimensional) complex coordinate systems (U, <p) and (V, 'Ij!) in X are 
called (holomorphically) compatible if either Un V = 0 or the map 

is biholomorphic (see Figure IV.I). 

Figure IV.I . Change of coordinates 

The sets B1/J := 'Ij!(U n V) and Bf{J := <p(U n V) are open subsets of en. If Zi 

(respectively Wj) are the complex coordinates with respect to <p (respectively 
'Ij!), then compatibility of the coordinate systems means that the functions 
Zi = Zi(Wl, ... , wn) and Wj = Wj(Zb .. " zn) are holomorphic. 



1. The Complex Structure 155 

A covering of X with pairwise compatible n-dimensional complex coordinate 
systems is called an n-dimensional complex atlas on X. Two such atlases Al 
and A2 are called equivalent if any two coordinate systems (U, cp) E Al and 
(V, 'l/J) E A2 are compatible. An equivalence class of (n-dimensional) complex 
atlases on X is called an n-dimensional complex structure on X. It contains 
a maximal atlas that is the union of all atlases in the equivalence class. 

Definition. An n-dimensional complex manifold is a Hausdorff space 
X with countable basis, equipped with an n-dimensional complex struc­
ture. 

Every complex manifold is locally compact and paracompact. 

Examples 

1. The complex n-space en is an n-dimensional complex manifold. The 
complex structure is given by the coordinate system (en, id). 

2. If X is an arbitrary n-dimensional complex manifold, then any nonempty 
open subset B c X is again an n-dimensional complex manifold. For 
p E B there is a coordinate system (U, cp) in X at p. Then (UnB, cplunB) 
is a coordinate system in B at p. All of these coordinate systems are 
compatible. 

3. Let G c en be a domain and X eGa k-dimensional complex sub­
manifold. Of course, X is a Hausdorff space (in the relative topol­
ogy) with countable basis. For Zo E X there are open neighborhoods 
W = W(zo) c G and B = B(D) c en and a biholomorphic map 
F : W --+ B such that 

F(WnX)={(Wl, ... ,Wn)EB: Wk+l=···=Wn=O}. 

Let pr' : en --+ e k be the projection (WI. .. " wn) t-+ (WI. ... , Wk). We 
define U := W n X and cp := pr' 0 F : U --+ e k. Then (U, cp) is a k­
dimensional complex coordinate system in X at Zo. 

If (V, 'l/J) is another coordinate system, with 'l/J = pr' 0 P, then 

cp 0 'l/J-l(Wl, .. : ,Wk) = pr' 0 F 0 p- l (Wl' ... ,Wk, 0, ... ,0) 

is holomorphic. So we get a complex structure on X. 
4. Finally, let (G, 7r) be a Riemann domain (over en). Then G is a connected 

Hausdorff space, and for every pEG there is an open neighborhood 
U = U(p) such that B := 7r(U) is open and cp := 7rlu : U --+ B is 
topological. Then (U, cp) is a complex coordinate system. If'l/J = 7rlv is 
another coordinate system, then for x E Un V we have cp(x) = 'l/J(x) = 
7r(x) =: z and 

cp 0 'l/J-l(Z) = cp(x) = z. 
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Therefore, the coordinate systems are compatible. We get a complex 
structure on G. One can prove that G has a countable basis (d. [Gr55], 
§2]). So every Riemann domain over Cn is an n-dimensional complex 
manifold. 

Holomorphic Functions. Let X be an n-dimensional complex mani­
fold. 

Definition. A complex function I on an open subset B c X is called 
holomorphic if for each p E B there is a coordinate system (U, cp) at p 
such that 10 cp-I : cp(U n B) -+ Cis holomorphic. 

If Zl, ... , Zn are the complex coordinates with respect to (U, cp), then 

(ZI, ... , Zn) H 1 0 cp-I(ZI, ... , zn) 

is a holomorphic function in the ordinary sense. If z.., = z..,(Wl. ... , wn ), where 
WI, ... ,Wn are the complex coordinates with respect to a coordinate system 
(V, '1/1), then 

10 'I/I-l(Wll ... , W n ) = 10 cp-I(ZI(Wl, ... , w n ), ... , Zn(WI, ... , w n )) 

is also holomorphic. So the definition of holomorphy is independent of the 
coordinate system. We denote the set of holomorphic functions on B by O(B). 
It is a C-algebra with unit element. 

Example 

Let G c cn be a domain and X eGa k-dimensional complex submanifold. 
We consider a complex coordinate system (U, cp) in X, where U is the inter­
section of X with an open set W C G and cp = pr' 0 F, with a biholomorphic 
map F : W -+ B c cn such that F(U) = {w E B : Wk+l = ... = Wn = O}. 
If I is a holomorphic function on G, then 

Ilx 0 cp-I(Wl. ... , Wk) = 10 F-I(Wl, ... , Wk, 0, ... ,0) 

is holomorphic. Therefore, Ilx is a holomorphic function on the complex 
manifold X. 

1.1 Identity theorem. Let X be connected. II I, 9 are two holomorphic 
functions on X that coincide in a non empty open subset U eX, then I = g. 

PROOF: Let W = {x EX: I(x) = g(x)}. Then WO =/: 0, since U C W. 
Assume that there exists a boundary point Xo of WO in X and let (U, cp) be a 
coordinate system at Xo with cp(xo) = o. Then all derivatives of I 0 cp-l and 
go cp-l must coincide at o. It follows that the power series of these functions 
around the origin are equal. But then I = 9 in a whole neighborhood of xo, 
and this is a contradiction. 
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If there were a point x E M := X - WO that was not an interior point of M, 
then x would be a boundary point of WO. This shows that M must be open. 
Since X is connected, M has to be empty. -

1.2 Maximum principle. Let X be connected, IE O(X), and Xo E X a 
point such that III has a local maximum at Xo· Then I is constant. 

PROOF: The functions I and 9 := I(xo} are both holomorphic on X. If 
(U, cp) is a coordinate system at Xo and B := cp(U), then 10 := 10 cp-l is 
holomorphic on B, and 1/01 has a local maximum at Zo := cp{xo). Thus there 
is an open neighborhood B' = B'(zo) c B such that 10 is constant on B' and 
I is constant on U' := cp-l(B'}. So Ilu = glu, and by the identity theorem 
I = g; i.e., I is constant. -

1.3 Corollary. II X is compact and connected, then every holomorphic 
junction on X is constant. 

PROOF: The continuous function III takes its maximum at some point of 
X. Now the corollary follows from the maximum principle. _ 

1.4 Corollary. There is no compact complex submanilold 01 positive di­
mension in en. 

PROOF: Let X c en be a compact connected submanifold. Then the stan­
dard coordinate functions z" I x must be constant, for v = 1, ... , n. This 
means that X is a single point. If X is not connected, it is a finite set of 

~~. -
Remark. Another proof is given in Section 111.6. 

Riemann Surfaces. An (abstract) Riemann surlace is by definition a 
I-dimensional connected complex manifold. 

Example 

The complex plane e and every domain in e are Riemann surfaces. Recall 
the Riemann surface of Vz, 

X = {(w, z) E e2 : w2 = z, Z f; O}. 

Since X is a Riemann domain over e, it is a I-dimensional connected complex 
manifold. From the projection 'Tr ;= pr21x : X -+ e we get complex coordinate 
systems (U,cp) with cp:= 'Trlu and sufficiently small U. 
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The function 1 : X ~ C with I(w, z) := w is a global holomorphic function 
with 12 = z. 

Example 

The Riemann sphere C = c U { oo} is a compact connected Hausdorff space. 
We have two coordinate systems (C,cp) and (C - {O},'1jI) with IO(Z) = z and 
'IjJ(z) = liz. On C* = C n (C - {O}) we have I" 0 'IjJ-1(Z) = liz, and this is 
holomorphic. So C is a compact Riemann surface. Every global holomorphic 
function on C is constant, but there are nontrivial meromorphic functions, 
for example I(z) = z (with one pole at (0). Here a meromorphic function on 
X is a function f that is holomorphic outside a discrete subset P c X and 
satisfies 

lim If(x)1 = 00 for every pEP. 
x-+p 

The points of P are called the poles of I. 

Holomorphic Mappings. Let F : X ~ Y be a continuous map be­
tween complex manifolds. 

Definition. The map F defined above is called holomorphic if for any 
p E X there is a coordinate system (U,cp) in X at p and a coordinate 
system (V, 'IjJ) in Y at F(p) with F(U) c V such that 

'IjJ 0 F 0 10- 1 : cp(U) -4 'IjJ(V) 

is a holomorphic map. 

1.5 Proposition. The map F : X ~ Y is holomorphic if and only il for 
any open subset V C Y and any 1 E O(V) it follows that loF E O(F-l(U)). 

The proof is an easy exercise. 

The category 01 complex manifolds consists of a class of objects, the complex 
manifolds, and a class of sets such that to any pair (X, Y) of objects there is 
assigned a set O(X, Y) (which may be empty), the set of holomorphic maps 
between X and Y. In a general category this set would be called the set of 
morphisms from X to Y. 

For (G,F) E O(Y,Z) x O(X,Y) we always have the composition GoF E 
O(X, Z) such that the following axioms hold: 

1. If HoG and Go F are defined, then (H 0 G) 0 F = H 0 (G 0 F). 
2. For any manifold X we have the identity map idx E O(X, X) such that 

idy 0 F = F and F 0 idx = F, if the compositions are defined. 
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Another example for a category is given by the topological spaces and contin­
uous mappings. If we replace in our definitions above the field e by IR and the 
word "holomorphic" by "differentiable", we get the category of differentiable 
manifolds and differentiable mappings. From every n-dimensional complex 
manifold we obtain a 2n-dimensional differentiable manifold by "forgetting 
the complex structure." 

A holomorphic function f : X ~ e is obviously a holomorphic mapping. 
More generally, in the case of a Riemann surface a meromorphic function f 
on X may be viewed as a holomorphic mapping f : X ~ c. 

Definition. A biholomorphic map F : X ~ Y is a topolc.gical map 
such that F and F- I are holomorphic. If there exists a biholomorphic 
map between X and Y, then the manifolds are called isomorphic or 
biholomorphically equivalent, and we write X ~ Y. 

Remark. If X is a complex manifold and (U, cp) a complex coordinate 
system with cp(U) = Been, then cp : U ~ B is a biholomorphic map. 

Cartesian Products. Assume that Xl, ... ,Xm are complex manifolds 
of dimension nl, . .. ,nm. Then the set X = Xl X ..• X Xm carries a natural 
topology generated by the sets U = UI X ... X Um, Ui C Xi open for i = 
1, ... , m. One sees immediately that X is a Hausdorff space with countable 
basis. 

Given complex coordinate systems (Ui , CPi) in Xi, for i = 1, ... ,m, one defines 
a coordinate system (U, cp) for X by 

It is clear that two such coordinate systems are compatible. So we obtain an 
n-dimensional complex atlas and a complex structure on X. The projections 
Pi : X ~ Xi are holomorphic maps for i = 1, ... ,m. 

A simple example is en = ex· .. x Co 

-----------n times 

The Cartesian product of two complex manifolds Xl, X 2 satisfies the follow­
ing universal property: 

Given any complex manifold Y and any two holomorphic maps F : Y ~ X I 
and G: Y ~ X 2 , there exists exactly one holomorphic' map H: Y ~ Xl X X 2 
with F = PI 0 Hand G = P2 0 H. 

Although trivial in our case (we set H := (F, G)), this property becomes 
important in more general categories. 
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Analytic Subsets. Let X be an n-dimensional complex manifold. 

Definition. A subset A c X is called analytic if for each point p E X 
there are a (connected) open neighborhood U = U(P) and finitely many 
holomorphic functions iI, ... ,J m on U such that 

unA={qEU: fJq)=Ofori=l, ... ,m}. 

We call A an analytic hypersurface if we can always take m = 1. 

From the definition it follows that A is a closed subset of X. Locally, an 
analytic set in X is the same as an analytic set in an open set Been. So 
most properties of analytic sets in en can be transferred. 

1.6 Proposition. If X is connected and A c X analytic, then either A = 
X or A is nowhere dense and X - A is connected. 

PROOF: Assume that A #: X. If A is somewhere dense in X, then A contains 
interior points (because it is closed in X). Since X is connected, the interior 
of A has a boundary point p E X - A (same argument as in the proof of 
the identity theorem). We take a connected neighborhood U = U(p) such 
that An U = {q E U : iI(q) = ... = fm(q) = O}. Then U contains an 
open subset V (consisting of interior points of A) where iI, ... , fm vanish 
identically. By the identity theorem they vanish on the whole set U, and p 
cannot be a boundary point of the interior of A. This is a contradiction, and 
it follows that A is nowhere dense. 

If X - A is not connected, it can be decomposed into two nonempty open 
subsets UI, U2 • The function f : X -A -+ e with f(x) == 0 on U1 and f(x) == 1 
on U2 is holomorphic and bounded. By Riemann's extension theorem (which 
can be applied locally) there exists a holomorphic function i on X that 
coincides with f outside A. Since i can take only the values 0 and 1, it is 
locally constant. But on the connected manifold X every locally constant 
function is constant. This is a contradiction. _ 

Let iI, ... , f m be holomorphic functions that are defined on an open subset 
U eX. Let p E U be a point and (V, 'ljJ) a complex coordinate system in X 
at p. The mapping f = (iI, ... , fm) : U -+ em is holomorphic, and we define 

Jr(Pi'ljJ) := (8(fi 0 'ljJ-l) ('ljJ(p») I i.==- 1, ... , m ) . 
• 8zj J - 1, ... , n 

This is something like a Jacobian matrix of f at p, but it depends on the 
coordinate system 'ljJ. Since 
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we have 

This shows that 

is independent of the chosen coordinate system. 

Definition. An analytic set A c X is called regular (of codimension 
d) at a point pEA if there are an open neighborhood U = U (p) c X 
and holomorphic functions iI, ... , fd on U such that: 

1. An U = {q E U : iI(q) = ... = fd(q) = O}. 
2. rkp(iI, ... ,jd) = d. 

The number n - d is called the dimension of A at p. 

If A is regular at every point, A is called a complex submanifold of X. 

1.7 Proposition. An analytic set A is regular of codimension d at pEA 
if and only if there is a complex coordinate system (U, <p) in X at p with 
<p(U) = Been and <p(UnA) = {w E B : Wn-d+l = ... = Wn = O}. 

If A is a complex submanifold of X, then A itself is a complex manifold. 

PROOF: Let (U, 'ljJ) be an arbitrary coordinate system at p and W := 'IjJ(U). 
Then A := 'ljJ(AnU) is an analytic subset of W that is regular of codimension 
d at Zo := 'ljJ(p), and there exists a biholomorphic map £ from W onto an open 
neighborhood B = B(O) c en with £(zo) = 0 and £(A) = {w : Wn-d+l = 
... = Wn = O}. We take <p := £ 0 'ljJ. 

If A c X is a submanifold, then A inherits a natural complex structure from 
X. This can be demonstrated in the same way as in the case X = en. • 

Example 

Let F : X ~ Y be a holomorphic map from an n-dimensional manifold into 
an m-dimensional manifold. Then 

GF:= {(x,y) E X x Y : y = F(x)} 

is called the graph of F. 
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Let Po E X be a point and qo ::;= F(po) E Y. We choose coordinate systems 
(U, cp) in X at Po and (V, t/J) in Y at qo, with F(U) c V. Then (U x V, cp x 1/J) is 
a coordinate system in X x Y at (Po, qo) E Gp. Writing t/J 0 F = (II,·.·, 1m) 
we get 

Gp n (U x V) = {(cp x t/J)-l(Z, w) : Ii 0 cp-1(Z) - Wi = 0 for i = 1, ... , m}. 

So Gp is locally defined by the functions 9i(P, q) := Ii(p) - Wi 0 t/J(q), for i = 
1, ... ,m. Since rk(pO,qo) (91, ... ,gm) = m, we see that Gp is an n-dimensional 
submanifold. 

The diagonal ~x C X x X is a special case, which is given as the graph of 
the identity: 

~x = {(x, x') E X x X : x = x'}. 

Example 

Let A = {( W, Zl, Z2) E (:3 : w2 = ZlZ2}. The projection p : (w, Zt. Z2) t-+ 

(zt. Z2) realizes A as a branched covering over (:2 that is the zero set of 
the pseudopolynomial w(w; Zl, Z2) = w2 - ZlZ2. Outside the discriminant set 
Dw = {(Zt.Z2) : ZlZ2 = O} it always has two regular leaves over (:2. So A is 
everywhere 2-dimensional and regular outside Dw. It is even regular outside 
the origin, since V'w( w, Zl, Z2) vanishes only at (0,0,0). One can show that 0 
is, in fact, a singular point; e.g., by using Exercise 8.2 in Chapter 1. 

The map cp: (:2 -+ A with cp(t1,t2) := (t1t2,t~,t~) is surjective. We call it a 
unilonnization. The Jacobian 

vanishes exactly at (0,0). The image point (0,0,0) = cp(O,O) is then called a 
nonuniformizable point. 

Analogously to the situation in en one proves that the set Sing(A) of singular 
points of an analytic set A is a nowhere dense analytic subset. The set A is 
called irreducible if A - Sing(A) is connected. To every analytic set A C X 
there is a uniquely determined locally finite system of irreducible analytic 
sets (A'\)'\EA such that A is the union of all these irreducible components A,\. 

Differentiable Functions. Let X be an n-dimensional complex man­
ifold, B c X an open set. A function I : B -+ C is called differentiable 
(respectively smooth), if for every complex coordinate system (U, cp) with 
Un B :f 0 the function 10 cp-1 is differentiable (respectively infinitely dif­
ferentiable) on cp(U n B). We denote the JR.-algebra of real-valued smooth 

.. 



1. The Complex Structure 163 

functions on B by <C(B) and the (>algebra of complex-valued smooth fuc­
tions by <C(B, q. 

1.8 Proposition. In every complex manifold X there is a sequence of com­
pact subsets (Kn) with Kn C (Kn+1t and U:=l Kn = X. 

PROOF: Since X is locally compact with countable basis, we can find a 
countable basis (Bv)VEN of the topology of X such that each Bv is compact. 
We take Kl := B 1 . If nl is the minimal number such that Kl C Bl u·· ·UBn" 
then kl ? 2, and we take K2 := Bl U ... U B n" and so on. _ 

We call (Kn)nEN a compact exhaustion of X. 

1.9 Proposition. Let an open covering %' = {UL : ~ E I} of X be given, 
and two real numbers r, r' with 0 < r' < r. Then there is a locally finite open 
refinement "j/ = {VA : ,\ E L} of %' such that the following hold: 

1. For each ,\ E L there exists a complex coordinate system (VA' CPA) in X 
with CPA(VA) = Br(O). 

2. The open sets cp.;:l(Br/(O)) also cover X. 

PROOF: We use a compact exhaustion (Kn) and define Ml := Kl and 
Mn := Kn - (Kn-1t for n ? 2. Then (Mn) is a covering of X by compact 
sets. 

We consider a fixed M = Mn. For each x E M there is an index L = ~(x) E I 
and an open neighborhood V = V(x) C ULn«Kn+1)O -Kn- 2). We can make 
V so small that there is a complex coordinate system cP : V -+ Br(O) with 
cp(x) = 0, and we define V' := cp-l(Br/(O)). The set M is covered by finitely 
many neighborhoods V~,l"'" V~,mn like our V'. Then 

"j/ := {Vn,i : n E N, i = 1, ... , m n} 

is the desired covering. -
Definition. A (smooth) partition of unity on X is a family (CPL)LEI of 
smooth real-valued functions such that: 

1. CPL ? 0 everywhere. 
2. The system of the sets supp( CPL) is locally finite. 
3. LLEl CPL = 1. 

1.10 Theorem. For any open covering %' = {UL ~ E I} of X there is a 
partition of unity (CPL) with SUPP(CPL) C UL. 
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PROOF: We have a locally finite refinement )/ = {VA : oX E L} of %' and 
complex coordinates <PA : VA -+ Br(O) as in Proposition 1.9. If"p : en -+ R is 
a smooth function with 0 :::; "p(z) :::; 1, "p(z) == 1 on Brl(O) and "p(z) == 0 on 
en - Br(O), we define a smooth function "pA on X by WA = 'l/J 0 <P>. on VA and 
'l/JA(X) == 0 otherwise. 

Let T : L -+ I be a refinement map (with VA C Ur (>.»). Then 'W = {WL : 
LEI} with WL := UAEr-1(L) VA is an open refinement of %' with W. CU •. 
In addition it is locally finite, because for x E X there is a neighborhood 
P = P(x) such that P n VA oj:. 0 only for oX E Lo, Lo c L finite. But then 
P n W. oj:. 0 only for L = T(oX), oX E Lo. 

We define <P. := L>'Er-1(.) 'l/J>.. The sum is finite at every point. So <P. is 

smooth and has its support in W.. Every x E X lies in a set <P';: 1 (Brl (0)), 
where 'l/JA is positive. Therefore, <P := L. <P. is well defined and everywhere 
positive. Now we can define the partition of unity by <P. := <pj <p. • 

1.11 Corollary. Let U C X be an open set and V cc U an open subset. 
Then there exists a function f E G"(X) with flv = 0 and flex-v) = 1. 

PROOF: The system {U, X - V} is an open covering of X. Let {<PI, <P2} be a 
partition of unity for this covering. Then supp(<pd C u, SUpp(rp2) eX - V, 
and <PI + <P2 = 1. We take f := <P2· • 

Tangent Vectors. Let X be an n-dimensional manifold and a E X an 
arbitrary point. 

Definition. A derivation on X at a is an R-linear map v : G"(X) -+ R 
such that 

v[J . g] = v[JJ . g(a) + f(a) . vlgJ for f, 9 E G"(X). 

If c is constant, then vIc] = 0 for every derivation v. 

1.12 Proposition. If f E G"(X) and flv = 0 for some open neighborhood 
U = U(a) C X, then v[f] = 0 for every derivation v at a. 

PROOF: We choose a function g E G"(X) such that glv = 0 for some open 
neighborhood V = V(a) CC U and glex-v) = 1. Then g. f = f, and from 
the derivation rule it follows that 

v[J] = v[g . fJ = vlg] . f(a) + g(a) . v[J] = O. 

• 
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1.13 Corollary. If f, 9 are two functions of 6"(X) with flu = glu for some 
open neighborhood U = U(a) C X, then v[J] = v[g] for every derivation v at 
the point a. 

It follows from the corollary that we can restrict derivations to locally defined 
functions and work with coordinates. If cp = (Zl, ... , zn) : U ----t en is a 
coordinate system at a and z., = Xv + i Yv, then we define partial derivatives 
at a by 

for i = 1, ... , n. The partial derivatives depend on the chosen coordinate 
system, but once we have made our choice, every derivation v at a has a 
unique representation l 

v = tai (a~) + tbi (aa.) , 
i=l 1 a i=l Y. a 

with ai = v[xil and bi = v[Yil for i = 1, ... ,n. 

In en the space of derivations is isomorphic in a natural way to the space of 
tangent vectors. But what is a tangent vector on a complex manifold X? We 
start with a differentiable path a : I ----t X, where I C lR is an interval with 
o E I, and a(O) = a. Let (U, cp) be a coordinate system in X at a. Then we 
can write cp 0 a = (al, ... , an) and get the tangent vector 

( cp 0 a)' (0) = (a~ (0), ... , a~ (0) ). 

Unfortunately, this vector depends on the coordinate system. But a tangent 
vector at a should somehow be completely determined by a pair (cp, c), where 
cp is a coordinate system at a and e = (Cl, ... ,cn) E en an arbitrary vector. 

In this sense the tangent vector to a is given by the pair (cp, (cp 0 a)'(O)). If 
we take another coordinate system 'l/J, then 

Therefore, we call two pairs (cp, c) and ('l/J, e') equivalent if the Jacobian of 
'l/J 0 cp-l at cp(a) transforms e into e', i.e., if 

c = c' . J",01/J-l ('lj;(a)) t. 

An equivalence class is called a tangent vector at a. The set Ta(X) of all 
tangent vectors at a is called the tangent space. It carries the structure of a 
complex vector space, which can be defined on representatives: 

1 For the proof use the fact that every sm~oth function f on a domain G C 
en has near Zo EGa unique representation fez) == L:~=l gv(z)(x.., - xe) + 
L~=l h..,(z)(y.., - ye) with g..,(zo) == fx,,(zo) and h..,(zo} = fy,,(zo). 
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(cp,ct)+ (cp,C2) .- (CP,Cl+C2), 
A· (cp, c) .- (cp, A· c). 

The Complex Structure on the Space of Derivations. If 
f = 9 + ih is a complex-valued smooth function on the open set B c X and 
v a derivation at a E B, then we define 

v[J) := v[g) + i v[h). 

1.14 Proposition. For every e E en and every coordinate system cp at a 
there is a unique derivation v at a such that 

v[J) := e· \l(J 0 cp-l )(cp(a)) t for every holomorphic function f. 

The derivation v depends only on the equivalence class of (cp, c). 

PROOF: If a coordinate system cp = (ZI, ... , zn) with Zv = Xv + iyv and a 
vector c = a + ib are given, then v can be defined by 

v:= tal' (8=1') + tbv (881') . 1'=1 a 1'=1 y a 

If f is a holomorphic function, then fyv = ifxv and fxv = fzv. Consequently, 

n 

v[f) = L(av + ibv)(f 0 cp-l )xv (cp(a)) = c· \l(J 0 cp-l)( <p(a)) t • 

1'=1 
The uniqueness follows from the equations v[xv) + i v[Yv) = vlzv) = Cv· 

If the pair (cp,c) is equivalent to ('!/J,e'), then 

e' . \l(J 0 '!/J-l)( '!/J(a)) t = c'· Jcpo,p-l ('!/J( a)) t . \l(J 0 cp-l)( cp(a)) t 
= c· \l(J 0 cp-l)(cp(a)) t. 

Therefore, v is determined by the equivalence class of (cp, e). • 
The assignment (cp,c) ~ v induces a real vector space isomorphism between 
the tangent space Ta(X) and the space of derivations at a. It follows that the 
tangent space has complex dimension n. The pair (cp, e v ) is mapped onto the 
derivation (8j8xv)a, and (cp, ieI') onto (8/{)yv)a. 

1.15 Proposition. A complex structure on the space of derivations at a is 
given by 

J(vHf) = i . vlf), for every holomorphic function f· 
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PROOF: Obviously, J is lR-linear, and J 0 J(v) = -v. • 
Ifv corresponds to the tangent vector given by (<p,c), then J(v) corresponds 
to (<p, ic). One must distinguish carefully between the real number J(v)(J] 
and the complex number i . v[f] if f is a real-valued smooth function. 

The differential operators ({)/{)Zv)a and ({)/OZv)a are not real-valued deriva­
tions, and therefore they do not correspond to tangent vectors. But they are 
nevertheless useful. If v is a derivation, then 

n n 

v(J] = L av(f 0 <p-l)xv + L bv(f 0 <p-l )Yv 
v=l v=l 

n 

= Lav · ((fo<p-lk + (fo<p-lhvl 
v=l 

n 

+ Lbv · i· ((f 0 <p-l)zv - (fo<p-lhJ 
v=l 

n n 

= Lcv(f 0 <p-l)zv + LCv(f 0 <p-lhv' 
v=l v=! 

if Cv := av + ibv for v = 1, ... ,n. 

Therefore, every (real-valued) derivation can be written in the form 

v = I:cv ({)~v) + I:cv (~v) . 
v=l a v=l a 

The Induced Mapping. Let F : X ~ Y be a holomorphic map be­
tween complex manifolds. Let x E X be an arbitrary point, y := F(x) E Y. 

Definition. The tangential map F. = (F.)x : Tx(X) ~ Ty(Y) is 
defined by 

(F.v)[g] := v(g 0 F], for derivations v and functions 9 E C(Y). 

The map F. is linear, acting on tangent vectors as follows: 

if cp is a coordinate system at x, and 1/J is a coordinate system at y. 

Now we have an assignment between the category of complex manifolds (with 
a distinguished point) and the category of vector spaces. To any manifold 
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X and any point a E X there is associated the tangent space Ta(X). To 
any holomorphic map F : X -t Y with F(a) = b there is associated the 
homomorphism F. : Ta(X) -t n(Y). This assignment has the following 
properties: 

(idx ). 

(G 0 F). 
idTx(x) , 

G. 0 F. (if G : Y -t Z is another holomorphic map). 

Such an assignment is called a covariant functor. If it interchanged the order 
of the maps, it would be called a contravariant functor. 

Remark. For historical reasons the elements of the tangent space are called 
contravariant vectors and the elements of its dual space covariant vectors. 
But the tangent functor behaves covariantly on the tangent vectors and con­
travariantly on the covariant tangent vectors in Ta(X)'. One should keep this 
in mind. 

Immersions and Submersions. We are particularly interested in 
the case where the (local) Jacobian of a holomorphic map F : X -t Y has 
maximal rank. If n = dim(X) and m = dim(Y), then the rank is bounded 
by min(n, m). Only two cases are possible: 

Definition. The holomorphic map F is called an immersion at x if 
rk(F.) = n :'S m, and F is called a submersion at x if rk(F.) = m 2: n. 
In the first case (F.)x is injective; in the second case it is surjective. 

We call F an immersion (respectively submersion) if it is an immersion (re­
spectively submersion) at every point x E X. 

Remark. If F : X -t Y is an injective immersion, then for every x E X 
there are neighborhoods U(x) c X and V(F(x)) C Y such that F(U) is a 
submanifold of V. In addition, if X is compact, then F(X) is a submanifold 
of Y. We omit the proof here. 

1.16 Theorem. Let Xo E X be a point, Yo := F(xo). The following condi­
tions are equivalent: 

1. F is a submersion at Xo. 
2. There are neighborhoods U = U(xo) C X and V = V(yo) C Y with 

F(U) c V, a manifold Z, and a holomorphic map G : U -t Z such that 
x H (F(x), G(x)) defines a biholomorphic map from U to an open subset 
of V x Z. 

3. There is an open neigborhood V = V(Yo) C Y and a holomorphic map 
s : V -t X with s(Yo) = Xo and F 0 s = idv. (Then s is called a local 
section for F.) 
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PROOF: (1) ==> (2) : We can restrict ourselves to a local situation and 
assume that U = U(O) c en and V = V(O) c em are open neighborhoods, 
and F: U -+ V a holomorphic map with F(O) = 0 and rk(JF(O» = m. 

We write JF(O) = (J;..(O), J;J.(O», with J;"(O) E Mm.m(C) and J;J.(O) E 
Mm.n-m(C). Choosing suitable coordinates we may assume that det J;"(O) f= 
o. We define a new holomorphic map F : U -+ V X en-m c en by 

F(z',z"):= (F(z',z"),z"), for z' E em, z" E en - m . 

Then 

JF-(O) _- (J;..(O) J;J.(O»), d h 1: d J (0) J.. 0 an t erelore et Fr. o E n - m 

By the inverse function theorem there are neighborhoods U(O) C U and 
W(O) c en such that F: if -+ W is biholomorphic. 

We observe that Z := en - m is a complex manifold, and G := pr2 : U -+ Z 
with (z', z") I-t Z" is a holomorphic map such that (F, G) = F is biholomor­
phic near o. 
(2) => (3) : If U, V, Z, and G are given such that F(U) C V and (F, G) : 
U -+ W c V x Z is biholomorphic, then s : V -+ X can be defined by 

s(y):= (F,G)-I(y,G(xo». 

Then (F, G)(s(yo» = (Yo, G(xo» = (F, G)(xo), and therefore s(yo) = Xo· 
Furthermore, (F, G) 0 s(y) = (F,g) 0 (F, G)-l(y, G(xo» = (y, G(xo». Thus 
Fos(y)=y. 

(3) => (1) : If s is a local section for F, with s(Yo) = xo, then F. os. (v) = v 
for every v E TyO (Y). Thus it follows immediately that F .. is surjective. _ 

1.17 Corollary. If F : X -+ Y is a submersion, then for each y E Y the 
fiber F- 1(y) is empty or an (n - m)-dimensional submanifold of X. In the 
latter case Tx(F- 1(y» = Ker«F.)x) for all x E F- 1(y). 

PROOF: We consider a point Xo E X. Let M := F-l(yo) be the fiber over 
Yo := F(xo)· Then we can find neighborhoods U = U(xo) C X, V = V(yo) C 
Y, a manifold Z, and a holomorphic map G : U -+ Z such that (F, G) : U -+ 
W c V x Z is biholomorphic. It follows that M n U = (F, G) -1 ( {yo} x Z) n U 
is a manifold of dimension n - m. 

Since FIM is constant, we have F.ITxo(M) == O. This means that Txo(M) C 
Ker(F.). Since these spaces have the same dimension, they must be equal. _ 
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Gluing. Assume that X is a set that is the union of a countable collection 
(X" )"EN of subsets such that the following hold: 

1. For every v E N there is a bijection 'P" : X" ~ M", where M" is an 
n-dimensional complex manifold. 

2. For every pair (v,J.£) E N x N the subset cp"(X,, n XJL) is open in M", and 
the map 

'P" 0 'P;.l : 'PJL(X" n XI') ~ 'P"(X,, n XI') 

is biholomorphic. 
3. For every pair of points a E X" and b E XI' with a f= b there are 

open neighborhoods U(cp,,(a» c M" and V('PI'(b» c MI' with 'P;;l(U) n 
cp;l(V) = 0. 

1.18 Proposition. Under the above conditions there is a unique complex 
structure on X such that the X" are open in X and the cp" : X" ~ M" are 
biholomorphic. 

PROOF: We give only a sketch of the proof and leave the details as an 
exercise for the reader. 

A subset U C X is called open if 'P,,(UnX,,) is open in M" for every v. Then 
the collection of open sets has the properties of a topology on X. In addition, 
for every open set W C Mil the set 'P;;l(W) is open in X. Consequently, 
the maps CPII : XII ~ Mil are homeomorphisms. From the last hypothesis it 
follows that the topology on X is Hausdorff, and since the collection of the 
X II is countable, it has a countable basis. 

If U c M" is open and t/J : U ~ en a coordinate system, then -if; := t/J 0 'PII : 
'P;; 1 (U) ~ en is a coordinate system for X. One checks easily that two 
such coordinate systems are biholomorphically compatible. So we obtain a 
complex structure on X. • 

One says that X is obtained by gluing the manifolds M". Another way 
to describe this process is the following. Let there be given a collection of 
complex manifolds M", open subsets Mill' eM", and biholomorphic maps 
'PilI' : MI''' ~ Mill' (including 'Pw = idMJ. Consider pairs (x, v) with 
x E Mil' Then (x, v) is called equivalent to (Y,J.£) if 

x E M"I" Y E MI''' and x = 'P"JL(Y)' 

The set X of equivalence classes is the result of the gluing process. Of course, 
one has to add a condition that ensures the Hausdorff property. 

Exercises 

1. Let M be a compact connected complex manifold with dim(M) ~ 2 and 
N C M a closed submanifold of codimension greater or equal to 2. Show 
that every holomorphic function f : M - N ~ e is constant. 
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2. Let X be a Riemann surface. 
(a) If f is a meromorphic function on X, and P the set of poles, show 

that 
J(x) := {f(X) for x E X - P, 

00 for x E P 

defines a holomorphic map 1 : X -t C. 
(b) Prove that every holomorphic map f : X -t C that is not identically 

00 defines a meromorphic function on X. 
3. Let f : X -t Y be a nonconstant holomorphic map between Riemann 

surfaces, Xo E X, and Yo := f(xo) E Y. Prove that there is a k 2: 1 such 
that there are complex coordinates cp : U(xo) -t C and 1jJ : V(yo) -t C 
with: 
(a) cp(xo) = 0, 1jJ(yo) = O. 
(b) feU) c v. 
(c) 1jJ 0 f 0 cp-1(Z) = zk. 

4. The general linear group GLn(C) is an open subset of the vector space 
Mn(C). Prove that the special linear group SLn(C) := {A E Mn(C) : 
det(A) = I} is a submanifold of GLn(C). Calculate the tangent space 
TE(SLn(C)) C TE(GLn(C)) = Mn(C), where E = En is the identity 
matrix. 

5. Let f : X -t Y be a holomorphic map and Z C Y a closed submanifold. 
Show that if 

Im((f.)x) + Tf(x)(Z) = Tf(x)(Y) 

for every x E f-1(Z), then f- 1(Z) is a submanifold of X. 
6. The holomorphic maps f : X -t Z and 9 : Y -t Z are called transversal 

iffor every (x, y) E X x Y with f(x) = g(y) =: z the following holds: 

Prove that the fiber product 

X Xz Y:= ((x,y) E X x Y : f(x) = fey)} 

is a complex submanifold of X x Y. 

2. Complex Fiber Bundles 
Lie Groups and Transformation Groups. Assume that G is a 
set that has the structure of a group and at the same time that of an n­
dimensional complex manifold. The inverse of 9 E G will be denoted by g-1, 
the identity element bye, and the composition of two elements gl, g2 E G by 
g1g2· 

Definition. We call G a complex Lie group if the following two prop­
erties hold: 
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1. The mapping 9 rl g-l (from G to G) is holomorphic. 
2. The mapping (gl,g2) ~ g1g2 (from G x G to G) is holomorphic. 

There are many examples of complex Lie groups. The simplest one is the 
space Cn, where the composition is vector addition. Another example is the 
group C* with respect to ordinary multiplication of complex numbers. 

The most important example is the general linear group 

GLn(C):= {A E Mn(C) : detA f:. OJ. 
2 

Its complex structure is obtained by considering it as an open subset of Cn . 

The multiplication of matrices is bilinear, and the determinants appearing in 
the calculation of the inverse of a matrix A are polynomials in the coefficients 
of A. 

Every matrix A E GLn(C) defines a linear and therefore holomorphic map 
1> A : cn -+ Cn by 

1>A(Z) := z· At. 

Then 1>AB(Z) = z· (AB)t = z· (BtAt) = (z .Bt). At = 1>A(<I>B(Z)). If En 
is the identity matrix, then 1>E n = id. Furthermore, if A is any matrix with 
1> A = id, then A must be the identity matrix, since 1> A (ei) = ei . A t is the 
transpose of the ith column of A. 

We want to generalize this situation. Let X be a complex manifold and G a 
complex Lie group. 

Definition. We say that G acts analytically on X (or is a complex 
Lie transformation group on X) if there is a holomorphic mapping 1> : 
G x X -+ X with 

The holomorphic map x rl 1>(g, x) is denoted by 1>g. We say that G acts 
effectively or faithfully on X if 1>g = idx implies that 9 = e. 

Often we write gx instead of 1>(g, x) or 1>g(x). A point x E X with gx = x 
is called a fixed point of g. We say that G acts freely if only the identity 
element e E G has fixed points in X. The general linear group GLn(C) acts 
analytically and faithfully on cn, but not freely. 

Let {WI, ... , W2n} be any basis of Cn over lR. Then 

is a subgroup of the (additive) group Cn generated by WI, ... , W2n. The group 
r acts on Cn by 1>(w, z) := z + w. This is an example of a free action. 
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Fiber Bundles. Let X and F be complex manifolds and G a complex 
Lie group acting analytically and faithfully on F. 

Definition. A topological (respectively holomorphic) fiber bundle over 
X with structure group G and typical fiber F is given by a topological 
space (respectively a complex manifold) P and a continuous (respectively 
holomorphic) map 7r : P -+ X, together with 

1. an open covering all = {U. : tEl} of X, 
2. for any tEl a topological (respectively biholomorphic) map 

<P. : 7r- 1 (U.) -+ U. x F 

with pr1 0 <P. = 7r, 

3. for any pair of indices (t, K.) E I x I a continuous (respectively holo­
morphic) map g.K. : U. n UK. -+ G with 

for x E U.K. := U. n UK. and p E F. 

The maps <P. are called local trivializations and the maps g.K. a system of 
transition functions. 

Since G is acting faithfully, we get the following compatibility condition: 

Then gu = e and gK. = g;:;/. 

Now let a system of transition functions (g.K) be given such that the com­
patibility condition is satisfied. Using the gluing techniques mentioned at the 
end of Section 1, a suitable bundle space P, a projection 7r : P -+ X, and 
local trivializations can be constructed as follows: 

Identifying (x,p) and (x,g.K.(x)p), we can glue together the Cartesian prod­
ucts UK. x F and U. x F over U'K.' Due to the compatibility condition this 
works in a unique way over U'''A' The obvious projection from P to X is 
continuous. Therefore, P is a fiber bundle over X with structure group G 
and typical fiber F. If the transition functions gL" are holomorphic, then P 
carries the structure of a complex manifold, and the projection and the local 
trivializations are holomorphic. So P becomes an analytic fiber bundle in 
that case. 

Example 

Let X be an n-dimensional complex manifold. There is an open covering 
all = {U. : t E I}, together with complex coordinate systems 
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We take C as typical fiber and C' as structure group, acting on C by multi­
plication. Then we can define transition functions g.,. : Ut ,. -+ C* by 

The compatibility conditions are satisfied because of the chain rule and the 
determinant product theorem. So by the gluing procedure described above 
we get a holomorphic fiber bundle over X that is called the canonical bundle 
and is denoted by K x . 

Equivalence. Let 1fp : P -+ X and 1fQ : Q -+ X be two topological or 
holomorphic fiber bundles over the same manifold X, with the same fiber F 
and the same structure group G. We assume that there is an open covering 
'fI = {UL : ~ E I} of X such that there are trivializations ipL : 1fpl(UL) -+ 
UL X F and 1/J. : 1fQl(U.) -+ UL X F. 

Definition. A fiber bundle isomorphism between P and Q is a topo­
logical (respectively biholomorphic) map h : P -+ Q with 1fQ 0 h = 1rp 

such that for any ~ E I there is a continuous (respectively holomorphic) 
map hL : U. -+ G with 

The bundles are called equivalent in this case. 

We give a description of bundle equivalence in the context of transition func­
tions. Let (g~,,J be the system of transition functions for P with respect to 
'fI, and (g~~) the corresponding system for Q. Then we have 

(x,h.(X)g~K(X)P) = 1/JLohoip;l(x,g~K(x)p) 

= 'l/JLohOip-;;,l(X,p) 

1/J. 0 1/J-;;,l(X, h,.(x)p) 

(x, g~~ (x )hK (x)p). 

Since G is acting faithfully, it follows that 

Two systems of transition functions (g:,.) and (g~~) with respect to the 
same covering are called topologically (respectively analytically) equivalent 
or cohomologous if there are continuous (respectively holomorphic) maps 
hL : U. -+ G satisfying condition (C). 

Equivalent fiber bundles have equivalent systems of transition functions. On 
the other hand, it is easy to see that fiber bundles constructed from equiv­
alent systems of transition functions are themselves equivalent. Now we will 
demonstrate that the latter remains valid in passing to finer coverings. 
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Let us assume that there are given systems of transition functions g' = (g:l<) 
and gil = (g:~) with respect to a covering 'W = {U, : £ E I}. We call them 
equivalent as well if there is a refinement "f/ = {Vv : v E N} of 'W (with 
refinement map T : N -t J) and a collection of maps hv : Vv -t G such that 

h I /I h 
",g7(V)7(/1-) = g7(V)7(/1-) f.L 

To show that the systems are equivalent in the old sense, we define h, : U, -t 

Gby 
on U, nV/l-. 

In fact, h, is well defined, since on U, n VV/1- we have 

h /I ( , )-1 
v = g7(V)7(/1-)h/1- g7(V)7(/1-) 

and therefore g:~(V)hv(g:7(V))-1 = g:~(/1-)h/l-(g:7(/1-))-1. Then on U'I< n V/l- we 
get 

The bundles are equivalent! 

If two bundles are given with respect to two different coverings, then they are 
called equivalent if they are equivalent with respect to a common refinement, 
for example, the intersection of the coverings. Then everything works as above. 

Complex Vector Bundles. Let X be an n-dimensional complex 
manifold. 

Definition. A complex topological (respectively holomorphic) vector 
bundle of rank r over X is a topological (respectively holomorphic) fiber 
bundle V over X with Cr as typical fiber and GLr(C) as structure group. 
In the case r = 1 we are speaking of a complex line bundle. 

If 11" : V -t X is the bundle projection, then we denote by V", the fiber 7J"-l(X). 
It has the structure of an r-dimensional complex vector space. A trivialization 
cP : 7J"-l(U) -t U X Cr is also called a vector bundle chart. For any x E U the 
induced map <I>", : V", -t Cr is a vector space isomorphism. 

Definition. Let V be a holomorphic vector bundle over X. If U c X 
is an open subset, then a continuous (differentiable, holomorphic) cross 
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section (or simply section) in V over U is a continuous (differentiable, 
holomorphic) map s : U -t V with 7r 0 s = idu. 

We denote by r(U, V) (or O(U, V)) the vector space of holomorphic cross 
sections in V over U, by tC(U, V) the space of differentiable sections, and 
by «fO(U, V) the space of continuous sections. 

The vector bundle V is called 910bally generated if the canonical map 
r(X, V) -t Vx with S H sex) is surjective for every x E X. 

Let (U" <1>.).Ei be a collection of vector bundle charts <p. : 7r- 1 (U.) -t U. X C r 

for V, and 9",< : U."" ~ GLr(C) the system of transition functions, given by 

<1>.0 <1>;;:1 (X, z) = (x, z· 9."" (x) t) for (x, z) E U.K X cr. 

If s is a holomorphic section in V, then 

<p. 0 slu, (x) = (x, s.(x)) 

defines a system of holomorphic maps s. : U. -t Cr , and we obtain the 
compatibility condition 

s.(x) = SK(X) . 9.K(X) t on U.K. 

On the other hand, any such system (sJ defines a global section s. 

Example 

We can define vector bundles by giving a system of transition functions. The 
construction of the bundle space is carried out with the same gluing technique 
as for general fiber bundles. 

If X is an arbitrary n-dimensional complex manifold, and (U., 'P.).El a com­
plex atlas for X, then 

9.",,(X) := J<p,o<p;l('PK(X)) E GLn(C) 

defines a system of transition functions with respect to all = {U., ~ E I}. 
The corresponding vector bundle T(X) is called the tangent bundle of X. 
It results from gluing (x,c) E U"" x Cn with (x,c· 9.",,(X)t) E U. x cn, for 
x E U."". Therefore, we can identify the fiber (T(X))x with the tangent space 
Tx(X). The local trivializations <1>. : T(X)lu, -t U. X Cn are given as follows: 

For a E U. the trivialization <1>. maps a tangent vector v E Ta(X), represented 
by ('P., c), onto the pair (a,c) E U. x cn. If we denote the equivalence class 
of ('P" c) at a by ['P., c], we obtain 

<p. 0 <p;;:l(a, c) = <p. (['P"", cD = <p.(['P., c· 9."" (a) t]) = (a, c· 9."" (a) t). 

A holomorphic section in T(X) is also called a holomorphic vector field. 
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Definition. Let V, W be two holomorphic vector bundles over X. A 
vector bundle homomorphism between V and W is a fiber preserving 
holomorphic map 'l/ : V -+ W such that for any x E X a linear map 
'f}x : Vx -+ Wx is induced. 

The map 'l/ is called a vector bundle isomorphism if 'f} is bijective and 
'f}, 'f}-l both are vector bundle homomorphisms. 

A holomorphic vector bundle V of rank r over X is called trivial if it is 
isomorphic to the bundle X x cr. This is equivalent to the existence of a 
frame {6, ... ,~r} of holomorphic sections ~i E f{X, V) such that for every 
x E X the elements 6 (x), ... , ~r (x) E Vx are linearly independent. In this 
case V is globally generated. But there are also nontrivial bundles that are 
globally generated. 

2.1 Proposition. A holomorphic map 'f} : V -+ W is a vector bun­
dle homomorphism if and only if for each pair of vector bundle charts 
<I> : Vlu -+ U x ((7 and lit : Wlu -+ U x CS there is a holomorphic map 
h : U -+ Ms,r{C) with 

lit-I 0 'f/ 0 <I> {x, z) = (x, z· h{x) t). 

We omit the elementary proof. 

Standard Constructions. Let X be an n-dimensional complex man­
ifold. We can think of a vector bundle over X as a parametrized family of 
vector spaces. Therefore, numerous constructions from linear algebra carry 
over to the theory of vector bundles. 

1. The direct sum: If V, Ware two vector bundles over X, then the direct 
sum, or Whitney sum, V EEl W := V X X W carries a vector bundle structure 
that is defined as follows: 

Let %' = {U. : LEI} be an open covering of X such that there are vector 
bundle charts <I>. : Vlu, -+ u. x C r and lit. : Wlu, -+ U. x Ck • Then a vector 
bundle chart 

{V EEl W)lu, = ({v, w) E V x W : 1l"v{v) = 1l"w{w) E UJ -+ U. x cr+ k 

can be defined by 

If g.K, respectively h.K, are transition functions for V, respectively W, then 
the matrices 
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are transition functions for V EEl W. The fiber of the Whitney sum is given by 
(V EEl W)., = V., x W.,. 

2. The dual bundle: Let 7r : V ~ X be a holomorphic vector bundle of 
rank r with trivializations cI>. : 7r- 1(U.) ~ U. X C r and transition functions 
g.... Gluing the sets U. x C r together by means of the transition functions 
g:.. := g!. leads to the dual bundle 7r' : V' ~ X. Denote the associated 
trivializations over U. by \II., 

We will show that for every x E X there is a natural isomorphism 

Given elements x E U., v E Vx, and .x E (V')x, we define 

using the vector space isomorphisms (cI>.)., : Vx ~ Cr and (\II.)., : (V')., ~ 
Cr , 

For x E U. n UK. we obtain 

(cI>K.).,(v) , (\II,.)., (.x) t 

= (cI>K.)x 0 (cI>.);1 0 (cI>.).,(v) , [(\IIK.)" 0 (\11.);1 0 (\11.).,(.x)1 t 
(cI>.)x(v) 'gK..(x) t , [(\II.)xC.x) . g.K.(x») t 

= (cI>.).,(v)· g,..(x)t. g.K.(x)t. (\II.)x(.x) 

= (cI>.).,(v) , (1lI.)x(.x). 

This shows that the definition of .x( v) is independent of the trivializations. 

3. Tensor powers of a line bundle: Let 7r : F ~ X be a line bundle with 
transition functions g ... : U.K. ~ C* , 

Definition. For kEN, the tensor power Fk is the line bundle defined 
by the transition functions g~,., 

We give an interpretation of Fk using the dual bundle 7r' : F' ~ X, As­
sume that there is an open subset U C X and a holomorphic function 
f : (7r,)-1(U) ~ c. If 1/J. : (F')lu. ~ U. x C are trivializations (with 
1/J. 0 1/J;1 (x, z) = (x, z ' g.K.(x)-1», then we have a power series expansion 

00 

f 0 1/J;-1(X, z) = L av,.(x)zV 
1.1=0 

on 1/J.(F'lu.nu) with holomorphic functions av,. on Un U •. Over U. n U,. n U 
the following holds: 
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00 

jo'l/J;l(X,Z) = jo'l/J;-l(X,Z'gLlt(X)-l) = L(av,,(x)g, .. (x)-V)zV, 
v=o 

and therefore av" = av, .. . g~ ... This means that av = (av,,) is a cross section 
in Fk over U. So every holomorphic function j on F' that is homogeneous of 
degree k on the fibers is a section in Fk. In particular, F: can be identified 
with the space Lk(F~, C) of k-linear functions j : F~ x ... x F~ --t C-

For et, ... , ek E Fx the tensor product el ® '" ® ek E (Fk)x is defined by 

The tensor power e ® ... ® e of an element e E Fx is denoted by ek for short. 

Finally, we define F-k := (F')k ~ (Fk )'. 

4. The tensor product: Let p : V --t X be a vector bundle of rank r with 
transition functions G, .. : U, .. --t GLr(C), and 11" : F --t X a line bundle with 
transition functions g, .. (with respect to the covering %' = {U, : tEl}). 

Definition. The tensor product V ® F is the vector bundle of rank r 
given by the transition functions 

Let <1>, : Vlu, --t U, X cr and 'l/J, : F'lu, --t U, x C be local trivializations. If 
j: F'lu --t Vlu is a holomorphic map which is linear on the fibers, then over 
U, n U we have 

<1>,0 j 0 'l/J;-l(X, z) = (x, z· "1,(x», 

where "1, : U, n U --t cr is a holomorphic map. Over U, n u .. n U we calculate 

and on the other hand, 

<1>,0 j 0 'l/J;l(x, z) = <1>,0 <1>;1 (x, "1 .. (x) . z) = (x, 1] .. (x) . G, .. (x) t . z). 

It follows that 

Consequently, "1 = ("',) is a cross section in V ® F, and we obtain for every x 
an isomorphism 

(V 0 F)x ~ HomdF~, Vx). 

For v E Vx and e E Fx the tensor product v ® e E (V ® F)x is defined by 

(v 0 e)(>.) := >.(e) . v. 
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Lifting of Bundles. Let f : X --* Y be a holomorphic map between 
complex manifolds and p : V --* Y a vector bundle of rank r. 

Definition. The lifted bundle, or pullback, j*V over X is defined by 

rV:= X Xy V:= ((x, v) E X x V : f(x) = p(v)}. 

The bundle projection p: j*V --* X is given by jJ(x, v) := x. 

The fiber of j*V over x E X is given by (J*V)x = Vf(x). Therefore, the lifted 
bundle is trivial over the preimage sets f-l(y). 

One has the following commutative diagram: 

j*V 
p 4. 

~ V 
4. p 

X -4 Y 

If %' = {U, : ~ E I} is an open covering of Y such that V is trivial over U" 
then ~:= {U, = f-l(U,) : ~ E I} is an open covering of X such that j*V 
is trivial over U,. 
If iP, : Vlu, --* u, x C r is a trivialization for V, then we can define a trivial­
ization ~, : rVlu, --* U, x Cr by 

If G u :. are transition functions for V with iP, 0 iP;l(X, w) = (x, w· Gu.:(x) t), 
then 

i.e., rV is given by the transition functions Gu .: 0 f. 

If ~ E r(u, V) is a holomorphic section over some open subset U c Y, then 
~ can be lifted to a section [ E r( fj, r V) given by 

[(x) := (x, ~(J(x))). 

Subbundles and Quotients. 

Definition. Let 7r : V --* X be a vector bundle of rank r. A subset 
We V is called a subbundle (of rank p) of V if there is a p-dimensional 
linear subspace E c C r , and for any x E X an open neighborhood U = 
U(x) and a trivialization iP : Vlu --* Uxcr such that iP-l(Ux E) = Wlu. 

One sees immediately that: 
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1. Wx = W n Vx is always a p-dimensional linear subspace of Vx' 
2. W is a submanifold of V. 
3. W is itself a vector bundle. 

Example 

Let V be a vector bundle of rank r on X and Y C X a submanifold. If we 
denote the natural injection Y Y X by j, then Vly := j*V is a vector bundle 
of rank r on Y. We apply this to the tangent bundle T(X). 

Choose an open covering %' = (U~)~EI such that there are complex coordinate 
systems 'P~ = (zt, ... , z~) for X in U~ with the following properties: 

1. U, n Y = {zd+! = ... = z~ = O}. 
2. zt, ... , zd are complex coordinates for Y. 

A trivialization <P, : j*T(X)lu,nY -t (U, n Y) X en is given by 

(y, ['P~, cD H (y, c). 

A tangent vector v belongs to Ty(Y) C Ty(X) if and only if there is a differ­
entiable path a: I -t Y with a(O) = x and ('P~oa)'(O) = c. This is equivalent 
to the statement that c = (Cl,"" Cd, 0, ... ,0). Therefore 

cp;l(U, X {c E en : Cd+! = ... = Cn = O}) = T(Y)lu" 

and T(Y) is a subbundle of j*T(X). 

If G'I< := (()z~ /8z~ I v, Il = 1, ... , n) are the transition functions for T( X), 
then 

where g'l< = (8z~/8z~)IY lv, Il = 1, ... , d), are the transition functions for 
T(Y), and g:I«Z', 0) = «8zU8z~)(z',O) Iv,1l = d+ 1, ... ,n). 
Let V be a vector bundle of rank r. If W C V is a subbundle, then we define 
the quotient bundle V/W by (V/W)x := Vx/Wx. We have to show that 
there are trivializations for V /W. If E C er is a subspace such that there 
are trivializations cp : Vlu -t U X er with Wlu = <p-1 (U x E), then we can 
choose a subspace F C er with E tB F = er and define ~ : (V /W) I u -t U x F 
by 

~(v mod W) := prp(cp(v», 

wherepr p : E tB F -t F is the canonical projection. 

Using trivializations as above one obtains transition functions 



182 IV. Complex Manifolds 

for V such that 9£1< are transition functions for W, and h,,,. are transition 
functions for V IW. 
Example 

The quotient bundle Nx(Y) := j*T(X)IT(Y) is called the normal bundle of 
YinX. 

Exercises 

1. Let G be a complex Lie group that acts analytically on a complex man­
ifold X. Then for every x E X the stabilizer Gx := {9 E G : 9X = x} 
is a closed Lie subgroup of G, i.e., a subgroup and a (closed) complex 
submanifold. 

Prove that there is a unique complex structure on G IGx such that the 
canonical projection 7r : G -t GIGx is a holomorphic submersion. 

2. Let 7r : V -t X be a complex vector bundle of rank r. For x E X let fAx 
be the set of bases of Vx' Prove that the disjoint union of the fAx, x EX, 
carries the structure of a fiber bundle over X with structure group and 
typical fiber equal to GLr(C). 

3. Let cp : V -t W be a vector bundle homomorphism over X. Suppose that 
rk(cpx) is independent of x E X. Prove that 

Ker(cp) := U Ker(cpx) and Im(cp):= U Im(<px) 
xEX xEX 

are subbundles of V, respectively W. Show that Im(cp) ~ VI Ker(cp). 
4. Let X = C be the Riemann sphere. Determine the transition functions 

for T(X) for the canonical bundle Kx and for the normal bundle of {oo} 
in X. 

5. Let f : X -t Y be a holomorphic map. Prove that there is a uniquely 
determined vector bundle homomorphism l' : T(X) -t J*T(Y} with 
(f'}x = (f*)x for x E X. 

6. Let p : V -t X be a holomorphic vector bundle. Show that there are 
vector bundle homomorphisms h : p*V -t T(V) and k : T(V) -t p*T(X) 
over V with Im(h) = Ker(k). 

3. Cohomology 
Cohomology Groups. Let X be an n-dimensional complex manifold 
and 7r : V -t X a complex vector bundle of rank r. Assume that there is an 
open covering 'F/ = {U, : LEI} of X. 

We consider sections in V on the sets U, and on intersections U'I< := U, n U"., 
respectively U,,,.A := U, n U". n UA. 
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Definition. A O-dimensional cochain with values in V (with respect 
to %') is a function s that assigns to every LEI a section s. E r(u., V). 
The set of O-dimensional cochains is denoted by CO (%' , V). 

A I-dimensional cochain (with values in V) is a function ~ that assigns to 
every pair (L, 1\:) E IxI a section ~LK E nULK , V). The set of I-dimensional 
cochains is denoted by C 1 (%', V). 

Finally, a 2-dimensional cochain (with values in V) is a function A that 
assigns to every triple (L, 1\:, v) E I x I x I a section A LKv E nULKV , V), 
and the set of all these 2-dimensional cochains is denoted by C 2 (%" V). 

Assume that a O-dimensional cochain S is given. One may ask whether the 
sections SL E nULl V) can be glued together to a global section s E rex, V). 
For that it is necessary and sufficient that SL = SK on U'K' This can be 
expressed in another way: If we assign to every O-cochain s a l-cochain 8s by 
(8S)LK := SK - s,' then S defines a global section if and only if 88 = O. 

Definition. The coboundary operators 

are defined by 

.- SK - S, (on ULK ), 

.- ~KV - ~'V + ~LK (on U'KV ). 

A cochain s E CO (%', V) (respectively ~ E C1 (%', V) is called a cocycle 
if 8s = 0 (respectively 8f, = 0). The sets of cocycles are denoted by 
ZO(%" V) (respectively Zl(%" V». 

Remarks 

1. The sets of cochains and the sets of cocycles are all complex vector spaces. 
2. We can identify ZO(%" V) with rex, V). 
3. A l-cochain f, is a co cycle if and only if the following compatibility con­

dition holds: 
f,w = ~LK + f,KV on ULKV ' 

4. Sometimes we need co cycles of degree 2. We call an element A E 

C2 (%', V) a cocycle if the following compatibility condition holds: 

The set of all these co cycles is denoted by Z2 (%', V). 
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A coboundary is an element of the image of the co boundary operator. The sets 
of coboundaries are again vector spaces, denoted by Bl(%" V) = 6CO(%" V) 
and B2(%" V):= 6C1 (%" V). For completeness we define BO(%" V):= o. 
3.1 Proposition. Bi(%" V) c Zi(%" V) for i = 0,1,2. 

