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Preface

The aim of this book is to give an understandable introduction to the the-
ory of complex manifolds. With very few exceptions we give complete proofs.
Many examples and figures along with quite a few exercises are included.
Our intent is to familiarize the reader with the most important branches and
methods in complex analysis of several variables and to do this as simply as
possible. Therefore, the abstract concepts involved with sheaves, coherence,
and higher-dimensional cohomology are avoided. Only elementary methods
such as power series, holomorphic vector bundles, and one-dimensional co-
cycles are used. Nevertheless, deep results can be proved, for example the
Remmert-Stein theorem for analytic sets, finiteness theorems for spaces of
cross sections in holomorphic vector bundles, and the solution of the Levi
problem.

The first chapter deals with holomorphic functions defined in open sub-
sets of the space C". Many of the well-known properties of holomorphic
functions of one variable, such as the Cauchy integral formula or the maxi-
mum principle, can be applied directly to obtain corresponding properties of
holomorphic functions of several variables. Furthermore, certain properties of
differentiable functions of several variables, such as the implicit and inverse
function theorems, extend easily to holomorphic functions.

In Chapter II the following phenomenon is considered: For n > 2, there
are pairs of open subsets H C P C C™ such that every function holomorphic
in H extends to a holomorphic function in P. Special emphasis is put on
domains G C C" for which there is no such extension to a bigger domain.
They are called domains of holomorphy and have a number of interesting
convexity properties. These are described using plurisubharmonic functions.
If G is not a domain of holomorphy, one asks for a maximal set E to which all
holomorphic functions in G extend. Such an “envelope of holomorphy” exists
in the category of Riemann domains, i.e., unbranched domains over C".

The common zero locus of a system of holomorphic functions is called
an analytic set. In Chapter III we use Weierstrass’s division theorem for
power series to investigate the local and global structure of analytic sets.
Two of the main results are the decomposition of analytic sets into irreducible
components and the extension theorem of Remmert and Stein. This is the
only place in the book where singularities play an essential role.

Chapter IV establishes the theory of complex manifolds and holomorphic
fiber bundles. Numerous examples are given, in particular branched and un-
branched coverings of C™, quotient manifolds such as tori and Hopf manifolds,
projective spaces and Grassmannians, algebraic manifolds, modifications, and
toric varieties. We do not present the abstract theory of complex spaces, but
do provide an elementary introduction to complex algebraic geometry. For
example, we prove the theorem of Chow and we cover the theory of divi-



vi Preface

sors and hyperplane sections as well as the process of blowing up points and
submanifolds.

The present book grew out of the old book of the authors with the ti-
tle Several Complex Variables, Graduate Texts in Mathematics 38, Springer
Heidelberg, 1976. Some of the results in Chapters I, II, III, and V of the old
book can be found in the first four chapters of the new one. However, these
chapters have been substantially rewritten. Sections on pseudoconvexity and
on the structure of analytic sets; the entire theory of bundles, divisors, and
meromorphic functions; and a number of examples of complex manifolds have
been added.

Our exposition of Stein theory in Chapter V is completely new. Using only
power series, some geometry, and the solution of Cousin problems, we prove
finiteness and vanishing theorems for certain one-dimensional cohomology
groups. Neither sheaf theory nor 0 methods are required. As an application
Levi’s problem is solved. In particular, we show that every pseudoconvex
domain in C™ is a domain of holomorphy.

Through Chapter V we develop everything in full detail. In the last two
chapters we deviate a bit from this principle. Toward the end, a number of
the results are only sketched. We do carefully define differential forms, higher-
dimensional Dolbeault and de Rham cohomology, and Kéhler metrics. Using
results of the previous sections we show that every compact complex mani-
fold with a positive line bundle has a natural projective algebraic structure. A
consequence is the algebraicity of Hodge manifolds, from which the classical
period relations are derived. We give a short introduction to elliptic opera-
tors, Serre duality, and Hodge and Kodaira decomposition of the Dolbeault
cohomology. In such a way we present much of the material from complex
differential geometry. This is thought as a preparation for studying the work
of Kobayashi and the papers of Ohsawa on pseudoconvex manifolds.

In the last chapter real methods and recent developments in complex an-
alysis that use the techniques of real analysis are considered. Kihler theory is
carried over to strongly pseudoconvex subdomains of complex manifolds. We
give an introduction to Sobolev space theory, report on results obtained by
J.J. Kohn, Diederich, Fornzss, Catlin, and Fefferman (6-Neumann, subellip-
tic estimates), and sketch an application of harmonic forms to pseudoconvex
domains containing nontrivial compact analytic subsets. The Kobayashi met-
ric and the Bergman metric are introduced, and theorems on the boundary
behavior of biholomorphic maps are added.

Prerequisites for reading this book are only a basic knowledge of calculus,
analytic geometry, and the theory of functions of one complex variable, as
well as a few elements from algebra and general topology. Some knowledge
about Riemann surfaces would be useful, but is not really necessary. The
book is written as an introduction and should be of interest to the specialist
and the nonspecialist alike.
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Chapter I

Holomorphic Functions

1. Complex Geometry

Real and Complex Structures. Let V be an n-dimensional com-
plex vector space. Then V can also be regarded as a 2n-dimensional real

vector space, and multiplication by i := /-1 gives a real endomorphism
J:V = V with J2 = —idy. If {a;,...,as} is a complex basis of V, then
{a1,...,an,ia1,...,ian} is a real basis of V.

On the other hand, given a 2n-dimensional real vector space V, every real
endomorphism J : V — V with J2 = —idy induces a complez structure on V
by

(a+ib)-v:i=a-v+b-J(v).

We denote this complex vector space also by V, or by (V,J), if we want to
emphasize the complex structure.

If a complex structure J is given on V, then —J is also a complex structure.
It is called the conjugate complex structure, and the space (V, J) is sometimes
denoted by V.. A vector v € V is also a vector in V. If 2 is a complex number,
then the product z-v, formed in V, gives the same vector as the product Z-v
in V.

Our most important example is the compler n-space
C":={z:=(21,...,2n) : zi€Clori=1,...,n},
with the standard basis
e; :=(1,0,...,0),...,e,:=(0,...,0,1).
We can interpret C™ as the real 2n-space
R*™ = {(x,y) = (Z1,-- -, T, Y1,--»¥Un) : Ti, ¥ ERfori=1,...,n}},
together with the complex structure J : R?" — R?", given by
(@1, Ty Y1y s Un) = (< Y1y ooy —Uny T1ye e oy T )-
These considerations lead naturally to the idea of “complexification.”

! A row vector is described by a bold symbol, for instance v, whereas the corre-
sponding column vector is written as a transposed vector: v*.
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Definition. Let F be an n-dimensional real vector space. The com-
plezification of E is the real vector space E. := E @ F, together with the
complex structure J : E. — E., given by

J(v,w) = (—w,v).
Furthermore, conjugation C in E, is defined by

C(v,w) := (v, —w).

Since CoJ = —JoC, it is clear that C defines a complex isomorphism between
E. and E..

The complexification of R™ is the complex n-space C” identified with R?" in
the way shown above. In this case the conjugation C is given by

C:(zl,‘..,zn)H(El,...,'z'n)

and will also be denoted by z — Z.

If V = E, is the complexification of a real vector space E, then the subspace
Re(V) :={(v,0) : ve E}CV

is called the real part of V. Since it is isomorphic to E in a natural way, we
can write V=2 E@iE. If V is an arbitrary complex vector space, then V is
the complexification of some real vector space as well, but this real part is
not uniquely defined. It is given by the real span of any complex basis of V.

Example

Let E be an n-dimensional real vector space and E* := Homg(E,R) the
real dual space of linear forms on E. Then the complexification (£*). can be
identified with the space Homg(F, C) of complex-valued linear forms on E.

In the case E = R", a linear form A € E* is always given by
A:vie v-al

with some fixed vector a € R™. An element of the complexification (E*). is
then given by v — v -z! with z = a + ib € (R"), = C".

Now let T be an n-dimensional complex vector space and F(T') := Homg (T, C)
the space of complex-valued real linear forms on T'. It contains the subspaces
T' := Homg(T, C) of complex linear forms and T/ := Homg (T, C) of complex
antilinear forms 2.

2 A real linear map A : T — C is called complez antilinear if A(c - v) = ¢- A(v) for
¢ € C. Therefore, T’ can be viewed as the set of complex antilinear forms on 7.
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Let {ai1,...,a,} be a complex basis of T, and b; := ia;, for i = 1,...,n.
Let {a1, .. .,an,ﬂl, .., 0Bn} be the basis of T* = Homg (T, R) that is dual to
{a1,...,an,b1,...,b,}. Then we obtain elements

/\i:zai+iﬁ,~€F(T), 1=1,...,n.

Claim. The forms A\; are complez-linear.

Proor: Consider an element z = z1ay+- - -+2pa, € T with 2; = z;Hy, € C.
Then

Ak(z) = /\k(zﬂiiai + Zyibi)
. i=1 1:1
= Z-’Ez‘/\k(ai) + Zyi)\k(bi)
= mtiw =
Now the claim follows. (]

It is obvious that the A; are linearly independent. Therefore, {A1,...,An} is
a basis of T, and {A1,...,A,} is a basis of T".

Since it is also obvious that T'NT ' = {0}, we see that every element A € F(T)
has a unique representation

A= ici)\i + idixi, with ¢;,d; € C.

i=1 =1

Briefly, _
A=XN+XN, withN eT and " eT".
Here ) is real; i.e., A € Homg(T,R) if and only if \” = .

Hermitian Forms and Inner Products

Definition. Let T be an n-dimensional complex vector space. A Her-
mitian form on T is a function H : T x T — C with the following
properties:

1. v H(v,w) is C-linear for every w € T'.

2. H(w,v) = H(v,w) for v,w € T.

It follows at once that w — H(v,w) is C-antilinear for every v € T, and
H(v,v) is real for every v € T. If H(v,v) > 0 for every v # 0, H is called an
inner product or scalar product.
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There is a natural decomposition
H(v,w) = S(v,w) + iA(v,w),

with real-valued functions S and A. Since

S(w,v) + iA(w,v) = H(w,v) = H(v,w) = S(v,w) — iA(v,w),
it follows that S is symmetric and A antisymmetric.

Example

If k is a field, the set of all matrices with p rows and g columns whose elements
lie in k will be denoted by M, ,(k) and the set of square matrices of order n
by M, (k). Here we are interested only in the cases k = R and & = C.

A Hermitian form on C" is given by
H:(z,w) - zHW?,

where H € M,,(C) is a Hermitian matriz, i.e., H =H.
The associated symmetric and antisymmetric real bilinear forms S and A are
given by

S(z,w) =Re (zHW') = - (zHW'+ wHZ")

N =

and )
A(z,w)=Im (zHW') = E(ZHWt -wHZz').

If H is an inner product, then S is called the associated Fuclidean inner
product.

The identity matrix E,, yields the standard Hermitian scalar product
‘ n
(z|w)=z-w'= Zz,,ﬁ,,.
v=1

Its symmetric part (z|w), := Re((z|w)) is the standard Euclidean scalar
product. In fact, if we write z = x + iy and w = u+iv, with x,y,u, v € R*,
then

(z|w),, = Wt +w-z")

1
5 (v, + w,z,)

il
ol
M’ ?H

1

S
Il

(zoup + Yovy)-

Il
NE

N
Il
-
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If the standard Euclidean scalar product on R™ is denoted by (- - - | )
obtain the equation

(2] w),,= (x|u) +(¥|v),-

Balls and Polydisks

Definition. The Fuclidean norm of a vector z € C™ is given by

lzll :=/(z|2) = /(z]2),,.

the Fuclidean distance between two vectors z, w by

dist(z, w) := ||z — w||.

An equivalent norm is the sup-norm or modulus of a vector:

This norm is not derived from an inner product, but it defines the same topo-
logy on C™ as the Euclidean norm. This topology coincides with the usual
topology on R?". We assume that the reader is familiar with it and mention

only that it has the Hausdorff property.

Definition. B,(z¢) := {z € C" : dist(z,20) < r} is called the (open)

ball of radius r with center zg.

A ball in C" is also a ball in R?", and its topological boundary
0B, (z0) = {z € C" : dist(z,20) =7}

is a (2n — 1)-dimensional sphere.

Definition. Letr = (ry,...,r,) € R%allr, > 0,20 = (2)”,...,2Q) €
C™. Then
P™(zo,r) :={z€C" : |z, — 2| < r, forv=1,...,n}

is called the (open) polydisk (or polycylinder) with polyradius r and center
zo. If r € Ry and r := (r,...,r), we write P?(zg) instead of P™(zq,r).

Then P} (z9) = {z € C" : |z — 29| <r}.
If D denotes the open unit disk in C, then P* :=P}(0) =D x---x D is
[

n times

called the unit polydisk around 0.
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We are not interested in the topological boundary of a polydisk. The following
part of the boundary is much more important:

Definition. The distinguished boundary of the polydisk P"(zg,r) is
the set

T"(2z0,xr) ={2€C" : |z, — 2| =r, forv=1,...,n}.

The distinguished boundary of a polydisk is the Cartesian product of n circles.
It is well known that such a set is diffeomorphic to an n-dimensional torus.
In the case n = 1 a polydisk reduces to a simple disk and its distinguished
boundary is equal to its topological boundary.

Connectedness. Both the Euclidean balls and the polydisks form a base
of the topology of C". By a region we mean an ordinary open set in C". A
region G is connected if each two points of G can be joined by a continuous
path in G. A connected region is called a domain.

If a real hyperplane in R™ meets a domain, then it cuts the domain into
two or more disjoint open pieces. For complex hyperplanes in the complex
number space (which have real codimension 2) this is not the case:

1.1 Proposition. Let G C C" be a domain and
E:={z=(2,..-.,2,) €C" : 21 =0}.
Then G’ := G — E is again a domain.

ProOF: Of course, E is a closed set, without interior points, and G’ = G- F
is open. Write points of C" in the form z = (z;,2z*), with z* € C*~!. Given
two points v = (vy,v*) and w = (wy,w*) in G’, it must be shown that v
and w can be joined in G’ by a continuous path. We do this in two steps.

Step 1: Let G = P™(zg,¢) be a small polydisk. Then G’ is the product of
a punctured disk and a polydisk in n — 1 variables. Define z := (w;,Vv*).
Clearly, Z € G’, and we can join v; and w; within the punctured disk, and
v* and w* within the polydisk. Therefore, v and w can be joined within G'.

Step 2: Now let G be an arbitrary domain. There is a path ¢ : I — G joining
v and w. Since ¢(7) is compact, it can be covered by finitely many polydisks
Up,...,U;such that Uy C G for A=1,...,1.

It is easy to show that there is a é > 0 such that for all ¢/,¢” € I with
[ —t"] < &, p(t') and (") lie in the same polydisk Uy. Then let a = ¢y <
t; < --- <ty = b be a partition of I with |t; —t;_| < dfor j=1,...,N.
Let z; := ¢(t;) and A(j) € {1,...,1} be chosen such that Uy(;) contains z;
and z;_; (it can happen that A(j1) = A(j2) for j1 # j2). By construction z;_;
lies in Uy(jy N Ux(j-1), and thus Ux;) N Uxj—1) — E is always a nonempty
open set.
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We join v = zg € Uy(;) and some point z; € Uy1) N Ux) — E by a path
1 interior to Uy(1) — E. By (1) this is possible. Next we join Z; and a point
Z3 € Ux2) NUx(s) — E by a path ¢, interior to Uy2) — E, and so on. Finally,
N joins Zy_; and w = z within Uy(y)— E. The composition of ¢y, ..., N
connects v and w in G'. .

Reinhardt Domains
Definition. The point set
YV ={r=(r,...,7n) ER* : 1, >0forv=1,...,n}

will be called absolute space, the map 7 : C* — ¥ with 7(21,...,2p) :=
(l21l, ... ,12nl) the natural projection.

The map 7 is continuous and surjective. For any r € ¥, the preimage
771(r) is the torus T"(0,r). For z € C", we set P, := P"(0,7(z)) and
T, :=T"(0,7(z)) = 7-(7(z)) (see Figure L.1).

Definition. A domain G C C" is called a Reinhardt domain if for
every z € G the torus T, is also contained in G.

22| T2(0,(r1,7))

P%(0,(r1,72))

|1
Figure L.1. A polydisk in absolutespace

Reinhardt domains G are characterized by their images in absolute space:
7717(G) = G. Therefore, they can be visualized as domains in ¥. For exam-
ple, both balls and polydisks around the origin are Reinhardt domains.



8 1. Holomorphic Functions

Example
Let 29 € C", with |2{| > 1 for v = 1,...,n. Then 7(e'? - 20) = 7(z0), but
le?® - zg — 2| = |e" — 1| - |29| > |e" — 1], and for suitable @ this expression

may be greater than €. So P*(z, ¢) is not a Reinhardt domain.

Definition. Let G C C" be a Reinhardt domain.
1. G is called proper if 0 € G.
2. G is called complete if Yz e GN(C*)" : P, CG (see Figure 1.2).

Later on we shall see that for any proper Reinhardt domain G there is a
smallest complete Reinhardt domain G containing G.

(a) M 2o (b)

B
G
t
|
Figure 1.2. (a) Complete and (b) noncomplete Reinhardt domain

Exercises

1. Show that there is an open set B C C? that is not connected but whose
image 7(B) is a domain in absolute space. '

2. Which of the following domains is Reinhardt, proper Reinhardt, complete
Reinhardt?

(a) G1:={z€C?: 1> |z1| > |zl},

(b) Ga:={z€C? : |z1] < land || <1-|al},

(c) G3 is a domain in C? with the property °
2€G = et-zeGforteR.

3. Let G C C™ be an arbitrary set. Show that G is a Reinhardt domain
<= 3G C ¥ open and connected such that G = 771(G).

4. A domain G C C" is called conver, if for each pair of points z, w € G the
line segment from z to w is also contained in G. Show that an arbitrary
domain G is convex if and only if for every z € JG there is an affine
linear function A : C* — R with A(z) = 0 and A|g < 0.
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2. Power Series

Polynomials. In order to simplify notation, we introduce niulti-indices.

For v = (11,...,Vy) € Z™ and z € C" define
n ‘
lv| = Zui and z¥ =22,
=1

The notation v > 0 (respectively ¥ > 0) means that v; > 0 for each i
(respectively v > 0 and v; > O for at least one ).

A function of the form

z— p(z) = Z a,z’, with a, € C for jv| < m,

jv|<m

is called a polynomial (of degree less than or equal to m). If there is a v
with |v] = m and a, # 0, then p(z) is said to have degree m. For the
zero polynomial no degree is defined. An expression of the form a,z” with
a, # 0 is called a monomial of degree m := |v|. A polynomial p(z) is called
homogeneous of degree m if it consists only of monomials of degree m.

2.1 Proposition. A polynomial p(z) # 0 of degree m is homogeneous if
and only if
p(Az) = A" -p(z), forallXeC.

PROOF: Let p(z) = @¢,2” be a monomial of degree m. Then
p(Az) = a,(Az)” =A™ - a,z” =A™ - p(z).
The same is true for finite sums of monomials.

On the other hand, let p(z) = Zlvl< N G,2” be an arbitrary polynomial with
p(Az) = A™ - p(z). Gathering monomials of degree i, we obtain a polyno-
mial p;(z) = ZMzi a,z" with p;(Az) = X' - p;(z). Then for fixed z the two
polynomials

N
Aerp(Az) =D pi(z)- A and A A™ - p(2)
1=0
are equal. This is possible only if the coefficients are equal, i.e., pn(2z) = p(2z)
and p;(z) = 0 for ¢ # m. So p = p,,, is homogeneous. =

Convergence. If for every v € N} a complex number ¢, is given, one
can consider the series ZDO ¢, and discuss the matter of convergence. The
trouble is that there is no canonical order on Nj.
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Definition.  The series 3, 5, is called convergent if there is a bi-
jective map ¢ : N — N such that Y 2 |c,(i)| < co. Then the complex
number Y ;o C,;) is called the limit of the series.

It is clear that this notion of convergence is independent of the chosen map
¢, and that it means absolute convergence.

2.2 Proposition. Zuzo ¢y is convergent if and only if
{ S e : TCNg ﬁmte}
vel
s a bounded set.
The proof is trivial.
2.3 Proposition. If the series Euzo ¢, converges to the compler number

¢, then for each € > 0 there exists a finite set Iy C Nj such that:

1. Zlcul < g, for any finite set K C N} with KNlp =@
veK

ch - cl < g, for any finite set I with Iy C I C N§.
vel

PROOF: We choose a bijective map ¢ : N — Ng. Then Y .o, Cp(i) = C, and
the series is absolutely convergent. For a given € > 0 there exists an i € N
such that Y772, |cy(i| < € and Izl_ coi) —¢| <&

Setting Iy := ¢({1,2,...,%0}), it follows that ¢ . |c.| < ¢ for any finite set
K with KNlp=@,and |}, ¢ —c| <e

Then for any finite set [ with Iy C I C Ng,

|Zc,,—c|=|(20,,—c) c,, <|Zc,,—-cl+ Z leu| < 2e.
vel vely -

vel—-Io
[
Example
Let qu,...,qn be real numbers with 0 < ¢; < 1fori =1,...,n, and q :=
(q1,.--,4n). Then for any v € Ng, q¥ = ¢{* - - - ¢}~ is a positive real number.

If I ¢ N} is a finite set, then there is a number N such that I C
{0,1,...,N}", and therefore

Se|-TaesfSa [

vel vel 1=1v;=0
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Since the partial sums are bounded, the series is convergent. It is absolutely
convergent in any order, and the limit is

Sa=I1

v>0 =1

We call this series the generalized geometric series.

Now let M C C™ be an arbitrary subset, and {f, : v € Nj} a family of
complex-valued functions on M. We denote by | f, || s the supremum of |f, |
on M.

Definition. The series ) ., f, is called normally convergent on M
if the series of positive real numbers > usollfollm is convergent.

2.4 Proposition. Let the series 3,5, f. be normally convergent on M.
Then it is convergent for any z € M, and for any bijective map ¢ : N — NI
the series ) oo i=1 fo(iy 15 uniformly convergent on M.

PROOF:  If the series is normally convergent, then 3°, - .| f.(2)| is convergent
for any z € M. But then ZDO f(z) is also convergent, and there is a complex

number f(z) such that Y 2, f,;)(2z) converges to f(z), for every bijective
map ¢ : N - Ng.

If an € > 0 is given, there is an i such that Y 72, || foi)llm < €. Then

1,—1,0

’Zf‘p(i)(z) l < Z”fw(i)“M <e, form>k>iyand z € M.
i=k i=k

Therefore,
k
'Z.ﬁp(i)(z) l = ' Z fw(l)(Z)‘ <eg, for k > ig.
i=1 i=k+1
This proves the uniform convergence. .

Power Series. Let {a, : v € N7} be a family of complex numbers, and
zo € C™ a point. Then the expression

Z a,(z — z¢)”

v2>0

is called a (formal) power series about zo. It is a series of polynomials. If
this series converges normally on a set M to a complex function f, then as a
uniform limit of continuous functions f is continuous on M.
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2.5 Abel’s lemma. Let P’ cC P C C" be polydisks around the origin.3If
the power series Zuzo a,z” converges at some point of the distinguished
boundary of P, then it converges normally on P'.

PROOF: Let w € GpP be a point where ) -, a,w" is convergent. Then
there is a constant c such that |a,w"| < c for all v € N2.

We choose real numbers ¢; with 0 < ¢; < 1 such that |z;| < ¢;|w;| for any
z=(21,...,2p) € P'and i = 1,...,n. It follows that

la,z2”| < q” - ¢, for q = (q1,---,qn), 2 € P', and v € N§.

Then ||a,2”||pr < q” - ¢ as well, and from the convergence of the generalized
geometric series it follows that ) -, a,2" is normally convergent on P’. m

Definition. ~We say that a power series ), a.(z — 29)” converges
compactly in a domain G if it converges normally on every compact subset
KcaG.

2.6 Corollary. Let P C C™ be a polydisk around the origin and w be a point
of the distinguished boundary of P. If the power series ) -, a,z"” converges
at w, then it converges compactly on P. -

ProOOF: Let K C P be a compact set. Then there is a ¢ with 0 < g < 1
such that K C q- P CcC P. Therefore, the series is normally convergent on
K. [

Let S(z) = ), 2" be a formal power series about the origin, and

B :={z € C" : S(z) convergent}.

2.7 Proposition. The interior B° is a complete Reinhardt domain, and
S(z) converges compactly in B°.

PROOF: Let w be a point of B°. There is a polydisk P*(w,¢) C B° and
a point v € P*(w,&) N {C*)" such that w € P,(0). Then T\, C B°, and if
w € (C*)™, then also P (0) C B°.

To see that B° is a complete Reinhardt domain, it remains to show that it

is connected. But this is very simple. Every point of B° can be connected to
a point in B° N (C*)", and then within a suitable polydisk to the origin.

3 The notation U CC V means that U lies relatively compact in V; i.e., U is a
compact set which is contained in V.
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From these considerations it follows that B® is the union of relatively compact
polydisks around the origin. Therefore, S(z) converges compactly on B®. =

The set B° is called the domain of convergence of S(z).

2.8 Proposition. Let G be the domain of convergence of the power series
S(z) = 3,50 az”. Then

= a2 T
S.;(z) :== a, - Vjz; z; 2
v>0
v; >0

also converges compactly on G.

PROOF: Let w be any point of (C*)"NG, and |a, w”| < ¢ for every v € Nj.
If0<g<1landz=gq-w,then

v
lay - vjz{t - 27

i ...z::"‘:

Vs
2. lauzul S _c_ . Vj . qlvl.
EA |23

Now,

| Zuquﬂ=<§:qw)... i,,jqw ...(iqun>

v2>0 v1=0 v;=1 vn=0

is convergent. Therefore, S;,(z) is convergent, and it follows that S, is nor-
mally convergent on P,(0). Since every compact set K C G can be covered
by finitely many polydisks of this kind, S, is compactly convergent on P. =

Definition. Let B C C™ be an open set. A function f : B — Cis called
holomorphic if for every zo € B there is a neighborhood U = U(zg) C B
and a power series S(z) = 3,50 a.(z — 2z0)” that converges on U to

f(z).
The set of holomorphic functions on B is denoted by O(B).

It is immediately clear that every holomorphic function is continuous.

Exercises

1. Let f, g be two nonzero polynomials. Prove that

deg(f - g) = deg(f) + deg(g) -

2. Let f = f1--- fr be a homogeneous nonzero polynomial. Show that f; is
homogeneous, for i =1,... k.
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3. Find the domain of convergence for the following power series:

f(z’w) = Zzwk’ g(z,w) = Z(zw)k, h(z’ w) = Z E_Z w* .
k=0

1
k>0 u#>0“
4. Determine the limit and the domain of convergence of the series

F(z,w) = E((Qz)" + Z z“)

v>0 u>0

5. A polyradius r = (r1,...,7,) € ¥ is called a radius of convergence for
the power series f(2z) = 3,5 av2” if f(2) is convergent in P = P"(0,r),
but not convergent in any polydisk P’ = P*(0,r’) with P cC P’.

Prove the following generalization of the root test:

r is a radius of convergence for f(z) if and only if ﬁ)rﬂo “la,|r = 1.
U—

3. Complex Differentiable Functions
The Complex Gradient

Definition. Let B C C™ be an open set, zg € B a point. A function
f : B = C is called complex differentiable at zy if there exists a map
A : B — C" such that the following hold:

1. A is continuous at z.

2. f(z) = f(zo) + (z — zo) - A(2z)* for z € B.

Complex differentiability is a local property: For f to be complex differen-
tiable at zg it is sufficient that there is a small neighborhood U = U(zo) C B
such that the restriction f|y is complex differentiable at zg.

3.1 Proposition. If f is complex differentiable at zo, then the value of the
function A at zo is uniquely determined.

PROOF: Assume that there are two maps A; and Aj satisfying the condi-
tions of the definition. Then

(z — 20) - (A1(z) — Ag(2z))" = 0 for every z € B.

In particular, there is an € > 0 such that the equation holds for z = zg + te;,
witht€C, |t| <eg,andi=1,...,n. If Ay = (AY,...,AY), then

t-(AM(z) — AP(z)) =0, for |t|<e, z=2zo+te;,andi=1,...,n.

Because the A{™ are continuous at zo, it follows that A;(zo) = Az(z0). =
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Definition. Let f : B — C be complex differentiable at zy. If there
exists a representation

f(z) = f(z0) + (z — 20) - A(2)",
with A continuous at zg, then the uniquely determined numbers

%(ZO) = fz.(20) == €, - A(zo)*

are called the partial derivatives of f at zo. The vector

V(zo) := (fz1(20), - - ., f2.(20)) = A(20)

is called the complex gradient of f at zg.

Remarks

1. If f is complex differentiable at zg, then f is continuous there as well.

2. A function f is called complex differentiable in an open set B if it is
complex differentiable at each point of B. Then the partial derivatives of
f define functions f,, on B. If each of these partial derivatives is again
complex differentiable at zo, then f is called twice complex differentiable
at zg, and one obtains second derivatives

o*f
02,02, (20) = fev (20).

By induction, partial derivatives of arbitrary order may be defined.
3. Sums, products, and quotients (with nonvanishing denominators) of com-
plex differentiable functions are again complex differentiable.

Weakly Holomorphic Functions. Let B ¢ C" be an open set,
2o € B a point, and f a complex-valued function on B. For w # 0 let
¢w : C = C" be defined by

pw(C) =20 + (w.

Then fopw(() is defined for sufficiently small ¢. If f is complex differentiable
at 2o, then we have a representation f(z) = f(zo) + (z — z0) - A(z)?, with A
continuous at zg. It follows that

Flow(Q)) = fleow(0)) = {w - A(pw(())

and f o ¢ is complex differentiable at ¢ = 0, with

(o pu) (0) = w- Alzo)* = lim 7 [F(u(C)) = Fow(O)]
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This is the complex directional derivative of f at zg in the direction w. We
denote it by Dy, f(zo). In particular, f,, (z0) = De, f(2o) for v=1,...,n.

An arbitrary function f is called partially differentiable at zq if all partial
derivatives De, f(z0) exist for v =1,...,n.

A function f is called weakly holomorphic on B if it is continuous and partially
differentiable on B. Then for z = (z;,...,2,) € B and v = 1,...,n the
functions

CHf(zlv'"azu—lagazu-kla”-azn)

are holomorphic functions of one variable.

If f is complex differentiable on B, then f is also weakly holomorphic on B.
Later on we shall see that weakly holomorphic functions are always complex
differentiable, in contrast to the behavior of real differentiable functions.

Holomorphic Functions

3.2 Proposition. Let P C C" be a polydisk around the origin, and S(z) =
ZVZO a,z’ a power series that converges compactly on P to a function f.
Then f is complex differentiable at 0, with

f22(0)=a10,..0,---» f2,(0) =aq,..0,1-

Proor: We choose a small polydisk P. CC P around the origin such that
S(z) is normally convergent on P.. But then the series obtained by any
rearrangement of the terms is also normally convergent, and it converges to
the same limit. We write

f(z) = Z a,z”
v>0
= apyo,.0t 2 Z ay 2 i
v1 >0
VQ,yiny Vn>0
+ 22 Z ayzs? "l 2i + + zn Z a,zst
vy =0,v2>0 v1=...=Vpn—1=0
v3,...,Vn 20 va>0
= f(0)+21-A1(2)+ -+ 2n - Dn(2).
Since the series A;(z), . . ., An(z) converge normally on P to continuous func-
tions, f is complex differentiable at 0, with f,, (0) = A, (0). a

3.3 Corollary. If B C C" is an open set, and f : B — C a holomorphic
function, then f is complex differentiable on B.
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PROOF: Let zg € B be an arbitrary point. There is a power series S(w)
converging compactly near 0 to a holomorphic function g such that

f(z0+w) = g(w) = g(0) + w1 - Ar(W) + - + wn - Ap(W),

with continuous functions Ay, ..., A,. It follows that f is complex differen-
tiable at zg. -
Exercises

1. Show that there is a function f : C* — C that is complex differentiable

at every point z = (z,..., z,) with z, = 0, but is nowhere holomorphic.
2. Prove the following chain rule: If G ¢ C" is a domain, f : G — C a
complex differentiable function, and ¢ = (p1,...,¢n) : & = G a map

with holomorphic components ¢;, then f oy : A — C is a holomorphic
function, with (f o 9)'(¢) = Vf(¢(¢)) - ¥'(¢)*.

4. The Cauchy Integral

The Integral Formula. Let r = (ry,...,7,) be an element of R%,
P =P*0,r), T =T"(0,r), and f a continuous function on T. Then

— f(C) _ f(Cl:---’Cn)
ks (z,¢) == (€ —2)tD) (G —21) - (Cn — 2n)

defines a continuous function kf : P x T' — C.

Definition.

o0 = (5) [H@ord
T

@) [~ ] ogtsats

[¢1]=m1 [¢nl=rn

is called the Cauchy integral of f over T.

Obviously, Cy is a continuous function on P.

4.1 Theorem (Cauchy integral formula). Let P, T be as above, and
U = U(P) be an open neighborhood of the closure of P. If f is weakly holo-
morphic on U, then Cyr(z) = f(z) for any z € P.

Proor: If P =D, (0)x---xD,, (0), we may assume that U = Uy x- - - xU,,
with open neighborhoods U; = U; (D,-‘. (O)), fori=1,...,n.
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Since f is weakly holomorphic, we can fix 2z’ = (21,...,2n—1) € U1 X+ +-XUpn—1
and apply the Cauchy integral formula in one variable to ¢, — f(2’,(,). For
zn € Dy, (0) it follows that

1 f(z (n)

/ [ p——

f(z2n) = 2mi Cn — 2zn -
[nl=Tn
Similarly, for the penultimate variable z,_, and 2"’ = (z1,...,2n—2) € Uy X
-+ X U, _2 we obtain
1 z’ (1,2
F(@", 2nery2n) = — / &__ﬁ‘_l_'ﬁdgn_l

2mi Cn—1 — Zn—1

¢n— ll—‘rn 1

- () | ] et

[Cn-1l=rn-1lzal=ra

and after n steps, f(z) = Cyjr(2), for z € P. .

4.2 Theorem (power series expansion). Let P = P*(0,r) C C™ be
a polydisk and T its distinguished boundary. If f : T — C is a continuous
function, then there is a power series Y, a,2” that converges to Cs(z) in
all of P. -

The coefficients a, of this series are given by

1 " f(c ""7(‘")
Ay, v, = (%) ——I—*Fdﬁ "'an-

V1+1
7 Cl

PROOF: Setting 1:=(1,...,1) € Nj, for z € P and { € T it follows that

1 1 B 1
€-2z (Cl_zl)"'(Cn—‘Zn)_Cl...cn.(]_ 21) ..(1_ﬁ‘_)

G
1 oo 7 v oo z_n Vn
¢ Z(Q) L:o(c) '

Vi =0

If r = (r1,...,7n), then for fixed z € P and arbitrary ¢ € T we have
| =g;:=—— <1, forj=1,.

Since T is compact and f continuous on T, there is a constant M with
If(¢)] < M on T. Then ¥, (f(¢)/¢"*)z* is dominated on T by the
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convergent series (M/r') " .,q", where @ = (q1,...,4n), and therefore it
is normally convergent as a series of functions on T with limit f(¢)/(¢ —z)2.
We can interchange summation and integration:

cro= (%), =

- (3

The series converges for each z € P. n

with

4.3 Osgood’s theorem. Let B C C" be an open set. The following state-
ments about a function f: B — C are equivalent:

1. f is holomorphic.
2. f is complex differentiable.
3. f is weakly holomorphic.

Proor: We already know that a holomorphic function f is complex differ-
entiable, and it is trivial that then f is weakly holomorphic.

On the other hand, let f : B — C be weakly holomorphic, and zg € B
an arbitrary point. There is a small polydisk P around zg that is relatively
compact in B. If T' is its distinguished boundary, then f|p = Cy|r, and the
Cauchy integral is the limit of a power series. So f is holomorphic. .

In addition, if f is weakly holomorphic on B, zg € B a point, and P CC B
a polydisk around z, then there is a power series S(z) = Y, a.(2 — Z0)”
that converges to f on all of P. -

Holomorphy of the Derivatives

4.4 Weierstrass’s convergence theorem. Let G C C" be a domain, and
(fi) a sequence of holomorphic functions on G that converges uniformly to a
function f. Then f is holomorphic.

Proor: The limit function is continuous. Let zp € G be a point, P CC G
a polydisk around zg, and T its distinguished boundary. Then
fle = Jim Jile = Jim Cryr

Since T is compact, we can interchange integral and limit. Thus, for any fixed
z€ P,

Jim Cpr(2) = Cim_ s7(2) = Cpir(2).
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Since f is continuous on T, the Cauchy integral Cyir has a power series
expansion in P. Therefore, f is holomorphic at zg. =

4.5 Proposition. Let S(z) = Y, ., a,2" be a power series and G its do-

main of convergence. Then the limit function f of S(z) is holomorphic on G,
and the formal derivative .

S.;(z) = Z ay, - vz ---z;."'_l---z;"
v2>0
v >0
converges to f,;. In particular, all partial derivatives of f are likewise holo-
morphic.

PROOF: Since S(z) converges compactly on G, f is locally the uniform limit
of a sequence of polynomials. Then it follows from Weierstrass’ theorem that
f is holomorphic. But also S, (z) converges compactly on G, and its limit
function g; must be holomorphic on G.

Now let zy be an arbitrary point of G. Since G is a complete Reinhardt
domain, there is a polydisk P around the origin with zg € P cC G. We
define

2j
f*(z) 22/(; gj(zly---,Zj—1,<7zj+1;---,zn)dg+f(zla---,01-~-,Zn)-

For the path of integration we take the connecting segment between 0 and
z; in the z;-plane. Then f* is defined on P.

Let S(z) = >°2, pi(z) be the expansion into a series of homogeneous polyno-
mials. Then S,;(z) = 3 2,(pi),(2), and this series converges uniformly on
the compact path of integration we used above. Therefore, we can interchange
summation and integration, and consequently,

f*(Z) = Z(/j(pi)z_-;(zl’-"aCa"'7z'n)d<.+pj(zl7~")0"~-vzn))
i=0 ‘WO
= S nla) = f(2),
=0
for z € P. Hence f;;(zo) = f7,(z0) = g (o). ]

4.6 Corollary. Let G C C™ be a domain and f : B — C a holomorphic
function. Then f is infinitely complez differentiable in G.

Let v = (v1,...,v,) be a multi-index. Then we use the following abbrevia-
tions:
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1. vi:=ut o,
2. If f is sufficiently often complex differentiable at zy, then

ol f

D f(ZQ) = m(zo)

4.7 Identity theorem (for power series).

Let f(z) =Y ,50 0.2 and g(z) = 3,5 b.2" be two convergent power series
in a neighborhood U = U(0) C C™. If there is a neigborhood V(0) C U with
flv =glv, then a, = b, for all v.

PROOF: We know that f and g are holomorphic. Then D” f(0) = D"g(0)
for all v, and successive differentiation gives

D’f(0)=v!'-a, and DYg(0)=v!-b,.
]
4.8 Corollary. Let G C C™ be a domain, zg € G a point, and f : B — C

a holomorphic function. If f(z) = 3,50 @.(z — 20)" is the (uniquely deter-
mined) power series expansion near zgp € G, then

1
o =~ - D" f(zo), for each v € Nj.

4.9 Corollary (Cauchy’s inequalities). Let G C C™ be a domain, f :
G — C holomorphic, zg € G a point, and P = P™(zg,r) CC G a polydisk
with distinguished boundary T. Then

V!
|D* f(20)| < — - sup|f|.
r T

PROOF: Let f(z) = ) ,5,a.(z — 29)” be the power series expansion of f
at zg. Then D f(zo) = vla, and

o= (am) [t

and therefore

v! 1£ (<)

DY <
ID"fo)l < oy | At %
_ / 'f(2§°’+ne”',---,z7‘1°’+T"eit")'dt1---dtn
(27I’)" v
[0,2n]"
V!
< —U'SUP|f|-
r T
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The Identity Theorem. Let G C C" be always a domain. The con-
nectedness of G will be decisive in the following.

4.10 Identity theorem (for holomorphic functions).

Let f1, f2 be two holomorphic functions on G. If there is a nonempty open
subset U C G with fily = f2lu, then fi = fo.

PrOOF: We consider f := f; — fo and the set
N:={z€ G : D"f(z) =0 for all v}.

Then N # @, since U C N. Let zg € G be an arbitrary point, and

f&) = 3 D" f(z0)(a - 70)"

v20

the power series expansion of f in a neighborhood V = V(zg) C G. If 2z
belongs to N, then f|y = 0, and also V C N. This shows that N is open.
Because all derivatives D f are continuous, N is closed. Since G is a domain,
weget N=G and f) = fs. =

Remark. In contrast to the theory of one complex variable, it is not suf-
ficient that f; and f, coincide on a set M that has a cluster point in G.
Consider for example, G = C? and M = {(z1,22) : 22 = 0}. The holomor-
phic functions f1(21, z2) := 22(21 — 22) and f2(21, 22) := 22(z1 + 22) are equal
on M, but f1(0,1) = —1 and f2(0,1) = 1.

4.11 Theorem (maximum principle).

Let f : G — C be a holomorphic function. If there is a point zg € G such
that | f| has a local mazimum at zq, then f is constant.

PROOF: We consider the map ¢y, : C = C" with pw({) = z¢ + ¢w, for
an arbitrary w # 0. Then f o ¢ is a holomorphic function of one complex
variable, defined near ¢ = 0. Now, since |f o pw! has a local maximum at
the origin, this function must be constant in a neighborhood of the origin.
But the direction w was chosen arbitrarily, so f also has to be constant in a
neighborhood of 0 € C". The identity theorem implies that f is constant on
G. =

Exercises

1. Prove Liouville’s theorem: Every bounded holomorphic function on C*
is constant.

2. Prove that if f € O(C") and |f(z)| < C - [|z¥|| for some C > 0 and some
v € N, then f is a polynomial of degree at most |v|.
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3. Let G C C™ be a domain and f € O(G) not constant. Prove that then
f(U) c C is open for any open subset U C G.

4. Let G C C™ be a domain. A set F of holomorphic functions on G is called
locally bounded, if for every z € G there is a neighborhood U(z) C G such
that {||fllv : f € F} is bounded. Prove the following:

(a) (Lemma of Ascoli) If A C G is a dense subset and (fy) is a locally
bounded sequence of holomorphic functions in G which converges
pointwise on A, then (f,) is compactly convergent on G.

(b) (Theorem of Montel) Every locally bounded sequence of holomorphic
functions in G has a compactly convergent subsequence.

Hint: More or less, you can use the well-known proof from the 1-

dimensional theory.

5. The Hartogs Figure

Expansion in Reinhardt Domains. Let 7., r// be real numbers with
0 <7, <rl for 1 <v < n. We define

P = {zeC": |z| <7, for all v},
Q = {zeC":r, <l|z|<r] forall v}

Clearly, P and @ are Reinhardt domains. Let f be a holomorphic function in
Q. Then for all r € 7(Q), the Cauchy integral Csy, is a holomorphic function
in P,, and therefore a fortiori in P (see Figure 1.3).

{22

ry

Figure 1.3. Expansion in the polydisk

5.1 Proposition. The function f. : P — C given by fr(z) := Cyr.(2) is
tndependent of r.

PrOOF: We have
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f,(z)=(%)" [ [ o

Cl — 21 Cn — Zn '
I1l=r1 [¢ni="n

In each variable ¢, the integrand f({)/(¢, —z.) is holomorphic on the annulus
{¢ : 7, <|¢| < l}. From the Cauchy integral formula for one variable it

follows that
J oy e 2
1< |

Ll=ry <u — 2 AL ¢ — 2

if r, < r, <r} < ). This yields the proposition. ]

5.2 Proposition. Let G C C" be a proper Reinhardt domain, f holomor-
phic on G. Then for every z € GN(C*)™ the Cauchy integral Cy 7, coincides
with f in a neighborhood of the origin.

ProoF: G N (C*)" is a Reinhardt domain. Therefore, Gy := 7(G N (C*)")
is a domain in the absolute space.
Let B := {r € Go : Cyr, coincides with f in the vicinity of 0 }. Then B #

@, because there is a small r € Gy such that P(0) C G.

B is open: If rg € B, we can find sets P, Q) as we did at the beginning of this
section such that ro € @ C Go. Then for r € Q, fr = Cfjr, is a holomorphic
function on P, and independent of r. But f;, coincides with f near the origin.
Therefore, @ C B.

Also, Gy — B is open. The proof goes as above. Since Gy is connected, that
implies that B = Gy. ]

5.3 Corollary. Let G be a proper Reinhardt domain, f holomorphic in G.
Then there is a power series S(z) which converges in G to f.

PrOOF: Let zg € G be arbitrarily chosen. Then there is a point w € G N
(C*)™ with zp € Py. The holomorphic function g := Cyr,, has a power
series expansion g(z) =3, a,2" in P,. Since g coincides with f in a small
neighborhood of the origin, the coefficients a, are those of the Taylor series
of f about 0. Since zy was arbitrary, it follows that the series converges in
all of G. By the identity theorem its limit is equal to f. L]

Definition. If G is a proper Reinhardt domain, then

G .= U P,
zEGN(C*)n

is called the complete hull of G.
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Remarks

1. Every complete Reinhardt domain is proper, but the opposite is in general
false. For n = 1, Reinhardt domains are open disks around 0, and there
is no difference between proper and complete domains.

2. The complete hull G of a proper Reinhardt domain G is again a domain
containing G. And it is Reinhardt: For z € G there is some z; with
z€P, C G. But then also T, C Py C G. The same argument shows
that G is complete.

3. Let G; be another complete Reinhardt domain with G C G,. For z €
G N (C*)", z also lies in G, and by the completeness of G; it follows
that P, C G1. So Gc G1, and we see that G is the smallest complete
Reinhardt domain containing G.

An immediate consequence is the following:

5.4 Theorem. Let G be a proper Reinhardt domain and f be holomorphzc
in G. Then there is ezactly one holomorphic function f in G with f IG =

Hartogs Figures. In the case n = 1 the situation above cannot appear.
For n > 2 we can choose sets G and G in C™ such that G # G. This reflects an
essential difference between the theories of one and several complex variables.

Now let n > 2, P™ the unit polydisk, ¢, ..., ¢, real numbers with 0 < ¢, < 1
forv=1,...,n,and

H=H(q):={z€P" : |z1| > q or |z,| < gy for p=2,...,n}.

Then (P™,H) is called a Euclidean Hartogs figure (see Figure 1.4). H is a
proper Reinhardt domain and P™ its complete hull.

(@ -

|22]

q3

q2

an |21

Figure 1.4. (a) 2-dimensional, and (b) 3-dimensional Hartogs figure
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5.5 Hartogs’ theorem. Let (P, H) be a Euclidean Hartogs figure. Then
any holomorphic function f on H has a holomorphic extension f on P™.

The theorem follows immediately from our considerations above.

Exercises

1. For 0 < ¢ < 1 let G;,G5 C C? be defined by

G = {(zw):¢<]zl<1and|w| <1},
G2 = {(2,w) : |2|] <1and |[w| < g}.

(a) Prove that every holomorphic function f on G has a unique repre-
sentation

o0

flz,w) = }: an(w)z", with a, € O(D).

n=-—oo

(b) Prove that every holomorphic function g on G2 has a unique repre-
sentation

g(z,w) = Z by (w)2", with b, € O(D4(0)).

n=0

(c) Use (a) and (b) to prove that every holomorphic function f on G1UG2
has a unique holomorphic extension to the unit polydisk.
2. Let G C C™ be an arbitrary Reinhardt domain, f € O(G). Show that
there exists a uniquely determined “Laurent series” ZVGZ" a,z” converg-
ing compactly in G to f.

6. The Cauchy—Riemann Equations

Real Differentiable Functions. Recall the following from real an-
alysis:

Let B C C™ be an open set and zg a point of B. A function f : B — R is called
differentiable (in the real sense) if there is a real linear form L : C* — R and
a real-valued function r with:

1. f(z) = f(z0) + L(z — 20) + (2 — 20).

r(w)

The real linear form D f(zg) := L is called the (total) derivative of f at zo.
It can be given in the form
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L:u+ive u-Vyf(zo)' +v- Vyf(zo)t,

With V.cf (20) = (fe, (20)s - fan (7)) and Vi (20) = (fyu (20), - - fun (20)).
We call (Vi f(20), Vy f(zo)) the real gradient of f at z.

If f=g+ih: B — Cis a complex-valued function, then f is called differen-
tiable (in the real sense), if g and h are differentiable. The (real) derivative
of f at z¢ is defined to be the complex-valued real linear form

Df(zo) := Dg(20) + i Dh(zo).

6.1 Proposition. A function f : B — C is (real) differentiable at 2o if and
only if there are maps A, A" : B — C™" such that:

1. A’ and A" are continuous at zg.
2. f(z) = f(2z0) +(z —20) - A'(2)" + (Z—Z0) - A"(2)* forz € B.

The values A’(zg) and A”(zg) are uniquely determined.

ProoF: (1) Let f be differentiable at zy. Then there is a complex linear
form A’ and a complex antilinear form A” such that

Df(zo) = A + A”.

The decomposition is uniquely determined, and there are vectors A’(zg) and
A"(z0) such that

AN(w)=w-A(z0)! and A"(w)=wW-A"(z)%.

Now we define

M) = N+ g (3 ),
M) = Aa) G (2 ),

It is easy to see that
(ayA” and A” are continuous at zg,
(bY(z) = f(20) + (z — 20) - A'(z)* + (2~ %) - A"(2)".
(2) Now let the decomposition be given, and define
Lw) = w-A'(zo)' +W-A"(zp)?,
r(w) = w-(A(z) - Al(z0))" + W (A"(z) — A"(20))".

Since
|r(w)|
Iwil
it follows that f is differentiable at zp with derivative L. n

< [|A'(z) — A'(z0)ll + [|1A"(2) — A" (zo),
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Wirtinger’s Calculus

Definition. Let f : B — C be real differentiable at z. If we have a
representation

f(z) = f(20) + (z — 20) - A'(2)" + (Z — %) - A"(2) ",

with A’ and A” continuous at zg, then the uniquely determined numbers

= fz,(20) =€, - A'(20)*

and 9
%ft(zo) = fz.(20) = e, - A"(20)*

are called the Wirtinger derivatives of f at zg.

The complex linear (respectively antilinear) forms (9f)z, : C* — C and
(0f)z, : C* — C are defined by

(0o Zfz, (zo)w, and (3f)z (W Zfz,(zo)wu,

and the differential of f at zo by (df )z, := (0f)ze + (3f)z, -

Obviously, Df(zo) = (df)z,-

If we introduce the holomorphic (respectively antiholomorphic) gradient
Vf ::(le""’on) and -V—f = (fil""7f—z_n)’

then (0f)zo(W) = W - Vf(29)? and (0f)q, (W) = W - Vf(z0)*.

6.2 Proposition. Let f be a (complex-valued) function that is real differ-
entiable at zg. Then

fa (20) = %(fx,,(zo)*ifyu(zo)),
Fo(a0) = 5(fa(20) + iy (20)).

PROOF: Let be L := Df(z¢). Then
fz.(20) = L(ey) = (0f)ao(ev) + (gf)zU(eV) = fz,(20) + fz,(20)
and

fu.(z0) = L(ie,) = (9f)z(ie) + ('5f)z(,(ie.,) = i(f.,(z0) — f5.(20)-
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Putting things together we obtain

fz.(20) — 1 fy,(20) = 2f.,(20) and f; (20) +ify, (20) = 2fz, (20)-

Remark. Use these formulas with care! The derivatives f;, and f,, in
general are complex-valued. So the equations do not give the decomposition
of f,, and fz, into real and imaginary parts, respectively!

The Cauchy—Riemann Equations

6.3 Theorem. Let f: B — C be a continuously real differentiable function.
Then f is holomorphic if and only if fz (2) =0 on B, forv=1,...,n.

Proor: (a) If f is holomorphic, then f is complex differentiable at every
point zg € B. Comparing the two decompositions

f(2) = f(20) + (z — 20) - A(z)"

and
f(2) = f(2zo) + (2 — 20) - A'(2)" + (2 — %) - A" (2)*

we see that A’(zy) = A(z¢) and A”(zp) = 0. The latter equation means that
fz(zo)=0forv=1,...,n.

