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PREFACE TO THE FOURTH EDITION 

This fourth edition contains several additions. The main ones con
cern three closely related topics: Brownian motion, functional limit 
distributions, and random walks. Besides the power and ingenuity of 
their methods and the depth and beauty of their results, their importance 
is fast growing in Analysis as well as in theoretical and applied Proba
bility. 

These additions increased the book to an unwieldy size and it had to 
be split into two volumes. 

About half of the first volume is devoted to an elementary introduc
tion, then to mathematical foundations and basic probability concepts 
and tools. The second half is devoted to a detailed study of Independ
ence which played and continues to play a central role both by itself and 
as a catalyst. 

The main additions consist of a section on convergence of probabilities 
on metric spaces and a chapter whose first section on domains of attrac
tion completes the study of the Central limit problem, while the second 
one is devoted to random walks. 

About a third of the second volume is devoted to conditioning and 
properties of sequences of various types of dependence. The other two 
thirds are devoted to random functions; the last Part on Elements of 
random analysis is more sophisticated. 

The main addition consists of a chapter on Brownian motion and limit 
distributions. 

It is strongly recommended that the reader begin with less involved 
portions. In particular, the starred ones ought to be left out until they 
are needed or unless the reader is especially interested in them. 

I take this opportunity to thank Mrs. Rubalcava for her beautiful 
typing of all the editions since the inception of the book. I also wish to 
thank the editors of Springer-Verlag, New York, for their patience and 
care. 

January, 1977 
Berkeley, California 

M.L. 



PREFACE TO THE THIRD EDITION 

This book is intended as a text for graduate students and as a reference 
for· workers in Probability and Statistics. The prerequisite is honest 
calculus. The material covered in Parts Two to Five inclusive requires 
about three to four semesters of graduate study. The introductory part 
may serve as a text for an undergraduate course in elementary prob
ability theory. 

The Foundations are presented in: 

the Introductory Part on the background of the concepts and prob
lems, treated without advanced mathematical tools; 

Part One on the Notions of Measure Theory that every probabilist 
and statistician requires; 

Part Two on General Concepts and Tools of Probability Theory. 

Random sequences whose general properties are given in the Founda
tions are studied in: 

Part Three on Independence devoted essentially to sums of inde
pendent random variables and their limit properties; 

Part Four on Dependence devoted to the operation of conditioning 
and limit properties of sums of dependent random variables. The 
last section introduces random functions of second order. 

Random functions and processes are discussed in: 

Part Five on Elements of random analysis devoted to the basic con
cepts of random analysis and to the martingale, decomposable, 
and Markov types of random functions. 

Since the primary purpose of the book is didactic, methods are 
emphasized and the book is subdivided into: 

unstarred portions, independent of the remainder; starred portions, 
which are more involved or more abstract; 

complements and details, including illustrations and applications of 
the material in the text, which consist of propositions with fre-



PREFACE TO THE THIRD EDITION 

quent hints; most of these propositions can be found in the 
articles and books referred to in the Bibliography. 

Also, for teaching and reference purposes, it has proved useful to name 
most of the results. 

Numerous historical remarks about results, methods, and the evolu
tion of various fields are an intrinsic part of the text. The purpose is 
purely didactic: to attract attention to the basic contributions while 
introducing the ideas explored. Books and memoirs of authors whose 
contributions are referred to and discussed are cited in the Bibliography, 
which parallels the text in that it is organized by parts and, within parts, 
by chapters. Thus the interested student can pursue his study in the 
original literature. 

This work owes much to the reactions of the students on whom it has 
been tried year after year. However, the book is definitely more concise 
than the lectures, and the reader will have to be armed permanently 
with patience, pen, and calculus. Besides, in mathematics, as in any 
form of poetry, the reader has to be a poet in posse. 

This third edition differs from the second (1960) in a number of 
places. Modifications vary all the way from a prefix ("sub" martingale 
in lieu of "semi"-martingale) to an entire subsection (§36.2). To pre
serve pagination, some additions to the text proper (especially 9, p. 656) 
had to be put in the Complements and Details. It is hoped that more
over most of the errors have been eliminated and that readers will be 
kind enough to inform the author of those which remain. 

I take this opportunity to thank those whose comments and criticisms 
led to corrections and improvements: for the first edition, E. Barankin, S. 
Bochner, E. Parzen, and H. Robbins; for the second edition, Y. S. Chow, 
R. Cogburn, J. L. Doob, J. Feldman, B. Jamison, J. Karush, P. A. Meyer, 
J. W. Pratt, B. A. Sevastianov, J. W. Wall; for the third edition, S. 
Dharmadhikari, J. Fabius, D. Freedman, A. Maitra, U. V. Prokhorov. 
My warm thanks go to Cogburn, whose constant help throughout the 
preparation of the second edition has been invaluable. This edition has 
been prepared with the partial support of the Office of Naval Research 
and of the National Science Foundation. 

April, 1962 
Berkeley, California 

M.L. 
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Introductory Part 

ELEMENTARY PROBABILITY THEORY 

Probability theory is concerned with the mathematical analysis of 
the intuitive notion of "chance" or "randomness," which, like all no
tions, is born of experience. The quantitative idea of randomness first 
took form at the gaming tables, and probability theory began, with 
Pascal and Fermat (1654), as a theory of games of chance. Since then, 
the notion of chance has found its way into almost all branches of knowl
edge. In particular, the discovery that physical "observables," even 
those which describe the behavior of elementary particles, were to be 
considered as subject to laws of chance made an investigation of the 
notion of chance basic to the whole problem of rational interpretation 
of nature. 

A theory becomes mathematical when it sets up a mathematical 
model of the phenomena with which it is concerned, that is, when, to 
describe the phenomena, it uses a collection of well-defined symbols 
and operations on the symbols. As the number of phenomena, to
gether with their known properties, increases, the mathematical model 
evolves from the early crude notions upon which our intuition was 
built in the direction of higher generality and abstractness. 

In this manner, the inner consistency of the model of random phe
nomena became doubtful, and this forced a rebuilding of the whole 
structure in the second quarter of this century, starting with a formula
tion in terms of axioms and definitions. Thus, there appeared a branch 
of pure mathematics-probability theory-concerned with the construc
tion and investigation per se of the mathematical model of randomness. 

The purpose of the Introductory Part (of which the other parts of 
this book are independent) is to give "intuitive meaning" to the con
cepts and problems of probability theory. First, by analyzing briefly 

1 



2 ELEMENTARY PROBABILITY THEORY 

some ideas derived from everyday experience-especially from games of 
chance-we shall arrive at an elementary axiomatic setup; we leave the 
illustrations with coins, dice, cards, darts, etc., to the reader. Then, 
we shall apply this axiomatic setup to describe in a precise manner 
and to investigate in a rigorous fashion a few of the "intuitive notions" 
relative to randomness. No special tools will be needed, whereas in 
the nonelementary setup measure-theoretic concepts and Fourier
Stieltjes transforms play a prominent role. 



I. INTUITIVE BACKGROUND 

1. Events. The primary notion in the understanding of nature is that 
of event-the occurrence or nonoccurrence of a phenomenon. The ab
stract concept of event pertains only to its occurrence or nonoccurrence 
and not to its nature. This is the concept we intend to analyze. We 
shall denote events by A, B, C, · · · with or without affixes. 

To every event A there corresponds a contrary event "not A," to 
be denoted by A"; A" occurs if, and only if, A does not occur. An event 
may imply another event: A implies B if, when A occurs, then B neces
sarily occurs; we write A C B. If A implies B and also B implies A, 
then we say that A and Bare equivalent; we write A= B. The nature 
of two equivalent events may be different, but as long as we are con
cerned only with occurrence or nonoccurrence, they can and will be 
identified. Events are combined into new events by means of opera
tions expressed by the terms "and," "or" and "not." 

A "and" B is an event which occurs if, and only if, both the event A 
and the event B occur; we denote it by A n B or, simply, by AB. If 
AB cannot occur (that is, if A occurs, then B does not occur, and if B 
occurs, then A does not occur), we say that the event A and the event 
B are disjoint (exclude one another, are mutually exclusive, are in
compatible). 

A "or" B is an event which occurs if, and only if, at least one of the 
events A, B occurs; we denote it by A U B. If, and only if, A and B 
are disjoint, we replace "or" by +. Similarly, more than two events 
can be combined by means of "and," "or"; we write 

n 

A1 n A2 n · · · n An or A1A2 · · · An or n Ak, 
k=l 

n n 

A1 U A2 U · · · U An or U Ak, A1 + A2 + · · · An or L: Ak. 
k=l k=l 

There are two combinations of events which can be considered as 
"boundary events"; they are the first and the last events-in terms of 

3 



4 INTUITIVE BACKGROUND 

implication. Events of the form A+ Ac can be said to represent an 
"always occurrence," for they can only occur. Since, whatever be the 
event A, the events A+ Ac and the events they imply are equivalent, 
all such events are to be identified and will be called the sure event, to 
be denoted by 0. Similarly, events of the form AAc and the events 
which imply them, which can be said to represent a "never occurrence" 
for they cannot occur, are to be identified, and will be called the impos
sible event, to be denoted by 0; thus, the definition of disjoint events A 
and B can be written AB = 0. The impossible and the sure events are 
"first" and "last" events, for, whatever be the event A, we have 0 c 
A en. 

The interpretation of symbols c, =, n, U, in terms of occurrence 
and nonoccurrence, shows at once that 

if A C B, then Be C Ac, and conversely; 

AB = BA, AU B = B U A; 

(AB)C = A(BC), (AU B) U C =AU (B U C); 

A(B U C) = AB U AC, A U BC = (A U B) (A U C); 

more generally 
n n n n 

( n Ak)c = U Akc, ( u Ak)C = n Akc, 
k=l k=l k=l k=l 

and so on. 
We recognize here the rules of operations on sets. In terms of sets, 

0 is the space in which lie the sets A, B, C, · · ·, 0 is the empty set, Ac 
is the set complementary to the set A; AB is the intersection, A U B 
is the union of the sets A and B, and A c B means that A is contained 
in B. 

In science, or, more precisely, in the investigation of "laws of nature," 
events are classified into conditions and outcomes of an experiment. 
Conditions of an experiment are events which are known or are made to 
occur. Outcomes of an experiment are events which may occur when 
the experiment is performed, that is, when its conditions occur. All 
(finite) combinations of outcomes by means of "not," "and," "or," are 
outcomes; in the terminology of sets, the outcomes of an experiment 
form afield (or an "algebra" of sets). The conditions of an experiment, 
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together with its field of outcomes, constitute a trial. Any (finite) 
number of trials can be combined by "conditioning," as follows: 

The collective outcomes are combinations by means of "not," 
"and," "or," of the outcomes of the constituent trials. The condi
tions are conditions of the first constituent trial together with condi
tions of the second to which are added the observed outcomes of the 
first, and so on. Thus, given the observed outcomes of the preceding 
trials, every constituent trial is performed under supplementary condi
tions: it is conditioned by the observed outcomes. When, for every 
constituent trial, any outcome occurs if, and only if, it occurs without 
such conditioning, we say that the trials are completely independent. 
If, moreover, the trials are identical, that is, have the same conditions 
and the same field of outcomes, we speak of repeated trials or, equiva
lently, identical and completely independent trials. The possibility of re
peated trials is a basic assumption in science, and in games of chance: 
every trial can be peifor'ined again and again, the knowledge of past and 
present outcomes having no influence upon future ones. 

2. Random events and trials. Science is essentially concerned with 
permanencies in repeated trials. For a long time Homo sapiens investi
gated deterministic trials only, where the conditions (causes) determine 
completely the outcomes (effects). Although another type of perma
nency has been observed in games of chance, it is only recently that 
Homo sapiens was led to think of a rational interpretation of nature in 
terms of these permanencies: nature plays the greatest of all games of 
chance with the observer. This type of permanency can be described 
as follows: 

Let the frequency of an outcome A in n repeated trials be the ratio 
nA/n of the number nA of occurrences of A to the total number n of 
trials. If, in repeating a trial a large number of times, the observed 
frequencies of any one of its outcomes A cluster about some number, 
the trial is then said to be random. For example, in a game of dice (two 
homogeneous ones) "double-six" occurs about once in 36 times, that 
is, its observed frequencies cluster about 1/36. The number 1/36 is a 
permanent numerical property of "double-six" under the conditions of 
the game, and the observed frequencies are to be thought of as measure
ments of the property. This is analogous to stating that, say, a bar 
at a fixed temperature has a permanent numerical property called its 
"length" about which the measurements cluster. 

The outcomes of a random trial are called random (chance) events. 
The number measured by the observed frequencies of a random event 
A is called the probability of A and is denoted by PA. Clearly, P0 = 0, 
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Prl = 1 and, for every .d, 0 ;;:; P .d ;;:; 1. Since the frequency of a sum 
.d1 + .d2 + · · · + An of disjoint random events is the sum of their fre
quencies, we are led to assume that 

Furthermore, let nA, nB, nAB be the respective numbers of occurrences 
of outcomes .d, B, .dB in n repeated random trials. The frequency of 
outcome B in the nA trials in which .d occurs is 

nAB nAB nA 
-=--:-

n n 

and measures the ratio P.dB/P.d, to be called probability of B given .d 
(given that .d occurs); we denote it by P AB and have 

P.dB = P.d·PAB. 

Thus, when to the original conditions of the trial is added the fact that 
.d occurs, then the probability P B of B is transformed into the proba
bility P AB of B given .d. This leads to defining B as being stochasti
cally independent of .d if P AB = P B or 

P.dB = P.d·PB. 

Then it follows that .dis stochastically independent of B, for 

P.dB 
PB.d = -- = P.d 

PB ' 

and it suffices to say that .d and B are stochastically independent. (We 
assumed in the foregoing ratios that the denominators were not null.) 

Similarly, if a collective trial is such that the probability of any out
come of any constituent random trial is independent of the observed 
outcomes of preceding constituents, we say that the constituent ran
dom trials are stochastically independent. Clearly, complete independ
ence defined in terms of occurrences implies stochastic independence 
defined in terms of probability alone. Thus, as long as we are concerned 
with stochastic independence only, the concept of repeated trials re
duces to that of identical and stochastically independent trials. 

3. Random variables. For a physicist, the outcomes are, in general, 
values of an observable. From the gambler's point of view, what 
counts is not the observed outcome of a random trial but the corre
sponding gain or loss. In either case, when there is only a finite num
ber of possible outcomes, the sure outcome n is partitioned into a num-
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her of disjoint outcomes Ah A2, · · ·, Am. The random variable X, say, 
the chance gain of the gambler, is stated by assigning to these outcomes 
numbers XA 1, XA 2, • • ·, XAm' which may be positive, null, or negative. 
The "average gain" in n repeated random trials is 

Since the trial is random, this average clusters about XA 1PA1 + xA2PA2 

+ · · · + x Amp Am which is defined as the expectation EX of the random 
variable X. It is easily seen that the averages of a sum of two random 
variables X and Y cluster about the sum of their averages, that is, 

E(X + Y) = EX+ EY. 

The concept of random variable is more general than that of a random 
event. In fact, we can assign to every random event A a random vari
able-its indicator IA = 1 or 0 according as A occurs or does not occur. 
Then, the observed value of IA tells us whether or not A occurred, and 
conversely. Furthermore, we have EIA = l·PA + O·PAc = PA. 

A physical observable may have an infinite number of possible values, 
and then the foregoing simple definitions do not apply. The evolution 
of probability theory is due precisely to the consideration of more and 
more complicated observables. 



II. AXIOMS; INDEPENDENCE AND THE 
BERNOULLI CASE 

We give now a consistent model for the intuitive concepts which ap
peared in the foregoing brief analysis; we shall later see that this model 
has to be extended. 

1. Axioms of the finite case. Let 0 or the sure event be a space of 
points w; the empty set (set containing no points w) or the impossible 
event will be denoted by Ill. Let G. be a nonempty class of sets in O, to 
be called random events or, simply, events, since no other type of events 
will be considered. Events will be denoted by capitals A, B, · · · with 
or without affixes. Let P or probability be a numerical function de
fined on G.; the value of P for an event A will be called the probability 
of A and will be denoted by PA. The pair (G., P) is called a probability 
field and the triplet (0, G., P) is called a probability space. .. 

AxiOM I. G. is a field: complements Ac, finite intersections n Ak, 
k-1 

" and finite unions U Ak of events are events. 
k=l 

AxiOM II. P on G. is normed, nonnegative, and finitely additive: .. .. 
Po= 1, PA ~ 0, P "E. Ak ="E. PAk. 

k=l k=l 

It suffices to assume additivity for two arbitrary disjoint events, since 
the general case follows by induction. 

Since Ill is disjoint from any event A and A+ Ill= A, we have 

PA = P(A +Ill) = PA +Pill, 

so that Pill = 0. Furthermore, it is immediate that, if A C B, then 
PA ~ PB, and also that .. .. 
P U Ak =PAt+ PA1cA2 + · · · + PA1cA2c · · · A,._tcA, ~ "E. PAk. 
k~ k~ 

The axioms are consistent. 
8 
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To see this, it suffices to construct an example in which the axioms 
are both verified: take as the field <t of events n and 0 only, and set Pn 
= 1, P0 = 0. A less trivial example is that of a simple probability field: 
1° The events, except 0, are formed by all sums of disjoint events Ah 
A2, • • ·, An which form a finite partition of the sure event: A1 + A2 

+ · · · + An = n; 2° to every event Ak of the partition is assigned a 
n 

probability Pk = PAk such that every Pk ~ 0 and LPk = 1-this is 
k=l 

always possible. Then P is defined on <t, consistently with axiom II, 
by assigning to every event A as its probability the sum of probabilities 
of those Ak whose sum is A. 

2. Simple random variables. Let the probability field (<t, P) be 
fixed. In order to introduce the concept of random variables, it will be 
convenient to begin with very special ones, which permit operations on 
events to be transformed into ordinary algebraic operations. 

To every event A we assign a function lA on n with values IA(w), 
such that lA(w) = 1 or 0 according as w belongs or does not belong to 
A; IA will be called the indicator of A (in terms of occurrences, IA = 1 
or 0, according as A occurs or does not occur). Thus, IA2 = IA and 
the boundary cases are those of 10 = 0 and 10 = 1 (if, in a relation 
containing functions of an argument, the argument does not figure, 
then the relation holds for all values of the argument unless otherwise 
stated). 

The following properties are immediate: 

if A c B, then ]A ~ IB, and conversely; 

if A = B, then ]A = IB, and conversely; 

lA· = 1 - ]A, lAB = IAIB, IA+B = ]A + IB, 

lAuB = lA+A•B = IA + IB- lAB 

and, more generally, 
n n 

m 
Linear combinations X= 'L x;IA; of indicators of events A; of a finite 

i=l 
partition of n, where the x; are (finite) numbers, are called simple 
random variables, to be denoted by capitals X, Y, · · ·, with or without 
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affixes. By convention, every written linear combination of indicators 
will be that of indicators of disjoint events whose sum is the sure event; 
however, when Xj = 0, we may drop the corresponding null term xJA; 
= 0 from the linear combination. The set of values P.di which corre
spond to the values Xj of X, assumed all distinct, is called the proba
bility distribution and the Ai form the partition of X. The expectation EX 

m 
of a simple random variable X = I: XjlAi is defined by 

j=l 

m 

EX= LXjPdj. 
i=l 

Clearly, any constant cis a simple random variable, and the sum or the 
product of two simple random variables is a simple random variable; 
E(c) = c, EcX = cEX; if X ~ 0, that is, all its values Xj ~ 0, then 
EX~ 0; if X~ Y, then EX~ EY. Furthermore, expectations pos
sess the following basic property. 

ADDITION PROPERTY. The expectation of a sum of (a finite number of) 
simple random variables is the sum of their expectations. 

It suffices to prove the assertion for a sum of two simple random vari
ables 

m 

X= LXjlA;, 
i=l 

n 

since the general case follows by induction. Because of the properties 
of probabilities and indicators given above, 

m n m n 

EX+ EY = L XjPdj + LYkPBk = L L (Xj + Yk)P.djBk 

while 
i=l k=l i=lk=l 

m n 

E(X + Y) = E L L (Xj + Yk)IA;Bk 
i=l k=l 

m n 

= L L (Xj + Yk)P .djBk. 
i=l k=l 

and the conclusion is reached. 
Application to probabilities of combinations of events. To begin with, 

we observe that 
EIA = l·PA + O·P.dc = PA. 

Therefore, from 
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it follows, upon taking expectations of both sides, that 

P(A U B)= PA + PB- PAB. 
Similarly, from 

IAuBua = IA + (1 - IA)IB + (1 - JA)(l - IB)la 

it follows, upon expanding the right-hand side and taking expectations, 
that 

P(A U B U C)= PA + PB +PC- PAB- PBC- PCA + PABC, 

and so on. 

The foregoing properties of expectations lead to the celebrated 

TcHEBICHEV INEQUALITY. If X is a simple random variable, then,for 
every E > 0, 

[I X I ~ E] is to be read: the union of all those events for which the 
values of I X I are ~ E. 

The inequality follows from 

E)(2 = E(X2 I11x1~ ,1) + E(X2 I 11x1 <•l) ~ E(X2 I11x1 ~ ,1) ~ E2 EI11x1;;;; ,1 

= E2P[I XI ~ E]. 

3. Independence. Two events Ah A 2 are said to be stochastically 
independent or, simply, independent (no other type of independence of 
events will be considered) if 

P A1A2 = P A1P A2. 

More generally, events Ak, k = 1, 2, · · ·, n are independent, if, for every 
m ~ n and for arbitrary distinct integers kh k2, · · ·, km ~ n, 

PAk,Ak2 • • • A~cm = PAk,PAk2 • • • PAkm· 

If this property holds for all events Ak selected arbitrarily each within 
a different class dk, we say that these classes are independent. Simple 
random variables Xk, k = 1, 2, · · ·, n, are said to be independent if the 
partitions on which they are defined are independent. A basic prop
erty of independent simple random variables is the following 

MuLTIPLICATION PROPERTY. The expectation of a product (of a .finite 
number) of independent simple random variables is the product of their 
expectations. 
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It suffices to give the proof for two independent simple random variables, 

m n 

X= :E x;IA;, Y = :E yklBu all x;(yk) distinct, 
i=l k=l 

since the general case follows by induction. Because of independence, 

m n m n 

EXY = E :E :E x;y~A;Bk = :E :E x;ykPA;PBk 
i=l k=l i=l k=l 

m n 

= ( 2: x;PA;)( LYkPBk) = EXEY, 
i=l k=l 

and the conclusion is reached. 
The expectation E(X- EX)2, called the variance of X, is denoted 

by u2 X. By the additive property, 

u2X = E(X2 - 2XEX + E 2X) = EX2 - E 2X. 

The celebrated Bienayme equality follows from the additive and mul
tiplicative properties. 

BIENAYME EQUALITY. If xk, k = 1, 2, .. ·, n, are independent, then 
n n 

u2 :E Xk = 2: u2Xk. 
k=l k=l 

Since 
E(Xk - EXk) = EXk - EXk = 0 

and independence of the Xk implies independence of the Xk - EXk, it 
follows that 

" n n " 
u2 2: Xk = E ( 2: Xk- 2: EXk)2 = E{ 2: (Xk- EXk)} 2 

k=l k=l k=l k=l 

n " = :E E(Xk - EXk)2 + 2: E(X; - EX;) (Xk - EXk) 
k=l i~k=l 

n " n 

= 2: u2 Xk + :E E(X; - EX;)E(Xk - EXk) = 2: u2 Xk. 
k=l i~k=l k=l 

Observe that we used independence of the Xk considered two by two 
only. 

4. Bernoulli case. A simple case of independence has played a cen
tral role in the evolution of probability theory. This is the Bernoulli 
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case of events dk, k = 1, 2, · · ·, which are independent whatever be 
their total number n under consideration and such that their probabili
ties P dk have the same value p. 

We observe that independence of the dk, k = 1, 2, · · ·, n implies 
independence of the Ak = dk or dk•, and, more generally, of the n 
fields <lk = {0, dk, dk", n}. For example, 

Pdk,"dk2 • • • dk,. = Pdk2dks · · · dk,.- Pdk,dk2 • • • dk,. 

= Pdk2Pdks · · · Pdk,.- Pdk,Pdk2 • • • Pdk,. 

= (1- Pdk,)Pdk2 • • • Pdk,. = Pdk,•Pdk2 • • • Pdk,., 

where the subscripts are all distinct and ~ n. These fields correspond 
to repeated random trials where an outcome d at the kth trial is repre
sented by dk. 

The number of occurrences of outcome d in n repeated trials is rep-,. 
resented by a simple random variableS,. = 2: IAk· To writeS,. in the 

k=l 
usual form, that is, with values assigned to events of a partition of the 
sure event, we observe that .. 

IAk = IAk II (IA; + IA;<). 
;=1 
J=t=k 

It follows, upon substituting inS,. and expanding, that 

where 

.. 
S,. = LjlBi' 

j=O 

The summation is over all permutations of subscripts k = 1, 2, · · ·, n, 
classified into two groups, one having j terms and the other having 
n- j terms. 

On account of the independence, the expectations of the terms under 
the summation sign are 

Pdk,Pdk2 • • • Pdk;Pdki+'c · · · PA,.,.• = p;qn-;, q = 1- p, 

and, therefore, the probability of j occurrences inn trials is given by 

n! . . 
P[S,.=jJ=PB;= .,( _ .) 1p1q"-1, j=0,1,···,n. 

1. n J . 
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With this result we can compute directly the expectation and variance 
of Sn, but we prefer to use the additive property which gives 

n n 

ESn = El:JAk = "L.PAk = np, 
k=l k=l 

and the Bienayme equality for independent random variables IAk which 
gtves 

smce 

n 

r?Sn = L u21Ak = npq, 
k=l 

u21Ak = E(IAk- EIAk)2 = EIAk2 - E21Ak 

= EIAk- E2JAk = p- p2 = pq. 

In orcler to justify the model investigated so far, we ought to give a 
precise and acceptable "meaning" to the notion of "clustering of fre
quencies" which, as we have seen, is at the very root of the interpreta
tion of randomness. The most celebrated interpretation, and rightly so, 
is the following 

BERNOULLI LAW OF LARGE NUMBERS (1713). In the Bernoulli case, 
for every E > 0, as n --? oo, 

In other words, the probability distribution of values of the frequency 
Sn/n of an outcome in n repeated trials concentrates at the value p of 
the probability of the outcome, as the number of trials increases in
definitely. 

The proof is immediate for, upon applying the Tchebichev inequality, 
we have, as n --? oo, 

Observe that only independence two by two has been required. 

A particular sequence of Bernoulli cases, introduced by Poisson, 
shows that the finite setup considered so far is not satisfactory, at least 
from the sophisticated mathematician's point of view. 

Consider a sequence of Bernoulli cases of independent events Ank, 
k = 1, 2, · · ·, n; n = 1, 2, ···,of the same probability Pn which varies 
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with the number n of trials in such a manner that the expectation of 
n 

the number of occurrences Sn = L: lAnk remains constant: ESn = npn 
k=l 

= X. Then, as n ~ oo while j remains fixed, 

P[Sn = j] 

n! . . _ p 1 n-J 
-'I( - ')1 nqn J. n J . 

= n(n - 1) . ·;,<n- j + 1) (~f ( 1 - ~r-j 

= ~: ( 1 - ~) n. ( 1 - D ( 1 - D ... ( 1 - j : 1) ( 1 _ ~) -j 
>,.i 

~ -e-x ., ' 
1· 

and we have the following 
n 

PoiSSON THEOREM (1832). If Sn = L: lAnk is the sum of indicators of 
k=l 

independent equiprobable events, such that the expectation ESn = }, > 0 
remains constant as n varies, then, as n ~ oo, 

P[Sn = j] j = o, 1, 2, 

Since 
"" >,.i "" }./ 
L: - e-x = e-x L: - = 1 
i=oj! i=oj! ' 

we can say that, in the foregoing passage to the limit, no positive proba
bility escapes to infinity. The total probability is now distributed 
among a denumerable number of values j = 0, 1, 2, · · ·, provided we 
assume that the probability of the sum of a denumerable number of 
disjoint events [Sn = ;l is the sum of their probabilities. However, in 
the setup of § 1 neither a denumerable sum of events nor the property 
just stated has content. Thus, if we want to give an interpretation to 
Poisson's result, we have to expand the model so as to include the pre
ceding possibilities. 

5. Axioms for the countable case. As soon as the concept of infinity 
appears, intuition fails and the vague everyday idea of randomness 
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yields nothing. A first and obvious way to pass from the finite to the 
infinite is to extrapolate, that is, to postulate that properties of the 
finite case continue to hold in the infinite case. Yet these extrapolations 
have to be meaningful and consistent. 

00 00 

In set theory, intersections nAn and unions U An of sets An, where 
n=l n=l 

n runs over the denumerable set of integers, continue to be defined as 
the sets of points which belong to every An and to at least one An, re
spectively. We still have that 

00 00 00 00 

00 

U An= A1 + A1cA2 + A1cA2cAa + · · · ad infinitum 
n=l 

and, correspondingly, 
00 

I 00 = ITIAn) 
nAn n=l 

n•l 

00 

I 00 = L IAn 
L An n=l 

n=l 

If we want all countable (finite or denumerable) combinations of events 
by means of "not," "and," "or," to be events and their probabilities 
to be defined, then axioms I and II become 

AxiOM I'. Events form a u-field a: Complements Ac, countable in
tersections n A;, and countable unions U A; of events are events. 

i i 
AxiOM II'. Probability P on a is normed, nonnegative, and u-additive: 

Pn = 1, PA ~ 0, P'LA; = 'LPA;. 
j i 

It follows that 

CovERING RULE: P U //; = PA1 + PA1"A2 + Pd{A2"d3 +· · · 
j 

These axioms are consistent, since the examples constructed for the 
finite case continue to apply trivially. A nontrivial example in the in
finite case is that of nonsimple elementary probability fields: 1° The:: 
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events, except 0, are formed by all countable sums of events An which 
"" 

form a denumerable partition of the sure event: I: An = Q; 2° to 
n=l 

every event An of the partition is assigned probability Pn = PAn such 
"" 

that every Pn !;; 0 and I: Pn = 1-this is always possible. Then P is 
n=l 

defined on a, consistently with axiom Ii', by assigning to every event 
A as its probability the sum (finite sum or convergent series) of proba
bilities of those An whose sum is A. 

6. Elementary random variables. A linear combination X= 
~ x;IA; of a countable number of indicators of disjoint events Ai is an 
1 

elementary random variable X; if j varies over a finite set, then X re-
duces to a simple random variable. Clearly a sum or a product of two 
elementary random variables is an elementary random variable. We 
may still try to define the expectation EX by 

EX = I: XjP Aj. 
j 

But, if the sum is a divergent series, it has no content or is infinite. 
Furthermore, even if it is a convergent series, it may not be absolutely 
convergent, so that by changing the order of terms we can change its 
value, and the expectation is no longer well defined if no ordering is 
specified; this is undesirable according to the very meaning of an ex
pectation. We are therefore led to define EX by the foregoing expres
sion only when the right-hand side is absolutely convergent, so that 

if EX exists and is finite, then El X J exists and is finite; and conversely. 

(We recognize here an integrable elementary function in the sense of 
Lebesgue with respect to the measure P.) 

The argument used to prove the addition property of simple random 
variables continues to apply to finite sums of elementary random vari
ables whose expectations exist and are finite, provided u-additivity of 
Pis used. We obtain: 

If the expectations of a finite number of elementary random variables 
exist and are finite, then the expectation of their sum exists and is finite 
and is the sum of their expectations. 

Also, Tchebichev's inequality remains valid, provided its right-hand 
side exists and is finite. 

Independence of a countable number of events Ah or u-fields ai con
tained in a, is defined to be independence of every finite number of 
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these events, or O"-fields. Independence of a countable number of ele
mentary random variables xk = L x;JA;k is defined to be independence 

i 
of every finite number of events A;.,k as k varies. The argument used 
to prove the multiplication property yields: 

If the expectations of a finite number of independent elementary random 
variables exist and are finite, then the expectation of their product exists 
and is the finite product of their expectations. 

Also, Bienayme's equality remains valid, provided its right-hand side 
exists and is finite. 

In the Bernoulli law of large numbers only simple random variables 
figure and only finite additivity of the probability P is used, so that 
nothing is to be changed. However, now we can introduce probabilities 
of denumerable combinations of events and use the supplementary re
quirement that the additive property of P remains valid for denumera
ble sums. Therefore, in the present setup we can expect a more pre
cise interpretation of the "clustering of frequencies." This is the cele
brated Borel strong law of large numbers derived below. 

Let Xh X 2, • • • be a sequence of elementary random variables. We 
investigate the convergence to 0 of the sequence; the limits are taken 
as n ~ oo. It will be more convenient to consider the contrary case
X,. does not converge to 0 or, equivalently, there existsat least one in
teger m such that to every integer n there corresponds at least one in-

teger v for which I X,.+. I $;;; ~ • Since "at least one" corresponds to 

"U" while "every" corresponds to "n," we can write 

00 00 00 [ 1] 
[X,. -# 0] = m~1 n~lv~1 I X,.+. I $;;; ;;; ; 

the right-hand side is an event. Thus, the condition X,. -# 0 deter
mines the event [X,. -# 0], the contrary condition X,. ~ 0 determines 
the complementary event [X,. ~ 0], and the probabilities of these two 
events add up to 1. 

We are interested in X,. ~ 0 with probability 1 or, equivalently, 
X,. -# 0 with probability 0, and require the following proposition. 

lf,for every integer m, i: P [1 X,. I $;;; _!_] < oo, then P[X,. -# 0] = 0. 
n=1 m 

00[ 1] 00 
We set Anm = u I X,.+. I $;;; - and Am = n Anm and observe that, 

•=1 m n-1 
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by the covering rule and the hypothesis, for every m, 

Since whatever be n', 
00 

PAm= P n Anm ~ PAn'm· 
n=l 

it follows upon letting n' ~ oo that PAm= 0. Therefore, by the cov
ering rule 

00 00 

P[Xn -t+ 0] = P U Am ~ L: PAm = 0 
m=l m=1 

and the proposition is proved. 
We can now pass to 

BoREL's STRONG LAW OF LARGE NUMBERS (1909). In the Bernoulli 
case 

We recall that in the Bernoulli case 

Sn 1 n 
Xn =- =- L fA; 

n ni=l 

where the A; are independent events of common probability p whatever 
ben, and EXn = p, u2 Xn = pq/n (observe that only independence two 
by two is used). Since for every m 

it follows by the foregoing proposition that xk2 ~ p with probability 1 
as k ~ oo. But to every n there corresponds an integer k = k(n) with 
k2 ~ n < (k + 1)2 ; hence 0 ~ n - k2 ~ 2k and n ~ oo implies k ~ oo. 
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Since 

so that 
4 I Xn - p I ~ I Xn - xk21 + I xk2 - p I ~ k + I xk2 - p I, 

it follows that Xn ~ p with probability 1 as n ~ oo, and Borel's re
sult is proved. 

*Application. Let X be an elementary random variable. We set 
F(x - 0) = F(x) = P[X < x], F(x + 0) = P[X ~ x] so that P[X = 
x] = F(x + 0) - F(x). The function F so defined determines the prob
ability distribution of X, that is, the probabilities of all values of X; 
it is called the distribution junction of X. We organize repeated inde
pendent trials where we observe the values of X; in other words, we 
consider independent random variables xh x2, ... with the same prob
ability distribution as X. 

If k is the number of values observed in n of those trials and which 
are less than x or, equivalently, if k is the number of independent events 
[X1 < x], [X2 < x], · · · [Xn < x] (with common probability p = F(x)) 
which occur, we set Fn(x - 0) = Fn(x) = k/n. Thus, Fn(x) is a ran
dom variable with 

P[Fn(x) =~] = n! {F(x)}k{l-F(x)}n-k. 
n k!(n- k)! 

The function Fn is called empirical distribution junction of X in n trials. 
According to Borel's strong law of large numbers, this frequency Fn(x) 
of occurrences of the outcome [X < x] converges to F(x) with proba
bility 1. In other words, the observations permit us to find with prob
ability 1 every value F(x) of the distribution function of X. In fact, 
Borel's result yields more (Glivenko-Cantelli): 

CENTRAL STATISTICAL THEOREM. If F is the distribution junction of 
a random variable X and Fn is the empirical distribution junction of X in 
n independent and identical trials, then 

P[ sup I Fn(x) - F(x) I ~ 0] = 1. 
-oo<z<+oo 

In other words, with probability 1, Fn(x) ~ F(x) uniformly in x. 
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Let Xjk be the smallest value x such that 

j 
F(x) ~ k ~ F(x + 0). 

Since the frequency of the event [X< x;k] is Fn(X;k) and its probability 
is F(x;k), it follows by Borel's result that PAjk = 1 where Ajk = [Fn(X;k) 
~ F(x;k)]. Similarly, P dj~ = 1 where Aj~ = [Fn(x;k + 0) ~ F(x;k + 
0]. Let A;k = AjkA;k and let 8 = ±0 

k 

dk = n A;k = r sup I Fn(Xjk + 8) - F(x;k + 8) I ~ 0]. 
i=l l~j~k 

By the covering rule and by what precedes 
k k 

P.dk" = P U A;k" ~ Z:PA;k" = 0 
i=l i=l 

00 

and, hence, P Ak = 1. Upon setting d = n Ak, it follows similarly 
k=l 

that PA = 1. 
On the other hand, for every x between Xjk and Xj+l,k 

F(x;k + 0) ~ F(x) ~ F(xi+l,k), Fn(x;k + 0) ~ Fn(x) ~ Fn(xi+l.k) 

while for every Xjk 

Therefore, 
1 

Fn(x) - F(x) ~ Fn(xi+l.k) - F(x;k + 0) ~ Fn(xi+l.k) - F(xi+l.k) + k 
and 

It follows that, whatever be x and k, 

or 

1 I Fn(x) - F(x) I ~ sup I Fn(Xjk + 8) - F(x;k + 8) I + -
1 ~j~k k 

1 
~n = sup I Fn(x) - F(x) I ~ sup I Fn(Xjk + 8) - F(x;k + 8) I + -· 

-oo<x<+oo l~j~k k 

Hence P[~n ~ 0] ~ P d = 1, and the theorem is proved. 

*REMARK. The foregoing proof and hence the theorem remain valid 
when the random variable X is not elementary. 
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7. Need for nonelementary random variables. The sophisticated 
mathematician prefers to work with "closed" models-such that the 
operations defined for the entities within the model yield only entities 
within the model. While elementary random variables can be obtained 
as limits of sequences of simple random variables, all limits of se
quences of simple and, more generally, of elementary random variables 
are not necessarily elementary-families of elementary random varia
bles are not necessarily closed under passages to the limit. If this clo
sure is required, then the concept of a random variable has to be ex
tended so as to include "measurable functions." This will be done in 
the following parts. In fact, the need for further expansion of the model 
in order to include random variables with a noncountable set of values 
appeared quite early in the development of probability theory, once 
more in connection with the Bernoulli case. This is the celebrated (as 
the reader observes, all results obtained in or used for the Bernoulli 
case are "celebrated") 

DE MoivRE-LAPLACE THEOREM. In the Bernoulli case with p > 0, 
q = 1 - p > 0, as n --+ oo, 

de Moivre (1732): 
j- np 

x=---· vnpq 
uniformly on every finite interval [a, b] of values of x; 

Laplace (1801): 

p [a~ S,- np ~ b] --+ _l_Jbe-:r.'/2 dx. vnpq y'2; 4 

The relation a,,...., b, means that a,fb, --+ 1. The integer j varies 
with n, so that x = x(n) remains within a fixed finite interval [a, b] and 

j = np + xv;;pq --+ oo, k = n - j = nq - xv;;pq --+ oo. 

We apply Stirling's formula 

1 
0 <8m <-

12m 
n' 

to the binomial probabilities P,(x) = .,k·,pirf. Thus 
1. • 
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~·nne-n · k 8 -8·-8 p (X) = p'q fJ n I k 
II - ~· 'J' -j- IFLk kk -k v .<:rr;·; e v .t.'trf(' e 

where, uniformly on [a, b], 

1 (1 l 1) lol <- -+-:-+-
12 n ; k 

and 

jk . ( !M) ( fM) 
-;; = n p + x ~-;; q - x ~-;; "" npq · 

Therefore, uniformly on [a, b], 

1 (np)i (nq)k p (x)"" - -
n y2'trnpq j k 

The first assertion follows. 
j- np 

Let XnJ be those numbers of the form _ ~which belong to the in
vnpq 

terval [a, b]; consecutive Xn/s differ by 1/-v-;;;;;. On account of the 
first assertion, uniformly in j, 

Pn(Xnj)"" 1 
e-Xnj212 

and ~ 
[ Sn-np ] 1 1 -x~n'/2 

P a ~ V ~ b = L Pn(Xnj)"" _ 1- · _ ,c:-: 'L e 1 • 

npq i v 2'Tr v npq i 

Since the last expression is a Riemann sum approximating the integral 

_ ~-- fbe-x 2
/ 2 dx, the second assertion follows. 

V 2'Tr a 



III. DEPENDENCE AND CHAINS 

1. Conditional probabilities. Let A be an event with PA > 0. The 
ratio PAB/ PA is called the conditional probability of B given A or, 
simply, probability of B given A and is denoted by P AB, so that 

PAB = PAPAB. 

By induction we obtain the multiplication rule: 

Furthermore, if 2: A; = n, then, from 
j 

follows the total probability rule: 
j 

PB = 2: PA;PA;B. 
j 

Bayes' theorem, 

follows upon replacing P B by the foregoing expression in the relation 

PAkB = PAkPAkB = PBPBAk. 

All events which figure as subscripts are supposed to be of positive 
probability. However, if, say, P AB is given, then every given PA, whether 
zero or not, determines correctly PAB by PAB = PAP AB, since PA = 0 
implies P AB = 0. 

The set of all probabilities of events given a fixed A with PA > 0 
defines a func.tion P A on a, to be called the conditional probability given 
A or, simply, the probability given A. It follows at once from the defi
nition that P A obeys axiom II': it is normed, nonnegative, and u-addi
tive on a. Therefore, the pair (a, P A) is a probability field given A 
for which all definitions and general properties of probability fields re-

24 
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mam valid. In particular, if X= :E x;IA1 is an elementary random 
j 

variable, the expectation of X with respect to P A or the conditional ex
pectation of X given A or, simply, the expectation of X given A is defined 
by 

clearly, if EX exists and is finite, then EAX exists and is finite. In 
terms of trials, the probability field given A represents the original 
trial with the occurrence of outcome A added to the original conditions. 

It is easily verified that the events A; of a countable set are inde
pendent if, and only if, for every finite subset jh h, · · ·, jk of indices 

p A. A .... A. (A;k) = PA;k, 
11 12 lk-1 

provided the "giv~n" events have positive probability. 
2. Asymptotically Bemoullian case. Let Am n = 1, 2, · · ·, be an 

1 n 
arbitrary sequence of events, and let Xn = - :E /Ak be the random fre

n k=l 

quency of occurrence of the n first ones. We set 

1 n 2 
P1(n) =- :EPAk, P2(n) = :E PA;Ak 

n k=l n(n - 1) l;;;i<k;;;n 

so that PI(n) and p2 (n) are bounded by 0 and 1. It follows, by elemen
tary computations, that 

Ex ( ) 2X ( ) 2 ( ) + P1(n) - P2(n) n = P1 n , u n = P2 n - P1 n · 
n 

In the Bernoulli case 

dn = P2(n) - P12 (n) = p2 - p2 = 0, 

and we can consider the quantity dn as some sort of measure of "devia
tion" from the Bernoulli case. To make this precise, let us first prove a 

KoLMOGORov INEQUALITY. If X is an elementary random variable 
bounded by 1 (in absolute value), then,for every E > 0, 

P[l X I ~ E) ~ EX2 - E2• 

We proceed as for the proof of Tchebichev's inequality: the inequality 
follows from 

EX2 = E(X2 Inx1;,; •1) + E(X2 I 11 x1 <•l) ~ Elnx1;,; •l + E2 

= P[l X I ~ E) + E2• 
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ExTENDED BERNOULLI LAW oF LARGE NUMBERS. Bernoulli's result, 
that for every E > 0 

P[l Xn - EXn I ;?; e] ~ 0, 

remains valid for the sequence of events An, independent or not, if, and 
only if, 

dn = P2(n) - P12(n) ~ 0. 

Since I Xn I ~ 1, we can apply Kolmogorov's inequality as well as Tche
bichev' s, so that 

u2Xn- ~:2 ~ P[l Xn- EXn I ;?; e] ~ u2Xn/e2. 

Therefore, the asserted property holds if, and only if, u2 Xn ~ 0. But 

I u2Xn- dn I= IPl(n)- P2(n) I~~~ 0, 
n n 

and the extension follows. 
If dn ~ 0 at least as fast as 1/n, then (asymptotically) we are even 

"closer" to the Bernoulli case. In fact, 

ExTENDED BoREL STRONG LAW OF LARGE NUMBERS. If dn = 0(1/n), 
then Borel's result remains valid: 

P[Xn - EXn ~ 0] = 1. 

The hypothesis means that there exists a fixed finite number c such that 
I ndn I ~ c. Upon referring to the proof of Borel's result, we observe 

"' 
that it suffices to show that L u2 xk. < oo. Since 

k=l 

nu2Xn ~ I ndn I +I P1(n) - P2(n) I ~ c + 1, 

it follows by setting n = k2 that 

00 00 1 
I: u2Xk• ~ (c + 1) I: 2 < oo, 
k=l k=l k 

and the extension follows. 
It is easily shown that both extensions apply to the events An which 

are independent but otherwise arbitrary. 
3. Recurrence. The decomposition 

2X ( ) 2( ) + PI(n) - P2(n) 
u n = P2 n - P1 n 

n 

yields at once a proposition which leads very simply to the celebrated 
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Poincare's recurrence theorem and its known refinements. Since 
u2Xn ~ 0 and p 1(n), p2(n) are bounded by 0 and 1, it follows that, for 
any fixed E > 0, if n ~ 1/E, then 

( 2 P2(n)-p1(n) 2 2 1 2 
P2 n) = P1 (n) + + u Xn ~ P1 (n) - - ~ P1 (n) - E. 

n n 

But p2(n) is the arithmetic mean of PA;Ak for 1 ~ j < k ~ n. There
fore, 

Whatever be the events An, if n ~ 1/E, then there exist at least two events 
Aj, Ak, 1 ~ j < k ~ n, such that PA;Ak ~ PI2 (n) - E. 

In particular, if PAn ~ p > 0 whatever be n, then every subsequence 
of these events contains at least two events Aj, Ak such that P A;Ak ~ 
p 2 - E; if thia inequality holds, we say that A; "E-intersects" Ak. In 
fact, there exists then a subsequence whose first term E-intersects every 
other term. For, if there is no such subsequence, then there exist inte
gers mn such that no event An E-intersects events An' with n' ~ n + mn, 
no two events of the subsequence An1, An2, Ana> · · · with n1 = 1, n2 = 
n1 + mn1, na = n2 + mn2, • • ·, E-intersect, and this contradicts the par
ticular case of the foregoing proposition. Thus, let A 11, A 2h A 3h • • ·, 

be a subsequence such that the first term E-intersects every other term. 
Let A 12, A 22, Aa2, • • ·, be a subsequence of A2h Aah • • ·, with same 
property, and so on indefinitely. The sequence Au, A12, • · ·, is such 
that every one of its terms E-intersects every other term. Hence 

RECURRENCE THEOREM. If PAn ~ p > 0 whatever ben, then for every 
E > 0 there exists a subsequence of events An such that PA;Ak ~ p2 - E 

whatever be the terms Ah Ak of this subsequence. 

We observe that, if PAn= p, then PA;Ak ~ p2 - E while, if the An 
are two by two independent, then PA;Ak = p 2• Thus, however small 
be E > 0, for every sequence An of events, independent or not, there 
exists a subsequence which behaves as if its terms were two by two 
semi-independent up to E ("semi" only since we do not have necessarily 
PA;Ak ~ p2 +E). 

A phenomenological interpretation of the foregoing theorem is as 
follows. Consider integer values of time and an incompressible fluid 
in motion filling a container of unit volume. Any portion of the fluid 
which at time 0 occupies a position A of volume PA = p > 0 occupies 
at time m a position Am of same volume PAm = p. The theorem says 
that, for every E > 0, the portion occupies in its motion an infinity of 
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positions such that the volume of the intersection of any two of these 
positions is ;?; p2 - E. In particular, if the motion is "second order sta
tionary," that is, PAiAi+k = P AAk, then it intersects infinitely often 
its initial position-this is Poincare's recurrence theorem (he assumes 
"stationarity")-and the intersections may be selected to be of volume 
;?; p 2 - E-this is Khintchine's refinement. 

4. Chain dependence. There is a type of dependence, studied by 
Markov and frequently called Markov dependence, which is of con
siderable phenomenological interest. It represents the chance (random, 
stochastic) analogue of nonhereditary systems, mechanical, optical, · · ·, 
whose known properties constitute the bulk of the present knowledge 
of laws of nature. 

A system is subject to laws which govern its evolution. For example, 
a particle in a given field of forces is subject to Newton's laws of mo
tion, and its positions and velocities at times 1, 2, · · ·, describe the 
"states" (events) that we observe; crudely described, a very small par
ticle in a given liquid is subject to Brownian laws of motion, and its 
positions (or positions and velocities) at times t = 1, 2, · · ·, are the 
"states" (events) that we observe. While Newton's laws of motion are 
deterministic in the sense that, given the present state of the particle, 
the future states are uniquely determined (are sure outcomes), Brownian 
laws of motion are stochastic in the sense that only the probabilities of 
future states are determined. Yet botli systems are "nonhereditary" in 
the sense that the future (described by the sure outcomes or probabili
ties of outcomes, respectively) is determined by the last observed state 
only-the "present." It is sometimes said that nonhereditary systems 
obey the "Huygens principle." The mathematical concept of non
heredity in a stochastic context is that of Markov or chain dependence, 
and appears as a "natural" generalization of that of independence. 

Events Ai> where j runs over an ordered countable set, are said to be 
chained if the probability of every Ai given any finite set of the preced
ing ones depends only upon the last given one; in symbols, for every 
finite subset of indices }1 < }z < · · · }k, we have 

Classes e; = !Ail> Aj2, • • ·) of events are said to be chained if events 
Aik selected arbitrarily-one in each e3-are chained. 

An elementary chain is a sequence of chained elementary partitions 
I: Ank = n, n = 1, 2, ... ; in particular, if Xn = I: XnkiA k with 
k k n 
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distinct Xnh Xn2, • • • are elementary random variables, then the Xn 
are said to be chained, or to form a chain, when the corresponding par
titions are chained. 

It will be convenient to use a phenomenological terminology. Events 
of the nth partition will be called states at time n, or at the nth step, of 
the system described by the chain. The totality of all states of the 
system is countable; we shall denote them by the letters j, k, h, · · ·, 
and summations over, say, states k will be over the set of all states, 
unless otherwise stated. 

The euolution of the system is described by the probabilities of its 
states given the last known one. The probabilities P'Jit of passage 
from a state j at time m to a state k at time m + n (in n steps) form a 
matrix pm.n. Since "probability given j" is a probability, and the 
probability given j at time rr. to pass to some state in n steps is one, 
we have 

P'-"·" > 0 "' P'-"·" = 1 Jk = ' £.J Jk • 
k 

Furthermore, by the definition of chain dependence, the probability 
givenj at time m to pass to state kin n + n' steps equals the probability 
given j at time m to pass to some state in n steps and then to pass to 
k in n' steps, we have 

Pm,n+n' _ "' pm,npm+n,n' 
ik - £.J ih hk 

h 
or, in matrix notation, 

pm,n+n' = pm,n pm+n.n' 

An elementary chain is said to be constant if P'Jit is independent of m 
whatever be j, k, and n. Then we denote this probability by P']k, and 
call it transition probability from j to k in n steps. The corresponding 
matrix pn is called transition matrix in n steps; if n = 1 we drop it. 
The foregoing relations become the basic constant chain relations: 

Pj~c ~ 0, :E Pj~r; = 1, Pj~c+n' = :E Pj~oP~~. 
k h 

The last one can also be written as a matrix product pn+n' = P" pn'. 
Hence P" is the nth power of the transition matrix P = Pl, so that P 
determines all transition probabilities. In fact, for an elementary chain 
to be constant it suffices that the matrix pm.l be independent of m: 
pm.l = P, since then 

pm.2 = pm.tpm+l.l = p2, pm.a = pm.2pm+2,1 = pa, 
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We observe that in Pjk and in every symbol to be introduced below, 
superscripts are not power indices, unless so stated. 

We investigate the evolution of a system subject to constant chain laws 
described by a transition matrix P. In particular, we want to find its 
asymptotic behavior according to the state from which it starts. In 
phenomenological terms the system is a nonhereditary one subject to 
constant laws (independent of the time) and we ask what happens to 
the system in the long run. The "direct" method we use-requiring 
no special tools and which has a definite appeal to the intuition-has 
been developed by Kolmogorov (1936) and by Doblin (1936, 1937) 
after Hadamard (1928) introduced it. But the concept of chain and 
the basic pioneering work are due to Markov (1907). 

*5. Types of states and asymptotic behavior. According to the total 
probability rule and the definition of chain dependence, the probability 
Qjk of passage from j to k in exactly n steps, that is, without passing 
through k before the nth step, is given by 

Q'/J. = L pihtph1h2 ' ' ' phn-tk• 
h1 ;o!k,hH•'-k, • • ·,hn-1 r!k 

The central relation in our investigation is 

n 

(1) Pjk = L: QjkP~;;m, n = 1, 2, 
m=l 

the expressions P~k = 1 (obtained form = n) are the diagonal elements 
of the unit matrix P0 • 

The proof is immediate upon applying the total probability rule. 
The system passes from j to k in n steps if, and only if, it passes from j 
to k for the first time in exactly m steps, m = 1, 2, · · ·, n, and then 
passes from k to k in the remaining n - m steps. These "paths" are 
disjoint events, and their probabilities are given by QjkP~;;m. 

Summing over n = 1, 2, · · ·, N, the central relation yields 
N N n N N 

L: P'/J. = L: L: QjkPic;;m = L: (Qjk L: Plc;;m) 
n=l m=l m=l n=m 

and, therefore, 

N N N N-N' N' 

(1 + L: Pick) L: Qjk ~ L: P'/k ~ (1 + L: Pick) L: Qjk, N' < N 

N 

It follows. upon dividing by 1 + L: Pick and letting first N --+ oo and 
n=l 
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then N' ~ co, that 

(2) 

in particular, 
"' 1 

(3) 1 - L Qjj = J~ 00 N 

m=1 1 +I: PJi 
n=1 

The sum 

q;k = I: Qjt. 
m=1 

is the probability, starting at j, of passing through k at least once; for 
k = j it is the probability of returning to j at least once. More generally, 
the probability qjk, starting atj, of passing through kat least n times is 
given by 

"' 

In particular, the probability qJi of returning to j at least n times is given 
by 

n n-1 ( )2 n-2 ( )n q;; = q;;q;; = q;; q;; = ... = q;; . 
Its limit, 

(4) rii = lim (qii)n = 0 or 1, according as q1; < 1 or q;; = 1, 
n--. oo 

is the probability of returning to j infinitely often. It follows that the 
probability, starting at j, of passing through k infinitely often is 

I• n J' n-1 r;k = 1m q;k = q;k 1m qkk = q;krkk, 
n-+oo n-+oo 

so that 

(5) r;k = 0 or q;k, according as qkk < 1 or qkk = 1. 

Upon singling out the statesj such that qii = 0 (noreturn) and qii = 1 
(return with probability 1), we are led to two dichotomies of states: 

j is a return state or a noreturn state according as q;; > 0 or q;; = O;j is 
a recurrent state or a nonrecurrent state according as q;; = 1 or qii < 1 
or, on account of (4), according as r;; = 1 or r;; = 0. 
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Clearly, noreturn states are boundary cases of nonrecurrent states and 
recurrent states are boundary cases of return states. In terms of tran
sition probabilities, we have the following criteria. 

RETURN CRITERION. A state j is a return or a noreturn state according 
as Pi; > 0 for at least one n or Pi; = 0 for all n. 

This follows at once from the fact that 

00 

RECURRENCE CRITERION. A state j is a recurrent or a nonrecurrent 

state according as the series L: Pi; is divergent or convergent. 
n=l 

This follows from (3). 

Less obvious types of states are described in terms of "mean fre
quency of returns," as follows: 

Let v;k be the passage time, from j to k, taking values m = 1, 2, · · ·, 
with probabilities Q'Jk. If q;k = 1, then VJk are elementary random vari
ables. If q;k < 1, then, to avoid exceptions, we say that '~~ik = oo with 
probability 1 - qik· The symbol oo is subject to the rules 

1 . 
- = 0, oo + c = oo, and oo X c = oo or 0 accordmg as c > 0 or c = 0. 
00 

We define the expected passage time TJk from j to k by 
00 

TJk = L: mQ'fk + oo(l - q;k); 
m=l 

we call TiJ the expected return time to j and the mean frequency of returns 
. . 1 

tO) IS-. 
Tjj 

We can now define the following dichotomy of states. A state j is 

null or positive according as _!_ = 0 or _!_ > 0. Clearly, a noreturn 
Tjj Tjj 

and, more generally, a nonrecurrent state is null while a positive state 
is recurrent. 

We shall now establish a criterion for this new dichotomy of states 
in terms of transition probabilities. To make it precise, we have to 
introduce the concept of period of a state. 
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Let j be a return state; then let di be the period of the Qjj, that is, 
the greatest integer such that a return to j can occur with positive 
probability only after multiples of d; steps: Q}} = 0 for all n ;¢ 0 (modulo 
d;), and Q'J/1 > 0 for some n. Let~ be the period of the P}} defined 
similarly. We prove that d; = d; and qall it the period (of return) of j. 

The proof is immediate. If Q'J/1 > 0, then P'J/1 ~ Q'J/i > 0 so that 
d; ~ d;. Thus, if d; = 1, then d; = 1. If d; > 1 and r = 1, · · ·, d; - 1, 
then the central relation yields 

p?~;+• = Qd;p~i+• + Q?~;r. = 0 etc ... 
JJ jj JJ 1J JJ ' • ' 

so that d; ~ d; and, hence, d; = d;. 
If j is a noreturn state, then we say that its period is infinite. 

PosiTIVITY CRITERION. d state j is null or positive according as 
lim sup P1j = 0 or > 0. 

n .... .,., 

More precisely, if j is a null state, then P}} ---+ 0, and if j is a positive 

state, then P'J/1 ---+ d; > 0, while P}} = Ofor all n ;¢ 0 (modulo d;). 
Tjj 

Since t'he proof is involved, we give it in several steps. 

1° If j is nonrecurrent, then it is null and, by the recurrence cri-
oo 

terion, the series .L: P}} converges so that P}} ---+ 0. 
n=l 

If j is recurrent, then, by definition of its period d;, P}} = 0 for all 
n ¢ 0 (modulo d;). Therefore, it suffices to prove that, if j is recur-

h Pnd· d; r 'f . . 11 h 1 0 . 1' d; rent, t en ii' ---+ -; wr, 1 J 1s nu , t en - = 1mp 1es - = 0, 
Tjj Tjj Tjj 

and if j is positive, then d; > 0. 
Tjj 

Assume, for the moment, that, if the period d; of the positive recur-
1 

rent state J 1s 1, then P}} ---+ -. In the general case, take d; for the 
Tjj 

unit step and set P' = pd; so that P~'! = P'!~i. hence Q~'! = Q'!~i Then, 
' JJ JJ> JJ JJ' 

00 
1 1 Tjj 

since Tif = .L: nQ/J = d- , the assertion follows by 
n=l j 

1 d· 
P'J/i = P;'J ---+ T'.. = ....!.... • 

JJ Tjj 
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Thus, it suffices to prove that, if j is recurrent with period d; = 1, then 

PJi--+ _!_. 
Tjj 

2° Letj be recurrent with d; = 1. To simplify the writing, we drop 
the s.ubscripts j and, to avoid confusion with matrices, we write super
scripts as ~ubscripts. We follow now Erdos, Feller, and Pollard. 

L~t a = lim sup Pn sCJ that there is a subsequerice n' of integers such 
00 

that Pn' --+ a as n' --+ oo, Since q = L: Qm = 1, it follows that, given 
m=l 

E > 0, there exists n. such that, for n ;?; n., L: Qm < E. Therefore, 
m=n+l 

for n' ;?; n ;?; n. and every p ::; n' with Qp > 0, the central relation 
yields 

Since for n' sufficiently large, Pn' > a - E and Pn'-m < a+ E for 
m ~ n, it follows that 

hence 
3E 

a + E - - < P n' -p < a + E. 
Qp 

Therefore, letting n' --+ oo and then E --+ 0, we obtain P n' -P --+ a, 
and, repeating the argument, we have, for every fixed integer m, 

Pn'-mp --+ a as n' --+ oo, 

3° Let us assume, for the moment, that Q1 > 0 so that Pn'-m --+ a 
for every fixed m. We introduce the expected return time r and use 

the fact that j is recurrent, so that, setting qn = t Qm, we have 
m=n+l 

q0 = 1. The expected return time r can be written 

and the central relation can be written 
n n 

Pn = L QmPn-m = L (qm-1- qm)Pn-m, 
m=l m=l 

so that 
n n-1 

L qmPn-m = L qmPll-1-m = · · · = qoPo = 1. 
m=O m=O 
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Therefore, for n <. n', n 

L qmPn'-m ~ 1 
m=O 

and, letting n'--> oo and then n--> oo, we obtain a ~ 1/T. 
then a= 0; hence Pn--> 1/T = 0. Thus let T < oo. 
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IfT= 00 , 

The same 

argument for {3 = lim inf Pn shows that, for a subsequence n" such 
n -too 

that Pn" --> {3 as n" --> oo, we have Pn"-m --> {3 for every fixed m 
and, from 

n 

L qmPn"-m + E ~ 1 for n. ~ 11 < n", 
m=O 

1 1 
it follows as above that {3 ~ -. Therefore, Pn --> -, and the assertion 

T T 

is proved under the assumption that Q1 > 0. 
4° To get rid of the last assumption, we appeal to elementary 

number theory. Consider the set of all those p for which Qp > 0. It 
contains a finite subset {pi} whose greatest common divisor is the 
period d( = 1). As above, if Pn'--> a, then Pn'-m;p;--> a for every fixed 
m;. and p;., and it follows that Pn'-m --> a for every fixed linear combi
nation m = .L: m;Pi· But every multiple of the period md = m ~ II p;. 

i i 

can be written in this form, so that, starting with n' sufficiently large, 
Pn'-m --> a for every fixed m, and the assertion follows as above. 
This concludes the proof. 

Since, for a state j with period d; there exists a finite number of inte
gers p;. such that PJJ > 0 and, for m sufficiently large md; = .L: m;.p;., 
it follows by p"!'fl; ~ II p7!!;P; > 0 that 

' J) - J) ' i 

If d; is the period of j, then P'fti > 0 for all sufficiently large values of m. 

In other words, after some time elapses the system returns to j with 
positive probability after every interval of time d;. 

We can now describe the asymptotic behavior of the system. If k 
is a return state of period dk, set 

00 

q;k(r) = .L: Q'Jtk+r, r = 1, 2, · · ·, dk, 
m-o 

so that q;k(r) is the probability of passage from j to k in n = r (modulo 
a/.) steps and 

dk 

.L: q;k(r) = qik· 
r-1 
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AsYMPTOTIC PASSAGE THEOREM. For every state J 

if k is a null state, then P'Jk --+ 0; 

if k is a positive state, then P'Jfk+r --+ q;k(r) dk ; 
Tkk 

and, whatever be the state k, 

1 n q·k 
- L: Pjk --+ P;k = -'-· 
n m=l Tkk 

The theorem results from the positivity criterion and the central re
lation, as follows: 

If k is a null state, then P~k --+ 0. Therefore, 

n' n 

Pjk ~ L: Qjk~km + L: Qjk, 
m=l m=n'+l 

and it follows, upon letting n --+ oo and then n' --+ oo, that Pjk --+ 0. 
If k is a positive state, then Pictk+r = 0 for r < dk and Pictk --+ dk/Tkk· 

Therefore, from 

it follows, upon letting n --+ oo and then n' --+ oo, that Pjfk+r --+ 

q;k(r)dk/ Tkk· 
The last assertion follows from the first two assertions. 
*6. Motion of the system. To investigate the motion of the system 

we have to consider the probabilities of passage from one state to an
other. But, first, let us introduce a convenient terminology. 

A state j is an everreturn state if, for every state k such that q;k > 0, 
we have qki > 0. Two statesj and k are equivalent and we writej"' k 
if q;k > 0 and qki > 0; they are similar if they have the same period 
and are of the same type. A class of similar states will be qualified ac
cording to the common type of its states. 

A class of states is indecomposable if any two of its states are equiva
lent, and it is closed if the probability of staying within the class is one. 
For example, the class of all states is closed but not necessarily inde
composable. 

The motion of the system is described by the foregoing asymptotic be
havior of the probabilities of passage from a given state to another 
given state, and also by the following theorem. 
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DECOMPOSITION THEOREM. The class of a/l return states splits into 
equivalence classes which are indecomposable classes of similar states. 

A not everreturn equivalence class is not closed. An everreturn equiva
lence class is closed; if its period d > 1, then it splits into d cyclic sub
classes C(1), C(2), · · ·, C(d) such that the system passes from a state in 
C(r) to a state in C(r + 1) (C(d + 1) = C(1)) with probability 1. 

The proof is simple but somewhat long. To begin with, we observe 
that, if j and k are two equivalent states, distinct or not, then there 
exist two integers, say m and p, such that Pjk > 0, P~i > 0. 

1 o The set of all states which are equivalent to some state coincides 
with the set of all return states. For, on the one hand, every return 
state is equivalent to itself and, on the other hand, if j rv k, then qii ~ 
P'!J+P ~ Pji.P'f,i > 0. Thus, the relation} rv k, symmetric by definition, 
is reflexive: j rv j. It is also transitive, for j rv k implies Pjk > 0, 
k rv h implies P'kh > 0 for some integer n and, hence, qih ~ P'Jh+n ~ 
Pji.P'kh > 0; similarly for qhi· Therefore, the relation j rv k has the 
usual properties of an equivalence relation and the set of all return 
states splits into indecomposable equivalence classes. 

We prove now that, if j rv k, then they are similar. We know al
ready that they are both return states; let di and dk be their respective 
periods. There exists an integer n such that P'kk > 0; hence P%'k ~ 
P'kkP'kk > 0 and P'!]+n+p ~ Pji.P'kkPki > 0; similarly, Pjj+2n+p > 0. 
Therefore, dj, being a divisor of m + n + p and of m + 2n + p, is a 
divisor of every such n and hence of dk. By interchanging j and k, it 
follows that} and k have the same period. 

Ifj is an everreturn state and P%h > 0, then, from P'Jh+q ~ P'fkP%h > 0, 
it follows that there exists an integer r such that P'hi > 0; hence P'htP ~ 
P'j,iPJk > 0, and k is an everreturn state. By interchanging j and k, it 
follows that they are both either everreturn or not everreturn states. 

If k is recurrent, then, by the recurrence criterion, 

and j is recurrent. By interchanging j and k, it follows that they are 
both either recurrent or nonrecurrent. 

If dis the common period of the two equivalent states j and k, then, 
from 

it follows that dis a divisor of m + p and lim P'k~ > 0 implies lim P'J/ 
n->oo 
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> 0. Hence, upon applying the positivity criterion and then inter
changing j and k, both are either positive or null. This completes the 
proof of the first assertion. 

2° If j is a return but not an everreturn state, then there exists a 
state h such that qih > 0 while qhj = 0, so that h is not equivalent to j 
and there is a positive probability of leaving the equivalence class of j. 

If j is an everreturn state, then qjk > 0 entails qki > 0 so that k 
belongs to the equivalence class of j. Therefore, the probability of 
passage from j to a state which does not belong to the equivalence class 
of j is zero and, the class of all states being countable, the probability 
of leaving this class is zero. 

Finally, we split an everreturn equivalence class C of period d > 1 
as follows: Let j and k belong to C. Since P'!J+P 5;;; P'JkP~i > 0, d is a 
divisor of m + p and, if m1 and m2 are two values of m, then m1 = m2 

(modulo d). Thus, fixingj, to every k belonging to C there corresponds 
a unique integer r = 1 or 2, · · ·, or d such that, if P'Jk > 0, then m = r 
(modulo d). The states belonging to C with the same value of r form 
a subclass C(r) and C splits into subclasses C(1), C(2), · · · C(d). It 
follows that, if k and k' belong respectively to C(r) and C(r'), then 
Pkk' can be positive only for n = I r- r' I (modulo d). Moreover, ac
cording to the proposition which follows the positivity criterion, Pkk' 
> 0 for all such n sufficiently large. Thus no subclass C(r) is empty and 
the system moves cyclically from C(r) to C(r + 1) · · · with C(d + 1) 
= C(1). This proves the second assertion. 

CoROLLARY 1. The states of an everreturn equivalence class Care linked 
in a constant chain whose transition matrix is obtained from the initial 
transition matrix P by deleting all those Pik for which j or k or both do 
not belong to C. 

CoROLLARY 2. The states of a cyclic subclass C(r) of an everreturn 
equivalence class with period d are linked in a constant chain whose tran
sition matrix P' is obtained from pd by deleting all those Pfk for which j 
or k or both do not belong to C(r). 

CoROLLARY 3. An everreturn null equivalence class C is either empty 
or infinite. In particular, a finite chain has no everreturn null states. 

Let C be finite nonempty. By the asymptotic passage theorem, 
P'Jk --t 0 for k E: C. But C is closed, so that 1 = I: P'Jk --t 0 for 

kf:.C 

j E: C, and we reach a contradiction. 
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CoROLLARY 4. If j and k are nonequivalent everreturn states, then 
P'A = o. 

If j and k are equivalent positive states, with period d, then 

P']t+r ---+ d/Tkk for some r = r(j, k) 

Pjf+r' = 0 for r' ~ r (modulo d). 

This follows by the asymptotic passage theorem. 
*7. Stationary chains. The evolution of a system is determined by 

the laws which govern the system. In the case of constant elementary 
chains these laws are represented by the transition matrix P with ele
ments Pik· While P determines probabilities of passage from one state 
to another, it does not determine the probability that at a given time 
the system be in a given state. To obtain such probabilities we have 
to know the initial conditions. In the deterministic case this is the 
state at time 0. In our case it is the probability distribution at time 0, 
that is, the set of probabilities Pi for the system to be in the state j at 
time 0. Then, according to the total probability rule, the probability 
P'k that the system be in the state k at time n = 1, 2, · · ·, ts 

P'k· = 2: P1P'Jk· 
j 

The notion of statistical equilibrium corresponds to the concept of 
stationarity in time. In our case of a constant elementary chain with 
transition matrix P, it is stationary if P'k = Pk for every state k and 
every n = 1, 2, · · · . 

Given the laws of evolution represented by a transition matrix, the 
problem arises whether or not there exist initial conditions represented 
by the initial probability distribution such that the chain is stationary; 
in other words, whether or not there exists a probability distribution 
{P1} which remains invariant under transitions. In general, one ex
pects that if, under given laws of evolution, an equilibrium is possible, 
then it is attained in the long run. To this somewhat vague idea corre
sponds the following 

INVARIANCE THEOREM. For states j belonging to a cyclic subclass of a 

positive equivalence class with period d, the set of values P; = _!__ is an 
Tjj 

invariant and the only invariant distribution under the transition matrix 
of the subclass. 

According to Corollary 2 of the decomposition theorem, it suffices to 
consider the chain formed by the subclass, that is, by one cyclic posi-
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tive class with some transition matrix P of period one. According to 
the asymptotic passage theorem, 

1 
P'Jk ~ - = 'Pk > 0. 

Tkk 
Since 

'LP']k=1 and Pjk+m = L PjhPhk' 
h k 

it follows, Upon taking arbitrary but finite sets of states and letting 
n ~ oo, that 

'L'Pk ~ 1, 'Pk ~ 'L'PhP':k. 
k h 

But if, for some k, the second inequality is strict, then summing over 
all states k, we obtain 

so that, ab contrario, 
Pk = 'L PhPhk· 

h 

Since 'L Ph is finite, we can pass to the limit under the summation sign, 
h 

so that, by letting m ~ oo, we obtain 

Pk = <'L 'Ph)'Pk 
h 

and, Pk being positive, it follows that 'L Ph = 1. Thus, the set of 
h 

values Pk is a probability distribution invariant under P. 
It remains for us to prove that, if a set of values Pk has the same 

properties, then Pk = Pk. But from 

pk = L phphk 
h 

it follows, as before, that Pk = ('L Ph)'Pk = Pk, and the conclusion is 
h 

reached. 

CoROLLARY. If Cis a positive equivalence class, then 

1 
'L -= 1. 

This follows from 
i E: a TJi 

1 d d 
d'L -='L 'L -=d. 

i E: C Tj; r=l i E: C{r) Tji 
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STATIONARITY THEOREM. A constant elementary chain with transition 
mat1·ix P is stationary with initial probability distribution {h} if, and 

only if, Pk = 0 for all null states k, and h = 1!!.. for all states belonging 
Tkk 

to positive equivalence classes Ce, with :E p1 = 1. 
t 

Let the probability distribution {'Pk} be invariant under the transi
tion matrix P so that 

Pk = :E P;Pik· 
i 

If k is a null state, then, by the asymptotic passage theorem, Pjk ---+ 0. 
:E P; being finite, we can pass to the limit under the summation sign. 
i 

It follows, upon letting n ---+ oo, that Pk = 0. Hence, by summing 
over positive states only, :E' Pk = 1. 

If k belongs to a positive equivalence class Ce, then, by the asymptotic 
passage theorem, we have that Pjk = 0 for every j which does not 

belong to C1 and ! '£ Pji. ---+ _!._ for every j belonging to C1• It fol-
nm=l Tkk 

lows that 

where 
Pt = :E Pi and :EPt = :E' Pk = 1. 

i €. c, t 

This proves the "only if' assertion. 
Conversely, let the conditions on the Pk hold and use 

P'!: = :E' P;Pji. 
i 

where the summation is over positive states j only, since P; = 0 for j 
mill. 

Therefore, if k is null, then ~ji. = 0 and P'f: = 0 for every m. If k 
belongs to a positive equivalence class Ce, then, since C1 is closed, Pji. 
= 0 for all states j which do not belong to Ce, and, C', being a finite 
subclass of Ct such that L Pi < E with sum over j E::: Ce - C'e, we have 

P'f: = :E P;Pji. ~ Pt :E Pji./ Tjj + E. 
i €.Ct i CC't 

Upon replacing _!_ by the limit of the mean in the asymptotic pas
r,; 
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sage theorem with subscripts h, j E: C'e, we obtain, by summing first 
over thej, 

Hence 

Pm Pt 
k ~- + E, 

Tkk 

so that, letting E --+ 0, we have P': ~ !!.!._, 
Tkk 

If, for some k, the inequality is a strict one, then, since for null states 
P': = 0, it follows, by summing over positive states k only, that 

Th l' pm Pt l' d h "'f" ' ' d ererore, k = - ror every m, an t e 1 assertton ts prove . 
Tkk 

COMPLEMENTS AND DETAILS 

I. Physical statistics. The problem is to determine the state of equilibrium 
of a physical system, of energy E, composed of a very large number N 
of "particles" of the same nature: electrons, protons, photons, mesons, neu
trons, etc. 

Hypotheses. There are g1 microscopic states of energy e~, g2 of energy e2, • • • 

.and each particle is in one of these states. The macroscopic state, i.e., the 
state of the system, is specified by the number of particles at each energy level: 
111 particles of energy e1, 112 particles of energy e2, • • •• The set {111, 112, • • ·} is a 
set of random integers and the probability of a macroscopic state 111 = n~, 
112 = n2, • • • is equal, up to a constant factor, to the number W of ways in which 
nk particles can be distributed amongst Kk microscopic states of energy e,., k = 1, 
2, · · ·, provided 

The Maxwell-Boltzmann statistics (classical theory of gases) is that of distin
guishable particles without exclusion, i.e., without any bound upon the pos
sible number of particles in any of the microscopic states. The Bose-Einstein 
statistics (photons, mesons, deuterons, ···-particles with an integer "spin") 
is that of nondistinguishable particles without exclusion. The Fermi-Dirac 
statistics (electrons, protons, neutrons-particles with a semi-integer "spin") 
is that of nondistinguishable particles which obey the Pauli exclusion principle, 
that is, there cannot be more than one particle in any of the microscopic 
states. 
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Weights. Let w denote the weight of the macroscopic state {n1, n2, · · ·} i.e., 
W/N! in the distinguishable case and Win the nondistinguishable case. Prove 
that the combinatorial formulae give the following expressions for w, where it 
is assumed that 2: n1c = N, 2: n~ctk = E (in the case of photons N is not fixed 

k k 
and only the second condition remains): 

Distinguishable N ondistinguishable 
Particles Particles 

Without exclusion w = IT g;'''IIT n,! w = IT (g; + n; - 1)! 
n;!(g;- 1)! 

(Maxwell-Boltzmann) (Bose-Einstein) 

With exclusion W= IT g;! 
n; !(g; - n;) ! 

w= IT g,! 
n; !(g; - n;)! 

(corresponds to no (Fermi-Dirac) 
physical reality) 

When g1c >> n~c, then the expressions of the weights in B.-E. and F.-D. statistics 
are equivalent to w in M.-B. statistics. Assume distinguishability and let c be 
the "capacity" coefficient of the microscopic states, that is, if there are already 
n particles in the Kk states of energy e~c(k = 1, 2, · · · ), the number of these g~c 
states which remains available for the (n + 1)th particle is K7c - nc-this is 
Brillouin statistics. The weights w of the macroscopic states, previously defined 
as w = W/ N!, are given by 

and reduce to those of M.-B., B.-E., and F.-D. by giving to the parameter c 
the values 0, -1, + 1 respectively. 

Statistical equilibrium. For a very large N the equilibrium state of the macro
scopic system is postulated to be the most probable one, that is, the one with 
the highest weight. Assume that Stirling's formula can be used for the fac
torials which figure in the table of weights above. Take the variation ~log w 
which corresponds to the variation { ~n1, ~n2, · · ·}. Using the Lagrange multi
pliers method, the state which corresponds to the maximum of w is determined 
by solving the system (prove) 

~ log w + }.. · ~N + p.- ~E = 0 

2: n~c = N, 2: n~ce1c = E. 

" " 
(In the case of photons take }.. = 0 and suppress the second relation.) The 
equilibrium states for the various statistics are also obtained by replacing c by 
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0, -1, and 1 in the equilibrium state for Brillouin statistics, given by 

where X and JL are determined by the subsidiary conditions 

N = L gk/(i·+P.ek + c), E = L gkekf(/-+P.ek + c). 
k k 

The Planck-Bose-Allard method. The macroscopic states can be described in 
a more precise manner. Instead of asking for the number nk of particles in the 
states of energy ek, we ask for the number gkm of states of energy ek occupied by 
m particles. The particles are assumed to be nondistinguishable as required by 
modern physics. The combinatorial formulae give 

W = ll(gk!/Jhkm!) with gk = L gkm, N = LL mgkm, E = LL Ckmgkm· 
k m m km km 

To obtain the statistical equilibrium state use the procedure described above. 
B.-1!. statistics is obtained if no bounds are imposed upon the values of m. 

F.-D. statistics is obtained if m can take only the values 0 or 1; "intermediate" 
statistics is obtained if m can take only the values belonging to a fixed set of in
tegers. 

In the equilibrium state (with c = -1 or + 1 when the statistics are B.-E.'s 
or F.-D.'s respectively), we have 

and gk(u), determined by the usual subsidiary conditions, the generating function 
of the number of particles in a microscopic state of energy ek, is 

gk(u) = (1 + cak)-uklc.(l + caku)Uklc. 

II. The method of indicators. 
1. Rule: In order to compute PB, B =f(AI, A{, ···,Am, Am<), take the 

following steps: 
(a) Reduce the operations on events to complementations, intersections, and 

sums; 
(b) Replace each event by its indicator, expand, and take the expectation. 
In this way find 

m k m r 

P( U A;) and P( n A; U A/) in terms of P( n A;)'s. 
i=l i=l i=k+l i=l 

m 
Notations. Let IA; =I; and let R = 2:1; be the "repetition" of A;'s, that 

i=l 
is, the number of events A; which occur. Let ]o = 1, ]r = L lit·· ·It. where 
the summation is over all combinations 1 ;:;:; j1 < j2 < · · · < jr ;:;:; m. Let Irrl 
and I(r) be indicators of the events exactly r A's occur and at least r A's occur, 
respectively; set 
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2. Prove 
m m 

(a) L uri[r] = L (u - l)']s = uR, 
r=O a=O 

and deduce 
"' (b) P[rJ = L ( -I)k-rckrsk, 

k=r ( 
m m 

(c) sk = L: c:Pu1 = L: c~~lP<t), 
t=k t=k 

(d) R(R - 1) · · · (R - k + 1) = k!]k. 

3. Let k ~ r ~ m. Using 2(c) and the relations 

prove that 

Examine the special case r = m; the left-hand side becomes Gumbel's inequality; 
the right-hand side becomes Frechet's inequality. 

Let 

4. Prove 

(a) 

(b) 

(c) 

](k) = 1 - ]k/C~, !:::.j(k) = j(k + 1) - j(k). 

t::.J(k) ='"f c~-.!\_ 1 I 
· ~~k c:, [I], 

I< c:;, Af() 
[rJ = C' k '-> k, k ~ r ~ m - 1, 

m-k-1 
!:::.j(k) ~ 0; 

deduce a scale of inequalities for the Sk's. 
5. 

- !:::. (f(k)) = m~t c:,-_:ck-1 (1 -I I 
m k £...., ct-1 (1),, 

t=k m-1 
(a) 

c'-1 J(k) 
1- I<t> ~ ~ (-mt::.-)• r-k k 

Cm-k-1 
(b) 

(c) -m!:::.[(k) ;;:o: 0· 
k - , 

deduce another scale of inequalities for Sk's. 
6. The general symbolic method. The events B1, · · ·, Bm are called exchange

able if P(Bi1 •• • • Bi, B;,+1c · · · B<i,+<) depends only on the number r of events 
B; and on the number s of events B;<. 

Let 
1 I = "!(A·) .. · I(A· )!(A· <) .. • I(A· <) r s L..J. t1 lr lr+l lr+s 

Sr/s = ECJrJs) = L P(Ai1 ''' A;,A;r+lc ''' A;, He) 

Pr!• = P(B;1 • • • Bi,Bi, +tc · · · Bi, +,<). 
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If we choose the B/s such that 

L P(At1 • • • At,Atr+lc • • • Atr-ra•) = L P(Btt • • • Bt,Btr+lc • • • Btr-ra•), 
i i 

then 

' 
Prt• = S,,./C'r,.C:,._,. 

If we further introduce symbolic independent events having the same prob-
ability p, the complementary events having probability q = 1 - p, then, sym
bolically, 

Pr/B = p•q•. 

The symbolic method consists of the following steps: 
(a) In any given identity (or identical inequality) for p, q (0 ~ p ~ 1 

q = 1 - p) replace p•q• by PrJ•· 
(b) Replace Prts by s,,./C'r,.CJ,._, and obtain an equality (or inequality resp.) 

for the s,,;s. 

Examples: 
(a) Starting from p'q" = p'(1 - p)• obtain 

s,,. ..:t-. )i c: 
cr+•cr = LJ ( -1 cr+t Sr+ito; 

m r+s i=O m 

in the special case r + s = m, find 

Srfm-r = P[r]• 

(b) Starting from p•q• = p'q"(p + q)m-r-•, obtain 

m-s 
s.,. = :E crc:,._lsitm-i· 

l=r 

In the special case s = 0, find 

Srto = S, = · · ·. 

(c) Starting from p''q"' ~ p'q", r' ~ r, s' ~ s, find 

r' ~ r, s' ~ s, 

and as a special case the scale of inequalities (4c). 
T 

(d) Starting from 1 ~ :E' Cfp•-iqi where :E' denotes a sum in which a certain 
i=O 

number of terms is omitted, find 

C'(' ~ :E' Sr-1/i 

and, taking only the terms i = 0 and i = 1, find the second scale of inequalities 
(Sc). 

7. The classical problem of matching. This problem (probleme des rencontres) 
was studied first by Montmort (1708) and further treated by Lambert, Euler, 
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and others in different forms, all· of which can be described by the following 
setup: given m distinct numbers X 1, X2, · · ·, Xm, choose at random a first Xtu 
then a second X12 from the remaining ones, etc. A match (coincidence, ren
contre) is an event Ai which consists in choosing exactly Xi at the ith draw. 

In the following, assume that each permutation (Xh · · · X~m,) has the same 
probability of being chosen at random. Show that 

(a) 

(b) 

(m- r)! 
P(At~> · · ·, At.) = 1 and m. 

1 m-•(-1)• 
Plrl = 1 :E -,-· r. •=0 s. 

1 
s. = -· r! 

(c) Find lim P[r]; interpretation? Show that P[m-Il = 0; interpretation? 
m-+oo 

m 

(d) Show that E(r) = :E rPlrl = S1 = 1 and E[r- E(r)]2 = 1. (Use the 
r-o 

m 

generating function :E u•P[rJ·) 
r=O 

m. Random walk. A particle starting at some point of an m-dimensional 
space moves in such a way that its consecutive displacements can be repre
sented by independent m-dimensional random vectors. Problems of the fol
lowing type arjse: find the probability that in time Tor before time T the par
ticle reaches a certain domain D, or that it reaches D without having reached 
previously a domain D', or find the expected time for the particle to reach D, 
etc.··· 

We give a few examples which show the great variety of forms under which 
this problem occurs, questions which can be asked, and methods of solution. 
We restrict ourselves to the discontinuous case with every move taking one 
unit of time. 

1. Game of "heads or tails" and combinatorial method. To n tosses of a coin 
with equal probabilities for heads and for tails we associate the score point whose 
coordinates are respectively the number of heads and the number of tails which 
occur. Thus, at every toss, the score point M moves by one unit either upwards 
or to the right, and the game is represented by a two-dimensional one-sided 
random walk on the lattice of points with integer coordinates. 

The score points corresponding to the same number n of tosses lie on the line 

x + y = n. The total number of paths between 0 and M =(a, b) is (aa~t)!. 
(a) If A and B ran for ·office, A got a votes and B got b < a votes, find the 

pr. P that in counting the votes A be always ahead of B. 
(Equivalent to the pr. that the score point stays below the bisectrix until it 

reaches the point M = (a, b). Compute the pr. of the complementary event by 
applying the symmetry principle of Desire Andre as follows: the paths from 0 
to M which intersect the bisectrix either go through (1, O) or through (0, 1). 
By reason of symmetry both classes contain the same number of paths. The 
number of those which go from (0, 1) to M is (a + b - 1) !/a !(b - 1} !, and 

a-b) p =a +b. 
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(b) The probability that there be neither gain nor loss in exactly 2n tosses is 
1 · 3 .. · (2n - 3) 1 

2+ 6 ... 2n 1"'-..J _ / • (Start with the number of paths from 0 to 
2nv71'n 

(n, n - 1) which do not intersect the bisectrix.) 
(c) The probability that the gambler who bets on heads and whose fortune is 

m times the stake loses his fortune in m + 2n tosses is m(m + n + 1) · · · 
(m + 2n - 1)/2m+2nn!. (Reduce to (a) by taking for origin the point (m + n, n).) 

2. Gambler's ruin. 
(a) Method of difference equations. Consider a one-dimensional random walk 

on the lattice x = 0, ± 1, ±2, · · ·. At each step the particle aty has probability 
Pk to move from y toy+ k, k = 0, ±1, ±2, · · ·. Let P,. be the probability 
of ruin, that is, starting at x with 0 < x < a to arrive at y ~ 0 before reaching 
y ~a. Then P,. = L P11p.,_11 with boundary conditions P11 = 1 if y ~ 0 and 

y 

P11 = 0 ify ~a. 
The gambler has x dollars and wins or loses one dollar with respective proba

bilities p and q = 1 - p. Find the probability P., of his ruin. Find the proba
bility Pzn of his ruin at the nth game. 

In the first case, P, = pP,+l + qP.,_l with P. = 1, Pa = 0. The solution 

is P,. = (q~p~" )- (q/{)"' for p ¢ q and P,. = 1 -:_for p = q. 
qpa- a 

In the second case Pz,n+l = pP,.+l,n + qP:z;-l,n with Pon =Pan= 0 and 
Poo = 1, P.,. = 0. The solution is 

(b) Method of matrices. Same random walk but with Pt = P-1 = 1/2. The 
particle starts from 0 and dies when it attains a - 1 ~ 0 orb = a+ c ~ -1. 
Find the probability Pn that after n displacements the particle is still alive, as 
follows. 

Set g(k) = 1/2 for k = ± 1 and g(k) = 0 otherwise. Then P n = L g(kt) · · · 
h 

g(kn) where the sum is taken over all k's such that a ~ L ki ~ b, h = 1, 2, 
i=l 

· · ·, n. Set di = kt + · · · + ki - a. Then P n is the sum of the elements of 
the (1 - a)-th column or row of the matrix An where 

!.o!.o ... 
[

0 ! 0 0 . "] 

A= (g(j- h)) = ~ . ! . ~ . !. :. : 

The proper values X; of A are given by Aj = cos c ~ 2 , the proper values of An 

are 'At, and 

where :E' denotes summation over the oddj's only. 
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IV. Geometric probabilities. 
Elementary probabilities. Consider an n-dimensional space of points 

U = (u1, · · ·, u,.) and let G be a group of transformations of points into points. 
If there exists a differential element dJL = g(u~, • · ·, u,.)du1 • · · du,. determined 
up to a constant factor by the property that its integral over domains is in
variant with respect to the group G, dJL defines up to a constant factor an ele
mentary probability. The constant factor is determined by fixing a domain Do 
within which all considered domains lie and by assigning to this domain the 

pr. one; that is, by setting c f dJL = 1. Then the points are said to be taken JDo 
or thrown at random in Do. To say that several points are taken or thrown at 
random means that the throws are stochastically independent; in other words, 
we make repeated trials. 

Let M with or without affixes be points in an m-dimensional euclidean space 
and let x1, · · ·, Xm with same affixes, if any, be its cartesian coordinates with 
respect to a fixed orthogonal frame of reference. The group G which transforms 
points Minto points M is the group of euclidean displacements (preserves euclid
ean lengths). This means that the probability is required to be independent 
of the choice of the frame of reference. Prove that dJL = c dx1 dx2 • • · dxm. 

Let us now investigate straight lines in a euclidean plane determined by their 
equations u1x1 + u2x2 = 1 in rectangular coordinates, and let G. be the group 
of euclidean displacements in the plane. Prove that dJL = c(u12 + u22)-~ du1 du2 
or, using the normal equations: x1 cos 8 + x2 sin 8 - p = 0, dJL = cdp d8. 

(The transformations of the group G, are of the form X11 = a1 + x1 cos a 
- x2 sin a, x1 2 = a2 + x1 sin a + x2 cos a and induce transformations of a 
group G on the plane (u1, u2) defined by 

u1 = (u'! cos a+ U12 sin a)/(a1u'l + a2U12 + 1), 

u2 = ( -U11 sin a+ U12 cos a)j(a1u11 + a2U12 + 1). 

The invariance condition yields 

( I I ) c· ) D(u~, u2) 
g u 1, u 2 = g u~, u2 D( 1 1 ) u 1, u 2 

(u12 + u22)~ 
(u? + U122)~ 

With the same group G, there is no elementary probability for circles in the 
plane. But there is one for circles of fixed radius.) 

Points on a line. The elementary probability for a point M on a segment 
[0, /] is dx/1. Throw n points at random on the segment. The probability, 

say, that there be no thrown points on [0, x] is ( 1 -y )". What is the ex

pected distance of the nearest to 0 of the thrown points? What is the proba
bility that k out of the n thrown points lie on a fixed subinterval of length a? 
Find what happens as I~ co with n/1 ~A> 0. Denote then by M1, M2, · · · 
the points in the nondecreasing order of their distance to 0. What is the ele
mentary probability for the length M;M;+l to be between x and x + dx and 
what is the expectation of this length? 

Lines in a plane. The elementary probability of a straight line x cos 8 + 
y sin 8 - p = 0 thrown on a plane is dJL = cdp d8. The integral J dp d8 over a 
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domain induced by a family of straight lines is said to be the measure of the 
family. The measure of the secants of a segment of length I is 21. (6 varies 

from - ~ to + ~ while p varies from 0 to I cos 6 for every fixed 6.) The measure 

of the secants of a polygonal line of length I is 21, provided every secant is counted 
as many times as there are points of intersections of the secant with the polyg
onal line; in particular, the measure of the secants of a closed convex polygon 
is its perimeter. The same is true for the secants of a curve formed by a finite 
number of analytic arcs. Prove it directly for the secants of a circle. 

Let C and Co be two closed convex curves of respective lengths I and lo with 
C being interior to C0• The probability that a secant of Co be secant of C is 
1/lo. 

Application to the needle problem. If C0 is a circumference of radius r/2 and C 
is a segment of length l, then p = 21/rrr. Throw the figure formed by the cir
cumference and the segment on a plane with parallel equidistant straight lines 
with common distance r. The probability that one of these lines intersects the 
segment is 21/rrr. Prove it directly by throwing a needle of length l on this 
plane. 

(The position of the needle AB is determined by the coordinates x, y of A 
and the angle a that AB makes with Ox, one of the equidistant lines. The 
elementary probability is dx dy da. It is not a restriction to assume 6 between 

211"/2 0 and 1r /2, x = 0, andy between 0 and r. Then p = - sin a da.) 
1rr o 

A differential method. Let Do be a domain of the plane on which are thrown 
at random n points. Intrinsic properties of the figure formed by the points are 
defined independently of D0 ; for example, M1M2 < l, triangle M1M2Ma has 
acute angles, · · ·. 

The probability of an intrinsic property is given by P = a/sn where s is the 
area of Do and a represents the measure of the set of favorable cases. Let D'o 
be a new domain containing Do and let P + t:.P = (a + t:.a)/(s + t:.s)n be the 
new probability of the same property. If Pk is the probability of the property 
when n - k points are in Do and k points are in D'o- Do, then 

and 

(s + f:.s)" t:.P = n(P1 - P)sn-l t:.s + · · · 
n! + (Pk - P)sn-k(f:.s)k + • · · + (P n - P)(f:.s)n. 

k!(n- k)! 

Keeping infinitesimals of first order, we have 

OS 
oP = n(P1 - P) -

s 

where n is the number of points thrown at random on Do, P is the probability 
of the property, P 1 is the probability of the same property when 1 point is 
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thrown at random on an increment of Do of area os, and n - 1 points are thrown 
at random on D0• More generally, 

OS 
om = n(ml - m) -

s 

where m is the expectation of a function of the thrown points, and the other 
quantities are defined similarly to what precedes. The method and the for
mulae apply whatever be the number of dimensions of the space. 

Application. Two points M1 and M2 are thrown at random on a segment 

of length /. The probability that M 1M2 < x is 2: - ~. What happens when 

the segment is replaced by a circle of radius r? Find EM1M2P in both cases. 

V. Bernoulli case and Weierstrass theorem. Consider the Bernoulli case 
(with PA = x in lieu of p): 0 ~ x ~ 1, 

n! 
P(S,. = k) = Pnk(x) = k!(n _ k)! xk(1 - x)"-k, k = 0, 1, · · ·, n. 

(a) 
n n 

L Pnk(x) = 1, ES,. = L kp,.k(x) = 1, 
k~ k~ 

n 

u2S,. = L (k - nx) 2 Pnk(x) = nx(1 - x). 
k~ 

(b) Let f be a real or complex-valued continuous function on [0, 1]. It is 
bounded: l/1 ~ c <co and uniformly continuous: Given e > 0 there is a o > 0 
such that I x - x' I < o = I f(x) - j(x') I < e. Form Bernstein polynomials 

n 

E(j(S.jn)) = I:f(k/n)Pnk(x), 
k~ 

that is, 

n n: 
P,.(x) = I:f(k/n) k'( _ k) 1 xk(1 - x)n-k. 

k~ • n . 

(c) Weierstrass theorem says that oh [0, 1] there are polynomials which con
verge uniformly to/. 
Bernstein polynomials are such that 

JE(j(x)- j(Sn/n))l = IJ(x)- Pn(x)l 
n 

II: (f(x) - f(k/n))Pnk(x) I ~ I I: I+ I I: 
k~ 

n 

The first partial sum is bounded by e I: Pnk(x) = e. The second partial sum is 
k=O 
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bounded by 

note that the first inequality while algebraically immediate is due to Tchebi
chev's inequality: 

ECI S,.jn - E(Sn/n) I > o) ~ u2S,./n 2o2• 

Thus, for all x E:: [0, 1], as n ~ co then e ~ 0, 
lf(x) - P,.(x) I ~ e + c/2no2 ~ 0. 

Leaving out all references to the Bernoulli case, the most elementary proof 
known of Weierstrass theorem obtains: It introduces explicit uniformly ap
proximating polynomials and is primarily algebraic. 



Part One 

NOTIONS OF MEASURE THEORY 

No rigorous presentation of probability theory is possible without 
usmg the notions of sets, measures, measurable functions, and inte
grals. Their first lineaments are already apparent in elementary prob
ability theory. These notions are introduced and investigated syste
matically in this part. 

The presentation is self-contained, and the material will suffice for 
later parts. It is organized-at the cost of a few repetitions-so as to 
make the unstarred portions independent of the starred ones and, at 
the same time, to make the sections on measurable functions, conver
gence, and integration independent of the remainder except for 1.1 to 1.5. 
This permits a reorganization of the course so as to proceed from the less 
abstract notions toward more abstract and more involved ones. The 
following order is possible: 1.1 to 1.5 with 5.1 to 7.2, then 3.1, 3.2 with 
8.1, suffice for practically all of the unstarred portions of Parts II, III, 
then IV. 
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Chapter I 

SETS, SPACES, AND MEASURES 

§ 1. SETS, CLASSES, AND FUNCTIONS 

1.1 Definitions and notations. A set is a collection of arbitrary ele
ments. By an abuse of language, an empty set is a "set with no ele
ments." 

Unless otherwise stated, all sets will be sets of elements of a fixed 
non empty set n, to be called a space. Elements of n will be called 
points and denoted by w, with or without affixes (such as subscripts, 
superscripts, primes, etc.). Capitals A, B, C, · · ·, with or without 
affixes, will denote sets of paints, { w} will denote a set consisting of 
the one point w, and 0 will denote the empty set, that is, the set "con
taining no points." If w is a point of A, we write w E: A and, if w is 
not a point of A we write w ([_ A. 

A set of sets is called a class and classes will be denoted by a, CB, e, 
· · ·, with or without affixes. The class of all the sets in n is called the 
space of sets in n and will be denoted by S(fl). Thus a class of sets in 
n is a set in S(fl) and all set notions and operations apply to classes 
considered as sets in the corresponding space of sets. 

A is said to be a subset of B, or included in B, or contained in B, if all 
points of A are points of B; we then write A c B or, equivalently, 
B ::::> A. In symbols, if w E: A implies w E: B, then A c B, and con
versely. Clearly, for every set A, 

0 c Ac n, 
and the relation of inclusion is reflexive and transitive: 

A c A; A c B and B c C imply A c C. 

A and Bare said to be equal if A c Band B c A; we then write A = B. 
55 
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Clearly, the relation of equality is reflexive, transitive, and symmetric: 

A= A; A= B and B = C imply A= C; 

A= B implies B =A. 

