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To My Parents 



Preface to the Second Edition 

Since the publication of the first edition, several remarkable developments 
have taken place. The work of Thaine, Kolyvagin, and Rubin has produced 
fairly elementary proofs of Ribet's converse of Herbrand's theorem and of the 
Main Conjecture. The original proofs of both of these results used delicate 
techniques from algebraic geometry and were inaccessible to many readers. 
Also, Sinnott discovered a beautiful proof of the vanishing of Iwasawa's 
Jl-invariant that is much simpler than the one given in Chapter 7. Finally, 
Fermat's Last Theorem was proved by Wiles, using work of Frey, Ribet, 
Serre, Mazur, Langlands-Tunnell, Taylor-Wiles, and others. Although the 
proof, which is based on modular forms and elliptic curves, is much different 
from the cyclotomic approaches described in this book, several of the ingredi
ents were inspired by ideas from cyclotomic fields and Iwasawa theory. 

The present edition includes two new chapters covering some of these 
developments. Chapter 15 treats the work of Thaine, Kolyvagin, and Rubin, 
culminating in a proof of the Main Conjecture for the pth cyclotomic field. 
Chapter 16 includes Sinnott's proof that Jl = 0 and his elementary proof of 
the corresponding result on the t-part of the class number in a Zp-extension. 
Since the application of Jacobi sums to primality testing was too beautiful to 
omit, I have also included it in this chapter. 

The first 14 chapters have been left essentially unchanged, except for 
corrections and updates. The proof of Fermat's Last Theorem, which is far 
beyond the scope of the present book, makes certain results of these chapters 
obsolete. However, I decided to let them remain, for they are interesting not 
only from an historical viewpoint but also as applications of various tech
niques. Moreover, some of the results of Chapter 9 apply to Vandiver's 
conjecture, one of the major unresolved questions in the field. For aesthetic 
reasons, it might have been appropriate to put the new Chapter 15 immedi-

vii 



viii Preface to the Second Edition 

ately after Chapter 13. However, I opted for the more practical route of 
placing it after the Kronecker-Weber theorem, thus ensuring that all num
bering from the first edition is compatible with the second. 

Other changes from the first edition include updating the bibliography 
and the addition of a table of class numbers of real cyclotomic fields due to 
Schoof. 

Many people have sent me detailed lists of corrections and suggestions or 
have contributed in other ways to this edition. In particular, I would like to 
thank Brian Conrad, Keith Conrad, Li Guo, Mikihito Hirabayashi, Jim 
Kraft, Tauno Metsankyla, Ken Ribet, Yuan-Yuan Shen, Peter Stevenhagen, 
Patrick Washington, and Susan Zengerle. 

Lawrence C. Washington 



Preface to the First Edition 

This book grew out of lectures given at the University of Maryland in 
1979/1980. The purpose was to give a treatment of p-adic L-functions and 
cyclotomic fields, including Iwasawa's theory of Zp-extensions, which was 
accessible to mathematicians of varying backgrounds. 

The reader is assumed to have had at least one semester of algebraic 
number theory (though one of my students took such a course concurrently). 
In particular, the following terms should be familiar: Dedekind domain, 
class number, discriminant, units, ramification, local field. Occasionally one 
needs the fact that ramification can be computed locally. However, one who 
has a good background in algebra should be able to survive by talking to the 
local algebraic number theorist. I have not assumed class field theory; the 
basic facts are summarized in an appendix. For most of the book, one only 
needs the fact that the Galois group of the maximal unramified abelian 
extension is isomorphic to the ideal class group, and variants of this state
ment. 

The chapters are intended to be read consecutively, but it should be 
possible to vary the order considerably. The first four chapters are basic. 
After that, the reader willing to believe occasional facts could probably read 
the remaining chapters randomly. For example, the reader might skip 
directly to Chapter 13 to learn about Zp-extensions. The last chapter, on 
the Kronecker-Weber theorem, can be read after Chapter 2. 

The notations used in the book are fairly standard; Z, C, Zp, and C p 
denote the integers, the rationals, the p-adic integers, and the p-adic rationals, 
respectively. If A is a ring (commutative with identity), then A x denotes its 
group of units. At Serge Lang's urging I have let the first Bernoulli number 
be Bl = -t rather than +t. This disagrees with Iwasawa [23] and several 
of my papers, but conforms to what is becoming standard usage. 

ix 
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Throughout the preparation of this book I have found Serge Lang's two 
volumes on cyclotomic fields very helpful. The reader is urged to look at 
them for different viewpoints on several of the topics discussed in the present 
volume and for a different selection of topics. The second half of his second 
volume gives a nice self-contained (independent of the remaining one and a 
half volumes) proof of the Gross-Koblitz relation between Gauss sums and 
the p-adic gamma function, and the related formula of Ferrero and Green
berg for the derivative of the p-adic L-function at 0, neither of which I have 
included here. I have also omitted a discussion of explicit reciprocity laws. 
For these the reader can consult Lang [4], Hasse [2], Henniart, Ireland
Rosen, Tate [3], or Wiles [ll 

Perhaps it is worthwhile to give a very brief history of cyclotomic fields. 
The subject got its real start in the 1840s and 1850s with Kummer's work on 
Fermat's Last Theorem and reciprocity laws. The basic foundations laid 
by Kummer remained the main part of the theory for around a century. 
Then in 1958, Iwasawa introduced his theory of Zp-extensions, and a few 
years later Kubota and Leopoldt invented p-adic L-functions. In a major 
paper (Iwasawa [18]), Iwasawa interpreted these p-adic L-functions in terms 
of Zp-extensions. In 1979, Mazur and Wiles proved the Main Conjecture, 
showing that p-adic L-functions are essentially the characteristic power series 
of certain Galois actions arising in the theory of Zp-extensions. 

What remains? Most of the universally accepted conjectures, in particular 
those derived from analogy with function fields, have been proved, at least 
for abelian extensions of 0. Many of the conjectures that remain are proba
bly better classified as "open questions," since the evidence for them is not 
very overwhelming, and there do not seem to be any compelling reasons to 
believe or not to believe them. The most notable are Vandiver's conjecture, 
the weaker statement that the p-Sylow subgroup of the ideal class group of 
the pth cyclotomic field is cyclic over the group ring of the Galois group, and 
the question of whether or not A. = 0 for totally real fields. In other words, we 
know a lot about imaginary things, but it is not clear what to expect in the 
real case. Whether or not there exists a fruitful theory remains to be seen. 

Other possible directions for future developments could be a theory of 
Z-extensions (Z = n Zp; some progress has recently been made by Friedman 
[1]), and the analogues ofIwasawa's theory in the elliptic case (Coates-Wiles 
[4]). 

I would like to thank Gary Cornell for much help and many excellent 
suggestions during the writing of this book. I would also like to thank John 
Coates for many helpful conversations concerning Chapter 13. This chapter 
also profited greatly from the beautiful courses of my teacher, Kenkichi 
Iwasawa, at Princeton University. Finally, I would like to thank N.s.F. 
and the Sloan Foundation for their financial support and I.H.E.S. and the 
University of Maryland for their academic support during the writing of this 
book. 

Lawrence C. Washington 
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CHAPTER 1 

Fermat's Last Theorem 

We start with a special case of Fermat's Last Theorem, since not only was it 
the motivation for much work on cyclotomic fields but also it provides a 
sampling of the various topics we shall discuss later. 

Theorem 1.1. Suppose p is an odd prime and p does not divide the class number 
of the field O(Cp ), where Cp is a primitive pth root of unity. Then 

(xyz,p) = 1 

has no solutions in rational integers. 

Remark. The case where p does not divide x, y, and z is called the first case 
of Fermat's Last Theorem, and is in general easier to treat than the second 
case, where p divides one of x, y, z. We shall prove the above theorem in the 
second case later, again with the assumption on the class number. 

Factoring the above equation as 

p-l n (x + C~y) = zP, 
i=O 

we find we are naturally led to consider the ring Z[Cp]. We first need some 
basic results on this ring. Throughout the remainder of this chapter, we let 
C = Cp ' 

Proposition 1.2. ZEn is the ring of algebraic integers in the field 0(0. There
fore zEn is a Dedekind domain (so we have unique factorization into prime 
ideals, etc.). 



2 1. Fermat's Last Theorem 

Proof. Let (9 denote the algebraic integers of O«(). Clearly Z[(] ~ (9. We 
must show the reverse inclusion. 

Lemma 1.3. Suppose rand s are integers with (p, rs) = 1. Then W - 1)1 
«" - 1) is a unit of Z[n 

Proof. Writing r == st (mod p) for some t, we have 

(r _ 1 (or - 1 
__ = __ = 1 + ys + ... + ys(t-l) E Z[Y] 
(s _ 1 (s - 1 .. .. ... 

Similarly, «(S - 1)/W - 1) E Z[n This completes the proof of the lemma. 
o 

Remark. The units of Lemma 1.3 are called cyclotomic units and will be of 
great importance in later chapters. 

Lemma 1.4. The ideal (1 - 0 is a prime ideal of (9 and (1 - OP-l = (p). 
Therefore p is totally ramified in O(n 

Proof. Since XP-l + Xp-2 + ... + X + 1 = TIr:l (X - (i), we let X = 1 
to obtain p = TI (1 - (i). From Lemma 1.3, we have the equality of ideals 
(1 - () = (1 - (i). Therefore (p) = (1 - ()P-l. Since (p) can have at most 
p - 1 = deg(O«()/O) prime factors in 0(0, it follows that (1 - 0 must be a 
prime ideal of (9. Alternatively, if (1 - () = A· B, then p = N(1 - C) = 
N A . N B so either N A = 1 or N B = 1. Therefore the ideal (1 - C) does not 
factor in (9. 0 

We now return to the proof of Proposition 1.2. Let v denote the valuation 
corresponding to the ideal (1 - 0, so v(1 - () = 1 and v(p) = p - 1, for ex
ample. Since O«() = 0(1 - (), we have that {I, 1 - (,(I - 02, ... ,(1 - (,-2} 
is a basis for O«() as a vector space over 0. Let ex E (9. Then 

ex = ao + al (1 - 0 + ... + ap-2(1 - (,-2 

with ai E O. We want to show ai E Z. Since v(a) = 0 (mod p - 1) for a E 0, the 
numbers v(al(1 - (n 0 ~ i ~ p - 2, for a l =F 0 are distinct (mod p - 1), hence 
are distinct. Therefore, by standard facts on non-archimedean valuations, 
v(ex) = min(v(al(1 - ()I». Since v(ex) ~ 0 and v«1 - ()I) < P - 1, we must have 
v(a j ) ~ O. Therefore p is not in the denominator of any al' Rearrange the 
expression for ex to obtain 

ex = bo + bl ( + ... + bp _ 2 (P-2, 

with bi E 0, but no bi has p in the denominator. 
The proof may now be completed by observing that the discriminant of 

the basis {I, (, ... , (p-2} is a power of p. More explicitly, we have 

ex ll = bo + bl (II + ... + bp _ 2«(I1,-2 
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where a runs through Gal(41(O/41) ~ (71./p71Y. Let lXi = lX a , where a: C 1-+ Ci . 

Then we have 

But the determinant of the matrix is a Vandermonde determinant, so it is 
equal to 

n (Ck - C i) = (unit)(power of 1 - C). 
I sJ<kSp-1 

Therefore bi = (algebraic integer)/(power of 1 - 0. Since bi has no p in the 
denominator, we must have bi = algebraic integer; therefore bi E 71., so we are 
done. 

Alternatively, we could finish the proof as follows. Since CilX is an alge
braic integer, its trace from 41(C) to 41 is a rational integer: Tr(CilX) E 71.. Now 
the minimal polynomial for CJ, (j,p) = 1, is XP-I + XP-2 + ... + X + 1, so 
Tr(CJ) = -1. We obtain 

Using this equation for i = 0 and i = i and subtracting, we obtain 
p(bo - bi) E 71., therefore bo - bi E 71.. It remains to show bo E 71.. Write 

IX = bo(l + C + ... + Cp-2) + [(bl - bo>C + ... + (bp_2 - bO>c p- 2]. 

By the above, the expression in brackets in an algebraic integer. Therefore 

-Cp-Ibo = bo(l + C + ... + CP-2) E (!), 

so bo E (!) n 41 = 71.. Therefore bi E 71. for all i, so again we are done. This 
finishes the proof of Proposition 1.2. 0 

Before proceeding to the proof of Theorem 1.1, we need the following 
result, which will be discussed in more detail later. 

Proposition 1.5. Let e be a unit of 71. [CP]. Then there exist e l E 41(C + C I ) and 
r E 71. such that e = C'e l . 

Remark. Take any embedding of 41(0 into the complex numbers. Complex 
conjugation acts as an automorphism sending C to C I . The fixed field is 
41(C + C 1 ) = 41(cos(27t/p» and is called the maximal real subfield of O(C). 
The proposition says that any unit of 71.[C] may be written as a root of 
unity times a real unit. This result is plausible since the field O(C + C 1) has 
(p - 1)/2 real embeddings and no complex embeddings into C, while O(C) 
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has no real embeddings and (p - 1)/2 pairs of complex embeddings. There
fore the Z-rank of the unit groups of each field is (p - 3)/2, so the units of 
IQ(C + C 1) are of finite index in those of 10(0. However, it does not appear 
that Dirichlet's unit theorem can be used to prove the proposition. 

Proof of Proposition 1.5. Let a = 8/6. Then a is an algebraic integer since 6 
is a unit. Also, all conjugates of a have absolute value 1 (this follows easily 
from the fact that complex conjugation commutes with the other elements of 
the Galois group). 

We now need a lemma. 

Lemma 1.6. If a is an algebraic integer all of whose conjugates have absolute 
value 1, then a is a root of unity. 

Proof. The coefficients of the irreducible polynomials for all powers of a are 
rational integers which can be given bounds depending only on the degree of 
a over 10. It follows that there are only finitely many irreducible polynomials 
which can have a power of a as a root. Therefore there are only finitely many 
distinct powers of a. The lemma follows. 0 

Remark. The assumption that a is an algebraic integer is essential, as the 
example a = ~ + !i shows. Also we note that it is actually possible for an 
algebraic integer to have absolute value 1 while some of its conjugates do not. 

An example is a = J 2 - .j2 + iJ J2 - 1. One conjugate may be obtained 

by mapping .j2 to -.j2, which yields J2 + .j2 ± J J2 + 1, neither of 
which have absolute value 1. However, if lQ(a) is abelian over 10 then all 
automorphisms commute with complex conjugation; so if aiX = 1 then 
a"a" = 1 for all (1. 

Returning to the proof of Proposition 1.5, we find that 8/6 is a root of 
unity, therefore 8/6 = ± ca for some a (the only roots of unity in IQ(C) are of 
this form. This will follow from results in the next chapter). 

Suppose first that 8/6 = _ca. Write 8 = bo + b1C + ... + bp _ 2CP-2. Then 
E == bo + b1 + ... + bp - 2 (mod 1 - C)· Also 6 = bo + bi C 1 + ... == bo + b1 + 
... + bp - 2 == 8 = -ca6 == -6. Therefore 2f. == 0 (mod 1 - O. But 2 ¢ (1 - C). 
Since (1 - C) is a prime ideal, 6 E (1 - 0, which is impossible since 6 is a unit. 

Therefore 8/6 = +ca. Let 2r == a (modp), and let 81 = crE. Then 8 = cr81 , 

and 61 = E1 • This proves Proposition 1.5. 0 

Proof of Theorem 1.1. We first treat the case p = 3. If 3 % x then x 3 == ± 1 
(mod 9) and similarly for y and z. Therefore x 3 + y3 == - 2, 0, or + 2 (mod 9) 
but Z3 == ± 1. Therefore x 3 + y3 # Z3. Similarly, we may treat the case p = 5 
by considering congruences mod 25. However, we must stop at p = 7 since 
17 + 307 == 31 7 (mod 49). In fact there are still solutions if we consider con
gruences to higher powers of7 (see the Exercises). So we need a new method. 
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Assume p ~ 5 and suppose x P + yP = zP, P ¥ xyz. Suppose x == y == - z 
(mod pl. Then - 2zP == zP, which is impossible since p ¥ 3z. Therefore we may 
rewrite the equation if necessary (as x P + ( - z)P = ( - y)P) to obtain x =1= y 
(mod pl. We shall need this assumption later on. Also we may assume x, y, 
and z are relatively prime, otherwise divide by the greatest common divisor. 

Lemma 1.7. The ideals (x + (iy), i = 0, 1, ... , p - 1, are pairwise relatively 
prime. 

Proof. Suppose &> is a prime ideal with &>I(x + (iy) and &>I(x + (jy), where 
i oF j. Then &>I«(iy - (jy) = (unit)(1 - ()y. Therefore &> = (1 - () or &>Iy. 
Similarly, f!J divides (j(x + (iy) - (i(X + (jy) = (unit)(1 - ()x, so &> = (1 - 0 
or &>lx.1f &> oF (1 - () then &>Ix and &>Iy, which is impossible since (x,y) = 1. 
Therefore &> = (1 - n But then x + y == x + (iy == 0 mod&>, the second con
gruence being by the choice of &>. Since x + y E 71., we have x + y == 0 (mod pl. 
But zP = x P + yP == x + Y == 0 (modp), so plz, contradiction. The lemma is 
~~ 0 

Lemma 1.S. Let a E 71.[(]. Then a P is congruent mod p to a rational inte
ger (note this congruence is mod p, so it is much stronger than a congruence 
modl-n 

Proof. Let a = bo + bl ( + ... + bp_2(P-2. Then a P == bg + (bIOP + ... + 
(bp_2(p-2)p = bg + bf + ... + b;-2 (mod p), which proves the lemma. 0 

Lemma 1.9. Suppose a = ao + al ( + ... + ap _ 1 (p-I with ai E 71. and at least 
one ai = o. If n E 71. and n divides a then n divides each aj. Similarly, suppose 
all ai E 71.p and at least one ai = o. If p divides a, then p divides each aj. 

Proof. Since 1 + ( + ... + (p-I = 0, we may use any subset of {t,(, ... , (P-l} 
with p - 1 elements as a basis of the 71.-module 71.[n. Since at least one 
ai = 0, the other a/s give the coefficients with respect to a basis. The first 
statement follows. The proof of the second statement is similar. 0 

We may now finish the proof of Theorem 1.1. Consider the equation 

p-l n (x + (iy) = (z)P 
i=O 

as an equality of ideals. Since the ideals (x + (iy), 0:5 i :5 P - I, are pairwise 
relatively prime by Lemma 1.7, each one must be the pth power of an ideal: 

(x + (iy) = Af. 

Note that Af is principal. 
Now comes the big step: since the class number of O«() is assumed to be 

not divisible by p, the ideal Ai must be principal, say Ai = (ai). Consequently 
(x + (iy) = (an so x + (iy = (unit)· ar. We note that this is exactly the same 
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as we could have obtained under the stronger assumption that Z[(] has 
unique factorization, rather than just class number prime to p. 

Let i = 1 and omit the subscripts, so x + (y = 8rxP for some unit 8. Propo
sition 1.5 says that 8 = (r81 for some integer r and where Bl = 8 1 • Lemma 1.8 
says that there is a rational integer a such that rxP == a (mod pl. Therefore 
x + (y = C81rxP == (r81a (modp). Also x + ely = er81iip == e r81a (modp) 
= er 8 1a (modp) since a = a and p = p. We obtain 

er(x + (y) == (r(x + ely) (mod p) 

or 

If 1, (, {2r, (2r-l are distinct, then (since p ~ 5) Lemma 1.9 says that p 
divides x and y, which is contrary to our original assumptions. Therefore, 
they are not distinct. Since 1 =1= ( and (2r =1= (2r-l, we have three cases: 

(1) 1 = (2r. We have from (.) that x + (y - x - ely == 0 (modp), so, 
(y - (p-l Y == 0 (mod pl. Lemma 1.9 implies that y == 0 (mod p), contradic
tion. 

(2) 1 = (2r-l or, equivalently, ( = (2r. Equation (.) becomes 

(x - y) - (x - yK == 0 (mod pl. 

Lemma 1.9 implies x - y == 0 (mod p), which contradicts the choice of x 
and y made at the beginning of the proof. 

(3) ( = (2r-l. Equation (.) becomes 

x - (2X == 0 (modp), 

so x == 0 (mod p), contradiction. The proof of Theorem 1.1 is now com
plete. [] 

Remarks. (Proofs for the following statements will appear in later chapters). 
The obvious question now arises: How can one determine whether or not p 
divides the class number of IO(O? Kummer answered this question quite 
nicely. Define the Bernoulli numbers Bn by the formula 

t 00 t n 

-=LB-e' - 1 n=O n n! 

(for example, Bo = 1, Bl = -t, B2 = i, B3 = 0 and in fact BlI,+1 = 0 for 
k ~ 1, B4 = -lo, B6 = 12, B8 = - 310' BlO = 16, Bll = -lllo). Then p 
divides the class number of IO(() if and only if p divides the numerator of 
some Bt , k = 2,4,6, ... , p - 3. For example, 691 divides the numerator of Bll 
so 691 divides the class number of 10((691). 

If p does not divide the class number of IO({) then p is called regular, other-
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wise p is called irregular. The first few irregular primes are 37, 59,67, 101, 103, 
131,149, and 157 (which in fact divides two different Bernoulli numbers). The 
irregular primes up to 125000 have been calculated by Wagstaff. Approxi
mately 1 - e-l /2 ~ 39% of primes are irregular and e-l /2 ~ 61% are regular. 
There are probability arguments which make these empirical results plausi
ble. It is known there are infinitely many irregular primes, but it is an open 
problem to show there are infinitely many regular primes. 

One may also ask how often Z[C] has unique factorization, or equiva
lently when the class number is equal to one. It turns out that the class 
number grows quite rapidly as p increases, so there can only be finitely many 
p for which there is unique factorization. In fact, Montgomery and Uchida 
proved (independently) that the class number is one exactly when p ~ 19. 

To finish this chapter we shall show that 0«(23) does not have class 
number one. It is known that O(J -23) £:: 0«(23)' For a proof, see the 
Exercises for the next chapter, or use Lemma 4.7 plus Lemma 4.8. The prime 

2 splits in O(J - 23) as leli, where Ie = (2, (1 + J - 23)/2) (see the Exercises). 
Let f!J be a prime of 0«(23) lying above fe. We claim that f!J is nonprincipal. 

The norm of f!J from 0«(23) to O(J - 23) is fel, where f is the degree of the 
residue class field extension. In particular, f divides deg(O«(23)/O(J - 23)) = 
11, so f = 1 or 11 (actually, f = 11). Since fe is nonprincipal and fe3 is 
principal, fell is nonprincipal. Therefore fel cannot be principal. But if f!J is 
principal, so is its norm. Therefore f!J is nonprincipal, so .lH23] cannot have 
unique factorization. 

NOTES 

The proof of Theorem 1.1 is due to Kummer [2]. Before Wiles, the first case 
had been proved for p < 7.57 X 1017 (see Coppersmith [1]) using an ex
tended form of the Wieferich criterion: if there exists a ~ 89 such that aP- l ¥= 
1 modp2 then the first case is true (see Granville-Monagan [1]). It was also 
known to be true for infinitely many p by work of Adlemen-Heath-Brown 
[1] and Fouvry [1]. See also Deshouillers [1]. For more on the history of 
Fermat's Last Theorem, see Vandiver [1] and Ribenboim [1]. 

EXERCISES 

1.1. (a) Show that the irreducible polynomial for '".. is X(p-I)p·-I + X(p-l)"..-I + ... + 
Xp·-I + 1 (one way to prove irreducibility: evaluate the polynomial as geometric 
series to get a rational function, change X to X + 1, rewrite as a polynomial 
reduced mod p, then use Eisenstein). 
(b) Show the ring of integers of (H'p.) is Z[,,,..]. 

1.2. Suppose p == 1 (mod 3). Using the fact that Zp contains the cube roots of unity, 
show that x P + yP == zP (mod pO), p k xyz, has solutions for each n ~ 1. 
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1.3. Using the fact that llj=5] has class number 2, show that x 2 + 5 = y3 has no 
solutions in rational integers. 

1.4. Show that the ideal /t = (2,(1 + J -23)/2) is nonprincipal in 1'[(1 + j=23)/2], 
but that its third power is principal. Also show that /tfo = (2). 

1.5. Show that the class number of Q('23) is divisible by 3 (in fact, it is exactly 3, but 
do not show this). 



CHAPTER 2 

Basic Results 

In this chapter we prove some basic results on cyclotomic fields which will 
lay the groundwork for later chapters. We let 'n denote a primitive nth root 
of unity. First we determine the ring of integers and discriminant of 1O('n). We 
start with the prime power case. 

Proposition 2.1. The discriminant of 1O('pn) is 

+ pn-I(pn-n-l) -p , 

where we have - if pn = 4 or if p == 3 (mod 4), and we have + otherwise. 

Proof. From Exercise 1.1, the ring of integers is Z['pnJ, so an integral basis 
is {I, 'pn' ... ' ,t~pn)-l }. The square of the determinant of ('~n)O:S;i«p-l)pn I gives 

O<j<pn.pk j 

the discriminant. But this determinant is Vandermonde, so it equals 

n ('tn - '!n) = (root of unity)· n (1 - '!; j). 
O<k<j<pn k<j 

pUk pUk 

Since (1 - G.:') = -';.:'(1 - '=n), we may include all pairs j, k with j "# k to 
get the discriminant 

det('~n)2 = (root of unity)· n (1 - '!; j). 
O<j,k<p" 

j# 
pUk 

We immediately see that the discriminant, up to sign, must be a power of p. 
Let v denote the valuation corresponding to the prime ideal (1 - 'pn) of 
Z['pnl As in the first chapter for the case n = 1, we have (1 _ 'pn)(P-l)pn-1 = 
(p). It follows that v(p) = (p - l)pn-l and v(1 - 'p~) = pn-m for 1 S; m S; n. 
Consequently, if k ==j (mod pm) but k =/=j (modpm+1), we have v(1 - ,!;j) = 

9 
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pm since C!;;- j is a pn-mth root of unity. Fix j with pi j. It is easy to see that 
there are (p - 2)pn-1 values of k withj =1= k (modp), and (p - l)pn-I-i values 
of k such thatj == k (mod pi) butj =1= k (modpi+1). Also, there are (p - l)pn-l 
possibilities for j. Therefore, the valuation of the discriminant is 

(p _ l)pn-l [(P _ 2)pn-1 + '% (p _ l)pn-l-i. p] 

= (p - l)pn-l[pn-l(pn - n - 1)]. 

Since v(p) = (p - l)pn-l, we must have the discriminant = 

To determine the sign, we use the following lemma. 

Lemma 2.2. Let k be a number field with r2 pairs of complex embeddings. Then 
d(k) = discriminant of k has sign (-IY'. 

Proof. Let {IXI, ... , IXm} be a Z-module basis for the ring of integers of k. Then 

d(k) = (det(IXna,i)2, 

where (1 runs through all embeddings of k into C. If (1 is a complex em
bedding, then (j is another embedding, where the bar refers to complex 
conjugation. Therefore 

det(IXj) = (-IY'det(IXf), 

since r2 pairs of rows are interchanged. If r2 is even then det(IXj) is real, so 
d(k) > O. If r2 is odd, then det(IXj) is purely imaginary, so d(k) < O. This 
proves the lemma. D 

Returning to the proof of Proposition 2.1, we note that r2 = t(p - l)pn-l, 
which is even unless pn = 4 or p == 3 (mod 4). This completes the proof. D 

Now let m = TI pi' be a positive integer. We shall always assume that 
m =1= 2 (mod4), since if m is odd then O(C2m) = O(Cm)' Clearly O(Cm) is the 
compositum of the fields O(Cpr')' 

Proposition 2.3. p ramifies in O(Cm)-P divides m. 

Proof. If p divides m then O(Cp ) s;;; O(Cm)' Since p ramifies in O(Cp ), it ramifies 
in O(Cm)' Conversely, suppose p does not divide m = TIPi'. Then p is un
ramified in each O(Cpr') since p does not divide the discriminant. Therefore p 
does not ramify in the compositum, which is O(Cm)' This completes the proof. 

D 

Note that the proposition implies that p divides the discriminant if and 
only if p divides m. 
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Proposition 2.4. If (m, n) = 1 then O(C,,) n O(Cm) = O. 

Proof. Let K = O(Cm) n O(C,,). If K =F 0 then there is some prime, call it p, 
which ramifies in K (this follows from the fact that Id(K)1 > 1. See Lemma 
14.3). By the previous proposition, plm and pin, which is impossible. There
foreK = O. D 

Theorem 2.5. deg(O(CII)/O) = tP(n) and Gal(O(C,,)/O) ~ (lL/nlLY, with a mod n 
corresponding to the map CII 1-+ C;. 

Proof. Since O(Cm) is normal over 0, Proposition 2.4 implies that if (m, n) = 1 
then deg(O(Cmll)/O) = deg(O(Cm)/O)' deg(O(C,,)/O). It therefore suffices to 
evaluate the degree for prime powers, which we have already done (Exercise 
1.1). Since tP(p") = (p - l)p"-1 and tP(mn) = tP(m)tP(n) for (m, n) = I, we obtain 
deg(O(C,,)/O) = tP(n). 

It is a standard exercise in Galois theory to show that Gal(O(CII)/O) is a 
subgroup of (lL/nlLY. Since they are of the same order, they must be equal. 
This completes the proof. D 

Theorem 2.6. lL[CII] is the ring of algebraic integers of O(CII)' 

Proof. We need the following result (for a proof see Lang [I], p. 68): 
Suppose K and E are two number fields which are linearly disjoint 

(<=> deg(KE/O) = deg(K/O)' deg(E/O» and whose discriminants are rela
tively prime. Then (!)KE = (!)K(!)E' where (!)F denotes the ring of algebraic inte
gers in a field F. Also 

d(KE) = d(K)del(EIO) d(E)del(KIO). 

Applying this result to cyclotomic fields, using the fact that Theorem 2.6 is 
true in the prime power case, we obtain the theorem for all n. D 

We now compute the discriminant of O(CII)' The above-mentioned result 
may be written as 

log Id(KE)1 log Id(K)1 log Id(E)1 --,-------,-----,--,:-,- = + . 
deg(KE/O) deg(K/O) deg(E/O) 

Therefore if n = n pj' we have 

10gld(0(CII»1 ~ 0,-1 , 
tP(n) = -1" PI (Pial - al - 1)(logpI)/tP(pj ) 

= L (a i - _1_)(IOgPi) = logn = L (logp)/(p - 1). 
I Pi - 1 pili 

We obtain the following (the sign is determined from Lemma 2.2). 
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Proposition 2.7. 
.p(.) 

d(Q(C.» = (_1)<P(·)/2 TI n .p(.)/(p 1)' 

pl· P 

2. Basic Results 

D 

One difference between the prime-power case and the case of general n is 
given in the following. 

Proposition 2.S. Suppose n has at least two distinct prime factors. Then 1 - C. 
is a unit of ;K[C.] and TIo<j<. (1 - W = 1. 

(j •• )=1 
Proof. Since X·- 1 + X·- 2 + '" + X + 1 = TIj~t (X - W, we may let X = 1 
to obtain n = TIj~t (1 - W. If pa is the exact power of p dividing n then, 
letting j run through multiples of n/pa, we find that this product contains 
TI}:~1 (1 - C~a) = pa. If we remove these factors for each prime dividing n, we 
obtain 1 = TI (1 - W, where the product is over those j such that C~ is not of 
prime power order. Since n is not a prime power, 1 - C. appears as a factor 
in this product, hence is a unit. But TIU,.)=1 (1 - C~) is the norm of (1 - C.) 
from Q(C.) to Q, therefore equals a unit of ;K, namely ± 1. Since complex 
conjugation is in the Galois group, the norm of any element may be written 
in the form (Xii, which is positive. It follows that TIU .• )=1 (1 - W = + 1, which 
completes the proof. We remark that the proof works even if n == 2 (mod 4). 

D 

One might ask what the irreducible polynomial for C.looks like. We define 
the nth cyclotomic polynomial 

<I>.(X) = TI (X - W· (j,.)=1 
Since deg(Q(C.)jQ) = ~(n) = deg <1>. (X), it follows that <I>.(X) is the irreduc
ible polynomial for C •. Also, <I>.(X) E ;K [X] since the coefficients are rational 
and also are algebraic integers. In addition, it is easy to see that 

X· - 1 = TI <I>d(X), 
dl· 

The first few cyclotomic polynomials are 

<I>1(X) = X-I, 

All these have coefficients ± 1 and 0; however, this is not true in general. By 
chooing n with many prime factors one can obtain arbitrarily large coeffi
cients. 

One use of cyclotomic polynomials is to give an elementary proof of 
a special case of Dirichlet's theorem on primes in arithmetic progressions 
(Corollary 2.11). 
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Lemma 2.9. Suppose p ¥ n and a E 7L.. Then plCl>n(a) <=> the multiplicative order of 
a mod p is n (i.e., an == 1 (mod p) and n is minimal). 

Proof. Suppose plCl>n(a). Since xn - 1 = TId In Cl>d(X), we have an == 1 (mod pl. 
Let k be the order of a (mod pl. Then kin. Suppose k < n. As above, we 
have 0 == ak - 1 == TIdlk Cl>d(a) (mod pl. Consequently Cl>do(a) == 0 (mod p) for 
some do. Therefore an - 1 = Cl>ia)Cl>do(a)· (other factors) == 0 (mod p2). Since 
Cl>n(a + p) == Cl>n(a) == 0 (mod p), and similarly for Cl>do' we also have (a + p)" -
1 == 0 (mod p2). Therefore 0 == (a + p)n - 1 == an + npan- 1 - 1 == npan- 1 

(mod p2). Since p ¥ na, this is impossible. Therefore k = n. 
Conversely, suppose an - 1 == 0 (mod pl. Then Cl>ia) == 0 (mod p) for some 

din. But if d < n then the order of a would be less than n since we would have 
ad - 1 == 0 (mod pl. Therefore Cl>n(a) == 0 (mod p), and the proof is complete. 

D 

Proposition 2.10. Suppose p ¥ n. Then p divides Cl>n(a) for some a E 7L. <=> P == 1 
(modn). 

Proof. If pi Cl>n(a) then a (modp) has order n. Since the order of an element 
divides the order of the group, n divides p - 1. Conversely, if p == 1 (mod n), 
then there is an element a (mod p) of order n, since (7L./p7L.y is cyclic. Therefore 
pi Cl>n(a). D 

Corollary 2.11. For any n ~ 1 there are infinitely many primes p == 1 (mod n). 

Proof. Suppose there are only finitely many, say Pl' ... , Pro Let M = npl ... Pr 
and let N E 7L.. Then Cl>n(N M) == Cl>n(O) == ± 1 (mod M), therefore mod Pi and 
mod n (Cl>n(O) = ± 1 since it s a root of unity by the definition of Cl>n(X)). In 
particular Cl>n(N M) is not divisible by Pi and none of its prime factors divides 
n. As N -+ 00, Cl>.(N M) -+ 00, so far large N we have Cl>n(N M) "" ± 1. There
fore there is a prime p dividing Cl>n(N M). By the proposition, p == 1 (mod n). 
From the above, p "" Pi' 1 ~ i ~ r. Therefore we have obtained a new prime. 
This completes the proof. D 

We remark that Euclid's classical proof is just the above proof using 
Cl>2(X). Similarly, Cl>4(X) is used to obtain primes ofthe form 4n + 1. 

Now we turn our attention to the splitting of primes in cyclotomic fields. 
First we need the following useful result. 

Lemma 2.12. Suppose p ¥ n and let 9 be a prime of (]!(Cn) lying above p. Then 
the nth roots of unity are distinct mod 9. 

Proof. The result follows immediately from the equation 
n-l 

n = TI (1- W· D 
j=l 

Note that this result is not true for pin. In (]!(Cp ) we have Cp == 1 
mod(1 - Cpl. 
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Assume p k n and let f1J lie above p in Q«(n). The Frobenius automorphism 
of Q«(n) is defined by 

upx == x P (mod gil) for all x E &::[(nl 

Since up(n is an nth root of unity, Lemma 2.12 implies that up(n = (:. The 
order of up is the degree of the residue class extension Z[(n] (mod gII)/&:: 
(mod p). Now ut = 1 <:> ut «(n) = (n <:> (:' = (n <:> pf == 1 (mod n). Since p is 
unramified in Q«(n), it is a standard fact from algebraic number theory that 
the degree of the residue class extension multiplied by the number of primes 
above p equals the degree of the extension O«(n}/Q. We have therefore proved 
the following. 

