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PREFACE TO THE
SECOND EDITION

This edition differs from the original mainly by the addition of a
seventh chapter, on the classical invariant theory of finite reflection
groups. Most of the changes in the original six chapters are corrections of
misprints and minor errors. We are indebted, however, to Klaus Benkert
of the RWTH Aachen for pointing out to us Proposition 5.1.5, making
possible a neater discussion of the positive definiteness of marked graphs.
We have also added an appendix listing the Schoenflies and International
notations for crystallographic point groups.

Since many beginning German courses in the United States seem no
longer to include an introduction to German script, it may be helpful to
some readers if the script letters used in Chapter 7 are introduced here with
their Roman counterparts.

German
Script ab ¢ 3I K & P Q
Roman la b ¢ F I K L P Q

Our thanks go to David Surowski and Dick Pierce for reading drafts
of Chapter 7 and suggesting corrections and improvements, to Helen
Grove for typing the new chapter and, belatedly, to Sandra Grove for
proofreading the first six.

August 1984 L.C.G. Anp C.T.B.



PREFACE TO THE FIRST EDITION

This book began as lecture notes for a course given at the University
of Oregon. The course, given for undergraduates and beginning graduate
students, follows immediately after a conventional course in linear
algebra and serves two chief pedagogical purposes. First, it reinforces
the students’ newly won knowledge of linear algebra by giving applica-
tions of several of the theorems they have learned and by giving geo-
metrical interpretations for some of the notions of linear algebra. Second,
some students take the course before or concurrently with abstract
algebra, and they are armed in advance with a collection of fairly concrete
nontrivial examples of groups.

The first comprehensive treatment of finite reflection groups was
given by H. S. M. Coxeter in 1934. In [9] he completely classified the
groups and derived several of their properties, using mainly geometrical
methods. He later included a discussion of the groups in his book Regular
Polytopes [10]. Another discussion, somewhat more algebraic in nature,
was given by E. Witt in 1941 [37]. An algebraic account of reflection
groups was presented by P. Cartier in the Chevalley Seminar reports
(see [6]). Another has recently appeared in N. Bourbaki’s chapters on
Lie groups and Lie algebras [3].

Since the sources cited above do not seem to be easily accessible to
most undergraduates, we have attempted to give a discussion of finite
reflection groups that is as elementary as possible. We have tried to reach
a middle ground between Coxeter and Bourbaki. Our approach is
algebraic, but we have retained some of the geometrical flavor of
Coxeter’s approach.

vii



viii Preface to the First Edition

Chapter 1 introduces some of the terminology and notation used
later and indicates prerequisites. Chapter 2 gives a reasonably thorough
account of all finite subgroups of the orthogonal groups in two and three
dimensions. The presentation is somewhat less formal than in succeeding
chapters. For instance, the existence of the icosahedron is accepted as an
empirical fact, and no formal proof of existence is included. Throughout
most of Chapter 2 we do not distinguish between groups that are “‘geo-
metrically indistinguishable,” that is, conjugate in the orthogonal group.
Very little of the material in Chapter 2 is actually required for the sub-
sequent chapters, but it serves two important purposes: It aids in the
development of geometrical insight, and it serves as a source of illustrative
examples.

There is a discussion of fundamental regions in Chapter 3. Chapter 4
provides a correspondence between fundamental reflections and funda-
mental regions via a discussion of root systems. The actual classification
and construction of finite reflection groups takes place in Chapter 5,
where we have in part followed the methods of E. Witt and B. L. van der
Waerden. Generators and relations for finite reflection groups are
discussed in Chapter 6. There are historical remarks and suggestions for
further reading in a Postlude.

Since we have written with the student in mind we have included
considerable detail and a number of illustrative examples. Exercises are
included in every chapter but the first. The results of some of the exercises
are used in the body of the text. The list of identifications in Exercise 5.7
was worked out by one of our students, Leslie Wilson.

We wish to thank James Humphreys, Otto Kegel, and Louis Solomon
for reading the manuscript and making numerous excellent suggestions.
We also derived considerable benefit from Charles Curtis’s lectures on
root systems and Chevalley groups.

July 1970 C.T.B. anp L.C.G.



CONTENTS

CHAPTER 1

Preliminaries
1.1 Linear Algebra
1.2 Group Theory

CHAPTER 2

Finite Groups in Two and Three Dimensions
2.1 Orthogonal Transformations in Two Dimensions
2.2 Finite Groups in Two Dimensions
2.3 Orthogonal Transformations in Three Dimensions
2.4 Finite Rotation Groups in Three Dimensions
2.5 Finite Groups in Three Dimensions
2.6 Crystallographic Groups
Exercises

CHAPTER 3

Fundamental Regions
Exercises

CHAPTER 4

Coxeter Groups

4.1 Root Systems

4.2 Fundamental Regions for Coxeter Groups
Exercises

~ W W

18
21
22

27
32

34
34
43
50



X

CHAPTER 5

Classification of Coxeter Groups

5.1 Coxeter Graphs

5.2 The Crystallographic Condition

5.3 Construction of Irreducible Coxeter Groups

5.4 Orders of Irreducible Coxeter Groups
Exercises

CHAPTER 6

Generators and Relations for Coxeter Groups
Exercises

CHAPTER 7

Invariants

7.1 Introduction

7.2 Polynomial Functions

7.3 Invariants

7.4 The Molien Series
Exercises

Postlude

APPENDIX
Crystallographic Point Groups

References

Index

Contents

53
53
63
65
77
80

83
101

104
104
105
107
112
120

124

127

129

131



c/m;ater 4
PRELIMINARIES

77 LINEAR ALGEBRA

We assume that the reader is familiar with the contents of a
standard course in linear algebra, including finite-dimensional vector
spaces, subspaces, linear transformations and matrices, determinants,
eigenvalues, bilinear and quadratic forms, positive definiteness, inner
product spaces, and orthogonal linear transformations. Accounts of these
topics may be found in most linear algebra books (e.g., [14] or [21]).
Throughout the book V will denote a real Euclidean vector space, i., a
finite-dimensional inner product space over the real field £. Partly in
order to establish notation we list some of the properties of V that are of
importance for the ensuing discussion.

If X and Y are subsets of V such that (x, y) = O for all xe X and all
ye Y, we shall say that X and Y are orthogonal, or perpendicular, and
write X L Y. If X < V, the orthogonal complement of X, which is the sub-
space of V consisting of all x € V such that x 1 X, will be denoted by X*.
If W is a subspace of V, then Wit = Wand V= W@ W+

If {x,,...,x,} is a basis for V, let V; be the subspace spanned by
{X1, s X215 X150 -5 X}, excluding x;. If O # y, e Vi, then (x;,y) = 0
for all j # i, but (x;, y;) # 0, for otherwise y;e V* = 0. Dividing y; by
(x;, y;), if necessary, we may assume that (x;, y;) = 1, thereby making y,
unique since dim(V{) = 1. Observe that if £7_, A,y; = 0 with 4, € 2, then

0= (xj70) = (xj’ X Ay) =L, ii(xj’yi) = )»j
for all j,and so {y,,...,y,} is linearly independent. Thus {y,,...,y,} isa

I



2 Finite Reflection Groups

basis, called the dual basis of {x,,...,x,}. It is the unique basis with the
property that
1 ifi =j,
(X, y)) = 9 {0 ifi %],

The space of all n-tuples (column vectors) of real numbers will be
denoted by #". Since there is seldom any chance of confusion we shall often
write the elements of #" as row vectors (4,, ..., 4,) for the sake of typo-
graphical convenience. The usual basis vectors along the positive co-
ordinate axes in #" will be denoted by

e, =(1,0,...,0), e, =(0,1,0,...,0),
etc. The space #" is an inner product space, with
(Arse s (s ) = Zfoy Ay

If V is any real Euclidean vector space, then it is a consequence of the
Gram—Schmidt theorem ([14], p. 108) that there is an inner product
preserving isomorphism from V onto #”, where n = dim V. Thus when itis
convenient we shall lose no generality if we assume that V = %",

The length \/(x, x) of a vector xeV will be denoted by |x||. If
x, y € V, then the distance between them, denoted by d(x, y), is defined to be
{lx — y|. For a fixed vector x, € V and real number ¢ > 0 the set

{xeV:d(x,xq) = ¢}
is called the sphere of radius ¢ centered at x,, and the set
{xeV:id(x,xy) < ¢}

is called the (open) ball of radius ¢ centered at x,,.

A subset U of V is called open if and only if given any x € U there is
some ¢ > 0 for which the ball of radius ¢ centered at x lies entirely within
U. The conditions of the definition are vacuously satisfied by the empty
set ¢, so (J is open by default. Note that finite intersections and arbitrary
unions of open sets are open. A subset D of V is called closed if and only if
its complement ¥V \.D is open, so finite unions and arbitrary intersections
of closed sets are closed. The intersection of all closed sets containing a set
X is called the closure of X and is denoted by X . The interior X° of X is
the union of all open subsets of X. The boundary of X is defined to be
X7 N\X° For example, the sphere of radius ¢ centered at Xq is the boun-
dary of the ball with the same radius and center.

If X is a fixed subset of V and Y < X, then Y is called relatively open
in X ifand only if Y = X N U for some open subset U of V. Likewise,
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Y is relatively closed in X if and only if Y = X (1 D for some closed subset
D of V, and the (relative) closure of Y in X is the intersection of X with
the closure Y™ of Yin V. A subset X of V is connected if and only if it is not
the disjoint union of two nonempty relatively open subsets. At the oppo-
site extreme X is discrete if and only if every point of X is a relatively
open set.

If dim V = n, then a hyperplane in V is an (n — 1)-dimensional
subspace. A line in V is any translate of a one-dimensional subspace.
Thus a line is a subset of the form {x + iy :Aie %}, where x and y are
fixed vectors with y # 0. The line segment [xy] between two vectors x
and y of Vis the set

{x+My—x):0< i<}

Note that if x # y, then [xy] is the smallest connected subset of the line
{x + My — x): Le A}

that contains x and y. A subset X of V is called convex if and only if the
line segment [xy] lies wholly within X for all points x and y of X. Observe
that a convex set is connected.

A transformation of V is understood to be a linear transformation.
The group of all orthogonal transformations of V will be denoted by
OV). If TeO(V) then det T = +1, and if a (complex) number 4 is an
eigenvalue of T then 4] = 1.If Te O(V)and det T = 1, then T will be called
a rotation.

The ring of integers will be denoted by Z.

GROUP THEORY

We shall assume that the reader is familiar with the following notions
from elementary group theory: subgroup, coset, order, index, homo-
morphism, kernel, normal subgroup, isomorphism, and direct product.
A discussion may be found in any book on group theory or almost any
book on abstract algebra (e.g., [20], [1], or [23]).

If & is a set, the cardinality of & will be denoted by |.%#/|. In particular,
the order of a group ¥ is |¥4|. If & is a subset of a group %, then (&) will
denote the subgroup of 4 generated by & If # is a subgroup of ¥ we write
H < % and [¢ : #] will denote the index of # in %.

A permutation of a set & is a 1-1 function from % onto & The set
P(&) of all permutations of & is a group under the operation of composi-
tion of functions; ie., (f2)(x) = f(g(x)), all xe &£ If & = {1,2,...,n},
then the group P(¥) is called the symmetric group on n letters and is
denoted by %. We shall assume known the elementary properties of &,
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(see [23], pp. 64-68). In particular, &, has a subgroup of index 2, the alter-
nating group on n letters, consisting of all the even permutations in ..

If & is a set, then a group ¥ is said to be (represented as) a permutation
group on & if and only if there is a homomorphism ¢ from % to 2(¥).
If ¢ is an isomorphism into 2(¥), then % is said to be represented faithfully
or to be a faithful permutation group on & Note that if 4 is faithful and .
is finite, then % is isomorphic with a subgroup of %, and in particular ¢
is finite.

If % is a permutation group on &, we shall write simply Tx rather than
(pT)xforall Te ¥ x e & If x € & then the subset .# of %, consisting of all
Te % for which Tx = x, is a subgroup called the stabilizer of x, denoted
by Stab(x). The subset of % consisting of all Tx, as T ranges over ¥, is
called the orbit of x, denoted by Orb(x). If Orb(x) = & for each xe ¥,
then ¥ is said to be transitive on &,

Proposition 1.2.1
If % is a permutation group on a set ¥ and x € %, then [¥ : Stab(x)] =
|Orb(x).

Proof

Set # = Stab(x). If R, Te 9 and R# = T.#, then T 'Re A, or
T 'Rx = x;s50 Rx = Tx. Thus &T.#) = Tx defines a mapping 6 from
the set of left cosets of # onto the orbit of x. If Rx = Tx,then T~ 'Re .#,
and R# = T.# Thus 6 is also 1-1 and the proposition is proved.
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FINITE GROUPS IN TWO
AND THREE DIMENSIONS

ORTHOGONAL TRANSFORMATIONS IN TWO
DIMENSIONS

If Te O(#%), then T is completely determined by its action on the
basis vectors e, = (1,0)and e, = (0, 1). If Te, = (i, v), then y? + v = 1
and Te, = +(—v, p), since T preserves length and orthogonality. Choose
0,0 < 0 < 2xn, such thatcos 8 = pand sinf = v.

If Te, = (—v, u), then T is represented by the matrix

i costl —sinf
v  pl| |sin@ cos@f
and it is clear that T is a counterclockwise rotation of the plane about the
origin through the angle 8 (see Figure 2.1). Observe that

det T = p?® 4+ v2 =cos?f +sin? 0 = 1.
If Te, = (v, — ), then T is represented by the matrix

B_|# vl |cos@ sin 0
“|v —pul| [sind —cos@]
In this case observe that
detT= —cos?8 —sin? 0 = —1,

B? — pr 4+ v? 0 _fr o
0 24 0 1]

and that
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so that T? = 1. It is easy to verify (Exercise 2.1) that the vector x, =
(cos 0/2, sin 6/2) is an eigenvector having eigenvalue 1 for T, so that the
line | = {Ax, : e &} is left pointwise fixed by T. Similarly, the vector
x, = (—sin 0/2,cos 6/2)is an eigenvector with eigenvalue —1,and x, L x,
[see Figure 2.2(a)]. With respect to the basis {x,, x,} the transformation
T is represented by the matrix

[

If x = A;x; + 4,X,, then Tx = 4;x; — A,x,, and T sends x to its mirror

(a) (b)
Figure 2.2
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image with respect to the line [ [see Figure 2.2(b)]. The transformation T
is called the reflection through | or the reflection along x, . Observe that

Tx = x — 2(x, x,)x,
for all x e #°.
We have shown that every orthogonal transformation of %2 is either
a rotation or a reflection.

FINITE GROUPS IN TWO DIMENSIONS

Suppose that dim V' = 2 and that 4 is a finite subgroup of O(V). The
set of all rotations in ¥ constitutes a subgroup # of 4. As was shown
in Section 2.1, each T'e 5 is a counterclockwise rotation of V through an
angle 8 = 6(T) with 0 < 0 < 2zn. If # # 1, choose Re # with R # 1,
for which 6(R) is minimal. If T'e #, choose an integer m such that

mb(R) < (T) < (m + 1)O(R).
Then 0 < 8(T) — mO(R) < 6(R). But
T) — mO(R) = (R~ ™T),

since R™™T is a counterclockwise rotation through angle 6(T) followed
by m clockwise rotations, each through angle 6(R). Since 6(R) was chosen
to be minimal, we must have (R™™T) =0;s0 R""T=1or T = R™
In other words, & = (R) isa cyclic group. It also follows that O(R) = 27 /n,
where n = (]

If 9 = s, we have shown that % is a cyclic group of order n, in which
case ¢4 will be denoted by ¥ (the subscript calls attention to the fact that
dim V = 2).

Suppose next that ¥ # #, and choose a reflection Se% Since
det (SR¥) = det S = — 1 for all integers k, the coset S# contains n = |#)
distinct reflections. If Te ¥ is a reflection, then

det(ST) = (det S)(det T) = (— 1)(—1) = 1,
s0 STe # ; hence Te SH#,since S™! = S. Thus # is a subgroup of index
2in % and if # = (R),as above, then
4 =(R,S)={LR,...,R"1S,SR,...,SR"'},

and |%4| = 2n. Since RS isa reflection, we have (RS)®> = 1,0r RS = SR™! =
SR*~1, completely determining the multiplication in % The group ¥ is
called the dihedral group of order 2n, and it will be denoted by #%. We
have proved

Theorem 2.2.1
If dim V = 2 and ¥ is a finite subgroup of V), then ¥ is either a
cyclic group ¥ or a dihedral group #5,n = 1,2,3,....
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If we set T = RS in the dihedral group #% = {(S,R), then T is a
reflection, since det T = —1. Since TS = RS? = R, it is clear that
(S, T) = #", so A is generated by reflections. If we suppose that the
orthonormal basis {x,, x,} of eigenvectors of S discussed in Section 2.1
coincides with the usual basis {e,, e,} in #?%, then we may assume that
S and R are represented by the matrices

4= |:1 0] and B [cos 2n/n —sin 2n/n]’

0 -1 sin 27/n cos 27/n

respectively. Thus T is represented by the matrix

_ | cos2m/n sin 2mt/n
C=B4= [sin 2n/n  —cos 2n/n]’

so Tisa reflection through a line / inclined at an angle of 7/n to the positive
x-axis. Let us use these ideas to give a geometrical interpretation of the
group A7

Denote by F the open wedge-shaped region in the first quadrant
bounded by the x-axis and the line /. The x-axis is a reflecting line for the
transformation S, and [ is a reflecting line for the transformation T.
The 2n congruent regions in the plane obtained by rotating the region F
through successive multiples of n/n can be labeled with the elements of
A% as follows : For each U € 7, designate by U the region U(F) obtained
by applying U to all points of the region F.

The procedure is illustrated in Figure 2.3 for the case n = 4. If two
plane mirrors are set facing one another along the reflecting lines for S

TST

TSTS = STST

Figure 2.3
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€

Fy

€y

Figure 2.4

and T, with their common edge perpendicular to the plane at the origin,
then the other lines may be seen in the mirrors as edges of virtual mirrors.
If an object is placed between the mirrors in the region F, then reflections
of the object can be seen in the seven images of F. This illustrates the
principle of the kaleidoscope and shows a connection between the kaleido-
scope and the dihedral groups.

Observe that the region F is open, that no point of F is mapped to any
other point of F by any nonidentity element U of .#”, and that the union
of the closures (UF)™, U € #7,is all of #. A region F with these properties
will be called a fundamental region for the group #”% . Fundamental regions
will be discussed more fully in Chapter 3.

If some nonzero vector x and its image Rx under the action of the
rotation R through minimal angle 6(R) are joined by a line segment,
then that line segment together with its images under all transformations
in # bound a regular n-gon X. The subgroup €% of rotations in #7% is
the group of all rotations that leave the n-gon invariant, and # itself
is the group of all orthogonal transformations that leave X invariant.
In the case n = 4, 4% and #°% are the rotation group and the full orthog-
onal group under which the square is invariant [see Figure 2.4, where
x = (1,1)]. The relatively open region Fy = F N X is a fundamental
region in the square X for the group #°3, in the sense discussed above.

ORTHOGONAL TRANSFORMATIONS IN THREE
DIMENSIONS

We assume throughout this section that dim V = 3.
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Theorem 2.3.1 (Euler)

Suppose that T is a rotation in ¢(V). Then T is a rotation about a
fixed axis, in the sense that T has an eigenvector x having eigenvalue 1
such that the restriction of T to the plane # = x* is a two-dimensional
rotation of 2

Proof

Suppose that 7, 4,, and 75 are the eigenvalues of T. At least one of
them, say 4,, must be real, since they are the roots of a cubic polynomial
with real coefficients. If 1, is not real, its complex conjugate is also an
eigenvalue; so A; = 4,. Since det T = A,4,4; = 1, the only possibilities
are (relabeling if necessary)

@) 4, =1,24, =243 = +1,
and
(b) Ay = 1,1, = 11 ¢ R

In either case 1 is an eigenvalue. Choose a corresponding eigenvector
xandnotethatx = T !'Tx = T 'x.Ify L x, then

(Ty,x) = (» T"'x) = (y,x) = 0,

so 2 = x' is invariant under T. Since the determinant of the restriction
T|2 is the product of the other two eigenvalues 4, and 4, of T, we have
det(T|2) = 1;s0 T|Z is a rotation of the plane 2

A reflectionin O(V) is a transformation S whose effect is to map every
point of V to its mirror image with respect to a plane £ containing the
origin. More precisely, S is a reflection if Sx = x for all x in the plane 2
and if Sy = —y for all ye 2*. If r is chosen to be a unit vector in 2+,
then S is given by the formula

Sx = x — 2(x, r)r, all xe V.

If we set x; = rand choose a basis {x,, x;} for Z then with respect to the
basis {x,, X,, x3} the transformation S is represented by the matrix

-1 0 0
A= 010
0 01

Note that $? = 1.
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Theorem 2.3.2

Suppose that Te (V) with det T = — 1. Then geometrically the
effect of T is that of a reflection through a plane #, followed by a rotation
about the line through the origin orthogonal to 2

Proof
If 2,, 2,,and A5 are the eigenvalues of T, then remarks similar to those
in the proof of Theorem 2.3.1 show that the only possibilities are

(@) Ay = =1, 4, = iy = +1,
and
(b) iy = —1, 4, = i, ¢ R

Choose an eigenvector x, corresponding to 4, = —1, and set
# = xi. Since

det(T|P) = Ayiy = 1,
T|# is a rotation of the plane # Thus we may choose a basis {x,, x3}

for 2 so that the matrix representing T relative to the basis {x,, x,, x5}
is

-1 0 0 1 0 0 -1 0 0
0 cosf —sin0| = |0 cosf —sinf 0 1 0}.
0 sinf cos 6 0 sinf cos 0 0 0 1

A

The theorem follows.

FINITE ROTATION GROUPS IN THREE DIMENSIONS

Suppose that dim V = 3 and that W is a plane in V; i.e., a subspace of
dimension 2. If R is a rotation in (W), then R may be extended to a rota-
tion in O(V) if we set Rx = x for all xe W+ and extend by linearity. If a
basis {x,, X,, x5} ischosen for V, with x, € W+, x,, x5 € W, then the matrix
representing R is

1 0 0
A= 10 cosf —sinf|.

0 sinf cos 6
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By extending each transformation in a cyclic subgroup 4% of O(W) in
this fashion, we obtain a cyclic subgroup of rotations in O(V), which will
be denoted by €3 .

On the other hand, if S is a reflection in (W), then S may also be
extended to a rotation in O(V)—in fact to the rotation through the angle n
having the reflecting line of S in W as its axis of rotation (see Exercise 2.4).
More explicitly, define Sx = — x for all xe W*, and extend by linearity.
In this case, we may choose a basis {x,, X,, x5} for V with respect to which
the matrix representing the extended transformation S is

-1 0 0
A= 0 cosf sinf].
0 sinf —cosf

If each transformation T in a dihedral subgroup #% of O(W) is
extended to a rotation in O(V), as above, the resulting set of rotations is a
subgroup of O(V) isomorphic with #% (Exercise 2.9). This subgroup is
also called a dihedral group and is denoted by #%. Observe that as sub-
groups of O(V) the groups of ¥3 and #} each consist of the identity
transformation and one rotation through the angle =, and so they are
geometrically indistinguishable.

Since the finite subgroups of ()(%?) are all symmetry groups of regular
polygons, it is natural to consider next groups of rotations leaving in-
variant regular polyhedra in #°.

There are (up to similarity) only five regular (convex) polyhedra in
A3—the tetrahedron, cube, octahedron, dodecahedron, and icosahedron
(see Figure 2.5). They have been known since antiquity. The five regular
solids, or Platonic solids, are discussed in Book XIII of Euclid’s Elements,
and it often has been suggested that the first twelve books of Euclid were
intended only as an introduction to the regular solids (see [10], p. 13, or
[36], p. 74). The first four solids were known to the Pythagoreans of the
sixth century B.C., and probably much earlier. There is a story to the effect
that Hippasus, one of the Pythagoreans, was shipwrecked and drowned
(presumably by the gods) because he had claimed credit for the construc-
tion of a dodecahedron inscribed in a sphere, rather than crediting the
discovery to Pythagoras as was customary. All five solids were system-
atically studied by Theatetus (circa 380 B.c.), and Euclid’s account of
them was based on the work of Theatetus.

It will be useful in this chapter, and for examples in the succeeding
chapters, for the reader to have available paper or cardboard models of a
tetrahedron, cube, and icosahedron. The tetrahedron and cube are easily
constructed, but the icosahedron may be less familiar so we have included
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Tetrahedron Octahedron

Cube Dodecahedron

Icosahedron

Figure 2.5
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Figure 2.6

a sketch in Figure 2.6 showing how a model icosahedron can be construc-
ted fairly easily from a single sheet. Solid lines indicate cuts and dashed
lines indicate folds. More detailed instructions for the construction of
models in general may be found in [13].

If a regular polyhedron is centered at the origin in %7, then the
rotations in O(%?®) that carry the polyhedron into itself constitute a
finite subgroup of O(#3). Only three distinct finite groups of rotations
arise in this manner, however. The cube has the same group of rotations
as the octahedron, and the icosahedron has the same group as the dodeca-
hedron. The reasons are geometrically very simple. If the midpoints of
adjacent faces of a cube are joined by line segments, then the line segments
are the edges of an octahedron inscribed in the cube. Any rotation of #°*
that leaves the cube invariant also leaves the inscribed octahedron in-
variant, and vice versa. Similar remarks apply to the icosahedron and
dodecahedron.

Let us discuss the rotation groups of the regular polyhedra in more
detail.

Suppose that a tetrahedron is situated with its center at the origin
in #3. The subgroup of rotations in ((#%>) leaving the tetrahedron in-
variant will be denoted by 7. The elements of 7 consist of rotations
through angles of 27/3 and 4n/3 about each of four axes joining vertices
with centers of opposite faces, rotations through the angle = about each
of three axes joining the midpoints of opposite edges, and the identity.
Thus

|T1=4-2+3-14+1=12

The group of rotations of a cube centered at the origin will be denoted
by # . The elements of #~ are rotations of three distinct types, together
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Figure 2.7

with the identity. There are rotations through angles of n/2, n, and 37/2
about each of three axes joining the centers of opposite faces, rotations
through angles of 2n/3 and 4n/3 about each of four axes joining extreme
opposite vertices, and rotations through the angle n about each of six
axes joining midpoints of diagonally opposite edges. Thus
#]=33+4-24+6-1+1=24

Denote by X the union of the six planes containing the diagonals of
opposite faces of the cube. The complement of X in the cube has as
connected components 24 congruent regions, each one a relatively open
irregular tetrahedron (see Figure 2.7). Direct inspection shows that the
component regionsin the cube are permuted among themselves transitively
by the elements of # . Let F denote a fixed component. Since #~ acts
transitively on the components we have

24 = |Orb(F)| = [# : Stab(F)]

by Proposition 1.2.1. Thus Stab(F) =1, from which it follows that
FNRF=if1# Rew. Since U{RF)™:Re#} is the entire cube,
F is a fundamental region for ¥  in the cube, in the sense discussed in
Section 2.2.

The icosahedron has 20 faces, each one an equilateral triangle.
It has 30 edges and 12 vertices. The rotation group .# of the icosahedron
consists of rotations through angles of 2n/5, 4n/5, 6m/5, and 8m/5 about
each of 6 axes joining extreme opposite vertices, rotations through angles
of 2n/3 and 4n/3 about each of 10 axes joining centers of opposite faces,
rotations through the angle = about each of 15 axes joining midpoints of
opposite edges, and the identity. Thus

|#]=6-4+10-2+15-1 + 1 = 60.
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The unit sphere {xe V:|x|| = 1} is left invariant by every trans-
formation Te O(V). It is a consequence of Euler’s theorem (2.3.1) that if
T # 1 is a rotation, then there are precisely two points x on the unit
sphere for which Tx = x: the points of intersection of the sphere and the
axis of rotation for T. These two points will be called poles of T. If 4 is a
subgroup of O(V), let us denote by .# the set of poles of nonidentity rota-
tions in 4.