1.2 Differences, unions, and intersections. The difference A - B is 
the set of all points of A which do not belong to B; in symbols, if w E:: A 
and w ({_ B, then w E:: A - B, and conversely. The particular differ
ence Q - A, that is, the set of all points which do not belong to A, is 
called the complement of A and is denoted by .d0 • 

The intersection A n B, or simply AB, is the set of all points common 
to A and B; in symbols, if wE:: A and wE:: B, then wE:: AB and con
versely. The union A U B is the set of all points which belong to at 
least one of the sets A orB; in symbols, if wE:: A or wE:: B, then wE:: 
A U B and conversely. If .dB = 0, then A and B are said to be dis
joint, and their union is then denoted by A+ B and called a sum. 

It follows from the definitions that the operations of intersection and 
union are associative, commutative, and distributive: 

(AU B) U C = AU (B U C), (AB)C = A(BC); 

A U B = B U A, AB = BA; 

(A U B)C = AC U BC, (AU B)(A U C) =A U BC. 

Moreover, the operation of complementation has the following prop-
erties: 

A C B implies Ac ::J B0 ; 

nc = 0, 0" = n, A.dc = 0, A+ _dC = n, (.d0) 0 = A; 

A- B =ABc, (AU B)" = AcBc, (.dB)" =.de U Be. 

The notions of intersection and union extend at once to arbitrary 
classes. Let T be a set, not necessarily in n, and to every t E:: T as
sign a set At c n. The class {Ae, t E:: T} of all these sets, or simply 
{Ad if there is no confusion possible, is a class assigned to the index 
set T. 

The intersection, or infimum, of all sets of {At} is defined to be the 
set of all those points which belong to every At, and is denoted by 
n At or by inf At; we drop t E:: T if there is no confusion possible. 

t€_T t€_T 

In symbols, if w E:: At for every t E:: T, then w E:: n At and conversely. 
The union, or supremum, of all sets of the class {At} is defined to be 

the set of all those points which belong to at least one Ae, and is denoted 
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by U dt or by sup At; we drop t E:: T if there is no confusion possible. 
tE:: T t E::T 

In symbols, if w E:: At for at least one t E:: T, then w E:: U dt and 
conversely. 

If all sets of {dt} are pairwise disjoint, {dt} is said to be a disjoint 
class and the union of its sets, denoted then by 2: de, is called a sum. 
Conversely, the term "sum" and the symbols 2: and + when used 
for sets of a class will imply that the class is disjoint. 

If w does not belong to at least one de, then it belongs to every dt0 , 

and conversely; consequently (de Morgan rule), 

cu AtY = n At", en dtY = u dt". 

When {dt} is empty, that is, Tis empty, it is natural to make the con
vention that U dt = 0. Then, in order to preserve the foregoing rela

tE:: e 
tions, we have to make the convention that n At = n. Thus, by con

tE::e 
vention, 

U At = 0, n dt = n. 
t E:: e t E:: e 

It is easily seen, collecting all the relations so far obtained, that the 
following duality rule holds: 

Every valid relation between sets, obtained by taking complements, unions, 
and intersections, is transformed into a valid relation if, the symbols 
"=" and "C" remaining Unchanged, the symbols n) C) and 0, are in
terchanged with the symbols U, ::::>, and n, respectively. 

Operations performed on elements of "countable" classes will play 
a prominent role later in connection with the notion of measure. A 
set, or a class, is said to be finite, or denumerable, according as its ele
ments can be put in a one-to-one correspondence with the set { 1, 2, 
· • ·, n} of the first n positive integers, for some value of n, or with the 
set of all positive integers {1, 2, · · · ad infinitum}. It is said to be 
countable if it is either finite or denumerable. Similarly, operations 
performed on elements of finite, denumerable, or countable classes will 
be said to be finite, denumerable, or countable operations, respectively. 

The following immediate transformation of countable unions into 
countable sums will prove useful in connection with the notion of 
measure: 

U d; = d1 + A1°A2 + d1°d2°A3 + · · ·. 
1.3 Sequences and limits. To every value of n = 1, 2, · · ·, assign 

a set dn; these sets An, whether distinct or not, are distinguished by 
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their indices. The ordered denumerable class Ah A2, • • ·, is called 
sequence An. The set of all those points which belong to almost all 
An (all but any finite number) is called the inferior limit of An, and is 
denoted by lim inf An. Clearly 

00 00 

lim inf An = U n Ak. 
n=lk=n 

The set of all those points which belong to infinitely many An is called 
the superior limit of An and is denoted by lim sup An. Since every 
point which belongs to almost all An° belongs to a finite number of An 
only, and conversely, it follows, by duality, that 

00 00 00 00 

lim sup An= ( U n Akc)c = n U Ak. 
n=lk=n n=lk=n 

Every point which belongs to almost all An belongs to infinitely many 
An, so that 

lim inf An C lim sup An. 

Thus, if the reverse inclusion is true, lim inf An and lim sup An are 
equal to the same set A. Then A is called the limit of An and is denoted 
by lim An; the sequence An is said to converge to A and we write An - A. 
Clearly, limits (inferior or superior) of sequences of sets are formed by 
denumerable set operations. 

Monotone sequences form a basic class of convergent sequences. A 
sequence An is said to be monotone if it is either nondecreasing: A1 c A2 
C • · ·,and we then write An j ; or if it is nonincreasing: A1 ::::> A2 ::::> • • ·, 
and we then write An t . From the expressions above of inferior and 
superior limits, it follows at once that 

every monotone sequence is convergent, and lim An = U An or n An 
according as An j or An ! . 

Moreover, if'-we consider this proposition as a definition of limits of 
monotone sequences then, since for an arbitrary sequence Bn, 

00 00 

n Bk = inf Bk i 
k=n k~n 

and U Bk = sup Bk t , 
k=n k~n 

it follows that its inferior and superior limits can be defined by 

lim inf En = lim (inf Bk) and lim sup Bn = lim (sup Bk)· 
n On n Un 
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1.4 Indicators of sets. Set operations can be replaced by equivalent 
but more familiar ones, in the following manner. To every set A as
sign a function lA of w, to be called the indicator of A, defined by 

IA(w) = 1 or 0 according as wE: A or w ([_A. 

Conversely, every function of w which can take only the values 0 and 1 
is the indicator of the set for the points of which it takes the value 1. 
The one-to-one correspondences (denoted by <=?) and relations listed 
below are immediate. 

IA ~ IB <=? A c B, ]A = IB <=? A = B, lAB = 0 <=? AB = 0, 

I~ = 0, 10 = 1, fA+ fA· = 1, 

I nAn= II IAn' ILAn = L: IAn' 

JUAn= JA1 + (1 - JA1)JA2 + (1 - JA 1)(1 - JA2)fA 3 + • • • 
Inm inf An = lim inf I An' Inm sup An = lim sup I An' Ilim An = lim I An• 

1.5 Fields and u-fields. Classes of sets in n are sets in the space 
S(n) of all sets in n and thus what precedes applies to classes. How
ever, there is a notion specific to classes-that of closure under one or 
more set operations. A class e is said to be closed under a set opera
tion if the sets obtained by performing this operation on sets of e are 
sets of e. In particular, the class S(n) of all sets in n is closed under 
every set operation. 

In connection with the notions of measurability and of measure, two 
species of classes play a prominent role-fields and u-fields. A field is 
a (nonempty) class closed under all finite set operations; clearly, every 
field contains 0 and n. A u-field is a (nonempty) class closed under all 
countable set operations; clearly every u-field is a field. We observe 
that, because of the duality rule, closure under complementations and 
finite (countable) intersections implies closure under finite (countable) 
unions. Also we can interchange in this property "intersections" and 
"unions." 

Let S-classes be species of classes closed under set operations S; for 
example, the species of fields or the species of u-fields. We observe that 
S(n) is an S-class, whatever be the set operations S. 

a. Arbitrary intersections of S-classes areS-classes. In particular, arbi
trary intersections of fields or of u-fields are fields or u-fields, respectively. 
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For the intersection of a collection of S-classes belongs to every one of 
these classes. Therefore, performing operations S on sets of the inter
section, we obtain sets belonging to every one of these classes, that is, 
to the intersection. 

This property gives rise to the notion of a "minimal" S-class over a 
given class. An S-class e' containing e is a minimal class over e or 
the S-class generated by e if every S-class containing e contains e'. 

b. There is one, and only one, minimal S-class over a class e. In par
ticular, there is one, and only one, minimal field and one, and only one, 
minimal ujield over e. 
For the intersection of all S-classes containing e contains e and is con
tained in every S-class containing e. 

A space 0 in which is selected a fixed u-field G. is called a measurable 
space (0, a). If there is no confusion possible, the sets of G. are said to 
be measurable. 

1.6 Monotone classes. We shall need the notion of monotone 
classes in connection with the problem of extending measures on a 
field to its minimal u-field. A monotone class is a class closed under 
formation of limits of monotone sequences. 

a. A ujield is a monotone field and conversely. 

The first assertion is obvious and the second follows from the fact that 
every countable intersection nAn and union U An is a monotone 

n n 

limit of sequences n A" and U A" of finite intersections and unions. 
k=l k=l 

The property we shall require is as follows: 

A. The minimal monotone class mt and the minimal ujield G. over the 
same field e coincide. 

Proof. On account of a and minimality of mt and a, it suffices to 
prove that ffit is a field; for, a monotone field mt is a u-field so that 
mt ~ a, and the u-field <t is monotone so that mt c ct. Since mt ~ e 
3 0 and unions are reducible to intersections (by means of complemen
tations), it suffices to prove that, if A and B belong to mt, so do AB, 
AcB, and ABc. 

For every fixed A E: mt, let ffilA be the class of all B E: ffit with the 
asserted property. Every ffitA is monotone for, if the sequence Bn E: ffilA 

is monotone, then B = lim Bn belongs to ffit and so do the limits of 
monotone sequences 

AB =lim ABn, AcB =lim AcBn, ABc= lim ABnc· 
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It follows that, for every A E:: e, the class ffirA coincides with mr. For 
e being a field, every B E:: e is E:: ffiLA, so that e c ffiLA c mr and, 
hence, mr being minimal over e, ffirA = mr. In fact, ffirB = mr for every 
BE:: mr. For, the conditions imposed upon pairs A, B being symmetric, 
B E:: mr( =ffirA for A E:: e) is equivalent to A E:: ffiLB for every A E:: e 
so that e c ffiLB and hence as above, ffirB = mr. But this last property 
means that mr is a field, and the proof is complete. 

*1.7 Product sets. We introduce now a different tyl'~ of set opera
tion and corresponding notions, for which we shall have need later. 
Let At and A2 be two arbitrary sets with elements Wt and w2, respec
tively. By the product set A1 X A 2 we shall mean the set of all ordered 
pairs w = (wt, w2) where "'t E:: At and w2 E:: A2. If At, Bh · · · are 
sets in a space 0 1 and A2, B2, · · · are sets in a space n2, then At X A2, 
B1 X B 2, • • • are sets in the product space 01 X n2, called intervals or 
rectangles in Ot X 02 and the properties below follow readily from the 
definition: 

(At X A2) n (Bt X B2) = (At n Bt) X (A2 n B2) 

(At X A2) - (Bt X B2) = (At - Bt) X (A2 - B2) + (At - Bt) 

X (A2 n B2) + (A1 n Bt) X (A2 - B2) 

In turn, it follows at once from these relations that 

a. If et and e2 are fields of sets in Ot and 02 respectively, then the class 
of all finite sums of intervals At X A2, where At E:: et and A2 E:: e2, 
is a field of sets in Ot X n2. 

This field will be called the product field of e1 and e2• 

yet, if <lt and a2 are u-fields of sets in n1 and n2, respectively,. then 
the product field of G.t and <12 is not necessarily a IT-field. The minimal 
IT-field over it will be called the product IT-field a1 X <12• If (nh <11) 

and (02, <12) are measurable spaces; then their product measurable space 
is, by definition, (01 X n2, G.1 X a2). 

Let n = n1 X 02 and a = a1 X a2• If A c n is measurable and 
w1 E:: n1 is a fixed point, then the set A(w1) of all points w2 E:: n2 such 
that w = (wh w2) E:: A is called the section of A at w1; similarly for the 
section A(w2) at w2 E:: 02; by the definition, A(w1) c n2 and A(w2) 

cn1. 

b. Every section of a measurable set is measurable. 

For let e be the class of all measurable sets in n whose sections are 
measurable. It is easily seen that e is a IT-field. On the other hand, 
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if .d = .d1 X .d2 is a measurable interval, that is, At and .d2 are meas
urable, then every section of .d is either empty or is At or .d2, so that 
.d1 X .d2 E: e. Therefore, a = a1 X <!.2, being the minimal u-field over 
all measurable intervals, is contained in e, and the assertion is proved. 

The foregoing definitions and properties extend at once to any finite 
number of sets and of measurable spaces. However, in the nonfinite 
case, some of these definitions have to be modified in order to preserve 
these properties. 

Let {.dt, t E: T) be an arbitrary collection of arbitrary sets .d1 in 
arbitrary spaces r.lt of points Wt. The product set .dr = II At is the set 

t €_ T 

of all the new elements wr = (wt, t E: T) such that Wt E: At for every 
t E: T. The product set .dr is in the product space r.lr = II r.!t; we drop 

t f:_T 

"t E: T" if there is no confusion possible. It follows from the foregoing 
definition that, for any set B, when the r.lt are identical 

en At) X B = n (At X B), (U At) X B = U (At X B). 

Let TN = (th ···,IN) be a finite index subset and let .drN be a set in 
the product space r.lrN· The set .drN X r.lr-TN is a cylinder in r.lr with 
base ATN· If the base is a product set n .de, the cylinder becomes a 

t f:.TN 
product cylinder or an interval in r.lr with sides .de, t E: TN. Let e1 be 
fields in r.lt. It is easily seen that, as in the finite case, 

A. The class of all finite sums of all the intervals in r.lr with sides .d1 E: e1, 
is a field of sets in r.lr. 

This field is the product field of the fields et. 
Let (r.!e, <Xt) be measurable spaces. The minimal u-field over the 

product field of the <Xt is the product u-.field <lr = II <lt of measura6le 
sets in r.lr, and the measurable space (r.lr, <lr) is the product measurable 
space err r.le, n <lt) of the measurable spaces (r.!e, <lt). It is easily seen, 
as in the finite case, that b remains valid: 

B. Sections atwrN of measurable sets in r.lr are measurable sets in r.lr-Tw 

*1.8 Functions and inverse functions. Perhaps the most important 
notion of mathematics is that of function (or transformation, or map
ping, or correspondence). We have already encountered functions de
fined on an index set T whose "values" are sets in r.l. In general, a 
function X on a space r.l-the domain of X-to a space r.!'-the range 
space of X-is defined by assigning to every point wE: r.l a point w' E: r.l' 
called the value of X at w and denoted by X(w). Sets and classes of 
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sets inn' will be denoted by A', B', · · ·, and ct', CB', ···,respectively. 
It will be assumed, once and for all, that functions are single-value'd, 
that is, to every given w E::: n corresponds one, and only one, value 
X(w). 

The set of values of X for all w E::: A is called the image X(A) of 
A (by X) and the class of images X(A) for all A E::: e is called the image 
X(e) of e (by X); in particular X(n) is the range (of all values) of X. 
Thus, a function X on n to n' determines a function on S(n) to S(n'). 
While this new function is of no great interest, such is not the case for 
the inverse function that we shall introduce now. 

By [w; · · ·] where · · · stands for expressions and/or relations involv
ing functions on n, we denote the set of points "' E::: n for which these 
expressions are defined and/or these relations are valid; if there is no 
confusion possible we drop "w;". Thus, [X= w'], or inverse image of 
w', is the set of all points w for which X(w) = w'; [X E::: A'], or inverse 
image of A', is the set of all points w for which X(w) E::: A'; and [A; 
X(A) E::: e']; or inverse image of e', is the class of inverse images of all 
sets A' E::: e'. We observe that the inverse image of an w' which does 
not belong to the range of X is the empty set 0 in n. 

The inverse function x-l of X is defined by assigning to every A' 
its inverse image [X E::: A']. In other words, x-1 is a function on 
S(n') to S(n) with values x-1(A') = [X E::: A']; if A' = {w'}, then we 
write x-1(w') for x-1({w'}) = [X= w']. Since Xis single-valued, x-1 

generates a partition of n into disjoint inverse images of points w' E::: n'. 
It follows readily that 

x-1(A'- B') = x-1(A')- x-1(B'), 

x-1<U A't) = u x-1(A't), x-l<n A't) = n x-1(A't), ·• · 

Therefore, 

A. BASIC PROPERTY OF INVERSE FUNCTIONS: Inverse functions preserve 
all set and class inclusions and operations. 

It follows at once that 

If e' is closed under a set operation so is x-1(e'). In particular, the 
inverse image of a u-field is a u-field, and the inverse image of the mini
mal u-field over e' is the minimal u-field over x-1(e'). 

Moreover, 

If ct is a u-field so is the class of all sets whose inverse images belong to ct. 
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The notion of function can be "iterated" as follows. Let X be a 
function on U to U' and let X' be a function on U' to U". Then, the 
junction of junction X' X defined by (X'X)(w) = X'(X(w)) is a function 
on n to U". Clearly, its inverse function (X'X)-1 is a function on 
S(U") to S(U) such that, for every set A" c U", 

or, in a condensed form, 

(X' X) - 1 = x-1 x'-1• 

*1.9 Measurable spaces and functions. So far, we did not consider 
particular species of functions. There are two species which play a 
basic role in abstract analysis. We shall introduce them now. But 
first we examine, in more detail, the class of inverse images of points 
of the range space. 

Let X be a function on n to U'. The partition of n formed by the 
inverse images x-1(w') of all points w' E: U' is said to be induced (or 
determined) by X and X is said to be constant ( =w') on x-1(w'). Since 
the class of values x-1(A') of x-1 is the inverse image of the u-field 
of all sets A' in U', it is a u-field. If the partition induced by X is finite, 
or denumerable, or countable, then X is said to be finitely, or denumerably, 
or countably valued, respectively; in other words, X is, say, countably 
valued if the set of its values is countable. Setting Ai = [X= w'i], 
we can write every countably valued function X as a countable combi
nation of indicators: 

Conversely, we make the convention that every time such a "sum" is 
written, the sets Ai form a partition of the domain of the function X. 
If the w'i are distinct, then this partition is the one induced by the func
tion represented by the "sum." 

Now, let a be a fixed u-field in n. n, together with a, is called a 
measurable space (U, a), and the sets of a are then said to be measurable 
(although this terminology derives from the notion of measure, we em
phasize that, nowadays, the notion of measurability is independent of 
that of measure). A countably valued function X= L: w'iiA;, where 
the sets Ai are measurable, is called a countably valued measurable 
function-for short, an elementary junction; if X is finitely valued, then 
this elementary function is also called a simple junction. Clearly 

the sets of the u..jield induced by an elementary function are measurable. 
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We are now in a position to introduce the general notion of measurable 
functions. However, there are several ways for doing so, and the 
classes of measurable functions so defined are, in general, not the same. 

One way of defining measurable functions is to extend a basic property 
of inverse functions of elementary functions, as follows: Let (0, ·a) and 
(0', a') be two measurable spaces. The inverse images by elementary 
functions on 0 to O' of measurable sets are measurable. Extending this 
property, we say that a function X on 0 to O' is measurable if the in
verse images by X of measurable sets ( E: G.') are measurable ( E: a). If, 
moreover, (0", a") is a measurable space and X' on O' toO" is a meas
urable function, then X' X is measurable, for 

Thus, with this definition, a measurable junction of a measurable function 
is measurable. 

Another way of defining measurable functions is as follows: Let 
(0, G.) be a measurable space on which are defined simple (elementary) 
functions to a space O' (there are no measurable sets in 0'). A notion 
of limit is introduced on 0', and measurable junctions in the sense of this 
limit are then defined to be limits of convergent sequences of simple 
(elementary) functions. This approach is particularly suited for the 
introduction of integrals of measurable functions. Later we shall see 
cases in which measurable sets and the notion of limit are selected in 
such a manner that the two definitions are equivalent. 

*§ 2. TOPOLOGICAL SPACES 

The selections of measurable sets and of concepts of limit in range
spaces are rooted in the properties of the euclidean line: real line R = 
(-co, +oo) with euclidean distance I x - y I of points (numbers, reals) 
x, y. Species of spaces vary according to the preserved amount of 
these properties, an amount which increases as we pass from separated 
spaces to metric spaces, then to Banach spaces and to Hilbert spaces. 
We examine here the basic properties of these spaces and shall encounter 
them in various guises throughout the book. At the same time, the 
few notions of topology which follow are a recapitulation of the prop
erties of the euclidean line and, more generally, of euclidean spaces. 
We urge the reader to keep this fact constantly in mind by illustrating 
the concepts and their relationships in terms of euclidean spaces; for 
this reason. we denote here the points by x, y, z, with or without affixes. 
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Points, sets, and classes will be those of the space OC under considera
tion, unless otherwise stated. 

We use without comment the axiom of choice: given a nonempty class 
of nonempty sets, there exists a function which assigns to every set of 
the class a point belonging to this set; in other words, we can always 
"choose" a point from every one of the sets of the class. 

2.1 Topologies and limits. A class (':) is a topology or the class of 
open sets if it is closed under formation of arbitrary unions and finite 
intersections and contains 0 and Q (the last property follows from the 
closure property by the conventions relative to intersections and unions 
of sets of an empty class). The dual class of complements of open 
sets is the class of closed sets; hence it is closed under formation of arbi
trary intersections and finite unions and contains Q and 0 . 

.d topological space (OC, 0) is a space OC in which is selected a topology 
0; from now on, all spaces under consideration will be topological and 
we shall frequently drop "(':)." A topological subspace thereof (.d, 0A) 
is a set .d in which is selected its induced topology (':)A which consists of 
all the intersections of open sets with .d and is, clearly, a topology in 
A. It is important to distinguish the properties of .d considered as a 
set in (OC, 0) from those of .d considered as a topological subspace of 
(oc, 0). 

To every set .d there are assigned an open set .d0 and a closed set A, 
as follows. The interior .d0 of .d is the maximal open set contained in 
.d, that is, the union of all open sets in .d; in particular, if .d is open, 
then .d0 = .d. The adherence A of .dis the minimal closed set contain
ing .d, that is, the intersection of all closed sets containing .d; in par
ticular, if .d is closed, then A = .d. The definitions of interiors and 
adherences of .d and .de are clearly dual, so that 

(.do)e = (.de), (.de)o = (A)". 

In topological spaces relations between sets and points are described 
in terms of neighborhoods. Every set containing a nonempty open 
set is a neighborhood of any point x of this open set; the symbol V,, 
will denote a neighborhood of x. The points of the interior .d0 of .d 
are "interior" to .d; in other words, x is interior to .d if .dis a Vx· The 
points of the adherence A of .d are adherent to .d; in other words, x is 
adherent to .d if no Vx is disjoint from .d, that is, x t[. (.de)o = (A)e. 

Classical analysis is concerned primarily with continuous functions 
on euclidean lines to euclidean lines. In general, a function X on a 
topological domain Q to a topological range space OC is continuous at 
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w E.:: n if the inverse images of neighborhoods of x = X(w) are neigh
borhoods of w; X is continuous (on 0) if it is continuous at every w E.:: n. 
Since taking inverse images preserves all set operations, it follows 
readily that we can limit ourselves to open (closed) sets. Thus X is 
continuous if, and only if, the inverse images of open (closed) sets are 
open (closed) and, hence, a continuous function induces on its domain 
a topology contained in (no "finer" than) that of the domain. There
fore, if in topological spaces the u-fields of measurable sets are selected to 
be the minimal u-fields ouer the topologies, then continuous junctions are 
measurable. The importance of the concept of continuity is empha
sized by the fact that two spaces ~ and ~' are considered to be "topo
logically equivalent" if, and only if, there exists a one-to-one corre
spondence X on ~to ~'such that X and x-1 are continuous. 

The basic concept which distinguishes classical analysis from classical 
algebra and which gave rise to the various concepts examined in this 
section is that of limit of sequences of numbers. In a topological space 
it becomes: x is limit of a sequence x,. or the sequence x,. converges to x 
if, for every V.,, there exists an integer n(V.,) such that x,. E.:: V., for 
all n ~ n(V.,). However, the need for a more general concept of limit 
is already apparent in the classicai theory of integration where the par
titions of the interval of integration form a "direction" and the Riemann 
sums form a "directed set" of numbers of which the Riemann integral, 
if it exists, is the "limit." It so happens that this type of limit is pre
cisely the one required for general topological spaces, and we now de
fine the foregoing terms; the role of sequences in some species of spaces 
(including the euclidean ones) will be better understood when consid
ered within the general setup. 

Let T be a set of points t, with or without indices. T is partially 
ordered if a partial ordering is defined on it. A partial ordering "-< ," 
to be read "precedes," is a binary relation which is transitive (t -< t' 
and t' -< t" imply t -< t"), reflexive (1 -< t), and such that, if I -< t' and 
t'-< t, then I= t'; upon writing t' > t when t-< 1', the relation ">," 
to be read "follows," is also a partial ordering. T is a direction if it is 
partially ordered and if every pair 1, t' is followed by some t" (t -< t", 
t' -< t"). Tis linearly ordered, and a fortiori is a direction, if every pair 
t, t' is ordered (either t -< 11 or t' -< 1). For example, the sets in a space 
are partially ordered by the relation of inclusion and the neighborhoods 
of a point x form a direction (this is the root of the definition of limit 
as given below); the finite partitions of an interval of integration form 
a direction when ordered by the relation of refinement; integers and, 
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in general, sets of numbers are linearly ordered by the relation "iii:.," 
etc. 

A function X on T to OC can be represented by the indexed set {xt} of 
its values which may or may not be distinct but which are always dis
tinguished by th~ir indices t. The indexed set {xtl is directed if Tis a 
direction; sequences {xn} are special directed sets representing func
tions on the (linearly ordered) set of positive integers. We are now 
ready to define the general concept of limit. 

The point xis the limit of a directed set {xt} and we write x = lim xe, 
or, equivalently, x1 converges to x and we write x1 - x, if, for every 
v"', there exists an index t(Vz) such that Xt E: v"' for all those indices 
which follow t(Vz). However, the concept of limit is of use only if, 
when the limit exists, it is unique; this requirement leads to the intro
duction of "separated" or "Hausdorff" space as follows: 

A. SEPARATION THEOREM. The following three definitions are equiva
lent. A topological space is separated if 

(S1) every directed set has at most one limit, 
(S2) every pair of distinct points has disjoint neighborhoods, 
(Sa) the intersection of all closed neighborhoods of a point reduces to this 

point. 

The term "separated" expresses property (S2). 
We observe that, according to (Sa), in a separated space every set 

reduced to a point is closed. 
Proof. (S1) and (S2) are equivalent. Let x ~ y. If x1 - x and 

Xt --? y, then Xt E: V"' n V11 for all those t which follow both t(Vz) and 
t(V11); since Tis a direction such t exist so that no pair V"', V11 is dis
joint. 

Conversely, if no pair V"', V11 is disjoint, then there exist points 
z(V"', V11) E: V"' n V11 and, since these pairs form a direction when 
ordered by the relation (V"', V11) -< (V' .,, V'11) if V"' :::> V'"' and V11 :::> V'11, 

these points form a directed set converging to both x andy. 
(S2) and (Sa) are equivalent. If for every y ~ x there exists a V"' 

such that y tl. V"', then the intersection of all V"' reduces to x. Con
versely, if the intersection of all V"' reduces to the set formed by x, 
then, for every y ~ x, there exists a V"' such that y t{_ V.,, and the open 
set (Vz) 0 is a neighborhood of y disjoint from V"'. The proof is termi
nated. 

From now on, all spaces will be separated spaces. 
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2.2 Limit points and compact spaces. Analysis of concepts or prop
erties leads to the in traduction of "weaker" ones. A property (!> is 
weaker than a property CP' if CP' implies CP; (!> is a necessary condition for 
CP' and CP' is a sufficient condition for CP. 

Perhaps even more basic than the concept of limit is the weaker one 
of limit point. A point x is a limit point of the directed set {xt} if, 
for every pair t, V,, there exists some t' > t such that Xt' E: V,. The 
definitions of limit and of limit point yield at once (i) and (ii) of the 
proposition below, and then (iii) follows. 

a. Let the sets At be formed by all those points Xt' for which t' follows t: 
At= {xt,,t' > t}. 

(i) Xt ~ x if, and only if,jor every V, there exists an At C V,. 
(ii) x is a limit point of {xt} if, and only if, no pair At, V, is disjoint. 

(iii) the set of all limit points of {xt} coincides with the intersection of all 
At, and if Xt ~ x then this set reduces to the single point x. 

The reason for the somewhat confusing terminology above is that 
every limit point of {xt} is the limit of some subset of {xt}, in the fol
lowing sense. A direction S of elements s, s', · · · is a subdirection of 
the direction T when there exists a function/ on S to T with the prop
erty that, for every t, there is an s such that, if s' follows s, then t' = 
j(s') follows t. The set { Xf(s)} directed by the subdirection S of Tis a 
subdirected set. Clearly, if Xt ~ x, then every subdirected set Xf<•> ~ x. 

b. A point x is a limit point of a directed set {xt} if, and only ij, the 
set contains a subdirected set which converges to x. 

Proof. The "if" assertion follows at once from the definitions. As 
for the "only if" assertion, it suffices for every pair s' = (t, V,) to 
takej(s') = t' > t such that Xt' (: V, and direct the pairs by (th V,1) 
> (t2, V,2) when h > t2 and V,1 c V,2 • 

Compact spaces are separated spaces in which every directed set has 
at least one limit point; a set is compact if it is compact in its induced 
topology. Compactness plays a prominent role in analysis and it is 
important to have equivalent characterizations of compact spaces. We 
shall use repeatedly the following terminology: a subclass of open sets 
is an open covering of a set if every point of the set belongs to at least 
one of the sets of the subclass. 
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A. CoMPACTNESS THEOREM. The following three properties of separated 
spaces are equivalent: 

(C1) BoLZANO-WEIERSTRASS PROPERTY: every directed set has at least 
one limit point. 

(C2) HEINE-BOREL PROPERTY: every open covering of the space contains 
a finite covering of the space. 

(C3) INTERSECTION PROPERTY: every class of closed sets such that a/l its 
finite subclasses have nonempty intersections has itself a nonempty 
intersection. 

If some class has the property described in (C3), we say that it has the 
finite intersection property. 

Proof. The intersection property means by contradiction that every 
class of closed sets whose intersection is empty contains a finite sub-_ 
class whose intersection is empty. Thus, it is the dual of the Reine
Borel property, and it suffices to show that it is equivalent to the Bal
zano-Weierstrass one. 

Let {xt} be a directed set and, for every t0 C T, consider the adher
ence of the set of all the x1 with t following t0 • Since T is a direction, 
these adherences form a class of closed sets with finite intersection 
property. Thus, if the intersection property is true, then there exists 
an x common to all these adherences and it follows that x is a limit 
point of {xt}. 

Conversely, consider a class of closed sets with the finite intersection 
property and adjoin all finite intersections to the class. The class so 
obtained is directed by inclusion so that, by selecting a point from every 
set of this class, we obtain a directed set. If the Bolzano-Weierstrass 
property is true, then this set has a limit point and this point belongs 
to every set of the class; hence the intersection of the class is not empty. 
This completes the proof. 

CoMPACTNESS PROPERTIES. 1° In a compact space, a directed set 
x1 ~ x if, and only if, x is its unique limit point. 

Proof. We use a and its notations. The "only if" assertion holds 
by a(iii). As for the "if" assertion, if Xt +t x then, by a(i), there ex
ists a Vz such that no A 1 is disjoint from Vzc; thus, for every t we can 
select at' > t such that Xt• cAt n vzc· Since the space is compact, 
the subdirected set {x1•}, hence, by b, the directed set {xt}, has a limit 
point x' c vzc· Therefore, X~ x' and X cannot be the unique limit 
point of {xt}. 
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2° Every compact set is closed, and in a compact space the converse is 
true. 

Proof. Let A be compact and let Vx, Vy(x) be a disjoint pair of 
open neighborhoods of x E:: A andy E:: Ac. By the Reine-Borel prop
erty, the open covering { Vx} of A where x ranges over A contains a 
finite subcovering { Vxkl, and the disjoint open sets V = U Vxk' V' = 

k n Vy(xk) are such that A c V andy E:: V'. Thus, the open neigh
k 

borhood V' of y contains no points of A; hence y ([_A. Since y E:: Ac 
is arbitrary, it follows that Ac and A are disjoint, and the first asser
tion is proved. The second assertion follows readily from the inter
section property. 

3 o The intersection of a nonincreasing sequence of non empty compact 
sets is not empty. 

Apply the intersection property. 

4 ° The range of a continuous function on a compact domain is com
pact. 

Proof. Because of continuity of the function, the inverse image of 
every open covering of the range is an open covering of the compact 
domain; hence it contains a finite open subcovering which is the inverse 
image of a finite open subcovering of the range. Thus, the range has 
the Heine-Bore! property, and the assertion is proved. 

The euclidean lineR= ( -oo, +oo) is not compact but, according to 
the Bolzano-Weierstrass or Heine-Bore! theorems, every closed inter
val [a, b] is compact. These theorems become valid for the whole line 
if it is "extended"-that is, if points -oo and +oo are added. Thus, 
the extended euclidean line R = [ -oo, +oo] is compact. In fact, R is 
locally compact and every locally compact space can be compactified 
by adding one point only, as below. 

A separated space is locally compact if every point has a compact 
neighborhood; it is easily shown that every neighborhood then contains 
a compact one. The one-point compactification of a separated space 
(a::, 0) is as follows. Adjoin to the points of a:: an arbitrary point oo ([_ a:: 
and adjoin to the open sets all sets obtained by adjoining to the point 
oo those open sets whose complements are compact. Denote the topo
logical space so obtained by (a::00, 000). 
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5° The one-point compactification of a locally compact but not com
pact space is a compact space, and the induced topology of the original 
space is its original topology. 

Proof. The last assertion follows at once from the definition of (900 • 

As for the first assertion, observe that the new space is separated, since 
two distinct points belonging to the separated original space are sepa
rated and the point oo is separated from any x E: ~ by taking a com
pact and hence closed Vc c ~, so that oo E: V/. Also, the new space 
has the Heine-Bore! property, since an open covering of it has a member 
0 + { oo} with oc compact and hence contains a finite subcovering of oc 
which, together with 0 + { oo}, is a finite subcovering of the new space. 

2.3 Countability and metric spaces. The euclidean line possesses 
many countability properties, among them separability (the countable 
set of rationals is dense in it) and a countable base (the countable class 
of all intervals with rational extremities); this permits us to define limits 
in terms of sequences only. In general topological spaces, a set A is 
dense in B if A:::> B; in other words, taking for simplicity B = ~, A is 
dense in ~ if no neighborhood is disjoint from A; and B is separable if 
there exists a countable set A dense in B. A countable base at x is a 
countable class { Vc(;)} of neighborhoods of x such that every neigh
borhood of x contains a V.,(j); and the space has a countable base { V(j)} 
if, for every point x, a subclass of V(;)'s is a base at x. 

a. A space has a countable base only if it is separable and has a countable 
base at every point. Then every open covering of the space contains a 
countable covering of the space. 

Note that if a countable set {xi} is dense in a metric space, then at 
every Xj there is a countable base of spheres of rational radii, and the 
countable union of all these countable bases is a base for the space. 

Proof. If the space has a countable base { V(j)}, then it has a count
able base at every point. Moreover, if A is a set formed by selecting a 
point Xj from every V(j), then, since any neighborhood of any point 
contains a V(j), it contains the corresponding point Xj, so that no 
neighborhood is disjoint from A. 

Finally, given an open covering of the space, every one of its sets 
contains a V(j) so that, for every V(j), we can select one set Oi of the 
covering containing it. The countable class { Oi} is an open covering 
of the space, and the proof is terminated. 

A basic type of space with a countable base at every point is that of 
metric spaces. In fact, topologies in euclidean spaces are determined 
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by means of distances; this approach characterizes metric spaces. A 
metric space is a space with a distance (or metric) don~ X ~toR such 
that, whatever be the points x, y, z, this function has 

the triangle property: d(x, y) + d(x, z) ~ d(y, z), 
the identification property: d(x, y) = 0 ¢=> x = y. 

Upon replacing z by x and interchanging x andy, it follows that 

d(x, y) = d(y, x), d(x, y) ~ 0. 

It happens frequently, and we shall encounter repeatedly such cases, 
that, for some space, a function d with the two foregoing properties 
can be defined-except for the property d(x,y) = 0 ==> x = y. Then the 
usual procedure is to identify all points x, y such that d(x, y) = 0; the 
space is replaced by the space of "classes of equivalence" so obtained, 
and this new space is metrized by d. 

The topology of a metric space (~, d) is defined as follows: Let the 
sphere V,e(r) with "center" x and "radius" r(>O) be the set of all pointsy 
such that d(x, y) < r. A set A is open if, for every x E: A, there exists 
a sphere V,e(r) c A; it follows, by the triangle property, that every 
sphere is open. Clearly, the class of open sets so defined is a topology. 
Since, by the identification property, d(x, y) > 0 when x ~ y and the 
spheres Vx(r) and Vy(s) are disjoint for 0 < r, s ~ !d(x, y), it follows 
that with the metric topology so defined, the space is separated; we ob
serve that Xn - x means that d(xn, x) - 0. 

A basic property of the metric topology is that at every point x there 

is a countable base, say, the sequence of spheres Vx (~) , n = 1, 2, · · ·, 

and it is to be expected that properties of metric spaces can be charac
terized in countable terms. To begin with: 

1. Sequences can converge to ·at most one point. 
2. A point x E: A if, and only if, A contains a sequence Xn - x, so 

that a set is closed if, and only if, limits of all convergent sequences of its 
points belong to it. 

3. Every closed (open) set is a countable intersection (union) of open 
(closed) sets. 

4. A metric space has a countable base if, and only if, it is separable. 
5. If X is a function on a metric domain (0, p) to a metric space (~,d), 

then X(w') - X(w) as w' - w if, and only if, X(wn) - X(w) whatever 
be the sequence Wn - w. 
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Proof. The first assertion follows from the separation theorem. 
The "if" part of the second assertion is immediate, and for the "only 

if" part it suffices to take Xn E: A n V:x (~) . 
For the third assertion, form the open sets On = U Vz (l) ; those 

xE:A n 
sets contain A, so that A c nOn. On the other hand, for every 

X E: nOn there exist points Xn E: On such that X E: v Xn (~)' and 

hence Xn ~ x; since dis closed, it follows by the second assertion that 
x E: A, and hence A :::::> n On. Thus, closed A = n On and the dual 
assertion for open sets follows by complementations. 

The fourth assertion follows from a. 
Finally, if X(w') ~ X(w) as w' ~ w, then, clearly, X(wn) ~ X(w) 

as wn ~ w. Since X(w') -++ X(w) as w' ~ w implies that there exist 

points Wn E: V., (~) such that X(wn) -++ X(w). while Wn ~ w, the last 

assertion follows. 
Metric completeness and compactness. The basic criterion for con

vergence of numerical sequences is the (Cauchy) mutual convergence 
criterion: a sequence Xn is mutually convergent, that is, d(xm, Xn) ~ 0 
as m, n ~ ao if, and only if, the sequence Xn converges. In a metric 
space, if Xn ~ x, then, by the triangle inequality, d(xm, Xn) ~ d(x, Xm) 
+ d(x, Xn) ~ 0 as m, n ~ ao, but the converse is not necessarily true 
(take the space of all rationals with euclidean distance); if it is true, 
that is, if d(xm, Xn) ~ 0 implies that Xn ~ some x, then the mutual 
convergence criterion is valid, and we say that the space is complete. 
Complete metric spaces have many important properties, which follow. 

Call t:.(d) = sup d(x, y) the diameter of A; A is bounded if t:.(d) is 
x,y E: A 

finite. 

A. CANTOR's THEOREM. ln a complete metric space, every nonincreas
ing sequence of closed nonempty sets An such that the sequence of their 
diameters t:.(dn) converges to 0 has a nonempty intersection consisting of 
one point only. 

Proof. Take Xn E: An and m ~ n. Since d(xm, Xn) ~ t:.(dn) ~ 0, 
it follows that Xn ~ some x. Since Xm E: Am C An for all m ~ n and 
the set An is closed, X belongs to every An; hence X E: n An. If now 
d(x, x') > 0, then, from some k on, d(x, x') > t:.(Ak) so that x' ([. Ak 
:::::> n An. The assertion is proved. 
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A set A is nowhere dense if the complement of 7i is dense in the space, 
or, equivalently, if 7i contains no spheres, that is, if the interior of 7i 
is empty. A set is of the first category if it is a countable union of no
where dense sets, and it is of the second category if it is not of the first 
category. 

B. BATRE's CATEGORY THEOREM. Every complete metric space is of the 
second category. 

Proof. Let d = U dn where the dn are nowhere dense sets. There 
exist a point x1 t{_ At and a positive r1 < 1 such that the adherence of 
V,,1(r1) is disjoint from At. Proceeding by recurrence, we form a de-

creasing sequence of spheres V x,(rn) such that V x,(rn) is disjoint from 
1 

dn and rn <- ~ 0. Therefore, by Cantor's theorem, there exists a 
n 

point X E::: n v x,(rn) and, because of the foregoing disjunction, X t{_ u An. 
Thus A ;:C X, and the theorem follows. 

We investigate now compact metric spaces and require the two fol
lowing propositions. 

b. If every mutually convergent sequence contains a convergent subse
quence, then the space is complete. 

This follows from the fact that if a sequence Xn is mutually convergent 
and contains a convergent subsequence Xn' ~· x, then, by the triangle 
inequality, d(xn, x) ~ d(xn'' Xn) + d(xn', x) ~ 0 as n, n' ~ oo, so 
that Xn ~X. 

A set is totally bounded if, for every E > 0, it can be covered by a 
finite number of spheres of radii ~ E. Clearly, a totally bounded set 
is bounded, and a subset of a totally bounded set is totally bounded. 

c. A metric space is totally bounded if, and only if, every sequence of 
points contains a mutually convergent subsequence. A totally bounded 
metric space has a countable base. 

Proof. Let the space be not totally bounded; there exists an E > 0 
such that the space cannot be covered by finitely many spheres of radii 
~ E. We can select by recurrence a sequence of points Xn whose mu
tual distances are ~ Ej for, if there is only a finite number of points 
xr, · · ·, Xm with this property, then the spheres of radius E centered 
at these points cover the space. Clearly, this sequence cannot contain 
a mutually convergent subsequence. 
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Conversely, let the space be totally bounded, so that every set is 
totally bounded. Then any sequence of points belonging to a set con
tains a subsequence contained in a sphere of radius ~ e-member of a 
finite covering of the set by spheres of radii ~ e. Thus, given a se
quence { Xn}, setting e = ! , -?!-, · · ·, and proceeding by recurrence, we 
obtain subsequences such that each is contained in the preceding one 
and the kth one is formed by points x1k, x2k, • • • belonging to a sphere 

of radius ~ i. The "diagonal" subsequence {xnn} is such that, from 

the kth term on, the mutual distances are ~ i ; hence this subsequence 

is mutually convergent. 
The last assertion follows from the fact that given a totally bounded 

1 
space, the class formed by all finite coverings by spheres of radii ~ -

n 
n = 1, 2, · · · is a countable base. 

C. METRIC COMPACTNESS THEOREM. The three following properties of 
a metric space are equivalent: 

(MCa) 

every sequence of points contains a convergent subsequence; 
every open covering of the space contains a finite covering of the 
space (Heine-Bore! property); 
the space is totally bounded and complete. 

Proof. It suffices to show that (MC2) => (MC1) => (MC3) => 
(MC2). 

(MC2) => (MC1). Apply the compactness theorem. 
(MC1) => (MC3). Let every sequence of points contain a convergent 

(hence mutually convergent) subsequence. Then, by b, the space is 
complete and by c, it is also totally bounded. 

(MC3) => (MC2). According to a, an open covering of a totally 
bounded space contains a countable covering {Oil of the space. If no 
finite union of the Oi covers the space, then, for every n, there exists a 

n 

point Xn t{_ U Oi> and, according to c, the sequence of these points con-
i=! 

tains a mutually convergent subsequence. Therefore, when the totally 
bounded space is also complete, this sequence has a limit point x which 
necessarily belongs to some set Oi. of the open countable covering of 
the space. Since x is a limit point of the sequence {xn}, there exists 
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n 

some n > j 0 such that Xn E: Oi. C U Oh and we reach a contradiction. 
j=l 

Thus, there exists a finite subcovering of the space. 

CoROLLARY 1. A compact metric space is bounded and separable. 

CoROLLARY 2. A continuous junction X on a compact metric space 
(0, p) to a metric space (~, d) is uniformly continuous. 

By definition, X is uniformly continuous if for every e > 0 there exists 
a o = o(e) > 0, which depends only upon e, such that d(X(w), X(w')) < e 
for p(w, w') < o. 

Proof. Let e > 0. Since X is continuous, for every w E: 0 there ex
ists a Ow such that d(X(w), X(w')) < e/2 for p(w, w') < 2ow. Since the 
domain is compact, it is covered by a finite number of spheres V"'k(o"'J' 
k = 1, 2, · · ·, n; let o be the smallest of their radii. Any w belongs to 
one of these spheres, say, V"'k(o"'k), and if p(w, w') < o, then p(wk, w') < 
2owk· It follows, by the triangle inequality, that 

E E 
d(X(w), X(w')) ~ d(X(wk), X(w)) + d(X(wk), X(w')) < 2 + 2 = E 

whenever p(w, w') < o, and the corollary is proved. 

Let us indicate how a noncomplete metric space (~, d) can be com
pleted, that is, can be put in a one-to-one isometric correspondence with 
a set in a complete metric space-in fact, with a set dense in the latter 
space. The elementary computations will be left to the reader. 

Consider all mutually convergent sequences s = (xh x2, • • • ), s' = 
(x' h x'2, · · · ), · · ·. The function p defined by p(s, s') = lim d(xn, x' n) 
exists and is finite and satisfies the triangular inequality. Let s, s' be 
equivalent if p(s, s') = 0; this notion is symmetric, transitive, and re
flexive. It follows that the space (S, p) of all such equivalence classes 
is a metric space, and it is easily seen that it is complete. The one-to
one correspondence between ~ and the set S' of classes of equivalence 
of all "constant sequences," defined by x ~ (x, x · · · ), preserves the 
distances. Moreover, S' is dense in S. Thus S may be considered as 
a "minimal completion" of~. 

Distance of sets. In what follows the sets under consideration are non
empty subsets of a metric space(~, d). The distance of two sets A and B 
is defined by 

d(A, B) = inf {d(x, y): x E: A, y E: B} 
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and 

d(x, B) = d({x}, B) = inf{d(x,y):y E:: B} 

is called the distance of x to B. Clearly there are sequences of points 
Xn E:: .d and Yn E:: B such that d(xn, Yn) ~ d(.d, B) and in particular 
d(x, Yn) ~ d(x, B). 

d. d(x, .d) is uniformly continuous in x and, in fact, 

I d(x, .d)- d(y,.d) I< d(x,y). 

For, upon taking infima in z in the triangle inequality d(x, z) ~ d(x, y) + 
d(y, z), we obtain d(x, .d) ~ d(x,y) + d(y, .d) and interchanging x andy 
the asserted inequality follows. 

D. (i) A= {x: d(x, .d) = 0}. 
(ii) If disjoint sets .d and B are closed then there are disjoint open sets 

U ~ .d and V ~ B (~ is "normal") and there is a continuous function g 
with 0 ~ g ~ 1, g = 0 on .d, g = 1 on B ("Urysohn lemma"). 

(iii) If a compact .d and a closed B are disjoint then d(.d, B) > 0. If 
moreover B is also compact then d(.d, B) = d(x, y) for some x E:: .d and 
y E:: B. 

Proof. We use continuity in x of d(x, .d) without further comment. 
The set .d' = {x: d(x, .d) = 0) contains .d and is closed as inverse image 
of the closed singleton {0} under a continuous mapping. Let a sequence 
of points Xn of .d be such that d(x, Xn) ~ d(x, .d). Then d(x, Xn) ~ 0 for 
every x E:: .d' so that x E:: A hence .d' is contained in .d. Thus (i) is proved. 

In (ii), the "normality" assertion follows by (i) and continuity in x of 
d(x, .d) - d(x, B) upon taking U = {x: d(x, .d) - d(x, B) < 0} ~ .d 
and V = {x: d(x, .d) - d(x, B) > 0} ~ B. "Urysohn lemma" obtains 

. h ( ) d(x, .d) 
Wit g x = d(x, .d) + d(x, B) · 

For (iii), let sequences of points Xn of .d and Yn of B be such that 
d(xn, Yn) ~ d(.d, B). Since .d is compact the sequence (xn) contains a 
subsequence Xn' ~ x E:: .d hence d(x, Yn') ~ d(.d, B). If d(.d, B) = 0 
then Yn' ~ x so that, B being closed, x E:: Band .d and Bare not disjoint. 
Since they are disjoint, d(.d, B) > 0. If, moreover, also B is compact 
then the sequence of points Yn' of B contains a subsequenceyn" ---t y E:: B 
hence d(x,y) = d(.d, B). The proof is terminated. 

2.4 Linearity and normed spaces. Euclidean spaces are not only 
metric and complete but are also normed and linear as defined below. 
Unless specified, the "scalars" a, b, c, with or without subscripts, are 
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either arbitrary real numbers or arbitrary complex numbers, and x, y, z, 
with or without subscripts, are arbitrary points in a space OC. 

A space OC is linear if a "linear operation" consisting of operations of 
"addition" and "multiplication by scalars" is defined on OC to OC with 
the properties: 

(i) x + y = y + x, x + (y + z) = (x + y) + z, 
X+ Z = J + Z ==? X = y; 

(ii) l·x = x, a(x + y) = ax+ ay, (a+ b)x = ax+ bx, 

a(bx) = (ab)x. 

By setting - y = -l·y, "subtraction" is defined by x - y = x + (-y). 
Elementary computations show that (i) and (ii) imply uniqueness of 
the "zero point" or "null point" or "origin" 8, defined by 8 = O·x, and 
with the property x + 8 = x. A set in a linear space generates a linear 
subspace-the linear closure of the set-by adding to its points x, y, 
· · · t all points of the form ax + by + · · · lt. 

A metric linear space is a linear space with a metric d which is in
variant under translations and makes the linear operations continuous: 

(iii) d(x, y) = d(x - y, 8), Xn --+ 8 ==? axn --+ 8, 

an --+ 0 ==? anX --+ 8. 
If 

(iv) d(x, y) = d(x - y, 8), d(ax, 8) = I a ld(x, 8), 

then (iii) holds, d(x, 8) is called norm of x and is denoted by II x II, and 
the metric linear space is then a "normed linear space." 

Equivalently, a normed linear space is a linear space on which is de
fined a norm with values II x II ~ 0 such that 

(v) II x + Y II ~ II x II +II Y II, II x II = 0 {::} x = 8, 

llaxH = lal·llxll, 
and the metric d is determined by the norm by setting 

d(x,y) =II x- Y 11. 
A Banach space is a normed linear space complete in the metric de

termined by the norm. For example, the space of all bounded continu
ous functions f on a topological space OC to the euclidean line is a Banach 

space with a norm defined by II! II =sup IJ(x) 1. Real spaces with 
"' 

points x = (xh · · ·, xN) and norms II x II = Cl x1lr +···+I XN lr)lfr, 
r ~ 1, are Banach spaces, and we shall encounter similar but more gen-
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era! spaces L.. If r = 2, then these (euclidean) spaces are Hilbert 
spaces. 

A Hilbert space is a Banach space whose norm has the parallelogram 
property: II x + y 11 2 +II x- y W = 211 x 11 2 + 211 y 11 2 ; such a norm 
determines a scalar product. It is simpler to determine the Hilbert 
norm by means of a scalar product (corresponding to the scalar prod-

N 

uct defined by (x, y) = L: XkYk in a euclidean space RN) as follows: 
k=l 

A scalar product is a function on the product of a linear space by it
self to its space of scalars, with values (x, y) such that 

(vi) (ax+ by, z) = a(x, z) + b(y, z), (x, y) = (y, x), 

x ~ 8 ==? (x, x) > 0. 

Clearly (x, x) is real and nonnegative. The function with values 
II x II = (x, x)Yz ~ 0 is the Hilbert norm determined by the scalar prod
uct. For, obviously, it has the two last properties (v) of a norm. And 
it also has the first property (v). This follows by using in the expansion 
of (x + y, x + y) the Schwarz inequality 

I cx,y)l ~ llxii·IIYII; 

when (x, y) = 0 this inequality is trivially true, and when (x, y) ~ 0 
it is obtained by expanding (x- ay, x - ay) ~ 0 and setting a = 
(x, x)j(y, x). Finally, the parallelogram property is immediate. 

Linear junctionals. The basic concept in the investigation of Banach 
spaces is the analogue of j(x) = ex-the simplest of nontrivial functions 
of classical analysis. A junctional f on a normed linear space has for 
range space the space of the scalars (the scalars and the points below 
are arbitrary, unless specified). f is 

linear ifj(ax +by) = aj(x) + bf(y); 
continuous if J(xn) ~ j(x) as Xn ~ x; if this property holds only 

for a particular x, then/ is continuous at this x; 
normed or bounded if IJ(x) I ~ ell x II where c < oo is independent of 

x; the norm ofj is then the finite number Ill II = suplfll(x) 11. 
x;~=B X I 

For example, a scalar product (x,y) is a linear continuous and normed 
functional in x for every fixed y. Clearly, iff is linear, then j(8) = 0, 
and a linear functional continuous at 8 is continuous. 
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a. Letf be a linear Junctional on a normed linear space. Iff is normed, 
then it is continuous; and conversely. 

Proof. If/ is normed, then it is continuous, since 

IJ(xn) - f(x) I = IJ(xn - x) I ~ ell Xn - X II ~ 0 as II Xn - X II ~ 0. 

Iff is not normed, then it is not continuous, since whatever be n there 
exists a point Xn such that IJ(xn) I > nil Xn II, and, setting Yn = Xn/ 

nil Xn II, we have lf(yn) I > 1 while II Yn II = ~ ~ 0. 
n 

b. The space of all normed linear Junctionals f on a normed linear space 
is a Banach space with norm II f 11. 

Proof. Clearly the space is normed and linear and it remains to 
prove that it is complete. 

Let !lim - fn II ~ 0 as m, n ~ oo. For every E > 0 there exists 
ann. such that l!fm - fn II < E form, n ~ n.; hence lfm(x) - fn(x) I < 
E II x II whatever be x. Since the space of scalars is complete, it follows 
that there exists a function/ of x such that/n(x) ~ f(x) and, clearly, 
f is linear and normed. By letting m ~ oo, we have, for n ~ n., IJ(x) -
fn{x) I ~ Elt x II whatever be x, that is, II fn - f II ~ E. Hence fn ~ f 
and the proposition is proved. 

What precedes applies word for word to more general functions (map
pings, transformations) on a normed linear space to a normed linear 
space with the same scalars, and the foregoing proposition remains valid, 
provided the range space is complete; it suffices to replace every IJ(x) I 
by IIJ(x) II· 

The Banach space of normed linear functionals on a Banach space is 
said to be its adjoint; a Hilbert space is adjoint to itself. However, 
a priori, the adjoint space may consist only of the trivial null functional 
f with IIJ II = 0. That it is not so will follow (see Corollary 1) from 
the basic Hahn-Banach 

A. ExTENSION THEOREM. Iff is a normed linear functional on a linear 
subspace A of a normed linear space, then f can be extended to a normed 
linear functional on the whole space without changing its norm. 

Proof. 1° We begin by showing that we can extend the domain of 
f point by point. Let x0 t[. A and let II/ II = 1-this does not restrict 
the generality. First assume that the scalars, hence/, are real. 

The linearity condition determines J(x + ax0), x E: A, by setting it 
equal to J(x) + af(x0), so that it suffices to show that there exists a 
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number f(xo) such that IJ(x) +af(xo) I ~ II x + axo II for every x E: A 
and every number a. Since A is a linear subspace, we can replace x 
by ax and, by letting x vary, the condition becomes 

sup {-II x + Xo II- f(x)) ~j(xo) ~ inf Ill x + Xo II- J(x)). 
$ $ 

Therefore, acceptable values of J(x0) exist if the above supremum 
is no greater than the above infimum, that is, if whatever be x', x" E: A 

-II x' + Xo II "'""f(x') ~ II x" + x~ II - f(x") 
or 

f(x") - f(x') ~ II x" + Xo II + II x' + Xo II· 
Since by linearity off and the triangle inequality 

J(x") - f(x') = f(x"- x') ~ II x" - x' II ~ II x" + Xo II + II x' + Xo II, 
acceptable values of j(x0) exist. 

We can pass from real scalars to complex scalars, as follows: From 
f(ix) = ij(x) it follows thatj(x) =c: g(x) - ig(ix), x E: A, where g = <Rj 
is a real-valued linear functional with II g II ~ 1; g extends first for all 
points x + ax0 then for all points (x + axo) + b·ixo = x + (a+ ib)x0 , 

a, b real, andf extends by the foregoing relation. Now observe that] 
is linear on the so extended domain and that, for any given point x, 
upon setting J(x) = reia, r ~ 0, a real, we obtain IJ(x) I = g(riax) ~ 

II xll· 
2° We can extend the domain off point by point. The family of 

all possible extensions off to linear functionals without change of norm 
is partially ordered by inclusion of their domains. Any linearly ordered 
subfamily of extensions has a supremum in the family-the extension 
on the union of the domains. According to a consequence of the axiom 
of choice (Zorn's theorem), it follows that the whole family has a su
premum which is a member of the family. It must have for domain 
the whole space, for otherwise, by 1°, it could be extended further. 
The theorem is proved. 

CoROLLARY 1. Let x0 be a nonzero point of a normed linear space, 
and let A be a closed linear subspace. There exist linear junctionals j, 
f' on the space such that 

IIJII = 1 and f(xo) =II Xo II, 
J' = 0 on A and f'(xo) = d(x0, A) = inf d(x0, x). 

$E:A 

Setf(axo) = all Xo II,J'(axo + x) = ad(x0 , A), x E:: A, and extend. 
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CoROLLARY 2. A junctional f on a set A in a normed linear space ex
tends to a normed linear functional on the whole space with norm bounded 
by c( < oo) if, and only if, 

I L akf(xk) I ~ c II L akxk II 
k k 

whatever be the finite number of arbitrary points Xk E:: A and of arbitrary 
scalars ak. 

Proof. The "only if" assertion is immediate. As for the "if" asser
tion, assume that the inequality is true, and observe that the linear 
closure of A consists of all points of the form x = 'L akxk. Linearity 

k 

off on this closure implies that we must setf(x) = 'L akf(xk). Then, 
k 

on the closure, IJ(x) I ~ ell x II, and f is uniquely determined, smce, 
for x = 'L akxk = 'L a'k,X'k,, we have 

k k' 

I L akf(xk) - L a'kf(x'k,) I ~ c II L akxk- L a'k,X1k' II = 0. 
k k' k ~ 

The assertion follows by the extension theorem. 
This corollary permits us to solve various moment problems as well 

as to find conditions for existence of solutions of systems of linear equa
tions with an infinity of unknowns. 

§ 3. ADDITIVE SET FUNCTIONS 

3.1 Additivity and continuity. A set function 'P is defined on a non
empty class e of sets in a space n by assigning to every set A E:: e a 
single number 'P(A), finite or infinite, the value of 'Pat A. If all values 
of 'P are finite, 'P is said to be finite, and we write I 'P I < oo. If every 
set in e is a countable union of sets in eat which 'Pis finite, 'Pis said to 
be u.jinite. To avoid trivialities, we assume that every set function 
has at least one finite value. Unless otherwise stated, 'P denotes a set 
function and all sets considered are sets of the class on which this function 
is defined, so that the properties below are valid as long as 'P is defined for 
the sets which appear there. 

'P is said to be additive if 

'P('L A;) = 'L 'P(d;) 

either for every countable or only for every finite class of disjoint 
sets. In the first case 'P is said to be countably additive or u-additive, 



84 SETS, SPACES, AND MEASURES [SEc. 3] 

and in the second case tp is said to be finitely additive. In order that 
sums :E tp(Aj) be always meaningful we have to exclude the possibility 
of expressions of the form +co - co. In fact, if the sums always exist, 
tp is defined on a field, and tp(A) = +co and tp(B) = - oo, then tp(fl) = 
tp(A) + tp(Ac) = +co and tp(Q) = tp(B) + tp(Bc) = - oo, while the func
tion tp is single-valued. Thus, by definition, 

an additive set function has the additivity property above, and one of the 
values +co or -co is not allowed. 

To fix ideas we assume that the value -co is excluded, unless otherwise 
stated. 

A nonnegative additive set function is called a content or a mea~ure 
according as it is finitely additive or u-additive. Let tp be additive. 
If A ::J B, then, by additivity, 

'P(A) = tp(B) + tp(A - B). 

It follows, upon taking A = B + 0 = B with tp(B) finite, that '1'(0) = 0. 

A convergent series of terms, which are not necessarily of constant 
sign, may depend upon the order of the terms. This possibility is ex
cluded in our case by 

a. If tp is u-additive and I tp(L: An) I < co, then the series :E tp(An) is 
absolutely convergent. 

Proof. Set An+ = An or 0 according as tp(An) ~ 0 or tp(An) < 0, 
and set An- = An or 0 according as tp(An) ~ 0 or tp(An) > 0. Then 

tp(L: An+) = :E tp(An +), tp(L: An-) = :E tp(An -), 

and the terms of each series are of constant sign. Since the value -co 
is excluded, the last series converges. Since the sum of both series 
converges, so does the first series. The assertion follows. 

b. If tp(A) is finite and A => B, then tp(B) is finite; in particular, if 
tp(fl) is finite, then tp is finite. If tp ~ 0, then tp is nondecreasing: tp(A) ~ 
tp(B) for A ::J B, and subadditive: tp(U Aj) ~ :E tp(Aj). 

Only the very last assertion needs verification and follows from 

tp(U Ai) = 'PCA1 + A1cA2 + A!"A2cAa + · · ·) 

= tp(AI) + tp(Al c A2) + tp(Al c A2c A a) + · · · 

~ 'PCA1) + tp(A2) + tp(Aa) + · · ·. 
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We intend to show that the difference between finite additivity and 
u-additivity lies in continuity properties. q; Is said to be continuous 
from below or from above according as 

for every sequence An j, or for every sequence An l such that rp(An) is 
finite for some value n0 of n (hence, by b, for all n ~ n0). If rp is con
tinuous from above and from below, it is said to be continuous. Con
tinuity might hold at a fixed set A only, that is, for all monotone se
quences which converge to A; continuity at 0 reduces to continuity 
from above at 0. 

A. CoNTINUITY THEOREM FOR ADDITIVE SET FUNCTIONS. Au-additive 
set junction is finitely additive and continuous. Conversely, if a set junc
tion is finitely additive and, either continuous from below, or finite and 
continuous at 0, then the set junction is u-additive. 

Proof. Let q; be u-additive and, a fortiori, additive. rp is continuous 
from below, for, if An j, then 

lim An = U An = A1 + (A2 - A1) + (A3 - A2) + · · · 
so that 

q;(lim An) = lim (rp(A1) + q;(A2- A1) + · · · + q;(An- An-1)} 

= lim q;(An). 

q; is continuous from above, for, if An l and q;(An0) is finite, then 
Ano - An j for n ~ n0, the foregoing result for continuity from below 
applies and, hence, 

or 

q;(An0) - q;(lim An) = q;(lim (Ano - An)) = lim q;(Ano - An) 

= q;(An0) - lim q;(An) 

Conversely, let q; be finitely additive. If q; is continuous from below, 
then 

n n n 

so that q; is u-additive. If q; is finite and continuous at 0, then u-addi
tivity follows from 
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n 00 n 00 

cp(L An) = cp( :E Ak) + cp( :E Ak) = :E cp(Ak) + cp( L Ak) 
k=l k=n+l k=l k=n+l 

and 
00 

cp( L Ak) ~ cp(0) = 0. 
k=n+l 

The proof is complete. 

The continuity properties of a u-additive set function cp acquire their 
full significance when cp is defined on a u-field. Then, not only is cp de
fined for all countable sums and monotone limits of sets of the u-field 
but, moreover, cp attains its extrema at some sets of this u-field. More 
precisely 

c. If cp on a u-.field a is u-additive, then there exist sets C and D of a 
such that cp(C) = sup cp and cp(D) = infcp. 

Proof. We prove the existence of C; the proof of the existence of D 
is similar. If cp(A) = +oo for some A E:: Ci, then we can set C = A 
and the theorem is trivially true. Thus, let cp < oo, so that, since the 
value - oo is excluded, cp is finite. 

There exists a sequence {A,.} C a such that cp(An) ~ sup cp. Let 
A = U A,. and, for every n, consider the partition of A into 2" sets 

n 

Anm of the form n A'li where A'k = Ak or A- Ak; for n < n', every 
k=l 

Anm is a finite sum of sets An'm'• Let Bn be the sum of all those Anm 
for which cp is nonnegative; if there are none, set B,. = 0. Since, on the 
one hand, An is the sum of some of the Anm and, on the other hand, for 
n' > n, every An'm' is either in B,. or disjoint from B,., we have 

Letting n' ~ oo, it follows, by continuity from below, that 

00 

cp(A,.) ;;i cp(Bn) ;;i cp( U Bk). 
k=n .. 

Letting now n ~ oo and setting C = lim U Bk, it follows, by con-
k=n 

tinuity from above (cp is finite), that sup cp ;;i cp(C). But cp(C) ;;i sup cp 
and, thus, cp( C) = sup cp. The proof is complete. 

CoROLLARY. If cp on a u-.field Ci is u-additive (and the value -oo is 
excluded), then cp is bounded below. 
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3.2 Decomposition of additive set functions. We shall find later that 
the "natural" domains of u-additive set functions are u-fields. We in
tend to show that on such domains u-additive set functions coincide 
with signed measures, that is, differences of two measures of which one 
at least is finite. Clearly, a signed measure is u-additive so that we 
need only to prove the converse. 

Let 'P be an additive function on a field e and define 'I'+ and '1'- on 
e by 

'P+(A) = sup 'P(B), 'P-(A) = - inf 'P(B), A, B E:: e. 
BcA BcA 

The set functions 'P +, 'P- and ip = 'P + + 'P- are called the upper, lower, 
and total variation of 'P on e, respectively. Since '1'(0) = 0, these varia
tions are nonnegative. 

A. JORDAN-HAHN DECOMPOSITION THEOREM. Jf '{) on a u-fie/d a is 
u-additive, then there exists a set D such that, for every A E:: a, 

-'1'-(d) = 'P(AD), 'P+(A) = 'P(ADc). 

'P+ and 'P-are measures and 'P = 'P+- 'P-is a signed measure. 

Proof. According to 3.lc, there exists a set D E:: a such that 'P(D) 
= inf 'I'; since the value -ex> is excluded, we have 

-ex> < 'P(D) = inf 'P ~ 0. 

For every set A E:: <1, 'P(AD) ~ 0 and 'P(ADc) ~ 0, since 'P ~ 'P(D) 
while, if 'P(AD) > 0, then 

'P(D - AD) = 'P(D) - 'P(AD) < 'P(D), 

and if 'P(ADc) < 0, then 

'P(D + ADC) = 'P(D) + 'P(ADC) < 'P(D). 

It follows that, for every B c A, (A, B E:: <1), 

'P(B) ~ 'P(BDc) ~ 'P(BDc) + 'P((A - B)Dc) = 'P(dDc), 

and, hence, 'P+(A) ~ 'P(ADc). Since ADc is one of the B's, the reverse 
inequality is also true. Therefore, for every A E:: <1, 'P+(A) = 'P(ADc) 
and, similarly, -'1'-(d) = 'P(AD), so that 

'P(A) = 'P(ADc) + 'P(AD) = 'P+(A) - '1'-(A). 

Moreover,"'+ on a is a measure since 'P+ ~ 0 and 
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Similarly "'- on a is a measure and, furthermore, It Is bounded by 
-'P(D) which is finite. Thus, 'P = 'P+- 'P- is a signed measure, and 
the proof is complete. 

JORDAN DECOMPOSITION. If a is only a field but (/) is also bounded, 
then it is still a signed measure. Prove, proceeding directly from the 
definitions, showing first that 'I'± are bounded measures. 

*§ 4. CONSTRUCTION OF MEASURES ON IT-FIELDS 

4.1 Extension of measures. If two set functions 'P on e and "'' on 
e' take the same values at sets of a common subclass <3", we say that 
"' and "'' agree or coincide on e". If e c e' and "' and "'' agree on e, 
we say that 'P is a restriction of IP' on e, and "'' is an extension of 'P on 
e'. The general extension problem can be stated as follows: find ex
tensions of"' which preserve some specified properties. If, given e' :::> e, 
there is one, and only one, such extension on e', we say that this ex
tension is determined. 

Here, we are concerned with the extension of measures to measures 
and shall denote extensions and restrictions of a measure p. by the same 
letter; as long as their domains are specified, there is no confusion pos
sible. While any restriction of a measure is determined and is a meas
ure, an extension of a measure to a measure on a given class may not ex
ist, and if one exists it may not be unique. Our aim is to produce classes 
on which such extensions exist, and cases where they are determined. 
The results of the investigation are summarized by the Caratheodory 

A. ExTENSION THEOREM. .d measure p. on a field e can be extended 
to a measure on the minimal u..jield over e. If, moreover, p. is u..jinite, 
then the extension is determined and is u..jinite. 

We prove the extension theorem by means of an intermediate weaker 
extension which preserves a part only of the properties characterizing 
a measure. We shall need various notions that we collect here. 

A set function p.0 on the class S(Q) of all sets in the space Q is called 
an outer measure if it is sub u-additive, nondecreasing, and takes the 
value 0 at 0: 

p.0 (U .dj) ~ L: p.0 (.dj) for every countable class {.dj}, 

p.0 (d) ~ p.0 (B) for .d C B, p.0 (0) = 0. 

A set .dis called p.0-measurable if, for every set D C Q, 
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Since the relation is always true when p.0 (D) = oo, it suffices to consider 
sets D with p.0 (D) < oo. Since p.0 is sub u-additive, the reverse inequality 
is always true and, hence, A is p.0-measurable if, and only if, 

The class of all p.0 -measurable sets will be denoted by Ci0 and, clearly, 
contains 0 and n. The outer extension of a measure p. given on a field 
e is defined for all sets A c n by 

p.0 (A) = inf L: p.(A;), 

where the infimum is taken over all countable classes {A;} c e such 
that A c U A3-coverings in e of A, for short. Since n E::: e, there is 
at least one covering (consisting of 0) in e of every A so that the defi
nition of an outer extension is justified. The use of the same symbol 
p.0 both for an outer measure and an outer extension is due to the prop
erty, to be proved first, that the outer extension of the measure p. on e 
is an extension of p. to an outer measure. Next we shall prove that the 
restriction to Ci0 of p.0 is a measure and that Ci0 is a u-field, and the 
extension theorem will follow. 

a. The outer extension p.0 of a measure p. on a field e is an extension of 
p. to an outer measure. 

Proof. We prove first that p.0 is an extension of p.. 
If A E::: e, then p.0 (A) ~ p.(A). On the other hand, since p. is a meas

ure, p.(A) ~ L: p.(A;) for every covering {A;} in e of A, so that p.(A) 
~ p.0 (A) and, hence, p.0 (A) = p.(A) for A E::: e. It remains to prove 
that p.0 is an outer measure. 

To begin with, p.0 (0) = 0 since 0 E::: e. Furthermore, p.0 (A) ~ p.0 (B) 
for A c B, since every covering in e of B is also a covering of A. Finally, 
we prove that p.0 is sub u-additive. 

Let E > 0 and let {A;} be an arbitrary countable class. For every 
A; there is a covering {A;k} in e such that 

E 

~ p.(A;k) ~ p.o(A;) + 21. 

Since U A; C U Ajk, it follows that 
i j,k 

i j,k i 

and, E > 0 being arbitrarily close to zero, sub a--additivity is proved. 
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b. If p.0 is an outer measure, then the class CX0 of p.0 -measurable sets is a 
u-.field and p.0 on ao is a measure. 

Proof. We prove first that ao is a field and p.0 on ao is a content. 
If .dE: G,0 , then .de E:: CX0 , since the definition of ,u0-measurability is 

symmetric in .d and .de. If .d, B E:: ao, then .dB E:: ao, since 

p.o(D) = p.o(.dD) + ,uo(.deD) 

= p.o(.dBD) + p.o(.dBeD) + ,uo(.deBD) + p.o(.deBcD) 

;;; p.0 (.dBD) + p.0 (.dBeD U .deED U .dcBeD) 

= p.0 (.dBD) + ,u0 (.dB)eD. 

Thus ao is closed under complementations and finite intersections and, 
hence, under finite unions, so that G,0 is a field. 

p.0 is finitely additive on 6,0 since, if .d, B E:: CX0 and are disjoint, 

Since p.0 (.d) ;;; p.0 (0) = 0, p.0 on ao is a content. 
To complete the proof, it suffices to show that, if the .dn E:: G,0 are 

disjoint, then .d = I: .dn E:: ao and p.0 (.d) = I: p.0 (.dn). 
n 

Since En = L .dk E:: ao, we have 
k=l 

and, letting n ~ oo, 

n 

The inequality between the extreme sides shows that .dE: ao. The 
first inequality with D replaced by .d becomes 

while the reverse inequality is always true. 
Thus 

and the proof is complete. 
REMARK. Most frequently, a measure ,u is given on a class D whose 

closure under finite summations or under countable summations is a 
field e. Then the requirement of u-additivity determines the unique 
extension of p. on e. 
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We are now in a position to prove the extension theorem. 
1° For every A E.: e and every D there is, for every E > 0, a covering 

{A;} in e of D such that 

p.0 (D) + E ~ L p.(.i3) = L p.(AA;) + L p.(dcA;) ~ p.0 (AD) + p.0 (AcD). 

Thus, A E.: ao and, hence, since the field e is contained in the u-field 
ao, the minimal u-field a over e is contained in ao. It follows, according 
to a and b, that the contraction on a of the measure p.0 on ao is an ex
tension of p. to a measure on a. This proves the first part of the theorem. 

2° Let p. on e be finite, let p.1 and p.2 be two extensions of p. to meas
ures on a, and let mr c a be the class on which p.1 and p.2 agree. Since 
n belongs to e, 11-1 (Q) = P.2(n) = p.(O) < oo ; hence 11-1 and 11-2 are finite. 
Since mr contains e and, for every monotone sequence An E.: ffir, 

J.tt(lim An) = lim P.t(An) =lim J.t2(An) = J.t2(lim An), 

mr is a monotone class. It follows, by 1.6A, that mr contains the mini
mal u-field a over the field e and, therefore, J.tt and ~-t2 agree on a. 

Let now p. on e be u-finite so that there is a countable class {A;} c e 
with ~-tA; finite which covers n. Thus, the foregoing result applies to 
every subspace A;, and the second part of the theorem follows. 

Generalization. The extension theorem is valid for u-finite signed meas
ures If' = p.' - p.". Extend p.' and p." and observe that 2° applies with 
If' instead of p.. 

Completion. Given a measure J.t on a u-field a, it is always possible 
to extend p. to a larger u-field obtained as follows: For every A E.: a 
and an arbitrary subset N of a null set of a, that is, a set of measure 
zero, set p.(A U N) = p.(A). Clearly, the class of all sets A U N is a 
u-field a,.. :::J a and J.t on a,.. is an extension of p. to a measure on a,... 
a,.. is called the completion of a for p. and p. on a,.. is called a complete 
measure. It is easily seen that a,.. C ao, so that the extension theorem 
provides us automatically with extensions to complete measures. 

4.2 Product probabilities. A measure on a class containing the space 
is called a normed measure or a probability when its value for the whole 
space is one; we reserve the symbol P, with or without affixes, for such 
measures. 

Let (n, a, Pt), t E.: T, be probability spaces, that is, triplets consist
ing of a space Ot of points w, a u-field at of measurable sets At (with or 
without superscripts) in Ot, and a probability Pt on at. Let er be the 
class of all measurable cylinders of the form II At X II Ot in the 

tE:TN tE:T-TN 
product measurable space (II n, II at). The class <BT of all finite 
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sums of these cylinders is a field, and the minimal u-field aT over ffiT 
is, by definition, the product u-field II at. The product probability 
PT = II Pt on the class eT is defined by assigning to every interval 
cylinder the product of the probabilities of its sides: in symbols, 

Clearly, PTQT = 1 and PT on eT is finitely additive and determines 
its extension to a finitely additive set function PT on ffiT. The defining 
term "product-probability" is justified by the following theorem (An
dersen and Jessen). 

A. PRoDUCT PROBABILITY THEOREM. The product probability PT on 
<Br is u-additive and determines its extension to a probability PT on the 
product u-field ar. 

Thus, the triplet (rlr, aT, PT) is a probability space, to be called the 
product probability space. 

Proof. 1 o On account of the extension theorem, it suffices to prove 
that PT on ffiT is cr-additive. Since it is obviously finitely additive on 
ffiT, on account of the continuity theorem for additive set functions it 
suffices to prove that PT on ffiT is continuous at 0. Ab contrario, given 
E > 0 arbitrarily close to 0, it suffices to prove that, for every nonin
creasing sequence of measurable cylinders An l A with PTAn > E for 
every n, the limit set A is not empty. Since every cylinder An depends 
only upon a finite subset of indices, the set of all indices involved in 
defining the sequence An is countable. By interchanging, if necessary, 
the indices, we can restrict ourselves to the product space n = II rln 
and sets An = Dn X n~ with DnCfl1 X · · · Xrln, rl' n = rln+lXrln+zX · · ·. 

If the set of all indices is finite, then there is an integer N such that, 
for every n, all the factors which follow the Nth one reduce to rlN, and 
the argument below applies with corresponding modifications. 

2° Let P\, P'2 , • · • be the set functions defined on the fields ffi1', 

ffi' 2 , • • • of all measurable cylinders in rl\, rl'2, • • ·, as PT is defined on 
ffiT. Let An(wl), An(wb wz), ... be the sections of An at Wl E::: nh (wb 
w2) E::: rl 1 X rl2, etc. Clearly, L1n(w1) E::: ffi\. It is easily seen that, if 
B 1 n is the set of all w1 such that 
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then 

and, hence, 

Since An~ implies that B1n ~, it follows that, for B1 = lim B1n, P1B1 

;?;; ~ • Thus, B 1 is not empty; hence, there is a point w1 E:: Q1 common 

E 
to all B1n and, for every n, P\(An(w1)) > 2. The same argument ap-

e 
plied to An(w1) ~ yields a point w2 E:: Q2 such that P'2(An(wb w2)) > 22 , 

and so on. Therefore, the point w = (wb w2, • • ·) is common to all 
An, so that the limit set A is not empty, and the proof is complete. 

We pass now to Borel spaces. 
4.3 Consistent probabilities on Borel fields. We introduce the fol

lowing terminology. The set R = (-oo, +oo) of all finite numbers x 
is a real line, the minimal a--field over the class of all intervals is the 
Borel field ffi in R, the elements of (Bare Borel sets in R, and the measur
able space (R, <B) is a Borel line. Similarly, the product space Rr = 
II R~, where every Rt is a real line with points x1, is a real space with 
points xr = (x1), the product a--field ffir = II ffi 1, where every ffit is 
the Borel field in Rt, is the Borel field in Rr whose elements are Borel 
sets in Rr, and the measurable space (Rr, ffiT) is a Borel space. If T 
is a finite set, we say that Rr is a finite product space. Cylinders with 
Borel bases are Borel cylinders and, clearly, the Borel field ffir is the 
minimal a--field over the class of all Borel cylinders or, equivalently, 
over the class of all cylinders whose bases are product Borel sets. 

Given a finite measure on ffir we can assume, by dividing it by its 
value for Rr, that it is a probability Pr. Let TN = {tb · · · IN} be a 
finite subset of indices and let (RTN, ffiTN) be the corresponding ~orel 
space. We define on ffiTN the marginal probability PTm or projection 
of P on RTN, by assigning to every Borel set BrN in RrN the measure 
of the cylinder with basis BTN; in symbols 

PrN(BrN) = Pr(BTN X R' TN), R' TN = II Rt. 
t f{.TN 

Marginal probabilities are consistent in the following sense. If R' and 
R" are two finite product subspaces of RrN with marginal measures P' 
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and P", respectively, then the projections of P' and P" on their com
mon subspace, if any, coincide (with the projection of Pr on this sub
space). We want to prove that the converse is true (Daniell, Kol
mogorov). 

A. CoNSISTENCY THEOREM. Consistent probabilities PrN on Borel 
fields of all finite product subspaces RrN of Rr determine a probability Pr 
on the Bore/field in Rr such that every PrN is the projection of Pr on RrN' 

Proof. To every Borel cylinder with Borel base ErN in RrN we as
sign the probability value 

Pr(BrN X R' TN) = PrN(BrN). 

It is easily seen that Pr on the class er of all Borel cylinders is finitely 
additive, and the theorem will follow from the extension theorem if we 
prove that Pr on er is continuous at 0. 

As in the proof of the product probability theorem, it suffices to 
prove that, given E > 0 arbitrarily close to zero, if a sequence An ~ A 
of Borel cylinders with bases Bn formed by finite sums of intervals in 
RI X· ··X Rn is such that, for every n, 

Pr(An) = PI2· · ·n(Bn) > e, 

then A is not empty. To simplify the writing, set P = Pr and Pn = 

PI2 ·. ·n· Since Pn is bounded and continuous from below, in every in
terval in RI X··· X Rn we can find a bounded closed interval whose 
Pn-measure is as close as we wish to that of the original interval. There
fore, in every Bn, we can find a bounded closed Borel set B' n-formed 
by a finite sum of bounded closed intervals-such that Pn(Bn - B'n) 

< 2n~I and, hence, if .d'n is the Borel cylinder with basis B'm then 

€ 

P(.dn - A'n) = Pn(Bn - B'n) < 2n+I · 

It follows, setting Cn = A't n · · · n A' n, that P(An - Cn) < ~or, since 

Cn c A'n cAm 

Thus every Cn is nonempty and we can select in it a point x(n) = (xi (n), 
x2 Cnl, · · · ). It follows from CI :::::> C2 :::::> • • • that for every p = 0, 1, 
· · ·, xCn+p) E:: Cn C A' n and hence (xi (n+p), · · ·, Xn (n+Pl) E:: B' n· 
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Since every B' n is bounded, we can select a subsequence n1k of inte
gers such that x1 (nul ~ x1 as k ~ oo, then within it a subsequence 
n2k such that x 2 (n2kl ~ x 2, and so on. The diagonal subsequence of 
points x<nkkl = (x1 (nkkl, X2 (nkkl, • • ·) converges to the point x = (xb x2, 

· · ·) and (x1 (nkkl, • • ·, Xm (nkkl) ~ (xb · · ·, Xm) E:: B' m for every m . .. 
Therefore, X E:: A'm cAm whatever be m so that X E:: n Am. Thus 

m=l 

this intersection is not empty, and the assertion is proved. 
Extensions. The foregoing theorem can be extended, as follows: 

Let <tn be the u-field of Borel cylinders with bases in R1 X··· X Rn, 
and let a .. be the Borel field in II Rn. 

1 ° If uniformly bounded measures P.n on <tn form a nondecreasing 
sequence, in the sense that P.nAn ~ P.n+lAn ~ · · • and hence P.pAn j p.An 
asp ~ oo whatever ben and An E:: <tn, then p. extends to a bounded meas
ure on <t00 • 

The proof reduces to the previous one as follows. The set function p. 
so defined on the field U <tn of all Borel cylinders in II Rn is, clearly, 
finitely additive and bounded. Therefore, it suffices to prove that on 
this field p. is continuous at 0. Given E > 0 and An E:: <tn, we can find 

p sufficiently large so that P,pAn + 2n~2 > p.An. Then we can select 

a Borel cylinder A'n CAn whose basis is a closed and bounded Borel 

set in R1 X· · ·X Rn such that P,p(An - A' n) < 2n~2 • It follows that 

E E 

p.A'n + 2n+l ~ P.pA n + 2n+l > p.An 

E 
so that p.(An - A' n) < 2n+l · From here on, the end of the preceding 

proof applies word for word. 

If lf'n on <tn, n = 1, 2, · · ·, are such that lf'n(An) = lf'n+l (An) = · · ·, 
An E:: <tn, we say that the lf'n are consistent. 

2° If the uniformly bounded u-additive set functions lf'n on <tn are con
sistent, hence lf'p(An) ~ IP(An) as p ~ oo whatever be n and An E:: <tn, 
then If' extends to a u-additive bounded set function on <too-

The assertion follows from what precedes. For, clearly, the total varia
tions ii>n on <tn form a nondecreasing bounded sequence on U <tn, in 
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the sense of 1°. Hence lim iPn is continuous at 0 on U <Xn and, ajortiori, 
so is lfJ· Now use Jordan decomposition and generalization in 4.1. 

4.4 Lebesgue-Stieltjes measures and distribution functions. Com
plete measures on the Borel field in a real line R = (- oo, + oo) did, and 
still do, play a prominent role. However, being set functions, they are 
not easy to handle with the tools of classical analysis, for methods of 
analysis were developed to deal primarily with finite point functions on 
R. It is, therefore, of the greatest methodological importance to es
tablish a link between the modern notion of measure and the classical 
notions. This will be done by showing that there is a class of point 
functions on R which can be placed in a one-to-one correspondence with 
a very wide class of measures. In this manner, investigations of meas
ures (and, thereafter, of integrals) will be reduced to investigations of 
the corresponding point functions and, thus, the familiar methods of 
analysis will apply. Whatever be these point functions they will be 
said to represent the corresponding measure. 

Among possible representations of measures there are two which are 
fundamental: "distribution functions" which represent measures as
signing finite values to finite intervals, to be called Lebesgue-Stieltjes 
(L.S.) measures, that we shall introduce now, and "characteristic func
tions" which represent the subclass of finite Lebesgue-Stieltjes measures 
required in connection with probability problems-that we shall in
troduce in Part II. Let <B be the Borel field in R and let J.l. be a Lebesgue
Stieltjes measure. The completion of <B for J.l. will be denoted by <B,., 
and called a Lebesgue-Stieltjes field in R, and its elements will be called 
!...ebesgue-Stieltjes sets in R. 

A function on R which is finite, nondecreasing, and continuous from 
the left is called a distribution junction (d.f.). Two d.f.'s will be said 
to be equivalent if they differ by some fixed but arbitrary constant. 
This notion of equivalence has the usual properties of equivalence-it 
is reflexive, transitive, and symmetric. Thus, the class of all d.f.'s 
splits into equivalence classes. As the correspondence theorem below 
(Lebesgue, Radon) shows, the one-to-one correspondence between L.S.
measures and d.f.'s is not a correspondence between L.S.-measures and 
individual d.f.'s but a correspondence between L.S.-measures and classes 
of equivalent d.f.'s, each class to be represented by one of its elements, 
arbitrarily chosen. 

Let F, with or without affixes, denote a d.f. and define its increment 
junction by 

F[a, b) = F(b) - F(a), -oo < a ~ b < +oo. 
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Since two equivalent d.f.'s have the same increment function and con
versely, it follows that every class of equivalent d.f.'s is characterized 
by its increment function. Moreover, the defining properties of d.f.'s 
are equivalent to the following: 

(i) 0 ~ F[a, b) < oo, (ii) F[a, b) --+ 0 as a j b, 
and 

" n-1 

(iii) L Ffak, bk) + L F[bk, ak+I) = F[ah bn) 
k=l k=l 

where a < b, a1 ~ b1 ~ a2 ~ · · · ~ an ~ On are arbitrary. 

A. CoRRESPONDENCE THEOREM. The relation 

JL[a, b).= F[a, b), -oo < a ~ b < +oo 

establishes a one-to-one correspondence between L.S.-measures JL and df.'s F 
defined up to an equivalence. 

Proof. Let CBr be the class of all intervals [a, b), -oo < a ~ b < + oo. 
G3r is closed under formation of finite intersections. The minimal field 
Cl30 over ffi1 is the class of all finite sums of elements of G3r and of intervals 
of the form ( -oo, a), [b + oo), and the minimal u-field over Cl30 is the 
Borel field CB. 

The proof of the correspondence theorem is summarized by the dia
gram below, where c represents an arbitrary constant: 

F + c on R ~ JL on G3r ~ JL on Cl3o ~ JL on Cl3 ~ JL on CBp. 

1° JL on G3p ==> F + c on R. For, JL on Cl3p determines its restric
tion to CBr and, from properties of L.S.-measures it follows that the 
relation 

F[a, b) = JL[a, b) 

determines an increment function with properties (i), (ii), and (iii) 
given above. 

2° JL on CB0 ==> JL on G3p. For, R being a denumerable sum of finite 
intervals, the measure JL on CBo is u-finite and the extension theorem 
applies followed by completion. 

3° JL on G31 ==> JL on Cl30 • It suffices to prove that if d = L Ik 
k 

E:CB0 , h E: CBr, then JL(d) is determined by the u-additivity requirement 
JL(d) = L JL(h), that is, if A can also be written as L 1';, where I'; 

k j 
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E:: illJ, then I: p.(l'j) = I: p.(h). Since p. on ill1 is additive and 
j k 

l'j = dl'j = I: hl'i> h = dh = I: l'jh, 
k j 

it follows that 

I: p.(l'j) = I: I: p.(hl'j) = I: I: p.(l'jh) = f: P.(h), 
j j k k j k 

and the assertion is proved. 

4° F + c ==} p. on ill1. We have to prove that the relation p.[a, b) = 
F[a, b) determines a measure p. on ill1, that is, if I = I: In, where I = 
[a, b) and In = [an, bn), then p.I = I; p.In. By interchanging, if neces
sary, the subscripts, we can assume that, for every n, 

It follows that 
n n n n-1 

L p.(Ik) = L F[ak, bk) ~ L F[ak> bk) + L F[bk> ak+I) 
k=l k=l k=l k=l 

= F[al> bn) ~ F[a, b) = p.(I), 

and, letting n ~ co, we get L p.(In) ~ p.(I). 
It remains for us to prove the reverse inequality. We exclude the 

trivial case a = b, select E > 0 such that E < b - a and set J• = [a, 
b - E}. Because of the continuity from the left, for every n there is an 

En > 0 such that F[an - En, an) < 2:. If In• = (an - En, bn), then, 

from J< C U In• it follows, by the Heine-Borellemma, that there is an 
no 

n0 finite such that JE C U Ik·· Let kr ~no be such that a E:: Ik1• 
k=l 

and, if bk1 < b, then let kz ~ no be such that bk1 E:: h 2• Continue in 
this manner until some bkm ~ b - e-the process necessarily stops for 
some m ~ n0 • Omitting intervals that were not selected and, if neces-

m 

sary, changing the subscripts, it follows that J< C U h' and 
k=l 

for 
k = 1, 2, • • · m - 1, am - Em < b - E ~ bm• 
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Therefore, 
m-1 

F[a, b - E) ~ F[al - Eh bm) = F[al - Eh bt) + }: F[bk, bk+t) 
m k=l 

~ I: F[ak - Ek, bk) ~ }: F[ak, bk) + E 
k=l k=l 

and, letting E ~ 0, 

F[a, b) ~ }: F[an, bn), that is, p.(l) ~ }: p.(ln), 

which completes the proof of the final assertion and, hence, of the cor
respondence theorem. 

Particular case. If F is defined, up to an additive constant, by 
F(x) = x, x E::: R, then the corresponding measure of an interval is its 
"length." The extension of "length" to a measure p. on <B and the 
completed measure p. on <B,. are called Lebesgue measure on <B or <B,., 
respectively, and <B,. will be called Lebesgue field. The Lebesgue meas
ure is at the root of the general potion of measure. 

REMARK. We can define a L.S.-measure on the Borel field ill-mini
mal u-field over the class of all intervals in R =[-co, +co] and, hence, 
on ffi,., by adjoining to a L.S.-measure on <B, arbitrary measures for the 
sets {-co) and I +co). 

Extension. The preceding definitions, proofs, and results, remain 
valid, word for word, if Borel lines are replaced by finite-dimensional 
Borel spaces RN = R1 X··· X RN, provided the following interpreta
tion of symbols is used: a, b, x, · · · are points in RN, say, a = (ah · · ·, 
aN); a < b(a ~b) means that ak < bk(ak ~ bk) fork = 1, · · ·, N. F 
on RN is a function with values F(a) = F(ah ···,aN) and increments 
F[a, b) are defined by 

F[a, b) = 11b-aF(a) = 11b1-a1 • • • 11bN-aN F(ah a2, · · · aN) 

where, for every k, 11bk-ak denotes the difference operator of step bk - ak 
acting on ak. For instance, if N = 2, 

11b-aF(a) = 11b1-a111b2-a2F(ah a2) = 11b1-a1{F(ah b2) - F(ah a2)} 

= F(bh b2) - F(ah b2) - F(bh a2) + F(ah a2) 

and, in particular, if F(ah a2) = a1a2 is the area of the rectangle with 
sides 0 to a1 and 0 to a2, then 11b-aF(a) = (bt - a1)(b2 - a2) is the 
area of the rectangle with sides a1 to b1 and a2 to b2. 

The defining properties of a d.f. F on RN become: 

-co < F < +co, F[a, b) = 11b-aF(a) ~ 0, F[a, b) ~ 0 

as a j b, that is, a1 j bh ···,aN j bN. 
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Product-d.j.'s and product-measures. A very important particular case 
is that of prodpct-d.j.'s: 

N 

F(xh · · ·, XN) =II Fk(xk), xk E:: Rk 
k=l 

where the Fk on. Rk are d.f.'s. Then F on RN is a d.f., for, 

N 

flb-aF(a) =II flbk-akFk(ak) ~ 0 
k=l 

and the other defining properties are clearly satisfied. 
Every d.f. Fk determines a measure P.k on the Borel field in Rk, by 

means of the relation P.k[ak, bk) = Fk[ak, bk), and the measure p. on the 
product Borel field determined by means of the relation JL[a, b) = F[a,1b), 

N 

is clearly the product-measure fi ILk· 
k=l 

Let now Fn be d.f.'s with Fn(+oo)- Fn(-oo) = 1, so that the meas
ures P.n are probabilities. Then, by the product-probability theorem 
or by the consistency theorem, 

B. A sequence Fn of d.j.'s corresponding to probabilities on Rn deter
mines a product-probability on the Borel field in the product space IT Rn. 

This result extends at once to any set {Ft, t E:: T}, of such d.f.'s. 

COMPLEMENTS AND DETAILS 

In one guise or another, and especially when they are indefinite integrals, 
signed measures on a fixed u-field are in constant use. in measure theory and 
probability theory. Many of the properties established in this book are but 
properties of such set functions. 

Notation. The measurable sets belong to a fixed u-field on which the set 
functions and limits of their sequences are defined. Unless otherwise stated 
and with or without affixes, A, B, · · · denote sets, J.1 denotes a measure, tp de
notes a signed measure. 

1. If tp is u-finite, then there are only countably many disjoint sets for which 
tp F 0 in every class. 

2. For every A there exists a B C A such that i"p(A) ~ 21 rp(B) 1. 
3. If tp1 ~ t/)2, then tp1+ ~ tp2+, tp1- 6; tp2-. If tp = t/)1 ± tp2, then 'tp± ~ 

t/)1± + t/)2±· 

1. Minimality of the jordan-Hahn decomposition. If tp = J.l+- p.-, then 
rp± ~ p.±. 

We say that A is a rp-nu/1 set, if rp = 0 on { AA', A' E:: a j. We say that A 
and B are tp-equivalent, if they coincide up to a !p-null set. We say that a non
empty set is a rp-atom, if every measurable subset of A is rp-equivalent either 
to 0 or to A. 
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5. The <P-null sets form a u-ring; the <P-null sets of <P and of ip are the same. 
The '~?-equivalence is an equivalence relation (reflexive, transitive, and sym

metric), and a splits into '~?-equivalence classes. 
6. Every r,o-null set and every measurable set consisting of one point is a 

<P-atom; ip(A) = I <P(AJ I for every <P-atom .!1. Atoms of <P and ip are the same; 
atoms of <P are atoms of <P+ and <P-, but the converse is not necessarily true. 

If .!1 is a cp-atom, then cp = 0 or cp(.!l) on .!1 n a; if cp is finite, then the converse 
is true. What if cp is u-finite? What about cp = oo except for 0? 

1. I£ J.L is finite, then n = L .111 + .11 where the .111 or .11 may be absent but, 
if present, then the .II; are J.L-atoms of positive measure and, for every B C .!1 
of positive measure, J.L takes every value c between 0 and J.LB for measurable sub
sets of B. This decomposition of n is determined up to J.L-null sets. Can J.L be 
replaced by cp? 

(There is only a countable number of J.L-equivalence classes of such .!1/s. 
Select representatives .II; of these classes and let B c .!1 = n - L .IIi. Select 

inductively sets Cn E: en such that J.LCn > sup J.LC - I for all c E: en, where 
n 

en is the class of all C C B - (C1 U C2 · · · U Cn-1) for which J.LC ~ c
J.L(C1 U C2 U · · · U Cn_,). Then J.LC = c for C = U Cn.) 

8. If cp is finitely additive, J.L is finite, and J.L.!ln --4 0 implies cp.!ln --4 0, thea 
<P is u-additive. 

We say that cp is <Po-continuous if cpo.!l = 0 implies cp.!l = 0. 
9. If J.L.!ln --4 0 implies cp.!ln --4 O(ip.!ln --4 0), then cp is J.L-continuous. If cp 

is finite, then the con verse is true. 
(Assume the contrary of the converse; there exist E > 0 and .!In such that 

1 
J.L.!ln < 2n and ip.!ln ~ E. Then J.LB = 0 and ipB ~ E forB= lim sup .!ln.) 

What if cp is u-finite? What about a consisting of all subsets of a denumer

ablespaceofpointsu.•a,andJ.L(wn} = ;n, cp(wn} = n. WhataboutJ.L replaced by 

<Po? 
10. If the J.Li are finite measures, then there exists a J.L such that all the J.Li 

are J.L-continuous. (Take J.L = L JJ.;/2iJ.L;n.) What about J.L/s replaced by cp/s? 
Let <B C a be a u-field such that the measurable subsets of elements of <B 

belong to CB. Let CB(cp) be the class of sets such that their subsets which belong 
to CB are <P-null. Call the sets of <33 "singular," and the sets of CB(cp) "regular." 
Call cp regular (singular) if every singular (regular) set is cp-null. 

Let <Pr = <Pr + - <Pr -, cp8 = cp8 + - cp8 -, defined by 

<Pr±(A) = sup cp±(B) for all regular B C .II, 

cp.±(A) = sup cp±(B) for all singular B C .!1. 

11. Decomposition theorem. <Pr is regular, <P• is singular, and cp = <Pr + <P•· 
If cp is finite, then the decomposition of cp into a regular and a singular part is 
unique. What if <Pis u-finite? What if a consists of all subsets of a noncount
able space, and <P(AJ equals the number of points of .!1? (Proceed as follows: 

(i) <B(cp) = CB(ip) = CB(<P+) n <B(cp-) is au-field. 
(ii) <Pr(<P.) is a regular (singular) signed measure. 
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(iii) Every A contains disjoint Ar regular and A, singular such that cpr±(A) 
= cp±(Ar), cp.±(A) = cp±(A.). 

(iv) If A= A'r +A', with A'r regular and A', singular, then we can take 
Ar = A'r and As =A' •• 

(v) If cp is finite, every A can be so decomposed.) 
12. We can take for singular sets: 

(i) the J.L-null sets-regular (singular) becomes J.L-Continuous (J.L-discon
tinuous); 

(ii) the countable measurable sets-regular (singular) becomes continuous 
(purely discontinuous); 

(iii) the countable sums of atoms-regular (singular) becomes nonatomic 
(atomic). 