Theorem 2.13. Suppose p k n and let f be the smallest positive integer such that 
pi == 1 (mod n). Then p splits into g = ,p(n)/f distinct primes in Q«(n), each of 
which has residue class degree f In particular, p splits completely<:>p == 1 
~~~ 0 

Remark. The fact that p splits completely if and only if p == 1 (mod n) means 
that O«(n) is the ray class field modulo nco in the sense of class field theory. 
Since every abelian extension of the rationals is contained in some ray class 
field, this proves the celebrated Kronecker-Weber theorem: Every abelian 
extension of Q is contained in some Q«(n). Later we shall give a proof of this 
result without assuming class field theory. 

We also note that the splitting type of p depends only on its congruence 
class modulo n. This is a characteristic of abelian extensions which can be 
proved using class field theory. 

Theorem 2.13 is sometimes called the cyclotomic reciprocity law. One 
purpose of a reciprocity law is to give nice conditions for when a prime splits. 
For example, the quadratic reciprocity law (see Exercises) allows one to 
change a statement about q splitting in Q(.jP), which depends on whether or 
not p is a square mod q, into a question of whether or not q is a square mod p. 
If one wished to make a list of the primes which split in Q(.jP), then checking 
whether or not p is a square mod q for each q would be rather laborious. 
However, after making an initial list of squares modp, one would find check
ing each q mod p to be rather easy. The cyclotomic reciprocity law has the 
same advantages. 

As an example for the theorem, let p = 2 and n = 23. Then 211 == 1 
(mod 23), so f = 11. Therefore 2 splits into two factors in Q((23). But we 
already know that 2 splits as f1J"9 in 0(j=23), where f1J = (2, (1 + J - 23)/2) 

(see Exercise 1.4). Going from Q(J -23) to 0«(23), gil and "9 must remain 

prime. Therefore (2) = (2, (1 + j=23)/2}(2, (1 - j=23)/2) is the explicit 
factorization of (2) in 0«(23). As shown at the end of Chapter 1, neither of 
these ideals can be principal. 

We can also use Theorem 2.13 to treat the case pin, since O«(n) is the 
compositum of the linearly disjoint fields O«(nlP") and Q«(pa), where pa is the 
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exact power of p dividing n. We determine f and g for O((n/p.) by Theorem 
2.13 and then note that p is totally ramified in O((pa), with ramification index 
e = (p - l)pll-l. Therefore, the ramification index, residue class degree, and 
number of primes above p in O((n) must be at least e, f, and g, respectively. 
Since efg = deg(O((n)/O), these e, J, g must give the correct answers for the 
full extension. It is now easy to see that O((n/pa) is the inertia field and that 
if we identify Gal(O((n)/O) with (71./n7LY ~ (71./~71.Y ffi (71./( n/~)71.)X , then the 
inertia group for p is (71./~71.Y and the decomposition group is generated by 
(71./pIl71.Y and p (mod(n/pll)71.). 

It is possible, in theory, to give explicit generators for the prime ideals 
lying above a rational prime. We need the following result (for a proof, see 
Lang [1], p. 27). 

Proposition 2.14. Let A be a Dedekind domain with quotient field K, let E/K be 
a finite separable extension, and let B be the integral closure of A in E. Suppose 
B = A [IX] for some IX E E and let f(X) be the irreducible polynomial for IX over 
K. Let 9 be a prime ideal of A. Let f(X) denote reduction modulo 9. Suppose 

f(X) = PI (xy' ... P,(X)"g 

is the factorization of f(X) mod 9 into powers of distinct monic irreducible 
polynomials over (A/9) [X]. Let Pj(X) E A [X] be a monic polynomial which 
reduces mod 9 to ~(X). Let PI be the ideal of B generated by 9 and ~(IX). Then 
~ is a prime ideal of B lying over ~ e, is the ramification index, the P/s are 
distinct, and 

is the factorization of 9 in B. o 

Applying the proposition to our case, we factor the cyclotomic polynomial 
modpas 

<l»n(X) = PI (X)'" ... P,(X)"g 

(actually, e1 = e l = ... = eg since we are working with a Galois extension). 
Then ~ = (p, PI((n»' In the special case p == 1 (mod n), the ideals lying above 
p are of the form (p, a - (n), where a (mod p) is of order n. 

When g is small, in particular g = 2, and p is unramified, then perhaps it 
is easier to determine the generators for the primes in the splitting field. Since 
these primes are then inert the rest of the way up to the full cyclotomic field, 
these generators work for O((n) also. This is the method we used for p = 2 in 
0((13) previously. 

Finally, we discuss subfields of O((n)' The most important for our pur
poses is the maximal real subfield O((n + (;;1), denoted O((n)+. The exten
sion O((n)/O((n + (;;1) is of degree 2 since the lower field is the fixed field of 
complex conjugation. Alternatively, (n is a root of Xl - ((n + (;;l)X + 1. 
One interesting fact is the following. 
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Proposition 2.15. (a) If n = pm then O('n)/O('n)+ is ramified at the prime above 
p and at the archimedean primes, and unramified at the other primes. 

(b) If n is not a prime power, O('n)/O('nt is unramified except at the 
archimedean primes. 

Proof. In both cases, the archimedean primes ramify since O('n + ,;;1) is 
totally real and O('n) is totally complex. Part (a) is true since p is totally 
ramified in O('pm) and is the only ramified finite prime. Part (b) may be 
proved as follows. Let p and q be two different prime divisors of n (if p or q is 
2, then use 4 instead of 2). Then 'p and 'q are in O('n), but not in O('n + ,;;1), 
since the latter field is real. Since O('n)/O('nt is of degree 2, we must have 
O('n) = O('n + ,;;l,'p) = O('n + ,;;I,'q)' Adjoining 'p allows ramification 
only at primes above p and the archimedean primes (if L/K is unramified 
at a prime flJ>, then LF/KF is unramified at primes above f1I!. Here F = 
O('n + ,;;1), L = O('p), K = 0). Similarly, adjoining 'q alows ramification 
only above q and at the infinite primes. Therefore there is no ramification at 
finite primes, so the proof is complete. 0 

We now look at subfields of O('p) in more detail. Let g be a primitive root 
mod p, let e be a fixed divisor of p - 1, and let f = (p - 1)/e (there is no 
relationship with ramification indices, etc.). Define 

f-l 
. = " rgOj+, '7. L... ~ p , 

j=O 
i = 0, 1, ... , e - 1. 

These numbers are called periods and their significance is as follows. Let (J be 
the automorphism of O('p) which maps 'p to ,;. Since g is a primitive root, 
(J generates the Galois group. The subgroup of order f is 

H = {1,(Je, ... ,(Je(f-1 )}, 

which corresponds to {I, ge, ... , ge(f-I)} ~ C~/p71Y. Consequently, {gej+iIO ::;; 
j ::;; f - I} is a coset of this subgroup. It is easy to see that H fixes '7i' Also 
(J('7i) = '7i+l for 0 ::;; i ::;; e - 2, and (J('7e-l) = '70' So '7i has exactly e conju
gates under Gal(O('p)/O). It follows that '7i' for any i, generates the subfield 
of O('p) of degree e over O. For example, if e = (p - 1)/2, f = 2, then '7i = 
,;' + Gg', which in the case i = 0 gives us 'p + GI . 

One may ask whether or not ~['7J is the ring of integers of O('7J In 
general, the answer is no (see below), but for f = 2 the answer is yes. In fact, 
we have the following. 

Proposition 2.16. £: ['n + ,;;1] is the ring of integers of O('n + ,;;1). 
Proof. Suppose IX = ao + a l ('n + ,;;1) + ... + aN('n + ,;;I)N is an algebraic 
integer, with N ::;; tt,6(n) - 1 and with ai E O. By removing those terms with 
ai E £:, we may assume aN ¢. £:. Multiplying by ,~ and expanding the result as 
a polynomial in 'n' we find that '~IX = aN + ... + aN,;N is an algebraic inte
ger in O('n), therefore in ~['n]. Since 2N ::;; t,6(n) - 2 ::;; t,6(n) - 1, {I, 'n,"" 
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(;N} forms a subset of a Z-basis for the ring Z[(n]. Therefore aN E Z. This 
completes the proof. D 

For the case of 1'/;, i "# 0, we may take Galois conjugates of everything to 
find that Z [I'/J is the ring of integers of (j)(I'/;) (= 11)(1'/0)) for f = 2. 

There are many counterexamples for f > 2. Several may be obtained in a 
way similar to the following. Let p = 31,/ = 5. Since 25 == 1 (mod 31), 2 splits 
completely in the extension over II) of degree 6, which is 11)(1'/;). Suppose the 
ring of integers of 11)(1'/;) has the form Z[oc] for some oc. Let f(X) be the 
irreducible polynomial for oc over 11). By Proposition 2.14, f(X) must factor as 
a product of 6 distinct linear factors over Z/2Z. But X and X + 1 are the only 
linear polynomials mod 2, so this is impossible. Therefore the ring of integers 
cannot be Z[IX]; in particular, it cannot be Z[I'/;]. 

NOTES 

Most of the results in this chapter are due to Kummer. For studies of which 
elements can yield a power basis of the ring of integers, see Bremner [1] and 
Luo [1]. An amazing result of M.-N. Gras [5] says that for a cyclic extension 
of II) of prime degree I ~ 5, the ring of integers cannot have a power basis 
unless 21 + 1 = p is prime and the field is the maximal real subfield of the p-th 
cyclotomic field. 

For applications of cyclotomic polynomials to factoring, see Bach-Shallit 
[1]. For an application to digital filters, see Kurshan-Odlyzko [1]. 

For results on the size of the coefficients of cyclotomic polynomials, see 
Bachman [1], Bateman-Pomerance-Vaughan [1], Maier [1], and Mont
gomery-Vaughan [1]. 

EXERCISES 

2.1. Show O«(p) contains a quadratic subfield (p is an odd prime). Using the fact that 

only p can ramify, show that this field must be o (j±P), where we have + if 
p == 1 (mod 4) and - if p == 3 (mod 4). 

2.2. Show that 0«(8) contains 3 quadratic subfields. Determine which ones they are. 

2.3. Show that the only roots of unity in 0«(.) are of the form ± (~. 
2.4. Let p be an odd prime. Show that there is a unique subfield K of 0«(p2) of degree 

p over O. Show that 2p~1 == 1 (mod p2) if and only if 2 splits completely in K (the 
primes 1093 and 3511 are the only primes known which satisfy this relation. 
It can be shown that if 2p-1 ¥= I (modp2) then the first case of Fermat's Last 
Theorem holds.). 

2.5. (a) Determine explicitly the factorizations of 2,3,5,7, and 11 in 0«(20)' and show 
that all the prime ideals lying above these primes are principal (Hints: The 
quadratic subfields of 0«(20) are o (j=5), O(i), O(JS). The prime 2 may be 
treated via O(i). For 3 and 7, observe that wi + w~ = 3 and wt + w1 = 7, where 
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COl = (1 + ./5)/2 and CO2 = (1 - ./5)/2. For 5, show that the norm from 0(C20) 
to OKs) ofKs + CS 1) + C~· i is 1 - Cs. For 11, first determine its prime factors in 
O(Cs))· 
(b) A theorem of Minkowski states that in every ideal class of a number field K, 
there exists an integral ideal A satisfying 

n' (4)'2 NA 5,"in n Jld(K)I, 

where N A is the norm of A, n is the degree of Kover 0, d(K) is the discriminant, 
and r2 is the number of pairs of complex embeddings (see Lang [1] p. 119). Show 
that all ideals A satisfying this inequality are principal, so O(20) has class 
number 1 (note however that it has a subfield 0(.j=5) of class number 2). 

2.6. Let p and q be distinct odd primes. Let (p/q) = + 1 if x2 == p (mod q) has a 
solution, and (p/q) = -1 otherwise. The quadratic reciprocity law states that 

(~) = a) if either p == 1 (mod4) or q == 1 (mod 4) 

and 

(~) = -(~) if both p == 3 (mod 4) and q == 3 (mod 4). 

Justify the steps in the following proof. 
(a) Assume p == t (mod 4), q arbitrary. Then 

(n = 1_ x2 - X + t ~ p == 0 (mod q) is solvable 

-q splits in O(JP) = oC \JP) 

- uq (= Frobenius for q in O(Cp )) fixed O(JP) 

_ q == a2 (mod p) is solvable _ (~) = 1. 

The same argument works if q == 1 (mod4) and p is arbitrary. 
(b) Assume both p == 3 (mod 4) and q == 3 (mod 4). Imitate part (a) to show 
(p/q) = - (q/p). (Since - t is not a square modulo a prime congruent to 3 mod 4, 
we have x 2 == p (modq) has a solution_x2 == -p (modq) does not have a 
solution). 

2.7. Using the techniques of the previous exercise, show that x 2 == 2 (modp) has a 
solution if p == ± 1 (mod 8) and does not have a solution if p == ± 3 (mod 8). 

2.8. (Lenstra). This exercise gives another proof of Proposition 2.7. 
(a) Let CII.(X) be the nth cyclotomic polynomial. Show that 

CII.(X) = n (xo'4 - 1),,111), 
410 
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where fJ,(d) is the Mobius function: fJ,(d) = 0 if d is not square-free: if d is square
free then fJ,(d) = ( _1)X where n is the number of prime factors of d. A useful fact: 
Ldln fJ,(d) = 1 if n = 1, = 0 if n > 1. 
(b) Let Xn - 1 = <l>n(X)' 'I'n(X). Show that <l>~((n) = nG- 1/'I'n((n)' Since (n gener
ates the ring of integers of Q((n), <l>~((n) generates the different, and its norm to Q 
gives the discriminant. 
(c) Show that 'I'n((n) = (unit)· npln((:/P - 1). 
(d) Show that Norm(l _ (p) = p,,(n)/(p-l). 

(e) Deduce Proposition 2.7. 



CHAPTER 3 

Dirichlet Characters 

In this chapter we introduce the basic facts about Dirichlet characters. We 
then show how they may be used to obtain information about the arithmetic 
of number fields. As a result, we show how to obtain ideal class groups 
containing prescribed subgroups. 

A Dirichlet character is basically a multiplicative homomorphism 
x: (lL/n7LY -+ ex. If nlm then X induces a homomorphism (lL/mlLY -+ ex by 
composition with the natural map (lL/mlLY -+ (lL/nlLY. Therefore, we could 
regard X as being defined mod m or mod n, since both are essentially the same 
map. It is convenient to choose n minimal and call it the conductor of X, 
denoted I or Ix-

EXAMPLES. (1) Let X: (lL/8lLY -+ ex be defined by x(l) = 1, X(3) = -1, X(5) = 
1, X(7) = -1. Since x(a + 4) = x(a), it is clear X may be defined mod 4 by 
X(I) = 1, X(3) = -1. Since 4 is minimal, Ix = 4. 

(2) Let X: (lL/6lLY -+ ex be defined by x(l) = 1, X(5) = -1. Then X is in
duced by the map (lL/3lLY -+ ex which sends 1 to 1 and 2 to -1. Therefore 
Ix = 3. 

It is convenient to classify characters into two types: if X( -1) = 1 then X is 
called even; if X( -1) = -1 then X is called odd. Both of the above examples 
are odd characters. 

Many times we regard X as a map lL -+ e by letting x(a) = 0 if (a,/x) =/; 1. 
It is therefore important to make a convention regarding the modulus of 
definition of X. We shall always regard X as being defined modulo its con
ductor. Such characters are called primitive. Essentially, this choice makes 
x(a) = 0 happen as little as possible. Also X is then periodic of period Ix' In 

20 
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Example 2, the fact that X defined mod 6 did not have period 3 can be 
explained by the fact that 6 contains the extraneous prime 2, so all even a had 
x(a) = O. 

In the following, when we talk of the characters of (7L/n7Lr, or of the 
characters mod n, we shall be including characters of conductor dividing n, 
for example the trivial character of conductor 1. 

The convention that all characters are primitive plays a part in the multi
plication of characters. Let X and 1/1 be Dirichlet characters of conductors Ix 
and f",. We define xl/l as follows. Consider the homomorphism 

y: (7L/lcm(fx,f",) 7Lr -+ ex 
defined by y(a) = x(a)I/I(a). Then xl/l is the primitive character associated to y. 

EXAMPLES. (3) Define X mod 12 by X(I) = 1, X(5) = -1, X(7) = -1, X(II) = 1 
and define 1/1 mod 3 by 1/1(1) = 1, 1/1(2) = -1. Then xl/l on (7L/127Lr has the 
values xl/l(I) = 1, xl/l(5) = X(5)I/I(2) = 1, xl/l(7) = -1, xl/l(11) = -1. It is easy 
to see that xl/l has conductor 4 and satisfies xl/l(I) = 1, xl/l(3) = -1. Note that 
xl/l(3) = - 1 :1= X(3)I/I(3). 

(4) Let X be any character and let 1/1 = X (complex conjugate). Then 
I/I(a) = x(a)-l if (a,fx) = 1. It follows that XX is the trivial character: xx(a) = 1 
for all a (including a = 0). 

(5) If(fx'!.;) = 1 then fx'" = fxf", (see Exercises). 

The advantage of using primitive characters becomes evident when one 
takes a product of several characters of various conductors, since otherwise 
the modulus of definition could grow quite rapidly. Also, with our conven
tion, there is only one trivial character, rather than one for each modulus. 

It is sometimes advantageous to think of Dirichlet characters as being 
characters of Galois groups of cyclotomic fields. If we identify Gal(Q('n)/Q) 
with (7L/n7Lr then a Dirichlet character mod n is a Galois character. The 
Examples 1 and 2 above may be interpreted as follows: 

(1) The kernel is 1 (mod 8) and 5 (mod 8). In the Galois group these form 
Gal(Q(Cs)/Q('4»' so X is a character of the quotient of (7L/87Lr by this 
subgroup. Consequently X is a character of Gal(Q(C4)/Q) ~ (7L/47Lr. 

(2) In this case Q('6) = Q(C3) so a character mod 6 and a character mod 3 
are characters of the same Galois group. 

In general, let X be a character mod n, hence a character of Gal(Q(Cn)/Q). 
Let K be the fixed field of the kernel of X. Then K !;; Q('n), and if n is minimal 
then n = fx' The field K depends only on X and is called the field belonging 
to X. More generally, let X be a finite group of Dirichlet characters. Let n be 
the least common multiple of the conductors of the characters in X, so X is 
a subgroup of the characters of Gal(Q(Cn)/Q). Let H be the intersection of the 
kernels of these characters and let K be the fixed field of H. Then X is 
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precisely the set of homomorphisms Gal(KjQ) -+ e x (see below). The field K 
is called the field belonging to X, and we have deg(KjQ) = order of X; in 
fact, X ~ Gal(KjQ) (see below). If X is cyclic, generated by X, then K is 
precisely the same as the field belonging to X mentioned above. 

EXAMPLES. (6) If X is the group of characters of (71.jn7l.Y satisfying X( -1) = 
+ 1, then complex conjugation «(. H (;;1) is in the kernel of each X E X. The 
field associated to X is 11)«(. + (;;1), which is the maximal real subfield of 
Q«(.). Similarly, if X is any character then the field belonging to X is real if and 
only if X( -1) = + 1. 

(7) The character X of example (3) must correspond to a quadratic sub
extension of Q«( 12) = 11)«(3)11)«(4) = 11)(j=3)I1)(i). The three quadratic sub
fields are 11)(j=3), Q(i), and Q(y'3). The first two choices would force X 
to have conductor 3 and 4, respectively, which is not the case. Therefore, 
11)(y'3) is the field belonging to X. Alternatively, since X( -1) = + 1, the field 
belonging to X must be real. The fact that the discriminant of 11)(y'3) is 12 can 
be used to explain the fact that X has conductor 12 (see Theorem 3.11). 

The preceding notions can be put in the setting of characters of finite 
abelian groups, which we now review. Let G be a finite abelian group and let 
6 denote the group of multiplicative homomorphisms from G to ex. 

Lemma 3.1. If G is a finite abelian group, then G ~ 6 (noncanonically). 

Proof. G may be written a direct sum of groups of the form 7Ljm7L. Therefore 
6 is the product of groups of the form (71.jm71.) A. But if X E (7Ljm71.) A , then X(\) 
determines X (remember 7l.jm7L is additive). Since X(I) can be any mth root of 
unity, the lemma is true for 7Ljm71., hence for G. D 

Corollary 3.2. 6 ~ G (canonically). 

PROOF. Let 9 E G. Then g: 6 -+ ex by g: X -+ X(g). Suppose X(g) = 1 for all 
X E 6. Let H be the subgroup of G generated by g. Then 6 acts as a set of 
distinct characters of GjH. But there are at most #(GjH) of these by the 

lemma. Therefore, l!.. = 1, so 9 = 1. Consequently G injects into G. Since 
#(G) = #(6) = #(6), we are done. D 

Many times it is convenient to identify 6 = G. We have a natural pairing 

Gx6-+cx 

(g, X) H X(g)· 

This pairing is nondegenerate: if X(g) = 1 for all X E 6 then 9 = 1 by the 
above argument. If X(g) = 1 for all 9 E G then, of course, X = I. 
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Now let H be a subgroup of G. Let 

H1. = {X E GIX(h) = 1, Vh E H}. 

"" We clearly have a natural isomorphism H1. ~ (G/H). 

Proposition 3.3. Ii ~ G / H 1.. 
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Proof. By restriction we have a map G -+ Ii. The kernel is H 1.. It remains 
"" to show surjectivity. But # (H1.) = # (G/H) = #(G/H) = #(G)/#(H). There-

fore #(Ii) = #(H) = # (G)/#(H1.) = #(G)/#(H1.). The proposition follows. 
o 

Proposition 3.4. (H1.)1. = H (we equate G = G). 

Proof. As in the preceding proof, a straightforward calculation shows both 
groups have the same order. If h E H then h: X -+ X(h) maps H1. -+ 1. There
fore H ~ H 1. 1.. Therefore they are equal. 0 

Remarks. Since G = G, we may reverse the roles of G and G in all the above. 
The above results, with the exception of Lemma 3.1, hold for locally compact 
abelian groups. However, the proofs are more difficult since counting argu
ments cannot be used. 

We now return to Dirichlet characters. Let X be the group of Dirichlet 
characters associated to a field K. Then we have a pairing 

Gal(K/Q) x X -+ ex. 
Let L be a subfield of K and let 

Then 

Y = {X E Xlx(g) = 1, Vg E Gal(K/L)}. 

Y = Gal(K/L)1. = (Gal(K/Q)/Gal(K/L»" 

= Gal(L/Q)" . 

Conversely, if we start with a subgroup Y ~ X and let L be the fixed field of 

Y1. = {g E Gal(K/Q)lx(g) = 1, "IX E Y}, 

then Y 1. = Gal(K/L), by Galois theory. Therefore Y = Y1.1. = Gal(K/L)1. = 
Gal(L/Q)" . It follows that we have a one-one correspondence between sub
groups of X and subfields of K given by 

Gal(K/L)1. ..... L 

Y ..... fixed field of Y 1. • 

This gives us a one-one correspondence between all groups of Dirichlet 
characters and subfields of cyclotomic fields, since any two groups may be 
regarded as subgroups of some larger group. 
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Since Gal(L/Q) is a finite abelian group we have Y = Gal(L/Q)A ~ 
Gal(L/Q). This isomorphism, though useful, is noncanonical and is better 
expressed by the natural nondegenerate pairing 

Gal(L/Q) x Y -+ ex. 
We leave the following statements as exercises: Let Xi correspond to K i. 

Then 

(1) XI S;;; X 2 ¢>K I S;;; K 2 • 

(2) The group generated by Xl and X 2 corresponds to the compositum 
K 1K 2 • 

We now show how ramification indices may be computed in terms of 
characters. 

Let n = TI pa. Corresponding to the decomposition 

(Z/n71Y ~ TI (Z/pazy 

we may write any character X defined mod n as 

X = TI Xp 

where Xp is a character defined mod pa. If X is a group of Dirichlet characters, 
then we let 

Xp = {xplx EX}. 

In Example (3), X may be written as X = X2' X3 where X2 is the character xI/I 
of conductor 4 from that example and X3 = 1/1-1 = 1/1. 

Theorem 3.5. Let X be a group of Dirichlet characters and K the associated 
field. Let p be a prime number with ramification index e in K. Then e = # (Xp). 

Proof. Let n be the least common multiple of the conductors of the char
acters of X, so K s;;; Q«(.). Let n = pa. m with p (m. Form the field L = 
K«(m) = K· Q«(m). (See diagram below). Then the group of characters of L 
is generated by X and the characters of (Z/nZY of conductor prime to p (i.e., 
the characters mod m). Therefore it is the direct product of X p with the 
characters of Q«(m). Consequently L is the compositum of Q«(m) with the 
field F s;;; Q«(p.) belonging to Xp- Since p is unramified in Q«(m), the ramifica
tion index for p in K is the same as for p in L. Since L/F is unramified for p, 
this ramification index is the same as that for F, which is deg(F/Q) = # (Xp). 
This completes the proof. D 
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What happens in the proof is maybe best explained by an example. Con
sider the quadratic character xmod 12 corresponding to the field O(J3) = 
O(ji2). Then X = X2X3 as above. The ramifications at 2 and 3 are occurring 
simultaneously, but we want to isolate, say, the prime 2. So we adjoin the 
character X3 and obtain the group generated by X2X3 and X3' which is also 
generated by X2 and X3. We now have the picture 

So we have "split" the field O(j3) so as to isolate the ramification at 2. 

Corollary 3.6. Let X be a Dirichlet character and K the associated field. Then 
p ramifies in K <:> X(p) = 0 (equivalently pi!). 

More generally, let L be the field associated with a group X of Dirichlet 
characters. Then p is unramified in L/O <:> X(p) "" 0 for all X E X. 

Proof. p ramifies in L/O <:> X p "" 1 <:> 3X E X with Xp "" 1 <:> 3X E X with 
plfl <:> 3X E X with X(p) = o. D 

Theorem 3.7. Let X be a group of Dirichlet characters, K the associated field. 
Let 

Y = {X E Xlx(p) "" O}, Z = {X E Xlx(p) = I}. 

Then 

e = [X: Y], f= [Y:Z], and g = [Z: 1] 

are the ramification index for p in K, the residue class degree, and the number 
of primes lying above p, respectively. In fact 

X/Y ~ the inertia group, X /Z ~ the decomposition group, 

Y/Z is cyclic of order f 
Proof. Let L be the subfield of K corresponding to Y. By Corollary 3.6, L is 
the maximal subfield of K in which p is unramified. It is a standard fact from 
algebraic number theory that L is then the fixed field of the inertia group, so 
the inertia group is Gal(K/ L). Under the pairing 

Gal(K/O) x X -+ ex 
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we have Y = Gal(K/L).L by the correspondence between subgroups and sub
fields, so 

X/Y = Gal(K/O)" /Gal(K/L).L = Gal(K/L}" 

~ Gal(K/L). 

Since the ramification index equals the order of the inertia group, we have 
e = [X: Y]. 

We now restrict our attention to the extension L/O, which is unramified 
at P and has Y as its group of characters. Let n = lcm Ix (x E Y). Then P % n 
and L c;; O(Cn). The Galois group ofO(Cn)/O is (7L/nZY and the Frobenius for 
pis P (modn), which corresponds to the map Cn 1-+ C:. The Galois group of 
L/O is a quotient group of (7L/n7L)X by Gal(O(C.)/L). The Frobenius up for 
L/O is just the coset of P in this quotient. But if X E Y then X kills 
Gal(O(Cn)/L). Therefore X(up ) = X(p), so X(up ) = 1 <=> X(p) = 1. Therefore Z = 
(up).L under the pairing 

Gal(L/O) x Y -+ ex , 
where (up) denotes the cyclic group (of order f) generated by up" Conse
quently 

/'.. 

Y/Z ~ (up) ~ (up), 

so I = [Y: Z]. Since the fixed field of the Frobenius is the splitting field for 
p, it also follows that Z is the group of characters corresponding to the 
splitting field, which is of degree g; so g = [Z: I]. 

Returning to the extension K/O, we note that the splitting field is the fixed 
field of the decomposition group (which is generated by the inertia group and 
an extension of up to K). Therefore, as above, we obtain X/Z ~ the decompo
sition group. This completes the proof. D 

We now show how Theorem 3.5 may be used to construct unramified 
extensions. 

Proposition 3.8. Let G be any finite abelian group. Then there exist fields Land 
K such that 

(a) Gal(L/ K) ~ G, and 
(b) L/K is unramified at all primes (including the archimedean primes). 

We may also make L/O abelian and KIO cyclic. 

Proof. By the structure theorem for finite abelian groups, we may write 

G ~ 7Lln 1 7L (f) ... (f) 7Llnr 7L 

for some integers n1 , ••. , nr. Let Pi' ... , Pr be distinct primes satisfying Pi == 1 
(mod 2nJ Since Gal(O(Cp)/O) is cyclic of order Pi - 1, there exists a charac
ter t/li of conductor Pi and order Pi - 1. Let Xi = t/I!p,-l)/n,. Since (Pi - 1)/ni is 
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even, Xi( -1) = + 1. Let Pr+l be another odd prime and let Xr+l be an odd 
character of conductor Pr+l (for example, I/Ir+d. We assume that the order 
nr+l of Xr+l is divisible by nl , ... , nr • Define 

x = Xl"'Xr+l, 

and let K be the corresponding field. Since 

X(-1) = Xl(-1)"'Xr(-1)Xr+l(-1) = -1, 

K is complex, so every extension of K is unramified at the archimedean 
primes. 

Let X be the group generated by {Xl'"'' Xr+d and let L be the corre
sponding field. Clearly X Pi is generated by Xi for 1 :::;; i :::;; r + 1 and X P is 
trivial for all other primes p. It follows from Theorem 3.5 that both Land K 
have the same ramification indices at each finite prime. Therefore L/K is 
unramified at all primes. 

The map Xi H Xi for i :::;; r, Xr+l H X, defines an automorophism of X (it is 
well-defined since the image X of Xr+l satisfies Xnr+' = 1). Therefore 

Gal(L/K) ~ X/(X> ~ X/(Xr+l> = <Xl,,,·,Xr> 

~ Z/n l Z EEl ... EEl Z/nrZ ~ G. 

This completes the proof. o 

Corollary 3.9. Given any finite abelian group G, there exists a cyclic extension 
K of Q such that the ideal class group of K contains a subgroup isomorphic 
to G. 

Proof. We shall use one of the main results of class field theory: 
Let K be a number field and let H be the maximal unramified (at all 

primes, finite and infinite) abelian extension of K. Then Gal(H/K) is iso
morphic to the ideal class group of K (the field H is called the Hilbert class 
field of K). 

By Proposition 3.8 there exists K, and a subextension of H/K with Galois 
group G. Therefore the ideal class group has a quotient group isomorphic to 
G. The corollary follows from the next lemma. 

Lemma 3.10. If A is a finite abelian group and B is a subgroup, then A contains 
a subgroup isomorphic to A/B. 

Proof. This result could be proved via the structure theory of finite abelian 
groups. Another proof is the following: 

A/B ~ (A/B)" ~ B.l £; A ~ A. DO 

It is unknown whether or not every finite abelian group occurs as the class 
group of some number field. 
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We finish this chapter with a useful result which relates to the material of 
this chapter but which will be proved in the next chapter. 

Theorem 3.lt (Conductor-Discriminant Formula). Let K be the number field 
associated to the group X of Dirichlet characters. Then the discriminant of K 
is given by 

d(K) = (-1)'2 n fx-
xeX 

This theorem can be very useful for computing discriminants of abelian 
number fields. For example, consider the real subfield of o (Cp ). The group of 
characters consists of the trivial character of conductor 1 and (p - 3)/2 other 
characters, all of conductor p. Since r2 = 0 we have d(O(Cp + ,;1)) = p(p-3)/2. 

NoTES 

The use of Dirichlet characters to describe the arithmetic of an abelian field 
can be found in Leopoldt [9]. The above proofs of Proposition 3.8 and 
Corollary 3.9 are from Hasse [3]. For a generalization of Proposition 3.8 to 
non-abelian groups, see Frohlich [1]. It can be shown that any finite abelian 
group occurs as a subgroup of the class group of some cyclotomic field O(Cn). 
See Cornell [1]. The techniques of Corollary 3.9 do not suffice for this, since 
the unramified extension constructed there is contained in a cyclotomic field; 
hence it collapses when it is lifted (Proposition 4.11 fails). For versions of 
Corollary 3.9 in other settings, see Azuhata-Ichimura [1] and Yamamura 
[1]. It is not known whether or not every finite abelian group occurs as the 
class group of some number field. However, every finite abelian {-group is 
the {-Sylow subgroup of the class group for some number field (Yahagi [1]). 
The corresponding result for divisor classes of degree 0 is false for function 
fields over finite fields (Stichtenoth [1]). 

The techniques of Proposition 3.8 are part of what is known as genus 
theory. For more on this useful subject, see Ishida [1]. 

For more on the conductor-discriminant formula, see Hasse [2]. 

EXERCISES 

3.1. Show that if (fxJ.;) = 1 then Ix.; = Ixi.;. 

3.2. Suppose Xi is a group of Dirichlet characters corresponding to the field Ki, i = 
1,2. Show that (a) XI '= X 2 -KI '= K 2 , and (b) the group generated by XI and 
X 2 corresponds to the compositum K I K 2 • 

3.3. Let K be the field corresponding to the group X. Describe, in terms of X, the 
maximal abelian extension L of K which is abelian over Q and is unramified 
(over K) at all primes. Do this for both the case where there is no ramification at 
the infinite primes and the case where ramification at infinity is allowed. You 
may assume the Kronecker-Weber theorem, which says that all abelian exten
sions of Q lie inside cyclotomic fields. 
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3.4. Using the notation of Exercise 3.3, let K be a quadratic field. Give the field L 
explicitly in the form 0(1%, p, ')I, ••• ). Conclude that if the discriminant of K has s 
distinct prime factors then (a) 2,-1 divides the class number if K is imaginary, (b) 
2,-2 divides the class number if K is real. (This relates to the theory of genera. L 
is called the genus field.) 

3.5. (a) Show that there are two quadratic characters of conductor exactly 8, one of 
which is even, the other odd. 
(b) Show that if f = 4 or an odd prime, then there is a quadratic character of 
conductor exactly f 
(c) Let D be the discriminant of a quadratic field. Show there is a quadratic 
character of conductor IDI and show this character is unique unless 81D, in which 
case there are two such characters, one even and one odd. 
(d) Show that for any integer D there is at most one quadratic field whose 
discriminant is ±D, unless 81D, in which case there can be two such fields, one 
real and the other imaginary. 
(e) Show that every quadratic field is contained in a cyclotomic field. If the 
discriminant is D, we may use O('IDI); show that 0('.) with n < IDI does not 
contain the quadratic field. 

3.6. (a) Let X be a nontrivial character. Show that 

f x(a) = O. 
,.=1 

(Hint: multiply by X(b), with X(b) #: 1.) 
(b) Suppose n is a positive integer and suppose a ¢ 1 (mod n) and (a, n) = 1. 
Show that there is a character X defined modulo n (possibly of smaller conductor) 
such that x(a) #: 1. Use this fact to show 

L x(a) = O. 
xmodn 

If we do not assume (a, n) = 1 then this is not necessarily true. Show 

L X(4) = 2. 
I mod 12 

(This is one disadvantage of using primitive characters.) 

3.7. Let X = nXp be the decomposition ofacharacter X as in the discussion preceding 
Theorem 3.5. 
(a) Show that (xt/l)p = xpt/lp· 
(b) Show that if (fIJ",) = 1 then x(a)t/I(a) = xt/l(a) for all a. 
(c) Show that x(a)t/I(a) = xt/l(a) unless x(a) = t/I(a) = 0 (X and t/I arbitrary). 



CHAPTER 4 

Dirichlet L-series and 
Class Number Formulas 

In this chapter we review some of the basic facts about L-series. Then their 
values at negative integers are given in terms of generalized Bernoulli num
bers. Finally, we discuss the values at 1 and relations with class numbers. 

Let X be a Dirichlet character of conductor f. The L-series attached to X is 
defined by 

00 x(n) 
L(s,X) = L 5' 

"~1 n 
Re(s) > 1. 

For X = I, this is the usual Riemann zeta function. It is well known that 
L(s, X) may be continued analytically to the whole complex plane, except for 
a simple pole at s = 1 when X = I. 

Let f(s) be the gamma function, r(x) = L~~1 x(a)e 2nia/f be a Gauss sum, 
and 15 = 0 if X( - I) = I, (5 = 1 if X( - I) = - 1. Then 

(I )5/2 (s + (5) (I )(1-5)/2 (I -s + (5) _ 
; f f L(s,X) = Wx 7r f-- 2 - L(I - s,X), 

where 

w =.!.!Q. 
x j]io• 

It will follow from Lemma 4.8 that I Wxl = 1. The functional equation may be 
rewritten as 

(7r(S - b)) r(x) (27r)S 
r(s) cos 2 L(s, X) = ~ 7 L(I - s, x)· 

Also L(s, X) has the convergent Euler product expansion 

30 
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L(s, X) = n (1 - X(p)p-Sr\ Re(s) > 1. 
p 

It follows that L(s, X) "# 0 for Re(s) > 1. It is also true that L(I, X) "# 0, but this 
is a deeper fact which will be proved later. From the functional equation we 
find that for nEZ, n ~ 1, we have 

L(1 - n, X) "# 0 if n == b (mod 2) 

and 

L(1 - n,X) = 0 if n ¢ b (mod 2), 

except for the case X = 1, n = 1, where we have L(O, 1) = ((0) = -!. This 
exception is easily seen to result from the fact that the only pole for L-series 
occurs for X = 1 at s = 1. 

More generally, we may define the Hurwitz zeta function 

00 1 
((s,b) = Jo (b + n)S' Re(s) > 1, O<b:s;1. 

Then 

L(s, X) = at, x(a)/-S((s,l). 

The functions I--'(s, alf) = Lm=a(f) m-- are sometimes called partial zeta 
functions. They do not usually have Euler product expansions or nice func
tional equations, but they may be analytically continued to the whole com
plex plane, except for a pole at s = 1. 

We wish to give the numbers L(1 - n, X) explicitly. For this we need 
the generalized Bernoulli numbers. The ordinary Bernoulli numbers Bn are 
defined by 

The generalized Bernoulli numbers Bn•x are defined by 

f x(a)tea, 00 t n 

L ef' _ 1 = L Bn•x-n,· a=1 n=O· 

Note that when X = 1 we have 

00 t n te' t 
n~ Bn. I n! = e' _ 1 = e' _ 1 + t, 

so Bn. , = Bn except for n = 1, when we have B,., = !, B, = -!. Also observe 
that if X "# 1 then Bo•x = 0, since L~=' x(a) = O. 

We shall also need the Bernoulli polynomials Bn(X) defined by 

te X , 00 t n 

-'-I = L Bn(X),. e - n=O n. 
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An easy calculation shows that 

Bn{1 - X) = (-I)"Bn(X), 

Since the generating function is the product of 

t t n 

et -1 = LBnn! 
t n 

and eXt = ~ xn_ 
L... " n. 

it follows easily that 

Proposition 4.1. Let F be any multiple oj f Then 

Bn.x = r-1 f x(a)Bn (~). 
a=l F 

Proof. 

00 F (a) tn F te(aIF)Ft 
.~o r-1 a~l x(a)Bn F n! = a~ x(a) eFt - 1 . 

Let g = F/J and a = b + cf Then we have 

J g-l te(b+cJ)t J tebt 00 t. 

b~l Jo X(b) eJgt - 1 = b~l X(b) eJt - 1 = Jo Bn.x n!' 

The result follows. 

In particular, since B1 (X) = X - !. we have 

1 J 
B1.X = J a~l x(a)a, 

o 

It is easy to see that the defining relation for the Bn•x is an even function of 
t when X is even and odd when X is odd. Therefore 

Bn•x = 0 if n =1= f> (mod 2), 

with the usual exception B1. 1 = t (or B1 = - t>-
At this point the reader has probably conjectured that there is a relation

ship between L(1 - n, X) and Bn.x; so we prove the following result. 

Theorem 4.2. L(1 - n,x) = -Bn.x/n, n ~ 1. More generally, (I - n,b) = 
- B.(b)/n, 0 < b ~ 1. 

Proof. Let 

te(1-b)t 00 tn 
F(t) = ~1 = L B.(1 - b),. 

e n=O n. 

Define H(s) = J F(Z)Z·-2 dz, where the integral is over the following path 
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which consists of the positive real axis (top side), a circle C. around 0 of radius 
6, and the positive real axis (bottom side). We interpret ZS to mean exp(slogz), 
where we take log to be defined by log t on the top side of the real axis and 
log t + 2ni on the bottom side. It is easy to see that H(s) is defined and 
analytic for all s. We may write 

H(s) = (eZ"is - 1) f.oo F(t)t"-z dt + r F(z)zS-Z dz. 
e lei 

Assume first that Re(s) > 1. Then Ie. -+ 0 as 6 -+ 0, so 

H(s) = (e 2"is - 1) Loo F(t)t"-z dt 

fOO 00 

= (e 2"iS - 1) to- 1 L e-(b+m)1 dt 
o m=O 

00 1 
= (e2"iO - 1) L ---. r(s) 

m=O (m + b) 

= (e 2"is - I)r(sK(s,b). 

Therefore (s,b) = H(s)/(e2"iS - I)r(s), which by analytic continuation holds 
for all s "# 1. Incidentally, this gives the analytic continuation of (s, b). 

We now assume that s = 1 - n, where n ~ 1 is an integer. Then eZ"i. = 1, 
so 

H(I - n) = F(z)z-n-l dz = (2m) . f . Bn(I - b) 

~ n! 

It is easy to show that 

lim (e 2"is _ I)r(s) = (2ni)( _l)n-l 
..... l-It (n-I)! 

Therefore 

W - n, b) = (_l)n-l Bn{1 - b) = _ Bn(b). 
n n 

Consequently 
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This completes the proof. D 

We now turn our attention to the value of L(l, X). It is well known that 
L( 1, X) "# O. One proof uses the following. 

Theorem 4.3. Let X be a group of Dirichlet characters, K the associated field, 
and 'K(S) the Dedekind zeta function of K. Then 

'K(S) = n L(s, X)· 
lEX 

Proof. It suffices to consider the Euler factors corresponding to each prime 
p. Suppose 

(p) = (~ ... ~)e 

is the prime factorization of p in K, and each [1J> has residue class degree f, 
NfYI = pl. Then 'K(S) contains the factor 

n (1 - (N·qprsr l = (1 - p-/sp. 
,!'Ip 

The L-series gives us nl (1 - X(p)p-s)-I. Those X with X(p) = 0 do not con
tribute so we ignore them. By Theorem 3.7, Y/Z is cyclic of order f, where Y 
is the group of those X E X with X(p) "# 0 and Z consists of those with X(p) = 
1. As X runs through a set of coset representatives for Y/Z, X(p) runs through 
all fth roots of unity. Each coset has g elements. Since 

I-I n (1 - ,,}p-S) = (1 _ p-/S), 
a=O 

the result follows. D 

Corollary 4.4. L( 1, X) "# o. 
Proof. Let K be the field belonging to x. It is well known that the zeta 
function of K has a (simple) pole at s = 1. Let b be the order of x. Then 

b-I b-I 

'K(S) = n L(s, Xa) = '(s)· n L(s, Xa). 
a=O a=1 

Since '(s) has only a simple pole at s = 1, none of the factors L(s, Xa) can 
vanish at s = 1. This completes the proof. D 
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The classical application of Corollary 4.4 is the following. 

Theorem 4.5 (Dirichlet). Let (a, n) = 1. Then there are infinitely many primes 
p == a (modn). 

Proof. Let X be a Dirichlet character. Then for Re(s) > 1 we have 

log L(s, X) = - L log(l - X(p)p-S) 
p 

= L X(!') + gz(s), 
p p 

where trivial estimates show that gz(s) is holomorphic for Re(s) > t. There
fore, summing over all characters X mod n, we have 

¢>(n) L x(a-1 ) log L(s, X) = L -s + g(s) 
zmodn p=a(n) P 

with g(s) holomorphic for Re(s) > t (we have used Exercise 3.6). 
Now let s -+ 1. Since L(s, 1) = (s) has a pole at s = 1, log L(s, 1) '" 

-log(s - 1) -+ 00. Since L(l, X) =F 0, 00 for X =F 1, log L(s, X) remains bounded. 
Therefore the left-hand side -+00, so the same is true for the right-hand side. 
Since 9(S) is holomorphic at s = 1, we must have 

lim L ¢>(~) = 00. 
s~l p=a(n) P 

Therefore the sum cannot have finitely many terms. This completes the 
proof. 0 

We now use Theorem 4.3 to give a proof of Theorem 3.11, the Conductor
Discriminant Formula. Recall that X is a group of Dirichlet characters asso
ciated to a field K, so Theorem 4.3 applies. It is known (see, for example, 
Lang [1], p. 254) that (K(S) satisfies the functional equation 

( s)r, (1 s)r, Asr 2 r(S)'2(K(S) = A l-sr i-- r(l - s)r2(K(1 - s), 

where 

A = 2-r2 'f[-NI2 Jld(K)I. 

Here N = deg(KIII) and r 1 and r2 have their usual meanings. Since KIll) is 
Galois, either r 1 = 0 or r2 = O. Suppose first that r2 = 0, so K is totally real 
and X( -1) = 1 for all X. The functional equations for the L-series read 

(
/)SI2 (s) (/)(1-5)12 (1 -s) _ 7t r 2 L(s,x) = Wz 7t r -2- L(l - s,X)· 
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Taking the product over all X and comparing with the equation for 'K(S), we 
find that we must have 

A 2 = n (~) and n »i = 1. 
x 1t x 

Consequently Id(K)1 = nxfx' as desired. 
If r 1 = 0 then r 2 = N /2. In this case, half the characters are even and half 

are odd. Using the identity 

rG)re; 1) = 21-'Jnns) 

(see, for example, Whittaker and Watson [1] p. 240), we again obtain the 
desired result. The sign of the discriminant is determined, as usual, by Lemma 
2.2. This completes the proof of Theorem 3.11. 0 

Corollary 4.6. 

{ J1d(K)I, 
}J r(x) = i del(K/QI/2 Jld(K)I, 

if K is totally real 

if K is complex. 

Proof. It follows from the above proof that nx E x Wx = 1. The result follows 
immediately. 0 

Note that this corollary contains the famous theorem on the sign of the 
Gaussian sum: if X is the uni~lue quadratic character mod p then r(x) = JP if 
p == 1 (mod 4) and r(x) = iv' p if p == 3 (mod 4). 

We now evaluate L(l, X). For odd X this is easily accomplished via the 
functional equation 

r(x) 21t _ 
L(l,X) = 2i yL(O, x) 

1tir(x) 
=jB1.i.' 

For even characters the argument is somewhat more difficult. We first 
need some lemmas. 

Lemma 4.7. For every integer b, 

I L x(a)e2ltiab/J = x(b)r(X)· 
a=l 

In particular, 

r(x) = X( - 1 )r(X). 

Proof. If (b,f) = 1, then change variables: c == ab (modf). Since everything 
depends only on residue classes mod f, the result follows in this case. If 
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(b,f) = d > 1 then the result is still true, since both sides vanish. The right
hand side is obviously O. For the left, observe that if X(y) = 1 for all y == 1 
(mod//d), (y,!) = 1, then X would be defined mod//d (note that (7L//ZY 
maps onto (7L/(f/d)7LY), hence could not have conductor f Therefore there 
exists y == 1 (mod//d), (y,f) = 1, such that X(y) #; 1. Since dy == d (mod f), so 
by = b (modf), we have 

f f L x(a)eZ"iablf = L X(a)eZ,.iabY/f 
a=1 a=1 

f 
= X(y) L X(a)eZ,.iab/f. 

a=1 

Since X(y) #; 1, the sum is O. 
For the second statement, use the first statement with b = - 1. 0 

Lemma 4.8·lr(x)1 =.J11. 
Proof. 

f 
~(f)lr(xW = L Ix(b)r(xW (note only ~(f) terms are non-zero) 

b=1 

= t t x(a)eZ"iab/f t x(c)e-Z"ibc/f (by Lemma 4.7) 
b=1 a=1 c=1 

= L L x(a)x(c) L eZ"ib(a-c)/f 
a c b 

= L x(a)x(a)/ (the sum over b is 0 unless a = c) 
a 

= /~(f), 

since x(a)x(a) = 1 if (a,f) = 1, and is 0 otherwise. This completes the proof. 
o 

We now evaluate L(l, X). We ignore questions of convergence, most of 
which may be treated by partial summation techniques. 

L(I, X) = f x(n) = f ! ~ t X(a)eZ,.iall/f 
11=1 n 11=1 n r(x) a=1 

IJ. 001. = - L x(a) L -eZ".all/f 
r(X) a=1 11=1 n 

-1J. = -(:v'I L x(a) 10g(1 - (j), 
r X, a=1 

Since r(x) = X( -1)r(x) = X( -1)//r(x), we obtain 

L(I, X) = - X( - jr(x) atl x(a) 10g(1 - (j). 
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Now 10g(1 - 'i) + log(l - (;:0) = 2 log 11 - 'il. Consequently, if X is even, 
so x(a) = X( - a), we have 

- r(x) J 
L(I,X) = -f-a~l x(a)logll - (il. 

We have proved the following (odd characters were treated before Lemma 
4.7). 

Theorem 4.9. 

:r(x) . r(x) 1 J _ . 
L(1,X) = 7r:lT B1 ,i. = 7r:lT 7 a~ x(a)a If X( -1) = -1. 

r(x) J _ . 
L(1,X) = -T af:1 x(a)logI1 - 'II IfX( -1) = 1, X # 1. 0 

Note that the theorem implies that Bl,x # 0 if X is odd. There is no 
elementary proof known for this fact. 

Later we shall give algebraic interpretations of these formulas. 
We now discuss class number formulas. The zeta function of a field K has 

a simple pole at s = 1 with residue 

2"(2n)'2hR 

wJfdl ' 
where '1' '2 are as usual, h is the class number of K, R is the regulator (see 
below), w is the number of roots of unity in K, and d is the discriminant. 
Suppose K belongs to a group X of Dirichlet characters. Using the relation 
'K(S) = n L(s, X), and the fact that '(s) has a simple pole at s = 1 with residue 
1, we obtain 

2" (2n)'2hR 

wJidl n L(I,X)· 
xeX 
x,.l 

Using Theorem 4.9, we now have in theory a method for calculating the class 
number of an abelian number field, as long as we can calculate the regulator, 
which involves finding a basis for the group of units. Usually this computa
tion becomes too lengthy to be practical. So we need another method of 
obtaining information about the class number. For this, we shall factor the 
class number into two factors, one of which is relatively easy to work with. 

The next few results hold not only for abelian fields, but also for a wider 
class, namely CM-fields (also called J-fields). A field is called totally real if all 
its embeddings into C lie in IR and totally imaginary if none of its embeddings 
lie in IR. A CM -field is a totally imaginary quadratic extension of a totally real 
number field. Such a field may be obtained by starting with a totally real field 
and adjoining the square root of a number all of whose conjugates are 
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negative. All of the fields i!)((n) are eM -fields. Their maximal real subfields 
are i!)((n + (;;"1), and we obtain i!)((n) by adjoining the square root of (; + 
G;2 - 2 (the discriminant of X 2 - ((n + (;;-l)x + 1), which is totally negative. 

One feature of a eM-field is that complex conjugation on IC induces an 
automorphism on the field which is independent of the embedding into IC. 
Namely, let K be eM, K+ the real subfield. Let r/J, I/!: K -+ IC be two em
beddings. We claim that r/J-1(r/J(a)) = r 1(I/!(a)) for all a E K. First note that 
r/J(K)IrP(K+) is quadratic, hence normal, and complex conjugation fixes 
r/J(K+). Therefore ¢)(K) = r/J(K). In particular, r1(¢)) is defined. Clearly both 
r1(¢)) and I/!-1(1ji) are automorphisms of K and both fix K+ since it is totally 
real. Since K is totally imaginary, neither automorphism can be the identity. 
Therefore they must be equal since Gal(K/K+) has order 2. Consequently, 
when working with eM-fields we may talk about ii, which is well-defined. 
Also, lal 2 = aii, if rational, is independent of the embedding. This is useful 
when applying Lemma 1.6. For example, if c is a unit then c/s is an algebraic 
integer of absolute value 1, hence a root of unity. 

Theorem 4.10. Let K be a eM-field, K+ its maximal real sub field, and let hand 
h+ be the respective class numbers. Then h+ divides h. 

The quotient h- is called the relative class number (some authors call h- the 
first factor). 

Proof. We need the following result from class field theory. 

Proposition 4.11. Let K/L be an extension of number fields such that there is 
no nontrivial unramified (at all primes, including archimedean ones) subexten
sion F/L with Gal(F/L) abelian. Then the class number of L divides the class 
number of K. (Note: this proposition is usually used in the case that K/L is 
totally ramified at some prime. However it could also be used if K/L is normal 
with a non-abelian simple group as Galois group). 

Proof. Let H be the maximal unramified (at all primes) abelian extension 
of L. By class field theory, Gal(H/L) is isomorphic to the ideal class group of 
L. The assumptions on K/L imply that H n K = L. Therefore [KH: K] = 
[H: L]. But KH/K is unramified abelian, so is contained in the maximal 
unramified abelian extension of K. Therefore the class number of L = 
[H: L] = [KH: K] divides the class number of K. This proves the proposi
tion. We remark that H is called the Hilbert class field of L. D 

Returning to the proof of the theorem, we observe that K/K+ is totally 
ramified at the archimedean primes, so the proposition applies. This com
pletes the proof of the theorem. D 

We now prove a result whch generalizes Proposition 1.5. 
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Theorem 4.12. Let K be a CM-field and let E be its unit group. Let E+ be the 
unit group of K+ and let W be the group of roots of unity in K. Then 

Q ~ [E : WE+] = 1 or 2. 

Proof. Define l/J: E -+ W by l/J(e) = elf.. Since sa = (e)" for all embeddings (J (K 
is CM), we have Il/J(etl = 1 for all (1. By Lemma 1.6, l/J(e) E W. Let t/I: E -+ 

WIW 2 be the map induced by l/J. Suppose e = (e 1 , where ( E Wand e1 E E+. 
Then l/J(e) = (2 E W Z, so e E Ker(t/I). Conversely, suppose l/J(e) = (2 E W 2 • 

Then it is easy to see that e1 = C1 e is real. It follows that Ker(t/I) = WE+. 
Since I WIW 2 1 = 2, we are done. Note that if l/J(E) = W then Q = 2; if l/J(E) = 
W 2 then Q = 1. D 

Corollary 4.13. Let K = Q((n). Then Q = 1 if n is a prime power and Q = 2 if 
n is not a prime power. 

Proof. The proof when n is an odd prime power is exactly the same as that 
given in Proposition 1.5. For p = 2 we must argue a little differently. Suppose 
e is a unit in Q((zm) such that elf. ¢ W 2• Then elf. = ( = a primitive 2"'th root 
of unity. Let N denote the norm from Q((2m) to Q(i). Then N(O = (a, where 

2 m - 2 -1 

a = L b = L (1 + 4j) = 2",-2 + 2",-1(2",-2 - 1) 
O<b<2 m j=O 
bi: 1(4) 

== 2",-2 (mod 2"'-1). 

Therefore (. is a primitive 4th root of 1: (. = ±i. It follows that N(e)IN(e) = 
± i. But N(e) is a unit of Q(i), therefore ± 1 or ± i. None of these possibilities 
works, so we have a contradiction. So Q = 1 for Q((2m). 

Now assume n is not a prime power. By Proposition 2.8, 1 - (n is a unit. 
But (1- (n)/(1 - (n) = -(no Suppose -(nE W 2• Then -(n = (±G)2 = (;', 
so -1 = (;'-1. Clearly n must be even, so n == 0 (mod 4). Since -1 = (:/2 , 

we have nl2 == 2r - 1 (mod n), therefore nl2 == -1 (mod 2), which is impos
sible. It follows that - (n ¢ W z, so Q = 2. This completes the proof. D 

When K = Q((n), we may prove a result which is stronger than Theorem 
4.10. 

Theorem 4.14. Let C be the ideal class group of Q((n) and C+ the ideal class 
group of the real subfield Q((.t. Then the natural map C+ -+ C is an injection. 

Proof. Suppose I is an ideal of Q((n)+ which becomes principal when lifted 
to Q((.). We must show I was principal to begin with. Let I = (a) with 
a E Q((n). Then (ala) = III = (1), since I is real. Therefore ala is a unit and 
has absolute value 1. By Lemma 1.6, ala is a root of unity. If n is not a prime 
power, Q = 2; the proof of Theorem 4.12 shows that there is a unit e such that 
elf. = ala. Then ae is real and I = ((X) = (ae). It follows from unique factoriza
tion of ideals that I = (ae) in Q((n)+, so I was originally principal. Now 
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suppose n = pm. Let n = 'pm - 1. We have n/1i = - 'pm, which generates the 
roots of unity in O('pm). Therefore ~/rx, = (n/1i)d for some d. Since the n-adic 
valuation takes on only even values on O('pmt and since rx,nd and I are real, 
d = v,,(rx,nd) - v,,(rx,) = v,,(rx,nd) - v,,(l) is even. Hence ~/rx, = (_'pm)d E W2. In 
particular, ~/rx, = ,g for some root of unity" and rx,' is real. As before, 
I = (rx,O, so I was originally principal. This completes the proof. D 

This theorem is not true for arbitrary eM-fields: Since (2, JiO)2 = 

( - 2) in o (JiO), the nonprincipal ideal (2, JiO) becomes principal in 
O(JiO, )=2). In general, at most one nonprincipal class becomes principal 
(see Theorem 10.3). 

Theorem 4.12 may be used to give a relation between the regulator of K 
and that of K+. Recall that the regulator of a number field L is defined as 
follows. Let r = r1 + r2 - 1 and let Ill' ... , Ilr be a set of independent units of 
L. Write the embeddings of L into II:: as 0'1' ... , O'r" O'r, +1' ... , O'r+l, O'r, +l, ... , 
O'r+1o where O'j, 1 5, j 5, r1 , is real, and O'j, ai' r1 + 1 5, j 5, r + 1, is a pair of 
complex embeddings. Finally let OJ = 1 if 0') is real and OJ = 2 if 0') is complex. 
The regulator is defined to be 

RL(1l1, ... ,llr ) = absolute value ofdet(o;loglllj'Ilt,s;;,)s;r' 

Note that we omit one 0'). Since the norm of each Il is ± 1, the sum over all 0';, 

1 5, i 5, r + 1, of o;loglllj'l is O. Since we take the absolute value of the 
determinant, the possible sign change from omitting a different 0' does not 
happen. 

If Ill"'" Ilr is a basis for the group of units of L modulo roots of unity, then 
RdIl1" .. , Ilr) = RL is called the regulator of L. Again, the fact that we took 
the absolute value of the determinant makes RL independent of the choice of 
basis and ordering of the O"S. 

Now let Ill' ... , Ilr be a basis for the units of K+ modulo {± I}. Then Ill' ... , 
Ilr forms a basis for a subgroup of index Q ( = 1 or 2) in the units of K modulo 
roots of unity. However each Ot = 1 for K+ and each 0; = 2 for K. Therefore 

RK (1l1, ... ,llr ) = 2rRK +(1l 1 , ... , Ilr ) = 2rRK +· 

We now need the following result. 

Lemma 4.15. Let Ill' ... , Ilr be independent units of a number field K which 
generate a subgroup A of the units of K modulo roots of unity, and let '11' ... , 
'1r generate a subgroup B. If A ~ B is of finite index then 

[B:A]= RK (1l 1, ... ,llr ). 

RK('11," . , '1r) 

Proof. We may write 

Il; = (I} '1i")' (root of unity), with ail E lL. 
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Therefore 

Consequently 

By the theory of elementary divisors, there exist integer matrices M and N of 
determinant ± 1 such that M(ail)N = diag(d l , ... , dr ); so det(ail) = ± n di • 

But M and N correspond to changing bases of A and B, so we have bases 
Xl' ... , Xr of A and Yl' ... , Yr of B with Xi = diYi' Therefore B/A ~ (£)JL/diZ 
and [B: A] = Inid;!. This completes the proof of the lemma. 0 

From the lemma, we see that Rde l , ... ,er ) = QRK' in the above notation. 
We have proved the following. 

Proposition 4.16. Let K be a eM-field and K+ its maximal real sub field. Then 

RK = ~2r where r = tdeg(K/Q) - 1. 
RK+ Q ' D 

We may now return to the class number formulas. Let X be a group of 
Dirichlet characters and K the associated field. We assume K is totally 
complex, so half of the characters in X are odd and half are even. Let 
n = deg(K/Q). Then 

and 

Dividing, we obtain 

(2n)n/2h(K)RK 

wJld(K)1 

nn/2h-(K)2n/2 

n L(I,X)· 
xeX 
X,.l 

= n L(1,X)· 
QwJld(K)/d(K+)1 X odd 

Now L(I, X) = (nir(x)/ix)Bl,x for X odd, and by the conductor-discriminant 
formula Jld(K)/d(K+)1 = (nxoddx)1/2. Also, by Corollary 4.6, 

n r(x) = in/2 Jld(K)/d(K+)I. 
X odd 

Putting everything together, we obtain the following. 
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Theorem 4.17. 

h-(K) = Qw TI (-tR 1 .)). 
xodd 

Observe that this formula, as opposed to that obtained earlier, involves no 
transcendental quantities. It is therefore possible to use it to obtain divisibil
ity properties of h-(K). Sometimes it is possible to obtain results about the 
full class number h(K) from those about h-(K). Later we shall show that P 
divides h(O('p»¢>P divides h-(O('p»' The above formula will allow us to 
translate the statement about P dividing h- into one about P dividing certain 
Bernoulli numbers. 

We close this chapter by showing that the class number of O('n) grows 
quite rapidly with n. For this we need the Brauer-Siegel theorem (see Lang 
[1]): 

Suppose K runs through a sequence of number fields normal over 0 such 
that 

Then 

[K: 0] -+ O. 
log Id(K)1 

10g(h(K)RK) 

10gJld(K)1 -+ 1. 

Unfortunately this result involves the regulator, so we do not immediately 
obtain any information about h by itself. However we may apply the result to 
both O('n) and its maximal real subfield, and then compare. 

For convenience, led dn = Id(O('n))l, hn = h(O('n»' Rn = Rag.), and let 
dn+, h:, R: denote the corresponding objects for O('nt. We first estimate dn. 

Lemma 4.18. log dn = ~(n) log n + o(~(n) log n). 

Proof. From Proposition 2.7, we have 

logp 
logdn = ~(n)logn - ~(n) L --. 

pin P - 1 

Let m = log n/log 2. Since 2m = n, it follows that n has at most m prime 
factors. Clearly 

log P 1m] log Pi 1m] log Pi L ~- ~ L ~ ~ 2 L ---~ 
pin P - 1 i=l Pi - 1 i=l Pi 

where the last two summations are over the first Em] primes. From the prime 
number theorem, it follows easily that there exists a constant C such that the 
mth prime is less than x = Cm log m, and the number of primes less than x is 
less than Dx/log x for some D. Therefore 
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:$; 2Jx + 210g x Dx = O(Jx) 
Jx logx 

= O(Jm log m) = O(Jr-Io-g-n-lo-g-lo-g-n) = o(logn). 

This estimate gives the result. o 
Lemma 4.19. If n is not a prime power then dn = (dn+)2. If n = pa then dn = 
p(d;;f if p "# 2, d. = 4(dn+f if p = 2. In all cases we have 

log d;; = !tP(n) log n + o(tP(n) log n). 

Proof. Recall the formula (see Lang [1], pp. 60, 66, or Long [1] p. 82) 

Id(L)1 = (NEeL /K ) Id(K)ldeg(L/K), 

where Lj K is any extension of number fields, EeL /K is the relative different, and 
N is the norm from L to 0. If the ring of integers (!)L of L can be written in 
the form (!)K[ex] for some ex E (!)v then EeL /K is the ideal of (!)L generated by 
I'(ex), where f(X) is the irreducible polynomial for ex over K. In the present 
case, we have 

l'U.] = l'[(n + (;;-1] [(.] 

and f(X) = X 2 - ((. + (;;-I)X + 1, so 1'((.) = (. - (;;-1 = (;;-1 ((; - 1). 
If n is not a prime power than (; - 1 is a unit, so E?L/K = 1. Therefore dn = 

(d;;)2. 
If n = pa, p "# 2, then NEe = N((; - 1) = p, so d. = p(d;;)2. 
If n = 2a , then (; is a 2a - I st root of 1; so NEe = N((; - 1) = 4. Therefore 

d. = 4(d;;)2. 
The final statement follows from Lemma 4.18 and the fact that log p = 

o (log n). This completes the proof. 0 

From Lemmas 4.18 and 4.19, we have 

tP(n) ---+ 0 and !tP(n) ---+ 0 
log d. log dn+ ' 

so the Brauer-Siegel theorem applies. Therefore 

log h.Rn = ! log dn + o(log d.) 
and 

By Proposition 4.16, 

10g(::) = O(tP(n». 
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Therefore 

_ + + (R.) log h. = 10g(h.R.) - log (h. R. ) - log R; 

= t log d. - t log d,; + O(IP(n)) + o(log dn) 

= ilP(n)logn + o(lP(n) log n). 

We have proved the following result. 

Theorem 4.20. Let h;; denote the relative class number for Q('.). Then 

log h;; - ilP(n) log n as n -+ 00. 
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Therefore hn -+ 00 as n -+ 00, so there are only finitely many n such that Z['n] 
has unique factorization. 0 

(Note: a - b means a/b -+ 1). 
Unfortunately the above result is not effective, in the sense that it does not 

allow us to compute a constant no such that h;; > 1 if n ~ no. To do that we 
need other techniques. See Chapter 11. 

NOTES 

For more on ordinary Bernoulli numbers, see Nielsen [1] and Dilcher
Skula-Slavutskii [1]. The generalized Bernoulli numbers were defined by 
Berger [1], by Ankeny-Artin-Chowla [1], and by Leopoldt [3], who used 
them extensively. 

The standard reference for class number formulas is Hasse [1]. See also 
Borevich-Shafarevich [1]. The book of Hasse also contains a detailed study 
of the unit index Q (warning: Satz 29 is incorrect. See Hirabayashi-Yoshino 
[2], [3]). 

Another good reference for some of the topics of this chapter is Iwasawa 
[23]. 

Kummer stated that h; is asymptotic to 2p(p/4n2)(P-ll/4. Granville [1] 
shows that this is incompatible with some other conjectures in analytic num
ber theory. For conjectures about h; and results of computations, see Fung
Granville-Williams [1]. 

EXERCISES 

4.1. Show that for n, k ~ 0, I!;;~a· = [1/(n + 1)] (B. +1 (k) - B.+ 1(0)). 

4.2. (a) Show that if X '" 1 and X( -1) = 1 then B2 •x = (llf) I!=1 x(a)a 2• 

(b) Show that if X( -1) = -1 then 

1 f f 

B3 •x = 1.~1 x(a)a 3 
- f .~1 x(a)a; 
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therefore 

1 f 

B3 •x i= 7 a~1 x(a)a 3 • 

4.3. (a) Use the definition of B •. x to show that 

. (I B • .xI) 1/. f 
lIm sup -,- = -. 

'-00 n. 21t 

(b) Use the functional equation for L(s, X) to show that 

lim J7 (21t)' IB •. xl = 1 .-00 2 f n! . 
• =~(2) 

4.4. Show that if min then h(Q«(m)) divides h(Q«(.)). 

4.5. Let p > 3 and p == 3 (mod 4), and let h be the class number of Q(H). Let X be 
the quadratic character mod p. 
(a) Show that hp = - 2 LO<a<p/2 x(a)a + P LO<a<p/2 x(a). 
(b) Show that hp = -4 LO<a<p/2 x(2a)a + P LO<a<p/2 x(2a) 
(Hint: x(2a) = - X(p - 2a)). 
(c) Show that h = [1/(2 - X(2»] LO<a<p/2 x(a). 
(d) Show that for p == 3 (mod 4) there are more quadratic residues than non
residues in the interval (0, p/2). 

4.6. (a) Show that for p == 1 (mod 4) the number of quadratic residues in the interval 
(0, p/2) equals the number of nonresidues. 
(b) Let p == 1 (mod 4), and let h and X be the class number and character for the 
field Q(JP). Let E > 1 be the fundamental unit and let (p = ehi/p. Show that 

p-l 

C2h = n (I - (;rX(a) 

11=1 

and 

where b runs through the quadratic nonresidues in the interval (0, p/2) and c runs 
through the residues in (0, p/2). Since sin x is monotone increasing in (0,1t/2), this 
shows that the residues tend to cluster near the beginning and the nonresidues 
near the end of the interval (0, p/2). 



CHAPTER 5 

p-adic L-functions and 
Bernoulli Numbers 

In this chapter we shall construct p-adic analogues of Dirichlet L-functions. 
Since the usual series for these functions do not converge p-adically, we must 
resort to another procedure. The values of L(s, X) at negative integers are 
algebraic, hence may be regarded as lying in an extension of Q p• We therefore 
look for a p-adic function which agrees with L(s, X) at the negative integers. 
With a few minor modifications, this is possible. 

The resulting p-adic L-functions will be used to prove congruences for 
generalized Bernoulli numbers, from which we deduce Kummer's criterion 
for irregularity of primes. We shall also show there are infinitely many irregu
lar primes. 

Finally we evaluate the p-adic L-functions at s = I and find a formula 
remarkably similar to the classical one. This yields a p-adic class number 
formula, from which we deduce Kummer's result "plh; => plh;," and also a 
congruence for class numbers of real quadratic fields due to Ankeny-Artin
Chowla. Along the way, we define the p-adic regulator and prove that it does 
not vanish (Leopoldt's conjecture) for abelian number fields. 

There are several ways to construct p-adic L-functions. We have taken the 
quickest approach here. Later, we shall give other methods which give addi
tional insights into relationships with cyclotomic fields. 

§5.1. p-adic Functions 

First, we need some basic results on p-adic analysis. We start with the p-adic 
rationals Q p • Since we shall need to consider algebraic extensions (e.g., gener
ated by values of Dirichlet characters) we extend to ij p' the algebraic closure. 

47 
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The absolute value on Op extends uniquely to Op; we normalize by Ipl = IIp 
(throughout this chapter, Ixl will be the p-adic absolute value; so we write Ixl p 

only for emphasis). 

Proposition 5.1. Op is not complete. 

Proof. Let 

where n' = n if (n,p) = 1 and n' = 1 otherwise. If Op were complete, then the 
series would converge to a E Or Therefore a would lie in a finite extension K 
of Or Suppose ,,,, E K for all n < m. We may assume p (m. Then 

( 
m-l ) P = p-m a - L ,,,,p" E K 
,,=1 

and P == 'm (mod pl. There xm - 1 == 0 (mod p) has a solution in K. By 
Hensel's Lemma (since p (m), K contains a solution of xm - 1 = 0 which is 
congruent to P mod p, hence to 'm mod p. Since the mth roots of unity are 
distinct mod p (recall 

m=n(1-m 
,'"=1 ,,.1 

it follows that 'm E K. By induction, 'm E K for all m with p (m. Since, as 
above, the roots of unity of order prime to p are distinct mod p, we have 
infinitely many residue classes mod p in the ring of integers of K. Since KIO p 

is a finite extension, this is a contradiction. Therefore a ~ Op and Op is not 
complete. 0 

Since it is more convenient to do analysis in a complete field, we let Cp be 
the completion of Op with respect to the p-adic absolute value. The p-adic 
absolute value naturally extends to Cp and Op is dense in Cpo 

Proposition 5.2. Cp is algebraically closed. 

Proof. We need the following lemma, due to Krasner. 

Lemma 5.3. Suppose K is a complete field with respect to a non-archimedean 
valuation. Let a, P E K, the algebraic closure of K, with a separable over K(P). 
Finally, suppose that for all conjugates ai # a of a we have 

IP - al < lai - al· 

Then K(a) £; K(P) (Ixl denotes the unique extension of the absolute value on 
K). 

In other words, if P is sufficiently close to a then a E K(P). 
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Proof. Consider the extension K(rx,P)/K(P) and let L/K(P) be the Galois 
closure. Let u E Gal(L/K(P)). Then u(P - rx) = P - u(rx). Since luxl = Ixl for 
all x (by the uniqueness of the extension of the absolute value), we have 

IP - u(rx) I = IP - rxl < Irxi - rxl 

for all rxi "# rx. Therefore 

Irx - u(rx) I ::;; Max(lrx - PI, IP - u(rx)l) < Irxi - rxl· 

It follows that u(rx) = rx, so rx E K(P), as desired. D 

Returning to the proof of the proposition, we let K = Cpo Suppose rx is 
algebraic over Cp and let f(X) be its irreducible polynomial in Cp[X]. Since 
ijp is dense in Cp' we may choose a monic g(X) E ijp[X] whose coefficients 
are close to those of f(X). Then g(rx) = g(rx) - f(rx) is very small. Writing 
g(X) = n (X - Pj), we see that Irx - PI is small for some root P of g(X). In 
particular, we can choose g(X) and then P so that IP - rxl < Irxi - rxl for all 
conjugates rx i "# rx. Therefore rx E Cp(P) = Cp, since P E ijp c Cpo The proof is 
complete. D 

Sometimes, for technical reasons, it is convenient to embed Cp in C, or vice 
versa. In fact, the two fields are algebraically, but not topologically, iso
morphic: Both fields have the same uncountable transcendence degree over 
Q, and both are obtained by starting with Q, adjoining a transcendence basis, 
and then taking the algebraic closure. 

From now on, unless otherwise stated, we shall be working in C p' which 
may be regarded as the p-adic analogue of the complex numbers. We next 
introduce the p-adic exponential and logarithm functions. Define 

00 X" 
exp(X) = L " 

"=0 n. 

Since there are [n/pi] multiples of pi less than or equal to n, it is easy to see 
that the exponent of pin n! is 

[~J + [~J + ... < _n . 
p p2 P _ 1 

If pD ::;; n < pD+1 then the sum is greater than 

Therefore 

n n n np -Q n - p log n 
~ + ... + - - a = -- - a - -- > -- - --. 
P pQ P - 1 P - 1 p - 1 log p 

n - p logn n 
-----<v (n!) <--. 
p - 1 log p p p - 1 

It follows that IX"/n!l-+ 0 as n -+ 00 if IXI < p-l/(P-O and IX"/n!l-+ 00 if 
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IXI > p-l/(P-l). Therefore exp(X) has radius of convergence p-l/(P-l) < 1 (re
call that a non-archimedean series converges <=>its nth term -+ 0). Note that 
e = exp(l) is undefined, but eP (e4 if p = 2) is defined. We could of course let 
e = (exp(pW/P but this would not be unique. 

We now define 

Since the exponent of pin n is at most logn/logp, we find that the series has 
radius of convergence 1. However in this case we can extend the function. 
Note that since 10gp(XY) = 10giX) + 10giY) is an identity for formal power 
series, it is true whenever the series converge. 

Proposition 5.4. There exists a unique extension of logp to all of c; such that 
logp(p) = 0 and logp(xy) = logp x + logp y for all x, y E C;. 

Proof. We need to investigate the multiplicative structure of C;. For each 
rational number r choose a power pr of p in such a way that prp' = pr+. (one 
way: let pr be the positive real rth power of p in 0, then embed 0 in Cpl. 
Denote by pO this set of pr, r E Q. 

Let a. E C;. If a. l E Op is sufficiently close to a. then 1a.1 = Ia.ll· But Ia.ll = 
(pl/e)" for some n where e is the ramification index of Qp(a.d/Qp- Therefore 
1a.1 = p-r for some r E Q, so Ia.p-rl = 1. 

Now suppose P E C;, IPI = 1. Choose Pl E Op close to p. Every unit of the 
finite extension Qp(Pd/Qp is congruent modulo ft (the prime above p) to a 
root of unity of order prime to p (lift from «(!)/ftf via Hensel's lemma). It 
follows that IPl - wi < 1, hence IP - wi < 1 and IPw-l - 11 < 1, for some 
root of unity w of order prime to p. Since such roots of unity are distinct 
modulo ft, w is unique. Let W denote the group of all roots of unity of order 
prime to p in C;. We have proved that 

c; = pO X W X Vl 

where 
Vl = {xECpllx-11 < I}. 

Now let a. = prwx E C;. Define logpa. = logpx. Since x E V l , logpx is 
defined by the power series. Clearly this extension satisfies the desired 
properties. 

Suppose f(a.) gives another extension. If wN = 1 then 

1 N 1 rN liN 
f(a.) = Nf(a. ) = Nf(P ) + Nf(l) + Nf(x ) 

1 
= 0 + 0 + N 10gp(xN) = logp(x). 

Therefore the extension is unique. This completes the proof of the proposi
~ 0 
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If u E Gal(Op/Op) then since luxl = Ixl for all x E Op we may extend u to 
a continuous automorphism of Cpo By continuity, 

logp(1 + ux) = L (-I)n+1(ux)n/n = u L (_l)n+1 xn/n = ulogp(1 + x). 

By the uniqueness oflogp, we therefore have u-110gp(UIX) = 10gpIX for IX E C;, 
i.e., 10gp(uIX) = u(logp IX). It follows that for IX E Op, logp(IX) E Op(IX); this fact 
also follows from the power series expansion. 

For Op we may carry out the construction of the propositon more ex
plicitly. For convenience we introduce the notation 

q = {p, ~fp ~ 2 
4, Ifp - 2. 

Given a E lLp, p) a, there exists a unique t,6(q)th (i.e., (p - l)st if p :/= 2) root of 
unity w(a) E lLp such that 

a == w(a) (mod q). 

Let 

(a) = w(a)-l a, 

so (a) == 1 (modq). Then logpa = logp(a). Alternatively, aP-l == 1 (modp), 
so logpa = 10gp(aP-l)/(p - 1). 

Lemma 5.5. If Ixl < p-l/(p-l) then Ilogp(1 + x)1 = Ixl and if Ixl ~ p-l/(p-l) 

then Ilogp(l + x)1 ~ Ixl. 

Proof. If n < p then Inl = 1, and in general Inl ~ l/n. Therefore, if Ixl < 
p-l/(p-l) we have 

I:nl = Ixln- 1 ·lxl < Ixl if2 ~ n < p 

and 

I:nl < npO-n)/(P-l)lxl ~ Ixl ifn ~ p, 

since n· p(l-n)/(p-l) is decreasing for n ~ p. Therefore Ix - x 2/2 + ···1 = lxi, as 
desired. The second part follows similarly. This completes the proof. 0 

Proposition 5.6.logp x = 0 <=> x is a rational power of p times a root of unity (of 
arbitrary order). 

Proof. Clearly such x satisfy logp x = O. Conversely, suppose logp x = O. Since 
C; = po x W X Vi' we may assume x = 1 + y with Iyl < 1. Let N be large 
enough that lypN I < p-i/(P-l). Then 

x PN = (1 + y)pN = 1 + pNy + ... + (~N)yj + ... + yp". 
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All the middle terms have absolute value at most IpYI < Ipi ::S; p-1/(P-l), and 
by the choice of N we have lyl""l < p-l/(p-l). Therefore Ix pN - 11 < p-l/(P-l) 

and by Lemma 5.5 

o = I logixl"") I = Ixl"" - 11. 

Therefore x is a pN th root of unity. This completes the proof. 

Proposition 5.7. If Ixl < p-l/(P-l) then 

logpexp(x) = x 

and 

exp 10gp(1 + x) = 1 + x. 

o 

Proof. Both are formal power series identities, so we need only check con
vergence. Since Ixft/n!1 < 1 for n ~ 1 (because vp(n!) < n/(p - 1)), we have 
lexp(x) - 11 < 1 for all x with Ixl < p-l/(P-l), so exp(x) and log.,exp(x) con
verge. Similarly, Lemma 5.5 may be used to treat the second identity. 0 

Note that the first identity is true whenever exp(x) converges. But the 
second is not true for all x. Let x = (p - 1. Then 0 = logp«(p), so exp(logp«(p)) 
= 1 =1= (p. This is true even though logp«(p) converges (I(p - 11 < 1). The 
point is that Ilogpxl is not less than p-l/(P-l) for all x with Ixl ::S; I(p - 11 = 
p-l/(P-l), so the formal rearrangement of the power series to get 

explogp(1 + x) = 1 + x 

does not work. 
Finally, let a E 7l. P' pta. We may define 

<a)" = exp(xlogp<a») = exp(x logp a). 

Since Ilogp<a)I ~ Iql = l/q, this converges if Ixl < qp-l/(P-l) > 1. If x = 1 
then <a)l = <a) by Proposition 5.7. Similarly, if n E 71. then <a)ft agrees with 
the usual definition. In particular, if n == 0 (mod p - 1), or 0 (mod 2) if p = 2, 
then <a? = aft. 

We now turn our attention to more general functions. Let 

( X) = X(X - 1) .. ·(X - n + 1). 
n n! 

Then (!) is a polynomial of degree n in X and if X is an integer we obtain a 
binomial coefficient. If X E 7l.p then X is close to a rational integer, so (!) is 
close to an integer. It follows that (!) E 7l.p if X E 7l. p • However this is not true 
for extensions of Opo For example, 

(..;;) E 7l.p [J2] <=>J2 is congruent modp to a rational integer 

<=>J2 E Op<=>P == ± 1 (modS). 
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A classical theorem of Mahler states that any continuous function f(X) 
from Zp to Q p may be written uniquely in the form 

f(X) = f an(X) with an -+ 0 as n -+ 00. 
n=O n 

Clearly any such function is continuous since it is a uniform limit of continu
ous functions. Since f(m) = L::'=o ai':), we may use the identity 

to obtain 

f: (_l)m-i(rr:)f(i) = f: ± (-It-iaj(rr:)(i.) 
i=O I i=O j=O I ] 

= f: (~)ail - l)m- j = am 
j=O ] 

(note that 00 = 1 since it comes from e::=:)( _1)0 = 1). Therefore f(X) deter
mines am' The hard part is showing am -+ O. We shall not prove this here 
because we do not need it. See Lang [4], p. 99. 

If an -+ 0 sufficiently rapidly, then f(X) is analytic; that is, f(X) may be 
expanded in a power series. 

Proposition 5.S. Suppose r < p-l/(p-l) < 1 and 

with lanl ::;; Mrn for some M. Then f(X) may be expressed as a power series 
with radius of convergence at least R = (rpl/(P-l)f1 > 1. 

Lemma. Let Pi(X) = L::'=o an,iXn, i = 0, 1,2, ... be a sequence of power series 
which converge in a fixed subset D of Cp and suppose 
(1) an,i -+ an,o as i -+ 00 for each n, and 
(2) for each XED and every e > 0 there exists an no = no(X, e) such that 

ILn~no an,iXnl < e uniformly in i (= 0, 1,2, ... ). 

Then lim i _ oo Pi(X) = Po(X) for all XED. 

Proof of Lemma. Given e and X, choose no as above, Then 

IPo(X) - Pi(X) I ::;; Max {e, lan,o - an,;I'IXnl} = e 
n<no 

for i sufficiently large. o 
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Proof of Proposition 5.8. Let 

i = 1,2,3, .... 

Then 

integer integer 
an,i = an--, - + an+l ( 1)' + "', n. n + . 

so 

lan,il ::-;;; ~ax Iii ::-;;; MR-n. 
1"2:n J. 

Also, 

I integer integer I 
lan,i - an,i+kl = ai+l (i + I)! + ... + ai+k(i + k)! 

::-;;; MR-(i+l) -+ 0 as i -+ 00. 

Therefore {an,;}~l is a Cauchy sequence. Let an,o = limi_ oo an,i' Then lan.ol ::-;;; 
MR-n. Let Po (X) = L~=oan.oxn, so Po converges in D = {x E ICpllxl < R}. 
The polynomials Pl , P2 , ••. of course also converge in D. Finally, if XED 
then 

I L an.ixnl::-;;; Max {MR-nIXln} -+ 0 as no -+ 00, 
n~no n~no 

uniformly in i. Therefore lim i _ oo Pi(X) = Po (X), so f(X) is analytic in D, as 
desired. 0 

As an application, let us reconsider the function (a)'. We may expand it 
as a binomial series 

(1 + (a) - I)' = n~ (~)(a) - l)n. 

Since I(a) - 11::-;;; q-l, we may let r = q-l. We find that the series represents 
an analytic function with radius of convergence at least qp-l/(P-l), just as 
before. In fact 

since the functions are analytic in s and are equal when s is a positive integer. 
Since the positive integers have 0 as a (p-adic) accumulation point, the func
tions must be identically equal. 
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§5.2. p-adic L-functions 

We are now able to consider the main subject of this chapter. Let 

<Xl 1 ( a) H(s,a,F) = L m-S = L ( F)" = F-s, s'F- . 
m .. ,,(F) ,,=0 a + n 

m>O 

where s is a complex variable, a and F are integers with 0 < a < F, and ,(s, b) 
is the Hurwitz zeta function. Then 

F,,-1 B,,(aIF) E 11"11, 
H(1- n,a,F) = 11.1' n ~ 1, 

n 

and H has a simple pole at s = 1 with residue IIF. 

Theorem 5.9. Suppose q I F and Pia. Then there exists a p-adic meromorphic 
function Hp(s, a, F) on 

{s E Cpllsl < qp-l/(P-l) > I} 

such that 

Hp(1 - n,a,F) = w-"(a)H(1 - n,a,F), n ~ 1. 

In particular, when n == 0 (modp - t), or (mod 2) if p = 2, then 

Hp(1 - n, a, F) = H(I - n, a, F). 

The function Hp is analytic except for a simple pole at s = t with residue tiF. 

Proof. Let 

Assume convergence for the moment. Then 

- t "(n) (F)i Hp(1 - n,a,F) = -F <a)" L . (Bj) -
n j=O } a 

= w-"(a)H(t - n,a,F), as desired. 

At s = I, we have residue 

~<a)O f (~)(Bj)(~)j =~. 
F j=O ) a F 

It remains to prove convergence. We need the following well-known result. 
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Theorem 5.10 (von Staudt-Clausen). Let n be even and positive. Then 

1 
Bn + L - E 7L., 

(p-1)ln P 

where the sum is over those primes p such that p - 1 divides n (in particular, 2 
and 3 appear in the denominator of each Bernoulli number). Consequently, pBn 
is p-integral for all n and all p. 

Proof. We shall show that for each prime p we have Bn = -lip or 0 mod 7L. p , 

depending on whether p - 1 does or does not divide n. Assume by induction 
that this is true for m < n. In particular, pBm E 7L.p for m < n. Since the cases 
m = 0, 1 are easily treated, we assume also that n ~ 2 is even. From Proposi
tion 4.1 we have 

B = B = pn-1 f B (~) 
II 11,1 L..J II 

a=1 p 

= pn-1 f t (~)(Bj)(~)n-J 
a=1 J=O ] P 

== f (pBoanp-2 + npB1 an- 1 p-1 + pBnpn-2) (mod 7L. p ). 

a=1 

Since B1 = -1, B1 E 7L.p if p =F 2. Since n is even, nB1 E 7L.2. Therefore we may 
omit the term with B1 • We obtain 

1.f.., {P-l, if(p-l)ln 
(1 - pn)Bn == - L an == P 

pa=1 
0, if (p - l)(n. 

Since 1 - pn == 1 (modp), we have Bn == -lip or Omod7L.p. 
Now consider Bn + L(p-1)ln lip. By the above, this is in 7L.p for every p, so 

there are no primes in the demoninator. Therefore it must be an integer. This 
completes the proof of Theorem 5.10. D 

Returning to the proof of Theorem 5.9, we note that I (Bj)(FlaYI :s; plqlJ. 
Therefore, by Proposition 5.8 with r = Iql = 11q, we find that 

is analytic on D = {s E Cpllsl < qp-1/(p-1)}. Since qp-1/(P-1) > 1, this is the 
same set as {s E Cplll - sl < qp-1/(P-1)}, so 



§5.2. p-adic L-functions 57 

is analytic in D. Similarly <a)S, hence <a)l-S, is analytic in D. Therefore 
(s - I)Hp(s, a, F) is analytic in D. This completes the proof of Theorem 5.9. 

D 

We are now ready to construct p-adic L-functions. Let X be a Dirichlet 
character. If we fix, once and for all, an embedding of ij into Cp , we may 
regard the values of X as lying in Cpo Also, observe that w(a) is a p-adic 
Dirichlet character of conductor q and order tP(q) (= 2 or p - 1). It may be 
regarded as coming from a complex character if desired, but the choice is 
noncanonical and depends on an embedding of Q«(p-d into Qp. It is better 
to regard w as a p-adic object. Note that it generates the group of Dirichlet 
characters defined mod q. 

Theorem 5.11. Let X be a Dirichlet character of conductor f and let F be any 
multiple of q and f. Then there exists a p-adic meromorphic (analytic if X "# 1) 
function Lp(s,X) on {s E Cpllsl < qp-l/(P-l)} such that 

n ~ 1. 

If X = 1 then Lp(s,l) is analytic except for a pole at s = 1 with residue 
(1 - lip). 

I n fact, we have the formula 

1 1 F <Xl (1 - s) (F)j 
Lp(s, X) = -F -=-1 L x(a)<a)I-' .L . (Bj ) - • 

S a=1 }=o ] a 
pia 

Remarks. The factor (1 - xw-·(p)p·-I) is the Euler factor at p for L(s,xw-·). 
It is a general principle that to obtain p-adic analogues of complex functions, 
the p-part must be removed (intuitively, L lin' has p-adically arbitrarily large 
terms if p is allowed to divide n, while at least the terms are bounded if p ( n). 
The expression xw-·(p) is taken in the sense of multiplication of charac
ters given in Chapter 3. In general, xw-·(p) "# X(p)w-·(p). For example, if 
X = w· "# 1, then xw-·(p) = 1, while X(p) = w·(p) = O. 

Note that 

Lp(l - n, X) = (1 - X(p)p·-I )L(l - n, X) if n == 0 (mod p - 1) 

(mod 2 if p = 2). In general, Lp(s, X) is an intertwining of the functions 
L(s, Xwi), j = 0, 1, ... , p - 2. If X is an odd character then nand xw-· have 
different parities so B •. xCJJ-n = O. Therefore Lp(s, X) is identically zero for odd 
X. If X is even then B •. xCJJ-n "# 0 so Lp(s, X) is not the zero function. The nature 
of its zeros is not yet understood. 

Proof of Theorem 5.11. We show that the formula gives the desired func
tion. Since 
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F 

Lis, x) = L x(a)Hp(s, a, F), 
a=l 
p}a 

the analyticity properties follow at once. At s = 1, Lp(s, X) has residue 
L~=l x(a)(l/F). If X = 1 then this sum equals 1 - lip. If X "# 1 then the sum is 

p}a 

1 F 1 F/p 
- L x(a) - - L X(pb). 
F a=l F b=l 

The first sum is o. If pi! then X(pb) = 0 for all b. If p (! then !I(F/p), so again 
the second sum is o. Therefore Lp(s, X) has no pole at s = 1 if X "# 1. 

Ifn ~ 1 then 

F 

Li1 - n, X) = L x(a)Hp(l - n, a, F) 
a=l 
p}a 

1 F (a) = -- Fn- 1 L xw-n(a)Bn -
n a=l F 

p}a 

1 F (a) = __ Fn- 1 L xw-n(a)Bn -
n a=1 F 

(cf. Exercise 3.7(c» 

1 (F)n-1 F./.f ( b ) + - pn-1 - L xw-n(pb)Bn -F/ . 
n p b=1 P 

If pl!xwn then xw-n(pb) = o. Otherwise !xw-nl(F/p). By Proposition 4.1 we 
have 

This completes the proof of Theorem 5.11. o 

What happens at the positive integers? We shall treat the case s = 1 
shortly. Let n ~ 1. It is classical that 

(_1)n+1 dn+1 <Xl 1 
, (d )n+1 log r(z) = L ( + )n+1 = (I + n, z). n. z m=O Z m 

Recall Stirling's asymptotic series (see Whittaker and Watson, [1], p. 241) 

r(z) 1 f Bj +1 -j 
log r;;:"'(z-2)logz-z+ £..., .(. l)z. 

V 2n j=l) } + 
The series does not converge for complex z, but log(r(z)/ fo) equals the mth 
partial sum +O(lzl-m-l) as z -+ 00. If we differentiate (n + I)-times (this can 
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be justified) we obtain 

(_I)n+l dn +1 1 00 (-n) . 
----:-- (d )n+1 log r(z) ,..., - .L . (Bj)z-(n+ J). 

n! z n J:O ] 

Note that the right-hand side converges p-adically if Izlp > 1. We therefore 
regard 

as the p-adic analogue of 

00 1 
L ( )n+1 = (I + n,z). 

m:O Z + m 

Letting z = a/ F, we see that for n ~ 1 

Hp(1 + n, a, F) 

is the analogue of 

wn(a)rn-l( (1 + n, ~) = wn(a)H(1 + n, a, F). 

An easy calculation shows that Lp(l + n, X) is the analogue of 

(1 - xwn(p)p-(n+1»L(1 + n,xwn). 

Note that L(1 + n, Xwn) gives the values for even characters at odd integers 
and for odd characters at even integers. Very little is known about these 
numbers, either in the complex case or the p-adic case. 

§5.3. Congruences 

Theorem 5.12. Suppose X "# 1 and pq (Ix- Then 

Lp(s,X) = ao + a1(s - 1) + a2 (s - 1)2 + ... 

with laol ~ 1 and with plai for all i ~ 1 (note that since Lp(s, X) has radius 
of convergence greater than 1, ai ~ 0 as i ~ 00; so we a priori have plai for 
large i). 

Proof. We may choose F as in Theorem 5.11 so that qlF but pq (F. Also we 
may assume X is even since everything is 0 otherwise. 

Ifj ~ 6 then 

\
B Fj-l\ 1 1 -2 __ . < .J/(p-l).p._._ <_ 
j! aJ - I' qJ-l - q. 



60 5. p-adic L-functions and Bernoulli Numbers 

A check of the cases j = 3, 4, 5 shows that the inequality holds for j ~ 3. 
Therefore all coefficients in the power series expansion of 

are divisible by p. Also, the terms for j :5;; 2 have possibly q, but not pq, in the 
denominator. 

Similarly, 

I ~ 1 . . 
<a) -s = exp«1 - s)logp<a» = L..- :;-(1 - sY(logp<a)Y 

j=O}. 

has all coefficients in 7L p' and they are divisible by pq for j ~ 2, since 
qllog/a). 

Therefore we need only consider 

I F (I I - s (1 - s)(1 - s - I)F) 
s - I af:l x(a)(1 + (I - s) logp<a» F - 2a + 12a2 . 

pta 

We find that 

F (I IF) ao = - L x(a) -logp<a) - - - -2 (modp). 
a=l F 2a 12a 
pta 

Clearly (lIF)logp<a) and FIl2 are in 7Lp. Since a = w(a) (modq), 

I 
t L x(a)- = t L xw-I(a) = 0 (mod tq) 

a 

(we need the same reasoning as was used in the proof of Theorem 5.11 to 
handle the fact that the sum only includes a with p (a). This shows that 
laol:5;; 1. 

Next, we have 

= _ > ()(~ _ logp<a) _ FlOgp<a»)( d) 
a l - pta X a 12a2 2a 12a2 mo p. 

Clearly Flogp<a)/12a2 and logp<a)/2a are divisible by p. If p ~ 5 then 
FI12 E p7Lp, so pial. If p = 2 or 3 then FI12 E 7L;. But a2 = I (mod p) if p (a, 
so LptaX(a)a-2 = LptaX(a) = O. Again we have pial. 

Finally, we have 

F 
a2 = - p~a x(a)(logp<a» 12a2 = 0 (mod pl· 

Since all the higher coefficients are already divisible by p, from the above, the 
theorem is proved. 0 
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Most of the congruences for Bernoulli numbers and generalized Bernoulli 
numbers follow from this theorem. We give a few examples. For another 
approach, see the Exercises for Chapter VII. 

Corollary 5.13. Suppose X ~ 1, pq ( f Let m, n E 7L. Then 

Lp(m, X) == Lp(n, X) (mod p), 

and both numbers are p-integral. 

Proof. Both sides are congruent to ao in the notation of the theorem. 0 

Corollary 5.14 (Kummer's Congruences). Suppose m == n ¢ 0 (modp - 1) are 
positive even integers. Then 

Bm Bn 
-==-(modp). 
m n 

More generally, if m and n are positive even integers with m == n (mod(p - l)p4) 
and n ¢ 0 (mod p - 1), then 

(1 - pm-l)Bm == (1 _ pn-l)Bn(modp4+1). 
m n 

Proof. Consider Lp(s, wm) = Lp(s, wn). Then 

Lp(l - m,wm) = -(1 - pm-l)(Bm/m) 

and similarly for n. Also 

Lp(1 - m,wm) = ao + al( -m) + a2( _m)2 + ... 

The result follows. 

== ao + a1(-n) + a2(-n)2 + ···(mod p4+1) 
(since pia;, i ~ 1) 

= Lp(1 - n,wn). 

Corollary 5.15. Suppose n is odd, n ¢ -1 (mod p - 1). Then 

Bn+l d Bl w" == --1 (mo p) . n+ 

and both sides are p-integral. 

o 

Proof. Since n ¢ -1, wn+1 ~ 1. Also wn(p) = 0 since wn ~ 1. Therefore, by 
Corollary 5.13, 

Bl,ro" = (1 - wn(p»Bl,tD" = - Lp(O, wn+1) 

== -L (1 - (n + l),wn+1) = (1 _ pn) Bn+l == Bn+l (modp). 
p n+l n+l 

The p-integrality also follows from Corollary 5.13. o 
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Theorem 5.16. Let P be an odd prime and let h; be the relative class number of 
O('p)' Then plh; <:> P divides the numerator of Bj for some j = 2,4, ... , P - 3. 
(Later we shall show plhp<:>plh;.) 

Proof. The odd characters corresponding to O('p) are w, w3, •.• , WP-2. There
fore, by Theorem 4.17 

p-2 

h; = 2p n (-tB1,a>i) 
j=l 

jodd 

(Q = 1 by Corollary 4.13; w = 2p). First, note that 

1 p-1 -1 _ P - 1 
B 1 ,a>P-2 = B 1 ,a>-1 = - L aw (a) = --mod7Lp-

p a=l p 

Therefore (2p)( - ~Bl,a>P-2) == 1 (mod p), so we have 
p-4 

h; == n (- tBl,a>j)(mod pl· 
j=l 

jodd 

By Corollary 5.15, this may be rewritten as 

_ p-4 ( 1 Bj +1 ) 
hp == n -- -. - (modp). 

j=l 2} + 1 
jodd 

The theorem follows immediately. o 

As mentioned in Chapter 1, a prime is called irregular if p divides Bj for 
some j = 2, 4, ... , p - 3. 

Theorem 5.17. There are infinitely many irregular primes. 

Proof. Suppose P1' ... ' Pr are all the irregular primes and let m = N(P1 - 1) 
... (Pr - I), where N will be chosen later. It follows from Exercise 4.3 that 
IBnlnl .... 00 as n -+ 00, n even. If we choose N large enough, then IBm/ml > 1. 
There then exists a prime P which divides the numerator of Bm/m. Since Pi is 
in the denominator of Bm for i = I, ... , r by Theorem 5.10, we cannot have 
P = Pi for any i. Also m ¢ 0 (modp - 1) for similar reasons. Let m' == m 
(modp - 1),0 < m' < p - 1. Then 

Bm' Bm - == -(modp), 
m' m 

so pIBm" Therefore, p is irregular. It follows that there must be infinitely 
many irregular primes, as claimed. 0 

It is not known whether or not there are infinitely many regular primes. 
However, numerical evidence indicates that about 61% of all primes are 
regular. More precisely, let i(p) be the number of Bj,j = 2,4, ... , p - 3, which 
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are divisible by p. This number is usually called the index of irregularity. 
Assume that the Bernoulli numbers are random mod p in the sense that Bj is 
divisible by p with probability lip. There are (p - 3)/2 Bernoulli numbers in 
consideration for a prime p. The probability that i(p) = k is therefore 

which approaches (tte- I /2 Ik! as p -+ 00 (Poisson distribution with parameter 
t). For i(p) = 0, we find that e- I/2 ~ 60.65% of all primes should be regular. 
The remaining 39.35% should be irregular of various indices. This heuristic 
argument agrees closely with the numerical evidence. For the 283145 odd 
primes less than 4000000, the computer calculations of Buhler-Crandall
Ernvall-Metsankyla yielded the following data: 

i(p) Fraction with i(p) 1 1 -1/2 --e 
k! 2k 

0 .605866 .606531 
1 .303862 .303265 
2 .076014 .075816 
3 .012478 .012636 
4 .001558 .001580 
5 .000194 .000158 
6 .000025 .000013 
7 .000004 .000001 

§5.4. The Value at s = 1 

We now turn our attention to the evaluation of L p(1,X). The answer is the 
p-adic version of the classical formula with the Euler factor at p removed. 

Theorem 5.1S. Let X be an even nontrivial Dirichlet character of conductor f, 
let X = X-I, let' be a primitive fth root of unity, and let r(x) = L!:I x(aK d be 
a Gauss sum. Then 

Proof. (The proof is not especially enlightening. The reader could possibly 
omit it without seriously impairing the understanding of subsequent results.) 

We shall consider the cases f = p and f #- p separately. 
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I. f = p (the argument in this case is essentially due to Kummer). Then 
X = o} for some even k =1= 0 (mod p - 1), and p must be odd. Let ~(X) E 

(!l[X] be a polynomial with p-integral coefficients such that ~(1) = 1. Then 
~(X) = 1 + b1(X - 1) + b2(X - 1)2 + ... so we may formally expand 

10g~(X) = - f (1 - ~(X»i = f ~i(1 _ X)i. 
i=1 I i=1 I 

We claim the C/S are p-integral. When 

1 2k, 
-;-(-b1(X -1) - b2(X - 1) - ... - bk(X - 1»1 
I 

is expanded, we obtain terms of the form 

(p-integral coefficient) ~ ( i ) (X _ I)Q, ... (X _ l)kQk, 
I a I , ••• ,ak 

where the expression in parentheses is a multinomial coefficient. Note that 
for any j with aj i= 0, 

is another multinomial coefficient, hence integral. Therefore 

1 ( i ) -;- 'I,jajE 7l.. 
I a1 ,· •• ,ak 

But this expression, times the "p-integral coefficient" above, is the form of the 
contributions to en, with n = 'ijaj • This proves the claim. 

Returning to the above formula, we expand further and obtain 

10g~(X) = f ~i (± (i.) ( -IYXj). 
i=1 I j=O ] 

Now let X = e', so 

log~(e') = .f ~i ± (i.)( -IY f r, tm. 
1=1 I )=0 ] m=O m. 

Lemma 5.19. 

± (i.)( -lyr = 0 for i > m. 
j=O ] 

Proof. The left-hand side is the coefficient of tmjm! in the Taylor expansion 
of (I - et)i = t i + higher terms. The result follows immediately. D 

The lemma shows that the coefficient of tmjm! is a finite sum, in fact it is 

f ~i ± (i.) ( -IYr. 
i=1 I j=O ] 
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Now let 9 be a primitive root modulo p (so ga == 1 mod p <:> p - 1 divides a) 
and let 

1 xg - 1 1 
;(X) = - -- = _(xg-1 + xg- 2 + ... + 1). 

9 X-I 9 
Then 

d ge gt et 1 (gt t) -log;(et)=-----=- ----- +g-1 
dt egt - 1 et - 1 t egt - 1 et - 1 

00 t rn- 1 

= 9 - I + L (grn - I)Brn-, . 
m=1 m. 

It follows that the coefficient of tmjm! (m ~ 2) for log;(et ) is (gm - I)(Brnjm), 
so 

(grn _1)Bm = f ~i t (i.)(_IYi'". 
m i=1 I j=1 ] 

Let m = kp". Then wkpn = wit. and 

Lp(l,wk) = lim Lp(1 - kp",wlt.) = lim -(I - pkP"-l) Bk"P"P" = lim - BkkP:. 
11-00 n-oo " .... 00 P 

Since gkpn -+ W(g)k, we have 

(W(g)k _ I)Lp(l,wk) = lim _(gkP" - I) Bkkp"pn 
" .... 00 

00 i (i-I) . = lim - L Ci L. (_IYj"P"-1 
" .... 00 i=1 j=1 ] - 1 

(Note: G) =; G = ~)). 
Since each Ci is p-integral, we may evaluate lim j"P"-1 termwise. If pli then the 
limit is O. Otherwise we obtain wk(j)jj. These limits are uniform in j. There
fore 

(W(g)k - l)Lp(l,wk) = - f ~i ± c:)( -IYwk(j). 
i=1 I j=1 

pU 

We now return to the original formula for 10g;(X). Let C = Cp be any primi
tive pth root of unity and let (a, p) = 1. Since I;W) - II ~ lea - 11 < 1, we 
may expand 

= f ~i ± (i.) ( -lyCIIl, 
1=1 I j=O ] 
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with the same Ci as above. Therefore, 

:t: w-k(a)logp~W) = it ~i it G} -lY:~ w-k(a)(aj 

since 
p-l 

= t(w-k) f ~i f (i.) ( -1ywk(j) 
i=1 1 j=O ) 

pjj 

L w-k(a)(aj = wk(j)t(W-k) if p U 
a=1 

and equals 0 if plio We now have 
p-l 

t(w-k)(W(g)k - 1)Lp(1,wk) = - L w-k(a)logp~W) 
a=1 

p-l 

= - L w-k(a) [ -logpg + logp(1 - (a9 ) -logp(l _ (a)] 
a=1 

p-l 

= -(w(gt - 1) L w-k(a)logp(1 - (a). 
a=1 

Finally, since t(wk)t(W-k) = wk( -1)p = P by Lemmas 4.7 and 4.8, we obtain 
(note wk(g) == gk ¥= 1 mod p, so wk(g) # 1) 

( k) p-l 
Lp(l, wk) = - t w L w -k(a) logp( 1 _ (a), 

p a=1 

as desired. Note that the Euler factor (1 - wk(p)/p) = 1 so it does not appear 
explicitly. 

II·f # p. 

Lemma 5.20. Let X # 1 be a Dirichlet character of conductor f and let ( be a 
primitive fth root of unity. Then for n ;;:: 1 

Bn• iC = _ t(x)ff t. ;<a) i ± (i.)<_I)i- jr 
n f a=1 i=1 1«( - 1) j=l ) 

(we may also sum for 1 $; i < 00 by Lemma 5.19.) 

Proof. Let 

Then fa(O) = 0 and f:(t) = e'/W - e'l. 



§S.4. The Value at s = 1 

Let g(X) = IJ~f X(b)X b - 1 and consider the partial fraction expansion 

g(X) _ t ra 
X I - 1 - a=1 X _ (a' 

Computing residues at (a, we obtain 

Therefore 

00 t n - 1 I x(b)e bt t r(x) I _ 1 
L Bn, X - nf = L eit _ 1 = e -I L x(a)et _ r a 

n=1 • b=1 a=l." 

r(x) I-I _ I 

= -T a~1 X (a)fa (t). 

Therefore 

f Bn•x ~ = _ r(x) If X(a)!a(t). 
n=1 n n. 1 a=1 

If we equate the coefficients of t n In!, we obtain the lemma. 

As in the case 1 = p, we have 

r(x) I-I (p-l)p" x-(a) i (i) 
Lp(l, X) = - lim L L . aiL . (_1)i- j/ P-l)P". 

1 n~oo a=1 i=1 1(( - 1) j=1 ] 
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D 

Postponing for the moment the justification of the termwise evaluation of 
lim j(P-l)P" = 1 if p U, we obtain 

r(x) /-1 (p-I)p" x(a) i (i) .. 
---lim L L . ii----j L . (-lrJ· 1 a=1 i=1 1(( - 1) j=1 ] 

plj 

But 

t (1.)( _1)i- j = (1 - 1)i = 0, 
j=O ] 

so 

1 " . = -- L. (0( - I)'. 
P aP=1 

We now have 
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If (is not a p-power root of unity then I(a - lip = I so I(oc - l)/W - 1)lp < 1. 
If ( is a p"th root of unity then n ~ 2 (f #- p). Therefore again we have 
I(oc - 1)/W - 1)1 < 1. In both cases we have convergence, so we get 

r;y ~ ~ x(a)IOgp( I - ;a ~ 11) 

= r;y ~ ~ x(a)IOgp(~ = f:) 
r(x) f 

= -if L x(a) [logp(l - (a p ) - p logp(l - (a)] 
P. a=l 

= _(I_ x(p))r(x) t X{a)logp(l-(a), 
p f a=l 

as desired (the 10gp(1 - (ap ) is treated by a change of variables if p, f If plf 
then use the same technique as in the proof of Lemma 4.7). 

We now justify the termwise evaluation of Iim/P - 1)P", as promised above 
(yes, even in the p-adics things like this need to be checked once in a while). 
We know that /P-1)P" = J + small, where J = 0 or 1. Consider the inner 
sums over i and j. We have 

L L (coefficient)(J + small) = L L (coeff.)(J) + L L (coeff.)(smaIl). 

When the coefficients are p-integral, the second term is small. The problem is 
that the coefficients have (( - l)i in the denominator, so sometimes they are 
large. Therefore we must show that (large)(small) = small. 

Lemma 5.21. 

± (i.) ( -1)i- jr and ± (i.) ( _1)i- j 

j=l ] j=l ] 
p/i 

are both divisible by i! for m ~ 1, the first divisibility being in 7L., the second in 
7L.p (note that we do not get 7L.-divisibility for the second expression: let p = 3, 
i = 4. Then 24 divides 3 in 7L.3 but not in 7L.). 

Proof. Write the monomial xm as 

xm = f ai(~). 
i=O I 

Then the ai are uniquely determined and 

(see the discussion preceding Proposition 5.8). Since we may obviouoly write 
any polynomial in 7L.[X], in particular X m, as a 7L.-linear combination of 
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polynomials of the form (X)(X - 1)"'(X - j + 1) = Xl + lower terms, we 
must have adi! E Z. This proves the first half of the lemma. But for any i we 
may let m = (p - l)p" -+ 00 to obtain the second expression, so the lemma is 
proved. D 

If C is not of p-power order we have lea - 11 = 1, so we may proceed as in 
the case f = p: write 

! (i) '(p-l)p" = (i - 1) '(p-l)p"-I. . . ] . 1 ] 
I ] J-

Everything else inside the limit is p-integral so we may take the limit term
wise. 

But if C is a pmth root of unity (m ~ 2), then iW - l)i is very small 
p-adically for large i, so we must proceed more carefully. Fix n and first 
consider i ~ n. Then 

• a i log i i log n n 
Vp(I(C - 1» ~ 1-+ ""( m):S; 1-+ ( 1)' ogp ." P ogp P - P 

If plj then vp(jlP-l)P") ~ (p - l)p" which grows faster than vp(iW - 1)i). So 
omitting the terms with plj does not change the limit. If p t j then 

vp(P- 1)P" - 1) ~ n + 1. 

Therefore vp(jlp-1)p" - 1) - vp(i(ca - l)i) -+ 00 as n -+ 00 uniformly for i ~ n. 
It follows that we may replace /P-l)P" by 1 for all terms with i ~ n. 

Now consider i > n. By the above lemma 

VpC(ca ~ l)i it (-l)i-iG)/p-l)pn) ~ Vp(~a-=-I~) 
i-I - P log(i - 1) i . 

> - - > CI > en 
- p - 1 logp (p - l)p - -

for some C > 0 (for the estimate on (i - I)! see the discussion preceding 
Proposition 5.4). Therefore the terms with i> n do not affect the limit. We 
obtain the same result when p-1)pn is replaced by 1 (p t j) or 0 (plj). 

To summarize, if i ~ n then the denominator is not small enough to cause 
problems, so we may take the limit term wise. The terms for i > n become 0 
in the limit, so may be ignored. This completes the justification. The proof of 
Theorem 5.18 is now complete. D 

The above reasoning also yields the following result, which shows that the 
p-adic L-functions are Iwasawa functions (see Exercise 12.3 and Theorem 
7.10). 

Proposition 5.22. Suppose X '# 1, f '# p, C = C/. Then for S E Zp we have 

.(X) /-1 <Xl 1 i (i) 
Lp(s, X) = --f L X(a).L 'W _l)i l: . (_I)i-J(j)l-s. 

a=1 ,=1 I }=1 ] 
pU 
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Proof. Lp(s, X) = lim Lp(1 - n, X), where n = (p - l)m --+ 00, and m --+ (1 - s)/ 
(p - 1) p-adically. So 

Lp(s, X) = lim - (1 - X(p)pn-I) Bn,x = -lim Bn,x, 
n n 

Now use Lemma 5.20. Since limr = lim(w(j)(j»)n = lim (j)n = (j)I-S if 
p , j, we may use the above reasoning to justify the termwise evaluation of the 
limit and obtain the result. The details are left to the reader. D 

§S.S. The p-adic Regulator 

The question now arises regarding whether or not Lp(l, X) is nonzero. As in 
the complex case, we have Lp(l, X) ¥- 0, but it is a rather deep fact. However, 
we may quickly dispose of a special case. 

Proposition 5.23. If p is a regular prime and k is an even integer with k ¢ 0 
(modp - I), then Lp(l,wk) ¢ 0 (modp). In particular, Lil.Wk) ¥- O. 

Proof. We know from Corollary 5.13 that Lp(1.wk) == Lp(1 - k.wk) = 
-(I - pk-I )(Bk/k) ¢ 0 (mod pl. since PI Bk· D 

To treat the general case. we introduce the p-adic regulator. Let K be a 
number field. If we fix an embedding of Cp into C. then any embedding of K 
into Cp becomes an embedding into C. hence may be considered as real or 
complex. depending on the image of K (this classification possibly depends 
on the choice of the embedding of Cp into C. We therefore sometimes obtain 
an ambiguity in the definition of the p-adic regulator. See Exercises 5.12 and 
5.13). Let r = rl + r2 - I. with rl • r2 defined as usual for K. The embeddings 
of K into Cp may be listed as ul •...• u", u,,+!. 0',,+1 •...• U"+'2' 0"'+'2' where 
the U i • I ::; i ::; r l are real in the above sense. and the other embed dings are 
complex. Let bi = 1 if Ui is real. bi = 2 if Ui is complex. Let 61 ••••• 6, be 
independent units of K. Then 

RK ,p(61 •• ... 6,) = det(bi logp(ui6)k~i,j:9' 

Note that this regulator is only defined up to a change in sign. since changing 
the order of the u/s could introduce a factor of -1. We are mostly interested 
in p-divisibility properties. so this will not present a problem. Since there are 
additional ambiguities unless K is real. or eM (see Exercise 5.13). we shall 
usually only discuss p-adic regulators in these cases. 

If {6 1 ..... 6,} is a basis for the units of K modulo roots of unity. then 
Rp(K) = R K ,p(61 ... ,. 6,) is called the p-adic regulator of K. In Chapter 8 we 
shall prove the following result. The proof will rely heavily on the above 
formula for Lp(l. X). 
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Theorem 5.24. Let K be a totally real abelian number field of degree n corre
sponding to a group X of Dirichlet characters. Then 

2"-lh(K)Rp(K) = n (1 _ X(p))-1 Lp(1, X). 
Jd(K) xeX P 

x,.1 

(Since both Rp(K) and J d(K) are only determined up to sign, the above equality 
actually means that we can choose signs so as to obtain equality.) 

If we define the p-adic zeta function of K to be 

(K,p(S) = n Lp(s, X) 
xeX 

then we obtain 

lim (s - 1KK,P(S) = 2"~Rp n (1 _ X(P)), 
.-1 d xeX P 

so if Rp # 0 then (K,P(S) has a simple pole at s = 1 with a residue which is the 
p-adic analogue of the residue for the complex case. 

We shall prove that Rp(K) # 0 when K is abelian over a, so that 
Lp(l, X) # O. From Proposition 5.23 combined with Theorem 5.24, we 
already have Rp(K) # 0 when K = a((pt and p is regular. In general, there 
is the following. 

Leopoldt's Conjecture (Preliminary Form). Rp(K) # 0 for all number fields K. 

At present, there is no general proof of this result, although it has been 
verified in several cases. 

Theorem 5.25. If Kia is abelian then Rp(K) # O. 

Proof. We shall need several preparatory results. 

Lemma 5.26. Let G be a finite abelian group and let f be a function on G with 
values in some field of characteristic O. Then 

(a) det(f(ur- 1 ))u,te G = n L x (u)f(u), 
xeG ueG 

(b) det(f(ur-1 ) - f(u))u .... l = n L x(u)f(u), 
X,.1 ue G 

(c) if Lu/(u) = 0 then 

det(f(ur-1 ))U,t,.1 = IGI-1 • n L x(u)f(u). 
x,.1 ueG 

Proof. (a) We may assume f takes values in an algebraically closed field F. 
Let V be the finite-dimensional vector space of all F -valued functions h(X) on 
G. Then G acts on V by translation: uh(X) = h(uX). Define the linear trans
formation T = Luf(u)u. Let ~t(X) be the characteristic function of {r} s; G, 
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SO ~.(u) = 1 if u = 'I: and 0 if u =F '1:. Then {~.}.eG forms a basis for V. Since 

T~.(X) = If(u)~.(uX) = If(u)~,,-,.(X) 
" " 

= If(,roc- I )~ .. (X), 
II 

the matrix (f(u'l:-I»" teG is the matrix for T with respect to this basis. Since 
the characters X E G 'are linearly independent, they also form a basis for V 
(alternatively, since ~.(X) = (l/IGI) Ix X('I:-I X), they span V, hence form a 
basis). But TX(X) = I"f(u)x(u)X(X), so the character X is an eigenvector 
with eigenvalue I x(u)f(u). Consequently, T is diagonal with respect to this 
basis. The determinant is the product of these eigenvalues, so the first part of 
the lemma is proved. 

(b) Let W be the subspace consisting of functions h(X) with Iah(u) = O. 
Let "'.(X) = ~.(X) - l/IGI. Then {",.(X)I'I: =F I} forms a basis for W. Using the 
fact that "'I (X) = - I'''I "'.(X), we easily find that (f(u'l:-I) - f(u»",.~ I is 
the matrix of T restricted to W for this basis. As before, the nontrivial 
characters diagonalize T restricted to W, so part (b) follows. 

(c) Adjoin a row and column to (f(u'l:-I) - f(u»",.~ I to obtain the follow
ing (index the rows by u, the columns by '1:): 

H.) ftOT-'~ - ft·) :::] 

Now add the first column to each of the other columns, then add each of the 
columns of the resulting matrix onto the first column. The final result is 

[I~I f(~-') :::] 

We have used the fact that I"f(u) = 0 to obtain the zeroes in the first 
column. Using the result of part (b), we obtain the result. This completes the 
proof of Lemma 5.26. 0 

Lemma 5.27. Let K/Q be a finite Galois extension. If K is real then let 
u I' ••• , 0",+1 be the elements of Gal(K/Q). If K is complex then let 0"1' ... , U,+1, 

0'1' ••• , 0',+1 be the elements of Gal(K/Q) (we regard K as a subfield of C). 
There exists a unit e of K such that the set of units {e"'11 ::s; i ::s; r} is multi
plicatively independent, hence generates a subgroup of finite index in the full 
group of units (such a unit is called a Minkowski unit). 

Proof. We shall find a unit e such that le"'1 > 1 but le"'1 < 1 for i =F 1 (the 
absolute value is the complex absolute value corresponding to a fixed em
bedding of K into C). The existence of such a unit is usually implicitly proved 
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during the proof of Dirichlet's Unit Theorem. However, since it is rather 
difficult to isolate this step from many treatments of the subject, we shall 
reverse the steps and derive the existence of e from the Unit Theorem. 

Let E be the group of units of K and consider the mapping L: E --. IR' 
defined by 

L(",) = (log 1","21, ... , log 1","'+'1). 

Note that log I ","'I = - Ii~~ log I ",'" I. The kernel of L is exactly the roots of 
unity in K by Lemma 1.6. By the Unit Theorem, the image must be a free 
abelian group of rank r. A bound on L(",) gives a bound on the conjugates of 
"', hence on the coefficients of the irreducible polynomial for ",. It follows that 
there are only finitely many images L(",) in any bounded region of IR', so the 
image of L is discrete. Therefore it is a lattice M of maximal rank. Consider 
the "quadrant" Q = {(X2"" ,x.+1) E 1R'lxi < ° for 2 :::; i :::; r + 1}. Then M n 
Q '" ,p. Let e E E satisfy L(e) E M n Q. Then log le"'1 < ° for 2 :::; i :::; r + 1 and 
log le"'1 = - Ii~~ log le"'1 > 0. It follows that le"'1 > 1 but le"'1 < 1 for i '" 1, 
as desired. 

We claim that e is a unit of the type asserted in the lemma. For the proof 
we need the following. 

Lemma 5.2S. Let (aij) be a real square matrix with au > 0, aij :::; ° for i '" j, and 
such that Ii aij > ° for all j. Then det(aij) '" 0. 

Proof. If det(ai) = 0, there exists a non-zero vector (XI) such that I aijxi = ° 
for each j. Let I Xk I be maximal among the entries of the vector. By changing 
signs if necessary, we may assume X k > 0, hence X k ~ Xi for all i. Then 

° = I aikxi ~ I aikxk (since aik :::; ° for i '" k) 
i i 

= (L: aik)xk > 0, contradiction. 

Returning to the proof of Lemma 5.27, we may assume 0'1 = id and let 

aij = bilogle"J""I. 

D 

Then au = bi log I e"'1 > ° and aij < ° for i '" j. Since L:i~: aij = 0, we have 
Ii;1 aij = -a.+l,j > ° for j '" r + 1. Lemma 5.28 implies that 

RK(e"', ... ,e"') = I det(aij) I '" 0. 

Therefore e"', ... , ea, must be multiplicatively independent, otherwise there 
would be a linear relation among rows of the determinant. This completes 
the proof of Lemma 5.27. 0 

We now prove Theorem 5.25. We may assume that K is totally real, since 
if K is imaginary then Rp(K) = (1/Q)2'Rp(K+) (use the same proof as for 
Proposition 4.16, changing log to logp)' Fix an embedding of K into Cp , let 
{1 = 0'1>'" , 0'.+1} = Gal(K/O), and let e be as in Lemma 5.27. By Lemma 
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5.26(c) (this is where we need G = Gal(K/Q) to be abelian) we have 

We now need the following deep result, which is the p-adic analogue of a 
theorem of Baker. 

Theorem 5.29. Let (X 1, •.. , (Xn be algebraic over Q and suppose logp (X l' ... , 

logp (Xn are linearly independent over Q. Then they are linearly independent over 
ij = the algebraic closure of Q in Cp (for a proof, see Brumer [1]). 0 

Since eO\ ... , e'" are multiplicatively independent, it follows easily that 
logp(e"'), ... , logp(e"') are linearly independent over Q (we need Proposition 
5.6). Since 

r 

logie"'+') = - L logp(e"/), 
i=1 

we have 

r 

L X(CT) logp(e") = L (X(CT;) - X(CTr +1» logp(e";). 
D i=1 

If X =f. 1 then X(CTi) =f. X(CTr + l ) for some i, so not all coefficients are zero. By the 
above theorem, the sum does not vanish. Therefore 

But Rp(e"2, ... , e"'+') = [E: E'] Rp(K), where E is the full group of units of K 
and E' is the subgroup generated by ± 1 and e"2, ... , e"'+', which is the same 
as the subgroup generated by ± 1 and {e"/11 ~ i ~ r}. This completes the 
proof of Theorem 5.25. 0 

Corollary 5.30. Let X =f. 1 be an even Dirichlet character. Then Lp(I,X) =f. o. 
o 

By Theorem 5.18, we know that Lp(l, X) is essentially a linear form in 
logarithms. So why did we not apply Theorem 5.29 directly? The problem is 
that the logarithms in question are generally not independent over Q. In 
certain cases we know all relations. For example, the only relation among 
{logp(1 - ':)11 ~ a ~ (p - 1)/2} is that the sum is O. So we may use the 
argument used above to obtain a situation where Theorem 5.29 is applicable. 
But in the general situation, there can be many more relations and the 
analysis becomes much more complicated. We shall discuss this matter more 
fully in Chapter 8. 
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For later reference, we now give another version of Leopoldt's Conjecture. 
Let K be a number field. For each prime fe lying above p, let V" denote the 
local units of K" and VI,,, denote the principal units, that is, the units 
congruent to 1 modulo fe. Let 

V = n V" and VI = n VI.". 
"Ip "Ip 

We may embed the global units E in V: 

EyV 

61-+(6, ... ,6). 

Let El denote those 6 whose images are in VI' Then El is a subgroup of E of 
finite index (sin~ 6 N ,,-1 E VI.,,), so El is an abelian group of rank r = 
r1 + r2 - 1. Let El denote the closure of El in the topology of VI' Since VI 
is a Zp-module (s: U 1-+ US), £1 is also a Zp-module. What is its rank? 

Leopoldt's Conjecture. The Zp-rank of £1 is r1 + r2 - 1. 

Theorem 5.31. Let K be totally real. Then Rp(K) =F O-the Zp-rank of £1 is 
r 1 - 1. 

Remarks. One may be tempted to think that £1 must have rank r1 + r2 - 1 
since El has that for its Z-rank. But consider the following. The group 
generated by 7 and 13 in 0 3 has Z-rank 2. But 7101313 = 1310137. and log3 13/ 
log37 E Z3' Therefore 7 generates the closure of the grouP. so the Z3-rank of 
the closure is 1. 

If there is only one fe above p in K. then the theorem says that Rp(K) =F 
O-units which are independent over Z are independent over Zp. This is not 
necessarily true for non units. as the above example with 7 and 13 shows. 

Also. if there are several primes above P. it is not sufficient to consider only 
one VI.'" For example. if p splits completely then each VI." is a Zp-module 
of rank 1; so if r1 + r2 - 1 > 1 then the units must be Zp-dependent in each 
VI. ft· But the relations are different for different fe. so it is still possible for the 
units to be Zp-independent in VI' 

To be more precise. suppose 6 1 ..... 6, are Zp-dependent in VI' Then there 
exist ai' ... , a, E Zp such that 6i' ... 6:r = 1 in K" for all fe. This means that if 
a i •n are rational integers with ai •n -+ ai p-adically. then 

6il. n ••• 6:r ,n -+ 1 in K" for each fe. 
Since the fe-adic valuations are different for different fe. the fact that the limit 
is 1 for one K" does not imply anything about the limit for other fe. However. 
if the units are Zp-dependent then it is pssible to get 1 as a limit for all K" 
simultaneously. 

Proof of Theorem 5.31. Suppose the Zp-rank of £1 is less than r = r1 - 1. 
Let 61 •... ,6, be a Z-basis for E 1 modulo roots of unity. Then 61 •. ". 6, must 
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be Zp-dependent in UI , say 

ei"" e:' = 1 (ai E Zp, some ai # 0). 

Let L be the Galois closure of K/Q. Suppose that lxiii, and Ixlhare the 
absolute values corresponding to primes /tl and /t2 of K lying above p. When 
these absolute values are extended to L they are related by lxiii, = ICTxlh for 
some CT E Gal(L/Q) (in fact, CT&t = .?1, where &; lies above /tJ Therefore, if 

then 

(ena ," . .. (ena." -+ 1 in L 9'2' 

Fix a prime /to lying above p in K and a prime &I, lying above /to in L. Then 

ei' ... e:' = 1 in Kli for all /t 

if and only if 

(ena, ... (ena• = 1 in La-a for all CT E Gal(L/Q) 

(does (e,,)a = (e a)"? No, since CT is not always an automorphism of L9'a/Q p; it 
does not necessarily fix Q p if P splits, so CT does not even make sense as a 
p-adic map. It is defined only before embedding in La-J 

Taking logarithms (we may assume La-a C Cp ), we have 

L ai logp(ef) = 0 for all CT. 
i 

Clearly this implies that Rp(e l , ••• , er ) = 0, hence Rp(K) = O. 
Conversely, suppose Rp(K) = O. Then there exist ai E L9'a such that 

L a i logp(ef) = 0 for all CT; 
i 

but we want ai E Zp. We may assume that one of the a/s equals 1. Let r E 

Gal(La-)Qp). Then 

L a[ logp(e[") = 0 for all CT; 
i 

since r permutes the CT'S, we have 

L a[ logp(ef) = 0 for all CT. 
i 

Letting T denote the trace from L9'a to Qp, we obtain 

L T(aJ logp(ef) = 0 for all CT. 
i 

Since one ai = 1, at least one of the T(aJ # O. Upon clearing denominators 
we obtain a relation with coefficients in Zp. Reversing the steps from the first 
half, we find that (we now may assume ai E Zp for all i) 

(ena , ..• (ena• = (root of unity) in L 9'0 
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for all CT. If we multiply each aj by the same integer, chosen suitably, we may 
assume the root of unity is 1. Then, continuing backwards through the 
above, we have 8~' ... 8:- = 1 in Kit for all /t, so 81, ... , 8, are Z,-dependent in 
VI' Since £1 is generated (modulo torison) over Z, by 81, ... ,8" we must have 
the Z,-rank of £1 < r = r 1 - 1. This completes the proof. D 

Corollary 5.32. If K/Q is abelian then the Z,-rank of £1 is r1 + r2 - 1. 

Proof. If K is real, use Theorems 5.25 and 5.31. If K is complex, then the 
corollary is true for K+. Since r 1 + r2 - 1 is the same for both fields, the 
result follows easily. D 

§5.6. Applications of the Class Number Formula 

We now use the p-adic class number formula (Theorem 5.24) to deduce 
results on class numbers. 

Proposition 5.33. Suppose K is a totally real Galois number field. If there is 
only one prime of K above p, and if the ramification index of p is at most p - 1, 
then 

I [K : Q]R,(K)I ~ 1. 

Jd(K) , 

Proof. Let K, denote the completion of K at the prime above p and let (!), be 
the ring of integers of K,. By the assumptions on p, deg(K,/Q,) = deg(K/Q) 
and also the Galois groups may be identified. 

If x E K, and Ixl < 1 then Ixl ~ p-1/(,-l). Therefore (cr. Lemma 5.5) 

<Xl x" 
10g,(1 + x) = L (_1)"+1 - E (!), 

,,=1 n 

since all terms in the sum are in (!),. It follows easily from the definition ofthe 
extension oflog, that log, 8 E (!), for all 8 E K;. 

Let 81' ... ,8,,-1 (n = deg(K/Q)) be a basis for the units of K modulo {± I}, 
and let PI = log,8j, 1 ~ i ~ n - 1. Let p" = 1. Then {Pt> ... ,P,,} generates a 
Z,-submodule of (!),. Let {lXl'''''lX,,} be a basis for (!), as a Z,-module. Then 
we can write 

" pj = L aljlXj with alj E Z,. 
j=l 

Let CT E Gal(K,/Q,). Then P;" = Lai/lXj, so 

det(pt);,t1 = det(ai/);,jdet(lXilJ,t1' 

The p-part of the discriminant of K is the discriminant of K,/Q, (there is only 
one prime above p), so we have 
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Also 

det(pn = det pI. (
... log (EO") ... ) 
... 1 ... 

Since LO" IOgp(EO") = 0, we may add all the columns onto the last one to obtain 

det(pn = deg(Kj([)l)Rp(K). 

Therefore we have 

I 
[K: ([)l]Rp(K) I = Idet(pnl = Idet(a··)1 < 1 

Jd(K) p det(aj) p I) P - , 

because aij E 7l. p for all i, j. This completes the proof. o 

Remark. Actually, the proposition is true in much more generality. Let K be 
totally real of degree n and for each prime fz above p let N fz denote its norm 
and v,. the number of p-power roots of unity in K/<. Then 

In particular, 

InRpl 
Jd p :::;; 1. 

The proof involves an extension of the above ideas (see Coates [7]). 

Theorem 5.34. If plh+(([)l((p)) then plh-(([)l((p))' Therefore plh(([)l((p))¢>P 
divides Bj for some j = 2, 4, ... , p - 3. 

Remark. At present, there are no known examples where plh+(([)l((p))' It is a 
conjecture of Vandiver that this never happens. 

Proof of Theorem 5.34. The characters corresponding to ([)l((pr are I, w 2 , 

... , WP-3. Let n = t(p - I). Then 

2n- 1h+ R; p-3 P = n Lp(l, wi). 
d+ j=2 

j even 

Since ([)l((pr satisfies the hypotheses of Proposition 5.33, we have 
IR; jPI :::;; 1. Ifplh+ then pILp(l,wi) for somej = 2,4, ... , p - 3. By Corol
lary 5.13, 

0== Lp(l,wj ) == Lp(O,wi) 

= -(1 - wi-I (p))B1.roi-1 = -B1.roi-1 (modp). 
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Since 
p-4 

h- = fl (-tB 1 ,w.)(modp) 
i;l 
iodd 
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(see the proof of Theorem 5.16), and since all these Bl,w' are p-integral (Corol
lary 5.15), we have plh-, as desired. This completes the proof. 0 

Later, we shall give another proof of Theorem 5.34 which depends on class 
field theory but not on p-adic L-functions. 

Before giving more applications, we need to know about logarithms of 
units. 

Lemma 5.35. Let KjO be an extension of degree n, with n :-:; p - 1. Assume 
that p is totally ramified: (p) = ft". Suppose I: is a unit of K which is congruent 
to a rational integer modulo ftc (c > 0). Then logpl: = 0 mod ftc. 

Proof. Let n generate ft in 0;" so I: = a + bnc + ... = a(1 + (bja)nC + ... ) 
with a, b, ... E Z. Since 

we have logp(l + (bja)nC + ... ) = 0 mod ftc by Lemma 5.5. So logp I: = logp a. 
Let N denote the norm from K;. to Op (which may be identified with the 
norm from K to 0). Then 

± t = NI: = Na = a" mod ftc. 

Therefore n logp a = logp a" = logp( ± a") = 0 mod ftc. Since p (n, the proof is 
complete. D 

We are now able to prove a famous result of Kummer which will be useful 
for treating the second case of Fermat's Last Theorem. 

Theorem 5.36. Assume p is a regular prime and let I: be a unit of O((p). If I: is 
congruent to a rational integer mod p then I: is the pth power of a unit of O((p)' 

(Note that the congruence is mod p, which is much stronger than 
mod(t - 0, which always holds. Also, the converse of the theorem is true 
(Lemma 1.8). See also Exercise 8.1.) 

Proof. We may write I: = (a1: 1 with 1:1 real, by Proposition 1.5. Every ele
ment of Z[( + C 1 ] is congruent mod(t - 0(1 - C 1 ) = 2 - (( + C 1 ) to a 
rational integer (simply replace ( + C 1 by 2). Also (a = (l + (( - t»a = 
1 + a(( - 1) mod(( - 1)2. If (a1: 1 is congruent to a rational integer 
mod(( - 1)2, we must have pia. Therefore I: = 1:1 is real. 

From now on we work with K = O((pt. Let ft = ((1 - 0(1 - C 1», the 
prime above p. Then ft(p-1)/2 = (p). By Lemma 5.35, logpl: = 0 (modp), so 
(1jp) logpI: E @;" 
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Suppose 8 is not a pth power. Then we may find (real) units 82' ... , 8r 

(r = (p - 3)/2) such that the group E' generated by ± 1, 8, 82, ... , 8r is a 
subgroup of index prime to p in the full group of units E (Proof: let" I,· . ',"r 
be a basis for E, so 8 = ± n "ji with some al ¢ 0 mod p, say j = 1. Let 8j = "j 
for j ~ 2. Then E' has index ± al ¢ 0 (mod p).) Therefore 

IR,(E')I = I[E: E']R,(K)I = IR,(K)I. 

Let PI = (1/p)logp 8 1, Pi = logp 8i' 2:::;; j :::;; r, Pr+1 = 1. Then PI"'" Pr+1 gener
ate a Zp-submodule of (!}fo' As in the proof of Proposition 5.33, we have 

I det(pt) I :::;; 1 and det(pt) = ~. deg(41«(,)+ 141)' R,(E'). 
Jd(K) p 

Therefore 

IR$)I :::;; Ipi < 1. 

But 

2rh+ Rp = Yi L p(l,wi), 
.jd j=2 

jeven 

so p must divide Lp(l, wi) for some j. This contradicts Proposition 5.23. The 
proof if complete. 0 

We now give another proof using class field theory. As above, we may 
assume 8 is real. Raising 8 to the (p - l)st power if necessary, we may assume 
that 8 == 1 (mod p) (8P-l is a pth power-8 is a pth power). Let n = (p - 1. 
Note that n p - 1/p is a unit of Z[(] and that every element of Z[(] is congru
ent to a rational integer modulo n. We may write 

8 = 1 + pa + pny with y E Z[(] and a E Z. 

Then 

1 = NO"l/O(8) == (1 + pa)P-l == 1 + (p - l)pa == 1 - pa (modpn), 

so nla and 8 == 1 mod pn. Since 8 - 1 is real, Vp (8 - 1) is a multiple of 
2/(p - 1)( = lie for 41«(pt). Therefore 

2 
Vp(8 - 1) ~ 1 + --1' or 8 == 1 mod pn2 (or mod n'+1). 

p-

Consider the polynomial 

f(X) = (nX - l)P + 8. 

nP 

Clearly f(X) is monic and since 8 == 1 mod n P+1, the constant term is in Z [(]. 
But pl(~) for 1 :::;;j:::;; p - 1, so the other coefficients are also in Z[(]. Since 
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f(O) = (-1 + 8)/nP == 0 (mod n) and 1'(0) = p/nP- 1 ¢ 0 (mod n), Hensel's 
Lemma implies that f(X) = 0 has a solution in the completion Zp[(J. It 
follows that 8 1/p E Zp[C] (alternatively, since 8 == 1 mod n P+I , we find that 
exp«I/p)logp8) converges, and its pth power is 8). 

Suppose now that 8 is not a pth power. Then Q«(p,8 1/P)/Q«(p) is a non
trivial abelian extension of degree p. Since 81/p E Qp«(p), the prime (n) splits 
completely; in particular, it does not ramify. The archimedean primes are all 
complex, so cannot ramify. Let g(X) = XP - 8. The relative discriminant 
divides N(g'(8 1/P)) = N(p8(P-I)/P) = (n)(P-I)P, where N is the relative ideal 
norm. Therefore the primes other than (n) are also unramified. The exten
sion is therefore unramified everywhere. By class field theory, the degree 
of the maximal unramified abelian extension equals the class number. Con
sequently, p divides h(Q«(p)), which contradicts the assumption that p is 
regular. Therefore 8 is a pth power, and the proof is complete. D 

We conclude this chapter with two results on quadratic fields. 

Theorem 5.37 (Ankeny-Artin-Chowla). Let p == 1 (mod 4) and let hand 8 = 
(t + uJP)/2 > 1 be the class number and fundamental unit for Q(JP). Then 

u 
- h == B(P-I)/2 (mod p) 
t 

Proof. Until now we have been able to ignore the ambiguity in sign for the 
p-adic regulator. But now we are forced to choose signs. 

From the classical class number formula for Q(Jp), we have (Exercise 4.6) 
p-l 

8- 2h = n (1 - (;)X(a), 
a=1 

where (p = e27ti/ p and X is the character for Q(JP). We also have the Gauss 
sum r(x) = L x(a)(; = JP. Note that if we had chosen a different pth root of 
unity for (p, we could have had r(x) = -JP, and also 8+ 211 could have 
appeared on the left-hand side of the above formula. We also made the choice 
8> 1. However, in the p-adics, there is no canonical way to choose (p, JP, 
and 8. But we can choose them so that the above relation holds and also 
r(x) = JP: Fix an embedding of 0 into Cp (note that since x(a) = ± 1 or 0, 
everything is algebraic). Since the above is an equality in 0, it holds in Cpo 
Now take p-adic logarithms: 

p-l 

2h logp 8 = - L x(a) logp(l - (;) 
a=l 

= - r(x)JP L x(a)logp(l - (;) 
p 

= JP(l -X~)rl Lp(l,X) 

= JPLp(l, X)· 
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Therefore 

2hlogpG = L (1 ) Jp p ,x, 

which is the class number formula with no ambiguity of sign. Clearly X = 
W(p-1)/2 since X is quadratic of conductor p. By Corollary 5.13, 

( p -1 ) Lp(I,X) == Lp 1 - -2-'X 

= -(1 _ p(P-3)/2) B(P-1)/2 
(p - 1)/2 

== 2B(p-1)/2 (mod pl. 

But (cf. Exercise 5.15) 

Therefore 

logpe = 10gpG) + 10gp( 1 + ~Jp) 

== ° + ~Jp (modp). 
t 

hu r..-- == B(p-1)/2 (mod y p), 
t 

but since both sides are rational, the congruence actually holds (mod pl. This 
completes the proof. 0 

Since it can be shown that h < Jp, this congruence actually determines h 
if u_ =1= ° (mod p), or equivalently if p does not divide B(P-1)/2 (note p t t since 
Jp t e). For p < 6,270,713, no examples of u == ° are known (Beach, Williams 
and Zarnke [1]). However, if we assume B(p-1)/2 to be random modp (but see 
Exercise 5.9), then the number of p ~ x with pi B(P-1)/2 (and p == 1 mod 4) 
should be 

1 L - '" tloglogx; 
p:s;x p 

p= 1(4) 

so up to 6,270,713 one would expect only around one or two examples. 
Therefore the fact that none exist should not be considered decisive. 

Proposition 5.38. Let m ~ 1 be squarefree and assume 3 does not split com
pletely in Q(j="m). If 3 divides the class number of Q(Fm) then 3 divides the 
class number ofQ(j="m) (we allow 31m, in which case Q(Fm) = Q(Jm/3». 
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Remark. The result is also true if 3 splits, but our proof does not work. Later 
we shall prove the following more precise result, due to Scholz: Let rand s be 
the 3-ranks of the ideal class groups of Q(.j3m) and Q(~), respectively. 
Then r + 1 ~ s ~ r. Whether s = r or r + 1 depends partly on the units of 
Q(.j3m). That the units could have an effect can be seen in the present proof. 

If m = 3387 then the class number of Q(.j3m) = Q(Ji"l29) is 9, but the 
class number ofO(J -3387) is 12. Therefore we cannot replace 3 by 9 in the 
proposition. 

Proof of Proposition 5.38. We may assume m> 3 since the proposition is 

vacuously true for m S; 3. Let X be the character for O(~). Then XW = 

XW3 is the character for o (.j3m). Let e, h, and D be the fundamental unit, 
class number, and discriminant for 0(.j3m). As in the proof of Theorem 5.37, 
or by the class number formula since we need not worry about signs here, we 
obtain 

( XW(3») 2h log3 e 
1 - -3- JD = L 3(1,xw) == L 3 (0,XW ) = -(1 - X(3))B1•l (mod 3). 

If 31 m then 31D. As in the previous proof, or by Proposition 5.33, we have 
Ilog3 e/JDI S; 1. Also in this case xw(3) = 0, so the Euler factor disappears. 
If 31m then 31 D, so xw(3) =F O. Therefore the Euler factor contributes a 3 
to the denominator. But Ilog3 el < 1 so log3 e == 0 mod 3 (since 03(e)/03 is 
unramified, 3 generates the maximal ideal). This cancels the denominator. 
Consequently, in both cases the left-hand side is h times something integral. 

If 31 h, we therefore find that 3 divides (1 - X(3))B1.l (note that if log3 e == 0 
(mod 9) then we do not need 3Ih). Since we have assumed 3 does not split 
in O(J -m), X(3) =F 1. Therefore 3 divides -B1.l = h(O~». This com
pletes the proof. D 

The general philosophy to be learned from the proofs of Theorem 5.34 and 
Proposition 5.38 is that the p-adic L-functions at s = 1 contain information 
about units and class numbers for real fields, while at s = 0 they contain 
information about relative class numbers. Since we have congruences be
tween these values, we can obtain results as above. However, the character W 

appears, so it is helpful to have Q((p) nearby, either explicitly, as in Theorem 
5.34, or implicitly, as in Proposition 5.38. All this will be made more precise 
later, when we discuss reflection theorems. 

NOTES 

For more on p-adic analysis, see Amice [1], Iwasawa [23], Koblitz [1], 
Schikhof [1], Cassels [1], and Mahler [1]. A simple proof of Mahler's theo
rem is in S. Lang [4]. A version of the p-adic logarithm and exponential 
appeared in the work of Eisenstein [1] and of Kummer [3]. 
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The construction of p-adic L-functions given above and the analogy with 
the values at positive integers is from Washington [2]. Other constructions 
can be found, for example, in Kubota-Leopoldt [1] (= the original construc
tion), Amice-Fresnel [1], Coates [7], Fresnel [1], Iwasawa [18], [23], Serre 
[2], and S. Lang [4]. For other treatments of the positive integers, see 
Diamond [3], Hatada [1], Shiratani [5], and Koblitz [3]. 

p-adic L-functions have been constructed for all totally real fields by 
Barsky [4], Cassou-Nogues [4], and Deligne-Ribet [1]. See also Katz [7]. 

For p-adic L-functions in other settings, see Amice-Velu [1], Cassou
Nogues [6], Coates-Wiles [4], Lichtenbaum [4], Manin [2], [3], [4], 
Manin-Visik [1], Visik [2], Mazur-Swinnerton-Dyer [1], Panchishkin [1], 
and several of the papers Katz. 

For work on the zeros of p-adic L-functions, see Barsky [6], Sunseri [1], 
Wagstaff [2], [4], Washington [12], [20], Ernvall-MetsankyUi [5], Metsan
kyla [19], Childress-Gold [1], and Lamprecht-Zimmer [1]. 

For information about the behavior of p-adic L-functions at s = 0, see 
Federer-Gross [1], Gross [2], Colmez [3], Ferrero-Greenberg [1], S. Lang 
[5], and Koblitz [4]. The last three give the relationship with the p-adic 
r-function (Morita [1]). 

Theorem 5.16 is due to Kummer. For generalizations, see Adachi [1], 
R. Greenberg [3], and Kudo [3]. 

Theorem 5.17 has been generalized: for any N > 2 and for any proper 
subgroup H of (7L/N7L)" there are infinitely many irregular primes not in H. 
See Metsankyla [9]. The probability arguments seem to have originated with 
Lehmer [1] and Siegel [1]. 

The calculation of Lp(1, X) given above is partly from Washington [6], 
which is based on ideas of Kummer, and partly from a modification of 
Washington [4], which is based on the proof of Leopoldt [10] (see also 
Iwasawa [23]). Other methods may be found in Amice-Fresnel [1], Koblitz 
[3], [4], and Shiratani [3]. For an explicit lower bound for Lp(l, X), see 
Morita [8]. 

Colmez [2] has proved the residue formula for p-adic L-functions of 
totally real fields. 

The p-adic class number formula may be used to evaluate class numbers. 
See Buchmann-Sands-Williams [1]. 

It is possible to determine the sign of Rp/Jd canonically: choose orderings 
in the determinants for Rand Jd so that the archimedean R/ Jd is positive. 
Then use the same orderings in the p-adic case. This gives the correct sign in 
the class number formula. See Amice-Fresnel [1]. 

Leopoldt's conjecture is from Leopoldt [9]. The reduction of the conjec
ture to the p-adic version of Baker's theorem (proved by Brumer) is due to 
Ax. For other work on the conjecture, see Bertrandias-Payan [1], Gillard 
[3], G. Gras [1], Serre [3], Klingen [1], Nguyen-Quang-Do [1], Shimada 
[1], Buchmann-Sands [1], Emsalem [1], Emsalem-Kisilevsky-Wales [1], 
Jaulent [12], Kolster [3], Miki [6], Fleckinger [1], and Waldschmidt [1]. 
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The last paper shows that the Zp-rank of the units is always at least half of 
the Z-rank. There have been occasional papers claiming to prove Leopoldt's 
conjecture, but they all appear to be incorrect. 

For generalizations of Kummer's Lemma (Theorem 5.36), see Hoechs
mann [1], Washington [19], and Shimada [2]. 

Some of the congruences of Ankeny-Artin-Chowla [1] were also dis
covered by Kiselev [1]. For more congruences of this type, see Feng [4], Ito 
[1], Kamei [1], H. Lang [2], and Zhang [1]. 

EXERCISES 

5.l. Let K be a finite extension of 0" of degree n. Show that there is a constant C 
depending on n, but not on K, such that Ilog"xl s C for all x E K. 

5.2. Show that log,,: e; -+ e" is surjective. 

5.3. Let K be a number field and let S be a finite set of places of K including the 
archimedean places. An S-unit IX E K is an element satisfying IIXI. = 1 for all 
places v ; S. Show that if S is sufficiently large then Leopoldt's Conjecture is not 
true for S-units; namely I,,-rank < I-rank = #(S) - 1. 

5.4. Show that 

L,,(I,;d = - L x(a) -Iog,,<a) + L ~ -l' ( co B (-F)j 
F a=1 J=I } a 

"Ia 

(there does not appear to be an easy way to transform this expression into that 
of Theorem 5.l8). 

5.5. Let K be an abelian field with X its group of Dirichlet characters. Let 

CK.p(S) = 0 L,,(s, X)· 
xeX 

Show that CK.,,(1 - n) = CK(1 - n) Ox(1 - X(p)p·-I) ifn > 0, n == 0 (modp - I), 
and n is even. Show that CK.p(S) vanishes identically if K is complex. 

5.6. Let i be even, 0 < i < p - 1. Let u, be the smallest integer u ~ 0 such that 
B'll" 1= 0 (mod p2u+I). Show that Uj = v,,(Lp(l, ai». (Hint: Theorem 5.12.) 

5.7. 

5.8. 

5.9. 

Let e be a unit of O(C,,). Show that if e is congruent to a rational integer modulo 
a sufficiently large power of p then e is a pth power (this result will be refined in 
Chapter 8). 
(Ankeny-Artin-Chowla). Let m > 1 be square-free, m == 1 (mj 3). Let 
(t + uj3m)/2 be the fundamental unit for O(j3m). Show that h(O( -m» == 
c5(u/t)h(O(j3m» (mod 3), where c5 = -1 if m == 3 (mod 4) and c5 = + 1 if m == I, 
2 (mod 4). (Be careful: it is necessary to expand log3 to the third term.) 

Let p == 3 (mod 4). Use the Brauer-Siegel theorem to show that 10gh(O(H» 
- log JP. Conclude that p t B(,,+1)!2 for all sufficiently large p. Also, show that if 
b == B(,,+I)!2 (modp), 0 < b < p, then b/p -+ 1/2 as p -+ 00. Therefore ~P+I)/2 is 
not "random" modp. (Actually, h < JPlogp, hence p t B(,,+I)/2, for all p == 3 
(mod 4». 
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5.10. (J. C. Adams) Show that if(p - 1)1 i but p9 li, then pBlBj • 

5.11. (a) Show that Lp(s, 1) = (1 - (l/p»)(s - ifl + ao + a1 (s - 1) + ... where a j E 

71.p for i ~ o. 
(b) (Carlitz) Show that if p #- 2 and pB(p - 1)li, then pBl(Bj + l/p - 1). 

5.12. Let K = O(IX), where 1X3 = 2. The fundamental unit is IX - 1. Let ifJ.: K -+ Cp , 

i = 1, 2, 3, be the embeddings of K into Cpo Show that for any i we may choose 
the embedding Cp -+ C so that ifJj is real and the other two embeddings are 
complex. We therefore have three possible regulators: R 1 , R 2 , R 3 • Show that if 
i #- j then RdRj is transcendental (use Theorem 5.29). 

5.13. Use Theorem 4.12 to show that if K is a eM-field then the p-adic regulator is 
independent of the choice of labelings of the embeddings of K in Cpo 

5.14. Let re = Cp - 1. Supposeeisa unit of 71. [Cp] such thate == a + brec modrec+1 with 
a, b E 71., P tab, and c ~ 2. Show that if c/(p - 1) rt 71. then vp(logpe) = c/(p - 1). 
In fact, show that logp e == (b/a)re C mod reC+l. (Hint: look at the proof of Lemma 
5.35.) 

5.15. (a) Show that ifr E Ox then logpr == Omodp. 
(b) Let re = Cp - 1, and let IX E O(Cp ). Show that IXP-I = rst, where rEO (possibly 
divisible by p), s is a root of unity, and t == 1 mod re2 • 

(c) Let IX E O(Cp). Show that logp IX == 0 mod re2• 

5.16. (a) Let X be an even Dirichlet character. Show that Lp(O, X) = 0 if and only if 
xw-I(p) = 1. 
(b) Show that there exist quadratic odd characters X I and X2 with X I (p) = 1 and 
X2(P) = -1. (Hint: Quadratic reciprocity plus Dirichlet's theorem). 
(c) The classical complex L-functions for even characters satisfy a functional 
equation of the form f(s)L(s, X) = hx(s)g(s)L(1 - s, X), where f and g are analytic 
and independent of X, while hx(s) may depend on X but is non vanishing. Show 
that there is no such functional equation for p-adic L-functions (of course, we do 
not allow f and g to be identically zero). 

5.17. Here is another proof of Proposition 5.1, suggested by J. Schoissengeier. 
(a) Use Krasner's lemma to show that Qp has countably infinite dimension 
over Op. 
(b) Baire's theorem says that in a complete metric space, the intersection of a 
countable collection of dense open subsets is dense. Use this to show that Op 
cannot be complete. 



CHAPTER 6 

Stickelberger's Theorem 

The aim of this chapter is to give, for any abelian number field, elements of 
the group ring of the Galois group which annihilate the ideal class group. 
They will form the Stickel berger ideal. The proof involves factoring Gauss 
sums as products of prime ideals, and since Gauss sums generate principal 
ideals, we obtain relations in the ideal class group. As an application, we 
prove Herbrand's theorem which relates the non triviality of certain parts of 
the ideal class group of O((p) to p dividing corresponding Bernoulli numbers. 
Then we calculate the index of the Stickelberger ideal in the group ring for 
O((p.) and find it equals the relative class number. Finally, we prove a result, 
essentially due to Eichler, on the first case of Fermat's Last Theorem. In the 
next chapter we shall use Stickelberger elements to give Iwasawa's construc
tion of p-adic L-functions. 

§6.1. Gauss Sums 

In order to prove Stickelberger's theorem, we need to study Gauss sums, 
which are also interesting in their own right. The Gauss sums used here are 
not the same as those used earlier, but there are many similarities. 

Let IF = IFq be the finite field with q elements, q being a power of the prime 
p. Let (p be a fixed primitive pth root of unity and let T be the trace from IF 
to lL/plL. Define 

which is easily seen to be a well-defined, nontrivial (T is surjective) character 
of the additive group of IF. Let 

87 
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be a multiplicative character of P. We extend X to all of IF by setting X(O) = 0 
(even if X is the trivial character). Note that X9 - l is the trivial character, so the 
order of X is prime to p. If q :F p, such characters are not the Dirichlet 
characters studied earlier. The concept of conductor will not enter into the 
present discussion. 

Define the Gauss sum 

g(X) = - L x(a)I/I(a) 
aeF 

If X has order m, then g(X) E O(Cmp)' A quick calculation shows that g(l) = 1. 

Lemma 6.1. (a) g(X) = X( -1)g(X); 
(b) if X :F 1, g(x)g(X) = X( -1)q; 
(c) if X :F 1, g(X)g(X) = q. 

Proof. (a) is straightforward. (b) follows from (a) and (c). For (c), 

g(X)g(X) = L x(ab- l ) 1/1 (a - b) 
a,b,.O 

= L X(c)I/I(bc - b) (let c = ab- l ) 
b,c,.O 

= L x(1)I/I(O) + L X(c) L I/I(b(c - 1)) 
b .. O c .. O,l b,.O 

= (q - 1) + L X(c)( -1) = q. 
c .. O,l 

This completes the proof. 

If Xl' X2 are two multiplicative characters, we define the Jacobi sum 

J(Xl,X2) = - L Xl(a)X2(1 - a). 
aeF 

More generally, we have 

J(Xl,· .. ,Xn)=(-lrl L Xl(atl···xian), 
al + ... +an=l 

D 

but we do not need this for n > 2. Note that if Xl and X2 have orders dividing 
m then J(Xl,X2) is an algebraic integer in O(Cm)' 

Lemma 6.2. (a) J(I, 1) = 2 - q; 
(b) J(I, X) = J(X, 1) = 1 if X :F 1; 
(c) J(X, X) = X( -1) if X :F 1; 
(d) J(Xl,X2) = g(Xtlg(X2)/g(XlX2) if XlX2 :F 1. 

Proof. (a) and (b) are easy. To prove (c) and (d), we compute 
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g(Xl)g(X2) = L Xl(a)X2(b)t/I(a + b) 
a,b 

= L Xl (a)X2(b - a)t/I(b) 
a,b 

= L Xl (a)X2(b - a)t/I(b) + LXi (a)X2( - a). 
a,b a 

b,.O 

If X1X2 "# 1, then the second sum vanishes. If X1X2 = 1, then it equals 
Xl (-l)(q - 1). The first sum equals (let a = bc) 

L Xl(b)X2(b)Xl(C)X2(1 - c)t/I(b) = g(X1X2)J(Xl,X2)' 
b,c 

b,.O 

If X1X2 "# 1, we obtain (d). If X1X2 = 1, use Lemma 6. 1 (b), along with g(l) = 1, 
to obtain (c). This completes the proof. 0 

Corollary 6.3.1f Xl' X2 are characters of orders dividing m, then 

g(Xl)g(X2) 

g(X1X2) 

is an algebraic integer in Q«(m). 

Proof. If Xl X2 is nontrivial, use the above result. The remaining cases are 
quickly checked individually. 0 

The significance of this result is twofold: not only is the expression inte
gral, is also eliminates (r This will be useful later. 

Let m be an integer with (m.p) = 1. Then the fields Q«(m) and Q«(p) are 
disjoint. Let (b. m) = 1. We may define CTb E Gal(Q«(m. (p)/Q) by 

CTb: (p 1-+ (p. (m 1-+ (!. 
(perhaps it would be better to use double indices and call this CTl,b. but 
usually (p will drop out early. leaving only (m). 

Lemma 6.4. Assume Xm is trivial. Then 

and g(X)m E Q«(m). 

g(xt = ()b-". Q(r) 
g(X)". 9 X E '>m • 

Proof. The second follows from the first if we let b = 1 + m. For the first. 
we have 

g(X)"· = - L x(att/l(a) = g(l)· 

Let, E Gal(Q«(mp)/Q«(m». so ,: (m 1-+ (m. (p 1-+ (~for some c. (c. p) = 1. Then 

g(X)' = - L x(a)t/I(ca) 

= - X(C)-l L x(a)t/I(a) = X(Cfl g(X). 
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and similarly 

g(xb)t = X(C)-bg(X b). 

Therefore T fixes g(xt-ab• The result follows. o 

Lemma 6.5. g(X P ) = g(X). 

Proof. Since a H aP is an automorphism over 7l./p71., T(a) = T(aP), and aP 
yields a permutation of IF. Therefore 

g(XP) = - L x(aPK;(a) 

o 
This completes our list of basic properties of Gauss sums. We now digress 

to give an application to the Fermat curve. 
We wish to count the number of solutions of 

X d + yd = 1, with X, Y E IFq • 

As is usually the case, it is more natural to count points in projective space. 
That is, we consider solutions, except (0,0,0), of 

X d + yd = Zd, 

and identify two solutions if they differ by a scalar multiple. If Z "# 0, we may 
identify (X, y, Z) with (X/Z, Y/Z, \) and obtain a solution of the original 
equation. But if Z = 0, we obtain the "points at infinity" (X/O = 00), which 
correspond to solutions of X d + yd = o. Since we do not count (0,0,0), 
we must have y"# 0, so any solution (X, y,O) may be put in the form 
(X/Y, 1,0). The number of points at infinity is exactly the number of solutions 
in IF q of X d = - 1. 

Despite all this, we shall start by counting the solutions of X d + yd = 1, 
and make the correction later. We first assume d divides q - 1. Since IFqX 

is cyclic of order q - 1, there exists a character X of IFqX of order exactly d. The 
cyclicity implies that X(u) = 1 if and only if u E IFqX is a dth power. For U E IFqX, 
let Nd(U) be the number of solutions in IFq of X d = U, so 

{
t, U = 0 

Nd(u) = 0, u"# 0, U "# dth power 

d, u"# 0, U = dth power (since dlq - 1). 

It follows easily that 

d 

Nd(U) = L Xa(u) if u "# O. 
a=l 

Therefore, the number of solutions of X d + yd = 1 is 

L Nd(U)Niv) + 2d 
u+v=l 
uv .. o 
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(the second term corresponds to X = ° or Y = 0) 

d d 

= 2d + I I I xO(u)xb(1 - u) 
u"0.1 0=1 b=1 

d d 

= 2d - I I J(Xo,X b ). 
0=1 b=1 

From Lemma 6.2 we see that the term a = b = d contributes 2 - q; the terms 
with either a = d or b = d, but not both, contribute a total of 2(d - 1); 
those with a + b = d yield I~:t XO( -1) = Nd( -1) - 1; and the remaining 
terms can be expressed in terms of Gauss sums via Lemma 6.2(d). Using the 
fact that Nd( - 1) is the number of points at infinity, we find that the number 
of solutions of X d + yd = Zd in projective space is 

d-1 

q + 1 - I J(xO,xb). 
0.b=1 
o+b,.d 

Since Ig(x)1 = Jq if X :F 1, we have, using Lemma 6.2(d), that 

II J(XO, xb)1 ~ (d - l)(d - 2)Jq. 

If N denotes the number of solutions, 

IN - (q + 1)1 ~ (d - t)(d - 2)Jq. 

This is a special case of a more general result which states that for a curve of 
genus 9 we have 

IN - (q + 1)1 ~ 2gJq. 

Note that q + 1 is the number of points on a line aX + bY = cZ, so the 
number of points on a curve is approximately the same as for a line, the 
possible error being bounded in terms of the genus. 

Now assume d is arbitrary, so we do not necessarily have dlq - 1. Let 
e = (d,q - 1). Then Nd(U) = Ne(u), so 

N = #{Xd + yd = Zdl(X, Y,Z):F (0, 0, O)}/(q - 1) 

= I Nd(u)Nd(v)Niw)/(q - 1) 
u+v=w 

= #{Xe + ye = Zel(X, Y,Z):F (0, 0, O)}/(q - 1). 

Since e divides q - 1, we have 

IN - (q + 1)1 ~ (e - t)(e - 2)Jq ~ (d - l)(d - 2)Jq, 

so we have proved the following. 

Proposition 6.6. Let N denote the number of projective space solutions of 

xd + yd = Zd 
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in IFq• Then 

IN - (q + 1)1 ~ (d - l)(d - 2)Jq. o 
Corollary 6.7. For any given d, X d + yd == 1 (modp) has solutions with 
Xy =1= 0 (mod p), for all sufficiently large p. 

Proof. From the above, the number of points at infinity is Nd( -1) (or 
Ne( -1», which is at most d. The number of solutions with X == 0 or Y == 0 is 
at most 2d. Therefore we have a nontrivial solution as soon as N > 3d. Since 
N - p = O(Jp), the result follows. 0 

This corollary shows that it would be difficult to prove Fermat's Last 
Theorem using only congruences. 

To finish this digression we show that Proposition 6.6 is essentially the 
Riemann hypothesis for the Fermat curve. Fix d and p and let Nn be the 
number of solutions of X d + yd = Zd in projective space over IFpn. The zeta 
function Cis) of the curve may be defined as follows: 

Define Z(T) by 

Z(O) = 1. 

Then 

This function satisfies many properties similar to those for Dedekind zeta 
functions: for example, there is an Euler product, and also there is a func
tional equation relating the values at sand 1 - s. It can be shown that Z(T) 
is a rational function of the form 

P(T) 
Z(T) = (1 _ T)(l _ pT)' where P(T) E Z[T], P(O) = 1 

(for further properties and proofs, see Weil [6] or Eichler [3]). 
Writing P(T) = TIj(1 - ajT), we see that 

Z'(T) = f (I + p" - L ar) Tn-I. 
Z(T) n=1 i 

so 

Nn = 1 + pn - L ar. 
j 

To answer the question that arises when one compares this with a previous 
formula, yes, the a/s are Jacobi sums, but we shall not prove this here. It 
follows easily from the Davenport-Hasse relations (see the Exercises). 

From Proposition 6.6 we have 

I~ (Xii ~ (d - I)(d - 2)p"/2. 
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Lemma 6.8. 

I I lin 

lim sup ~ lXi = M~x IIX;!. 
11-+00, I 

Proof. The only problem arises when two IX'S have the same absolute value, 
in which case a straightforward proof would have to show that "cancellation" 
does not decrease the lim sup. However, there is the following classical trick. 
Consider the complex function 

f(z) = L _1_ = f (L lXi)zn. 
; 1 - IX;Z n;O ; 

The radius of convergence of the power series is the distance to the nearest 
singularity, namely I/MaxllX;!. But it is also the reciprocal oflimsuplLlXil1/n. 
The result follows. D 

We now have IlXd ~ JP for each i. Returning to (is), we see that (is) = 
o ¢> p' = IX; for some i. Therefore Re(s) ~ t. But the functional equation for 
(is) implies that if (4(S) = 0 then (il - s) = O. Therefore Re(s) = t for each 
zero s. This is the Riemann hypothesis for the Fermat curve. 

All of the above is part of a much more general situation, which applies 
not only to curves but also to higher dimensional varieties (the Weil conjec
tures, now Deligne's theorem). The reader is strongly urged to read the classic 
papers ofWeil ([1], [2]), where this is discussed and where additional results 
on Gauss and Jacobi sums are proved. 

§6.2. Stickelberger's Theorem 

Let M/Q be a finite abelian extension, so M ~ Q((m) for some m (by the 
Kronecker-Weber theorem, proved in Chapter 14). We assume m is minimal. 
G = Gal(M/Q) may be regarded as a quotient of (7L/m7L) x • We let (Ta' 
(a, m) = 1, denote both the element of Gal(Q((m)/Q) and its restriction to M. 
Let {x} denote the fractional part of the real number x; so x - {x} E 7L and 
o ~ {x} < 1. Define the Stickelberger element 

0= O(M) = L {~}(T;;1 E Q[Gl 
a(modm) m 
(a.m);l 

The Stickelberger ideall(M) is defined to be 7L[G] n 07L[G], in other words, 
those 7L[G]-multiples of 0 which have integral coefficients. 

Lemma 6.9. Suppose M = Q((m). Let I' be the ideal of 7L[G] generated by 
elements of the form c - (T" with (c,m) = 1. Let p E 7L[Gl Then 

pO E 7L[G] ¢> PEl'. 

Therefore I = 1'0. 
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Proof. Since 

we have "<:". To prove the converse, first note that m = (1 + m) - U1+m E 1'. 
Suppose (La XaUa)O E Z[G], with Xa E Z. A short calculation shows that 

Looking at the coefficient of ull, we find that m divides Lxaa. Since mEl', 
so is L xaa. Therefore 

L X"Ua = L xiua - a) + L xaa E 1'. 

This completes the proof. o 
This result is not true in general if M is a proper subfield of O(Cm). The 

problem is that Ub = 1 for several b, so the "coefficient of u11" involves a sum 
over various values of b. For example, let M = 0(.Ji2) = 0(C12 + CD> c 
O(C12 ). Then U1 = Ull = 1, while Us = U7 = U, say. We have O(M) = 
1 + U E Z[G], so 1·0 E Z[G]. But I' is generated by {5 - u,7 - u,l1 - I}, 
therefore by {2, 1 + u}. In particular, 1 rt 1'. 

If x = LX"u E Z[G] then x acts on ideals and ideal classes in the natural 
way: A" = O,,(A")"·. 

Theorem 6.10 (Stickelberger's Theorem). Let A be a fractional ideal of M, 
let p E Z[G], and suppose pO E Z[G]. Then A/l8 is principal. Therefore, the 
Stickelberger ideal annihilates the ideal class group of M. 

Before starting the proof, we give two examples. 

(a) Suppose M is real. Then Ua = U-a and {aim} + {-aim} = 1, so 

1 tP(m) 
OeM) = 2- L Ua = 2 d M NormM/O ' 

a(modm) eg 

In this case we find that the norm, or some multiple of it, annihilates the 
ideal class group. This of course is already obvious, since 0 has class 
number one. We therefore can obtain nontrivial results only if we look at 
imaginary fields. 

(b) Suppose M = O(';=-;;;) is imaginary quadratic. Gal(MIO) = {1,u}, 
where U is complex conjugation. Since A 1+" is an ideal of 0, hence 
principal, U acts by inversion on the ideal class group. Let p = m. Then 
pO = Lau;l E Z[G], and in the ideal class group pO acts as Lax(a), 
where X is the quadratic character for M. We find that L ax(a) = mB1,1( 

annihilates the ideal class group. Of course, the class number formula 
implies that this number isjust -mh (ifm > 4), so what we have is a weak 



§6.2. Stickel berger's Theorem 95 

form of the analytic class number formula; however, it will be proved 
algebraically. 

More generally, let F be any totally real number field and M/F a finite 
abelian extension. Let G = Gal(M/F). Via the Artin map A 1-+ UA E G, one 
can define partial zeta functions for U E G: 

(Re(s) > 1). 

These may be meromorphically continued to the whole complex plane, and 
the values CF(U, - n) are rational numbers for n ~ O. Define 

On(M/F) = L CF(U, -n)u-l, 
aeG 

and let liM/F) be the ideal generated by elements of the form 

(NAn+1 - uA)()n(M/F), 

where A ranges over a set of integral ideals of F not divisible by a certain 
finite set of prime ideals. Then In(M / F) should annihilate some natural object, 
perhaps a K-group. For example, 11 (M/iIJ!) annihilates K 2 (!)M' except possibly 
for the 2-part, where (!)M is the ring of integers of M. When M = iIJ!(Cm) and 
F = iIJ!, we have 

which is essentially a Hurwitz zeta function. If n = 0, we have 

Oo(M/iIJ!) = L (-21 - {~})Uc-l, 
c(modm) m 

which differs from 0 by half the norm (in fact, we shall need 00 later). Since 
KO(!)M is essentially the ideal class group of M, the above may be regarded as 
an appropriate generalization of Stickelberger's Theorem. For details, see 
Coates [7]. 

We are now ready to start the proof of Stickelberger's theorem. The major 
step will be the factorization of certain Gauss sums. Let p be a prime and let 
q = pI be a power of p. Let /t be a prime ideal of iIJ!(Cq-d lying above p. Since 
Z[Cq-l] mod /t is the finite field with q elements (f = residue class degree by 
Theorem 2.13), and since the (q - l)st roots of unity are distinct mod It, there 
is an isomorphism 

W = w;.: IFqX -+ (q - l)st roots of 1 

satisfying 

w(a)mod/t = a Elf;. 
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This c:o is essentially a generalization of the c:o of the previous chapter. Let ~ 
be the prime of_ O(Cq-t> C,,) lying above /to For a. E 71., let s(a.) = v~(g(c:o-«», 
where v~ is the 9'-adic valuation. Clearly s(a.) depends only on a. (mod q - 1). 

Lemma 6.11. (a) s(O) = 0; 
(b) 0 :::;; sea. + P) :::;; s(a.) + s(P); 
(c) sea. + P) == s(a.) + s(P) (modp - 1); 
(d) s(pa.) = s(a.); 
(e) L::f s(a.) = (q - 2)(f)(p - 1)/2. 

Proof. (a) is obvious; (b) and (d) follow from Corollary 6.3 and Lemma 6.5, 
respectively. Since ~,,-l = /t, the values of v~ on O(Cq-l) are divisible by 
p - 1. Therefore (c) also follows from Corollary 6.3. Since g(c:o-«)g(c:o«) = 
±q = ±pl, we have s(a.) + seq - 1 - a.) = v~(pl) = (p - l)f. Pairing up the 
terms in the sum (the term for a. = (q - 1)/2 pairs with itself), we obtain 
(e). This completes the proof. 0 

Lemma 6.12. s(a.) > 0 if a. ¢ 0 (mod q - 1), and s(l) = 1. 

Proof. Since 'IT. = C" - 1 E ~ 
g(c:o-«) = - L c:o-«(a)C;(II) == - L c:o-«(a) == 0 (mod ~). 

Therefore s(a.) > o. Also, 

g(c:o-l ) = - L c:o-l(aK;(II) 

= - L c:o-l (a)(1 + 'IT.)T(II) == - L c:o- l (a)(1 + 'IT.T(a)) (mod~2) 

== -'IT. L c:o-l (a) T(a). 

Regarding fq as 71. [Cq-tJ mod /t, we have 

T(a) = a + a" + ... + a"I-' (mod /t) 

(since a H a" generates the Galois group mod /t), and 

L c:o-l(a)T(a) == ) a-lea + a" + ... + a"'-')(mod/t). 
II~O 

II mod I' 

If 0 < b < f, then LII ~ 0 a"b-l == 0 (mod /t), so the sum reduces to LII ~ 0 1 = 
q - 1 == - 1. Therefore 

g(c:o- l ) == 'IT. (mod gi2), 

hence s(l) = v~('IT.) = 1 (since O(Cq-l> C,,)/O(C,,) is unramified at p). This com
pletes the proof. 0 

Proposition 6.13. Let 0:::;; a. < q - 1 and let a. = ao + alP + ... + al-l pl-l, 
o :::;; a j :::;; p - 1, be the standard p-adic expansion of a.. Then 

s(a.) = ao + al + ... + al-l· 

Proof. From Lemma 6. 11 (a), (b), (c) and Lemma 6.12 we immediately have 
s(a.) = a. for 0:::;; a. :::;; p - 2. If q = p, we are done. Otherwise, s(p - 1) > 0 
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and we similarly obtain s(p - 1) = p - 1. Lemma 6. 11 (b) and (d) imply that 
s((X) :5;; ao + ... + af-I' When (X runs through the integers from 0 to q - 1, 
inclusive, each coefficient of the p-adic expansion takes on each of the values 
from 0 to p - 1 exactly pf-1 times, so 

q-l p(p - 1) _ p - 1 Jo (ao + ... + af-d = 2 (f)pf I = -2-fq. 

If we omit (X = q - 1 = (p - 1) + ... + (p - l)pf-t, we obtain 
q-2 p _ 1 q-2 

",~o (ao + ... + af-d = -2-fq - (p - l)f = Jo s((X), 

by Lemma 6.11 (e). The result follows. D 

Remark. Let n = (p - 1 and 0 :5;; IX. < q - 1, as above. Then 
nao+ ... +a/-l _ 

g(w-"') ==, , (mod.?J"°+,··+a/- 1 +1). 
(ao·)··· (af-I') 

(see Lang [4], [5]). In Lemma 6.12 we verified a special case of this formula. 
The general argument follows a similar line, but involves a rather delicate 
analysis of binomial coefficients. 

Now fix a positive integer m. Let p be a prime, (p, m) = 1, and let f be the 
order of p (mod m), so m divides pf - 1 = q - 1. Fix a prime /to of O((m) 
lying above p; let jo be the prime of 0(("" (p) above /to, so jg-l = /to; let 9 0 

be a prime of O((q-l) lying above /to; and let &0 be the prime of O((q-l' (p) 
lying above 9 0 (and jo)' Let w = w.~ be as above and let X = w-d, where 
d = (q - 1)/m. Then X'" = 1, so g(X) E 0(("" (p). Since g(X)g(X) = q = pf, the 
factorization of g(X) involves only primes of 0(("" (p) above p, that is, the 
conjugates over 0 of jo. Let (a, m) = 1 and let (Ta E Gal(O((",)/O) be the 
corresponding element of the Galois group. For each such a, fix an extension 
of (Ta to O((q-l' (p) such that (;0 = (p. 

Cp 
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The decomposition group for p in (7L/m7LY is generated by p (mod m) (see 
the discussion after Theorem 2.13). Let R denote a set ofrepresentatives for 
(7L/m7L)X modulo this decomposition group. Then {p~';lla E R} is the set of 
conjugates of Po. Since fto is the unique prime above Po, all conjugates of fto 
have the form ft~';l. Let ft = ft~';l be one of them. Then 

v,i(g(X» = v,io(g(x)"a) = v ,io(g(Xa» = v~(g(Xa» = s(ad) 

(v,io = v~ since ijo/ fto is unramified). Therefore 

(g(X» = fti-RS(ad),,';l. 

Lemma 6.14. Let 0 ::::;; h < q - 1. Then 

s(h) = (p - l<t: {/~\}. 
Proof. Let h = ao + alP + ... + af_Ipf-l. Then 

pih = aopi + alPi+1 + ... + aI_Ipi-1 (modq - 1). 

It follows that 

{ pih } 1 i /-1 
q _ 1 = q _ 1 (aop + ... + aI-I p ). 

Summing over i, we obtain the result. 

We now have s(ad) = (p - l)'rJ=-J {pia/m}, so 

I-I {pia} L s(ad)u;;1 = (p - 1) L L - U;;I. 
R i=O R m 

D 

Since ~8-1 = Po and since up'(Po) = Po (definition of decomposition group), 

(g(X)m) = PoLL {p'alm}";~' = P09, 

where 0 = L::'=I,(b,m)=1 {b/m}u;1 is the Stickelberger element (we raise to the 
mth power to avoid denominators). 

We now have a partial result: If Po is a prime of Q((m) with Po k m, then 
P09 is principal in Q((m' (p). The main problem is now to get down to Q((m), 
then to M. 

Suppose that A is an ideal of M !;; Q((m) with (A, m) = 1. Let A = TI Pi be 
its factorization into (not necessarily distinct) prime ideals in Q((m). Then 

Am9 = (TI g(XJl,r), 

where we write XJI, to indicate that X depends on Pi' Suppose p E 7L[G] 
(G = Gal(M/Q» and pO E 7L[G]. Extending the elements of G, we may regard 
pO as an element of 7L[Gal(Q((mp)/Q)]. Then 

AmP9 = (yPm), where y = TI g(XJI.) E Q((Pm), 
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where P = TI Pi is the product of the rational primes divisible by the It/s. 
Since ymp E O((m) by Lemma 6.4, and it is the mth power of an ideal of O((m), 
namely A P8, it follows that the extension O((m' yP)/O((m) can be ramified only 
at primes dividing m (proof: locally, AP8 is principal, so we are adjoining the 
mth root of a local unit). But 

Therefore, ramification can occur only at p;'s. Since (P, m) = 1, the extension 
must be unramified. 

Lemma 6.15. If O((m) c;; K c;; O((n) and K/O((m) is unramified at all primes, 
then K = O((m). 

Proof. Suppose K =I O((m). Then there is a character X for K of conductor 
not dividing m. By Theorem 3.5, K/O((m) must be ramified at some prime. 
Contradiction. For another proof, see Lemma 15.48. D 

We find that yP E O((m)' Therefore AP8 = (yP) is principal as an ideal of 
O((m). But this does not necessarily mean that it is principal as an ideal of M. 
So we show that yP E M, which suffices, since if two ideals of M are equal in 
O((m) they must have been equal originally because of unique factorization. 

Let [11 be a prime of O((q-l) lying over one of the prime factors Iti of A. 
Then XI', a priori depends on the choice of q>, so we temporarily let XI', = x,~. 
Let a E Gal(O((q_d/M). Then 

a: Z[(q-l] mod q> ~ Z[(q-l] mod q>" 

and correspondingly if XJ'(a) = ( then Xo!"'(a) = (". Therefore X.~ = X,p' But 
X:; = I, so XJ'" = X.~ for a E Gal(O((q_l )/0 ((m)). Therefore XJ' depends only on 
It;, so we may return to the notation XI«' The above reasoning shows that 
X~, = XI', for a E Gal(O((m)/M). If we extend a by letting a((p) = (p, then 
g(X/<,)" = g(X~,) = g(X/<,)' 

Since A" = A for a E Gal(O((m)/M), a permutes the It/s. Therefore 

yP" = TI g(X/<,)fl" = TI g(X/</ = yp. 

But we already have yP E O((m); hence yP E M. So AP8 is principal in M. 
Finally, if A is an arbitrary ideal of M, we may write A = (a)A l' with 

a E M and (Abm) = 1. Then 

APO = (aP8)A18, 

which is principal. This completes the proof of Stickelberger's theorem. D 

For an easier proof of Stickelberger's theorem in the case of a full cyclo
tomic field O((m), see Section 15.1. 
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§6.3. Herbrand's Theorem 

Let G be a finite abelian group and G its character group. Let X E G and 
define 

I ~ -1-
Bx = fG1 a';'-G x{o")a E O[G], 

where ij is the algebraic closure of O. One may easily verify the following 
relations: 

(a) B2 = B • 
X x' 

(b) BxB", = 0 if X :F I/!; 
(c) I = LxeoBx; 
(d) Bxa = x{a)Bx. 

The Bx'S are called the orthogonal idempotents of the group ring ij[G]. If M 
is a module over ij[G] then we may write 

M = EB Mx' where Mx = BxM 
x 

(use (c) to get the sum; if 0 = LBxax' then use (b) and (a) to show Bxax = 0 for 
all X). Each a E G acts on M, and Mx is the eigenspace with eigenvalue x{a), 
by (d). 

Of course, all the above works if ij is replaced by any (commutative) ring 
which contains the values ofall X E G and in which IGI is invertible. 

In particular, let p be an odd prime and let G = Gal{O{Cp)/O) ~ {7L.lp71.Y. 
Then G = {ailO :s; i :s; p - 2}. We shall work in the group ring 7L. p [G]. The 
idempotents are 

1 p-1 

Bj = --1 L w l{a)a,;-1, 
p - a=1 

o :s; i :s; p - 2. 

Later, we shall also need 

There is a decomposition A = A- $ A+ for any 7L.lG]-module, for example 
the p-Sylow subgroup of the ideal class group. 

Let () = (lip) L:=: aa,;-1 be the Stickel berger element. Using (d), we find 
that 

and 
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Let A be the p-Sylow subgroup of the ideal class group of Q(,p)' Since 
p" A = 0 for sufficiently large n, we may make A into a Zp-module by defining 

Ct biPi) a = it (bipia), 

since the latter sum is finite. G also acts on A, so A is a Zp[G]-module. Let 

p-2 

A = EB Ai 
i=O 

be the decomposition as above. Stickelberger's theorem implies that (c - (J'c)(J 
annihilates A, hence each AI' Therefore we have proved the following: Let 
c E Z, (c,p) = 1. Then (c - w i(c))B1 ,w-' annihilates Ai' 

Remark. Since pO == (p - 1)e1 (mod p), it is not very surprising that pO an
nihilates Ai for i -# 1. The fact that it annihilates AI' however, requires 
Stickel berger's theorem. 

Now, suppose i -# 0 is even. Then Bl,ro-' = 0 so the above says nothing. If 
i = 0 then (c - 1)/2 annihilates Ao, so Ao = O. But this is already obvious 
since eo = (Norm)/(p - 1). 

Let j be odd. Consider first the case i = 1. Let c = 1 + p, so we have 
p-l 

(c - W(C))Bl,ro-1 = pBl,w-' = L aw- 1 (a) 
a=1 

== p - 1 =1= 0 (mod pl. 

Since Al is a p-group, we must have Al = O. (It is easily seen that Al = 0 is 
related to von Staudt-Clausen, which is related to the fact that the p-adic 
zeta function has a pole. Perhaps this explains why A 1 is a special case). If 
i -# 1, we may choose an integer c, for example a primitive root (mod p), such 
that c =1= c l == wl(c) (mod pl. We may consequently ignore the factor c - wl(c), 
so we obtain the following. 

Proposition 6.16. Ao = Al = O. For j = 3,5, ... , p - 2, B1,w-' annihilates Ai' 

D 

Suppose Ai -# O. Then we must have B1,w-' == 0 (modp). But B1 ,w-' == 
Bp_;/(p - i) (mod p) by Corollary 5.15. We have proved the following. 

Theorem 6.17 (Herbrand). Let i be odd, 3 :s;; i :s;; p - 2. If Ai -# 0 then pIBp - t' 

D 

This theorem is much stronger than the theorem "plh => P divides some 
Bernoulli number" since it gives a "piece-by-piece" description of the crite
rion. Even better, the following is true. 
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Theorem 6.18 (Ribet). Let i be odd, 3 ~ i ~ P - 2. If plBp-i then Ai -# O. 

This will be proved in Chapter 15 by elementary means. Ribet's original 
proof used delicate techniques from algebraic geometry to construct an 
abelian unramified extension of degree p which corresponds by class field 
theory to Ai' 

One corollary of Ribet's theorem is that the p-rank of the ideal class group 
of O((p) is at least the index of irregularity (p-rank = number of summands 
when A is decomposed as a direct sum of cyclic groups of p-power order). 
However, it is not known whether or not there is equality, since the rank of 
some Ai could possibly be two or larger. If p, h(O((pt) then we do have 
equality, as we shall prove in Chapter 10. 

§6.4. The Index of the Stickel berger Ideal 

Let p be an odd prime, n ~ 1, G = Gal(O((pn)/O), and R = Z[G]. As before, 

1 ~ {} = - L aO"-1 
p" a=1 a 

(a,p)=1 

is the Stickel berger element and I = R{) n R is the Stickelberger ideal. Let 
J = 0"-1 denote complex conjugation. Then 

R- = {x E RIJx = -x} = (1 - J)R, 

the first equality being the definition, the second following from a short 
calculation. We define 

Note that we have to be careful about using the idempotent (1 - J)/2 since it 
has a denominator. However, observe that x E R- - [(1 - J)/2]x = x. 

Theorem 6.19 (Iwasawa). [R- : r] = h-(O((pn)). 

Remark. The above definitions hold for arbitrary O((m). Kucera [1] has 
calculated this index when it is finite, Sinnott [1] defined a larger ideal S
(equal to r when m is a prime power) and showed that [R- : S-] is a power 
of 2 times h-(O((m))' 

Proof of Theorem 6.19. The proof will proceed by considering completions, 
since we can then work with one prime at a time, which is slightly easier. Let 
q be a prime, Rq = Zq[G], Iq = Rql. Clearly I is dense in Iq in the natural 
q-adic topology, Also, R; = (1 - J)Rq and 1;; = lq n R;, 

Lemma 6.20. (a) lq = Rq{) n Rq, (b) I;; = Rq{} n R;, (c) I;; = r . Zq, (d) If 
p -# q then lq = Rq{}. 
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Proof. The proof of Lemma 6.9 works for both Rand Rq, with I~ = 1'71.q, so 
we obtain 

RiJ n Rq = I~O = 1'71.q O = 1'071.q = 171.q = Iq. 

This proves (a). Part (b) follows easily from (a). If p i= q then 0 E Rq , so (d) also 
follows from (a). 

We now prove (c). Since {z} + { -z} = 1 for z ¢ 71., we have 

(1 + J)O = N, where N = L (I. 
"eG 

Let x E 1'. Then xO E I, and we have 

xO E r ~ (1 + J)xO = 0 ~ xN = O. 

Similarly, suppose y E I~. Then yO E I~O = Iq , from the above, and 

yO E r; ~ yN = O. 

Clearly r71.q £; I;. Suppose now that yO E I;, with y E I~. We may write 

y = L L a~(I(c - (Ie), a~ E 71.q. 
e " 

The condition yN = 0 becomes LeL"a~(c - 1) = O. We want to approxi
mate y by an element x E l' such that xN = O. This then will give us an 
element xO of r near yO, which will show that I;; £; closure of r = r 71.q, as 
desired. The approximation will reduce to the following. 

Fact. Suppose bj E 71., Sj E 71.q, and suppose L;"=i bjsj = O. Then there is a 
sequence (t\n), ... , t~)) E 71.m whose limit is (S 1' ... ,sm) and such that L bjtln) = O. 

Proof. We may assume (q, bd = 1. For 2 ~ i ~ m, choose tIn) == 0 mod bi with 
tIn) near Sj (this is where (q, bi ) = 1 is needed). Then L bjtln) == 0 mod bi , so we 
can choose t\n) E 71.. Since tIn) is near Sj for i i= 1, we must also have t\n) near Si. 
This completes the proof of the fact. 

If we let a~ = s",e( = sJ. c - 1 = bu,e. and x = L t~~(I(c - (I.) E 1'. then x is 
near y and xN = O. as desired. This completes the proof of Lemma 6.20. 0 

We have Rq ~ R ® 71.q• and under this isomorphism R;; ~ R- ® 71.q and 
I;; ~ r ® 71.q• by (c). It follows easily that R;; II;; ~ (R- Ir) ® 71.q • which is 
isomorphic to the q-part of R-Ir. Therefore it suffices to prove the following. 

Theorem 6.21. [R;; : I;;] = q-part of h-(Q(Cp.)). 

Proof. We first consider q i= 2. p. Then (1 ± J)/2 E Rq; and we get 
Rq = R; $ R;; and Iq = I: $1;; from the relation 1 = (1 + J)/2 + (1 - J)/2. 
Therefore 
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Consider the linear map 

X 1-+ x(}. 

By the theory of elementary divisors, as in the proof of Lemma 4.15, we have 
[R; : R;(}] = q-part of det(A). But det(A) may be computed by working in 
Oq[Gr, which has the advantage of being a vector space over an alge
braically closed field. We have 

Oq[Gr = EB exOq[G] 
X odd 

where ex = (l/p") L::I,(II,P)=1 x(a)0'1I-1 and each direct summand is one-dimen
sional. As in the previous section, 

e/J = B1,xex' 

so A becomes a diagonal matrix. Therefore det(A) = nxoddB1,x' hence 

[R; : I;] = q-part of n B1,x 
x 

= q-part of2p" n (-tB1,x) 

= q-part of h-(O(Cp"»' 

For q = 2, the argument must change slightly since (1 + J)/2 ~ R2 , so 
R2 =F Ri E9 R;:. Also, there is a power of 2 in the class number formula which 
must be accounted for. 

Since we are restricted in our use of (1 - J)/2, we modify () to obtain an 
element already in 02[Gr. Let 

0= f (a" - !)0';;1 = () - tN, 
a=1 p 2 

(a,p)=1 

where N is the norm (one could also call it the trace). Clearly 0 ~ R 2 , but a 
short calculation shows that 

I-J- -
--(}=() 

2 

so 0 is in the "-" component. We recall that 0 is perhaps a better Stickel
berger element than (), since it is the one that generalizes most readily (see the 
discussion after the statement of Theorem 6.10). 

Lemma 6.22. (a) Ii s;;; R2 0; 
(b) [R 2 0: Ii] = 2. 

Proof. For the first statement, suppose x E R2 and x(} E Ii = R2(} (') R;:. Then 
x(} = [(1 - J)/2]x() = x[(1 - J)/2](0 + iN) = xO E R 2 0. 

For (b), we claim that if x E R2 then either xO E R2 or xO - 0 E R2. To 
prove this, we note that xO = x(} - ixN E R2 <:> txN E R2 and similarly for 
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(x - 1). Let x = LXa(1. Then xN = (LXa)N and (x - I)N = (-1 + LXa)N. 
Since either (L xa) or (-1 + L xa) is even, the claim is established. 

The claim implies that [Rz9: Rz9 II Rz] = 2 (the index is not 1 since 
9 ¢ Rz). The proof of the lemma will be complete if we can show that 
Rz9 II Rz = Rz(J II R"2 = 12, We have already shown that 12 £; R 29 II R2. 
Now, let x9 e RzO II Rz, where x = LXa(1 e R2. Then, as above, xO e R2 => 

txN e R2 => LXa == 0 (mod 2). Let Ya = Xa for (1 =1= 1, J, and let Yl = 
Xl - t LXa and YJ = XJ - t LXa' Then LYa = 0, so Y = LYa(1 e R2 satisfies 
yN = O. Also, x - Y = (tLxa)(1 + J), so (x - y)O = O. Hence 

xO = yO = y(J - tyN = y(J e R2(J. 

Since xO e Rz and satisfies [(1 - J)/2]xO = xO, we have 

xOeR2(JIIR"2 =12, so RzOIIR2 =12, 

This completes the proof of Lemma 6.22. 0 

Just as for the other primes, we have a linear map 

X 1-+ Ox 

(since x e R"2, txN = 0, so there is no 2 in the denominator), and 

[R"2: R"29] = 2-part ofdet(A) 

= 2-part of n Bl,z 
X odd 

= 2(1/2)IGI. t· (2-part of h-). 

Since this index is finite we must have 

tlGI = Z2-rank of R"2 = Zl-rank of R"20. 

Observe that R"29 = (1 - J)R10 = R2(20) = 2R20. Therefore 

[R10: R"29] = 2(1/2)IGI. 

But 

[R 1 9: 1"2] = 2, 

from Lemma 6.22. Putting everything together, we obtain 

[R"2 : 12] = 2-part of h-, 

as desired. 
Finally, we consider q = p. The main problem is that (J has pn in its 

denomi!1ator. Let 0 = (J - tN be as above. Suppose x = L(b,p)=l Xb(1b e Rp. 
Then x(J e R; <=> x(J e Rp. We have 

1 
x(J = Ii L L aX"c(1c; 

pc" 
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hence xO E Rp <=> La aXac == 0 (mod pn) for all c with (c, p) = 1. But 

L aXac == c-1 L aCXac == c-1 L aXa(modpn), 
a a a 

so we only need Laxa == 0 (modpn). It follows easily that (x - b)O E Rp for 
exactly one integer b (mod pn). Therefore 

[RpO: RpO (l R;] = pn. 

But 

I-J 
RpO = R;O = R;(O - tN) = R;O, since -2-N = o. 

Therefore 

RpO (l R; = R; 0 (l R; S; RpO (l R; = I;. 
If xO E R;, then xO = [(1 - J)/2]xO E R; 0; hence RpO (l R; S; R; 0 (l R;. 
Therefore 

From the above, 

[R;O: I;] = pn. 

Let 

X 1-+ pnOx. 

Then 

[R; : pnR;O] = p-part of det(A) 

= p-part of p(n/21IGI n B1.i 

= p(n/21IGI Gn) (p-part of h -). 

But [R;O: pnR;O] = p(n/21IGI, so 

[R; : I;] = p-part of h-. 

This completes the proof of Theorems 6.19 and 6.21. DO 

The formula [R- : r] = h- may be regarded as an algebraic interpreta
tion of the class number formula. It should be considered as being of a similar 
nature to the formula [E+: C+] = h+, which will be proved in Chapter 8. 

The natural question arises: is there an isomorphism of G-modules 

R-/r ~ C/C+? 

(C = class group, C+ = class group of the real subfield). After all, both sides 
have the same order. In general, there is not such an isomorphism. Let 
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p = 4027. The class group C1 of Q(J -4027) is Z/3Z EI) Z/3Z. Note that 
since 1 + J is the norm to Q, J acts by inversion on the ideal class group. 
Therefore C1 = C1 and ct = 1. Since Q«(p)/Q(j=P) is totally ramified (at 
p), it follows from class field theory that the norm map on the ideal class 
groups is surjective. Suppose R - / r ~ CjC+. Since R - / r is cyclic over R, 
generated by 1 - J, a similar statement holds for CjC+; so there exists c E C 
such that CjC+ = cRmodC+. Therefore C1 = Norm(C) = Norm(CjC+) 
(since Norm(C+) £; ct = 1) is generated by C1 = Norm(c) over R. If U E 

Gal(Q«(p)/Q) then uIQ(j=P) = 1 or J. Therefore cr = cf1. It follows that 
c1R is the subgroup generated by c1, hence C1R:F- C1 ~ Z/3Z EI3 Z/3Z. 
Therefore R- / r is not isomorphic to CjC+. 

However, we may hope for less. Let A be the p-Sylow subgroup of the 
ideal class group of Q«(p.), so A = A + EI3 A -. Then is there a G-isomorphism 

R;/I; ~ A-? 

Again, both sides have the same order. We shall show in Chapter 10 that if 
p l h+(Q«(p» then the above holds, so A - is cyclic (i.e., generated by one 
element) as a module over the group ring in that case. 

§6.S. Fermat's Last Theorem 

Theorem 6.23. Suppose p is prime and suppose the index of irregularity of 
p (= the number of Bernoulli numbers divisible by p) satisfies i(p) < JP - 2. 
Then 

X p + y, = ZP, 

has no integer solutions. 

(XYZ,p) = 1, 

Remark. This theorem was proved by Eichler under the assum{!tion that the 
p-rank of the minus part of the ideal class group is less than JP - 2. It was 
noticed (independently) by Bruckner, Iwasawa, and Skula that it is possible 
to use i(p) instead. This yields a stronger theorem. Ribet's theorem shows that 
i(p) ~ rank, but since possibly some component Ai could have rank greater 
than 1, we could have strict inequality. Also, it is easier to compute i(p). 

Up to 4000000, the large value of i(p) is 7, and probability arguments 
indicate that we should have i(p) = O(logp/loglogp). Therefore, the theorem 
gave perhaps the best evidence before Wiles for the first case of Fermat's Last 
Theorem. In fact, the probability that i(p) > JP - 2 is 

~ -1/2 W" 
1... e -,,> .jP-2 k! 

(see the discussion following Theorem 5.17), which is easily seen to be at 
most (1/2")(1/k!), with k = [JP] - 1. Since the first case of Fermat's Last 
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Theorem was known for all p < 6 X 109, it sufficed to consider larger p. 
Therefore, the total number of expected exceptions to the first case of 
Fermat's Last Theorem was at most 

( 1)[JP1-1 1 

P>6~109 "2 ([JP] - I)!' 

which is less than 10-300000. Using the more recent estimate p < 7.57 X 1017 

yields a number that is even smaller. 

Proof of Theorem 6.23. Let ( = (p. As in Chapter 1, we assume we have a 
solution and obtain 

i = 0, ... , p - 1, 

where Ci is an ideal of Q((p). Let C be the subgroup of the ideal class group 
generated by CI, ... , Cp_l . Then C is an elementary p-group, so £'AG] acts 
on C, where G = Gal(Q((p)jQ). Since era = Ca , CI generates C over the 
group ring, and 

«x) denotes the cyclic subgroup generated by x). Also, 

EB <SiCI) = C-. 

Therefore 

iodd 

p-rank C = #{eiCI -# 0, i odd} 

~ #{A i of- 0, i odd} 

~ i(p) (by Herbrand's theorem) 

< JP - 2 (by assumption). 

This type of inequality can prove useful whenever one is working with a 
group, such as C, which is cyclic as a module over the group ring, since in 
essence we have reversed the inequality "rank ~ i(p)." 

We now proceed with the proof of the theorem, following Eichler's 
argument. We may assume p > 3. Let r = [JP] - 1. Consider the set of all 
products ct,··· C~r with ° ~ bi < p. The number of such products is p' > 
prank(C-) = IC-I. Therefore, two of them must agree in their C- -components, 
so we may divide and obtain 

, n q" E C+, with - p < a i < p, 
i=1 

and some ai is nonzero. Therefore 

n q" = (p)S, 
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with P E O«(p) and S an ideal with S = S, so 

(tl (x + (iy)a) = (pP)Sp. 

Since all the C/S are prime to p, we may assume p and S are prime to p. The 
above implies that SP is principal in O«(p). Since the ideal class group of 
O«(p)+ injects into that of O«(p), by Theorem 4.14, SP is principal in O«(pt: 
SP = (IX), with ex = IX. Since any unit of O«(p) is a root of unity times a real unit, 
we obtain 

r n (x + (iy)a. = (!J.f,IXp P, with Jl. E 7L and f, a real unit. 
i=l 

Therefore 

r n (x + Ciy)a. = C!J.f,IXpP• 
i=l 

By Lemma 1.8, pP == pP == rational integer (mod p), so 

r (x + (iy)a. n i == (21' (mod p), 
i=l x + ( y 

and 

fI (x + (l)a. == (V (mod p), 
i=l Y +, x 

with v == 2Jl. - L iai(mod p), v ~ O. Let 

{ y, if ai < 0 
Xi = x, if ai ~ 0, 

{
X, if ai < 0 

y. = 
, y, if ai ~ 0, 

G(T) = n (Yi + Tixi)la. l. 

Then F yields the numerator and G yields the denominator of the above 
expression, so 

F(O == (vG(O (mod p), 

so 

F(,) = ,vG«() + pK(,), for some K(T) E 7L[T]. 

It follows that F(T) = T"G(T) + pK(T) + (l + T + ... + p-l )R(T) for 
some polynomial R(T) E Q[T], but since everything else has integral co
efficients, R(T) E 7L[T]. Multiply by 1 - T, differentiate with respect to T, set 
X = (, and reduce mod p. Then 

(1 - ()F'«() - F(O == (1 - ()(vG'«() - (vG(O + v(l - (KV-1G«() (modp). 

Dividing by F(O == (vG(O (mod p), we find that 
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F'«() G'(O -1 
(1 - ()- - 1 == (1 - ()- - 1 + v(1 - ()( (modp) FK) GK) . 

This is essentially the same as what we would have obtained if we could have 
taken the logarithmic derivative of F(O == (vG(O with respect to (. The above 
may be rewritten as 

(1 - () t ilail'i-l Yi i == (1 - () t ilai l'i-l Xi i + v(1 - OC1, 
i=1 Xi + ( Yi i=1 Yi + ( Xi 

which is the same as 

r .( Y x) (1 - () L iaJ' (i - (i == v(1 - ()(modp). 
i=1 X + Y Y + X 

Multiple by ni=l (x + (iy)(y + (iX), which is a polynomial of degree r(r + 1) 
in (. Let io be the index of the first nonzero ai' One the left we obtain a 
polynomial in ( of degree 

1 + io + r(r + 1) - 2io = 1 + r(r + 1) - io 

with leading coefficient iOaio(x2 - y2)xryr. On the right we have a poly
nomial in ( of degree 1 + r(r + 1) with leading coefficient - xryrv. But 

1 + r(r + 1) < 1 + (JP - l)(JP) < p - 1, 

so we have a polynomial in ( of degree less than p - 1. By Lemma 1.9, 
corresponding coefficients are congruent mod p. It follows that v == 0 (mod p), 
so the right-hand side vanishes. The leading coefficient on the left now must 
vanish (modp), so x2 == y2, hence x == ±y (modp). 

Interchanging y and z, we may also obtain x == ± Z (mod p), so 

which is impossible for p > 3. This completes the proof. o 

NOTES 

A good reference for much of this chapter is Coates [7]. See also the new 
edition of Ireland-Rosen [2]. 

For more on Gauss sums, see Ireland-Rosen [2] and Weil [1], [2], [3], 
[4]. 

Stickelberger's theorem was proved for Q«(p) by Kummer [1], and in 
general by Stickelberger [1]. For a proof which does not use Gauss sums, see 
Frohlich [4]. 

Schmidt [6] defined analogues of the Stickelberger ideal for ray class 
groups of cyclotomic fields. He showed that the ideal annihilates the corre
sponding ray class group and calculated the index in terms of the ray class 
number. 
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There is a beautiful relation between Gauss sums and the p-adic r-func
tion. See Gross-Koblitz [1], Lang [5], and Koblitz [4]. 

There are also analogues of Stickelberger's theorem for totally real fields 
(G. Gras [10], Oriat [3], Wiles [5]), for group rings (McCulloh [1], [2]), and 
K-groups (Coates-Sinnott [1], [3]). For another extension, using Heeke 
characters, see Iwasawa [28]. 

Theorem 6.19 is due to Iwasawa [11]. The analogous formula for Q(Cn) 
and some other abelian fields has been proved by Sinnott [1], [2], [3]. 

For a detailed study of the Stickelberger ideal, see the papers of Skula. 
KuCera [4] determined explicit bases for the Stickelberger ideals for arbitrary 
cyclotomic fields and was thus able to give an easier proof of Sinnott's result 
in this case. For the general theory of Stickelberger ideals, see the papers of 
Kubert-Lang. 

Jacobi sums can be used to define Heeke characters. See Weil [2], [4], 
Coleman-McCallum [1], Kubert [3], Kubert-Lichtenbaum [1], and Miki 
[8], [12]. 

Theorem 6.23 has been improved slightly by Uehara [2]. 

EXERCISES 

6.1. Let IF be a finite field. Show that the characters "'c(x) = "'(ex) for e E IF are distinct. 
Conclude that all additive characters of IF are of this form. 

6.2. Suppose the characters XI are multiplicative characters of IF x and that X:" = 1 for 
all i. Let el E l. Show that 

n g(XI)" E O('m) - n xf'(a) = 1 for all a E (l/pl) X • 

I 

6.3. Let p == 3 (mod 4) be prime, let R denote the number of quadratic residues mod p 
in the interval (0, p/2), and let N denote the number of nonresidues in this 
interval. Use Stickel berger's theorem to show that R - N annihilates the ideal 
class group of O(.j=p). (Historically, this was known before the class number 
formula) (Hint: Exercise 4.5). 

6.4. Let IE/IF be an extension of finite fields, [IE : IF] = n, and let N be the norm for this 
extension. Let "'E and "'F be the additive characters. Let XF be a multiplicative 
character of IF and let XE = XF 0 N, a multiplicative character of IE. Let 

(a) If X~ = 1, show that R E O('m)' 
(b) Show that R is a unit. 

R = g(XE) 
g(xd" 

(c) Show that R has absolute value 1, hence is a root of 1. 
(d) Use the Remark following Proposition 6.13 to show that R is congruent to 1 
modulo primes above p ( = characteristic of IF). 
(e) (Davenport-Hasse) Conclude that for p > 2, g(XE) = g(XF)" (this also works 
for p = 2; see the original paper by Davenport and Hasse. For a different proof, 
see Weil [1]). 
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(f) Show that if Xw has order exactly d then x[ has order exactly d. 
(g) Suppose IF has q elements and dl q - 1. Show that the number of solutions in 

. t' IE fXd yd Zd' 1 n "d-l J(a b)n proJec Ive space over 0 + = IS + q - L.,a.b=l.a+b# Xw,Xw . 
(h) Let IX be a root of the polynomial in the numerator of the zeta function for 
Xd + yd = Zd over 7l./p71.. Suppose [IF: 7l./p71.] = e. Show that IX e = J(X~, X~) for 
some a, b. 

6.5. Show that for each positive integer d, the equation Xd + yd = Zd has nontrivial 
p-adic solutions for all p. 

6.6. (a) Use the Brauer-Siegel theorem (or Theorem 4.19) to show that the index of 
irregularity satisfies i(p) ::; p/4 + o(p). 
(b) The probability that i(p) = k is e-1/2(i)k/k! (see the discussion after Theorem 
5.17). Let x be such that the expected number of p ::; x with i(p) = k is 1. Show 
that log x is approximately k log k. Assuming that x is approximately equal to 
the first p with i(p) = k, conclude that we should have i(p) = O(log p/log log pl. 
This gives a fairly accurate estimate. The first p with i(p) = 5 is 78233, and 
log pflog logp = 4.65. The first p with i(p) = 7 is 3238481, which gives logp/ 
log log p = 5.54. This corresponds to the first occurrence of i(p) = 7 being earlier 
than expected. 



CHAPTER 7 

I wasawa's Construction of 
p-adic L-functions 

Following Iwasawa, we show how Stickelberger elements may be used to 
construct p-adic L-functions. The result yields a very useful representation of 
these functions in terms of a power series. As an application, we obtain 
information about the behavior of the p-part of the class number in a cyclo
tomic Zp-extension and prove that the Iwasawa J-l-invariant vanishes for 
abelian number fields. Also, we show how many of the formulas we obtain 
have analogues in the theory of function fields over finite fields. 

§7.1. Group Rings and Power Series 

Let (I) be the ring of integral elements in a finite extension of Op. For example, 
(I) = (l)x = Zp[X(l), X(2), . .. ] for some Dirichlet character X. Let ft be the maxi
mal ideal of (I) and let n be a generator of ft, so (n) = ft. 

Let f be a multiplicative topological group isomorphic to the additive 
group Zp. Let y be a fixed topological generator of f; i.e., the cyclic subgroup 
generated by y is dense in f. For example, we may let y correspond to 1 E Zp 
under the above isomorphism, since 1 generates Z, which is dense in Zp. Since 
the closed subgroups of Zp are of the form p·Zp, the closed subgroups of f 
are of the form p". Let f. = f/P", so f. is cyclic of order p., generated by 
the coset of y. 

Consider the group ring (I)[f.]. If m ~ n ~ 0 there is a natural map 
rpm .• : (I)[fm] -+ (I)[f.] induced by the map fm -+ f •. Clearly 

(I)[f.] ~ (I)[T]/«l + T)P" - 1), 

where the isomorphism is defined by 

113 
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ymodpn 1-+ 1 + Tmod«1 + T)pn - 1). 

Since (1 + T)P" - 1 divides (1 + T)pm - 1 when m ~ n ~ 0, there is a natural 
map in the polynomial rings corresponding to ¢lm,n. If we take the inverse 
limit of the group rings llJ[rn] with respect to the maps ¢lm,n we get llJ[[r]], 
the so-called profinite group ring of r. Clearly l!J[r] £: l!J[[r]], since 
an element oc E l!J[r] gives a sequence of elements OCn E l!J[rn] such that 
¢I".,n(ocm ) = OCn. However, as we shall see, l!J[[r]] contains more elements. In 
effect, it is the compactification of llJ[r] and contains certain "infinite sums" 
of elements of r. To understand llJ[[r]] better, let us look at polynomial 
rings, since clearly 

l!J[[r]] ~ lim l!J[T]/((1 + T)P" - 1). 
+-

Theorem 7.1.l!J[[r]] ~ l!J[[T]], the isomorphism being induced by y 1-+ 1 + T. 

Before proceeding with the proof, we shall prove two preliminary results 
which are useful in their own right. 

Proposition 7.2. Let J, g E l!J[[T]] and assume f = ao + a1 T + ... , with 
aj E jz for 0 :S i :S n - 1, but an E l!J X. Then we may uniquely write 

g = qf + r, 

where q E l!J[[T]] and where r E l!J[T] is a polynomial of degree at most n - 1. 

Proof. We first prove uniqueness, which reduces to considering qf + r = o. If 
q, r # 0, we may assume that either 1t I r or 1t I q. Reduction mod 1t shows that 
1t1r, so 1tlqf An easy argument shows that since 1t ( f we must have 1t1q, which 
gives a contradiction. So q = r = O. 

The existence is a little more difficult. Define an operator • = .n: 
l!J[[T]] -+ l!J[[T]] by 

t Ct bl T) = j~ bl T I - n• 

In essence, • is a "shift operator." Clearly. is l!J-linear and satisfies 

(i) .(Tnh(T» = h(T) for all h(T) E l!J[[T]]; 
(ii) .(h(T» = 0 _ h(T) E l!J[T] with deg h(T) :S n - 1. 

We may write 

f(T) = 1tP(T) + TnU(T), 

where P(T) is a polynomial of degree less than nand U(T) = an + an+1 T + 
... = .(f( T». Since an E l!J x , U (T) is a unit of the power series ring. Let 

1 00 (P)i q(T) = -- L (_I)i1ti .0- o.(g). 
U(T) j=O U 
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Here, for example, 

Note that possibly each summand contributes, say, to the constant term. But 
the factor n j makes the sum of these contributions converge. So q(T) is a 
well-defined power series in CD[[TJ]. Since 

qf = nqP + TnqU, 

we have 

r(qf) = nr(qP) + r(TnqU) = nr(qP) + qUo 

But 

nr(qP) = n(r 0 ~) 0 C~ (-I)jn j (r 0 ~y 0 r(g)) 

= r(g) - qUo 

Therefore 

r(qf) = r(g). 

By (ii) above, g = qf + r, where deg r :$; n - 1. This completes the proof of 
Proposition 7.2. 0 

Definition. P(T) E CD[T] is called distinguished if P(T) = Tn + an-I rn- I + 
... + ao with aj E ft for 0 :$; i :$; n - 1. (Note that P(T) is almost an Eisenstein 
polynomial. But we allow n2 lao, so we do not necessarily have irreducibility). 

Theorem 7.3 (p-adic Weierstrass Preparation Theorem). Let 

00 

f(T) = L a j T j E CD[[T]], 
j=O 

and assume for some n we have a j E ft, 0 :$; i :$; n - 1, but an ¢ ft (so an E CD X). 
Then f may be uniquely written in the form f(T) = P(T)U(T), where U(T) E 

CD[[T]] is a unit and P(T) is a distinguished polynomial of degree n. 
More generally, if f(T) E CD[[T]] is nonzero, then we may uniquely write 

f(T) = nI'P(T)U(T) 

with P and U as above and Jl a nonnegative integer. 

Proof. The second part clearly follows from the first part if we factor as large 
a power of n as possible from the coefficients of f(T). 

To prove the first part, let g(T) = Tn in Proposition 7.2. Then 

Tn = q(T)f(T) + r(T), with degr :$; n - 1. 
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Since 

q(T)f(T) == q(T)(an Tn + higher terms)(mod n), 

we must have reT) == 0 (mod n). Therefore P(T) = Tn - reT) is a distinguished 
polynomial of degree n. Let qo be the constant term of q(T). Comparing 
coefficients of Tn, we have 1 == qoan (mod n). Therefore qo E (P\ so q(T) is 
a unit. Let U(T) = l/q(T). Then f(T) = P(T)U(T), as desired. Since any 
distinguished polynomial of degree n can be written as P(T) = Tn - reT), we 
may transform the equation f(T) = P(T)U(T) back to 

Tn = U(T)-lf(T) + reT). 

The uniqueness statement of Proposition 7.2 now implies the uniqueness of 
P and U. This completes the proof of Theorem 7.3. 0 

Corollary 7.4. Let f(T) E (P[[T]] be nonzero. Then there are only finitely 
many x E Cp , Ixl < 1, with f(x) = O. 

Proof. Assume f(x) = o. Write f(T) = nIlP(T)U(T), as above. Since U(T) is 
invertible, U(x) '# o. Therefore P(x) = O. The result follows. 0 

Lemma 7.5. Suppose P(T) E (P[T] is a distinguished polynomial, and let 
geT) E (9[T] be arbitrary. If g(T)/P(T) E (P[[T]] then g(T)/P(T) E (9[T]. 

Proof. Suppose geT) = f(T)P(T) for some f(T) E (P[[T]]. Let x E Cp be a 
zero of P(T). Then 

o = P(x) = xn + (multiple of n), 

so Ixl < 1. Hence f(x) converges, so g(x) = o. Dividing by T - x, and 
working in a larger ring if necessary, we continue this process and find that 
P(T) divides geT) as polynomials, therefore in (P[T]. This completes the 
proof of Lemma 7.5. 0 

We now prove Theorem 7.1. It suffices to show that 

(P[[T]] ::::: lim (P[T]/«1 + T)pn - 1). 
~ 

Note that Pn(T) = (l + T)pn - 1 is a distinguished polynomial. In fact, we 
can say more. The ideal (n, T) 2 (p, T) is a maximal ideal of (P[T] and also 
gives the maximal ideal of (9[[T]]. Clearly poeT) E (p, T). Since 

Pn+1(T) = (1 + T)pn(p-l) + (1 + T)pn(p-2) + ... + 1 E (p T) 
Pn(T) , 

(i.e., p divides the constant term), induction implies that Pn(T) E (p, T)n+l. 
By Proposition 7.2, there is a natural map from (P[[T]] to (P[T] mod Pn(T) 

for each n. Namely, f(T) 1-+ J.(T), where f(T) = qn(T)Pn(T) + fn(T), with 
degJ. < pn. If m ~ n ~ 0, then 
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By Lemma 7.5, 1m == In (mod Pn), as polynomials. Therefore 

(f0.!1"") E lim m[T]/(Pn(T)). 
+-

This gives us the map from the power series ring to the inverse limit. If In = 0 
for all n then Pn divides I for all n. Therefore IE n:,=o (p, T)n+l = 0, so the 
map is injective. 

We now show it is surjective. Suppose (f0.!1"") is in the inverse limit. 
Then, for m ~ n ~ 0, 1m == f" (mod Pn), therefore (mod(p, T)n+l). Therefore, 
the constant terms are congruent mod pn+l, the linear terms mod pn, etc. So 
the coefficients of the terms form Cauchy sequences (Alternatively, I = lim!.. 
exists since m[[T]] is complete in the (p, T)-adic topology). Let I(T) = 

limf,,(T) E mEET]]. We must show 11-+ (/0.!1'" .). If m ~ n ~ 0 then 
1m - In = qm.nPn for some qm.n E mET]. Let m ~ 00. Then 

1m - In 1- f" 
qm.n = -p-- -+ -p-' 

n n 

Since qm.n E mET], the limit must be in mEET]] (i.e., no denominators), so 

I = (Pn) ( Ii: qm.n) + In· 

Therefore I 1-+ (f0.!1"")' This completes the proof of Theorem 7.1. D 

§7.2. p-adic L-functions 

We can now construct p-adic L-functions. The strategy is as follows. First, we 
use Stickel berger elements to obtain an element of m[rn ] for each n, where m 
is an appropriate ring. These elements are "compatible," so they give an 
element of m[[r]], therefore a power series in m[[T]]. This power series will 
give us the p-adic L-functions. 

Let q = p if p #- 2, q = 4 if p = 2. The Galois group of O((qpn)/O is 
(7L/qpn7L), . If we let 

then it follows from infinite Galois theory that 

More explicitly, let a = 'Laipi E 7L;, and let ( = (pn for some n. Then 

O'a(() = (a = n (a lpl , 

i 
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which is a finite product since ,pi = 1 for i ~ n. Clearly (fa gives an auto
morphism of iQ('qp")' and a moment's reflection shows that every auto
morphism must be of this form, since we know what happens at each finite 
level. Now, 

Z; ~ (Z/qZY x (1 + qZp) ~ (Z/qZ)X x Zp, 

the isomorphism being given by 

a 1-+ (w(a)modq,(a» 1-+ (W(a)mOdq'I~;~;<:>q»). 
Also, observe that 1 + q is a topological generator for 1 + qZp; i.e., 
(1 + q)Zp = 1 + qZp. 

Let d be a positive integer with (p,d) = 1. We assume d ¥= 2 (mod4) 
(hence qpnd ¥= 2 (mod 4) for n ~ 0). Let qn = qpnd, Kn = iQ((qJ, and Koo = 

Un~o iQ('qJ Then Kn = Ko('qp.) and Koo = Ko('qp"). It follows easily that 

Gal(Koo/iQ) ~ .1 x r 

where 

.1 = Gal(Ko/iQ) and r = Gal(Koo/Ko) ~ Zp-

More explicitly, r = 1 + qoZP = (1 + qo)Zp, so 1 + qo gives a topological 
generator. The elements of r which fix Kn are clearly those in 

1 + qnZp = (1 + qo)p·zp = P". 

Therefore Gal(Kn/Ko) = riP" = rn. Finally, 

Gal(Kn/iQ) ~ .1 x rn. 

Corresponding to this decomposition, we write 

(fa = b(a)Yn(a), with b(a) E .1, Yn(a) Ern. 

Let X. be a Dirichlet character whose conductor is of the form dpi for some 
j ~ o. Regarding X. as a character of Gal(Kn/iQ), we see that we may uniquely 
write 

x. = 0"" 
where 0 E A, '" E tn. Then 0 is a character with conductor d or qd (hence 
pq t i6)' while '" is a character of r n, so '" has p-power order and is either 
trivial or has conductor of the form qpi with j ~ 1. We call 0 a character of 
the first kind and", a character of the second kind. Note that the characters 
of the first kind are associated with K o, while those of the second kind are 
associated with the subfield of iQ('qp.) of degree pn over 10. Therefore the 
characters of the first kind correspond to tame ramification at p (Le., p does 
not divide the ramification index of p), if p "# 2, while those of the second kind 
correspond to wild ramification. Observe that", is an even character since it 
corresponds to a real field. Therefore, if X. is even then 0 is even. 
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We now consider Stickelberger elements. Assume X = lJ¢ is an even char
acter, and let lJ* = wlJ-l , so lJ* is odd. Let 

(= (-1) x Stickelberger), and let 

I1n = (1 - (1 + qo)yil + qotl )en 

= _~ ({a(1 ~ qo)} _ (1 + qo){:J)«5(atlYn(atlYn(1 + qotl. 

Note that I1n E Zp[A x rn]. Let 

Be· = I!I 6fA lJ*(«5)<<5- l 

be the idempotent for lJ*. Then Be.en = en(lJ)Be. and Be.I1n = I1n(lJ)Be., where 

1 
en(lJ) = -- L alJw-l(a)Yiat l E Ke[rn] 

qn " 
and 

I1n(lJ) = (1 - (1 + qO)Yn(1 + qot l )en(lJ) 

= ~ ((1 + qo){:J - {a(1 ~ qo)}) x lJw- l (a)Yn(a)-lYn(1 + qot l 

E £!Je[rn]. 

(Ke = Qp(lJ(1),lJ(2), . .. ),£!Je = Zp[lJ(1),lJ(2), .. . ]). 

Proposition 7.6. (a) tl1n(lJ) E £!Je[rn]; 
(b) if lJ #- 1 then ten(lJ) E £!Je[rn]; 
(c) if m ~ n ~ 0 then I1m(lJ) 1-+ I1n(lJ) and em(lJ) 1-+ en(O) under the natural 

map from Ke[rm] to Ke[rn]. 

Proof. (a) is obvious except when p = 2. To take care of this case, note that 
Yn(a) = 'Yn(qn - a) but Ow-l(qn - a) = -lJw-l(a). The terms for a and qn - a 
in !'1n(lJ) combine to give 

This proves (a). 
We now prove (c). Under the map rm -+ r n, we have 'l'm(a) 1-+ 'l'n(a). There

fore 
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The set of Ym(a) which map to Yn(b) is 

{Ym(b + iqn)IO ::; i < pm-n}. 

Since 

L (b + iqn)(Jm-1(b + iqn) = em-1(b) L (b + iqn) 
O~i<pm-n i 

we have 

Since Yn(b) = Yn(qn - b), but ew -1 (qn - b) = - em -1 (b), the second sum 
vanishes. Therefore (m(e) H (n(e). 

Also, 1 - (1 + qO)Ym(1 + qO)-1 H 1 - (1 + qO)Yn(1 + qO)-1, so flm(f}) H 

fln(e). This proves (c). 
For (b), we use a slightly longer proof than is necessary, since it gives 

additional information which will be useful later. 

Lemma 7.7. Yn(a) = Yn(b) ~ (a) == (b) modqpn. 

Proof. The decomposition (fa = (j(a)Yn(a) corresponds to Q((qJ = Q((qa) . IBn' 
where IBn is the subfield of Q((qpn) which is cyclic of degree pn over Q. Since 
(fa restricted to IBn depends only on (a) (mod qpn) (the m(a)-part gives the 
action on Q((q)), the lemma follows. 0 

Let R denote the set of (p - 1)st roots of unity (2nd roots of 1 if p = 2) 
in ~p. Then Yota) = y.(b) ~ (alb) == 1 (mod qpn) ~ alb == m(alb) ~ a == brx 
(mod qpn) for some rx E R. If a E ~p, let sn(a) be the unique integer satisfying 

Actually, sn(a) is a partial sum of the p-adic expansion of a. The above may 
be rephrased as sn(a) = sn(brx). The set of numbers a with 0 < a < qn such that 
sn(a) = sn(brx) is 

{sn(ba) + iqpnlO::; i::; d - I}. 

(Recall qo = dq). Finally, let T denote a set of representatives of elements of 
(~/qn~) x such that 
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We have 

If oc E R then -oc E R, so we let R' be a set of representatives for R mod {± I}. 
Clearly 

so 

OW-l (sn( -boc) + (d - 1 - i)qpn) = Ow-1( -sn(boc) - iqpn + dqpn) 

= - Ow -1 (sn(boc) + iqpn). 

(Recall f9w-' divides qn = dqpn). 
We now assume d > 1. Combining the term (oc, i) with ( -oc, d - 1 - i), we 

obtain 

1 d-l 

- 2qn JT a~' ;~ (sn(boc) + iqpn - qpn + sn(boc) 

- (d - 1 - i)qpn)Ow-l(sn(boc) + iqpn)Yn(b)-1 

Lemma 7.S. Suppose s, t E 71., (t,d) = I. Then 

d-l 

L Ow-1(s + itq) = O. 
;=0 

Proof. If p (!oW-I, then f9w I = d. Since s + itq runs through a complete set of 
residue classes mod d, the result follows. Now suppose plf9w-" so the conduc
tor is qd. If pis then all terms in the sum are O. If p l s then s + itq runs 
through all residue classes mod d, but is fixed mod q. Since f9w - I > q, there is 
an integer u == 1 (modq) with Ow- 1(u) =I- 1, O. Multiplication by Ow-1(u) per
mutes the sum, which must therefore be O. This proves the lemma. 0 

We now have 

Since p k d, it follows that t~n(O) E (D9[rnl 
If d = 1, then 0 is a power of wand qn = qpn. Since 0 =I- 1 and 0 is even, we 

cannot have p = 2 (or 3). Therefore we may ignore the 2 in the denominator. 
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We find from the above that 

Since s.(bex) == bex (mod qp.), we have 

Ow -1 (s.(bex» = Ow-1 (b)(Jw -1 (ex) = Ow -1 (b)(J(ex)ex-1• 

Consequently 

== 0 mod (99, since L O(ex) = O. 

This completes the proof of (b), hence of Proposition 7.6. 

For future reference, we record part of what we just proved. 

Proposition 7.9. Assume 0 i= 1. 
(a) If fs = q, then 

(b) if f9 i= q, then 

D 

Combining Theorem 7.1 and Proposition 7.6, we find that there are power 
series J, g, h E l!I9[[T]] such that 

lim e.(O) +-+ f(T, 0) (if 0 i= 1) 

lim ".(0) +-+ g (T, 0) 

lim 1 - (1 + qo)y.(1 + qO)-l +-+ h(T, lJ). 

It is easy to see that 

Also, 

h(T, lJ) = 1 - ~ : ~. 

g(T, lJ) 
f(T, 0) = h(T, lJ)· 

If 0 = 1, we take this as the definition of f(T, 0). 



§7.2. p-adic L-functions 123 

Theorem 7.10. Let X = ()t/I be an even Dirichlet character «() = first kind, 
t/I = second kind), and let (", = t/I(1 + qO)-l = X(1 + qorl( = a root of unity 
of p-power order). Then 

Remark. This is a very useful result. Note the essential difference between the 
contributions from the characters of the first and second kinds. This will be 
used in the proof of Theorem 7.14, and it is what one expects from analogy 
with function fields (Section 7.4). 

Proof. Observe first that if lsi < qp-l/(P-l) then 

1(1 + qo)S - 11 = lexp(s logi1 + qo)) - 11 < 1, 

and since (", is of p-power order, 1(",(1 + qo)S - 11 < 1. Therefore the right
hand side converges and is an analytic function of s. Consequently, we only 
need to prove the above equality for s = 1 - m, where m is a positive integer. 

We shall work with tI.«()) and g(T, ()) since, in all cases, they have integral 
coefficients. Let i(a) = 10gp(a)/logp(1 + qo). Since 1'.(1 + qo) corresponds 
to 1 + T, it follows that I'.(a) = 1'.(1 + qo)i(a) corresponds to (1 + T)i(a) 
(mod(1 + T)P" - 1). From the definition of tI.«()), we have 

g(T, ()) == L ((1 + qo) {~} - {(I + qo)a}) x ()w- 1(a)(1 + T)-i(a)-l 
O<a<q" q. q. 
(a,qo)=l 

(mod(1 + T)P" - 1). 

Let (1 + qo)a = a1 + a2q., with 0 ~ a1 < q •. Then i(a) + 1 = i«1 + qo)a) == 
i(admodp·, and 

g(T,()) == L a2()w-1(ad(1 + T)-i(a ')(mod(1 + T)P" - 1). 
a 

If m is a positive integer and n is sufficiently large, then 

g«(",(1 + qo)l-m - 1,()) == L a 2()w-1(ad«(;1(1 + qo)m-l)i(a.> mod q., 
a 

since 

(1 + TV" - 1 = «(",(I + qo)l-m)p" - 1 

= (1 + qo)(1-m)p" - 1 == 0 (mod q.). 

But (;i(a.> = t/I(1 + qo)i(a l ) = t/I(a 1), and (1 + qo)i(a.> = (a 1>. Therefore 

g«(",(1 + qo)l-m - 1, ()) == L a2()w-1(adt/l(ad(a 1 >m-l 
a 

== L a2XW-m(al)a~-1 (mod q.). 
a 
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so 

xw-m(1 + qo)(1 + qo)m L xw-m(a)am 
a 

== L xw-m(adar + mqn L a2XW - m(a l )ar-l (modq;). 

Note that this last term is the one we need to evaluate in the above. As a 
runs from 1 to qn, so does a l , so the first two terms are the same. Also, 
xw- m(1 + qo) = X(1 + qo)· We obtain 

g«",(1 +qo)l-m-l,O) 

= «1 + qorX(1 + qo) - 1)~ lim ~ L xw-m(a)am 
m n-oo qn O<a<qn 

(a,qo)=l 

The following lemma completes the proof of the theorem. 

Lemma 7.11. 

Proof. From Proposition 4.1 (recall Bm(X) = L('i)BiXm- i). 

(lip takes care of the 6 in the denominator of B2)' Since 

Xw-m(qn - j)'(qn - jr- 1 == -Xw-m(j)r-1 (modqn). 

we may pair terms to obtain 

Therefore 

Finally. we obtain 

L Xw-m(j)r- l == 0 (mod qn)· 
j 
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1 qn 

= lim - L Xw-m(j)r 
q" j=1 

pU 

1 qn 

= lim - L Xw-m(j)r· 
q" j=1 

U,qo)=1 
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This completes the proof of the lemma, and also of Theorem 7.10. D D 

§7.3. Applications 

Theorem 7.10 has many applications. For example, the congruences of 
Chapter 5 may be generalized (see the Exercises). In the following, we shall 
give an application to class numbers, but first we need a result about g(T, 9). 

Lemma 7.12. If 9 = 1, then tg(T, 9) is a unit of Zp[[T]]. 

Proof. By Theorem 7.10, 

1 ~ -1 1 
f(O, 1) = -B1,w-' = -- L w (a)a == -modZp, 

q a=1 P 
"ta 

since w(a) == a (mod q). Also 

h(O, 1) = -q. 

Therefore 

tg(O, 1) = t/(O, l)h(O, 1) == ;pq mod ~ Zp. 

It follows that tg(O, 1) =1= ° (mod p), so the constant term of tg is a unit. This 
completes the proof. D 

Theorem 7.13. Let (d,p) = 1, qn = qdp", and h;; = h-(IQ«(q»' We assume 
d =1= 2 (mod 4). Then 

h-
h"o- = n n u«( - 1,9) x (p-adic unit). 

11,.1 ,pn=1 
f.lqo ,,.1 
Seven 

Proof. Let q~ = lcm (qn, 2). Theorem 4.17 implies that 

h(j = qoQ n (-tB1,lIw-') 
11,.1 
I.lqo 
8even 
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and 

The number Q equals 1 or 2, but is the same for all n ~ ° by Corollary 4.13. 
Writing X = ()I/I, where () is of the first kind and 1/1 is of the second kind, we 
obtain 

n (-tB1•x,o-') = n (-tB1,II(I)-.) n (-tBl • \'1(1)-') n (-tBl,fI\'I(I)-.)' 
X,.l 6,.1 \'1,.1 6,.1 

\'1,.1 

The first product is the same as that for he;. To treat the second product, note 
that 

0('\'1 - 1,1) 
-B1.\'Iw-' = Lp(O, I/I) = h(C\'I-l,l) 

(I/Iw- 1(p) = 0, so the Euler factor disappears. It is because of the Euler factors 
for the other characters that we must take the ratio h;; /he; and require, :F 1; 
otherwise the formulas could reduce to ° = 0). From Lemma 7.12, 
tg('\'1 - 1,1) is a unit; and 

h i + q -1 
('\'1-1,1)=1- 4 =1-,\'1 (modq). 

Since '\'I equals 1/1 e~aluated at a generator of rn, '\'I determines 1/1. Since there 
are pn elements of rn, it follows that as 1/1 runs through the characters of the 
second kind, '\'I runs through all pnth roots of unity. Putting everything 
together, we find that 

vp( n (-tBl.\'I(I)-')) = Vp( [I (1 - e1fl) = vp(p-n) = Vp(q?). 
",,.1 ," =1 qn ,,.1 

For the third product, we proceed as above (again, since 1/1 :F 1, the Euler 
factor disappears): 

so 

n (-tBl,fI,,(I)-.) = n [I 1f(' - 1, ()). 
6,.1 6,.1 e" =1 ",.1 ,,.1 

Combining all the above, we obtain the theorem. o 

Theorem 7.14. Let pen be the exact power of p dividing h;;, in the notation of 
the previous theorem. There exist integers A., Jl., and v, independent of n, with 
A. ~ 0, Jl. ~ 0, such that 

e;; = A.n + Jl.pn + V 

for all n sufficiently large. 
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Proof. In the notation of the previous theorem, let 

A(T) = n tr(T, lJ) E Zp[[T]]. 

Then 

9,.1 

h-
hfto- = [1 A(C - 1) x (p-adic unit). ,p =1 ,,.1 

By the Weierstrass Preparation Theorem, 

A(T) = pIlP(T)U(T), 
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where p. ~ 0, P(T) is a distinguished polynomial, and U(T) is a unit of 
Zp[[TJJ. Therefore 

vp(h;;) = vp(ho) + (pn - 1)p. + vp ():'L P(C - 1)) . 
,,.1 

Let A = deg P(T), so P(T) = T). + a)'-1 T).-1 + ... + ao with plai for 0 ~ i ~ 
A - 1. If n is large enough and if C is a primitive pnth root of unity, then 

). A 
vp«C - 1) ) = tP(pft) < vp(p). 

Hence vp(P(C - 1)) = vp«C - W). It follows that for n sufficiently large, 

v ([1 P(C - 1)) = v (n (C - W) + C = v (pnA) + C = An + C, 
p ,p =1 P P ,,.1 

where C is independent of n (it absorbs the effect of low-order roots of unity). 
The theorem follows easily. 0 

The above is part of a much more general theory of Iwasawa, which we 
shall consider in a later chapter. Suppose we have a sequence of number 
fields 

K cK c"'cK c"·cK =UK o 1 n ao n' 

with Gal(Kn/Ko) ~ Z/pnz. Then Gal(Kao/Ko) = lim(Z/pnZ) = ZP' so the ex
tension Kao/Ko is called a Zp-extension (or r-exte~ion). Let pen be the exact 
power of p dividing the class number of Kft' Then there exist integers A, p., v, 
as above, such that 

en = An + p'pn + v 

for all sufficiently large n. If the fields Kn are CM-fields, then 

So what we have proved above is the existence of A-, p.-, V-. 
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We shall show later (Chapter 13) that for a given base field Ko there are 
at least (exactly if Leopoldt's Conjecture is true) '2 + 1 independent 7l.p -

extensions, so, for example, real fields should have only one 7l.p-extension, 
while imaginary quadratic fields have two independent 7l.p-extensions. For 
the moment, we content ourselves with showing that every number field has 
at least one 7l.p-extension. 

Let IBn be the unique (unless p = 2 and n = 1) subfield of Q((qp.) which is 
cyclic of degree pn over Q (use the isomorphism (71./qpn71.)x ~ (71./q71.)X x 
(cyclic of order pn), let IBn be the fixed field of (71./q71.) X). Then 10 = 1B0 and 
1B",,/iQ is a 7l.p-extension. It corresponds to the group of all characters of 
the second kind. Now let K be any number field and let Koo = KlBoo . We 
claim that Koo/K is a 7l.p-extension. Let lBe = K n 1B00. Then Gal(Koo/K) ~ 
Gal(lBoo/lBoo n K) ~ pe71.p ~ 7l.p, as desired. The extension Koo/K is called the 
cyclotomic 7l. p-extension of K. If K contains Q((q) then the extension is 
obtained by simply adjoining all pnth roots of unity for all n. This is what 
happened in Theorems 7.13 and 7.14. 

§7.4. Function Fields 

The theory of cyclotomic 7l.p-extensions has a strong analogue in the theory 
offunction fields over finite fields. Let IFq be the finite field with q elements (no 
relation to the previous q; but this is the standard notation). Let X, Y be 
indeterminates related by a polynomial equation over IFq, so k = IFq(X, Y) has 
transcendence degree one. We assume k n iFq = IFq • The field k is called a 
function field (of one variable) over IFq. It is well known that there are close 
connections between the arithmetic behavior of number fields and that of 
function fields; for example, both have zeta functions, satisfy class field 
theory, and have finite residue class fields at all (nonarchimedean) places. 

Let (k(S) be the zeta function of k. Then 

R(q-' - 1) 
(k(S) = (1 _ q ')(1 _ ql .) 

where R(T) E 7l.[T] (we have used a nonstandard normalization of the 
numerator; usually P(T) = R(T - 1) is used). The zeta function of the field 
IFq(X), the analogue of Q, is simply 

(1 - q ')(1 _ ql S) 

so the numerator is a product of L-series (at least when k is abelian over 
IFq(X». 

Returning temporarily to number fields, we assume, for simplicity, that 
K = iQ((pt and let 

(K,P(S) = n Lp(s, 9). 
Beven 
f.lp 
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Then (K,is) is the p-adic zeta function of K. Let 

Then 

A(T) = g(T, 1) n f(T, lJ) E Zp[[T]]. 
0,,1 

A((1 + p)' - 1) 
(K,P(S) = h((1 + p)' - 1)' 
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which is a formula remarkably similar to the one above, except that A is 
a power series instead of a polynomial. But the Weierstrass Preparation 
Theorem says that a power series is "almost" a polynomial. Note in addition 
that h has a relatively simple form, and it may be traced to (ojs) (i.e., lJ = 1), 
again in analogy with the function field case. Of course, this may also be done 
for fields other than Q((p)+, but then we must use qo in place of p. However, 
qo depends on the character lJ; so either the above formula becomes a little 
more complicated, or we change variables in the f(T, lJ) so that we may still 
use p (change T to (1 + Tt - 1, where a = 10gp(1 + qo)/logp(1 + p)). 

We now return to function fields. The polynomial R(T) satisfies the fol
lowing properties: 

(1) R(T) = n7~1 (1 - r1.j(T + 1)) where the r1./s are algebraic integers of abso
lute value ql/2 (the Riemann Hypothesis) and 9 ~ 0 is an integer called the 
genus of k. 

(2) R(O) = n (1 - r1.j) = h(k) = the number of divisor classes of degree 0 for 
k. This number is the analogue of the class number. 

(3) If IF /lFq is an extension of degree m then k' = kIF is a function field over IF. 
The numerator of the zeta function of k' is 

From the theory of finite fields, there is a unique sequence of fields 

IFq c: IFq" c: ... c: IFq"" c: ... c: IF = U IFq""' 
• 

which is clearly a Zp-extension. Therefore, if k. = kiF.,p"> then 

k = ko c: k 1 c: ... c: k. c: . .. c: koo 

is also a Zp-extension. Since everything except 0 in a finite field is a root of 
unity, we have obtained this extension by adjoining roots of unity; and if IFq 
contains the pth roots of unity (remember, p and q are not related) then the 
extension koo is obtained by adjoining the p-power roots of 1 (since reducing 
the rings Z[(P"] modulo appropriate primes gives a Zp-extension of finite 
fields). Therefore koo/k is analogous to the cyclotomic Zp-extension of a 
number field. 

Combining (2) and (3) above, we find that 

h(k.) = n R(( - 1) 
h(ko) '''"=1 ,,,1 
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(the analogue of Theorem 7.13). The polynomial R(T) is not necessarily 
distinguished, so we write R(T) = p"'P(T)U(T), where J1. ~ 0, P(T) E .zp[TJ 
is a distinguished polynomial (of degree ~ 2g), and U(T) is a unit of .zp[[T]] 
(actually, U(T) is a polynomial by Lemma 7.5). Since R( -1) = 1, by (1), 
J1. = O. Alternatively, when R(T) is expanded as a polynomial in 1 + T, one 
of the coefficients, in this case the constant term, is not divisible by p. This is 
essentially what we shall do to prove p. = 0 in the number field case. Now let 
pen be the exact power of p dividing h(kn). As in the proof of Theorem 7.14, 
we find that 

en = An + v for n sufficiently large, 

where A ~ 2g is the degree of P(T). Because of the strong analogy between 
cyclotomic .zp-extensions and the above situation for function fields, plus 
some numerical evidence, Iwasawa was led to conjecture that J1. = 0 for 
cyclotomic .zp-extensions of number fields. For the special (and most impor
tant) case of o ((p,,)/O((p), Iwasawa and Sims showed that p. = 0 for p ~ 4001. 
Subsequent calculations (on a computer, of course) by Johnson and then 
Wagstaff extended the result to p < 125000. In the next section we shall 
extend the result up to p < 00. 

§7.S. Jl = 0 

Theorem 7.15. Let K be an abelian extension of 0, let p be any prime, and let 
Koo/K be the cyclotomic .zp-extension of K. Then p. = o. 

Remark. Iwasawa has constructed examples of noncyclotomic .zp-extensions 
with J1. > O. See (Iwasawa [24]). 

Proof of Theorem 7.15. Before starting the main part of the proof, we state 
some facts, some of which will be proved in later chapters but which are 
needed now. 

I. K is contained in a cyclotomic field (Kronecker-Weber theorem). 

II. If K ~ K' then J1. ~ p.'. 

Proof. Lift the p-part of the Hilbert class field Hn of Kn up to K~. The 
compositum HnK~ is contained in the class field of K~. Since Hn and K~ might 
not be disjoint, we could lose a factor of at most [K~: Kn] ~ [K': K]. 
Therefore e~ + 0(1) ~ en. The result follows easily. D 

III. Assume the pth roots of unity are in K. Then J1. = J1.+ + p.-, and if 
p.- = 0 then p.+ = 0 (proof in Chapter 13). 

IV. Suppose en = An + p'pn + v for Koo/Ko. Let K' = Km. Then Koo/K' is 
a .zp-extension and 

A.' = A, v'=v+Am. 
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Proof. e~ = en+m = A.n + (Jipm)pn + (v + A.m). o 
We now claim that it suffices to prove Ji- = 0 for K of the form O«(qd)' 

where q = p or 4 and (d, p) = 1. (These are exactly those to which Theorems 
7.13 and 7.14 apply). For if K is arbitrary, K ~ O«(qp"d) for some nand d. If 
Ji- = 0 for ilJ«(qd) then Ji+ = Ji = 0 by III. By IV, Ji = 0 for ilJ«(qp"d)' and by 
II, Ji = 0 for K. 

If () #- 1 is an even character of ilJ«(qd) then t/(T, () has p-integral co
efficients. If we can show that for each (), t/(T, () has at least one coefficient 
relatively prime to p ("Ji9 = 0"), then it follows easily that Ji- = 0 (see the 
proof of Theorem 7.14). This is what we shall do. As in the function field case, 
it will be more convenient to work with 1 + T than with T. 

Recall that if tx E 7Lp then sn(tx) is the unique integer satisfying 0 ~ sn(tx) < 
qpn and sn(tx) == tx (mod qpn). For p #- 2, let 

00 

tx = 'L tj(tx)pj, 
j=O 

be the standard p-adic expansion. Then sn(tx) = 'Lj=o tj(tx)pJ (we do not need 
tj(tx) for p = 2). 

Proposition 7.16. Let R be the set of (p - l)st roots of unity in 7Lp (R = {± I} 
if p = 2) and let R' be a set of representatives for R modulo {± I}. 

(a) Suppose () = w\ k ¥= 0 (mod p - 1), k even. Then Ji9 = 0 ~ there exists 
p E 7L; and n ~ 1 such that 

L tn(Ptx)txk - 1 ¥= 0 (mod pl· 
aeR 

(b) Suppose () is not a power of w. Then Ji9 = 0 ~ there exists P E 7L; and 
n ~ 0 such that 

d-1 

L L j()w- 1(sn(Ptx) + iqpn) ¥= 0 (mod je), 
aeR' i=O 

where je is the prime of (!)9 above p, and d or dq is the conductor of (). 

Proof. (a) Since () #- 1 is even, we must have p ~ 5, so we have the luxury of 
ignoring 2 and letting p = q. In the notation of Proposition 7.9, we see that if 
t~n«() is expressed as a polynomial in 1 + T, modulo (1 + T)P" - 1, then each 
Yn(bf1 corresponds to a different power of 1 + T. Let Yn(b)-l +-+ (1 + Tfb, 
o ~ ab < pn. Then (T = set #- T = variable) 

t/(T,() == -2 ~+1 L L sn(btx)()w-1(btx)(1 + T)Q bmod(1 + T)P" - 1. 
p beTaeR 

Since (1 + TY" - 1 == p" (mod p), the above congruence determines the 
coefficients of tf(T, () modulo p, up to p"-l. Suppose Jie > 0, so p divides all 
the coefficients of t/. Then p divides all coefficients of the above polynomial 
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when it is expressed as a polynomial in T, or in 1 + T. Consequently, 

J1.6 i= 0 -- L sn(ba)Bw-1(ba) == 0 (modpn+2), 
.ER 

for all n and all bET. But we can arbitrarily change the choice of the set of 
representatives T (this does not change the sum since we sum over R). There
fore we can consider all b E 71., (b, p) = 1. It is more convenient to consider all 
bE 71.;; this does not affect anything since we are only looking at the begin
ning of the p-adic expansions. Since f) = w k and w(a) = a, f)w- 1(a) = ak- 1. 
Also, we may factor off and ignore f)w- 1(b). Writing 

sn(ba) = Sn+1 (ba) - tn+1 (ba)pn+1 == ba - tn+1 (ba)pn+1 (mod pn+2), 

we have 

Il6 i= 0 -- L (ha - tn+1 (ha)pn+1 )ak - 1 == 0 (mod pn+2) 
.ER 

-- L tn+1 (ba)a k - 1 == 0 (mod p), 
.ER 

for all n ~ 0 and all b E 71.;. This proves (a). 
(b) This part follows immediately from Proposition 7.9, in a manner simi-