(b) If fz,(z) =0, then f is holomorphic in each variable and is consequently
holomorphic. -

Remark. Now the following is clear: If f is holomorphic near zg, then

n

(@f)eo =0 and  Df(20)(W) = (df )ao (W) = (8f)ao(W) = ) _ fz, (z0)ws.

v=1
The equation (8f), = 0 is the shortest version of the Cauchy-Riemann dif-
ferential equations. In greater detail, these are the equations
fz.(2) =0, forv=1,...,n.

Finally, if f = g + ih, then we can write the Cauchy—Riemann equations in
their classical form:

9z, = hy, and hy, = ~g, , forv=1,...,n.
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Exercises

1. Derive the Cauchy-Riemann equations in their classical form.
2. Let f : G — C be real differentiable. Prove the formulas

(fz.) = (7)7., and f, 3, = f'z'“z,, forv,u=1,...,n

3. Let G C C" be a domain and f,..., fx : G = C holomorphic functions.
Show that if Z’ 1 fJ ; is constant, then all fj are constant.

32|h|2

Hint: If A is holomorphic, then 52,57 = I (92,

7. Holomorphic Maps

The Jacobian. Let B C C" be an open set. A map
f=(fi,....fm): B> C™

is called holomorphic (respectively real differentiable) if all components f;

are holomorphic (respectively real differentiable).

7.1 Proposition. The map f : B — C™ is holomorphic if and only if
for any zg € B there ezxists a map A : B — M, .(C) with the following
properties:

1. A is continuous at zg.
2. f(z) = f(zo) + (z — 20) - A(z)?, forz € B.

The value A(zg) is uniquely defined.

PROOF: The map f is holomorphic if there are decompositions

fu(2) = fu(z0) + (2 = 20) - Au(2)",

with A, continuous at zg, for p =1,...,m.
Then A is given by A(z)? = (A1(z)},...,An(z)?). We leave the further
details to the reader. n

Definition. If f : B — C™ is holomorphic, then Jg(zp) := A(zo) is
called the complex Jacobian (matriz) of f at zg. The associated linear
map f'(zg) : C* — C™ is called the (complex) derivative of f at zo. It is
given by

f'(zo)(W) = w - Jg(z0)*.
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Explicitly, we have

(f1)a(z) -+ (f1)z.(2)
Jr(2) = : E
(fm)za(2) -+ (fm)z.(2)
This matrix is also defined for differentiable maps.

Definition. Iff =g+ ih: B —+ C™ is a differentiable map, then the
real Jacobian matriz Jr £(Zo) € Mam 2,(R) is the real matrix associated
to the real linear map

(Dg(z0), Dh(zg)) : C* = R?" — R2™.

The real Jacobian of f = g + ih is given by

(@)er - (@) | @ - (90)ue
| e Gden | Gmdes o (G
Rt = e e [ (e (o)
e+ (hm)en | (omdys - (o)

The R-linear map Df(z) : C* — C" is defined by Df(z) := Dg(z) +i Dh(z).
Setting (0f)z := ((8f1)zs---,(0fm)z) and (8f)z := ((8f1)z---, (Ofm)z), we

obtain

Df(z) = (8f), + (),

7.2 Theorem. A differentiable map f = g+ ih : B — C™ is holomorphic
if and only if Df(z) is C-linear for every z € B.

If £ is holomorphic and n = m, then det(Jr¢(z)) = |det Jr(z)|%.
PROOF: The map f is holomorphic if and only if (5f ), = 0 for every z. Then

Df(z) = (0f)z, which is complex linear. In this case we have the Cauchy-
Riemann equations

(9u)z, = (hyu)y, and (hu)z, = —(9u)z.

and therefore

(fu)zo = (f)z. = (Gu)z, +i(hu)z,, foru=1,..., mandv=1,...,n.

Ifn=m,thenJg,f=(g IB)

)withB:—CandA=D,ande=
A+iC.



32 I. Holomorphic Functions

By elementary transformations,

A =C _ A+iC ~-C+i4
det(c, A ) = det( C A )

A+iC 0
det( c A—iC’)

|det(A4 +iC)/>.

]

It follows that holomorphic maps are orientation preserving!

Chain Rules. Let B ¢ C" be an open set, f : B — C™ a differentiable
map, and g a complex-valued differentiable function that is defined on the
image of f. Then gof : B — C is differentiable, and the following holds:

7.3 Proposition (complex chain rule).

@of)e = D (Gu.of) (fude + Y (9w, 06) - (Fu),,,
u=1 w=1

9oz, = D (gw, 0B (fu)z + 2 (9w, o0 (Fu);, -
pu=1 p=1

One can use the well-known proof for the chain rule in real analysis, consid-
ering 2, and Z,, as independent variables.

7.4 Corollary. Iff and g are holomorphic, then
(gof)z,(z) = 0 (ie., gof is holomorphic),

m

(gof)z(2z) = 9w, (£(2)) - (fu)2. (2)-
1

U=

The second equation can be abbreviated as

V(g of)(z) = Vg(f(2)) - Ji(2).

Tangent Vectors. In this paragraph we use the term differentiable for
infinitely differentiable.

Definition. A tangent vector at a point z € C™ is a pair t = (z,w),
where the direction w of t is an arbitrary vector of C". If the base point
z is fixed, we simply write w instead of t or (z,w).

The set T, of all tangent vectors at z is called the tangent space (of C™)
at z.
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The notation “tangent vector” is motivated by the following:

Let B C C” be an open set and I C R an interval containing 0 as an interior
point. If @ = (ay,...,a,) : I = B is a differentiable path, then o’(0) is the
direction of the tangent to the curve a at the point a(0). Therefore,

&(0) := (a(0),o'(0))
is called the tangent vector of a at z = «(0). Each tangent vector (z,w) € T,
can be written in the form &(0), e.g., a(t) := z + tw. _
The tangent space T, carries in a natural way the structure of a complex

vector space:

(Z, W]) + (z’ W2) = (Z, w1 + W2),
A-(z,w) = (z,A-w), for \eC.

Every tangent vector t = (z,w) operates linearly on the algebra &(B) of
differentiable functions on B by

t{f] = Df(z)(w).
This is the directional derivative, also denoted by Dy, f(z). If t = a(0), for
some differentiable path a, then t[f] = (f o @)’(0), due to the chain rule.

The operator t : £(B) — R satisfies the product rule:

tf - gl =Hf]-9(z) + f(2) - [g].

In general, a linear operator satisfying the product rule is called a derivation.
In Chapter IV we will show that the tangent space is isomorphic to the vector
space of derivations.

The Inverse Mapping. Let B;, B, C C™ be open sets, and f : B; — By
a holomorphic map.

Definition. The map f is called biholomorphic (or an invertible holo-
morphic map) if f is bijective and f~! holomorphic.

7.5 Inverse mapping theorem. Consider a point zg € B; and its image
wy = f(2z0). Then the following are equivalent:

1. There are open neighborhoods U = U(zp) C By and V = V(wg) C B,
such that £ : U — V is biholomorphic.
2. det Jg(zo) # 0.
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Proor: If fly : U — V is biholomorphic, then (fly)~! o f = idy and
1= det(En) = det(J(f|U)—1(W0) . Jf(Zo)) = det(J(f!U)—l(wo)) . det(Jf(Zo)),
and therefore det(Jg(zo)) # 0.

If det(Jg(2zo)) # 0, then also det(Jr ¢(zo) = |det Je(zo)|? # 0. It follows from
real analysis that there are open neighborhoods U = U(zp) C By and V =
V(wp) C Bs such that f|y : U = V is bijective and g := (f]lpy)"!: V - U
a continuously differentiable map (in the real sense). Then fog = idy is a
holomorphic map, and if we write f = (f1,..., fn) and g = (g1,-.-,9n), then

n

0=(fy o8z, = 3 ((f)or 08) - (9)m,, for vy =1,...,n.
A=1

In the language of matrices this means that
Vo
0=Jg-
Vn

Since J is invertible, it follows that Vg, = 0 for each A. Therefore, the map
g is holomorphic. .

7.6 Implicit function theorem. Let B C C* x C™ be an open set, f =
(f1,---, fm) : B = C™ a holomorphic mapping, and (zo,wy) € B a point
with £(z0, wo) = 0 and

of, p=1,...,m
det(azu(zo,wo) v=n+1,...,n+m # 0.

Then there is an open neighborhood U = U’ x U” C B and a holomorphic
map g : U’ — U” such that

{(z,w) €U’ xU" : f(z,w) =0} = {(z,8(z)) : z€ U’}

PrROOF: We write Jg(zo,wo) = (J'|J"), with J' € Mpo(C) and J” €
M, (C), and define F : B — C™ x C™ by F(z,w) := (z,f(z,w)). Then

E, 0
J! J" ) #0.

Therefore, there are open neighborhoods U = U(zg,wo) C B and V =
V(2z9,0) C C™*™ such that F|y : U — V is biholomorphic. Obviously,
F~l(u,v) = (u,h(u,v)). We may assume that U = U’ x U” c C* x C™
and V = U’ x W, with some open neighborhood W = W(0) C C™. Defining
g:U' = U” by g(z) := h(z,0), it follows that

det Jg(zg, wo) = det (
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f(z,w)=0 <= F(z,w)=(z,0)
> (Z,W) = F—I(z’ 0)
< w =h(z,0) = g(z).

This completes the proof. =

Remark. We can exchange the coordinates in the theorem. If rk Jg(zo, wo) =
m, then there are coordinates z;,,...,2;, such that £71(0) is the graph of a

map g = g(zi,,...,2i,) near (Zg, wg).

Exercises

¢ 1. Let G = P* C C? be the unit polydisk and f = (f1,f2) : G — G a

holomorphic map with £(0) = 0.

(a) Show that if f(z) = 2+, ., Pn(z) with pairs p,(z) = (pgn)(z), s (z))
of homogeneous polynomials of degree n, then f(z) = z. Hint: Use
Cauchy’s inequalities and consider the iterated maps f* =fo--.of
(k times).

(b) Show that if f is biholomorphic, then f;, f, are linear.

2. Let G1,G2 C C™ be two domains. A continuous map f : G; = G is
called proper if for every compact subset K C G2 the preimage f~!(K)

is a compact subset of G;.

(a) Show that every biholomorphic map is proper. Give an example of a
proper holomorphic map that is not biholomorphic.

(b) Let G; and G be bounded. Show that a continuous mapf:G; = Gy
is proper if and only if for every sequence (zx) in G; tending to 8G;,
the sequence (f(zx)) tends to 8Gs.

(c) Let G',G"” c C be bounded domains and f : G’ x G” — G, a
proper holomorphic map onto a bounded domain G, C C2. Show
that z — f,,(2z, w) cannot vanish identically on G”. Let zy € G’ be an
arbitrary point and (zx) a sequence in G’ tending to zg. Show that the
sequence of holomorphic maps @i : G” — G2 with gk (w) := £(zx, w)
has a subsequence converging compactly on G” to a holomorphic
map o : G” — C? with o(G”) C dG3. Show that there must exist
at least one point zg € 3G’ such that the corresponding map ¢y is
not constant.

3. Use the results of the last exercise to prove that there is no proper map-
ping from the unit polydisk to the unit ball in C2.
4. Let G; C C" and G2 C C™ bedomainsand f: G; = G2 a biholomorphic

map. Show that m = n.

5. Let G C C" be a domain and D : &(G) — R a derivation, i.e., an R-linear
map satisfying the product rule at zg € G. Show that D[f] depends only
on fly, U an arbitrary small neighborhood of zg.
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6. Let G C C” be a domain, f = (f1,...,fm) : G =& C™ a holomorphic
mapping, and M := {(z,w) € G x C™ : w = f(z)}. Prove the following:

Ifg: GxC™ — C is a holomorphic function with g|ps = 0, then for
every point (zg,wg) € M there is a neighborhood U and an m-tuple
(ai,-..,am) of holomorphic functions in U such that

9(z,w) =Y au(z,w) - (w, — fu(2)) for (z,w) € U.

u=1

8. Analytic Sets

Analytic Subsets. Let B c C" be an arbitrary region. If U C B is

an open subset, and fi,..., f; are holomorphic functions on U, then their
common zero set is denoted by
N(fi,.- ., fo)={z €U : fi(z) = = fo(z) = 0}.

Definition. A subset A C B is called analytic if for every point zg € B
there exists an open neighborhood U = U(zy) C B and holomorphic
functions fi,..., fg on U such that UN A = N(f1,..., f)-

If zg is a point of B— A, then we can choose an open neighborhood U = U(zg)
and holomorphic functions fi,..., fg on U such that

zo€ U :=U~-N(f1,.-.,fg) CUCB.

Since the zero set N(fi,..., fq) is closed in U, it follows that B — A is open
and A closed in B. Therefore, an analytic set in B could have been defined as
a closed subset A C B such that for any 2z € A there exists a neighborhood
U and functions f1,..., f, € O(U) with ANU = N(f1,..., fg)-

Example

In general, analytic sets cannot be given by global equations. We consider
the domain G := G; U G2 with

1
Gl = {z = (21,32) € C2 : [z1[ < 5 and lZzl < 1},
1
Gy = {z=(z1,22) €C?:|z1] <1and 5 <lal < 1}.

For the analytic set we take A := {(21,22) € G2 : z1 = 23} (see Figure L5).

The sets G, G2 give an open covering of G with ANG, =@ and ANG2 =
{(z1,22) : 21 — z2 = 0}. So A is an analytic subset of G.



8. Analytic Sets 37

| 22|/

|21

Figure 1.5. A not globally defined analytic set

If f is a holomorphic function in G that vanishes on A, then f can be analyt-
ically continued to the unit polydisk P2, since (P?,G) is a Euclidean Hartogs
figure (up to the order of the coordinates). Let fbe the continuation. Since
g9(z) == f(z,z) vanishes for 1 < |z| < 1, it also vanishes for 0 < |2| < 3
This means that f vanishes on A = {(21,22) € G : z1 = 22}. Any zero set
of finitely many holomorphic functions in G that vanish on A must contain
A. So A itself cannot be given by global holomorphic functions. In the next
chapter we define special domains in C™ each of which possesses a holomor-
phic function that cannot be analytically extended to a larger domain. Those
domains are called domains of holomorphy. On such domains the global rep-
resentation of analytic sets is possible. The proof of this fact is not contained
in this book, because it requires sheaf theory. One has to show that the
sheaf of germs of holomorphic functions that vanish on A is “coherent” (cf.
[GrRe84], Section 4.2). Then every stalk of this sheaf is generated by global
sections (Cartan’s theorem A, cf. Chapter V in this book, and [GrRe79], Sec-
tion IV.5). From that it can be proved that A is the zero set of finitely many
global holomorphic functions.

Definition. A subset M of a domain G is called nowhere dense in G
if the closure of M in G has no interior points.

Since an analytic set A C G is always closed in G, it is nowhere dense if in
every neighborhood of every point z € G there are points outside of A.

8.1 Proposition. Assume that A is an analytic set in a domain G C C".
If A has an interior point, then A = G. If A is nowhere dense in G, then
G — A is connected.

Proor: To start with we assume -that G = B is a ball and that there are
holomorphic functions fi,..., f; on B with A= N(f1,..., fg).
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If z5 € B is an interior point of A, we consider an arbitrary complex line L
through zy. By the identity theorem the functions f; all vanish on LN B and
therefore in B.

If A is nowhere dense in B and L an arbitrary complex line, then either
LNB C A or A has only isolated points on LN B. So any two points of LN B
outside of A can be connected in LN (B — A).

Now let G be an arbitrary domain. If zg € G is an interior point of A4, and
wy € G an arbitrary point, then we can join these points by a continuous
path o : [0,1] = G. The compact image of this path can be covered by finitely
many balls B C G such that BN A is the zero set of holomorphic functions
on B. Successively it follows that every ball is contained in 4. So A = G.

If A is nowhere dense in G, then we consider zg,wg € G — A and use the
same continuous path. It is clear from above that any point z in the first ball
B that is not an element of A can be joined in B — A to zg. Applying this
successively we obtain a curve between zg and wg in B — A. [ ]

If n =1, then a nowhere dense analytic set consists only of isolated points.

Bounded Holomorphic Functions. Assume that G ¢ C" is a do-
main and A C G a proper analytic subset.

8.2 Riemann extension theorem. If f is a holomorphic function in
G — A that is bounded in a neighborhood of every point of A, then f can be
holomorphically extended to G.

ProoF: Since A # G, A is nowhere dense in GG. Let zg € A be an arbitrary
point. Then there is a complex line L through zo that in a neighborhood of
Zg intersects A only in zg.

After a linear change of coordinates we may assume that zop = 0 and that
L = Ce, is the 2;-axis. We can find a polydisk

P={z=(2,2)eCxC" ! : |z|<r,lz|<r}cCcG

such that AN {z : |21] = ry, |z’| < r} is empty. For any ¢’ € C"! with
|c¢'| <7, theset D ={z : |z1| < r; and 2’ = ¢’} is a 1-dimensional disc such
that D N A contains only isolated points, since otherwise D C A (see Figure
1.6). By the classical Riemann extension theorem in one variable f can be
extended to a function f(zl,z’ ) that is holomorphic in z;. By the classical
Cauchy integral formula we have

f(ZI,Z’) = Ei?i—/lCl:r; Ig%;%dc, for |z;| <7 and |2'| < 7.

The integrand on the right side is holomorphic on P. Consequently, the left
side is differentiable (in the real sense), and since integration and differenti-

ation by Z; can be exchanged, f is holomorphic on P. If we carry this out



8. Analytic Sets 39

™ |21|

Figure 1.6. Riemann extension theorem

at every point zg € A, by the identity theorem we obtain the desired global
extension of f to G. n

Regular Points. Let G ¢ C" be a domain, and z € G a point. If f1,..., f;
are holomorphic functions in a neighborhood of z, then we define

ko (f1,- -5 fq) =tk Jg,,. 1) (2)-

Definition. An analytic set A C G is called regular of codimension
q at z € A if there is a neighborhood U = U(z) C G and holomorphic
functions fi,..., fg on U such that:

1. ANU = N(f1,..., fq)-

2. tkz(f1,-.., fq) = q.

The number n — q is called the dimension of A at z.

The set A is called singular at z if it is not regular at that point. The

set of regular points of A is denoted by Reg(A) or A, the set of singular
points by Sing(A4).

It is clear that A is open in A, and therefore Sing(A4) C A closed.

8.3 Theorem (local parametrization of regular points). Let A C G
be analytic, 2o € A a point. A is regular of codimension q at zg if and only
if there are open neighborhoods U = U(zp) C G and W = W(0) C C" and a
biholomorphic map F : U — W such that F(z¢) = 0 and

FUNA)={w=(w1,...,wn) EW : wp_g41 =--- = w, =0}
PROOF: Let A be regular at zo. There is an open neighborhood U = U(zo)

such that ANU = N(f1,..., f;) and rk,,(f1,..., fq) = ¢. By renumbering
the coordinates we can achieve that
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Tt (20) = (J']T"),

with J’ € My n—g(C), J” € My(C), and det J” # 0. Then define F : U — C"
by

F(z1,...,2n) == (zl—zi‘”,...,zn._q—szlq,fl(zl,...,zn),...,fq(zl,...,zn)).

Consequently, the Jacobian has the form

E,— 0
JF(ZO) = ( JI 7 JI/ ) 3

and therefore det Jg # 0. Shrinking U if necessary, we have our biholomorphic
map F : U - W, with F(z¢) = 0 and

w=F(z) forsomez€ UNA <= wWp_g41 =" =wn=0.

The other direction of the proof is trivial. L]

Up to this point it is not clear whether or not there exist regular points. In
Chapter III we will show that the set of singular points of an analytic set
A is a nowhere dense analytic subset of A. At the moment we want only to
demonstrate that the zero set of a single holomorphic function contains at
least one regular point (and then, of course, a nonempty open set of regular
points).

8.4 Proposition. Let G C C" be a domain, and f a nonconstant holomor-
phic function on G. Then the analytic set N(f) contains a regular point.

PRroOF: The case n =1 is trivial. Therefore, we assume n > 1.

If every point of A := N(f) is singular, then V f(z) = 0 on A. Since f is not
constant, it is impossible that there is a point z such that DY f(z) = 0 for
every multi-index v. Therefore, we can find a point zg € A, an integer no, a
multi-index vg, and some A € {1,...,n} such that

1. |vo| = no and (D*° f),, (zo) # 0,
2. D f(z) = 0 for every z € A and every v with |v| < ng.

The set M := {z € G : D" f(z) = 0} is analytic in G and regular of
codimension 1 at zg. We may assume that zo = 0 and M = {z = (2,2') €
G : z; = 0}, making G sufficiently small.

We have A C M, and we want to show equality near zg. It is clear that the
function ¢ — f(¢,0’) has exactly one zero at ( = 0, and it follows easily
from Rouché’s theorem that for z’ sufficiently close to 0’ the functions ¢ —
f(¢,2') also have exactly one zero. This means that there is a neighborhood
V = V(0) C U such that VN A =V N M. In particular, z¢ is a regular point
of A. =
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Definition. A k-dimensional complex submanifold of a domain G C
C™ is an analytic set A C G such that A is regular of codimension n — k
at every point.

If A C G is a k-dimensional complex submanifold, then for every point z € A
there is an open neighborhood U = U(z) C G, an open set W C C*, and a
holomorphic map ¢ : W — U such that:

1. tkJy(w) =k forw e W.
2. o(W) =Un A.
3. p: W = Un A is a topological map.4

The proof follows immediately from the local parametrization theorem. The
map ¢ is called a local parametrization.

Injective Holomorphic Mappings. Let G ¢ C" be a domain, and
f=(fi,...,fn) : G —= C" a holomorphic map.

8.5 Theorem. Iff is injective, then det Jg(z) # 0 everywhere.

PROOF: We use induction on n. The case n = 1 is well known. We consider
the case n > 1 and define h := det J.

Assume that N(h) # @. Then there exists an open subset U C G such that
M :=U N N(h) is a nonempty (n — 1)-dimensional complex submanifold of
U.

We claim that Jgjps = 0. To prove this, we assume that there is a point
Zp € M with Jg(z¢) # 0. Without loss of generality, we may assume that

gﬁ—:(zo) # 0.

Let F : G — C" be defined by F(Z', 2,,) := (2/, fu(2/, 2)). Then det Jr(zo) #
0, and there are connected open neighborhoods U of zg and V' of wg = F(zo)

such that F : U — V is biholomorphic. There is a holomorphic map f: V —
C™! such that

foF Y (w, w,) = (f(w',w,.),w,,),

and we define
g=(91,.. -, 9n1) : W:={weC"!: (W,wQ) eV} a>C!

by g(w') := ?(w’,w}f’).

* A map ¢ : X — Y between topological spaces is called topological or a homeo-
morphism if it is continuous and bijective and the inverse mapping ¢! : Y —» X
is also continuous.
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Since g is injective, we can apply the induction hypothesis and conclude that
det Jg(wg) # 0. Now

Jt(20) - Jp-1(Wo) = ( J?S:’O) ) = ( Jggvf,) Af ) :

Therefore, h(zg) = det Jp(2zo)-det Jg(wg) # 0 as well. This is a contradiction.

We have demonstrated that Jg¢(z) = 0 for every z € M. Since f is holomor-
phic, also Df(z) = 0 on M, and using a local parametrization of M we obtain
that f|ps is locally constant. But this is impossible, since f is injective. The
set N(h) must be empty. n

8.6 Corollary. If G C C" is a domain, and f : G — C™ an injective
holomorphic mapping, then also f(G) is a domain, and f : G — £(G) is
biholomorphic.

PROOF: Let wq := f(2zo) be a point of G’ := f(G). Then det J¢(z9) # 0,
and there are open neighborhoods U = U(zp) C G and V = V(wp) C C"
such that f : U — V is biholomorphic. It follows that wy is an interior point
of G’ and that f~! is holomorphic at wyp. "

Exercises

1. Prove the following properties:
(a) Finite intersections and unions of analytic sets are analytic.
(b) If f : G; — G2 is a holomorphic map between domains and A C G»
an analytic set, then f~1(A4) C G, is analytic as well.
(c) If Ay C G; and A2 C G are analytic sets, then A; X A; is an analytic
subset of G; x Ga.
2. Let U C C™ be an open neighborhood of the origin and A C U be
an analytic subset containing the origin. For 1 < k < n—1and I =
{i1,...,ix} € {1,...,n} let p; : C* — C* be defined by

pr(z1,y - 2n) = (Zigy ooy Zig )

Prove: If A is regular of codimension n — k at the origin, then there exists
an I and open neighborhoods V = V(0) c U, W = W(0) C C* such
that py : ANV — W is bijective.

3. Show that A := {(w, 21,22) € C3 : w? = 2125} is an analytic set that is
regular of codimension 1 outside the origin and singular at O.

4. Let A;, Ay be two analytic sets in a neighborhood of the origin in C"
such that 0 € A := A; N A,. Suppose that U N A; # U N A, for every
neighborhood U of 0. Show that A is singular at 0.



Chapter 11

Domains of Holomorphy

1. The Continuity Theorem

General Hartogs Figures. The subject of this chapter is the contin-
uation of holomorphic functions. We consider domains in C*, for n > 2. A
typical example is the Euclidean Hartogs figure (P®, H), where P* = P"(0, 1)
is the unit polydisk, and

H={zeP":|z|>qor|z|<gq forv=2...,n}

Here q1,...,¢, are real numbers with 0 < ¢, < 1 for v = 1,...,n. Every
holomorphic function f on H has a holomorphic extension f on P™.

Definition. Let g = (g1,...,9») : P" — C" be an injective holo-
morphic mapping, P := g(P") and H := g(H). Then (P, H) is called a
general Hartogs figure.

We use the symbolic picture that appears as Figure II.1

et N

i g
T~

21

Figure II.1. General Hartogs figure

1.1 Continuity theorem. Let G C C" be domain, (13, H ) a general Har-

togs figure with HcG , f a holomorphic function on G. If GNP is connected,
then f can be continued uniquely to G U P.
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PROOF Let g : P" — C" be an injective holomorphic mapping such that

g(P™) and H := g(H). The function h := fog is holomorphic in
H Therefore there exists exactly one holomorphic function h on P" with
h!H = h. Since g : P* — P is biholomorphic, the function fo := ho g7 lis
defined on P, and it is a holomorphic extension of f|z i+ We define

=~ .| f(z) forzegG,
flz) = { fo(z) forze P.
Since G N P is connected and f = fo on H, it follows from_the identity
theorem that f is a well-defined holomorphic function on G U P. This is the
desired extension of f. .

Example

Let n > 2 and P’ CC P be p(&rdiscs around the origin in C*. Then every
holomorphic function f on P— P’ can be extended uniquely to a holomorphic
function on P.

For a proof we may assume that P = P™ is the unit polydisk, and P’ =
P™(0,r), with r= (r1,...,7n)and 0 < r, < 1forv =1,...,n It is clear
that G := P — P’ is a domain.

Given a point zg = (2{”,...,2{’) € G with |2{’| > rn, we choose real num-

bers qy,-..,qn as follows: For v = 1,...,n — 1, let ¢, be arbitrary numbers,
with r, < q, < 1. To obtain a suitable g,, we define an automorphism T of
the unit disk D by

¢ 2

ZO¢ -1

This automorphism maps z{” onto 0 and a small disk D C {{ € C : 7, <
[¢] < 1} around z{’ onto a disk K C D with 0 € K. Notice that 0 need not
be the center of K. We choose g, > 0 such that D, (0) C K.

T(() =

If we define H := {z € P* : |z1]| > q1 or |2,] < q, forv = 2,...,n}, then
(P™,H) is a Euclidean Hartogs figure. The mapping g : P* — P™ defined by

gz, 2) = (21, s Zn-1, T (2n))
is biholomorphic, and (P, H) = (P",g(H)) is a general Hartogs figure, with

Hc{zeP": |z|>r or|z]>r.} CG.

Since PN G = G is connected, the continuity theorem may be applied. The
preceding example is a special case of the so-called Kugelsatz which we shall
prove in Chapter VI.
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len|

(0)
Zn

Tn

1

o 21 0 211
Figure I1.2. A Hartogs figure for concentric polydises

Removable Singularities. Let G ¢ C" be a domain. If A C G is an
analytic set and f a holomorphic function on G — A that is locally bounded
along A, then by Riemann’s extension theorem f has a holomorphic extension
to G.If n > 2 and A is a complex linear subspace of codimension greater
than or equal to 2, then every function holomorphic on G — A has such an
extension.

1.2 Theorem. Let P* = P™(0,1) be the unit polydisk in C*, n> 2, k > 2,
and
E .= {Z= (zl,...,zn) ECn D 2p—k4l = 00t = 2p =0},

Then every holomorphic function f on P* — E can be holomorphically ez-
tended to P™.

PRrROOF: Set P’ := {2’ := (21,...,2n—k) : |Z| <1}, and for 0 < r < 1
define P! := {2" = (2n—k+1,---,2n) : |2"| <1}

Let P”:= P/’ and fix an € with 0 < € < 1. Then P*NE C P’ x P/, and for
w € P’ the function fw(z"”) := f(w,z"”) is holomorphic on P” — P”. From
the example above we know that f, has a holomorphic extension fw to P”.
Now define f P* — C by f(w z') = fw(z”) On P" — E, f is equal to f
and is therefore holomorphic.

For w € P’ take a small open neighborhood U = U(w) CC P’. Then K :=
U x 0P/ is compact. By the maximum principle we conclude that

| (@, 2") | = | for (") | < | furllopr < Ifllk < oo, for (#/,2") € U x P! —E.

From Riemann’s extension theorem it follows that fis holomorphic on P™*. m



46 II. Domains of Holomorphy

1.3 Corollary. Forn > 2, every isolated singularity of a holomorphic func-
tion of z1,. .., zn is removable.

Riemann’s extension theorem is false if we drop the condition “f bounded
along the analytic set.” For example, let G C C™ be a domain, g: G - C a
holomorphic function, and let f : G—N(g) — C be defined by f(z) := 1/g(z).
Then f is holomorphic on G — N(g) but cannot be extended to any point of
N(g).

Things look quite different if there is a little hole in the hypersurface:

1.4 Proposition. Letn > 2, Gy C C*™! a domain, g : Gy — C a contin-
uous function, and I := {z = (2,2,) € Go x C : 2, = g(Z')} the graph of
g in G := Gy x C. In addition, let zg be a point of T and U = U(2z9) C G a
small neighborhood.

If f is a holomorphic function on (G-I')UU, then f has a unique holomorphic
extension to G.

PROOF: The uniqueness of the extension follows from the identity theorem.
For the proof of existence (which is only a local problem) we may assume
that Go = {2z’ € C""! : |z’| < 1} and that there is a ¢ with 0 < ¢ < 1 such
that |g(z')| < q for 2’ € Gp. It also may be assumed that U is connected.
Then it is clear that G’ := (G -~ T)UU C P™ = P"(0, 1) is connected.

Since g : z’ > (2', g(2')) is continuous, U’ := g~1(U) is an open neighborhood
of zj, with (U’ x D)NT C U and therefore U' xD C G’. Forv =1,...,n—1
let T, be the automorphism of D defined by

¢ -z
T,(¢) = 001

Then h : P* — P™ with h(zy,...,2,) := (T1(22),...,Tn-1(2n), 21) is holo-
morphic, h(0) = (zg,0), and h({z € P* : |21| > ¢}) C {w € P" : |w,| > g}.

len| |

4 ,

v

2g 2’|

Figure I1.2. Extending a holomorphic function across a hypersurface
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We define ¢; := g, and for v = 2,...,n choose ¢, such that
h(D x Dg, (0) x -+ x D, (0)) C U’ x D.

Then (P™,H) with H:= {z € P* : || > qror |z < q forv =2,...,n}
is a Euclidean Hartogs figure, and (13, H ) = (P™,h(H)) is a general Hartogs
figure, with H C G’ (see Figure I1.3). Since PN G’ = G’ is connected, the
proposition follows from the continuity theorem. ]

The Continuity Principle. Sometimes we wish to use a family of
analytic disks instead of a Hartogs figure.

Definition. A family of analytic disks is given by a continuous map
@ : D x [0,1] = C" such that ,(¢) := ¢(¢,t) is holomorphic in D,
for every t € [0,1]. The set S; := ¢¢(D) is called an analytic disk, and
bS; := ¢, (9D) its boundary.

Observe that in general bS, is not the topological boundary of S;.
Definition. A domain G C C" is said to satisfy the continuity prin-

ciple if for any family {S;, ¢t € [0,1]} of analytic disks in C* with
UOStSI bS; C G and Sy C G, it follows that 'U0_<_t51 S CcG.

Example

Let P™ be the unit polydisk and {S;, t € [0,1]} a family of analytic disks
in C" with (Jo<,<; bSe C P™ and Sy C P™. Because So and the union of all
boundaries bS; are compact sets, there is an € > 0 such that

|J #S. cP*0,1-¢) and S, cP™(0,1-¢).
0<t<1
We assume that { Jo<;<, St is not contained in P", and define
to:=inf{t €[0,1] : S, ¢ P"}.
It is clear that to > 0, S;;, ¢ P*, and S; C P™ for 0 < t < to. Then Sy,
contains a point zg = (zi“’, e ,z}f)) € 0P™. If the family of analytic disks is
given by the map ¢ : D x [0,1] - C*, and w, denotes the uth coordinate
function, then f, +(¢) := w, o 9({,t) is continuous on D and holomorphic in

D. Choosing p such that [2{"| = 1, there is a (o € D with f, ;,(¢o) = 2 and
| fuuto(€0)] = 1. But by the maximum principle we have

[fu,e(Co) < s(;g)lfﬂ,d <1-—g, fort <ty.

Since t = j, ¢(o) is continuous, a contradiction is reached, and therefore P™
satisfies the continuity principle.
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Hartogs Convexity.
Definition. _A domain G C C" is called Hartogs convez if the following
holds: If (P, H) is a general Hartogs figure with H C G, then P C G.

An immediate consequence of the definition is the following:

The biholomorphic image of a Hartogs conver domain is again Hartogs
convez.

1.5 Theorem. Let G C C" be a domain that satisfies the continuily prin-
ciple. Then G is Hartogs convez.

PROOF: Let (}3, H ) be a general Hartogs figure with H c G. We assume
that it is the biholomorphic image (g(P™), g(H)) of a Euclidean Hartogs figure
(P™, H) with

H={z: |z|>q or|z,| < gy for p=2,...,n}.

In order to define analytic disks we choose some r with ¢; < 7 < 1 and
introduce the affine analytic disks

Dy :={z=(2,2")€P* =P x P" : |z1] <r and 2"’ = w}.

Since Dy C P™ for every w € P”, we can define ¢y : D x [0,1}] = C" by
setting ow((, t) := g(r¢{,tw). Then a family {S¢(w) : 0 <¢ < 1} of analytic
disks in P is given by

S(w) := pw(D x {t}) = g(Dew)-

It follows that bS;(w) C G for every w € P” and every t € [0,1], and in
addition, So(w) = g(Dg) C G. The situation is illustrated in Figure I1.4.

7"

St (W) :S; (W)

S

|21]

Figure IL.4. Analytic disks in a Hartogs figure
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Since G satisfies the continuity principle, we obtain that g(Dw) = S1(w) is
contained in G. This is valid for every w € P”. Therefore, P C G, and G is
Hartogs convex. =

1.6 Corollary. The unit polydisk P™ is Hartogs convez.

Domains of Holomorphy

Definition. Let G C C™ be a domain, f holomorphic in G, and zg €
OG a point. The function f is called completely singular at zg if for
every connected neighborhood U = U(zg) C C™" and every connected
component C of UNG there is no holomorphic function g on U for which

glc = fle-

Example

Let G:=C~{r € R : z <0} and let f be a branch of the logarithm on
G. Then f is completely singular at z = 0 but not at any point z € R with
rz<0.

Definition. A domain G C C" is called a weak domain of holomorphy
if for every point z € 8G there is a function f € O(G) that is completely
singular at z.

The domain G is called a domain of holomorphy if there is a function
f € O(G) that is completely singular at every point z € 8G.

Examples

1. Since C™ has no boundary point, it trivially satisfies the requirements of
a domain of holomorphy.

2. It is easy to see that every domain G C C is a weak domain of holomor-
phy: If 2z, is a point in 0G, then f(2) := 1/(z — zp) is holomorphic in G
and completely singular at zg.

For G = D we can show even more! The function f(z) = Y oo 2" is
holomorphic in the unit disk and becomes completely singular at any
boundary point. Therefore, D is a domain of holomorphy. At the end of
this chapter we will see that every domain in C is a domain of holomorphy.
3. If f : D — Cis a holomorphic function that becomes completely singular
at every boundary point, then the same is true for f : P* =Dx.--xD —
C, defined by f(21,...,2x) 1= f(z1)+" - -+ f(2n). In fact, if zg is a bound-
ary point of P™, then there exists an ¢ such that the ith component z{” is
a boundary point of D. If fcould be extended holomorphically across zg,
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then ﬁ(() = f(zﬁo), corCyen, 289) would also have a holomorphic ex-
tension. But then f could not be completely singular at z{”. Therefore,
the unit polydisk is a domain of holomorphy.

4. If (P™,H) is a Euclidean Hartogs figure, then H is not a domain of holo-
morphy.

1.7 Proposition. Let G C C" be a domain. If for every point zog € G
there is an open neighborhood U = U(zo) C C™ and a holomorphic function
f:GUU — C with f(z9) = 0 and f(z) # 0 for z € G, then G is a weak
domain of holomorphy.

PROOF: We show that 1/f is completely singular at zg. For this assume that
there is a connected open neighborhood V = V(zg), a connected component
C C VNG, and a holomorphic function F on V with Flc = (1/f) ‘c‘
The set V' := V — N(f) is still connected and contains C. By the identity
theorem the functions F' and 1/f must coincide in V. Then F is clearly not
holomorphic at zg. This is a contradiction. ]

1.8 Corollary. FEvery conver domain in C™ is a weak domain of holomor-
phy.

Proor: If zg € G, then because of the convexity there is a real linear
form A on C™ with A(z) < A(zg) for z € G. We can write ) in the form

n n
Mz) =) oz, + ) GF, witha:=(a1,...,an) #0.
v=1 v=1

So A = Reh(z), where h(z) :=2-3_"_, a2, is holomorphic on C™.

Since the function f(z) := h(z) — h(zo) is holomorphic on C*, f(zg) = 0, and
f(z) # 0 on G, the proposition may be applied. n

We will show that every weak domain of holomorphy is Hartogs convex. As
a tool we need the following simple geometric lemma, which will be useful in
other situations as well.

1.9 Lemma (on boundary components). Let G C C™ be a domain,
U CC" an open set withUNG # @ and (C* -U)NG # 2.

Then GNOAC NOU # & for any connected component C of U NG.

PrROOF: We choose points zy € C C UNG and z3 € (C* — U) NG. There
is a continuous path v : [0,1] —» G with ¥(0) = z; and (1) = z;. Let
to := sup{t € [0,1] : ¥(t) € C} and z¢ := ~(to). Clearly, zo € 8C NG,
but zg ¢ C. Since C is a connected component of U N G, z¢ cannot lie in
U N G and therefore even not in U. Since y(t) € U for t < tg, it follows that
zg € OU. [ ]
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1.10 Theorem. Let G C C™ be a weak domain of holomorphy. Then G is
Hartogs convez.

PROOF: Assume that G is not Hartogs convex. Then there is a general
Hartogs figure (P, H) with H C G but PN G # P. We choose an arbitrary
2o in H and set C := Cpng(2o).! Since H lies in PN G and is connected, it
follows that H C C. Furthermore, C & P.

Since PN G # @ and (C* — G) N P # &, by the lemma there is a point
z; € 0C NIG N P (see Figure IL5).

Figure I1.5. G is not Hartogs convex

Let f be an arbitrary holomorphic function in G. Then f|¢ is also holomor-
phic, and by the continuity theorem it has a holomorphic extension F on P.
Since P is an open connected neighborhood of z;, we obtain that f is not
completely singular at z;. This completes the proof by contradiction. "

It follows, for example, that every convex domain is Hartogs convex. As a
consequence, we see that every ball is Hartogs convex.

1.11 Theorem. FEvery domain of holomorphy is Hartogs convez.
The proof is trivial.

For the converse of this theorem one has to construct on any Hartogs convex
domain a global holomorphic function that becomes completely singular at
every boundary point, something that is rather difficult. It was done in 1910
by E.E. Levi in very special cases. The general case is called Levi’s problem.

In 1942 K. Oka gave a proof for n = 2. At the beginning of the 1950s Oka,
Bremermann, and Norguet solved Levi’s problem for arbitrary n. It was gen-

! We denote by Cas(2z) the connected component of M containing z.
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eralized for complex manifolds (H. Grauert, 1958) and complex spaces (R.
Narasimhan, 1962). Finally, in 1965 L. Hormander published a proof that
used Hilbert space methods and partial differential equations.

Exercises

1. Prove the following statements:

(a) Finite intersections of Hartogs convex domains are Hartogs convex.
(b) f G; € G2 C G3 C --- is an ascending chain of Hartogs convex
domains, then the union of all G; is also Hartogs convex.

2. Let G ¢ C" be adomain, 0 <r < R,and a € G apoint. Let U = U(a) C
G be an open neighborhood and define Q := {w € C™ : r < |w| < R}.
Prove that every holomorphic function on (G x Q) U (U x P™(0, R)) has
a unique holomorphic extension to G x P™(0, R).

3. Let 0 < r < R be given. Use Hartogs figures to prove that every holo-
morphic function on Bg(0) —~ B,(0) has a unique holomorphic extension
to the whole ball Bg(0).

4. For € > 0, consider the domain

Ge = {(2,w) € P(0,1) : |2] < |w|* +¢}.

Prove that G, is Hartogs convex if and only if € = 0.

5. Let G ¢ C" be a domain and f : G — Dg(0) C C a function, I' =
{(z,w) € G x Dgr(0) : w = f(z)} its graph. Sow that if there is a
holomorphic function F in G x Dg(0) that is completely singular at every
point of I', then f is continuous. (With more effort one can show that f
is holomorphic.)

6. Show that the “Hartogs triangle” {(z,w) € C? : |w| < |z| < 1} is a weak
domain of holomorphy.

2. Plurisubharmonic Functions

Subharmonic Functions. Recall some facts from complex analysis of
one variable. A twice differentiable real-valued function h on a domain G C C
is called harmonic if h,z(z) = 0 on G. The real part of a holomorphic function
is always harmonic, and on an open di§k every harmonic function is the real
part of some holomorphic function.

If D = D,(a) C C is an open disk and 8 : R = R a continuous periodic
function with period 27, then there is a continuous function A: D — R that
is harmonic on D such that h(re't) = §(t) for every t (Dirichlet’s principle).

An upper semicontinuous function ¢ : G — RU {—o0} is said to satisfy the
weak mean value property if the following holds:

For every a € G there is an r > 0 with D,(a) cC G and
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1 Vi .
o(a) € 5 / pla+oet)dt forO0<op<r.
0

Remarks

1. If ¢ : G = RU{—o00} is an upper semicontinuous function, then the sets
U, .= {2 € G : ¢(2) < v} are open, and therefore ¢ is bounded from
above on every compact subset K C G. It follows that the integral in the
definition always exists.

2. Harmonic functions satisfy the weak mean value property (even the
stronger mean value property with “=" instead of “<”).

3. If f : G — C is a nowhere identically vanishing holomorphic function,
then log|f| satisfies the weak mean value property. In fact, the function
¢ := log| f| is harmonic on G — N(f), because it can be written locally
as Re(log f), with a suitable branch of the logarithm. And at any point
29 € N(f) we have ¢(z9) = —o0, so the inequality of the weak mean
value property is satisfied.

2.1 Proposition. Let ¢ : G — R satisfy the weak mean value property. If
¢ has a global maximum in G, then ¢ is constant.

PRrOOF: Let a € G be any point with ¢ := ¢(a) > ¢(z) for z € G. We
choose an r > 0 such that

1 2 .
D.(a) CC G and ¢(a) < 57;/ pla+get)dt for0< g <.
0

Assume that there is a b € D,.(a) with ¢(b) < @(a). We write b = a + ge'®
and get

1 27 A 1 27
o) < 5= [ ota+eetyar < o= [ pta)dt = pta).

This is a contradiction, so ¢ must be constant on D, (a). Now we define the

set M := {z € G : ¢(z) = ¢}. Obviously, M is closed in G and not empty,
and we just showed that M is open. So M = G, and ¢ is constant. =

Definition. Let G C C be a domain. A function s : G - RU {—o0}
is called subharmonic if the following hold:
1. s is upper semicontinuous on G.
2. If D cC G is adisk, h : D — R continuous, h|p harmonic, and h > s
on OD, then h > s on D.

2.2 Proposition. Lets, : G - RU {—~oo} be a monotonically decreasing
sequence of subharmonic functions. Then s := lim, o S, s subharmonic.
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PROOF: The limit s = lim, 0 5, = inf{s,} is upper semicontinuous. Let
D CC G be a disk, h : D = R continuous and harmonic on D, with s < h
on JD. For fixed € we consider the compact sets

K, :={z€0D : s,(z) > h(z) +¢}.

Then K, .1 C K, and (o, K, = @. Therefore, there is a vy € N with
K, = @ for v > vy. This means that for v > vy, s, < h+ € on 0D, and
therefore the same is true on D. Since the s, are decreasing, s < h+¢ on D.
This holds for every € > 0, and consequently s < h on D. =

2.3 Proposition. Let (sq)aca be a family of subharmonic functions on
G. If s := sup s, ist upper semicontinuous and finite everywhere, then s is
subharmonic.

Proor: If s < h on 8D, where D CcC G and h : D — R is continuous
and harmonic on D, then s, < h on 8D for every a € A. Since the s, are
subharmonic, it follows that s, < h on D for every oo € A. But then s < h
on D as well. n

Examples

1. Clearly, every harmonic function is subharmonic.

2. Let s : G — R be a continuous subharmonic function such that —s is also
subharmonic. Then s is harmonic. To show this, we look at an arbitrary
point a € G and choose an r > 0 such that D := D,(a) CC G. Then there
is a continuous function h : D — R with hlsp = s|sp that is harmonic
on D (Dirichlet’s principle). It follows that s < h on D. But because —h
is also harmonic, we have —s < —h on D as well. Together this gives
s=honD.

3. Let f : G — C be a holomorphic function. Then s := log|f| is subhar-
monic. In fact, if f(2) = 0 on G, then we have s(z) = —o0, and there is
nothing to prove. Otherwise, s is harmonic on G — N(f), and we have
only to look at an isolated zero a of f. We choose D = D,(a) CC G and
a function h that is continuous on D and harmonic on D, with s < h
on 8D. We know that s, and therefore also s — h, has the weak mean
value property on D, and it is certainly not constant. So it must take its
maximum on the boundary dD. This means that s < h on D.

4. Let G C C be an arbitrary domain. The boundary distance ég : G —
R4 U {400} is defined by

dc(2) :=sup{r e R : D,(2) C G}.
Claim: s := — log d¢ is subharmonic on G.

Proor: If G = C, then s(z) = —oco and there is nothing to prove.
If G # C, then s is real-valued and continuous. For w € G we define
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sw : G — R by setting s,,(z) := —log|z — w|. Then s(z) = sup{sw(2) :
w € 0G}. By Proposition 2.3 the claim follows. .

The Maximum Principle

2.4 Theorem. Lets: G — RU {—oo} be a subharmonic function on a
domain G C C. If s takes its mazimum on G, then it must be constant.

PROOF: Assume that c := s(a) > s(z) for every z € G. As in the case of
functions that have the weak mean value property it suffices to show that s
is constant in a neighborhood of a. If this is not the case, there is a small disk
D =D,(a) CC G and b € D with s(a) > s(b). Since s is upper semicontin-
uous, there is a continuous function k on 8D with s < h < ¢ and h(b) < c.
Solving Dirichlet’s problem we can construct a harmonic continuation of h

on D. Now
27

1 .
h(a) = — h(a + re't)dt < c = s(a).
27w Jo
This is a contradiction. =

For later use we give the following criterion for a function to be subharmonic:

2.5 Theorem. Let G C C be a domain and s : G — RU {—oc0} an upper
semicontinuous function. Suppose that for every disk D CC G and every
function f € O(D) with s < Re(f) on 8D it follows that s < Re(f) on D.
Then s is subharmonic.

ProoF: Let D = D,(a) CC G, h: D — R continuous and harmonic on D,
and s € h on dD. For simplicity we assume a = 0.

For v € N, a harmonic function A, on D, := D(,/(,-1))(0) D D is given by

hu(2) = h((1- ;1/—)2)

Then (h,) converges on D uniformly, increasing monotonically to k. Further-
more, for every v there is a holomorphic function f, on D, with Re(f,) = h,..

Let € > 0 be given. Then there is a 1 such that |h — h,| < £ on D for v > v.
Therefore, s < h, +¢& = Re(f, +¢€) on 8D for v > vg. By definition it follows
that s < h, + € on D. Since (h, ) is increasing, it follows that s < h + ¢ and
therefore s < h on D. =

Differentiable Subharmonic Functions

2.6 Lemma. Lets:G — R be a €2 function such that s;z > 0 on G. Then
s is subharmonic.
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PROOF: Let D = D,(a) CC G and let a continuous function h : D — R be
given such that h is harmonic on D and s < h on dD. We define ¢ := s — h.

Assume that @ takes its maximum at some interior point zg of D. Then we
look at the Taylor expansion of ¢ at zp in a small neighborhood about zgp:

@(z0 + 2) = p(20) + 2Re Q(2) + p.z(20)2Z + R(2),

where Q(2) := ¢;(20)z + 3¥22(20)2? is holomorphic and R(z)/|z[* — 0 for
z — 0. The function ¥(z) := 2Re Q(z) is harmonic, with ¥(0) = 0. Since
it cannot assume a maximum or a minimum, it must have zeros arbitrarily
close to but not equal to 0. On the other hand, ¢(20 + 2) — p(20) < 0 and
v.3(20)2Z > 0 outside z = 0. This is a contradiction. Thus ¢ must assume
its maximum on the boundary of D, and s < h on D. .

2.7 Theorem. Lets:G — R be a €2 function. Then s is subharmonic if
and only if s, >0 on G.

PrOOF: (a) Let s,z(z) > O for every z € G. Then we define s, on G by
setting s, := s + (1/v)zz. Obviously, (s,).z = s.z + (1/v) > 0. Then s,
is subharmonic by the above lemma. Since (s,) converges, monotonically
decreasing, to s, it follows that s is subharmonic.

(b) Let s be subharmonic on G. We assume that s,z(a) < 0 for some a € G.
Then there is a connected open neighborhood U = U(a) C G such that
s,z < 0 on U. By the lemma it follows that —s is subharmonic on U. Then
s must be harmonic on U. So s z(a) = 0, contrary to assumption. =

Plurisubharmonic Functions. We return to the study of domains in
arbitrary dimensions. Let G C C™ be a domain and (a,w) a tangent vector
at a € G. We use the holomorphic mapping asw : C — C™ defined by

aaw(C) :=a+ (w.

Definition. Let G C C" be a domain. An upper semicontinuous func-
tion p : G & RU {—oo} is called plurisubharmonic on G if for every
tangent vector (a,w) in G the function

Paw({) :=po aaw({) = pla+(w)
is subharmonic on the connected component G(a, w) of theset az 4, (G) C

C containing 0.

Remarks

1. Plurisubharmonicity is a local property.
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If f € O(G), then log|f| is plurisubharmonic.

If p1, po are plurisubharmonic, then so is p; + ps.

If p is plurisubharmonic and ¢ > 0, then ¢ p is plurisubharmonic.

If (p,) is a monotonically decreasing sequence of plurisubharmonic func-
tions, then p := lim, oo P, is also plurisubharmonic.

. Let (pa)aca be a family of plurisubharmonic functions. If p := sup(p,)

is upper semicontinuous and finite, then it is also plurisubharmonic.

. If a plurisubharmonic function p takes its maximum at a point of the

domain G, then p is constant on G.

The Levi Form

Definition. Let U C C" be an open set, f € €?(U;R), and a € U.
The quadratic form? Lev(f): T, — R with

Lev(f)(a,w) := Y _ fo,z,(a)w, @,

v,p

is called the Levi form of f at a.

Obviously, Lev(f) is linear in f.

Examples

1.

2.
3.

In the case n = 1 we have Lev(s)(a,w) = s,z(a)ww. So s is subharmonic
if and only if Lev(s)(a,w) > 0 for every a € G and w € C.

Let f(z) := ||z||? = }_i-, 2iZi. Then Lev(f)(a,w) = ||w/||? for every a.
If f € €*(U;R) and o : R — R is twice continuously differentiable, then

Lev(go f)(a,w) = ¢"(f(a)) - |(8f)a(W)I* + £'(f(a)) - Lev(f)(a, ).