Proposition 2.4.1
If dim V = 3 and ¥ < ((V), then % is a permutation group on its
set & of poles.

Proof
If xe &, then x is a pole for some rotation Te ¥, T # 1. For any
Re % we have

(RTR™Y)Rx = RTx = Rx,
so Rx is a pole of the rotation RTR™! and Rxe &.

Let us analyze the actions of the rotation groups discussed above as
permutation groups on their sets of poles.

Each cyclic group %% has exactly two poles. No rotation in %"
carries either pole to the other, so .% has two one-element orbits, and the
stabilizer of each pole has order n.

The dihedral group # has n axes of rotation in the plane W on
which % acts, and one axis of rotation orthogonal to W, so .#"% has
2n + 2 poles. The two poles on the axis orthogonal to W constitute one
orbitin . If nis odd, the n poles that are vertices of a regular n-gon in W
constitute another orbit, and the set of n negatives of these points consti-
tutes a third orbit. If n is even, the set of n vertices of the regular n-gon in W
constitutes one orbit, and the n poles on the axes through the midpoints
of opposite sides of the n-gon constitute a third orbit. Thus in each case ¥
has three orbits, and the stabilizers of elements in each of the three orbits
have orders n,2, and 2, respectively.

The discussion of the three remaining groups, 7, ¥, and .#, is left
to the reader. We shall tabulate in Table 2.1 the groups, their orders, the
number of poles, the number of orbits, and the orders of the stabilizers.

We shall show next that if ¢ is any finite rotation subgroup of ¢(V),
then the data involving the number of orbits of ¥ and the orders of
stabilizers must .coincide with the data of one of the groups listed in
Table 2.1.
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7 19|  Orbits |Z) Orders of stabilizers
€, n 2 2 n n
Hh 2n 3 2n+2 2 2 n
T 12 3 14 2 3 3
w 24 3 26 2 3 4
57 60 3 62 2 3 5
Table 2.1

Suppose then that 4 is a finite rotation group and denote by # the
set of all ordered pairs (T, x), where Te %, T# 1, and x e & is a pole of
T. Let us denote || by n, and for each x € % set

v, = |Orb(x)| and n, = |Stab(x)|.

Note that x lies on an axis of rotation and that n, is simply the order of
the cyclic subgroup of % each of whose elements is a rotation about that
axis. By Proposition 1.2.1 we have n = nv, for each xe %.

Since each T # 1 in ¥ has exactly two poles, we have |%| = 2(n — 1).
On the other hand, we may count the elements of % by counting the
number of group elements corresponding to each pole. Suppose that
{xy, ..., x,} is a set of poles, one from each orbit in &, and set n,, = n,,
vy, = v;. Then since each x € Orb(x;) has n, = n;, we have

|%| = Z{n, — 1:xe ¥}
=Xk v — 1) =Tk ((n — v).
Thus 2n — 2 = Z(n — v)), and dividing by n we have
2-2/n=2k (1 - 1/n).
We may assume that n> 1; so 1 <2 — 2/n < 2. Since each n; > 2,

we have 1/2 < 1 — 1/n; < 1; so k must be either 2 or 3.
If k = 2, then

2-2n=(1-=1/n)+(1 - 1/ny),

or 2=mn/n, +nm, =v,+0,; s0o vy =0,=1, n, =n, =n. Thus ¥
has just one axis of rotation, and ¥ is a cyclic group €75.

If k = 3, we may assume that n, < n, < n,. If n; were 3 or greater,
then we would have (1 — 1/n) > X(1 — 1/3) = 2, a contradiction.
Thus n, = 2 and we have

2-2/n=1/2+ (1 = l/ny) + (1 — 1/n3),
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or
172 +2/n=1/n, + 1/n,.

If n, were 4 or greater, we would have 1/n, + 1/n; < 1/2,a contradiction;
son, =2orn, =3.
If n, = 2, then ny = n/2,and we conclude thatv, = v, = n/2,v; = 2.
Setting m = n/2 we have obtained the data of the dihedral group #7%.
If n, = 3, we have 1/6 + 2/n = 1/n; and the only possibilities are

(a) ny =3,n=12,
(b) ny =4,n = 24,

and

(c) ny =5,n =60,

since ny > 6 would require 2/n < 0. When n; = 3, then v, =6, v, =
vy = 4 and we have the data of . When n; = 4, then v, = 12, v, = §,
vy = 6 and we have the data of #". When n; = 5, then v, = 30, v, = 20,
vy = 12, and the data are that of .#.

In each case the group ¢ not only shares the data of Table 2.1 with
one of the groups discussed earlier, but in fact is the group with that data,
since the data are sufficient to determine the group. For example, when
n, = 2, n, = ny = 3, and n = 12, the poles in either of the four-element
orbits are the vertices of a regular tetrahedron centered at the origin.
The tetrahedron is invariant under 4,s0 % < .7 ;butalso |¥9| = |7| = 12,
so 4 = 7. A more thorough discussion of this point for all the finite
rotation groups may be found in {38], pp. 93-94.

We may conclude, finally, that

5, n>1; 45 n>2;,7 ;% ;and ¥

1s a complete list of finite rotation subgroups of O(V) when dim V = 3.

FINITE GROUPS IN THREE DIMENSIONS

The group #* of all orthogonal transformations that leave a cube
invariant is larger than the group #" of rotations of the cube since, for
example, —1 is an element of #™* but not of #". Observe, however, that
if Tew*\#, then —T= —1-Te#w since det(—T)=1. Thus
wW* = U(-H)w.
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The above observations illustrate a general fact about subgroups of
¢(V), no matter what the dimension of ¥ might be.

Proposition 2.5.1
If49 < O(V)and . is the rotation subgroup of 4, then either # = 4
or else [%: #] = 2. In particular, & is a normal subgroup of 4.

Proof

Suppose that Te ¥\ . Then given any Se ¥ \#, we have
det(T 'S)=(—1)) = 1,50 T 'Se#;iec.SeTH.Thus¥ = # U TH
and [¢ . 4] = 2.

Suppose again that dim V' = 3 and that # has index 2 in ¢, and let
us distinguish between two cases.

If —1€%, then ¢ is the union of # and the set of negatives of the
transformations in 5#. On the other hand, if & is any group of rotations
in O(V), then # U {—T:Te#} is a subgroup of O(V) having A as
its rotation subgroup [Exercise 2.13(a)].

Suppose then that —1¢ %, and that Rs# is the coset different from
A in 4. Then R? e #, for R?> € R# would imply that Re #. Since
is normal in ¢, we have (— R#)(— R#) = R*# = # and H#(— RHK) =
— R#, from which it follows [Exercise 2.14(a)] that the set # = # U
(— R)# is a group of rotations having J# as a subgroup of index 2. Con-
versely, if " is any rotation group in O(V) having a subgroup 5 of index 2,
then the set 4 = # U {—T : Te A \#} is a subgroup of O(V) having
A as its rotation subgroup [Exercise 2.14(b}].

We may now list all finite subgroups of O(V) for dim V = 3. As we
have seen, they divide naturally into three classes, the first class being
groups of rotations. The second class consists of those groups obtained
by choosing a group s of the first class and adjoining to it the negatives
of all its elements. The resulting group will be denoted by s#*. The third
class consists of those groups obtained by choosing a group ¢ of the
first class having a subgroup J of index 2 and setting

G =#U{-T:Te X \#).

We denote such a group by #15#. Note that  is of the second class if
and only if —1 €%, and % is of the third class if and only if  is not of the
first class but —1¢ %.

Using these facts and the list of rotation groups from Section 2.4,
we list all finite subgroups of @(V) in the next theorem.
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Figure 2.8

Theorem 2.5.2
If dim V = 3 and 9 is a finite subgroup of ¢(V), then ¢ is one of the
following:

@ €3.n=> 1,435, n22,9 W, 5;
(b) (B3  n > 1;(A)*  n=2;T*, W+, 9%,
€) €M%, n> 1; 456, n > 2; A N> 2, W]T.

Let us see geometrically why 7 is a subgroup of #". As shown in
Figure 2.8, a regular tetrahedron may be inscribed in a cube. Moreover,
this tetrahedron is invariant under the rotations in #  of order 3 about
axes joining extreme opposite vertices, as well as rotations of order 2
about axes joining centers of opposite faces. These rotations, together
with the identity, constitute the 12 elements of 7.

The groups 4 and .# have no subgroups of index 2, as indicated in
Exercises 2.16 and 2.17.

Observe that there are three groups of order 2—%3, (¥1)*, and
C3]¢3—in the list of groups in Theorem 2.5.2. As abstract groups they are,
of course, all isomorphic. However, they are geometrically different
since their nonidentity elements are a rotation, an inversion through the
origin, and a reflection, respectively. In order to see that the list in Theorem
2.5.2 is not redundant, let us give 2 precise definition of the phrase “‘geo-
metrically the same.” Two subgroups ¥, and %, of ((V) are considered
to be geometrically the same ifand only if %, = T9, T~ ! forsome Te O(V)
(see Exercises 2.7 and 2.8); otherwise, they are geometrically different.

With respect to suitable bases the nonidentity elements of €3, (¢1)*

k)
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and %3]%} are represented by the matrices

t 0 0 -1 0 0 1 0 0
0 -1 01, 0 -1 01, 0 1 0
0 0 -1 0 0 -1 00 -1

Since the multiplicities of the eigenvalues are unequal, the groups %3,
(€1)*, and 62143} are geometrically different, according to the above
definition. It is left to the reader to check that there are no redundancies
among the remaining groups listed in Theorem 2.5.2.

CRYSTALLOGRAPHIC GROUPS

Suppose that dim V = 3. A lattice in V is a discrete set of points
obtained by taking all integer linear combinations of three linearly
independent vectors x;, x,, and x;. A subgroup ¥ of O(V) is said to
satisfy the crystallographic condition, or to be a crystallographic (point)
group, if and only if there is a lattice .# invariant under ¥; ie., Txe ¥
forall Te ¥, all xe &Z.

Suppose that T is a rotation in a crystallographic group 4. Then
by Euler’s theorem (2.3.1) there is a basis for V' with respect to which T is
represented by the matrix

1 0 0
A=10 cosf —sinf |,
0 sin@ cos 0

where 0 < 6 < 27n. Thus the trace of T is 1 + 2cos 6.

On the other hand, we may choose as a basis for V the basic vectors
X;,X,,and x; of a lattice . invariant under ¢. Since each Tx; is in ¥
and is hence an integer linear combination of x;, x,, and x5, the matrix
representing T with respect to the basis {x,, x,, x3} has integer entries.
Thus trace (T) is an integer, so 2 cos § is an integer, which is possible only
if

0 = 0,n/3,n/2,2n/3, &, 4n/3, 37/2, or 57/3.

It follows that either T = 1 or else T has order 2, 3, 4, or 6.

If Te % is not a rotation, then T = RS, where S is a reflection and R
is a rotation through an angle 8, 0 < 6 < 2x, by Theorem 2.3.2 (and its
proof). In this case trace (T) = —1 + 2cosf is an integer, so 2cos
is an integer, and 6 must be one of the angles listed above. If R = 1, then T
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has order 2, and if R has order 3, then T has order 6. In all other cases R
and T have the same order, so T must have order 2, 3, 4, or 6.

Among all finite subgroups of (V) as listed in Theorem 2.5.2, only
the following satisfy the above requirements on orders of elements:

(@) €.63.63.65. 65, #%, A3, H5,H5.T.W:

(b) (B, (E*, (E3)*, (B, (E*, (A ¥, (A (A DX (H)*, T,
w*,

(c) 63163, 63163, 63163, #3163, #3163, #3163, #3165, H3) A3,
HNAHY,WT .

It can be shown for each of the groups listed there is an invariant
lattice (see [38], chap. 3; also see Exercise 2.20 and Section 5.2). Thus
there are exactly 32 geometrically distinct finite crystallographic groups
in three dimensions.

Two other notation schemes for the crystallographic groups are
presented in the Appendix.

Exercises

2.1 Verify that
x, = (cos 0/2,sin 6/2).

x, = (—sin /2, cos 0/2)

are eigenvectors with respective eigenvalues 1 and — 1 for the matrix

|:cos 0 sin 6]
B=] )
sinf@ —coséf
2.2 Prove by induction that
I:cos # —sind :|"‘ |:cos mf —sin m9:|
sin 6 cosO|  Lsinmb cos mf
for all positive integers m.

2.3 Define transformations S and R of % relative to the basis {e,, e,}
by the matrices

1 0 cos 2n/n  —sin 2n/n
A= and B = ,

0 -1 sin 27w/n cos 2n/n

respectively. Show that S2 = R" = 1 and that RS = SR"™!. Con-
clude that {R) is the cyclic group %% and that (R, S) is the dihedral
group #". Thus each of the groups ¢% and #} occurs as a sub-
group of O(#?).
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2.4

2.5

2.6
2.7

2.8

2.9

2.10

2.11

2.12

Suppose that dim ¥ = 3 and that W is a plane in V. When a reflec-
tion in O(W) is extended to a rotation in (V) as in Section 2.4,
show that the axis of rotation is the original reflecting line in W.

Show that the product of two reflections of #? is a rotation through
twice the angle between their reflecting lines. More precisely,
say that S; has reflecting line at angle 0; with the positive x-axis,
with 0 < 6, < =, and say that 6, < 6,. Then S,S, is a counter-
clockwise rotation through angle 2(6, — 6,), and §,S, is a clock-
wise rotation through angle 2(0, — 0,).

Show that #7]7 is the group of all symmetries of the tetrahedron.

If X and Y are regular n-gons of the same size both centered at the
origin in %2, show that there is a transformation Te O(#?) such
that TX = Y. If 5#, and J#, are the cyclic groups of rotations leaving
X and Y invariant, respectively, show that #, = T/, T~ ' If
%, and %, are the dihedral groups of all orthogonal transformations
leaving X and Y invariant, show that 4, = T9, T~ '. Conclude
that any two cyclic (dihedral) groups of the same order in ((%#?),
and also in O(%>), are conjugate, and hence are geometrically the
same.

Extend the scope of Exercise 2.7 to include the groups of the regular
polyhedra in 23.

Show that #% and #7} are isomorphic.

Find fundamental regions in the tetrahedron for the groups 4 and
WNT .

Find fundamental regions in the icosahedron for the groups .# and

S*.

Give intuitive arguments supporting each of the following state-

ments concerning regular (convex) polyhedra in a space V of

dimension 3 (for a careful definition of “regular” see [10], pp. 15-16,

or [11], p. 78).

(a) Each vertex of a regular polyhedron in ¥V must be common to
at least three faces.

(b) If n = 6 each interior angle of a regular n-gon is at least 27/3.

(c) The faces of a regular polyhedron must be equilateral triangles,
squares, or regular pentagons.

(d) The interior angles of a regular pentagon are each 3rn/5, so at
most three regular pentagons can share a vertex in a regular
polyhedron.

(e) Atmostthree squares can share a vertex in a regular polyhedron.
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2.13

2.14

2.15

2.16

217
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(f) At most five equilateral triangles can share a vertex in a regular
polyhedron.

Conclude that there can be at most five distinct regular polyhedra

in V.

Suppose that dim V is odd.

(a) If #° < O(V)is a rotation group, show that #* = # U (- T
Te #'} isa subgroup of (V) having # as its rotation subgroup.

(b) Suppose that ¥ < (V) has rotation subgroup #. Show that
A U {—T: Te%\#} is a rotation group.

Suppose that dim V is odd.

(a) If 4 < O(V) has rotation subgroup # # %, —1¢%, and R is
any element of ¥\.#, set # = # U —R#. Show that ¥
is a rotation subgroup of (V') having .# as a subgroup of index
2.

(b) If . is a rotation subgroup of ¢(V) having a subgroup .# of
index 2, show that

HNA =4 U {-T:Te " \A}
i1s a subgroup of (V) having .# as its rotation subgroup.

Show that #” acts as a faithful permutation group on the set .¥
of diagonals of the cube. Conclude that %" is isomorphic with the
symmetric group % -

(a) By viewing.7 asa permutation group on the set.¥ of vertices of
the tetrahedron, show that 7 is isomorphic with the alternating
group A, on four letters.

(b) Show that U, has two conjugacy classes of 3-cycles.

(c) If A, were to have a subgroup # of order 6, show that # must
contain exactly four 3-cycles.

(d) Show that # must contain a permutation of the form (ab)(cd)
of order 2.

(e) Show also that

(ab)(cd) # (abc)™ '(ab)(cd)(abc) e A,

contradicting |.#| = 6.
(f) Conclude that  has no subgroup of index 2.

Suppose that # is a normal subgroup of .#.

(a) Show that any two cyclic subgroups of .# that have the same
order are conjugate in .£.

(b) Show that .# has 15 subgroups of order 2, 10 of order 3, and
6 of order 5.
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2.18

2.19

2.20

2.21

2,22

(c) Show that 2 must contain either all or none of the cyclic sub-
groups of each of the orders 2, 3, and 5.

(d) Show that |5#] = 1 + 15a; + 20a, + 24a5, where each a;
either 0 or 1.

(e) Use Lagrange’s theorem to conclude that either «; = O for all
i,or a; = 1 for all i. As a result .# is a simple group; i.e., its only
normal subgroups are 1 and £.

(f) Conclude in particular that .# has no subgroups of index 2.

1S

There are 15 axes for rotations of order 2 joining midpoints of

opposite edges of the icosahedron. If /; is one such axis, there are

two others, I, and /5, that are perpendicular to /; and to one an-
other.

(a) Show that the mutually perpendicular axes [,, I,, and I; are
the axes of rotation for 2, and hence that #2 occurs five
times as a subgroup of .#.

(b) Let & be the set of five triples(l;, [,, [;) of mutually perpendicular
axes of order 2. Show that .# acts as a permutation group on &.

(c) Show that .# is isomorphic with the alternating group on five
letters.

Show that if %, and %, are two distinct groups in the list of Theorem
2.5.2, then %, and %, are geometrically different.

(a) Suppose that the matrices

10 0 -1 00
A=10 0 -1 and B = 0 -1 0
01 0 0 01

represent a generating rotation and reflection for 5 in O(%°).
Let £ be the lattice {£}_, nme;:n;e Z}. Show that % is in-
variant under J#%.

(b) Find invariant lattices for more of the crystallographic groups.

Determine which of the groups discussed in this chapter are
generated by the reflections they contain.

If y is the complex number cos 27/5 + isin 27/5, then y°> = 1 by
DeMoivre’s theorem, so y is a root of the polynomial x*> — 1. Since

X —l=x-Dx*+x+x*+x+1)

and y # 1, y is in fact a root of

11
fR)=x*+x*+x2+x+1=x2 x2+x+1+;+}—2.
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2.23

2.24

2.25
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(a) Make the substitution y = x + 1/x within the parentheses and
find explicitly all four roots of f(x).

(b) Seto = cosn/5and f§ = cos 2/5. Show that f = (=1 + /5)/4
and use this to show that a = (I + \/g)/4.

(c) Show that 40®> =20 + 1, 4% = =28 + 1, 2a = 28 + 1, and
4aff = 1.

A simple geometrical construction of an icosahedron is given in

[16], vol. 3, pp. 491492,

(a) If the edge length of the cube is taken to be 4a = 4 cos n/5,
show that each edge of the constructed icosahedron has length
a=2.

(b) If the line segments OM, ON, and OL are taken to lie on the
coordinate axes in 2>, show that the vertices of the icosahedron
are the points

(£1,0, £20),  (£2a, £1,0), (0, £20, £1).

A line segment is divided by the golden section if the ratio of the
shorter to the longer section equals the ratio of the longer to the
whole segment. If the shorter section has length 1 and the longer
has length 7, show that T = 2a = 2cos n/5 (see Exercise 2.22).

The Fibonacci numbers are defined recursively as follows:
0o=0, o, =1, 0,=¢,_1 + O,_>, all n > 2.
If 7 is the number defined in Exercise 2.24, show that
= QT+ @y

for all n > 2 [see Exercise 2.22(c) and use induction].
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FUNDAMENTAL REGIONS

In Chapter 2 we met the notion of a fundamental region for certain
finite subgroups of O(V'), where dim V was either 2 or 3. We now present
a formal definition in a more general setting.

Suppose that  is a finite subgroup of (V). A subset F of V is called
a fundamental region for % in V if and only if

(1) F is open,
2 FNTF = Fifl # Te¥,

and
(3) V=U{TF)y :Te¥%}.
More generally, if X is a subset of V invariant under ¢, then a subset

F of X is a fundamental region for % in X if and only if

(1) F is relatively open in X,

Q FNTF=gifl #Te¥,
and

B X=U{TFH NX:Te¥}.

The purpose of this chapter is to describe a construction that yields
a fundamental region for any finite subgroup of @(V). The construction
was utilized by Fricke and Klein in the study of automorphic functions
(see [18], p. 108).

27
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Proposition 3.1.1
If dim V > 1, then V is not the union of a finite number of proper
subspaces.

Proof

If dim V = 1, then 0 is the only proper subspace of V. Assume that
the proposition holds for spaces of dimension n — 1, where n > 2 is the
dimension of V. Suppose that V = V, U --- U V,, with each V; a proper
subspace, and let W be any subspace of V of dimension n — 1. Then

W=WNV=wnNUWV=WNV)U. - UWNnNV,).

By the induction hypothesis W = W N V,forsomei.Sincedim W = n — 1,
dim V, < n — 1,and W < V,, we may conclude that W = V,. We have
shown that every subspace W of dimension n — 1 occurs as one of the
subspaces V;,..., V,. This is a contradiction since V has infinitely
many subspaces of dimension n — 1 (see Exercise 3.1).

Suppose now that % # 1 is a finite subgroup of ¢(V). Since each
Te % is a linear transformation, it is immediate that the set

Vr={xeV:Tx = x}

is a subspace of V, since Vr is the null space of T~ 1. If T # 1, then Vyisa
proper subspace. By Proposition 3.1.1

V# U{Vr:l#Te%},

so we may choose a point x, € Vthat is not left fixed by any nonidentity
element of 4. In the language of permutation groups Stab(x,) = 1, so

|Orb(x,)l = [¢:1] = |¥]

by Proposition 1.2.1.
If |4| = N, let us label its elements as T,,, Ty, ..., Ty_ with T = 1,
and set x; = Tixy, 0 < i < N — 1, so that

Orb(xg) = {Xg>X1s- ey Xy_1}-
Ifi # 0, the line segment [x,Xx;] is defined by
[xox:] = {xo + Ax; — x0):0 < A < 1},

SO X; — X, is a vector parallel to [x,x;]. The midpoint of [xyx;] is the
vector (1/2)(x, + x;), since

d(xo, (1/2)(x + x;)) = d(x;, (1/2)(xo + x;)).
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i Xo = X;

! -~

Figure 3.1

If the hyperplane (x, — x;)* is denoted by Z., then the midpoint
(1/2)(xy + x;)is in £, since
lIxol1> = llx;11>
(xg + 3% — ) = o~ Pl

_ lxoll* = I Txol® _ lixoll® — lixol®
= = 0.

2 2

Thus &, is the “perpendicular bisector” of the line segment [x,x;] (see

Figure 3.1).
If x € V, it is easy to see (Exercise 3.4) that x 1 (x, — x;)if and only if

d(x, xo) = d(x, x;), using the fact that x, = T;x,. It follows that
P = {xeV:dx, xy) = d(x, x;)},

as might be expected of a perpendicular bisector.
Denote by L, the open set
{x € V : d(x7 xO) < d(x’ xi)} )

1 <i< N — 1. The set L, is called a half-space determined by . and can
be thought of as the set of all points that are on the same side of the
hyperplane %, as x,is. Set F = N {L;: 1 <i <N — 1}.

Theorem 3.1.2
The set F is a fundamental region for % in V.
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Proof
Since each L; is open, F is open. If T; # 1, then T.F = T( L)), or

TF = T({x :d(x,xo) < d(x,x),1 <j<N—1})
= {Tix :d(Tix, Tixo) < d(Tix, TTixo),1 <i <N — 1}
= {y:d(yyxi) < d(y’ T;cxo)’o < k < N - l,k # l}y

since {T;T;:1 <j < N — 1} = ¥\{T}. Thus
TF = {x:d(x,x;) < d(x, x),all j # i}.

If xeF N TF, then d(x, x,) < d(x, x;), and also d(x, x;) < d(x, x,), a
contradiction;so F N T,F = ¢ for all T, # 1. Finally, if x e ¥, choose an
index i for which d(x, x;) is minimal, and hence d(x, x;) < d(x, x;) for all j.
Since

(TF)” = {x:d(x,x) <d(x,x),0 <j< N — 1},
we have x e (T,F)™ (see Exercise 3.6). Thus
V=U{TF)y :0<i<N-1}

and F is a fundamental region.

Observe that the fundamental region F in Theorem 3.1.2 is con-
nected, and in fact convex, being the intersection of convex sets.

The procedure indicated in Theorem 3.1.2 can be used to construct
a fundamental region F, for % in any set X = V that is invariant under the
action of %, provided that it is possible to choose the point x, in X. In that
case we simply define Fy to be F N X, and it is easily checked that Fy
is a fundamental region for 4 in X (see Exercise 3.7).

Let us illustrate by constructing a fundamental region in the cube
for the group #” of rotations of the cube.

Divide each of the faces of the cube into four congruent squares, and
let x, be the point at the center of one of the smaller squares. Then the
various rotations of ¥~ carry x, to each of the centers of the 24 smaller
squares on the surface of the cube (see Figure 3.2). If the transformations
in W are labeled so that T,,..., T5 carry x, to the points x,,..., X5 as
indicated in Figure 3.2, we may first intersect the half-spaces L,, L,, and
L, to obtain the smaller shaded cube. If the smaller cube is then intersected
with the half-spaces L, and L, it is easy to see that the remaining half-
spaces are superfluous for the determination of their intersection, and
that the resulting irregular pyramid F, (Figure 3.3) is a fundamental
region for #” in the cube.
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x,® X

xs® /
x,®

Figure 3.2

Figure 3.3

Observe that the fundamental region just constructed for #  is dif-
ferent from the one presented in Chapter 2. The fundamental region of
Chapter 2 can be obtained by the same procedure, however, if the point
X, is chosen near the midpoint of an edge of one of the faces of the cube,
halfway between the two adjacent edges.

Neither of the above choices for x,, is suitable if we consider ¥ = #*,
the group of all symmetries of the cube, since there are reflections in #*
leaving those points fixed. If we choose x, in the interior of one of the
smaller squares on a face of the cube but off the diagonals of that smaller
square, then it is not difficult to see that the fundamental region F3%
obtained for #7* in the cube is just one half of the region Fy (see Figure
3.3), an irregular tetrahedron.
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Figure 3.4

It is illuminating to construct the fundamental regions Fy and F% in

a modeling clay cube. The intersections of the cube with the half-spaces L;
are easily obtained by cutting the cube with a knife along the planes £..

If X is the surface of an icosahedron, then the Fricke—Klein con-

struction may be applied to obtain fundamental regions in X for .# and .#*
on a face of the icosahedron as indicated in Figure 3.4.

Exercises

3.0

3.2

33

34

35

3.6

If dim V > 2, choose linearly independent vectors x; and x, in V.
For each 1 e # define V, = (x, + Ax,)*. If 2 # p, show that V;, and
V, are distinct (n — 1)-dimensional subspaces of V.

If V is a vector space of dimension 2 or greater over any infinite
field, show that V is not the union of a finite number of proper sub-
spaces.

Show that the conclusion of Exercise 3.2 may fail if V is a vector
space over a finite field.

Suppose that x,ye V, Te O(V), and z = Ty. Show that x 1 (y — z)
if and only if d(x, y) = d(x, 2).
If F < Vis a fundamental region for a group ¥ < ¢(V)and Te %,
show that TF is also a fundamental region for & in V.
If x;, #, and L, are as in the proof of Theorem 3.1.2, show that
L7 =L UZ;so0
L7 = {xeV:d(x,x,) < d(x, x;)}.