~~~rtW 0 

Proposition 7.17. Let m, d be positive integers with (p,d) = 1. For all n suffi
ciently large, there exist /31' /32 E 71.P ' both congruent to 1 mod pm, and there 
exist a choice of R' and ao E R' such that 

Sn+m(/31 a) = sn(f31 a) == 0 (mod d) for all a E R', 

S.+m(f32a) = S.(/32a) == 0 (mod d) for all a #- ao, a E R', 

S.+m(/32aO) = S.(/32aO) + qp. == 0 (mod d). 

Remark. What this means is that the p-adic expansion of each /31 a and /32a 
(a #- ao) has m consecutive O's starting with the (n + l)st place, while /32 ao has 
a 1 followed by m - 1 O's. If a is a normal number (i.e., all possible combina
tions of digits occur with the expected frequency) then there are arbitrarily 
long sequences of O's. But we do not know whether or not any a is normal 
(even though almost all numbers are normal), so we must use /31 and /32 to 
help. Also, we are requiring the desired patterns to occur for all a simultane
ously, which causes additional problems, especially since there are usually 
dependence relations among the a's. 

We shall postpone the proof of Proposition 7.17 in order to complete the 
proof of Theorem 7.15. 

We first treat criterion (a) of Proposition 7.16. Since 

0= p. pm + (p _ l)pm+1 + (p _ 1)pm+2 + ... , 
we have 
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Since k - 1 is odd, we may combine the terms for IX and -IX to obtain 

J1.e oF 0 ~ 2 L tn(fJIX)lXk- 1 == (p - 1) L IX k - 1 (mod p) 
tiER' GreR' 
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for all P E z.; and all n ;?: 1. Note that the right side is independent of P and 
n. In Proposition 7.17 let m = d = 1. Then for n sufficiently large we have 
PI' P2 such that 

tn+l (PI IX) = 0 for all IX E R', 

tn+I(P21X) = 0 for all IX oF 1X0, IX E R', 

tn+l (P21X0) = 1. 

Therefore if J1.e oF 0, the above criterion (with n + 1 instead of n) yields 

0== (p - I)L IX k - 1 

and 

This is impossible (recall p oF 2 in this case), so J1.e = O. 
We now consider part (b) of Proposition 7.16. Assume Jle oF 0, so 

d-I 

L L iOw-l(sn(PIX) + iqpn) == 0 (mod It) 
«eR'i=O 

for all n ;?: 0 and all P E z.;. In Proposition 7.17, let m = 2, d = d. If n is 
sufficiently large, there exist PI, P2 == 1 (mod p2), in particular PI' P2 == 1 
(mod q), satisfying the criteria of Proposition 7.17. Therefore 

Sn(PIIX) == PI IX == IX == P21X == sn(P2 1X)(mod q), 

and 

Hence 

and 

(Jw-I(Sn<PIIX) + iqpn) = (Jw- I(Sn(P2 1X) + iqpn) 

for all i and all IX oF 1X0. Similarly, 

Sn(PIIXO) == Sn(P21X0) == Sn(P21X0) + qp" (mod q) 

and 

so 
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Let ao = Sn(P2(/.0), for convenience. Comparing terms above for P = P1 and 
P = P2' we find that we must have 

4-1 4-1 

L iew-1(ao + iqpn) == L ilJw-1(Sn(P1(/.0) + iqpn) 
i=O i=O 

4-1 

== L iew-1(ao + (i + 1)qpn) 
i=O 

4 4 
== L jew-1(ao + jqpn) - L ew-1(ao + jqpn) 

j=1 j=1 
4-1 

== L iew-1(ao + iqpn) + dew-1(ao + dqpn) 
i=O 

4 

- L ew-1(ao + jqpn). 
j=1 

The last sum vanishes by Lemma 7.8. Consequently. 

dOw-1(ao + dqpn) == ° (mod je). 

But p t d and ew-1(ao + dqpn) = ew-1(ao), so ew-1(ao) = 0. But ao = 

Sn(P2(/.0) == _qpn (mod d), so (ao,d) = 1. Also, Sn(P2(/.0) == P2(/.0 == (/.0 (modq), 
so (ao,q) = 1. Therefore (ao,f//w-.) = 1, hence ew-1(ao) "# 0. This contradic
tion completes the proof of Theorem 7.l5. 0 

Proof of Proposition 7.17. Let r be a positive integer. A sequence of vectors 
Xn E [O,I)r is called uniformly distributed mod 1 if for every open box 
U = n (a/,bi ) ~ [0, 1Y we have 

1· #{n::;; Nlxn E U} (U) 
1m N = meas , 

N ... oo 

where we take the usual measure, normalized by meas([O, 1)') = 1. There is 
the following well-known criterion ofWeyl: 

The sequence {xn} is uniformly distributed mod 1 <=> for every Z E lLr , Z "# 0, 
we have 

1 N • 
lim - L e2",xn ·z = ° 

N"'oo N n=1 

(Xn' Z is the usual dot product; note that if Z = 0, the limit is 1). 

The proof of the criterion may be sketched as follows: the trigonometric 
polynomials are dense in the set of continuous functions on (~/lLY, and 
J e2"ix,z dx = ° if Z "# 0, so the above is equivalent to 

1 N f - L f(xn) -+ f(x) dx for all continuous f 
N n=1 
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Now, if f approximates the characteristic function of an open set U then 
If(x,,) is approximately #{n::5; Nix" E U}, while Jf(x)dx is approximately 
meas(U). Since step functions can be used to approximate continuous func
tions, the argument also works in reverse. For fuller details, see (Kuipers and 
Niederreiter [1]). 

Lemma 7.18. For p E lLp, let x,,(P) = q-lp-"S,,(P). For almost all P E lLp (i.e., 
except for a set of measure 0 for the usual Haar measure on lLp), the sequence 
of numbers x,,(P) E [0,1) is uniformly distributed mod 1 

Proof. Let S(N,P) = (liN) I:=l e(x,,(p», where e(x) = e21C;". Then 

i IS(N,PWdP = ! + ~2 n i e(x,,(p) - x",(P»dP. 
J/lez" ",~" J/lez" 

Suppose n > m. We claim that the map 

lLlqp"lL -+ lLlqp"lL, a f-+ s,,(a) - p"-"'s",(a) 

is a bijection. For suppose 

s,,(a) - p"-"'s",(a) == s,,(P) - p"-"'s",(P) (mod qp"). 
Then 

a - P == s"(a) - s,,(P) 

== p"-"'(s",(a) - s",(P» == p"-"'(a - P) (mod qp"). 

It follows that a - P == 0, so the map is injective, hence bijective. Since 

x,,(P) - x",(P) = q-lp-"(S"(P) - p"-"'s",(P», 

it follows that if P runs through the congruence classes mod qp" in lLp, 
e(x,,(p) - x ... (P» runs through all qp"th roots of l. Since each congruence 
class has the same measure, namely q-lp-", it follows that the integral above 
vanishes. Similarly, the integral is 0 if n < m. Therefore 

f 2 1 
IS(N,P)I dP = N' 

so 

f "'~l IS(m2,PWdp = Jl fIS(m2,PWdP = "'~1 ~2 < 00. 

Consequently I IS(m2, PW E U(lLp ), hence the sum must converge for 
almost all p. Therefore limIS(m2,p)12 = 0 for almost all p. 

For arbitrary N, choose m such that m2 ::5; N < (m + 1)2. Trivial estimates 
yield 

for almost all P E lLp • 
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Now let Z E 7L, Z -# 0. Since 

zs.(P) == zf3 == s.(zf3) (mod qp.), 

we have 

By the above, 

1 N 1 N 

- L e(zx.(f3)) = - L e(x.(zf3)) = S(N, zf3) --+ ° 
N .=1 N .=1 

for almost all 13. Each z excludes a set of measure 0. Since 7L is countable, we 
exclude altogether only a set of measure 0. For the remaining f3's, we may 
apply the Weyl criterion (r = 1). This completes the proof of Lemma 7.18. 

o 

Remark. A p-adic number 13 is called normal if for every k ~ 1 and every 
string of integers of length k, consisting of integers in {a, 1, ... ,p - I}, the 
standard p-adic expansion of 13 contains this string infinitely often, with 
asymptotic frequency p-k. It is not hard to see that 13 is normal if and only if 
x.(f3) is uniformly distributed mod 1 (see Exercises). Therefore, almost all 
13 E 7Lp are normal. Since the digits of the p-adic expansion can be regarded as 
independent identically distributed random variables, this fact may also be 
approached via theorems of probability theory. 

Lemma 7.19. Suppose Yl, ... , YrE7Lp are linearly independent over O. For 
almost all 13 E 7Lp the sequence of vectors 

x. = X.(f3) = (x.(f3Yd, ... ,x.(f3Yr)) E [0,1)' 

is uniformly distributed mod 1. 

Proof. Let Z=(Zl,,,,,Zr)E7Lr, Z-#O, let f3E7Lp, and let y.=X.·z= 
q-lp-·LjZiS.(f3y;). Since 

L ZjS.(f3Yi) == L Zif3Yi == s.(f3 L ZiyJ (mod qp.), 
i 

we have 

y. == q-l p-·S.(f3y) (mod 1), where Y = L ZiYi' 

Note that Y -# ° since the y;'s are linearly independent. By Lemma 7.18 and 
the Weyl criterion (with r = 1), 

1 N 1 N 

- L e(X.· z) = - L e(x.(f3y)) --+ ° 
N .=1 N .=1 

for almost all 13 E 7L p • As in the previous lemma, each Z excludes only a set 
of measure 0, and 7Lr is countable, hence the Weyl criterion (with r = r) 
completes the proof of Lemma 7.19. 0 



§7.5. Jl = 0 137 

Lemma 7.20. Suppose Yl' ... , Yr E 7I.. p are linearly independent over 11). Let 
x = (x l' ... ,xr) E (0, 1)" let e > 0, and let m and d be positive integers with 
(d,p) = 1. For each n sufficiently large, there exists P E 7I.. p such that 

(1) P == 1 (mod pm), 
(2) Ixn(PYj) - Xjl < e for 1 ~ j ~ r, 
(3) sn(PYj) == 0 (mod d) for 1 ~ j ~ r. 

Proof. For t E ~, or ~/7I.., let IItil denote the distance from t to the nearest 
integer, and let II(tl, ... ,tr)II = maxllt;il. Let e' = e/2d and x' = x/d. We 
assume e is small enough that Xj + e < 1 and Xj - e > ° for all j. 

Since [0,1]' is compact, there exist Yl' ... , YD E (0, 1)" for some D, such 
that for each Y E [0, 1]' we have IIy - Yill < e' for some i. By Lemma 7.19, for 
each Yi there exists Pi E 7I.. p and ni E 71.. such that IIXni(Pi) - y;il < e'. Let 
no = m + max ni. We claim that if n ~ no we can satisfy (1), (2), (3). Choose Yi 
such that 

Let P' = l/d + pn-niPi. Then 

IIx' - Xn(P')II ~ Ilx' - XnG) - Yill 
+ IIYi - X.,(Pi)1I 

+ IIX.G) + X.,(P;) - Xn{P')II· 
But 

sn{P'Yj) == s. G Yj) + sn(pn-·'PiY) 

== s.GYj) + p·-·'s.,(PiYj)(modqp·) 

for 1 ~ j ~ r. Therefore 

Xn(P') == X. G) + X.,(p/) (mod 1), 

so the last term in the above sum vanishes. Hence 

so 

e 
IIx' - X.(P')II < e' + e' + ° = d' 
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for each j. Since e/d < xjld < (1 - e)/d and 0 :::;; xn{P'Yj) < 1, the inequality 
IIx" - Xn{P')11 < e/d implies that 0 < xn{P'yJ < lid. Therefore 0 < dXn{P') < 
1, so 0 < dsn(f3'Yj) < qpn. It follows that 

sn(dP'Yj) = dsn{P'Yj) :; 0 (mod d), and dXn{P') = Xn(dP'). 

Since n - ni ~ m, we have dP' :; 1 (mod pm). It follows that P = dP' satisfies 
the conditions of the lemma. This completes the proof of Lemma 7.20. 0 

Remark. The location of the vector Xn(P) depends on the coefficients of the 
p-adic expansions of the Py/s near the nth digit. By the choice of YI' ... , YD' 
the vectors Xn.(Pi) are distributed throughout all of(O, 1)'. Hence they give us 
a wealth of possible patterns of coefficients. We can add these onto existing 
patterns to obtain any desired pattern. In effect, this is accomplished by the 
term pn-n;Pi in the definition of p'. This is what allows us to get close to x and 
also obtain the congruence mod d (cf. Ferrero-Washington [1]). 

We can now prove Proposition 7.17. We cannot apply Lemma 7.20 
directly since the elements of R' are not necessarily linearly independent. If 
R' is linearly independent (=-p is a Fermat prime) then the following argu
ment can be simplified to yield the result. Therefore assume R' has depen
dence relations. If a is a primitive (p - l)st root of unity and r = ,p(p - 1), 
then 1, a, ... , a r - I forms an integrjll basis for Z[a]. Consequently we may 
choose ai' ... , ar E R' (let a r +l , ... , aI' t = (p - 1)/2, be the other elements) 
such that 

r 

aj = L ajiai, 
i=1 

j = r + 1, ... , t. 

We may assume ajl "# 0 for some j. Order ar+!, ... , al lexicographically 
according to lajd, 1 :::;; i :::;; r. That is, let aj > al if for some io we have lajd = 
la,d for i < io and lajiol > lalio!- Let ajo be a maximal element for this ordering 
(we do not care whether or not ajo is unique). If necessary, change the signs of 
ai' ... , ar so that a joi ~ 0 for 1 :::;; i :::;; r (this changes R'). Note that a jol ~ 1 
(since ajl "# 0 for some j) and a joi > 0 for some other i (since ajo/ai rt Z). Now 
change the signs of aj, r + 1 :::;; j :::;; t, if necessary, so that the first nonzero aji' 
1 :::;; i :::;; r, is positive for each such j. 

Let x I' ... , Xr E (0, 1) be such that Xi is much larger than Xi+l for each i. 
Define 

r 

Xj = L ajixi, r + 1 :::;; j :::;; t. 
i=1 

Since the first nonzero coefficient aji is positive and since Xi is much larger 
than Xi+I, Xi+2, etc., we must have Xj > 0 for each j. By the choice of jo, 
Xjo > Xj for r + 1 :::;; j :::;; t, j "# jo (even if ajo is not the unique maximal ele
ment, we have ajoi ~ 0 for all i; so any other maximal element must have a 
negative coefficient, hence a smaller xJ Also, Xjo > a jol xl ~ Xl (since ajoi > 0 
for some i "# 1), so Xjo > Xi for 1 :::;; i :::;; r. 
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Replacing Xi by eXi for a suitable constant e, we may arrange that 

o < Xj < p-m for 1 :::;; j :::;; t, j # jo, 

and 

p-m < Xjo < 2p-m. 

139 

By Lemma 7.20, for all n sufficiently large there exists P == 1 (mod pm) such 
that 

and 

If e is small enough, 

for r + 1 :::;; j :::;; t, j # jo, 

and 
r 

p-m < L ajoiq-lp-nsn(PlY.i) < 2p-m. 
i=1 

Also, 

L ajisn(pIY.;) == L ajiPIY.i (mod qpn) 

and satisfies the appropriate inequality, so 

Therefore 

and 

sn(PIY.j) = Sn(P I ajiIY.;) = L ajisn(pIY.;). 

o < q-I p-nsn(pIY.) < p-m, 

p-m < q-I p-nsn(pIY.jo ) < 2p-m. 

For j # jo we have 

o < sn(PIY.) < qpn-m and sn(PIY.j) == PIY.j (mod qpn-m), 

hence 

Similarly, 

and 
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so 
sn(f3rxjo ) - qpn-m = sn-m(f3rxjo)' 

Therefore P gives us P2 in the statement of the proposition (change n to n + m 
and change n - m to n). To get Pl' let c be small enough that 0 < Xj < p-m for 
all j, including jo, then proceed as above. This completes the proof of Propo
sition 7.17. 0 

NOTES 

The construction given here is due to Iwasawa [18], [23]. For another 
approach, see Coates [7]. 

The proof that Ji = 0 had its origins in the work of Gold [1], who con
sidered certain quadratic fields. Later progress appears in Ferrero [2]. The 
proof given above follows Oesterle [1] (see also Gillard [5]). For a different, 
but equivalent, approach see the original paper by Ferrero-Washington [1], 
which also treats the simpler case of O«(p) separately. The idea of the proof 
is summarized in Washington [to]. 

Iwasawa [24] has constructed examples of noncyclotomic Zp-extensions 
with J1 > O. 

For the non-p-part of the class number, see Washington [7]. For com
posites of cyclotomic Zp-extensions (p = Pl"'" Ps), see Friedman [1]. 

For values of the A-invariant, see Ernvall-Metsankyla [1], Ferrero [3], 
Kida [1], Dummit-Ford-Kisilevsky-Sands [1], and several of the papers of 
Gold. For a heuristic estimate of A for O«(p), see the appendix to Chapter to 
of Lang [5]. For upper bounds for A, see Ferrero [1], Metsankyla [13], and 
the end of Ferrero-Washington [1]. 

For an application of Iwasawa power series, and the techniques used to 
prove J1 = 0, to constructing higher dimensional magic cubes, see Adler
Washington [1]. 

EXERCISES 

7.1. Let (!) be a ring. Show that f(T) E (!)[[T]] is a unit ¢> f(O) E (!)x. 

7.2. Using the fact that every finite abelian extension of a is contained in a(,.) for 
some n (Kronecker-Weber theorem), show that !Boo/a is the only Zp-extension 
of a (!Boo is defined after Theorem 7.14). 

7.3. (a) Show that Theorems 7.13 and 7.14 can be generalized to any imaginary 
abelian field all of whose Dirichlet characters are of the first kind. 
(b) Let K be an arbitrary abelian number field and let Koo/K be the cyclotomic 
Zp-extension. Show that there is a field F, all of whose characters are of the first 
kind, such that for some e ~ 0 and all n sufficiently large F.+e = K. (Hint: Let 
X = e", run through the characters of K. Let F correspond to the group of e's. 
Note that ""s correspond to !B's). 
(c) Show that for arbitrary imaginary abelian K a modified version of Theorem 
7.13 holds, and deduce Theorem 7.14 for K. 
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7.4. (a) Let x#- 1 be an even character ofthe first kind. Show that the constant term 
of f(T, X) is -(1 - xco-1(p»B1.x.,-,· 
(b) Suppose p is regular. Show that p k h-(Q(,,,..» for all n (note that for p = 2 
we have an empty product in Theorem 7.13, so the result is trivially true!). 
(c) Let K be an imaginary abelian field. Show that r ~ # {xix is odd and 
X(p) = I}. 
(d) The class number of Q(j=S) is 2, and 3 splits in Q(P)/Q. Show that 
although 3 k h(Ko), we have 3Ih(K.) for all n ~ I, where K",IKo is the lL 3-

extension of Ko = Q(p). 

7.5. Suppose X #- 1 is not a character ofthe second kind (but also not necessarily of 
the first kind). Show that for n ~ I, (1/n)B •. X.,-. is p-integral (except when X = co, 
p = 2, n = I), and ifm == n (modpQ) then 

(this of course contains the Kummer congruences). 

7.6. (a) Suppose X = 1. Show that 

hence that 

1 
1(0,1) == -(modlLp ), 

p 

g(O,I) == -1 (mod p) if p #- 2, g(O, 1) == 2 (mod 4) if p = 2. 

(b) Show that 1 - (1 + q)' == -nq (modnqplLp ). 

(c) (von Staudt-Clausen) Show that if p - lin then B. == -(lIp) (mod lLp ). 

(d) More generally, show that for n ~ I, B •. .,-. == -(lIp) (mod lLp ). 

7.7. Suppose X #- 1 is of the second kind and of conductor qp'". Show that for n ~ I, 

B •. X.,-· == ~ _1_(mod~), 
n pi - C 1 p 

where, = x(1 + q). 

7.8. Let R' be as defined in this chapter and assume p #- 2. Show that R' is linearly 
independent over Q -- (p - 1)/2 = q,(p - 1) __ p is a Fermat prime. 

7.9. (a) Show that P E lLp is normal __ the sequence q-l p-·s.(P) is uniformly dis
tributed mod 1. 
(b) Let Yl' ... , Y, E lLp. Figure out a suitable definition of "joint normality" and 
show that it is equivalent to the sequence of vectors 

(q-I p-.s.(Ytl, ... , q-l p-·s.(y,» 

being uniformly distributed mod 1. 
(c) Show that if y" ... , y, are linearly dependent over Q then they cannot be 
jointly normal. 
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7.10. Let ko be a function field over a finite field and let koo/ko be the "cyclotomic" 
Zp-extension. Let I =F p be another prime and let Ie. be the exact power of I 
dividing h(k.). Show that e. is bounded as n -+ 00. The analogous result has 
been proved for cyclotomic Zp-extensions of abelian number fields. The original 
proof involved uniform distribution mod 1, but worked directly with the class 
number formula, rather than with Iwasawa's power series. See Washington [7]. 
For an easier proof, see Section 16.3. 



CHAPTER 8 

Cyclotomic Units 

The determination of the unit group of an algebraic number field is rather 
difficult in general. However, for cyclotomic fields, it is possible to give 
explicitly a group of units, namely the cyclotomic units, which is of finite 
index in the full unit group. Moreover, this index is closely related to the class 
number, a fact which allows us to prove Leopoldt's p-adic class number 
formula. Finally, we study more closely the units of the pth cyclotomic field, 
and give relations with p-adic L-functions and with Vandiver's conjecture. 

§8.1. Cyclotomic Units 

Let n =1= 2 mod 4 and let V. be the multiplicative group generated by 

{±'n,l-':Il ~a~n-l}. 

Let En be the group of units of O('n) and define 

C is called the group of cyclotomic units of O('n). More generally, if K is an 
abelian number field, we can define the cyclotomic units of K by letting 
K ~ O('n) with n minimal and defining CK = EK r. Cn. This works well for 
O('n)+' For other K, it is perhaps better to take norms, from O('n) to K, of 
cyclotomic units. See (Sinnott [2]). 

Since the real units multiplied by roots of unity are of index 1 or 2 in the 
full group of units (Theorem 4.12), it will usually be sufficient to work with 
real units. The following observation will be useful: Fix 'n = e2Ki/n. Then 

143 
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Y(l-a)/21 - C: _ sin(na/n) .. -- - + -----:---':---:----:-'-
n 1 - Cn - sin(n/n) 

is real, and if a is changed to - a then we obtain the same unit mUltiplied by 
-1. 

Lemma 8.1. Let p be prime and m ~ 1. 
(a) The cyclotomic units of O(Cpmt are generated by -1 and the units 

1 < a < tpm, (a, p) = 1. 

(b) The cyclotomic units of O(Cpm) are generated by Cpm and the cyclotomic 
units of O(Cpm)+. 

Proof. Let C = Cpm. The definition of the cyclotomic units involves 1 - ca for 
all a =1= 0 mod pm. If k < m and (b, p) = 1, then, using the relation 1 - X Pk = n (1 - CiP"'-lX), we obtain 

pk-l 
1 - Cbpk = n (1 - Cb+iP"'-"). 

i=O 

Since (p, b + jpm-k) = 1, we are reduced to considering only those a with 
(a, p) = 1. Also, 1 - ca and 1 - C a differ only by the factor - ca, so we need 
only consider 1 ~ a < tpm. Suppose now that 

e= ±Cd n (l-ca)"a 
1 Sa«l/2)pm 

(a,p)=l 

is a unit of 0(0. Since the ideals (1 - ca) are all the same, L Ca = O. Therefore 

e = ±Cd n (\ -=- Ccaya 

where e = d + t Lca(a - 1). Note that if p = 2 then (a,p) = 1 requires a to be 
odd, so ce is in O(C) in all cases. This completes the proof of (b). If e E O(ct 
then since each factor in the above product is real, ± ce must be real, hence 
± 1. This completes the proof. D 

Remark. If n is not a prime power, not every cyclotomic unit is a product 
of roots of unity and numbers of the form (1 - C:)/(1 - Cn) with (a, n) = 1. 
Namely, each such product is a real unit times a root of unity, while the 
cyclotomic unit 1 - Cn is not of this form (see the proof of Corollary 4.13). 

Our goal is to show that the cyclotomic units are of finite index in the full 
group of units. It suffices to work in the real subfield. We start with the 
important, and easier, case of prime powers. 
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Theorem 8.2. Let p be a prime and m ~ 1. The cyclotomic units C;m of O«(pm)+ 
are of finite index in the full unit group E;m, and 

h;m = [E;m: C;m], 

where h;m is the class number of O«(pm)+. 

Proof. We shall show that the regulator of the units ea of Lemma 8.1 is non
zero. Let ( = (pm. As usual, let Ua: ( ....... (a be in Gal(O«()/O). The elements Ua , 

1 ~ a < tpm, (a,p) = 1, yield G = Gal(O(O+ /0). We may write 

(C1/2 (1 - maa 

ea = (1/2(1 - 0 

(if p = 2, extend Ua to 0«(2-+,)' Everything below works, since 

I(C1/2(1 - maal 

is all that matters, and it is independent of the choice of the extension). We 
now apply Lemma 5.26. Let 

f(u) = logl(C1/2(l - mal = logl(l - oal, U E G. 

Then the regulator is 

R(ga}) = ±det[logle~l]a,'#1 
= ± det[f(uT) - f(T)]a,.#1 

= ±det[f(m-1) - f(T)]a,.#1 

= ± f1 L X(u)logl(1 - oal 
x#1 aeG 
xeG 

= ± f1 L x(a)logll - cal 
I ~a«1/2)pm 

l~ 
= ±f1 L~I x(a)logll - (al· 

If fx = pk with 1 ~ k ~ m, then, using the relation 

we obtain 

Therefore, 

f1 (1 - (:m) = 1 - (:,., 
1 <a<pm 
a "b(pk) 

pm pk 

L x(a) logll - cal = L X(b) logll - C:"I 
a=1 b=1 

= - ~i/(1,X) = -T(X)L(l,X)· 

R( ga}) = ± f1 - tT(X)L(l, X) = h+ R+ =F 0, 
X#I 
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where R+ is the regular of Q('pm)+ (we have used Corollary 4.6 to handle 
!(x)). Therefore the ± ~a's generate a subgroup, namely C+, of finite index in 
the full group of units, and 

[E+ . C+ ] = R(ga}) = h+ pm. pm R+ 

by Lemma 4.15. This completes the proof. D 

Remark. This result should be regarded as the analogue for h+ of Theorem 
6.19. A similar question arises: is E+ /C+ isomorphic to the ideal class group 
of Q('pmt as modules over 1'[Gal(IIJ('pmt /IIJ)]? Let p == 1 mod 4, so 
Q(JP) ~ Q('pt. Since Q(,p)+ /Q(JP) is totally ramified, the norm map on 
the ideal class groups is surjective (see the appendix on class field theory). 
Also, the norm of E+ is contained in the units of IIJ(JP), hence N(E+)/N(C+) 
is either cyclic or (1'/21') x (cyclic). Therefore, if E+ /C+ is isomorphic to the 
ideal class group as modules over the Galois group, then the ideal class 
group of IIJ(JP) must be cyclic (since p == 1 mod 4, the 2-part is trivial). For 
p = 62501, Schaffstein found that the class group is 1'/31' x 1'/31'. Therefore, 
the isomorphism does not always hold. Whether or not there is an isomor
phism as abelian groups appears to be an open question. Finding nontrivial 
examples appears to be difficult since h: = 1 for small n and for large n 
the calculations required to determine E+ or the class group are extremely 
lengthy. The next question is whether or not the p-part of E+ /C+ is iso
morphic to the p-Sylow subgroup of the class group of Q('pmt. In this case, 
it is hard to know what to expect. Vandiver's conjecture predicts that the 
p-Sylow subgroup of the class group, hence of both groups, is trivial. That is 
true for p < 4000000, but it is not clear that it should be true in general. 
In Section 15.3 we shall prove the following: Decompose the p-Sylow 
(E+ /C+)p of e /C+ and the p-Sylow A of the ideal class group of Q(,p) via 
the idempotents Ei of Chapter 6. Then 

IEi(E+ /C+)pl = IEiAI· 

We shall return to IIJ(,p) later, but now we treat the case of IIJ('n) for 
general n. We do not give a set of independent generators for the full group 
of cyclotomic units. However, we exhibit a set of independent units that 
generate a subgroup of finite index, which suffices to show that the cyclo
tomic units have finite index. One's first guess for a set of independent units 
would probably be 

r(1-a)/2 I - ,: 1 
'>n 1 _ 'n' 1 < a < "In, (a, n) = 1. 

This set has t¢l(n) - 1 elements and is the obvious generalization of Lemma 
8.1. Unfortunately, this set does not always work. We shall show below 
(Corollary 8.8) that there are sometimes multiplicative dependence relations. 
Therefore, we use a set of units discovered by Ramachandra. 
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Theorem 8.3. Let n =1= 2 mod 4, and let n = fl~=1 pf' be its prime factorization. 
Let I run through all subsets of {l, ... ,s}, except {1, ... ,s}, and let nI = 
fliEl pf'· For 1 < a < !n, (a, n) = 1, define 

Then {~a} forms a set of multiplicatively independent units for Q«(pt. If C~ 
denotes the group generated by -1 and the ~a's, and E: denotes the group of 
units of Q«(.t, then 

[E: : C~] = h: fl fl (¢J(pf') + 1 - X(p;)) '# 0, 
x#1 pdf, 

where h: is the class number of Q«(.t and X runs through the nontrivial even 
characters of (Z/nZ) x • 

Remarks. The difference between the units (1 - (a)/(l - () and the present 
units is that these new ones contain contributions from the units of proper 
subfields. 

We have not obtained generators for the full group of cyclotomic units of 
Q«(.)+. Sinnott has calculated the index of the full group of cyclotomic units 
to be 

[E: : C.+] = 2bh:, 

where b = 0 if g = 1 and b = 29 - 2 + 1 - g if g ~ 2, and g is the number of 
distinct prime factors of n. See (Sinnott [I]). 

Proof of Theorem 8.3. The proof will be similar in many ways to that of 
Theorem 8.2, but will be more technical. As in the proof of that theorem, we 
have 

1 • 
R( ga}) = ± J}1 2 JI x(a) ~ 10gl1 - (:·'1, 

(a,.)=1 
where X runs through the nontrivial even characters mod n. Clearly, this 
product should reduce to an expression involving fl L( 1, X), but there are a 
few problems: n might not be f x' the restriction (a, n) = 1 may leave out some 
terms with (a,n) '# 1 but (a,jx) = I, and G' is not necessarily (f,. The follow
ing lemmas treat these difficulties, 

Lemma 8.4. If fx % (n/m) then 

• L x(a) logll - (:ml = O. 
a=l 

(a,n)=1 

Proof. We claim that there exists b == 1 mod(n/m) such that (b,n) = 1 and 
X(b) '# 1. If not, then X: (Z/nZ)' --+ C x may be factored through (Z/(n/m)Z) x , 
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so fxl(n/m), contradiction. Since (~m = (~bm, 

L x(a) logll - (~ml = L x(a) logll - (~bml 

= X(b)-1 L x(a)logll - (~ml, 

so the sum vanishes. o 
Lemma 8.5. Let n = mm' with (m, m') = 1, and suppose fxlm. Then 

n m 

L x(a)logll-(:m'I=!fo(m') L X(b)logll-(!1 
a=1 b=1 

(a.n)=1 (b,m)=1 

Proof. Write a = b + em with 1 $; b < m, 0 $; e < m'. If (a, n) = 1 then 
(b, m) = 1. Conversely, for each b with (b, m) = 1 there are !fo(m') choices of 
e such that (b + em, m') = 1, hence (b + em, n) = 1 (since (m, m') = 1). Since 
x(a) and (~m' depend only on b, the lemma follows. 0 

Lemma 8.6. Suppose F, g, t are positive integers with fxlF and giF. Then 

FI F 

L x(a) 10gl1 - (;11 = L X(b) 10gl1 - (~I. 
a=1 b=1 

(a,g)=1 (b,g)=1 

Proof. Write a = b + eF, 1 $; b $; F, 0 $; e < t. Then (a,g) = 1 ~ (b,g) = 1. 
Since 

I-I n (1 - (~:CF) = 1 - (~, 
c=o 

and since x(a) depends only on b, the lemma follows easily. o 

Lemma 8.7. Assume fxlm. Then 

btl X(b)logll - (!I = [n (1 - X(P))] btl X(b)logll - (!I· 
(b,m)=1 

Proof. Let p, q, ... represent the primes dividing m. We only need to consider 
those which do not divide fx' The right-hand side equals 

m m 

L X(b) 10gl1 - (!I - L X(p) L X(b) 10gl1 - (!I 
b=1 p b=1 

m 

+ L X(pq) L X(b) 10gl1 - (!I - '" 
p,q b=1 
p",q 

m mjp 

= L X(b) 10gl1 - (!I - L X(p) L X(b) 10gl1 - (!jpl + '" 
b=1 p b=1 

(by Lemma 8.6 with g = 1. Since p k fx, we have fxlm/p) 
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m m 

= L X(b)logll - C~I- L L X(b)logll - C~I + ... 
b=l P b=l 

m 

= L X(b)logll - C~I 
b=l 

(b,m)=l 

plb 
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(e.g., if pqlb then Lp subtracts the term for b twice but Lp",q adds it back 
once; this is essentially the relation Lj=o (_I)i(j) = 0 if n > 0). 

This completes the proof of Lemma 8.7. 0 

We may now finish the proof of Theorem 8.3. If m' = nl for some I then 
n = mm' with (m,m') = 1. If fxlm then 

n m 

L x(a) 10gl1 - c:m'l = ~(m') L X(b) 10gl1 - C~I 
a=l b=l 

(a, n)= 1 (b, m)= 1 

= ~(m')LQ. (1 - X(P))] b~l X(b)logll - C~I 

= ~(m'{!! (1 - X(P))] at1 x(a)logll - C;,1 

= -~(m') /'(:)L(I,X) n (1 - X(p)) 
t X plm 

= -~(m')t(x)L(I,X) n (1 - X(p))· 
plm 

Therefore (let n = nln;, so nl = m' and n; = m) 
n 

L x(a) L 10gl1 - c:n, 1 = -t(X)L(1,X) L ~(nl) n (1 - X(p))· 
a=l I I pin; 

(o,n)=l Illn; 

Consequently 

R( ga}) = ± n tr(X)L(I, X) L ~(n/) n (1 - X(p)) 
x",l I pin; 

Illn; 

= h: R: n (L ~(n/) n (1 - X(P))), 
X¢l I pin; 

Illn; 

where h: and R: are the class number and regulator of Q(Cn)+, respectively. 
Recall n = ni=l pi'. We claim that 

L ~(n/) n (1 - X(p)) = n (~(pi') + 1 - X(Pi))' 
I ,pin; p,k II 

Ill", 

If the right-hand side is expanded out, we obtain 

L ~ (n Pi') n (1 - X(Pi)), 
J ieJ ifJ 
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where J runs through all subsets of {ilpd Ix}' If p;llx then 1 - X(Pi) = 1. 
Therefore we enlarge the set of i ¢ J to include all i ¢ J with 1 :s; i :s; s. If we 
let nJ = nieJPf' and n~ = niopf' then we obtain 

Since J is included in the sum ~(nJ,fx) = 1 ~ Ixln~, the claim is proved. 
Note that Ix ::f. 1 => nJ ::f. 1 => J ::f. {I, ... , s}, as required. 

Finally, since the real part of I/J(pf') + 1 - X(p;} is positive, the above 
product is nonzero. Since the index [E:: C~J is the ratio of regulators 
R( gal )/ R:, the proof of Theorem 8.3 is complete. 0 

Corollary 8.8. Let C; be the group generated by -1 and the units of the form 

r(1-a)/2 1 - (: 
':on 1 - (n' 1 < a < tn, (a, n) = 1. 

Then 

[E: : C;J = h: n n (1 - X(p)), 
x~ 1 pin 

where X runs through the nontrivial even characters mod n, and the index is 
infinite if the right-hand side is O. 

Proof. The regulator of C; is 
1 n 

+ n - L x(a)logll - (:1· 
-x~12 a=1 

(a,n)=1 

By the above calculations (plus Lemmas 8.7 and 8.6), we find that this expres
sion equals 

± n [h(X)L(l, X) n (1 - X(P»] = h: R: n n (1 - X(p». 
x~ 1 pin x~ 1 pin 

This completes the proof. o 
It is easy to see that there are many examples where C; is not of maximal 

rank. For example, if n = 55, then 11 splits in Q(j5), so X(11) = 1 for the 
quadratic character of conductor 5. Therefore [Ets : C;sJ is infinite. If n has 
4 distinct prime factors then the index is automatically infinite (see Exercises). 

In the above, we have used only two basic relations, namely 

and 
1 - (;;a = -Ga(1 - (:) 

(n/m)-I 

1 - (::. = n (1 - (:+m j ) if min. 
j=O 

The following theorem of Bass shows that these generate almost all relations. 
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Theorem 8.9. Let n =1= 2 mod 4 and let (A~t be the additive abelian group with 
generators 

and relations 

and 

(a) (n/m)-l (a + mi) 
g - = .L g -- if min (and aim ¥- 0). 

m )=0 n 

Let Cn be the group generated by {I - C: 11 :::; a < n}. (Cn contains some non
units). Then, for some c, there is an exact sequence 

0-+ (71./27L.)' -+ (A~)+ -+ Cn/< ± Cn> -+ 0, 

where 

g(~) 1-+ 1 - C:mod<±Cn>. 

Proof. The proof uses distributions, hence will be postponed until Chapter 
12. 

§8.2. Proof of the p-adic Class Number Formula 

In order to prove the p-adic class number formula (Theorem 5.24), we study 
the units of an arbitrary totally real abelian number field K of degree rover 
0. Let K S;; O(Cn)+ and let N be the norm from O(Cnt to K. Let E: and EK 
be the respective unit groups, and Cn+ and CK the cyclotomic units (we can 
take CK = EK ("\ C: or N(Cn+); either definition works here). If e E EK then 
Ne = ed, where d = deg(O(C.)+ /K). Therefore N(E:) contains E~, hence is of 
finite index in EK • Since [E: : C:J is finite, and N(C:) S;; CK , it follows that 
[EK: CKJ is finite. But we need to be more explicit. 

Let G = Gal(O(Cn)+ /0) = {O"a11 :::; a < tn, (a, n) = I}, and let H = 
Gal(O(Cnt /K). Then G/H = Gal(K/O). Let R S;; G be a set of coset represen
tatives for G/H and R' eRa set of representatives for G/H - {H}. In Theo
rem 8.3, 

a.a. 
~a = C~· -, where a. = n (1 - C:'). 

a. 1 

Letting p = N(a.), we have N(~a) = c~~(pa./p) with d~ E 71.. Clearly pa./p = 
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pab/p if (1'a(1';;l E H. So we only need to consider 

{N~al(1'a E R'}. 