.IfF:U — V C C™ is a holomorphic map and g € ¢?(V;R), then

Lev(g o F)(a, w) = Lev(g)(F(a), F'(a)(w)).
For f € ¥%(U;R) the Taylor expansion at a € U gives
f(z) = f(a) + 2Re(Qs(z — a)) + Lev(f)(a,z — a) + R(z - a),

where Q(w) = 3°0_; fo (a)w, +3 3, , f,z,(a)w,w, is a holomorphic
quadratic polynomial, and

lim ___R(z —a)

alz—apr

2If H: T xT — C is a Hermitian form on a complex vextor space, then the
associated quadratic form Q : V — R is given by Q(v) := H(v,v).
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2.8 Theorem. A function f € €%(U;R) is plurisubharmonic if and only if
Lev(f)(a,w) > 0 for every a € U and every w € T,.

PROOF: Let (a, w) be a tangent vector in G and & := aa,w. Then foa(0) =
f(a) and
( 0@)z(0) = Lev(f 0 @)(0, 1) = Lev(f)(a, w).

Now, f is plurisubharmonic if and only if f o a is subharmonic near 0 for any
a = aa,w. Equivalently, (f o a)z(0) > 0 for any such a. But this is true if
and only if Lev(f)(a,w) > 0 for any tangent vector (a,w) in G. ]

2.9 Corollary. Let G; € C* and G2 C C™ be domains, F : G, — G,
a holomorphic map, and g € ¥%(G1;R) plurisubharmonic. Then g o F is
plurisubharmonic on G;.

Proor: This is trivial, because of the formula in Example 4 above. m

Exhaustion Functions. For every domain G C C the function — log é¢
is subharmonic. In higher dimensions it is in general not true that this func-
tion is plurisubharmonic for every domain G.

Definition. Let G C C” be a domain. A nonconstant continuous func-
tion f: G — R is called an ezhaustion function for G if for ¢ < supg(f)
all sublevel sets

Ge(f)={2€G : f(z) <c}

are relatively compact in G.

Example

For G = C", the function f(z) := ||z||? is an exhaustion function. For G # C",
we define the boundary distance dg by

dc(z) := dist(z,C" — G).

Then —4¢g is a bounded, and —logds an unbounded, exhaustion function.
We only have to show that §g is continuous:

For every point z € G there is a point r(z) € C® — G such that
dg(z) = dist(z,r(z)) < dist(z, w) for every w € C"* - G.

Then for two arbitrary points u,v € G we have
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be(u) = Jlu—-r()]| < Ju-rV)|<llu=-vli+ds(v),
and in the same way dg(v) < |lu—v| +dg(u).

Therefore, |6g(u) — dg(v)| < {lu —v||.

Definition. A function f € ¥2%(G;R) is called strictly plurisubhar-
monic if Lev(f)(a,w) >0 for a € G, w € T,, and w # 0.

For a proof of the following result we refer to [Ra86], Chapter II, Proposition
4.14.

2.10 Smoothing lemma. Let G C C™ be a domain, f : G = R a continu-
ous plurisubharmonic ezhaustion function, K C G compact, and € > 0. Then
there ezists a €°° ezhaustion function g : G — R such that:

1. ¢g> f onG.
2. g is strictly plurisubharmonic.
3. |9(z) — f(z)| <e on K.

Exercises

1. Let G C C be a domain. Prove the following statements:

(a) If f: G — C is a holomorphic function, then |f|® is subharmonic for
a>0.

(b) If u is subharmonic on G, then »? is subharmonic for p € N.

(c) Let u # —oo be subharmonic on G. Then {z € G : u(z) = —oo}
does not contain any open subset.

2. Let G C C be a domain, s # —oo a subharmonic function on G, P :=
{z € G : s(2z) = —oo}. Show that if u is a continuous function on G and
subharmonic on G — A, then u is subharmonic on G.

3. Let U C C™ be open, f : U — C* a holomorphic map, and A € Mi(R) a
positive semidefinite matrix. Show that ¢(z) := f(z) - A - f(z)* is pluri-
subharmonic.

4. Let G = {(z,w) € C? : |w| < |z| < 1} be the Hartogs triangle. Prove that
there does not exist any bounded plurisubharmonic exhaustion function
on G.

5. Are the following functions plurisubharmonic (respectively strictly pluri-

subharmonic)?
pi(z) =  log(l+||z[*), for z € C",
p2(z) = —log(l - ||z|?), for f|z|| <1,
pa(z) = |z]2e" R, for z € C".

6. Consider a domain G C C" and a function f € ¥%(G). Prove that f is
strictly plurisubharmonic if and only if for every open set U CC G there
is an € > 0 such that f(z) — ¢||z||? is plurisubharmonic on U.
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3. Pseudoconvexity

Pseudoconvexity

Definition. A domain G C C" is called pseudoconvez if there is a
strictly plurisubharmonic ¥ exhaustion function on G.

Remarks

1. By the smoothing lemma the following is clear: If —logd¢ is plurisub-
harmonic, then G is pseudoconvex.
2. Pseudoconvexity is invariant under biholomorphic transformations.

3.1 Theorem. If G C C" is a pseudoconver domain, then G satisfies the
continuity principle.

PrOOF: Let p: G — R be a strictly plurisubharmonic exhaustion function.
Suppose that there exists a family {S; : 0 <t < 1} of analytic disks given
by a continuous mapping ¢ : D x [0,1] — C™ such that Sp C G and bS; C G
for every t € (0, 1], but not all S; are contained in G.

The functions p o ¢; : D - G are subharmonic for every t with S; C G. It
follows by the maximum principle that p|.S; < maxss, p for all those ¢.

We define to := inf{t € [0,1] : S, ¢ G}. Then t; > 0, S;, C G, and Sy,
meets G in at least one point zg. We can find an increasing sequence (t.)
converging to t, and a sequence of points z, € S, converging to zp. So
p(z,) = co := supg(p), but there is a ¢ < ¢ such that plps, < c for every
t € [0,1]. This is a contradiction. .

3.2 Corollary. If G is pseudoconvez, then G is Hartogs convex.

The Boundary Distance

3.3 Theorem. If G C C" is a Hartogs convex domain, then —logdc is
plurisubharmonic on G.

PROOF: For z € G and u € C* with ||u}| = 1 we define
dgu(z) :=sup{t >0 : z+Tue G for |7| < t}.

Then ég(z) = inf{dgu(z) : |lul] = 1}, and it is sufficient to show that
—log dg,u is plurisubharmonic for fixed u.

(a) Unfortunately, é¢,u does not need to be continuous, but it is lower semi-
continuous:
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Let zg € G be an arbitrary point and ¢ < g u(20). Then the compact set
K :={z =29+ 7u : |7| < ¢} is contained in G, and there is a § > 0 such
that {z : dist(K,z) <48} C G.

For z € B;(zp) and |7| < ¢ we have
l(z + Tu) — (zo + Tu)|| = ||z — zo|| < 4, and therefore dg u(z) > c.

(b) The function —logdc,u is upper semicontinuous, and we have to show
that

8(¢) := —log dg,u(zo + ¢(b)

is subharmonic for fixed u, zg, b. First consider the case that u and b are
linearly dependent: b = Au, A # 0.

Let G be the connected component of 0 in {¢ € C : zg + (b € G}. Then
dcgu(zo+C¢b) = sup{t>0:2zo+(b+7ucdfor|r| <t}

sup{t >0 : (+7/X € Gy for |7] < t}

{Al-sup{r >0 : {(+0 € Gy for |o| <t}

= |Al-d6,(9),

and this function is in fact subharmonic.

]

(c) Now assume that u and b are linearly independent. Since these vectors
are fixed, we can restrict ourselves to the following special situation:

n=2, 2zg=0, b=e, and u=es.

Then s(¢) = —logsup{t > 0 : ({,7) € G for |r| < t}. We use holomorphic
functions to show that s is subharmonic. Let R > r > 0 be real numbers such
that (¢,0) € G for |¢| < R, and let f : Dg(0) — C be a holomorphic function
such that s < h := Re f on 9D,(0). We have to show that s < h on D,(0).

We have the following equivalences:

s(Q) < h(¢) <= sup{t>0: (¢,7)eGforlr]<t}>e ™M)
= (C,c-e‘f(o) € G for ceD.

(d) Define a holomorphic map F by
F(Zla ZZ) = (TZI, z2e‘f("'21))'

Then F is well defined on a neighborhood of the unit polydisk P? = P2(0, 1).
It must be shown that F(P%) C G. We already know the following:

1. F(z1,22) € G for |z1] = 1 and |z3| < 1, because s(t) < h(t) on 4D,.(0).
2. F(2,0) € G for |z1| < 1, because (¢,0) € G for (| < r.
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These facts will be used to construct an appropriate Hartogs figure. First,
note that

0
Jr(z1,22) = ( : o= flr21) ), so det Jp(21, 22) # 0.

By the inverse function theorem it follows that F is biholomorphic.

For 0 < § < 1 we define hs : C2 — C? by hs(2, 22) := (21,022) and apply h;
to the compact set ‘

C:={(21,22) €C?: (|| <1,z =0) or (Jz1] = 1, | 23| < 1)} c P2.

Consequently,
Cs = hs(C) = {(21,22) € C* : (|| < 1, 22 = 0) or (Jza] = 1, |22] < §)}.

Then F(Cj) C G, as we saw above, and therefore Cs C F~1(G).
For 0 < € < min(d,1 — §) we define a neighborhood U, of Cs by U, :=
{(21,22) € C? : (Jz1| < 1+¢, |22| <€) or (1—€ < |z1] < 1+¢, |22| < 6+6)}.
If we choose € small enough, then U, C F~}(G).
Finally, we define H, := h; ' (U. N P?) N P? (see Figure IL.6). Then
He = {(21,22) € P? : (21,022) € U. N P?}

= {(21,22) €C?: (Jm] <1, |2z < %) or (l—-e<|zn|<1,iznl< 1)}

|22] ] |22

— Uk

= = ' s )

Figure I1.5. Construction of the Hartogs figure

Since (P%,H,) is a Euclidean Hartogs figure, (F o hs(P2?),F ohs(H.)) is a
general Hartogs figure with F ohs(H,.) C F(U:NP?) C G. Since G is Hartogs
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pseudoconvex, it follows that F o hs(P%) C G. This is valid for every § < 1.
But P? = | Jys<, hs(P?). Therefore, F(P?) C G, which was to be shown. =

3.4 Theorem. The following properties of a domain G C C™ are equivalent:

1. G satisfies the continuity principle.
2. G is Hartogs pseudoconver.

3. —logdg is plurisubharmonic on G.
4. G is pseudoconvez.

PROOF:

(1) = (2) is Theorem 1.5,

(2) = (3) is Theorem 3.3,

(3) = (4) follows from the smoothing lemma,

(4) => (1) was proved in Theorem 3.1. .

Properties of Pseudoconvex Domains

3.5 Theorem. IfG,,G, C C" are pseudoconvexr domains, then Gy NGy is
pseudoconver.

PRrOOF: The statement is trivial if one uses Hartogs pseudoconvexity. =

3.6 Theorem. Let Gy C G2 C ... C C" be an ascending chain of pseudo-
convex domains. Then G :=Joo, G, is again pseudoconvez.

PRroOOF: This follows immediately from the continuity principle. [

3.7 Theorem. A domain G C C" is pseudoconvez if and only if there is an
open covering (U,).cr of G such that U, NG is pseudoconver for every v € I.

PRrooOF:

“==" is trivial. The other direction will be proved in two steps. At first, we
assume that G is bounded.

For any point zyg € OG there is an open set U, such that zg € U, and GNU,
is pseudoconvex. If we chioose a neighborhood W = W(zg) C U, so small
that dist(z, OU,) > dist(z, zg) for every z € WNG, then ég(2z) = dgnu,(z) on
WNG. This shows that there is an open neighborhood U = U(9G) such that
—log é¢ is plurisubharmonic on U NG (we use the fact that G is compact).
Now, G — U CcC G. We define
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c:=sup{-logég(z) : z€ G - U},

and
p(z) := max(—log dc(z), ||z[|* + ¢+ 1).

Then p is a plurisubharmonic exhaustion function, and by the smoothing
lemma, G is pseudoconvex.

If G is unbounded, we write it as an ascending union of the domains
G, = B,(0) N G. Each G, is bounded and satisfies the hypothesis, so is
pseudoconvex. Then G is also a pseudoconvex domain. =

Exercises

1. Suppose that G; C C* and G; C C™ are domains.
(a) Show that if G; and G, are pseudoconvex, then G; x G is a pseu-
doconvex domain in C**™
(b) Show that if there is a proper holomorphic map f : G; — G3 and G2
is pseudoconvex, then (G is also pseudoconvex.
2. Let G € C™ be a domain and ¢ : G — R a lower semicontinuous positive
function. Prove that

G:={(z,w) € G xC : |w| < o(z')}

is pseudoconvex if and only if — log g is plurisubharmonic.
3. A domain G C C” is pseudoconvex if and only if for every compact set
K C G the set

K pl == {z €G:p(z) < s1}1<pp for all plurisubharmonic functions p on G}

is relatively compact in G.

4. Levi Convex Boundaries

Boundary Functions

Definition. Let G C C” be a domain. The boundary of G is called
smooth at zg € 8G if there is an open neighborhood U = U(z¢) C C*
and a function p € ¥°°(U;R) such that:

1. UnG={z €U : o(z) <0}

2. (do)z #0forze U.
The function p is called a local defining function (or boundary function).

Remark. Without loss of generality we may assume that p,, # 0. Then
by the implicit function theorem there are neighborhoods
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U’ of (2g,27) = (217, .-, 252 1,29) € C*"1 xR, U’ of y© € R,
and a € function vy : U’ — U” such that {(z, zn,yn) € U' xU" : o(2z',z, +
iyn) = 0} = {(2', zn,7(2', zn)) : (2, 2,) € U'}.
Making the neighborhood U := {(z',z, + iyn) : (z/,z,) € U’ and y, € U"}
small enough and correcting the sign if necessary, one can achieve that

UnG= {(zl,xn + iy‘n) €U :yn < ’Y(Z', xn)}-

In particular, UN GG = {z € U : p(z) = 0} is a (2n — 1)-dimensional
differentiable submanifold of U.

4.1 Lemma. Let 0G be smooth at zg, and let g1, 02 be two local defining
Junctions on U = U(zg). Then there is a €™ function h on U such that:

I.h>0o0onU.
2. 01 =h'gg onU.
3. (do1)z = h(z) - (do2)s for z € U N BG.

PrOOF: Define h := p,/p; on U — 8G. After a change of coordinates, we
have zp = 0 and g2 = y,. Then g(t) := g;(2’,z, + it) is a smooth function
that vanishes at ¢ = 0. Therefore,

01(z',2,) = 9(yn) — 9(0)

Yn S 1
= / g (s)ds = y, - / g (tyn) dt
0 0

= Q?(z’,zn + lyn) ‘ h’(z,a zﬂ)a

where 1
M2,z + iyn) = / gﬂ(z’,zn + ityy) dt
o Yn
is smooth.
For z € G we have (dg,), = h(z) - (dp2)s. Therefore, h(z) # 0, and even
greater than 0, since h(z) > 0 by continuity. .

4.2 Theorem. Let G CC C™ be a bounded domain with smooth boundary.
Then OG is a differentiable submanifold, and there exists a global defining
function.

PROOF: We can find open sets V; CC U; ¢ C*,i=1,..., N, such that:

1. {W,...,Vn} is an open covering of 4G.
2. For each i there exists a local defining function g; for G on U;.
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3. For each i there is a smooth function ¢; : U; =& R with @;ly, = 1,
@ilcn-u, =0, and ¢; > 0 in general.

Define ¢ := ), ¢i (so ¢ > 0 on 9G) and 9; := @;/p. Then Y ,%; =1 on
OG. The system of the functions 1; is called a partition of unity on 8G.

The function p := Zil 1;0; is now a global defining function for G. We
leave it to the reader to check the details. [ ]

The Levi Condition. For the remainder of this section let G cC C*
be a bounded domain with smooth boundary, and ¢ : U = U(8G) — R a
global defining function. Then at any zp € G the real tangent space of the

boundary
To(0G) = {V € Ty : (d0)ao(v) = 0}

is a (2n — 1)-dimensional real subspace of T,,. The space
H,(0G) :=T,,(0G) N iT,,(0G) = {v € Ty, : (00)z, (V) = 0}

is called the complex (or holomorphic) tangent space of the boundary at zo.
It is a (2n — 2)-dimensional real subspace of T,,, with a natural complex
structure, so an (n — 1)-dimensional complex subspace3.
Definition. The domain G is said to satisfy the Levi condition (respec-
tively the strict Levi condition) at zy € OG if Lev(p) is positive semidef-
inite (respectively positive definite) on H,,(0G). The domain G is called
Levi convez (respectively strictly Levi convex) if G satisfies the Levi con-
dition (respectively the strict Levi condition) at every point z € 9G.

Remark. The Levi conditions do not depend on the choice of the boundary
function, and they are invariant under biholomorphic transformations.

If o = h- pg, with h > 0, then for z € 3G,
Lev(o1)(z, w) = h(z) - Lev(g2)(z, w) + 2 Re{(0h)z(W) - (002 )z(W)}.

So on H,(OG) the Levi forms of g; and g, differ only by a positive constant.

Affine Convexity. Recall some facts from real analysis:

A set M C R" is conver if for every two points x,y € M, the closed line
segment from x to y is contained in M. In that case, for each point xp €
R™ — M there is a real hyperplane H C R™ with xo € H and M N H = @.
This property was already used in Section 1.

3 H.(98G) is often denoted by T3 °(9G).
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If a € R*, U = U(a) is an open neighborhood and ¢ : U — R is at least €2,
then the quadratic form

Hess(g) (@, W) = 3 0z, , (2w,

v
is known as the Hessian of ¢ at a.

4.3 Proposition. Let G CC R" be a domain with smooth boundary, and
¢ a global defining function with (dg)x # 0 for x € 8G. Then G is conver if
and only if Hess(p) is positive semidefinite on every tangent space Ty (0G).

PrOOF: Let G be convex, and X9 € G an arbitrary point. Then T :=
Tx, (0G) is a real hyperplane with TNG = &. For w € T and «(t) := xo+tw
we have

(e© a)"(0) = Hess(e) (%o, W).
Since p(xg) = 0 and g o a(t) > 0, it follows that g o @ has a minimum at
t = 0. Then (g o a@)”(0) > 0, and Hess(p) is positive semidefinite on T'.

Now let the criterion be fulfilled, assume that 0 € G, and define g by
€
0c(%) 5= o) + lx|IY.

For small ¢ and large N the set G, := {x : 0.(x) < 0} is a domain. We have
G: C G C G for € < ¢, and {J,5oGe = G. Therefore, it is sufficient to
show that G, is convex.

The Hessian of g, is positive definite on T (8G) for every x € 8G. Thus this
also holds in a neighborhood U of dG. If ¢ is small enough, then 8G. C U.
We consider

S:={(x,y) €G: xGe : tx+(1-t)yeG,, for 0 <t <1}.

Then S is an open subset of the connected set G¢ X G.. Suppose that S is not a
closed subset. Then there exist points xg,yo € G. and a tg € (0, 1) with toxo+
(1 —to)yo € OGe. So the function t — g, o a(t), with a(t) := txo + (1 — t)yo,
has a maximum at ¢y3. Then (g.00a)"”(to) < 0 and Hess(g.)(a(to),xo—Yyo) < 0.
This is a contradiction. u

A domain G = {p < 0} is called strictly convezr at xo € 9G if Hess(p) is
positive definite at xo. This property is independent of g and invariant under
affine transformations.

Now we return to Levi convexity.

4.4 Lemma. Let U C C" be open and ¢ € €*(U;R). Then

Lev(p)(z,w) = i (Hess(p)(z, w) + Hess(p)(z, iw)).
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PROOF: This is a simple calculation! .

4.5 Theorem. Let G CC C" be a domain with smooth boundary. Then the
following statements are equivalent:

1. G is strictly Levi conver.

2. There is an open neighborhood U = U(8G) and a strictly plurisubhar-
monic function g € €°(U;R) such that UNG = {z € U : p(z) < 0}
and (dp)z #0 forz e U.

3. For every z € OG there is an open neighborhood W = W(z) C C",
an open set V. .C C", and a biholomorphic map F : W — V such that
F(WNG) is convez and even strictly convez at every point of F(WNOG).

PROOF:

(1) = (2) : We choose a global defining function g for G, and an open
neighborhood U = U(8G) such that p is defined on U with (dp), # O for
z € U. Let A > 0 be a real constant, and g4 := e42 — 1. Then g4 is also a
global defining function, and

Lev(ea)(z, w) = Ae??®) [Lev(o)(z, W) + A|(80)(W)[*] .
The set K := G x §2"~! is compact, and
Ko := {(z,w) € K : Lev(g)(z,w) < 0}

is a closed subset. Since Lev(p) is positive definite on H,(0G), we have
(80)z(w) # 0 for (z,w) € Ky. Therefore,

M = ménLev(g)(z,w) > ~—00,
C = min|(dg)z(W)I* > 0.

We choose A so large that A-C + M > 0. Then
Lev(oa)(z,w) = A - [Lev(0)(z, W) + A|(B)2(W)[*] > A+ (M + AC) >0
for (z,w) € Ko, and
Lev(ea)(z,w) > A% - (80)z(W)[* > 0

for (z,w) € K — K.

So Lev(ga)(z,w) > 0 for every z € 3G and every w € C* — {0}. By conti-
nuity, g4 is strictly plurisubharmonic in a neighborhood of 6G.

(2) = (3) : We consider a point zg € G and make some simple coordinate
transformations:
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By the translation z — w = z — zy we replace zyp by the origin, and a
permutation of coordinates ensures that g, (0) # 0.

The linear transformation
W u= (le (0)w1 + - + 0w, (0)wn, wa,. .. ,wn)
gives u; = w - Vp(0)*, and therefore

o(u) = 2Re(u-V(oow)(0)*) + terms of degree > 2
2Re (u- Jw(0)"- Vp(0)*) + terms of degree > 2

= 2Re(w:Vp(0)*) + terms of degree > 2

= 2Re(u;)+ terms of degree > 2.
Finally, we write g(u) = 2Re(u; + Q(u)) + Lev(g)(0,u) + - - -, where Q is a
quadratic holomorphic polynomial, and make the biholomorphic transforma-
tion

ur v =(u; +Qu),uz,...,un).

It follows that
o(v) = 2Re(v1) + Lev(p)(0,v) + terms of order > 3.

By the uniqueness of the Taylor expansion
1
o(v) = Do(0)(v) + éHess(g)(O, v) + terms of order >3,

and therefore Hess(g)(0,v) = 2 - Lev(p)(0,v) > 0 for v # O (in the new
coordinates). Everything works in a neighborhood that may be chosen to be
convex.

(3) = (1) : This follows from Lemma 4.4:
Hess(g) > 0 on T,(0G) == Lev(p) > 0 on H,(0G).

The latter property is invariant under biholomorphic transformations. s

A Theorem of Levi. Let G cC C" be a domain with smooth boundary.
If G is strictly Levi convex, then it is easy to see that G is pseudoconvex.
We wish to demonstrate that even the weaker Levi convexity is equivalent
to pseudoconvexity. For that purpose we extend the boundary distance to a
function on C™.

6c(2z) forz € G,
dg(z) = 0 for z € 0G,
~0cn_g(z) forz ¢ G.
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4.6 Lemma. —dg is a smooth defining function for G.

PROOF: We use real coordinates x = (z1,...,xn) with N = 2n. It is clear
that G = {x : —dg(x) < 0}.

Let xp € OG be an arbitrary point and ¢ : U(xg9) — R a local defining
function. We may assume that g, (xp) # 0. Then by the implicit function
theorem there is a product neighborhood U’ x U” of xq¢ in U and a smooth
function h : U’ — R such that

{(x',zn) e U xU" : po(x',zn) =0} = {(x',h(x')) : X' € U'}.
It follows that 0 = Vv o(x', h(x')) + 0z (X, h(x')) - VR(x').

At the point (x/,h(x’)) € OG the gradient Vo(x', h(x’)) is normal to G
and directed outward from G. Every point y in a small neighborhood of the
boundary has a unique representation y = x + t - Vg(x), where t = —dg(y)
and x is the point where the perpendicular from y to G meets the boundary.
Therefore, we define the smooth map F : U’ x R — R by

y =F(x,t) = (x', h(x')) + t - Vo(x', h(x")).

Then there are smooth functions A and b such that

v [ Enoi+t-AX)  Veo(X h(x'))!
JR,F(X ,t) = ( V;:r(xl/) +tb();(,) Qx;f(::l,h(il)) ) 3

and therefore

Env-1  —0zy (X' (X)) - Vh(xX')! )
Vh(x’) Oz n (xl7 h(x/))

= ex,v(x’,h(x’))-det( Eﬁf g thi(:(cx)’)llz)
= 0z (X', h(X))(1 + [VA(X)|?) # 0.

It follows that there exists an ¢ > 0 such that F maps U’ x (—¢,¢) diffeo-
morphically onto a neighborhood W = W(xg), and U’ x {0} onto G N W.
Moreover, since dg(x +t - Vo(x)) = —t for |t| < € and € small enough, it
follows that dg = (—t) o F~1 is a smooth function near 8G. If p’ is defined
by p’(x’,t) := (x’,0), then the projection

det JR,F(XI,O) = det (

p=p oF l:x+t-Vo(x)— x, for x € 8G,

is a smooth map, and dg is given by dg(y) = o - ly — p(y)||, where 0 = 1
for y € G and 0 = —1 elsewhere.

For y € 8G we have
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N
(de)y, (¥) nT—ipW : §<yk — 2e(¥)) Ok — (P)y, ()
= m : [yu -p(y) — (y - p(Y)lev(Y))N] ,
and therefore
Vdg(y) = m [y = p(y) = Dp(y)(y — P(¥))]-

Since o(p(y)) = 0, it follows that Dp(y)(Ve(p(y))) =0. But y — p(y) is a
multiple of Vo(p(y)). Together this gives

__.y-ply) _ Ve(ry))
Ve =7 1y ol ~ VeI
If y tends to G, we obtain that Vdg(y) # 0. .

E.E. Levi showed that every domain of holomorphy with smooth boundary is
Levi convex, and locally the boundary of a strictly Levi convex domain G is
the “natural boundary” for some holomorphic function in G. Here we prove
the following result, which is sometimes called “Levi’s theorem”.

4.7 Theorem. A domain G with smooth boundary is pseudoconver if and
only if it is Levi convez.

PROOF:

(1) Let G be pseudoconvex. The function —dg is a smooth boundary function
for G, and —logde = —logde is plurisubharmonic on G, because of the
pseudoconvexity. We calculate

Lev(—logdg)(z,w) =

- Lev(—dg)(z, W) + 5~ - [(8(dg))a(W)|*.

- |
dg(z) d ( dg(2)?
This is nonnegative in G. If z € G, w € T, and (8(dg))-(w) = 0, it follows
that Lev(—dg)(z,w) > 0. This remains true for z — G, so —dg satisfies
the Levi condition.

(2) Let G be Levi convex, and suppose that G is not pseudoconvex. Then in
any neighborhood U of the boundary there exists a point zy where the Levi
form of — log é¢ has a negative eigenvalue. This means that there is a vector
wy such that

¢z(0) = Lev(log 6c)(zo, wo) > 0, for (¢) := logdg (2o + {wo).

Consider the Taylor expansion

P(0) = (0)+2Re(c(0)C + 5cc(0)?) + o (O)CI? +

©(0) + Re(AC + B¢?) + A|¢]2 +

I
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with complex constants A, B and a real constant A > 0.

We choose a point pg € G with d¢(z¢) = {|pPo — Zoll, and an arbitrary € > 0.
Then an analytic disk 9 : D¢(0) — C™ can be defined by

$(C) = 20 + (o + exp(A¢ + BC?)(po — 2o).
We have ¥(0) = pg, and we wish to show that ¥(¢{) € G, for 0 < |¢| < € and
¢ sufficiently small.
Since p(C) > ¢(0) + Re(A¢ + B¢?) + (A/2)[¢]? near ¢ = 0, it follows that
éc(z0 +(wo) = exp(p(())

> exp(p(0)) - |exp (A¢ + BC?) |- exp(-;\-ICIZ)

> bc(zo) - | exp (A + BC?) |

= |lexp (A¢ + B¢?)(Po — 20)),
for ( small and # 0. This means that we can choose the £ in such a way

that ¥(¢) € G, for 0 < || < €. The analytic disc is tangent to G from the
interior of G.

Now f({) = dg(¥(()) is a smooth function with a local minimum at { = 0.
Therefore (0dg)p, (¥'(0)) = (8f)o(1) =0, and

f(¢) =Re (fec(0)¢?) + chIClz + terms of order > 3.
Since Re (f¢c(0)e*®) + fez 2 0 for every t, it follows that

Lev(dg)(po, ¥'(0)) = fz(0) > 0.

This is a contradiction to the Levi condition at pg, because ~dg is a defining
function for G. ]

Exercises

1. Prove Lemma 4.4.

2. Assume that G CC C? has a smooth boundary that is Levi convex outside
a point a that is not isolated in 8G. Show that G is pseudoconvex.

3. Assume that G C C? is an arbitrary domain and that S C G is a smooth
real surface with the following property: In every point of S the tangent
to S is not a complex line. Prove that for every compact set K C G there
are arbitrarily small pseudoconvex neighborhoods of SN K.

4. Assume that G CC C? is a domain with smooth boundary. Then G
is strictly Levi convex at a point zg € dG if and only if the following
condition is satisfied:

There is a neighborhood U = U(z), a holomorphic function ¢ : D -+ U
with ¢(0) = zo and ¢’'(0) # 0, and a local defining function g on U such
that (¢ 0 )(¢) > 0 on D — {0} and (g0 ¢)(0) > 0.
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5. Let G CC C™ be a domain with smooth boundary. If G satisfies the strict
Levi condition at zg € 8G, then prove that the following hold:
(a) There is no analytic disk ¢ : D = C™ with

bc(#(<))
& Te0) - o O
(b) There are a neighborhood U = U(2z¢) and a holomorphic function f
inUwithGNn{zeU : f(z) =0} = {z0}-
6. A bounded domain G C C" is called strongly pseudoconvez if there are
a neighborhood U = U(8G) and a strictly plurisubharmonic function
0 € €*(U) such that GNU = {z € U : p(z) < 0}. Notice that a strongly
pseudoconvex domain does not necessarily have a smooth boundary!

¢(0) =2 and

Prove the following results about a strongly pseudoconvex bounded do-

main G:

(a) G is pseudeconvex.

(b) If G has a smooth boundary, then G is strictly Levi convex.

(c) For every z € OG there is a neighborhood U = U(z) such that UNG
is a weak domain of holomorphy.

7. Let G C C™ be a pseudoconvex domain. Then prove that there is a family

of domains G, C G such that the following hold:

(a) G, CC G,41 for every v.

(b) UL, Gv =G.

(c) For every v there is a strictly plurisubharmonic function f, €
€>°(G,+1) such that G, is a connected component of the set

{z€Gus1 : fu(z) <0}.

5. Holomorphic Convexity

Affine Convexity We will investigate relationships between pseudocon-
vexity and affine convexity. Let us begin with some observations about convex
domains in R".

Let .# be the set of affine linear functions f : RY — R with
fxX)=aijz1+---+anzy +b, ay,...,an,bER.

If M is a convex set and Xg a point not contained in M, then there exists
a function f € £ with f(xg) = 0 and f|p < 0. For any c € R, the set
{x € R : f(x) < c} is a convex half-space.

Definition. Let M C RN be an arbitrary subset. Then the set
H(M) = {x €RV : f(x) Ssupf, forall f € &}
M

is called the affine convez hull of M.
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5.1 Proposition. Let M, My, M; C RN be arbitrary subsets. Then

M C H(M).

H(M) is closed and convez.

H(H(M)) = H(M).

If My C My, then H(M,) C H(My).

If M is closed and convez, then H(M) = M.
If M is bounded, then H(M) is also bounded.

S T Lo o~

PROOF: (1) is trivial.

(2) If xo ¢ H(M), then there is an f € £ with f(xo) > sup,, f- By conti-
nuity, f(x) > sup,, f in a neighborhood of x¢. Therefore, H(M) is closed.

If x0,¥y0 are two points in H(M), then they are contained in every convex
half-space F = {x 1 f(x) <supyp f }, and also the closed line segment from
Xp t0 yo is contained in each of these half-spaces. This shows that H(M) is
convex.

(3) We have to show that H(H(M)) C H(M). If x € H(H(M)) is an arbi-
trary point and f an element of #, then f(x) < supy(a) f < supy f, by
the definition of H(M).

(4) is trivial.

(5) Let M be closed and convex. If xo ¢ M, then there is a point yo € M
such that dist(xp, M) = dist(xg, yo) (because M is closed). Let zo be a point
in the open line segment from xg to yo. Then z¢ ¢ M, and there is a function

f € & with f(zg) = 0 and f|p < 0. Since t — f(txg + (1 — t)yq) is a
monotone function, it follows that f(x¢) > 0 and therefore xo ¢ H(M).

(6) If M is bounded, there is an R > 0 such that M is contained in the closed
convex set Br(0). Thus H(M) C Bgr(0). .

Remark. H(M) is the smallest closed convex set that contains M.

5.2 Theorem. A domain G C RY is convez if and only if K CC G implies
that H(K) CC G.

PROOF: Let G be a convex domain, and M CC G a subset. Then H(M) is
closed and contained in the bounded set H(M). Therefore, H(M) is compact,
and it remains to show that H(M) C G. If there is a point xp € H(M) — G,
then there is a function f € % with f(xp) = 0 and f|¢ < 0. It follows that
supyr f < 0, and f(xo) > sup,, f. This is a contradiction to xo € H(M).
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On the other hand, let the criterion be fulfilled. If xg, yo are two points of G,
then K := {x¢,yo} is a relatively compact subset of G. It follows that H(K)
is contained in G. Since H(K) is closed and convex, the closed line segment
from xp to yq is also contained in G. Therefore G is convex. =

Holomorphic Convexity. Now we replace affine linear functions by
holomorphic functions.

Definition. Let G C C™ be a domain and K C G a subset. The set

K =Kg:= {z €G : |f(a) SS\IJ(prI, for all feO(G)}

is called the holomorphically convex hull of K in G.

5.3 Proposition. Let G C C" be a domain, and K, K1, K, subsets of G.
Then

1. KCK.
2. K is closed in G.

3. K=K. L

4. If K1 C Ky, then K, CAK;).

5. If K is bounded, then K is also bounded.

PRrROOF: (1) is trivial.

(2) Let z5 be a point of G — K. Then there exists a holomorphic function
f on G with |f(z¢)| > supg|f|- By continuity, this inequality holds on an
entire neighborhood U = U(zp) C G. So G — K is open.

(3) supp|f| < supg|f}.
(4) is trivial.
(5) If K is bounded, it is contained in a closed polydisk P»(0, ). The coordi-

nate functions 2, are holomorphic in G. For z € K we have |2,| < supg|z,| <
r. Hence K is also bounded. "

Definition. A domain G C C" is called holomorphically convez if
K cc G implies that K CcC G.
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Example
In C every domain is holomorphically convex:

Let K CC G be an arbitrary subset. Then K is bounded, and it remains
to show that the closure of K is contained in G. If there is a point 29 €
K - G, then 2z lies in 0K N 8G. We consider the holomorphic function
f(z) == 1/(z — z) in G. If (2,) is a sequence in K converging to 2g, then
|f(20)] < supg|f| < supg|f| < co. This is a contradiction. For n > 2, we
will show that there are domains that are not holomorphically convex. But
we have the following result.

5.4 Proposition. If G C C" is an affine convex domain, then it is holo-
morphically convex.

PROOF: Let K be relatively compact in G. Then H(K) CC G. If zp is a
point of G — H(K), then there exists an affine linear function A € £ with
A(zo) > supy A. Replacing A by A — A(0) we may assume that A is a homo-
geneous linear function of the form

Mz) = 2Re(a121 + - - + Qn2p).

Then f(z) := exp(2- (o121 + -+ + @nzn)) is holomorphic in G, and |f(z)] =
exp(A(z)). Therefore, | f(2zo)| > supKlfI and zo € G — K. This proves K cC
G. n

In general, holomorphic convexity is a much weaker property than affine
convexity.

The Cartan—Thullen Theorem. Let G ¢ C™ be a domain, and
€ > 0 a small real number. We define

G :={z€G : ég(z) > ¢}
Here are some properties of the set G.:

1. If z € G, then there is an € > 0 such that §g(z) > &.
Therefore, G = ), Ge

2. If g1 < eg, then G, D ng-

3. G, is a closed subset of C". In fact, if zg € C* — G, then dg(z) < €
or zg € G. In the latter case, the ball B.(z) is contained in C* — G.. If
Zo € G — G, and § := §g(zg), then B._5(z9) C C* — G.. So C* — G, is
open.

5.5 Lemma. Let G C C" be a domain, K C G a compact subset, and f a
holomorphic function in G. If K C G, then for any § with 0 < 6§ < € there
ezists a constant C > 0 such that the following inequality holds:
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sup|D°’f(z)[ < = 5, ' -C.

PROOF: For 0 < 6 < ¢, G' := {z € G : dist(K,z) < &} is open and
relatively compact in G, and for any z € K the closed polydisk P"(z, ) is
contained in G’ C G. If T is the distinguished boundary of the polydisk and
[f| < C on G’, then the Cauchy inequalities yield

o al al
|D* f(z)] < 5|—(,"517{P|f| < W'C-
"

5.6 Theorem (Cartan—Thullen). If G is a weak domain of holomorphy,
then G is holomorphically conver.

Proor: Let K CC g We want to show that K CC G. Let ¢ :=
dist(K,C™ — G) > dist(K,C™ — G) > 0. Clearly, K lies in G,.

We assert that the holomorphically convex hull K lies even in Ge. Suppose
this is not so. Then there is a zg € K — G.. Now let f be any holomorphic
function in G. In a neighborhood U = U(zg) C G, f has a Taylor expansion

f(z) = Za,,(z —2g)Y, with a, = %D”f(zo).

v>0

The function z — a,(z) := %DYf(z) is holomorphic in G. Therefore,
lav(20)] < supgla.(z)). By the lemma for any 4 with 0 < § < & there
exists a C > 0 such that supyla,(z)] < C'/(S"’| and then

) |21 — z§°)| 1 IZn — z;o)' Vn
— <C.| ——— e | —
|a‘V(z ZO) ' —_ ( 5 6

On any polydisk P™(z,d) the Taylor series is dominated by a geometric
series. Therefore, it converges on P = P™(zg,¢) to a holomorphic function f
We have f = f near zg, and then on the connected component Q of zg in
PNG. Since P meets G and C* — G, it follows from Lemma 1..9 that there
is a point z; € PNOQ NIG. Then f cannot be completely singular at z;.
This is a contradiction, because f is an arbitrary holomorphic function in G,
and G is a weak domain of holomorphy. ]

Exercises

1. Let Gy C G2 C C™ be domains. Assume that for every f € O(G;) there
is a sequence of functions f, € O(G2) converging compactly on G to f-
Show that for every compact set K C G it follows that KG2 NG, = KC,-l
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2. Let F : G; = G2 be a proper holomorphic map between domains in C*,
respectively C™. Show that if G5 is holomorphically convex, then so is
G;.

3. Let G C C™ be a domain anii_\S C G be a closed analytic disk with
boundary bS. Show that S C (bS),;.

4. Define the domain G C C? by G := P%(0, 1) — P2(0,1/2). Construct the
holomorphically convex hull Kg for K = {(z1,22) : 21 = 0 and |z9| =
3/4}. Is K¢ a relatively compact subset of G 7

5. Let F be a family of functions in the domain G. For a compact subset
K C G we define

Ry = {zec . |£(z)] < sup|f| for aufef}.
K

The domain G is called convex with respect to F, provided that K Fis

relatively compact in G whenever K is. Prove:

(a) Every bounded domain is convex with respect to the family €°(G)
of all continuous functions.

(b) The unit ball B = B;(0) is convex with respect to the family of

holomorphic functions z% - zL with v,p=1,...,n and k,l € Np.

6. Singular Functions

Normal Exhaustions. Let G ¢ C™ be a domain. If G is holomorphically
convex, we want to construct a holomorphic function in G that is completely
singular at every boundary point. For that we use “normal exhaustions.”

Definition. A normal ezhaustion of G is a sequence (K, ) of compact
subsets of G such that:

1. K, cC (Ky41)°, for every v.

2. Uo, K, =G.

6.1 Theorem. Any domain G in C* admits a normal exhaustion. If G is
holomorphically convez, then there is a normal ezhaustion (K,) with K, =
K, for every v.

PROOF: In the general case, K, := P*(0,v) NGy, gives a normal exhaus-
tion. If G is holomorphically convex, I?,, CC G for every v. We construct a
new exhaustion by induction.

Let K := K,. Suppose that compact sets K7,...,K}_, have been con-
structed, with K = K for j = 1,...,v — 1, and K} CC (Kl‘“)o' Then
there exists a A(v) € N such that KJ_, C (Kx(,))°. Let K} := K)(,y-
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It is clear that (K) is a normal exhaustion with I?,j =K}. n

Unbounded Holomorphic Functions. Again let¢ G C C" be a
domain.

6.2 Theorem. Let (K,) be a normal exhaustion of G with I?,, = K,,
A1) a strictly monotonic increasing sequence of natural numbers, and (z,,)
a sequence of points with z, € Kx(u)+1 — Ka(y)-

Then there exists a holomorphic function f in G such that |f(z,)| is un-
bounded.

Proor: The function f is constructed as the limit function of an infinite
series f = ZZ‘;I fu. By induction we define holomorphic functions f, in G
such that:

L |fulkyg,, <27# for p> 1.
p—1
2. |fu(zu)l > p+ 14D |fi(z)] for u>2.
i=1
Let f, := 0. Now for y > 2 suppose that f;,..., f,_1 have been constructed.
Since z, € Kjy(u)+1 — Kaqu) and Ky () = Ky (y), there exists a function g
holomorphic in G such that [g(z,)| > q = supg, ” |g|. By multiplication by
a suitable constant we can make

l9(zu)l > 1> g.

If we set f, := g* with a sufficiently large k, then f, has the properties (1)
and (2).

We assert that )  fu converges compactly in G. To prove this, first note
that for K C G an arbitrary compact subset, there is a pg € N such that
K C Kj(u,)- By construction supy|f,| < 27# for p > po. Since the geo-
metric series ), 27# dominates ) f, in K the series of the f, is normally

convergent on K. This shows that f =3 u fu is holomorphic in G. Moreover,
1fz)l 2 1fuza)l = D 1fu(z)l
v#u

> ut+1- 3 1fu(z,)

v>p
> p+1- 22*” (since z, € K)(,) for v > p)

v>p
> u (since 22“’ =1).

v21

It follows that |f(z,)] — oo for u — oo. .
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The following is an important consequence:

6.3 Theorem. A domain G is holomorphically convez if and only if for
any infinite set D that is discrete in G there exists a function f holomorphic
in G such that |f| is unbounded on D.

ProOOF: (1) Let G be holomorphically convex, D C G infinite and discrete.
Moreover, let (K, ) be a normal exhaustion of G with K , = K,. Then K,ND
is finite (or empty) for every v € N. We construct a sequence of points z, € D
by induction.

Let z, € D — K, be arbitrary, and A(1) € N minimal with the property that
z; lies in K(1)41- Now suppose the points z,...,2,_; and the numbers
A(1),...,A( — 1) have been constructed such that

zZ, € KA(u)—H - K)‘(,,), forv=1,...,u—1.

Then we choose z, € D — Kj(,-1)+1 and A(x) minimal with the property
that z,, lies in Ky(,)4+1- By the theorem above there is a holomorphic function
f in G such that |f(z,)| = oo for 4 — oo. Therefore, |f| is unbounded on D.

(2) Now suppose that the criterion is satisfied, and K CC G. Then K C G,
and we have to show that K is compact. Let (z,) be any sequence of points
in K. Then

sup{|f(z.)| : v € N} <sup|f] < o0, for every f € O(G).
T K

Therefore, {z, : v € N} cannot be discrete in G. Thus the sequence (z,)
has a cluster point zg in G. Since K is closed, zg belongs to K. So G is
holomorphically convex. .

Sequences. For a domain G C C" we wish to construct a sequence that
accumulates at every point of its boundary.

6.4 Theorem. Let (K,) be a normal ezhaustion of G. Then there exists
a strictly monotonic increasing sequence A(p) of natural numbers and a se-
quence (z,) of points in G such that:

1.z, € Ky(uy41 — Kx(u), for every p.

2. If zy is a boundary point of G and U = U(zo) an open connected neigh-
borhood, then every connected component of U N G contains infinitely
many points of the sequence (z,).

ProoF: This is a purely topological result, since we make no assumption
about G. The proof is carried out in several steps.
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(1) Let B = {B, : v € N} be the countable system of balls with rational
center and rational radius meeting 8G. Every intersection B, NG has at most
countably many connected components. Thus we obtain a countable family

C ={C, : Jv € Nsuch that C, is a connected component of B, € B}.

(2) By induction, the sequences A(x) and (z,) are constructed. Let z; be
arbitrary in C; — K. Then there is a unique number A(1) such that z; €
Kyay+1 — Kxq)-

Now suppose zi,...,2,—1 have been constructed such that
zZj € Cj N (KA(j)+l - K)‘(J-)), forj=1,...,u0—1.

We choose z, € C, — Kx(u-1)+1 and A(u) as usual. That is possible, since
there is a point w € B,(,) N9C, N 3G if C, is a connected component of
B, () NG. Then C" — K)(,_1)4+1 is an open neighborhood of w and contains
points of C),.

(3) Now we show that property (2) of the theorem is satisfied. Let 2o be a
point of G, U = U(z¢) an open connected neighborhood, and @ a connected
component of U N G. We assume that only finitely many z, lie in Q, say
Z1,...,2Zm. Then

U*:=U-{21,...,2m} and Q" :=Q—-{21,...,Zm}

are open connected sets that contain no z,. Obviously, Q* is a connected
component of GNU*.

There is a point wg in U* N JQ* N 3G, and a ball B, C U* with wy € B,,.
Then B, NG C U* NG. Moreover, B, N G must contain a point w; € Q*.
The connected component C* of w; in B, NG is a subset of the connected
component of w; in U*NG. But C* is an element C,,, of C. By construction
it contains the point z,,. That is a contradiction. Infinitely many members
of the sequence belong to Q. .

6.5 Theorem. IfG is holomorphically convez, then it is a domain of holo-
morphy.

ProoF: Let (K,) be a normal exhaustion of G with I?,, = K, and choose
sequences A(u) € N and (z,,) in G such that z, € K)(,)41 — Kx(u). We may
assume that for every point zg € 8G, every open connected neighborhood
U = U(zo), and every connected component @ of U N G there are infinitely
many z, in Q.

Now let f be holomorphic in G and unbounded on D := {z, : p e N}. It is
clear that f is completely singular at every point zg € 8G. n
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Remark. It is not necessary that a completely singular holomorphic func-
tion is unbounded. In 1978, D. Catlin showed in his dissertation that if
G cC C" is a holomorphically convex domain with smooth boundary, then
there exists a function holomorphic in G and smooth in a neighborhood of G
that is completely singular at every point of the boundary of G.

Exercises

1. A domain G CC C” is holomorphically convex if and only if for every
z € OG there is a neighborhood U(z) such that U N G is a domain of
holomorphy.

2. Let G; C C™ and G, C C™ be domains of holomorphy. If f : G; - C™ is
a holomorphic mapping, then f~1(G2) N G, is a domain of holomorphy.

3. Find a bounded holomorphic function on the unit disk D that is singular
at every boundary point.

7. Examples and Applications

Domains of Holomorphy

7.1 Proposition. FEvery domain in the compler plane C is a domain of
holomorphy.

PRrROOF: We have already shown that every domain in C is holomorphically
convex. Therefore, such a domain is also a domain of holomorphy. .

7.2 Theorem. The following statements about domains G € C" are equiv-
alent:

1. G is a weak domain of holomorphy.

2. G is holomorphically convez.

3. For every infinite discrete subset D C G there exists a holomorphic func-
tion f in G such that |f| is unbounded on D.

4. G is a domain of holomorphy.

The equivalences have all been proved in the preceding paragraphs. Fur-
thermore, we know that every domain of holomorphy is pseudoconvex. Still
missing here is the proof of the Levi problem: Every pseudoconvex domain
is holomorphically convex. We say more about this in Chapter V.

Every affine convex open subset of C™ is a domain of holomorphy. The n-fold
Cartesian product of plane domains is a further example.

7.3 Proposition. If Gy,...,G, C C are arbitrary domains, then G :=
Gy % --- X Gn, 18 a domain of holomorphy.
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PrOOF: Let D ={z, = (2{,...,2#) : p € N} be an infinite discrete subset
of G. Then there is an i such that (z!) has no cluster point in G;, and there
is a holomorphic function f in G; with lim,‘_,ool f(z) l = 0o. The function f
in G, defined by f(zl, ..-y2n) := f(2;), is holomorphic in G and unbounded
on D. [

Remark. The same proof shows that every Cartesian product of domains
of holomorphy is again a domain of holomorphy.

Complete Reinhardt Domains. Let G C C" be a complete Rein-
hardt domain (see Section 1.1). We will give criteria for G to be a domain of
holomorphy. For that purpose we define a map log from the absolute value
space ¥ to R™ by

log(r1,...,rs) := (logry,...,logry,).

Definition. A Reinhardt domain G is called logarithmically convez if
log 7(G N (C*)™) is an affine convex domain in R™.

Remark. Forz = (z1,...,2,) € G we havelogt(z) = (log|z1],...,log|z.|)-
If z € (C*)™, then |z;| > O for each i, and log 7(z) is in fact an element of R™.

7.4 Proposition. The domain of convergence of a power series S(z) =
2 u>0 a2’ is logarithmically convex.

PROOF: Let G be the domain of convergence of S(z), and M :=log7(G N
(C*)*) C R™. We consider two points x,y € M and points z, w € GN (C*)"
with log 7(z) = x and log 7(w) = y. If A > 1 is small enough, Az and Aw still
belong to G N (C*)™. Since S(z) is convergent in Az, Aw, there is a constant
C > 0 such that

la |- A |2"|<C and Ja,|-AM- [w”| < C, for every v € Ng.

Thus
la,] - A z¥|t . jw?|1=t < C, for every v and 0 < t < 1.

It follows from Abel’s lemma that S(z) is convergent in a neighborhood of
ze := (|z1]Yw1]'7%, . [2a Hwn ).

This means that z; € G and tx+ (1 —t)y = log7(2z:) € M, for 0 < t < 1.
Therefore, M is convex. =
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7.5 Proposition. Let G be a complete Reinhardt domain. If G is logarith-
mically convez, then it is holomorphically conver.

PROOF: Let K be a relatively compact subset of G. Since G is a complete
Reinhardt domain and K a compact subset of G, there are points z;,...,2x €
G N (C*)" such that

k
KcG = U P*{0,q;) C G, where q;:=71(z;).
=1
We consider the set . # = {m(z) = z¥ : v € Nj} of monomials, which is a
subset of O(G). For z € P*(0,q;) and m € .# we have

Im(z)| = 2| < qf = [m(q:)|.
Let Z := {z1,...,2x}. Then for z € K it follows that

|m(z)| < sup|m| < sup|m| < supjm/|, for every m € #.
K G’ z

Suppose that K is not relatively compact in G. Then K has a cluster point
Zg in 8G, and it follows that |m(zg)] < supy|m|, for every m € 4.

Let h(z) := log7(z), for z € (C*)". Since G is logarithmically convex, the
domain Gy := h(G N {C*)*) C R" is affine convex. For the time being we
assume that zg € (C*)". Then x¢ := h(zo) € 0Gy, and there is a real linear
function A(x) = @121 + - - - + ap Ty such that A(x) < A(xp) for x € Go.

Let x = log 7(z) be a point of Gg, and u € R™ with u; < z; for j =1,...,n.
Then e* < €% = |z;|, and therefore (since G is a complete Reinhardt do-
main) w = (e*,...,e*") € GN(C*)" and u € Gy. In particular,

A(x) — naj = A(x — nej) < A(xg), for every n € N.
Therefore, a; >0 for j =1,...,n.

