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Like fire in a piece of flint, knowledge exists in the mind.
Suggestion is the friction which brings it out.

—Vivekananda



Preface

“In order to become proficient in mathematics, or in any subject,”
writes André Weil, “the student must realize that most topics in-
volve only a small number of basic ideas.” After learning these basic
concepts and theorems, the student should “drill in routine exercises,
by which the necessary reflexes in handling such concepts may be ac-
quired. ... There can be no real understanding of the basic concepts
of a mathematical theory without an ability to use them intelligently
and apply them to specific problems.” Weil’s insightful observation
becomes especially important at the graduate and research level. It
is the viewpoint of this book. Our goal is to acquaint the student
with the methods of analytic number theory as rapidly as possible
through examples and exercises.

Any landmark theorem opens up a method of attacking other
problems. Unless the student is able to sift out from the mass of
theory the underlying techniques, his or her understanding will only
be academic and not that of a participant in research. The prime
number theorem has given rise to the rich Tauberian theory and
a general method of Dirichlet series with which one can study the
asymptotics of sequences. It has also motivated the development of
sieve methods. We focus on this theme in the book. We also touch
upon the emerging Selberg theory (in Chapter 8) and p-adic analytic
number theory (in Chapter 10).
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This book is a collection of about five hundred problems in analytic
number theory with the singular purpose of training the beginning
graduate student in some of its significant techniques. As such, it
is expected that the student has had at least a semester course in
each of real and complex analysis. The problems have been organized
with the purpose of self-instruction. Those who exercise their men-
tal muscles by grappling with these problems on a daily basis will
develop not only a knowledge of analytic number theory but also the
discipline needed for self-instruction, which is indispensable at the
research level.

The book is ideal for a first course in analytic number theory
either at the senior undergraduate level or the graduate level. There
are several ways to give such a course. An introductory course at the
senior undergraduate level can focus on chapters 1, 2, 3, 9, and 10.
A beginning graduate course can in addition cover chapters 4, 5, and
8. An intense graduate course can easily cover the entire text in one
semester, relegating some of the routine chapters such as chapters
6, 7, and 10 to student presentations. Or one can take up a chapter
a week during a semester course with the instructor focusing on the
main theorems and illustrating them with a few worked examples.

In the course of training students for graduate research, I found
it tedious to keep repeating the cyclic pattern of courses in analytic
and algebraic number theory. This book, along with my other book
“Problems in Algebraic Number Theory” (written jointly with J.
Esmonde), which appears as Graduate Texts in Mathematics, Vol.
190, are intended to enable the student gain a quick initiation into
the beautiful subject of number theory. No doubt, many important
topics have been left out. Nevertheless, the material included here
is a “basic tool kit” for the number theorist and some of the harder
exercises reveal the subtle “tricks of the trade.”

Unless the mind is challenged, it does not perform. The student is
therefore advised to work through the questions with some attention
to the time factor. “Work expands to fill the time allotted to it”
and so if no upper limit is assigned, the mind does not get focused.
There is no universal rule on how long one should work on a problem.
However, it is a well-known fact that self-discipline, whatever shape
it may take, opens the door for inspiration. If the mental muscles are
exercised in this fashion, the nuances of the solution become clearer
and significant. In this way, it is hoped that many, who do not have
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access to an “external teacher” will benefit by the approach of this
text and awaken their “internal teacher.”

Princeton, November 1999 M. Ram Murty



Acknowledgments

I would like to thank Roman Smirnov for his excellent job of type-
setting this book into IXTEX. I also thank Amir Akbary, Kalyan
Chakraborty, Alina Cojocaru, Wentang Kuo, Yu-Ru Liu, Kumar
Murty, and Yiannis Petridis for their comments on an earlier version
of the manuscript. The text matured from courses given at Queen’s
University, Brown University, and the Mehta Research Institute. I
thank the students who participated in these courses. Since it was
completed while the author was at the Institute for Advanced Study
in the fall of 1999, I thank IAS for providing a congenial atmosphere
for the work. I am grateful to the Canada Council for their award of
a Killam Research Fellowship, which enabled me to devote time to
complete this project.