We have 

R({N~a}) = ±det(logIN~:l)aER' 
aE G/H,a# 1 

= ±det(logIWaal-IogIWI) 

= ±det(loglpar-'I -loglpal)a,rEG/H 
a,r# 1 

8. Cyclotomic Units 

= ± n L X«(1')loglpal (Lemma 5.26) 
XE(G/HY aEG/H 

X#l 

= ± n L X«(1') L logle<arl· 
x#l " rEH 

Extending X to G by letting X(H) = 1, we obtain 

1 n 

± n L X«(1')logle<"1 = ± n -2 L x(a)loglaaal· 
x#l aEG x#l a=l (a,n)=l 

But these factors are exactly the ones that were evaluated in Theorem 8.3. 
Therefore, as before, 

R( {N~a}) = ± n [t!(X)L(I,X) f1 (rP(pf') + 1 - X(PJ)] 
z#l ~t~ 

= hKRK f1 f1 (rP(pf') + 1 - X(pJ) # 0, 
X#l pdfl 

so the group generated by {N ~a} and - 1 has index 

iK = hK f1 f1 (f/J(pf') + 1 - X(pJ) 
x#l pdfl 

in the full group of units. 
Observe that the preceding calculation of R( {N ~a}) would have worked 

just as well with logp in place of log, except for the use of the relation 

2'-lhK RK f1 L(I, X) = jd;. 
x#l dK 

Also note that (Theorem 5.18) 

fl ( X(p»)-l L x(a)logp(1 - (;) = - 1 - - r(x)Lp(l,x), 
_1 p 

so an Euler factor appears in the calculations. Therefore 

Rp({N~a}) = ± f1 [tr (X)(1 - X(p»)-l L p(1,X) f1 (rP(pf') + 1 - X(PJ)] 
x#l p pdfl 

= + iK 21-, Id f1 (1 - X(p»)-l L (1 -) -h YUK p ,x· 
K x#l P 
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But 

so 

iK = Rp( {Nea}) (p-adic version of Lemma 4.15), 
RK,p 

2r - 1h R + K K,p 

-A n (1 -X(p))-l Lp(l, X). 
x,.l p 
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Since RK,p is only determined up to sign, we may choose RK,p so as to 
eliminate the" ±". This completes the proof of Theorem 5.24. D 

§8.3. Units of Q(Cp ) and Vandiver's Conjecture 

We now study more closely the units of iQ«(p) for p an odd prime. Let ( = (p 
and let G = Gal(iQ(O/iQ) ~ (7L/p7LY. The characters of G are of the form 
Wi, 0 ~ i ~ p - 2, where w is the Teichmiiller character. Correspondingly, 
we have the idempotents 

It is easy to see that 

p-2 
L ei = 1 

i=O 
and e.e. = I {

e. 
I J 0, 

i=j 

i '" j. 

Let E be the units of Q«(p). For N > 0, let 

EpN = E/EpN 

Usually we shall take N sufficiently large; if we wanted to, we could take the 
inverse limit for N --+ 00, but this is not necessary. Since E = WE+, where W 
is the group of roots of unity, we have 

E/pN ~ 7L/p7L X (7L/p N7L)(P-3)/2, as groups. 

We wish to study the action of G, and 7L p[G], on EpN. If" E EpN and a E 7Lp 
then "a is defined in the natural way: let a == ao mod pN with ao E 7L; then 
"a = "ao. Consequently ei acts on EpN for each i, so 

p-2 
EpN = EB 6i EpN. 

i=O 

We now analyze each summand. First, suppose i = O. Then 60 is just a 
mUltiple of the norm, hence 

6 0 EpN s; Norm(EpN) s; 1 mod EpN = 1. 
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Next, let i be arbitrary. Let 11 E E, so '1 = ('110' where r E 71. and i/o = 110' 
Since l1a(O = (w(a), and since this equation characterizes 8 1 EpN' the subgroup 
generated by (lies in 8 I E p N. Now consider the real unit 110: 

p-I 
8i (l1oy-1 == n 11;1(l1o)'"'(a)modEpN 

a=1 

If i is odd, wi(a) = _wi( -a) while 11;1(110) = 11'::::~(110). The factors for a and 
-a cancel, so 8i (110) == 1 mod EpN. We have proved the following. 

Proposition 8.10. 

i even i even 

( < 0 = 8 1 E pN is the subgroup generated by O. D 

Note that E;N is a direct sum of (p - 3)/2 cyclic groups of order pN (by the 
Dirichlet Unit Theorem) and that there are (p - 3)/2 summands in the above 
formula. One therefore might expect that each summand is a cyclic group. 
We shall show that this is the case, using the cyclotomic units. 

Proposition 8.11. Let 9 be a primitive root mod pO. Then 

r( 1-9)/2 t - (;n 
~pn I _ (pn 

generates C:n/{ ± I} as a module over 71. [Gal(II)((pnt /11))]. 

Proof. During this proof, let ( = (pn. Let (a, p) = 1. Then a == g' mod p" for 
some r > 0, so 

1 r a I rg' ,-I I rg'+1 
(I-a)/2 _-_~_ = ((1-g')/2 ~ = n (gl_g.+I)/2 - ~ . 

1 - ( t - (i=O 1 - (g. 

= 'fi (((1-9)/2 I - (g),,~ . 
i=O I - ( 

The result follows from Lemma 8.1. D 

Remark. The above works for p = 2 if we let 9 == 5 mod 8 and note that either 
a == g' or -a == g'mod 2". 

Actually, Proposition 8.11 is a more explicit version of Lemma 5.27. 

Fix the primitive root 9 mod p and let i be even, 2 :$; i :$; p - 3. Let 

Define 
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E\N) = n ,(1-9)/2 ---"- , 
p-l ( 1 r9)"'N(a)ia;;' 

a=l 1 - , 

so 

and 

In particular, define 

Ei ~ E\l) = n (,(1-9)/2 1 - ,9)aia;;' 
a=l 1 -, 

== n ,a(1-9)/2 --=-'=--a mod(E+)P 
p-l ( 1 r a9)ap -'-i 

a=l 1 - , 

(change a to a-I and note O"a' = ,a). 

Since wN(a) == a mod p it follows that 

E\N) is a pth power <=> Ei is a pth power. 

This fact will prove useful in the following. For technical reasons it will often 
be convenient to let N be large. But we still obtain information about the 
case N = 1. Since logp' = 0, we have (change a to a-I) 

p-l . (1 _ ,a9) 

10gpE\N) = a~1 wN(a- 1 )'logp I _ ,a 

p-I . (1 _ ,a9 ) 

== a~1 w(ar'logp 1 _ ,a (mod pN) 

(since logp Q)('p) ~ Zp['p]; see Exercise 5.15(c» 

== _(Wi(g) _ l)r(w-i)Lp(l, Wi) (mod pN). 

From Proposition 6.13, we know that vp(r(w- i» = i/(p - I )(see also Exercise 
8.12). Since wi(g) - I == gi - I =1= Omodp, we have proved the following. 

Proposition 8.12. If N ~ I + Vp(Lp(l, Wi», then 

vp(logpE\N» = ~i_1 + vp(Lp(l,w i». 
p-

Proposition 8.13. Let N ~ 1 and let i be even, 2 :s; i :s; p - 3. Then 

6j E;N ~ Z/pNZ. 

o 

Proof. Since Lp(l,wi)"# 0, £IN) "# ± 1, hence 6iE;N "# 0, for large N. Since 
E;N ~ (Z/pNZ)(p-3)/2, and 6iE;N is a direct summand, 6iE;N ~ (Z/pNz)a i , for 
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some a; ~ 1. But La; = (p - 3)/2, so each a; = 1. This proves the proposition 
for large N. 

If N is arbitrary (i.e., smaller), we may choose M ~ N large and take a 
quotient. Then 

as desired. o 
Recall that h+ = [E+ : C+]. Let C;N be the group generated by C+ 

mod(E+Y'N.1f pN > h+ then 

(E+ /C+)p ~ E;'/C;N' 

where, for a finite abelian group A, we let (A)p denote its p-Sylow subgroup. 
From Proposition 8.11, e;C;N is generated by the unit E!Nl, so 

p-3 

(E+ /C+)p ~ EB e;E;'/(E!Nl). 
;=2 

i even 

Since e;E;N is a cyclic group of p-power order, the ith summand is nontrivial 
if and only if EINl is a pth power. Since EINl is a pth power if and only if E; is 
a pth power, we obtain the following important result. 

Theorem 8.14. plh+«(Q«(p)) ¢> some E; (i even, 2 :::;; i :::;; p - 3) is a pth power of 
a unit of (Q«(p)+. 0 

Corollary 8.15. If P % h+«(Q«(p)) then the E;'s generate E+ /(E+)P (this is also 
obvious from Theorem 8.2). 0 

Theorem 8.16. E; is a pth power => pIB;. 

Proof. We may replace E; with EINl for N sufficiently large. If E!Nl = t'/P then 
10gpE!Nl = p)ogpt'/. Since )ogpt'/ E Zp[(p] (cf. Exercise 5.15(c)), 

so 

Since 

1 :::;; vp(logpEINl) = _i-l + vp(Lp(l,w;)), 
p-

by Corollary 5.13, we have pIB;. This completes the proof. o 

Remark. The converse is not true. In fact, for p < 4000000, p % h+, so E; is not 
a pth power. 
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Corollary 8.17. plh+(O«(p)) => plh-(O«(p)) (this is the same as Theorem 5.34). 

Proof. Theorems 8.14, 8.16, and 5.16. o 

We have mentioned that pi h+(Q«(p)) for p < 4000000. The way this is 
verified (on a computer) is via the corollary of the following result. Its advan
tage is that it uses only rational arithmetic, hence is suitable for computer 
calculations. 

Proposition 8.18. Let i be even, 2 ::5: i ::5: P - 3. Let I be a prime with I == 1 
mod p, say I = kp + 1, and let t be an integer satisfying (t,l) = 1 and tk =1= 1 
mod I. Define 

. . p-( l)P-j 
d = d j = 1P-' + 2P-' + ... + -2-

and 

Let i be the prime of O«(p) above I such that t" == (p mod i (see the discussion 
following Proposition 2.14). Then 

Q~ == 1 mod I <=> Ej is a pth power mod i. 
Proof. Let R j = n==: W/2 - C"/2)",-1-'. Recall that g is a primitive root 
mod p. Changing a to ag, we find that 

p-l 

R j = n «("1112 - C"1I12)("lIjrH·(pth power), 
"=1 

so 

p-l ((GII12 _ CGII12)G'-'-1 
Rf'-l =]] (G/2 _ ( G/2 . (pth power) 

= EjAP for some A E O«(r. 

Note that the only prime ideal which can divide Rj is (1 - (); therefore Rj == 0 
mod i will never happen. Since (gj - 1, p) = 1, E j is a pth power mod i if and 
only if R j is a pth power mod i. The terms for a and p - a in the definition of 
R j differ by a pth power (note -1 = (-l)P), so we may combine terms and 
find that R j is a pth power mod i if and only if the same holds for 

(p-l)/2 (p-l)/2 n «(bI2 - cbl2r-H = C dl2 n «(b - It·-H. 
b=l b=l 

Since t" =1= 1 mod I but t"P = t ' - 1 == 1 mod I, t" is a pth root of unity mod I. 
Proposition 2.14 yields the prime ideal i of 0(0 lying above I such that 
t k == (mod i. Since (Z En/i) x is cyclic of order I - 1 = kp, it follows that 
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Q~ == 1 mod I, or mod T, if and only if Qj is a pth power mod i. Since 
(p-1)/2 

Qj == C d/2 n (C b - l)br l-l mod T, 
b=1 

the proof is complete. D 

Corollary 8.19. Let p be an irregular prime and let i1 , ••• , is be the even indices 
2:::;; i :::;; p - 3 such that plBj • Suppose there exists a prime I == 1 modp and an 
integer t, as in Proposition 8.18, such that Q~ =1= 1 mod I for all i E {i l' ... , is}. 
Then p (h+(Q(Cp)). 

Proof. Theorems 8.14 and 8.16, and Proposition 8.18. D 

Remark. Of course, we could have used a different prime I for each index i, 
but the above form is what will be needed in Chapter 9 when we treat 
Fermat's Last Theorem. The converse of Corollary 8.19 is also true. Suppose 
p (h+. Then none of the E;'s are pth powers. The density of the prime ideals I 
such that a given E j is a pth power mod T is lip by the Tchebotarev Density 
Theorem. Since there are less than p units E j , there must be infinitely many T 
such that none of the E;'s are pth powers mod i. As usual, only primes T with 
residue class degree lover Q need to be considered, but these are precisely 
the primes that lie over rational primes I == 1 mod p. Proposition 8.18 now 
applies and we have Q~ =1= 1 mod I for all i, for an appropriate choice of t. 

Remark. Vandiver's conjecture states that p (h+(Q(Cp)) for all p (Serge Lang 
has pointed out that the conjecture actually originated with Kummer: in a 
letter to Kronecker, Kummer refers to p (h+ as a "noch zu beweisenden Satz" 
(see Kummer's Collected Works, vol. I, p. 85)). The conjecture has been 
verified for all p < 4000000. What are the chances that it is true in general? 
First, consider a probability argument similar to that used for h- in Section 
5.3. Suppose each E j is a pth power with probability lip. There are (p - 3)/2 
indices i, so the probability that p (h+ would be 

( 
1)(P-3)/2 

1 - P -+ e-1/2 = 0.6065 .... 

This does not agree at all with the numerical evidence. Perhaps, then, is there 
something yet undiscovered which causes the E;'s to be non-pth powers? If 
so, could this force be strong enough to make Vandiver's conjecture true for 
all p? This question remains open. Another probability argument that could 
be used is a refinement of the above. Since the only E;'s which can possibly 
be pth powers occur when plBj , we consider only such indices i and suppose 
that the probability of being a pth power is again lip. The index of irregular
ity should take on the value k with probability e-1/2/2kk! (see the discussion 
following Theorem 5.17), so the number of exceptions to Vandiver's conjec
ture for p :::;; x should be approximately 
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00 

L L (Prob. i(p) = k)(Prob. some Ej is a pth power) 
psx k=O 

00 (e-1/2) ( ( l)k) L L - 1- 1--
pSX k=O 2kk! p 

1 
= L (1 - e-1/2p ) - L - - !loglogx. 

psx pSx 2p 

Since! log log(4000000) = 1.36 ... , it is not surprising that no exceptions 
have been found. Moreover, most of the contributions to this sum come from 
the first few primes. If we started the sum at the first irregular prime p = 37, 
we would obtain a much smaller number. 

Finally, we could use a more naive approach. Suppose plh+ with probabil
ity lip. Then the number of exceptions to Vandiver's conjecture for p ~ x 
should be 

1 L - -loglogx. 
pSX p 

The comments for the previous approach apply here also. However, another 
point arises. For h- we used Bernoulli numbers which were much larger than 
p. Hence it was reasonable to expect that they were random mod p. But it is 
possible that h+ is often small. In fact, very little is known about h+. For 
small values of p, h+ = 1. For some p we know h+ > 1. For example 31his7 
since h(IQ(J2s7)) = 3. But, at present, for each p with h+ > 1 we do not 
know the exact value. The computer calculations would be too lengthy. In 
any case, assuming h+ is random mod p is rather dangerous. 

Whether or not Vandiver's conjecture is always true, the above arguments 
indicate that it should hold for most primes. In Chapter 10, several important 
consequences of the conjecture will be given. 

§8.4. p-adic Expansions 

We now examine the p-adic expansions of units. Our main goal is to prove 
Theorem 8.22. Let, = 'p and let 

n = , - 1 and A = (' - I)(C1 - 1) = 2 - (' + C 1 ), 

so (n) and (A) are the prime ideals lying above p in 1:[n and Z[, + C 1], 

respectively. Note that any element of Z[, + C 1 ] = Z[A] is congruent to a 
rational integer mod A. Since (A)(p-l)/2 = (p), we have 

A(p-1)/2 = a.p + (Up + ... with a., P E Z. 

Let rt =F ± 1 be a real unit. We may write 

rt = a + bAc + dAc+1 + ... 
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where p (ab and c ¥= Omod(p - 1)/2 (if plb, add (p - 1)/2 to c. If c == 0, use 
the formula for ).,lP-1)/2 above, and then modify a. If pia, then '1 is not a unit). 
Note that c is the largest integer n such that '1 is congruent to a rational 
integer mod)" n. Hence c is uniquely determined by '1. The integers a and bare 
unique mod).,c+l and modp, respectively. 

With the above notation, we may use Exercise 5.14 to conclude that 

2c 
vp(logp'1) = --1 ' 

p-

so this gives us a method for determining c. For example, if N is large enough, 
Proposition 8.12 implies that 

E\N) == ai + bi).,ci mod).,ci+1 

with 

Proposition 8.lO. Let i be even, 2 ~ i ~ P - 3.1f N > 2c/(p - 1) and 

'1 = a + b)"c + ... E 8iE} 

then 

i P - 1 
c==2 mod -2-· 

Proof. Let (oc, p) = 1. Since n"· = C« - 1 = (n + It - 1 = ocn + ... , it follows 
that 

Therefore 

From Exercise 5.14, 

b 
10gp'1 == _).,c mod).,c+l, 

a 

boc2c 
10gp'1"· == -).,c modA:+l. 

a 

10gp'1"· == (Oi(OC) logp '1 mod pN. 

Since N > 2c/(p - 1), we obtain 

. b boc2c 
(O'(oc)-).,c == _).,c mod).,c+l, 

a a 



§8.4. p-adic Expansions 161 

hence 

wi(a) == a2c mod p, for all (a, p) = 1. 

Therefore i == 2c mod(p - 1), as desired. D 

Lemma 8.21. Let i be even, 2 ~ i ~ p - 3, and let fii be a generator for 6iE;". 
If N ~ 1 + Vp(Lp(l, Wi)) then 

, '+1 ( p - 1) ii. = a~ + b:Ac'modAci p ~a~b: c~ ± Omod--
'11 -, I ~ I " ,~ 2 

with 

Proof. We have ElN) = fi1'Y P" for some di E 7L, Y E E+. Therefore 

I E(N) - d I - d N ogp i = i Ogp11i mo p . 

By Proposition 8.12, 

Therefore 

so 

vp(logpElN») = _i-l + Vp(Lp(l, Wi)) < N. 
p-

Remark. Since vp(di) = vp(logpElN») - vp(lOgpfii) = [2/(p - 1)](ci - cD, we 
have from the discussion preceding Theorem 8.14, 

2 p-3 

vp(h+(Q!(~p))) = p _ 1 i~2 (Ci - c;). 
i even 

We may now generalize Theorem 5.36 (see also Exercise 5.7). 

Theorem 8.22. Let M = maxi Vp(Lp(l, Wi)), where i is even, 2 ~ i ~ p - 3. If 11 
is a unit of 7L[~p] which is congruent to a rational integer modpM+l then 11 is 
a pth power of a unit. 

Proof. As in the proof of Theorem 5.36, we may assume 11 is real. Write 

11 = a + bAc + .... 
Then, by hypothesis, 
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p - 1 2c 
c 2: ~2-(M + I), so vp(logp1/) = ~- 2: M + 1. 

p - I 

Let N 2: M + I and let ih, ... , iip -3 be as in Lemma 8.21. We may write 

1/ = 1'pN TI ii?' 

with gi E 7L, l' E E+. We shall show that plgi for all i. Since 

2c~ i 
~'- = vp(logpiiJ == --mod I 
p-l p-I 

by Proposition 8.20, it follows that the numbers Vp(gi logp iii) are distinct 
mod I, hence distinct. Therefore 

Also, 
Vp(L gi logp iiJ = min Vp(gi logp iiJ 

Vp(L gi logp iii) = vp(logp 1/ - pN logp 1') 

2: min(vp(logp 1/), Vp(pN logp 1')) 

2: min(M + I,N) = M + 1. 

Therefore, for each i, the above, plus Lemma 8.21, yields 

i . 
M + I ::;; vp(gilogpiiJ::;; vp(gJ + ~-I + vp(L p(1,w')) < vp(gJ + I + M. 

p-

Consequently vp(gJ > ° for each i and 1/ is a pth power. This completes the 
proof. 0 

Corollary 8.23. Suppose p3 ( Bpi for all even i, 2 ::;; i ::;; p - 3. If 1/ is a unit of 
7L [( p] which is congruent to a rational integer mod p2 then 1/ is a pth power. 

Proof. By Theorem 5.12, 

Lp(s,w i) = ao + ads - I) + ... 
with ai E 7Lp for all i, and plai for i 2: 1. Therefore 

Bpi pi-I Bpi . i - ----. == - (1 - p ) -;- = L (1 - Pi, W ) 
pi pi p 

== ao = Lp(1,w i)modp2. 

If p3 (Bpi then vp(Lp(l,wi))::;; I, so M::;; 1. The result now follows from the 
theorem. 0 

We have been considering local properties of global units. As a final result, 
we consider the global units as a subgroup of the local units. We continue to 
assume p is an odd prime. Let 

VI = {x E 7L p [A] Ix == I mod A}. 
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Let 

p-3 

U1 = n BiU1 • 
i=O 

ieven 

ieven 

Since the norm to ([)p is (p - 1)Bo, 

U~ = {x E U1INorm(x) = 1}. 
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Lemma 8.24. Let i be even, 2 ~ i ~ P - 3. Then BiUl is a cyclic Zp-module with 

ei = (1 + }.i/2)(P-l)£, 

as a generator. 

Proof. As in the proof of Proposition 8.20, 

Therefore 

O" .. (}. i/2) == IX i}. i/2 mod}, i/2+ 1 

(I + }.i/2)(P-l)£, = 1 + Ct: W- i(IX)lX i)}.i/2 + ... 

== 1 - }.i/2 mod }.i/2+1. 

It is easy to see that any set of elements whose }.-adic expansions start with 

i = 2, 4, ... , p - 3, 

plus the element eo = 1 + p, may be used as a set of Zp-generators of UI' 
Since ei E BiUl for all i, including 0, we must have BiU1 generated by ei' as 
~~ 0 

Let ct = C+ n U1 = C+ n U~ (if '1 E C+ n UI then Bo('1) is a power of 
Norm('1), hence equals 1. Therefore C+ n U1 = C+ n Ui). If '1 E C+ then 
'1 P- 1 E Ct. If N is chosen large enough that C+ n (E+)pN ~ (C+)P, then 
E~N), ... , E<;J. 3 generate C+ /(C+)P, hence 

(E<t)r 1, ••• , (E~~3)P-l generate ct /(Ci)p. 

The standard recursive procedure shows that ct is contained in the Zp
submodule of U1 generated by these elements; therefore the closure et of ct 
in U1 is exactly the Zp-submodule generated by the (E\N»)P-l, i = 2, 4, ... , 
p - 3. 

Theorem 8.25. Let i be even, 2 ~ i ~ P - 3. Then 

[BiU~: Biet] = pVp(Lp(l,ro'». 
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Proof. Let d be the index, which must be a power of p since we are working 
with l'p-modules. Let ~i be as in Lemma 8.24 and let (E!N»)P-l be as above. 
Then 

~t = (E!N»)(P-l)U, 

where u is a p-adic unit. Consequently (with N sufficiently large), 

vp(dlogp 0 = vp(logp E!N») = _i -1 + Vp(Lp(l, Wi)). 
p-

But logp( = logil - ).i12 + ... ) == _).iI2 mod).il2+1 (cf. Lemma 5.5), so 

i 
vp(logp~;) = --1' 

p-

Therefore vp(d) = vp(Lp(l,Wi)). The proof is complete. o 

Corollary 8.26. Ress=l C(W;p)+ ,p(s) = (1 - lip) [U~ : Ci] . u, where u is a p-adic 
unit. 

Proof. We know from Chapter 5 that the residue is 

(l -1) n Lp(l, Wi). 

The result now follows easily from the theorem. 

The above results will be generalized in Chapter 13. 

NOTES 

D 

Theorem 8.2 is due to Kummer [4]. Many of the results in this chapter had 
their origins in his work, and also in that of Vandiver. The index of the 
cyclotomic units in the general case of I(Ji(Cn) has been determined by Sinnott 
[1], [2], [3]. Other results have been obtained by Leopoldt [2] and c.-G. 
Schmidt [2]. For the case of function fields, see Galovich-Rosen [1]. 

The cyclotomic units can be used to obtain information about class num
bers, especially their parity. See D. Davis [1], Garbanati [1], Schertz [1], and 
several papers ofG. Gras and M.-N. Gras. 

For elliptic analogues of cyclotomic units, see the papers of Robert, 
Gillard, and Kersey. 

Kucera [4] constructed bases for the full set of cyclotomic units. 
For applications of cyclotomic units to topology, see Dovermann

Washington [1] and Weinberger [1]. For applications to numerical analysis, 
see Hua-Wang [1]. For another non-number-theoretic application, see 
Ply men [1]. 

Vandiver states that he conjectured p ¥ h; in Vandiver [1]. Kummer tried 
but was unable to prove the conjecture (Letter to Kronecker, April 24, 1853; 
Collected Papers, vol. I, 123-124). 
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The last section is from Washington [8], which is based on ideas of Denes 
[1], [2], [3]. 

EXERCISES 

8.1. Suppose pi h+(O((p)) but plh-(O((p)) (such p are called "properly irregular"). 
Show that there exists a unit in O((p), in fact one of the E;'s, which is congruent 
to a rational integer modp but which is not a pth power. 

8.2. Let e. be as in Lemma 8.1. Show that 

e. = ± 
(1 - (·)(1 - C·) 
(1-0(1-( I) 

8.3. Let p be odd and let N be the norm from O((pt to O. 
(a) Show that e. = (~1-.)/2((; - 1)/((p - 1) == a mod((p - 1). 
(b) Show that N(e.) == a(p-I)/2 modp. 

(c) Show that if the Legendre symbol (a/p) = -1 then N(e.) = -1. 
(d) Let p == 1 mod 4 and let e be the fundamental unit of o (JP). Show that 
Norm(/:) = - 1, where the norm is from O(JP) to O. 

8.4. Let N be the norm from 0((". .. ) to O(Cp.)' Show 
(a) N(1 - (;:. .. ) = 1 - (;., (a,p) = I; 
(b) N(-C;:' .. ) = -C;.; 
(c) N: C".., ..... Cpo and N: C; .. ..... C;. are surjective when p. f:. 2. 

8.5. Show that [E: C] = [E+ : C+] for 0((.). 

8.6. Let C. be as in Theorem 8.9. Show ± (. E C •. 

8.7. Corollary 8.8 implies that there is a relation in C~9' Find one. 

8.8. Let n '/= 2 mod 4 have at least 4 distinct prime factors, say p < q < r < s. Show 
that at least one of the quadratic characters X of (lL/qrs7lY is even and satisfies 
X(p) = I. Conclude that [E; : C;] is infinite in the notation of Corollary 8.8. 
Show, however, that if n = 3·7· II then the index is finite. 

8.9. Suppose pih+(O((p))' Let iI' ... , is be the irregular indices. Show that the 
extension 

O((p, El:P, ... , El!p)/O((p) 

is unramified (see Exercise 9.3) and has Galois group isomorphic to (lL/plL)s. 
Under the assumption pi h+, s is the rank of the ideal class group (Corollary 
10.14), so this shows how to generate the "p-elementary" Hilbert class field of 
O(Cp )' In fact, for p < 4000000 the ideal class group is (lL/plL)', so we get the 
entire Hilbert class field. 

8.10. Suppose we have units '12' '14' ... , '1 p -3 of O(Cp )+ such that 

and suppose the C j are distinct mod(p - 1)/2 (for example, Ci == iI2). Let g2, .•• , 

gp-3 be integers. Show that 
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p-3 n '1f' == a + bAC mod Ac+l 
i=2 

with p % ab and with C = mini(ci + [(p - 1)/2]vp(gi». 

8.11. For i = 2, 4, ... , p - 3, let Ei = ai + b) c, (mod A c,+l), with p (aibi and Ci ¢ 0 
(mod p - 1). Suppose p % Bi• Show that Ci = i/2. 

8.12. (a) Show that 0 < vir(w-i» < 1 (i ¢ o (modp - 1)). 
(b) Use Proposition 8.20 plus the proof of Proposition 8.12 (without Proposi
tion 6.13) to show that vp(r(w- i » == i/(p - 1) (mod 1). When i is even. 
(c) Conclude that vp(r(w- i )) = i/(p - 1) for 0 < i < p - 1, i even. 



CHAPTER 9 

The Second Case of 
Fermat's Last Theorem 

In Chapters 1 and 6 we treated the first case of Fermat's Last Theorem, 
showing that there are no solutions provided certain conditions are satisfied 
by the class number. We now study the second case, namely 

p ( xy, plz, z i= O. 

Again, the class number plays a role, but the units are also very important, 
which makes things much more difficult than in the first case. In fact, before 
Wiles the second case was only known to hold for p < 4000000, while the 
first case was known for p < 7.57 X t017• 

In the following, we first give the basic argument which underlies all of the 
theorems we shall prove. Then we show how various assumptions make the 
argument work. A basic component of all the proofs is Vandiver's conjecture 
that p (h+(!Q('p»' In fact, if a prime is ever found for which Vandiver's 
conjecture fails, it is not clear that we could use cyclotomic methods to prove 
the second case of Fermat's Last Theorem for that prime. However, the first 
case is probably safe, since Theorem 6.23 and also some other independent 
criteria all have a very low chance of failing, either simultaneously or even 
individually. 

§9.1. The Basic Argument 

Consider the equation 

where 

167 
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p~ 3; 
A = (1 - ()(1 - e 1), (C = (p); 

A, w, (), ~ E Z[A] are pairwise relatively prime; 
'1 is a (real) unit of Z[A]; and 

m ~ p(p - 1)/2. 

We shall show that under certain conditions this equation has no solu
tions. If this is the case then 

pi xy, plz, z # o. 
has no solutions. Otherwise we could assume (x, y, z) = 1 and let w = x, 
() = y, and ~ = Z/pD, where a = vp(z). Then m = pa(p - 1)/2 ~ p(p - 1)/2, and 
'1 = pDP/Am is a unit. 

Suppose we have a solution. Then 

p-1 n (w + (D()) = '1Am(p. 
0=0 

Suppose /t is a prime ideal of Z[n such that 

/tlw + (tJ() and /tl w + (b(), where a =1= b mod p. 

Then 

and 

/tICb-O(w + (tJ(}) - (w + (b()) = (unit)(1 - Ow. 

If /t # (1 - C) then /tl(} and /tlw, contradiction. Therefore /t = (1 - n Since 
A and () are relatively prime, /t k (); hence /t 2 i (w + (O()) - (w + (b()). There
fore /t 2 = (A) divides at most one of the factors (w + (D()). Since w + () = 
wP + (}P = 0 mod A, and since similarly w + (O() = 0 mod(1 - 0. we may 
write 

(w + ()) 'fi (w + (:()) = (unit)Am-(p-1)/2~p 
0=1 1 - ( 

where the factors on the left are pairwise relatively prime algebraic integers 
and 

l~a~p-1. 

It follows that there are ideals Bo, 0 ~ a ~ p - 1, in Z[n such that 

1 ~ a ~ p -1, 
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and 

(w + 0) = (At-(P-l)/2B8. 

Note that the ideals Ba are pairwise relatively prime. For later reference, we 
also observe that 

(~) = BoBl ... Bp- 1 and (1 - CH Ba for 0 :5; a :5; p - 1. 

It is easy to see that Bp - a is the complex conjugate of Ba. We shall write B_a 
instead of Bp-a. We now need our first assumption. 

Assumption 1. p, h+(IO(Cp )) (Vandiver's conjecture). 

Assuming this, we claim that Bo is principal in Z[A]. Note that Bo = Bo 
and (1 - C), Bo, so Bo arises from Z[A]. Since B8 is principal in Z[A], because 
w + 0 and A are real, Assumption I implies that 

Bo = (Po), with Po real, 

as claimed. Consequently, 

w + 0 = '1oAm-(P-l)/2pg, 

where '10 is a unit which must be real since everything else is real. 
Now let a ;f= 0 mod p and let 

IX = (w + cao) (w + CaO)-l = _ r-a W + CaO 
1 - ca 1 - C a '" W + C ao 

= -ca w(1 - ca) + (w + o)ca = 1 modO _ 02m- p 

w(l - C a) + (w + OK a ' 

since w + 0 = 0 mod Am -(p-1)/2 therefore modO - 02m- p +1. Since 2m - p ~ 
p(p - 1) - p = p(p - 2) ~ p, we have 

IX = 1 mod(1 - Op. 

Lemma 9.1. If IX E Z[C p ] satisfies IX = I mod(1 - OP then 

IO(Cp , IXl/P)/IO(Cp ) 

is unramified at 0 - n 
Proof. Let 

«1 - C)X + 1)P - IX 
f(X) = (1 _ C)P . 

Clearly f is monic, and since p divides the binomial coefficients (~), 1 :5; j :5; 

p - 1, it follows that f(X) has coefficients in Z[G A root P of f generates the 
same extension as IX l /p • The different of this extension divides 
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f'(P) = p ((1 - ')P + l)P-l 
(1 - OP 1 

P 
- (1 _ ,)P 1 mod(1 - '). 

Since p/(1 - ,)P-l is a unit, the different is relatively prime to (1 - '), so 
(1 - ') is unramified. This completes the proof of the lemma. 0 

Since (oe) = (Ba/B-a)P, the extension in Lemma 9.1 is also unramified at all 
other primes (Exercise 9.1). 

Lemma 9.2. Assume p (h+(O('p». Suppose oe E O(,p) satisfies ex = oe-1 and 
suppose the extension O('p, oe 1/p)/O(,p) is unramijied. Then oe is a pth power in 
O(,p). 

Proof. Assume the extension is nontrivial, hence of degree p. Let 

u: oe 1/p 1-+ 'poe 1/p 

generate the Galois group and let J denote complex conjugation, extended so 
that J(oe 1/P ) = (Joe)l/P. Since Joe = oe- 1, 

and 

Ju(oe1/P) = J('oe 1/P) = _1_ 
'oe 1/p ' 

uJ(oe1/P) = u(oe- 1/P) = C 1oe- 1/p • 

Therefore Ju = uJ, so uJ has order 2p and fixes O(,p)+. Since 

[O('p, oe 1/P): O('ptJ = 2p, 

uJ generates the Galois group. Let K be the fixed field of J, so K/O(,p)+ is 
abelian of degree p. If a prime ideal It of O(,p)+ were to ramify in the 
extension, it would have ramification index p > 2, so the ramification could 
not be absorbed by O('p)/O(,p)+. Hence O('p, oe 1/P )/O(,p) would be ramified, 
contrary to hypothesis. Therefore K/O(,p)+ is unramified and abelian of 
degree p, so plh+(O(,p», which is a contradiction. This proves the lemma. 

o 

Remark. Note that the fact that ex = oe- 1, hence oe is in the" -" component, 
caused oe 1/p to yield an extension of the real subfield, which is the .. +" 
component of O('p). This phenomenon will occur again in Chapter to. 

By the lemma, we have 
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for some 1X1 E Q((). But, as ideals, 

( w + (a(} w + ca(}) = (B B )P 
1 _ (a 1 _ ( a a -a . 

By the same reasoning as was used above for Bo, we have 

where r( is a real unit and P' is real. Therefore 

( w + (a(})2 = '( P')P 
1 _ (a 1'1 1X1 • 

Raising both sides to the (p + 1 )/2th power, we obtain 

w + (a(} _ P 

1 _ (a - rJaPa' 

171 

where rJa is a real unit (so rJa = rJ-a) and Pa E 1:[(]. Changing a to -a, we find 
that (Pa)P = P~a' so we may change P-a by a power of ( and assume 

Pa = P-a· 

We have two equations: 

w + (a(} = (1 - (a)rJaP: 

w + ca(} = (1 - Ca)rJaP:. 

Multiplying, we obtain 

w2 + e2 + W + C a)w8 = AarJ;(PaPa)P, 

where 

Also, from a previous formula for w + e, we find 

w 2 + (}2 + 2w(} = rJ~A2m-p+lp5P. 

Subtract and divide by Aa: 

-w8 = rJ;(PaPa) - rJ~A2m-p+lP5PA.;1. 

Now let b "* 0 mod p be another index and assume a"* ± b mod p. This is 
possible if p > 3. For the case p = 3, see the Exercises. We have 

-w8 = rJl(PbPb)P - rJ~A2m-p+lP5PA;;1. 

Subtract and rearrange: 

rJ;(PaPa)P - rJl(PbPb)P = rJ~A 2m-p+l P5P(l.;1 _ A;; 1 ). 
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An easy calculation shows that 

-I -I (C b - ca)W+ b - 1) b' 
Aa - Ab = AaAb = T' 

where b' is a unit. In fact, b' is real since A, Aa, and Ab are real. Therefore 

G:Y (PaPa)P + (-PbPb)P = bA2m- p(P5)P. 

where b is a real unit. We now need the following. 

Assumption II. tfaltfb is a pth power of a unit of 4:J!«(pt. 

Assuming this, we let 

Then 

( tfa)2/P _ 
WI = tfb PaPa, 

(}I = - PbPb' and 

~I = P6· 

Wf + (}f = bA2m-p~f· 

Note that b is a real unit and 

p-l 
2m - p ~ p(p - 1) - p = (p - 2)p ~ P-2-. 

Since the numbers 

1 :-:; a :-:; p - 1, 

and 

W + () = tfo;.m-(p-I)/2pg (with A% Po) 

are pairwise relatively prime, it follows that WI' (}I' ~ I' A are pairwise rela
tively prime. We are now in the situation in which we started. 

Suppose now that ~ had the smallest possible number of distinct prime 
ideal factors (not counted with multiplicity). We know from above that 

(~) = BOBJ ... Bp-J 

and that these factors are relatively prime. But 

(~J) = (P6) = B5· 

Therefore 

BJ = ... = Bp-J = (1), 
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so 

OJ + ,a(}. . 
1 _ ,a IS a umt, l:::;;a:::;;p-1. 

Let a = ± 1. We find that 

a = (~ ~ ~(})(~ ~ ~-ll(}rl 
is a unit with aa = 1. By Lemma 1.6, a is a root of unity: a = ± 'C for some c. 
But a == 1 mod(1 - OP, hence mod(1 - ,)2, by a previous calculation (for
mula preceding Lemma 9.1), so a = 1. Consequently 

A short calculation yields 

OJ + '(} OJ + C 1(} 

~=1_,1· 

'((} + OJ) = C1((} + OJ). 

Since (} + OJ =F 0 (otherwise e = 0; this is where the trivial solutions are ex
cluded), we have ,2 = 1, which is false. This contradiction completes the 
argument. 

§9.2. The Theorems 

There are various methods of satisfying Assumptions I and II. We give three 
ways in this section. 

Theorem 9.3. If p is regular then the second case of Fermat's Last Theorem has 
no solutions. 

Proof. If p is regular then pi h+(O!(,p», so Assumption I is satisfied. 
From formulas in the previous section, 

_ OJ + ,a(} _P 

'1a - 1 _ ,a Pa 

= (OJ + ,a~ ~ ,~)Pa-p 
== OJp';-Pmod(l - 02m- p • 

Since a similar equation holds with b, we obtain 

'1a == (p,,)P mod (1 _ 02m-p. 
'1b Pa 

But 2m - p ~ p - 1 and (Pb/ Pa)P is congruent to a rational integer mod p by 
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Lemma 1.8. Therefore 

'1a == rational integer (mod p). 
'1b 

By Theorem 5.36, '1al'1b is a pth power. This proves Assumption II and 
completes the proof of Theorem 9.3. D 

Theorem 9.4. Suppose p3 % Bpi for all even i, 2:5;; i :5;; p - 3, and assume 
p % h+(Q((p)). Then the second case of Fermat's Last Theorem has no solutions. 

Remark. Since Bpdpi == Bdimodp, we have p31Bpi only if plBi (but not 
conversely). 

Proof. Assumption I holds by hypothesis, so it remains to check Assumption 
II. Since p = 3 is covered by Theorem 9.3 (or the Exercises), we assume p > 3. 
We know that 

Therefore 

hence 

p _ -1 W + (a(J 
Pa - '1a 1 _ (a ' 

p _ -1 W + ca(J _ -1 (aw + (J 
P-a - '1a 1 _ ( a - - '1a 1 _ (a ' 

w + (J = '1oAm-(P-I)/2p8. 

and 

1 + (a 
n P - pP = '1- 1 __ '1 Am-(P-I)/2 p P t'a -a a 1 _ (a 0 0, 

where ~ is a (nonreal) unit. Since Pa and P-a are relatively prime, it follows as 
at the beginning of the previous section that the numbers 

Pa-(i~-a(l<'< -1) and Pa-P-a 
1 - (' - I - p, 1 _ , 

are relatively prime algebraic integers. Since 2m - p ~ (p - 2)p > P (since 
p > 3), at least one (hence exactly one) of these numbers is divisible by 1 - (. 
It follows that 

(1 - 02m-2p +i divides Pa - (iP_a for some i, 

Consequently, 

O:5;;i:5;;p-l. 
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In the previous section, Pa and P-a were determined up to roots of unity, 
subject to the restriction that Pa = P-a' Therefore, we may replace Pa by 
C i /2 Pa and assume that 

Pa == p_amod(1 - 02m-2p +l. 

As before, there exist ideals Ci , 0::;; i ::;; p - 1, of ZEn such that 

( Pa - (i~_a) = cP 
1 - (' I' 

1 ::;; i ::;; P - 1, and 

(Pa - P-a) = (1 - 02m-2p +lcg. 

Since (Pa - (P-a)/(l - 0 is real, it follows as in the previous section, since 
p (h+, that C1 is principal: 

Pa - (P-a _ - p 

1 _ ( - "aJ1.a, 

where fia is a real unit and J1.a E Q(O+. From the above congruence (Pa == P-a), 

Pa == fiaJ1.%mod(1 - 02m-2p , 

so 

ill + (a() _ 2 _ 

__ = " pP == " "plIp mod(1 _ r)2m 2p t _ ,a a a a a t"'a ~. 

A similar formula holds with b in place of Q. Therefore 

"a fi~ ill + (a() 1 - (b (~b)P2 mod(1 _ r)2m-2 p 

l1b f1: - 1 - ,a W + ,bO Ila ~ 

== (~~y2 mod(1 _ 02m-2 p, 

since 

ill + (ao 1 - (b _ ( a () + ill) ( b () + ill)-l 
1 - (a ill + (b() - ill + ( 1 _ (a ill + ( 1 _ (b 

== 1 mod(1 - 02m- p • 

Since 2m - 2p ~ p(p - 1) - 2p = p(p - 3) > 2(p - 1), the above becomes a 
congruence mod p2. From Lemma 1.8, 

(::Y == rational integer (mod p), 

from which it follows that 

(::Y 2 

== rational integer (mod p2). 
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Therefore 

9. The Second Case of Fermat's Last Theorem 

-p 

~ ~: is a pth power, 
'1b'1b 

by Corollary 8.23, hence '1a/'1b is a pth power. This verifies Assumption II and 
completes the proof of Theorem 9.4. D 

The disadvantage of Theorem 9.4 is that it requires us to show that 
p (h+(Q((p)). The best way to do this is via Corollary 8.19. However, if the 
hypotheses of Corollary 8.19 are satisfied for a sufficiently small I, we are very 
fortunate, since not only does p (h+ but also the second case of Fermat's Last 
Theorem has no solutions, as the following result shows. 

Theorem 9.5. Let the notation be as in Proposition 8.18 and Corollary 8.19. If 
there exists a prime I = 1 mod p with I < p2 - P such that 

Q~ ¢ 1 modi for all i E {il, ... ,i.}, 

then the second case of Fermat's Last Theorem has no solutions. 

Proof. By Corollary 8.19, p (h+(Q((p)), so Assumption I is satisfied. Suppose 
that 

P% xy, plz, z # 0, 

where x, y, z E Z are relatively prime. Let 1 be as in the statement of the 
theorem. 

Lemma 9.6.1 % xy. 

Proof. Suppose Ily, hence 1 (xz. Since 
p-l 

f1 (y - (az) = -x P, 

a=O 

the standard argument shows that the numbers 

y _ (az, 0::;; a ::;; p - 1, 

are relatively prime in Z[(p], so there exist ideals Aa , 0::;; a ::;; p - 1, such 
that 

(y - (az) = A~. 

Let a ¢ 0 mod p, and let 

rx = (y - (az)(y - CaZ)-l 

W - Ca)z 
=1----y _ ( az 

= 1 mod(1 - OP, since plz. 
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Since (ex) is the pth power of an ideal, o (ex l/p, (p)/O((p) is unramified except 
possibly at (1 - O. Lemma 9.1 implies that this extension is also unramified 
at (1 - O. Since PI h+, ex is a pth power by Lemma 9.2. As in the previous 
section, the ideal 

(y - (az)(y - Caz) = (AaA-a)P 

is the pth power of a principal ideal in O((pt (since PI h+), and by the 
argument used there, 

where Ya is a real unit, (fa E Z[(pl Since we are assuming Ily, 

_(az == YAfmodl. 

Taking complex conjugates and noting that Ya = Y-a, we find that 

-Caz == Yau~amodl. 

Since II z, we may divide and obtain 

(2a == (~)P mod l. 
(f-a 

Let T be a prime of O(,p) lying above l. Since 2a =1= 0 mod p, the equation p = 
n (l - ,j) implies that ea =1= 1 mod T. Therefore ua/u-a has order p2 mod T. 
Since I == 1 mod p, Z [n mod T has I elements; hence p211 - 1. Since I < p2 -
p, this is impossible, so II y. Similarly, Ik x. This proves Lemma 9.6. D 

Lemma 9.7. liz (this is where I < p2 - P is used most strongly). 

Proof. Write 1= 1 + kp with k < p - 1. By the equations obtained in 
Lemma 9.6 (we only needed p k x), 

(y - ,az)ua- P = Ya = Y-a = (y - caz)u=:, 1 ~ a ~ p - 1. 

Let T be a prime of Z[,p] above I. Since ZEn mod T has I elements, 

u;P = U~-l == 1 mod T 

(ik x, so T k ua ). Therefore 

(y - ,azt == (y - CaZ)k mod T. 

Multiply each side by C a and expand to obtain 

cayk _ kzyk-l + ... + (a(k-l)zk == cayk _ kC 2azyk-l + ... + Ca(Hl)Zk. 

Since k < p - 1, only the term _kzyk-l contains a trivial power of ((i.e., (0). 
Note that the above congruence also holds for a = o. Therefore we may sum 
for 0 ~ a ~ p - 1. The powers of ( sum to 0, so we obtain 

- pkzyk-l == 0 mod T. 



178 9. The Second Case of Fermat's Last Theorem 

But I = 1 + kp, so 1% pk. Lemma 9.6 implies that I ( y. Therefore liz, hence liz. 
This completes the proof of Lemma 9.7. D 

Now we may work with the "basic argument" of the previous section. 
From the above, we find that we may start with the equation 

OJP + ()P = rtA.m~p 

with the added condition that II~. Assuming that we can show that rtalrtb is a 
pth power, we obtain 

OJf + ()f = t5A.2m-p~f, 

where ~l = P5· We want to show that llpo, hence 11~1. Then we may assume 
that ~ has the minimum number of distinct prime factors subject to the 
condition that II~. The last part of the "basic argument" then yields the result. 

Recall that 

If we can prove that II(OJ + (), then every prime divisor of 1 divides Po. Since 
I is unramified in QKp ), Ilpo. 

Lemma 9.S. IIOJ + (). 

Proof. Let 1be a prime divisor of I in Q«(p). Since ll~, 
p-l 

TI (OJ + (i(J) == Omod 1. 
i=O 

Therefore OJ + (i() == 0 mod 1 for some j. Suppose j #- O. Since the numbers 
(OJ + (a()/(l - (a) were pairwise relatively prime, 

hence 1% Pa for a #- j. 

Since rta was real, so rta = rt-a' 

OJ + (a() p OJ + ea() 
P~a -l-~,ii- = Pa T _ ea . 

Recall that I = 1 + kp, hence p!P == 1 mod 1 for a #- j. Therefore, if a ¢ 
±jmodp, 

Since k is even, we obtain 

(OJ + (a()k == WOJ + ()k mod l. 
But OJ == - (i(J mod 1, by the choice of j. Therefore 

«()W - (i»k == «()( 1 - (a+ i»k mod 1. 
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Since ro, e, ~ are relatively prime and II~, we must have [ and e relatively 
prime, so 

W - 'i)k == (1 - ,a+i)kmodi. 

Since (Z[n mod ir is cyclic of order [ - 1 = kp, the equation Xk == 1 mod i 
implies x is a pth power mod i. Consequently 

,a _ ,:. = _(,(1-a-i)/2 1 - ,a+i)-l ('(l-a+i)/2 1 _ ,a-i) 
1 - ,a J 1 - , 1 - , 

= - ~;;!i~a-i (in the notation of Lemma 8.1) 

is a pth power mod i, if a =1= ±j mod p. So we know that ~a-i/ ~a+ i is a pth 
power mod i whenever the numerator and denominator are defined. We want 
to show that ~b is a pth power mod i for all b =1= 0 mod p. Since j =1= 0 mod p, 
we may write 

1 + 2dj == bmodp 

1 - 2ej == bmodp 

with 0 :::;; d < p and 0 :::;; e < p. Then d + e = p or O. Formally, we may write 

): _): ~1+2i ~1+4i ... ~1+2di 
<'b-<'l ---

~I ~1+2i ~1+(2d-21i 

and 

~b = ~l ~1-2i ~1-4i ... ~1-2ei . 
~l ~1-2i ~1-(2e-21i 

However, perhaps some of the factors are not defined. Let 

1 + 2ij == o mod p, 

1 + 2i'j == Omodp, 

with 0 < i < p, 0 < i' < p. Note that i, i' are unique and i + t = p, so either 
d < i or e < t. (Equality does not occur since b =1= 0 mod p.) If d < i then all 
factors in the first product are defined. If e < i' then all factors in the second 
product are defined. Since ~l = 1, and since all the remaining factors are pth 
powers mod i, it follows that ~b is a pth power mod i for all b =1= 0 mod p. 
Therefore all real cyclotomic units are pth powers mod i, by Lemma 8.1. 

Applying the automorphisms of Gal(OlKp)/Ol), and noting that conjugates 
of cyclotomic units are still cyclotomic units, we find that all real cyclotomic 
units are pth powers modulo each prime of Ol('p) above l. In particular, this 
holds for each unit Ea. Proposition 8.18 shows that Q! == 1 mod [ for each 
choice of t. Since we have assumed Q! =1= 1 mod [ for some t, we have a 
contradiction. This was caused by assumingj # O. Thereforej = 0 and ilro + 
e. Since i was arbitrary, [Iro + e. This completes the proof of Lemma 9.8. 

o 



180 9. The Second Case of Fermat's Last Theorem 

As mentioned prior to the statement of the lemma, we obtain IIpo. It 
remains to show that '1.I'1b is a pth power (i.e., Assumption II). 

Lemma 9.9. tJaltJb is a pth power. 

Proof. Let 7 be a prime of (\)«(p) lying above l. Then 

_ OJ + (a() _p _ ( • OJ + ()) _p 

'1. - 1 _ (. Pa - OJ + ( 1 _ (a P. 

== OJP.-Pmod 7, by Lemma 9.8. 

Therefore 

'1a == (Pb)P mod 1. 
'1b Pa 

Consequently '1.ltJb is a pth power modulo every prime above I. 
Since p (h+«(\)«(p)), Corollary 8.15 implies that E+ mod(E+)P is generated 

by the units E j , i = 2,4, ... , p - 3. Therefore 

for some integers d j • We want to show pld j for all i. As in the proof of 
Theorem 9.3. 

~ == rational integer (mod pl. 
'1b 

By Exercises 8.11 and 8.10, we have pld j if p ( Bj , so we only need to consider 
the "irregular" indices i l , ... , is for which plBj • 

In Proposition 8.18, the integer t determines a prime ideal 1 by t == (mod 1. 
Henceforth, let 1 denote this prime ideal. Fix a generator ')'; for the multipli
cative group (Z[(p] mod 1y. If 1 (X, define ind; x by 

indjx - d-l 
')'j = xmo , 

so ind; x is defined mod(l - 1), hence mod p. 
Let ~'" E Gal«(\)«(p)/(\). Let ')'".<i) = 0"",(,),;) be the multiplicative generator 

mod 0".(1). Then 

Since 

p-l ( 1 _ (b9)bP -
,
-; 

E j = J] «b-bg)/2 1 _ (b • (pth power), 

it follows easily that 
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Therefore 

indjO";I(Ej) == ex-jindjE j modp. 

From above, we obtain 

inda.(i) E j == ex- j indj E j mod p. 

Since rfalrfb was shown to be a pth power modulo each prime above I, 

o == L d j inda.(i) E j mod p, 

hence 

0== L djex-jindjEj modp, for all ex ¥= 0 modp. 

Since 

det(ex- j)j=2.4 ..... P-3 = ((p - 3) ,)-2 f1 (ex-2 _ P-2) 
.. =1.2 ..... (p-3)f2 2' 

1 s(I<a.S(p-3)f2 

¥= Omodp 

(essentially a Vandermonde determinant), we must have 

dj indl Ej == 0 mod p. 
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As mentioned above, dj == 0 if if {i1 , ... , is}. But Q~ ¥= 1 mod I implies, by 
Proposition 8.18, that indj Ej ¥= O. Therefore, for all i, dj == 0 mod p. It follows 
that rfalrfb is a pth power. This completes Lemma 9.9. 0 

The proof of Theorem 9.5 is now complete. o 
Before Wiles, the verification of Fermat's Last Theorem was carried out 

on a computer as follows. First the irregular indices were determined. This 
was the longest part of the computations. Originally, this was done via 
congruences such as 

(3P-2k + 4P-2k - 6P- lk - I)B2k14k == L Slk-l (modp) 
p/6<s<p/4 

(There are several such conguences; see (Wagstaff [1]) for details). More 
recently, another method has been used. See Exercise 9.6. Second, Theorem 
9.5 was used to verify the second case of Fermat's Last Theorem. This was 
done for p < 4000000. For the first case, Theorem 6.23 applies since i(p) :5; 7 
for p < 4000000. However, it is faster to use the Wieferich criterion: if 2P- 1 ¥= 
1 mod p2 then there are no solutions in the first case. In fact, if aP-l ¥= 
1 modp2 for some a :5; 89 then there are no solutions (Granville-Monagan 
[1]). This yields the first case up to 7.57 X 1017 (Coppersmith [1]). For 
a = 2, the only values of p < 6 X 109 with 2P- 1 == 1 modp2 are p = 1093 and 
3511, and for both of these, 3P- 1 ¥= 1 modp2. The fact that there are only two 
"bad" primes should not be very surprising: the probability that 2P-l == 
1 mod p2 should be lip. Therefore, the number of such p less than x should be 
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approximately 

L lip -loglogx + 0.26. 
p<x 

Note that log log(6 x 109 ) = 3.1; perhaps another example should be expected 
soon. 

NOTES 

The criteria in this chapter were developed by Kummer and Vandiver. Theo
rem 9.5 has been extended to allow 1< ! (p2 - p) by Inkeri. For more on 
Fermat's Last Theorem, see Vandiver [lJ and Ribenboim [1]. 

For an interesting approach to Fermat's Last Theorem, and a completely 
different proof of the second case for regular primes, see McCallum [2]. He 
bounds the number of solutions in a residue class mod p. Since the trivial 
solutions use up the quota for the second case, the second case is easier than 
the first case in his approach. 

Vandiver claimed to prove that Vandiver's conjecture implies the first case 
of Fermat's Last Theorem, but his proof was incorrect. See Sitaraman [1]. 

EXERCISES 

9.1. Let K be a number field, a E K', and n E 71.. 
(a) Suppose K(a l/") is unramified. Show that (a) = I" for some ideal I of K. 
(b) Suppose (a) = /" for some ideal/of K. Show that K(al/")/K is unramified 
except possibly at the primes dividing n. (Hint: work locally. In a completion I is 
principal, so the local extension can be obtained by adjoining u l /" with u a local 
unit.) 

9.2. (This exercise proves part of Exercise 9.3(b)). Let p be prime and let K be a 
number field containing (p- Let n = (p - 1 and let fz be a prime ideal of K 
dividing n. Let fza be the exact power of fz dividing n. Let 11 E K' with fz til. Let 
c be maximal such that x P == 11 mod fzc has a solution. Assume that c < pa, so 
x P "¢ 11 mod pn, hence mod fz pa. 

(a) Suppose b < a and x P == 11 mod fzpb. Let w have order 1 at fz. Show that 
(x + wby)P == 11 mod fz Pb+1 for some y E K. Conclude that pte, so 

c = pd + r, with 0 ~ d < a and 0 < r < p. 

(b) Suppose fz is inert in the extension K(Il I /p )/K. Let x == Il l /P modfzg, with 9 
maximal. Show (i) 9 > 0; (ii) if 9 ~ a then x P == 11 mod fz pa, which is impossible; 
(iii) 9 = d, with d as in (a). 
(c) Let notations and assumptions be as in (b). Let Z E K be such that (Z)fzd is an 
integral ideal prime to fz. Show that z(x - 1l 1/p) is an integer in K(1l1/p) which is 
prime to fz but whose norm to K is divisible by fz r , with r as in (a). 
(d) Show that (c) contradicts the assumption that fz remains prime in K(1l 1/P). 
Conclude that fz must ramify or split completely (in fact, by Exercise 9.3(a), fz 
must ramify). 
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9.3. Let p be prime and let K be a number field containing (p. Let n = (p - 1 and let 
fY> = n",P ft· Let ~ E K X with ~ rf (Kx)P, and assume ~ is relatively prime to p. The 
number ~ is called primary if x P == ~ mod pn has a solution in K"; hyperprimary if 
x P == ~ mod pnfY> has a solution; and singular primary if ~ is primary and (~) = [P 

for some ideal [ of K. 
(a) Show that ~ is hyperprimary if and only if all primes above p split completely 
in the extension K(~I/p)/K. 
(b) Show that ~ is primary if and only if K(~I/p)/K is unramified at all primes 
above p. 
(c) Show that ~ is singular primary if and only if K(~I/p)/K is unramified at all 
primes of K (one exception: if p = 2 then K could be real and there might be 
ramfiication at the infinite primes). (Hints: Exercises 9.1 and 9.2; also look at the 
proof of Lemma 9.1 and the second proof of Theorem 5.36.) 

9.4. (a) Let f(X) = ((((p - I)X + !)p - 1)/((p - l)P. Show that 

f(X) == XP + ((p _PW I X mod((p - 1) 

and that f(l) = o. Conclude that p/((p - !)p-I == -1 mod ((p - 1). 
(b) Look at the terms with lowest p-adic valuation in the expansion of 

0= logp(l + ((p - 1)) 

to obtain the result of (a). This also works for (pn. 
(c) (The easy way.) Find the minimal polynomial g(X) for (p - 1, compute 
g((p - l)mod((p - !)p, and obtain (a). This also works for Cpn. 

9.5. (The second case of Fermat's Last Theorem for p = 3). Recall that we needed 
p > 3 for part of the "basic argument." This exercise treats p = 3. Let ( = (3. It is 
well known that Q((3) = Q(F3) has class number 1. Suppose we have x, y, 
Z E Z, with 3 t xyz, and m ~ 1 such that 

x3 + y3 = (3mZ)3. 

We of course may assume that x, y, and z are pairwise relatively prime. 
(a) Show that 

x + y = ~o33m·'p5, 

X + (y = ~I(l- OP~, 

X + (2y = ~2(1 - (2)pl, 

with Po, PI' P2 E Z[O and pairwise relatively prime, and with ~o, ~I' ~2 units of 
Zen 
(b) Show that ~I is congruent to a rational integer mod 3, hence ~I = ± 1 = 
(± 1)3. Therefore we may assume ~I = 1. Similarly, we may assume ~2 = 1. 
(c) Show that ~o;rio is a cube. Using the fact that ~o has the form ±C', conclude 
that ~o = ± 1; hence we may assume ~o = 1. 
(d) Show that we may assume that Po E Z. (Hint: a straightforward calculation 
shows that (s + t03 E iQI => s = t or st = 0.) 
(e) Write PI = a + be. Show that (a, b) = 1, hence a, b, a - b are pairwise rela
tively prime. 
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(f) Show that ab * 0 and a * b (in particular, a = b = 1 is excluded). 
(g) Show that x + y = 9ab(a - b). 
(h) Use the equation x + y = 33m- i p3 to show that there are nonzero rational 
integers at> bi , C i such that some permutation of(a,b,a - b) equals 

(a:,b:,33m- 3d). 

(i) Since a~ ± M = (±3m- i cd3 for some choice of signs, and since we know the 
first case has no solutions (by congruences mod 9), we are done by induction. 

9.6. Let R be a commutative ring with 1 and let Ie R[[X]] with 1(0) = 1. Then 
1/1 e R[[X]]. Suppose 9 e R[[X]] with 9 == 1/1 mod X". Show that 2g - Ig2 == 
1/1 mod X2". Since the calculations involve only polynomial addition, subtrac
tion, and multiplication, and the accuracy doubles for each iteration, this gives a 
fast method for computing 1/[ It can be appl~ed when Ie Z/pZ[[X]] is the 
expansion of (ex - l)/X through the Xp-3 term and gives a fast way of deter
mining the irregular indices for a prime p. Refinements of this technique were 
used by Buhler et al. to determine the irregular indices for aU p < 4000000. 



CHAPTER 10 

Galois Groups Acting on 
Ideal Class Groups 

Relatively recently, it has been observed, in particular by Iwasawa and 
Leopoldt, that the action of Galois groups on ideal class groups can be used 
to great advantage to reinterpret old results and to obtain new information 
on the structure of class groups. In this chapter we first give some results 
which are useful when working with class groups and class numbers. We then 
present the basic machinery, essentially Leopoldt's Spiegelungssatz, which 
underlies the rest of the chapter. As applications, Kummer's result "plh+ :;. 
plh-" is made more precise and a classical result of Scholz on class groups 
of quadratic fields is proved. Finally, we show that Vandiver's conjecture 
implies that the ideal class group of i(J)«(pn) is isomorphic to the minus part of 
the group ring modulo the Stickelberger ideal. 

§10.1. Some Theorems on Class Groups 

Since it is useful, we repeat the following result. 

Theorem 10.1. Suppose the extension of number fields L/K contains no un
ramified abelian subextensions F/K with F i= K. Then hK divides hL . In fact, 
the norm map from the class group of L to the class group of K is surjective. 

Proof. The first statement is Proposition 4.11. The second is proved in the 
appendix on class field theory. D 

Theorem 10.2. Let n "¥= 2 mod 4 be arbitrary and let h. = h(i(J)«(.)). If 21h: then 
2Ih;;-. 

185 
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Proof. Q('n)/Q('nt is totally ramified at infinity, so Theorem 10.1 implies 
that the norm map on the ideal class groups 

N: C~C+ 

is surjective, so h;; = hn/h: = Iker NI. Suppose 2Ih:. Then there exists a 
nontrivial ideal class (X E C+ such that (X2 = 1. Lift (X to C. Since N(X = (X2 = 1, 
(X E ker N. Since the map C+ -+ C is injective by Theorem 4.14, (X =F 1 in C, but 
(X2 = 1. Therefore ker N has even order, so 21 h;; . D 

Remark. Note that this proof works for any CM-field K such that the map 
C+ -+ C is injective. This theorem is useful when one looks for cyclotomic 
fields whose real subfields have even class numbers. Such fields arise in 
topology (see, for example, Giffen [1]). 

Theorem 10.3. Let K be a CM-field. The kernel of the map C+ -+ C from the 
ideal class group of K+ to that of K has order 1 or 2. 

Proof. Let I be an ideal of K+ and suppose I = «(X) in K. Then (1) = i/I = 
(fi/(X), so fi/(X is a unit, hence a root of unity by Lemma 1.6. This root of unity 
does not depend on the class of I in K+ but does depend on the choice of (X. 
Let W be the roots of unity in K and let Wo = {u/ulu = unit in K} ;2 W 2. We 
obtain a homomorphism 

(J: ker(C+ -+ C) -+ W/Wo· 

If t/J(l) = 1, then fi/(X = u/u, so (X/u = fi/u. This means that (X/u E K+. Since 
I = «(X/u) in K, unique factorization into prime ideals implies I = «(X/u) in K+. 
Therefore t/J is injective. Since W/Wo has order 1 or 2, the proof is complete. 

D 

Note that it is possible for the kernel to have order 2. See the example 
following Theorem 4.14. 

Theorem 10.4. (a) Suppose L/K is a Galois extension and Gal(L/K) is a p-group 
(p = any prime). Assume there is at most one prime (finite or infinite) which 
ramifies in L/K. If plhL then plhK • 

(b) If L/Q is Galois, Gal(L/Q) is a p-group, and at most one finite prime 
ramifies, then p % hL • 

Proof. Assume plhL • Let H be the Hilbert p-class field of L, so H is the 
maximal unramified abelian p-extension of Land Gal(H/L) is isomorphic to 
the p-Sylow subgroup of the ideal class group of L. Since L/K is Galois, the 
maximality of H implies that H/K is Galois. Let G = Gal(H/K). Let /t be the 
prime (ifit exists) of K which ramifies, let 9 be a prime of H above /t, and let 
I ~ G be the inertia group for f!J. Since H/L is unramified, 

III ~ deg(L/K) < IGI. 
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By a well-known result in the theory of p-groups, there exists a normal 
subgroup G1 of G, of index p, with I s.;; G1 c: G (proof: mod out by the 
subgroup generated by an element of order p in the center, then use induction 
on I G I). The inertia subgroups of the other primes of H above It are conju
gates of I, hence lie in G1 • Since It is the only ramified prime, no prime 
ramifies from K to the fixed field of G1 • But the fixed field of G1 is Galois of 
degree p over K, so K has an unramified abelian extension of degree p. Class 
field theory implies that plhK • This proves (a). 

The case K = 0 is treated similarly, except that we ignore ramification at 
infinity. Therefore, if plhL we obtain an abelian extension of degree p which 
is unramified at all finite primes. But the Minkowski bound (see Lemma 14.3) 
implies that the discriminant of any nontrivial extension of 0 is greater than 
1, so at least one finite prime ramifies, contradiction (alternatively, if there is 
ramification at infinity then p must be even, and every quadratic extension of 
o has ramification at at least one finite prime.) This completes the proof of 
Theorem 10.4. D 

Corollary 10.5. Let n ~ 1. Then plh(Q((p»<=> plh(O((pn». 

Proof. Theorems 1 0.1 and 1 0.4. D 

Corollary 10.6. If Vandiver's conjecture holds for p then PI h+(O((pn)) for all 
n ~ 1. D 

Corollary 10.7. Let p > 2 and let IBn be the unique sub field of O((pn+.) of degree 
pn over O. Then PI h(lBn) (note that 1B",/lBo is the cyclotomic z.p-extension of O. 
For p = 2, the corresponding result is contained in Corollary 10.6, since IBn = 
O((2 n + 2t). D 

If A is a finite abelian p-group, then 

A ~ ffi 7L/ pai1l.. 

for some integers aj • Let 

na = number of i with a j = a, 

ra = number of i with aj ~ a. 

Then 

and, more generally, 

d· (AP"-'/AP") ra = Imz/pz . 

Theorem 10.S. Let L/K be cyclic of degree n. Let p be prime, p k n, and assume 
all fields E with K s.;; E ~ L satisfy p k hE' Let A be the p-Sylow subgroup of the 
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ideal class group of L, and let f be the order of p mod n. Then 

ra(A) == niA) == Omodf 

for all a, where ra and na are as above. In particular, if plhL then the p-rank of 
A is at least f and P'lhL . 

Proof. Let V = AP·-'/AP·, so V has pro elements. Let (1 generate Gal(L/K). 
Then (1 acts on V. Let v E V, v =F 0, and suppose the orbit of v under the action 
of Gal(L/K) has less than n elements. Then (1iV = v for some i < n, iln. 
Therefore 

~ v = (1 + (1i + (12i + ... + (1[(n/i)-lli)v 

I 

= Norm(v), 

where the norm is induced by the norm from L to the subfield of degree i over 
K. Since p does not divide the class number of this subfield, by assumption, 
we have (n/i)v = O. But P t n, so v = 0, contradiction. It follows that the orbit 
of every v =F 0 has n elements, so pro == 1 mod n. Therefore flra. Since na = 
ra - ra +1 , we obtain fl na. This completes the proof. D 

Remark. It is easiest to apply this result when n is prime, so there are no 
nontrivial intermediate fields. In that case, we only need p t nand p t hK • 

As an example for the theorem, consider 0('29). It can be shown 
(Exercises for Chapter 11) that its class number is 8. Therefore the class group 
is 7L/87L, 7L/47L x 7L/27L, or (7L/27L)3. Which is it? 0('29) is of degree 28 over 0, 
hence has a subfield K of degree 4 over O. By Theorem 10.4, 2 t hK • Since 
2 t n = 7 and there are no nontrivial intermediate fields between K and 
0('29), Theorem 10.8 applies. The order f of 2 mod 7 is 3, so the rank of the 
class group is at least 3. Therefore the class group is (7L/27L)3. 

§ 1 0.2. Reflection Theorems 

Let p be an odd prime and let L/K be a Galois extension with Gal(L/K) = G. 
We assume that 'P E L. Let L' be the maximal unramified elementary (i.e., 
isomorphic to 7L/p7L x ... x 7L/p7L) abelian p-extension of L. Then H = 
Gal(L'/L) ~ A/AP, where A is the p-Sylow subgroup of the ideal class group 
of L. Note that J}/K is Galois and H is a normal subgroup of Gal(J}/K), so 
G can act on H by conjugation (let hE H, g E G. Extend g to 9 E Gal(L'/K). 
Then hg = ghg-l, which is independent of the choice of 9 since H is abelian). 
H becomes a Z[G]-module. 7L[G] also acts on A/AP, and in fact 

H ~ A/AP as 7L[G]-modules 

(see the appendix on class field theory). 
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Since (p e L, L'/L is a Kummer extension, so there is a subgroup 

B £. U/(U)P 

such that 1: = L({ill), in the obvious notation. There is a pairing 

H x B -+ Wp = pth roots of unity 

h(b1/P) 
<h, b) = ---prP. 
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It is easy to see that this pairing is nondegenerate «h, B) = 1 <::> h = 1, and 
<H,b) = 1 <::>b = 1) and bilinear. By Lemma 3.1, 

B ~ jj ~ H ~ A/AP, 

though the second isomorphism is noncanonical and not G-linear. An easy 
calculation shows that 

geG. 

Let b e B (or more accurately b mod(L xy e B). Since L(b1/P)/L is unramified, 
(b) = ]P for some ideal] of L (Exercise 9.1). Changing b by an element of(L X)P 

leaves the ideal class of] unchanged. We therefore have a map 

,p: B -+ Ap = {x e AlxP = I}. 

Clearly ,p(b9 ) = ,p(W for g E G. Suppose ,p(b) = 1. Then (b) = (a)P, so b = w P 

for some E e E = units of L and a e L. Therefore 

ker,p £. E(Lx)P/(LX)P ~ E/EP 

where the last isomorphism is G-linear. 
To summarize, we have 

B ~ A/AP, non-G-linearly, 

,p: B -+ Ap , G-linearly, and 

ker,p ~ subgroup of E/EP, G-linearly. 

It is precisely the non-G-linearity in the first isomorphism which will make 
things work (see Exercise 10.8). The basic machinery is now complete; we are 
ready for the applications. 

Theorem 10.9. Let A be the p-Sylow subgroup of the ideal class group of O«(p) 
and let 

p-2 

A = EB E;A 
;=0 

be the direct sum decomposition corresponding to the idempotents of the group 
ring Zp[Gal(O«(p)/O)] (see Section 6.3). Let i be even and j odd with i + j == 
1 mod(p - 1). Then 
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p-rank ciA :::;; p-rank cjA :::;; 1 + p-rank ciA. 

(this strengthens the result "plh+ => plh-"). 

Proof. Let G = Gal(([Jl((p)j([Jl) in the above. We have 

H ~ AjAP as G-modules, so 

c;H ~ c;(AjAP) for all i. 

Let h E c;H. Then O"ah = h",i(a) for all Q E (Zjp7IY. Let bE ckB. Then 

<h,b>",(a) = <h,b>aa (since <h,b> E Wp ) 

= <haa, baa> = <h""(a), b",k(a)> 
= < h, b >",i+k(a), for all Q. 

If i + k of. 1 mod (p - 1) then < h, b> = 1. Since the pamng between B = 
EB ckB and H = EB c;H is nondegenerate, it follows easily that the induced 
pairing 

c;H x cjB --+ Wp' 

is nondegenerate. By Lemma 3.1, 

i + j == 1 mod (p - 1) 

BjB ~ B;H ~ B;(AjAP), as abelian groups. 

Now, </J: B --+ Ap is G-linear, so 

We also have 

(ker </J) n BjB ~ subgroup of Bj(Ej EP). 

From Propositions 8.10 and 8.13, 

( ) {
ZjPZ, j even,j of. 0 mod (p - 1); or j == 1 mod (p - 1); 

B· EjEP ~ 
) 0, otherwise. 

Let dim denote dimension over ZjpZ. Note that 

p-rank B;A = dimB;(AjAP) and p-rank BjA = dimejAp. 

From the above, 

dim(e;(Aj AP)) = dim(ejB) :::;; dim(ej(EjEP)) + dim(BjAp). 

If j is even and j of. 0 mod (p - 1), we obtain 

p-rank(e;A) :::;; 1 + p-rank(ejA). 

Ifj is odd andj of. 1, then 

p-rank(e;A) :::;; p-rank(ejA). 

If j == 1, then we find 
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p-rank(8oA) ::::;; I + p-rank(8 1 A). 

However, we already know that 80 A = 81 A = 0, by Proposition 6.16. Putting 
everything together, we obtain the theorem. D 

The next result is classical, due to Scholz. We proved a weak form of it in 
Chapter 5, using p-adic L-functions. 

Theorem 10.10. Let d > I be square-free. Let r be the 3-rank of the ideal class 
group of Q(jd) and s the 3-rank of the ideal class group of Q(J - 3d) 

(= Q(J -d/3) if 3Id). Then 

r::::;; s::::;;r + 1. 

Proof. Let L = Q(jd, J - 3d) and G = Gal(L/Q). There are three quadratic 

subfields: Q(jd), Q(J - 3d), and Q(.j=3). Let 

{I, t} = Gal(L/Q(jd)), 

{I,u} = Gal(L/Q(J -3d», 

{l,at} = Gal(L/Q(.j=3)). 

In Z3[G] we may decompose the identity as a sum of idem po tents: 

1 = 81 + 8z + 83 + 84 

= C ; t)(! ; a) + C ; t)(~; a) + C ; r)(!_; a) 

+ C ;~)C ; a). 
Let A be the 3-Sylow subgroup of the ideal class group of L. Then A = 
E!1 8 i A. Since 81 = (Norm L/Q)/4, we have 81 A = 0. Also, 

84 = *(1 - r)(1 + at) = *(1 - t)(Norm L/Q(.j=3)), 

so 84A = 0, since h(Q(J"::"" 3» = 1. We now have 

A = 8zA E!1 83 A. 

But 

8Z = HI - a)(Norm L/Q(jd», 

so 

8zA £: ACl(jd), 

where the last group is the 3-Sylow subgroup of the class group of Q(jd). 
Let a E AO(jd). Then fa = a. Since I + a = Norm(Q(jd)/Q), (1 + a)a = 0, 
hence aa = -a. It follows that 8za = a, so 

AO(jd) £: 8zA. 
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Therefore 

Similarly 

83 A = A o(.j=3ti)· 

We now use the machinery at the beginning of this section. We have 
B = Ee 8j B. A calculation similar to that in Theorem 10.9 shows that 

(8 j H,8j B) = 1 

unless i = 2, j = 3 or i = 3, j = 2. For example, if h E 82H and bE 84B then 
uh = h-1 and ub = b-1, so 

(h,b) = (h-l,b-1 ) = (ha,ba) = (h,b)a. 

But u ¢ Gal(L/Q(.;=3», so U«(3) '" (3- Therefore (h,b) = 1. 
Since H x B -+ W3 is nondegenerate, we must have 

82H x 83B -+ W3, and 

83H x 1:2B -+ W3 

nondegenerate. Also, 

¢J: 1:2B -+ 1:2 A 3' 

¢J: 1:3 B -+ 1:3 A 3' 

(ker ¢J) (") 82B ~ subgroup of 82(E/ E3), and 

(ker ¢J) (") 1:3B ~ subgroup of 1:3 (E/E3). 

Since 82 = 1(1 - u)(Norm LIQ(jd», 82(E/E3) is contained in the units of 
Q(jd) mod 3rd powers. Therefore 

1:2 (E/E3 ) ~ 0 or 71./371.. 

Similarly, 

1:3 = 1(1 - .)(Nonn L/Q(J - 3d». 

Since d '" 1, Q(J - 3d) '" Q(.;=3), so the units of Q(J - 3d) are either 
{± 1} or {± 1, ±J=1}. Consequently 

1:3(E/E3) = o. 
Putting everything together, we obtain, 

r = 3-rank AO(jii) = 3-rank 1:2A 

= 3-rank I:zH = 3-rank 8 3 B 

::;; 3-rank 1:3(E/E3) + 3-rank 1:3A 

= 0 + 3-rank A O(.j=3ti) = S, 
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and similarly, 

s::;; 1 + r. 
This completes the proof. o 

Remark. The cases r = sand r + 1 = s both occur. For d = 79, r = s = 1, 
while for d = 69, r = 0, s = 1. 

Theorem 10.11. Let p be an odd prime. Let L be a eM-field with 'P E L, and let 
A be the p-Sylow subgroup of the ideal class group of L. Then 

p-rank A+ ::;; 1 + p-rank A-. 

Let W be the roots of unity in L. If L(W1/P)/L is (totally) ramified, then 

p-rank A + ::;; p-rank A - . 

(As usual, A ± = {x E Alx = X±l} and A+ ~ A(L +)). 

Proof. In the notation at the beginning of the section, let K = L +, the maxi
mal real subfield of L. Then G = Gal(L/K) = {l,J}, where J = complex con
jugation, and 

1 - J 
A- =-2-A. 

As in the above theorems (H+, B+ > = (H-, B- > = 1 (since p #- 2), so 

H+ X B- -+ Wp 

is nondegenerate. Also, 

and 

(ker ¢J) n B- ~ subgroup of (E/ EP( . 

Since [E: WE+] = 1 or 2 (Theorem 4.12), 

(E/EP( = (W/Wpr ~ 7L/p7L. 

Therefore 

p-rank A + = p-rank H+ = p-rank B-

::;; 1 + p-rank A-. 

If L(W1/P)/L is ramified then W n B = 1, since L(Bl/P)/L is unramified. There
fore (Ker¢J) n B- = 0 and the "1" disappears from the above inequality. This 
completes the proof. 0 

If p = 2, the above result holds if we modify A +. Note that 

A+ n A- ~ {x E Alx2 = I}, 
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which does not allow us to conclude that the intersection is trivial for p = 2. 
In fact, for O(j=5), A + = A - = A ~ Z/2Z. Also, observe that if x is an ideal 
class of L + with x2 = 1 then x E A + () A -. However, we actually want to be 
able to transfer information from h- to h+, so instead of A + we should be 
looking at the 2-Sylow subgroup of the class group of L +, whose order is the 
2-part of h+. Instead of the decomposition A = A + EEl A-obtained for odd p, 
we have an exact sequence 

1 -+ Ai -+ AL -+ Au -+ 1, 

which is induced by the norm (i.e., 1 + J) from L to L + (cf. Theorem 10.1). 

Proposition 10.12. Let L be a eM-field and let AL and AL+ be the 2-Sylow 
subgroups of the ideal class groups of Land L +, respectively. Then 

2-rank Au :5: 1 + 2-rank Ai. 

Proof. Let i(AL+) denote the image in AL and let (Auh and (Aih denote the 
elements of order 2 in the respective groups. As noted above, 

i«AL+h) s;: (Aih. 

Therefore 

2-rank i«AL+ h) :5: 2-rank Ai. 

But 

by Theorem 10.3. Since the elements of order 2 determine the 2-rank, 

-1 + 2-rank(AL+):5: 2-rank i«AL+)2):5: 2-rank Ai. 

This completes the proof. o 
Finally, we use the Kummer pairing to give another characterization of 

irregular primes. 

Proposition 10.13. Let p be odd. Then p divides h(O«(p)) if and only if there is 
an extension K/O«(pt, with K =F O«(p2t and Gal(K/O«(pt) ~ Z/pZ, which 
is unramijied at all primes not above p. 

Proof. First assume that such a K exists. Let F be the maximal elementary 
abelian p-extension of O«(p)+ which is unramified outside p. Then F/O is 
Galois and also F«(p)/O is Galois. As before, G = Gal(O«(p)/O) acts on 
H = Gal(F«(p)/O«(p))' Since F is real, complex conjugation acts trivially, so 
BiH = 1 for all odd i (where Bi is the usual idempotent for G). Suppose that 
H = BoH. Then h' = h for all g E G. Recall the definition h' = ghg-1, where g 
is an extension of g to F«(p). We find that gh = hg for all h E H, g E G. Since 
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G is cyclic, we may choose the 9'S so they commute with each other. It follows 
that Gal(F«(p)/(J) is abelian. By the Kronecker-Weber theorem (14.1), and 
since F«(p)/Ol is unramified outside p, F«(p) £ (J)«(pn) for some n. Therefore 
F £ (J)«(pn)+. By the choice of K, this is impossible, so H:F BoH, hence 
BiH :F 1 for some even i :F O. 

Since F«(p)/(J)«(p) is a Kummer extension, there is a subgroup B £ 

(J)«(pY /(Ol«(py)P such that F«(p) = 0l«(p)(B1/P). There is a nondegenerate 
bilinear pairing 

such that 

gEG. 

As before, the fact that BiH :F 1 for some even i :F 0 implies that BjB :F 1 
for some odd j:F 1 (i + j == 1 mod p - 1). Choose bE BjB, b:F 1. Then 
(J)«(p, b1/P)/0l«(p) is unramified outside p, hence (b) = IP«(p - l)d for some 
ideal I and some integer d. Since bE BjB, baa = baJcp, with c E (J)«(p), for all 
a E (lL/plLY. Also, «(p - 1)"a = «(p - 1). Therefore 

Wa)P«(p - l)d = (b)17a = (bt(c)P = (I"J)P«(p - l)daJ(c)p. 

It follows that d - da j == 0 mod p, hence d == 0 mod p. We therefore have 
(b) = IP for some ideal I of (J)«(p). 

Suppose now that I is principal, so I = (ex). Then "ex P = b for some unit ". 
We may change b by a pth power, hence assume b = ". Write b = (;"1 with 
"1 real. Since (; is in the III component and"l is real, it is impossible for (;"1 
to lie in the Bj component with odd j :F 1. This contradiction shows that I is 
nonprincipal. Since IP is principal, we must have plh«(J)«(p». 

Conversely, suppose plh«(J)«(p». Then plh-«(J)«(p» so the Ilj component of 
the class group is nontrivial for some odd j. By Proposition 6.16, j :F 1. Let I 
(non principal) be an ideal representing a class of order p in the Bj component: 
IP = (b) and /"J == I mod principal ideals. Let 

13 == btJmod(Ol«(pnp. 

Since (13) is the pth power of an ideal, Exercise 9.1 implies that 
(J)«(p,f3 1/P)/0l«(p) is unramified outside p. If B1 denotes the subgroup of 
(J)«(pY /«(J)«(pnp corresponding to the maximal elementary abelian p-exten
sion of (J)«(p) unramified outside p (call it Fd, then 13 E Bj B1• We claim 13 is 
nontrivial. Suppose 13 = ex p. Then, modulo pth powers of principal ideals, 

1 == (ex)P = (13) == (byJ = IPEJ == IP, 

so IP is the pth power of a principal ideal; hence I is principal, which is a 
contradiction. This proves the claim that 13 is nontrivial in BjB. Therefore 
BjB1 :F 1. Let H1 = Gal(F1/(J)«(p». Via the Kummer pairing H1 x B1 -+ Wp' 
we find that BiH 1 is nontrivial for some even i :F O. Let K 1 be the corre
sponding extension of (J)«(p); that is, Gal(K 1 /(J)«(p» = EiH 1. It is clear that K 1 
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is Galois over O. Since i is even, complex conjugation J commutes with 8iR1' 

Therefore the group generated by J and 8i H 1 has order 218i H 11, so the fixed 
field must be O(Cpt. Since Kt is the fixed field of J, we find that 

Gal(Kt /O(Cp )+) ~ 8i H1 "# 1. 

Since Gal(0(Cp2t /O(Cp )+) is in the 80 component and since i "# 0, we have 
Kt n 0(Cp2t = O(Cpt. Clearly Kt /0 (Cpt is unramified outside p. If we 
take a subfield K s;; Kt such that Gal(K/O(Cpt) ~ 7L/p7L, we obtain the 
desired field. This completes the proof. 0 

§10.3. Consequences of Vandiver's Conjecture 

In this section we assume that Vandiver's conjecture holds, namely that p 
does not divide the class number of O(Cpt. By Corollary 10.6, this implies 
that p also does not divide the class number of o (Cpnt for all n ~ 1. It is not 
clear whether or not Vandiver's conjecture should be true in general, but, as 
we mentioned in Chapter 9, it seems that it should hold for a large majority 
of primes (at present it is known to be true for all p < 4000000). Hence the 
following results are possibly a good approximation to the truth in general. 

Theorem 10.14. Let p be odd and assume pi h(O(Cpt). Let An = A;;- be the 
p-Sylow subgroup of the ideal class group of O(Cpn+t}, let 

Rp.n = 7Lp[Gal(O(Cpn+.)/O)], 

and let Ip.n be the Stickelberger ideal (see Chapter 6). Then A;;- is cyclic as a 
module over Rp.n and 

A;;- ~ R;.n/I;'n 

as modules over Rp.n. In other words, the Stickelberger ideal gives all the 
relations in A;;- . 

Proof. The main part of the proof involves proving the cyclicity. The rest 
follows easily. 

For n = 0 the result is an immediate consequence of Theorem 10.9, but in 
general we have to work a little more. We use the ideas of the previous 
section, but we must look more closely at the units. Recall that in the nota
tion of the previous section, ker t/J c E/ EP. Since the structure of E is fairly 
well understood, it is convenient to use all of E/EP, rather than just a sub
group. To do so, we must enlarge B. Therefore, let L" be the maximal elemen
tary abelian p-extension of L = O(Cpn+') which is unramified at all primes 
except possibly It = (1 - Cpn+'), which is the prime above p. Then 1.:' = 

L(.cfii') for some subgroup B' S;; U /(U)p. Let H' = Gal(J.:'/L). There is a 
nondegenerate bilinear pairing 
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satisfying 

<hU,bU) = <h,b)9 for g E G = Gal(LIO). 

Let b E B'. Then, as in the previous section, 

(b) = IP fed 

for some ideal I and some integer d. The fe must be singled out because of 
possible ramification at fe. We obtain a map 

~':B'-+Ap= {xEAlx P = I} 

b H class of I. 

If f(b) = 1 then b = 8(1 - (pn+.)d. aP for some unit 8 and some a E O«(pn+1)' 
Conversely, if b is ofthis form then L(bl/P)/L is unramified outside fe, so bE B' 
and clearly ~'(b) = 1. Therefore ker~' is generated by E and 1 - (pn+l. 

Since we are assuming p % h+, we have p % [E+ : C+] by Theorem 8.2, where 
C+ denotes the real cyclotomic units. Since 

E = «pn+l) x E+ and C = «pn+1) x C+, 

we also have p % [E: C]. Therefore C generates E/EP. It follows from Lemma 
8.1 that ker~' is generated over Rp.n by 1 - (r' (note that ( = -(1 - 0/ 
(1 - C I )). Consequently, (ker~'t is generated by (1 - (pn+,)(1 - (;;+1). In 
fact, 

{«I - (pn+,)(1 - (;;+1))"-11 =:; a < !pn+I,(a,p) = I} 

is a basis for (ker ~Y as a vector space over 7Llp7L. Note that G = 
Gal(O«(pn+' )/0) acts transitively on the elements of this basis. 

If p % h + then A; = 1. Therefore 

(B')+ = (ker ~')+, 

so (BY is cyclic over Rp.n (to obtain cyclicity is the reason we enlarged B). As 
before, the pairing 

(HT X (B')+ -+ Wp 

is nondegenerate. We claim that (HT is cyclic over Rp.n. Let {hi"'" h,} be 
the dual basis of (HT corresponding to the basis of (B't constructed above 
(call it {b l , ... , b,}). Then 

<h. b.) = {(p, i =j 
" J I, i # j. 

Let HI be the Rp.n-submodule of(HT generated by hi' Suppose HI # (HT. 
Then, by Proposition 3.3 or 3.4, there exists b = L xjbj # 0 in (BY (Xj E 7L) 
such that <HI,b) = 1. In particular, 

1 = <hLb) = <h\,bu- ' )9, 
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so 

Letting g = 1 we find 

1 = <hl,b) = ';', hence Xl == Omodp, 

and since G acts transitively on {bl , ... , br }, we may use other choices of g to 
obtain Xj == 0 mod p for all i. Therefore b = O. It follows that HI = (HT, so 
(HT is cyclic over Rp.n as desired. 

Returning to the beginning of the proof, we observe that L' £; J}', so H = 
Gal(L'IL) is a quotient of H' = Gal(J}'IL). Consequently, H- ~ (AnIA~)- is 
cyclic over Rp.n. 

Let Xo E A; generate (Ani A~r. Let X E A;. Then 

X = roxo + PYI, with ro E Rp.n and Yl E A;. 

But 

Therefore 

so Xo generates A; over Rp.n. Therefore A; is cyclic as an Rp.n-module. 
Let Xo be a generator for A; over Rp.n, hence over R;.n' Then we have a 

surjective Rp.n-homomorphism 

R;.n -+ A;, 

By Stickelberger's theorem, I;'n is contained in the kernel. Since 

[R;.n: I;'n] = IA;I 
by Theorem 6.21, the kernel is exactly I;'n' This completes the proof. D 

Corollary 10.15. Let A be the p-Sylow subgroup of the ideal class group of 
Q(,p) and let 

p-2 

A = EB Ei A 
j=O 

be the decomposition according to idempotents. If p (h(Q('p)+) then 

EjA ~ ZpIB1.w-,Zp for i = 3,5, ... , p - 2. 

Proof. By Theorem 10.14, each EjA is a cyclic group. By Proposition 6.16, 
B l •w-' annihilates EjA, so 
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Since 
p-2 n IlliAI = lA-I = p-part of h-
i=3 
i~d p-2 

= p-part of 2p n (-tBI ,.,,) 
i=l 
iodd 

= p-part of n (BI,co') 
iT'p-2 
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(see the proof of Theorem 5.16), the inequalities must all be equalities. This 
completes the proof. 0 

Remark. It has recently been proved unconditionally by Mazur and Wiles 
that ISiAI = p-part of BI • .,-,. It is a consequence of the "Main Conjecture" 
(see Chapter 13). 

For the next result, recall that if r = Gal(O(Cp"')/O(Cp)) and if Yo is a 
topological generator of r, then Zp[[r]] ~ Zp[[T]], with Yo corresponding 
to 1 + T. See Theorem 7.1. Hence a Zp[[r]]-module may be regarded as a 
Zp[[T]]-module. Let A. be as above, so A. is a Zp[r/P"]-module. The 
norm map N. from A. to A.-I commutes with the action of the group ring. 
Take the inverse limit li!!t A. with respect to the norm mappings. If 

( ... , a.-I' a., ... ) E li!!t A. 

and 

then 

N.(y.a.) = y.N.(a.) = Y.-I a.- l 

(since y. restricts to Y.-I)' Therefore 

( ... , Y.-I a.-I' y.a., ... ) E li!!t A., 

so li!!t A. is a Zp[[r]]-module. 
We may also decompose each An according to the idempotents 

1 p-l . 

Si = P _ 1 a~l (J)1(a)O'a- 1 E Zp[Gal(O(Cp)/O)] £ Rp,n' 

Each component li!!t siAn is also a Zp[[r]]-module. 

Theorem 10.16. Assume p (h(O(Cpt). Let Pn(T) = (1 + T)P" - 1. Then, for 
i = 3, 5, ... , p - 2, 

and 
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as modules over 1'p[[T]], where f(T, WI-i) is the power series satisfying 

f«1 + p)S - I,W 1 - i ) = L p(S,W 1 - i ) 

(see Theorem 7.10). For i = 1, G1An = 0 for all n. 

Proof. By Theorem 10.1, the norm map An -+ An- 1 is surjective, so GiAn -+ 

lliAn-1 is also surjective. Since p l h+, each GiAn is cyclic as an Rp,n-module. If 
bn generates GiAn over Rp,n, then the norm of bn generates GiAn-1 over R p,n-1' 
This allows us to obtain arbitrarily long sequences (bo,"" bn ) such that each 
bj is a generator for GiAj' Since GiAO is finite, there is some ao such that there 
are arbitrarily long sequences starting with ao. Similarly, there is an a1 E GiA1 
whose norm is ao and such that there are arbitrarily long sequences starting 
with (aO,a1 ). Continuing, we obtain a sequence 

(ao, a1 ,···) E li!!t Gi A• 

such that a. is a generator for GiA. for each n. 
Let A = Ga!Q('p)/iIJ). Let 

fJpn E ilJp[A] [riP"] 

be the Stickelberger element. Then [p,. is generated by elements of the form 
(c - aJfJpn+! (Lemma 6.9). Therefore Il;/p,n is generated by elements of the 
form (let Yc = O"<c») 

(c - wi(C)yJGifJp"+!' 

If we take c = 1 + p and i = 1, then this corresponds to an invertible power 
series by Lemma 7.12. This yields G1 A. = 0 for all n. If i"# 1 and c is a 
primitive root mod p, then c - Wi(C)Yc corresponds to a power series with 
constant term c - wi(c) =1= 0 mod p, hence to an invertible power series which 
may be ignored. By Iwasawa's construction of p-adic L-functions (Chapter 7), 
llifJp"+! corresponds to a polynomial 

fn(T, WI-i) E 1'p[T] 

such that 

f(T, WI-i) = fn(T, WI-i) mod P.(T), 

where f is as in the statement of the theorem. From Theorem 10.14, 

1'p[T]/(f.(T, WI-i), P.(T)) ~ GiAn 

g(T) f-+ g(T)an, 

where a. is the generator obtained above. We claim this gives us an iso
morphism 

li!!t 1'p[[T]]/(f, Pn) ~ li!!t iliA •. 

Clearly an element on the left yields an element on the right side via the 
map defined above. Conversely, suppose (YO'Y1"") E lim GiA •. Then Y. = 

+-
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gn(T)an for some gn. Since gn(T)an-1 = gn(T) Norm(an) = Norm(gn(T)an) = 
gn-l (T)an- 1 , we must have 

gn(T) - gn-l (T) E (In-1' Pn- 1)· 

It follows that 

(go, g1'···) E li!!t Zp[[TJ]/(J, Pn), 

so (Yo, Yt, ... ) is in the image of the map. Since we have an injection at each 
level, we have an isomorphism as claimed. 

It remains to evaluate the inverse limit. Clearly there is a map 

,p: Zp[[T]] -+ li!!t Zp[[T]]/(f, Pn) 

If ,p(g) = 0 then, for each n, 

g = BJ + B~Pn' with Bn, B~ E Zp[[T]]. 

Since Pn -+ 0 in Zp[[T]], lim Bn = B exists. Therefore 1 divides g, so ker,p = 
(f). Now suppose 

Then 

Let 

Then 

so 

(go,g~, ... ) E li!!t Zp[[T]]/(Pn) = Zp[[T]] 

(see the proof of Theorem 7.1). Therefore there is a power series g such that 

g == g~modPn' 

hence 

g == gn mod (f, Pn), for all n. 

This proves that ,p is surjective. Therefore 

Zp[[T]]/(f) ~ li!!t Zp[[T]]/(f, Pn) ~ li!!t lliAn· 

This completes the proof of Theorem 10.16. o 
Remark. This result is rather amazing since it enables us to define an 
analytic object, namely the p-adic L-function, in terms of algebraic objects, 
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namely ideal class groups. A similar situation exists for function fields (see 
Chapter 13). 

A slightly weaker form of this theorem has been proved by Mazur and 
Wiles, without the assumption p l h+. See Section 13.6 and Chapter 15. 

Corollary 10.17. Suppose Plh(Q('pt). Let i1, ... , is be the even indices i such 
that 2 :s; i :s; P - 3 and plBi· If 

B1,roi-1 =1= Omodp2 

and 

Bi =':. Bi+p-1 d 2 fi II { } - r mo p or a i E i1, ... , is 
i i+p-l 

then 

for all n ~ O. 

Remark. The above Bernoulli numbers are always divisible by p, but the 
above incongruences hold mod p2 for all p < 4000000. But there does not 
seem to be any reason to believe this in general. The above yields, for p as 
above, 

11- = 0, A = v = i(p) 

where A, 11-, v are the Iwasawa invariants (see Theorem7.l4 or Chapter 13) and 
i(p) = s is the index of irregularity. 

Proof. Let f(T, ai) = ao + a1 T + "', with aj E 7Lp for all p. Then, for s E 7L p' 

Lp(S, Wi) = f((1 + p)S - 1,wi) == ao + a1spmod p2. 

Since B2 = i we must have i ~ 4, so 

B. . 1 B· . -!- == (1 - p'- )-!- = -Lp(1 - i,w') == -an - a1(1 - i)p 
I I 

and 

Bi+P-1 (2') (2 .) . == -an - a1 - P - I P == -an - a1 - I p. 
l+p-l 

We obtain 

ai(1 - i)p =1= at (2 - i)p mod p2. 

Therefore Plat. Since plBi, we must have plao, so Ai = 1 for the power series 
f(T, Wi). This means that 
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with IXj E p7Lp and Vj E 7Lp[[T]Y (see Theorem 7.3). It follows that 

Bp-jAn ~ 7Lp[[T]]/(Pn(T), T - IXj) ~ 7Lp/Pn(lXj)7Lp-

But Pn(lXj) = (1 + IXJpn - 1 == pnlXj mod pnlXt, so we already have the result 

Bp-jAn ~ 7Lp/pn+//7Lp, where /; = Vp(IXJ 

Since 

we find that 

This completes the proof. 

NOTES 
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o 

For results related to the first section, see the papers of Masley. Corollary 
10.5 was first proved by Furtwiingler. 

For the general statement of Leopoldt's Spiegelungssatz, see Leopoldt 
[4]. For generalizations, see Oriat [2], Oriat-Satge [1], and Kuroda [1]. 

There is some interest in class groups of cyclotomic fields because of their 
relations with class groups of group rings. See Kervaire-Murthy [1], Ullom 
[1], and McCulloh [2]. 

For divisibility properties of h;; see Metsiinkylii [1], [2], [3] and Lehmer 
[3]. For parity questions, see the notes on Chapter 8, plus Cohn [1], 
Cornell-Washington [1], Stevenhagen [1], and Uchida [4]. For applica
tions of topology to the parity of class numbers, see Cappell-Shaneson [1]. 
For applications of parity results, see Estes [1]. 

For divisibility properties of h:, see the papers of lakubec. 
Kurihara [1] has proved that the eigenspace Bp _ 3 A in Theorem 10.9 is 

trivial, and hence B3A is cyclic. 
Proposition 10.13 has an elliptic analogue (Coates-Wiles [2]). 

EXERCISES 

10.1. Suppose L/ K is an extension of degree n. Show: 
(a) If mlhK and (m,n) = 1, then mlhL • 

(b) If (n, hK ) = 1 then the map CK -+ CL of ideal class groups is injective (this 
does not use class field theory or Theorem 10.1). 

10.2. Suppose L/K is an abelian extension of odd degree. Show that if hK is odd and 
hL is even, then 4 divides hL (it follows easily that the result is true for solvable 
extensions of odd degree; by the Feit-Thompson theorem, it is therefore true for 
all Galois extensions of odd degree). 

10.3. (a) It is known (for example, Kummer's Collected Papers, vol. 1, p. 944) that 
the cubic subfie\d of 0('163)+ has class number 4. Show that 0('163)+ has even 
class number. 
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(b) Let p = 1 mod4 be prime. Show that the quadratic subfield of Q((pt has 
odd class number; so the technique of (a) will not produce even class numbers 
via quadratic subfields. This makes the computations more difficult. 

10.4. Suppose p and q are distinct primes with p = q = 1 mod 4 and (p/q) = -1. Let 
K;q be the maximal real subextension of Q((pq) such that [K;q : QJ is a power of 
2, and let K; be the similarly defined subfield of Q((p). 
(a) Show that K; has odd class number and that there is only one prime above 
q (Hint: K;/Q is cyclic of prime power order. What is the decomposition group 
for q?). 
(b) Show that K;q has odd class number. 

10.5. Consider Q((p). Show that if i is even and ejA #- 0 then plBj. Is the converse 
true? 

10.6. Let d > 0 be square-free. Let r be the 2-rank of the ideal class group of Q(J'd) 
and let s be the 2-rank of the ideal class group of Q(J=d). Show that if d is even 
then 

rS;sS;r+l 

(this was known to Gauss; it does not require the techniques of this chapter). 

10.7. Let K be a CM-field and suppose [E: WE+J = 2. Show that the map C+ -+ C 
of ideal class groups is injective. 

10.8. Let L, B, H be as in the section on reflection theorems. 
(a) Show that H ~ Homz(B, Wp ) as G-modules, where the action of G on a 
homomorphism f is defined by (gf)(b) = g(f(g-Ib)). 
(b) Let X be a I-dimensional character of G such that the idempotent ex E 

Zp[G]. Show that 

Homz(exB, Wp ) ~ e",x-' Homz(B, Wp ). 

This explains the condition i + j = 1 (mod p - 1) of Theorem 10.9. The 1-
dimensional character X may be replaced by a higher dimensional character cJ> 
which is irreducible over Q p • This idempotent e",x-' must be replaced by ew4)" 
where cJ>* is the character of the contragredient representation, and cJ>*(0-) = 
cJ>(0--1 ). 



CHAPTER 11 

Cyclotomic Fields of Class Number One 

In this chapter we determine those m for which O(C",) has class number one. 
In Chapter 4, the Brauer-Siegel theorem was used to show that there are 
only finitely many such fields, but the result was noneffective: there was no 
computable bound on m. So we need other techniques. Since h" divides h", if 
n divides m, it is reasonable to start with m prime. In 1964 Siegel showed that 
hp = 1 implies p :$; C, where C is a computable constant, but the constant 
was presumably too large to make computations feasible. In 1971, Mont
gomery and Uchida independently obtained much better values of C, from 
which it followed that hp = 1 <=> P :$; 19. Masley was then able to use this 
information, plus a table of h;;' for t;(m) :$; 256, to explicitly determine all m 
with h", = 1. 

Montgomery's original argument was for h;, but Masley pointed out to 
me that the proof could be extended to composite indices. In the following, 
we use an adaption of Montgomery's method, though some of the less impor
tant estimates have been weakened. We obtain a finite list of prime powers 
for which h- = 1, and the estimates are also good enough to handle some 
composite cases, in particular m = 17 x 19, for which h;;' has not been calcu
lated. This information suffices for finding a finite list of possibilities for 
h", = 1. But we still must calculate h~, which is generally rather difficult. The 
original argument of Masley used some calculations plus some algebraic 
techniques. However, Odlyzko subsequently obtained rather precise lower 
bounds for discriminants, which allowed Masley to simplify the argument for 
h~. It turns out that h~ = 1 for all those m with h;;' = 1. So we obtain all m 
with h", = 1. 

Theorem 11.1. Let m =1= 2 mod 4. Then h(O(C",» = 1 if and only if m is one of 
the following: 

205 
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1,3,4,5,7,8,9,11,12,13,15,16,17,19,20,21,24,25,27, 28, 32, 33, 35, 
36,40,44,45,48,60,84. 

§11.1. The Estimate For Even Characters 

We need to estimate h;;, from below, which will involve estimating L-series. It 
will be convenient to use imprimitive characters; so let X be a Dirichlet 
character of conductor I, with 11m, and define 

( ) = {x(n), if(n, m) = 1 
Xm n 0, if(n,m) > 1. 

We have 

~ Xm(n) n ( X(P») L(s, Xm) = L..- -.- = L(s, X) 1 - -. . 
n=1 n p/m P 

If X#- 1, 

L(I,Xm) = f Xm(n) = L(l,X) n (1 _ X(P»). 
n=1 n plm P 

The advantage of using these characters is that 

L Xm(n) = ° ifn ¥= 1 modm 
xmodm 

and 

L Xm(n) = ° if n ¥= ± 1 mod m. 
xeven 

This is not true if we use X (see Exercise 3.6). By using imprimitive characters 
we can take a sum involving L(s, Xm) for all X and cancel many terms, and 
consequently obtain a better estimate than if we worked with each character 
separately. 

We know that h;;, can be expressed in terms of the product of L( 1, X) for 
odd characters X. But it works better to obtain a lower bound for the product 
over all nontrivial characters, and an upper bound for the product over the 
nontrivial even characters, then divide. The latter is perhaps a more delicate 
estimate in our case and we do it first. 

Let n + and L+ denote respectively the product and sum over the non
trivial even characters X mod m. By the arithmetic-geometric mean inequality, 

I 1
2M(m)-2) 2 

IJ L(I, Xm)2 :s; (6(m) _ 2 ~ IL(I, XmW. 

We shall estimate the right-hand side. Note that 

L(I,Xm) = lim ~ Xm(n). 
N .... oo "=1 n 
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We shall make estimates with the finite sum, then let N -+ 00. Let XO denote 
the trivial imprimitive character mod m (Xo(n) = 1 if (m, n) = 1; 0 otherwise). 
We have 

L 1 I Xm(n)12 = L 1 I Xm(n)12 -I I Xo(n)12 
+ n=1 n all even X n=1 n n=1 n 

~ T(N) - To(N). 

First, we estimate T(N): 

T(N) = L I I Xm(n)x~(n') 
x even n=1 n'=1 nn 

q)(m) I ~ 
2 niii ±n'(m) nn 

(n,m)=! 

q)(m) Nm 1 N-l (N- j)m 

= ~ I 1: + q)(m) I I ' 
2 n=! n j=! n=1 n(n + )m) 

(n,m)=! (n,m)=! 

q)(m) N jm 1 q)(m) N-l Nm 
+~ L I . +~ I I 

2 j=! n=! n{jm - n) 2 j=1 n=jm n(Nm + jm - n) 
~.m)=! ~,m)=! 

(the first sum is for n = n'; the second, n == n', n #- n'; the third and fourth, 
n == -n') 

q)(m) n 2 N-! (N~)m 1 (1 1) 
~ -~ - + q)(m) I L ~ - - ---;-

2 6 j=! n=! )m n n + )m 
(n,m)=! 

q)(m) N jm 1 (1 1) 
+~ I I ~ -+-. ~ 

2 j=! n=! )m n )m - n 
(n.m)=! 

q)(m) N-! 1 Nm (1 1) 
+~ I . L -+ . 

2 j=! Nm +)m n=jm n Nm + )m - n 
(n.m)=1 

q)(m)n2 N-! 1 ( Nm 1 Nm 1) 
~ --- + q)(m) I ~- L - - I -

12 j=! )m n=1 n n=jm+1 n 
(n,m)=! (n,m)=! 