Conclude that

F7 = {x:d(x,xo) <d(x,x),0<i<N -1},
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37

3.8

39

3.10

312

and, more generally, that

(TF)” = {x:d(x,x) <d(x,x),0 <j< N — 1},
If F is a fundamental region for % in Vand X = Visinvariant under
% show that Fy, = F 1 X is a fundamental region for ¢ in X.

If Y is any finite subset of V with 0¢ Y, use Proposition 3.1.1 to
show that there isa vector t € Vsuch that (y,t) # Oforallye Y.

Prove that an open half-space L determined by a hyperplane 2 is
convex.

Construct fundamental regions in a regular n-gon in %2 for the
groups €% and 7.

Construct fundamental regions in a dodecahedron for the groups ¥
and #£*.

Construct fundamental regions in a tetrahedron for the groups 7
and #'7.
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COXETER GROUPS

44 ROOT SYSTEMS

As we saw in Chapter 2, the description of all finite subgroups of
O(2#3) is rather involved. The enumeration of finite subgroups of O(V)
becomes considerably more involved when V has dimension greater
than 3. When n = 4 the subgroups are discussed in [2]; complete listings
are known for only a few small values of n. Thus we limit our discussion
at this point to the primary subject of the book—the important class of
finite subgroups of O(}1') that are generated by reflections.

A reflection of V is a linear transformation S that carries each vector
to its mirror image with respect to a fixed hyperplane 22 More precisely,
Sx = x if xe # and Sx = —x if xe 2*. Suppose that 0 # re 2. If we
define a transformation S, by setting

S, x =x—2x,rr
(r,r)

forall xe V, then S,x = xifxe Zand S,r =r — 2r = —r.Since 2 U {r}
contains a basis for V] it follows that S, is the reflection S. We shall speak
of S, as being the reflection through 2 or the reflection along r. Observe
that S, = S,, for all 4 # 0 and that S? = 1. It is clear geometrically,
and it also follows easily from the formula defining S,, that S, is orthogonal
(see Exercise 4.1).

Suppose that ¢ < O(V) and that Se€ ¥ is a reflection through a
hyperplane £ The two unit vectors +r that are perpendicular to & so
that S = §,, are called roots of %. Since S, = §,, for all 2 # 0, the singling

34
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Figure 4.1

out of unit vectors as roots of ¥ may seem somewhat arbitrary. In fact,
for particular groups % there are choices of vectors r determining the
reflections of ¥ that seem more natural. For example, if the dihedral
group #°5 is viewed as the symmetry group of the square with vertices
(+£1, +1) in #? (see Figure 4.1), it is perhaps “natural” to choose the

veetors (+1,0, 0, £1), (£1, £ 1)}

as the set of roots of #°5.

As we shall see in Chapter 5, there are analogous ‘““natural” choices
of relative lengths of roots for many reflection groups. Thus our choice of
unit vectors as roots may be viewed as a temporary expediency. The results
of this chapter (and their proofs) do not depend in an essential way on the
relative lengths of roots, so the roots are taken to be unit vectors for the
sake of convenience. For particular illustrative examples, such as #°3,
we shall feel free to assign other lengths to roots.

Proposition 4.1.1
If ris a root of ¢ < O(V) and if Te %, then Tr is also a root of 4. In
fact,if Tr = x,then S, = TS, T ‘e ¥%.

Proof
Set 2 = rt and 2 = T# Then 2’ is a hyperplane, and
P = (Tr)t = x*
since Te O(V). If y = Tze &', with ze &, then
TS, T 'y =TS,z =Tz = y.
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Also
TS,T 'x=TSr=—-Tr= —x

s0S,=TS5,T 'e¥
If 4 is any subgroup of (V), set

Vo = Vo(#) = N {V,: Te%),

)

where V; is the subspace {xe V: Tx = x}. Then V is a subspace of V,
T|V, is the identity transformation on V, for every Te %, and V, is the
largest subspace of V with that property. In particular, TV, = V, for all
Te9;s0o T(V5) = Vg for all Te % If V is represented as V, @ V3, then
every Te ¢ can be represented as 1 @ T, where T' = T|V}. The group

G = (T :Te%) < OVi)

is clearly isomorphic with ¢, and V,(%’) = 0. Since the transformations
in %’ extend to those in ¢ in a geometrically trivial fashion there is no
loss of generality in studying only groups % for which V(%) = 0. A sub-
group ¥ of O(V) with V(%) = 0 will be called effective.

Proposition 4.1.2

Suppose that 4 < O(V) is generated by reflections along roots
Fis... 1. Then 4 is effective if and only if {r,,....r,} contains a basis
for V.

Proof

Set W = N {r; :1 <i < k}. Since the reflection along r; acts as the
identity transformation on r;j and each Te % isa product of the generating
reflections, we have T|W = 1, for all Te % Thus W < V,(%). On the
other hand, if x € V, then, in particular, each generating reflection leaves
xinvariant, so x € r for each i. Thus x € W,and W = V,(#%). Consequently,
% is effective ifand only if W = 0,or W' = V. But

L k LyL kL1
w =(ni:1ri) =Xl

In other words, the set {r,,...,r} spans W, since ri* is the subspace
spanned by r;. Thus ¥ is effective if and only if {r,,...,r,} spans V.

Suppose that ¥ < ()(V) is generated by a finite set of reflections.
We shall denote by A the set of all roots corresponding to the generating
reflections, together with all images of these roots under all transforma-
tions in % Equivalently, by Proposition 4.1.1, A is the set of all roots
corresponding to the reflections TST ™!, where T ranges over 4 and S
ranges over the generating set of reflections. The set A will be called a
root system for 4.
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It appears possible at this point that the root system A of ¥ is depen-
dent on the particular generating set of reflections. It will be shown later
(Theorem 4.2.4) that if  is finite, then A is the set of all roots of €. In view
of this fact it would perhaps seem more reasonable simply to define A
to be the set of all roots of 4. There are, however, technical reasons involv-
ing the construction of reflection groups (in Section 5.3) for pursuing the
present course.

The terminology of “roots” and ‘“‘root systems” derives from the
study of Lie algebras. In that context relative lengths of roots play an
important role, and the notion of root system is more restrictive, in that
the root systems of Lie algebras are required to satisfy a crystallographic
condition (see Sections 2.6 and 5.2).

Proposition 4.1.3
Suppose that ¥ < @O(V) is generated by a finite set of reflections,
and that ¥ is effective. If the root system A is finite, then % is finite.

Proof

By the definition of root system we have T(A) = A for all Te %
Thus by restricting each T'e 4 to A we may view ¥ as a permutation group
on A. Since ¥ is effective, A contains a basis for V by Proposition 4.1.2;
so if T|A is the identity map on A, then T = 1. But that means that % is
faithful on A, so % is finite if A is finite.

A finite effective subgroup ¢ of (V) that is generated by a set of
reflections will be called a Coxeter group. For example, the dihedral
groups %, n > 1, are Coxeter groups, as are #'*, #'] 7, and J*.

We shall assume for the remainder of this chapter that % is a Coxeter
group, with root system A.

Choose a vector t € V such that (¢, r) # 0 for every root r of ¥ (see
Exercise 3.8). Then the root system A is partitioned into two subsets,

A ={reA:(tr) > 0},
and
A7 ={reA:(r) <0}

Geometrically, A;" and A, are the subsets of A lying on the two sides of
the hyperplane t*. If r € A, then also —r € A, by definition, and (¢, —r) =
—(t,r). Thus re A, ifand only if —reA;”, and so |A;"| = |A]].

Choose a subset IT of A;* that is minimal with respect to the property
that every re A" is a linear combination, with all coefficients non-
negative, of elements of I1. In other words, if I is any proper subset of I,
then there is a root r € A} that cannot be written as a nonnegative linear
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combination of elements of I'. Such a minimal subset TT will be called a
t-base for A. On the surface it is conceivable that IT = A;', but at any rate
it is clear that at least one ¢-base exists, since A is a finite set. Since A, =
—A/, every reA; is a linear combination of elements of IT with all
coefficients nonpositive.

Let IT = {r,,...,r,} be a fixed t-base for A. A vector xe V is ¢-
positive if it is possible to write x as a linear combination of r,...,r,
with all coefficients nonnegative. For example, every r e A," is t-positive.
Similarly, x e V is t-negative if it is a nonpositive linear combination of
rys...,T,. When there is no possibility of confusion we shall say positive
rather than t-positive and negative rather than t-negative. Observe that if
x is positive, then (x, t) > 0; and if x is negative, then (x, ) < 0. It will be
shown (Proposition 4.1.8) that the t-base IT is unique, so the notion of
positivity depends only on ¢ and not on the choice of I1.

Proposition 4.1.4
If r;,r;€ I1, with i # j, and 4; and 4; are positive real numbers, then
the vector x = A;r; — A;r; is neither positive nor negative.

Proof
If x were positive, we could write
X = A — Ay = ZPo wny
with all g, > 0. If 4; < y;, then
0 = (,ul - )"i)ri + (#] + ;L’])r] + Z{ﬂkrk : k 56 i,j},
and so
0=(t,(u; — Ar; + (; + Ajr; + Z{re ik # 1, j})

> ift,r) > 0,

a contradiction. If 4; > y;, then
(4 — pri = (.“j + ij)rj + Z{mr,  k # i,j}.

But then we may divide by 4, — y; and express r; as a nonnegative linear
combination of the elements of [T\ {r;}, contradicting the minimality of 1.
Thus x is not positive. On the other hand, if x were negative then —x
would be positive, which is impossible by the above argument with i and j
interchanged.

Proposition 4.1.5
Suppose that r;,r;eI1, with i # j, and let S; denote the reflection
along r;. Then S;;e A/, and (r;, ;) < 0.
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Proof
Since S;r; € A, we know that S;r; is either positive or negative. But

S,.rj =r; - 2(rj,r,.)r,.,
with one coefficient positive. By Proposition 4.1.4 both coefficients

must be nonnegative, so (r;, ;) < 0 and Sy; is positive.

Geometrically, (r;, r;) < 0 means that the angle between the vectors
riandr;is obtuse, since (r;, r;) is the cosine of that angle.

Proposition 4.1.6
Suppose that x,, x,, ..., x, € V are all on the same side of a hyperplane;
ie, (x;,x) > 0,1 <i<m, for some xe V. If (x;, x;) <0 whenever i # j,
then {x,,..., x,,} is a linearly independent set.

Proof
Suppose the contrary and relabel if necessary so that there is a
dependence relation of the form

T A = Ty X
with all 4; > 0, all 4; > 0, and some 4; > 0. Then
0 < IZfo; Axill® = (Zfoy Axi, Ty Ajx))
= (2?=1 Aixi, z:;'"=1.;+1 #jxj)
=T T Apfx, x) <0,
so equality holds throughout. But then
0= (Z¢; Ax;, x) = Z5_ | Ax;, x) > 0,
since some 4; > 0. This is a contradiction and the proposition is proved.

Theorem 4.1.7
If ITis a t-base for A, then I is a basis for V.

Proof

Since ¥ is effective A spans V, by Proposition 4.1.2. Since every re A
is a linear combination of roots in I, V is spanned by I1. By Propositions
4.1.5 and 4.1.6, I1 is linearly independent, so IT is a basis.

Proposition 4.1.8
There is only one t-base for A.
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Proof

Suppose that I1; and I1, are t-bases. Since each root in I1, is a non-
negative linear combination of elements of Il,, the change of basis
matrix A from the basis Il, to the basis I1, has nonnegative entries.
Likewise, the change of basis matrix B = A~! from I1, to IT, has non-

negative entries. Denote by a,,...,a, the rows of 4 and by b,,...,b,
the columns of B. Since AB =1, we have a} L b;,, 2<i<n, in #"
There can be at most one index j for which the jth entry in all of b,, ..., b,

is zero, for otherwise b,, ..., b, would be linearly dependent, and hence
B would be singular. It follows that a, has at most one nonzero entry.
Similarly, each a; has at most one nonzero entry. Since A is nonsingular,
we conclude that A has exactly one positive entry in each row and in each
column, and all other entries zero. Thus each root in I, is a positive
multiple of a root in IT,. Since no positive multiple of a root r is a root
except for ritself, A is a permutation matrix and I1;, = I1,.

When it is important to call attention to the vector ¢ with respect
to which positivity is defined, then the unique t-base for A will be denoted
by II,. When such emphasis is unnecessary, however, we will usually
write ITfor IT,,A* for A}',and A~ for A;".

In order to illustrate the concepts discussed thus far, let 4 = #°5,
the dihedral group of order 8. The four reflections in #3 generate #°5,
and

A= {£(1,0), £(0,1),(£1, + D}
Choosing t = 2(cos 3n/8, sin 3n/8), we have

AT ={(1,0),(1,1),(0,1), (=1, )},
and
IT={(1,0), (-1, 1)}
(see Figure 4.2).

More generally, if ¥ = # and roots are taken to be unit vectors,
then

A = {(cos kn/n,sin kn/n):k =0,1,...,2n — 1}.
Choosing t = (sinn/4n, cos n/4n), we have

A" = {(cos kn/n, sinkn/n):0 < k < n — 1},
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Figure 4.2

and
IT = {(1, 0), (cos(n — )n/n,sin(n — 1)n/n)}

(see Exercise 4.3).

Proposition 4.1.9
Suppose that §; is the reflection along r;e I1 = {r,,...,r,}. ffre A*
but r # r;, then SreA*,

Proof
If reIl, then S;re A by Proposition 4.1.5. If r¢ I, then r = =, A 7,
and at least two of the coefficients 4; are positive ; so we may assume that

r; # r; and that 4, > 0. Thus

Sir=X%; 4,8
= Airy + Zi-, A — 2AZ}-, Afrisrr:.

Since S;re A, S;r is either positive or negative. Since it has at least one
positive coefficient, 4,, we conclude that all coefficients are nonnegative,
and hence that S;re A™.

The roots ry, ..., r, in the base I are sometimes called fundamental
roots, or simple roots. The reflections S, ..., S, along the roots r,,...,r,
will be called the fundamental reflections of 4. We shall temporarily denote
by ¥, the subgroup ¢S, : 1 < i < n) of 4. It will be shown (Theorem 4.1.12)
that 4 = % i.e, that ¢ is generated by its fundamental reflections.
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Proposition 4.1.10
If x € V, there is a transformation T e %, such that (Tx, r;) = O for all
riell

Proof

Set x, = (1/2)2{r :re A*}. Since %, is a finite group, it is possible to
choose T e %, for which (Tx, x,) is maximal. If S; is the reflection along r;,
then by Proposition 4.1.9 we have

Sixo = S{(1/2)r; + (12)E{reA* :r # 1;})
= —(12)r; + (12)Z{reA* :r # 1}
=12%{r:reA*} —r,=xo — r;.
Thus, by the maximality of (Tx, x,),
(Tx, xo) = (S;Tx, xo) = (Tx, S;xo) = (Tx, xq — 1)
= (TX, xO) - (TX, ri);
o) (Tx,r) > 0.
Proposition 4.1.11
If re A", then Tr e Il for some Te%,.

If r e I1, we may choose T = 1. If r ¢ I, then it follows from Proposi-
tions 4.1.5 and 4.1.6 and Theorem 4.1.7 that (r,r;) > 0 for some root
r;, € IT; otherwise, IT U {r} would be linearly independent. Set

a, = S;;r=r—2rr)r,.

Then a, e A* by Proposition 4.1.9, and
(al s t) = (r’ t) - 2(ra ri1)(ri1 ] t) < (r’ t)

Ifa, e, set T = S, €%.1fa, ¢ I, apply the above process to a, , obtain-
ing r;, e [Tand

a, = S,a, = S;,S;,reA”,
with (a,,t) < (ay,t). fa,ell, set T = S.,S; €%,;if a, ¢ I1, the process is
continued. Since A™ is finite, the process must terminate with some g, € I'1.

Since
ay = Syay- = S-Syl

the proposition is proved if we set T = §; ---§; € %,.

Theorem 4.1.12
The fundamental refiections S,,..., S, generate 4;ie, ¥ = 4.
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Proof

Since 4 = (S, :reA)andsince S _, = §,, it will suffice to prove that
if re A", then S,e%,. Suppose then that re A*. By Proposition 4.1.11
there is a transformation T € ¥, such that Tr € I'l, say Tr = r;. By Proposi-
tion 4.1.1 we have S, = T"!S5;Te¥,.

It may be worthwhile at this point to reflect momentarily on the
progress we have made. For any Coxeter group ¢ we have found a basis I'1
for V consisting of mutually obtuse roots whose reflections generate %
Our procedure will be to obtain sufficient further geometrical information
about the set IT in order to classify all possible t-bases for Coxeter groups,
and thereby to classify the groups themselves.

FUNDAMENTAL REGIONS FOR COXETER GROUPS

Theorem 4.2.1
IfTe4and TI1 =I1,then T = 1.

Proof
Suppose that T # 1. By Theorem 4.1.12 we may write T as
S;,S;, - S, a product of fundamental reflections. We may assume that T'

cannot be written as a product of fewer fundamental reflections, i.e., that
k is minimal. Since T # 1, k is positive. Since TTI = I, we have

Try, =S, - Syri,= =S8, S _ri, €Il
s0 S; -+ S, i, €A Set
ag = 8; - S Fio
a; = 8;a0=S8, S, T
a, = S;,a; = 8;, - S; T
Aoy =S, _Gy-2 =Ty,

and observe that aye A™, a,_, € A*. Suppose that ay,a,,...,a;_, €A,
buta;e Atie., a; is the first of the roots g, to be positive. Since
a;=S;,a;_eA",
and
Sia;=a;_1€A7,

it follows from Proposition 4.1.9 that a; = r; ; so
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But then, by Proposition 4.1.1, we have

Siy = (Siyy Si ISuSiy S )7
Thus
SiSiyey S ) = Sipy o 84 )Ss
and so
T= S.-,---S,-k = (S;, - Sy, Sy 8 Sy,
= (S, -8, )8, - .,‘)Slk
=818, Si . Siys

representing T as a product of k — 2 fundamental reflections and contra-
dicting the fact that k was minimal.

Proposition 4.2.2
If Te % then T(A,") = Af, ; consequently, T(IT)) = ITy,.

Proof

Since every root in T(A,”) is a nonnegative linear combination of
roots in T(I1,), the second statement follows from the first by Proposition
4.1.8. As for the first statement,

TAY) = T{reA:(t,r) > 0}
={TreA:(t,r) = (Tt, Tr) > 0}
= {seA:(Tt,s) > 0} = Af,.

Proposition 4.2.3
IfTe%and TA*) = A*,then T = 1.

Proof
By Proposition 4.2.2 we have

Af = TA) = Afy,

so I, = I3, by Proposition 4.1.8. But then TTI, = I, by Proposition
4.2.2,s0 T = 1 by Theorem 4.2.1.

Let us denote by IT* = {s,,...,s,} the dual basis of IT in ¥, so that
(r;,s;) = 6;;for all i and j. Set

F,={xeV:x =2 As;, A€ all i > 0}
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As usual, we will normally suppress the dependence of F, on the
vector t and simply write F when there is no danger of confusion.
For any x € V, write x = X7_, A;5;. Then

(e, ry) = Zi Ads;, 1)) = 4;

for all j, so x = Z(x, r,)s;. Thus
F=F={xeV:(x,r)>0,allr,e I}

= Ni_{xeV:(x,r)> 0}
In other words, F is the intersection of open half-spaces determined by
the hyperplanes 2 = r}, r;eIl. It follows that F is open and convex.
Also, F™ is the intersection of the closed half-spaces {x e V :(x, r;) = 0},
and the boundary of F is the union of the intersections with F~ of
the hyperplanes £. The subsets F— {1 . of the boundary are called the

walls of F, and we shall speak of the fundamental reflection S; through Z,
as being a reflection through the ith wall of F.

Theorem 4.2.4
The set F = F, is a fundamental region for the Coxeter group %.

Proof

It was observed above that F is open. Suppose that Te % and
xeF N TF. Setting R = T~ !, we have Rx = T 'xe F, since xe TF.
Since xe F, (x,r;) > O for all i; and so (x,r) > 0 for all re A;". It follows
immediately that A7 = A", and hence that I1, = II,, by Proposition
4.1.8. The same reasoning shows that Ilp, = II,. Using Proposition
4.2.2, we have

I, = M, = RII, = RII,.

Thus R = T = 1 by Theorem 4.2.1. Finally, if y € ¥, then by Proposition
4.1.10 there is a transformation T e % such that (Ty,r;) > O for all r;eI1,
and so Tye F. Thus

yeT Y F7)=(T"'F)~;
SO
V= U{(RF)” :Re %}

and the theorem is proved.

Let us give one further characterization of F—. The convex hull of
the vectors s,. 5,. ..., s, € IT* is by definition the smallest convex subset of
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V containing IT*. Thus the convex hull of IT* is

{xe V:x 22?-_-1/11'3 iizo’zi'{iz 1}

(see Exercise 4.13). If we denote the convex hull of IT* by co(IT*), then
F~ = U{Aco(IT*):0 < Ae &};

i.e., F~ is the (scalar) product of the closed half-line [0, c0) with the subset
co(IT*) of V. The set co(IT*) is sometimes called the simplex spanned by
{S15.-., .}, and the product [0, co) - co(IT*) is the corresponding simplicial
cone.

We may summarize as follows : A Coxeter group ¢ has a fundamental
region F whose closure F™ is a simplicial cone, and ¢ is generated by the
reflections through the walls of that fundamental region.

Theorem 4.2.5
Every reflection in ¢ is conjugate in ¢4 to a fundamental reflection;;
consequently, every root of ¢ is in the root system A.

Proof

Suppose that S, e ¥ is a reflection, with root r, and set 2 = rt. If F
is the fundamental region discussed above, then each TF, Te %, is a
fundamental region for 4 If 2 N TF # & for some Te%, choose
x €2 N TF. Since TF is open, the ball B of radius ¢ centered at x lies en-
tirely within TF for some sufficiently small ¢ > 0. Since S,x = x and S,
preserves distances, we have S,B = B. But also B & 2 (see Exercise 4.14),
so we may choose ye B\Z Then S,ye B < TF, but S,y % y, which
is in conflict with the fact that TF is a fundamental region. Thus

P < VNU{TF:Te¥%}
=U{T#:Te%1<i<n};

P2=U{2NT#:Te¥41<i<n}

As a result, 2= 2 N T, or # < T, for some Te% and some i,
by Proposition 3.1.1. Since both £ and T'#, are hyperplanes, we may con-
clude that # = TZ. But then either r = Tr, or r = —Tr; = TS;r;.
In either casere Aand S, = TS, T

Let us illustrate the above results. Suppose first that

G = #3 < OR?).
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Figure 4.3

Referring to Figure 4.3, we have chosen t = (1/2, 2) so that
AT = {(1,0),(1/2,/3/2). (= 1/2, /3/2)},

and
0= {r,r} = {(1,0,(~1/2,/3/2)}.

Thens, = (1,./3/3)ands, = (0, 2,/3/3). The convex hull of IT* = {s;, s,}
is just the line segment [s,s,], and the shaded region is the fundamental
region F.

Suppose next that ¥ = #™* < O(#°>) is the group of symmetries of
the cube. Suppose that the cube is situated with its center at the origin
and its vertices at the eight points (+ 1, +1, +1). Then the roots of ¥ are
{+ry,..., £ro}, where

ry =é€, r, =6€; — €p, ry = €3 — €,
ta = €3, rs =e3 — ey, re = e, + e;,
r, =e;, rg = e, + e3, ro =e; + e;.

If we choose t = (1, 2, 3), then
At ={ry,...,ro} and M= {r,r,,rs}.
The dual basis is IT* = {s,, s,, 53}, with

s;=¢€e, +e, +e;, S, =e, + e3, S3 = e3.
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Figure 4.4

The cube is shown in Figure 4.4 with the vectors r,,r,, and r,
displaced so that they emanate from the surface of the cube rather than
from the origin. The shaded region is the intersection of the fundamental
region F with the surface of the cube.

For an example of a different sort let ¥ = #*, the symmetry group
of an icosahedron. By Exercise 2.23 we may take the vectors

a=(1,0,20a), b= (0,20,1), ¢c=(2a,1,0)

as the vertices of one face of the icosahedron, since they are at distance
2 from one another. An application of the Fricke—Klein construction, as in
Chapter 3, shows that the interior of the triangle with vertices
_at+b+c _a+b

T3 0 BETyT &=

is a fundamental region for #* in the surface of the icosahedron (see
Figure 4.5). If the vector t is chosen within that triangle, then the interior of
the triangle is the intersection of F, with the surface of the icosahedron
(see Exercise 4.10). If {r,,r,,r;} is the set of fundamental roots of #*
and {s,, s, 53} is the dual basis, then the edges of the simplicial cone F—
are spanned by {s,, s,, 53} as well as by {a,, a,, a;}. Thus we may assume
that s; = y,a;, i = 1,2, 3, where each y; > 0.

a,

It is now possible to determine the fundamental roots r;, if we require
that |r;|| = 1. For example, suppose that r; = (4,4, v). Then r; L a,
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Figure 4.5

and r; 1 a,, yielding the equations

A+2apu+ QR+ 1)v=0
A + 2av = 0.

Solving, we have
ry =v—2a,1 - 2a,1);

1= lrl?

vi(8a2 — 4da + 2) = 42,

or v= +1/2 (see Exercise 2.22). Since (r,,a;) = y;* > 0 we see that
v= —1/2 and y, = 68. Note that

ry =(=1/2)(—2a,1 — 2a,1) = fQRax + 1,1, —20).
Similar computations determine r, and r;, and we have

ry = pRa + 1,1, —2a),

r, = p(—20 — 1,1, 2a),

ry = BQ2a, —2a — 1, 1),

s, = 6Ba; = (2a, 2a, 200),

sy = 2a, = (1, 20, 200 + 1),
53 =a; = (1,0, 2a).

The final theorem of this chapter is not essential to the development

that follows. It is presented to give further geometrical insight into the
fundamental regions constructed above.
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Theorem 4.2.6
Suppose that {ry,...,r,} is a basis for V with (r;,r) <0 if i # j,
and let {s,,...,s,} be the dual basis. Then (s;, s;) > 0 for all i, .

Proof (R. Koch and T. Matthes)

Let A be the matrix whose ijth entry is (r;, 7;) and B the matrix whose
ijth entry is (s;, s;). Then B = A~ ! (see Exercise 4.15), and we must show
that B has nonnegative entries. Since {r,,...,r,} is a basis, the matrix 4
is positive definite (for a proof see the proof of Theorem 5.1.3). Since each
diagonal entry of A is ||r;||*> = 1, the trace of 4 is n. Thus every eigenvalue
of A4 is positive and strictly less than n. It follows that if 4 is an eigenvalue
of I —(1/n)A, then 0 < A< 1. Setting C =1 — (1/n)A, we have
A=nlI - C);so

A = (md —C) P =UmI +C+C*+ )

(the series converges, entry by entry, since the eigenvalues of C are positive
and less than 1). But all entries of C are nonnegative, since (r;, r;) < 0 for
i # j; so all entries of B are nonnegative, and the theorem is proved.

The half-line I; = {is;:A € #, A > 0} is the intersection of all walls
except the ith of the simplicial cone F~ (see Exercise 4.16). By analogy
with the three-dimensional case we may think of /; as being the edge of F
opposite the ith face. With this interpretation Theorem 4.2.6 says that the
edges of the fundamental region F are all at acute angles with one another.

Exercises
4.1 1f0 % reV and S, is defined by the formula

Sx=x—2x,nrr

(r,7)

for all x e ¥, show that S,e O(V).

4.2 In Proposition 4.1.3 show that ¥ is finite if A is finite, even if ¥ is
not effective.

4.3 (a) Verify the statements made concerning root systems and ¢-bases
for the groups #" on pages 40 and 41.
(b) Find the dual basis IT* for each #7%.

4.4 Suppose that Il is a t-base for A.
(a) Ifre A%, show that r € ITif and only if r is not a (strictly) positive
linear combination of two or more positive roots.
(b) Use (a) to give an alternate proof of the uniqueness of I1.
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45

4.6
4.7

4.8

4.9
4.10

411
4.12

413

4.14

Suppose that I1, and I1; are a t-base and an s-base, respectively, for
A. Show that TTI, = II, for some Te 4.