Princeton, November 1999 M. Ram Murty



Contents

Preface

Acknowledgments

Problems

Arithmetic Functions

1.1 The Mobius Inversion Formula and Applications . .
1.2 Formal Dirichlet Series . . . . . ... ... ......
1.3 Orders of Some Arithmetical Functions . . ... ..
1.4 Average Orders of Arithmetical Functions . . . . . .
1.5 Supplementary Problems. . . . . ... ... .. ...

Primes in Arithmetic Progressions

2.1 Summation Techniques. . . . . ... ... ... ...
2.2 Charactersmodgq. . ... ... ............
2.3 Dirichlet’s Theorem . . ... .. ... ........
2.4 Dirichlet’s Hyperbola Method . . . . . . .. ... ..
2.5 Supplementary Problems. . . . . ... ... ... ..

vii

xi

© N W



xiv Contents

3 The Prime Number Theorem 35
3.1 Chebyshev’s Theorem . .. ... .. ......... 36
3.2 Nonvanishing of Dirichlet Series on Re(s) =1 . ... 39
3.3 The Ikehara - Wiener Theorem . . ... ... .. .. 42
3.4 Supplementary Problems. . . . . ... ........ 48

4 The Method of Contour Integration 53
4.1 Some Basic Integrals . . . . ... ... . ... . ... 53
4.2 The Prime Number Theorem . .. ... .. ... .. 57
4.3 Further Examples. . . . .. ... ... ... ..... 62
4.4 Supplementary Problems. . . . . . ... ... .. .. 64

5 Functional Equations 69
5.1 Poisson’s Summation Formula . . . .. ... ... .. 69
5.2 The Riemann Zeta Function . . . . .. ... ... .. 72
53 GaussSums . . . .. ... 75
5.4 Dirichlet L-functions . . . . .. .. ... ... .... 76
5.5 Supplementary Problems. . . . ... ... ... ... 79

6 Hadamard Products 85
6.1 Jensen’s Theorem . . . .. . ... . ... ... .... 85
6.2 Entire Functionsof Order1 . . . . .. ... ... .. 88
6.3 The Gamma Function . ... ... ... ... . ... 91
6.4 Infinite Products for {(s) and &(s,x) . . ... .. .. 93
6.5 Zero-Free Regions for ((s) and L(s,x) .. ... ... 94
6.6 Supplementary Problems. . . . .. ... .... ... 99

7 Explicit Formulas 101
7.1 Counting Zeros . . . . .. ... .. ... ... .... 101
7.2 Explicit Formula for ¢(z) . . ... ... ... .... 104
7.3 Weil’s Explicit Formula . . . ... ... ....... 107
7.4 Supplementary Problems. . . . .. ... .... ... 111

8 The Selberg Class 115
8.1 The Phragmén - Lindelof Theorem . . . ... .. .. 116
8.2 Basic Properties . . . ... ... ... .. ...... 118
8.3 Selberg’s Conjectures . . . . . ... .......... 123

8.4 Supplementary Problems. . . . .. .. ... ... .. 125



9

Contents

Sieve Methods

9.1 The Sieve of Eratosthenes . . . . . .. ... ... ..
9.2 Brun’s Elementary Sieve . . . . . ... ... ... ..
9.3 Selberg’sSieve . . ... ... ... ... ... ...
9.4 Supplementary Problems. . . . ... ... ... ...

10 p-adic Methods

II

10.1 Ostrowski’s Theorem . . . . . . ... ... ... ...
10.2 Hensel’'s Lemma . . . .. ... ... .. .......
10.3 p-adic Interpolation . . . ... ... .. ... . ...
10.4 The p-adic Zeta-Function . . ... .. .. ... ...
10.5 Supplementary Problems. . . . ... ... ... ...

Solutions

Arithmetic Functions

1.1 The Mobius Inversion Formula and Applications

1.2 Formal Dirichlet Series . . . . . ... ... ......
1.3 Orders of Some Arithmetical Functions . . .. . ..
1.4 Average Orders of Arithmetical Functions . . . . . .
1.5 Supplementary Problems. . . . . . .. ... ... ..