N 1 jm 1 N-l Nm 1 
+ q)(m) L ~ I - + q)(m) I . L-

j=!)m n=! n j=! Nm +)m n=jm n 
(n,m)=! (n,m)=! 

(in the second expression, we added some positive terms corresponding to 
(N - j)m < n ~ Nm) 

q)(m)n2 2q)(m) N 1 jm 1 q)(m) N-l 1 Nm 1 
~--+-L~ L -+~ L -. L -. 

12 m j=!) n=! n m j=! N + ) n=jm+! n 
(n,m)=1 
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Lemma 11.2. Let y = 0.577 ... be the Euler-Mascheroni constant and let A be 
a positive integer. Then 

Proof. Since 

All 
Y + log A ~ L - ~ - + y + log A. 

a=l a A 

has alternating signs and decreasing terms, we have 

~ __ 1_ < log (A + 1) <~. 
A 2A2 A A 

Therefore 

_1 __ IOg(A + 1) < _1 __ ~ + _1_ < O. 
A + 1 A A + 1 A 2A 2 -

It follows that 

A 1 L - -logA 
a=l a 

decreases monotonically to y. This proves the first inequality. Since 

A 1 00 ( 1 (a + 1)) y - L - + log A = L -- - log --
a=l a a=A a + 1 a 

00 (1 1) 1 > L --- =--
a=A a + 1 a A' 

the second inequality follows. 

Lemma ll.3. Let n(m) be the number of distinct prime divisors of m. Then 

jm 1 ( . 10gp) ( 1) 2,,(m){} L - = y + log{jm) + L - n 1 - - + -. -, 
n=l n plm p - 1 plm p Jm 

(n.m)=l 

where - 1 ~ {} ~ 1. 

o 

Proof. We shall use induction on n(m). By Lemma 11.2, the lemma is true for 
n(m) = O. Assume it is true for n(m) and then replace m by mq, with q prime, 
(q,m) = 1 (the cases mq2, etc., are obtained by varyingj). We have 

jf != jf !-! f ! 
n=l n n=l n q n=l n 

(n.mq)=l (n.m)=l (n.m)=l 

( . 10gp) ( 1) 2,,(m){} = y + log{jmq) + L -- n 1 - - + -.-
plm P - 1 plm p Jmq 
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1 ( 10gp) ( 1) 2,,(m)o' - - 'I + log(jm) + L -- n 1 - - - -.-
q plm p - 1 plm P Jmq 

( . logq 10gp)( 1) ( 1) = 'I + log(;mq) + -- + L -- 1 - - n 1 - -
q - 1 plm p - 1 q plm P 

2,,(m)(o - 0') 
+ . . 

Jmq 

Since - 2 ~ 0 - 0' ~ 2, the result follows. 

Lemma 11.4. 

and 

N I . 
L o~J < 0.11 + t(logN)2 for N? 1, 
)=1 ] 

N I . 
I o~J < t(logN)2 for N ? 21. 
)=1 ] 

Proof. A calculation shows that 

21 I . 
L o~J < t(log21)2. 
)=1 ] 

Since (log x)/x is decreasing for x > e, 

N I . fN I L o~J < ogx dx = t(IogN)2 - !(Iog21)2. 
)=22 ] 21 X 
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The second part of the lemma follows easily. The first part follows from a 
calculation of the cases N < 21 (the worst case is N = 3). 0 

We now return to the estimation of T(N). For N ? 21, 

T(N) ~ (,6(m)1t2 + 2(,6(m) f ~ ('I + log(jm) + L 10gp_) n (1 - !) 
12 m )=1] plm p - 1 plm p 

2(,6(m) N 2,,(m) (,6(m) N-1 -Iog(j/N) 1 (1) 
+-I-+-L -+0-m )=1 mj2 m )=1 1 + j/N N N 

~ (,6(m)1t2 + (,6(m) (log N)2 n (1 _ !) 
12 m pi'" p 

+ 2(,6(m) ('I + logm + L 10~Pl)(Y + logN + ~) n (1 -!) 
m plm p N plm P 

(,6(m)1t2 (,6(m) f 1 -log x d (1) +--+- -- x+o 
3m mol + x 
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(use Lemma 11.2 for the third term; use 2,,(m) ~ m and 'Lr 2 ~ 1t216 for the 
fourth term) 

~ t,6(7~1t2 + [(lOgN)2 + 2(Y + logm + l ~o~~)(Y + 10gN)] 

x n (1 _ !)2 + t,6(m)1t2 + t,6(m) 1[2 + 0(1) 
plm p 3m m 12 

(use t,6(m) = m n (1 - lip). Also, the integral is easily seen to equal 1 - i + 
! - ... = 1[216 - t(1[216). This is our estimate for T(N). 

We now estimate To (N): 

[ 
Nm 1[2 

To(N) = n~l n 
(n,m)=l 

(( logp) ( 1) 2,,(m)(J)2 
= y + log N + log m + L --=-1 n 1 - - +-N 

pimP plm P m 

= (Y + 10gN + logm + l ~o~~r D (1 - ~r + OCO!N). 

Therefore 

T(N) _ T. (N) < t,6(m)1[2 + t,6(m)1[2 
o - 12 3m 

( ( logp )2) ( 1)2 + y2 - log m + L --=-1 n 1 - -
plm p plm p 

t,6(m)1[2 (1) 
+~+o 

t,6(m)1[2 51[2 
~ -1-2- + 12 + 0(1) 

(it is rather amazing that the coefficients of both (log N)2 and log N dis
appear. It would have been easy to get rid of just the (log N)2 term, but that 
would not suffice. This is why we called this estimate "delicate" at the begin
ning of this section). 

We now obtain 

L IL(1,XmW = lim (T(N) - To(N» 
+ N .... oo 

t,6(m)1[2 51[2 
~-1-2-+12 

~ (t,6(m~ - 2)(1.7) if t,6(m) ~ 220. 
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By an inequality at the beginning of this section, 

II] L(l,Xm)l::;; (1.7)(,(m)-2)/4. 

We record this for future reference. 

Lemma 11.5. If </J(m) ~ 220 then 

I
n L(l, Xm) I ::;; (1.7)('(m)-2)/4. 

x even 
x"l 

§11.2. The Estimate For All Characters 
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We now need to estimate n L(s, Xm) from below, where X runs through all 
nontrivial characters mod m. We continue to use imprimitive characters. 
Surprisingly, we first need an upper bound. 

Lemma 11.6. If </J(m) ~ 20 and Is - 21 ::;; t then 

In L(S'Xm)1 < </J(m)¢(m)/2. 
x,,1 

Proof. By the arithmetic-geometric mean inequality, 

I 1
1/(¢(m)-ll 1 n L(s, Xm)2 ::;; __ ._0.0.0 L I L(s, XmW. 

x,,1 </J(m) - 1 x,,1 

Let S(u,Xm) = Ll,;o<uXm(n) (= Lm,;o<uXm(n) if u > m and X"# 1). Then, for 
X"# 1, 

L(s, Xm) = f Xm~n) 
0=1 n 

(this is just partial summation) 

m-l X (n) fOO = L ~ + s S(U, Xm)u-·- 1 dUo 
0=1 n m 

Since I S(u, Xm)1 ::;; </J(m)j2 (but see Lemma 11.8), the integral converges for 
(1 = Re(s) > 0, so by analytic continuation the above holds for (1 > O. Also, 
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Since Is - 21 ~ 1, we have (J ~ ~ and Isl/(J ~ -fi. Therefore 

IL(s,Xm)1 ~ Imf Xm~n)1 + ¢J(;2m-2/3. 
0=1 n v' 2 

The triangle inequality says that for real ai' bi' 

«a1 + bd2 + (a 2 + b2)2 + ... )1/2 ~ (ai + a~ + ... )1/2 + (bf + bi + ... )1/2. 

In the present case this yields 

( ) 1/2 ( 1 m-l 12)1/2 ( (¢J(m) )2)1/2 I IL(s,Xm)1 2 ~ L L Xm(n)n- S + I M m-2/3 
X,,1 x,,1 0=1 x,,1 v' 2 

The first term is the square root of 

m-l m-l m-l 
I L I Xm(n)Xm(n')n-S(nT S = ¢J(m) I n- 2a 
.n x .=1 .'=1 .=1 

(.,m)=1 

(I Xm(n)Xm(n') = 0 if n =1= n' mod m, since we are using imprimitive characters). 
Since (J ~ ~, 

mf n- 2a ~ (1) ~ 1 + fOCi u-4I3 du = 4 . 
• =1 1 

(.,m)=1 

Putting everything together, we obtain 

f1 L(S,Xm)2 ~ (4¢J(m))I/2 + (¢J(m) - 1)1/2~m-2/3 1 1 1/(~(m)-I) 1 ( ¢J() )2 
x,,1 ¢J(m) - 1 -fi 

~ (( 4¢J(m) )1/2 + ¢J(m) ¢J(mf2/3)2 
¢J(m) - 1 -fi 

~ ¢J(m) if ¢J(m) ~ 20. 

The lemma follows easily. D 

The next result uses the upper bound to get a lower bound. 
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Lemma 11.7. Suppose 

(a) f(s) is regular and satisfies If(s)1 ~ M in the disc Is - 21 ~ t, 
(b) f(s)C(s) = L:'=1 ann-' for Re(s) > 1, with a1 ~ 1 and an ~ 0 for n ~ 2, 
(c) 26/27 ~ 0( < 1, and 
(d) f(O() ~ o. 

Then 

f(l) ~ 1(1 - 0()M-4 (1-1I). 

Proof. Let F(s) = f(s)c(s). TMn F(2) ~ a1 ~ 1 and 

so 

with 

Also, 

00 

(-IYFj(2) = L ailognyn- 2 ~ 0, 
n=1 

00 

F(s) = L bj(2 - sY (for Is - 21 < 1) 
j=O 

bo ~ 1 and bj ~ 0 for j ~ 1. 

f(l) 00 

F(s) - s _ 1 = jfo (bj - f(I))(2 - sY for Is - 21 < 1. 

Since the left-hand side is regular throughout the whole disc Is - 21 :::;; t the 
right-hand side must converge in this disc (and equal the left-hand side). A 
short calculation shows that for Re(s) > 1, 

I foo u - [u] . 
s _ I + I - S 1 u.+1 du ([u] = greatest mteger :::;; u) 

= f m (~ - 1 .) = (1-' - 2-') + 2(rS - r S) + ... 
... =1 m (m + 1) 

= C(s). 

Since both sides are regular for Re(s) > 0, s :F- 1, the equality holds for these 
s. On the circle Is - 21 = t, 

1 foo 1 
lC(s) I ~ Is _ 11 + 1 + lsi 1 u.,+1 du 

~ 3 + 1 + ~ ~ 6. 
(1 

Consequently, for Is - 21 = t (hence for Is - 21 :::;; ~), 

I F(s) - !~)11 ~ 6M + 1!~)11 ~ 9M. 
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Therefore 

1
(- IY i ( /(1») ds I Ibj - /(1)1 = -2-· F(s) - ----=-1 ( _ 2y+1 

1tI 1'_ 21=4/3 S S 

~ 9M(~y. 
With IX as in the statement of the Lemma, and for A > 0, we obtain 

F(IX) - :~)1 ~ jto (bj - /(1»)(2 - IXY ...!. j=t+1 9M(!Y(2 - IXY 

~ t (bj - /(1»)(2 - IXY _ 9M(!(2 -; 1X»A+l 
j=O 1 - 4(2 - IX) 

A 

~ bo - L /(1)(2 - IXY - 32Ma)A 
j=O 

(since bj ~ 0) 

Since /(IX) ~ 0 and '(IX) < 0, F(IX) ~ o. Therefore, after some rearranging, we 
have 

Let 

= [(lOg 64M)] 1 
A log(~) + 

(note that M ~ /(2) = F(2)/,(2) ~ 6/1[2, so A > 0). Then 

(2 - IX)A+l 1 
/( 1) 1 - IX ~ 2· 

Since log(~) > i. A < 1 + 410g(64M). Therefore 

(2 - IX)A-l ~ (e1-a)A-l ~ (64M)4(1-a,. 

Also. 

2(2 - 1X)2(64)4(1-a, ~ 2 G~r 644/27 < 4. 

Putting everything together. we obtain the lemma. D 

Lemma 11.8 (Polya-Vinogradov). Let X =1= 1 be primitive with conductor f. 
Let S(u. X) = Losn<u x(n). Then 

IS(u. x)1 < /1/210g f. 
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(If X #- 1 is imprimitive mod m, the result holds with 2m 112 log m on the right. 
See Ellison [1], p. 344.) 

Proof. Let ( = e2f1i/J and let .. (X) = IJ:l X(c)('. By Lemma 4.7, 

x(n) .. (x) = I: X(c)('n. 
< 

We may assume u is a positive integer, so 

"(X)S(u, X) = I: X(c) I: «n 
< OSn<u 

(u< _ 1 
= ~ X(c) « _ 1 . 

Note that if fl2 E 7L then XUI2) = o. Therefore 

J-l /(U< - 1/ 
1"(x)IIS(u,x)l~ <~ «_I 

<#J/2 

J-l / Sin(nUCIf)/ [(J-l)12] 1 
~ <~1 sin(nclf) ~ 2 <~ sin(nclf)" 

<#J/2 

But sin x ~ 2xln for 0 ~ x ~ n12. Therefore 

[(J-1)12] f 1 
1"(x)IIS(u,x)1 ~ 2 I: -2 = fI:-. 

<=1 C < C 

We claim that 

[(J-l)12] 1 
L - < logf, for f ~ 3. 

<=1 C 

It clearly suffices to prove the claim for odd f. The inequality holds for f = 3. 
Suppose it is true for f = 2n - 1. To change to f = 2n + 1, we add lin to the 
left and log(2n + 1) - log(2n - 1) to the right. Since 

log(2n + 1) -log(2n - 1) = 10g( 1 + ;n) -IOg( 1 - ;n) 
= 2 (~ + ! (~)3 +! (~)S + ... ) 

2n 3 2n 5 2n 

>-, 
n 

the inequality still holds. This proves the claim. 
Therefore 

1"(x)IIS(u, x)1 < flogf· 

By Lemma 4.8, 1"(x)1 = fll2, since X is primitive. This proves the lemma. 0 
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Lemma 11.9. If X is a primitive nontrivial character of conductor f and 1 ~ 
U ~ 1 - 1/4[, then 

1L'(u, x)1 ~ (1.3)(logf)2. 

Proof. As in the proof of Lemma 11.6, we have for u = Re(s) > 0, 

L(s, X) = If x(n)n-' + s 100 
S(u,x)u-0 - 1 duo 

n=l I 

Differentiate: 

1-1 100 

L'(s,X) = - L x(n)(logn)n-O + S(u,x)u-·-1(1 - slog u) du. 
n=l I 

By Lemma 11.8, 

1L'(u,x)1 ~ :t: (logn)n-a + f1/210gf Loo u-a- 1(ulogu - l)du 

(u log u - 1 ~ u logf - 1 ~ g log 3 - 1 > 0). Therefore 

I-q 
IL'(u,x)1 ~ f1-a L ogn + f1/2-a(logf)2 

n=l n 

(by Lemma 11.4) 

This proves Lemma 11.9. 

Lemma 11.10. If X is a primitive quadratic character of conductor f, then 

1 
L(u, X) ~ 0 for u ~ 1 - 41' 

o 

Proof. By the analytic class number formula (see the discussion following 
Theorem 4.9), 

2hloge 
X even, 

y7 
, 

L(l,X) = 
27th x odd, wy7' 

where hand e are the class number and fundamental unit of the corre
sponding quadratic field; and w = 2 if f ¥- 3,4; w = 6 iff = 3; w = 4 if f = 4. 

If X is real, f ~ 5, so 

a+by7 1 +JS 
e = 2 ~ --=-2~' 
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Since h ~ 1, we obtain, for all f, 
L(I, X) ~ (0.96)/- 1/2 • 

If 1 ~ a ~ 1 - 1/4J, 

L(a,x) ~ L(I, X) - (1 - a) Max IL'(a',x)1 

~ (0.96)/- 1/2 - ~(1.3)(IOgf)2 > o. 

This completes the proof of Lemma 11.10. 

Lemma 11.11. If X is a quadratic character mod m, then 

L(u, Xm) ~ 0 for a ~ 1 - 114m. 

Proof. 

L(a, Xm) = L(u, X) n (1 - X(:») ~ 0 
plm P 

since 1 - 114m ~ 1 - 1/4/. 

Lemma 11.12. If tP(m) ~ 20, then 

1 III L(I, Xm) ~ 16mtP(m)1/2· 

217 

o 

o 

Proof. We shall use Lemma 11.7 with f(s) = nX"l L(s,Xm) and IX = 1 - 114m. 
M is given by Lemma 11.6. Clearly (a) and (c) are satisfied. Since f(s)C(s) 
is the Dedekind zeta function of Q(Cm)' with the terms removed which have a 
factor in common with m, we find that (b) holds. If X is real-valued, hence 
quadratic, Lemma 11.11 implies that L(IX, Xm) ~ O. If X is complex then 

L(IX,Xm)L(IX,Xm) = 1L(IX,XmW ~ O. 

Therefore f(lX) ~ 0, so Lemma 11.7 applies. We obtain 

})1 L(I,Xm) ~ ~ (4~)tP(mr;(m)/2m. 
The lemma follows easily. o 

§11.3. The Estimate for h;;' 

Lemma 11.13. If tP(m) ~ 220 then 

I Xl L(1, Xm)1 ~ 16m;(m)1/2 (1.7)(2-;(m»/4. 

Proof. Lemmas 11.5 and 11.12. o 
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The following lets us return to primitive characters. However, the estimate 
is not good enough to be of use for our purposes. 

Lemma 11.14. 

Proof. Write m = mpm~, where mp is a power of p and p % m~. Then X(p) -=F 

o<=> fllm~. There are at most t,p(m~) such odd characters. Therefore the 
product is at least 

( 
1)-(1/2);(mp) n 1 +- . 

plm P 

Take the logarithm (the minus sign reverses all the inequalities): 

1 I ( 1) 1 I 1 -- L ,p(mp)log 1 + - ~ -- L ,p(mp)-
2 plm p 2 plm p 

This completes the proof. 

,p(m) (1 1 1) 
~ --2- ,p(4) 2 + ~ (p - l)p 

p>2 

> _ ,p(m) (~+ L 1 ) 
- 2 4 p>2 (p - l)p 

> _ ,p(m) (~ + ~) = _ 7,p(m) 
- 243 24' 

Proposition 11.15. If ,p(m) ~ 220 then 

log h;;; ~ ! log dm - (l.37),p(m). 

where dm is the absolute value of the discriminant of O('m)' 

o 

Proof. From the class number formula (in particular, see the discussion 
preceding Theorem 4.17), 

logh;;; = tIOg(dd:) + log n L(I,Xm) + logw 
m I odd 

,p(m) 
+ log Q - -2-log(2n), 

where d;:; is the discriminant of O('m)+, w = m or 2m, and Q = 1 or 2. By 
Lemma 4.19, 
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Using Lemmas 11.13 and 11.14, we obtain 

2 - qj(m) 
logh';; ;;:: !logdm -log(16mqj(m)1/2) + 4 log(1.7) 

7 qj(m) 
- 24qj(m) + log m - -2-log(2n) 

;;:: ! log dm - (1.37)qj(m), if qj(m) ;;:: 220. 

This proves the proposition. o 
Since log dm ,.., qj(m) log m (Lemma 4.18), it is clear that we are almost done. 

Also, note that we find that log h';; grows at least as fast as predicted by the 
Brauer-Siegel theorem (see Theorem 4.20). It remains to estimate the dis
criminant. If m is a prime power, this is easy, but for composite m the 
estimates are harder. By Proposition 2.7, 

logdm = logm _ L logp. 
qj(m) plm p - 1 

We can obtain an easy estimate as follows: If 21m then the right-hand side 
is at least 

logm -log2 -! L logp;;:: logm -log2 - !IOg(~) 
2 pl(mj2) 2 2 

;;:: ~IOg(I). 
If m is odd, we obtain t log m. Therefore 

logh';;;;:: GIOg(I) -1.37)qj(m) > 0 ifm> 116000. 

So, in principle (i.e., with unlimited computer time), we are done. How
ever, with a little work we can improve the situation. Of course, we could 
make some progress by estimating dm more carefully. But let's look back 
at the proof. The major terms are ! log(dm), which cannot be changed; 
!qj(m)log(1.7), which comes from Lemma 11.5; 274qj(m), from Lemma 11.14; 
and tqj(m) log (2n), which cannot be changed. If m is a prime power, then the 
estimate of Lemma 1l.l4 is very bad, since the left side is 1. Therefore, we 
bypass Lemma 1l.l4 and replace Proposition 1l.l5 with the following. 

Proposition 11.16. Assume qj(m) ;;:: 220. If m is a prime power then 

log h';; ;;:: ! log dm - (1.08)qj(m). 

If m is arbitrary then 

- 1 1 ~ 1 
loghm ;;:: 4 10g dm - (1.08)qj(m) - !qj(m) ~ qj(2p2)" 
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Proof. In Lemma 11.14, all the factors are 1 if m is a prime power. If m is 
arbitrary, we have, as in the proof of the lemma, 

log n n (1 _ X(p»)-l ~ _ ~(m) (_1 ! + L 1 ) 
;todd plm p 2 ~(4) 2 plm (p - l)p 

L-...r-' p>2 
if 21m 

(omit the term for 2 if m is odd) 

1 ~ 1 
= -2~(m) ~ ~(2p2)" 

Using these estimates in the proof of Proposition 11.15, we obtain the result. 
o 

Corollary 11.17. If ~(pa) ~ 220, then h;a > 1. 

Proof. We have 

log(dpa) = I (") _ logp > I (a) _ I 2 
~(pa) og P P _ 1 - og P og 

~ log(220) -log(2) ~ 4.7. 

Therefore 

log(h;a) ~ (i(4.7) - 1.08)~(pa) > O. 

This proves Corollary 11.17 (in fact, we obtain h;a > 109 ). o 
Corollary 11.18. h;a = 1 if and only if pa is one of the following: an odd prime 
p ~ 19, or 4,8,9, 16,25,27,32 (one could also include p" = 1). 

Proof. We know that ~(pa) < 220. The table in the appendix yields the 
answer. 0 

Our strategy is now as follows: We know that hpa = 1 for at most those 
values listed in Corollary 11.18. By Exercise 4.4, or by Lemma 6.15 plus 
Theorem 10.1, hnlhm if n divides m. Therefore, if hm = 1, all the prime factors 
of m are less than or equal to 19. In fact, if pa divides m, then pa is on the above 
list. This gives us finitely many possibilities, each of which can be checked 
individually. We give some of the details: 

19. The table in the appendix shows that h;;' > 1, hence hm > 1, for m = 
4 x 19,3 x 19,5 x 19, ... , 13 x 19. Corollary 11.18 takes care of 192• How
ever ~(17 x 19) = 288 > 256, so is not listed in the table. But Proposition 
11.16 applies. We have 

logdm = I (323) _ log 17 _ log 19 
~(m) og 16 18 

~ 5.4. 
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Also 

Therefore 

log h323 ~ (1<5.4) - 1.08 - 0.004)1,6(323) > O. 

Consequently, h19n > 1 for 2 #- n > 1, so we may henceforth ignore 19. 

17. From the table, hl7n > 1 for 1 < n < 17 (n #- 2). Corollary 11.17 
implies hi89 > 1. Therefore h17n > 1 for n > 1. 

13. From the table, hl3n > 1 for 1 < n ~ 13, so h13n > 1 for n > 1. 

11. We obtain h33 = 1 and h44 = 1, but hilI' > 1 for 3 < p ~ 11. So ifm is 
a multiple of 11, m = 11· 2"· 3h• Since h99 > 1, hl32 > 1, and hS8 > 1, we must 
have m = 33 or 44. 

7. We have hi8 = 1, hil = 1 and h3s = 1, so we have only eliminated 
multiples of 49. Next, consider 56, 84, 140, 63, 105, and 175. Only 84 gives 
h- = 1. Since 2 x 84, 3 x 84, and 5 x 84 are multiples of numbers already 
eliminated, we may stop here. 

2,3,5: These are treated similarly. 

We have proved the following. 

Proposition 11.19. If hm = 1 then m is one of the numbers given in the statement 
of Theorem 11.1. All these values have h;;' = 1. 0 

Remark. We have not yet calculated h~, so we have not proved the converse 
of Proposition 11.19. 

Masley proved that nlm=h;;lh;;'. Hence he was able to work exclusively 
with h;;' in the above and show that Theorem 11.1 lists exactly those m with 
h;;' = 1. 

§11.4. Odlyzko's Bounds On Discriminants 

The results of this section will be used in the next section to compute h~. 
However, as we shall see, they are also useful in other situations. 

Let K be a number field of (absolute value of) discriminant D and degree 
n = r l + 2r2 • Let 
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(K(S) = n (1 - Nfrsr1 (Dedekind zeta function of K), 
[Ji' 

(~(s) d 
Z(s) = -- = --log(K(s), 

(K(S) ds 

d 
ZI (s) = - ds Z(s), 

I/I(s) = r'(s) (r = gamma function). 
r(s) 

For (J > 1, 

Z«(J) = L 10gNgiI > 0 
:y N f!Jl" - 1 

and since N gil" increases with (J, 

ZI«(J) > O. 

The estimates we need will arise from the following. 

J7- J32 Theorem 11.20. Let ex = 17 = 0.28108 .... Suppose a, (J > 1 satisfy 

Then 

5 + J120"z - 5 a z 6 and a z 1 + aa. 

log D Z '1 (log n - 1/1 (~) ) + 2'z(log 2n - 1/1(0"» 

+ (2(J - l) ti 1/1' G) + 'zl/l'(a)} + 2Z«(J) 

2 2 20" - 1 2(J - 1 
+(2(J-l)ZI(a)--------- . 

0" (J - 1 aZ (a - oz 
We postpone the proof in order to show how to use the theorem. The idea 

is to fix n, '1' and 'z, and find optimal choices for (J and a. For small n it is 
best to take 

The best choice for 0" will satisfy a z 1 + aa for these cases. Fortunately, 
Odlyzko has determined in many cases the best value of 0". We shall give the 
results below. 
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For any (1, a we obtain an estimate of the form 

l/n rl 2r2 C 10g(D ) 2! - A + - B - -
n n n 

with A, B, C 2! O. Therefore, estimates for Dl /n for K of a given degree n are 
also valid for fields of higher degree, provided the ratios rl/n and r21n are held 
constant (e.g., K is totally real, or totally complex). We also have, for any 
(1 > 1 and for any admissible ii, 

10g(DI/n) 2! ~A + 2r2 B + o(!) 
n n n 

where 

A = 10g1t _ ~(~) + 2(1; 1 ~I(;) 

B = log21t - ~((1) + (2(1 - l)~'(ii). 

We may let (1 be arbitrarily close to 1 and let ii = 1 + ex (this satisfies the 
other inequality). We find 

DI/n 2! (50.66),,,n(19.96)2r,/n (1 + 0 G) ). 
We give an application. Let Ho = Q(Jd) be a real quadratic field. Let HI be 
the Hilbert class field of Q(Jd) and inductively let Hi+1 be the Hilbert class 
field of Hj • Does this class field tower stop (i.e., H j = Hi+1 = ... for some i)? 
Equivalently, can Q(Jd) be embedded in a field of class number I? (Exercise 
11.4). Golod and Shafarevich have shown that for d = 3 x 4 x 7 x 11 x 
13 x 19 x 23, the tower does not stop. 

Suppose thl!t d is the discriminant (not! disc.) of Q(Jd) and d < 2500. 
Since HJQ(J"d) is unramified, 

(see Lemma 11.22). Therefore, if nj = [HI: 0], 

Dl/n, = d l /2 < 50. 

If nj --+ 00 then 

lim inf Dl'n, 2! 50.66, 

contradiction. So the class field tower stops. 
It can be shown that 

1 
-logD 2! y + log(41t) + 1 - 8.317302n- 2/3 (K totally real), 
n 

1 
-log D 2! Y + log(41t) - 6.860404n-2/3 (K totally complex). 
n 
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(See Poitou [1]; also see Poitou [2]). These yield 

D 1/n ~ 60.83 - 0(1) (K totally real), 

D 1/n ~ 22.38 - 0(1) (K totally complex). 

Even better estimates are available if one assumes the generalized Riemann 
Hypothesis. 

We now give the table we promised. Keep in mind that an estimate for a 
given n works for a larger n; so for n = 18, for example, use the estimate for 
n = 15. 

Lower bounds for DlIn for [K: 0] ~ n 

K totally real K totally complex 

n (1 D1/n (1 D1/n 

10 1.84 10.00 2.26 5.53 
15 1.57 13.58 1.85 7.06 
20 1.44 16.40 1.66 8.11 
30 1.32 20.57 1.46 9.68 
40 1.26 23.55 1.37 10.77 
60 1.19 27.61 1.27 12.23 

100 1.14 32.25 1.19 13.86 
120 1.12 33.75 1.165 14.38 
180 1.095 36.76 1.13 15.40 
240 1.08 38.62 1.11 16.03 

This table is copied from Odlyzko [1]. For a more comprehensive table, 
see Odlyzko [4] and Diaz y Diaz [1]. 

To show how the various terms contribute to the estimates we give the 
calculation of the lower bound for n = 10 and K totally real. It is hard to 
estimate Z(O') and Z1 (0'); but recall that they are positive, hence may be 
ignored. We have 0' = 1.84 and a = 1.828 .... Writing the terms in the same 
order as in Theorem 11.20 (leaving out terms with '2 = 0, and leaving out Z 
and Z1), we have 

Therefore 

10gD ~ 10(1.14 - (-0.72» 

+ (2.68W40 1.88) 

- 1.09 - 2.38 - 0.80 - 3.91 

= 23.02. 

D 1/10 ~ e2 .302 = 9.99 
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(we lost a little to rounding errors). As one can see, most of the terms make 
significant contributions to the final answer. 

Proof of Theorem 11.20. Let 

g(s) = Ctrl(~1t)2r2)"2 r GY' r(S)'2'K(S)S(1 - s). 

Then g(s) is an entire function of order 1 (see Lang [1], p. 332) and satisfies 

g(s) = g(1 - s) 

(see the discussion preceding Corollary 4.6). By the Hadamard Product 
Theorem (see, for example, Lang [7], p. 253), there exist constants A and B 
such that 

g(s) = eA+BSI} (1 - ~)es/p, 

where p runs through the zeros of g(s) (= zeros of 'K(S) with 0 < Re(s) < 1) 
counted with multiplicity. If g(p) = 0 then g(1 - p) = 0 (if gH) = 0 then it 
has even multiplicity), so we pair p and 1 - p to obtain 

g(s) = eA +Bs n (1 -~)(I - _s_)es,p(l-p) 
p.1-p p 1 - P 

=exp(A +BS+SLp(1 ~p») Jt(l-~)(I-1 ~p) 
(since g(s) is of order I, L l/p(1 - p) converges; therefore the product con
verges also; hence the rearrangement is easily justified). Since, for any p and s, 

we have 

1 = g(~~ s) = eXP(B(2S - I) + (2s - I) L p(1 ~ P»)' 
Therefore B = - L l/p(1 - p), hence 

g(s)=e A n (1_~)(I __ s ). 
p.1-p P 1 - P 

Recalling the definition of g(s) and taking the logarithmic derivative, we 
obtain 
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This may be rearranged to yield 

logD = r1 (IOgn - t/lG)) + 2rz(log2n - t/I(s» 

+ 2Z(s) _ ~ __ 2_ + 2 L (_1_ + 1 ). 
s s - 1 p.1-p S - P s - 1 + P 

This is valid for all s (except s = p, 1 - p, 0, 1). 
Differentiate with respect to s and let s = if to obtain 

it/l'(~) + 2rzt/l'(if) + 2Z1(if) - :z - (if ~ I)Z 

- 2 P.~P Cif :::: ~)Z + (if _ ~ ~ P)z) = O. 

Multiply by (20" - 1)/2 and add the result to the previous equation, with 
s = 0": 

logD = r1 (IOgn - t/I(~)) + 2rz(log2n - t/I(O"» 

+ (20" - l){it/l'(D + rzt/l'(a)} 

2 2 + 2Z(0") + (20" - I)Zl(a) - - - --1 
0" 0"-

20"-1 20"-1 (1 1) - --r - (a -1)2 + 2 P.~P 0" - P + 0" - 1 + P 

- (20" - 1) P'~P Cif :::: ~)Z + (a _ ~ ~ P)z). 

It therefore remains to show that 

L C ~ P + 0" - ! + p) ~ (0" - D L Ca:::: ~)Z + (a _ ~ ~ P)z). 

Since g(p) = O¢>g(p) = 0, we may pair the terms for p and p, which amounts 
to taking the real part of each side of the above inequality. Let p = x + iy. It 
suffices to prove the following. 

J7- fo Lemma 11.21. Let IX = 17' Suppose if, 0" > 1 satisfy 

a ~ 5 + J1620"2 - 5 and if ~ 1 + IXO". 

If 0 ~ x ~ 1 and y is real, then 
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(1-X (1-1 +x 
~-~-" + -;-------:----:-;.--. «(1 - X)2 + y2 «(1 - 1 + X)2 + y2 

( 1) { y2 _ (0' - X)2 y2 - (0' - 1 + X)2 } 
> (1-- + . 
- 2 (y2 + (0' - X)2)2 (y2 + (0' - 1 + X)2)2 

Proof. Both sides are invariant under x 1-+ 1 - x and under y 1-+ - y, so it 
suffices to prove the inequality for t ~ x ~ 1 and y ~ O. A lower bound for 
the left-hand side is 

(1 - x (1 - 1 + x 2«(1 - t) 
«(1 - 1 + X)2 + y2 + «(1 - 1 + X)2 + y2 = «(1 - 1 + X)2 + y2' 

Therefore, it suffices to show 

2 y2 - (0' - X)2 y2 - (0' - 1 + X)2 

«(1 - 1 + X)2 + y2 ~ (y2 + (0' _ X)2)2 + (y2 + (0' - 1 + X)2)2 (*) 

for t ~ x ~ 1 and y ~ O. 

Case 1. y ~ 0' - x (~O' - 1 + x). 
In this case the right-hand side of (*) is negative, so the inequality is trivial. 

Case 11. 0' - x < y < 0' - 1 + x. 
The second term on the right-hand side is negative, so we ignore it. Let 

A = «(1 - 1 + X)2 - 5(0' - X)2, 

B = H17(0' - X)4 - 14(0' - X)2«(1- 1 + X)2 + «(1 - 1 + X)4} 

17 4 { (0' - X)2 2} { (0' - X)2 1 } 
= 4«(1 - 1 + x) «(1 _ 1 + X)2 - oc «(1 _ 1 + X)2 - 17oc2 ' 

C = (y2 - tA)2 - B 

= y4 _ Ay2 + (0' - X)2«(1 - 1 + X)2 + 2(0' - X)4. 

A calculation shows that 

y2 _ (0' _ X)2 

«(1 - 1 + X)2 + y2 - (y2 + (0' _ X)2)2 

C 
- «(1 - 1 + X)2 + y2)(y2 + (0' _ X)2)2' 

We must show C ~ O. If A ~ 0, the second expression for C yields C ~ O. 
Suppose now that A > 0, which means that 

(0' - X)2 < t«(1 - 1 + X)2. 

Since 17oc2 < 5, 
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Since if ~ 1 + (1.U by assumption, 

if - x ~ (1.U + 1 - x ~ (1.U - (1.(1 - x) > 0, 

hence 

(if - X)2 ~ (1.2(U - 1 + X)2. 

The second expression for B yields B ~ O. The first formula for C shows that 
C ~ 0, as desired. 

Case III. if - 1 + x $ y. 
The right-hand side of (*) is bounded above by 

2y2 - (if - X)2 - (if - 1 + X)2 
(y2 + (if _ X)2)2 

A short calculation yields 

2 2y2 - (if - X)2 - (if - 1 + X)2 
(u - 1 + X)2 + y2 (y2 + (if _ X)2)2 

y2(5(if - X)2 + (if - 1 + X)2 - 2(u - 1 + X)2) 
>--~~~--~.-~~~----~~---
- «u - 1 + X)2 + y2)(y2 + if _ X)2)2 

We must show the numerator is nonnegative. Let 

f(x) = 5(if - X)2 + (if - 1 + X)2 - 2(u - 1 + X)2. 

Then 

f'(x) = 8(x - if) + (2 - 4u) < 0, 

for x ~ 1. Therefore 

f(x) ~ f(l) = 5(if - W + if2 - 2u2 ~ 0, 

since if ~ (5 + J12u2 - 5)/6. This completes the proof of Case III, hence of 
Lemma 11.21. 0 

The proof of Theorem 11.20 is now complete. o 

§11.5. Calculation of h~ 

The estimates given in the table of the previous section may be used to 
calculate h! for small m, in particular for those m listed in Theorem 11.1. The 
main tools we need are the following two lemmas. 

Lemma 11.22. If L/K is an extension of degree n in which no finite primes 
ramify, then 
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where DL and DK are the absolute values of the discriminants of Land K, 
respectively. 

Proof. A well-known formula (see Lang [1], pp. 60, 66) states that 

DL = D'lcN~L/K 

where N~L/K is the norm of the relative different. Since no primes ramify, 
~L/K = (1). The result follows. D 

Lemma 11.23. Let B(n) be the lower bound for D1/n for totally real fields of 
degree ~ n (as given in the table of the previous section). Let d;! and h~ be the 
discriminant and class number of 1I)((mt. If 

(d;! )2!;(m) < B (h<fo~m)) 

then 

h~ < h. 

Proof. Let H be the Hilbert class field of 1I)((m)+, so H/II)((m)+ is an un
ramified extension of degree h~, and 

nH = [H : 11)] = t<fo(m)h~. 

By Lemma 11.22, 

Therefore 

1"'( )h+ = < h<fo(m) 
2'1' m m nH 2' 

The lemma follows. D 

Since 21h~ = 21h;;; by Theorem 10.2, h~ must be odd whenever h;;; = 1. 
Consequently, we only need to show h~ < 3. This may be done via Lemma 
11.23. The value of d;! may be calculated by Lemma 4.18 and Proposition 
2.7, or by the conductor-discriminant formula. We give a few examples: 

m = 5, 8, 12. 1I)((m)+ = lI)(fo), so these class numbers may be calculated 
directly (via the analytic class number formula). 

m = 7, 9. [1I)((m)+: 11)] = 3 and only one prime ramifies, so 31 h~ by 
Theorem 10.4. Since h~ is odd, h~ = 1 or h~ ~ 5. The discriminants are 72 
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and 92 • Both satisfy 

(d;:;)1/3 < 10 = B(lO) = BW30)3). 

By Lemma 11.23, h~ < 13°, hence h~ = 1. 

m = 15, 16,20, 24. These all have degree 4. The discriminants are 32 .53, 

211,24.53,28.32, respectively. The largest of these is di4 = 28.32 • Therefore 

(d;:;)1/4::; (2 8 .32 )1/4 = 4)3 < B(10) = B(i-4), 

so h~ < 1. Therefore h~ = 1. 

m = 35, 45, 84. These all have degree 12. The discriminants are 59 .71°, 
318 .59, 212 .36.710, respectively. The largest of these is 212.36.71°. As be
fore, 

(d;:;)1/12::; (212.36.71°)1/12 = 2)3.75/6 < 18 < B(30) = B(1· 12). 

Therefore h~ < 5/2, so h~ = 1. 
The other values of m are treated similarly. So all the values of m listed in 

Theorem 11.1 have h~ = 1. Since all of these have h;;' = 1, and since Proposi
tion 11.19 says that these are the only possibilities for hm = 1, the proof of 
Theorem 11.1 is complete. D 

Remark. It is not always true that if h- = 1 for a CM-field, then h+ = 1. 
See Exercise 11.6. 

NOTES 

The papers of Masley contain several discussions of the results in this 
chapter. 

The estimation of h;;' follows the method used in Masley [1]. For other 
methods, see Masley-Montgomery [1], Uchida [1], Louboutin [3], and 
Hoffstein [1]. The last paper applies to many CM-fields and does not rely on 
the factorization of the zeta function into L-series. 

For analytic estimates of h; and h;n, see Ankeny-Chowla [1], Lepisto 
[1], Louboutin [2], and Metsankyla [4]. For a simple but accurate upper 
bound, see Carlitz [2]. 

For the calculation of h~, see van der Linden [1] and the papers of 
Masley. For examples of h~ > 1, see Ankeny-Chowla-Hasse [1], S.-D. Lang 
[1], Cornell-Washington [1], and Takeuchi [1]. 

It had been suggested that h; < p for all p, but this is now known to be 
false. See Seah - Washington - Williams [1] and Schoof - Washington [1]. 

For Euclidean cyclotomic fields, see Masley [3], Ojala [1], and several 
papers of Lenstra. 

For more on Odlyzko's results, see his papers, plus Martinet [1], [2], Diaz 
y Diaz [1], and Poitou [1], [2]. 
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For another approach to estimating discriminants, see Zimmert [1]. 
Yamamura [3] determined all imaginary abelian fields with class number 

1. Horie [5] showed that there are only finitely many imaginary abelian 
number fields K such that the odd part of hi is less than any given bound, 
and found all cyclotomic fields with h- a power of 2. 

Kida-Murabayashi [1] found all "cyclotomic" function fields of class 
number one. 

EXERCISES 

11.1. Use the Minkowski bound (Exercise 2.5) to show that 

( e2n)2r2'. 
D 1,. 2= (e2 )'l'. 4 (1 + 0(1». 

This is much weaker than Theorem 11.20. 

11.2. Show that none of the fields o (.j=I), o (R), o (R), o (R), 

o (j=ll), o (j=19), O(J -43), O(J -67), O(J -163) has any nontrivial 
unramified extension. These are precisely the imaginary quadratic fields with 
class number 1, so we know that there are no such abelian extensions. The 
problem is therefore the other (not necessarily Galois) extensions. 

11.3. (a) Show that if 21h;9 then Slh;9 (see the example following Theorem IO.S). 
(b) Show that h;9 = 1 (hence the class group of 0('29) is (lL/2lL)3 by the exam
ple of Chapter 10). 

11.4. Let K = Ho and let Hi+! be the Hilbert class field of HI' Show that the class field 
tower stops (HI = Hi+1 = ... for some i)-K is contained in a field of class 
number 1. 

11.5. Let n divide m, so 0('.) S;; 0(,,.). Let p be odd and let A. and A,. be the p-Sylow 
subgroups of the ideal class groups. Show that the norm maps A;;; onto A;. 
Conclude that h; divides h;;;, except for possibly a power of 2 (Masley has 
shown that h; divides h;;;). 

11.6. Let K = 0(J=l, jiO). 
(a) Show that K c O('a, fi) c 0('40). 
(b) Show that 0('40)/0('a, fi) is totally ramified at the primes above 5. 
(c) Use Theorem 11.1 to show that O('a, fi) has class number 1. 
(d) Show that K has class number at most 2. In fact, use Theorem 3.5 to show 
that the extension O('a,fi)/K is unramified, so the class number is 2 and 
O('a, fi) is the Hilbert class field. 
(e) Show K+ = O(jiO), which has class number 2. 
(f) Conclude that h- = 1 but h+ = 2 for K. 



CHAPTER 12 

Measures and Distributions 

The concept of a distribution, as given in this chapter, is one that occurs 
repeatedly in mathematics, especially in the theory of cyclotomic fields. As we 
shall see, many ideas from Chapters 4, 5, 7, and 8 fit into this general frame
work. The related concept of a measure yields a p-adic integration theory 
which allows us to interpret the p-adic L-function as a Mellin transform, as 
in the classical case. 

Many of the extensions of the cyclotomic theory have used measures and 
distributions; see for example the work of Kubert and Lang on modular 
curves. For an approach to cyclotomic fields that is much more measure
theoretic than the present exposition, the reader should consult Lang [4] and 
[5]. 

In this chapter, we first introduce distributions and give some examples. 
We then define measures and give a p-adic integration theory, including the 
r-transform and Mellin transform. We also give the relations between the 
present theory and the power series of Chapter 7. Finally we determine the 
ranks of some universal distributions, and consequently obtain a proof of 
Bass' theorem on generators and relations for cyclotomic units (Theorem 
8.9). The second and third sections of this chapter are independent and may 
be read in either order. 

§12.1. Distributions 

Let I be a partially ordered set. For technical reasons we assume that for each 
i,j E I, there is a k E I such that k ~ i, k ~j. Such sets I are called "directed." 
Let 

232 
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{Xdi E I} 

be a collection of finite sets. If i ~ j we assume there is a surjective map 

1tij: Xi -+ Xj' 

such that 1tij 0 1tjl = 1til whenever i ~ j ~ k. Suppose that for each i we have a 
function rPi on Xi' with values in some fixed abelian group, such that if i ~ j, 

rPj(x) = L rPi(Y)· 
"'J(Y)=X 

The collection of maps {rPi} is called a distribution. 

EXAMPLES. (1) Let I be the positive integers with the usual ordering and let 
Xi = 71./pi71., with 1tij the obvious map. Fix a E 71. p • Let 

{ 1, if Y == a mod pi, 
rPi(Y) = 0, otherwise. 

Then {rPJ forms a distribution, called the delta distribution. 

(2) Let I be the positive integers ordered by divisibility: j ~j ifjji. Let 

Xi = 71./i71. 
and 

Let 

1tlj: 71./i71. -+ 71./j71. 

ymod jl-+ ymodj. 

Ci(a, s) = L n-' 
n=amodi 

n>O 

be the partial zeta function, as in Chapter 4. Then {rPd, where rPi(a) = Ci(a,s) 
is a distribution (with values in the additive group of merom orphic functions 
on C). 

(3) Let I be the positive integers ordered as in Example 2. Let 

1 
X. = -71./71. , i 

and let 1tij be multiplication by i/j. For k > 0, let B1(X) be the kth Bernoulli 
polynomial, as defined in Chapter 4. Let 

where { } denotes the fractional part. To get an odd distribution for odd k, 
it is convenient to let 
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Then {~;} forms a distribution, called the kth Bernoulli distribution. This 
follows from properties of Bernoulli polynomials. Even better, we know that 

'l(a,l-k)= _i
k
;lBk ({7}). 

so the distribution relation follows from that of Example 2. 
One easily sees that the sets XI and maps 1Clj of Examples 2 and 3 are 

essentially equivalent: We have a commutative diagram 

; if/if ~ ;if/if 
I ] 

'I Jj 
if/iif ----+ if/jif. 

(4) Let I and XI be as in Example 3. Let 'I be a primitive ith root of 1; we 
assume ('I)i/j = 'j (for example, with terrible notation, 'I = e2lri/i). Let 

~1(7) = 'i - 1. 

Since 
(ifi)-l 

TI ('i+ bj - 1) = 'j - 1 (ifjli), 
b=O 

the (multiplicative) distribution relations are satisfied. But there is a problem. 
The function ~I takes values in ex u {O}, which is not a multiplicative group. 
We could allow monoid-valued distributions, but this causes problems with 
Theorem 12.18. It is more convenient to define a punctured distribution by 
omitting the relations with x = 0 in the defining relations for a distribution. 
The value ~I(O) may then be ignored. 

We could also let ~I(a/i) = "i - 11 or ~I(a/i) = log "r - 11. We then 
obtain punctured distributions (one multiplicative, the other additive) which 
satisfy 

In other words, ~I is even. Since 

Bk(1 - X) = (_I)k Bk(X), 

the kth Bernoulli distribution is even or odd, depending on k (technical point: 
Since { -O} "# 1 - {O}, we also need the fact that Bk(O) = 0 for odd k > 1). 

There is a special type of distribution, which will be studied in the third 
section of this chapter. Assume ~ is a function defined on Q/if such that 
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,p (~) = (iffl ,p (a ~ bj ) 
J b=O I 

whenever a E 1L and jl i. Equivalently, if m E 1L, m > 0, and y E CIlL, then 

,p(y) = L ,p(x) 
mx=y 

(let m = ilj, y = alj). We call ,p an ordinary distribution. The distribution of 
Example 4 and the first Bernoulli distribution fit into this category if we let 

The main point is that if ali = blj then ,pi (a) = ,pj(b), so ,p is well-defined as a 
function on CllL. The delta distribution of Example 1 does not arise from 
an ordinary distribution, even on CpllLp: ,pi(a) = 1 but ,pi +1 (pa) = 0 (unless 
a == 0 mod pi+1). Also, if k :F 1, the kth Bernoulli distribution is not ordinary. 

There is a second, equivalent definition of distributions. Consider the 
situation at the beginning of this section and let 

X = lim X. +- I 

(see the appendix for inverse limits). Since each Xi is finite, X is compact. Let 
,p be a finitely additive function on the collection of compact-open subsets 
of X. We shall show that ,p gives rise to a distribution. For each i there is a 
surjective (since each nij is surjective) map 

ni : X -+ Xi' 

If a E Xi then nil (a) is a compact-open subset of X. All compact-open sets are 
obtained as finite unions of such nil (a), as i and a vary (these sets form a 
basis for the topology of X). Suppose b E Xj' For i ~ j, 

nj-l(b) = U nil (a), 
aeX~ 

"<J( .. )=b 

and this is a disjoint union. Therefore 

,p(nj-l(b» = L ,p(nil(a», 
"<J( .. )=b 

so bl-+t/>(nj-l(b» satisfies the distribution relation. Conversely, any distribu
tion {,pi} on {X;} gives a finitely additive function on compact-open sets of X. 

Finally, we give a third formulation of distributions. A function f on X is 
called locally constant (or a step function) if for each x E X, there is a neigh
borhood U of x such that f is constant on U. Since X is compact, this means 
that f is a finite linear combination of characteristic functions of disjoint 
compact-open sets. In fact, f is a finite linear combination of characteristic 
functions of sets of the form nil (a). Call these characteristic functions Xi .... 

Let Step (X) be the set of lL-valued locally constant functions on X. If t/> is 
a finitely additive function on compact-opens with values in a group W, then 
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we may extend tP by linearity to obtain a map 

tP: Step(X) -+ W. 

If {tPi} is the associated distribution, then 

tP(Xi,a) = tPi(a). 

Conversely, a linear function on Step (X) may be restricted to characteristic 
functions to yield a finitely additive function on compact-opens. 

In summary, we have the following one-one correspondences: 

distributions - finitely additive functions on compact-opens 

-linear functionals on Step (X). 

We now reinterpret the delta distribution of Example 1. Let U c lLp be 
compact and open, and let a E lLp • Let 

() (U) = {t, if a E U 
a 0, if a 1/ U. 

Since 

1til(ymod pi) = Y + pilLp, 

we see that ()a corresponds to the delta distribution. If f E Step (X), we have 

which is exactly how the classical delta function acts. 
There is a natural function on compact-opens of lLp, namely 

tP(U) = meas(U), 

where meas is the Haar measure normalized by meas(lLp ) = 1. We have 

so the associated distribution satisfies 

. I 
tPi(ymodp') = j. 

p 

More generally, consider the spaces Xi = lL/ilL and maps 1tij of Example 2. 
In this case, 

X = lim lL/ilL cI,g Z ~ n lLp, 
+- .lIp 

where the isomorphism is obtained via the Chinese Remainder Theorem 
(lL/ilL ~ np lLp/ilLp). Again, we have a compact group, so we can let tP(U) = 
meas(U). This yields the distribution defined by tPi(y mod i) = I/i. 
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The Haar distributions will not be very useful to us when we develop 
p-adic integration in the next section. Consider the case of lLp • As the sets 
y + pilLp become smaller (i ..... (0), their Haar measures become p-adically 
larger. Clearly this is not desirable since a small change in a function could 
produce a large change in its integral. The distributions that will be of use 
will be those with bounded denominators, which we shall call measures. 
These will be studied in the next section. 

§12.2. Measures 

Let the notations be as in the first section. Consider a distribution {;i}' Let ; 
be the corresponding functional on Step (X). For I E Step (X), denote 

;(f) = tId;. 

Assume that; takes values in Cp ( = completion of the algebraic closure of 
lOp). We say that; (or d;) is a measure if there exists a constant K such that 

1;/(a)1 ~ K 

for all i and all a E Xi' Let C(X, Cp ) be the Cp-Banach space of continuous 
Cp-valued functions on X, where 

IIfII = sup II(x)l· 
xeX 

Then Step (X) (with values in Cp ) is dense in C(X, Cpl. 

Proposition 12.1. II; is a measure, then 

tId;: Step (X) ..... Cp 

extends uniquely to a continuous Cp-linear map 

tId;: C(X, Cp) ..... Cpo 

Proof. Since the step functions are dense, the map must be unique if it exists. 
Observe that if K is the constant used above and Xi, .. is the characteristic 

function of the previous section, 

Since the absolute value is non-archimedean, 

IE Step (X). 
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If g E C(X, Cp ) and Un} is a Cauchy sequence in Step (X) converging to g, 
then 

as m, n --+ 00. Therefore, let 

Ix g dtfo = lim Ix f" dtP· 

This has the desired properties, so the proof is complete. 

EXAMPLES. (1) Let a E "lp and let (ja be the delta distribution. Then 

f f d(ja = f(a) 

for f E Step (X), hence for f E C(X, Cp ). 

D 

(2) Let tfo be the Haar distribution on "lp = lim "ljp""l. Then tfo is not a 
+-

measure. What happens if we try to integrate anyway? Let f(x) = x be 
defined on "lp. Recall that X".a is the characteristic function of a + p""lp. 
Hence 

Also 

But 

p"-l "p"-l a p" - 1 1 L a meas(a + p "lp) = L Ii = --- --+ --, 
a=O a=O p 2 2 

while 

~ 1 
a~l a meas(a + p""lp) --+ +2' 

Therefore J x dtfo is not well defined. This is why we require tfo to be bounded. 
However, it is possible to weaken this condition slightly (see Koblitz [1], 
p.41). 

(3) If g E C(X, Cp ) and dtfo is a measure on X, we may define a new mea
sure 

dljl = gdtP 
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by 

Lid", = LIgdtP. 

Clearly this gives a finitely additive linear functional on Step (X). Since X is 
compact, 9 is bounded. It follows that d", is a measure. Often we shall take 9 
to be the characteristic function of a subset X' s;; X. We then write Ix' I dtP for 
JxlgdtP· 

(4) If h: X -+ Y is continuous and dtP is a measure on X, then we obtain a 
measure d", on Y by defining 

I I d", = L I(h(x)) dtP· 

This will allow us to obtain measures on lLp from measures on 1 + plLp, via 
the logarithm mapping. 

The Bernoulli distributions are not measures. However it is possible to 
modify them. We treat only the case k = 1; the cases k ~ 2 are similar. 

Let (d, p) = 1 and let 

X. = (lL/dp·+1 lL) x • 

Then 

X = lim X. ~ (lL/dp lLr x (1 + plLp) 
+-

(if p :F 2; the modifications for p = 2 are left to the reader). We could also 
work with lL/dp·+1 lL, but the present situation fits into the framework oflater 
results. Let cElL, (C, dp) = 1. For n ~ 0, let c- I denote an integer such that 
cc- I == 1 moddp2(n+l) (the 2 in the exponent is for technical reasons: it is 
used to obtain ( .. ) below; probably it can be avoided). Alternatively, c E X 
in a natural way, so let c- I be the inverse of c in X and then reduce 
moddp2(n+l) when needed. For xn E X., define 

Ec(x.) = BI ( {d;.·+1 } ) - CBI ( {~~:~~ } ) 

= {d;:+1 } - c {~~:~~ } + c ; 1 . 

It is easily seen that Ec is a distribution. Since 

{d;.n+1} - c {~~:~~} E lL, 

Ec(x.) E lLp, so Ec is a measure. 
If X is a Dirichlet character of conductor dpm for some m ~ 0, we may write 

XW-I = 0"" where 0 is of the first kind, and", is of the second kind (see 
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Chapter 7). Then e is a function on (7L/dp TLY and 1/1 is a function on 1 + p7Lp. 
Therefore we may regard xoo-1 = el/l as a function on X. Also, (x) may be 
regarded as a function on X; it is just the projection onto 1 + p 7Lp • 

Theorem 12.2. Let X have conductor dpm with (d,p) = 1 and m ~ O. For S E 7Lp, 

r xoo-l(a)(a)' dEc = -(1 - X(c) (c)·+1 )Lp( -S, X). 
J(ZldP Zl" X (1+pZpl 

Proof. We shall show later (Corollary 12.5) that the left-hand side is analytic 
in s, so it suffices to let S = k - 1, with k a positive integer. We may estimate 
a by b E 7L on {x E Xix = bmoddp"}. We obtain the sum 

d:~1 xoo-"(b)b"-1 C~n _ c {c;;:} + c ; 1). 
pkb 

By Lemma 7.11, the term with (c - 1)/2 tends to 0 as n ..... 00, so we may 
ignore it. By the same lemma, 

1 
dp" ~ xoo-"(b)b" ..... (1 - xoo-"(p)p"-1 )B",)(w-k ~ U. 

The remaining term is the hardest to evaluate. Let 

c-1b = b1 + dp"b2 , with 0 ~ b1 < dp". 

Note that 

and 

Therefore 

But b1 runs through the same values as b, in a different order. Consequently, 
we obtain 

xoo-"(c)c" L Xoo-"(b1)b2M- 1 

= (1 - xoo-"(c)c,,)_l- L XW-"(b)b"(mod!p") 
kdp" k . 

The remaining term in the original sum involves c{c-1b/dp"} = cbddp". 
We have 
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(by (**) with k replaced by k - 1) 

By Lemma 7.11, the first term yields 

- xw-lc(c)c"(1 - xw-"(p)plc-l )Blc ,lCo>-k ~ V. 

By the above calculations, the second term is congruent mod(ljk)p" to 

1 
-(k - 1)(1 - xw-"(c)c") kdp" ~ xw-k(b)bk 

k - 1 d r 
-+ --k-(1 - XW-k(C)Clc)(1 - xw-k(p)pk-l)Blc ,lCo>-k ~ W, 
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as n -+ 00. Addition of the relevant terms shows that the original sum 
approximating the integral becomes, as n -+ 00, 

= -(1 - XW-k(C)Clc)Lp(1 - k,X) 

= -(1 - X(c)(c)lc)Lp(1 - k, X). 

This completes the proof. o 
The reader probably noticed that there is a great similarity between this 

proof and that of Theorem 7.10. This is not a coincidence, as we shall see 
later. First, however, we note some consequences. If X ¥- 1, choose c so that 
X(c) ¥- 1. Then X(c)(c)S ¥- 1. Otherwise (C)sN = 1 for some N > 0, which 
implies s = O. Since X(c) ¥- 1, we have X(c)(c)O ¥- 1, so the claim holds for 
all s. Consequently, we may divide by (1 - X(c)(c)S). Assuming that the 
integral is holomorphic, we find that L,(s, X) is holomorphic. If X = 1, then 
1 - (c)' = 0 for s = O. So L,(s,X) is holomorphic except possibly for s = 1. 

Corollary 12.3. If m == nmodpb-l(p - 1), and m =1= Omodp - 1, then 

(1 - pm-l)Bm == (1 _ p .. _l)BII (modpb). 
m n 
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Proof. Let d = 1, X = rom, and s = m - 1. Then 

(1 - em)(1 - pm-l)Bm = -(1 - em)Lp(1 - m,rom) = f am- 1 dEc. 
m z~ 

Since E is lL -valued and am- 1 = an- 1 mod pb C P , - , 

Also, 1 - em == 1 - en. Choose e so that em =1= 1 mod p. The result now follows 
easily, since m and n are interchangeable. 0 

Theorem 12.2 has an analogue for the complex L-series. In the proof of 
Theorem 4.2 we showed that for a certain function Fb(t), 

r(s)((s, b) = Loo Fb(t)t,-2dt, 

so 

r(s)L(s, X) = Loo G(tW- 1 dt, 

for some function G(t). The Mellin transform of a function f(t) is defined to 
be 

fOO dt 
t'f(t)-. 

o t 

We write dt/t since this is the Haar measure on the multiplicative group of 
positive real numbers. 

Let ~ be a finite group and let (for simplicity, p "# 2) 

X = ~ x (1 + plLp) = lim ~ x (1 + plLp)/(1 + pn+llLp). 
~ 

For a E X, (a) represents the projection onto 1 + plLp- Let ~ be a measure 
on X. Define the gamma transform of ~ by 

(rp~)(s) = Ix (a)' d~. 
If ~ = (lL/dp lL) x with (d, p) = 1, then 

X ~ (lL/dlLr x lL;. 

For a E X, write a = adap' corresponding to this decomposition. We may 
define the Mellin transform of ~ by 

(Mp~)(s) = f (a)·~d~. 
x ap 
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Of course, the gamma and Mellin transforms are almost the same: 

Mp(~) = r p (:/). 

From Theorem 12.2, we have 

-(1 - X(c)<c)'+l )Lp( -S, X) = rp(Xw-1 Ec)(s) 

= Mp(XEJ(s + 1). 
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The gamma transform receives its name by analogy with the classical 
equation 

fOO dt 
r(s) = tSe- t _. 

o t 

Of course, this just the Mellin transform of e-t• 

We now investigate the relation between measures and power series. 
Suppose 

Xn = Ll x rn 
where Ll is a finite group and rn ~ 7Ljpn7L. We assume Xn -+ Xm corresponds 
to 7Ljp n 7L -+ 7Ljp m 7L. Then 

X = ~ x r, with r ~ 7Lp-

Let {!} be the ring of integers of a finite extension of Q p • Then 

{!}[[~ x rJ] = lim {!}[~ x rn] = lim {!}[Ll] ern]. 
+- +-

Choose a generator Yo of r. Since 

by Theorem 7.1, with Yo 1-+ 1 + T, we obtain 

{!}[[~ x r]] ~ {!}[~] [[T]]. 

Let 

Write 

It follows easily from the fact that Xn 1-+ Xm if n ~ m that {~n} defines an 
{!}-valued distribution, hence an {!}-valued measure. Conversely, if {~n} defines 
an {!}-valued distribution on ~ x r, we obtain a corresponding element of 
{!}[[~ x r]]. We therefore have the following one-one correspondences: 

{!}-valued distributions +----+ {!}[[Ll x r]] 

l l 
{!}-valued measures on ~ x r {!}[~] [[T]] 
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Therefore, measures correspond to power series. We shall investigate this 
correspondence. 

Assume the order of ~ is prime to p. Let () E ~ and let 

1 ~ -1 
B8 = ~ .. ~ (}(ex)ex 

be the idempotent. Henceforth, we assume (!) contains the values of all such 
(), so B8 E (!)[.1]. We have 

ex ~ (. •• , (}(IX), ... ). 

Therefore 

(!)[.1] [[T]] ~ EB (!)[[T]] 
8 

L i8(T)B8 ~ ( ... ,fs(T), ... ). 
8 

Consequently, 

(!)-valued measures on .1 x r +-+ EB8ed (!)[[T]] = 1.1I-tuples of power series. 

EXAMPLES. (1) Let .1 = 1 and let Y E r. Then Y E (!)[[r]]. The corresponding 
distribution is the delta distribution, the measure is {}y. If Y = Yo with S E 7Lp, 
then the power series is 

(1 + T)' = f (~) Tj E 7Lp[[T]]. 
j=O } 

(2) Let.1 = (7Ljdp7L)X with (d,p) = 1, and 

rn = (1 + p7L p )/(1 + pn+l7Lp ) 

(assume p =1= 2; otherwise the theory needs a slight modification). Then 

.1 x rn ~ (7Ljdpn+l7L)x, 

which we identify with Gal(O(C4p"+,)jO). Let qo = dp, so Yo = eT1+qo generates 
r = lim rn. Let c = 1 + qo. Consider the measure Ee of Theorem 12.2. The 

+-
corresponding element in (!)[[.1 x r]] is 

4p"+'-1 (a {c-1a} C - 1) 
lim a~o dpn+1 - C dpn+1 + -2- eTa 

(a,dp)=l 

= lim(1 - CeTe) L Cp~+l - D eTa' 

which is essentially the Stickelberger element. We map this to EB(!)[[T]]. 
Let () be even of conductor d or dp, so ()* = W(}-l is odd. In the (}*th com-
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ponent we have (O"c = 0"1+qo = Yo) 

lim(1 - (1 + qo)Yo)~ L awO-1(a)Yia) 
qn 

in the notation of Chapter 7. This is just _,,(W20-1) in that notation, except 
that Yn(a) replaces Yn(at1. Observe that Y01 corresponds to 1/(1 + T), so when 
we change to power series we obtain 

-gC ~ T-l'W20-1)~gll.(T) 
with g as in Chapter 7 (before Theorem 7.10). Note that 

g9.((l + qo)" - 1) = -g«1 + qot" - l,w20-1) 

= - (1 - (1 + qO)1 +S)L,( - s, wO*). 

So the modified Bernoulli distribution Ec corresponds to the vector of power 
series which give the p-adic L-functions (one technicality: the above calcula
tions assumed that the character 0 had conductor exactly d or pd. The 
characters with smaller conductors yield slightly modified p-adic L-functions). 

These last two examples are special cases of a general phenomenon. Fix 
a generator Yo of r. Let "0 correspond to Yo under the isomorphism 
1 + plL, ~ r (again, assume p '" 2 for simplicity), so 

X = A x r ~ A x (1 + plL,) 

(ex, Yo) 1-+ (ex, ,,~). 

For instance, in Example 2 above, Yo = 0"1+qo and "0 = 1 + qo. Recall that a 
character 1/1 of the second kind is one of conductor pn, n ~ 2, such that 
I/I(a) = I/I«a». Such a character may be regarded as a character on 1 + plL,. 

Theorem 12.4. Let dtP be an {!}-valued measure on A x r and let 

(···,g9(T), ... )e EB{!}[[T]] 
Ile.i 

be the corresponding power series. Let 0 e ~ and let 1/1 be a character of the 
second kind. Then 

r,(Ol/l dtP)(s) = r O(a)I/I(a) (at dtP = g9(I/I("0)"~ - 1). 
J.~ x(1 +,l,,) 

Proof. First consider 

( ... ,a9,(1 + T)n, ... )effi{!}[[T]]. 
II' 

By the above, this corresponds to 

L all,e9'Yo = ,!, L L a9,0'(ex-1 )exyo e {!}[[A x r]]. 
r U meA r 
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This yields a sum of delta distributions: 

d¢J = I~I ~ ~ aB,(1'(ex-1 )15 .. y3· 

On 1 + p71.p • I5"Y3 is replaced by 15,,"3' We obtain 

f (J(a) 1/1 (a) <a)S d¢J = I~I ~ ~ aB,(J(ex)(J'(ex-1 )1/1("0)""(/ 

= aB(I/I("O)"o)" = aB(l + T)" at T = 1/1("0)"0 - 1 

(by orthogonality of characters, the sum over ex vanishes for (J #= (J'). By 
linearity, the theorem is true for polynomials. Since the polynomials are 
dense in (9[[T]], we need a continuity statement. For any fixed S E 7l.p, the 
function f(a) = O(a)I/I(a)<a)S is continuous on X. Let e > O. There exists a 
step function S(a) such that 

If(a) - S(a)1 < e for all a E X. 

Suppose we are given a vector 

( .. ·,9B(T), ... ) E EB (9[[TJ]. 
B 

Recall that integration of step functions was accomplished by evaluation at 
sufficiently large finite levels. Let N be large and let 

9B(T) = PN(T)q~(T) + r~(T), 
where PN(T) = (1 + T)pN - 1 and deg r~ < pN (Proposition 7.2). If d¢J 
corresponds to 9 and d¢JN corresponds to rN = ( ... , r~, ... ), then 

t S(a) d¢J = t S(a) d¢JN for large N. 

Therefore 

since If - SI < e and ¢J and ¢IN are (9-valued. But d¢JN corresponds to a 
polynomial, for which the theorem is true. Also 

19B(I/I(,,0)"0 - 1) - r~(I/I("o)"o - 1)1 

~ IPN(I/I("o)"o - 1)1 = 1I/I("o)pN"g"s - 1)1 < e 

for large N (note 1/1("0) is a p-power root of 1). Therefore 

It f d¢J - 9B(I/I(,,0)"0 - 1) I < e. 

Since e was arbitrary, the proof is complete. o 
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Corollary 12.5. Let tfo be a measure. Then (rptfo)(s) is an analytic function of s. 

Proof. Let () = '" = 1. Clearly any function of the form 9("0 - 1) is analytic. 

Theorem 12.4 gives us something stronger than analyticity. Functions of 
the form 

f(s) = 9('" - 1) 

with 9(T) E (D[[T]] and" E 1 + p71.p (1 + 471.2 if P = 2) are called Iwasawa 
functions. They satisfy 

f(s) == f(O) mod p(D 

for all s E 71.p. This was the basis for Exercises 7.5-7.7. Not all analytic 
functions have this property, for example f(s) = s. 

Corollary 12.6. If rh(1 +pZp) ()'" dtfo = 0 for all () E ~ and all '" of the second 
kind, then tfo = O. (In other words, a measure is determined by its values on 
characters of finite order. Note that ()(a)"'(a)(a)' is a character of infinite 
order if s -# 0). 

Proof. Let 96 be one of the corresponding power series. Then 

96("'("0) - 1) = 0 for all "', 
hence 

96(Cp" - 1) = 0 for all n. 

By the p-adic Weierstrass Preparation Theorem (see Corollary 7.4), a nonzero 
power series in (D[[T]] has only finitely many zeros. Therefore 96 = 0 for all 
0, so tfo = 0, as desired. 0 

For f(T) E (D[[T]], let 

Df(T) = (1 + T)f'(T). 

Observe that when f(T) = (1 + T)", D"f(O) = nk, which is a continuous 
p-adic function of k, if p t n and if we restrict k to a fixed congruence class 
mod p - 1. The next results will show that this holds more generally. 

We assume A = 1. Then 

Let 

There is an isomorphism 

p:x;:.x 

logpx 
X 1-+--. 

logp"o 
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Alternatively, 

K~ 1--+ y. 

If dt/J is a measure on X, define the measure d~ on X by 

[ _ f(y) d~ = [ f(p(x)) dt/J 
J'EX JXEX 

(see Example 4 at the beginning of this section). 
Suppose g(T) = L ail + T)n is a polynomial. Then the corresponding 

measure dt/J is a sum of delta measures 

and 

Proposition 12.7. Let g E (l:)[[T]] and let d~g be the corresponding measure on 
X = 7l..p- For k ~ 0, 

Proof. First let 9 = (1 + T)". As mentioned above, the left-hand side is nIt. 
The measure d~ is the delta measure hn' so 

f y"d~ = nIt. 

By linearity, the result holds for polynomials. 
Let g(T) E (l:)[[T]] be arbitrary. Let 8 > 0 and choose N so that p-N < 8. 

As in the proof of Theorem 12.4, 

Therefore 

Dkg(T) = ao(T)PN(T) + ... + a,,(T)Pk"I(T) + DkrN(T), 

where aj(T) E (l:)[[TJ]. But 

PN(O) = 0 and P~I(O) == 0 mod pN. 

Therefore 

ID"g(O) - DkrN(O)1 < 8. 

As in the proof of Theorem 12.4, we may approximate p(x)" = (log x/log Ko)" 
on X by a step function S(x), say within 8. Then 
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I Ix yk d~ - Ix yk d~'N I = I Ix p(x)" d; - Ix p(X)k d;'N I 
~ Max{lt (p(X)k - S(X»d;l, 

It S(x)d; - Ix S(X) d;'N I , It (S(x) - P(xt')d;'NI}· 

For large N, the second expression vanishes (this would not necessarily have 
happened if we worked on X with d~ and d~'N since the latter is not necessar
ily a finite sum of delta distributions; see Exercise 12.2). The first and third 
expressions are less than 6. Since we know the theorem is true for the polyno
mial rN , we obtain 

IIx y"d~ - Dk9(0)1 < 6. 

This completes the proof. o 
To match the set-up of Theorem 12.4, we need an integral over Z; instead 

of Z,. To obtain this we do the following. Let g(T) E lTJ[[TJ]. Define 

1 
Ug(T) = g(T) - - L g({(1 + T) - 1). 

P CP=l 

One easily sees that 

N N 
U L an(l + T)" = L an(l + T)". 

n=O n=O 
pkn 

Proposition 12.8. Let g E lTJ[[T]] and let d;, and d~, be the corresponding 
measure! on X = 1 -t;.pZp and X = Zp. Let XXx(y) be the characteristic func
tion of xx = Z; eX. Then 

so 

Proof. By Proposition 12.7, it suffices to prove the first equality. As usual, let 
N ~ 1 be large and write 

g(T) = PN(T)qN(T) + rN(T). 

Then 
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But 

N~ 1, 

so 

Let 

rN(T) = L an(1 + T)n, 
n 

hence 

UrN(T) = L an(1 + T)". 
ptn 

On X, rN corresponds to the measure 

L an t5n 
n 

and UrN corresponds to 

L an t5n = Xxx L an t5n • 
ptn n 

The same argument as was used at the end of the proof of Proposition 12.7, 
with y" replaced by IXr for any continuous function I on X, shows that 

Ii I d~UrN = Ii lxx- d~rN ~ Ii lxx- d~g as N ~ 00, 

and since Ug == UrNmodPN, we similarly have 

Therefore 

d~ug = xx- d~g. 

This completes the proof. D 

Corollary 12.9. Let g E (9[[T]]. Fix a congruence class cxmodp - 1. Then 
there exists h(T) E (9[[T]] such that 

(D"Ug)(O) = h(,,~ - 1) lor k == cxmodp - 1, k ~ O. 

Proof. Decompose 

XX = (7L./p7LY x (1 + p7L. p ). 

Then 
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= rp(w lZ d~g)(k) 

= h(lC~ - 1) 

for some hE 19[[T]], by Theorem 12.4. 

We give an application. Let C E 7L., (c,p) = 1, and let 

1 c 
g(T) = (1 + T) - 1 (1 + T)C - 1 . 

Since 

c 1 1 ------- = - + ... 
T(1 +~(~)T+"') T ' 

we have 

g(T) E 7L.p [[TJJ. 

Using the relation 

1 1 1 -=-L-
yP - 1 P ,P=i (Y - 1 ' 

we easily find that 

Ug(T) = g(T) - g«1 + T)P - 1). 

Observe that 

D(g«1 + T)P - 1)) = p(1 + T)Pg'«1 + T)P - 1), 
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o 

which is just p times Dg, with 1 + T replaced by (1 + T)p. It follows by 
induction that 

(Dk U g)(O) = (1 - pk)(Dk g)(O). 

To calculate Dkg(O) we change variables. Let 

T = eZ - 1 = Z + tz2 + iz3 + ... E Qp[[ZJJ. 

Let 

f(Z) = g(eZ - 1) E Qp[[Z]]. 

Then 

d 
dZf(z) = eZg'(eZ - 1) = (1 + T)g'(T) = Dg(T). 
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Therefore, 

But 

Therefore 

so 
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Z 1 c 
g(e -1)=-----

eZ - 1 eCz - 1 

Dkg(O) = (~)k 1(0) = (l _ Ck+l) Bk+l 
dZ k + l' 

(DkUg)(O) = (l _ ck+l)(l _ pk) Bk+1 
k + 1 

= -(1 - Wk+1(C)(C)k+l)Lp( -k, Wk+l). 

By Corollary 12.9, we find that for k == ex (mod p - 1), this extends to an 
analytic function, in fact to an Iwasawa function. 

The reader might find it interesting to start with Theorem 12.2 and deduce 
that g(T) is the power series we should use to obtain the above. 

The use of differentiation to obtain values of L-functions was also im
plicitly used in the proof of Theorem 5.18 (evaluation of Lp(l,wk)). This 
technique was probably first used by Euler, later by Kummer, and more 
recently by Coates and Wiles. 

§12.3. Universal Distributions 

The main purpose of this section is to prove Bass' theorem on generators and 
relations for cyclotomic units. But to do so, we consider the general question 
of universal ordinary distributions (sometimes punctured, even, or odd) on 
Q/7L. We restrict to the subset (l/n)7L/7L. Let An be the abelian group with 
generators 
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and relations 

( a) _ (n/r)a) _ (11/,)-1 (a + rk) 9 - - 9 -- - L 9 -- , for rln. 
r n k=O n 

Then All is called the universal ordinary distribution on (l/n)lL/lL. The map 

1 
g: -lL/lL -+ All 

n 

defines an ordinary distribution on (l/n)lL/lL. If tP is another ordinary distri
bution on (l/n)lL/lL, then there is a map 

All -+ group generated by {tP (~) } 

so All is universal in the sense of category theory. We shall show that All is a 
free abelian group of rank tP(n). We start with an upper bound. 

Proposition 12.10. There is a set of tP(n) elements which generates All' 

Proof. Let n = n pi'. We may write, for any a E lL, 

a a· - == ~ -.!.. mod lL, n i..J prj 

with 0 ~ al < prj. We first show that 

BII = {g (~) I for each i, either al = 0 or (at> PI) = I} 

generates All' This is not yet a minimal set of generators, but it gets things 
started. Note that if ai = 0 then Pi does not appear in the denominator of a/n, 
while if (ai' Pi) = 1 then the full power prj is in the denominator. 

Consider an arbitrary a/no If ai = 0 for some i then by induction we may 
conclude that g(a/n) is in the group generated by B"M' s;; B" (This induction 
starts with the case n = 1, which is trivial). Therefore assume al :1= 0 for all i. 
Write a = ct with tin and (c, n) = 1. This is possible since ai :1= 0 implies 
pi' (a, so t divides n pr,-l, which divides n. If t = 1 then a/n = c/n has 
denominator exactly n, so (ai' PI) = 1 for all i. Hence g(a/n) E BII and we are 
done. Therefore assume t > 1. As mentioned above, t divides n pr,-I, so 
Pil(n/t) for each i. By the distribution relation, 

g(~) = g(~) = 'f g(c + (n/t)k). 
n n k=O n 
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Since (c, n) = 1 and since PII(n/t) for each i, we must have 

for all k. Therefore all fractions involved in the last sum have denominator 
exactly n, so g(a/n) is in the group generated by Bn. Therefore Bn generates An. 

But there are relations among the elements of Bn. Let 

Cn = {g (~) I for each i, a l -# 1 and either a l = 0 or (ai' PI) = I}. 
We claim that Cn generates An. By induction, we may assume CnM, generates 
An/p~' for each i. Note that Cn/p~' £: Cn. 

Let g(a/n) E Bn. Suppose a l = 1. Let 

y= L a~. 
1"1 PI' 

Then 

pr'-I ( k) L g y + ----e! = g(pi' y), 
k=O PI 

and 

pr'-'-I ( P k) L g y + +. = g(pr,-I y). 
k=O PI 

Since pr' y and Pi' -I Y do not have PI in their denominators, g(pr' y) and 
g(pr,-I y) lie in (Cn/pr ') = the group generated by Cn/pr ,. Subtraction yields 

pr£1 g(y + ~,) E (Cn/p!')' 
k=O PI 
pdk 

hence 

g(y + -k) == - L g(y + ~,)mOd(Cn/pr'). 
PI p, tk PI 

" .. I 

Note that a l = 1 is changed to a sum with a1 = k -# 1 and (a 1 ,pd = 1, but y 
is left unchanged (this is important). Now consider 

g(y+~)=g(~+ L ~). 
pr' Pi' 1 .. 1 pi' 

If another a l = 1 then we may perform the above operations again. Note that 
aj for j -# i is left unchanged (in particular no such aj is changed to 1). 
Continuing, we eventually get al -# 1 for all i, and also (aj> p) = 1 or al = O. 
Therefore all g(a/n) in Bn are expressible in terms of Cn' so Cn generates An. 
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Since Cn contains 

n <p(pr') = <p(n) 

elements, the proof of Proposition 12.10 is complete. 
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o 
Proposition 12.11. The universal punctured ordinary distribution A~ on 
(l/n)71./71. requires at most <p(n) + 7t(n) - 1 generators, where 7t(n) equals the 
number of distinct prime factors of n. 

Proof. A~ is generated by 

with relations 

g(~) = (n/f-1 g(a + rk) whenever rln and ~:F O. 
r k=O n r 

So we have taken the distribution An and removed g(O) and also eliminated 
the relations 

g(O) = L g(x) = g(O) + L g(x). 
(n/r)",,,O(l) (o/r)", ,,0 

", .. 0 

We see that whenever g(O) appears in a relation for a nonpunctured distribu
tion, it appears equally on both sides. So we really have the relations 

L g(x) = 0, rln. 
(n/r)",,,0 

", .. 0 

We claim that such relations follow from those with n/r prime. Let m = n/r 
and let pi m. Then 

L g(x) = L L g(x) + L g(x) 
m", .. O pY"O (m/p)","y (m/p)'" EO 
", .. 0 y"O ", .. 0 

= L g(y) + L g(x). 
py .. O (m/p)", .. O 
y"O ", .. 0 

Choose a prime dividing m/p and continue. Eventually Lmx=o,,, .. O g(x) is 
expressed as a sum of expressions of the form Lpy .. o,y .. og(y) with p prime. 
This proves the claim. 

We now see that to obtain An from A~ it suffices to add a generator g(O) 
and add the relations 

for each pin. Let 

L g(y) = 0 
py .. O 
y"O 

R = t~ g (~) I p divides n, p Prime}. 
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We have just shown that we have a natural isomorphism 

(A~ $ Zg(O»mod(R) ~ An. 

We already have the set of generators Cn for An. Let 

Dn = Cn u R - {g(O)}. 

Clearly Dn generates A~. Since Dn has t;6(n) + x(n) - 1 elements, Proposition 
12.11 is proved. 0 

To show that the sets of generators in Propositions 12.10 and 12.11 are 
minimal, we shall produce concrete examples of the desired ranks. By the 
rank of a distribution t;6 we mean the Z-rank (= number of summands 
isomorphic to Z, in the usual decomposition) of the abelian group generated 
by {t;6(a/n)IO ~ a < n}. (Omit t;6(0) if t;6 is punctured). 

From now on, we assume n > 2 (n = 1 and n = 2 are trivial, of course). 
Assume first that n ¥= 2 mod 4. Let Cn be a primitive nth root of unity. Con
sider the punctured even distribution defined by 

h (~) = ( ... ,log !C:' - 11, ... ) E c;(n) 

where r runs through the integers with (r, n) = I, 1 ~ r ~ n (we could have 
used half of these r's). Various combinations, call them VI' of the vectors 
h(a/n) give the logarithms of the tt;6(n) - 1 independent units of Theorem 
8.3 (in the first component; the other components are the Galois conjugates). 
We may also take a/n = l/p for p dividing n and obtain a generator for the 
ideal of Q(Cp) lying above p. We claim that the group generated by the h(a/n) 
has rank at least tt;6(n) + x(n) - 1. In fact the vectors h(l/p) for pin and the Vi 
are independent over Z: Suppose 

L aphG) + L aivi = O. 

Add the components of the vectors. For each Vi' we get the logarithm of the 
norm of a unit, hence O. For h(l/p) we get the logarithm of a nontrivial power 
of p. But the logarithms of primes are linearly independent over Z, so ap = 0 
for all p. Since the v;'s are independent over Z, ai = 0 for all i. This proves the 
claim. 

If n == 2 mod 4, then we may use the same distribution h(a/n) defined 
above. We know that the group generated by {h(2a/n)} has rank at least 

tt;6(~) + x(~) -1 = tt;6(n) + x(n) - 2. 

But 

h(t) = (log 2, ... ,log 2), 
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which is independent of the vectors used to get this estimate on the rank. 
Therefore the rank is at least ttP(n) + n(n) - 1. 

Therefore, for all n(> 1), we have a punctured even distribution ofrank at 
least ttP(n) + n(n) - 1. 

We now produce an odd distribution of rank ttP(n). As in the case just 
completed, the construction will depend on the fact that L(I, X) "1= 0; but this 
time it will be in the form B1 ,x "1= 0 for odd x. We shall be using the first 
Bernoulli distribution, but our preliminary calculations will be valid more 
generally. 

Let h be an ordinary distribution on (l/n)lL/lL, and let X "1= 1 be a Dirichlet 
character of conductor fx' The proofs of the following lemmas are essentially 
the same as the arguments given for Lemmas 8.4-8.7. Simply replace 
log 11 - e:1 by h(a/n). The fact that e=,' = e ... when n = mm' corresponds to 
the fact that h is ordinary. We also use the fact that h is periodic mod 1. 
(Of course, assuming Bass' theorem, essentially any relation satisfied by 
log 11 - e:1 is also satisfied by h(a/n), with the possible exception of evenness). 

Lemma 12.12. Suppose ml n. If fx (n/m) then 

n (am) L x(a)h - = O. 
a=1 n 

(a,n)=1 

o 

Lemma 12.13. Let n = mm' with (m, m') = 1, and suppose fxlm. Then 

n (am') ... (b) a~1 x(a)h n = tP(m') b~1 X(b)h m . 
(a,n)=1 (b.m)=1 

o 

Lemma 12.14. Suppose F, g, t are positive integers with fxlF, glF, and Ftln. 
Then 

Ft (a) F (b) L x(a)h - = L X(b)h -
a=1 Ft b=1 F 

(a,g)=1 (b,g)=1 

(we require Ftln since h is not defined for larger denominators). 0 

Lemma 12.15. Assume fIlm and min. Then 

f X(b)h(~) = (n (1 - X(P))) f X(b)h(~). 0 
b=1 m plm b=1 m 

(b,m)=1 

Lemma 12.16. Let n = mm' with fIlm and (m, m') = 1. Then 

n (am') ( ) f. (a) a~1 x(a)h n = tP(m') !J (1 - X(p)) a~1 x(a)h Ix . 
(a,n)=1 

Proof. See the calculations following the proof of Lemma 8.7. o 
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Proposition 12.17. Let n = nf=l pi'. Let I run through all subsets of {I, ... ,s}, 
except {1, ... ,s}, and let nl = niEIPi'. Then 

I t x(a)h(an1) = ( n (<p(pi') + 1 - X(Pi») I x(a)h(f~)' 
1 a=l n pd II a=l X 

(a,n)=l 

Proof. See the end of the proof of Theorem 8.3. This is where we need X 'i= 1 
(if X = 1, include I = {I, ... , s} and the result holds). 0 

As in the case of even distributions, it is this last formula which will prove 
useful. 

Consider 

G = (ZjnZ) x = Gal(Q((n)jQ) 

(we allow n == 2 mod 4). Let aa be the automorphism corresponding to 
a mod n. Let b(a/n) be a complex-valued ordinary distribution (l/n)Z/Z. 
Define 

H(=) = t b(ac)a;;l E C[G]. 
n a=l n 

(a,II)=l 

We claim that H is an ordinary distribution on (l/n)Z/Z. It suffices to prove 
this for b(ac/n) for each a. Let rln. Since (a, n) = 1, 

{~mod 11 0 ~ j < ~} = {a:k mod 11 0 ~ k < ~}. 
Therefore, 

(II/r)-1 (a(c + rk») (II/r)-1 (ac + rj ) Ib =Ib--
k=O n j=O n 

= b ( a;), as desired. 

This proves the claim. 
Let X E G be a Dirichlet character mod n of conductor fx' Let 

1 ~ -1 
ex = .I..() '-- x(a)aa ." n (a,II)=l 

be the corresponding idempotent. Since exaa- 1 = x(a)ex' 

( c) deC (c) 1 ~ _ (ac) Hx 11 = exH 11 = <p(n) af-l x(a)b 11 ex' 
(a,II)=l 

Of course, H~ is a distribution. Let H be the abelian group generated by 
{H(c/n)IO ~ c < n} and let He be the C-subspace of C[G] spanned by H. 
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Then 

rankH ~ dim He 

(we have an inequality since elements which are independent over lL could 
become dependent over C (e.g., 1, .j2». Since 

He is stable under G, so 

hence 

dim He = L dim IlxHe· 
x 

Observe that Hx(c/n) E IlI.H e for each c. 
We now choose the distribution b. Let B1(X) = X - t be the first 

Bernoulli polynomial, so 

c =I< 0; B(O) = 0, 

is the corresponding distribution. Let n = n pi' and I be as in Proposition 
12.17. Then we let 

Clearly b(c/n) is odd, hence so is H(c/n). By Proposition 12.17, 

HI. (!) = -1.(1) L x(a)b (~) ex 
n I(' n (a,n)=1 n 

= -1.(1 ) ( n (;(pr') + 1 - X(Pi») t x(a)B (f~) Ilx' 
I(' n p,U, a-I X 

If X is even, the sum vanishes. If X is odd, 

Since the product over Pi does not vanish (each factor has positive real part), 

0=1< HxG) E IlxHe, 

so BxHc is non-trivial. Since there are i;(n) odd characters, 

rankH ~ dim He ~ t;(n). 
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We now have an odd distribution of rank at least !t;6(n). Note that H(O) = 
0, which does not affect the rank. If we ignore H(O) and some of the relations 
(e.g., Lpy .. o H(y) = 0), then we may consider H as a punctured odd distribu
tion, which still has the same rank. 

Therefore we have a punctured even distribution of rank at least tt;6(n) + 
7t(n) - 1 and an odd one of rank at least !t;6(n). We want to put them together. 
Suppose h+ and h- are any two punctured distributions, with h+ even and h
odd. Let H± be the groups generated by h± and define 

Let H £ H+ E9 H- be the group generated by h. Then 

and 

Consequently 

so 

rank h = rank h+ + rank h-. 

Using the distributions obtained above, we obtain a punctured distribution 
of rank at least t;6(n) + 7t(n) - 1. Since the universal punctured ordinary 
distribution A~ is generated by t;6(n) + 7t(n) - 1 elements (Proposition 12.11), 
and maps surjectively onto the group generated by the values of this distri
bution, A~ must be free abelian of rank t;6(n) + 7t(n) - 1. If we had an 
even punctured distribution of rank greater than tt;6(n) + 7t(n) - 1, or an 
odd one of rank greater than tt;6(n), we could obtain a punctured distribu
tion of too large a rank. Therefore the universal punctured even distribution 
(A~t has rank tt;6(n) + 7t(n) - 1, and the odd distribution (A~r has rank 
tt;6(n). However, we cannot conclude that (A~)± are free abelian. We know 
from the above that 

2(A~t + 2(A~)- £ A~, 

so 2(A~)± has no torsion. But there is the possiblity of 2-torsion. In fact, 

(A~t ~ z(1/2)~n)+ .. (n)-1 E9 (Z/2Z)2r - I -" 

and 
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where r = n(n) if n ¥= 2 mod 4, r = n(n/2) if n == 2 (mod 4). (See C.-G. Schmidt 
[4], K. Yamamoto [2]). 

We now consider nonpunctured distributions. An is a quotient of 
A~ E9 Zg(O) by a subgroup (R) of rank at most n(n), hence 

An ~ ze EB torsion 

with e ~ ~(n). By Proposition 12.10, 

An ~ z;l.n). 

Since (A~t E9 Zg(O) modulo (R) yields an even distribution, 

rank A: ~ !~(n). 
Also, we already have an odd distribution (constructed via B1•i :1= 0) of rank 
at least t~(n). As in the case of punctured distributions, we must have 

A; ~ z(1/2 );l.n) EB (Z/2Zr, 

for some integers C±. In this case it is easy to see that the 2-torsion actually 
occurs (Exercise 12.4). 

We summarize what we have proved: 

Theorem 12.18. Let n > 2. For some integers a, b, c, d, we have 

Universal punctured = A~ ~ z;l.n)+,,(n)-l, 

Universal even punctured = (A~)+ ~ Z(l/2);l.n)+1r(n)-l EB (Z/2Z)", 

Universal odd punctured = (A~r ~ Z(1/2 );(n) EB (Z/2Z)b, 

Universal = An ~ z;(n), 

Universal even = A: ~ ZU/2);l.n) EB (Z/2Zr, 

Universal odd = A; ~ 1:(1/2 );(n) EB (Z/U)4. 

The proof of Bass' theorem is now immediate. Since 

(A~t -+ group generated by {log Ie: - lI. 0 < a < n} 

o 

is surjective, and the latter is free abelian of rank (at least, hence exactly) 
t~(n) + n(n) - 1, we must have 

(A~t /(Z/U)" ~ ({log Ie: - II}). 

This is Bass' theorem (8.9). o 

NOTES 

For more on measures, see Koblitz [1], Mazur-Swinnerton-Dyer [1], and 
S. Lang [4], [5]. For the concept of pseudo-measures, which can handle 
denominators, see Serre [3]. 
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For other versions of the r-transform, see Leopoldt [10], Iwasawa [23], 
and Lichtenbaum [4]. 

For more on Iwasawa functions, see Serre [2]. 
For bases of the universal odd and even distributions, see KuCera [3]. 
The theory of universal distributions was developed by Kubert-Lang. 

Theorem 12.18 was proved, in more generality, by Kubert. The fact that 
2-torsion must be considered in Bass' theorem was first recognized by Ennola 
[1], [2]. 

EXERCISES 

12.1. Give another proof of Corollary 12.6 by showing that the characters", of the 
second kind and the 8 E A span Step (X). 

12.2. In the second section, we started with a power series g E (!)[[T]], obtained a 
measure df/l, on 1 + pZ" (assume L\ = 1), then a measure d~, on Z", which 
restricted to d~, on (Z/pZY x (1 + pZ,,). Therefore d~g corresponds to a vector 
of power series 

( ... ,g",.(T), ... ), 0:sa:sp-2. 

Show that if geT) = L~=o a.(1 + T)· is a polynomial, then 

g.,.(T) = > a.w"(n)(1 + T)(losp.1108pKO). 

"In 
12.3. Let "0 be as in the chapter. 

(a) Let U E 1 + pZ" (or 1 + 4Z2). Show that there exists h(T) E Z,,[[T]] such 
that u' = h(,,~ - 1). 
(b) Suppose h.(,,~ - 1) is a Cauchy sequence (in the sup norm on continuous 
functions on Z,,) of Iwasawa functions, with h.(T) E (!)[[T]]. Show that there 
exists h(T) E (!)[[T]] such that 

limh.(1CQ - 1) = h(,,~ - 1). 

(Hint: let s be close to O. Show successively that each coefficient converges 
mod p. for all n). 
(c) Show that the Iwasawa functions are the closure of the span of the functions 
of the form I(s) = u', with U E 1 + pZ". 

12.4. (a) Let p be an odd prime and let A; be the universal even ordinary distribution 
on (l/p)Z/Z. Show that 

(,,-1)12 (a) 
X = L g - '# 0 but 2X = o . 

• =1 P 

Therefore A; has 2-torsion. (This idea may be extended to arbitrary n > 2). 
(b) Let A; be the universal odd ordinary distribution on (l/n)Z/lL. Show that 
g(O) '# 0 but 2g(0) = 0, hence A; has 2-torsion. 

12.5. ([Ennola 2]) Let n = 105. Let 

(x) 0 + a" = g 105 E (Alos) . 
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(a) Show that all relations among the a" are generated by the relations 

(b) Show that in all such relations, the number of x with x =1= 0 mod 3 is even 
(count both sides of the equation). 
(c) Show that r = 0, where 

r = a l + a2 + a l7 + a43 + a 44 + a46 - a3 + a9 + a36 + a25 + a 40 + a2S' 

is not a relation in (A~ost. 
(d) Show that 2r = 0 is a relation. This shows that 2-torsion must be considered 
in Bass' theorem. 



CHAPTER 13 

Iwasawa's Theory of Zp-extensions 

The theory of Zp-extensions has turned out to be one of the most fruitful 
areas of research in number theory in recent years. The subject receives its 
motivation from the theory of curves over finite fields, which is known to 
have a strong analogy with the theory of number fields. In the case of curves, 
it is convenient to extend the field of constants to its algebraic closure, which 
amounts to adding on roots of unity. There is a natural generator of the 
Galois group, namely the Frobenius, and its action on various modules 
yields zeta functions and L-functions. In the number field case, it turns out to 
be too unwieldy, at least at present, to use all roots of unity. Instead, it is 
possible to obtain a satisfactory theory by just adjoining the p-power roots of 
unity for a fixed prime p. This yields a Zp-extension. The action of a generator 
of the Galois group on a certain module yields, at least conjecturally, the 
p-adic L-functions. 

In the present chapter, we first prove some preliminary results on Zp
extensions. We then determine the structure of modules over the ring A = 
Zp[[T]]. As a result, we obtain the beautiful theorem of Iwasawa which 
describes the behavior of the p-part of the class number in a Zp-extension. We 
then discuss the Main Conjecture, relating certain Galois actions to p-adic 
L-functions. Finally, we use logarithmic derivatives to prove a result of 
Iwasawa, which could be considered as a local version of the Main Conjec
ture, which describes local units modulo cyclotomic units in terms of p-adic 
L-functions. Extensions of this theorem to elliptic curves have proved very 
useful in the work of Coates and Wiles on the conjecture of Birch and 
Swinnerton-Dyer. 

In this chapter we use more class field theory than in previous chapters. A 
summary of the necessary facts is given in an appendix. 

264 
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§13.1. Basic Facts 

A 'zp-extension of a number field K is an extension Koo/K with Gal(Koo/K) ~ 
'zp' the additive group of p-adic integers. As Proposition 13.1 below shows, it 
is also possible to regard a 'zp-extension as a sequence of fields 

K = Ko c K t C ••• c Koo = UK" 

with 

Gal(K,,/ K) ~ 'z/p"'z. 

In Chapter 7 we showed that every number field has at least one 'zp-exten
sion, namely the cyclotomic 'zp-extension. It is obtained by letting Koo be an 
appropriate subfield of K«(p.,). 

Proposition 13.1. Let Koo/K be a 'zp-extension. Then, for each n ~ 0, there is a 
unique field K" of degree p" over K, and these K", plus K oo , are the only fields 
between K and Koo. 

Proof. The intermediate fields correspond to the closed subgroups of 'zp. Let 
S '" 0 be a closed subgroup and let XES be such that vp(x) is minimal. Then 
x'z, hence x'zp, is in S. By the choice of x, we must have S = x'zp = p"'zp for 
some n. The result follows. D 

Proposition 13.2. Let Koo/K be a 'zp-extension and let i be a prime (possibly 
archimedean) of K which does not lie above p. Then Koo/K is unramified at i.ln 
other words, 'zp-extensions are "unramified outside p." 

Proof. Let I s;; Gal(Koo/K) ~ 'zp be the inertia group for i. Since I is closed, 
1=0 or I = p"'zp for some n. If 1= 0 we are done, so assume I = p"'zp. In 
particular, I is infinite. Since I must have order 1 or 2 for infinite primes, we 
may assume i is non-archimedean. For each n, choose inductively a place ill 
of K" lying above i,,-t, with io = i. Let K" be the completion, and let 
Koo = UK". Then 

I s;; Gal(Koo/K). 

Let U be the units of K. Local class field theory says that there is a continu
ous surjective homomorphism 

But 

U ~ (finite group) x 'zf, a E'z, 

where I is the rational prime divisible by i (proof: log,: U -+ rN(!) for some N: 
the kernel is finite and (!)( = local integers) is a finitely generated free ,Z,-
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module). Since p"7Lp has no torsion, we must have a surjective and continu
ous map 

7Lf _ p"7Lp _ p"7Lp/p"+l7L p' 

However, 7Lf has no closed subgroups of index p, so we have a contradiction. 
This completes the proof. 0 

The proposition may also be proved without class field theory. See Long 
[1], p. 94, and Iwasawa [6], Lemma 7.1. 

Lemma 13.3. Let KYJ/K be a 7Lp-extension. At least one prime ramifies in this 
extension, and there exists n ~ 0 such that every prime which ramifies in Koo/K. 
is totally ramified. 

Proof. Since the class number of K is finite, the maximal abelian unramified 
extension of K is finite, so some prime must ramify in Koo/K. We know that 
only finitely many primes of K ramify in Koo/K by Proposition 13.2. Call 
them ft1' ... , ft., and let 11, ... , Is be the corresponding inertia groups. Then 

n Ij = p"7Lp 

for some n. The fixed field of p"7Lp is K" and Gal(Koo/K.) is contained in each 
Ij. Therefore all primes above each ftj are totally ramified in Koo/K •. This 
completes the proof. 0 

However, it is possible to have K./K unramified for some n (see Exercises 
13.3 and 13.4). 

We already know that every number field K has at least one l'p-extension, 
namely the cyclotomic 7L p-extension defined in Chapter 7. However, there 
could be more. Let E 1 be those units of K which are congruent to 1 modulo 
every prime ft of K lying above p. Let Ul, fo denote the local units congruent 
to 1 mod ft. There is an embedding 

E1 -U1 =DUl,;' 
;.Ip 

e f-+ (e, ... , e). 

The closure E1 is a 7Lp-module. Leopoldt's conjecture predicts that the l'p
rank is r1 + r2 - 1, where r1, r2 have the usual meanings. We know this is 
true for abelian number fields (Corollary 5.32). 

Theorem 13.4. Suppose the 7L p-rank of E1 is r1 + r2 - 1 - 15, with b ~ O. Then 
there are r2 + 1 + b independent l'p-extensions of K. In other words, if K is the 
compositum of all7Lp-extensions of K, then Gal(K/K) ~ 7L~2+1+d. 

Proof. Let K be as above and F the maximal abelian extension of K which is 
unramified outside p. Then K s;;; F. Let J denote the ideIes of K. By class field 
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theory, there is a closed subgroup H with 

K X s;;Hs;;J 

such that 

J/H ~ Gal(F/K). 

267 

Let Vj denote the local unit group at a finite prime I of K, and Vj = K( if I is 
archimedean. Let 

V' = n VI" V" = TI Vj, V = V' X V". 
I'lp 'kp 

All of these may be regarded as subgroups of J by putting a 1 in all the 
remaining components for V' and V". V is an open subgroup. Since F/K is 
unramified outside p, V" s;; H. Since F is maximal, we must have 

H = KXV" 

(technical point: we need J/K x V" to be totally disconnected; but this will 
follow from the fact that this is true for Vd. Let 

J' = J/H, 

and 

J" = KXV/H = V'H/H ~ V'/V' n H. 

Let VI = nl'IP V1.1' be as in the discussion preceding the statement of the 
theorem. Then 

Therefore 

We have a map 

V' = VI x (finite group). 

J"/(finite) ~ V 1(V' nH)/(V' nH) 

~ Vt/V1 nH. 

"': El -+ VI C J 

as above, but note that "'(6) has component 1 at all It p. So this is not the 
same as K X c... J. 

Lemma 13.5. VI n H = V1 n K X V" = "'(Ed. 

Proof. Let 6 E E 1• Then "'(6) E V 1• Also 

"'(6) = (6) ("'!6)) E K x V" 

since "'(6)/6 has component 1 at all ,lilp. Taking closures, we obtain one 
inclusion. 
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The reverse inclusion is more difficult. Since V has a "nice" topology, we 
may obtain the closure of an arbitrary subset S by taking the intersection of 
(a confinal subset of) the closed neighborhoods of S. If V.,;. denotes those 
units congruent to 1 mod fi· and V. = n ;.Ip V.,;. (put 1 in all components for 
fi % p) then 

KXV" = n KXV"V •. 
• 

Also, we have 

I{!(Ed = n I{!(EdV •. 
• 

It suffices to show that 

Let x E K X, u" E V", U E V •. Suppose 

Then xu" E V 1 • Since u" has component 1 at all filp, x must be a principal 
unit at these primes. Since V1 has component 1 at 1% p, and u" is a unit at 
these places, x must also be a unit at these places. Therefore x is a unit 
everywhere, so x is a global unit, in fact x E £1' To summarize, at filp we have 
xu" = x EEl' At 1% p, xu" = l. This is exactly what it means for xu" to be in 
1{!(£1)' Consequently 

xu"u E I{!(E 1 )U •. 

This completes the proof of Lemma 13.5. o 

The logarithm maps V.,;. ~ fi· ~ @;. for large enough n, by Proposition 
5.7. But @;. ~ 7L,/f~ where e;.' I;. denote the ramification and residue class 
degrees. Also, [K: 0] = Ie;.!;.. We obtain 

V1 ~ (finite) x 7L~K: 01. 

Therefore 

V 1/V1 n H = V 1N(Ed ~ (finite) x 7L~2+1+d 

A similar statement holds for J". 
We want information about }'. But 

}' / J" ~ } / K x V ~ ideal class group of K 

(see the appendix on class field theory; better: prove it yourself). Conse
quently 

}'/7L~2+1+d ~ finite group. 

This is approximately what we want. However, we need the quotient of }' by 
a finite group to be 7L~+1 +d, since then the fixed field of the finite group is K. 
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Let N be the order of the finite group in the last equation above. Then 

so 

NJ' ~ Z~2+1H, as a Zp-module 

(we are writing J' additively). Let Jiv = {x E J'INx = O}. Then Jiv is closed and 

It is easy to see that Jiv is finite: if it had order larger than N, then two 
elements of Jiv would have the same representative in the finite group above. 
Hence their difference, which is killed by N, would be a nontrivial element of 
finite order in Z~2+1H. This is impossible, so Jiv is finite. 

The fixed field of Jiv c J' = Gal(F/K) must be K, so the proof is complete. 
D 

Corollary 13.6. Let H be the Hilbert class field of K and let F be the maximal 
abelian extension of K unramijied outside p. Then 

Gal(F/H) ~ (U V;.)/E, 
where E is the closure of E, embedded in n V;. diagonally. 

Proof. Gal(F/K) ~ J', and the closed subgroup 1" corresponds to H. Hence 
Gal(F/H) ~ J" ~ V'/V' n H. The same proof as for Lemma 13.5 shows that 
V' n H = t/t(E). The result follows. D 

§13.2. The Structure of A-modules 

Let A = Zp[[T]]. Recall that a nonconstant polynomial P(T) E A is called 
distinguished if 

P(T) = Tn + an - 1 T n- 1 + ... + ao, O~i~n-l. 

By the p-adic Weierstrass Preparation Theorem (7.3), if f(T) E A is nonzero, 
then we may uniquely write 

f(T) = pI'P(T)V(T) 

with p. ~ 0, P(T) distinguished, and V(T) E A x. By Lemma 7.5, if f is a 
polynomial so is V. Also, there is a division algorithm (Proposition 7.2) 
for distinguished polynomials: if f(T) E A and P(T) is distinguished then 
(uniquely) 

f(T) = q(T)P(T) + r(T) 

with r(T) E Zp[T], deg r(T) < deg P(T) (let deg 0 = -00, for convenience). 
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It follows from the above that A is a unique factorization domain, whose 
irreducible elements are p and the irreducible distinguished polynomials. The 
units are the power series with constant term in Z; . 

Lemma 13.7. Suppose f, 9 E A are relatively prime. Then the ideal (f, g) is of 
finite index in A. 

Proof. Let h E (f, g) be of minimal degree. Then h = p' H with H = 1 or H 
distinguished. Suppose H #- 1. Since f and 9 are relatively prime, we may 
assume H does not divide f But 

f= Hq + r, degr < degH = degh, 
so 

pSf = hq + p'r. 

Since deg(p'r) < deg hand p'r E (f, g), we have a contradiction. Therefore 
H = 1 and h = p'. Without loss of generality, we may assume f is not divisi
ble by p and is distinguished. Otherwise, use 9 or divide by a unit. We have 

(f, g) 2 (p",J). 