Now we choose rational numbers r; > a; and define A(x) := riz1+- - +TnTn.
If we choose the r; sufficiently close to a;, the inequality A(q:) < A(xo)
holds for ¢ = 1,...,k, and it still holds after multiplying by the common
denominator of the r;. Therefore, we may assume that the r; are natural
numbers, and we can define a special monomial mg by mo(2z) := 27 -- - 25"
Then _ _

[mo(2)| = @) < eA*0) = |my(zo)|, fori=1,...,k.

So |mo(zo)| > supz|mo|, and this is a contradiction.

If zo ¢ (C*)", then after a permutation of the coordinates we may assume
that 2{” .- z{” # 0 and 27, = --- = 2{® = 0. We can project on the space
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C! and work with monomials in the variables z,, ..., 2. Then the proof goes
through as above. ]

Now we get the following result:

7.6 Theorem. Let G C C™ be a complete Reinhardt domain. Then the
following statements are egquivalent:

1. G is the domain of convergence of a power series.
2. G is logarithmically convez.

3. G is holomorphically convez.

4. G is a domain of holomorphy.

PROOF: We have only to show that if G is a complete Reinhardt domain
and a domain of holomorphy, then it is the domain of convergence of a power
series. By hypothesis, there is a function f that is holomorphic in G and
completely singular at every boundary point. In Section 1.5 we proved that
for every holomorphic function in a proper Reinhardt domain there is a power
series S(z) that converges in G to f. By the identity theorem it does not
converge on any domain strictly larger than G. .

Analytic Polyhedra. Let G ¢ C" be a domain.

Definition. Let U C G, V4,...,V; C C open subsets, and fi,..., fi
holomorphic functions in G. The set

P:={zeU: f(z) eV, fori=1,...,k}
is called an analytic polyhedron in G if P CC U.

If, in addition, V} = -.- = V|, = D, then one speaks of a special analytic
polyhedron in G.

Remark. An analytic polyhedron P need not be connected. The set U
in the definition ensures that each union of connected components of P is
also an analytic polyhedron if it has a positive distance from every other
connected component of P.

7.7 Theorem. Every connected analytic polyhedron P in G is a domain of
holomorphy.

PROOF: We have only to show that P is a weak domain of holomorphy.
If zo € OP, then there is an i such that f;(zg) € 9V;. Therefore, f(z) :=
(fi(z) — fi(zo)) ™! is holomorphic in P and completely singular at zo. .
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Example
Let ¢ < 1 be a positive real number, and
P:={z=(21,22) €C® : |z1| < 1, |z2] < 1 and |21 - 25| < ¢}

Then P (see Figure I1.7) is clearly an analytic polyhedron, but neither affine

P q

Figure I1.7. An analytic polyhedron

convex nor a Cartesian product of domains. Sc the analytic polyhedra enrich
our stock of examples of domains of holomorphy.

We will show that every domain of holomorphy is “almost” an analytic poly-
hedron.

7.8 Theorem. If G C C" is a domain of holomorphy, then there exists
a sequence (P,) of special analytic polyhedra in G with P, CC P,41 and
U, P =G.

Proor: Let (K,) be a normal exhaustion of G with K.,=K, Ifz ¢
OK, ;1 is an arbitrary point, then z does not lie in K, C (K,+1)°, and
therefore not in K,. Hence there exists a function f holomorphic in G for
which ¢ := supg |f| < |f(z)|. By multiplication by a suitable constant we
obtain ¢ < 1 < |f(z)|, and then there is an entire neighborhood U = U(z)
such that |f| > 1on U.

Since the boundary 8K, is compact, we can find finitely many open neigh-
borhoods U, ; of z, ; € 0K, 41, j = 1,...,k,, and corresponding functions
fv,; holomorphic in G such that [f, ;{ > 1 on U, ;, and 0K, 41 C U§;1 U,;.
We define

Poi={z € (Kus1)® : [fuj@| <lforj=1,...,k}.

Clearly, K, C P, C (K,+1)°. Furthermore, M := K,41 — (U, U -+ -UU,k,)
is a compact set with P, C M C (K,4,)°. Consequently, P, CC K,+1. Thus
P, is a special analytic polyhedron in G. It follows trivially that the sequence
(P,) exhausts the domain G. .
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In the theory of Stein manifolds one proves the converse of this theorem.

Exercises

1.

8.

If R is a domain in the real number space R™, then
Tp =R+ iR":={z € C" : (Re(z1),...,Re(z)) € R}

is called the tube domain associated with R. Prove that the following
properties are equivalent:

(a) R is convex.

(b) Tg is (affine) convex.

(c) Tr is holomorphically convex.

(d) Tg is pseudoconvex.

Hint: To show (d) = (a) choose Xg, yo € R. Then the function ¢(¢) :=
— Indr, (x0+¢(yo —X0)) is subharmonic in D. Since 1, (x+iy) = dr(x),
one concludes that t — —Indgr(xo + t(yo — Xo)) assumes its maximum
att=0o0rt=1.

. Let G C C" be a domain. A domain G C C™ is called the envelope of

holomorphy of G if every holomorphic function f in G has a holomorphic

extension to G. Prove: R

(a) If R ¢ R" is a domain and H(R) its affine convex hull, then G :=
H(R) + iR™ is the envelope of holomorphy of the tube domain G =
R+ iR™ R

(b) If G ¢ C™ is a Reinhardt domain and G the smallest logarithmi-
cally convex complete Reinhardt domain containing G, then G is the
envelope of holomorphy of G. Hint: Use the convex hull of log 7(G).

Construct the envelope of holomorphy of the domain

Gq = P2(0, (I’Q)) U P2(0’ (Q_v 1)) .

. A domain G C C" is called a Runge domain if for every holomorphic

function f in G there is a sequence (p, ) of polynomials converging com-
pactly in G to f. '

Prove that the Cartesian product of n simply connected subdomains of
C is a Runge domain in C".

A domain G C C" is called polynomially conver if it is convex with
respect to the family of all polynomials (cf. Exercise 5.5). Prove that
every polynomially convex domain is a holomorphically convex Runge
domain.

Riemann Domains over C"

Riemann Domains. It turns out that for general domains in C" the
envelope of holomorphy (cf. Exercise 7.2) cannot exist in C™. Therefore, we
have to consider domains covering C™.
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Definition. A (Riemann) domain over C" is a pair (G, r) with the
following properties:
1. G is a connected Hausdorff space.4
2. m: G = C" is a local homeomorphism (that is, for each point z € G
and its “base point” z := m(z) € C™ there exist open neighborhoods
U=U(z)cXandV =V(z) CC*suchthat 7 : U — Vis a
homeomorphism).

Remarks

1. Let (G,7) be a Riemann domain. Then G is pathwise connected, and
the map 7 : G — C" is continuous and open. The latter means that the
images of open sets are again open.

2. If (G, m,) are domains over C" for v = 1,...,l, and z, € G, are points
over the same base point zg, then there are open neighborhoods U, =
U.(z,) C G, and a connected open neighborhood V = V(zy) C C" such
that 7, |y, : U, — V is a homeomorphism for v =1,...,L

Examples

1. If G is a domain in C?, then (G, id¢) is a Riemann domain.
2. The Riemann surface of \/z (without the branch point) is the set

G:={(z,w) €C* xC : w? =2z}.

If G is provided with the topology induced from C* x C, then it is a
Hausdorff space. The mapping ¢ : C* = G defined by ¢ — (¢%,¢) is
continuous and bijective. Therefore, G is connected. The mapping ¢ is
called a uniformization of G.

Now let 7 : G — C be defined by m(z,w) := z. Clearly, 7 is continuous. If
(20, w0) € G is an arbitrary point, then 29 # 0, and we can find a simply
connected neighborhood V(zp) € C*. Then there exists a holomorphic
function f in V with f2(z) = z and f(20) = wo. We denote f(2) by /z.
The image W := f(V) is open, and the set #~1(V) can be written as the
union of two disjoint open sets

Ur :={(2,2f(2)) : 2e V}=(V x (W))NG.
Let f(z) := (2, f(2)). Then f: V — @G is continuous, and 7 o f(z) =z

The open set U := U, is a neighborhood of (zp,wp), with f(V) = U and
fom(z,w) = (z,w) on U; that is, 7|y : U — V is topological. Hence
(G, ) is a Riemann domain over C.

4 A general topological space X is said to be connected if it is not the union of
two disjoint nonempty open sets. A space X is called pathwise connected if each
two points of X can be joined by a continuocus path in X. For open sets in C"
these two notions are equivalent.
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The space G can be visualized in the following manner: We cover C with
two additional copies of C, cut both these “sheets” along the positive
real axis, and paste them crosswise to one another (this is not possible
in R3 without self intersection, but in higher dimensions, it is). This is
illustrated in Figure II.8.

Figure I1.8. The Riemann surface of /2

8.1 Proposition (on the uniqueness of lifting). Let (G, 7) be a domain
over C"* and Y a connected topological space. Let yo € Y be a point and
Y1,%2 : Y — G continuous mappings with ¥1(yo) = ¥2(v) and mo 9, =
7!'0'(/)2. Then 1/11 = ‘(/}2.

PrROOF: Let M := {y € Y : ¢1(y) = v2(y)}. By assumption, yg € M,
so M # @. Since G is a Hausdorff space, it follows immediately that M is
closed. Now let y € Y be chosen arbitrarily, and set = := ¥, (y) = ¥2(y) and
z := m(z). There are open neighborhoods U = U(z) C G and V = V(z) C
C" such that 7 : U — V is topological, and there is an open neigborhood
W = W(y) with ¢x(W) C U for A = 1,2. Then

Yilw = (mlu) T omohilw = (7ly) "t o 7o Yol = Palw,

and therefore W C M. Hence M is open, and since Y is connected, it follows
that M =Y. =

Definition. Let zp € C" be fixed. A (Riemann) domain over C* with
distinguished point is a triple G = (G, , zo) for which:

1. (G, ) is a domain over C".

2. x9 is a point of G with n(xo) := 2.
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Definition. Let G; = (Gj,7;,z;) be domains over C* with distin-
guished point. We say that G; is contained in G, (denoted by G; < G» )
if there is a continuous map ¢ : G; = G5 with the following properties:
1. m 0 = m (called “p preserves fibers”).
2. (p(.’L‘l) = Ta.

8.2 Proposition. If G, < G,, then the fiber preserving map ¢ : G; — G2
with o(x1) = z9 is uniquely determined.

This follows immediately from the uniqueness of lifting.
8.3 Proposition. The relation “<” is a weak ordering; that is:

1. G <G.
2. Gy <Gz and G2 < G3 = G; < Gs.

The proof is trivial.

Definition. Two domains G;, G, over C" with fundamental point are
called isomorphic or equivalent (symbolically G; = G») if G; < G2 and
G2 < Gs.

8.4 Proposition. Two domains G; = (Gj,7;,x;), j = 1,2, are isomorphic
if and only if there exists a topological® fiber preserving map ¢ : G, = G»
with p(z1) = x».

PRroOF: If we have fiber preserving mappings ¢; : G; = G2 and @3 : G —
G, with p1(z1) = 22 and @a(z2) = x4, it follows easily from the uniqueness
of fiber preserving maps that @2 o0 ¢; = idg, and ¢; o 92 = idg,. The other
direction of the proof is trivial. .

Definition. A domain G = (G, 7, z¢) with 7(zq) = 2¢ is called schlicht
if it is isomorphic to a domain Gy = (Go,idg,,2z0) with Go C C".

8.5 Proposition. LetG; = (Gj,id(;j,x,-), 3 = 1,2, be two schlicht domains
with G1,Gy C C". Then G, < Gs if and only if G; C Gs.

Example

5 Recall that a “topological map” is a homeomorphism!
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Let G; := {(z,w) € C? : w? = zand z # 0} and m (2, w) := z. Then
G1 = (G1,m1,(1,1)) is the Riemann surface of \/z, with distinguished point
(1,1). The domain G, is contained in the schlicht domain G, = (C,idc, 1), by
(2, w) := z. But the two domains are not isomorphic.

Union of Riemann Domains. We begin with the definition of the
union of two Riemann domains. Let G; = (Gj, 7}, x;), j = 1,2, be two Rie-
mann domains over C* with distinguished point, and zg := 7 (z;1) = m2(x3).
We want to glue G, G2 in such a way that z; and z, will also be glued.

To get a rough idea of the construction, assume that we already have a
Riemann domain G = (G, m,z¢) that is in some sense the union of G, and
Go. Then there should exist continuous fiber preserving maps ¢; : Gy = G
with ¢1(z1) = o, and @2 : G2 = G with @a(z2) := z¢. If @ : [0,1] = G,
and 3 : [0,1] = G, are two continuous paths with a(0) = z1, 8(0) = z2 and
m oa = mp o[, then 7, := ;1 0 a and v, := 3 0 B are continuous paths in G
with mo4y; = mo~y; and v, (0) = 72(0) = zp. Due to the uniqueness of lifting,
it follows that v; = 72. This means that a(t) and §(t) have to be glued for
every t € [0,1]. Unfortunately, this is an ambiguous rule. For example, we
could say that z € G; and y € G2 have to be glued if m;(z) = m2(y). Then
the desired property is fulfilled, but it may be that there are no paths a from
z1 to x and B from z5 to y with 7 o = mp 0 5.

Therefore, we proceed in the following way: Start with the disjoint union

G1 U Ga, and take the “finest” equivalence relation ~ on this set with the
following property:

1. Ty ~ I9g.
2. If there are continuous paths a : [0,1] - Gy and 3 : [0,1] = G2 with
a(0) = z1, B(0) = x4, and m 0 @ = w3 0 B, then a(1) ~ B(1).

One can equip G := (G U G2)/ ~ with the structure of a Riemann domain.
This will now be carried out in a more general context.

Let X be an arbitrary set. An equivalence relation on X is given by a partition
Z ={X, : ve N} of X into subsets with:

L UyenXo = X.
2. X,NX, =@ forv#p.

The sets X, are the equivalence classes.

Now let a family (£,).cr of equivalence relations on X be given with Z, =

{X, :v.€N}forcel Weset N:=]],; N, and

X, :=[)X!, forvi=(u)er €N
el
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Then & = {X, : v € N} is again an equivalence relation (simple exercise),
and it is finer than any Z,. This means that for every ¢ € I and every v € N,
thereisa v, € N, with X, C X .

We apply this to the disjoint union X = U rez G, for a given family (Ga)aecr
of Riemann domains Gy = (G, 7, ) over C* with distinguished point. An
equivalence relation on X is said to have property (P) if the following hold:

1. zx ~xy, for A,p€ L.
2. Ifa:[0,1) > G and B : [0,1] — G, are continuous paths with a(0) ~
B(0) and 7y 0 a = 7, 0 3, then (1) ~ SB(1).

We consider the family of all equivalence relations on X with property (P).
It is not empty, as seen above in the case of two domains. Therefore we can
construct an equivalence relation (as above) that is finer than any equivalence
relation with property (P). We denote it by ~p . It is clear that m(z) = 7,(y)
if z € Gi, y € Gy, and z ~p y. The relation ~p also has property (P), and
the elements of an equivalence class X, all lie over the same point z = z(X,).
We define G := X/~p and 7(X,) := z(X,). The equivalence class of all x
will be denoted by T.

8.6 Lemma. Lety € Gy and z € G, be given with m,(z) = ma(y) =: z. If
we choose open neighborhoods U = U(y) C G, V = V(z) C G,, and an open
connected neighborhood W = W(z) such that ) : U - W and m, : V > W
are topological mappings, then for ¢ := (m,ly) "t omy: U = V the following
hold:

1 p(y) ==z.
2. Ifx ~py, then p(y') ~p ' for everyy € U.

PROOF: The first statement is trivial. Now let a : [0,1] — W be a con-
tinuous path with a(0) = z and (1) = mx(y’) for some ¥’ € U. Then
B = (malv) ' o @ and 4 := ¢ o B are continuous paths in U and V with
BO) =y ~pz = p(y) = ¥(0) and m) 0 8 = m, 0 p o § = m, o . Therefore,
¥ =B8(1) ~p (1) = ¢(y). .

8.7 Theorem. There is a topology on G such that
G:=(G,7,%

is a Riemann domain over C" with distinguished point Z, and all maps @) :
Gy = G with
wa(z) := equivalence class of =

are continuous and fiber preserving.



8. Riemann Domains over C" 93

PrOOF: (1) Sets of the form )(M) for M open in G together with G

constitute a base of a topology for G. To see this it remains to show that the
intersection of two such sets is again of this form.

Let M C G and N C G, be open subsets. Then

(M) Npo(N) = (N Nyt (pa(M))).

But ;' (pr(M)) is open in G,. In fact, let € ¢, (pa(M)) be given, and
y € M be chosen such that ¢, (y) = po(z) (and therefore y ~p ). Let z :=
7ma(y) = m,(x). Then there exist open neighborhoods U = U(y) and V = V(z)
and an open connected neighborhood W = W (z) such that 7y : U — W and
T, : V. — W are topological mappings. Let ¢ := (w,]y) " omy : U = V. By
the lemma, ¢(y) = z and @(y’') ~p ¢’ for every 3y € U.

So V' := p(MNU) is a neighborhood of z in G,, and since p,(p(y')) = pa(y’)
for every y' € U, it follows that V' C o7 (pa(M)).

Consequently, every ¢, is a continuous map.

(2) Remark: Since every y € G is an equivalence class ¢a(z), we have

M= U (@5} (M)) for any subset M C G.
A€L

(3) # : G — C™ is continuous: Let V C C" be an arbitrary open set, and
M := #}(V). Then ¢;'(M) = (V) is open in G», and therefore M =

Usez (031 (M)) is open in G.

(4) G is a Hausdorff space: Let y;,y2 € G with g # y2, and z; := 7(y1),
z := 7(y2)-

There are two cases. If z; # 23, then there are open neighborhoods V;(z)
and V,(z2) with V; NV = @. Then #~!(V;) and #~!(V;) are disjoint open
neighborhoods of y; and ys. If z; = 25, then we choose elements z; € Gy,
z2 € G, with px(z1) = y1 and ¢,(T2) = y2, and since z; and z, are not
equivalent, the above lemma implies that there are disjoint neigborhoods of
¥ and y.

(5) G is connected: Let y = px(z) be an arbitrary point of G. Then there is
a continuous path a : [0,1] = G, that connects the distinguished point
to z. Then @, o a connects T to y.

(6) 7 is locally topological: Let y = px(z) be a point of G, and z = T(y) =
7a(z). Then there exist open neighborhoods U = U(z) € Gy and W =
W(z) C C" such that 7y : U — W is a topological mapping. U := ex(U)
is an open neighborhood of y, with %((7 ) = mz(U) = W. In addition, 7|3 is
injective, since T o ), = m) and my|y is injective.
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(7) Clearly, the maps @) : Gy — G are fiber preserving, and it was already
shown that they are continuous. s

Now G has the following properties:

1. gA<g for every A € L.
2. If G* is a domain over C" with G\ < G* for every A, then g < g*

PROOF: (of the second statement)

If G* is given, then there exist fiber preserving mappings 3 : Gy = G*. We
introduce a new equivalence relation ~ on the disjoint union X of the G by

>z = z€G) o' €G,and p}(z) = i)

It follows from the uniqueness of lifting that ~ has the property (P). Now we
define a map ¢ : G — G* by

plpa()) = @3 (x).

Since ~ p is the finest equivalence relation with property (P), ¢ is well defined.
Also it is clear that ¢ is continuous and fiber preserving. =

Therefore é is the smallest Riemann domain over C” that contains all do-
mains G».

Definition. The domain G constructed as above is called the union of
the domains Gy, and we write G = |J,cp G-

Special cases:

1. From G; < G and Gy < G it follows that Gy UGy < G.°
From G; < G, it follows that G; UG, = G,.
Gug=g.

Gi1UG, &2 G UG,

G1U(G2UG3) = (G1UG2) UGs.

Cu N

Example
Let G; = (G1, m1,21) be the Riemann surface of \/z with distinguished point
= (1,1) and G2 = (G2,id, z2) the schlicht domain
ng{zeC —<}z|<2}

with distinguished point x5 = 1.
Then G, UG, = (5,77,50), where G = (G U Ga)/ ~p

Let y € m;'(G2) C G;. Then we can connect y to the point x; by a path
a in 71'1_1(02), and 7;(y) to x2 by the path m; o @ in G2. But z; ~p 2, so
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y ~p m1(y) as well. This shows that over each point of G2 there is exactly
one equivalence class.

Now let z € C — {0} be arbitrary. The line through z and 0 in C contains a
segment « : [0,1] — C* that connects 2z to a point 2* € Ga. There are two
paths oy, ap in G; with m; oy = 7 o @y = a. Since a;1(1) ~p a2(l), it
follows that @;(0) ~p a2(0).

Then it follows that G; UG, = (C — {0},id, 1).

Exercises

1. For t = (t1,...,t,) € ¥ define &, : C* = C” by
By(21,...,2n) = (€ 21,... e 2,).

A Riemann domain G = (G, 7, zg) is called a Reinhardt domain over

C™ if n(x9) = 0 and for every t € ¥ — (C*)™ there is an isomorphism

wt : G — G with mo g = ®¢ o m. Prove:

(a) If G c C" is a proper Reinhardt domain, then G = (G,id,0) is a
Reinhardt domain over C™.

(b) Let G;, Gy C C? be defined by

— p2 _ = L 1
G, = P%0,1) {(z,w).|z|~2andlw|§2},

1
G = {(zw) eP0,1) : Jul < 3}.
Gluing G; and G; along {(z,w) : 1 < |2| < 1 and |w| < 1} one
obtains a Riemann domain over C? that is a Reinhardt domain over
C2, but not schlicht. Show that this domain can be obtained as the
union of G; = (Gl,id, (3, i)) and Gp = (Gz,id, (3, %))

2. Let J = {0,1,2,3,...} C Ny be a finite or infinite sequence of natural
numbers and P; = P®(z;,7;), ¢ € J, a sequence of polydisks in C™.
Assume that for every pair (z,7) € J x J an “incidence number” ¢;; €
{0, 1} is given such that the following hold:

(a) €ij = Eji and g;; = 1.

(b) €55 =0if LNP; = 2.

(c) For every ¢ > 0 in J there is a j < i with g;; = 1.
(d) If PN P;N P, # @ and €;; = 1, then €ix = €.

Points z € P; and w € P; are called equivalent (z ~ w) if z = w and

€ij = 1. Prove that G := |J P;/ ~ carries in a natural way the structure
of a Riemann domain over C™.

Let 7 : G — C™ be the canonical projection and suppose that there is a
point zg € [);c; P;. Is there a point o € G such that (G, 7, z) can be
written as the union of the Riemann domains (P;,id, zg)?
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9. The Envelope of Holomorphy

Holomorphy on Riemann Domains

Definition. Let (G, ) be a domain over C". A function f : G —» C
is called holomorphic at a point z € G if there are open neighborhoods
U=U(x) c Gand V = V(n(z)) C C" such that n|y : U — V is
topological and f o (w|y)~! : V — C is holomorphic. The function f is
called holomorphic on G if f is holomorphic at every point z € G.

Remark. A holomorphic function is always continuous. For schlicht do-
mains in C" the new notion of holomorphy agrees with the old one.

Definition. Let G; = (Gj,7;,%;), 7 = 1,2, be domains over C" with
distinguished point, and G; < G2 by virtue of a continuous mapping
¢ : G1 = Ga. For every function f on G2 we define f|g, := fo ..

9.1 Proposition. If f : Ga = C is holomorphic and G, < G2, then flg, is
holomorphic on G;.

PrRoOOF: Trivial, since ¢ is a local homeomorphism with 12 o = 7. ]

Definition.

1. Let (G,n) be a domain over C* and z € G a point. If f is a holo-
morphic function defined near z, then the pair (f,z) is called a local
holomorphic function at x.

2. Let (G1,m1), (G2, 72) be domains over C*, and z; € Gy, 73 € G2
points with 7 (z,) = ma(z2) =: z. Two local holomorphic functions
(f1,z1), (f2,z2) are called equivalent if there exist open neighbor-
hoods Ui(z1) C G, Us(z2) C G, V(2), and topological mappings
m Uy =V, mg: Uy = V with f1 0 (mly,)™! = fro (m2ly,) L

3. The equivalence class of a local holomorphic function ( f, =) is denoted
by fz.

Remark. If (fi)z, = (f2)z,, then clearly, fi(z1) = f2(z2). In particular,
if Gy = G2, m = 72, and x; = T3, then it follows that f; and f2 coincide in
an open neighborhood of z; = z,.
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9.2 Proposition. Let (G1,m), (G2,m2) be domains over C*, aj : [0,1] —
G continuous paths with myoa; = maoag. Additionally, let fi be holomorphic
on Gy, for A=1,2. If (f1)ay(0) = (f2)az(0), then also (fi)a, (1) = (f2)az()-

Proor: Let M := {t € [0,1] : (fl)al(t) = (f2)(!2(t)}' Then M # @, since
0 € M. It is easy to see that M is open and closed in [0, 1], because of the
identity theorem for holomorphic functions. So M = [0, 1]. n

9.3 Proposition. Let G; = (Gj,7;,z;), j = 1,2, be domains over C* with
distinguished point, and Gy < Go. Then for every holomorphic function f on
G, there is at most one holomorphic function F on G, with Flg, = [, i.e,
a possible holomorphic extension of f is uniquely determined.

PrOOF: Let Fj, F3 be holomorphic extensions of f to G2. We choose neigh-
borhoods Uy (z) C G such that the given fiber-preserving map ¢ : G; — G2
maps U, topologically onto U;. We have Fj o ply, = flu,, for j = 1,2, and
therefore Fily, = Fal|y,. It follows that (F});, = (F2)s,. Since each point of
G can be joined to z2, the equality F} = F;, follows. ]

Envelopes of Holomorphy

Definition. Let G = (G, 7, zy) be a domain over C* with distinguished
point and # a nonempty set of holomorphic functions on G.

Let (Ga)rer be the system of all domains over C* with the following
properties:
1. G <G, for every A € L.
2. For every f € & and every A € L there is a holomorphic function
F) on G with Fy|¢g = f.
Then H#(G) := U, O is called the F-hull of G.

If # = O(G) is the set of all holomorphic functions on G, then H(G) :=
Ho)(G) is called the envelope of holomorphy of G. If # = {f} for
some holomorphic function f on G, then Hf(G) := H(4}(G) is called the
domain of existence of the function f.

9.4 Theorem. LetG = (G, m, z¢) be a domain over C", & a nonempty set
of holomorphic functions on G, and Hg(G) = (G,7,Zo) the F-hull. Then
the following hold:

1. G < H#(G).
2. For each function f € & there exists exactly one holomorphic function
F on G with Flg = f.
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8. IfG1 = (G1, m,x1) is a domain over C* such that G < G and every func-
tion f € F can be holomorphically extended to G, then G; < Hg(G).

PROOF: Hg(G) is the union of all Riemann domains Gy = (G, 7y, z)) to
which each function f € & can be extended. We have fiber-preserving maps
<p,\:G—)G,\and<]5)\:G,\—>G.

Let ~p be the finest equivalence relation on X := (J,., G with property
(P).6 Then G is the set of equivalence classes in X relative to ~p. We define
a new equivalence relation ~ on X by

/

g~z = z€G) 1 €G, m(z)=m,z'), and for each f € F
and its holomorphic extensions Fi, F; on G, respectively G,
we have (F)\)z = (Fp)z'.

Then ~ has property (P):

(i)For any A we can find open neighborhoods U = U(xzg), V = V(z,), and
W = W(n(z0)) such that all mappings in the following commutative dia-

gram are homeomorphisms:
P

N o
|14

Then for f € & and its holomorphic extension F) on G we have that
Fyo(mv)™ = Fxopyo(mly)™ = fo(my)™?! is independent of A.
Therefore, all distinguished points z are equivalent.

(iiJffa : [0,1] = G and B : [0,1] = G, are continuous paths with a(0) ~ 3(0)
and my o a = w, 0 B, then (Fx)q(0) = (F,)g(0)- It follows that (F))a1) =
(F,)p(1) as well, and therefore a(1) ~ 5(1).

Since G < G and Gy < Hg(G), it follows that G < Hx(G). Furthermore, the
fiber preserving map @ := @y o @ does not depend on .

Now let a function f € # be given. We construct a holomorphic extension
F on G as follows:

Ifye G is an arbitrary point, then there is a A € L and a point yy € G,
such that y = @x(y»), and we define

F(y) := Fx(yr)-

If y = Pp(y,) as well, then yy ~p y,, and therefore y) =~ y, as well. It follows
that F\(yx) = F,(y,), and F is well defined.

6 For the definition of property (P) see page 92.
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We have Fo @ = Fo@yopy = Fy oy, = f on G. This shows that F is
an extension of f, and from the equation F o g\ = F), it follows that F is
holomorphic (since @y is locally topological).

The maximality of Hg(G) follows by construction. ]

The #-hull Hg(G) is therefore the largest domain into which all functions
f € & can be holomorphically extended.

9.5 Identity theorem. Let §; = (G, 7;,z;), j = 1,2, be domains over
C", and G= (6’, M, E) the union of Gi and G. Let f; : G; = C be holomor-
phic functions and G = (G, m, ) a domain with G < G; for j = 1,2 such that
file = falg. Then there is a holomorphic function f on G with ﬂgj = f;,
forj=1,2.

Proor: Let f := filc = f2lg, and & = {f}. Since G; < Hz(G) and
G: < Hg(G), it follows that G, UGy < Hz(G).

Let f be a holomorphic extension of f to G (where Hg(G) = (@, 7, %)), and
F:=fl5. Then

~ ~ -~

(fle,)le = fle = (fla)le = fle = f-

Therefore, flcj is a holomorphic extension of f to G;. Due to the uniqueness
of holomorphic extension, f|g, = f; for j =1,2. =

Pseudoconvexity. Let P* ¢ C" be the unit polydisk, (P*,H) a Eu-
clidean Hartogs figure, and ® : P* — C™ an injective holomorphic map-
ping. Then (®(P™), ®(H)) is a generalized Hartogs figure. P = (P™, ®,0) and
H = (H, ®,0) are Riemann domains with H < P. We regard the pair (P, H)
as a generalized Hartogs figure.

9.6 Proposition. Let (G,7) be a domain over C*, (P,H) a generalized
Hartogs figure, and xo € G a point for which H < G := (G, m,zp).

Then every holomorphic function f on G can be extended holomorphically to
GUP.

The proposition follows immediately from the identity theorem.

Definition. A domain (G, w) over C" is called Hartogs convez if the
fact that (P,H) is a generalized Hartogs figure and z¢ € G a point with
H <G :=(G,m xp) implies GUP = G.

A domain G = (G, 7, zo) over C" is called a domain of holomorphy if there
exists a holomorphic function f on G such that its domain of existence
is equal to G.
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Remark. If G C C" is a schlicht domain, then the new definition agrees
with the old one.

9.7 Theorem.

1. If G = (G, 7, o) is a domain over C* and & a nonempty set of holo-
morphic functions on G, then Hg(G) is Hartogs convez.
2. Every domain of holomorphy is Hartogs convez.

PRrOOF: Let (P, H) be a generalized Hartogs figure with # < Hg(G). Then
every function f € & has a holomorphic continuation to Hg(G) U P. There-
fore, Hz(G) UP < Hg(G). On the other hand, we also have He(G) <
Hg(G)UP.So Hg(G) UP = Hg(G). .

A Riemann domain (G, 7) is called holomorphically convez if for every infinite
discrete subset D C G there exists a holomorphic function f on G that is
unbounded on D.

9.8 Theorem (Oka, 1953). If a Riemann domain (G, ) is Hartogs pseu-
doconvez, it is holomorphically convez (and therefore a domain of holomor-

phy).

This is the solution of Levi’s problem for Riemann domains over C". We
cannot give the proof here.

It seems possible to construct the holomorphic hull by adjoining Hartogs
figures (cf. H. Langmaak, [La60]). It is conceivable that such a construction
may be realized with the help of a computer, but until now (spring 2002) no
successful attempt is known. We assume that parallel computer methods are
necessary.

Boundary Points. In the literature other notions of pseudoconvexity
are used. We want to give a rough idea of these methods.

Definition. Let X be a topological space. A filter (basis) on X is a
nonempty set R of subsets of X with the following properties:
1. ¢ R.
2. The intersection of two elements of R contains again an element of
the set R.

Example

1. If zo is a point of X, then every fundamental system of neighborhoods
of zg in X is a filter, called a neighborhood filter of x¢.
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2. Let (z,) be a sequence of points of X. If we define Sy := {z, : n >
N}, then R := {Sn : N € N} is the so-called elementary filter of the
sequence (). A filter is therefore the generalization of a sequence.

Definition. A point g € X is called a cluster point of the filter R if
xy € A, for every A € R. The point zg is called a limit of the filter R if
every element of a fundamental system of neighborhoods of zy contains
an element of R.

For sequences the new notions agree with the old ones.

If f: X =Y is a continuous map, then the image of any filter on X is a
filter on Y, the so-called direct image.

Definition. Let (G, 7) be a Riemann domain over C*. An accessible
boundary point of (G, ) is a filter R on G with the following properties:
1. R has no cluster point in G.
2. The direct image m(R) has a limit zg € C".
3. For every connected open neighborhood V = V(zg) C C" there is
exactly one connected component of 7 !(V) that belongs to R.
4. For every element U € R there is a neighborhood V' = V(zg) such
that U is a connected component of 7~1(V).

Remark. For a Hausdorff space X the following hold:

1. A filter in X has at most one limit.
2. If a filter in X has the limit zy, then xq is the only cluster point of this
filter.

(for a proof see Bourbaki, [Bou66), §8.1)
Therefore, the limit zp in the definition above is uniquely determined.

There is an equivalent description of accessible boundary points that avoids
the filter concept. For this consider sequences (z,) of points of G with the
following properties:

1. (z,) has no cluster point in G.

2. The sequence of the images #(z,) has a limit zg € C™.

3. For every connected open neighborhood V = V(zg) C C™ there is an
ng € N such that for n,m > ng the points x,, and z,, can be joined by a
continuous path «: [0,1] = G with 7o ([0,1]) C V.

Two such sequences (z,), (¥.) are called equivalent if:

1. limy 00 m(z,) = limy 00 T(y) = 2o-

2. For every connected open neighborhood V' = V/(zo) there is an ng such
that for n,m > ngy the points z,, and y,, can be joined by a continuous
path a: [0,1] = G with mo a([0,1]) C V.
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An accessible boundary point is an equivalence class of such sequences.

Let 3G be the set of all accessible boundary points of G. Even if G is schlicht,
this set may be different from the topological boundary 0G. There may be
points in G that are not accessible, and it may be happen that an accessible
boundary point is the limit of two inequivalent sequences.

We define G := GUG. If o = [Ty is an accessible boundary point, we define
a neighborhood of 7y in G as follows: Take a connected open set U C G
such that almost all z,, lie in U and w(U) is contained in a neighborhood
of zg := limp_, m(). Then add all boundary points 7 = [yn] such that
almost all y, lie in U and lim,,,o 7(ys) is a cluster point of 7r(U ). With this
neighborhood definition G becomes a Hausdorff space, and 7 : G — C" with

5 7(-(;1;) ifze G,
W(x) = nan;o 71‘(:13") lf r = {-’l:n] € aVG,

is a continuous mapping.

Definition. A boundary point r € JG is called removable if there is
a connected open neighborhood U = U(r) C G such that (U,#) is a
schlicht Riemann domain over C* and G N U is locally contained in a
proper analytic subset of U.

A subset M C JG is called thin if for every g € M there is an open
neighborhood U = U(ry) C G and a nowhere identically vanishing holo-
morphic function f on U NG such that for every » € M NU there exists
a sequence (Z,) in U N G converging to  such that lim, ., f(z,) = 0.

Example

Let G C C" be a (schlicht) domain and A C G a nowhere dense analytic
subset. Then every point of A is a removable boundary point of G’ := G— A.

The points of the boundary of the hyperball B,.(0) C C™ are all not removable.

Let B be a ball in the affine hyperplane H = {(20,...,2,) € C**! : 25 = 1},
and G C C"*! — {0} the cone over B. Then every boundary point of G is
not removable, since locally the boundary has real dimension 2n + 1. The set
M = {0} is thin in the boundary, as is seen by choosing f(zq,..., z,) = zo.

Analytic Disks. Let (G, ) be a Riemann domain over C*. If o : D = G
is a continuous mapping, oy : D — C™ holomorphic, and (# o)’ ({) # 0 for
¢ € D, then S := (D) is called an analytic disk in G. The set bS := ¢(8D)
is called its boundary.
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Let I := [0,1] be the unit interval. A family (St)ter of analytic disks (D)
in G is called continuous if the mapping (z,t) — :(2) is continuous. It is
called distinguished if S; ¢ G for 0 <t < 1land bS; CG for 0 <t < 1.

Definition. The domain G is called pseudoconvez if for every distin-
guished continuous family (S;¢):er of analytic disks in G it follows that
S cG.

The domain G is called pseudoconvez at r € OG if there is a neighborhood
U = U(r) C G and an € > 0 such that for every distinguished continuous
family (Si)ecs of analytic disks in G with #(S,) C B(#(r)) it follows
that S;NU Cc G fort € 1.

As in C™ one can show that a Riemann domain is pseudoconvex if and only
if it is Hartogs pseudoconvex.

9.9 Theorem (Oka). A4 Riemann domain (G, ) is pseudoconver if and
only if it is pseudoconvez at every point r € 0G.

9.10 Corollary. If (G,n) is a domain of holomorphy, then G is pseudo-
convex at every accessible boundary point.

The converse theorem is Oka’s solution of Levi’s problem.
Finally, we mention the following result:

9.11 Theorem. Let (G,7) be a Riemann domain over C*, and M C 8G
a thin set of nonremovable boundary points. If G is pseudoconvez at every
point of 0G — M, then G is pseudoconvez.

PROOF: See [GrRe56], §3, Satz 4. =

Exercises

1. Prove that a Reinhardt domain G over C"™ must be schlicht if it is a
domain of holomorphy.

2. Prove that if (G, ) is a Reinhardt domain, then for every f € O(G)
there is a power series S(z) at the origin such that f(z) = S(n(z)) for
z €G.

3. Prove that the envelope of holomorphy of a Reinhardt domain is again a
Reinhardt domain.

4. Prove that the Riemann surface of the function f(z) = log(z) has just
one boundary point over 0 € C.

5. Find a schlicht Riemann domain in C? whose envelope of holomorphy is
not schlicht.

6. Construct a Riemann domain G = (G, m,zo) over C? such that for all
z,y € 7~ }(w(z0)) and every f € O(G) the equality f(z) = f(y) holds.
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7. Let (G, 7) be a Riemann domain and (@ ,T) its envelope of holomorphy.
If f is a holomorphic function on G and F its holomorphic extension to
G, then f(G) = F(G).

8. Consider

G = {(z,w) : %<|z[<1, ]w|<1}

; 1 t
_ it .z > - ——
{(re ,w).2<r<1,t_0and]w| vl
Determine the envelope of holomorphy of G.
9. Let G C C™ be a domain and p : G — R a plurisubharmonic function.
If 25 is an accessible boundary point of B := {z € G : p(z) < ¢} CC G,
then B is pseudoconvex at Zg, in the sense of the last paragraph.
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Analytic Sets

1. The Algebra of Power Series

The Banach Algebra B;. In this chapter we shall deal more exten-
sively with power series in C". Our objective is to find a division algorithm
for power series that will facilitate our investigation of analytic sets.

We denote by C[z] the ring of formal power series 3., a,2z" about the
origin. Let R7} be the set of n-tuples of positive real numbers.

Definition. Lett = (t;,...,t,) €R} and f =3, .,a.2" € C[z]. We
define the “number” || f|l¢ by -

IAlle == szola'/ItV if this series converges,
00 otherwise.

Let By := {f € C[z] : ||fllt < o0}.

Remark. One can introduce a weak ordering on R? if one defines
(t1,. . ta) S(t],.. . th) 1= ; <tlfori=1,...,n.

For fixed f, the function t — || f||¢ is monotone: If t < t*, then || f|ls < || fll¢--

Definition. A set B is called a complez Banach algebra if the following
conditions are satisfied:
1. There are operations

+:BxB—-B, -:CxB—B and o:BxB—-B

such that
(a) (B,+,-) is a complex vector space,
(b) (B,+,0) is a commutative ring with 1,
(c) c-(fog)=(c-f)og=fo(c-g)forall f,g € BandceC.
2. To every f € B a real number ||f|| > 0 is assigned that has the
properties of a norm:
(a) lle- fll =lc| - || fll, for ce C and f € B,
(b) [If +gll < 1+ llgll, for f,g € B,
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© Ifl=0 < f=o0.

3. NWfogl <Ifll-llgll, for f,g € B.

4. B is complete; i.e., every sequence in B that is Cauchy with respect
to the norm has a limit in B.

1.1 Theorem. By = {f € C[z] : ||fllt < oo} is a complex Banach algebra
for any t € RY.

PRrOOF: Clearly, C[z] is a commutative C-algebra with 1. Straightforward
calculations show that ||. . .||; satisfies the properties (2a), (2b), (2c) and (3). It
follows that By is closed under the algebraic operations, and all that remains
to be shown is completeness.

Let (f)) be a Cauchy sequence in By with fy =) .,aMz”. Then for every
€ > 0 there is an n = n(e) € N such that for all A\, p > n,
D la —al |t = [Ifx = fulls <&

v>0
Since t¥ = t{* .- - t4~ # 0, it follows that
|a$ —al | < ti" for every v € Nj.

For fixed v, (a{») is therefore a Cauchy sequence in C which converges to a
complex number a,,.
Let f:=3,50a.,2”. This is an element of Cfz].
Given § > 0, it follows that there exists an n = n(d) such that

Z| al? —al* |t < —g— for A\>nand p € N.

v>0

Let I C N7 be an arbitrary finite set. For any A > n there exists a p = pu(}) €

N such that ), ,|a** — a,|t” < 6/2, and then

Zl aM —a, |tV <4, forA>n.
vel

In particular, ||fx — flls < 4. Thus fy — f (and then also f) belongs to B,
and (f) converges to f. ]

Expansion with Respect to z;. For the following we require some
additional notation:

If v e NG, t e R}, and z € C”, write
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v=(n,v), t=(t,t), and z=(z,7).

An element f =3 . a,2” € C[z] can be written in the form

F=3_fhat, with £i@)= apuniz}”.
A=0

v'20

The series f, are formal power series in the variables z3,. .., z,. We call this
representation of f the expansion of f with respect to z;. Now the following
assertions hold:

o0

1. f€By <= fr€ By forall A, and Y [Ifallet} < oo.
A=0

2. |lz - flle =t§ - liflle, for s € No.

PROOF:

(1) Since we are dealing with absolute convergence, it is clear that
o0
I£le =D _lIfallets.
A=0

(2) We have 2§ - f = 530, frz3°. The right side is the unique expansion of
2{ - f with respect to z;. Now the formula can be easily derived. n

Convergent Series in Banach Algebras. Let B be a complex
Banach algebra and (f)) a sequence of elements of B. The series 5>, fa
converges to an element f € B if the sequence F), := ) _}_, fi converges to
f with respect to the given norm.

1.2 Proposition. Every f € B with |1 — f|| < 1 is a unit in B with

-~ 1
1= 1-fand ||f7Y € ——.
(-0 nd I <
Proor: Let € :=||1 - f||. Then 0 < € < 1, and the convergent geometric

series )37 €* dominates the series 35 (1 — f)*. As usual, it follows that
this series converges to an element g € B. We have

Fy -
A=0 .

I

A=@1=-d -

A=0
n n+1
= Y a-p -3 a- s
A=0 A=1
= 1- (1 _ f)n+l.

As n tends to infinity we obtain f-g=1and |lg|| < Y ,e* =1/(1-¢€). =
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Convergent Power Series. A formal power series f = Y oa,2” is
called convergent if it is convergent in some polydisk P around the origin. In
that case there exists a point t € P N R%, and since f converges absolutely
at t, it follows that f € B;. On the other hand, if f € By, then by Abel’s
lemma f converges in P = P™(0,t).

1.3 Theorem.

1. Hy :={f € C[z] : 3t € R} with ||fll¢ < oo} is the set of convergent
power series.

2. H, is a C-algebra.

3. There is no zero divisor in H,: If f-g=0 in H,, then f =0 or g = 0.

We have already proved the first part, and then the second part follows easily.
The last part is trivial, since Cfz] contains no zero divisors.

Remark. If f is convergent and f(0) = 0, then for every € > 0 there is
a t € R} with ||f||¢ < e. In fact, since f(0) = 0, we have a representation
f=afi+ +zpfa | fllt < oo, then also ||fille < oo fori=1,...,n,and

n n
IFlle =D tall fille < max(ts,....ta) - > fille-
=1 =1
This expression becomes arbitrarily small as t — 0.

When we go from B, to H,, we lose the norm and the Banach algebra
structure, but we gain new algebraic properties:

1. f € Hyisaunit <= f(0) #0.

PROOF: One direction is trivial. For the other one suppose that f(0) # 0.

Then g := f- f(0)~! — 1 is an element of H, with g(0) = 0. So there

exists a t with ||g|l¢ < 1, and f- f(0)~! is a unit in By. Thus f is a unit

in H,. =
2. The set m:= {f € H, : f(0) = 0} of all nonunits in H, is an ideal:

(a) fi,foem = fi+ frem

(b) femandhe H, = h-fem.

An ideal a in a ring R is called mazimal if for every ideal b with a Cb C R
it follows that a =b or b = R.

One can show that in any commutative ring with 1 # 0 there exists a maximal
ideal. If a C R is maximal, then R/a is a field.

1.4 Theorem. The set m of nonunits is the unique mazimal ideal in H,,
and H,/m = C.

Proor: Ifa C H, isa proper ideal, then it cannot contain a unit. Therefore,
it is contained in m. The homomorphism ¢ : H, — C given by f — f(0) is
surjective and has m as kernel. (]



1. The Algebra of Power Series 109

Distinguished Directions. An element f € H,, is called z; -regular of
order k if there exists a power series fo(21) in one variable such that:

1. f(21,0,...,0) = 2F . fo(z1).
2. fo(0) #0.

If f is z;-regular of some order, f is called z; -regular.

Let f(z) = Y52 fr2? be the expansion of f with respect to z;. Then f is
z;-regular of order k if and only if fo(0') = -+ = fx-1(0’) = 0 and fix(0") # 0.
f is z;-regular if and only if f(21,0,...,0) #£0.

We often need the following properties:

1. fis a unit in H,, <= f is z;-regular of order 0.
2. If fy is z;-regular of order kj, for A = 1,2, then f; - f; is z;-regular of
order k; + ks.

There are elements f # 0 of H,, that f(0) = 0 which are not 2;-regular, even
after exchanging the coordinates.

Definition. Let ¢ = (c2,...,¢,) be an element of C*~!. The linear
map o : C* — C" with
0c(21,---,2a) = (21,22 + C221, .. ., 2n + Cn21)

is called a shear.

The set ¥ of all shears is a subgroup of the group of linear automorphisms
of C*, with o¢ = idcn.

We can write o¢(z) := z + z; - (0, ¢). In particular, we have oc(e1) = (1,¢).

1.5 Theorem. Let f € H,, be a nonzero element. Then there exists a shear
o such that f o o is z;-regular.

PROOF: Assume that f converges in the polydisk P. If we had f(21,2') =0
for every point (2;,2’) € P with z; # 0, then by continuity we would have
f = 0, which can be excluded. Therefore, there exists a point a = (a;,a’) € P
with a; # 0 and f(a) # 0. We define ¢ := (a;)~! - a’ and o := o.. Now,

foo(a1,0") = f(a1- oc(er)) = f(ar- (1,¢)) = f(a) #0.
So foo(z1,0') #0, and f oo is 2;-regular. (]

Remark. If fi,..., fi are nonzero elements in H,, then f:= f1--- fi #0
converges on a polydisc P, and there exists a point a € P with f(a) # 0 and
a; # 0. As in the proof above we obtain a shear o such that f; oo,..., fioo
are 2;-regular.
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Exercises
1. Let f(z) = 3_,50av2” be a formal power series.

(a) Prove the “Cauchy estimates”: f € By == |a,| < | fll¢/t” for
almost every v.

(b) Prove that if there is a constant C with |a,[s” < C, then f € B, for
t <s.

(c) Let fn(z) =3 ,~0au,n2” be a sequence of power series with || fn|ls <
C. If every sequence (a,n) converges in C to a number a,, then
show that (f,) is a Cauchy sequence in B converging to f(z) =
>0 a2, for every t <s.

2. The Krull topology on H, is defined as follows: A sequence (f,) converges
in H, to f if for every k € N there is an ng with f — f,, € m* for n > n,.
What are the open sets in H,? Is H,, with the Krull topology a Hausdorff
space?

3. Let B be a complex Banach algebra with 1. Show that for every f € B
the series exp(f) = >, f®/n! is convergent, and that exp(f) is a unit
in B.

4. If f is a formal power series and f = Z;":O P, its expansion into homo-
geneous polynomials, then the order of f is defined to be the number

ord(f) := min{s € Ny : ps # 0}.

Now let (fn) be a sequence of formal power series such that for every
k € N there is an ng with ord(f,,) > k for n > ng. Show that E:’:l fnis
a formal power series. Use this technique also for the following:

If 91,...,9m are elements of H, with ord(g;) > 1, then

Z a,w* — Z a,(g1(2),...,g9m(2))*

u>0 n20

defines a homomorphism ¢ : H,, — H, of complex algebras.

2. The Preparation Theorem

Division with Remainder in B;. Let a fixed element t € R% be
chosen. When no confusion is possible we write B in place of B, B’ in place
of By, and || f]] in place of || f{l¢. The ring of polynomials in z; with coefficients
in B’ is denoted by B'[z].

2.1 Weierstrass Formula in By. Let f and g = Y 5., grzy be two
elements of B. Assume that there ezists an s € Ng and a real number € with
0 <& <1 such that g5 is a unit in B’ and ||2{ —g-g; || <e-#.
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Then there exists ezactly one ¢ € B and one r € B'[z] with deg(r) < s such
that

f=qg+m
with
_ 1
oo -all < &7 11 T
and
1
Il < Wl =

PROOF: Let us first try to explain the idea of the proof. If h € B, then there
is a unique decomposition h = g, - 2§ +ry,, where 7, € B’[z;] and deg(rp) < s.
If g is given, we define an operator T =T, : B —+ B by

T(h):=g-9;" - qn +Th.

If T were an isomorphism, then f = T(T~!f) = g-(g;*-gr-17)+T7-15 would
be the desired decomposition. One knows from Banach space theory that T is
an isomorphism if idg — T is “small” in some sense. Since {|(idg — T)(h)|| =
ll23 — gg; |l - lign]l, one can, in fact, conclude from the hypothesis of the
theorem that idp — T' is “small.” Now T~! = 332 '(idg — T)*. Since (idg —
T)f = fand (idg—T)'f = (2§ —gg; !)gy, we obtain the following algorithm:

Inductively we define sequences fy, gx, r» beginning with fo = f = 2{go +ro.
If f» = 27q) + 7 has been constructed for some A > 0, then we define

frer:= (5 — 99, ) ax,
and obtain g)4+; and rx4; by the unique decomposition
fa+1 =241 +7Ta41,  Tas1 € B'[zy]  with deg(ra41) < s.

If we define ¢ := >3 g7 %gx and 7 := }_5° s, then

M3

F=f = D HAh-> Hn
A=0

>
Il

0

NE

(fx = Fas1)

>
Il

0

]
M3

(99:'ar+712) = g-g+r.

>
il
o
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When using this algorithm we do not need the abstract transformation T'
and the Banach theory of such transformations. However, it is necessary to
prove the convergence of all of the series that were used.

For this let A := —(2{ — gg;!). Then ||h|| < ¢-t{ and gg;! = 2§ + h.

From fy = zjgx + 7y it follows that ||ral| < [Ifall and {lgall < 77 - 1 fall-
Furthermore, from fy41 = —h - q, it follows that

WA aerll < NIRL- llaall < e - LAall-
Thus || frl] <&*- || f]l and 352, fx converges.