In each case investigate the regular and singular parts. 
13. Intermediate-value theorem (compare with continuous function on a con

nected set). If A is nonatomic and An j A with cp.dn finite, then cp takes 
every value between -cp-A and +cp+A for measurable subsets in A. (See 7.) 
What if a consists of all sets in a noncountable space, cp(A) = 0 or oo according 
as A is countable or not? 

In what follows, the cpn are IT-additive but, unless otherwise stated, lim 'Pn 
is not assumed to be IT-additive. 

14. If cpn ---+ cp IT-additive, then cp ± ~ lim inf cpn±· If, moreover, cpn j or 
cpn l, then cp± = lim cpn±• 

15. If cpn j ( l) and cp1 > -oo( < +oo), then cpn ---+ cpu-additive. 
16. If cpn ---+ cp uniformly on a and cp > -oo or cp < +oo, then cp is IT-additive. 
17. To a measure space (Q, a, JL) associate a complete metric space (~, d) 

as follows: ~ is the space of all sets A, B of finite measure, dis a metric defined 
by d(A, B) = JL(ABc +.deB). Prove that the metric space is complete. 

(If An is a mutually convergent sequence in~. then the sequence IAn mutually 
converges in measure and hence converges in measure-see 6.3.) 

If v on a is a finite J.L-continuous measure, then v is defined and continuous 
on(~, d). 

We say that the cpn are uniformly JL-Continuous if J.!dm ---+ 0 implies cpnAm ---+ 0 
uniformly in n, as m ---+ oo. 

18. Let JL be IT-finite. If the finite cpn are J.L-Continuous and lim cpn exists and is 
finite, then the cpn are uniformly J.L-continuous and lim cpn = cp is J.L-Coptinuous 

and 0'-additive. (For every E > 0, set Ak = n n [A €. ~; I cpmA- cpnA I 
m=k n=k 

~ ~] . By (17), every Ak is closed. By Baire's category theorem, there exists 

ko, do and Ao €. ~ such that [A€. ~; d(A, Ao) < do] C Ako· Let 0 < Bo < do 
such that I cpnA I < E whenever J.!d < Bo and n ~ ko. If JLA < Bo, then 
d(Ao - A, Ao) < do, d(Ao U A, Ao) < do, and I cpnA I ~ I cpk0A I + 
I cpn(Ao U A) - cpko(Ao U A) I + I cpn(Ao - A) - cpk0(Ao - A) 1.) 

19. If finite cpn ---+ cp finite, then cp is IT-additive. (If I cpn I ~ en, set 

JLA = L 2___!___ I cpnA I and apply 18.) 
ncn 



Chapter II 

MEASURABLE FUNCTIONS AND INTEGRATION 

§ 5. MEASURABLE FUNCTIONS 

5.1 Numbers. Spaces built with numbers are prototypes of all 
spaces, and functions whose values are numbers are prototypes of all 
functions. 

By a number x we mean either a usual real number-finite number
or one of the symbols +oo and -co-infinite numbers. These symbols 
are defined by the following properties: 

X 

±oo = (±oo) +X= X+ (±oo), -- = 0 if -oo <X< +oo, 
±oo 

{
±oo if 0 < X ~ +oo 

x(±oo) = (±oo)x = 0 if x = 0 

=t=oo if -oo ~ x < 0. 

The expression +oo - oo is meaningless, so that, when speaking of a 
"sum" of two numbers, we assume that, if one of them is =t=oo, the other 
one is not ±oo; then the sum exists. 

The reason for the introduction of infinite numbers lies in the fact 
that, then, sup x1 and inf x1 = - sup ( -x1), where t varies over an arbi
trary set T, always exist (but may be infinite). Moreover, if inclusion, 
union, and intersection of numbers are defined by x ~ y, sup x1 and 
inf x1 respectively, then these operations have properties of the corre
sponding set operations; in particular, limits of monotone sequences of 
numbers always exist, but may be infinite. 
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If, as n ~ oo, the limit x of a sequence Xn of numbers exists, we write 
x = lim Xn or Xn ~ x and say that Xn converges to x; if xis infinite, say, 
+oo, one also says that Xn diverges to +oo. The Cauchy mutual conver
gence criterion is valid only for finite limits: Xn converges to some finite x 
if, and only if, Xm - Xn ~ 0 (as m, n ~ oo) or, equivalently, if Xn+v -

Xn ~ 0 uniformly in v. On the other hand, the Bolzano-Weierstrass 
lemma remains valid without the usual restriction of boundedness: 
every sequence of numbers is compact, that is, contains a convergent sub
sequence, but if the sequence is not bounded then the limits may be 
infinite. 

The set of all finite numbers is a real lineR = ( -oo, +oo) and the 
set of all numbers is an extended real line R = [ -oo, +ooJ. The basic 
class of sets in R is the class of intervals; there are four types of finite 
intervals of respective form: 

[a, b): set of all points x such that a ;;;; x < b; 

(a, b]: set of all points x such that a < x ;;;; b; 

(a, b): set of all points x such that a < x < b; 

[a, b]: set of all points x such that a ;;;; x ;;;; b. 

The minimal IT-field over the class of all intervals in R is the Borel field 
in R and its elements are Borel sets in R. The Borel field in R coincides 
with the minimal IT-field over the subclass of all intervals of one of the 
foregoing four types, since countable operations performed upon ele
ments of one of these subclasses yield any element of the other sub-

classes; for example, (a, b) = u [a + ~' b) ' [a, b] = n [a, b + ~) ' 
etc. Similarly, the Borel field in R is the minimal IT-field over the sub
class of all infinite intervals of the form (-oo, x), -oo ;;;; x ;;;; +oo, since 
any finite interval [a, b) is obtainable as a difference .6-b-a( -oo, a) = 
( -oo, b) - ( -oo, a). The Borel field in R can be defined similarly by 
means of any of the foregoing types where -oo ;;;; a ;;;; b ;;;; +oo, or by 
means of the intervals [- oo, x), - oo ;;;; x ;;;; +oo; but, frequently, the 
most convenient way is to take the minimal IT-field over the class formed 
by the Borel field in R and the two sets {- oo}, { +oo}. 

Extension. The preceding notions extend at once to finite-dimensional 
real spaces. The set of all ordered N-uples x = (xb · · ·, XN) of finite 
numbers is the N-dimensional real space RN or, equivalently, the prod

N 

uct space IT R. of N real lines R. = (- oo < x. < + oo). If every R. is 
•=1 
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replaced by R.. = [-oo ~ x. ~ +oo], then we have the extended N-di
mensional real space R.N. If a, b ~ RN, then a ~ b means that a. ~ b. 
for v = 1, 2, · · ·, N, and, similarly, for a < b, a = b. 

An interval, say [a, b), will also be written more explicitly as [al> a2, 

···,aN;bl>b2, ···,bN),and 

[a, b) = ~b-a( -oo, a) = ~b,-a,~b2-a2 ... 

where ~b.-a, is the difference operator of step b. - a. acting on a •. 
For example, if N = 2, then 

[al> a2; bl> b2) = ~b,-a,~b2-a2 ( -oo, -oo; al> a2) 

= ~b,-a,{(-oo, -oo; al> b2)- (-oo, -oo; al> a2)J 
( -oo, -oo; bl> b2) - ( -oo, -oo; al> b2) - (-co, -oo; 

bl> a2) + ( -oo, -co; al> a2). 

With this interpretation, the foregoing definitions of types of intervals 
and, thereafter, of Borel fields, remain the same. 

5.2 Numerical functions. A numerical junction X on a space Q is a 
function on Q to R, defined by assigning to every point w ~ Q a single 
number x = X(w), the value of X at w. If infinite values are excluded, 
X is a .finite junction or, equivalently, a function on Q to R. Q is called 
the domain of X and R (or R) is called the range space of X. The func
tions x+ = Xllx?. o1 and x- = - Xf[x <OJ will be called the positive 
part and the negative part of X, respectively, and we have 

x = x+ - x-, I x 1 = x+ + x-. 
Unless otherwise stated, all functions will be numerical functions and, 
in general, will be denoted by X, Y, · · ·, with or without affixes. 

If definitions or relations between values of given functions hold for 
every w belonging to a set A C !2, we say that these definitions or rela
tions hold on A and drop "on A" if A = !2. For example, 

I X I < co means that X is finite; 
X~ 0 on A means that X(w) ~ 0 for every w ~A; 
X= inf Xn means that X(w) = inf Xn(w) for every w ~ !2; 
Xn ~ X on A means that Xn(w) ~ X(w) for every w ~A, etc. 

Conversely, the set of all w ~ Q on which definitions or relations 
hold is denoted by [w; • • ·] or, if there is no confusion possible, by [ · · ·] 
where · · · stand for the definitions or relations. For example, 
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[X] is the set on which X is defined; 
[X~ Y] is the set of all wE: n for which X(w) ~ Y(w); 
[X E: S], where S c R, is the set of all w E: n for which the values 

X(w) belong to the setS. 

The set [X= x] is called the inverse image of the set {x} which con
sists of x only or, simply, of x. Since X is single-valued, the inverse 
images of distinct numbers x are disjoint, and the partition of n into 
inverse images of all x E: R is called the partition of the domain in
duced by X; we sometimes write X= L: xlrx=:z:l where J[X=:z:l is the in-

:z:~ir 

dicator of [X= x]. In particular, if X is countably valued, that is, takes 
only a countable number of values x;, then, and only then, 

More generally, the set [X E: S] is called inverse image of S and is 
also denoted by x-1(8). The symbol x-t, which can be considered 
as representing a mapping of sets in R onto sets in n, is called the in
verse function of X. Since inverse images of disjoint sets of R are dis
joint, it follows easily that 

x-l and set operations commute: 

x-1(S - S') = x-1(S) - x-1(S'), x-~cu Se) = U x-1(Se), 

x-1(n Se) = n x-1(Se). 

Similarly, x-1(e) or the inverse image of e, where e is a class of sets 
in R, is the class of all inverse images of elements of e. Since set opera
tions commute with inverse functions, it follows that 

a. The inverse image of a u-.field is a u-.field, the inverse image of the 
minimal u-.field over a class is the minimal u-.field over the inverse image 
of the class, the class of all sets whose inverse images belong to a u-.field is a 
u-.field. 

The foregoing definitions and properties extend at once to functions 
X= (Xh · · ·, XN) on n to an N-dimensional real space R_N (or RN) 
or, equivalently, to N-uples of numerical functions xl, ... , XN. Classi
cal analysis is concerned with functions from a real line to a real line 
or, more generally, from a finite-dimensional real space RN to a finite
dimensional real space RN. Still more generally, let X be a function 
on n to R_N and let g be a function on R_N to R_N'. The function of June-
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lion gX defined by (gX)(w) = g(X(w)) is a function on Q to R_N'. Clearly, 
its inverse function (gX)-1 is a mapping of sets S' in R_N' onto sets in 
Q such that 

or, in a condensed form, 

5.3 Measurable functions. Classical analysis is concerned primarily 
with continuous functions on R to R' or, more generally, on RN to 
RN'. However, passages to the limit, which play such a basic role in 
analysis, do not, in general, preserve continuity (and also they cause 
the appearance of =Foo). The essential achievement of modern analy
sis, due to Borel, Baire, and Lebesgue, is the introduction of a wider 
class of functions which is closed under the "usual" operations of analy
sis: arithmetic operations and formation of infima, suprema, and limits 
of sequences. Those are the functions we intend to define now. 

In the domain Q of our functions we select a u-field <l of sets, to be 
called <l-sets or, if there is no confusion possible, measurable sets; the 
doublet (Q, <l) is called a measurable space. In the range space R of 
our functions we select the u-field iB of Borel sets-the Borel field in R; 
the doublet (R, ill) is an (extended) Bore/line. Thus, our functions are 
defined on a measurable space (Q, <l) to the Borel line (R, ffi). More 
generally, if the range space is R_N, then we select the Borel field iBN, 
and the doublet (RN, ffiN) is an extended Borel space; then the functions 
are defined on a measurable space (Q, <l) to the Borel space (RN, ffiN). 

A countably valued function X= I: x;IA; where the sets A; are 
measurable is called an elementary measPrable function or, simply, an 
elementary junction; if the number of distir1ct values of X is finite, then 
X is also called a simple junction. 

(C) Limits of convergent sequences of simple junctions arc called meas
urable junctions. 

This is a constructive definition and, because of that, will play an es
sential role in the constructive definition of integrals. However, gen
eral properties of measurable functions are easier to discover and to 
prove when using the descriptive definition which follows. 

(D) Functions such that inverse images of all Borel sets arc measurable 
sets arc called measurable junctions. 

Yet this definition is not the m:ost economical one, since 
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(D') In (D), it suffices to require measurability of inverse images of 
elements of any fixed class e such that the minimal rr-./ield over e is the 
Bore! field. 

For example, we can take e to be the class of all intervals, or the class 
of all intervals [- oo, x], etc. 

The proof is immediate. Since a mapping x-1 preserves all sets 
operations and the measurable sets form a rr-field, it follows that the 
class of all sets whose inverse images are measurable is a rr-field. There
fore, if, according to (D'), it contains e, then it contains the minimal 
rr-field over e which, by assumption, is the Borel field. 

Similarly, the constructive definition (C) is not the most economical 
one as we shall find in proving the basic theorem below. 

A. MEASURABILITY THEOREM. The constructive and descriptive defi
nitions are equivalent, and the class of measurable junctions is closed under 
the usual operations of analysis. 

Proof. 1° Let Xn be functions measurable (D), that is, measur
able according to (D) or, equivalently, (D'). Then all sets 

[inf Xn < x] = U [Xn < x], [-Xn < x] = [Xn > -x] 

are measurable and, hence, the functions 

sup Xn = - inf ( -Xn), lim inf Xn = supn (inf Xk), 
kif;n 

lim sup Xn = - lim inf (- Xn) 

are measurable (D). Thus, the class of functions measurable (D) is 
closed under formation of infima, suprema, and limits. But every simple 
function X = L: x31 A; is measurable (D), since all sets [X ;;;:; x] = 
L: d; are measurable. Therefore, limits of convergent sequences of 

:X:j~Z 

simple functions are measurable (D); in particular, functions measur
able (C) are measurable (D). 

2° Conversely, let X be measurable (D) so that the functions 

n2" k-1 
Xn = -nl{x<-n] + L: -2n f[k-l:SX<!.] + nl[x!f;n)> 

-n2"+1 2" - 2" 

n = 1, 2, · · · 
are simple. Since 

and 

1 I Xn(w) - X(w) I<- for I X(w) I < n 2n 

Xn(w) = ±n for X(w) = ±oo, 
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it follows that Xn ---t X and this, together with what prece9.es, com
pletes the proof of the equivalence of the two definitions of measura
bility. 

We observe that if X is nonnegative, then the foregoing functions 
Xn become 

n2nk-1 
Xn = I: -2n f[k-1 ;;;x <~] + n][X'?f n] 

k=l p p 

and we have 0 ~ Xn j X. Also, if 

+oo k- 1 
X'n = L - 2n f[k-15X<~] + (-co)J[X=-oo] + (+co)J[X=+ooJ' 

k=- oo 2n - 2n 

1 
then I X' n - X I < 2n on [j X I < co] and X' n = X on [I X I = co], so 

that X'n ---t X uniformly. 
3° It remains to prove closure under the arithmetic operations. 

Using definition (C) and the fact that arithmetic operations commute 
with passages to the limit by convergent sequences, it suffices to show 
that the class of simple functions is closed under the arithmetic opera
tions. But much more is true, for if g on R_N is an arbitrary function 
and xk = I: xkJAkp k = 1, .. ·, N, are simple (elementary) functions, 

i 
then the function of functions 

g(Xh · · ·, XN) = L:g(xlf,, · · ·, xNi)IAli, · · · IAN;N 

is simple (elementary). This completes the proof. 
According to this proof we have new equivalent constructive definitions 

of measurable functions that we state now. 

(C') .d nonnegative junction is measurable if it is the limit of a nonde
creasing sequence of nonnegative simple junctions. .d junction X is meas
urable if its positive and negative parts x+ and x- are measurable. 

(C") .d junction is measurable if it is the limit of a uniformly conver
gent sequence of elementary functions. In particular, every bounded measur
able junction is limit of a uniformly convergent sequence of simple junctions. 

Definition (C') will play a central role in the theory of integration. 
Closure under the arithmetic operations is a very particular case of 

a . .d Baire junction of measurable junctions is measurable. 

Proof. Let us recall a (constructive) definition of Baire functions 
(we consider only finite-dimensional Borel spaces). Baire junctions are 
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elements of the smallest class closed under passages to the limit con
taining all continuous functions. Therefore, since the class of measur
able functions is closed under passages to the limit, it suffices to prove 
that 

A continuous function of measurable junctions is measurable. 

Thus, let g on R.N be continuous; that is, for every point (xh · · ·, XN) 
E: JlN, 

Let Xk, k = 1, 2, · · ·, N, be measurable and let Xnk be sequences of 
simple functions such that Xnk - Xk for every k. We found (in 3°) 
that the functions g(Xnh · · ·, XnN)(that we assumed tacitly to have 
meaning) are measurable and hence, by continuity and closure under 
passages to the limit, the function 

g(Xh · · ·, XN) = limg(Xnh · · ·, XnN) 

is measurable. This completes the proof. 

All the foregoing definitions and properties extend at once, and word 
for word, to functions on a measurable space to any finite-dimensional 
Borel space, provided we replace R by JlN and leave out the operations 
of multiplication and division that we do not define (at least here) for 
such functions. For example, 

functions such that inverse images of Borel sets in their range space are 
measurable sets in their domain are called measurable functions. 

This extension is useful but, in fact, brings nothing new, for 

b. A Junction X = (Xh · · ·, XN) is measurable if, and only if, its 
components Xh · · ·, XN are measurable. 

In other words such a function is merely an N-uple of numerical meas
urable functions. 

Proof. If X = (Xh · · ·, XN) is measurable, then, for every k ~ N, 
the sets 

= x-1[-co, • ··,-co; +co, • ··,+co, Xk, +co, • ··,+co) 

are measurable, so that Xk is measurable. 
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Conversely, if all Xk are measurable, then the sets 

N 

[X~ x] = [Xl ~ X!J •• ·, XN ~ XN] = n [Xk ~ Xk] 
k=l 

are measurable, so that X= (Xh · · ·, XN) is measurable. 
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We give another (descriptive) definition of Baire functions. With 
this definition, it is customary to call these functions Borel functions. 
A measurable function on a finite-dimensional Borel space to a finite
dimensional Borel space is called a Bore/junction. In other words, g on 
R_N to R_N' is a Borel function if, and only if, the inverse images of Borel 
sets S' in R_N' are Borel sets S in R_N. The proof of a in this more gen
eral case is then immediate and we have 

a'. A Borel function of a measurable function is measurable. 

For, if X is a measurable function (not necessarily numerical) and g is 
a Borel function on the range space of X, then, for every Borel set S' 
in the range space of g, the set (gX)-1(S') = x-1(g-1(S')) is measura
ble and, hence, gX is a measurable function. 

§ 6. MEASURE AND CONVERGENCES 

6.1 Definitions and general properties. The notions of "measur
able" sets and "measurable" functions are two out of a triplet of notions, 
due essentially to Lebesgue, the third being the notion of "measure" 
which gave its name to the two others, and which we shall introduce 
now. 

A function q; on au-field a is said to be u-additive if, for every counta
ble disjoint class {A;} c a, 

q;(L: A;) = L: q;(A;). 

To avoid trivialities, it is assumed that at least one value of q;, say, 
q;(Ao), Ao E.: a, is finite. Since 

q;(Ao + 0) = q;(Ao) = q;(Ao) + q;(0), 

this assumption is equivalent to q;(0) = 0. To avoid meaningless ex
pressions of the form +oo -oo, it is assumed that at least one of the 
possible values -oo or +oo is excluded. 

q; is said to be finite if its values are finite, and it is said to be u-finite 
if the space in which a is defined can be partitioned into a countable 
number of sets in a for which the values of q; are finite. 
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A measure p. on a cr-field a is a nonnegative and cr-additive function. 
In other words, p. is defined by the three following properties: 

(i) p.(L Aj) = :E p.(Aj) for every countable disjoint class {Aj) c a; 
(ii) p.(A) ~ 0 for every d ~ a; 

(iii) p.(0) = 0. 

The value p.(d) of p. at A is called the measure of A and, if there is no 
confusion possible, we drop the bracket following the symbol p.. 

A measure space (n, a, p.) is formed by the space n, the cr-field a of 
measurable sets in this space, and the measure p. defined on this cr-field. 
Unless otherwise stated all sets under consideration will be measurable 
sets in our measure space. A set of measure 0 is said to be a p.-null set 
or, if there is no confusion possible, a null set, and definitions or relations 
valid outside a p.-null set are said to be valid almost everywhere (a.e.). 
The following properties of the measure p. are immediate: 

a. p. is nondecreasing, and p. is bounded if the space n is of finite measure. 

This follows from 

p.B = p.d + p.(B - A) ~ p.d for B :::> d. 

b. p. is sub cr-additive: P.U dj ~ :E p.dj. 

This follows from 

P.U Aj = p.(A1 + d{A2 +· · ·) 
= p.d1 + p.A1cA2 +· · · ~ p.A1 + p.A2 +· · ·. 

A. SEQUENCES THEOREM. If An j d, then p.dn j p.d and, in general, 

lim inf p.dn ~ p.(lim inf An). 

If p. is finite, then, moreover, 

An~ A implies p.An ~ p.d, lim sup p.An ~ p.(lim sup An), 

An ~ d implies p.An ~ p.A. 

Proof. If Ani A, then, by cr-additivity, 

p.d = p.A1 + p.(A2- d1) +· · · 
= lim {p.dl + p.(d2 - A1) + · · · + p.(An - dn-1)) 
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If An is an arbitrary sequence, then, since Bn = n Ak j lim inf An and 
k!l;n 

J.U1n ~ p.Bn, it follows that 

lim inf p.An ~ lim p.Bn = p.(lim inf An), 

and the first assertion is proved. 
Let now J.L be finite and use the proved assertion. If An l A, then 

A1 - Ani A1 - A and, hence, 

so that p.An l p.A. If An is an arbitrary sequence, then p.fJ - lim sup p.An 
= lim inf p.Anc ~ J.L(lim inf An°) = p.Q - J.LClim sup An) and, hence, 
lim sup p.An ~ J.L(lim sup An). Finally, if An -+ A, then the two in
equalities proved above yield J.LAn -+ J.LA, and the proof is complete. 

The introduction of measures yields new types of convergence founded 
upon the notion of measure and unknown in classical analysis. Before 
we introduce them, we recall the classical types of convergence; unless 
otherwise stated, we consider sequences Xn of measurable functions on 
a fixed measure space (fJ, a, J.L) and limits taken as n -+ oo, 

If Xn converges to X on A according to a definition "c" of conver-

gence, we say that Xn converges "c" on A and write Xn ~ X on A. 
The Cauchy convergence criterion leads to the corresponding notion of 
mutual convergence: if Xn+• - Xn converges "c" to 0 on A uniformly 
in v (or Xm - Xn converges "c" to 0 on A as m, n -+ oo), we say that 

c 
Xn mutually conuerges "c" on A and write Xn+v - Xn -+ 0 (or Xm-
Xn ~ 0). In defining mutual convergence, we naturally must assume 
that the differences exist, that is, meaningless expressions +oo -oo do 
not occur. We drop "on A" if A = fJ and drop "c" if the convergence 
is ordinary pointwise convergence. 

We recall that Xn -+ X on A means that, for every w E:: A and every 
e > 0, there is an integer n •. w such that, for n ~ n •. w, 

if X(w) is finite, then I X(w) - Xn(w) I < e, 

1 
if X(w) = -oo, then Xn(w) < 

E 

1 
if X(w) = +oo, then Xn(w) > + -· 

E 
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If n.,., = n. is independent of w E: A, then the convergence is uni

form and, according to the preceding conventions, we write Xn ~ X 
on A. According to the closure property of measurable functions, if a 
sequence of measurable functions Xn ~ X, then X is measurable. 
According to the Cauchy criterion, if Xn are finite, then 

Xn ~ X finite if, and only if, Xm - Xn ~ 0 or, equivalently 
Xn+v- Xn ~ 0 

Xn ~ X finite if, and only if, Xm - Xn ~ 0 or, equivalently, 
u 

Xn+v- Xn ~ 0. 

6.2 Convergence almost everywhere. A sequence Xn is said to 

converge a.e. to X, and we write Xn ~ X, if Xn ~ X outside a 
• • a.e. 

null set; It mutually converges a.e., and we wr1te Xm - Xn ~ 0 or 

Xn+v - Xn ~~ 0, if it mutually converges outside a null set. It 
follows, by the Cauchy criterion and the fact that a countable union 
of null sets is a null set, that 

a. A sequence of a.e.jinitefunctions converges a.e. to an a.e.jinitefunc
tion if, and only if, the sequence mutually converges a.e. 

a.e. . 
Let Xn ~ X. Smce Xn are taken to be measurable, X is a.e. 

measurable, that is, X is the a.e. limit of a sequence of simple functions. 

Also, if X' is such that Xn ~ X', then X = X' a.e., for X can differ 
from X' only on the nuH set on which Xn converges neither to X nor 
to X'. Thus, the limit of the sequence Xn is a.e. determined and 
a.e. measurable. Moreover, if every Xn is modified arbitrarily on a 
null set Nn, then the whole sequence is modified at most on the null 
set U Nn and, therefore, the so modified sequence still converges a.e. 
to X. 

These considerations lead to the introduction of the notion of "equiv
alent" functions: X and X' are equivalent if X= X' a.e. Since the no
tion has the usual properties of an equivalence-it is reflexive, transi
tive, and symmetric-it follows that the class of all functions on our 
measure space splits into equivalence classes, and the discussion which 
precedes can be summarized as follows. 

b. Convergence a.e. is a type of convergence of equivalence classes to an 
equivalence class. 

In other words, as long as we are concerned with convergence a.e. of 
sequences of functions, these functions as well as the limit functions are 
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to be considered as defined up to an equivalence. In particular, we 
can replace an a.e. finite and a.e. measurable function by a finite and 
measurable function, and conversely, without destroying convergence 
a.e. 

Let us investigate in more detail the set on which a given sequence 
converges. To simplify, we restrict ourselves to the most important 
case of finite measurable functions, the study of the general case being 
similar. By definition of ordinary convergence, the set of convergence 
[Xn ---7 X] of finite Xn to a finite measurable X is the set of all points 
w E:: Q at which, for every E > 0, I X(w) - Xn(w) I < E for n ~ n,,w 
sufficiently large. Since, moreover, the requirement "for every E > 0" 
is equivalent to "for every term of a sequence Ek J 0 as k ---7 oo," say, 

1 
the sequence k, we have 

[Xn ---7 X] = n u n [I Xn+v - X I < E] 
E>o n v 

= n u n [I Xn+v - X I < ~] ' 
k n v k 

so that the set [Xn ---7 X] is measurable. Similarly for the set of mut~Jal 
convergence, since the set 

[Xn+v - Xn ---7 OJ = n u n [\ Xn+•· - Xn I < e] 
•>o n 

is measurable. Thus 

c. The sets of convergence (to a finite measurable junction) and of mu
tual convergence of a sequence of finite measurable functions are measurable. 

In other words, to every sequence we can assign a "measure of con
vergence" and, the sets of divergence [Xn -++ X] and [Xn+v - Xn -++ OJ 
being complements of those of convergence and, hence, measurable, to 
every sequence we can assign a "measure of divergence." In particu
lar, the definitions of a.e. convergence of a sequence Xn mean that 

JL[Xn -++ X] = 0 or JL[Xn+v - Xn -++ 0] = 0. 

Upon applying repeatedly the sequences theorem to the above-defined 
sets, we obtain the following 
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A. CoNVERGENCE A.E. CRITERION. Let X, Xn be finite measurable 
functions. 

Xn ~ X if, and only if,jor every E > 0, 

JL n u [I Xn+• - X I ;:;:; E] = 0 
n • 

and, if JL is finite, this criterion becomes 

• 
a.e. 

Xn+• - Xn ~ 0 if, and only if,jor every E > 0, 

JL n u [I Xn+• - X,. I ;:;:; E] = 0 
n • 

and, if JL is finite, this criterion becomes 

• 
6.3 Convergence in measure. A sequence Xn of finite measurable 

functions is said to converge in measure to a measurable function X 
and we write Xn ~ X if, for every E > 0, 

The limit function X is then necessarily a.e. finite, since 

JL[I XI= co]= JL[I Xn- XI= co]~ JL[I Xn- XI;:;:; E] ~ 0. 

Similarly, Xn+• - Xn ~ 0 if, for every E > 0, 

JL[I Xn+•- Xn I ;:;:; E] ~ 0 (uniformly in v). 

All considerations about equivalence classes in the case of convergence 

a.e. remain valid for convergence in measure. In particular, if Xn ~ X 
and Xn ~ X', then X and X' are equivalent, for 

JL[I X - X' I ;:;:; E] ~ JL [I X - Xn I ;:;:; ~] + JL [I Xn - X' I ;:;:; ~] ~ 0 

and, hence, 
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We compare now convergence in measure and convergence a.e. 

A. CoMPARISON OF CONVERGENCES THEOREM. Let Xn be a sequence of 
finite measurable junctions. 

If Xn converges or mutually converges in measure, then there is a sub
sequence Xnk which converges in measure and a.e. to the same limit junc
tion. If J.l. is finite, then convergence a.e. to an a.e.finite junction implies 
convergence in measure to the same limit junction. 

Proof. The second assertion is an immediate consequence of the 
a.e. convergence criterion, since J.1. finite and X,. ~ X imply that, 
for every e > 0, 

J.l.[l Xn+l - X I ~ e] ~ J.l. U [I Xn+v - X I ~ E] ~ 0. 

As for the first assertion, let Xn+v - Xn ~ 0. Then, for every inte
ger k there is an integer n(k) such that, for n ~ n(k) and all "' 

Let n1 = n(1), n2 =max (n1 + 1, n(2)), na =max (n2 + 1,n (3)), etc., 
so that n1 < n2 < na < · · · ~ oo. Let X'k = Xnk and 

so that 

1 
Thus, for a given e > 0, n large enough so that 2,_1 < e, and all "' we 

have on Bnc 
1 

I X'n+v- X',. I ~ L I X'k+l- X'k I < --1 <E. k<?;n 2n-
Therefore, 

J.l. n u [I X'n+v- X'n I ~ e] ~ J.l. u [I X'n+v- X'n I ~ e] 
n v 

a.e. 
and, hence, by the convergence a.e. criterion, X' n+v - X' n ----7 0. 
Thus, by 6.2a, there is a finite X' such that X' n ~ X'. Since on 
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Bnc we have I X'n-1-v - X'n I < E for all v it follows, upon letting v ---? oo, 
that on Bn c we also have I X' - X' n I < E outside perhaps a null subset. 
Therefore, upon taking complements, 

1 
.u[l X' - X' n I ~ E] ~ .uBn < 2n-l ---? 0, 

so that X'n ~ X'. A similar argument shows that Xn ~ X implies 
a.e. • 

X'n ~ X. Th1s completes the proof. 

CoRoLLARY. Convergence and mutual convergence in measure imply one 
another. 

I' 
Proof. If Xn ---? X, then, for every E > 0 and all v, 

.u[l Xn+v - Xn I ~ E] ~ .U [I Xn+v - X I ~ ~] 

+ .U [I X - Xn I ~ ~] ---? 0, 

so that Xn+v - Xn ~ 0. Conversely, if Xn+v - Xn ~ 0, then, upon 
taking the subsequence Xnk of the foregoing theorem, we obtain, for 
every E > 0, by letting nk, n ---7 oo, 

so that Xn ~ X, and the corollary is proved. 

§ 7. INTEGRATION 

The concepts of u-field, measure, and measurable function are born 
from the efforts, made in the nineteenth and the beginning of the twen
tieth centuries, to extend the concept of integration to wider and wider 
classes of functions. The decisive extension was accomplished by Le
besgue, after Borel opened the way. Lebesgue worked with the special 
"Lebesgue" measure. Radon applied the same approach working with 
Lebesgue-Stieltjes measures. Finally, Frechet, still using Lebesgue's 
approach, got rid of the restrictions on the measure space on which 
the numerical functions to be integrated were defined. 

Lebesgue had two equivalent definitions of the integral, a descrip
tive one and a constructive one. We shall use a constructive defini-
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tion of the integral of which there are many variants, but the basic 
ideas are always the same and, in general, the integral is first defined 
for simple functions. Although infinite values are not excluded, never
theless, the expression +oo -oo, being meaningless, must be avoided. 
Therefore, it behooves us to start with integrals of functions of constant 
sign, say, nonnegative ones. Furthermore, the central property of the 
integral, called "the monotone convergence theorem," says that for a 
nondecreasing sequence of nonnegative functions integration and pas
sage to the limit can be interchanged. Therefore, we give here the ap
proach aimed directly at this theorem, an approach which requires a 
minimum of notions and of effort. The reader will recognize in the 
central definition 2° below, a particular form of the monotone conver
gence theorem. 

7.1 Integrals. We consider a fixed measure space (0, G., p.); A, B, 
· · ·, and X, Y, · · ·, with or without affixes, will denote measurable 
sets and (numerical) measurable functions, respectively. 

DEFINITIONS 1° The integral on 0 of a nonnegative simple junction 

m 

X= L: XjlA; is defined by 
i=l 

r x dp. = I: XjJ.Ldj. 
Jo i=l 

2° The integral on 0 of a nonnegative measurable junction X is de
fined by 

i X dp. = lim L Xn dp., 

where Xn is a nondecreasing sequence of nonnegative simple functions 
which converges to X. 

3 ° The integral on 0 of a measurable junction X is defined by 

LXdp. = f x+dp.- f x-dp., 
Jn Jn 

where x+ = XI[XS;O] and x- = -XIIX<O] are the positive and nega
tive parts of X respectively, provided the defining difference exists, 
that is, provided at least one of the terms of this difference is finite. 

If LX dp. is finite, that is, if both of the terms of the difference are 

finite, X is said to be integrable on 0. 
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Finally, if X is a.e. determined and measurable, that is, there exists 
a measurable function X' such that X = X' outside a .u-null set, 

we set J X = J X', provided the right-hand side exists. 

Upon replacing, in the preceding definitions, Q by a measurable set 
A (hence replacing, in 1°, every Ai = Qdi by AAj), they become defi-

nitions of the integral of X on A, to be denoted by LX d,u. Since, for 
m 

X= I: XjlA; ~ 0, we have 
i=l 

it follows immediately that 

if LX d.u exists so does i X d.u, and i X d.u = L XIA d,u. 

To simplify the writing, we drop d,u and Q in the foregoing symbols, 

unless confusion is possible; thus, the symbols LX d,u and LX d.u 

will be replaced by J X and LX, respectively. 

justification and additivity. We have to justify the three definitions 
1°, 2°, 3°, that is, we have to show that the concepts as defined exist 
and are uniquely determined. In the course of the justification we 
shall have use for the elementary properties below; the first one Is 
called the additivity property of the operation of integration. 

A. ELEMENTARY PROPERTIES. Let f x,f Y,f X+ J y exist. 

I Linearity: 

II Order-preservation: 

X ~ 0 ==> J X ~ 0, X ~ Y ==> f X ~ f Y, 

X = Y a.e. ==> J X = J Y. 
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III Integrability: 

X integrable ¢=? I X I integrable =} X a.e.finite; 

I X I ~ Y integrable =} X integrable; 

X andY integrable =} X+ Y integrable. 
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Assume that the additivity property is proved. Then the second of 
properties I follows by replacing in the first one X by XIA and Y by 
XIB. The third one follows directly by successive use of the definitions. 

The successive use of the definitions also proves directly the first 
and third of properties II, and the second one follows by the additivity 
property upon setting X = Y + Z, where Z ~ 0. 

Similarly for properties III, except for I X I integrable =} X a.e. 
finite. But, if p..d > 0 where .d = [I X I = oo], then, on account of II, 

jl X I ~ jl X IIA ~ cpA whatever be c > 0. It follows, by letting 

c -t oo, that jl X I = oo, and the property is proved ab contrario. 

Thus 

For each of the successiue definitions, the elementary properties hold as 
soon as the additiuity property is proued. 

We use this fact repeatedly in proceeding to the successive justifica
tions of the definitions and to the proof of the additivity property. 

m 

1° Nonnegatiue simple functions. Since X = L: xJ A. IS nonnega-
i=l 1 

tive, the defining sum in 

I X = I: Xjp.Aj ~ 0 
i=l 

exists; it may be infinite. Its value is independent of the way in which 
n 

X is written. For, if X is written in some other form LYklBk' then 
m n k=l 

Xj = Yk if .diBk ~ 0 and, from I: .dj = L Bk = Q, it follows that 
i=l k=l 

n 

= L YkJJ..diBk = L YkfJ.Bk. 
j,k k=l 
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Thus, J X is unambiguously defined. 
m n 

Let now X = :E x;I A. and Y = :E Ykl B be two nonnegative simple 
i=l ' k=l k 

functions, so that X+ Y = :E (x; + Yk)I A ·Bk" Proceeding as above, 
jk I 

we have 

f (X + Y) = :E (x; + Yk)P.AiBk = :E x;p.A;Bk + :E YkP.A;Bk 
~ ~ ~ 

and the additivity property is proved. 

2° Nonnegative measurable junctions. In definition 2°, the sequence 
of simple functions Xn ~ 0 is nondecreasing, so that, by All for sim-

ple functions, the sequence J Xn is nondecreasing and, hence, has a 

limit, finite or not. Moreover, for every nonnegative measurable func
tion X there exists such a sequence Xn i X. Therefore, to justify the 
definition, it suffices to show that the defining limit is independent of 
the particular choice of the sequence Xn. In other words 

a. If two nondecreasing sequences Xn and Yn of nonnegative simple 
functions have the same limit, then 

lim f Xn = lim f Yn. 

Proof. It suffices to prove that 0 ~ Xn j X and lim Xn ~ Y, where 

Y is a nonnegative simple function, imply lim J Xn ~ J Y. For, then, 

it follows from the assumptions that, for every integer p, 

lim f Xn ~ f Yp, lim f Yn ~ f Xp, 

and the asserted equality is obtained by letting p -+ oo. 
First, we prove the asserted inequality under the supplementary re-

strictions 
p.O < oo, m = min Y > 0, M = max Y < oo. 

Let E > 0 be less than m. Since lim Xn ~ Y, it follows that An = 
[Xn > Y- E] j 0. But, on account of the validity of A for simple 
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functions and the finiteness of .u and Y, we have 

and, hence, by letting n ---7 oo and then e ---7 0, the asserted inequality 
follows. Now, we get rid of the supplementary restrictions. 

If .un = oo, then 

and the asserted inequality is trivially true. 
If M = oo, then, the inequality being valid with Xn and YI[Y <ooJ + 

cl[Y=+ooJ where cis an arbitrary finite number, we have 

lim f Xn ~ f YI[Y<ooJ + c.u[Y = +:xl] 

and, letting c ---7 oo, the right-hand side becomes J Y. 

Finally, if m = 0, then, since the functions Xn and Yare nonnegative 
and, by what precedes, the inequality is true for integrals on [Y > 0], 
we have 

limfXn ~lim f Xn ~ f Y =JY. 
J[Y>O] J[Y>O] 

This completes the proof and the definition of the integral of a non
negative measurable function is justified. 

Since the additivity property was proved for nonnegative simple 
functions Xn, Yn, and 0 ~ Xn j X, 0 ~ Y~ j Y imply 0 ~ Xn + Yn j 
X+ Y, it follows, by letting n ---7 oo in 

that 

f (X+ Y) = f X+ f Y. 

Thus, the additivity property remains valid for nonnegative measurable 
functions. 
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3° Measurable junctions. The decomposition X= .x+- x- of a 
measurable function into its positive and negative parts is unique, so 

that f X = f x+ - f x- is unambiguously defined, provided f x+ 

or f x- is finite. 

Finally, if X is determined and measurable outside a J,t-null set N, 
then let X' be any measurable function such that X= X' on Nc. The 

integral of X is defined by setting J X= J X', provided J X' exists. 

By All for nonnegative measurable functions, the integrals of such 
functions which coincide on Nc are equal. It follows, by definition 
3°, that the same is true when the functions are not of constant sign. 

Therefore, J X is unambiguously defined. 

It remains to prove the additivity property. 

Since we assume that not only J X and J Y exist but also that 

J X+ J Y exists, that is, is not of the form +co -co, it follows that 

(excluding the trivial case of the three integrals infinite of the same sign) 
at least one of the functions, say Y, is integrable and, hence, by Alii, 
is a.e. finite. Therefore, X+ Y is a.e. determined, and we do not re
strict the generality by taking determined X and Y, and changing Y 
to 0 on the J,t-null event on which it is infinite and X+ Y may be not 
determined. 

We decompose n into the six sets on each of which X, Y, and X+ Y 
are of constant sign (~0 or <0). Because of definition 3° and prop
erty AI for nonnegative functions, it suffices to prove the additivity 
property on each of these sets, say A= [X~ 0, Y < 0, X+ Y ~ 0]. 
But, on account of definition 3° and the additivity property for non
negative functions (X+ Y)IA and - YIA, we have 

i X= i (X+ Y) + i (-Y) = i (X+ Y) - i y 

and, i Y being finite, 

i X+ LY= i<X+ Y). 

Similarly for the other sets, and the additivity property follows. 
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This completes the justification of the definitions and the proof of 
the elementary properties. 

7.2 Convergence theorems. The central convergence property is as 
follows: 

A. MoNOTONE CONVERGENCE THEOREM. If 0 ~ Xn j X, then I Xn j 

Ix. 
Proof. Choose nonnegative simple functions Xkm j Xk as m ~ oo. 

The sequence Yn = max Xkn of nonnegative simple functions is non
k~n 

decreasing, and 

Xkn ~ Yn ~ Xn, I Xkn ~I Yn ~I Xn• 

It follows, by letting n ~ oo, that 

xk ~ lim Yn ~ X, I xk ~ Ilim Yn ~ lim I Xn 

and, by letting k ~ oo, we obtain 

X ~ lim Yn ~ X, lim I Xn ~ Ilim Yn ~ lim I Xn. 

Thus lim Yn = X and I X = lim I Xn. The assertion is proved. 

CoROLLARY 1. The integral is u-additive on the family of nonnegative 
measurable junctions. 

This means that, if the Xn are nonnegative, then I :E Xn = :E I Xn. 
n 

and follows by 0 ~ :E Xk j :E Xn. 
k=l 

CoROLLARY 2. If X is integrable, then £1 X I ~ 0 as p.A ~ 0. 

For, if Xn = X or n according as I X I < n or I X I ~ n, then II Xn I j 

II X I, so that, given E > 0, there exists an no such that II X I < 

II Xno I + ~. It follows that, for A with p.A < E/2n0, 

£1 X I = L I X no I + L <I X I - I Xno I) < ~+II X I -II X no I < E. 
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The monotone convergence theorem extends as follows: 

B. FATOU-LEBESGUE THEOREM. Let Y and Z !Je integra!Jle functions. 
If Y ~ Xn or Xn ~ Z, then 

flim inf Xn ~ lim inf J Xn, resp. lim sup f Xn ~ flim sup Xn. 

If Y ~ Xn j X, or Y ~ Xn ~ Z and Xn ~ X, then f Xn --+ f X. 

Proof. If the Xn are nonnegative, then 

Xn ~ Yn = inf Xk j lim inf Xn, 
k~n 

so that, by the monotone convergence theorem, 

lim inff Xn ~lim f Yn = flim inf Xn. 

The asserted inequalities follow, by the additivity property, upon ap
plying this result to the sequences Xn - Y and Z - Xn of nonnega
tive measurable functions, and the asserted equalities are immediate 
consequences. 

Clearly, if the assumptions of this theorem hold only a.e., the con
clusions continue to hold. In fact, the last assertion, frequently called 
the dominated convergence theorem, extends as follows: 

C. DoMINATED CONVERGENCE THEOREM. lf I Xn I ~ Y a.e. with Y 

integ;ra!Jle and if Xn ~ X or Xn ~ X, then f Xn --+ f X. In fact, 

L Xn - L X --+ 0 uniformly in d or, equivalently, f\ Xn - X\ --+ 0. 

Proof. Since 

it follows that the last two assertions are equivalent and imply the 

first one. Thus, it suffices to prove that Jl Xn - X I --+ 0. Set 

Yn = I Xn - X I and observe that Yn ~ 2Y a.e. and that the f Yn 

remain the same when the Yn are modified on null events. Therefore, 
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a.e. 
it suffices to prove that, if 0 ~ Yn ~ Z integrable and Yn ~ 0 or 

Yn ~ 0, then f Yn ~ 0. 
a. e. 

The case Y,. ~ 0 follows from the last assertion in B. It implies 

the case Yn ~ 0, since, by selecting a subsequence Yn' (~ 0) such 

that f Yn' ~ lim sup f Yn and, within this subsequence, a sequence 

Yn" ~ 0, it follows that f Yn" ~ 0 and lim sup f Yn = 0. Hence 

f Yn ~ 0, and the proof is complete. 

Extension. In all the preceding convergence theorems the parameter 
n ~ oo can be replaced by a parameter t ~ t0 along an arbitrary set 
T C R of values, the reason for this being that a1 ~ a as t ~ t0 along T 
is equivalent to atn ~ a for every sequence In in T converging to t0 • 

Applications I. We assume all functions X 1 to be integrable. 
The dominated convergence theorem yields at once 

1 o If I X 1 I ~ Y integrable and X 1 ~ X 10 as t ~ t0 (t E:= T), then 

Jx~~Jxto· 
This proposition yields, by applying the definition of derivative, 

2° If, on T, dXt exists at t0 and I Xt - Xto I ~ Y integrable, then 
dt t - to 

In turn, this proposition yields 

dX1 ldXtl 3° If, on a .finite interval [a, b],- exists and -- ~ 
dt dt 

Y integrable, 

then, on [a, b], 

:!_Jx~ =Jdxt. 
dt dt 

This follows from 

( dXt) Xt - Xt' = (t - t') -
dt t" 

where t" lies between t and t'. And in its turn, this proposition yields 
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4° If, on a finite interval [a, b], X 1 is continuous and I Xe I ;£ Y 1in
tegrable then, for every t E: [a, b], 

Moreover, if the foregoing assumptions hold for every finite interval and 
+oo 

J I Xt I dt ;£ Z integrable, then 
-oc 

L:oo (f Xt) dt = f (f_:oo Xt dt )-

The integrals with respect tot are Riemann integrals. 
The first assertion follows from the fact that the derivative of a 

Riemann integral i 1g(t) dt whereg is continuous isg(t) which is bounded 

on [a, b], so that, upon applying 3° to the asserted equality, it follows 
that derivatives of both sides are equal and, since both sides vanish 
for t = a, the equality is proved. The second assertion follows by 1° 
from the first one, by letting a ~ -oo and t ~ +oo. 

II. Integrals over the Borel line. Let <B be the Borel field in R = 
( -oo, +oo) and let p. be a measure on CB which assigns finite values to 
finite intervals. Let CB" be the class of all sets which are unions of a 
Borel set and a subset of a p.-null Borel set. CB" is closed under forma
tion of complements and countable unions and, hence, is a u-field. By 
assigning to every set of CB" the measure of the Borel set from which it 
differs by a subset of a p.-null set, p. is extended to a u-finite measure 
on CB", that we continue to denote by p.. CB" will be called a Lebesgue
Stieftjes field in Rand p. on CB" will be called a Lebesgue-Stieftjes measure. 
The relation 

F(b) - F(a) = F[a, b) = p.[a, b) 

determines, up to an additive constant, a function F on R which is 
clearly finite, nondecreasing, and continuous from the left, called a dis
tribution function corresponding to p.. (It was proved that, conversely, 
such a function determines a Lebesgue-Stieltjes measure p..) 

Let g be a CB"-measurable function. If g is integrable, the integral 

Jg dp. is called a Lebesgue~Stieltjes integral. IfF is a distribution func-

tion corresponding to p., this integral is also denoted by J g dF, and the 
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integral r g dJ.t is also denoted by ib g dF. If F(x) = x, X E:: R, 
J~~ a 

the corresponding measure is called the Lebesgue measure; it assigns to 
every interval its "length" and, thus, is a direct extension of the notion 
of length. The corresponding u-field, or Lebesgue field, is formed by 

Lebesgue sets and the corresponding integrals, say J g dx, ib g dx, are 

called Lebesgue integrals. Lebesgue field, measure, and integral are 
prototypes of general u-fields, measures, and integrals. One may say 
that the basic ideas and methods relative to measure spaces and inte
grals belong to Lebesgue. 

b 

Let g be continuous on [a, b]. The Lebesgue-Stieltjes integral J. g dF 
a 

b 

becomes then a Riemann-Stieltjes integral and the Lebesgue integral i g dx 

becomes then a Riemann integral. a 

The proof is easy. We have to show that, g being continuous on 
b 

[a, b], f. g dF is limit of Riemann-Stieltjes sums. This is possible be-
a 

cause a continuous function on a closed interval is bounded and is 
the (uniform) limit of any sequence of step-functions 

g, = L g(x' nk)lrx,.k,x,.,k+l)> a = Xnl < · · · < Xn,kn+l = b, 
Xnfc ~ X1 nk < Xn,k+l> 

such that max (xn,Tc+l - x,~c) ~ 0. Therefore, by the dominated con
k~k. 

vergence theorem or, more specifically, by the last assertion of the 
Fatou-Lebesgue theorem, 

i b fb Ten 
g dJ.t = lim gn dJ.t = lim L g(x' nk) J.t[Xnk, Xn,Tc+l), 

a a k=l 
that is, 

where the right-hand side sums are precisely the usual Riemann
Stieltjes sums. Thus, in the case of g continuous on [a, b], the integral 

i b g dF can be defined directly in terms ofF, or of measures assigned 

to intervals only. 
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However, when g is continuous on R, its Lebesgue-Stieltjes integral 
over R and its improper Riemann-Stieltjes integral do not necessarily 
coincide. In fact, the last integral is defined by 

b 

f gdF = lim i gdF, 
a__. -oo a 
b-> +oo 

provided the limit exists and is finite. It may happen that at the same 
time 

b 

fl g I dF =a~~ 00 i I g I dF 
b--> +oo 

is infinite so that I g I not being Lebesgue-Stieltjes integrable, g is not 
Lebesgue-Stieltjes integrable. Such examples are familiar; one of the 
most classical ones is that of the improper Riemann-integral of g(x) = 
sin xjx. However, if g is Lebesgue-Stieltjes integrable then, clearly, 
both integrals coincide. Thus, the class of continuous functions whose 
improper Riemann-Stieltjes integrals with respect to a distribution 
function F exist (and are finite) contains the class of continuous func
tions which are Lebesgue-Stieltjes integrable with respect to F. 

§ 8. INDEFINITE INTEGRALS; ITERATED INTEGRALS 

8.1 Indefinite integrals and Lebesgue decomposition. We charac
terize now the indefinite integrals by using repeatedly the monotone 
convergence theorem. Let X be a measurable function whose integral 

exists-say, f x- is finite. Then the indefinite integral rp on a de

fined by 
IP(A) = i X = f XIA 

exists, for f x-IA is finite and f x+JA exists. Since the integral of a 

function which vanishes a.e. is 0, the indefinite integral is p.-continuous, 
that is, vanishes for p.-null sets. Since for a countable measurable par
tition {AJ), X±JA = 2: X±JAA;' it follows that, by the monotone con
vergence theorem, 

r X=L:rx, 
JLA; JA; 

and the indefinite integral is O"-additive. 
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If X is integrable, then it is a.e. finite, and the indefinite integral is 
finite. If X is not integrable but, still, X is a.e. finite and p. is IT-finite, 
then the indefinite integral is IT-finite. For, by decomposing n into sets 
An of finite measure, we have 

and every term of the double sum is finite. 
The problem which arises is whether the foregoing properties charac

terize indefinite integrals and the answer lies in the celebrated Lebesgue 
(-Radon-Nikodym) decomposition theorem that we shall establish 
now. But first we introduce a notion in opposition to that of p.-conti
nuity. A set function cp8 on a is said to be p.-singu/ar if it vanishes out
side a p.-null set; in symbols, there is a p.-null set N such that 

A. LEBESGUE DECOMPOSITION THEOREM. Ij, on a, the measure p. and 
the IT-additive junction cp are IT-finite, then there exists one, and only one, 
decomposition of cp into a p.-continuous and IT-additive set junction 'Pc and 
a p.-singular and IT-additive set junction cp8 , 

and 'Pc is the indefinite integral of a finite measurable junction X deter
mined up to a p.-equivalence. 

'Pc and cp8 are called p.-continuous and p.-singular parts of cp, and X is 
called the derivative dcpjdp. with respect to p.; we emphasize that dcpjdp. 
is determined up to p.-equivalence. 

Proof. 1 o Since n is a countable sum of sets for which p. and cp 
are finite and since, by the Hahn decomposition theorem, cp is a differ
ence of two measures, it suffices to prove the theorem for finite measures 
p. and cp. Furthermore, if there are two decompositions of cp into a 
p.-continuous and a p.-singular part: 

cp = 'Pc + 'Ps = cp' c + cp' s' 
then 

'Pc - cp' c = cp' s - 'Ps = 0, 

for the p.-continuous function 'Pc - cp'c vanishes for all p.-null sets while 
the p.-singular function cp18 - cp8 vanishes outside a p.-null set. Finally, 
an indefinite integral determines the integrand up to an equivalence: 
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if, for every A E: Ci, 

'Pc(A) = i X = Lx' 
then X= X' a.e.; for, if, say, p..A = p.[X- X' > E] > 0, then 

L (X- X') >0. 

Thus the uniqueness assertions hold if we prove the existence asser
tions under the assumption that p. and 'P are finite measures. 

2° Let <fl be the class of all nonnegative integrable functions X whose 
indefinite integrals are majorized by '{): 

<fl is not empty, since X = 0 belongs to it; and there 1s a sequence 
IXnl C <fl such that 

f Xn ~ sup Jx = a ;a! 'P(Q) < oo. 
XE:::-1> 

Let X' n = sup Xk, so that 0 ;a; X' n j X = sup Xn. Let 
k~n 

so that n n 

L:A'k = U Ak = Q 
k=l k=l 

and, for every A, 

Upon letting n ~ oo and applying the monotone convergence theorem, 
we get 

Therefore X is a "maximal" element of <fl. This property will allow us 
to show that 

'/)a = '/) - 'Pc ~ 0, 

where 'Pc is the indefinite integral of X, is p.-singular, and the proof will 
be complete. 
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3° Let Dn + Dnc be a Hahn decomposition for the finite and u-addi-
1 

tive set function IPn = IPs - - p., that is, IPn(dDn) ~ 0 and IPn(dDnc) ~ 0 
n 

for every .d. Let D = n Dn (whence DC = u Dnc), so that, for every 
d and all n, 

1 
0 ~ IPs(.dD) ~- p.(.dD). 

n 

Upon letting n --+ oo, it follows that IPs(AD) = 0 and, hence, IPs(.d) = 
IPs(.dDc). Since 

IPc(.d) = IP(.d) - IPs(.dDc) ~ IP(.d) - IPs(ADnc), 

it follows that 

1 
so that X+ -I D • E: <I>. But this conclusion is contradicted by 

n n 

unless p.Dnc = 0. Therefore, all sets Dnc are p.-null sets and so is 
their countable union De. Since IPs(d) = IPs(.dDc), it follows that IPs 
is p.-singular, and the proof is complete. 

In the particular case of a p.-continuous IP, the foregoing theorem 
reduces to 

B. RADON-NIKODYM THEOREM. If, on a, the measure p. and the u-addi
tive set junction IP are u.jinite and IP is p.-continuous, then IP is the indefinite 
integral of a finite junction determined up to an equivalence. 

We are now in a position to characterize indefinite integrals of finite 
functions on a u-finite measure space. 

C • .d set junction IP on a is the indefinite integral on a u.jinite measure 
space of a finite junction X determined up to an equivalence, if, and only 
if, IP is u.jinite, u-additive, and p.-continuous; and X is integrable if, and 
only if, this IP is finite. 

The "if" assertion is the Radon-Nikodym theorem and the "only if" 
assertion is contained in the discussion at the beginning of this sub
section. 
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CoROLLARY. Let X and p. be u-finite measures on a. If p. is >.-continuous 

and X is a measurable function whose integral J X dp. exists, then, for every 

A E: a, 

Proof. If X = IB, B E: a, then the equality is valid, since 

It follows that the equality is valid for nonnegative simple functions 
and hence, by the monotone convergence theorem, for nonnegative 
measurable functions and, consequently, for measurable functions 
whose integral exists. 

Extension. The indefinite integral of a measurable function X which 
is not necessarily finite is still cr-additive and p.-continuous, but it is not 
necessarily u-finite. The question arises whether the Radon-Nikodym 
theorem can be extended to this case. The answer is in the affirmative. 

D. The Radon-Nikodym theorem remains v.alid if finiteness of X and 
u-finiteness of tp are simultaneously suppressed therein. 

Proof. As usual, it suffices to consider a finite measure p. and a 
p.-continuous measure tp on a. 

Let ffi be the class of all measurable sets such that tp on (B is u-finite, 
and let s be the supremum of p. on ffi. 

There exists a sequence Bn E: (B such that s = lim p.Bn and, hence, 
B = U Bn E: ffi with p.B = s. If there exists a C E: {Be A, A E: a} 
such that 0 < tp(C) < oo, then B + C E: ffi, p.C > 0, and 

s ~ p.(B + C) = p.B + p.C > s. 
Therefore, while tp on {BA, A E: a} is u-finite, tp on {BcA, A E: a} 
can take values 0 and oo only. 

Furthermore, whatever be C E: {Be A, A E: a}, it is impossible to have 
p.C > 0 and tp( C) = 0 since then B + C E: (B and, as above, s > s. 
Since tp is p.-continuous, it is also impossible to have p.C = 0 and tp(C) 
> 0. Thus, for every C E: {Be A, A E: a}, either p.C > 0 and tp(C) = 
oo·p.C = oo or p.C = 0 and tp(C) = 0. In other words, tp on {Be A, 
A E: a} is the indefinite integral of a function X= oo on Be, deter-
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mined up to an equivalence. On the other hand, by B, cp on { BA, 
A E: a} is the indefinite integral of a function X on B, determined up 
to an equivalence. These values of X on Band on Be determine it on 
n, up to an equivalence and, for every A E: a, 

JX =f X+ f X= cp(AB) + cp(ABc) = cp(A). 
A AB JAB• 

The extension follows. 
8.2 Product measures and iterated integrals. Let (ni, ai, P.i), i = 

1, 2, be two measure spaces. A space (n, a, p.) is their product-measure 
space if 

n = nl X n2 is the space of all points w = (wb w2), Wi E: ni; 
a = a 1 X a 2 is the minimal u-field over the class of all measurable 

"rectangles" A 1 X A 2, Ai E: ai, where A1 X A 2 is the set of all 
points w with wi E: Ai; 

p. = p.1 X p.2 is the "product-measure" on a, provided it exists, that 
is, is a measure on a uniquely determined by the relations p.(A1 X 
A2) = J.1.1A1 X J.1.2A2 for all measurable rectangles A1 X d2. 

We intend to find conditions under which the product-measure ex
ists and conditions under which integrals with respect to this measure 
can be expressed in terms of integrals with respect to the factor meas
ures J.l.i· In what follows the subscripts 1 and 2 can be interchanged. 
We shall also frequently proceed to the usual abuse of notation which 
consists in the use of the same symbol for a function and for its values. 

For every set A c n, the section A.,1 of A at w1 is the set of all points 
w2 such that (wb w2) E: A. For every function X on n, the section X.,1 

of X at w1 is the function defined on !22 by X.,1(w2) = X(wh w2). 

a. Every section of a measurable set or Junction is measurable. 

If e is the class of all the sets in n whose every section is measurable, 
then it is readily seen that e is a u-field. But every section of a meas
urable rectangle A 1 X A 2 is measurable, since it is either empty or is 
one of the sides. Therefore, e :::> a and the first assertion is proved. 
If X on n is measurable and S c R is an arbitrary Borel set, the sec
ond assertion follows by 

X.,1- 1(S) = [w2; X.,1(w2) E: S] = [w2; X(wb w2) E: S] 

= [w2; (wh w2) E: x-1(S)] = (X-1(8)).,1• 
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A. PRODUCT-MEASURE THEOREM. If ILl on G.1 and IL2 on a2 are u-finite, 
then, for every A E: <t1 X <t2, the functions with values IL1Aw2 and IL2Aw1 

are measurable, and the set function IL with values 

is a u-finite measure IL on a1 X <t2 uniquely determined by the relation 

In other words, IL is the product-measure ILl X IL2· 

Proof. The proof is based upon the fact that, by the monotone 
convergence theorem, the class mt of all those sets A for which the in
tegrals are equal is closed under formation of countable sums. 

Since the measures ILl and IL2 are u-finite, the product space is de
composable into a countable sum of rectangles with sides of finite meas
ure. It follows that, without restricting the generality, we can suppose 
that these measures are finite. If A = A 1 X A2 is a measurable rec
tangle, then ILIL1w2 = 1L1A1 X IA2(w2) and similarly by interchanging the 
subscripts 1 and 2. Thus, the functions with these values are measur
able and both integrals reduce to IL1A1 X IL2A2• The last asserted equal
ity is proved and mt contains all measurable rectangles. It follows that 
mt contains the field of finite sums of these rectangles. But, mt is closed 
under nondecreasing passages to the limit, on account of the monotone 
convergence theorem, and, under nonincreasing ones, on account of the 
dominated convergence theorem and the finiteness of measures. There
fore, by 1.6, it contains the product u-field a1 X a2 , and the equality 
of the integrals is proved. The finite set function IL on a so defined is a 
measure, on account of the monotone convergence theorem, and it is 
uniquely determined by the stated relation, on account of the exten
sion theorem. This terminates the proof. 

CoROLLARY. A E: a1 X a2 is a (ILI X IL2)-null set if, and only if, al
most every section A.,1 is a IL2-null set. 

For the integral of a nonnegative function vanishes if, and only if, the 
integrand vanishes a.e. 

We are now in a position to answer the second stated question. The 
result is due to Lebesgue and Fubini and is generally called the FuBTNI 
THEOREM. 
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B. ITERATED INTEGRALS THEOREM. Let (nl! all .Ul) and (n2, a2, .U2) 

be u-jinite measure spaces. 
If the a1 X fi2-measurable function X on ih X S12 is nonnegative or 

.Ul X .u2-integrable, then 

r xd(.ul x .u2) = r d.u1 r x.,l d.u2 = r d.u2 r x.,2 d.uh 
Jn1XD2 Jo1 Jo2 Jo2 Jo1 

and in the integrability case almost every section of X is integrable. 

The iterated integrals are to be read from right to left. 
Proof. For X= IA, the asserted equality reduces to that of the 

product-measure theorem. It follows that it holds for simple functions 
and hence holds for nonnegative measurable functions because of the 
monotone convergence theorem, since, if 0 ~ Xn j X, then 0 ~ (Xn).,, j 

(X).,,. If X ~ 0 is integrable, then the functionf X.,1 d,u2 of w1 is in

tegrable and hence a.e. finite, so that the functions x.,l of w2 are almost all 
integrable. Therefore, if X= x+- x- is integrable, that is, x+ 
and x- are integrable, then (X).,, = (X+).,, - (X-).,, are almost all 
integrable and a.e. finite. This terminates the proof. 

Finite-dimensional case. What precedes extends in an obvious man
ner to the product of an, arbitrary but finite number of measure spaces. 
The interesting case is the infinitely dimensional one, and we shall now 
investigate it from a somewhat more general point of view. 

*8.3 Iterated integrals and infinite product spaces. In what follows 
we push the abuse of notation to its extreme. 

We consider a sequence of measurable spaces (Sln, fin) and denote 
by wn points of Sln and by An measurable sets in Sln (sets of Cin). The 
product measurable space (S11 X · · · X Sln, fi1 X · · · X fin) is the space 
of points (wh · • ·, wn) together with the minimal u-field over the inter
vals A1 X··· X An. The product measurable space (II Sln, II fin) is 
the space of points (wh w2, • • ·) and the minimal u-field over all cylinders 

"' 
of the form A1 X· ··X An X II nk or, equivalently, over all cylinders 

k~n+l 

"' 
of the form C(B11) = Bn X II nk where the base Bn is a measurable 

k=n+l 
set in n1 X · · · X Sln. 

In the infinitely dimensional case, we must, for reasons of "consist
ency" (to be made clear later), limit ourselves to probabilities, that is, 
to measures which assign value one to the space, to be denoted by P, Q, 
· · ·, with or without affixes. Furthermore, in probability theory, the 
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following more general concept plays a basic role (at least when "inde
pendence"-see Part III-is not assumed). Every function-to be de
noted by Pn(wh · · ·, Wn-1; An)-which is a probability in An for every 
fixed point (wh · · ·, wn_1) and a measurable function in this point for 
every fixed An will be called a regular conditional probability. For 
n = 1 it reduces to a probability P1 on a1 but for n > 1 it reduces to a 
probability on an only when it is constant in (wh · · ·, wn-1) for every 
fixed An, provided the ordered T has a first element. We observe that 
the functions JJ.2.d.,, = JJ.2(w1; .d.,.) are regular conditional probabilities 
when p.2(w1; 02) = 1. On account of the monotone convergence theorem, 
iterated integrals of the form 

QnBn = J P1(dw1) J P2(w1; dw2) · · · 

J Pn(wl, • • ·, Wn-1; dwn)IBn(wh · · ·, Wn) 

define probabilities Qn on a1 X··· X an. It follows by the same theo
rem that if a measurable function X on 01 X · · · X On is nonnegative 
or Qn-integrable, then 

f . X dQn =JP1(dw1)JP2(w1; dw2) • • • 
JnrX···XOn 

J Pn(wh • · ·, Wn-1; dwn)X(wh • • ·, Wn)• 

A. ITERATED REGULAR CONDITIONAL PROBABILITIES THEOREM. The 
iterated integrals 

QC(Bn) = J P1(dw1) J P2(w1; dw2) · • • 

J Pn(wh · • ·, Wn-1; dwn)IB,.(6Jh · · ·, wn), 

determine a probability Q on II Cln• 

This extension of the product-probability theorem is due to Tulcea and, 
proceeding as therein (in 1 °), permits one to determine Q on an arbitrary 
II Cl1 under obvious consistency conditions on the regular conditional 
IE:T 

pr.'s Ptn+1(Wtu · · ·, Wtn; Atn+t). 
Proof. To begin with, the definition of Qn on the class e of all cyl

inders of the form C(Bn) is consistent. For, if C(Bn) = C(Bm), m < n, 
then integrations with respect to the Wk which do not belong to the 
product subspace where Bm lies yield factors one. 

Since Q on e is finitely additive, the assertion will follow by the ex
tension theorem if we prove that Q on e is continuous at 0. We have 
to consider nonincreasing sequences of cylinders which converge to 0. 
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Upon renumbering the indices, we can suppose that the sequences are 
of the form C(Bn) 10 with nonempty bases Bn E: ai X··· X an. We 
can write 

(1) 

where (Bn)w1 is the section of Bn at WI and 

Q0 lC(Bn)w1 = jP2(wi;dw2) ···fPn(wr, ···,wn-I;dwn)IBn(wr, ···,w11 ). 

In (1) the left-hand side is nonincreasing in n, and the integrand con
verges nonincreasingly to a certain limit XI (wi) ~ 0. By the dominated 

convergence theorem, the limit of the left-hand side is J P(dwi)XI(wi). 

Assume that this integral is positive. Then there exists a point wi 
such that XI (wi) > 0. It follows that we find ourselves in the same 
situation but with the sequence Q<llC(Bn)c;;1 instead of QC(B11 ). Re
peating the argument over and over again, we obtain a sequence w = 

(wr, w2, • • ·) such that w11 E: 1"2n and Q<nlc(Bn)w~o· . . ,c;;,. 1 X 11 (wn) > 0. 
Therefore, every C(Bn) contains at least one point of the form (wr, · · ·, 

"' 
Wn, Wn+b 0 0 0 

). Since C(Bn) = Bn X II nk, it contains the point w 
k=n+I 

and, hence, wE: n C(Bn). Thus, when QC(Bn) +t 0 the intersection 
is not empty, and the theorem follows ab contrario. 

Particular cases. 1° If Pn(wr, · · ·, Wn-Ii An) = P,An are constant 
for every fixed An, then we write Q = II Pn and call it a product
probability. Then the theorem reduces to the product-probability theo
rem in the denumerable case ( 4.2A). 

2° If the factor spaces are finite-dimensional Borel spaces, then, it 
follows from 27.2, Application 1, that the theorem yields the consistency 
theorem. 

COMPLEMENTS AND DETAILS 

Notation. Unless otherwise stated, the measure space (n, a, p.) is fixed, the 
(measurable) sets A, B, · · ·, with or without affixes, belong to a, and the func
tions X, Y, · · ·, with or without affixes, are finite measurable functions. 

1. The set C of convergence of a sequence Xn (to a finite or infinite limit 
function) is measurable. 

(C = [lim inf Xn =lim sup X,,].) 

2. If p. is finite, then given X, for every E > 0 there exists A such that 
p.A < E and Xis bounded on _de. If Xis bounded, then there exists a sequence of 
simple functions which converges uniformly to X. Combine both propositions. 



140 MEASURABLE FUNCTIONS AND INTEGRATION (SEc. 8] 

We say that a sequence Xn converges almost uniformly (a.u.) to X, and write 

Xn ~ X, if, for every E > 0, there exists a set A with JLA < E such that 
u 

Xn ---t X on Ac. 
a.u. a.e. p 

3. If Xn ~ X, then Xn ~ X and Xn ~ X. (For the first assertion, 

form An where An is the A of the foregoing definition withE = .!..) 
n 

p ~~ 

1. If Xn ~ X, then there exists a subsequence Xn' ~ X. 
a.e. a.u. 

5. Egoro.ff's theorem. If f.L is finite, then Xn ~ X implies that Xn ~ X . ., 
Compare with 3. (Neglect the null set of divergence, and form A = U Am 

m=l 

with Am = u [ I xk - X I ~ 2 J and n(m) such that f.LAm < 2Em.) 
k~n(m) m 

a.e. u 
6. Lusin's theorem. If f.L is u-finite, then Xn ~ X implies that Xn ---t X on 

every element Ai of some countable partition of rl-N where N is some null set. 
(Neglect the null set of divergence, and start with f.L finite. Use Egoroff's 

theorem to select inductively sets Ak such that f.L n Ak < .!. and Xn ~ X on 
k=l n 

Akc for every k.) 
a.e. 

7. If f.L is finite, then Xn -----> X implies existence of a set of positive measure 
on which the Xn are uniformly bounded. What if f.L is u-finite? 

a.e. a.e. 
8. If f.L is finite, then Xmn ~ Xmas n -+ oo and Xm ~ X as m -+ oo imply 

a.e. 
that there exists subsequences mk, nk such that Xmknk ~ X ask -+ oo. What 
if f.L is u-finite? 

1 
(Neglect the null sets of divergence. Select Ak and mk such that f.LAk <-2k 

1 
and I Xmk- Xi< 1Jc on Akc· 

1 
Select Bk C Ak and nk such that JLBk < 1fc 

1 
and I Xmknk - Xmk I < 2k on Ak - Bk.) 

9. LetXn~X, Yn~ Y. DoaXn + bYn ~aX+ bY, I Xn I~ I XI, Xn2 ~ 

X 2, XnYn ~ XY? What about 1/ Xn? Let f.L be finite and let g on R or on 
R X R be continuous. What about the sequences g(Xn) and g(Xn, Yn)? 

10. Let the functions Xn, X on the measure space be complex-valued or 
vector-valued or, more generally, let them take their values in some fixed 
Banach space. Denote the norm of X by I X I, and denote I Xn -X I -+ 0 by 
Xn-+ X. 

Transpose the constructive definitions of measurability and the definitions of 
various types of convergence. Investigate the validity of the transposed of the 
corresponding properties established in the text, as well as of those stated above. 

11. Examples and counterexamples of mutual implications of types of con
vergence. Investigate convergences of the sequences defined below: 

(i) The measure space is the Borel line with Lebesgue measure, Xn = 1 on 
[n, n + 1] and Xn = 0 elsewhere. 
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(ii) The measure space is the Borel interval (0, 1) with Lebesgue measure, 

Xn = 1 on ( 0, ~) and Xn = 0 elsewhere. 

(iii) The measure space is the Borel interval [0, 1] with Lebesgue measure, 

the sequence is Xn, X21, X22, X31, Xa2, Xaa, · · · with Xnk = 1 on [ k : 1 , ~] 
and Xnk = 0 elsewhere. 

(iv) a consists of all subsets of the set of positive integers, p.A is the number 

of points of A, Xn is indicator of the set of then first integers. 
12. If X is integrable, then the set [X ;;c= O] is of u-finite measure. What if 

J X exists? (p.[l X I ~ c] ~ ~ Jl X 1.) 
13. Let (T, :3, r). be a measure space, to every point t of which is assigned a 

measure P.t on a. Let the function on T defined by p.eA for any fixed A be 
::!-measurable. 

The relation p.A = J/eA dr(t) defines a measure p. on a. If Jnx(w) dp.(w) 

exists, then the function defined on T by U(t) = Jnx(w) dp.e(w) exists and is 

::!-measurable, and Jnx(w) dp.(w) = JT U(t) dr(t). 

N. Let qJ be the indefinite integral of X. Express ({)+, ({)-, (pin terms of X. 

15. If [xn -t 0 uniformly in n as p.A --+ 0 or as A l0, then the same is 

true of [I Xn I; and conversely. Interpret in terms of signed measures. 

(f iXnl =i Xn -i Xn.) 
A A[Xn~O] A[Xn<OJ 

16. If finite L Xn --+LX finite, uniformly in A (E:: a), then Jnl Xn- XI -t 

0; and conversely. 

17. If 0 ~ Xn ~ X, then finite Jnxn -t Jnx finite implies that [ Xn -t 

[ X uniformly in A (also if~ is replaced by~) 

(0 ~(X- Xn)+ ~X integrable, and Jcx- Xn)+- J<x- Xn) -t 0.) 

18. Rewrite in terms of integrals as many as possible of the complements and 
details of Chapter I. 

19. If the Xn are integrable and lim L Xn exists and is finite for every A, 

then the Jl Xn I are uniformly bounded, [1 Xn I -t 0 uniformly in n as 

p.A -t 0 and as A l0, and there exists an integrable X, determined up to an 

equivalence, such that [xn -t [x for every A. (Use 18.) 



142 MEASURABLE FUNCTIONS AND INTEGRATION [SEc. 8] 

20. If integrable X,. --+ X integrable, then existence and finiteness of lim LX,. 
for every A are equivalent to the following properties: 

(i) LX,. --+LX uniformly in A; 

(ii) Lx,. --+ 0 uniformly inn as p.A --+ 0 and as A! 0. 

If p. is finite, then "as A! 0" can be suppressed. (Use the preceding proposi
tions and the relations 

Ll x .. I ~ Ll x .. - X I + Ll X I. 

f I x .. - X I ~ E + f <I x .. I + I X j).) 
A }A[JX,.-X!!i:;•J 

21. The differential formalism applies to Radon-Nikodym derivatives: 
Let p., v be finite measures on a and cp, cp' be u-finite signed measures on a. 

Let cp be v-continuous and v, cp, cp' be p.-continuous. Then 

d(cp + cp') - dcp + dcp' 
dp. - dp. dp. p.-a.e. 

dcp dcp dv 
dp. = dv dp. p.-a.e. 

(For the second assertion, it suffices to consider cp ~ 0, X= ~~ ~ 0 

Y = ~: ~ 0. Take simple X,. with 0 ~ X,. j X so that 

LXdv- LX,.dv = LX,.Ydp.--+ LXYdp..) 

Let {JJ.t, t E:: T} and {JJ.'t•, t' E:: T'} be two families of measures on a; we 
drop t E:: T and t' E:: T' unless confusion is possible. We say that {JJ.t} is 
{JJ.'t•} -continuous if every set null for all J1.1t• is null for all Jl.t· If the converse 
is also true, we say that the two families are mutually continuous. 

22. If {JJ.i} is a countable family of finite measures, then there exists a 
finite measure p. such that {JJ.t} and J1. are mutually continuous. (Take p. = 
L: Jl.i/2ip./J.) 

23. Let the Jl.t and J1. be finite measures. If {JJ.t} is p.-eontinuous, then there 
exists a finite measure p.' such that {JJ.t} and p.' are mutually continuous. (Select 

sets At = [ :t > 0 J Denote by B, with or without affixes, sets such that, for 

some t, B C At and JJ.tB > 0. Denote countable sums of sets B up to p.-null 
sets by C, with or without affixes. Every subset C' C C with Jl.tC' > 0 is a set 
C; every countable union of sets C is a set C. Let p.C,. --+ s where s is the 
supremum of values of J1. over all the sets C. Then s = J1. U C,. = J1. U Bm and 
to every m there corresponds a Jl.t, say Jl.m, such that Bm C Am and JJ.mBm > 0. 
The families {JJ.t} and {JJ.m} are mutually continuous.) 
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n n 
24. Let iln = L Jl.k - jl and ii,. = L Pk - ii, all the p. and P with various 

k=l k=l 

affixes being finite measures on a and every ii,. being jl,.-continuous. 

. dp.l dp.l 
(1) 1 _ - d- p.-a.e. 

up.,. P. 

(") 'f { } . . h dji,. dji u 1 p.,. 1s v-contmuous, t en --;J; - dv 11-a.e. 

("') . . d dii,. dii m ii IS jl-contmuous an 1 _ - d_jl-a.e. 
ap.,. p. 

(For the last assertion, if jl,.A,. = 0 for all n, then jl (lim sup A,.) = 0. It fol-
dii n " 

lows that it suffices to consider a particular choice of the d,-" = L: Xkl L: Yk 
dvk dp.k dii P.n k=l k=l 

where Xk = dji , Yk = dji . But LX,. = dp and L Y,. = 1ji-a.e.) 

The propositions which follow correspond to various definitions of the concept 
of integration. We shall assume that the measures and the functions are finite. 
Besides proving the statements, the reader should also examine removal of the 
restriction of finiteness as well as of other restrictions which may be introduced. 

25. Set 

I X dqJ =I X dqJ+ -I X dqJ-, I (X + iY) dp. =I X dp. + i I y dp., 

I Xd(p. + iP) =I X dp. + i I X dv 

and investigate existence and properties of integrals so defined. 
26. Descriptive approach. The Radon-Nikodym theorem characterizes an in

definite integral but not that of a given function. The following proposition 
answers this requirement. 

'P on a is indefinite integral of X on 0 if, and only if, 'P is u-additive and, for 
every set A = [a ~ X ~ b]B, B E: a, 

ap.A ~ 'P(A) ~- bp.A. 

27. In the definition of the integral given in the text, start with (nonnega
tive) elementary functions instead of simple ones. The integral so defined coin
cides with the initial one. 

28. Lebesgue's approach. The Cauchy-Riemann approach starts with arbi
trary finite partitions of the interval of integration into intervals. The Lebesgue 
approach consists in partitioning the set of integration according to the function 
to be integrated so that the integral is tailored to order as opposed to the ready
to-wear Cauchy-Riemann one. Let p. < oo. 

Set 
~ k- 1 [k- 1 k] L:,.(X) = ~cb.., 2f'P. 2f' ~X< 2" . 

If X is bounded, these sums correspond to finite partitions and I X= 
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lim :E,.(X). If X is not bounded, set Xmn =X if -m ~X~ nand Xmn = 0 

otherwise. If X is integrable, then I Xmn -+ J X as m, n -+ co. 

If X is not bounded, the series :E,.(X) correspond to countable partitions 

and I X = lim :E,.(X), in the sense that if X is integrable, then these series 

are absolutely convergent and the equality holds and, conversely, if one of these 
series is absolutely convergent, so are all of them and the equality holds. 

(For the last assertion, it suffices to consider nonnegative elementary func
"" k- 1 

tions X,. = :E "2!' J[ll:- 1 k ]' For the converse, use the relation 
1 2n;:;!X<2ii 

X ~ 2X,. + 1-1n.) 
29. Darhoux-Young approach. Let X be measurable or not and set 

I X = sup ± inf X(w)ILAk, Ix = inf ± sup X(w)ILAk 
_ k-1wEAt k-lwElt 

where the extrema of sums are taken over all finite measurable partitions 
" 'f1 Ar. = n. If X is measurable and bounded, then 

Ix= Ix= Ix. 

If I X and I X exist and are equal, we say that I X exists and equals their com-

mon value. 

We can also set 

where the extrema are taken over all integrable (and measurable) Y and Z such 

that Y ~ X ~ Z and define I X as above. Compare the two definitions. 

30. Completion approach. The Meray-Cantor method for completion of 
metric spaces adjoins to the given metric space elements which represent 
mutually convergent (in distance) sequences of its points. This method permits 
(Dunford) to define and study the integral of functions with values in an arbi
trary Banach space (Bochner), as follows: 

(i) Define the indefinite integral of a simple function as in the text. Since 
nonnegativity and infinite values may be meaningless, all simple functions 
under consideration are integrable. 

(ii) Adjoin to the space of these integrable functions Xm, X,., · · · all functions 

X such that Il Xm- X,. I -+ 0 and X,. -+ X, by defining the indefinite inte-
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gral of X as the limit of the indefinite integrals of the X,.. To justify this defini
tion, prove for simple functions those elementary properties of integrals which 

continue to have content for an arbitrary Banach space: Jl Xm - X,. I - 0 if, 

and only if, X,.~ X where X is some measurable function, and J I X,. I - 0 

uniformly in n as p.A - 0; Jl Xm - X,. I - 0 implies that rp,. -A rp where rp 

is u-additive. 
(iii) Extend the foregoing properties to all integrable functions and obtain 

the dominated convergence theorem. 
31. Kolmogororls approach. Let e be a class closed under intersections. Let 

:D, with or without affixes, be finite disjoint subclasses of e. Order them by the 
relation !D1 < :02 if every set of !Dz is contained in some set of!D1. Fix A E: e 
and consider all the :0 which are partitions of A. They form a "direction" A 
in the sense that, if :01 and :02 are such partitions, then there exists such a 
partition which "follows" both, namely, :01 n :Oz. 

Let rp on e be a function, additive or not, single-valued or not. By definition, 

rP(A) = Ldrp = lim :E rp(Ai) 

where the Ai are elements of partitions :0 of A and the limit rP(A), if it exists, is 
"along the direction A," that is, to every E > 0 there corresponds a :0. such that 
I rP(A) - :E rp(Ai) I < E for all :0 > :0, and all values of the rp(Aj)-if rp is 
multivalued. If rP(A) exists, it is unique. If rP on e exists, then it is finitely 
additive. 

Compare this integral to the Riemann-Stieltjes integral by selecting con
veniently rp. 

Compare i drp with the length (if it exists) of the arc afJ of a plane curve, by 
a{j 

taking rp(ak-h ak) = ak-1ak, the length of the cord ak-1 to ak, the a = at, 

• · • ak-1, ak, · · ·,a,. = fJ being consecutive points on the arc afJ. 
We say that rp and rp' on e are "differentially equivalent" on A if, for every 

E > 0, there exists a partition :0, of A such that :E I rp(Ai) - rp'(Ai) I < E for 

all :0 > :0,. If rp is finitely additive, then £ drp = rp(A). If not, then rP on 

A n e (if it exists) is the unique additive function differentially equivalent on 
A to rp. Proceed as follows: 

(i) rp and rp' are differentially equivalent on A if, and only if, t(J = rP'· 
(ii) rp and rP are differentially equivalent on A. 
(iii) If finitely additive functions rp and rp' are differentially equivalent on A, 

then they coincide on A. 
In all which precedes replace "finite" by "countable" and investigate the 

validity of the propositions so obtained. Compare the various definitions of 
the integral, by selecting conveniently rp. 

Finally, take rp with values in a fixed but arbitrary Banach space, and go over 
what precedes. 

32. A structure of the concept of integration. The concept of integration is con
structed by means of the concepts of summations and of passage !9 the lim!_! 
along a direction or, more generally{ a cut-direction. A bipartition 4 = 4 +A 
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of a set !l with an ordc;: relation -< is a "cut-direction" if A and ~ are directions 
and every element of !l follows every element of A. 

Let If' be a function, single-valued or not, on a direction !l to a real line or 
a plane or, more generally, a Banach space. The element l('tJ. of the range space 
is "limit of If' along !l" if, for every E > 0, there exists an a, E: !l such that 
liP!!. - rp(a) I < E for all a > a, and for all values of rp(a). If the direction !l 
is replaced by a cut-direction ~' then lf'3 is "limit of If' along ~ if, for every 
E > 0 there exist ~· E: !l and a, E: ~ such that llf'3 - rp(a) I < E for all a such 
that~. -< a -< a, and for all values of rp(a). If lf'tJ. or IP3 exist, they are unique. 

To every a E: !l assign some finite collection of points ai of a Banach space, 
not necessarily distinct and not necessarily uniquely determined. Form rp(a) = 

L: rp(aj). By definition, J drp is the limit, if it exists, of rp along !l. If !l is re-
- !J. 

placed by A, the definition continues to apply. 
Investigate all definitions of the integral you know of from this structural 

point of view, that is, the selections of !l or ~. and of the functions If'· 

33. Daniell approach. LetS be a family of bounded real-valued functions on fl, 
closed under finite linear combinations and lattice operations] U g = max (f, g), 
f n g =min (j,g). ThenfE: L::::} If I = f u 0- f n 0 E: s. Suppose that 

on S is defined an integral f: a nonnegative linear functional continuous under 

monotone limits:];?; 0::::} fi;?; o,f(af + bg) =a fi + b fgJn l 0::::} fin lO. 
a) Let U be the family oflimits (not necessarily finite) of nondecreasing sequences 
inS. U contains Sand is closed under addition, multiplication by nonnegative 

constants, and lattice operations. Extend the integral on U, setting fJ = lim fin 
when S 3 fn j f (infinite values being permitted). 
The definition is justified, for if the nondecreasing sequencesfn and gn inS are 

such that limfn ~ lim gn, then lim fin ~ lim f gn. 

If U 3fn j f then] E: U and fin j fJ. 
b) Let - U be the family of functions f such that - f E: U, and set 

fi =- f<-J). 

If g E: - U, h E: U and g ~ h, then h - g E: U and f h - f g = f (h - g) ;?; 0. 

By definition, f is integrable if, for every E > 0, there exist g. E: - U and 

h, E: Usuch thatg, ~f ~ h,,fg, andfh, are finite, andfh,- fg, <E. Then 

i~f f h, = s~p fg, andjf is defined to be this common value. 

Let L be the family of integrable functions. L and the integral on L have all 
the properties of S and of the integral on S. 

If L 3 ]n j f and lim jfn < oo, then] E: L and fin j fJ. 

Let ff be the smallest monotone family overS (closed under monotone passages 
to the limit by sequences). ff is closed under algebraic and lattice operations. 
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Let L1 = L n B'. j E: L1 if and only if j E: B' and there exists g E: L1 such that 
Ill ~g. 
e) Let ff+ be the smallest monotone family overs+ (consisting of all nonnegative 

functions of S). SetJ! = oo if j E: ff+ is not integrable. By definition, for 

f E: B', J! = fJ+ - J!- exists if j+ or 1- is integrable. 

If J! and Jg exist and they are not infinite with opposite sign, then Ju +g) 

exists and equals J! + J g. 

If J!nexist, Jh > -oo, andfn j j, then J! exists andJ!n j fJ. 

f) If /A E: B', then, by definition, the measure of A is p.A = J fA. 

If lA, In E: ff, then IA un, IAn n, lA-B E: B' and if the IAn E: B', then JuAn 
E: B' and p. 'L.,A n = 'L.,p.A n• 
g) Suppose that] E: S ==} j n 1 E: S. Then] E: B' ==} j n 1 E: B' and if a > 0, 
then Ir!>aJ E: B'. 
Iff~ 0, Ir!>aJ E: B' for every a > 0, then] E: B'. 

h) Suppose that 1 E: S. Then j E: ff+=} J! = fJdp. where the right side is 

taken in the customary sense. What if J E: B'? 
i) The family S is a real linear normed space with the uniform norm II J II = 
sup f. Every bounded linear functional '{'(f) on this space is difference of two 
bounded nonnegative linear functionals '{'(f) = '{'+(J) - '1'-(J): Take '{'+(J) 
= sup t'P(J'), 0 ~ !' ~f) on s+, then extend to s by linearity. 

34. Riesz representation. Let ~ be a locally compact space with points x, 
compacts K, and the u-field S of topological Borel sets S, with or without sub
scripts. Let C be the space of bounded continuous functions g, with or without 
affixes, with the uniform norm II g II = sup g. Co C C consists of those g which 
vanish or infinity: Given E > 0 there exists a K. such that I g I < E on K;. 
Coo C C consists of those g which vanish off compacts and CK C Coo of those g 
which vanish off K. If~ is compact, then Coc = Coo = Co = C. 
a) Dini. If gn E: Coo and gnlO, then gnlO uniformly, that is, II g 1110. 
b) Nonnegative linear functionals p.(g) on Coo are bounded on every CK and are 
integrals on Coo: Bounded, since there exists go E: Coo+ with go 6; 1 on CK, 
hence g E: CK implies I g I ~ go II g 11 and I p.(g) I ~ p.(go) 11 g II· Integrals, since 
g1 E: CK and gnlO imply gn E: CK, I g lllO, hence I p.(gn) ~ p.(go) II gn 1110. 
c) There is a one-to-one correspondence between nonnegative linear functionals 
p.(g) on Coo and measures p.(S) bounded on compacts, given by p.(g) = 
J p.(dx)g(x): By b) and 33, p.(g) determines the measure p.(S). 

d) There is a one-to-one correspondence between bounded linear functionals 

'{'(g) on Coo and bounded signed measures '/'(S) on S given by '{'(g) = J '!'(dx)g(x) 

with II g II = Var '{':Apply c) and 35i). 
e) There is a one-to-one correspondence between bounded linear functionals on 
Co and bounded signed measures on S. Compactify and apply d. 



Part Two 

GENERAL CONCEPTS AND TOOLS OF 
PROBABILITY THEORY 

Probability concepts can be defined in terms of measure-theoretic 
concepts. Since probability is a normed measure and random variables 
are finite measurable functions, the properties of sequences of random 
variables are more precise than those of measurable functions on a 
general measure space. Since in probability theory probability spaces 
are but frames of reference for families of random variables, probability 
properties are to be expressed in terms of the laws of the families only. 
These laws are expressed in terms of distributions which are set func
tions on the Borel fields in the range spaces. The distributions are ex
pressed in terms of distribution functions which are point functions 
on the range spaces. In turn, to distribution functions correspond their 
Fourier-Stieltjes transforms (called characteristic functions) which are 
easier to deal with. 

The following Parts utilize the tools so developed to investigate 
probability problems. These problems are centered about the con
cepts of independence and of conditioning introduced in Parts III and 
IV, respectively. The corresponding sections 15 and 24 may be read 
immediately after section 9. 
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Chapter III 

PROBABILITY CONCEPTS 

§ 9. PROBABILITY SPACES AND RANDOM VARIABLES 

9.1 Probability terminology. Probability theory has its own termi
nology, born from and directly related and adapted to its intuitive 
background; for the concepts and problems of probability theory are 
born from and evolve with the analysis of random phenomena. As a 
branch of mathematics, however, probability theory partakes of and 
contributes to the whole domain of mathematics and, at present, its 
general set-up is expressible in terms of measure spaces and measurable 
functions. We give below a first table of correspondences between the 
probability and measure theoretic terms. Within parentheses appear 
the abbreviations to be used throughout this book. 

probability space (pr. space) 
elementary event 
event 
sure event 
impossible event 
probability (pr.) 
almost sure, almost surely (a.s.) 
random variable (r.v.) 

expectation E 

normed measure space 
point belonging to the space 
measurable set 
whole space 
empty set 
normed measure 
almost everywhere 
finite numerical measurable 

function 

integral f 
We shall use the pr. theory terms or the measure theory terms accord
ing to our convenience. We summarize below in pr. terms the proper
ties which are specializations of those established in Part I. 
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I. A pr. space (0, a, P) consists of the sure euent 0, the (nonempty) 
u-field a of events and the pr. P on a. Unless otherwise stated, the pr. 
space (0, a, P) is fixed and A, B, · · ·, with or without affixes, represent 
events. If so required, the pr. space can always be completed, so that 
every subset of a null event becomes an event-necessarily null. 

1 o a is a u.jield: for all A's, Ac, U A;, n Ai are euents. 
j=l j=l 

It follows that, for euery sequence An, lim inf An, lim sup An, and 
lim An (if it exists) are euents. 

2° Pis defined on a and,for all A's, 

PA ~ 0, P(E Ai) = 2: PAh Po= 1. 

It follows that 

P0 = 0, PA;;;;; PB when A c B, P(U Ai);;;;; 2: PAh 

P(lim inf An) ;;;;; lim inf PAn ;;;;; lim sup PAn ;;;;; P(lim sup An), 

and, if lim An exists, ihen P(lim An) = lim PAn. 

II. A r.v. X is a function on 0 to R = ( -oo, +oo) such that the in
verse images under X of all Borel sets in R are events; it suffices to re
quire the same of all intervals, or of all intervals [a, b), or of all inter
vals ( -oo, b), etc. 

An elementary r.u. is a function on 0 to R of the form X= 2: XJIA; 
where x/s are finite numbers, A/s are disjoint events, and 2: Ai = 0; 
if there is only a finite number of distinct x;'s, then X is a simple r.u. 

1 ° Euery r.u. is the finite limit of a sequence of simple r.u.' s and the 
finite uniform limit of a sequence of elementary r.u.'s; and conuerse/y. 

Euery nonnegatiue r.u. is the finite limit of a nondecreasing sequence of 
nonnegatiue simple r.u.'s; and conuersely. 

2° The class of all r.u.' s is closed under the usual operations of analy
sis, provided these operations yield finite functions. 

3 ° Every finite Borel function of a finite number of r.v.' s is a r.v. 

A random function is a family of r.v.'s; if the family is finite, it is a 
random vector, and, if the family is denumerable, it is a random sequence, 
that is, a sequence of r.v.'s. 

III. Unless otherwise stated, X, Y, · · ·, with or without affixes, will 
represent r.v.'s and, as usual, limits will be taken for n --+ oo. 
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Xn converges in pr. to X, and we write Xn ~ X, if, for every E > 0, 

. a.s. . 
Xn converges a.s. to X, and we wnte Xn ~ X, 1f Xn ~ X, except 
perhaps on a null event (event of pr. 0) or, equivalently, if for every 
E > 0, 

P U ll xk - xI ~ E] ~ o. 
k<;n 

. P a.s. 
Mutual convergence In pr. (Xn - Xm ~ 0) and a.s. (Xn - Xm ------7 0) 

are defined by replacing above Xn - X by Xn - Xm and Xk - X by 
Xk- Xz with k, I~ n, and taking limits as m, n ~ oo. 

0 P • • P a.s. 
1 Xn ~ X if, and only if, Xn - Xm ~ 0. Xn ------7 X if, and 

a.s. 
only if, Xn - Xm ------7 0. 

a.s. P P 
2° If Xn ------7 X then Xn ~ X. If Xn ~ X, then there is a sub-

a.s. 
sequence Xnk ------7 X as k ~ oo, with 

i: p [I Xnk - X I ~ ~] < 00, 

k=l 2 

The terms "integral" and "expectation" and the notations f and E 

will be considered as equivalent. In the case of r.v.'s, we have 
n 

IV. The expectation of a simple r.v. X= :E xkiAk is defined by 
k=l 

n 

The expectation of a nonnegative r.v. X ~ 0 is the limit of expecta
tions of nonnegative simple r.v.'s Xn which converge nondecreasingly 
to X: 

EX = lim EXn, 0 ~ Xn j X. 

The e:-cpectation of a r.v. X = x+ - x- is given by 

provided the right-hand side is not of the form +oo - oo, and if EX 
exists and is finite, X is integrable. 
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1° X is integrable if, and only if, I X I is integrable. 
If X 1 and X 2 are integrable and a1 and a2 are finite numbers, then 

a1X1 + a2X2 is integrable and E(a1X1 + a2X2) = a1EX1 + a2EX2; if, 
moreover, X1 ~ X2, then EX1 ~ EX2. 

If I xl I ~ x2 and x2 is integrable, then xl is integrable; in particu
lar, every bounded r.v. is integrable, and if X degenerates at a (X = a 
a.s.), then EX= a. 

The indefinite expectation 'PX of a r.v. X whose expectation exists is 
defined on the u-field a of events .d by '!'x(d) = EXIA. 

2° 'I'X on a is u-finite, u-additive, and P-continuous; if X is integrable, 
then 'I' X is bounded by El X I, and '!'x(.d) --+ 0 as P A --+ 0. 

3° MoNOTONE CONVERGENCE THEOREM. If 0 ~ Xn j X finite or 
not, then EXn i EX; if EX is finite, then the measurable function X is a.s. 
a r.v. 

p 
DoMINATED CONVERGENCE THEOREM. If Xn --+ X and I Xn I ~ Y 

integrable, then X is integrable, and EXn --+ EX. 
FATOU-LEBESGUE THEOREM. If Y and Z are integrable r.v.' s and 

Y ~ Xn or Xn ~ Z, then 

E(lim inf Xn) ~ lim inf EXn or lim sup EXn ~ E(lim sup Xn). 

If, moreover, lim inf EXn or lim sup EXn is finite, then, respectively, 
lim inf Xn or lim sup Xn is a.s. a r.v. 

EQUIVALENCE. Two functions on n are equivalent if they agree out
side a null event. Convergences in pr. and a.s., integrals and integra
bility are, in fact, defined for equivalence classes and not for individual 
functions. Therefore, as long as we are concerned with a sequence of 
r.v.'s we can consider every r.v. of the sequence as defined up to an 
equivalence. In particular, we can then extend the notion of a r.v. 
as follows: a r.v. is an a.s. defined, a.s. finite and a.s. measurable func
tion. 

Let us observe, once and for all, that when the measurable functions 
under consideration are by definition ill-measurable whete CB is a sub 
u-field of events, then almost sure relations are Pm-equivalences, that 
is, valid up to null ill-measurable sets. 

THE COMPLEX-VALUED CASE. A complex r.v. X is of the form X= 
X' + iX" where X' and X" are "ordinary" or "real-valued" r.v.'s as 
defined at the beginning of this section and where i2 = -1; X takes 
its values in the complex plane of points x' + ix", that is, in the plane 
R X R, and its expectation is the point EX= EX'+ iEX". In other 
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words, a complex r.v. X is a representation of the random vector 
{X', X"l. Similarly, a complex Borel function g = g' + ig" is a rep
resentation of the Borel vector {g', g"j. The definitions and properties 
given below of random vectors, random sequences and, in general, ran
dom functions extend at once to the complex case where the compo
nents instead of being ordinary r.v.'s are complex-valued r.v.'s or, 
equivalently, two-dimensional random vectors. The relation I EX I ~ 
El X I is still true; it suffices to use polar coordinates, setting X=· peia, 
EX= reit, and observe that 

r = e-itEpeia = Ep cos (a - t) ~ Ep 

*9.2 Random vectors, sequences, and functions. A random vector 
X= (X11 • • ·, Xn) is a finite family of r.v.'s called components of the 
random vector. Every component Xk induces a sub u-field <B(Xk) of 
events-inverse image of the Borel field in the range-space Rk of Xk. 
The random vector has for range space the n-dimensional real space 

n 

Rn == II Rk with points x = (x11 • • ·, Xn) and it induces au-field CB(X) 
k=l 

= CB(Xh X2, · · ·, Xn)-inverse image of the Borel field in Rn. The 
inverse images of intervals (-co, x) C Rn are events 

n 

[X < x] = [Xl < xh ... ' Xn < Xn] = n [Xk < Xk] 
k=l 

and, hence, are intersections of events belonging to the <B(Xk). Since 
the Borel field <Bn in Rn is the minimal u-field over the class of these 
intervals, the u-field CB(X) is the minimal u-field over these intersections 
or, equivalently, over the union of the CB(Xk)-a compound or union 
u-field <B(X11 • • • Xn) with component u-fields CB(Xk)· Thus, the elements 
of <B(X) are events and the random vector X can be defined as a meas
urable function on the pr. space to then-dimensional Borel space (Rn, <Bn). 
We define EX to be (EXh EX2, • • ·, EXn)-a point in the space Rn. 