Prove that #™% (n > 1), #™*, W']7, and #* are all Coxeter groups.

Verify all the statements made about #* in the example on pages

47 and 48.

Set ry=e,—e,, r,=¢€,—e;, and ry; = —e; — e, in Z°. If

t =e, — 2e, — 3ey, then {r,,r,,r;} is a t-base for #]7.

(a) Write the matrices representing S,,S,, and S; with respect
to the basis {ry,r,,r;} (Note: The matrices will not be
orthogonal matrices since the basis is not orthonormal).

(b) Form products and write matrices representing all 24 trans-
formations in #7].7.

(c) Find the root system of #].7 .

(d) Find the axes of rotation of the rotations of order 3 [i.e., find
eigenvectors with eigenvalue 1 (see Euler’s theorem)]; and
hence find vertices for a tetrahedron left invariant by %].7.

(e) Find the dual basis I1* and the fundamental region F for #7].7.

Give an example of an infinite group generated by two reflections
in O(#?).

Show that the fundamental region F, may be obtained by the
Fricke—Klein construction of Chapter 3, choosing x, = t.

Show that F, = {ue V:I1, = I1}.
Provide the details of the proofs that

F7 =N {x:(x,r) = 0}
and that the boundary of F is U (F~ N £).

(@) If X = V, show that there is a smallest convex set containing
X [i.e., a convex hull co(X)] by showing that the intersection of
all convex sets containing X is convex.

(b) Show that

co(X) ={Z  Ax;:m> 1,4, >0,x;€ X, X, 4, = 1}.

If 0 < ¢e A, let B, denote the ball in V of radius ¢, centered at the

origin.

(@) For any x € ¥, show that V has a basis {x,,...,x,} < B, such
that —x # X, Ax;, with £, 4, = 1.

(b) Use (a) to show that {x, + x,...,x, + x} is a basis for V
contained in the ball B of radius ¢ centered at x.

{(c) Conclude that no proper subspace of V contains a nonempty

set that is open in V.



52

415

4.16

417

4.18
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(d) Readers familiar with the Baire Category Theorem can use (c)
to prove a strengthened version of Proposition 3.1.1.

Suppose that {x,,...,x,} is a basis for V and {y,,...,y,} is the
dual basis. Let A be the matrix with ijth entry (x;, x;) and let B be
the matrix with ijth entry (y;, y)).

(@) Show that x; = Z(x;, x;)y; and y; = Z(y;, y;)x; for each i.

(b) Conclude that B = 47!,

Prove that the “‘positive” half-line spanned by s; € [1* is the inter-
section of all walls except the ith of the fundamental region F.
If dimV=n and {x,,x;,...,X,42} €V, show that (x; x;
> 0for some i # j.

If x,yeV, with (x,r;) > 0 and (y,r;) > 0 for all r,eI1, show that
(x,y) = 0. Use this fact to give an alternate proof of Theorem
4.2.6.
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J4 COXETER GRAPHS

We continue to assume that 4 < @(V) is a Coxeter group with root
system A, and that IT = {r,,...,r,} is a t-base for some t € V. As before,
the fundamental reflection along r; will be denoted by S;.

Proposition §5.1.1
If r;, r; € I, then there is an integer p;; > 1 such that

(ri> r)/llrll Il = —cos(n/py)).

In fact, p;;is the order of §;S; as a group element.

Proof

Ifi = j, we may take p;; = 1. Assume then that i # j, and denote by W
the two-dimensional subspace of V spanned by r; and r;. Let 2# be the
subgroup of ¥ spanned by S; and §;. Since §)|W* = S |W* = 1, # has
the form of a direct product #°5 x 1, where #% is a dihedral group in
O(W). If we write t = t; + t,, with t; e W and t, € W1, let us show that
{r;,r;} is a t;-base for #7 in W. If it is not, then we may choose a root r
of #7 in W such that {r,r;} is a t;-base for #’} for some t; € W, where
r,r;, and r; are all t -positive (see Figure 5.1). Considered as a vector in V
risaroot of #,and hence of 4. If we express r as a linear combination of r,
and r;, then clearly it is of the form Ar; — Ajr; with 4, > 0 and 4; > 0.
This contradicts Proposition 4.1.4 since r, being a root of %, must be
either t-positive or t-negative.

53
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L t’l

Figure 5.1

We may ignore the factor 1/||r,|| ||r,|, since we are still assuming
that all roots are unit vectors. The acute angle ¢ between the basis vectors
dual to the fundamental roots r; and r; in W must be 2n/2m, since the
interior of the simplicial cone they span is a fundamental region for '3
If 0 is the least angle between r; and r;, then 6 = n — ¢. Set p;; = m. Then

(ri,rj) = cos 0 = cos(n — ¢)
= —cos @ = —cos(n/p;;).
The second statement of the proposition is a consequence of Exercise 2.5.

A marked graph is a finite set of points (called nodes) such that any
two distinct points may or may not be joined by a line (called a branch),
with the following property: If there is a branch joining the ith and jth
nodes, then that branch is marked, or labeled, with a real number p;; > 2.
If G is a marked graph for which every mark p;; is an integer, then G is
called a Coxeter graph.

If G is a marked graph, then as a matter of convenience we shall
usually suppress the label on any branch for which p;; = 3.

Readers familiar with the theory of Lie algebras will observe similar-
ities between the notions of Coxeter graphs and Dynkin diagrams. We
remark in passing that a Dynkin diagram is a Coxeter graph with the fur-
ther restriction that p;; = 3, 4, or 6, in which branches marked 4 are
replaced by double branchés and branches marked 6 are replaced by
triple branches.

If G is a marked graph with m nodes, we may associate with G a
quadratic form Q = Q; on #£™ as follows:

Qs, ..o Am) = Zij %jAid,

where A = (a;;) is the symmetric matrix with a; = 1, a;; = —cos(n/p;;)
if there is a branch joining the ith and jth nodes of G, and «;; = 0 otherwise.
Note that we may write a;; = —cos(n/p;;) for all i and j if we agree that

pi = 1 for all i, and that p;; = 2 whenever there is no branch joining the
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Figure 5.2

ith and jth nodes. If we set x = (4,,..., 4,,) € £Z™, observe that Q(x) =
(Ax, x).

A marked graph will be called positive definite if and only if its
associated quadratic form is positive definite.

The graph G in Figure 5.2 is an example of a Coxeter graph, with
the nodes labeled from 1 to 4. The matrix defining the associated quad-
ratic form on #* is

1 —1/2 —cos(n/17) 0
—12 i —cos(n/9) 0

" |=cos(n/17) —cos(n/9) 1 —12
0 0 ~12 i

If {x,,X;,...,X,} is any finite set of mutually obtuse vectors in V,
we may define a marked graph G as follows: Let G have m nodes, and if
i # jthe ith and jth nodes are joined by a branch if and only if (x;, x;) # 0.
In that case we may write (x;, x;)/[lxll lx;ll = —cos(n/p;;) for exactly
one real number p;; > 2, and the branch is labeled p;;.

If 4 is a Coxeter group, then the marked graph G corresponding
to the t-base IT = {r,,...,r,} is a Coxeter graph, by Proposition 5.1.1,
and G is called the Coxeter graph of .

Theorem 5.1.2
If 4,,% < O(V) are Coxeter groups having the same Coxeter graph,

then %, and %, are geometrically the same, in the sense that T4, T~ ! = %,
for some transformation T e O(V).

Proof

Let I1, and IT, be bases of unit vectors for the root systems of 4,
and %,, respectively. To say that the two groups have the same Coxeter
graph simply means that the elements of I, and IT, may be written as
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H1={r17-.-,r"} and nzz{r'l"..,r;l}

with (r;, r;) = (r;,r}) for all i and j. Define T: V— V by setting Tr; = r;,
1 < i < n, and extending by linearity. Then Te ()(V) (see Exercise 5.2).
If S; € 4, is the reflection along r; and S; € %, is the reflection along r}, then
S; = TS, T~ ! for each i by Proposition 4.1.1 [with % = O(V)]. Since ¥,
is generated by the reflections §; and %, by the reflections S}, the con-
clusion follows easily.

Theorem 5.1.3
The Coxeter graph of a Coxeter group is positive definite.

Proof
If roots are taken to be unit vectors, then the matrix A defining the
associated quadratic form has ijth entry (r;, 7). If 0 # x = (4;,...,4,)

in #", then X, A;r; # 0in V since I1 is linearly independent. Thus
O(x) = X, (r;, r)Aid;
= (Z; Ay, ZjA)

Jr
= ||Z; l.‘rinz > 0;
so Q is positive definite.

Suppose that I is the t-base of 4 and that I1 = I, U I1,, with I1,
and IT, nonempty and I1, L IT,. Let V, be the subspace of V spanned by
M;,sothat V; L V,and V=V, @ V,.Ifr;ell; and r;eIl,, then S;r; = r;
since (r;, r;)) = 0. Thus the restriction S|V, is the identity transformation
onV,;and, in particular, S;V, = V,.Since V; = V3,wealsohaveS;V;, = W
for all r; e I, . Similarly, §;|V, is the identity on V; and S;V, = V, for all
rjeIl,. It follows from Theorem 4.1.12 that TV, = V; and TV, =V,
forall Te%.Set %9, = {T|V,: Te 9} < O(V,)and set %, = {T|V, : Te 4}
< O(V,). Then %, and %, are Coxeter subgroups of O(V;) and ¢(V,), with
%, generated by the reflections S;|V; along the roots r;eIl,, and %,
generated by the reflections S;V,, r;eIl,. Furthermore, each T can be
expressed as T|V; @ T|V, acting on V; @ V,; so % is isomorphic with
9, x 9,, and the study of ¢ has been reduced to the study of the smaller
Coxeter groups %4, and %, .

If IT is not the union of two nonempty orthogonal subsets, we shall
say that ¢ is irreducible. Otherwise ¥ is called reducible. The crux of the
discussion above is that we shall lose no generality if we restrict attention
to irreducible Coxeter groups.

Two distinct nodes a and b in a marked graph G are said to be con-
nected in G if and only if there are nodes a, ..., g, in G such that ¢, = a,
a, and a, are joined by a branch, a, and a; are joined by a branch, ...,
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a,_, and a, are joined by a branch, and g, = b. If every two distinct nodes
of G are connected in G, then G is said to be connected. For example, the
graph in Figure 5.2 is connected.

Proposition 5.1.4 is an immediate consequence of the foregoing
definitions.

Proposition 5.1.4
The Coxeter graph of a Coxeter group ¢ is connected if and only if 4
is irreducible.

In order to arrive eventually at a classification of all Coxeter sub-
groups of O(V), we shall classify all positive definite Coxeter graphs. As
we observed above, it will suffice to consider only irreducible Coxeter
groups, so we need only classify the connected positive definite Coxeter
graphs.

Consider first the Coxeter graphs shown in Figure 5.3. The sub-
scripts on the names of the graphs indicate the numbers of nodes. The
graph H’ is clearly the Coxeter graph of the dihedral group #°5, so it
is positive definite by Theorem 5.1.3. Note that #7 is a reducible group
and that its Coxeter graph is simply two nodes with no branch joining
them. To avoid repetitions we have not included the graphs of #3, #3,
and #$ among the graphs H’, since their graphs are listed as A4,, B,,
and G, . It will become apparent in Section 5.2 why the graph of #°$ has
been singled out as G,.

If 1 < k < n, then the kth principal minor of an n x n matrix A is
the determinant of the k x k matrix obtained by deleting the last n — k

",nZIZo, 0—03; O——0—0; O—0—0—0,"""

B,,

"n>5n#6°_° o—o, ,
6 5 5

G, o—o Iy;0—0— I, : 0—0—o0—o

Figure 5.3
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rows and columns of A. For example, the first principal minor of A4 is the
first diagonal entry, and the nth principal minor is det 4. For a real
symmetric matrix (or its associated quadratic form) to be positive definite
it is necessary and sufficient that all its principal minors be positive (for
a proof see [17], p. 152, or [21], p. 167). We shall apply this criterion in
order to show that the remaining graphs in Figure 5.3 are positive definite.

For each Coxeter graph G the matrix of the associated quadratic
form can be written down directly from the graph. It will be convenient
to denote the matrix by the same name as the graph in each case.

For example, the matrix of 4, is

r1o—12 0 0 7
—12 1 =12 0
0 —12 1 -1
0 0o —12 1
1 —12 0 0
. -12 1 =12 0
0 —12 1 -1
L 0 o -—12 1

The kth principal minor of A4, is just det 4,, so to prove that all 4, are
positive definite it will suffice to prove that det 4, > 0 for all n. Similar
remarks apply in all other cases.

A marked graph H will be called a subgraph of a marked graph G if H
can be obtained from G by removing some of the nodes (and any adjoining
branches), or by decreasing the marks on some of the branches, or both,
Thus, for example, I5 is a subgraph of I,, and A, is a subgraph of B, for
each n > 2.

The following proposition will prove most useful in discussing
positive definiteness of marked graphs.

Proposition 5.1.5
Suppose G is a marked graph having a node a; that is adjacent to
only one other node a,. Denote the subgraph G\ {a;} by G; and the
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subgraph G\ {a;, a,} by G,, and write p for the mark p;,. Then
det G = det G, — (cos? n/p) det G,.

Proof
The matrix G has the form
1 —cosn/p O
—cos t/p 1 * ,
0 * G,

1 = -
withG, = G :| If G denotes the matrix obtained from G by deleting the
* 2

first row and the second column then clearly det G = (—cos 7/p) det G,.
If we expand det G along the first row we find

det G = det G, + (cos n/p) det G
= det G, — (cos? n/p) det G,.

Since G; and G, have fewer vertices than G, Proposition 5.1.5 will
enable us to apply induction in order to compute determinants. In some
cases G, will not be connected, but then det G, is simply the product of the
determinants of its connected components (see Exercise 5.17).

We begin by discussing A, in detail. Note that det A, = 1 = 2/2 and
det A, = 3/22. By Proposition 5.1.5 we have

det A, =det A,_, — 1/4det A,_,
for n > 2. This recursion formula can be used to prove by induction that
det 4, =(n + 1)/2"

for all n. Assuming the result to hold for all k < n (with n > 2) we have

det A, =det A,_; — 1/4det A,_,
=n/2""1 — 1/4(n - 1)/2" "2
=(n+ 1)/2">0.

We conclude that every A, is positive definite.
We may now apply Proposition 5.1.5 to the remaining graphs in Figure
5.3, with obvious (but not necessarily unique) choices for nodes a, and a..
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We find
det B, = det A,—; — (/2/2)* det 4,;
=n2" ' —(mn—-12" 1 =1/2""1>0,
detD,=det A, —1/4det A,_;
=n2""'—(m—2)2""t'=1/2""2>0,
det I; = det A, — a®det 4,
=3/4—o’=(3—./5)/8>0,
det I, =1/2 — 3¢*/4 = (7 — 3ﬁ)/32 >0,
det F, = det By — (1/4) det A, = 1/16 > 0,
and forn=6,7,8
det E,=detD,_-, —1/4det A,_,
=1/2""3—(n—1)2"=(9 —n)2"> 0.

Thus all the graphs in Figure 5.3 are positive definite.

e AT O
s X > >

S, n=3: _H
4
>4 >_q o, °\.
'
Us: Zy: o-—oio-—-o Yszoio——o-—osiz-o

cos /g = 3/4
Vs: 4

R,:
O—e——0—0—0 o—o—}—o——c
Ry: o—o—o.——I—o—o—q Ry: I o

Figure 5.4
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We shall show presently that the list in Figure 5.3 contains all the
connected positive definite Coxeter graphs. To this end it is convenient to
consider next an auxiliary list of marked graphs. The matrix of each graph
in Figure 5.4 will be shown to have determinant zero, so that none of them
are positive definite. Note that 4 < g < §, since cos n/q = 3/4.

In the case of P, observe that the sum of all the rows is the zero vector
so the rows are dependent and det P, = 0. The fact that det Z, = 0 will be
left as an exercise. For all the others we may apply Proposition 5.1.5, again
with obvious choices for the nodes a; and a, (see Exercise 2.22 for Ys):

detQ,=detD,_, — 1/4det D, =0,
det S, =det B,_, — 1/2det B,-, =0,
det T,, = det B,_; — 1/4det B,_3 =0,
det U3 =det A, — 3/4det A; =0,
det Y5 =detl, — f>detl;
=1/2 — 3a%/4 — B*(3/4 — o*)
= 3(1 — 20 + 28)/16 = O,
det Vs = det B, — 1/4 det A5 = 0,
det R; = det Eg — 1/4det A5 =0,
det Rg = det E; — 1/4 det Dg = 0,
det Ro =det Eg — 1/4det E; = 0.

A cycle in a marked graph G is a subgraph of the form P, (Figure 5.4)
for some n > 3. A branch point in G is a node having three or more
branches emanating from it. For example, each 7, has exactly one branch
point.

Proposition 5.1.6
A (nonempty) subgraph H of a positive definite marked graph G is
also positive definite.

Proof

Order the nodes a,,a,,...,a, of G in such a way that a,,...,q,
are the nodes of H. If A = (;;) and B = (B;;) are the matrices of G and
H, respectively, then a;; < §;; for all i and j between 1 and k, since H is a
subgraph of G. Let Q; and Qy, denote the corresponding quadratic forms.
If Q, is not positive definite, choose x # 0 in #* for which Q(x) < 0.
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If x=(Ag,..., A set y = (144],..., |4, 0,...,0)e ™ Then y # 0, and

0> Qyulx) =%, ; B;Ai4;
> X, BulAl 14}
> T o)A 14 = Q6(y) > 0,

1

a contradiction.

The importance of Proposition 5.1.6 lies in the fact that it shows that
none of the graphs in Figure 5.4 can occur as subgraphs of positive definite
Coxeter graphs.

Theorem 5.1.7
If G is a connected positive definite Coxeter graph, then G is one of the
graphs A,,B,,D,,.H%,G,,15,1,,F,,E¢,E,, or Eg.

Proof

Observe first that G can have no cycles as subgraphs since no P, is
positive definite. If H% is a subgraph of G for any n > 7, then G = H%, for
otherwise U; would be a subgraph of G. Likewise, G = G, if G, is a sub-
graph. We may assume, then, for the remainder of the proof, that any
branch of G is marked 3, 4, or 5. Suppose that B, is a subgraph of G (it
cannot occur more than once; otherwise some S, would be a subgraph).
Then G cannot have a branch point, for otherwise some 7, would be a
subgraph. If Hj is also a subgraph, then we may have G = H3, G = I,
or G = I,. There are no other possibilities in that case, for otherwise G
would have either Z, or Y5 as a subgraph. If B, is a subgraph but Hj is
not, then G may be B,,, for some n > 2, or F,. There are no other possibili-
ties, for otherwise V5 would be a subgraph of G.

Finally, consider the case where all branches of G are unmarked.
Then G can have at most one branch point, and only three branches can
emanate from any branch point, for otherwise some Q, would be a sub-
graph of G. If G has no branch point, then G = A, for some n. If G has a
branch point, then either G = D, for some n, or G = E¢,E,, or Eg; for
under any other circumstance R,, Rg, or Ry would be a subgraph. The
proof is complete.

As a consequence of Theorems 5.1.3 and 5.1.7, the Coxeter graph of
an irreducible Coxeter group must appear in Figure 5.3. We shall show
in Section 5.3 that, conversely, every graph in Figure 5.3 is the graph of a
Coxeter group.
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THE CRYSTALLOGRAPHIC CONDITION

A lattice in Vis a set consisting of all integer linear combinations of
the elements of some basis {x,,...,x,} for V. As in Section 2.6, a sub-
group % of O(V) is said to satisfy the crystallographic condition, or to be a
crystallographic group, if and only if there is a lattice % invariant under
all transformations in .

We wish to determine the crystallographic Coxeter groups, and to
that end it becomes convenient to allow the relative lengths of roots to
differ. Thus we no longer assume that roots are unit vectors, and appro-
priate lengths will be assigned in the course of development. It is important
to bear in mind that the formula for the reflection along a root r has the
form

S,x =x—2(x,r)r
(r,r)

and that the factor 1/(r, r) cannot in general be omitted.

Suppose as usual that & is a Coxeter group, withbase IT = {r,...,r,}
and fundamental reflections §,, ..., S,. The order of S;S; will be denoted
by p;; as in Proposition 5.1.1.

Proposition 5.2.1
If 4 is crystallographic, then each p;; is one of the integers 1, 2, 3, 4,

or 6.

Proof
Fix i and j and set p;; = m. With respect to a suitable basis, S;S; is
represented by the matrix

where

A |:cos 2n/m —sin 27r/m:|

sin 2n/m cos 2nt/m

Thus the trace of §;S; is 2 cos 2n/m + (n — 2). With respect to a lattice
basis, the matrix representing S;S; has integer entries, so tr(S;S;) must be
an integer. Thus 2 cos 27/m is an integer. This condition is satisfied when
m=1,2,3,4, or 6, and is not satisfied when m =5 (see Exercise 2.22).
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If m > 6, then
2> 2cos2n/m > 2cos2n/6 =1,

and so 2 cos 2n/m is not an integer.

As a result of Proposition 5.2.1 the only irreducible Coxeter groups
that might be crystallographic are those having the Coxeter graphs
A,,B,,D,,G,,F,, Eq, E;,and E4 (provided such groups exist). Assuming
their existence, which will be established in Section 5.3, let us show that
these groups are in fact all crystallographic.

Suppose then that % is an irreducible Coxeter group and that
pi; € {1,2,3,4,6} foralliandj. Assign relative lengths to therootsr,, ..., r,
as follows:

If p, = 3, then |r,] = |rl.
Ifp;; =4, then |rll =./2Irll or |rl=/2Irl.
Ifp; =6, then |l =/3lrl or [rjl=./3lri.

It is easy to see by inspection of the Coxeter graphs that it is always
possible to assign lengths consistently that satisfy these requirements.
All simple roots must be taken to have equal lengths in the cases A4,, D,
E¢, E,,and Eg. For B, we may take

20 = Dl = - = |Inll,
for G, take /3|r,| = |r,l, and for F, take

Il = N2l = /2073l = 2lr4ll.

Theorem 5.2.2
If 4 has Coxeter graph A4,,B,,D,, G,,F,,E¢,E,, or Eg, then 4
satisfies the crystallographic condition.

Proof
Let £ be the lattice having I1 as basis,
L =Xt kpr; kiel}.
If p;; = 3, then |r;|| = |Ir;|l and
(ri,rj) = (= 1/2)|rll lIr;ll-
Thus

Spj=1r;—=2rj,rJri=r;+rie.

(ria ri)
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Suppose p;; = 4, so that

i) = — /22l 7).
If |l = </2llr,ll, then (r;, 7)) = —|7;|* and

Sirj=r;— 2(—||rj||2) rp=r;+re.
2|r;l1?

If Irl = /2lrll, then (r;,7) = —|r;||* and
Sri=r;+2re’.

A similar analysis shows that if p;; = 6, then S;r; must be either r; +
or r; + 3r;, so Sir;e Z. Of course, if p;; = 1, then Sr; = —r;; and if
pij = 2, then §;; = r;. It follows that S,¥ = & for every fundamental
reflection §;, and hence that T¥ = & for all Te %, by Theorem 4.1.12.
Thus ¥ is crystallographic.

For reducible Coxeter groups ¥ see Exercise 5.3.

CONSTRUCTION OF IRREDUCIBLE COXETER GROUPS

Two different methods will be used to establish the existence of the
various irreducible Coxeter groups. The first method, which will be applied
to the groups with graphs A4,, B,, and D,, involves finding a group “in
nature,” so to speak, and then proving that it is a reflection group. The
second method proceeds directly with a construction of the group from
reflections along a set of vectors that will ultimately be a base for the root
system.

The dihedral groups, their root systems, and bases have been dis-
cussed earlier (see p. 40 and Exercise 4.3).

We may view the symmetric group %, , as a group of linear trans-
formations of 2" 11, if we agree that each Te %, , is a permutation of the
basis vectors e, €,,...,¢,,,. It is well known that %, , is generated by
the n successive transpositions

S =(e1€3), S, = (eze3),..., 8, = (e,e,4+1).

If the permutations S; are considered as linear transformations, it is
immediate that they satisfy

Sieir1 —e)= —(e;11 — &),
Sie; + e11) =e€ + €44,

Sfe) = ¢ ifj#iLj#i+ 1.
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Since {e;:j#1i,j# i+ 1} U{e, + e;.,} spans the hyperplane W =
(e;+, — e)*, we see that each S; is a reflection and that r, = ¢;,; — ¢;
may be taken as a root of S;. Thus &, ,, as a group of transformations,
is generated by the reflections S,,..., S, along roots r,,...,r,. In par-
ticular, &, , < O(R"*1).

To obtain the root system A of %, , we must find the roots of all
conjugates in &, of the generating reflections S;. But in a symmetric
group the set of conjugates of any transposition is the set of all trans-
positions. Thus the set of conjugate reflections is the set of transpositions

(eie)), i # j, and the root system is
A={e,—ej:i#jl<ij<n+1}

Let us denote by V the subspace of #"*! spanned by the roots
ry,...,rpof %, ,,and by «, the group of restrictions to V of the trans-
formations in % ,. (&, is not the alternating group.) We continue to
denote the generating reflections by S, ..., S,. Then &, is effective, and
hence is a Coxeter group. Since &/, is isomorphic with %, ,, we have

|, = (n + 1.
Observe that if x = (4;,...,4,+,)€ #Z""', then xe V" if and only if
Jis1 —A4=0,1<i<n,sincex Lr;;s0ox=4(l1,...,1).Asa result,

V: {ye'%'ﬁ-l Wy = (:ul""’lun+1)’zﬂi =0}
Ifr =e, — ¢;€eA, with i > j, then
r=ZiYewr, — €)= Tilin.

Choose t e V such that (t,r;) > 0, 1 < i < n (see Exercise 5.4, or simply
compute). Then {r,,...,r,} is a t-base for &/, and

AT ={reA:r=e —¢,i>j}
A ={reA:r=¢ —e¢;,i<j}
Finally, since

(ris raw il flris ol = — 172,

1 <i < n— 1,the Coxeter graph of o/, 1s 4,,.

The discussion of groups with Coxeter graphs B, and D, is similar
but slightly more complicated.

For B, we consider the group of “signed permutations” in %"
whose elements permute the basis vectors eq,...,e,, and then replace
some of them by their negatives. More precisely, we begin by considering
two subgroups of O(%"). The first is the symmetric group %, of permuta-
tions of {e,, ..., e,}. Changing the notation slightly from the discussion of
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o, above, we denote the generating reflections of &, by S,,S;,...,S,,
with respective roots r, = e, — e;,...,r, = €, — €,_,. The second sub-
group .%, is generated by the n reflections S, ,...,S, along the basis
vectors ey, ..., e,. The effect of S, on any x € #" is simply to replace the
ith entry of x by its negative. Since the reflections S, all commute with
one another, %, is abelian and is the direct product of the two-element
subgroups {1, S, },1 < i < n. Thus | %, = 2".
For each subset J of {e,, ..., e,}, define f; : #" — A" by setting

—e; ife,eld,
f’(ei)_{ e, ife,¢J.

Clearly, f; is the product of all S, for which e;e J, with f; = 1 if J = &,
and ., consists of all such transformations f,. The symmetric difference
J + Loftwo sets J and L is detined by

J+L=JULNJNL).

Itis easy to check thatiff;,f; € #,,thenf, f; = f;i ..

Let us investigate how the subgroups & and ., interact. Suppose
that Te & and f; € #,. Given a basis vector e;, write ¢; = Te;. If e;e J
or, equivalently, if e; € T(J), then

(Tf,T ™ Y)e; = (Tf.lT_l)Tej
= Tf,ej = —Te; = —e¢;
and if e;¢ J, or e; ¢ T(J), then
(Tf;T™Ye; = Tfje; = Te; = e;.
Thus

TfJTfl = fT(J)’

and %, is normalized by . It follows that the subgroup 4%, of O(#") that
is generated by £, U %, consists simply of all products f, T, where f; € ¥,
and Te Y,. By considering their effects on the basis vectors ¢,...,¢,,
we see that 7, N % = 1, from which it follows that each transformation
in %, has a unique expression as a product f;T. Thus the order of %, is
the product of the orders of .#,and %, ; i.e.,

|8, = |4 1| = 2"-nl.
Products in 4, are given by

(iD(fLU) = fLTAT'TU
= fJfT(L)TU = fJ-;'T(L)' TU.
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Readers having some familiarity with group extensions will recognize
that 4, is a semidirect product, or split extension, of A, by &,.