PROOF: The case i = 0 is trivial. For ~ = ~s E BI (%', V) we have 

For A = ~TJ E B2(%" V) we have 

(TJvj.£ - TJ,,. + TJw) 

- (TJltl-' - TJ,I-' + TJut) 

+ (TJltV - TJ.v + TJ,It) 

• 

Definition. Hi(%" V) := Zi(%" V)jBi(%" V) is called the ith coho­
mology group of V with respect to %'. 

We have HO(%" V) = reX, V), independently of the covering, and we have 

Hl(%" V) = {e E Cl(~, V) : ~,~ = e.K. +eK.v} . 
{~ : 3s E C (%', V) wIth e,K. = SK. - s.} 

The canonical map from ZI(%" V) to HI(%" V) will be denoted by q. 

We do not want to elaborate on H2, because we need it only in very special 
cases. 

Refinements. Let "f/ = {Vn : n E N} be a refinement of %'. Then 
there is a refinement map r : N ~ I with Vn C Ur(n). It induces maps 
ro : CO (%', V) ~ CO ("f/, V) and rl : C l (%', V) ~ C l ("f/, V) by 

(roS)n := (sr(n»)!Vn and (rle)nm := (er(n)r(m»)lvnm • 

Then 6(ros) = rl(~s), and if 6~ = 0, then also 6(rl~) = O. Therefore, r 
induces a map r* : Hl(%" V) ~ HI("f/, V) by 

r*(q(e)) := q(rle)· 

By the remarks above it is clear that r* is well defined, and it is a vector 
space homomorphism. 
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3.2 Proposition. The map T* is independent of the refinement map T and 
is injective. 

PROOF: Let a : N -t [ be another refinement map and ~ a cocycle with 
respect to %'. We have to show that Tl~ - ale is a coboundary: 

(Tl( - al~)nm ~T(n)r(m)IVm" - el7(n)<7(m) Iv" ... 

= (~T(n).,.(n) + ~.,.(n)r(m») - (e.,.(n)T(m) + er(1Jl)I7(m») 

~T(n).,.(n)IV"m - ~T(m)<7(m)IV"m . 

We define 'r/ E coer, V) by' 

'r/n := ~T(n)<7(n) Iv". 

Then Tl~ - (Tle = 6'r/. 

Now we consider a cocycle e with respect to %' such that Tle = 68 for some 
8 E coer, V). We want to see that e itself is a coboundary. 

On Vnm n U. we have 

~T(n)T(m) = eT(n). + e.T(m) = ~.r(m) - e.r(n)' 

Since eT(n)T(m) Iv"", = (81Jl - 8n )lv" ... , it follows that 

e.T(m) - 8 m = e.T(n) - Sn on Vnm n U •. 

Therefore, we can define h. on U. by hLlu,nv" := ~.T(n) - Sn. This gives an 
element hE CO(%', V), and on U.K n Vn we have 

h. - hK = (~.T(n) - 8n ) - (eKT(n) - sn) = ~.T(n) + ~T(n)K = ~.K' 
This means that e = 6( -h). SO T* is injective. • 
We have seen that if "f/ is a refinement of %' , then Hl (%' , V) can be identified 
with a subspace of Hl("f/, V). Therefore, we form the union of the spaces 
Hl(%" V) over all coverings %' and denote this union by Hl(X, V). We call 
it the absolute, or tech, cohomology group of X with values in V. 

Acyclic Coverings. Let X be a complex manifold and p : V -t X a 
vector bundle over X. 

The covering %' is called acyclic, or a Leray covering for V, if Hl(U., V) = 0 
for every t E [. 

If "f/ = {Vn : n EN} is another covering, then U. n "f/ := {U. n Vn : n E N} 
is a covering of U., and since Hl(U. n "f/, V) is a subspace of Hl(U., V), we 
have also Hl(U. n "f/, V) = O. 
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3.3 Theorem. If %' = {Ut : LEI} is acyclic and "I' = {Vn : n E N} 
is a refinement, with refinement map r : N --t I, then r* : HI (%', V) --t 
HI ("I', V) is bijective. 

PROOF: We start with an TJ E ZI("I', V) and define TJ(t) E ZI(UL n"l', V) by 

TJ!:),. := TJnm I U.nVnm , for all n, m with U. n Vnm #- 0. 

Since %' is acyclic, there is an element g(.) E CO(Ut n "1', V) with 1](L) = 8g<t). 
Then TJnm + g!:) = g~) on U. n Vnm' and therefore g~) - g~) = g!:) - g~~) on 
u.",nVnm. . 

Now we define ~ E Zl(%" V) by ~.~Iu.",nvn := g!:) - g~"'), and hE CO("I', V) 
by hn := g~T(n» (on Vn = Vn n UT(n»' 

Then on Vnm we have 

(rI~ -1])nm = ~T(n)T(m) -1]nm 

= g~(n)) _ g~(m)) _ (g~(n» _ g~T(n») 

g~T<n» _ g~(m» 

hn -hm · 

So 1] = rI~ + 8h, and r* is surjective. 

3.4 Corollary. If %' is an acyclic covering of X, then 

HI(X, V) = HI(%" V). 

• 

PROOF: We have HI(%" V) c HI(X, V). If a is an element of HI(X, V), 
then there is a covering "I' with a E HI ("I', V). Now we can find a common 
refinement "/II' of %' and "1'. Then HI ("I', V) c HI ("/II', V) = HI(%" V), and 
therefore a E HI(%" V). • 

Generalizations. The simplest case of a vector bundle over X is the 
trivial line bundle Ox := X x C. Therefore, the associated eech cohomology 
group HI (X , Ox) plays an important role for the function theory on X. 

The trivial fiber bundle X x C* is not a vector bundle,but it is not so far from 
that. If 1r : P --t X is a general analytic fiber bundle, then a section in P over 
an open set U C X is a holomorphic map s : U --t P with 1r 0 s = idu. If the 
typical fiber of P is an abelian complex Lie group, then the set r(u, P) of all 
sections in P over U carries in a natural way the structure of an abelian group. 
In the case of the bundle Ox := X x C* we have a canonical isomorphism 

r(U, Ox) ~ O*(U) := {f E O(U) : f(x) -I- 0 for every x E U}. 
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This is a multiplicative abelian group. 

If %' = {U~ : LEI} is an open covering of X, then we can form cochains 
~ : (L, "') H ~~I< E 0* (Uu<). The set C1 (%' , Ox) of all these cochains forms a 
(multiplicative) abelian group, and we can define the subgroups ZI(%" Ox) 
and B 1 (%' , Ox) of cocycles and coboundaries: A cochain ~ is called a cocycle 
if ~.V = ~.I<~I<V on U.I<V, and ~ is called a coboundary if there are functions 
s. E O*(U.) such that ~~I< = SI<S;:1 on U~K. 

Since all the groups are abelian, we have the quotient group 

which we call the first cohomology group with values in Ox (with respect to 
the covering %'). Just as in the case of vector bundles we can pass to finer 
coverings and finally form the Cech cohomology group Hl(X, Ox). 

There is a nice interpretation for the elements of Hl(X, Ox). Every co cycle 
with values in Ox defines a line bundle over X, and this bundle is independent 
of the covering. Two co cycles f.' and ~" define equivalent line bundles if and 
only if there are functions h~ with ~:I< = ~:~hl<h;:l, Le., if and only if the 
cohomology classes of (,' and (," are equal. Therefore, HI (X, Ox) is the set of 
isomorphy classes of line bundles over X. This group is also called the Picard 
group of X and is denoted by Pic(X). The group structure is induced by the 
tensor product. The identity element corresponds to the trivial bundle Ox 
and the inverse to the dual bundle. 

In the same way as above we can form cohomology groups of any fiber bundle 
P whose typical fiber is an abelian group. If the fiber of P is a nonabelian 
group, things become a little bit more complicated. We can define co cycles 
with values in P, but they do not form a group. In the set ZI (%', P) of 
co cycles we can introduce an equivalence relation by 

t:' t:" 3 h . h t:' h-1 " h 
'" rv '" : {::=:} L WIt "'£1< = £ g£l< 1<. 

The set HI (%' , P) of all equivalence classes is called the cohomology set with 
values in P (with respect to %'). Usually it is not a group, but there is a 
distinguished element, represented by the cocycle ~ with ~£I< = 1 for all L, "'. 
Passing to finer coverings and forming the cohomology set Hl(X, P) causes 
no problems. The most important nonabelian case is the cohomology set 

whose elements correspond to the isomorphy classes of vector bundles of 
rank r over X. The distinguished element is represented by the trivial bundle 
X x ([7. 

In the definition of the cohomology groups of fiber bundles P over X with 
an abelian group as typical fiber we used only the fact that feU, P) is an 
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abelian group for· every open set U eX, and that we can restrict sections 
over U to open subsets V C U. Having this in mind we can define another 
sort of cohomology group. 

Let K C C be a subgroup with respect to the addition, for example K = Z, JR, 
or C. For an open set U C X we define the (abelian) group K(U) by 

K(U) := {f : U -t K : f is locally constant }. 

Then K(U) is an abelian group. If V c U is an open subset and f an element 
of K(U), then flv E K(V). If U is connected, then K(U) ~ K. 

We can define groups of cochains CO (0//, K), C 1 (0//, K), and C 2 (0//, K) just 
as we did it for vector bundles. If ~ is an element of C 1 (0//, K), then ~L" E 

K(UL,,). Cocycles, coboundaries, and cohomology groups are defined in the 
usual way. For example, we have 

The Singular Cohomology. We want to give a short overview of co­
homology groups of topological spaces and their relation to Cech cohomology 
as defined above. For proofs see [Gre67]. 

For q E No the set 

n 

b.q := {x = (xo, . .. ,xn ) E JRq+1 "x· = 1 X· > o} ~ 1, ,t_ 
i=O 

is called the q-dimensional standard simplex. The O-dimensional simplex is a 
point, ~1 a line segment, ~2 a triangle, and so on. 

Let X be a topological space. We assume that all spaces here are connected 
and locally connected. A singular q-simplex in X is a continuous map a : 
~q -t X. If X is a complex manifold and if there is an open neighborhood 
U = U(~q) and a smooth map a : U -t X with alAq = a, then a is 
called a differentiable q-simplex. A singular q-chain in X is a (formal) linear 
combination nlal + ... + nkak of singular q-simplices with ni E Z. The set 
Sq(X) of all singular q-chains in X is the.free abelian group generated by the 
singular q-simplices. 

For a q-simplex a and i = 0, ... ,q the (q - I)-simplex ai : ~q-l -t X is 
defined by 

ai(XO, . .. , xq-d := a(xo, ... , Xi-I, 0, Xi,·· ., xq-d· 

It is called the ith face of a. 
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The (q-1)-chain 8a:= L:?=O(-1)iai is called the boundary of a. The bound­
ary operator 8 induces a homomorphism 

a : Sq(X) -+ Sq-l (X), 

and it follows easily that 80 8 = o. 
Definition. The group Hq(X) := {e E Sq(X) 8e = 0}/asq+1(X) is 
called the qth singular homology group of X. 

In general, Ho(X) is isomorphic to the free abelian group generated by the 
connected components of X. Since we assume all spaces to be connected, we 
have Ho(X) ~ Z. If X is an n-dimensional complex manifold, then Hq(X) = 0 
for q > 2n. 

Now for q ~ 0 we define the group of singular q-cochains to be 

Then the coboundary operator 8 : sq(X) -+ sq+l(X) is defined by 

8f[c] := f[ae], for f E sq(X) and c E Sq+l(X). 

Obviously, we have 808 = o. We can define cocycles (elements f of sq(X) 
with of = 0) and coboundaries (elements of the form og with 9 E Sq-l(X)). 

Definition. The group Hq(X) := {J E sq(X) : 8f = O}/8Sq- 1(X) 
is called the qth singular cohomology group of X. 

From above it is clear that HO(X) ~ Z. 

A topological space X is called contractible if there is a point Xo E X and a 
continuous map F : [0,1] xX -+ X with F(O, x) = x and F(l, x) = Xo. In that 
case H I ( X) = {O}. The space X is called locally contractible if every point 
of X has arbitrarily small contractible neighborhoods. Among the connected 
topological spaces there is a big class of spaces (including the so-called CW­
complexes) that are locally contractible and have the following properties: 

1. Hq(X) ~ Hq(X, Z) for q = 0,1,2, .... 
2. Every open covering of X has a refinement %' = {UL : I- E I} that is 

acyclic in the sense that HI (UL , Z) = 0 for every I- E I. 

We call such spaces good topological spaces. For example, every (connected) 
complex manifold is a good topological space, and also every irreducible an­
alytic set. 

Finitely generated abelian groups are classified as follows: 
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If G is a finitely generated abelian group, then there are uniquely deter­
mined numbers rENo and nl, ... , ns E N with ni ~ 2 and ni Ini+ 1 for 
i = 1, ... ,s - 1 such that 

The number r is called the rank of G, and zr the free part of G. The sum 
of the Zin/i. is called the torsion part of G. 

In many cases cohomology can be computed from homology: 

3.5 Theorem. If X is a compact good topological space (for example, a 
compact connected complex manifold), then Hq(X) is finitely generated for 
every q, and for q ~ 1 there is an isomorphism 

Hq(X) ~ (free part of Hq(X» EB (torsion part of Hq-1(X)). 

The rank of Hl(X) is called the first Betti number of X, and is denoted by 
b1(X). 

Now we give an application of Cech cohomology methods to singular coho­
mology. Let X and Y be good topological spaces. 

3.6 Theorem (Kiinneth formula). 

PROOF: We choose open coverings %' = {U. : /, E I} of X and "f/ = {Vn 
n E N} of Y such that all the U., VII and all their pairwise intersections are 
connected. We write Wm := U. X Vn and Wm,l<m := wmnwl<m = U.I< X Vnm -
A cocycle '1/1 E Zl(%, x 1', Z) is given by constant maps 'I/1m,l<m : Wm,l<m -t Z. 

We identify any cocycle ~ E ZI (%' ,Z) with a cocycle f E ZI (%' x 1', Z) by 
e..n,l<m = ~.I<' and also any TJ E Zl(1',Z) with an 1j E ZI(%, x 1', Z). This 
induces natural injections 

with Im(jd n Im(h) = {O}, and therefore an injective map 

j : Hl(%"Z) x Hl(1',Z) -t Hl(%, x 1',Z) 

by j(a, b) := jl(a) + h(b). 

Given a cocycle '1/1 E ZI(%, x 1',Z), for any /, E I we define '1/1. E ZI(1',Z) by 
('I/1Jnm := 'I/1m,.m- The cohomology class of '1/1. in Hl(1', Z) is independent of 
the index L. We see this as follows_ 
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(a) If ULK # 0, then by the cocycle property we have 

1/Jtn,Lm - 'l/JKn,Km 

Setting (r,oLK)n := ¢Ln,Kn we get a O-cochain r,oLK E CO(1', IE) with Or,oLK = 
WK - ¢L' SO the cohomology classes of ¢L and ¢K are equal in this case. 

(b) If ULI< = 0, one can find a chain of sets U).." ... , U).N with UL).l =I- 0, 
U).i).i+1 # 0, and U).Nt< # 0 (since X is connected), and from (a) it 
again follows that the cohomology classes of WL and 'l/Jt< are equal. 

Let Wo be a representative of the common cohomology class of the 'l/JL' The 
assignment 'I/J f--+ 'l/Jo induces a map p: HI(o// x 1',IE) --t HI(1', IE). We will 
prove that for every class e E HI (cJU X 1', IE) there is a class a E HI (0//, IE) 
with jl (a) = e - j2(p(e», and consequently j(a, p(e» = c. 

For each t there is an 1h E CO(1',IE) with 'l/Jo = ¢L - 01/(7]J, and we define 
7] E CO(o// x 1', IE) by 7]Ln := (7]Lk 

Then 1:= 'I/J - 'l/Jo - 07] E ZI(cJU x -r,IE) and 

IL = WL - ('l/JL - 01/(7]L» - 01/(7]L) = 0 for every t. 

Now we construct a e E Zl(cJU,lE) with {j= I: 

For n E N define en E ZI (0//, IE) by 

Since ILn,Lm = 0 for all n, m, and l, in the case Vnm # 0 we have 

and therefore em = en. If Vnm = 0, we can argue in the same way as above 
in (b), because Y is connected. 

So we have a e E Zl (cJU ,IE) with en = e for every nand 

eLI< = ILn,Kn = ILn,Kn + It<n,Km = ILn,Km (for arbitrary n, m). 

Therefore, {j = 1 and 'I/J = {j + ~ + 07]. This shows that j is surjective. _ 

Exercises 

1. Let all = {Ub U2, U3} be the covering of X := {z E ((: : 1 < Izl < 2} 
given by U1 := {x + iy : y < x}, U2 := {x + iy : y < -x}, and 
U3 := {x + iy : y> a}. Calculate Hl(cJU, IE). 

2. Prove that dime HI (1(:2 - {O}, 0) = 00, where 0 denotes the trivial line 
bundle over ((:2. Hint: Use Laurent series. 
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3. Show that HI (C, 0) = O. 
4. Show that all = {Ui : i = 1, ... ,n} with Ui := {z : Zi =f. O} is an acyclic 

covering of en - {O} for O. 
5. Let X be an n-dimensional complex manifold such that Hq(X) = Z for 

q even, 0 ~ q ~ 2n, and Hq(X) = 0 otherwise. Calculate the singular 
cohomology of X. 

4. Meromorphic :Functions 
and Divisors 

The Ring of Germs. Let X be an n-dimensional complex manifold 
and x E X a point. Two holomorphic functions 1,9 defined near x are called 
equivalent at x if there exists a neighborhood U = U(x) with Ilu = glu. The 
equivalence class of I at x is called the germ of I at x. We denote the germ 
by Ix and the set of all germs by Ox' 

Having fixed a complex coordinate system r.p : U -t Been at x, we may 
identify the set Ox with the ring Hn of convergent power series by 

Ix t-t Taylor series of I 0 r.p-I at r.p(x). 

So Ox has the structure of a local e-algebra.2 An element Ix E Ox is a 
unit if and only if f(x) =f. O. Of course, Ox is also noetherian and a unique 
factorization domain. 

4.1 Proposition. Let I, g be holomorphic functions near Xo EX. II the 
germs Ixo,gxo are relatively prime in OXO} then there is an open neigborhood 
U = U (xo) C X such that Ix, gx are relatively prime in Ox lor x E U. 

PROOF: We can work in en and assume that Xo = 0 and that 10 and 90 

are Weierstrass polynomials in Zl. Since 10 and go are relatively prime in Hn, 
they are also relatively prime in H~_t!ZI]' If Q is the quotient field of Hn - I , 

it follows from Gauss's lemma that 10 and go are relatively prime in Q[ZI]' 

We can find a linear combination 

h = a· 10 + b· 90, 

where a, bE Hn-dzl], and h E (Hn-d* is the greatest common divisor of 10 
and go. If U = U' X U" c e x e n - l is a sufficiently small neighborhood of 
the origin, the power series a, b converge to pseudopolynomials over U" and 
h to a holomorphic function on U" that does not vanish identically. 

2 A commuta.tive C-algebra A with unity is called a. local C-algebra if the set m of 
nonunit!'l forms an ideal in A and the composition of canonical homomorphisms 
C,-+ A ...:.. Aim is surjective. 
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Let w = (WI, w') be a point in U. If 'Pw is a common factor of fw and gw, 
then it divides hw, which has degree 0 as a polynomial in Zl. So 'Pw does not 
depend on Zl and does not vanish identically in Z2, ... ,Zn. Therefore, 'Pw is 
zl-regular of order 0, and by the preparation theorem it is, up to a unit, a 
Weierstrass polynomial of degree 0; i.e., 'Pw is already a unit. 

This shows that f wand gw are relatively prime. • 

Analytic Hypersurfaces. Let X be an n-dimensional complex man­
ifold. We consider analytic hypersurfaces A c X. Then locally A is given 
as the zero set of one holomorphic function f. We always assume that f 
does not vanish identically and therefore A is nowhere dense in X. If locally 
A = {(Zl, ... , zn) : Zn = O}, then every holomorphic function g vanishing 
on A is of the form g(Zl' ... ,zn) = Zn . g(Zl' . .. , zn). We will generalize this 
result to the arbitrary case. 

4.2 Proposition. Every hypersurface A C X is a pure-dimensional ana­
lytic set of dimension n - 1. 

PROOF: After choosing appropriate coordinates, we may assume that A is 
contained in an open set U c en and f is a Weierstrass polynomial w in Zl 
without multiple factors such that 

A = N(w) = {z E U : w(z) = O}. 

Since N (w) is a branched covering over some domain G c en - l , every irre­
ducible component of N(w) has dimension n - 1. • 

4.3 Theorem (Nullstellensatz for hypersurfaces). Let A C X be an 
analytic hypersurface and Xo an arbitrary point of A. 

1. There exists an open neighborhood U = U(xo) C X and a holomorphic 
function f on U such that: 
(aj UnA = {XE U : f(x) = O}. 
(bj If h is a holomorphic function on a neighborhood V = V(xo) C X 

with hlA = 0, then there is a neighborhood W = W(xo) C Un V and 
a holomorphic function q on W such that hlw = q. Ulw). 

2. If i is any holomorphic function defining A in U and h is again a holo­
morphic function on a neighborhood V = V(xo) vanishing on A, then 
there exists a kEN and a holomorphic function ij on a neighborhood 
W = W(xo) C un V such that hklw = ij. (ilw). 

PROOF: Again we work in en and assume that Xo = o. Let 1 be an ar­
bitrary defining function for A near the origin. After choosing appropriate 



194 IV. Complex Manifolds 

coordinates we find a unit e and a Weierstrass polynomial W in Zl such that 
1 = e· w. We choose a neighborhood U = U' x U" of the origin such that: 

1. AnU = ((Zl,Z') E U : W(Zb Z') = Ok. 
2. There is a prime factorization W = WI 1 ••• W~l on U. 

We define W := WI··· WI. This is a pseudopolynomial without multiple factors 
that also defines A in U. 

If h is a function vanishing on A, which we may assume to be defined on U, 
then by the division formula there is a holomorphic function q near the origin 
and a pseudopolynomial r with deg(r) < deg(w) such that near 0, 

h=q·w+r. 

Since w has no multiple factors, the greatest common divisor of wand 8w / 8z I 

is a not identically vanishing holomorphic function 9 of Z2, ... , Zn, and we can 
find pseudopolynomials ql, q2 with 

8w 
9 = ql . W + q2 . -8 . 

ZI 

We may assume that everything is defined on U. Suppose that there is a 
z~ E U" such that w((, z~) E er(] has a multiple zero (0. Then w((o, z~) = 
8wj8zl ((0, z~) = 0, and therefore g(z~) = O. Hence, if g(z') i= 0, then w((, z') 
has exactly s := deg(w) distinct zeros. Since hIN(w) = 0, h((, z') has at least 
these s distinct zeros. Using this fact and the division formula, it follows that 
r(z') = 0 for z' E U" - N(g). Therefore, by the identity theorem r = 0 and 
h = q. w. Taking f = w yields the first part of the theorem. 

Let k := max(k l , ... , kl). Then 

This proves the second part of the the\>rem. • 
Every local holomorphic function f that satisfies the conditions of the first 
part of the Nullstellensatz will be called a minimal defining function for A. 

Now let A be an irreducible analytic hypersurface in X, and h a holomorphic 
function on some open subset U c X with hl(AnU) = O. For Xo E UnA there 
exists a neighborhood V = V(xo) c U and a minimal defining function f for 
A on V. Then 

ordA,xo(h):= max{m E Ii:{ : 3q with h = fm. q near xo}. 

It follows from the Nullstellensatz that ordA,xo(h) 2: 1, and from the unique 
factorization into primes that it is finite. Furthermore, it is independent of f, 
because if h, h are two minimal defining functions, then we have equations 
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It = qi h and h = q21t· It follows that It = qi q21t and therefore It (1 -
qIq2) = o. So qi and q2 must be units. 

For every point Xo E A there is a neighborhood U = U(xo) such that 
ordA,x(h) ~ ordA,xo(h) for x E UnA. 

4.4 Proposition. If A is irreducible, h holomorphic in a neighborhood of 
A, and h/A = 0, then the number ordA,x(h) is independent of x EA. 

PROOF: Let Xo E A be an arbitrary point. In a neighborhood U of Xo there 
exist a decomposition An U = Al U ... U Al into irreducible components 
and minimal defining functions 1>.. for A,\. Since h vanishes on every A,\, 
there exist k I , ... , kl E N and a holomorphic function q on a neighborhood 
V = V(xo) c U such that 

h = f~l ... ft' . q, and (h)xo f qxo for .A = 1, ... ,l. 

Since (It)xo' ... ,(ft)xo are irreducible, it follows that (h)xo and qxo are rel­
atively prime for .A = 1, ... ,l. But then (h)x and qx remain relatively prime 
for x sufficiently close to xo: say in a neighborhood W(xo) c V. 

Let n(x) := ordA,x(h). It is necessary to consider two cases: 

(a) If A is irreducible at Xo, then 1 = 1, and it is clear that n(x) = n(xo) for 
x E WnA. 

Consequently, x H n(x) is a locally constant integer-valued function on the . . 
set A of regular points of A. Since A is globally irreducible, A is connected 

and n(x) globally constant on A. Let n* EN be the value of this function. 

(b) If l > 1, then f := It··· fl is a minimal defining function for A at Xo. 
With m := min(k1 , ... , kt) we have 

h = f~l ... flkl . q = fm . fl, 

where fl is a holomorphic function near Xo. Therefore, n(xo) 2: m. 

We assume that m = k,\. In every small neighborhood of Xo there are regular 
points x E A,\ that do not belong to AI' for M i= .A. Then n(x) = n*, and f'\ is 
a minimal defining function for A at x. Since h = f~). . q, with a holomorphic 
function q, and (h)x f qx, it follows that n(x) = k,\. 

So m:S n(xo) :S n(x) = n* = k,\ = m, and therefore n(xo) = n*. 

Now we define 

ordA(h) ;= { coonstant value of ordA,x(h) if h/A = 0, 
otherwise. 

One easily sees that 

• 
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Meromorphic Functions. Let X be an n-dimensional complex mani­
fold. We consider holomorphic functions that are defined outside of an ana­
lytic hypersurface. In the I-dimensional case these are holomorphic functions 
with isolated singularities. 

Definition. Let A c X be an analytic hypersurface. A complex-valued 
function m on X - A is called a meromorphic function on X if for any 
point x E X there are holomorphic functions g, h on an open neighbor­
hood U = U(x) c X such that N(h) cAn U and m = g/h on U - A. 

Obviously, m is holomorphic on X - A. In particular, every holomorphic 
function f on X is also meromorphic on X. 

Different meromorphic functions may be given outside of different analytic 
hypersurfaces. If m).. : X - A).. -+ C are meromorphic functions on X, then 
ml ± m2 and ml . m2 are meromorphic functions on X, given as holomorphic 
functions on X - (AI U A2)' 

If m : X - A -+ C is a meromorphic function, for pEA we have two 
possibilities: 

(a) There is a neighborhood U = U(p) c X such that m is bounded on U -A. 
Then there is a holomorphic function in on U with injU-A = mju-A, and 
p is called a removable singularity for m. 

(b) For any neighborhood V = yep) c X and any n E N there is a point 
x E V - A with jm(x)j > n. If m = g/h near p, then h must vanish at 
p, because otherwise we would be in situation (a). Now there are again 
two possibilities: 

(i) If g(p) =I 0, then limx-+pjm(x)j = +00, and we have a pole at p. 
(ii) The other possibility is g(p) = O. This cannot occur in the case n = 1, 

since it may be assumed that the germs gp and hp are relatively 
prime, but it is possible for n > 1. The behavior of m is extremely 
irregular in that case: We take any c E C. Then gp - c . hp and hp are 
relatively prime, and therefore there exists a sequence (xv) of points 
in N(g-ch)-N(h) with limv-+oo Xv = p. This means that m(xv ) = c 
for every v. We call p a point of indeterminacy in this case. 

In the case n = 1 a meromorphic function is a function that is holomorphic 
except for a discrete set of poles. For n > 1 we have the polar set 

P(m) := {p EX: m is unbounded in any neighborhood of p}. 

The polar set consists of poles and points of indeterminacy. We show that 
P(m) is an analytic hypersurface. 

Let p E X be an arbitrary point and U = U(p) c X a connected neighbor­
hood, where m is the quotient of 9 and hand N (h) c A. We may assume 
that pEA and gp, hp are relatively prime. Then 
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m bounded near p <==> 3 <p (holomorphic near p) with 9 = <p • h 

<==> hplgp 

<==> hp is a unit 

<==> h(P) =I: O. 

So P{m) n U = {x E U : hex) = OJ. 

If Z c X is an irreducible hypersurface, then we define ordz(m) as follows: If 
m = glh near x, then ordz,x{m) := ordz,x(g) -ordz,z{h).1f we choose gx. hx 
relatively prime, this definition is independent of 9 and h. Now it follows 
exactly as above that ordz,x(m) is constant on Z. 

4.5 Identity theorem for meromorphic functions. Let X be connected, 
m : X - A -+ C a meromorphic junction, and U C X a nonempty open set 
such that mlu-A = O. Then P(m) = 0 and m = O. 

PROOF: The set X - P{m) is connected, m is holomorphic there, and U­
(AUP(m» is a nonempty open subset of X -P(m). By the identity theorem 
for holomorphic functions it follows that m = 0 on X - P(m). But then m 
is globally bounded and P(m) = 0. • 

The set .4l(X) of meromorphic functions on X has the structure of a ring 
with the function m = 0 as zero element. We set 

.4l(X)* .- .4l(X) - {OJ 
= {m E .4l(X) : m vanishes nowhere identically}. 

If m E .4l(X)" has a local representation m = glh, the zero set N{g) is 
independent of this representation. Therefore, we can define the global zero 
set N(m), which is an analytic hypersurface in X. Outside of P{m)UN(m), m 
is holomorphic and without zeros. Therefore, 11m is also holomorphic there 
and has local representations 11m = hlg. So 11m is also meromorphic, and 
consequently .4l(X) is a field. For this it is essential that X is connected! 

4.6 Levi's extension theorem. Let A C X be an analytic set that has at 
least codimension 2, and let Tn be a meromorphic function on X-A. Then 
there exists a meromorphic function m on X with mix -A = m. 

PROOF: Since the statement is true for holomorphic functions, we may 
assume that P(m) =I: 0. So it is an analytic hypersurface in X - A. By the 
theorem of Remmert-Stein, Q : = P( m) is an analytic set in X. By Riemann's 
second extension theorem the holomorphic function m on (X - Q) - A has 
a holomorphic extension m to X - Q. 

Let pEA n Q be a point. We have to show that m is locally meromorphic at 
p. We choose an open neighborhood U = U(P) c X and a function 9 E O(U) 
such that: 
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1. Q n U c N(g). 
2. N(g) = Nl U··· U Nk is a decomposition into irreducible components. 

Since dim(A) < dim(Ni), there are points ai E Ni - A and neighborhoods 
Vi = Vi(ai) C U -A such that m = Pi/qi on Vi-Q and N(qi) C QnVi c N(g); 
i.e., gIN(q;) = O. 

From the Nullstellensatz it follows that there is a number Si E N and a 
holomorphic function ri such that gSi = ri . qi. Then m = Pirig-Si near ai' 
This means that there exists an sEN such that gS . m is holomorphic near 
al> ... ,ak· 

Thus N := (U - A) n P(gSm) is empty or an analytic hypersurface that is 
contained in N (g) - A. In the latter case it is a union of irreducible components 
of N (g) - A, and this is impossible, since every such component contains 
a point ai' So N must be empty, and gSm is holomorphic in U - A. By 
Riemann's second extension theorem there is a holomorphic extension h of 
gSm on U. Then g-Sh is meromorphic on U with (g-Sh)lu_A = m. • 

Divisors. Let X be a connected complex manifold, m E .4l(X)*, and 
Z C X an irreducible analytic hypersurface. If Z c P(m), then ordz(m) is a 
negative integer, and if Z c N(m), then ordz(m) E N. In all other cases we 
have ordz(m) = O. 

If P(m) = ULEI p. and N(m) = u.>'EL N>. are the decompositions of the polar 
set and the zero set into irreducible components, then the formal sums 

(m)oo := I) - ordp , (m)) . PL and (m)o:= L ordNJm) . N>. 
LEI >'EL 

are called respectively the divisor of poles and the divisor of zeros of m. 
Finally, div(m) := (m)o - (m)oo is called the divisor of m. From the remarks 
above it is clear that 

div(m) = L ordz(m) . Z, 
zcx 

where the sum is over all irreducible hypersurfaces Z in X. 

Definition. Let (ZL)LEI be a locally finite system of irreducible ana­
lytic hypersurfaces ZL EX. If for every ~ E I a number n L E Z is given, 
then the formal linear combination 

D = Ln .. Z. 
LEI 

is called a divisor on X. 

The divisor is called positive or effective if n. ?:: 0 for every ~ E I. 
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Divisors can be added or multiplied with integer constants in an obvious way. 
Therefore, the set ~(X) of all divisors on X has the structure of an abelian 
group. 

As we just have seen, there is a map div : Al(X)· -+ ~(X). Since we have 
div(mlm2) = div(mt} + div(m2), div is a group homomorphism. 

Sometimes it is useful to generalize the notion of a divisor a little bit. Let 
(A")"EI be a locally finite system of (arbitrary) analytic hypersurfaces in X, 
and (n")"EI a system of integers. Then for every t E I we have a decomposition 

into irreducible components. The system {A~, : t E I,.A" E L"} is again 
locally finite, and we define E"EI n" . AL := E"EI EA,EL, n, . A~,. 

With this notation it is possible to restrict divisors to open subsets: If U c X 
is open and D = E"EI n" . Z" a divisor on X, then 

Du:= 
" with Z,nUi'0 

4.7 Proposition. If A c X is an analytic hypersurface and f a minimal 
defining function for A in an open set U with UnA :f. 0, then 

div(Jk) = k· A n U. 

The proof is more or less straightforward. 

Now let an arbitrary divisor D on X be given. Then for any point p E X there 
is an open neighborhood U = U(p) eX, a finite system {Zi : i = 1, ... , N} 
of irreducible hypersurfaces Zi C U, and a system of numbers ni E Z such 
that 

N 

Diu = L:: ni . Zi. 
i=1 

In addition, there is a neighborhood V = V (p) C U such that there exist 
minimal defining holomorphic functions fi for Zi in V. Then 

N N 

div(IT r:i) = L:: ni' Zi n V = Dlv. 
i=1 i=1 

In this way every divisor is locally the divisor of a meromorphic function. 
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Associated Line Bundles. Let X be a connected n-dimensional com­
plex manifold. If Z c X is an analytic hypersurface, then there is an open 
covering tfI = {U. : i E I} of X with the following property: 

If Ut n Z -I- 0, then there is a minimal defining function i. E O(U.) for Z. 
Setting ft := 1 if U. n Z = 0, in UtK we get the two relations 

with suitable holomorphic functions g'K and gK •. Then 

Since f. does not vanish identically, it follows that g.KgK. = 1 on UtK . This 
shows that gLI< E O*(ULK ) and gl<L = g;;/. Furthermore, on ULI<). we have the 
compatibility condition 

g.Kgl<). = gL).· 

The system of the nowhere vanishing functions 9.1< = f'/ fK defines a holo­
morphic line bundle on X, which we denote by [Z]. It is easy to show that 
this definition does not depend on the covering and the functions f •. 

4.8 Proposition. 

1. There is a section Sz E reX, [Z]) with Z = {x EX: sz(x) = O}. 
2. [Z] is trivial over X - Z. 

PROOF: The system of holomorphic functions f. defines a global section Sz 
with {x E UL : sz(x) = O} = {x E UL fL(X) = O} = U. n Z. Then it is clear 
that [Z]lx-z is trivial. -

We can generalize the concept of associated line bundles to the case of divi­
sors. If D is a divisor on X, then there is an open covering tfI = {U. : i E I} 
of X, and meromorphic functions m. on UL with Diu, = div(m.). It follows 
that the functions 

are nowhere vanishing holomorphic functions on ULI<. They define a line bun­
dle, which we denote by [D). If D = k· Z, then [Dj = [Zjk. If D = Dl + D2 , 

then [D] = [Dd ® [D2]. Thus the map 

15 : ~(X) -t Pic(X), 15(D):= isomorphy class of [D], 

is a homomorphism of groups. 

4.9 Theorem. The sequence of group homomorphisms 

.4l(X)* ~ ~(X) ~ Pic(X) 
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is exact. 

PROOF: (1) Let m i= 0 be a meromorphic function. Then [div(m)] is given 
by only one transition function m/m = 1. Therefore, 80 div(m) = 1. 

(2) Let D be a divisor on X with 8(D) = 1. We assume that Diu, = div{mJ 
and [D] is represented by g~", = m~/m",. Since [D] is trivial, there are nowhere 
vanishing holomorphic functions h~ with h • . g.", = 1 . h", on U.",. Then 

Therefore, a meromorphic function m on X can be defined by mlu, := h. ·m •. 
Obviously, div(m)lu, = div(m.) = Diu" and therefore div(m) = D. • 

Meromorphic Sections. Let X be a connected n-dimensional complex 
manifold. Any analytic hypersurface Z C X leads to a line bundle [Z], to­
gether with a global holomorphic section Sz that vanishes exactly on Z. The 
construction of Sz fails in the case of an arbitrary divisor D and its associ­
ated line bundle [D]. Therefore, we introduce the notion of a meromorphic 
section. 

Definition. Let 7r : L -+ X be an analytic line bundle and A C X an 
analytic hypersurface. A holomorphic section s E r(X - A, L) is called 
a meromorphic section over X in L if for every point x E X there is 
an open neighborhood U = U(x) C X, a function h E O{U), and a 
holomorphic section t E r(U, L) such that: 
l. h· s = t over U - A. 
2. N(h) cAn U. 

If we have a system of trivializations CPt : 7r-l(U.) -+ U. X C and transition 
functions 9."" then we have the following description of s. 

For x E U. - A we define s.(x) by 'P. os(x) = (x, s.(x)). Then s. = g,,,,' s'" on 
U,'" - A. If we choose the U, small enough, there are holomorphic functions 
h., t. on U, such that h • . s. = t. over U. - A and N(hJ cAn U •. This 
means that s. is a meromorphic function on U •. We could have as well said 
that a meromorphic section is a system (s.) of meromorphic functions with 
s. = g.", . s"'. 

If Z is an irreducible hypersurface, then ordz(s.) = ordz(s",), and we denote 
this number by ordz(s). The sum 

div(s) := ordz(s) . Z 
zcx irreducible hypersurface 

is called the divisor of the meromorphic section s. 
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Now we have the solution for our problem: Let D be the divisor on X given 
by Diu, = div(m.). Then [D] is described by the transition functions gu< = 
m.m;l, and the system of the m. defines a global meromorphic section SD 

of [D] with div(sD) = D. 

So far our definitions seem to be purely tautological. But for example, they 
allow us to determine the space of holomorphic sections of [D] in terms of 
meromorphic functions on X. For that we need the following notation: If 
D 1 , D2 are two divisors on X, then Dl 2: D2 if and only if Dl - D2 is a 
positive divisor. 

4.10 Theorem. Let D = Eznz . Z be a divisor on X. Then there is a 

natural isomorphism {m E ..4t(X)* : div(m) 2: -D} ~ reX, [DJ). 

PROOF: Let SD be the global meromorphic section of [D] with div(sD) = D. 
Then for any meromorphic function m on X also t := m·SD is a meromorphic 
section of [D]. 

If m is a meromorphic function with div(m) 2: -D, then 

div(t) = div{m) + div{SD) = div(m) + D 2: -D + D = O. 

This means that t is a holomorphic section. The map m H m· S D is obviously 
injective. 

Let t E f(X, [D]) be given. If Diu, = div(m.), then 

Hence t.m;:l = t",m;l on U."" and there exists a meromorphic function m on 
X with mlu. = t.m;:l. Therefore, div(m)lu. = div(t.) - div(m.) 2: -Diu,. 
So the map is an isomorphism. _ 

Example 

Let X = C be the Riemannian sphere and D = n . 00. Then 

r(x, [D]) = {m E .A(X)* : ordoo(m) 2: -n and ordp(m) ~ 0 otherwise}. 

The holomorphic sections in [D] are just the meromorphic functions on X 
that have a pole of order at most n at 00 . 

Exercises 

1. Let x be a point in a complex manifold X and let lx, gx be nonunits in Ox. 
Prove that Ix and gx are relatively prime if and only if dim(N(f, g)) ::; 
n-2. 
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2. Let G c en be a domain, A eGan analytic hypersurface, U eGan 
open subset with UnA f=. 0, and f : U ~ e a minimal defining function 
for A. Prove that Sing(A) n U = {z E U : fez) = 0 and '\If(z) = O}. 

3. Consider the meromorphic function m(zl' Z2) := z21z1 on e2 . Show that 
the closure X of the graph {(Zl' Z2, w) : Zl f=. 0 and w = m(zl' Z2)} in 
e2 xC is an analytic hypersurface. Determine a minimal defining function 
for X at (0,1,00). 

4. Classify the singularities of m(zl' Z2) := sin(zl)1 sin(zlz2). 
5. Let L -+ X be a holomorphic line bundle. Prove that L = [DJ for some 

divisor D on M if and only if L has a global meromorphic section s f=. O. 
6. Let X be a compact Riemann surface. Show that for every nonconstant 

meromorphic function f on X the numbers of zeros and poles are equal 
(counted with mUltiplicity). 

5. Quotients and Submanifolds 
Topological Quotients. Let X be an n-dimensional complex manifold 
and "-' an equivalence relation on X. If x, Y E X are equivalent, we write 
x "-' y or R(x, y). For x E X let 

X(X):={YEX: y"-'X}={yEX: R(y,x)} 

be the equivalence class of x in X. These classes give a decomposition of X 
into pairwise disjoint sets. The set XI R of all equivalence classes is called the 
topological quotient of X modulo R. 

Let 7r : X -+ XI R be the canonical projection given by 7r : x r-+ X(x). Then 
XI R will be endowed with the finest topology such that 7r is continuous. This 
means that U C XI R is open if and only if 7r-l(U) C X is open. We call this 
topology the quotient topology. 

A set A C X is called saturated with respect to the relation R if 

5.1 Proposition. 

1. A saturated {:::::=} A = UXEA X(x). 
2. If U C XI R is open, then 7r- 1 (U) is open and saturated. 
3. If We X is open and saturated, then 7r(W) C XI R is open. 

The proof is trivial. 
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5.2 Proposition. Let Z be an arbitrary topological space. A map f 
XI R -t Z is continuous if and only if f 0 7r : X -t Z is continuous. 

This statement is also trivial, since (f 0 7r)-l(U) = 7r-l(f-l(U)). 

Analytic Decompositions. If X is an n-dimensional complex mani­
fold and R an equivalence relation on X, one can ask whether XI R carries 
the structure of a complex manifold such that 7r is a holomorphic map. As­
sume that such a structure exists. Then XI R must be a Hausdorff space. If 
cp : U -t Ck is a complex coordinate system for XI R, then D := 7r- l (U) 
is an open saturated set in X, and f := cp 0 7r : D -t Ck a holomorphic 
map with f-l(f(x)) = 7r-l(7r(X)) = X(x). So the fibers of f are equivalence 
classes, and the equivalence classes must be analytic sets. If additionally 7r is 
a submersion, then rkx(f) = k for every xED, and the fibers are (n - k)­
dimensional manifolds. We now show that these conditions are also sufficient 
for the existence of a complex structure. 

Let X be an n-dimensional complex manifold and Z = {ZL : ~ E I} a decom­
position of X into d-dimensional analytic sets. For x E X let ~(x) E I be the 
uniquely determined index with x E ZL(X). Then there is an equivalence rela­
tion R on X such that the equivalence class X(x) is exactly the analytic set 
ZL(X). We consider the topological quotient XI R and the canonical projection 
7r : X -t XI R and assume that the following conditions are fulfilled: 

1. XI R is a Hausdorff space. 
2. For any Xo E X there exists a saturated open neighborhood D of X(xo) 

in X and a holomorphic map f : D -t Cn - d such that 
(a) f-l(f(x)) = X(x) for all x E D. 
(b)' rkx(f) = n - d for x E D. 

5.3 Theorem. Under the conditions above, XI R carnes a unique structure 
of an (n - d) -dimensional complex manifold such that 7r : X -t XI R is a 
holomorphic submersion. 

PROOF: Let Xo E X be given. Then there is an open neighborhood U of 
X(xo) in X with 7r- 1 C7r(D)) = D, and a submersion f: D -t C n - d whose 
fibers are equivalence classes X(x). If Zo := f(xo), then there is an open 
neighborhood W = W(zo) C C n - d and a holomorphic section s : W -+ D 
(with s(zo) = Xo and f 0 s = idw). For z E W we have f-l(z) = X(s(z)), 
and therefore 

7r-I(7r(S(W))) = U X(s(z)) = U f-l(z) = {-leW). 
zEW 

This is an open set, so 7r(s(W)) C XI R is open as well. We define a complex 
coordinate system cp : 7r(s(W)) -t Cn - d by 
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cp(1T(S(Z») := z. 

Then cp(7r(x)) = f(x). This shows that cp is well defined and continuous. It is 
also bijective, with cp-l(z) = 7r(s(z», and therefore a homeomorphism. 

Now let 'l/J be another coordinate system given by 'l/J(7r(t(z»)) := z, where t is 
a local section for some suitable submersion g. Then 

cp 0 'l/J-l(z) = cp(7r(t(z») = f(t(z)). 

The coordinate transformations are holomorphic. • 

Properly Discontinuously Acting Groups. Let G be a complex 
Lie group acting analytically on an n-dimensional complex manifold X. Then 

R(x, y) : {:::::::> :3 9 E G with y = gx 

defines an equivalence relation on X. The equivalence class X(x) = {y EX: 
:3 9 E G with y = gx} is called the orbit of x under the group action and is 
also denoted by Gx. The topological quotient X/ R is called the orbit space 
and is also denoted by X / G. 

We consider a very special case. 

Definition. The group G acts properly discontinuously if for all x, y E 
X there are open neighborhoods U = U(x) and V = V(y) such that 

{g E G : gU n V =I 0} 

is empty or a finite set. 

Here the orbits Gx are discrete subsets of X and are therefore O-dimensional 
analytic subsets. If the action is free, we want to show that all conditions are 
fulfilled for X/G to be a complex manifold and 7r : X --+ X/G a holomorphic 
submersion (which means in this case that 7r is an unbranched covering). 

5.4 Lemma. Let G act freely and properly discontinuously on X and let 
Xo, Yo E X be given. 

1. If there is a go E G with Yo = goxo, then there are neighborhoods U = 
U(xo) and V = V(Yo) such that gU n V = 0 for 9 =I go. In the case 
Yo = Xo and go = e one can choose V = U. 

2. If gxo =I Yo for every 9 E G, then there are neighborhoods U = U(xo) 
and V = V(yo) such that gU n V = 0 for every 9 E G. 

PROOF: At first we choose neighborhoods Uo(xo) and Vo(Yo) such that 

M := {g E G : gUo n Vo =I 0} 
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is finite or empty. There is nothing to prove if M = {go} in the first case 
or M = 0 in the second case. Therefore we assume that there are elements 
gl,···,gN, N ~ 1, with M = {go,gl, ... ,gN} in the first case and M = 
{gl, ... , gN} in the second case. Then we define Y>.. := g>..xo, for)' = 1, ... , N. 
Since G acts freely, Y>. =f Yo for ). = 1, ... , N. 

We choose neighborhoods W>.. = W>..(y>..) and V = V(yo) C Vo such that 
W>.. n V = 0, and we choose a neighborhood U = U(xo) c Uo such that 
g>.U C W>., for)' = 1, ... , N. Then gU n V = 0 for 9 =f go in the first case, 
and 9 E G in the second case. • 

5.5 Theorem. Let G act freely and properly dicontinuously on X. Then 
X / G has the unique structure of an n-dimensional complex manifold, so that 
7[ : X -+ X/G is an unbranched holomorphic covering. 

PROOF: Let U C X be an open set. Then 7[-l(7[(U)) = UgEG gU is an 
open set, and therefore 7[(U) is also open. For Xo E X we can choose an open 
neigborhood U = U(xo) such that gUnU = 0 for g =f e. Then 7[ : U -+ 7[(U) 
is bijective. 

(1) We have to show that X/C is a Hausdorff space. Let Xl>X2 E X be 
given, with 7[(xt} =f 7[(X2). Then gX1 =f X2 for every g E C. There are open 
neighborhoods U = U(X1) and V = V(X2) with gU n V =f 0 for every 9 E G. 
Then 1I"(U) and 7[(V) are disjoint open neighborhoods of 1I"{xt} and 1I"(X2). 

(2) We verify the other conditions. Let Xo E X be given and choose a small 
open neigborhood U = U(xo) C X such that 7[ : U --+ 7[(U) is a homeomor­
phism and such that there exists a complex coordinate system <p : U -+ en. 
Then f : fl := 7[-1(1I"(U)) -+ en can be defined by f(gx) := <p(x), for x E U 
and 9 E G. It is clear from above that f is well defined. The fibers of f are 
the G-orbits, and on gU we have f(y) = <p(g-l(y)). This shows that f is 
holomorphic, and rky(f) = n for every y E fl. 
If U is small enough, then 7[-I(7[(U)) = U gEG gU, with pairwise disjoint sets 
gU that are topologically equivalent to 7[(U). So 7[ is an unbranched covering . 

• 

Complex Tori. Let {WI, ... ,W2n} be a real basis of en. Then the discrete 
group r := Zwl + ... + Zw2n acts freely on en by translation. The set 

Aw := r + w = {w + w : wE r} 

is the orbit of w. 

The group r acts properly discontinuously on en: Let zo, Wo E en be given. 
If Wo = Wo + Zo for some Wo E r, choose 
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c < ~ . inf{lIwll : wE r - {OJ }. 

Then (w + Bt:(zo)) n Bt:(wo) = 0, unless w = woo 

lf Wo - Zo IlT and 

c < ~ . dist(wo, r + zo), 

then (w + Bt:(zo)) n Be (wo) = 0 for every w. 

The n-dimensional complex manifold Tn = TF := c;n Ir is called a complex 
torus, and r is called the lattice of the torus. 

The set P := {z = t1wl + ... + t2nw2n : 0 ~ ti ~ I} contains a complete 
system of representatives for the equivalence classes. Therefore, Tn = 7r(P) 
is a compact space. The map 

induces a homeomorphism Tn --t 8 1 X ... X 8 1. --------2n times 

5.6 Proposition. HI (81 , '1.) = z. 

PROOF: Let U1 := {e211"it : -:1 < t < H, U2 := {e211"it : 0 < t < n, 
and U3 := {e211"it : :1 < t < I}. Then au := {UI,U2 ,U3 } is an acyclic open 
covering for 8 1 with U123 = 0. Therefore, every triple ~ = (a, b, c) E '1.3 

is a co cycle in Zl (au, '1.). It is a coboundary if and only if there is a triple 
(u,v,w) EZ3 with 

a = v - ·u, b = w - u, and c = w - v. 

This is the case if and only if a + c= b. Since every co cycle has the form 
(a, b, c) = (0, b - a - c,O) + (a, a + c, c) = (b - a - c) . (0,1,0) + 15(0, a, a + c), 
it follows that Hl(au, '1.) is generated by the class of (0, 1,0). • 

From the Kiinneth formula it follows that Hl(Tn,z) ~ z2n, and therefore 
the first Betti number of Tn is equal to 2n. 

Hopf Manifolds. Let {! > 1 be a fixed real number and n > 1. Then 
the (multiplicative) group r := {{!k : k E Z} acts freely on c;n - {OJ by 
z t--t {!k . z. 

The action is properly discontinuous. To see this, we define the sets 

Ur := {z E c;n : r < IIzlI < {!T}, for r > O. 

Then the sets (lur are pairwise disjoint. If two points Zl, Z2 E c;n - {OJ 
are given, one can find an r > 0 and a k E '1. such that Zl E U := Ur and 
Z2 E V := {!kUr . The case k = 0 is allowed. Now flU n V = 0, unless s = k. 
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So H = Hr := (Cn - {OJ )jr is an n-dimensional complex manifold, and 
the canonical projection 1f : Cn - {OJ -+ H is an unbranched holomorphic 
covering. H is called a Hopf manifold. 

The map 

( ( .lnllzll) z ) 
z f--7 exp 21f1 In (J '11zll 

induces a diffeomorphism H -+ Sl X s2n-1. Here s2n-1 is the (2n - 1)­
dimensional sphere in JR2n = Cn with 2n - 1 ~ 3. 

5.7 Proposition. For k ~ 2, Hl(Sk,Z) = O. 

PROOF: We have Sk = {x = (Xl, ... ,Xk+d 

{Ul , U2} with 
Ilxll 

-c < Xk+l :s: I}, 

-1 :s: Xk+l < c} 

is an open covering of Sk with contractible sets, and 

U12={XESk : -c<Xk+! <c} 

I}. Then all 

is connected. Therefore, Cl(o//, Z) = Zl(o//, Z) = Z and CO (0//, Z) = Z2. The 
coboundary map ~ : CO (0// , Z) -+ C1(o//, Z) is given by ~(a, b) := b - a. Then 
obviously, Bl (0//, Z) = Z and HI (0//, Z) = O. • 

It follows that H1(H,Z) = Hl(Sl x S2k-l,Z) = Z, and bl(H) = 1. 

The Complex Projective Space. In X:= Cn +! - {OJ we consider 
the equivalence relation 

R(z, w) : {=:} 3), E C* with w = ).z. 

The equivalence class Lz of z is the set Lz = Cz - {O}, the complex line 
through z and 0 without the origin. So we have a decomposition of X into 
I-dimensional analytic sets. We can also look at these sets as the orbits of 
the canonical action of C* on X by scalar multiplication. 

Definition. The topological quotient lpm := XjR = (cn+1 - {O})jC* 
is called the n-dimensional complex projective space. 

Let 1f : X = Cn + 1 - {OJ -+ IPn be the canonical projection, with 1f(z) := L z , 

and let two points z = (zo, ... , zn), w = (wo, ... , wn) be given. We have 

1f(z) = 1f(w) {=:} 3), E C* with Wi = ).Zi for i = 0, ... ,n 

{=:} Wi = Zi for all i, j where the fractions are defined. 
Wj Zj 
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So 7r(z) does not determine the entries Zj, but the ratios Zi : Zj. Therefore, 
we denote the point x = 7r(zo, ... ,zn) by (zo : ... : zn) and call zo, •.• , Zn the 
homogeneous coordinates of x. If Zo, ... , Zn are homogeneous coordinates of 
x, then so are AZo, •.. , AZn for every A E C·. 

If We X is an open set, then 7r-1(7r(W)) = U,xEC' A' W is a saturated open 
set in X, and therefore 7r(W) is open in Ipm. For example, this is true for 

fJ; := {z = (zo, ... , zn) E Cn +! - {O} : Zi "# O} eX, i = 0, ... , n. 

The sets Ui : = 7r ( fJi ) form an open covering of Ipm. 

We show that IP'n is a Hausdorff space: Let z, w E X be given, with Lz "# Lw' 
Then 

* Z 
Z := W and * w 

w := IIwll 
are distinct points of s2n+! = {x E ]R2n+2 = Cn+! : IIxll = I}. Therefore, 
we can find an € > 0 such that Bt:(z·) n Bt:(w*) = 0. Then U := 7r(Bt:(z*)) 
and V := 7r(Be:(w*)) are disjoint open neighborhoods of 7r(z), respectively 
7r(w). 

Now let a point Zo = (zbO), ... , z~O») E X be given. Then there exists an index 

i with z~O) "# 0, and Zo lies in fJi . We define fi : fJi ~ Cn by 

( ) ( ZO Zi-l Zi+l Zn) fi ZO"",Zn := -, ... ,--,--, ... ,- . 
Zi Zi Zi Zi 

Then 

w E Ui : -1.. = .2. for j "# i { 
~ W· z· } 

Wi Zi 

{ ~ W.} 
WEUi: W= Zi'·Z 

7r-1 (7r(Z)). 

If a point u = (Uo, ... , un) E fJ; is given, we define a holomorphic section 

S : Cn ~ fJ; by S(Zl"'" zn) := (UiZl, ... , UiZi, Ui, UiZi+l, ... , UiZn). Then 

( UO Ui-l Ui+l Un) 
S -, ... ,--,--, .•• , - = (uo, ... ,un ), 

Ui Ui Ui Ui 

and 
fi 0 S(Zl"'" Zn) = (Zl, ... , zn). 

Therefore, fi is a submersion, and rkz(fi) = n for every z. 

Altogether this shows that IP'n is an n-dimensional complex manifold and 
7r : Cn +! - {O} ~ IP'n a holomorphic submersion. Since every equivalence 
class Lz has a representative in the sphere S2n+l, IP'n = 7r(S2n+!) is compact. 
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Local coordinates are given by the maps 'Pi : Ui -t en with 'Pi 0 tr = f i . This 
means that -( . . ) _ (ZO Zi Zn) 3 'Pi Zo ..... Zn - -, ... , -, ... , - . 

Zi Zi Zi 
The set 

is biholomorphically equivalent to en. We call it an affine part of ]pn. If we 
remove Uo from F, we get the so-called (projective) hyperplane at infinity 

Ho = {(zo: . .. : Zn) E]pn : Zo = O} 
= {(O: tl : ... : tn) : (tb ... , tn) E en - {O} }. 

It has the structure of an (n - 1 )-dimensional complex projective space. If we 
continue this process we get 

= 

U ]pn-l, 

U pn-2, 

It remains to study ]pI = {(zo : Zl) : (zo, zt) E e2 - {O} }. But this is the 
union of e = {(I : t) : tEe} and 00 := (0 : 1), with t = zdzo. In a 
neighborhood of 00 we have the complex coordinate zof ZI = 1ft. So we see 
that ]pI = C = e u { oo} is the well-known Riemann sphere. 

The hyperplane Ho is a regular analytic hypersurface, given by 

u U {( ) u·. Zo = O}. no n i = Zo:· .. : Zn f i 
Zi 

Therefore, Uo is dense in ]pn. 

It should be remarked that there is no reason to distinguish between Uo and 
the other sets Ui . Everything above could have been done as well with the 
affine part Ui and the hyperplane Hi := {tr(z) E]pn : Zi = O}. 

Meromorphic Functions. On a compact complex manifold every 
global holomorphic function is constant. But we know already from the ex­
ample of the Riemann sphere that there may exist nonconstant meromorphic 
functions. In this regard we consider the compact manifolds defined above, 
beginning with the complex projective space F. 

A nonconstant polynomial p(t) = E~I=o a"t" is a holomorphic function on 
the set Uo = {(I: tl : ... : tn) It = (t l , ... ,tn) E en}. In fact, it defines a 
meromorphic function on ]pn with polar set Ho. We see this as follows: 

3 The hat signalizes that the ith term is to be left out. 
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The functions t/l- = z/l-/ Zo, J.L ? 1, are holomorphic coordinates on Uo, and 
w>. := Z>./Zi, oX i= i likewise on Ui. Therefore, on Ui - Ho = Ui n Uo we have 

k 

( ZO)k. L av(ZI)VI ... (Zn)vn 
Zi Zo Zo Ivl=O 
k 
~ a wk-lvlwVI .. ·wvn . 
~ V 0 In' 

Ivl=O 

. - /h U· H h () .- "k k-Ivl VI... Vn d l.e., p - g on t - 0, were g w .- L.,.,lvl=O avwo WI Wn an 
h(w) := wa are holomorphic functions on Ui with 

N(h) = {w E Ui : Wo = O} = Ui n Ho. 

So there are numerous global meromorphic functions on projective space. 

Now let T = en /r be an n-dimensional complex torus, and 7r : en -+ T 
the canonical covering. If m is a meromorphic function on T, then m 0 7r is a 
merom orphic function on en, which is periodic with respect to the generators 
WI, ... ,W2n of the lattice r. In the case n = 1 such meromorphic functions 
always exist; they are the r-elliptic functions. We shall later see that for 
n ? 2 the existence of r -periodic functions depends on the lattice r. In fact 
there are complex tori with no nonconstant meromorphic functions. 