Since
lgs taall < e*®llgs M- IFIl and  Irall < €XIFN,

the series ¢ = Y 5o 95 qx and 7 = }_3. ;) also converge.
The estimates for {|g,q|| and || f|| follow readily:

Yool < 6000 Dot = Al 1,
A=0 A=0

IA

llgsqll

had 1
Irll < lenll < Ifll-
A=0

1-¢

It still remains to show uniqueness. Assuming that there are two expressions
of the form
f=qg+ri=qg+ry

it follows that

0=(n—q2) g+ (r1—72) =(q1 — @2)gs21 + (@1 — @2)gsh + (r1 — 72)

and
l(gr — @2)gs21ll < (g1 — g2)gs2] + (11 — 2)||
= @1 — g2)gshll
< et (e — g2)9sl]
= ¢e-|(gr — g2)gs211l-
Since 0 < € < 1, (g1 — ¢2)¢s2; = 0. Therefore, g; = g2 and r; = r3. -

2.2 Corollary. If the assumptions of the theorem are satisfied and if in
addition f € B'[z1], g € B’[z1], and deg(g) = s, then q € B'[z] withq =0
or deg(g) = deg(f) — s.

PRrROOF: Let d := deg(f). For d < s we have the decomposition f = 0-g+ f.
Hence we have to consider only the case d > s.
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We assume that deg(f,) < d for p = 0,...,A. Then deg(gx) < d — s, and
therefore

deg(fa+1) = deg(fr —rr —g99; 'qx) < max(d,s — 1,5+ (d — s)) = d.

Hence deg(fx) < d and deg(qx) < d—s for all ). It follows that deg(qg) < d—s,
and from f = g- ¢+ r we can conclude that deg(q) = d — s. =

The Welerstrass Condition. We use the notation from above.

Definition. Let s € Nyg. An element g = Z‘)’;O grz} € B satisfies the
Weierstrass condition (or W-condition) at position s if:

1. g, is a unit in B’.

2. 124 — 9ol < 15,

Let R be an integral domain.! A polynomial f(u) = fou® + fo_ju®"1+---+
fiv+ fo € R|u} is called monic or normalized if f, = 1. A polynomial
f € B[] is normalized if and only if it is z;-regular of some order k < s.

2.3 Weierstrass preparation theorem in B;. If g € B satisfies the W-
condition at position s, then there exists exzactly one normalized polynomial
w € B'[z1] of degree s and one unit e € B such that g =€ - w.

Proor: We apply the Weierstrass formula to f = z{. There are uniquely
determined elements ¢ € B and r € B’[z;] with 2§ =q-g+r and deg(r) < s
(we choose an € < 1 such that ||2{ — gg; || < t}).

But then 2§ — gg;! = (¢ — g;!)g + r is a decomposition in the sense of the

Weierstrass formula. Therefore, we have the estimate

1 ¢ &
1—-¢ 1-¢ '

llgsq — 10l < t7°l|23 — 997l -
That means that g.q and hence ¢ is a unit in B. Let ¢ := ¢~} and w := 2§ —7.
Then w is a normalized polynomial of degree s, and e-w = q~1(2{ ~7) = g.

If there are two decompositions g = e (2§ — r1) = ea(2§ — r2), then
2 :el'l-g+r1 =e2_1-g+r2.

From the uniqueness condition in the Weierstrass formula it follows that
e; = ez and 7y = 1o. =

2.4 Corollary. If g is a polynomial in 2,, then e is also a polynomial in
21.

! An integral domain is a commutative nonzero ring in which the product of two
nonzero elements is nonzero.
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PROOF: We use the decomposition z{ — gg;' = (¢ — g;!)g + r. From the
Weierstrass formula it follows that

1 £
|| < |25 — 9977t <t- <t
lirll < ll25 — 99| 1—¢ 1T _¢ 1
Since w,; = 1, it is also true that
ll2f — ww = |l = w|l = lIrll < 83

Therefore, g = e - w + 0 is a decomposition in the sense of the Weierstrass
formula, and the proposition follows from Corollary 2.2. =

The Weierstrass preparation theorem serves as a “preparation for the exami-
nation of the zeros of a holomorphic function.” If the function is represented
by a convergent power series ¢, and there exists a decomposition g = e-w with
a unit e and a “pseudopolynomial” w(zy,2z’) = 2§ + A1 (2')2{ "1 +- - -+ As(2),
then g and w have the same zeros. However, the examination of w is simpler
than that of g.

Weierstrass Polynomials. Now we turn to the proof of the Weierstrass
formula and the preparation theorem for convergent power series.

The ring H, is an integral domain with 1. If f € H,, and f(z) = Y 5o f2(2)2]
with f) = 0 for X > s, then f is an element of the polynomial ring H,,_;[z1].
If f; # 0, then deg(f) = s. If f is normalized and f,(0’) =0 for A < s, then
f is z;-regular exactly of order s, and f(z;,0') = 23.

Definition. A normalized polynomial w € H,_;[2;] with deg(w) = s
and w(21,0') = z{ is called a Weierstrass polynomial.

We have seen that a normalized polynomial w € H,_;[z;] with deg(w) = s is
a Weierstrass polynomial if and only if it is z3-regular of order s. It follows
easily that the product of two Weierstrass polynomials is again a Weierstrass
polynomial.

If g = e w is the product of a unit and a Weierstrass polynomial of degree s,
then we also have that g is z;-regular of order s, since the unit e is 2;-regular
of order 0. We now show that conversely, every z;-regular convergent power
series is the product of a unit and a Weierstrass polynomial.

2.5 Theorem. Let g € Hy, be z;-regqular of order s. Then for everye > 0
and every to € R there exists a t < to such that g lies in By, gs is a unit
in By, and ||2{ — gg; ' [le <€ - 8]

PROOF: Let g =33, 921 be the expansion of g with respect to z;. Then
gr(0)=0for A =0,1,...,5s—1 and g,(0') # 0.

Since g is convergent, there exists a t; < to with ||glls, < 0o. Then g, € By
for all A, and in particular,
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f(z,) = 93(0')—193(41') -1€ Bt’l-

Now, f(0’) = 0. Thus there exists a tz < t; such that ||f|l¢ <1 forallt < ts.
Therefore, gs is a unit in By, and g an element of By.

Let h := 2{ — gg;'. Then h € By for all t < t,, and we have an expansion
h =33 ohazt with hy =0, hy = —gag;* for A # s, and hy(0') = 0 for
A=0,1,...,s—1.

If t; > 0 is sufficiently small, then

oo oo €
| 55 mat], < 35wt <5
t to 2

A=s+1 A=s+1

for all t = (t1,t’) < t2. And since hy(0') =0 for A =0,...,s — 1, for every
small t; there exists a suitable t’ such that

s—1 s—1 e
IS ma ], = Sliraleid <4 . .
A=0 A=0

Consequently, (||t < e-t]. [

Remark. In a similar manner one can show that if gy,...,gn € C[z] are
convergent power series and each g; is z;-regular of order s;, then for every
€ > 0 there is an arbitrary small t € R} for which

i € Bt, (:)s, is a unit in By and ||z]* — gi(9:);.')| < € - 85

Weierstrass Preparation Theorem

2.6 Theorem (Weierstrass division formula). Letg € H, be 2;-regular
of order s. Then for every f € H, there are uniquely determined elements
q € H, and r € Hp_1[21] with deg(r) < s such that

f=q-g+r
If f and g are polynomials in 2; with deg(g) = s, then q is also a polynomial.

PROOF: There exists a t € R’} and an € with 0 <& < 1 such that f and g
lie in B, g5 is a unit in By, and ||z§ — gg;|l¢ < € - t{. It then follows from
the division formula in B that there exist ¢ and r with f =q-g+ .

Let two decompositions of f be given:

f=q-g+r1=q2-g+r2.
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We can find a t € R such that f,q1,¢o,71,72 lie in By and g satisfies the
W-condition in Bg. From the Weierstrass formula in By it follows that q; = g9
and 71 = ro. n

2.7 Theorem (Weierstrass preparation theorem). Let g€ H, be ;-
regular of order s. Then there exists a uniquely determined unit e € H,, and
a Weierstrass polynomial w € Hy,_1[2] of degree s such that

g=¢€-w.
If g is a polynomial in zy, then e is also a polynomial in z;.

PROOF: There exists a t € R} such that g satisfies the W-condition in Be.
The existence of the decomposition ¢ = e - w with a unit e and a normalized
polynomial w of degree s therefore follows directly from the preparation the-
orem in Bg. Since g is z;-regular of order s, the same is true for w. Sow is a
Weierstrass polynomial.

Now, w has the form w = 2§ —r, where r € H,_1[2;] and deg(r) < s. Thus, if
there exist two representations g = e, (2] — 1) = ez(2] — r3), it follows that
2= efl g+ = 62-1 - g +r5. The Weierstrass formula implies that e; = ez,
71 = 79 and therefore w; = ws. ]

Exercises

1. Write a computer program to do the following: Given two polynomials
f(w,z,y) (of degree n in w and degree m in x and y) and g(w, =, y) with
g(w,0,0) = w*, the program uses the Weierstrass algorithm to determine
g and 7 (up to order m in z and y) such that f =¢q-g+7.

2. Let f: P*~} x D — C be a holomorphic function and 0 < r < 1 be a real
number such that ¢ — f(2z’,¢) has no zero forz’ € P" ! and r < |¢| < 1.
Then prove that there is a number k such that for every z’ € P™~!
the function ¢ — f(2,{) has exactly k zeros (with multiplicity) in D.
Use this statement to give an alternative proof for the uniqueness in the
Weierstrass preparation theorem.

3. Show that the implicit function theorem for a holomorphic function f :
€™ x C —» C with f(0) =0 and f,_(0) # 0 follows from the Weierstrass
preparation theorem.

3. Prime Factorization

Unique Factorization. Let I be an arbitrary integral domain with
1. Then I* := I — {0} is a commutative monoid with respect to the ring
multiplication, and the set I* of units of I is an abelian group.
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Let a, b be elements of I*. We say that a divides b (symbolically a|b) if there
exists ¢ € I* with b = a - ¢. We can also allow the case b = 0. Then every
element of I* divides 0, and a unit divides every element of I.

Definition. Consider an element a € I* — I'*.
1. a is called irreducible (or indecomposable) if from a = a; - ag (with
aj,az € I'*) it follows that a; € I or a; € I'*.
2. a is called prime if a|ajaz implies that a{a; or a|as.

Irreducible and prime elements can be defined in an arbitrary commutative
monoid. In I” every prime element is irreducible, and in some rings (for
example, in Z or in R[X]) it is also the case that every irreducible element is
prime. In Z[\/=5] one can find irreducible elements that are not prime.

Definition. [ is called a unigque factorization domain (UFD) if every
element a € I'* can be written as a product of finitely many primes.

One can show that the decomposition into primes is-uniquely determined up
to order and multiplication by units. In a UFD every irreducible element is
prime and any two elements have a greatest common divisor (gcd).

Every principal ideal domain? is a UFD, and in this case the greatest common
divisor of two elements a and b can be written as a linear combination of a
and b. For example, Z and K[X] (with an arbitrary field K) are principal
ideal domains. So in particular, C[X] is a UFD.

Gauss’s Lemma. Let I be an integral domain. Two pairs (a, b), (c,d) €
I x I* are called equivalent if ad = bc. The equivalence class of a pair (a, b)
is called a fraction and is denoted by a/b. The set of all fractions has the
structure of a field and is denoted by Q(I). We call it the quotient field of I.

The set of polynomials f(u) = ap+aju+---+a,u™ in u with coefficients a; € I
constitutes the polynomial ring I{u]. The set I°[u] of monic polynomials in
I[u] is a commutative monoid. Therefore, we can speak of factorization and
irreducibility in I%[u].

3.1 Gauss’s lemma). Let I be a unique factorization domain and Q =
Q). If wy,wy are elements of Q°[u] with wiws € I°[u], then wy € I%[u] for
A=1,2.

PROOF: For A = 1,2, wx = axo+ ax1u+ -+ + ax s, 1071 + u* with
ax, € Q. Therefore, there exist elements dy € I such that dy -wy € I[u]. We
can choose d), in such a way that the coefficients of dj - w, have no common
divisor (such polynomials are called primitive).

2 A principal ideal domain is an integral domain in which every ideal is generated
by a single element.
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We define d := d;dz and assume that there is a prime element p with p|d.
Then p doesn’t divide all coefficients dyay, of dy - wx. Let 1) be minimal
such that p t dxax ., . Then

(dywr)(dows) = - -+ + uHrtH2 (day,u, a2, + something divisible by p) + ---

Since I is a UFD, p doesn’t divide (diaj,,, )(d2a2,,,). So the coefficient of
uk1t#2 is not divisible by p. But since wywy has coefficients in I, every divi-
sor of d must divide every coefficient of d - wywys = (dyw;)(d2ws). This is a
contradiction!3

When d has no prime divisor, it must be a unit. But then d; and d; are also
units, and wy = d; (dxwy) belongs to I°[u]. .

3.2 Corollary. Let I be a unique factorization domain.

1. If a € I°u} is prime in Qu], then it is also prime in I°[u].

2. If a € I°[u] is reducible in Q[u|, then it is reducible in I°u].

3. Every element of I°[u] is a product of finitely many prime elements.
4. If a € I°[u) is irreducible, it is also prime.

PrOOF: 1. Let a € I°[u] be a prime element in Q{u]. If a divides a product
a’a” in I°[u], then it does so in Q[u]. Therefore, it divides one of the factors
in Q[u]. Assume that there is an element b € Q[u] with a’ = ab. By Gauss’s
lemma b € I°[u]. This shows that a is prime in I°[u].

2. Let @ € I%u] be a product of nonunits a;,a; € Qu}. If ¢; € Q is the
highest coefficient of a;, then c;cp = 1, ¢ 'a; € Q°u] and a = (c7 ' a1)(cz 'az).
By Gauss c; 'a; € I°u], and these elements cannot be units there. So a is
reducible in I°[u].

3. Every element a € I°[u] is a finite product a = a; - - - q; of prime elements
of Q[u]. One can choose the a; monic, as in (2). Using Gauss’s lemma several
times one shows that the a; belong to I°[u]. By (1) they are also prime in
I°[u).

4. Let a € I°[u] be irreducible. Since it is a product of prime elements, it
must be prime itself. -

Remark. In the proof we didn’t use that I is a unique factorization do-
main. We needed only the fact that Q[u] is a UFD (since Q is a field) and
the statement of Gauss’s lemma: If a;,a; € Q°[u] and ajaz € I%[u], then
a; € I°[u) for i = 1,2.

3 The original version of Gauss’s lemma states that the product of primitive poly-
nomials is again primitive. The reader may convince himself that this fact can
be derived from our proof.
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Factorization in H,,. Now the above results will be applied to the case
I=H,.

Definition. Let f € Hy, f = Y 52,px be the expansion of f as a
series of homogeneous polynomials. One defines the order of f by the
number

ord(f) :=min{A € Ny : py #0} and ord(0) := oo.

(See also Exercise 1.4 in this chapter)

Then the following hold:

1. ord(f) > 0 for every f € H,.
2. ord(f) =0 <= f is a unit.

3. ord(f1 - f2) = ord(f1) + ord(f2).

3.3 Theorem. H, is a unique factorization domain.

PROOF: We proceed by induction on n.

For n = 0, H, = C is a field, and every nonzero element is a unit. In this
case there is nothing to show.

Now suppose that the theorem has been proved for n — 1. Let f € H,, be a
nonunit, f # 0. If f is decomposable and f = f;- f2 is a proper decomposition,
then ord(f) = ord(f1) + ord(f2), and the orders of the factors are strictly
smaller than the order of f. Therefore, f can be decomposed into a finite
number of irreducible factors.

It remains to show that an irreducible f is prime. Assume that f| f; fo, with
fr € (Hp)* for A = 1,2. There exists a shear o such that f; oo, f; oo and
f oo are z-regular. If we can show that f o o divides one of the f) oo, then
the same is true for f and f). Therefore, we may assume that f;, fo, and f
are z;-regular.

By the preparation theorem there are units e;, ez, e and Weierstrass polyno-
mials wy,wq, w such that f; = e;-wy, fi = e2-w2, and f = e-w. Then w divides
wiwsp. If wiwy = ¢ - w with ¢ € H,, then the division formula says that ¢ is
uniquely determined and a polynomial in 2;. So w divides wyws in H2_,[2].
Since w is irreducible in H,,, it must also be irreducible in H2_,[2;]. By the
induction hypothesis H,_, is a UFD, and therefore w is prime in H3_,[z1]. It
follows that w|w; or w|ws in HY_,[21] and consequently in H,,. This means
that f|f1 or f|fz in H,. .

Hensel’s Lemma. Let w € H,[u] be a monic polynomial of degree s.
There is a polydisk P around 0 € C™ where all the coefficients of w converge to
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holomorphic functions. Therefore, we can look at w as a parametrized family
of polynomials in one variable u. By the fundamental theorem of algebra
w(0, u) splits into linear factors, and the same is true for every w(z,u) with
z € P. We now show that such splittings are coherently induced by some
splitting of w in H2[u|, at least in a neighborhood of 0.

3.4 Hensel’s lemma. Let w(0,u) = Hl)‘___l(u —¢))®* be the decomposition
into linear factors (with ¢, # c, for v # p and sy +---+ s, = s). Then there
are uniquely determined polynomials wi,...,w; € HO[u] with the following
properties:

1. deg(wy) = sy, for A=1,...,L
2. wa(0,u) = (u —cx)™.
3. W=wi-... wy.

PROOF: We proceed by induction on the number {. The case [ = 1 is trivial.
We assume that the theorem has been proved for I — 1.

First consider the case w(0,0) = 0. Without loss of generality we can assume
that ¢; = 0. Then w(0,u) = u®! - h(u), where h is a polynomial over C with
deg(h) = s — s; and h(0) # 0. So w is u-regular of order s;, and there exists
a unit e € H2[u] and a Weierstrass polynomial w; with w = e - w;. Since
w1(0,u) = u*!, it follows that

!

e(0,u) = h(u) = H(u — ).

A=2

By induction there are elements wo,...,w; € HO[u} with deg(wy) = sa,
wr(0,u) = (u—cy)** and € = wy---w;- Then w = wywy---w; is the de-
sired decomposition..

If w(0,0) # 0, then we replace w by w'(z,u) := w(z,u + ¢;) and obtain a
decomposition w’ = w] -+ w; as above. Define

w,\(z, U) = wi\(zv u - cl)'

This gives a decomposition w = wy ---w; in the sense of the theorem. The
uniqueness statement also follows by induction. n

The Noetherian Property. Let R be a commutative ring with 1.
An R-module is an abelian group M (additively written) together with a
composition R x M — M that satisfies the following rules:

1. r(zy + z2) =721 + 72 for 7 € R and 21,22 € M.
2. (r1 + re)x =7z 4+ rox for ry,79o € R and z € M.
3. r1(rex) = (rire)x for r1,7r3 € Rand £ € M.
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4. 1-z=zforxe M.

These are the same rules as those for vector spaces (and the elements of
a module are sometimes also called vectors). However, it may happen that
rx = 0 even if r # 0 and = # 0. Therefore, in general, an R-module has no
basis. So-called free modules have bases by definition. ‘An example is the free
module RY := R x --- X R (q times), with a basis of unit vectors. An example
of a nonfree module is the Z-module M := Z/6Z, where 2-3=2-3 = 0.

If M is an R-module, then a submodule of M is a subset N C M with the
following properties:

l.z,ye N = z+ye€ N.
2.r€eRandz e N = rzeN.

A submodule of an R-module is itself an R-module.
Example

The ring R is also an R-module. The composition is the ordinary ring mul-
tiplication. In this case the submodules of R are exactly the ideals in R. An
R-module M is called finite if there is a finite set {z;,...,z,} C M such
that every x € M is a linear combination of the z; with coefficients in R. The
free module R? is obviously finite. But Z/6Z is also finite, being generated
by the class 1.

Definition. An R-module M is called noetherian if every submodule
N C M is finite.

A ring R is called noetherian if it is a noetherian R-module. This means
that every ideal in R is finitely generated (in the sense of a module).

3.5 Proposition. Let R be a noetherian ring. Then any ascending chain
of ideals
Ihchclb,Cc---CR

becomes stationary, i.e., there is a ko such that Iy = Iy, for k > ko.

PROOF: The set J := [ J;, Ii is obviously an ideal. Since R is noetherian,

J is generated by finitely many elements fi,..., fn. Each f, lies in an ideal
It,. If ko = max(ky, ..., kn), then all f, are elements of Iy,. So I = I}, for
k 2 ko. =

3.6 Theorem. If R is a noetherian ring, then R? is a noetherian R-module.

PROOF: 'We proceed by induction on gq.
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The case ¢ = 1 is trivial. Assume that ¢ > 2 and the theorem has been proved
for ¢ — 1. Let M C R? be an R-submodule. Then

I'={reR: 3reR? with (r,x') € M}

is an ideal in R and as such is finitely generated by elements r;,...,r;. For
every T there is an element ry € R?~! such that ry := (r),r}) lies in M.

The set M’ := M N ({0} x R?~!) can be identified with an R-submodule
of R97}, and by the induction assumption it is finite. Let ry = (0,1}), A =
l+1,...,p, be generators of M’.

An arbitrary element x € M can be written in the form x = (z,x’) with
z1 €I Then z; = Zi\:l axry, ax € R, and

! ]
X — Za,\r,\ = (O,XI - Za)‘r')‘) e M.
A=1 A=1

That is, there are elements a;41,...,a, € R such that
! P
x—Za,\r,\= Z azr).
A=1 A=l+1
Hence {r,...,rp} is a system of generators for M. : .

3.7 Riickert basis theorem. The ring H, of convergent power series is
noetherian.

PrOOF: We proceed by induction on n. For n = 0, H, = C, and the
statement is trivial. We now assume that n > 1 and that the theorem has
been proved for n — 1. Let I C H,, be a nonzero ideal and g # 0 an element
of I. Without loss of generality we can further assume that g is z;-regular of
order s.

Let & = &, : H, — (H,-1)° be the Weierstrass homomorphism, which is
defined in the following manner: For every f € H, there are uniquely defined
elements ¢ € H, and r = rg + 71327 +--- + 7:.,_1::;’_1 € H,_1[z1] such that
f=q-g+r Let ®(f) i= (ro,-..,re-1):

Now, ® is an H,_;-module homomorphism. By the induction hypothesis
H,_, is noetherian, and so (H,,_1)® is a noetherian H,_;-module. Since M :=
&(I) is an H,,_;-submodule, it is finitely generated. Let ry = (v§,..., 7)),

A=1,...,l, be generators of M.

If f € I is arbitrary, then f = q-g+7 withr = ro+r12+-- - +7,_12{ "}, and
there are elements ay,...,a; € Hp_1 such that (ro,71,...,75-1) = ®4(f) =
Ei\=1 a,r,. Hence we obtain the representation
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f=(1'g+za,\ (rg” + 7z 4+ V20T,

The set {g,r®,..., 7"} with 7™ =¥ + 72y + - + 7,297 is a system
of generators of I. n
Exercises

1. Prove that O(C) is not a UFD.

2. Let M be a finite H,-module, and m C H,, the maximal ideal. If M =
m- M, then M = 0.

3. Let f: P""1 x D — C be a holomorphic function such that for every
z' € P""! there is a unique solution 2, = ¢(2z') € D of the equation
f(z',2,) = 0. Use function theory of one variable to show that ¢ is
continuous, and use Hensel’s lemma to show that ¢ is holomorphic.

4. Let f € H, be z-regular, f = e - w with a unit e and a Weierstrass
polynomial w € H,_1[z;). Prove that f is irreducible in H, if and only
if w is irreducible in H,_1[2].

5. Show that f(z,w) := 2% —w?(1 —w) is irreducible in the polynomial ring
C[z, w] and reducible in H,,.

6. Let f € H, be given with f,,(0) # O for some i. Prove that f is irreducible
in H,.

4. Branched Coverings

Germs. Let B ¢ C" be an open set and zp € B a fixed point. A local
holomorphic function at zo is a pair (U, f) consisting of an arbitrary neigh-
borhood U = U(z¢) C B and a holomorphic function f on U. Two such
functions f : U — C and g : V — C are called equivalent if there is a neigh-
borhood W = W(z¢) C UNV such that f]W = g|W. The equivalence class
of a local holomorphic function (U, f) at z is called a germ (of holomorphic
functions) and is denoted by f,,. The value f(z,) as well as all derivatives of
f at zo (and therefore the Taylor series of f at zg) are uniquely determined
by the germ. On the other hand, if a convergent power series at zq is given,
then this series converges in an open neighborhood of zg to a holomorphic
function f, and the germ of f determines the given power series. So the set
O, of all germs of holomorphic functions at zy can be identified with the C-
algebra of all convergent power series of the form ZV>0 (z—120)". This algebra
is isomorphic to the algebra H, and has the same algebraic properties.

Let fz, # 0 be any element of O,, with f(zg) = 0. Then there are a neigh-
borhood U(zp) C B, a neighborhood W (0) C C*~1, a holomorphic function
e on U, and holomorphic functions a;,...,a, on W such that after a suitable
change of coordinates the following hold:
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1. e(z) #0 for every z € U.
2. f(z) = e(z) - w(z — 2o) for w(wy, w') = wi + a3 (W)z{™ ! + - + as(w').

Pseudopolynomials. A pseudopolynomial of degree s over a domain
G C C" is a holomorphic function w in G x C that is given by an expression

w(u,z) = u® + hy(z)u’ "1 + - + he(z),

with hi,...,hs € O, where O = O(G) denotes the ring of holomorphic
functions on G. The set of pseudopolynomials of any degree over G will be
written as O%[u].

We begin with several remarks on the algebraic structure.

4.1 Proposition. If G is a domain, i.e., a connected open set, then the
ring O = O(G) is an integral domain.

PRrROOF: We need to show only that O has no zero divisors. Assume that
f1, f2 are two holomorphic functions on G with both f; # 0. Since G is a
domain, their zero sets are both nowhere dense in G, and there is a point

z € G with f1(z) - f2(z) #0. So f1- f2 #0. =

It also follows that O%[u] is free of zero divisors. We denote by @ the quo-
tient field of 0. Then the group Q[u]* of units in the integral domain Qu]
consists of the nonzero polynomials of degree 0. If O* C O is the multiplica-
tive subgroup of not identically vanishing holomorphic functions on G, then

Quj*n © =0~

4.2 Proposition. If w;,ws € Q%u] are pseudopolynomials with wy - wy €
Oy}, then wy,ws € O°u].

ProOF: If w=u®+ (f1/g1)u*"" + -+ (fs/gs) is an arbitrary element of
Q°[u], then for all z € G the germs g; , are not 0. :

For a moment we omit the . If the quotient of f, and g, is holomorphic, i.e.,
fz = hy - g with h, € Oy, then h; is uniquely determined and there is a ball
B around z in G such that h, comes from a holomorphic function h on B
and the equation f = h - g is valid in B. If we take another point z’' € B,
the germ of h at this point is the quotient of the germs of f and g at this
point. So z — h,(z) defines a global holomorphic function k on G. We write

h=f/g.

Thus, if w, := u® + ((f1)2/(91)2)u*"" + -~ + ((fs)2/(gs)2) lies in OQ[u] for
every z € G, then w € O°[u].

Now we apply Gauss’s lemma in the unique factorization domain O, = H,.
Let w := w; - wy. Then (w1); * (W2)s = w, € O%u] for every z € G. Conse-
quently, the coeflicients of (w;), are holomorphic, and by the remarks above
this means that w; € O%u]. .
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The following is an immediate consequence of the above two propositions:

4.3 Theorem. LetG € C™ be a domain. Then O%u] is a factorial monoid;
i.e., every element is a product of finitely many primes.

Euclidean Domains

Definition. An integral domain I is called a Euclidean domain if there
is a function N : I* — Ny with the following property (division with
remainder): For all a,b € I,b # 0, there exist ¢, € I with
l.L.a=gq-b+r,
2. r=00r N(r) < N(b).
The function N is called the norm of the Euclidean domain.

Examples

1. Z is a Euclidean domain with N(a) := |a|.
2. If k is a field, then k[z] is a Euclidean domain, by N(f) := deg(f).

Every Euclidean domain I is a principal ideal domain and thus factorial. If
a, b are elements of I, then the set of all linear combinations

r-a+s-b#0, r,sel,

has an element d with N(d) minimal. The element d generates the ideal
a={ra+sb: r,s € I} and is a greatest common divisor of a and b. It is
determined up to multiplication by a unit.

Now assume again that G is a domain in C*, O = O(G), and Q = Q(O). Then
Q[u] is a Euclidean domain. If w;,w, are pseudopolynomials in O%u], there
is a linear combination in w = ryw; + rows # 0 in Q[u] with minimal degree.
It can be multiplied by the product of the denominators of the coefficients in
ry and ry. Then 71,72, and w are in Ofu], and w is a greatest common divisor
of Wi, Wy.

The Algebraic Derivative. Let O and Q be as above. If w € O%u]
has positive degree, then it has a unique prime decomposition w = w; - - - wy.
The degree of each w; is positive. We say that w is (a pseudopolynomial)
without multiple factors if all the w; are distinct.

The (algebraic) derivative of a pseudopolynomial is defined as follows. If
w = sz/:o a,uY, then D(w) := Zi:] v-a, -u’"L. Thus

D(w +w2) = D(w1)+ D(we),
D(w1 'UJ2) = D(wl) cwo +ws - D(wz).
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4.4 Theorem. An element w € O°u] is without multiple factors if and
only if a greatest common divisor of w and D(w) is a function h € O*.

PRroOOF: If w has the irreducible w; as a multiple factor, then D(w) is also
divisible by w;. This is also true in Q[u]. So a greatest common divisor is
certainly not a function h € O*.

Assume now that w = ], w; has no multiple factor. Then
D(w) = Zwl ceD(wg) - wy.

If the degree of the greatest common divisor v of w and D(w) is positive, then
7 is a product of certain w;. So at least one w; divides both w and D(w). Then
w; divides wy - -- D(w;) - - - w; and hence D(w;). This is not possible, because
D(w;) has lower degree. So the degree of the greatest common divisor is 0,
and therefore it is a function h € O*. L]

Symmetric Polynomials.

Definition. A polynomial p € Z[u;,...,u,] is called symmetric if for
all 4, j we have p(u1,...,ui, .. Uj,. .., Us) = DU, oy Ujy ooy Uy e nny Us).
There are the elementary symmetric polynomials oy, . .., 0, defined as follows:
al(ul,...,us) = Uy +--+ ug,
o2(u1,-. -y us) = ur(ug+ -+ us) Fug(uz + -+ ug) F o+ us_1Us,
os(Upy...,Us) = up---us.

The following result is proved, e.g., in the book [vdW66).

4.5 Theorem. Ifp € Z[uy,...,us] is symmetric, then there is exactly one
polynomial Q(y1,-..,ys) € Zly,...,ys] such that p = Q(o1,...,0).

The Discriminant. Consider the special symmetric polynomial
pv(ul,..., us) = H(m —u;)?
i<j

(square of the Vandermonde determinant). Since it is symmetric, there is
a uniquely determined polynomial Qv (y1,...,ys) with integral coefficients
such that

pv(un, ..., us) = Qu(or(ur,. .., Us), -, 0s(u1, - .., Us)).
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Definition. Ifw = u®+ hi(z)u*"! +-- -+ hs(z) is a pseudopolynomial
in O%u], then A, = Qv(—h1, ha,...,(—=1)%hs) is called the discriminant
of w. It is a holomorphic function in G, and we denote its zero set by D,,.

It is well known from the theory of polynomials that
(—1)ih1~(z) = a,-(wl, ey ws),

where wi, ..., w, are the zeros of the polynomial u — w(u,z). So A,(z) =0
if and only if there is a pair i # j with w; = w;.

Assume now that w is without multiple factors. Then there is a linear combi-
nation of w and D(w) that is a function h € O*. We restrict to a point z € G
with h(z) # 0. Then the greatest common divisor of w(u,z) and D(w)(u,z)
is 1. This means that w(u,z) has no multiple factors; i.e., the zeros of w(u, z)
are all distinct. So A, (z) # 0, and D, is nowhere dense.

Example

Let G C C™ be a domain, a,b holomorphic functions in G, and w(u,z) :=
u? — a(z) - u + b(z). In this case

pv(ul,u2) = H(u,- - uj)2 = (’U.]_ - U2)2 = (ul + u2)2 —-4. ui * ug.
i<j

So Qv(y1,y2) =y} —4-ys, and
B.(2) = Qv(a(z),b(z)) = a(z)” — 4b(2).

If z€ G and A, (z) # 0, there are two different solutions of w(u,z) = 0.

Hypersurfaces. We use the theory of pseudopolynomials to study ana-
lytic hypersurfaces. Such analytic sets are locally the zero set of one holomor-
phic function. Assume that f is a holomorphic function in a connected neigh-
borhood of the origin in C**! that is not identically 0. Without loss of gener-
ality we may assume that A = N(f) contains the origin. Then a generic com-
plex line ¢ through 0 meets A in a neighborhood of 0 only at the origin. After
a linear coordinate transformation, £ = {(u,z) : z = 0} is the first coordinate
axis. By the Weierstrass preparation theorem J(0,0) = €(0,0) "W(0,0) in the ring
Hp 1, where e 0) is a unit in Hpy1, and wg,0) € Hn[u] a Weierstrass poly-
nomial. We can represent the germs locally by holomorphic functions. Thus
there is a domain G C C™ containing 0, and a disk D = {u € C : |u| < 7}
such that in U := D x G there are a holomorphic function e that does not
vanish in U and a pseudopolynomial w over G with f = e -w in U. We may
assume that AN (0D x G) = @. Therefore, the zero set of f in U is that of
w.
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We can decompose w into prime factors. Using the fact that any power of a
prime factor vanishes at the same points as the prime factor does, we may
assume that w is without multiple factors. Then the discriminant A, is not
identically zero in G. We set D, = {z € G : A, (z) = 0}.

4.6 Theorem (on branched coverings). Ifz, € G — D, there are a
neigborhood W = W(z) C G — D,, and holomorphic functions fi,..., fs in
W with fi(z) # f;(z) fori# j and z € W such that

w(u,z) = (u— f1(2)) - (u— fs(2)) in C x W.

There are fewer than s points over any point zg € D,, (see Figure I11.1).

Figure II1.1. A branched covering over G

A point z € G above which there are fewer than s points is called a branch
point. All points of the discriminant set D,, are branch points. Over all other
points our set A is locally the union of disjoint graphs of holomorphic func-
tions, and is therefore regular.

PROOF: For zg € G — D,, the polynomial w(u,zg) has s distinct roots.
We write w(u,zg) = (u — ¢1) - (u — ¢s), where the ¢; all are distinct. If
w(u,z) = u® + hi(z)u*"! + - - + hs(z), then the germ

Way i= u? + (hl)zOu“‘_1 + o+ (hs)zeo

is a polynomial over O,, = H,. By Hensel’s lemma it has a decomposition
Wy = W1,zg * * * Ws zo With the following properties:
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l. wigy(u,20)=u—c;fori=1,...,s.
2. deg(wig,) = 1.

We have w; 5, = u — r;, with 7; € H,,. There are a connected neighborhood
W(z¢) C G — D,, and holomorphic functions f,..., fs in W such that the
power series r; converge to f;. Since the germs of w and (u — f1)---(u — fs)
coincide at 2z, it follows from the identity theorem that

wlexw = (u— fi) - (u = fo),

and since W C G~ D,,, it also follows that f;(z) # f;(z) fori # jandz € W.
.

Examples

1. Let G = C and w = 2} — z,. Then the discriminant is given by A, (22) =
422, and D, = {0} C C. If z5 € C*, there is a neighborhood W c C~ D,,
where /z; is well defined. There we have w = (21 — \/z3) - (21 + \/22).
This gives a surface above C that is a connected unbranched 2-sheeted
covering over C—{0}. The point 0 is a branch point. This is the (branched)
Riemann surface of \/z. The unbranched part was already discussed in
Section II.8.

2. A completely different situation is obtained if we take w = 22— 22 =
(21 — 22) - (21 + 22). The discriminant is 422 in this case, and the discrim-
inant set D, is again the origin in C. The set A consists of two distinct
sheets, which intersect above 0, and both are projected biholomorphically
onto C. The set A — {0}, i.e., A without the branch point, is no longer
connected.

3. In higher dimensions the situation is even more complicated. Let us con-
sider the analytic set A = N(f), where f(z1,...,25) = 2§ + -+ + 22
with s; > 2 for i = 1,...,n. This is a very simple holomorphic function.

The derivatives are f,, = s, - 2] =1 and their joint zero set consists only

of 0 € C". So all other points of A are regular.

Every line ¢ through the origin lies completely in A, or f has a zero of

order s with s > min(s;,...,s,) on £ at the origin. Therefore, there is

no line that intersects A in 0 transversally. From this one can conclude
that 0 is in fact a singular point of A (see, for example, Exercise 8.2 in

Chapter I).

Now we look on f : C* — C as a fibration with general fiber
At:{ZEC" : 2;1+"'+Zz" :t},

Then A = A has an isolated singularity, while all other sets A, are
regular everywhere. We call the family (A;):;cc a deformation of A.
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The Unbranched Part. We assume that G ¢ C" is a domain and
w(u, z) a pseudopolynomial over G of degree s. We set G' =G — D,,,

A={(u,2) €eCxG : w(u,z) =0},

and A’ = A|G' the part of A over G’. Then A’ is an unbranched covering of
G'. It is an n-dimensional submanifold of C x G’, and we have the canonical
projection m : A = G. If (ug, z9) € A’ is a point, there is a small neighborhood
B = B(ug,2o) C A’ that is mapped by 7 holomorphically and topologically
onto a ball around z¢ in G’. We also call B a ball. The holomorphic map
(mr|g)™! : 7(B) = C™*! is a local parametrization of A’. A complex function
f in B is called holomorphic if f o (m|g)~! is holomorphic. In particular, the
components of m itself are holomorphic functions on B.

For holomorphic functions in B we have the same properties as for holomor-
phic functions in a domain of C™. For example, the identity theorem remains
valid, and we obtain the following results:

4.7 Proposition. Assume that A; is a connected component of A’ and that
M is an analytic subset of A;. Then M = A,, or M is nowhere dense in A;.

4.8 Proposition. If f is a holomorphic function on A’, and A, a connected
component of A’, then either f vanishes identically on A, or its zero set is
nowhere dense in A;.

4.9 Proposition. Let A; again be a connected component of A'. Assume
that M is a nowhere dense analytic set in A; and that f is a holomorphic
function in Ay — M that is bounded along M. Then f has a unique holomor-
phic extension to A;.

Decompositions. We consider the interaction between the decomposi-
tion of a pseudopolynomial into irreducible factors and the decomposition of
its zero set into “irreducible” components.

4.10 Proposition. Let G C C" be a domain and w(u,z) a pseudopolyno-
mial over G without multiple factors. Then w is trreducible if and only if the
intersection of its zero set A with C x (G — E) is connected for every nowhere
dense analytic subset E C G which contains the discriminant set D,,.

PROOF: Since locally over G’ = G — D,, the set A" = A|G’ looks like a
domain in C*, a nowhere dense analytic set does not disconnect A’, locally
and globally. Therefore, we may assume that £ = D,,.

If w is not irreducible, every factor w; defines an analytic set A; over G—D,,.
The intersection of different A; is empty. So 4{(G — D,,) is not connected.
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If, on the other hand, A|G’ has the connected components A;, i = 1,...,s,
with s > 0, then for any point z € G— D, there is a ball B C G—D,, around z
such that A;|B splits into graphs of holomorphic functions f; : j = 1,...,s;.
In each case we form the pseudopolynomial w; = (u — f1)---(u — fs,). The
zero set of this w; is exactly A;|B, and it determines w; and vice versa. So
over the intersection of two different balls the pseudopolynomials must be
the same, and thus we obtain global holomorphic functions w; in G — D,,. If
z € D,,, then there is a neighborhood W of z such that A;|(W — D,,) C A|W
is a bounded set. So the coefficients of w; are bounded over this neighborhood
and extend holomorphically to G. We also denote this extension by w;, and
for reasons of continuity it follows that w = w; - - - w;. L]

If the w; are the irreducible factors of w, we call their zero sets A; the irre-
ducible components of A. The sets A; = A;|G’ are the connected components
of A|G".

4.11 Proposition. Assume that w*,w are pseudopolynomials without mul-
tiple factors over a domain G and that A* = {w* =0} C A = {w =0}. Then
w* is a factor of w.

PRrROOF: Let D denote the union of the discriminants of w* and w. It is
a nowhere dense analytic set in G. Over G — D we decompose the two
unbranched coverings into connected components. There we have A* =
A U---UA; and A= Ay U---UA, with s* <s. This yields pseudopolyno-
mials over G — D that extend to pseudopolynomials wy,...,ws over G, with
w* =wp ---wg» and w = wy - - - w,. This implies the result. =

The following result is proved analogously.

4.12 Proposition. Assume that w is free of multiple factors and that A =
{w = 0} is the disjoint union of two nonempty sets M', M"' that are closed in
C x G. Then there are pseudopolynomials w',w” over G with M' = {v’ = 0},
M'={w" =0}, and ' - W' = w.

PRrOOF: The construction is first carried out outside D,. We set G' =
G — D, and use the fact that every nonempty open subset of A’ = A|G’
must be a union of connected components of A’. If w = w;---w, is the
decomposition into irreducible factors, then we may assume that there is an
s* with 0 < s* < s such that for w’ = w; -+ -ws+ and W’ = wWeryy -+ - w, We
have M'|G’ = {(u,2z) € C x G’ : W'(u,2) = 0} and M"|G’ = {(u,2) €
CxG : w'(u,z) =0}.

It is now essential that in a continuous family f(u, z) of holomorphic functions
of one variable u the zeros depend continuously on the family parameter z
(“continuity of roots”). We omit the proof here. If we apply this fact (and
the equations A = M'UM", w = ' - w"), we get that the sets M’|G’ and
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M"|G" are not empty (i.e., 0 < s* < s) and that their closures in C x G are
M’ respectively M". _ m

Projections. In the next section we will investigate zero sets of several
holomorphic functions. Here we begin with the simplest case, the common
zero set N of a pseudopolynomial w over G C C™ and an additional holomor-
phic function f in a neighborhood of A = {(u,z) € C x G : w(u,z) = 0}.
Our method involves the projection of N to G.

4.13 Proposition. Assume that f = f(u,z) is a continuous function on A
that is holomorphic outside of C x D,, and does not vanish identically in a
neighborhood of any point of A. Then the projection of N = {f = w =0} to
G is an analytic set N’ = {f = 0}, where f is a holomorphic function in G
that does not vanish identically. B

Proor: If z € G — D, we have a ball B C G — D,, around it such that
over B our w has the form w(u,z) = (u — fi(z)) - (u — fs(2)). The function
f does not vanish identically on any graph v = f;. Consequently,

f(2) = f(f1(2),2) - f(f:(2),2)

does not vanish identically. In the usual way we obtain the holomorphic
function f in the entire set G — D,,. It is bounded along D,,. So it extends
to a holomorphic function in G. n

Now consider the following situation: Assume that G is a domain in C™ and
that w is a pseudopolynomial over G without multiple factors. Let f be a
holomorphic function in a neighborhood of A = {w(u,z) = 0} C C x G that
does not vanish identically on any open subset of A and define

N :={(u,z) € C x G : w(u,z) = f(u,2z) = 0}.
Denote by N’ the projection of N to G.

We want to give a definition for “unbranched points” of N. The difficulty is
that there may exist such unbranched points of N lying in the set of branch
points of w.

4.14 Proposition. For any point zo € N' there is an arbitrarily small
linear coordinate change in 2,,...,z, such that thereafter the line parallel to
the z1-azis through zq intersects N' in zo as an isolated point.

In such coordinates there is a neighborhood U(zg) C G, a domain G' in
the space C"~! of the variables 2’ = (22,...,2n), and a pseudopolynomial
W'(21,2') over G’ such that {(21,2') € C x G’ : W'(21,2") =0} = N'NU.

PROOF: A “small” linear change of the coordinates zi, ..., z, means here
-that the transformation is very near to the identity. Since f does not vanish



4. Branched Coverings 133

identically, after a small generic coordinate transformation the line parallel
to the z;-axis through zg intersects N’ in zg as an isolated point. And then
it is also clear that U, G’, and ' with the desired properties exist. =

Let us now assume that we have chosen a point zg € N’ and suitable coordi-
nates as above, and that U, G’, and ' have also been chosen.

Definition. In the given situation, a point (u,z) € NN (C x U) is
called an unbranched point of N if z € N' — C x D, and there is a
neighborhood V = V(z) ¢ N’ — C x D, with a holomorphic function g
on V such that N N (C x V) is the graph {u = g(w) : w € V}. (Figure
II1.2 shows the situation.)

o examples of unbranched points T )
C x D,

Figure II1.2. Branched and unbranched points of N

4.15 Theorem. In the given situation, in every neighborhood of an arbi-
trary point (uy,21) of NN (C x U) there are unbranched points of N.

PROOF: We may assume that z; € N’ — (C x D). Then we take a small
neighborhood W = E x Uy of (u1,2;) such that the following hold:

1. Uy cU - (Cx D).
2. (u1,21) is the only point of A above z; in W.



134 III. Analytic Sets

3. The set AN W is defined by a pseudopolynomial w* over Uj.

Setting N; C N’ N U] to be the image set of W N N under the canonical
projection w : W — Ui, take Uy so small that N] = N' N Uj,.

We restrict w* to N and replace possible multiple factors by one factor at a
time. So we obtain a new pseudopolynomial w; without multiple factors over
N such that

NNW = {(u,z) € E x N| : wi(u,z) = 0}, F a suitable disk.

Arbitrarily near to (u;,z;1) we can find points (ug,2z2) € NN W lying over
Ni — D, . All of these points are unbranched points of N, since we can find
neighborhoods Ws(ug,2z2) C W and Uz(z2) C U; with the same properties as
W and U;. Now choose U, so small that it contains no point of D,,, and that
w1|N' N U, decomposes into linear factors. Then every sheet of A|(N' N Uz)
with the property that it contains points of N is a graph over N'NU;. =

Exercises

1. Prove that every symmetric polynomial in u;, ..., us can be written as a
polynomial in the power sums Sy = uf + .- + uk.

2. Calculate the discriminant of a cubic polynomial.

3. Let D :=D,(0) C C and f be a holomorphic function in an open neigh-
borhood of D without zeros in D. If f has in D the zeros ci,...,cs
(some of them may be equal), then

1 Q) dC Zc

2mi Jop f(C)
4. Let f : D x P* — C be a holomorphic function in the variables
u,21,...,2,. Assume that f is u-regular of order s and that for every
z € P" the function u — f(u,z) has exactly s zeros uy(z),...,us(z)

(with multiplicity) in D. Show that the coefficients of the “pseudopoly-
nomial” w(u,z) := H;=1(U — u;(z)) are holomorphic.

5. Prove the “continuity of roots”: Let f(u,z) be u-regular at the origin.
Show that there is an r > 0 such that if g(z) is a function defined in a
neighborhood of 0 with |g(z)| < r and f(g(z),2z) = 0, then g is continuous
at 0.

6. A complex function f on an analytic set A in a domain G C C™ is called
holomorphic if it is locally the restriction of a holomorphic function in
the ambient space.

(a) Let A := {(w,2) € C? : w? = 23} be the Neil parabola. There is
a bijective holomorphic parametrization of A given by w = t3 and
z = t2. Describe the holomorphic functions on A as functions of the
parameter t. Is there a meromorphic function on A that has a pole
at oo with main part t™?
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(b) Show that the analytic set A = {(w,z1,22) € C3 : w? = 2125} is
not regular at the origin. Consider the holomorphic map (t1,t2) —
(t1t2,t23,t2). It is a “two-to-one” map. Describe the local holomorphic
functions on A in ¢y, t.

7. Prove that there is a topological holomorphic map from C* onto A :=

{(w,z) € C? : w? = z122}.

8. Prove that there is no topological holomorphic map from C* onto the

“elliptic surface” A := {(w,z) € C? : w? = (22 - 1)(2% — 4)}.

9. Define the pseudopolynomial w € O(C?)[u] by w(u, z1,22) :=u? —u- 2
and determine the discriminant set and the irreducible components of

A := {w = 0}. Let f on A be defined by f(u,z1,22) := 22 - (u — 1).

Consider N := {f = w = 0} C C3 and determine the projection N’ C C?

and the set of unbranched points of V.

5. Irreducible Components

Embedded—Analytic Sets. We wish to study general analytic sets.
Since it is easier to work with pseudopolynomials than with arbitrary holo-
morphic functions, we introduce the notion of “embedded-analytic sets.”
These are subsets of the common zero set of finitely many pseudopolyno-
mials, and they are not a priori analytic by definition. But later on, it will
turn out that they are indeed analytic.

Assume that G ¢ C* ¢ = {2’ = (2441,.--,2n)} is a domain and that
w;(2;2'), ¢ = 1,...,d, are pseudopolynomials over G without multiple fac-
tors. The zero sets of the single w; intersect transversally? in Ct x G. We
denote by D C G the union of the d discriminant sets belonging to the w;.
We call it the union discriminant set. We put

A= {(z1,...,24,2") : wi(2:;2') =0, fori=1,...,d and 2’ € G}.

Over any ball B C G — D the set Z]B consists of finitely many disjoint
holomorphic graphs. Every graph is contained in a connected component Z
of A|(G — D). We call the closure of Z in A an irreducible embedded-analytic

component of A.

Definition. If A is defined as above, any union of finitely many ir-
reducible embedded-analytic components of A is called an embedded-
analytic set of dimension n — d.

4 Two submanifolds M, N C C" intersect transversally at a point z € M N N if
the entire space is spanned by vectors that are tangent to M or N at z. In our
case the common zero set of the pseudopolynomials w;: contains enough vectors
to span C™. Therefore, we say that these zero sets intersect transversally.
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By definition any embedded-analytic set A can be decomposed into finitely
many irreducible components.

The surrounding set A D Ais not uniquely determined. Sometimes we can
make A smaller by throwing away those irreducible factors of w; that do not
vanish identically on A. Then the w; are uniquely determined by A.

5.1 Proposition. Assume that A is an embedded-analytic set in AcCCixG
and that f is a holomorphic function in a neighborhood of A that does not
vanish identically on any open subset of A. If N = {z € A : f(z) = 0},
then for any point zg € N there is an arbitrarily small linear change of the
coordinates z' such that the affine space parallel to the (zy,...,zq41)- “azis”
through zo intersects N in an isolated point. If 2y € N is any point near
Zg, then there are unbranched points of N arbitrarily near z,. At all of these
points N is a submanifold of dimension n —d — 1.

PROOF: We proceed as in the proof for the last theorem of the previous
section. The procedure to find unbranched points will be denoted by (x).

First we construct the projection f of f, which is holomorphic in G. For this
observe that if D is the union discriminant set of the polynomials wy,...,wq
and z’' € G — D, we always have the same number of points z1,...,2, in A
over z'. We set f(z') = f(z1)--- f(zs) and obtain f, which is holomorphic on
G — D. Since it is bounded along D, we can extend it holomorphically to G.
Therefore, the projection set is N’ = {f(z') = 0}.

Assume now that zj, € N'. Then, after an arbitrarily small linear coordinate
change in the variables z’, the line L parallel to the z441-axis through zj
intersects N’ in an isolated point. Then by Weierstrass’s theorem we can
find a neighborhood U = U(z;) C G, a domain G’, and a pseudopolynomial
w'(z4+1,2") over G’ without multiple factors such that U N N’ is equal to the
set {2’ = (2441,2") € Cx G’ : W'(z441,2") = 0}, with 2" = (2442,..., 2a).

Since the space C? x L intersects N at zg in an isolated point, it remains to
prove the existence of unbranched points. We apply (*) to NN (C? x U) and
prove in the same way as before that for points z; € N N (C? x U) there are
unbranched points of N arbitrarily near to z;. Of course, at these points N
is a submanifold of dimension n — d — 1. ]

For the following we use the same notation and hypotheses as above.

5.2 Theorem. Let N' C G be the projection of N. For every point zo =
(Z0,2h) € N C C?® x G, after a suitable linear change of the coordinates 2z’
there is a neigborhood U = U(zy) C G, a domain G’ in the space of the
variables z449,...,2n, and a pseudopolynomial ' over G' without multiple
factors such that:

1. N'NU = {o' = 0}.
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2. NN (C? x U) is an embedded-analytic set of dimension n —d — 1.

PrOOF: We use the notation and results from the proof above. Thus the
first statement is clear. We set wy, := w’. Restricting the w; to C¢x (N'NU)
and projecting them down to C? x G’, we get pseudopolynomials w;(z;;2")
over G’. Then N N (C% x U) is in the joint zero set of wi,...,was1. Let
A be the union of those irreducible components of this set that contain the
unbranched points of N. Since N is the closure of unbranched points, it
follows that N N (C%! x G’) C A. By the mapping theorem that we prove
in the next paragraph, every irreducible component of A is in N. So we have
the desired equality. [ ]

Images of Embedded—Analytic Sets. Assume that G = C¢xG’ C
C™ is a domain and A C G an irreducible embedded-analytic set over G'.