If we set f; = fi,, = S.., 1 <i < n, then 2, is generated by the set of
reflections

{fla---,f,.,Sz,...,Sn}.

Among the roots of 4, are those of %, In particular, e; — e, is a root if
2 < i < n. Let T; denote, momentarily, the reflection with root e; — e,
and observe that

EflTi_l =fT,-{e.-) :f(eg) = f;
Consequently, {f;,S,,....S,} is a generating set of reflections for 4,.
Set S, = f, and set r; = e, a root of §,. Since {r,,...,r,} is a basis for
R", B, is a Coxeter group.
Since the effect of each transformation in %, on the basis vectors

e,,...,e, is a permutation, followed by some sign changes, the root
system A of %, is

A={te:1<i<ntU{e +e:i#j1<ij<n}
Easy computations show that
e =Xhoi 1y
e,-—ej=2;";i. i1 ifi > j,
e+ e =2Zf_ 1+ 5 n ifi > j;
so {ry,...,r,}is a base for %,. The Coxeter graph of %, is B, since

ris r)/lrgl el = —/272.

Note that the roots of #, were chosen to have lengths in accordance
with the crystallographic condition.
For the discussion of D, we replace .4, by its subgroup,

%, = {f,€ A, :|J]is even},

whose transformations effect even numbers of sign changes in coordinates
of vectors in #". That .#, is a subgroup of ., is a consequence of the fact
that

|J + Ll =|J] +|Ll =2|J N L

for any finite sets J and L.

As above, %, is normalized by % and the subgroup &, of U(%")
generated by &£, U ¢ consists of all products f;T, f,e€ ¥, Te . Set
r,=e +e,andr;, = ¢, —e;,;,2 <i<nandletS;e 2, bethereflection
along r;, 1 <j < n. Observe that <S,,....S§,> = 4.
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Since any even number of sign changes can be made by successively
changing signs two at a time, ., is generated by the products S,.S, ,
i # j. Among the transformations in 2, are the reflections S, .., i # J.
Given i # j choose Te ¥, such that Te, = ¢; and Te, = e;. Then by
Proposition 4.1.1 we have

TSe|+e2T_1 = Se,-+e,-‘
Also, if i # j, then S € %, and it is easy to check that

Sere/Seire; = SoSe,-

e;—ejMeitej

€ei—ej

It follows that {S,, S,,...,S,} is a generating set of reflections for Z,.
Applying all permutations of {e;} to the roots {r,...,r,}, followed
by even numbers of sign changes, we obtain the root system

A={e,te:i#j1<ij<n}

Since
e —e; =%} ey ifi > j,
e;+e =r + X 51, ifi # 1,
e, +e, =21 ifi > 2,
and

ei+e=r +r,+ 2% 3+ T re if2<j<i

we see that {r,,..., r,} is a base for Z,. Its Coxeter graph is D,.
The order of 2, is easily found by counting, but observe that the
function 6 from %, to { + 1} defined by

0f;T) = (=)
is a homomorphism onto { 41} with kernel &,. Thus [%, : 2,] = 2 and
19, = 1/2|B, = 2"~ 1 nl.

In order to establish the existence of a group for each of the remaining
graphs G in Figure 5.3, we shall exhibit a set of mutually obtuse vectors
with Coxeter graph G. Using them we shall construct a Coxeter group ¥
and its root system A, and show that the original set of vectors is a base
for 4. If % is crystallographic, the base will be chosen so as to generate a
%-invariant lattice.

In order to illustrate a general method for producing a base with a
prescribed Coxeter graph, let us discuss the case of F, in some detail.
The graph B, is a subgraph of F,, and a base for the group #; was dis-
cussed above. We shall “extend” that base to a base having the graph F,.
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If the base vectors r,, r,, and r; of %, are relabeled as
ry = éy, I3 =€, — €y, s =€3 — €

and viewed as vectors in #*, then we wish to add a vector r, so that
{ry,ry,rs,r,} has Coxeter graph F,. The requirements for r, = (4, 4,,
43, A4), including the crystallographic condition, are
12 =lr > =2, 27 = 1,

(ry,r) =4y = —1/2,

(ry,r3) =4, — 4, =0,

(rysrg) =43 — 4, =0.

Thusr, = (—1/2, —1/2, —1/2, 4,), with A2 = 1/4. We choose 1, = —1/2,
or

7y

ry=—(1/2) z:?=1 €

and the resulting graph is F,.

For G, it is convenient to choose a base in #°, extending the one
basic vector r; = e, — e, of &/, . Of course, r, could be chosen in %2, but
it is possible to find r, € #* with integer coordinates such that {r,,r,}
has graph G,. The requirements for r, = (4,, 4,, 4;) are

B+ 23+ 23=6,
(ry,ry) =4, — 4, = -3.
There are many solutions, but we take

=1, Ay=-2 A =1,

orr, =e; — 2e, + ey, and {r,,r,} has graph G,.
In Section 4.2 we found a base {r,, r,, r;} of unit vectors for the icosa-
hedral group #*, with

ry = pRa + 1,1, —2a),

r, = p(—2a — 1,1, 2a),

ry = p(2o, —2a — 1, 1).
Using Exercise 2.22 we find that

(ry,r;) = —a= —cosn/s,
(ry,r3) =0,
(ry,r3) = —1/2;

so {ry, r,,rs} has Coxeter graph I,. By the above procedure we may view
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r,,r,,and ry as vectors in #* and extend to a base with graph I, by
adjoining the vector r, = f(—2a, 0, —2a — 1, 1).

One more extension is required. If the base vectors of </, are again
relabeled as

we may adjoin

ry=(/2)(E- e — T s e);
then {r,,r,,...,rg} has graph Eg, since

rysrd/lrgl vl = =172,
(rysr)=0 ifi#1,i+#4.

Clearly, the subsets {r,,...,r¢} and {r,,...,r;} have graphs E¢ and E,.

The bases for all the graphs in Figure 5.3 are tabulated in Table 5.1
for easy reference.

For each graph G from G, to Eg in Table 5.1, let V be the space
spanned by the set of vectors I' = {r,...,r,}. In each case I is a linearly
independent set so it is a basis for V. Thus there is a vector t € V such that
(t,r) >0, 1 <i<n (see Exercise 5.4). Let S, be the reflection in O(V)
along r;, 1 <i < n,and let

G =(S,,...,5,> < OV).

Graph Base

A, ri=e4q—€,1 <i<n

B, r,=e,ri=¢—¢_;,2<i<n

D, ro=e +e,r,=¢—¢€_,,2<i<n

H r, = (1,0), r, = (—cos n/n, sin n/n).

G, ry=e —e,rp=e — 2+ e

I ry = pQRa+ 1,1, —2a), r, = f(—2a — 1, 1, 2a),
ry = pRa, —2a — 1, 1).

1, ry = BQRa + 1,1, —2a,0), 7, = f(—2a ~ 1, 1, 20, 0),
ry = pRu, =200 — 1,1,0), 7, = (=20, 0, —20 — 1, 1).

F, ro=—(1/Q% e, 1, =e;,ry =€, — €,,r, = €3 — e,.

E, ro=(1/2)Z}e; — Z8e)r; =€, —e¢,_;,2<i<6.

E, ro=01/2)(Z}e, — Z8e)ri=€—€_,,2<i<T

Eg ri=(/2)(Z3e;, —X8e)r,=¢ —e¢,_,,2 <i<8.

Table 5.1
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The following algorithm can be used to obtain the root system
Aof 9 Set To=TI={r,,...,r,}. For each r,eI'y with (r,,r;) <0,
apply S, to r; to obtain the root S,r;. The same procedure is applied in
turn with S, and r, replaced by S, and r,, then by Sy andr;,..., S, and
r,. Denote the set of roots obtained, including I',, by I'; . The process is
then repeated, with S; applied to each re ', \I', for which (r;,r) < 0,
1 <i < n, and the resulting set of roots is denoted by I',. Continuing,
we obtain

Ipeclecl,clye---.
Since S, is applied to r € I'; only if (r;, 7) < 0, and since

Sir =r—- 2(ri3r)ri5

(ri’ ri)
we see inductively that every root obtained by this process is a non-
negative linear combination of {r,,...,r,}.

When the algorithm is applied to the bases in Table 5.1, we find that
in each case the procedure terminates in a finite number of steps, in the
sense that for some k we have (r;,,r) > Oforall re ', \TI',_;, 1 <i <n.
We then adjoin the negatives of all roots obtained, settingT'* = I', U —T,.

The next step is to verify that S;I'™* = I'*, 1 < i < n, and hence that
TT* =TI'* for all Te ¥ since ¥ is generated by {S,,...,S,}. It follows
that I'* = A, the root system of 4, by the definition of A. Note that it is
not a priori clear that the algorithm has produced the set of all roots of 4.
This is the reason that A was defined as it was in Section 4.1.

Since A contains a basis for ¥, the group ¥ is effective ; and since A
is finite in each case, 4 is a Coxeter group, by Proposition 4.1.3. Since the
algorithm produced only roots that are nonnegative linear combinations
of {r,...,r,},and since the only other roots are negatives of those, we see
that {r,,...,r,} is a t-base for A. Thus G is the graph of the Coxeter group
%, as we wished to show.

Let us apply the algorithm in the case of G,, the simplest case, even
though there is no question of the existence ofa group with graph G, . Thus

Lo ={ry,r} ={e;, —e;,e; —2e, + e5},
and we set 9, = <(S,,8S,). Then (r;,r,) = —3 < 0, so at the first stage
we obtain
Siry, =3r; + 15, S,ry =ry +71,,
LNy = {r; +r,,3r; + 1,5}

= {e; —e,, —2e, + e, + e5}.
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At the next stage

(rl’r1+r2)=2_3<05 (r1,3r1+r2)=6—‘3>0,
(rysry +r))=—=3+6>0, (r;,3r; +r)=-9+6<0,

and we obtain
Sriy +r))=—ri +@r; +1r))=2r, +r,,
S,(38r; + 1) =3(ry + 1)) —r, =3r; + 2r,,
o\Ty = {2r, +1y,3r, +2ry}
={e; —e;, —e; — e, + 2e;}.
The procedure terminates at this stage, since

(ry,2ry +r))=4-3>0, (ry,3ry + 2r)) =6 ~ 6 =0,
(ry,2ri +r)=—=64+6=0, (ry,3r; +2r;)) = -9+ 12> 0.

ThusT* =T, U —T,.

In order to verify that S,I'* = I'* it suffices to check that S;,I", = I'*;
if reI’,, we know already that Srel, if (r;,r) < 0. Of course, Sy =r
if(r;, r) = 0,soit remains only to verify that S;re I'*ifre I'y and (r;, r) > 0.
If r = r;, then S;r = —reI'*, so the only cases left are

i=1: r=73r, +ry,2r, +ry;
i=2: r=ry+ry,3r, + 2r,.

But in each of these cases r = S;#' for some reI', [eg, 2r, + 1, =
Si(ry + ry)), s0

Sy =S8 =rerl,.

As discussed above, it follows that A = I'* and that %, is a Coxeter
group with base {r,,r,} and Coxeter graph G,.

The algorithm is easily carried out for G = I; and G = F,. We
omit the details and list the groups and their root systems in Table 5.2.

The construction can be simplified considerably for G = E if we
modify the algorithm. As usual we set & = {S,,...,Sg> < O(V). Since
{ry,...,rg} is a base for o, o/, is a subgroup of &, and among the
roots of & are the 28 positive roots r;; = ¢; —e;, | <j <i <38, of ;.
We set S;; = S, and begin the algorithm with the larger set

Fop={ry:1<j<i<8 U{r}.

If j <3 < then (r;,r;) = —1 and S,r;; = r;; + r, is a root, the
effect being a change of sign in the ith and jth entries of r,. At the next
stage we have, for example, (rs5,ry +ry) = —1; 80 r{ +ry + 715,
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isa root, changing the first, second, fourth and fifth signs in r, . Continuing,
we obtain as roots all vectors that result from permuting the entries of
r,. In particular, we obtain

r=1/2)(-1,-1,-1,1,1,1, -1, =1),

and (r,r;) = —1, so
S;r=r+4+r, = —e;, —eg

is a root.

If i < 6, then (r,;, —e; — eg) = —1, and we obtain

S2Sir=(—e; — eg) + (e; — &) = —e; — 5.

Then if j # i, j # 8, we also have (rg;, —e; — eg) = —1, and we obtain
all —e; — ¢;,i # j.

Observe next, for example, that (r,, —e, — e;) = —1, so that

ry—e,—ey=(12)(1,-1,-1, -1, —1, —1, —1, —1)isaroot. Similarly,
we obtain all vectors (1/2) £8 ¢,e;, where one ¢, is 1 and the others are — 1.

All the roots of & obtained thus far are nonnegative linear combin-
ations of {r,,r,,...,rg} (having, in fact, integer coefficients). Adjoining
their negatives we have the following set I'* of 240 roots:

all +e; +e;, i#j, 1<ij<8
all(l/z) Z? 8ieia 81‘ = i_ls ni8=18i = —1

In order to show that I'* = A, the root system of &, it will suffice
to show that S;T* =T*, 1 < i < 8. The roots +e¢; + e; are the roots of
s, as constructed above, and % has S,,...,Sg among its reflections,
so those roots are invariant under S,,..., Sg. As for the effect of S, on
those vectors, it will suffice to consider S,(e; + ¢;), with i > j. Let us

momentarily call roots of the form (1/2) X ¢e; 1/2-vectors. It is easily
verified that

Sie; +e)=¢e +e;
ifj < 3 < i, that
Si(e; +e)=¢e +e —r
is a 1/2-vector with one minus sign if i < 3; that
Si(e; +e)=¢e +e; +r
is a 1/2-vector with three minus signs if j > 3; that

Sie;—e)=¢ — ¢
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ifi <3orj>4;and that
Sile;—e)=¢e—e; +r;

is a 1/2-vector with three minus signs if j < 3 < i.

It remains to check the effects of all S; on the 1/2-vectors (1/2) Z ge;.
If i # 1 and r is a 1/2-vector, then either S;r = r or else S;r is another
1/2-vector with two sign changes. If we write

ro = (1/2) X ve,, r=(1/2) Z ge;,
then (r,,r) = (1/4) X vig; and
M3(ve) = (Tv)(ITg;) = (= 1> = 1;

so v;g; = —1 for an even number of indices i. Assuming that r # +r,
the number is two, four, or six. If it is four, then (r,,r) = 0 and S,r = r.
If it is two, then (r,,7) =1 and S,r = r — r,. But then r, and r agree
except at two entries, so r — r; is te; + e; for some i and j. Similarly, if
vie; = — 1 for six values of i, then S,r = r + r,, and again S,ris +e; + ¢;
for some i and j.

Thus I'™* = A, and we may conclude as in the earlier cases that & is
a Coxeter group with Coxeter graph Eg.

If we set & = <{S;,...,S,), then & < &, and the roots of &, are
among those of &. The root u = (1/2)(1,1,1,1,1,1,1, —1) of & is
orthogonal to ry,...,r,, so the roots of &, are precisely the roots of &
that are orthogonal to u. These are the 48 roots e; — ¢;, 1,j # 8; the 14
roots +(e; + eg), i # 8; and the 70 1/2-vectors having either three
negative entries with the eighth positive or five negative entries including
the eighth. Thus |[A| = 126 for &, .

A similar discussion shows that the roots of &, = {S,,..., S¢) are
the 72 roots of &, that are also orthogonal to rg = ez — €.

The only group remaining is .#,, with graph I,. As in the case of
&, , we may modify the algorithm by including at the outset the 15 positive
roots of % . Details will be omitted, but the reader should be warned
that the computations are still rather tedious, the chief reason being
that several applications of the identities that appear in Exercise 2.22 are
required. The algorithm is readily programmed for computer calculation.

If we agree that

(Ays Aps Ay de) = Ay + Asi + Asj + Agk,

then #* can be identified with the ring Q of real quaternions (see [23],
p. 87, or [1], p. 222; also see Exercise 5.14). It is a remarkable fact that the
root system of .#,, as it appears in Table 5.2, is itself a group (Exer-
cise 5.16), a subgroup of the group of unit quaternions. Under other
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Base Group |A] Root system A
A, o, n* +n tl,—e)l<j<isn+l
B, B, 2n? te l<i<n tetel<j<i<n
D, 2, 2n(n — 1) te te,l<j<i<n
HY H 2n (cos jn/n, sin jn/n), 0 < j < 2n — 1.
G, %, 12 tle—e) 1 <j<i<3;£(1,-21,
+(—=2,1,1), £(1.1, =2).
I, EA 30 +e;, 1 <i<3;f(+£(2a + 1), £1, +2a), and all even
permutations of coordinates.
I, A 120 te, 1 <i<4;(1/2)(+1, 1, 1, +1);
p(+2a,0, +(2a + 1), +1), and all even permutations
of coordinates.
F, Z, 48 ie,-.lsi§4;ie,¢ej.lsj<is4;
(1/2) £} e = 1.
Eq & 240 te te, 1 <j<i<8;(1/2) X ge,.
g=+1,18¢=—1.
E, &, 126 Those roots of & orthogonal to u = (1/2)(1. 1, 1. 1. 1.
1,1, =1
Eg 8 72 Those roots of &, orthogonal to rg = ¢5 — 5.
Table 5.2

circumstances that fact can be used in the construction of .#4 (see [37], p.
308). A thorough discussion of finite groups of unit quaternions is given
in [15].

We may now describe all finite subgroups of ((V) that are generated
by reflections. We summarize in a theorem.

Theorem §.3.1

If ¢ is a finite subgroup of O(V) that is generated by reflections, then
V may be written as the orthogonal direct sum of 4-invariant subspaces
Vo, Vi,. .., Vi, with the following properties:

(@) f 4 = {T|V.: Te %}, then 4, < O(V)) and ¥ is isomorphic with
Gy X G x - xG,.

(b) %, consists only of the identity transformation on V.

(c) Each ¢,i > 1, is one of the groups

Ayon=1;8,n=>2,9,,n=>4,#%.n=5n%6;
Yy Iz Iy Fai b 65 01 By

The group ¥ is a Coxeter group if and only if }, = 0, and ¥ is crystallo-

graphic if and only if #%, %, and 4, do not appear among the direct
factors %,.



J.£

Classification of Coxeter Groups 77

ORDERS OF IRREDUCIBLE COXETER GROUPS

The orders of the groups .<Z,, %,, and &, were computed in Section 5.3,
and it was observed in Chapter 2 that the order of % is 2n. Since %, is
just the dihedral group #75, it has order 12. The computation of the
orders of the remaining irreducible Coxeter groups is less straightforward
and requires some preparation.

We continue to assume that ¢ is a Coxeter group (possibly reducible).
As in Chapter 4 we shall denote by {s,,...,s,} the basis dual to IT =
{ri,...,r.}. The open half-space containing r; determined by the hyper-
plane 2, = r;* will be denoted by L;; i.e.,

L ={xeV:(x,r)> 0}

Theorem 5.4.1 (Witt, [37], p. 294)
If 5 is the subgroup of ¢ leaving s; fixed, then

A= (S SictsSivtn S,

Proof

There is no loss of generality in assuming that i = n. Set £ =
{84,...,8,-1>. Then clearly # < #, since s, Lr,, 1 <i<n-1,
and so S;s, = s,. Let X be the (n — 1) sphere of radius ||s,| centered at
the origin; i.e.,

X, ={xeV:lx| = lsl}.

Let X, bean (n — 1)sphere of radius d centered at s,,, where d is sufficiently
small so that X, = L, [s,e L, since (s,,r,) = 1, and L, is an open set].

Then X = X, N X, isan (n — 2) sphere of radius (d/2|s,|)\/4lls,|> — d*
centered at the point (1 — d?/2|s,||?)s, (see Exercise 5.13). Since # < O(V)
and J# leaves s, fixed, the sphere X is invariant under # (and also, of
course, invariant under the subgroup .¢).

Choose a point x,e L, N L, N--- N L,_, that is not fixed by any
nonidentity transformation in s Then the Fricke-Klein construction of
Chapter 3 can be applied, using the point x,, to construct fundamental
regions F(X') and F(s#) for A4 and # in V. Since 4 < #, we have
F(#) < F(XA). The half-spaces L,,...,L,_; are obtained when the
reflections S, ,...,S,_, are applied to x,, s0 F(X)< L, N---NL,_,.
As indicated in Chapter 3, we obtain fundamental regions for #" and #
in X by setting Fx(X)=F(#)N X and F(#)= F(>#)N X. By
Theorem 4.2.4 the set F(%) = L, N --- N L, is a fundamental region for
% in V. Since X € L,, we have Fy(#)<= L, N---NL,_, N X € F%).
If Fy(o#) # Fx(X), then we may choose x € Fy(X)\Fy(3#), y € Fy(H#),
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and Te s, satisfying Ty = x. But that is impossible, since x and y are
distinct points in the fundamental region F(%4). Thus Fx(#) = Fy(X),
from which it follows that |.#’| = |47, and hence that # = %/ as desired.

Proposition 5.4.2

Suppose that ¢ is irreducible and that its Coxeter graph G has no
marks over its branches. Then ¥ is transitive as a permutation group on
its root system A.

Proof
Since A = {Tr;: Te %, r;e 1}, it will suffice to prove that if r,r; e I,
then Tr; = r;for some T € 4. Suppose that r;and r; correspond to nodes of
G that are adjacent, i.e., joined by a branch. Then (r;, r))/||7;|| Ir;ll = —1/2,
and
SSiri=8{ri+r)=—ri+(r;+r)=r;.
Since roots corresponding to adjacent nodes are ¥-equivalent, and since G

is connected, by Proposition 5.1.4, it follows that any two roots in IT are
%-equivalent, and the proof is complete.

The proof of Proposition 5.4.2 will also show that .4; and ., are
transitive on their root systems if we can show that the roots r,.r, e II,
with (ry, 7;) = — cos ©/5, can be interchanged by elements of .#; and .4,,
respectively. It can be checked directly that (S,S,)*r, = r,. It is perhaps
simpler and more illuminating to observe that {S,,S,) is dihedral of
order 10, and then to verify that S,S,S,S,r, = r, by following the arrows
in Figure 5.5.

The group %, is not transitive on its root system A. A modified
version of the algorithm used above to construct all roots from the roots
in a base can be used to determine the orbits of A. If we begin with a
single root in the base of &%, say r,, and apply to it every S; for which
(r,,r;) # 0, then apply every S, to each resulting root r for which (r, r;) # 0,
and continue in this fashion, then the set of roots obtained is clearly
Orb(r,). A straightforward application of this procedure shows that A
has two orbits: Orb(r,) is the set of 24 roots of the form +e; + ¢;, and
Orb(r,) is the set of 24 roots of the forms +e;, (1/2)X + e;.

We may now compute the orders of the remaining groups. In each
case we shall find a root r € A that is orthogonal to all but one of the roots
in the base IT given in Table 5.1. If r; eIl is the fundamental root not
orthogonal to r, then r is a scalar multiple of the dual basis vector s;.
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Sary

§18:8,8;r, =r,

ry

Figure 5.5

Thus the stabilizer Stab(r) is the subgroup of % generated by all funda-
mental reflections except S;, by Witt’s theorem. In each case |Stab(r)| and
|Orb(r)| will be known, so an application of Proposition 1.2.1 completes
the computation of |¥|.

Let us illustrate with the case of % The root r = e, — e; is orthog-
onal to r,, r,, and r5 (see Table 5.1), so r = 4s, for some scalar 4, and
Stab(r) = Stab(s,) = {S,, S,,S3» by Theorem 5.4.1. Since the graph of
{r,,r,,r3} isjust By, we see that Stab(r) = %, ,and so |Stab(r)| = 23.31 =
48. As we observed above each orbit of A has 24 roots, so by Proposition
1.2.1 we have

|Z,] = [#4 : Stab(r)]|Stab(r)

= |Orb(r)| |8,] = 24-48 = 1152.

The procedure is the same for all the remaining cases. The remaining
groups are transitive on their root systems, by Proposition 5.4.2 and the
remarks following its proof, so Orb(r) is all of A. In Table 5.3 are listed
the grorn ¥4 the root r = 4s;, the stabilizer of r and its order, and the
cardinality of Orb(r).

The order of each group in Table 5.3 is obtained by multiplying the
numbers in the last two columns. In summary we tabulate all the irre-
ducible Coxeter grcups with their orders in Table 5.4.
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7 i r=As Stab(r) |Stab(r)| |Orb(r)|
S 2 B 2w2a+ 1) o x o, 4 30
I 4 e s, 120 120
F, 4 e, — ey B, 48 24
&, 1 e, + eg s 6! 72
& 2 e +e Dy 25. 6! 126
& 8 (1)) e — eq) &, 25.61-126 240

Table 5.3
4 19| 4 1%
o, (n+ 1! EA 2%.3.5
B, p A 26.32.52
9, 271y &, 27.34.5
> 2n & 210.34.5.7
4, 12 &, 214.35.52.7
'Z 27 . 32

Table 5.4

Exercises

5.1 Suppose that 4, < O(V;) and %, < O(V,) are Coxeter groups,
and suppose that I, is a t,-base for %, and I, is a t,-base for %,.
Set V.=V, ® V, and view %, x %, as a group of transformations
on Vin the obvious fashion. Show that

G =% x%G <OV),
and that ¢4 is a Coxeter group with I, x II, as a t-base, where
t= (tl s l2) eV

5.2 Suppose that {x,,...,x,} and {y,,...,y,} are bases of Vand that
(x;,x;) = (y;,¥;) for all i and j. Define a linear transformation
T:V — Vbysetting Tx; = y;, | <i < n. Show that Te®(V).

5.3 Show that a reducible Coxeter group is crystallographic if and only
if each of its irreducible direct factors is crystallographic.

5.4 If the set {x,,...,x,} = V is linearly independent, show that it
lies on one side of some hyperplane; i.e., (t, x;) > 0, all i, for some
teV.(Tryt L(x; —x,),2 <i<k)

5.5 Show that det Z, = 0.

5.6 Show that for each dimension n there do not exist geometrically

different irreducible Coxeter groups of the same order.
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5.7

5.8

59

5.10

Using Theorem 5.3.1 we may write down all finite reflection groups
in two and three dimensions, and these groups must appear among
the groups listed in Theorems 2.2.1 and 2.5.2. Verify the following
identifications:

Ay x 1 =HY; o, x sy =K%, oA, =H3, B,=H3;
G =H3 o x 1, =66 A x A x| =H3]63;
o, x 1 =H3163; B, x 1 =H#36%; % x1=H#5%5;
Ay X sy x oy = (HD A X Ay = KA

Ay X By = (K Ay x G = (HD*; oy =W]T;

By =W*, Sy =I%, o x H%=HH"

ifnisoddandn > 5;and &7, x #% = (#4)*ifnisevenandn > 8.

(a) If ¢ is an irreducible crystallographic Coxeter group, show that
the orbits in A are the subsets consisting of roots of the same
length.

(b) What are the orbits in A if ¥ = #%5?

Suppose that ¥ is irreducible and that R: V — V is a linear trans-

formation, with TR = RT forall Te %

(a) (Schur’s Lemma) Show that either R = 0 or else R is invertible.
(Hint : ker R is a -invariant subspace of V)

(b) Show that each root r of ¢ is an eigenvector of R, and in par-
ticular show that R has a real eigenvalue.

(c) If Ais a real eigenvalue of R, show that R = Al.

(d) Conclude that the center of ¥ is either trivial or else consists
of just +1.

Since there is an element Te %, such that Te; = —e;, 1 <i < n,
it is clear that the center of %, has order 2 (see Exercise 5.9).

(a) Show that'eZ,, 2,,.,,and #3"*! have trivial centers.