Finally, consider the Hopfmanifold H = (Cn-{O})/r with r = {gk : k E Z} 
and n > 1. Let m be a meromorphic function on H. Since the canonical 
projection 7r : en - {O} -+ H is a covering, m := m 0 7r is meromorphic on 
Cn - {O}. Since n > 1, it follows from Levi's extension theorem that m can 
be extended to a meromorphic function on Cn . On any line L through the 
origin in en, m must have isolated poles or be identically 00. But since m 
comes from H, poles on L must have a cluster point at the origin, which 
is impossible unless m is constant on L. The same argument works for any 
other value of m. A meromorphic function on Cn - {O} that is constant on 
every line through the origin comes from a meromorphic function on the 
projective space lPn-I. This means that if h : H -+ IPn- 1 is the canonical 
map, then a bijection Al(IPn-l) -+ Al(H) is defined by m I--t m 0 h. On the 
n-dimensional Hopf manifold there are not "more" meromorphic functions 
than on (n - I)-dimensional projective space. 

Grassmannian Manifolds. The set of I-dimensional complex subvec­
tor spaces of e n +l can be identified with the n-dimensional projective space, 
and we have given it a complex structure. Now we do the same for the set 
G k,n of k-dimensional subspaces of en. The idea is the following: If Vo c en 
is a fixed element of Gk,n, then we choose an (n - k)-dimensional subspace 
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Wo c en such that Vo EB Wo = en. We are looking for a topology on Gk,n 
such that the set of all k-dimensional subspaces V with V EB Wo = en is a 
neighborhood of Vo in Gk,n' 

But how to get complex coordinates? In the case G1,n+1 = lP'n we consider, for 
example, Vo = Ceo with eo = (1,0, ... ,0) and Wo = {(zo, ... , zn) : Zo = O}. 
Then Vo EB Wo = e n+1 , and a vector z = (zo, ... , zn) =I- 0 generates a 1-
dimensional space V with V EB Wo = en +1 if and only if Zo =I- O. Multiplication 
by a nonzero complex scalar does not change the space V. Therefore, V is 
uniquely determined by 

-1 -1 ( -) (1 -1 -) Zo . z = Zo . Zo, z = , Zo . z 

The map f : V r-t Zo 1 . z E en gives the familiar local coordinates. 

When we try to transfer this procedure to higher k, we use anoth~r viewpoint. 
Every V with V 63 Wo = en+! has the form Graph( rpv) of a linear map 
rpv : e -+ en given by f(V) = rpv(l). If Vo c en is a k-dimensional subspace 
and Vo EB Wo = en, then every other k-dimensional subspace V c en with 
V EB Wo = en has the form Graph(rpv) for rpv E Homc(Vo, W o). Fixing 
bases of Vo and Wo, the matrix of rpv with respect to these bases gives local 
coordinates in Mk,n-k(C) ~ ek(n-k). 

Now we will do this job in detail. An ordered k-tuple of linearly independent 
vectors a1,"" ak E en can be combined in a matrix 

with rk(A) = k. The set 

St(k,n) := {A E Mk,n(C) : rk(A) = k} 

is called the complex Stiefel manifold of type (k, n). Since its complement in 
Mk,n(C) ~ e kn is an analytic set given by the vanishing of all (k x k) minors 
of A, St(k,n) is an open set in Mk,n(C) and therefore a complex manifold. 
The group GLk(C) acts on St(k, n} by multiplication from the left, and every 
orbit of this group action represents exactly one k-dimensional subspace of 
en. The topological quotient 

is called the complex Grassmannian of type (k, n). 

If, for example, Wo = {w = (W1, ... , wn ) : W1 = ... = Wk = O}, then a 
matrix A E St(k, n} represents a basis of a k-dimensional space V with V EB 
Wo = en if and only if A = (AoIA) with Ao E GLk(C) and A E Mk,n-k(C)' 
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In this case V has the form Graph ( c.py) for a linear map cpv : Ck -+ Cn - k . 

Of course, V is uniquely represented by the matrix AOl . A = (EklAol . A), 
and AOl . A is the matrix of cpv with respect to the standard bases. 

Now we consider the set of multi-indices 

Jk,n := {I = (i l , ... ,ik) E Nk : 1::; i l < ... < ik ::; n}. 

For any A E St(k, n) there exists an 1= (i l , ... , ik) E Jk,n such that 

(

alii 

A I := : 
ali" ) 

: E GLk(C). 

aki l aki" 

Then there is a permutation matrix PI E GLn(C) such that A . PI = 
(AIIAI). 

For fixed I we define 

VI := {A E St(k,n) : detAI =I- O}. 

We remark that (G· A)J = G· AI and (G:A)I = G· AI for G E GLk(C). 
Therefore, VI is invariant under the action of GLk(C). 

5.8 Lemma. Let 1rk,n : St(k, n) -+ Gk,n be the canonical projection. Then 

7l"k.~(7l"k,n(VI)) = VI for every I E Jk,n. 

PROOF: Let A E 7l"k.~(7l"k,n(VI)) be given. Then there is an A* E VI with 
7l"k,n(A) = 1rk,n(A *). This means that there is a matrix G E GLk(C) with 
A = G· A *. Since VI is invariant under the action of GLk(C), A lies in VI. 
The converse inclusion is trivial. _ 

So VI is a saturated open subset of St(k, n), and UI := 1rk,n(VI) is open in 
Gk,n. We leave it to the reader to show that Gk,n is a Hausdorff space. 

If EI C Cn is generated by ei1 , ••• , eiA:' and FI C Cn by the remaining 
ej, then EI E9 FI = cn, and every k-dimensional subspace V C Cn with 
V E9 FI = Cn is represented by a matrix A E VI. The uniquely determined 
matrix All. AI E Mk,n-k(C) describes the linear map cpv : EI -+ Fl. 
Therefore, we define the holomorphic map fI : VI -+ Mk,n-k(C) ~ ck(n-k) 
by 

1 -fI(A):= AI . AI. 

It is clear that fI is holomorphic, and since 
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fI respects the fibers of 1I"k,n' It remains to show that fI has maximal rank. 
For that we construct sections: 

Let A E VI be given. Then we define s : Mk,n-k(C) -+ VI by 

s(B) := AI' (EkIB) . PII. 

This is a holomorphic map with S(fI(A» = (AIIAI)' p I I = A and 

flO s(B) = fI(AI · (EkIB) . PIl) = All. (AI' B) = B. 

So fI is a submersion and Gk,n a complex manifold of dimension k(n - k). 
Complex coordinates are given by <PI : UI -+ Mk,n-k(C) with 

-t 
Let Sk,n := {A E St(k, n) : A· A = Ek} be the set of orthonormal systems 
of k vectors in en. Then Sk,n is a compact set, and 1I"k,n : Sk,n -+ Gk,n is 
surjective. So Gk,n is compact. 

Submanifolds and Normal Bundles. Let X be an n-dimensional 
complex manifold. A holomorphic map f : Y -+ X is called an embedding 
if there is a submanifold Z C X such that f induces a biholomorphic map 
from Y onto Z. Every embedding is an immersion, but in general not every 
(injective) immersion is an embedding. The following proposition has been 
already mentioned in Section 1. 

5.9 Proposition. Let f : Y -+ X be a holomorphic map between com­
plex manifolds. If Y is compact and f an injective immersion, then f is an 
embedding. 

PROOF: Every immersion defines a local embedding. To see this, we may 
consider a holomorphic map f from a neighborhood V = V(O) c em into a 
neighborhood U = U(O) c em x en - m with f(O) = (0,0) and rk Jc(O) = m. 
We write f = (fl' f2) and assume that already rk JCl (0) = m. Then for the 
map F : V x en - m -+ en with 

F(z, w) := (fl(z), f2(z) + w) 

we have det JF(O, 0) = det JCl (0) =f O. So there exist neighborhoods V* = 
V*(O) C V and W = W(O, 0) c U such that F : V* x V* -+ W is biholomor­
phic. Since F(z, 0) = f(z), the image f(V*) = F(V* x {O}) is a submanifold 
ofW. 

We have proved that for every point Xo E Y there are neighborhoods 
V = V(xo) C Y and W = W(J(xo» c X such that f(V) is a closed 
submanifold of W. We have to show that there is a small open neighborhood 
U = U(J(xo» c W such that f(Y) n U = f(V) n U. Suppose that there is 
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a sequence Xn E Y - V with f(xn) -t f(xo). Since Y is compact, we can 
assume that (xn) converges to an element x* E Y - V. Since f is injective, 
f(x*) =I- f(xo)· But f(xn) must converge to f(x*). This is impossible. -

If Y is a regular hypersurface in a complex manifold X, then there are two 
line bundles associated to Y, namely the normal bundle N x (Y), which is 
defined on Y, and the bundle [Y] on X. We will show that these bundles 
coincide on Y. 

Choose an open covering t1/ = (U.)tEl of Y in X such that there are complex 
coordinates zt, ... , z~ for X in Ut with the following properties: 

1. Y n U. = {x E U. : z~ (x) = O}. 
2. zt, ... , z~_l are complex coordinates for Y. 

We have already seen in Section 2 that the normal bundle N x (Y) is given 
with respect to Ut n Y by the transition functions 

h ( I< I< 0) {) z~ ( I< I< ) tl< zl,···, zn-l' = {) I< zl,···, zn-l, 0 . 
zn 

On the other hand, the line bundle [Y] is defined by the transition functions 
f .- t / I< B t • ( I< 1<) - f ( I< 1<) 1<. 1· ." .- Zn Zn· U Zn Zl'···' Zn - tl< Zl'···' zn . zn lmp les 

{) z~ ( I< I< 0) f ( I< I< ) 
{) I< zl,···,zn_l' =.1< zl,···,zn_l'O. 

Zn 

This yields the so-called first adjunction formula. 

5.10 First adjunction formula. 

[Yliy = Nx(Y) for every regular hypersurface Y c X. 

The normal bundle Nx(Y) is naturally related to the canonical bundles Kx 
and Ky. If gtl<, respectively Gtl< are the transition functions for T(Y), re­
spectively T(X), then 

Therefore, det G.I< 0 j = det gtl< . h.l<, and det g;;/ = (det G;;.? 0 j) . ht'" which 
is equivalent to the second adjunction formula: 

5.11 Second adjunction formula. 

Ky = j* Kx ® Nx(Y) for every regular hypersurface Y eX. 

This formula can be generalized to higher codimensionsj see, for example, 
[GriHa78]. 
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Projective Algebraic Manifolds. If 11" : en+! - {O} --+ ]p>n is the 
canonical projection and x E ]p>n, we define 

e(x) := 11"-1 (x) U {O}. 

This is a complex line through the origin in en +1 , and we have e(11"(z)) = ez 
for z E en +1 - {O}. 

A set X c en+ 1 is called a conical set or a cone if it is the union of a family 
of complex lines through the origin. This means that 

z EX===} ).z E X for ). E C. 

If X is an arbitrary subset of ]p>n, then 

X:= U e(x) = 11"-1 (X) U {O} 
xEX 

is a conical set. 

5.12 Lemma. Let X c en +1 be a conical set, f a holomorphic function 
near the origin, and f = 2:::"=0 PII its expansion into homogeneous polynomi­
als. If there is an e > 0 such that fIB.co)nx == 0, then Pvlx = 0 for every 
//. 

PROOF: Let z f:. 0 be an arbitrary point of Bc(O) n X. Then 

00 

). H f().z) = LPII(Z).II 
11=0 

vanishes identically for 1).1 < 1. So Pv(z) = 0 for every //, and since X is 
conical, Pvlx == 0 for every //. • 

Now let F1, . .. ,Fk be homogeneous polynomials in the variables zo, ... ,Zn. 
Then the analytic set 

is a cone. If we set X' := X - {O}, then the image X := 11"(X') C JP>n is the 
set 

In Ui = {(zo : ... : zn) : Zi f:. O}, we can define holomorphic functions All 
by 

( (~~) fi,1I Zo : ... : zn) := Fv -, ... , - . 
Zi Zi 

Then X n Ui = {x E Ui : fi,l(x) = ... = fi,k(X) = O}, and consequently X 
is an analytic set. 
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Definition. An analytic set X c pn that is the zero set of finitely 
many homogeneous polynomials is called a (projective) algebraic set. The 
subsets X n Ui are called (affine) algebraic. 

A complex manifold X is called projective algebraic if there is an N E N 
and a holomorphic embedding j : X -+ pN such that j(X) is a regular 
algebraic set. 

5.13 Theorem of Chow. Every analytic set X in projective space is the 
zero set of finitely many homogeneous polynomials Fl"'" Fs such that if 
x E X is a regular point of codimension d, then rkz(Fl, ... , Fs) = d for every 
z E 7r- I (x). 

PROOF: If X c pn is a nonempty analytic set, then X' = 7r-1(X) is also 
analytic. Since dimz(X' ) ~ 1 for all z E en +1 _ {O}, by the extension theorem 
of Remmert-Stein its closure X = X' U {O} is analytic in en+!. 

By Theorem 6.5 in Chapter III we can find an open neighborhood U = 
U(O) c en+! and finitely many holomorphic functions /I, ... ,1m on U with 
N(/I, ... ,lm) = unx ~nd rkz(/I, ... ,lm) = d at any regular point z of 
dimension n+ 1-d in U nX. Now we expand Ii into homogeneous polynomials 
Pi,v' Then Pi,vlx == 0 for all i, v. 

Let h c 0 0 S:! Hn+1 be the ideal that is generated by all Pi,v, V $ k, 
i = 1, ... , m. Since 

II C 12 C ... c 0 0 

is an ascending chain of ideals in a noetherian ring, it must become station­
ary. Thus there are homogeneous polynomials F1 , ... , Fs such that every Pi,v 
is a finite linear combination of the Fu' But then every Ii is also a linear 
combination of the Fu: 

s 

Ii = L ai,uFu' 
u=1 

It is clear that N (/I, ... , 1m) = N (F1 , ... , Fs) near the origin. But since X 
is a cone, even X = N(Fl,"" Fs). Setting 

A(z) = (ai,u(z) Ii==-1, ... , m ) , 
a-I, ... ,s 

we have 

Ju" ... ,!m.)(Z) = A(z) . J(F" ... ,F.l(z) for z E X near O. 

Therefore, d = rkz(h, ... , fm) $ rkz(FI, ... , Fs). If X is regular of codimen­
sion d at x, then X is also regular of codimension d at every Z E 7r- 1 (x), 
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because 7r is a submersion. It follows that rkz(F}, ... , Fs) cannot be greater 
than d at these points. Since the rank is constant along 7r- 1 (x), it must be 
equal to d at every Z E 7r- 1 (x). • 

Examples 

1. Let L c Cn +1 be a complex linear subspace of co dimension q. Then there 
are linear forms 'PI, ... , 'Pq on Cn+1 such that 

L = {z E Cn+l : 'Pl(Z) = ... = 'Pq(z) = OJ. 

Since the linear forms are homogeneous polynomials of degree 1, 

JlI'(L) := {(zo : ... : zn) E JlI'n : 'P/l(zo,.", zn) = 0 for J.L = 1, ... , q} 

is a regular algebraic set. We call JlI'(L) a (projective) linear subspace. It 
is isomorphic to IP'n-q. 

2. We now show that the Grassmannian manifolds are projective algebraic. 

Let 0 s: k s: n be given, and N := (~) - 1. We identify A. kcn with 
CN+l and define the Plucker embedding pI : Gk,n --+ JlI'N as follows: If a 
subspace V c Cn has the basis {aI, ... , ad, then 

It is clear that this is a well-defined injective map. To see that it is a 
holomorphic immersion, we choose another descripton. As above, when 
we introduced the Grassmannian, we use the set of multi-indices 

To any I E fk,n there corresponds a permutation matrix PI E GLn(C) 
such that for A E St(k,n) we get A· PI = (AIIAI)' We define p: 
St(k, n) --+ CN+l - {OJ by 

p(A):= (detAIII E fk,n)' 

Then p(G . A) = det G . p(A), so p induces a map p : Gk,n --+ IP'N such 
that the following diagram commutes: 

St(k, n) 
p 

Cn+1 - {OJ ---7 

7rk,n 1 
p 

17r 
Gk,n ---7 JlI'n 
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al/\···/\ak= L detA/·eI, 
IEJk,n 

and therefore p = pI. 

Let 'PI : UI ~ Mk,n-k(CC) be a complex coordinate system for Gk,n' 
Then 'Pil(B) = 7rk,n(EkIB) . Pil) and 

po 'Pil(B) = 7r 0 p(EkIB) ,Pi l ) = 7r(det(EkIB) . Pil) J J E fk,n)' 

Obviously, p is a holomorphic map. 

Every matrix B E Mk,n-k(CC) can be written in the form 

with bJL E CC k for J-L = k+ 1, ... ,no We have det(EkIB) 'Pi1)/ = 1, and 
if J = (I - {iv}) U {J-L} for some II E {I, ... , k} and J-L E {k + 1, ... , n}, 
then 

and therefore det(EnIB) . Pi1)J = bvw So po 'Pil(B) contains the 
components 1, bVJL for all II, J-L and some other components. It follows 
that pI is an immersion. Since Gk,n is compact, pI is an embedding. 

Projective Hypersurfaces. The simplest example of an analytic hy­
persurface in ]p>n is the hyperplane H ° = {zo = O}. 

IfS E M n+1 (CC) is a symmetric matrix, then qs(z) := z·S·zt is a homogeneous 
polynomial of degree 2. The hypersurface 

Qs := ({zo : ... : zn) : qs(zo, ... , zn) = O} 

is also called a hyperquadric. It follows easily from the classification of sym­
metric matrices that Qs ~ QT (biholomorphic) if and only if rk(S) = rk(T). 
In particular, every quadric of rank n + I is biholomorphically equivalent to 
the standard hyperquadric Qn-l = ({zo : ... : zn) : z5 + ... + z; = a}. Since 

Qn-l n Uo = ({I : tl : ... : tn ) : ti + ... + t~ = -I}, 

Qn-l has no singularity in Uo. The same works in every Ui , so Qn-l is a 
projective algebraic manifold. 

Now consider the Grassmannian G2,4 y ]p>5. Since dim(G2,4) = 4, it is a 

hypersurface. From multilinear algebra one knows that a 2-vector W E /\ 2CC4 

is decomposable (i.e., of the form W = a /\ b) if and only if w /\ w = O. So 

G2 ,4 = {7r(w) : W12W34 - Wl3W24 + Wl4W23 = o} 
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is a hyperquadric that is isomorphic to Q 4. This means that there is a I to 1 
correspondence between the set of projective lines in p3 (which is the same as 
the set G2,4 of planes in ( 4 ) and the set of points of a 4-dimensional quadric. 

5.14 Theorem. Every analytic hypersurface Z c pn is the zero set of a 
single homogeneous polynomial. 

PROOF: If Z c pn is an analytic hypersurface, then Z = rr-l(Z) U {O} C 

en+! is also an analytic hypersurface. Therefore, there exists an open neigh­
borhood U = U(O) c en +1, a point Z E un Z, and a holomorphic function 
f : U --* e with "\7 fez) =1= 0 and znu c N(f). Making U smaller if necessary, 
we can find a holomorphic function 9 dividing f such that Un Z = N(g). 
Without loss of generality we may assume that U = U' X U" c e x en and 

( ') k ( ') k-l ( ') 9 ZI, Z = zl + ak-l Z Zl + ... + ao Z 

is a Weierstrass polynomial. 

If aK,1/ is the homogeneous part of aK of degree v, then 

Pk(ZI, z') := zf + qk-l,l (z')z;-l + ... + qO,k(Z') 

is the homogeneous part of g of degree k. Since Z is conical, it follows that 
Pkiz = O. 

Now there is a dense open subset V C U" such that {t E U' : g(t,z') = O} 
consists of exactly k points, for every z' E V. Since N (g) n U c N (Pk) n U 
and deg(Pk) = k, we have 9 = Pk over V and then everywhere in U, by the 
identity theorem. So Z = N (Pk). • 

We can choose a polynomial P with minimal degree such that 

Z = {(zo: ... : zn) E pn : p(zo, ... ,zn) = O}. 

Then by the degree of Z we understand the number deg(p). For example, 
deg(H) = 1 for any hyperplane, and deg(Q) = 2 for any hyperquadric. 

Now, let Z C pn be an arbitrary hypersurface of degree k, defined by some 
homogeneous polynomial P of degree k. Then 

Z n Ui = {(zo : ... : zn) E Ui : zik • p(zo, ... , zn) = O}, 

and the line bundle [Z] is given by the transition functions gij = (ZjjZi)k. 

In particular, for every hyperplane H we have the same line bundle [H] with 
transition functions Zj j Zi. 

Definition. If He pn is a hyperplane, then the line bundle 0(1) := 
[H] is called the hyperplane bundle. 

The kth tensor power of the hyperplane bundle is denoted by O(k). 



5. Quotients and Submanifolds 221 

If Z C pn is a hypersurface of degree k, then [Z] = O(k). 

A homogeneous polynomial F of degree k induces a global section SF E 
f(lPn,O(k» by 

(SF)i(ZO:"': zn):= z;kF(zo, ... ,zn) for Zi =I O. 

In fact, (SF)i is a holomorphic function on Ui , with 

Obviously, 

{x E pn : SF(X) = O} = {(zo : ... : zn) : F(zo, ... , zn) = O}. 

On the other hand, let S be an arbitrary global holomorphic section of O(k). 
Then s can be represented by holomorphic functions Si : Ui --* e with 

z; . Sj(zo : ... : zn) = zf . Si(ZO : ... : zn) on Ui n Uj , 

and we obtain a holomorphic function f : en + 1 - {O} --* e with 

fez) = zf . Si(7r(Z» on 7r-1(Ui ). 

There is a holomorphic continuation F of f on en + 1 with F(>.z) = >.k. F(z). 
This means that"F is a homogeneous polynomial of degree k, with SF = s. 
Consequently, we have the following result. 

5.15 Proposition. For kEN the vector space r(pn, O(k» is isomorphic to 
the space of h0rrl:0geneous polynomials of degree k in the variables Zo, ... , Zn· 
Analytic hypersurfaces in pn are exactly the zero sets of global holomorphic 
sections of O(k). 

For any Zo E en + 1 - {O} and any kEN there is a homogeneous polynomial 
F of degree k with F(zo) =I O. Therefore O(k) is generated by global sections. 

The bundle 0(1) can be described in purely geometric terms. For this we 
note that if 

Po := (0: ... : 0 : 1) E pn+l, 

then a projection 7ro : pn+l - {Po} --* pn is given by 

7ro(zo : ... : Zn : Zn+l) := (zo : ... : Zn). 

We obtain local tri vializations <Pi : 7r 0" 1 (Ui) --* Ui X e by 

<Pi(ZO: ... : Zn: zn+!) := (zo: ... : zn), Z:;l), 

with <p;l«zO : ... : zn), c) = (zo : ... : Zn : CZi). Obviously this gives the 
transition functions ZjZ;l. If F is a linear form on en +!, then the section SF 
is given at x = 7r(z) = (zo : ... : zn) by 

SF(X) = <p;l(X, z;l F(z» = (zo : ... : Zn : F(z». 
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The Euler Sequence. Here we discuss the tangent bundle of the pro­
jective space in more detail. Let 71' : en+! - {O} -+ JP'n be the canoni­
cal projection. Then for any point Z E en+1 - {O} we have a linear map 
i.pz : en+1 -+ T1I'(z) (lP'n) defined by 

i.pz(w)[JJ := ! 10 (f 0 1r(z + tw». 

The vector w can be interpreted as tangent vector 0(0) = a*.o«d/dt)o) with 
aCt) := z + two It follows that 

1r*.z(w)[fJ = (71' 0 a)*.o(d/dt)o[J) = (d/dt)o[f 071' 0 aJ = i.pz(w)[J]. 

Since 71' is a submersion and i.pz(z) = 0, the linear map i.pz is surjective with 
Ker(i.pz) = ez. 

If we use the local coordinates t" := Z" / Zi in Ui = {( Zo : Zl : ... : zn) I Zi f O}, 
then for any z with Zi =1= 0 it follows that 

Thus a trivialization '¢i : T(JP'n)lu. -+ Ui X en is given by 

'¢i(i.pz(W)):= (7I'(z), :/ao, ... ,lii, ... ,an»)', 

with a" = W" - (WiZi-1 )z" for v f- i. 

Let O(l)EIl(n+l) be the direct sum of n + 1 copies of the hyperplane bundle. 
Recall that every linear form F on e n +1 defines a global section SF of 0(1) by 
(s F)i = z; 1 F. Then two vector bundle homomorphisms j : OlP" = Jpm X e -+ 
O(l)EIl(n+l) and q : O(l)EIl(n+l) -+ T(JP'n) can be defined by 

j(x, c) := c· (szo(x), ... , Sz" (x)) 

and 
q(SFo(1r(Z», ... , SF" (1r(z») := i.pz(Fo(z), ... , Fn(z»), 

where Fo, . .. ,Fn are linear forms on en+1• 

Using the canonical trivializations, j and q can be given over Ui by 

j: «zo : ... : zn), c) H «zo : ... : zn), c· (zoz;l, ... , ZnZ;l)) 

and 

q: «zo : ... : zn), (wo, ... , wn » H «zo : ... : zn), (ao,· .. , a;, ... , an»), 

with aLI = W" - (WiZ;l)Z". This shows that both of these homomorphisms 
have constant rank. Since there is always an index i such that S Zi (x) i- 0, j 
is injective. Since 0(1) is globally generated, q is well defined and surjective. 



5. Quotients and Submanifolds 223 

Definition. A sequence 0 -+ V' .4 V 4 V" -+ 0 of vector bundles is 
called exact if the following hold: 

1. j and q have constant rank. 
2. j is injective and q is surjective. 
3. Im(j) = Ker(q). 

5.16 Theorem. We have an exact sequence of vector bundles 

The sequence is called the Euler sequence. 

PROOF: It is clear that q 0 j(n(z), c) = <pz(c· z) = O. If, on the other hand, 
x = n(z) and q(SFo(x), ... , SF" (x)) = 0, then (Fo(z), ... , Fn(z» must be 
a multiple of z. So there exists acE C; such that (SFo(X), ... ,SF,,(X» = 
c· (szo(x), ... , sz" (x». • 

Rational Functions. We consider some connections with complex alge­
braic geometry. 

A meromorphic function m on lPn is called rational if m = 0, or if there are 
homogeneous polynomials F and G of the same degree such that F =I 0 and 

( ) F(zo, ... ,zn) 
m Zo : ... : Zn = G( ) . 

Zo,··· ,Zn 

5.17 Theorem. Every meromorphic junction on lPn is rational. 

PROOF: If mE .A"(lPn), then its divisor has a finite representation 

div(m) = L ni . Zi , 
i 

with ni E Z and irreducible hypersurfaces Zi C pn. By the theorem of Chow 
every Zi is the zero set of a homogeneous polynomial Fi of degree d i ~ 1. 
Then F := TIi Ft; is a rational function on c;n+l that is homogeneous of 
degree d := Li nidi E Z. 

Since div(m 0 n) = div(F) on c;n+l - {O}, the function f := (m 0 n) . F-l is 
holomorphic there without zeros. It has a holomorphic extension 1 to c;n+! 
with 1(0) =I 0, because 1 cannot have isolated zeros. 

For c E C·, the equation l(c. z) = c-d ·l(z) is valid on an open subset of 
cn+!, and then (by the identity theorem) everywhere on cn+l. Thus d ~ 0 
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and c-d = 1. From f(c. z) = j(z) it follows that fez) is a constant wo, and 
m 07r(z) = Wo . F(z) a rational function. _ 

A rational function on a submanifold X C IPn is the restriction mix of a 
rational function m on ]pm. We have already seen that every polynomial p 
on Uo ~ en can be extended to a rational function m on IPn. Therefore, on 
every algebraic manifold there is a large number of rational functions. 

If A c IPn is a projective algebraic set, then Ai := An Ui is called an affine 
algebraic set. A complex manifold is called an affine algebraic manifold if it is 
biholomorphically equivalent to an affine algebraic set. A regular function on 
an affine algebraic manifold j : X '-t Ui is a holomorphic function f : X -+ e 
such that there exists a polynomial p on Ui ~ en with f = p 0 j. It can be 
shown that a rational function on an affine algebraic manifold is always a 
quotient of regular functions. 

In algebraic geometry there is a more general definition for regular functions, 
which coincides with our notation in the case of affine algebraic manifolds. 
On projective algebraic manifolds all regular functions are constant, whereas 
there are many rational functions. In the affine case the field of rational 
functions is exactly the quotient field of the ring of regular functions. 

If Z c IPn is a hypersurface of degree k, then X := IPn - Z is an affine 
algebraic manifold. We can see this as follows: 

Let I be the set of multi-indices v = (vo, . .. , vn ) with Vo + ... + Vn = k. Then 
#(1) = (ntk) is the number of monomials z" = z~o ... z~n, v E I. We set 
N := #(1) - 1 and define the Veronese map Vk,n : IPn -+ IPN by 

One can show that Vk,n is an embedding, and so its image is Vk,n = Vk,n(lPn) 
an algebraic sub manifold of IPN. If p is a homogeneous polynomial of degree 
k with zero set Z, then there are complex numbers a", v E I, such that 
p = E"EI a"z". It follows that 

Vk,n(Z)=Vk,nn{(W")"EI: La"w,,=O} 
"EI 

is the intersection of Vk,n with a hyperplane H C IPN. Therefore, IPn - Z ~ 
vk,n(lPn - Z) = Vk,n n (IPN - H) is affine algebraic. 

Exercises 

1. Show that M := {( Zo : Zl : Z2 : Z3) E 1P3 : z8 + ... + z~ = O} is a 
projective manifold. Consider the group G := {gm : 0::; m ::; 4}, where 
9 : 1P3 -+ ]p3 is defined by 
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g(ZO : Zl : Z2 : Z3) := (ezo : e2Z1 : e3Z2 : e4Z3), e = e21ri / 5 • 

Prove that X := MjG is a complex manifold (called a Godeaux sur/ace). 
2. Let F : C3 ~ C3 be defined by 

Set G = {Fm : mE Z} and prove that X := (Cx(C2-{O}»jG is a com­
pact complex manifold. Consider the holomorphic map 7r : X ~ C that 
is induced by the projection onto the first component. Then X t := 7r- I (t) 
is a 2-dimensional complex manifold. Show that X t is biholomorphically 
equivalent to Xl for every t -:f:. 0, but that there is no biholomorphic map 
between Xo and Xl' Show that Xo is a Hopf manifold. 

3. For W}, ... ,W2n E en define 0 := (wi, ... ,win) E Mn,2n(C) and prove 
that 

WI, ... ,W2n linearly independent -¢=} det (~) -:f:. O. 

Let Tn be the torus defined by the lattice r := Zwl + ... + Zw2n. Prove 
that Tn is biholomorphically equivalent to Tn' if and only if there are 
matrices G E GLn(C) and M E GL2n(Z) such that 0' = G· o· M. 

4. The Segre map Un : pI X pn ~ p2n+l is defined by 

Un«XO : Xl), (yo: ... : Yn)) := (XOYO : ... : XOYn : XIYO : ••• : XIYn) . 

Show that En := Un(pl X pn) is a complex manifold and Un an injective 
holomorphic immersion. 

5. Show that for n ~ 2, two irreducible hypersurfaces in pn always have a 
nonempty intersection. 

6. Decompose 

into irreducible components. 
7. Let d> 0 and n > O. Prove the following theorem of Bertini. If Hn+l(d) 

is the vector space of homogeneous polynomials of degree d in zo •...• Zn. 

then there is a dense open subset U C Hn+l(d) such that 

N(F) = {(zo : ... : zn) E pn : F(zo, ... , zn) = O} 

. is a projective manifold for every FE U. 
8. Use the notation from the introduction to Grassmannian manifolds. For 

IE .Fk,n set VI:= {A E St(k,n) : detAI #- O} and Ur:= 7rk,n(Vr) C 
Gk,n' Then 

glJ(7rk,n(A» := A/I ·.AJ on Vr n VJ 

give the transition functions of a vector bundle Uk on Gk,n' Show that 
there are n independent global holomorphic sections in Uk. 
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9. Show that HI (]p>n, 0) = 0 for n 2:: 1 and HI(]p>l,O(k» = 0 for k 2:: o. 
Prove that there is an exact sequence of vector spaces 

for n 2:: 2 and k 2:: 1. Conclude that HI (]p>n , ° ( k » = 0 for n 2:: 1 and 
k 2:: o. 

10. Let X be a compact complex manifold and 1f : V -+ X a holomorphic 
vector bundle of rank r 2:: 2. Show that there is a holomorphic fiber 
bundle P -+ X with typical fiber ]p>'"-l and a line bundle L -+ P such 
that Px = ]P>(Vx ) and LIp:. ~ Op",(I). 

11. Prove that for every automorphism f of pn (Le., every biholomorphic 
map f : ]p>n -+ ]p>n) there is an A E GLn+I(1C) with f(1f(z)) = 1f(z· At). 
This is formulated as Aut(]p>n) = PGLn+1(1C) := GLn+1(IC)/C". 

12. Let r = WI + W2 be a lattice in C and p the Weierstrass function 
for this lattice. Show that the map Z f-+ (1 : p(z) : p'(z» induces an 
embedding <p of the torus T = c/r into ]p>2. Determine the equation of 
the image <peT) in ]p>2. Determine transition functions for <p"0(1). 

6. Branched Riemann Domains 
Branched Analytic Coverings. Let f : X -+ Y be a continuous map 
between Hausdorff spaces. Then the image of compact sets is compact, and 
the preimage of closed sets is closed. 

Definition. The map f is called closed if the image of closed subsets 
of X is closed in Y. It is called proper if the preimage of compact subsets 
of Y is compact. 

6.1 Proposition. 

1. If f : X -+ Y is closed and A C X a closed subset, then flA : A -+ Y is 
closed .. 

2. Iff is closed, y a point of f(X), and U an open neighborhood of the fiber 
f-l(y), then there is an open neighborhood W = W(y) C Y such that 
f-I(W) c U. 

3. Let X and Y be additionally locally compact. 
(a) If every point y E Y has a neighborhood W such that f-I(W) is 

compact, then f is proper. 
(b) If f is proper, then f is closed. 
(c) If f is closed and every fiber f-l(y) compact, then f is proper. 

PROOF: (1) is trivial. 
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;, 

(2) Let I be closed and U be an open neighborhood of some nonempty fiber 
I-I(y). Then W := Y - I(X - U) is an open subset of Y. If y were not 
in W, then there would be a point x E I-I(y) - U. This is impossible, and 
therefore W is an open neighborhood of y with 1-1 (W) cU. 

(3a) Let Y be locally compact and KeY compact. It follows from the 
criterion that there are finitely many sets WI"'" Wm such that I-I(K) is 
contained in the compact set I-I(WI ) U ... U I-I(Wm). Since l-l(K) is 
closed, it must itself be compact. 

(3b) Let I be proper and A c X be a closed set. For every y E I(A) there is a 
sequence of points Xv E A with limv I(xv) = y. The set N := {y} U {f(xv) : 
v E N} is compact (using the local compactness of Y), and consequently 
I-I(N) is compact. Thus there is a subsequence (xv,,) converging to some 
point x E I-I(N) n A. It follows that y= I(x) E I(A). 

(3c) Let I be closed and assume that every fiber is compact. For y E Y 
choose a compact neighborhood U of I-I(y). This is possible, since X is 
locally compact. By (2) there exists an open neighborhood W of yin Y with 
I-I(W) c U. Then l-l(W) c U as well. As a closed subset of a compact 
set it is itself compact, and from (3a) it follows that I is proper. _ 

Definition. A continuous map I : X ~ Y between locally compact 
Hausdorff spaces is called finite if it is closed and if each fiber has only 
finitely many elements. 

Obviously, every finite map is proper. Conversely, if a proper map has only 
discrete fibers, then it must be finite. 

Definition. A holomorphic map 7r : X ~ Y between n-dimensional 
complex manifolds is called a branched (analytic) covering if the following 
hold: 

1. The map 7r is open, finite, and surjective. 
2. There is a closed subset DeY with the following properties: 

(a) For every y E Y there is an open neighborhood U = U(y) c Y 
and a nowhere dense analytic subset A c U with D n U c A. 

(b) 7r: X - 7r- l (D) ~ Y - D is locally biholomorphic. 
The set D is called the critical locus. A point x E X is called a branch 
point if 7r is not locally biholomorphic at x. The set B of branch points is 
called the branch locus. The covering is called unbranched if B is empty. 

The branch locus B is nowhere dense in X. 

Now we consider a domain G c en and d pseudopolynomials Wi (Wi, z) over 
G and define 
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~ d . 
A:={(w,Z)EC xG: Wi(Wi,z)=Oforz=l, ... ,d}. 

Let 7r : A -+ G be the restriction of the projection pr2 : Cd x G -+ G. 

6.2 Proposition. The map 7r is surjective, finite, and open. 

PROOF: (1) The surjectivity follows from the fact that, for fixed Z E G, 
each Wi (Wi, z) has at least one zero. 

(2) Let MeA be a closed subset and Zo a point of 7r(M). Then there 
is a sequence (wv,zv) in M with Zv -+ Zoo Since the coefficients of the Wi 
are bounded near zo, the components of the zeros wv are also bounded. 
Consequently, there is a subsequence (w VI') of (w v) that converges in Cd to 
some woo It is clear that (wo, zo) lies in M. Thus Zo belongs to 7r(M), and 7r 
is closed. 

Since 7r has finite fibers, it is a finite (and in particular a proper) map. 

(3) It remains to show that 7r is open. Let (wo, zo) E A be an arbitrary point. 
If V(wo) C Cd and W(zo) c G are open neighborhoods, we have to find an 
open neighborhood W'(zo) C 7r(A n (V x W)). 

By Hensel's lemma there are pseudopolynomials wi and wi* such that 

Define 

A:= {(w,z) E V x W : W;(Wl'Z) = ... = w.i(Wd'Z) = O}. 

Then A c An (V x W), and (7rIA)-l(zO) = {(wo,zo)}. Since 7rIA is a closed 
map, there is a neighborhood W'(zo) C W such that A n (Cd x W') = 
(7rIA)-l(W') c An(V x W). Since also 7rIA: A -+ W is surjective, it follows 
that 

W' = 7r(A n (Cd x W')) c 7r(A n (V x W)). 

Thus 7r is open. • 
Remark. If X c A is an irreducible component that is everywhere regular 
of dimension n, then the same proof shows that 7rlx is also surjective, finite, 
and open. If D eGis the union discriminant set for A, then 7r : X -+ G is a 
branched analytic covering with critical locus D. 

Branched Domains. A continuous map f : X -+ Y between Hausdorff 
spaces is called discrete at x E X if the fiber f-l(f(X)) is a discrete subset 
of X. The map f is called discrete if it is discrete at every point x E X. 

A holomorphic map f : X -+ Y between complex manifolds is discrete at 
Xo if and only if there is an open neighborhood U = U(xo) CC X with 
f(xo) f/- f(8U). 
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Now let M be an n-dimensional complex manifold. 

Definition. A branched domain over M is a pair (X, 11") with the fol­
lowing properties: 

1. X is an n-dimensional connected complex manifold. 
2. 71": X -+ M is a discrete open holomorphic mapping. 

Let 11" : X -+ M be a branched domain and Xo E X an arbitrary point. 
We can choose a coordinate neighborhood B of 1I"(xo) in M such that B is 
biholomorphically equivalent to a ball in en and 1I"(xo) = O. Since 11" is discrete 
and open, there is a connected open neighborhood U = U(xo) CC X such 
that 7I"(U) C B is open and 71"-1(0) n U = {xo}. We assume that 1I"(U) = B. 

Define j : U -+ U x B by j(x) := (x,1I"(x». Then j is a holomorphic embed­
ding, and 

A := j(U) = {(x, z) E U x B : z = 1I"(x)} 

is a regular analytic set in U x B. We have a factorization 11" = 7f 0 j, with 
7f := pr2lA. Let WI,." ,wn be complex coordinates near Xo in U. It follows 
from the results of Section III.6 that over a small neighborhood of 0 in B there 
are pseudopolynomials Wi(Wi,Z) such that A is an irreducible component of 
the embedded analytic set 

A = ((w,z) : Wi(Wi,Z) = 0 for i = 1, ... ,n}. 

If DeB is the union of the discriminant sets of the Wi, then A (and therefore 
also A) is unbranched over the complement of D. Therefore, if 11' : X. -+ M is 
a branched domain, then for every x E X there is a neighborhood U (x) C X 
and a neighborhood W(f(x» c M with 1I'(U) = W such that 1I"Iu : U -+ W 
is a branched analytic covering. 

If M = en or M = IP'n, then a branched domain over M is also called a 
branched Riemann domain. 

Definition. Two branched domains (Xb 1l"I) (over M) and (X2,1I"2) 
(over N) are called equivalent if there are holomorphic maps <p : M -+ N 
and rp : Xl -+ X 2 such that the following diagram commutes: 

M ~ N 

Torsion Points. As an example we consider a polydisk P = pn(o, r) C 
en, a positive integer b, and the set 

Xo := {(z, W) E P x e : w b - Z1 = OJ, 
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together with the projection 11"0 : (z, W) H z. Then Xo is a regular analytic 
hypersurface in P x e and consequently an n-dimensional complex manifold, 
which is the Cartesian product of a polydisk pI C en - l and a neighborhood 
of the origin in the Riemann surface of W = {/Z. It is unbranched outside 
{z : Zl = O}. 

Definition. Let (X, 11") be a branched domain over some manifold M. 
A point Xo E X is called a torsion point (or winding point) of order b if 
there is an open neighborhood U = U(xo) c X such that 11" : U -+ 1I"(U) 
is equivalent to 7fo : Xo -+ P. In this case we say that 7flu is a winding 
covering. 

We consider the local case, i.e., a branched analytic covering 7f : X -+ Q over 
some polydisk Q c en around the origin, and we assume that it is branched 
of order b over 0 and unbranched outside {z E Q : Zl = O}. Then X' := 
X -7f- I ( {Zl = O}) is still connected, and the covering 7f : X -+ Q is equivalent 
to 7fo : Xo -+ P. For a proof see [GrRe58], §2.5, Hilfssatz 2. One shows that the 
two coverings outside the branching locus have the same fundamental group. 
Therefore, they must be equivalent there. Using the theorem of Remmert­
Stein it follows that X and Xo are equivalent. 

The following is now immediate. 

6.3 Proposition. Let (X,7f) be a branched analytic covering over M, with 
branching locus D. If Xo E X is a point such that Zo = 7f(xo) is a regular point 
of D, then there are neigborhoods W = W(xo) C X and U = U(zo) c M 
such that 7f : W -+ U is a winding covering. 

The proof follows simply from the fact that one can find coordinates such 
that locally the situation above is at hand, and then X is locally equivalent 
to Xo. 

Concrete Riemann Surfaces. A concrete Riemann surface is a 
branched Riemann domain 7f : X -+ e or 7f : X -+ JlDI. It is an abstract 
connected Riemann surface, and in the latter case it may be compact. The 
infinitely sheeted Riemann surface of w = log Z is not a concrete Riemann 
surface in our sense. 

Here is a method for constructing concrete Riemann surfaces. Let X be a 
Hausdorff space, M = e or M = JlDI, and 11" : X -+ M a continuous mapping 
such that for every Xo E X there is an open neighborhood U = U(xo) C X, 
a domain Vee (in the case M = e), respectively a domain V in an affine 
part ~ e of M (in the case M = JlDI) and a topological map 'IjJ : V -+ U with 
the following properties: 

I. 11" 0 'IjJ : V -+ IC is holomorphic. 
2. (7f 0 'IjJ)' does not vanish identically. 
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The map 'IjJ is called a local unijormization. 

Obviously, (U, 'IjJ-l) is a complex coordinate system. We have to show that 
two such systems (Ul, 'ljJ1l) and (U2' 'IjJ"2l) are holomorphically compatible. 
We consider only the case M = C. The map 

'l/J := 'l/J1 l 0 'l/J2 : 'l/J"2l(Ul n U2) --7 'l/J1l(U1 n U2) 

is a homeomorphism. We denote the set 'IjJ); 1 (Ul nU2) by V;. Then Dl := {t E 
Vi* : (7r 0 'ljJl)'(t) = O} is discrete in Vt, and therefore D2 := 'l/J-l(Dt} C V2* 
is also discrete. Let to be a point of V2* - D2. Then 

(7r 0 'ljJd('IjJ(to» f= o. 

Therefore, there are open neighborhoods U = U('IjJ(to» c Vi* and W = 
W(zo) C C (for Zo := 7r('l/J2(tO))) such that 7rO'l/Jl : U --7 W is biholomorphic. 
Then 7r1'lPl(u) : 'ljJl(U) --7 W is a homeomorphism, and 

'l/J = 'ljJll 0 (7rI"'l(U»-l 0 7r 0 'ljJ2 = (7r 0 'ljJl)-l 0 (7r 0 'l/J2), on V := 'IjJ-l(U). 

Since V is an open neighborhood of to, we see that 'IjJ is holomorphic on 
V2* -D2· As a continuous map it is bounded at the points of D2, and therefore 
it must be holomorphic everywhere in V2'". 

From the above it follows that X is a Riemann surface, and obviously 7r is a 
holomorphic map. We still want to see that it is a finite branched covering. 
If Xo E X, then there is an open neighborhood U = U(xo) C X and a local 
uniformization 'IjJ : V --7 U. We define <I> : U --7 V X 7r(U) C C2 by 

<I>(x) := ('l/J-l(X), 7r(x». 

Then <I>(U) = {(z, w) E V X 7r(U) : 7ro'IjJ(z) = w}. Restricting the projection 
(z, w) H W, we obtain a branched covering p : iJ!(U) --7 7r(U) that is equiva­
lent to 7rlu : U --7 7r(U). Let be j := 7r 0 'l/J and Zo := 'IjJ-l(XO). If !'(zo) f= 0, 
then p is unbranched. If f' has an isolated zero of order k at Zo, then 

fez) = 7r(xo) + (z - zo)k . h(z), 

where h is a holomorphic function with h(zo) f= O. It is clear that then p is 
branched of order k, equivalent to the Riemann surface of if'i. 

Hyperelliptic Riemann Surfaces. For g ;::: 2 choose 2g + 2 different 
points Zl, Z2, .. . , Z2g+1, Z2g+2 in Xo := pl. We assume that they are all real, 
in natural order, and not equal to 00. 

Now we take two copies X l ,X2 of pl regarded as lying above Xo and cut 
them along the lines fi between Z2i+1 and Z2i+2, i = 0, ... ,g. We define 

X;: := {t E X.x : Im(t) ::; O} and xt:= {t E X.x : Im(t) > O} 
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~ _____ :_1 ____ t_O _____ ~ _____ • __________ • ____ Z_2_:+_1 ____ tg ____ •2_:_+-J2 ~ 
Figure IV.2. The hyperelliptic surface 

and glue xi to Xl along the cuts ii, and similarly Xi to Xt. 

We obtain a topological (Hausdorff) space X that lies as a branched cover­
ing of order 2 over ]pI (see Figure N.2). It is branched only at the points 
Zl> .•• , Z2g+2, and at each of these points it looks exactly like the Riemann 
surface of viz over the origin. Therefore, it is clear that X, together with the 
canonical projection 11" : X ~ ]pI, is a concrete Riemann surface. It is called 
a hyperelliptic surface.4 

A curve going in Xl from Z2i+1 to Z2i+2 and then in Xi back to Z2i+1 
defines a cycle C: in X, i = 0, ... , g. Similarly a curve in Xl which goes 
from Z2i+2 to Z2i+3 and then in X 2 back to Z2i+2 gives a cycle C:, in X, 
i = 0, ... ,9 - 1. Finally we define C; by going in Xl from Z2g+2 thro\.l.gh 
00 to Zl and then in X 2 back to Z2g+2' So HI (X, Z) is generated by the 
29+2 cycles C6, ... , C~, C~, ... , c;. But C' := c6+'" +C~ is the boundary 
of X2, and C" := C~ + ... + C; is the boundary of xt U Xi. Therefore, 
HI(X,Z) = ZI(X,Z)jBl(X,Z) ~ Z2g (and Ho(X,Z) = Z, because X is 
connected). It follows that HI(X,Z) ~ Z29. The number 

1 1 
9 = 9(X) := "2bl(X) = "2 rk(HI(X,Z)) 

is called the genus of X. Recalling that ]pI is the Riemann sphere, we replace 
X 2 by the complex conjugate X 2 and glue Xl and X 2 inserting tubes into 
the cuts ii' Thus we realize X as a sphere with 9 handles. 

Now we give a more analytical description of the hyperelliptic surface. Define 

29+2 

X' := {(s, t) E C2 : s2 = II (t - Zi)}, 
i=O 

4 In the case 9 = 1 we would get an elliptic surface that is isomorphic to a 1-
dimensional complex torus. 
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and 1r' : X' -t C by 1r(s, t) := t. This is a branched covering with branching 
locus D = {Zl,"" Z2g+2}. For F(t) := I1;!62(t-zd, the function s = JF(t) 
is well defined on X'. Over {t E C : It I > R}, X' consists of two disjoint 
punctured disks. Therefore, we can complete X' to a compact Riemann sur­
face X by filling the points at infinity, i.e., the punctures. The map 1r' can 
be extended continuously to a map 1r : X -t pl. It follows by the Riemann 
extension theorem that 1r is holomorphic, and X is a branched covering of 
order 2 over pI with branching locus D. 

Remark. The Riemann surface X is not the completion of X' in p2. 
The projective analytic set X', which has {s2 = F(t)} as affine part, has a 
singularity at infinity. 

The functions t and s = JF(t) extend to meromorphic functions f and 9 on 
X that have poles of order 1, respectively 9 + 1, over 00. 

We now calculate Hl(X,O). For this the following is an essential tool. 

6.4 Serre's duality theorem. If X is a compact Riemann surface and V 
an analytic vector bundle over X, then Hl(X, V) and HO(X, Kx 0 V') are 
finite-dimensional vector spaces of equal dimension. 

PROOF: See [Nar92J, page 47. • 
In the case V = Ox = X x C we have Hl(X, 0) ~ HO(X,Kx). So we need 
some remarks about the canonical bundle Kx. 

1. Let U = (U.).EI be an open covering of X such that there are complex 
coordinates 'P. : U. -t C. We denote the complex coordinate on U. by t •. 
Then the line bundle K x is given by the transition functions 

dtl< 
g.1< = di' 

• 
A holomorphic 1-form on X is a global section w E r(X, T(XY) = 

HO(X, Kx). We can write wlu, = w.dt •. Then w.dt. = wl<dt", on U.I<' 
and therefore w. = g.1< . WI<' 

2. On pI we have two systems of complex coordinates, namely, to := zr/ Zo 
on Uo = {(zo : Zl) : Zo =f. O} and tr := zolzl on U1 . We denote to by t 
and -tl by s. Then on U01 we have s = -lit. Using sand t as complex 
coordinates, the canonical bundle on pI is defined by 

gOl = ~; = ! (-~) = t~ = C~f· 
This is also the transition function of the bundle [DJ associated to the 
divisor D = -2· 00. Therefore, 

HO(pl, Kpl) ~ HO(pl, [DJ) 

{m E M(pl)* : ordoo(m) 2: 2 and ordp(m) 2: 0 otherwise}. 
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But such a function m is holomorphic and vanishes at 00, and conse­
quently is identically O. Thus HO(PI, Kpl) = O. 

3. Let X be a compact Riemann surface, and WI,W2 E HO(X,Kx) two 
holomorphic I-forms. In local coordinates w>.lu. = w~;'ldtL' for>. = 1,2. 
Then /Iu. := W?l/w?l defines a global meromorphic function / on X 
such that W2 = /. WI. 

Now we return to the hyperelliptic surface X. A holomorphic map j : X --+ X 
is defined by (s, t) 1---+ (-s, t). Clearly, j permutes the two leaves, and P = id. 
This map is called the hyperelliptic involution, and it induces a linear map 
j* : HO(X, Kx) --+ HO(X, Kx) with (j*)2 = id. We get a decomposition of 
HO(X, Kx) into the eigenspaces associated with the eigenvalues ±l. But if 
j*w = w, then w = 11"* (cp), where cp is a holomorphic I-form on pl. Since 
H°(JP>I, KII>1) = 0, it follows that w = O. Thus j*w = -w for every w E 
HO(X, Kx). 

The equation S2 = F(t) implies that 2s ds = F'(t) dt. If set) = 0, then t = Zk 
for some k. But F'(Zk) = I1i#(Zk - Zi) '# O. Therefore, 

dt 2ds 
Wo := --; = F'(t) 

is a holomorphic I-form on X'. Near 00 we have set) ~ t9+l and therefore 
Wo ~ (I/t)9- l d(l/t). This shows that Wo is a holomorphic I-form on X that 
has a zero of order g -1 over 00. The same argument shows that the I-forms 
Wv := tV . (dt/s) are holomorphic on X, for v = 1, ... ,g - l. 

Now let w be an arbitrary element of HO(X, Kx). Then there is a meromor­
phic function / on X with w = / . Wo. Since Wo has no zero over pI - { 00 }, / is 
holomorphic there. And since j*w = -wand j*wo = -Wo, we have j* / = /. 
This means that / = h 0 11" for some meromorphic function h on pI that is 
holomorphic outside 00. Consequently, h is a polynomial, say of degree d. It 
has d zeros in C and a pole of order d at 00. It follows that / also has a pole 
of order d at every point above 00. Since w = / . Wo is holomorphic, d ~ g - 1. 
Therefore, w is a linear combination of the I-forms 

dt 
s 

dt 
t-

s 
, 

It follows that dime HO(X, Kx) = g. 

... , 

6.5 Proposition. I/ X is a hyperelliptic Riemann sur/ace, then the genus 
g = g(X) is equal to dimHO(X, Kx). 

We will later see that the same result is true for arbitrary compact Riemann 
surfaces. 
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Exercises 

1. Let rr : X -+ M be a branched analytic covering with critical locus 
D eM. Show that if there is a point Yo E D such that D has codimension 
2 at Yo, then there is no branch point in rr-1(yo). 

2. Let rr : X -+ M, and rr' : X' -+ M, be branched analytic coverings 
and D, respectively D', the critical locus. Prove that if X - rr-1(D) is 
equivalent to X' - (rr')-l(D'), then X is equivalent to X'. 

3. Consider the holomorphic map F : C2 -+ C3 defined by 

(w, Zl, Z2) = F(tl' t2) = (tl . t2, ti, t~). 

It is the uniformization of a 2-dimensional analytic set A C C3 . Show 
that A - {O} is a branched domain over C2 - {O}. What are the torsion 
points? Describe A as the zero set of a pseudopolynomial w(w, z). Is A 
also a branched domain in our sense? 

4. Let F be a homogeneous polynomial of degree k and 

X = {(zo: ... : Zn : zn+d E Ipm+l : Z~+l - F(zo, ... ,zn) = o}. 

Assume that D := {(zo : '" : zn) E ]p>n : F(zo, ... , zn) = o} is regular 
of co dimension 1 and prove that the canonical projection rr : X -+ ]p>n 
is a branched Riemann domain. Determine the torsion points and their 
orders. 

5. Define cp : ]p>l -+ ]p>n by cp(zo : Zl) := (zo : Z~-lZl : ... : zf) and prove 
that the image C := cp(]P>l) is a regular complex curve in ]p>n. Define 

X:= {(p,H) E C x Gn,n+l : p E H}, 

where an element HE Gn,n+l is identified with a projective hyperplane 
in ]p>n. Show that the projection rr = pr2 : X -+ Gn,n+1 is an n-sheeted 
branched covering. 

6. Let X c ]p>n be a d-dimensional connected complex submanifold. Prove 
that there is an (n - d - 1 )-dimensional complex projective plane E c ]p>n 
not intersecting X, a d-dimensional complex projective plane F C ]p>n 
with En F = 0, and a canonical projection rr : ]p>n - E -+ F such that 
rrlx : X -+ F is a branched domain. 

7. Modifications and Toric Closures 
Proper Modifications. Assume that X is an n-dimensional connected 
complex manifold and A c X a compact submanifold. Is it possible to cut 
out A and replace it by another submanifold A' such that X' = (X - A) uA' 
is again a complex manifold? In general, the answer is no, but sometimes such 
complex surgery is possible. Then we call the new manifold X' a modification 
of X. 
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Definition. Let f : X -+ Y be a proper surjective holomorphic map 
between two n-dimensional connected complex manifolds. The map f is 
called a (proper) modification of Y into X if there are nowhere dense 
analytic subsets E c X and S c Y such that the following hold: 

1. f(E) c S. 
2. f maps X - E biholomorphically onto Y - S. 
3. Every fiber f-l(y), yES, consists of more than one point. 

The set S is called the center of the modification and E = f- l (S) the 
exceptional set. 

Assume that we have a proper modification f : X -+ Y with center Sand 
define 

X := {(y,x) E Y x X : y = f(x)} and 7r:= prllx : X -+ Y. 

Then X is an n-dimensional connected closed submanifold of Y x X. If KeY 
is compact, then 7r- 1 (K) = (K xX)nX is a closed subset of K x f-l(K) and 
therefore compact; 7r : X - 7r- 1 (S) -+ Y - S is biholomorphic, with inverse 
y H (y,f-l(y)); and for Yo E S we have 7r- 1(yo) = {(Yo,x) : f(x) = Yo} ~ 
f-l(yO). This is a set with more than one element. 

Therefore, we can generalize the notion of a proper modification in the fol­
lowing way. 

Let X and Y be two connected complex manifolds. A generalized (proper) 
modification of Y in X with center S is given by an irreducible analytic subset 
X of the Cartesian product Y x X and a nowhere dense analytic subset S c Y 
such that 

1. 7r:= prllx : X -+ Y is proper. 
2. 7r- l (S) is nowhere dense in X. 
3. X - 7r- 1(S) is a complex manifold. 
4. 7r maps X - 7r-1 (S) biholomorphically onto Y - S. 
5. X has more than one point over each point of S. 

The center S is sometimes also called the set of indeterminacy. 

If X is a manifold, then 7r : X -+ X is an ordinary modification of X into X 
with center S. 

7.1 Proposition. 7r- l (S) has codimension 1 in X. 

PROOF: We consider only the case where X is regular. A proof of the general 
case can be found in [GrRe55]. 

Assume that Xo E 7r- l (S) is isolated in the fiber of 7r over Yo := 7r(xo). Then 
there is a neighborhood U of Xo in Y x X such that U n X is a branched 
covering over Y. Since Yo lies in S, there must be at least one additional 
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point Xl E X in the fiber over Yo. But then in any small neighborhood 
of Yo there are points y E Y - 8 with several points in 11'-1 (y). This is a 
contradiction. Therefore, dimxo 11'-1 (1I'(xo)) > O. This is possible if and only 
if rkxo (1I') < n := dim(Y), and this shows that 11'-1(8) in local coordinates is 
given as the zero set of det Jrr • Therefore, it has co dimension 1. • 

Blowing Up. Let U = U(O) be a small convex neighborhood around the 
origin in en+1 • We want to replace the origin in U by an n-dimensional 
complex projective space. If 11' : en+!_ {O} -+ pn is the canonical projection, 
then every line Cv through the origin determines an element X = 1I'(v) in the 
projective space, and X determines the line lex) = 11'-1 (x) U {O} such that 
ev = l(1I'(v)). Now we insert pn in such a way that we reach the point x by 
approaching the origin along lex). 

We define 
X := {(w,x) E U x pn : wE lex)}. 

This is a so-called incidence set (another example is considered in Exercise 
6.5). We first show that it is an (n + I)-dimensional complex manifold. In 
fact, we have 

(w,7l'(Z» EX{::::=:} Z =f. 0, and 3 A E e with w = AZ 

{::::=:} 3 i with Zi =f. 0 and Wj = Wi • Zj for j =f. i 
Zi 

{::::=:} Z =f. 0 and ZiWj - WiZj = 0 for all i, j. 

So X is an analytic subset of U x IP'n, with 

Xn (U x Uo) ~ {(w,t) E U x en : Wj = wotj for j = I, ... ,n}. 

In U x Ui (for i > 0) there is a similar representation. It follows that X is 
a submanifold of co dimension n in the (2n + I)-dimensional manifold U x 
IP'n. The map q := prllx : X -+ U is holomorphic, mapping X - q-l(O) 
biholomorphically onto U - {O} by q : (w, x) f-+ wand q-l : w f-+ (w,1I'(w)). 
Obviously, q is a proper map. 