A random sequence X= (X11 X 2, • • ·) is a sequence of r.v.'s called ., 
its components; it takes its values in the space R"" = II Rn of points 

n=l 

x = (xh x2, • • • ), that is, the space of numerical sequences. To every 
point x with an arbitrary but finite number of finite coordinates xk., · · · 
xk,. there corresponds the interval (-co, x) of all points y such that 
Yk 1 < xk., · · • Yk.. < xk,., and the minimal u-field over the class of these 
intervals is the Borel field <B"" in R"'. Exactly as for random vectors, 
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it follows that the inverse image under X of CB'" is the minimal u-field 
over the class of all finite intersections of events An E:: CB(Xn)-the 
compound or union u-field CB(X) with component u-fields CB(Xn)-then we 
write CB(X) = CB(Xh X2, · · ·) and the random sequence can be defined 
as a measurable function on the pr. space to the Borel space (R'", CB'"). 
Similarly, the definition of the expectation of the random sequence is 
EX= {EXr, EX2, ···}-when EXr, EX2, · · · exist. 

A random function Xr = (Xt, t E:: T) is a family of r.v.'s Xt where 
I varies over an arbitrary but fixed index set T. Exactly as above, the 
range space of Xr is the real space Rr =II Rt of points xr = (xt, 

tE.:T 
IE:: T)-the space of numerical functions; intervals ( -oo, xr) are de-
fined for points xr with an arbitrary but finite number of finite coordi
nates to be sets of all points Yr < xr, that is, Yt < Xt, t E:: T; the Borel 
field CBr is the minimal u-field over the class of these intervals. The ran
dom function Xr induces the compound or union u-field CB(Xr) with com
ponent u-fields CB(Xt)-the minimal u-field over the class of all finite in
tersections of events At E:: CB(X1) as t varies on Tor, equivalently, the 
inverse image under Xr of the Borel field CBr; and the random function 
Xr can be defined as a measurable function on the pr. space to the 
Borel space (Rr, CBr). By definition, EXr = {EXt, t E:: T} is a numer
ical function-when the EXt exist. 

A Borel junction gr• is a function on a Borel space (Rr, CBr) to a Borel 
space (Rr•, CBr•) such that the inverse image under gr• of the Borel 
field in the range space is contained in the Borel field CBr in the domain 
Rr. Therefore, if Xr is a random function to Rr, then the function of 
function gr• (Xr) on the pr. space to the Borel space (Rr·, CBr•) induces 
a sub u-field of events-inverse image under Xr of the inverse image 
under gr• of the Borel field CBr•. Thus, CB(gr•(Xr)) c CB(Xr); in other 
words, gr•(Xr) is CB(Xr)-measurable and, hence, is a random function. 
We state this conclusion as a theorem. 

A. BoREL FUNCTIONS THEOREM. A Borel junction of a random func
tion is a random junction which induces a sub u-field of events contained 
in the one induced by the original random junction. 

Loosely speaking, a Borel function of a random function induces a 
"coarser" sub u-field of events and has "fewer" values. 

9.3 Moments, inequalities, and convergences. Expectations of pow
ers of r.v.'s are called moments and play an essential role in the investi
gations of pr. theory. They appear in the simple but powerful Markov 
inequality and in the definition of the very useful notion of convergence 
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"in the rth mean," that we shall introduce in this subsection. They 
appear in the expansions of "characteristic functions" that we shall 
examine in the next chapter. They play a basic role in the study of 
sums of "independent" r.v.'s to which the next part is devoted. Fur
thermore, the powerful "truncation" method-to be used extensively 
in the following parts-expands tremendously the domain of applica
bility of the methods of investigation based upon the use of moments. 

EXk (k = 1, 2, · · ·) and El X I' (r > 0) are called, respectively, the 
kth moment and the rth absolute moment of the r.v. X. We may also 
consider Oth moments but, for all r.v.'s, the Oth moments are 1, and 
we shall limit ourselves to kth moments where k is a positive integer, 
and to rth absolute moments where r is a positive number, unless other
wise stated. 

We establish now a few simple properties of moments. While a kth 
moment may not exist, absolute moments always exist but may be in
finite. Since integrability is equivalent to absolute integrability, if the 
kth absolute moment of X is finite, then its kth moment exists and is 
finite; and conversely. More generally, since I X I'' ~ 1 + I X lr for 
0 < r' < r, we have 

a. If El X I r < oo, then El X I r' is finite for r' ~ r and EXk exists and 
is finite for k ~ r. 

In other words, finiteness of a moment of X implies existence and finite
ness of all moments of X of lower order. 

Upon applying the elementary inequality 

I a+ b I' ~ c,l a I'+ c,l b I', r > 0, 

where c, = 1 or 2'-1 according as r ~ 1 or r ~ 1, replacing a by X, b 
by Y and, taking expectations of both sides, we obtain the 

Cr-INEQUALITY. El X+ Y lr ~ c,EI X I' + c,EI Y I', where c, = 1 or 
2'-1 according as r ~ 1 or r ~ 1. 

This inequality shows that if the rth absolute moments of X and Y 
exist and are finite, so is the rth absolute moment of X+ Y. 

Similarly, excluding the trivial case of vanishing El Xlr or El Yl" (in 
which case the Holder inequality below is trivially true), and replacing 

1 1 

a by X/E'IXI', b by Y/E"IYI" in the elementary inequality 

1 1 
r > 1, - +- = 1, 

r s 
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we obtain the 
1 1 

HoLDER INEQUALITY. EJ XY I ;§! E;J X J• · E8J Y J•, where r > 1 and 
1 1 -+-=1. 
r s 

From this inequality follows the 

MINKOWSKI INEQUALITY. If r ~ 1, then 

1 1 1 

E;J X+ X' 1• ;§! E;J X J• + E;l X' J•. 
In fact, upon excluding the trivial case r = 1, and applying the Holder 
inequality with Y = IX+ X' lr-1 to the right-hand side terms in the 
obvious inequality 

El X+ X'ir ;§! E(J XJ·J X+ X'Jr-1) + E(J X'J·J X+ X'Jr-1), 

we find 
1 1 1 

El X+ X' Jr ;§! (E;I X Jr + E;J X' Jr)EsJ X+ X' J<r-0•, 
1 1 

where - + - = 1. Upon excluding the trivial case of vanishing 
r s 

El X+ X' lr, noticing that (r - 1)s = r, and dividing both sides by 
1 

E8 J X+ X' lr, the asserted inequality follows. 
Holder's inequality with r = s = 2, is called the 

ScHWARz INEQUALITY: E2 J XYI ;§! El XI 2 ·EI Yl 2 • 

r-r' r+r' 
Replacing X by I X l-2- and Y by I X l-2-, with r' ;§! r, and, taking 

logarithms of both sides, we obtain the inequality 

log EJ X Jr ;§! ! log El X lr-r' +!log EJ X Jr+r' 

b. log EJ X I r is a convex junction of r. 

Holder's inequality with X, Y, r, s replaced respectively by I X iv, lP, 

p/r, q/r (hence ~ = ~ + ~) becomes pirl X IT ;§! E 11 Pi X IP for r < p. 
r p q 

Hence, 
c. EliTi X IT is nondecreasing in r. 
In fact, pirl X IT i El 1Pi X IP as r j p. For, if El X IP < co then 

I X IT ;§! max(l, I X I P) and the dominated convergence theorem applies. 
If El X iv = co apply what precedes to Yn = I X !Ir!X! <nl then let 
n j co. 
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We introduce now convergence in the rth mean. Let Xn and X be 
r.v.'s with finite rth absolute moments, so that, by the Cr-inequality, 
the same is true of Xn - X. We say that the sequence Xn converges 

to X in the rth mean, and write Xn ~ X, if El Xn - X lr -+ 0. 
r 

Let Xn -+ X. If r ;a! 1 then it follows, by the Cr-inequality, that 

and, if r > 1, then it follows, by the Minkowski inequality, that 
1 1 1 

I E;l Xn lr- E;l xlr I ;a; E;l Xn- xlr-+ 0. 

This proves that 

d. If Xn ~ X, then El Xn lr -+ El X lr. 

We conclude this subsection with a simple but basic inequality and 
a few of its applications. 

A. BAsic INEQUALITY. Let X be an arbitrary r.v. and let g on R be a 
nonnegative Borel junction. 

If g is even and is nondecreasing on [0, +oo) then,jor every a ~ 0 

Eg(X) - g(a) :::;; P[l X I ~ a] :::;; Eg(X). 
a.s. sup g(X) - - - g(a) 

If g is nondecreasing on R, then the middle term is replaced byP [X ~ a], 
where a is an arbitrary number. 

The proof is immediate. Since g is a Borel function on R, it follows 
that g(X) is a measurable function on n and, since g is nonnegative on 
R, its integral exists. If g is even and is nondecreasing on [0, +oo), 
then, setting .d = rl X I ~ a], from the obvious relations 

Eg(X) = f g(X) + f g(X) JA JA• 
and 

g(a)P.d ;a; f g(X) ;a; a.s. supg(X)·P.d, 0 ;a; f g(X) ;a; g(a), h J~ 
it follows that 

g(a)P.d ;a; Eg(X) ;a! a.s. supg(X)·P.d + g(a). 

This proves the first assertion and the second is similarly proved. 
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Applications. (1) Upon taking g(x) = erz(r > 0), we obtain 

EerX _era 
---- ~ P[X ~a]~ e-raEerX 
a.s. sup erX 

(2) Upon taking g(x) = I x lr(r > 0) we obtain 

El Xlr- ar El Xlr 
-'-----'--.,...--,- ~ P[l X I ~ a] ~ -- ; 
a.s. sup 1 xlr . ar 

[SEc. 9] 

the right-hand side inequality is called the Markov inequality, and for 
r = 2 it reduces to the celebrated Tchebichev inequality. 

Upon applying Markov's inequality with X replaced by Xn- X, it 
follows that 

If Xn ~ X, then Xn ~ X, and if the Xn are a.s. uniformly bounded, 
p r 

then, conversely, X,.~ X implies that Xn ~X. 

I X lr 
(3) Upon taking g(x) = I I (r > 0), we obtain 

1 + X r 

I xlr ar 1 + ar I xlr 
E ---<P[IXI>a]<--E · 1 + I X I r 1 + ar = = = ar 1 + I X lr ' 

replacing X by Xn - X and by Xm - Xm it follows that, as m, n ~ co, 

E IXn-XIr ~o· 
1 +I Xn- Xir ' 

p 

X., ~ X if, and only if, 

E I Xm - Xn lr ~ O. 
1 +I Xm- Xn lr 

p 
Xm - X., ~ 0 if, and only if, 

REMARK. Observe that the function defined by d(X, Y) = 
E IX- Yl 

-'---,-----'----:- has the triangular and identification properties of a 
1+IX-YI 

distance, except that d(X, Y) = 0 implies only that X= Y a.s. It 
follows from the foregoing proposition that 

The space of the equivalence classes of the r.v.' s defined in a pr. space is 
a complete metric space with distance d defined by 

IX-YI 
d(X, Y) = E I I' 1+ X- Y 

and convergence in distance is equivalent to convergence in pr. 
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*CoNVEX FUNCTIONS. The relations between moments established at 
the beginning of this subsection are essentially convexity properties. 
Let us recall a few classical properties of convex functions. 

Let g be a (numerical) Borel function defined on a finite or an in
finite open interval I C R. g is said to be convex if, for every pair of 
points x, x' of I, 

( x + x') 1 1 
g -2- ~ 2 g(x) + 2 g(x'); 

if g is twice differentiable on I, then the convexity property is equiva
lent tog" ;;;;; 0 on I. The same definition applies tog on an N-dimen
sional interval IN and is equivalent to the convexity of the function 
g(x + ux') of the numerical argument u for all values of u for which 
x + ux' E:: IN, so that it suffices to consider convex functions on I c R. 
A convex function on I is either continuous on I or is not a Borel func
tion. Thus, from now on, a convex function will be assumed to be con
tinuous on its domain. In that case, g is convex on I if, and only if, 
to every x0 E:: I there corresponds a number X(x0) such that, for all 
X E:: I, 

X(xo)(x- xo) ~ g(x) - g(x0 ). 

Let X be a r.v. whose values lie a.s. in I and whose expectation EX 
exists and is finite. Replacing x0 by EX and x by X, and taking the 
expectation of both sides of the foregoing inequality, it follows that 

e. If g is convex and EX is finite, then 

g(EX) ~ Eg(X). 

If g is strictly monotone, then this relation can be written 

EX~ g-1(Eg(X)). 

For example, for r 5;;; 1, g(x) = xr(x E:: (0, +oo)) being convex, we have 
1 

El XI~ Ellr I xlr. 
More generally, let G1 and G2 be two continuous and strictly increas

ing functions such that g = G2G1-1 is convex; we say then that G2 is 
convex in G1. Since Y = G1 (X) implies that X= G1- 1(Y), it follows 
by e, upon assuming that EX and EY are finite, that 

G2G1-1(EY) ~ EG2G1-1(Y) 
and, hence, 

e'. If G2 is convex in Gb then 

G1-1(EG1(X)) ~ G2-1(EG2(X)). 
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For example, since on (0, +oo), :l2 is convex in x•1 for r2 ;;; rh that is, 
the function x•2/r1 is convex, we have 

1 1 

E;:-;1 X 1•1 ~ E;:;l X 1•2 for r2 ;;; r1. 

*9.4 Spaces Lr. The r.v.'s whose rth absolute moments are finite 
are said to form the space Lr over the pr. space (n, a, P); in symbols, 
X E:: Lr if El X lr < oo; we drop r if r = 1. We shall find later that 
the space L 2 is a very important tool in the investigation of pr. prob
lems, especially those relative to sums of "independent" r.v.'s. It will 
be convenient to introduce two boundary cases. The first is the trivial 
space L0 of all r.v.'s X since El X 1° = 1 is finite. The second is the space 
L~ of all a.s. bounded r.v.'s. Since lim El XI• < oo if, and only if, I X I ~ 1 

r--+oo 

a.s., it seems that only the subspace L'~ C L~ of r.v.'s a.s. bounded 
1 

by 1 ought to be introduced. However, for r ~ oo it is lim Erl X lr 
which counts, and this limit is finite if, and only if, X is a.s. bounded. 
In fact, lets be the a.s. supremum of I X I, defined by P[l X I > s] = 0 
and P[l X I ;;; c] > 0 for every c < s; we have s ~ oo. The foregoing 
assertion is implied by 

1 1 

a. E-;1 XI"'= lim El XI·= a.s. sup I XI= s. 
r--+oo 

For 
1 1 1 

s ;;; E•l X lr ;;; Er(l X 1• Iu x 1 ~ cJ) ;;; cPr[l X I ;;; c] ~ s 

as r ~ oo, then c i s. 
The foregoing definitions permit us to state 9.3a as follows: 

b. Lo ::> Lr ::> L. ::> L~ ::> L'~, 0 ~ r ~ s ~ oo. 

Let us observe that the space of all simple r.v.'s is a subspace of~ 
and, hence, of all the spaces L •. 

Since, by the c,.- and Minkowski inequalities and by a, 

1 1 1 

Erl X+ Ylr ~ Erl Xlr + Erl Yl•, 1 ~ r ~ oo, 

and El X- Y 1• = 0 if, and only if, X and Yare equivalent, we have, 
according to the definitions relative to metric and normed spaces, the 
following theorem. 
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A. The spaces Lr are linear metric spaces with metric defined by 

d(X, Y) = El X - Y I r for 0 < r < 1 
and norm 

1 

II X II = Erl X lr for 1 ~ r ~ co, 

provided equivalent r.v.' s are identified. 
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The problem arises whether the spaces Lr are complete and what are 
the convergence theorems in these spaces. Unless otherwise stated, 
from now on 0 < r < co (the reader is invited to examine in each case 
the boundary spaces Lo and LfXJ). 

First we observe that on account of A and 9.3d we have 

c. Convergence in distance d(Xn, X) --+ 0 in Lr is equivalent to con-
r 

vergence in the rth mean Xn --+ X and implies convergence of distances 
d(Xn, Xo) --+ d( X, Xo) to any fixed Xo E:: Lr. 

Also, if Xn E:: Lr, then, for a r.v. X, El Xn - X lr, which always exists, 
can converge to 0 only if, from some value of n on, El Xn - X lr is 
finite and, hence, only if X E:: Ln so that 

d. If Xn is a sequence in Lr and El Xn - X lr --+ 0, then X E:: Lr. 

We are now in a position to prove the 

B. 4-COMPLETENESS THEOREM. Let the Xn E:: Lr. 
r 

Then Xn--+ 
r 

some X if, and only if, Xm - Xn --+ 0, as m, n --+ co. 

Proof. If Xn ~ X, then Xm- Xn ~ 0, since, by the Cr-inequality, 

r 
Conversely, if Xm- Xn --+ 0, then, by the Markov inequality, for 
every E > 0, 

1 
P[l Xm- Xn I ~ E] ~--;: El Xm- Xn lr --+ 0 as m, n --+ co, 

E 

P • a.s. 
so that Xm- Xn --+ 0. Therefore, there IS a subsequence Xn' ---7 

a.s. 
some X as n' --+ co and, for every fixed m, Xm - X.t ~ Xm - X as 
n' --+ co, Since El Xm - X.t lr --+ 0 as m, n' --+ co, it follows, by the 
Fatou-Lebesgue theorem and the hypothesis, that 

El Xm- X lr ~ lim inf.t El Xm- X.{ lr --+ 0 as m --+ co, 

Thus, Xn ~ X, and the proof is complete. 
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If a r.v. X is integrable, then the (indefinite) integral of X is P-ab

solutely continuous: ll XI~ 0 as P.d-+ 0. Let B = rl XI~ a]. 

Since P B -+ 0 as a -+ oo, it follows that kl X I ~ 0 as a ~ oo. 

Conversely, this implies that 

r I X I = r I X I + r I X I ~ r I X I + aP .d -+ 0 
JA JAB JAB• JB 

as P .d -+ 0 then a -+ oo, and thus implies that X is integrable, since, 
given E > 0, 

for a = a. sufficiently large. 
The integrals of r.v.'s Xn are uniformly P-absolutely continuous or 

simply uniformly continuous if L_1 Xn I -+ 0 uniformly inn asP .d -+ 0; 

in other words, for every E > 0 there exists a a. independent of n suGh 

that .£1 Xn I < E for any set .d with P.d <a •. Let Bn = rl Xn I ~ a]. 

The r.v.'s I Xn I are uniformly integrable, if r I Xn I -+ 0 uniformly in 
Jsn 

n, as a -+ oo. Observe that if the fl Xn I are uniformly bounded, say, 

by c( < oo), then, by Markov's inequality, PBn ~ c/a -+ 0 as a ~ oo. 
Upon replacing X by Xn and B by Bn in the foregoing discussion, it 
follows that 

e. The r.v.' s Xn are uniformly integrable if, and only if, their integrals 
are uniformly bounded and uniformly continuous. 

r r 
Let Xn -+ X hence XniA -+ XIA. It follows, by 9.3d and the above 
lemma (take .d = n, and take .d such that P .d -+ 0) 

f. If Xn ~ X, then the I Xn lr are uniformly integrable. 

For use on the forthcoming theorem, note that (Young) 
The Fatou-Lebesgue theorem and the dominated convergence theorem re-

main valid if therein Y and Z are replaced by Un and Vn with Un ~ U, 

Vn ~ V and J Un -+ J U finite, J Vn -+ J V finite. 
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For then, the argument pp. 125-6 remains valid. Furthermore, by se

lecting {n"} p. 126 so that also U,.., ~ U, we have 

If I X,. I ~ U,. with U,. ~ U and I U,. ---+I U finite, then X,. ~ X 

implies that I X,. ---+I X in fact II X,. - X I ---+ 0. 

C. Lr-CONVERGENCE THEOREM. Let the X,. E:: Lr. Then 

(i) X,. ~ X if and only if (ii) X,. ~ X 
and one of the following conditions holds: 

(iii) II X,. lr ---+II XI'< oo; (iv) the I X,. I' are uniformly integra/;/e; 

(v) the I X,. I', or (vi) the I X,. - X I', have uniformly continuous integrals. 

Proof. Let E > 0 be arbitrary, set A,. = rl X,. - X I E; E], Amn = 
rl Xm - X,. I E; e], and let m, n ---+ oo, We use the c,-inequality without 
further comment. Note that (iv) implies X,. E L,. 

Condition (i) implies (ii) by Markov inequality (PA,. ~ E I X,.
X I' /e' ---+ 0) and implies (iii) by 9.3d. Conversely, (ii) and (iii) imply 

(i), since then I X,. - X I' ~ Cr I X,. I' + Cr I X I' = U,. with U,. !. 
2c, I XI' and I U,.---+ 2c,II XI'< oo, 

As for the remaining assertions, (i) implies (iv) by f, and. (iv) implies 
(v) bye applied to the I X,. I' in lieu of the X,.. Also, clearly (i) implies 
(vi), and (vi) implies (v), since it implies integrability of I X,. - X I' 
hence of I X I' (because X,. E:: L,) so that .£.1 X,. I ~ cT .[1 X,. - X IT 

+ cT.£.1 XI'< E for PA sufficiently small. 

Thus, to complete the proof, it suffices to show that (ii) and (v-) imply 
(i). Since convergence in pr. (in the rth mean) is equivalent to mutual 

convergence in pr. (in the rth mean) and X,.~ X, X,.~ Y imply 
that Y = X a.s., we can replace (i) and (ii) by (i') E I Xm - X,. IT---+ 0 
and (ii') P A mn ---+ 0. The assertion follows since, upon integrating 
I Xm - X,. lr on Amn and on Amnc, (ii') and (v) imply that as m, n---+ 0 

then E---+ 0, El Xm- Xn lr ~ crf I Xm lr + Crf I Xnlr + Er---+0, 
Amn Amn 
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CoROLLARY 
r ~ 

1. Xn ~X implies Xn ~ X.for r' < r. 
Set An = ll Xn - X I !;;;; 1] and observe that 

p 
CoROLLARY 2. If sup El Xn I'= c < oo, then Xn ~ X implies 

r' 
Xn ~ Xforr' < r. 

Let An = [I Xn I !;;;; a] and observe that 

E 
by taking a sufficiently large to have car'-r < -and, then, PA sufficiently 

2 
E 

small to have arPA <-. 
2 

CoROLLARY 3. If I Xn I ~ Y E:: L, for large 
r 

plies Xn ~ X E:: L •. 

Observe that for large n, £1 Xn I' ~ i P. 

p 
n, then Xn ~ X im-

We proved in 9.3 a particular case of this corollary, with Y = c < oo. 

We summarize below the relations between various types of con
vergence: 

a... p a... rl I 1] 
Xn ~ X=> Xn ~ X=> Xnk ~ X with ~ PL Xnk- X ;;:;;; 2k < 00 

1t 
r r' 

Xn ~X·=} Xn ~X, r' < r. 

The operation of integration on the complete normed linear space Lr 
with r !;;;; 1 can be characterized as a functional of the integrand, as 
follows: 

1 1 
D. INTEGRAL REPRESENTATION THEOREM. Let-+ - = 1 with 1 ~ r 

r s 
< oo. 
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.A junctional f on Lr is linear and continuous ij, and only if, there ex
ists a r.v. Y E: L8 such that j(X) = EXY for every X E: Lr; then j de

l 

/ermines Y up to an equivalence and II f II = E;l Y I•. 
1 1 

Proof. Since - + - = 1 and 1 ;;;::; r < oo, it follows that 1 < s ;;;::; oo, 
r s 

and we apply repeatedly Holder's inequality El XY I ;;;::; II X llrll Y II., 
1 1 

where II X llr = Erl X lr and II Y lis = E81 Y 1• with II Y lloo = lim 
1 ·-· E;l Yl" = a.s. sup I Yl. 
If II Xllrll Ylls is finite, thenj(X) = EXY exists, is finite, and de

fines a normed functional/ on Lr with IIJII;;;::; II Ylls· Since EXY is 
linear in X E: Ln so isj(X). Being normed and linear,/ is continuous. 

Conversely, let a functional/ on L, be continuous and linear; linearity 
implies additivity and additivity implies j(8) = 0, where 8 is the zero
point of Ln that is, the class of r.v.'s degenerate at 0. Therefore, the 
set function cp on a defined by cp(.A) = J(IA) is continuous and addi
tive, hence <r-additive, and vanishes for null events, hence is P-con
tinuous. Thus, the Radon-Nikodym theorem applies and cp on a de
termines up to an equivalence a r.v. Y such that 

Sincej(X) and EXY are both linear in X, it follows thatj(X) = EXY 
r 

for all simple finite X(E: Lr). If Y E:: L, and L, 3 Xn ~ X hence 

XnY ~ XY, then, by continuity of j and of E on Ln this equality 
extends to all X E: L,. Sincej has finite norm II j II ;;;::; II Y II., to com
plete the proof it suffices to show that the reverse inequality II f II ~ 
II Y 11. is true. 

Let r > 1. If the Xn are simple finite and 0 ;;;::; Xn j I Y I, then 

1 

El Xn I";;;::; E(Xns-l sign Y)Y;;;::; IIJIIErl Xn l<s-l)r 
yields 

II Ylls ~ II Xn lis;;;::; IIJII· 
Let r = 1. If there exists an E > 0 such that II Ylloo ~ IIJII + 2e 

and we set .A= [I Yl ~II! II+ e], then PA > 0 while 

<IIlii + e)PA;;;::; El lAY I= E(IA sign Y)Y;;;::; IIJIIPA, 
and we reach a contradiction. This completes the proof. 

REMARK. The definitions and results of this subsection extend at 
once to complex-valued r.v.'s. 
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§ 10. PROBABILITY DISTRIBUTIONS 

10.1 Distributions and distribution functions. Let X be a r.v. on 
our pr. space (n, a, P). The nonnegative set function Px defined on 
the Borel field <B in R by 

PxS = P[X E: S], S E: <B 

is called the pr. distribution or, simply, distribution of X. Since X is 
finite, the inverse image under X of R is n and, since the inverse image 
of a sum of Borel sets is the sum of their inverse images, we have 

PxR = 1, Px(L: Si) = L: PxS;, Si E: <B. 

Therefore, Px on <B is a probability. Thus, the r.v. X induces on its 
range space a new pr. space (R, c:B, Px), to be called a pr. space induced 
by X on its range space or the sample pr. space of X. Moreover, 

a. The distribution Px of X determines the distributions of all r.v.'s 

g(X) where g is a finite Borel junction on R; and Eg(X) = Lg dPx in 

the sense that, if either side of this expression exists, so does the other, and 
then they are equal. 

Proof. Every finite Borel function g(X) of a r.v. X is a r.v. and, 
by definition, 

[g(X) E: S] = [X E: g-1(S)] 

where Sand g-1(S) are Borel sets. Therefore 

P,cx>(S) = Pxg-1(S), S E: c:B, 

and the first assertion is proved. 
The second assertion will follow if we prove it for nonnegative func

tions g. Because of the monotone convergence theorem, it suffices to 
prove it for nonnegative simple functions g and, because of the addi:
tivity property of integrals, it suffices to prove the assertion for indi
cators. Thus, let g = Is, so that g(X) = I1x E: SJ· But, then, the left
hand side of the asserted equality becomes 

L I 1x E: SJdP = P[X E: S], 

while the right-hand side becomes Lis dPx = PxS. Therefore, by 

definition of Px, the asserted equality holds, and the proof is complete. 
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Distributions are set functions and are not easy to handle by means 
of classical analysis developed primarily to deal with point functions. 
Thus, in order to be able to use analytical methods and tools, it is of 
the greatest importance to find, and learn to use, point functions which 
"represent" distributions, that is, which are in a one-to-one correspond
ence with distributions. Such functions are obtained by the correspond
ence theorem according to which, to the finite measure Px corresponds 
one, and only one, interval function defined by 

Fx[a, b) = Px[a, b) = P[a ~ X< b), [a, b) CR. 

In turn, to this interval function corresponds one, and only one, class 
of point functions on R defined up to an additive constant, by 

Fx(b) - Fx(a) = Fx[a, b), a< bE: R. 

Recalling that Px is the distribution of a r.v. X, we select among all 
those functions the function F x defined on R by 

Fx(x) = Px( -oo, x) = P[X < x]> x E: R, 

and call it the distribution junction (dJ.) of X. Then, according to the 
usual notational convention, the equality in a can be written Eg(X) = 

LgdFx and, if g is integrable and continuous on R, then the right-hand 

side L.-S.-integral becomes an improper R.-S.-integral. 

b. The df. F x of a r.v. X is nondecreasing and continuous from the 
left on R, with F x(- oo) = 0 and F x( + oo) = 1. Conversely, every junc
tion F with the foregoing properties is the df. of a r.v. on some pr. space. 

Proof. The first assertion follows from the fact that P[X < x] does 
not decrease as x increases, approaches P[X < x'] as x j x', and ap
proaches P[X = -oo] = 0 or P[X< +oo] = 1 according as x--+ -oo 
or x --+ +oo, The converse follows by taking, say, for pr. space (R, 
<B, P) where P is the pr. determined, according to the correspondence 
theorem, by F. Then F is the d.f. of the r.v. X defined on this pr. 
space by X(x) = x, x E: R. 

REMARK. There are pr. spaces on which there can be defined r.v.' s for 
every junction F with the stated properties. 

For example, take for the space n the interval (0, 1), for the u-field of 
events the u-field of all Borel sets in this interval, and for pr. the Le
besgue measure on this u-field. Then any function F with the stated 
properties is the d.f. of an inverse function X of F. 
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The weakest type of convergence of sequences of r.v.'s considered 
so far is convergence in pr. In turn, it implies a type of convergence 
of d.f.'s, as follows: 

p 
c. If Xn --} X, then Fxn --} Fx on the continuity set C(Fx) of Fx. 

Proof. Since 

[X < x'] = [Xn < x, X < x'] + [Xn ~ x, X < x'] 

C [Xn < x] + [Xn ~ x, X < x'], 
we have 

P[X < x'] ~ Fxn(x) + P[Xn ~ x, X< x']. 

p 
If Xn - X --} 0, then, for x' < x, 

P[Xn ~ x, X < x'] ~ P[j Xn - X I ~ X - x'] --} 0 

and, hence, 
Fx(x') ~ lim inf Fxn(x), x' < x. 

Similarly, interchanging X and Xn, x and x', we obtain 

lim sup FxJx) ~ Fx(x"), x < x". 

Therefore, for x' < x < x", 

Fx(x') ~lim inf FxJx) ~lim sup Fxn(x) ~ Fx(x") 

and, if x E: C(Fx), it follows, letting x' j x and x" l x, that 

Fx(x) = lim Fxn(x). 

The same argument with X'n in lieu of X and x', x" E: C(Fx) yields 

d. If Xn- X'n ~ 0 and Fx'n --} Fx on C(Fx), then Fxn--} Fx on 
C(Fx). 

Particular case. There is an important case in which convergence in 
pr. and convergence of d.f.'s are equivalent: 

Xn ~ c ij, and only ij, F Xn --} 0 or 1 according as x < c or x > c. 

Follows by c and d. 

FmsT ExTENSION. Let X= (Xb · · ·, XN) be a random vector or, 
equivalently, a finite class of r.v.'s xb .. ·, XN. The distribution of X 
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is defined 
N 

on the Borel field CBN in the N-dimensional space RN = 
n Rk, by 

k=l Px(S) = P[X ~ S], S ~ CBN. 

As for a r.v., Px is a pr. and the induced pr. space is (RN, CBN, Px). 
Proposition a, with its proof, continues to be valid: the first part holds 
for every finite Borel function g on RN to some RN' and the second part 
holds for every component of g. 

The distribution function (d.f.) Fx on RN of X is still defined by 

Fx(x) = Px( -<XJ, x) = P[X < x], x ~ RN, 

or, more explicitly, by 

Fx~o···,xn(xl> · · ·, XN) = P[X1 < xl> · · ·, XN < XN]. 

Px determines the increment function of Fx and, conversely, by 

Px[a, b) = Fx[a, b) = b.b-aFx(a), a < b ~ RN 

or, more explicitly, by 

P[al ~ xl < bl> .. ·,aN ~ XN < bN] 

where b.bk-ak> k = 1, · · ·, N, is the difference operator of step bk - ak 
operating on ak. 

Proposition b and its proof, as well as the remark, remain valid, 
provided Fx "nondecreasing" means that b.hFx ~ 0 for h > 0, that 
is, h1 > 0, · · ·, hN > 0, and x ~ -<XJ or x ~ +<XJ means that one at 
least of the Xk ~ -<XJ or that all the xk ~ +<XJ, respectively. 

Proposition c and its proof remain valid, provided Xn ~ X means 
p 

that every one of the components Xnk ~ Xk, k = I, · · ·, N. 
*Let X= {Xt, t ~ T} be an arbitrary random function or, equiva

lently, an arbitrary class of r.v.'s Xt, t ~ T. Then X induces the pr. 
space (RT, CBT, Px)-its sample pr. space-where RT = n Rt is the 

t <::_ T 
range space of X, CBT is the Borel field in RT, and Px is the distribution 
of X defined by 

Px(S) = P[X ~ S], S ~ CBT. 

According to the consistency theorem, Px determines the consistent 
family of the distributions Px,1, ••• ,x,N of all finite subfamilies (X11 , • • ·, 

X 1n) of the family X and, conversely, a consistent family of distribu-
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tions on Borel fields of all finite subspaces R11 , ••• ,1N of RT determines a 
distribution on <BT. Similarly, the d.f. Fx on RT is defined by the con
sistent family of the d.f.'s Fx,1, ... ,x,N of all finite subfamilies of the 
family X and, conversely, a consistent family of d.f.'s on all finite sub
spaces of RT defines a d.f. on RT. 

REMARK. So far, the numerical functions under consideration were 
r.v.'s, that is, finite (or a.s. finite) measurable functions. However, 
the preceding definitions remain valid for nonfinite measurable func
tions, provided the range-spaces are extended, that is, R, Rk, Re = 
(-co, +co) are replaced by R, Rk, Re = [-co, +co]. Thus, say, RN 

N 

is replaced by R_N = II Rk and, at the same time, <BN is replaced by 
k=l 

ffiN-the Borel field in R_N, and Px on <BN is replaced by Px on ffiN. 
To fix the ideas, let X be a numerical measurable function, not neces

sarily finite. Since iBis determined by <Band the sets {-co} and {+co}, 
Px on iBis determined by Px on <Band the values 

Px(-co) = P[X =-co], Px(+:>o) = P[X =+co]. 

In fact, Px on iBis determined by the d.f. Fx of X, defined by 

Fx(x) = P[X < x] = Px[ -co, x), x E: R, 
smce 

Fx( -co) = lim Fx(x) = P[X = -co] ~ 0 
:z:-+ -oo 

and 

Fx(+oo) = lim Fx(x) = P[X < +co]= 1 - P[X = +co]~ 1. 
:t-+ +oo 

10.2 The essential feature of pr. theory. We are now in a position 
to describe the essential feature of pr. theory as distinct from measure 
theory. 

While pr. concepts are born from experience and, in their rough form, 
are perhaps older than the measure-theoretic ones, yet their rigorous 
formulation was given in this chapter in terms of and by specializing 
the measure-theoretic concepts. Thus, it looks as if, nowadays, pr. 
theory were a part of measure theory or, conversely, as if measure 
theory were a generalized and rigorous pr. theory. Therefore, it is im
portant to point out the basic distinction between these two interlock
ing branches of mathematics. The fact is that the distinction does not 
lie in the greater or lesser generality of the concepts, but in the proper
ties investigated in these branches of mathematics. 
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Let us start with an analogy. Geometry, say, euclidean plane geom
etry, appears to be a part of algebra and analysis, since we can consider 
a point in a plane as an ordered pair (x, y) of reals or as a complex 
number, a straight line as a linear equation in x andy, etc. Yet, geom
etry remains a science per se, not because it has its own terminology or 
is older than algebra and analysis, but because geometry studies those 
properties of sets of points that remain invariant under all th~ trans
formations which, say, preserve the distances; for example, euclidean 
displacements in the case of the euclidean geometry. And geometric 
terminology developed, frequently unconsciously, for this specific pur
pose is, on the whole, well adapted to the geometrical intuition, prob
lems, and methods. 

Now, measure theory investigates families of functions on a measure 
space to other spaces, distinct or not from the first. On the other hand, 
pr. theory has developed and continues to develop the intuition, prob
lems, and methods of its own in exploring those properties of families 
of functions which remain invariant under all the transformations which 
preserve their joint distributions-the reason being that the primary 
datum in random phenomena is not the pr. space but the joint distri
butions of the families of r.v.'s which describe the characteristics of 
the phenomena. Since the measurable characteristics are finite, pr. 
theory limited itself to r.v.'s (which, by definition, are finite). This 
explains the historical reason for the restrictions imposed on the meas
ure-theoretic setup of pr. theory. However, today pr. theory is suffi
ciently mature mathematically to show signs of getting rid of those 
restrictions, by considering more general families of functions on meas
ure spaces (normed or not) to more and more abstract spaces. We can 
summarize the essential feature of pr. theory as follows: 

A PROPERTY IS PR.-THEORETICAL IF, AND ONLY IF, IT IS DESCRIBABLE 

IN TERMS OF A DISTRIBUTION. 

In other words, 

A property of a family of junctions on a measure space is pr.-theoretical 
ij, and only if, the property remains the same when the family is replaced 
by any other family with the same distribution. 

In particular, since in the numerical case a distribution is represented 
by the corresponding d.f.' s, we can say that 

-the pr.-theoretic properties of a r.v. X are those which can be expressed 
in terms of its df. Fx, 
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-the pr.-theoretic properties of a finite family (Xt, x2, ... , X N) of 
r.u.' s are those which can be expressed in terms of the joint dJ. 
Fx,,x2.···,XN, 

-the pr.-theoretic properties of any family (Xe, t E: T) of r.u.' s are 
those which can be expressed in terms of the joint dJ.' s of its finite 
subfamilies. 

More generally, consider a function X on a pr. space (n, a, P) to 
some abstract space SJ'. The class of all sets in n' whose inverse images 
under X are events is a u-field a' in n'; assign to A' E: a' the number 
P'A' = P(X-1A'). This defines the induced pr. space (n', a', P'). 
The pr.-theoretic properties of X are those which can be expressed in terms 
of P' on a'. If we limit ourselves to these properties only, we can speak 
of a "stochastic variable" X described by a "pr. law" represented by P'. 
Those are the mathematical beings we are concerned with, and the 
function X, the measure P' (or the d.f.'s in the preceding cases) are 
only various ways of talking about those beings in various languages. 
It is important to realize fully that measurements of a stochastic varia
ble are relative to the induced pr. space; the original pr. space is but a 
mathematical fiction. Yet it is basic, for it permits the use of a "com
mon frame of reference" for the families of stochastic variables we in
vestigate-the families of sub u-fields of events they induce on the 
original pr. space. However, precisely because of the existence of a 
common frame of reference in the present setup, modern physics forces 
us to introduce a different setup that we shall see in the next volume. 

COMPLEMENTS AND DETAILS 

Notation. Unless otherwise stated, the pr. space (Q, a, P) is fixed, the 
spaces LT, L.(r, s > 0) are defined over the pr. space, and, with or without 
affixes, A, B, · · · denote events, while X, Y, · · · denote r.v.'s. 

1. Rewrite in pr. terms as many as possible of the complements and details 
of Part I. 

2. The convex function log El X IT of r is linear if, and only if, X is a degen
erate r.v. 

3. Liapounor/s inequality. Let JLT = El X IT· If r ~ s ~ t ~ 0, then 
JLr"-'JL•t-T JL{- 8 !'@;; 1. When does this inequality become an equality? Prove 
Holder's inequality by means of properties of convex functions. When does 
this inequality become an equality? 

1 
4. Investigate the possible behaviors of Erl X IT as r varies from -co to 0. 

5. Apply Markov's inequality to X - a ~ b to obtain a bound for 

P[a ~ X ~ b]. Also use the method of proof of the basic inequalities to obtain 
various bounds for this pr. 
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6. If go on [0, +co) is a nonnegative Borel function such that go(x) ~ go(E) 
for x ~ E, then P[l X I ~ E] ~ Ego(l X i)/go( E). Construct a function g on 
[0, +co) with g(O) = 0, g(E) = go(E), which is nondecreasing, continuous where 
go is continuous, and such that Eg(l X I) ~ Ego(l Xi). Then the above bound 
is at least as sharp with g instead of g0• 

(Form g;(x) = inf g(x') for x' ~ x and g(x) = min (g;(x), ~ g0(x)).) 
E 

7. Let g with g(O) = 0 be a continuous and non decreasing function on [0, +co). 
If there exists an h = h(Eg(l Xi), E) such that P[i X I ~ E] ~ h ~ Eg(l X 1)/g(E) 
for all r.v.'s X, then h = Eg(l X i)jg(E) for those E > 0 for which the bound is 
of interest, that is, for which Eg(l X I) < g(E). Loosely speaking, the bound 
Eg(l X i)jg(E) is the sharpest of all bounds which depend upon Eg(l X I) and E. 

(Take I X I = E or 0 with pr. p and q = 1 - p (pq rf 0), respectively.) 
8. ForE> 0 sufficiently small, the bound El X lr/Er is at least as sharp as 

the bound El X I•/E8 with s > r. 
9. Let 
do(X, Y) = inf {P[i X- Y I ~ E] + E} for all E > 0; 
d1(X, Y) = inf E such that }J[i X - Y I ~ E] < E; 
d2(X, Y) = Eg(j ~- Y I), g on [0, + oo) is bounded continuous and increasing 

with g(O) = 0 and g(x + x') ~ g(x) + g(x'); for instance, take g(x) = 1 ~ex 
with c > 0, g(x) = 1 - e-x, or g(x) = tanh x. 

Each of the three functions do, d1, d2 is a metric on the space of all r.v.'s, 
provided equivalent r.v.'s are identified. Convergence in pr. is equivalent to 
convergence in any of the corresponding metric spaces. 

10. (a) I: I Xn I < co a.s. if, and only if, the sequence of d.f.'s of consecutive 
sums converges to the d.f. of a r.v. 

(b) If ELI Xn lr < oo, then L I Xnlr <co a.s. 

(c) Let s = 1 or ~ according as r < 1 or r ~ 1. If L PI Xn lr < oo, then 
r 

L I Xn I < oo a.s. 
p 

11. Xn -t X if, and only if, given E > 0 and o > 0, there exists n(E, o) such 
that P[i Xn - X I ~ E] < 0 for n ~ n(E, o). 

(a) Xn ~ X if, and only if, given E > 0 and o > 0, there exists n(E, ll) 
such that P[i Xn - X I ~ E for some n ~ n(E, ll)] < ll. 

(b) Xn ~ X except on a null event if, and only if, given E > 0 there 
exists n(E) such that P[l Xn - X I ~ E] = 0 for n ~ n(E) or, equivalently, 
P[l Xn- X I~ E for some n ~ n(E)] = 0. 

12. P[Xn # X] = lim lim p u ll xk- X I~ E]. 
E---+On-+oo k~n 

- a.s. 
(a) If L P[i Xn - X I ~ E] < co for every E > 0, then Xn ~ X. 

(b) If L El Xn - X lr < co for some r > 0, then Xn ~ X. 
13. Xn ~ X if, and only if, there exists a sequence En ~ 0 such that 

p u ll xk - X I ~ Ek] ~ 0. (For the "only if" assertion select nm i co by 
kii;n 1 1 1 

p u [I xk - X I ~ -] < 2m and take En = - for nm ~ n < nm+l·) Let 
k<!:nm m m 

D be the set where the sequence Xn does not converge to a finite function. 



176 PROBABILITY CONCEPTS [SEc. 10] 

n 

PD = lim lim lim p u !I xk - X I ~ E] 
e-+Om-+oon-co k-=-m 

n 

PD = lim lim' lim p u !I xk - Xm I ~ E] 
~;--+0 m-+oon-+oo k=m 

where lim' denotes lim inf or lim sup indifferently. Can lim' be replaced by 
lim? 

11-. (a) If L P[Xn+l - Xn I ~ En] < oo and LEn < oo, then the sequence 
X .. converges a.s. to a r.v. 

(b) If L sup P[j Xn+p - X .. I ~ E] < oo for every E > 0, or 
p 

sup P[j Xn+p - Xn I ~ E] ----> 0 and L lim inf P[i Xn+p - Xn I ~ E] < oo 
p p 

for every e > 0, then the sequence Xn converges a.s. to a r.v. (In the last two 

cases, Xn ~ some r.v. X and P[j Xn -X I~ 2E] is bounded by the corre
sponding term of each of the two series.) 

15. Take Xn = nc or 0 with pr. 2. and - 2., respectively, and investigate 
n n 

convergences of the sequences Xn and El Xn lr according to the choice of c and 
of r. 

16. If Fx. ----> Fx on C(F;.;:) and Yn ~ c, then Fx.+Y .. ----> Fx+c on 
C(Fx+~) (Slutsky). 
What about XnYn, Xn!Yn and in general g(Xn, Y .. ) where g is continuous? 
(Use 10.1d.) 

17. Take X2n-l = 2_, X2n = -~and investigate the sequences Xn and Fx,. 
n n ' 

Take Xn = 0 or 1, each with pr. !, and X= 1 or 0, each with pr. t. Then 
I Xn- X I = 1 but Fx .. =F. To what converse is it a counterexample? 

18. If the sequence Xn converges a.s. to a nonfinite function, what can be 
said about the sequence Fx .. ? 

19. Let {F .. } be a denumerable family of d.f.'s with Fn( -oo) = 0 and 
Fn( +oo) = 1. The family of all functions Fn1 ••• ·>~m = Fn1 X··· X Fnm is a con
sistent family of d.f.'s. Construct as many pr. spaces as you can, on whtch are 
defined r.v.'s Xn such that Fxnp····x•m = Fnt.···nm for all finite index sets. 

Extend what precedes to a family {Ft} where t ranges over an arbitrarily 
given set T. 

20. There is no universal pr. space for all possible r.v.'s on all possible pr. 
spaces. 

21. Extend as much as possible of this chapter and of the foregoing comple
ments and details to complex-valued r.v.'s and to complex vectors, by suitably 
interpreting the symbols used. 
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DISTRIBUTION FUNCTIONS AND 
CHARACTERISTIC FUNCTIONS 

§ 11. DISTRIBUTION FUNCTIONS 

11.1 Decomposition. In pr. theory, a distributionjunction (d.j.), to 
be denoted by F, with or without affixes, is a nondecreasing function, 
continuous from the left and bounded by 0 and 1 on R. This defini
tion entails at once that the quantities, 

F( -oo) = lim F(x) = inf F, F( +oo) = lim F(x) = sup F, 
:~::--+ -oo x:--+ +oo 

F(x) = F(x - 0) = lim F(xn) = sup F(x'), 
x,.jx x'<x 

F(x + O) = lim F(xn) = inf F(x'), 
:tn!z z'>z 

exist and are bounded by 0 and 1, and xis a continuity or a discontinu
ity point ofF according as F(x + 0) - F(x - 0) = 0 or > 0. As we 
have seen, a d.f. is always the d.f. of a measurable function on a pr. 
space, and ifF( -oo) = 0, F( +oo) = 1, then it is the d.f. of a r.v. 

The requirement of continuity from the left is of no importance, 
since every nondecreasing function F1 on R bounded by 0 and 1 de
termines a d.f. F by setting F(x) = F1(x) or F(x) = F 1(x - 0) accord
ing as xis a continuity or a discontinuity point of F 1• In fact, even less 
is necessary to determine a d.f. 

Let D denote a set dense in R (for example, the set of all rationals) 
and let Fn denote a nondecreasing function on D bounded by 0 and 1. 
We can assume, without loss of generality, that it is continuous from 
the left on D. Since, for every x E:: R, there exists a sequence { Xn} C D 

177 
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such that Xn j x, Xn < x, it follows easily that, according to the defini
tion of d.f.'s, 

a. The Junction F defined on R by 

is a df. 

F(x) = lim FD(Xn), Xn E: D, Xn <X 
z, i :10 

It follows that, if two d.f.'s coincide on a set dense in R, they coincide 
everywhere. Furthermore, monotoneity of d.f.'s leads to the 

A. DECOMPOSITION THEOREM. Every df. F has a countable set of dis
continuity points and determines two df.'s Fe and Fa such that Fe is con
tinuous, Fa is a step-function, and F = Fe + Fa. 

Proof. IfF has at least n discontinuity points Xk 

a ~ X1 < x2, .. ·, < Xn < b 

in a finite interval [a, b), then, from 

F(a) ~ F(x1) < F(xl + 0) ~ · · · ~ F(xn) < F(xn + 0) ~ F(b), 

it follows, setting p(xk) = F(xk + 0) - F(xk), that 
n n 

L. p(xk) = L. {F(xk + 0) - F(xk)} ~ F(b) - F(a). 
k=l k=l 

Therefore, the number of discontinuity points x in [a, b) with jumps 
1 

p(x) > E > 0 is bounded by- {F(b) - F(a)}. Thus, for every integer 
E 

1 
m, the number of discontinuity points with jumps greater than - is 

m 
finite and, hence, there is no more than a countabl~ set of discontinuity 
points in every finite interval [a, b). Since R is a denumerable sum of 
such intervals, the same is true of the set of all discontinuity points, 
and the first assertion is proved. Furthermore, denoting the discon
tinuity set by {xn}, we have, for every interval [a, b), finite or not, 

L. p(xn) ~ F(b) - F(a). 
a;i;z,<b 

Upon defining Fa by 

Fd(x) = L. p(xn), X E: R, 
z..<a: 

and setting Fe = F- Fd, it follows at once that Fa and Fe are d.f.'s. 
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But, for x < x', 

Fe(x') - Fe(x) = F(x') - F(x) - L p(xn) 
x~xn<x' 

= F(x') - F(x + 0) - L p(xn), 
x<xn<x' 

so that, letting x' t x, we obtain 

Fe(X + 0) - Fe(x) = 0; 

thus Fe is also continuous from the right and hence continuous. 
Finally, if there are two such decompositions ofF, 

F =Fe+ Fd = F'e + F'd, 

then Fe - F'e = F'd - Fd, and both sides must vanish since the left
hand side is continuous while the right-hand side is discontinuous, ex
cept when it vanishes identically. This completes the proof. 

REMARK. Since the discontinuity set of a d.f. is countable, its con
tinuity set is always dense in R. However, the discontinuity set can 
also be dense in R. For example, let {rn} be the set of all rationals in 

R (it is dense in R); if p (r n) = 6
2 • 1

2, then the function F defined by 
7r n 

F(x) = L p(rn), X E: R, 
rn<x 

is a d.f. and, in fact, is the d.f. of a r.v., since F(- oo) = 0 and F( +oo) = 
6 00 1 
2:E2=l. 
7r l n 

FURTHER DECOMPOSITION. Fe determines, by Jl.c( -oo, x) = Fc(x) -
Fc(-oo), a finite measure Jl.c on the Borel field <Bin R. Upon applying 
to Jl.c the Lebesgue decomposition theorem with respect to the Lebesgue 
measure on <B we obtain 

Jl.c = Jl.ac + p.., Jl.ac(S) = L g(x) dx, S E: <B, 

where g ~ 0 is a Borel function and p.8 = 0 on the complement of some 
Lebesgue-null set N.. It follows that there are d.f.'s Fae and F. which 
correspond to the measures J1.ae and p.., respectively, such that 

Fe = Fae + F., Fae(x) = fx g(x) dx, g ~ 0, 
-oo 

and F. is a continuous d.f. whose points of increase all lie in N.. Thus 
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A'. Every dJ. F determines three dJ.'s of which F is the sum: 
-the step part Fd which is a step junction, 
-the absolutely continuous part Fac such that 

Fac(x) = Jx g(x) dx, g ~ 0, X E:: R, 
-oo 

-the singular part Fa which is a continuous junction with points of 
increase all belonging to a Lebesgue-null set. 

11.2 Convergence of d.f.'s. As lO.lc and ll.la suggest, convergence 
of d.f.'s to a d.f. F ought to be defined without taking into account 
what happens on the discontinuity set of F. 

We say that a sequence Fn of d.f.'s converges weakly to a d.f. F and 

write Fn ~ F, if Fn ---7 F on the continuity set C(F) of F. This defi
nition is justified-that is, the weak limit, if it exists, is unique, since 

Fn ~ F and Fn ~ F' imply F = F' on the set C(F) n C(F') and, on 
the remaining set, which, by ll.lA, is countable, F = F' by continuity 
from the left. 

We say that a sequence Fn of d.f.'s converges completely and write 

Fn ~ F, if Fn ~ F and Fn(=t=oo) ---7 F(=t=oo). Weak convergence does 
not imply complete convergence. For example, given a d.f. F0 with at 
least one point of increase so that F0 ( -oo) ~ F0 ( +oo), let Fn(x) = 

F0 (x + n). Then Fn ---7 F0 ( +oo) and the weak convergence holds but 
not the complete convergence. However, in the case of weak conver
gence we have 

w 
a. Let F n ---7 F. Then 

lim supFn(-oo) ~ F(-oo) ~ F(+oo) ~lim inf Fn(+lO), 

Var F ~lim infVar Fn 
c 

and Fn ---7 F if, and only if, Var Fn ---7 Var For Var Fn- Fn[ -a, +a) 
---7 0 uniformly in n as a ---7 oo. 

For, from 
F,.( -oo) ~ Fn(x) ~ Fn( +oo), 

it follows that, for x E:: C(F), 

lim supFn(-oo) ~ F(x) ~lim inf Fn(+oo) 

and, letting x ---7 =t=oo along C(F), the first inequalities are proved. 
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Thus 

Var F = F( +oo) - F( -oo) ~ lim inf (Fn( +oo) - Fn( -oo)) 

= lim infVar Fn, 

and the second assertion follows from the same inequalities. 

We still have to find a way to recognize whether a given sequence 
Fn of d.f.'s converges, weakly or completely. 

b. A sequence Fn of df.' s converges weakly if, and only if, it converges 
on a set D dense in R. 

Proof. The "only if" assertion follows from the fact that the con
tinuity set of a d.f. is dense in R. As for the "if" assertion, let FD = 
lim Fn on D. The relation of ll.la determines a d.f. F on R. Since, 
for x' < x < x", 

Fn(x') ~ Fn(x) ~ Fn(x"), 

it follows that, for x', x" E: D 

FD(x') ~ lim inf Fn(x) ~ lim sup Fn(x) ~ FD(x"). 

Taking x E: C(F) and letting x' j x and x" ! x along D, we obtain 

F(x) = lim Fn(x), X E: C(F), 

and the "if" assertion is proved. 

We are now in a position to prove the basic Helly 

A. WEAK coMPACTNESS THEOREM. Every sequence of df.'s is weakly 
compact. 

We recall that (at least here) a set is compact in the sense of a type of 
convergence if every infinite sequence in the set contains a subsequence 
which converges in the same sense. 

Proof. It suffices to show that, if Fn is a sequence of d.f.'s, then there 
is a subsequence which converges weakly. According to b, it suffices 
to prove that there is a subsequence which converges on a set D dense 
in R. 

Let D = {xn} be an arbitrary countable set dense in R, say, the set 
of all rationals. All terms of the numerical sequence Fn(x1) lie between 
0 and 1 and, therefore, by the Bolzano-Weierstrass compactness lemma, 
this sequence contains a convergent subsequence Fnl(x1). Similarly, 
the numerical sequence Fn1(x2) contains a convergent subsequence 
Fn2(x2) and the sequence Fn2(xl) converges, and so on. It follows 
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that the "diagonal" sequence F,.,. of d.f.'s, contained in all the subse
quences {F,.d, {F,.2 }, ···,converges on D, and the proof is complete. 

B. CoMPLETE COMPACTNESS CRITERION. A sequence F,. of dj.'s is 
completely compaCT if, and only if, it is equicontinuous at infinity: Var F,.
Fn[ -a, +a) - 0 uniform~y in n as a - +oo. 

Proof. The "if" assertion is immediate. As for the "only if" asser
tion, if the Fn are not equicontinuous at infinity, then, by a and A, there 
exists a subsequence F,., which converges weakly but not completely. 
Note that our "complete" convergence is frequently called "weak" and 
our "weak" is sometimes replaced by "vague." 

11.3 Convergence of sequences of integrals. Let g denote a func
tion continuous on R and let F, with or without affixes, denote a d.f. 
We intend to investigate conditions under which weak or complete con
vergence of a sequence Fn implies convergence of the corresponding 

sequence of integrals f g dF,., when these integrals exist. Let us ob

serve that these integrals do not change if arbitrary constants are added 
to the d.f.'s. The investigation is centered upon the basic 

w 
a. HELLY-BRAY LEMMA. IfF,. - F up to additive constants, then, 

for ever~v pair a < b such that Fn(a) - F(a) and F,.(b) - F(b), 

b b f gdF,.- f gdF. 
a a 

km 
Proof. Setting gm = L g(xmk)I!.,mk. zm.k+lh where 

k~l 

a = Xml < Xm2 < ' · ' < Xm,km + 1 = b 

and .1m = sup (xm,k+l - Xmk) - 0 as m - oo, we have, according to 
k 

the definition of R.-S. integrals, 

b b b b f gmdF,.- f gdF,., i gmdF- f gdF, m-oo. 
a a a a 

Upon selecting all subdivision points Xmk to be continuity points of}~ 

it follows from F,. ~ F that, for every m and every k, as n - oo 

F,.[Xmk, Xm,k+l) - F[Xmk, Xm,k+l), 
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and, hence, 

b 

= f gmdF. 
a 

Since 

b b 

f gdFn- f gdF 
a a 

b b b b 

= f (g - gm) dFn + f gm dFn - f gm dF + f (gm - g) dF 
a a a a 

and the first and last integrals on the right-hand side are bounded by 
sup I g(x) - gm(x) I ---7 0 as m ---7 oo, the assertion follows by letting 

a~x~b 

n ---7 oo and then m ---7 oo. 

The extensions of this lemma will be based upon the obvious inequality 

b 

(I) lfgdFn- fgdFI ~ lfgdFn-f gdFn I 
a 

+ lfbgdF- fbgdFn I+ lfbgdF- fgdFI 
a a a 

with a and b continuity points ofF, provided the integrals exist and 
are finite. 

A. ExTENDED HELLY-BRAY LEMMA. If g(=Foo) 

to additive constants, implies f g dFn ---7 f g dF. 

w 
= 0, then Fn ---7 F up 

Proof. Since g is continuous and its limits as x ---7 =Foo exist and 

are finite, g is bounded on R and the integrals f g dF n and f g dF ex

ist and are finite. Letting n ---7 oo and then a ---7 -oo, b ---7 +oo, it 
follows that, out of the three right-hand side terms in (I), the second 
converges to 0 by the Helly-Bray lemma, whereas the first and the 
third ones are bounded by sup I g(x) I ---7 0. The assertion is proved. 

x ~ (a,b} 
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B. HELLY-BRAY THEOREM. If g is bounded on R, then Fn ~ F up 

to additive constants implies J g dFn ~ J g dF. 

Proof. Since I g I ~ c < co, the integrals exist and are finite. Letting 
n ~ co and then a ~ -co, b ~ +co, it follows that, out of the three 
terms on the right-hand side of (I), the second converges to 0 by the 
Helly-Bray lemma, whereas the first and the third ones are bounded, 
respectively, by 

c{Var Fn - Fn[a, b)} ~ 0 and c{Var F- F[a, b)} ~ 0; 

and the assertion follows. 
REMARK. All the results of these subsections extend, without further 

ado, to d.f.'s F on RN' and continuous functions g on RN, with the usual 
conventions for the symbols used above. 

*11.4 Further extension and convergence of moments. Letgon R be 
continuous and F on R, with or without affixes, be a d.f. The integrals 
we are interested in, are finite Lebesgue-Stieltjes integrals of the form 

J g dF, that is, such that jl g I dF < co; they are, therefore, absolutely 

convergent improper Riemann-Stieltjes integrals. 
We say that I g I is uniformly integrable in Fn if, as a ~ -co, b ~ 

+co, .[bIg I dFn ~ jl g I dFn < co uniformly in n; in other words, 

given e > 0, 

jl g I dFn - .[b I g I dFn < E 

for a ~ a. and b ~ b. independent of n. Since ib I g I dFn does not de

crease as a! -co and/or b j +co, it suffices to require the foregoing 
conditions for some set of values of I a I and b going to infinity; for ex-

ample, that r I g I dFn ~ 0 uniformly in n as Cm ~ co with 
Jl:z:l<;;cm 

m ~co, 
We consider now properties of the foregoing integrals which follow 

from the weak convergence of d.f.'s Fn; they contain the extensions of 
the Helly-Bray lemma of the preceding subsection (we leave the verifi
cation to the reader). 
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w 
A. CoNVERGENCE THEOREM. If Fn ---+ F up to additiue constants, 

then 

(i) lim inffl g I dFn ~ fl g I dF 

(ii) I g I is uniformly integrable in Fn =} f g dFn ---+ J g dF 

(iii) fl g I dFn ---+ fl g I dF < oo <=> I g I is uniformly integrable in Fn. 

Proof. Let ±c be continuity points of F, and use repeatedly the 
Helly-Bray lemma. 

(i) follows, by letting n ---+ oo and then c ---+ +oo, from 

(ii) is proved as follows: 

Given e > 0, let f I g I dFn < e for c ~ c. whatever be n. By 
Jlxl~c 

the Helly-Bray lemma, if c' > c and ±c' (like ±c) are continuity points of 

F, then i I g I dF < e and, letting c' ---+ oo, we have f I g I dF 
c~lxl<c' Jjxj;;;;c 

< e and hence Jl g I dF < oo. Furthermore, by taking c ~ c. and 

letting n ---+ oo and then e ---+ 0, 

If gdFn- f gdFI ~ fxj;;;;c I g I dFn + l[~c gdFn 

- .[~c gdFi + f.,l~c lgl dF---+ 0. 

(iii) =} follows from 

by taking c = c0 such that the second right-hand side term is less than 
e/3, then n ~ n0 such that the first and the third right-hand side terms 
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are less than E/3, and finally c. = max (co, cb • • ·, Cno-1) where Ck 

(k = 1, · · · no - 1) are such that f I g I dFk < E; thus, 
J,.,,~.k 

for c ~ c. whatever be n. 

f I gl dFn < E J,.,,~. 

(iii) <== follows by (ii) where g is replaced by I g 1. 
This proves the last assertion and terminates the proof. 

Application. Let 

m<k> = f xk dF(x), k = 0, 1, 2, · · ·, p.<r> = fl x lr dF(x), r ~ 0 

define, respectively, the kth moment (if it exists) and the rth absolute 
moment of the d.f. For, equivalently, of the finite part of a measurable 
function X with d.f. F; if X is a r.v., then this definition coincides with 
that given in 9.3. IfF possesses subscripts, we affix the same subscripts 
to its moments. 

B. MoMENT CONVERGENCE THEOREM. If, for a given r0 > 0, I x lro 
is uniformly integrable in Fn, then the sequence Fn is completely compact 

c 
and, for every subsequence Fn' ---+ F and all k, r ~ r0, 

mn'(k) ---+ m<k> finite, P.n•(r) ---+ p.<r> finite. 

Proof. According to the weak compactness theorem, there is a sub

sequence Fn' and a d.f. F such that Fn' ~ F. On the other hand, the 
uniformity condition for I x j•o implies that, for every r ~ r0 , 

uniformly inn', so that the uniformity condition holds for I x lr. There
fore, the preceding convergence theorem applies to every sequence 
mn,<k> and P.n•<•> with k, r ~ ro. In particular, taking r = 0, we obtain 

Var Fn' ---+ Var F, so that Fn' ~ F. The theorem is proved. 

CoROLLARY. If the sequence P.n (roHl is bounded for some o > 0, then 
the conclusion of the foregoing theorem holds. 

For P.n (roHl ~ a < oo implies that, as c ---+ +oo, 

so that the uniformity condition holds for I x 1•o. 



[SEc. 11] DISTRIBUTION AND CHARACTERISTIC FUNCTIONS 187 

This corollary yields at once the following solution of the celebrated 
"moment convergence problem" (Frechet and Shohat). 

C. If, fork !i;;; ko arbitrary but fixed, the sequences mn (k) ~ m<k> finite, 
then these sequences converge for every value of k, and their limits m (k) are 
finite and are the moments of a df. F such that there exists a subsequence 

c 
Fn' ~F. 

If, moreover, these limits determine F up to an additive constant, then 
c 

Fn ~ F up to an additive constant. 

It suffices to apply the foregoing corollary and to observe that, if the 
m<k> determine F up to an additive constant, then all completely con
vergent subsequences Fn' have the same limit d.f. F up to additive 
constants. 

*11.5. Discussion. A d.f. F determined up to additive constants 
corresponds biunivoquely to an interval function F determined by 
F[a, b) = F(b) - F(a) which in turn corresponds biunivoquely to a 
measure F on the Borel field in R ( 4.4a)-a subprobability (subpr.) 
since F(R) ~ 1. 

Weak convergence of d.f.'s F, to F-all determined up to additive con
stants, is equivalent to convergence of interval functions defined by 
F,[a, b) ~F[a,b) for every F-continuity interval [a, b), that is with F{a} + 

"' F{b} = 0, and we can still write F, ~F. The above appearance of 
subpr.'s permits to extend propositions in 11.3 and 11.4 to noncontinuous 
functions g. Since these propositions derive from Belly-Bray lemma 
11.3a, it will suffice to generalize it and the others will follow as before. 
Denote by D 0 the set ot discontinuities of a function g on R toR; it is a 
Borel set (see §12). If F(D 0 ) = 0 we say that g is F-a.e. continuous. 

a. GENERALIZED BELLY-BRAY LEMMA. lf F,~Fthen fb gdFn~ 
a ib g dFn for every F-continuity interval [a, b) and every F-a.e. continuous 

function g bounded on every bounded interval. 

Proof. The method of proof of the Belly-Bray lemma in 11.3 applies 
but for one necessary change due to the fact that our integrals are now 
Lebesgue-Stieltjes ones so that instead of Riemann sums we use Darboux 
sums: Instead of gm we need Km and gm defined by 

km km 
gm = L gmkimk, 'im = L 'imdmk, 
- k=l- lc=l 
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where Imk are indicators of F-continuity intervals J mk = [Xmk, Xm,k+t) 

km 
of length I ]mk I with :E ]mk = [a, b), supl ]mk I --t 0 as m --t co, and 

k=l k 

where 

K_mk = inf{g(x):x E: Jmk}, Kmk = sup{g(x):x E: Jmd· 
Since as n --t co, by hypothesis, Fn(]mk) --t F(Jmk) so that 

Ib K,m dFn --t Ib K,m dF, Ib Km dFn --t [ Km dF, 
a a a a 

while F(D 0) = 0 implies that F-a.e., as m --t co, 

letting n --t co then m --t co in 

it follows that 

f g dFn--t fb g dF. 
a a 

The lemma is proved. 

So far we considered only numerical functions g. But all proposi
tions in 11.3 and 11.4 as well as the one above remain valid for complex 

valued g = <Rg + i~g by, say, J g dF = J (<Rg) dF + i J (~g) dF. In 

fact, then, the inverses of the Helly-Bray lemma and of the Helly-Bray 
theorem are valid because of the weak and complete convergence criteria 
in 13.2. We shall leave these immediate extensions to the reader. 

Several questions arise at once: Since Borel fields are generated by the 
class of open (of closed) sets, are subpr.'s determined by their values on 
such a class? Is weak convergence determined by the behaviour of 
subpr.'s on open (on closed) sets? Since weak and complete convergence 
are determined by convergence of integrals of some families of functions 
are there other such families? 

It will be convenient to discuss these questions for subpr.'s on Borel 
fields of metric spaces. First, because this generality is needed for 
"functional limit theorems" (see Chapter XII) and second, because the 
proofs are not more involved than for the real line. However, this 
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generality creates two difficulties: First, we do not have intervals in 
general metric spaces hence no interval functions and are reduced to 
work directly with subpr.'s. Second, nontrivial continuous functions g 

vanishing at infinity (that is, such that given e > 0 there is a compact K 
with lgl < e on Kc) may not exist. In fact, on the separable Banach 
space C[a, b] of continuous functions on [a, b] to R with the supremum 
norm, the only continuous function vanishing at infinity is the zero func
tion. Or this space is central to Ch. XII. Thus the extended Helly-Bray 
lemma is useless. However, the Helly-Bray theorem, with integrals of 
bounded continuous functions, with respect to subpr.'s Jl.n, p., remains 
meaningful. But, in the case of the real line, it corresponds to complete 

c 
convergence Jl.n ~ J1. or, equivalently, weak convergence of pr.'s Jl.n/ JJ.n(R) 
to apr. p.jp.(R) (excluding the trivial case of p.(R) = 0). Thus, in the 
general case we ar€ led to consider only weak convergence of pr.'s to apr. 
and the corresponding "relative compactness": As is easily seen, 11.2b 
implies that a sequence of pr.'s Fn on R contains a subsequence which 
converges weakly to apr. if and only if for every e > 0 there is a compact 
K. in R with Fn(K~) < e for all n. Is there a similar criterion for metric 
spaces? Answers to the foregoing questions are to be found in the next 
section. 

* § 12. CONVERGENCE OF PROBABILITIES ON METRIC SPACES 

Throughout this section and unless otherwise stated, with or without 
affixes 

1. X is a space with metric d and Borel field S generated by the class 
of its open (of its closed) sets, U, C, K are its open, closed, compact sets, 
respectively, and a/.1 = A- /.1° is the boundary of a set /.1 in X. Proper
ties of metric spaces in 5.3 are to be used without further comment. 

2. P is a pr. on S and /.1 in X is a P-continuity set when P(a/.1) = 0, 
g, h are Borel functions on the Borel space (X, S) to the Borel line or 
Borel space (X', S'), respectively. Do is the discontinuity set of g and g 
is P-a.e. continuous when P(D0 ) = 0; similarly for h. If g = IA then 
clearly Do = aA. Note that for any function h on (X, d) to (X', d'), Dh 
is a Borel set, since Dh = U 1\ Drs where rands vary over the rationals 

r s 

and Drs are the open sets 

D,. = {x: d(x,y) < s, d(x, z) < s, d'(h(y), h(z)) ~ r}. 

For later use, we observe that except for a change of notation the same 
proof as for lO.la yields 
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CHANGE OF VARIABLE FORMULA. Let PonS be apr. Let h be a Borel 
function on X to X' and g be a Bore/junction on X' to R. The distribution 
Ph-1 of h defined by Ph-1(A') = P(h-1(A')), A' €: S'-Borel field in X' 
determines the distribution of random variables g(h), and 

f g(h) dP = i, g d(Ph-1), 

in the sense that if either integral exists so does the other one and then both 
are equal. 

The main concepts and results of this section originated with Alex
androv and their final form is primarily due to Prohorov. 

*12.1 Convergence. The basic theorem below is essentially due to 
Alexandrov. Any of its six equivalent properties d~fines weak convergence 
on S of pr.'s Pn to apr. P, and we write Pn ~ P. The usual definition is 

(ii): J g dP n-+ J g dP for all bounded continuous functions g. Since 

1 = Pn('X)-+ P('X) = 1, this "weak" convergence is in fact complete con
vergence. 

A. CoNVERGENCE CRITERIA. Let Pn, P be pr.'s on the Borel fieldS 
of a metric space ('X, d). Let g be junctions on 'X to R and the integrals be 
over X. w 

Thefollowing six properties are equivalent and define Pn-+ P: 
I: 

(i) for all bounded P-a.e. continuous g 
(ii) for all bounded continuous g 

(iii) for all bounded uniformly continuous g 
II: 
(iv) limsup Pn C;;;;; PC for all closed sets C 
(v) liminfPnU'?::.PUjorallopensets U 

(vi) P nA -+ P A for all P -continuity sets A 

Proof. Clearly (i) ~ (ii) =? (iii). 
(iii) =? (iv): The function gm defined by gm(x) = e-md(x,C) is bounded 

by 1 and uniformly continuous with I c ;;;;; gm t I a as m-+ co. Thus 
P nC ;;;;; f gm dP nand, by Fatou-Lebesgue theorem, as n-+"' then m-+ "', 

limsup P nC ;;;;; J gmdP -+ PC. 
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(iv) ~ (v): The two properties are dual: each implies the other one 
by complementation. 

(v) ~ (vi): Since (iv) and (v) are equivalent, by using both and the 
fact that /1.° C A C A, we obtain 

P/1.0 ~ liminf Pn/1.0 ~ liminf PnA ~ limsup PnA ~ limsup PnA ~ 
P A. Since P(/f- /1. 0 ) = P(aA) = 0 by hypothesis in (vi), we have 
P /1.0 = P /l so that in the above inequalities the extreme terms hence all 
the terms coincide and P A = lim PAn. 

(vi) ~ (i): The method of proof of Helly-Bray lemma in 11.5 still 
applies but with another necessary change due to the fact that it is the 
range space, and not the domain, of g which is R. The sets g-1 (c) = 

{x: g(x) = cl are disjoint for distinct c L R. Since P(X) is finite, it fol
lows that P(g-1(c)) > 0 only for a countable set of values of c. Since 
g is bounded there is a bounded interval [a, b) with g(X) C [a, b). We 
can take a = Xm1 < ... < Xm,km+l = b rf_ D with no Xmk L D for 
k ~ km, m = 1, 2, ... , and max(xm,k+l- Xmk) ~ 0 as m ~ "'· 

k 

Let lmk be indicators of the ]mk = g-1[Xmk, Xm k+!), omit the empty ]mk, 

setKmk = inf{g(x): XL ]mk\, lmk = sup{g(x): X E: ]mkl, and 

Since, by (vi), Pn(]mk) ~ P(Jmk), it follows that, as n ~ oo, 

JKmdP~ J~mdPn ~ JgmdPn~ JgmdP, 

while P(D0 ) = 0, by hypothesis in (i), implies that, as m ~ oo, P-a.e. 

Km i g l Im• 
Therefore, letting n ~ oo then m ~ oo in 

we obtain (i): 

The proof is terminated. 

CoROLLARY 1. If Pn ~ P then Pnh-1 ~ Ph-1joreuery P-a.e. continu

ous h on X to X', equivalently fg(h) dPn~ fgd(Pnh-1)jorallbounded 
continuous g on X' to R. 
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For, PHh = 0 and (h-1C) C (h-1C) U Dh for every closed C, imply 
P(h-1C) = P(h-1C) hence 

limsup Pn(h-1C) ~ limsup Pn(h-1C) ~ P(h-1C) = P(h-1C) and, by 
w 

A(iv), Pnh-1 ---7 Ph-1. The equivalence assertion results at once from the 
change of variable formula by A(ii). 

CoROLLARY 2. If Pn ---7 p on e c s where e is closed under finite 
intersections and each open set is a countable union of members of e, then 

Pn~P. 

co 

Proof. Let U = U Ak, A;, E: e. By hypothesis, 
k=1 

Pn(A1 U A2) 
= Pn(A1) + Pn(A2) - Pn(AIA2) ---7 P(A1) + P(A2) - P(A1A2) 

= P(A1 U A2) 
and, by induction, for every integer m, 

m 

Since Um = U A k i U as m ---7 oo, there is an m = m, such that 
k=1 

PU- e ~ PUm. Therefore, 

n 

and, letting e l 0, 

liminf PnU ~ PU 

w 
so that A(v) holds, and Pn ---7 P. 

CoROLLARy 3. Let ~ be separable and let p n ---7 p on e c s. Then 
w 

Pn ---7 P iJ 
(i) e is closed under finite intersections and, given e > 0 and open U, 

for every x E: U there is an A E: e with x E: .Lr C A C U. 
or 

(ii) e consists of those finite intersections of open spheres which are P
continuity sets. 

Proof. (i): Since ~ is sep<lrable, given open U, there is a sequence 
(An) in e with U = U A~ and An C U so that U = U An andCorollary 
2 applies. n 



[SEc. 12] DISTRIBUTION AND CHARACTERISTIC FUNCTIONS 193 

Note that the second condition on e in (i) is implied by: for every x 
and every r > 0 there is an A E: e with 

x E: A° C A C S, (r)-open r- sphere about x. 

(ii): Since a(AB) C iJA V aB while as, (r) C {x: d(x, y) = r} has 
P-measure 0 except for countably many values of r, (i) applies, and the 
proof is terminated. 

*12.2 Regularity and tightness. Since the Borel field of the metric 
space OC is generated by the class of open (of closed) sets, it is to be ex
pected that apr. P on S would be determined by its restriction to such 
a class. 

a. REGULARITY LEMMA. Every pr. P on S is regular: given A E: S 
and E > 0, there are open U. and closed C. such that 

c. c A c u. and P(U.- c.) < E, 

equivalently, 

PA =sup PC= inf PU. 
Cc:A U::::lA 

Proof. The equivalence assertion is immediate. To prove the E-asser
tion, let e C S be the subclass of those Borel sets for which the assertion 
holds. 

e contains the class of closed sets C since open Ur = {x: d(x, C) < r} ! 
C as r ! 0. It is clearly closed under complementations. Also it is 
closed under countable unions: Given An E: e and E > 0, there are 
Cn c A c Un with P(Un- Cn) < E/2n+l; take u. = UUn and c. = 

U Cn with m such that P(UCn - C.) < E/2, so that C. C A C U. 
n~m 

and P( U. - C.) < E. Thus e C S· is a u-field containing the class of 
closed sets hence e = s. 

CoROLLARY. The set tJgdP: g bounded uniformly continuous} deter

mines P. 

For, the functions gm defined by gm(x) = e-md(z,C) are bounded and 
uniformly continuous with gm = 1 on c and gm ! 0 on c• as m ~ co' so 

that f gm dP ~ PC. 

The concept of "tightness" below was named by Le Cam in a memoir 
which followed within a year that of Prohorov and extended the whole 
theory to much more general topological spaces than the metric ones. 
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A family <9 of pr.'s on S is said to be tight if for every E > 0 there is a 
compact K, such that P Kec < e for all P E:: <9. We say that <9 lives on a 
Borel set ~o if P(~o) = 1 for all P E:: <P, equivalently, if P /1 = P /1~0 for 
every /1 E:: S and for all P E:: <9. If <9 = {P} is a singleton we replace 
above the family <9 by the pr. P. Given a Borel set ~0, the u-field So= 
{ /1: /1 C ~o, /1 E::: S} is the Borel field of the metric space ~o with its 
relative topology. Thus the above definitions apply to families of pr.' s 
on SoC S. 

b. TIGHTNESS LEMMA. (i) If a pr. P on S is tight then it lives on a 
u-compact ~0 and P /1 = sup P Kfor every /1 E:: S. 

Kc:A 

(ii) Conversely, if P on S lives on a u-comvact ~0 or if P /1 = sup P K 
for every A. E:: S then P is tight. Kc:.A 

(iii) Every pr. P on S is tight when ~ is separable and complete. 

Proof. 1°. If Pis tight then for every n there is a compact Kn with 
PKnc < 1/n, so that P<nKnc) = 0 and P lives on the u-compact ~o = 

UKn. Note that a::o is separable since compacts in metric spaces are 
separable. 

By a, P is regular so that, given /1 E:: S and e > 0, there is a closed 
C C /1 with P(/1- C) < e/2. But for n sufficiently large, PKnc < e/2 
and K, = CKn is compact with K, CCC /1. Since 

P(/1- K,) & P(/1- C) + P(C- K,) < e/2 + P(a::- K,) < e 

and e > 0 is arbitrarily small, it follows that P /1 = sup P K, and (i) is 
d K~ prove . 

Conversely, if P lives on a::o = UKn, that is, P(UKn) = 1 then, given 
n 

e > 0, there is an m such that PK.c < e for compact K, = U Kn, and P 

is tight. This proves the first assertion in (ii) and the second is immedi
ate. 

2°. When ~ is separable then, for every :n, open 1/n-spheres Un 1, 

Un2, · · · cover~- Therefore, given a pr. P on S and e > 0, for kn suffi
ciently large PUnc < e/2n+l with Un = U Unk· When moreover~ is com-

plete then the closure K, of the totally bounded set n Un is compact. 
Since 

P K.C ~ P(U Unc) < :Ee/2n+l = E 

P is tight and (iii) is proved. 

A. TIGHTNESS THEOREM. Let the family <9 of pr.'s on S be tight. Then 
(i) <9 lives on a u-compact set ~o and P /1 = sup P K for every /1 E:: S. 

KC:A 
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(ii) The family C9h-1 = { Ph-1 : P E: C9) is tight for every continuous 
tunction h on ~to a metric space ~'. 

Proof. The proof of (i) is exactly the same as that of b(i); it suffices 
to observe that the compacts Kn therein are the same for all P E: C9. 
Note that, in general, b(ii) does not hold for families (Jl. 

For(ii),givene > OthereisacompactK,withPK.c < eforallP E: (Jl. 

Since h on ~ to ~' is continuous, K~ = h(K,) is compact in ~' and 
K, C h-1 (K~) implies that for all P E: (9 

and (Jlh-1 is tight. The proof is terminated. 

Let So be the u-field of Borel sets on a Borel set ~o C ~. Given a 
family (9° of pr.'s on So, its extension to S is defined by 

CP = {P: PA = P0(A~o), po E: (1>0, A E: s}; 

note that P~o = 1 for all P E: CP, 

CoROLLARY. (i) If (1> 0 on So is tight so is its extension CP to S. 

w w 
(ii) If P n ° ~ P 0 on So then their extensions P n ~ P on S. 

For, upon taking h to be the (continuous) identity mapping of~o into 
~' A(ii) yields (i) and 12.1A Corollary 1 yields (ii). 

*12.3 Tightness and relative compactness. We say that a family CP of 
pr.'s on S is relatively compact if every sequence of members of CP con
tains a subsequence which converges weakly to a pr. on S. Thus "rela
tive compactness" is, in fact, relative sequential complete compactness. 

Prohorov theorem below is the second basic theorem of this section. 

A. RELATIVE COMPACTNESS CRITERION. Let~ be a separable complete 
metric space. Then a family CP of pr.' son its Bore/fieldS is relatively com
pact if and only if C9 is tight. In fact, the "if" part holds for general metric 
spaces~. 

Proof. 1°. Let CP be relatively compact. Since ~ is separable for 
every r > 0, there are open r-spheres u1, u2, ... which cover ~ so that 
Vn = u1 ... Un i ~. Given E > 0, there is ann such that PVn• < E 
for all P E: CP: Otherwise, for every n there is some P n E: (9 with P nVn ~ 
1 - e and, by relative compactness, the sequence (Pn) contains a sub
sequence Pn, ~some pr. PonS; thus, by 12.1 A(v), for every n 
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PVn ~ liminf Pn'Vn ~ liminf Pn'Vn' ~ 1 - e, 
n 1 n' 

while PVn j 1-contradiction. 

2°. For the "if" part we follow Billingsley who bypasses Prohorov's 
use of integral representation of linear functionals by hewing closely to 
Halmos' generation of Borel measures from "content" to "inner con
tent" to "outer extension." The difference is that "content" is defined 
by Halmos on the class of all compacts while here the corresponding set 
function has the same properties but only on a subclass of compacts. 

For the time being, assume that~ is separable so that it has a countable 
base of open spheres Ut, U2, · · · ; include~ in this base. 

Let <P be tight so that for every n there is a compact K(n) with 
P(K(n))< < 1/n for all P (:: <P. Let X consist of all finite unions of sets 
of the form UmK(n). Thus the class X is countable, closed under finite 
unions, and its members-to be denoted by K with or without affixes, 
are compact. 

Given a sequence (Pn) of members of <P, Cantor's diagonal procedure 
w 

yields a subsequence Pn' ~some A on X. We have to prove that Pn' ~ 
some pr. PonS. 
Let 

AoU = sup AK, A0A = inf AoU, 
KCU U=>A 

so that A is defined on X, Ao on the class 'U of open sets U, and A 0 on the 
class of all subsets. We shall show that the restriction of A 0 to S is pre
cisely the pr. P. 

Clearly, A on X is nondecreasing, additive, and subadditive: K1 C 
K2 ==? AKt ~ AK2, A(Kt + K2) = AKt + AK2, A(Kt U K2) ~ AKt + AK2, 
Ao and A 0 are nondecreasing, and A 0 = Ao on 'U. We shall use these prop
erties without further comment. 

3°. Ao on 'U is u-subadditive: 
Let K C Ut U U2 and set 

Ct = {x E::: K: d(x, U1c) ~ d(x, U2<)}, 

C2 = {x E::: K:d(x, U2c) ~ d(x, U1<)}. 

These closed sets, being contained in compact K, are compact and so are 
CtUlc and c2u2c· If X E::: CtUlc ~ 0 belongs to u2, then d(x, Ute) = 

0 < d(x, U2<) hence X rJ_ Cccontradiction. Thus cl c ul and, by defi
nition of X, Ct C Kt C U1 for some K1; similarly C2 C K2 C U2. 
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Therefore, upon taking the supremum in K in 

AK ~ A(Kl U K2) ~ AK1 + AK2 ~ AoUl + AoU2, 

we obtain Ao (U1 U U2) ~ AoU1 + AoU2, so that Ao on 'l1 is subadditive 
and, by induction, is finitely subadditive. Now, if K C U Un then, by 
compactness, K C Vm = U U,. for some m. Therefore, upon taking 

n~m 

the supremum in K in 

AK ~ AoVm ~ :E AoU,. ~ :E AoU,., 
m:;!n n 

we obtain Xo(U U,.) ~ :E Ao U,. so that Ao on 'l1 is u-subadciitive. 
n 

For closed C and open U, AoU ~ AoUC + AoUC•: Given e > 0, there 
is a K1 C UC• with AK1 > AoUC•- e/2, and then there is a K2 C UK1• 
with AK2 > AUK1c - e/2. Since K1 and K2 are disjoint and contained 
in U, 

XoU ~ A(Kl + K2) = AK1 + AK2 > Ao(UC•) 
+ Xo(UKlc) - E ~ Ao(UC•) + Ao(UC) - E 

hence, letting e ---7 0, the assertion is proved. 

4°. Ao is an outer measure and Borel sets are A0-measurable: 
Given e > 0 and A,. C ~ there are U,. :::>A,. with AoU,. < A0A,. + 

e/2"+1. Since Ao is u-subadditive, 

so that, letting e ---7 0, A 0 is u-subadditive. Since A 0 is also nondecreasing, 
A 0 is an outer measure. Furthermore, for closed C and open U :::> A, 
upon taking the infimum in U in 

AoU ~ AoUC + AoUC• ~ A0(AC) + A0(AC•), 

we obtain 
XOA ~ AO(AC) + AO(AC•), 

so that closed sets are A0-measurable. Therefore, the Borel fieldS (that 
the class of closed sets generates) is contained in the u-field of X 0-measur
able sets. 

5°. Let P be the restriction of X 0 to S, so that P on S is a measure; 
in fact, Pis apr. since 

1 ~ P~ = Ao~ = s"!?-p A(K(n)) ~ s~p ( 1 - ;) = 1. 
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Since for all open U 

PU = "XoU = sup "XK, 
KCU 

upon taking the supremum in K C U in 

"XK = limP ... K ~ liminf P ... u, 
n' n' 

we obtain 

PU ~ liminf P ... u. 
1D 

Thus, by 12.1 A( v), P n' ----+ P and the "if" part is proved but under the re-
striction of separability of OC. 

Now, let OC be a general metric space. By 12.2 A, <P on S, being tight, 
lives on a cr-compact OCo-a separable metric space in its relative topology. 
Thus what precedes applies to the restriction <P0 of <P to the Borel field 

w 1D 

So of OCo. But, by 12.2A Corollary (ii), P ... 0 ---+ P0 on So implies P,.,----+ P 
on S. The proof is terminated. 

CoROLLARY. Let OC be separable and complete. Then <P on S is rela
tively compact if and only if, for euery e > 0 and r > 0, there is a finite 
union V,. of r-open spheres with P V,. • < e. 

§ 13. CHARACTERISTIC FUNCTIONS AND DISTRIBUTION FUNCTIONS 

Pr. properties are properties describable in terms of distributions
and those are set functions. The introduction of d.f.'s makes it pos
sible to describe pr. properties in terms of point functions, easier to 
handle with the tools of classical analysis. Yet, to a distribution corre
sponds not a single d.f. F but the family of all functions F + c where c 
is an arbitrary constant. The selection of one of them is somewhat 
arbitrary, and we have constantly to bear this fact in mind. The in
troduction of characteristic functions (ch.f.) assigned to the family 
F + c by the relation 

j(u) = J eiuz dF(x), u E: R 

obviates this. difficulty and, moreover, is of the greatest practical im
portance for the following reasons. 

1° To the family F + c corresponds a unique ch.f., and conversely. 
Therefore, there is a one-to-one correspondence between distributions 
and ch.f.'s. 
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2° The methods and results of classical analysis are particularly 
well suited to the handling of ch.f.'s. In fact, ch.f.'s are continuous 
and uniformly bounded (by 1) functions. Moreover, to complete and 
weak convergence of d.f.'s (defined up to additive constants) corre
spond, respectively, ordinary convergence of ch.f.'s and ordinary con
vergence of their indefinite integrals. 

3° The oldest and, until recent years, almost the only general 
problem of pr. theory is the "Central Limit Problem," concerned with 
the asymptotic behavior of d.f.'s of sequences of sums of independent 
r.v.'s. Much of Part III will be devoted to this problem. The d.f.'s 
of such sums are obtained by "composition" of the d.f 's of their sum
mands, and this "composition" involves repeated integrations and re
sults in unwieldly expressions, whereas the ch.f.'s of these sums are 
simply the products of the ch.f.'s of the summands. The Central Limit 
Problem was satisfactorily solved in the 15 years (1925-1940) which 
followed the establishment by P. Levy of the properties of ch.f.'s. 

13.1 Uniqueness. The characteristic function (chf.) f of a d.f. F is 
defined on R by 

f(u) =I eiux dF(x) =I cos ux dF(x) + i fsin ux dF(x), u E: R. 

Since, for every u E: R, the function of x with values i"x is continuous 
and bounded by 1, f exists and is continuous and bounded by 1 on R. 
Moreover, to all functions F + c, where cis an arbitrary constant, cor
responds the same fuhction f. The converse (and, thus, the one-to
one correspondence between distributions and ch.f.'s) follows from the 
formula below. 

A. INVERSION FORMULA. 

1 f+U e-iua _ e-iub 
F[a, b) = lim - . f(u) du, 

U-+ oo 211' -U tU 

prouided a < b are continuity points of F. 
The inuersion formula holds for all a < b E: R, prouided F is normalized. 

We say that F is normalized if the values ofF at its discontinuity points 
F(x - 0) + F(x + 0) . . 

x are taken to be 2 . Normahzatton destroys the 

continuity from the left of F at its discontinuity points. However, 
according to 11.1, the normalized d.f. determines the original one, so 
that nothing is lost by normalization. 
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We observe that, in the integral which figures on the right-hand side 
of the inversion formula, the integrand is defined at u = 0 by continuity, 
so that it is continuous on R; also it is bounded on R by its value (b - a) 
j(O) at u = 0. Thus, for every finite U, this integral is an ordinary 
Riemann integral and, in proving the inversion formula, we shall find 
that the limit of this integral, as U ---+ co, exists. 

Proof. The proof uses repeatedly the dominated convergence theo
rem applied to an interchange of integrations and is based on the classi
cal Dirichlet formula 

1 fb sin u 
- -- du---+ 1 
7r n. U 

as a ---+ -co, b ---+ +co, 

so that the left-hand side is bounded uniformly in a and b. Let 

1 f +U e-iua _ e-iub 

Iu=- . f(u)du, a<bE::R, 
211" -U tU 

and replace j(u) by its defining integral f eiux dF(x). We can inter

change the integrations, so that, by elementary computations, 

I u = J 1 u(x) dF(x), 

where 
1 i U(x-a) sin U 

]u(x) =- -du. 
11" U(x-b) U 

Since J u is bounded uniformly in U, integration and passage to the 
limit as U ---+ co can be interchanged in 

lim I u = lim J! u(x) dF(x). 
U-+«~ U-+«J 

Therefore 

lim I u =fJ(x) dF(x) 
U->«> 

where 

U->«> 

[
1 for a< x < b 

](x) = lim 1 u(x) = ! for x = a, x = b 

0 for x < a, x > b, 
and, hence, 

lim Iu = ifF(a + 0)- F(a- O)l + {F(b- 0)- F(a + O)l 
U->«> 

+i{F(b + 0)- F(b- O)l 

F(b - 0) + F(b + 0) F(a - 0) + F(a + 0) 

2 2 
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Thus, ifF is normalized or if a < b E: C(F), then 

lim I u = F[a, b), 
U->oo 

and the inversion formula is proved. 

REMARK. If an improper Riemann integral 

exists and is finite, then 

J +U J+oo 
lim gdx = gdx. 

U->oo -U -oo 

However, the left-hand side limit may exist and be finite (as in the in
version formula), whereas the right-hand side improper integral does 
not exist. Yet the inversion formula can be written in terms of an im
proper Riemann integral as follows: 

1 ioo .9' { (e-iua - riub)J(u)} 
F[a, b) =- du 

71' 0 u 

where .9' stands for "imaginary part of," so that 

g { (e-iua _ e-iub)J(u)} = 

(cos ua - cos ub).'fj(u) - (sin ua - sin ub)ffi.j(u). 

+U 0 U 
It suffices to write J =J + { , change u into -u in the first 

-U -U JO 
right-hand side integral, and take into account the fact that then the 
integrand changes into its complex-conjugate. 

CoROLLARY. F is differentiable at a and its derivative F'(a) at a is 
given by 

1 f+U 1 - e-iuh 
(1) F'(a) = lim lim - . e-iua_t(u) du 

h->0 U->oo21f' -U tuh 

if, and only if, the right-hand side exists. 
In particular, iff is absolutely integrable on R, then F' exists and is 

bounded and continuous on Rand, for every x E: R, 

(2) 
1 f+oo . 

F'(x) = - e-•uxf(u) du. 
271' -oo 
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Proof. The first assertion follows directly from the inversion formula 
by the definition of the derivative. The second assertion follows from 

the first and from the assumption thatfiJ I du < co since, the integrand 

in (1) being bounded by If I , we have, in (1), 

+ U +oo +oo +oo 
lim J =f and lim J =f lim. 

U-+ oo -U -<lO h-+0 -<lO -<lO h-+0 

REMARK. Thus, if the ch.f.'sfn of d.f.'s Fn are uniformly Lebesgue
integrable on R, and if fn -+ f ch.f. ofF, then f is Lebesgue-integrable 
on R, and F'n -+ F'. 

B. For every x E:: R, 
1 f+U . 

F(x + 0) - F(x - 0) = lim - e-'":f(u) du. 
U-+"' 2U -U 

For we can interchange below the integrations and the passage to the 
limit, so that 

1 f+U . 1 f+U {f . } lim - e-'":f(u) du = lim - du e•u(y-x) dF(v) 
U-+oo2U -U U-+oo2U -U 

I sin U(y- x) 
= lim dF(y) 

u...... U(y- x) 

= F(x + 0)- F(x- 0). 

13.2 Convergences. Since there is a one-to-one correspond~nce be
tween d.f.'s defined up to additive constants and ch.f.'s, it has to be 
expected that a one-to-one correspondence also exists between the weak 
and complete convergence, up to additive constants, of sequences of 
d.f.'s and certain types of convergence-to be found--of ch.f.'s. For 
this purpose we introduce the integral ch.J.] ofF defined on R by 

i u f eiux 1 
](u) = f(v) dv = . - dF(x). 

0 tX 

The last integral is obtained upon replacingf(v) by its defining integral 
and noting that the interchange of integrations is permissible. Since 
there is a one-to-one correspondence between] and its continuous deriva
tive f, it follows, by 12.1, that there is a one-to-one correspondence 
between] and F defined up to an additive constant. 
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We are now in a position to show that the weak and the complete 
convergence up to additive constants of sequences of d.f.'s correspond 
to the ordinary convergence of the corresponding sequences of integral 
ch.f.'s and of ch.f.'s, respectively. Unless otherwise stated, a d.f., its 
ch.f., and its integral ch.f. will be denoted by F,f,J respectively, with 
the same affixes if any. 

w 
A. WEAK CONVERGENCE CRITERION. If Fn --? F up to additive con-

stants, then ]n --? ]. Conversely, if ]n converges to some function g, then 
there exists a dj. F with Fn ~ .F up to additive constants and j = g. 

eiux - 1 
Proof. Since --? 0 as x --? =f=oo, the first assertion follows at 

tX 

once, by the extended Helly-Bray lemma, from the definition of the 
integral ch.f.'s. 

Conversely, let ]n --? g. According to the weak compactness the-

orem, there is a d.f. F and a subsequence Fn' ~ F as n' --? oo. There
fore, by the extended Helly-Bray lemma, for every u E:: R, 

f eiux - 1 f eiux - 1 
g(u) = lim]n'(u) = lim . dFn'(x) = . dF(x) = ](u). 

n' n' tX tX 

Since] determines F up to an additive constant, it follows that weakly 
convergent subsequences of the sequence Fn have the same limit Pup to 
additive constants, with j = g. This proves the second assertion. 

CoROLLARY 1. Every sequence ]n of integral chj.'s is compact in the 
sense of ordinary convergence on R. 

For, in view of the above criterion, this statement is equivalent to 
the weak compactness theorem for d.f.'s. 

w 
CoROLLARY 2. If fn --? g a.e., then Fn --? F up to additive constants, 

withf = g a.e. 

Here "a.e." is taken with respect to the Lebesgue measure on R. 
Proof. Since fn --? g a.e. and the fn are continuous and uniformly 

bounded by 1, it follows that g is measurable and bounded a.e. so that, 
by the dominated convergence theorem, ]n --? g where g is defined on 
R by the Lebesgue integral 

g(u) = £ug(v) dv, u E:: R. 
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w 
Therefore, by the foregoing criterion, Fn ~ F up to additive constants, 
and j = g. Since the derivative of j is j, whereas that of the indefinite 
Lebesgue integral g exists and equals g a.e., it follows that/= g a.e. 

c 
B. CoMPLETE CONVERGENCE CRITERION. If Fn ~ F up to additive 

constants, then fn ~f. Conversely, if fn ~ g continuous at u = 0, then 

Fn ~ F up to additive constants, and f = g. 

When the Fn andj, are d.f.'s and ch.f.'s of r.v.'s, the converse becomes 
the celebrated P. Levy's continuity theorem for ch.f.'s. 

c 
Proof. Let Fn ~ F up to additive constants. Then, by the Helly-

Bray theorem, for every u E:: R, 

Conversely, letfn ~ g continuous at u = 0. Then, for every u E:: R, 

}n(u) = ifn(v) dv ~ iug(v) dv = g(u), 

and, hence, by the weak convergence criterion, for some d.f. F with ch.f.j, 

Fn ~ F up to additive constants, and]= g. Therefore, 

1 iu 1 iu - f(v) dv = - g(v) dv 
u 0 u 0 

and, letting u ~ 0, we obtain j(O) = g(O) on account of continuity of 
f and of g at the origin. Thus, 

Var Fn = fn(O) ~ g(O) = j(O) = Var F, 

and the proof is completed by taking into account the direct assertion. 

C. UNIFORM CONVERGENCE THEOREM. Ij a sequence fn of chJ.'s con
verges to a chJ. j, then the convergence is uniform on every finite interval 
[-U, +UJ. 