By the division algorithm, any element of A is congruent mod f to a poly
nomial of degree less than degf Since there are only finitely many such 
polynomials mod p', the ideal (ps,J) has finite index. This completes the 
~~ 0 

Lemma 13.8. Suppose f, 9 E A are relatively prime. Then 
(1) the natural map 

A/(fg) ~ A/(f) El7 A/(g) 

is an injection with finite cokernel; 
(2) there is an injection 

A/(f) El7 A/(g) --. Af(fg) 

with finite cokernel. 

Proof. (1) Since A is a unique factorization domain, the map is an injection. 
Consider (a mod f, b mod g). If a - b E (f, g), then a - b = fA + gB, for some 
A, B. Let 

c = a - fA = b + gB. 
Then 

c == amodf, c == bmodg, 

so (a, b) is in the image. Now let r 1 , ••• , r" E A be representatives for A/(f,g). 
It follows that 

{(Omodf, rjmodg)ll 5,j 5, n} 

is a set of representatives for the cokernel of the above map. This proves (1). 
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(2) From (1), 

A/(fg) ~ M s;; A/(f) €a A/(g) ~ N 

with M of finite index in N. Let P be any distinguished polynomial in A 
which is relatively prime to fg. If (x, y) E N, then 

(Pi)(X, y) == (Pi)(x, y) mod M 

for some i < j. Since 

1 - pj-i E AX, 

we have 

pi(X,Y)E M. 

It follows that pk N s;; M for some k. (Alternatively, this follows from the 
fact that pk-+O in A). Suppose pk(x,y)=O in N, so flpkx,glpky. Since 
gcd(P,fg) = 1, fix and gly; so (x,y) = 0 in N. Therefore 

N ~M ~A/(fg) 

is injective. The image contains the ideal (pk,fg), which is of finite index by 
Lemma 13.7. This completes the proof. 0 

Proposition 13.9. The prime ideals of A are 0, (p, T), (p), and the ideals (P(T)) 
where P(T) is irreducible and distinguished. The ideal (p, T) is the unique 
maximal ideal. 

Proof. All the above are easily seen to be prime ideals. Let /t ¥- 0 be prime. 
Let h E /t be of minimal degree. Then h = p' H with H = 1 or H distin
guished. Since /t is prime, p E /t or H E ft. If 1 ¥- H E /t then H must be 
irreducible by the minimality of the degree of h. Therefore, in both cases, 
(f) S;; /t where f = p or f is irreducible and distinguished. If (f) = /t, then /t 
is on the above list so we are done. Therefore assume (f) ¥- /t, so there is a 
9 E /t with f (g. Since f is irreducible, f and 9 are relatively prime. Lemma 
13.7 implies that /t is of finite index in A. Since AI /t is a finite Zp-module, 
pN E /t for large N, hence p E /t since /t is prime. Also, Ti == Tj mod /t for 
some i < j. But 1 - T j-i E A X , so Ti E ft. Therefore T E /t, so (p, T) S;; ft. But 
A/(p, T) ~ Z/pZ, so (p, T) is maximal and /t = (p, T). 

Since all the prime ideals are contained in (p, T), this is the only maximal 
ideal. This completes the proof. 0 

Lemma 13.10. Let f E A with f ¢ A x. Then A/(f) is infinite. 

Proof. We may assume f ¥- O. It suffices to consider f = p and f = 
distinguished. If f = p, A/(f) ~ Z/pZ[[T]]. If f is distinguished, use the 
division algorithm. 0 
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Lemma 13.11. A is a Noetherian ring. 

Proof. It is known (Lang's Algebra) that if A is Noetherian then so is A[[TJJ. 
One could also use the Hilbert basis theorem (A Noetherian:;. A[TJ 
Noetherian) since the generators of an ideal may always be assumed to be 
polynomials. D 

Definition. Two A-modules M and M' are said to be pseudo-isomorphic, 
written 

M '" M', 

if there is a homomorphism M -+ M' with finite kernel and co-kernel. In 
other words, there is an exact sequence of A-modules 

o -+ A -+ M -+ M' -+ B -+ 0 

with A and B finite A-modules. 

Warning. M '" M' does not imply M' '" M. For example, (p, T) '" A, obvi
ously. But suppose A -+ (p, T). Let f(T) be the image of 1 E A. Then the image 
of A is (f) S (p, T). But A/(f) is infinite, so (p, T)/(f) is infinite. Hence, the 
cokernel is infinite. However, it can be shown that for finitely generated 
A-torsion A-modules, M '" M' _ M' '" M. 

Lemma 13.8 says that if (f, g) = 1 then 

A/(fg) '" A/(f) $ A/(g) and A/(f) $ A/(g) '" A/(fg). 

We shall need to know the structure of finitely generated A-modules. The 
following theorem was first proved by Iwasawa in terms of the group ring 
Zp[[r]]. Serre observed that the group ring is isomorphic to A and deduced 
the structure theorem from some general resultl> in commutative algebra. 
Paul Cohen showed that one could give a proof via row and column opera
tions, just as is done for modules over principal ideal domains. In the follow
ing, we follow Lang's treatment [4] of Cohen's proof. For another proof, see 
Bourbaki [1], VII, 4.4. 

The decomposition in Theorem 13.12 is uniquely determined by M 
(Corollary 15.19). 

Theorem 13.12. Let M be a finitely generated A-module. Then 

M '" N $ (§? A/(pn.)) $ (~A/(.Ij(T)mJ)). 
where r, s, t, ni> mj E Z, and.lj is distinguished and irreducible. 

Proof. Note that the result is the same as for modules over principal ideal 
domains, except that there is only a pseudo-isomorphism. The proof will use 
an extension of the techniques employed in that theorem (the reader who has 
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not seen the pj.d. theorem proved via row and column operations should 
immediately consult an algebra text). 

Suppose M has generators u1 , ••• , Un' with various relations 

A1U1 + ... + AnUn = 0, Ai E A. 

Since the relations R are a submodule of An, and A is Noetherian, the 
relations are finitely generated. So we can represent M by a matrix whose 
rows are of the form (A 1, ... , An), where L AiU; = 0 is a relation. By abuse of 
notation, we call this matrix R. 

We first review the basic row and column operations, which correspond to 
changing the generators of Rand M. 

Operation A. We may permute the rows or permute the columns. 

Operation B. We may add a multiple of a row (or column) to another row 
(column). Special case: if A' = qA + r then 

Operation C. We may multiply a row or column by an element of AX . 

The above operations are used for principal ideal domains. However, we 
have three additional operations, which are where the pseudo-isomorphisms 
enter. 

Operation 1. If R contains a row (A 1, PA2 •... , PAn) with p r A1• then we may 
change R to the matrix R' whose first row is (A 1,A2, ... ,An ) and the remaining 
rows are the rows of R with the first elements multiplied by p. In pictures: 

[
A1 PA2 ... J [A1 A2 ... J 
0(1 0(2 • • • -+ PO( 1 0(2 • • • • 

P1 P2 . . . PP1 P2 ... 

As a special case, if A2 = ... = An = 0 then we may multiply 0(1' P1' ... by an 
arbitrary power of p. 

Proof. In R we have the relation 

A1U1 + p(A2U2 + ... + AnUn) = O. 

Let M' = M El3 vA, with a new generator v, modulo the additional relations 

(-u 1,pv) = 0, (A 2U2 + ... + AnUn,A1V) = o. 
There is a natural map M -+ M'. Suppose ml-+O. Then m lies in the module 
of relations, so 
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with a, b E A. Therefore 

ap = -bAl. 

Since p I Al by assumption, plb. Also, Alia. In the M-component, 

a 
= - Al (0) = o. 

Since the images of pv and Al v in M' are in the image of M, the ideal (p, Ad 
annihilates M'/M. Since Aj(p, Ad is finite and M' is finitely generated, M'/M 
is finite. Therefore 

M '" M'. 

The new module M' has generators v, U2' •.. , u". Any relation OCIU I + ... + 
(X"U" = 0 becomes POC I v + ... + OC"U" = 0, so the first column is multiplied 
by p, as claimed. We also have the relation AIV + ... + A"U". So the new 
matrix R' has the form stated above (we removed the redundant row 
(pAl'· .. ,pA,,». 0 

Operation 2. If all elements in the first column of R are divisible by p" and if 
there is a row (pI< AI' ... , p" A,,) with p I AI' then we may change to the matrix R' 
which is the same as R except that (p" AI' ... ,pI< A,,) is replaced by (AI' ... , A,,). In 
pictures: 

Proof. Let M' = M EB Av modulo the relations 

As before, the fact that p I AI allows us to conclude that M embeds in M'. 
Also, the ideal (pI<, Ad annihilates M'I M, so the quotient is finite. Conse
quently M '" M'. 

Using the fact that p"(u l - v) = 0 and the fact that pIt divides the first 
coefficient of all relations involving U I' we find that 

M' = M" EB (u l - v)A, 

where M" is generated by v, U 2 , ••. , u" and has relations generated by 
(AI' ... ,A,,) and R. Therefore M" has R' for its relations. Note that 

(u l - v)A ~ Aj(p"), 

which is already of the desired form. So it suffices to work with M" and R'. 
o 
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Operation 3. If R contains a row (pk AI' ... ,pk An), and, for some A with p l A, 
(AAI, ... ,A.A.n) is also a relation (not necessarily explicitly contained in R), then 
we may change R to R', where R' is the same as R except that (pk AI' ... ,pk An) 
is replaced by (AI' ... , An). 

Proof. Consider the surjection 

M -+ M' = M/(AI U I + ... + Anun)A. 

The kernel is annihilated by the ideal (A, pk). Since M, hence the kernel, 
is finitely generated, and since A/(A, pk) is finite, the kernel must be finite; so 
M '" M'. Clearly M' has R' as its relation matrix. 0 

This completes our list of operations. We call A, B, C, 1, 2, 3 admissible 
operations. Note that all of them preserve the size of the matrix. 

We are now ready to begin. If 0 :I: f E A, then 

f(T) = pIlP(T)U(T), 

with P distinguished and U E A x • Let 

d f {ro, Jl. > 0 
egw = deg P(T), Jl. = 0; 

this is called the Weierstrass degree of f. Given a matrix R, define 

deg(k)(R) = min degw(a;j) for i,j ~ k, 

where (a;j) ranges over all relation matrices obtained from R via admissible 
operations which leave the first (k - 1) rows unchanged (we allow aij for i ~ k 
and all j to change; we also allow operations such as B which use, but do not 
change, the first (k - 1) rows). 

If the matrix R has the form 

All 0 0 0 

0 Ar-1.r-1 0 0 = (~r-l ~) 
• • • • 
* * • • 

with Au distinguished and 

deg Au = degw Au = deg(k)(R), for 1 ~ k ~ r - 1, 

then we say that R is in (r - I)-normal form. 

Claim. If the submatrix B :I: 0 then R may be transformed, via admissible 
operations, into R' which is in r-normal form and has the same first (r - 1) 
diagonal elements. 

Proof. The "special case" of Operation 1 allows us to assume, when neces
sary, that a large power of p divides each Aij with i ~ r andj ~ r - 1. That is, 
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pNIA, with N large (large enough that pN (B). Using Operation 2, we may 
assume that p ( B. We may also assume that B contains an entry Aij such that 

degw Aij = deg(r)(R) < 00. 

If Aij = P(T) V (T), then multiply the jth column by V-I. Therefore we may 
assume Aij is distinguished. (Since the first r - 1 rows have 0 in the jth 
column, they do not change). Operation A lets us assume Aij = Arr (again, the 
O's help us). 

By the division algorithm (special case of B), we may assume that Arj is a 
polynomial with 

deg Arj < deg Arr , j # r, 

and 

deg Arj < deg Ajj , j < r. 

Since Arr has minimal Weierstrass degree in B, we must have plArj for j > r. 
By 1, we may assume pNIArj,j < r, for some large N. Suppose Arj # 0 for some 
j > r. Operation 1 lets us remove the power of p from some nonzero Arj with 
j > r (the O's above are left unchanged). Then 

which is impossible. Consequently, Arj = 0 for j > r. 
If some Arj # 0 for j < r, use Operation 1 to obtain p ( Arj for some j. But 

then 

Since 

degw Ajj = deg(j)(R), 

this contradicts the definition of deg(j)(R). Therefore Arj = 0 for allj # r. This 
proves the claim. 0 

If we start with a matrix Rand r = 1, we may successively change R until 
we obtain a matrix 

with each Ajj distinguished and deg Ali = degU>(R) for j :5 r. By the division 
algorithm, we may assume that Aij is a polynomial and 

deg Aij < deg Ajj' for i # j. 
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Suppose Aij -# 0 for some i -# j. Since deg .. Ajj is minimal, piAu; so we have 
a nonzero relation (Ail' ... ' Air' 0, ... ,0) which is divisible by p. Let A = 
All· .. Arr" Then p % A, since the Ajj'S are distinguished; and 

( A ~ Ai 1 , ••• , A ~ Air> 0, ... , 0 ) 

is also a relation, since AjjUj = O. By Operation 3 we may assume p does not 
divide Aij for some j, so 

deg .. Aij S; deg Aij < deg Ajj = deg(j)(R). 

This is impossible. Therefore Aij = 0 for all i and j with i -# j. This means 
A = O. In terms of A-modules, we have 

A/(All ) $ ... $ A/(Arr ) $ N-r. 

Putting back in the factors A/(pk) which were discarded in Operation 2, we 
obtain the desired result, except that the Aii are not necessarily irreducible. 
Lemma 13.8 takes care of this problem. This completes the proof of Theorem 
1112 0 

§13.3. Iwasawa's Theorem 

The purpose of this section is to prove the following result. 

Theorem 13.13. Let Koo/K be a Z,-extension. Let pen be the exact power of p 
dividing the class number of Kn. Then there exist integers A ~ 0, Il. ~ 0, and 
v. all independent of n, and an integer no such that 

en = An + Il.pn + v for all n ~ no. 

Proof. Let r = Gal(Koo/K) ~ Z,. and let Yo be a topological generator of r. 
as in Chapter 7. Let Ln be the maximal unramified abelian p-extension of 
Kn. so Xn = Gal(Ln/Kn) ~ An = p-Sylow of the ideal class group of Kn. Let 
L = Un:?:oLn and X = Gal(L/Koo). Each Ln is Galois over K since Ln is 
maximal. so L/K is also Galois. Let G = Gal(L/K). We have the following 
diagram. 

Kl»L 
G/X= riG 

K 



278 13. Iwasawa's Theory of £:p-extensions 

The idea will be to make X into a r -module, hence a A-module. It will be 
shown to be finitely generated and A-torsion, hence pseudo-isomorphic to a 
direct sum of modules of the form A/(pk) and A/(p(Tn It is easy to calculate 
what happens at the nth level for these modules. We then transfer the result 
back to X to obtain the thoerem. 

We start with the following special case. 

Assumption. All primes which are ramified in KoolK are totally ramified. 

By Lemma 13.3, this may be accomplished by replacing K by Km for some 
m. By our assumption, 

so 

Gal(LnIKn) ~ Gal(LnKn+dKn+l)' 

which is a quotient of X n+!. We have a map 

This corresponds to the norm map An+! -+ An on ideal class groups (see the 
appendix on class field theory). Observe that 

Xn ~ Gal(LnKoo/Koo), 

so 

Let Y E rn = riP". Extend y to y E Gal(LnIK). Let x E X n. Then y acts on x 
by 

x Y = YX(Y)-l. 

Since Gal(LnIKn) is abelian, x Y is well-defined. (This action corresponds to 
the action on An). Therefore Xn becomes a Zp[rn]-module. Representing an 
element of X ~ lim Xn as a vector (xo, Xl"")' and letting Zp[rn] act on 

+-
the nth component, we easily find that X becomes a module over A ~ 
l~ Zp[rnJ. (The only thing to be checked is that x Y E X, and this is easy to 
do). The polynomial 1 + TEA acts as Yo E r. We have 

for y E r, x E X, 

where y is an extension of y to G. 
Let ftl' ... , ft. be the primes which ramify in Koo/K, and fix a prime jt; of 

L lying above fti. Let Ji S G be the inertia group. Since LIKoo is unramified, 

JinX = 1. 



§13.3. Iwasawa's Theorem 

Since Koo/ K is totally ramified at A, 
Iic...G/X = r 

is surjective, hence bijective. So 

G = IiX = Xli' i = 1, ... , s. 

Let (1i E Ii map to Yo. Then (1i must be a topological generator of Ii. Since 

1/ ~ XII' 
we have 

for some ai E X. Note that a l = 1. 
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Lemma 13.14 (Assuming the above "Assumption"). Let G' be the closure of 
the commutator subgroup of G. Then 

G' = Xyo-1 = TX. 

Proof. Since r ~ II ~ G maps onto r = G/X, we may lift y E r to the 
corresponding element in II in order to define the action of r on X. For 
simplicity, we identify r and II' so x y = yxy-1. Let 

a = ax, b = py, with a, pEr, x, y E X, 

be arbitrary elements of G = rx. Then 

aba- 1b-1 = axpyx-1a-1 y-1 p-1 

= x«apyx-1a-1y-1 p-1 = x«(yx-1 )«fl(aP)a-1 y-1 p-1 

= x«(yx- I tfl(y-1 t (since r is abelian) 

= (x«)1-fl(yflr1. 