The preimage q-l(O) is the exceptional set ((O,x) : 0 E lex)} = {O} x IP'n. 
So q : X -+ U is a proper modification. It is called HopI's (1-process or the 
blowup of U at the origin. 

If w =f. 0 is a point of U and (An) a sequence of nonzero complex numbers 
converging to 0, then q-l(AnW) = (AnW,1I'(W) converges to (0,1I'(w». This 
is the desired property. 

The Tautological Bundle. We consider the case U = en +!, i.e., the 
manifold 

F:= ((w,x) E Cn+1 X pn : wE lex)} 
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and the second projection 

p:= pr21F : F -+ lPn. 

Thenp-l(x) = lex) is always the complex line determined by x. The manifold 
F looks like a line bundle over the projective space. In fact, we have local 
trivializations <Pi : p-l(Ui ) -+ Ui X e defined by <Pi(W,X) := (X,Wi)' Clearly, 
<Pi is holomorphic. In fact, it is biholomorphic with inverse map 

So over Uij , 

Hence F has the transition functions 9ij = zd Zj, and consequently, it is 
the dual bundle of the hyperplane bundle 0(1). It is denoted by O( -1) and 
is called the tautological bundle, because the fiber over x E jpn is the line 
lex), which is more or less the same as x. Sometimes F is also called the 
Hopi bundle, because it lies in en+! x F and the projection onto the first 
component is Hopf's a-process (see Figure IV.3). 

Let j: F -+ F x en +1 be defined by j(w,x) := (x,w), and Ji : Ui x e-+ 
Ui X en+! by 

Ji (lr(Z),c):= (lr(z), ~ .z). 

Then we have the following commutative diagram: 

Flu; ~ Ui x e 
j.!. .!. J i 

Ui X en+! rv Ui X en +1 

This shows that F is a subbundle of the trivial vector bundle lPn x en+!. In 
particular, it follows that r(lPn,O(-I)) = 0; Le., there is no global holomor­
phic section in the tautological bundle. 

There is an interesting geometrical connection between F and F'. Consider 
the point Xo := (0: ... : 0 : 1) E jpn+l and the hyperplane 

Ho := {lr(z) E jpn+l : Zn+! = o}. 

Then the hyperplane bundle F' = 0(1) is given by the projection 11'+ 
jpn+! - {xo} -+ Ho ~ F, with 

lr+(Zo : ... : Zn : zn+d := (zo : ... : Zn : 0). 
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f(x) 

11' 

/ 

/ U C Cn +1 

/ 

Figure IV.3. Hopf's u-process 

Here Ho is the zero section of 0(1). Removing the zero section gives a man­
ifold isomorphic to Cn +l - {O}, and the fibers of the hyperplane bundle 
correspond to the lines through the origin. Blowing up the point Xo gives 
us an additional point to each fiber and so a projective bundle F' over ]pn 

with fiber ]pl. But looking in the other direction, F' - Ho is nothing but the 
tautological bundle O( -1) over the exceptional set of the blowing up. 

Quadratic Transformations. We consider the case n = 1. Let M 
be a 2-dimensional connected complex manifold and p E M a point. Let 
U = U(p) c M be a small neigborhood with complex coordinates z, w such 
that (z(p), w(p)) = (0,0). Let X c U X ]pI be the blowup of U at the origin. 
Then 

Qp(M) := (M - U) uX = (M - {p}) U]pl 

is again a 2-dimensional complex manifold, with a nonsingular compact an­
alytic subset N ~ ]pI and a proper holomorphic map qp : Qp(M) -+ M such 
that q; 1 (p) = Nand qp : Qp( M) - N -+ M - {p} is biholomorphic. We call 
Qp(M) the quadratic transformation of M at p. 

Let F : MI --+ M2 be a biholomorphic map between 2-dimensional complex 
manifolds and F(Pl) =P2. Let ql : Qpl(Md --+ MI and q2: Qp2(M2) --+ M2 
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be the quadratic transformations. Then there exists a biholomorphic map 
if' : QPl (Md -+ Qp2(M2) such that q2 0 if' = F 0 ql. This follows directly 
from the construction, and it shows that the quadratic transformation is a 
canonical process. 

In [H055) Hopf proved that every proper modification with a single point as 
center is a finite sequence of quadratic transformations.5 

We consider the quadratic transformation q : Qo(U) -+ U, where 

U = {(z,w) E C2 : Iii < rl and Iwl < r2}. 

Then Qo(U) = {(z,w, «: 7]) E U X pI : Z7] - w( = o} = Uo U Ul, with 

Uo ~ {(7], z) E C2 : IZ7]1 < r2 and Izl < rd, 

U1 ~ {«, w) E C2 : Iw(1 < rl and Iwl < r2} 

and 
d (=_1 TT U w = Z7] an on vo n 1. 

7] 

Thus q is given by 

(7],Z) t-t (z,z7]) and «,w) t-t (w(,w). 

Consider, for example, the curve C := {(z, w) E U : w2 = Z3}, which has a 
singularity at the origin. Then 

q-l(C - {O}) n Uo 
q-l(C - {O}) nUl 

{(7], z) E Uo : z =F 0 and z - 7]2 = O}, 

= {«,w) E U1 : w =F 0 and 1- W(3 = O}. 

In U1 - Uo we have ( = o. So q-l(C - {O}) lies completely in Uo, and its 
closure in Qo(U) is the singularity-free curve C' := {(7], z) : z = 7]2}. We 
call it the strict transform of C. The map q : C' -+ C is called a resolution 
of the singularities of C. One can show that for any curve in a 2-dimensional 
manifold the resolution of the singularities is obtained by successive quadratic 
transformations. A proof can be found, for example, in [Lau71). 

If a 2-dimensional manifold M contains a compact submanifold Y ~ ]PI, one 
can ask whether Y is the exceptional set of a blowup process (then one says 
that Y can be "blown down" to a point). Here we give a necessary condition. 

We determine the transition functions for the normal bundle of the fiber 
Fa := q-l(O) in Qo(U). The divisor Fo is the zero set of the functions 10 : 
Ua -+ C with 10(7], z) := z and It : U1 -+ C with It «, w) := w. Therefore, 
the associated line bundle [Fa] on Qo is given by the transition function 

5 In algebraic geometry this was already known at the beginning of the twentieth 
century, for example by the italiens G. Castelnuovo and F. Enriques. 
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z ( 
90t{Z,W, «(: 77)) = - = - on Uo nUl· 

W 77 

But (,77 are the homogeneous coordinates on Fo ~ ]pl. So NQo(Fo) = [FollFo 
is described by the same transition function as the tautological bundle O( -1). 
It follows that a submanifold Y,~]pl in a complex surface M can be excep­
tional only if NM(Y) ~ 0(-1). 

We give a topological interpretation of this criterion. We set 

So := 1 on Uo and 

which defines a meromorphic section s in 0(-1) that has no zero and 
only one pole at 00 = (0 : 1). We can use this section to calculate the self­
intersection number Y . Y. Since more knowledge about topology is needed 
for the complete calculation, we can give only a sketch. 

The self-intersection number of a compact submanifold Y <= M can .be de­
scribed as follows. Take a copy Y' of Y (which need be only a topological or 
piecewise differentiable submanifold of M) such that it intersects Y transver­
sally. Then the intersection Y n Y' is a zero-dimensional submanifold, Le., a 
finite set. Now count the number of these intersection points respecting orien­
tation. The result is the self-intersection number. Furthermore, one can show 
that if Z c NM(Y) is the zero section, then y. Y = Z· Z, and the number 
Z . Z can be calculated by intersecting Z with some not identically vanishing 
(continuous) section Z'. We obtain such a Z' in the following way. Let s be 
the meromorphic section in N = N M (Y) mentioned above. Choosing appro­
priate coordinates near 00, we can there write N = ({z,w) E e2 : Izl < I} 
and s(z) = (z, liz) (since s has a pole of order one). For 0 < e < 1 and 
Izl = e we have s(z) = (z, zl(2 ). Then we define s by 

{ 
s(z) 

s(z):= (z,;) 
for Izl > e, 
for Izl ::; e. 

So s is a piecewise differentiable section, homologous and transversal to the 
zero section with one zero of order 1. Since z gives an orientation opposite to 
that defined by z, we have the self-intersection Y . Y = -1. 

If Y ~ ]pI is exceptional, then Y . Y = -1. It is a deeper result that the 
converse of this statement is also true (cf. [Gr62]). 

Monoidal Transformations. We consider a domain G c en and 
holomorphic functions fo, ... , /k on G such that A := N(lo, ... , /k) c G 
is a singularity-free analytic subset of codimension k + 1. Then we define 
f := (10, ... , fk) : G -r ek+ l and 
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x .- {(w, x) E G X jp'k : few) E lex)} 

((w,1I"(z)) E G X jp'k : zdj(w) - Zjfi(W) = 0 for i,j = 0, ... ,k}. 

The map p := prIlx : X --+ Gis holomorphic and proper. For Wo E G - A we 
have p-I(WO) = {wo} xjp'k, whereas p : X _p-I(A) --+ G-A is biholomorphic 
with p-I : W H (w, Uo(w) : ... : hew»~). 

The set X is called the monoidal transformation of G with center A. The 
exceptional set E(f) := p-I(A) is the Cartesian product A x jp'k. In the case 
k = n - 1 and fi = Zi for i = 0, ... , k this is the O"-process. 

One can show that the monoidal transformation is also a canonical process. 
Therefore, it can be generalized to an n-dimensional connected complex man­
ifold M and a sub manifold A C M of codimension k + 1. Then the ~onoidal 
transformation of M with center A is an n-dimensional manifold M with a - -hypersurface E C M such that M - E ~ M - A. The exceptional set E is 
a fiber bundle over A with fiber jp'k. The fiber over x E A is the projective 
space jp'(Nx ), where N = NM(A) is the normal bundle of A in X. The divisor 
E determines a line bundle L := [E] on M with Llp(N.,) = Op(N.,)(-1). We 
leave the details to the reader (see also Exercise 5.10). 

Meromorphic Maps. Let X be an n-dimensional complex manifold 
and f a meromorphic function on X with polar set P and S C P its set of 
indeterminacy points. Then f is holomorphic on X - P, and we can extend 
it to a holomorphic map f : X - S --+ jp'1 by setting f(x) := 00 for x E P - S. 
The set 

G f := {(x,y) E (X - S) X jp'1 : y = f(x)} 

is called the graph of f. Let G f C X X jp'l be the closure of the graph in 
X x jp'1. 

7.2 Proposition. The graph Gf is an irreducible analytic subset of X x jp'l 
and defines a proper modification of X in jp'l with S as set of indeterminacy. 

PROOF: Let Xo E P be an arbitrary point. Then there is a neighborhood 
U = U (xo) C X and holomorphic functions g, h : U --+ C such that f (x) = 
g(x)/h(x) for x E U - P. We can assume that gx and hx are relatively prime 
forxEU.ThenPnU={xEU: h(x)=O}andSnU={xEU: g(x) = 
hex) = OJ. Hence P is a hypersurface and S has codimension 2 in X. Then 
dime S x jp'l) < n and G f C (X X jp'1) - (S X jp'l) is an n-dimensional analytic 
set. By the theorem of Remmert and Stein its closure G f in X x jp'1 is also 
analytic. In fact, we have 

The map 11" := prl : Gf --+ X is obviously a proper holomorphic map, with 
1I"-I(X) = {x} X jp'1 for xES and 
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7r- l (x) _ { (x, (1 : I(x))) for x E X - P, 
- (x, (0: 1)) for x E P - s. 

So 7r : G f - 7r- l (8) --+ X - 8 is biholomorphic, and G f defines a proper 
modification of X in pI with indeterminacy set 8. As usual, X is assumed 
to be connected. Then Reg( G f) is also connected, and G f irreducible. -

Now we consider the notion of a meromorphic map. To develop the correct 
point of view, we start with a very special case. Let 

om : = pI X . . . X pI 
~ 

m times 

be the so-called Osgood space. If II, . .. , 1m are meromorphic functions on 
X without, points of indeterminacy, then they define a holomorphic map 
f = (II, ... , 1m) : X --+ om. If Ii has a set 8 i as set of indeterminacy, we 
define 8 := 8 1 u· .. u 8m . Then f is a holomorphic map from X - 8 into om. 
Again we have its graph: 

Gr = {(X;Yb ... ,Ym) E (X - 8) X Om : Yi = li(X) for i = 1, ... ,m}. 

For Xo E 8 we define 

Tr(Xo) := {y E om : 3xv E X - 8 with Xv --+ Xo and f(xv) --+ y}. 

Then Tf(XO) is a nonempty compact subset of om. Setting Tf(X) := {f(x)} 
for X E X - 8, we get a map Tf from X into the power set P( om). 6 We define 

Gf := {(x,y) E X x om : y E Tf(X)}. 

One sees easily that Gf is the topological closure of Gf in X x om. We cannot 
apply the Remmert-Stein theorem to show that Gf is an analytic set, but 
locally it is an irreducible component of the analytic set A with 

{(x; (zJ : zi), ... , (zo : zl)) E U x om : 
ZJgl(X) - zthl (x) = ... = Zo9m(X) - zlhm(x) = O}, 

where Ii = gdhi on U - Pi, for i = 1, ... , m. We could carry out the simple 
proof here, but we refer to [Re57], Satz 33. 

Definition. A meromorphic map between complex manifolds X and 
Y is given by a nowhere dense analytic subset 8 eX, a holomorphic 
map I : X - 8 --+ Y, and an irreducible analytic set X c X x Y such 

. that 
1 0 prl = pr2 on X n «X - s) x Y) 

and 7r := prllx : X --+ X is proper and surjective. The set 8 is called the 
. set 01 indeterminacy of I. We also write I: X ~ Y. 

6 As usual, the power set P(M) of a set M is the set of all subsets of M. 



244 IV. Complex Manifolds 

We define Tf : X ~ P(Y) by Tf(x) := pr2(7r-1(X)). Then Tf(x) i§ always a 
nonempty compact set, and 

x = ((x,y) E X x Y : y E Tf(x)}. 

For x E X - S we have 7r-1(x) = {(x,/(x))}, and for xES we have 
7r-1(x) = X n ({x} x Y). This is a compact analytic set. If S is minimal, then 
7r : X ~ X is a proper modification with center S. 

So alternatively we could have defined a meromorphic map between X and 
Y to be a map T : X ~ P(Y) such that: 

1. X := {(x, y) E X x Y : y E T(X)} is an irreducible analytic subset of 
XxY. 

2. 7r:= pr11x : X ~ X is a proper modification. 

This definition is due to Remmert. 

A meromorphic map is called surjective if pr2(X) = Y. If I is a surjective 
meromorphic map between X and Y and 9 a meromorphic map between Y 
and Z, then it is possible to define the composition 9 0 I as a meromorphic 
map between X and Z (cf. [Ku60]). But it is not a composition of maps in 
the set-theoretic sense! 

Any meromorphic function I on X defines a meromorphic map between X 
and pI, any m-tuple (/1, ... ,1m) of meromorphic functions a meromorphic 
map between X and om. 
7.3 Proposition. Let I: X ~ Y be a proper modification olY with center 
S. Then 1-1 : Y -->. X is a surjective meromorphic map with S as set 01 
indeterminacy. 

PROOF: We use the analytic set 

Y:= ((y,x) E Y x X : y = I(x)} = ((y,x) E Y x X : x E 1-1(y)}. 

Then 1-1: Y - S ~ X is holomorphic with 1-1 oprl(Y'X) = 1-1(y) = X = 

pr2(Y' x) for (y, x) E Y n «Y - S) x X). Obviously, 7r := prIll' : Y ~ Y is 
a proper holomorphic map. It is surjective, since I is surjective. Finally, we 
have pr2(Y) = X. So 1-1 defines a surjective meromorphic map. _ 

Toric Closures. Let X be an n-dimensional complex manifold. A clo­
sure of X is an n-dimensional compact complex manifold M such that X is 
biholomorphically equivalent to an open subset of M. We are interested in 
closures of X = en. 
In the case n = 1 the situation is simple. Assume that we have a compact 
Riemann surface M that is a closure of X = C. Then we define I : M - {O} ~ 
C by 
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I(z) := 0 
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for z E C - {O}, 
otherwise. 

The function I is continuous and is holomorphic at every point z with I(z) # 
O. By the theorem of Rad6-Behnke-Stein-Cartan (cf. [Hei56]) I is everywhere 
holomorphic. But then the zero set N(f) is discrete. We can consider I as 
a meromorphic function on M with exactly one pole of order one at Z = O. 
So I can have only one zero (cf. [F081J, Section I.4, Proposition 4.24 and 
corollary), and M must be the Riemann sphere pI, the well-known one-point 
compactification of C. 

In higher dimensions one can find several closures of cn. In [Bie33) an injective 
holomorphic map {3 : C2 -+ C2 is constructed whose functional determinant 
equals 1 everywhere and whose image U = (3(C2 ) has the property that there 
exist interior points in C2 - U. We can regard U as an open subset of p2. 
Then p2 is a closure of C2 ~ U, but this closure contains interior points in 
its boundary. We want to avoid such "pathological" situations, even if they 
may be interesting for those working in dynamical systems. 

Definition. A closure of cn is a triple (X, U, 11» where: 
1. X is an n-dimensional connected compact complex manifold. 
2. U C X is an open subset with U = X. 
3. 11>: C n -+ U is a biholomorphic map. 

The closure (X, U, 11» is called regular if for any polynomial p the holo­
morphic function poll> -1 extends to a meromorphic function on X. 

7.4 Proposition. II (X, U,II» is a regular closure olcn, then Xoo := X-U 
is an analytic hypersurlace in X. 

PROOF: Let /; be the meromorphic extension of Zi 011>-1, for i = 1, ... , n. 
The polar set Si of Ii is a hypersurface in X. We set P := PI u··· U Pn and 
claim that P = X - U. 

One inclusion being trivial, we consider a point Xo E X - U. There is a 
sequence of points Xv E U with limv~oo Xv = Xo. If we write Zv := 11>-1 (xv) as 
Zv = (zt),··., z;;-» , there must be an index k with IZkv)1 -+ 00. So 1!k(xv)1 -+ 
00 for v -+ 00. This means that Xo E Pk C P. • 

Example 

The manifold X = pn is a closure of Cn . As open subset U with U = X we 
can take the set U := Uo = {(zo : ... : zn) I Zo # OJ. Then 11>0 : Cn -+ U with 
11>0 (t 1, ... , tn ) : = (1 : t 1 : ... : t n ) is biholomorphic. We have seen in Section 
5 that any polynomial on U extends to a meromorphic function I on pn with 
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polar set Ho = {(zo : ... : zn) I Z{) = o}. So (pn, Uo, CPo) is a regular closure of 
Cn , with Xoo = Ho· 

Another example is the Osgood space on, which contains Cn via 

Also, (on, Cn , CP) is a regular closure, but here 

Xoo = (£oo} X pl X ... X pl) U ... U (pl X ... X pl X {oo}) 

is an analytic hypersurface with singularities. The complex Lie group Gn := 
C* x ... x C* (n times) acts in a natural way on Cn and is contained in Cn 

as an open orbit of this action. 

Definition. A complex manifold X is called a torie variety or torus 
embedding if G n acts holomorphically on X and there is an open dense 
subset U C X biholomorphically equivalent to Gn by 9 f-+ gx for each 
xEU. 

Remark. In algebraic geometry the group Gn is called a torus. This is the 
reason for the notion "toric variety." A ''variety'' is an irreducible algebraic 
subset of Cn or pn. It may have singularities. Here we do not allow singular­
ities, but we allow arbitrary manifolds that do not have to be algebraic. 

More information about toric varieties can be found in [Oda88j, [Fu93], and 
[Ew96j. 

We wish to restrict the closures of Cn as much as possible. If the axes of Cn 

can be extended to the closure, then the action of Gn should also extend to 
the closure. 

Definition. A closure (X, U, CP) of Cn is called a torie closure if the 
action ofGn on Cn extends to an action on X such that CP(g·z) = g.cp(z) 
for 9 E Gn and z E Cn . 

Examples 

1. The projective space pn is a toric variety with 

g. (zo : ... : zn) := (zo : gZl : ... : gZn) 

and Gn = (c*)n c Cn = Uo C F. Since the embedding Cn = Uo y lP'n 
is "equivariant," pn is a toric closure of Cn. 

2. A further simple example is the Osgood space on. Here the toric action 
is given by 

g' ((zJ : zt), ... , (zo : zi)) := ((zJ : gz}), ... , (zo : gzi))· 
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3. Let Ad C No be the set of multi-indices v with Ivl < d and define 
CPd : Gn -t pN by CPd(Z) := (ZV : v E Ad). Then Xd := CPd(Gn ) C pN is 
the image of pn under the Veronese map Vd,n with 

Vd,n(ZO: Zl : •.. : zn) = (zg-IVlzv : v E Ad). 

Obviously, Xd is a toric closure of en. 

7.5 Proposition. Let (X, U, CP) be a regular closure olen and 1: Z -t X a 
proper modification with center S C Xoo. Then (Z, I-l(U),J-l 0 CP) is again 
a regular closure. 

PROOF: It is clear that (Z, I-l(U), 1-10 CP) is a closure. Now let p be a 
polynomial. Then the holomorphic function po cp-l : U -t e has a mero­
morphic extension fi on X. But then fi 0 1 is a meromorphic extension of 
po (I-I 0 CP)-1 = (po CP-l) 01. • 

Now let eX, U, CP) be an arbitrary regular toric closure of en. The meromor­
phic extensions Ii of ZiOcp-1 define a meromorphic mapping f = (ft,···, In) : 
X ........ on and therefore a generalized modification X of X in on. We know 
that X is an irreducible component of the analytic set 

A = {(XjZl. ... ,Zn) E X x on : z~It(x) - zUJ(x) = 0 for i = 1, ... ,n}, 

where we write Zi E pI in the form Zi = (z~ : zD and Ii in the form 

Ii = (Jj: In· 
The two projections 11' := prllx : X -t X and q := pr21x : X -t on 
are proper holomorphic maps. It may be that X has singularities over the 
indeterminacy set S of f. Nevertheless, we consider X as a closure of en. 
We take fj := lI'-I(U) as dense open set, and the biholomorphic map i := 

11'-1 0 <P : en -t fj. This is possible, since flu = cp-l is holomorphic and 
therefore SeX - U. 

The preimage 11'-1 (X - U) = X - fj is a nowhere dense analytic subset, and 
the meromorphic map f 0 11' : X ........ on coincides on fj with the holomorphic 
map q. By the identity theorem it follows that f 0 11' = q is holomorphic 
everywhere on X. Since (foll')lo = cp-l 011' = i-I, every polynomial extends 
to a meromorphic function (without points of indeterminacy) on X. SO the 
new closure X is regular. Since qlo = i-I maps fj biholomorphically onto 
en, the map q : X -t on is a proper modification of on (in a generalized 
sense, since X may have singularities). 

Let us now consider the q-fibers. If Zo E on is given, the fiber q-l(ZO) is 
contained in the set 
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F:= (flu)-I(zo) U {x E X - U : 3z11 E (:n with 4>(ZIl) --* x, ZII --* zo}. 

For Zo E (:n we obtain q-l(zO) = {4>(Zo)}, whereas for Zo E on - en the 
fiber is a compact subset of the hypersurface X - U. 

It is easy to check that X is even a toric closure. One uses the fact that X 
and on both are toric and that flu is Gn-equivariant. 

Example 

Let X = pn be projective space and carry out the above construction. The 
functions Ii : pn ~ pI are given by 

Ii: (Zo : ZI : ... : Zn) t-+ (zo : Zi). 

These are meromorphic functions with polar set Ho and indeterminacy set 
Ho n Hi· In the inhomogeneous coordinates wo, ... , iilj, ... , Wn with Wk = 
Zk/ Zj the function Ii is equal to wdwo for i =1= j (respectively to 1/wo for 
i = j). 

Now X is given by 

X = {(w; ZI, ... , zn) E pn x on : ZbWi - ziwo = 0 for i = 1, ... , n}. 

This is built from pn by a finite sequence of quadratic transformations, and 
therefore regular. The space X is a regular toric closure of en in the original 
sense. 

There are many toric closures, but pn and on are the most important ones. 
More information about this topic is given in [BrM078) and [PS88). 

Exercises 

1. Calculate the strict transform of X = {(z, w) : w2 = z2(z + 1)} when 
blowing up (:2 at the origin. 

2. Show that KlI'n ~ O( -n - 1) and K y ~ Oed - n - 1) for every regular 
hypersurface Y C pn of degree d. 

3. Let EI be the projective bundle associated to the vector bundle V = 
011'1 E!1 011'1 (1) (cf. Exercise 5.10). Show that the bundle space of EI is 
biholomorphically equivalent to the blowup Qp(p2) with p = (1 : 0 : 0). 

4. Consider the meromorphic function I(z,w):= w/z on (:2 and show that 
its graph G f C (:2 X pI is equal to the blowup of (:2 at the origin. 

5. Let X be a complex manifold and L a holomorphic line bundle over X. 
Show that any set of linearly independent global sections So,.··, SN E 
r (X, L) defines a meromorphic map 4> : X --* pN by 

4>(X) := (So (x) : ... : SN(X)). 

What is the exact meaning of this definition? 
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6. Let X be a compact connected complex manifold. A set of meromorphic 
functions 11, ... , 1m E Al(X) is called analytically dependent if f(G f ) i 
om, where f = (ft, ... ,J m) is the second projection Gf C X x om -+- om. 
Let P be the union of the polar sets of the Ii and show that the following 
properties are equivalent: 
(a) ft, ... , 1m are analytically dependent. 
(b) The Jacobian of f : X - P -+- Cm has rank less than m. 
(c) There is a nonempty open subset U C X - P, a domain G C Cm 

with feU) c G, and a holomorphic function 9 on G such that 
g(ft(x), ... , 1m (x)) == o. 

The functions ft, .. . , 1m are called algebraically dependent if there is a 
polynomial pi 0 such that p(ft(x), ... , 1m (x)) == 0 on X -Po Prove that 
every set of analytically dependent functions is also algebraically depen­
dent. (Hint: The map G f -+- om is proper. Use without proof Remmert's 
proper mapping theorem, which says that the image of an analytic set 
under a proper holomorphic mapping is also an analytic set. Then use 
Chow's theorem.) 

7. Let 4> : G2 -+- ]p3 be defined by 4>(ZI' Z2) := (1 : ZI : Z2 : Z1Z2). Show that 
X = 4>(G2) C p3 is a closed submanifold that coincides with the image 
of the Segre map a1,1 : ]pI x pI -+- p3 with a1,1 ((zo : zt), (wo : wt}) := 

(zowo: ZIWO: ZOWI : Z1WI). Prove that X is a toric closure ofC2 . 



Chapter V 

Stein Theory 

1. Stein Manifolds 
Introduction 

Definition. A complex manifold X is called holomorphically spread­
able if for any point Xo E X there are holomorphic functions h, ... , f N 
on X such that Xo is isolated in the set 

N(h, ... ,fN) = {x EX: hex) = ... = fN(X) = D}. 

It is clear that the holomorphic map f := (h, ... ,fN) : X -+ eN is discrete 
at Xo. In [Gr55] it is shown that if n = dim(X), then there is a discrete 
holomorphic map 7r : X -+ en. Thus (X, 7r) is a branched domain over en. 
Furthermore, it follows that the topology of X has a countable base. Note 
that if X is holomorphically separable, i.e., for any x, y E X with x f:. y 
there exists a holomorphic function f on X with f(x) =1= fey), then it is 
holomorphically spreadable. 

If X is holomorphically spreadable, A c X a compact analytic set, and 
Xo E A, then there are holomorphic functions h, ... , fN on X (which then 
must be constant on A) such that Xo is isolated in NUl, ... '!N). SO Xo must 
be an isolated point of A, and it follows that every compact analytic subset 
of X is finite! 

Definition. A complex manifold X is called holomorphically convex 
if for any compact set K C X the holomorphically convex hull 

R := {x EX: If(x) I ::; s~plfl.for every f E O(X) } 

is likewise a compact subset of X. 

Every compact complex manifold is holomorphically convex. A complex man­
ifold with a countable base is holomorphically convex if and only if for any 
infinite discrete subset D C X there exists a holomorphic function f on X 
such that sUPDlf1 = 00. The proof is the same as in en. 

Definition. A Stein manifold is a connected complex manifold that is 
holomorphically spreadable and holomorphically convex. 
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A Stein manifold of dimension n > 0 cannot be compact. In the converse 
direction, Behnke and Stein proved in 1948 that every noncompact Riemann 
surface is a Stein manifold (see [BeSt48]). For n ~ 2, a domain G c en 
is Stein if and only if it is holomorphically convex. By the Cartan-Thullen 
theorem this is the case exactly if G is a domain of holomorphy. This remains 
true for (unbranched) Riemann domains over en, since Cartan-Thullen is 
also valid for such domains. Hence for n ~ 2 there are many noncompact 
domains in en and over en that are not Stein. 

1.1 Proposition. Let f : X -t Y be a finite holomorphic map between 
complex manifolds. If Y is a Stein manifold, then X is also Stein. 

In particular, every closed submanifold of a Stein manifold is Stein. 

PROOF: It is necessary to show only that X is holomorphically convex. For 
this let K c X be a compact set and note that f(K) is also compact. We 
consider an arbitrary point x E R. For 9 E O(Y) we have go f E O(X) - -and Ig 0 f(x)1 ~ sUPKlg 0 fl, so f(x) E f(K) and x E f-1(f(K». Since Y 
is holomorphically convex an~ f proper, f-1(f{K) is compact as well. As a 
closed set in a compact set, K is compact. 

Since en is Stein, every closed submanifold of en is also Stein. • 

Example 

Every affine-algebraic manifold is isomorphic to a closed submanifold of en. 
Therefore, it is a Stein manifold. On the other hand, we shall see later on 
that there exists an algebraic surface that is Stein, but not affine-algebraic. 

1.2 Proposition. If X is a Stein manifold and f E O(X), then X - N(f) 
is Stein. 

PROOF: If X is a Stein manifold, then it is immediate that X - N(f) is 
holomorphically spreadable. Let D be an infinite discrete set in X - N(f). 
If it is discrete in X, nothing remains to be proved. If it has a cluster point 
Xo E N(f), then 9 := 1/ f is holomorphic on X - N(f) and unbounded on 
D. • 

FundaIllental Theorems. The following important theorems cannot 
be proved completely within the constraints of this book. One needs deeper 
tools, including sheaf theory. 

1.3 Theorem A. Let 7r : V -t X be an analytic vector bundle over a Stein 
manifold X. Then for any Xo E X there are global holomorphic sections 
Sl, .. " SN E r(X, V) with the following property: 
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IfU = U(xo) c X is an open neighborhood and s E r(U, V), then there exists 
an open neighborhood V = V(xo) C U and holomorphic functions It,···, fN 
on V such that 

slv = It· S1 + ... + IN' SN· 

1.4 Theorem B. Let 7f : V ~ X be an analytic vector bundle over a Stein 
manifold X. Then Hl(X, V) = O. 

Moreover, if A c X is an analytic set, ~ an open covering of X and ~ E 
Zl(~, V) such that ~vJ.tlu~"nA = 0, then we can find a cochain "I E CO(~, V) 
with 77vlu~nA = 0 and &"1 =~. 

The first part of this theorem will be proved at the end of this chapter. 

1.5 Oka's principle. Let X be a Stein manifold. 

1. Every topological fiber bundle over X has an analytic structure. 
2. If two analytic fiber bundles over X are topologically equivalent, they are 

also analytically equivalent. 

Cousin-I Distributions. A Mittag-Leffler distribution on C consists of 
a discrete set {zv : v E N} in C together with principal parts hv of Laurent 
series at each Zv' A solution of this distribution is a meromorphic function 
on C with the given principal parts and no other pole. We can express the 
situation in the language of Cech cohomology. Define Uo := C - {zv : v E N} 
and ho := 0, and let Uv be an open neighborhood of Zv that contains no zJ.t 
with J.L f:. v. Then hvlu~ is meromorphic, and hv - hI-' is holomorphic on UVI-I" 
A solution is a meromorphic function I such that I - hv is holomorphic on 
Uv ' 

Definition. Let X be a complex manifold. A Cousin-I distribution 
on X consists of an open covering ~ = {Ut : LEI} together with 
meromorphic functions ft on U. such that I. - II< is holomorphic on U.I<' 
A solution of the Cousin-I distribution is a meromorphic function I on 
X such that f - I. is holomorphic on U •. 

If a Cousin-I distribution is given, then a cocycle ~ E Zl(~, 0) is defined by 
~Ut := (II< - f.)lu.",· If the distribution has a solution I, then "I. := (It - f)lu. 
defines a cochain 11 E CO(~, 0) with 111< - "I. = '.1<' In other words, &"1 = ,. 

Conversely, if there exists an "I with &"1 = " then Ilu. := It - "I. defines a 
meromorphic function f on X with I. - I = "I. on U •. This means that f is 
a solution. 

The following result is a consequence of Theorem B for the trivial bundle 
Ox =X xC. 
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1.6 Proposition. On a Stein manifold every Cousin-I distribution has a 
solution. 

In particular, on an open Riemann surface every Mittag-Leffler distribution 
has a solution. 

Remark. The condition "Stein" is not necessary. If X is a complex mani­
fold with HI(X, 0) = 0 (for example X = pI), then every Cousin-I distribu­
tion has a solution. And even if HI (X, 0) =F 0, then the cohomology class of 
a given distribution may be zero. This implies that this special distribution 
has a solution. 

Cousin-II Distributions. Recall the Weierstrass theorem: Let {z" : 
V E N} be a discrete set in C, and (n,,) a sequence of positive integers. Then 
there exists a holomorphic function f on C that has zeros exactly at the z", 
and these are of orders n". The distribution (zv,n")"EN is a divisor D on C 
with D ~ 0 and div(f) = D. 

A divisor D on a complex manifold X is called a principal divisor if there 
is a meromorphic function m on X with dive m) = D. If D ~ 0, then m is 
holomorphic. So we are interested in conditions on X such that every divisor 

is principal. From the exact sequence Al(X)* ~ ~(X) ~ Pic (X) it fol­
lows that Ker(6) = ~(X) is a necessary and sufficient condition. This is, for 
example, the case if every analytic line bundle on X is trivial. Due to Oka's 
principle, if X is Stein, it is sufficient that every topological line bundle be 
trivial. One can prove that the topological line bundles on X are classified 
by elements of H2(X, Z). Here we will show directly that the vanishing of 
H2(X, Z) is sufficient for the solvability of the generalized Weierstrass prob­
lem. 

Definition. Let X be a complex manifold. A Cousin-II distribution 
on X consists of an open covering %' = {U. : (, E J} together with 
meromorphic functions f. =F 0 on U. such that on U.I< there are nowhere 
vanishing holomorphic functions g.1< with f. = g.1< . fl<' 

A solution of the Cousin-II distribution is a meromorphic function f 
on X such that flu. = h;1 . f. with a nowhere vanishing holomorphic 
function h. on U •. 

A Cousin-II distribution is therefore a meromorphic section in an analytic line 
bundle L that is defined by the transition functions g.I<' If L is trivial, then 
there are nowhere vanishing holomorphic functions h. on U. with g.1< = h.h; I , 

and flu. := h;l . f. defines a solution. 

The Cousin-II distribution uniquely determines the cocycle 'Y = (g.l<) E 
ZI(%" 0*). If f is a solution with flu. = h;1 . f., then 
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The following shows that the converse also holds. 

1.1 Proposition. Let'Y E ZI(%"O*) be the cocycle of a Cousin-II distri­
bution. The distribution is solvable if and only if'Y E BI (%' ,0*). 

If HI(X, 0*) = 0, every Cousin-II distribution on X has a solution. 

Unfortunately, Theorem B cannot be applied to HI(X, 0*). So even for Stein 
manifolds we need an additional topological condition. 

Chern Class and Exponential Sequence. Let X be an arbitrary 
n-dimensional connected complex manifold. We choose an open covering %' = 
{UL ; LEI} of X such that the UL and all intersections Uu" are simply 
connected and construct an exact sequence of abelian groups: 

HI(%"Z) -4 HI(%"O) ~ HI(%"0*) ~ H2(%"Z). 

1. If'; = (';u<) E ZI(%"Z), then also'; E ZI(%" 0). If'; is an integer-valued 
coboundary, then it is also a holomorphic one. Thus j is well defined. 

2. Let f = (fLI<) E ZI(%"O) be given. Then we define 

e([f]) ;= [exp(211"iftl<)J. 

Obviously, e is well defined, and eo j([W = [1]. On the other hand, 
if e([f]) = [1], then there are nowhere vanishing holomorphic functions 
hL with exp(211"ifut) = hLh;l. Since the UL are simply connected, there 
are holomorphic functions gL with exp(gL) = ht . Then exp(gL - gKJ = 
exp(211"iftl<), and it follows that there are integers ';LI< with 

1 1 
fu< = -2 . gL - -2 . gl< + ';LI<. 11" I 11" I 

This means that [fJ = j([';]). 
3. Here we define c; HI (%',0*) -t H2(%" Z). Let h = (hLI<) E ZI (%',0*) 

be given. Since the UtI< are simply connected, there are holomorphic 
functions gtl< on ULI< with exp(211"igLI<) = hLI<. They are determined only 
up to some 211"i';LI< with ';LI< E Z, but 

TJVI-'Il ;= (gl-'Il - gVIl + gVI-I) I UVI"Q 

uniquely defines a cohomology class [1]J E H2(%" Z), since 

exp(211"i1]vl-'ll) = hl-'Ilh;;i hilI-' = 1 

and 
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Let c([h]) := [1]]. 

If [hI = e([J]), then there are nowhere vanishing holomorphic functions 
h. with 

where the g, are suitable holomorphic functions on U,. We have coe([J]) = 
[1]] with 7]VJ.Le = (fJ.Le - fve + fVJ.L)luv..u = 0, since f is a co cycle. 

Now let [hI be given with c([h]) = 0. Then there is an element ~ = (~u<) E 
CI(tF/,Z) with 

where exp(27rig.K) = h.K. So f'K := g'K - ~'I< is a co cycle with values in 
0, and exp(27rif.K) = h.K • This means that e([f]) = [hI. 

If the covering tF/ is fine enough, everything is independent of the covering. 
By construction it is acyclic with respect to Z. 

Definition. Let h = (h'K) E ZI (tF/ , 0*) be a cocycle defining an 
analytic line bundle L E Pic(X) = HI(X, 0*). Then c(h) := c([h]) = 
c(L) E H2(tF/,Z) = H2(X,Z) is called the Chern class of h (or of L). 

Let us return to the Cousin-II distributions. 

1.8 Proposition. Let X be a Stein manifold. Then a Cousin-II distribution 
on X is solvable if and only if its Chern class vanishes. 

If H2(X, Z) = 0, every Cousin-II distribution is solvable. 

PROOF: If X is Stein, then HI(X,O) = ° and c: HI(X,O*) ~ H2(X,Z) 
is injective. Let h be a Cousin-II distribution on X. Then h is solvable if and 
only if [hI = 0, and that is the case if and only if c(h) = o. 
If in addition H2(X, Z) = 0, then also HI(X, 0*) = {I}. • 

Remarks As in the case of Cousin-I distributions, here it is sufficient that 
HI (X, 0) = 0, and X need not be Stein. On the other hand, there are 
examples of simply connected Stein manifolds where Cousin-II is not solvable. 
The condition H2(X, Z) = 0 is essential, and for the solvability of any special 
distribution the vanishing of the Chern class is necessary. 

In the Stein case, using higher cohomology groups one can show that c : 
HI(X,O*) ~ H2(X,Z) is even bijective. 

For a noncompact Riemann surface X it is always the case that H2(X, Z) = o. 
Therefore, in this case the Weierstrass problem is always solvable. 
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Extension from Submanifolds. Let X be a complex manifold and 
A c X an analytic set. A continuous function f : A ~ e is called holomorphic 
on A if for every x E A there is an open neighborhood U = U(x) C X and 
a holomorphic function 10n U such that JiunA = flunA. One sees easily 
that this notion is well defined, but the local continuation 1 is not uniquely 
determined. 

1.9 Theorem. Let X be a Stein manifold, A C X an analytic set, and 
f : A ~ e a holomorphic function. Then there exists a holomorphic function 
1 on X with ilA = f· 

PROOF: In the differentiable category such a theorem would be proved with 
the help of a partition of unity. Here in complex analytic geometry we use 
cohomology. It is a typical application of Theorem B. 

We can find an open covering %' = (U.).EI of X and holomorphic func­
tions 1.. on U. with 1..lu,nA = flu,nA. Then e'l< := 1.. - 1.. defines a cocy­
de e E Z1(%,,0), with e'l<lu,,,nA = O. By Theorem B there is a cochain 
'f/ E CO (6// ,0) with 'f/.lu,nA = 0 and 8'f/ = e. Then 

f. - fl< = 'f/I< - 'f/. on U.I<, 

and liu, := 1.. +'f/. defines a global holomorphic function 10n X. Obviously, 

liA = f· • 

Unbranched Domains of Holomorphy. Let X be an unbranched 
domain of holomorphy over en. Obviously, X is holomorphically spreadable, 
and since Cartan-Thullen holds for such domains, X is holomorphically con­
vex. It follows directly that X is a Stein manifold, and all theorems on Stein 
manifolds are applicable in this case. 

We consider now an unbranched domain of holomorphy p : X ~ pn. We will 
>show that it is also a Stein manifold. 

Let 11" : en+! - {OJ ~ IPn be the canonical projection. Then we obtain a new 
manifold 

X := {(x, z) E X x (Cn +! - {O}) : p(x) = 1I"(z)} 

together with two canonical projections 7f : X ~ X and p: X ~ Cn+!_ {OJ. 

Since (p,1I") : X X (Cn +1 - {O}) ~ pn x pn is a submersion, the fiber product 
X = (p, 11") -1 (6p R) is in fact an (n + 1 )-dimensional complex manifold, and 
we have the following commutative diagram: 

X L C n +1 - {OJ 
7f..j.. ..j..1I" 

X ----t IPn 
p 
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For a point Po := (xo, zo) of X there exist open neighborhoods U = U(xo) C 

X and V = V(1T(ZO» c IP'n such that p : U --+ V is biholomorphic. Then 
1T- I (V) is a neighborhood of zo, if-l(U) = (U X (Cn+1 - {o}» n X a 
neighborhood of Po, and p: if-I(U) --+ 1T- I (V) a biholomorphic map with 
p-I : Z f-t «plu )-I(1T(Z», z). So p: X --+ M := Cn+! - {o} is an unbranched 
Riemann domain. It is fibered over X by if with fibers isomorphic to C· . 

By hypothesis X is a domain of holomorphy. Therefore, it is pseudo convex. 
Now we use notation and results from Section 11.8. If X has only removable 
boundary points, then X has locally the form U - A, with an open set U C Cn 

and an analytic hypersurface A. But then X also has such a form and is 
pseudoconvex. If X has at least one nonremovable boundary point, then X 
(which is something like a cone over X) has only non-removable boundary 
points over 0 E Cn + l . The set of these boundary points over 0 is thin in ax. Outside the origin X is pseudoconvex, since it locally looks like X xc. 
By a theorem of Grauert/Remmert (see Section 11.8) it follows that X is 
pseudoconvex everywhere. From Oka's theorem we know that then X is a 
Stein manifold. 

To show that X is also Stein, we have first to show that X is holomorphically 
convex. If not, we would have an infinite sequence D = {Xi : i E N} in 
X without a cluster point such that every holomorphic function f on X 
is bounded on D. We have that i5 := if-I (D) is an analytic subset in X, 
and fl;;:-l(x;) := i defines a holomorphic function f on D. Since X is Stein, 

there exists a holomorphic function f on X with li.B = f. On every fiber 
if-I (x) ~ C· we have a Laurent expansion 

00 

fl;;:-l(x) = L av(x)zv. 
v=-oo 

Since if is a submersion, we can define a holomorphic function 9 on X by 
g(x) := ao(x). Then g(Xi) = i, and this is a contradiction. 

In the same way we can show that for x, y E X with X =I- y there exists a 
holomorphic function f on X with f(x) =I- f(y). Thus X is holomorphically 
separable and therefore Stein. 

The Embedding Theorem. By a theorem of Whitney every differen­
tiable manifold can be embedded into a space ]RN of sufficiently high dimen­
sion. In general, this is false for complex manifolds, since, e.g., in C N there 
are no positive-dimensional compact complex submanifolds. However, Stein 
manifolds can be embedded. 

1.10 Theorem. If X is an n-dimensional Stein manifold, then there exists 
an embedding j : X '-+ c2n+ I. 
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The proof is due to Remmert (see his Habilitationsschrift and [Re56]), 
Narasimhan ([Nar60J), and Bishop ([Bi61)). 

O. Forster ([F070)) proved the following theorem: 

1.11 Theorem. Any 2-dimensional Stein manifold can be embedded into 
C4 , but there is a 2-dimensional Stein manifold that cannot be embedded into 
C3 . 

In general, for n ?: 2 every n-dimensional Stein manifold can be embed­
ded into C2n , and for n ?: 6 even into c2n-[(n-2)/3). For arbitrary n there 
always exists a proper immersion into C2n- 1 . But there are examples of n­
dimensional Stein manifolds X that cannot be embedded into CN (and not 
immersed into CN - 1) for N := n + [~J. 
At the end of his paper Forster conjectured that every n-dimensional Stein 
manifold can be embedded into CN+I and immersed into CN. 

In 1992 J. Schiirmann showed that Forster's conjecture is true for n ?: 2 (see 
[Schue92],[Schue97)). In 1970/71 Stehle had given an embedding of the unit 
disk ~ into (:2 (see [St72]), and in 1973 Laufer an embedding of certain annuli 
into C2 • At the moment it is an open problem whether every noncompact 
Riemann surface can be embedded into C2 • There has been quite a bit of 
progress on this by the work of J. Globevnik and B. Stens0nes (see [GISte95]), 
but no final result. 

The Serre Problem. Above it was proved that if f : X ---+ Y is a finite 
holomorphic mapping and Y a Stein manifold, then X is also Stein. 

In 1953 Serre posed the following problem: Is the total space of a holomorphic 
fiber bundle with Stein base Y and Stein fiber F a Stein manifold? ([Se53]). 

It is easy to show that the answer is positive in the case of an analytic vector 
bundle. 

Between 1974 and 1980 it was proved that the answer is positive in the 
case of I-dimensional fibers (Siu, Sibony, Hirschowitz and Mok). In 1976 Siu 
generalized this to the case where the fiber is a bounded domain G c cn with 
HI (G, q = 0, and in 1977 Diederich and Fornress showed that the Serre 
conjecture is true if the fiber is a bounded domain in Cn with C2 smooth 
boundary. 

In 1977 Skoda ([Sko77]) gave the first counterexample, a fiber bundle with 
C2 as fiber and an open (not simply connected) set in C as base. Demailly 
improved the example; he used the complex plane or a disk as base. Finally, 
in 1985 G. Coeure and J.J. Loeb presented a counterexample with C· as 
base and a bounded pseudoconvex Reinhardt domain in C2 as fiber. Over 
the years a number of positive examples have been found, for example by 
Matsushima/Morimoto, G. Fischer, Ancona, Siu, and Stehle. Examples where 
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the fiber is a so-called Banach-Stein space play an important role, but we 
cannot go into the details here. 

Exercises 

1. Show that the Cartesian product X x Y of two Stein manifolds is Stein. 
2. Use Theorems A and B to prove that the total space of a vector bundle 

over a Stein manifold is Stein. 
3. Give an example of a Cousin-I distribution on ((:2 - {OJ that has no 

solution. 
4. Let Uj := {z E ((:3 : Zj =I- O} and au = {Ub U2 , U3 }. Show that every 

Cousin-I distribution with respect to au has a solution. 
5. Let X be a complex manifold, 7r : L -7 X a holomorphic line bundle, and 

Z C L the zero section. Prove that if L - Z is Stein, then X is a Stein 
manifold as well. 

2. The Levi Form 
Covariant Tangent Vectors. Let X be an n-dimensional complex 
manifold and x E X a point. The elements of the tangent space Tx(X) 
(abbreviated by T) are the (contravariant) tangent vectors at x. If Zl,"" Zn 

are local coordinates at x, then every tangent vector can be written in the 
form a a 

v= LVv~+ LVv=: . 
v uZv v uZv 

Of course, T has a natural structure of an n-dimensional complex vector 
space. 

Now we consider the space F = F(T) of complex-valued real linear forms on 
T. For example, if I is a local (real- or complex-valued) smooth function at 
x, then its differential (df)x E F is defined by (df)x(v) := v[/]. It is uniquely 
determined by the germ of I at x. In local coordinates we get 

v v 

It follows that 
(dj)x(v) = (df)x(v). 

In particular, we have the elements dzv, cLzv E F defined by 

dzv(v) := vlzv) and cLzv(V):= vlzv]. 

Then dzv = dxv + idyv and cLzv = dzv = dxv - idyv, for v = 1, ... , n. 

The space F is the complexification of the 2n-dimensional real vector space 
T* = HomlR(T,lR). Therefore, F = T* EB i T* is a 2n-dimensional complex 
vector space, with basis 
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We call the elements of F complex covariant tangent vectors or complex 1-
forms at x. 

We have (df)x = Lv fz)x) dzv + Lv /z.,(x) azv' 
In general, a complex covariant r-tensor at x is an IR-multilinear mapping 

cp:Tx .. ·xT~C. 
~ 

r-times 

The tensor product cp ® 1/1 of an r-tensor and an s-tensor is the (r + s )-tensor 
given by 

(cp ® 1/1)(Vl, ... , vr, Vr+l.···, vr+s) := CP(Vl"'" vr) ·1/1(vr+1!"" vr+8 ). 

The set of r-tensors carries the structure of a complex vector space, and the 
assignment (cp,1/1) H cp ® 1/1 is C-bilinear. For example, (dzv ® azl')(v, w) = 
vv,ww 

Hermitian Forms. Let X be an n-dimensional complex manifold. The 
notion of a plurisubharmonic function in a domain G C cn was already 
defined in Chapter II. Of course, a plurisubharmonic function on a com­
plex manifold is a real-valued function that is ('"COO) differentiable and pluri­
subharmonic with respect to all local coordinates belonging to the complex 
structure of X. The notion of plurisubharmonicity is invariant with respect 
to holomorphic coordinate transformations. So in order to prove plurisub­
harmonicity at some point of X it is enough to prove it with resepct to an 
arbitrary coordinate system. However, here we wish to express the notion of 
plurisubharmonicity in invariant terms. We do this by Hermitian forms. 

Definition. A Hermitian form at Xo E X is a Hermitian form 

The form H is called positive semidefinite if H (v, v) 2: 0 for all v, and it 
is called positive definite if H(v,v) > 0 for v =F O. 

A Hermitian form has a unique representation 

n 

H = L hijdzi ® azj, 
i,j=l 

where H := (hij I i, j = 1, ... , n) is a Hermitian matrix; i.e., it satisfies the 

equation H = H t. In the following we suppress the symbol ® and write 
H = L:i,j hijdziazj' 
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With respect to the local coordinates we can associate to any tangent vector 
v = Li vi8j8zi + Li vi8 jOzi the corresponding vector v = (Vb .•. , Vn) E en 
and write 

n 

H(v,w) = L hijViWj=v.H.w t . 
i,j=l 

Coordinate Transformations. Assume that F : G ~ B is a holo­
morphic map of domains in en given by equations 

Wk = fk(Zl, ..• ,zn), for k = 1, ... ,no 

If 9 is a differentiable function in B, by the complex chain rule it follows that 

(goF)z. = ~)gwk of)· (fk)Zi and (goFh. = LC9wk of)· (ik)Zi' 
k k 

The transformation of a (contravariant) tangent vector (Le., a derivation) ~ 
is given by F ,,(~)[g] = ~[g 0 F]. This means that 

n 8 n 8 
F,,(~) = L~[Jk]a + L~[ik]Ow 

k=l Wk k=l Wk 

n(n )8 n(n __ )8 
= t; ~~i' (fk)Zi 8Wk + t; ~~i' (ik)Zi Owk' 

or, if ~ "" e = (~1, ... , ~n), then 

F,,~ "" (E~i' (ft)Zi"'" L~i' (fn)zi) = e· JJ. 
i i 

Now, a covariant tangent vector cp at wEB will be transported in the 
opposite direction: 

F"cp(~) := cp(F,,~). 

In particular, F"(df)w(~) = (df)w(F ,,~) = (F ,,~)[f] = ~[J 0 F] = d(f 0 F)z(~) 
for w = F(z). This gives us the formula 

F"«df)F(z) = d(f 0 F)z· 

Therefore we also write cp 0 F := F"cp for arbitrary covariant vectors cpo 

If H is a Hermitian form at w = F{z) E B, then we can define a Hermitian 
form F"H at z by 

F"H(~,1J):= H(F,,~,F .. 1J). 

If J = JF is the Jacobian of Fat z and H = Lk,l hk,l dWk dWI, then 

F" H (~, 1J) = (e . J t) . H . ("7 . J t) t = e . (J t . H . J) . 11 t . 

So F" H is given by the Hermitian matrix J t . H . J. 
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Plurisubharmonic Functions. Assume that p is a real-valued (~OO) 
differentiable function in a domain B c c;n and wEB a point. We consider 
at w the Hermitian form 

a2p _ 
Hp = L a a (W)dWkdwI' 

k,l Wk W, 

given by the Hermitian matrix 

If F : G -+ B is a biholomorphic transformation with F(z) = w, then a direct 
calculation shows that 

H(p 0 F, z) = JF(Z) t . H(p, w) . JF(Z), 

Therefore, F· Hp will be described by the Hermitian matrix H(p 0 F, z), i.e., 
F·Hp = H poF . 

Now let X be an n-dimensional complex manifold, p a real-valued smooth 
function on X, and x E X an arbitrary point. Assume that cp : U -+ B c c;n 
is a local coordinate system at x. Then a tangent vector ~ at x is uniquely 
determined by a pair (cp,e), e E c;n. 
We define the Hermitian form Hp : Tx(X) x Tx(X) -+ C; by 

If t/J is another coordinate system at x and ~ '" (t/J,e), then 

and 

HpO",-1 (e, ij) = H(pO'l'-1 )0('1'0",-1) (e, ij) 
= HpO'l'-1 «cpo t/J-l ).e, (cp 0 t/J-l ).ij) 

= HpO'l'-1(e,"1)· 

We see that the definition of Hp is independent of the local coordinates. 

Definition. Assume that p is a real-valued smooth function on the 
complex manifold X. Then Lev(p)(x,~) := Hp(e,e) is called the Levi 
form of pat x. It is the quadratic form on Tx(X) associated with Hp, 
and it does not depend on local coordinates. 

The function p is called plurisubharmonic on a subset M C X if the Levi 
form of p is positive semidefinite at any point x E M. If the Levi form is 
positive definite at every point, we say that p is strictly plurisubharmonic. 
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Example 

Assume that 11, ... '!m are holomorphic functions on X. We show that p:= 
E~=l ik . 7 k is plurisubharmonic in X. In fact, we have 

Hp = LPZi,ZjdzicLzj 
i,j 

= f: (~(fk)Zi . (fk)zj dZi cLzj) 
k=l &,} 

~ t, ( (t,(t.).; dZi ) 0 (t, (J.).; dZ;) ) . 
That means that 

m 2 

Lev(p)(x,~) = Hp(~,~) = L I L(ik)Zi (x) ~i I 2: O. 
k=l i 

The Maximum Principle. A nonconstant plurisubharmonic function 
does not take on a maximum. 

2.1 Theorem. Assume that A c X is a compact connected analytic set 
and that P is a plurisubharmonic function on X. Then pi A is constant. 

PROOF: We may assume that A is irreducible. If there is a point Xo E A 
where piA takes its maximum value c, we shall prove: 

(*) The function p is identically equal to c in a small neighborhood of Xo. 

If we know (*), then we consider the set K of all points x E A with p( x) = c. 
The open kernel KO is not empty. If KO =I A, there is a boundary point Xl 

of K in A. The function p also takes its maximum at Xl' So by (*) it follows 
again that p(x) = c in a neighborhood of Xl, which is a contradiction. 

So we have only to prove (*). We may assume that A is an analytic subset 
of en and Xo = O. If the codimension of A is equal to d, then there is an 
(n - d)-dimensional domain G' c en - d with 0' E G' and pseudopolynomials 
Wl (Zl j z'), ... , Wd (Zdj z') over G' such that A is an embedded-analytic subset 
of the joint zero set of the Wi in a neighborhood of 0, and 0 is the only point 
of A over 0'. 

We take a ball BeG' around 0' and restrict everything to an arbitrary 
complex line i C B through 0'. The restriction Ali is denoted by A'. Let Z 

be a linear coordinate on i with origin 0' such that the embedding of i in B 



2. The Levi Form 265 

is given by Z t-+ (ZI, ... ,Zn-d) = (alz, ... ,an-dz). The restriction Will may 
contain multiple factors. We throwaway such superfluous factors, so we can 
assume that every Wilt is free of multiple factors. 

Let us first assume that the union of the discriminant sets of the pseudopoly­
nomials over i consists only of the point 0' and that A' is irreducible and has 
s sheets over i. Then A' is the Riemann surface of VZ. We write A' in the 
form 

A' ~ {(t; aIZ, .. . ,an-dZ) : Z = tS}. 

By F(t) := (t; altS, ... , an_dtS) we have a local parametrization of A'. Then 
(p 0 F)tf(t) = H(p 0 F, t) is given again by Jt . H(p, F(t)) . J, where J = 
(1; aI, . .. , an-d) t denotes the Jacobian of the holomorphic map F. The proof 
is the same as in the case of a biholomorphic map F. So (p 0 F)tf ~ 0, and 
po F is a subharmonic function of t. We get p' := piA' == c on A'. 

The same is true if A' is not irreducible but has 0' as the joint discriminant 
set, since 0 is the only point of A' over 0'. 

Now assume that the union of the discriminant sets is general. Every point in 
A' can be connected with O. We introduce the subset K of all points x E A' 
with p'(x) = c. If KO =I- A', there is a boundary point Xl of K in A'. We 
know that A' is an embedded-analytic set. Then there is a neighborhood 
U(XI) c A' that is embedded-analytic over a disk B'(ZI) C i around a point 
Zl E B such that over Zl the only point of U is Xl and the union discriminant 
set consists of Zl only. Then we get p'lu == c (by the same argument as above), 
which is a contradiction to the property "boundary point." So p' == c follows. 

This holds for all e, and therefore p == c over the whole ball B ,which is in a 
full open neighborhood of Xo in A. So we have (*). • 

Exercises 

1. Assume that p is a real-valued smooth function on the complex manifold 
X. If { '" e is a tangent vector and cp a complex coordinate system at 
Xo EX, then define 

n 

(op)xo({) := L(P 0 cp-l)z,,(cp(xo))' {.., . 
..,=1 

Show that (op)xo : Txo --+ C is a complex-valued real linear form that 
does not depend on the local coordinates. Prove the following formulas: 
(a) 

Lev(p· q)(x, {) = p(x)· Lev(q)(x, {) + q(x) . Lev(p)(x, {) 

+ 2 Re (op)x({) . (Oq)x({)) . 
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(b) 

Lev(h 0 p)(x,~) = h"(P(x)) 'l(ap)x(~W + h'(p(x)) . Lev(p)(x, ~). 

2. Let G cc X be a relatively compact domain with smooth boundary. 
Show that there is an open neighborhood U of aG in X and a real­
valued smooth function <p on U such that GnU = {x E U : <p(x) < O} 
and (a<p)x i= 0 for x E aGo Show that 

Hx(aG) = {~ E Tx(X) : (a<p)x(~) = O} 

is a well-defined subspace ofTx(X) that does not depend on the boundary 
function <po 

Show that if for every x E aG there is a local boundary function 7jJ such 
that Lev(7jJ) is positive definite on Hx(aG), then rp can be chosen as a 
strictly plurisubharmonic function. 

3. Let G cc X be a relatively compact domain with smooth boundary, 
and rp : U(aG) -T IR a global boundary function. If Lev(rp) has for every 
x E aG at least one negative eigenvalue on Hx(aG), G is called pseudo­
concave. 

Show that if X is connected and there is a nonempty pseudoconcave 
domain in X, then every global holomorphic function on X is constant. 