5.3 Mapping theorem. Let G; = C% x G} € C™ be a domain, A; C G,
an embedded-analytic set over G, F a holomorphic mapping from a neigh-
borhood of A C G into Gy such that F(U) C A, for some nonempty open
subset U C A. Then F(A) C A;.

PrOOF: We denote by D C G the union of the discriminant sets of the
wi(2:,2") that define the surrounding set A for A. It is sufficient to prove
that F(A N (C¢ x (G’ — D))) C A;. Since we can connect two points of
AN (C? x (G’ — D)) by a chain of arbitrarily small balls, it is enough to give
the proof for such a ball. So we may replace A by a ball in C*~¢ and may
assume that F is defined in a neighborhood of B.

Let A; be an embedded-analytic set in
Ay = {@y (w1, W) = -+ = g, (wg,, w') = 0}.
Then w; o F|y = 0, and by the identity theorem w; o F|g = 0. So F(B) C El.

For an arbitrary point v € G} we choose a small transformation of the
coordinates in C% such that A; is also embedded in a set AY = {wy=-=
wy, = 0}. The transformation can be made arbitrarily small, and we can do
it so that L
A NAY N (CH x {v}) = 41 N (C* x {v}).

Then A, is given by the infinite set of holomorphic equations @; = 0, wy =0,
v € G}. If F maps a nonempty open part of B into A;, then by the identity
theorem &; o F = wY o F = 0, and consequently F(B) C A;. This completes
the proof. =

Remark. Assume that A is an analytic set in a domain G C C™ and that
Z¢ is a point of A. If zy is a regular point of dimension n — d, then there is a
neighborhood U = U(z¢) C G such that ANU is an embedded-analytic set.
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In fact, there is a neighborhood U with holomorphic functions fi,. .., f4 such
that N(fi,...,fd) = ANU and the rank of the Jacobian is d everywhere.
We may assume that

i=1,...,d
det ((fz-)z,.(zo)l jzl,___,d)yéo.
Then the transformation F(z1,...,2,) = (fi(2),.-., fa(2), zd+1, - . - , 2n) Maps
a neighborhood of zy biholomorphically onto a neighborhood of the image
point. If the inverse is given by

z=F " (w) = (g1(W), ., 9a(W), Was1, -+, wn),
then A is given by the equations

zZ1 = gl(O,...,0,2d+1,...,Zn),

2d = gd(O,...,O,Zd+1,...,zn).

So ANU is an embedded-analytic set.

Local Decomposition. We use embedded-analytic sets to show that an
arbitrary intersection of analytic sets is again an analytic set.

First we consider the following situation. Let G C C™ be a domain and zp € G
a point. Assume that at zg a set & of local analytic functions f is given such
that

1. For every f € % there is a connected open neighborhood U(zg) C G
with f € O(U) and f #0.
2. f(ZO) = 0.

We want to construct a “maximal” analytic set S* in a neighborhood
U*(2zo) C G such that for each zero set N of finitely many elements f € ¥
there is a neighborhood V = V(2z¢) C G with S*NV Cc NNV. Then §* is
uniquely determined near 2o and can be considered as the common zero set of
the functions f € .. It may be nontrivial even if the domains of definition of
the functions f tend to the point zg. For example, if .# is the set of the func-
tions f,(z) := 2}/(1 —nz), defined on U, := {z € C™ : Re(z;) < 1/n}, then
S* is the analytic set {z; = 0} in an arbitrary neighborhood of 0, whereas
the intersection of the U,, does not contain any neighborhood of the origin.

We employ the results from the beginning of this section several times and
carry out an induction on the codimension of the embedded-analytic sets
obtained from the functions f € .&.
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(A) We begin with one arbitrarily chosen function f € .#. The equation f =0
gives an analytic set® S of codimension 1. We decompose S into irreducible
components S; in a neighborhood U(z) (given by pseudopolynomials in C x
G’), and we choose the neighborhood U so small that the S; stay irreducible
in the whole neighborhood.

(B) Next we try to obtain codimension 2. If every function f € .%¥ vanishes
identically near zg on S;, we leave S; unchanged (and have it as a codimension
1 component for our S*). Otherwise, there is an f’ € % that does not vanish
identically in any small neighborhood of zy on S;. We apply Theorem 5.2:
After an arbitarily small linear change of the coordinates z’ the set S;N{f’ =
0} is a finite union of irreducible embedded-analytic sets S;; of codimension
two, which stay irreducible if we pass to some smaller neighborhood of zy. The

Si; are embedded in the zero set of two pseudopolynomials wij (21; 23y -+ 2n)
and wy (29;23,. -, 2n)-

(C) Now codimension 3 follows. For this we need consider only the S;;.
Leave S;; unchanged if every f vanishes on S;; (and get codimension 2
components for S*). Otherwise, find an f” € % not vanishing identically
on S;;, and (after an arbitrarily small coordinate change of the variables
z" = (23,...,2n)) the set S;; N {f” = 0} is the union of a finite set of
irreducible embedded-analytic sets S;;x, given in the zero set of three pseu-
dopolynomials wijk(zA; Z4y---52n), A=1,2,3.

(D) Continuing, it is possible to obtain components of codimension 1, 2,

., n — 1, and finally one reaches dimension 0. If there is a 1-dimensional
component S = S;, i, such that not every f € . vanishes on S, we
have to replace S by the one-point set {zo}. Then the procedure stops. Only
finitely many steps were necessary.

We obtained a finite system .# of local holomorphic functions f, f’, f”,...
and a finite system .A of irreducible embedded-analytic sets S;, Sij, Sijk, - .-
and may assume that they all are defined in one neighborhood U(ze) C G,
that every S € A of dimension d is embedded in a set C"~¢ x G/;, and that
the union discriminant sets Dg C G/, C C¢ belong to the embedding of S.
The necessary linear coordinate change in 2z’ can be made at the beginning
of the procedure, i.e., once for all steps of the procedure.

If S € A is an irreducible embedded-analytic set that has an open part in the
union of the other sets of A, then it also has an open part in an irreducible
S e A, S # S. It follows by the mapping theorem that it is completely
contained in S’. Then we simply throw it away and denote the new system
again by 4. After finitely many steps we have that the intersection of every
% An exact definition of dimension and codimension of analytic sets will be given

later. Here we use embedded-analytic sets, for which the dimension has already
been defined. An analytic hypersurface is obviously embedded-analytic.
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S with the union of the rest of A is nowhere dense in S. Moreover, the points
of S over Dg are nowhere dense in S.

We denote by §* = USE 49 the union of all remaining components. Then
S* is given by the finitely many holomorphic functions f € .#. Therefore,
it is an analytic set. If ¥ C .% is an arbitrary finite subset, then in a small
neighborhood of zg every f € % vanishes at everyz € S*.So S*C N (5’? ).
Obviously, S* is uniquely determined by this property.

Finally, we want to show that the decomposition into irreducible embedded-
analytic sets is unique. For that we use the notion of regularity for points of
embedded-analytic sets just as in the analytic case. Clearly, the intersection
of two different S; € A contains no regular point. So the points of every
S € A are regular if they are not in such an intersection and not over Dy4.

We denote the set of regular points of S* by S* and set S = SNS* for S € A.

Then for S € A the sets S are the connected components of S*. Since the
set S* is uniquely determined in a neighborhood of zg, this is also true for

its connected components. And since the closure of Sis S , the irreducible
embedded-analytic components S are also uniquely determined near zp.

5.4 Theorem. The intersection of (even infinitely many) analytic sets is
an analytic set and is locally a finite union of components that are irreducible
embedded-analytic sets. This decomposition is locally uniquely determined.

PROOF: Let {A, : ¢ € I} be a family of analytic sets in a domain G C C",
and zg € A := (),c; A, an arbitrary point. We consider the system .# of all
local holomorphic functions f such that:

1. f is defined in an open neighborhood U of z¢ (depending on f).
2. f # 0 near z.
3. There is an ¢ € I such that f vanishes near zg on A,.

As above, zg is contained in an analytic set S* that is the union of irreducible
embedded-analytic sets S and that is given by a finite subsystem 4 C ..

If z is a point of A that is sufficiently near z,, then every f € % is defined at
z and vanishes on some A, and consequently at z. This shows that A C S* in
a neighborhood of zg. On the other hand, let z be a point in the intersection
of S* with a small neighborhood of zg. Any analytic set A, is given by finitely
many holomorphic functions fi,..., fi that belong to the system .%. Then
by construction every f. vanishes on every embedded-analytic component S
of §*, in particular at z. Therefore, S* C A, for all :. Thus S* is contained
in the intersection A of the A,, and we have the equality A = S§* near 2.
Since S* is an analytic set that has a unique decomposition into irreducible
embedded-analytic sets, this completes the proof. (]
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Analyticity. Now we are able to prove the following result, which we
announced at the beginning of the section:

5.5 Proposition. Every embedded-analytic set A in a domain C¢xG c C*
is an analytic set.

PROOF: As in the last part of the proof of the mapping theorem, it follows
that the embedded-analytic set A is given as the joint zero set of infinitely
many holomorphic functions. Theorem 5.4 shows that A is an analytic set. m

Consequently, every analytic set has locally a unique decomposition into ir-
reducible analytic components.

The Zariski Topology. We prove that the system of all analytic sets
has the properties of the system of closed sets of a topology.

5.6 Theorem. The system A of all analytic sets in a domain G C C* has
the following properties:

1. G and the empty set belong to A.
2. If Ay,..., AL € A, then also A=J._, A; € A.

3. If I is an index set and {A, : ¢ € I} a collection of analytic sets in G,
then A =(,c; A, is also an analytic set in G.

PROOF:
(1) G is defined by the zero function, and @ by the constant function 1.

(2) Let z € A = A; U---U A;. Then in a neighborhood U(z) there are
holomorphic functions f; ; : 4 =1,...,1 j = 1,...,d;, such that for all i we
have

UNAi=N(fi1,..-, fia,)-
It follows that UN A = N(f15, - fij 1 Ji = 1,...,ds).

3) This is Theorem 5.4. n

So the analytic sets are the closed sets of a topology in G. We call this
topology the (analytic) Zariski topology of G. It plays an important rule in
complex algebraic geometry.

Global Decompositions. Assume that G ¢ C" isa domainand A C G

an analytic subset. We call A irreducible if the set of regular points AC Ais
connected. It follows that A has the same dimension d at all regular points.
This number d is called the dimension of A and is denoted by dim(A). Every
irreducible embedded-analytic set is also an irreducible analytic set.

5.7 Theorem. FEvery analytic set A has a unique decomposition into count-
ably many irreducible analytic subsets A;. The covering & = {A; : 1 =
1,2,3,...} is locally finite.
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PrOOF: We decompose A into connected components. Let A’ be such a
component. It has dimension d in all of its points.

We consider a point zg € A that lies in A’. In a neighborhood U = U(z¢) C
G we have a decomposition of A into finitely many irreducible embedded-
analytic components Aj, ..., An,. By A} we denote the set of points of A;
that are not over the union discriminant set. Some d-dimensional A} meet
A’. Their union A* is contained in A’ and dense in A'NU. Hence, the closure
of A* in U is equal to A’ NU. But A* is an analytic set.

From this it follows that A’ is an analytic set, that only finitely many A
intersect U, and that the union of all A’ is A (as it is locally). Since the
topology of G is countable, it follows that the set of the A’ is countable. =

5.8 Corollary. If A is irreducible and A = Ay U Ay, where Ay, Ay are
arbitrary analytic sets, then A = A; or A = As.

Sometimes this condition is used as the definition of irreducibility.

5.9 Proposition. Let A, B C G be irreducible analytic sets. If there is an
open set U C G such that ANU # @ and ANU C BNU, then AC B.

Proor: This is an immediate consequence of the mapping theorem. =
Another corollary is the following:

5.10 Identity theorem (for analytic sets). Let A, B C G be irreducible
analytic sets. If there is a point 29 € AN B and an open neighborhood U =
U(zg) C G with ANU =BnNU, then A= B.

5.11 Proposition. Let A, B C G be analytic subsets with A C B. If A is
irreducible, then A is contained in some irreducible component of B.

PROOF: Let B = |J,ca By be the unique decomposition into irreducible
components. We can choose an open set U C G and a finite set {\1,..., A/} C
A such that UN A # @ is irreducible and UNB = (UN By, )U---U(UNBy,).
Then UNA=UNANB=(UNANB),)U---UUNANB,,). Thus there
is an index j such that UNA=UNANB,,, so UNAC UﬂB,\J.. It follows
that A is contained in Bj;. »

Now we can generalize the notion of the dimension to arbitrary analytic sets.

Definition. If A C G is an analytic set with irreducible components
A;, then dim(A) := sup,; dim(A;) is called the (complez) dimension of A.
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In general, the dimension of an analytic set can be co. But if G; CC G is arel-
atively compact subdomain, then only finitely many irreducible components
intersect G1. So the dimension of A N G} is finite.

An analytic set is called pure-dimensional of dimension d if all its irreducible
components have the same dimension d.

Exercises

1. Let A be an analytic set near the origin in C". Assume that every ir-
reducible component of A has dimension > 1. Show that there exists
a neighborhood U = U(0) such that AN U is the union of irreducible
one-dimensional analytic sets containing 0.

2. Consider A := {(21,22) € C2? : 22 = 23 +2?}. Show that A is irreducible,

but A has a nontrivial decomposition into irreducible components in a

small neighborhood of the origin.

Let A1, A2 C C™ be analytic sets. Prove that A; — Aj is analytic.

4. Let {A; : i € N} be a locally finite family of irreducible analytic sets in
a domain G C C". Suppose that A; ¢ A; for i # j and prove that the
A; are the irreducible components of their union.

w

6. Regular and Singular Points

Compact Analytic Sets. Our goal is to prove the following simple
proposition.

6.1 Proposition. IfG C C" is a domain and A C G an irreducible compact
analytic set, then A consists of a single point.

We first prove a lemma.

6.2 Lemma. If f is a holomorphic function in a neighborhood of A, then
fla is constant.

Proor: We assume that the dimension of A is n — d. Since A is compact,
there is a point zg € A where | f| takes its maximum. After a linear coordinate
change there is a neighborhood U = U(z¢) C G and a domain G’ ¢ C*—4
such that ANU is an embedded-analytic set over G’. Denote by D C G’ the
union discriminant set. Over every z” € G’ — D our ANU has s points. The
point 2z lies over some zj € G’ and we may assume that it is the only point
of ANU over zj.

It remains to construct the elementary symmetric functions associated with
flany over G' — D. For this, if zy,...,z, are mapped onto z”, we define
fi(z") :== 0i(f(21),..., f(zs)).- These functions are holomorphic on G’ —

and bounded along D. So they extend to holomorphic functions in G’. The
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absolute value of every extension takes on its maximum at zg. By the max-
imum principle each such is constant in G’. Since the values of f can be
reconstructed from the values of the f,, it follows that f is constant over G’,

in particular in some open subset of A. Since A is connected, it follows that
f is constant on A and then by continuity also on A. n

PROOF of the proposition: All coordinate functions z; must be constant on
A. So A is a single point. n

A consequence is that every compact analytic subset A C G consists of only
finitely many points.

Embedding of Analytic Sets. Assume that A C G is an analytic set
in a domain G C C", that 0 € A, and that the plane P = {244, = --- =
» = 0} intersects A in an isolated point.

6.3 Theorem. In a neighborhood U(0) the set A is an analytic subset of
an embedded-analytic set of dimension n—d that is defined over a domain G’
in the space of variables 2’ = (2441,.--,2xn). If the set of (n — d)-dimensional
reqular points is dense in A, then A is itself an embedded-analytic set.

Remark. No coordinate transformation is necessary for this statement!

Proor: By definition, A is the zero set N(f1,...,fn) of finitely many
holomorphic functions in a neighborhood of 0. Since AN P = {0} is isolated,
there is an i such that f; does not vanish identically in any neighborhood
of 0 on the 2,-axis. Consequently, f; is z;-regular, and we can apply the
Weierstrass preparation theorem, which implies that A is locally contained

in the zero set of a pseudopolynomial w(z;;za, ..., zn).
Now we proceed by induction on d. In the case d = 1 there is nothing to prove.
If d > 1 we consider the projection 7 : C* — C"~! withz — 2z’ = (22,...,2»).
To fa,..., fn there are associated as usual holomorphic functions _f_ g i N
of z’ such that

fw=fa=--=fn=0)=A:={2: f(z) == [ ,(z) =0}

in some neighborhood of 0.

The intersection of P’ = {z’ : 2441 = --- = z, = 0} with A contains 0 as an
isolated point. So we have for A the same situation, but with one dimension
fewer. By the induction hypothesis it follows that there are pseudopolynomi-
als wa, . ..,wq such that A locally is contained in the set {wa2(29;2") = - =
wq(z4;2") = 0}. By exchanging z; with 2z, we obtain a pseudopolynomial
wi(z1;2") such that A is contained in {w; = wy = -+ = wq = 0}.
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If the regular points of dimension n — d are dense in A, we can take the union
A* of those irreducible components of the embedded analytic set that contain
such a regular point. Then A* and A are identical. This completes the proof.
=

Remark. This result is also known as the “embedding theorem of Remmert
and Stein.”

Again we consider a domain G C C", an analytic set A C G, and a domain
G' c C" % such that 7(G) C G’ (where 7 : 2 — 2z’ = (2441,.-.,2n))- Suppose
that there exists a domain G* C G such that for every z’' € G’ there exists a
neighborhood U = U(z') cC G’ with (C% x U)NG* cC (C¢ x U) NG and
(C*xU)N A C G*. Then the following holds.

6.4 Proposition. If the set of regular (n — d)-dimensional points of A is
dense in A, then A is an embedded-analytic set over G'.

PROOF: We take an arbitrary point zg € G'. It follows from the hypotheses
that the set (C? x {z§}) N A is compact and analytic. Therefore, it consists
of finitely many points. Each of these points has a neighborhood such that
the restriction of the set A to this neighborhood is an embedded-analytic set
over a neighborhood of zg. By multiplying the pseudopolynomials by the same
distinguished variable belonging to our various points we obtain d uniquely
determined pseudopolynomials over a neighborhood U’(z3) C G’ such that
AN (C? x U’) is just their joint zero set. But these pseudopolynomials glue
together to form global pseudopolynomials over G'. n

Regular Points of an Analytic Set. Assume again that G C C" is
a domain, and A C G an analytic set.

6.5 Theorem. For any zg € A there is a fized neighborhood U(zg) C G
with finitely many holomorphic functions f1,..., fn whose joint zero set is
ANU such that for all d at every reqular point z € ANU of dimension n —d
the rank of their Jacobian at z is equal to d.

It is remarkable that this statement is also true for a singular point zg of A.

ProOF: After applying a linear coordinate transformation in C™ we can
find a neighborhood U = U(zy) C G such that ANU is a finite union of
irreducible embedded-analytic components. To give these in the canonical
form a further coordinate transformation is not necessary. We denote by
A’ the union of all (n — d)-dimensional irreducible components of A N U
and choose pseudopolynomials wy, . ..,wy of minimal degree such that A’ is
contained in the common zero set of the w;.

Let D C A’ be the set of points that lie over the union discriminant set
Dy:. Its dimension is equal to n — d — 1. Now we carry out the proof in
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several steps and construct sets 51, 52, ceey ﬁn—d-}-l = @ with ﬁi+1 C ﬁ,-
and dim(D;) = n—d~1i. We begin with D; := D. The Jacobian of wy,...,wqy
has rank d in A’ — D; (implicit function theorem).

Next we decompose D, into irreducible components C), and choose, if possi-
ble, in each C a point z) where A’ is regular. We can make U so small that
only finitely many C) occur in U. Then we apply another linear transforma-
tion in C™ that is near the identity such that in a small neighborhood of any
z) the set A’ can be written as an (n — d)-dimensional holomorphic graph

{z : 2z = fri(za+1,...,2a) fori=1,...,d}.

Finally, we apply a linear transformation that is very near the identity to
the variables zi, ..., zq such that for every A and every point z in A’ above
(2341, ---»2p) the first d coordinates of z are distinct.

Now we use Proposition 6.4. In the new coordinates (and in a slightly
smaller neighborhood, which we again denote by U) the set A’ is again an
embedded-analytic set contained in the common zero set of pseudopolynomi-
als Wy,...,wq. We choose w; with minimal degree. We can assume that the
components of D; are still irreducible in U, and that the points z, are still
in U. In a neighborhood of z) we have a decomposition

‘:J:l(zu Zd41y- -0 Zn) = (Zi - fX,i(zd-!—l’ ey zn)) : wj‘\,i(zla ey Zn),

with w} ;(z\) # 0. So the Jacobian determinant of wy,...,wq with respect
to the variables zi,...,z4 does not vanish at any z,. We denote the zero
set of this Jacobian in D; N U by Ds. It has dimension n — d — 2, and
Wiy...,We,@1,...,w0q have rank d on A’ — Ds.

Now apply the same procedure to 132 and obtain an (n — d — 3)-dimensional
D3 and continue in this way until reaching D, 441 = @.

By putting all of the pseudopolynomials together, in a small neighborhood
U of zg we get holomorphic functions fi,..., f4, far1,-.., [N (with N =
(n—d+1)-d) whose rank is d in every regular point of A’ N U. Since the
pseudopolynomials always were chosen with minimal degree, it follows that
A = N(fl, RPN ,fN) near Zg.

Now set At = ANU — A'. It is the union of the remaining irreducible com-
ponents of ANU. We may assume that U is so small that A" is the common
zero set of finitely many holomorphic functions g¢;,...,g9s in U. Multiplying
the f; by the g; yields finitely many holomorphic functions in U that de-
scribe the set A NU. No point of A’ N At is a regular point of A. For every
z € A’ — A% there is a g; that does not vanish there. So the rank of the
Jacobian of the f; - g; is equal to d at every nonsingular point of A’ — At.
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The same procedure can be used for every d and the corresponding A’; and
consequently, in finitely many steps we obtain a neighborhood of zy and
holomorphic functions in this neighborhood with the desired properties. =

The Singular Locus. From the preceding theorem we conclude the
following:

6.6 Theorem. The set Sing(A) of singular points of an analytic set A is
again an analytic set.

PROOF: The intersection of two irreducible components of A belongs to
Sing(A). The union S of all these intersections is an analytic set.

Assume that zg is a point of an irreducible component A’ of A and dim(A’) =
n — d. Then there is a neighborhood U = U(zy) C G with holomorphic
functions fi,..., fy vanishing exactly on A’ N U such that their Jacobian
has rank d in each of the regular points. Let S* be the analytic set of all
points of A’NU where all d X d minors of the Jacobian vanish. Clearly, S$* is
contained in Sing(A’) N U. On the other hand, at any point of Sing(A") NU
the Jacobian of fy,..., fy cannot have rank d. So Sing(A’)NU = S*, and
Sing(A’) is analytic in G.

The union of S and the sets Sing(A’) for all irreducible components A’ is the
set Sing(A). It is analytic, since the union is locally finite. (]

The set Sing(A) is called the singular locus of A.

Extending Analytic Sets. Let G C C™ be a domain.

6.7 Lemma. Let zo = (2\”,...,2?) C C" be an arbitrary point and E =
{z : 2z = 2" fori=1,...,d} an affine plane of codimension d containing
zo. If A C G is an irreducible analytic set of positive dimension that is not a
subset of E, then there is an open dense subset C C C® such that

fe(z1,- - zn) =21 — 207) + - + ca(za — 2°)

does not vanish identically on A for every c = (c1,...,cq) € C. In particular,
for any hyperplane Hy C C™ containing E there is a hyperplane H arbitrarily
close to Hy and also containing E such that dim(A4;) < dim(A) — 1 for every
irreducible component A; of AN H.

PROOF: We define ¢ : C¢ - O(C™) by ¢(c) := f.. This is a C-linear map,
and V := {c € C¢ : f.|4 = 0} is a linear subspace. Suppose that V = C¢%.
Then (z; — 2{”)|a = 0 for i = 1,...,d, and therefore A C E. This is a
contradiction, and consequently, V must be a proper subspace of C%. For any
c in the open dense subset C := C% — V, f. does not vanish identically on A.
Thus H, := {z : fc(z) = 0} is a hyperplane containing F. ]
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Our main tool for extending analytic sets is the following.

6.8 Proposition. IfE={zecC" : 2y = -+ = zg = 0} is an (n — d)-
dimensional plane and A an analytic set in G — E, whose irreducible compo-
nents all have dimension n —d+1 with 0 <l < d, then the closure A of A in
G is an analytic set in G.

Proor: The proposition is of a local nature. We may assume that A is
irreducible and 0 € ENG. It is enough to construct a continuation of A into
a neighborhood of 0.

Let ¢ = (0,...,0,¢4+1,--.,¢,) be an arbitrary point of E N G. We consider
the following family of (d — [)-dimensional planes through c: For

t=1,...,n—d+l1
A= (aij ! i=1...,d-1 ) € Mp_d+1,4-1(C)

we have the linear map L : C%~! — C*~ 9+ and define

P(c,A) :==c+ {(W,La(w")) : w € C?!}.

So P(c, A) consists of vectors w = (w1, ..., Wd—i, Wg—i41, - - - , Wy) With
Wh—pys = ZaU w; fori=1,...,1
d—1
Wo—i4+i = Cd~l+i+zaij'wj fori=1+1,...,n—-d+ 1.

Then every P(c, A) meets E exactly inc = (0,...,0,¢441,...,¢n). If O is the
zero matrix, then P(c) := P(c, O) is the plane C?~!x{(0,...,0,c4+1,---,¢n)}-

In the next chapter we will introduce Grassmannian manifolds and a topology
on the set of linear subspaces (with fixed dimension) of a given vector space.

In our case it follows that a neighborhood of ¢ + P, is given by the set of all
planes P = c+ P with P& (0 x C*—4+l) = C™. This shows that every (d —1)-

dimensional plane through c that is near P(c, Q) is of the form P{c, A).

We choose real numbers 0 < r; < 7 and 7 > 0 so small that the “shell”
S={z=(z,2") e C  xC" ¥ . r < |z']| < 7; and |2"] < r}

is a relatively compact open subset of G. Only finitely many irreducible com-
ponents A; of A enter S. We can find a hyperplane H; containing E that
intersects the A; not at all or in codimension 1. Let A;; be the finitely many
irreducible components of H; N A; that enter S. We can find another hyper-
plane H; containing E that intersects all A;; at most in codimension 2. We
continue this procedure running through the irreducible components of the
A;; N Hy. After finitely many steps we have n — d + | hyperplanes such that
their intersection P is a plane P(c, A) that meets AN S in at most finitely
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many points. By the above lemma we can choose this plane arbitrarily near
Py := P(c).

Now apply a linear coordinate transformation very near to the identity that
leaves E invariant and maps our plane P(c, A) onto Py and replace the
transformed shell S by a new shell S’ (in the new coordinates) that is a little
bit smaller such that S’ is contained in the old (transformed) S. This can be
done so that 8S' NPy NA=a2.

Earlier we proved that A is an embedded-analytic set in a neighborhood of
the points of the intersection A N Py NS’ over a domain G’ in the space of
variables zg_;41,...,2n. So there is a small closed ball B ¢ C*~%* around
the origin such that (C%~! x B) N 95’ N A remains empty, every irreducible
component of (C4~! x B) NS’ N A enters Py N S’, and every plane through
a point of B and parallel to Py intersects A N S’ in at most finitely many
points.

Zd+1y: - Zn

E

Zd—1+1, 2d
0
AN By —
T2
21y Zd—1
Figure III.3. Intersecting A with By and P,
Now, the set By := {2’ € C* ' : ||z’|| < ro} x B is a neighborhood of

the origin in C™, and each of our parallel planes through points of B — E
meets A N By in a compact analytic set and therefore in at most finitely
many points (cf. Figure IIL.3). At all of these points the set A is locally
an embedded-analytic set over B. By multiplying the pseudopolynomials by
the same distinguished variable that we-obtained for the different intersection
points over the same base point in B— E, we have that AN(C?~!x (B-EFE)) is
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an embedded-analytic set over B — E. The coefficients of the corresponding
pseudopolynomials over B — E are bounded along E. Hence, they can be
analytically extended to B. This means that A N (By — E) has a unique
analytic continuation to By. .

The proposition just proved is also true if A C G —F is an analytic set, whose
irreducible components all have dimension greater than n — d, since we can
write A as a finite union of pure-dimensional analytic sets. As a consequence
we have the following theorem.

6.9 Theorem of Remmert—Stein. Assume that G C C" is a domain,
K C G an (n — d)-dimensional analytic subset, and A an analytic subset of
G — K all components of which have dimension > n —d. Then the closure A
of A in G is an analytic set in G.

Proor: 1If zy € K is a regular point, then K can be transformed in a
neighborhood of zg to a plane E. So A is analytic in a neighborhood of zg
and therefore in all regular points of K. We can replace K by the set K; of
singular points of K, which is analytic again and has lower dimension. By
the same argument we show that A is analytic at all regular points of K.
Continuing in this way we prove that A is analytic in G. a

This theorem first was proved by R. Remmert and K. Stein; see [ReSt53].

The Local Dimension. We show how our results are linked with the
classical dimension theory of analytic sets.

Let G C C™ be a domain, A C GG an analytic set, and 29 € A a point. There
is an open neighborhood U = U(z¢) C G such that U N A is a finite union
of irreducible analytic components Ay, ..., A;. If we choose U small enough,
then the A; are uniquely determined.

Definition. In the given situation the uniquely determined number

dimg,(4) := max z dim(A,)

=1,...,

is called the (local) dimension of A at zg.

The set A has dimension 0 at zg € A if and only if there is an open neigh-
borhood U = U(z¢) C G such that UN A = {zo}.

6.10 Proposition. Let k := dim,,(A) be positive. Then k is the smallest
number with the property that there are holomorphic functions fi,..., fx in
a smell neighborhood U of zg such that zo is isolated in ANN(f1,..., fx)-

ProoF: If dim,,(A) = k, then there must be at least one k-dimensional
irreducible component A’ of A at zg.
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If f is any holomorphic function near zg, then either f|4- = 0 (and therefore
ANN(f) still k-dimensional) or A' N N(f) is (k — 1)-dimensional. So at least
k functions are required.

On the other hand, by Lemma 6.7 we can find a holomorphic function f;
near zo that does not vanish identically on any irreducible component A’ of
dimension k at zg. It follows that A’ N N(f1) has dimension k£ — 1 for all
such components A’. We can repeat this process, and after k steps we reach
dimension zero, so that 2o is isolated in AN N(f1,..., fx). =

Definition. If A has dimension k at zg, then any system {fi, ..., fi} of
holomorphic functions with ANN(f1,. .., fx) = {#o} is called a parameter
system for A in zg.

6.11 Ritt’s lemma. Let B C A be closed analytic sets in a domain G C
C™. Then B is nowhere dense in A if and only if dim,(B) < dim,(A) for
every z € B.

ProOF: Let the criterion be fulfilled, and zy be an arbitrary point of B.
Then there exists an open neighborhood U of zp in G and a parameter system
{f1,--., fe} on U for B at z¢. Since dim,, (A) > k, it is not possible that zg is
isolated in ANN(f1,..., fx). This means that (A—B)NN(fy,..., fx)"W # @
for every neighborhood W = W (zg). So B is nowhere dense in A.

On the other hand, let B be nowhere dense in A, and zg a point of B. In a
small neighborhood U of z, we have unique decompositions into irreducible
components:

BnU=B,U---UB,, and A=A4,U---UA,.

Every component B; is contained in a component A;;, and for any open
neighborhood W = W (zo) we have (A4, — B;) NW # @, because otherwise,
there would exist points z € W N B; where B is dense in A. So dim(B;) <
dim(A;;)) for all 4. It follows that dim,,(B) < dim,, (A). L]

Let G C C" be a domain, A C G an analytic set, and zg € A a point. If
dim,, (A) = k, then the number n — k is called the codimension of A at zp.

6.12 Second Riemann extension theorem. Suppose that n > 2 and
that the analytic set A C G has everywhere at least codimension 2. Then any
holomorphic function f on G — A has a holomorphic extension to G.

PRrROOF: We may assume that A is irreducible of codimension d > 2. If zg
is a regular point of A, then there is a neighborhood U of zg such that UN A
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is biholomorphically equivalent to an open subset of a linear subspace E of
codimension d. By the theorem on removable singularities (see Section II.1)
f can be holomorphically extended to zg.

We repeat this procedure. Beginning with the set Sing(A), which has codi-
mension d + 1, after finitely many steps only a set of isolated points remains.
Since f can also be extended to these points, we obtain the desired result. w

Exercises
1. Let A;, A2 C C" be analytic sets. Show that dim(A; N A2) > dim(A4;) +
dim(Ag) —n.

2. Assume that G C C" is a domain and f a nonconstant holomorphic
function on G. Prove that there is an at most countably infinite set
Z C Csuch that A.:={z€ G : f(z) =c} isregular forcec C - Z.

3. Let G € C™ be a domain and A C G an analytic set. Prove that for any
k > 0 the closure of the set Ay := {z € A : dimz(A) = k} is either
empty or is a pure k-dimensional analytic subset of G.

4. Let G C C™ be a domain and fi, ..., f,, holomorphic functions on G.
Denote by N the common zero set N(fy,..., fm). Show that if the rank
of the Jacobian of f,..., fiu at some point zg € N is equal to r, then
there is a neigborhood U = U(zg) C G and a closed submanifold M C U
of dimension less than or equal to n — r such that UN A C M.

5. Let A be an analytic set in a domain G C C™. For every point zg € A
the set I, (A) := {(f)ze € Oz, : fla =0} is an ideal in O,,. Show that
there are a neighborhood U of zp and holomorphic functions fi,..., fx
on U such that:

(a) ANU =N(f1,..., fr)
(b) I, (A) is generated by the germs (fi)zg, .- (fr)zo-
Show that the vector space

T (A) = {w eC": iw,,fzu (zo) = 0 for every f € I, (A)}

has dimension n—rkg, (f1, . . ,lfk). It is called the Zariski tangential space
of A at zg.

6. Let A be defined as in Exercise 5, and suppose that zg is a regular point
of A. Show that T,,(A) is the set of tangent vectors a(0) (see Section
1.7), where a : I — C" is differentiable, a(I) C A, and a(0) = zg.

7. Let A be an analytic set in a domain G C C®, and let zo € A be an
arbitrary point. The embedding dimension of A at z¢ is the smallest
integer e such that there is an open neighborhood U = U(zg) and a
closed submanifold M C U of dimension e with ANU C M. It is denoted
by embdim,,(A). Prove that z — embdim;(A) is upper semicontinuous
on A, and that embdim,,(A) = dim¢(T,,(A4)).

8. Consider the analytic set A = {w = exp(1/2)} C {(w,2) € C? : z # 0}.
Determine the closure of A in C2.



Chapter IV

Complex Manifolds

1. The Complex Structure

Complex Coordinates. Let X be a Hausdorff space, i.e., a topological
space satisfying the Hausdorff separation axiom. Sometimes such a space is
also called a separated space or a T,-space. Hausdorff spaces are the most
common in topology (for example, every metric space is a Hausdorff space),
but non-Hausdorff spaces do arise, in particular in algebraic geometry. The
space C™ with the Zariski topology is not Hausdorff.

We think that a space X is too big if there exists a discrete subset with the
cardinality of the continuum. Therefore, we demand that the topology of X
have a countable base. In this case X is said to satisfy the secomd aziom
of countability. Obviously, C™ has a countable basis. A metric space has a
countable basis if and only if it contains a countable dense subset.

A Hausdorff space X is called locally compact if every point £ € X has a
compact neighborhood. If X is compact, then it is also locally compact. If
X is locally compact, but not compact, then X can be made compact by
adjoining just one point (Alexandrov’s one-point compactification). Every
Hausdorff space that is locally homeomorphic to an open subset of C" is
locally compact. So, for example, every Riemann domain over C" is locally
compact.

Definition. An open covering. ¥ = {V, : v € N} of a Hausdorff space
X is called a refinement of the covering % = {U, : + € I} of X if there
is a map 7: N — I (the refinement map) with

V. C Uy for every v € N.
The refinement map is not uniquely determined, but we can fix it once and
for all.

A covering ¥ = {V, : v € N} is called locally finite if each z € X has a
neighborhood U = U(z) such that U meets only finitely many V,,.

Definition. A Hausdorff space X is called paracompact if every open
covering % of X has a locally finite open refinement ¥.

Every compact space is paracompact. Furthermore, every locally compact
space with countable basis is paracompact.
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For the moment we only assume that X is a Hausdorff space.

Definition.  An n-dimensional complez coordinate system (U, ) in X
consists of an open set U C X and a topological map ¢ from U onto an
open set B C C".

If p € X is a point, then every coordinate system (U,y) in X with p € U
is called a coordinate system at p. The entries z; in z = ¢(p) are called the
complex coordinates of p (with respect to (U, ¢)).

If f is a complex function in U, we can consider it as a function of the complex
coordinates 21, ..., z,, by

(21, 2m) = o™z, o, 20).

Two (n-dimensional) complex coordinate systems (U, ¢) and (V,4) in X are
called (holomorphically) compatible if either U NV = @ or the map

poyp lihp(UNV) = oUNV)

is biholomorphic (see Figure IV.1).

V

<

Figure IV.1. Change of coordinates

The sets By := (U NV) and B, := ¢(U NV) are open subsets of C". If z;
(respectively w;) are the complex coordinates with respect to ¢ (respectively
1), then compatibility of the coordinate systems means that the functions
2 = zi(wy, ..., w,) and w; = wj(21,..., 2,) are holomorphic.
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A covering of X with pairwise compatible n-dimensional complex coordinate
systems is called an n-dimensional compler atlas on X. Two such atlases A,
and A are called equivalent if any two coordinate systems (U, ¢) € A; and
(V,9) € Az are compatible. An equivalence class of (n-dimensional) complex
atlases on X is called an n-dimensional compler structure on X. It contains
a maximal atlas that is the union of all atlases in the equivalence class.

Definition. An n-dimensional complex manifold is a Hausdorff space
X with countable basis, equipped with an n-dimensional complex struc-
ture.

Every complex manifold is locally compact and paracompact.
Examples

1. The complex n-space C" is an n-dimensional complex manifold. The
complex structure is given by the coordinate system (C%,id).

2. If X is an arbitrary n-dimensional complex manifold, then any nonempty
open subset B C X is again an n-dimensional complex manifold. For
p € B there is a coordinate system (U, ¢) in X at p. Then (UNB, ¢luns)
is a coordinate system in B at p. All of these coordinate systems are
compatible.

3. Let G C C™ be a domain and X C G a k-dimensional complex sub-
manifold. Of course, X is a Hausdorff space (in the relative topol-
ogy) with countable basis. For zg € X there are open neighborhoods
W = W(z9) C G and B = B(0) C C™ and a biholomorphic map
F : W — B such that

F(WﬂX)={(w1,...,wn)€B : wk+1=---=wn=0}.

Let pr’ : C* — C* be the projection (wy,...,wp) = (wi,...,wg). We
define U := WNX and ¢ :=pr'oF : U — Ck. Then (U, ) is a k-
dimensional complex coordinate system in X at zg.

If (V, %) is another coordinate system, with ¢ = pr’ o f‘, then
(,aod;“l(wl,..:,wk) = pr’oFof‘“_l(wl,...,wk,O,...,O)

is holomorphic. So we get a complex structure on X.

4. Finally, let (G, 7) be a Riemann domain (over C"). Then G is a connected
Hausdorff space, and for every p € G there is an open neighborhood
U = U(p) such that B := w(U) is open and ¢ := 7|y : U = B is
topological. Then (U, ¢) is a complex coordinate system. If ¢ = 7|y is
another coordinate system, then for x € U NV we have ¢(z) = ¢(z) =
m(z) =: z and

pov\(2) = p(z) = =.
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Therefore, the coordinate systems are compatible. We get a complex
structure on G. One can prove that G has a countable basis (cf. [Gr55],
§2]). So every Riemann domain over C™ is an n-dimensional complex
manifold.

Holomorphic Functions. Let X be an n-dimensional complex mani-
fold.

Definition. A complex function f on an open subset B C X is called
holomorphic if for each p € B there is a coordinate system (U, ) at p
such that fo™!: (U N B) = C is holomorphic.

If zy,..., z, are the complex coordinates with respect to (U, ¢), then

(21,...,2n) = foo Y21, .0y 2n)

is a holomorphic function in the ordinary sense. If z, = 2, (w1, ..., wy,), where
ws, ..., W, are the complex coordinates with respect to a coordinate system
(V,¥), then

fov Y wy,...,wy) = focp“l(zl(wl,...,wn),...,zn(wl,...,wn))

is also holomorphic. So the definition of holomorphy is independent of the
coordinate system. We denote the set of holomorphic functions on B by O(B).
It is a C-algebra with unit element.

Example

Let G C C™ be a domain and X C G a k-dimensional complex submanifold.
We consider a complex coordinate system (U, ¢) in X, where U is the inter-
section of X with an open set W C G and ¢ = pr’ oF, with a biholomorphic
map F: W — B C C" such that F(U) = {w € B : wg41 = -+ = w, = 0}.
If f is a holomorphic function on G, then

f'X ow'l(wl,...,wk) :fOF_l(’wl,...,’wk,O,...,O)

is holomorphic. Therefore, f|x is a holomorphic function on the complex
manifold X.

1.1 Identity theorem. Let X be connected. If f,g are two holomorphic
functions on X that coincide in a nonempty open subset U C X, then f = g.

Proor: Let W = {z € X : f(z) = g(z)}. Then W° # @, since U C W.
Assume that there exists a boundary point zo of W° in X and let (U, ) be a
coordinate system at xp with ¢(zo) = 0. Then all derivatives of f o p~! and
go ¢~ ! must coincide at 0. It follows that the power series of these functions
around the origin are equal. But then f = g in a whole neighborhood of zy,
and this is a contradiction.
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If there were a point x € M := X — W*° that was not an interior point of M,
then z would be a boundary point of W°. This shows that M must be open.
Since X is connected, M has to be empty. ]

1.2 Maximum principle. Let X be connected, f € O(X), andxo € X a
point such that |f| has a local mazimum at xg. Then f is constant.

ProoF: The functions f and g := f(x¢) are both holomorphic on X. If
(U, ) is a coordinate system at z¢o and B := ¢(U), then fp := fop ! is
holomorphic on B, and |fy| has a local maximum at zg := @(z¢). Thus there
is an open neighborhood B’ = B’(zy) C B such that fo is constant on B’ and
f is constant on U’ := ¢~1}(B’). So f|y = g|v, and by the identity theorem
f =g;ie., fis constant. ]

1.3 Corollary. If X is compact and connected, then every holomorphic
function on X is constant.

PROOF: The continuous function |f| takes its maximum at some point of
X. Now the corollary follows from the maximum principle. =

1.4 Corollary. There is no compact complex submanifold of positive di-
mension in C™.

ProoF: Let X C C™ be a compact connected submanifold. Then the stan-

dard coordinate functions z,|x must be constant, for v = 1,...,n. This
means that X is a single point. If X is not connected, it is a finite set of
points. =

Remark. Another proof is given in Section IIL6.

Riemann Surfaces. An (abstract) Riemann surface is by definition a
1-dimensional connected complex manifold.

Example

The complex plane C and every domain in C are Riemann surfaces. Recall
the Riemann surface of /z,

X ={(w,2) €eC?: w? =z, z #0}.

Since X is a Riemann domain over C, it is a 1-dimensional connected complex
manifold. From the projection 7 := pry|x : X — C we get complex coordinate
systems (U, ¢) with ¢ := 7|y and sufficiently small U.
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The function f : X — C with f(w, z) := w is a global holomorphic function
with f2 = z.

Example

The Riemann sphere C = C U {co} is a compact connected Hausdorff space.
We have two coordinate systems (C, ¢) and (C — {0},9) with p(2) = z and
Y(z) = 1/2. On C* = CN (C - {0}) we have p o9~ (2) = 1/z, and this is
holomorphic. So C is a compact Riemann surface. Every global holomorphic
function on C is constant, but there are nontrivial meromorphic functions,
for example f(z) = z (with one pole at 0o). Here a meromorphic function on
X is a function f that is holomorphic outside a discrete subset P C X and
satisfies

lim|f(x)] =00 for every p € P.

T—p

The points of P are called the poles of f.

Holomorphic Mappings. Let F : X — Y be a continuous map be-
tween complex manifolds.

Definition. The map F defined above is called holomorphic if for any
p € X there is a coordinate system (U, ¢) in X at p and a coordinate
system (V,4) in Y at F(p) with F(U) C V such that

Yo Fop™':pU) = p(V)

is a holomorphic map.

1.5 Proposition. The map F : X — Y is holomorphic if and only if for
any open subset V C Y and any f € O(V) it follows that foF € O(F~}(U)).

The proof is an easy exercise.

The category of complex manifolds consists of a class of objects, the complex
manifolds, and a class of sets such that to any pair (X,Y’) of objects there is
assigned a set O(X,Y) (which may be empty), the set of holomorphic maps
between X and Y. In a general category this set would be called the set of
morphisms from X to Y.

For (G,F) € O(Y,Z) x O(X,Y) we always have the composition G o F' €
O(X, Z) such that the following axioms hold:

1. If Ho G and G o F are defined, then (HoG)o F=Ho(Go F).
2. For any manifold X we have the identity map idx € O(X, X) such that
idy o F = F and F oidx = F, if the compositions are defined.
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Another example for a category is given by the topological spaces and contin-
uous mappings. If we replace in our definitions above the field C by R and the
word “holomorphic” by “differentiable”, we get the category of differentiable
manifolds and differentiable mappings. From every n-dimensional complex
manifold we obtain a 2n-dimensional differentiable manifold by “forgetting
the complex structure.”

A holomorphic function f : X — C is obviously a holomorphic mapping.
More generally, in the case of a Riemann surface a meromorphic function f
on X may be viewed as a holomorphic mapping f: X — C.

Definition. A biholomorphic map F : X — Y is a topolcgical map
such that F and F~! are holomorphic. If there exists a biholomorphic
map between X and Y, then the manifolds are called isomorphic or
biholomorphically equivalent, and we write X =Y.

Remark. If X is a complex manifold and (U, ¢) a complex coordinate
system with ¢(U) = B C C®, then ¢ : U — B is a biholomorphic map.

Cartesian Products. Assume that X;,..., X,, are complex manifolds
of dimension n,,...,n,,. Then the set X = X; x --- x X, carries a natural
topology generated by the sets U = Uy x --+ x Up,, U; C X; open for i =
1,...,m. One sees immediately that X is a Hausdorff space with countable
basis.

Given complex coordinate systems (U;, ;) in X;, for i = 1,...,m, one defines
a coordinate system (U, ) for X by

o(Z1,- ., Zm) == (p1(Z1)s - -, Pm(Tm)) € C* = C™FH0m

It is clear that two such coordinate systems are compatible. So we obtain an
n-dimensional complex atlas and a complex structure on X. The projections
pi : X — X, are holomorphic maps fori =1,...,m.

A simple example is C" =C x --- x C.
N e’
n times
The Cartesian product of two complex manifolds X, X; satisfies the follow-
ing universal property:

Given any complex manifold Y and any two holomorphic maps F : Y — X;
and G : Y — X,, there ezists ezactly one holomorphic map H : Y — X; x X,
with F =pyoH and G =pyo0 H.

Although trivial in our case (we set H := (F,G)), this property becomes
important in more general categories.
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Analytic Subsets. Let X be an n-dimensional complex manifold.

Definition. A subset A C X is called analytic if for each point p € X
there are a (connected) open neighborhood U = U(p) and finitely many
holomorphic functions f,..., f,, on U such that

UNA={geU: fi(gg=0fori=1,...,m}.

We call A an analytic hypersurface if we can always take m = 1.

From the definition it follows that A is a closed subset of X. deally, an
analytic set in X is the same as an analytic set in an open set B C C". So
most properties of analytic sets in C* can be transferred.

1.6 Proposition. If X is connected and A C X analytic, then either A =
X or A is nowhere dense and X — A is connected.

PRrOOF: Assume that A # X.If A is somewhere dense in X, then A contains
interior points (because it is closed in X). Since X is connected, the interior
of A has a boundary point p € X — A (same argument as in the proof of
the identity theorem). We take a connected neighborhood U = U(p) such
that ANU = {ge U : fi{q) = -+ = fm(q) = 0}. Then U contains an
open subset V (consisting of interior points of A) where fi,..., f, vanish
identically. By the identity theorem they vanish on the whole set U, and p
cannot be a boundary point of the interior of A. This is a contradiction, and
it follows that A is nowhere dense.

If X — A is not connected, it can be decomposed into two nonempty open
subsets Uy, Us. The function f : X—A — C with f(z) =0onU; and f(z) =1
on Us is holomorphic and bounded. By Riemann’s extension theorem (which
can be applied locally) there exists a holomorphic function f on X that
coincides with f outside A. Since fcan take only the values 0 and 1, it is
locally constant. But on the connected manifold X every locally constant
function is constant. This is a contradiction. =

Let fi,..., fm be holomorphic functions that are defined on an open subset
U C X. Let p € U be a point and (V, %) a complex coordinate system in X
at p. The mapping f = (f1,..., fm) : U = C™ is holomorphic, and we define

elp: ) = (‘9—(”’3———)@/}( )] I ) -

_7—1

This is something like a Jacobian matrix of f at p, but it depends on the
coordinate system 1. Since
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3(fio)  A((fiopm1) o (poy))
a] Wio%7) () = ” o)
= YW, o 2x 2227 ),
k=1 '7
we have

Je(0; %) = Je (05 0) * Jpop—1 (¥(P))-
This shows that

tkp(f1,. -+ fm) =1k J(gy, 5y (B3 Y)

is independent of the chosen coordinate system.

Definition. An analytic set A C X is called regular (of codimension
d) at a point p € A if there are an open neighborhood U = U(p) C X
and holomorphic functions fi, ..., f4 on U such that:

1. AnNU={qeU: file) == falg) = 0}.

2. tkp(f1,..., fa) =d :

The number n — d is called the dimension of A at p.

If A is regular at every point, A is called a complex submanifold of X.

1.7 Proposition. An analytic set A is regular of codimension d at p € A
if and only if there is a compler coordinate system (U,p) in X at p with
p(U)y=BCC" and p(UNA)={w E€ B : wp_g41 =+ = wy = 0}.

If A is a complex submanifold of X, then A itself is a complex manifold.

PRrROOF: Let (U, %) be an arbitrary coordinate system at p and W := ¢(U).

Then A := ¢(ANU) is an analytic subset of W that is regular of codimension

d at zg := ¢(p), and there exists a biholomorphic map f from W onto an open

neighborhood B = B(0) C C™ with f(zo) = 0 and f(A) = {W : wp_g41 =
- = w, = 0}. We take ¢ :=fo .

If A C X is a submanifold, then A inherits a natural complex structure from
X. This can be demonstrated in the same way as in the case X = C". =

Example

Let F: X —» Y be a holomorphic map from an n-dimensional manifold into
an m-dimensional manifold. Then

Gr:={(z,y) e X XY : y=F(z)}
is called the graph of F.
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Let pp € X be a point and gy := F(pg) € Y. We choose coordinate systems
(U, ) in X at pg and (V,9) in Y at go, with F(U) C V. Then (U xV, @ x9) is
a coordinate system in X x Y at (po,qo) € Gp. Writing Yo F = (f1,..., fm)
we get

GrN(UxV)={(¢x9¥) z,w) : fiop ™ z) —~w;=0fori=1,...,m}.

So G is locally defined by the functions g;(p, ¢) := fi(p) — w; 0 9¥(q), for i =
L,...,m. Since rk(py.40)(91, - - -, gm) = m, we see that G is an n-dimensional
submanifold. .

The diagonal Ax C X x X is a special case, which is given as the graph of
the identity:
Ax ={(z,2)e X x X : z=12'}.

Example

Let A = {(w,21,22) € C* : w? = 2123}. The projection p : (w, 21, z2) —
(21, 22) realizes A as a branched covering over C? that is the zero set of
the pseudopolynomial w(w; 21, 2z2) = w? — z;25. Outside the discriminant set
D, = {(21,22) : z122 = 0} it always has two regular leaves over C2. So A is
everywhere 2-dimensional and regular outside D,,. It is even regular outside
the origin, since Vw(w, 21, 23) vanishes only at (0,0,0). One can show that 0
is, in fact, a singular point; e.g., by using Exercise 8.2 in Chapter I.