Proof. On account of B, Fn ~ F up to additive constants. 
Let E > 0 and U > 0 be arbitrarily fixed. We have 

b b 

I /n(u) - j(u) I~ I f eiux dFn(x) - f eiux dF(x) I 
a a 

+ Var Fn- Fn[a, b) + Var F- F[a, b) 
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where we take a, b to be continuity points of F. Let I a I, b and then 
E 

n be so large that Var F- F[a, b) I < -, 
6 

E E 
Var Fn- Fn[a, b) < Var F- F[a, b)+-<-· 

6 3 

It suffices to show that, for n sufficiently large and an· u E: [- u, + U], 

f b fb E 
~n = I eiux dFn(x) - eiux dF(x) I <-· 

a a 2 
Let 

a = X1 < X2, • • • < X N +1 = b 

where the subdivision points are continuity points of F and 
a = max (xk+l - Xk) < e/8 U. Since, by the mean value theorem, 

k~N 

I eiux - eiux' I ~ I X - x' I U for I u I ~ U, 

it foUows that, upon replacing x by Xk in every interval [xk, xk+1), ~n 

is modified by at most 

i b fb E 
aU dFn(x) +aU dF(x) ~ 2aU < -· 

a a 4 

Thus, it remains to show that, for n sufficiently large, 

N 

II: iu"'k{Fn[Xk, Xk+l) - F[xk, Xk+l)} I 
k=l 

N E 

~ L: I Fn[Xk, Xk+l) - F[xk, Xk+l) I < -· 
k=l 4 

Since Fn[Xk, Xk+l) -t F[xk, Xk+l) for every k ~ N, the last assertion 
follows and the proof is complete. 

REMARK. In fact, we proved, with a supplementary detail, the first 
assertion of the complete convergence criterion without using the Belly
Bray theorem. 

COROLLARY 1. If fn -t j and Un -t ujinite, thenfn(un) -t J(u). 

This follows, by C and continuity ofj, from 
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CoROLLARY 2. d set 1Ft} of d.j.'s is completely compact (up to addi
tive constants) if, and only if, the corresponding set 1ft} of ch.j.' s is equi
continuous at u = 0. 

Proof. By 13.4B equicontinuity of 1ft} at u = 0 is equivalent to 
equicontinuity on R. 

On the other hand, Ascoli's theorem and its converse say that a set 
of continuous functions is compact in the sense of uniform convergence 
on a finite closed interval if, and only if, it is uniformly bounded and 
equicontinuous on this interval. Since the f 1 are uniformly bounded, 
the assertion follows by B and C. 

REMARK. If the d.f.'s Fn, F of r.v.'s, are differentiable and Fn' ~ F' 
on R, thenfn ~ f uniformly on R. It suffices to use 17 in Complements 
and Details of Ch. II. 

13.3 Composition of d.f.'s and multiplication of ch.f.'s. A function 
F on R = ( -oo, +oo) is said to be composed of d.f.'s PI and F2, and 
written PI* F2, if 

where we assume, for simplicity, that PI( -oo) = F2 ( -oo) = 0; other
wise, to avoid trivial complications, we would have to replace PI by 
PI -PI( -oo). 

Since, for every fixed y, PI (x - y) are values of a d. f., nondecreasing, 
continuous from the left and bounded by PI (- oo) = 0 and PI ( + oo) ;;;;; 1, 
it follows, upon applying the dominated convergence theorem, that F 
has the same properties and that Var F = Var PI· Var F2• 

A. CoMPOSITION THEOREM. If F = PI * F2, then f = Jif2, and con
versely. 

Proof. Let F = PI * F2 and let a = Xni < · · · < Xn,kn+I = b with 
sup (xn,k+l - Xnk) ~ 0 as n ---t oo. Since, for every u E: R, 

k 

b f eiux dF(x) = lim L eiuxnkFfxnk, Xn,k+l) 
a k 
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it follows that 

ibeiuzdF(x) = f{i~~eiuzdF1 (x)} iuydF2(y) 

and, letting a ---+ -co and b ---+ +co, 

fiuz dF(x) = feiuz dFl(x) feiuy dF2(y), 

so that] = f1h and the first assertion is proved. 
Conversely, according to the first assertion,fth is the ch.f. of F1 * F2 

and, hence, on account of the one-to-one correspondence between] and 
F + c, F = F1 * F2 up to an additive constant. The converse is proved. 

CoROLLARY 1. A product of chf.' s is a chJ. and, in particular, iff is 
a chJ. so is If 12• 

For f = fd2 is the ch.f. of the d.f. F = F1 * F2, and the particular case 
follows from the fact that, iff is a ch.f., so is its complex-conjugate 7 
which corresponds to the d.f. F( +co) - F( -x + 0). 

CoROLLARY 2. Composition of dJ.'s is commutative and associative. 

For the corresponding multiplication of ch.f.'s has these properties. 
13.4 Elementary properties of ch.f.'s and first applications. In the 

sequel, the elementary properties we establish now will play an impor
tant ancillary role, and the first applications will be used, improved, 
and generalized. 

We denote by F and j, with same subscripts if any, corresponding 
d.f.'s and ch.f.'s; in general, the corresponding d.f.'s Fare defined up to 
additive constants, but iff is ch.f. of a r.v., then, as usual, we take 
F(-co) =O,F(+oo) = 1. Wesaythatar.v.XissymmetricifXand 
-X have the same d.f., that is, for every x E: R, P[X < x] = P[X > 
-x]. 

A. GENERAL PROPERTIES. Every chJ. j is uniformly continuous and 

If I ~J(O) = Var F ~ 1, f( -u) = f(u). 

Iff is the chJ. of a r.v. X, then the junction with values ei"a_t(bu) is the 
chJ. of the r.v. a+ bX. In particular,] is the chJ. of -X andj is real 
if, and only if, X is symmetric. 

Elementary inequality:j(O) - Rj(2u) ~ 4(!(0) - Rj(u)). 

Proof. The first assertion follows fromj(u) = J eiuz dF(x). The sec

ond assertion follows from Eeiu(a+bX) = eiuaEeibuX. Finally, if X is 
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symmetric, then j(u) = EeiuX = Ee-iuX = f( -u) = ](u) so that f is 
real; conversely, iff is real, then changing the signs of a and b in the 
inversion formula is equivalent to taking the complex-conjugate of the 
integrand and changing its sign, so that F[a, b) = F[ -b, -a) and, 
hence, by letting a ~ -oo and b j x, we have P[X < x] = F(x) = I 
- F(-x + 0) = P[X > -x]. 

The elementary inequality obtains upon integrating 1 - cos 2ux ~ 
4(1 - cos ux) with respect to F. 

B. INCREMENTS INEQUALITY: for any u, h E: R 

IJ(u) - f(u + h) 12 ~ 2j(O) IJ(O) - <Rj(h)}. 

INTEGRAL INEQUALITY: for u > 0 there exist junctions 0 < m(u) < 
M(u) < oo such that 

m(u)i" {/(0) - <Rj(v)} dv ~J~ dF(x) 
o 1 +x 

~ M(u) £" {/(0) - <Rj(v)} dv; 

if j(O) = 1, then,jor u sufficiently close to 0, 

f~ dF(x) ~ -M(u)f" (log <Rj(v)) dv. 
1 +X 0 

Proof. The increments inequality follows, by Schwarz's inequality, 
from 

IJ(u) - J(u +h) 12 = I Ieiux(l - eihx) dF(x) r 
~I dF(x) I11 - eihx 12 dF(x) 

= 2J(O) I (1 - cos hx) dF(x) 

= 2j(O) {/(0) - <Rj(h)}. 

The integral inequality follows, by the elementary inequality with 
u¢0 

( sin ux) 1 + x2 
0 <M-1(u) ~ I u I 1 - -- --2 - ~ m - 1(u) < oo, x E: R, 

UX X 
from 

i u dvj(1 - cos ux) dF(x) = uj(I - sin ux) 1 + x2 
• ~ dF(x). 

o ux x2 I+x2 



[SEc. 13] DISTRIBUTION AND CHARACTERISTIC FUNCTIONS 209 

The case f(O) = 1 follows then from the elementary inequality 1 - a 

~ - log a for a ~ 0. 

The integral inequality permits us in turn to find bounds for 

J x 2 dF(x) and { dF(x), (c > 0), by 
I x I <c J1 x I"?; c 

(I) - 1- { x2 dF(x) + _c_z- { dF(x) 
1+c2 Jixl<c 1+c2 Jixl"?;c 

~f____!__ dF(x) 
1 + x2 

~ { x2 dF(x) +J dF(x). 
Jlxl<c lxl"?;c 

However, it is sometimes more convenient to use the direct 

B'. TRUNCATION INEQUALITY:for u > 0: 

{ x 2 dF(x) ~ 3
2 {f(O) - cRj(u)}, 

J1 xJ <1/u U 

{ dF(x) ~ 2 iu {j(O) - cRf(v)} dv. 
J1 xl"?;l/u U 0 

If f(O) = 1 and u is sufficiently close to 0, then we can replace 1 - cRj in 
the foregoing by - log cRf. 

These inequalities follow, respectively, from 

f (1 - cos ux) dF(x) ~ { u2x2 (1 - u2x2
) dF(x) 

Jlxl<l/u 2 12 

llu2J ~ -- x2 dF(x) 
- 24 I xl<l/u 

and from 

~ iu dv J (1 - cos vx) dF(x) = J ( 1 - si::x) dF(x) 

~ (1 - sin 1) { dF(x). 
Jlxl"?;l/u 

The casef(O) = 1 follows as in B. 
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Applications. 1° If fn ~ g continuous at u = 0, then g is continuous 
on R. 

This follows from the fact that the increments inequality with fn be
comes, as n ~ co, the same inequality with g. 

2° If the sequence fn is equicontinuous at u = 0, then it is equicon
tinuous at every u E:: R. 

For, then, as h ~ 0, 

uniformly in n. 

3° Iffn ~ 1 on (-U, +U),thenfn ~ 1 onR. 

This follows by induction asfn(2u) ~ 1 for I u I < U follows from 

!Jn(u) - fn(2u) 12 ~ 2{/n(O) - CRfn(u)} ~ 0 for I U I < U. 

If we take into account the fact that the set of all differences of num
bers belonging to a set of positive Lebesgue measure contains a non
degenerate interval (- U, + U), this proposition can be improved as 
follows: 

If fn ~ 1 on a set A of positive Lebesgue measure, then fn ~ 1 on R. 

For, we can assume that the set A is symmetric with respect to the 
origin and contains it, since, for u E:: A, 

fn( -u) = fn(u) ~ 1, 1 ~ fn(O) ~ lfn(u) I ~ 1, 

and, then,fn(u - u') ~ 1 for u, u' E:: A on account of 

lfn(u) - fn(u- u') 12 -~ 2{/n(O) - CRfn( -u')} ~ 0. 

4° We shall now prove an elegant proposition (slightly completed) 
due to Kawata and Ugakawa. We use repeatedly Corollary 2 of the 
weak convergence criterion which says that, if a sequence of ch.f.'s 

gn ~ g a.e., then the corresponding sequence of d.f.'s Gn ~ G up to 
additive constants and the ch.f. of G coincides a.e. with g. 

n 

Let gn = Ilfk ~ g a.e. Either g = 0 a.e., and then Gn ~ 0 up to 
k=l 

additive constants. Or g ~ 0 on a set A of positive Lebesgue measure, 
c 

and then Gn ~ G up to additive constants. 
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Proof. In both cases Gn ~ G up to additive constants. The first 
case follows from the recalled proposition. In the second case, we have 
to prove that Var Gn ~ Var G. Since Var P = Var (F* F) = (VarF)2 
and /" = If 12, it suffices to consider real-valued nonnegative ch.f.'s. 

m 

But then lim fl /k exists on R and coincides a.e. with a ch.f., while, 
m->., n+l 

for m, n sufficiently large, gmgn ¢ 0 a.e. on A, and, as m ~ oo and then 
n ~ oo, 

m 00 

II /k = gm/gn ~ g/gn = II /k ~ 1 a.e. on A. 
k-n+l k=n+l 

00 

It follows, by 3°, that II /k ~ 1 a.e. on R. Therefore, if Hn is the 
k=n+l 00 

d.f. whose ch.f. coincides a.e. with II /k, then Var Hn ~ 1. But, by 
k=n+l 

11.2a and the composition theorem 13.3A, 

lim infVar Gn G; Var G = Var Gn · Var Hn. 

It follows, by letting n ~ oo, that Var Gn ~ Var G. The proof is 
completed. 

5° Let Fnk be d.f.'s of r.v.'s, k = 1, · · ·, kn ~ oo, 'Yn = :E (1 - /nr.:). 

f ., y2 ~ k 
Set 'lrn(x) = 2: --2 dFnk(y) and a(c)_ = sup L I I dFnk(x), 

k _., 1 + Y n k z <?!c 

{3(c) = sup 2: ~ x2 dFnk(x), c > 0 finite. 
n k lzl<c 

If fn = II/nk with/nk real-valued, then the following properties are equiv

alent: 
k 

(C1) the sequence Fn is completely compact. 
(C2) the sequence 'Yn is equicontinuous at u = 0. 
(Ca) a(c) ~ 0 as c ~ oo and a(c) + {3(c) < oo for every (some) c. 
( C4) the sequence 'lr n is bounded and completely compact. 

Proof. (C1) <=> (C2) by 13.2 C Cor. 2 and the inequality 1 - :Ear.: ~ 
IT(1 - ar.:) ~ exp {-:Ear.:}, 0 :$ ar.: :$ 1. (C2) ==> (C3) by B' and (C3) 

=:) (C2) by 'Yn(u) :$ 2a(c) + {3(c)u2/2. Finally, (Ca) <=> (C4) and "some 

c" <=>"every c" by (I), a(c)c2j(l + c2 ) :$ J d'lrn(x) :$ a(c) and 
JzJ<?:c 

11.2B. 



212 DISTRIBUTION AND CHARACTERISTIC FUNCTIONS [SEc. 13] 

Let 

m<k> = J xk dF(x), p.<r> =fix I' dF(x), k = 0, 1, 2, · · ·, r ~ 0, 

be, respectively, the kth moments and the rth absolute moments of F. 
Let j<k> be the kth derivative of f(j<0> =f) and, as usual, let 6, (}' be 
quantities with modulus bounded by 1. 

C. DIFFERENTIABILITY PROPERTIES. If f(2n)(O) exists and is finite, 
then p.<•> < oo for r ~ 2n. 

If p. <n+~> < oo for a 5 ~ 0, then for every k ~ n 

and f<k> is continupus and bounded by p. (k); moreover 

n-1 (iu)k 
f(u) = L m<k>- + Pn(u), u E: R 

k=O k! 
where 

i 1 (1 - t)n-1 (iu)n I U In 
Pn(u) = Un fn>(tu) dt = m<n> --+ o(un) = 6p.(n) --• 

o (n-1)! n! n! 

and ifO < o ~ 1, then 

( ) (n) (iu)n + 21-~(J' (n+~) I U in+~ PnU=m --. p. 
n! (1+o)(2+o)···(n+o) 

Proof. To begin with, we observe that, since I x I•' ~ 1 + I x 1• for 
r' < r, finiteness of p.<•> implies that of p.<•'>. 

The first assertion follows from the existence and finiteness of the 
2nth symmetric derivative by using the Fatou-Lebesgue theorem m 

f(sin hx)2n f lf2n>(O) I =lim -- x2n dF(x) ~ x2n dF(x). 
h-+O hx 

The second assertion follows from the fact that, by differentiating 

feiuz dF(x) k times under the integral sign, the integral so obtained is 

absolutely convergent and, hence, this differentiation and the integration 
can be interchanged. 

The limited expansions follow by integrating the limited expansions 
of eiuz with corresponding forms of its remainder term. The last and 
less usual corresponding form of its remainder is obtained upon observ-
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ing that I eia - 1 I ~ 21 a/215 (since, for 0 < o ~ 1, if I a/21 <_1, then 
I eia - 1 I ~ I a I ~ 21 a/2\5 and, if I a/21 E;; 1, then I eia - 1 I ~ 2 ~ 
21 a/215), and using successive integrations by parts in 

(1 + o) (2 + o) · · · (n + o) 

CoROLLARY. If all moments ofF exist and are finite, then j<k>(O) = 

ikm<k> for every k, and 
oo (iu)n 

f(u) = I: m<n) --
n=O n! 

in the interval of convergence of the series. 

Applications. We consider d.f.'s F and ch.f.'sf of r.v.'s X, with the 
same subscripts if any. If m<l) = EX= 0, we write u2 instead of 
m<2> = EX2• 

1 o NORMAL DISTRIBUTION. A "reduced normal" d.f. is defined by 

F'(x) = e-•:2!2/V27r. It is the d.f. of a r.v., since m<o> = 1 by 

Since F'( -x) = F'(x), it follows at once that the odd moments vanish, 
while, by integration by parts, we obtain 

m<2n) = (2n - 1)m<2n-2) = · · · = (2n) !j2nn!. 

Therefore, by the foregoing corollary, the "reduced normal" ch.f. is 

2° BoUNDED LIAPOUNOV THEOREM. Let \ Xn I ~ c < oo and 
EXn = 0. 

n n 

If Sn2 =.I: uk2 -too, then li]k(u/sn) -t e-u2
/ 2 for every u E: R. 

k=l k=l 
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Since El Xn 13 ~ cEX~2 and un2 = EXn2 ~ c2, it follows, upon fixing 
u arbitrarily, that 

(u) Uk2 2 cuk21 13 
]k - = 1 - - 2 U + Onk - 3 U ~ 1 

Sn 2sn 6sn 

uniformly in k ~ n. Therefore, for n sufficiently large, 

n (u) u2 cl u 1
3 

:E log]k - = -- (1 + o(1)) + 8n-- (1 + o(1)) ~ 
k=l Sn 2 6sn --· 2 

and the assertion is proved. 

§ 14. PROBABILITY LAWS AND TYPES OF LAWS 

14.1 Laws and types; the degenerate type. Since there is a one-to
one correspondence between distributions, d.f.'s defined up to an additive 
constant, and ch.f.'s, they are different but equivalent "representations" 
of the same mathematical concept which we shall call pr. law or, simply, 
law. Moreover, to a given distribution on the Borel field CB we can 
always make correspond the finite part of a measurable function X on 
some pr. space (n, a, P), and the restriction of P to x-1 (CB) with 
values P[X E:: S], S E:: CB, is still another representation of the law defined 
by the given distribution; there are many such measurable functions 
and many such spaces. Nevertheless, the various representations of a 
given law have their own intuitive value. Thus, for every law we have 
a multiplicity of representations and we shall use them according to 
conventence. 

A law will be denoted by the symbol£, with the same affixes if any 
as the d.f. or the ch.f. which represents this law, and the terminology 
and notations for operations on laws will be those introduced for d.f.'s; 

in particular, if Fn ~ F we write £n ~ £, and if Fn ~ F we write 

£n ~ £. The case of laws of r.v.'s (with d.f.'s of variation 1) is by far 
the most important. The law of a r.v. X will be denoted by £(X), and 
if a sequence £(Xn) of laws of r.v.'s converges completely-necessarily 
to the law £(X) of a r.v. X-we shall drop "complete" and write 
£(Xn) ~ £(X). From now on a law will be law of a r.v., unless otherwise 
stated. 

The origin and the scale of values of measured quantities, say a r.v. 
X, are more or less arbitrarily chosen. By modifying them we modify 
linearly the results of measurements, that is, we replace X by a + bX 
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where a and b > 0 are finite numbers. If, moreover, the orientation of 
values can be modified, then the only restriction on the finite numbers a 

and b is that b ~ 0. This leads us to assign to a law .C(X) the family 
:J(X) = {.C(a + bX)} of all laws obtainable by changes of origin, scale, 
and orientation, to be called a type of laws. If b is restricted either to 
positive or to negative values, the corresponding families of laws will 
be called positive, resp. negative types of laws. 

Letting b ~ 0 we encounter a boundary case-the simplest and at 
the same time the everywhere pervading degenerate type {.C(a)} of laws 
of r.v.'s which degenerate at some arbitrary but finite value a, that is, 
such that X= a a.s. The corresponding family of "degenerate" d.f.'s 
is that of d.f.'s with one, and only one, point of increase a E:: R with 
F(a + 0) - F(a - O) = 1. The corresponding family of "degenerate" 
ch.f.'s is that of all ch.f.'s of the formf(u) = eiua, u E:: R, so that their 

moduli reduce to 1. The converse is also true and, more precisely, 

a. A ch.j. is degenerate if, and only if, its modulus equals 1 for two 

values h ~ 0 and ah ~ 0 of the argument whose ratio a is irrational. In 

particular, a ch.f.f is degenerate if \f(u) \ = 1 in a nondegenerate interval. 

Proof. Since IJ(h) I = 1, there is a finite number a such thatf(h) = 

eiha and, hence, 

riha_t(h) = f eih<x-a> dF(x) = 1. 

Thus 

J[1 - cos h(x - a)] dF(x) = 0 

and, since the integrand is nonnegative, it follows that, for points x of 

increase ofF, cos h(x - a) = 1 so that x' - x" is a multiple of 2; when 

the points of increase x', x" are distinct. Replacing h by ah, we find 

that x' - x" is also a multiple of 27r, which is impossible when a is ir-
ah 

rational unless there is only one point of increase. The particular case 
follows. 

REMARK. The foregoing argument proves that, if !f(h) I = 1 for an 
00 00 

iU:tk 
h ~ 0, then f(u) = I: pke , u E:: R, where Pk ~ 0, I: Pk = 1 and 

27r 
k~ k~ 

Xk = a+ k · -;the converse is immediate. 
h 
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14.2 Convergence of types. If £(Xn) ~ £(X), then, for every a, 
b ~ 0, £(a+ bXn) ~ £(a+ bX), sincefn ~/implies that eiu'in(bu) ~ 
eiua_t(bu), u E:: R. Thus, we may say that convergence of sequences of 
laws to a law is, in fact, convergence of sequences of types to a type. 
It may even happen that, given a sequence £(Xn) convergent or not, we 
can proceed to changes of origin and of scale varying with n and giving 
rise to a convergent sequence £(an + bnXn). In the particular case 
of consecutive sums Xn of "independent" r.v.'s, a special form of the 
problem of finding the sequences of laws which converge for given 
changes of origin and of scale is the oldest and, until recently, was the 
only limit problem of pr. theory; we shall investigate it in Part III. 
Meanwhile there is an immediate question to answer: given a sequence 
£(Xn) of laws, do all the limit laws of convergent sequences of the form 
£(an+ bnXn) belong to a same type? The answer, due to Khintchine 
for positive types, is as follows: 

A. CoNVERGENCE OF TYPES THEOREM. If £(Xn) ~ £(X) nondegen
erate and £(an + bnXn) ~ £(X') nondegenerate, then the laws £(X) and 
£(X') belong to the same type. More precisely, £(X') = £(a + bX) with 
\ bn I ~ I b I, and if bn > 0 then bn ~ b, an ~ a. 

However, for every finite a and for every sequence £(Xn) of laws, there 
exist numbers an and bn ~ 0 such that £(an + bnXn) ~ £(a). 

In other words, given a sequence of laws, the changes of origin, scale, 
and orientation can yield in the limit no more than one nondegenerate 
type and can always yield in the limit the degenerate type. This shows 
once more that the degenerate type is to be considered as the "degen
erate part" of every type. 

Proof. The second assertion is immediate. For, by taking the num-
1 

hers Cn sufficiently large so as to have P[l Xn I ;?; Cn] < - ~ 0, we obtain 
n 

and, it follows at once, that £ (Xn) ~ £(0), so that £(a + Xn) 
ncn ncn 

~ £(a). 
The first assertion means thatfn ~ f nondegenerate and eiua".fn(bnu) 
~ f'(u) nondegenerate, u E:: R, imply existence of two finite numbers a 
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and b ~ 0 such that f'(u) = eiua_t(bu), u E:: R. We can always select 

from the sequence bn a convergent subsequence bn', but its limit b may 
be 0 or ±co. If b = 0, then, since the convergence of ch.f.'s to a ch.f. 
is uniform in every finite interval, we have, for every fixed u E:: R, 

lf'(u) I = lim lfn'(bn,u) I = IJ(O) I = 1, 
n' 

so that, by 14.1a, J' is degenerate and this contradicts the assumption. 

Similarly, if bn' ~ ±co, then, replacing u by bu , it follows that 
n' 

IJ<u) I =lim lf'n' (!.t__) I = lf'CO) I = 1, 
n1 bn' 

so that f is degenerate and this contradicts the assumption. Thus 
bn' ~ b finite and different from 0. On the other hand, for all u suffi
ciently close to 0, the continuous functionsf(bu) andf'(u) (with values 
1 for u = 0) differ from 0; and we have, for n' sufficiently large, 

so that lim eiuan' exists and is finite for I u I ~ some Uo > 0. But then 

limsup I an' I < oo. Therefore, for any convergent subsequences of 
(an'), a~~ a' and a~~ a", we have eiu(a:.-a:.'> ~ eiu(a'-a"> = 1 for 

I u I ~ Uo. It follows, by 13.4 Application 3°, that a' - a" = 0 hence 
an'~ some a e R andf'(u) = eiua_t(bu), u E:: R. 

Clearly, it remains only to prove that Ibn I ~ I b 1. Let bn' ~ b 
and bn" ~ b' hence an' ~ a and an" ~ a'; it suffices to prove that 
if, for every u, eiuj(bu) = eiua'j(b'u), then I b I = I b' 1. Upon replac-

ing b'u by u and f, by c, it suffices to prove that, if I c I ~ 1 and, for 

every u, IJ(u) 12 = IJ(cu) 12, then I c I = 1. But I c I < 1 entails, upon 
replacing repeatedly u by cu, 

IJ(u) 12 = IJ(cu) 12 = · · · = lim IJ(cnu) 12 = 1. 

Thus, the nondegeneracy assumption excludes the possibility I c I < 1, 

so that I c I = 1 and the proof is complete. 
REMARK. It is immediately seen that if we limit ourselves to, say, 

positive types only, then, under the foregoing assumptions, an ~ a 
and bn ~ b. We leave to the reader to find conditions under which 

this property remains valid for types. 
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CoROLLARY. Ij,jor every u, 

iuO-nJn(bnu) ~ j(u) and iua'"fn(b' nU) ~ j(u) 

where f is a nondegenerate chJ. and bnb' n > 0 for every n, then 

an- a'n bn 
--- ~ 0 and - ~ 1. 

b'n b'n 

Replace in the theorem Xn by a' n + b' nXn. 

14.3 Extensions. The results and terminology of this chapter ex
tend at once to families of r.v.'s, and we shall content ourselves with a 
few generalities. 

The law of a random vector X= {XI>···, X.v} with d.f. Fx on RN 
is represented by the ch.f.Jx on RN defined by the N-uple integral 

fx(u) = J eiux dF x(x), ux = U1X1 + · · · + UNXN 

or, explicitly, by 
N-uple 

fx(uh · · ·, u.v) = J· · ·fei(u,x,+···+uNxN) d1d2· · ·d.vFx(xh · · ·, x.v). 

The integral which appears in the inversion formula becomes an N-uple 

f
+U1 f+UN e-iua _ e-iub 

Riemann-Stieltjes integral · · · and the "kernel" ---.---
-u, -UN ZU 

N -iUkllk -iukbk 
e - e 

becomes II---.---
k=l ZUk 

We observe that there is a one-to-one correspondence between the 
law of the random vector X= {XI> · · ·, X.v} and the laws of the r.v.'s 
uX = u1X1 + · · · + u.vX.v, where u varies over RN, since 

fx(tu) = fux(t), t E: R 

and, in particular,Jx(u) = fux(l). 
Finally, the law of a random junction X = { Xt, t E: T} is the set of 

joint laws of all its finite subfamilies. 

§ 15. NONNEGATIVE-DEFINITENESS; REGULARITY 

15.1 Ch.f.'s and nonnegative-definiteness. The class of ch.f.'s has 
been defined to be the class of Fourier-Stieltjes transforms of d.f.'s. 
Conversely, given a continuous function g on R, we can recognize 



[SEc. 15] DISTRIBUTION AND CHARACTERISTIC FUNCTIONS 219 

whether or not it is a ch.f. by applying the inversion formula: if the 
right-hand side of the inversion formula exists and is nonnegative for 
all pairs a < b of finite numbers, then g is a ch.f. up to a multiplicative 
constant. If g is absolutely integrable on R, then it suffices to apply 
Corollary 1 of the inversion formula and verify that the function F' is 
nonnegative. A very important criterion of a different type is that of 
nonnegative-definiteness that we investigate now. 

Let g be a real or complex-valued function on a set Ds C R obtained 
by forming all differences of the elements of a set S ~ 8; for example, 
S = [0, U) and Ds = (- U, + U), S = set of all positive integers and 
Ds = set of all integers. Sets Ds are necessarily symmetric with respect 
to the origin u = 0 and contain it. We say that g on D s is nonnegative
definite if for every finite set Sn C S and every real or complex-valued 
function h on Sn 

2: g(u - v)h(u)ii(v) ~ 0; 
u,o E: Sn 

we shall omit mention of Ds when Ds = R. 

a. If g on Ds is nonnegative-definite, then,for every u E: Ds, 

g(O) ~ 0, g( -u) = g(u), I g(u) I ~ g(O). 

Ij, moreover, Ds :::J (- U, + U) and g is continuous at the origin, then g 
is uniformly continuous on the set of limit points of Ds. 

Proof. We apply the defining relation with 

St = {0}, S2 = {0, u}, Sa = {0, u, u'}. 

With S1 we obtain g(O) ~ 0. It follows with S2 that g(u)h(u) + 
g( -u)ii(u) is real and hence g( -u) = g(u) (take h(u) = 1 and h(u) 
= t). We use these two properties below. 

The discriminant of a nonnegative quadratic form being nonnegative, 
elementary computations with s2 yield I g(u) I ~ g(O). For the last 
assertion we exclude the trivial case g(O) = 0 which implies g = 0, and, 
to simplify the writing, assume that g(O) = 1 (it suffices to replace g 
by g/g(O)). The same discriminant property but with Sa yields, by 
elementary computations, 

I g(u) - g(u') 12 ~ 1 -I g(u- u') 12 - 2CR{g(u)g(u')(1 - g(u- u'))} 

Therefore, if g is continuous at the origin, that is, if g(u - u') --+ g(O) 
= 1 as u' --+ u, then g(u') --+ g(u). The proof is complete. 
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The foregoing proposition shows that a nonnegative-definite func
tion g on R continuous at the origin has properties similar to those of 
ch.f.'s. In fact, g coincides on R with a ch.f.-up to a multiplicative 
constant; and this is what we intend to prove now. According to a, 
if g(O) = 0, then g = 0 so that, by excluding this trivial case and di
viding by g(O) we can and will assume from now on that g(O) = 1. 

b. HERGLOTZ LEMMA. A function g on the set Ds = { · · · -2c, -c, 
0, +c, +2c, · · ·} is nonnegative-definite if, and only if, it coincides on this 

f +1r/C 
set with a chf.f(u) = eiux dF(x). 

-7r/C 

Proof. We can assume that c > 0. If g on Ds is nonnegative-defi
nite, then, for every integer n and every finite number x, 

1 n-l ( I k I) G' n(x) = - L 1 - - g(kc)e-ikx 
271" k=-n+l n 

1 n n 
= - L L g((j - h)c)e-i(j-h)x ~ 0. 

21rn j=l h=l 

Upon multiplying by eikx with some fixed value of k and integrating 
over [ -1r, +1r), we obtain 

( I k I) f +,. . f +1r/C • 1 -- g(kc) = e'k"'G'n(x) dx = e•(kc)x dFn(x) 
n - -~ 

where Fn is a d.f. with Fn( -1rjc) = 0, F .. ( +1r/c) = g(O) = 1. The 
"only if" assertion follows, on account of the weak compactness and 
Helly-Bray lemma, by letting n - oo along a suitable subsequence 
of integers. The "if" assertion is immediate (as below). 

A. BocHNER's THEOREM. A function g on R is nonnegative-definite 
and continuous if, and only if, it is a chf. 

Proof. The "if" assertion (Mathias) is immediate, since, if g is a 
ch.f. with d.f. G, then, letting u and v range over an arbitrary but finite 
set in R, 

L g(u - v)h(u)h(v) = f { L e'Cu-o)xh(u)h(v)} dG(x) 
u,v u,v 

= jl L eiuxh(u) 12 dG(x) ~ 0. 

" 
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Conversely, let g on R be nonnegative-definite and continuous. It co
incides on R with a ch.f. if it does so on the set Sr (dense in R) of all 
rationals of the form k/2n, k = 0, ± 1, ±2, · · ·, n = 1, 2, · · ·. For 
every integer n, let Sn be the corresponding subset of all rationals of 
the form k/2n so that Sn j Sr. Since g is nonnegative-definite on R, it 
is nonnegative-definite on every Sn. Therefore, by b, there exist ch.f.'s 
in such that g(k/2n) = in(k/2n) whatever be k and n. Since Sn j Sn 
it follows thatin ~ g on Sr. Let 0 ~ 8, 8n ~ 1, so that, by b, 

Therefore, by the elementary inequality I a+ b 12 ~ 21 a 12 + 21 b 12 and 
the increments inequality, for every fixed h = (kn + 8n)/2n, 

11 - in(h) 12 ~ 211 - in(kn/2n) 12 + 4(1 - ffiin(8n/2n)) 

~ 211 - g(kn/2n) I + 4(1 - ffi.g(1/2n)). 

Since g is continuous at the origin, it follows by 13.4, 2°, that the se
quence in of ch.f.'s is equicontinuous. Hence, by Ascoli's theorem, it 
contains a subsequence converging to a continuous function i, so that 
g =ion Sr and hence on R. Since by the continuity theorem i is a 
ch.f., the proof is complete. 

The "only if" assertion can be proved directly, and this direct proof 
will extend to a more general case: For every T > 0 and x E:: R 

1 iTiT . Pr(x) = - g(u - v)e-•<u-v)x du dv ~ 0, 
T o o 

since, g on R being nonnegative-definite and continuous, the integral 
can be written as a limit of nonnegative Riemann sums. Let u = v + t, 
integrate first with respect to v and set gr(t) = ( 1 - I~~) g(t) or 0 ac

cording as It I ~ Tor It I ~ T. The above relation becomes 

Pr(x) = J e-itxgr(t) dt ~ 0. 

Now multiply both sides by 2
1
71" (1 - I~~) eiux and integrate with re-
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spect to x on (-X, +X). The relation becomes 

1 i+x( I xI) . 1 J sin2 !X(t - u) - 1 - - PT(x)e•ux dx = - 1 2 gr(t) dt. 
21r -X X 21r 4X(t- u) 

The left-hand side is a ch.f. (since its integrand is a product of eiux by 
a nonnegative function) and the right-hand side converges to gr(u) as 
X ~ oo. Therefore, gr is the limit of a sequence of ch.f.'s. Since it is 
continuous at the origin, the continuity theorem applies and gr is a 
ch.f. Since gr ~ gas T ~ oo, the same theorem applies, and the as
sertion is proved. 

*Extension 1. The question arises whether in A continuity at the 
origin is necessary. Let g on R be nonnegative-definite and Lebesgue
measurable. 

By integrating 

L g(u; - Uk)i(u;-uk)x ;;; 0, X E:: R 
Uj,Uk E: Sn 

with respect to every u E:: Sn over (0, T), we obtain 
T T 

nTn + n(n - 1) rn-2 i i g(u - v)ei<u-v>x du dv ;;; 0. 

Dividing by n(n - l)rn-2 and letting n ~ oo, it follows that 

T T i i g(u - v)ei(u-v)x du dv ;;; 0. 

Therefore, the direct proof of the "only if" assertion in A continues to 
apply, but instead of the continuity theorem use 12.2A Corollary 2, and 
we obtain g = j ch.f. almost everywhere (in Lebesgue measure). The 
"if" assertion is modified accordingly. Thus (F. Riesz) 

A'. A junction g on R is nonnegative-definite and Lebesgue-measurable 
if, and only if, it coincides a.e. with a chf. 

*Extension 2. It can be shown that Herglotz lemma remains valid 
with Ds = {-Nc, - (N - 1)c, · · ·, 0, · · · (N - 1)c, Nc} whatever be 
the fixed integer N. Then, replacing Sr and Sn by their intersections 
with (- U, + U) whatever be the fixed U, the proof of A remains valid. 
Thus (Krein) 

A". A junction g on (- U, + U) is nonnegative-definite and continu
ous if, and only if, it coincides on (- U, + U) with a chf. 
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REMARK 1. The proofs of A and A" use only the fact that g is con
tinuous at the origin, so that these theorems imply the last assertion 
in a. 

REMARK 2. The foregoing proofs show that in the definition of a 
nonnegative-definite g it suffices to take h(u) = eiuz where x runs over 
R. Also if g is Lebesgue-measurable, then the definition can be taken to 
be 

i TniTn 
0 0 

g(u - v)eiCu-v)z du dv ~ 0 

for every x E: R and a sequence Tn --+ QO. 

According to the second extension, a function which coincides with a 
ch.f. on (- U, + U) can be extended to a ch.f. on R. The problem which 
arises is under what conditions this extension is unique. This is part 
of the problem we investigate in the following subsection. 

*15.2 Regularity and extension of ch.f.'s. According to 14.la, if 
f = 1 on an interval (- U, + U), then]= 1 on R. Also according to 
13.4, 3°, if fn--+ 1 on (- U, + U) then ]n--+ 1 on R. Thus, in these 
cases a ch.f. is determined by its values on an interval, and convergence 
of a sequence of ch.f.'s on R follows from its convergence on an interval. 
We intend to investigate more general conditions under which these 
properties hold. To simplify the writing, we assume that the ch.f.'s 
are those of r.v.'s, that is, take the value 1 at u = 0. 

a. If j is the integral chf. corresponding to the chJ.j, then 

lj(u +h) ~j(u- h) 12 ~ ~ {1 + <Rj(h)}. 

For, from 
X X 

sin2 2 - sin2 -
2 2 2 x 1+cosx 

--:F = -4-si_n_2 -( m 2 " cos 2 ~ 2 • 

it follows, upon applying the Schwarz inequality, that 

l}(u +h) ~j(u- h) r =I feiuzsi~:x dF(x) r 
I 1 +cos hx 1 

~ 2 dF(x) = 2" {1 + <Rj(h)}. 



224 DISTRIBUTION AND CHARACTERISTIC FUNCTIONS [SEc. 15] 

We extend now the uniform convergence theorem 13.2C. Let fn be 
ch.f.'s. 

b. If fn ~ g on (- U, + U) and g is continuous at u = 0, then the 
fn are equicontinuous and the convergence is uniform. 

Proof. Because of 13.4 (1°,2°) and Ascoli's theorem, it suffices to prove 
that thefn are equicontinuous at u = 0. If this conclusion is not true, 
then there exist an E > 0, a sequence n' ~ oo, and a sequence Un' ~ 0, 
such that lfn'(un') I < 1 - E for all n'; given a positive h E: (- U, + U), 

we take mn' = [!!:.._] , so that mn'Un' ~ h. Upon applying a with 
Un' 

u = kh and summing over k = -m + 1, -m + 3, · · ·, m- 1, we 

obtain by the elementary inequality I a1 + · · · + am 12 ~ ml a 1 12 + · · · 
+ ml am 12 

lj(mh) ;~-mh) r ~ ~ {1 + CRj(h)}. 

It follows that 

and, letting n' ~ oo, we have 

1
1 f+h 12 E 

- g(v) dv ~ 1 - -· 
2h -h 2 

Since 1 = fn(O) ~ g(O) and g is continuous at u = 0, it follows, letting 

h ~ 0, that 1 ~ 1 - ~ . Therefore, ab contrario, the fn are equicon

tinuous at u = 0, and the assertion is proved. 

A. CoNTINUITY THEOREM ON AN INTERVAL. If fn ~ fu on (- U, 
+ U) and f u is continuous at u = 0, then f u extends to a chj. j on R; if 
the extension f is unique, then fn ~ f on R. 

Proof. According to b, the fn are equicontinuous. Therefore, by 
Ascoli's theorem, the sequence fn is compact in the sense of uniform 
convergence and, since fn ~ f u on (- U, + U), all its limit ch.f.'s co
incide withfu on (- U, + U). It follows that, if there is only one ch.f. 
f which coincides with f u on (- U, + U), then fn ~ f on R. 
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The second part of the problem raised above is reduced to its first part: 
find ch.f.'s determined by their values on an interval (- U, + U). A 
partial answer is given by the following theorem (Marcinkiewicz). 

B. ExTENSION THEOREM FOR CH.F.'s. If the restriction fu of a chf. 
J to an interval (- U, + U) is regular or is the boundary junction of a 
regular Junction, then f u determines f. 

This theorem follows, by the unicity of analytic continuation, from 
the three propositions below of independent interest. Let j(z) = 

fi"z dF(x), where z = u + iv is a point of the complex plane Ru X Rv. 

a. j(z) is regular in a circle I z I < R if, and only if, for every positive 

r < R, J erl z 1 dF(x) is finite. 

Proof. The "if'' assertion is immediate and it suffices to prove the 
"only if" assertion. 

I.et 

m(n) = J xn dF(x) and p.(n) = jl X In dF(x). 

If f(z) is regular for I z I < R, then, for every positive r < R, 

1 
L II m<n> lrn < co, 

n. 
and, in particular, 

Since 

it follows that 

and, hence, 

1 L __ Jl.(2n)r2n < co. 

(2n)! 

1 L Jl.(2n-l)r2n-1 < co 

(2n- 1)! 

I ll z I dF(x) = L ~ p.<n>rn < co. 
n! 

This proves the assertion. 

b. If j(z) is regular in the circle I z I < R or in the rectangle I CRz I < U, 
I 3z I < R, then j(z) is regular in the strip I 3z I < R. 

Proof. The first assertion follows at once from a. As for the second 
assertion, let V be the largest number such thatj(z) is regular in the 
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circle I z I < V and assume that V < R. According to a, f(z) is regu
lar in the strip I ~z I < V. But it is also regular in the rectangle I <Rz I < 
U, I ~z I < R and, hence, in the circle whose radius equals min (R, 

V U2 + V 2 ). Therefore V cannot be less than R and the proof is 
concluded. 

For every ch.f.f, we havef(z) = f+(z) + f-(z) where 

i oo 0 

f+(z) = eizx dF(x) and f-(z) =f eizx dF(x) 
0 -00 

are regular for :Jz > 0 and ~z < 0, respectively. Therefore, if, say, 
f+(z) is regular for 0 > ~z > - R, thenf(z) is regular for 0 > ~z > - R, so 
that the ch.f. with valuesf(x) is the boundary function of a regular func
tion. Thus, the following proposition completes the proof of the fore
going extension theorem. 

c. f+(z) is regular for 0 > ~z > - R ij, and only ij, for every positive 

r < R,i00
erx dF(x) is finite. 

Proof. The "if" assertion is immediate. As for the "only if" asser
tion, we observe that, sincef+(z) is regular for ~z > 0 and continuous for 

~z ~ 0, regularity for 0 > ~z > -R implies, by a well-known sym
metry property, regularity for I ~z I < R and, hence, according to a, 

i"' er:• dF(x) is finite for 0 < r < R. 

PARTICULAR CASES. Upon applying what precedes, we have 

1° If fn(u) -+ eiua on (- U, + U), then fn(u) -+ eiua for every u E:: R. 
u2 u2 

2° If fn(u) -+ e- 2 on (- U, + U), then fn(u) -+ e- 2 for every 
u E:: R. 

3 ° If fn -+ f on (- U, + U) and f is chf. of a r.v. bounded either 
above or below, then fn -+ f on R. 

d. UNICITY LEMMA. Let g(z) be regular for ~z > 0 and continuous for 
jz ~ 0. 
If g(z) = f+(z) for z = 0 then g(z) = f+(z) for z ~ 0. 

For, h(z) = g(z) - f+(z) being regular for ~z > 0 and continuous for 
~z ~ 0 with h(z) = 0 for z = 0 extends, by analytic continuation to an 
entire function vanishing for z = 0 hence vanishing everywhere. 

*15.3 Composition and decomposition of regular ch.f.'s. Let F de
note the composed F1 * F2 of d.f.'s F1 and F2. In the case off or f 11 h 
regular, the composition theorem 13.4A can be completed as follows: 
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A. CoMPOSITION THEOREM FOR REGULAR CH.F.'s. f(z) is regular in the 
strip I :Jz I < R if, and only if,f1 (z) and ]2(z) are regular in I :Jz l < R. 
This theorem follows at once, by 15.2a and b, from the 

CoMPOSITION LEMMA. IfF = F 1 * F2 then,for every v, 

and there exist finite numbers ai > 0, /3i ~ 0 such that 

Jev"'dF(x) ~ aie-Pil•lfev"'dFj(x), j = 1, 2. 

Proof. We exclude the trivial case of degenerate F1 or F2. The first 
assertion follows, using Fatou's lemma, in a way similar to that of the 
proof of the composition theorem 13.3A, whether the integrals are finite 
or not. 

As for the second assertion, for every b, either 

or 

according as v ~ 0 or v < 0. Let {32 be the larger of two finite numbers 
I b1 I and I b2 I such that 

a1 = F1[bh +oo) > 0 and a2 = F1(b2) > 0 

and let a2 be the smaller of a1 and a2. Then the inequalities above and 
the first assertion yield 

fev"' dF(x) ~ a2e-P21•1 fev"' dF2(x) 

and the proof is complete. 

COMPLEMENTS AND DETAILS 

Unless otherwise stated, functions P, with or without affixes, are d.f.'s of 
r.v.'s: P( -oo) = 0, P( +oo) = 1, and functions j, with same affixes if any, are 
corresponding ch.f.'s. 

1. If Pis purely discontinuous and the discontinuity set is dense in R, then 
the nondecreasing inverse function is singular. 

2. If Pxn~ Px and p. is any limit point of the sequence p.(Xn) of medians 
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of the Xn, then p. is a median of X. In particular, if p.(X) is the unique median 
of X, then p.(Xn) -+ p.(X). (Take x' < p. < x" to be continuity points ofF, 
then F(x') ~ !.) 

3. P. Levy's space. Let ff be the space of all d.f.'s F of r.v.'s. Set d(F, F') 
to be the infimum of all those h for which F(x - h) - h ~ F'(x) ~ F(x + h) + h 
whatever be x E: R. 

(a) Draw a graph and interpret d(F, F') geometrically by considering lengths 
of segments intercepted by the graphs of F and F' on parallels to the second 
bisector. 

(b) The function d so defined is a distance, and (ff, d) is a complete metric 
space. 

(c) The following three assertions are equivalent: 

Fn ~ F, d(Fn, F)-+ 0, fgdFn-+ fgdF 

for every function g continuous and bounded on R. 
(d) A set S in ff is compact if, and only if, F(x) -+ 0 as x -+ -oo and 

F(x) -+ 1 as x -+ +oo, uniformly on S. 
4. Establish the following correspondences for laws. 
Binomial: Pk = Cnkpkqn-k, k ~ n, j(u) = (peiu + q)n. 

Poissonian: Pk = ~~ r\ k = 0, 1, ... , j(u) = e>-cc'"'-ll. 

1 elbu _ elau 
Uniform: F'(x) = -b--in (a, b), and 0 outside, j(u) = "(b ) 

-a t -au 
. 1 a 

Cauchy: F'(x) =; a2 + (x _ b)2 , a > 0, j(u) = e-aluiHbu. 

1 
Laplace: F'(x) = 2a rlx-blla, a> 0, J(u) = (1 + a2u2)-1elbu. 

1 cr2u" 
Normal: F'(x) = uv'27r r<x-ml212cr2, u > 0, f(u) = elmu- 2. 

1 
Squared N Jrmal: (m = 0, u = 1): F'(x) = V 21rx e-z/2 for x > 0 and = 0 for 

x ~ 0, j(u) = (1 - 2iu)-l1. 
c'Y r -type: F'(x) = -- x"f-le-c"' for X > 0, c > 0, 'Y > 0, 0 for X ~ 0, f(u) 

· r<'Y> 
= ( 1- i:r'Y. 

5. The composed F ofF with the uniform distribution on ( -h, +h) is given 
by 

- 1 L"'+h - sin hu 
F(x) = 2h x-h F(y) dy, j(u) = --;;;;-- f(u). 

An absolutely convergent inversion integral follows: 

1 Jx+2h 1 1"' 1 J"' (sin u)2 (u) 2h "' F(y) dy - 2h x-2hF(y) dy =; _,. -u- e-lux/hf h du. 

Deduce the continuity theorem. 
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2 i"' sin2 hu 6. LetMhf = -h if(u) 12--2- du, h > 0, and let. 
7r 0 u 

1 f+u 
Mj = .}~,. 2u _,. if(v) 12 dv. 

(a) Mhf is non decreasing in h and converges to 1 or Mf according as h ~ oo 
n 

or h ~ 0. lim lim Mh( II fk) is either 0 or 1 (identically in h). 
m-+oo n-+co k""' m+ (' 

(b) Mf = LPk2 where the Pk are jumps ofF; Mh/2 ~ Mh·Mh; Mhf = 

2 fo2h( 1 - ~) dP(x) where P is d.f. with ch.f. f' = if j2• (The sum is the 

jump at 0 of £(X)* £(-X) where X is a r.v. with d. f. F.) 
(c) If fn ~ f with Mf = 0, then Mfn ~ 0; the converse is not necessarily 

true. If IT A ~ j, then M(ll fk) ~ Mf. 
k=l k=l 

7. A law is a "lattice" law if the only possible values are of form a + ns only, 
s > 0; n = 0, ± 1, · · ·; if s is the largest possible, then s is the "step" of the 
law. The step is well determined. 

(a) A law is a lattice law if, and only if, if(uo) I = 1 for an uo ~ 0. The step 
sis given by the property that if(u) I < 1 in 0 <I u I < 27r/s andf(27r/s) = 1. 

(b) Let Pn = P[X = a + ns] where X has a lattice law with step s. Then 

S f+>"/S Pn = - e-tau-tns".f(u) du, 
27r -.-/s 

s J+.-;s e-tux, - e-tux2 
F(x2) - F(x1) = -2 f(u) du 

7r -.-/s 2 .. SU 
tsm 2 

where x1 = a + ms - is, x2 = a + ns + !s, n ~ m. 
8. If the moment mk exists and is finite, then 

The ak are called semi-invariants; formally 

Deduce the expression of a few first semi-invariants in terms of moments, and 
conversely. Prove that 

n co 1 
(log I: mk ~ zk is majorized by L -k (el'k11k' - l)k.) 

k=l • k-1 

9. If the derivative F' on R exists and is finite, thenf(u) ~ 0 as I u I ~ oo. 
(Use Riemann-Lebesgue lemma.) 
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If the nth derivative pCnl on R exists, is finite, and is absolutely integrable, 
thenf(u) = o(i u 1'-n) for I u I --+ co, (Integrate by parts.) 

10. Let X be a r.v. with d.f. F. 
(a) If Pfl X I ;;;; x] --+ 0 as x --+ co faster than any power of x-I, then all 

moments exist and are finite. (Integrate by parts fix in dF(x).) 

A pr. law is determined by the sequence of moments assumed finite if the 

series f m~ un has a nonnull radius of convergence p. (Use Schwarz's inequality 
n=O n. 

to show that the series with the mn replaced by J.l.n majorizes the expansion of 
f about any value of u, and then use analytic continuation.) 

(b) Formally, by integration by parts, 

j(z) = 1 - iz Jo ei'"F(x) dx + iz {"ei'"(1 - F(x)) dx. 
- 0 

If P[i X I ;;;; x] --+ 0 as x --+ co faster than e-rz for every positive r < p, then 
f(z) is analytic in the strip l3z I < p. If p = co, thenf(z) is an entire function. 

(c) If elxi•F'(x);;;; c > 0 on R for an r < t, then the pr. law is not determined 
by its moments. 

11. If f' exists and is finite on R, Ji xI dF(x) may be infinite: take 

r(u) -- c ~ c2osnu. (Th d'rr . d . ·r I b ,, .L.t e merent1ate ser1es converges un11orm y ut 
n=2 n log n 

:E 1/n log n = co.) Let m' = lim J+"x dF(x) be the "symmetric" first 
a-++oo -a 

moment. If m' exists and is finite,f'(O) may not exist: take a Weierstrass non
differentiable function c. :E an cos b"u. 

If the derivative at u = 0 of ffi.( exists, then 

j(h) h- 1 = o(l) + ;J+ll\ dF(x), 0 < h --+ 0. 
-1/h 

(Set G(x) = F(x) - G(x), H(x) = F(x) + F( -x), so that I !J.H I ~ !J.G. Show 

that J sin2 ~x/2) dG(x) --+ 0 ash--+ 0, (" sin (hx) dH(x) = o(1).) 
Jl/h X 

Under the foregoing condition, J' exists and is finite if, and only if, 

m' = lim J+"x dF(x) exists and is finite, and then f'(O) = im'. Extend to 
a-+oo _ 0 

any derivative of odd order. What about those of even order? 
12. If g on R is not constant and g(u) = 1 + o(u) + o(u2) near u = 0 with 

o(u) an odd function, then g is not a ch.f. (Observe that g(u)g(- u) = 1 + o(u2).) 
Examples: e-"\ e-lul• for r > 2, e-u•-"6, 1/(1 + u4). 

13. Let g on R be real, even and continuous, with g(O) = 1, g(u) --+ 0 as 
u--+ co, 

If g is convex from below, on [0, +co), then g is a ch.f. (To prove 

J:"'g(u) cos xu du;;;; 0 for x > 0; observe that on [0, co), say, the left-hand side 
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derivative g' exists and is nondecreasing, with g'(u) ~ 0 and g'(u) ~ 0 as 
u ~ co. Seth = -g' so that, by integration by parts, 

x£"" g(u) cos xu du = £"" h(u) sin xu du. 

For x > 0, the last integral is 

£'''" { h(u) - h ( u + ;) + h ( u + 2;) - h ( u + 3;) + · · · } sin xu du ~ 0.) 

Examples: e- 1" 1, 1/(1 + I u I), 1.- I u I for I u I ~ 1 and 0 for I u I > 1. 
J1.. (a) Two ch.f.'s may coincide on intervals without being identical. 

1- cosx 
Take F'1{x) = 2 hence ]l{u) = 1 - I u I for I u I ~ 1 and 0 for 

1rX 

I u I > 1, and take F2 defined by Po = ! , P±.-(2k+ll = 7r2(2/ + 1) 2 ;/2(u) is peri

odic of period two and coincides with]! on [ -1, + 1]. Or, take/ to be a ch.f. of 
the type described in 13 with/' continuous and strictly increasing on [0, co), Re
place two arbitrarily small arcs of the graph off which are symmetric with 
respect to they-axis by their chords, and compare the function so defined with/. 

(b) The compositions of a law with either one of two distinct laws may coin
cide (ft{l = /J./2). 

(c) Iff,. ~ f on [- U, + U], the same may not be true on R. 
15. f on R is a ch.f. if, and only if, there exists a sequence g,. such that 

Jl g,.(v) 12 dv ~ 1 and J g,.(u + v)g,.(v) dv ~ j(u) uniformly in every finite 

;nterval. 
(For the "if" assertion, observe that every integral is positive-definite. For 

the "only if" assertion, divide [ -n, +nl into n2 equal subintervals, set F,.( -n) 
= 0, F,.(n) = 1, F,. = Fat the subdivision points, and linear inside every sub-

f +"_ ;-
interval; set c,.g,.(u) = v F',.(x) eiux dx with g,.(O) = 1. Compute j,. and 

observe that/,. ~f.) 
_, 

16. Let g and h be bounded and continuous on R, with g(u) = g( -u), and 
let X(u) be an arbitrary finite function on R. 

If for every finite set A of values of u 

then 

I I: I: g(u - v)'A(u)}..(v) I ~ I: I: h(u - v)'A(u)X(v), 
U€A•€A U€Ao€A 

h(u) = J e'""' dH(x) 

where His a d.f. up to a multiplicative constant. 
The foregoing inequalities represent a necessary and sufficient condition for 

g to be of the form 

g(u) = J e'""' dG(x) 

with I AG I ~ !l.H. Find the relation between discontinuity and continuity 
points of G and H. 
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17. The uniqueness and composition properties determine "essentially" the 
form of ch.f.'s. Let K on R X R be bounded and continuous. If the functions 

g on R are defined by g(u) = J K(u, x) dF(x) for every d.f. F, and the unique

ness and composition properties hold, then K(u, x) = et:zh(u) and j(h(u)) = g(u). 
18. Normal vectors. A normal vector X= (Xk, k ~ n) is so defined that all 

r.v.'s of the form I: ukXk are normal. Let the Xk be centered at expectations. 
k 

A ch.f.J on Rn is that of a normal vector (centered at its expectation) if, and 
only if, 

logf(ui, · · ·, Un) = Q(ut, · · •, Un) = -! L mikUjUk ~ 0 
ik 

where mik = EXiXk. 
If the inequality is strict, then the normal d. f. is defined by 

a• 1 
aX[ ... axn F(x~, .. ·, Xn) = (27r)nf2Dl-ie-!O(X[,"',Xn) 

where D = II mik II > 0 and g(xi, · · ·, Xn) = _Dl L DikXiXk is the reciprocal form 
ik 

of Q(ui, • · ·, un) with the variables Xr· What if Q ~ 0? 

19. If (X, Y) is a normal pair centered at expectations, then EXY/aXuY = 
cos p1r where p = P[XY < 0]. (Compute P[XY < 0] using the d. f.) 



Part Three 

INDEPENDENCE 

Until very recently, probability theory could have been defined to 
be the investigation of the concept of independence. This concept con
tinues to provide new problems. Also it has originated and continues 
to originate most of the problems where independence is not assumed. 

The main model is that of sequences of sums of independent random 
variables. The main problems are the Strong Central Limit Problem 
and the (Laws) Central Limit Problem. The first is concerned withal
most sure convergence and stability properties. The second one is 
concerned with convergence of laws. All general results were obtained 
since 1900. 
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Chapter f7 

SUMS OF INDEPENDENT RANDOM VARIABLES 

Two properties play a basic role in the study of independent r.v.'s: 
the Borel zero-one law and the multiplication theorem for expectations. 
Two general a.s.limit problems for sums of independent r.v.'s have been 
investigated: the a.s. convergence problem and the a.s. stability prob
lem. Both of them took their present form in the second quarter of 
this century .. 

§ 16. CONCEPT OF INDEPENDENCE 

CoNvENTION. To avoid endless repetitions, we make the convention 
that, unless otherwise stated, 

-r.v.'s, random vectors and, in general, random functions are de
fined on a fixed but otherwise arbitrary pr. space (n, a, P). 

-indices t vary on a fixed but otherwise arbitrary index set T, and 
events of a class have the index of the class. 

16.1 Independent classes and independent functions. Events A1 are 
said to be independent if, for every finite subset (h, · · ·,In), 

n n 

(I) P n Atk =II PAtk· 
k=l k=l 

In fact, the concept of independence is relative to families of classes 
(see Application 1° below). 

Classes e1 of events are said to be independent if their events are inde
pendent; in other words, if events selected arbitrarily one from each 
class are independent. Clearly, if the e1 are independent so are the 
e't' c e1,, t' E: T' c T. Because of its constant use, we state this fact 
as a theorem. 

235 
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A. Subclasses of independent classes are independent. 

Let X 1 be r.v.'s or random vectors or, in general, random functions. 
Let <B(X1) be the sub u-field of events induced by X 1, that is, the in
verse image under X 1 of the Borel field in the range space of Xt. 

The X 1 are said to be independent if they induce independent u-fields 
<B(X1). Then classes <Bt C <B(Xt) are independent. Since a Borel 
function of Xt induces a sub u-field <Bt of events contained in <B(Xt), it 
follows that 

A'. BoREL FUNCTIONS THEOREM. Borel junctions of independent ran
dom junctions are independent. 

Independent classes can be enlarged, to some extent, without de
stroying independence. More precisely 

Let e1 be independent classes. Independence is preserved if to every 
et we adjoin 

1° the null and the a.s. events, for (I) is trivially true-both sides 
reducing to 0-when at least one of the events which figure in it is 
null, while (I) with n indices reduces to (I) with fewer indices when at 
least one of the events which figure in it is a.s.; 

2° the proper differences of its elements and, in particular, their com
plements (because of 1 °), for if At1 ::::> A' t1, then 

P(At1 - A't1)A12 • • • de,. = P At1At2 • • • At,. - PA't1At2 • • • At,. 

= (P At1 - P d'tJP At2 • • • PAt,. 

= P(At1 - d'tJP At2 • • • P d~.n; 

3° the countable sums of its elements, for 

PC'L At/)At2 • • • At,. = 'L PAt/ At2 • • • d~n 
j j 

= (L_ P At/)P At2 • • • PAt,. 
j 

= P(L_ At/)Pdt2 • • • PA~.n; 
j 

4° the limits of sequences of its elements, for if At1m ~ At1 as m ~ oo, 
then 

Pdt1At2 • • • d~n ~ Pdt1mdt2 ···At,. 

= PAt1mPAt2 ···PAt,.~ PAt1PAt2 ···PAt,.· 

It follows easily that 
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B. ExTENSION THEOREM. Minimal u-;/ields over independent classes 
e, closed under finite intersections are independent. 

Applications. 1° If the events At are independent, so are the u
fields (Ae, A/, 0, n). 

2° If the inverse images et of the classes of all intervals ( -oo, Xt) 
in Borel spaces Rt are independent, so are the inverse images CBt of the 
Borel fields in the R,. For, every e, is closed under finite intersections 
and CB, is the minimal u-field over e,. 

*3° Let CBt be u-fields (or fields) of events and letT. be a subset of 
the index set T. The compound u-field CBT, with components CBe, t E:: T., 
is the minimal u-field over the class eT, of all finite intersections of 
events Ae, t E:: T., and contains all its components; since the CBt are 
closed under finite intersections so is eT,· CBT, is a compound sub u-field 
of CBT and, if T. is finite, then CBT, is a "finitely compound" sub u-field. 

If compound u-fields are independent, then, by A, their finitely com
pound sub u-fields are independent. Conversely, if the finitely com
pound sub u-fields are independent, then, by the extension theorem, the 
compound u-fields are independent. We state these facts as a theorem. 

C. CoMPOUNDs THEOREM. Compound u-.fields are independent if, and 
only if, their finitely compound sub u-;/ields are independent. 

In particular, if the CB, are independent, so are the CBr. for every 
partition ofT into set T •. 

Families XT, = {X,, t E:: T.} of r.v.'s induce su.b u-fields CB(XT,) of 
events. Every CB(XT,) is the minimal u-field over the class e(XT.) of 
inverse images of all intervals in the range space RT, of XT,· But the 
intervals in the Borel space RT, are products of intervals in the factor 
spaces R,, with only a finite number of factor intervals different from 
the whole factor spaces, and the inverse image of any factor space is n. 
Therefore the elements of e(XT,) are all the finite intersections of ele
ments of the CB(X,). It follows that the u-field CB(XT,) is a compound 
of the u-fields CB(X,), and theorem C becomes 

C'. FAMILIES THEOREM. Families of random variables are indepen
dent if, and only if, their finite subfamilies are mutually independent. 

Thus, in the last analysis, independence of random functions reduces 
to independence of random vectors. 

To conclude this investigation of the definition of independence, let 
us observe that all which precedes applies to complex r.v.'s, to com
plex random vectors, and, in general, to complex random functions. 
X, = X't + iX"t considered as vector random functions (X'e, X",), 
t E:: T. 
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16.2 Multiplication properties. The direct definition of independent 
r.v.'s is as follows: 

Random variables Xt, t E: T, are independent if, for every finite class 
(S1" • • ·, S,.J of Borel sets in R, 

n n 

P n [xtk E: s~kJ = II P[x;k E: s~kJ. 
k=l k=l 

The basic expectation property of independent r.v.'s is expressed by 

a. MuLTIPLICATION LEMMA. If xb .. ·, Xn are independent non-
n n 

negatiue r.u.'s, then E II xk = II EXk. 
k=l k=l 

Proof. It suffices to prove the assertion for two independent r.v.'s 
X and Y, for then the general case follows by induction. First, let X = 
I: xJA- and Y = LYkiBk be nonnegative simple (or elementary) 

j 1 k 

r.v.'s; we can always take the Xj, and, similarly, the Yk> to be all dis
tinct, so that .di = [X= Xj], Bk = [Y = Yk]. Since X and Yare inde
pendent, P.diBk = P.diPBk and, hence, 

EXY = L XjykP.djPBk = L XjP.dj. LYkPBk = EXEY. 
j,k j k 

Now, let X and Y be nonnegative r.v.'s and set 

[ j-1 j] .d ·= --:::;X<-, 
n; 2n - 2n 

Since X and Yare independent so are these events and, hence, so are 
the simple r.v.'s 

n2nj-1 
X = "--IA n LJ 2n n;> 

i=l 

But 0 ~ Xn j X, 0 ~ Yn j Y, so that 0 ~ XnYn j XY and, by what 
precedes, EXnYn = EXnEYn. Therefore, by the monotone conver
gence theorem, EXY = EXEY, and the lemma is proved. 

A. MuLTIPLICATION THEOREM. Let Xr, · · ·, Xn be independent r.u.' s. 
n n 

If these r.u.' s are integrable so is their product, and E II xk = II EXk. 
k=l k=l 

Conuersely, if their product is integrable and none is degenerate at 0, then 
they are integrable. 
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Proof. It suffices to prove the assertion for two independent r.v.'s 
X and Y. We observe that independence of X and Y implies that the 
nonnegative r.v.'s X' = x+ or x- or I X I and Y' = y+ or y- or 
I Y I are independent, so that, by a, EX'Y' = EX'EY'. Now, if X 
and Yare integrable so are X' and Y' and, by the foregoing equality, 
so is X'Y'. Therefore I XY I and hence XY are integrable and, by the 
same equality, 

EXY = E(X+ - x-)(Y+ - y-) 

= EX+Ey+ - EX+Ey- - Ex-Ey+ + EX-EY

= EXEY. 

Conversely, if XY is integrable so that El X lEI Y I = El XY I < co, 
and neither X nor Y degenerates at 0 so that El X I and El Y I do not 
vanish, then El X I and El Y I are finite, and the proof is concluded. 

Extension. The multiplication theorem remains valid for independ
ent complex r.v.'s Xk = X'k + iX"k, since it applies to every term of 

n 

the expansion of II (X'k + iX"k). In particular, according to the 
k=l 

Borel functions theorem, if the xk are independent so are the iuX~~; 
and, hence, n 

iu :EX~~; n n 
Ee ll:-l = E II i"Xn = II Ei"x~~:. 

k=l k=l 
In other words, 

CoROLLARY. ChJ.'s of sums of independent r.v.'s are products of chJ.'s 
of the summands. 

This proposition, to be used extensively in the following chapter, is but 
a special case of a property which can serve as an equivalent definition 
of independent r.v.'s, as follows: 

Let Ft and ft. Ft1 •• ·tn and A .. ·tn be the d.f.'s and ch.f.'s of the r.v. 
Xt and of the random vector (X11 ••• X 1,.), respectively. 

B. EQUIVALENCE THEOREM. The three following definitions of inde
pendence of the r.v.' s X 1 are equivalent. 

For every finite class of Borel sets S1 and of points Xe, u1 E:: R 
n n 

P n [Xt~~; E:: stkl = II P[xtk E:: s~J, 
k=l k=l 

F11 ••• 1.(x11 , • • ·, x1.) = F11 (:~11 ) • • • F 1,.(."(1..), 

ftt···t.(Utt> · · ·, Ut.) = ftt(ut 1) • • • .ft.(ut.). 
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Proof. (I 1) implies (12) by taking S 1 = ( -oo, Xt). Conversely, (12) 

implies (I 1) with St = ( -oo, x1) and, on account of 16.1, Application 2°, 
this implies (1 1) for all St. 

(12) implies (13), for (12) implies (I 1) which implies (13) exactly as 
the multiplication theorem implies its corollary. Conversely, (13) im
plies (h), for the inversion formula for one- and multi-dimensional 
ch.f.'s shows at once that if (I3) is true, then, for all continuity intervals, 

Ft, ... tJatJ) · · ·, atn; btl) · · ·, btJ = Ft,[at,, bt,) · · · FtJatn' btn), 

and (12) follows by letting the at ---t - oo and b1 j Xt. This completes 
the proof. 

Extension. The equivalence theorem is valid when the Xt are ran
dom vectors, for the proof applies word by word, provided R is replaced 
by the range space Rt of Xt. 

16.3 Sequences of independent r.v.'s. At the root of known a.s. 
limit properties of sequences of independent r.v.'s lies the celebrated 

A. BoREL ZERO-ONE CRITERION. If the events An are independent, 
then P(lim sup An) = 0 or 1 according as L: PAn < oo or = oo. 

Proof. Since 
n n 

and the events An and hence Anc are independent, the assertion fol
lows by passing to the limit in the elementary inequality 

n n n 

Since, whatever be the events An, L PAn < oo implies that 

n n 

the "zero" part of this criterion is valid with no assumption of inde
pendence: 

a. BoREL-CANTELLI LEMMA. If L PAn < oo, then P(lim sup An) = 0. 

CoROLLARY 1. If the events An are independent and An ---t A, then 
PA = 0 or 1. 

a.s. 
CoROLLARY 2. If the r.v.'s Xn are independent and Xn ~ 0, then 

L P[l Xn I ~ c] < oo whatever be the finite number c > 0. 
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For Xn ~ 0 implies that, if An = [i Xn I ~ c], then P(lim sup An) 
= 0, and independence of the Xn implies that of the An. 

Because of its intuitive appeal, instead of "lim sup An" we shall 
sometimes write "An i.o."; to be read "An's occur infinitely often" or 
"infinitely many An occur." This terminology corresponds to the fact 
that lim sup An is the set of all those elementary events which belong 
to infinitely many An or, equivalently, to some of "the An, An+b · · · 
however large be n"-the "tail" of the sequence An. To the "tail" of 
the sequence An of events corresponds the "tail" of the sequence IA. 
of their indicators. More generally, the "tail" of a sequence Xn of 
r.v.'s is "the ilequence Xn, Xn+h · · · however large be n." 

To be precise, let Xh X 2, · · · be a sequence of r.v.'s and let CB(Xn), 

CB(Xn, Xn+t), · · ·, CB(Xn, Xn+~> · · · ), CB(Xn+t> Xn+2> · · · ), · · · be 
sub cr-fields of events induced by the random functions within the brack
ets. We give a precise meaning to lim sup CB(Xn), as follows: The se
quence CB(Xn), CB(Xn, Xn+1), • • • is a nondecreasing sequence of u
fields, its supremum or union is a field, and the minimal u-field over 
this field is CB(Xn, Xn+h · · ·) or, writing loosely, "sup CB(Xm).'' In 

m~n 

turn, the sequence CB(Xn, Xn+I> · · · ), CB(Xn+h Xn+2' · · · ), · · · is a 
nonincreasing sequence of u-fields and its limit or intersection is a u
field e contained in CB(Xn, Xn+h · · ·) however large be n or, writing 
loosely, "lim sup CB(Xn)." The u-field e will be called the tailu-field 
of the sequence Xn or "the sub u-field of events induced by the tail of 
the sequence Xn." Let us observe that all the foregoing u-fields and, 
in particular, the tailu-field, are contained in the u-field CB(Xh X 2, • • ·) 

induced by the whole sequence Xn. The elements of the tail u-field e 
are tail events and the numerical (finite or not) e-measurable functions, 
that is, those functions which induce sub u-fields of events contained in e 
are tail junctions-they are defined on the "tail" of the sequence. For 
example, the limits inferior and superior of the sequence Xn and of the 
sequence (Xt + X2 + · · · + Xn)/bn, where bn ---7 oo, are tail functions 
(not necessarily finite), while the sets of convergence of these sequences, 
as well as the set of convergence of the series I: Xn, are tail events. 

To Borel's result corresponds the basic Kolmogorov's 

B. ZERO-UNE LAW. Un a sequence of independent r.v.'s, the tail events 
have for pr. either 0 or 1 and the tail junctions are degenerate. 

In other words, the tail u-field of a sequence of independent r.v.'s is 
equivalent to {0, !J). 
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Proof. We observe that an event A is independent of itself if, and 
only if, PAA = PA·PA, that is, if PA = 0 or l-and such events are 
mutually independent. Thus, the first assertion means that the tail 
u-field e of the sequence Xn of independent r.v.'s is independent of it
self. Since e c <B(Xn+l> Xn+2 , • • ·) whatever be n and, because of 
the independence assumption, <B(Xh · · ·, Xn) is independent of <B(Xn+h 
Xn+2, • • • ), it follows that e is independent of <B(Xl> X 2, • • ·, Xn) 
whatever be n. Therefore, e is independent of <B(Xl> X 2, • • ·) and, 
being contained in <B(Xl> X 2, • • • ), it is independent of itself. This 
proves the first assertion and the second follows, since, if X is a tail 
function, then it is a.s. { 0, n }-measurable hence degenerates. 

CoROLLARY. If Xn are independent r.v.' s, then the sequence Xn either 
converges a.s. or diverges a.s.; and similarly for the series :E Xn. More
over, the limits of the sequences Xn and (X1 + · · · + Xn) / bn where bn j oo, 

are degenerate. 

*16.4 Independent r.v.'s and product spaces. Let Xe, where t runs 
over an index set T, be independent r.v.'s with d.f.'s Fx1 on Rt. Be
cause of the correspondence theorem, every Fx1 determines a pr. Px1 

on the Borel field <Bt in R 1• On account of the product-measure theo
rem, the Px1 determine a product-measure II Px1 on the product Borel 
field II <Bt in the product space II R1• On the other hand, the law of 
the family X= {Xe, t E:: T}, represented by the family of d.f.'s 
{Fx11 , ... ,x1N} of all finite subfamilies of X determines, by the corre

spondence theorem, a family {Px11, ... ,x1N} of consistent measures on 
N 

the product Borel fields II <B1k. Owing to the consistent measures theo-
k=l 

rem, this family of pr.'s determines a pr. Px on II <B1• 

Since the X 1 are independent, 

Fxe, .. ·XeN = Fxe 1 X · · · X FxeN 
so that 

Px11 •• ·X eN = Pxt, X · · · X PxeN 

and, therefore, Px coincides with II Px1• In other words, 

A. The pr. space induced on its range space by a family of independent 
r.v.' s is :he product of pr. spaces induced on their respective range spaces 
by the r.v.' s of the family. 

Let us observe that this reduces the multiplication theorem to the 
Fubini theorem. 
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The question arises whether the converse is true: Given a product 
pr. space (II R, II ffie, II P1), is there a family {Xe, t E: T} of inde
pendent r.v.'s on some pr. space (0, a, P) which induces this product 
pr. space? Equivalently, given a family {Fe, t E: T} of d.f.'s with 
variation 1, is there a family {Xe, t E: T} of independent r.v.'s with 
Fx, = Ft? 

If the pr. space on which the r.v.'s have to be defined is fixed, then, 
in general, the answer is in the negative, since on a fixed pr. space even 
one r.v. with a given d.f. might not exist. However, if we are at lib
erty to select the pr. space on which to define r.v.'s, and we shall always 
do so, then the answer is in the affirmative, as follows: 

Let the pr. space be the product pr. space (II Re, II CBh II Pt) where, 
if the F1 are given, the Pt are determined upon applying the correspond
ence theorem. The r.v.'s Xe, defined on this pr. space by Xt(x) = xe, 
x = {xe, t E: T}, are then independent, since their pr.d.'s are Pt and 
their d.f.'s are F1• Thus 

B. The relation X 1(x) = x~, x = {xt, t E: T} establishes a one-to-one cor
respondence between families { X 1} of independent r.v.' s and product pr. 
spaces on II Rt. 

REMARK. There exist pr. spaces on which can be defined all possible 
families of independent r.v.'s with a given index set T. For example, 
take the pr. space {0, ct, P) where 0 = II Ot with Ot = (0, 1) and 
P = II Pt on the Borel field a in 0, with P1 being the Lebesgue measure 
on the Borel field in 01 (class of Borel sets in Ot). Then the r.v.'s Xr
inverse functions of arbitrarily given d.f.'s F1-are independent and 
Fx,=Ft. 

Extension. The preceding considerations apply, word for word, to 
random vectors. They also apply to arbitrary random functions, pro
vided we consider that the d.f. of a random function is defined in terms 
of its "finite sections," that is, the family of d.f.'s of projections of the 
random function on finite subspaces. 

§ 17. CONVERGENCE AND STABILITY OF SUMS; CENTERING AT 

EXPECTATIONS AND TRUNCATION 

This section and the following one are devoted to the investigation .. 
of sums s .. = L: xk of independent r.v.'s xh x2, ... and, especially, 

k=l 

of their limit properties-convergence to r.v.'s and stability. 
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Given two numerical sequences an and bn j oo, we say that the se-
. Sn P Sn a.s. 

quence Sn is stable in pr. or a.s. tf bn - an ~ 0 or bn - an --+ 0. In 

fact, a stability property is at the root of the whole development of pr. 
theory. If xh x2, ... are independent and identically distributed in
dicators with P[Xn = 1] = p and P[Xn = 0] = q = 1 - p, we have 
the Bernoulli case. The first stability property is the 

p 

BERNOULLI LAW OF LARGE NUMBERS: In the Bernoulli case Sn- p 
n 

~ 0. 

The Central Limit Problem, to which the following chapter is devoted, 
is the direct descendant of its sharpening by de Moivre and by Laplace. 
On the other hand, the following strengthening 

BoREL STRONG LAW OF LARGE NUMBERs: In the Bernoulli case 

Sn a.s. 
--p--+0 n , 

is at the origin of the results given in this chapter. Perhaps the im
portance of the methods overwhelms that of the results and emphasis 
will be laid upon the methods. These methods are (1) centering at ex
pectations and truncation and (2) centering at medians and symmetri
zation. 

17.1 Centering at expectations and truncation. We say that we cen
ter X at c if we replace X by X- c. If X is integrable, then we can 
center it at its expectation EX and, thus, X is replaced by X- EX. 
In other words, a r.v. is centered at its expectation if, and only if, its ex
pectation exists and equals 0. 

Let X be integrable. The second moment of X- EX is called 
variance of X; it exists but may be infinite and will be denoted by u2X. 
Thus 

Since, for every finite c, we have 

u2(X- c) = E(X- c - E(X- c)) 2 = E(X- EX) 2, 

centerings do not modify variances. 
The importance of variances is due to the fact that we have at our 

disposal bounds, in terms of variances of summands, of pr.'s of events 
defined in terms of sums Sn of independent r.v.'s; we shall find and use 
such bounds in this section. However, variances can be introduced 
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only when the summands are integrable. Moreover, the bounds men
tioned above are nontrivial only when the variances are finite. This 
seems to limit the use of such bounds to square-integrable summands. 
Yet this obstacle can be overcome by means of the truncation method. 

We truncate X at c > 0 (finite) when we replace X by xc = X or 0 
according as I X I < c or I X I ;;; c, and x· is X truncated at c. It fol
lows that, ifF is the d.f. of X, then all moments of X" 

EX" = r X dF, E(X0 ) 2 = r x2 dF, etc., 
Jj"' I <c J1"' I <c 

exist and are finite. Vve can always select c sufficiently large so as to 
make P[X ¢. xc] = P[l X I ;;; c] arbitrarily small. Furthermore, we 
can always select the c; sufficiently large so as to make P U [X; ¢. X/'1 
arbitrarily small, since, given E > 0, we have 

P U [X; ¢. Xj"i] ~ L: P[l X; I ;;; c;] < E 

E 
if, say, the c; are selected so as to make P[l X; I ;;; c;] < 21 . Thus, to 

every countable family of r.v.'s we can make correspond a family of 
bounded r.v.'s which differs from the first on an event of arbitrarily 
small pr. Moreover, if we are interested primarily in limit properties 
there is no need for arbitrarily small pr., for the following reasons. 

Let two sequences Xn and X'n of r.v.'s be called tail-equivalent if 
they differ a.s. only by a finite number of terms; in other words, if for a.e. 
w E: n there exists a finite number n(w) such that for n ;;; n(w) the two 
sequences Xn(w) and X'n(w) are the same; in symbols P[Xn ¢. X'n i.o.] 
= 0. If the sequences Xn and X'n only converge on the same event 
up to some null subset, then we say that they are convergence equivalent. 

n n 

Let Sn = L: Xk and S' n = L: X' k· Since 
k=l k=l 

00 00 

it follows that 

a. EQUIVALENCE LEMMA. If the series L: P[Xn ¢. X'nl converges, 
then the sequences Xn and X' n are tail-equivalent and, hence, the series 

. Sn S'n L: Xn and L: X' n are convergence-equwalent and the sequences On and On , 

where On j oo, converge on the same event and to the same limit, excluding a 
null event. 
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17.2 Bounds in terms of variances. To avoid repetitions, we make 
n 

the convention that, unless otherwise stated, So = 0, Sn = L xk, 
k=l 

n = 1, 2, ···,and the summands Xr, X 2, • • • are independent r.v.'s. 
Let Xr, X 2, • • ·, be integrable. Since centerings do not modify the 

variances, we can assume, when computing variances, that these r.v.'s 
are centered at expectations. Then 

n " n 

u2Sn = ESn2 = 2: EXk2 + 2: EXiXk = 2: u2 Xk, 
k=l i.k=l k=l 

j~k 

since independence of xj and xk entails, by 15.2, 

Thus, we obtain the classical 

BIENAYME EQUALITY. If the r.u.'s Xn are independent and integrable, 
then 

n 

The basic inequalities 9.3A become 

n 

L u2Xk- e2 

k-1 I I 1 n 2 
- 2 ~ P[ Sn - ESn ~ e] ~ 2 L u Xk. 

a.s. sup (Sn - ESn) e k=l 
a. 

The right-hand side inequality is the celebrated BIENAYME-TcHEBICHEV 
INEQUALITY. Applied to (Sn+k- ESn+k) - (Sn - ESn) and to Sn- ESn 
with e replaced by ebn, it yields, by passage to the limit, 

b. If the series L u2 Xn converges, then the series L (Xn - EXn) con-
I n Sn- ESn P 

uerges in pr. If -2 L u 2 xk ~ 0, then ~ 0. 
bn k=l bn 

This last property is due to Tchebichev (when bn = n). In the Ber
noulli case, where bn = n, EXn = p, u2 Xn = pq, it reduces to the Ber
noulli law of large numbers. It is of some interest to observe that 
Borel's strengthening can also be obtained by means of the Bienayme
Tchebichev inequality (see Introductory part). 

So far, the assumption of independence was used only to establish 
that the summands were orthogonal, that is, EXiXk = OU ¢ k) when 
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X; and X" are centered at expectations. In fact, the foregoing results 
remain valid under the even less restrictive assumption of orthogonality 
of Sn-1 and Xn, n = 1, 2, ···,since, then, 

u2Sn = u2Sn-1 + u2 Xn, 

and the Bienayme equality follows by induction. 
But, in the case of independence, the r.v.'s Sn_11An-t and Xn are 

orthogonal, not only for An-1 = n but also for every event An-1 de
fined in terms of Xh X2, · · ·, Xn-1· Therefore, it is to be expected 
that the foregoing results can be strengthened by using more completely 
the properties of independence, in particular the orthogonality prop
erty just mentioned. 

A. KoLMOGOROV INEQUALITIES. If the independent r.v.' s xk are inte
grable and the 1 x" 1 ~ c finite or not~ then, for every e > o, 

(e + 2c)2 1 n 
1 - n ~ P[max I sk - ESk I ~ e] ~ 2 L::U2 xfc. 

2 k~n e k=1 
:Eu xk 
k-1 

If one of the variances is infinite, then the right-hand side inequality 
is trivial and the left-hand side inequality has no content (for, then, 
c = oo), so that we assume that all variances are finite. In that case, 
the left-hand side inequality is trivial when c is infinite and therefore 
we assume, in proving this inequality, that, moreover, c is finite. 

Proof. We can assume, without restricting the generality, that the 
Xn and hence the Snare centered at expectations, provided we note that 
I XI ~ c implies I EX! ~ c and, hence, I X- EX! ~ 2c. 

Let 
A1c = [max I S; I < e], 

i~k 

Bk = Ak-1 -ATe = rl s1 I < e, .. ·,I sk-1 I < e, I skI ~ e] 

so that 
n 

Ao = n, Anc = :E BTc, Bk c rl sk-1 I < e, I skI ~ e]. 
k-1 

1 o Since SJB~o and Sn - S1c are orthogonal, it follows that 

f Sn2 = E(SnlB~o)2 
jBk 

= E(STclB~o)2 + E((Sn- STc)lB~o)2 ~ E(STclB~o)2 ~ e2PB1c. 
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Summing over k = 1, · · ·, n, we obtain 

and the right-hand side inequality is proved. 
2° Since 

sk-1IAk-1 + XkiAk-1 = skiAk-1 = skiAk + skiBk 

[SEc. 17] 

and sk-IIAk-1 and xk are orthogonal while IAJBk = 0, it follows that 

E(Sk-1IA~o_1) 2 + u2Xk·PAk-1 = E(SkiA~o)2 + E(SkiBk)2 • 

Since p Ak-1 ~ pAn and I xk I ~ 2c, and hence 

I SkiBk I ~ I sk-IIBk I + I XkiBk I ~ (E + 2c)IBk' 

i i: follows that 

E(Sk-IIAk_1)2 + u2Xk·PAn ~ E(SkiA~o)2 + (E + 2c) 2PBk. 

Summing over k = 1, · · ·, n, we obtain 
n n 

C'E u2Xk)PAn ~ E(SniAY + (E + 2c)2 L PBk 
k=l k=l 

~ E2PAn + (E + 2c)2PAnc ~ (E + 2c)2, 

and the left-hand side inequality follows. 
17.3 Convergence and stability. We apply now Kolmogorov in

equalities and the truncation method to convergence and stability prob
lems for consecutive sums Sn of independent r.v.'s Xh X 2, • • •• 

I. CoNVERGENCE. In this Chapter, convergence means convergence 
to afinitc number or to afinitc function (r.v.). 

a. If L u2 Xn converges, then L (Xn - EXn) converges a.s. If L u2 Xn 
diverges and the Xn arc uniformly bounded, then L (Xn - EXn) diverges 
a.s. Thus, if the Xn arc uniformly bounded, then L (Xn - EXn) con
verges a.s. if, and only if, .L u2 Xn converges. 

This follows, by letting m, n --+ oo in Kolmogorov's inequalities with 
Sk replaced by Sm+k - Sm. 

b. If the Xn arc uniformly bounded and :E Xn converges a.s., then 
L u2Xn and :E EXn converge. 
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Proof. To the r.v.'s X., we associate r.v.'s X'., such that X., and X'., 
are identically distributed for every n and Xh X'h X 2, X'2, • • • is a 
sequence of independent r.v.'s. We form the "symmetrized" sequence 
X.,8 = X., -X'., of independent r.v.'s, and have 

I x .. ·l ~I x .. I+ I X'., I ~ 2c, EX.,• =EX.,- EX'.,= 0, 

Since I: X., converges a.s., so does I: X'., and hence I: X., • ( = I: X., 
-I: X'.,). It follows, by a, that I: u2X., 8 and hence I: u2X., converge 
and, again by a, I: (X., - EX.,) converges a.s., so that I: EX., = 
I: X., - I: (X., - EX.,) converges. The assertion is proved. 

Let xc be X truncated at (a finite) c > 0. We have Kolmogorov's 

A. THREE-SERIES CRITERION. The series I: X., of independent sum
mands conuerges a.s. to a r.u. if, and only if, for a fixed c > 0, the three 
sertes 

conuerge. 

Proof. Convergence of (i) entails, by the equivalence lemma, con
vergence-equivalence of I: X., and I: X.,c, and convergence of (ii) and 
(iii) entails, by a, a.s. convergence of I: X., c. This proves the "if" 
assertion. 

a.s. 
Conversely, let I: X .. converge a.s. so that X .. ~ 0. Byl6.3A,Cor. 2, 

(i) converges, so that, by the equivalence lemma, I: x.,c converges 
a.s. and, by b, (ii) and (iii) converge. This proves the "only if" asser
tion. 

CoROLLARY. If at least one of the three series in A does not conuerge, 
then I: X., diuerges a.s. 

For, by 16.3B (Corollary), I: X., either converges a.s. or diverges a.s. 

REMARK. In the proof ofb we introduced a "symmetrized" sequence. 
This is an application of the "symmetrization method," to be expounded 
in the next section. 

II . . . S., a.s . 
. A.s. STABILITY. We seek cond1t1ons under whtch-- a., ~ 0 

b., 
when b., f oo, and require the following elementary proposition. 
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ToEPLITZ LEMMA. Let ank, k = 1, 2, · · ·, kn, be numbers such that, 
for every fixed k, ank ~ 0 and, for all n, :E I ank I ~ c < oo; let x' n = 

k 

L ankXk. 
k 

Then, Xn ~ 0 entails x'n ~ 0 and, if Lank ~ 1, then Xn ~ x 
k 

n 

finite entails x'n ~ x. In particular, if bn = :E ak j oo, then Xn ~ x 
k=l 

fi . . l1;, mte en tat s -b LJ akxk ~ x. 
n k=l 

The proof is immediate. If Xn ~ 0 then, for a given E > 0 and 

n ~ n. sufficiently large, I Xn I < ~ so that 
c 

Letting n ~ oo and then E ~ 0, it follows that x' n ~ 0. The second 
assertion follows, since then 

And setting ank = ak • k ~ n, the particular case is proved. 
bn 

The particular case yields the powerful 

KRONECKER LEMMA. If :E Xn converges to s finite and bn j oo, then 
1 n 

- LbkXk ~ 0. 
bn k=l 

n 

For, setting bo = 0, ak = bk - bk-h Sn+l = L Xk, we have 
k=l 

1 n 1 n 1 n 
- L:bkxk =- L:bk(sk+l- Sk) = Sn+l-- L:aksk ~ s- s = 0. 
bn k=l bn k=l bn k=l 

We are now in a position to prove Kolmogorov's proposition below. 

u2Xn 
A. If the integrable r.v.'s Xn are independent, then L bn2 < oo, 

Sn- ESn a.s. 
bn j oo, entails ~ 0. 

bn 
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r?Xn 
For, by Ia, convergence of :E - 2- entails a.s. convergence of 

bn 
Xn- EXn :E , and the Kronecker lemma applies. 

bn 
We can now prove an extension of Borel's strong law oflarge numbers. 

B. KoLMOGOROV STRONG LAw OF LARGE NUMBERS. If the independ
ent r.u.'s Xn are identically distributed with a common law .C(X), then 
X1 + · • • + Xn a.s. . • . 

1 ----~ c finzte if, and only if, E X I < oo; and then c = EX. 
n 

Proof. We set An = ll X I ~ nJ, Ao = n, and observe that, for every 
n, PAn = P[l Xn I ~ nJ, while 

L PAn= L (n- 1)(PAn"-l- PAn) ~ L El XIJA,._1-A,. 

~ :En(PAn-l- PAn)~ 1 + :EPAn 
or 

Sn a.s. Xn Sn n - 1 Sn-t a.s. 
If - ~ c finite, then - = - - ----~ 0 and, hence, 

n n n n n-1 
by 16.3a,Cor. 2, :E PAn < co. This proves the "only if" assertion and it 

• h "f I I h Sn a.s. E remams to prove t at, 1 E X < co, t en-~ X. n 
n 

Let El X I < 00 and set Sn = L xk, where xk represents xk trun
k=l 

cated at k. Since 

L P[l Xn I ~ n] = L PAn ~ El X I < oo, 

it follows that the sequences Sn/n and Sn/n have same limit, and it 
Sn a.s. 

suffices to prove that- ~ EX. Since, by the dominated convergence 
n 

theorem, 

ES 
and, hence, by the Toeplitz lemma, __ n ~ EX, it suffices to prove 

n 
Sn- ESn a.s. 

that ~ 0. But 
n 
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since, setting Bm = [ m- 1 ~ I X I < m ], we have AncBm = 0 or 
Bm according as n < m or n ~ m and, hence, 

~ (1 + m2L"' ~:)IBm~ (2 +I XI)IB.;> 
so that, by summing over m, we obtain the bound 2 + El X 1. Thus, 
theorem A applies, and the proof is complete. 

*17.4 Generalization. Let c, with or without affixes, be finite posi
tive numbers and let gn be continuous and nondecreasing functions on 
[0, +ooJ such that gn(O) = 0 and gn(x) ~ cx2 or ~ c' according as 0 < 
X < Cn or X ~ Cn• 

a. If the Jeries (i) L: P[l Xn I ~ Cn] and (ii) L Egn(j Xnc" I) converge, 
then L (Xn - EXnc") converges a.s. 

For convergence of (i) entails, by the equivalence lemma, convergence
equivalence of L (Xn - EXnc") and L (Xnc" - EXn Cn) and, by Ia, 
this last series converges a.s., since convergence of (ii) entails 

L: u2 Xnc" ~ L: El Xnc" 12 ~ ~ L: Egn(l Xn en I) < oo. 

b. If the series (i) L Egn(l Xn I> or (ii) L Lc,.P[I Xn I ~ x] dgn(x) 

converges, then L: (Xn - EXn°") converges a.s. 

For convergence of (i) entails 

1 
L P[l Xn I ~ Cn] ~ -; L Egn(l Xn I) < 00 

c 
and 

2: Egn(l Xnc,. I) ~ L Egn(l Xn I) < oo, 

so that a applies. 
Similarly, convergence of (ii) enta.ils, by integration by parts, 

oo > L LenP[I Xn I ~ x] dgn(x) = L gn(cn)P[I Xn I ~ Cn] 

+ Lc" gn(X) dP[I Xn I < x] 

~ c' L P[l Xn I ~ Cn] + L Egn(l Xn°" 1), 
so that a applies. 



[SEc. 17] SUMS OF INDEPENDENT RANDOM VARIABLES 253 

A. If the series (i) L: Egn (I ~:I) or (ii) L: [ P[l Xn I ~ bnx] dgn(x) 

converges, then 

X - EX bncn 1 n a.s. 
L: n b n converges a.s. and- L: (Xk - EXkbnen) --+ 0. 

n bn k=l 

Moreover, if (i) converges and gn(x) ~ c"x for 0 < x ~ Cn or for x ~ Cn, 
then EXnbncn can be replaced by 0 or by EXm respectively. 

Proof. The first assertion follows from b and the Kronecker lemma. 
As for the second assertion, if L:' and L:" denote summations over 
those values of n for which the first, respectively, the second, assump
tion about gn holds, then 

1 ibnenx L:'- El XnbnCn I = L:' - dP[j Xn I < x] 
bn 0 bn 

;;;;; 2_ L:' rbnCn gn (!!._) dP[I Xn I < x] 
c" Jo bn 

and 

I 1 1 I 1 '\'II - EX - '\'II - EX bncn ~ '\'II - El X - X bncn I 
~ bn n ~ bn n - ~ bn n n 

i oo X 

= L:" -dP[I Xn I < x] 
nCn bn 

~ ~I L:" r"" gn (bx) dP[I Xn I < x] 
C JbnCn n 

;;;;; c~' L: Eg;. (I ~:I) < oo. 

This completes the proof. 
Particular cases. 1° Let gn(x) = I X lrn with 0 < rn ;;;i 2. Theorem 

A yields 
El Xn lrn 1 n a.s. 

If bn j oo and L: bnrn < oo, then bn k~ (Xk - ak) --+ 0 where 

ak = 0 or EXk according as 0 < rn < 1 or 1 ;;;i rn ~ 2. 

For rn = 2, we find 17.3IIA. 
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2° Let gn(x) = x2 for 0 ~ x ~ 1 and, to simplify the writing, set 
q(x) = P[l X I ~ x], qn(x) = P[l Xn I ~ x]. Theorem A yields 

If i\{L, qn(bnx)} dx < oo, then L, b1n (Xn - EXnbn) converges a.s. 

1 n (X EX bk) a.s. 0 and - L, k - k ---+ · 
bn k-1 

We require the following 

MoMENTS LEMMA. For every r > 0 and x > 0 

1 1 

xT L, q(n-;.x) ~ El X IT ~ 1 + xT L, q(n-;.x). 

This follows from 

and 

f ., inrx El X IT = - IT dq(t) = - L, .! IT dq(!) 
(n-1)r x 

0 

1 1 

(n- 1)xT{q((n - 1)-;.x) - q(n-;.x)} 
1 i nrx 1 1 

~ - .! tT dq(t) ~ nxT{q((n- 1)-;.x)- q(n-;.x)}, 
(n-1fx 

by summing the inequalities over n = 1, 2, · · · and rearranging the 
terms. 

1 

3° If bn = nr and the laws of the r.v.'s Xn are uniformly bounded 
by the law of a r.v. X, that is, qn ~ q, then El X IT < oo entails 

L1 1 L1 1 L1 dx 
x(L, qn(nrx)) dx ~ x(L, q(nrx)) dx ~ El X IT T-1 , 

0 0 X 

so that the right-hand side is finite for r < 2. Therefore, on account of 
2o, 

I I 1 n a.s. 
If qn ~ q and E X T < oo with r < 2, then 1 L, (Xk - ak) ~ 0 

- k=l nT 
where ak = 0 or EXk according as r < 1, or ~ 1. 

4° If Fn = F, then the converse is also true. More precisely (Kol
mogorov~ r = 1; Marcinkiewicz: r ~ 1), 
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Let the independent r.v.' s Xn be identically distributed with common 
law £(X), and let 0 < r < 2. 

I I 1 n a.s. 
If E X r < oo, then ~ L:: (Xk - ak) ----? 0 with ak = 0 or EX 

n k=t 
according as r < 1 or r ~ 1. 

1 n a.s. I I 
Conversely, if~ L:: (Xk - ak) -~ 0, then E X r < oo. 

n k=l 

Proof. The first assertion is a particular case of the preceding propo
sition. As for the converse proposition, we use the symmetrization 
method expounded in the following section. 

Let X'n be a sequence independent of the sequence Xn and with 
same distribution, and let X' be independent of X and with same dis
tribution; set Xn" = Xn- X'n and X"= X- X'. Then, on account 
of the assumption, 

1 n 1 n 1 n a.s. 
Yn =- L:: Xk" =- L:: (Xk- ak) -- L:: (X'k- ak) ----+ 0 

nlfr k=l nllr k=l nllr k=l 

and, hence, 
Xn 8 (n - 1)l/r a.s. 
- = Yn - -n- Yn-1 ----? 0. nl/r 

Since the Xn" are independent r.v.'s, it follows that, for every x > 0, 

L:; q"(n11rx) = L:; P[j Xn" I ~ n11rx] < oo. 

Therefore, by the moments lemma, El X" I' < oo so that, by 17.1A, 
Corollary 2, 

and, hence, by the Cr-inequality, 

El X I' ~ CrEI X- JLX lr + Crl JLX lr < oo. 

The proof is complete. 

*§ 18. CONVERGENCE AND STABILITY OF SUMS; CENTERING AT 

MEDIANS AND SYMMETRIZATION 

While centering at expectations goes back to Bernoulli and use of 
bounds in terms of variances goes back to Tchebichev, centering at 
medians and symmetrization are relatively recent. Yet, not only do 
they complete the first ones, but they also tend to replace them alto-
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gether. Moreover, medians always exist and the ch.f.'s of symmetrized 
r.v.'s, being real-valued, are much easier to handle than complex-valued 
ones. 

*18.1 Centering at medians and symmetrization. Let F be the d.f. 
of a r.v. X. There exists at least one finite number p.X called a median 
of X, such that 

or, equivalently, 

For, F being nondecreasing on R with F(- oo) = 0, F( + oo) = 1, the 
graph of y = F(x) completed at its discontinuity points by the seg
ments (x, F(x)) to (x, F(x + 0)) has either a point or a segment parallel 
to the x-axis, in common with the line y = !. According to the fore
going definition, the abscissae of the common point or of the common 
segment are medians of X so that either X has a unique median or it 
has for medians all points of a closed interval on R-the median seg
ment of X. 