(b) Show that 2,,and #3" have centers of order 2.

For each group ¢ in Table 5.3, denote Stab(r) by #. If W is the

subspace of V spanned by IT\{r;}, then W is invariant under

Let " be the group of restrictions to W of transformations in

(a) Suppose that —1 € ., say —1 = T|W, T e s Use the fact that
{ri,...,ry, r}\{r;} is a basis for V to show that TS, = — 1€ %

(b) If —1€% then —S,e% and —S, e Stab(r) = # Show that
—S|W = —1leA

(c) Conclude that &, has trivial center, and that 4, , %, 4, , %, &5,
and & have centers of order 2.
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512
513

5.14

515

5.16

5.17

Finite Reflection Groups

Construct the root systems of .%;, %, ,and .#,.

Let Y be a sphere of radius o centered at ye V and Z a sphere of
radius f centered at z € V, and set d = d(z, y). Show that the (n — 2)
sphere X = Y [} Z has radius

[20028% + (a® + BA)d?) — (a* + B* + d*)'"?
2d2

‘y:

and center

dz_a2_+_ﬁ2 d2+a2—ﬂ2
x = L y+ 22 z,

assuming that X # (.

Identify x = (4, 45, 43, 4,) € Z* with the real quaternion x = 4, +
Aal + Ayj + Ask € Q (see [23], pp. 87 and 328-329).

(a) Show that the inner product in 2 can be expressed in terms of
addition, multiplication, and the adjoint operation in Q by means of
the formula

(x,y) = (1/2)(xy* + yx*).

(b) If r e #* is a unit vector, show that S,x = —rx*r for all x e Z*.

Suppose that £ is a finite subgroup of the multiplicative group of

nonzero quaternions.

(a) Show that ||x| = 1 for all x € .

(b) If x € .4, show that x* e 4.

(c) If |.#] is even, show that —1 € .#.

(d) For each x e . let S, € O(#*) be the reflection along x. If | ¢ is
even, show that S, = ¥ for each x € . (see Exercise 5.14).

(From [37].) Let A be the group generated by the quaternions.

i x=o—(1/2)i — Bj, and y=02)1+1i+ j+ k),

where a = cos /5 and f§ = cos 2n/S.

(a) Show that i2 = (ix)* = x> = —1 and that y = x%ix~ .
(b) Show that |.#] = 120.

(c) Conclude that .#" is the root system of .7, .

Each marked graph G is uniquely a disjoint union of connected
components (i.e. maximal connected subgraphs) G, G,..., G;.
Show that det G = IT¥_, det G,.
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GENERATORS AND RELATIONS
FOR COXETER GROUPS

In this chapter we assume that the reader is familiar with the elemen-
tary theory of free groups (see [20], pp. 91-94, for example). Readers
familiar with generators and relations may wish to proceed immediately
to page 85.

If ¢ is an arbitrary group generated by a subset ., then there is a
homomorphism ¢ from a free group & of rank |¥| onto %, and so ¥ is
isomorphic with the quotient group & /#, where J# is the kernel of ¢.
In fact, # may be chosen to be the free group based on the set & itself.
Ifan element T of & is denoted by T when it is considered as an element of
the free group # rather than as an element of %, then the homomorphism
is the map that results from setting o(T) = Tforall Te &

If Te %, then T can be written as a product

T=T§Tg - Ti,
where each T; € ¥ and each ¢; is either +1 or — 1. When we wish to call

attention to the particular product of generators we shall say that T is
represented by the word

W=Tg.. Ty

The corresponding element of the free group & is the word W = Tt ...
and two words W, and W, representing elements of % will be considered
the same if and only if the corresponding W, and W, are equal in #. To
allay any possible confusion it should perhaps be emphasized that
W — W is not a homomorphism.

83
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Suppose that {R,:ae€ A}, where A is some index set, is a collection
of words in ¢ with the property that each R, e # = ker ¢, and # is the
smallest normal subgroup of # containing all R,. Then each element of
# is a product of conjugates (in %) of the words R, and their inverses.
In this situation it is said that ¢ has the presentation

(Te #|R, = 1,ae A,

or that 4 has generators & and relations R,, o € A. For example, 4"
has the presentation

(51, 8,I87 = 1,83 = L,(5,S,)" = ).

If certain relations Uy = 1, f e B, where each Uy is a word in the
generators T e ¥ hold in %, then another relation T, 7T,--- T, = 1 in 9 is
called a consequence of the relations U, = lifand onlyiftheword T, - T
is a product of conjugates of the words U, and their inverses in the free
group % Thus if every relation T, --- T, = 1 in ¥ is a consequence of the
relations U, = 1, itis clear that ¢ has a presentation

(TeSA\U; =1,BeB).

We wish to show that if a relation W = 1 may be reduced to the relation
1 = 1 by successive applications of the relations U; = 1,then W = lisa
consequence of the relations U, = 1.
More explicitly, set W, = W and suppose that the relation
Wi=T TVl T, =1
is replaced by
Wy, =T, TVoTsy - T, = 1,

where V, and V, are words related by V;, = V,U,, U, = 1being one of the
relations Uy = 1. Then in the free group # we have

Applying the same procedure to the relation W, = 1 we obtain

Wz = Ws()?z_lﬁz)?z),
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and hence
W1 = W3()?{102X2)()A(1_101X1).

Continuing, we obtain

VVi = VVi+l(Xi_10iXi)’
and so
Wy = W (X7 '0.X)-- (X710, X)),

i=1,2,3,.... By hypothesis some W, is just the identity element 1 of
%, so that W, , | is the empty word in Z ; so

P’ -1

Wl = (Xu_IUuXu) (XI 01X1)7

proving our contention.

Thus in order to show that % has a presentation (Te ¥|U, = 1,
B e B), it is sufficient to show that every relation W = 1 in 4 may be
reduced to the relation 1 = 1 by successive applications of the relations
U, = 1.

’ Suppose now until further notice that 4 is a Coxeter group in O(V),
with base T1 = {r,...,r,}. Then ¥ is generated by the set {S,,...,S,}
of fundamental reflections. By Proposition 5.1.1 there are positive integers
pi; such that (§;5;)P = 1 for each pair i and j of subscripts. Our goal is to
show that ¢ has the presentation

(Sprn Sl SSP=LI<i<j<w,

using the ideas above.

If Te%, then T may be represented (in several ways) as a product
S;, -+ S;, of fundamental reflections. If S; - -- S, is a word representing T
with the property that there is no word representing T having fewer than
k fundamental reflections as factors, then we shall say that T has length k,
and write I(T) = k. We agree that (1) = 0.

Proposition 6.1.1 (Iwahori [25])
If Te 9, then
T)+1  if Tr,e A",
(Ts;) =
(TSy) {I(T) —1  ifTreA,

for each fundamental reflection S;.
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Proof

For each R € 4 denote by n(R) the number of positive roots that are
sent to negative roots by R; i.e., n(R) = |R(A*) N A™|. By Proposition
4.19, S(A*\{r}) = A*\{r}, so

TS(A"N\{r}) = TA"\{r}).

Thus T'S; and T send the same number of positive roots different from r;
to negative roots. If Tr;e A", then TS;r;, = —Tr,e A, so r;is sent to a
positive root by T but to a negative root by TS;. As a result, n(TS;) =
n(T) + 1. Similarly, if Tr,e A~, then TS;r;e A" and n(TS;) = n(T) — 1.
To complete the proof let us show that n(T) = KT).

It is an immediate consequence of what has just been proved that
n(R) < I(R)forall R e 4 forif (R) = k,then Risa product of k fundamental
reflections. Explicitly,if R = §; --- S, , then

n(Sil) = 1’
n(S;,S;,) =n(S;) £ 1 <2,
n(SilSiZSiA) = n(Silsiz) i 1 S 2 + 1 = 3,

WS, S )=n(S;, -8, )rtl<tk-D)+1=k

We may now show by induction on n = n(T) that (T) = n(T). If n = 0
then T = 1, by Proposition 4.2.3, so [(T) = 0 as well. Suppose that n > 1
and that n(R) = I(R) for all R € 4 with n(R) < n. Choose re A* for which
TreA™. Then r = X; A;r;, with all 4;20, and Tr = %; ATreA™, so
some Tr; must be a negative root. Thus n(TS) =n(T) —1=n—-1

By the induction hypothesis T'S;) = n(TS;) = n — 1. But

k-1

(T) = I(TS)S) < TS)+1=(n—1)+1=n

Since the reverse inequality always holds, we have (T) = n = n(T),
and the proposition is proved.

If S; and S; are fixed fundamental reflections and m is a nonnegative
integer, let us denote by (S;S; - - - ),, the word §;5;S;S; - - - having m alternat-
ing factors S; and S;, beginning on the left with ;. If m = 0 we agree, of
course, that (S;S;---), = 1. Similarly, (---5;S)), is the word with m
alternating factors, with S; at the extreme right. On occasion we shall also
use the symbol (- - - §;S; - - - ), to denote a word with m alternating factors,
where the context will determine which reflection occurs at either end of the
word.
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Proposition 6.1.2
If S; and S; are fundamental reflectionsin ¥ and 1 < m < p;;, then
(- 8iS)m-1ricA”.
Proof
If i = j, then p;; = m = 1 and the result is trivial. Assume then that
i # j. If the proposition is false, choose the smallest m for which
(+--8iS)m—1ri€e A”. Clearly m > 1. If mis even then
(- SiSj)m~1ri = (Sj ce Sisj)m—lri
=S+ SiS)m-ari€A7,
and (---S;S)),—,r;€ A" by the minimality of m. Thus by Proposition
4.1.9 we have (- - - §;5)),,— ,r; = r;. By Proposition 4.1.1,
Sj =(--- SiSj)m—ZSi( te SiSj);ulZ’
S0
Sj( tr SiSj)m—Z = ( e SiSj)m—ZSi’
or
(Sj t SiSj)m—l = (Si T SjSi)m—l'

But then (5;S;- - )m—2 = (S:S)" ! = 1, contradicting the fact that S;S;
has order p;;. The proof when m is odd is entirely analogous.

Proposition 6.1.3
Suppose that Te %, that i and j are fixed, and that (T'S;) = TS,) =
T) — 1. Then T(---8;S;--*),) = T) — mif0 < m < p,;.

Proof
We use induction onm. The resultis trivial if m = Oorm = 1. Suppose

that m > 2 and that the conclusion holds if m is replaced by m — 1. By
Proposition 6.1.1 we have Tr;,Tr;e A~. By Proposition 6.1.2 the root
(- 8:S))m—17: is positive, so it is of the form ar; + Br; with « and B both
nonnegative and not both zero. Thus
T(- - 88y 1ri = T(ar; + Br))
=aTr; + BTr;e A™,
and so

I(T( te SjSi)m) = l(T( T SiSj)m— 1Si)
= I(T("'Sisj)m—l) -1
=(T)—m—-1)—1=KT) — m,
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by Proposition 6.1.1 and the induction hypothesis. Similarly,
(T(---S;5),) = UT) — m.

If W=§; ---8;, is a word in ¥ then each word W; =S, ---§,,
0 <j <k, will be called a partial word of W.1f j = 0, then the word W, = W,
has no factors, and we agree as usual that W, = 1.

Theorem 6.1.4 (Coxeter [ 9])

Every relation W = §; ---§; = 1 in a Coxeter group ¥ is a conse-
quence of the relations (S;S;)P = 1, so 4 has the presentation

<Sl, ey S,,|(SiSj)pij = 1,1 < i SJ < n).

Proof

Suppose that u is the maximal length of partial words of W. Then we
may write Was W,S,S;W,, where (W,S,) = uand every partial word of W,
has length less than u. Set p = p;;, let W' = W(§;S;---),, W, and
observe that W and W' are equal, as elements of % With the exception of
W,S; all partial words of W coincide, as group elements, with partial
words of W', In place of W, S;, W’ has the partial words

WiS;, WiS;Sise s Wi(S;Si-+ )apes-

Setting T = W,S, and using the relation S} = 1, we see that the latter
partial words of W’ coincide, as group elements, with the words
T(S:S; )m>» 2<m<2p~—2 Since (T)=u is maximal, we have
(TS;) = TS;))=UT)— 1. If 2 <m<p, then [T(S;S;---),) <u by
Proposition 6.1.3. If p < m < 2p — 2,then 2 < 2p — m < p, and

KT(S:S;---)m) = UT(S;Si - )2p-m) < W,

again by Proposition 6.1.3. Thus by applying the relation (S;S,)"V = 1,
we have replaced the original word W by another, W', all of whose partial
words have length less than or equal to u, and having one fewer partial
words of length u. Loosely speaking we have removed the first partial
word of maximal length.

The procedure may now be repeated as many times as necessary
until we arrive at the relation 1 = 1, and the theorem is proved.

In order to illustrate the proof we introduce next a geometrical inter-
pretation, due to Coxeter, of the words S;, --- S, .

If F is the fundamental region described in Section 4.2, recall that
F~ N ri is called the ith wall of F, and that S; is the reflection through the
ith wall. Each wall of the fundamental region TF, where Te ¥, is the
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image under T of a wall of F, and the image of the ith wall of F will be called
the ith wall of TF.

Each word §; S;,---S; may be associated with a path in V in the
following manner. First connect a point in F to a point in S; F by a path
(e.g., a line segment) through the i,st wall of F. Next connect that point
to a point in an adjacent fundamental region by a path through the i,nd
wall of S; F. Note that the i;nd wall of §; F is the intersection of S; F—
with the hyperplane S, (rs;), so the reflection that is actually applied at
the second step to send S; F to the adjacent region is the reflection along
S;,ri,» which, by Proposition 4.1.1, is S; S;,S;;'. Thus the fundamental

region reached at the second step is
(Silsizsi_l 1)(Si1F) = SilsizF'

Next the point chosen in §; S;,F is connected to a point in an adjacent
fundamental region by a path through the i3rd wall of S; S, F. In this case
the reflecting hyperplane is S;, S, (ri,), so the resulting fundamental region
is

(Silsiz)sig(silsiz)_1(Silsf2F) = 8;,8:,8,F.

Continuing in this fashion we obtain a path extending from F to
S;, -+ 8 F corresponding to the word §;, - -- §; . In particular, if we have a
relation S; ---S; = 1, then the corresponding path leads from F back
to F, and we may choose the final end point to coincide with the initial
point of the path. In other words we may take the path corresponding to
S, -+ S;, to be a closed path.

If X is a nonempty subset of V that is invariant under 4 and that is
pathwise connected, then we may further restrict the path representing
a word to be a path in X. In one of the illustrative examples below, for
instance, 4 will be the group of symmetries of a tetrahedron and X will be
the surface of the tetrahedron.

The lengths of elements T of ¥ may be related to the fundamental
regions of % as follows: Label the fundamental region F with 0, and for
each Te ¥ label the fundamental region TF with the Roman numeral
for [(T). In practice the Roman numerals may be attached to the various
fundamental regions as follows: F is labeled 0, then each region adjacent
to F is labeled I, each region other than F that is adjacent to a region
labeled I is labeled II, etc. In general, if a region has not yet been labeled
and if it shares a wall with a labeled region, then it is labeled with the next
higher Roman numeral.

We may now illustrate geometrically the proof of Coxeter’s theorem
by observing the effects that changes in the words have on paths represent-
ing them.
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Figure 6.1

Suppose that 4 = /3 = W ] 7, the group of all symmetries of a
tetrahedron. Then
St =(8152)° = (5,535)" = (5,53)* = 1.

The following relation holds in 4 :

W = 8,5,5,5,5,5,5,3,5,5,5,5,8,5, = L.
The corresponding closed path on the surface of the tetrahedron is shown
in Figure 6.1. It is clear from the Roman numerals in the figure that 5 is
the maximal length for partial words of W, and that there is just one
partial word of length 5, viz. §,S,5,5,S,5,5,. As in the proof of Theorem
6.14 we write W= W,S5,S, W, with W, =8§,S5,5,5,5,S, and W, =
S,5,8,S8,S,S,. Applying the relation (S,S,)® = 1, we replace S,S,; by
S,5,8:S,, thereby replacing W = 1 by the relation

w = w,S,S8,8,5,W,

= 5,8:535,5,5,5,5,5,5,5,538,8,5,5,
The path corresponding to W is shown in Figure 6.2(a).



@b@d@r
B\ =3




92 Finite Reflection Groups

The word W) has no partial words of length 5 or greater, but it has
two partial words of length 4—S,S,55S,5,S,and S,S,5,5,5,5,5,5,5,S,.
Repeating the procedure we apply S = 1 and obtain the relation

W® = §,8,5,5,5,5,5,5,5,5,S,5,8,S, = L.
The change from the path of W to the path of W' is indicated by the
dashed line in Figure 6.2(a).

The next partial word of length 4 is removed by applying the relation

S% = 1, and we obtain the relation

Ww® = §,S,8,5,5,5,5,5,5,5,5,S, = L
The corresponding path is shown (undashed) in Figure 6.2(b).
Continuing, we obtain the relations

W@ = 5.5,5,5,5,5,5,5,5,5,5,8, = 1,
W® = §,5,5,5,5,5,5,5,8,8, = 1,
W® = §,5.5,555,5,5,5,5,5, = 1,
W = 8,5,5,5,5,5,5,5,5,5,5,8, = 1,
w® = §,5.5,S,5,5,S,5,5,S, = 1,
w® = §,8,5,5,5,5,5,S, =1,

w19 = §.5.5,8,5,8, = 1,

wib = §.5.5,8, =1, wi2 = g8 =1,
and finally 1 = 1. The corresponding paths are shown in Figure 6.2.

In the example, each replacement of one word by another by means
of applying a relation (S5;S;)*” = 1, with i # j, corresponds to replacing a
path by another path that passes on the opposite side of a particular
edge of a fundamental region, i.e., to ““pulling” a path past an edge of the
region. Likewise, an application of a relation S; = 1 corresponds to
pulling a path through a wall of a fundamental region.

It is interesting to observe that if p;; > 2, then the word W’ actually
has more fundamental reflections as factors than the word W it replaces.
Geometrically, the path of W’ is longer, in the sense that it reaches more
fundamental regions, than the path of W. However, the path of W' is
shorter than that of W in the more important sense that it does not wander
so far from the initial fundamental region F.

For the further discussion of examples, the procedure in the proof of
Theorem 6.1.4 may be modified so as to make it more efficient. As before,
write W = W,S§;S;W,, where W,S, is the first partial word of maximal
length u. Then write W;S; as W;(-- - §;S,),, where the last factor of Wj is
neither S; nor S; (observe that v < 2p;;). Next write S;W, as (S;S; - --),,W,,
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where v + w = 2p;;, if possible, or otherwise v + w < 2p;; and the first
factor of W, is neither S; nor S;. Let W’ be the word obtained from W by
applying (S;S;)P7 = 1 and replacing (- -- $;8:),(S;S;- - )w by (- $;5; -+ ),
where k = 2p;; — v — w. Then W' has one fewer partial words of length u
than W (see Exercise 6.3).

To illustrate, suppose that 4 = 8, = #*, so that S? = (S,5,)* =
(5,53)% = (8,S;)° = 1. The following relation holds in %

W = S§,5,5,5,5,555,5,535,5,555,5,5,5,5,5,5,555,S, = L.

The corresponding path on the surface of the cube is shown in Figure
6.3(a). The maximal length of partial words of W is 6, and there are two

v \J VI v
111
v
ﬁ 11 v
2 v
3| F 1
1
I v
11| 11

3 N

(b) (c)
Figure 6.3
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occurrences—S,5,5,5,5,S; and §,535,5,5,535,5,5:5,5,555,5,85,5,.
We write W = W,(S,S,)S, W,, as indicated above, and apply (S,S;)* = 1,
replacing S,S,S, by S;, thereby replacing W = 1 by the relation

W = W,S,W, = 1.

The corresponding path is shown in Figure 6.3(b).

The word W has S,S,5,5,535,555,5,5;5,5,5,S, as its only
partial word of length 6. We next apply (S;S,)* = 1, replacing
S,8,8,5,5,58,S, by §,, and obtain the relation

W® = §,5.5,5,5,5,5,5,5,5,5,5,5,S, = 1.

The path is shown in Figure 6.3(c).

The succeeding applications of the procedure and the drawing of the
resulting paths are left as an exercise.

For the remainder of the chapter we shall suppose that  is a finite
group having the presentation

(Ty,...,TATT)P = 1,1 < i,j < n,

where p; = 1 and p;; = p;; = 2 if i # j. We wish to establish the con-
verse to Theorem 6.1.4, i.e., to show that ¢ is (isomorphic with) a Coxeter
group.

Set & = {T,,..., T,}, the set of generators of 4. If ¥ is a disjoint
union of nonempty sets & and %, with p;; = 2 whenever T;e 4 and
T, e 4, then ¥ is called decomposable. Otherwise % is called indecompos-
able.

Suppose that-% is decomposable, with ¥ = 4 U % . By relabeling,
if necessary, we may assume that & = {T,,..., T} and &% = {T;+,

L T}.Set¥ = (&> < 9.i = 1,2. The (external) direct product 4, x %,
has generators T;, where

T,_{(T;,l) ifl1 <i<k,
LT ifk+1<i<n,

that satisfy the relations (T;T)? = 1. Thus %, x %, is a homomorphic
image of % and |9, x %,| < |9|.

Ifk+ 1 <i<n,then T; '%T, = %, since T, commutes with each
generator of %, . Thus ¥, is a normal subgroup of ¢4 and, similarly, %, is a
normal subgroup of 4 Furthermore, 4,%, = %, again since the respective
generators commute with one another. Thus

19 = 1%%| = 1%|1%I1%, N %,
=19 x GIN% N % <191% N %| <9
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As a result, 4, N %, = 1, and ¥ is in fact the (internal) direct product of
its subgroups %, and %, .
If ] and £, are groups having presentations

CAITTP = L1 < j <k,
CHITTY = Lk + 1 <i <n,

respectively, then %, and %, are homomorphic images of J#; and 5;
S0 |%,| < |41, |%| < |5 But the presentation given for ¥ is a presenta-
tion for A, x A, (see Exercise 6.2), so

XA 29 =% x%,.
It follows that |9] = ||, and s0 % =~ A, i =1, 2.

Summing up, we have shown that if 4 is decomposable, then it is a
direct product of subgroups, each having a presentation of the same type
that ¢ has. If either of the direct factors is decomposable, it is also a direct
product. Ultimately, we see that ¢ is a direct product of indecomposable
groups, each having a presentation of the same type that ¢ has. If each of
the indecomposable direct factors ¥ of ¢ is isomorphic with a Coxeter
group S, then ¥ is isomorphic with the Coxeter group that is the direct
product of the Coxeter groups #;. Consequently, it will be sufficient to
show that indecomposable groups are isomorphic with Coxeter groups.

We assume for the remainder of the discussion that 4 is indecomposable.

If {e,,...,e,} is the usual basis for %", define transformations
Sis-..,S,0on A" by setting

Sie; = e; + 2(cos m/p;)le;.
Set a;; = —cos n/p;; and let A denote the n x n matrix («;;). Suppose that
x=ZX;Ae;e " If we set a; = (o;y,%5;,...,0;,) € X", the ith row (or
column) of A, then we have
Six =ZX;48; = X;A{e; — 2ue)

=Z;Ae; — 2% Lo, = x — 2x, a)e;.

J I LV Ag]

Set Z = af = A"; e,
P ={xeR":(x,q) = 0}.

If xe#, then S;x = x — 2(x,a))e; = x, and S;e; = ¢; — 2(e;, a;)e; = e; —
206; = —e;. Since §; leaves the elements of the hyperplane Z. pointwise
fixed and carries e, to its negative, we see that geometrically S, is the reflec-
tion (not necessarily orthogonal) through £, in the direction of e;. Our
procedure will be to modify the inner product on #”" so that S,,..., S,
will become orthogonal transformations and generate a Coxeter group
isomorphic with ¥,
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Denote by .# the group of nonsingular transformations of #£"
generated by {S;,...,S,}.

Proposition 6.1.5
There is a homomorphism ¥ from ¥ onto # with y(T}) = S,
1 < i < n. In particular, # is a finite group.

Proof
We need only show that the generators S,..., S, of # satisfy the
relations in the presentation of ¥4 (see Exercise 6.1). Since S,e; = —e;,

we have for all x e 2" that
Six = Six — 2(x, a)e;) = Six — 2x, a;)Se;
= x — 2(x, a)e; + 2x, a)e; = X3
so S = 1.
In order to show that (S;5;” = 1 when i # j, we lose no generality
by taking i = 1 and j = 2. Since a;;, = a,, = land 0 < q;; < 1 if i # j,

it is immediate that a, and a, are linearly independent in 2#". Thus their
orthogonal complements 2, and %, are different from one another, and

2, N 2, has dimension n — 2. Choose x,,...,x,€ %" such that {x,,
X3, X4, ..., X,} is a basis for 2, and {x,, x5, ..., x,} is a basis for %, (and

hence {xj,...,x,} is a basis for # N %) Let us show that
{e,,e;,,x5,...,x,} is a basis for 2" If A e; + A,e, + Z!_; 4,x; = 0 were
a nontrivial dependence relation, then A4, # 0 and A, # 0 since e,
e, ¢ P N P, Thus x = A,e; + A,e,€ P (1 &, But then (x,a,) = (x,a,)
=0, or

Ay + 145 =0,

AyA; + Ay = 0;
so A, — a?,4; =0, or a?, = 1 = cos® n/p,,, contradicting the fact that
P12 = 2.

If p,, =2, then a;, = —cosn/2 =0, and so S,e, = e, S,e, = ¢;.

Thus

S;S;x =x ifxe? NP,
S1S,e; = Syey = —ey,

and
S182e; = Si(—e€)) = —ey.

It follows that (S,S,)* = (S,5,)"2 = 1.
Finally, suppose that p,, > 2. With respect to the basis {e,,e,,
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X3,...,X,} the transformation S,S, is represented by the matrix
4o2, — 1 =20, |
10
J 2zl oa
0 |‘ 1n—2

Easy computations show that the 2 x 2 matrix
B dot, — 1 =20,
2045 -1
has eigenvalues ¢*™/?12 and e~ *™/?12, Since p,, > 2, the eigenvalues of B
are distinct and B is similar (over the complex field) to the matrix

e2milpiz 0
C= 0 e'2"i/P|2

Since C?'? = I, we conclude that B”*? = [, and hence that (S,S,)"*? = 1,
proving the proposition.

The next proposition will be needed in Chapter 7, as well as for
present purposes.

Proposition 6.1.6

If 5# is any finite group of invertible transformations of ¥ then there is
an inner product C on V so that # is contained in the orthogonal group
relative to V.

Proof
For each pair x and y of vectors in V set C(x,y) =

X {(Tx, Ty): Te #}. It is immediate that C is a symmetric bilinear
form on V. The associated quadratic form Q is positive definite since
0x)=C(x,x) =X Tx>*>0 if x#0,
so C is an inner product on V. Furthermore, if R € 5# then
C(Rx, Ry) =Z {(TRx, TRy): T € '}
=X {(Ux,Uy): Ue #} = C(x, y),

and C is invariant under all transformations in J#. Equivalently 5 is a
subgroup of the orthogonal group relative to C.

Assume once more that &# = (S, ..., S,), as above, and continue to
denote by C the inner product on V = %" constructed in the proof of
Proposition 6.1.6.

Proposition 6.1.7
Suppose that W is a subspace of #" such that TW = W for all
Te # Then either W = " or W = 0.
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Proof
Suppose that W # A", W # 0, and set

W' ={xe# :C(x,y) =0forall ye W}.

Then W' is the orthogonal complement of W with respect to the inner
product C,so 2" = W@ W'. If Te.# and xe W', then

C(Tx,y) =C(T 'Tx, T 'y) = C(x, T 'y) =0

il ye W, since then also T 'ye W. Thus TW’' < W' for all Te #. If
e;e W and e;¢ W, then S, = ¢; — 20,0, W; so o;; =0, or p;; = 2,

. p LYy
for otherwise e; € W. The same reasoning shows that ife;e W’ and e; ¢ W’,

then p;; = 2. Since ¥ is indecomposable, it follows that no e; is in
either W or W’'. Write e; = x + y, with xe W, ye W. Then S;x =
x — 2Ax,a,)e; € W, and
2(x,a)e;, =x — S;xeW;
so (x,a,) = 0 and S,x = x, for otherwise e, € W. Similarly, S,y = y; so
—e; =8e, =8 (x+y)=x+y=ey,
a contradiction.