The map ¢ : C? — A with @(t1,t2) 1= (t1t2,t3,¢2) is surjective. We call it a
uniformization. The Jacobian

2 4
: J¢(t1,t2) = 2ty O
0 2t

vanishes exactly at (0,0). The image point (0,0,0) = (0,0) is then called a
nonuniformizable point.

Analogously to the situation in C™ one proves that the set Sing(A) of singular
points of an analytic set A is a nowhere dense analytic subset. The set A is
called irreducible if A — Sing(A) is connected. To every analytic set A C X
there is a uniquely determined locally finite system of irreducible analytic
sets (Ax)aea such that A is the union of all these irreducible components A,.

Differentiable Functions. Let X be an n-dimensional complex man-
ifold, B C X an open set. A function f : B — C is called differentiable
(respectively smooth), if for every complex coordinate system (U, ) with
U N B # & the function f o p~! is differentiable (respectively infinitely dif-
ferentiable) on (U N B). We denote the R-algebra of real-valued smooth
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functions on B by &(B) and the C-algebra of complex-valued smooth fuc-
tions by £ (B, C).

1.8 Proposition. In every compler manifold X there is a sequence of com-
pact subsets (K,) with K, C (Kn41)° and U, Kn = X.

PROOF: Since X is locally compact with countable basis, we can find a
countable basis (B, ),en of the topology of X such that each B, is compact.
We take K, := Bj. If n; is the minimal number such that K; € BqU- - -U'Enl,
then k; > 2, and we take Ko := B, U--- UEHI, and so on. [ ]

We call (K, )nen a compact ezhaustion of X.

1.9 Proposition. Let an open covering % = {U, : ¢ € I} of X be given,
and two real numbers r,7’ with 0 < v’ < r. Then there is a locally finite open
refinement ¥ = {Vy\ : A\ € L} of % such that the following hold:

1. For each A\ € L there ezists a complex coordinate system (Vx,py) in X
with QO)\(V,\) = B,-(O).
2. The open sets 3 ' (B (0)) also cover X.

PROOF: We use a compact exhaustion (K,) and define M; := K; and
M, = K, — (K,_1)° for n > 2. Then (M,,) is a covering of X by compact
sets.

We consider a fixed M = M,,. For each € M there is an index ¢ = ¢(z) € I
and an open neighborhood V = V(z) C U,N((Kn+1)° — Kn—2). We can make
V so small that there is a complex coordinate system ¢ : V — B,.(0) with
¢(z) = 0, and we define V' := ¢~1(B,(0)). The set M is covered by finitely
many neighborhoods V,, ;,...,V, .. like our V'. Then

3 n,my
YV ={Va; :neN i=1,...,m,}

is the desired covering. [

Definition. A (smooth) partition of unity on X is a family (,).cs of
smooth real-valued functions such that:

1. ¢, > 0 everywhere.

2. The system of the sets supp(y,) is locally finite.

3. X erv. =1

1.10 Theorem. For any open covering % = {U, : ¢« € I} of X there is a
partition of unity (y,) with supp(p,) C U,.
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PROOF: We have a locally finite refinement ¥ = {V) : A € L} of % and
complex coordinates ¢y : V) — B,.(0) as in Proposition 1.9. If ¢ : C* — R is
a smooth function with 0 < 1(z) < 1, ¥(z) = 1 on B,.(0) and ¥(z) = 0 on
C™ — B,(0), we define a smooth function 15 on X by ¥y = ¥ o) on V) and
Ya(z) = 0 otherwise.

Let 7: L — I be a refinement map (with Vi C U,(s)). Then # = {W, :
¢ € I} with W, = UAeT_,(L) V, is an open refinement of % with W, c U,.
In addition it is locally finite, because for x € X there is a neighborhood
P = P(z) such that PNV, # @ only for A € Ly, Ly C L finite. But then
PNW, # @ only for ¢ = 7(A), A € L.

We define ¢, := Z/\ET_I(L) Y. The sum is finite at every point. So @, is

smooth and has its support in W,. Every z € X lies in a set ¢ ' (B (0)),
where 9, is positive. Therefore, ¢ := ), ¢, is well defined and everywhere
positive. Now we can define the partition of unity by ¢, := @,/¢. u

1.11 Corollary. Let U C X be an open set and V CC U an open subset.
Then there exists a function f € &(X) with fly =0 and f|(x_vy = 1.

PROOF: The system {U, X —V} is an open covering of X. Let {¢1, 2} be a
partition of unity for this covering. Then supp(y;1) C U, supp(p2) C X -V,
and 1 + pp = 1. We take f := 9. ]

Tangent Vectors. Let X be an n-dimensional manifold and a € X an
arbitrary point.

Definition. A derivation on X at a is an R-linear map v : £(X) - R
such that

o[f - g] = v[f]-g(a) + f(a)-v[g] for f,g € EX).

If c is constant, then v[c] = 0 for every derivation v.
1.12 Proposition. If f € &(X) and fly = 0 for some open neighborhood
U=U(a) C X, then v[f] = 0 for every derivation v at a.

PRrooOF: We choose a function g € &(X) such that g}y = 0 for some open
neighborhood V' = V(a) CC U and g|(x—y) = 1. Then g- f = f, and from
the derivation rule it follows that

v[f] = vlg- f] = vlg] - f(a) + g(a) - v[f] = 0.
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1.13 Corollary. If f, g are two functions of &(X) with f|ly = g|u for some
open neighborhood U = U(a) C X, then v[f] = v|g] for every derivation v at
the point a.

It follows from the corollary that we can restrict derivations to locally defined
functions and work with coordinates. If ¢ = (z1,...,2,) : U = C" is a
coordinate system at a and 2, = x, + i y,,, then we define partial derivatives
at a by

(ai)a [f]=(f o9 Nalp(a)) and (6?;,-),1 [f]:= (f o o™ N)u((a)),

for i = 1,...,n. The partial derivatives depend on the chosen coordinate
system, but once we have made our choice, every derivation v at a has a
unique representation!

e (am), 20 (30)
v=) ai\7—) +D bl ) >
; <6.’171 a ; ayi a
with a; = v[z;] and b; = v[y;] fori =1,...,n.

In C™ the space of derivations is isomorphic in a natural way to the space of
tangent vectors. But what is a tangent vector on a complex manifold X7 We
start with a differentiable path o : I — X, where I C R is an interval with
0 € I, and a(0) = a. Let (U, ) be a coordinate system in X at a. Then we
can write poa = (ay,...,a,) and get the tangent vector

(p0a)'(0) = (a1 (0), ..., a,(0)).

Unfortunately, this vector depends on the coordinate system. But a tangent
vector at a should somehow be completely determined by a pair (¢, ¢), where
¢ is a coordinate system at a and ¢ = (¢, ...,¢,) € C" an arbitrary vector.

In this sense the tangent vector to « is given by the pair (g, (¢ o a)'(0)). If
we take another coordinate system 1, then

(¥ 0a)(0) = (poa)(0) Jyop-1(p(a))".

Therefore, we call two pairs (p,c) and (v,c’) equivalent if the Jacobian of
o p~! at p(a) transforms c into ¢/, i.e., if

c=c - Joy-1(¥(a))t.

An equivalence class is called a tangent vector at a. The set T,(X) of all
tangent vectors at a is called the tangent space. It carries the structure of a
complex vector space, which can be defined on representatives:

! For the proof use the fact that every smooth function f on a domain G C
C™ has near zo € G a unique representation f(z) = Y. _, g.(z)(z, — z0) +

Yooe1 he(2) (v — y2) with g.(z0) = fz, (20) and h,(z0) = fy, (20)-
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(psc1) + (p,c2) = (p,c1+c2),
A-(pye) = (pA-c).

The Complex Structure on the Space of Derivations. If
f =g+ ihis a complex-valued smooth function on the open set B C X and
v a derivation at a € B, then we define

v[f] :== v[g] + iv[h].

1.14 Proposition. For every c € C* and every coordinate system ¢ at a
there is a unique derivation v at a such that

v[f] :==c-V(fop ') (p(a))t for every holomorphic function f.
The derivation v depends only on the equivalence class of (p,c).

PRrOOF: If a coordinate system ¢ = (z1,...,2,) With 2z, =z, + iy, and a
vector ¢ = a + ib are given, then v can be defined by

- 0 & 7]
o ;au (axV)a+,,z=:1bV (53/—1/)11 .

If f is a holomorphic function, then f,, = if;, and f;, = f,, . Consequently,

n

o[f] = 3 (an + ib,)(f 0 9™, (#(a) = c- V(f o o7 )((a))* -

v=1
The uniqueness follows from the equations v[z,] + i v[y.] = v[z.] = ¢
If the pair (i, ¢) is equivalent to (¢, c’), then
¢ -V(fop )W) = ¢ Jpoy-1(¥(a))’- V(fop ) (p(a))’
c-V(fop (p(a)".
Therefore, v is determined by the equivalence class of (¢, c). _ =

The assignment (¢, c) = v induces a real vector space isomorphism between
the tangent space T, (X) and the space of derivations at a. It follows that the
tangent space has complex dimension n. The pair (¢, e, ) is mapped onto the
derivation (8/0z,)q, and (p, ie,) onto (8/0yy)a.

1.15 Proposition. A complex structure on the space of derivations at a is
given by

J()[f] = i-v[f], for every holomorphic function f .
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PROOF: Obviously, J is R-linear, and J o J(v) = —v. ]

If v corresponds to the tangent vector given by (p, c), then J(v) corresponds
to (i, ic). One must distinguish carefully between the real number J(v)[f]
and the complex number i - v[f] if f is a real-valued smooth function.

The differential operators (8/8z. ), and (0/8Z, ). are not real-valued deriva-

tions, and therefore they do not correspond to tangent vectors. But they are
nevertheless useful. If v is a derivation, then

o[f] = Zau(fo‘/’—l)xu +Zbu(f°‘P—l)yu
v=1 v=1

= Ya-(oe™u +fov ™)

v=]

+ bci-(fo ™) —(fop™),)

Z c(fo ‘P_l)zu + Z Eu(f ° ‘)0_.1)?.,7
v=1 v=1

ife, :==a, +ib, forv=1,...,n.

Therefore, every (real-valued) derivation can be written in the form

- 0 ~_ (98
S (L) +3e (),

The Induced Mapping. Let F : X — Y be a holomorphic map be-
tween complex manifolds. Let € X be an arbitrary point, y := F(z) € Y.

Definition.  The tangential map F, = (F.); : To(X) — Ty(Y) is
defined by

(F.v)[g] := v[g o F], for derivations v and functions g € &(Y).

The map F, is linear, acting on tangent vectors as follows:

F,.: (Soa c) — (1/}9(: . szoFoqp—l (cp(z)) t);
if  is a coordinate system at z, and 1 is a coordinate system at y.

Now we have an assignment between the category of complex manifolds (with
a distinguished point) and the category of vector spaces. To any manifold
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X and any point a € X there is associated the tangent space T,(X). To
any holomorphic map F : X — Y with F(a) = b there is associated the
homomorphism F, : T,(X) — T,(Y). This assignment has the following
properties:

(idx)« = idr(x),
(GoF), = G.oF, (if G:Y — Z is another holomorphic map).

Such an assignment is called a covariant functor. If it interchanged the order
of the maps, it would be called a contravariant functor.

Remark. For historical reasons the elements of the tangent space are called
contravariant vectors and the elements of its dual space covariant vectors.
But the tangent functor behaves covariantly on the tangent vectors and con-
travariantly on the covariant tangent vectors in To(X)’. One should keep this
in mind.

Immersions and Submersions. We are particularly interested in
the case where the (local) Jacobian of a holomorphic map F : X — Y has
maximal rank. If n = dim(X) and m = dim(Y’), then the rank is bounded
by min(n, m). Only two cases are possible:

Definition. The holomorphic map F' is called an immersion at z if
rk(F.) = n < m, and F is called a submersion at z if rk(F,) = m > n.
In the first case (F.); is injective; in the second case it is surjective.

We call F an immersion (respectively submersion) if it is an immersion (re-
spectively submersion) at every point x € X.

Remark. If F: X — Y is an injective immersion, then for every x € X
there are neighborhoods U(z) C X and V(F(z)) C Y such that F(U) is a
submanifold of V. In addition, if X is compact, then F(X) is a submanifold
of Y. We omit the proof here.

1.16 Theorem. Letzg € X be a point, yo := F(zg). The following condi-
tions are equivalent:

1. F is a submersion at xy.

2. There are neighborhoods U = U(zo) C X and V = V(y) C Y with
F(U) Cc V, a manifold Z, and a holomorphic map G : U — Z such that
z — (F(z),G(z)) defines a biholomorphic map from U to an open subset
of VxZ.

3. There is an open neigborhood V = V(yg) C Y and a holomorphic map
s:V = X with s(yo) = zo and Fos = idy. (Then s is called a local
section for F.)
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Proor: (1) => (2) : We can restrict ourselves to a local situation and
assume that U = U(0) C C™ and V = V(0) C C™ are open neighborhoods,
and F : U — V a holomorphic map with F(0) = 0 and rk(Jr(0)) = m.

We write Jp(0) = (J£(0), J#(0)), with J5(0) € My m(C) and Jp(0) €
M, »—m(C). Choosing suitable coordinates we may assume that det Jz(0) #
0. We define a new holomorphic map F : U — V x C*~™ C C™ by

F(ZI,Z”) = (F(Z’,Z”), Z”), fOl‘ zI e Cm, zII c Cn—m-

Then

4 "
Jg(0) = ( JF(§0) *E’J:(jz ) ,  and therefore det Jz(0) # 0.

By the inverse function theorem there are neighborhoods U(0) c U and
W(0) ¢ C" such that F: U — W is biholomorphic.

We observe that Z := C*™™ is a complex manifold, and G := pr, : U Z
with (2’,2”) — 2" is a holomorphic map such that (F,G) = F is biholomor-
phic near 0.

(2) == (3): fU, V, Z, and G are given such that F(U) C V and (F,G) :
U — W C V x Z is biholomorphic, then s : V — X can be defined by

s(y) = (F1 G)—l(in(xO))'

Then (F,G)(s()) = (%0, G(z0)) = (F,G)(xo), and therefore s(yo) = xo.
Furthermore, (F,G) o s(y) = (F,g) o (F,G)~}(y,G(zo)) = (y,G(x0)). Thus
Fos(y)=y.

(3) = (1) : If s is a local section for F', with s(yo) = zg, then F,o0s,(v) =v
for every v € T, (Y). Thus it follows immediately that F is surjective. =

1.17 Corollary. If F: X — Y is a submersion, then for eachy € Y the
fiber F~(y) is empty or an (n — m)-dimensional submanifold of X. In the
latter case To(F~1(y)) = Ker((F.)z) for all x € F~1(y).

PROOF: We consider a point g € X. Let M := F~(yp) be the fiber over
Yo := F(x0). Then we can find neighborhoods U = U(zy) C X,V = V() C
Y, a manifold Z, and a holomorphic map G : U — Z such that (F,G) : U —
W C V x Z is biholomorphic. It follows that MNU = (F,G) '({y} x Z)NU
is a manifold of dimension n — m.

Since F|M is constant, we have F,|T;,(M) = 0. This means that T;,,(M) C
Ker(F,). Since these spaces have the same dimension, they must be equal. m
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Gluing. Assume that X is a set that is the union of a countable collection
(X, )ven of subsets such that the following hold:

1. For every v € N there is a bijection ¢, : X, —» M,, where M, is an
n-dimensional complex manifold.

2. For every pair (v, #) € N x N the subset ¢, (X, N X,) is open in M,, and
the map .

Yy © <p;l fpu(Xu N X)) = e (XN X,)

is biholomorphic.

3. For every pair of points a € X, and b € X, with a # b there are
open neighborhoods U(y, (a)) C M, and V(yp, (b)) C M, with o7 (U)N
el (V) = 2.

1.18 Proposition. Under the above conditions there is a unique compler
structure on X such that the X, are open in X and the ¢, : X, = M, are
biholomorphic.

PROOF: We give only a sketch of the proof and leave the details as an
exercise for the reader.

A subset U C X is called open if ¢, (UNX,) is open in M,, for every v. Then
the collection of open sets has the properties of a topology on X . In addition,
for every open set W C M, the set ¢ !(W) is open in X. Consequently,
the maps ¢, : X, — M, are homeomorphisms. From the last hypothesis it
follows that the topology on X is Hausdorff, and since the collection of the
X, is countable, it has a countable basis.

IfU C M, is open and 9 : U — C™" a coordinate system, then 1Z =Yooy, :
¢, }(U) = C™ is a coordinate system for X. One checks easily that two
such coordinate systems are biholomorphically compatible. So we obtain a
complex structure on X. =

One says that X is obtained by gluing the manifolds M,. Another way
to describe this process is the following. Let there be given a collection of
complex manifolds M,, open subsets M,,, C M,, and biholomorphic maps
You ¢ My, — M,, (including ¢,, = idp,). Consider pairs (z,v) with
z € M. Then (x,v) is called equivalent to (y, u) if

S Muua S Mul/ and x = ‘«puy(y)
The set X of equivalence classes is the result of the gluing process. Of course,

one has to add a condition that ensures the Hausdorff property.

Exercises

1. Let M be a compact connected complex manifold with dim(M) > 2 and
N C M a closed submanifold of codimension greater or equal to 2. Show
that every holomorphic function f : M — N — C is constant.



2. Complex Fiber Bundles 171

. Let X be a Riemann surface.
(a) If f is a meromorphic function on X, and P the set of poles, show
that @) x_p
n T or r € — I,
f(z)‘.— { 00 forr € P

defines a holomorphic map f: X - C.
(b) Prove that every holomorphic map f : X — C that is not identically

oo defines a meromorphic function on X.
. Let f: X — Y be a nonconstant holomorphic map between Riemann
surfaces, zo € X, and yo := f(zo) € Y. Prove that there is a k£ > 1 such
that there are complex coordinates ¢ : U(zg) - C and ¢ : V(y) = C
with:
(a) ¢(zo) =0, Y(yo) = 0.
(b) f(U)CV.
(c) o fopi(z) =2+
. The general linear group GL,(C) is an open subset of the vector space
M, (C). Prove that the special linear group SL,(C) := {A € M,(C) :
det(A) = 1} is a submanifold of GL,(C). Calculate the tangent space
Te(SL,(C)) C Tg(GL,(C)) = M,(C), where E = E,, is the identity
matrix. -
. Let f: X — Y be a holomorphic map and Z C Y a closed submanifold.
Show that if '

n((f.)) + Ty (o) (2) = Ty (Y)

for every z € f~1(Z), then f~}(Z) is a submanifold of X.
. The holomorphic maps f: X — Z and g : Y — Z are called transversal
if for every (z,y) € X x Y with f(z) = g(y) =: z the following holds:

Im((fs)z) + Im((g4)z) = T2(2) .
Prove that the fiber product

XxzY:={(z,y) e XxY : f(z) = f(y)}

is a complex submanifold of X x Y.

Complex Fiber Bundles

Lie Groups and Transformation Groups. Assume that G is a
set that has the structure of a group and at the same time that of an n-

dimensional complex manifold. The inverse of g € G will be denoted by g~

1

2

the identity element by e, and the composition of two elements g;,g2 € G by
9192-

Definition. We call G a complex Lie group if the following two prop-
erties hold:
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1. The mapping g — g~! (from G to G) is holomorphic.
2. The mapping (g1,g2) = g1g2 (from G x G to G) is holomorphic.

There are many examples of complex Lie groups. The simplest one is the
space C™, where the composition is vector addition. Another example is the
group C* with respect to ordinary multiplication of complex numbers.

The most important example is the general linear group
GL,(C) :={A € M,(C) : det A #0}.

Its complex structure is obtained by considering it as an open subset of c.
The multiplication of matrices is bilinear, and the determinants appearing in
the calculation of the inverse of a matrix A are polynomials in the coefficients
of A.

Every matrix A € GL,,(C) defines a linear and therefore holomorphic map
$p:C* - C™ by

®a(z):=2z- Al
Then Pap(z) =z - (AB)! =z - (B'At) = (z2-B!) - At = ®(Pg(z)). If E,
is the identity matrix, then &g, = id. Furthermore, if A is any matrix with
®, = id, then A must be the identity matrix, since ®(e;) = e; - A is the
transpose of the ith column of A.

We want to generalize this situation. Let X be a complex manifold and G a
complex Lie group.

Definition. We say that G acts analytically on X (or is a complex
Lie transformation group on X) if there is a holomorphic mapping & :
G x X = X with

D(g192,z) = B(g1,P(92,2)) for g1,92 € G,z € X.

The holomorphic map = — ®(g,z) is denoted by ®,. We say that G acts
effectively or faithfully on X if @, = idx implies that g =e.

Often we write gz instead of ®(g,z) or ®4(x). A point z € X with gr =z
is called a fized point of g. We say that G acts freely if only the identity
element e € G has fixed points in X. The general linear group GL,(C) acts
analytically and faithfully on C™, but not freely.

Let {w1,...,W2,} be any basis of C" over R. Then
N=Zw,+---+2Zwy,

is a subgroup of the (additive) group C” generated by w1y, ..., Wa,. The group
I’ acts on C" by ®(w,z) := z + w. This is an example of a free action.
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Fiber Bundles. Let X and F be complex manifolds and G a complex
Lie group acting analytically and faithfully on F.

Definition. A topological (respectively holomorphic) fiber bundle over
X with structure group G and typical fiber F is given by a topological
space (respectively a complex manifold) P and a continuous (respectively
holomorphic) map = : P — X, together with

1. an open covering % = {U, : t € [} of X,
2. for any ¢ € I a topological (respectively biholomorphic) map

o7 Y U,) = U, x F

with pr; o p, =,
3. for any pair of indices (¢, k) € I x I a continuous (respectively holo-
morphic) map g, : U, NU, = G with

P, 0 80,:1(1,.7’) = (1‘, gm(w)p)
forxelU,,:=UNUgandpeF.

The maps ¢, are called local trivializations and the maps g, a system of
transition functions.

Since G is acting faithfully, we get the following compatibility condition:
gxger =G on Uy :=U NUNU,.

Then g, = € and g«, = g}

Now let a system of transition functions (g,.) be given such that the com-
patibility condition is satisfied. Using the gluing techniques mentioned at the
end of Section 1, a suitable bundle space P, a projection 7 : P — X, and
local trivializations can be constructed as follows:

Identifying (z,p) and (z, g.«(z)p), we can glue together the Cartesian prod-
ucts U, x F and U, x F over U,,. Due to the compatibility condition this
works in a unique way over U,.. The obvious projection from P to X is
continuous. Therefore, P is a fiber bundle over X with structure group G
and typical fiber F. If the transition functions g,. are holomorphic, then P
carries the structure of a complex manifold, and the projection and the local
trivializations are holomorphic. So P becomes an analytic fiber bundle in
that case.

Example

Let X be an n-dimensional complex manifold. There is an open covering
% = {U, : . € I}, together with complex coordinate systems

¢.:U — B, CC"
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We take C as typical fiber and C* as structure group, acting on C by multi-
plication. Then we can define transition functions g, : U,, — C* by

9uc(z) = det J o opzt (pu(z)) L.

The compatibility conditions are satisfied because of the chain rule and the
determinant product theorem. So by the gluing procedure described above
we get a holomorphic fiber bundle over X that is called the cenonical bundle
and is denoted by K.

Equivalence. Let 7p : P — X and mg : Q — X be two topological or
holomorphic fiber bundles over the same manifold X, with the same fiber F
and the same structure group G. We assume that there is an open covering
% = {U, : v € I} of X such that there are trivializations ¢, : 75 (U,) —
U, x F and 9, : wél(UL) - U, xF.

Definition. A fiber bundle isomorphism between P and Q is a topo-
logical (respectively biholomorphic) map h: P = Q with ngo h = 7p
such that for any ¢ € I there is a continuous (respectively holomorphic)
map h, : U, = G with

Y,oho ‘P:l(:r’p) = (.’E,hL(.'II)p).

The bundles are called equivalent in this case.

We give a description of bundle equivalence in the context of transition func-
tions. Let (g¢/,.) be the system of transition functions for P with respect to
% , and (g”.) the corresponding system for Q. Then we have

(z, h(2)g,(T)p) = W, 0how  (z,g,.(z)p)
= ¢, 0hop;!(z,p)
= o w;l(ﬂi, hn(.’II)P)
(2, gi () his(z)P)-

Since G is acting faithfully, it follows that

I

(C) h.g.. =gl h. over U,.

Two systems of transition functions (g).) and (g/\.) with respect to the
same covering are called topologically (respectively analytically) equivalent
or cohomologous if there are continuous (respectively holomorphic) maps
h, : U, = G satisfying condition (C).

Equivalent fiber bundles have equivalent systems of transition functions. On
the other hand, it is easy to see that fiber bundles constructed from equiv-
alent systems of transition functions are themselves equivalent. Now we will
demonstrate that the latter remains valid in passing to finer coverings.
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Let us assume that there are given systems of transition functions g’ = (g;,)
and ¢” = (g/*) with respect to a covering % = {U, : ¢ € I}. We call them
equivalent as well if there is a refinement ¥ = {V,, : v € N} of % (with
refinement map 7 : N — I) and a collection of maps h, : V,, = G such that

R yrw) = Irayrylu 00 Viu CUr)r(u), forall v,p € N.

To show that the systems are equivalent in the old sense, we define E U, —
G by

T -1
hL = gl{:’(p)hll (g:r(#)) on UL N VI"

In fact, E is well defined, since on U, NV, we have

" / -t
h, = 9r(v)r(un) hl‘ (gT(V)T(I‘))

-1 -1
antd therefore g, b, (Grwy) = Gliriuyh (9.+(uy) - Then on U NV, we
ge

-1
h"-g:'c = g:{r(y,)h# (ng(;‘)) girc
= g:,.fr(u) hﬂg'lr(p)n

"o_n ’ -1
= gl.ngm'(y)hl-l (gKT([l.))
= guhe.
The bundles are equivalent!

If two bundles are given with respect to two different coverings, then they are
called equivalent if they are equivalent with respect to a common refinement,
for example, the intersection of the coverings. Then everything works as above.

Complex Vector Bundles. Let X be an n-dimensional complex
manifold.

Definition. A complex topological (respectively holomorphic) vector
bundle of rank r over X is a topological (respectively holomorphic) fiber
bundle V over X with C" as typical fiber and GL,.(C) as structure group.
In the case r = 1 we are speaking of a complez line bundle.

If 7 : V — X is the bundle projection, then we denote by V; the fiber 7=*(z).
It has the structure of an r-dimensional complex vector space. A trivialization
®: 7~ 1(U) - U x C is also called a vector bundle chart. For any z € U the
induced map ®, : V; — C" is a vector space isomorphism.

Definition. Let V be a holomorphic vector bundle over X. If U C X
is an open subset, then a continuous (differentiable, holomorphic) cross
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section (or simply section) in V over U is a continuous (differentiable,
holomorphic) map s: U = V with 7 o s = idy.

We denote by I'(U, V') (or O(U, V')) the vector space of holomorphic cross
sections in V over U, by &(U, V) the space of differentiable sections, and
by €°(U, V) the space of continuous sections.

The vector bundle V is called globally generated if the canonical map
I'(X,V) = V, with s — s(z) is surjective for every z € X.

Let (U,, ®,).er be a collection of vector bundle charts ®, : #=}(U,) = U, xC"
for V, and g.x : U,x = GL(C) the system of transition functions, given by

¢, 0 ®  z,2) = (a:,z . gw(:z)t) for (z,z) e U, xC".
If s is a holomorphic section in V, then

®, o sly, (x) = (z,5.(z))
defines a system of holomorphic maps s, : U, —» C", and we obtain the
compatibility condition
5.(x) = se(x) - gun(z)®  on U,.
On the other hand, any such system (s,) defines a global section s.
Example

We can define vector bundles by giving a system of transition functions. The
construction of the bundle space is carried out with the same gluing technique
as for general fiber bundles.

If X is an arbitrary n-dimensional complex manifold, and (U,,¢,).es a com-
plex atlas for X, then

gm(x) = J¢Lo¢;‘(¢~(x)) € GLn(C)

defines a system of transition functions with respect to % = {U,, ¢ € I}.
The corresponding vector bundle T(X) is called the tangent bundle of X.
It results from gluing (z,¢) € U x C* with (z,¢ - gs(z)?) € U, x C*, for
z € U,. Therefore, we can identify the fiber (T(X)), with the tangent space
T(X). The local trivializations ®, : T(X)|y, — U, x C™ are given as follows:

For a € U, the trivialization ®, maps a tangent vector v € To(X), represented
by (¢.,c), onto the pair (a,c) € U, x C*. If we denote the equivalence class
of (¢,,¢) at a by [p,,c|, we obtain

P, 0 q);l(ay c) = ®.([px,c]) = 2.([.; € - gun(a) t]) = (a,c- guc(a)t)-

A holomorphic section in T(X) is also called a holomorphic vector field.
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Definition. Let V,W be two holomorphic vector bundles over X. A
vector bundle homomorphism between V and W is a fiber preserving
holomorphic map n : V — W such that for any x € X a linear map
7z : Vo — W, is induced.

The map 7 is called a vector bundle isomorphism if n is bijective and
7,71 both are vector bundle homomorphisms.

A holomorphic vector bundle V of rank » over X is called trivial if it is
isomorphic to the bundle X x C". This is equivalent to the existence of a
frame {&1,...,&} of holomorphic sections &; € I'(X, V) such that for every
z € X the elements &;(z),...,&(x) € V, are linearly independent. In this
case V is globally generated. But there are also nontrivial bundles that are
globally generated.

2.1 Proposition. A holomorphic map n : V — W is a vector bun-
dle homomorphism if and only if for each pair of vector bundle charts
S: Vg 2 UXC" and ¥ : Wy — U x C?® there is a holomorphic map
h:U — M, ,(C) with

U~lonod(z,z) = (x,z- h(z)?).
We omit the elementary proof.

Standard Constructions. Let X be an n-dimensional complex man-
ifold. We can think of a vector bundle over X as a parametrized family of
vector spaces. Therefore, numerous constructions from linear algebra carry
over to the theory of vector bundles.

1. The direct sum: If V| W are two vector bundles over X, then the direct
sum, or Whitney sum, V & W :=V x x W carries a vector bundle structure
that is defined as follows:

Let % = {U, : ¢ € I} be an open covering of X such that there are vector
bundle charts &, : V|y, = U, x C" and ¥, : W|y, = U, x C*. Then a vector
bundle chart

VoWy, = {(v,w) eV xW : my(v) = mw(w) € U,} = U, x C"+*
can be defined by
(v,w) = (7v(v); pry o ®,(v), pry o ¥, (w)).

If g.., respectively h,., are transition functions for V', respectively W, then

the matrices
| Gux 0
G, = ( 0 b )
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are transition functions for V & W. The fiber of the Whitney sum is given by
VoW),=V, x W,.

2. The dual bundle: Let 7 : V — X be a holomorphic vector bundle of
rank r with trivializations ®, : 77}(U,) — U, x C” and transition functions
g.x. Gluing the sets U, x C” together by means of the transition functions
gl = g} leads to the dual bundle #' : V' — X. Denote the associated
trivializations over U, by ¥,.

We will show that for every £ € X there is a natural isomorphism
(V2 = (Vo) = Home(V;, C).
Given elements x € U,, v € V,, and X € (V'),, we define
Av) = (2)z(v) - (L)2(N)* € C,

using the vector space isomorphisms (®,); : V; = C" and (¥,); : (V') —
C.

For z € U, N U, we obtain

(CI),{)I(’U) : (‘I/n)x(’\)t

(®x)z 0 (‘I’L)a—:l 0 (®.)z(v) - [(¥r)z 0 (‘I}L);l ° (‘Ilt)z(’\)}t
(®.)z(v) - gn&(z)t [(T)z(A) - gun(z)] ‘

(®.)z(v) - gm(x)t : gm(m)t (¥)z(N)

(@)z(v) - (¥o)z(N).

This shows that the definition of A(v) is independent of the trivializations.

i

I

3. Tensor powers of a line bundle: Let 7 : F — X be a line bundle with
transition functions g,. : U, — C*.

Definition. For k € N, the tensor power F* is the line bundle defined
by the transition functions g%..

We give an interpretation of F* using the dual bundle 7’ : F/ - X. As-
sume that there is an open subset U C X and a holomorphic function
f: @Y U) - C. I, : (F)|y, = U, x C are trivializations (with
P, o (z,2) = (x,2 - gue(x) ™)), then we have a power series expansion

fou T (m,2) =) avu(a)z”

v=0

on ¥, (F'|y,nv) with holomorphic functions a,, on UNU,. Over U, NU . NU
the following holds:



2. Complex Fiber Bundles 179

00

fovt(z,2) = foy (2,2 gun(2) ™)) = D (an(2)gin(2) ) 2",

v=0

and therefore a, , = a, . - 9%. This means that a, = (a,,,) is a cross section
in F* over U. So every holomorphic function f on F’ that is homogeneous of
degree k on the fibers is a section in F*. In particular, F¥ can be identified
with the space Li(F.,C) of k-linear functions f: F, x --- x F, — C.

For ey,...,ex € Fy the tensor product e; ® - - ® ex, € (F*), is defined by
(61 X Ck)(/\l, ceey /\k) = /\1(61) .. '/\k(ek).

The tensor power e® - -- ® e of an element e € F, is denoted by e* for short.
Finally, we define F—* := (F')* = (F*)'.
4. The tensor product: Let p: V — X be a vector bundle of rank r with

transition functions G, : U,x — GL.(C), and 7 : F — X a line bundle with
transition functions g,. (with respect to the covering % = {U, : + € I}).

Definition. The tensor product V ® F' is the vector bundle of rank r
given by the transition functions

Gk Guc . ch - GLT(C)

Let @, : Vi|y, = U, x C" and 9, : F'|y, = U, x C be local trivializations. If
f: F'ly = V]y is a holomorphic map which is linear on the fibers, then over
U,NU we have

®,0fo d’t_l(zvz) = (Z, Z: m(w)),
where n, : U,NU — C" is a holomorphic map. Over U, NU,NU we calculate
B, 0foyH(z,2) =B, 0 foyy (2,2 gue(x)!) = (z,m(T) - 2 gun(x) 1),

and on the other hand,

®,0fo "/);1(1', z)=®,0 q);l(x, ne(x) - 2) = (‘E,nn(z) : Gm(x)t : Z).
It follows that .
n.(z) = nx(z) - (gm(z) : Gm(-’”)) .

Consequently, n = (7,) is a cross section in V ® F, and we obtain for every z
an isomorphism

(VeF), = Homc(F;, Vi)
For v € V; and e € F; the tensor product v®e € (V ® F), is defined by

(v®@e)(A) = A(e) - v.
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Lifting of Bundles. Let f : X — Y be a holomorphic map between
complex manifolds and p: V — Y a vector bundle of rank 7.

Definition. The lifted bundle, or pullback, f*V over X is defined by
ffVi=XxyVi={zv)e X xV: f(z)=p)}.

The bundle projection p: f*V — X is given by p{x,v) := z.

The fiber of f*V over x € X is given by (f*V); = Vy(s). Therefore, the lifted
bundle is trivial over the preimage sets f~1(y).

One has the following commutative diagram:

v By
p L p
x Ly

If Z ={U, : « € I} is an open covering of Y such that V is trivial over U,,
then % := {U, = f~1(U,) : v € I} is an open covering of X such that f*V
is trivial over ij.

If @, V]U — U, x CT is a trivialization for V, then we can define a trivial-
ization ®, Vg — U, x C™ by
B, (z,v) = (2, (2.) j(x) (v)).-

If G, are transition functions for V with P, 0® M (z,w) = (z,w Gue(z)?),
then

6L ° 6;1(1_’“,) = (:E, (QL ° (p;l)f(x)(w)) = (IL‘,W : Gbm(f(z)) t);
i.e., f*V is given by the transition functions G, o f.

If € e T'(U, V) is a holomorphic section over some open subset U C Y, then
€ can be lifted to a section £ € T'(U, f*V) given by

£(z) = (=, £(f(=)))-

Subbundles and Quotients.

Definition. Let 7 : V — X be a vector bundle of rank r. A subset
W C V is called a subbundle (of rank p) of V if there is a p-dimensional
linear subspace £ C C7, and for any £ € X an open neighborhood U =
U(z) and a trivialization ® : V|y — U xC" such that @~ (Ux E) = W|y.

One sees immediately that:
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1. Wy, = W NV, is always a p-dimensional linear subspace of V.
2. W is a submanifold of V.
3. W is itself a vector bundle.

Example

Let V be a vector bundle of rank r on X and Y C X a submanifold. If we
denote the natural injection Y < X by j, then V|y := j*V is a vector bundle
of rank r on Y. We apply this to the tangent bundle T(X).

Choose an open covering % = (U,),¢1 such that there are complex coordinate
systems ¢, = (2§,...,24) for X in U, with the following properties:

LUNY ={24,,=--=2, =0}.
2. 2i,...,2, are complex coordinates for Y.

A trivialization @, : j*T'(X)|y.ny = (U, NY) x C" is given by
(¥, [pu, €]) = (y, ©).

A tangent vector v belongs to Ty(Y') C T, (X) if and only if there is a differ-
entiable path a : I — Y with a(0) = z and (¢, 0a)'(0) = c. This is equivalent
to the statement that ¢ = (¢y,...,¢4,0,...,0). Therefore

q)L—l(UL x{ceC" :cyy1="-=cp =0}) =T(Y)|v.,

and T(Y') is a subbundle of j*T(X).
If G := (824/02f | v, =1,...,n) are the transition functions for T(X),

then (.0) 4
on_ [ 92,0
o) = (450 b))
where g, = ((025/ 0z%)ly | v,w=1,...,d), are the transition functions for

T(Y), and g}, (2',0) = ((924/9z5)(2',0) | vyp=d +1,...,n).

Let V be a vector bundle of rank r. If W C V is a subbundle, then we define
the quotient bundle V/W by (V/W), := V;/W,. We have to show that
there are trivializations for V/W. If E C C” is a subspace such that there
are trivializations ® : V|y — U x C” with W|y = @~ 1(U x E), then we can
choose a subspace F' C C” with E@F = C" and define ® : (V/W)|y = UxF
by

®(v mod W) := prp(®(v)),

where prp : E® F — F is the canonical projection.

Using trivializations as above one obtains transition functions

_ 9k #
GLN - ( 0 huc )
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for V such that g,. are transition functions for W, and h,, are transition
functions for V/W.

Example

The quotient bundle Nx(Y') := j‘T(X)/T(Y) is called the normal bundle of
Y in X.

Exercises

1. Let G be a complex Lie group that acts analytically on a complex man-
ifold X. Then for every x € X the stabilizer G; := {g € G : gz = z}
is a closed Lie subgroup of G, i.e., a subgroup and a (closed) complex
submanifold.

Prove that there is a unique complex structure on G/G; such that the
canonical projection 7 : G — G/G; is a holomorphic submersion.

2. Let w : V — X be a complex vector bundle of rank . For z € X let %,
be the set of bases of V. Prove that the disjoint union of the &,, z € X,
carries the structure of a fiber bundle over X with structure group and
typical fiber equal to GL,.(C).

3. Let ¢ : V — W be a vector bundle homomorphism over X. Suppose that
rk(p,) is independent of z € X. Prove that

Ker(yp) := U Ker(p;) and Im(yp):= U Im{pz)
xeX T€X

are subbundles of V, respectively W. Show that Im(p) & V/ Ker(p).

4. Let X = C be the Riemann sphere. Determine the transition functions
for T'(X) for the canonical bundle K x and for the normal bundle of {oo}
in X.

5. Let f : X — Y be a holomorphic map. Prove that there is a uniquely
determined vector bundle homomorphism f' : T(X) — f*T(Y) with
(f )z =(fe)z forz e X.

6. Let p : V — X be a holomorphic vector bundle. Show that there are
vector bundle homomorphisms h : p*V — T(V) and k : T(V) — p*T(X)
over V with Im(h) = Ker(k).

3. Cohomology

Cohomology Groups. Let X be an n-dimensional complex manifold
and 7 : V — X a complex vector bundle of rank r. Assume that there is an
open covering % = {U, : € I} of X.

We consider sections in V on the sets U, and on intersections U,, := U, NU,,
respectively U, := U, NU, NUj.
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Definition. A 0-dimensional cochain with values in V' (with respect
to %) is a function s that assigns to every ¢ € I a section s, € I'(U,, V).
The set of 0-dimensional cochains is denoted by C%(#%, V).

A 1-dimensional cochain (with values in V') is a function £ that assigns to
every pair (¢, k) € Ix1 asection &, € I'(U,«, V). The set of 1-dimensional
cochains is denoted by C1(Z, V).

Finally, a 2-dimensional cochain (with values in V) is a function A that
assigns to every triple (¢, k,v) € I x I x I a section A,y € I'(U,xp, V),
and the set of all these 2-dimensional cochains is denoted by C%(%,V).

Assume that a 0-dimensional cochain s is given. One may ask whether the
sections s, € I'(U,, V) can be glued together to a global section s € I'(X, V).
For that it is necessary and sufficient that s, = s, on U,,. This can be
expressed in another way: If we assign to every 0-cochain s a 1-cochain s by
(68).x := sx — 8., then s defines a global section if and only if s = 0.

Definition. The coboundary operators
§:C%%,V)->C*(%,V) and §:CYH%,V)— C3(%,V)
are defined by
(08)s = 8k —8, (on U, ),
(08)ixy = &nv — & + & (o0 Usew ).

A cochain s € C%(%, V) (respectively £ € C1(%,V)) is called a cocycle
if 6s = 0 (respectively 6 = 0). The sets of cocycles are denoted by
Z%(%,V) (respectively ZY(%,V)).

Remarks

1. The sets of cochains and the sets of cocycles are all complex vector spaces.

2. We can identify Z%(%,V) with I'(X, V).

3. A 1-cochain £ is a cocycle if and only if the following compatibility con-
dition holds:

o = £uc +&x, oOn Uik

4. Sometimes we need cocycles of degree 2. We call an element A €
C%(%,V) a cocycle if the following compatibility condition holds:

Anuu = Awp - Aucu + A on chuy-

The set of all these cocycles is denoted by Z2(%,V).
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A coboundary is an element of the image of the coboundary operator. The sets
of coboundaries are again vector spaces, denoted by B*(%,V) = 6C°%(%,V)
and B*(%,V) := 6C*(%,V). For completeness we define B%(%,V) := 0.

3.1 Proposition. BY(%,V)cC Z(%,V) fori=0,1,2.

ProOF: The case i = 0 is trivial. For £ = s € B}(%,V) we have
§n+ 8w = (s —8) + (80 —sx) =8, — 8, = &u.

For A = dn € B3(%,V) we have

Aoy Ay +Aew = (Mvpe = M + M)
= (M = Mo + M)
+ (Mo = N + nuc)

= Mop — NMep + NMew = Anuu-

Definition. H*(%,V):= Z*(%,V)/B*(%,V) is called the ith coho-
mology group of V with respect to % .

We have H°(%,V) = I'(X, V), independently of the covering, and we have

{5 € Cl(%’v) : fLu = Em +£~u}
{f : Js € CO(%,V) with £LK. = S — S,,}'

HY(%,V) =

The cancnical map from Z}(%,V) to H}(%,V) will be denoted by gq.

We do not want to elaborate on H2, because we need it only in very special
cases.

Refinements. Let ¥ = {V,, : n € N} be a refinement of %. Then
there is a refinement map 7 : N — I with V, C U,(,). It induces maps
70:CY(%,V) = Co¥,V)and 7, : CH(%,V) = C(¥,V) by

(T()S)n = (sf(n))lvn and (Tlﬁ)nm = (g-r(n)r(m))lvnm .

Then §(7gs) = 71(ds), and if 8§ = 0, then also §(71£) = 0. Therefore, 7
induces a map 7* : HY(%,V) — HY(¥,V) by

7(q(§)) = g(1)-

By the remarks above it is clear that 7* is well defined, and it is a vector
space homomorphism.
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3.2 Proposition. The map 7* is independent of the refinement map T and
18 injective.
ProorF: Let 0 : N — I be another refinement map and £ a cocycle with

respect to % . We have to show that 7§ — 01€ is a coboundary:

(1€ —01)nm = &rn)yr(m)|Vam — Eo(n)o(m)|Vam

= ({rtn)on) + Eom)rm)) — (Eotn)r(m) + Er(m)a(m))
= &rm)om) | Vam = Er(m)a(m) | Vam -

We define n € C%(¥,V) by

Nn = Ernyo(n)|Va-
Then 1€ — 1€ = dn.

Now we consider a cocycle £ with respect to % such that 7€ = ds for some
s € C%(¥,V). We want to see that £ itself is a coboundary.

On V,mm NU, we have
Er(nyr(m) = &r(n)e + Eur(m) = Eir(m) = Eur(n)-
Since &;(nyr(m)|Vam = (8Sm = 5n)|Vi.m» it follows that
&rim) — Sm =&ur(n) —Sn on Vo NUL.

Therefore, we can define h, on U, by h/u.nv, = &.r(n) — Sn. This gives an
element h € C°(%,V), and on U, NV, we have

h,—he= (€LT(7I.) - Sn) - (gn'r(n) - Sn) = £Lr(n) + ér(n)n =&k
This means that £ = §(—h). So 7* is injective. ]

We have seen that if ¥ is a refinement of %, then H!(%, V) can be identified
with a subspace of H!(¥,V). Therefore, we form the union of the spaces
HY(%,V) over all coverings % and denote this union by H*(X, V). We call
it the absolute, or Cech, cohomology group of X with values in V.

Acyclic Coverings. Let X be a complex manifold and p : V — X a
vector bundle over X.

The covering % is called acyclic, or a Leray covering for V, if H*(U,,V) =0
for every t € 1.

If ¥ = {V,, : n € N} is another covering, then U, N¥ := {U,NV, : n € N}
is a covering of U,, and since HY(U, N ¥, V) is a subspace of H'(U,,V), we
have also HY(U,N¥,V) = 0.
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3.3 Theorem. If% = {U, : ¢ € I} is acyclic and ¥ = {V, : n € N}
is a refinement, with refinement map 7 : N — I, then 7* : H{(%,V) -
HY(7,V) is bijective.

PrROOF: We start with an € Z1(¥,V) and define n*) € ZY(U,N¥,V) by

() .= Mnml|U, V..., for all n,m with U, N V,,,,, # @.

Nam -

Since % is acyclic, there is an element g € CO(U,N ¥, V) with () = §g).
Then Nnm + g4 = g% on U, N Vo, and therefore g — gt = g _ gl on
Ui N Vo,

Now we define £ € Z'(%,V) by &ulu..av, = g5 — g%, and h € CO(¥, V)
by hn i= g™ (on Vo = Vi N Upimy)-

Then on V,,,, we have
(T1§ - n)'nm = €T(n)r(m) — Im
— gT(;(n)) — g,(,‘:(m)) — (gg(n)) — ggf(")))
g(T(")) — g(T(m))
n m

= hnp—hn.

So = 1&£ + bh, and 7* is surjective. =

3.4 Corollary. If % 1is an acyclic covering of X, then
HY(X,V)=HY%,V).

PROOF: We have HY(%,V) ¢ HY(X,V). If a is an element of H(X,V),
then there is a covering ¥ with a € H!}(¥,V). Now we can find a common
refinement % of % and ¥. Then H}(¥,V) Cc H(#,V) = H(%,V), and
therefore a € H (% ,V). .

Generalizations. The simplest case of a vector bundle over X is the
trivial line bundle Ox := X x C. Therefore, the associated Cech cohomology
group H!(X,Ox) plays an important role for the function theory on X.

The trivial fiber bundle X x C* is not a vector bundle, but it is not so far from
that. If # : P — X is a general analytic fiber bundle, then a section in P over
an open set U C X is a holomorphic map s : U —+ P with mos = idy. If the
typical fiber of P is an abelian complex Lie group, then the set I'(U, P) of all
sections in P over U carries in a natural way the structure of an abelian group.
In the case of the bundle O% := X x C* we have a canonical isomorphism

T(U,0%) =0*(U) :={f € O(U) : f(z)# 0 for every x € U}.
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This is a multiplicative abelian group.

If % = {U, : € I} is an open covering of X, then we can form cochains
€:(t,K) = € € O*(U.x). The set C1(Z,0%) of all these cochains forms a
(multiplicative) abelian group, and we can define the subgroups Z'(%,O%)
and B!(%,0%) of cocycles and coboundaries: A cochain £ is called a cocycle
if £,, = £cnv on Uy, and £ is called a coboundary if there are functions
s, € O*(U,) such that £, = s.s;! on U,.

Since all the groups are abelian, we have the quotient group
HY(%,0%) = Z"(%,0%)/B (%, 0%),

which we call the first cohomology group with values in O% (with respect to
the covering % ). Just as in the case of vector bundles we can pass to finer
coverings and finally form the Cech cohomology group H*(X, O%).

There is a nice interpretation for the elements of H(X, O%). Every cocycle
with values in O% defines a line bundle over X, and this bundle is independent
of the covering. Two cocycles £’ and ¢” define equivalent line bundles if and
only if there are functions h, with &/, = &/ h.h!, ie., if and only if the
cohomology classes of ¢’ and ¢” are equal. Therefore, H!(X, O%) is the set of
isomorphy classes of line bundles over X. This group is also called the Picard
group of X and is denoted by Pic(X). The group structure is induced by the
tensor product. The identity element corresponds to the trivial bundle Ox
and the inverse to the dual bundle.

In the same way as above we can form cohomology groups of any fiber bundle
P whose typical fiber is an abelian group. If the fiber of P is a nonabelian
group, things become a little bit more complicated. We can define cocycles
with values in P, but they do not form a group. In the set Z(%, P) of
cocycles we can introduce an equivalence relation by

¢ ~¢" <= 3Ih, with £, =h g/ h,..

The set H(% , P) of all equivalence classes is called the cohomology set with
values in P (with respect to %). Usually it is not a group, but there is a
distinguished element, represented by the cocycle £ with £, = 1 for all ¢, &.
Passing to finer coverings and forming the cohomology set H!(X, P) causes
no problems. The most important nonabelian case is the cohomology set

HY(X,X x GL.(C)),

whose elements correspond to the isomorphy classes of vector bundles of
rank r over X. The distinguished element is represented by the trivial bundle
X xCr.

In the definition of the cohomology groups of fiber bundles P over X with
an abelian group as typical fiber we used only the fact that I'(U, P) is an
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abelian group for every open set U C X, and that we can restrict sections
over U to open subsets V C U. Having this in mind we can define another
sort of cohomology group.

Let K C C be a subgroup with respect to the addition, for example K = Z, R,
or C. For an open set U C X we define the (abelian) group K(U) by

K(U):={f:U > K : fislocally constant }.

Then K(U) is an abelian group. If V C U is an open subset and f an element
of K(U), then flyv € K(V). If U is connected, then K(U) & K.

We can define groups of cochains C°(%, K), CY(%,K), and C*(%, K) just
as we did it for vector bundles. If ¢ is an element of C1(%, K), then ¢, €
K(U,). Cocycles, coboundaries, and cohomology groups are defined in the
usual way. For example, we have

1 _{c:cn€ K(Uy)and ¢, = cox + Crv}
H WU K) = {c: Je, € K(U,) withc,x =ex —€,}

The Singular Cohomology. We want to give a short overview of co-
homology groups of topological spaces and their relation to Cech cohomology
as defined above. For proofs see [Gre67].

For g € Ny the set
n
Aq = {x: (.’1,‘0,...,.’L‘n) € R+ . Zzi =1,z 2> O}
i=0

is called the q-dimensional standard simpler. The 0-dimensional simplex is a
point, A; a line segment, A a triangle, and so on.

Let X be a topological space. We assume that all spaces here are connected
and locally connected. A singular g-simplez in X is a continuous map o :
Aq = X. If X is a complex manifold and if there is an open neighborhood
U = U(Ay) and a smooth map & : U — X with 7|a, = o, then o is
called a differentiable g-simplex. A singular g-chain in X is a (formal) linear
combination nyoy + - -+ 4+ ngoy of singular g-simplices with n; € Z. The set
Sg(X) of all singular g-chains in X is the free abelian group generated by the
singular g¢-simplices.

For a g-simplex o and 7 = 0,...,q the (¢ — 1)-simplex o; : Aq_y = X is
defined by

(7,;(:1:0, e ,.’L'q_l) = 0(.’1)0, e ,.’L',;_],O, Tiyo - ,.’Eq_l).

It is called the ith face of o.
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The (g—1)-chain 8o := ¥_7_;(~1)'0; is called the boundary of o. The bound-
ary operator @ induces a homomorphism

0:85,(X) = Sq-1(X),
and it follows easily that 903 = 0.