It follows from the definition of medians that, for every finite number 
c, we can set p.(cX) = cp.X. Furthermore, there is a relation between 
p.X, EX, and u2 X, namely, 

a. If X is integrable, then I p.X - EX I ;;;; V 2u2 X. 

For, by Tchebichev's inequality, 

P[l X- EXI ~ V2?X];;;; !, 
so that 

A r.v. X and its law as well as its d.f. F and ch.f.j are said to be sym
metric if, for every x, 

(1) P[X;;;; x] = P[X ~ -x]; 

equivalently, 

(2) F(-x + 0) = 1- F(x), 

or, for every pair a < b of continuity points ofF, 

(3) F[a, b) = F[ -b, -a), 

or 

(4) j =]is real. 
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The symmetrization procedure consists in assigning to a r.v. X the sym
metrized r.v. X 8 =X- X', where X' is independent of X and has the 
same distribution. More generally, if X= {Xe, t E:: T} is a family of 
r.v.'s, then the symmetrized family is X 8 = {Xe- X't, t E:: T} where 
the family X' is independent of X and has same distribution. If X has 
affixes we affix them to X 8 as well as to its d.f. and ch.f. Clearly 

b. To a r.u. X with ch.j. f, there corresponds a symmetric r.u. X 8 = 
X - X' where X and X' are independent and identically distributed, and 
f 8 = If 12 is the ch.j. of X 8 • 

We arrive now at inequalities which are the basic reason for centering 
at medians. 

A. WEAK SYMMETRIZATION INEQUALITIES. For euery E and euery a, 

(i) 

and 

(ii) !P[I X- Jlx I ~ E] ;;;;; P[l xs I ~ E] ;;;;; 2P [1 X- a I ~ ~l 
Proof. Since X 8 = X - X' where X and X' are independent and 

identically distributed, it follows that to a median Jl = JlX corresponds 
an equal median Jl = J'X' and 

P[X' ~ E] = P[(X- Jl) - (X' - Jl) ~ E] ~ P[X- Jl ~ E, X' - Jl ;;;;; 0] 

= P[X- Jl ~ E]·P[X'- Jl;;;;; 0] ~ !P[X- Jl ~ E]. 

This proves inequality (i) which, together with the inequality obtained 
by changing in (i) X into -X, entails the left-hand side inequality in 
(ii). The right-hand side inequality in (ii) follows from the identical 
distribution of X and X' only, by 

P[l X 8 1 ~ E] = P[l (X- a) - (X' - a) I ~ E] 

;;;;; P [I X - a I ~ ~] + P [I X' - a I ~ ~] 

= 2P [I X - a I ~ ~] · 
p p 

CoROLLARY 1. If Xn - an ---+ 0, then Xn8 ---+ 0 and an - JlXn ---+ 0, 
and conversely. 

This follows by letting n ---+ oo in (ii) where X is replaced by Xn. 
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CoROLLARY 2. For r > 0 and every a, 

where c, = 1 or 2'-1 according as r ~ 1 or r ;;;; 1. 

Proof. The right-hand side inequality follows, by the c,-inequality, 
from 

El X" I'= E I (X- a) - (X'- a) I'~ c,E I X- a I' +c, E I X' -a I' 
= 2c,E I X - a I'. 

As for the left-hand side inequality, it is trivial when E I X" I' = oo and 
then, according to the inequality just proved (with a = p.X), E I X
p.X I' = oo; thus, we can assume that El X" I' is finite. Let 

q(t) = P[l X- p.X I ;;;; t] and q'(t) = P[l x·l ;;;; t] 

so that, by A(ii), 

It follows, upon integrating by parts, that 

Ei x- p.X I' = - r~,, dq(t) = r~q(t) d(t') ~ 2 r~q"(t) d(t') Jo .Jo Jo 
= - 2 fa~,. dq•(t) = 2EI x•l', 

and the proof is concluded. 
This corollary was used at the end of the preceding section. 

We pass now to symmetrized families and recall that, if two families 
{Xe, 1 E: T} and {X'e, 1 E: T} are independent, then events defined in 
terms of the X 1 and in terms of the X't, respectively, are independent. 
We require the following 

c. LEMMA FOR EVENTS. Let events with subscript 0 be empty. If, for 
every integer j E;; 1, dp1j-tc · · · d 0c and Bi are independent, then 

P U diBi;;;; aP U di> a= inf PBi. 

More generally, if (di + d/) (di-t + dj_1')c · · ·(do + d 0')c are in
dependent of Bi and of B'i> then 

P U (diBi + d'iB'i) ;;;; aP U (di + d'i), a = inf (PBi> PB'i). 
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Proof. The same method applies to both cases. For instance 

P U A;B; = PA1B1 + P(A1B1)cA2B2 + P(A1Bt)c(A2B2)cAaBa +· · · 
~ PA1B1 + PA1cA2B2 + PA1cA2cAaBa + · · · 
~ PA1·PB1 + PA{A2·PB2 + PA1cA2cAa·PB3 +· · · 
~ a(PA1 + PA1cA2 + PA1cA2cAa +· · ·) = aP U A;. 

B. SYMMETRIZATION INEQUALITIES. For every E and every a;,j ~ n, 

(i) fP[sup (X; - p.X;) ~ E] ~ P[sup X;" ~ E] 
j j 

and 

(ii) fP[sup I X; - p.X; I ~ E] ~ P[sup I X/I ~ E] 
i j 

~ 2P [ s~p I X; - a; I ~ ~l 
Proof. Since X;" = X;- X'; and the families {X;} and {X';} are 

independent and identically distributed, it follows that to medians 
P.i = p.X; correspond equal medians Jl.i = p.X';; setting 

A·= [X·- u• ~ E'] B· = [X'·- u• :S 0] C· = [X·8 ~ E'] 1 1 ,..1 - , 1 1 ,..1 - , 1 1 - , 

so that A;B; C C;, the lemma for events applies, with a = f, and 

iP U A; ~ P U A;B; ~ P U C;. 

This proves (i) by letting E1 j E, and (ii) follows by arguments similar 
to those used in the proof of A and by the lemma for events. 

a.s. a.s. 
CoROLLARY. If Xn - an ~ 0, then Xn" ~ 0 and an - p.Xn ~ 0; 

and conversely. 

By centering sums of independent r.v.'s at suitable medians, we ob
tain inequalities which can play the role of Kolmogorov's inequalities. 

c. P. L:EvY INEQUALITIES. If xh .. ·, Xn are independent r.v.'s and 
k 

sk = :E X;, then, for every E, 

.i=l 

(i) 

and 

(ii) P[max I sk - p.(Sk - Sn) I ~ E] ~ 2P[I Sn I ~ E]. 
k;:On 
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Proof. Let So = 0, S*k = max (S; - J.t(S; - Sn)) and set 
j;'[,k 

Ak = [S*k-1 < E, sk. - J.t(Sk - Sn) ~ E], 

Bk = [Sn- Sk- J.t(Sn -.Sk) ~ 0] 

where J.t(Sn- Sk) = -J.t(Sk - Sn). Since 

n n 

[S*n ~ E) = L Ak, [Sn ~ E) ::J L AkBk, PBk ~ !, 
k=l k=l 

(i) follows upon applying the lemma for events or, directly, by 

n n 

P[Sn ~ E] ~ L PAkPBk ~ ! L P.dk = !P[S*n ~ E]. 
k=l k=l 

[SEc. 18] 

By changing the signs of all r.v.'s which figure in (i) and combining with 
(i), inequality (ii) follows, and the proof is complete. 

REMARK. Let xb ... , Xn be independent, square-integrable, and 
centered at expectations. Since, by a, 

I J.t(Sk - Sn) I ~ y' 2u2 (Sn - Sk) ~ ~ 

inequality (i) remains valid if J.t(Sk - Sn) is replaced by -~and, 
hence, changing E into E-~' 

P[max sk ~ E] ~ 2P[Sn ~ E - ~]. 

*18.2 Convergence and stability. We are now in possession of the 
basic tools and shall apply them to the investigation of convergence and 

n 

stability of sums Sn = L xk of independent r.v.'s. We recall that 
k=l 

here we say that a sequence of r.v.'s converges a.s. if it converges 
a.s. to a r.v., and their sequence of laws converges if it converges to the 
law of a r.v., that is, converges completely. 

I. CoNVERGENCE. Whatever be the sequence of r.v.'s, we have the 
comparison table of convergences below: 

convergence a.s. ::::::? convergence in pr. ::::::? convergence of laws 

convergence m q.m. 

("' " "' h 2 d " d d "' d . ") m q.m. means m t e n mean an rea s m qua ratic mean . 
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For series of independent r.v.'s, reverse implications are also true, 
either with no restriction or under a uniform boundedness restriction. 
More precisely 

a. IMPROVED coNVERGENCE LEMMA. For series of independent r.v.'s: 

(i) Convergence a.s. and convergence in pr. are equivalent. 

(ii) If the summands are uniformly bounded and centered at expectations, 
then convergence a.s., convergence in pr., convergence in q.m., and con
vergence of laws, are equivalent. 

Proof. 1° Let Sn ~ S, so that, by 6.3A, there exists a subsequence 

a.s. • [I 1 1 J Snk -----+ S With f P Snk+l - Snk ~ 2k < co, Let nk < n ~ nk+l 

and set Tk = max I Sn - Snk - p.(Sn - Snk+l) I, so that, by P. Levy's 
n 

inequality (ii), 

~ P [ Tk ~ ;k] ~ 2 ~ P [I Snk+l - Snk I ~ ;k] < co 

a.s. 
and, hence, Tk -----+ 0 as k ~ co. Therefore, 

I Sn - S - p.(Sn - Snk+l) I ~ I Sn - Snk- p.(Sn - Snk+l) I + I Snk - S I 
~ Tk + I Snk - S I ~ 0, 

a.s. 
that is, Sn - p.(Sn - Snk+l) -----+ S and, a fortiori, Sn - p.(Sn - Snk+1) 

~ S. Since Sn ~ S, it follows that p.(Sn - Snk+l) ~ 0 and, hence, 

Sn ~ S. Thus, convergence in pr. of the series 2: Xn entails its con
vergence a.s. and, the converse being always true, the first assertion is 
proved. 

2° Let I Xn I ~ c < co and EXn = 0. The series 2: Xn converges 
in q.m. if, and only if, as m, n ~ co 

n 

E(Sm- Sn) 2 = L cr2Xk ~ 0 
m+l 

or, equivalently, 2: cr2 Xn < co; then it converges in pr. and, hence, by 

the first assertion, it converges a.s. But if £(Sn) ~ oC(S), so that for 
all u in some neighborhood of the origin 
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then, by 12.4B', for u belonging to the intersection of this neighborhood 
with (-1/c, +1/c), 

3 
2 L u2Xn = L u2Xn 8 ~ - 2 L log lfn(u) 12 < oo, 

u 
and the second assertion follows. 

The three-series criterion follows from this improved convergence 
lemma exactly as it followed from the convergence lemma in section 16. 

REMARK. A better insight into the behavior of the series is provided 
by the Liapounov theorem for the bounded case, according to which, 

n 

if Sn 2 = L: u2 xk --7 CXl and ESn = 0, then, for any fixed a > 0 and 
k=l 

E > 0 and n large enough to have ESn > a, we have 

(1) Pli Sn I ?; a] ?; P[l Sn I ?; ESn] --7 - ;_ r e-z2
/ 2 dx. 

V 21rJ1xl~• 
Thus, as E --7 0, P[l Sn I ?; a] --7 1 for any fixed but arbitrarily large 
a, and the sequence £(Sn) of laws diverges to a law degenerate at 
infinity. The second assertion follows ab contrario, and we see that when 
the sequence of laws does not converge, then, as n --7 oo, the distribu
tion of Sn escapes to infinity in the fashion described by (1). 

So far we have been concerned with convergence of a given series. 
Yet various auxiliary centering constants appeared during the investiga
tion, and the problem arises whether, given the series L: Xn of inde
pendent r.v.'s, there exist centering constants an such that the series 
:E (Xn - an) converges. If L: (Xn - an) converges a.s. for some nu
merical constants an, we say that the series L: Xn is essentially conver
gent; otherwise, we say that it is essentially divergent, since, then, by 
the corollary of the zero-one law, L: (Xn - an) diverges a.s. whatever 
be the an. As above, our problem is to find criteria for this dichotomy 
and to find the suitable centering constants when the series is essentially 
convergent; at the same time, we shall be able to improve the preceding 
results (see also 37.1). 

b. EssENTIAL CONVERGENCE LEMMA. The series L: Xn is essentially 
convergent if, and only if, the symmetrized series L: Xn" converges a.s. 

Proof. If :E Xn" converges a.s., then, for every finite c > 0, using 
17 .1A, by the three series criterion, 

L P[l Xn - Jl.Xn I ?; c] ~ L 2P[J Xn"l ?; c] < oo 

and, upon integrating by parts, 

! L: u2 (Xn - Jl.Xn)C ~ L: u2(Xn")C + c2 L: P[j x,:l ?; c] < 00, 
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Therefore, the series :E {X,.- p.X,. - E(X,. - p.X,.Y} converges a.s. 
and the "ir' assertion is proved while the "only ir' assertion is im
mediate. 

From this proof follows the 

A. Two-SERIES CRITERION. The series :EX,. is essentially convergent 
if, and only if, for some arbitrarily fixed c > 0, the two series :E P[j X,._
p.X,.I !?;; c] and L cr2 (X,. - p.X,.)c converge; then the centered series 
:E {X,. - p.X,. - E(X,. - p.X,.)c} converges a.s. 

The essential convergence lemma permits us to improve further the 
convergence lemma. 

B. EQUIVALENCE THEOREM. For series of independent r.v.'s, conver
gence of laws, convergence in pr. and a.s. convergence are equivalent. 

Proof. It suffices to prove that convergence of laws implies a.s. con-
vergence. Let f,. be the ch.f. of X,. so that [f,.l 2 is ch.f. of X,.•. If 

n n 

IIfk --+ f ch.f., then II lfk 12 --+ lfl2 and, by 13.4 B', the two series 
k=l k=l 

L P[l X,.• I !?;; c] and L cr2 (X,.')c converge. Since E(X,.•)c = 0, it fol
lows, by the three series criterion, that the symmetrized series :E x,.• 
converges a.s. Therefore, by the essential convergence lemma, there 
exist constants a,. such that the series :E (X,. - a,.) converges a.s. to 
a r.v. and a fortiori its law converges completely, so that, for every u, 

n 
II e-ia.k"lk(u) --+ f'(u), wheref' is a ch.f. By taking u close enough to 
k=l 

0 so thatf(u)j'(u) ~ 0, it follows that the series :E a,. converges and, 
hence, the series :E X,. converges a.s. This completes the proof. 

CoROLLARY 1. A series :EX,. of independent r.v.'s converges a.s. if, 
n 

and only if, II!k --+ f and f is continuous at the origin or f ~ 0 on a set 
k-1 

of positive Lebesgue measure. 

This follows by the continuity theorem or 12.4, 4°. 

CoROLLARY 2. A series :EX,. of independent r.v.'s is essentially con
vergent or divergent according as .. 

lim II I ]k I ~ 0 on a set of positive Lebesgue measure or 
k=l .. 

lim II IJk I = 0 a.e. 
k=l 

This follows by 13.4, 4° and b. 
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II. STABILITY. Given sequences an and bn j oo, we seek conditions 
for a.s. stability of sequences Sn of sums of independent r.v.'s. On ac
count of the corollary to the symmetrization lemma, a first condition is 

(Sn) . (Sn) that an = J..' bn + o(1). Thus, lt suffices to take an = J..' bn and 

. . . . h' h Sn (Sn) a.s. 
mvesttgate condltlons under w tc bn - J..' bn ----+ 0. 

We have bn j oo and, moreover, assume that there exists a subsequence 
bnk and finite numbers c, c' such that, for all k sufficiently large, 1 < c' ~ 

b~k+1 ~ c < oo. Roughly speaking, this assumption means that the se-
nk 

quence bn does not increase too fast, and it is always satisfied (with an 

. ) h bn+l L Snk - Snk 1 
arbttrary c > 1 w en ;___b ~ 1. et Sno = 0 and Tk = - . 

n bnk 

. Sn (Sn) a.s. 
A. A.s. STABILITY CRITERION. (1) bn - J..' bn ----+ 0 if, and only if, 

a.s. 
(ii) Tk - J..'Tk----+ 0 as k ~ oo or, equivalently, (ii') for every £ > 0, 

L P[l Tk - J..tTk I ~ e] < oo. 

Proof. Since the Tk are nonoverlapping sums of independent r.v.'s, 
it follows, by 16.3A, that conditions (ii) and (ii') are equivalent. And, on 
account of the symmetrization lemma, it suffices to prove equivalence 
of (i) and (ii) for symmetric summands; then the medians which figure 
in these conditions vanish. 

Sn a.s. 
If - ----+ 0, then 

bn 

and the "only if" assertion is proved. a.s. 
Conversely, if Tk ----+ 0, then, by the Toeplitz lemma, 

Snk 1 .; b a.s. 
- = - L, n·Tj ----+ 0. 
bnk bnki=l 1 

h · U I Sn - Snk-1 I 
Furt ermore, upon settmg k = max and applying 

nk-1 <n ~nk bnk 

P. Levy's inequality we obtain, for every e > 0, 

L P[Uk ~ e] ~ 2 L P[l Tk I ~ e] < oo, 
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a.s. 
so that U~c ~ 0. Therefore, for n~c_1 < n ~ n~c, 

and the "if" assertion is proved. 

I I S., - ES., a.s. • 
CoROLLARY 1. If X., <b.,, then b., ~ 0 if, and only if, 

a.s. 
T1c- ET~c ~ 0 ask --7 oo or, equivalently,for every E > 0, 

Proof. The "only if" assertion is proved as that of the foregoing 

criterion. As for the "if" assertion, set X.,~c = (X., - EX.,)fb.,k, n1c-1 < 
n ~ nk, so that :L Xnk = T1c - ET1c ~ 0. Note that I Xnk I < 2 and 

n 
apply 13.5, 3° and 18.1 a. It follows that 

I p.Tk - ET~c I ~ Vii;!- --7 0, 

h a.s. b h r . . . S., (S") so t at T~c - p.T1c ~ 0 and, y t e IOregomg crtterton, On - p. On 

~ 0. But 

IlL(~:)- E (~:)I~ Fb --7 0, (sn2 = u2S.,), 

Th r Sn - ESn a.s. 0 d h f. l d d ere1ore, On ~ , an t e proo ts cone u e . 

CoROLLARY 2. If the Xn are centered at expectations and L ~~" < oo, 

S., a.s. 
then b.,~ 0. 
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- - " - - s ... - s .... 1 Let X,. be X,. truncated at b,., and setS,. = 2: Xk, Tk = b -
k=l "" 

Since, by Tchebichev's inequality, 

I - I I u2X,. 2: P[ X,. ~ X,.] = 2: P[ X,. ~ b,.J & 2: b,. 2 < co, 

it follows, by the equivalence lemma, that the sequences~: and~: are 

tail-equivalent. But ES .. jb,. -t 0 since I EXk - EXk I :::; u2Xk/bk while 

so that 

. S,. a.s. S,. a.s. 
Corollary 1 appltes, b,. ~ 0 and, therefore, b,. ~ 0. 

*§ 19. EXPONENTIAL BOUNDS AND NORMED SUMS 

In this section, the r.v.'s X,., n = 1, 2, ···,are independent and cen
tered at expectations with variance u,.2 = ~X .. = EX,.2 ; and S,. = 
" 2: Xk are their consecutive sums, so that ES,. = 0, s,. 2 = u2S,. = 

k=l 

" 2: uk2• We exclude the trivial case of degenerate summands. 
k=l 

19.1 Exponential bounds. Kolmogorov's inequalities led, in Section 
17, to asymptotic properties of sums S,.. His inequalities below, where 
to simplify the writing we drop the subscript n, will lead to deeper re
sults but under more restrictive assumptions. 

A. ExPONENTIAL BOUNDS. Let c = max I X~ I and let E > 0. 
k~n S 

(i) Jf EC & 1, then p [~ > EJ < exp [- ~( 1 - ;) ] and, if EC ~ 1, 

then P [ ~ > E J < exp [ - 4: l 
(ii) Given 'Y > 0, if c = c( 'Y) is sufficiently small and E = E( 'Y) is suf-

ficiently large, then P [~ > E J > exp [- ~ (1 + -y) J · 



[SEc. 19] SUMS OF INDEPENDENT RANDOM VARIABLES 267 

Proof. 1° Let t > 0, I X I ~ c < oo, EX = 0 and r? = u2 X. Since 

12 3 

I EX" I~ en, Ee1X = 1 + -EX2 + !_EX3 +· · · 
2! 3! • 

etCl-t> < 1 + t < e1, 

it follows that, for tc ~ 1, 

and 

> exp ['
2
;

2 
(1 - tc) ] · 

X S 
Replacing X by___.!:, settingS' = -, and taking into account that 

s s 

tS' n [tXk] Ee = liEexp -
k=l s 

we obtain 

(1) exp [ ~ (1 - tc) J < Ee18' < exp [ ~ ( 1 + ~)] , tc ~ 1. 

Inequalities (i) follow then from 

P[S' > E] ~ r 1"Ee18' < exp [-IE + ~ ( 1 + ~) J 

where t is replaced by E or 2 according as EC ~ 1 pr ~ 1. 
c 

2° The proof of inequality (ii) is much more involved. Let a and 
{:J be two positive numbers less than 1; they will be selected later in 
terms of the given number 'Y· According to (1), we can take c suffi
ciently small (5:.a/t) so as to have 

(2) Ee18' > exp [~ (1 -a) l 
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On the other hand, setting q(x) = P[S' > x] and integrating by parts, 
we have 

We decompose the interval ( -oo, +oo) of integration into the five inter
vals I1 = ( -oo, 0], I2 = (0, t(1 - P)], Is = (t(1 - P), t(1 + P)], 
I4 = (t(1 + P}, St] and I 5 = (St, +oo) and search for upper bounds of 
the integral over I1 and Is and over I2 and I4. We have 

0 0 

h = tJ e1:z:q(x) dx < t J e1:z: dx = 1. - -
On account of (i), we have on Is, for 8tc < 1, 

q(x) < exp [- :J < exp [-2tx] for x !1;;; 

q(X) < exp r- ~ ( 1 - i) J ~ exp [- ~] < exp [ -2tx] for X<;. 

Therefore, for c sufficiently small ( < 1/St) 

J 5 = t {'"' e1"'q(x)dx < t {'"' e-tx dx < 1 J 8t J 8t 

and 

(3) It+ Is< 2. 

On the intervals I 2 and I 4 we have x <~for c sufficiently small and, 
by (i), c 

e1:z:q(x) < exp [tx - ~( 1 - i)] ~ exp [tx - ~ (1 - 4tc) J = e1 <:r:>. 

t 
The quadratic expression g(x) attains its maximum for x = ---

1- 4tc 
which, for c < P/4t(l + P), lies in fa. Therefore, for c sufficiently small 
and x E: !2, 

r 12( p2) 
g(x) ~ g(t(1 - p)) = 2 (1 - ,8)(1 + p + 4tc- 4tcP) < 2 1 - 2 

and, then, 

h = t £t(l-fJ) e1"'q(x) dx < t £t(l-fJ) er<:r:> dx < t 2 exp [~ (1 - ~ ,82) J; 
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similarly, 

]4 = tjst e1xq(x) dx < tJBt eg(x) dx < St2 exp [~ (1 - ~ ,82)] • 

t(1+.6) t(l+fl> 2 2 

,82 E 

We set now a=- and t =--so that, by (2), 
4 1-,8 

2 ['2 ( 1 2)] (4) h + h < 9t exp 2 1 - 2,8 

Since the last expectation and the inverse of its coefficient increase in
definitely as E ~ oo, it follows, by (3) and (4), that forE sufficiently large 

]I+ ]s < 2 < iEe18', l2 + ]4 < iEe18'. 

Then 

a fortiori, 

1 ['2 ] and, since as e ~ oo, 2 exp - a 
4t 2 

~ oo, replacing t by its value, it 

follows that, for E sufficiently large, 

1 ['2 J [ t2 ] q(e) > - 2 exp -a exp - - (1 + 2a + 2,8) 
4t ,8 2 2 

> ex [ _ ~ 1 + 2a + 2,8] 
p 2 (1 - ,8) 2 

But, given 'Y > 0, we can select ,8 > 0 so as to have 

1 + 2,8 + ,82 

2 
----~ 1 +'Y· 

(1 - {3)2 

Therefore, for c = c(y) sufficiently small and e = e(y) sufficiently large, 

q(e) > exp [- ~ (1 + y) l 
and (ii) is proved. 



270 SUMS OF INDEPENDENT RANDOl\4 VARIABLES [SEc. 19] 

*19.2 Stability. The a.s. stability criterion (which is due to Prok
horov for bn = n) is a criterion in the sense that it is both necessary 
and sufficient. Yet, it is not satisfactory, since, because of the independ
ence of the summands, it has to be expected that a satisfactory criterion 
ought to be expressed in terms of individual summands and not in terms 
of nonoverlapping sums. The nearest to this requirement is a criterion 
in terms of variances (due also to Prokhorov for bn = n), valid when 
the summands are suitably bounded, and whose proof is based upon the 
exponential bounds. 

2 1 2 
(f Tk =- L (f xk. We write log2 for loglog. 

Unk 2 nk-1 <n ::;nk 

I Xn I _1 Sn a.s. 
A. If -- = o(log2 b,) then - -~ 0 if, and only if, for every 

Un b, 

e > 0, the series (i) 2: exp [- t:: J converges. 

. IXnl 
Proof. For n sufficiently large-- < 1, so that corollary 1 of the 

Un 

a.s. stability criterion applies: for every E > 0 

(ii) 

We have to prove that convergence of series (i) for some E implies that 
of series (ii) for the same or distinct e; and conversely. On the other 

hand, elementary computations show that, setting Ck = max I Xbn I, 
nk-1<n;;!nk n 

the assumption made implies that Ck = lo:\ with ak ~ 0 ask ~ oo. 

We use now the upper exponential bounds and observe that for 

Ck 1: 2 ~ 1 and k sufficiently large 

[ 
E ] (l)4;k 2 P[l Tk t > e] < 2 exp --log k = 2 - < 2 

4ak k k 
and 

exp [- e
2
2] ~ exp[- ~J = exp [- _e_logk] < ~ 

~ ~k ~ p 
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so that the corresponding sums in (i) and (ii) converge and we can 

neglect all those terms for which c k E 2 !?;; 1. 
tk 

Since for Ck-; < 1 
tk 

P[j Tk I > E] < 2 exp [- 1~2 ( 1 - ~::2)] < 2 exp [- 4;:2 ], 

it follows that convergence of series (i) for every E > 0 entails that of 
series (ii) for every E > 0. Conversely, if series (ii) converges, then 

Tk ~ 0 and tk2 ~ 0, so that, for k sufficiently large, ~is as large as we 
tk 

Ck tk · 11 1 Th r h · 1 please and-<- 1s as sma as we pease. ererore, t e exponent1a 
fk E 

bound IS valid with, say, 'Y = 1, and 

P[l Tk I > E] > 2 exp [- 1~2l 
so that convergence of series (ii) for every E > 0 entails that of series 
(i) for every E > 0, and the proof is concluded. 

El Xn l2r Sn a.s. 
CoROLLARY. lf,for an r !?;; 1, L +1 < oo, then - ~ 0. 

nr n 

For r = 1, this proposition coincides with Corollary 2 of the a.s. stabil
ity criterion, so that it suffices to consider the case r > 1 (due to Brunk). 

r+1 r+1 

Proof. Let Xn = Xn or 0 according as I Xn I < n ~ or !?;; n ~, so 
that 

I X I El X 12r El X 12r 
_n_ = 0(1 -1 ) "" n ~ "" n < ex> og2 n ' LJ r+1 - LJ r+1 n n n 

and, by Tchebichev's inequality, 

Therefore, on account of the equivalence lemma, it suffices to prove 
that the assertion holds for r.v.'s Xn which satisfy the assumption made 
in A. 
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But, upon applying for r > 1 the inequality ETI X I ~ El X I', setting 
nk = 2\ and applying the c,-inequality with nk - nk-l summands, we 
have, summing over n = nk-l + 1, · · ·, nk, 

Therefore, 
"' "'El X lzr 
"t 2r :;;; " n 
£.J k - £.J r+l 

k=l n=l n 

and, since we have exp [- ,:2 J < tk2' for k sufficiently large, criterion 

A is satisfied, and the proof is concluded. 
*19.3 Law of the iterated logarithm. We say that a numerical se

quence bn belongs to the upper class or to the lower class of a sequence 
Sn of r.v.'s, according as P[Sn > bn i.o.] = 0 or 1. A priori, there may 
be sequences bn which belong to neither of these two classes. However, 
if Sn is an essentially divergent sequence of consecutive sums of inde
pendent r.v.'s, then every sequence bn belongs to one of the foregoing 
two classes. The problem which arises is that of corresponding criteria. 
Relatively little is known about its general solution (in the case of un
bounded summands), and the proofs of what is known are quite in
volved; the best results are due to Feller. The basic known result was 
first obtained by Khintchine (also P. Levy) in the Bernoulli case as a 
strengthening of consecutive improvements of Borel's strong law of 
large numbers and, then, was extended by Kolmogoroff (also Cantelli) 
to more general cases, as follows: 

A. LAw OF THE ITERATED LOGARITHM. If 

then 

Sn 2 -+ 00 and I Xn I = o(logz -J-2 Sn 2)' In = (2logz Sn 2) l-2, 
Sn 

P [lim sup Sn = 1] = 1. 
Sn!n 

In other words, for every o > 0, the sequence (1 + o)sntn belongs to 
the upper class of the sequence Sn while the sequence (1 - o)sntn be
longs to the lower class; clearly, it suffices to prove these assertions for 
li arbitrarily small. 
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We observe that, since the assumptions remain valid if every Xn. is 
replaced by - Xn., the conclusion yields 

P [tim inf Sn. = -1] 
Sn.ln. 

and, therefore, it holds for both sequences Sn. and I Sn. I if it holds for 
the first one. 

2 
. 2 Sn+l 1 -1 2 • r 1 Proof. Smce Sn. __. oo and --2- = 1 + o( og2 Sn. ) __. 1, 1t 10-

Sn. 
lows that, for every c > 1, there exists a sequence nk = nk(c) f oo as 
k __. oo, such that Sn.r.,....., c". Let 8, 8', 8" be positive numbers. 

1° We prove that the sequences (1 + 8)sn.tn. belong to the upper 
class of the sequence 8,. by proving the same for the sequence s~k = 
maxSn.. For 
n;>nr. 

where 

hence, taking 8' < 8, we can select c > 1 so that 1 + 8 > 1 + 8' and 
c 

P[ S~k > (1 + 8)s,.k_1 t,.k_1 i.o.] ~ P[ S~k > (1 + 8')s,.i,.k i.o.]. 

Thus, the assertion will follow from the Cantelli lemma if we prove that 

But, by the remark at the end of 18.1, the general term of this series 

-v-
is bounded by 2P [ Snk > ( 1 + 8' - tn.k2) Snln.~r. J • where 1 + 8' -

V2 
-- __. 1 + 8' Therefore, for 8" < 8' and k sufficiently large, 
Ink 

P [ Sn.k > ( 1 + 6' - ::) Sn,/nk J ~ P[Sn.k > (1 + 8")sn.,/n.~;), 
and it suffices to prove that the right-hand side is general term of a 
convergent series. This follows by applying the first upper exponential 
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bonnd with Ek = (1 + {/')tnk and Ck = max I xj l!snk' valid Tor k suf
ficiently large since cktnk ~ 0, so that 

P[Snk >(I+ o")snink] ~ exp [-HI- EkCk/2)(I + o")2tnk2] 

I 
~ exp [- (1 + o") log2 sn/l '""" l+o"' 

(2k log c) 

and the assertion is proved. Furthermore, accordiqg to the considera
tions which follow the statement of the theorem, this assertion entails 
that P[l Sn I > (1 + o) Sntn i.o.] = 0. 

2° It remains to prove that the sequences (1 - o')sntn belong to the 
lower class of the sequence Sn where we will take 1 > o' > o. This as
sertion will be a fortiori true if we prove that it holds for a sequence Snk· 
Let 

and set 
Ak = [Sn" - Snk_1 > (1 - o)ukvk]. 

We prove first that P[Ak i.o.] = 1, as follows: The sums Snk - Snk-P 
being nonoverlapping sums of independent r.v.'s, are independent and, 
by the Borel criterion, it suffices to prove that 2:: PAk = co. But, 
Ek = (1- o)v" ~ oo whileck = max (I Xn 1/uk) ~oas k~ oo; hence 

nk-l<n;:;;nk 
1 

the lower exponential bound for PAk applies with 1 + 'Y = --· 
1 - 0 

Therefore, 

PAk > exp [-!(1 + -y)(1- o)2vk2] = exp [-(1- o) log2 Uk2] 

1 

(2k log c) 1-o' 

the series 2:: PAk diverges, and P[Ak i.o.] = 1. 
On the other hand, if Bk = ll Snk_ 1 I ~ 2snk_/n"_1], then, according, 

to the end of I o, P[B{ i.o.] = 0; thus, from some value n = n(w) on 
!Sn"_1(w)l ~ 2sn"_/n"_1 except for w belonging to the null event [Eke i.o.]. 
Therefore, P[AkBk i.o.] = 1, and this entails the assertion. For, 
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AkBk c [Snk > (1 - o)UkVk - 2snk-lnk-!], 

{ ( 1 )Yz 2] 
(1 - o)UkVk - 2snk_/nk-t ,...._, (1 - o) 1 - C2 - ; f SnJ.:fnk 

and, if we take c sufficiently large so that for o' > o 

( 1 )Yz 2 
(1 - o) 1 - - - - > 1 - o', 

c2 c 
then 

1 = P [AkBk i.o.] ~ P [Snk > (1 - o')snktnk i.o.]. 

The proof is terminated. 

COMPLEMENTS AND DETAILS 
n 

As throughout this chapter, Sn = L: Xk and a.s. convergence is to a r.v. 
k-1 
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1. If the ch.f. of a sum of two r.v.'s is the product of the ch.f.'s of the sum
mands, the summands may not be independent. Construct examples. Here 
is one: X is a Cauchy r.v.-with ch.f. e-lul; consider X+ Y where Y =eX, 
c > 0. 

2. Let X, Y be independent r.v.'s and let r ~ 1. 
If X and Yare centered at expectations, then El X+ Y lr majorizes El X lr 

and El Y lr. More generally, if, say, A is an event defined on X, then 

El X+ Y I' IA ~ El X l'/.4. 
If El X+ Y I' is finite, so are El X I' and El Y lr. (Since I x lr = I E(x + Y) lr 

~ El x + Y lr, it follows that 

El X+ Y lrJA = LdFx(x) {fl X+ Y lr dFy(y)} ~ Ll X lr dFx(x) = El X lrJA. 

For r > 1 the first assertion implies the second one. For r = 1, set A = 
ll XI< a] and observe that El X+ Yl ~ E(l Yl- a)IA = (EI Yl- a)PA.) 

3. Generalized Kolmogorou inequality. Let X 1, X 2, • • • be independent r.v.'s 
centered at expectations, and let r ~ 1. Set C = [ sup I S~c I ~ c] and prove 

k:Sn 

that -
crPC ~ El Sn lrJc ~ El Sn lr. 

Apply to the same problems to which Kolmogorov's inequality was applied. 

For example, if Sn ~ s, then Sn ~ s. (Set ck = [sup I si I < c, I sk I ~ c], 
J<k 

n n 

So= 0. By 2, El S.,. lrJc = L: El S.,. l'lck ~ L: El S~r. I•Ic" ~ c•PC.) 
k-1 k-1 

.f.. Let x1, x2, ... be independent r.v.'s, and let T.,.• = sup I sk I•, r ~ 1. 
k:Sn 

If the Xk are symmetric, then ET.,.• ~ 2EI Sn lr. -
If the X~r. are centered at expectations, then ETnr ~ 22•+1EI Sn 1•. 
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a.s. 
Extend ton = co when Sn ~ 800 • (If symmetric, then 

If centered at expectations symmetrize; then 

I sk !• ~ 2·-1 sup I sk - S'k ,. + 2r-ll S'k Jr. 
k;;>n 

Integrate over X'1, · · ·, X'n, take sup, integrate over Xr, · · ·, Xn, and apply 
the first assertion.) 

5. Let Xt, X2, · · · be independent r.v.'s centered at expectations, and let 

f " I I S n a.s. r ~ 1. I £..J E X,. 2rjnr+1 < oo, then- ~ 0. (Apply 1- and the elementary 
n 

n n n 
inequality ( L ak2)r ~ nr-1 L I ak J2r to obtain El Sn J2r ~ cnr-1 L E! xk J2r. 

k=1 k=1 k=1 
By Tchebichev's inequality, 

2k+l 

P[j S2k+1- 82k I~ 2ke] ~ c2r+1c 2• L E! X; J2•jj'+l, 
}=2k+ 1 

Apply the a.s. stability criterion with nk = 2k.) 
6. The series L Cnete,. where the On are independent r.v.'s with Eete,. = 0, 

converges or diverges a.s., according as the series L Cn2 converges or diverges. 
7. If a series L Xn of independent r.v.'s converges a.s., then by centering 

the summands at the terms of some convergent series, the a.s. convergence and 
the limit are preserved under all changes of the order of the summands. (Start 
with a series which converges in q.m. Use the centering in the two series 
criterion.) 

8. A series LX,. of independent r.v.'s with ch.f.'sfn converges a.s. whatever 
be the order of summands if, and only if, L !fn - 1 I < co. 

9. If a series L Xn of independent r.v.'s is essentially divergent, then it 
degenerates at infinity: P[j Sn I < c] ~ 0 however large be c > 0. State the 
dual form for essential convergence. (This is true for the symmetrized series. 
Prove and apply: if X and X' are independent and identically distributed, then 
P 2[j X I < c] ~ P[j X - X' I < 2c].) 

10. Let L Xn be a series of independent r.v.'s with ch.f.'sfn· 
If for a subsequence of integers m ~ co there exist r.v.'s Ym with ch.f. Km 

such that Sm and Ym - Sm are independent and I Km 12 ~ I g 12 continuous at 
the origin, then L Xn is essentially convergent. (This follows from 
m 
II l!k I ~ I Km I ~ I g I > E > 0 in a neighborhood of the origin.) 
k-1 

11. Smoothing by addition. Loosely speaking, a sum of independent r.v.'s 
is at least as "smooth" as any of its summands. More precisely, continuity or 
analyticity properties of the law of one of the summands continue to hold for 
the law of the sum. Examples: 

(a) If one of the summands has a continuous law so does the sum. (Intro
duce the "concentration" Cx defined by Cx([) = max P[x ~ X ~ x + /], 

zE:R 
I~ 0. Observe that Cx(O) = 0 if, and only if, Fx is continuous. By the com
position theorem for independent r.v.'s X and Y, Cx+Y ~ Cx, Cx+Y ~ Cy.) 
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(b) If one of the summands has an absolutely continuous law, so does the 
sum. (In defining the concentration replace translates of segments of length I 
by translates of Lebesgue sets of measure /.) 

(c) If one of the summands has a strictly increasing d.f., so does the sum. 
What about unicity of medians? 

12. The symmetrization method reduces medians to zero and transforms 
essentially convergent series into a.s. convergent ones. However, only cen-., 
tering at medians does not yield a.s. convergence. In fact, let L X,. be an 

n-o 
a.s. convergent series of independent summands. The sequence J.L(S,.) of me-., 
dians may not converge. However, if L X,. is essentially convergent and the 

n-o 
r.v. Y is independent of all the X,. and has a strictly increasing d.f., then, after 
centering the S,. + Y at medians, the series converges a.s. 

(For the counterexample, take Xo = -1 or + 1 with same pr. 1/2; let 
0 < p,. < 1 with L Pn < oo and, for n ~ 1, take X2n-1 and X2n with values 
2( -1)" of pr. p,. and 0 of pr. 1 - p,.. The sequenceS,. converges a.s., yet the 
S,. are odd integers with J.L(S4n-I) ~ 1 and J.L(S4n+V ~ 1. For the last assertion 
use ll(c).) 

S,.2 a.s. 
13. The X,. are not assumed to be independent. If - 2 ---+ U and the X,. 

n 

are uniformly bounded, then S,. ~ U. What if n2 is replaced by nk where 
n 

k is a fixed integer? 
to 1? 

What if n2 is replaced by [q"] with q > 1 arbitrarily close 

More generally, let L P[j U,. - U I > E]Jna < oo for 
L P[j X,. J > cnil] < oo for some c > 0, 0 <a~ 1, {3 > 0. 

then U,. ~ U, where U,. = S,.fn'Y 

every E > 0, 
If 'Y ~a+ {3, 

(For the first assertion, the second part of the proof of Borel's strong law of 
large numbers (see Introductory Part) applies. For the second assertion, use 
the following property of series: if LIp,. l/na < oo with 0 <a ~ 1, then 
L I Pnk I < 00 for nk+l - nk = o(nka)). 
k 

In what follows, the r.v.'s X~, X2, · · ·, are independent and identically dis
tributed with common d.f. F, and ch.f.j of a r.v. X; the trivial case of X= 0 a.s. 
is excluded. In other words, repeated trials are performed on X. 

14. Random selection. Let v1 < 112 < · · · be integer-valued r.v.'s such that 
every [vi= n] is defined on X1, · · ·, Xn-1· The r.v.'s X., X.,,···, are inde
pendent and identically distributed-as X. (Proceed as in 
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15. Deviations from the median. If X is centered at a median, then 

n g(n) n (2n + I) I 
ElL: xk I ~ - L: El xk ,, g(2n + I)= g(2n + 2) = (2n ')2 .. 

k=l n k=l n. 

This inequality is not necessarily true when X is centered at its expectation. 
Extend to nonidentically distributed Xk's. (Divide R" into its 2" "octants" 
and consider the corresponding parts of the left-hand side. For a counter
example, take n = 3, X = 1 with pr. 2/3 and -2 with pr. 1/3.) 

16. Equidistrihution of sums. If X is a lattice r.v. with step h-only possible 
1 +n 

values kh, k = 0, ± 1, · · ·-set M(g) = lim 2 + 1 }: g(kh) and otherwise 
n--+ 00 n lc=-n 

set M(g) = lim 2
1, J+hg(x) dx for those functions g on R for which either of the 

h--+«1 -h 

foregoing limits exists and is finite. 

(a) In the first case M(etu"') = 1 or 0, according as u = 0 (mod 2;) or u ~ 0 

(mod 2;) . In the second case M(et~ = 1 or 0 according as u = C or u ~ 0. 

(b) For every u E: R, 

Y,. = .!. t eiuSk ~ M(e!u"'). 
n k=l 

(This is immediate in the lattice case and if u = 0. Otherwisef(u) ~ 1 and 

Ej Y,.j2 = .!. + 22 <R }: fi-l'(u) ~ !.. 
n n J>k n 

where c is finite. Use 13.) 
1 " a.s. 

(c) The family G of functions g on R such that - :L: g(Sk) ~ M(g) con-
n k-1 

tains all almost periodic functions and functions with period p Riemann
integrable on [o, p]. (G contains all functions g(x) = etuz. It is closed under 
additions, multiplications by complex numbers, conjugations, and uniform pas
sages to the limit. M is a linear monotone operation on G.) 

u 
If g,. E: G and g,. ~ g, then M(gn) ~ M(g). If g' "' g" n E: G and M(g' n) -

M(g" n) ~ 0, then for every g such that g' n ~ g ~ g",. whatever be n, g E: G 
and M(g) =lim M(g',.) =lim M(g",.). 

(d) For X degenerate at an irrational a, the classical equidistribution (modulo 
1) of the fractional parts of na follows: for g bounded with g(x) ~ c finite as 
x ~ ±oo, 

• a.s. 
For every finite segment I, (no. of 81, · · ·, S,. m 1)/n ~ 0. 

17. Normal r.v.'s. Let X be normal with EX= 0, EX2 = 1, let g on R" be 
a finite Borel function, and set X= Sn/n. 

(a) If g(x1 + c, · • ·, x,. +c) = g(x1, • • ·, Xn) for all Xk, c E: R, then the ch.f. 
of the pair X, g(X1, • • ·, X,.) is f(u, v) = ]l(u)]2(u, v) where ]I(u) = e-u212 is 
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ch.f. of X and/2(u, v) = (27r)-n12Jh(xl, · · ·, x,,.) dx1, · · ·, dx,. with 

log h(x1, · · ·, x,.) = - ~ t: ( Xk - ~) 2 + ivg(x1, · · ·, x,.). 

(b) If/2 is analytic in u, then X and g(X1, ···,X,.) are independent. In par-
" ticular, x is independent of max I xi- xk I and of L: I xk- x 1•, r > o. 

J. k k-1 
(]2 is independent of u: set u = inc and use the translation property of g.) 

(c)- Let p with or without affixes denote a pr. density with respect to the 

Lebesgue measure. Let p(x) = _ ~ exp [ -(x - a)2/2b2] be the pr. density 
bv 21r 

of xk, and set 

1~ - - _r_ Vn- Vin-S2 =- L-. (Xk- X)2, S = S/v n, Y = -L-(X- a), Z = -L-(S- b). 
n k=l " " 

Then the pr. density of Y is _ ~ e-il/2, the pr. density of Z converges to 
v 271" 

- 1- e-il!2 the pr density of (Y Z) converges to - 1- e-<:2+th/2 and 
y'2; ' . ' y'2; ' 

ES = b ( 1 + 0 (~)) ' u2S = ;: ( 1 + 0 G)). 



Chapter 171 

CENTRAL LIMIT PROBLEM 

The Central Limit Problem of probability theory is the problem of 
convergence of laws of sequences of sums of r.v.'s. 

For more than two centuries a particular case-the Classical Limit 
Problem-has been the limit problem of probability theory. The pre
cise formulation of this case and its solution were obtained in the second 
quarter of this century. At the very time that this particular problem 
was receiving its definite answer, the much more general Central Limit 
Problem appeared, and was solved almost at once, thanks to the power
ful ch.f.'s tool and to the truncation and symmetrization methods. 

§ 20. DEGENERATE, NORMAL, AND POISSON TYPES 

20.1 First limit theorems and limit laws. Three limit theorems and 
corresponding limit laws are at the origin of the classical limit problem. 
Let S., be the number of occurrences of an event of pr. p in n independ
ent and identical trials; to avoid trivialities we assume that pq ;¢: 0, 
where q = 1 - p. If X~c denotes the indicator of the event in the kth .. 
trial, then S., = 2: X~c, n = 1, 2, · · ·, where the summands are inde-

k=l 
pendent and identically distributed indicators-this is the Bernoulli 
case. Since EX~c = p, EX~c2 = p and, hence, ,2 X~c = p - p 2 = pq, it 
follows that 

n n 

ES., = 2: EX~c = np, u'JS., = 2: u2 X~c = npq. 
k=l k=l 

The first limit theorem of pr. theory, published in 1713, says that 
S., P 
- --+ p. Bernoulli found it by a direct but cumbersome analysis of 
n 

280 
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the asymptotic behavior of the "binomial pr.'s" P[Sn = k] = CnkPkqn-k, 
k = 0, 1, 2, · · ·, n. 

Sharpening this analysis, de Moivre obtained the second limit theo
rem which, in its integral form due to Laplace, says that 

[ Sn - np ] 1 f_"' [ 1 ] 
P v'rijq < x - V2; -«>exp - 2y2 dy, -oo ~ x ~ oo. 

The third limit theorem was obtained by Poisson, who modified the 
Bernoulli case by assuming that the pr. p = Pn depends upon the total 
number n of trials in such a manner that npn - X > 0. Thus, writing 
now Xnk and Snn instead of Xk and Sn, the Poisson case corresponds 

n 

to sequences of sums Snn • = L: Xnk, n = 1, 2, · · ·, where, for every 
k=l 

fixed n, the summands Xnk are independent and identically distributed 

indicators with P[Xnk = 1] = ~ + o (~). By a direct analysis of the 

asymptotic behavior of the binomial pr.'s, much easier to carry than 
the preceding ones, Poisson proved that 

xk 
P[Snn = k] - -e-X, k = 0, 1, 2, · · ·. 

k! 

Thus are born the three basic laws of pr. theory. 
1° The degenerate law £(0) of a r.v. degenerate at 0 with d.f. having 

one point of increase only at x = 0 and ch.f. reduced to 1. 
2° The norma/law m(O, 1) of a normal r.u. with d.f. defined by 

F(x) = _ ~f_"' exp [- ~y2 ] dy 
v211" -oo 2 

and ch.f. given by 

j(u) = ; 211"Jexp liux- ~] dx 

[ u2] 1 f_+oo-iu [ z2] [ u2] = exp - - · -- . exp - - dz = exp - - · 
2 V2; -oo-tu 2 2 

The well-known value of the last integral is obtained by using Cauchy 
contour integration theorem. 
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3° The Poisson law CP(X) of a Poisson r.v. with d.£. defined by 

[x] Ak 
F(x) = e->- .E -• 

k=O k! 
and ch.f. given by 

ao Ak ao (Xeiu)k . 
j(u) = r>- .E eiuk- = e->- .E -- = i<•"'-ll. 

k=O k! k=O k! 

While the first two limit laws played a central role in the development 
of pr. theory, Poisson's law long stood isolated and ignored. We shall 
see later that there was a deep reason for this isolation and also that, 
unexpectedly enough, Poisson's law is, in a sense to be made precise, 
more fundamental for the central limit problem than the two others. 
With the notation introduced above, the three first limit theorems 
can be summarized as follows: 

. (Sn- ESn) A. FIRST LIMIT THEOREMS. In the Bernoullt case £ n --+ 

£(0) and .,c ( Sn ~s:Sn) --+ m.(O, 1), while in the Poisson case £(Snn) --+ 

CP(X). 

The proof by means of ch.f.'s reduces to elementary computations. 
We have, taking limited expansions of exponentials, 

E exp [iu Sn - np] = IT E exp [iu _X_k_-_PJ 
n k=l n 

( [ iuq ] [-iup ])n = p exp vnpq + q exp vnpq 

( u2 (u2))n [ u21 = 1 - 2n + o -;; --+ exp - 2 ; 
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n 

E exp [iuSnn] = II E exp [iuXnk] = <Pn exp [iu] + qn)n 
k=l 

= ( 1 + ~ (exp [iu] - 1) + o (~)) n 

---+ exp [X(ciu - 1)]. 

The three first limit laws give rise to the three first limit types: 

the degenerate type of degenerate laws .C(a) withf(u) = ci""; 

283 

the normal type of normal laws m:(a, b2) withf(u) = exp [ iua - ~ u2 J ; 
the Poisson type of Poisson laws <P(X; a, b) with 

f(u) = exp [iua + X(ciub - 1)]. 

The three first limit theorems extend at once by means of the con
vergence of types theorem; we leave the corresponding statements to 
the reader. 

*20.2 Composition and decomposition. The three first limit types 
possess an important closure property. Its deep parts are the normal 
and the Poisson "decompositions" discovered between 1935 and 1937. 
P. Levy surmised and Cramer proved the first one and, then, Raikov 
proved the second one. 

Let .C(X), .C(X1), .C(X2) be laws of r.v.'s with corresponding ch.f.'s 
j, ft, ]2. We say that .C(X) is composed of .C(X1) and .C(X2) or that 
.c(X1) and .c(X2) are components of .c(X) if, X1 and X 2 being inde
pendent, .C(X) = .C(Xt + X2) or, equivalently, iff= fth· 

A. CoMPOSITION AND DECOMPOSITION THEOREM. The degenerate and 
the normal types arc closed under compositions and under decompositions. 
The same is true of every family of Poisson laws <P(X; a, b) with the same b. 

To avoid exceptions we consider degenerate laws as degenerate normal 
and as degenerate Poisson ones. 

Proof. 1° Closure under compositions 

.C(at) * .C(a2) = .C(at + a2) 

m:(ah bt2) * m:(a2, b22) = m:(al + a2, b12 + b22) 

<P(Xt; ah b)* <P(X2; a2, b) = <P(Xl + X2; a1 + a2, b) 



284 CENTRAL LIMIT PROBLEM [SEc. 20] 

follows at once by means of ch.f.'s, for 

[ bi 2] · exp iua2 - 2u 

exp [iua1 + >-1Ce'"b- 1)]·exp [iua2 + ">.2(i"b- 1)] 

= exp [iu(ai + a2) + (X1 + X2)(eiub - 1)]. 

The decomposition property of the degenerate type is immediate. 
For, if for every u E: R,JI(u)h(u) = e'"a, then I /I II hI = 1 and, since 
I !I I ~ 1, lh I ~ 1, it follows that l/1 I = lh = 1, so that by 14.1a 

J1(u) = i'"'I, h(u) = e'ua2, u E: R. 

The proof in the normal and Poisson cases is_much more involved. 
To begin with, we can, by a linear change of variable, make a = 0 and 
b = 1 in the laws to be decomposed. Thus, we have to seek ch.f.'s 
/I andh such that, for every u E: R, 

or 
JI(u)h(u) = e- 2 

fi(u)f2(u) = i<•'"-Il. 

2° We consider first the normal decomposition and apply 15.3A. 
•' 

Since e- 2 is an entire non vanishing function in the complex plane, 
the same is true of (1 (z) and h(z), and there exists a constant c > 0 
such that I !I (z) I ~ e•i•l'. Therefore, upon taking the principal branch 
oflogf1 (z) (vanishing at u = 0), it follows from the Hadamard factoriza
tion theorem that logfi(z) is a polynomial in z of, at most, second de
gree. Sincef1(u) being a ch.f., reduces to 1 at u = 0, equals ] 1 ( -u), 
and is bounded on R, it follows that 

where a and b are real numbers. Similarly for h(u), and the normal 
decomposition is proved. 
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3° It remains for us to consider the Poisson decomposition. Let 
X1 and X 2 be two independent r.v.'s with d.f.'s F 1 and F2, and let F 
be the d.f. of their sum. Since 

and x~, x2 are independent, we have 

(1) 

and, letting bh b2 -+ oo, it follows that 

(2) 

Let now a 1 and a 2 be points of increase of F 1 and F 2, respectively. If 
a1 E: (ah b1) and a2 E: (a2, ~2) whence a1 + a2 E: (al + a2, b1 + b2), 
then the left-hand side in (1) is positive and, hence, a1 + a 2 is point of 
increase of F. Moreover, if a 1 and a 2 are first points of increase, then, 
taking a1 < a1 and a2 < a2 in (2), we have F(a1 + a2) = 0, and, 
hence, a1 + a 2 is the first point of increase of F. 

Now let F be the Poisson d.f. corresponding to CP(X); its only points 
of increase are k = 0, 1, 2, · · ·. Therefore, on account of what pre
cedes, all points of increase a 1 and a 2 of its components F 1 and F2 

are such that a 1 + a 2 = some k and the first points of increase are 
a and -a where a is some finite number. It follows, replacing F 1(x) 
by F 1(x - a) and F2(x) by F2(x +a) (this does not change F), that 
the new d.f.'s have k = 0, 1, 2, · · · as the only possible points of in
crease. Thus, we can set for the corresponding ch.f.'s 

00 00 

]I(u) = :E akei"\ h(u) = :E bkeiuk 
k=O k=O 

with 
00 00 

ao, bo > 0, ak, bk ~ 0 for k > 0, :E ak = :E bk = 1. 
k=O k=O 

Upon setting z = ei", 1,01(z) = j 1(u), IP2(z) = ]2(u), we have to find 
nonvanishing functions 1,01 and IP2 such that 

oo oo >.ke-x 
1Pl(z)IP2(z) = :E akbzzk+l = L:--zk. 

k,l=O k=O k! 
Therefore, 
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and it follows that 

Thus, r,o1 (z) and similarly r,o2(z) are non vanishing entire functions at 
most of first order. It follows from the Hadamard factorization theorem 
that they are of the form ecz+c'. Since /I (u) reduces to 1 at u = 0 and 
is bounded by 1, we have 

logft (u) = At (eiu - 1), At ~ 0. 

Similarly for /2(u), and the Poisson decomposition 1s proved. This 
terminates the proof of the theorem. 

§ 21. EVOLUTION OF THE PROBLEM 

21.1 The problem and preliminary solutions. From the time of 
Laplace and until 1935, the limit problem aims at weakenings of the 
assumptions under which the law of large numbers (convergence to £(0)) 
and the normal convergence (convergence to m(O, 1)) hold. This clas
sical problem can be stated as follows: 

n 

Let Sn = 2: Xk be consecutive sums of independent r.v.'s. Find condi
k=l 

tions under which 

( Sn - ESn) (S" - ES") .e n ~ .e(O), .e ~ m(O, 1). 
uSn 

It is implicitly assumed, in the first case, that the summands are 
integrable, and in the second case that their squares also are integrable. 
To simplify the writing, we shall center the summands at expectations, 
so that, in this section, EX~c = 0, ESn = 0. We also set f~c(u) = Eeiuxk, 
u~c = uXk and Sn = uSn, and exclude the trivial case of all summands 
degenerate. 

Although not the first historically, the solution of the extension of 
the Bernoulli case to independent and identically distributed sum
mands (not necessarily indicators) is immediate-when ch.f.'s are used. 

A. If the summands are independent, identically distributed, and cen-

. (Sn) (Sn) tered at expectatzons, then .C -;; ~ £(0) and .C Sn ~ m(O, 1). 
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For, ifj is the common ch.f. of the summands, then, by using its limited 
expansions, we have 

and, since sn2 =- nu2 > 0, 

= (1- ;~ +o(:)r~ exp[- ~l 
However, the first reasonably general conditions are the foiiowing. 

n 

B. Let Sn = 2: xk and Sn = uSn, where the summands are independent 
k=l 

r.v.' s centered at expectations. 
1 n 

(i) If 1+6 2: El Xk 11+6 ~ Ofor a positive a ~ 1, then 
n k=l S 

£ ( nn) ~ £(0). 

1 n 
(ii) If 2 -ra 2: El Xk 12 -ra ~ Ofor a positive o, then 

Sn k=l 

.c (~:) --+ ~co, 1). 

The assumptions imply finiteness of moments El Xk jl+a and 
El Xk 12 -ra, respectively. 

The first assertion is slightly more general than the classical ones. 
For o = 1, it becomes the celebrated Tchebichev's theorem. It also con-

tains Markov's theorem: if El Xk 11+6 ~ c < oo, then £ ( ~n) ~ £(0) 

(since, then, the asserted condition becomes '6 --+ 0); since, for a > 1, 
n 

EXk2 ~ (EI Xk 11+6) 211+6 Markov's theorem is valid with any o > 0. 
The second assertion is the celebrated Liapounov' s theorem which has 

been the turning point for the entire Central Limit theorem. More
over, while the ch.f.'s were known to and used by Laplace, the first 
continuity theorem for ch.f.'s: 

u2 

if fn(u) --+ e -2, then £(Xn) --+ m(O, 1), 
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is to be found, proved but not stated, in Liapounov's proof of his theo
rem. We observe that (ii) has content only when at least one of the 
r.v.'s is not degenerate at zero and, then, the hypothesis implies that 
Sn --+ 00, 

Proof. 1° To begin with, let us reduce in (ii) the case o > 1 to 
o = 1, so that it will suffice to assume that 0 < o ~ 1. 

1 n 
Let Y be a r.v. whose d.f. is- L: Fk and, hence, 

n k=l 

1 n 
El Ylr =- L:EI Xk lr. 

n k=l 

According to 9.3b. log EIYir is a convex from below function of r > 0. 
Therefore, for 2 + o > 3, we have 

o ·log El Y 13 ~ (o - 1) log El Y 12 +log El Y 12-t~ 
or, equivalently, 

It follows that, if the condition in (ii) holds for a o > 1, then it holds 
for o = 1. Thus, in what follows we can limit ourselves to 0 < o ~ 1. 

2° We use limited expansions of ch.f.'s, the continuity theorem, and 
the expansion log (1 + z) = z + o(l z I) valid for I z I < 1. As usual, 
8 with or without affixes denotes quantities bounded by 1. 

Condition (i) implies that 

El X ll+a 1 n 
max l:a ~ Ha L: El xk IHa --+ 0, 
k~n n n k=l 

so that, for u arbitrary but fixed, 

(u) 21-a El Xk 11+~ 
/k - = 1 + -1-- 8nkl u ll+a l+a --+ 1 

n + o n 

uniformly in k ~ n. Therefore, for n sufficiently large, 

and the first assertion is proved. 
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Condition (ii) implies that 

( (/' )2+& El X 12+& 1 n 
k k < "" I 12+a max - ;;:;;; max 2+6 = ll+a £..,E Xk ~ 0, 

k~n Sn k~n Sn Sn k=l 

uniformly in k ;;:;;; n. Therefore, for n sufficiently large, 

-E logfk (!:) = - u
2 

(1 + o(1)) 

289 

k=l Sn 2 1 n u2 
+ 2B'nl u l2+a 2+a L:EI xk l2+a ~ - -· 

Sn k=l 2 
and Liapounov's theorem is proved 

BouNDED CASE. If the summands are uniformly bounded, then 
£(Sn/n) ~ £(0). If, moreover, Sn ~ co, then £(Sn/sn) ~ ~(0, 1). 

For, if I xk I ;;:;;; c < co, then El xk ll+& ;;:;;; ct+a and El xk 12+& ~ ~(fk2, 
and, hence, 

Tools for solution. The preceding theorem is not satisfactory since 
moments of higher order than those which figure in the formulation of 
the problem are used. Yet a restatement of this theorem with o = 1, 
together with the truncation method, will provide the stepping stone 
towards the solution. 

n 

a. BASIC LEMMA. If Snn = L: Xnk, where the summands are inde
k=t 

pendent r.v.'s (centered at expectations), then 

1 n 1 1 (Snn) (i) if 2 L: E Xnk 2 ~ 0, then £ -n ~ .C(O) 
n k=t 

1 n 1 1 (Snn) (ii) if - 3 L: E Xnk 3 ~ 0, then .C - ~ ~(0, 1). 
Snn k=l Snn 
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It suffices to replace in the proof of 21.2B subscripts k and n by double 
subscripts nk and nn, respectively. 

In order to use the truncation method we shall require a weak form 
of the equivalence lemma. We say that two sequences £(Xn) and 
£(X'n) of laws are equivalent if, for every subsequence £(Xn') ~ £(X), 
we have £(X'n') ~ £(X), and conversely. 

b. LAW-EQUIVALENCE LEMMA. If Xn - X'n ~ 0 or P[Xn -:;:(: X'n] 
~ 0, then the sequences £(Xn) and £(X' n) of laws are equivalent. 

For the second condition implies the first one which, by IO.ld, implies 
the asserted equivalence. 

21.2 Solution of the Classical Limit Problem. We are now in a 
position to give a complete solution of the problem. 

xb x2, ... are independent r.v.'s centered at expectations, with 
d. f.'s F11 F2, · · ·, ch.f.'s ]1, ]2, · · ·, and variances <T12, <T22, · · ·; 

n n 

Sn = L: Xk are their consecutive sums with variances sn2 = L: <Tk2• 
k=l k=l 

To simplify the writing, we make the convention that all summations 
are over k = 1, · · ·, n. 

A. CLASSICAL DEGENERATE CONVERGENCE CRITERION. £ (~) ~ 
£(0) if, and only if, 

(i) 

(ii) 

(iii) 

~ L r xdFk ~ 0, 
n Jizi<n 

Proof. 1° Let (i), (ii), and (iii) hold. We wish to prove that 

£ (~n) ~ £(0). In what follows we apply the law equivalence lemma 

and the first part of the basic lemma. 
Let Snn = L Xnk, where Xnk = xk or 0 according as I xk I < n or 

I xk I ~ n. On account of (i) 

[ Snn Sn] I P - -:;:(: - ;;;;; L P[Xnk -:;:(: Xk] = L dFk ~ 0, 
n n izi!l;n 
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so that it suffices to prove that aC ( S;n) -+ £(0). But, on account of 

(ii), 

1 1 i -ESnn =-1: xdFk-+ 0, 
n n l:~:l<n 

. (Snn - ESnn) so that it suffices to prove that aC n -+ £(0). But this 

follows, by Tchebichev inequality, from (iii) and 

( Sn) Sn P 2° Conversely, let aC -;; -+ .C(O); equivalently, -;; -+ 0 or gn(u) = 

n 

II ]k(u/n) -+ 1 uniformly on every finite interval. Let n be suffi-
k=l 
ciently large so that log I gn(u) I is bounded on [ -c, +c]. By the weak 
symmetrization lemma and the second truncation inequality 

Since 
Xn Sn n - 1 Sn-l P 
-=-------0, 
n n n n-1 

so thati'Xn/n-+ 0, it follows that the foregoing relation with c > 1 yields 
(i) and, hence, .C(Snnfn) -+ £(0). But, by the first truncation in
equality, 

n n 

(1) 2 L tr2 (Xnk/n) = L tr2 (Xnka/n) ~ -3log I gn(l) 12 -+ 0, 
k=l k=l 

Snn- ESnn p 
so that (iii) holds, and, by Tchebichev inequality, -+ 0. 

Therefore, 
n 

ESnn Snn Snn - ESnn 
--=-- -0 

n 1t n 
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and (ii) holds. The proof is completed. 
Observe that centering at, and in fact existence of, expectations were 
not required. Also, according to the proof, 

£ (Sn -nESnn) -+ £(0) <=? (i) and (iii) hold. 

B. CLASSICAL NORMAL CONVERGENCE CRITERION. £ ( ~:) -+ m(O, 1) 

and max Uk -+ 0 if, and only if, for every E > 0, 
k;:;in Sn 

gn(E) = ~ L r x2 dFk -+ 0. 
Sn Jlzl;;:;u,. 

The "if" part is due to Lindeberg and the "only if'' part is due to Feller. 
Proof. 1° Let gn(E) -+ 0 for every E > 0. We apply the law 

equivalence lemma and the basic lemma. 
Since gn(E) -+ 0 for every E > 0, there is a sufficiently slowly de-

creasmg sequence En! 0 such that ~ gn(En) -+ 0 and, a fortiori, 
En 

..!._ gn(En) -+ 0, gn(En) -+ 0 (it suffices to select a sequence nk j oo as 
En 

(1) 1 1 k -+ oo such that gn k < k3 for n ~ nk and, then, take En = k for 

nk ~ n < nk+t)· We have 

Uk2 1 I 2 2 2 max2 ~ max2 X dFk +En ~ gn(En) +En -+ 0, 
k;:;in Sn k;:;in Sn lzli1:<nBn 

and the "if" assertion will be proved if we show that£(~:) -+ m.(O, 1). 

Let Xnk = xk or 0 according as I xk I < EnSn or I xk I ~ EnSn· Since 

[~n ~] I 1 P - ~- ~ L P[Xnk ~ Xk) = L dFk ~ 2 gn(En) 
Sn Sn lzl;;:;.,..,. En 

-+ 0, 

. (Snn) tt suffices to prove that£ --;:: -+ m(O, 1). 

Since the Xk are centered at expectations, we have 

I EXnk I = X dFk = x dFk ~ - x2 dFk. II I II I 1 I 
I z I <•n•n I z 1;;:; •n•n EnSn I z 1;;:, •n•n 
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Therefore, 

gn 2 ( En) ---t O. 
En 2 

(
Snn- ESnn) Thus, it suffices to prove that £ ---t ~(0, 1). But, this 

Snn 
follows from 

1 I 13 2EnSn 2 Sn 
- 3 L E Xnk - EXnk ~ --3 L E(Xnk - EXnk) ~ 2En- ---t 0, 
Snn Snn Snn 

and the "if" assertion is proved. 
2° It remains to prove the "only if" assertion. 

Since max O'k ---t 0, it follows from 
k;ii;n Sn 

that 

max Ilk(!!.-) - 1 I ---t o, I: Ilk(!!.-) - 11 2 ---t o. 
k;ii;n Sn Sn 

Therefore, for n sufficiently large, log/k (:) exists, so that 

E exp [iu Sn] = IT/k (!!.-) ---t exp [- u2
] 

Sn k=l Sn 2 
becomes 

2 

and, since log z = z- 1 + el z - 11 2, 
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Upon taking the real parts, we obtain 

u2 I ( ux) - - :E 1 - cos - dFk 
2 l.:l<••n Sn 

= :E f (1 - cos ux) dFk + o(1). 
J1.: Iii:;••.. Sn 

Since 

and 

it follows that 

Therefore, letting n --+ oo and then u --+ oo in 

0 ~ Kn(E) ~ : 2 (~ + o(1)), 

we obtain Kn(e) --+ 0. This concludes the proof. 
*21.3 Normal approximation. In his celebrated investigation of nor

mal convergence, Liapounov examined not only conditions for, but 
also the speed of, this convergence. His results were greatly improved 
by Berry (and, independently, by Esseen) and to present the basic one 
we shall proceed in steps. 

Let F and G be d.f.'s of r.v.'s with corresponding ch.f.'s f and 
g, and let H = F- G, h = f- g. We exclude the trivial case of 
a = sup I HI = 0, that is, H = h = 0. 

a. If G is continuous on R, then there exists a finite number s such that 
either H(s) = =Fa or H(s + 0) =a. 
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Proof. Let Xn be a sequence such that I H(xn) I ~ a. It contains a 
subsequence Xn' ~ s finite or infinite. Since H(x) ~ 0 as x ~ =Fco 
and a > 0, s must be finite. 

The sequence Xn' contains a subsequence Xn" such that either 
H(xn") ~ -a or H(xn") ~ +a. It suffices to consider one case only, 
say the first, for the same argument is valid for the other. Thus, let 
Xn" ~ s, H(xn") ~ -a; we know that His continuous from the left. 

If the sequence Xn" contains a subsequence converging to s from the 
left, then -a = lim H(xn") = H(s), anc:l the assertion is proved. 
Otherwise, this sequence contains a subsequence converging to s from 
the right, -a = H(s + 0) and, G being continuous on R, 

-a~ H(s) ~ F(s + 0) - G(s) = F(s + 0) - G(s + 0) = -a, 

so that -a = H(s). The assertion is proved. 
Let p be the derivative of a symmetric d.f. (of a r.v.) differentiable 

on R, so that p(x) = p( -x), x E:: R. 

b. If G has a derivative G' on R, then there exists a finite number "a" 
such that 

I J H(x + a)p(x) dx I~~ (1- 6Lex>p(x) dx), {3 =sup I G'l. 
2{J 

Proof. If {3 = co, then ; = 0, and the inequality is trivially true 

whatever be a. Thus, it suffices to prove it when {3 < co, Let 
a 

'Y = 2{3 > 0. 

We have, for an arbitrary a, 

(1) I J H(x + a)p(x) dx I 
~ i.{,I<'YH(x + a)p(x) dx 1-i.(.I~'YH(x + a)p(x) dx I 

and 

(2) I r H(x + a)p(x) dx I ~ a r p(x) dx. 
J, "''~'Y J, "''~'Y 

On the other hand, according to a, there exists a finite number s such 
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that, say, -a = H(s). For I x I < ')', we have, setting a = s - 'Y so 
that 

S - 2')' < X + a < s, X - ')' < 0, 
the relation 

G(x + a) = G(s) + B(x - 'Y)G'(x'), lei ;;:;; 1, s - 2')' < x' < s. 

Thus, for I xI < ')', 

H(x + a) = F(x + a) - G(s) - B(x - 'Y)G'(x') 

;;:;; F(s) - G(s) - {3(x - 'Y) 

= -a - f3(x - 'Y) = -{3(x + 'Y), 

and it follows that 

(3) f H(x + a)p(x) dx;;:;; -/3 f (x + 'Y)p(x) dx 
Jlzl<~ Jlzl<~ 

= -{3')' r p(x) dx 
Jlzl<~ 

= - ~ (1 - r p(x) dx). 
2 JlzJ?;~ 

Upon substituting in (1) the bounds given by (2) and (3), we obtain 

I JH(x + a)p(x) dx I ~ ~ (1 - 3 r p(x) dx) 
2 J1z1~~ 

and the assertion follows. In the case a = H(s + 0), the argument is 
similar. 

Let w be a real ch.f. with fi w(u) I du < co, so that the correspond

ing d.f. has a symmetric derivative continuous on R, given by 

1 f . 1 f p(x) =- e-wzw(u) du =- cos ux·w(u) du. 
2~ 2~ 

c. For every aE:: R 

1 f f h(u)w(u) I If I 2~ u du ~ H(x + a)p(x) dx . 
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h(u)~(u) 
Proof. We can assume to be integrable, for otherwise the 

u 

inequality is trivially true. According to the composition theorem, 
h~ is the Fourier-Stieltjes transform of H defined by 

H(x) =I H(x - y)p{y) dy. 

S. h(u)~(u) · · bl h · · fi 1 · ld mce 1s mtegra e, t e mvers10n ormu a y1e s 
u 
ll(x) - ll(x') = _!__I e-iu:z: -. e-iu:z:' h(u)~(u) du. 

211' -tu 

But, as x' ---+ -co, H(x') ---+ 0 and, by the Riemann-Lebesgue theorem, 

I 
. , h(u)~(u) 

e-•u:z: . du ---+ 0. Therefore, 
-tu 

I H(x - y)p(y) dy = _!_ Ie-iu:z: h(u)~(u) du 
21r -zu 

and, hence, replacing x by a, y by -x, and taking into account that p 
is symmetric, we obtain 

I 
1 J . h(u)~(u) 

H(x + a)p(x) dx = - e-wa . du. 
211' -tu 

The asserted inequality follows. 
We are now in a position to establish the basic inequality below, of 

independent interest. We shall require a real integrable function ~0 

defined by ~o(u) = 1 - I ;1 or 0 according as I u I < U or I u I ~ U. 

Its Fourier-Stieltjes transform Po is given by 

p0 (x) = _!_ J+U(1 - ~)cos ux du = 1 - co: Ux 
211' -U U 11"X U 

and we have Po ~ U, I Po(x) dx = 1, so that ~o is a ch.f. 

A. BAsic INEQUALITY. If G has a derivative G' on R, then,jor every 
U>O, 2lu I h(u) I 24 sup I HI ~ - - du + -sup I G' I . 

11' 0 u 1rU 
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Proof. Upon replacing wand p by w0 and p0 , the propositions b and 
c yield the inequality 

~ J u I h(u) I du ~ 2_ J I h(u)wo(u) I du ~ ~ (1 - 6i""Po(x) dx) 
27!' -U U 271' U 2 'Y 

where 

i ""Po(x) dx = ~ i 1 - cos Ux dx ::::;; ~ i"" dx = _2_ = ~. 
'Y 7l' 'Y x2 U - 7l' -yU x2 1l''YU 1l'otU 

Therefore, 

~iulh(u)ldu~~-128 
7l' o u 2 '/l'U 

and the asserted inequality follows. 

In order to apply the basic inequality to the normal approximation 
problem, we have to bound the corresponding h. Let F*n and G* be 

(Sn) -~ 
the d. f.'s of .C Sn and ~(0, 1) and let h* n = f* n - e 2 denote the 

difference of the corresponding ch.f.'s. The summands Xn are inde
pendent r.v.'s centered at expectations, and we set 'Yn3 = El Xn 13, 

23 n 

gn3 = 3 L'Yk3 • We exclude the case of one of the 'Yn infinite, for 
Sn k=l 

then the normal approximation theorem below is trivially true. 

d. If I u I <--;,then I h*n(u) I ~ 2gn3l u 13 exp [- u
2

] • 

~ 3 
Proof. 1° First, we prove the assertion under the supplementary 

1 
condition I u I ~ -. Then gn 31 u 13 ~ 1 and it suffices to prove that 

gn 

I h*n(u) I ~ 2 exp [- ~2 ] • But, since 

I h*n(u) I ~ lf*n(u) I + exp [- ~2] ~ IJ*n(u) I + exp [- ~] • 

it will suffice to prove that lf*n(u) 12 ~ exp [- 2;
2
]. 

Consider the symmetrized r.v. Xk - X'k where Xk and X'k are inde
pendent and identically distributed, so that its ch.f. is Ilk 12 and 

E(Xk - X'k) 2 = 2uk2 , El Xk - X'k 13 ~ 23 'Yk3 < CXJ. 
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and, replacing u by !:!.. and summing over k = 1, · · ·, n, we obtain, 
Sn 

using the fact that, by assumption, Kn 31 u I < 2, 

1 
2° It remains to prove the assertion when I u I <-and, hence, 

Kn 

Uk 1 'Yk 1 I Kn I I 1 -I u ~ - u ~ - u < -· 
Sn Sn 2 2 

Then, we have 

where I rk I < t, so that 

log/k (:) = -rk + 8'krk2• 

On the other hand, 

so that 

and, summing over k, we obtain 
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Since, for every number a, ea = 1 + 8' al\ it follows, taking a = 
g3 1 
; 4 I u 13 ~ 24 so that ea < 2, that 

lf*n(u)- exp [-~]I~ 2g;: I u 13 exp [- ~2 ] 

and the proof is complete. 

B. NoRMAL APPROXIMATION THEOREM. There exists a numerical con
stant c < oo such that, for all x and all n, ifF* n is df. of £(Sn/ sn) and 
G* is df. of~ (0, 1), then 

C n 
I F*n(x) - G*(x) I ~ 3 I: Ei xk 13• 

Sn k=l 

For, upon replacing h*n by its bound obtained above m the basic 
2 

inequality with U = 3, F = F*m and G = G* hence sup I G' I = 
l Kn 

.,.;2;, we obtain 

a~ !gn3 (£~u2 exp [- ~2] du + )z;)· 
§ 22. CENTRAL LIMIT PROBLEM; THE CASE OF BOUNDED 

VARIANCES 

22.1 Evolution of the problem. The classical limit problem deals 
with independent summands Xn with finite first moments and, in the 
normal convergence case, with finite second moments as well. Those 
moments are used for changing origins and scales of values of the con-

n 

secutive sums Sn = I: Xk so as to avoid shifts of the pr. spreads 
k-1 

towards infinite values. There is no reason for these choices of "norm
ing" quantities except an historical one; they are a straightforward 
extension to more general cases of the norming quantities which ap
peared in the Bernoulli case. A priori, there is no reason to expect 
that these quantities will continue to play the same role in the general 
case. Furthermore, whether they are available (that is, exist and are 
finite) or not, other choices might achieve the same purpose. Thus, 
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the problem becomes a search for conditions under which the law of 
large numbers and the normal convergence hold for normed sums 

~: - an. The methods remain those of the classical problem, but the 

computations become more involved. However, remnants of the two 
first limit theorems in the Bernoulli case are still visible. For there is 
no other reason to expect or to look for limit laws which are either de
generate or normal. 

The real liberation which gave birth to the Central Limit Problem 
came with a new approach due to P. Levy. He stated and solved the 
following problem: Find the family of all possible limit laws of normed 
sums of independent and identically distributed r.v.'s. We saw that 
when these r.v.'s have a finite second moment, the limit law (with 
classical norming quantities) is normal. Thus, P. Levy was concerned 
primarily with the novel case of infinite second moments and finite or 
infinite first moments. 

Naturally, the question of all possible limit laws of normed sums 
with independent, but not necessarily identically distributed, r.v.'s 
arises at once. Yet, the Poisson limit theorem is still out, for it is rela
tive to sequences of sums and not to sequences of normed consecutive 
sums. Moreover, as we shall find it later (end 24.4), under "natural" 
restrictions Poisson laws cannot be limit laws of sequences of normed 

Sn 
sums-which explains their isolation. But sequences bn -an are a 

particular form of sequences E Xnk (set Xnk = xb k - an) ) and this 
k=l n n 

provides the final modification of the problem. 
The general outline of the Central Limit Problem is now visible: 

Find the limit laws of sequences of sums of independent summands and 
find conditions for convergence to a specified one. Yet, so general a 
problem is without content. In fact, let Yn be arbitrary r.v.'s, set 
Xn1 = Yn and Xnk = 0 a.s. fork > 1 and every n. Then the sequence 
of laws becomes the sequence £(Yn), so that the family of possible limit 
laws contains any law £-take £(Yn) = £. Thus, some restriction is 
needed. 

To find a "natural" one, let us consider the problems which led to 
this one. Their common feature is that the number of summands in
creases indefinitely and that the limit law remains the same if an arbi
trary but finite number of summands is dropped. To emphasize this 
feature, we are led to the following "natural" restriction: the summands 
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Xnk are uniformly asymptotically negligible (uan), 
uniformly in k or, equivalently, for every E > 0, 

max P[l Xnk I ~ E] ~ 0. 
k 

[SEc. 22] 

p 
that Is, Xnk ~ 0 

Finally, the precise formulation of the problem is as follows: 

"" CENTRAL LIMIT PROBLEM. Let snk,. = :E Xnk be sums of uan inde-
k=l 

pendent summands x.,k, with kn ~ oo. 
1° Find the family of all possible limit laws of these sums. 
2° Find conditions for convergence to any specified law of this family. 

To simplify the writing, we make the following conventions valid for 
the whole chapter. 

(i) k = 1, ... , kn, kn ~ oo, the summations :E, the products n, 
k k 

the maxima max, are over these values of k, and the limits are taken as 
k 

usually for n ~ oo, unless otherwise stated. 
(ii) Fnk andfnk denote the d.f. and the ch.f. of r.v.'s Xnk, Fn andfn de

note the d.f. and the ch.f. of :E Xnk· Thus, the uan condition becomes: 

max r dFnk ~ 0 for ever~ E > 0, and the assumption of independ
k J,.,,~. 

ence becomesfn = IT!nk· The problem becomes 
k 

Given sequences fn = IT!nk of products of chf.' s of uan r.v.' s: 1 ° Find all 
k 

chf.'sf such thatf,. ~ j; 2° Find conditions under whichf,. ~ f given. 
If these ch.f.'s have log's on I = [- U, + U], we always select their 
principal branches-continuous and vanishing at u = 0, and then on 1: 
logfn = L logfnk,fn ~ f (uniformly) ~ logf,. ~ log/ (uniformly). 

k 

The solution of the problem is due to the introduction, by de Finetti, 
of the "infinitely decomposable" family of laws and to the discovery 
of their explicit representation by Kolmogorov in the case of finite 
second moments and by P. Levy in the general case. 

It has been obtained, with the help of the preceding family of laws, by 
the efforts of Kolmogorov, P. Levy, Feller, Bawly, Khintchine, Marcin
kiewicz, Gnedenko, and Dahlin (1931-1938). The final form is essen
tially due to Gnedenko. 

22.2 The case of bounded variances. As a preliminary to the in
vestigation of the general problem, and independently of it, we examine 
here the particular "case of bounded variances"-a "natural" extension 
of the classical normal convergence problem. It is much less involved 
computationally than the general one, while the method of attack is 
essentially the same. 
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We consider sums L: Xnk of independent r.v.'s, centered at expecta
k 

tions, with d.f.'s Fnk, ch.f.'sfnk and finite variances Unk2 = u2Xnk such 
that 

(C): max Unk2 ---t 0 and L: Unk2 ~ c < oo, where c is a constant 
k k 

independent of n. 

Since, for every E > 0, 

max P[l Xnk I ~ E] ~ ; max Unk2 ---t 0, 
k E k 

the uan condition is satisfied and the model is a particular case of that 
of the Central Limit Problem. The boundedness of the sequence of 
variances of the sums entails finiteness of the variance of the limit law. 

a. CoMPARISON LEMMA. Under (C), logfnk(u) exists and is finite for 
n ~ nu sufficiently large and, for any fixed u, 

L: {logfnk(u) - Cfnk(u) - 1)} ---t 0. 
k 

q 2 

Proof. Sincefnk(u) = 1 - Bnk ~ u2, it follows from (C) that 
2 

2 

max I fnk(u) - II ~!!..__max Unk2 ---t 0, L: lfnk(u) - II ~ !._ u2• 
k 2 k k 2 

Therefore, for n ~ nu sufficiently large, lfnk(u) - I I ~ -!, so that the 
logfnk(u) exist and are finite, 

logfnk(u) = fnk(u) - I + B'nklfnk(u) - Il2, 

and it follows that 

I L {logfnk(u) - Cfnk(u) - I)} I 
k 

~ L lfnk(u) - I 12 

k 

~ max lfnk(u) - 11 L: lfnk(u) - 1 I ---t 0. 
k k 

The comparison lemma is proved. 

Let 

1/ln(u) = :E Cfnlc(u) - I) = L:f(eiux - I) dFnk• 
k k 
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Since 

we have 

f . 1 
1/tn(u) = L: (e'uz - 1 - iux) 2 · x2 dFnk 

k X 

or 

f . 1 
1/tn(u) = (e•uz - 1 - iux) x2 dKn, 

where Kn on R is a continuous from the left nondecreasing function 
with Kn( -tXJ) = 0, Var Kn ~ c < tXJ, defined by 

Kn(X) = L:fz y2 dFnk, 
k -oo 

and the integrand, defined by continuity at x = 0, takes there the 
value -u2 /2. The comparison lemma becomes 

a'. Under (C), log IT/nk - Vtn ~ 0. 
k 

Functions of the foregoing type will be denoted in this subsection by 
1/t and K, with or without affixes. Thus, unless otherwise stated, 1/t is a 
function defined on R by 

f . 1 
tft(u) = (e•uz - 1 - iux) x2 dK(x), 

and K is a d.f.-up to a multiplicative constant-with K( -tXJ) = 0, 
Var K ~ c; 1/t and K will have same affixes if any. 

b. Every e"' is a chj. with null first moment and finite variance u2 = 
Var K, and is a limit law under (C). 

Proof. The integrand is bounded in x and continuous in u (or x) for 
every fixed x (or u). It follows that 1/t is continuous on R and is limit 
of Riemann-Stieltjes sums of the form L: { iuank + >-nk(iubnk - 1)} 

k 

where 
1 

>-nk = --2 K[xnk, Xn,k+l), ank = -"XnkXnk, bnk = Xnk; 
Xnk 

we can and do take all subdivision points Xnk ~ 0. Since every sum
mand is log of a (Poisson type) ch.f., the sums are log of ch.f.'s, and so 
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is their limit Y, according to the continuity theorem. The second asser
tion follows, since, by elementary computations, 

(eifi)'u=O = (1/l)'u=O = 0, (e"')"u=O = (Y,")u=O =- Var K. 

Fi'nally, let Xnk, k = 1, · · ·, n be independent r.v.'s with common log 
of ch.f. being Y,/n. Since Y,/n corresponds to K/n, we have r?Xnk 

n 

= Var K/n while EXnk = 0. Since E Xnk has for ch.f. eifi whatever 
k=l 

ben and condition (C) is fulfilled, the last assertion is proved. 

c. UNIQUENESS LEMMA. Y, determines K, and conversely. 

Proof. Since 

-1/l"(u) = feiu:e dK(x), Var K <co, K( -co) = 0, 

the inversion formula applies and K is determined by Y, by means of 
Y,". The converse is obvious .. 

w 
d. CoNVERGENCE LEMMA. Let (C) hold. If Kn ~ K, then 1/ln ~ Y,. 

\V 

Convers.ely, if 1/ln ~ log/, then Kn ~ K and logf = Y, determined 
by K. 

Proof. The first assertion follows at once from the extended Belly
Bray lemma. As for the converse, since the variations are uniformly 
bounded, the weak compactness theorem applies and there exists a 

. w 
K (with Var K ~c) such that Kn' ~ K as n' ~ co along some subse-
quence of integers. Therefore, by the same lemma, 1/ln' ~ Y, = logf 
since 1/ln ~ logf. But, by the uniqueness lemma, Y, = logf deter-

mines K, and it follows that Kn ~ K. The proposition is proved. 

Upon applying the foregoing lemmas, the answer to our problem 
follows: 

A. BouNDED VARIANCES LIMIT THEOREM. if independent summands 
Xnk are centered at expectations and max Unk2 ~ 0, E Unk2 ~ c < co 

k k 

for all n, then 
1° the family of limit laws of sequences £(E Xnk) coincides with the 

k 

family of laws of r.v.' s centered at expectations with finite variances and 
chf.' s of the form f = e"', where Y, is of the form 

f . 1 
Y,(u) = (e'":e - 1 - iux) x2 dK(x), 
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with K continuous from the left and nondecreasing on R and 
Var K ~ c < co; 1/1 determines K and conversely. 

2° £(2: Xnk) --+ .C(X} with chj. necessarily of the form e"' if, and 
k 

• w 
only if, Kn --+ K where Kn are defined by 

Kn(X) = :Efz y 2 dFnk• 
k --<>0 

If :E qnk2 ~ c < co is replaced by :E U'nk2 --+ u2 X< co, then Kn ~ K 
k k 

c 
is to be replaced by Kn --+ K. 

Proof. 1° follows from b, the comparison lemma and the convergence 
lemma. 

2° follows from 1° and the convergence lemma; and the particular 
case follows from the fact that the assumption made becomes 

Var Kn = :E Unk2 --+ ~X= Var K. 
k 

ExTENSION. So far the r.v.'s under consideration were all centered 
at expectations. If we suppress this condition and set 

ank = EXnk, 'Fnk(x) = Fnk(x + ank), ]nk(u) = e-iua,.".fnk(u), 

then the foregoing results continue to apply, provided Fnk andfnk are 
replaced everywhere by Pnk and]nk; and then we write If; instead of 1/1. 
Going back to the noncentered r.v.'s, we have to introduce limit laws 
.c(X) with finite variances but not necessarily null expectations a = EX, 
whose log's of ch.f.'s are of the form 1/l(u) = iua + lf;(u), so that 

( dl/l(u)) = ia. 
du o 
The uniqueness lemma becomes: 1/1 determines a and K, and con

versely. 

In the convergence lemma, Kn ~ K is replaced by Kn ~ K and 
an--+ a. 

The same is to be done in the limit theorem with an = ::E ank and 
k 

Fnk replaced by Pnk· 
Thus, the convergence criterion A2° becomes 

ExTENDED CONVERGENCE CRITERION. If independent summands Xnk 
are such that max qnk2 --+ 0 and ::E qnk2 ~ c < co, then £(:2: Xnk) --+ 

k k k 
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.e(.X) with chf. necessarily of the form e-{1 if, and only if, K., ~ K and 
:E a.,1c -+ a where 
k 

K.,(x) = :E fz y 2 dFnk(y + ank), ank = EXnk• 
k -oo 

If :E u.,1c2 ~ c < oo is replaced by :E u.,1c2 -+ u2 X< oo, then K., ~ K 
k k 

• c 
ts to be replaced by K., -+ K. 

Particular cases: 
1° NoRMAL CONVERGENCE. The normal law m(O, 1) corresponds to 

u2 
1/l(u) = - 2 and, hence, to K defined by K(x) = 0 or 1 according as 

x < 0 or x > 0 (because of the uniqueness lemma, it suffices to verify 
that this K gives the above t/1). 

NoRMAL CONVERGENCE CRITERION. Let the independent summands 
Xnk, centered at expectations, be such that :E u.,1c2 = 1for all n: 

k 

then .e(:E Xn1c) 
k 

-+ m(O, 1) and max Unk2 -+ 0 if, and only if, for 
k 

every E > 0, 

Proof. Since 

max Unk2 = maxfx2 dF.,k(x) ~ E2 + max r x2 dFnTc ~ E2 +g.,( E), 
k k k Jizi~• 

it follows that g.,(E) -+ 0 for every E > 0 implies (letting n -+ oo and 
then E -+ 0 in the foregoing relation) max Unk2 -+ 0. Then, immediate 

k 

computations show that the convergence criterion A2° is equivalent to 
g.,(E) -+ 0 for every E > 0 . 

. x xk Upon setttng nk = - , 
s., 

k = 1, · · ·, n, EX1c = 0, Sn2 = :E u2X1c, 
k 

we obtain the classical normal convergence criterion. 
theorem follows from 

Liapounov's 

2° PorssoN CONVERGENCE. The Poisson law <P(>.) corresponds to 
1/l(u) = iu"A + >.(eiu - 1 - iu) = iu"A + ~(u) and, hence, the function 
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K which corresponds to 1/t is defined by K(x) = 0 or X according as 
x < 1 or x > 1. The extended convergence criterion yields, by im
mediate transformations, the following 

PmssoN CONVERGENCE CRITERION. If the independent summands Xnk 
are such that max Unk2 --7 0 and L Unk2 --7 X, then £(L Xnk) --7 CP(X) 

k k 

ij, and only if, L EXnk --7 X and, for every E > 0, 
k 

*§ 23. SOLUTION OF THE CENTRAL LIMIT PROBLEM 

We consider now the general problem. As was pointed out, the 
method of attack will be essentially the same as in the case of bounded 
variances. The computational difficulties will arise from two facts. 
(1) Even existence of first moments is not assumed, and the center
ings, instead of being at expectations, will have to be at truncated 
expectations. (2) The functions K defined previously are not necessar
ily of bounded variation and, even when they are, they are not assumed 
to be of uniformly bounded variation. They will have to be replaced 

by functions of the form 'lrn(x) = :Lf_:r: 1 y 2 
2 d"Pnk where Pnk will be 

k -ao + Y 
d.f.'s of the summands centered at truncated expectations. This will 
lead to limit laws with log ch.f.'s of a more complicated form, which 
we investigate fi'rst. 

23.1 A family of limit laws; the infinitely decomposable laws. A 
law £ and its ch.f. fare said to be infinitely decomposable (i.d.) if, for 
every integer n, there exist (on some pr. space) n independent and identi-

n 

cally distributed r.v.'s Xnk, such that £ = £( L Xnk); in other words, 
k=l 

for every n there exists a ch.f. fn such that f = fnn· Iff~ 0, then 
log] exists and is finite andfn = e<l/n) log/; unless otherwise stated, we 
select for log of a ch.f. its principal branch(vanishing at u = 0) and for 
the nth root of] we take the function defined by the preceding equality. 

Clearly, if a law is i.d., so is its type. The degenerate, normal, and 
2 

Poisson type are i.d., since if logf(u) = iua or iua - u2 ~ or iua + 
• b 1 X(e•u - 1), then -logf(u) has the same form whatever be n. More 

n 
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generally, the limit laws e"' obtained in the case of bounded variances 
are i.d., since the corresponding functions 1/; are such that 1/; jn is log of 
a ch.f. of the same form (with ajn E: R and K/n d.f. up to a multipli
cative constant). In fact 

a. The i.d. family belongs to that of limit laws of the Central Limit 
Problem. 

For, on the one hand, the uan condition for independent and identically 
distributed r.v.'s Xnk which figure in the definition of i.d. laws becomes 
convergence of their common law to the degenerate at 0, that is,fn ~ 1; 
on the other hand, 

b. Ij, for every n, j = fn n where fn is a chj., then fn ~ 1; and, more
over,] ,P 0. 

Proof. Since Ill~ 1, we have lfn 12 = IJI 21n ~ g with g(u) = 0 
or 1 according as f(u) = 0 or J(u) ,P 0. Since f is continuous and 
j(O) = 1, there exists a neighborhood of the origin where IJ(u) I > 0 
and, hence, g(u) = I, so that g is continuous in this neighborhood. 
Thus, the sequence lin 12 of ch.f.'s converges to a function g continuous 
at the origin, the continuity theorem applies, and g is a ch.f. Therefore, 
g is continuous on R with g(O) = 1 and, since it takes at most two values 
0 and I, it reduces to 1. Consequently, j ,P 0, logf exists and 
. . !log/ . . . Is fimte, andfn = en ~ 1. The propositiOn Is proved. 

We shall see later that the family of limit laws of the problem coin
cides with the i.d. one. This explains the property below. 

A. CLOsURE THEOREM. The i.d. family is closed under compositions 
and passages to the limit. 

Proof. Iff andf' are i.d. ch.f.'s, then, for every n, there exist ch.f.'s 
fn and f' n such that j = fn n, J' = J' n n, so that JJ' = Cfnf' n)n where 
fnf' n are ch.f.' s, and the first assertion is proved. 

On the other hand, if a sequencefn of i.d. ch.f.'s converges to a ch.f. 
2 2 

f, then, for every integer m, lfn p:n ~ If I;;; and, by the continuity 
2 

theorem, If i;;; is a ch.f. Therefore, I j !2 is an i.d. ch.f. and, hence, by 
b,j ,P 0. Since logf exists and is finite, and 

it follows thatP 1m is a ch.f., so that/ is i.d. This concludes the proof. 
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The basic feature of i.d. laws (hence, as we shall see, of all the limit 
laws of the Central Limit Problem) is that they are constructed by 
means of Poisson type laws. This is made precise in the theorem below 
and explicited by the representation theorem which will follow. 

B. STRUCTURE THEOREM. A ch.j. is i.d. if, and only if, it is the limit 
of sequences of products of Poisson type chj.'s. 

In other words, the class of i.d. laws coincides with the limit laws of 
sequences of sums of independent Poisson type r.v.'s. 

Proof. Products],. of Poisson type ch.f.'s are defined by finite sums 
of the form 

logj,.(u) = L {iua,.k + Xnk(eiubnk - 1)}, Xnk ~ 0, 
k 

so that the functions _!_log],. are log of ch.f.'s (of the same kind) what
m 

ever be the fixed integer m and the j,. are i.d.ch.f.'s. Thus, by A, if 
f,. --+ f ch.f., then] is i.d. This proves the "if" assertion. 

Conversely, ifj is i.d., then logf exists and is finite and 

1 1 J n(jn- 1) --+ logj,jn(u) - 1 = (eiuz- 1) dF,.(x) 

where F,. are d.f.'s. By taking Riemann-Stieltjes sums which approx
imate f 1"(u) - 1 by less than 1/n2, the "only if" assertion follows, 
and the proof is terminated. 

In what precedes, 1/l,.(u) = f (eiuz- 1)ndF,.(x)--+ logf(u) and 1/ln is it

self log of an i.d.ch.f. Since Var (nF,.) = n --+ oo, brutal interchange 
of integration and passage to the limit is excluded. However, the in
tegral inequality in 13.4 yields Var '1',. ~ c < oo with di¥,.(x) = (x2/1 + 
x2)ndF,.(x) so that the weak compactness theorem applies. But the 
integrand for d'li',.(x) is undetermined at x = 0, and we have to modify 
it. This leads to the 1/1-functions below: 

Unless otherwise stated, 1/1, with or without affixes, will denote a func
tion defined on R by 

1/l(u) = iucx +f(eiuz - 1 - ~) 1 + x2 d'li'(x) 
1+x2 x2 

where a E: R and 'li' denoting a d.f.-up to a multiplicative constant, 
with '1'( -oo) = 0; the corresponding 1/1, a, 'li' will have same affixes if 
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any. The value of the integrand at x = 0, defined by continuity, is 
-u2/2. 

c. Every eift i,r an i.d. chf. 

Proof. We use repeatedly the fact that the class of log's of ch.f.'s is 
closed under additions. 

The integrand is bounded in x and continuous in u (or x) for every fixed 
x (or u). It follows that the integral is continuous in u and is limit of 
Riemann-Stieltjes sums of the form 

where 

L { iuank + Ank(iubnk - 1)} 
k 

we can and do take all Xnk .,t. 0. Since every nonvanishing summand 
is log of a (Poisson type) ch.f., the sums are log's of ch.f.'s, and so is the 
integral according to the continuity theorem. Since iua is log of a 
ch.f., so is if; and, hence, so is every if;/n corresponding to a/n E:: R and 
..Y /n-d.f. up to a multiplicative constant. The assertion is proved. 

REMARK. Iff x2d..Y(x) < oo, then 

f . 1 
f(u) = iua + (ewx - 1 - iux) x2 dK(x) 

where 

a = a + f x d..Y(x) E:: .??-, dK(x) = (1 + x2) d..Y(x), 

and the i.d. ch.f. eift has for first moment a and for variance Var K < oo 
(take the first two derivatives at u = 0). Conversely, if an i.d. ch.f. 

eift has second (hence first) finite moment, then J x2d'I!(x) < oo (take 

the second symmetric derivative at u = 0). Thus, the family of all 
limit laws in the case of bounded variances coincides with the sub
family of i.d. laws with finite second moments. 