3. Pseudoconvexity 
Pseudo convex Complex Manifolds. If X is an arbitrary complex 
manifold, then there exists a sequence of compact subsets Ki E X with the 
following properties: 

1. The set Ki- 1 is always contained in the open kernel (Kit of K i. 
00 

i=l 

If X is holomorphically convex, then the Ki can be chosen in such a way that 
the holomorphically convex hull 

Ki = {X'E X : I/(x)1 ~ s;:;1/1 for all I E O(X) } 

always equals K i . (One uses the same proof as for domains in en.) 

Therefore, for every point x E X - Ki there is a holomorphic function I in 
X such that I/(x)1 > 1 and III < Ion K i . By passing over to a multiple and 
a power of I, we can make III arbitrarily small on Ki and arbitrarily big in 
a fixed neighbor hood of x, 

Since Ki+2 - (Ki+1t is compact, there are finitely many holomorphic func­
tions li(l), ' .. ,ft,) in X such that for Pi := 2:~~ll/t) 12 the following hold: 



3. Pseudoconvexity 267 

l. sUPK Pi < 2-i . 
~ 0 

2. Pi > 1 on Ki+2 - (Ki+d . 

Of course, Pi is a nonnegative plurisubharmonic function in X. 

The sum 2::1 Pi converges compactly on X to a nonnegative function P, 
with {x EX: p(x) < c} CC X for every c > O. 

If f is a holomorphic function on a domain G c en, and G' cc G a sub do­
main, then we have the Cauchy estimate 

ID'" f(z)1 ::; OG~)I"'I . s~plfl, for z E G'. 

Using this estimate in the intersection of a local coordinate system for X with 
(Kit, one shows that all derivatives of 2:i Pi converge compactly in X to 
the corresponding derivatives of p. So P is Cfj'oo and again a plurisubharmonic 
function. One can even show that P is real-analytic (see [DoGr60]). 

Definition. A complex manifold X is called pseudoconvex if there 
exists a nonnegative smooth plurisubharmonic exhaustion function P on 
X (Le., a Cfj'oo function P with {x EX: p(x) ::; r} CC X for all r > 0 
such that the Levi form of P is everywhere positive semidefinite). 

If we can find for P a strictly plurisubharmonic function in X, then X 
is called stricly pseudoconvex or 1-complete1 . If p is strictly plurisubhar­
monic only outside a compact set K eX, then X is called 1-convex or 
strongly pseudoconvex (at infinity). 

In the literature a pseudo convex manifold is often called weakly 1-
complete. 

Above it was shown that 

every holomorphically convex complex manifold is pseudoconvex. 

We shall prove later on that every I-complete complex manifold is holomor­
phically convex, and even Stein (solution of the Levi problem). Also, strongly 
pseudo convex manifolds are holomorphically convex. But in general this is 
not true for weakly I-complete (Le., pseudoconvex) manifolds. 

Examples. Strict pseudoconvexity (I-completeness) is one of the most 
important notions in the analysis of complex manifolds. Many constructions 
can be carried out only in the strict pseudoconvex case. Let us consider some 
examples. 

Example 1: The theory was inaugurated by the following result: 

1 An n-dimensional complex manifold X is called q-complete if it has an exhaustion 
function p such that at every point of X the Levi form of p has at least n - q + 1 
positive eigenvalues. 
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An unbranched domain Gover Cn is strictly pseudoconvex if and only if 
it is a domain of holomorphy. 

For proofs see [Oka53], [Br54], [No54]. 

Example 2: Every unbranched Hartogs convex domain over C n is strictly 
pseudoconvex. See [Ri68], where a smoothing procedure for strictly pseud~ 
convex functions is introduced. 

Example 3: The proofs of the following statements are elementary. 

Every compact complex manifold is pseudoconvex. The Cartesian product of 
finitely many (strictly) pseudoconvex complex manifolds is (strictly) pseud~ 
convex. Any submanifold of a (strictly) pseudoconvex complex manifold is 
(strictly) pseudovonvex. 

Example 4: Assume that G c Cn is a domain of holomorphy and that 
A eGis an analytic hypersurface. Then G - A is Hartogs convex (and 
therefore st(ictly pseudoconvex). For the proof we just take a Hartogs figure 

in the unit polydisk pn = {t : Itil < 1 for i = 1, ... ,n} and a biholomorphic 
mapping F : H -+ G - A. The mapping F extends to a holomorphic mapping 
pn -+ G. If A = F-l(A) c pn ~s not empty, then it is an analytic hypersurface 
in pn - H. Some lines L(t') = {t = (it, t') : tl E C} will intersect it in a 
compact subset of pn - H; for other t' the intersection is empty (see Figure 
V.I). 

r 
~' L{t') 

A H 

Figure V.l. Hartogs convexity of G - A 

There is a limit t~ with c: < It~1 < I such that the intersection of L(t~) 
with A is not empty but in arbitrarily small neighborhoods of t~ there are 
points t' for which the intersection is empty. If tEA n L(t~), then there is 
a neighborhood U where A is given by a holomorphic equation f = O. The 
function tl H f(tt, t~) has isolated zeros in U n L(t~), and by the theorem 
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of Rouche tl H f(tl, t') also has to vanish at some points of un L(t') for t' 
near to to. This is a contradiction. 

Thus F(pn) c G - A, and the domain G - A is Hartogs pseudoconvex. 

Example 5: Let A c IF be an analytic hypersurface. We know that there 
is a homogeneous polynomial w such that 

A = {(zo : Zl : ... : zn) E IP'n : w(zo, ... , zn) = o}. 

Let w be homogeneous of order s. Then 

n 

p(zo: ... : zn) := log {( I>iZir /Iw(zo, ... , ZnW} 
i=O 

is a well-defined smooth exhaustion function for the affine algebraic manifold 
IP'n - A. We calculate the Levi form in local coordinates tv = zv/zo, v = 
1, ... , n using the properties of the logarithm. Since the Levi form of f + 7 
vanishes for any holomorphic function f, it follows that 

Lev(p) (to, e) = s· Lev(log(1 + IIt1l 2) )(to, e) 

= 

s· (1 + ~tloI12)2 ·I(to, eW + 1 + l~toll2 ,"eIl2) 

(1 + 11:0112)2 . (lIell 2 + Cll t oll 2 . lie 112 -I(to, e}12)) , 

and this expression is positive for e =F O. So p is strictly plurisubharmonic 
everywhere, and X = IP'n - A is I-complete. In this case we can show directly 
that X is holomorphically convex: 

Every function 

ZSO ••• zSn 

f(z · . Z ) '- 0 n o· .... n .- ( )' 
W ZO"",Zn 

n 

with LSi = S, 

i=O 
is holomorphic in X, and the maximum of the absolute values of all these 
functions tends to infinity as (zo : ... : zn) approaches A. So K cc X for 
any subset K C eX. Consequently, X is holomorphically convex, and it is 
even Stein, as one can see from the following theorem. 

3.1 Theorem. Let X be a holomorphically convex connected complex man­
ifold that contains no compact analytic subset of positive dimension. Then X 
is a Stein manifold. 

PROOF: Let Xo E X be an arbitrary point. Then the set 

A := {x EX: f(x) = f(xo) for every f E O(X)} 
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is a closed analytic subset of X. Clearly, it is contained in the holomorphically 

convex hull fxJ = {x EX: If(x)1 $ If(xo)1 for all f E O(X)}. Since ~ 
has to be compact, A is likewise compact. This is possible only if A consists 
of isolated points. Then there exists an open neighborhood U = U(xo) and 
holomorphic functions it, ... , f N in U such that 

{xo}=AnU={xEU: h(x)=···=fN(X)=O}. 

So X is holomorphically spreadable and therefore Stein. -
3.2 Proposition. A I-complete complex manifold cannot contain compact 
analytic subsets of positive dimension. 

PROOF: Let p be a strictly plurisubharmonic exhaustion function in the 
manifold X. Then p is plurisubharmonic, and by the maximum principle it 
must be constant on any compact connected analytic subset A eX. If A has 
positive dimension, then there is a point x E A and an open neighborhood 
U = U(x) c X such that An U is a submanifold of U of positive dimen­
sion. The function plAnu is strictly plurisubharmonic and constant. That is 
impossible. _ 

3.3 Corollary. Let X be a I-complete manifold that is holomorphically 
convex. Then X is a Stein manifold. 

At the end of this chapter we will see that the condition "holomorphically 
convex" is not necessary. 

3.4 Corollary. Let A c ]p>n be an analytic hypersurface. Then]p>n - A is a 
Stein manifold. Every analytic subset B c ]p>n of positive dimension meets A 
in at least one point. 

Example 6: There is a famous theorem by H. Cartan: 

A domain G C 1(:2 is a domain of holomorphy if and only if the first 
Cousin problem is always solvable. 

The solvability is also true for higher-dimensional domains of holomorphy, 
but there is a greater class of domains with this property. Take, e.g., the 
domain G c pn C I(:n (with n 2: 3) that is the union of the three open sets 

U1 .-
U2 .-

U3 .-

{z E pn 

{z E pn 

{z E pn 

IZll>g}, 
IZ21 > g}, 
I(Z3, ... , zn)1 < g}. 
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, IZ31 

Figure V.2. Cousin-I in a domain which is not Hartogs convex 

The domain G = U 1 U U2 U U3 is not Hartogs pseudoconvex (see Figure V.2). 
But all three covering elements Ui are domains of holomorphy. Therefore, 
we have HI(Ui , 0) = 0 for i = 1,2,3, as will be proved in Section V.5. So 
%' = {UI' U2, U3} is an acyclic covering for 0, and every Cousin-I distribution 
in G can be given by a co cycle I E HI(%" 0), up to a coboundary. Such an 
I consists of holomorphic functions lij in U ij with h2 + 123 + hI = 0 on 
U 123 . This implies that the Laurent series of h2 (around the origin) in U l23 

contains no powers zf z~ with i < 0, j < O. By the identity theorem this is true 
on the whole set U12. Therefore, we can subtract a coboundary 8{gb g2, O} 
from our co cycle such that thereafter h2 == 0. 

Then the new 123, h3 coincide on U 123 • Together they give a holomorphic 
function h in (U1 U U 2) n U 3 that extends holomorphically to U 3• Then the 
new cocycle I is equal to the coboundary 8(0, 0, h), and hence the old cocycle 
also cobounds (Le., is a coboundary). Consequently the Cousin-I problem is 
solvable. 

Example 7: Assume that X is an n-dimensional complex manifold and that 
Xo E X is a point. We can blow up X in Xo. Then we obtain an n-dimensional 
complex manifold X, an (n - I)-dimensional complex submanifold A c X 
that is isomorphic to jp>n-l, and a proper holomorphic map 1r : X ~ X that 
maps A to Xo and X - A biholomorphically onto X - { xo}. We have a strictly 
pseudo convex neighborhood U around Xo. We can lift the strictly plurisub­
harmonic exhaustion function p on U by 1r to 1r-l(U). This is a strongly 
pseudoconvex neighborhood of A that is not, however, strictly pseudocon­
vex. 

Example 8: For a similar example consider the analytic set 

A:= {z E C2n : ZlZn+j - ZjZn+1 = 0 for j =2, ... ,n}. 

Outside of the origin A is regular of dimension n + 1. For example, if Zi =I 0, 
then zn+j = Zj . Zn+i/ Zi for j = 1, ... , n. So A is there parameterized by 
Zl, ... ,Zn and Zi+l. It follows that dim(A) = n + 1. 
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We have a meromorphic map from c2n to the Osgood space on given by 
Wi = zd Zn+i, i = 1, ... ,n. Its graph is the set 

x = {(z,w) E C2n X on : WiZn+i - Zi = 0 for i = 1, ... ,n}. 

We denote by X the closure of the part of X that lies over A - {o}. Let 
11" : X -+ A be the restriction of the canonical projection from A x on 
to A. Then 11" maps a 1-dimensional projective space onto 0 and the rest 
biholomorphically onto A - {o}. 

The space X is an (n + I)-dimensional complex manifold, locally given by 
the equations 

Zi = WiZn+i 
Wi = W1 

for i = 1, ... , n, 
for i = 2, ... , n. 

The set E(s):= {(zb ... ,2n) E A : zdzn+l = ... = Zn/Z2n = s} is an 
n-dimensional plane for every s E p1, and A is the union of all these planes. 
Since E(S1) n E(S2) = {o} for S1 =f S2, A is singular at the origin. It follows 
that X is a vector bundle of rank n over 11"-1 (0) ~ p1. 

Now we use the function p(z) = Li ZiZi on c2n. It induces a strictly plurisub­
harmonic function on the complex manifold A - {o}. The (n + 1 )-dimensional 
complex manifold X is strongly pseudoconvex by po 11", but not 1-complete, 
since it contains the compact analytic subset 11"-1(0). 

Example 9: Consider the covariant tangent bundle T' of pn. If ~ is a global 
holomorphic vector field on pn, then a plurisubharmonic function Pt; on T' is 
defined by 

pr;(wx) := wx(~x) . wx(~x). 

We consider local coordinates in a set Ui C pn, for example tv := zv/zo for 
v = 1, ... , n in the case i = O. Then every w over Ui can be written uniquely 
in the form w = Lv Wvdtv. So tl, ... ,tn, Wl, ... ,Wn are local coordinates in 
T' over Ui' If ~ = L,,,f.v8/8zv, then 

We have the following n + n2 holomorphic vector fields over Ui that extend 
to pn: 

8 8 
'--8 = q(O, ... , Zo , ... ,0) and tP.-8 = q(O, ... , zp. , ... ,0), 

tv --..,..., tv "-v-" 
vth place vth place 

where q : O(1)EB" 'EBO(1) -+ TPn is the canonical bundle epimorphism in the 
Euler sequence. Plurisubharmonic functions pt, respectively ptp., are defined 
in local coordinates by wvwv, respectively wvwv . tp.t,.. By adding them all we 
obtain the plurisubharmonic function 
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Pi = (t wvwv) . (1 + t t,.,J".) . 
v=1 ".=1 

Finally, if we add the Pi constructed for the various Ui , i = 0, ... , n, we 
obtain a function p. If Z denotes the zero section in T', then P vanishes on 
Z and is strictly plurisubharmonic and positive outside of Z. It tends to 00 

for IIwll -+ 00. So the complex manifold T' is strongly pseudovonvex, but not 
I-complete. 

Example 10: This example is probably due to J.P. Serre. 

Assume that E is an elliptic curve (Le., a compact Riemann surface of genus 
1). Then E is a I-dimensional torus, given by a lattice of periods (1, e), where 
the imaginary part of e is positive. We may write the elements of E as real 
linear combinations z = s· 1 + t . e, with s, t E [0,1]. The first cohomology 
group HI (E, 0) is equal to C (this will follow from results of the next chapter, 
but it is also a very classical result in the theory of Riemann surfaces). 

We have a covering ~ of E consisting of the two elements 

{z = s + te : 0 ~ s ~ 1/2, 

{z=s+te: 1/2~s~1, 

0~t~1}, 

0~t~1}. 

Denote by C c E the circle {z = 1 + t . e : 0 ~ t ~ 1} and define there 
the function f == 1 (and 0 on the other component of Ul n U2 ). Then f 
is a co cycle in ZI (~ , 0). It yields a nonvanishing cohomology class, since 
otherwise we would obtain a nonconstant bounded holomorphic function on 
C. We construct a fiber bundle A above E with fibers Ax = C by gluing 
above C the point (z, w) E U2 X C with (z, w - 1) E U1 X C. We denote this 
point in the bundle by [z, w]. 

Now, A is topologically trivial (since we can find a continuous function 9 on 
U2 that coincides with f on C such that !5{0, g} = I), but it is not analytically 
trivial, because it defines a nontrivial cohomology class. It follows from the 
construction that the notions of real lines, planes, and convexity are well 
defined in A. 

Let A be the bundle with typical fiber pI that is obtained from A by adding 
the point at infinity to each fiber. Then A is compact and has the infinite cross 
section D = Doo over E. We put X := A = A-D. Then X does not contain 
any compact analytic set of dimension 1. Otherwise, there would be a number 
b such that the analytic set meets every fiber in exactly b points. We could 
pass over to their barycenters and would obtain an ordinary holomorphic 
cro~s section in A. This would imply the triviality of A. 

We consider the real 3-dimensional surface 

S = Sr = ([z, w] E A : z = s + te, w = S + rexp(21l'i . lJ) and 0 ~ lJ ~ I}. 
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Here r > 0 is a very big number. The surface S bounds a tube G, which 
converges to A as r tends to 00. 

We look at the holomorphic tangent H in any point of S. We can consider H 
as a real plane in A. By subtracting s in the fiber above s + t~ we pass over 
from A to E x C. The hypersurface S is transformed diffeomorphically into 
a convex cylinder over E and H into a contacting plane that does not enter 
the interior of the cylinder. So H does not enter the interior of the tube G. 
If H were contained in S, then the transformed H would lie in the boundary 
of the cylinder and therefore be compact. So H itself would be a compact 
analytic set. We saw that such a set does not exist. So there remains only 
the possibility that H contacts S of first order; i.e., the intersection H n Sis 
a real line. We can choose a complex coordinate ( = x + i y in H such that 
our real line is exactly the x-axis. 

If {! is a smooth defining function for S, then {! behaves on H like the function 
y2. It follows that ({!iH )(~ > O. This means that the Levi form of {! is always 
positive definite on the holomorphic tangent H. Now we can construct a 
strictly plurisubharmonic function ~ in U - D (where U is a neighborhood 
of D in .4) whose level sets are the manifolds Sr such that ~ converges to 00 

when approaching D.2 It follows that X is strongly pseudoconvex. 

Later on we shall prove that a strongly pseudo convex manifold is holomorphi­
cally convex, and since X contains no positive-dimensional compact analytic 
subset, it is a Stein manifold. So there are many holomorphic functions in X. 
Assume that there is a meromorphic function on A that has poles of order m 
on D only. Then the coefficient of the highest polar part of f is a holomorphic 
cross section 1J in the mth tensor power of the normal bundle of D. Because 
this normal bundle is topologically trivial, 1J cannot have zeros on D. So f 
tends to infinity approaching D, and no analytic set {f = canst} meets D. 
This is a contradiction, since A is not analytically trivial. Every holomorphic 
function on X must have essential singularities on D. 

Analytic Tangents. Let G be a domain in en with n ~ 2 and p a strictly 
plurisubharmonic function in G. Denote by X the set {z E G : p(z) < O}. 
Let B cc G be an open subset and w E aX n B an arbitrary point. 

The expansion of p in w is given by 

p(z) = pew) + 2ReQ(w,z - w) + Lev(p)(w,z - w) + R(w,z - w), 

where 
1 

Q(w, h) = h· Vp(w) t + 2 h· Hess(p)(w) . h t, 

2 We may assume that {! is globally defined and {! = T on Sr. Then we choose an 
unbounded strictly monotonic smooth function h : R --+ R such that h" / h' is 
very large. The function ~:= h 0 {! will do the job. 
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with the complex Hessian Hess(p)(w) = (PZ,Zi (w) I i,j = 1, ... , n ), and 

. R(w,h) 
~~ IIhll 2 = O. 

The map h H Q(w, h) is a holomorphic polynomial of degree 2, for every w. 
The assignment w H Q(w, h) is smooth. 

Let G' cc G be an open neighborhood of B. We can fl·,r' constants c, k > 0 
such that 

Lev(p)(w, z - w) + R(w, z - w) ~ kllz - wl1 2 cIIz - wll 3 

for z E G' and arbitrary w. 

We say that a real number c > 0 is sufficiently small with respect to B if 
every ball U(w) with center w E aX n B and radius c belongs to G', and 

is valid on these U ( w ). 

Assuming that this is the case, for w E aX n B we define the analytic set 

A(w) := {z E U(w) : Q(w,z - w) = O} 

in U(w). On A(w) we have p(z) ~ O. Therefore, A(w) - {w} is outside of 
X. Since w belongs to the boundary of X, this implies that A = A( w) has 
codimension l. We call A an analytic tangent (or, in German, a StutzJliiche) 
for X at w. 

3.5 Proposition. Let G,p, X, B, G' be as above. There exists a differen­
tiable family A(w) of analytic tangents to aX at the points wE BnaX with 
A(w) n X = {w}. 

Here "differentiable" means that the defining quadratic polynomials for A(w) 
depend smoothly on w. 

Exercises 

1. Let X be a complex manifold and Y C X a closed complex submanifold. 
Construct a nonnegative smooth function f : X -+ lR with the following 
properties: 
(a) Lev(f)(x,~) ::::: 0 for every x E X, ~ E Tx(X). 
(b) For every x E Y there is a linear subspace Px C Tx(X) such that 

Px + Tx(Y) = Tx(X) and Lev(f) (x, ~) > 0 for ~ E Px , ~ f:. O. 
2. Let X be a I-complete complex manifold and il, ... , fq E O(X). Show 

that X - N(il, ... , fq) is q-complete. 
3. Let Gee en be a strictly convex domain with smooth boundary. Con­

struct the differentiable family A(w) of analytic tangents to aG. 
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4. Let 'P be a strictly plurisubharmonic smooth function defined in a neigh­
borhood U = U(O) c en with 'P(O) = 0, and 'I/J an arbitrary smooth 
function in U. Prove that there are r > 0 and c > 0 sufficiently small 
such that 'P + c . 'I/J is strictly plurisubharmonic in Br(O) and 

is a Stein manifold. 

4. Cuboids 
Distinguished Cuboids. If Q is a closed subset in en, then in this 
section we say that something is defined on Q if it is defined in a small 
neighborhood of Q. Two objects are called equal on Q if they coincide in a 
small neighborhood of Q. SO actually we consider "germs" along Q. 

Definition. A cuboid is a closed domain 

where ai < bi are real numbers for i = 1, ... , 2n. 

If there are partitions 

o 1 m· b ai = ai < ai < ... < ai • = i, for i = 1, ... , 2n, 

then we denote by A the system of sequences 

j . - 1 2 ai' Z - , ••• , n, j=O, ... ,mi. 

A closed covering %' A of Q is defined by the system of cuboids 

Qjl •...• l2n = {z : a1,-1 ::; Xi ::; a1', for i = 1, ... , 2n}. 

For any open covering ofQ there is a closed cuboid covering which is finer. 

In the following it will be not enough to have a covering of Q. Additionally, 
we need a system of complex submanifolds 

Q = Xo ~ Xl ~ ... ~ X i- l ~ Xi ~ ... ~ X B , s::; n, 

where Xi has dimension n - i, such that there is a holomorphic function Ii 
in X i- 1 vanishing everywhere on Xi to first order (and maybe also vanishing 
at points of X i- 1 - Xi). 

Definition. A distinguished cuboid is a cuboid that is equipped with a 
system {(Xi, Ii) : i = 1, ... , s}. The number n - s is called the manifold 
dimension of the distinguished cuboid. 
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Vanishing of Cohomology. As described above, everything on a 
closed cuboid is assumed to be defined on an open neighborhood of the 
cuboid. Therefore, we can consider co cycles and coboundaries with respect 
to closed cuboid coverings. 

4.1 Proposition. Assume that Q is a cuboid and c£rA a closed cuboid cov­
ering of Q. Then every cocycle ~ E Zl(c£rA , 0) cobounds. 

PROOF: First we consider a very simple system A. We just take the case 
where ml = 2 and all other mi = 1. Then 

c£rA = {Qo = Ql,I, ... ,b Ql = Q2,1, ... ,d 
has the minimal possible number of elements. The co cycle ~ is given by one 
holomorphic function ~01 on Qo n Ql = {z E Q : Zl = aD. Let c: be a small 
positive number. Then in the zl-plane we can choose two continuous paths 
(Xj from at + i(a~+l - c:) to at + i(a~+l + c:) (for j = 0 on the left side and 
for j = 1 on the right side of the line Xl = at, see Figure V.3) and define 
11 = {110, 111} by the Cauchy integral 

. ( ) . _ -1-1 ~Ol (w, Z2, ... , Zn) d 11) Zl,···, Zn·- . w. 
211"1 O:j W - Zl 

Then we get 811 = ~. 

~ 21-plane 

Ql ____ ----i--- / <: I 111'-. ____ 

I I -----

I : 

l- ---L---_ 
------~- --- ---

/ ~ --""- --------
---._-. Qo ---------------... ~ .. 

-._._..... Z2, ... , Zn 
Figure V.3. Cohomology of a cuboid -.-__ ,. 

The next step is an induction on the number m = l:i mi. We just han­
dled the case m = 2n + 1. Now we assume that m > 2n + 1 and that the 
proposition already has been proved for any number smaller than m. We put 
io := max{ i : 1 s: i s: 2n and mi ~ 2} and define 
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By the induction hypothesis, we have 'I'ft", = 6(11') and '1'ft"1I = 6(TJ") with 
cuboid coverings %" for Q' and %''' for Q". Hence, , - 6{ TJ', TJ"} is a cocycle 
with respect to the covering %' that is given by a holomorphic function 9 on 
the surface 

, " { mi-l} Q n Q = z E Q : Xio = aio 0 • 

As above, by integration we obtain holomorphic functions TJo on Q' and TJl 
on Q" with 9 = TJl - TJo· So we have a cochain a = {TJ' + 1}0, TJ" + TJd on Q 
with 6a = , (since the functions TJj are already cocycles). This completes the 
induction. _ 

Vanishing on the Embedded Manifolds. We consider a distin­
guished cuboid Q in en with manifold dimension n - 5, and for i = 0, ... ,5 

we prove the following: 

4.2 Proposition. Every cocycle of Zl(%'A n Xi, 0) cobound5, and every 
holomorphic function on Xi+! can be extended to a holomorphic /unction on 
Xi' 

PROOF: We carry out an induction on i. In the case ·i = 0 the proposition 
has been proved already. The induction hypothesis now states that it holds 
for some i, 0 SiS 5 - 1, and we prove the extension property for i + 1. 
Assume that 9 is the holomorphic function on Xi+!. Define g(z) = 0 on 
the other connected components of N(Ji+d C Xi. If the covering %'A is 
sufficiently small, we can extend this 9 to a cochain TJ E CO(%'A n Xi, 0). 
The coboundary 6(TJ) vanishes on N(Ji+l). Therefore, there is a cochain a E 
Cl(%'A nXi,O) with 6(TJ) = a· fi+l. It is clear that a is a cocycle, and by 
the induction hypothesis there is a 'Y E CO(%'A n Xi, 0) with a = 6("(). Since 
6(TJ - fi+l . 'Y) = 0, we get 9 = TJ - fi+l . 'Y as a holomorphic extension of g. 

Now we prove that any' E Zl(%'A n X i +1 , 0) cobounds. As in the proof of 
the preceeding theorem we have to show this oLly in the case where ml = 2 
and mi = 1 for i > 1. So, is simply a holomorphic function 9 on (Ql,l, ... ,l n 
Q2,l, ... ,dnXi+l. We have to find holomorphic functions /' on Ql,l, ... ,l nXi+l 
and f" on Q2,l, ... ,l n Xi+! with f" - f' = g. For that we first extend 9 to 
(Ql,l, ... ,l nQ2,l, ... ,l) nxi , construct /', f" for Xi (induction hypothesis), and 
then restrict them to Xi+l. That completes the proof. -

Cuboids in a Complex Manifold. We assume that X is an n­
dimensional complex manifold and p a smooth real-valued function on X 
with p(x) -t 2 when x -t 8X.3 We assume further that p is strictly plurisub-

3 This means that for every e > 0 there is a compact subset K C X such that 
p(x) > 2 - e for EX - K. 
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harmonic on {p(x) = I} and define Y := {x EX: p(x) < I}. Then Y is a 
relatively compact strongly pseudo convex open subset of X. 

For an n-tuple z = (Zl. ... , zn) we use the norm 

jzj := supmax(jRe(zi)j, jIm(ziD. 
i 

For an open neighborhood G C X of BY we want to apply the results from 
the end of V.3. (It does not matter that there are no global coordinates on 
G.) We consider a relatively compact open neighborhood B = B(BY) CC G 
and choose a G' with B cc G' cc G. 

For any point Xo E BY there is a compact cuboid U· with center Xo in 
a coordinate neighborhood S around Xo. If a real number c: > 0 is given, 
we can choose every U· so small that U· C U (w) C C S for every point 
w E U*, where U(w) is the ball with center w and radius c: (with respect 
to the local coordinates). Then for every w E U* n BY we have the analytic 
tangent A(w) given by a quadratic polynomial fw in U(w). It follows that 
A(w) n U· n Y = w, and the function pjU· n (A(w) - z) is positive. This is 
illustrated by Figure V.4. 

For an open subset Y' cc Y we have the following proposition. 

4.3 Proposition. There is a distinguished cuboid Q. = U* x Q c eN with 
the following property: 

For s = N - n the submanifold Xs is projected biholomorphically onto a 
compact set U' C U* with Y' n U* c U' c Y. 

U· A(w) 

BY 

&Y' 

Figure V.4. Projection of the distinguished cuboid 

PROOF: We may work in en and assume that Xo is the origin. We use the 
differentiable family of analytic tangents A(w) = N(fw) with w E BY n U*. 
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Take a positive number r so big that we always have 11/ fw(z)1 < r for 
w E 8Y n U* and z E Y' n U*. In a small neighborhood of w we have 
Il/fw(z)1 > r. Therefore, by compactness there are finitely many of these 
fw, say It,···, fs, with maxd1/ h(z)1 > r for all z E 8Y n U*. For a fixed i 
we denote by Q~ the cuboid {z' = (Zn+ 1, ... , Zn+i) : I z'l ~ r} and by Q~' the 
cuboid {z" = (Zn+i+l"'" zn+s) : Iz"l ~ r}. We put Q* = U* x Q~ X Q~'. 

The sub manifolds Xi C Q* are obtained in the following way: Consider the 
graph of the i-tuple (1/ It, ... , 1/ fd in U* x Q~, take the union of those 
connected components that contain points over Y, and multiply this union by 
Q~'. The manifold Xi has dimension N - i. In X i - 1 we have the holomorphic 
function Zn+i 'h(z) - I, which vanishes on Xi to order 1. 

Finally, the projection U' of Xs contains no point of 8Y. Hence, it is contained 
in Y. Since U* nY' is contained in U', the proposition is proved. _ 

4.4 Corollary. In the above notation, H1(U', 0) = O. 

Enlarging U'. We use the same notation as before and construct a set 
fj' C U* n Y that is bigger than U' where the vanishing theorem still holds. 

For that purpose we take an open set Y' instead of Y' with Y' cc Y' cc Y 
and U' C Y'. We need a bigger r> r such that we still have 11/ fw(z)1 < ron 
Y' for wE 8Ynu*. But now maxdl/ h(z)1 > rno longer is true on 8YnU*. 
So we add some functions to the old ones, fsH,"" Is, such that we get the 
old situation again. 

We get the Q~ and the Q~', for i = 1, ... , s. But we write Q~ instead of Q~, Q~' 
for Q~', and Xi for Xi. Then we have Q* = U* x Q~ X Q~' c eN with N < N. 
The projection of Xs is a compact set fj' C Y n U* with Y' n U* c fj'. So 
again we have the vanishing of the cohomology. 

The following statement is proved in the next paragraph. 

( *) Every holomorphic function on U' can be approximated arbitrarily 
well by holomorphic functions on fj'. 

Suppose all cochains are given with respect to a covering %' of fj' ~ Xs-. If 
e E Zl(%" 0) is a cocycle over fj', we have e = 8('/]) over U' and e = c5(if) 
over fj', with cochains '/] and Ti with respect to the covedngs Un U' and un fj' . 
Then Ti - ", is a holomorphic function over U', which we approximate by a 
sequence of holomorphic functions fiJ E O(fj'). We may replace the cochain 
if by ifj := if -?iJ and obtain that Tij approximates,/] over U'. 

Now we can prove the following theorem. 
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4.5 Theorem. If Xo E aY and U· is a small cuboid in a local coordinate 
system around Xo, then HI(y n U*, 0) = O. 

PROOF: Take a fixed open covering <P/ of Y n U· and exhaust Y by a 
sequence of domains Yi with Yi c c Yi+ lee Y. We get a sequence of compact 
sets U: C U· n Y with Yi n U· C U:. 

If e E Zl (%' , 0) is a cocycle, for every i we get a cochain "Ii on U: such that 
e = 8("Ii) on U;' As we have seen above, we may assume that the difference 
of "IHI and "Ii on U: is as small as we want. Then the sequence "Ii converges 
to some T] E CO(%" 0) with o(T]) = e. • 

Approximation. We first prove the following simple result. 

4.6 Proposition. Assume that Q is a cuboid in eN. Then any holomorphic 
function f on Q can be approximated arbitrarily well by polynomials. 

PROOF: We make the induction hypothesis that f is already a polynomial 
in the variables z' = (Zl, ... , zs). Let "f" be the boundary of the rectangle with 
corners (as+l-E,aN+s+l-E), (bs+1 +E,aN+sH-€), (bs+l +E,bN+s+l +€), 
and (as+l - E, bN+s+1 + E) in the (XsH, XN+s+l)-plane. We have the integral 
representation 

fe z' ") = -1-1 f(z', e, Zll) d~ 
,Zs+l,Z 2' ~ <,. 

71"1 'Yo <, - Zs+l 

It is necessary to approximate 1/(e - zs+d with a fixed e E 1"1,,1 by a poly­
nomial. We consider only the case where Re(~) = bs+1 + E. In this case there 
exists a disk D (with a center far to the left) such that e E aD and the 
rectangle with corners (asH, aN+s+d, (bsH,aN+s+t), (bsH , bN+sH), and 
(asH, bN+s+1 ) is contained in D. Then we expand l/(~ - zs+t) into a power 
series on the disk and get the desired approximation. So the induction step is 
complete. Since nothing remains to be shown for s = 0, the proof is finished . 

• 
We have to consider the cuboids Q = U· x Q~ and Q = U· x Qi. For this 
denote by M the Cartesian product of the last s - s factors of the Cartesian 
P!oduct Qi. It follows that Q~ x M c Qi, and S := (U· x Q~ x M) n 
Xi is projected bihoiomorphically onto Xs and onto U'. Every holomorphic 
function on S is the restriction of a holomorphic function in U* x Q~ x M 
and can be approximated arbitrarily well l?Y polynomials, in particular by 
holomorphic functions on the larger set U* x Qs' Therefore, every holomorphic 
function on U' can be approximated by holomorphic functions on 0', and we 
have proved (*). 
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Finally, we wish to replace U* by its open kernel (U*t. For this we exhaust 
U* by relatively compact cuboids U; with U; cc U;+1' and choose the 
functions /i, i = 1, ... , s (from the "enlarging" process), independently of j. 

Then we can approximate cochains on Uj C U; by those on Uj C U;, and 

we can approximate these again by cochains on U;+l. So for any l-cocycle ~ 
on (U*t n Y we obtain (as a limit) a cochain 7] on (U*)O n Y with 07] = ~. 
Then we have the following theorem. 

4.7 Theorem. If Xo E 8Y and U* is a small cuboid in a local coordinate 
system around xo, then H1(y n (U*t, 0) = O. 

Exercises 

1. Let G c c en be a strictly convex sub domain with smooth boundary. 
Use coverings with distinguished cuboids to prove that H1(G, 0) = o. 

2. Prove for the same domain G that every holomorphic function in G can 
be approximated by polynomials. 

5. Special Coverings 
Cuboid Coverings. Again let X be an n-dimensional complex manifold 
andp a smooth real-valued function on X withp(x) -+ 2 for x -+ 8X.Assume 
that p is strictly plurisubharmonic on {p(x) = I}, and let Y := {x EX: 
p(x) < I}. We also consider open sets YQ = {x EX: p(x) < 1 + a}, where 
o $; a < c and c is a very small positive number such that also YQ is strongly 
pseudoconvex. 

Since 8Y is compact, it can be covered by finitely many cuboids Ut around 
points Xi E 8Y which are always contained relatively compactly in a local 
coordinate neighborhood such that Xi is the origin of the coordinate system. 
If U; = {z : Izl $; Ti} and 0 < ti < Ti, then we may also assume that the 
open sets Ui = {z : Izl < til cover 8Y. By adding more cuboids, the ti can 
be chosen as small as necessary. 

We also need these properties for the sets 8YQ , and for sets 8Y, where Y is 
an open set between Y and YQ • For that we have to move the centers of the 
cuboids a little bit. If a is very small, the Ui still cover 8Y. 

There may exist a compact set K c Y that is not yet covered by the Ui · 

Then we construct a covering of K with additional cuboids Ui C C Ut c C Y. 
Finally, we have the following result. 

5.1 Proposition. For a small c > 0, fOT any a with 0 $; a < c arid any 
open set Y with Y C·Y c YQ there exist coverings %'* = {Ut : i = 1, ... , m} 
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and au = {Ui : i = 1, ... , m} of Y with Ui cc Ut such that the following 
hold: 

1. Every Ut is a compact cuboid in a local coordinate system around a point 
Xi that corresponds to the origin in this coordinate system. The set Ut 
is small enough in the sense of Sections V.3 and V.4 to have families of 
analytic tangents in Ut. 

2. There are numbers 0 < ti < ri such that 

in the chosen coordinates. 
3. For each i , either Xi E Y or Ut c Y . 
4· For each i, the "star" Si = Uj : Uj nUd f2J Uj is contained in Ut · 

We call (au, au·) a special pair of coverings for (Y, Y) (cf. Figure V.5). 

y 

Figure V. 5 . Special pairs of coverings 

The B u h hIe Method. Let a small e > 0 be fixed in the sense of the pre­
ceding paragraph. We choose a special pair (au, au·) of coverings for (Y, V). 
Since Hi (Ui n Y,O) = 0, it follows that %' n Y is acyclic, and every coho­
mology class of Hi (Y, 0) can be given by a cocycle ~ E Zi (%' nY, 0). 

Let Xo E BY be an arbitrary point and i an index such that Xo E Ui . Then 
we have a cochain TJ = {TJj} E CO(au n Ut nY, 0) with 6(TJ) = ~1(Ut n Y). 
We change rlj to 0 if Uj r:t. Si . Then 17 is a cochain over Y, and the cocycle 
( - 8(TJ) represents the same cohomology class as f But ~ - 8(17) vanishes on 
UinY. 

Now we use the bubble method. By altering the strongly plurisubharmonic 
function p a little bit on some compact subset of Ui (let us say by subtracting a 
smooth function with compact support) we enlarge Y a little bit to a strongly 
pseudoconvex open subset Y ::> Y with Y - Y cc Ui . Then every cohomology 
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class represented by some ~ E Zl(%, nY, 0) extends to Y. SO the restriction 
HI (Y, 0) --7 HI (Y, 0) is surjective. We assume that for Y (after a small 
movement) the conditions for Ui , Ut are still satisfied. 

In the next step we go to another Xo E Y and apply the procedure to Y. 
Continuing in this way, after finitely many steps we have the following result. 

5.2 Proposition. There is a fundamental system of strongly pseudoconvex 
neighborhoods Yo of Y such that the restriction HI(yo, 0) --7 HI(y,O) is 
surjective. 

Frechet Spaces. The following theory can be found in the famous multi­
graphed notes [CS53J. See also [GuR065J. 

Assume that V is a complex vector space. 

Definition. A seminorm in V is a map P : V --7 {x E IR : x;:::: O} with 
the following properties: 

1. p(a· f) = laJ . p(f) for a E C, f E V. 
2. P(fl + h) :::; p(fd + p(12), if fl' 12 E V. 

If a sequence of seminorms Pi, i EN, is given in V, we can define a topology 
in V. If e > 0 and mEN, we call the set 

u~m)(o) = {f E V : Pi(f) < e for i = 1, ... ,m} 

an (E, m)-neighborhood of O. As m increases the (e, m)-neighborhoods, of 
course, become smaller. 

A subset W c V with 0 E W is called a neighborhood of 0 if there is an 
(e,m)-neighborhood U~m)(O) C W. If fo E V is an arbitrary element and W 
a neighborhood of 0, then 

fo + W := {fo + f : fEW} 

is a neighborhood of fo. Finally, a set MeV is called open if it is a neigh­
borhood of any f E M. 

Definition. A sequence (fk) in V is called convergent to f if for any 
neighborhood W(f) there is a number ko such that fk E W for k ;:::: ko-

The sequence (fl.,) is called a Cauchy sequence if for all e > 0 and mEN 
there is a number ko such that Pi(fl - fk) < e for i = 1,.:., m and 
k,l;::::ko: 
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Definition. A Prechet topology on a complex vector space V is a topol­
ogy defined by a sequence (Pi) of semi norms, with the following proper­
ties: 

1. For every f E V - {O} there is an i with Pi (f) > 0; i.e., the topology 
is Hausdorff. 

2. The space V is complete in this topology: Every Cauchy sequence 
converges. 

A Prechet space is a complex vector space with a F'n~chet topology. 

Every Frechet space possesses a metric that defines its topology. 

The vector space VeX) of holomorphic functions on a complex manifold X 
is a Frechet space. We just take an increasing sequence of compact subsets 
Ki with Ki c (Ki+lt and U Ki = X, and we define Pi(f) := suplf(Ki)l· 
If (fk) is a Cauchy sequence of holomorphic functions on X, then fkl(Kit 
converges uniformely to a holomorphic function on (Kit. Hence (Ik) con­
verges compactly to a holomorphic function f on X. This means that (Ik) 
converges to f in the topology of VeX). 

Since every Frechet space V is a metric space, a subset MeV is compact 
if and only if every sequence (fk) in M has a convergent subsequence with 
limit in M. 

Definition. A linear map v : E --t F between two Frechet spaces 
is called compact or completely continuous if there is a neighborhood 
U(O) C E such that v(U) is relatively compact in F. 

Obviously, every completely continuous map is continuous. 

We have the following famous theorem of Schwartz. 

5.3 Theorem of L. Schwartz. Assume that E, F are two Pr&het spaces 
and that u, v : E --t F are two continuous linear maps with the following 
properties: 

1. u is surjective. 
2. v is completely continuous. 

Then the quotient F / (u + v) (E) has finite dimension. 

A typical example of a completely continuous map is given as follows: 

Let X be a complex manifold and Y cc X an open subset. Using the 
increasing sequence of compact subsets from above, we have Y C Ki for 
some i. Now, U := {J E VeX) : Pi(f) < I} is a neighborhood of 0 in 
E:= VeX). Let v : E --t F := V(Y) be defined by v(f) := fly. Then 

v(U) C ~ := {g E V(Y) : {;uplgl ::; I}. 
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Since PA is closed and bounded, it follows from Montel's theorem that it is 
compact. This shows that the restriction map v is completely continuous. 

Remark. It is clear that we can replace the space of holomorphic functions 
by the space of holomorphic cross sections in an analytic vector bundle. 

Finiteness of Cohomology. We wish to apply Frechet space theory 
to our standard situation. 

Let X be an n-dimensional complex manifold and Y = {x EX: p(x) < I}, 
where p is a smooth exhaustion function on X with sup(p) = 2. Assume, as 
usual, that p is strictly plurisubharmonic on a neighborhood of BY. Let a 
small real number E > 0 be fixed such that Ya is strongly pseudoconvex for 
o :s: fr < E. We have shown that the restriction map Hl(Ya, 0) --* Hl(y, 0) 
is surjective for sufficiently small fr. 

We start with a special pair (tf/, tf/*) of cuboid coverings for (Y, Y",), choose 

numbers ~ with ti < ~ < ri and define fJi = {z : Izl < ~}. This gives a 

covering q;-= {fJi : i = 1, ... , m} of Y a. 

The spaces CO(tf/ n Y,O), Zl(tf/ n Y,O), and Zl(q;-n Ya,O) are Fr~chet 
spaces, as is Zl(q;-n Ya, 0) EB CO(%, nY, 0). Since the cohomology can be 
extended from Y to Ya , it follows that the map 

with u(~, 1]) := ~lo//nY + 6(1]), is surjective. The map v : E -+ F is defined 
as the negative of the restriction map from Zl(q;-n Ya, 0) to Zl(tf/ nY, 0), 
Le., by v(~, 1]) := -~lo//nY. Then v is completely continuous. 

The map u + v is the coboundary map 6 : CO(tf/ nY, 0) --* Zl(tf/ nY, 0), 
since the first summand goes to o. So the quotient F/(u+v)(E) is the first co­
homology group of Y. Its complex dimension is finite by Schwartz's theorem. 
Thus we have proved the following result. 

5.4 Theorem. If Y is a strongly pseudoconvex relatively compact subset of 
a complex manifold X, then dime Hl(y, 0) < 00. 

Holomorphic Convexity. We consider the same situation as above 
and choose an fr > 0 such that Y c C Ya and: 

1. dime Hl(Ya, 0) < 00. 

2. For every x E BY we have an analytic tangent A(x) c Y", to BY, with 
A(x) n Y = {x}, given by a holomorphic function fx in a neighborhood 
U of A(x). 
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Let x E ay be an arbitrary point, f = fx, A = A(x), and U a suitable 
neighborhood of A. Then %'X = {U n Yo, Yo - A} is a covering of Yo consisting 
of only two elements. So Zl(%,x, 0) = O(UnYo -A), and every function f- k 
belongs to Zl(%,x, 0). Since H1(Yo, 0) is finite-dimensional, for m» 0 there 
are complex numbers a1, ... , am, not all zero, such that the cocycle given by 
the function 

9 = (a1 . f- 1 + ... + am· f-m)I(UnY",_A) 

is cohomologous to o. Therefore, we find holomorphic functions hl in Yo - A 
and h2 in Un Yo such that h1 - h2 = g. The function 

h ._ { hl on Yo - A, 
.- h2 +g onUnYo, 

is meromorphic in Yo with poles in A. So hlY is a holomorphic function, and 
for y -t x it tends to 00. 

If K is compact in Y, then the holomorphic convex hull K does not approach 
x. This is true for every x E ay. So K is compact. As a consequence we have 
the following result. 

5.5 Theorem. If Y is a strongly pseudoconvex relatively compact subset of 
a complex manifold X, then Y is holomorphically convex. 

Moreover, we have a solution of the Levi problem in this special case. 

5.6 Theorem. Assume that Y = {x EX: p(x) < I}, where p(x) is a 
smooth function in X with p(x) -t 2 for x -t ax that is strictly plurisubhar­
monic on ay. If Y contains no higher-dimensional compact analytic subsets, 
then Y is a Stein manifold. 

PROOF: In Section V.3 we showed that every holomorphically convex man­
ifold that contains no compact analytic subset of positive dimension is a Stein 
manifold. _ 

5.7 Corollary. If p is a strictly plurisubharmonic exhaustion function of 
X, then Y = {x EX: p(x) < I} is a Stein manifold. 

This is clear, since under the assumption there are no compact analytic sub­
sets of positive dimension in X. 

Negative Line Bundles. Assume now that Z is a compact n-dimensional 
complex manifold and that F is a holomorphic line bundle on Z. Let 
11" : F -t Z be the canonical projection. 

Definition. The line bundle F is called negative if there is a strongly 
pseudo convex neighborhood Y cc F of the zero section of F. 
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We identify Z with the zero section in F, and we call Y a tube around Z. 

For an arbitrary holomorphic vector bundle V of rank s on Z we consider the 
pullback bundle 1I"*V on F. If U c Z is an open set, then the holomorphic 
cross sections in 1I"*V over 1I"-1(U) are holomorphic maps f : 1I"-I(U) ~ V 
such that for any z E U the restriction of f to the fiber Fz has values in Vz. 

The trivial line bundle on F is denoted by OF. Its local holomorphic cross 
sections are the local holomorphic functions on F. If Vlu ~ U x Cs, then 
the holomorphic cross sections of 1I"*V over 1I"-I(U) are s-tuples of local 
holomorphic functions. Since the cocycles in our theory are given by lo­
cal holomorphic functions, we may replace OF by 1I"*V on F and get the 
same results for X = F and the strongly pseudo convex set Y. So we have 
dime HI(y, 11"* V) < 00. 

Among the holomorphic maps f : 1I"-I(U) ~ V that correspond to sections 
in 11"* V we have the maps f that on every fiber Fz are homogeneous of degree 
m (with values in Vz ). We denote the space of these maps by Om(1I"-I(U), V). 
It can be identified with the space of holomorphic cross sections in the tensor 
product V ® F-m (see Section IV.2). 

We choose a finite open covering ~ = {Ui : i = 1,2, ... , l} of Z. Let q;-be 
the covering of F given by the sets Ui = 1I"-I(Ui ) We denote by Z;,.(€, 11"* V) 
the vector space of co cycles ~m = {~ij} with ~ij E Om(1I"-I(Uij), V). These 
are homogeneous of degree m on the fibers of F. We also call them cocycles of 
degree m. Every finite sum ~ = Li ~i of co cycles of distinct degrees mi is con­
tained in ZI(F, 11"* V) and can be restricted to ZI(y, 1I"*V). It is a coboundary 
if and only if all ~i are coboundaries. Since the cohomology HI (Y, 11"* V) is 
finite, we obtain the following theorem: 

5.8 Theorem. Assume that F is a negative line bundle and V an arbi­
trary holomorphic vector bundle on the compact manifold Z. Then there is 
an integer mo such that Hl(Z, V ® F-m ) = 0 for all m 2:: mo. 

Remark. A line bundle F on Z is called positive if its complex dual F' is 
negative. Since (F')' = F, the above result can be reformulated as follows: 

If F is a positive line bundle on Z, then Hl(Z, V ® Fm) = 0 for m 2:: mo. 

Bundles over Stein Manifolds. Now we again consider a general 
n-dimensional complex manifold X and assume that we have a strictly 
plurisubharmonic function p in X with p(x) ~ 2 when x ~ aX. Then 
Z = {x EX: p( x) < I} is called a special Stein manifold. 

We use similar methods to those in the last paragraph. Now let F be the 
trivial line bundle X x C on X and the strictly plurisubharmonic function p 
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on F be defined by 
p(x, w) := p(x) + wW. 

The manifold Y = {(x, w) E F : x E Z and p( x, w) < I} is a strictly 
pseudoconvex tube around the zero section in Flz. However, Z is not compact 
now; it is only relatively compact in X. The tube extends to a neighborhood 
of Z. The boundary of the restriction to Z has an "edge" BY n (B Z x C). 

But the proof of finiteness of cohomology goes through in the same way as if 
there were no edge. We have to apply the method of analytic tangents to BY 
and {)Z simultaneously. If V is a holomorphic vector bundle on X, we denote 
the pullback of V to F by 8. It then follows that dime HI (Ylz, 8) < 00. But 
in this situation all the tensor powers of F are again the trivial line bundle. 
We have V ® F-m !2::! V for every m. From this we conclude the following: 

5.9 Theorem. If Z is a special Stein manifold (as described above) and V 
a holomorphic vector bundle on Z, then HI(Z, V) = O. 

Exercises 

1. Let E be a Frechet space and let U = U(O) c E be a neighborhood such 
that U is compact. Prove that E is finite-dimensional. 

2. Let u : E -+ F be a continuous linear map between Frechet spaces. Prove 
that if u(E) is finite-dimensional, then u is compact. 

3. Let E be a Frechet space. A subset M C E is called bounded if for every 
neighborhood U = U(O) c E there is an ro E 1R. such that Mer· U for 
every r ~ ro. Show that a compact set K C E is closed and bounded. Let 
X be a complex manifold. Show that every closed and bounded subset 
K C O(X) is compact. 

4. Let X be an n-dimensional Stein manifold and Y C X a closed subman­
ifold of dimension n - 1. Prove that the line bundle N x (Y) is positive. 

5. Let F = O( -1) be the tautological bundle over 1P'2. Prove that F is 
negative and that 

6. Let X C 1P'3 be a regular hypersurface and i : X y JP>3 the canonical 
injection. Prove that HI(X, i*O(k)) = 0 for k E Z. 

6. The Levi Problem 
Enlarging: The Idea of the Proof. We wish to show that every 
strongly pseudoconvex (i.e., I-convex) manifold is holomorphically convex, 
and that every strictly pseudoconvex (i.e., I-complete) manifold is Stein. 
This solves the Levi problem for complex manifolds. 
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Recall that an n-dimensional manifold X is called strongly pseudoconvex if 
there is a smooth exhaustion function p on X that is strictly plurisubharmonic 
on {x EX: p( x) ~ I}. 

For s ~ 1 the open sublevel set X s = {x EX: p( x) < s} is holomorphically 
convex, and its cohomology with coefficients in 0 is finite. We will construct 
an open set X with Xs cc X by extending Xs in several steps such that every 
holomorphic function on X s can be approximated by holomorphic functions 
onX. 

In the first step we choose a point Xl E {x EX: p( x) = s}, a local coordinate 
system around xl, a sufficiently small compact cuboid Ui around Xl in that 
coordinate system, and an open concentric cuboid UI cc (Uit such that 
every analytic tangent A(xo) with Xo E [It - Xs is defined in Ui. 

By disturbing p a little bit in a neighborhood -of XI. we get a new function 
P2 and a bigger set X2 = {P2 < s} with Xs c X 2 and Xl E X2. We do this 
carefully enough to get X 2 strongly pseudoconvex again. Since everything 
happens in a cuboid, we can apply the theory of Section V.4 and obtain the 
desired approximation property for functions in Xl = Xs and X2. Then we 
repeat this process and construct a bigger set X 2 , and so on. 

Since X s is compact, finitely many set X I, X 2 , X3, ... , X N already cover 
X s, and we order them such that XHI is obtained bI enlarging Xi in a 
neighborhood of some point Xi E Xs' Finally, XS CC X := X N , and every 
holo!D-orphic function on Xs can be approximated by holomorphic functions 
onX. 

Enlarging: The First Step. We choose an s ~ 1. Then p is strictly 
plurisubharmonic in a neighborhood of f)Xs, and also on X - Xs' We put 
axs = {x EX: p(x) = s} and get 8Xs c axs . 

Assume that Xl E axs is a point that is the origin in a local coordinate 
system, and that Ui = {z : Izl ::; r} is a compact cuboid in that coordinate 
system. Furthermore, let UI CC Ui be a concentric open cuboid such that 
every analytic tangent A(xo) with Xo E U I - Xs is defined in Ui. On A(xo) 
we have p(x) > s outside xo, and there is an e > 0 with p(x) > s + e on 
8Ui n A(xo)· We assume that p is strictly plurisubharmonic on Ui. 

6.1 Proposition. We can add to p a function h ::; 0 with support U I such 
that h(xt} < 0, p + h is still strictly plurisubharmonic, and the following 
approximation property is satisfied: 

If X := {x EX: p(x) + hex) < s}, then every holomorphic function {or 
cross section in a holomorphic vectorbundle} over Xs can be approximated 
over Xs (i.e., on every compact subset of Xs) arbitrarily well by holomorphic 
functions {respectively holomorphic cross sections} over X. 
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PROOF: Assume that K c Xs is compact. We choose an R » 0 and con­
sider the family A(x) of analytic tangents to the points of U1 n axs . There 
is a finite set of points Yi, ... , y;,., E U 1 n axs such that for the defining 
functions It of A(yn and the corresponding vector g* := (II Ii, ... , 1/1;'1) 
we have the estimate 

Ig*(x)1 := maxl1/ ft(x)1 > Ron axs n U 1. 
1 

Now we replace the points Yi by points Yi very near to yi, with p(Yi) > S, 

and the functions It by Ii (the defining function for A(Yi)) such that we still 
have Ig(x)1 > Ron axs nUl, for g:= (l/h, ... ,l/Im,). 

We choose Rand m1 so big that Ig(x)1 < R in K n Ui. 

Now we add a smooth function h with support U 1 that is strictly negative on 
Ul . We let X := {x EX: p(x) + hex) < s} and may assume that the points 
Yi are not contained in X and that Ig(x)1 > R on X - XS. We can make h 
and its derivatives so small that P + h is still strictly plurisubharmonic in Ui 
(see Figure V.6). 

Figure V.6. The enlarging process 

U* 1 

Next we take an Ii > R and add further functions Ix with x E ax, say 
I ml+1,···,Im, such that for 9 = (l/h,.··,llfm) it follows that Ig(x)1 > R 
at every point of ax n Ui, and Ig( x) I < Ii in K n Ui. Then we define 

fj = {x E xnu; : Ig(x)l:S Ii}. 
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We define U f by replacing the number R by R in the first ml inequalities. 

We use the enlarging method of Section V.4 and prove in the same way that 
every holomorphic function in Uf can be approximated by those in U. 
Now we let U and U' increase by making the number m bigger (i.e., adding 
new functions) and, simultaneously, by also making R and it bigger with 
R < R. So we can construct sequences Uj, Uj where the Uj converge to 

Ui n X and the Uj to Ui n XS' Hence, we have the approximation of the 

holomorphic functions in Xs n Ui by those in X n Ui. 

Let 11' be the open covering of X consisting of the two elements WI = Xs 
and W2 = Ui n X. On the intersection W 12 we can approximate every hol(}­
morphic function by those on W2 . Since the cohomology of X is finite, there 
are co cycles 6, ... ,~k E ZI (11',0) such that the corresponding cohomology 
classes ~ I'''''~ k form a basis of the image of Z1('W, 0) in HI(X, 0). The 
mapping <p : Ck x CO('W, 0) -+ Zl('W, 0) defined by 

<p(aI, .. . , ak, "1) := aI6 + ... + ak~k + 6("1) 

is a surjective mapping of Fn§chet spaces. By the open mapping theorem (see 
[Ru74]) <p is an open map. 

If 9 is a holomorphic function in X s , then 9 can be approximated on W12 by 
a sequence of holomorphic functions fJ E O(W2)' Since <p is open, the cocycle 
9 - Ij (which is a small function on W12 ) can be written as a sum Ii + 6("1j) , 
with a small function Ii E 0(W12 ) and a (small) cochain "1j. Replacing fJ - Ii 
by a suitable approximation I, and "1j by a suitable (and also small) cochain 
{{!I, {!2}, we get 9 - I = (J2 - (J}, with {!l E O(Wd and (J2 E O(W2). The 
function 

~(x)'- { g(x) + (JI(X) 
9 .- I(x) + (J2(X) 

is holomorphic on X and approximates 9 on X s as well as we want. _ 

Enlarging: The Whole Process. Let Xl = X s , PI = p, and h} = h. 
Then we define X 2 := X and P2 := P + h. Repeating the process from above 
with a suitable point X2 E 8X2, cuboids U2 CC U2, and a suitable function 
h2 we obtain a new set X = X3 that is defined by a new function P3 = P2+h2, 
and every holomorphic function on X 2 can be approximated arbitrarily well 
by holomorphic functions on X3. 

Continuing in this way we can always choose the correction functions hi so 
small that the strict plurisubharmonicity is never disturbed. After finitely 
many steps we obtain the following: 
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6.2 Proposition. There is a strictly pseudoconvex complex manifold X 
with XS CC X such that every holomorphic function on Xs 5:,an be approxi­
mated over Xs arbitrarily well by holomorphic functions on X. 

We have the analoguous result for cochains. 

6.3 Proposition. Assume that "If' is an open covering of X and that ~ E 
Zl("If',O) is a cocycle with ~IXs = J(1/s) , ~ = 0(17). Then, by changing 1/, 
the difference 17 - 17s can be made arbitrarily small on Xs' 

Remark. We can repl~ce X by a set Xs+e:, with an E > 0, since such a 
manifold is contained in X. 

Solution of the Levi Problem. Let X be an n-dimensional strongly 
pseudo convex manifold that as above is endowed with a smooth exhaustion 
function p that is strictly plurisubharmonic on {p ~ I}. 

The solution of the Levi problem will be given in three steps. First we prove 
an approximation theorem for Xs and X. 

6.4 Theorem. Every holomorphic function in X s , s ~ 1, can be approxi­
mated by holomorphic functions in X. 

PROOF: There is a maximal swith s < S:S: 00 such that every holomorphic 
function on Xs can be approximated by those on Xs. We have to prove s = 00. 

If this were not the case, we could approximate each holomorphic function on 
Xs by those on X s+c with E > O. This would imply the approximation of the 
holomorphic functions on Xs by those on X s+c and contradict maximality. _ 

Assume now that K is a compact set in X s , s ~ 1. Then K is also contained 
in X t for t > s. We denote the holomorphically convex hull of K in X t by 
Kt . In the second step of our proof we show that Kt = Ks for every t 2: s. 