Definition. The group Hy(X) := {c € So(X) : 8c = 0}/0Sq41(X) is
called the gth singular homology group of X.

In general, Ho(X) is isomorphic to the free abelian group generated by the
connected components of X. Since we assume all spaces to be connected, we
have Ho(X) = Z. If X is an n-dimensional complex manifold, then Hy(X) =0
for ¢ > 2n.

Now for ¢ > 0 we define the group of singular g-cochains to be
S9(X) := Homz(S,(X), Z).
Then the coboundary operator § : S9(X) — S9+1(X) is defined by
0flc] := floc], for f € SI(X) and ¢ € Sg41(X).

Obviously, we have § 0 § = 0. We can define cocycles (elements f of S9(X)
with f = 0) and coboundaries (elements of the form dg with g € S971(X)).

Definition. The group H4(X) := {f € SYX) : §f = 0}/6S971(X)
is called the gth singular cohomology group of X.

From above it is clear that H°(X) & Z.

A topological space X is called contractible if there is a point o € X and a
continuous map F : [0,1]x X — X with F(0,z) = z and F(1,z) = zo. In that
case H'(X) = {0}. The space X is called locally contractible if every point
of X has arbitrarily small contractible neighborhoods. Among the connected
topological spaces there is a big class of spaces (including the so-called CW-
complexes) that are locally contractible and have the following properties:

1. HY(X) = HY(X,Z) for ¢ =0,1,2,....
2. Every open covering of X has a refinement % = {U, : ¢ € I} that is
acyclic in the sense that H(U,,Z) = 0 for every ¢ € I.

We call such spaces good topological spaces. For example, every (connected)
complex manifold is a good topological space, and also every irreducible an-
alytic set.

Finitely generated abelian groups are classified as follows:
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If G is a finitely generated abelian group, then there are uniquely deter-
mined numbers r € Ny and n,...,n; € N with n; > 2 and ny|n;y, for
i=1,...,8—1 such that

G=Z"®(Z/Z)SD---&(Z/nsZ).
The number r is called the rank of G, and Z" the free part of G. The sum
of the Z/n;Z is called the torsion part of G.
In many cases cohomology can be computed from homology:

3.5 Theorem. If X is a compact good topological space (for example, a
compact connected complex manifold), then Hy(X) is finitely generated for
every q, and for ¢ > 1 there is an isomorphism

H(X) = (free part of Hy(X)) @ (torsion part of Hq—1(X)).

The rank of H!(X) is called the first Betti number of X, and is denoted by
b1 (X).

Now we give an application of Cech cohomology methods to singular coho-
mology. Let X and Y be good topological spaces.

3.6 Theorem (Kiinneth formula).

HY(X xY,Z)=~ HY(X,Z)® H\(Y,Z).

PROOF: We choose open coverings % = {U, : t €I} of X and ¥ = {V,, :
n € N} of Y such that all the U,, V,, and all their pairwise intersections are
connected. We write W,,, := U, xV,, and W, xm := Wn "Wy, = U, X Vi
A cocycle ¢ € ZY (% x ¥, Z) is given by constant maps Y,n xm : Win.xm — Z.
We identify any cocycle £ € Z1(%,Z) with a cocycle EE ZYW (% x ¥,Z) by
Einnm = Eux, and also any 1 € Z}(¥,Z) with an 7 € ZY(% x ¥,Z). This
induces natural injections

j1: H (% ,Z) - H (% x ¥,2Z) and j,:HYV,Z) - HY(% x ¥,Z)
with Im(j;) N Im(j2) = {0}, and therefore an injective map
j:HY%,Z) x H(¥,Z) - H (% x ¥,Z)

by j(a,b) := j1(a) + j2(b).

Given a cocycle ¢ € ZY (% x ¥, Z), for any « € I we define v, € Z*(¥,Z) by
(¥.)nm := Yin.um. The cohomology class of ¥, in H1(¥,Z) is independent of
the index ¢. We see this as follows.
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(a) If U, # @, then by the cocycle property we have
'(/)Ln,Lm - '(/)nn,nm = wm,,x'n + wnn,nm + wnm,l.m - "/)K‘n,nm
= ’wbn,nn - dhm.mm-

Setting (¢, )n = Yin,xn We get a 0-cochain ¢, € C%(V¥,Z) with dp,, =
¥ — ¥,. So the cohomology classes of 1, and 1, are equal in this case.

(b) If U,, = @, one can find a chain of sets Uy,,...,Uxy with Uy, # @,
Usiaiyy # @, and Uy # @ (since X is connected), and from (a) it
again follows that the cohomology classes of ¥, and ¥, are equal.

Let 19 be a representative of the common cohomology class of the 1,. The
assignment % — 1 induces a map p : HY(% x ¥,Z) - H(¥,Z). We will
prove that for every class c € HY (% x ¥,Z) there is a class a € H (% ,Z)
with j;(a) = ¢ — j2(p(c)), and consequently j(a,p(c)) = c.

For each ¢ there is an 5, € C°(¥,Z) with v = v, — dy(n,), and we define
ne CO(% X V:Z) by Thn = (nL)n-

Then 7 := ¥ — go — 6n € ZHU x ¥,Z) and
Y. =%, — (W, —dy(n.)) — dv(n,) = 0 for every «.
Now we construct a ¢ € ZY(%,Z) with g = v:
For n € N define o, € Z(%,Z) by
(en)er = Yin,xn-

Since Y,n,;m = 0 for all n, m, and ¢, in the case V,,, # & we have

Yem,wm = Yin,um + Yem,xm + Yem,xn = Yin,kn

and therefore g,, = pn. If V,,,, = &, we can argue in the same way as above
in (b), because Y is connected.

So we have a g € Z}(%,Z) with g, = g for every n and
Ok = Ven,kn = Yin,kn + Yen,km = Ven,xm (fOI‘ a'rbitrary n, m)

Therefore, o =y and ¢ = g + % + 67. This shows that j is surjective. n

Exercises

1. Let % = {Uy,U,,Us} be the covering of X := {z € C : 1 < |2| < 2}
given by Uy := {z+ iy : y < z}, U := {z+ iy : y < —z}, and
Us := {z + iy : y > 0}. Calculate HY(%,Z).

2. Prove that dim¢ H(C? — {0}, O) = oo, where O denotes the trivial line
bundle over C2. Hint: Use Laurent series.
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3. Show that H(C,0) = 0.

4. Show that  ={U; : i =1,...,n} with U; := {z : 2; # 0} is an acyclic
covering of C* — {0} for O.

5. Let X be an n-dimensional complex manifold such that Ho(X) = Z for
g even, 0 < g < 2n, and Hy(X) = 0 otherwise. Calculate the singular
cohomology of X.

4. Meromorphic Functions
and Divisors

The Ring of Germs. Let X be an n-dimensional complex manifold
and z € X a point. Two holomorphic functions f, g defined near x are called
equivalent at x if there exists a neighborhood U = U(z) with f|y = g|v. The
equivalence class of f at z is called the germ of f at x. We denote the germ
by f. and the set of all germs by O,.

Having fixed a complex coordinate system ¢ : U — B C C™ at z, we may
identify the set O, with the ring H, of convergent power series by

1

fz — Taylor series of fop™" at p(z).

So @, has the structure of a local C-algebra.? An element f, € O, is a
unit if and only if f(z) # 0. Of course, O, is also noetherian and a unique
factorization domain.

4.1 Proposition. Let f,g be holomorphic functions near zo € X. If the
germs fz,, gz, are relatively prime in Oy, then there is an open neigborhood
U =U(zo) C X such that f,, g, are relatively prime in Oy forx € U.

PrOOF: We can work in C™ and assume that o = 0 and that fo and go
are Weierstrass polynomials in z;. Since fo and go are relatively prime in Hy,,
they are also relatively prime in HO_, [21]. If @ is the quotient field of H,_1,
it follows from Gauss’s lemma that fo and go are relatively prime in Q[z1].

We can find a linear combination
h=a- fo+b-go,

where a,b € Hy_1[21], and h € (H,_1)* is the greatest common divisor of fo
and go. If U = U’ x U” ¢ C x C*1 is a sufficiently small neighborhood of
the origin, the power series a, b converge to pseudopolynomials over U” and
h to a holomorphic function on U” that does not vanish identically.

2 A commutative C-algebra A with unity is called a local C-algebra if the set m of
nonunits forms an ideal in A and the composition of canonical homomorphisms
C — A -» A/m is surjective.
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Let w = (w;, w') be a point in U. If py is a common factor of f, and gw,
then it divides h,,, which has degree 0 as a polynomial in z;. So ¢, does not
depend on 2; and does not vanish identically in 2, ..., 2,. Therefore, p. is
z1-regular of order 0, and by the preparation theorem it is, up to a unit, a
Weierstrass polynomial of degree 0; i.e., p. is already a unit.

This shows that f,, and gy, are relatively prime. . u

Analytic Hypersurfaces. Let X be an n-dimensional complex man-
ifold. We consider analytic hypersurfaces A C X. Then locally A is given
as the zero set of one holomorphic function f. We always assume that f
does not vanish identically and therefore A is nowhere dense in X. If locally
A = {(#1,...,2n) ¢ 2 = 0}, then every holomorphic function g vanishing
on A is of the form g(z1,...,2,) = 2, - §(21,- .., 2,). We will generalize this
result to the arbitrary case.

4.2 Proposition. FEvery hypersurface A C X is a pure-dimensional ana-
lytic set of dimensionn — 1.

PrROOF: After choosing appropriate coordinates, we may assume that A is
contained in an open set U C C™ and f is a Weierstrass polynomial w in z;
without multiple factors such that

A=Nw)={z€U : w(z)=0}.

Since N(w) is a branched covering over some domain G C C"~1, every irre-
ducible component of N{w) has dimension n — 1. a

4.3 Theorem (Nullstellensatz for hypersurfaces). Let A C X be an
analytic hypersurface and xo an arbitrary point of A.

1. There exists an open neighborhood U = U(xp) C X and a holomorphic
function f on U such that:
(o) UNA={ze€U: f(z)=0}.
(b) If h is a holomorphic function on a neighborhood V = V(xg) C X
with hl4 = 0, then there is a neighborhood W = W(zo) CUNV and
__a holomorphic function ¢ on W such that hlw = ¢ (flw).

2. If f is any holomorphic function defining A in U and h is again a holo-
morphic function on a neighborhood V = V(xq) vanishing on A, then
there ezxists a k € N and a holomorphic function q¢ on a neighborhood
W =W(xo) CUNV such that h*ly =g (flw).

PROOF: Again we work in C™ and assume that zo = 0. Let f be an ar-
bitrary defining function for A near the origin. After choosing appropriate
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coordinates we find a unit e and a Weierstrass polynomial & in z; such that
f = e-W. We choose a neighborhood U = U’ x U” of the origin such that:

1. ANU ={(2,2") €U : (2,2 )*Ol
2. There is a prime factorization w = wy wlk‘ onU.

We define w := wy - - -w;. This is a pseudopolynomial without multiple factors
that also defines A in U.

If h is a function vanishing on A, which we may assume to be defined on U,
then by the division formula there is a holomorphic function ¢ near the origin
and a pseudopolynomial r with deg(r) < deg(w) such that near 0,

h=q-w+r.

Since w has no multiple factors, the greatest common divisor of w and dw/dz;
is a not identically vanishing holomorphic function g of 25, ..., 2, and we can
find pseudopolynomials ¢y, g2 with

Ow
9=<11'W+Q2'52—1

We may assume that everything is defined on U. Suppose that there is a
zy € U” such that w((,zy) € C[¢] has a multiple zero {o. Then w(¢o,2zq) =
8w/ 8z (Co,2p) = 0, and therefore g(zg) = 0. Hence, if g(2z') # 0, then w((,z")
has exactly s := deg(w) distinct zeros. Since h|y(,) = 0, h({,2’) has at least
these s distinct zeros. Using this fact and the division formula, it follows that
r(z') = 0 for 2’ € U” — N(g). Therefore, by the identity theorem r = 0 and
h = ¢ -w. Taking f = w yields the first part of the theorem.

Let k£ := max(ky,..., k). Then
Wr=uwk.¢f=5-q
This proves the second part of the theorem. ]

Every local holomorphic function f that satisfies the conditions of the first
part of the Nullstellensatz will be called a minimal defining function for A.

Now let A be an irreducible analytic hypersurface in X, and h a holomorphic
function on some open subset U C X with h{(snyy = 0. For 2o € UN A there
exists a neighborhood V = V(zy) C U and a minimal defining function f for
Aon V. Then

orda z,(h) ;== max{m € N : 3¢ with h = f™ - q near z¢}.

It follows from the Nullstellensatz that ord 4 4, (h) > 1, and from the unique
factorization into primes that it is finite. Furthermore, it is independent of f,
because if fi, f2 are two minimal defining functions, then we have equations
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fi = a1f2 and fy = gaf1. It follows that f; = qigafi and therefore f;(1 —
q192) = 0. So ¢; and ¢, must be units.

For every point zo € A there is a neighborhood U = U(zp) such that
orda z(h) > orda 5, (k) for z € U N A.

4.4 Proposition. If A is irreducible, h holomorphic in a neighborhood of
A, and h|4 = 0, then the number ord 4 ;(h) is independent of x € A.

PROOF: Let g € A be an arbitrary point. In a neighborhood U of zg there
exist a decomposition ANU = A; U---U A, into irreducible components
and minimal defining functions f\ for A,. Since h vanishes on every Aj,
there exist k;,...,k € N and a holomorphic function ¢ on a neighborhood
V = V(zo) C U such that

h=ff'- ff.q, and (f2)so 1 qu, for A=1,... 1.

Since (f1)zo,-- -, (fi)z, are irreducible, it follows that (fi)., and gz, are rel-
atively prime for A = 1,...,l. But then (f)), and ¢, remain relatively prime
for x sufficiently close to zg, say in a neighborhood W (z¢) C V.

Let n(z) := ords - (h). It is necessary to consider two cases:

(a) If A is irreducible at xo, then [ = 1, and it is clear that n(z) = n(zg) for
zeEWnNA.

Consequently, z — n(z) is a locally constant integer-valued function on the
set A of regular points of A. Since A is globally irreducible, A is connected
and n(z) globally constant on A. Let n* € N be the value of this function.

(b) If { > 1, then f := f;--- f; is a minimal defining function for A at z.
With m := min(ky, ..., k) we have

h=fftfftq=f"-op,
where g is a holomorphic function near zo. Therefore, n(xg) > m.

We assume that m = k). In every small neighborhood of g there are regular
points z € Ay that do not belong to A, for p # A. Then n(z) = n*, and f, is
a minimal defining function for A at z. Since h = ff* - g, with a holomorphic
function g, and (fx)z t Gz, it follows that n(z) = k.

So m < n(zg) < n(zr) = n* = ky = m, and therefore n(zq) = n*.

Now we define

._ J constant value of ords ;(h) if hlq =0,
orda(h) := { 0 otherwise.

One easily sees that

ord4(hihe) = ord a(h1) + ord a(h2).
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Meromorphic Functions. Let X be an n-dimensional complex mani-
fold. We consider holomorphic functions that are defined outside of an ana-
lytic hypersurface. In the 1-dimensional case these are holomorphic functions
with isolated singularities.

Definition. Let A C X be an analytic hypersurface. A complex-valued
function m on X — A is called a meromorphic function on X if for any
point x € X there are holomorphic functions g,~ on an open neighbor-
hood U = U(x) C X such that N(h) C ANU and m=g/hon U — A.

Obviously, m is holomorphic on X — A. In particular, every holomorphic
function f on X is also meromorphic on X.

Different meromorphic functions may be given outside of different analytic
hypersurfaces. If my : X — Ay — C are meromorphic functions on X, then
my £ mq and m; - my are meromorphic functions on X, given as holomorphic
functions on X — (A; U Ag).

Ifm: X - A — C is a meromorphic function, for p € A we have two

possibilities:

(a) There is a neighborhood U = U(p) C X such that m is bounded on U — A.
Then there is a holomorphic function m on U with M|y -4 = m|y- 4, and
p is called a removable singularity for m.

(b) For any neighborhood V' = V(p) C X and any n € N there is a point
z € V — A with |m(z)| > n. If m = g/h near p, then h must vanish at
D, because otherwise we would be in situation (a). Now there are again
two possibilities:

(i) If g(p) # 0, then lim,_,,|m(z)| = +00, and we have a pole at p.

(i1) The other possibility is g(p) = 0. This cannot occur in the case n = 1,
since it may be assumed that the germs g, and h, are relatively
prime, but it is possible for n > 1. The behavior of m is extremely
irregular in that case: We take any ¢ € C. Then g, — c- hy and h,, are
relatively prime, and therefore there exists a sequence (z,) of points
in N(g—ch)—N(h) with lim, _, z,, = p. This means that m{z,) = ¢
for every v. We call p a point of indeterminacy in this case.

In the case n = 1 a meromorphic function is a function that is holomorphic
except for a discrete set of poles. For n > 1 we have the polar set

P(m) := {p € X : m is unbounded in any neighborhood of p }.

The polar set consists of poles and points of indeterminacy. We show that
P(m) is an analytic hypersurface.

Let p € X be an arbitrary point and U = U(p) C X a connected neighbor-
hood, where m is the quotient of g and h and N(h) C A. We may assume
that p € A and g, h, are relatively prime. Then
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m bounded near p <= ¢ (holomorphic near p) withg=¢-h
= hplgp
<= hpisaunit
< h(p)#0.

So Pm)NU ={z €U : h(z) = 0}.

If Z C X is an irreducible hypersurface, then we define ordz(m) as follows: If
m = g/h near z, then ordz ;(m) := ordz ;(g) —ordz (k). If we choose gz, h
relatively prime, this definition is independent of g and h. Now it follows
exactly as above that ordz »(m) is constant on Z.

4.5 Identity theorem for meromorphic functions. Let X be connected,
m: X — A — C a meromorphic function, and U C X a nonempty open set
such that mjy_4 = 0. Then P(m) = @ and m = 0.

PrOOF: The set X — P(m) is connected, m is holomorphic there, and U —
(AU P(m)) is a nonempty open subset of X — P(m). By the identity theorem
for holomorphic functions it follows that m = 0 on X — P(m). But then m
is globally bounded and P(m) = @. (]

The set .#(X) of meromorphic functions on X has the structure of a ring
with the function m = 0 as zero element. We set

HA(X)* = A(X)-{0}
= {m € #(X) : m vanishes nowhere identically}.

If m € #(X)* has a local representation m = g/h, the zero set N(g) is
independent of this representation. Therefore, we can define the global zero
set N(m), which is an analytic hypersurface in X. Outside of P(m)UN(m), m
is holomorphic and without zeros. Therefore, 1/m is also holomorphic there
and has local representations 1/m = h/g. So 1/m is also meromorphic, and
consequently .#(X) is a field. For this it is essential that X is connected!

4.6 Levi’s extension theorem. Let A C X be an analytic set that has at
least codimension 2, and let m be a meromorphic function on X — A. Then
there exists a meromorphic function m on X with m|x_4 = m.

PROOF: Since the statement is true for holomorphic functions, we may
assume that P(m) # @. So it is an analytic hypersurface in X — A. By the
theorem of Remmert—Stein, @ := P(m) is an analytic set in X. By Riemann’s
second extension theorem the holomorphic function m on (X — Q) — A has
a holomorphic extension m to X — Q.

Let p € ANQ be a point. We have to show that m is locally meromorphic at
p. We choose an open neighborhood U = U(p) C X and a function g € O(U)
such that:
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1. QNU C N(g).
2. N(g) = Ny U---U Ny is a decomposition into irreducible components.

Since dim(A) < dim(N;), there are points a; € N; — A and neighborhoods
V; = Vi(a;) C U—A such that m = p;/¢; on V;—Q and N(qz) C QNV; C N(g);
ie., g|n) =0

From the Nulistellensatz it follows that there is a number s; € N and a
holomorphic function r; such that g* = r; - ¢;. Then m = p;r;9~° near a;.
This means that there exists an s € N such that ¢g* - m is holomorphic near
Aly...,Qk.

Thus N := (U — A) N P(g°m) is empty or an analytic hypersurface that is
contained in N(g)—A. In the latter case it is a union of irreducible components
of N(g) — A, and this is impossible, since every such component contains
a point a;. So N must be empty, and ¢g°m is holomorphic in U — A. By
Riemann’s second extension theorem there is a holomorphic extension h of
g°m on U. Then g~°h is meromorphic on U with (¢7%h)|y-4 = M. "

Divisors. Let X be a connected complex manifold, m € .#(X)*, and
Z C X an irreducible analytic hypersurface. If Z C P(m), then ordz(m) is a
negative integer, and if Z C N(m), then ordz{m) € N. In all other cases we
have ordz(m) = 0.

If P(m) = J,¢; P. and N(m) = |J ¢ Nx are the decompositions of the polar
set and the zero set into irreducible components, then the formal sums
(Mm)eo == Z( ordp (m))-P, and (m)o:= ZordNA (m)- N,
el AEL

are called respectively the divisor of poles and the divisor of zeros of m.
Finally, div(m) := (m)p — (m)o is called the divisor of m. From the remarks
above it is clear that

div(m) = Z ordz(m) - Z,
ZCcX

where the sum is over all irreducible hypersurfaces Z in X.

Definition. Let (Z,).c; be a locally finite system of irreducible ana-
lytic hypersurfaces Z, € X. If for every ¢ € I a number n, € Z is given,
then the formal linear combination

D:ZnL-ZL

is called a divisor on X.

The divisor is called positive or effective if n, > 0 for every ¢ € I.
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Divisors can be added or multiplied with integer constants in an obvious way.
Therefore, the set 2(X) of all divisors on X has the structure of an abelian

group.

As we just have seen, there is a map div : #(X)* — 2(X). Since we have
div(mymy) = div(m,) + div(ma), div is a group homomorphism.

Sometimes it is useful to generalize the notion of a divisor a little bit. Let
(A.).er be alocally finite system of (arbitrary) analytic hypersurfaces in X,
and (n,).er a system of integers. Then for every ¢ € I we have a decomposition

A= 4
A €L,

into irreducible components. The system {AS‘L : v € 1,), € L} is again
locally finite, and we define }_ ., n, - 4, := Der EALGLL n, - A5, -

With this notation it is possible to restrict divisors to open subsets: If U C X
isopen and D =} ., n, - Z, a divisor on X, then

Dy := > n,-Z,NU.
¢ with ZNU#@

4.7 Proposition. If A C X is an analytic hypersurface and f a minimal
defining function for A in an open set U with U N A # &, then

div(f¥) =k-AnU.
The proof is more or less straightforward.
Now let an arbitrary divisor D on X be given. Then for any point p € X there
is an open neighborhood U = U{p) C X, a finite system {Z; : i =1,..., N}

of irreducible hypersurfaces Z; C U, and a system of numbers n; € Z such
that

N
D,U = Zni . Zi.
i=1

In addition, there is a neighborhood V = V(p) C U such that there exist
minimal defining holomorphic functions f; for Z; in V. Then

N N
div(H f;"') =Y n-ZnV=Dly.
=1 =1

In this way every divisor is locally the divisor of a meromorphic function.



200 IV. Complex Manifolds

Associated Line Bundles. Let X be a connected n-dimensional com-
plex manifold. If Z C X is an analytic hypersurface, then there is an open
covering % = {U, : ¢ € I} of X with the following property:

If U, N Z # @, then there is a minimal defining function f, € O(U,) for Z.
Setting f, :=1ifU,NZ = @, in U, we get the two relations

szguc'fn and fn:gAsL'fL

with suitable holomorphic functions g, and g.,. Then

fl. . (1 - gucgm,) =0on Uui-

Since f, does not vanish identically, it follows that g,cgx, = 1 on U,.. This
shows that g, € O*(U,.) and g., = g;;!. Furthermore, on U,.» we have the
compatibility condition

GexGxX = GuA-

The system of the nowhere vanishing functions g,, = f,/fx defines a holo-
morphic line bundle on X, which we denote by [Z]. It is easy to show that
this definition does not depend on the covering and the functions f,.

4.8 Proposition.

1. There is a section sz € T'(X,[Z]) with Z = {z € X : sz(z) = 0}.
2. [Z] is trivial over X — Z.

PRrOOF: The system of holomorphic functions f, defines a global section sz
with {x €U, : sz(z) =0} ={z €U, : f.(z) =0} =U,NZ. Then it is clear
that [Z]|x -z is trivial. =

We can generalize the concept of associated line bundles to the case of divi-
sors. If D is a divisor on X, then there is an open covering % = {U, : . € I}
of X, and meromorphic functions m, on U, with D|y, = div(m,). It follows

that the functions
m,

Gk =
y

are nowhere vanishing holomorphic functions on U,.. They define a line bun-
dle, which we denote by [D)]. If D = k - Z, then [D] = [Z]*. If D = D; + D,
then [D] = [Dy] ® [Dz]. Thus the map

0:9(X) — Pic(X), (D) := isomorphy class of [D],

is a homomorphism of groups.

4.9 Theorem. The sequence of group homomorphisms

A(X) % 9(x) - Pic(X)
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s exact.

PRrOOF: (1) Let m # 0 be a meromorphic function. Then [div(m)] is given
by only one transition function m/m = 1. Therefore, § o div(m) = 1.

(2) Let D be a divisor on X with §(D) = 1. We assume that D]y, = div(m,)
and [D] is represented by g, = m,/m. Since [D] is trivial, there are nowhere
vanishing holomorphic functions k, with h, - g,x =1 - hx on U,x. Then

h,-m,=he-m, onU,.

Therefore, a meromorphic function m on X can be defined by m|y, := h,-m,.
Obviously, div(m)|y, = div(m,) = D|y,, and therefore div(m) = D. .

Meromorphic Sections. Let X be a connected n-dimensional complex
manifold. Any analytic hypersurface Z C X leads to a line bundle [Z], to-
gether with a global holomorphic section sz that vanishes exactly on Z. The
construction of sz fails in the case of an arbitrary divisor D and its associ-
ated line bundle [D]. Therefore, we introduce the notion of a meromorphic
section.

Definition. Let 7 : L — X be an analytic line bundle and A C X an
analytic hypersurface. A holomorphic section s € I'(X — A, L) is called
a meromorphic section over X in L if for every point £ € X there is
an open neighborhood U = U(z) C X, a function h € O(U), and a
holomorphic section ¢t € I'(U, L) such that:

1. h-s=t overU— A.

2. N(h)yc AnVU.

If we have a system of trivializations ¢, : 771(U,) = U, x C and transition
functions g,,, then we have the following description of s.

For z € U, — A we define s,(z) by ¢, o s(z) = (z, s,(z)). Then s, = g,xc - S« On
U, — A. If we choose the U, small enough, there are holomorphic functions
h,, t, on U, such that h, -s, = ¢t, over U, — A and N(h,) C AnU,. This
means that s, is a meromorphic function on U,. We could have as well said
that a meromorphic section is a system (s,) of meromorphic functions with
Sy = Guk * Sk

If Z is an irreducible hypersurface, then ordz(s,) = ordz(s.), and we denote
this number by ordz(s). The sum

div(s) := Z ordz(s)-Z

ZC X irreducible hypersurface

is called the divisor of the meromorphic section s.
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Now we have the solution for our problem: Let D be the divisor on X given
by D|y, = div(m,). Then [D] is described by the transition functions g, =
mbmgl, and the system of the m, defines a global meromorphic section sp
of [D] with div(sp) = D.

So far our definitions seem to be purely tautological. But for example, they
allow us to determine the space of holomorphic sections of [D] in terms of
meromorphic functions on X. For that we need the following notation: If
D,, D, are two divisors on X, then D; > D, if and only if D; — D5 is a
positive divisor.

4.10 Theorem. Let D =3 ,nz-Z be a divisor on X. Then there is a
natural isomorphism {m € #(X)* : div(m) > —D} = (X, [D]).
PROOF: Let sp be the global meromorphic section of [D] with div(sp) = D.

Then for any meromorphic function m on X also ¢t := m-sp is a meromorphic
section of [D].

If m is a meromorphic function with div(m) > —D, then

div(t) = div(m) + div(sp) =div(m)+ D > -D+D = 0.
This means that ¢ is a holomorphic section. The map m — m-sp is obviously
injective.

Let t € I'(X, [D]) be given. If D|y, = div(m,), then

Hence t,m; ! = t,m_! on U,, and there exists a meromorphic function m on
X with m|y, = t,m;!. Therefore, div(m)|y, = div(t,) — div(m,) > —D|y,.
So the map is an isomorphism. =

Example

Let X = C be the Riemannian sphere and D = n - oo. Then
['(X,[D]) = {m € #(X)* : orde(m) > —n and ord,(m) > O otherwise }.

The holomorphic sections in [D] are just the meromorphic functions on X
that have a pole of order at most n at co.

Exercises

1. Let z be a point in a complex manifold X and let f,, g, be nonunits in O;.
Prove that f; and g, are relatively prime if and only if dim(N(f,g)) <
n—2.
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2. Let G C C™ be a domain, A C G an analytic hypersurface, U C G an
open subset with UN A # @, and f : U — C a minimal defining function
for A. Prove that Sing(A)NU ={z € U : f(z) =0 and V f(z) = 0}.

3. Consider the meromorphic function m(z;, 22) := z2/21 on C2. Show that
the closure X of the graph {(z1, 2z2,w) : 21 # 0 and w = m(2;,22)} in
C? xC is an analytic hypersurface. Determine a minimal defining function
for X at (0,1,00).

4. Classify the singularities of m(z;, 22) := sin(21)/ sin(2; 22).

5. Let L — X be a holomorphic line bundle. Prove that L = [D] for some
divisor D on M if and only if L has a global meromorphic section s # 0.

6. Let X be a compact Riemann surface. Show that for every nonconstant
meromorphic function f on X the numbers of zeros and poles are equal
(counted with multiplicity).

5. Quotients and Submanifolds

Topological Quotients. Let X be an n-dimensional complex manifold
and ~ an equivalence relation on X. If z,y € X are equivalent, we write
x~yor R(z,y). For x € X let

X(@)={yeX :y~z}={ye X : R(y)}

be the equivalence class of x in X. These classes give a decomposition of X
into pairwise disjoint sets. The set X/R of all equivalence classes is called the
topological quotient of X modulo R.

Let m : X = X/R be the canonical projection given by 7 : £ — X(z). Then
X/ R will be endowed with the finest topology such that 7 is continuous. This
means that U C X/R is open if and only if #~}(U) C X is open. We call this
topology the quotient topology.

A set A C X is called saturated with respect to the relation R if

= (r(A)) = A.

5.1 Proposition.

1. A saturated <= A=), cqX(z).
2. If U C X/R is open, then m~1(U) is open and saturated.
8. If W C X is open and saturated, then n(W) C X/R is open.

The proof is trivial.
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5.2 Proposition. Let Z be an arbitrary topological space. A map f :
X/R — Z is continuous if and only if fon : X — Z is continuous.

This statement is also trivial, since (f o 7)~}(U) = #~}(f~}(U)).

Analytic Decompositions. If X is an n-dimensional complex mani-
fold and R an equivalence relation on X, one can ask whether X/R carries
the structure of a complex manifold such that = is a holomorphic map. As-
sume that such a structure exists. Then X/R must be a Hausdorff space. If
¢ : U = CF is a complex coordinate system for X/R, then U= =~ }(U)
is an open saturated set in X, and f := pow : U — C* a holomorphic
map with f~1(f(z)) = n71(n(z)) = X(z). So the fibers of f are equivalence
classes, and the equivalence classes must be analytic sets. If additionally = is
a submersion, then rk;(f) = & for every = € U, and the fibers are (n — k)-

dimensional manifolds. We now show that these conditions are also sufficient
for the existence of a complex structure.

Let X be an n-dimensional complex manifold and Z = {Z, : « € I} a decom-
position of X into d-dimensional analytic sets. For z € X let «(z) € I be the
uniquely determined index with x € Z,(;). Then there is an equivalence rela-
tion R on X such that the equivalence class X () is exactly the analytic set
Z,(z)- We consider the topological quotient X/R and the canonical projection
7 : X > X/R and assume that the following conditions are fulfilled:

1. X/R is a Hausdorff space.

2. For any zo € X there exists a saturated open neighborhood Uof X (zo0)
in X and a holomorphic map f : U — C™¢ such that
(a) £ 1(f(z)) = X(z) foralleU
(b) rk.(f)=n—dforz € U.

5.3 Theorem. Under the conditions above, X/R carries a unique structure
of an (n — d)-dimensional complez manifold such that 7 : X — X/R is a
holomorphic submersion.

PROOF: Let 1o € X be given. Then there is an open neighborhood U of
X(zo) in X with 7r‘1(7r(U)) U, and a submersion f : U — C"~% whose
fibers are equivalence classes X(z). If zo := f(zo), then there is an open
neighborhood W = W (zg) ¢ C*¢ and a holomorphic section s : W — U
(with s(zg) = zo and f o s = idw). For z € W we have f~1(z) = X(s(z)),
and therefore

i m(s(W)) = |J X(s(2)) = |J £71(=) = £71(W).

zeW zeW

This is an open set, so 7(s(W)) C X/R is open as well. We define a complex
coordinate system ¢ : m(s(W)) — C*~¢ by
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p(m(s(2))) == 2.

Then ¢(w(z)) = f(x). This shows that ¢ is well defined and continuous. It is
also bijective, with ¢~!(z) = 7(s(z)), and therefore a homeomorphism.

Now let ¥ be another coordinate system given by ¥ (n(t(z))) := z, where t is
a local section for some suitable submersion g. Then

p oy (2) = o(n(t(2))) = £(t(z)).

The coordinate transformations are holomorphic. .

Properly Discontinuously Acting Groups. Let G be a complex
Lie group acting analytically on an n-dimensional complex manifold X. Then

R(z,y) : <= 3Jge€ G withy=gr

defines an equivalence relation on X. The equivalence class X(z) = {y € X :
dg € G with y = gz} is called the orbit of £ under the group action and is
also denoted by Gz. The topological quotient X/R is called the orbit space
and is also denoted by X/G.

We consider a very special case.

Definition. The group G acts properly discontinuously if for all z,y €
X there are open neighborhoods U = U(z) and V = V(y) such that

{9eG:gUNV # 2}

is empty or a finite set.

Here the orbits Gz are discrete subsets of X and are therefore 0-dimensional
analytic subsets. If the action is free, we want to show that all conditions are
fulfilled for X/G to be a complex manifold and 7 : X — X/G a holomorphic
submersion (which means in this case that 7 is an unbranched covering).

5.4 Lemma. Let G act freely and properly discontinuously on X and let
o, Yo € X be given.

1. If there is a go € G with yo = gozo, then there are neighborhoods U =
U(zo) and V = V(yp) such that gUNV = @ for g # go. In the case
Yo = o and go = e one can choose V =U.

2. If gzo # yo for every g € G, then there are neighborhoods U = U (o)
and V = V(yo) such that gUNV = & for every g € G.

PROOF: At first we choose neighborhoods Up(zo) and Vy(yo) such that

M:={geG: gUynVy # 2}
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is finite or empty. There is nothing to prove if M = {go} in the first case
or M = @ in the second case. Therefore we assume that there are elements
91,---,98, N > 1, with M = {g0,91,...,9n} in the first case and M =
{91,.-.,9~n} in the second case. Then we define yy := gazg, for A =1,...,N.
Since G acts freely, yx # yo for A=1,...,N.

We choose neighborhoods Wy = W) (y») and V = V(yo) C Vp such that
WyxNV = @, and we choose a neighborhood U = U(z) C Uy such that
U C Wy, for A=1,...,N. Then gUNV = @ for g # go in the first case,
and g € G in the second case. =

5.5 Theorem. Let G act freely and properly dicontinuously on X. Then
X/G has the unique structure of an n-dimensional complex manifold, so that
m: X = X/G is an unbranched holomorphic covering.

PROOF: Let U C X be an open set. Then n~}(n(U)) = Ugec 9U is an
open set, and therefore w(U) is also open. For g € X we can choose an open
neigborhood U = U(xg) such that gUNU = @ for g # e. Then 7 : U — ©(U)
is bijective.

(1) We have to show that X/G is a Hausdorff space. Let z;,22 € X be
given, with m(z;) # m(x2). Then gz, # z, for every g € G. There are open
neighborhoods U = U(z;) and V = V(z3) with gUNV # & for every g € G.
Then 7(U) and n(V) are disjoint open neighborhoods of 7r(z;) and n(z3).

(2) We verify the other conditions. Let zo € X be given and choose a small
open neigborhood U = U(zg) C X such that w : U — #(U) is a homeomor-
phism and such that there exists a complex coordinate system ¢ : U — cn.
Then f : U := 7~ 1(x(U)) — C™ can be defined by f(gz) := ¢(z), for z € U
and g € G. It is clear from above that f is well defined. The fibers of f are
the G-orbits, and on gU we have f(y) = ¢(g~!(y)). This shows that f is
holomorphic, and rky(f) = n for every y € U.

If U is small enough, then 7= (w(U)) = U,ec 9U, with pairwise disjoint sets
gU that are topologically equivalent to w(U). So 7 is an unbranched covering.
| |

Complex Tori. Let {w;,...,w2,} be a real basis of C*. Then the discrete
group ' := Zw; + - - + Zws, acts freely on C™ by translation. The set
Ay =T+w={w+w:wel}

is the orbit of w.

The group I acts properly discontinuously on C”: Let zg, wg € C" be given.
If wg = wp + zZp for some wy € T', choose
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€< % Cinf{jJw]l : w € T = {0} }.

Then (w + B¢(2¢)) N B:(wp) = &, unless w = wyp.
IfW()—Zo¢Fand 1

€< 5 - dist(wp, ' + zp),
then (w + B(20)) N B:(wo) = @ for every w.

The n-dimensional complex manifold T" = T := C*/T is called a complex
torus, and I is called the lattice of the torus.

The set P := {z = tjwy + -+ + tapwa, : 0 < t; < 1} contains a complete
system of representatives for the equivalence classes. Therefore, T" = 7 (P)
is a compact space. The map

tiwg + -+ topwo, — (82””1, ceey 62"“2")
induces a homeomorphism T" — S* x --- x S*.
LA
2n times
5.6 Proposition. H!(S',Z) =Z.
Proor: Let Uy := {2™! : -1 <t < 1}, U := {e?* : 0 <t < 3},

and Us := {€*™* : <t < 1}. Then % := {U;,U,,Us} is an acyclic open
covering for S! with Ujaz = &. Therefore, every triple £ = (a,b,c) € Z3
is a cocycle in ZY(%,Z). 1t is a coboundary if and only if there is a triple
(u,v,w) € Z® with

a=v—u, b=w-u, and c=w-—v.

This is the case if and only if a + ¢ = b. Since every cocycle has the form
(a,b,c) =(0,b—a—c,0)+(a,a+c,c)=(b—a—c)-(0,1,0)+6(0,a,a +c),
it follows that H'(%,Z) is generated by the class of (0,1,0). ]

From the Kiinneth formula it follows that H(T™ Z) = Z?", and therefore
the first Betti number of T™ is equal to 2n.

Hopf Manifolds. Let ¢ > 1 be a fixed real number and n > 1. Then
the (multiplicative) group I' := {o* : k € Z} acts freely on C* — {0} by
z+— oF -z

The action is properly discontinuous. To see this, we define the sets
Ur:={zeC" : r<|z| < or}, forr > 0.

Then the sets o*U, are pairwise disjoint. If two points z;,2, € C* — {0}
are given, one can find an » > 0 and a k € Z such that z; € U := U, and
23 € V 1= g*U,. The case k = 0 is allowed. Now o°U NV = &, unless s = k.
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So H = Hr := (C* — {0})/T is an n-dimensional complex manifold, and
the canonical projection 7 : C* — {0} — H is an unbranched holomorphic
covering. H is called a Hopf manifold.

The map _
Iniz[|y =z
z— (exp(27r|——), —
Ing /7 ||z )
induces a diffeomorphism H — S! x S?"~!. Here S?"~! is the (2n — 1)-
dimensional sphere in R?" = C" with 2n — 1 > 3.

5.7 Proposition. For k > 2, H'(S*,Z) = 0.
PROOF: We have S* = {x = (z1,...,7k4+1) : |x|| = 1}. Then Z =
{Ul, U2} with

Uy = {xeS8": —e<xpy <1},
Uy, = {xeSk:—ISxk+1<s}

is an open covering of S*¥ with contractible sets, and
U12={x€Sk D€ < Ty < E}

is connected. Therefore, CY(%,Z) = Z*(%,Z) = Z and C°(%,Z) = Z2. The
coboundary map 6 : C°(%,Z) — C*(%,Z) is given by é(a,b) := b— a. Then
obviously, BY(%,Z) = Z and H(%,Z) = 0. .

It follows that H!(H,Z) = H'(S! x S%~1,Z) = Z, and by(H) = 1.

The Complex Projective Space. In X := C**! — {0} we consider
the equivalence relation

R(z,w) : < 3 € C" with w = Az.

The equivalence class L, of z is the set L, = Cz — {0}, the complex line
through z and 0 without the origin. So we have a decomposition of X into
1-dimensional analytic sets. We can also look at these sets as the orbits of
the canonical action of C* on X by scalar multiplication.

Definition. The topological quotient P" := X/R = (C**! — {0})/C*
is called the n-dimensional complez projective space.

Let 7 : X = C™t! — {0} — P™ be the canonical projection, with n(z) := L,
and let two points z = (29, .-.,2,), W = (Wp, ..., wy) be given. We have

m(z) =w(w) <<= JAeC " withw;=2Az;fori=0,...,n
Wi _ % forall i,j where the fractions are defined.
wj Zj

—
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So m(z) does not determine the entries z;, but the ratios z; : z;. Therefore,

we denote the point £ = m(zg,...,2,) by (20 : ... : 2z,) and call 2y,..., 2, the
homogeneous coordinates of z. If zp,..., 2, are homogeneous coordinates of
z, then so are Azg,..., Az, for every A € C*.

If W C X is an open set, then 77} (m(W)) = U, ¢c- A- W is a saturated open
set in X, and therefore 7(W) is open in P™. For example, this is true for

U; := {z=(20,--.,22) €EC*"*' = {0} : z; #0} C X, i=0,...,n.
The sets U; := n(U;) form an open covering of P™.

We show that P" is a Hausdorff space: Let z, w € X be given, with L, # Ly,.
Then

* and w*

-z

2l llwll
are distinct points of S?"*! = {x € R™*2 = C"*+! . ||x|| = 1}. Therefore,
we can find an € > 0 such that B.(z*) N B.(w*) = @. Then U := n(B.(z*))
and V := w(B.(w*)) are disjoint open neighborhoods of w(z), respectively
m(w).

Now let a point 2o = (2§, ...,2{’) € X be given. Then there exists an index
i with z{” # 0, and 2z lies in U;. We define f; : U; — C" by
z Zic1 % z
f,'(ZO,...,Zn) = (-2,...,-—1—-1—, H-l,...,—ﬂ).
Zi 2 Zi 2
Then

W;

e} =ﬁforj;éi}
Zi

{
- {we w=3”—"-z}

I

w€

£ (£:(2))

s

u

24
= 7 Y(n(2)).

If a point u = (uyp,...,u,) € U; is given, we define a holomorphic section
5:C™ = U; by s(21,...,2n) = (wiz1, ..., UiZi, Ui, UiZit1, - - - ,UiZn). Then

Ug Uj-1 Uiyl Un

S(_a--‘v | IR R ('U'O, un)»

Uj Ui Ug U

and
fios(z1,...,22) = (21,---, 2n)-

Therefore, f; is a submersion, and rk;(f;) = n for every z.

Altogether this shows that P™ is an n-dimensional complex manifold and
m : C**! — {0} — P" a holomorphic submersion. Since every equivalence
class L, has a representative in the sphere $?"+1 P" = 7(§?7+1) is compact.
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Local coordinates are given by the maps ¢; : U; = C™ with ¢; o 7 = f;. This
means that

(i iay= (R E =)

wi(z0:... 1 2n) (Z,;’”.,Zi’.“,zi).
The set
Up={(z0:--.:20) €P" 1 g # 0} ={(1:t1:...:tn) : (1,...,t0) €C"}

is biholomorphically equivalent to C™. We call it an affine part of P™. If we
remove Uy from P, we get the so-called (projective) hyperplane at infinity

HO = {(ZQZ...:Zn)EPn : Z():O}
{(0:t1:...:t) : (t1,...,tn) €C" — {0} }.

It has the structure of an (n — 1)-dimensional complex projective space. If we
continue this process we get

PP = C* U P
IPm—-l — (Cn—-l U ]Pm—2,

P2 = c?* u P.L

It remains to study P' = {(zo : 21) : (20,21) € C? — {0} }. But this is the
union of C = {(1 :t) : t € C} and o0 := (0 : 1), with t = 2;/2p. In a
neighborhood of co we have the complex coordinate 29/z; = 1/t. So we see
that P! = C = CU {oo} is the well-known Riemann sphere.

The hyperplane Hy is a regular analytic hypersurface, given by

HoﬂUiz{(zO:...:zn)EUi L2 }

Zi
Therefore, Uy is dense in P™.

It should be remarked that there is no reason to distinguish between Uy and
the other sets U;. Everything above could have been done as well with the
affine part U; and the hyperplane H; := {n(z) € P" : 2; = 0}.

Meromorphic Functions. On a compact complex manifold every
global holomorphic function is constant. But we know already from the ex-
ample of the Riemann sphere that there may exist nonconstant meromorphic
functions. In this regard we consider the compact manifolds defined above,
beginning with the complex projective space P™.

A nonconstant polynomial p(t) = Eﬁ,q:o a,t” is a holomorphic function on
theset Up = {(1:t1:...:ty) | t = (t1,...,tp) € C"}. In fact, it defines a
meromorphic function on P* with polar set Hy. We see this as follows:

3 The hat signalizes that the ith term is to be left out.
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The functions ¢, = z,/z9, p > 1, are holomorphic coordinates on Up, and
wy = 2x/z;, A # i likewise on U;. Therefore, on U; — Hy = U; N Up we have

k
k v v
k 20 21\ Z n
u‘O'p(tla"'atn) (zi) : E av(zo) (ZZ)

lv|=0

k
k—|v
E a,wg |'w'l"---w,';";

lv|=0
ie.,, p = g/h on U; — Hy, where g(w) := Zﬁ,l:o a,,wg_IVlw'{‘ -+ -wkr and
h(w) := w§ are holomorphic functions on U; with

N(h) = {WeUi : w0=0}=UiﬂH0.
So there are numerous global meromorphic functions on projective space.

Now let T = C*/T" be an n-dimensional complex torus, and # : C* — T
the canonical covering. If m is a meromorphic function on 7', then mox is a
meromorphic function on C*, which is periodic with respect to the generators
w1, -..,wzy of the lattice I'. In the case n = 1 such meromorphic functions
always exist; they are the I'-elliptic functions. We shall later see that for
n > 2 the existence of I'-periodic functions depends on the lattice I'. In fact
there are complex tori with no nonconstant meromorphic functions.

Finally, consider the Hopf manifold H = (C*—{0})/T with " = {o* : k € Z}
and n > 1. Let m be a meromorphic function on H. Since the canonical
projection 7 : C* — {0} — H is a covering, m := m o 7 is meromorphic on
C™ — {0}. Since n > 1, it follows from Levi’s extension theorem that m can
be extended to a meromorphic function on C". On any line L through the
origin in C™, m must have isolated poles or be identically co. But since m
comes from H, poles on L must have a cluster point at the origin, which
is impossible unless 7 is constant on L. The same argument works for any
other value of m. A meromorphic function on C™ — {0} that is constant on
every line through the origin comes from a meromorphic function on the
projective space P"~!. This means that if » : H — P! is the canonical
map, then a bijection #(P"~!) — .#(H) is defined by m — m o h. On the
n-dimensional Hopf manifold there are not “more” meromorphic functions
than on (n — 1)-dimensional projective space.

Grassmannian Manifolds. The set of 1-dimensional complex subvec-
tor spaces of C™*! can be identified with the n-dimensional projective space,
and we have given it a complex structure. Now we do the same for the set
G,n of k-dimensional subspaces of C". The idea is the following: If V; C C?
is a fixed element of Gk, then we choose an (n — k)-dimensional subspace
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Wy C C” such that Vo @ Wy = C™. We are looking for a topology on Gi n
such that the set of all k-dimensional subspaces V with V@ W, = C” is a
neighborhood of Vj in Gi ,,.

But how to get complex coordinates? In the case Gi n+1 = P™ we consider, for
example, Vy = Ceq with eg = (1,0,...,0) and Wy = {(20,...,2n) : 20 = 0}.
Then Vo @ Wy = C™*}, and a vector z = (2¢,...,2n) # O generates a 1-
dimensional space V with V@ W, = C™*! if and only if 2z # 0. Multiplication
by a nonzero complex scalar does not change the space V. Therefore, V is
uniquely determined by

gl z=25"(20,Z) = (1,25 Z)  withZ = (21,...,2n).

The map f: V — 2y 1.Z € C™ gives the familiar local coordinates.

When we try to transfer this procedure to higher k, we use another viewpoint.
Every V with V @ W, = C"*! has the form Graph(py) of a linear map
vy : C— C™ given by f(V) = gy (1). If Vp C C" is a k-dimensional subspace
and Vp & Wy = C", then every other k-dimensional subspace V C C™ with
V & Wy = C" has the form Graph(py) for oy € Homc(Vp, Wy). Fixing
bases of Vp and Wy, the matrix of ¢y with respect to these bases gives local
coordinates in My, ,_x(C) = Ck—Fk),

Now we will do this job in detail. An ordered k-tuple of linearly independent
vectors ay,...,a,x € C* can be combined in a matrix
a1 aip 0 Qin
A = Afa;,...,a;) = : =

ak ak1 - Qkn
with rk(A) = k. The set
St(k,n) := {A € My n(C) : rk(A) = k}

is called the complex Stiefel manifold of type (k,n). Since its complement in
M, »(C) = C*" is an analytic set given by the vanishing of all (k x k) minors
of A, St(k,n) is an open set in My ,(C) and therefore a complex manifold.
The group GLi(C) acts on St(k, n) by multiplication from the left, and every
orbit of this group action represents exactly one k-dimensional subspace of
C™. The topological quotient

Gin = St(k,n)/ GLi(C)

is called the complezx Grassmannian of type (k,n).

If, for example, Wy = {w = (wy,...,wp) : w3y = -+ = wx = 0}, then a
matrix A € St(k,n) represents a basis of a k-dimensional space V with V &
Wy = C" if and only if A = (Ap|A) with Ay € GLx(C) and A € My ,—x(C).
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In this case V has the form Graph(pv) for a linear map ¢y : C¥ — C":k.
Of course, V is uniquely represented by the matrix Ay 1A = (Ex|Ag!-A),
and Ay 1. A is the matrix of ¢y with respect to the standard bases.

Now we consider the set of multi-indices
Iem i ={I=(1,-..,ix) ENF : 1 <4 < < i <n}.
For any A € St(k,n) there exists an I = (i1,...,i) € Fk n such that
ai, v 01

A= : : € GLx(C).

Qkiy 0 Qi

Then there is a permutation matrix Py € GL,(C) such that A - P; =
(ArlAg).

For fixed I we define
Vi :={A € St(k,n) : det Ar # 0}.

We remark that (G- A); =G Ay and ((/;\X)I = G- A for G € GL,(C).
Therefore, V; is invariant under the action of GL;(C).

5.8 Lemma. Let 7y : St(k,n) = Gg,n be the canonical projection. Then

w,:’:l(wk,n(vl)) = Vi for every I € Fy .

PROOF: Let A € mp 2 (mk,n(V1)) be given. Then there is an A* € V; with
Tkn(A) = T o(A*). This means that there is a matrix G € GLx(C) with
A = G- A”. Since V] is invariant under the action of GLi(C), A lies in Vj.
The converse inclusion is trivial. ]

So V} is a saturated open subset of St(k,n), and U; := m »,(V7) is open in
Gk,n- We leave it to the reader to show that G, is a Hausdorff space.

If E; c C" is generated by e;,,...,e;,, and F; C C™ by the remaining
e;, then E; @ Fr = C*, and every k-dimensional subspace V C C™ with
V @ F; = C" is represented by a matrix A € V;. The uniquely determined
matrix A,‘1 - A1 € My n_k(C) describes the linear map ¢v : E;f — Fy.
Therefore, we define the holomorphic map f; : Vi — My 5, (C) = Ck(n=k)
by

f[(A) = AI_I . K].

It is clear that f; is holomorphic, and since

£(G-A) = (<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>