Let p = 1, a = Yo. We find that yYO-1 E G', so 

For p arbitrary, there exists c E 7l.p with P = Yo, so 

1 - P = 1 - Yo = 1 - (1 + T)C = 1 - f (c) rn ETA. 
n=O n 

Since Yo - 1 = T, (X«)l- fl E Xyo-I. Similarly, (yfl)I-« E Xyo-I. Since XYO-1 = 
TX is closed (it is the image of the compact set X), G' ~ XYO-I. This proves 
~~~ 0 

Lemma 13.15 (Assuming the "Assumption"). Let Yo be the 7l.p-submodule of X 
generated by {ail2 ~ i ~ s} and by XYO-l = TX. Let Y,. = vn Yo, where 

(1 + Tr" - 1 
Vn = 1 + Yo + Y5 + ... + y(-l = T . 
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Then 

Xn ~ X/¥" for n ;::: o. 
Proof. First, consider n = O. We have K 5; Lo 5; L. Since Lo is the maximal 
abelian unramified p-extension of K, and since L/K is a p-extension, Lo/K 
is the maximal unramified abelian subextension of L/K. Therefore Gal(L/Lo) 
must be the closed subgroup of G generated by G' and all the inertia groups 
Ii' 1 sis s. Therefore Gal(L/Lo) is the closure of the group generated by 
XYO-I, II' and a2 , ••• , as, so 

Xo = Gal(Lo/K) = G/Gal(L/Lo) = XII/Gal(L/Lo) 

~ X/<XYo l,a2, .. ,as) = X/Yo. 

Now, suppose n ;::: 1. Replace K by Kn and 1'0 by yC". Then (Ji becomes (Jr. 
Observe that 

Therefore 

(Jik+I = (ai(JIl+ 1 = ai(Ji ai(Jl 1 (J~ai(J12 ... (J~ai(Jlk(J~+l 

_ al+a'+"'+a~~k+1 
- i "'1 . 

so ai is replaced by vna j • Finally, Xyo-I is replaced by (yt" - 1)X = vnXYO-i. 
Therefore Yo becomes Vn Yo, which yields the desired result. This completes 
the proof of Lemma 13.15. 0 

The above result is a very crucial step since it allows us to retrieve infor
mation about Xn from information about X. 

Lemma 13.16 (Nakayama's Lemma). Let X be a compact A-module. Then 

X is finitely generated over A ¢> X /(p, T)X is finite. 

If Xl' ... , Xn generate X/(p, T)X over l., then they also generate X as a 
A-module. A special case: 

X/(p, T)X = O¢>X = O. 

Proof. Consider a small neighborhood U of 0 in X. Since (p, T)n -.0 in A, 
each Z E X has a neighborhood Uz such that (p, T)"Uz 5; U for large n. Since 
X is compact, finitely many Uz cover X. Therefore (p, T)" X 5; U for large n, 
so n ((p, T)n X) = 0 for any compact A-module X. 

Now assume X I' ... , Xn generate X /(p, T)X. Let Y = Ax 1 + .. , + AXn 5; 

X. Then Y is compact (image of A"), hence closed, so X/Y is a compact 
A-module. By assumption, Y + (p, T)X = X. Therefore 

(p, T)(X/Y) = (Y + (p, T)X)/Y = X/Yo 
hence 

(p, T)n(x/y) = X/Y for all n ;::: O. 
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It follows from the above that X/Y = 0, so X = Y and {x;} generates X 
(this could also be proved more explicitly by successively considering x E 

Xmod(p, T), then mod(p, T)2, etc.). The other parts of the lemma follow 
easily. 0 

Lemma 13.17 (With the "Assumption," but see Lemma 13.18). X = 
Gal(L/Koo ) is a finitely generated A-module. 

Proof. Clearly VI E (p, T), so Yo/(p, T) Yo is a quotient of YO/VI Yo = YO/Y1 £; 

X/YI = Xl' which is finite. Therefore Yo is finitely generated. Since X/Yo = 
Xo is finite, X must also be finitely generated. This proves the lemma. 0 

Arbitrary K. We now remove the Assumption. Let Koo/K be a .z:p-extension 
and choose e ~ 0 such that in Koo/K. all ramified primes are totally ramified. 
Then Lemmas 13.15 and 13.17 apply to Koo/K •. In particular, X, which is the 
same for K. and K, is a finitely generated A-module. For n ~ e, 

This replaces Vn for Koo/K., since yC- generates Gal(Koo/K.). Let Y. be "Yo for 
K.," as defined in Lemma 13.15. Then 

y" = vn •• Y., and Xn ~ X/Y", for n ~ e. 

We have proved the following. 

Lemma 13.18. Let Koo/K be a .z:p-extension. Then X is a finitely generated 
A-module, and there exists e ~ 0 such that 

o 

We can now apply Theorem 13.12 to X. We can also apply it to Y. with 
the same answer, since X/Yo is finite. So we have 

Y. - X - N (f) (Ef)A/(pk'» EEl (Ef)A/(Jj(T)mJ». 

We shall calculate V/vn •• V for each of the summands Von the right side. 

(1) V = A. By Lemma 13.10, A/(vn .• ) is infinite. Since Y./vn .• Y. is finite, it 
follows easily that A does not occur as a summand. 

(2) V = A/(pk). In this case, 

V/vn •• V ~ Aj(pk, vn •• ). 

It is easy to show that if the quotient of two distinguished polynomials is a 
polynomial, then it is distinguished (or constant). Therefore 

Vn «1 + T)P" - 1)/T 
V = - = -:-:-:---=:c=------,-~ n.' v. «1 + T)p· - l)/T 
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is distinguished. By the division algorithm, every element of A/(pk, vn•e) is 
represented uniquely by a polynomial mod pk of degree less than deg vn,e = 
p" _ pe. Therefore 

I J7/ VI - k(pn-p-) _ kpn+c 
y/vn,e -p -p, 

for some constant c. 

(3) V = A/(f(T)m). Let geT) = f(Tr. Then g is also distinguished, say of 
degree d. Hence 

Td == pQ(T) mod g 

for some polynomial Q(T), so 

Tk == (p)(polynomial) mod g for k ~ d. 

If pn ~ d then 

Therefore 

(1 + T)pn = 1 + (p)(poly.) + TP" 

== 1 + (p)(poly.) mod g. 

(1 + T)pn+. == 1 + p2(poly.) mod g. 

It follows that 

Pn+2(T) = (1 + TVn+> - 1 

= «1 + T)(p-l)pn+' + ... + (1 + TVn+1 + 1)«1 + TVn+' - 1) 

== (1 + ... + 1 + (p2)(poly,»(Pn+l(T» 

== p(1 + (p)(poly,»Pn+l (T) mod g. 

Since 1 + (p)(poly.) E A x , 

Ppn+2 acts as (p)(unit) on V = A/(g), 
n+l 

for pn ~ d. Assume no > e, pno ~ d, and n ~ no. Then 

and 

Therefore 
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for n ~ no. Since (g,p) = 1, multiplication by p is injective, so 

IpV/pvn+1.eVI = W/vn+1.eVI. 
Since 

V/pV ~ A/(p,g) = A/(p, T d ), 

we have 

By induction, 

I v,,/v VI = pd{n-no-l) I v,'/v VI ",e fto+l,e 

for n ~ no + 1. If V/vn.e V is finite for all n, then 
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for some constant c. If V/vn.e V is infinite then V cannot occur in our case. This 
happens only when (vn.e,f) "# 1, by Lemma 13.7. 

Putting everything together, we obtain the following. 

Proposition 13.19. Suppose 

E = A' $ (ffl A/(pk/») $ (~A/(9j(T»). 
where each gj(T) is distinguished (not necessarily irreducible). Let m = L k j and 
I = L deg gj. If E/vn.eE is finite for all n, then r = 0 and there exist no and c 
such that 

o 

We interrupt the proof of Theorem 13.13 to give the following, which will 
be used in the next section. 

Lemma 13.20. Assume E is as in Proposition 13.19, with r = O. Then 

m = 0<:> p-rank(E/vn.eE) is bounded as n -+ 00. 

Proof. Recall that the p-rank of a finite abelian group A is the number of 
direct summands of p-power order when A is decomposed into cyclic groups 
of prime power order. It is also equal to 

dimz/pz(A/pA). 

Recall that vn.e is distinguished of degree pn - pe, so if deg vn.e ~ max deg gJ' 

E/(p, vn.e)E = (ffl A/(p, Vn.e») $ (* A/(p,gj' Vn.e») 

= (ffl A/(p, pn_po») $ ( ~ A/(p, TdCIIIJ») 

~ (7L/p7L)"{pn- po)+I. 

Therefore the rank is bounded <:> s = O. This proves Lemma 13.20. 0 
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We now return to the proof of Theorem 13.13. We have an exact sequence 

O-+A-+ Y.,-+E-+B-+O 

where A and B are finite and E is as in Proposition 13.19. We know the order 
of E/vn,eE for all n > no. It remains to obtain similar information about Y.,. 
At the moment, all we can conclude is that en = mpn + In + Cn, where Cn is 
bounded. The following lemma solves our problem. 

Lemma 13.21. Suppose Y and E are A-modules with Y '" E such that Y/vn,e Y 
is finite for all n ~ e. Then, for some constant c and some no, 

I Y/vn,e YI = pCIE/vn,eEI for all n ~ no· 

Proof. We have the following commutative diagram 

0- v." Y -
j .: 

0- v.,.E ---+ 

There are the following inequalities. 

(i) I Ker tP~1 :::;; I Ker ~I 
(ii) ICoker~~1 :::;; ICoker~1 
(iii) ICoker ~;I :::;; ICoker~1 
(iv) IKer~;1 :::;; IKer~I·ICoker~l. 

Y-

j. 
E ---+ 

Y/y.,. Y 

1 ~= 
E/v.,.E 

-0 

-- 0 

Inequality (i) is obvious. (iii) holds because representatives of Coker ~ give 
representatives for Coker ~;. For (ii), multiply the representatives of Coker ~ 
by vn,e' 

By the Snake Lemma (see Clayburgh [1], or any book on homological 
algebra), there is a long exact sequence 

o -+ Ker ~~ -+ Ker ~ -+ Ker~; -+ Coker ~~ -+ Coker ~ -+ Coker~; -+ O. 

Everything is straightforward except the map Ker~; -+ Coker ~~. Let x E 

Ker~;. There exists Y E Y which maps to x. Since ~(y) maps to 0 in E/vn,eE 
by the commutativity of the diagram, we must have ~(y) E vn,eE. One checks 
that ~(y)mod~~(vn,eY) depends only on x. The map xl--+~(y) is the desired 
one. It remains to check exactness. This is left to the reader. 

It follows that 

IKer~;1 :::;; IKer~"Coker~~1 :::;; IKer~"Coker~l, 

by (ii). This proves (iv). 
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Now suppose m ~ n ~ 0. We have the following inequalities. 

(a) IKef(p~1 ~ IKer~:"1 
(b) ICoker~~1 ~ ICoker~:"1 
(c) ICoker~;1 ~ ICoker~::'I. 
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For (a), observe that vm.e = (vm.e/vn.e)vn.e. Therefore vm.e Y s;;: vn.e Y, so 
Ker~:" s;;: Ker ~~. For (b), let vm.eY E vm.eE. Let Z E vn.eE be a representative for 
vn.eY in Coker ~~. Then 

vn.eY - Z = ~(vn.ex) for some x E Y. 

Multiply by vm.e/vn.e to obtain 

Vm eY - (Vm.e) Z = ~(Vm eX) = ~:"(Vm eX). 
• Vn•e • • 

So (vm.e/vn.e) times representatives for Coker ~~ gives representatives for 
Coker ~:... This proves (b). Since vm.eE s;;: vn.eE, inequality (c) follows easily. 

By (i), (ii), (iii), (a), (b), (c), the orders of Ker ~~, Coker ~~, and Coker ~; are 
constant for n ~ no, for some no. It remains to treat Ker~;. By the Snake 
Lemma, 

IKer~~IIKer~;IICoker~1 = IKer~IICoker~~IICoker~;I· 

(In any exact sequence, the alternating product of the orders is I; proof: 
replace ° --+ A --+ B --+ ... by ° --+ B/ A --+ ... and use induction on the length of 
the sequence). It follows that IKer~;1 must be constant for n ~ no. Lemma 
13.21 follows easily. 0 

We therefore have E as in Proposition 13.19, integers A ~ 0, IJ. ~ 0, and v, 
and an integer no such that 

pen = IX.I = IX/Yell Ye/V •. e Yel 

= (const.)IE/v •. eEI 

= p".+/JP"+v, for all n > no. 

This completes the proof of Theorem 13.13. 

§13.4. Consequences 

o 

Proposition 13.22. Suppose Koo/K is a "Zp-extension in which exactly one prime 
is ramified, and assume it is totally ramified. Then 

An ~ Xn ~ X/«1 + T)P" - I)X 

and 
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Proof. Since Koo/ K satisfies the "assumption" in the proof of Theorem 
13.13, we may use Lemma 13.15. We have s = 1, so Yo = TX and y" = 
«1 + T)I'" - l)X. This proves the first part. If pi ho, then X/TX = 0, so 
X/(p, T)X = O. By Lemma 13.16, X = O. This completes the proof. 0 

Of course, the last statement of the proposition also follows from 
Theorems 10.1 and 10.4, and, in a special case, from Exercise 7.4. 

Proposition 13.23. J.l = O~p-rank(An) is bounded as n ~ 00. 

Proof. We have Y..""" E with E as in Lemma 13.20. By the lemma, J.l = o~ 
p-rank(E/vn,,,E) is bounded. From the proof of Lemma 13.21, we have an 
exact sequence 

0-+ ell ~ y"/Vn, " Y ~ E/vn."E ~ Bn ~ 0 

with lenl and IBnl bounded independent ofn.1t follows that 

J.l = o~ p-rank(Y../vn,,, Y..) is bounded. 

But 

An ~ Xn = X/vn,,, Y.. 

and X/Y" is finite. The result follows easily. o 
Suppose each Kn is a eM-field. The K!/K+ is a Zp-extension (cyclotomic 

if Leopoldt's conjecture is true, by Theorem 13.4). If p is odd we may decom
pose the p-Sylow subgroup An of the class group of Kn as 

An = A; EB A;;-. 
Also, 

hence 

X = X+ EBX-. 

We obtain, as in the proof of Theorem 13.13, 

A; ~ X; ~ X±/vn,eY..±. 

If p"~ is the exact power of p dividing h;, then 

We obtain 

with 
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The analogue of Proposition 13.23 applies, so 

p.± = O¢> p-rank(A,;t) is bounded. 

If p = 2, we cannot decompose A;. However, if 

A; = {alJa = -a} (J = complex conjugation) 

then everything in the proof of Theorem 13.13 works for A;, X;;, etc. We 
may obtain e: by looking at the class group An(K:) of K:, rather than A; 
(cf. Proposition to.12). We again obtain 

e; = A.±n + p.±2n + v±. 

From the exact sequence 

0-+ A; -+ An~ A(K;) -+ 0 

we have p. = p.+ + p.-, etc. We also have, as above, 

p.+ = O¢>2-rank A(K:) is bounded, 

p.- = O¢>2-rankA; is bounded. 

Proposition 13.24. Let p be prime. Suppose K is a eM-field with 'p E K and let 
Koo/K be the cyclotomic Zp-extension. Then 

p. = O¢>p.- = O. 

Proof. "=" is trivial. For "<::", we know that p.- = 0 = p-rank A; is 
bounded. By Theorem 10.11 and Proposition 10.12, p-rank A: (or 2-rank 
A(K:» is bounded, which implies p.+ = O. This completes the proof. 0 

This result also completes the proof that p. = 0 for abelian number fields 
(Theorem 7.15), since in Chapter 7 we showed that p.- = 0 for all such fields. 

Proposition 13.25. Suppose Koo/K is a Zp-extension and assume p. = O. Then 

X ~ lim An ~ Z; Et> (finite p-group) 
+-

as Zp-modules. 

Proof. We have 

X - E = EB A/(giT» 
J 

where each gj is distinguished and L deg gj = A.. By the division algorithm, 

A/(gj(T» ~ Z~·ggJ. 

Therefore 
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Since X is a Zp-module, which is finitely generated since E is finitely gener
ated, the result follows from the structure theorem for modules over principal 
ideal domains. D 

Proposition 13.26. Let p be odd. Suppose K is a eM-field and Koo/K is the 
cyclotomic Zp-extension of K. Then the map 

is injective. 

Remarks. The map A: -+ A:+1 is not necessarily injective (Exercise 13.4). If 
p = 2, A;; -+ A;;+1 is not necessarily injective (Exercise 13.3). Since the map of 
ideal class groups en -+ en+1 followed by the norm is the pth power map, the 
kernel is always in the p-Sylow subgroup. 

Proof. Suppose I is an ideal in An which becomes principal in Kn+l' so 

I = (IX) with IX E K n+1' 

Let (J be a generator for Gal(Kn+1/Kn). Then 

Consequently 

r 
(IX"-l) = - = (1) I . 

oc er - I = e E E.+I = units of K n+1' 

Let N be the norm for Kn+1/K •. Then 

Ne = (NIX),,-I = 1. 

For those who know cohomology of groups: we easily obtain an injection 

Ker(A. -+ A.+1) -+ HI (Gal(Kn+1/Kn), En+d. 

Now suppose I represents a class in A;;. Let J denote complex conjuga
tion. Then 

II+J = (P), with 13 E K. (so per = 13), 

hence 

Let 

and 

e2 
~ - ",,,-I - E E 
"1 - "'I - ,,-I n+l' 

" 
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Then 

But 

E;;+l = w;.+1 = roots of 1 in Kn+l 

by Lemma 1.6. Therefore some power of el is killed by 1 + J, hence is a root 
of 1, again by Lemma 1.6. Consequently 

(Alternatively, since p =1= 2 we may assume p E K: (see Theorem 10.3) and 
consequently 17 = rx 1 + I /P is real. Therefore 17 1 - 1 = 1, so Lemma 1.6 applies 
directly to el)' Also, observe that 

Nel = (Nad"-l = 1. 

Lemma 13.27. If el E w;.+1 and Nel = 1 then el = e2-1 with e2 E w;.+1 (so 
Hl(Gal(Kn+l/Kn), w;.+t> = 0). 

Proof. Hilbert's Theorem 90 tells us that el = y,,-l with y E K n+1, but we 
already know this with y = a1. We want y E w;.+1' Consider the following 
two sequences: 

1 W W ,,-1 W,,-l 1 
---+ n -+ n+1 ---+ n+1-+ 

N 
1 -+ w;.+1 n Ker N -+ Wn+1 -+ w;. -+ 1. 

The first is obvious exact. The second is slightly more difficult. If (p ¢ Ko then 
(p ¢ Km for all m. Otherwise, a nontrivial subgroup of (71./p71.)' would be in 
Gal(Kco/Ko), which is impossible. Since N: w;. -+ w;. is the pth power map, it 
is surjective in this case, hence N: w;.+1 -+ w;. is surjective (in fact, w;.+1 = 
w;.). If (p E Ko then Kn+1 = Kn(O, where ( = (pm for some m 2 n + 1. Also, 
w;.+1 = <0 x «,) for some t with (p, t) = 1, and Wn = «P) x «,). A trivial 
calculation shows that N( = (P and N(, = (f, hence <N(,) = «,). Therefore 
N is surjective in this case, so the second sequence is exact. 

We obtain 

IW,,-II 1w;.+11 IW K NI n+1 = I w;.1 = n+1 n er . 

Since 

we have equality. This proves Lemma 13.27. o 

We can now complete the proof of Proposition 13.26. We have 



290 13. Iwasawa's Theory of Zp-extensions 

Therefore 

( IXI)" = lXI, 
82 82 

so 

But 

G;) = (lXd = (1X2) = 12 in K n+1· 

By unique factorization of ideals, we must have 

G;) = 12 in Kn· 

Since p is odd and I has p-power order in A;;- , we must have I principal in Kn. 
This completes the proof of Proposition 13.26. 0 

Proposition 13.28. Let p be odd, let K be a eM-field, and let Koo/K be the 
cyclotomic 7L. p-extension. Then X- = lim A;;- contains no finite A-submodules. 

+-
Therefore there is an injection, with finite cokernel, 

X- c... EB A/(pki) E9 EB A/(gj(T». 
i j 

Proof. Suppose F £; X- is a finite A-module. Let Yo be a generator of 
Gal(Koo/K). Since F is finite, yC" acts trivially on F for all sufficiently large n, 
say n ~ no. Suppose 

0# x = ( .. . ,xm,Xm+1' ••• ) E F £; lim A;;-. 
+-

Then xm+l .-. Xm under the appropriate norm map, and xm # 0 for all 
sufficiently large m, say m ~ mo. Let m be larger than mo and no. By Proposi
tion 13.26, Xm # 0 when lifted to A;;;+l. Apply the map 

1 + YCm + Y5 pm + ... + y&,,-l)pm 

to x. Since m ~ no, it acts as p on x. Also, it is the norm from Km+1 to Km, 
so it maps Xm+l to Xm• Therefore 

so 

pX #0. 

It follows that multiplication by p is injective on the finite p-group F, so 
F = O. This completes the proof. 0 
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Corollary 13.29. Let p be odd. Let K be a eM-field and let Koo/K be the 
cyclotomic Zp-extension. If J1.- = 0 then 

- A.-X ~Zp. 

Proof. Proposition 13.28 plus the analogue of Proposition 13.25 for X-. D 

Usually the finite kernel and corkernel in the pseudo-isomorphism make 
it difficult to obtain much information at finite levels of the Zp-extension. 
Proposition 13.28 is useful since it eliminates half the problem. For a situa
tion where there is also a trivial cokernel, see Theorem 10.16. 

In the above we have used the decomposition X = X+ EB X- for odd 
primes. More generally, suppose we have the following situation 

K 

k 
Y 

where A is a finite abelian group and Gal(Koo/k) ~ A x r. For example, 
K = O('p). Koo = 0('".,). k = O. and A = (Z/pZ) x • Then A acts on X, since 
A x r acts on X by conjugation in the same way as the action of r on X was 
defined. If p does not divide the order of A and if the values of the characters 
X E A are in Zp (rather than an extension), then we may decompose X 
according to the idempotents Ilx of Zp[A]: 

X = EBllxX. 
x 

For example, in the above we used A = Gal(K/K+) and Il± = (1 ± J)/2. In 
the present case we obtain 

IlxX ,..., EB A/(Pkf) EB EB A/(gf(T)) 
i j 

for some integers kf and distinguished polynomials gf(T). We also have 
J1. = LJ1.x' etc. 

Returning to the general case, we consider the Cp-vector space 

V = X ®zp Cpo 
If 
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then it is easy to see that 
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v ~ EB Cp[T]/(giT )), 
j 

which is a finite-dimensional vector space. The group r acts on V; the 
generator Yo acts as 1 + T. So 

is the characteristic polynomial for Yo - 1. 
If A = Gal(K/k) is as above, with no assumption on IAI or the values of 

X E~, then we may decompose 

Then 

g(T) = n gx(T), 
x 

where gx(T) is the characteristic polynomial of Yo - 1 on Cx V. We shall 
discuss the significance of these polynomials when we treat the main conjec
ture. 

§13.5. The Maximal Abelian p-extension Un ramified 
Outside p 

Often it is more convenient to work with an extension larger than the p-class 
field and allow ramification above p. This is what we did in the proof of 
Theorem 10.13. In many respects, the theory is more natural in this context, 
especially from the point of view of Kummer theory. In this section we sketch 
the basic set-up, leaving the details to the reader. The proofs are very similar 
to those in Chapter 10. 

We start with a totally real field F. Let p be odd, let Ko = F((p), and let 
Koo/Ko be the cyclotomic Zp-extension. Let Moo be the maximal abelian 
p-extension of Koo which is unramified outside p, and let 

fl'oo = Gal(M",/Koo)' 

Then fl'oo is a A-module in the natural way (just as for X = Gal (Loo/Koo)). Let 
Mn be the maximal abelian p-extension of Kn which is unramified outside p. 
Clearly Mn :2 Koo. We have 

where Wn = y{ - 1 = (1 + T)P" - 1. The proof is essentially the same as for 
Lemma 13.15, namely computing commutator subgroups, but in the present 
case we do not have to consider inertia groups. From Corollary 13.6 we 
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know that 

Gal(Mn/Ko) ~ Z;2pn+1Hn x (finite group), 

where r2 = r2 (Ko) and bn is the defect in Leopoldt's Conjecture (see Theorem 
13.4). Therefore 

!!(xo/WnXoo ~ Z;2pnHn x (finite group). 

By Lemma 13.16, Xoo is a finitely generated A-module, so 

Xoo ~ NEB (A-torsion) 

for some a ~ O. 

Lemma 13.30. bn is bounded, independent of n. 

Proof. Suppose bn > 0 for some n. Let el, ... , er be a basis for El = E1(Kn ) 

modulo roots ~f unity. We may assume e6n+l~.:'" er are independent over Zp 
and generate El modulo torsion. Let pr = I(E1)lor.l. Then there exist aij E Zp 
such that 

Let m ~ t and let a;j E Z satisfy a;j == aij (mod pm). Let 

1J i = ei Il eiii 
j 

for 1 ::;; i ::;; bn • 

Th p' . m+r h . E- Il u en 1Ji IS apt power III I S; pip l.w 

If 1J E K: is a pth power in K';', then K n(1JI/P) S; KOC). Since Kn+1 is gener
ated over Kn by a root of unity, 1J must be a p-th power times a root of unity 
in Kn. 

Since LI' ... , e6 are independent in E 1, 1JI, ... , 1J6 generate a subgroup 
isomorphic to (Z/pmZ)6n in K: /(K: r, hence in K,;,/(k,;,)pm by the previous 
paragraph. Since (p E Ko by assumption, (pn E Koo for all n. Therefore 
K oo({1Jf'-m})/K oo has Galois group (Z/pm-rZ)6n. Since each 1Jf' is a pth power 
locally at the primes dividing p, these primes split completely, hence do not 
ramify. Therefore the Galois group X of the maximal abelian unramified 
p-extension of Koo has a quotient isomorphic to (Z/pm-rZ)6n. In the decompo
sition of X, the terms of the form A/(pk) cannot account for this for large m. 
The term of the form EBj A/(gj(T» can only yield (Z/pm-rz)A, where A. = 
L deg gj. Therefore c5n ::;; A. This completes the proof. 0 

If (p ¢ K o, the lemma is still true. Simply adjoin (p and use the easily 
proved fact that if K S; L then b(K) ::;; c5(L). 

The above result perhaps could have been conjectured from Theorem 7.10 
(although we already know c5n = 0 in that situation). Intuitively, the number 
bn should be approximately the number of occurrences of Lp(l, X) = 0 for K:. 
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Since each series I(T, 0) has only finitely many zeros, 

L p(1,Ot/l) = 1({",(1 + qo) - 1,0) # 0 

when t/I has large enough conductor. So the number of X with Lp(1, X) = 0 is 
bounded. 

By the lemma, 

Zp-rankg{oo/w"g{oo = r2P" + 0(1). 

By the structure theorem for g{oo' we see that the A-torsion contributes only 
bounded Zp-rank (at most A) and N'/w"N' yields ap". Therefore we have 
proved the following. 

Theorem 13.31. :roo '" N2 E9 (A-torsion). o 

One advantage of using :roo rather than X is that it is easier to describe 
how Moo is generated. Since all p-power roots of unity are in Koo, Moo/Koo is a 
Kummer extension. There is a subgroup 

V s K:' ®z Op/Zp 

V = {a ® p-" I various n ~ 0 and a E K:'} 

(it is not hard to see that all elements of K:' ® Op/Zp are of the form a ® p-") 
such that 

There is a Kummer pairing 

g{oo x V -+ Wp'" = p-power roots of unity, 

just as in Chapter 10. In particular, 

(ax, av) = (x, v)", a E Gal(Koo/F). 

Let 1m be the group of fractional ideals of Km and let 100 = U 1m. Since 
a ® p-" gives an extension unramified outside p, and since a E Km for some 
m, it follows that 

(a) = Br· B2 in some 1m, 

where Bl E I", and B2 is a product of primes above p. Since all primes above 
p are infinitely ramified in a cyclotomic Zp-extension, B2 is a p"th power in 
100• Hence we may assume 

We obtain a map 

(a) = Br. 

V -+ Aoo = lim A" 
-+ 

a ® p-n 1-+ class of B1 • 
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It is not hard to see that this map is well-defined, i.e., independent of m and 
the representation a ® p-n. It is also surjective, since A E Aoo = Apn = 1 for 
some n (see Exercise 9.1). As in Chapter 10, the kernel is contained in 

Eoo ®z lP. p/71. p, 

where Eoo = U E(Kn)· Since we are allowing ramification above p, 

Eoo ®z lP. p/71.p £:: V, 

so it follows that this gives the kernel (cf. Theorem 10.13, where the situation 
is essentially the same). We now have an exact sequence 

1 -+ Eoo ®z lP. p/71. p -+ V -+ Aoo -+ 1. 

Let ~ = Gal(Ko/F), which is a subgroup of (71./p71.) x = Gal(lP.((p)/lP.). For 
i E 71., w; is a character of ~ (i ==jmod I~I ¢>w; = w j on ~). Let 

1" . 
S; = fAT 67'.1 w-'(b)b. 

Everything decomposes via these idempotents. Wp"' is in the S1 component. If 
i is odd, then s;(Eoo ® lP. p/71. p) = 0, since [E : WE+] = 1 or 2 for each Kn and 
Wp"' ® lP. p/71. p = 0. We obtain 

i odd. 

Note that by Proposition 13.26, s;Aoo = U siAn. As in Chapter 10, 

Sj!I'oo x s; V -+ W p"' 

is nondegenerate, hence 

i + j == 1 mod I~I, i odd, 

is nondegenerate. Therefore 

Ej!I'oo ~ Homz)s;A oo, Wp"')' 

where Gal(Koo/F) acts via (uf)(a) = u(f(u- 1a)) (cf. Exercise to.8). 
This last equation is often written in another form. Let 

T = lim Wpn+. 
+-

where the invese limit is taken with respect to the pth power map (which is 
the same as the norm map from lP.((pn+l) to lP.((pn)). Then 

T ~ 71. p , as abelian groups, 

but the Galois group acts via 

u,,(t) = at for a E ~ x (1 + p71.p ) £:: 71.;, 

where we are writing T additively. Let 

T(-1) = Hom (T. 71. ) zp , p 
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with the Galois action on Hom as above. Then 

T<-l) ~ Zp, as abelian groups. 

If! E T<-l) and t E T then, since Ua acts trivially on Zp, 

(uaf)(t) = Ua(J(U;lt)) = !(a-1t) = a-1!(t), 

so 

It follows that 

T ®zp T<-l) ~ Zp, with trivial Galois action. 

Define the "twist" e/l"oo( -1) by 

ej~oo( - t) = e/(XJ ®zp T<-ll. 

This is the same as ej~OO as a Zp-module but the Galois action has been 
changed: 

Proposition 13.32. ej~oo( -1) ~ HomZp(eiAoo , Qp/Zp) as A-modules, where 
i + j == 1 mod IAI and i is odd. 

Proof. We shall show more generally that 

Homzp(B, Qp/Zp) ~ Homzp(B, Wp"') ®zp T<-l) 

for any A-module B. There is an isomorphism of abelian groups 
; 

Qp/Zp ..... Wp'" 

a ya 
/i ........ p •. 
p 

Choose a generator to for T<-l) as a Zp-module. If we ignore the Galois 
action, we obtain an isomorphism by mapping 

h ...... (t/lh) ® to, 

for h E Homzp(B, Qp/Zp). Let u = Ua E r. Then 

(uh)(b) = u(h(u-lb)) = h(u-1b), 

and 

Therefore 

u(t/lh ® to) = ut/lhu-1 ® uto 

= at/lhu- l ® a-lto 

= t/lhu-l ® to. 

uh ...... u(t/lh ® to) 
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under the above isomorphism, so the Galois actions are compatible. This 
completes the proof. 0 

The proposition says that the discrete group siAoo and the compact group 
s/loo( -1) are dual in the sense of Pontryagin. 

§13.6. The Main Conjecture 

For simplicity, we assume p # 2 in this section. Consider the Zp-extension 
Q«(p"')/Q«(p). In Theorem 1O.l6 we showed that if Vandiver's Conjecture 
holds for p then 

for i = 3, 5, ... , p - 2, where 

f«1 + p)' - I,W i - i ) = Lp(S,W i - i ). 

Factor f(T,w i - i) = p"'gi(T)Ui(T) with gi distinguished and Ui E AX. We 
know that J1.i = 0 by Theorem 7.l5. Therefore 

which is in the form of Theorem 13.12. So in this case the distinguished 
polynomial in the decomposition of SiX is essentially the p-adic L-function. 
This is conjectured to happen more generally. 

Let F be totally real and let Ko = F«(p), Koo = F«(p"'). Let 

A = Gal(Ko/F) ~ (z/pZ) X • 

Let X E ~ be odd (i.e., X(J) = -1). Then 

sx X ~ EB A/(pkf) ~ EB A/(g/(T» 
i j 

with finite co kernel. Let J1.l. = L kf and let 

gX(T) = p"x n g/(T). 
j 

It has been shown (see Barsky [4], Cassou-Nogues [4], Deligne-Ribet [1]) 
that there exists a p-adic L-function Lp(s, WX- i ) for the even character WX- i • 

If F = Q, this is the usual p-adic L-function. For larger F, the existence is 
more difficult to establish. Let Yo be the generator of Gal(Koo/Ko) corre
sponding to 1 + T. Define "0 E 1 + pZp by Yo(pn = (;11 for all n ~ 1. It has 
been shown that there is a power series flo E A such that 

Lp(s, WX- i ) = fl.("~ - 1), X # w. 

The Main Conjecture (First Form). fl.(T) = gl.(T)Ul.(T) with Ux(T) E A x. 
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We may also state a slightly different form. For simplicity, assume F = 0, 
though any totally real field F could be used. Let 'X. :f:. w be an odd Dirichlet 
character of the first kind (see Chapter 7), let Kx be the associated field 
(see Chapter 3), and let Ko = Kx('p), Koo = Kx('r). Let (!J :2 Zp contain the 
values of 'X. and let fx E (!J[[T]] satisfy 

fx(Ko - 1) = Lp(s, w'X.-1), 

as in Theorem 7.10. Then 

fx(T) = pllxh(T)Ux(T) 

with Ux E l!/[[T]] x, h distinguished, and Jl.x ~ 0 (in the present case, Jl.x = 0 
by Theorem 7.15). 

Consider the Cp-vector space 

V = X®zpCp 

as at the end of Section 13.4, and let gx(T) be the characteristic polynomial 
for Yo - 1 acting on li = ex V. 

The Main Conjecture (Second Form). h(T) = giT). 

The advantage of this form is that we may consider a larger class of 
characters 'X.. The disadvantage is that we are no longer requiring the Jl. 
obtained from exX (when this module is defined) to equal the Jl.x obtained 
from fx. For abelian extensions of 0 this makes no difference since both 
are O. 

The motivation for the main conjecture comes from the theory of curves 
over finite fields (or, function fields over finite fields). Let C be a curve 
(complete, nonsingular) of genus g over a field k of characteristic I :f:. p and 
let J be its Jacobian variety (if we were working over C, J would be C9 
modulo a lattice). Let Jp be the points on J of p-power order defined over the 
alegbraic closure k of k. This is essentially the analogue of Aoo = lim An (or 
of A;;; = U A;) for cyclotomic Zp-extensions. Then ~ 

Jp ~ (Op/Zp)29, as abelian groups. 

Therefore (compare Corollary 13.29) 

Homzp(Jp, Op/Zp) ~ Z~9 

and 

Homzp(Jp, Op/Zp) ® Op ~ O~9. 

The Frobenius automorphism of k over k acts on this last space, and a 
classical theorem of Weil states that the characteristic polynomial is the 
numerator of the zeta function of C (see Weil [5]). Therefore, the Main 
Conjecture is an attempt to extend the analogy between number fields and 
function fields to this important situation. 
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The Main Conjecture (first form) has been proved by Mazur and Wiles for 
F = 0, Ko = O({p). In fact, they proved a slightly stronger statement, which 
we now briefly describe. 

Let R be a commutative ring and let M be a finitely generated R-module. 
For some r E Z and B £: R r , there is an exact sequence 

0-+ B1. Rr ~ M -+ o. 
Consider the r x r matrices of the form 

where (b l , • •• ,br ) runs through all r-tuples of elements of B. The Fitting ideal 
FR(M) (see Fitting [1], Mazur-Wiles [1] or Northcott [1]) is defined to be 
the ideal in R generated by the elements det(cD) for all such cD. It may be 
shown that FR(M) is independent of the choices of rand "', hence depends 
only on M. It is not hard to show that if 

Ann(M) = {a E RlaM = o} 

then 

(Ann(M)Y £: FR(M) £: Ann(M). 

EXAMPLES. (1) R = Z, M = a finite abelian group. Then FR(M) = IMI Z. 
(2) M = R/I, where 1 is an ideal of R. Then FR(M) = I. 
(3) R = A and M satisfies 

0-+ M -+ Ee A/(gJ(T» -+ (finite) -+ o. 
J 

Then it can be shown that 

FA(M) = (ngj)A. 

(4) If M -+ N is a surjective map of R-modules then FR(M) £: FR(N). 
(5) If 1 is an ideal of R then 

FR/,(M/IM) = FR(M) mod I. 

(6) If R = Zp[G] with G ~ Z/p"Z, then 

FR(M) = FR(Homzp(M,Op/Zp», 

where Hom is an R-module via 

(uf)(m) = u(f(u-Im» = f(u-Im) for u E G. 

Let i =1= 1 mod p - 1 be odd. Then there exists f(AT) E A such that 

f(".«(1 + p)' - 1) = Lp( -S,£OI-I). 
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Let Si be the idempotent and recall that 

Define 

X~ = Homzp(siAoo,Op/7Lp)' 

It can be shown that if SiX ~ EBA/(Yj(T» then X~ ~ EBA/(giT», where 

gj(T) = Yj«1 + T)-l - 1) 

(i.e., Yo is replaced by yo-l). See Iwasawa [25, p. 250], where a slightly different 
Galois action is used, and Section 15.5. 

Theorem (Mazur-Wiles). Let i =1= 1 mod p - 1 be odd. Then 

(i) FAX~) = (frAT», 
(ii) FA/(Pn(T»(SiAn) = FA/(Pn(T»(X~/Pn(T)X~» = (f",.(T) mod Pn(T», 

where Pn(T) = (1 + T)pn - 1. 

By Example 3, part (i) yields the main conjecture. Note that 
(f",,(T) mod Pn(T» is essentially part of the Stickelberger ideal (see Chapters 
6 and 7; the difference is that Yo is replaced by yol). So this result identifies the 
Stickel berger ideal. If we assume Vandiver's conjecture, then we are in the 
situation of Example 2 above. But there are often many noncyclic modules 
which give the same Fitting ideal as a cyclic module gives, as shown by 
Example 1. So the theorem does not imply Vandiver's conjecture or the 
cyclicity of the class group as a module over the group ring. 

We shall give a proof of the main conjecture for O(Cp ) in Chapter 15. 
The original proof of Mazur-Wiles uses delicate techniques from algebraic 
geometry and the theory of modular curves to construct unramified exten
sions of O(Cpn+l) for each n. This makes X~ big enough that FA(X~) S; 

(f",.(T» for each i. If 

with finite cokernel, then 

FA(X~» = (ngj(T»~ (g",.(T». 

Hence 

Therefore degwf",. ~ degwg",., where degw denotes the Weierstrass degree, 
which is the degree of the distinguished polynomial in the Weierstrass de
composition. But A,- = Lidegwf",. by Theorem 7.14. Also 

A,- = L degwg",., 
i 
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as in the proof of Theorem 13.13. Therefore 

so 

fw' = Ulw i )(unit). 

This yields (i). Of course, the main part of the proof is the construction of 
sufficiently many unramified extensions. The techniques are an extension of 
those used to prove Ribet's converse to Herbrand's theorem (Theorem 6.18). 
For further details we must refer the reader to the paper of Mazur-Wiles [1] 
or to Coates' Bourbaki talk [8]. 

One application is the following result (compare Proposition 6.16): 

leiAOI = p-part of B1,w-1 (i =1= 1 modp - 1, i odd). 

This follows from (ii). Since A/(Po(T)) = z.p, the Fitting ideal gives the order, 
as in Example 1. But 

fw,(T) = fw'(O) = Lp(O, Wi-i) = - Bl,w-' mod Po(T), 

which yields the result. For another proof, see Exercise 13.12. 

§13.7. Logarithmic Derivatives 

This section provides the machinery needed for the next section. We first give 
a classical homomorphism, due to Kummer, and then present its generaliza
tion, due to Coates and Wiles. 

Let p b~ odd and let VI be the local units of il)p(Cp) which are congruent to 
1 mod(Cp - I). If U E VI (or V), we may write 

Let 

U = f(C p - I), with f(T) E A x. 

d 
D = (I + T)

dT 

as in Chapter 12, and define 

~k(U) = Dk-I(I + T)jIT=O modp, for 1 ~ k ~ p - 2. 

If g E A x is another such power series, then (fIg) - 1 E A and has Cp - 1 as a 
zero. Write 

£ - 1 = pI' P(T)A(T) 
9 
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with peT) distinguished and A E A x • Then P(Cp - 1) = 0, so 

1 
h(T) = T«(1 + Tf - 1) 

divides peT). Therefore 

J(T) = g(T)(1 + h(T)B(T» 

for some B E A. We obtain 

l' g' h'B + hB' 
-=-+ . J 9 (1 + hB) 

Since h == TP-l modpA, 

l' ' J == ~ mod(p-2,p). 

It follows that th(u) is well-defined for 1 ;:5; k ;:5; p - 2, so we obtain a homo
morphism 

~: V --+ lLjplL. 

These maps were first defined by Kummer. However, he worked with poly
nomials, let T = eZ - 1, and considered J(e Z - 1). Then D = (1 + T)(djdT) 
corresponds to djdz, so 

~(u) = (:zY'IOgJ(eZ - 1)lz=omodp. 

For an application due to Kummer, see Exercise 13.9. 

Lemma 13.33. Let u E VI and let 1 ;:5; n ;:5; p - 2. Then th(u) = 0 Jor 1 ;:5; k ;:5; 

n-u == 1 mod(C, - 1)"+1. 

Proof. If u == 1 mod(C, - 1)"+1 we may take J(T) = 1 + T"+lg(T) with 9 E A. 
Since 1'(T) E T"A, ~(u) = 0 for all k ;:5; n. 

Conversely, suppose ~(u) = 0 for all k ;:5; n. Let u = J(Cp - 1). Write 

(1 + T)j == ao + a l (l + T) + ... + a,,_l(1 - T),,-l mod T"A. 

Then tPl (u) == ao + a l + ... + a,,-l and 

th(u) == al + 2k-la2 + ... + (n - l)k-l a,,_h 

for 2 ~ k ;:5; n. The determinant 

det(jk-l ), o ~ j ~ n - 1, 1;:5; k ~ n, 

with 00 = 1, is a Vandermonde determinant and is nonzero modp. Therefore 
a i == 0 for 0 ~ i ~ n - 1. It follows that 1'(T) E (T",p). Since J E A (so Pjp 
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does not occur), integration yields f(T) == a mod(T"+1, p) with a E 7Lp' Since 
a == U == 1 mod(,p - 1), we have a == 1 modp. Therefore 

U = f('p - 1) == amod(,p - 1r+1 

== 1 mod(,p - 1r+1. 

This completes the proof. 

Lemma 13.34. Let (Ta E Gal(Q('p)/Q). Then 

"'(O'au) = ak",(u). 

Proof. Let u = f('p - 1). Define 

g(T) = f«1 + T)a - 1). 

Then (TaU = g('p - 1), and 

(1 + T)~ = a(1 + Trj«1 + Tr - 1). 

By induction, 

The lemma follows easily. 

o 

o 

Lemma 13.35. Let &j, ° ~ i ~ P - 2, be the idempotents of 7Lp[Gal(Q('p)/Q]. 
Ifu E VI then 

{o ifk~i 
"'(&IU) = '" () if k - . '1'1 U, l - l. 

Proof. By Lemma 13.34, 

_ 1 p-1 _j t _ {Omod P, ifk ~ i, 
"'(£ju) - P _ 1 a~l co (a)a ",(u) = ",(u) mod p, if k = i. o 

Lemma 13.36. If i ¢ 1 modp - 1 then &jV1 is cyclic as a 7L p-module. For i = 1, 
£1 VI ~ <'p) x (cyclic 7Lp-module). If 2 ~ i ~ p - 2 and u E £1 VI then u gener
ates &1 VI _;/(U) ~ 0. 

Proof. First, let i ~ 1 be arbitrary. Since ('= - 1)/Kp - 1) == a mod(,p - 1), 

1 p-1 . 
== 1 - -- L co-/(a)al(,p - 1)' 

p - 1 a=l 

== 1 - ('p - 1)/ modKp - 1)1+1. 
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From the p-adic expansions, we easily see that '11' ..• , '11' generate 
VI mod«(p - 1)P+l, which is easily seen to be VdVr. By Nakayama's Lemma 
(see Lemma 13.16), they generate VI over lL,. Since '1i E 8iUl for each i, '1i 
must generate 8 j UI for i =F 1, p, and '11 = (I' and '11' together generate 81 U1 • 

Now suppose 2 ~ i ~ P - 2 and let u E 8iVI. Then u = '1t for some bElLI" 
and u is a generator <=>(p, b) = 1. By Lemmas 13.33 and 13.35, (P;('1i) =F O. 
Therefore 

~i(U) = b~i('1i) =F o<=> (p,b) = l<=>u is a generator. 

This completes the proof. o 
Corollary 13.37. Let 2 ~ i ~ P - 2. There exists A. = A.i =F 1 with A.P-l = 1 such 
that 

'i = 8i(W~A.-!;») 
generates 8iUl. (We divide by w(A. - 1) to get an element of Vd. 

Proof. By Lemma 13.36, it suffices to find A. such that ~j('i) =F 0, and by 
Lemma 13.35, we can work with (A. - (p)/w(A. - 1). Let 

Then 

and 

A.-I-T 
f(T) = w(A. - 1) . 

f' A. 
(1 + T) f = 1 + 1 + T-A. 

= - C : T) - ... - C : TY-l + 1 + ~ _ A. C : Ty. 

It follows that 

== -:~ ji-l C : Ty + C : Ty D i- 1 C + ~ _ A.)modPA. 

For 2 ~ i ~ P - 2, we obtain, since A.,-1 = 1, 
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where 

P(X) = Xp-2 + 2i - 1 XP-3 + ... + (p _ l)i-l. 

Since P(X) has degree p - 2, and since 
p-1 

P(l) == L W(j)i-1 == O(modp) 
j=l 
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(in fact, 1 is a multiple root), at least one A. :F 1 satisfies P(A.) =1= 0 mod p. 
Then tPi«A. - (p)/w(A. - 1» :F 0, so ~i generates BiU1 • This completes the 
~~ 0 

We now consider the generalization to higher levels. Let UIn) be the local 
units of iQi(pn+.) which are congruent to 1 mod«(pn+1 - 1). The norm Nn,n-1 
from iQp«(pn+.) to iQp«(pn) maps UIn) into UIn - 1), so we define 

U = lim UIn). 
+-

Then U is a A-module in the usual way and is also a Zp[Gal(iQp«(p)/iQp)]
module. In the following we assume (;n+1 = (pn. 

Theorem 13.38. Let u = (un) E U. Then there exists a unique!u E A such that 

fu«(pn+1 - 1) = Un for all n ~ O. 

The map 

U -+Ax 

Ul-+ fu 

gives a bicontinuous isomorphism between U and the subgroup of f E A x 

satisfying 

f(O) == 1 modp 

f«1 + T)P - 1) = n f«((1 + T) - 1). 
~P=l 

Proof. Corollary 7.4 implies the uniqueness of fu. 
For simplicity, let Vn = (pn+1 - 1. Assume for the moment that fu exists. 

Since 

fu(O) == fu«(p - 1) = Uo == 1 mod«(p - 1) 

and since fu(O) E Zp' we have fiO) == 1 mod p. Observe that the conjugates of 
(pn+1 under Gal(iQ«(pn+.)/iQ«(pn» are g(pn+d(P = I}. Therefore 

n fu«((1 + vn) - 1) = Nn,n-divn) = un- 1· 
~P=l 

Also 
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Therefore, again by Corollary 7.4, we obtain (*). Observe that if f satisfies (*) 
then 

N".,,_d(v,,) = f(v,,-d, 

so 

(f(v,,» E lim Uf"). 
+-

We therefore have a homomorphism 

A = {f E A x satisfying (*)} ~ U. 

Clearly A is closed in A x , hence compact. The topology on U is induced from 
the product topology on n" Uf"), so U is compact. Any neighborhood of 1 in 
U contains a neighborhood of the form 

VN.I: = {(u")lu,, == 1 (mod pk), n ~ N}. 

If 

f == 1 mod(p, T)k;{P"+') 

then 

f(v,,) == 1 mod(p, v"t;{p"+I) 

== 1 mod pI: for n ~ N. 

So the map 9 is continuous at 1, hence everywhere, since it is a homo
morphism. Now assume the existence part of the theorem, so 9 is bijective. 
Any closed set of A is compact, hence its image under 9 is compact, hence 
closed. So 9 sends closed sets to closed sets. Therefore g-1 is continuous, so 9 
is bicontinuous (this argument shows that any continuous bijection between 
compact Hausdorff spaces is bicontinuous). 

It remains to prove the existence. We need several lemmas. 

Lemma 13.39. There exists a unique map N: A ...... A such that 

(Nf)«1 + T)" - 1) = n f«((1 + T) - 1). 
,P=1 

Proof. Let geT) be the power series on the right, defined by the product. 
Observe that for (P = 1, 

g«((1 + T) - 1) = geT). 

Suppose we have ao, ... , a,,-1 E 7Lp and g,,(T) E A such that 

,,-1 

geT) = L a/«1 + T)" - 1)/ + «1 + T)" - l)"g,,(T). 
/=0 

For n = 0 this is trivial, which gets the induction started. Since 

g,,«((1 + T) - 1) = g,,(T) 



§13.7. Logarithmic Derivatives 307 

(everything else satisfies this, hence so does gn), 

gn(C - 1) = gn(O), for CP = 1. 

Using the Weierstrass Preparation Theorem, we see that T and the minimal 
polynomial of C - 1 both divide g.(T) - gn(O), so 

gn(T) - gn(O) = «1 + T)P - l)gn+l(T) 

for some gn+l E A. Letting an = gn(O), we obtain the above for n + 1. Con
tinuing, we get 

ao 

g(T) - L ai«1 + T)P - l)i E n (p, Tt = o. 
i=O n2:0 

Therefore we may let 

ao 

(Nf)(T) = L ai Ti. 
1=0 

Uniqueness follows from Corollary 7.4. This proves Lemma 13.39. 0 

Of course, the condition (*) of the theorem says that f(O) = 1 and Nf = f, 
for f corresponding to an element of U. 

Lemma 13.40. Let f E A. Then 

(Nf)(vn- 1 ) = Nn•n- 1 (f(vn»· 
Proof. (Nf)(vn- 1 ) = (Nf)«l + vn)P - 1) 

= nf(C(1 + vn) - I) = Nn,n-l(f(Vn», 
as in a previous calculation. o 

Lemma 13.41. Let fEA and assume f«1 + T)P-l)= 1 mod ptA. Then 
f(T) = 1 mod pt A. 

Proof. We may assume f =F 1. Let 

ao 

f(T) = 1 + pI' L ai Ti 
1=0 

for some Il ~ 0, with Il maximal. Let an be the first coefficient such that p k an' 
Then 

ao 

L ai«1 + T)P - l)i = anpn + L alpi =1= OmodpA. 
1=0 I>n 

Since 
ao 

pI' L ai«1 + T)P - l)i = o mod ptA, 
1=0 

we must have Il ~ k. This completes the proof. o 
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Corollary 13.42. N: A x -+ A x is continuous. 

Proof. Since N is a homomorphism it suffices to check continuity at 1. 
Lemma 13.41 and the definition of N yield the result. 0 

Lemma 13.43. Suppose f E A x. Then 

Nkf 
y== ImodpA 

for all k ~ o. 
Proof. Since 

it suffices to consider k = 1. We have 

(Nf)(1 + T)P - 1) = TIf(,(1 + T) - 1) == f(T)P == 1 d(, _ 1) 
f«l + T)P - 1) f«1 + T)P - 1) f(TP) mo P , 

therefore mod p. The result now follows from Lemma 13.41. 

Lemma 13.44. Let k ~ 1. Then 

f == 1 modpkA => Nf == 1 modpk+l A. 

Proof. Write f(T) = 1 + p"!l(T). Then 

f(,(1 + T) - 1) == 1 + pk!l(T)mod(,p - l)p". 

Therefore 

(Nf)(1 + T)P - 1) == (1 + pkfl (T»P == 1 mod(,p - l)pk, 

hence mod pHl. Lemma 13.41 completes the proof. 

Corollary 13.45. Let m ~ k ~ 0 and let f E A X. Then 

N"'f == N,,!modpHl. 

o 

o 

Proof. Lemma 13.43 implies Nm-k!l! == 1 mod pA. Lemma 13.44 yields the 
result. 0 

Corollary 13.46. Let! E A x. Then N<rJ! = lim Nk! exists. 

Proof. Corollary 13.45, plus the completeness of A. o 
We can now prove Theorem 13.38. Let u = (u,,) E U. For each n, choose 

!,,(T) E A such that 
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Let 

By Lemma 13.40 

(N"/,,)(vn-,,) = Nn,n-"/"(vn) = un-", 

for 0 ~ k ~ n. Therefore 

(Nm-ngm)(vn) = (N 2m- nf2m)(Vn) = Un' 

for all m ~ n. By Corollary 13.45, 

Letting T = Vn, we obtain 

Un = gm(vn)modpm+l, 
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for all m ~ n. Since A x is compact, the sequence gm has a cluster point h E A, 
and 

gm, -+ h as mi -+ 00 through a subsequence. 

Since n N~O (p, vnt = 0 in Cp , it follows that 

gm,(vn ) -+ h(vn ) 

for each n. Therefore Un = h(vn ) for all n. This completes the proof of Theorem 
13.38. 0 

The above proof of the existence is an adaptation of Coleman's proof for 
formal groups. I would like to thank John Coates for supplying the details. 

We can now define the generalization of the Kummer homomorphism. 
Let U E U and let f., be the associated power series. Recall that 

d 
D = (1 + T)dT' 

For k ~ 1 define the Coates-Wiles homomorphism h,,: U -+ 7L.p by 

h,,(u) = D"-l(1 + T)f:(T) I . 
fu(T) T=O 

Since f., = 1 mod(p, T), 10gf.,(T) E Qp[[T]] is defined, so h,,(u) also equals 
D"logf.,(T)IT=o' Ifu = (UO,u1 ,00.) E U then 

tP,,(uo) = h,,(u) mod p, 2 ~ k ~ p - 2. 

Lemma 13.47. h,,(u) is a continuous function of u (it is "almost" continuous in 
k; see Proposition 13.51). 

Proof. This follows immediately from the continuity of u 1-+ fu. o 
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Identify Z; ~ Ga1(O(C".,)/O), a 1-+ 0'". An easy calculation yields the fol
lowing. 

Lemma 13.48. Let U E U be associated to fu, and let 

x = L b"O'" E Z"[Gal(O(C,,.,)/O)]. 

Then 

fux(T) = n fu«1 + Tf - l)b". 

It is trivial to check that everything above is defined; for example, 

(1 + T)" = L (:) Tn E A. 

Lemma 13.49. Let a E Z; and 0'" E Gal(O(C".,)/O). Then, for k ;;::: 1, 

<5,.(O'"u) = a "<5,. (u). 

Proof. See the proof of Lemma 13.34. 

Lemma 13.50. If U E U then 

{o if k ¢ i mod p - 1 
<5,,(6jU) = ~(U), if k == i mod p - 1. 

Proof. See the proof of Lemma 13.35. Note that 

o 

o 

is the idempotent since Gal(O(C,,)/O) corresponds to {w(a)} in Z; . 0 

Let 2 ~ i ~ P - 2 and let A = Aj be as in Corollary 13.37. Let 

):(n) = . (A - (,,"+1) 
'" 6, w(A. _ 1) . 

Then 

( ):(n) _ n (A. - ""..+1) 
Nn,n-l .. j - 61 '''=1 ro(A. - 1) 

= (A.P - Cp" ) = ):(n-1) 
6j W(A. - 1)P "" , 

so 
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Let Yo be a topological generator of Gal(Q((p"')/Q((p)), and define Ko E 

1 + plLp by (;~ = (;~ for all n ~ 1. The following result will be crucial in the 
next section. 

Proposition 13.51. Let 2 ::s;; i ::s;; p - 1. There exists hi(T) E A x such that 

(1 - pk-l )bk(er) = hi(K~ - 1) for k == i mod p - 1. 

Proof. By Lemma 13.50 we may compute 

b (A. - (pn+') 
k w(A. - 1) . 

Let 

d (A. - (1 + T)) 
f(T) = (1 + T) dT log w(A. _ 1) 

A. 
= 1 + -:-:----=:---~ 

(1 + T) - A. 

Since A. p = A., 

A. =~L A. 
(1 + T)P - A. p <P=l ((1 + T) - A. 

(see the example at the end of Section 12.2). Let U be as in Proposition 12.8. 
Then 

Uf(T) = f(T) - ~ L f(((1 + T) - 1) 
p <P=l 

A. A. 
1 + T - A. (1 + T)P - A.. 

We obtain 

(Dk- 1 Uf)(O) = (1 - pk-l )(Dk-1f)(0) = (1 - pk-l )bk(ei). 

By Corollary 12.9, 

(Dk - 1 Uf)(O) = iii(K~-l - 1), for k == i mod p - 1, 

for some iii E A. Letting 

hi(T) = iii(Ko l(1 + T) - 1) E A, 

we have 

It remains to show that hi E A X. Let k = i, so 2 ::s;; k ::s;; p - 2. Then 
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by the proof of Corollary 13.37. Since 1 - pj-l E Z;, hj(Kb - 1) is a unit. 
Since hj(Kb-l)==h j(O)modp, hj(O)EZ;. Therefore hjEAx. This proves 
Proposition 13.51. 0 

Lemma 13.52. Let h(T) E A and U E V. Then 

<5k (h(T)u) = h(K~ - 1)<5k (u). 

Proof. Since both sides are continuous in h, we may assume h is a polynomial; 
by linearity, we may assume h(T) = (1 + Tt Then h(T)u = YoU. By Lemma 
13.49, 

<5k(yoU) = KOkbk(u) = h(K~ - 1)bk(u). 

This completes the proof. o 

§13.8. Local Units Modulo Cyclotomic Units 

In this section we prove a beautiful theorem, due to Iwasawa, that relates the 
p-adic L-functions to the Galois structure of the local units modulo the 
closure of the cyclotomic units. We continue to assume p ~ 3. 

Let Nm•n be the norm from (Jlp('pm+l) to (Jlp('pn+1) and let Nn be the norm 
from Qp('pn+l) to Qp • Recall that Vln) denotes the local units of Qp('pn+1) 
which are congruent to 1 mod('pn+1 - 1). Let 

V~ = {u E Vln)INnu = I}. 

Lemma 13.53. Let Un E Vin). Then 

Un E V~ ~ for all m ~ n, there exists um E Vim) with Nm.n(um) = Un' 

Proof. For simplicity, let Km = Qp('pm+l). An element a E 1 + pZp yields 
aa E Gal(Km/Qp), and 

aa = 1 ~a == 1 modpm+1. 

For Un E vin), there is a corresponding element 

aIm) = a(un, Km/Kn) E Gal(Km/Kn) S; Gal(Km/Q p), 

and, by a property of the Artin symbol, 

a(un, Km/Kn) = a(Nnun, Km/Qp) = aNn"n' 

We also have 

aIm) = 1 ~un E Nm.n(K~)~un E Nm.n(Vim») 

(see the appendix on class field theory). The last equivalence follows since 
the norm of a nonunit is a nonunit, and the norm of a (p - l)st root of 1 is 
itself, hence not congruent to 1 mod('pn+l - 1). Therefore, putting everything 
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together, we obtain 

Nnun = 1 ¢> Nnun == 1 mod pm+l for all m ;::: n 

¢>u(m) = 1 for all m;::: n 

¢> U E Nm.n(Ufm» for all m ;::: n. 

This completes the proof. 
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D 

Note that "<=" also follows from setting T = 0, then dividing by 1(0), in (*) 
of Theorem 13.38. Also, for i -# 0, 

Theorem 13.54. Let 2 :5; i :5; p - 2 and let ~'f' be as above. Then 

A~BjU 

and 

A/«l + Tyn - 1) ~ BjUfn) 

gr-+g~!n). 

Proof. We start with the second assertion. As above, let Kn = Qp«(pn+.). By 
Corollary 13.37, ~j = ~!O) generates BjUb = BjUjO) over lLp = A/(T). Now let 
n ;::: 0. Let Un E Bj Ujn). Then 

Nn.O(un) E UIO) = A~!O) = A(Nn.o(~!n») = Nn.o(A~!n». 
Therefore 

Nn.o C~ln») = 1 

for some 9 E A. By Hilbert's Theorem 90, 

~ Un _ /p0-l 
ex - g~!n) -

for some f3 E K:. We want f3 E Bj Uln). As abelian groups 

K: = n l x {A P- 1 = I} x Uln), 

where n = (pn+. - 1. Therefore, for N ;::: 0, 

K: /(K:)pH = nl/pHl x Ufn)/(Uln»pH. 

We may let Bj act on this last space (it could not act on K:). Since i -# 0, 
Bj(n)mod(KnxyH is represented by a unit; since Bf = Bj, it is represented by an 



314 13. Iwasawa's Theory of Zp-extensions 

element of Bjuf"). Therefore 

Bj(K; /(K;)rI') = Bj(Uf")/(Uf"»pN). 

Consequently, for some VN E Uf"), 

oc = BjOC == BjpY°-l == Bjvlr l mod(K;)rI'. 

Since oc and VN are units, this yields a congruence mod(Uf"»rI'. Since Uf") is 
compact, the sequence BjVN has a cluster point v E Bj Uf"), and 

oc = V70 - l E (Yo - I)BjUf") = TejUf"). 

Therefore 

U" == gel") mod Te;uf"). 
By Nakayama's Lemma (13.16), el") generates Bj Ul") over A, since U" was 
arbitrary. Since (1 + T)"" = yG" fixes el"), 

A/«1 + T)"" - 1) -+ Bjuf") 

is surjective. 
Uf") contains a subgroup of finite index which is mapped isomorphically 

via the logarithm to 1tNilp[(pn+l] for some N (see Proposition 5.7). By the 
normal basis theorem, there is an element of K", which we may assume to be 
in nNilp[(pn+.], whose Gal(K,,/Qp)-conjugates are linearly independent over 
Qp. Therefore nNilp[(pn+.] contains a submodule of finite index isomorphic 
to the group ring. Consequently 

ilp-rank Bj UI") = ilp-rank Bj 1tNilp[(p".'] 

= ilp-rank Bjilp[Gal(K,,/Qp)] = ilp-rank ilp[Gal(K,,/Ko)] 

= p". 

By the division algorithm, 

A/«1 + T)"" - 1) ~ il:n 

as ilp-modules. Therefore the above surjection must have trivial kernel so 

A/«1 + T)P" - 1) ~ Bj UI"). 

Now let u = (u,,) E B;U = lim Bj UI"). Then 
+-

U" = 1,,(T)el") 

for some I" E A, uniquely determined mod(1 + T)"" - 1. Since A is commu
tative, 

1,,-1 (T)el,,-l) = U,,-1 = N",,,-1 (ull ) = f..(T)NII,II-l (el"» = f..(T)el"-l)· 

Consequently, 

f.._1(T) == f..(T)mod(1 + T)P"-' - 1, 
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so (J..(T» determines an element J(T) E A = lim A/«1 + T)"n - 1), and 
+-

Un = J(T)eln) 

for all n. If U = 1 then J(T) == Omod(1 + T)"" - 1 for all n, hence J = O. 
Therefore 

A-+llj V 

is an isomorphism. This completes the proof of Theorem 13.54. D 

Remark. Usually this theorem is proved by using local class field theory, plus 
the structure theorem for A-modules, to show that Ilj V ~ A. It is then not 
hard to use Corollary 13.37 to show that err is a generator (see Lang [4]). In 
some ways, this gives a "better" proof, since it applies to extensions of the 
theory where Il j V is not quite cyclic over A. 

We now consider cyclotomic units. Let c(n) denote the cyclotomic units of 
O({"..+.), c~n) = c(n) n Vfn), and C1n) = closure in Vfn). (See Exercise 13.8 for a 
description of C1n». Then C1n) is a Zp[Gal(Op({"..+')/Op)] module. If Il E c(n) 

then IIp-t E C1n) and 

(Il p - t )t/(P-t) E C1n) 

since l/(p - 1) E Zp- Note that (llP-t)t/(P-t) = 1l<::>1l E C1n). In general, we get 
the analogue of (Il), where Il = w(Il)(Il). 

Fix a primitive root g mod p2. Then g is a primitive root mod pn for all 
n ~ 1. By Lemma 8.1 and Proposition 8.11, 

{:"+. - 1 
{"..+. _ 1 and -("..+. 

generate c(n) as a Zp[Gal(Op({pn+l)/Op)] module. But they are not in C1"). 

Let 

= (1'(1-11)/2 {:"+. - I)P-t "n .. "..+f I' 1 . 
-'p"+1 -

Then "n and {pn+. generate (c(n»)"-t. It follows that they generate c~n) as a 
Zp[Gal(Op({pn+l~)] module. 

Let Ct = lim c~n), with respect to the norm map. Then Ct is a A-module 
and a Gal(Op({p)/Qp)-module. Decompose C t according to the idempotents: 

p-2 

Ct = EB Ilj Ct · 
j=O 

Then each Ilj Ct is a A-module. It is easy to see that 

" i Ct = 0, i odd, i =F 1, 

" t Ct = lim ({"..+.); 
+-
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this last module is isomorphic to Zp but has a different Galois action (it is the 
T of Section 13.5). Henceforth we restrict to even i. Let 

u = (un) E BiCI' 

Then 

Un = J.(T)BiYfn 

for some fn(T) E A. An easy calculation shows that 

Nn•n - I (BiYfn) = BiYfn-I' 

Therefore 

and 

Consider the set 

Sn = {f(T)luk = f(T)BiYfk for all k ~ n}. 

Then Sn is closed in A and nonempty since fn E Sn. Clearly 

So;2 SI ;2 .... 

Since A is compact, n Sn #- 0 (nested set property from topology). Let 
fE nSn. Then 

Un = f(T)BiYfn 

for all n, so we obtain the following. 

Lemma 13.55. Let i be even. Then BiCI = ABiYf. (This actually holds for all 
i#-I~ 0 

We are now ready to prove the main result of this section. 

Theorem 13.56. Let i =1= 0 mod p - 1 be even. Then 

BiU/BiCI ~ A/(/;(T)), 

where 

/;(K~ - 1) = Lp(1 - s,w i ). 

(Ko is defined by Yo(P" = (;~ for all n ~ I). 

Proof. From Theorem 13.54, 

BiYf = gi(T)~i 

for some gi E A, hence by Theorem 13.54 and Lemma 13.55 

BiCI = gi(T)Bi U. 
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It remains to evaluate gi(T). To do this, we use the Coates-Wiles homo
morphism «5k with k == i mod p - 1. By Lemma 13.52, 

«5k (6 i ,,) = gi(IC~ - 1)<5k(ei'). 

By Proposition 13.51, we know that 

(1 - pk-l )«5k(ei) = hi(ICt - 1) 

with hi E A x • By Lemma 13.50, «51(6,,,) = «51 (,,), so 

gi("~ - 1) = (1 - pk-l )hi("~ - Itl <5k (,,). 

To identify g" it suffices to evaluate <5k (,,). Let 

f(T) = ((1 + T)(l-9)/2(1 + T)9-1)P-l. 
(1 + T) - 1 

Then f(T) = f,,(T) in the notation of Theorem 13.38. We have 

1 f' _ (1 - 9 g(1 + T)9 1 - T ) 
( + T) f (T) - (p - 1) -2- + (1 + T)9 - 1 - (1 + T) - 1 . 

Let T = eZ - 1. Then D = (1 + T)(d/dT) = d/dZ. We have 

ge9Z eZ 1 (9Z Z) 
e9Z _ 1 - eZ - 1 = Z e9Z - 1 - eZ _ 1 + 9 - 1 

co B zn-l 

=g-1 + L (gn_l)2( 1)'. 
n=l n n - . 

Therefore 

«5k(,,) = Dk- l ((1 + T)j)(O) = (p - l)(gk - 1)~k 

= -(p - l)(gk - 1)(1 - pk-lt l Lp(1 - k,w i), 

since k == i mod p - 1. Returning to the above, we obtain 

gi("~ - 1) = -(p - l)(gk - l)hi(IC~ - Itl Lp(1 - k,w i ). 

Let 

and let 

V(T) = -w(g)i(1 + T)fJ + 1. 

Then 

V(,,~ - 1» = _(gk - 1) for k == imodp - 1, 
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and V(O) = 1 - W(g)i =1= 0 mod p, so V E A x. Let 

J;(T) = gi(T)hi(T)V(T(l(p - 1)-1. 

Then J; and gi generate the same ideal in A and 

Since both sides are analytic in k, we may replace k by S E lLp- This completes 
the proof. 0 

NOTES 

The basic references for this chapter are Iwasawa [25], Coates [7], and Serre 
[1]. The other papers by Iwasawa and those by R. Greenberg should also be 
consulted. 

For arbitrary (non-cyclotomic) lLp-extensions, see Bloom [1], Bloom
Gerth [1], Cuoco [1], Cuoco-Monsky [1], Monsky [1-5], R. Greenberg 
[1], and Babaicev [2]. 

For relations with K-theory, see Candiotti [1], Coates [1], R. Greenberg 
[6], Kramer-Candiotti [1], G. Gras [14], Kurihara [3], Jaulent [13], 
Nguyen-Quang-Do [4], and the papers of Kolster. 

For determining how to start a lLp-extension, see Carroll [1], Carroll
Kisilevsky [1], Bertrandias-Payan [1], H. Thomas [1], and G. Gras [16]. 

For capitulation (ideals becoming principal), see Ferrero [3], Kuroda [1], 
Candiotti [2], Grandet-Jaulent [1], and Iwasawa [34]. 

For a Hurwitz-type formula for the A.-invariant, see Kida [2], Iwasawa 
[29], Kuz'min [3], [6], D'Mello-Madan [1], G. Gras [13], Han [1], and 
Sinnott [4]. 

Greenberg [5] conjectured that A. = 0 for all totally real fields. There 
has been a lot of numerical work verifying this conjecture, mainly for real 
quadratic base fields. See the papers of Fukuda, Komatsu, Taya, Ichimura
Sumida, Inatomi, Kraft, and Kraft-Schoof. 

For the main conjecture, see Coates [7], [8], R. Greenberg [4], Mazur
Wiles [1], Ribet [5], Oesterle [2], and the papers of Rubin. See also Chapter 
15. For the proof of the main conjecture for totally real fields, see Wiles 
[4]. 

Theorem 13.56 is from Iwasawa [13]. The above proof comes from the 
proof used in the elliptic case by Coates-Wiles [4] in their work on the 
conjecture of Birch and Swinnerton-Dyer. For an extension to abelian fields, 
see Gillard [6], part II. 

For Iwasawa theory and p-adic L-functions in non-cyclotomic settings, 
see Coates [9-11], R. Greenberg [11-13], Perrin-Riou [3, 4], Schneider [2], 
deShalit [1], Panchishkin [1], and several papers of Rubin. 

Proposition 13.30 is from R. Greenberg [5]. For a study of the bounded
ness of (jn in non-CM and non-cyclotomic situations, see Kuz'min [5]. 

For more references, see the notes on Chapter 7 and Chapter 15. 
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EXERCISES 

13.1. Suppose K",/K is a Z,,-extension such that each K. is a eM-field. Show that if 
Leopoldt's conjecture holds for K then K",/K is the cyclotomic Z,,-extension. 

13.2. (a) Show that in a cyclotomic Z,,-extension no prime splits completely. 
(b) Suppose Gal(F/K) ~ Z" x Z". Let 1 :f:. p be a prime. Show that the decom

position group of a prime i above 1 is either trivial or isomorphic to Z" (Hint: 
look at Frobenius). Conclude that there is a subextension F, c F such that 
Gal(FdK) ~ Z" and such that some prime above 1 splits completely in F,/K. 

13.3. (a) Show that if j2 ¢ K then K(j2)/K is the first step of the cyclotomic 
Z2-extension of K. 
(b) Show that O(J=6, j2)!O(J=6) is unramified. Hence it is possible that 
KdKo is unramified in a Z,,-extension (see also Exercise ~. 
(c) Show that the ideal (2,R) is not principal in O(~ -6) but is principal 
in O(J=6,j2). Show also that it represents a class in A-. This shows that 
Proposition 13.26 does not hold for p = 2 (see also Ferrero [3]). 

13.4. Let 1/19 be a Dirichlet character of conductor 9 with 1/1~ = 1. Let '1.7 be of 
conductor 7 with '1.~ = 1. Let Ko be the field corresponding to '1.71/19 in the sense 
of Chapter 3. Show that Ko is totally real. Show that the first step K, of the 
cyclotomic Z3-extension of Ko corresponds to the group generated by '1.7 and 
1/19. Show that KdKo is unramified of degree 3. Hilbert's Theorem 94 (Hilbert 
[2]) states that in an unramified cyclic extension of odd prime degree p, at 
least one ideal class becomes principal. Conclude that the map Ao -+ A I is not 
injective. This shows that Proposition 13.26 does not hold for A: . 

13.5. Let M be a finitely generated A-module. Show that there is a unique (Haus
dorff) topology which makes the action of A continuous, and show that M is 
compact with respect to this topology. 

13.6. Let IX be algebraic and irrational. Let K c 0 ( = algebraic closure) be a maxi
mal extension of 0 not containing IX. Show that Gal(O/K) ~ Z/2Z or Z" for 
some p (cf. Lang [6], Ch. 8, Exercise 3). 

13.7. Show that for each n ~ 1 there are infinitely many cyclic extensions of 0 of 
degree p. which are not contained in the Z,,-extension of O. Show this is also 
true with 0 replaced by any number field K. This shows that not every such 
extension starts a Z,,-extension. 

13.8. Show that q.) (Section 13.8) is the set of products of the form 

n (C;:"I - 1)·' 
I 

with p k ai' L nl = 0, and n ar' == 1 mod p. 

13.9. (a) Suppose Il E Z[C,,] is a global unit which is congruent to a rational integer 
mod p. Show that th(ll) = 0, 2 ~ k ~ p - 3. 
(b) Let p be a regular prime. Show that for i, k = 2, 4, ... , p - 3, 

th(E1 ) :f:. 0 

th(EI ) = 0, i :f:. k, 

where Et is as in Chapter 8. 
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(c) Let G be as in (a) and assume p is regular. Show that G is the pth power of a 
unit of Z['p]. 

13.10. Show that if p is regular then Theorem 13.56 is trivially true. 

13.11. Let Koo/Ko be a Zp-extension. Suppose Koo £; L, L/Ko is Galois, and L/Koo is 
unramified. Let G = Gal(L/Ko), X = Gal(L/Koo), and r = G/K = Gal(Koo/Ko). 
(a) Let ft be a prime of L which is totally ramified in Koo/Ko and let [ £; G be 
its inertia group. Show that for n ~ 0, [P" is the inertia group in Gal(L/K.) for 
ft, and that [p" ~ P" under the map G -+ r. 
(b) Suppose F/Ko is a finite extension with F £; L. Show that [p" acts trivially 
on F for n sufficiently large. Conclude that, for n large, the (possibly trivial) 
extension FK./K. is unramified at ft. 
(c) Suppose X is abelian. Show that each finite subextension of L/Koo is 
obtained by lifting an abelian extension F/K., for some n, to KOO" Use (b) to 
show that we may assume the extension F/Kn is unramified. 
(d) Conclude that the field L = U L. in the proof of Theorem 13.13 is the 
maximal unramified abelian p-extension of Koo. 

13.12. Let M be a A-module. Define Mr = {m E Mlym = m for all y E r} and Mr = 
M/TM. Then Mr and Mr are the largest submodule and quotient, respectively, 
on which r acts trivially. Observe that Mr is the kernel of multiplication by T. 
Suppose Mr and Mr are finite. Define 

Q(M) = IMrl 
IMrl 

(this is a Herbrand quotient. See S. Lang [1], p. 179). 
(a) Show that if M is finite then Q(M) = 1 (Hint: M/Mr ~ TM). 
(b) Suppose 0 -+ A -+ B -+ C -+ 0 is an exact sequence of A-modules. Show that 
Q(A)Q(C) = Q(B) in the sense that if two factors are defined, so is the third and 
equality holds (Hint: Apply the Snake Lemma to two copies of the sequence, 
with vertical maps multiplication by T). 
(c) Suppose M = A/(f) with J(O) #- O. Show that Q(M) = IJ(O)l p ' 

(d) Extend (c) to M = EBA/(j;). 
(e) Suppose M is a A-module with M - EBA/(jJ Let F = nJ;, and suppose 
F(O) #- O. Show that Q(M) = IF(O)Ip-
(f) Show that the Main Conjecture for Q(,p) implies that IGjAol = IB1.",-d;1 
(compare p. 301. Hint: Prop. 13.22. The analytic class number formula changes 
the inequalities to equalities, so you do not need to know Mr). 



CHAPTER 14 

The Kronecker-Weber Theorem 

The Kronecker-Weber theorem asserts that every abelian extension of the 
rationals is contained in a cyclotomic field. It was first stated by Kronecker 
in 1853, but his proof was incomplete. In particular, there were difficulties 
with extensions of degree a power of 2. Even in the proof we give below this 
case requires special consideration. The first proof was given by Weber in 
1886 (there was still a gap; see Neumann [1]). Both Kronecker and Weber 
used the theory of Lagrange resolvents. In 1896, Hilbert gave another proof 
which relied more on an analysis of ramification groups. Now, the theorem 
is usually given as an easy consequence of class field theory. We do this in the 
Appendix. The main point is that in an abelian extension the splitting of 
primes is determined by congruence conditions, and we already know that p 
splits in O(Cn) if and only if p == 1 mod n. 

The purpose of the present chapter is to give a proof of the Kronecker
Weber theorem independent of class field theory. Our argument is a modifi
cation of one of Shafarevich (see Narkiewicz [1]), where the global result is 
deduced from the corresponding result for local fields Op. Except for a few 
minor references, this chapter is independent of the rest of the book. 

One significance ofthe Kronecker-Weber theorem is that it shows how to 
generate abelian extensions of a via an analytic function, namely eZ7<1Jc evalu
ated at rational x. For abelian extensions of imaginary quadratic fields, this 
is accomplished with elliptic modular functions in the theory of complex 
multiplication. In general, the situation is called Hilbert's Twelfth Problem. 

Theorem 14.1 (Kronecker-Weber). If Kia is a finite abelian extension, then 

K s;;; O(Cn) 

for some n. 

321 
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Theorem 14.2. If KIOp is a finite abelian extension, then 

K ~ Op({,,) 
for some n. 

Proof. We first show it suffices to prove 14.2. 

14.2 (for all p) => 14.1. 

Assume KIO is abelian. Let p be a prime which ramifies in this extension. 
Let Kp be the completion at a prime above p. Then Kp/Op is abelian, so 

Kp ~ Op({"p) 

for some np. Let pep be the exact power of p dividing np and let 

n = n pep. 
pramifies 

We claim K ~ O({,,). Let L = K({,,), so L/O is abelian and if p ramifies in 
L/O then p ramifies in KIO. Also, if Lp denotes the completion at a suitable 
prime of Labove p, 

with (n', p) = 1. 

Let Ip be the inertia group for p in L/O. Then Ip may be computed locally, so 

Ip ~ Gal(Op({p.p)/Op), 

which has order ;(pep). Let I ~ Gal(L/O) be the group generated by all Ip 
with p ramified (p finite). Since Gal(L/O) is abelian, 

III ~ n IIpl = n ;(p"p) = ;(n) = [O({,,): 0]. 

Lemma 14.3. If FlO is an extension in which no finite prime ramifies, then 
F=O. 

Proof. A theorem of Minkowski (see Exercise 2.5) states that every ideal class 
of F contains an integral ideal of norm less than or equal to 

where n = [F: 0], dF is the absolute value of the discriminant, and r2 ~ nl2 
is the number of complex places. In particular, this quantity must be at least 
1, so 

Since b2 > 1 and 

n" (1t)'1 n" (n)"/2 del 'd,,>- - >- - =b V"F - n! 4 - n! 4 ". 

b,,+1 ( 1)"1i Ii - = 1 + - - ~ 2 - > 1, 
b" n 4 4 
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we must have, ifn ~ 2, 

dF > 1. 

Consequently there exists a prime p dividing dF , which means p ramifies. This 
proves Lemma 14.3. 0 

Returning to the above, we consider the fixed field F of 1. Then F /0 is 
unramified at all finite primes, so F = O. Therefore 

I = Gal(L/O), 

hence 

[L : OJ = III ~ [O(Cn): OJ. 

Since 

we have equality, so 

This proves "14.2 => 14.1." o 
We are now reduced to the local situation, where the structure of exten

sions is much simpler. We shall often use the following well-known result. 

Lemma 14.4. Let K and L be finite extensions of 0, such that K/L is 
unramified. Then 

(a) K = L(Cn) for some n with p ( n, and 
(b) Gal(K/L) is cyclic. 

Also, for fixed L and for every integer m ~ 1, there exists a unique unramified 
extension K of L which is cyclic of degree m. 

We sketch the proof. First consider (a) and (b), and assume K/L is Galois. 
Let (!)K and feK be the integers and maximal ideal for K and define (!)L and feL 
similarly. Since K/L is unramified, there is a canonical isomorphism 

Gal(K/L) ~ Gal«(!)Kmod feK/(!)Lmod fed 

(if there were ramification, we would have to mod out by the inertia group on 
the left). The right-hand side is an extension of finite fields, hence cyclic. If 
K/L is not necessarily Galois, then the Galois closure yeilds a cyclic Galois 
group; so K/L is already Galois and cyclic. This proves (b). Since every 
nonzero element of a finite field is a root of unity of order prime to p, we may 
choose en E (!)K mod feK with (n, p) = 1 which generates the extension of finite 
fields. Since xn - 1 = 0 has a solution mod feK' Hensel's lemma (note p ( n) 
yields a solution in (!)K, which generates the extension K/L because of the 
isomorphism of Galois groups. This proves (a). To prove the last statement, 
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let 'n with p (n generate an extension of (9d feL of degree m. Then L('n)/ L is 
unramified and, by the isomorphism of Galois groups, is cyclic of degree m. 
If there are two such extensions, then the compositum is unramified, hence 
cyclic by (b). Therefore the two extensions must coincide. This proves the 
lemma. 0 

In the proof of Theorem 14.2, it will be convenient to know what the 
answer will be. Unramified extensions of lOp will be given by Lemma 14.4. In 
particular, we already have a good supply of unramified extensions. The 
ramified extensions of lOp will be subfields of IQp('pn). Since our list of abelian 
extensions already includes such subfields, we can produce totally ramified 
extensions K/lOp with any group 

G I(K/1O ) c {lL/(P - l)lL x lL/pnlL, 
a p - lL/2lL x lL/2"lL, 

p '" 2, 
p = 2, 

for all n ~ O. The fact that we can get (lL/2lL)2 for p = 2 will cause slight 
problems. 

We now start the proof of Theorem 14.2. Observe that it suffices to assume 

q = prime, m ~ 1. 

We consider three cases: p '" q, p = q '" 2, and p = q = 2. 

Case I. q '" p 

Lemma 14.5. Let K and L be finite extensions of lOp and let feL be the maximal 
ideal of the integers of L. Suppose K/ L is totally ramified of degree e with p (e 
(i.e., K/L is tamely ramified). Then there exists 1t E L of order 1 at fiL and a 
root IX of 

x e - 1t = 0 

such that K = L(IX). 

Proof. Let Ixl be the absolute value on Cp (=completion of the algebraic 
closure of Q p). Let 1to E feL be of order 1. Choose f3 E K to be a uniformizing 
parameter, so that 

Then 

with U E UK = units of K. 

Since K/L is totally ramified, the extension of residue class fields is trivial. 
Consequently 

u == Uo mod fiK with Uo E UL. 

Therefore 

u = Uo + x with x E fiK' 
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Let 1t = 1touo, so 

and 

Let lXI' ... , lXe be the roots of 

f(X) = xe - 1t. 

Since the IX'S differ by roots of unity, 

IlXil = IlXjl for all i,j, 

so 

But 

Consequently 

Since 

we must have for some IX., say lXI' that 

Therefore 

IP - IXII < IIX; - lXII, i ¥- 1. 

By Krasner's lemma (Lemma 5.3), 

L(lXd ~ L(P) ~ K. 

But f(X) is irreducible by the Eisenstein criterion, so 

[L(lXd: L] = e = [K : L]. 

This completes the proof of Lemma 14.5. 

Lemma 14.6. Op(( - p)l/CP-l») = Op{{p). 

Proof. Let 

g(X) = (X + 1)P - 1 
X 
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Then 

so 

(' - 1)1'-1 
U = p == 1 mod(,p - 1). 

-p 

It follows that 

uf-1 = u. 

Therefore (-p)l/(P-l) E Qp('p)' Since X p- 1 + p is irreducible over Qp by the 
Eisenstein criterion, the lemma follows easily. 0 

Now assume K/Qp is abelian of degree q"'. Let L/Qp be the maximal 
unramified subextension (= fixed field of the inertia group). Then 

L ~ Qi',,) 

for some n, by Lemma 14.4. Let e = [K: L]. Since e is a power of q, p k e, so 
K/L is totally and tamely ramified. By Lemma 14.5, 

K = L(1t1/e) 

for some 1t of order 1 in L. Since L/Qp is unramified, p has order 1 in L, so 

1t = -up 

for some unit u E L. Since u is a unit and p k e, the extension L(u1/e )/L is 
unramified; hence by Lemma 14.4 

L(u1/e) ~ L(CM) ~ Qp(CM,,) 

for some M. In particular, Qp(u1/e) ~ Qp('M,,), so 

Q p(u 1/e)/Qp 

is abelian. Since K/Qp is abelian, Qi1t1/e)/Qp is abelian. It follows that 

Qp« _ p)1/e)/Qp 

is also abelian. But x e + p is irreducible over Q r It yields an abelian, hence 
Galois, extension ofQp, so 

Qp« _ p)1/e) = Qp(Ce( _ p)1/e) 

for a primitive eth root of unity 'e. Therefore 

'e E Qp« - p)1/e). 
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Since Qp(( - p)l/e)/Qp is totally ramified, so is the subextension Qp((e)/Qp
But pie, so the latter extension is trivial and (e E Qp- Therefore elp - 1 (if 
p = 2 we obtain e = 1 or 2, but since q #- p, e = 2 is excluded). 

We may now put things back together. By Lemma 14.6, 

Qp(( - p)l/e) S Qp((p). 

Therefore 

K = L(nl/e) S L(u1/e, (- p)l/e) S Qp((Mnp). 

This finishes Case I. 

Case I I. P = q #- 2 

Lemma 14.7. Let F be a field of characteristic #-p, let M = F((p), and let 
L = M(a 1/P) for some a E M. Define the character co: Gal(M/F) ~ Z; by 
u(p = (;'("). Then 

L/F is abelian => u(a) == aW (") mod(M xy 

for all u E Gal(M/F). 

Remarks. Zp acts on M x /(M X)P in the obvious way, so a°>(a) mod(M X)P is 
defined. The converse of the lemma is also true but will not be needed. 
One first shows that L/ F is Galois, then reverses the proof below to obtain 
abelian. The lemma is sometimes stated as 

L/ F is abelian <=> there exists c E M such that uga = agc p , 

where ug : (pl--+ (= generates Gal(M/F). 

Proof of Lemma 14.7. Let G = Gal(M/F) and H = Gal(L/M). Then G acts on 
H as follows. If U E G, extend it to an element of Gal(L/F). Then define 
h" = uhu- 1• This is well-defined since H is abelian. In fact, since L/F is 
abelian, this action is trivial. 

Let A be the subgroup of M x /(M X)P generated by a. We have the Kummer 
pairing 

H x A ~ Wp = pth roots of unity, 

h(a 1/P) 
(h,a) = -1-/-. a p 

It is bilinear and nondegenerate. As in Chapter 10, we have 

U E G. 

Since G acts trivially on H and acts on Wp via co, 

(h, aW ("» = (h, a)" = (h", a") = (h, a") 
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for all h. Since the pairing is nondegenerate. 

awl,,} == a"mod(MX)p. 

This completes the proof of Lemma 14.7. o 
Let K/Qp be cyclic of degree pm. We already have a totally ramified cyclic 

extension K,/Qp of degree pm contained in Q«(prn+d. namely the fixed field of 
the subgroup of order p - 1 in the Galois group. There is also an unramified 
cyclic extension Ku/Qp of degree pm (Lemma 14.4) which equals Qp«(n) for 
some n. Since K, n Ku = Qp. 

Gal(K,KulQp) ~ (lL/pmzy 

Suppose K ¢. Q«(prn+l.(n)' Then 

Gal(K«(prn+l.(n)/Qp) ~ (lL/pmlL)2 x lL/pm'lL 

for some m' > O. This group has (lL/plL)3 as a quotient. so there is a field N 
such that 

Gal(N/Qp) ~ (lL/plL)3. 

The following lemma finishes the proof of Case II. 

Lemma 14.8. Assume p '# 2. There are no extensions N/Qp with Gal(N/Qp) ~ 
(lL/plL)3. 

Proof. If we have such an N. then N(Cp)/Op is abelian and 

Gal(N(Cp)/Op(Cp» ~ (lL/plL)3 

This is a Kummer extension so there is a corresponding subgroup 

B ~ Op(Cp)' /(Op(Cp)')P 

with B ~ (lL/plL)3 and Op(Cp)(BI/P) = N(Cp)' Let a E B and let L = Qp«(p.a l /P). 
Then L/Qp is abelian. so 

Let v be the valuation on Op«(p) with v«(p - 1) = 1. Then 

v(a) = v(aa) == w(a)v(a) mod P. for alIa. 

Since aCp '# (p if a '# 1. we have w(o) =1= 1 modp for such a. Therefore 

v(a) == 0 mod p. 

Since 

Qp(Cp)' = (C p - 1)l X Wp-I X VI 

where VI = {u == 1 modCp - I}. we may change a by a pth power to obtain 
a E VI' So we may assume 
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B ~ VtfVf, 

and Gal(ilJp((p)/ilJp) acts via the character w. 
Let n = (p - 1 and let u = 1 + bn + ... E V, (with b E Z). Since 

(~== 1 +bnmodn2 , 
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we have u, = (;bU == 1 mod n2. An easy calculation shows that uf == 
1 mod nP+', hence uP == 1 mod nP+1. Conversely, if U2 == 1 mod nP+1, then 

hence 

1 _ 2 
-logp U 2 = Omodn , 
p 

u = exp GIOgp u2 ) 

converges to an element of V, and uP = U2 (see Section 5.1; alternatively, the 
binomial series for (1 + U 2 - 1)'/P converges). Therefore 

Vf = {u == 1 mod nP+1}. 

Again, let u E V,. Write u = (~u, with u, == 1 mod n2• If u E B then 

au == u"'(<T) mod Vf, 

Since (~ already satisfies this relation, so does u,. Write 

u, = 1 + cnd + ... 

with c E Z, (c, p) = 1, and d ~ 2. Since (an)/n == w(a) mod n, 

au, = 1 + cw(a)dnd + .... 

But 

uf(<T) = 1 + cw(a)nd + .... 

Since au, == uf(<T) mod Vf for all a, we must have either d ~ p + 1 or d == 
1 modp - 1. The first means that u, is in Vf, the second that d = p. Clearly 
1 + nP generates modulo Vf the subgroup of u, == 1 mod nP• Putting every
thing back together, we obtain 

B ~ «p, 1 + n P ) ~ V,/Vf, 

where <x, y) denotes the subgroup generated by x and y. Since B ~ (Z/pZ)3, 
we have a contradiction. This proves Lemma 14.8. 0 

Case I II. P = q = 2 

We already have a totally ramified abelian extension Kr = ilJ2((2m+,) with 

Gal(Kr/Q 2 ) ~ Z/U x Z/2mz. 
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We also have an unramified extension Ku with 

Let K/02 be cyclic of degree 2m and suppose K 't. KrKu. Then 
Gal(KKrKul02) has exponent 2m, requires at most 4 generators, one of 
which has order 2, and has Gal(KrKu/02) as a quotient by a nontrivial 
subgroup. Therefore 

withm' ~ 1, 
{ 

7L/27L x (7L/2m7L)2 x 7L/2m' 7L, 

Gal(KKrK u/10 2) ~ or 

(7L/2m7Lf x (7L/2m· 7L), with m ~ m' ~ 2. 

Therefore there is a field N with 

We shall show this is impossible. The first corresponds to four independent 
quadratic extensions of O 2, We have 

Oi /(02)2 ~ 7L/27L x {± I} x vt/vf 
where V 1 = {u == 1 mod4}. As in Case II, it is easy to see that vf = 
{u == 1 mod8}, hence 

vt/vf ~ 7L/27L. 

Therefore 

02' /(02)2 ~ (7L/27L)3. 

By Kummer theory, the first possibility is now eliminated. 
Suppose now that Gal(N/02) ~ (7L/47L)3. Then i =.J=t E N, otherwise 

we could add it to N and obtain a subfield whose Galois group would be 
(7L/27L)4, which we just excluded. It follows easily that there is a field L with 

02(i) c LeN 

and 

Gal(L/02) ~ 7L/47L 

(proof: every subgroup of (7L/47L)3 of order 32 contains a subgroup of the form 
(7L/47L)2. Let L be the fixed field). 

Let u be a generator of Gal(L/02)' Then u2 generates Gal(L/02(i» and 
u(i) = - i. We may write 
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with 0(2 E 02(i). We also have L = 02(i, 0'0() and (0'0()2 = 0'(0(2) E 02(i), since 
02(i)/02 is Galois. Therefore 

0'2(0() = - 0( and 0'2(0'0() = - 0'0(. 

It follows that 0'0(/0( is fixed by 0'2, so 

and 

We obtain 

0'20( 
- = O'(A + Bi) = A - Bi. 
0'0( 

Lemma 14.9. A2 + B2 = -1 has no solutions in O2, 

Proof. We may transform this to 

Ai + A~ + A~ = 0 

with Ai E 1L 2 , 1 ~ i ~ 3, and 2 i Ai for some i. But there are no nontrivial 
solutions mod 8. This completes the proof of the lemma. 0 

The lemma shows that we have a contradiction. Therefore K £ KrKy £ 

02((M) for some M. This finishes Case III, so Theorem 14.2 is completely 
pro~d. 0 

NOTES 

The Kronecker-Weber theorem was first stated by Kronecker [1] and was 
proved by Weber [1]. Later proofs were given by Hilbert [1] and Speiser [1]. 
See also M. Greenberg [1] and Ribenboim [2]. Our use of Lemma 14.5 in 
Case I, which allows us to avoid using higher ramification groups, is similar 
to the proof of Abhyankar's lemma in Cornell [1]. A global proof of Theo
rem 14.1 which has the same flavor as the present proof may be found in 
Long [1]. A proof, similar to the above, of a more general local Kronecker
Weber theorem has recently been given by Rosen [2]. For two more proofs 
of the global theorem, plus some interesting historical remarks, see Neumann 
[1]. 



CHAPTER 15 

The Main Conjecture and 
Annihilation of Class Groups 

In the mid 1980s, Thaine and Kolyvagin invented new techniques for con
structing relations in ideal class groups. These methods have had profound 
consequences. Not only is it now possible to give a fairly elementary proof of 
the Main Conjecture, but these ideas also allowed Rubin to give the first 
examples of finite Tate-Shafarevich groups for elliptic curves. 

In the following, we prove four main theorems, each one requiring an 
extension of the ideas needed for the previous one. We start in Section 15.1 
by giving an easy proof of Stickelberger's theorem. In Section 15.2, we prove 
a result of Thaine on annihilation of ideal classes of real abelian fields. In 
Section 15.3, we introduce an iterative procedure that is due to Kolyvagin 
and which has Thaine's method as its first step. As a consequence, we obtain 
Ribet's converse of Herbrand's theorem. In the last four sections, we use 
Kolyvagin's method to prove the Main Conjecture for O((p), following 
Rubin [7]. 

§15.1. Stickelberger's Theorem 

In the following sections we will obtain annihilators of ideal class groups by 
various techniques. The basic theorem along this line is Stickelberger's theo
rem (Theorem 6.10), and the present methods can be used to give an easy 
proof of this result, at least for the case of full cyclotomic fields. A hint of the 
present proof appears in Kummer [6, p. 220]. 

Let m be a positive integer and let G = Gal(O((m)/O) ~ (lL/mlLY. 
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Theorem 15.1. Let 
1 m 

0=- L 
m a=1 

(a,m)=1 
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Let p E Z[G] be such that pO E Z[G]. Then pO annihilates the ideal class group 

of O!(Cm)' 

Proof. Let (t be an ideal class of O!(Cm)' There exist infinitely many unramified 
prime ideals of degree 1 in (t. Choose such a prime ideal A and let t be the 
rational prime below A. Since A is of degree 1, t splits completely in O!(Cm)' 
so t == 1 (mod m). Fix a primitive root s (mod t). Define a character x: 
(Z/tZ)X --+ C x of order m by setting X(s) = Cm. Let 

t-I 
g(X) = - L x(bK~ 

b=1 

be a Gauss sum. Let .!l' be the prime of O!(Cm' CI) above A and let 

va.; 1 !l'(g(x» = ra, 

where Ua is extended to O!(Cm,Ct). Since g(X)g(X) = t, we have 0 ~ ra ~ t - 1. 
By Lemma 6.4, g(X)t-1 E O!(Cm)' Since .!l't-I = A, 

Va.;I.l.(g(X)t-l) = ra' 

Since only primes above t appear in the factorization of g(X), we obtain 

(g(X)t-1) = n U;I Aro, 
(a.m)=1 

which says that L raua- I annihilates the class (t of A in the class group of 
O!(Cm)' 

Define r E Gal(O!(Cm' Cr)/O!(Cm» by r: C,I-+ C~. Then r is in the inertia group 
for ua-I.!l', hence acts trivially mod u;I.!l'. An easy calculation shows that 
g(X)' = X(Sflg(X) and (C~ - 1)/(Ct - 1) == 1 + Ct + ... + cr l == s (mod u;I.!l'). 
Therefore 

Since Vu.;l!l'(Ct - 1) = 1, we have g(X)/(Ct - 1)'0 relatively prime to u;I.!l'. 
Therefore 

Cm = X(s) == s-ro (mod U;I .!l'). 

Note that both sides of this last congruence are in O!(Cm)' so the congruence 
holds mod u- I A. Apply Ua to obtain 

C::, == s-ro (mod A). 

Since the mth roots of unity are distinct mod A, the order of Cm(mod A) is 
exactly m, so we have 
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with (c, m) = 1. Therefore 

(I' - l)ac 
ra == (modI' - 1). 

m 

This congruence implies ra ¥= 0 (modI' - 1). Since 0::; ra::; I' - 1, we have 

ra = (I' - 1) { : } , 

where { . } denotes the fractional part. Therefore 

L (I' - 1) {ac} (Ja- 1 = (I' - 1)(JcO 
(a.m)=l m 

annihilates <r: 
A(t-l)<7c8 = g(X)t-l. 

Now let p E E[G] be such that pO E E[G]. Let y = g(X)<7~l{J, so yt-l E !Ql((m) 
and A{J8(t-l) = (yt-l). Therefore l-l is the (I' - 1)st power of an ideal in 
!Ql((m), so the extension !Ql((m, y)/!Ql((m) can only be ramified at the primes 
dividing I' - 1 (Exercise 9.1). But 

!Ql((m) s !Ql((m' y) s !Ql((m' (t), 

so !Ql((m' y)/!Ql((m) is totally ramified at the primes above t. It follows that this 
extension is trivial and y E !Ql((m). Therefore we may take the (I' - l)st root of 
the above relation and obtain 

A{J8 = (y) 

as ideals of !Ql((m). Therefore <r{Jo = 1, as desired. o 

§15.2. Thaine's Theorem 

Stickel berger's theorem gives annihilators of the minus part of the class 
group, but gives no useful information for totally real fields. Thaine [3] 
showed how to use cyclotomic units to obtain analogues of Stickel berger 
elements for real abelian fields. The method has had applications beyond 
cyclotomic fields; for example, Rubin [2], [3] used Thaine's method, applied 
to elliptic units, in his proof that the Tate-Shafarevich groups of certain 
elliptic curves are finite. 

An important ingredient in the proof is what is known as Hilbert's Theo
rem 90. It is interesting to note that this result was known to Kummer, and 
the first application of it appears to be in Kummer [6, Section II], where he 
gives an argument very similar to the first part of the proof below. However, 
he did not apply the technique to annihilate class groups, but rather to study 
reciprocity laws. The argument seems to have been overlooked by everyone 
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for well over a century; it was rediscovered independently by Thaine, who 
went much further and obtained the present theorem. 

We know that the index of the cyclotomic units in the full group of units 
of a real abelian field is essentially the class number, but this does not 
imply any group-theoretic relation between the class group and units mod 
cyclotomic units. The following theorem of Thaine gives information in this 
direction. There are several definitions of cyclotomic units of an abelian field 
F. The most convenient for the present purposes is the group C' consisting of 
units of F of the form 

with ba E lL, and where m is the conductor of F, so F ~ iQ('m). 

Theorem 15.2. Let F be a totally real abelian number field with A = Gal(FliQ), 
let E be the group of units of the ring of integers of F, let C' be the group of 
cyclotomic units defined above, and let A be the class group of F. Let p be a 
prime not dividing [F: 10] and suppose () E lL[A] annihilates the Sylow p
subgroup of EIC'. Then 2(} annihilates the Sylow p-subgroup of A. 

Proof. Choose n large enough that p" > IAI and p" > IEIC'I. Then the Sylow 
p-subgroup of A is isomorphic to AIAP" and the Sylow p-subgroup of EIC' is 
isomorphic to EIEP"C'. These groups are modules over lL[A], lLp[A], and 
lLlp"lL[A]. 

Let t == 1 (mod pO) be a prime that splits completely in F 110 and let L = 
F('I). Then LIF is cyclic of degree t - 1. Fix a primitive root s (mod t), so 
r: '11-+ G generates Gal(LI F). Fix a prime A. of F above t. Then {a AI a E A} is 
the set of primes of F above t. Let ft' be the prime of L above A, so ft'1-1 = A.. 
Extend a to L, so aft' is the prime of Labove aA.. 

Lemma 15.3. Let (j E C'. There exists a unit eEL such that NL/F(e) = 1 and 
e == (j (mod aft') for all a. 

Proof. From the definition of C', we can write (j = ±NQ({m)/F(OA'::' - l)b.). 
Let t, A, !l', and a be as above. Note that t ( m since t splits completely in F 
and hence is unramified. Let 

= ±O 0 (,::,y - '(lb. 
y a 

(same ± as for (j), where y runs through Gal(iQ('mt}/L) ~ Gal(iQ('m)IF). 
Since (m,t) = 1, each factor is a unit of lL['md; hence e is a unit of F(,(). 
Since " == 1 modulo all primes above t, e == (j modulo all primes above t, as 
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desired. Also, 

NL/F(e) = NQ({""I/F( I) (C~ - c,ta ) 

(since [F(C,): F] is even, the "±" disappears) 

But 

ra' 1 
N (1'" 1') _ 'om - _ (1'" 1)"/-1 

Q({m/llQ({ml 'om - 'o' - C~ _ 1 - 'om - , 

where at: Cm 1-+ C~ is the Frobenius for t in Gal(Q(Cm)/Q). Therefore 
NF({/I/F(e) = (±<5)",-1. Since t splits completely in F, a,IF = 1, so (±<5)"r1 = 
1. This completes the proof of Lemma 15.3. 0 

Let e be as in the lemma. By Hilbert's Theorem 90, there exists a: E L x such 
that a:< = ea:. Therefore «(X) = (a:)', so (a:) is fixed by Gal(L/F). Looking at 
the prime factorization shows that such an ideal must be the lift to L of an 
ideal of F times a product of ramified primes. Since only the primes above t 
ramify in L/F, it follows that 

«(X) = 1 n a-I (!e)", 
"e6 

where 1 is the lift of an ideal of F and r" E lL. We shall see later (i.e., sr. == 
a(<5» that r" (mod t - 1) depends only on <5 and A, not on the possible choices 
of I, (x, and e. Taking norms yields 

(NL/F(X) = /(-1 n a-I (A)". 
ae6 

Since t == 1 (mod p"), we have 

ALr.,,-' = 1 in A/AP". 

Remark. In the previous section, we were working with F = Q(Cm) and we 
took <5 = e = Cm. The Gauss sum g(X) gave an explicit a:. Because g(X)g(X-1) = 
± q, congruences for r" became equalities and we obtained Stickelberger's 
theorem, which gave relations in the minus part of the class group. In the 
present situation, we start with a unit in the plus part (i.e., <5 is real), so we 
expect to obtain relations in the class group of a totally real field. Because we 
do not have explicit information on a:, we must be satisfied with congruences 
for r". 

Note that v"-'.'l'(C, - 1) = 1, so (X/(C, - l)r. and a-1!e are relatively prime. 
Since L/F is totally ramified at primes above t, T acts trivially mod a-I !e. 
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Therefore 

60( 

- ((r _ 1)" s-" (mod a-I 2'). 

Since aj(({ - 1),' is prime to 0"-12', we may divide and obtain sr. == 6 == <5 
(mod 0"-12'). Therefore 

sr. == 0"(<5) (mod A) 

(this congruence, originally mod 2', is mod A since both sides are in F). This 
determines r <1 (mod t - 1), therefore mod pn. 

Let x: ~ --+ Z; be a p-adic-valued nontrivial Dirichlet character of ~ and 
let 

I 
6 x = ~ "'~d x(a)O"-1 E Zp[~] 

be the corresponding idempotent. Since the only roots of unity in Z2 are ± 1, 
and the order of ~ is assumed to be prime to p, the assumption that X is 
nontrivial forces p to be odd in the present situation. Let" have maximal 
order, say pU, in the x-component 6 x(E/£P"C'), so po is the exact exponent of 
this group. Since 

6x(E/ £P"C') ~ 6x(E/ P")/6x(EP"C' / PM), 

we regard" as an element of 6x(E/P") satisfying 

0"(") == "X(<1) (mod EP"). 

By Lemma 5.27, E contains a subgroup of finite index isomorphic as a 
Z[~]-module to Z[~]/(~». It follows easily that 6x(E/P") ¥ I if n is suffi
ciently large. So we may assume" is not a pth power in 6x(E/EP"). We may 
also regard" as an element of E. If" = "f with "1 E E, then" == "e, == (,,~,)P 
(mod EP"); therefore" is not a pth power in E (often we will raise a number 
to a p-adic exponent such as X(O"); when we are working modulo p"th powers, 
this means we should take an integer congruent to the exponent mod pn). 

Since" has order po, write "P" = <5"f for some <5 E C' and "2 E E. Then 

0"(<5) = 0"(,,)P"0"("2f P" == "X(<1)p· (mod PM). 

Choose t, A, and s as above. We will apply the machinery developed above to 
the <5 just constructed. Suppose" == Sd, (mod A). Since sr. == a(<5) (mod A) and 
pnlt - 1, it follows that 

r<1 == X(O")pod;. (mod pn), 

where r<1 is determined by <5, as above. Recall that L r.,.a-1 annihilates the 
class of A in A/ AP". Since p" is assumed to annihilate the Sylow p-subgroup 
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of A, we may replace r" with x(a)pad). and conclude that 

pad). L x(a)a- 1 = pad). 1.11 ex 

" 
annihilates the class of A in A/AP". The following will allow us to choose t and 
A so that pid;.. 

Proposition 15.4. Let F be real abelian and let (t be an ideal class of F of order 
prime to [F: 0]. Let band c be positive integers with clb. Let f3 E FX. Suppose 
that for all (except possibly a finite set) of the prime ideals A E (t of absolute 
degree 1, lying over primes t == 1 (mod b), we have 

f3 == c-th power (mod A). 

Then 

f3 = c-th power in F if c is odd; 

c 
f3 = ± 2 -th power in F if c is even. 

In order to finish the proof of Theorem 15.2, we postpone the proof of the 
proposition to the end of this section. 

Let (t be an ideal class of ex(A/AP"). As mentioned above, we have p odd 
in the present situation. We may assume that (t has p-power order in A. Let 
b = mpn (recall that F s O(Cm» and c = p. For '1 as above, write '1 == Sd. 

(mod A) for all A E (t satisfying the conditions of the proposition. Suppose 
pld). for all A. The proposition implies that '1 is a pth power, a contradiction. 
Therefore pi d .. for some A, so paex annihilates (t. Since ex(t = (t, we conclude 
that pa(t = o. 

Suppose e E Z[.1] annihilates ex(E/EP"C). Write exe = (Xex with (X E Zp
Then (X annihilates ex(E/P"C), so pal(X, since pa is the exponent of this group. 
Therefore (X(t = 0, hence W = eex(t = o. 

We have therefore proved that if X is a nontrivial Zp-valued Dirichlet 
character of .1 and if e E Z[A] annihilates ex(E/P"C), then e annihilates 
&x(A/AP"). 

If F = O(Cp )+, then the characters of.1 are the even powers of ro, hence are 
Zp-adic valued (instead of having values lying in an extension), so 

E/P"C = EB ex(E/EP"C) 
x 

and 

A/AP" = EB ex(A/AP"). 
x 

Note that the summands for X = 1 are both trivial (since the idempotent is 
essentially the norm to 0). If e annihilates E/EP"C, then it annihilates each 
summand, and the theorem follows in this case. 
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In the general case, not all characters of A have values in 7Lp • Let IAI = f 
By assumption, p l f. Let m = 7L p [Cf ]. Let X: A -+ m x be a multiplicative char
acter. Consider the idempotent 

and its reduction mod p 

ex = .7 ~ X(u)u-1 E if pEA]. 

Let X be the Galois orbit of X, so X = {xglg E Gal(Op(Cf)/Op)} (elements not 
considered with multiplicity). Let P = L"EXa:. Then p(U)E7Lp for all uEA. 
Let 

1" -1 Bp = 1 L... p(u)u 

and let ep be the reduction Bp (mod pl. Note that B~ = Bp. 

Lemma 15.5. ep IF pEA] is an irreducible IF p[AJ-module. 

Proof. Suppose 0 -:f. N ~ eplFlA]. Then 0 -:f. N ® iFp ~ eip[A] (the inequal
ities hold because the dimensions are not equal). Note that if x E N ® if P' 

then x = exy, with y E if pEA]. Therefore epx = e~y = epy = x. Since B"Bp = B" 

if a: E X, and =0 if a: ¢ X, we see that 

EB e,,(N ® iFp) = ep(N ® iFp) = N ® iFp-
"EX 

Let g E Gal(Op(Cf)/Op), which we identify with Gal(lFp(Cf)/lFp) since p(f. We 
have 

ex(N ® if p) -:f. 0 <=> ex.(Ng ® if p) -:f. O. 

Since Ng = N, all the summands B,,(N ® if p) are simultaneously nonzero, 
since at least one of them is nonzero, so 

dim(N ® iFp) ~ #X = dim(EB e"iFp[A]) = dim(eip[A]). 
"EX 

This contradicts the fact that N ® if p is a proper subspace of if pEA]. D 

Lemma 15.6. Suppose () E Bp7L/p"7L[A] and po is the highest power of p dividing 
(), with 0 ~ a < n. Then there exists ()' E Bp7L/p"7L[A] such that p-O()()' = Bp. 

Proof. By assumption, 0 -:f. p-O() E eplF lA]. Since this module is irreducible, 
p-O()eplF pEA] = eplF pEA]. By Nakayama's Lemma for modules over 7Lp, 
p-O()Bp7L/p"7L[A] = Bp7L/p"7L[A]. In particular, there exists ()' such that 
p-O()()' = Bp. D 
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In the above notation, define (for A as above) 

ifJ;..: C/CP" -+ Z/p"Z[d] 

It is easy to check that ifJ;.. is a well-defined homomorphism of Zp[d]
modules. Therefore, for any p as above, we have 

ifJf: cp(C/CP") -+ cpZ/p"Z[d]. 

Let p be nontrivial. As before, choose '1 E cp(E/P"C) of maximal order pa. 
Then '1 pa = J'1f" for some (j E C and '11 E E. We may assume ± '1 is not a pth 
power in E, as before (since -1 E C, both ± '1 represent the same class). 

Let (t be an ideal class in cp(A/AP"). Let b = mp" and c = p. For A E (t 

satisfying the conditions of Proposition 15.4, let ifJf((j) = L rq u-1. Suppose p 
is odd and pa+ll r1 for all such A. Since (j == S'1 (mod A) and '1 pa == (j mod pnth 
powers, we find that '1 == pth power (mod A) for all such A. Proposition 15.4 
implies that '1 is a pth power, contrary to our choice of '1. Therefore ifJf((j) =1= 0 
(mod pa+l) for some A. If p = 2, a similar argument shows that ifJf((j) =1= 0 
(mod 2a +2 ) for some A. 

Let a' be minimal such that ifJf(J) =1= 0 (mod pa'+l), so a' ::::;; a (a + 1 if 
p = 2). Lemma 15.6 implies that 

p-a'ifJf((j)Z/p"Z Cd] = cpZ/pnz Cd]. 
Therefore, 

Image(ifJf) ;2 pa'cpZ/p"Z[d] ;2 2paep Z/pnZ[d]. 

Now suppose (J E Zp[d] annihilates cp(E/P"C). We may assume (J = (Jcp. 
Let pb be the maximal power of p dividing (J. By Lemma 15.6, there exists (J' 
such that (J(J' = pbCp . Therefore pb annihilates cp(E/P"C), so b ~ a.1t follows 
that 

2(J E 2pbep Z/p"Z[d] ~ 2pacpZ/p"Z[d] ~ Image(ifJf), 

so 2(J = ifJf((j1) for some (j1 E C. This means that A 28 = 1 in cp(A/ AP"). 
We have therefore proved that if f) annihilates cp(E/ P"C), then 2f) annihi

lates ep(A/AP"). This is also true for trivial p since both groups are trivial 
(because cp is essentially the norm). The groups E/P"C and A/ AP" are direct 
sums of such respective terms, so Theorem 15.2 follows. 0 

Proof of Proposition 15.4. Let c' = 2c, b' = 2b, and p' = p2. Then the assump
tions of the proposition are satisfied for b', c', and p'. Let R be the Hilbert 
class field of F. We claim that the Artin symbol [(t,H/F] acts trivially on 
K = H 11 F((b')' The field K is abelian over 0 and unramified over F. If a 
prime p divided [K: F] but did not divide [F: 0], then there would be an 
unramified extension of 0 of degree p, which is impossible. Since the order of 
(t is assumed to be relatively prime to [F: 0], it is therefore relatively prime 
to [K: 0], so [(t,R/F] must restrict to the trivial element of Gal(K/O), as 
claimed. 
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Let M = H«(b"f3'l/c'). Then M/F is Galois. Let G = Gal(M/K). Fix Yo E G 
such that YolH = [(£:, H/F] and YoIF('.,) = 1. The existence of Yo is assured by 
the above claim. Let Y E G be any automorphism that acts as the identity on 
H«(b')' Then YYo satisfies the same properties as Yo. By the Cebotarev Density 
Theorem, there are infinitely many primes A. of F of absolute degree 1 with 
Frobenius conjugacy class in G equal to the conjugacy class of no. Choose 
such a A.. We may assume A. is unramified in F and v;.(f3') = O. There is a 
prime;: of M above A. such that the Frobenius Frobi = YYo (use the relation 
Frobgi = g Frobig-l to move around in the conjugacy class to obtain YYo). 
Since FrobilH = [(£:,H/K], we have A. E (£:. Since FrobiIF(I;.,) = 1 and A. has 
degree 1 in F, Frobi is also the Frobenius for F«(b,)/Q and gives the trivial 
element in Gal(F«(b,)/Q). In particular, the rational prime t below A. splits 
completely in Q«(b' )/Q, so t == 1 (mod b'). 

Since c'lb', we have t == 1 (mod c'), so the c'th roots of unity exist mod t. By 
assumption, f3'1fc' exists mod A.. Therefore A. splits completely in F«(c" f3,l/c')/F, 
hence FrobiIF(p'l!c') = 1. We have therefore shown that Gal(M/H«(b'))Yo ~ 
Gal(M/F(f3r1/c,)). It follows that Yo E Gal(M/F(f3,l/c')), hence Gal(M/H«(b')) ~ 
Gal(M/F(f3r1/c')). Therefore F(f3,I/C') ~ H«(b')' so F(f3,I/C')/F is abelian. 

Note that 13' > 0 for all embed dings into IR. Write 13' = f3t with v'lc' maxi
mal such that 131 E F and let d = c' Iv'. Clearly v' is even, so we may change 
the sign of 131 if necessary and assume 131 has at least one positive conjugate. 
Then F(f3,l/c') = F(pt1d) = F(f3t/c,) has a real embedding. By the choice of v', 
if a prime p divides d, then 131 rt P. Also 131 rt - 4r since 131 has a positive 
conjugate. Therefore (see Lang [6, Chapter VIII, Section 9]) X d - 131 is 
irreducible over F. Since F(f3f/d)/ F is abelian, hence Galois, (d E F(f3f'd), 
which has a real embedding. Therefore c'/v' = d = 1 or 2. Therefore 13 2 = 
13' = f3t = f3f"/d = f3f/2 = f3~ for some 132 E F. If c is odd, this implies that 13 is 
a cth power. If c is even, 13 = ± f3~/2. This completes the proof. 0 

Remark. Some attention must be paid to the positivity of 13 since - 1 == 4th 
power modulo primes congruent to 1 mod 8, but - 1 is not a square in Q 
(though it is ±(square), as predicted by the proposition). 

§15.3. The Converse of Herbrand's Theorem 

In 1976, Ribet proved the converse of Herbrand's theorem using techniques 
from modular curves and algebraic geometry. More recently, Kolyvagin gave 
a much more elementary proof of this result by a method that is an extension 
of those of the previous section. In later sections, we shall see that these 
techniques can be extended to prove the Main Conjecture of Iwasawa theory. 

Let p be an odd prime and let X be an even nontrivial p-adic-valued 
Dirichlet character of conductor p. Let E be the group of units of Q«(p)+, C 
the subgroup of cyclotomic units as defined in Section 8.1, and exA the 
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x-component of the ideal class group of !IJ!('p) (or of !IJ!('pt since X is even), 
as in Section 6.3. 

The main result we need is the following. It was conjectured by G. Gras 
[4] and can be deduced from the work of Mazur-Wiles [1], but the proof 
below is much simpler. Recall that [E: C] is the class number of !IJ!('p)+; the 
present theorem shows that the p-part of this equality holds componentwise. 
We let e)(Gp denote the x-component of the p-part of an abelian group G. 

The proof will be given below. As a corollary, we obtain Ribet's converse 
of Herbrand's theorem (6.17). 

Theorem 15.8. Let i be odd with 3 :s; i :s; p - 2. If P divides the numerator of 
the Bernoulli number Bp_j, then ejA =F O. 

Proof (assuming Theorem 15.7). Let U1 be the local units of Z[,p]+ that are 
congruent to 1 modulo the prime above p. Let E 1 be the closure of E n U1 

and C1 the closure of C nUl' 
Let j = p - i and X = wj. If plBj , then pILp(l, X) by Corollary 5.13. By 

Theorem 8.25, e1.ol/Cl =F O. Therefore either e)(UdEI =F 0 or e)(EdCl ~ 
e)(E/C)p =F O. 

Ife)(E/C)p =F 0, then, by Theorem 15.7, e)(A =F O. But 

p-rank(e)(A) :s; p-rank(e.,)(-t A) 

by Theorem 10.9, so ejA = e.,x-tA =F O. 
If exUI /EI =F 0, then there exists <51 E El that is not a pth power in EI but 

whose pth root exists in UI' Approximating <5 1 sufficiently closely by an 
element of E l' we find a unit <5 EEl that is not a pth power in E 1 but whose 
pth root exists in UI' Let e~ E Z[G] with e~ == ex (mod pl. Replacing <5 by e~<5 
if necessary, we may assume that <5 lies in eiEI/EO- The prime above p splits 
completely in the extension !IJ!('p, <5 1/P )/!IJ!('p)' Since <5 is a unit, the other 
primes of !IJ!('p) are also unramified. Therefore the extension !IJ!('p, <5 1/P)j!lJ!('p) 
is unramified and Gal(!IJ!('p)/!IJ!) acts on the Galois group ofthis extension via 
the character WX- I (use the Kummer pairing as in Section 10.2). This shows 
that the WX-I-component of the Hilbert class field of !IJ!('p) is nontrivial, so 
e.,)(- t A =F 0, as desired. 0 

To prove that le)(AI = lex(E/C)pl, it will suffice to prove that lexAI divides 
I e)(E/C)p I for each X. This is because 

n le)(A I = p-part of the class number of !IJ!('p)+ 
X even 

= p-part of I E/Cj 

= n le)(E/CM 
xeven 
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Moreover, lexAI = lex(E/C)pl = 1 when X = 1 (because ex is essentially the 
norm), so we only need to consider nontrivial X in the following. 

As in the previous section, the strategy will be to use units to construct 
annihilators of ideal classes. However, we will use several auxiliary primes t, 
which will allow us to obtain much more refined information. 

Throughout this section, we will be working exclusively with multiplica
tive groups. For typographical reasons, however, it will often be convenient 
to write group ring actions additively, so, for example, (0" - 1)0( means the 
same as 0"0(/0(. 

We need to introduce some notation. Initially, we work with a general real 
cyclotomic field since that case will be needed in later sections. Let 

p = an odd prime; 
F = Q(Cm)+; 
0( = TIj((1 - C~)(1 - (;;/)tJ = a cyclotomic unit of F; 
M = a large power of p; 
t == 1 (mod mM), t prime; 
L = a product of distinct primes, each == 1 (mod mM); 
CL = TI/IL C( (this is a more convenient choice than the usual one); 
F(L) = F(Cd; 
NIL/L = NF(IL)/F(L) = the norm for this extension; 
tX(L) = TIj((1 - (~(d(1 - (;;/(d)GJ. 

Then O((L) is a unit of F(L). 

Lemma 15.9. (a) Assume t (L. Then NIL/LtX(t L) = tX(Ltrob(-I, where Frob( is 
the Frobenius for t for the extension F(L)/Q. 

(b) O((tL) == tX(L) modulo all primes of F(tL) above t. 

Proof. The norm for Q(Cm' CIL)/Q((m' Cd of I - C~CIL is 

'-I 1 - (jl(' 
TI (I - (~(LC~) = I (~/ = (1 - (~(dFrob(-I. 
k=1 - m L 

This yields (a). Since C, == I modulo all primes above t, (b) is true. 0 

The two properties (a) and (b) of the lemma are crucial for the proof of 
Theorem 15.7 and are the essential properties for what is known as an "Euler 
system." See, for example, Kolyvagin [I], Rubin [5], [9], Perrin-Riou [1], 
and Mazur [4]. 

For each prime t as above, fix a primitive root smodt. Define 0"1 E 

Gal(F(t)/F) by O"(((() = G; we may extend 0"( when needed so that 0"1 = id on 
roots of unity of order prime to t. Then (0"1> = Gal(F(tL)/F(L». Let 

1-2 

DI = L jO"J. 
j=O 

An easy calculation shows that 

(0"1 - I)Dt = t - 1 - NI , 
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where Nt = Lf;:g uJ can be identified with the norm NtL/L defined above. 
Define 

DL = flDt . 
tiL 

In the previous section, we started with an element e of norm 1 and wrote 
it in the form yU-l, using Hilbert's Theorem 90. In the present notation, we 
then have 

D(e = (t - 1 - N()y = (l/Nty)yt-l. 

Factoring Nty yielded the desired relations in the class group. The following 
proposition, with IX in place of e, generalizes this situation. Factoring the 
numbers K(L) will again yield relations in the class group. Since DLIX is a unit, 
we will have that the ideal (K(L» is an Mth power in F(L). Therefore, up to 
Mth powers of ideals of F, all the factors of K(L) come from primes dividing 
L. This fact will allow great control over the resulting relations in the ideal 
class group. 

Proposition 15.10. There exists PL E F(L)X and K(L) E F X such that 

DLIX(L) = K(L)Pt! 

and «0" - I)DtlX(L»l/M = P1'.-l for all 0" E Gal(F(L)/F). 

Proof. We claim that DLIX(L) E (F(L) X /F(L)xM)G (=the elements fixed by G), 
where G = Gal(F(L)/F). The proof of the claim is by induction on the num
ber of prime factors of L. If L = I, then G = 1 so the statement is trivial. Now 
suppose it is true for all L' with fewer prime factors than L. Let tiL and write 
L = tL'. Then 

(O"t - I)DtL'lX(tL') = (t - 1 - Nt)DL'IX(tL') 

= (Mth power)/DL'NrlX(tL') (since t - 1 == o (modM» 

= (Mth power)/DL'IX(vtrObt-l 

= (Mth power)(Mth power) 

by the induction assumption. Therefore 0"( fixes DLIX(L) modulo Mth powers 
for each tiL. Since the set of Ut with tiL generates G, this proves the claim. 

We now claim that F(L) contains no nontrivial p-power roots of unity. 
Note that Q«(L) and Q«(p, (m) are disjoint over Q. Since F ~ F«(p) £; 

Q«(p, (m), it follows that [F(L)«(p): F(L)] = [F«(p): F] #- 1. Therefore (p rI: 
F(L), as claimed. 

Define c: G --+ F(L) x by 

c(u) = «0" - l)DLIX(L»l/M. 

By the above claim, F(L) contains no nontrivial Mth roots of unity, so c(u) is 
well defined. An easy calculation shows that c satisfies the co cycle relation 
c(Ul U2) = c(ul )·C(U2)U'. 
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Lemma 15.11. There exists 13 E F(L)X such that c(cr) = 13 17 - 1 for all cr E G. 

Remark. This result is a generalization of Hilbert's Theorem 90 to noncyclic 
extensions. In terms of Galois cohomology, it says that H1(G,F(L)X) = O. 

Proof. By the theorem on linear independence of characters, there exists 
x E F(Lr such that y = L17EG c(cr)cr(x) =F O. Let rEG. The cocycle condition 
implies that 

ry = L c(cr)trcr(x) = L c(rcr)c(rr1rcr(x) = c(rr1 y. 
17 17 

Therefore c(r) = yl-t. Letting 13 = y-t, we obtain the lemma. 

Let 13 be as in Lemma 15.11 and let K(L) = DLIX(L)/I3M, Then 

C(U)M 
(cr - I)K(L) = «u _ l)f3)M = 1 

D 

for all u E G, so K(L) E F x. This completes the proof of Proposition 15.1 O. D 

Factoring K(L) will yield relations in the class group of F. Note that 
DL IX(L) is a unit, so (K(L)) = (f3ZM), as ideals of F(L). 

Let p be a prime of F with p t L. Then p is unramified in F(L)/F. Since 
(K(L)) = <PZ1)M in F(L), the p-adic valuation satisfies vp(K(L)) == 0 (mod M). 

Now fix L and let 

t == 1 (modmML). 

Let A. be a prime of F above t and let !£ be a prime of F(tL) above A.. We 
assume that K(L) ;fE 0 (mod A.). Since t == 1 (mod mM L), t splits completely in 
F(L), and t is totally ramified in F(t L)/ F(L), so if s is a primitive root mod t, 
it is also a primitive root mod A. and mod !£. 

Proposition 15.12. Suppose K(L) == sa (mod A.). Then the A.-adic valuation of 
K(t L) satisfies 

V).(K(tL)) == -a (mod M). 

Proof. From Proposition 15.10 and Lemma 15.5, we have 

(cr( - l)f3n = «u( - I)DILIX(tL))l/M = «t - 1 - N()DLIX(tL»l/M 

= (DLIX(tL))(/-I)/M (t== 1 (modmML)=>Frob(= 1 =>N(IX(tL) = 1) 

== (DLIX(L))(t-I)/M mod all primes above t. 

Let DLIX(L) == sa' (mod !£). Then a' == a (mod M) by Proposition 15.10. 
Therefore 

(crt - l)f3n == s" (mod !£), 

where b = a'(t - 1)/M == a(t - 1)/M (modt - 1). 
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Let e = v:APn)' Since v~(1 - (t) = 1, we may write P = (1 - (t)Cy with 
v~(y) = O. Note that 

1 - (' 
(1 - (t)"t- 1 = 1 _ (~ == s (mod 2), 

since" - 1 = «(t - 1 + I)' - 1 = s«(t - 1) + .... Also, since 2 is totally 
ramified in F(tL)/F(L), Ut is in the inertia group for fi', so UtY == Y (mod 2). 
Therefore 

Sb == (Ut - I)Pn = «1 - (tY't- 1 )<y"t-1 == sC'1 == SC (mod 2). 

Therefore b == e (mod t - 1). Since 2 t - 1 = A, we have 

11M 
Vl(K(tL)) = t _ 1 v~(K(tL)) = - t _ 1 v~(Pn) 

-Me -Mb 
= t - 1 == t _ 1 == -a (modM), 

as desired. 

We now restrict our attention to 

F = O«(p)+ 

o 

and let A + be the p-part ofthe class group of F. Let M = P I A + I·I(E/C)pl. Let 
X be a nontrivial even character of conductor p and choose e~ = L" x'(u)u- 1 E 

Z[Gal(F/O)] with e~ == ex (modM). Then exA = e~A is the x-component of 
the p-part of the class group of F (or of O«(p))' 

Lemma 15.13. Let A, t, and s be as above, with t == 1 (modmML). Assume the 
ideal class (t of A is in exA and also that the classes of the prime ideals of F 
dividing L are in exA. Suppose 

(1) (t has order f in the quotient of exA by the subgroup generated by the 
classes of the primes dividing L; 

(2) e~K(tL) E (P)P" with pr ~ M and Mp-r A+ = 0; 
(3) if e~K(L) == sa (mod A) and pr'll a, then pr' < M. 

Then r' ~ rand 
flpr'-r. 

Proof. Let U E Gal(F /0). Then s is a primitive root mod UA. Let 

K(L) == sa. (mod UA). 

We then have u-1 K(L) == sa. (mod A), hence 

e~K(L) == sa (mod A) with a == L x'(u)a" (mod M). 

" 
By definition, pr'll a. By Proposition 15.12, 
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Va .. (K(t'L» == -aa (mod M). 

Since v .. (a- 1K) = Va;.(K), we have 

V;.(6~K(t'L» == L x'(a)va;.(K(t'L» == -a (mod M). 
a 

Since p' divides v .. (6~K(t' L», we have p'la, so r :5: r'. Also, 

Va~,;.(6~K(t'L» = v .. (a6~K(tL» == x(a)v .. (6~K(tL» == -x(a)a (modM). 

Therefore 

(6~K(t' L» = n (a- 1 Arax'(a). (primes dividing L)· 1M 
a 

= A -a.~. (primes dividing L) 'IM 

for some ideal I. Since the left side is a p'th power, the exponent of every 
prime ideal on the right side is a multiple of p', so we may take the p'th root 
of the equation. Since Mp-' annihilates A, the ideal/Mrr is principal. We 
find that -ap-'(£ = -ap-'6~(£ = 0 in the quotient of 6xA by the subgroup 
generated by the classes of the primes dividing L, so flap-'. Since p" II a, the 
result follows. 0 

Write 

f-xA ~ 7L./fl7L. EfJ ..• EfJ 7L./fk7L.· 

Choose classes (£1' ... , (£k in exA such that (£i+1 has order fi+1 in exA/ 
«£1"'" (£J It follows from Proposition 8.13 that ex(E/C)p is cyclic, say of 
order p'o. Choose U E E such that u ¢ EP and uP'o E C. Let IX = uP'o. Replacing 
u with u·~ if necessary, we may assume that au == ux(a) (mod Mth powers) for 
all a E Gal(F /10), and hence a similar relation also holds for IX. 

Choose primes AI' ... , Ak, lying above rational primes t'1"'" t'k' such that 
Ai E (£i and t'i == 1 (modMLi_tl, where Li- I = t'1···t'H' 

Starting with IX, we obtain K(LJ, as above. Let e~K(Li) E pr, with ri not 
necessarily maximal and let e~K(Li) be a p,jth power mod Ai+! with r; maxi
mal. Clearly ,; ~ rio If Lemma 15.13 applies, then we have r; ~ 'i+1 and 

16xA I = fl'" f"lp('o-,,)+(,j -'2)+···+(';'~ '-"). 

To obtain Theorem 15.7, we want to have r; = ri for all i and we need to 
satisfy the hypotheses of Lemma 15.13. To do this, we need to be more careful 
about the choice of the primes AI' ... , Ak • Suppose we have chosen primes 
AI' ... , Ai such that ro ~ rj = r; for all j < i. Let ri be the largest integer 
:5:ro + 1 such that e~K(LJ E Fp". Then Mp-"A+ = 0, so condition (2) of 
Lemma 15.13 is satisfied with L = Li- I and t' = t'i' Since r;_1 = ri- I :5: ro, we 
have p,j~, < M, so condition (3) is satisfied. Therefore Lemma 15.13 applies 
and r;_1 ~ ri' so ri :5: roo This implies that ri =F ro + 1, so in fact ri is the 
maximal integer, with no restrictions, such that e~K(Li) E Fp". Proposition 
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15.4, with b = MLi and c = pri implies that there exists a prime Ai+l such that 
ri = r;. By induction, we obtain r; = ri for all i, and hence lexAI divides pro-rk • 

Therefore lexA I divides pro = lex(E/C)pl. This completes the proof of Theorem 
15.7. D 

§15.4. The Main Conjecture 

The Main Conjecture, as discussed in Section 13.6, gives relations between 
various algebraically defined Iwasawa modules and the analytically defined 
p-adic L-function. It was proved for abelian number fields by Mazur and 
Wiles using deep techniques from algebraic geometry. Recently, Rubin [7J 
showed how to use Kolyvagin's method from Section 15.3 to obtain a much 
more elementary proof of the result. In the present section, we discuss various 
forms of the Main Conjecture, and in the next two sections, we provide the 
technical results needed for the proof. Finally, in Section 15.7, we prove the 
result (for i1J«(p)), following Rubin. 

Let p be an odd prime and consider the Zp-extension i1J«(pro)/iIJ«(p). Let 

An = p-part of the ideal class group of i1J«(pn+1); 
A 00 = l!!p An' with respect to the maps An -. An+!; 
X = Gal(Loo/iIJ«(poo», where Loo is the maximal unramified abelian p

extension of i1J«(poo); 
!!rn = Gal(Mn/iIJ«(pn+.), where Mn is the maximal abelian p-extension of 

i1J«(pn+.) unramified outside p, for n ~ 00; 
ei = the ith idempotent for Gal(iIJ«(p)/iIJ), with i odd; 
Lp(s, wi) = p-adic L-function for wi, with j even and nonzero; 
f(T, wi) = the Iwasawa power series such that Lp(s, wi) = f«1 + p)' - 1, 

wi). 

By Theorem 13.12, X - fHA/U/i), where each Ii is an irreducible distin
guished polynomial (the case Ii = p is ruled out by Theorem 7.15). Define the 
characteristic polynomial of X to be 

char(X) = n Ni. 
i 

The characteristic polynomials of other A-modules are defined similarly. In 
Section 15.7 we shall give a proof of the following. 

Theorem 15.14 (The Main Conjecture). Let i be odd, i ¢ 1 (modp - 1). Then 

char(eiX) = f(T, wl-i)u(T) 

with u(T) E A x. 

There are several equivalent forms of the Main Conjecture, corresponding 
to other choices of A-modules: 
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Module Power Series p-Adic L-Function 

f(T,w l - i) 

f( 1 + p _ 1 Wi-i) 
1 + T ' 

f«1 + T)-I - 1, Wi-i) 

The entries in the last column arise from substituting T = (1 + p)S - 1 
into the characteristic polynomial multiplied by a suitable unit of A. The 
equivalence of these forms is shown in Proposition 15.37. 

The proof of the Main Conjecture will use another form. Let 

Uf = units of Zp[Cpn+l] congruent to 1 (mod (pn+ I - 1); 
E~ = units ofZ[Cp"+I] congruent to 1 (modCp"+1 - 1); 
E~ = closure of E~ in Uf; 
Ef = 1i!!I E~ with respect to the norm maps; 
q = cyclotomic units of Zp [Cp" + I] congruent to 1 (modCpn+1 - 1); 
c~ = closure of q in Uf; 
Cr = lim C~ with respect to the norm maps. 

+--

Proposition 15.15. The following are equivalent: 

(1) char(ejX) = f(T, WI-i)ui(T) for all odd i ¥= 1 (mod p - 1), where Ui E A x; 
(2) char(&jEf ICr) = char(&jX) for all even j ¥= 0 (mod p - 1); 
(3) char(&jX) divides char(&jEf ICr) for all even j ¥= 0 (mod p - 1). 

Proof. We need the following technical result. 

Lemma 15.16. For each n ~ 1, let 0 -+ An~ Bn A Cn -+ 0 be an exact 
sequence of compact groups, and let ¢>:+I,n: Xn+1 -+ Xn for X = A, B, C be 
compatible with the maps fn and gn for all n. Then 

o --+ lim An ~ lim Bn .!4 lim Cn -+ 0 
+-- +-- +--

is exact (f", gn' and tPn+!,n are assumed to be continuous). In other words, 
1i!!I (Bnl An) ~ li!!t B.!1i!!t An· 

Proof. The only difficulty is the surjectivity of g. Let c = (cn ) E lim Cn. For 
+--

each N ~ 1, let bN E BN be such that gN(bN) = cN. Let b1N) = ¢>B,i(bN) for 1 ::;; 
i ::;; N, and let b1N) E Bj be arbitrary for i> N. Then b(N) = (bIN) En Bi and 
gi(b1N) = Cj for i ::;; N. Since n Bi is compact, there exists b = (bj) E n Bi that 
is an accumulation point of the set {b(N)IN ~ I}. Fix i. Since ¢>i~j_l(b1N) = b1~t 
for all N ~ i, continuity implies that ¢>j~i-1 (bi ) = bj-I' Therefore b E 1i!!I Bi. 
Since gj(bfN) = Cj when N ~ i, gj(b;) = Cj, so g(b) = c. This proves the lemma. 

o 
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Theorem 13.56 states that, for even j =1= 0 (mod p - 1), 

l~ejUilCi ~ A/~G : ~ -I,W))). 
Let L" be the maximal unramified abelian p-extension of O(Cpn+d and M" be 
the maximal abelian p-extension of O(Cpn+d unramified outside p. Let X" = 
Gal(L,,/O(Cpn+'» and~" = Gal(M,,/O(Cpn+'». From Corollary 13.6, 

Uf/Ei ~ ~"/X,,, 

so 

Consider the exact sequences 

0- ejEf/C,{, - ejUl'/C,{, - ejUl'/Ef - 0 

and 

0- ejX - ej~OO - ejUl'IEf - o. 
We shall show in Proposition 15.22 that characteristic polynomials are 
multiplicative in exact sequences, hence 

char(ejUl' /C'{') _ char(ejEf /C'{') 
char(ej~<X,) - char(ejX) 

Therefore char(ejEf /Cr) = char(ejX) if and only if f (: : ~ - 1, w j ) differs 

from char(ej~oo) by a unit of A. As we shall show in Proposition 15.37, this is 
equivalent to f(T, wj) and char(el_jX) differing by a unit of A. This proves 
the equivalence of (1) and (2) in the statement of the proposition. 

Suppose now that char(ejX) divides char(ejEf /Cn for all even j =1= 0 
(mod p - 1). We shall see (Proposition 15.43) that both groups are trivial for 
j = 0, so we may assume this divisibility happens for all j. Let e+ = L ej, 
where the sum is over even j with 0 5,j 5, p - 3. Then char(e+X) divides 
char(e+Ef/Cf), with equality if and only if there is equality for eachj. 

We have 

n lejEi/ejC~1 = IEi/Cil 
j 

= p-part of [E" : e"] 

for all n sufficiently large (we could omit J.I.+ p" by Theorem 7.15). Note that 
l+ = degchar(e+X), as in the proof of Theorem 13.13. 

Let hj = char(ejEf/Cl'). In Proposition 15.44 we shall show that there is 
a constant c > 0, independent of n, such that 

c-IlejEi/C~1 5, IA/(P",h)1 5, clejEi/Cil 
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for all n. As in the proof of Theorem 13.13, there exist Aj = deg hj and J1j' Vj 

such that IA/(P",hj)1 = pAj"+l'jP"+Vj for all n sufficiently large. Let A = LAj , 

and similarly for J1 and v. Then 

for all n sufficiently large. It follows that J1+ = J1 and A + = A. Therefore 
h2 h4 ··· hp-3 = char(e+X) = n char(ejX), since one polynomial divides the 
other and they have the same degree (and are monic). Therefore hj = 
char(ejX) for each j, so (2) and (3) are equivalent. 0 

§15.5. Adjoints 

The main purpose of this section is to prove Proposition 15.37, but in order 
to do so we develop the theory of adjoints, which is interesting in its own 
right. 

Throughout this section, X will be a finitely generated torsion A-module. 
By Theorem 13.12, X is pseudo-isomorphic to an "elementary" A-module 

E = EB A/(J;m,), 
i 

where each J; is either p or an irreducible distinguished polynomial. By 
Proposition 13.9, all height one prime ideals of A, namely those other than 0 
and (p, T), are of the form (f). As in the previous section, we define the 
characteristic polynomial of X to be 

char(X) = n J;m,. 

We need the following preliminary result. 

Lemma 15.17. Let X be a finitely generated torsion A-module. 

(1) char(X)' X is finite. 
(2) If X is finite, then (p, T)" X = 0 for n sufficiently large; hence, the anni

hilator of X is of finite index in A. 
(3) If for each x E X there exist relatively prime f, g E A (depending on x) such 

that fx = gx = 0, then X is finite. 

Proof. (1) There is an exact sequence 0 -+ A -+ X -+ E with A finite and E 
elementary. If x E X, then char(X)' x maps to 0 in E; hence lies in A. 

(2) If f E (p, T) and x E X, then px = fjx for some i, j with 0 < i <j. 
Since 1 - f j- i E A x, fix = O. In particular, pOx = T"x = 0 for some n. Since 
(p, T)2" ~ (p", T") and since X is finite, (2) follows. 

(3) Let Xl' ... , Xm be a set of generators for X, and let J;Xi = giXi = 0, 
where, for each i, J; and gi are relatively prime. The finite (by 13.10) module 
tfjA/(};, gJ maps surjectively onto X, which is therefore finite. 0 
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For each height one prime ideal p = (f), let AI' be the localization of A at 
p (so Ap = S-IA with S = A - p). 

Lemma IS.18. Let X ~ tfJA/Ut') as above. Then 

X ®A AI' = EB Ap//;miAp. 
(/;)=p 

Proof. There is an exact sequence 

O-+A-+X-+E-+B-+O 

with A, B finite. Since localization preserves exact sequences (see, for exam
ple, Atiyah-Macdonald [1, p. 39]), 

0-+ A ® Ap -+ X ® Ap -+ E ® AI' -+ B ® Ap -+ 0 

is exact. Let 9 E (p, T) with 9 ¢ p. Since A is finite, gn A = 0 for some n > O. It 
follows that A ® Ap = 0, since 9 is a unit in Ap. Similarly, B ® Ap = O. Iff is 
irreducible and (f) # p, then fm(Aju m )) = 0, so tensoring with Ap removes 
these terms. This proves the lemma. 0 

Corollary IS.19. E is uniquely determined by X (of course, if we allow reducible 
/;, then we can use Lemma 13.8 to replace E with other modules; but all yield 
the same characteristic polynomial). 

Proof. Ap is a principal ideal domain (the ideals are powers of (f)), so the 
uniqueness of the exponents mj follows from the uniqueness part of the 
structure theorem for finitely generated modules over a PID. 0 

Corollary IS.20. X is finite if and only if X ® Ap = 0 for all height one prime 
ideals p. 

Proof. X is finite if and only if the corresponding E is O. o 
Proposition IS.21. A map X I -+ X 2 between finitely generated torsion A
modules is a pseudo-isomorphism if and only if the induced map Xl ® Ap-+ 
X 2 ® Ap is an isomorphism for all height one prime ideals p. 

Proof. This follows immediately from the exactness of localization and 
Corollary 15.20. 0 

Proposition IS.22. Let 0 -+ X I -+ X 2 -+ X 3 -+ 0 be an exact sequence of finitely 
generated A-modules. Then 

char(Xd' char(X3 ) = char(X2 ). 

Proof. This follows immediately from Lemma 15.18 and the corresponding 
result for modules over a PID. 0 

Lemma 15.23. Let r/!: X -+ tfJ p (X ® AI') be the natural map. Then Kerr/! is 
finite and is the maximal finite submodule of X. 
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Remark. It follows immediately from Lemma 15.18 that X ® Ap = 0 if 
P J char(X), so the sum over p is actually a finite sum. 

Proof. Any finite module is contained in Ker r/I by Corollary 15.20. Since A is 
Noetherian and X is finitely generated, Ker r/I is finitely generated. It is 
therefore finite by Corollary 15.20. 0 

Define 

ti(X) = Homzp(Coker r/I, Op/7L.p). 

The action of A is given by (yf)(x) = f(y-l x) for y E r and x E Ker r/I, hence 
(g(T)f)(x) = f(g«1 + T)-l - l)x) for g(T) E A. 

It is convenient to twist this action. Consider the involution 

't":A-+A 

g(T)t--+ g«1 + T)-l - 1) = g(T). 

If X is any A-module, let X be X with a new action of A: 

g(T) * x = g(T)x. 

This corresponds to y * x = y-I X for y E r. Note that 

't": Mf) -+ A/(j) 

is an isomorphism of A-modules since g(T) * h(T) = g(T)h(T) maps to 
g(T)h(T). Define 

IX(X) = ti(X). 

This is called the adjoint of X. 
The definition of IX(X) does not lend itself readily to computation, so we 

use another approach and show the results are the same. For a fixed X, define 
an admissible sequence to be a sequence uo, U I' ... of elements of A such that 
Un and char(X) are relatively prime, Un -# 0 (this condition is not redundant 
for finite X), and Un+l/Un E (p, T) for all n ~ O. Note that 

1 1 I 
-Ac-Ac-Ac··· 
Uo Ul u 2 

and 

Proposition 15.24. The map 

¢>: X ®A (U ~A) -+ EB (X Q9A Ap) 
Un p 
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is an isomorphism of A-modules (the direct sum is over any set of p containing 
all (height one) prime divisors of char(X) and such that an E A; for all nand p). 

Proof. Note that every element on the left can be written in the form x (8)~. 
an 

Suppose ¢J (x ® ~J = 0. Multiplying by an' we find that x ® 1 = ° in 

X (8) Ap for all p. Therefore x E Ken/!, which is finite. Lemma 15.17 implies 
that (an+a/an)x = ° for some a ~ 0, so 

Therefore ¢J is injective. 
1 

Let p = (f) and let x ® - E X ® Ap. To prove that ¢J is surjective, it 
11 

suffices to show that (0, ... , x ® ~, ... ,0) E 1m ¢J. Let A E A be such that 

AX = ° but A#-O (for example, a suitable multiple of char(X) will work 
by Lemma 15.17). Write A =fbAI with fnl' Let Y = AIX/Ail1X. Then 
(AI l1,fb) Y = 0. Since (AI l1,fb) has finite index in A by Lemma 13.7, and since 
Y is finitely generated, Y is finite. Therefore ae Y = 0 for some c ~ 0, so 
aeAIX = Ail1Y for some Y EX. In X ® Ap , 

I 2 1 1 
AIy(8) = All1Y®,~ = x(8)-. 

ae It l11ac 11 

In X (8) Aq with q #- p, 

Therefore ¢J is surjective. o 

Applying X ®A to the exact sequence 

yields 

Therefore 

Coker", ~ X ®A( U ~n A)/ A. 
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If (Tn = (T - n)n with n E pZp, then 

U ~A = A[_l_J = Zp((T - n)), 
(Tn T - n 

where the last term is the ring of Laurent series with only finitely many 
negative exponents. Note that A = Zp[[T]] = Zp[[T - n]]. 

Proposition 15.25. Assume f E A, n E pZp, and f(n) # O. Then 

A/(f) ~ Homzp ( A/(f) ® A[T ~ nJI A,iQp/Zpr 

~ a(A!(f)). 

Proof. By the above, the middle term is Homzp(Coker 1/1, iQp/Zp)-, which 
equals rx(A!(f)) by definition. So it remains to prove the first isomorphism. 

For g = L,'{:,,-Nai(T - n)i with ai E iQp, define ResT="g = a_to Define a 
pairing 

A/(f) x [ A/(f) ® A [T ~ n JI A J -+ iQp/Zp, 

(a, b ® c) = Res T =" (a;c) (mod Zp). 

We have let a, b denote lifts of a, b to A and c denote a lift of c to 
A[l/(T-n)]. Note that f(T) Ef(n)(l +(T-n)iQp[[T-n]]), so abc/fE 
iQp((T - n)). It is straightforward to check that the pairing is independent of 
the choices of lifts and hence is well defined. 

Fix a and suppose (a, b ® c) = 0 for all b, C. Write a/f = ao + at (T - n) + 
... with ai E iQp. Let b = 1 and c = (T - nri. Then ai- I = (a, b ® c) = 0, so 
aH E Zp for all i ~ 1. Therefore a/f E A, so a = 0 in A!(f). 

Now fix b ® c and suppose (a, b ® c) = 0 for all a. Write bc/f = R + H, 
where 

and 
H = bo + bl (T - n) + .... 

Letting a = (T - n)i with i ~ 0 yields b_ i - I E Zp. Therefore Rf also has coeffi
cients in Zp. Since the same is true for bc, it follows that Hf = bc - Rf has 
coefficients in Zp, so Hf E A. Therefore 

b ® c = 1 ® bc = 1 ® (bc - Hf) (in A/(f) ® A [ T ~ n JI A) 

= 1 ®Rf 

=f®R = O. 

Therefore the pairing is nondegenerate. 
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The following lemma is true in much more generality, but we only need it 
in the form given. 

Lemma 15.26. Suppose A and Bare Zp-modules with A ~ Z;. Assume there is 
a nondegenerate pairing 

Then A ~ Homl)B, Qp/Zp). 

Proof. Let (a, b) denote the pairing. For bE B, define rA,: A -+ Qp/Zp by 
fh(a) = (a, b). The nondegeneracy implies that there is an injection B c:... 
Hom(A, Qp/Zp) given by b t-+ fh. Similarly, A c:... Hom(B, Qp/Zp). Let I/! E 
Hom(B, Qp/Zp). ~ince Qp/Zp is an injective Zp-module, I/! extends to a 
homomorphism I/!: Hom(A, Qp/Zp) -+ Qp/Zp. The natural map 

A -+ Hom(Hom(A, Qp/Zp), Qp/Zp) 

given by a t-+ "tP t-+ tP(a)" is an isomorphism (verify it first for A = Zp). There
fore there exists a E A such that lfi(tP) = tP(a) for all tP E Hom(A, Qp/Zp). In 
particular, I/!(b) = lfi(tPb) = fh(a) = (a, b) for all b E B. Therefore the map A c:... 
Hom(B, Qp/Zp) is surjective. 0 

The lemma shows that the modules in the statement of the proposition are 
isomorphic as Zp-modules. To finish the proof of the proposition, we must 