~ ~ 

It is always the case that Ks C Kt, and, due to the approximation results, 
Kt n Xs = Ks. Suppose that there exists at> s such that Kt is bigger 
than Ks. Then we can find a minimal tf ~ s with Kt C X 1'. It follows that 
tf < t (since X t is holomorphically convex), and there is at least one point 
Xo E Kt n oXt ,. We choose a very small number E > 0 and consider the set 
Xt'+c' 

Let A(xo) C Xt'+c be the analytic tangent to Xt' at xo. We may assume 
that there is a neighborhood U = U(xo) and a holomorphic function gin U 
such that A(xo) = {x E Un Xt'+c : g(x) = O}, and we find a meromorphic 
function f on Xt'+c with poles only on A(xo). 
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Then we construct a sequence of points Xv outside of X t , converging to Xo 

and meromorphic functions fv on Xt'+e with poles only on A(xv). This can 
be done in such a way that fv converges to f with respect to the Fubini metric 
in C (which will be described in Section VI.3). Then f" is holomorphic in 
a neighborhood of Xt', Ifv(xo)1 takes arbitrarily large values, and sUPKlfvl 
stays bounded. By approximation we can find a holomorphic function r on 
X t such that 1f*(xo)1 > sUPKIf*I, i.e., Xo ¢ Kt . This is a contradiction. 

Let us give some more details for the construction of i and Iv. To begin with i, 
we use the open covering %' = {UI , U2} of X t,+< given by U1 = Un X t ,+< and 
U2 = X t ,+< - A(xo). Since dim H1(Xt'+e, 0) < 00, there are complex numbers 
al, ... ,am such that the function a := alg- 1 + ... + amg-m is a cocycle on U12 
that is cohomologous to zero. Then a = 12 - it, with it E O(Ul) and 12 E 0(U2). 
So we get the meromorphic function i that is equal to a + it on U1 , and equal to 
h on U2. It has A(xo) as polar set. 

We can find a holomorphic family of analytic tangents A(z), always given by one 
holomorphic equation gz = 0, with z arbitrarily near to Xo. If m is big enough, then 
for every z we have a vector space Pz of principal parts p = alg;l + ... + amg;m 
and a linear map <flz : Pz -+ H 1(Xt '+e, 0). Let Ez C Pz be the kernel of <flz. Then 
dim(Ez ) ~ 1, and there is a minimal dimension mo :S m for Ez that will occur 
at generic points. Taking Ez only at generic points and forming the closure for 
z -+ xo, we get a regular holomorphic family of vector spaces. If we always take 
meromorphic functions iz with principal part in Ez, we get a continuous family 
(fz) and the desired convergence fz -+ i for z -+ Xo· 

The last step of our proof is simple: 

Let K c X be any compact set. Then K is contained in some K s , s 2: 1, and 
from above we know that Kt = Ks for every t > s. Let X be an arbitrary 
point of the holomorphically convex hull K. Then x E Xt, for some t > s. If f 
is a holomorphic function in Xt, then there is a holomorphic approximation 
f E O(X). Since we have lj(x)1 ::; sUPKIf!, we can conclude that If(x)1 ::; 
sUPKlfl as well. So x E Kt , and K = Ks. This proves the following theorem. 

6.5 Theorem. If X is strongly pseudoconvex, then X is also holomorphi­
cally convex. It is a Stein manifold if and only if there are no compact analytic 
subsets in X of positive dimension. 

In addition, we have the following result. 

6.6 Proposition. If X contains a compact analytic subset A of positive 
dimension, then already A C Xl. 

The PROOF is the same as that for K = Ki . 

We also obtain the following theorem. 
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6.7 Theorem. If X is a strictly pseudoconvex (i.e., I-complete) manifold 
and V a holomorphic vector bundle on X, then Hl(X, V) = o. 
PROOF: This has already been proved for every distinguished Stein mani­
fold X s , s 2: 1. By approximation of coboundaries we get the result for X . 

• 

The Compact Case. Let X be a compact complex manifold, and 
V a holomorphic vector bundle on X. We can find a pair of finite open 
coverings (%', %'*) for X consisting of concentric cuboids Ui cc Ut such 
that H 1(Ui , V) = Hl(Ut, V) = 0 for all i. Then CO(%" V), Zl(%" V) and 
Zl (%' * , V) are Frechet spaces. The finiteness of the coverings is essential here! 

Again we consider the linear mappings 

such that u is surjective, v is completely continuous, and Im( u + v) = 
Bl (%', V). Since the coverings are acyclic, it follows from the theorem of 
Schwartz that dime Hl(X, V) < 00. 

All restriction maps r(Ut, V) ~ f(U, V) are completely continuous. From 
this it also follows that id : rex, V) ~ rex, V) is completely continuous, 
and f(X, V) is finite-dimensional. So we have the following theorem. 

6.8 Theorem. If X is a compact complex manifold, then 

dime rex, V) < 00 and dime Hl(X, V) < 00. 

Exercises 

1. Apply the results of this section to domains in en. What do strong and 
strict pseudoconvexity mean in this case? 

2. Let X be a strongly pseudoconvex complex manifold. Prove that there 
is a compact subset K C X such that every irreducible compact analytic 
subset A C X of positive dimension is contained in K. 

3. Let X be a Stein manifold and V a holomorphic vector bundle over X. 
Prove that for every Xo E X there exists an open neighborhood U = 
U(xo) c X and holomorphic sections 6, ... , f.N E rex, V) such that for 
every x E U, Vx is generated by 6(x), ... ,f.N(X). 



Chapter VI 

Kahler Manifolds 

1. Differential Forms 
The Exterior Algebra. Let X be an n-dimensional complex manifold 
and x E X a point. We consider complex-valued alternating multilinear forms 
on the tangent space Tx(X) (abbreviated by T). 

We assume that the reader is familiar with real multilinear algebra! 

Definition. A complex r-form (or r-dimensional differential form) at 
x is an alternating lR-multilinear mapping 

cp:Tx···xT~C. 
~ 

r-times 

The set of all complex r-forms at x is denoted by pr. 

Remarks 

1. By convention, pO = c. pI = P(T) is the complexification of the 2n­
dimensional real vector space T; = HomJR(T,lR). 

2. Since T is (2n )-dimensional over lR, every alternating multilinear form 
on T with more than 2n arguments must be zero. So pr = 0 for r > 2n. 

3. In general, pr is a complex vector space. We can represent an element 
cp E pT uniquely in the form cp = Re(cp) + i Im(cp), where Re(cp) and 
Im(cp) are real-valued r-forms at x. Then it follows directly that 

dimcpr = C;)· 
4. We associate with each element cp E pr a complex-conjugate element 

rp E pr by setting c,o(v}, ... , vr ) := cp(v}, ... , vr ). We have: 
(a) rp = Re(cp) - i Im(cp). 
(b) 7p = cpo 
(c) (cp + t/J) = -;p + ¢. 
( d) cp is real if and only if c,o = cp. 

Now let cp E pr and t/J E ps be given. The wedge product cp A t/J E pr+s is 
defined by 
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Then <p A 1J!(v, w) = <p(v) ·1J!(w) - <p(w) ·1J!(v) for I-forms <p, 1J!, and in general: 

1. <p A 1J! = (-lts1/J A <p (anticommutativity). 
2. (<p A 1/J) A W = <p A (1J! A w) (associativity). 

In particular, t.p A <p = 0 for every I-form <po 

We also write /{ F instead of Fr. With the multiplication "A" the vector 
space 

00 2n 

AF:= EBArF = EBFr 

r=O r=O 

becomes a graded associative (noncommutative) (:-algebra with 1. It is called 
the exterior algebra at x. 

For the moment let Wj := dZ j and wn+j := d:Zj for j = 1, ... ,n. Then Fr is 
generated by the elements 

W V1 A ... A W Vr , with 1 :::; Vl < ... < Vr :::; 2n. 

The number of these elements is exactly (2;). So they form a basis, and every 
<p E Fr has a uniquely determined representation 

<p= 

with complex coefficients aV1 .. 'Vr' 

Forms of Type (p, q). Now we consider the influence of the complex 
structure. 

Definition. Let p, q E No and p + q ~ r. A form t.p E Fr is called a 
form of type (p, q) if 

1.1 Proposition. If <p E Fr is a nonzero form of type (p, q), then p and q 
are uniquely determined. 

PROOF: Suppose <p is of type (p, q) and of type (p', q'). Since <p =I 0 there 
exist tangent vectors Vl, ... ,Vr such that <p( VI, •.• , vr ) i= O. Then 
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) { 
cP(fl. rp( VI, ..• , Vr ), 

rp( CVl , ... ,CVr = p' 7"/' ( ) 
C C . rp VI,· .. ,Vr . 

Therefore, cpcq = cP' cq' for each c E C. If c = eit , then eit(p-q) = eit(p' -q'), 

for arbitrary t E IR. That can hold only when p :- q = p' - q'. Since p + q = 
p' + q' = r, it follows that p = p' and q = q'. • 

1.2 Proposition. 

1. Ifrp is of type (p,q), then rp is of type (q,p). 
2. If rp, 'IjJ are both of type (p, q), then rp + 'ljJ and>..· rp (with>" E C) are also 

of type (p, q). 
3. If rp is a form of type (p, q) and'IjJ of type (p', q'), then rp "'IjJ is of type 

(p+p',q+q'). 

We leave the PROOF to the reader. 

Example 

We have dzv(cv) = (cv)[zvl = c· (v[zv)) = c· dzv(v), since Zv is holomorphic. 
So dzv is a form of type (1,0). 

From dZv = dzv it follows that dZv is a form of type (0,1). 

Then dz· " ... " dz' "<lz' " ... " dZ· (with 1 < il < ... < i < nand '1 'p J1 Jq - P -
1 S]1 < .,. < jq S n) is a form of type (p, q). 

1.3 Theorem. Any r-form rp has a uniquely determined representation 

rp = L rp(p,q) , 
p+q=r 

where rp(p,q) E FT are forms of type (p, q). 

PROOF: The existence of the desired representation follows from the fact 
that the forms dZi1 " .•. " dzip "<lzj1 " ... " <lzjq constitute a basis of Fr. 

For the uniqueness let 

Then L 'ljJ(p,q) = 0 for 'IjJ(p,q) := rp(p,q) - ;p(p,q). 
p+q=r 

It follows that 

0= L 'ljJ(p,q)(CV}, ... ,CVr ) = L cP(fl.'ljJ(p,q)(v}, ... ,vr ). 
p+q=r p+q=r 
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For fixed (VI, ... ,VT ) we obtain a polynomial equation in the ring e[c, c], and 
all coefficients 'ljJ(p,q) (VI, •.. , VT ) must vanish. Since we can choose VI, ... , V T 

arbitrarily, we have cp(p,q) = ij5(p,q) for all p, q. • 

Bundles of Differential Forms. Let X be an n-dimensional complex 
manifold. We denote by F(X) the complexified cotangent bundle T*(X) 0iC. 
It has the spaces F(Tx(X)) = Hom]R(Tx(X), q = TAX)* 0 e of complex 
covariant tangent vectors as fibers, so it is a (topological) complex vector 
bundle of rank 2n. I It even has a real-analytic structure, but not a complex­
analytic structure. 

If E is a (topological) complex vector bundle of rank m over X, then for 
o S r S m we can construct a bundle t{ E of rank (';) over X such that 
(/\TE)X = /\T(Ex) for every x E X. If E is given by transition functions gij, 

then /\T E is given by the matrices g;;) whose entries are the (r x r) minors 
of 9iJ. 

In particular we have the vector bundles /\T F(X) of rank (~n), with a real­
analytic structure. 

Definition. An r-form (or an r-dimensional differential form) on an 
open set U C X is a smooth section wE r(U, /\T F(X)). 

So an r-form w on U assigns to every x E U an r-form Wx at x. If Z1, ..• ,Zn 

are local coordinates in a neighborhood of x, then Wj := dZ j and wn+j := Uzj 
form a basis of the I-forms on this neighborhood, and there is a representation 

Wx = a· . (x)w, 1\ ... 1\ W 
lI .. ·t r 1..1 lr' 

where x H ai, ... ir(X) are smooth functions. 

Henceforth, the set of all (smooth) r-forms on U will be denoted by gr(U), 
and the subset of all forms of type (p, q) by JiI(p,q) (U). 

If f is a smooth function on U, then its differential df E Jill (U) is given by 
x H (df)x. In local coordinates we have 

n n 

df = L fzv dz.., + L hv Uz..,. 
..,=1 1'=1 

A (smooth) vector field is a smooth section of the tangent bundle T(X). So 
in local coordinates it can be written in the form 

1 The tangent bundle T(X) is a complex-analytic vector bundle of rank n. Here 
we denote its real dual bundle by T*(X). It is a real-analytic bundle of rank 
2n (over Ii). The complex dual bundle T'(X) of T(X) (with fiber T~(X) 
Homc(T",(X),C) ) is a complex-analytic bundle of rank n over C. 
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where the coefficients ~II are smooth functions. Then we can apply df to such 
a vector field and obtain 

n n 

df(~) = 2:~lIfzv + 2:Lhv. 
11=1 11=1 

For any open set U the differential can be generalized to the Poincare map 
d = du : dr(U) -t d r+1(U) in the following way: 

Ifw= ai, .. . ir Wi, /\ ... /\ Wir is the basis representation in a 
1:::;:i,<···<i r :::;:2n 

coordinate neighborhood U, then 

du(w) := 

One can show that this definition is independent of the choice of the local 
coordinates and that d has the following properties: 

1. If f is a smooth function, then df is the differential of f. 
2. dis IC-linear. 
3. dod = O. 
4. dv(wlv) = (duw)lv, for w E dr(U). 
5. If <p E dr(U) and 'IjJ E dS(U), then d(<p /\ 'IjJ) = dip /\ 'IjJ + (-It<p /\ d'IjJ. 
6. d is a real operator; that is, dfp = dip. In particular, dip = d(Re <p) + 

i d(Im<p). 

The differential dw is called the total derivative or exterior derivative of w. 

Now we consider the decomposition of an r-form into a sum of forms of type 
(p, q). We use some abbreviations. If I = (i1, ... , ip) and J = (jI, ... ,jq) are 
multi-indices in increasing order, we write 

instead of 
ai1 ... i",j, ... jqdzi , /\ ... /\ dzi " /\ azj, /\ ... /\ azjq. 

So a general r-dimensional differential form w has the unique representation 

w = 2: L aIJdzI /\azJ, 
p+q=r III=p 

IJI=q 

and the Poincare differential of w is given by 
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dw = L L daIJ 1\ dZI 1\ azJ. 
p+q=r Ill=p 

jJl=q 

If f is a smooth function, then df = 8 f + 8 f, with 

n n 

8f = Lfz"dzv and 8f = L h" azv . 
v=l v=l 

Here of has type (1,0), 8f has type (0,1), and df type (1,1). 

1.4 Proposition. If <p is a form of type (p,q), then d<p has a unique de­
composition d<p = 8<p + 8<p with a (p + 1, q)-form 8<p and a (p, q + I)-form 
8<p. 

PROOF: If <p = L-l,JaIJdzl 1\ azj, define 

8<p := L 8al J 1\ dZI 1\ azJ and 8<p:= L 8a[ J 1\ dz[ 1\ azJ. 
I,J 1,J 

Then d<p = 8<p + 8<p is the unique decomposition of the (p + q + I)-form d<p 
into forms of pure type. _ 

For general r-forms the derivatives with respect to z and z are defined in the 
obvious way. (In the French literature one writes d' <p instead of 8<p and d" <p 
instead of 8<p.) 

1.5 Theorem. 

1. 8 and 8 are C>linear operators with d = 8 + 8. 
2. 88 = 0, 88 = 0, and 88 + 88 = o. 
3. 8,8 are not real. We have 

8<p = fi<p and 8<p = Ocp. 
4. II <p is an r-Iorm and'lj; is arbitrary, then 

8( <p 1\ 'I/J) = 8<p 1\ 'Ij; + (-1 t <p 1\ 'I/J, 
8(<p 1\ 'I/J) = 8<p 1\ 'Ij; + (-It <p 1\ 8'1j;. 

PROOF: It suffices to prove this for forms of pure type. Then the formulas 
can be easily derived from the corresponding formulas for d and the unique­
ness of the decomposition into forms of type (p, q). _ 

Remark. Sometimes the operator de := i(8 - 8) will be used. Then de<p = 
deep, so de is a real operator with dCdc = O. We have ddc = 2i 88. 

A smooth function f is holomorphic if and only if 8 f = o. Correspondingly, 
it follows for a (P,O)-form <p = ~III=p aI dz[ that 8<p = 0 if and only if all 
coefficients al are holomorphic. Hence we make the following definition: 
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Definition. Let <p be a p-form on the open set U eX. 
1. <p is called holomorphic if <p is of type (P,O) and 8<p = O. 
2. <p is called antiholomorphic if and only if <p is of type (O,p) and 

8<p = o. 
The set of holomorphic p-forrns on U is denoted by nV(U). 

Clearly, <p is antiholomorphic if and only if <j5 is holomorphic. 

Exercises 

1. Let X be an n-dimensional complex manifold, f a smooth function on 
X, and w a smooth form of type (n - 1, n - 1) on X. Prove that 

2. A real differential form of type (1,1) is called positive if iw{v, v) > 0 for 
every tangent vector v =1= o. Prove that i88/1z/lz is a positive form on en. 

3. Consider the (n, n - I)-form "10 on en defined by 

n 

"10 := (_1)n(n-l)/2 2) -l)kZk dz1 /\···/\ dZn /\ azl/\···/\ di;./\ ... /\ azn 

k=l 

and calculate 8"10. Let f be a holomorphic function on an open neigh­
borhood of the closed ball Br(O), and w := (J(z)/IIz/l 2n) . "10. Show that 
dw =0. 

4. Let X := lP'n. On Uo := {(zo : Zl : ... : zn) E lP'n : Zo =1= O} we use 
the holomorphic coordinates tv = zv/zo. Then wo = dtl /\ ... /\ dtn is 
a holomorphic n-form on Uo. Show that Ii holomorphic n-form on an 
open subset U c X is the same as a holomorphic section over U in the 
canonical bundle Kx. Prove that there is a meromorphic section s in Kx 
with slua = Wo and dives) = -en + l)Ho, where Ho = {zo = O} is the 
hyperplane at infinity. 

2. Dolbeault Theory 
Integration of Differential Forms. We recall some results from real 
analysis. 

Let G c en ~ ]R2n be a domain. A closed subset MeG is called an 
r-dimensional submanifold of class <;fk if for each z E M there exists a neigh­
borhood U of z in G and a <;fk map f : U --+ jR2n-r such that: 

1. Un M = f-l(O). 
2. The rank of the (real) Jacobi matrix of f is equal to 2n - r. 
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It follows from the (real) implicit function theorem that for any z E M there 
is a neighborhood U of z, an open set W c IRr , and a '{/k map r.p : W -7 G 
such that: 

1. r.p maps W homeomorphically onto U. 
2. The rank of the Jacobian matrix of r.p is equal to r. 

Then r.p is called a local parametrization of M. 

An r-dimensional differential form W = 2:p+q=r 2:[,J aIJ dz[ A cLzJ is called 
an r-form of class '{j'k if all coefficients are functions of class k. Then dw is 
an (r + I)-form of class 'ifk-l. We always assume that k ~ l. 

If 4> : Bl -7 B2 is a 'ifk map between domains Bl c em and B2 c en, then 
every r-form w of class '{j'k on B2 can be lifted back to Bl by 

(4)*W)z(Vl,'''' vr ) := W4>(z)(4>.Vl, ... , ~*vr). 

If UI, ... ,U2n are real coordinates in B2 then 

4>* (,",a . . du A".Adu.) = '"'(a· . o4»d(u· o4»A···Ad(u· 04». L...; 11···1r 11 tr ~ 'll···'lr 1} tr 

Therefore, 4>* W is again an r-form of class 'ifk. We have: 

1. 4>*(WI A W2) = 4>*WI A 4>*W2' 
2. 4>*(dw) = d(4)*w), in particular 4>*(df) = d(J 0 4». 

Now let W = a dZI A ... A dZn A liZ l A ... A cLzn be an arbitrary (2n)-form. 
Since dZi A liZi = -2i dXi A dYi, it follows that 

w a· (_1)n(n-l)/2dz1 A cLzl A··· A dZn A cLzn 
= a· (_l)n(n-l)/2 . (-2)nj ndxl A dYl A ... A dXn A dYn 

a· (-1)n(n+1)/2(2i)ndxl A dYl A··· A dXn A dYn. 

We writ.e a := a· (_1)n(n+1)/2(2i)n. If Been is a bounded domain and a 
continuous in a neighborhood of B, then 

In w:= In a(xl + iYI,"" Xn + jYn) dx1dYl ... dXndYn. 

If MeG is an r-dimensional sub manifold of class C(?k, w an r-form of class 
C(j'k, and K C M a compact subset that is contained in the range of a local 
parametrization r.p : W -7 M, then we define 

L w:= i-l(K) r.p*w. 

The integral does not depend on the parametrization if we allow only changes 
of parameters with positive Jacobi determinant. If K cannot be covered by 
a single parametrization, then one uses a partition of unity. 
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Finally we have the famous Stokes's theorem. 

2.1 Stokes's theorem. Let G c en be a bounded domain with smooth 
boundary and w a smooth (n - 1) -form in a neighborhood of G. Then 

{ w = ( dw. 
Jac Jc 

The Inhomogeneous Cauchy Formula. We consider a generaliza­
tion of Cauchy's integral formula in the I-dimensional case. Let G cc e be 
a domain with smooth boundary, and U = U (G) an open neighborhood of 
the closed domain. 

2.2 Theorem. Let f be a continuously differentiable (complex-valued) func­
tion on U. Then, for Z E G, we have 

fez) = ~ ( f(() d( + ~ { (af joc,)(() d( 1\ dC,. 
2m J ac ( - z 2m J c ( - Z 

PROOF: Let z E G be fixed, choose an r > 0 such that the disk Dr(z) lies 
relatively compactly in G, and define Gr := G - Dr(z). The differential form 

w(z) := ~. f(() d( 
27T1 (- z 

is of class 'ifl in an open neighborhood V = V(Gr), and its Poincare differ­
ential is 

dw(z) = -~ . (of jac,)(() d( 1\ dC,. 
27T1 (- z 

By the theorem of Stokes we have 

1 dw(z) = ( w(z) = ( w(z) - ( w(z). 
Cr Jacr Jac JaOr(Z) 

If 0 < c < rand Ac,r := Dr(z) - Dc(z), then for any continuous function 9 
on Dr(z), 

J g(() d( 1\ d( 
A.,r (- Z 

l r 121< g(z + e· eit ) . 
= 't ·2ledtde 

c 0 e' e l 

2i l r 102
1< g(z + e . e it ) . e- it dt de. 

This integral exists and stays bounded if c tends to zero. So 

( dw(z) = f w(z) - lim f w(z). 
Je Jac r---'rO Jaor(z) 
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In order to show that the limit on the right side is equal to fez) we estimate 

I f w(z) - fez) I = 
laor(z) 

12:i 127r fez + re it ) • i dt - :7r ! fez) dt I 
= 12~ 127r (f(z + re it ) - fez)) dt I 
< sup If(z + re it ) - f(z)1 -+ 0 for r -+ o. 

[O,27r] 

It follows that fez) = faa w(z) - fa dw(z). • 

The a-Equation in One Variable. The Poincare lemma from real 
analysis can be formulated as follows: 

Let G c en be a star-shaped (e.g., a convex) region, <p E ,sdr(G), r > 0, 
and d<p = O. Then there exists a 1/J E ,sdr-1(G) with dt/J = <po 

We want to prove a similar theorem for the a operator. For this we start in 
one variable using the integral 

Chf(z) := -21 . f (f«) d( A i(, 
7r1 la - z 

for bounded functions f E '6'1 (G). 

2.3 Theorem. Let f E '6'1(C) be a function with compact support. Then 
there is a continuously differentiable function u on e with U z = f. 

PROOF: Choose an R > 0 such that supp(f) cc D := DR(O). Then u := 
Ch f is a continuously differentiable function on D, and we can assume that 
the integral is taken over the whole plane. It follows that 

( ) = _1 i f« + z) dl" A d7' 
u z 2. ( " ", 7r1 C 

and therefore (applying formulas for the derivative of parametric integrals) 

Uz(z) = ~ f 8f /8((+z)d(Ad( 
27r1 lc ( 
~ f 8f /8(() d( A d( 
2m lc (- z 

= ~ f 8f/8(() d( Ad( 
2mlD (-z 

= fez) - ~ f f«() d( = fez), 
2m laD (- z 
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since IlaD == o. • 

2.4 Corollary. Let G cc e be a bounded domain, and I E 'ifl(G) a 
bounded lunction. Then there exists a continuously differentiable function u 
on G with U z = I. 

PROOF: Again we define u := ChI. 

Let Zo E G be an arbitrary point and D := Dr(zo) a disk with D cc G. 
There exists a smooth function {! on e with 

1. O:S {! :s 1, 
2. (!ID == 1, 
3. supp({!) cc G. 

We define II := {!. I and h := I-II. Then II is a continuously differentiable 
function on e with IdD = liD, and h a function on G with hiD == o. 
There exists a 'if 1 function U1 on e with (u1h = II. The function U2 := Chh 
is defined on G, and given by 

1 1 h(() -
U2(Z) = -2 . -; - d( 1\ d(. 

7rI G-D" - Z 

The integrand is continuous and bounded on G - D, and holomorphic in z, 
for zED. 

Obviously, u = U1 + U2 on G, and on D we have Uz = (u1h = II = f. • 

A Theorem of Hartogs. Now we are able to prove the so-called Kugel­
satz, also known as Hartogs' theorem: 

2.5 Theorem. Let G c en be a domain, n ?: 2, KeG a compact subset. II 
G - K is connected, any holomorphic lunction I on G - K has a holomorphic 
extension 1 on G. 

PROOF: Choose an open neighborhood U = U(K) cc G and a smooth 
function (! on en with supp(e) cc G and {!Iu == 1. Define 

We have 

8{! 
gk := I· ~, for k = 1, ... , n. 

UZk 

8gk _ I 8 2{! _ 8g1 
Ozl - . OzkOzI - Ozk· 

For fixed z" = (Z2' ... , zn) we define 
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Then U Z1 = g1 (we can apply the previous corollary, since g1 has compact 
support), and for k ~ 2 we get 

~ r (gdzk «(, Z2,"" zn) d( 1\ de, 
21l",lc (- Zl 

~ r (gkhl «(, Z2,···, zn) d( 1\ de, 
21l"1 lc (- Zl 

gk(Zl, Z2,···, zn). 

For z ~ supp(e) we have UZk (z) = 0, k = 1, ... , n. Therefore, U is a holomor­
phic function outside supp(e). Since g1 «, z') = 0 for arbitrary ( and large 
IIz'lI, it follows that U(Zb z') = 0 for large liz' II , and so U is defined everywhere 
and is identically zero on the unbounded connected component Z of G - K. 

There exists a nonempty open subset V of Z n (G - supp(e» C G - K. The 

function 1:= (1 - e) . f + u is defined on G and coincides with f on V. In 
addition, we have 

1- - { -f· l?Zk + U Zk = -gk + gk = 0 in G - K, 
Zk - U Zk = gk = 0 in U. 

So 1 is holomorphic in G. -
Dolbeault's Lemma Before proving the a analogue of Poincare's 
lemma we need the following result. 

2.6 Proposition. Let P cc Q be polydisks around the origin in en. Let 
9 be a smooth function in Q that is holomorphic in Zk+b"" Zn, for some 
k ~ l. 

Then there exists a smooth function u in Q that is again holomorphic in 
Zk+l,"" Zn such that UZk = 9 on P. 

PROOF: There are disks E cc D around 0 in the zk-plane such that P = 
P' x E x P" and Q = Q' x D x Q". Let e be a smooth nonnegative function 
on e with elE == 1 and elc-D == O. Then we define 

( ) ._ -1-1 e«() . g(Zb'" ,Zk-l, (, Zk+1,"" Zn) dl" d7' 
U Zb"" Zn .- 2 . I" ., 1\ .,. 

1l"1 C ., - Zk 

The function U is defined on Q, and the integrand has compact support. 
Therefore, 

UZk(z) = (e' g)(z) = g(z) on P, 

and by the rules for parametric integration we get U z, = 0 for i = k+ 1, ... , n. 
So U is holomorphic in these variables. -
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2.7 Dolbeault's lemma. Let P cc Q be polydisks around the origin in 
en. For each r.p E pfp,q ( Q) with q > 0 and 8r.p = 0 there exists a t/J E 
PlP,q-l(P) with 8t/J = r.plp. 

PROOF: Without loss of generality we may assume that p = O. Let 
k ::; n be the smallest number such that r.p does not involve the differen­
tials cLzk+b"" cLzn . We carry out the proof by induction on k. 

For k = 0 there is nothing to prove, since q > O. 

Now we assume that k > 1 and the theorem has already been proved for 
k - 1. Then we write 

r.p = cLzk /\ a + (3, 
where a E PlO,q-l(Q) and (3 E Plo,q(Q) are forms not involving cLzk, ... , cLzn . 

If a = I:jJI=q-l aJcLzJ (where I:* means that cLzk, ... , cLzn do not occur), 
then 

o = 8r.p = -cLzk /\ 8a + 8(3 

- 2:cLzk/\cLzv /\ ( 2:" (aJhVcLzJ) +8(3. 
v#k IJI=q-l 

Then it follows that (aJhv == 0 for 11 > k. By the above proposition there 
are smooth functions AJ in Q that are holomorphic in Zk+l,"" zn such that 
(AJ hk = aJ on P. We define 1 := I:jJI=q-l AJ cLzJ. Then 

81 = 2:* 2:(AJhv cLzv /\ cLzJ 
IJI=q-l v(/.J 

2:* (ai cLzk /\ cLzJ + 2: (AJ hv cLzv /\ cLzJ) 
IJI=q-l v<k v(/.J 

= cLzk /\ L" aJ cLzJ + ... 
IJI=q-l 

cLzk /\ a + Tf, 

where Tf does not involve cLzk, .. ' ,cLzn • We see that also (3-Tf does not involve 
cLzk, ... ,cLzn . 

Since (3-Tf = (r.p-cLzk/\a)-(81-cLzk/\a) = r.p-81, we have 8(.8-Tf) = 8r.p = 0, 
and the induction hypothesis implies that there is a form u E pfO,q-l(P) with 
8u = ((3 - Tf)lp· Setting t/J := u + 1, it follows that 

8t/J = ((3 - Tf) + (dZk /\ a + Tf) = r.p on P. 

This completes the proof. _ 

We immediately obtain the following result for manifolds X: 
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If U c X is an open set and cp E .Q(°,q(U) a smooth form with q ~ 1 
and acp = 0, then for every x E U there exists an open neighborhood 
V = Vex) c U and a form 1/J E .Q(0,q-l(V) with a1/J = cplv. 

Without proof we mention the following result, which provides more precise 
information (see [GrLi70] and [Li70]). 

2.8 Theorem (I. Lieb). Let G cc Cn be a Levi convex domain with 
smooth boundary and w = LJ aJ azJ a smooth (0, q)-form on G with aw = o. 
Moreover, suppose that there is a real constant M > 0 with 

IIwl! := m;xs~plaJI ::; M. 

Then there exists a constant k independent of wand a form 1/J of type (0, q -1) 
on G with a1/J = wand 111/J1I ::; k· M. 

Siu and Range generalized this theorem to domains with piecewise smooth 
boundary (see [RaSi]). L. Hormander has given a quite different proof for the 
solution of the a-equation with L2-estimates on pseudo convex domains using 
methods of functional analysis (see [Hoe66]). In the meantime there exists a 
big industry of solving a-equations, but we do not want to go here into detail. 

Dolbeault Groups. Let X be an n-dimensional complex manifold and 
U C X an open subset. Then we have natural inclusions2 

E : C y .Q(°(U) = ¥iOO(U) and E: OP(U) y dP,o(U). 

Together with the Poincare differential d and the a-operator we get the fol­
lowing sequences of C-linear maps: 

1. The de Rham sequence 

If U is diffeomorphic to a star-shaped domain, then the sequence is exact, 
i.e., {f E d°(U) : df = O} = C and ZT(U) := Ker(d : dT(U) -t 
dr+l(U» is equal to Br(u) := Im(d : dr-leU) -t dr(U». In general, 
we have only Br(u) C ZT(U) (because dod = 0). 

2. The Dolbeault sequence 

We define 

{cp E dP,q (U) : acp = O} for 0 ::; q ::; n, 

.- 8(dp,q-l(U» for 1 ::; q ::; nand BP,o(U):= O. 

Then Bp,q c Zp,q, because 8 0 8 = 0 (respectively 0 C OP (U». 

2 Here C stands for the set of locally constant functions. 
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Definition. The complex vector space Hp,q(U) := Zp,q(U)j Bp,q(U) 
is called the Dolbeault (cohomology) group of type (p, q) of the set U, and 
the complex vector space Hr(u) := zr(U)jBr(u) is called the rth de 
Rham (cohomology) group of U. 

We have 

For q 2: 1 the condition Hp,q(U) = 0 means that for every 'P E .f2Ip,q(U) with 
8'P = 0 there is a 7/J E .f2Ip,q-l(U) with 87/J = 'P. From the solution of the 
a-equation (using, for example, (Hoe66], chapter IV, or Dolbeault's lemma 
and an approximation theorem due to Oka) we obtain that HP,q(G) = 0 for 
every strictly pseudoconvex domain G c en and q 2: 1. 

If U is connected, then HO(U) = C. If U is star-shaped, then Hr(u) = 0 for 
r > o. 

Now let n~ := APT'(X) be the holomorphic vector bundle of holomorphic 
p-forms on X (in particular, n~ = Ox, nk = T'(X) and nx = Kx). Then 
np(U) = r(U, n~) for every open set U C X. We construct a linear map 

For every ~ E Z1 (X, n~) there is an open covering %' = {Ui : i E I} of X 
such that ~ is given with respect to this covering. Then we can pass to any 
refinement. So we may assume that %' is as fine as we want. 

Let ~ = (~ij) E Z1(%" n~) be given. Then ~ij E np(Uij ) and ~ij+~jk = ~ik on 
Uij k. Let (ek) be a partition of unity for the covering %'. We define differential 
forms 

'Pi := L ek~ki E .f2IP'°(Ui), for i E I. 
kE/ 

Here 'P = ('Pi) is an element of CO(%" AP'o F(X)) with J'P =~, since 

'Pj - <Pi = L ek(~kj - ~kd = L ek~ij = ~ij. 
k k 

In Uij we have 
8<pj - 8<Pi = 8~ij = o. 

:!herefore, a global (p, I)-form w on X can be defined by wlu; := 8<pj. Now, 
ow = o. So wE Zp,1(X). 

If ~ is a coboundary, ~ = J'f/ for some 'f/ E CO(%" n>:-), then 'f/j - 'f/i = 
~ij = <Pj - 'Pi on Uij , and a global (P,O)-form 7/J on X can be defined by 
7/Jlu; := 'f/i - <Pi· We get 
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8(-"p}lu; = 8CPi - 81/i = wlup since 1/i is holomorphic. 

So the assignment ~ H W induces a map D : HI (X, n~) -+ HP,I (X) by 
[~I H [wI. where [···1 denotes the residue class. One can show that this 
definition is independent of the covering OU. 

2.9 Dolbeault's theorem. The map D : Hl(X,n~} -+ HP,I(X} is an 
isomorphism. 

PROOF: We use the notation from above. To show that D is injective, we 
suppose that there is a (P,O}-form e on X with 8{! = w. Then 8CPi = 8elu;, 
for every i E I. It follows that 8(cpi - e) = 0 and therefore Ti := CPi - e is 
holomorphic on Ui . 

Then T = (Ti) is a cochain of holomorphic p-forms, with 

So the class of ~ vanishes. 

Now let an element w E Zp,l(X) be given. Since 8w = 0, we can find a 
covering OU = {Ui : i E I} of small polydisks (in local coordinates) with 
(p,O)-forms CPi such that 8CPi = WIUi' Then 8( CPj - CPi) = 0 for every pair 
(i,j), and ~ij := CPj - CPi lies in np(Uij }. Clearly, ~ = (~ij) is an element of 
ZI(OU, n~) whose cohomology class is mapped by D onto the class of w. This 
shows that D is surjective. _ 

Dolbeault's theorem has an interesting consequence: 

2.10 Theorem. Let X be a Stein manifold. If cP is a (p, I}-form on X with 
8cp = 0, then there exists a form"p on X of type (P,O) with 8"p = cpo 

PROOF: By Theorem B for Stein manifolds we have HI(X, n~) = 0 for 
every p, and the result follows from Dolbeault's theorem. _ 

Remark. Dolbeault's theorem is also true for forms of type (p, q) with 
q > 1. For the proof one has to introduce higher cohomology groups 
Hq(X, n~), to generalize Theorem B for those cohomology groups and to 
show that Hq(X, n~) ~ Hp,q(X). 

In an analogous way one can prove de Rham's theorem: 

where Hr(x, C) denotes the cohomology group with values in the set of 
locally constant functions (isomorphic to the singular cohomology group with 
values in C). 

Let OU be an open covering of X such that all intersections ULO "' Lk are con­
tractible. In the case r = 2 the de Rham isomorphism 
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is given as follows: 

Let wE d 2(X) be given, with dJ.JJ = O. On every Uv there exists an element 
(3v E .0"1 (Uv) with 

wlu ... = d{3v. 

Then d({31J. - (3v) = 0 on Uvw Therefore, on every UVIJ. there exists a smooth 
(complex-valued) function IvlJ. with 

d IvlJ. = {31J. - (3v. 

Now, d(flJ.>' - Iv>. + IvlJ.) = 0 on UV J1,>,. It follows that 

avlJ.>' := (f1J.>, - Iv>. + IVIJ.)lu ... I'>' 

is constant. 

So we have a = (avlJ.>') E Z2(OU,q, and the de Rham class [w] E H2(X) will 
be mapped onto the cohomology class [a] E H2 (OU , q. 

Exercises 

1. Let 'fJo be the (n, n-l)-form defined in Exercise 1.3, and I a holomorphic 
function on an open neighborhood of the closed ball Br(O). Prove that 

(n - I)! r I(z) 
1(0) = (2rri)n JaBr(O) IIzll 2n . 'fJo 

(integral formula of Bochner-Martinelli). 
2. Let (rv) be a monotone increasing sequence tending to r > 0, and let <p 

be a smooth (0, q)-form on pn(o, r) with q > 0 and 8<p = o. Construct a 
sequence ('l/Jv) of smooth (0, q - I)-forms on pn(o, r) such that 
(a) 8'I/Jv = <p on pn(o, rv). 
(b) l'l/Jv+1 - 'l/Jvl < 2- 11 on pn(o, rv-1) in the case q = 1, and 'l/Jv+1 = 'l/Jv 

on pn(o, rv -1) for q ~ 2. 
Show that Hp,q (P) = 0 for q ~ 1 and every polydisk P in en. 

3. Let X be a complex manifold and rr : E --t X a holomorphic vector 
bundle of rank q over X. If <p : Elu --t U x eq is a trivialization, there 
are sections ~v : U --t E defined by r.po~v(x) = (x,ev). The q-tuple 
~ = (~1' ... ' ~q) is called a lrame for E. Use the concept of frames to 
define differential forms of type (p, q) with values in E locally as q-tuples 
of forms. Let dP,q(U, E) be the space of (p, q)-forms with values in E 
over U. Show that there is an analogue of the Dolbeault sequence for 
forms with values in E. 
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3. Kahler Metrics 
Hermitian metrics. Assume that X is an n-dimensional complex man­
ifold. 

Definition. A Hermitian metric H on X is an assignment of a positive 
definite Hermitian form Hx to each tangent space Tx(X) such that locally 
in complex coordinates it can be written in the form 

n 

Hx = L 9ij(X) dziazj, 
i,j=l 

with smooth coefficients 9ij. 

If a : [0, 1] -t X is a differentiable are, we can assign to it a length 

LH(a) := 11 .J Ho.(t) (o(t), o(t)) dt, 

where o(t) = a.8j8t = I:v a~(t)8j8zv+ I:v (i~(t)8jOzv and a = (al, ... , an) 
in local coordinates. So 

L 9ij(a(t))a~(t)Qj(t) dt. 
i,j 

The length is positive if a is not constant. 

Now, for a tangent vector ~ E Tx(X) a norm can be defined by 

Then LH(a) = Jollla.8j8tllH dt. There is a uniquely determined differen­
tiable I-form a along a defined by 

It follows that a*a = adt, with a = a(a.8j8t) = lIa.8j8tIlH. Traditionally, a 
is called the line element and is denoted by ds, though it is not the differential 
of a function. We have 

LH(a) = 11 a*ds = idS, 

and a* Ha(t) = Ila*8j8tllt- dt2 = (dS)2. Therefore, we also denote the Hermi­
tian metric H by ds2 . 
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Let OJ! = (U.).EI be a (countable) open covering of X by local coordinate 
charts with coordinates (zl, ... , z~). Then there exists a partition of unity 
«(J.) for OJ!, and 

n 

ds2 := L{h· Ldziaz~ 
.EI i=1 

is a Hermitian metric on X. Thus we have the following result. 

3.1 Proposition. On every complex manifold there exists a Hermitian met­
ric. 

The Fundamental Form. In a local coordinate system we associate 
to our Hermitian form H = ds2 = Li,j gijdzidZj the differential form 

W = WH := i· Lgijdzi 1\ dZj . 
i,j 

(In the literature one often uses W = i /2 . L gijdzi 1\ az j.) We have w = 
-i· Li,j 9ijazi 1\ dZj = w. So W is a real (1, 1)-form. 

Let G = (gij I i,j = 1, ... , n) be the (Hermitian) matrix ofthe coefficients of 
H, and e, 1] the coordinate vectors of two tangent vectors €,.,.,. Then H(€,.,.,) = 
e·G·ijt. 

If we apply a holomorphic coordinate transformation 

z = F(w) = (h(w), ... , fn(w)), 

we obtain 

This can be written in matrix form as 

G(w) = JF(W) t . G(F(w)) . JF(W), 

which is the transformation formula for Hermitian forms. Thus F·WH = 
WF' H· SO the correspondence H H W is independent of the coordinates. The 
form W is globally defined. In fact, 

i,j 

i . (e· G . ijt - 1] . G . t) 
-2Im(H(€,.,.,)). 

The form W H is called the fundamental form of the metric H. 
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Definition. A Kahler metric on X is a Hermitian metric H with 
dwH = O. If X possesses a Kahler metric H, the pair (X,WH) is called a 
Kahler manifold. In this case we also say that X is a Kahler manifold. 

In general, a Hermitian metric H does not satisfy the condition dWH = O. 
There are many complex manifolds that cannot have a Kahler metric. How­
ever, on a Riemann surface X every 3-form vanishes. So every Riemann sur­
face is a Kahler manifold. 

Geodesic Coordinates. Assume that H is a Hermitian metric on the 
manifold X and that z = (Zl, ... , zn) are holomorphic coordinates around 
some point Xo EX. 

Definition. The coordinates z are called geodesic in Xo (with respect 
to H) if H = Li,j gij dzid:Zj and 

1. gij(XO) = bij, i.e. G(xo) is the unit matrix, 
2. (gij k (xo) = 0 and (gij hv (xo) = 0 for 1/ = 1, ... ,n, i.e., (dgij )xo = O. 

We will show that the existence of geodesic coordinates is a characteristic 
property of Kahler metrics. For that we need a lemma. 

3.2 Lemma. H = Li,j gijdzid:Zj is a Kahler metric if and only if 

(The first equation implies the second one.) 

PROOF: Let w = WH be the fundamental form of H. Then we have 

dw i· (2.:(9iJk dzv 1\ dZi 1\ d:Zj + 2:: (gijhv d:Zv 1\ dZi 1\ d:Zj ) 
I,J,1.I 'I.,J , 1./ 

i . (~)L«9ij)ZV - (gvj)z,) dzv 1\ dzi ) 1\ d:Zj 
} v<. 

+ L(L«9ivhj - (9iJhJ d:Zv 1\ d:Zj ) 1\ dZi ). 
• v<} 

3.3 Proposition. H is a Kahler metric if and only if there are geodesic 
coordinates around every point in X. 

PROOF: We consider a fixed point Xo EX. If geodesic coordinates exist 
around Xo, then all first derivatives of the gij are zero there, and dw = 0 at 
Xo· 
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Assume now that H is a Kahler metric. We take a local coordinate system 
around Xo such that Xo is the origin of this coordinate system and apply a 
unitary transformation z = w· U t such that U t • G(O)· U = En. We denote 
the new coordinates by z again and the new coefficient matrix of H also by 
G such that now G(O) = En. 
Finally, we apply a transformation 

1 t 
Zi = Wi + 2"w . Ai . w, i = 1, ... , n, 

where the Ai = (aL I k, l = 1, ... , n) are constant symmetric matrices. 
Then 

So the Jacobian J of the transformation is given by J(w) = En + Lk Ak ·Wk, 
with 

A = (i, I i = 1, ... , n ) 
k aJk . 1 . - J= , ... ,n 

The coefficient matrix G of H in the new coordinates is therefore given up 
to first order by 

G(w) = J(w) t . G(z) . J(w) 

= (En + LAkwk) t. G(z)· (En + LA!WI) 
k I 

~ G(z) + L Ak . G(Z)Wk + L G(z) . A!Wj. 
k I 

Since (Zi)wj (0) = Oij, we get (G 0 z)w.>. (0) = G z .>. (0) for all A. So Gw.>. (0) = 
G z". (0) + Ai. The first derivatives of the functions 9ij have to be zero at o. 
We can achieve this by setting 

a;.\ := -(gji)z". (0). 

Since dJJJ = 0, it follows that the matrices Ai are in fact symmetric (use the 
equations of the lemma). So geodesic coordinates exist at Xo. • 

Local Potentials. We assume that H is a Kahler metric on X and that 
U is a polydisk in a local coordinate system. We have the fundamental form 
w = i . Lid gijdzi 1\ azj of H with dw = O. Then by the Poincare lemma we 
can construct a realI-form <P with d<p = win U. We have the decomposition 
<p = <Po + <PI = Li ai dZi + Li ai azi. Comparing types, we get 8<po = 8<PI = 0 
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and acpo + 8CPI = w. Then, by Dolbeault's lemma, there are functions ho, hI 
in U with 8ho = CPo and ahl = CPl. It follows that 

i8a(i(ho - hI)) = a8ho + 8ah l = acpo + 8CPI = w. 

The operator iaa = ~ddc is real. So we can replace h* := i (ho - ht) by 
the arithmetic mean h of h* and its conjugate. Therefore, i8ah = w. The 
real-valued function h is called a local potential of the Kahler metric H. It is 
strictly plurisubharmonic, because 

wah = i L hz;zj dZ i /\ azj 
i,j 

is the fundamental form of a Hermitian metric; Le., the Levi form of h is 
positive definite. 

In the other direction, if local potentials h exist for a Hermitian metric H, 
then w = Wah is the fundamental form to H, and dw = o. So H is a Kahler 
metric. 

Pluriharmonic Functions. A real-valued function h on an open subset 
U C X is called pluriharmonic ifi8a = O. In this case the I-form cp = 8h-ah 
is closed (Le., dcp = 0) and purely imaginary (Le., of the form cp = i'!j;, with a 
real form '!j;). In fact, we have 7p = -cpo 

If U is simply connected and Xo a fixed point of U, we can define a function 
9 by g(x) := IX 'l/J. Then dg = 'l/J = -icp, so 8g = -i8h and ag = iah. Let Xo 
f := h + ig. It follows that 

af = ah + iag = ah - ah = 0, 

so f is holomorphic. Furthermore, df = 8 f = 28h. 

The Fubini Metric. The complex projective space IPn is one of the most 
important examples of Kahler manifolds. Let 

7f : (zo, ... , zn) t-+ (zo : ... : Zn) 

be the canonical projection from Cn+l - {O} onto IPn. The unitary linear 
transformations LA(Z) = z·A t ofCnH (with A E U(n+I), i.e., A E GLn(C) 
and At. A = En) give biholomorphic transformations cp = CPA: pn -+ pn, by 
CPA(7f(Z)) = 7f(LA(Z)). The set of these is the group PU(n + 1) of projective 
unitary transformations. If Xo, Xl are arbitrary points in the projective space, 
then there exists a projective unitary transformation cp with cp(xo) = Xl· 

On Cn +l we have the canonical strictly plurisubharmonic function 

p(Zo, . .. ,zn) := zozo + ... + znzn, 
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which is positive outside of O. It is invariant by unitary linear transformations 
ofCn +!. 

If Xo E pn is a point, we can find a simply connected neighborhood U(xo) 
and a holomorphic cross section f : U --* Cn +! - {O} for the submersion 1r. 

The cross section is determined up to multiplication by a nowhere vanishing 
holomorphic function h. We use log(po f) (or equivalently any function log(po 
(h· f)) as local potential for a Hermitian metric. Since 

i0810g(p 0 (h· f) = ia8[log(p 0 f) + log(h) + log(ii)] = ia810g(p 0 f), 

we obtain a well-defined Hermitian form H on pn. Its fundamental form is 

WH = ia810g(p 0 f). 

We now show that H is positive definite. 

Everything is invariant under the group PU(n + 1). If A is a unitary matrix, 
CPA (Xo) = Xl, and f a holomorphic cross section in a neighborhood of Xl, then 
1:= L Al 0 f 0 CPA is a section in a neighborhood of Xo. So po 1 = (po f) 0 CPA 
is a local potential of H near xo.1t follows that H xo ({,11) = H X1 (cp.{,CP.11)· 
Therefore, it is sufficiept to prove only the positive definiteness at the point 
Xo = (1 : 0 : .,. : 0). 

At this point a holomorphic cross section is given by 

f: (zo : ... : zn) I-t (1, Zl, ... , Zn). 
Zo Zo 

Therefore, we may take as potential the function 

log(p 0 f(zo, . .. , zn» = log(l + tltl + ... + tntn) 
= tltl + ... + tntn + terms of higher order, 

where ti = zdzo are the (inhomogeneous) local coordinates at Xo. Therefore, 
H({,11) = 6i1t + ... + {nfin' and this is positive definite. The metric H 
constructed in this way is called the Fubini metric (or Fubini-Study metric) 
on 1pm. Since H is given by local potentials, it is a Kahler metric. 

3.4 Proposition. If X is a Kahler manifold, then any closed submanifold 
Y C X is also a Kahler manifold. 

PROOF: We can restrict the given Kahler metric H on X to the submanifold 
Y. Then the restricted fundamental form wHly corresponds to the restricted 
Hermitian form Hly, which again is positive definite, and wHly is also closed. 
So Y is a Kahler manifold again. _ 

The following is an immediate consequence. 

3.5 Theorem. Every projective algebraic manifold is a Kahler manifold. 
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Definition. Let X be an arbitrary n-dimensional complex manifold. 
We say that meromorphic functions It, ... ,!k on X are analytically de­
pendent if 

rkx(fl, ... ,fk) < k 

at every point where each of the functions is holomorphic. They are called 
algebraically dependent if there exists a polynomial p(Wl,.'" Wk) that 
is not the zero polynomial such that p(lt, ... ,fn) vanishes identically 
wherever it is defined. 

X is called a Moishezon manifold if it is compact and has n analytically 
independent meromorphic functions. 

On compact manifolds algebraic and analytic dependence are equivalent no­
tions. In this case one can show that the field of all meromorphic functions 
on X has transcendence degree at most the dimension n of X. For projective 
manifolds there is equality. But a Moishezon manifold is in general not a 
Kahler manifold. Moishezon's theorem states that 

A Moishezon manifold X is projective algebraic if and only if it is a 
Kahler manifold (see [Moi67], cf. also the article "Modifications" of Th. 
Peternell, VII.6.6 in [GrPeRe94]). . 

Deformations. There are many compact Kahler manifolds that are not 
projective algebraic. There are even examples of Kahler manifolds where 
every meromorphic function on them is constant. 

The Kahler property is invariant under small holomorphic deformations, but 
not under large ones (see [Hi62], and also [GrPeRe94], VII.6.5). 

Definition. Assume that X is a connected (n + m )-dimensional com­
plex manifold, Y an m-dimensional complex manifold, and 7r : X -t Y 
a proper surjective holomorphic map that has rank m at every point. 
Then (X, 7r, Y) is called a holomorphic family of compact n-dimensional 
complex manifolds. 

Indeed, since 7r is a proper submersion, the fibers Xy = 7r- l (y), y E Y, 
are compact submanifolds of X. When y varies, the fibers may have different 
complex structures. However, they are isomorphic as differentiable manifolds. 

3.6 Theorem. If Xo is a Kahler manifold and 7r : X -t Y is a deformation 
of Xo (i.e., a holomorphic family with Xo = 7r-1 (yo) for some Yo E Y), then 
there exists a neighborhood U(Yo) C Y such that every fiber over U is again 
a Kahler manifold. 

On the other hand, it may happen that all fibers Xy except for XyO are Kahler 
manifolds. 
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The first statement can be found in many books on Kahler manifolds (for 
example in [MoKo71J). The original proof of the second statement was given 
by H. Hironaka. 

Exercises 

1. Let X be a complex manifold and E a holomorphic vector bundle over 
X. Use local frames as described in Exercise 2.3. A Hermitian form H 
on E is an assignment of a Hermitian form Hx to each fiber Ex such that 
(~i I~j) := H(~i,~j) is smooth for every local frame ~ = (6,.·· ,eq ). Let 
h~ be the matrix h~ := ( ~i I ej ) ). Calculate a transformation formula 
of h~ for changing from e to another frame e'. We call H a Hermitian 
scalar product (or a fiber metric) on E if Hx is positive definite for every 
x EX. In this case, prove that if Xo E X is fixed, then there is a local 
frame at Xo such that h~(xo) = Eq and (ah~)xo = o. 

2. For z E en +1 - {OJ consider the linear map 

cpz : en+! -t T1r(z) (IPn) , 

which has been defined in Section IV.5. Show that the Fubini-Study 
metric H is given by H(cpz(v), cpz(w» = (v Iw). 

For Z E en +1 with IIzll = 1 let Hz := {w E en+! : (zjw) = OJ. For 
w E Hz with IIwll = 1 define 

a(t) := 1r«cost)z + (sint)w). 

Prove that a is a closed path of length 7r. Using the fact that every 
geodesic on IPn is of this form, prove the formula 

dist(7r(z), 7r(w» = arctan I (z tw) w - z I . 
3. For decomposable k-vectors A = a1/\· .. /\ ak and B = b 1/\· .. /\ bk define 

(A I B) := det( (3; j bj )) 

and IAI = (A I A)1/2. Prove that there is a Kahler form won Gk,n locally 
given by w = iaaloglAI. 

4. Assume that X is a connected complex manifold and that A c X is a 
nowhere dense analytic set. Prove that if h is a bounded pluriharmonic 
function on X - A, then it can be extended as a pluriharmonic function 
toX. 

5. Let Been be a closed ball. Is there a plurisubharmonic function h on 
en - B with limz-+B h(z) = -oo? 

6. A Kiihler metric H on a complex manifold X is called complete if X is a 
complete metric space with respect to the associated distance function. 
Construct a complete Kiihler metric on en - {OJ. 
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4. The Inner Product 
The Volume Element. Let X be an n-dimensional complex manifold 
with a Hermitian metric H, and w = WH the associated fundamental form. 

For Xo E X it is possible to choose coordinates Zl,'" ,Zn such that Xo is 
the origin and gij(XO) = bij . Therefore, Hxo = 2:i dZiazi. These are called 
Euclidean coordinates. We calculate the 2n-form wn in these coordinates at 
Xo· 

We have w = i '2:" dz" 1\ liZ", and so 
n 

wn (i. 2:)dx" + idyv) 1\ (dx" _ idyv)) n 
v=l 

A simple induction on k shows that 

(t dxv 1\ dYv) k = k! l~Vl <~vk~n dXV1 1\ dYvl 1\ ... 1\ dX"k 1\ dY"k' 

It follows that 

and 

Remarks 

1. In general coordinates one would get 

wn = 2n n! g dXl 1\ dY1 1\ . .. 1\ dXn 1\ dYn, 

where g = det(gij Ii, j = 1, ... ,n). 
2. In the literature one finds other formulas: 

If w is defined by w = 42:" dzv 1\ liZ", then 

wn = n! dXl 1\ dYl 1\ ... 1\ dXn 1\ dYn. 

If, in addition, the wedge product is defined in such a way that cp 1\ 1j; = 
~(cp ® 1j; -1j; ® cp) for I-forms cp and 1j;, then w = -~ 1m Hand 
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Definition. The 2n-form 

1 1 dV:= __ wn = --(-2ImH)n 
2nn! 2nn! 

is called the volume element associated to H. 

The traditional notation "dV" does not mean that the volume element is the 
differential of some (2n-l)-form. It is easy to see that this is impossible, e.g., 
on compact manifolds. Moreover, in the case of a compact Kahler manifold 
(X, w) it follows that f x wn = 2nn! f x dV > O. 

4.1 Proposition. If (X,w) is a compact Kiihler manifold, then wk defines 
a nonzero class in the de Rham group H2k(X) for 1 :::; k :::; n = dim(X). 

PROOF: It is clear that d(wk ) = O. Suppose that there is some (2k-l)-form 
cp with dcp = wk. Then d( cp 1\ wn - k) = wn , and by Stokes's theorem 

This is a contradiction. • 

The Star Operator. Let Zl, •.. ,Zn be Euclidean coordinates at Xo EX. 
We use real coordinates in the following form: 

Then any r-form cp can be written as cp = 2:1 a1 dU1, where the summation 
is over all ascending sequences 1= (ib ... , ir ), 1:::; il < ... < ir :::; 2n. 

Definition. The (Hodge) star operator * : dr(X) -+ d 2n- r(x) is 
the C-linear map defined by 

where I U I' = {I, ... , 2n}, I n I' = 0, c1,1' = ±1, and 

The star operator depends on the metric (which determines Euclidean coor­
dinates) and on the orientation (which is determined by the order of the real 
coordinates), but on nothing else. So it is globally defined and invariant under 
unitary coordinate transformations (in the sense that * (cp 0 F) = (* cp) 0 F 
for these transformations). 
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4.2 Proposition. 

1. If cp is an r-form, then * * cp = (-It· cpo 

{ dV if 1= J, 
2. dUI 1\ * dUJ = 0 th . o enmse. 
3. * is real; i. e., * (j5 = *cp. 

PROOF: (1) We have * * dUI = cI',IcI,!' du], and 

C]',]C],1' du], 1\ du] cI',!cI,!'( _lr(2n-r) dU]1\ dul' 

= cI',l(-lt dV 

= (-It dUI' 1\ dUI. 

(2) dUI 1\ * dUJ = cJ,JldUI 1\ dUJI = 0 if I n JI =J 0, and = dV if JI = II. 

(3) We have *(Re cp + i 1m cp) = *(Re cp) + i *(Im cp), by definition. _ 

If cp = LI aldul and .'IjJ = LJ bJduJ, then 

cp 1\ *'IjJ = L a]bJdu]1\ * dUJ = (L alb] )dV. 
],J ] 

In particular, this expression is symmetric in cp and 'IjJ. 

Now we define * (cp) := * (j5. This is a complex antilinear isomorphism between 
$'r(x) and $'2n-r(x). 

We get cp 1\ *'IjJ = (L] albl ) dV and cp 1\ * cp = (L]laI12) dV. 

The Effect on (p, q)-Forms. We calculate"* cp for (p, q)-forms cpo 

4.3 Lemma. If cp = dZI 1\ cliJ with III = p and 111 = q, then 

cp 1\ * cp = 2p+q dV. 

PROOF: We write I = M U A and J = M U B, with pairwise disjoint sets 
A,B,M c N:= {I, ... ,n} such that dZ]l\cliJ = COdZA 1\ cliB I\wM, where 
WM = TIJ.'EM dzJ.' I\cliJ.' and lcol = l. 

Let m := IMI. Then WM = (-2i)mTIJ.'EMdu2J.'-1 1\ dU21-'" The remainder 
dZA 1\ cliB is a form of type (p - m,q - m). 

If, for example, A = {al, ... , as} (with s = p - m), then 

dZA (dU2al-l + idu2aJ 1\ ... 1\ (dU2as-l + idu2a.) 
S 

L is - v L C1cduac 1\ dUa'c' 
v=O ICI=v 
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where C C {I, ... , s} is an ascending sequence of length IGI, ac the sequence 
of the 2ai - 1, i E C, and ao the sequence of the 2ai, i E C; ac is a number 
equal to ±l. So we have L:~=o C) = 28 summands. The analogue will be 
obtained for az B. 

Altogether we see that cp = dz[ f\ azJ is equal to 2m times 2P+q- 2m different 
monomials CK dUK with ICKI = 1. So 

cp f\ "* cp = (2:)2m . CKI2) dV = 2p +q dV. 
K 

• 
Again let cp = dz[ f\ azJ with III = p, IJI = q and p + q = r. Then * cp is a 
(2n - r)-form, and it can be written as 

v+Jl=r IKI=n-v 
ILI=n-Jl 

with certain constants aKL. 