We define another bilinear form B on #" by setting B(x, y) = (Ax, y).
Since A is a symmetric matrix, B is a symmetric form. Observe that
B(x, ;) = (Ax, e;) = (x, Ae;) = (x, q))
for each i, so
S;x = x — 2B(x, e;)e;
forall x e #”. Also B(e;, ¢;) = a;; = 1.

In order to check that the form B is invariant under the transforma-
tions in #, it will suffice to check that B(S;x, S;y) = B(x, y) for each §;,
since the transformations S; generate #. Given x, y € #", we have

B(S;x, S;y) = B(x — 2B(x, e))e;, y — 2B(y, ¢;)e;)
= B(x, y) — 2B(x, ¢;)Ble;, y)
- ZB(y’ ei)B(eiv X) + 4B(x, ei)B(ya ei)B(ei# ei)
= B(x, y),
as desired.

Proposition 6.1.8 (Schur’s Lemma)

Suppose that # isa group (or in fact any set) of linear transformations
on a finite-dimensional vector space V over a field %, and suppose that the
only #-invariant subspaces of V are 0 and V. If S is a nonzero linear
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transformation on V such that ST = TS for all Te J#, then S is non-
singular.

Proof

Let W be the null space of S. Then W # Vsince S # 0. If xe W
and Te #, then STx = TSx = TO = 0, so Txe W. Thus W is # -invar-
iant, so W = 0, and S is nonsingular.

Corollary
If S has an eigenvalue 4 in %, then S = Al.

Proof

The transformation S — 4l also commutes with all Te #. If § — /1
were nonzero, it would be nonsingular by Schur’s Lemma, contradicting
the definition of an eigenvalue.

Suppose that # = {R,, R,,..., R,}, and let R; be represented by
the matrix M; with respect to the basis {e;,...,e,}. If we set
P =3X", MiM,, then P is easily seen to be symmetric and positive
definite. In fact,

Clx, y) = LdRx, Ryy) = LM x, M;y)
= Z(MM;x, y) = (Px, y).

Proposition 6.1.9

If Te # is represented by the matrix M with respect to the basis
{ei,...,e,}, then

M(P~'4) = (P"'AM.

Proof
Since the forms B and C are .# -invariant, we have

C(P™'Ax,y) = (PP 'Ax,y) = (Ax,y) = B(x, y)
=B(T 'x, T 'y)=BM 'x, M1y
— (AM~'x, M~ 'y) = (PP 'AM ~'x, M~ 'y)
=C(P'AM ™ 'x,M " 'y) = C(MP 'AM " 'x, y)

forall x,y € #". Since C isan inner product, we may conclude that P~ '4 =
MP~'AM ! and hence that M(P " '4) = (P~ 'A)M.

Theorem 6.1.10
The bilinear form Bisa positive scalar multiple of the inner product C,
so Bisalso an inner product on #".
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Proof

Since the matrix P! is positive definite, we may write P~ ! = NN,
where N isa nonsingular real matrix (see [1], p. 256). If T € # is represented
by the matrix M with respect to the basis {e,, ..., e,}, then Tis represented
by the matrix N"'MN with respect to the basis of columns of N. By
Proposition 6.1.9 we have

(N"'MN)(N'AN) = N"'M(P 'A)N = N"Y(P ' A)MN
= N INN'AMN = (N'AN)(N"'MN).

Thus the transformation S represented by the matrix N'AN with respect
to the basis of columns of N commutes with all Te #. Since N'AN is
symmetric, its eigenvalues are real; so by Proposition 6.1.7 and the
Corollary to Schur’s Lemma we sece that N'AN = Al for some nonzero
scalar A. Thus

A= ANY) "N~ = JNN) ! = AP,
SO
B(x, y) = (Ax, y) = 4(Px,y) = 2C(x, y).

Since 1 = B(e,,e,) = 2Cle,,e,) and Cle,,e,) > 0, we see that 2 > 0,
and the theorem is proved.

Let us denote by V the vector space #" endowed with the inner
product B.

Theorem 6.1.11 (Coxeter)
The group # is a Coxeter subgroup of ((V), and % is isomorphic
with #.

Proof

The transformations S; are orthogonal reflections of V since Six =
x — 2B(x, ¢;)e; for all x, and r; = ¢; is a root of S;. Since {r,,...,r,} isa
basis for V, .# is effective and hence is a Coxeter group. The quadratic
form of the set of roots {r,, ..., r,} has matrix 4 since

B(r;,ry) = o;; = —cos n/p;;,
$O {ry,...,r,; has a positive definite Coxeter graph. The graph is con-
nected since ¥ is indecomposable, so it must be one of the graphs in Figure
5.3. The construction of Section 5.3 may be applied to theroots {ry, ..., r,},
and we see that {S,, ..., S,} are fundamental reflections for .#. But then
by Theorem 6.1.4 .# has the presentation
Sy SSS)Py = 1),

so # is isomorphic with 4.
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Exercises

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

Suppose that ¢ has a presentation {(¥|#) and that y is a function
from & into a group # Suppose further that each relation in #
becomes 1 € & if each T e & that appears in the relation is replaced
by ¥(T) [loosely speaking we say that the elements of (&) = #
also satisfy the relations .in #]. Show that y can be extended to a
homomorphism from ¥ into #

Suppose that ¥, and %, are finite groups with presentations
(A2, > and (HA|#,), where S and ¥ are disjoint sets. Show that
%, x %, has the presentation (& ; U & ,|%#, U %2, U #), where #
is the set of all relations S™!T ST = 1, with Se€ %, Te %.

Show that the modified procedure discussed on page 92 produces
a word W’ with one fewer partial words of length u.

Verify that the following statement provides a geometrical inter-
pretation of Proposition 6.1.3: Of all the fundamental regions
sharing a common edge, there is a unique one with the highest
Roman numeral.

Show that the relation
5:5,8,555,535,5,555,5:5,5,5,5,5,5,5:5,535,555,5,8,5, = 1
1s a consequence of the relations

St =(8,5,)° = (5,53 =(5,83)° = 1

in the group #* = 4; of the icosahedron. It may be helpful to
sketch paths on the surface of a cardboard model.

Show that the finite dimensionality of V is not essential in Schur’s
Lemma (Proposition 6.1.8).

Set « = —cos n/m. Show that the matrix

4> — 1 =2«
200 —1
has eigenvalues e*2%/m

Let 2 denote the rotation subgroup of a Coxeter group %,

(a) Show that # consists of all elements of & that can be represented
as words in an even number of fundamental reflections.

(b) If Te % and ¥ is irreducible, show that T can be written as

S:,Si, -+ S, where adjacent factors S; and S; , | correspond to

nodes of the Coxeter graph that are joined by a branch (or are

equal) for all j.
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(c) If a mark p;; on the Coxeter graph of ¢ is odd, show that S;S;
is a commutator [e.g., if p;; = 5, then §;S; = §,5,5,5;5;5,S;S; =
S7HS:S;S) TS (S:S;8)).

(d) If%isirreducible and ifevery mark p;;is odd, show that # = ¥/,
the commutator subgroup of ¢, so %’ has index 2 in ¥.

(e) In the cases not covered by part (d), show that ¥’ has index 4
in 4 (see [12], p. 126).

6.9 Suppose that ¢ is a Coxeter group.

(a) Show that there can be at most one element T such that
TAT)=A".

(b) If Te% and T(A*) # A~, show that —r;¢ T(A™") for some
r;eIl. Conclude that n(S;T) = n(T) + 1 (see the proof of
Proposition 6.1.1).

(c) Show that there is an element Te % such that T(A*) = A~
and conclude that 4 has a unique element with maximal length.

The remaining exercises require some preliminary discussion.

If 4 is a Coxeter group with fundamental reflections S,,...,S,,
then a Coxeter element of % is any product
Srz(l)sn(Z) T Sn(n)’
where  is a permutation of {1, 2, ..., n}. If % is irreducible and its Coxeter

graph has no branch points, we agree to label the roots in IT in accordance
with the following labeling of nodes of the graph:

If the graph has a branch point we label the roots in accordance with

1 2 j—1 j j+1n=2 n—1

O ) 3

j=n
where n is called j' to call attention to the fact that j' will be considered as
adjacent only to the integer j among {1,2,...,n}, and in particular not
adjacent to n — 1. In all other cases, adjacency has the usual meaning for
integers in the set {1,2,..., n}.

6.10 Suppose that 4 is an irreducible Coxeter group.
(a) If the factors of a Coxeter element are permuted cyclically,
show that the resulting Coxeter element is conjugate with the
original one [e.g., S$;S,--- S, = $,(5,5;--- S,S)S7 1.
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(b) If two adjacent factors with nonadjacent subscripts are inter-
changed, then a Coxeter element is unchanged.

(c) Use (a) and (b) to show that if adjacent factors with adjacent
subscripts are interchanged in a Coxeter element, then the
resulting Coxeter element is conjugate with the original [e.g.,
SISZSig"'Si,. = Sl(S2Si3"'Si,.S1)Sl_1 = Sl(SZSi3"'SISi,.)Sl_l =
= SI(SZSISi3 T Si,,)Sl_ .

(d) Conclude that all Coxeter elements of % are conjugate with one
another.

6.11 Show that all Coxeter elements of a Coxeter group % (possibly
reducible) are conjugate with one another.

6.12 Find the distinct Coxeter elements in the groups of symmetries
of the tetrahedron, cube, and icosahedron.



chapter 7
INVARIANTS

7.7 INTRODUCTION
The 2 x 2 matrix

A_[—uz ﬁ/z]
I IVE ERY:

acts on polynomials in two variables X, Y; it replaces X by —(1/2)X
+(/3/2)Y and Y by (\/3/2)X + (1/2)Y. For example, if f= X2 — XY

then
Af = (—%X +§ Y>2 - <—;X +§ Y)(-\?X+% Y)
_ (1 +4‘/§>X2 — (1 +2\/§>XY+ <3 _4ﬁ>Y2.
If

1 0
B=[0 1:| then Bf= X2+ XY.

The matrices 4 and B above generate the dihedral group 53 of order
6. If f; is the polynomial X 2 + Y2 then clearly Af; = f; and Bf; = f; since
A and B are orthogonal matrices and f; is the square of the length function
for a vector with entries X and Y. It follows that Cf; = f; for all C € #3.

104



7.2

Invariants 10§

In general a polynomial f'is an invariant for a group % if Tf = ffor all
T in 9. 1t is straightforward to verify that f, = X* — 3XY? is also an
invariant for #73 as represented above, though it may be less clear how f;
might be obtained. It is perhaps even less clear, but it is true, that all
possible invariants of #3 are generated by f; and f,. Moreover f; and f; are
independent, in the sense that there is no nonzero polynomial g with
g(f1,/2) = 0. A change of coordinate systems makes it clear that f; is an
invariant (see Exercise 7.12).

The dihedral group of order 6 can also be represented as #3]%3, for
which we may take as generators the permutation matrices

1 00 010
A*=10 0 1 and B¥=]1 0 O
010 0 0 1

Then the “elementary symmetric polynomials” o, =X+ Y + Z,
6,=XY+ XZ + YZ, and o3 = XYZ are invariants, they generate all
the invariants, and they are independent in the sense mentioned above.

It is generally quite difficult to describe explicitly all the invariants of
a given group (see Exercise 7.14 to see that the situation can be quite
complicated even for a cyclic group of order 4). The theory is reasonably
manageable, however, for finite reflection groups. We shall see that each
reflection group ¥ < O(V) has a set of n (=dim V) independent generating
invariants, and that in fact reflection groups are characterized by that
property.

The invariant theory of finite reflection groups will be developed in an
essentially coordinate-free manner in the following sections, and the above
examples will be put in their proper setting.

POLYNOMIAL FUNCTIONS

Suppose as usual that the Euclidean vector space V has basis
{x1,..., x,} and dual basis {y;, . .., ya}. Denote by & = F(V) the set of all
functions f: V' — #. With the usual pointwise operations of addition,
multiplication and scalar multiplication § is a commutative algebra
over 4.

Define functions Y; €&, | <i < n, by setting Yi(v) = (v, y;) for all
ve V, and define P = P(V) to be the subalgebra of F generated by
Y,, Y,, ..., Y, (and the constant function 1). Thus the elements of B are
functions f: V' — £ that are sums of (finitely many) products of the form
aYft Y4 ... Yin where a e # and 0< a; € Z for each i.

The functions fe€ ‘B are called polynomial functions on V. It is in fact
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true that if Z,, . . ., Z, are distinct commuting indeterminates over % then
the map from the polynomial algebra #[Z,, ..., Z,] to B determined by
Z;— Y;is an Z-isomorphism (this depends on the fact that £ is an infinite
field). As an important consequence we may carry over to B some of the
standard concepts connected with polynomials. In particular the function
aY{ Y5 - Yir, withO # ae # and 0 < g; € Z for all i is called a monomial
of degree d = £, a;. Thus each f # 0 in ‘B can be written uniquely as a sum
of monomials in Y,,..., Y, with distinct sequences (ai,....,a,) of
exponents. The degree (relative to Y;,..., Y,) of any f# 0 in P is the
maximum of the degrees of its unique monomial summands.

If fe B we may write f = f(Y;,..., Y,), and then substitute suitable
quantities yy,..., y, to obtain f(y,, ..., y»). This will not tend to cause
confusion with the notation f(v), ve V, reflecting the fact that fis a
function from V to #£. In fact, f(v) is the result of the substitution
S(Y1(v), ..., Ya(v)).

The linear (i.e., degree 1) polynomials Y, ..., Y, are determined by
the fact that Yi(x;) = d;;, 1 <i,j < n, so their definition, and hence that of
B, is quite general and does not depend on the inner product in V. In fact,
{Y1,..., Y,} is the dual basis relative to {x, ..., x,} for the dual space V'*
of linear functionals on V. As a consequence P is the subalgebra of §
generated by V*, and hence B is independent of the basis {x;, ..., x,} (see
Exercise 7.1 for more explicit details). Furthermore the definition of
makes sense for any field of scalars, not just £.

A polynomial (function) f'e B is called homogeneous if all its monomial
summands have the same degree, or if f = 0. If 0 < d € Z write B, for the
set of all homogeneous polynomials of degree d, together with the zero
polynomial 0. Clearly each 3, is a subspace of the #-vector space B3, and
B is their direct sum,

‘B=‘Bo@§r’1@‘32@'”-

Note that B, consists of all the constant functions, so we may identify B,
with #. Note also that P, = V*, the dual space, which is isomorphic
with V.

Let us write 4.2 (V) for the group of all nonsingular transformations
of V (the general linear group). If T € 4.¥ (V') we define an action of T on
as follows: if feP and ve V then (Tf)(v) =f(T 'v). It is an easy
consequence of the definition that if fe B then Tfe B. In fact T3P, = P,
for each degree d (see Exercise 7.2).

Proposition 7.2.1
If S, Te 4. (V) and fe B then (ST)f = S(Tf).
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Proof
Ifve Vthen (ST) ) = f((ST) o) = f(T™'S ) = (TS 'v) =
(S(TN))(W), so (ST)f = S(Tf).

The proposition makes clear why the inverse appears in the definition
of the action of T on f.

If 0 # re V define a linear polynomial L, € B, by setting L. (v) =
—2(v,7)/|r||?, allv e V, so L(r) = —2. The null space (zero set) of L, is the
hyperplane r*.

If ve V write v = x + ar, with xer* and a e #. Then L,v = L.x +
oL,y = —2a. Thus if S, is the reflection along r then S,v = S,(x + ar) =
x — ar, and so

S, =v+ (Lv)r
forallve V.

Proposition 7.2.2
If O # r € V then the linear polynomial L, is a divisor of S, f — ffor all

fe .

Proof

By appropriate choice of basis there is no loss of generality in
assuming that r = y, and hence L, = (—2/| y,|1?)Y;, which is a divisor of
S,.f—fifand only Y, is. We have (S,.f—f)(©) =f(S,v) — f(v) =f (v + (L, 0)r)
= f(0) = f(v ~ 2/l y11*)(Y10)r) — f(v), which becomes f(v) — f(v) = O for
all v e V if we substitute O for Y,. Clearly then Y, must appear in each
monomial summand of S,f— f, unless S, f — fis itself 0. The proposition
follows in either case.

As a consequence of Proposition 7.2.2 we may write, for each fe B,

S.f=f+ (0:f)Ls,

where ,f is a uniquely determined function in P that is either O or is of
degree 1 less than deg f. We view J, as an operator that transforms
polynomials to polynomials of lower degree, with §,B, < B,..; for
l1<del.

INVARIANTS

Suppose ¥ < 4L (V). If fe 4 and Tf = ffor all T € ¥ then fis called a
(polynomial) invariant of 4. We will write 3 = 3(%) for the set of all
polynomial invariants of 4. Note that J is a subalgebra of B. Further-
more, it is easy to check that if we set 3, = InP,; for each degree
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d then 3 is the direct sum 3o ® I, @ 3, @ -+ of its subspaces of
homogeneous invariants.

One of the main problems of classical nineteenth century invariant
theory was the determination of generators for the algebra 3 of invariants
for specific groups ¢. For a familiar example, recall the Fundamental
Theorem of Symmetric Polynomials (in which % is the symmetric group
& ,): every symmetric polynomial (invariant of #,) is a polynomial in the
“elementary symmetric polynomials” ¢, = %; Y},...,0, =11} Y,.

If % is a finite subgroup of . £(V) define My, = M: B — P by setting

Mf= 9| ' {Tf: Te %)

for all fe B. Think of Mf as the mean, or average, of the 4-transforms of f.
Clearly M is a linear transformation, and M, < B, for each degree d.

Proposition 7.3.1

Suppose ¥ < 4.¥(V) is finite. Then

(i) if fe P then Mfe T, and

(i) M? = M, and M restricts to the identity map on 3.

Thus M is a projection from P onto J.

Proof

(i) IfS e % then SMf = |9|™ ! Z{(STf): T e ¥} = Mf,since ST ranges
over all elements of 4 as T does, so Mfe 3.

(ii) If fe 3 then Mf=|9|"'Z{Tf: Te %} =% "|%|f =1, and the
rest follows.

Corollary
M restricts to a projection from B, onto I, for each degree d.

Write 3, for the set of homogeneous invariants of positive degree, i.e.,
3, = {fe 3:fis homogeneous and f(0) = 0}. Then denote by a the ideal
in P generated by 3,7 . Thus

a={Z¥,gfc1<keZfie3, g.e B}
It is clear from this description that if Te % then Ta < a.

Proposition 7.3.2
If9 <%%(V) is fimite and h e P, with h(0) = 0, then Mh e a.

Proof
Assume first that h is homogeneous. Then Th is also homogeneous for
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each Te ¥, and (Th)(0) = h(T~10) = h(0) = 0. It follows that Mh is
homogeneous and (Mh)(0) = (0). Since Mh € 3 by Proposition 7.3.1 we see
that Mhe 3, < a. In general h is a sum hy + hy + - + h, of homo-
geneous polynomials, with h;(0) = 0 for each i. Thus Mh = X; Mh; € a.

Our chief concern is the description of 3(%) when ¢ is a reflection
group. Assume for the remainder of this section that ¥ is generated by
reflections, with the usual notation for its root system, etc. We do not,
however, assume that ¢ is effective.

Proposition 7.3.3

Suppose g1, g2, ..., gk € 3; hy, ha, . . ., by are homogeneous in B; and
gihy + - - + gl = 0. Then either h; € a or else g, is in the ideal b in J
generated by ¢,, ..., gi.

Proof

Use induction on the degree of hy. If h; = 0 then h; e a;ifdegh, =0
then g, = —(hy/h1)g, — -~ — (m/h)gr, and hence g, = Mg, =
— (Mhy/h1)g, — -+ — (Mhi/hy)g € b. Thus we may take h; of positive
degree and assume the result holds if &, is replaced by a homogeneous
polynomial of lower degree. We may also assume that g, ¢ b. Let S = S, be
a reflection in 4. Then

0= S(Z; gih)) = Z; g«(Sh;) = Z; gi(h; + (6,h;)L,)
=3 gih + L, Z; g:0,h; = L, Z; g;6,h;.

Thus Z; g;6,h; = 0, and deg(d,h,) < deg hy, so 8,h; € a by induction, and
hence also Shy — hy = (6,h1)L, € a. If S’ is another reflection in 4 then
S'Shy — hy = S8'(Shy — hy) + (S'hy — hy) € a (see the remark preceding
Proposition 7.3.2). Continuing in this fashion we see that Th, — h, € a for
all Te¥, since ¥ is generated by reflections. Thus also Mh, — h, =
19| '2{Th, — h;:Te ¥} is in a, so hy = Mh; — (Mh; — h;)ea by
Proposition 7.3.2.

By the Hilbert Basis Theorem ([19], p. 74) the polynomial ring P is
Noetherian, which means that every ideal in B is finitely generated. Thus
we may choose a finite set {f1,f,...,/m} S 3 that generates the ideal a.
We may assume that m is minimal, i.e., that no smaller set of homogeneous
invariants generates a. We call {f,, ..., .} a set of basic generators.

Theorem 7.3.4
The basic generators fj,...,f, for the ideal a are algebraically
independent over £.
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Proof

Suppose not. Then there is a nonzero polynomial g =
9gZy, ... Zn)eRZ,,....,2Z,] With g(fi,....,fn) =0. We may take g
to be of minimal degree. Viewing each f; as a polynomial in Y, ..., ¥, we
may view g(fi,...,fn) as a polynomial in Yi,..., ¥, in which all terms
cancel to yield 0. All homogeneous components of each degree must
vanish, so by considering each degree separately we may effectively assume
that g(fi, ..., fn) has monomial summands all of the same degree d > 0 in
Yi,..., Y,

Forl <i<msetyg; =gi/f1,-..,fu) = 0g/0f; € 3, and note that each g;
is either O or is homogeneous of degree d — deg f; in Yy,..., ¥,. Not all g;
are 0 since g is not constant. Let ¢ be the ideal in 3 generated by
{g1,- .., gm}, and relabel if necessary so that ¢ is generated by {g,, .. ., g}
but by no proper subset. Thus for k < i < m there are elements h;; € 3 such
that g; = Z%_, h;;g;. Again, by considering degrees one at a time, we may
assume that each h;; is homogeneous of degree deg g; — deg g; (if h;; # 0),
and conclude that deg h;; = (d — deg g;) — (d — deg g;) = deg f; — deg f..

Since g =0 (as a polynomial in Yy,..., Y,) we have dg/0Y; =0,
1 <s < n, and hence

of
09 & _m . O

0 Zl laf 6Y i=1 ngK
; f
:E:“=1 5Y i= k+1(21 1 Ug_/)
;i ;
=i, g <0Y + Zf i hi a—)f;)

Since g, is not in the ideal of 3 generated by {g,, ..., gx} we conclude from
Proposition 7.3.3 that

6w O
ﬁ%+ J=k+1 hﬂ@—}sea’

1 < s < n. Thus we may write

o
oY,

%

1 G_Ys =X ik

+ s h

with r;; € B, 1 < s < n. Multiply by Y, and sum over s to see that

6f of;

2? 1 8Y +E} k+1 h.llE Y 6Y _Z;n=1(2srisYs)ﬁ'
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Euler's Formula (see Exercise 7.4) says that X, Y(df;/0Y;) = (deg f))f;, so
we have

(degf)fi + Zfpr1(deg )y fy = Zi= 1 (Zs ris Yo) fio

Each coefficient X, r; Y, of f; on the right is clearly either O or else has
positive degree. It follows that the coefficient X, r ¥; of f; on the right is 0,
since all monomials on the left have degree equal to deg f;. Thus f; is in the
ideal generated by { f3, . . ., fm}, contradicting the minimality of m, and the
proof is complete.

Theorem 7.3.5 (Shephard and Todd, Chevalley)
Every invariant of 4 is a polynomial over £ in the basic generators
fis+- o fu, and hence I = Z[ f1, ..., ful

Proof

Clearly Z[fi,...,fn] €3; we use induction on d to show that
I, &l f1,...,fm] for all degrees d. The inclusion is clear when d = 0, so
take d > 0 and assume the inclusion for degrees less than d. If g € 3, then
g€ a, so write g = X%, g;f;, with g; € ‘B. Since g and all f; are homo-
geneous we may assume that each g; is homogeneous and hence, if g; # 0,
that deg g; = deg g — deg f; < d (recall that f;(0) = 0). Apply M to obtain
g = Mg =X, (Mg;)f;.. Each Mg, is in 3 and of degree less than d, so by
induction each Mg; € Z[ f,, ..., fu]- It follows that g€ Z[ f1, .. -, ful-

Theorem 7.3.6
The number of basic generators equals the dimension of V, i.e., m = n.

Proof

Let & be the field of fractions of P = A[Y,,..., Y,], ie., the
field #(Y1, ..., Y,) of rational functions. Let £ be the field of fractions of
I=2[f1,....fn] Thus Z< < & and & has transcendence degree
(TD) n over &, whereas TD(2: #) = m by Theorems 7.3.4 and 7.3.5 (see
[19], Section VI.5). We show next that & is an algebraic extension of £.
Foreach Y;, 1 < i < n, define a polynomial F; of one variable X by setting
F(X)=II{X — TY;: Te %}. Clearly F(Y;) =0, and for each Se ¥ we
have (SF)(X) = II{X — (ST)Y;: Te %} = F{(X). Thus the coefficients of
F/(X) are polynomials in Yi,..., ¥, that are invariant under %, i.e.,
Fi(X)e3[X] <= £2[X]. Thus & is generated by algebraic elements
Yy,..., Y, over £ and hence is algebraic over L. Consequently
TD(R:8) =0, and n=TDR:A)=TDK:L)+ TD(L:X) =m (see
[19], p. 233).
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THE MOLIEN SERIES

In this section we will utilize various formal power series in ¢, usually
as expansions of rational functions. Convergence will generally not be an
issue. We continue to use the notation developed in Sections 7.2 and 7.3.

If Te 4%(V) then T acts on B = P(V), and T restricts to a linear
transformation on each P, which is finite dimensional. We shall write
try T for the trace of T|B,. Write Z , for the nonnegative integers, and Z",
for the Cartesian product of n copies of Z ;..

Proposition 7.4.1
If Te%%#(V) then £, (try Tt = det(1 — ¢tT~ 1)~ L.

Proof

It will be convenient for the proof to extend the field of scalars of V'
temporarily from £ to €, in order to have access to eigenvalues. Then we
may choose a basis {x,...,x,} for ¥ so that T is represented by a
triangular matrix, with eigenvalues A,,...,4, Also {Zf_, Y7
(ay,...,an)€Z",%;a; =d} is a basis for P, (Exercise 7.5), and if that
basis is ordered lexicographically then T|B, is also represented by a
triangular matrix (Exercise 7.6), with eigenvalues {IT7_; A7 %:
(ay,...,a,)€Z%,%;a; =d}. Thus

(try ) = S{IT'_, (A7 '0)%: (ay, ..., an) € 2", S @y = d},
and
B2 o (trg Tyt = T{IT}_, (A7 ') (ay, ..., as) € Z%}.
Now note that (1 — 4;7't) 7' = T2 o(4; '6)%, so
(1= 4707 =T 2647 ')
= Z{IT' (A7 )% (ay,...,a,) € 2%}
= T2 o(tra T
To complete the proof observe that
M (1 — 47 ')~ = I [A/(4: — 1)]
= (det T)/det(T — t1) = det(1 — T~ 1)~ 1.

Corollary 1
2o (dim P! = (1 — )"

Proof
Take T = 1.
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Corollary 2

d_1
The dimension of B, is <" t y > all d.

Proof
See Exercise 7.8.

Proposition 7.4.2
Suppose W is a subspace of V and P is a projection of ¥ onto W, i.e.
PV = W and P? = P. Then dim W = tr P.