We establish now two properties of functions if; corresponding to the 
unicity and continuity theorems for ch.f.'s. They will be reduced to 
these theorems by making correspond to functions if; functions IP and 
<I>, with same affixes as if; if any. We define IP on R by 

IP(u) = if;(u) - fl if;(u + h) + if;(u - h) dh. 
Jo 2 
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We have, upon replacing 1/1 by its defining relation and interchanging 
the integrations, 

tp(u) = Ll {f eiuz(l - cos hx) 1 :2 x2 dw} dh =I eiuz dcJo 

with 

f z ( sin y) 1 + y2 
cJo(x) = -co 1 - Y ----:J2 dw. 

Since 

( sin x) 1 + x2 
O<c'~ 1--x- ~~c"<oo 

where c' and c" are independent of x E: R, it follows that cp is non
decreasing on R with 

c'Varw ~ VarcJo ~ c"Varw <co 
and 

f z /( siny) 1 + y2 
w(x) = -co dcJo 1 - Y ----:J2' 

C. UNICITY THEOREM. There is a one-to-one correspondence between 
junctions 1/1 and couples (a, '1'). 

For this reason we shall sometimes write 1/1 = (a, '1'). 
Proof. By definition, every couple (a, '1') determines a function 1/1. 

Conversely, if 1/1 is given, then, by the foregoing considerations, 1/1 de
termines a function IP which is a ch.f. (up to a constant factor). By 
the inversion formula for ch.f.'s, tp determines cJo and, in its turn, cp de
termines '1'; furthermore, 1/1 and '11 determine a, which completes the 
proof. 

c 
D. CoNVERGENCE THEOREM. If an ~ a and Wn ~ '11, then 1/ln ~ 1/1. 

Conversely, ifl/ln ~ g continuous at the origin, then an ~ a and 'lin ~ '11 
such that g = 1/1 = (a, '1'). 

Proof. The first assertion follows at once by the Belly-Bray theorem. 
As for the converse, since the sequence e"'" of i.d. ch.f.'s converges to 
eg continuous at the origin, this convergence is uniform in every finite 
interval and, by 23.1b and A, eg is an i.d. ch.f. with eg ~ 0. Hence, 
g is finite and continuous on R, the sequence 1/ln converges to g uni
formly on every finite interval, and 

IPn(u) ~ g(u) -il g(u + h) + g(u - h) dh 
0 2 
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continuous on R. In particular, 

i l g(h) + g( -h) 
Var <Pn = I,On(O) ~ dh < oo, 

0 2 

so that variations of the <Pn are uniformly bounded. Thus, the con
tinuity theorem applies to the sequence IPn, and there exists a nonde
creasing function <I> of bounded variation on R such that, upon applying 
the Helly-Bray theorem, at every continuity point x of <I> as well as 
for x = +oo, 

f x /( siny) 1 + y 2 
'l'n(X) = d<Pn 1 - -- --2 -

-oo Y Y 

f x I ( siny) 1 + y 2 
~ "IJI(x) = d<P 1--- --2 -· 

-oo Y Y 
c 

Hence, "IJI n ~ "IJI and, by the same theorem, 

f( . iux ) 1 + x2 
iuan = 1/ln(u) - ewx - 1 - 1 + x2 ~ d'l'n 

f( . iux ) 1 + x2 
~ g(u) - e•ux - 1 - --- ---·d"IJI 

. 1+x2 x2 

= tUOi. 

This terminates the proof. 

E. REPRESENTATION THEOREM. The family of i.d. ch.j.'s coincides 
with the family of ch.j.' s of the form e"'. 

Proof. According to 23.lc, every eift is an i.d. ch.f. Conversely if, 
for every n,j = fnn wherefn is a ch.f. corresponding to a d.f. Fn, then, 
upon applying the preceding convergence theorem, we obtain 

logj(u) = lim n(ptn(u) - 1) = lim nUn(u) - 1) = limf (eiux - l)n dFn 

with 

= lim (iuf~ dFn 
1+x 

= lim 1/ln = some if;, 

x2 
d'l'n(x) = n --2 dFn(x) 

1+x 
The theorem is proved. 
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23.2 The uan condition. The main computational difficulties arise 
in connection with the uan condition, and we have to investigate it in 
detail. We recall that given a sequence of sums E Xnk of independent 

k 

r.v.'s, the uan condition is that, for every E > 0, 

max P[l Xnk I ~ E] = max r dFnk ~ 0. 
k k Jlzl~• 

a. The uan condition implies that 

max!JLXnkl~ 0, max r I X IT dFnk ~ 0, r > 0, T > Ojinite. 
k k J1 z I <r 

Proof. The medians of a r.v. belong to any interval such that the 
pr. for the r.v. to be in the interval is greater than 1/2. Since under 
the uan condition min P[l Xnk I < E] > 1/2 whatever be E > 0, pro

k 

vided n ~ n. sufficiently large, it follows that max I~LXnk I < E for 
k 

n ~ n., and the first assertion is proved. 
Under the same condition, by letting n ~ oo and then E ~ 0, we 

have 

max r I X I" dFnk ~ ET + maxf I X IT dFnk 
k Jlzl<r k •~lzl<r 

~ Er + Tr max r dFnk ~ 0, 
k Jlzl~• 

and the second assertion is proved. 

A. UAN CRITERIA. The uan condition is equivalent to 

maxf~dFnk ~ 0 or 
k 1 +X 

uniformly on every finite interval. 

max link- tl ~ 0 
1c 

Proof. Under the uan condition, by letting n ~ oo and then E ~ 0, 
we have 

and, for I u I ~ b < oo , 
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max I /nk(u) - 1 I 
k 

~ max I r (eiu:t - 1) dFnk I + max,, r (eiu:t - 1) dFnk I 
k Jlzl<• k Jlzl~• 

~ be + 2 max { dFnk ~ 0. 
k Jl :tl~· 

f x2 
Conversely, if max -------:-:2 dFnk ~ 0, then, for every e > 0, 

k 1 + x-

I 1+e2 I x2 
max dFnk ~ --2- max ---2 dFnk ~ 0, 

k I"' I~. E k I"' I~. 1 + X 

and the uan condition holds. 

Since, upon replacing fnk(u) by J eiuz dFnk and interchanging the in

tegrations, we have 

maxJ ~ dFnk = max {~e-"(1 - ffi/nk(u)) du 
k 1 + x k Jo 

;;;; r~e-u max l!nk(u) - II du, 
Jo k 

it follows, by the dominated convergence theorem, that max I ]nk - 1 I 
k 

~ 0 implies the uan condition, and the proof is complete. 

From now on, we fix a finite r > 0 and, for every dj. F, with or without 
affixes, we set 

a =i x dF, F(x) = F(x +a), ](u) =fi""' iF 
lzi<T 

with same affixes if any. 

We observe that I a I < r and that the "bar" does not mean "complex
conjugate." 

CoROLLARY 1. Under the uan condition, max llnk - 1 I ~ 0 uni
k 

formly on every finite interval. 

Since, by a, max I ank I ~ max r I X I dFnk ~ 0, the r.v.'s Xnk = 
k k Jlzi<T 

Xnk - ank obey the uan condition, and the assertion follows by A. 
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CoROLLARY 2. Under the uan condition, given b < oo, all logfnk(u) 
exist and are finite for I u I ~ b and n !;;;; nb sufficiently large, and 

logfnk(u) = fnk(u) - 1 + Bnklfnk(u) - 1 12, I Bnk I ~ 1 ;· 

similarly for thefnk(u). 

This follows from A and log z = (z- 1)+1 e I z- 11 2 for I z- 11<! 
2 

From now on, if b > 0 is given, then we take n !;;;; nb so that the 
foregoing relations hold. 

We are now in a position to establish the inequalities which will lead 
almost at once to the solution of the Central Limit Problem. 

B. CENTRAL INEQUALITIES. Under the uan condition, for n ;;;;; nb 
sufficiently large, there exist two finite positive constants c1 = c1(b, r) and 
c2 = c2(b, r) such that 

Ct max llnk(u)- 11 ~I ~dFnk ~ c2ibl1og I fnk(u) II du. 
lul~b 1 +X 0 

The inequalities follow at once, upon applying a, from two inequalities, 
valid for arbitrary r.v.'s, that we establish now. We shall use repeatedly 
the two relations 

Jg(x) dF(x +c) = Jg(x- c) dF(x), 
and 

I (x - a) dF = a - ai dF = ai dF. 
lzl<r lzl<r lzl;;;;r 

B1• LowER BOUND. There exists a finite positive number c 1 = c1 (a, b, r) 
such that 

Proof. Since, for I u I ~ b < oo, 

17Cu) - 11 
= I f(eiu(z-a) - 1) dF l ~ 2I dF + b I I (x - a) dF I 

lzl;;;;r lzl<r 
b2 +-I (x- a)2 dF 
2 lzl<r 

= (2 + I a lb)I dF + b2 
I (x - a)2 dF 

I zl;;;;r 2 I zl<r 
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where 

and 

r (x - a)2 dF ;£ { 1 + (T + I a 1)2}f (x - a)2 2 dF, 
JJ:z:J<r J:z:J<rl + (x- a) 

it follows that 

where 
1 

and the asserted inequality is proved. 
Under the uan assertion, for n sufficiently large, we have, accord-

ing to a, I a I < ~, and we can take for Ct = c1(b, T) the value of c1 

obtained upon replacing I a I by ~ . This proves the left-hand side 

central inequality. 

B2• UPPER BOUND. ForT > I p. I, J.L a median ofF, there exists a .finite 
positive number c2 = c(p., b, T) such that 

If f(u) ~ Of or I u I ;£ b, then 1 - lf(u) 12 can be replaced by 2llog I f(u) II· 

Proof. On account of the elementary inequality 

1 -lfl2 ;£ -loglfl 2 = 2lloglfll, 

the second assertion follows from the first one. To prove the first as
sertion, we shall use the symmetrization method and denote by F 8 the 
d.f. of the symmetrized r.v. X- X' where X and X' are independent 
and identically distributed, so that the corresponding ch.f.p = lfl 2 • 
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From the elementary inequality 

( sin bx) 1 + x2 

1 - -----;;;- ----;r- ~ c( b) > 0, X E:: R, 

and the relation (obtained upon interchanging the integrations) 

£b (1 - IJ(u) 12) du = J {£b (1 - cos ux) du} dF" 

(SEc. 23] 

f( sin bx) 1 + x2 x2 
= b 1.--- --- · --dF•, bx x2 1+x2 

it follows that 

(1) i b J x2 
(1 - I f(u) 12) du ~ bc(b) --2 dF". 

o 1+x 

We pass now from F" to PI', the d.f. of X- J.l., and set 

ql'(t) = P[l X- J.l.l ~ t], q•(t) = P[j x•1 ~ t], t E: [0, +co), 

so that1 upon applying the weak symmetrization lemma (which says 
that q" ~ 2q") and integrating by parts, we obtain 

(2) f x2 i"' /2 ioo ( 12 ) -- dP = - -- dq" = q"(t)d --
1+x2 o1+t2 0 1+t2 

~ 2i
00 
q8 (t) d (-12

-) = 2!__!___ dF". 
o 1+t2 1+x2 

Now, we pass from F" to F. From the elementary inequality 

(x - a)2 ~ (x - J.l.) 2 + 2(J.I. - a)(x - a), 
it follows that 

r (x - a)2 dF ~ r (x - J.l.) 2 dF + 2(r + IJ.I.I) I r (x - a) dF I 
JJ:zi<T Jj:zj<T JJ:zi<T 

and, hence, 

f x2 J (x- a)2 I I --iF= dF ~ (x- a) 2 dF+ dF 
1 + x2 1 +(X- a)2 - J"'J<T . Ja;J!i:;T 

~ r (x- J.l.) 2 dF + {1 + 2r(T +I J.I.I)J r dF. 
J1:z1 <T Jj:zj!i:;T 
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Since 

and 

it follows that 

(3) 

where 

{ 1 + 2r(r +I JJ.I)} 
c' = c'(p., r) = { 1 + (r + I p.l) 2 } 1 + I I 2 • 

(r- JJ. ) 

Together, the inequalities (1), (2), and (3) yield the inequality 

2c' 
with c2 = --, and the proof is concluded. 

bc(b) 
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T 
Under the uan condition, for n ~ nT sufficiently large, I p.l < - and 

2 
we can take for c2 = c2 (b, p., r) the value of c2 obtained upon replacing 

T I p.l by- . This proves the right-hand side central inequality. 
2 

23.3 Central Limit Theorem. We are ready for the solution of the 
Central Limit Problem and can follow the same approach as in the case 
of bounded variances, since 

a. RouNDEDNESS LEMMA. Under the uan condition, ifii link I ~ Ill 
k 

continuous, then there exists a finite constant c > 0 such that 
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Proof. It suffices to prove the assertion for n sufficiently large so 
that, by 23.2A, Corollary 2, all log/nk exist and are finite. Let b > 0 
be sufficiently small so that, for I u I ~ b, IJ(u) I > 0, and log IJ(u) I 
exists and is finite. Since If 12 is a ch.f., L log I /nk I -t log If I uni-

k 

formly on [ -b, +b], and, by the right-hand side central inequality, 

f x2 .[b L --2 dFnk ~ -c2 L log lfnk(u) I du 
k 1+x k o 

b 

-t -c2i log IJ(u) I du < oo. 

The assertion follows. 

b. CoMPARISON LEMM.A. Under the uan condition, if there exists a con
stant c such that whatever be n 

then 

Lf~ dFnk ~ C < oo, 
k 1+x 

L {logfnk(u) - Cfnk(u) - 1)} -t 0, U CR. 
k 

Proof. By 23.2A, Corollaries 1 and 2, max lfnk - 1 I -t 0 and, 
k 

given b > 0, for I u I ~ b and n sufficiently large, 

log]nk = fnk - 1 + Bnk l}nk - 1 12, I Bnk I ~ 1. 

By the left-hand side central inequality 

- I 1 Jx2- c L l/nk(u) - 1 ~ - L --2 dFnk ~ - < oo. 
k c1 k 1 +X c1 

It follows that by taking b > I u I, where u E: R is arbitrarily fixed~ 

I L {logfnk(u)- (fnk(u)- 1)} I ~ L lfnk(u)- 11 2 

k 

~ !._max lfnk(u) - 11 -t 0, 
C1 k 

and the theorem is proved. 

Since (omitting the subscripts) 

logf(u) - Cf(u) - 1) = logf(u) - {iua + J (eiuz - 1) dF) 
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and 

f (eiu:z:- 1) iF= iuf_._!C__iF 
1 + x2 

321 

I( . iux ) 1 + x2 x2 _ + e•u:z: - 1 - --- --- · --- dF, 
1+x2 x2 1+x2 

the sums which figure in the comparison lemma are 

log Ilfnk(u) - 1/ln(u) 
k 

where 

A. CENTRAL LIMIT THEOREM. Let Xnk be uan independent summands. 
1° The family of limit laws of sequences .C(E Xnk) coincides with the 

k 

family of i.d. laws or, equivalently, with the family of laws with log of chf. 
1/1 = (a, w) defined by 

1/l(u) = iua +J(i":z: - 1 - __!!!:__) 1 + x2 d'P(x) 
1+x2 x2 

where a E: R, and w is a d.j. up to a multiplicative constant. 
2° .c(E Xnk) -+ .C(X) with log of chj. necessarily of the form 

k 

1/1 = (a, w) if, and only if, 

with -r > 0 finite and arbitrarily fixed. 

Proof. Every i.d. law is a limit law of the Central Limit Problem. 
Conversely, if, under the uan condition, Ilfnk -+ f ch.f., then, on 

k 
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account of the boundedness lemma, the comparison lemma applies and 
e"'n ---+f. Thus, on the one hand, by the closure theorem for i.d. laws 
f = e"' is i.d. and 1° is proved. On the other hand, ifin ---+ if; and hence, 
by the convergence theorem for i.d. laws, 'lin~ 'lf, an ---+ a, and the 
"only if" part of 2° is proved. 

c 
Conversely, if an ---+ a and 'lin ---+ '11, so that 

f x2 
Var 'lin = I; ---2 dFnk ---+ Var 'l! < oo 

k 1 +X 

and the comparison lemma applies, then !/In ---+ if; hence llfnk ---+ e.P, 
k 

and the "if" part of 2° is proved. This terminates the proof. 
Extension. It may happen that under the uan condition, the sequence 

£(I; Xnk) does not converge, yet the sequence £(I; Xnk - a,.) con-
k 

verges for suitably chosen constants a,.; this is the situation in the 
Bernoulli case and, more generally, in the classical limit problem where 
Xnk = Xk/bn with b,. = n or s,.. Then ITfnk(u) is replaced by 

k 
e-.iua,.. Ilfnk(u) and the boundedness lemma can still be used, since it 

k 

refers only to the moduli of products. On the other hand, the sums in 
the companson lemma can be written log {e-iua,.. Ilfnk(u)} -

k 
{- iua,. + if;,.(u)}. Since - iuan + ifin(u) is still a !/;-function, the Cen
tral Limit theorem remains valid, provided an is replaced by an - a,., 
and the theorem can be stated as follows: 

B. ExTENDED CENTRAL LIMIT THEOREM. Let Xnk be uan independent 
summands. 

1° The family of limit laws of sequences £(I; Xnk - a,.) coincides 
k 

with the family of i.d. laws. 
2° There exist constants an such that the sequence £(I; X,.k - an) 

c 
converges if, and only if, '11,. ---+ some 'lf, where 

Then all admissible a,. are of the form a,. = an - a+ o(l) where a 

is an arbitrary finite number and an = .f { ank + f 1 ~ x2 iPnk}, and 

all possible limit laws have for log of chj. if; = (a, '11). 
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23.4 Central convergence criterion. The convergence criterion 22.3A 
2° is expressed in terms of expressions twice removed from the primary 
datum-the d.f.'s of the summands, and the probabilistic meaning of 
these expressions is somewhat hidden. We transform it by unpleasant 
but elementary computations as follows: 

A. CENTRAL CONVERGENCE CRITERION. If Xnk are uan independent 
summands, then 

if, and only if, 

Ilfnk ~ f = e"', 1/1 = (a, '11), 
k 

(i) at every continuity point x ~· 0 of '11 

f ., 1 +Y2 

L Fnk(x) ~ --2 - d'I! for X < 0, 
k -oo y 

i oo 1 + y2 
L {1- Fnk(x)J ~ --2 -d'iP for x > 0 
k "' y 

(ii) as n ~ co and then E ~ 0 

L { r x2 dFnk - ( r X dFnk)
2

} ~ '11( +O) - '11( -0) 
k J1 x I <• J1 x I <• 

(iii) for a fixed r > 0 such that ±r are continuity points of '11 

The iterated limit in (ii) is the generalized iterated limit lim limn . 
..... o-

Proof. We have to prove that the three stated conditions are equiva
lent to 

(C) 

and 

(C') 
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1° Let x be continuity points of 'Jr. It is readily seen that condition 
(C) can be written as follows: 

'Yn(x) - 'Y(x) for x < 0, 

'Y11 ( +co) - 'Y11(x) - 'Y( +co) - 'Y(x) for X > 0 

and, as n - co and then E - 0, 

It follows, upon replacing 'Yn by its defining expression and applying 
the Helly-Bray theorem, that (C) is equivalent to 

- i%1 +y2 
(Cl) 2: Fnk(x) - --2 - tfii! for X < 0, 

k --oo y 

and 

f oo 1 + y2 
2:{1-Fnk(x)}- --2 -tfii! for x>O 
k % y 

2: f. ~d.F .. "- 'Y(+O)- 'Y(-0) 
k J1 zl<•1 +X 

as n - co and then E - 0. 

Let a .. = max r I X I dFnk so that I ank I ~ a .. - 0. Since 
k Jlzi<T 

L Fnk(X - an) ~ L Fnk(x) ~ I: Fnk(X + a .. ), 
k k k 

and the continuity points x of 'iJr are continuity points of the integrals 
in (C1), it follows at once that the first parts of (i) and (C1) are equiva
lent; similarly for the second parts. Thus (C1) is equivalent to (i). 

2° Since 

1 J 21n J x2 ·7'1 i 2'n --2 L X dr nk ~ L --2 dr nk ~ L X dr nk1 

1 + E k I z I <• k I z I <• 1 + X k I z I <• 

condition (C2) is equivalent to 

L r x2 dFnk - 'Y( +O) - 'Y( -0) as n - co and then E - 0. 
k Jlzl<• 
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But, on account of (i), as n - oo and then E - 0, 

~( f 
lo:l>e 

lz-a.tl<• 

+ f ) 
l:r:l<• 

1..-a •• l;;.e 

and, since an - 0, we have, for E < r, 

325 

Therefore, under (i) or its equivalent (C1), condition (C2) is equivalent 
to (ii). Thus, condition (C) is equivalent to (i) and (ii). 

3° It remains to prove that, under (C) or its equivalent (i) and (ii), 
condition (C') is equivalent to (iii). Since 

and, ±r being continuity points of '11, we have, by the Helly-Bray 
theorem, 

i xa £ i ~ ---2 dPnk = X d'iJtn - X d'iJ! 
k l:r; I <T 1 + X l:r; I <T I"' I <T 

it suffices to prove that ~ r X d'Pnk - 0. This assertion follows 
k Jlzi<T 

from the fact that an - 0 and ±r, being continuity points of '11, are 
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continuity points of integrals in (i), so that, by (i), 

+IF { ~x-an~;I<~X- ank) dFnk 

- r' (x - ank) dFnkjl I 
Jlxi<T 

This terminates the proof. 

[SEc. 23] 

REMARK 1. In the course of the proof, it was found that condition 
(i) can be written with Fnk instead of Fnk and condition (ii; is equiva
lent to 

(ii') 2: f x2 iPnk ~ '11( +O) - '11( -0) 
k Jlxl<• 

as n ~ oo and then E ~ 0. 

REMARK 2. In conditions (ii) or (ii'), the passages to the limit can 
be taken indifferently to be lim lim sup or lim lim inf, instead of 

t!--+0 n e-+0 n 
the generalized iterated limit; we leave the verification to the reader. 

Upon using the extended Central Limit theorem, the central con
vergence criterion extends at once to sums with variable origin, as 
follows: 

B. ExTENDED CENTRAL CONVERGENCE CRITERION. If Xnk are uan in
dependent summands, then there exist constants an such that e-iuan ITfnk(u) 

k 
~ e!/l(u) where if; = (a, '11) if, and only if, conditions (i) and (ii) of the 
central convergence criterion hold. Then the admissible an are of the form 

an= L r xdFnk- a- r xd'll + r ~# + o(l) 
k Jl 2: I <T Jl 2: I <T J, 2: Iii!; T X 

where ±r are fixed continuity points of '11. 

This criterion implies properties of min Xnk and max Xnk· In fact, 
k k 

it takes then a more intuitive form, as follows: 
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C. ExTREMA CRITERION. Let Xnk be uan independent summands, and 
let Xnk • = Xnk or 0 according as I Xnk I < e or I Xnk I ~ e. 

The sequence £(2: Xnk - an) converges for suitable constants an if, 
k 

and only if, the sequences £(min Xnk), £(max Xnk) and 2:: u2 Xnk • con-
k k k 

verge as n ---t oo and then e ---t 0. 
More precisely, £(2:: Xnk - an) ---t £(X) with £(X) necessarily an 

k 

i.d. law (a, '1') if, and only if, as n ---t oo and then e ---t 0, 

L u2 Xnk' ---t '1'( +O) - '1'( -0) 
and 

£(min Xnk) ---t £(Y), £(max Xnk) ---t £(Z) 
k k 

with 

Fy(x) = 1 - e-L(x) or 1 and Fz(x) = 0 or eL<xl, according as x < 0 
or x > 0, 

where 

I X 1 + y2 
L(x) = --2 - d'l!(y), x < 0; 

-co Y 
i oo 1 + y2 

L(x) = - --2 - d'l!(y), x > 0. 
X y 

kn 

Proof. Let Gn be the d.f. of min Xnk, so that I - Gn = II (1 - Fnk). 
k ;'i;kn k=l 

For every fixed x > 0, Fnk(x) ---t 1 uniformly in k and, hence, Gn(x) ---t 

1. For every fixed x < 0, Fnk(x) ---t 0 uniformly in k and, hence, for 
n sufficiently large, 

log (1 - Gn(x)) = L log (1 - Fnk(x)) = - (1 + o(1)) L Fnk(x). 
k k 

Therefore, the assertion relative to Fy is equivalent to the first part of 
condition (i) of the central convergence criterion; similarly for the 
assertion relative to Fz. The theorem follows. 

23.5 Normal, Poisson, and degenerate convergence. We apply now 
the central convergence criterion to the three first-discovered limit 
types. We set 

ank(r) = r X dFnk, Unk2 (r) = r x2 dFnk- ( r X dFnk)
2 

Jlxl<T Jlxl<T Jlxl<T 

0"2 

1° A normal law ;n(a, u2) corresponds to 1/;(u) = iua - 2 u2, that 

is, 1/; = (a, '1') where 'l'(x) = 0 or u2 according as x < 0 or x > 0. 



328 CENTRAL LIMIT PROBLEM (SEc. 23] 

NoRMAL CONVERGENCE CRITERION. If Xnk arc independent summands, 
thcn,for every e > 0, 

£(:E Xnk) ~ ;Jt(a, u2) and max Pfl Xnk I E;;; e] ~ 0 
k k 

if, and only if, for every e > 0 and a r > 0, 

(i) L P[l Xnk I E;;; e] ~ 0 
k 

(ii) L O"nk2(r) ~ u2, L ank(r) ~ a. 
k k 

Proof. We have, under (i), 

max P[l Xnk I E;;; e] ~ L P[l Xnk I E;;; e] ~ 0. 
k k 

Furthermore, always under (i), if e < r, then 

and the same is true of e > r; it suffices to interchange e and r in the 
foregoing chain of inequalities. Upon taking into account these conse
quences of (i), the foregoing criterion follows from the central con
vergence criterion applied to the limit law m(a, u2). 

CoROLLARY. If Xnk arc independent summands and the sequence 
£(:E Xnk) converges, then the limit law is normal and the uan condition 

k p 
is satisfied if, and only if, max I Xnk I ~ 0. 

k 

Upon setting Pnk = Pfl Xnk I E;;; e], it suffices to observe that, because 
of the independence of the summands, 

P[max I Xnk I E;;; e] = 1 - II (1 - Pnk), 
k k 

For, upon applying the elementary inequality 

1- exp [- LPnk] ~ 1- II (1- Pnk) ~ LPnk, 
k k k 

it follows that the asserted condition is equivalent to condition (i) of 
the above criterion. 
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2° The Poisson law CP(X) corresponds to t/t(u) = X(eiu - 1) and, 

consequently, to t/t = (~, 'IJr) with 'IJr(x) = 0 or~ according as x < 1 

or x > 1. Upon applying the central convergence criterion and observ
ing that the condition relative to the Unk2(E) reduces exactly as in the 
normal case, we obtain the 

PmssoN coNVERGENCE CRITERION. If Xnk are uan independent sum
mands, then .C(I; Xnk) __. CP(X) if, and only if, for every E E:: (0, 1) and 

k 

a r E:: (0, 1), 

(i) L r dFnk - 0 and L r dFnk - X 
kJfzJ;,;•,Jz-lf;,;• kJfz-lf<E 

(ii) L Unk2 (r) __. 0 and L ank(r) __. 0. 
k k 

3° The degenerate law .C(O) can be considered as a degenerate nor
mal m.(O, 0) so that the normal convergence criterion reduces to the 

DEGENERATE CONVERGENCE CRITERION. If Xnk are independent sum
mands, then .C(L; Xnk) __. .C(O) and the uan condition is satisfied if, and 

k 

only if,for every E > 0 and a r > 0 

(i) 

(ii) L G'nk2(r) __. 0, L ank(r) __. 0. 
k k 

CoROLLARY 1. If xk are independent summands 

.C (~:) __. 0 if, and only if,for every E > 0 

(i) I; f dFk __. 0 
k J,"' J;,; ., 

(ii) 

and On j oo, then 

-0, 
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Because of the above criterion, taking r = 1 and observing that for 

Xnk = ~:, Fnk(x) = Fk(bnx), it remains only to prove that £ (~:) ---+ 

£(0) implies the uan condition. This follows from the fact that 

P [I ~:·I < E] > 1 - 8, for n ~ n,,6 sufficiently large, implies that, for 

n > n,,h 

REMARK. For the degenerate convergence criterion, (ii) and (i) with 
E = r imply that £(L: Xnk) ---+ £(0). For, as in 21.2A, by Tchebichev 

k 

inequality, (ii) implies that £(L: XnkT) ---+ £(0) and then, by 21.1b, 
k 

(i) implies that £(L: Xnk) ---+ £(0). 
k 

In particular, in Corollary 1, we may take E = 1. Thus, for bn = n, we 
have 

CoROLLARY 2. If xk are independent summands, then£ ( :n) ---+ £(0) 

ij, and only ij, 

(i) 

(ii) 

(iii) 

L: i dFk ---+ 0, 
k l.:z:l~n 

1 { f ( i )2} zL x2 dFk- X dFk 
n k l.:z:l<n lxl<n 

~ L: r x dFk ---+ o. 
n k Jl.:z:l<n 

This is the classical degenerate convergence criterion. 

---+ 0, 

The reader is invited to specialize 23.4C to the three foregoing cases. 

In particular, it implies the corollary to the normal convergence criterion. 
As for the Poisson case, dL(x) = 0 or }. according as x ¢ 1 or x = 1 so 
that 

If £(L: Xnk) ---+ £(X), then £(X) = <P(}.) if and only if £min (Xnk) ---+ 
k k 

£(0) and £(max Xnk) ---+ £(0, 1) with two values 0 and 1 only of pr. e-~ 
k 

and 1 - e-X, respectively. 
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*§ 24. NORMED SUMS 

*24.1 The problem. Let i: - an be normed sums with d.f. Gn and 

ch.f. gn, where Sn = 2: Xk are consecutive sums of independent r.v.'s 
k=l 

Xk with d.f.'s Fk and ch.f.'s]k, and where an, bn > 0 are finite numbers; 
thus 

In what follows k runs over 1, · · ·, n; n = 1, · · · 
If the Xnk = Xk/bn obey the uan condition: 

max P[i Xk I ~ ebn] ~ 0 or maxJ 2 x
2 

2 dFk(x) ~ 0 
k k bn +X 

or m:x /Jk C:) - I I ~ 0, 

then, according to the extended Central Limit Theorem, all possible 

limit laws of sequences ~: - an of normed sums form a family ~ of 

i.d. laws, and the extended central convergence criterion applies with 
Fnk(x) = Fk(bnx). 

However, in the case of normed sums, new problems arise. 
1° Given a sequence Xn of independent r.v.'s, find whether there 

exist sequences an and bn > 0 such that the uan condition (for the 
Xk/ bn) is satisfied and gn ~ f ch.f., necessarily of the form ef with 
1ft = (a,--¥); and if such sequences exist, then characterize them. 

2° Characterize the family ~; in other words, characterize those 
i.d. ch.f.'s ef and the corresponding functions --¥ which represent limit 
laws of normed sums obeying the uan condition. 

But on the one hand, according to the convergence of types theorem, 
there always exist sequences an and bn > 0 such that the limit laws of 

~: - an are degenerate and, on the other hand, all degenerate laws 

belong to~: eiua = (eiuafn)n. Thus, whenever convenient, we can and do 
exclude degenerate limit laws from our considerations. 

a. If gn ~ f nondegenerate chj., then the uan condition for the Xk/ bn 
implies that bn ~ co and bn+dbn ~ 1. 
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Proof. We have 

gn(u) = e-i-. IT/k (!!_) ~ f(u) nondegenerate. 
k On 

If On # co, then the sequence On contains a bounded subsequence 
and, by the Bolzano-Weierstrass lemma, this subsequence contains 
another sequence On' ~ o finite as n' ~ co. Setting Un' = On'u, the 
uan condition implies that for every k,/k(u) ::; fk(un'/on') ~ 1; hence, 
fk = 1 and f = 1. This contradicts the nondegeneracy assumption so 
that, ao contrario, On ~ co. 

p 
Since Xn+tfon+l ~ 0, it follows by the law-equivalence lemma that 

Sn Sn Sn+l 
the limit laws of the sequences --an and --- an+l = ---

On On+l On+l 
Xn+l · • an+l - -- are the same. Thus e-•ua,. gn(on'u) ~ f(u) as n' ~ co, 
On+l 

with o~ = on/ On+l and f non degenerate. It follows, by the corollary 
to the convergence of types theorem, that On+d On ~ 1. The proof is 
complete. 

*24.2 Norming sequences. We have at our disposal the necessary 
tools to solve the problem of existence and determination of norming 
sequences an and On > 0. Given the summands, we know, according 
to the convergence of types theorem, that 1° all the limit laws belong
if they exist-to the positive type of one i.d. law and 2° it suffices to 
find one pair of such sequences. Furthermore, on account of the ex
tended convergence criterion (with Xnk = Xk/on), 3° if there exists 
a limit i.d. positive type, then the an are determined by the expression 
given there, 4° the uan condition is satisfied and g .. ~ e!fl if, and only if, 

where 'lrn are defined on R by 

f b,.z y2 i 
(D) 'IJin(X) = :E 2 2 dFk(V + Onk), Onk = X dFk(X) 

k -oo On + Y Jzl <b,.,. 

with ±T ¢: 0 fixed continuity points of 'IJI (we shall see later that any 
T is admissible, so that we may set, say, T = 1). The theorem below 
completes the answer. As usual, the superscript "s" will denote the 
operation of symmetrization. 
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A. NoRMING THEOREM. There exist .sequences bn such that 

.,e (~: - an) -+ .e(X) for suitable an if, and only if, there exists a '1' 

such that, upon setting in (D), bn = b' n > 0 determined by 

1 n I x2 -I: 2 2 dFk"(x) = 'l'(+X>). 
2 k=l b'n +X 

we have 

(i) 

(ii) 

Proof. The "if" assertion follows by taking normed sums :: - an. 

Because of the corollary to the convergence of types theorem and of 
the extended central convergence criterion, the "only if" assertion will 

follow by proving that if .,C ( ~: - an) -+ .C(X) with ch.f. e"', Y, = 

(a, '1'), then b'n/bn -+ 1. 
Upon symmetrizing, the hypothesis becomes .C(Sn • / bn) -+ £(X") and 

the corresponding '1'" is defined by 

'lt"(x) = 'l'(x) + w(+oo)- 'lt(-x + 0). 
c 

Thus 'l'n" -+ w• where '1Fn8 are defined by 

Upon using 'lt"(+oo) = 2w(+oo), and (D) with bn replaced by b'n, it 
follows that 

On the other hand, since degenerate limit laws are excluded, w• does 
not reduce to a constant. Therefore, there exists an a > 0 such that 
2Cl = 'lt"(a) - 'It"( -a + 0) > 0 and, hence, for n ~ na sufficiently 
large, 
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I (bn/b'n) 2 - 11 
;;:::: • 0;;:::: 0 
- 1 + a2bn2/b'n2 - ' 

so that bn/ b' n ---7 1, and the proof is complete. 
*24.3 Characterization of m. We characterize m by a decomposa

bility property and, then, we characterize the corresponding func
tions 'IJI. 

In order to define the decomposability property we prove 

a. If to a chj. j there corresponds a number c > 0 and a nondegenerate 
chf.fc such that,jor every u,j(u) = j(cu)]c(u), then c < 1. 

Proof. If c = 1, then fc = 1. If c > 1, then, replacing repeatedly 

in the assumed relation u by!!. and lie I by 1, we have 
c 

1 ~ IJ(u) I~ J!(~)l ~ kC~)I ~ ... ~ limjJ(:)I =J(O) = 1 

and j is degenerate, so that ]c is degenerate. The assertion follows 
ab contrario. 

We say that a law and its ch.f. j are self-decomposable if, for every 
c E:: (0, 1), there exists a ch.f.Jc such that, for every u,j(u) = j(cu)fc(u). 
Clearly, a degenerate ch.f. is self-decomposable and all its components 
fc are also degenerate. 

b. Iff is self-decomposable, then j ~ 0. 

Proof. If j(2a) = 0 and J(u) ~ 0 for 0 ~ u < 2a, then fc(2a) = 0. 
Upon replacing t and h by a in 

we obtain 
IJc(l +h)- ]c(!) 12 ~ 211- ffi/c(h)), 

lfc(a) 12 ~ 211- ffi]c(a)j. 

This leads to a contradiction since, by letting c ---7 1, we obtain 
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I(·) = f(a) ~ 1 and the inequality becomes 1 < 0 The assertion Jc a f(ca) = . 
follows ab contrario. 

A. SELF-DECOMPOSABILITY CRITERION. A law belongs to ;n if, and 
only if, it is self-decomposable. 

Proof. A degenerate law certainly belongs to m, so that it suffices to 
consider nondegenerate laws with ch.f.j. 

1° Iff is self-decomposable, then let Xk(k = 1, · · ·, n) be inde
pendent r.v.'s, with ch.f.Jk defined by 

j(ku) 
fk(u) = fk_/ku) = J((k _ 1)u) 

k 

Sincefk (~) ~ 1 uniformly in k and the ch.f. of :n is given by 

I}fk (;;) = j(u), 

the "if" assertion follows. S 
2° Conversely, let/ belong to m. There exist normed sums b n - an 

n 

with ch.f. gn such that, denoting by /k the ch.f. of summands xk, 

bn+l . 
and, by 24.1b, bn ~ oo, -- ~ 1. Then, given c E: (0, 1), we can 

bn 
b 

make correspond to every integer nan integer m < n such that~ ~ c 
bn 

and m, n - m ~ oo as n ~ oo. Since 

(1) 

where gn(u) ~ f(u), and the first bracket converges to j(cu), it fol
lows that the ch.f. gm,n> whose values figure within the second bracket, 

converges to the continuous functionfc defined by fc(u) = f((u)) . There-
/ cu 

fore, by the continuity theorem,fc is a ch.f., and the proof is concluded. 

CoROLLARY. A self-decomposable chj. f and its components fc are i.d. 
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Proof. Sincef belongs to 'Jt,j is i.d. On the other hand, upon taking 

for ]k the ch.f. of r.v.'s xk defined in 1° and m < n such that!!! ~ c, 
we have n 

m (m u) n (u) J(u) = Ilfk - ·- II ]k - · 
k=l n m k=m+l n 

The first product converges tof(cu); the second one converges tofc(u). 
n 

Thus,fc is ch.f. of the limit law of sums I: Xnk where the summands 
k=m+l 

Xnk = Xk obey the uan condition. Therefore,fc is an id. ch.f., and the 
n 

proof is concluded. 

We express now the self-decomposability criterion in terms of func
tions '1' which figure in the representation of the i.d. self-decomposable 
ch.f.'s. 

B. '1'-CRITERION. Self-decomposable laws coincide with i.d. laws with 
junctions '1' such that on ( -oo, 0) and on (0, +oo), their left and right 

derivatives, denoted indifferently by 'l''(x), exist and 1 + x2 'l''(x) do not 
X 

increase. 

Proof. Because of the preceding corollary, the self-decomposability 
property of a ch.f.j, necessarily of the form ef, is as follows: for every 
c E:: (0, 1) the difference 1/lc(u) = 1/;(u) - 1/;(cu) defines a 1/;-function 
(a log of an i.d. ch.f.). 

Upon replacing x by c-1x, we can write 

(1) 1/;(cu) = iu { ca + (1 - c2) J 1 : x2 d'l'(c-1x)} 

Thus 

J( . iux ) 1 + x2 
1/lc(u) = iuac + ew"' - 1 - ---2 --2- d'l'c(x), 

1 +X X 

where ac is a finite number and 

1 + c-2x2 
d'l'c(x) = d'l'(x) - 2 2 d'l'(c-1x), 'l'c( -oo) = 0. 

c- (1 + x) 
(2) 
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Since 'lrc is a difference of two 'IJF-functions, its variation on R is bounded. 
It follows readily that 1/tc is a 1ft-function if, and only if, 'lrc is nondecreas
ing on R. Since 

the self-decomposability property becomes tfi¥c(x) E; 0 for every 
c E: (0, 1) and x ~ 0 or, equivalently, on account of (2), for every 
c E: (0, 1) and arbitrary x' < x", x'x" > 0, 

z" 1 + y2 
(4) i -2- d'I!c(Y) 

z' Y 
z" 1 + 2 z" 1 + ,-2 2 =f --/- d'I!(y) -i -2 / d'I!(c-ly) E; 0. 

z' Y z' C Y 

It remains to show that this last inequality implies and is implied by 
the one asserted in the theorem. 

If 

i e" 1 + y2 
1(x) = --2 - t/iP(y), x E: R, 

+oo y 

then, by setting in (4) x' = e"'-\ x" = e"', c = e-h, we obtain 

1(x + h) + 1(x - h) 
1(x) - 1(x - h) E; 1(x + h) - 1(x) or 1(x) E; 2 · 

Therefore, the nondecreasing finite function 1 on R is convex (from 
above) and, consequently, 1 is continuous and its left and right deriva
tives 1'(x) exist and do not increase on R. Since 

1(x + h) - 1(x) 1 + e2<z+Oh) 
= 

it follows, letting h ~ 0 and setting r = y, that the left and right de

rivatives 'lr'(y) exist and that 1 + y 2 'I!'(y) do not increase on (0, oo). 
y 

f_ -e"1+y2 
Similarly, introducing 1-(x) = --2 - t/iP(y), we find that the 

--oo y 
same is true on ( -oo, 0). Thus (4) implies the asserted property of 'IJF. 
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Conversely, if this asserted property is true then, for every c E: (0, 1) 
and x' < x", x'x" > 0 

i z" 1 + Y2 i"'" 1 + Y2 dy 
-2- tfi¥(y) = -- 'lr'(y)-

z' Y z' Y Y 

so that the inequality in (4) holds and the conclusion is reached. 

REMARK. Since Poisson laws correspond to functions "IJr discontinuous 
at some x ~ 0, they do not belong to the family m:. This explains the 
isolation in which they remained as long as only limit laws of normed 
sums were considered. 

*24.4 Identically distributed summands and stable laws. The first 
family m:1 of limit laws to be investigated by P. Levy, was that of limit 

laws of normed sums ~: - an of independent and identically distributed 

summands Xk with an arbitrary common ch.f. j 0 • In other words, 
m:1 is defined as the family of laws whose ch.f.'sf are such that 

Clearly, the uan condition is satisfied, so that m:1 C m:. The self
decomposability concept and the criteria for m: are easily particularized 
for m-1, as follows; we exclude degenerate limit laws which, clearly, 
belong to m:r. Let a law and its ch.f. f be called stable if, for arbitrary 
b > 0, b' > 0, there exist finite numbers a and b" > 0 such that 

j(b"u) = eiua_t(bu)J(b'u), u E: R. 

b b' 
Upon replacing b"u by u and setting c = -, c' = -,we obtain 

b" b" 
a 

j(u) = e'ub''j(cu)J(c'u) = j(cu)fc(u) 
where 

a 

fc(u) = eiub''j(c'u). 



[SEc. 24] CENTRAL LIMIT PROBLEM 339 

The self-decomposability criterion for~ becomes 

A. STABILITY CRITERION. A law belongs to m.r if, and only if, it is 
stable. 

Proof. The "if" assertion follows from the fact that stability of 
f implies, taking /o = j, that the ch.f. of s .. is of the form r<u) = 
i-:f(bnu) so that, norming Sn with these quantities an and bn, we have 
gn =J. 

Conversely, leaving out-to simplify the writing-factors of the 
form e<ua, which does not restrict the generality, we have to prove that 

fon (~) ~ J(u), u E: R, implies that to arbitrary b > 0, b' > 0, there 

corresponds b" > 0 such thatf(b"u) = f(bu)f(b'u). Since bn ~ oo and 
bn+l 
-- ~ 1, we can assign to every integer n integers m and m' such that 

bn 
bm bm' 
- ~ b,- ~ b'. Then 
bn bn 

and the right-hand side converges to J(bu)J(b'u), while, according to 
the convergence of types theorem, there exists b" > 0 such that the 
left-hand side converges tof(b"u). The conclusion is reached. 

Thus, a stable law is self-decomposable and, moreover,fc belongs to the 
positive type off; in particular f is an i.d. ch.f. 

The 'IJF-criterion for ~ is easily transformed and, furthermore, the 
stable ch.f.'s are obtained in terms of elementary functions of analysis, 
as follows. 

B. A Junction f is a stable ch.J. if, and only if, either 

(i) logf(u) = iau - bl u I'Y { 1 + ic I :I tan~ 'Y} 
or 

(ii) logj(u) = iau - bl u I { 1 + ic I :I · ; log I u I} 
with 

a~ o, b !?;; o, 1 c 1 ~ 1, 'Y E: <o, 1) u <t, 21. 
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We observe that 'Y = 2 gives the normal laws and that real stable 
ch.f.'s are of the form e-bl ui'Y , 0 < 'Y ~ 2. 

Proof. If the asserted forms off are ch.f.'s, then they are clearly 
stable. Thus, we have to prove that these forms are ch.f.'s and that 
stable ones are of this form. The first assertion will follow if we can 
determine functions '\[r such that logf = (a, w). 

Let f = e"' be a stable ch.f., that is, for arbitrary b > 0 and b' > 0, 
there exist a and b" > 0 such that 

iua + if;(bu) + if;(b'u) = if;(b"u). 

1° We follow the pattern ofw-criterion's proof( with c = f,). Upon 

replacing if; by its representation in terms of a and w, the foregoing 
requirement reduces to 

Upon introducing the functions ] and ]- defined on R by 

l •zl+y2 f-ezl+y2 
J(x) = - 2- d\JI(y), J-(x) = - 2- d\JI(y), x E:: R, 

oo Y -oo Y 

and setting i = b, eh' = b', eh" = b", this requirement becomes 

and 

(2) J(x + h) + J(x + h') = J(x + h"), 

]-(x + h) + ]-(x + h') = ]-(x + h"), x E:: R, 

where h, h' are arbitrary numbers and h" is a function of h and h'. 
Let \JI( +oo) - w( +O) > 0 so that J does not vanish. If, in the 

foregoing relation in ], we set repeatedly h' = h, it follows that, for 
arbitrary positive integers n and sn, 

n](x +h) = ](x + h"n), sn](x +h) = ](x + h"sn). 

Therefore, to every rational s > O(s' > 0) there corresponds a number 
t(t'), such that, for every x, 

(3) s](x) = J(x + t). 
Since J is continuous from the left and nondecreasing, with J ~ 0, 
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]( +oo) = 0, it follows that t' l t as s' j s, so that ] is continuous, (3) 
holds for irrational s as well, and 

tl::., as sj 0. 
Since ] does not vanish, we can assume-by changing the origin if 
necessary-that ](0) ~ 0. Then, setting ] 0 = ] / ](0), it follows, by 

s](O) = ](t), s'j(O) = J(t'), s'](t) = ](t + t'), 
that 

]o(t)]o(t') = ] 0 (t + t'), t, t' E:: R. 

The only nonvanishing continuous solution of this functional equation, 
with ] 0 (oo) = 0, is proportional to e-rt with 'Y > 0. Therefore, setting 
y = e1 and going back to '11, the derivative 'l!'(y) exists for y > 0 and 

1 + 2 
__ Y_ 'l!'(y) = {3'y-"~, {3' ~ 0, 

y 
taking into account the vanishing case. Since '11 is of bounded variation 

0 

on (0, +oo), it follows that J y 1-'Y dy is finite for E > 0 and, hence, 
• 

'Y < 2. Furthermore, replacing] in (2) by its above-found expression, 
we have 

b'Y + b''Y = b"'Y, 0 < 'Y < 2. 

Similarly, with]-: for y < 0 

1 +Y2 
-- 'l!'(y) = -{31 y 1-'Y', {3 ~ 0, 

y 

with b"~' + b'"~' = b""~', hence 'Y = 'Y' (set b = b' = 1). 

Therefore, on account of (1), either b2 + b'2 = b"2 so that J and ]
vanish and/ is a normal ch.f., or '11( +0) - '11( -0) = 0 and, for y ,t. 0, 
'IJI'(y) is given by the foregoing relations. 

2° According to what precedes, a stable ch.f. f is either normal or 
of the form 

(1) logf(u) = iua + {3f-o (eiux - 1 - iux 2) I ~~+'Y 
-oo 1+x X 

+ {3'i+oo (eiux - 1 - ~) dx . 
o 1 + x2 x1+'Y 

If 0 < 'Y < 1, then it is possible to take out of the bracket the term 

iux "f . b . 
- --- and, by mod1 ymg a, we o tam 

1 + x2 fo . dx ioo . dx 
(2) logj(u) = iua' + {3 (e•ux - 1) I II+ + {3' (e•ux - 1) """""1+" 

-«> x 'Y 0 x'Y 
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Let u > 0. Setting ux = u and integrating along the closed contour 
formed by the positive halves of the real and imaginary axes and a 
circumference centered at the origin of radius r ~ oo, it follows, by 
the Cauchy theorem, that 

(3) i~ . dx I I _ ~ -yi 
(etuX- 1) l+y = U 'Ye 2 r( -"}'), 

0 X 
where 

i~ du 
r( -'Y) = (e-v- 1) 1+ < 0. 

0 u 'Y 

The first integral in (1) follows by taking the comple¥-conjugate of 
(3) and, for u < 0, logf(u) is obtained by taking the complex-conjugate 
of logf(l u 1). Upon substituting in (2) and setting 

71' {3 - {3' 
b = - r( -'Y)(f3 + {3') cos- 'Y c = --· 

2 , {3 + {3' 

so that b ~ 0, I c I ~ 1, we obtain the asserted form (i) of logj(u). 
If 1 < 'Y < 2, then we can take out of the bracket in (1) the term 

iux 
- --2 + iux, and (2) is replaced by 

1 +X' 
f o . dx 

(4) !ogj(u) = iua" + {3 --oo (e'u"' - 1 - iux) I x IH'Y 

+ {3'i~ (eiux - 1 - iux) dx . 
0 I X IH'Y 

Proceeding as above we obtain the same form (i) of logj(u). 
If 'Y = 1, the foregoing modifications of the third term in the bracket 

in (I) are no more possible. But, for u > 0, 

f+~ ( iux iux ) dx e -1-----
+O 1+x2 x2 

i~ cos ux - 1 J~ ( ux ) dx 
= dx + i sin ux - --- -

o x2 +O I+x2 x2 

1r {f+~ sin u f~ du } 
- - u + iu lim -- dv -

2 do •u u2 • v(l + v2) 

71' fw sin u f~ (sin v 1 ) 
- -u- iulim --dv+ iulim --- dv 

2 do • v2 do • v2 u(l + v2 ) • 
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The limit of the second integral exists and is finite, and that of the first 
one is log u. The asserted form (ii) of logf(u) readily follows, and the 
conclusion is reached. 

24.5. Levy representation. This subsection may read immediately 
after 24.1 except for reformulations of results in the intervening subsec
tions. 

So far we used systematically Khintchine representation of i.d. ch.f.'s 
e~ with 1/1 = (a, '11) representing 

1/l(u) = iau + f(eiux - 1 - ~) 1 + x2 tfi¥(x) 
l+x2 x2 

where a ~ R and the Khintchine function '11 is bounded nondecreasing 
with 'l'(- ro) = 0, '11( + ro) < ro or, in terms of the measure which cor
responds biunivoquely to it and is also denoted by '11, the Khintchine 
measure '11 on R (that is, on the Borel field of R), is bounded. '11 has no 
direct probabilistic meaning but presents definite technical advantages: 
It permits a simple description of the i.d. family with 1/1 = (a, '11), a~ R, 

'11 bounded measure on R, as well as a simple description of convergence 
of i.d. laws: 1/ln = (an, 'lin) ~ 1/1 = (a, '11) if and only if an~ a, 'lin~ '11. 

In fact, "Levy representation" below was the initial one and is central 
to and born from P. Levy probabilistic analysis of decomposable proc
esses (§41). 

Let barred integral sign mean that the origin is excluded from the 
interval of integration and, as usual, we omit its endpoints when they 
are - ro and + ro . 

P. Levy representation of i.d. ch.f.'s e>f with 1/1 = (a, {32, L) is given by 

,P(u) = iau - !!_ u2 + f(eiux - 1 - ~) dL(x) 
2 1 + x2 

where a, {3 ~Rand the Levy function L defined on R - (OJ is nonde
creasmg on (- ro, 0) and on (0, + ro) with L(± ro) = 0 and £ y 2 dL(y) < rofor some hence every finite x > 0. The corresponding 

Levy measure L on R - (OJ is bounded outside every neighborhood of 
the origin but may be infinite on R- {OJ. 

The somewhat involved characterization of Levy function explains 
why Khintchine representation is frequently favored despite its lack 
of direct probabilistic meaning. 
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The following correspondence is immediate: 

a. CoRRESPONDENCE LEMMA. There is a one-to-one correspondence be
tween Lluy and Khintchine representations. 

It is giuen by {32 = w( +O) - w( -0) and 

(1) 1 + x2 
dL(x) = --2 - di¥(x), x ¢ 0, 

X 

or, more precisely, with x > 0, 

(1') L( -x) = ["' 1 ~ y2 d'P(y), L(x) =i"' 1 +/2 tfi¥(y) 
-oo Y -oo Y 

and, conversely, 

(1") w( -x) = [~ 1 ~ y2 dL(y), w(x) = i.~ 1 r y 2 dL(y) + {32• 

The continuity sets C(L) and C(w) are the same on R - {0}. 

A. J.D. CONVERGENCE CRITERION. 

if and only if 
(i) 

w 
L,. ~ L on R - { 0} 

(ii) £, y 2 dL,.(y) + {3,.2 ~ {32 as n ~ oo then 0 < x ~ 0 

(iii) a,.~a 

Proof. Since 1{!,. = (a,.,'¥,.)~ 1{! = (a, w) if and only if a,.~ a and 
'¥,. ~ w, it suffices to prove that w,. ~ w ¢:::} (i) and (ii) hold. 

We use a and Helly-Bray lemma and theorem without further com
ment. Let x > 0. 

Let '1',. ~ '1'. Clearly (i) follows. Since for ±x E: C(w) 

(ii) follows as n ~ oo then 0 < x ~ 0 hence without the above restriction 
on ±x since w(x) - w( -x) is monotone in x. 

Conversely, let (i) and (ii) hold. Clearly w,.( -x) ~w( -x) for 
-x E:: C(L). For 0 < E < x E: C(L), from 
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it follows that, as n ~ oo then e ~ 0, 

'lln(x)~w(-0) +.B2 +w(x) -w(O) ='ll(x). 

The same is true for x = + oo so that 'lin(+ oo) ~w( + oo ). Thus 
'lin 4 '11 and the proof is terminated. 

*Reformulations. Levy representation is visible in the main results and 
also in the proofs in the preceding subsections: 

1. ExTREMA CRITERION. Its statement in 23.4C is already in terms of 
Levy function L and of ,82 = w( +O) - '11( -0) of the i.d. limit law. 

2. ExTENDED CENTRAL CONVERGENCE CRITERION, This most impor
tant result of the section 23.4B is to be reformulated as follows. 

Let x > 0 and set 

Ln( -x) = I; Fnk( -x), Ln(X) = I; CFnk(X) - 1). 
k k 

Then, in terms of L and ,82 of the limit i.d. law, the criterion conditions 
are 

Furthermore, Levy functions Ln have a direct probabilistic meaning in 
terms of the summands Xn, k = 1, · · ·, kn: 

Ln( -x) = E(number of the Xnk in (- oo, x)) 
- Ln(x) = E (number of the Xnk in [x, oo )). 

3. The proof of the '11-criterion 24.3Bis, in fact, in terms of L. For, 
the functions J andy- therein are given by J(x) = - L(e"') and y-(x) 
L( -e"'). 

Levy functions of stable laws within the proof of 24.4B are: 

'Y = 2: L = 0-normallaw 
0 < 'Y < 2: dL(x) = .B/IxiH'Y dx for x < 0, 

dL(x) = ,8'/lxiH'Y dx for x > 0 

CLP for iid summands. In what follows,/n andfn are ch.f.'s. 
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We intend to solve directly the Central Limit Problem (CLP for short) 
for independent identically distributed (iid for short) summands. We 
shall use A and generalize results in 24.1 replacingfn" = j for every n 
by fn" -tj. 

b. If fn -t 1 in some neighborhood [- U, + U] of the origiu then on 
[- U, U],jrom some n = n( U) on, logfn exist and are bounded and 

"" 1 logf" = - L: -(1 - fn)m = Un- 1)(1 + o(1)). 
m=l m 

For, on [- U, + U],Jn -t 1 uniformly so that, from some n = n( U) on, 
11 - f,.i < 1/2 hence logfn exists and is continuous and thus is bounded, 
and 

1 
logfn = log(1 - (1 - fn)) = - (1 - fn) - 2(1 - fn) 2 - • • • 

= Cfn- 1)(1 + o(l)). 

V\r e generalize 24.1 b: 

c. Jj fn" --t j thenj has no zeros and the same is true when e-iuanf,."(u) --t 
f(u) for every u €:: R. 

Proof. It suffices to prove that ch.f.'s (!f,.l2)" -tlfl 2 implies 1/12 > 0. 
Suppose this "symmetrization" already took place so thatfnn --tj with 
fn andj ~ 0. 

Since/ is continuous withf(O) = 1, there is a finite interval [- U, + U] 
on whichj > 0 hence logf exists and is bounded. On this interval, from 
some n on, logfn exist and are bounded, so that nlogf,. --tlogf hence 
logfn --t 0, that is,fn -t 1, a applies 

n(Jn- 1)(1 + o(1)) = n log fn --tlogj 

and n(Jn - 1) remain bounded. Since, by 13.4A 

n(l - /n(2u)) ~ 4n(1 - fn(u)), 

it follows that on [ -2U, +2U], from some non, n(1 - fn) ~ 0 remain 
bounded, so thatf,. --t 1, a applies and e"Un-ll -tj > 0. 

Upon continuing this doubling of the intervals, any given u €:: R belongs 
to an interval on whichj > 0 hencej > 0 on R, and the proposition is 
proved. 

B. Im coNVERGENCE CRITERION. Let if; be continuous 

fnn --tj 'A n(Jn- 1) --t 1/;, and then j = e-f is i.d. 
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More generally, iff,.~ 1 or a,./n ~ 0 then,jor every u E: R, 

e-iuanf,."(u) ~J(u) ~ -iua,. + nU,.(u) - 1) ~ 1/1, 

and then f = e-{1 is i.d. 
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Proof. 1°. Let n(f,.- 1) ~ 1/1, so thatf,. ~ 1, b applies, andf,." ~ 
e-{1 =f. 

Conversely, let f,." ~ f so that, by c, f has no zeroes and log f exists 
and is continuous. Given any finite interval, it follows that on it, from 
some non, logf,. exist and are bounded and, by b, n(f,.- 1) ~ logj = 1/1. 

2°. Let iua,. + n(f,.(u) - 1) ~ ..Y(u) for every u E: R so that 
-iua,.fn +J,.(u)- 1 ~o hence a,.fn~O~J .. ~ 1. With either of 
these equivalent conditions b applies and, for every u E: R, from some 
n = n(u) on, 

e-iuanj,."(u) = (e-iuanl'f,.(u))" ~ e-{!(u) = j(u). 

Conversely, let for every u E: R, 

(e-i'"'n ''f,.(u))" = e-iua f,."(u) ~ j(u) 

so that, by c, f(u) ¢. 0 hence e-iua,.l'f,.(u) ~ 1. Thus, once more, 
a,.fn ~ f,. ~ 1 and, with either of these equivalent conditions, b applies 
and -iua,. + n(j,.(u) - 1) ~ 1ogj(u) = 1/l(u). 

It remains to show that the limit ch.f.j is i.d. This will follow from 
the "structure" proposition below. In fact, this proposition provides a 
widening of the definition in 23.1 of i.d. laws sincef,." = f for every n 
implies/,."~ f but, in general, the converse is not true. It also provides 
a direct probabilistic proof of the structure theorem in 23.1: 

Let So = 0, S,. = X1 + · · · +X,., n = 1, 2, · · · , where the sum
mands are iid with common ch.f. f. Let>. ~ 0. We say that a r.v. Sis 
(>.,f)-compound Poisson if its d.f. is 

Clearly Fs is a d.f.: It is non decreasing with F 8 (- oo) = 0, Fs( + oo) 
oo >-" 

e->- :E - = 1. The corresponding ch.f. is immediate: 
n-on! 

fs = eW-1>. 

>. 
It is an i.d. ch.f., since e-;.U-1> is the ch.f. of a (>../ m, /)-compound Poisson 
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form = 1, 2, · · · . Also the centered ch.f. e-iuaHU-IJ is i.d. and the i.d. 
assertion in B follows at once. And B yields 

STRUCTURE COROLLARY. j is i.d. if and on/y if there are compound 
Poissonfn withfn" -f. 

C. Jm CENTRAL CONVERGENCE CRITERION. Let Xnk, k = 1, · · · n, be 
iid summands with common d.f. F .. and ch.f.j .. - 1. Let x > 0 . 

.c(~ Xnk - a,.)- .C(X) necessarily i.d. with'¥ = (a, {32, L) 

if and only if 
( C L): Ln ~ L with Ln defined by 

L .. ( -x) = nF,.( -x), Ln(x) = L: n(Fn(x) - 1), x > 0. 

" 
(Cp2): n1J"' y 2 dFn(y)-fJ2 as n~ oo then x-0. 

-z 

(Ca): an= an- a+ o{1) with an= n f 1 ~ X2 dFn(x). 

Note that (Ca) characterizes all admissible an. 

Proof. According to B, the required convergence is equivalent to 

if;,.(u) = - iuan + n J (eiu:r - 1) dF .. (x) - if;(u), u E: R where, setting 

a,.= nJ 1 ~ x2 dF .. (x), 

1/ln(u) = iu(an -a .. ) + n f(eiuz- 1 - 1 ~xx2)dF .. (x) 

= (a .. - a .. , {3 .. 2, L .. ), 

with L .. defined by 

L .. ( -x) = nF .. ( -x), L .. (x) = n(F .. (x) - 1), x > 0, 

corresponding Wn defined by 

w .. (z) = n fz 1 +y2 
2 dF .. (y), z E: R, 

-oo Y 
and {3 .. 2 determined by 

The asserted criterion follows at once from A. 
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COMPLEMENTS AND DETAILS 

I. Prove Lindeberg's theorem without using Liapounov's bounded case 
theorem. Then deduce Liapounov's theorem. 

For Lindeberg's theorem use the expansion 

To deduce Liapounov's theorem observe that 

2. Prove directly the sufficiency of Kolmogorov's conditions for degenerate 
convergence. Then deduce the condition in (1 + o). 

3. Deduce the Kolmogorov and Lindeberg-Feller theorems from the degen
erate and normal convergence criteria-where existence of moments is not 
assumed. 

1-. Deduce the bounded variances limit theorem from the Central Limit 
theorem. 

5. Let L Xnk be sums of independent uan summands centered at expecta
k 

tions with L u2Xnk = 1 whatever ben. Then 
k 

(Observe that the last convergence is equivalent to L { x2 dFnk ~ 0 what
JI:z:l;;o:• 

ever be e > 0.) -
6. Let t(t + iu), t > 1, be the Riemann function defined by 

r(t + iu) = L n-t-iu =II (1 - p-1-iu) 
n P 

where p varies over all primes. j 1(u) = t(t + iu)/t(t) is an i.d. ch.f. 

(logfe(u) = L LP-n1(e-tnulogp- 1)/n.) 
p n 

7. An i.d. law may be composed of two non i.d. laws. In fact, there exists a 
non i.d. ch.f. f such that If 12 is i.d.: form the ch.f. f of X with P[X = -1] = 
p(1 - p)/(1 + p), P[X = k] = (1 - p)(1 + p2)pkj(1 + p), k = 0, 1, · · ·, 0 < 
p<l. 

(Put/ in the form (a, ..Y); observe that ..Y so found does not satisfy the neces
sary requirements. Put If 12 in the form (a, 'It).) 

8. An i.d. law may be composed of an i.d. law and an indecomposable one: 
let X = 0 or 1 with pr,'s 2/3 and 1/3, respectively; the ch.f.j is indecomposable 

2 + ew 
logj(u) = log --3 - = L an(einu- 1), 2: I an I < co, 
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Set 
logj+(u) = I:+ an(einu - 1), logj-(u) = -I:- an(einu - 1) 

where I:+ <:E-) denotes summation over positive (negative) an. Then j+ 
andf- are i.d. andj+ = JJ-. 

Also an i.d. law may be the product of an i.d. law and two indecomposable 
5 + 4 cos u 12 + eiu 12 

ones: proceed as above but withf defined by 9 = --3- · 

9. P. Levy centering junction. The family of i.d. laws coincides with laws 
defined by 

(32u2 r ( iux ) logf(u) = iau - - +-.- eiuz - 1 - -- dL(x) 
2 J I+x2 

where L is defined on R, except at the origin, is nondecreasing on (- oo, - O) 
r+~ 

and on ( +O, +co), with L(=t=co) = 0 and J_~ x2 dL(x) < co for some 'T > 0; the 

barred integral sign means that the origin is excluded. 
Also 

f32 r+~ 
logj(u) = ia(T)u - - u2 +-)- (eiuz - I - iux) dL(x) 

2 -~ 

+ (J_: + J+~) (eiuz - I) dL(x). 

This splitting of the domain of integration replaces the P. Levy centering 
function g(x) = x/(1 + x2) by much simpler ones (g(x) = x and g(x) = 0) 
within the partial domains of integration. 

Why was the centering function needed? Then, what are the conditions to 
impose upon it? Show that Feller's centering functiong(x) = sin xis acceptable. 
Is the following one acceptable: g(x) = x for I xI < c for some finite positive 
constant c, g(x) = c for x ~ c and g(x) = -c for x ~ c? 

10. Let r.v.'s Xn,k with d.f.'s Fn,k, k = I,···, kn ~ co, n = 1, 2, · · ·, be 
independent in k and uniformly asymptotically distributed in k, that is, there 
exist d.f.'s Fn such that Fn,k - Fn ~ 0 uniformly in k. The nondecreasingly 
ranked numbers Xn,k(w) into X*n,t(w) ~ · · · ~X*n,kn(w) determine "ranked" 
X*n,r of"rank" r; the *Xn,s = Xn,kn+l-• are of"end rank" s. Set 

Ln = 2: Fn,k, Mn = 2: (Fn,k - I), 
k k 

=------
Kn,rn = (rn - 2: Fn,k)/Vl: Fn,k(I - Fn,k), 

k 

Use throughout the fundamental relation 

[X* n,r < x] = [I n(X) ~ r]. 

a) The X* n,r are r.v.'s. 
b) For fixed ranks r, the class of limit laws of ranked r.v.'s Xn,r is that of laws 
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fL r-1 
£(X* r) with d.f.'s FrL = Jo (r _ 1)! e·-t dt, where the functions L on R are 

nondecreasing, nonnegative, and not necessarily finite. 
These limit laws are laws of r.v.'s if and only if L( -co) ,;, 0, L( +co) = +co. 

And 

c) For fixed endranks s, the class of limit laws of ranked r.v.'s *Xn• is that of 

f +oo t•-1 
laws£(* X,) with d.f.'s M F. = ( _ 1) 1 e-t dt where the functions M on R 

-M S • 

are nondecreasing, nonpositive, and not necessarily fini'te. 
These limit laws are laws of r.v.'s if and only if M( -co) = -co, M( +co) = 0. 

And 

d) For variable ranks rn ~ co with Sn = kn + 1 - rn ~ co, the class of limit 

laws of ranked r.v.'s X* n,Tn is that of laws with d.f.'s pc = - ;_ rooe-12 12 dt, 
v 27r J, 

where the functions g on R are nonincreasing, and not necessarily finite. 
Theselimitlawsarethoseofr.v.'sifandonlyifg(-co) = +co,g(+co) =-co. 

And 
F* Wpg w 

n,rn --: <=> gn,rn ~ g. 

e) What if the Xnk are uniformly asymptotically negligible? What if, moreover, 
£(2: Xnk) -> £(X)? 

k 
f) What about joint limit laws of ranked r.v.'s? 

11. Let £(X n - an) ~ (a, {32, L) where X n = L Xnk are sums of uan inde
k 

pendent r.v.'s. 
(a) The sequence £(max I Xnk I) converges. Find the limit law £(X). Why 

k 

can necessary and sufficient conditions for normality of the limit law of the 
sequence £(Xn- an) be expressed in terms of £(X)? Are there other i.d. laws 
for which this is possible? (For n sufficiently large and x > 0 

log P[max I Xnk I < x] = -(1 + o(l)) L P[i Xnk I ;;; x].) 
k k 

(b) Let ank = r X dFnk, T > 0 finite, Fnk(x) = Fnk(X + ank) and let F' nk 
Jl:z:l <r 

be the d.f. of X' nk = I Xnk - ank lr for a fixed r > 1. 
If £(2: Xnk - an) ~ (a, {32, L), then there exist constants a' n such that 

k 

£(LX' nk - a' n) ~ (a', 0, L') with L'(x) = 0 or L(xilr) - L( -x1fr) according 
k 

as x < 0 or x > 0. (If g ;;; 0 is even, then, for every c > 0, 
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Take g = 1 and g(x) = x2• Observe that 

0 ~ f"x2 dF' nk- ( f'x dF'n~c) 2 ~ E2<•-ll/r f x2 ifnk.) 
Jo Jo Jizl <•1/r 

(c) .c(L: Xnk - a,.) -+ m(O, {J2) if, and only if, :E X'!t ~ {J2• What about 
k k 

limit Poisson laws? 
In what follows and unless otherwise stated, degenerate laws are excluded; 

j, with or without affixes, is a ch.f.; and, without restricting the generality, the 
type off is the family of all ch.f.'s defined by f(cu) for some c > 0. 

12. f is decomposable by every!", n = 2, 3, ···,if, and only if, f is degenerate. 
13.J is decomposable and every component belongs to its type withf(u) = 

I:; J(ciu), I:;ci2 ~ 1, if and only iff is normal. 
J1.. If for an r > 0 and ~1,j• belongs to the type ofj, thenf is i.d. If there 

are two such values r' and r" of rand log r' /log r" is irrational, then! is stable. 
15. Iff,.-+ j,j',.-+ f' andf,. =J',.f",. for every n, then/' is a component 

off. 
16. f is c-decomposable if f(u) = f(cu)J.(u) for some fixed c necessarily be

tween 0 and 1. Lc is the family of all c-decomposable laws, Lo is the family of 
all laws, and L1 is that of self-decomposable ones. 

(a) Lo ::> L. ::> Lt, and if log c/log c' is rational, then L. = L.•. Every L. 
is closed under compositions and passages to the limit. 

(b) f E:. L. if, and only if, it is limit of a sequence of ch.f.'s of normed sums 
S,./b,. of independent r.v.'s with b,./bn+l -+ c. .. 

(c) JE:. L. if, and only if, it is ch.f. of X(c) = I:; ~kck where the law of the 
k-0 

series converges and the ~" are independent and identically distributed. Then 
the series converges a.s., andfb = j.. If~" is bounded, thenf is not i.d. 

(d) g(x) is said to be 'Y-convex ('Y > 0 fixed) if every polygonal line inscribed 
in its graph with vertices projecting at distance 'Y on the x-axis is convex. 

If ~" is i.d., so is X( c). f i.d. with Uvy's function L belongs to L. and j. is 
i.d. only if ( -1)iMi are 'Y-convex for 'Y = I log c I where Mi are defined as in 9. 
Is the converse true? 

(e) If E~k = 0, u2~.t = 1, then, for c, c' E:. ( -1, + 1), the covariance 
EX(c)X(c') = 1/(1 - cc'), and the random function X(c) on (-1, +1) exists 
in q.m. and is continuous and· indefinitely differentiable in q.m. 



Chapter 1711 

INDEPENDENT IDENTICALLY 
DISTRIBUTED SUMMANDS 

This chapter is devoted to study in some depth of consecutive sums 
St, 82, · · · of sequences of independent identically distributed sum
mands xl, x2, ... with common law .c(X); we shorten "independent 
identically distributed" to iid. As usual, methods are emphasized. 
Methods and results took their definitive form in the third quarter of 
this century. 

In the preceding chapters some results about iid summands were ob
tained: Kolmogorov law of large numbers (17.3B) and its generalization 
17.4, 4°, convergence of laws of normed sums to normal when the 
summands have finite second moments (21.1A) and the far-reaching 
characterization of all limit laws of normed sums (24.4), by particular
izing the solution of the general central limit problem. 

In this chapter, using directly 24.5, by means of Karamata theory, we 
obtain in §25 the above limit "stable" laws and their "domains of at
traction"-those families of laws for which the laws of normed sums 
Sn/bn- an converge to any given stable one. 

In §26, we study "random walks"; sequences of sums St,S2, • • • 

themselves (not normed), their global and asymptotic behaviour with 
their dichotomy into "recurrent" and "transient" ones, and their fasci
nating "finite fluctuations." 

§25. REGULAR VARIATION AND DOMAINS OF ATTRACTION 

The domain of attraction of the normal law was found by P. Levy, by 
Feller, and by Khintchine. The domains of attraction of all other stable 

353 
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laws were discovered by Doeblin and by Gnedenko. Much later, Feller 
observed that these results were in terms of Karamata regular variation 
theory and showed its usefulness for various limit probability problems. 
We follow his presentation of Karamata theory, and then apply it to the 
problem of stable laws and their domains of attraction. It deems ad
visable that at the first reading only A and its Corollary be covered in 
25.1 and c in 25.2 be assumed. 

25.1 Regular variation. Let U, Vbe positive monotone functions on 
[0, oo) to [0, oo) and let x, y be positive. 

We say that U varies regularly (at + oo) with exponent a E: R if 
U(x) = xaV(x) where Vvaries slowly (at +oo), that is, V(tx)/V(t) ~ 1 
as t ~ oo for every x. Thus slow variation is regular variation with 
exponent 0. Since our only concern is with behaviour at + oo, we may 
take x, y > c E: R with c > 0 arbitrary but fixed, or substitute (c, oo) 
for [0, oo ), or assume that U, V vanish on [0, c]; this will be done without 
further comment. 

A. REGULAR VARIATION CRITERION. Let D be a set dense in [0, oo ). 
U varies regularly if and only if,for every x E: D, 

U(tx)/U(t) ~ h(x) < oo as t ~ oo, 

and then h(x) = xa for some a E: R. 

Proof. The "only if" assertion is trivially true. As for the "if" as
sertion, letting t ~ oo in 

U(tx) U(txy) U(ty) 
U(t) = U(ty) . U(t) ' 

it follows that 

h(xy} = h(x)h(y) for x, y E: D. 

Since U is monotone, this functional equation extends to [0, oo) by taking 
limits from the right. But then it has a unique finite solution of the form 
h(x) = xa for some a E: R, and the proof is terminated. 

CoROLLARY. If for every x E: D dense in [0, oo ), 

cnU(bnx) ~ h(x} finite positive 

and 

then U varies regularly and h(x) = cxa for some finite a and c > 0. 
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Proof. If n is the smallest integer such that bn ~ t < bn+l then 

U(bnx) < U(tx) < U(bn+IX) 
U(bn+l) = U(t) = U(bn) 

where Uis nondecreasing, while these inequalities are reversed when Uis 
nonincreasing. By a change of scale we may assume that 1 E::: D. Then, 
since Cn+I/ Cn ~ 1 and Cn U(bn) ~ h(1) = c > 0, for every x E::: D the ex
treme terms converge to h(x)/c hence U(tx)/U(t) ~ h(x)/c, the above 
criterion applies and h(x)/c = xa for some a E::: R. 

*Let H be a positive monotone function on [0, co) and set 
X 00 

Ua(x) = i yaH(y) dy, Va(X) = i yaH(y) dy 

where x > 0 and a are finite. 
Upon replacing if necessary 0 by c > 0, or assuming that H vanishes on 
[0, c], Ua(x) will be finite while Va(x) may be infinite. Since 

Ua(x) j Ua( 00 ) and Va(x) t Va( co) as X j co-

while 

Ua( co) = Ua(x) + Va(x) hence Ua( co) 

it follows that 

Ua( co) < co <=? Va( co) = 0 ==? Va(x) < co from some x on 
Ua( 00 ) = 00 <=? Va(x) = co for every X<=? Va( co) = co. 

a. Let H vary slowly. Then Ua( co) and Va( co) are finite for a < -1 
and infinite for a > -1. Furthermore 

(i) If a ~ -1 then Ua varies regularly with exponent a + 1. 
(ii) If a < -1 then Va varies regularly with exponent a + 1, and this 

still holds for a = -1 provided V _1 is finite. 

Proof. Given x > 0 and e > 0, slow variation of H implies existence 
of o > 0 such that, for y > o, 

(1) (1 - e)H(y) ~ H(xy) ~ (1 + e)H(y). 

1°. Let Va( co) = 0 hence Va(x) < co for some x on, and Ua( co) < co. 
Since 
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it follows that, for t > o, 
(1 - e)xa+IVa(t) ~ Va(tx) ~ (1 + e)xa+IVa(t) 

hence, letting t-+ co then E-+ 0, Va(tx)/ Va(t) -+ xa+1• Thus, Va varies 
regularly with exponent a+ 1 ~ 0 since Va is nonincreasing, and 
Ua( co) < co with Va( co) = 0 only if a ~ -1. 

2°. Let Ua( co) = co hence Va( co) = co. Since, for t > o, 
! 

Ua(tx) = Ua(ox) + xa+Ii yaH(xy) dy 

hence, by (1), 

(1 - e)xa+IUa(t) ~ Ua(tx) - Ua(ox) ~ (1 + e)xa+IUa(t): 

upon dividing by Ua(t) and letting t-+ co then E-+ 0, it follows that 
Ua(tx)/Ua(t)-+ xa+I. Thus, Ua varies regularly with exponent 

a + 1 ;?;; 0 since Ua is nondecreasing, and Ua( co) = co hence Va( co) = 

co only if a ;?;; -1. The assertions follow from 1° and 2°. 

*B. MAIN KARAMATA THEOREM. Let H be positiue monotone on [0, co) 
and set 

00 

Va(X) = i yaH(y) dy. 

(i) If H uaries regularly with exponent b ~ -a -1 and Va(x) < co 
then, as t-+ co, 

ta+IH(t)/Va(t)-+ C = -(a+ b + 1) ;?;; 0. 

Conversely, if this limit exists and is positiue then Va and H uary regularly 
with exponents -c = a + b + 1 and b, respectively, while if this limit is 0 
then Va uaries slowly. 

(ii) If H uaries regularly with exponent b ;?;; -a -1 then, as t-+ co, 

ta+1H(t)/Ua(t)-+ c = a+ b + 1 ;?;; 0. 

Conuersely, if this limit exists and is positiue then Ua and H uary regularly 
with exponents c = a + b + 1 and b, respectiuely, while if this limit is 0 
then Ua uaries slowly. 

Note that when c = 0 the converse assertions for c > 0 continue to 
hold for Va and for Ua, but nothing can be asserted regarding H. 

Proof. The argument for (i) and (ii) is the same, and we shall prove (i). 
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Set 

(1) 

Since 
dVa(y) 

y"H(y) = -~, 

upon integrating (3) over [1, lx) with x > 1, it follows that 

(2) 

lz z 

-log Va(lx) = f h(y) dy = h(l)f h(lz) . _! dz. 
Va(l) 1 Y 1 h(l) Z 

Let H vary regularly with exponent b so that, by a, Va varies with ex
ponent a+ b + 1 = -c. Thus, both sides of (1) vary regularly with 
exponent -1 and h varies slowly. Therefore, as 1 ~ co, the integrand in 
the last integral in (2) tends to 1/z while the first term in (2) tends to 
clog x and Fatou-Lebesgue theorem implies that limsup h(l) ~ c. 
Thus, h is bounded so that there is a sequence In~ co with h(ln) ~ 
c ~ c < co. Since h varies slowly, h(lnY) ~ c' for every y > 0 and, by 
the dominated convergence theorem, clog x = c' log x hence c' = c for 
every such sequence (In). Therefore, h(l) ~ c as I~ co and the direct 
assertion is proved. 

Conversely, if the limit c ~ 0 exists so that h(l) ~cas I~ co then, 
by (2), Va varies regularly with exponent c. Moreover if c > 0 then this 
property of Va together with (1) implies regular variation of H with ex
ponent -c- a - 1 = b. This completes the proof of (i) and (ii) 1s 
proved similarly. 

*C. SLOw VARIATION CRITERION. H varies slowly if and only if 

H(x) = h(x) exp{i"' g~) dy} 

where g(x) ~ 0 and h(x) ~ c < co as x ~ co. 

Proof. The "if" assertion is easily verified. As for the "only if" 
assertion, let H vary slowly. Then, by B(ii) with a = b = 0, 

H(1)/U0(1) = (1 +g(l))/lwithg(I)~Oasl~ co, 

Since H(1) = d~?) , upon integrating over [l,x) with x > 1, it follows 

that 

Uo(x) = Uo(1)x exp{J:"' g~) dy }· 
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But, by B(ii), 

H(x) = h(x) U0(x)/x, 

and the "only if" assertion obtains. 

CoROLLARY. If H varies slowly then, as x ~co, H(x + y)/H(x) ~ 1 
and, given ~ > 0, x-6H(x) ~ 0, x6H(x) ~ co, and x-6 < H(x) < x 6 

from some x on. 

*Let G be a d.f. vanishing on (-co, 0). Let x > 0 be finite and set 
:z; co 

JLa(X) = .[ yadG(y), vp(x) = i yfJdG(y). 

Since we are concerned only with asymptotic behaviour of these inte
grals, whenever convenient we do take G = 0 in some neighborhood of 
the origin. We assume that 

JLa( co) = lim JLa(x) = co, vp( co) = lim vp(x) = 0 
~00 %~ 

so that a > 0 and - co < fJ < a. 

The elementary integration by parts which follows will reduce the 
question of regular variation of JLa and of vp to the main Karamata 
theorem. 

b. INTEGRATION BY PARTS LEMMA. Let x be a continuity point of G 
hence of iJ.a and of vp. Then 

(i) JLa(x) = -xa-f1vp(x) + (a - fJ) .["'yfJ-a-lvp(y) dy 

(ii) vp(x) = -xfJ-aJLa(x) + (a- fJ) iooyfJ-a-lJLa(y) dy. 

Proof. Relation (i) results at once from integration by parts of 
Stieltjes integrals. Relation (ii) requires also a passage to the limit: 
Integration by parts on [x, t) with t > 1 continuity point of G yields 

(1) vp(x) - vp(t) t 

= -xfJ-aJLa(X) + tP-aJLa(t) +(a- fJ)iyfJ-a-lJLa(y) dy. 
:z; 

Thus, 
t 

(a - fJ) i yfJ-a-lJLa(Y) dy ~ vp(x) + xfJ-aJLa(X) 
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so that, letting t ~ co, the limit of the integral on the left is finite. Since 
P,a is nondecreasing, as t ~ co , 

2t 

2p-a f -- tP-ap,a(t) ~ yP-a-lP,a(Y) dy ~ 0 
{3-a t 

hence tP-ap,a(t) ~ 0 and, letting t ~ co in (i), (ii) obtains. 

*D. VARIATION OF TRUNCATED MOMENTS. Let P,a( co) co and 
vp( co ) = 0 so that a > 0 and - co < {3 < a. 

(i) If lla or vp varies regularly, then, as x ~ co, 

a-'Y 
xa-Pvp(x)fp,a(x) ~ c = 'Y _ {3 ~ 0, {3 ~ 'Y ~a. 

(ii) Conversely, if this limit exists then, for {3 < 'Y < a, /la and vp vary 
regularly with exponents a = a - 'Y > 0 and b = {3 - 'Y < 0, respectively, 
while a = 0 when 'Y = a and b = 0 when 'Y - {3. 

Note in the boundary cases while /la varies slowly when 'Y = a and 
vp varies slowly when 'Y = {3, nothing can be asserted regarding vp or 
P,a, respectively. 

Proof. 1°. Let P,a vary regularly with exponent u. Finiteness of the 
integral in b(ii) yields u ~ a - {3. Since /la is nondecreasing u ~ 0. 
Thus, setting u = a - 'Y, we have {3 ~ 'Y ~ a with 'Y ~ 0. Now, b(ii) 
yields 

xa-Pv (x) a - {3 f"' 
(1) P.a(;) = -1 + xP-ap,a(X) "' yP-a-1/la (dy) 

so that, using B(i) with H = P,a and a = {3 - a - 1, as x ~ co, 

xa-Pvp(x)fp,a(x) ~ -1 +(a- {3)/('Y- {3) = (a- 'Y)/('Y- {3) = c 

with c = co when 'Y = {3, and this is the asserted limit. Let vp vary 
regularly with exponent v so that v ~ {3. Since vp is nonincreasing v ~ 0. 
Thus, setting v = {3 - 'Y, we have {3 ~ 'Y ~ a with 'Y ~ 0. Proceeding 
as above but with b(i) in lieu of b(ii) and using B(i) but with H = vp 
and a = a - {3 - 1, once more the asserted limit obtains and (i) is 
proved. 

2°. Conversely, let the limit c = (a- 'Y)/('Y- {3) exist. If 0 < 
c < co then (1) yields, as x ~ co, 

(2) xP-ap,a(x)j f"'yP-a-lP,a (dy) ~(a - {3)/(c + 1) = 'Y- {3. 
"' 
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Using B(i), it follows that J.La varies regularly with exponent a - 'Y > 0 
while, by (1), vfJ varies regularly with exponent fJ - 'Y < 0. If c = 0 
the same argument shows that J.La varies slowly but yields nothing about 
vfJ. Similarly, if c = co then vfJ varies slowly but nothing can be asserted 
about J.La· 

The proof is terminated. 

25.2 Domains of attraction. Throughout this subsection, X 1,X2, 

· · ·are iid r.v.' s with common law £(X), dj. F, chj.f and Sn = X 1 + · · · 

+Xn, n = 1, 2, ···;we take x > 0 and set J.L 2(x) = f"' y 2dF(y), q(x) 
-z 

1 - F(x) + F( -x). 

We say that £(X) belongs to the domain of attraction of a law £(Y) or 
is attracted by £(Y)-an attracting law, if there are an and bn > 0 such 
that £(Sn/bn- an)---+ £(Y). We exclude the trivial case of degenerate 
attracting laws £(Y) for, according to 14.2, every £(X) belongs to its 
domain of attraction with suitable an and bn, and this excludes considera
tion of degenerate £(X). In fact, always according to 14.2, the above 
definition pertains not to individual laws but to types of laws. 

In terms of chj.'s, £(X) is attracted by £(Y) nondegenerate means 
that, for every u E: R, 

eiuan fn(u/bn) ---+ j y(u) nondegenerate. 

Thus, chj.' s lf(u/ bn) 12 ---+ If y(u) 12, so that If y(u/ bn) 12 ---+ 1 with nonde
generate If yl2 hence bn---+ co. It follows that also £(Sn/ bn+l - an) ---+ 

£(Y), that is, lf(u/bn+1)12 ---+ lfy(u)J2 and, by the Corollary to 14.2A, 
bn+l/ bn---+ 1: 

a. If £(Sn/bn - an)---+ £(Y) nondegenerate, then bn---+ co and bn+d 
bn ---+ 1. 

Sincef(u/bn)---+ 1, 24.5C applies with Xnk = Xk/bn hence Fn(x) = 

F(bnx), n = 1, · · ·, n, and 

b. £(Sn/ bn - an) ---+ £(Y) nondegenerate-necessarily i.d. with if; = 

(a, {32, L), if and only if, 
(CL): Ln ~ L where Ln( -x) = nF( -bnx), Ln(x) = n(Fn(x) - 1). 

(C p2): nJ.L2(bnx)/ bn2 = n f"' y 2dF(bnx) ---+ {32 as n---+ co then x---+ 0. 
-z 

(Ca): an =an- a+ o(1) where an = n f 1 ~ x2 dF(bnx). 
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With the help of these lemmas, used without further comment, we 
begin by investigating condition (CL) and its implications for Levy 
functions of (nondegenerate) attracting laws .C(Y). Clearly, the Levy 
function for normal .C(Y) is L2 = 0, and conversely. The others are 
given by 

A. LEVY FUNCTIONS AND (CL). Let X> 0. 
(i) Levy functions L., of nonnormal attracting laws (Y) are given by 

L.,( -x) = cp/x"~, L.,(x) = -cq/x"~ 

where 

0 < "Y < 2, c > 0, p, q ~ 0 with p + q = 1. 

(ii) Condition (CL.,) is: as x--+ oo 

F( -x)jq(x)--+ p or (1 - F(x))/q(x)--+ 1 - p 

and 

q(x) = (c + o(1))h(x) where h(x) varies slowly. 

The admissible b.,. are characterized by nq(bnx) --+ c as n --+ oo. 

Proof. Condition (CL) reads: for ±x E: C(L), as n--+ oo, 

(1) nF( -bnx) ~ L( -x) and (2) n(F(bnx) - 1)--+ L(x) 

hence 

(3) nq(bnx)--+ L( -x) - L(x). 

In fact, any two of these three relations clearly imply the remaining one. 

1°. Since L = 0 is excluded, there is an x0 > 0 such that L(-xo)
L(xo) > 0 hence L( -x) - L(x), being nonincreasing with increasing x, 
is positive for x E: (0, Xo]. It follows that the Corollary of 25.1A applies 
to (3) so that, setting L., = L, as n --+ oo, 

(4) 

with c > 0 and "Y > 0. 
On the other hand, upon changing in (1) and (3) the fixed x into fixed 

y and for every x > 0 selecting n to be the smallest integer such that 
b.,.y ~ x ~ bn+J..Y, we obtain 

_n_. (n + 1)F( -bn+l)') < F( -x) < n + 1. nF( -bny) 
n + 1 nq(bny) = q(x) = n (n + 1)q(bn+IY) 
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Upon letting x--? co so that n--? co, the extreme sides converge to 
p = L'Y( -y)/(L'Y( -y) - L'Y(y)) so that 

(5) F( -x)/q(x)--? p with 0 ~ p ~ 1 

equivalently 

(6) (1 - F( -x))/q(x)--? 1 - p. 

Thus, replacing in (5) x by bnx with x arbitrary but fixed, as n--? co, 

nF( -bnx)/nq(bnx)--? p 

hence, by (4) and (1), 

(7) nF( -bnx)--? L'Y( -x) = cpjx'Y 

and, similarly, 

(8) n(1 - F(bnx))--? L'Y(x) = cqjx'Y. 

Since the requirement for any Levy function, J"' y 2dL'Y(y) finite, is _., 
satisfied if and only if 'Y < 2, we must have 0 < 'Y < 2. Thus (i)-the 
asserted form of Levy functions L'Y of nonnormal attracting laws £(Y)
is established. 

2°. Condition (CL~) became: 

(5) lim F( -x)/q(x) = p, 0 ~ p ~ 1, 
"'-"' 

and 

(4) lim nq(bnx) = cjx'Y, c > 0, 0 < ')' < 2. 
n 

According to the Corollary of 25.1A (4) implies 

(9) q(x) = (c + o(l))h(x) with h(x) varying slowly. 

On the other hand, setting x = 1 in (4), the scale factors bn must satisfy 

(10) lim nq(bn) = c > 0. 
n 

Thus, if £(Sn/bn- an)--? £(Y) nonnormal then (5), (9) and (10) hold. 
Conversely, let (5), (9) and (10) hold. From (10) it follows that bn = 

inj{x: q(x- 0) ~ c/n ~ q(.~ + 0)} --? co hence 

lim nq(bnx)/c =lim q(bnx)/q(bn) = x-'Y lim h(bnx)/h(bn) = x'Y, 
n n n 
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and lim nq(bnx) = clx-r. Thus, (CL) holds and admissible bn satisfy 
n 

(10). The proof is terminated. 

REMARK. Clearly, (CL) can also be stated in a more symmetric 
form: 

F( -x) = cp(1 + o(1))h(x)lx-r and 1 - F(x) = cq(1 + o(1))h(x)lx-r. 

In order to complete A we need more of Karamata theory. We write 
v.s. for "varies slowly." 

*c. SLow vARIATION LEMMA. Let x ~ ro. 
(i) If J-!2( ro) = ro then 

for 0 < 'Y < 2: 

x2q(x)IJ.t2(x) ~ (2- 'Y)h <=> J.t2(x)lx2--r v.s. <=> x-rq(x) v.s. 

for 'Y = 2: 

(ii) 

x2q(x)l J.!2(x) ~ 0 <=> J.!2(x) v.s. 

~x2q(x)IJ.t2(x) ~ 0 
0 < J.!2(x) < ro 

~J.!2(x) v.s. 

Proof. If J.t2 ( ro) = ro then (i) follows from 25.1D with G(x) = F(x) -
F( -x), a = 2, and {3 = 0, so that vo(x) = q(x). 

If 0 < J-!2( ro) < ro then x2q(x) ;;;;; f y 2dF(x) ~ 0 consequently 
Jlyl?;x 

X2q(x) I J.12(x) ~ 0 while, clearly, J.!2(tx) I J.t2(x) ~ 1 as t ~ ro, that is, J.t2(x) 
varies slowly. 

REMARK. Recall that when 0 < J.t2(x) < ro then, taking X centered 
at its expectation and setting a-2 = a-2X = J-!2( ro ), £(Snla- Vn) ~ m(0,1) 
smce 

fn(ula-vn)n = ( 1 - ~ (1 + o(1)) Y ~ e-u 2f2. 

Thus, when 0 < J.t2( ro) < ro then £(X) is attracted by normal £(Y), 
and other types of attracting laws may happen only when J.t2 ( ro) = ro. 

We say that £(X) is stable if, for every n, there are an and bn > 0 such 
that £(Snlbn -an) = £(X); clearly, stable laws are attracted by them
selves. Note that these are "stable" laws introduced in 24.4. We write 
L-r(c,p) for L-r characterized by c and pas in A(i). 
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B. STABILITY AND ATTRACTION CRITERIA. Let X> 0. 

(i) The family of all nondegenerate attracting laws consists of all non
degenerate stable laws. They are i.d. laws with ifi-r = (a, f3l, L-r), 0 < 
'Y ~ 2 and 

or 0 < 'Y < 2: 

f3-r2 = 0, L-r( -x) = cpjx-r, L-r(x) = cq/x2, 

where c > 0, p, q ~ 0, p + q = 1; 

for 'Y = 2: 

{322 > 0, L2 = 0. 

(ii) oC(X) is attracted by some oC-r with given 1' E:: (0,2] if and only if, as 
X-t co, 

x2q(x)jp.2(x) -t (2- 1')/1'. 

oC(X) is attracted by oC-r with given L-r(c,p) if and only if, as x -t co, 

forO< 1' < 2: 

F( -x)/q(x) -t p, q(x) = c(1 + o(1))h(x)jx-r 

where h(x) varies slowly, and admissible bn are characterized by nq(bn) -t c 
as n -t co; 

for 1' = 2: 
JJ.2(x) varies slowly and admissible bn are characterized by np.2(bn)fbn2 -t 

{3 22 > 0 as n -t co • 

In either case, admissible an are characterized by 

an = an - a + o(1) where an = n f 1 ~ x2 dF(bnx). 

Proof. Stability assertion is immediate. For, every stable law is at
tracted by itself while, conversely, the attracting laws oC-r are stable for 
bn = n1h: use the form of Levy functions L-r in A(i). 

In A, we already found, for 0 < 1' < 2, (CL~) and the L-r as well as a 
characterization of admissible bn. It remains to examine 

(Cti): np.2(bnx)/bn2 -tf3l as n-t co then x-tO, 

and to find admissible bn for 'Y = 2. 

1°. Nonnormal case: 0 < 1'- 2. (CL~) is given by: as X-t co 

(1) F(-x)/q(x) -t p, 0 ~ p ~ 1, 

and 
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(2) q(x) = c(1 + o(1))h(x)/x'Y, h(x) slowly varying, c > 0, 

or, when not specifying c, 

(3) x'Yq(x) varies slowly, 

while admissible b,. are characterized by 

(4) nq(b,.) ~ c > 0 as n ~ oo. 

We must have 11-2( oo) = oo, for 0 < 11-2( oo) < oo implies normality, 
that is, 'Y = 2 with L 2 = 0. But then c(i) applies and (3) is equivalent 
to: as x~ oo, 

(5) 

and to 

(6) p.2(x)/x2--r varies slowly. 

Upon replacing x by b,. in (5) and using ( 4), as n ~ oo, we obtain 

(7) 

But (6) implies that as n ~ oo 

np.2(b,.x)/bn2 2 
_..:.._::..o..,-;:~~~x--r 

np.2(b,.) I b,.2 

hence, by (7), 

(8) 

Therefore, for 0 < 'Y < 2, (Cp2) becomes 

0 ~ np.2(b,.x)jb,.2 ~ f3i as n ~ oo then x ~ 0, 

and we have the asserted 1/;'Y = (a, 0, L'Y), and convergence. 

2°. Normal case: 'Y = 2. Nondegenerate normal laws correspond to 
1/12 = (a, {322, 0) with {322 > 0. (CL2) and (Cp2) become: as n ~ oo, 

(1) 

and 

(2) 

setting x = 1, admissible b,. are characterized by 

(3) 
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If 0 < f..Lz( oo) < oo so that, by c(ii), f..Lz( oo) varies slowly and x2q(x)l 
f..Lz (x) ~ 0 = (2 - 'Y h for 'Y = 2, then it is easily seen that for X cen
tered at its expectation, (1) and (2) hold with bn = rJ'Vn, rJ'2 = rJ'2X = 
f..Lz( oo ), and we have the required convergence (as we already knew). 
Thus, it remains to consider the case f..Lz( oo) = oo. Then, by c(i), as 
x ~ 00 , x2q(x) I f..Lz(x) ~ 0 is equivalent to f..Lz(x) varying slowly. 

Let f..Lz(x) vary slowly so that f..Lz(x)lx2 ~ 0 as x ~ oo. Then (3) holds 
for bn = sup{x: f..Lz(x)lx2 !?; .BNn} and bn ~ oo, so thatlim f..Lz(bnx)lf..Lz(bn) 

n 

= 1 becomes, by (3), nf..Lz(bnx)lbn2 ~ .Bz2 > 0, that is, (2) holds. Since 
lim x2q(x)lf..Lz(x) = 0, upon replacing therein x by bnx with x > 0 arbi-
x-oo 

trary but fixed, we have 

lim nq(bnx) = 0 
nf..Lz(bnx)lbn2 

hence, by (2), lim nq(bnx) = 0, that is, (1) holds. Thus, f..Lz(x) varying 
n 

slowly implies £(Snlbn- an)~ £2 for admissible an. 

Conversely, let £(Snlbn- an)~ £z, so that (1) and (2) hence (3) 
hold. We prove that f..Lz(x) varies slowly, that is, (f..Lz(xt) - f..Lz(x)) I f..Lz(x) ~ 
0 as x ~ oo for, say, t > 1. Let x ~ oo and let n be such that bn ~ 
x < bn so that n ~ oo. Then, since bn ~ oo, (3) impl_ies that nf..Lz(x)l 
bn2 ~ .Bz2 > 0, that is, f..Lz(x),......, .Bz2bn2ln. Since bn+Ifbn ~ 1, by (1), 

ibn 
f..Lz(xt) - f..Lz(t) ~ b X2 dq(x) ~ t2bn+12q(bn) 

t n+l 
= t2(bn+Nbn2)(bn2ln)nq(bn) = o(bn2ln), 

and the assertion follows. 
The proof is terminated. 

CoNSEQUENCES 

1°. For stable laws 
if;'Y(u) = iau- c I u 1"~(1 - bh'Y(u)), u E: R, 0 < 'Y ~ 2, with c > 0 

(c = Ojor degenerate laws), b = p- q hence I b I ~ 1 and 

h'Y(u) = tan ~ 'Y or~ logj u I according as 'Y ~ 1 or 'Y = 1. 

Follows from B(i) by the computations in part 2° of the proof of 24.4B 
where ,B is replaced by cp, ,B' by cq, and band care interchanged. 