Now we apply the unitary transformation F(z) = z· C t , with 

c = (e itl 
'. 0), ti E lR for i = 1, ... , n. 

o eitn 

For I = {il' ... , ip} C N = {I, ... , n} we set t J := til + ... + tip' Then 

F*cp = exp(i(tJ - t.r))· cp 

and 

Since the star operator is invariant under unitary transformations, we have 

[t follows that 

* cp = exp(i(tJ - tJ))' L L aKL . exp(i(tK - tL)) azK f\ dzL · 
v+l-'=rK,L 

The uniqueness of the representation implies that 

exp(i(tJ + tK - tJ - td) = 1 for all K, L. 
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Arbitrary ti are allowed. If we choose them all very small, then t1 + tK = 
tJ + tL· 

If there is a pair (K, L) with I U K i- J U L, then for example there is an 
i E I that is not contained in JuL. Setting ti i- 0 and tj = 0 for j i- i gives 
a contradiction. Therefore, p + (n - v) = q + (n - J.L). On the other hand, we 
have v + J.L = p + q. This is possible if and only if q = J.L and p = v. * cp is a 
form of type (n - q, n - p), and we can write 

*CP= L aKLazKl\dzL · 
IKI=n-p 
ILI=n-q 

We consider an index i E I U J. There are three possibilities: 

1. If i E I and it/. J, then i must lie in L, since we always have IuK = JUL. 
We choose ti = e (positive, but very small) and tj = 0 for j i- i, and we 
consider the equation t1 + tK = tJ + tL. Since t1 = e, tK ~ 0 and tJ = 0, 
it follows that tL ~ e, and therefore even tL = e. But then tK = o. This 
implies that i ELand i t/. K. 

2. If i E J and i t/. I, then analogously i E K and i t/. L. 
3. If i E In J, then cP contains the term dZi 1\ azi and therefore the term 

dU2i-l 1\ dU2i. This implies that dU2i-l 1\ dU2i (and therefore dZi 1\ azi) 
cannot occur in * cpo 

So I u K = J u L = {I, ... , n} and * cp = a azl' 1\ dZJ', with some constant 
factor a. We may assume that e1,1' = eJ,J' = 1. 

4.4 Proposition. In the above notation 

"*(dZ1 1\ azJ) = adz!, 1\ dzJ' with a = 2P+q-nin(_1)q(n-p)+n(n+l)/2. 

PROOF: For cp = dZ1 1\ azJ we have 

cp 1\ "* cp dZ1 1\ azJ 1\ (a dzl' 1\ azJ') 

= a( _1)q(n-p) dZ1 1\ dZ1' 1\ azJ 1\ azJ' 

a( -1 )q(n-p)+n(n-l)/2 (dz1 1\ azd 1\ ... 1\ (dzn 1\ azn ) 

a( _1)q(n-p)+n(n-l)/2( -2i)n dV 

= a( _1)q(n-p)+n(n-l)/2+n2n in dV. 

On the other hand, we know from the lemma that cp 1\ "* cp = 2p+q dV. Com­
paring the coefficients, it follows that a = 2P+q- n i -n( _1)q(n-p)+n(n+l)/2 . 

• 
Remark. The formula is valid only with respect to Euclidean coordinates. 
And one has to observe the rule that e1,1' = eJ,J' = 1. 
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The Global Inner Product. We work on a compact Hermitian man­
ifold X. Let ~ = {U1 , ... , UN} be a finite open covering of X with coordi­
nates, and (l?d a partition of unity for ~. If t/J is any differentiable 2n-form 
on X, we define the integral 

(In local coordinates l?vt/J has the form C(ZI' ... ' zn) dV with a differentiable 
function c with compact support. We already know the meaning of the inte­
gral over such a 2n-form.) One can show that this definition is independent 
of the choice of the partition of unity. 

If cp is an r-form, then t/J = cp /\ * cP is a 2n-form that locally is equal to a form 
cdV, with c :::: 0 and c(x) = 0 if and only if CPx = o. 

Definition. The inner product of two r-forms cp, t/J on X is defined by 

4.5 Proposition. 

1. (CPI + CP2 , t/J) = (CPI , t/J) + (CP2 , t/J). 
2. (c· cP, t/J) = c . (<p, t/J). 
3. (t/J, cp) = (cp, t/J). 
4· (cp, cp) :::: 0, and (cp, cp) = 0 if and only· if cP = o. 

PROOF: (1) and (2) are trivial. 

(3) We have t/J /\ * cP = t/J /\ * cP = cP /\ * t/J. 
(4) It is clear that (cp, cp) :::: ° always. If cP i 0, then there is a point Xo E 
X with CPxo i O. If Xo E Uv and l?v(xo) > 0, then we can find a small 
neighborhood V = V(xo) CC UV such that l?vCP = cdV on V, with c > 0 
everywhere in V. It follows easily that (cp, cp) > o. _ 
Since ( ... , ... ) is a Hermitian scalar product on Jl1r (X), a norm on this space 
is defined by IIcpli := (cp, cP //2. 

4.6 Proposition. Two forms of different type are orthogonal to each other. 

PROOF: Let cP, t/J be two forms of type (p, q), respectively (s, t), such that 
p + q = s + t = r. Then cP /\ * t/J is a form of type (p + n - s, q + n - t). If 
s > p, then q > t and therefore q + n - t > n. If s < p, then p + n - s > n. 
So cP /\ * t/J = 0 in these cases. _ 
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Unfortunately, Jtlr(x) is not complete in the induced topology, so that we 
cannot apply Hilbert space methods directly. We will show how to construct 
a closure of Jtlr(x). 

Currents. Let X be a compact Hermitian manifold. A sequence rpv = 
EI aI,v dUI of (smooth) r-forms on X is said to be convergent to zero in 
Jtlr(x) if for every a all sequences DaaI,v are uniformly convergent to zero. 

Definition. A current of degree 2n-r is an JR.-linear map T : Jtlr(x) 4 
C such that if (rpv) is a sequence of r-forms converging to zero, then T( rpv) 
converges to zero in C. 

The set of all currents of degree 2n - r is denoted by Jtlr(x)'. 

Examples 

1. A current of degree 2n is a distribution in the sense of L. Schwartz. 
2. Let 'IjJ be a differential form of degree 2n - r. Then 'IjJ defines a current 

T,p of degree 2n - r by 

It is easy to see that T,p is, in fact, a current. So Jtl2n-r(x) C Jtlr(x),. 
3. Let M c X be an r-dimensional differential submanifold. Then a current 

TM is defined by TM [rp] := J M rp. Therefore, we say that a current of 
degree 2n - r has dimension r. 

Let (rpv) be a sequence in Jtlr(x) converging to some r-form rp (Le., rpv -rp 4 
0). Then also *(rpv - rp) 40, and therefore T,p[*(rpv - rp)] 40 in C for every 
'Ij; E Jtlr(x). It follows that 

lim ('IjJ, rpv) = lim { 'IjJ 1\ *rpv = lim T,p[*rpv] 
v~oo v~ooJx v~oo 

= T,p(*rp] = Ix 'IjJ 1\ *rp = ('IjJ, rp). 

Definition. For T E Jtlr(x)' and rp E Jtl2n-r(x) we define 

In particular, we have (Tv>, rp) = ('IjJ, rp). If 'ljJu -t 'Ij;, then (T,p, rp) = 
limv~oo ('ljJu, rp). This motivates the following. 
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Definition. If (1/J,,) is a Cauchy sequence in .Q{2n-r(x), then T 
limv ---+ oo 1/Jv E .Q{r(x)' is defined by 

The limit T is called a square integrable current. 

We omit the proof that T is actually a current. 

Before defining the notion of a limit of a sequence of currents we note that 

T = lim 1/Jv {:=:} (T, 4') - (1/Jv, 4') -+ 0 for all 4' E .Q{2n-r(x) 
1.'---+00 

Definition. A sequence (Tv) of currents in jij'r(x)' is called convergent 
to a current T E jij'r(x)' (written as T = limv ---+oo Tv) if 

We state the following without proof. 

4.7 Theorem. The space jij'r (X)' of currents of degree 2n - l' is complete; 
i. e., every Cauchy sequence converges. The set of square integrable currents 

-2n-r 
forms a complete subspace of jij'r(x)', which we call the closure .Q{ (X) 
of the space of (2n - r)-forms. 

Exercises 

1. Compute the volume of the complex projective space IPn with respect to 
the Fubini metric, and the volume of a p-dimensionallinear subspace. 

2. Let (X,w) be a compact Kahler manifold and Y c X a closed subman­
ifold with dim(Y) = m. Then vol(Y) = c . Jy wm for some constant c. 
Calculate this constant! 

3. Try to define the product of a current and a differential form! 
4. For T E jij'r(x)' define dT E jij'r+I(X)' by dT[4']:= (-It+I T[d4']. Show 

that dT is in fact a current with d(dT) = O. Calculate dT for the case 
that T is a form or a submanifold. 

5. Hodge Decomposition 
Adjoint Operators. A complex vector space with a Hermitian scalar 
product is called a unitary vector space. Let VI, V2 be two unitary vector 



330 VI. Kahler Manifolds 

spaces, and T : VI -+ V2 an operator (i.e., a C-linear mapping). If there 
exists an operator T* : V2 -+ VI with 

(T(v) , w) = (v, T*(w» for v E VI, wE V2 , 

then T* is called an adjoint operator for T. It is clear that T* is uniquely 
determined, but in general it may not exist. 

If Vl, V2 are unitary vector spaces and T : VI -+ V2 is a continuous operator, 
then it follows from the Cauchy-Schwarz inequality that v rl (T(v) , w) is 
continuous for any fixed w E V2 • If VI, V2 are Hilbert spaces, then it follows 
by the Riesz representation theorem that there exists an element T* ( w) with 
(T(v) , w) = (v, T*(w», and that w rl T*(w) is continuous. 

Now let X be an n-dimensional complex manifold. 

5.1 Lemma. If X is compact and cp a (2n-l)-form on X, then Ix dcp = O. 

PROOF: Let %' = {Uv : v = 1, ... , N} be a finite open covering of X by 
local coordinates and ([Iv) a subordinate partition of unity. We choose open 
subsets U: c c Uv with piecewise smooth boundary and sUPP([lv) c U:. 
Then 

1 dcp = L 1 d([lvcp) = L 1 d([lvcp) = L 1 [lvCP = 0, 
x v u~ v u~ v au~ 

by Stokes's theorem. • 

5.2 Proposition. The operator 6 := -* d"* : .91r +1(X) -+ .91r (X) is the 
adjoint of d:.91r (X) -+ .91r+1 (X). 

PROOF: Let cP E .91r (X), 'IjJ E .91r+I (X) be two arbitrary forms. Then 
cP A *'IjJ is a (2n - I)-form, and 

Therefore, 

(dcp, 'IjJ) Ix dcp A *'IjJ = Ix d( cp A * 'IjJ) - (-1 r Ix cp A d* 'IjJ 

(_lr+1+2n- r Ix cpA**d"*'IjJ = - Ix cpA*(*d"*'IjJ) 

(cp, -*d"*'IjJ). 

• 
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5.3 Proposition. The operator?J := -* &* : d P+1 ,Q(X) -t dp.q(X), re­
spectively -:a := -*En : d P,Q+1(X) -t dp.q(X), is the adjoint of 0, respec­
tively 8. 

PROOF: We consider only the first case. Let r.p be a form of type (p, q) with 
p + q = r and 1/J a form of type (p + 1, q). Then r.p 1\ * 1/J is a form of type 
(n - 1, n). Therefore, 8(r.p 1\ *1/J) = 0 and 

d(r.p 1\ *1/J) = o(r.p 1\ *1/J) = or.p 1\ *1/J + (-lrr.p 1\ o(*1/J). 

It follows that 

(or.p, 1/J) = Ix or.p 1\ * 1/J = Ix d( r.p 1\ * 1/J) - ( -1 r Ix <P 1\ 0(* 1/J ) 

= (_lr+H2n- T Ix r.p1\**o(*1/J) = (r.p, -*&*1/J). 

5.4 Proposition. We have 

1. t5 = 19 +-:a' 
2. 8t5 = 0, iH} = 0 and 1919 = 0, 
3. ?J-:a + -:a?J = 0, 
4. ?Jr.p = -:a("fj5) and -:ar.p = ?J("fj5). 

The proofs are trivial. 

• 

The Kahlerian Case. Now let X be an n-dimensional Kiihler manifold. 
For the moment X is not assumed to be compact. A canonical operator 
L: Ja"T(X) -t Ja"T+2(X) is defined by 

where w is the fundamental form. If r.p is a (p, q)-form, then Lr.p is a (p+ 1, q+ 1)­
form. Since cU.,; = 0 and w is of type (1,1), we also have ow = 8w = O. It 
follows that 

and 
- 1- 1- -
oLr.p = 2 o(r.p 1\ w) = 2 o<p 1\ w = Lor.p. 

In addition, we have 
Lr.p = Dfj5. 
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5.5 Proposition. If X is a compact (Kiihler) manifold, then the adjoint 
operator A: .rz(r+2(x) -+ .rz(T(X) of L is given by 

A = (-lr"*L"*. 

PROOF: If 'I/J is an (r + 2)-form, then w 1\ "*'I/J is a (2n - r)-form, and 

(L'P, 'I/J) = ~ r 'P 1\ w 1\ "* 'I/J = ~ r (-1 r'P 1\ ** w 1\ "* 'I/J 
2 Jx 2 Jx 
('P, (-lr"*L"*'I/J). 

• 
Note also that A is a real operator: A'P = Acp. 

5.6 Proposition. The commutativity relations· iJ A 
hold. 

AiJ and -:aA = A-:a 

We leave the proof to the reader. 

Bracket Relations. Let k,l be integers, and 8 : .rz(T(X) -+ .rz(r+k(x), 
T : .rz(T(X) -+ .rz(r+l(x) linear operators that are defined for every r. Then 

[8, T] := 80 T - T 0 8: .rz(r(x) -+ .rz(r+k+l 

is called the bracket or the commutator of 8 and T. 

Example 

As we have seen above, iJ, -:a : .rz(r -+ .rz(r-l and A : .rz(r -+ .rz(r-2 have the 
brackets [iJ, A] = [-:a, A] = 0 (as operators from .rz(r to .rz(r-3). Before we 
calculate more brackets, we have to calculate iJ'P very explicitely for a form 
'P of type (p, q). For that we need geodesic coordinates. So everything that 
follows is valid only on Kahler manifolds. 

Let 'P = ~/,J al J dZI 1\ azJ be an arbitrary (p, q)-form. We consider geodesic 
coordinates at a point Xo E X such that w = j ~v dzv 1\ azv . Then 

I,J I,J 

where a(p,q) = 2P+ Q - n jn(_1)q(n-p)+n(n+1)/2, and C/,l' = c/',J' = 1. In a 
neighborhood of Xo the formula is more complicated, because the coefficients 
gij of the metric are involved. We have to apply 7j in this neighborhood, but 
because we are working with geodesic coordinates, we obtain the exact value 
at Xo by simply applying 8 to our representation of"* 'P at Xo. It follows that 

8* 'P = a(p, q) . (_1)n-p L L (aIJ )z, dzl' 1\ azv 1\ azJ', 
I,J tEJ 
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Now we need some notation. 

If J = (j1, ... ,jq), then J(v) := (jI, ... ,iv, ... ,jq) for v = 1, ... , q. Further­
more, let I* and J*(v) be arrangements of I, respectively J(v), such that 
el',!< = e(jv,J'),J*(v) = l. 

Then dzlo = (-l)p(n- p) dZI and clzr(v) = (-l)n-q+q(n-q)+v-lclzJ(v) , and 
we get 

-;gcp = -*8*cp 
q 

= -a(p, q) . a(n - p, n - q + 1) . (_l)n-p L L(aIJ )z;", dzl * A clzJ*(v) 
I,J v=1 

a(p, q) . a(n - p, n - q + 1) . (_1)n-p+p(n-p)+n-q+q(n-q) 
q 

x L L( -It(aIJ )z;v dZI A clzJ(v) 
I,J v=1 

q 

= 2· (-l)P L L( -It(aIJ )z;v dZI A clzJ(v)' 
I,J v=1 

5.7 Theorem. On a compact Kiihler manifold [~, L] = i 8. 

PROOF: In order to calculate -;gLcp and L-;gcp for a (p, q)-form cp we begin 
with 

Lcp 
1 

= iW A cp (since cp A w = w A cp) 

= (~t dz).. A clz)..) A (L aIJ dZI A clzJ) 
)..=1 1,J 

= ~(-1)P L L aIJ dz).. A dZI A clz).. A clzJ. 
I,J )..EI'nJ' 

From that we get 

-;g Lcp = 

= i(-1)P+1 L L (-l)p+1(aIJ)z>.dz).. AdzIAclzJ 
1,J )..EI'nJ' 

with 

q 

+ i (_1)P+1 L L L( _l)p+v+l(aIJ )z;v dz).. A dZI II clz).. II clzJ(v) 
I,J )..EI'nJ' v=1 

iLL (aIJ )z). dz).. A dZI A clzJ + CPo, 
I,J )..EI'nJ' 
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q 

CPo := i . L L L( -1)"(alJ )Zjv dz).. A dZI A az).. A azJ(v). 
I,J )..EI'nJ' 1'=1 

On the other hand, 

L -:acp = 
1 -iW A 1Jcp 

( i tdZ)..l\az)..) A (-l)PLt(-I)"(aIJ)zjV dz] AazJ(v) 
)..=1 I,J 1'=1 

q 

= iLL L (-I)"(alJ)Zjv dz).. AdzIAaz)..AazJ(v) 
I,J 1'=1 )..El'nJ(v)' 

q 

= i L L( -1)"( _1),,-1 (aIJ )Zjv dzjv A dZI A azJ 
I,J 1'=1 

q 

+iL L L(-l)"(aIJ)Zjv dz).. AdzI Aaz)..AazJ(v) 
I,J )..EI'nJ' 1'=1 

= -iL L (aIJ)z>.dz).. AdzI AazJ + CPo· 
I,J )..El'nJ 

In total we obtain 

-:aLcp - L-:acp = iLL (aIJ )Z>. dz).. A dZI A azJ = i&cp. 
I,J )..EI' 

5.8 Corollary. [1J,L] = -i8, [&,A] = -i19 and [8, A] = i1J. 

The proof is an easy exercise. 

• 

The Laplacian. Let X be an n-dimensional compact complex manifold. 

Definition. The (real) Laplacian ~ : s;(r(x) -t s;(r(x) is defined by 

~cp := (d <5 + <5 d)cp. 

The complex Laplacian 0 : s;(p,q(X) -t s;(p,q(X) is defined by 

o cp := (819 + -:a8)cp. 

Since d and <5 are real operators, ~ is also real. 

5.9 Proposition. On a compact Kahler manifold, 0 = D. 
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PROOF: We have 8"J = -"J8 and 8iJ = -iJ8, as can be seen from the 
bracket relations. Therefore, 

-i 0 -i(8"J + "J8) 

8( -i"J) + (-i "J)8 
8(8A - A8) + (8A - A8)8. 

From this one easily derives that - i 0 = i O. 

A further consequence is 

i 0 = 8(8A - A8) + (8A - A8)8 = i(8iJ + iJ8). 

• 

Therefore, 0 = 8iJ + 08 and Ocp = (8iJ + iJ8)cp = Ocp; i.e., 0 is a real 
operator. 

5.10 Proposition. On a compact Kahler manifold, 0 = !.D.. 

PROOF: We have 

.D. do + od 

(8 + 8)(iJ +"J) + (iJ + "J)(8 + 8) 

(8 iJ + iJ 8) + (8"J + "J 8) 
20. 

This formula is not valid on general compact manifolds! 
• 

Harmonic Forms. Let X be a compact Hermitian (not necessarily 
Kahler) complex manifold. We define 

8r(X) ._ d.f21r- 1(X), 

~W(X) ._ o.f21r+ 1 (X), 

£r(x) ._ {cp E .f21r(x) : .D.cp = a}. 

The elements of £r (X) are called harmonic forms. 

Example 

For calculating the star operator on (p, q)-forms one needs the number 
a(p,q) = 2P+Q-nin(_1)q(n-p)+n(n+l)/2. Ifn = 1, then a(l,O) = -i, a(O, 1) = i 
and a ( 1, 1) = - 2 i. It follows that in geodesic coordinates 

.D.1 = odf -*d*(/z dz + fzdZ) 

-* d(ifzdZ - ifz dz) 

-*(2ifzz dz /\ dZ) 

-4fzz = - fxx - fyy· 
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This motivates the name "harmonic." 

5.11 Proposition. 

1. cp E.fr {::::::} dcp = Jcp = o. 
2. The vector spaces f!lJr , ~r, and,yt'r are mutually orthogonal. 

PROOF: (1) If D:.cp = 0, then (cp, dJcp) + (cp, Jdcp) = O. But (cp, dJcp) = 
(Jcp, Jcp) and (cp, Jdcp) = (dcp, dcp). Therefore, dcp = Jcp = o. 
(2) We have (dcp, J'fj;) = (cp, JJ'fj;) = 0 for all cp,'fj;. And if D:.'fj; = 0, then 
(dcp, 'fj;) = (cp, J'fj;) = 0, and analogously, (JQ, 'fj;) = (Q, d'fj;) = 0 for all CP,Q. 
So the spaces are mutually orthogonal. _ 

5.12 Hodge theorem. If X is a compact Hermitian manifold, then 

PROOF: We give only a sketch of the proof. For more details see [dRh84], 
[Schw50], or [GriHa78], and for a very explicit and rather elementary proof 
see [War71]. 

(1) If we assume that .ll1r is finite-dimensional, then the proof is very easy. We 
let V be the orthogonal complement of f!lJr + ~r. Then .ll1r = f!lJr EB (iJr EB V, 
and it follows immediately that D:.cp = 0 for every cp E V. 

(2) If .ll1r is infinite-dimensional, then we consider its closure, the Hilbert 
space .z2 of square integrable currents. We can define derivatives of currents 
by 

aT [ acp ] 
au)cp] := -T auv . 

So it is possible to speak of harmonic currents (Le., currents T with D:.T = 0). 
Now, the Laplacian is an elliptic operator, the definition of which we now 
recall. 

A linear differential operator P has locally (in real coordinates UI, ... ,un) 
the form 

P = L aa(u)Da : 'i&'oo(U,RM) -+ 'i&'OO(U,RN ), 

\a\9 

with (N x M) matrices aaand Da = a\a\/(auf 1 •• ·au~n). Then the symbol 
of P at u is the linear map 

ap(u,e) := L aa(u)ea : RM -+ R N , 

\a\=k 
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which depends on e E IRn - {o}. The operator P is called elliptic if ap(u, e) 
is injective for every u and every e =/: O. Since aA(U,e) = -lIeIl2 .id, it follows 
that Ll is elliptic. 

We state the regularity theorem: 

Let P : dr(X) -+ dr(X) be an elliptic operator, and <p an element of 
dr(X). If there is a square integrable current T with P(T) = <p, then 
there is an r-form 'Ij; with T = T",. 

If "Y is the orthogonal complement to ~r aJ ~r in .:£2, then simple Hilbert 
space theory implies that .:£2 = !JjJr aJ ~r aJ "Y, and the sum is orthogonal. 

Just as in the finite-dimensional case it follows that Ll(1") = 0, and using 
approximation of currents by forms one sees that every harmonic current 
belongs to "Y. From the regularity theorem it follows that "Y = ,Yt'r. 

Finally, one shows that if 'Ij; is an r-form and T", = T + S + T<p, with a 
harmonic form <p and currents T E ~r, S E ~r, then there are also forms 
T E ~r, a E ~r such that 'Ij; = T + a + cp. _ 

5.13 Theorem. If X is a compact Hermitian manifold, then Hr(x) = 
£,r(x). 

PROOF: The de Rham group Hr(x) is the quotient of the closed forms 
modulo the exact forms. Let <p E dr(X) be given with dcp = O. Then we 
have a unique decomposition cp = d'lj; + 6{! + Hcp, with Ll(Hcp) = O. Now, 

( 6 {!, 6 (! ) (<p, 8 (! ) (because of the orthogonality) 

= (dcp, (!) = O. 

So cp = d'lj; + Hcp, and we define h : Hr(x) -+ ,Yt'r(x) by h : [cp] t--+ H<p. 
This is well defined, and since cp = d'lj; ~ H cp = 0, it is injective. If a is 
harmonic, then da = 0 and Ha = a. So h is surjective. _ 

Remark. By the theorem of de Rham we have Hr(x) ~ Hr(x, C). There­
fore, f3r(X) := dimc(,Yt'r(X)) is a topological invariant. We have 

the rth Betti number. In Chapter IV only bi was introduced, since we did 
not work with higher cohomology groups. 

5.14 Theorem (Poincare duality). On every n-dimensional compact 
Hermitian manifold we have Hr(x) ~ H2n-r(x). 
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PROOF: It is easy to see that * ~ = ~ *. Therefore, * : £r(x) -+ 
£2n-r(x) is an isomorphism (depending on the metric). Then we apply 
the previous theorem. _ 

Remark. The original Poincare duality states that there is an isomorphism 
Hr(x,7L.) -+ H2n- r(X,7L.). Our theorem here is a very weak version of this 
topological result. 

Consequences. Let X be an n-dimensional compact Hermitian manifold. 
We define subspaces of dp,q(X) by 

.- 19dP,q+l, 

~p,q 

~p,q 

£p,q {rp E dp,q : Orp = o}. 

We have Orp = 0 ~ arp = 19rp = 0, and therefore the three spaces are 
mutually orthogonal. 

5.15 Decomposition theorem for (p, q)-forms. 

dP,q = f!8p,q EB ~p,q EB £P,q. 

We have 

The proof is the same as in the case of r-forms. One needs the ellipticity of 
0, which can be shown directly (and is trivially given on Kahler manifolds, 
since then 0 = ~~). 
5.16 Theorem .. Hp,q(X) ~ £p,q(X) for all p,q. 

The proof is the same as for Hr(x). 

5.17 Finiteness theorem. dime Hp,q(X) < 00 for all p, q. 

Using the theory of elliptic operators one can prove that £P,q is finite­
dimensional. This implies our result. On the other hand, we know al­
ready from Dolbeault's theorem that HP,O(X) ~ np(X) = HO(X, n~) and 
HP,l(X) ~ Hl(X,n~), where n~ is the complex analytic bundle of holo­
morphic p-forms. By the results of Chapter V these cohomology groups are 
finite-dimensional. This can be generalized to higher cohomology. So we have 
two different ways to prove the finiteness theorem. 

5.18 Serre-Kodaira duality theorem. On an n-dimensional compact 
Hermitian manifold Hp,q(X) ~ Hn-p,n-q(x) for all p, q. 

PROOF: It is easy to see that *0 = 0*. Therefore, * defines an isomor­
phism from £P,q onto £n-p,n-q. _ 

As mentioned above, Poincare duality can be proved by topological means. 
This is not possible for the Serre-Kodaira duality. 
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Now we consider applications to Kahler manifolds. 

5.19 Theorem. If X is an n-dimensional compact Kahler manifold, then 

1. £r(x) = EB £p,q(X). 

PROOF: (1) If <p E £r, then there is a unique decomposition 

<p = L <p(p,q) , 
p+q=r 

with <p(p,q) E JlIp,q. It follows that 

o = t::.<p = L t::.<p(p,q). 
p+q=r 

If X is a Kahler manifold, then t::. = 20. Therefore, t::.<p(p,q) is a form of type 
(p, q). The uniqueness of the decomposition then implies that t::.<p(p,q) = 0 for 
all p,q. So <p(p,q) E £p,q(X). 

(2) Since 0 is a real operator on Kahler manifolds, complex conjugation 
defines an isomorphism from £P,q to £q,p. • 

5.20 Decomposition theorem of Hodge-Kodaira. For every compact 
K iihler manifold and every r, 

Hr(x) ~ EB Hp,q(X). 
p+q=r 

In particular, 

The theorem of Hodge-Kodaira follows immediately from the decomposition 
theorem on harmonic forms. 

We define f3p,q(X) := dime Hp,q(X). Then we have the equations 

1. f3r = Lp+q=r f3q,Tl 

2. f3p,q = f3q,p, 
3. f3p,q = f3n-p,n-q, 
4. f3r = f32n-r' 

5.21 Corollary. If r is odd, then f3r(X) is even. 

PROOF: We have 
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p+q=r 
p<r/2 

p+q=r 
p>r/2 

p+q=r 
p<r/2 

• 
5.22 Proposition. If L : J2f'r(x) -+ J2f'r+2(x) is the map given by L(cp) = 
~cpt\w, then U(I) E ,Yer,r. 

PROOF: We have a(U(I)) = Lra(I) = 0, and 

19(Lr(1» = (L19 + i a)U-1(I) = L19Lr- 1(I) + i U-1a(I) = L19U-1 (I). 

Repeating this, we finally have 19(Lr(I» = Lr19(I) = o. Thus U(I) is har-
monic. • 
5.23 Corollary. If r is even, then {lr(X) 1= o. 
PROOF: We have 

Lr(1) = G) r wr = cdz1 t\ clzl t\ ... t\ dZr t\ clzr. 

with c 1= 0 for 0 ~ r ~ n. Therefore, ,Yer,r 1= O. Since ,Yer,r C ,Ye2r, it follows 
that {l2r(X) 1= o. • 
This gives a topological condition for Kahler manifolds. 

Examples 

1. Every Riemann surface X is a Kahler manifold. If X is compact, then 
9 := ~bl(X) is called the genus of X. For example, an elliptic curve (a 
I-dimensional torus) has genus 1, since its homology is generated by two 
independent cycles. 

Now we have {l1,O + {lO,1 = bi = 29 and {l1,O = {lO,I. SO {l1,O = {lO,1 = g, 
Le., 

9 = dime H1,o(X) = dime HO(X,Kx ). 

The genus is the number of independent holomorphic I-forms on X. 
2. Let H be an n-dimensional Hopf manifold, n ~ 2. Then bi = 1, as we 

have shown in Chapter IV. So H cannot be a Kahler manifold! 

Exercises 

1. Prove the commutativity relations iJA = AiJ and 19A = A19. 
2. Prove the bracket relations [iJ,L] = -ia, [a, A] = -i19, and [a,A] = 

i iJ. 
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3. Let X be an n-dimensional compact complex manifold. Use the norm 
11<p11 = (<p, <p)1/2 on dr(X) and prove for a given cohomology class u E 
Hr(x) that among all representatives <p E dr(X) of u a representative 
<Po has minimal norm if and only if b<po = O. 

4. Calculate Hp,q(X) for X = pn and all p, q. 

6. Hodge Manifolds 
Negative Line Bundles. Assume that X is an n-dimensional compact 
complex manifold and that F is a holomorphic line bundle on X. We define a 
new notion of negativity for F. The new definition is formally more restrictive, 
and if we would generalize it to arbitrary vector bundles, it would, in fact, 
be different from our old notion. But it turns out that for line bundles the 
new negativity is equivalent to the old one. 

Let a system of trivializations <p, : Flu, -+ U, x C (with transition functions 
gUt) be given. A fiber metric on F is given by a system h of positive smooth 
functions h, such that 

Then a smooth function Xh : F -+ IR can be defined by 

Definition. A line bundle F over a compact manifold X is called 
Griffiths negative if there exists a system of trivializations <p, : Flu, -+ 
u, x C (with transition functions gUi)' and a fiber metric h = (h,) on F 
such that Xh is strictly plurisubharmonic on F - ZF (where ZF denotes 
the zero section in F). 

6.1 Proposition. The line bundle F is Griffiths negative if and only if 
there exists a system of positive smooth functions e, on U, such that: 

1. - log e, is strictly plurisubharmonic on U,. 
2. e, = Igu< I . (j", on U,,,,. 

PROOF: Let h be any fiber metric on F and consider a point Xo EX. There 
is a trivialization <p at Xo such that h",(xo) = 1 and all first derivatives of h", 
vanish at Xo. Then h",(x) . Iwl2 is strictly plurisubharmonic at every (xo, w) 
with w =1= 0 if and only if h", is strictly plurisubharmonic at Xo. Taking such 
trivializations <p, we have only to set e, := (h,)-1/2. • 
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The tube T := {v E F : Xh (v) < I} is a strongly pseudoconvex neighborhood 
of the zero section in F. Locally, for T. := Tn rr-l(U.), we have 

The boundary of T is given by the equation ww/ (}Z(x) = l. 

6.2 Proposition. The line bundle F is Griffiths negative if and only if F 
is negative (in the old sense). 

PROOF: One direction is trivial. To show that every negative line bundle is 
Griffiths negative one needs rotations in the fibers and a smoothing proce­
dure. For details see [Gr62]. _ 

Definition. The line bundle F on X is called Griffiths positive if the 
complex dual F' is negative. 

It is clear that F is Griffiths positive if and only it is positive in the old sense. 

Special Holomorphic Cross Sections. We assume that F is a 
positive line bundle on a compact manifold X. Then F' is negative. We 
always denote the coordinate on the fibers of F' by w. Of course, the variable 
w depends on the local trivialization. 

The strongly pseudoconvex tube around the zero section of F' is locally given 
by 

T = {(z,w) E U x e : Iwl < e(z)}, 

where U is a domain in en. From the last chapter we know that dime HI (T, 0) 
00. In this situation we prove the following result. 

6.3 Proposition. If m is sufficiently large, the following two statements 
are valid: 

1. If Xl, X2 E X are two different points, then there are holomorphic cross 
sections so, SI E reX, Fm) with so(xd i- ° and SO(X2) i- 0 such that the 
quotient Sl / So has different values at these points. 

2. If Xo E X is a point, then there are holomorphic cross sections 

PROOF: If So, Sl are two sections in a line bundle with so(xo) i- 0, then 
there is a holomorphic function f in a neighborhood of Xo such that s 1 (x) = 
f(x) . so(x) in that neighborhood. The quotient sI/so is defined to be equal 
to f near Xo· 
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We operate in several steps: 

(1) Let Xo E X be a point. We assume that in local coordinates Xo corresponds 
to the origin. We call a trivialization of F' around Xo usable if 

log(e(z)) = Lgij(Z)ZiZj + IIz113 . a(z) 
i,j 

in a neighborhood of o. Here a is a smooth function and Ei,j gijZiZj is neg­
ative definite. 

The existence of a usable trivialization follows easily. We take an arbitrary 
trivialization and write 

log(e(z)) = ao + Re(Q(z)) + Lgij(Z)ZiZj + I/z1/3. a(z), 
i,j 

with ao E IR and a quadratic polynomial Q(z) with Q(z) = O. Then we change 
the trivialization by dividing w by exp(ao + Q(z)). 

(2) Now let Xl, X2 be two different points in X. We choose usable trivializa­
tions simultaneously over neighborhoods U1(xd and U2(X2), and, moreover, 
strictly increasing sequences 0 < r1 < r2 < ... < 1 and 0 < Sl < 82 < ... < 1 
such that I 8dr i I =f. 1 and {w = ri} nT, {w = sd n T are analytic sets 
in T, contained in F'IU1 (respectively in F'1U2, cf. Figure VI.1). We get 

s 
\ 

F' ? 
7 

x 

Figure VI.1. Construction of special cross sections 

principal parts of meromorphic functions gi = 1/(1 - w/ri) in Tn (F'IU1 ) 

and g; = 1/(1 - w/ri) in Tn (F'1U2)' and hi = 1/(1- W!Si) in Tn (F'IU2) 
as well. Because of the finiteness of cohomology there are complex numbers 
ai that are not all zero such that there are meromorphic functions g, h in T 
with prillcipal parts Ei ai(gi + g;) and Ei ai(gi + hi). We may assume that 
the first nonvanishing coefficient ai is equal to l. 

The functions g, hare holomorphic in a neighborhood of the zero section, and 
locally they have power series expansions 
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00 00 

g(x,w) = L gm(X)Wm and h(x,w) = L hm(x)wm. 
m=O m=O 

The coefficients 9m (respectively hm) define global holomorphic sections SO,m 
(respectively S1,m) in the tensor bundle Fm. 

If over Xl the first nonvanishing part of 9 is aigi = 1/(1 - w/rd, then we 
have 

g(XI,w) = f (r~ +cm)wm, with Cm -t 0 for m -t 00. 

m=O ' 

So for large m we have gm(XI) ~ l/(ri), and also 9m(X2) ~ l/(ri). Analo­
gously, hm(xd ~ l/(ri) and hm(X2) ~ l/{si). We take So = SO,m and 
S1 = Sl,m for such a large m. Then the quotient s1I So at Xl has a value that 
is nearly 1, and at X2 nearly (rdsi)m. These values are different for large m. 

(3) Now we work at some point Xo, and over a neighborhood U of Xo we define 
gi = l/{l-w/rd and hi,j(z, w) = 1/[1- (w/ri)· (l+gzj )], for j = 1, ... , n. If 
U and g are sufficiently small, the polar sets of gi and hi,j are always analytic 
sets in T. As above, we obtain meromorphic functions 9 and hj in T, for 
j = 1, ... ,n, which have power series expansions g(x,w) = Lmgm(x)wm 
and hj(x, w) = Lm hj,m(x)wm in a neighborhood of the zero section. Again 
let gi be the first principal part with nonvanishing coefficient ai. For large m 
we have gm(XO) ~ (l/ri)m and hj,m(xo) ~ U/ri)m(l + m . gZj). As above, 
gm and hj,m define sections So and Sj in Fm with (Sj/so)(xo) ~ 1 +mgzj. So 
the Jacobian of (s1/ So, ... , sn/ so) at Xo is approximately mngn and hence is 
not zero for m large enough. _ 

Projective Embeddings. Let X be an n-dimensional compact complex 
manifold and F a positive line bundle on X. Then for large m we have many 
global holomorphic cross sections in Fm. If there are sections so, ... , SN that 
do not vanish simultaneously, then 

cp(x) := (so(x) : ... : SN(X» 

defines a holomorphic map cP : X -t ]pn. 

6.4 Kodaira's embedding theorem. For sufficiently large m, there are 
holomorphic cross sections So, ... , SN in F m such that the map 

cP : X -t (so(x) : ... : SN(X» 

is an embedding of X in]PN. 

PROOF: In the preceding paragraph it was shown that for any point Xo E X 
there is a holomorphic cross section So in some tensor power of F that does 
not vanish at Xo. 



6. Hodge Manifolds 345 

The set Xl = {x EX: SO(x) = O} is a proper analytic set. We decompose it 
into (finitely many) irreducible components, and for every irreducible compo­
nent we choose some point in that component and a holomorphic cross section 
that does not vanish at this point. In this way we obtain finitely many holo­
morphic cross sections So, ... ,Sl whose joint zero set X 2 has dimension n - 2 
at most. We decompose this again into irreducible components and continue 
the procedure. After finitely many steps we obtain holomorphic cross sections 
So, ... , Sq in some tensor power Fmo that do not vanish simultaneously. 

For any two points Xl =1= X2 E X there are two holomorphic cross sections 
to,tl such that (to(Xi): tl(Xi» are homogeneous coordinates of two different 
points. The set YI = ((x,y) E X x X: (to (x) : tl(X» = (to(y) : tt(y»)} has 
lower dimension. We decompose it into irreducible components and proceed 
as above. After finitely many steps we get holomorphic cross sections to, . .. ,tp 
such that x I-t (to(x) : ... : tp(x» is injective. 

For any point Xo E X there are holomorphic cross sections Uo, Ul, .•. , U r such 
that uo(xo) =1= 0 and the map x -+ (uo(x) : ... : ur(x» has a nonvanishing 
Jacobian at Xo. Altogether we have holomorphic cross sections 10, ... ,IN that 
do not vanish simultaneously such that the map ~ : x -+ Uo(x) : ... : IN(X)) 
is an injective immersion. Since X is compact, ~ is an embedding. _ 

It follows from Chow's theorem that X has a projective algebraic structure 
and a genuine Zariski topology. 

Hodge Metrics. We consider an n-dimensional complex Kahler manifold 
X. Let H be the Kahler metric on X, and 

W=WH = iLgijdziAdzj 
i,j 

the associated fundamental form. It is a closed real form of type (1,1). 

We choose an open covering %' = {Uv : v E N} of X such that all in­
tersections UV1, ... ,Vk are contractible. If "f/ is of the same kind and a refine­
ment of %', and G is an abelian group, then the induced homomorphism 
Hi(%" G) -+ Hi("f/, G) is an isomorhism, for i = 0,1,2. We choose %' to be 
fine enough so that H has a potential hv in every Uv: 

Here the hv are smooth real-valued functions, and the differences hvJl. = 
h}" - hv are pluriharmonic in UVJ,£" 

If we set {3v := -i ohv , then d{3v = i oahv = wluv • The closed form dhvJl. = 
ohv}" + ahv}" (respectively i dChvJl. = ohv}" - ahv}") is real (respectively purely 
imaginary). The sum 
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is a closed holomorphic form of type (1,0). If Xo E Uvp. is a fixed point, then 

gvp.(x) := lx 
i dChvp. 

Xo 

defines a purely imaginary function on UvjJ.' It is determined up to a purely 
imaginary constant. Then fvp. := hl/p. + gvp. is a holomorphic function (since 
dfl/p. = 28hvp.). 

We have d(lp.).. - fv).. + fvp.) = 0, and therefore fp.).. - fv).. + fvp. E iR Then 
f = (lij) E C1(%,,0) and 8f E Z2(%" ilR). On the other hand, 

1 1 
f3p. - f3v = -:-8hvp. = -2' dfvjJ.' 

I I 

This shows that (1/2 i )8f defines a cohomology class c = c(H, %') E 

H2 (%' , 1R) e:! H2 (X, 1R) that corresponds to w under the de Rham isomor­
phism (d. the description at the end of Section 2). 

In the following we do not distinguish between H2(%" Z) and its image in 
H2(%" 1R). If a cohomology class of H2(%" 1R) lies in H2(%" Z), then we call 
such a class an integral class. 

Definition. A Kahler metric H is called a Hodge metric if it is integral. 
A Hodge manifold is a compact complex manifold that carries a Hodge 
metric. 

Clearly, every closed complex submanifold of a Hodge manifold is again a 
Hodge manifold. 

6.5 Theorem. Let X be a compact complex manifold. Every Hodge metric 
on X defines via the de Rham isomorphism a cohomology class in H2(X, Z) 
that is the Chern class of a negative line bundle F on X. 

PROOF: Let w be the fundamental form of the Hodge metric. We take a 
finite contractible covering %' = {Uk: k = 1, ... , q} that is so fine that in 
every Uk we have a potential hk for w. As above, we construct the holo­
morphic functions fkl with dfkl = 28hkl . Then 8{Jkl} E Z2(%',2iZ), and 
rkl := exp(7r1kl) defines a co cycle r = (rkt) E ZI(%"O*) that determines a 
holomorphic line bundle F on X. If <Pk : Fluk -t Uk xC are the trivializations, 
then 

We define 

Tk := {(x, w) E Uk xC: Iwl < exp( -7rhk(x»)}, 

and get IfJk 0 <pi 1 (11 IUkl ) = Tklukl' So we have a tube T around the zero 
section in F with Tluk = Tk. Since -log(exp( -7rhk» = 7rhk is strictly pluri­
subharmonic, it follows that F is negative. _ 
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The above procedure can be reversed. 

6.6 Theorem. Assume that X is a compact complex manifold, and F a 
line bundle on X with a tube T around the zero section such that 

Tluk = {(x, w) : Iwl < exp( -rrhk )} 

with strictly plurisubharmonic functions hk . Then the hk are local potentials 
of a Hodge metric on X. 

All this finally implies that 

Hodge manifolds are just projective algebraic manifolds. 

This theorem was first proved by K. KODAIRA. We shall see in the next 
section that it contains a generalization of the classical period relations for 
the n-dimensional complex torus. These were originally derived by completely 
different methods (see, e.g., [K054]). 

Example 

On jp'n we have the Fubini metric H and consider the metric (1/(2rr))H with 

1 (I Zo 12 1 Zn 12) hk = 2rr log Zk + ... + Zk 

as local potentials, for k = 0, 1, ... , n. It follows that 

and hi = ~ 10g(Zk/ZI) is a holomorphic function with Re(fkl) = hkl . There­
fore, the transition functions of the associated line bundle F are the functions 
'Ykl = exp(rrfkl) = Zk/ZZ, and F is the (negative) tautological bundle. 

Exercises 

1. Assume that X is a compact Riemann surface and that Xo E X is a 
point. Show that the bundle [-xol (associated to the divisor (-1)· xo) is 
negative. 

2. Compute the embedding of jp'n into jp'N defined by a basis of the vector 
space r(jp'n, 0(2)) and determine the image. 

3. Let X be a compact complex manifold and L -+ X a negative line bundle. 
Prove that r(X, L) = {o}. 

4. Let X be a compact complex manifold and 7f : E -+ X a holomorphic 
vector bundle. Assume that there are trivializations <{). : Elu, -+ u. x cq 
with transition functions gUt. 
(a) A fiber metric on E is given by a system of smooth functions h. : 

U. -+ Mn,n(C) such that h.(x} is a positive definite Hermitian matrix 
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for every x E U.) and hI< = g/I< . h • . 9.1< on U.I<' Prove that there is a 
smooth nonnegative function Xh : E -+ lR with 

Xh 0 cp;:-l(X, v) = v· h.(x) . v t . 

Prove that if Xo E U.) then CPt can be replaced by a trivialization 'IjJ 
such that h",(xo) = Eq (= identity matrix) and (8h",)xo = O. Such a 
trivialization is called normal at Xo. 

(b) The bundle E is called Griffiths negative if h can be chosen in such a 
way that Xh is strictly plurisubharmonic on E-ZE (where ZE is the 
zero section in E). As in the case of line bundles, E is called Griffiths 
positive if the complex dual E' is Griffiths negative. 

If cp : Elu -+ U x eq is a trivialization and cp(e) = (x, v), then the 
tangential map Cp* : Te(E) -+ Tx(X) EBeq is an isomorphism. Denote 
the space (cp*)-I(Tx(X)) by He(CP) (space of "horizontal" tangent 
vectors at e with respect to cp). Prove that E is Griffiths positive 
if and only if there is a fiber metric h on E such that for every 
e E E - Z E with 11"( e) = x there is a normal trivialization cp at x such 
that 

Lev(Xh)(e,~) < 0 for ~ E He(CP), ~ =1= O. 

(c) Prove that T(lfDn) is Griffiths positive with the Fubini metric. 
(d) Let E be a Griffiths positive vector bundle and FeE a subbundle. 

Show that ElF is Griffiths positive. What does this mean for the 
normal bundle of a submanifold of pn? 

5. Let X be a compact complex manifold and L -+ X a positive line bundle. 
Show that there is an open neighborhood U = U (Z E) c c E such that 
E - U is strongly pseudoconvex. 

7. Applications 
Period Relations. Recall the definition of the n-dimensional torus. We 
take 2n vectors WI, ... ) W2n E en that are linearly independent over lR. The 
additive subgroup 

acts freely on en by translations. The quotient space Tn = en If is an n­
dimensional compact complex manifold and is called a torus. We say that 
W = (wi, ... , win) E Mn,2n(C) is the period matrix of Tn. 

For z E en we denote its equivalence class in Tn by [z]. By the quotient map 
11" : en -+ Tn) the affine space en becomes the universal covering space of Tn. 
Since 11" is locally biholomorphic, we can use the affine coordinates Zl, ... , Zn 

of en as local coordinates on Tn. 
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Every torus has the structure of an abelian complex Lie group; 

[v) + [W) ;= [v + W). 

It is clear that this definition does not depend on the representatives of the 
equivalence classes. 

If wEen is a fixed vector, the translation Tw : en ~ en is defined by 
Tw(Z) := Z + w. It induces a biholomorphic map Tn ~ Tn by [zll-+ [z + wl, 
which we also denote by Tw. It depends only on the equivalence class of w. 

From topology it is known that H2(rn, Z) is a free group spanned by the 
e;) cycles 

Cij(S,t):= SWi +tWj, 0:::; s:::; 1,0:::; t:::; 1, 

with i < j. Since Tn is compact, every de Rham cohomology class [w) E 
H2 (Tn) is uniquely determined by the periods 

Vij ;= 1 w, i < j. 
CiJ 

On en we have the Euclidean metric ds2 = dz1dz1 + ... + dzndzn, which 
is invariant under translations. It induces a Kahler metric Ho on Tn with 
fundamental form 

n 

Wo = i E dZII 1\ azll • 

v=1 

It follows that every torus rn is a Kahler manifold. Using the Euclidean 
volume element, for every differentiable function f on Tn we define the mean 
value M[J) by 

M[J)(z) ;= -II f f 0 Tw(Z) dV 
JWETn 

with 1:= f dV. 
JTn 

It is clear that M[Jl is invariant under arbitrary translations and therefore a 
constant function. 

7.1 Lemma. If w is the fundamental form of some Kiihler metric Ii on 
Tn, then there is another Kahler metric H on Tn such that the associated 
fundamental form W = WH has constant coefficients and the same periods as 
w. If Ii is a Hodge metric, then H is also a Hodge metric. 

PROOF: If w = i Lv,1' gvl' dzv 1\ azl" then we define gvl' := M[gvl') and 

W := i E gvl' dzv 1\ azw 
v,1' 

The form W has constant coefficients. Since the gill' are periodic (i.e., invariant 
under translations by elements of r), we have 
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Iii Cii,,1J. 0 Tw) dz" 1\ cLzlJ. = Iii 9,,1J. dz" 1\ cLzlJ., for every wEen. 

Using Fubini we compute 

= 1 r - -I iTn Vij dV = Vij' 

Now H is a Hodge metric if and only if W H defines an integral class. Since 
a cohomology class in H2(Tn) is uniquely determined by the periods, the 
second assertion also follows. • 

W 'th . - ( (i) (i)) C • - 1 2 h 1 W. - WI , •.. , Wn lor z - , ... , n, we ave 

and therefore 

11 11 (W~i) ds + w;:) dt) 1\ (w~) ds + w~) dt) 

W(i)W(i) - w(j)w(i) 
v IJ. v IJ.' 

Vij i L gvlJ. (w~i)w~) - w;:)w~)) 
",IJ. 

-2Im(Lg"ILw~i)w~») = -2Im(wi t .G'Wj), 
V,IL 

for G := (g"IJ.)' 

7.2 Proposition. The torus Tn zs a Hodge manifold if and only if all 
periods Vij are integral. 

PROOF: Since every element of Tn has a unique representative 

we can use u = (u 1, ... , U2n) as real coordinates on Tn. 

We have a special contractible covering all = {Uk} of Tn . For k = (kI , ... , k2n) 
with k i E {O, I} we define the open set 

Uk = { u E Tn : ~. ki ~ Ui ~ ~ . (ki + I)} (see Figure VI.2). 
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The boundaries of the Uk consist of parts of the "walls" 8 j and 8;, which 
are defined by 

8; = { u E Tn : Uj = ~} and 8j = {u E Tn : Uj = I}. 

Since %' is contractible, the singular cohomology group H2(Tn) is isomorphic 

Si 

Figure VI.2. A special covering for the torus 

to the cohomology group H2(%" Z). In particular, H2(o//, Z) = Z for the 
torus Tl, which has real dimension 2. The class [dUl 1\ dU2] is integral, and 
every integral class is an integral multiple of [dUll\du2]. If we denote by o//(n) 
the covering of Tn, then an easy induction argument shows that a cohomology 
class in H 2 (%,(n), Z) is integral (respectively real) if and only if it has the 
form LV<1l aVIl duv 1\ dUll' with avlJ. in Z (respectively JR) : 

For any v < 11 the class [duv 1\ dulJ.] is integral. Assume that the case n - 1 
has already been proved. Then Tn = Tl X Tn-I, and after subtracting an 
integral sum of [dUi 1\ dUj] with i < j < n the cohomology class is given by a 
covering %,(1) X Tn-1 and is therefore a lifting of some integral multiple of 
dU2n-l 1\ dU2n. So 

[w] = L Vij[dui 1\ dUj] with Vij = 1 wE JR, 
i0 C0 

and [w] is integral if and only if all periods Vij are integral. 

We call Tn an abelian variety if Tn is projective algebraic. 
• 

7.3 Proposition. A torus Tn is an abelian variety if and only if all periods 
are integral (with respect to some Kahler form w). 

More precisely, we have the following result on period relations. 

7.4 Theorem. Let Tn be given by the period matrix W = (wf, .. . , win). 
Then Tn is an abelian variety if and only if there is a positive definite Her­
mitian matrix G such that Im(W t • G . W) is integral. 
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The Siegel Upper Halfplane 

Definition. The (generalized) Siegel upper half plane (of degree n) is 
the n( n + 1) /2-dimensional domain 

1ln := {Z = X + iY E Mn(1C) : Z t = Z, and Y positive definite}. 

7.5 Theorem. If Z E 1ln, then W = (En, Z) E M n,2n(1C) is the period 
matrix of an abelian variety Tn. 

PROOF: We take for G the positive definite symmetric real matrix y-l. 
Then 

wt·G·W ( En ) . y-l . (En' X - iY) = X t + iy t 

( En ) . (y-l, y-l. X - iEn) 
X t + iyt 

( y-l y-l .X- iEn ). xt. y-l + iEn Xt.y-l·X+y 

It follows that 
t - (0 Im(W . G . W) = En 

is integral, and the period relations are satisfied. • 
A converse of the theorem is also true, but we do not give the proof here. 

Semipositive Line Bundles. We consider an n-dimensional compact 
complex manifold X with a holomorphic line bundle F on X. 

Definition. The bundle F is called seminegative if there is a tube 
T around the zero cross section such that T = {(z,w) : Iwl < e(z)} in 
local coordinates and -In(e) is everywhere plurisubharmonic and strictly 
plurisubharmonic at at least one point of X. The bundle F is called 
semipositive if the dual bundle F' is seminegative. 

We give an example of a seminegative bundle F with dim HI (T, 0) = 00. 

The boundary function - In(e) can be chosen to be strictly plurisubharmonic 
outside a nowhere dense analytic set in X. 

Here is the construction. We take a compact Riemann surface R of genus 
g ;::: 1 and a negative line bundle L on R with H1(R, L') =1= O. The complex 
dual L' is positive, and the cross sections in L -m, m > 0, are holomorphic 
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functions on L that are homogeneous polynomials of order m on the fibers 
on L. 

We add a point at infinity to each fiber of L and obtain a compact algebraic 
surface X. We denote by D the divisor of all points at infinity, and by F( m) 
the line bundle over X, associated to the divisor mD. Then all cross sections 
in L-m are sections in F(m) over X that vanish on the zero section Z = 
Z L C LeX of order m. These sections are holomorphic functions on the 
dual bundle F( -m) := F(m)' over X (associated to the divisor -mD) that 
are linear on the fibers of F( -m), but vanish over Z. Let $ be the set of 
all these functions. The function f(x) == 1 on X is also a cross section in 
F(m) that vanishes on D to mth order, but it does not vanish on Z. It gives 
a holomorphic function on F( -m) that is linear on the fibers, vanishes over 
D, but does not vanish over Z. We denote it by h and add it to the system 
§. Now, $ is a set of holomorphic functions on F( -m) that are linear on 
the fibers and whose joint zero set is the zero cross section of F( -m). 

Forming the sum of several products f J, f E $, we construct a plurisubhar­
monic function 't/J on F( -m) with the following properties: 

1. The zero set of't/J is the zero cross section in F( -m). 
2. 't/J is quadratic on the fibers. 
3. 't/J(z) tends to 00 as z approaches of. 
4. 't/J is strictly plurisubharmonic outside of F( -m)lz, but plurisubharmonic 

everywhere. 

So our tube T = ((w,x) : 't/J(w,x) < I} is pseudoconvex, and strongly pseu­
doconvex outside of F( -m) I z. 

The restriction F(-m)lz is trivial. Therefore, the holomorphic functions on 
(F( -m)lz) n T consist of certain convergent power series Ei ai(x)wi , where 
w is a coordinate on the fibers. All powers i appear. The first cohomology of 
Z with coefficients in these power series is infinite-dimensional, since it con­
tains the direct sum of the cohomology with coefficients in those holomorphic 
functions that are polynomials on the fibers with fixed degree i. We can ex­
tend these polynomials to F( -m) by replacing w by h. If we restrict to these 
polynomials, we get an injection of the cohomology of Z with coefficients in 
the polynomials on the fibers into H 1(T, 0). So the cohomology Hl(T, 0) is 
likewise infinite-dimensional. 

Moishezon Manifolds. We previously mentioned Moishezon manifolds 
(see Section VI.3). An n-dimensional compact complex manifold is called a 
Moishezon manifold if it has n analytically independent meromorphic func­
tions. Without proof we state here a result that was originally called the 
Grauert-Riemenschneider conjecture (cf. [GrRie70]). 

7.6 Theorem. If a compact complex manifold X has a semipositive line 
bundle, then it is a Moishezon manifold. 
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The conjecture was proved by Y.T. Siu (see [Siu84] and the summary in 
[GrPeRe94], VII.6). 

To obtain a result in the other direction we have to blow up along a d­
codimensional submanifold Y C X with d ~ 2 (cf. Section IV.7, "Monoidal 
Transformations"). This leads to a proper modification X of X, where Y is 
replaced by a 1-codimensional submanifold Y and the map Y -+ Y is a fiber 
bundle with typical fiber JP'd-l. 

7.7 Theorem. If X is a Moishezon manifold, there is a finite sequence of 
monoidal transformations with d-codimensional centers with various d that 
lead to a proper modification X of X such that X is a projective algebraic 
variety. 

This statement is proved in [Moi67]. We know that X carries a negative line 
bundle. By blowing down to X we get a "meromorphic" negative line bundle 
on X. Now over certain points of X there is a family of lines instead of one 
line. 

In the case that X is a surface every Moishezon manifold is projective alge­
braic (see, e.g., [ChoK052]). But already in dimension three there are Moishe­
zon manifolds that are not projective algebraic. The first example was given 
in Russia (the "Russian counterexample" or "the complex Sputnik," as it was 
called at Princeton in 1958), but see also [Nag58] or better just the classical 
example of Hironaka ([Hi60]), or [Pe93]. 

For a proof of the following important result see [Moi67] or [Pe86]. 

7.S Theorem. Assume that X is a Moishezon manifold which has a Kahler 
metric. Then X is a projective algebraic manifold. 

Exercises 

1. Prove that the torus T2 given by the period matrix 

w= (1 0 A A) 
01 A R 

has only constant meromorphic functions. 
2. Prove that the Siegel upper halfplane is contractible. 
3. For W E Mn,2n(C) let W := (::). Recall the results of Exercise 5.3 in 

chapter IV and prove that for every n-dimensional torus T there is a 
matrix Z E Mn(C) with detIm(Z) > 0 and T ~ T(E .. , Z). 

4. Find a compact complex surface X with a seminegative line bundle F 
such that F is not holomorphically convex. 



Chapter VII 

Boundary Behavior 

1. Strongly Pseudoconvex Manifolds 
The Hilbert Space. Assume that X is an n-dimensional complex man­
ifold that carries a (real analytic) Kahler metric ds2 = Lgijdzidzj , where 
the gij are real analytic functions of the local coordinates Zl, ... , Zn. We con­
sider a domain n cc X whose boundary an is 'jfoo-smooth and strictly Levi 
convex. In this chapter such a domain is called strongly pseudoconvex. 

If Xo E X is a point, we can introduce local coordinates in a neighborhood 
of Xo such that G = (gij (xo)) is the identity matrix. We call them Euclidean 
coordinates in Xo. They are determined up to holomorphic coordinate trans­
formations that at Xo are given to first order by a unitary matrix. We have 
a Euclidean volume element dV in Xo, and also the complex star operator "* 
given by 

cp 1\ "* 'IjJ = 2p+q . (L a lJ . b lJ ) dV, 
I,J 

for forms cp = L alJ dZI 1\ azJ and'IjJ = L blJ dZI 1\ azJ of type (p, q). Using 
the Euclidean coordinates we also have a scalar product at Xo that is given 
by 

This is invariant by unitary transformations and therefore independent of the 
choice of the Euclidean coordinates. 

Assume now that cp and 'IjJ are continuous on Ii". Then we have the inner 
product 

(cp, 'IjJ) = In (cp(x) I 'IjJ(x)) dV = In cp 1\ "*'IjJ. 

This is a pre-Hilbert space that completes to the Hilbert space L~,q = L~,q(n) 
of (p, q)-forms with square integrable coefficients. It contains the space 
dP,q(Ii") of '(foo_(p, q)-forms over Ii" as a dense subspace, and also the space 
dcf,q(n) of such forms with compact support in n. Every element of L~,q is 
a square integrable current of degree p + q (or bidegree (p, q)). 