Proof
We have P|W =1y, and we may take W' =(1—-P)V as a
complement to W. Then V= W@® W’ and P| W’ =0, so P is represented

| 1w O )
by the matrix o 0 and dim W =tr P.

Suppose now that 4 < 4.2(V) is finite, with algebra 3 of invariants.
Define the Molien series of % to be the power series

D(1) = Dy(t) = L3 o(dim Jy)e’.
For example, the Molien series is

P =U-n7= 2:°=0(" teo ‘)tn

for the trivial group ¢ = {1}, by the corollaries to Proposition 7.4.1.

Proposition 7.4.3
If 4 < 9#(V) is finite then dim 3, = |¢9| ™! Z{tr, T: T e %}.

Proof

By the corollary to Proposition 7.3.1 the averaging operator M is a
projection from B, onto J; for each dimension d. By Proposition 7.4.2
we have

dim 3, = tr(M | B,) = tr(|%| ' Z{T|Bs: Te ¥}) = 9| ' Z{tr, T: Te 4}.

Theorem 7.4.4 (Molien’s Theorem)
If 9<92(V) is finite then its Molien series is ®(f) =
|97 £{det(1 — tT)": Te %},
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Proof
Apply Propositions 7.4.1 and 7.4.3:
O(1) = T3 o(dim It = 22 o |9 Z{tr, T: Te G}t°
=97 Z{ZX o(try Tt Te %}
=97 Z{det(l — T~ 1 Te¥}
=|9|" ! Z{det(1 —tT)": Te%}.

Molien’s Theorem will be instrumental in the proof of a converse
to Theorems 7.3.4-7.3.6. Let us apply it to compute the Molien series
for two simple examples. We use the fact that det(1 —tT)"! =
(det T~ ')/det(T~ ! — 1), the denominator being the characteristic
polynomial of T

1. If ¥ = o/, we may take

1 o]’ oo [ -—Vﬂyz]
0 1 0 —1 \/5/2 —12

as representatives of the conjugacy classes, of respective sizes 1, 3, and 2.
Thus

1 1 2 3
D(t) = — .
® 6|:(1—t)2+1+t+t2+1—t2]

Expanding to power series we find that the coefficients, in patterns of 6, are
101111 212222 323333

etc. (see Exercise 7.7).

2. If ¥ = #, we may take

BN A A i F e v

as representatives, with respective class sizes 1, 1, 2, 2, and 2. Thus

O(t) = : ! + ! + 2 + 4
”—8(L4V A+02 1+¢2 1-1¢2
= Zzo:o(k + ])(t4k + t4k+2).

We assume for the remainder of this section that % is a finite
subgroup of 4.# (V) satisfying the conclusions of Theorems 7.3.4 and 7.3.5,
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ie., that 3(9) = Z[f,,....f,] for an algebraically independent set
{fi»..-./u} of basic generating homogeneous invariants. Note that the
number n of basic generators must equal dim V, since the proof of
Theorem 7.3.6 depends only on the conclusions of Theorems 7.3.4 and
7.3.5. Say degf; =d;, with d, <d, <--- <d, Observe that {IT}_, f*:
(ar,..,an) €2, Z;aid; =d} is a (vector space) basis for 3, for each
dimension d.

Proposition 7.4.5
Under the assumptions above the Molien series of % is ®(t) =
I (1 — )71

Proof
7o (1 — %) 7 =TI (1 + 6% + 2% 4 ) = T2 agt?, where

g = {(ay,....,a) € 2" : %, aid; = d}| = dim T,

by the observation preceding the proposition.

The basic generators f;, . . ., f, are generally not unique, which perhaps
makes the next proposition somewhat surprising.

Proposition 7.4.6
The degrees d,,d,,...,d, of the basic generators are uniquely
determined by 4.

Proof

Suppose also that 3 = Z[f],...,f,], with {f} algebraically inde-
pendent and deg f’ = d;, with d} <d, <---<d,. Then d, and d; are both
the exponent of the first nonconstant term in ®(¢t) by Proposition 7.4.5, so
d; = d,. But then we may cancel (1 — t*")”! and obtain IT7_ (1 — t%)~*
= IT7_ (1 — %)~ !, The result follows easily by induction on n.

By Proposition 6.1.6 we may assume that ¥ < O(V'), and we do so,
continuing our other standing assumptions about ¥ as well.

If Te4%(V) has eigenvalues Ay,4,,...,4, then det(l —t7)
= I17_ (1 — 4;t), the factorization generally taking place in ¢[t¢]. In
particular, if Te O(V) is a reflection then det(1 — tT) = (1 + )(1 — )"~ .
Of course if T = 1 we have det(1 — tT) = (1 — 1)". Conversely if Te O(V)
and det(1 — tT) has (1 — )" ! as a divisor then the quotient must be
(1 — At), where A is an eigenvalue of T. But then T has eigenvalues 1 (with
multiplicity > n — 1)and A,sodet T= 1= +1,andeither T=1orTisa
reflection.
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Proposition 7.4.7
19| = H?=1 d;.

Proof

For each T # 1 in ¢ define hr(t) = (1 — t)" ' det(1 — ¢tT) !, using
the factors 1 — ¢ to cancel any factors of det(l1 —¢tT)~ ! resulting from
eigenvalues of 1. Thus k(1) = 0 unless T is a reflection, in which case
hy(1) = 1/2. Check by multiplying that (1 —)(1 — )" ' = (1 + ¢+ ¢*
+ -+ %171 By Molien’s Theorem (7.4.4) and Proposition 7.4.5 we
have

M. (1 — %)~ =197 Z{det(l —tT)" ": Te¥}.

Multiply both sides by (1 — t)" to obtain

Mo (L4424 + 7!
= 917" [1 + Z{(1 - Dhe(): 1 # Te 9}],

and then set t = 1 to obtain II7_, d; ! = |9|~ .

Proposition 7.4.8
The number N of reflections in  is £}, (d; — 1).

Proof

For each Te ¥ that is neither 1 nor a reflection define g1(t) =
(1 — )"~ 2det(1 — tT) ™, canceling any factors 1 — ¢ resulting from eigen-
values of 1 for T. Thus g4(1) is well defined. Note that if Se % is a
reflection then (1 — ¢)"det(1 — tS)™! = (1 — t)/(1 + t). As in the proof of
Proposition 7.4.7 we have

Mo, (L+t+2 4+ % H!

= — 0% ! Z{det(1 —tT) ": Te %}

=971+ N1 —0)/(1 + ) + Z{(1 — )’g1(t): Te %,
T not 1 and not a reflection}].
Differentiate with respect to ¢: on the left-hand side (take a logarithm first)
we get
T+t A2+ 2t 4+ (dy — D7)
X Hj;é ,(1 +t+4+ -+ tdj_l)_l],
and on the right-hand side

19" '[—2N/(1 + )% + (1 — )Z{(1 — t)g7(t) — 2g7(1): Te %, T not 1, not
a reflection}].
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Set t = 1 and obtain
T (—d7(d — )dy21 1, ,,d; ) = — |97 2 (di — 1))2

on the left, by Proposition 7.4.7, and on the right —|%|™!N/2. Cancel
—|%|~1/2 and the proposition follows.

Corollary
If 4 # 1 then ¢ contains at least one reflection.

Proof
Since 4 # 1 we have d, > 1 by Proposition 7.4.7,so N = Z}_ ,(d; — 1)
> 0.

Theorem 7.4.9 (Shephard and Todd)

Suppose ¥ < 42 (V) is finite and that ¢ has alrebraically inde-
pendent homogeneous invariants fi,...,f,, n=dim ¥, such that
3=AR[fi,---.fo]. Then ¥ is generated by reflections.

Proof

As we observed above we may assume that 4 < O(V). Let s be the
subgroup of ¢ generated by the reflections in 4. We may assume that
% # 1 and hence also that # # 1 by the corollary above. By Theorems
7.3.4-7.3.6 we have 3(H#) = #[h4,..., h,] for basic generators h,,..., h,
withdegreese, < e, < - <e, Wehave|¥9| =1I1!_, d; > || = II]_, e; by
Proposition 7.4.7 and N = X!_,(d; — 1) = Z!_,(e; — 1) by Proposition
7.4.8.

Clearly 3(¥9) < 3(#), so there are polynomials p;=
piYy,..., Y,) e BWV), 1 <i<n, with f;=pi(hy,...,h,). Fix i <n; then
fi,....fi are algebraically independent. It follows that p,,..., p; cannot
involve only Yy,..., Y;—; or we would have i algebraically independent
polynomials f;,...,f; in i — 1 (or fewer) variables, a contradiction. We
conclude that there is some j > i for which Y; appears with positive
exponent in some monomial summand of p,,, for some m < i. Thus h; is
substituted with positive exponent in some monomial of f,=
Pm(hy, ..., hy). Consequently d; > d,, >e;>¢;, and d; > ¢; for all i <n.
But then it follows easily from X (d; — 1) = Z/(e; — 1) that e; = d; for
1 <i < n. Thus |#] =|¥), so 9 = H# is generated by reflections.

The next two propositions will be useful for considering examples.

Proposition 7.4.10
A Coxeter group % has no invariants of degree 1.
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Proof

Suppose 0 # L e 3,, and set W =ker L. For any xe V, Te % we
have Lx = (T"'L)x = L(Tx), so L(Tx —x) =0 and Tx — xe W. Thus
Txe W if xe W, and hence TW = W for all Te¥%. It follows that
TW+* = W+ (which is 1-dimensional) for all Te 4. Choose y # 0 in W+
and Te¥%,s0 Ty = +y. Butif Ty= —ythen —2y=Ty—ye Wn W,
so Ty =y, contradicting the effectiveness of ¥.

Proposition 7.4.11
A Coxeter group ¢ has a homogeneous invariant of degree 2, so it
must have a basic generator of degree 2.

Proof

If {x;,...,x,} is chosen to be an orthonormal basis for V" then the
square Q of the length function, Q(v) = ||v|?, is equal to Y? + --- + Y2; it
is invariant since 4 < O(V). Since Q is a polynomial in the basic
generators it must actually be a scalar multiple of one of them by
Proposition 7.4.10.

If dim V' = 2 and % is a Coxeter group with |%4| = 2m then % is one of
oAy X Ay, Ao, B, G, or HY5. It follows from Propositions 7.4.7 and
7.4.11 that d, = 2 and d, = m and, if we choose an orthonormal basis,
that we may take f; = Y7 + Y7. The Molien series for 4 is ®(t) =
(1 —2)7}(1 — ™)~ 1; the coeflicient of t* (ie. dim J,) is equal to the
number of different ways to partition k as a sum of two nonnegative
integers, the first even and the second a multiple of m (see Exercise 7.9).

We consider a few small examples, employing a variety of ad hoc
techniques.

1 0 1 0
1. Write 9=/, x &/, as <+ , =+ , and
0 1 0 -1

take f; = Y1 + Y3. Then

(1) = s=14+202 434+ =T o(k + D2

1
(1—1t%)
and d, =d, =2. It is easy to guess in this case that we may take
f=Yi- Y2

2. Recall that <7, is isomorphic with the symmetric group &5, which
acts naturally on £°, with basic generating invariants ¢; = X, +
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X + X, 0,=XoX; + XOX2 + X:1X,, and g3 = XoX 11X, (Where {X,}
is the dual basis in (#°)* to {e;}). However o/, acts effectively on the
subspace V = (1, 1, 1)*, with basis x; = e, — eg, x; = €, — e,. Restriction
of o7, from #3 to V entails that 6, = Xo+ X; + X, =0, or X, =
—(X; + X;), leaving basic invariants 6, = —(X? + X, X, + X2) and
03 = —(X, + X)X X,. The vectors {x;, x,} are a base for &/, in V,
and &/, is generated by their corresponding fundamental reflections,
represented by

-1 1 1 0
S1= and S2=
0 1 1 -1

relative to {x;, x,}. Since ¥, =2X; + X, and Y, = X, — X, (verify) we
may substitute in 6,, 63 and take f; = 3Y? + 5Y,Y, + 3Y%and f, = 2Y3
+ Y%Y, — 5Y, Y2 + 2Y3 as basic generators (compare with the example
in section 7.1).

3. Let 4 = #,, with x; = e, x, = e,. We may take f; = Y? + Y2
If we apply the averaging operator M to 2Y$ we obtain Y$ + Y3e 3,
which is algebraically independent of f;, so we may take f, = Y{ + Y3%.
Since 10:2=8-2+14=6-2+24=4-2+3-4=2-2+4-4=5-4
we have (see Exercise 79) dim3,,=6 and {fi%f,. /517,
fE2. 2SS, 17} is a basis for 3.

4. f 9 = #ythend, = 2,d,dy = 60,and d, + d3 = 16 (Propositions
7.4.7-8), so d2 — 16d, + 60 = 0 and d, = 6, d3 = 10.

5. If 4 =%, then d, =2, dydsds = 2°-3%, and d, + d3 + dy = 26.
Trying d, = 2, 3, and 4 leads to quadratic equations in d3 having negative
discriminants, and d, cannot be 5 since 5.t2°-32. Trying d, > 6 leads to
dy <d,,sod, =6 and hence d; =8, d, = 12.

6. If ¥ = 4, then d, = 2, dodsd, = 2°3252, and d, + d; + ds = 62.
As in the preceding example we may rule out all possible values of d,
except for 12 and 15, both of which yield integer solutions. But —1 ¢ .4,
(see Exercise 5.11), so the degrees must all be even by Exercise 7.11 and
hence d, = 12, d3 = 20, and d, = 30.

There are several methods for determining the degrees of the basic
generators for invariants of Coxeter groups; two are discussed in [4],
Chapter 10. We close with a table that lists the degrees {d;} for the
irreducible Coxeter groups.
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94 dy,...,d,
oLy 2,3..,n+1
B, 2,4,...2n
Dy 2,4,..,n—2,nnn+2,..,2n—2 (neven)
2,4,..,n—1Lnn+1,..,2n—2 (nodd)
HY 2n
4, 2,6
Fai 2,68, 12
S 2,6,10
EA 2,12, 20, 30
e 2,56,8 9,12
&4 2,6,8, 10,12, 14, 18
&g 2,8, 12, 14, 18, 20, 24, 30
Table 7.1
Exercises
7.1 Suppose V has bases {x, ..., x,} and {uy, ..., u,}, with respective
dual bases {yi,...,y.; and {vy,...,v,}. Define corresponding
linear polynomials Y;,..., Y, and V;,..., V,. If A =(a;) is the
change-of-basis matrix from {x;} to {u;}, 1.e., u; = Z; a;x;, all i, show
that Yi = Ej a,-jVj, all i. Slmllarly, if B= (bij) = A‘l, then I/, =
X; b;;Y;, all i. Conclude that the definition of B is independent of
choice of basis.
7.2 Suppose T € £ (V) is represented by A = (a;;) relative to the basis
{xl, vy x,,}, and that /‘1—1 =B = (bll)
(a) Show that TY,=2Z;b;Y;, 1 <i<n, and conclude that
T ‘Bl = 931-
(b) For any monomial f = a IT; Y show that Tf = a II; (TY;)* =
aII(Z; b;Y;)* and conclude that TP, =P, for each
degree d.
7.3 Suppose 0 #reV, LeP,, and S, is the reflection along r, and
suppose that S,L = BL, with 0 # f € #. Show that either f =1 or
else B = —1, in which case L is a scalar multiple of L,.
7.4 (Euler’s Formula.) If fis a homogeneous polynomial in Y3,..., Y,

show that

. o _
Z5- 1 Ysﬁ: = (degf)/.

(Hint. It is sufficient to assume that fis a monomial.)
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7-5

7.6

7-7

7.8

7-9

7.10

7.11

7.12

Show that {IT}_; Y{: (ay,...,a,) € Z"%, Z;a; = d} is a basis for P,
for each degree d.

Suppose T e 4.Z(V) is represented by a triangular matrix relative
to {x;}, hence also relative to {¥;} on B, (see Exercise 7.2). Let
A1, ..., Ay be the eigenvalues of T on V. Order the basis of Exercise
7.5 for P, lexicographically (e.g. if n = 3 and d = 2 the ordering is
Y3 Y\ Y, Y Y3, Y3, Y, Y5, Y2). Show that then T on B, is also
represented by a triangular matrix, and that the eigenvalues of T on
sBd are {H?=1 li_ai.' (al, “ees a,,) € Z"+, Zi a; = d}
(a) Show that (1 — )2 = T2 o(d + 1)t%. (Hint. Expand (1 —¢)~!
and differentiate.)
(b) Show that (1 +t+t) ‘=1 —t+3—t*+5—15+ -
(Hint. 1 +t+ )" ' =1 -1/ —1t3).)

(a) If n > 1 and d > 0 prove by induction on d that

n+j—1 n+d
L)1)

(b) If n > 1 prove by induction on n that
d—1
(=)= z;;;o(" + y )zd.

If TIZ,(1 —¢*)~! is expanded as a power series interpret the
coefficient of t* as the number of distinct ways that k can be
partitioned as a sum, k=k, + k, + - + k,, with each k; a
nonnegative integer multiple of d;.

Verify the entries in Table 7.1 for ¥ = o/ 5, B3, L4, B4, and D,.

If —1e% show that (—1)f= (—1)t/f, and conclude that the
degrees d,, d,, . . ., d, are all even. (The converse is also true—it can
be proved with a bit of Galois theory.)

If 22 is viewed as a subset of ¥2, then #7 is generated by

IR
A= and B = s
0 ¢! 10

where(,, = e*™/™ In thissettingitis clear that we may take X ; X and
X"+ X7 as basic generators for 3. Use

—1 1
C= (1/ﬁ)[_i _1]
as a change-of-basis matrix.
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(a) Show that
_ cos 2n/m —sin 2w/m 1 0
ClAC = and C 'BC= 0 )

sin 2n/m  cos 2n/m —1

our usual generators for #7%.

(b) Use C to change variables: X, = (l/ﬁ)(—in + Y,) and
X, = (l/ﬁ)(-in — Y3). Conclude that the basic generators
for # can be taken to be f; = Y? + Y? and

fr=Z"%(— 1)’(;"_) Y7-2Y%3 if mis even,
J

m

fo= zygng(—l)i(zj N ]>Y'1”“21"1Y§f“ if m is odd.
7.13 HfO0#reV,abe®, and f,gec P show that
(a) d.(af + bg) = ad,f + bd,g, and

(b) 6,(f9) = 15,9 + go.f + (5,f)S:g)L,.
7.14 (See [34].) Let ¢ be the cyclic group of order 4 in O(%?) generated

by A 0 —1
A R
(a) Show that

o - L[ 1 1 2 . 1+t
(t)_Z[(l—z)z+(1+t)2+1+t2]‘(1—z2)(1—t)4’

and expand to power series to see that
O(t) = T2 o 2k + D)(E** + 25+2),

(b) Show that f; = Y? + Y, f, = Y2Y% and f; = Y3Y, — Y, Y3
are invariants of 4. Conclude that p(f, 1) + f3 9(f1,/2) € 3 for
all D,.q€ '%[Yla Yz].

(c) Use the form of ®(t) to conclude that every invariant can be
written as p(fi,f2) + /3 9(fi.f2) (in fact uniquely) for some
p,qe ALYy, Y,]. For example, a basis for 3J;, is
{fls’ IBﬁ’ﬁf22’.ﬁf13’f5ﬁﬁ}-

(d) The generators f;, f>,f3 are of course not algebraically inde-
pendent. Show that f2 f, — 4f2 — f# = 0 (that relation on the
generators is called a syzygy).

Assume for the remaining exercises that ¢ is a finite group with
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invariant algebra 3, that & = #(Y, ..., Y,) is the field of fractions of P,
and that € is the field of fractions of 3.

7.15 Show that each fin & can be expressed as a fraction with numerator
in P and denominator in 3J. (Hint. Write f=g/h=
gl {Th:1 # Te%}/T1{Th: Te %}.)

7.16 Show that the fixed field of ¢ in & is £ (use Exercise 7.15), and
conclude that & is a Galois extension of £ with [K!: €] = |9].

7.17 The quotient algebra B/a (see p. 108) inherits a “grading” from P
via (PB/a); = (Ps + a)/a. Show that P/a = @ PB/a),. (It is clear
that B/a = Z4(P/a),;; use the fact that a is generated by.homo-
geneous elements.)

7.18 If P is free as an I-module show that an J-basis for B is also a basis
for & as an extension of € (use Exercise 7.15).

Assume further for the remaining exercises that ¢ is a reflection
group.

7.19 Choose homogeneous elements {/,: « € A} so that the set of residue
classes {h, + a: a € A} is an #-vector space basis for P/a. Show that
{h,:a € A} is a basis for P as an I-module. Thus B is a free JI-
module of rank dim4(PB/a). (Hints. (1) Let Q = B be the J-span of
{h,} and show by induction that Q; = B, for all d. (2) Apply
Proposition 7.3.3 to a minimal 3-dependence relation.)

7.20 Conclude from the exercises above that rank(P) = dim4(PB/a)
= |9|. Thus (*B/a); must be trivial, and hence B, < a, for all
sufficiently large d. (More precise information is contained in the
final two exercises.)

7.21  The tensor product 3 ®, (B/a) is graded via [ ® (PB/a)]s =
2{3, ® (B/a),: a + b = d}. Use Exercise 7.19 to show that there
is an #-isomorphism between f and I ®, (PB/a) that preserves
grading.

7.2z The analogue of the Molien series for B/a is its “Poincaré series”
¥(t) = Z4dim(P/a),)t?, which is in fact a polynomial. Use
Exercise 7.21 and Corollary 1 to Proposition 7.4.1 to show that
(1 —1)~" = ®(t)¥(t). Conclude from Proposition 7.4.5 that

W) =I7-, [ —t%)/(1 =] =TI (L+ e+ 12+ - + 1471,

Thus B, = a precisely for d > X!_,(d; — 1) = N, the number of
reflections in 4.
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As indicated in the preface, the first systematic account of finite
reflection groups was given by Coxeter [9] in 1934, following shortly after
E. Cartan utilized the groups in his study of Lie groups and their associated
Lie algebras. Coxeter classified not only the finite reflection groups, but
also the infinite discrete groups generated by (affine) reflections. The
infinite groups were likewise classified in terms of their Coxeter graphs.
The relevant graphs are those that appear in Figure 5.4, with the exception
of Z, and Y;, and with the addition of «-%+, which represents the infinite
dihedral group generated by reflections in a pair of parallel mirrors.

There is an unfortunate disparity in the notations used to describe
the finite and discrete Coxeter groups and their graphs. We have by and
large followed the notation used in [5] by Carter, who to a large extent
followed Witt [37]. Another variation appears in Bourbaki [3].

The finite crystallographic reflection group associated with a Lie
algebra is called the Weyl group of the Lie algebra. The classification of
irreducible Weyl groups gives a classification of simple Lie algebras over
the complex field (see [5] or [26]), which in turn provides a local classifica-
tion of Lie groups (see [22]). Each 4, for n > 3, is actually the Weyl group
of two nonisomorphic Lie algebras called B, and C,. The distinction
occurs because the crystallographic condition allows a choice in the
assignment of relative lengths to the roots of the base, which results in two
different invariant lattices.

We have followed Coxeter [9] in attributing the construction of
fundamental regions in Chapter 3 to Fricke and Klein. Fundamental
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regions were perhaps first utilized in number theory some years earlier.
In particular, they played a role in Dirichlet’s study of the group of units
in the integers of an algebraic number field. For an elementary account of
the role played by fundamental regions in the study of automorphic
functions see [29].

It was indicated in Chapter 5 that Witt exhibited the root system of
4 as a group of unit quaternions. Coxeter showed ([11], p. 32) that the
root system of &g can be given as the set of units (which is not a group,
but a loop) in a system of integral Cayley numbers.

The quadratic forms associated with 4,, 4,, 45, D,, Ds, E,, E-,
and E; correspond to densest packings of spheres in dimensions 1 through
8. See [11], pp. 235-239, for a discussion and further references.

Finite reflection groups have come to play an important role in the
study of finite simple groups. Among the earliest simple groups studied
were the ‘‘classical groups,” analogues over finite fields of simple Lie
groups. Associated with each classical group is a reflection group, which
may be viewed as the Weyl group of the corresponding Lie algebra, or
may be constructed using certain subgroups of the group itself. A unified
treatment of the classical groups, over arbitrary fields, was given by C.
Chevalley in 1955, making possible the discovery of several new simple
groups. Certain properties of the Chevalley groups were subsequently
abstracted by J. Tits, who axiomatized the notion of a group ¢ witha BN-
pair, or a Tits system ([3], p. 22). One of his axioms is that ¢ has a Weyl
group, defined in terms of subgroups of ¥ (as for the classical groups),
which is a reflection group. Further details and references may be found in
the excellent survey article by Carter [5], and in [4].

Bourbaki defines Coxeter groups not as reflection groups but in
terms of generators and relations. The point of Chapter 6, of course, is
that the two definitions are equivalent. The proof of Theorem 6.1.4 might
be viewed as an algebraic version of Coxeter’s original geometric proof
([9], p- 599). Other proofs have been given by Witt [37], Cartier [6], and
Iwahori [25]. The proof of the converse, Theorem 6.1.10, is patterned after
the proof in Section 9.3 of [12].

Classical invariant theory was an important source for many of the
important concepts and ideas of present-day commutative algebra and
homological algebra. The theory has a fascinating history, having been
declared dead and then being reborn many times. Invariant theory is
currently very much alive, having numerous important applications in
diverse areas of mathematics.

For example, applications to coding theory and combinatorics are
discussed in [31] and [34]. The invariant theory of Coxeter groups is used
in [4] for the determination of the orders of finite Chevalley groups. The
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quotient algebra B/a, which is examined in Exercises 7.17-7.22, is called
the coinvariant algebra of 4 (see [24]). If ¥ is the Weyl group of a
semisimple Lie group # and & is a Borel subgroup of # then B/a is
isomorphic with the cohomology algebra of the homogeneous space (or
“flag manifold”) #/%. Flag manifolds have roles to play in the represen-
tation theory of Lie groups, in algebraic geometry, and in algebraic
topology.

The proper setting for the results of Chapter 7 is actually that of finite
“unitary” reflection groups (see [8], [24], [33]). A unitary reflection is a
transformation of finite order of a complex Euclidean space having all
eigenvalues but one equal to 1, a rather natural extension of the notion of
real reflection. The unitary reflection groups were classified by Shephard
and Todd in [30], in which they established Theorem 7.4.9, and also
Theorem 7.3.5 by means of an exhaustive case-by-case analysis. Shortly
thereafter Chevalley, in [7], gave essentially the proof we have presented of
Theorem 7.3.5, and it was later observed by Serre that Chevalley’s proof
applies as well in the unitary case. In fact, the arguments given in all of
Chapter 7 can be applied almost verbatim to establish the corresponding
results for unitary reflection groups.

Further historical information concerning reflection groups and
related topics may be found in [3], pp. 234-240, and at the ends of the
chapters in [10}, [24], and [33].
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CRYSTALLOGRAPHIC
POINT GROUPS

The table below presents two other commonly used notational

schemes for the crystallographic point groups, the Schoenflies and the
International (or Hermann—Maugin) systems. In the International nota-
tion a digit n denotes an n-fold rotation; 7 denotes its composition with
the central inversion — 1, which is denoted 1; m denotes a mirror plane;
and, e.g., 3/m denotes a 3-fold rotation axis perpendicular to m. See [27]

for more details.

4 Schoenflies International 4 Schoenflies International
%} C, 1 rH* Dy mmm
%3 C; 2 (3 D3, 3m
€3 C, 3 FH* Dy 4/mmm
€% C, 4 (H#* Den 6/mmm
€5 Cs 6 T* T, m3
A2 D, 222 w* 0, m3m
H3 D, 32 €216} C, m
H3 D, 422 %3163 S4 4
HS D¢ 622 %5163 Csy 6
T T 23 #2163 Cyp 2mm
W 0 432 #3653 Cs, 3m
(@)* @ 1 #3163 Ca 4mm
(CHl Can 2/m H3]€5 Coev 6mm
(€3)* Se 3 H3]H3 Dy N2m
“3)* Can 4/m FIES D3, 6m2
(89* Ceon 6/m W T, m
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