Primes in Arithmetic Progressions

2.1 Charactersmodq. .. ... ... ... ........
2.2 Dirichlet’s Theorem . . . ... ... ... ... ...
2.3 Dirichlet’s Hyperbola Method . . . . . .. . ... ..
2.4 Supplementary Problems. . . . . ... ... ... ..

The Prime Number Theorem

3.1 Chebyshev’s Theorem . . ... ............
3.2 Nonvanishing of Dirichlet Series on Re(s) =1 . . . .
3.3 The Ikehara - Wiener Theorem . . .. ... ... ..
3.4 Supplementary Problems. . . . . ... ... ... ..

The Method of Contour Integration

4.1 Some Basic Integrals . . . .. ... ... ... ...
4.2 The Prime Number Theorem . . ... ... ... ..
4.3 Further Examples. . . . . ... ... ... ......
4.4 Supplementary Problems. . . . . ... ... ... ..

XV

127
127
133
138
143

147
147
155
159
165
168

171

173
173
182
186
189
194

211
211
220
225
231

247
247
254
262
266

279



xvi Contents

5 Functional Equations 303
5.1 Poisson’s Summation Formula . . . . . ... ... .. 303
5.2 The Riemann Zeta Function . . . . .. ... ... .. 306
53 GaussSums . . . . .. ... 307
5.4 Dirichlet L-functions . . . . ... ... ... . 309
5.5 Supplementary Problems. . . . . ... ... ... .. 312

6 Hadamard Products 331
6.1 Jensen’stheorem . ... ... ............. 331
6.2 The Gamma Function . ... ... ... ....... 332
6.3 Infinite Products for {(s) and &(s,x) . . . . .. . .. 343
6.4 Zero-Free Regions for ((s) and L(s,x) . .. .. ... 348
6.5 Supplementary Problems. . . . . ... ... ... .. 353

7 Explicit Formulas 357
7.1 Counting Zeros . . . . .. ... ... ... ... ... 357
7.2 Explicit Formula for (z) . ... ... ...... .. 360
7.3 Supplementary Problems. . . . . ... ... ... .. 366

8 The Selberg Class 377
8.1 The Phragmén - Lindel6f Theorem . . . ... .. .. 377
8.2 Basic Properties . . . ... ... ... ... ... .. 378
8.3 Selberg’s Conjectures . . . . . . .. ... ....... 385
8.4 Supplementary Problems. . . .. ... ... ... .. 390

9 Sieve Methods 397
9.1 The Sieve of Eratosthenes . . . . ... ... ... .. 397
9.2 Brun’s Elementary Sieve . . . . . ... ... ... .. 404
9.3 Selberg’sSieve . . ... ... ... ... .. ..... 406
9.4 Supplementary Problems. . . . . ... ... .. ... 413

10 p-adic Methods 423
10.1 Ostrowski’s Theorem . . . . . .. ... ... ..... 423
10.2 Hensel’s Lemma . . ... ... ... ......... 428
10.3 p-adic Interpolation . . ... ... ... ... ... 431
10.4 The p-adic ¢(-Function . . .. ... ... ....... 437
10.5 Supplementary Problems. . . . . . ... ... .. .. 441
References 447

Index 449



Part 1

Problems



1

Arithmetic Functions

An arithmetic function f is a complex-valued function defined on
the natural numbers. Such an f is called an additive function if

f(mn) = f(m) + f(n) (1.1)

whenever m and n are coprime. If (1.1) holds for all m, n, then f
is called completely additive. A multiplicative function is an
arithmetic function f satisfying f(1) =1 and

f(mn) = f(m)f(n) (1.2)

whenever m and n are coprime. If (1.2) holds for all m, n, then f is
called completely multiplicative.

Let v(n) denote the number of distinct prime divisors of n. Let
(n) be the number of prime divisors of n counted with multiplicity.
Then v and Q are examples of additive functions. Moreover, € is
completely additive, whereas v is not.