Operators. First, we shall extend the operator 8: dcf,q(n) ~ .ldcf,q+1(n) 
to a bigger domain dom(8) c L;,q. For this we use the fact that there is a 
uniquely determined adjoint operator 1J: dcf,q+I(n) ~ dcf,q(n) such that 
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The proof for this statement is the same as in the case of compact Kahler 
manifolds. 

Now the existence of the extension follows easily. If t.p E L~,q is given, we 
define the current 8t.p by (8t.p,'lj;) = (t.p,fJ'lj;) for all 'lj; E dJ',q+l(n). We say 
that t.p is an element of dom(8) if the current 8t.p is contained in L~,q+l' The 
(unbounded) operator 8 is now a map from dom(8) to dom(8), with 808 = 0 
(since fJ 0 fJ = 0). 

Next we shall extend fJ to the conjugate operator 8* on a dense subset 
dom(8) C L~,q+l' Assume that 'lj; E L~,q+l' If t.p E dJ',q(n), we define 
(t.p, 8*'lj;) = (8t.p, 'lj;) and get a current 8*'lj; of bidegree (p, q) over n. For 'lj; an 
element of dom(8) we require that the current 8*'lj; be contained in L~.q. 
But this is not yet enough. We wish to have (t.p, 8*'lj;) = (8<p, 'lj;) for every 
<p E dom(8): At the moment we have this only for <p E dJ',q(n). But a gen­
eral <p E dom(8) can be approximated by a sequence t.pi E dJ',q(n). Assume 
now the validity of 

(*) 1(8t.p,'lj;)1:::; c·II<pII, for all <p E dom(8), 

where 1It.p1l = V(<p,t.p) and c > 0 is a constant that depends only on 'lj;. Then 
we have also that (8<pi,'lj;) converges to (8t.p,'lj;), and (<pi,8*'l/J) to (t.p,8*'lj;). 
This gives the required statement. 

If, on the other hand, (8<p,'lj;) = (<p,8*'lj;) is always valid, then (*) follows. So 
we define 

Next we consider the operator 0 = 8*8 + 88* that maps a form in L~,q onto 
a current of bidegree (p, q) over n. We define 

dom(D):= {t.p E L;,q: <p E dom(8)ndom(8), 8<p E dom(8) , a7p E dom(8)}. 

Then 0 maps domeD) to L~,q. For <p, 'lj; E domeD) we have the equality 

(O<p, 'lj;) = (8t.p,8'lj;) + (a*<p,8*'lj;) = (t.p,O'lj;). 

The space of harmonic forms is defined to be the space 

Yt'p,q := {<p E domeD) : O(<p) = o}. 

We get very simply that Yt'p,q is closed in dom(O) and that D(dom(D» is 
orthogonal to Yt'p,q. 



2. Subelliptic Estimates 357 

Boundary Conditions. We now consider forms 'P E dp,q(n). In this 
case all derivatives 8'P, 8* 'P and also those of higher order are square inte­
grable. So domeD) ndp,q(n) consists of those forms 'P for which the equation 
(*) is valid for 'P and 8'P. We assume that in a neigborhood U(on) there is 
a smooth real function r such that unO. = {x E U : rex) < O} and that 
dr(x) i:- 0 for x E U. Then by a computation (partial integration) one has 
the following: 

A form 1j; belongs to dom(8) if and only if or 1\ * 1j; =' 0 on on. This 
holds for arbitrary 1j;, not only for elements in the inverse image of the 
space of smooth differential forms. 

The following is then immediate. 

1.1 Proposition. A form 'P belongs to domeD) if and only if the following 
two boundary conditions are satisfied on on: 

1.orl\*'P='O. 
2. or 1\ *8'P =' O. 

These conditions are called the 8-Neumann boundary conditions. For liter­
ature see [DL81] and [FoK072]. The main result of the next section is the 
following: 

Assume that q > O. Under the hypotheses given above, the harmonic 
forms of type (p, q) (i. e., elements of .J't'p,q) represent the elements of the 
cohomology group Hp,q (0.). 

The first proof of this theorem was given in [Ko63]. 

Exercises 

1. Give an explicit description of the operator 8* . 
2. Prove that the boundary conditions for the operator 8 and C(j'<XJ functions 

are always satisfied. 
3. Prove that the boundary conditions are never satisfied if q = n and the 

form is not identically zero on on. 
4. Build a theory of harmonic forms for a "cohomology with compact sup­

port" HJ (0.,0). What are the boundary conditions? 

2. Subelliptic Estimates 
Sobolev Spaces. We look for an operator 

N : dp,q(n) -+ dp,q(n) n domeD) 

such that DoN = id. Finding such an operator is the so-called Neumann 
problem. To solve this problem we need Fourier transforms and the so-called 
subelliptic estimates. 
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We begin by introducing the notion of a Sobolev space. We start with the 
vector space Y of rapidly decreasing '/tfoo-functions I : ]RN -+ C with 

IxQ D{3 I(x) I -+ 0 for IIxll -+ 00 and for all a, {3 E NN. 

Here 

We have the Fourier transfomation F : Y -+ Y given by 

F[J](x) = lex) := (21T~N/2 J I(y)e-i(x,y) dy. 

For every s E ]R we define the norm II .. . lIs by 

The Sobolev space of index s is defined as the completion Hs(]RN) of Y with 
respect to this norm. 

Now we work in the space ]RN+1 with coordinates (x,r) = (XI, ... ,xN,r), 
and consider the half-space ]R~+1 = {(x, r) : r ~ O} and 'itfoo functions 
I(x, r) with compact support in ]R~+1. Then for fixed r these functions are 
in Y. We take the Fourier transforms with respect to x, for fixed r, and 
define 

This norm is called the tangential Sobolev norm. 

Now let us return to our strongly pseudo convex domain n cc X. We put 
N = 2n - 1, and take any Xo E an and a neighborhood U(xo) c X with 
local coordinates 

Zl = Xl + iX2, ... ,Zn-l = X2n-3 + iX2n-2, Zn = X2n-1 + ir. 

Here r is the boundary function for an as in the preceding section. In the 
following we will work only with respect to these local coordinates. If I E 
do°,o(Unfi), then I is '/tfoo-smooth and has compact support in ]R~+1. Hence, 
we can define the norm 11If11~. For <p E .0"cf,q(unfi) we put 1II<p~I~ = LJ H"I~, 
where I runs through the coefficients of <po 

Definition. The Neumann problem for (p, q)-forms is called subelliptic 
on n if there is an e > 0 such that for every Xo E an there is a coordinate 
neighborhood U(xo) and a constant c> 0 such that 
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for all <p E .!dri,q (u n 0) n dom(a*). 

Here Q( <p, 1j;) = ('P, 1j;) + (a'P, a1j;) + (a"<p, a*1j;) is the s<rcalled energy form 
(or the Dirichlet inner product). 

2.1 Theorem. If f2 is strongly pseudoconvex, the Neumann problem is 
subelliptic for all (p, q)-forms with q > O. 

The proof of this theorem is rather difficult, of course. The s<rcalled Kohn­
Morrey inequality is involved. See [DL81]' for instance. 

The Neumann Operator. There is an old theory on elliptic bound­
ary problems, beginning with Dirichlet's problem (see the old papers of L. 
Bers and L. Nirenberg, for instance). Here the Garding inequality plays an 
important role. If it holds for a problem, existence and regularity of solutions 
of the problem can be proved. In our terminology it can be expressed in the 
form 

If c < 1, then the inequality for sub ellipticity is much weaker than the 
Garding inequality. But nevertheless, in the papers of Kohn and Nirenberg 
it was proved that there are results on the smoothness of the solution of the 
Neumann problem that are similar to those in the old theory and that follow 
from subellipticity alone. We state a first important result (see [DL81]): 

2.2 Proposition. Assume that n is strongly pseudoconvex and that the 
Neumann problem is subeUiptic for (p, q)-forms on f2. Then there is a unique 
operator N : L;,q -+ domeD) with the following properties: 

1. N(,Yep,q) = o. 
2. DoN = id. 
3. N (L;,q) is orthogonal to ,Yep,q. 

This operator N is called the Neumann operator. Under the above conditions 
the following theorem is true: 

2.3 Theorem. 

1. The harmonic space,Yep,q is finite-dimensional. It is contained in .!dp,q (n), 
and for <p E ,Yep,q we have or 1\ "* <p == 0 on on. 

2. The Neumann operator N is compact with respect to the L~,q -norm. 
3. We have .!dp,q(n) = .!/ep,q EEl DN(.!dp,q(n)). 
4· If'P E .!dp,q(n), a<p = 0, then <p is orthogonal to a"aN(.!dp,q(n)). 
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For a proof see [KoNi65] and [FoKo72]. Both papers are difficult to read. 

In the case X = en there is a simpler proof. A domain nee en with smooth 
boundary is called regular if there exists a finite number of subsets Si Can, 
i = 0, ... , N, such that 

1. 0 = SN C SN-1 C ... C Sl C So = an. 
2. If Z E Si, but z f/. Si+1, then there are a neighborhood U(z) and a 

differentiable submanifold M C Un an with holomorphic dimension 
equal to zero such that Si n U eM. 

If n is pseudoconvex and regular, then a certain compactness estimate holds 
for the Neumann problem for (p, q)-forms with q ~ 1 (cf. [Ca84]). Still using a 
result of Kohn/Nirenberg (see [KoNi65]), from the compactness estimate the 
existence and the compactness of the Neumann operator N follow. See also 
[BoStr99] for further discussion. If n is an arbitrary pseudoconvex domain, 
the Neumann operator exists as a continuous linear map L~,q -+ dom(O). 
This is proved in [Ca83]. 

A strongly pseudo convex domain n c en is always regular, and therefore the 
above theorem on the Neumann operator holds in this case. But in en the 
harmonic space .)It'p,q is always equal to zero. 

Real-Analytic Boundaries. We assume again that X is a complex 
manifold, but we consider only a domain n with real-analytically smooth 
boundary. Here we only assume that n is pseudoconvex. Then the following 
holds: 

2.4 Proposition. The Neumann problem is subelliptic on n for (p, q)-forms 
with q ~ 1 if and only if all germs of local complex-analytic sets A c an have 
dimension less than q. 

Moreover, we have the following result: 

2.5 Proposition. Assume that n cc X = en. Then there is no germ of 
a local complex-analytic set A c ac of positive dimension. 

For a proof see [DiFo78] and [Ko79]. 

Examples. We will construct two 2-dimensional examples nee X, where 
n contains just one compact irreducible curve Y. From the existence of Y 
it will follow that the cohomology group H 1(n,0) is different from zero. 
The cohomology classes are given by unique harmonic forms that satisfy the 
boundary conditions. We can study these as if they were functions, which may 
be useful for our investigations. Unfortunately, the forms in .)It'D,l are not in 
general d-closed. So there is no connection between .)It'0,1 and the cohomology 
with coefficients in e as in the case of compact Kahler manifolds. We will see 
this more precisely in the examples. 
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Example 1 

We take a compact Riemann surface Y of genus 9 > 1 and a line bundle 
X on Y with Chern class -1. This line bundle is negative. There is a real­
analytic metric on the fibers of X such that 0 = {x EX: IIxll < I} 
is a strongly pseudo convex relatively compact subdomain of X with real­
analytically smooth boundary. We get a uniquely determined Kahler metric 
on X by using the metric of constant curvature on Y and the metric on the 
fibers and requiring that the surfaces {x EX: IIxli < r} be orthogonal to 
the fibers. 

Over Y we have the vector bundle Oi of homogeneous polynomials of degree 
i on the fibers of X. If i is sufficiently large, then Hl(y, Oi) vanishes. So the 
finite-dimensional cohomology groap Hl(O, 0) is generated by finitely many 
of these groups Hl(y, Oi). The cohomology classes are given by differential 
forms r.p E Jd'O,l(Y,Oi) = r(Y,!\O,1(y) ® Oi). They all may be viewed as 
differential forms on 0 whose coefficients are holomorphic polynomials of 
degree i on the fibers. They vanish on Y to order i. We denote the set of these 
forms by l2l?,1. Examples for forms of this type are given by the derivatives 
8/, where / is a differentiable function in 0 whose restriction to the fibers is 
a holomorphic polynomial of degree i. We take the orthogonal complement of 
these forms and get £0,1 = ffii .Yt';,0,1, where .Yt';,0,1 C l2l?,1. This follows by a 
direct computation. Thus we obtain a basis of finite length, and the restriction 
of these forms to 80 satisfies the boundary conditions of harmonic forms. 

Since 9 :::: 2, the space of harmonic forms .Jf{0,1 has positive dimension. We 
can obtain a basis by explicit computation. The elements are harmonic forms 
in 0 vanishing on YeO. If there were an isomorphism onto the cohomology 
with coefficients in C (as in the compact case), they would have to be zero. 

Example 2 

We will construct another 2-dimensional example of a completely different 
type. For this we use compact complex-analytic curves that are no longer reg­
ular. They are irreducible reduced I-dimensional complex spaces (Le., topo­
logical Hausdorff spaces that locally look like analytic sets in some complex 
n-space). Here we go a bit beyond the scope of this book, but we hope that 
the reader can nevertheless get an idea of the method. 

We take the projective line ]p1 with the points 0 and 00. We identify these 
two points, obtaining a compact irreducible I-dimensional complex curve that 
has a "normal crossing" of I-dimensional domains in a neighborhood of the 
gluing point O. This point 0 is the only singular point. 

The projective line ]p1 is the so-called normalization of Y: There is a sur­
jective holomorphic mapping 7r : ]p1 -+ Y that maps 0 and 00 to 0 and 
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is biholomorphic elsewhere. The first cohomology group HI (Y, 0) of Y has 
dimension 1 (as can be computed). 

We build a 2-dimensional complex manifold X around Y. There is a neigh­
borhood U = U(O) in Y and a holomorphic embedding 

j : U '-t X I = {( w, z) E C2 : I w I < I} 

with j(U) = YI := {(w, z) E Xl : w2 - Z2 = a}. We choose an c with 
0< c < 1 and put P:= {(w,z) E Xl : Iwl:::; c} and Y{:= YI-P. We define 

Y2 := Y - rl(YI n P) and Y;:= rl(yl ) n Y2 = rl(YI - P). 

The manifold Y; consists of two disk shells 

Yo rI({(w,z) E C2 : c < Iwl < 1 and z = w}), 

Yoo rl({(w,z) E C2 : c < Iwl < 1 and z = -w}). 

On YI we have the holomorphic function WI := prIlv) , which can serve as 
local (and even global) coordinate. The set Y2 is the complement of the union 
of two neighborhoods of 0 and of 00 in pI and therefore isomorphic to a disk 
shell in Co = pI - {O,oo}. We have a global coordinate W2 on Y2, and a 
holomorphic function WI = !(W2) on Y~ with 

Now we put X 2 = Y2 X C and use in X 2 the product coordinates (W2' Z2). 
We choose suitable small open neighborhoods WI = WI (Yd C Xl and W2 = 
W2(Y2) C X 2, and define the gluing map F : (Xl - P) n WI -+ (X2Iv;) n W2 
by 

( ) F( ) {(J-l(w),Z - w) near z = W, 
W2, Z2 = W, Z = (J-l(w), z + w) near z = -w. 

So we obtain by this gluing procedure a complex manifold X around Y. The 
singular curve Y is a hypersurface in X. 

The covariant normal bundle N° = Nx (Y) is given by the adjunction formula 

Nx(Y) = [-Yllv, 

where [-Y] is the line bundle associated to the divisor - Y in X. The normal 
bundle N = Nx(Y) is trivial over Y2. Therefore, the holomorphic function Z2 
can be regarded as a holomorphic function on N that is linear on the fibers. 
This defines a holomorphic cross section in N° over Y2 that is given by 
the holomorphic function S2(W2) == 1 with respect to the local trivialization 
over Y2 . It extends to a global meromorphic section s over Y. In the local 
trivialization over YI , s is given by the meromorphic function 



1 {l j (Z+W) 
Sl(W,Z) = 2z = l/(z - w) 
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on z = w, 
on z = -w, 

since the transition function gi2 for N* is given by 

* Z2 Z =f W 
9 - = 12 - Z2 _ w2 z2 - w2 . 

Now we lift everything to pl. The lifted section s of 1r 0 (N°) has poles of first 
order in 0 and 00, and no other poles and no zeros. So 1r°(N°) has Chern 
class -2. 

To construct a bundle with positive Chern class, we have to alter X 2 • For this 
we take a point p E Y - Y 1 and two small disks D' c c D around p such that 

- -I-I 
D is still in Y - Y 1 C Y2 • Let S be the disk shell D - D . We glue (Y - D ) x C 
with D x Cover S by means of the gluing map H : S x C -4 S X C with 

We replace our old X 2 by a new X2 and get a new manifold X. Now the 
lifting of the covariant normal bundle NJc (Y) to pI has Chern class 3. It 
follows by Riemann-Roch that dimcHO(p1,1r*(NJc(Y») = 3 + 1 = 4. By 
the projection pI --+ Y the fibers over 0 and 00 are identified. This gives an 
additional condition for the existence of global holomorphic cross sections in 
the covariant normal bundle of Y eX. So we have 3 linearly independent 
holomorphic cross sections Sl, S2, S3 in N*. 

One can see by computation that sl1Y1 may be assumed to be given by 
(z - w)(z + w). The function IZ2 - w212 is an extension of S181 to Xl' If we 
add the function I(z - w)2(z + w)312, we obtain an extension that is strictly 
plurisubharmonic outside of Y1 • We can also extend the other silYl to Xl 
and the silY2 to X 2, form the SiBi, sum up, and glue together after a small 
change in a neighborhood U(Y) cc X to obtain an extension h of SlB1 + 
S282 + 8383 in U. The extension vanishes on Y and is positive outside. It is 
strictly plurisubharmonic in a neighborhood U' of Y. Then for very small 
E > 0, the tube n = {h < E} C C U' will have a smooth boundary. It is 
strongly pseudoconvex. 

We have dim HI (Y, 0) = 1. The cohomology class can be given by a cocy­
de with coefficients in C. It therefore extends to n. So there is a nonzero 
harmonic form cp E £0,1 (n). It satisfies the boundary condition. So in this 
example the cohomology of the curve Y, which has singularities, is given by 
a smooth harmonic form in a tube around the curve. This shows that the 
theory of harmonic forms on manifolds with boundary may be very useful. 
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Exercises 

1. Show that the Sobolev space H- s may be identified with the dual of 
H 8 • Show that the Sobolev norm II .. . lIs comes from a scalar product 
( ... , .. ')8' and prove the following generalized Schwarz inequality: If 
f, 9 E Ho and f E Hs for some s > 0, then (f, g)8 :::; IIfll8 . IIglls. 

2. It is a consequence of the famous "Rellich lemma" that the following 
holds: If s > t, then for any c > 0 there is a neighborhood V(O) such 
that IIflit :::; cllflls for all f with compact support in V. Use this to prove 
the same estimate for the tangential Sobolev norm. 

3. Assume that the Neumann problem is solvable for (p, q)-forms. Let a 
form <p E L~,q with 8<p = 0 be given that is orthogonal to £P,q. Prove 

that 1/J := {j* N<p is the only solution of the equation 81/J = <p that is 
orthogonal to every 8-closed form. 

4. Let n cc en be a strongly pseudo convex domain. Prove that for every 
positive number C there is a smooth plurisubharmonic function e on n 
with 0 :::; e:::; 1 such that Lev(e)(z, t) ~ Clltll 2 for every z E an. 

5. Take Example 2 and prove that that the derivative d( <ply) is different 
from 0 and that this form is not harmonic. 

6. Take Example 1 and prove that £1,0 has infinite dimension. 
7. The following problem requires some knowledge about sheaves and com­

plex spaces. Take integers r < s such that r, s are free of common divisors. 
Consider at 0 E e the holomorphic functions that are given by conver­
gent power series in wr and w S • Then replace the ring of holomorphic 
functions in 0 E PI by these holomorphic functions and repeat the pro­
cedure of Example 2. Since now the "structure sheaf' 0 of pI is smaller, 
a new curve Y is obtained. Construct an X around Y such that there is 
a 2-dimensional strongly pseudoconvex tube n around Y. Compute the 
first cohomology of Y. 

3. N ebenhiillen 
General Domains. Assume that n c en is a general domain. We take 
the open kernel of the intersection of all domains of holomorphy fi ::J nand 
its connected component N(n) that contains n. (More precisely, we work in 
the category of unbranched domains over en as in the case of the construction 
of the hull of holomorphy). 

Definition. The domain N(n) is called the Nebenhulle of n. 

We can see very easily: 

The Nebenhulle is a domain of holomorphy. 
The NebenhUlle contains the envelope of holomorphy of n. 
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If 0 cc en is a domain of holomorphy with (smooth) real-analytic boundary, 
then 00 does not contain any germ of an analytic set of positive dimension. 
Moreover, one can show that N{O) = O. That implies that one can approxi­
mate n by Stein neighborhoods. See [DiFo77] for details. 

The Hartogs triangle 0 := {(w, z) E e2 : Iwl < Izi < I} is a domain of 
holomorphy, but N{O) is the unit polydisk in e2. In this case the envelope 
of holomorphy is 0 and the Nebenhiille is much bigger. We will see that this 
can happen even when 0 is a bounded domain with smooth boundary. The 
following example was constructed in [DiFo77]. 

A Domain with Nontrivial Nebenhiille. We define a real-analytic 
function (J : C* x e --t IR by 

(J{w, z) = Iz + exp(i In{ww»1 2 - 1 

and put 
0:= {(w, z) E C· x e : (J(w, z) < o}. 

A computation of the derivatives of (J gives 

0(J 
ow 
0(J 
OZ 

02(J 

owow 
02(J 

OWOZ 

= i z exp(i In(lwI2» _ ~ exp{ -i In(lwI2)), 
w w 

= Z + exp{ -i In(lwI2», 

= -1~12 exp{i In(lwI2)) - 1;12 exp{ -i In{lwI2)), 

I ~(J 
= ~ exp(i In{lwI2», and ozoz = 1. 

3.1 Proposition. an is smooth. 

PROOF: If there were a point Cwo, zo) E 00 where d(J = 0, then 

0(J 
oz (wo, zo) = O. 

This gives Zo = - exp( i In{lwoI2» and hence (J(w!), Zo) = -1. But such a 
point is not on the boundary. • 

3.2 Proposition. The bmtndary of 0. is pseudoconvex. It is not strongly 
pseudoconvex exactly along M = {(w, z) : z = O}. 

PROOF: The complex dimension of the complex tangent space at every 
point of 00 is 1. A vector ~ = aolow + boloz + aolow + bojoz at a point 
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of 8n lies in the complex tangent space if and only if (a8/8w+b8/8z)[u] = o. 
So the vector space of complex tangents is spanned by the vector 

~ = _ 8u ~ + 8e ~. 
8z 8w 8w 8z 

The function e is the potential of a Hermitian form H. The boundary of n 
is pseudo convex (strongly pseudoconvex) if and only if H ~ 0 (respectively 
H > 0) on this vector. By a calculation we get 

It vanishes only for z = o. 
We take any neighborhood U of n that is a domain of holomorphy. Then U 
contains C· x {O}. If Wo E C., Zo E C and 0 < Izo + exp(i In(lwoI2))1 < 1, 
then n n (e x {zo}) is the disjoint union of infinitely many disk shells in 
C·. When we move Zo on a line to 0 the shells may become larger. So by the 
theorem of continuity it follows that every holomorphic function in U can 
be extended holomorphically to the point (wo,zo). So U and the Nebenhiille 
N(n) contain the domain C· x {z : Izl < 2}, and consequently the Nebenhiille 
is much bigger than n. • 

Bounded Domains. The domain n of the preceding paragraph lies over 
C· and is not bounded. But one can obtain a pseudoconvex bounded domain 
by making n smaller. One takes an r > 371", leaves n unchanged over the 
line segment [1, r], and deforms the circles n n (C x {w}) slowly to 0 as 
Iwl goes to 0 or to 00. The new domain is bounded and has a much bigger 
Nebenhiillej the boundary is 'i!foo-smooth, but not real-analytic. This is the 
"worm domain" constructed explicitly in [DiF077]. 

Domains in (:2. The domain n from above (with real-analytic boundary) 
lies in C· x C. But we also can find such a domain in C2. We have the universal 
covering '(:2 -t C· X C by the holomorphic mapping (w, z) = F(w, Z) := 

(exp( w), Z). Then we lift n to C2 and obtain a domain n that has a smooth 
real-analytic boundary and is not bounded. 

The new domain n is a "semitube": The translations in the imaginary w­
direction act on it. Hence, the Nebenhiille N(n) is also a semitube. So it can 
be written as the set S(M) = {(w, Z) : (Re(w), Z) E M}, where M is the 
smallest open set in {(u, Z) : u E JR., Z E C} with the following properties: 

1. S(M) ::) n. 
2. S (M) is pseudo convex. 

3. JR. x {O} C M. 
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We have F(S(M)) = {(w, z) : (Iwl, z) EM}, where M is the image of M 
under the mapping (u, z) t--+ (exp( u), z). The domain S (M) is pseudoconvex 

if and only if F (S (M)) is pseudoconvex, since F is locally biholomorphic 

with respect to iii. So the Nebenhiille N(fi) is the set {iU E C : IZI < 2}, just 
as N(n) is {w E C* : Izl < 2}. 

Exercises 

1. Let nee C2 be a domain of holomorphy. If there is an analytic plane 
E such that nnE has isolated boundary points, then !1 has a nontrivial 
Nebenhiille. 

2. Consider domains !1 c C. When is N(!1) = H(!1) (i.e., the envelope of 
holomorphy)? 

3. A family n(t) of domains in cn is called continuous at to if for every 
compact set K C n(to) and every domain n :) n there is an € > 0 such 
that K C n(t) c n for It - tol < c. 
(a) Construct a continuous family of domains !1(t) such that the family 

of the envelopes of holomorphy H(!1(t» is not continuous. 
(b) Define "upper semicontinuity" for families of domains. Find condi­

tions such that the upper semicontinuity of H(!1(t» follows from the 
continuity of !1(t). 

4. Boundary Behavior of 
Biholomorphic Maps 

The One-Dimensional Case. Assume that !1,!1' c e are bounded 
domains with 'ifoo-smooth boundary and that f: !1 -+ !1' is a biholomorphic 
mapping. The following theorem is well known: 

4.1 Theorem. The map f can be uniquely extended to an invertible 'if 00 

map j: n -+ !1'. 

In particular, if a!1, an' are real-analytic, then the extension is likewise real­
analytic. 

The Theory of Henkin and Vormoor. Assume now that !1 is a 
domain in cn. A holomorhic map F : n -+ eN is called Holder continuous 
of index c > 0 if for all points w, z E !1 the estimate 

IIF(w) - F(z)1I ::; M· IIw - zllc 

holds with a constant M > O. 

Here we state a special case of a theorem that was independently proved by 
Henkin and by Vormoor (see [He73) and [Vo73]). 
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4.2 Theorem. Assume that 0 1 , O2 E cn are strongly pseudoconvex do­
mains with «/00 -smooth boundary and that F : 0 1 -+ O2 is a biholomorphic 
map. Then F has an extension to a Holder continuous map F : 0 1 -+ O2 

with index ~. 

The PROOF of this theorem is very technical. The main ideas can be found 
in the book of DiederichjLieb ([DL81]). An important tool is the notion of a 
pseudodifferential metric. Since these metrics are interesting themselves, we 
give the definition for general complex manifolds: 

Definition. Assume that X is an n-dimensional complex manifold. 
A pseudodifferential metric on X is an upper semicontinuous map Fx : 
T(X) -+ lRt with the property 

for all vectors ~ E T(X) and all a E C. 

We do not require that Fx(~) be positive for ~ =I- 0, and we do not require 
the triangle inequality. 

As an example we consider the Kobayashi metric. It is of great importance, 
not only within the scope of this section. A complex manifold is called hy­
perbolic if it has a complete Kobayashi metric. The word "complete" here 
means that all metric balls are contained relatively compactly in X. It is 
known that the set of holomorphic mappings into a hyperbolic manifold is 
a normal family in the sense of Montel. A Riemann surface is hyperbolic in 
this sense if and only if it is of hyperbolic type (in the classical sense). On 
any other Riemann surface the Kobayashi metric degenerates to O. 

But first let us give the definition of the Kobayashi metric. As usual, we 
denote the unit disk by 0 = {z : Izl < I} C C. If f : 0 -+ X is a holomorphic 
map and f(O) = xo, then we denote by 1'(0) the tangent vector 1'(0) := f.(e), 
where f. : To(D) -+ Txo(X) is the induced mapping and e the canonical basis 
of To(D) ~ C. 

Definition. The Kobayashi metric is the pseudodifferential metric dx : 
T(X) -+ lRt defined by 

dx(~) := inf{lal- 1 : :3 f : 0 -+ X holomorphic with f(O) = Xo, /,(0) = a~}. 

The following statement is a very simple consequence of the definition. 

4.3 Proposition. Assume that F : X -+ Y is a holomorphic map of com­
plex manifolds. Then dy(F*(~)) ::; dx(~). 

So the Kobayashi metric is invariant under biholomorphic mappings. In cer­
tain cases it is completely degenerate. For example, 

the Kobayashi metric on Cn is identically O. 
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For the Kobayashi metric in the unit disk we obtain 

For a bounded domain nee en one shows that 

lie II 
daCe) ~ a· dist(z, on) , 

where ~ E Tz(n) ~ en, zEn, and a E e is a constant. Moreover, if n has a 
'6'oo-smooth strongly pseudoconvex boundary, we even get 

> II~II 
daCe) - a· dist(z, on)1/2' 

Real-Analytic Boundaries. We consider again the continuation of 
biholomorphic maps F : n 1 -t n 2 to the boundary. But we assume now that 
the boundaries are real-analytically smooth. In this case we can drop the 
assumption of strong pseudoconvexity. 

4.4 Theorem. IfF: n1 -t n2 is a biholomorphic map of pseudo convex do­
mains with smooth real-analytic boundaries, then F extends to a (uniformly) 
Holder continuous map F : 0 1 -t O2 . 

This was proved by Diederich and Fornress (see [DiFo78]). 

Fefferman's Result. In 1974 Charles Fefferman proved the following 
theorem (see [Fe74]). 

4.5 Theorem. Assume that n1. n2 cc en are strongly pseudoconvex do­
mains with '6'00 -smooth boundaries and that F : n 1 -t n 2 is a biholomorphic 
mapping. Then F extends to a '6'00 diffeomorphism F : 0 1 ~ n 2 . 

For his proof Fefferman used the Bergman metric, which is invariant under 
biholomorphic mappings. His proof was very difficult. There were many sim­
plifying methods written by authors like S.M. Webster, N. Kerzman, S.R. 
Bell, E. Ligo<;ka, L. Nirenberg, P. Yang. Later, an interesting proof that uses 
the Bergman projection was discovered by Catlin (see [Ca84]). 

We wish to indicate some ideas concerning the Bergman kernel function. We 
will define it in the general case of a strongly pseudoconvex domain n cc X 
with smooth boundary, where X is an n-dimensional complex manifold. If F 
is a complex analytic line bundle on X, one can prove as in Chapter V that 
the cohomology HI (n, F) is finite. Then, following the ideas of Chapter V, 
we can construct many holomorphic cross sections in F over n. We take for 
F the line bundle of holomorphic n-forms X = h(ZI,"" zn) dZl A .. , A dzn. 
The norm II X /I is defined by 
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IlxII2:= Inx/\"*x. 

Let Yt' be the space of holomorphic n-forms X on 0 that are square inte­
grable (i.e., with Ilxll < 00). The forms X E Yt' with Ilxll :::; 1 are uniformly 
bounded (with respect to their coefficients in local coordinate systems) on 
every compact set M c O. If A is a compact analytic subset of 0 of positive 
dimension, all forms X may vanish there. This will lead to difficulties in defin­
ing the Bergman metric. The space Yt' is a Hilbert space and a subspace of 
the Hilbert space £2(0) of arbitrary square integrable complex n-forms (with 
the scalar product (<p, 'IjJ) = In <p /\"* 'IjJ). 

Next we define the kernel form. We take an orthonormal basis {Xi : i EN} 
of Yt'. Then 

L Xi(Z)Xi(W) = K(z, w) dZl /\ ... /\ dZn /\ d'iih /\ ... /\ awn 

is called the kernel form on 0, and the coefficient K is called the Bergman 
kernel. The theory of K is well known for domains in en. We extend it 
here to complex manifolds, but we give only an overview and avoid going 
into detail. It is possible to prove that the kernel form is independent of 
the choice of the orthonormal basis. The convergence of the defining series 
is locally uniform, also for all derivatives. The kernel K is real-analytic on 
0, holomorphic in z, and antiholomorphic in w. As (z, w) approaches 80, 
K(z, w) tends to 00 to order n + 1 (i.e., its coefficients with respect to local 
coordinates). When we pass over to the conjugate complex form, interchange 
w with z, and multiply by (_1)n, we get the kernel form back. Moreover, the 
kernel is invariant under biholomorphic mappings of 0 onto itself. In local 
coordinates, but independent of these coordinates, we have 

K(z, z) = sup If(zW. 
x=/dz1 1\"'l\dzn ,lIxll=1 

We have the orthogonal projection P : L2(0) -+ Yt' with 

= jn( _1)n(n-l)/2dzl /\ ... /\ dZn . i a(w) /\ K(z, w) awl /\ ... /\ awn· 

It is called the Bergman projection. 

We denote by don,o (0) the set of '6'00 forms X of type (n, 0) in n for which all 
derivatives of any order of the coefficient of X vanish on 80, and by Aoo(O) 
the set of '6'00 forms in n that are holomorphic in O. 

4.6 Theorem. In the case X = en, for every regular pseudoconvex (and 
therefore for every strongly pseudoconvex) domain 0 c en the Bergman pro­
jection P maps don,o(fi) into Aoo(O). 
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This was proved by Catlin in [Ca84]. The result is known as "0 satisfies 
condition (R)." The worm domain is an example where condition (R) does 
not hold. 

Mappings. Now we consider another strongly pseudoconvex domain 0' cc 
en with <t'oo smooth boundary, and a biholomorphic mapping F : 0 ~ 0'. 
We can transform any form a of type (n, 0) on 0' to a form a 0 F of the same 
type on O. We state without complete proof a lemma that is trivial in the 
case of forms with compact support: 

4.7 Lemma. For a E don,oCn') the transform a 0 F is an element of 
don,o(O). 

We give a brief idea of the proof. We represent al\a as a multiple of the kernel 
form with a factor c(x) ~ O. The function c vanishes on 00' to arbitrarily 
high order. We just have to prove that co F also has this property in O. 
To do this we take in 0 and in 0' the metric <s(x, y) = suPjlf(x) - f(y)l. 
Here f runs through the holomorphic functions in 0 (respectively 0') with 
If(x)1 ::; 1 (this is the so-called Caratheodory distance). If Xo is a fixed point 
of 0 (respectively 0'), then the balls around Xo approach 00 (respectively 
00') to first order for r --+ OOj Le., the Euclidean distance of the ball to the 
boundary of the domain behaves like exp( -r). If Xo E 0 and Yo = F(xo) EO', 
then any ball of radius r around Xo is mapped onto a ball of the same radius 
around Yo. This implies the vanishing of co F with all derivatives on 00. 

We need the following <t'oo version of the Cauchy-Kovalevski theorem: 

4.8 Lemma. Assume that hE AOO(O'). Then there is a form 9 E dn,O(O') 
such that 8g = 0 on 00' and h - 6.g E don ,0 (n'). 

We use the lemma to complete the proof. It follows by partial integration that 
6.g is orthogonal to all elements from AOO(O'). We can define an orthonormal 
basis of £(0') consisting of such functions. So 6.g is orthogonal to £(0'). 
It follows that 

h 0 F = (PB(h - 6.g» 0 F = Pc«h - 6.g) 0 F) E AOO(O). 

When we take for h the functions zlln" ... , Zn In" we get the differentiability 
of F on n. The proof of Fefferman's theorem is completed. 

The Bergman Metric. The Bergman metric is interesting in its own 
right. It is a Kahler metric and depends only on the complex structure of the 
manifold under consideration. Using its Riemannian curvature one can prove 
interesting theorems that give a deeper insight into the complex structure. 
The notion is well known for domains in en. Here we generalize it to complex 
manifolds. 
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We will consider the situation where X is an n-dimensional complex manifold 
and n cc X a subdomain with strongly pseudo convex boundary. Then n is 
holomorphically convex. We can construct forms X belonging to.Ye. For that 
we use the boundary of n. We consider the analytic subset E c n given by 

E {x En: all X vanish at x or there is a tangent vector ~ at x 

such that ~(b) = 0 for the coefficient b of every X}. 

It can be proved that E is compact and has positive dimension everywhere. 
So in the classical case of a domain in en it is empty. This is no longer true in 
complex manifolds. Therefore, we make the following additional assumption: 

( * ) The set E is empty. 

Under this assumption we have the Bergman metric in n. In every local 
coordinate system we just define the coefficients 

and the Bergman metric 

.. ( )._ a2 log(K(z, z» 
g.) Z.- a!l= ZiUZj 

ds 2 := Lgij(Z) dZi dZj . 
i,j 

The definition is independent of local coordinates, and we obtain a Kahler 
metric in n that is invariant by biholomorphic transformations of n. 
If there are no compact analytic subsets of positive dimension in n, then n 
is a Stein manifold. In general, n may contain compact analytic subsets of 
positive dimension. For example, we may take for X a complex analytic line 
bundle on ]P'I with Chern class c ::; -3. Then a strongly pseudoconvex tube 
n around the zero section exists, and there are enough forms X on n. So in 
this case as well we have the Bergman metric. 

Near to the boundary the following estimates hold. 

4.9 Proposition. If ~ is a tangent vector in Tz(n), zEn, II~II is the 
Euclidean norm, and dist(z, an) is the Euclidean distance (everything with 
respect to local coordinates), then there are positive constants a, b such that 

"'" < I <. II~II a· dist(z, an)1/2 - I ~II - b dist(z, an) . 

The distance (with respect to the Bergman metric) between a fixed point Zo E 

n and a point z (near to the boundary) is approximately 

vn + 1 . (-In(dist(z, an»). 
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Exercises 

1. Prove the properties of the Bergman kernel. Compute the Bergman kernel 
for the unit ball. 

2. Assume that n c en is a bounded domain. Then n carries the Caratheo­
dory metric. This is a positive pseudodifferential metric on n and is 
defined in the following way: If ~ is a vector at a point Zo E n, we take 
all holomorphic functions f on n with If(z)1 < 1 in n and measure the 
Euclidean length of the image f.(~). Then we take the supremum over 
all these f. Prove that the Kobayashi length is at least as big as the 
CaratModory length. 

3. Consider the bicylinder pn(o,2) = {(w,z) : Iwi < 1, Izl < I} C e2 and 
a sequence of complex numbers Wi with IWil < 1 that converges to 1 and 
take two different complex numbers Zl, Z2 in the open unit disk. Does 
the Kobayashi distance between the points (Wi, Zl), (Wi, Z2) tend to oo? 

4. Compute the Bergman metric and the Kobayashi metric for 

n = {z E e : 0 < Izl < I}. 

Are these metrics complete? 
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Index of Notation 

V* 
v' 
F(V) 

Mp,q(k) 
Mn(k) 
GLn(C) , 
AB (or A· B) 

z, zt 
(z IW)m 
Ilzll, dist(z, w) 
(zlw) 
Izl 

OrCa) 
o 
Br(z) 
pn(z, r) 
P~(z) 
pn 
r: en -+ 1" 
Pz 
Tn(z,r) 
Tz 

UccV 

Cj(z) 

'Vf(z) 
'Vf(z) 
'Vxf(z) 
'Vyf(z) 

natural numbers, integers, etc. 
= Nu {O} 
={xE.R:x>O} 
= C - {O} 

imaginary unit A 

real dual space of a real (or complex) vector space 
complex dual space of a complex vector space 
C-valued real linear forms on a complex vector space 

k-valued matrices with p rows and q columns 
k-valued square matrices of order n 
general linear group 
product of matrices 

vector z = (ZI' ... ,zn) and transposed vector 
standard Euclidean scalar product in am 
Euclidean norm and distance 
standard Hermitian scalar product 
sup-norm (or maximum-norm) 

open disk (in C) around a with radius r 
unit disk 0 1 (0) 
open ball with radius r around z 
polydisk in en around z with polyradius r 
poiydisk with polyradius r = (r, ... , r) 
unit polydisk Pf{O) 
natural projection onto absolute value space 
polydisk pn{o, r(z» 
distinguished boundary (torus) 
distinguished boundary Tn{o, r(z» 

U lies relatively compact in V 

Cauchy integral of f : T -+ C at z E pn 

holomorphic gradient (/%1 (z), .. . ,1%" (z» 
antiholomorphic gradient (hi (z), ... , h" (z» 
= (f"'1 (z), ... , I"'n (z» 
= (fYl (z), ... , IYn (z» 



382 Index of Notation 

DV fez) 
Df(z) 
(&f)z(w) 
(8f)z(w) 
(df)z 
Jr(z) 
JR,r(z) 
g(G) 
O(G) 

t=(z,w) 
Tz 
Q(O) 

N(It,.··, fq) 
A (or Reg(A» 
Sing(A) 
rkz(It,···, fq) 

(pn,H) 
(P,H) 
bSt 

Lev(f)(z, w) 
Hz (&G) 
Hess(f)(z, w) 

~ 

KG 

91 -< 92 
H§(9), H(9) 
G 

m 

higher partial derivative 
total real derivative of f at z 
= fZl (Z)W1 + ... + fZn (z)wn 
= h, (Z)W1 + ... + hn (z)wn 

= (&f)z + (8f)z 
complex (or holomorphic) Jacobian matrix 
real Jacobian matrix 
space of smooth functions on G 
space of holomorphic functions on G 

tangent vector at z with direction w 
tangent space at z 
tangent vector (0:(0),0:'(0» 

common zero set of It, ... , fq 

set of regular points of A 
set of singular points of A 
rank of the Jacobian JUl> ... ,Jq) 

Euclidean Hartogs figure 
general Hartogs figure 
boundary of an analytic disk St = CPt (D) 

connected component of M containing z 
boundary distance (for a domain G) 

Levi form Lv,Jl. fzvz" (z)WVwJl. 
complex (or holomorphic) tangent space of &G 
Hessian Lv,Jl. fxvx" (z)WVwJl. 

holomorphically convex hull of K in G 

the Riemann domain 91 is contained in 92 
$-hull of 9 and envelope of holomorphy 
set of accessible boundary points of G 

ring of formal power series 
= {J E c[zB : IIflit < oo} 
ring of convergent power series 
maximal ideal in H n 

set of nonzero element, set of units in an ideal I 
set of monic polynomials with coefficients in I 
germ of the holomorphic function f at z 



w(u, z) 
D(w) 
6""D", 

dimz(A), dim(A) 

XxzY 
Kx, reX) 

r(u, V) = O(U, V) 
C(U,V) 

V$W, V®W 
V', pk 
j*V, VjW 
Nx(Y) 
Ox,O:X 

Ci(OU, V) 
Zi(OU, V) 
Bi(OU, V) 
Hi(OU, V) 
Hi(X, V) 
Hq(X), Hq(X) 

Ox 
P(m) 
.A(X) 
div(m) 
[Z] 
Pic(X), 9J(X) 

rn = cnjr 
pn 
St(k, n), Gk,n 
pI : Gk,n -+ pN 
0(1),0(-1) 

pseudopolynomial 
algebraic derivative of w 

Index of Notation 383 

discriminant and discriminant set of w 

local and global dimension of an analytic set 

Riemann sphere C U {oo} 

tangent space of a manifold 
tangential map 

fiber product of manifolds 
canonical bundle and tangent bundle on X 

space of holomorphic sections in a bundle V 
space of smooth sections in V 

Whitney sum and tensor product of bundles 
complex dual bundle of V, tensor power of P 
pullback and quotient bundle 
normal bundle of Y in X 
trivial bundles X x C and X x C· 

Cech co chains with values in V 
Cech cocycles 
Cech coboundaries 
Cech cohomology group with values in V 
cohomology group with values in V 
singular homology and cohomology of X 

ring of germs of holomorphic functions 
polar set of a meromorphic function 
set of meromorphic functions on X 
divisor of a meromorphic function 
line bundle associated to the divisor Z 
Picard group and set of all divisors 

n-dimensional complex torus 
complex projective space 
Stiefel manifold and Grassmannian 
Plucker embedding 
hyperplane bundle and tautological bundle 

Osgood space pI x . . . X pI (m times) 
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e(h) = eeL) 

I\rF(X) 
n~ 
p;r(u) 
p;p,q(U) 
1{)1\1/J 

dcp, 01{), 81{) 
dC 

Chj(z) 

Hp,q(X) 
Hr(x) 

WH 
PU(n + 1) 

dV 

*1{) 
(I{), 1/J) 

~ 

o 
.Jf'r{x) 
.Jf'p,q{X) 
f3r(X), f3p ,q(X) 

L~,q{n) 
dom(T) 
N 

Chern class of a cocycle h (of a line bundle L) 

bundle of r-dimensional differential forms 
bundle of holomorphic p-forms on X 
r-forms 
forms of type (p, q) on U 
wedge product 

total, holomorphic and antiholomorphic differential 
= i (8 - 0) (such that ddc = 2i08 ) 

= (1/{27ri)) fa f«()/{( - z) d( 1\ d( 

Dolbeault group of type (p, q) on X 
rth de Rham group of X 

fundamental form of the Hermitian metric H 
group of projective unitary transformations 

volume element 
Hodge star operator (p;r{x) --+ p;2n-r(x)) 
inner product f x I{) 1\ "* 'I/J, with "* 1/J = *'I/J 

current associated to a form 1/J 
current associated to a submanifold M 
space of currents of degree 2n - r 

adjoint operators of d, 0, and 8 
= (1/2)1{) 1\ w, with Kahler form W 

adjoint operator of L 

real Laplacian (eM + ~d) 
complex Laplacian {o{} + {}o) 
space of harmonic r-forms on X 
space of harmonic (p, q)-forms 
Betti numbers 

zero section of the bundle F 
generalized Siegel upper halfplane 

Hilbert space closure of "'M(n) 
domain of the operator T 
Neumann operator N : L~,q(n) --+ dom(O) 



N(n) 

Fx· 
K(~,w) 
P: L2(n) ~£ 
AOO(n) 

rapidly decreasing functions 
Sobolev space of index s 
tangential Sobolev norm 

Nebenhiille of n 

pseudo-differential metric on X 
Bergman kernel 
Bergman projection 
= Jd'n,O(O) n O(n) 
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Index 

I-complete, 267 
I-convex, 267 

Abel's lemma, 12 
abelian variety, 351 
absolute space, 7 
accessible boundary point, 101 
acyclic covering, 185 
adjoint operator, 330 
adjunction formula, 215 
affine algebraic, 217 
affine algebraic manifold, 224 
affine algebraic set, 224 
affine part, 210 
algebraic derivative, 125 
analytic disk, 47, 102 
analytic polyhedron, 85 
analytic set, 36, 160 
analytic tangent, 275 
analytically dependent, 320 
antiholomorphic form, 303 
antiholomorphic gradient, 28 
Ascoli 
- lemma of, 23 
atlas, 155 
automorphism, 226 

ball, 5 
Banach algebra, 105 
Bergman kernel, 370 
Bergman metric, 372 
Bergman projection, 370 
Bertini 
- theorem of, 225 
Betti number, 190 
biholomorphic, 33, 159 
blowup, 237 
boundary conditions, 357 
boundary distance, 54, 58 
boundary function, 64 
boundary operator, 189 
bracket, 332 
branch locus, 227 
branch point, 128 
branched covering, 128, 227 
branched domain, 229 
bubble method, 283 

canonical bundle, 174 

CaratModory distance, 371 
Cart an-Thullen 
- theorem of, 77 
Cauchy integral, 17 
Cauchy-Riemann equations, 29 
tech cohomology, 185 
center 
- of a modification, 236 
chain rule, 32 
Chern class, 256 
Chow 
- theorem of, 217 
closed map, 226 
closure 
- of en, 245 
- of a manifold, 244 
coboundar~ 184, 187 
coboundary operator, 183 
cochain, 183, 187 
cocycle, 183, 187 
codimension, 151 
cohomologous, 174 
cohomology group, 184, 187 
commutator, 332 
compact exhaustion, 163 
compact map, see completely 

continuous 
compactification 
- one-point, 153 
compatibility condition, 173 
compatible coordinate systems, 154 
complete hull, 24 
completely continuous, 285 
completely singular, 49 
complex I-form, 261 
complex covariant r-tensor, 261 
complex differentiable, 14 
complex gradient, 15 
complex manifold, 155 
complex n-space, 1 
complex structure, 1, 155 
complexification, 2 
cone, 216 
conical set, 216 
conjugation, 2 
connected, 6, 88 
continuity of roots, 134 
continuity principle, 47 
continuity theorem, 43 



388 Index 

contractible space, 189 
convergence 
- compact, 12 
- domain of, 13 
convergent series 
- of numbers, 10 
convex, 8, 66, 74 
- strictly, 67 
convex hull, 73 
coordinate system, 154 
Cousin-I distribution, 253 
Cousin-II distribution, 254 
covariant tangent vector, 261 
critical locus, 227 
cross section, 176 
cuboid, 276 
- distinguished, 276 
current, 328 
- harmonic, 336 

8-Neumann conditions, 357 
de Rham group, 311 
de Rham isomophism, 312 
de Rham sequence, 310 
decomposition theorem 
- of Hodge-Kodaira, 339 
defining function, 64 
degree 
- of a hypersurface, 220 
derivation, 33, 164 
derivative 
- directional, 16 
- of a holomorphic map, 30 
- partial, 15 
- real, 26 
derivatives 
- Wirtinger, 28 
diagonal, 162 
differential, 260, 300 
differential form, 297, 300 
dimension, 161 
- local, 150 
- of a submanifold, 39 
- of an analytic set, 142 
- of an irreducible analytic set, 141 
Dirichlet's principle, 52 
discrete map, 228 
discriminant, 127 
discriminant set, 128 
distinguished boundary, 6 
divisor, 198 
- of a meromorphic function, 198 
- of a meromorphic section, 201 

Dolbeault group, 311 
Dolbeault sequence, 310 
Dolbeault's lemma, 309 
Dolbeault's theorem, 312 
domain, 6 
domain of existence, 97 
domain of holomorphy, 49, 99 
- weak, 49 

. dual bundle, 178 
duality theorem 
- of Poincare, 337 
- of Serre-Kodaira, 338 

effective divisor, see positive divisor 
effective group operation, 172 
elementary symmetric polynomial, 126 
elliptic operator, 337 
embedded-analytic 
- irreducible component, 135 
- set, 135 
embedding, 214 
embedding dimension, 152 
embedding theorem, 145, 258 
energy form, 359 
envelope of holomorphy, 87, 97 
equivalence 
- of bundles, 174 
- of systems of transition functions, 

174· 
Euclidean coordinates, 322 
Euclidean domain, 125 
Euler sequence, 223 
exact sequence, 223 
exceptional set, 236 
exhaustion function, 58 
exterior algebra, 298 
exterior derivative, 301 

factorial monoid, 125 
faithful, see effective group operation 
Fefferman 
- theorem of, 369 
fiber bundle, 173 
fiber bundle isomorphism, 174 
fiber metric, 341 
fiber product, 171 
filter basis, 100 
finite map, 227 
finite module, 121 
fixed point, 172 
form of type (p, q), 298 
frame, 177, 313 
Frechet space, 285 
Frechet topology, 285 



free group operation, 172 
Fubini metric, 319 
fundar"nental form, 315 

Gauss's lemma, 117 
general linear group, 172 
genus, 232 
- of a Riemann surface, 340 
geodesic coordinates, 316 
geometric series, 11 
germ, 123, 192 
globally generated, 176 
gluing, 170 
- of fiber bundles, 173 
- of manifolds, 170 
Godeaux surface, 225 
good topological space, 189 
graph,161 
- of a meromorphic function, 242 
Grassmannian, 212, 225 
greatest common divisor, 117 
Griffiths negative, 341 
Griffiths positive, 342 

harmonic form, 335, 356 
harmonic function, 52 
Hartogs 
- theorem of, 307 
Hartogs convex, 48, 99 
Hartogs figure 
- Euclidean, 25 
- general, 43, 99 
Hartogs triangle, 365 
Hausdorff space, 153 
Hensel's lemma, 120 
,Hermitian form, 3, 261, 321 
Hermitian metric, 314 
Hessian, 67 
H n ,108 
Hodge manifold, 346 
Hodge metric, 346 
Hodge star operator, 323 
Holder continuous, 367 
holomorphic form, 303 
holomorphic function, 13, 96, 257 
- on a complex manifold, 156 
- on an analytic set, 134 
holomorphic gradient, 28 
holomorphic map, 30, 158 
holomorphically convex, 75, 100, 251 
holomorphically convex hull, 75 
holomorphically separable, 251 
holomorphically spreadable, 251 
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homogeneous, 9 
homogeneous coordinates, 209 
Hopf bundle, 238 
Hopf manifold, 208, 225 
Hopf's a-process, 237 
hyperbolic manifold, 368 
hyperelliptic involution, 234 
hyperelliptic surface, 232 
hyperplane at infinity, 210 
hyperplane bundle, 220, 221 
hyperquadric, 219 
hypersurface, 127, 220 
- analytic, 160 

ideal, 108 
identity theorem 

for analytic sets, 142 
for holomorphic functions, 22 
for meromorphic functions, 197 
for power series, 21 

- on manifolds, 156 
immersion, 168 
implicit function theorem, 34 
incidence set, 237 
indeterminacy 
- set of, 243 
inner product 
- Euclidean, 4 
- Hermitian, 3 
integral class, 346 
integral domain, 113 
inverse mapping theorem, 33 
irreducible analytic set, 141 
irreducible component, 131 
irreducible element, 117 
isomorphism 

of complex manifolds, 159 
- of vector bundles, 177 

Jacobian 
- complex, 30 
- real,31 

Kahler manifold, 316 
Kahler metric, 316 
kernel form, 370 
Kobayashi metric, 368 
Kodaira's embedding theorem, 344 
Krull topology, 110 
Kugelsatz, 44, 307 

Laplacian, 334 
Leray covering, see acyclic covering 
Levi condition, 66 
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Levi convex, 66 
- strictly, 66 
Levi form, 57, 263 
Levi's extension theorem, 197 
Levi's problem, 51 
Lie group, 171 
lifted bundle, 180 
lifting 
- of a differential form, 304 
limit 
- of a filter, 101 
line bundle, 175 
- associated to a hypersurface, 200 
line element, 314 
linear subspace, 218 
Liouville 
- theorem of, 22 
locall(>algebra, 192 
local homeomorphism, 88 
local parametrization, 39, 41 
local potential, 318 
local uniformization, 231 
locally compact, 153 
locally finite covering, 153 
logarithmically convex, 83 

maximal ideal, 108 
maximum principle, 22 
- for plurisubharmonic functions, 264 
- for subharmonic functions, 55 
mean value property, 52 
meromorphic function, 196 
- on a Riemann surface, 158 
meromorphic map, 243 
meromorphic section, 201 
minimal defining function, 194 
modification, 236 
- generalized, 236 
module, 120 
Moishezon manifold, 320, 353 
monic polynomial, 113 
monoidal transformation, 242 
monomial,9 
Montel 
- theorem of, 23 

Nebenhulle, 364 
negative line bundle, 287 
neighborhood filter, 100 
Neil parabola, 134 
Neumann operator, 359 
Neumann problem, 357 
noetherian, 121 

normal bundle, 182 
normal exhaustion, 78 
normalized polynomial, 113 
normally convergent, 11 
nowhere dense, 37 

Oka 
- theorem of, 100 
Oka's principle, 253 
open covering, 153 
open map, 88 
orbit space, 205 
order 
- of a power series, 119 
Osgood 
- theorem of, 19 
Osgood space, 243 

paracompact, 153 
parameter system, 151 
partially differentiable, 16 
partition of unity, 163 
pathwise connected, 88 
period matrix, 348 
Picard group, 187 
Plucker embedding, 218 
pluriharmonic function, 318 
plurisubharmonic, 56, 261, 263 
- strictly, 59 
Poincare map, 301 
point of indeterminacy, 196 
polar set, 196 
pole, 196 
polydisk,5 
polynomial,9 
polynomially convex, 87 
positive definite, 261 
positive divisor, 198 
positive form, 303 
positive line bundle, 288 
power series 
- convergent, 108 
- formal, 11, 105 
power sum, 134 
prime element, 117 
primitive polynomial, 117 
principal divisor, 254 
principal ideal domain, 117 
projective algebraic 
- manifold, 217 
- set, 217 
projective space, 208 
projective unitary transformations, 318 
proper map, 35, 226 



properly discontinuous, 205 
pseuqoconvex, 60, 103 
- strongly, 73 
pseudoconvex manifold, 267 
pseudodifferential metric, 368 
pseudopolynomial, 124 
pullback, see lifted bundle 
pure-dimensional, 143 

quadratic transformation, 239 
quotient bundle, 181 
quotient field, 117 
quotient topology, 203 

rational function, 223 
refinement, 153 
refinement map, 153 
region, 6 
regular closure, 245 
regular domain, 360 
regular function, 224 
regular point, 39, 140, 161 
Reinhardt domain, 7 

complete, 8, 85 
- over en, 95 
- proper, 8 
Remmert-Stein 
- extension theorem, 150 
removable boundary point, 102 
removable singularity, 196 
resolution of singularities, 240 
Riemann domain 
- branched, 229 
- with distinguished point, 89 
Riemann extension theorem 
- first, 38 
- second, 151 
Riemann surface 
- abstract, 157 
- concrete, 230 
- of.,fi, 88 
Ritt's lemma, 151 
Riickert basis theorem, 122 
Runge domain, 87 

saturated set, 203 
scalar product, 3 
schlicht domain, 90 
Schwartz 
- theorem of, 285 
second axiom of count ability, 153 
section, see cross section 
- in a fiber bundle, 186 
Segre map, 225 
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self-intersection number, 241 
seminegative line bundle, 352 
seminorm, 284 
semi positive line bundle, 352 
Serre duality, 233 
Serre problem, 259 
shear, 109 
Siegel upper halfplane, 352 
singular cochain, 189 
singular cohomology group, 189 
singular homology group, 189 
singular locus, 147 
singular point, 39 
singular q-chain, 188 
singular q-simplex, 188 
smooth boundary, 64 
smoothing lemma, 59 
Sobolev norm 
- tangential, 358 
Soholev space, 358 
standard simplex, 188 
star, 283 
Stein manifold, 251 
Stiefel manifold, 212 
Stokes's theorem, 305 
strict transform, 240 
strictly pseudoconvex manifold, 267 
strongly pseudoconvex, 267 
structure group, 173 
StiitzfUi.che, 275 
subbundle, 180 
subelliptic, 358 
subharmonic function, 53 
submanifold, 41, 161 
submersion, 168 
symbol 
- of a differential operator, 336 
symmetric polynomial, 126 

tangent bundle, 176 
- of projective space, 222 
tangent space, 32, 165 
- holomorphic, 66 
tangent vector, 32, 165 
tangential map, 167 
tautological bundle, 238 
tensor power, 178 
tensor product, 179, 261 
Theorem A, 252 
Theorem B, 253 
topological map, 41 
topological quotient, 203 
toric closure, 246 
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toric variety, 246 
torsion point, 230 
torus, 207, 225, 348 
transformation group, 172 
transition functions,· i 73 
transversal, 171 
trivial vector bundle, 177 
trivialization, 173 
- of a vector bundle, 175 
tube, 288 
tube domain, 87 

unbranched point, 133 
uniformization, 88, 162 
union of Riemann domains, 94 
unique factorization domain, 117 

vector bundle, 175 
vector bundle chart, 175 
vector bundle homomorphism, 177 
vector field, 176 

Veronese map, 224 
volume element, 323 

weakly holomorphic, 16 
wedge product, 297 
Weierstrass 
- theorem of, 19 
Weierstrass condition, 113 
Weierstrass division formula, 115 
Weierstrass formula, 110 
Weierstrass function, 226 
Weierstrass polynomial, 114 
Weierstrass preparation theorem, 113, 

116 
Whitney sum, 177 
worm domain, 366 

Zl -regular, 109 
Zariski tangential space, 152 
Zariski topology, 141 
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