examine the A-action. Let a and b ® e be as above. Then yoa = (l + T)a and 
yo(b ® c) = (1 + T)b ® e, so (Yo a, b ® c) = (a, yob ® c). Therefore 

(Yot tPaHb ® c) = tPa(Yo(b ® e)) = (Yo a, b ® c) = tPyoa(b ® c), 

so g(T)tPa = tPg(T)a for all g E A. This completes the proof of Proposition 15.25. 
o 

Corollary 15.27. If E is an elementary torsion A-module, then E ~ aCE). 0 

Proposition 15.28. (i) a(X) has no nonzero finite A-submodules. 
(ii) If X is finite, then a(X) = O. 

Proof. (i) It suffices to work with !leX). Choose n EpA such that {(T - n)n} 

forms an admissible sequence for X. Suppose tP E Hom ( X ® A [T ~ n JI A, 

Qp/Zp) lies in a finite A-submodule. Since 

~ = (1 + T)-1 - n E (p, T), 

we have (~)"tP = 0 for large n. Let b ® e E X ® A[T ~ nJI A. Then 

b ® e = (T - n)nb ® e/(T - 'Tt)n, and -----o = «T - n)ntPHb ® e/(T - n)") = tP(b ® c). 

It follows that tP = o. 
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(ii) If X is finite, then (T - n)n X = 0 for large n, so X ® 11..[ T ~ n JI A = O. 

o 
Proposition 15.29. An exact sequence 0 -+ X -+ Y -+ Z -+ 0 of finitely gener
ated torsion A-modules induces an exact sequence 

0-+ IX(Z) -+ IX(Y) -+ IX(X) -+ finite. 

Proof. It suffices to work with a(X), a(Y), and a(Z). Consider the diagram 

0----+ ----+ 0 

o ----+ EElpX ® Ap ----+ EElp Y ® Ap ----+ EBpZ ® Ap ----+ O. 

The bottom row is exact because localization is exact. The Snake Lemma 
yields an exact sequence 

Ker IjIz -+ Coker IjIx -+ Coker ljIy -+ Coker IjIz -+ O. 

Applying Hom z)-, ((Jlp/Zp), which preserves (but reverses) exact sequences 
because ((Jlp/Zp is an injective Zp-module, yields the result, since Ker IjIz is 
finite by Lemma IS.23. 0 

Proposition 15.30. Let X and Y be finitely generated torsion A-modules with 
X '" Y. Then IX( Y) '" IX(X). 

Proof. There is an exact sequence 

O-+A-+X-+Y-+B-+O 

with A and B finite. From Proposition IS.29, 

0-+ IX(X / A) -+ IX(X) -+ IX(A) 

is exact, and Proposition IS.28 implies IX(A) = O. Also, 

0-+ IX(B) -+ IX( Y) -+ IX(X / A) -+ finite 

is exact and IX(B) = O. Therefore IX( Y) '" IX (X / A) ~ IX(X). o 

Corollary 15.31. X '" IX(X), and IX(X) is also a finitely generated torsion 11..
module. 

Proof. By Theorem 13.12, there is an elementary A-module E with X '" E. By 
Corollary IS.27 and Proposition IS.30, X '" E ~ IX(E) '" IX(X). Since X is 
finitely generated A-torsion, it follows immediately that the same must be 
true for IX(X). 0 

Let {un} be an admissible sequence for the module X. We can take 
I!!pX/unX with respect to the maps 
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Proposition 15.32.I!!pX/unX ~ X ®A( U ;" A/A), so 

iX(X) ~ Homzp(l!!p X/Un X, Qp/Zp). 

Proof. We have 

X/U"X ~ X ® (A/unA) ~ X ® G" A/A ). 

The maps X /u"X -+ X /un+1 X correspond to the natural inclusions ~ A/A c... 
u" 

1 - AlA. Therefore 
Un +1 

lim X/Un X ~ lim X ® (~A/A) 
-+ -+ U" 

~ X ®1!!PGn A/A) 

~ X ® (U ;n A/A) 

(we have used the fact that direct limits commute with tensor products; 
see Atiyah-Macdonald [1, p. 33]). 0 

Let Koo/K be the cyclotomic Zp-extension of a number field K. Let An be 
the p-part of the class group of Kn. In Sections 13.5 and 13.6, we considered 
lim An with respect to the natural maps An -+ An+1 • Let L" be the Hilbert 
-+ 

p-class field of K", so 

via the Artin map. Also, 

X = limXn = limAn' +- +-

where the first limit is with respect to the restriction maps and the second is 
with respect to the norm maps (see Section 13.3). By Lemma 13.8, there is an 
index e and a submodule Ye £: X such that 

A" ~ Xn = X/vn,e Ye 

for all n ~ e, where 

V",e = «1 + T)P" - 1)/«1 + TY" - 1) 
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is the norm from Kn to K •. In fact, e is any index such that all ramified primes 
in Koo/K. are totally ramified. 

Lemma 15.33. For n ~ e, the natural map An ~ An+l corresponds to the map 

X/vn .• Y. ~ X /vn+l.. I:, 

given by x H vn+l.nx. 

Proof. Let x E X, so for each n ~ e there exists In E An such that 

x (mod vn .• I:,) = [In,Ln/Kn] E Gal(Ln/Kn), 

where [In, Ln/ Kn] denotes the Artin symbol and Norm(In+l) = In. The map 
An ~ An+l corresponds to the map [In,Ln/Kn]H[ln,Ln+l/Kn+l] on Artin 
symbols. We have 

[In, Ln+l/Kn+l] = [Norm(In+l), Ln+l/Kn+1 ] 

n [01n+l,Ln+dKn+l] 
aE Gal(Kn+ .lKn) 

= n O'[ln+l' Ln+l/Kn+l]O'-l 
a 

= (Vn+l.n)[ln+l,Ln+l/Kn+l] 

(recall that Gal(K n +1 / Kn) acts on Gal(Ln +1 / Kn+d by conjugation) 

Proposition 15.34. X '" Hom.zp(l!.!p An' Qp/Zp). 

Proof. The exact sequence 

o ~ Ye/vn .• Ye ~ X/vn .• Ye ~ X/I:, ~ 0 

yields the exact sequence 

o ~ l!.!p Ye/vn .• Y. ~ l!.!p An ~ l!.!p X/Y. ~ 0 

o 

(direct limits preserve exact sequences; see Atiyah-Macdonald [1, p. 33]). 
Since X/Ye ~ Ae is finite, vm.nX/Y. = 0 for m ~ n ~ e with m - n sufficiently 
large. Therefore lim X/Y. = O. From Proposition 15.32, 

~ 

Hom(l!.!p Ye/vn.eYe,Qp/Zp) = a(y.). 

Since Y. '" X, we have X", a(X) '" a(y.). This implies the result. 0 

Now let F be a totally real field, p be an odd prime, K = Ko = F((p), and 
~ = Gal(K/F). Let Moo be the maximal abelian p-extension of Koo unram
ified outside p, and let:roo = Gal(Moo/Koo). In Proposition 13.32, we showed 
that 
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where i + j == 1 (mod Id/), i is odd, and i ¥= 1 (mod Id/). Here Aoo = l!!p An' as 
above, ei and ej are the idempotents in Zp[d], and (ej~oo)( -1) is a twist of 
ej~oo· 

The same proof as above yields the following. 

Proposition 15.35. Let the notation be as in Proposition 13.32. Then 

e;X '" Homzp(l!!p elAn, Op/lLp). 

The proof of Proposition 15.34 also shows that 

Homzp(l!!p elAn' Op/lLp) ~ a(el Y.,). 

o 

By Proposition 15.28, this has no nonzero finite submodules. Proposition 
13.32 yields the following (compare with Proposition 13.28). 

Proposition 15.36. Let the notation be as in Proposition 13.32. Then ej~oo has 
no nonzero finite submodules. 0 

Finally, we arrive at the primary goal of this section. 

Proposition 15.37. Suppose eiX has characteristic polynomial f(T). Then 

Homzp(l!!p elAn' Op/lLp) 

has characteristic polynomial f«1 + Tfl - 1) and el-I~ has characteristic 
polynomial f(K(1 + T)-l - 1) (where K E 1 + pZp is defined by YoCp" = C;. for 
all n). 

Proof. The first statement follows from Proposition 15.35 and the definition 

of the action of A on elX. For the second, note that if Yo acts on elX as 

(1 + T), then it acts on (e;X)(l) ~ ej~oo by K(1 + T)-1, from which the result 
follows. 0 

§15.6. Technical Results from Iwasawa Theory 

In this section we prove some technical results from Iwasawa theory, follow
ing the treatment given in Rubin [7]. Proposition 15.38 will show that the 
cyclotomic units, the local units, and the class group are well behaved with 
respect to their A-structure. As usual, the global units and the global units 
modulo cyclotomic units are more troublesome; they will be treated in Prop
ositions 15.40 and 15.42. 

First, we review some notation: 

p = an odd prime; 
Yo = a generator of r = Gal(O(Cp.,)jO(Cp»; 
Pn = (1 + T)P" - 1 = yG" - 1 (under the identification Yo = 1 + T); 
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rn = the subgroup of r of index pn; 
Mr. = {m E Mlyg"m = m} = Ker(M ~ M), where M is a A-module; 
M/Pn = M/PnM = Coker(M ~ M); 
X = wi = a nontrivial even character of Gal(Q('p)/Q). 
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In the literature, M/Pn is often denoted Mr •. It is the maximal quotient of M 
on which rn acts trivially. 

Proposition 15.38. Let Ci, Xn, Ui, and Xn be as in Section 15.4. Then 

BxC1/Pn ~ BxCi, 

BxX/Pn ~ BxXn, 

B/'Ioo/Pn ~ B/l"n· 

Proof. The result for An ~ Xn follows from Proposition 13.22 and that for C1 
from Proposition 8.11, as in Section 13.8. Section 13.5 treats PIoo. The result 
for U1 is Proposition 13.54. 0 

Lemma 15.39. Let 0 -+ Ml -+ M2 -+ M3 -+ 0 be an exact sequence of A
modules. 

(a) Ker(MdPn -+ M 2 /Pn) ~ M~·/Im M~·. 
(b) If M3 is a finitely generated A-module and M3 /Pn is finite, then M~· is 

finite. 

Proof. Consider the diagram 

O~Ml~ M2~ M3~O 

j j j 
O~ Ml~ M2~ M3~O 

where the vertical maps are multiplication by Pn = yC" - 1. Note that Mr· = 
Ker(Mi~ MJ The Snake Lemma yields an exact sequence 

M~· -+ M~· -+ M1/Pn -+ M2 /Pn. 

This proves (a). Now assume that M 3 /Pn is finite. The exact sequence 

o -+ M~· -+ M3 ~ M3 -+ M3/Pn -+ 0 

implies that char(M~·) = char(M3 /Pn ) = 1 (use Proposition 15.22; note that 
M3 is A-torsion since M 3 /Pn is finite). Therefore M~· is finite, by Lemma 
1~1~ 0 

Proposition 15.40. There is an ideal m: s; A of finite index such that, for all n, 
m: annihilates the kernel and cokernel of the natural map Bx E 1 / Pn -+ Bx Ei. The 
orders of these kernels and cokernels are bounded independently of n. 
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Proof. From Corollary 13.6, Lemmas 15.16 and 15.39, and Proposition 15.38, 
we have a commutative diagram 

GxXrn/Imq"~n----+ Gx(Vl'/E1)/Pn~ Gxq"OC!/Pn----+ GxX/Pn----+ 0 

j.. j j 
The second and third vertical maps are isomorphisms by Proposition 15.38. 
An easy diagram chase shows that 

KertPl = Ker1t l · 

Since GxX/Pn ~ GxXn is finite, Lemma 15.39 implies that GxXrn is finite. Let 
GxXfinite be the maximum finite A-submodule of GxX. Then GxXr n £; GxXfinite. 
By Lemma 15.39, KertPl is a subquotient of GxXfinite and hence is of finite 
order bounded independently of n. 

Now consider the commutative diagram 

Gx(Vl'/E1)rn----+ GxE'f/Pn~ GxVl'/Pn----+ Gx(Vl'/E'f)/Pn----+ 0 

j., j j., 
We have 

Ker1t2 ~ KertP2· 

We claim that Gx(Vl'/Ef)/Pn is finite. Assuming this, we find that KertP2 is a 
subquotient of (Gx Vl'/Ef)finit •. The Snake Lemma (to apply it we should 
replace exEf by its quotient by KertP2) implies that Ker1t l ~ Coker1t2' 
hence Coker 1t2 ~ Ker tPl' which is a subquotient of GxXfinit •. Lemma 15.17 
implies that there is an ideal ~ £; A of finite index that annihilates 

Putting all the above together, we find that U annihilates Ker 1t2 EB Coker 1t2' 

as desired. 
To prove the claim, note that we have a surjection Gx(Vl'/Ci)/Pn -+ 

ex(ul'/Ef)!Pn. By Theorem 13.56, Gx Vl'/Ci ~ A/(fx)' where fx = f((1 + p) x 
(1 + T)-l - 1, X), and f(T, X) gives the p-adic L-function. Therefore 

GiVl'/Cil/Pn ~ A/Ux,Pn)· 

The roots of Pn are '~n -1 with 0 5,j < pn. Theorem 7.10 says that 

f('~(l + p'f - 1, X) = L,,(s, xI/I1), 
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where (pn = t/ln(l + p) is a primitive pnth root of unity. Therefore 

fx((~n - 1) = f((;.1(1 + p) - I,X) = L p(l,xt/I;;i)"# 0 
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by Corollary 5.30. Therefore fx and Pn have no common roots. By Lemma 
13.7, A/(fx' p.) is finite, which yields the claim. This completes the proof of 
Proposition 15.40. 0 

Lemma 15.41. There is an exact sequence 
- 6 o -+ IlxE'l -+ A -+ finite -+ O. 

Proof. We have IlxE'l £ Ilx Ut' ~ A by Theorem 13.54. Since A is Noetherian, 
IlxE'l is finitely generated and torsion-free. By Theorem 13.12, there is a 
pseudo-isomorphism IlxE'l '" A. Since IlxE'l is torsion-free, it has no finite 
A-submodules, so the pseudo-isomorphism is an injection. This proves the 
lemma. 0 

Remark. Lemma 5.27 shows that there is a subgroup of finite index in En 
isomorphic to Z[Gal(K./IO)]/(Lg), where the sum is over the elements of 
Gal(Kn/lO). This implies that the Nth power map, with N equaling this finite 
index, maps E. modulo roots of unity injectively into this quotient of the 
group. Moreover, the co kernel is finite. Since Ilx(Lg) = 0 when X "# 1, we see 
that Lemma 15.41 shows that for the x-part this consequence of Lemma 5.27 
holds in the limit. 

Proposition 15.42. Let ~ be as in Proposition 15.40 and let IX E ~. Let 

hx = char(llxEf ICf'). 

For each n ~ 0 there is a map 

();: IlxEi -+ A. = AlP. 

such that 

(};(Ili:::j) = IXhxA •. 

Proof. The map () in Lemma 15.41 induces an exact sequence 
- - 6 -

0-+ IlxE'l/Cf' -+ AI(}(llxC,(,) -+ finite -+ O. 

Let 11 be as in Lemma 13.55. Then IlxC'(' = Allx11, so (}(llxC'(') is the principal 
ideal generated by (}(llx'1). In particular, IlxE'l/C,(, is pseudo-isomorphic to 
A/((}(llx11)). Therefore hx and (}(llx11) differ by a unit of A. 

Let 1I:n: IlxE'l I Pn -+ IlxEi be the natural map. By the choice of IX, IX Ker 1I:n = 
o and IX Coker 11:. = O. Let (}n: IlxE'l/Pn -+ An be induced by (). Since An has no 
Zp-torsion and Ker 1I:n is finite, 

Ker 1I:n £ (llxE'l I Pn)finite £ Ker (}n· 
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Let u E f./1,[,IPn. Define 

Since 0( Coker 1tn = 0, we have o(u E 1m n., so there exists v with nn(v) = O(U. 
Since Ker nn ~ Ker en' en(v) depends only on O(U, so e; is well defined. 

We have 

e:(f.i~~) = ()n(O(f.J:,fIPn) (since nn: o(f.xCflPn -+ o(f.xC~ is surjective) 

= O(hxAn, 

as desired. o 
Proposition 15.43. Let X = 1 (so f.x = f.o)' Then f.oE~/C~ = 1 for all n ~ 00. 

Also, f.oX. = 0 for all n < 00, and f.oX = 0. 

Proof. Let lEi. be the unique subfield of Q«(pn+l) of degree pn over Q. Corol
lary 10.7 says that the class number of IEin is not divisible by p. Since (p - l)f.o 
is the norm from I01((pn+l) to IEin, BOXn = 0 for all n, and hence BoX = 
1i!P f.OXn = O. 

The calculations in Section 8.2 show that the index of Norm(C") in the 
units of IEin is the class number of lEi., hence is prime to p. Therefore the index 
of Norm(C")(P-I)2 is prime to p. Since this last group is contained in BoC~, it 
follows easily that BoE~ = BoC~ for all n < 00, and therefore also for n = 00. 

o 

Proposition 15.44. Let X be arbitrary (including X = 1). There exists a constant 
c > 0 such that 

c- 1 [BxE~ : cxCn ~ IA/(Pn, hx)1 ~ c[cxE~ : cxCn < 00 

for all n < 00. 

Proof. The case where X = 1 follows immediately from the previous proposi
tion. Assume now that X #- 1. From the proof of Proposition 15.42, there is 
an exact sequence 

0-+ f.xE,[,ICf -+ A/(hx) -+ F -+ 0, 

with F finite. By Lemma 15.39, this yields an exact sequence 

Ff n -+ f./E,[,ICf)1 Pn -+ A/(hx' Pn) -+ F I Pn -+ O. 

Therefore there is a constant C1 > 0 (for example, C1 = IFI) such that 

clllciEl'/Cf)IPnl ~ IA/(hx,Pn)1 ~ cllcx(E,[,ICf)IPnl. 

Consider the exact sequence 1 -+ f.xCf -+ E'[' -+ E,[,ICf -+ 1. Applying the 
Snake Lemma, as in the proof of Lemma 15.35, yields the top row of the 
following commutative diagram: 
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f-J:'('/Pn -+ f-J!''('/Pn -+ f-AE,(,/C,(,)/Pn -+ 1 

1 1 1 
1-+ f-xC~ -+ f-xE~ -+ f-xE~/C~ -+1. 

The first vertical map is an isomorphism by Proposition 15.38. An easy 
diagram chase shows that the kernel and cokernel of the third vertical 
map are isomorphic to those of the second vertical map, which have order 
bounded independently of n by Proposition 15.40. It follows that there exists 
C2 > 0 such that 

c21IexE~/C~1 ~ I f-x(E,(,/C,(,)/Pn I ~ c21f-xE~/C~1 < 00. 

Letting c = c, C 2 yields the proposition. o 

Proposition 15.45. Let X be arbitrary and let f-xX ~ li!!t f-xAn '" EI1~=l A/(/;) 
with h E A. There is an ideal ~ c;; A of finite index with the following prop-
erty: For each ex E ~ and for each n, there are ideal classes <£" ... , <£k E f-xAn 
such that the annihilator Ann(<£;) C;; An of <£i in f-xAn/(An<£, + ... + An<£i-l) 
satisfies ex Ann(<£;) C;; hAn. 

Proof. There is an exact sequence 

f-xX ..... EI1A/(/;) ..... F ..... 0 

with F finite. Tensor this sequence with An = AIPn to obtain 

f-xXI Pn ..... EI1 An/(/;) ..... F I Pn ..... O. 

Let ~ be the annihilator of F and let ex E ~. The element 

(0, ... , ex, . .. ,0) E EI1A/(h) 

with ex in the jth place maps to an element of exFIPn = 0, hence comes from 
an element <£j E f-xXn. Suppose g E Ann(<£). Then g<£j E A<£, + ... + An<£j-', 
hence it maps to g(O, ... , IX, •.. ,0) = (*, *, *,0, ... ), so gex E hAn, as desired. 0 

Remark. It is possible to obtain classes <£i that do not depend on the choice 
of IX. See Rubin [7]. 

Finally, we prove a result, based on the Cebotarev Density Theorem, that 
will be used in place of Proposition 15.4 from Section 15.2. The advantage is 
that the degree of the field is not required to be prime to the order of the class 
group. This is of course important for applications to Iwasawa theory. 

Suppose F is a Galois extension of 0 with G = Gal(FIO). Let t be a 
rational prime that splits completely in FlO. Fix a prime A. of F above t and 
a primitive root s modulo t. Then s is also a primitive root mod aA. for each 
a E G. Let K E F X be relatively prime to t and let a E G. Define a" = ind,,;.{K) E 

7l./(t - 1)71. by 
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/C == sa. (mod CTA). 

Let 

ind,,(/C) = L inda,,(/C)CT E Z/MZ[G]. 
a 

This of course depends on the choice of t and s. Similarly, for arbitrary /c, let 
ba = va,,(/C) = the CTA-valuation of /c, and 

v;.(/C) = L baCT E Z[G]. 
a 

Lemma 15.46. ind;. and VA are Z[G]-homomorphisms. 

Proof. Let 1: E G. Then 1:(/C) == sa. (mod 1:CT2), so ind,,(1:/C) = L aa 1:CT = 1: ind,,(/C). 
Similarly, ba = vta,,(1:/c), so v,,(1:/c) = Lba1:CT = 1:V,,(K). 0 

The following result, due to Rubin, has the advantage of being applicable 
when the order of G is divisible by p. This of course will be needed for 
working with p-power cyclotomic fields in the next section. 

Proposition 15.47. Let p be an odd prime. Let m ~ 1, F = Q('mt, and G = 
Gal(F/Q). Let (t be an ideal class of F of order a power of p, let M be a power 
of p, and let L ~ 1. Suppose we have a finite 7L [G]-module 

We P/(FX)M 

and a Z[GJ-homomorphism 

I/!: W -+ Z/MZ[G]. 

Then there are infinitely many primes A of F such that 

(1) A E (t, 

(2) t == 1 (mod ML) and t splits completely in F, 
(3) the A-adic valuation of each WE W is congruent to Omod M, 
(4) there exists u E (Z/ MZ) x such that 

ind,,(w) = ul/!(w) 

for all w E W. 

Proof. Let H be the Hilbert class field of F, so Gal(L/F) is isomorphic 
to the class group of F. Let FML = F('ML)' We first need to identify 
FML(Wl/M) (") H. 

There is a natural map F X /(p)M ~ Ft,d(Ft,dM. Suppose x E P and 
x = yM with y E FML. Since x is real and M is odd, we may adjust y by an 
Mth root of unity and assume y is real. If CT E Gal(FMdF), then CTy = ,y with 
,M = 1. Since FML is abelian over Q (eM is all that is needed), all conjugates 
of yare real, since complex conjugation commutes with Galois elements. 
Therefore' is real. Since M is odd, , = 1, so Y E F. Therefore, fJ is injective, 
so we may regard Was a subgroup of Ft,d(F:fL)M. 
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As in Section 10.2, there is the Kummer pairing (JiM = Mth roots of unity; 
they were called WM in Chapter 10) 

Gal(FMdWl/M)/FML) x W ..... JiM 

given by (0", w) = 0"(W1/M)/W1/M. It is nondegenerate and gives a Gal(FMdQ)
isomorphism 

Gal(FML(Wl/M)/FMd ~ Homz(W,JiM)' 

where 0" E Gal(FMdQ) acts on Hom via (O"f)(w) = O"(f(O"-lW)). We will also 
need the fact that Gal(FMdWl/M)/FMd has odd order. 

Let J be complex conjugation. Since F is real, J acts trivially on the class 
group of F, so J acts trivially on Gal(FMLH/FMd. Since W is real, J acts on 
Hom as -1, hence as -1 on the Galois group. Therefore J acts as both + 1 
and -1 on the quotient group Gal(FMdWl/M) n FMLH/FMd, which is of odd 
order and therefore trivial. Therefore FML(Wl/M) n H s; FML, and hence is 
contained in H n FML. 

Lemma 15.48. Let m, n ~ 1 with min. If K/Q((m) is unramified at all primes 
and K s; O((n), then K = O((m). If K'/O((m)+ is unramified at all finite primes 
and K' s; O((n), then K' = O((m) or O((mt. If K'/O((m)+ is also unramified at 
the infinite primes, then K' = O((m)+. 

Proof. Let p be a prime dividing n/m. Then O((mp)/O((m) is totally ramified at 
the primes above p, so K n O((mp) = O((m). Therefore [K((mp): O((mp)] = 
[K : O((m)]. The lift of an unramified extension is still unramified, so now we 
are in the original situation, but with mp in place of m. Continuing in this 
manner, we find that [K((n): O((n)] = [K : O((m)]. Since K s; O((n), it fol
lows that K = O((m). 

If K' is unramified over O((mt, then K'((m) is unramified over O((m) and 
is contained in O((n). By what was just proved, K'((m) = O((m), so K' s; 
O((m). The result follows easily. 0 

From the lemma, H n FML = F. Therefore FML(Wl/M) n H = F. Fix an 
isomorphism JiM ~ 7L./ M 7L., so we obtain an isomorphism of groups 

Gal(FMdWI/M)/FMd ~ Hom(W,7L./M7L.), 

where we ignore all structure as Galois modules. Let 

t: 7L./M7L.[G] ..... 7L./M7L. 

L agg 1-+ a l · 

Let t/I be as in the statement of the proposition. The homomorphism tt/l: W ..... 
7L./M7L. corresponds to some Yo E Gal(FMdWI/M)/FMd under the above iso
morphism. Since Hand FML(WI/M) are disjoint over F, there exists Y E 

Gal(HFMdWI/M)/F) such that 

and ylH = [(t,H/Fl 
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By the Cebotarev Density Theorem, there exist infinitely many primes 
A. of F of absolute degree 1 such that the conjugacy class of )I in 
Gal(HFML(Wl/M)/F) is that of Frob ... Choose one such A.. We may assume A. 
is unramified in FMdWl/M)/F, hence the A.-adic valuation of each WE W is a 
multiple of M. Since Frob .. IH = [<t, H/F], A. E (t. Since )lIFML = 1, A. splits com
pletely in FMdF. Since A. has absolute degree 1, the prime t below A. splits 
completely in F /0., hence in FMdo.. Therefore conditions (1), (2), and (3) hold. 

Let w E W. Writeind .. (w) = Lagg E Z/MZ[G]. From the definition ofind, 
we have 

a l = t ind .. (w) = o<=>w is an Mth power modA.. 

Let !I' be a prime of FMdWl/M) above A.. By replacing !I' by a Galois 
conjugate if necessary, we may choose !I' such that Frob.se = )10. Then, by the 
choice of )10' 

tl/J(w) = O<=>)lO(Wl/M)/Wl/M = 1 

<=>Frob.se(wl/M) = W l /M 

<=> W is an Mth power mod !I' n FML 

<=> W is an M th power mod A., 

the last equivalence holding because Z/tZ ~ (9F/A. ~ (9FM j(!I' n FML) because 
t splits completely in FML. Therefore 

t ind .. (w) = 0 <=> W is an Mth power mod A.<=> tl/J(w) = O. 

Lemma 15.49. Let M ~ 1 and let A be a group. Let tPl, tP2 E Hom(A, Z/ MZ). 
Suppose, for all a E A, that tPda) = 0 <=> tP2(a) = O. Then there exists u E 
(Z/ M Z) x such that UtPl = tP2. 

Proof. Let a l be such that tPl(ad generates ImtPl. Since, for any n, ntP1(ad = 
0<=>ntP2(a1) = 0, it follows that tP2(ad has the same order as tP1(a l ), so there 
exists u E (Z/MZ)X such that utP1(a1) = tP2(a1). Let a E A be arbitrary. Since 
tP1 (ad generates 1m tP1, there exists x E Z such that tP1 (a) = XtP1 (a1), so 
tP1 (aaiX) = O. Therefore 

o = tP2(aaiX) = tP2(a) - xtP2(ad = tP2(a) - XUtP1 (a l ) = tP2(a) - UtP1 (a). 0 

By the lemma, there exists u E (Z/ MZ) x such that 

t ind .. (w) = Utl/J(w) 

for all w E W. Since W is mapped into itself by G, we may replace w with g-lw 
for any 9 E G and obtain 

tg-1 ind..{w) = t ind..{g-1w) = Utl/J(g-1 W ) = Utg-11/J(w) 

for all 9 E G, w E W. It follows that 

ind .. (w) = ul/J(w) 

for all WE W, as desired. This completes the proof of Proposition 15.47. 0 
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§15.7. Proof of the Main Conjecture 

The proof of the Main Conjecture will in many ways be similar to that of 
Theorem 15.7, except that elements of group rings will be used in place of 
numbers. This is of course what should be expected since the strength of 
Iwasawa theory comes from looking at the structure of various objects not 
simply as groups, but rather also as Galois modules. 

Fix n. We shall use the methods of Section 15.3 to study 

Fn = Q«(pn+l)+' 

Let 

Gn = Gal(FnIQ)· 

Let M be a large power of p and let L be a product of primes, as in Section 
15.3. Starting with an appropriate choice of K(1), we will apply the inductive 
procedure of that section to produce elements K(L) E F X and obtain informa
tion on the structure of the class group of Fn. But first we need a few prelimi
nary remarks. 

Fix a prime A of Fn+ above t. Let ind.\ and V.\ be defined as in the previous 
section. Let X -=F 1 be an even character of Gal(Q«(p)/Q). For technical rea
sons (namely, exK is not defined), we choose e~ E Z[Gal(Q«(p)/Q)] with ex == 
e~ (mod M). Note that exZp[Gn] = exAn = Anex' where An = AI Pn• In particu
lar, ind(e~K) E exAnl MAn' and v(e~K) mod M may be regarded as an element 
of ex Ani MAn· 

Proposition 15.50. Let K(tL) and K(L) be as in Section 15.3. Then 

v .\(e~K(.f L» == - ind).(e~K(L» (mod MAn). 

Proof. Proposition 15.12 implies that Va;.(K(t L» == inda.\(K(L» mod M. The 
result follows from the definition of v and ind, plus Lemma 15.46. 0 

In the proof of Theorem 15.7, we defined r by e~K(L) E (FX)1"" with r 
maximal, and r' by K(L) E «(!)IA)P" with r' maximal. For an appropriate choice 
of A we were able to force r' = r. In the present situation, ind is the analogue 
of pr'. Since there are technical problems with defining an analogue of pr, we 
work only with indo 

Let An be the class group of Q«(pn+1). As in Section 15.3, exAn is the 
X-component of the class group of Fn. Let hx be as in Proposition 15.42 and 
let II' .... he and (t l' ... , (tk be as in Proposition 15.45. Choose a E m: n ~, 
where m: is as in Proposition 15.40 and ~ is as in Proposition 15.45. Assume 
that a is chosen relatively prime to Pm for all m, so Anla is finite. We know 
Anlhx is finite by Proposition 15.44. Choose ho such that pho annihilates both 
AnlaAn and AnlhxAn. hence hxlpho and alpho in An. Let M = IAnlpn+(k+l)ho. 

Consider the relation 



370 15. The Main Conjecture and Annihilation of Class Groups 

from the proof of Theorem 15.7. With the optimal choice of rb, ... , rJ-I' we 
obtained ri = r; for all i and fl .. ·jjlp'O-'J, which is the same as p'jl .. ·jjlp'o. 
Translating this to the present situation, we find that we want 

(?) 

for suitable Aj +1. This is approximately the strategy, though we are forced to 
settle for a slightly weaker statement. 

Note that in the proof of Theorem 15.7 we used the first auxiliary prime 
to obtain ro = rb and fllp'o-". In the present case, we will use Al to get 
ind.l, (,,(1)) to divide hx' but since we do not have an analogue of P", we start 
a step behind. Therefore we shall need an extra auxiliary prime Ak+1. 

Let ,,(1) be the unit in Proposition 8.11 (with n + 1 in place of n). Let 
[I' ... , [k be as above and let [k+1 be any ideal class. We will find primes 
AI' ... , Ak+1 of Fn , lying above rational primes fl' ... , t'k+I' such that for 
1 ::;; i ::;; k + 1, 

(a) Ai E [i' 

(b) t'i == 1 (modMLi_d, where Li- I = t'1 .. ·t;-I' 
(c) ind.l,(Ex,,(Li-dHOj<ijj) divides Exa,ihx in ExAn/MAn. 

We start by choosing AI. The map 0: in Proposition 15.42 induces a map 

"': ExEV(E~)M ~ An/MAn.4 EX Z/M Z [Gn]. 

Proposition 15.47 implies that there is a prime Al E (£:1 and u E (Z/MZ)X such 
that t'1 == 1 (mod M) and 

"'(E~"(l)) == uind.l,(E~"(l)) (modexMAn). 

But Ex,,(1) generates Ei~~, so 

for some v E Anx • Therefore 

Exa,hx == v-luind).,(E~"(I)) (mod ex MAn)· 

This proves (c) for i = 1. 
Now suppose i ~ 1 and we have found primes AI' ... , Ai satisfying (a), (b), 

and (c). 

Lemma 15.51. Let W = ex,,(Li)An/MAn c: Fnx /(F:)M be the multiplicative 
group generated by E~"(Li) and its Galois conjugates. Then the map 

"': W ~ EX An/MAn 

, (L) a,v).,(E~"(Li» 
pex" i 1-+ P Ii ' 

where p runs through An' is a well-defined A-homomorphism. 
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Proof. Suppose that p E An and pexK(L;) = wM for some w E Fnx • Then 

pV",(exK(Li» == V;.,(pexK(L;)) == 0 (mod MAn). 

By Proposition 15.50, V;.,(exK(L;)) == -ind;.,(exK(Li-d) in exAn/MAn. By (c), 
ind;.,(e~K(Li_l» divides e/xihx' which divides exp(1+i)ho, by the choice of hQ • 

Therefore pp(1+io)ho == 0 (mod MAn), so p == 0 (mod Mp-(1+i)hoAn). 
In terms of ideals, we have 

(W)M = (pe~K(L;)) = (V;.,(pe~K(L;))· 2;) (primes above II"" ,ci-I )p(I)pM 

for some ideal I. All the prime ideals on the right must have exponents 
divisible by M, so we may take the Mth root of this equation. Since p == 0 
(mod Mp-(1+i)ho), which annihilates An' IP is principal. Therefore 

where Ann(<£i) is the annihilator of <£i in exAn/(An<£1 + ... + An<£i-d. By 
Proposition 15.45, rxM-1V",(pe~K(L;)) E/;An. Therefore 

rxM-IV;.,(pe~K(L;))//; E An. 

Letting p = M, we immediately deduce that the image of the map'" in the 
statement of the lemma is in fact contained in exAn/ MAn. Returning to 
arbitrary p, we find that if pe~K(Li) E (Fnx )M, then "'(pe~K(L;)) == O. Therefore 
'" is well defined. This completes the proof of Lemma 15.51. 0 

Let Wand", be as in Lemma 15.51. Proposition 15.47 states that there 
exists ..1.i+1 E <£i+1' with IH1 == I (mod ML;), and U E (71./M71Y such that 

"'(e~K(Li)) = u ind",+ I (e~K(L;)) 

in exAn/M An. Therefore 

rx ind;.,(e~K(Li_d) == rxv ;.,(e~K(L;)) == /;"'(e~K(Li)) == /;u ind),,+ I (e~K(L;)) 

in exAn/ MAn. Substituting this into (c) for i yields (c) for i + I. 
By induction, we find that char(exX) = n~=I/; divides rx u1 hx in An/MAn, 

hence in An/pn An. Choose gn E A such that (n~=1 /;)gn == rx U1 hx mod(pn, Pn). 
Since A is compact, there exists a convergent subsequence gn, converging to 
some g E A. Since n (pn" Pn) ~ n (p, T)n, = 0, it follows that char(exX)g = 
rxUI hx' 

Therefore, for any rx E ~ n !B relatively prime to Pm for all m, we have that 
char(X) divides rxk+lhx' Since ~ n!B has finite index in A, both T' and pC are 
in ~ n!B for some c ~ 1. The polynomials rx l = TC - p2c and rx 2 = T' _ p3c 

are relatively prime to each other and to (1 + T)pm - I for all m (they have 
no roots in common), so we obtain the above divisibility using rx l and rx 2 • 

Since A is a unique factorization domain, char(exX) divides hx' Proposition 
15.15 shows that this implies the Main Conjecture. 0 
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NOTES 

One of the themes of this chapter has been the appropriate choice of auxiliary 
primes. For other situations where auxiliary primes have been useful, see G. 
Gras [25], Schoof [2], Wiles [4, §1O], [6], and Taylor-Wiles [1]. 

A version of Proposition 15.4 over Q can be found in Trost [1]. See also 
Kraft-Rosen [1]. 

For another proof of Ribet's converse of Herbrand's theorem, see Harder
Pink [1]. See also Kamienny [1]. For a topological view of Ribet's theorem, 
see Kolster [1]. 

It is possible to apply Kolyvagin's methods to Gauss sums and show 
directly that IA;I equals the power of pin Bl,w-i (see the end of Section 13.6). 
See Rubin [5]. Solomon [1] proves this type of result in some cases where p 
divides the order of the Galois group of the field. 

The theory of adjoints was developed by Iwasawa [8]. Our treatment is 
based on that of Federer [4], which is based on a course oflwasawa. 

Greither [4] uses the techniques of this chapter to prove the main conjec
ture for all abelian number fields, even for p = 2. 

For more on the methods of this chapter, see the papers of Rubin. 



CHAPTER 16 

Miscellany 

§16.1. Primality Testing Using Jacobi Sums 

Suppose n is a large odd number that we want to test for primality. A 
standard procedure is to compute, for example, 2"-1 (mod n). If the answer is 
not 1 (mod n), then n is composite, and if the answer is 1 (mod n), we suspect 
n might be prime. Stronger "pseudoprimality" tests involve checking to see if 

d"-I)/2 == (~) (mod n) for various a, where the right side is the Jacobi symbol, 

which may be computed via quadratic reciprocity (and without factoring n). 
However, none of these tests proves that n is prime. In the following, we 
discuss a method due to Adleman-Pomerance-Rumely [1], and simplified 
by Cohen-H. Lenstra [I], which uses information obtained from certain 
pseudoprimality tests to obtain a very small list for the possible divisors of n 
(see Theorem 16.7). It is then possible to test each of these potential divisors 
and prove primality. 

The pseudoprimality tests used here are implicit in Lemma 16.5 and take 
the form (x + y)" == x" + y" (mod n) when n is prime. It might seem that 
Theorem 16.7 provides a way of factoring composite n by giving a list of 
potential divisors; however, this is very unlikely, since usually such n will fail 
at least one pseudoprimality test and therefore not satisy the hypotheses of 
the theorem. 

The algorithm given below can be improved somewhat. For example, we 
have restricted the power of 2 in the auxiliary number s in order to simplify 
the exposition; also, it is possible to work with s satisfying s > nl/3 (see 
Cohen-H. Lenstra [1]). Versions of the algorithm have proved primality of 
numbers of 200 decimal digits in a few minutes (see Cohen-A. Lenstra [1]). 

373 
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For significantly larger numbers, the method has mostly been supplanted by 
methods using elliptic curves (see Atkin-Morain [1] and Morain [1]). 

Let E be a finite set of odd primes. In practice, each prime in E should be 
small, for example less than to. Assume also that nP- 1 =1= 1 (modp2) for each 
PEE. Choose exponents ap > 0 and let 

t = 2· n pDp. 
peE 

Let 

s = n qVq(t)+l, 

q-llt 

where q runs through primes. In practice, t is chosen so that s > In. If s is 
much larger than In, it is permissible to remove a few primes q from s, as 
long as we still have s > In. Assume moreover that (n, st) = t, since other
wise the primality of n is easily checked. The choice of sand t implies that 

nt == 1 (mod s). 

Our goal is to prove Theorem 16.7, which gives the desired primality test, 
but first we need several preliminary steps. 

The assumption that nP-l =1= 1 (mod p2) for pEE implies that nP- 1 gener
ates (l + pZp)/(1 + p1+DP Zp), since any number congruent to 1 mod p but not 
mod p2 is a generator. For any integer r with (r, p) = 1, we may write 

r P - 1 == (nP-l)'p(r) (modpl+Dp) 

for some integer t per) uniquely determined mod pDp. 
The prime 2 causes slight technical difficulties, which is why we require 

4 ( t. However, the following lemma will allow us to define a suitable t 2(r) for 
rln. 

Lemma 16.1. Suppose there is an integer c with C<n-l)/2 == - 1 (mod n). Then 

v2(r - 1) ~ v2(n - 1) 

for all rln. 

Proof. Let Xr be the order of c mod r. Since c(n-l)/2 =1= 1 (mod r) (note that n is 
odd, hence r #- 2), and cn - 1 == 1 (mod r), we have V2(Xr) = v2(n - t). When r 
is prime, xrlr - 1, so v2(xr ) ~ v2(r - t). Therefore the lemma holds for all 
prime divisors of n, hence for all divisors of n. 0 

If n is prime, half of the integers c from t to n - 1 satisfy the hypothesis of 
the lemma, and in practice it should not be difficult to find such a c. We will 
henceforth assume such a c exists. The lemma implies that for each rln we 
may write 

where k = v2(n - 1) and t 2(r) is determined mod 2. 
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For each rln, choose an integer t(r) such that t(r) == tp(r) (mod pOp) for all 
pEE and t(r) == t 2(r) (mod 2). Then 

rP-l == n(p-l)I(,) (mod p1+0p) 

for all pEE, and also r == nl(,) (mod 2V2(n-l)+I). 

Let q be a prime divisor of s. For each prime plq - 1, fix a Dirichlet 
character Xq,p of conductor q and order pk, where 

k = vp(q - 1) ~ ap. 

Note that the set of such Xq,p' as P runs through the prime divisors of q - 1, 
generates the group of Dirichlet characters mod q. 

We first consider the case of odd p. Choose integers a and b such that 
ab(a + b) :t= 0 (mod p) and (a + b)P :t= aP + bP (mod p2) (this is always possi
ble). Let 

q-l 

J = J(X:,p, X!,p) = - L X:,p(Y)X:,p(1 - y) 
)'=0 

be a Jacobi sum, as in Section 6.1. Let G = Gal(O((pk)/O) and let 

a = f [n~Ju;1 E Z[G], 
x=1 p 
ptx 

where [y] denotes the greatest integer less than or equal to y and Ux: (pk ~ (;k 
is in G. 

Proposition 16.2. Let p be odd and let J (and a and b) be as above. If J~ is not 
congruent to a pkth root of unity mod nZ[(pk], then n is composite. If J~ == ( 
(mod n) with (pk = 1, then 

for all rln. 

Proof. We need three lemmas. 

Lemma 16.3. Assume ab(a + b) :t= 0 (mod p). Let 

Then (n - un )/3 = (uo + Ub - uo+b)a. 

Proof. Let 

1 t pk {x} () = Ii L XU;1 = L Ii U;1 
P x=1 x=1 P 

ptx ptx 
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be the Stickelberger element, as in Chapter 6, where {y} denotes the frac
tional part of y. For (m, p) = 1, we have 

Therefore (n - (In)lJ = tX and 

«(Ja + (Jb - (Ja+b)(J = «a + b - (Ja+b) - (a - (Ja) - (b - Ub»(J = p. 

Multiplying by n - Un yields the result. o 
Lemma 16.4. If (a + b)P ¢ aP + bP (modp2) and ab(a + b) ¢ 0 (modp), then 

Proof. If x == y (mod pk), then xP == yP (mod pHI), so there is a well-defined 
ring homomorphism 

Z[G] -+ Z/pk+1 Z 

L CxUxl-+ L cxx P (modpk+l). 
x x 

Applying this to the relation (ua + Ub - Ua+b)(pk(J) = pkp, we obtain 
p. 

(a P + bP - (a + b)P) L x 1- p 

x;l 
pix 

== pk ~ (ea ~kb)xJ - [~~J -[~~ J)x- p (modpk+1) 

== pk ~ (ea ~kb)X ] - [~~ ] - [~~ J)x-1 (modpHI), 

since xP == x (mod pl. But x l - p runs through all y (mod pk) with y == 1 (mod p), 
and each value of y occurs p - 1 times. Therefore 

p.-1-l 

L x l - p == (p - 1) L (1 + jp) == _pk-l (modpk), 
x j;O 

so the left side of the previous congruence is not divisible by pHI. 0 

Let g(Xq,p) = - L~:l Xq,p(Y)(: E Z[(p., (q] be a Gauss sum, as in Section 
6.1. Extend each Ux E G so that uA(q) = (q. Then, by Lemma 6.2(d), 

J. = g(X:,p)lIg(X:,png(X:,~b)1I 
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Lemma 16.5. Let r be any prime with (r,pq) = 1. Then 

g(Xq,py-a. == Xq,p(r)-r (mod r Z [~, (q, (PkJ). 
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Proof. It suffices to invert q since g(Xq,p) is divisible only by primes above q. 
We have 

q-I 

g(Xq,p)' == (-1)' L Xq,p(Yn~Y (since r is prime) 
y=1 

q-I 

== - Xq,p(rrr L Xq,p(YY(: (change y to y/r) 
y=1 

o 
We now return to the proof of Proposition 16.2. From Lemma 16.5, if n is 

prime then r == Xq,p(n)-nP (mod n), so r is congruent mod n to a pkth root of 
unity. This proves the first statement of the proposition. 

Assume now that n is not yet known to be prime, but that r == ( (mod n) 
with (pk = I. Let u = g(Xq,pt. Then un-a. = J« == ( (mod n), where we are 

working in the ring Z G, (q, (pk 1 For i ~ 1, 

since O'n(O = (n. Letting i = (p - l)pk yields 

unlP ""'-1 == 1 (mod n). 

Now let r be any prime divisor of n. Lemma 16.5 implies that 

I+"'+at IlP - ()-ir'p ( d) = Xq,p r mo r. 

Letting i = P - I yields 

urP I-a!? - I == Xq,p(r)-(p-Ilrp Ip (mod r). 

By Lemma 16.4, {1 acts on the pkth roots of unity via an integer not divisible 
by p. Therefore there exists a pkth root of unity t'/ such that ( = t'/-nP. 

Let t = t(r), so rP-1 == n(p-l)l (mod pHI) and 0'/,-1 = O'~p-l)'. Therefore 

n(p-l)/-r P-1 nCp-ll/-a(p-lll aP - 1-rP - 1 
U =u • u' 

= -p(p-l)/nIP "I ( )(p-l)rp -Ip 
- t'/ Xq,p r 

= (Xq,p(r)/t'/,)(p-Ilrp-IP (mod r). 

Since nP- 1 =1= 1 (modp2), it follows that 

n(p-l)pk - 1 
z = HI =1= 0 (mod p). 

p 
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Since n(p-l)f - rP-1 == 0 (mod pk+l), we have 

(z)(n(p-l)t - rP-l) == 0 (mod n(p-l)pk - 1). 

Therefore 

1 == (Xq,p(r)/'1 ty(p-I)rp
- 1p (mod r). 

But p (z(p - l)r P- 1 and f3 acts via an integer prime to p, by Lemma 16.4. 
Since Xq,p(r)/'1 ( is a p-power root of unity, Xq,p(r)/'1 ( == 1 (mod r). Lemma 2.12 
implies that Xq,p(r) = '1f. Therefore Xq,p(r) = '1 t(r) for all prime divisors r of n. 
Note that '1 is independent of r. Since t(rl r2) == t(rl ) + t(r2) (mod pk), we 
have Xq, p(r) = '1 t(r) for all divisors of n. In particular, Xq,p(n) = '1 tIn) = '1, so 
Xq,p(r) = Xq,p(n)t(r) for all rln. This completes the proof of Proposition 16.2. 

o 

We now consider the case p = 2. Let Xq ,2 be the nontrivial quadratic 
character mod q. By Lemma 6.1 (b), g(Xq,2)2 = Xq,2( -l)q, so g(Xq,2)n-1 = 
(±q)(n-I)/2. 

Proposition 16.6. If q(n-l)/2 ¢ ± 1 (mod n), then n is composite. If q(n-l)/2 == ± 1 
(mod n), then 

for all rln. 

Proof. If n is prime, qn-I == 1 (mod n), so q(n-I)/2 == ± 1 (mod n). 
Assume now that n is not yet known to be prime. By Lemma 16.5, 

g(Xq ,2)r-1 == Xq,2(rrr = Xq ,2(r) (mod r) if r is an odd prime. Also, g(Xq ,2)n-1 = 
(±q)(n-I)/2 == '1 (mod n) with '1 = ± 1, by assumption. 

Let r be a prime divisor of n and let t = t(r). We have 

g(Xq,2)nl -1 == '1 nl - 1 +"'+ 1 == '1t (modn); 

hence 

g(Xq ,2)nl -r == g(Xq,2)nl -l g(Xq,2)I-r == '1 t /Xq,2(r) (modr). 

Let k = v2(n - 1), so 2(n - 1) = 2k +lz with z odd. Since n( - r == 0 
(mod2k+1), and g(Xq,2)2(n-l) == '12 = 1 (modn), we have 

('1(/Xq,2(r)Y == g(Xq ,2)(nl -r)z == 1 (modr). 

Since z is odd and '1(/Xq,2(r) = ± 1, it follows that Xq,2(r) = '1 t (r), The remain
der of the proof is the same as the end of the proof of Proposition 16.2. 0 

Theorem 16.7. Let n, s, and t be as above. Suppose 

(l) q(n-I)/2 == ± 1 (mod n) for all qls; 
(2) J(X:,P' X:,p)a == , (mod n) with ,pk = 1 for all primes qls and all odd primes 

plq - 1 (where k = vp(q - 1) and IJ. are as above and a and b are chosen to 
satisfy the hypotheses of Lemma 16.4); 

(3) there exists c E 71. with C(q-I)/2 == -1 (mod n). 
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Then every divisor r of n satisfies 

r=:n i (mods) 

with 0 ~ i < t. If (1), (2), or (3) fails, then n is composite. 

Remark. The conclusion of the theorem is closely related to the fact that 
n > 1 is prime if and only if every divisor of n is a power of n. 

Proof. Let rln and let qls. Propositions 16.2 and 16.6 imply that xq,k) = 
Xq,p(n)(r) for all plq -1. Since these characters generate the group of Dirichlet 
characters mod q, 

x(r) = x(nl(r) 

for all Dirichlet characters mod q. Therefore r =: n (r) (mod q). 
If q is odd and q2ls, then q E E and q1+aq is the exact power of q dividing s. 

Also, 

rq- 1 =: (nq- 1 )/(r) (mod q1+aq ), 

by the definition of t(r). Consider the isomorphism 

(7L/ql+a.-zy ~ (7L/q7lY (j) ((1 + q7Lq)/(l + ql+aq 7Lq)) 

that sends x to (x, x q- 1). Since rand n/(r) have the same image, r =: n'(r) 
(mod ql+aq ). 

For q = 2, the definition of s implies that 4, but not 8, divides s. We have 
r == n{(r) (mod 4). 

Putting everything together yields r == n'(r) (mod s). Since n' == 1 (mod s), it 
follows that r == ni (mod s) with 0 ~ i < t. 0 

As an example, let n = 48611. Let t = 6. so E = {3}. Since (48611)2 ¥= 1 
(mod 9), this choice is allowed. We have s = 22. 32. 7 = 252. Note that 252 > 
J48611 ~ 220.48. We have 224305 == -1, 324305 == 1, and 724305 == 1 
(mod 48611), so condition (1) of Theorem 16.7 is satisfied, and also condition 
(3) is satisfied with c = 2. It remains to check condition (2). We only need to 
consider q = 7 and p = 3. Let p be a primitive cube root of unity. A character 
X = X7.3 of conductor 7 and of order 3 can be found by choosing the primi
tive root 3 (mod 7) and setting X(3) = p. Then we have X(y) = 1 for y = ± 1, 
X(y) = P for y = ±3, and X(y) = p2 for y = ±2. Let a = b = 1. Then J(x, X) = 
1 + 3p. We have 

IX = [jJ + [23nJO' = 16203 + 324070', 

where 0' is complex conjugation. Therefore 

1" = (1 + 3p)16203(1 + 3p2)32407. 

This may be calculated fairly quickly mod48611 via successive squaring. 
More explicitly, calculate the square of (1 + 3p), then reduce mod n. Repeat 
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this process of squaring until the 213th power is reached. Then multiply the 
appropriate powers corresponding to the base 2 expansion 

16203 = 213 + 212 + 211 + 210 + 29 + 28 + 26 + 23 + 2 + 1. 

This yields 

(1 + 3p)16203 == 46636 + 31749p (mod n). 

The second factor is easily obtained by squaring this, multiplying by 1 + 3p, 
then taking the complex conjugate. We obtain 

(1 + 3p2)32407 == 21206 + 30341p (modn). 

The product yields 

r == p2 (mod n), 

so condition (2) is satisfied. Theorem 16.7 implies that r == ni (mods) for each 
rls, where 0 ~ i < 6. Since n == 227 (mod s), 

r == 1,227,121,251,25, or 131 (mod 252). 

If 48611 is composite, then it must have a factor r ~ J 48611 ~ 220.48. The 
only possible such nontrivial factors are 121,25, and 131. Since these are not 
divisors of 48611, we conclude that 48611 is prime. 

§16.2. Sinnott's Proof That J.l = 0 

Recently, Sinnott [5] gave a new proof that the Iwasawa invariant Jl.p van
ishes for cyclotomic Zp-extensions of abelian number fields (Theorem 7.15). 
He replaced the results on normal numbers with a purely algebraic indepen
dence result (Proposition 16.10 below), which enabled him to work in the 
context of p-adic measures and distributions and to prove that (approxi
mately) the Jl.-invariant of a rational function equals the Jl.-invariant of its 
r-transform. In the present section, we give Sinnott's proof, translated into 
the language of Iwasawa power series, as in Washington [16]. 

First recall the standard notation: p is a prime; q = 4 if p = 2 and q = p if 
p is odd; X is an odd Dirichlet character of conductor f, where f is assumed 
to be of the form d or qd with (d, p) = 1 (i.e., X is a character of the first kind); 
q" = dqp"; i(a) = 10gp(a)/logp(1 + qo) for a E Zp, where logp is the p-adic loga
rithm; (!) = Zp[X(I), X(2), .. . ]; (n) is the prime of (!); A = (!}[[TJ]; K = field of 
fractions of (!); (X runs through the ~(q)th (= 2nd or (p - l)st) roots of unity in 
Zp; (a) is defined for a E Z; by a = w(a) (a), where w is the Teichmiiller 
character; {y} is the fractional part of y E Q; wiT) = (1 + T)pn - 1; and 
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Note that 

L B(y) = B(z) 
py=z(mod Z) 

for any z. 
As in Section 7.5, Jlp = 0 for all abelian number fields if and only if Jll ", = 0 

for all odd Dirichlet characters X :1= w-1 of the first kind, where Jll ", is the 
largest Jl (possibly fractional) such that p-lit f(T, xw) is p-integral (with coeffi
cients in some extension of l!J), where tf(T,xw) E A is the Iwasawa power 
series attached to the p-adic L-function Lp(s, xw). It is possible (see Section 
7.2) to write 

where 

f(T. ) = g(T, xw) 
,XW h(T,xw) 

1 + qo 
h(T, xw) = 1 - 1 + T and 

1 
2g(T,xw) E A. 

Since the Jl-invariant of h is 0, it follows that tf and tg have the same 
Il-invariant. Iwasawa's construction of 9 (Section 7.2) shows that 

~ g(T, xw) == ~ L (1 + qo) {~} - {(I + qo)a}) x(a)(1 + T)i(a)-l 
a(modqn) qn qn 

mod(1t, wn(T» 

for all n ~ O. Since X is odd, we may insert a term qo/2 and mUltiply by 1 + T 
to obtain 

(1 + T)-2~g(T,XW) == 2~ L B(~)x(a)(1 + T)i(a) mod(1t,wn(T». 
a(modqn) qn 

Since wn(T) == pn (modp), this determines the first pn coefficients of tg 
(mod 1t), so 

Ilx'" > 0 = -21 L B (~) x(a)(1 + T)i(a) == 0 (mod(1t, wn(T))) for all n ~ O. 
a(modqn) qn 

Note that i(a) == i(b) (modpn) <=> (a) == (b) (modqpn) <=> «a) - l)/q == 
«b) - 1)/q (modpn). Therefore changing i(a) to «a) - 1)(1 + qo)/q per
mutes exponents modp" and does not affect divisibility by 1t. Consequently, 

Ilx'" > 0 = ~ L B (~) x(a)(l + T)«a)-l)(1+qo)/q == 0 
2 a(modqn) qll 

(mod(1t, wll(T))) for all n 

1 = 2 ~ h:(T) == 0 (mod(1t, wn(T))) for all n, 
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where IX runs through the tfo(q)th roots of unity in 7Lp and 

h:(T) = L B (~) x(a)(1 + T)(,,-la-l)(l+qo)/q (mod wn(T». 
a "',,(q) qn 

a(modqn) 

Since h:+1(T) == h:(T) (mod wn(T)), there exists a power series h,,(T) E A with 
h,,(T) == h:(T) (mod wn(T» for all n ~ O. Therefore 

1 
JJxw > 0 => 2 ~ h,,(T) == 0 (mod n) 

1 
=> 2 ~ h,,«1 + T)q - 1) == 0 (mod n), 

since (1 + T)q - 1 == P (modp). 
Let 

Since /"n+1 (T) == fan(T) (mod wn(T)), there exists a power series /,,(T) E A 
with /,,(T) == fan(T) (mod wn(T)) for all n ~ O. A crucial fact is that fa(T) is a 
rational function. 

Lemma 16.8. 

fa(T) = (1 + qo) L x(a)(1 + T)a(1+qo) 
O<a<qo 

a "',,(q) 

Proof. We have 

- L x(a)(1 + T)a)/(1 + T)qo(1+qo) - 1). 
0<a<40(1+40) 

a "',,(q) 

«1 + T)qo(1+qo) - 1)fan(T) 

== ~ ( B (a ~n qo) - B (:J) x(a)(1 + T)a(1+ 4o) (mod wn(T)). 

Working temporarily in K[T] modwn(T), we have 

= L x(a)(1 + T)a(1+qo) - L qo x(a)(1 + T)a(1+qo) 
0<"<40 0<"<4n qn 

a "',,(q) ,,"',,(q) 

== L x(a)(1 + T),,(1+qo) - L qo x(a)(1 + T)" 
O<,,<qo O<"<qn qn 
"",,,(q) ,,"',,(q) 
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(change a to a(1 + qot1 (mod qn) in the second sum). Also 

~ ({a(1 + qo) - qo(l + qo)} _ {a(1 + qo)}) x(a)(1 + T)a(l+qo) 
a=a qn qn 

== ~ ({a - qO~: + qo)} _ {:J)x(a)(l + T)a 

== L x(a)(l + T)a - (1 + qo) L qo x(a)(1 + T)a 
o <a <qo(1+qo) O<a<qn qn 

a=a(q) a=a(q) 

(we assume qn > qo(l + qo))· Therefore 

«1 + T)Qo(l+ qo) - 1)fr.n(T) == (l + qo) L x(a)(1 + T)a(1+ Qo) 
O<a<qo 
a=a(Q) 

L x(a)(1 + T)a. 
0< a < Qo(l +Qo) 

a=a(q) 
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This congruence is in K[TJ modwn(T). By Gauss's Lemma, it is actually a 
congruence in A mod wn(T). Letting n -+ 00, we obtain Lemma 16.8. 0 

Note that fa(T) is a rational function and 

fa(T) = f-a((l + T)-I - 1), 

since fan(T) satisfies this relation for all n. It is easy to see that 

(l + T)I+qOha«1 + T)q - 1) = fa((l + T)a~ 1 - I). 

Therefore 

Ilx", > o=> Lfa«1 + T)a 1 - 1) == 0 (modn). 
a 

We now need the following. 

Lemma 16.9. For each tf>(q)th root of unity~, let Fa(T) E An K(T). Suppose 

L Fa«1 + T)a - 1) E nA. 
a 

Then there exist constants Ca E (9 such that 

Fa(T) + F_a«1 + T)-I - 1) == Ca (mod nA) 

for aI/IX. 

We prove the lemma below. Assuming the lemma, we find (letting 
Fa = fa -1) that if Ilx'" > 0 then 

fa(T) = tfa(T) + tf-a«1 + T)-I - I) == ba (mod n) 

for some constant ba E (9, for all IX. Let IX = 1. The coefficient of 1 + T in the 
numerator of fl (T) is - X(I) = -1 =1= 0 (mod n). If fl (T) == bl (mod n), then 
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«1 + T)Qo(1+ qo) - 1)bl == (numerator) (mod n), 

which is impossible, since the left side does not have 1 + T to the first power. 
This contradiction proves that Ilx'" = 0 for all X, hence that IIp = 0, as claimed. 

The main tool in the proof of Lemma 16.9 is the following. 

Proposition 16.10. Let k be a field, let Xl' ... , X n , Z (n ~ 1) be indeterminates 
over k, and let YI , ... , Ym (m ~ 1) be nontrivial elements of the group TIi X f 
generated by X I' ... , X n in k(X I' ... , Xn) x • Suppose that YI , ••• , Ym are pairwise 
multiplicatively independent (that is, }'; # 1 for all i, and for i # j we have 
}';a = Y/ if and only if a = b = 0). Then a relation of the form 

rl(YI ) + ... + rm(Ym) = 0 

with rj E k(Z) can occur only if riZ) E k for all j. 

Proof. Enlarge k if necessary so that k x has an element t of infinite order. 
Suppose there is a relation in which not all rj are constant and suppose the rj 
are chosen so that m is minimal. Then no rj can be constant, otherwise we 
could shorten the relation. Since the X's are algebraically independent and 
the Y's are nontrivial, Y1 is transcendental over k. Therefore m ~ 2. Write 

lj = TI Xiij with aij E lL. 
i 

Since Yl and Y2 are multiplicatively independent, the vectors (all'···' and 
and (a I 2' •.. ' an2 ) are linearly independent over Q, so there exists a vector 
(bl , ... , bn) E lLn perpendicular to one but not the other: 

For each j ~ m, let Cj = L aijbi. Changing Xi to Xit b, in the relation, then 
subtracting, yields 

m 

L rj(lj) - rj(ljt Cj ) = O. 
j=2 

Since t has infinite order, C2 # 0, and r 2 is not constant, it follows easily that 
r2(Z) - r2 (Zt'2) ¢ k. Therefore we have a relation of length m - 1, contra
dicting the minimality of m. This proves Proposition 16.10. 0 

Lemma 16.11. Let p be prime and let IF be a field of characteristic p. Let 
ai' ... , an E lLp be linearly independent over Q. Then (1 + T)a" ... , (1 + T)a n , 

regarded as power series in IF«T)), are algebraically independent over IF. 

Proof. Suppose we have a relation 

L bD(1 + T)d,a,+ ... +dnan = 0, bD E IFn, 

where the sum is over n-tuples of non-negative integers and bD = 0 for almost 
all D. Changing (1 + T) to (1 + T)X, with x E lLp, yields the relation 
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L bD(l + T)(d,a,+ ... +dnan)x = 0 for all x E 7L p. 

The exponents d1 a1 + ... + dnan are all distinct by hypothesis, and we claim 
that the maps x 1-+ (1 + T)(d,a, +···+dnan)x are distinct. If Yl' Y2 E 7Lp are distinct 
and pm is the exact power of p dividing Yl - Y2' then 

(1 + T),,'-Y2 = (1 + T pm)(Y'-Y2)/pm = 1 + Yl -:. Y2 TP'" + ... # 1, 
P 

which proves the claim. We may now apply Artin's theorem on linear inde
pendence of characters to conclude that bD = 0 for all D. 0 

We can now prove Lemma 16.9. Let IF = (r)/n(r). The natural map f(T) 1-+ 

](T) from A to IF[[T]] maps K(T) 11 A to IF(T) 11 IF [[TJ]. More precisely, if 
f(T) E K(T) 11 A, we may write b(T)f(T) = a(T) with a(T) and b(T) in (r)[T]. 
By dividing b(T) and a(T) by an appropriate power of n, we may assume 
b(T) # 0; since b] = ii, we have] E IF(T). Regard Fa as an element of IF(T). Let 
A be the additive subgroup of 7Lp generated by the set V of tfo(q)th roots of 
unity. Let a1 , ••• , an be a 7L-basis for A and let '71' ... , "1m (m = ttfo(q» be a set 
of representatives for V modulo ± 1. Let 

Xi = (1 + Tt', i = 1, ... , n; lj = (1 + T)~J, j = 1, ... , m, 

and let 

rj(Z) = F~}Z - 1) + F_~J(Z-l - 1) E IF(T). 

Lemma 16.11 implies that the X's are algebraically independent, and it is 
clear that the r's, X's, and Y's satisfy the hypotheses of Proposition 16.10. 
Therefore Lemma 16.9 follows. 0 

§16.3. The Non-p-part of the Class Number in a 
Zp-extension 

It is natural to ask what happens to the non-p-part of the class number in a 
7Lp -extension. Analogy with function fields (Exercise 7.10) predicts the follow
ing result. 

Theorem 16.12. Let t and p be distinct primes and let L be an abelian extension 
of 11). Let Loo/L be the cyclotomic 7L p-extension of L. Let rn be the exact 
power of t dividing the class number of the nth intermediate field Ln. Then en 
is bounded as n -+ 00. 

The original proof (Washington [7]) used normal numbers as in the proof 
that J1. = 0 given in Section 7.5. The proof we give here is from the appendix 
to Friedman-Sands [1] and is in the style of the previous section. It is 
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basically a variation of the one given by Sinnott [6J, though we avoid the use 
of p-adic measures. 

First, we need some notation. Let q = p if p is odd, q = 4 if p = 2. Since 
any abelian field is contained in ((J!((qpnd) for some n and for some d prime to 
p, it suffices to work with L S ((J!((qd)' Any odd Dirichlet character of Ln can 
be written in the form X or Xt/lm, where X is a Dirichlet character with X( -1) = 
-1 such that pq does not divide the conductor of X, and t/lm has order pm and 
conductor qpm with 1 ::; m ::; n. The main part of the proof will be to show 
that the power of t dividing h(Ln)- is bounded. By Theorem 4.17, 

h(Lnf /h(Ln-d- = Qnwn n n (-tB1.l'l'J, 
l 'l'n 

where 
1 moqpn 

B1•llJln = --n L bXt/ln(b) 
moqp b=l 

is a generalized Bernoulli number (the conductor of X is mo or moq). Therefore 
it suffices to show for each X that tBl.llJln is prime to t for all n sufficiently 
large (depending on X). In the following, we fix X and show this is the case. 

Let (9 = (9l = Z,[X(l), X(2), ... J and let K be the field of fractions of (9. Let 
t be the prime of the algebraic closure of K. 

Choose c ~ 1 large enough that the extension K((pn)/K((pc) has degree 
pn-c whenever n ~ c. This is possible since a prime above t cannot split 
completely in a global cyclotomic Zp-extension, hence must be inert starting 
at a certain level; the present situation lies in the completion of such a 
situation. This can be made explicit using Theorem 2.13. In the following, we 
assume that n ~ max(2c - 1,2), hence n > c. 

Fix X as above of conductor f. Let mo = f if (f, q) = 1 and mo = f/q 
otherwise. Let qn = moqpn. Let ( be a primitive qpnth root of unity. For Y E Z, 
define 

where {x} denotes the fractional part of x (so 0 ::; {x} < 1). 
We have 

((qc-I - l)Ay(() = ~ ({b -q~C-l} - {:J) X(b)(b 

L X(b)(b - qc-l L X(b)(b. 
b .. y(mod pC) qn b .. y(modpC) 
0< b < qc-I 0 <b<qn 

Multiplication by (qc-I - 1 :I: 0 kills the last sum, so it must be O. Therefore 

Ay(O = 1,(0. 
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where 

Since X is odd, f-y(T-') = fy(T). Note that the present situation is very 
similar to what we had in the proof of f1 = O. 

Let z E Z with p (z. When p is odd, tP.(zya = 1 ¢> (z)pa == a (mod qp.) 
for some p - 1st root of unity a¢>(za-,)pa == 1 (modqp·)¢>za-' == 1 
(mod qp.-a). In particular, tP.(1 + qp.-C) is a primitive pCth root of unity. Fix 
a primitive qp·th root of unity ('I'. such that (~:-c = tP.(l + qp.-C). 

Now suppose tP.(z)pc = 1. We may write z == a(1 + qp.-cz ,) (modqp·). 
Since n ~ 2c - 1, (1 + qp.-c)'1 == 1 + z, qp.-c (mod qp.). Therefore 

When p = 2, a similar argument shows that tP.(z)pC = 1 ¢> Z == ± 1 
(mod qp.-C), and we may define ('I'. simi~rly. 

Suppose now that !B"x'l'. == 0 (modt'). Let y == 1 (modp). Then (all con
gruences are mod t) 

0== TraceK('p.)/K(,pC) (21 tP.(yf' L: {~} X(b)tP.(b)) 
0< b<q. q. 

== 1 p.-c L: L: {b} X(b)tP.(by-I), 
2 a b=ay(modqp. C) q. 

0< b < q. 

where a runs through the f,6(q)th roots of unity in Zp. Therefore 

0== 1 I I {~}X(b)(~(ay)" 
2 a b=ay(modqp. C) q. • 

o <b< q. 

Let t == 1 (mod pC). Change y to ty, then apply (Jt: ('I'. 1-+ (~.' This is an auto.=. 
morphism of K«(qp.) over K«(pc) by the choice of c, and the congruence mod t 
still holds. Summing over all such t, we obtain 

0== 1 I I {~}X(bK~~-'Y-' == ~ I AayW- ' ) == ~ Ifay«(. I), 
2 a b=ay(modpC) q. 2 • 2 a 

o <b< qn 

where (= (~:I. 
Fix once and for all a set R' of representatives for the set of roots of unity 

a modulo ± 1. Since f.i(a- ' ) = f-aiC a- '), the above condition becomes 

(*) 

In the remainder of the proof, we only use the case y = 1. 
The following result is useful. 
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Lemma 16.13. Let t I' ... , t. E Zp be distinct mod pM for some M ~ 1. Suppose 
there are a primitive pmth root of unity (pm, with m ~ M + c, and constants 
cl , ..• , C. E (!) such that 

• L Ci(~m == 0 (mod 1). 
i=1 

Then Ci == 0 (mod 1) for all i. 

Proof. The hypotheses imply that (~.;tj ¢ K«(pc) for i -:f. j. Therefore 

o == TraceK(Cpm)/K({P<) (C;!! ~ CiC~m) == pm-cCj , 

so cj == O. D 

Let k = (!) /(1 ("\ (!)) be the residue field of (!) and let k be its algebraic closure. 
Let J1.p " c k be the set of p-power roots of unity and let F be the ring of 
functions from J1.p " to k. Let U denote the function given by U(x) = x for all 
x E J1. p"" For P E Zp' we have uP E F. 

Let {a l , ... , ar } be a Z-basis for Z[ {IX}] = Z[(P_I]' regarded as a subset of 
Zp under some fixed embedding. 

Corollary 16.14. The functions ua" ... , u a, are algebraically independent 
over k. 

Proof. Suppose we have a relation 

L C(d) U La,d, = 0, C(d) E k, 
(d) 

with (d) = (d I' ... , dr ) running through finitely many r-tuples in zr. Since 
ai' ... , ar are linearly independent over Z, the exponents L aA are distinct 
in Zp, hence incongruent mod pM for some sufficiently large M. Take any 
m ~ M + C and evaluate at any primitive pmth root of unity (pm. The lemma 
implies that C(d) = 0 for all (d). This proves the corollary. D 

Note that we also could have used linear independence of characters here, 
as in the proof of J1. = O. 

It follows that the ring k[{U«}] = k[ua',u-a', ... ,ua',u-a,] is an inte
gral domain, so we may form its field of fractions k( {Ua,} ). 

Let J:(T) E k(T) be the reduction of f«(T) modulo 1. We claim that if 
!B1,XlPn == 0 (modt) for infinitely many n, then 

L J:(U«-') = 0 
aeR' 
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Let Q(T) = Tqc-' - 1 and P~(T) = Q(T)f.(T) E k[T]. Write 

n Q(V/i-') L f.(V~-') = L [n Q(V/i-')Jp~(V~-') 
/ieR' ~eR' ~eR' /i,;,~ 

= L c;ut, for some CI E k, ti E Z[{~}]. 
i 
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Since nlleR' Q(VII-') oF 0, it suffices to show that Ci = 0 for each i. Evaluat
ing the above at C"'H' we find that if tB1' X"'H == 0 (modi), then 

L CiC~H == n (Ce:'qc-' - 1) L h«::') == 0 (modt), 
i II ~eR' 

by (*) with y = 1. Since this congruence is assumed to hold for an infinite set 
of integers n, the lemma implies that Ci == 0 for all i. This proves the claim. 

We apply this result as follows. Let Xi = va, and Yo. = V~-'. Since ~/IX' ¢ Q 

unless IX = ±~', the elements Yo. for ~ E R' are pairwise multiplicatively in
dependent. Letting riZ) = fa.(Z) in Proposition 16.10, we obtain fa.(Z) == d~ 
(mod I) for some d~ E (D, for all ~. Let IX = 1. The coefficient of Z in the 
numerator of f1 (Z) is X(I) = 1 =1= O. Therefore f1 (Z) =1= constant, so we have a 
contradiction. Therefore !B1' X';H =1= 0 (mod I) for all sufficiently large n. 

We have now proved that the power of I in h(L.f is bounded. Let A. be 
the I-part of the class group of L •. Since the I-rank of A;;- is bounded, the 
I-rank of A: is bounded, by Theorem 10.11 and Proposition 10.12. 

Lemma 16.15. Let I be a prime and let KIF be an extension of number fields of 
degree prime to I. Let AK and AF be the I-parts of the class groups of K and F. 
Then the natural map AF --+ AK is injective and 

AK ~ AF$(AKIAF)' 

Proof. Let n = [K: F] and let N: AK -+ AF be the norm. Since the compo
sition 

N .-, 
AF --+ AK --+ AF- AF 

is the identity, the map AF -+ AK is injective and the exact sequence 1 --+ AF-+ 
AK -+ AKIAF -+ 1 splits, This completes the proof. 0 

Returning to the proof of Theorem 16.12, we see that if I A:+11 > I A: I 
for some n, then the (-rank of A.+1 is larger than the I-rank of A •. Since 
the I-rank is bounded, IA: I must be bounded. This completes the proof of 
Theorem 16.12. 0 

It is possible to combine Theorem 16.12 with the result that J1. = 0 as 
follows (see Friedman [1]). Let P1' ... , P. be distinct primes and let L"" be the 
compositum of the cyclotomic Zp,-extensions of L. For every s-tuple N = 
(n1' ... ,n.) of non-negative integers, let LN be the unique subextension of 
degree n pi' over L. Let p be a prime and let peN be the highest power of p 
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dividing the class number of LN. Then, eN is bounded if P is distinct from PI' 
... , P.. If P = Pi for some i, then there exist integers A.i and Vi such that 
eN = A.ini + Vi for all N sufficiently large (that is, all components of N are 
large). The case s = 1 yields Jl = 0 when P = PI and Theorem 16.12 when 
P =F Pl· 

NOTES 

For applications of Sinnott's techniques to noncyclotomic situations arising 
from elliptic curves, see Gillard [13], [14], [16] and Schneps [1]. 

The original proof of Friedman's theorem used the techniques of Chapter 
7. This theorem can also be proved by Sinnott's method. See Sinnott [7]. 



Appendix 

In this appendix, we summarize, usually without proofs, some of the basic 
machinery that is needed in the book. The first section, on inverse limits, is 
used in Chapters 12, 13, and 15. Infinite Galois theory and ramification 
theory are used primarily in Chapter 13. The main points of the section are 
that the usual Galois correspondence holds if we work with closed subgroups 
and that we may talk about ramification for infinite extensions, even though 
the rings involved are not necessarily Dedekind domains (much of this sec
tion comes from a course of Iwasawa in 1971). The last section summarizes 
those topics from class field theory that we use in the book. The reader 
willing to believe that the Galois group of the maximal unramified abelian 
extension is isomorphic to the ideal class group (and variants of this 
statement) will have enough background to read all but certain parts of 
Chapter 13. 

§l. Inverse Limits 

Let 1 be a directed set. This means that there is a partial ordering on 1, and 
for every i,j E 1 there exists k E 1 with i:5: k,j :5: k. For each i E 1, let A; be a 
set (or group, ring, etc.). We assume that whenever i :5:j there is a map 
,pj;: Aj -+ A; such that ,pii = id and ,pj;rP"j = rP,,; whenever i :5: j :5: k. This situa
tion is called an inverse system. 

Let A = n A; and define the inverse limit by 

l!!!t A; = {( ... , a;, ... ) E A l,pkj(ak ) = aj whenever j :5: k}. 

For each i, there is a map ,pi: lim A; -+ A; induced by the projection A -+ A;. 
+-

Clearly ,pj;,pj = ,pi. 

391 
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Assume now that each Ai is a Hausdorff topological space. Then A is given 
the product topology and lim Ai receives the topology it inherits from A. We 
assume the maps ,pji are c~ntinuous. The maps ,pi are always continuous: 
If Ui is open in Ai then ,pi-I(Ui) is the intersection in A of an open set of A 
(definition of product topology) and lim Ai' hence open. The topology of 

~ 

lim Ai is generated by unions and finite intersections of such sets ,p:I(U;). In 
~ 

fact, every open set contains ,p;;I(Uk) for some k and some Uk (proof: it suffices 
to show that ,pi-I(Ui)n,pj-I(U) = ,pk-I(Uk) for some k. Choose k ~ i,j and let 
Uk = ,p;;/(U) n ,pk/(U;), 

We claim that lim Ai is closed in A. Suppose a = ( ... ,ai' ... ) ¢. lim Ai' Then 
~ ~ 

!/Jji(aj) # ai for some i, j. Let U1 and U2 be neighborhoods of !/Jji(a) and ai' 
respectively, such that U1 n U2 = 0. Let U3 = !/Jjil(UI) and let 

U = U2 X U3 X fl Ak S; A. 
k."i,j 

Then a E U but Un lim Ai = 0. Since U is open, it follows that lim Ai is 
~ ~ 

closed. 
Suppose now that each Ai is finite, with the discrete topology. Then A is 

compact, hence lim Ai is compact. Also lim Ai can be shown to be nonempty 
~ ~ 

and totally disconnected (the only connected sets are points). An inverse limit 
of finite sets is called pro finite. If each Ai is a finite group and the maps ,pji are 
homomorphisms, then lim Ai is a compact group in the natural manner. It 
can be shown that all tc>mpact totally disconnected groups are profinite. 
Also, if G is profinite then G = lim G/U, where U runs through the open 

~ 

normal subgroups (necessarily of finite index, by compactness) of G, ordered 
by inclusion. 

EXAMPLES. (1) Let I be the posItIve integers, Ai = 7L/p i7L, !/Jji: amodpjt--+ 
a mod pi. Then l~ 7L/pi7L = 7L p, the p-adic integers. The maps !/Ji are the 
natural maps 7Lp -+ 7L/p i7L. In essence, the ith component represents the ith 
partial sum of the p-adic expansion. 

(2) Let I be the positive integers ordered by m::; n ifmln. Ifmln, there is a 
natural map 7L/n7L -+ 7L/m7L. Let Z = lim 7L/n7L. It can be shown, via the 

~ 

Chinese Remainder Theorem, that Z ~ flallp7Lp. 

For more on inverse limits, see Shatz [1] or any book on homological 
algebra. 

§2. Infinite Galois Theory and Ramification Theory 

Let K/k be an algebraic extension of fields and assume it is also Galois 
(normal, and generated by roots of separable polynomials). As usual, G = 
Gal(K/k) is the group of automorphisms of K which fix k pointwise. Sup-
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pose k s;; F s;; K with F/k finite. Then GF = Gal(K/F) is of finite index in G. 
The topology on G is defined by letting such GF form a basis for the neigh
borhoods of the identity in G. Then G is profinite, and 

G ~ lim G/GF ~ lim Gal(F /k), .- .-
where F runs through the normal finite subextensions F/k, or through any 
subsequence of such F such that U F = K. The ordering on the indices F is 
via inclusion (Fl S;; F2 ) and the maps used to obtain the inverse limit are the 
natural maps Gal(F2 /k) -+ Gal(Fl/k). The fundamental theorem of Galois 
theory now reads as follows: 

There is a one-one correspondence between closed subgroups H of G and 
fields L with k S;; L S;; K: 

H +-+ fixed field of H, 

Gal(K/ L) +-+ L. 

Open subgroups correspond to finite extensions, normal subgroups correspond 
to normal extensions, etc. 

EXAMPLES. (1) Consider 0«(".,)/0. An element U E Gal(O«(".,)/O) is deter
mined by its action on (pn for all n ~ 1. For each n we have U(pn = (:: for 
some a" E (lL/p" 7LY, and clearly a" == a,,-l mod p"-l. So we obtain an element 
of 

lL; = 1i!!t(lL/p" lL) x = li!!t Gal(O«(pn)/O). 

Conversely, if a E lL; then U(pn = (:n defines an automorphism. The closed 
(and open) subgroup 1 + p"lL" corresponds to its fixed field O«(pn). 

(2) Let IF be a finite field and let if be its algebraic closure. For each n, there 
is a unique extension of IF of degree n, and the Galois group is cyclic, gener
ated by the Frobenius. Therefore 

Gal(iF /IF) ~ lim lL/nlL = Z . .-
Now suppose that k is an algebraic extension of 0, not necessarily of 

finite degree. Let (!)k be the ring of all algebraic integers in k and let /z be a 
nonzero prime ideal of (!)k' Then /z ("\ lL is nonzero (if a E /Z, NormO(Il)/Q(a) E 

/z ("\ lL) and prime, hence /z ("\ lL = plL for some prime number p. Therefore 

lL/plL ~ (lL + /z)/ /z S;; (!)k/ /z. 
It is easy to see that (!)k/ /z is a field and is an algebraic extension of lL/plL (since 
(!)k is integral over lL). In fact, Gal«(!)k/ /z)/(lL/plL» is abelian since any finite 
extension of a finite field is cyclic, and an inverse limit of abelian groups is 
clearly abelian. 

Let K/k be an algebraic extension, again not necessarily finite. Let &> be a 
nonzero prime ideal of (!)K and let /z = &> ("\ (!)k, which is a prime ideal of (!)k' 
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Then {!)K/&' is an extension of {!)k/ It; in fact, it is an abelian extension since 
{!)K/&' is abelian over 7L/p7L. Conversely, suppose we are given a prime ideal /t 
of {!)k' Then there exists &' in {!)K lying above It; that is, /t = &' n {!)k (see Lang 
[6], Chapter 9, Proposition 9; or Lang [1], Chapter 1, Proposition 9). 

Lemma. Suppose K/k is a Galois extension. Let &' and &" be primes of K lying 
above /to Then there exists U E Gal(K/k) such that U&' = &". 

Proof. We know the lemma is true for finite extensions (see Lang [6], 
Chapter 9, Proposition 11, or Lang [1], Chapter 1, Proposition 11). Choose 
a sequence of fields 

k = Fo £; •.• £; Fn £; ... £; K 

such that K = U Fn and such that each Fn/k is a finite Galois extension. 
Such a sequence exists since the algebraic closure of 10 is countable. Let 

Since Fn/k is finite, there exists Tn E Gal(Fn/k) such that Tn(/tn) = /t~. Let 
un E Gal(K/k) restrict to Tn' Since Gal(K/k) is compact, the sequence {un} 
has a cluster point u. There is a subsequence {un.} which converges to u 
(a priori, we would have to use a subnet. But subsequences suffice since 
Gal(K/k) satisfies the first countability axiom. This follows from the fact 
that the set of finite subextensions of K/k is countable). For simplicity, 
assume lim Un = u. Let m be arbitrary. Since Gal(K/Fm ) is an open neighbor
hood of 1, u-1un E Gal(K/Fm) for n ~ m sufficiently large. Hence, u-1un/tm = 
/tm' so u /tm = Un/tm = Un(/tn n {!)FJ = /t~ n {!)Fm = /t:". Since &' = U /zm and 
9' = U /z'"., we have u9 = 9'. This completes the proof. 0 

We now want to discuss ramification. However, {!)k and (!)K are not neces
sarily Dedekind domains. For example, if k = 10('".,) and /t = ('p - 1, 
'p2 - 1, ... ) then /tP = It, since (' p"+ 1 - l)P = (' p" - 1). This means that we 
cannot define ramification via factorization of primes. Instead we use inertia 
groups. Let K/k be a Galois extension, as above, and let &' lie above /to Define 
the decomposition group by 

Z = Z(&'/ It) = {u E Gal(K/k)lu&' = &'}. 

We claim Z is closed, hence there is a corresponding fixed field. Let the 
notations be as in the proof of the lemma and let Zn = {ulu(/tn) = /tn}. Then 
Z £; Zn for all n, and since &' = U /tn we have Z = n Zn· Since Gal(K/ Fn) £; 

Zn' we have Z. open, hence closed (it is the complement of its open cosets). 
Therefore Z is closed, as claimed. 

Now define the inertia group by 

T = TW//t) = {ulu E Z,u(c\:) == C\:mod&' for all a E {!)x}. 

It is easy to show that T is a closed subgroup. As with the case of finite 
extensions, we have an exact sequence 
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1--+ T--+Z --+Gal«(lJK/&')/«(~Vfi))--+ 1. 

The surjectivity may be proved by using the fact that we have surjectivity for 
finite extensions (Lang [1] or [6], Proposition 14). 

Suppose now that K/k is an algebraic extension but not necessarily 
Galois. Let Q be the algebraic closure of Q. Then Q/K and Q/k are Galois 
extensions. Let &' be a prime of K lying over the prime fi of k. Choose a prime 
ideal ~ of (lJij lying above f!J. We have 

T(~/ fi) ~ Gal(Q/k), 

T(~/&,) ~ Gal(Q/K) ~ Gal(Q/k), 

T(~/f!J) = T(~/ fi) (") Gal(Q/K). 

Define the ramification index by 

e(&'/fi) = [T(~/fi): T(~/&,)], 

which is possibly infinite. If ~' is another prime lying above &' then (7)' = (1~ 
for some (1 E Gal(Q/ K), and 

T(~'/fi) = (1T(~/fi)(1-1, 

T(~'/&') = (1T(~/&,)(1-1. 

Therefore the index e(&'/fi) does not depend on the choice of ~. If K/k is 
Galois then there is the natural restriction map 

Gal(Q/k) --+ Gal(K/k) 

with kernel Gal(Q/K). It is easy to see that the induced map T(~//t)--+ 
T(&,/ It) is surjective, with kernel equal to T(~/&,). Therefore 

T(~/ /t)/T(~/f!J) ~ T(&'/ It) 

and 

e(f!J/ It) = I T(f!J/ /t)I· 
So the ramification index equals the order of the inertia group, for Galois 
extensions. It follows that the definition agrees with the usual one for finite 
extensions. 

To consider archimedean primes, we proceed slightly differently. An 
archimedean place of k is either an embedding <p: k --+ IR or a pair of complex
conjugate embeddings (1/1, ~), with ~ =f. 1/1 and 1/1: k --+ C. Since C is alge
braically closed, any embedding ¢J or 1/1 may be extended to an embedding 
Q --+ C (use Zorn's lemma). In particular, we can extend to K. If K/k is Galois 
and ¢Jl and ¢J2 are two extensions of ¢J, then ¢Ji1<Pl E Gal(K/k). Hence <PI = 
¢J2(1 for some (1. If(I/II'~I) and (I/I2'~2) extend ¢J, we have 1/11 = 1/12(1, hence 
(I/II'~I) = (I/I2'~2)(1, for some (1. A similar result holds for extensions of 
complex pJaces, so the Galois group acts transitively on the extensions of a 
given place. 
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If K/k is Galois, w is an archimedean place of K, and v is the place of k 
below w, then we define 

T(w/v) = Z(w/v) = {O" E Gal(K/k)lwO" = w}. 

It is easy to see that T is nontrivial only when v is real, w = (t/I, Iii) is complex, 
and 0" # 1 is the "complex conjugation" ",-Ilii (= Iii-It/l), which permutes t/I 
and Iii and has order 2. Therefore 

I T(w/v) I = 1 or 2. 

We may now define the ramification indices for archimedean primes just as 
we did for finite primes. 

For more on the above, see Iwasawa [6], §6. 

§3. Class Field Theory 

This section consists of three subsections. The first treats global class field 
theory from the classical viewpoint of ideal groups. The second discusses 
local class field theory. In the third, we return to the global case, this time 
using the language of ideles. 

We only consider some of the highlights of the theory and give no indica
tions of the proofs. The interested reader can consult, for example, Lang [1], 
Neukirch [1], Hasse [2], or the articles by Serre and Tate in Cassels and 
Frohlich [1]. 

Global Class Field Theory (first form) 

Let k be a number field of finite degree over Q. Let IDlo = n fzfi denote an 
integral ideal of k and let IDloo denote a formal squarefree product (possibly 
empty) of real archimedean places of k. Then IDl = IDloIDloo is called a divisor 
of k. For example, IDl = 1, IDl = 00, IDl = 53 .172 .00, and IDl = 3·37·103 are 
divisors of Q. If a E P, then we write a == 1 mod· IDl if (i) vJii(a - 1) ~ ei for 
all primes fzi (with ei > 0) in the factorization of IDlo, and (ii) a > 0 at the real 
embeddings corresponding to the archimedean places in IDloo. Let P<JJI denote 
the group of principal fractional ideals of k which have a generator a == 
1 mod· IDl. Let I!III be the group of fractional ideals relatively prime to IDl 
(note that I!III = I 'J1IJ The quotient I !III/ P'J1I is a finite group, called the general
ized ideal class group mod IDl. 

For example, let k = 10, let n be a positive integer, and let IDl = n. The 
group In consists of ideals generated by rational numbers relatively prime to 
n. Let (r) be such an ideal. Then (r) is generated by + r and by - r. If (r) E Pn 

then we must have ± r == 1 mod n, hence r == ± 1 mod n. It follows that 
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Now suppose IDl = noo. The group Inoo is the same as In' but if (r) E Pnoo then 
we must be able to take a positive generator congruent to 1 mod n, so we 
need Irl == 1 mod n. If Irl == -1 mod n then (r) rt Pnoo (unless n = 2), so the 
archimedean factor makes P'gI smaller. It follows easily that 

Inoo/Pnoo ~ (7L/nllY· 

The effect of the archimedean primes is apparent in the case of a real 
quadratic field k. Let IDlo = 1 and let IDloo = 00 1 002 be the product of the 
two (real) archimedean places. Suppose the fundamental unit e has norm 
-1, so e is positive at one place and negative at the other. Let (IX) = (-IX) = 
(elX) = ( - elX) be a principal ideal of k. One ofthe generators for (IX) is positive 
at both 00 1 and 002 , so every principal ideal has a totally positive generator, 
and P = PI = Poo,oo2 ' Of course, 

I Ii PI = ideal class group. 

By definition, 

looloo,/Pooloo2 = narrow ideal class group. 

So we find that the narrow and ordinary class groups are the same. It will 
follow from subsequent theorems that the narrow ideal class group corre
sponds to the maximal abelian extension of k which is unramified at all finite 
places. 

Now suppose e has norm + 1. Choose IX E k such that IX> 0 at 00 1 and 
IX < 0 at 002 (for example, IX = 1 + .jd). Then (IX) has no totally positive 
generator, hence Poo,oo , =F PI (the index is easily seen to be 2). Therefore the 
narrow ideal class group is twice as large as the ordinary class group in this 
case. 

We return to the general situation, so k is a number field of finite degree 
over Q. Let (!)k denote the ring of integers of k. Consider a finite Galois 
extension K/k. Let ft be a prime of (!)k and f!JJ a prime of (!)K above ft. Let 
N ft = I (!)k/ ft I = norm to Q of ft· The finite field (!)K/9 is a finite extension of 
(!)k/ ft with Galois group generated by the Frobenius (x 1-+ x N,+). Let Z(9/ ft) be 
the decomposition group and T(f!JJ/ ft) the inertia group. There is an exact 
sequence 

1--+ T(9/ft)--+Z(f!JJ/ft)--+Gal«(!)K/9)/«(!)k/ft))-+ 1. 

Suppose f!JJ is unramified over ft. Then T = 1, so Z is cyclic, generated by the 
(global) Frobenius U~, which is uniquely determined by the relation 

UfJ'X == x N,+ mod 9 for all x E (!)K' 

Suppose r is an automorphism of K such that r(k) = k. Then t9 is 
unramified over tft. Since U[1't- I X == (t-IX)NJi mod 9, we have rU~t-lx == 
x NJi mod tf!JJ. Since N ft = Ntft' we obtain 
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If K/k is abelian then UTg> = Ug> for all r E Gal(K/k). Hence Ug> depends only 
on the prime /t of k, so we let 

Ufo = Ug>. 

We may extend by multiplicativity to obtain a map, called the Artin map, 

Ib -+ Gal(K/k), 

where b is the relative discriminant of K/k. What are the kernel and image? 

Theorem 1. Let K/k be a finite abelian extension. Then there exists a divisor f 
of k (the minimal such divisor is called the conductor of K/k) such that the 
following hold: 

(i) a prime /t (finite or infinite) ramifies in K/k<=:> /tlf. 
(ii) If Wl is a divisor with flWl then there is a subgroup H with PIJJ! £: H £: I IJJ! 

such that 

I<m/H ~ Gal(K/k), 

the isomorphism being induced by the Artin map. In fact, H = 
PIJJ!NK/k(I IJJ!(K», where I IJJ!(K) is the group of ideals of K relatively prime to 
Wl. 

Theorem 2. Let Wl be a divisor for k and let H be a subgroup of I IJJ! with 
PIJJ! £: H £: IIJJ!. Then there exists a unique abelian extension K/k, ramified only 
at primes dividing Wl (however, some primes dividing Wl could be unramified), 
such that H = PIJJ!NK/k(J ID/(K» and 

IID//H ~ Gal(K/k) 

under the Artin map. 

Theorem 3. Let Kdk and K2/k be abelian extensions of conductors fl and b 
let Wl be a multiple of f I and b and let H b H 2 £: I IJJ! be the corresponding 
subgroups. Then 

HI £: H2<=:>KI :2 K 2 • 

The above theorems summarize the most basic facts. We now derive some 
conseq uences. 

In Theorem 2, let Wl = 1 and let H = PIJJl = P. We obtain an abelian 
extension K/k with 

Gal(K/k) ~ I/P ~ ideal class group of k. 

By Theorem 2, K/k is unramified, and by Theorem 1, any unramified abelian 
extension of k has f = 1 and corresponds to a subgroup containing PI = P. 
By Theorem 3, K is maximal, so we have proved the following important 
result. 
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Theorem 4. Let k be a number field and let K be the maximal unramified 
(including (0) abelian extension of k. Then 

Gal(Klk) ~ ideal class group of k, 

the isomorphism being induced by the Artin map. (The field K is called the 
Hilbert class field of k). 

We note an interesting consequence. Let It be a prime ideal of k. Then It 
splits completely in the Hilbert class field <=> the decomposition group for It 
is trivial <=> q Ie = 1 <=> It E P <=> It is principal. 

Similarly, for a prime number p, we may choose H ;;2 P such that HIP = 
non-p-part of liP. Then llH ~ p-Sylow subgroup of liP. The field (= Hilbert 
p-class field) corresponding to H is the maximal unramified abelian p
extension of k. 

We now justify a statement made in Section 10.2. Let K be the Hilbert 
class field (or p-class field) of k, let F s;;: k, and suppose kiF is Galois. Then 
KIF is also Galois, by the maximality of K. As in Chapter 10, G = Gal(kIF) 
acts on Gal(Klk) (let, E G; extend to i E Gal(KIF); then qt = iqr-1 ). Also, G 
acts on the ideal class group of k. Let It be a prime ideal of k. Then It ~ q" 
under the Artin map, and ,/t~qt" = iq"i-1 = (q"),, by a formula preceding 
Theorem 1. Therefore 

Gal(Klk) ~ ideal class group of k 

as Gal(kIF)-modules, as was claimed in Chapter 10. 
We now need another property of the Artin map. Suppose we have fields 

F, k, M, and K, as in the diagram, with Klk and MIF abelian. 

(we do not assume M n k = F). Let /t be a prime ideal of k, unramified in 
Klk, and let &' lie above /to Similarly, let fi and 9 be the primes of F and M 
lying below It and &', respectively. We also assume that fi is unramified in 
MIF. Let f = [(9,,1 It: (9FI fiJ be the residue class degree. Then Norm"/F /t = 
P and N /t = (N fi)i. Since (9M s;;: (9K' we have 

q:'''IMx == xNle mod9, for x E (9M. 

We have used the notation qt/klM to mean "q" for the extension Klk, re
stricted to M." But 
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Therefore 

K'kl _ M/F U;. M-UNorm ;.. 

We give an application. Suppose M is the Hilbert class field of F and 
K is the Hilbert class field of k. Furthermore, assume M n k = F. Then 
Gal(Mk/k) ~ Gal(M/F), via restriction; hence Gal(K/k) -+ Gal(M/F) surjec
tively via restriction. We have the following diagram (lk/Pk = ideal class 
group of k, etc.): 

IJPt ~ GaJ(K/k) 

1 Norm 1 restr. 

The horizontal maps are the Artin maps. The diagram commutes by what we 
just proved. Since our assumptions imply that the arrow on the right is 
surjective, Norm is also surjective. So we have proved the following. 

Theorem 5 (= Theorem 1O.l). Suppose the extension of number fields kiF 
contains no unramified abelian subextensions L/F with L -:F F. Then the norm 
map from the ideal class group of k to the ideal class group of F is surjective 
and the class number hF divides hk • 

We now relate the above theorems to abelian extensions of Q. Let n be a 
positive integer and consider Q('.). Let p % n. As we showed in Chapter 2, the 
Frobenius up is given by up('.) = ,:. Thus we have a map 

I. -+ Gal(Q('.)/Q). 

If (a, n) = 1 and a > 0, then (a) 1-+ Ua , so the map is surjective (in fact, by 
Dirichlet's theorem, it is surjective when restricted to prime ideals). We now 
determine the kernel. Let r E Q with (r) E I •. Write Irl = npr'. Then, as 
ideals, (r) = n (p;)b" so 

where ulrl('.) = ,~I (Irl mod n is a well-defined element of (Z/nZY). Therefore 

u(r) = l-Irl == 1 modn 

_(r) E p.oo • 

Since In = 1.00 , we obtain 
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under the Artin map. This of course agrees with the fact that Inoo/Pnoo ~ 
(7L/n71Y· 

What happens if we leave off 00 and consider In/Pn? By Theorem 2, we 
cannot have ramification at 00 and it is not hard to show that the corre
sponding field is 1!J«(n)+. This agrees with our previous calculation that 
In/Pn ~ (71./n71.) x /{ ± I}. 

Suppose now that K is a number field and K/I!J is abelian. By Theorem 1, 
there exists a divisor 9Jl and a subgroup H with PIJR ~ H ~ IIJR. We may 
assume 9Jl = noo, with n E 7L. By Theorem 3, K is contained in the field 
corresponding to Pnoo' namely 1!J«(n). We obtain the following. 

Theorem 6 (Kronecker-Weber). Let K be an abelian extension of I!J. Then K 
is contained in a cyclotomic field. 

Let K/I!J be abelian and let H ::2 Pnoo be the corresponding subgroup. Since 

Inoo/ Pnoo ~ (7L/n71.)' , 

the group H/Pnoo corresponds to a subgroup of congruence classes mod n. 
Since 

(p) splits completely <=> O"p = 1 <=> (p) E H, 

we find that the primes that split completely are determined by congruence 
conditions mod n. In fact, this property characterizes abelian extensions. 

Let p == 1 (mod 4) and let q # p be an odd prime. Then q splits in Q(JP) <=> 
(p/q) = 1 <=> (by Quadratic Reciprocity) (q/p) = 1 <=> q is a square mod p, 
which is equivalent to q lying in certain congruence classes mod p. Let 
{I, r} = Gal(I!J(vip)/I!J). Since q splits <=> O"q = 1, we have shown that O"q = 1 if 
q is a square mod p, O"q = r if not. Now let r E I!J with (r) E 1 p (i.e., (r, p) = 1). 
Write 1 rl = TI qb and O"(r) = TI 0":. It is easy to see that 

O"(r) = 1 <=> Irl is a square mod p 

<=> r is a square mod p 

(since p == 1 mod 4). Let H denote the group of ideals in Ip generated by 
squares mod p. We have shown (the main step was Quadratic Reciprocity) 
that H is the kernel of the Artin map. In particular, 

Pp~H. 

Conversely, the fact that Pp ~ H implies Quadratic Reciprocity for p: Since 
H c 1 p has index 2, it must consist of the squares mod p, because 

Ip/Pp ~ (7L/p7L)' /{ ± I} 
is cyclic. Therefore 

(~) = 1 <=>q splits <=> O"q = 1 <=>q is a square modp 

<=>(~) = 1. 
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In general, the fact that the kernel ofthe Artin map contains Pg (Theorem 
1 (ii» is one of the most important parts of the theory. For example, it was the 
major step in the above proof of the Kronecker-Weber theorem. 

Local Class Field Theory 

Let k be a finite extension of Or We may write 

k X = n Z x V = n Z x W' x V1 , 

where n = a uniformizing parameter for k, 
nZ = {nftln E Z}, 
V = local units, 

W' = the roots of unity in k of order prime to p, 
Vl = {x E Vlx == 1 modn}. 

Theorem 7. Let K/k be a finite abelian extension. There is a map (called the 
Artin map) 

which induces an isomorphism 

P --+ Gal(K/k) 

a~(a,K/k) 

P/NK/kK X ~ Gal(K/k), 

where NK/" denotes the norm mapping. Let T denote the inertia subgroup of 
Gal(K/k). Then 

V,,/NK/kVK ~ T. 

If K/k is unramified then Gal(K/k) is cyclic, generated by the Frobenius F, and 

(a, K/k) = pa(II), 

Theorem 8. Let H £; k x be an open subgroup of finite index. Then there exists 
a unique abelian extension K/k such that H = NK/kKx. 

Theorem 9. Let K 1 and K 2 be finite abelian extensions of k. Then K 1 £; K 2 <=> 

NK\/kKl :2 NK,/kK'i. 

The Artin map satisfies the expected properties. For example, if u is an 
automorphism of the algebraic closure of k then 

(ua, uK/uk) = u(a, K/k)u- 1• 

Also, if K/k and M/F are abelian, with F £; k and M £; K (see the diagram in 
the previous subsection), then, for a E k x , 

(a, K/k) 1M = (Nk/Fa, M/F). 
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The above theorems may be modified to include infinite abelian exten
sions K/k. Let k x be the profinite completion of k x. This means 

kX ~lim P/H 
+-

where H runs through (a confinal subsequence of) open subgroups of finite 
index. Write P ~ rr;1 X W' X VI' as above, and let H be of finite index. By 
taking a smaller H if necessary, we may assume 

P /H ~ (Z/mZ) x W' x VI/Vf" 

for some m and n. It is easy to see that 

But 

W' = lim W'. 
+-

l~ Z/mZ = Z ~ n Zp 
p 

(see the section on inverse limits). Therefore, we may formally write 

kX ~rr;z x W' X VI ~rr;z xV. 

Theorem 10. Let k be a finite extension of II)p and let kab denote the maximal 
abelian extension of k. There is a continuous isomorphism 

k x ~ Gal(k ab /k). 

This induces a one-one correspondence between abelian extensions K/k and 
closed subgroups H 5; k x • If H corresponds to K, 

k x / H = Gal(K/k). 

Let NK/k(VK) = nLNL/k(VL), where L runs through all finite subextensions of 
K/k. Then 

Vk/NK/k(VK) ~ T(K/k), 

the inertia subgroup of Gal(K/k). 

We give an example. Let k = II)p. Then 

11); ~ pI X Wp- 1 x (1 + pZp) ~ pZ x Z;. 

Let (n, p) = 1 and let c ~ O. We have the following diagram: 
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Let a = pb U E 4Jl;. Then 

(a,4Jl p((n)/4Jl p) = (pb, 4Jli(n)/4Jlp) 

= Fb: (nH(t 

(F = Frobenius). The group V maps to the inertia subgroup, which is iso
morphic to Gal(4Jlp((pc)/4Jl p). It can be shown that (u, 4Jl p((npc)/4Jlp) yields the 
map (pc H (;:', where (;:' is defined in the usual manner. It is now easy to see 
that ~-1 corresponds to the (tamely ramified) extension 4Jl p((p)/4Jl p and that 
1 + p7Lp corresponds to the (wildly ramified) extension 4Jl p((pc)/4Jl p((p). 

Now consider the infinite extension 4Jl~b/4Jlp. We have 

Gal(4Jl~b/4Jlp) ~ 0; ~ pi x 7L;. 

We know (Chapter 14) that 

4Jl~b = 4Jl p((3'(4' ... ) 

= 4Jl p((p'")4Jl p( {(nl(P, n) = I}). 

We have 

Gal(4Jlp((p'")/4Jlp) ~ 7L;. 

Since Galois groups of unramified extensions are isomorphic to Galois 
groups of extensions of finite fields, it follows that 

Gal(4Jlp({(.I(p,n) = l})/4Jl p) ~ Gal(~/lFp) ~ Z ~ pi. 

Global Class Field Theory (second form) 

Let k be a number field and let /t be a prime (finite or infinite) of k. Let ki' and 
Vi' denote the completion of kat /t and the local units of ki" respectively. If 
/t is archimedean, let VI< = k;. Define the idele group of k by 

Jk = {(. .. ,XI<' ... ) E I) k; I xI< E VI< for almost all /t} 

("almost all" means "for all but finitely many"). Topologize Jk by giving 

V=nVi' 

the product topology and letting V be an open set of Jk • Then Jk becomes a 
locally compact group. 

It is easy to see that there is an embedding 

P yJk 

(diagonally) and it can be shown that the image is discrete. The image is 
called the subgroup of principal ideles. Let 

Ck = Jk/k x 

be the group of idele classes. 
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Let K/k be a finite extension. If &' is a prime of K above the prime /t of 
k, then we have a norm map on the completions N,~/fo: K9' -+ kfo. Let x = 
( ... , X9', ... ) E JK. Define 

where 

yfo = f1 N9'/fo X9'. 
9'lfo 

It is not hard to show that if x = ( ... , x, ... ) is principal, then NK/kX = 
( ... , NK/kX, .. . ), which is also principal. Therefore we have a map 

NK /k : CK -+ Ck • 

Theorem 11. Let K/k be a finite abelian extension. There is an isomorphism 

Jk/P NK/kJK = Ck/NK/kCK ~ Gal(K/k). 

The prime /t (finite or infinite) is unramified in K/k<=> Vfo £ P NK/kJK· (Vfo 
embeds in Jk via ufo f-+ (1, ... , ufo' ... ' 1». 

Theorem 12. If H is an open subgroup of Ck of finite index then there is a 
unique abelian extension K/k such that NK/kCK = H. Equivalently, if H is open 
of finite index in Jb and k x £ H, then there exists a unique abelian extension 
K/k such that k x NK/kJK = H. 

Theorem 13. Let K 1 and K 2 be finite abelian extensions of k. Then 

The above theorems may also be stated for infinite extensions. Let Dk 
denote the connected component of the identity in Ck • 

Theorem 14. (a) If K/k is abelian, then there is a closed subgroup H with 
Dk £ H £ Ck, such that 

The prime /t is unramified <=> k x V fo/ k x £ H. 
(b) Given a closed subgroup H with Dk £ H £ Ck (equivalently, Ck/H is 

totally disconnected), there is a unique abelian extension corresponding to H, as 
in (a). 

As a simple example, let K be the Hilbert class field of k. Since K/k is 
unramified everywhere, V = f1 Vfo £ P NK/kJK. Since K is maximal, k X V is 
the subgroup corresponding to K, hence 

Jk/k x V ~ Gal(K/k). 
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There is a natural map 

Jk -+ ideals of k 

( ... ,xJi, ... )1-+ n r lo("Io). 

finite Ji 

Appendix 

The kernel is U. If we consider the induced map to the ideal class group, we 
obtain 

Jk/P U ~ ideal class group of k. 

Therefore Gal(K/k) is isomorphic to the ideal class group, as we showed 
previously. 
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§l. Bernoulli Numbers 

This table from H. Davis [1], pp. 230-231, gives the value of (_1)"+1 B211 for 
1 :s; n :s; 62. In this book we have numbered the Bernoulli numbers so that 
Bo = 1, Bl = -t, B2 = i, B4 = -fa, and B2n+ 1 = 0 for n ~ 1. Some authors 
use different numbering systems and a different choice of signs. For more 
Bernoulli numbers, see H. Davis [1] and Knuth-Buckholtz [1]. For prime 
factorizations, see Wagstaff [1]. 

n Numerator Denominator n 

1 6 I 
2 30 2 
3 42 3 
4 1 30 4 
5 5 66 5 
6 691 2730 6 
7 7 6 7 
8 3617 510 8 
9 43867 798 9 

lO 1 74611 330 lO 

It 854513 138 It 
12 236364091 2730 12 
13 8553103 6 13 
14 23749461029 870 14 
15 861 5841276005 14322 15 
16 7709321041217 510 16 

407 
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n 

17 
18 
19 
20 

21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

Numerator 

257 76878 58367 
26315 27155 3053477373 

2929993913841559 
2610827184964491 22051 

1520097643918070802691 
278 33269 57930 10242 35023 

5964 51111593912163277961 
5609403368997817686249127547 
4950572 0524107964 82124 77525 

8011657181 35489957347924991853 
2914996363488486242141 81238 12691 

247939292931322675368541 5739663229 
844836133488800 41862 04677 59940 36021 

121 5233140483755572040304994079820246041491 

31 123005854340868585419530398574033 86151 
32 10 67838 30147 86652 98863 85444 97914 26479 42017 
33 1 4726000221 2633565405 1619428551 9323422418 

99101 ... 
34 78773130858718728141909149208474606244347001 
35 1505 38134 73333 67003 8030765673 7785720851 14381 

60235 ... 
36 5827954961 6699441104 38277 24464 106736528248830 

18442 60429 ... 
37 341524172892211 680143300737314726351866883077 

83087 ... 
38 24655088825935372707687 19604 0585199904 36526 

78288 65801 ... 
39 41 48463655754008282951 79035 549542073492199 

37537 24004 83487 ... 
40 46037842994794576469355749690190468497942 

57872 75128 89196 56867 ... 

41 1 6770141491 851458368231545097862699002077 
36027570253414881613 ... 

42 2024576195935290360231 131160111731009 98991 
73911 98090 87728 1083932477 ... 

43 660 7146194176786535738478474262614962778306 
86653 38893 17619 96983 ... 

44 13114 26488 67401 7507995511 42401 9311843345 75027 
55720 28644 29691 98905 74047 ... 

45 11790572 79021 082799884123351249215083775254 
9496696471 16231 54521 5727922535 ... 

46 1295585948207537527989427828 538576749659341 
48371 94351 43023 316326829946247 ... 

47 122081380657974446960730167941320 12039 58508 
415202696621436215105284649447 ... 

Tables 

Denominator n 

6 17 
1919190 18 

6 19 
13530 20 

1806 21 
690 22 
282 23 

46410 24 
66 25 

1590 26 
798 27 
870 28 
354 29 

56786730 30 

6 
510 

64722 

30 
4686 

140100870 

6 

30 

3318 

230010 

31 
32 
33 

34 
35 

36 

37 

38 

39 

40 

498 41 

3404310 42 

6 43 

61410 44 

272118 45 

1410 46 

6 47 
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n Numerator Denominator n 

48 2 11600 44959 72665 13097 59772 81098 24233 67304 4501770 48 
3954389060234150638733420050668349987259 ... 

49 6790826067290549562405 1117546403 60560 73421 6 49 
95728 50448 75090 73961 249992947058239 ... 

50 94598037819122125295227433069493721872 70284 33330 50 
1533066936 133385696204311 39541 51972 47711 ... 

51 3204019410 86090 70782 43020 78211 62417 75491 81719 4326 51 
71527 1745067900 25010 86861 5308366781 58791 ... 

52 31953363136383001 1287103352796174274671189 1590 52 
606078272738327 103470162849568365549721224053 

53 36373903172617414408151820151593427169231298 642 53 
64058 16900 38930 81637 82818 79873 38620 2346572901 

54 346934224784782878955208865932385254139976 209191710 54 
678576049114687000589137150126631972489759230 
65973 38057 ... 

55 764599294048474289224813 42467 24347 50052 87524 1518 55 
134123079066835938707597976062695857799779302 
17515 ... 

56 2650879602 155099713352597214685162014443 15149 1671270 56 
9192509896451788427680966756514875515366 78120 
3552600109 ... 

57 2173783231936916333331076108665299147572115 42 57 
66790908313608061101 1493360548423459365090418 
86185 62649 ... 

58 309553916571842976912513458033841416869004 1770 58 
1280643298 44245 50404 57210 08957 52457 19682 71388 
199595754752259 ... 

59 3669631 1996971311 1534947151585585006684606 6 59 
3610806992 04301 05944 06764 14485045806461889371 
77635 45170 95799 ... 

60 5150748653507910906184399685784998327409517 2328255930 60 
035326267521309286916719929747492298535881132 
9367077682677803282070131 ... 

61 496336660792625819125326374759907574387227 
90311060139770309311 793150683214100 43132 90331 
13678 09803 79685 64431 ... 

62 95876775334247128750774903107542444 62057 88300 
13297 33681 95535 12729 35859 33544 35944 41363 19436 
10268 47268 90946 0900 1 

6 61 

30 62 
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§2. Irregular Primes 

This table lists the irregular primes p :=:;; 4001 along with the even indices 
2a, 0 :=:;; 2a :=:;; p - 3, such that plE2a • It is essentially the table of Lehmer-
Lehmer-Vandiver-Selfridge-Nicol which is printed in Borevich-Shafare-
vich [1], but there are four additional entries (for p = 1381,1597,1663, 1877), 
which were originally missed because of machine error and which were later 
found by W. Johnson (see Johnson [1]; this paper gives a list of irregular 
primes for p < 8000). 

In order to obtain information about generalized Bernoulli numbers and 
about class groups, see Corollary 5.15 and Theorems 6.17 and 6.18. For a 
report on the irregular primes p < 125000, see Wagstaff [1], and for p < 
4000000, see the papers of Buhler et al. 

p 2a p 2a p 2a 

37 32 577 52 1061 474 
59 44 587 90,92 1091 888 
67 58 593 22 1117 794 

101 68 607 592 1129 348 
103 24 613 522 1151 534,784,968 
131 22 617 20,174,338 1153 802 
149 130 619 428 1193 262 
157 62, 110 631 80,226 1201 676 
233 84 647 236,242,554 1217 784,866, 1118 
257 164 653 48 1229 784 
263 100 659 224 1237 874 
271 84 673 408, 502 1279 518 
283 20 677 628 1283 510 
293 156 683 32 1291 206,824 
307 88 691 12, 200 1297 202,220 
311 292 727 378 1301 176 
347 280 751 290 1307 382,852 
353 186,300 757 514 1319 304 
379 100, 174 761 260 1327 466 
389 200 773 732 1367 234 
401 382 797 220 1381 266 
409 126 809 330,628 1409 358 
421 240 811 544 1429 996 
433 366 821 744 1439 574 
461 196 827 102 1483 224 
463 130 839 66 1499 94 
467 94, 194 877 868 1523 1310 
491 292,336,338 881 162 1559 862 
523 400 887 418 1597 842 
541 86 929 520,820 1609 1356 
547 270,486 953 156 1613 172 
557 222 971 166 1619 560 
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p 2a p 2a p 2a 

1621 980 2357 2204 3181 3142 
1637 718 2371 242,2274 3203 2368 
1663 270, 1508 2377 1226 3221 98 
1669 388,1086 2381 2060 3229 1634 
1721 30 2383 842,2278 3257 922 
1733 810,942 2389 776 3313 2222 
1753 712 2411 2126 3323 3292 
1759 1520 2423 290,884 3329 1378 
1777 1192 2441 366,1750 3391 2232,2534 
1787 1606 2503 1044 3407 2076,2558 
1789 848, 1442 2543 2374 3433 1300 
1811 550,698,1520 2557 1464 3469 1174 
1831 1274 2579 1730 3491 2544 
1847 954, 1016, 1558 2591 854,2574 3511 1416, 1724 
1871 1794 2621 1772 3517 1836,2586 
1877 1026 2633 1416 3529 3490 
1879 1260 2647 1172 3533 2314,3136 
1889 242 2657 710 3539 2082,2130 
1901 1722 2663 1244 3559 344, 1592 
1933 1058, 1320 2671 404,2394 3581 1466 
1951 1656 2689 926 3583 1922 
1979 148 2753 482 3593 360,642 
1987 510 2767 2528 3607 1976 
1993 912 2777 1600 3613 2082 
1997 772, 1888 2789 1984,2154 3617 16,2856 
2003 60,600 2791 2554 3631 1104 
2017 1204 2833 1832 3637 2526,3202 
2039 1300 2857 98 3671 1580 
2053 1932 2861 352 3677 2238 
2087 376, 1298 2909 400,950 3697 1884 
2099 1230 2927 242 3779 2362 
2111 1038 2939 332,1102,2748 3797 1256 
2137 1624 2957 138,788 3821 3296 
2143 1916 2999 776 3833 1840, 1998,3286 
2153 1832 3011 1496 3851 216,404 
2213 154 3023 2020 3853 748 
2239 1826 3049 700 3881 1686,2138 
2267 2234 3061 2522 3917 1490 
2273 876,2166 3083 1450 3967 106 
2293 2040 3089 1706 3989 1936 
2309 1660,1772 3119 1704 4001 534 



n 

I 
3 
4 
5 
8 

12 
7 
9 

15 
16 
20 
24 
11 
13 
21 
28 
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§3. Relative Class Numbers 

The following table gives the value and prime factorization of the relative 
class number h;; of O(Cn) for 1 ~ ¢J(n) ~ 256, n =1= 2 (mod 4). It is extracted 
from Schrutka von Rechtenstamm [1], which also lists the contributions 
from the various odd characters in the analytic class number formula. Some 
of the larger factors were only checked for primality by a pseudo-primality 
test, so there is a small chance that some of the "prime" factorizations include 
composites. For values of h; for 257 < p < 521, see Lehmer-Masley [1]. A 
few of the factorizations below have been obtained from this paper. For 
more discussion of h;, see Fung-Granville-Williams [1]. For values of h;; 
for some additional composite n, see MetsankyUi [12]. 

Since the size of h;; depends more on the size of ¢J(n) than of n, we have 
arranged the table according to degree. 

Kummer determined the structure of the minus part of the class group of 
O«(p) for p < 100. By (a) in §4, this is the whole class group for p ~ 67; by 
(c), it is the whole class group for p < 100 if we assume the generalized 
Riemann hypothesis. All the groups have square-free order, hence are cyclic, 
with the following possible exceptions: 29, 31, 41, and 71. In these cases, 
29 yields (2) x (2) x (2), 31 yields (9), 41 yields (11) x (11), and 71 yields 
(72 .79241). Here (m) denotes the cyclic group Z/mZ. See Kummer [5, 
pp. 544,907-918], Iwasawa [16], and Section 10.1. For more techniques, see 
Cornell-Rosen [1], Gerth [5], G. Gras [25], Horie [9]. Horie-Horie [1], 
Schoof [2], and Tateyama [1]. 

~(n) h- I n ~(n) h- I n ~(n) h- I n ~(n) h-

1 36 12 56 24 2 41 40 121=112 
2 17 16 72 24 3 55 40 10 = 2·5 
2 32 16 84 24 I 75 40 11 
4 40 16 29 28 8 = 23 88 40 55 = 5 ·11 
4 48 16 31 30 9 = 32 100 40 55 = 5 ·11 
4 60 16 51 32 5 132 40 11 
6 19 18 1 64 32 17 43 42 211 
6 27 18 1 68 32 8 = 23 49 42 43 
8 25 20 1 80 32 5 69 44 69 = 3·23 
8 33 20 1 96 32 9 = 32 92 44 201 = 3·67 
8 44 20 1 120 32 4 = 22 47 46 695 = 5·139 
8 23 22 3 37 36 37 65 48 64 = 26 

10 35 24 1 57 36 9 = 32 104 48 351 = 33 .13 
12 39 24 2 63 36 7 105 48 13 
12 45 24 1 76 36 19 112 48 468 = 22.32 • 13 
12 52 24 3 108 36 19 
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n ~(n) h- n tP{n) h-

140 48 39 = 3·13 135 72 75961 = 37·2053 
144 48 507 = 3.132 148 72 4827501 = 32.7 ·19·37 ·109 
156 48 156 = 22.3.13 152 72 1 666737 = 35. 193 
168 48 84 = 22.3.7 216 72 1714617 = 32.19.37.271 
180 48 75 = 3.52 228 72 238203 = 32.7 ·19 ·199 
53 52 4889 252 72 71344 = 24 .73.13 
81 54 2593 79 78 100 146415 = 5·53·377911 
87 56 1536 = 29 .3 123 80 8425472 = 212 .11 2.17 

116 56 10752 = 29 .3.7 164 80 82817240 = 23.5.11 2.71. 241 
59 58 41241 = 3·59·233 165 80 92620= 22.5.11.421 
61 60 76301 = 41· 1861 176 80 29371375 = 53 ·11· 41· 521 
77 60 1280 = 28 .5 200 80 14907805 = 5.11 2.41.601 
93 60 6795=32.5.151 220 80 856220= 22.5.31.1381 
99 60 2883 = 3.31 2 264 80 1 875500 = 22.53. 11 2.31 

124 60 45756 = 22.32.31.41 300 80 1307405 = 5.11 2.2161 
85 64 6205 = 5·17·73 83 82 838216959 = 3·279405653 

128 64 359057 = 17·21121 129 84 37821539 = 7·29·211· 883 
136 64 111744 = 27.32.97 147 84 5874617 = 7·29·43·673 
160 64 31365 = 32.5.17.41 172 84 792653572 = 22.43.211. 21841 
192 64 61353 = 32. 17·401 196 84 82708823 = 43·71· 27091 
204 64 15440=24 .5.193 89 88 13379363737 = 113·118401449 
240 64 6400 = 28 .52 115 88 44 697909 = 3·331 ·45013 
67 66 853513 = 67·12739 184 88 1486137318 = 2.3.23.672.2399 
71 70 3882809 = 72 . 79241 276 88 131209986 = 2.3.232.67.617 
73 72 11 957417 = 89· 134353 141 92 1257700495 = 5 ·47 .1392.277 
91 72 53872 = 24 .7. 13·37 188 92 24260850805 = 5·47·139·742717 
95 72 107692 = 22.13.19.109 97 96 411322824001 = 577·3457·206209 

III 72 480852 = 22.32.192.37 119 96 1238459625 = 34 .53. 13 .972 
117 72 132678 = 2.36 .7.13 153 96 2416282880 = 28 .5.11 2.15601 

n ~(n) h-

195 96 22151168 = 217 .132 
208 96 29904190875 = 33 .53 .133 .37.109 
224 96 14989501800 = 23 .32.52.72.13.17.769 
260 96 531 628032 = 220 .3 . 132 
280 96 265454280 = 23 .33 .5.7. 13 . 37·73 
288 96 32899636107 = 35 .132.457. 1753 
312 96 1621069632 = 26 .33.7.133.61 
336 96 930436416 = 26 .33.7.13.61.97 
360 96 523952100= 22.32.52.72.1092 
420 96 10229232 = 24 .3.133.97 
101 100 3547404 378125 = 55 ·101·601· 18701 
125 100 57708 445601 = 2801 . 20602801 
103 102 9069094643165 = 5·103·1021·17247691 
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n ¢(n) h-

159 104 223233182255 = 5'532'3251'4889 
212 104 6789574466337 = 3·13· 1093·4889·32579 
107 106 63434933 542623 = 3· 743 . 9859 . 2886593 
109 108 161784800 122409 = 17' 1009·9431866153 
133 108 157577 452812 = 22. 310 .13. 19·37· 73 
171 108 503009425548 = 22.36.7.19.73.109. 163 
189 108 105778197511 = 7· 37 '109 ·127·163·181 
324 108 5770749978919 = 19· 2593 ·117132157 
121 110 12188792628211 = 67·353·20021· 25741 
113 112 1612072001362952 = 23 ·17 ·11853470 598257 
145 112 1467250393088 = 214 . 281· 421· 757 
232 112 248372639563776 = 218 .3.7.13.432. 1877 
348 112 5889026949120 = 218 . y. 5'7·71317 
177 116 81730647171051 = 3·59·233'523'3789257 
236 116 4509195165737013 = 3·59·233·109337677693 
143 120 36027143124175 = 52'7'61 2 .661'83701 
155 120 84473643916800 = 29 '34'52'631'129121 
175 120 4733255370496 = 28. 61· 271· 601·1861 
183 120 767392851521600= 26'52'31 3 '41'211'1861 
225 120 15175377535571 = 11·61·331·2791·24481 
231 120 298807787520 = 216 . y. 5· 11' 61·151 
244 120 30953273659007535 = 33 '5'11'41'61'691'1861'6481 
248 120 12239782830975744 = 28'32 .11 2 '31 2'41.211'5281 
308 120 12767325061120 = 221 .5.7.31 2 . 181 
372 120 307999672 562880 = 26. 32.5.31.41 2.151 ·13591 
396 120 44485944574929 = 3'11·13· 31 3 ·181·19231 
127 126 2604529 186263992195 = 5· 13·43·547·883·3079·626599 
255 128 16881405898800 = 24. 3 . 52 . 172.73.353. 1889 
256 128 10 449592 865393 414737 = 17·21121 ·29 102880226241 
272 128 239445927053918208 = 215 '32.13.17'41.97.577.1601 
320 128 39497094130144005 = 32.5.1 r· 41· 97·337·7841 
340 128 1212125245952000 = 212 '5 3 .17.73'593'3217 
384 128 107878055185500777 = 32. 17·401·1697·21121·49057 
408 128 4710612981841920 = 216 . y. 5· 41· 97·193·2081 
480 128 617689081497600 = 211 . 34 '52 .74.17'41.89 
131 130 28496379729272 136525 = 33 . 52 . 53 . 131 . 1301 ·4673706701 
161 132 17033926767658911 = 32. 11 . 673 . 22111· 25873 
201 132 252655290579982532 = 22,11 . 232. 672. 12739·189817 
207 132 57569648362893621 = 32.23' 67·727' 17491·326437 
268 132 28431682983759502069 = 7·23· 672. 1607·12739·1921657 
137 136 646901570175200968153 = 172 .47737.46890540 621121 
139 138 1753848916484925681747 = Y·472·2772·967·1188961909 
213 140 20748314966568340907 = 72. 41· 43· 281· 421' 25621 . 79241 
284 140 1858128446456993562103 = 72.29.71.113.281.79241.7319621 
185 144 13 767756481797006325 = 52.72. 13 . 372 . 532 . 9433·23833 
219 144 219406633996698095616 = 212 .32.172.37.89. 46549 ·134353 
273 144 21198594942959616 = 220 • 32,7 .132 '19· 372. 73 
285 144 34397734347893592 = 23 • 34,13 '19· 372 . 73 .1092 ·181 



n 

292 
296 
304 
315 
364 
380 
432 
444 
456 
468 
504 
540 
149 
151 
157 
169 
237 
316 
187 
205 
328 

352 
400 
440 
492 
528 
600 
660 
163 

243 
249 
332 
167 
203 
215 

245 
261 
344 

392 
516 

588 
173 
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¢(n) 

144 
144 
144 
144 
144 
144 
144 
144 
144 
144 
144 
144 
148 
150 
156 
156 
156 
156 
160 
160 
160 

160 
160 
160 
160 
160 
160 
160 
162 

162 
164 
164 
166 
168 
168 

168 
168 
168 

168 
168 

168 
172 

26883466789548427261560 = 23'32'5'7.89 ·109· 181 2.433' 577·134353 
8269489911111632618625 = 32'53'73'172'19'372'109'397'65881 
1764209801444986506285 = 35 • 5' 193. 373. 73·109' 525241 
3990441973190400= 28'34'52'73'132'372'97 
2153601104578560000 = 214 . 37 . 54.7.135 .37 
3118301079203997232 = 24. 7·13· 192.532. 73· 109·433·613 
859095743251563370449 = 32.132.19.372 ·109·271· 541 ·1 358821 
55382724129516879312 = 24'34 '7'193.372. 1092. 54721 
17643537152468843364 = 22.37. 72. 194. 199·487·3259 
6618931810639948800 = 210 . 310 .52. 7'11 2.134.181 
2077452902069895168 = 216 . 313 . 76. 132 
1892923169092229025 = 32. 52. 192. 37·73·109·2053·38557 
687887859687174720123201 = 32. 149·512 966338320040805461 
2333546653547742584439257 = 7.11 2. 281· 25951·1207501· 312 885301 
56234327700401832767069245 = 5.132.1572.1093.1873.418861.3148601 
546489564291684778075637 = 313· 1873·4733· 196953296289361 
130445289884021402281355 = 5·7·13·53·157·3433·4421· 6007·377911 
22036970003952429517953845 = 5· 132. 53·79·2393·377911 ·6887474101 
38816037673830728480329 = 172'41'241'4801'299681'9447601 
78821910689378365476000 = 25 . 32. 53. 11 2. 41· 101 2. 661·4261· 15361 
82221729062003473169480000 = 
26 . 54 '11 2'17'31'71'101'241' 521' 35801081 
5578700 230786 671358 855375 = 53. 11 . 41 2.113.281' 521 . 1801 ·2801· 28921 
1692044 042657239185550625 = 54. 11 4.41. 61· 101 ·601·26261·46381 
3690827552653792584000 = 26 .3. 53. 11· 31 2.61 2 • 181 ·1381· 15641 
331431584848686177 320960 = 220 . 5· 112 ·17 ·41· 71· 241 ·1321· 33161 
20215309155022994375000 = 23. 57 .11 2.31.41.61' 101 . 521· 65521 
7166325608289022528100 = 22. 52,1 P'41' 101·131·601·2161·76421 
20090237237998576000 = 27. 53 ,11 2 • 31·181· 421 ·1381· 3181 
2708534744692077051875131636 = 
22. 181·23167·365473·441845817162679 
14948557667133129512662807 = 2593· 6252 002011·922099242709 
13898958132089743179099753 = 3·279405653'16581575906876567 
2233 138758 192814382133816279 = 3· 80279·612377 . 54 192407 . 279405653 
28121 189830322933178315382891 = 11·499·5123189985484229035947419 
4413278155436385292173312 = 214 .3 2 '72 '29'3907.26041'207015901 
8562946718506556895170449 = 
72 '19'29'37'211'757'2017'22709'1171633 
122845138181 874350560487 = 132. 43·127·631·43793·4816871221 
18379288588511 605529995776 = 29 '32'61 ·421 ·883· 10753·38011 ·430333 
10789946893536931 852748 197440 = 
26'3'5'7'29'43'197'211'21841'929419'1525987 
112070797379361142494415714 = 2· 432.71.617.953.27091' 28393·943741 
38888604 320171861798243568 = 
24.32 '7'29'432'71.211'883'21841'2490307 
482059253351850013395157 =7·29·43·71·673·2017·3571·5923·27091 
1 702546266654 155847 516780034265 = 
5 . 20297 . 231169 . 72 571729 362851 870621 



416 Tables 

n ¢(n) h-

267 176 12963312320905811283854380235 = 
5'23·113'1123'5237·26687'53681'118401449 

345 176 506186308788058155105915 = 3· 5'11·23·331·4159·45013·2152502881 
356 176 4707593989354615385004311705592 = 

23.3'11'23'113'463'15269'19207'426757'118401449 
368 176 243320115114433657 103908 135020 = 

22.3.5.112.233.672.89.2069.2399.8537.162713 
460 176 197739166909616827795207545 = 

3'5·11·67·331·617·17029·45013·114259861 
552 176 767354245926929350377 606384 = 24.3' 235. 672.617.2399' 10781· 34673 
179 178 77281577212030298592 756974 721745 = 

5'1069·14458667392334948286764635121 
181 180 211421757749987541697225501539625 = 

53'37.41'61.1321.2521'5488435782589277701 
209 180 4551326160887085824176768000 = 

210 .53.11.61.271.264 250891·739979551 
217 180 3724911233451940358045813517 = 

35 '7'11'37'241'541'571'691'2161.2791'17341 
279 180 18164714706446857534815843195 = 

36 .5.7'13.151.211.1321.2551.4591.5011'22171 
297 180 1078851803253231276755717661 = 32. 31 2. 199·8191· 1674991 ·45687081331 
235 184 81765924684755483300654973515 = 

5 . 139· 1657 . 453377 . 156604 975201 463093 
376 184 237637802564280802840123241975060 = 

22 '5'47'139'18493'742717'3536987.37437658303 
564 184 431950475833835326053345383630 = 

2'5'473'1393'277'599'742717'1257089 
191 190 165008365487223656458987611326929859 = 

11·13· 51263·612771091· 36733950669733713761 
193 192 546617105913568165545650752630767041 = 

6529 ·15361· 29761· 91969·10 369729 ·192026 280449 
221 192 5 562629629465863945291002496000 = 

210'36'53'17.312'61.73' 113· 193'1297·3529·8209 
291 192 161230789161196289366922423524464 = 

24 .7.132. 172.577. 1489·3457·5641·206209·8531233 
357 192 1504 490803 465665 772083 088125 = 34 .54. 74 . 132.37.973. 1873· 1 157953 
388 192 145666644086003914044409030660616112 = 

24 .32'72'13'19'37'577'3457'5857'13441'206209'69761089 
416 192 1370350108087898680332276597421875 = 

39 '5 7 .72'135'37'73'97'109.241'409'17401 
448 192 327965590186830575092883770837200 = 

24'32'52'72'13'172'5772'769'13697'299569'471073 
476 192 1099745163233204819353212762000 = 

24.36.53'112'13'472.974'241'1489.6833 
520 192 285052110419192727742709760000 = 242 . 34.54. 73. 133. 17· 372. 73 
560 192 54738664378286829420235392000 = 

210'35'53'7'132'17.37'73'972'181'193'241'409 
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576 

612 

624 

672 

720 

780 
840 
197 

199 

275 

303 

375 

404 

500 
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412 
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424 

636 
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~(n) 

192 

192 

192 

192 

192 

192 
192 
196 

198 

200 

200 

200 

200 

200 

204 

204 

208 

208 

208 

210 

212 

212 

216 

216 

216 

1157874338412588470629857952431771 = 
35-132-17-401-457-1753-1873-1751377-1573836529 
4600831021854761317711337226240 = 
220 -3-5-11 2-61-73-97-193-241-15601-7712737 
2180486664807803314987752000000 = 
29-37-56-7-135-173-37-61-97-109-409 
438246323791 968232985203468800 = 
29-37-52-73-13-17-61-73-97-769-8761-70969 
222312165238308958816217760000 = 
28-34-54-72-133-192-372-1092-277-3132 
409 113496073931 085358039040 = 246 -3 -5 - 135 -61 -109 - 157 
84878288737639882168320000 = 214 -34 -54 -72 -134 - 19 -372 -73 -97 -397 
5532802218713 600706095993 713290631720 = 
23 -5 -1877 -7841 -9398302684870866656225611549 
18844055286602530802019847012721555487 = 
34 - 19 -727 -25 645093 -207293 548177 -3168190412839 
18124664091430165276567871 093750 = 
2-5 12 -11 3-41 2-61-71-101-241-461-541-631 
32442006711177310012824426376953125 = 
510 -61-101-601-5701-6701-18701-1255817401 
22533972115769639175905217196211 = 
11- 2801- 12101- 244301- 20602801-12007 682201 
28160409 852152 369458 876449426375 546875 = 
57-7-41-61-101 2-601-2351-18701-40351-1892989601 
20244072859233305618155148176257775 = 

52 - 11 -401 -2801 -20602801 -94 315301 -33728 676001 
360807 306655 167078 388646 788532 317360 = 
24 -5 -17 - 1032 -239 - 1021- 3299 -233683 -7 707223 - 17247691 
311393365861041316591357682493761574005 = 
5 -7 -103 -1021 -2347 -306511- 17247691 -54115489 -125998867 
169406792495647432946133820476066925 = 
52 -53 -1093 -4889 - 12377 -19813 - 11452741 -8519 216837 
1435850573295225659918796765068953277637 = 

34 -13-79-677-1093-4889-13469-32579-2805713-3875328913 
1 127233629616849856487768072597 188295 = 

3-5-133-532-10932-3251-4889-32579-19684564069 
49238446584 179914 120276706365 116286443831 = 
32 -72 -41- 71-181 -281 2 -421-1051-12251-113 981701-4343 510221 
41597545536058643707857919997509 485501 = 
3 -743 -9859 -2 886593 -10 109009 -64868 018727 424243 
70300 542035 941044 246482 693928 842589 712617 = 
3-743-3181-9859-2886593-348390669416638151886259 
13 453389127871 713260541632243338018775 = 
39-52-72-132-192-732-1092-127-157-163-181-397-613-1009 
15168897693915178656178325215530382842 = 
2-320-76-132-172-193-37-733-271-14149 
503374795561927637884794232382274404226 = 
2-37-13-17-37-379-1009-2377-47629-34465933-9431866153 



418 Tables 

n ¢J(n) h-

333 216 84239369799126310123807613556409 560000 = 
26·36·54·72·132·19s·372·43·73·523·111637·561529 

351 216 2881839794389013705029278932481257394 = 
2.3 12 .7.13.196.372.73.631.2341.31393.136657 

399 216 1178892414491021808120869355574272 = 
210.320.7.13.192.37.61.732.577.829.1747 

405 216 289942114683805443433002828021 894577 = 
37·487·541·2053·2593·1583767·3527772707308141 

436 216 893749713826042123652446227238954966290576 = 
24 .37 ·17 .192 ·163·757 ·1009·3016927 ·1174 772971· 9431866153 

532 216 1995278293629608216703343220411633664 = 
212.310.73.13.193.31.372.732.109.1693.2377.2719 

648 216 4207762445242777294033981083075596417079 = 
33.19.37.271 2.2593.117132157.157470427.63112572037 

684 216 9549392972039711651917872 649044 836352 = 
214.36.72.13.192.372.73.109.127.163.199.1693.3637.12583 

756 216 434848520210 868494 245767 938408 147152 = 
24.73.13.193.373.109.1272.163.1812.271.757.9109 

253 220 256 271685 260834 247944 985594 908530 991952 = 
24 .3.114 ·1409·3301· 26951· 79861·13 962631· 2608 886831 

363 220 23207253826992628179863710751562290176 = 
210 .67.89.353.20021. 25741· 20891667283264099631 

484 220 29678406487322012695719894464039435383271 = 
67·353·14411·20021·25741·167971·1005892255694569981 

223 222 217076412323050485246172261728619107578141363 = 
7·43 ·17 909933575379·11 757537731851· 3424804483726447 

339 224 87309 027165 405351637092447907404827688960 = 
21S • 3·5 ·17·71·113 ·127·281· 2137 ·14449 ·99709 ·11853470598257 

435 224 299190086533933244 039620 216234 180608 = 
239 .3.13.292.1132.281.421.757.1289.11257 

452 224 229865767233324575111010848122335548084846592 = 
223 .32.7.132.17.29.281.24809.168617.374669.11853470598257 

464 224 12164820242320422627042467644729294439055360 = 
230 .3.5.7. 13· 172 ·29s·43 2 • 1877·4621·226129·386093 

580 224 776785847831995632448594543440172154880 = 
239 .3.5.72.29.281.421.463.757.1131397.1413077 

696 224 6438 349938 668172 599554 162206096280780800 = 
238.33.52.72.13.29.433.113.1093.1429.1877.71317 

227 226 2888747573690533630075559971022165906726932055 = 
5.29393 ·1692 824021974901·13 444015 915122 722869 

229 228 10934752550628778589695733157034481831976032377 = 
13 ·17·457·7753·705053·47824141· 414153 903321692666991589 

233 232 348185729880711782527290176798948867695747163449 = 
233· 1433· 79933937980769· 13046008204 119903 320572 430489 

295 232 670508644900926208004253553219885108451604 = 
22.3.59. 233·349·41413·9342293·3483942493·8640296021597 

472 232 19371983746349662149124469187254723339443284387 = 
32.29. 59s. 233·42283 ·135257 ·168143·4237829 ·109337 677693 
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7622833744450532364 757064 890176 317824 613409 = 
3-59-233-523-2069383-3789257-109337677693-412212149161 
19252683042543984486813299844961436592191498141760 = 
26 - 3 -5 -511123 -14 136487 -123373 184789 -22497 399987 891136 953079 
74361351053524744837764467869162082791741351378657 = 

472 -13921 -15601 -2 359873 -126767281 -518123008737871423891201 
75414262624860852745819151571359184834222400 = 

26-52-7-11 7-13-31 2-61-521-1201-1609-2521-8641-20673617161 
135088091280028160307240417262034056281285000 = 

23-32-54-132-37-414-613-1861-2281-3061-24061-37501-63841 
958286131671211592542476979144 265746 218304 = 
26-61 3-101-1201-2141-7681-11701-194521-849721-17098621 
528852535797845727358844974839889196910080000 = 
212_ 54-11 6-17-19-31-271-421-4801-16921-1256507775765241 
18696191070960590983421400 100896768000 = 

23 1-32-53-11-192-31-157-1021-9661-16141-2514961 
1880049931 342806 129486 552279 849583 657000 = 
23-53-7-11 3-31-61 3-181-571-661-39521-83701-126901681 
6056875285 186558003929869566624727040000 = 
219 -36-54-7-31-61-151-181-631-1481-1801-129121-322501 
3971856968532956975396384265567521800430781628875 = 

33 -53-11 2-31 2-41 2-43-61-101- 151-421-691-1861-4721-6481-34171-
265892761 
151284295307196895954238278778191913580 = 
22-3-5-7- 113-292-313-1812-229-2412-421-2131-3361-8221 
686038372620782033886901 075737481803287781408768 = 

215-32-114-314-37-41-612-97-211-241 -601-4621-5281-14281-29501 
29585677 490787 726928 862791 955910 586368 = 
212-34-11-13-312-614-271-331-601-1861-467132041 
5290237648692385160711880570308851548534375 = 
3-55 -7-192-31-41-61 2-421-661-27631-72271-83701-1015122781 
894031197420910862005847489304819295846400 = 

240-52-7-115-13-314-181-211-2161-4621-6301 
19441064 004 704 709948 640099 632484 806819 840000 = 
226 -34-54-11-31-41-61-421-631-5821-66931-129121-502081 
126016649965778239405605204267365457285120 = 
212-35-5-11-13-31-592-612-271-601-1861-9181-44641-3549901 
1339692320604469611903838974531410 116492800000 = 
212-33-55-11-13-192-313-41-612-211-691-1861-6481-25301-371341 
181 082733 783181 938577 850646 686177 657202 278400 = 
217-35-52-115-312-412-101-131-151-211-541-5281-13591-53401 
5042681390633567588773182959215349464474500 = 
22-32-53-112-132-19-315-612-181-1381-5521-5791-19231-176161 
744248582096150452589487856013 489542134375 = 

3-55-11 2-61-211-331-811-2161-2791-24481-334261-3847430341 
228281655906261469381852055785911091200 = 
239-35-52-7-112-314-61-101-151-181-691-751 
95469181654584518651828574432658888070113 445087 403827 = 

7 -11- 348 270001- 9 631365 977251 -369631114567 755437 243663 626501 
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n 

301 

381 

lP(n) 

252 

252 

Tables 

205430142293947345943779193986871148546394604544 = 
210.33.77.19.432.211.631.6301.14827.16843.19531.122599·511939 
11479286278091328075258484555696616781110509 888215 = 
32.5.72.13.37.432.547.631.673.883.3079.6007.626599.2185471· 
1126755757 

387 252 1348400009635509434335776865706103793086610214753 = 
73.132.192.29.43.211 2.463.883.967.1933.3067.3319.4621.125287· 
257713 

441 252 

508 252 

2427799098355426760759007408851329652222396831 = 
74.29.435 .127.337.673.2731.11173.43051.1271383.4930381 
103042170932346966742775797541839182084871642467503360 = 
28.5.72.133.19.433.547.757.8832.2143.3079.626599.2664901· 
139159441 
5452485023419230873223822625555964461476422854662168321 = 
257·20738946049·1022997744563911961561298698183 419037149697 
6262503984490932358745721482528922841978219389975605329 = 
17·21121· 76 532353·29102880226241·7830753969553468937988617089 
4584742688639592322280890443396756015190545059020800 = 
230.38.52.74.13.176.312.414.97.353.433.577.929.1601 

257 256 

512 256 

544 256 

640 256 

680 256 

768 256 

816 256 

960 256 

112066740284710541318559132951039771578615246011365 = 
32.5.174.41.972.337.7841.9473.21121.376801.69470881.5584997633 
77483560514002244288033941979251535291351040000 = 
241.37.54.13.173.41.73.97.593.977.3217.19489.38273 
1067969144915565716868049522568978331378093561484521 = 
32.17.401.1697.13313.21121.49057.175361.198593.733697. 
29 102880 226241 
793553314770547109801192086472 747224274042 880000 = 
238.38.54.13.174.412.97.113.193.577.1601.2081.94849 
20130907061992729156753037152064135304760934400 = 
214.34.52.76.177.41.89.97.337.401.433.593.7841.130513 

1020 256 11412817953927959213 205123 673154 912256000000 = 
242.33.56.173.73.193.353.593.1889.3217.69857 

§4. Real Class Numbers 

Calculation of class numbers of real cyclotomic fields is very difficult. The 
following table is from Schoof [2] and the entries should be regarded as not 
rigorously justified, at least at the time the present book is being written. For 
each of the 1228 odd primes less than 10000, a number ii was computed, and 
it is very likely that ii = h;, the_class number of O((p + (;1). W~ have listed 
here all of the 303 cases where h > 1. The remaining cases have h = 1. 

For a prime p, the ideal class group of O((p + (;1) is a module over the 
Galois group of this field, hence has a Jordan-Holder decomposition into 
simple modules. (As in Theorem 10.8, there are restrictions on the sizes of 
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these simple modules.) An analysis of the structure of the global units modulo 
cyclotomic units by a method similar to that used in Kraft-Schoof [1] was 
used to compute the Jordan-Holder factors of order less than 80000. These 
were then multiplied together to give the number h. Therefore the true class 
number h+ is h times a (possibly empty) product of prime powers, each of 
which is greater than 80000. But it is reasonable to guess that there are no 
such extra factors in the range of this table. Also, it is not rigorously proved 
that all the factors listed actually occur. In the calculations, cyclotomic units 
were checked to be t-th powers by checking this modulo several primes 
congruent to 1 mod t. At present, the fact that they are actually t-th powers 
has not been rigorously checked. 

There are also the following results for h: (see van der Linden [1]): 

(a) If n is a prime power with ~(n) ::5; 66 then h: = 1. 
(b) If n is not a prime power and n ::5; 200, ~(n) ::5; 72, then h: = 1, except for 

ht36 = 2 and the possible exceptions n = 148 and n = 152. Also, we have 
ht6s = 1. 

If we assume the generalized Riemann hypothesis, then the following hold: 

(c) Ifn is a prime power with ~(n) < 162 then h: = 1. When have ht63 = 4. 
(d) If n is not a prime power and n ::5; 200, then h: = 1, with the following 

exceptions: ht36 = 2, ht4S = 2, htS3 = 4. 

It is possible to obtain examples of h; > 1 using quadratic subfields 
(Ankeny-Artin-Chowla [1], S.-D. Lang [1]), cubic subfields (see the tables 
in M.-N. Gras [3] and Shanks [1]), quintic subfields (E. Lehmer [1], Schoof
Washington [1]), sextic subfields (Cornell-Washington [1], M.-N. Gras 
[7, 11], Miiki [1]), and octic subfields (E. Lehmer [1]). For p < 10000, 
the factors obtained from these subfields were also found as factors in the 
calculation of the present table. 

p h p h p h p h 

163 4 733 3 1229 3 1879 4 
191 11 761 3 1231 211 1889 49 
229 3 821 11 1297 275 1901 3 
257 3 827 8 1373 3 1951 4 
277 4 829 47 1381 7 1987 7 
313 7 853 4 1399 4 2029 7 
349 16 857 5 1429 5 2081 25 
397 4 877 49 1459 247 2089 27 
401 45 937 16 1489 57 2113 37 
457 5 941 16 1567 7 2131 4 
491 8 953 71 1601 7 2153 5 
521 27 977 5 1697 17 2161 16 
547 4 1009 28 1699 4 2213 3 
577 7 1063 13 1777 16 2311 4 
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p ii p ii p ii p ii 

607 4 1069 7 1789 4 2351 11 
631 11 1093 5 1831 7 2381 11 
641 495 1129 63 1861 11 2417 697 
709 16 1153 19 1873 25 2437 7 

2473 5 4219 28 5441 11 6997 21 
2557 147 4229 7 5477 3 7027 4 
2617 13 4241 9 5479 4 7057 147 
2621 11 4261 16 5501 11 7229 5 
2659 19 4297 256 5521 9 7297 4 
2677 3 4327 8 5531 8 7333 13 
2689 4 4339 7 5557 1387 7351 49 
2713 3 4357 80 5581 73 7369 13 
2753 9 4409 9 5641 9 7411 131 
2777 3 4441 25 5659 4 7417 109 
2797 4 4457 5 5701 101 7481 3 
2803 4 4481 291 5741 3 7489 448 
2857 3 4493 3 5779 4 7529 5 
2917 21 4561 16 5821 3 7537 3 
2927 8 4567 4 5827 13 7561 37 
3001 121 4591 19 5953 28 7573 9 
3037 4 4597 21 6037 28 7589 8 
3041 13 4603 79 6053 3 7621 7 
3121 305 4639 4 6073 13 7639 4 
3137 9 4649 3 6079 4 7673 3 
3181 5 4657 5 6113 5 7687 16 
3217 7 4729 39 6133 3 7753 1875 
3221 3 4783 7 6163 4 7817 5 
3229 9 4789 4 6229 13 7841 26944 
3253 5 4793 5 6247 16 7867 4 
3271 4 4801 4 6257 29 7873 27 
3301 2416 4817 17 6301 8 7879 4 
3313 133 4861 7 6337 97 7937 41 
3433 37 4889 5 6361 61 8011 4 
3469 13 4933 9 6421 41 8017 130473 
3517 4 4937 5 6449 5 8069 3 
3529 19 4993 5 6481 5 8101 13 
3547 16777 5051 1451 6521 5 8161 5 
3571 7 5081 3 6529 13 8191 4 
3581 11 5101 11 6553 4 8209 4 
3697 5 5119 31 6577 5321 8269 37 
3727 4 5197 4 6581 11 8287 7 
3877 3 5209 29 6637 36 8297 45 
3889 3 5261 3 6673 17 8317 113 
3931 256 5273 7 6709 28 8377 5 
4001 3 5281 9 6737 9 8389 19 
4049 23 5297 3 6781 13 8431 31 
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p ii p ii p ii p ii 

4073 5 5333 3 6833 8 8501 5 
4099 4 5413 23 6949 5 8563 49 
4177 19 5417 7 6961 17 8581 9 
4201 11 5437 31 6991 7 8597 3 
8629 28 9013 7 9283 4 9613 7 
8647 4 9029 7 9293 3 9649 4 
8681 11 9041 17 9319 28 9689 29 
8689 5 9049 7 9337 64 9697 63 
8713 201 9109 16 9377 5 9721 4 
8731 4 9127 31 9391 4 9749 3 
8761 81 9133 21 9413 81 9817 17 
8831 16 9161 5 9421 3388 9829 3 
8837 3 9181 25 9511 73 9833 3 
8887 4 9241 13 9521 113 9857 73 
8893 7 9277 7 9551 541 9907 31 
9001 31 9281 3 9601 80 
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