2°. Nondegenerate stable dJ.'s F'Y are infinitely differentiable and 
I F'Y<n> I ~ I F'Y<nl(O) I positive,jor every n = 1, 2, · · ·. 
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Proof. Since, by 1°, l/2(u) I = exp( -clul7 ) with 0 < 'Y ~ 2, c > O,f7 is 
integrable and so are the functions with values un lf7 (u) I for every n. 
Therefore, the inversion formula becomes 

F"'(x) - F"'(a) = 21 f e-iua -:- e-iux f"'(u) du 
71' tU 

and we can differentiate n times under the integral sign for the integral 
so obtained is absolutely convergent so that 

F"'<nl(x) = ( -i)n-1 fun-le-iu'"f"'(u)du. 
271' 

It follows that I F 7 <nl(x) I ~ I F/nl(O) I > 0. 

Let q(x) = 1 - F 7 (x) + F7 ( -x) and let £ 7 be nondegenerate. 

3°. If £ 7 is a stable law with 0 < 'Y < 2, then x"~q(x)---+ c > 0 as 
X---+ co. 

Proof. We know that £ 7 attracts itself with scale factors bn = n 11"1 
(also true for 'Y = 2); this also follows from IJ7 (u) I = exp(-clul"~) 
since lf7n(n 1 ~"~u) I = lf7 (u) I· Therefore, by B(ii), replacing bn by n1h in 
nq(bn)---+ c > 0, we have (n 1 ~"~)"~q(n 1 h)---+ c. Since q(x) is nonincreasing 
with x increasing, taking n1h ~ x ~ (n + 1) 1 ~"~, we obtain 

n+l n 
-n- · nq((n + 1)11"1) ~ x"~q(x) ~ n + 1 . nq(nll"f), 

where the extreme terms tend to c as x---+ co hence n ---+ co, and 
x"~q(x) ---+c. 

4°. If £(X) is attracted by £ 7 then 
(i) E I X lr < co for 0 ~ r < 'Y ~ 2 
(ii) E I X lr = co for r > 'Y when 0 < 'Y < 2. 
If£ (X) = £ 7 with 0 < 'Y < 2, then E I X lr is .finite or infinite according as 
0 ~ r < 'Y or r ~ 'Y. 

Proof. If ,u2( co) = EX2 < co then, by 9.3a, E I X lr < co for r < 'Y = 
2, while E I X lr may be finite or infinite for r > 2. This shows why 
'Y = 2 is to be excluded from (ii) and also that it suffices to prove (i) 
when ,u2( co) = co -even for 'Y = 2. Then, by c, as x---+ co, 

x"~q(x) = c(1 + o(1) )h(x), 

where h(x) is slowly varying hence, by the Corollary of 25.1C, given 
o > 0 there is an a such that, for x ~ a, 

x-o < h(x) < x6• 
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On the other hand, by integration by parts, 

f +oo roo 
El X lr = I X lrdF(x) = r Jn xr-1q(x) dx 

-oo 0 

so that El X lr is finite or infinite according as foo xr-1-'Yh(x)dx is finite 
a 

or infinite. Since, given o > 0, for x ~ a, 

xr-"(-5-1 < xr-1-"fh(x) < xr-"(-5-t, 

it follows that E I X lr < co when lim xr-"(-5 < co and E I X lr co 
x-oo 

when lim xr-"(-5 = co . 

If 0 ~ r < 'Y ~ 2 then there is a positive o < 'Y - r, the first limit is 
finite, E I X lr < co and (i) is proved. 

If r > 'Y with 'Y < 2 then there is a positive o < r - "/, the second 
limit is infinite, E I X lr = co and (ii) is proved. It remains to show that 
when £(X) = £'Y with 0 < 'Y < 2 then E I X I'Y = co. Since, by 3°, 

x'Yq(x) --7 c > 0, x'Y-1q(x) ,....., cx-1 for x --7 co so that ioo x'Y-1q(x) dx co, 

E I X I 'Y = co and the proof is concluded. 

§ 26. RANDOM WALK 

Random walks-sequences of consecutive sums of iid summands, are 
present, in various guises and various degrees of generality, in an in
credibly huge literature of applications of pr. theory to a very large 
number of concrete problems: queuing processes connected with mass 
service, dams, waiting times, renewal processes connected with storage 
and inventories, risk theory, traffic flow, particle counters, and many 
others. The present general random walk theory is relatively recent. 

In 1921, Polya discovers "recurrence" and "nonrecurrence" phe
nomena in his study of some simple random walks on lattices in R, R2, 

and R3• Thirty years later, in a definitive work, Chung and Fuchs 
settle this dichotomy problem for general random walks. Fluctuation 
r.v.'s defined on the n first terms of the random walk appear in the 
concrete problems mentioned above. But it is only in 1949 that Ander
sen begins his investigations into these r.v.'s for the general random 
walk. Since then a large number of results were obtained by many 
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authors. They use variants of either the combinatorial or the analytic 
methods. 

The combinatorial method initiated by. Andersen threw the doors 
wide open. His approach was very involved. Spitzer simplified and 
unified the combinatorial approach and obtained some of the most im
portant identities and limit theorems of the theory. His book, while 
devoted to random walk on lattices only, contains a number of deep 
ideas and significant examples. Feller, using ladder indices and ladder 
variables, first introduced by Blackwell, reduced the combinatorial ap
proach to elementary mathematical arguments and using Feller's ap
proach, Port, in a semi-expository paper, obtained a large number of 
known identities and generalized some of them. 

The analytic method, as used by Pollaczec since 1930, was very 
involved and his work remained unnoticed until some of his results 
were rediscovered. Ray, Kemperman, Baxter, Wendell, ..• , simpli
fied and unified in various ways the analytic approach and obtained 
further identities. Kemperman's book presents in detail the approach 
based on Liouville's theorem (already used by Pollaczec) and contains 
a large number of examples. Baxter uses a method based on Fourier
Stieltjes transforms and operators on functional Banach spaces. Wendel 
introduces and investigates "order statistics" of (Sh · · · , Sn), •.• 

No attempt will be made here to apply the general random walk 
theory to concrete problems. The interested reader will find in Feller's 
two volumes a large number of such problems. 

26.1 Set-up and basic implications. A sequence S = (Sh S2, • · ·) 
of r.v.'s is called a random walk (on R) if the sequence of its random steps 
X = (Xl = sh x2 = s2- sl, .. ·) at times n = 1, 2, ... consists of 
iid r.v.'s Xh X2, · · · . A random walk determines the sequence of its 
random steps, and conversely; similarly for the sub u-fields of events: 

CBn = CB(X1, · · · , Xn) = CB(Sh •.. , Sn), 
en= CB(Xn+h Xn+2, · · ·) = CB(Sn+l- Sn, Sn+2- Sn, · · ·). 

We denote by CBoo = CB(X1, X 2, · · ·) the smallest u-field generated by 

the field u CBn and e = n en is the tail 0' -field of the sequence X; it is im-
n=l n-1 

co 

portant to realize that, in general, e is not the tail u-field n (Sn+h Sn+2, 
n-1 

· · ·)of the sequenceS. 
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We shall frequently adjoin So = 0 to the random walk so that it will 
become (So, S1, S2, · · ·) with steps Xn = Sn - Sn-h n = 1, 2, · · · . 
Intuitively it means that the random walk starts at time 0 at the origin. 
We could also make it start at some x E: R or choose So to be a r.v. If the 
random steps obey a law £(X) with only values ± nd, d > 0, n = 0, 
1, · · · , then we have a very simple Markov chain with countable state 
space, 0, ±d, ±2d, · · · , and initial position 0, or some n0d, or a r.v. 
with law £(X). It is strongly recommended that the reader interpret 
the corresponding concepts and results in III of the Introductory Part 
in the case of random walk theory, as found in this section. 

The common law of the random steps will be denoted by £(X), its 
dj. on R and corresponding pr. distribution on the Borel line will be 
denoted by the same symbol F, and its chj. will bej. Dj.'s and cor
responding pr. distributions of their sums Sn-"positions" of the random 
walk at times n, will be denoted by Fn and their ch.f.'s arejn, n = 1, 
2, · · · . If £(X) degenerates at 0 then the random walk stays a.s. at 
{ 0} ;from now on we exclude this trivial case. Note that if £(X) degenerates 
at a¢ 0 then the random walk moves a.s. by degenerate steps a from 

a.s. a.s. 
nato (n + 1)a, n = 1, 2, · · · , and Sn~ +co or Sn--" - co accord-
ing as a > 0 or a < 0. 

Wedistinguishtwotypesofcommonlaws.£(X). LetLa = {nd:n = 0, 
± 1, ± 2, · · ·} be a lattice of span d > 0. We say that X isLa-distributed 

+co 
if :E P(X = nd) = 1 and there is no lattice of larger span d' > d with 

n=-oo 

this property; according to the remark following 14.1a such a distribution 
occurs if and only if IJ(u) I = 1 for some u ¢ 0. If there is nod > 0 such 
that X is La-distributed, we set d = 0, Lo = R, and say that X is Lo
distributed; thus X is Lo-distributed if and only if IJ(u)l < 1 for all u ¢ 0. 

We now examine basic implications of the above set-up. 

PossiBLE VALUES AND STATES. We say that x e R is a possible value of 
a r.v. X if P(X E: V.) > 0 for every neighborhood V. of x. We say that 
x is a possible state of the random walk S = (S1, S2, · · ·) if for every 
given neighborhood V, of x there is an n = n(V.,) such that P(Sn E: V.,) 
> 0. In either case, it suffices to consider neighborhoods of the form 
V., = (x - e, X+ e). Let II, denote the possible states of the random 

walk S, let IIn be the set of possible values of Sn, and set IIv = U IIn. 
n=l 
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a. II. contains ITv and is closed. 

Proof. The first assertion results at once from the definitions. As 
for the second one, since Xm ~ x as m ~ co implies that, given e > 0, 
for m sufficiently large (xm - 1/m, Xm + 1/m) C (x - e, x +e), it 
follows that when the Xm are possible states there is an n such that 

P(ISn- xl < e) ~ P(ISn- Xml < 1/m) > 0. 

We say that xis a discontinuity value of X if P(X = x) > 0. Clearly, 
the set of discontinuity values of X is the set of jumps of the discon
tinuous part ofFxd of the dJ. Fx. 

b. If x andy are possible values of independent r.v.' s X and Y respec
tively, then x + y is a possible value of X + Y. 

If x andy are discontinuity values of independent r.v.' s X and Y respec
tively then x + y is a discontinuity value of X + Y, and all such values 
of X + Yare of this form. 

The first assertion obtains by 

P(IX + Y- (x + y)l <e) ~ P( X- xl < e/2) X P(IY- Yl < e/2) >0 

and the second one results from 

(Fx * Fy)d = Fxd *pya. 

A. PossiBLE VALUES THEOREM. Let X be Ld-distributed with d ~ 0. 
(i) If neither X~ 0 a.s. nor X~ 0 a.s. then when d > 0, ITv = Ld 

and when d = 0, ITv is dense in Lo = R. 
(ii) If either X~ 0 a.s. or X~ 0 a.s. then when d > 0, from some non, 

nd or - nd, respectively, belong to ITv and when d = 0, for every given e > 0, 
from some x > 0, ITv intersects (x, x + e) or ( -x - e, -x), respectively. 

Proof. We use b without further comment. We can assume that 
sl = xl has a positive value a so that s2 = xl + x2 has positive 
value 2a; otherwise, we change X into -X. Thus, it suffices to prove 
the theorem when there are positive values a < b. We follow Feller. 

1° .. Set J n = [na, nb). For n ~ n1 > a/(b - a), [na, (n + 1)a) C J n 

hence U J n = [ n1a, co ) and every x ~ n1a belongs to some of the J n for 
n~n1 

n ~ n1• Since then + 1 points na + k(b - a), k = 0, • • • , n, belong 
to ITv and subdivide Jn into intervals of length b -a, every x ~ n1a is at 
a distance at most (b - a)/2 from a member ofiTv. 

2°. Suppose that for every given e > 0 there are possible values 
(0 <)a < b with b - a < e. Then X is Lo-distributed for otherwise 
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every lin hence Ilv is contained in Ld for some fixed d > 0 and we reach 
a contradiction. 

If X ;;;;; 0 a.s., the assertion in (ii) ford = 0 follows from 1°. 
If neither X;;;;; 0 a.s. nor X;;;:; 0 a.s. then X has a possible value 

c < 0. Given e > 0, it follows from 1° that for arbitrary x and suffi
ciently large n there is ay E::: Ilv belonging to ( -nc + x, -nc + x +e). 
Buty + nc also belongs to Ilv. Thus, every interval of any given length 
e > 0 intersects Ilv so that Ilv is dense in L0 = Rand the assertion in (i) 
for d = 0 is proved. 

3°. Suppose now that whichever be the possible values (0 <)a < b, 
there is an e > 0 such that b -a ;;;;; e; we may assume b -a < 2e for 
some a and b. Then the set }nllv consists of points na + k(b - a), 
k = 0, • · · , n. Since (n + 1)a is one of them, they all are multiples 
of b -a. But for any c E::: Ilv, for n sufficiently large Jn has a point of 
the form c + k(b - a) so that c is also a multiple of b - a. Thus X is 
Ld-distributed with some d > 0 and the proof is completed. 

CoROLLARY. Let X be Ld-distributed with d;;;;; 0. If neither X;;;;; 0 
nor X ;;;:; 0 then the set of all possible states of the random walk coincides 
with Ld. 

Follows at once by a. 

From now on, we take for n the set n = Reo of all numerical sequences 
x = (xh x2, • • ·) and for the u-field of events the u-field (B of Borel sets 
in Reo, that is, the u-field generated by the class of all cylinders of the 
form C(.d1 X • • • X An), n = 1, 2, • • • , where the .d's are linear 
Borel sets. This choice does not restrict generality yet permits to avoid 
possible ambiguities, say, about "translations." 

SLLN and 0-1 laws. 

According to 17.4.4° 

For 0 < r < 2, ~/r f. (Xk - ak)~ 0, with ak = 0 or EX according 
n k=t 

as r < 1 orr = 1, if and only if E\X!r < oo. 

For r = 1, we have Kolmogorov strong law of large numbers, SLLN 
for short, which can be completed as follows (see also 34.4). 

a.s. 
B. SLLN. Let EX exist. Then Sn/n ----+EX. Conversely, if 

a.s. 
Sn/n ----+ c necessarily a constant (finite or infinite) then EX = c. 
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Proof. It suffices to complete SLLN by considering the cases of 
infinite EX and c. 

Let EX = + oo, that is, EX+ = + oo, EX- < oo and let Xk(a) = Xk 
. n 

or a E:: R according as Xk < a or Xk ~ a. 

EX(a) < oo, 

Set Sn(a) = :E Xk(a). Since 

a.s. 
Sn/n ~ Sn(a)/n ~ EX(a) 

hence, letting a j oo so that, by monotone convergence theorem, 
a.s. 

EX(a) j EX = + oo, we obtain Sn/n ~EX = + oo; similarly for 
EX = - oo, or change X into -X. 

For the converse, if c = + oo then, by what precedes, 

1 n 1 n 1 n 
EX+~- :E Xk+=- L:Xk+- L:Xk-~+oo +EX-

n k=l n k=l n k=I 

so that EX+ = + oo, hence EX = + oo since EX exists; similarly for 
c = - oo, or change X into -X. 

SLNN utilizes fully the iid property of the summands. Independence 
alone yields as we know (16.3B). 

KoLMOGOROv ZERO-ONE LAW. On a sequence of independent r.v.'s tail 
events havefor pr. eitherO or 1 and tailfunctions are degenerate. 

This zero-one law, while applying to X = (XI, x2, •• ·), does not 
apply to the random walk s = ( SI, 82, • • . ) . yet, the iid property of 
the summands implies "exchangeability", and a new zero-one law will 
apply to S: 

We say that a sequence X = (XI, x2, .• ·) of r.v.'s is exchangeable 
or that the r.v:s xh X2, • . • are exchangeable if the distribution of x 
is invariant under all finite exchanges of its terms or, equivalently, of 
their subscripts; in symbols, for every nand every one of then! permuta

tions Ciln of (1, • • • , n) into (ki, • • • , kn), 

£(X) = £(ronX) = £(Xki, · · · , Xkn' Xn+I, Xn+2, · · ·) 

We say that a measurable function g(X) is exchangeable if it is invari
ant under all permutations wn of its arguments: g(GJnX) = g(X), n = 1, 

2, · · · ; in particular, an event on X is exchangeable if its indicator is ex
changeable. Clearly, on X every tail event and every tail function are 
exchangeable. In fact, by the iid property of its terms, X is exchange

able while, for every n, the sequences (Sn, Sn+h · · ·) are invariant under 
permutations GJn of (1, · · · , n). Thus, the second assertion below fol
lows at once, while the first one results directly from the definitions: 
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c. (i) On X, exchangeable events form a u.jield 8 and exchangeable func
tions are 8-measurable. 

(ii) On the random walk S corresponding to the sequence X of iid steps, 
tail events are exchangeable (belong to 8) and tail functions are exchange
able (are 8-measurable). 

In general, tail events and tail functions on S, say [S,. E: A,. i.o.] where 
A,. are linear Borel sets, liminf S,., limsup S,., while exchangeable, are not 
tail events on X and Kolmogorov zero-one law does not apply. Yet 

B. HEwiTT-SAvAGE ZERO-ONE LAW. On a sequence of iid r.v.'s ex
changeable events have for pr. either 0 or 1 and exchangeable functions are 
degenerate. 

To prove this theorem we require an elementary measure-theoretic 
proposition. Let A .6 B = AB• + A•B. 

d. APPROXIMATION LEMMA. Let (0, a, P) be apr. space. If afield :D 
generates a then for every given A E: a and every E > 0 there is a D E: :D 
such that P(A .6 D) ~ E. 

For, clearly, the class of all sets A E: a with the asserted property 
contains :D and it is easily verified that this class is monotone; thus, by 
1.6A, it coincides with a. 

The approximation property can be restated as follows. Let A E: a 
and E,. ! 0. There are D,. E: :D such that P(A .6 D,.) ~ En ~ 0, that is, 
P(AD,. •) ~ 0 and P(A•D,.) ~ 0. Therefore, PD,. ~ P A since P A = 
PAD,.+ PAD,.• =PD .. - PA•D,. + PAD,.•. 

Proof of B. In our case :D = U <B,. so that, given an exchangeable 
event A (in fact, any event) there is a sequence B,. E: <B,.,. with 
P(A .6 B,.) ~ 0 hence P B,. ~ P A; we can and do select k1 < k2 < · · · . 
Let C,. be the events obtained from B,. by the permutation of (1, · · · ,k,., 
k,. + 1, · · · ,2k,.) into (k,. + 1, · · · ,2k,.,1, · · · ,k,.); thus, <B,. E: <B,.,. = 

<B(Xh · · ·, X,.,.) implies C,. E: e,.,. = <B(X,.,.+h X1o,.+2, · · ·) and, <B~o,. 

and e,.,. being independent so are B,. and C,.. But this permutation leaves 
the distribution of X invariant while A, being exchangeable, remains the 
same and A .6 B,. is changed into A .6 C,. so that 

P(A .6 C,.) = P(A .6 B,.) ~ 0 

hence PC,.~ PA; also 

P(A .6 B,.C,.) ~ P(A .6 B,.) + P(A .6 C,.) ~ 0 
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hence P(BnCn) ~ P A. Therefore, Bn and Cn being independent, 

PA- P(BnCn) =PEn· PCn ~ (PA) 2 

so that PA = 0 or 1. The first assertion is proved and the second fol
lows. 

CoNSEQUENCES. 1. P[Sn E:: An i.o.] = 0 or 1, liminf Sn and limsup 
Sn are degenerate. 

2. THREE ALTERNATIVES. For a (nondegenerate at 0) random walk 
(S1,S2, • • ·) there are exactly three asymptotic alternatives: 

(i) Sn ~ -co (drifts to -co) 
(ii) Sn ~~ +co (drifts to +co) 
(iii) -co = liminf Sn < limsup Sn = +co a.s. (oscillates between 

-co and+co). 

Proof. Since liminf Sn = c a.s. where the constant c may be finite or 
infinite, and (S2- S1, Sa- S1, · · ·) has the same distribution as (S1, 

s2, .. ·),we have 

liminf (Sn - XI) = liminf Sn a.s. 

hence c = XI+ c a.s. The case XI = 0 a.s. beirig excluded (that is, is 
excluded the trivial alternative the random walk stays at 0 a.s.), we must 
have c = + co or c = - co . Thus a.s. 

either liminf Sn = -co or lim Sn = liminf Sn = +co 

and, changing X into -X; a.s. 

either limsup Sn = +co or lim Sn = limsup Sn = -co. 

The three alternatives assertion follows. 

RANDOM TIMES. 

Translations en on X = (XI> x2, ... ) are defined by 

enX = en(X1, X2, · · ·) = (Xn+I, Xn+2, · · ·), n = 1, 2, · · · 

so that 
the terms of enx are iid with same common law £(X) as the terms of X. 
Thus, enx has same distribution as X and therefore X is said to be 

stationary (see also 33.3). The random walks corresponding to X and to 
enX are, respectively, (SI, 52,·· ·) and (Sn+I - Sn, Sn+2 - Sn, · · ·) with 
same distribution, and the u-fields CB(Sl> · · · , Sn) = CBn and CB(Sn+I - Sn, 
Sn+2 - Sn · · ·) = CB(Xn+I, Xn+2, · · ·) = en are independent. 
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These properties extend to "random times"-times n( = 1, 2, · · ·) be
coming "degenerate" random times, as follows (see also 39.2 and 41.4 
taking therein T = (1, 2, · · ·) and b = oo ). 

Given a nondecreasing sequence (<Bn) of sub u-fields of events, a 
measurable function T to (1, 2, · · · , oo) is a (<Bn)-time if [T = n] E: <Bn, 
n = 1, 2, · · · ; if there is no confusion possible, we say that Tis a random 
time. Clearly, a random time T is <BT-measurable with u-field <BT = 
{events B: B[T = n] E: <Bn, n = 1, 2, · · · }. If T < oo a.s., we define 
XT+k(w) by XT(,.,Hk(w) so that the XT+k are r.v.'s, k = 0, 1, · · ·. Then 
the u-field <B(XT+l, XT+2, .. ·) is denoted by eT and translation by T of X 
is defined by 

oT(Xt, x2, · . ·) = cxT+l• xT+2, · · ·). 

The above properties of translations by n remain valid as follows. 

C. RANDOM TIMES TRANSLATIONS. If a (<Bn)-time T < oo a.s. then the 
u-fields <BT and eT are independent and the sequences X = (Xt, x2, .. ·) 
and {)TX = (XT+l• XT+2, · · ·) have same distribution. 

Proof. The assertions mean that, for any pair of events BT E: <BT and 
B E: <Bco = <B(X1, X2, · · ·), 

(1) 

By definition, (JT = (Jn on [T = n] hence 

Since BT[T = n] E: <Bn and onx is en-measurable, independence of <Bn and 
en implies 

P(BT[T = n][onx E: B]) = P(BT[T = n]) · P(onx E: B). 

Since f P(T = n) = 1, and onx has same distribution as X, (1) becomes 
n=l 

P(BT[OTX E: B]) = f P(BT[T = n]) · P(X E:: B) = PBT · P(X E:: B) 
n=l 

and the proof is terminated. 

The above argument is characteristic of extensions of properties of 
times n to random times T < oo a.s.: use the definitions and the asserted 
property-valid on [T = n], n = 1, 2, · · ·. For example, upon setting 
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71 = 'T < co a.s. then defining 'T2 by 'T2 = 'T but on 8"1X in lieu of X, and 
so on, it easily follows that 

1. s .. l) s1"J.+1'2- s .. l, ... are iid r.u.'s. 

By the same procedure but withE in lieu of P, additivity of expecta
tions, which for random walks becomes ES .. = nEX, extends to 'T < co 

Q) Q) 

a.s. in lieu of n, upon using ET = :E nP(,. = n) = :E P(T ~ n) as fol-
n=l n=l 

lows. 

2. WALo's RELATION. ES .. = ET ·EX in the sense that if the right side 
exists so does the left one and then both are equal. 

Note that the right side exists when E,. < co and EX exists, or when 
E,. = co and EX is finite or EX~ 0 or EX;;;; 0. 

Proof. Let 0 ;;;; EX ;;;; co and ET ;;;; co • Then 

= f EXkP[,. ~ k] = EX· Er. 
k=1 

The last but one equality is due to the fact that [,. < k] belongs to 
CBk-l hence so does its complement [r ~ k], while Xk is ek-l(=CB(Xk, 
Xk+l• · · ·))-measurable, and CBk-1 and ek-1 are independent. 
Changing X into -X the same relation holds. The other cases follow 
from EX = EX+ - EX- with EX+ or EX- finite. 

We shall frequently encounter the hitting or first visit time 'TA of a 
linear Borel set A by a random walk (Sb 82, · · ·): 

'TA(w) = min{n: s .. (w) E:: A} for"' E:: U[S .. E:: A] and'TA(w) = co oth
erwise. Clearly r A is random walk time, since for every n, 

['TA = n] = [Sk E:: A• fork < n, S .. E:: A] E:: CB (Sb · · ·, S .. ). 

Similarly for other random times we shall encounter: In general, the 
fact that they are random walk times will be clear from their definitions. 

ANDERSEN EQUIVALENCE. 

"Finite exchangeability" alone suffices for a basic Andersen result for 
"finite fluctuations.'' We set X .. = (X1, • • ·,X .. ) and say that the ran-
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dom vector Xn is exchangeable or that its components xl, .. ·, Xn are 
exchangeable if the distribution of Xn is invariant under then! permuta
tions of its components. We say that a measurable function g(Xn) = 
g(X1, • • ·, Xn) is exchangeable if it is invariant under then! permutations 
of its arguments. 

e. ANDERSEN EQUIVALENCE LEMMA. Let Xr, · · ·, Xn be exchangeable 
and let So, · · ·, Sn be their partial sums So = 0, S1 = X1, · · ·, Sn = 
X1 + · · · +Xn. 

If Vn is the (random) number of positive terms in (So,· · ·, Sn) and Tn is 
the (random) time of occurrence of the first maximum of its terms, then Vn 
and Tn are identically distributed. 

This result is an immediate consequence of a combinatorial lemma 
due to Feller whose elementary proof, modified by Joseph-as reported 
in Feller, follows. 

f. CoMBINATORIAL LEMMA. To each permutation (xk1, · · ·, Xkn) of 
(x1, · · ·, Xn) associate the sequence 0, Xk1, · · ·, Xk1 + · · · + xkn of its partial 
sums. Let m = 0, 1, · · ·, n. 

The number Nm of permutations with exactly m positive sums is the same 
as the number T m of permutations in which the first maximum of partial 
sums occurs at time m. 

Proof. Let Nmk and Tmk correspond to Nm and Tm when Xk is omitted 
in (xr, · · ·, Xn). We use induction: The assertion holds for n = 1 since, 
clearly, x1 ~ 0 implies No= To= 1 and N1 = T1 = 0 while X1 > 0 im
plies No = To= 0 and N 1 = T1 = 1. Suppose it holds for n - 1 ~ 1, 
that is, Nmk = Tmk fork = 1, · · ·, n and m = 0, · · ·, n - 1; since trivi
ally Nnk = Tnk = 0, it also holds form = n. 

We use the fact that by fixing Xk and permuting the n - 1 remain
ing x's then varying k = 1, · · ·, n, we obtain the n! permutations of 
Xr, · · ·, Xn)• 
If Sn ~ 0 then Nm and Tm depend only on Xr, · · ·, Xn-1 hence, by 
induction hypothesis, 

n n 

Nm = L Nmk = L Tmk = Tm• 
k=l k=l 

If Sn > 0 then Nm = i:, Nm-l.k· As for Tm, consider all (xk, Xku · · ·, Xkn-1) 
k=l 

starting with Xk. Since Xk + · · · + Xkn_1 > 0 the maximal terms of 
their partial sums cannot be s0• Since the first maximum occurs for 



[SEc. 26] INDEPENDENT IDENTICALLY DISTRIBUTED SUMMANDS 379 

m( = 1, · · ·, n) if and only if the first maximum of partial sums of (Xkp • • ·, 

Xkn-1) occurs form - 1, we have 

n n 

Nm = L Nm-l,k = L Tm-l,k = Tm• 
k=l k=l 

By using an argument formulated by Spitzer, instead of proving e we 
can prove the more general. 

D. EQUIVALENCE THEOREM. Let g(Xn) be an integ;rablefunction of an 
exchangeable random vector Xn = (Xh · · ·, Xn). 

If g(Xn) is exchangeable then, fork = 0, 1, · · ·, n, 

E(g(Xn)Ir•n=kl) = E(g(Xn)Irrn=kl); 

in particular, 

and 

P[vn = k] = P[rn = k]. 

Proof. Let Fn be the d.f. of Xn and Xn = (x1, · · ·, Xn). 
Denote by ~ summations over then! permutations wn of (1, · · ·, n). 

Since g(Xn) is exchangeable 

E(g(Xn)Ir. =k]) = ~ _!_, f g(xn)Irv =k]((i)nXn)dFn(Xn) 
n n. n 

and, by the combinatorial lemma, 

~Ilvn=k] (CilnXn) = ~Ilrn=k] (ronXn)• 

Thus the first sum equals the same sum but with Tn in lieu of Vn hence the 
expectation equals the one with Tn in lieu of "n· The particular case with 
g(Xn) = eiuSn follows and then, setting u = 0, the last assertion-which 
is that of e, results. 

By means of his equivalence, Andersen obtained his first limit theorem 
for finite fluctuations, namely 

ARCSINE LAW. Let So( =0), sl, ••• be partial sums of iid summands 
xh x2, ... with common law £(X). 

If £(X) is symmetric with P(X = 0) = 0 then 

P(vn/n < x) ---? ~ Arcsinvx, 0 ~ x ~ 1. 
71" 



380 INDEPENDENT IDENTICALLY DISTRIBUTED SUMMANDS [SEc. 26) 

The Arcsine law was discovered by P. Levy in his study of Brownian 
motion, then obtained by Erdos and Kac as a limit theorem for sums of 
independent random variables with finite second moments and obeying 
Lindeberg condition (see also Chapter XII). Andersen's result which 
does not require second finite moments was unexpected and drew atten
tion to his approach. 

The proof is based upon the following considerations. The event 
[v,. = k] consists in the occurrence of events [Sr. > So, • · ·, Sr. > Sr.-1] 
and [Sr.+l - Sr. ~ 0, · · ·, S,. - S~o ~ 0]. The first one belongs to <:B(X1, 
···,X,.) and the second one belongs to <:B(X,.+l, ···,X,.) and these two 
u-fields are independent. Furthermore, (X,.+1, • • ·,X,.) is distributed as 
(XI, .. ·, x,._~). It follows that 

P(v,. = k) = P(vr. = k)P(v,._,. = 0) 

and, by Andersen equivalence, 

(1) P(r,. = k) = P(r,. = k)P(Tn-k = 0). 

Let 

1 (2k)! (2(n - k))! 
p,.(k) = 22" k!k! (n- k)! (n- k)!' k = O, · · ·, n, 

so that 

" p,.(k) = p,.(n - k), :E p,.(k) = 1. 
r.-o 

We prove by induction that 

(2) P(v,. = k) = p,.(k). 

For n = 1, we have 

1 
P(v1 = 0) = P(v1 = 1) = 2 = P1(0) = PI(1). 

If (2) holds for n - 1 hence, by (1), P(v,. = k) = p,.(k) fork = 1, · · ·, 
n- 1, then 

P(v,. = 0) + P(v,. = n) 
n-1 n-1 

= 1 - :E P(v,. = k) = 1 - :E p,.(k) = p,.(O) + p,.(n). 
k=l k=l 

Since the hypothesis about .C(X) implies easily that P(v,. = 0) = 
P(v,. = n), it follows that 
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P(v .. = 0) = p .. (O) = P(v .. = n) = p .. (n). 

Once (2) is proved, the Arcsine law follows by elementary computations 
using Stirling's formula (see Introductory Part, 7). 

We shall use the foregoing basic implications without further com
ment. 

26.2. Dichotomy: recurrence and transience. We recall that x e R 
is a possible state of a random walk (Sh S2, · · ·) if for every neighborhood 
V.,, there is ann = n(V.,) such that P(S .. E: V.,) > 0. We say that xis 
arecurrentstateoftherandom walk, if, for every V.,, P(S .. e V., i.o.) = 1; 
as usual "i.o." stands for "infinitely often," that is, for infinitely many n, 
and "f.o." for "finitely often" will stand for denial of "i.o.", that is, for 
"at most finitely many n." Thus, to say that xis recurrent is equivalent 
to P(S .. E: V., f.o.) = 0. Clearly, a recurrent state is possible and it suf
fices to consider neighborhoods V., of the form (x - e, x +e). 

a. If a random walk has a recurrent state x then all possible states are 
recurrent. 

Proof. If y is a possible state, that is, for every e > 0 there is a 
k = k(e) such that P(l Sk - y I < e) > 0 then x - y is recurrent: For 
then, 

0 = P(l S .. - x I < 2e f.o.) 
;;;; P(l sk - y I < e, I Sn+k - sk - (x - y) I < E f.o.) 

= P(l sk - y I < e)P(I Sn - (x - y) I < e f.o.) 

hence P(l Sn- (x- y) I < e f.o.) = 0 and x- y is recurrent. It fol
lows that every possible state y = x - (x - y) is recurrent arid so is 
X- X= 0. 

Thus we are led to a dichotomy: A random walk is recurrent if one 
hence all its possible states are recurrent, or it is transient if none of its 
possible states is recurrent. 

As usual, .C(X) denotes the common law of the iid random steps 
xl, x2, ... which generate the random walk. 

A. REcURRENCE THEOREM. Let X be Ld-distributed with d ;;;; 0. 
The random walk is recurrent if and only if one of its possible states is re

current, and then Ld is the set of its states. 

Proof. If the set CR. of recurrent states is not empty then, by a, the 
random walk is recurrent while the converse is trivially true. 
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Let the random walk be recurrent. Always by a, <R is closed under dif
ferences and 0 E:= <R. It follows that x E:= <R <=> - x = 0 - XE<R, and <R is 
an additive group. Furthermore, <R is topologically closed since, for any 
given V.., if recurrent Xn ~ x then, from some n on, Xn E:= V., hence 
P(Sn E:= V., i.o.) = 1, and xis recurrent. Since the trivial case of random 
walks degenerate at 0 is excluded, <R ~ {0} and the only foregoing sub
groups in Rare of the form <R = Ld' with d' ;;; 0. If d' = 0 then d = 0. 
If d' > 0 then Ld' C Ld hence d ~ d'. Suppose d < d' so that there is a 
possible state which is not recurrent. This contradicts the hypothesis 
that the random walk is recurrent. Thus d = d', and the proof is termi
nated. 

CoROLLARY. Let X be Ld-distributed with d;;; 0. 
Either P(Sn E:= V. i.o.) = 1for all bounded open sets V intersecting Ld, or 
P(Sn E:= V., i.o.) = Ofor all such V. 

B. DicHOTOMY CRITERION. Let X be Ld-distributed with d;;; 0. 
00 

(i) If L: P(Sn E:= J) = c:o for some bounded open interval J, necessarily 
n=l 

intersecting Ld, then the random walk is recurrent. 
00 

(ii) If L: P(Sn E:= J) < c:o for some bounded open interval J intersect-
n=l 

ing Ld, then the random walk is transient. 

Proof. By Borel-Cantelli lemma, the hypothesis in (ii) implies 
P(Sn E:= J i.o.) = 0 for some bounded open interval J intersecting Ld so 
that there is a possible state which is not recurrent hence, by A, no state 
is recurrent and the random walk is transient. 

0) 

Let L: P(Sn E:= J) = c:o for some bounded open interval J with length 
n=l 

I J I· Then, for every E < I J l/2 there is a J, = (x- E, x + E) C J 
00 

such that L: P(S .. E:= J .,) = c:o. Consider the time r of the last visit 
n=l 

by the random walk to J., if any, and set r = 0 if none and r = c:o if in
finitely many. Thus, fork = 1, 2, · · · 

.An = [r = n] = [Sn E:= J.,, Sn+k r/:. J., for all k], n ;;; 1, 

and 

do = [r = 0] = P(Sn (/:.. J., for all n), 
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hence 

P(r <co) = P(Sn E: J., f.o.) = 2: PAk. 
n=O 

Since, for n ~ 1, 

PAn~ P(Sn E: J.,, ISn+k- Snl ~ 2e forallk) 
= P(Sn E: J.,)P(!Sn+k- Snl ~ 2e forallk), 

it follows that 
co 

1 ~ P(Sn E: Jn f.o.) ~ P(ISkl ~ 2e for all k) L P(Sn E: J.,). 
n=l 

Thus, 2: P(Sn E: J .,) = co implies that for every e > 0 
n=l 

(1) P(ISk I~ 2e for all k) = 0. 

This relation implies recurrence of 0 hence of the random walk, as fol
lows. 

Take Jo = ( -e, +e), let J• = ( -o, o) with 0 < o < e, and define the 
corresponding An° as the An were defined but replacing x by 0. Note 
that, by (1), PAo0 = P(l skI ~ e for all k) = 0. In fact, all PAn° = 0 
for n ~ 1: For, as o j e, 

An°,o = [Sn E: Jo, Sn+k ([. Jo for all k] j An° 

hence PAn°,o ~ PAn° and, by (1), PAn° = 0 since 

P(Sn E: Jo, Sn+k r[_ Jo for all k) 

Thus, 

~ P(Sn E: Jo, ISn+k - Ski ~ e - o for all k) 
= P(Sn E: Jo)P(!Snl ~ e - o for all k) = 0. 

co 

P(Sn E: Jo f.o.) = L PAn° = 0 
n=O 

so that 0 is recurrent, and the proof is completed. 

CoROLLARY. If for some bounded open interval J intersecting La 
co 

2: P(Sn E: J) is either infinite or finite, then the same holds, respectively,for 
n=l 

all such J. 
The elementary proofs of A and Bare the original ones and are due to 

Feller, while the proof of C is due to Chung and Ornstein and that of D 
is due to Chung and Fuchs as modified by Feller. 
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The next proposition provides us with a dichotomy criterion in terms of 

one numerical characteristic of £(X), namely in terms of EX provided it 

exists. 

C. ExPECTATION CRITERION. Let EX exist. Then the random walk is 

recurrent if and only if EX = 0. More precisely 

(i) If EX= 0 then the random walk is recurrent and a.s. 

-CD = liminf Sn < limsup Sn = +CD. 
(ii) If EX > 0 or EX < 0 then the random walk is transient and 

Sn ~+CD or Sn ~-CD, respectively. 

To prove this proposition we need the lemma below; we introduce 

So = 0 and write !(.d) in lieu of fA for any event A. 

b. For every c > 0 and every integer m 

1 00 00 

2m L: P(JSnl <me);£ L: P(ISnl <c). 
m=O n=O 

Proof. Let the right side be finite; otherwise there is nothing to prove. 

Let J be an interval oflength c and let v = L: I(Sn E: J) be the number 
n=l 

of visits to J by the random walk (S1, S2, • • ·) so that their expected 
00 

number is Ev = L: P(Sn E: J). Set T = min{n;?; 1: Sn E: J} when 
n=l 

this set is not empty and r = CD when it is; Tis the time of the first visit 
00 

to J and Ev = L: E(vl(r = n)). On [r = n], I(Sk E: J) = 0 fork < n 
n=l 

while I(Sn E: J) = 1 hence 

vl[r = n] = L: I(Sk E: J) = 1 + L: I(Sk E: J) 
k=l k=n+l 

k=n+l 
00 

;;a 1 + L: I(ISk - Snl < c) = 1 + L: I(ISkl < c) 
k=n+l k=l 

= L: I(JSkl < c) . 
k=O 
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Since [r = n] and Skare independent when k > n, it follows that 

Ev ~ EJ P(r = n) k~ P(JSkl < c)} ~ i P(ISnl < c). 

Therefore, 
co co 

n=O n=O 

since P(So E:: J) = 0 unless 0 E:: J when this inequality holds trivially, 
term by term. Upon replacing J by J1 = [jc, (j + 1)c) and summing 
over j = -m, -m + 1, · · ·, m - 1, the asserted inequality 

1 co co 

2m L: P(ISnl <me) ~ L: P(ISnl <c) 
n=O n=O 

obtains. 

Proof of C. By the SLLN, if EX> 0 then Sn/n ~EX> 0 hence 

Sn ~~ + co and the random walk cannot be recurrent; similarly for 
EX<O. 

Let EX= 0 so that Sn/n ~ 0 and, a fortiori, Sn/n ~ 0 hence, for 
given e > 0 and n ~ n, sufficiently large, P(ISnl < ne) < 1/2. There
fore, for m/e ~ n,, 

1 (X) 1( ) 
2m Eo P(ISnl < m) ~ 2 ~- n, /2m= 1/4e- n,/4m 

so that, by b with c = 1, 

co 

L P(ISnl < 1) ~ limsup(1/4e- n./4m) = 1/4e ~ co 
n=O 

as e ~ 0, B applies and the random walk is recurrent. But then the 
(nondegenerate at 0) random walk cannot drift to +co or to -co and 
the only asymptotic alternative is a.s. -co = liminf Sn < limsup Sn = 
+ co. The proof is terminated. 

If a random walk obeys the infinite oscillations alternative it is not 
necessarily recurrent: Symmetric random walks, that is with £(X) sym
metric, obey this alternative and we produce now such random walks 
which are transient. 
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Let £(X) be nondegenerate symmetric stable, that is, with f(u) = 
exp( -clui'Y), c > 0, 0 < 'Y ~ 2. According to end of25.2,F' exists and is 
continuous and 0 ~ F'(x) ~ F'(O) with F'(O) > 0. Furthermore, £(X) 
being stable, 

£(S,.jnli'Y) = £(X) for every n = 1, 2, · · · . It follows that 

P(IS .. I < 1) = P(IXI < 1/nlf'Y) 

f_,.-1/'Y 
= F'(x) dx "'2F'(O)n-1h, 

_,.-1/'Y 
00 00 

so that :E P(l S,.l < 1) is finite or infinite, according as :E n-11-r is 
n=1 n=l 

finite or infinite hence, according as 0 < 'Y < 1 or 1 ~ 'Y ~ 2. Thus, by 
B, our symmetric random walk is transient for 0 < 'Y < 1 and recurrent 
for 1 ~ 'Y ~ 2; note that EX does not exist for 0 < 'Y ~ 1. 

Finally, we search for conditions for recurrence or transience in terms 
of the ch.f.J of £(X). (So far, they seem to provide the only approach 
for general random walks in euclidean spaces R", n > 1.) In what fol
lows we use the immediate 

PARSEVAL RELATION: f j (u) dFy(u) = f jy(X) dFx(X) 
which obtains upon integratingfx(u) = f eiu:c dF(x) with respect to Fy(t), 

and two laws with 

triangular pr. density: 

F'(x) = ~( 1 - 1~1) V O,j(u) = 2 1 ~~:2s hu, h > 0, 

triangular chj.: 

J(u) = (1 _1~1) V 0, F'(u) = ~ 1 -h~~s hx, h > 0. 

D. CH. F.'s AND DICHOTOMY. Letf be the ch.j. of the common law £(X). 

(i) The random walk is recurrent if there is a ~ > 0 with 

B 
limsup f_ du _ 00 

tj1 -6 1-tf(u)- · 

(ii) The random walk is transient if there is a ~ > 0 with 

f_a du 
sup 1 - tf(u) < oo. 

O<td -6 
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Proof. Let So= 0. 

1°. Parseval relation with triangular ch.f. and F s,. yields 

" P(IS,.I <h) ~ f_,. ( 1 - 1~1) dFs,.(x) = ~ J 1 -hc;s hu f"(u) du. 

Since (1 -cos hu)/hu2 ~ ch for lui < 1/h and some c > 0 and 

1 1- t 
<Re 1 - tf(u) ~ 11 - tf(u)l2 ' 

it follows that 
Uh Uh 

du co chi 1 chi :E t"P(IS .. I <h) ~- me 1 -+( ) du =-
n-o 7r -1/h - b U 7r -1/h 1- tf(u) 

Therefore, by hypothesis in (i), for 1/h < o, 
3 

:E P(IS .. I <h) ~ ch limsup i -1 -!-ut-+--,-(u--.,...) = co 
n=O 1r ttl -8 './ 

and recurrence obtains by B. 

2°, Parseval relation with triangular pr. density yields 

" J 1 -h~;shx dFsn(x) =; f_,. ( 1 _IZI)l"(u) du 

so that for lxl < 2/h hence (1 - cos hx)/h2x2 > 1/3 

E/"P(IS .. I < 2/h) ~ J (1 - 1Z1) 1 !if(u) ~ ;hf_: -=-1-!.~if=cu--,..) 
Therefore, by hypothesis in (ii), for h < o, 

3 

0) 3 i :E P(IS .. I < 2/h) ~ 2h sup 
n-o O<td -8 

1- tf(u) <co, 
du 

and transience obtains by B. 

CoROLLARY 1. Ij,jor some o > 0, 

i 3 du 
-.s 1 -J(u) = co, 
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then the random walk is recurrent. 

CoROLLARY 2. If EX= 0 then the random walk is recurrent. 

Follows by elementary computations from the fact that, given E > 0, 
EX= 0 implies 0 ~ 1 - CRej(u) < eu for Juj < o sufficiently small. 

26.3. Fluctuations; exponential identities. We consider random 
variables defined on (So, · · ·, Sn), say, the number of its positive terms 
or their maximum or times of occurrence of this maximum, etc. We 
shall find the explicit form of their laws in terms of "exponential identi
ties." The method will be Fourier analytic. At its core lies a "Wiener
Hop[" factorization technique for the generating characteristic 1/ (1 - tj) 
of the random walk (So, Sl> · · ·). 

In what follows, 0 < t < 1, u E::: R, A denotes a linear Borel set, and 
we set 

hence 

a. FACTORIZATION LEMMA. 

1 - 1tj(u) = ]A(u, t)]Ac(u, t). 

Results from 

by 

Jn(u) = J~iuSn = i eiuSn + ic eiuSn• 

We shall be dealing with Fourier-Stieltjes transforms of functions of 
bounded variation on linear Borel sets, of the form 

p(u) = i eiux dG(x) 
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with same affixes for p and G, if any. Exactly as for characteristic func
tions, the uniqueness theorem p <==? G (up to additive constants) is valid, 
their products pp' correspond to compositions G*G' and, clearly, their 
sums and differences p ± p' are transforms of functions of bounded varia
tion G ± G'. 

Let 

n=O n=O 

where Po(u) = qo(u) = 1 and, for n ~ 1, 

Pn(u) = feiux dGn(x), qn(u) = i eiux dGn(x). 
A A 0 

A. UNIQUE FACTORIZATION THEOREM. If 

(i) 1 _ ~f(u) = PA(u, t) QA•(u, t) or (ii) t ~_(~(~) = QA•(u, t) 

then 

and 

QA•(u, t) = /A•(u, t). 

Proof. Because of a, it suffices to show that if the foregoing relations 
hold for P l_(u, t) and QA.•(u, t) then, for n = 0, 1, · · ·, Pn(u) = p~(u) 
and qn(u) = q~(u), u E: R. 

Upon identifying the coefficients of the r, (i) and (ii) then become, 
respectively, 

n n 

(1) I: Pk(u)qn-k(u) = I: p~(u)q~-k(u) 
k=O k=O 

or 

n n 

(2) I: Pk(u)q:_k(u) = I: p~(u)q:_k(u). 
k=O k=O 

We proceed by induction: The assertion is trivially true for n = 0. 
If Pk(u) = p~(u) and qk(u) = q~(u) for k = 1, · · ·, n - 1 then in (1) 
and (2) the first n - 1 terms in the left and right sums coincide so that 
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p,.(u) + q,.(u) = p~(u) + q~(u) or p,.(u) + q~(u) = p~(u) + q,.(u). 

Thus 

p,.(u) - p~(u) = q~(u) - q,.(u) or p,.(u) - p~(u) = q,.(u) - q~(u), 

that is, for u E: R, 

f e'""' dH,.(x) = - f e'""' dH,.(x) or Je'""' dH,.(x) = f e'""' dH,.(x), 
A ~ A ~ . 

where the functions H,. = G,. - G' are of bounded variation. There
fore, by the uniqueness property for Fourier-Stieltjes transforms, 
lAdH,. = =F IA•dH,. so that both sides vanish. The assertion follows. 

This proof as well as B are due to Baxter. 

From now on, to simplify the writing, L eiuSn = E(eiuSnJ(A)) will 

be denoted by E(ei"8 n: A) and, when A is of the form [· · ·] we shall 
omit the square brackets. The first visit time of A by (8h 82, · · ·) will 
be called hitting time of A. When Tis a random time, forT = co, tn+r = 0, 
(0 < t < 1), n = 0, 1, · · · ; note that if r is a time of (8h 82, · · ·) then 
[r = 0] = ~. 

B. RANDOM TIMES IDENTITIES. LetT be a time of (8h 82, · · ·). 

(i) The following identities hold: 

cc 

E(t~eiuS,) = :E tnE(eiuSn: T = n), 
n=O 

(ii) When T = T A is hitting time of A then 

{ 
cc ,,. } 

1 - E(t~A exp iu8~J = f[ 1(u, t) = exp - :E n E(eiuSn: 8,. E: A) 
n-1 

E (~fl t"eius,.) = fA•(u, t) = exp{i:; E(eiuS,.: 8,. E: A•)}· 
n=O n=l 



[SEc. 26] INDEPENDENT IDENTICALLY DISTRIBUTED SUMMANDS 391 

Proof. The first identity in (i) results at once from the definitions. 
The second one results from 

(r-1 ) oo (n-1 ) oo E L tneiuSn = L E L tneiuSn: T = k = L E(tneiuSn: T > n). 
n=O n=1 k=O n=O 

'Since Tis a time of the random walk (Sl, s2, .. ·), 

E (i: tneiuSn) = E (reiuSr.;: eiu(Sr+n-Sr)) 
n=T n=O 

= E(treiuSr)E (Eo'neiuSn) = E(treiuSr)j(1 _ tj(u)) 

and, replacing in 

1/(1 - tj(u)) = E (E:tneiuSn) + E (ErtneiuSn), 

the third identity obtains. By the unique factorization theorem, it im
plies the two identities in (ii). 

Our main concern is with .d = (0, co) hence .d• = (- ro, 0], and we 
set f + = f<o, oohf- = f<-oo, 01 so that 

CoROLLARY. If T = T(O, oo) then 

1- E(treiuSr) =f+(u, t), E(~1 tneiuSn) =f-(u,t). 
u=O 

C. MAXIMA TIMES AND POSITIVE SUMS IDENTITIES. 

(i) If Tn is the time of occurrence of the first maximum of (So, Sr, · · ·, Sn) 
then 

E(eiuSn: Tn = k) = E(eiuSn: Tk = k) E(eiuSn-k: Tn-k = O), 

L tnE (eiuSn: Tn = n) = f +(u,t), 
n-O 
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"' L t"E(e'"8 n: Tn = 0) = f _(u,t), 
u=O 

"' L t"E(sTne1" 8 n) = f+(u,st)f-(u,t), 0 < s ~ 1. 
u=O 

(ii) If v,. is the number of positive sums in (So, S1, · · ·, S,.) then the 
above identities remain valid when therein r is replaced by v with same 
subscripts. 

(iii) All above identities, including those in the above Corollary, remain 
valid when (0, oo) is replaced by [0, oo) provided r,. is the time of the last 
maximum of (So, Sh · · ·, S,.) and v,. is the number of nonnegative sums in 
(So, Sh · · ·, S,.) while S,. > 0 and S,. ~ 0 are replaced by S,. ~ 0 and 
S,. < 0 inf+ and inf_, respectively. 

Proof. The identities in (i) are based upon a "sample space factoriza
tion": If M,. = max( So,· · ·, S,.) then the first time this maximum occurs 
is Tn = min{O ~ k ~ n: S1c = M,.} and, by the very definition of Tn = 
r,.(Xt, · · ·, X,.), 

Since the last two events are independent and so are S1c and S,. - S1c while 
S,. - S1c has the same distribution as Sn-lc, it follows that 

E(eiuSn: Tn = k) = E(eiuSk: Tic = k) . E(eiuSn-k: Tn-lc = 0). 

Thus, upon multiplying by slctn and summing over 0 ~ k ~ n < oo, 

"' L t" E(sTneiuSn) = P(u, st) Q(u, t) 
u-o 

where 

"' 
P(u, t) = L t"E(eiuSn: Tn = n), 

n=O 
IX> 

Q(u, t) = L t"E(e'"8 n: Tn = 0). 
n=O 

For s = 1, the preceding relation becomes 

1 
1 _ tf(u) = P(u, t)Q(u, t), 
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while r,. = n implies S,. > 0 and r,. = 0 implies S,. ~ 0. The unique 
factorization theorem applies so that 

P(u, t) = f +(u, t), Q(u, t) = f _(u, t) 

and the identities in (i) follow. 

By Andersen equivalence, the sample space factorization for the times 
of first maxima is equivalent to the far from obvious sample space fac
torization for the numbers of positive sums: 

[v,.(Xh · · ·, X,.) = k] = [vk(XI, · · ·, Xk) = k][v,_k(Xk+h · · ·, X,.) = 0], 

and (ii) for positive sums identities follows. 

Finally, by using in the unique factorization theorem [0, oo) in lieu of 
(0, oo ), (iii) results from the fact that all the foregoing arguments con
tinue to apply to the corresponding r, and v,. 

The following important identity, known in various guises and with 
various degrees of generality, has its origin in the basic Spitzer identity 
below (Pollaczec, Spitzer, Kemperman, Port, etc.). 

D. MAXIMUM TIME AND VALUE IDENTITY. If M, = max(S0, • • ·, S,) 
and Tn = min{O ~ k ~ n: sk = M,), then 

0> 

L t"E( /neiuSn+ivMn) = f +(u + v, st)f _(u, t), 0 < s ~ 1. 
n=O 

Proof. Since T, = k ~ M, = sk, by sample space factorization, 
E(eiuSn+ivMn: Tn = k) = E(ei(u+v)Sk+iu(S,-Sk): Tn = k) 

= E(ei<u+v)Sk: Tk = k) • E(eiuSn-k: Tn-k = 0). 

Upon multiplying by sktn and summing for 0 ~ k ~ n < oo, it follows 
that 

0> 

~/"E(srneiuSn) = P(u + v, st)Q(u, t), 

where P and Q are the functions introduced in the preceding proof and, 
as therein, the unique factorization theorem yields the asserted identity. 

Particular cases. 1°. For v = 0 we obtain the last identity in C(i). 

2°. For s = 1 and u = 0, changing v into u, we obtain the Pollaczec-
Spitzer identity: 

:E t"'E(eiuMn) = exp :E _ E (eius,+) . 0> { 0> t" } 
n-o n=l n 
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It was first discovered by Pollaczec but remained unnoticed until re
discovered by Spitzer. 

3°. For s = 1, interchanging u and v, we obtain 
co 

L tnE(eiuMn+ivSn) =f+(u + v, t)j_(v, t). 
n~o 

Upon setting w = u + v then changing w into u, and v into -v, it be
comes 

co 

L rE(eiuMn+iv(Mn-Snl) = f+(u, t)j_( -v, t). 
n~o 

Finally, upon multiplying by 

1 { co tn } { co tn } 
1 _ t = exp ~1 n P(Sn > O) · exp ~1 n P(Sn ~ 0) , 

we obtain 

_ 1 - '£. rE(eiuMn+iv(Mn-Snl) = exp{t !:..(EeiuSn+ + Eeivsn-)} 
1 - t n~o n~1 n 

or 

and this is the basic Spitzer identity in its initial form. 

EXTENSION, The basic exponential factors/+ (u, t) andf_ (u, t) may 
still have meaning when u E:: R is replaced by complex z. In fact, 

j +(z, t) = exp L - E(eizSn: Sn > 0) { 
co t" } 

n=1 n 

isboundedandcontinuousfor'Jz ~ Oandregularjor'Jz > 0, 

{
co tn } f _(z, t) = exp E1 n E(eizSn: Sn ~ O) 

is bounded and continuous for 'Jz ~ 0 and regular for 'Jz < 0. 
Thus the question arises whether the identities so far obtained remain 
valid for such z. The answer is in the affirmative for those identities in 
which figure only eitherj+ orj-; when both occur then, clearly, we must 
have 'Jz = 0, that is, z = u E:: R. These assertions result at once from 
the unicity lemma 15.2d, which yields (i) and (ii) below, while for (iii) 
we also use the fact that all the r.v.'s therein are nonnegative. 
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E. ExTENDED IDENTITIES. The following identities are valid: 

(i) For :Jz ~ 0, 

(X) 

];0 tnE(eizSn: Tn = n) =f+(z, t), 
(X) 

L tnE(eizSn: vn = n) =f+(z,t)· 
n=O 

(ii) For :Jz ~ 0, 

T-1 

I: tnE(eizSn) =J-(z, t) 
n=O 

(X) 

L tnE(eizSn: Tn = O) = j _(z, t) 
n=O 

(X) 

L tnE(eizSn: Vn = 0) =J-(z,t) 
n=O 

( "') D > 0 I> 0 1ll r or :Jz = , :Jz = , 

(X) L tnE(eizMn+iz'(Mn-Snl) 
n=O 

and, in particular,jor :Jz ~ 0, 

REMARK. In fact, the argument used for the unicity lemma 15.2d 
permits to prove simultaneously identities and a unique factorization 
theorem (Pollaczec, Ray, Kemperman). To fix the ideas, replace u by z 
in P(u, t) and ~(u, t) used in the proof of C: 

P(z, t) = I: tnE(eizSn: Tn = n), Q(z, t) = I: tnE(eizSn: Tn = 0) 
n=O n=O 

Note that P(z, t) likef+(z, t) (~(z, t) likef-(z, t)) is bounded and continu
ous for :Jz ~ 0 (:Jz ~ 0) and regular for :Jz > 0 (::lz < 0) while for :Jz = 0 

1 
f +(z, t)f _(z, t) = 1 _ tf(z) = P(z, t) Q(z, t). 
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Therefore, for ::lz = 0, 

g(z) = ?(z, t) = f _(z, t) 
f +(z, t) Q(z, t) 

where the first (second) ratio is bounded and continuous for ::lz E;;; 0 
(::lz ~ 0) and regular for ::lz > 0 (::lz < 0). Thus, the two ratios are re
strictions of a same bounded entire function g(z) to ::lz E;;; 0 and to 
::lz ~ 0, respectively. By Liouville's theorem, g(z) is a constant. But 

so that 

P(z, t) ---+ 1 
f+(z, t) 

as z---+ + oo 

P(z, t) = f+(z, t) for ::lz ;;;; 0, Q(z, t) = J_(z, t) for ::lz ~ 0. 

This proves the corresponding extended identities together with unique 
factorization. 

All preceding identities inf+ andj_ which are in terms of exponentials, 
naturally, are called exponential identities. Their striking and unex
pected feature is that the distributions of various fluctuation random 
variables are in terms of individual terms Sn of the random walk. The 
sample space factorizations 

and the equivalent one with r replaced by v are, naturally, called extreme 
factorizations. Their striking and unexpected feature is that the dis
tributions of Tn and of Vn are determined by the pr.'s of their extreme 
values 0 and n. 

26.4 Fluctuations; asymptotic behaviour. We relate now the asymp
totic behaviour of the random walk to that of fluctuations r.v.'s TA, rn, 
v11 , Mn; A denotes a linear Borel set. 

a. HITTING TIME LEMMA. If r A is hitting time of A then 

{ 

00 tn } (i) 1 - EtTA = exp -n~l n P(Sn E: A) ' 

(ii) P(rA = oo) = exp{ -11~1 P(Sn E: A)/n} 

(iii) ErA= exp{E/(Sn E: Ac)jn} +ex>· P(r = oo)(oo • 0 = 0). 
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"' Proof. We use the elementary proposition: If the a,. ~ 0 and :E a,.t" 

"' "' 
converges for 0 < t < 1, then :E a,.t" ---7 :E a,. ~ co as t j 1. 

n=O n=O 

Set 7 = rA. Identity (i) results from the first one in 26.3B(ii) with 
u = 0. Identity (ii) follows from (i) by letting t j 1 in 

"' "' 
Et~ = :E t"P(7 = n) ---7 :E P(r = n) = P(r < co) 

n=l 

so that 

P(r = co) ~ 1 - Et~ ---7 exp{ - .. ~1 P(S,. E: A)/n }· 

Identity (iii) results from the second one in 26.3B(ii) with u = 0, by 
letting t j 1 so that 

exp{i:, P(S,. E: A")/n} ~ E :E t" = i:, t"P(r > n) ---7 i:, P(r > n) 
n=O n~o n=O n~o 

and 

"' 
Er = :E P(r > n) + co · P(r = co). 

n=O 

b. FINITE INTERVAL LEMMA. Let J be a finite interval and let 7 be the 
hitting time of J". Then Er~ < co for r > 0, andES~ = Er ·EX exists 
(and is finite) if and only if EX exists and is finite. 

The first assertion is Stein's lemma and the second one is Wald's rela
tion, both obtained before general fluctuation theory. 

Proof. The second relation was proved in 26.1 and it remains to prove 
the first one. To fix the ideas, let J = [a, b]. Since the only asymptotic 
alternatives are: a.s. S,. ---7 -co or to +co or -co = liminf S,. < limsup 
S,. = +co, there is an integer m such that p(l Sm I ~ b - a) < 1. But 
[r > n + m] implies occurrence of independent events [r > n] and 
[I Sn+m - S,. I ~ b - a], where S,.+m - S,. has the same distribution 
as Sm. Therefore, 
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and, by induction, 

P(-r > k m) ~ p\ k = 1, 2, · · · . 

Therefore, P(-r > n) < (pllm)n so that the series L: tnP(-r > n) < oo for 
n=O 

ltl < to = p-l/m > 1. The first assertion follows. 

A. TRANSLATION INVARIANCE THEOREM. 

co 

(i) If J is a finite interval then L: P(Sn E: J)/n < oo. 
n=l 

co co co 

(ii) L: P(Sn = x)/n < oo, L: P(Sn < x)/n + L: P(Sn > x)/n = oo, 
n=l n=l n=l 

for all x E: R. 

(iii) Either P(Sn-< x)/n < ooforallx E: R 
Or P(Sn -< x)/n = oo for all x E: R, 

where "-<" stands for any one of the following inequality signs: "< ", 
"~", ">", "~''. 

(iv) If -r, = -rA is the hitting time of A,. where A,. stands for any one of 
the following inter~als: (x, oo ), [x, co), (-co, x], (-co, x), then 

P(-r,. <co)= P(-ro < co) 

for all x E: R. 
co 

In particular, P(-rz < co) = 1 if and only if L: P(Sn E: Ao)/n = co. 
n=l 

Proof. Assertion (i) results from a(iii) and b(i). Assertion (ii) results 
co 

from (i) and the fact that the sum of the three series in (ii) is L: 1/n = co. 
n=l 

Assertion (iii) for, say, "~" and x > 0, results from [0, co) = [0, x) + 
[x, co) by 

co co co 

L: P(Sn > 0)/n = L: P(Sn E: [0, x))/n + L: P(Sn ;:;;; x)/n 
n=l n=l n=l 

where, by (i), the second series converges; similarly for the other choices 
of"-<" and x E: R. Finally, assertion (iv) follows, by a(ii), from (iii). 
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B. THREE ALTERNATIVES CRITERIA. 

(a1). The following properties are equivalent: 
co 

S,. ~ -co a.s., Pho,co) < co) < 1, :E P(S,. > 0)/n < co, EX < 0 
n=l 

when EX exists. 

(a2). The following properties are equivalent: 
co 

S,. ~ +co a.s., P(T(-co,O) < co) < 1, :E P(S,. < 0)/n < co, EX > 0 
n=l 

when EX exists. 

(a3). The following properties are equivalent: 

-co = liminf S,. < limsup S,. = +co a.s., P(rc0, co) < co) = 1 and 
co co 

P(r(-co,o) < co) = 1, :E P(S,. > 0)/n = co and :E P(S .. < 0) = co, 

EX = 0 when EX exists. 

Proof. Assertions in (a3) follow upon excluding the only two other 
alternatives (a1) and (a2). Assertions in (a2) result from those in (a1) by 
changing X into -X hence every S,. into - S,.. Thus, it suffices to prove 
those in (a1). 

If P(S,. ~ -co) = 1, we cannot have P(r<o,co> < co) = 1 for then, 
by A(iv), P(r<z,oo> < co) = 1 for x as large as we wish hence 
limsup S,. = co a.s. Thus P(r<o,co> < co) < 1, by a(ii), is equivalent to 

Q) 

:E P(S,. > 0)/n, and the first three properties in (a1) are equivalent. 
n-1 

Finally, by 26.2C Corollary, when EX exists then S,. ~ -co = EX < 0. 
The proof is terminated. 

CoROLLARY. P(limsup S,. = +co) = 0 or 1 according as (i) 
P(r<o,co> < co) < 1 or = 1, (ii) P(S,. > 0)/n = co or <co, (iii) EX< 0 
or EX~ 0 when EX exists. 

C. AsYMPTOTIC BEHAVIOUR THEOREM. 

(i) If P(S .. > 0)/n = co then M,.!!:!; co, v,.!!:!; co, r,.!!:!; co. 

(ii) If P(S .. < 0)/n < co then a.s. M,.!!:!; Mco with i.d. ch.J. 
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EeiuM., = exp{i!:, (Eeius,.+ - 1)/n}, 
n~l 

Pn ~Pet:), -r,. ~-ret:) with common generatingfunction 

Et•., = Et•., = exp{i (t" - 1)P(S,. > 0)/n}· 
n=l 

Note that the hypotheses in (i) and (ii) being contrary of each other, 
are equivalent to their conclusions. 

Proof. By the above Corollary :E P(S,. > 0)/n = co is equivalent to 
n=l 

limsup S,. = +co a.s. hence Met:) = supS,.+ ~ limsup S,. = +co a.s. It 
follows that n 

P(Pn+I = P,. + 1 i.o.) = P(-r .. = n i.o.) = 1 

so that P,. ~ co and r,. ~~ co. Assertions (i) are proved. 

By the same Corollary, :E P(S,. > 0)/n < co is equivalent to limsup 
n=l 

S,. < co a.s., in fact, to lim S,. = -co a.s. But, by definition of limsup, 
limsup S,. < co a.s. implies M,. j M C1J < co a.s. and P(Pn+I ¢ v,. i.o.) = 

P(rn+1 ¢ r,. i.o.) = 0 hence P,. ~Pet:) < co and r,. ~ret:) < co. 

We use now the classical Abel theorem: If the complex a,.~ a finite 

then (1 - t) :E a,.t" ~ a as t j 1. 
n=l 

Since M,. j M C1J < co a.s., EeiuM,. ~ EeiuM., hence, by Pollaczec-Spitzer 
identity, as t j 1, 

= exp{i!:, t"(Eeius,.+ - 1)/n} ~ exp{i:, (Eeius,.+ - 1)/n}. 
n=l n~l 
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The last limit is an i.d. ch.f., since it is a product of i.d. ch.f.'s cfn (u) with 

1/;,.(u) = !:. J(ciux- 1) dFs +(x). n ,. 
The first assertion in (ii) is proved. 

Since P(v,. = k) = P(r,. = k) fork = 0, 1, · · ·, n and n = 1, 2, · · ·, 
v,. ~ v and Tn ~Too < oo imply that P(voo = k) = P(roo = k) fork = 0, 
1, · · · . Thus, to find the generating function of roo it suffices to find that 

00 

of v00 : Et•~ = L: tkP(voo = k). Since v,. ~· Voo < oo, it follows, by ex-
k=O 

treme factorization, that 

P(voo = k) ~ P(v,. = k) = P(vk = k)P(vn-k = 0) ---7 P(vk = k)P(vco = 0). 
But, by a(ii), 

P(voo = 0) = Pho,oo) = oo) = exp{-El P(S,. > 0)/n} 

while, by 26.3C(ii) and the second relation in (i) therein with u = 0, 

E tkP(vk = k) = exp{E/nP(S,. > 0)/n }· 

Therefore, 

and the proof is terminated. 
This basic Spitzer theorem has the same striking and unexpected fea

ture as the exponential identities: The limit distributions are in terms 
of individual sums S,.. 

COMPLEMENTS AND DETAILS 

As throughout this chapter, X 1, X 2, • • • are iid summands with common non
degenerate law £(X), d.f. F, ch.f.j, and So = 0, S,. = X 1 + · · · +X,.. Slowly 
varying functions will be denoted by h(x) with or without affixes. 

1. Let Fk, k = 1, 2, be d.f.'s and let x-+ oo. 

If 1 - Fk(x) "'x-a.hk(x) then 1 - (F1*F2) (x) "-' x-a.(ht(X) + h2(x)). 
If 1 - F(x) "-' x-a.h(x) then 1 - F 8 ,.(x) rv nx-a.h(x). Deduce similar propo

sitions for Fk( -x), F( -x). 
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2. Extrema. Let Yn = max Xk. 
l;;ik;;in 

If P(X < c) = 1 for some constant c, then £(Yn) ~£(c). 
If P(X < x) < 1 for every x E:::: R then there exist scale factors bn > 0 such 

that £(Yn/bn) ~ £(Y) nondegenerate if and only if 1 - F(x) varies regularly 
with exponent a < 0, and then Fy(x) = 0 or e-cza with c > 0, according as 
x < 0 or x > 0. What about Zn = min Xk? 

l;;i k;;in 
3. LetS be a (!.,/)-compound Poisson:/8 = e1-<f-1>. Let x ~ co. 

If 1 - F(x) rv x-ah(x) then 1 - F .(x) rv xx-ah(x). Is there a similar propo
sition about F( -x) and Fs( -x)? 

1-. Let F be an i.d. d.f. with/= e~, if; = (a, {32, L). Let x ~ co. 

If L(x) = x-ah(x) then 1 - F(x) ,...... L(x). Is there a similar proposition 
about L( -x) and F( -x)? 

5. Norming. Let £(X) be attracted by a nondegenerate stable £-y, 0 < 'Y ~ 2, 
that is, £(Sn/bn- an)~ £'Y for suitable bn > 0 and an. 

(a) Let p.2(t) = f~' x2dF(x) and q(t) = 1 - F(x) + F( -x). Lett~ co and 

use 25.l.D. 

t2-r i 2- 'Y 
If r < 'Y then-() j x jrdF(x) ~-- · 

/).2 t lzl <• 'Y - r 

If r > 'Y when 'Y < 2 then r I X jrdF(x) ,...... _'Y_ trq(t). Deduce that 
Jl.l<• r- 'Y 

Ej X lr < ro for r < 'Y and Ej X lr = ro for r > 'Y when 'Y < 2. 
(b) Centering constants. If 0 < 'Y < 1 we can take an = 0. If 1 < 'Y < 2, 

we can take an = EX: Use (a). 
(c) Scale factors. All suitable scale factors bn are of the form bn = nli'Y h(n): 

Use JJn(u/bn)l = e-cfuf'Y(1 + o(1)), replace n by nk then 1/bnk by (bn/bnk)/bn, 
note that o(1) ~ 0 uniformly in every given finite interval, show that if the se
quence (bnfbnk) is not bounded then e-ck = 1-impossible, and finally bndbn ~ 
kli'Y. 

6. Standard domains of attraction. We say that £(X) belongs to the standard 
domain of attraction of a nondegenerate stable £-y if bn = bn11'Y > 0 are suitable 
scale factors. (The usual but confusing term is "normal" not "standard.") 

£(X) belongs to the standard domain of attraction of a nondegenerate stable 
£-y with 0 < 'Y < 2, if and only if, as X~ CX)' x'Y(1- F(x n~ b'Ycp and x'YF( -x) 
~ b'Ycq, c > 0, p, q ~ 0. 

£(X) belongs to the standard domain of attraction of m:(O,l) if and only if 
EX2 < co, and then bn = un112 with u = uX. 

7. Estimates for EjSnl· Let £(X) with EX= 0 belong to the standard domain 
of attraction of £-y(Y) with 1 < 'Y < 2. 

(a) £(Sn/nll-r) ~ .e.,(Y), F( -x) ~ cx--r and 1 - F(x) ~ cx--r for some con
stant c > 0. 

(b) There is a positive a independent of n such that for x ~ x0 independent of 
n, P(jSnl/n11-r > x) ~ a/x2• 

(c) For 0 ~ r < 'Y there is a positive b = b(r) independent of n such that 
E(jSnfnll-rjr) ~ b. 
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(d) E(S,./n11'Y)---? EY and E(jS,.jnli'YI•---? EIYI• for 0 ~ r < 'Y· 
8. Partial attraction. £(X) is said to belong to the domain of partial attraction 

of a nondegenerate .c(Y) if there is a subsequence (k,.) of integers such that, for 
suitable b,. > 0 and a,., .C(Sk./b,.- a,.)---? .C(Y). It is a property of types of 
laws. Discuss the propositions below in whichever order is preferred. 

(a) Every .c(X) belongs to the domain of partial attraction of either no type 
or of one type or of an uncountable family of types. 

(b) If £(X) belongs to the domain of partial attraction of only one type, then 
this type is stable. 

(c) A symmetric distribution with slowly varying two-sided tail belongs to no 
domain of partial attraction. 

(d) Ifj belongs to the domain of attraction of an i.d. e'~< so does the i.d. el-1• 

An i.d. law need not belong to its own domain of partial attraction: Use the first 
statement and (c). 

(e) If .C(X) is partially attracted by .C(Y) which is partially attracted by .C(Z) 
then .c(X) is partially attracted by .C(Z). The domain of partial attraction of a 
stable law is strictly larger than its domain of attraction. 

00 

(f) Let i.d.j,. = e"'" have bounded if;,.. Set .p(u) = :E ,p,.(b,.u)/k,.. There are 
n=l 

b,. > 0 and integers k,.---? ro such that k,..p(u/b,.) - ,p,.(u)---? 0, u E:: R. 
(g) Iff is partially attracted by i.d. e"'"---? e'~< then it is partially attracted by 

e>P. Is i.d. property of the e>Pn, e>P needed? 
(h) Every i.d. f = e>P has a nonempty partial domain of attraction: Note 

that there are compound Poisson e>Pn---? j, and use lim ekn<l><utan) = lim e.Pn(u) =f. 
n 

00 

(i) Uvy example:/= e'~< with ,P(u) = 2 :E 2-k(cos2ku - 1) is i.d. Find its 
k .... _oo 

Levy function. Show thatf2"(u) = f(2"u) ;j is not stable but partially attracts 
itself. 

(j) Every sequence of i.d. laws has an i.d. law belonging to the domain of par
tial attraction of each of its terms. 

(k) Doblin universal laws. There are i.d. laws belonging to the domain of par
tial attraction of every i.d. law. Consider the countably many i.d. laws-ordered 
into a sequence e-~<., e>t,, • · · , whose Levy functions are purely discontinuous 
with only rational discontinuities and only rational jumps, every i.d. e'~< is limit 
of a subsequence of (e-~<.), and use (j). 

9. Consider random walk on lattices with, to simplify, span 1. 
(a) Such a random walk forms a constant Markov chain with a countable 

number of states. What is its transition matrix? 
(b) Interpret the concepts and results in the Introductory Part III in terms 

of those in §26. 
(c) Discuss the Introductory Part CDIII in terms of §26 and complete it. 
10. (a) A truly two-dimensional random walk with zero expectations and 

finite variances is recurrent. 
(b) .A truly three-dimensional random walk is always transient. What about 

m-dimensional random walks with m > 3? 
For (a) and (b) use ch.f.'s analogously to the one-dimensional case in 26.2. 
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11. ES,. Let EX= 0 and u2 = u2X (~co). 
(a) EjS,.Ifn1' 2 ~ a for some constant a and all n. In fact, EjS,.I/n1' 2 = 

2ES~jn112 ~ uV2/-r. 
(b) Let A= (-co, OJ or (O,co ). 
u2 < co = Es ..... andEs ..... are both finite, and then 

Es .... = .Ji; exp H- P(S,. E: A)}· 
12. Arcsine law. (a) Complete the computations in the proof of Arcsine law 

in 26.1. 

(b) Let c = i: (& - P(S,. > O)) be finite. Then 
.. -1 

P(v,. = 0) "'e•jv21rn, P(v,. = n) = e-•~ 

and the Arcsine law holds. 
(c) Andersen and Spitzer generalizations. Let a,.= P(S,. < 0). 

(a1 + · · · + a,.)/n ~a<=> £(1 - v,./n) ~ .C(Y) 

with .C(Y) = £(1) for a = · 0, .C(Y) = £(0) for a = 1 and, for 0 < a < 1, 

. f." sm1ra 
P(Y < y) = -- x-a(1 - x)a-1dx; 

a o 

if (a1 + · · · + a,.)fn does not converge then £(1 - v,./n) does not converge. 
(Andersen case: a,.~ a.) If a = 1/2, .C(Y) is Arcsine law. 

Use Kemperman's recurrence relation: Let b,.(k) = E(n - v,.)k; b,.(O) = 1, 
b,.(1) = n - (a1 + · · · + a,.), b0(k) = 0 for k = 1,2, · · · . Then 

n-1 

When (a1 + · · · + a,.)fn ~a then (1 - v,.fn) ~ (Y) with EYk = (1 - a) 
(1 - a/2) · · · (1 - a/k); apply Ch. IV,CD/0 (Spitzer). 

13. Identities and limit distributions. Let v,., v',., ii,., il',. be respectively the 
number of positive nonnegative, negative, nonpositive sums in (So, · · • , S,.). 
Let T,., T 1 ,., T,., T 1,. be respectively the time of occurrence of the first maximum M,., 
the last maximum M,., the first minimum M,., the last minimum M,. of 
(So, · • · , S,.). 

(a) The equivalence relation P(v,. = k) = P(r,. = k) remains valid if same 
affixes above are added simultaneously to v and to T; similarly for E(e'"8 n: v,. = 
k) = E('"8": T,. = k) and, more generally, for E(f,.: v,. = k) = E(f,.: T,. = k) in 
26.1. What about extreme factorizations? 

(b) Which exponential identities in 26.3 and results in 26.4 remain valid or 
have to be modified accordingly when the same affixes are added? 
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11. Ranked sums (order statistics). Order the sums as follows: S ;(oo) precedes 
S ;(oo) if S ;(oo) < S ;(oo) or S ;(oo) = S ;(oo) but i < j. For every k = 0, · • • , n, let 
R,.,.(oo) be the kth from the bottom of S0(oo), • • • , S,.(w) according to this order
ing. Let Tn~o(oo) be the index of corresponding S;(oo), that is, R,.,(oo) = S;(oo) <=> 
T,.,(w) = S;(w). Note that R .. o ~ · · · ~ R,.,., R..o = M,. is the first minimum 
occurring at time :r,.o = T,. and R,.,. = M,. is the last maximum occurring at time 
'linn. = v'n· 

Discuss the following Wendel identities: 

Es••• = Es••• · Es•·-•·•, 
Eei•R•• = Eei•M• . Eei•Mn-•, 
E(eiuBn+i•R••) = E(eiuB•+i•M•) • E(eiuBn-k +i•Mn-•). 
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measure, 91 
metric space, 74 

Completeness theorem, Lr- , 163 
Completion 

of a metric space, 77 
of u-field, 91 

Complex random variable, 154 
Composition, 204, 283 

and decomposition theorem, 283 
lemma, 227 
theorem, 206 

Compound(s) 
Poisson, 347 
theorem, 237 
u-field, 237 

Conditional 
expectation, 24 
probability, 24 
regular probability, 138 

Consistency theorem, 94 
Consistent, 93 
Constant chain, 29 

Continuity 
additive set functions-theo

rem, 85 
characteristic functions theo

rem, 204, 224 
F- , interval, 187 
P- , set, 189 

Continuous 
F-
function, 67 
functional, 80 
P-
set function, 85 

Convergence 
almost everywhere, 114 
almost sure, 153 
almost uniform, 140 
complete, 180 
essential, 262 
in quadratic mean, 260 
in rth mean, 159 
of sequences of sets, 58 
of types, 216 
uniform, 114 
weak, 180 

Convergence criterion(ria) 
almost everywhere, 116 
central, 323, 327 
complete, 204 
degenerate, 290, 329 
iid, 346 
iid central, 348 
normal, 292, 328 
Poisson, 308, 329 
pr.'s on metric space, 190 
weak, 203 

Convergence theorem(s) 
comparison, 117 
dominated, 126 
Fatou-Lebesgue, 12 
Lr- , 165 
moments, 186 
monotone, 125 
of types, 216 
uniform, 204 
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Convex function, 161 
Correspondence 

lemma, 344 
theorem, 97 

Countable(ly), 16 
base, 72 
class, 57 
set, 57 
set operations, 57 
valued, 64, 106 

Covering 
open, 69 
rule, 16 

c.-inequality, 157 
Cramer, 271, 408, 409 
Cylinder 

Borel, 62 
product, 62 

Daniell, 94, 408 
Decomposable 

infinitely, 308 
self- , 334 

Decomposition theorem(s) 
chains, 37 
composition and, theorem, 283 
degenerate type, 283 
distribution functions, 178,200 
Hahn, 87 
Lebesgue, 131 
normal type, 283 
Poisson type, 283 

Degenerate 
characteristic function, 215 
convergence criterion, 290, 329 
distribution function, 215 
law, 215 
random time, 376 
random variable, 215 
random walk, 370 
type, 215 

Dense set, 72 
nowhere, 75 

Denumerable, 16 
class, 57 

Denumerable (Cont.) 
set, 57 
set operations, 57 
valued, 64, 106 

Diameter of a set, 74 
Dichotomy, 380 

criterion, 382 
Difference 

equations, 48 
proper, 56 
of sets, 56 

Direction(ted), 67 
set, 68 

Dirichlet, 187 
Disjoint 

class, 57 
events, 4 
sets, 57 

Distance of 
points, 73 
points and sets, 78 
sets, 77 

Distribution, 168, 172, 175 
empirical distribution function, 

20 
function, 20, 96, 169, 177 
invariant, 39 
Ld-, 370 
probability, 168 

Doblin, 30, 302, 354, 403, 410, 411 
Domain, 62, 108 

of attraction, 360 
partial, 401 
standard, 402 

Dominated convergence theorem, 
126 

Doubrovsky, 408 
Duality rule, 57 
Dugue, 409 
Dunford, 408 

Egorov theorem, 141 
Einstein, 43, 44 
Elementary 

chain, 29 



Elementary (Cont.) 
function, 64, 107 
probability field, 16 
random variable, 17, 152 

Empirical distribution function, 
20 

Empty set, 4, 54 
Equivalence 

Andersen, 377, 393 
Andersen, lemma, 378 
class, 154 
convergence, 245 
lemma, laws, 290 
lemma, series, 245 
tail, 245 
theorem(s), 263, 379 

Equivalent 
distribution functions, 96 
functions, 114 
random variables, 154 
states, 36 

Erdos, 34 
Esseen, 294, 410 
Essential 

convergence, 262 
divergence, 262 

Euler, 47 
Events, 3, 8, 151 

disjoint, 3 
elementary, 151 
exchangeable, 45, 21 
impossible, 4, 151 
independent, 11, 73, 235 
null, 152 
random, 5, 8 
sure, 4, 151 
tail, 241 

Everreturn state, 36 
Exchangeable 

events, 45, 373 
random variables, 373 

Expectation 
centering at, 244 
criterion, 384 
indefinite, 153 

INDEX 417 

Expectation (Cont.) 
of a random function, 156 
of a random sequence, 154 
of a random variable, 10, 17, 

153, 154 
Exponential 

bounds, 266 
identities, 388, 396 

Extended 
Bernoulli law of large numbers, 

26 
Borel line, 93, 107 
Borel space, 93, 107 
Borel strong law of large num

bers, 26 
central convergence criterion, 

326 
central limit theorem, 322 
convergence criterion, 306 
Helly-Bray lemma, 183 
identities, 395 

Extension, 88 
of characteristic functions, 225 
of linear functionals, 81 
of measures, 88 

Factorization(s) 
extreme, 396 
sample space, 392, 396 
unique, theorem, 389 

Feller, 34, 292, 302, 353, 354, 369, 
371, 383, 407, 409-411 

Fermi-Dirac statistics, 42, 43 
Field(s), 59 

Borel, 93, 104 
compound, 156 
Lebesgue, 129 
of outcomes, 4 
probability, 8 
product, 61, 62 
u-, 59 

Finite intersection property, 70 
interval lemma, 45 

Finetti, de, 302, 411 
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Finitely-valued, 64, 106 
First 

category, 75 
limit theorems, 282 

Fortet, 409 
Frechet, 187, 408 
Fubini theorem, 136 
Function(s) 

additive set, 83 
Baire, 111 
centering, 350 
characteristic, 199, 202 
continuous, 67 
convex, 161 
countably-valued, 64, 106 
denumerably-valued, 64, 106 
distribution, 20, 96, 169, 177 
domain of, 62, 107 
elementary, 64, 107 
equivalent, 114 
F-continuous, 187 
finite, 105 
finitely-valued, 64, 106 
of function, 64, 106 
inverse, 63, 106 
measurable, 65, 107 
non-negative definite, 219 
numerical, 105 
P-continuous, 187 
positive part of, 105 
random, 152, 156 
range of, 63 
range space, 62, 105 
simple, 64, 107 
tail, 241 

Functional, 80 
bounded, 80 
continuous, 80 
linear, 80 
normed, 80 

Gambler's ruin, 48 
Geometric probabilities, 49 
Glivenko, 408 

-Cantelli, 21 

INDEX 

Gnedenko, 302, 354, 407, 409, 411 
Gumbel, 45 

Hadamard, 30 
Hahn and Rosenthal, 408 
Hahn decomposition theorem, 87 
Halmos, 196, 408 
Hausdorff, 408 

space, 68 
Heine-Borel property, 70 
Helly, 409 
Helly-Bray lemma, 182 

extended, 183 
generalized, 187 

Helly-Bray theorem, 184 
Herglotz lemma, 220 
Hewitt-Savage, 374, 411 

zero-one law, 374 
Hilbert space, 80 
Hitting time, 377 

lemma, 374 
Holder inequality, 158 
Huygens principle, 28 

Identification property, 73 
Image, Inverse 

of a class, 63, 106 
of a set, 63, 106 

Impossible event, 4, 110 
Improper integral, 130 
Increments inequality, 208 
Indecomposable class of states, 

36 
Indefinite 

expectation, 154 
integral, 130 

Independent 
classes, 11, 235 
events, 11, 235 
random functions, 237 
random variables, 11, 237 
random vectors, 237 
u-fields, 236 
trials, 7 



Indicator(s), 9, 59 
method of, 44 

Induced 
partition, 64, 106 
probability space, 168, 171 
u-field, 64 
topology, 66 

Inequality( ties) 
basic, 159 
central, 316 
Cr- , 157 
Holder, 158 
integral, 208 
Kolmogorov, 25, 247, 275 
Levy, 259 
Liapounov, 177 
Schwarz, 158 
symmetrization, 259 
Tchebichev, 11, 160 
truncation, 209 
weak symmetrization, 258 

Inferior limit, 58 
Infimum, 56, 103 
Infinite 

decomposability, 308 
numbers, 103 

Infinitely often, 241 
Integrable, 119 

uniformly, 164 
Integral 

characteristic function, 202 
inequality, 208 
representation theorem, 166 

Integral(s) 
Daniell, 146 
Darboux-Young, 144 
definitions, 119 
elementary properties, 120 
improper, 130 
iterated, theorem, 137 
Kolmogorov, 145 
Lebesgue, 129, 143 
Lebesgue-Stiel tj es, 128 
Riemann, 129 
Riemann-Stieltjes, 129 
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Integration by parts lemma, 358 
Interior, 66 

point, 66 
Intermediate value theorem, 102 
Intersection(s), 4, 56 

finite-property, 70 
Interval(s), 61, 62, 104 

finite-lemma, 397 
Invariance theorem, 39 
Invariant distribution, 39 
Inverse 

function, 63, 106 
image, 63, 106 

Inversion formula, 199 
Iterated 

logarithm, law of, 219 
regular conditional probability 

theorem, 138 

Kac, 407, 410 
Katz, 411 
Karamata, 354 

main theorem, 356 
Kawata, 210, 409 
Kelley, 408 
Kemperman, 369, 393, 395, 410 
Khintchine, 28, 302, 410 

measure, 343 
representation, 343 

Kolmogorov, 30, 94, 302,407, 408, 
410 

approach, 145 
inequalities, 25, 247, 275 
strong law of large numbers, 251 
three series criterion, 249 
zero-one law, 241 

Kronecker lemma, 250 

Lambert, 46 
Laplace, 22, 281, 286, 287, 407 
Law of large numbers 

Bernoulli, 14, 26, 244, 282 
Borel, strong, 18, 19, 26, 244 
classical, 290 
Kolmogorov, strong, 251 
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Law(s), 174 
degenerate, 215, 281 
equivalence lemma, 290 
infinitely decomposable, 308 
normal, 213, 281 
of the iterated logarithm, 219 
Poisson, 282 
probability, 174, 214 
self-decomposable, 334 
stable, 326, 363 
types of, 215 
universal, 403 
zero-one, 241, 374 

Lebesgue, 408 
approach, 143 
decomposition theorem, 131 
field, 129 
integral, 129 
measure, 128 
sets, 129 

Lebesgue-Stieltjes 
field, 128 
integral, 128 
measure, 128 

Le Cam, 193, 409 
Levy, P., 199, 301, 302, 408, 410 

continuity theorem, 204 
inequalities, 259 
function(s), 361 
measure, 343 
representation, 343 

Liapounov, 411 
inequality, 174 
theorem, 213, 287, 289 

Limit 
of a directed set, 68 
along a direction, 68 
inferior, 58 
superior, 58 

Limit of a sequence of 
functions, 113 
laws, 214 
numbers, 104 
sets, 58 

Limit problem 
central, 302 
classical, 286 

Lindeberg, 292, 411 
Line 

Borel, 93, 107 
extended real, 104 
real, 93, 103 

Linear 
closure, 79 
functional, 80 
space, 70 

Linearly ordered, 67 
Liouville theorem, 369 
Lomnicki, 409 
Lower 

class, 272 
variation, 87 

£,-
completeness theorem, 163 
convergence theorem, 164 
spaces, 162 

Lusin theorem, 140 

Marcinkiewitz, 225, 254, 302, 409 
Markov, 407 

chain, 28 
dependence, 28 
inequality, 160 

Lukacz, 408 
Matrices, method of, 48 
Matrix, transition probability, 29 
Mean 

rth mean, 159 
Measurable 

function, 107 
sets, 60, 64, 107 
space, 60, 64, 107 

Measure, 84, 112 
convergence in, 116 
Khin tchine, 343 
Lebesgue, 129 
Lebesgue-Stieltjes, 128 
Levy, 343 
normed, 91, 151 



Measure (Cont.) 
outer, 88 
outer extension of, 89 
product, 136 
signed, 87 
space, 112 

Median, 256 
centering at, 256 

Metric 
compactness theorem, 76 
linear space, 79 
space, 73 
topology, 73 

Minimal class over, 60 
Minkowski inequality, 158 
Moment(s) 

convergence problem, 187 
convergence theorem, 186 
kth, 157, 186 
lemma, 254 
rth absolute, 157, 186 

Monotone 
class, 60 
convergence theorem, 125 
sequences of sets, 58 

Montmort, 46 
JL 0 -measurable, 88 
Multiplication 

lemma, 238 
property, 11 
rule, 24 
theorem, 238 

INDEX 

Normal 
approximation theorem, 300 
convergence criterion, 307 
decomposition theorem, 283 
law, 213, 281 
type, 283 

421 

Normalized distribution function, 
199 

Normed 
functional, 80 
linear space, 79 
measure, 91, 151 
sums, 331 

Nowhere dense, 75 
Null 

set, 91, 112 
state, 32 

Numerical function, 105 

Open 
covering, 69 
set, 66 

Ordering, partial, 67 
Orthogonal random variables, 246 
Outcome(s), 4 

of an experiment, 4 
field of, 4 

Outer 
extension, 89 
measure, 88 

Owen, 411 

Negligibility, uniform asymptotic, 
Parseval relation, 386 
Parzen, 407 

302, 314 
Neighborhood, 66 
Neyman, 407 
Nikodym, 133, 408 
Nonhereditary systems, 28 
Nonrecurrent state, 31 
No-return state, 31 
Norm 

of a functional, 79 
Hilbert, 80 
of a mapping, 79 

Petrov, 410 
Physical statistics, 42 
Planck, 44 
Poincare recurrence theorem, 28 
Poisson 

compound, 347 
convergence criterion, 229, 329 
decomposition theorem, 283 
law, 282 
theorem, 15 
type, 283 
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Pollaczec, 396, 394, 400, 411 
-Spitzer identity, 393, 400 

Pollard, 34 
Polya, 368, 409 
Port, 369, 393, 412 
Positive 

part, 105 
state, 32 

Positivity criterion, 33 
Possible 

state(s), 370 
value(s), 370 
values theorem, 371 

Probability, 5, 8, 16, 91, 151, 152 
condi tiona!, 6, 24 
convergence in, 153 
convergence on metric spaces, 

189, 190 
distribution, 168 
field, 8 
law, 214 
product-theorem, 92 
rule, total, 24 
stability in, 244 
sub, 187 
transition, 29 

Probability space, 91, 151, 152 
induced, 168 
product, 92 
transition, 29 
product, 92 
sample, 168 

Product 
cylinder, 62 
field, 61, 62 
measurable space, 61, 62, 137 
measure, 136 
probability, 92 
probability theorem, 242 
scalar, 80 
set, 61 
u-field, 61, 62 
space, 61, 62 

Prohorov, 190, 193, 264, 409 

Quadratic mean 
convergence in, 260 

Radon-Nikodym theorem, 133 
extension, 134 

Raikov, 283, 411 
Random 

event, 5, 8 
function, 152, 156 
sequence, 152, 155 
time, 375 
time identities, 390 
time translations, 376 
trial, 6 
variable, 6, 9, 17, 152 
vector, 152, 155 
walk, 47, 378, 379 

Range, 63 
space, 62, 105 

Ranked 
random variables, 350 
sums, 405 

Ray, 369, 395, 412 
Real 

line, 93 
line, extended, 93, 107 
number, 93 
number extended, 93 
space, 93 

Recurrence, 380 
criterion, 32 
theorem(s), 27, 384 

Recurrent state(s), 31, 380 
walk, 28 

Regular variation, 354 
criterion, 354 

Relative compactness, 190 
theorem, 195 

Representation theorem, 313 
integral, 166 

Restriction, 88 
Return 

criterion, 32 
state, 31 

Riemann integral, 129 



Riemann-Stieltjes integral, 129 
Riesz, F., 222, 
rth 

absolute moment, 157, 186 
mean, 159 

Ruin, gambler's, 48 

Saks,408 
Savage,374 
Scalar product, 80 
Scheffe, 408 
Schwarz inequality, 158 
Section, 61, 62, 135 
Self-decomposable(bili ty), 334 

criterion, 335 
Separable space, 68 
Separation theorem, 68 
Sequence(s) 

convergence equivalent, 245 
random, 152, 155 
tail of, 241 
tail equivalent, 245 

Series criterion 
three, 249 
two, 263 

Set function 
additive, 83 
continuous, 85 
countably additive, 83 
finite, 82, 111 
finitely, 83 
u-additive, 83, 111 
u-finite, 83, 11 

Set(s) 
Borel, 93, 104 
bounded, 74 
closed, 66 
compact, 69 
dense, 72 
directed, 68 
empty, 4, 54 
Lebesgue, 129 
measurable, 60, 64, 107 
null, 91, 112 
open, 66 

INDEX 

Set(s) (Cont.) 
product, 61 
su bdirected, 69 
totally bounded, 75 

Shohat, 187 
u-additive, 83, 111 
u-field(s), 59 

compound, 156, 235 
independent, 236 
induced, 64 
product, 61, 62 
tail, 241 

Signed measure, 87 
Simple 

function, 64, 107 
random variable, 6, 152 

Snell, 66 
Space 

adjoint, 81 
Banach, 79 
Borel, 93, 107 
compact, 69 
complete, 74 
Hausdorff, 68 
Hilbert, 80 
induced probability, 168 
linear, 79 
measurable, 60, 64, 107 
measure, 112 
metric, 73 
metric linear, 79 
normal, 78 
normed linear, 79 
probability, 91, 151, 152 
product, 61, 62 

423 

product measurable, 61, 62, 137 
product measure, 136 
product probability, 91 
range, 62, 105 
sample probability, 168 
separated, 68 
of sets, 55 
topological, 66 

Sphere, 73 
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Spitzer, 369, 393, 394, 404, 410, 
412 

basic identity, 396 
basic theorem, 401 

Stability 
almost sure, 244 
almost sure criterion, 264 
and attraction criterion, 364 
in probability, 244, 246 

Stable 
characteristic function, 338 
law, 338, 363 

State(s) 
closed class of, 36 
equivalent, 36 
everreturn, 36 
indecomposable class of, 36 
nonrecurrent, 31, 380 
no return, 31 
nu\1,32 
period of, 33 
positive, 32 
possible, 370 
recurrent, 31, 380 
return, 31 
transient, 380 

Stationary chain, 39 
Steinhaus, 409 
Stiel tj es, 128, 129 
Stochastic variable, 174 
Stochastically independent, 11 
Strong law of large numbers 

Borel, 18, 19, 26, 244 
Kolmogorov, 241 

Structure 
corollary, 348 
theorem, 310 

Subspace 
linear, 79 
topological, 66 

Sum of sets, 4, 51 
Superior limit, 58 
Supremum, 56, 103 
Sure 

almost, 151 

INDEX 

Sure (Cont.) 
event, 4, 151 

Symmetrization, 257 
inequalities, 259 
inequalities, weak, 257 

Tail 
equivalence, 245 
event, 241 
function, 241 
of a sequence, 241 
u-field, 241 

Tchebichev, 409 
inequality, 11, 160 
theorem, 287 

Tight(ness), 194 
lemma, 194 
and relative compactness, 195 
theorem, 194 

Three 
alternatives, 375 
alternatives criteria, 399 
series criterion, 249 

Toeplitz lemma, 250 
Topological 

space, 66 
subspace, 66 

Topology, 66 
metric, 73 
reduced, 66 

Total(ly) 
bounded set, 7 5 
probability rule, 24 
variation, 87 

Transition probability, 29 
Trial(s) 

deterministic, 5 
identical, 5, 6 
independent, 5, 6 
random, 6 
repeated, 5, 6 

Triangle property, 73 
Triangular 

characteristic function, 386 
probability density, 386 



Truncation, 245 
inequality, 209 

Tulcea, 138, 408 
Tucker, 410 
Two-series criterion, 251 
Type(s), 215 

convergence of, 216 
degenerate, 215, 282 
normal, 282 
Poisson, 282 

Ugakawa, 102 
Uniform 

asymptotic negligibility, 302, 
314 

continuity, 77 
convergence, 114 
convergence theorem, 204 

Union, 4, 56 
Upper 

class, 272 
variation, 87 
Urysohn, 78 

Uspensky, 407 

Value(s), possible, 370 
theorem, 371 

Variable, random, 69, 17, 152 
Variance, 12, 244 

INDEX 

Variances, bounded, 302 
limit theorem, 305 

Variation 
lower, 87 
regular, 354 
slow, 354 
total, 87 
of truncated moments, 359 
upper, 87 

Vector, random, 152, 155 

Wald's relation, 377, 397 
Weak 

compactness theorem, 181 
convergence, 180 

425 

convergence, to a pr., 190 
symmetrization inequalities, 257 
convergence, to a pr., 190 

Weierstrass theorem, 5 
Wendel, 412 

Zero-one 
criterion, Borel, 24 
law, Kolmogorov, 241 
law, Hewitt-Savage, 374 

Zygmund, 409 
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