Let s € C and consider the divisor functions

os(n) = Eds,

d|n
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where the summation is over the sth powers of the divisors of n.
The special case s = 0 gives the number of divisors of n, usually
denoted by d(n). It is not difficult to see that for each s € C, o5(n)
is a multiplicative function that is not completely multiplicative. We
also have a tendency to use the letter p to denote a prime number.

An important multiplicative function is the Mobius function,
defined by

_ (—1)"(") if n 1s square-free,
uin) = { 0 otherwise.

The Euler totient function given by

w0

is another well-known multiplicative function which enumerates the
number of coprime residue classes (mod n).
The von Mangoldt function, defined by

_ | logp ifn=p* for some a > 1,
Aln) = { 0  otherwise,

is neither additive nor multiplicative. Still, it plays a central role in
the study of the distribution of prime numbers.

1.1 The Mobius Inversion Formula and
Applications

Exercise 1.1.1 Prove that

1 if n=1,

Y wd) =

djn 0 otherwise.

Exercise 1.1.2 (The Mdbius inversion formula) Show that

=) g(d)

dln

Zu f(n/d).

dln

if and only if
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Exercise 1.1.3 Show that

Y o(d) =n.

dln
Exercise 1.1.4 Show that
o(n) = p(d)
n Z d

djn

Exercise 1.1.5 Let f be multiplicative. Suppose that
n= H p®
pe|in

is the unique factorization of n into powers of distinct primes. Show
that

Yt = T[a+ @) + 10+ + f(p*).

dln p%|ln

Deduce that the function g(n) = Zdln f(d) is also multiplicative. The
notation p®||n means that p® is the ezact power of p dividing n.

Exercise 1.1.6 Show that
Z A(d) = logn.
d|n
Deduce that
A(n) = - Z p(d) log d.
d|n

Exercise 1.1.7 Show that

1 if n is square-free,

> u(d) =

d2|n 0 otherwise.
Exercise 1.1.8 Show that for any natural number k,

1 if n is kth power-free,

> () =

d*|n 0 otherwise.
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Exercise 1.1.9 If for all positive z,

=2 r(3)

n<z

- Sue(3

n<lc

show that

and conversely.

Exercise 1.1.10 Suppose that
ng )| f(kz)| < oo,

where d3(k) denotes the number of factorizations of k as a product
three numbers. Show that if

=Y f(ma),

then

and conversely.

Exercise 1.1.11 Let A(n) denote Liouville’s function given by \(n) =
(=1 where Q(n) is the total number (counting multiplicity) of
prime factors of n. Show that

1 ifn is a square,

> Ad) =

dln 0 otherwise.

Exercise 1.1.12 (Ramanujan sums) The Ramanujan sum c,(m) is

defined as
- T o)

1<h<n
(h,n)=1

where e(t) = ™. Show that

> du(n/d).

d|(m,n)
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Exercise 1.1.13 Show that

1<h<n
(h,n)=1

Exercise 1.1.14 Suppose (n,m) = 4. Show that

cn(m) = u(n/8)p(n)/p(n/d).

1.2 Formal Dirichlet Series

If f is an arithmetic function, the formal Dirichlet series attached to
f is given by

D(f,s) =) f(n)n".

We define the sum and product of two such series in the obvious
way:

D(f,s) + D(g,5) = Y _(f(n) +g(n))n"*
n=1
and
D(f,5)D(g,s) = Y _ h(n)n"*,
n=1
where

h(n) = f(d)g(e).

de=n

We sometimes write h = f * g to denote this equality. It is also
useful to introduce 6(n) = 1if n = 1 and 0 otherwise. Thus D(9, s) =
1.

Exercise 1.2.1 Let f be a multiplicative function. Show that

D(f,s) =] ( f(p”)p‘”s) .
P v=0
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Exercise 1.2.2 If

show that
D(p,s) =1/((s).
Exercise 1.2.3 Show that

where —C'(s) = > po;(logn)n=>.
Exercise 1.2.4 Suppose that

=Y g(d)

Show that D(f,s) = D(g,s)¢(s)-

Exercise 1.2.5 Let A\(n) be the Liouwville function defined by A\(n) =
(=1)%") | where Q(n) is the total number of prime factors of n. Show
that

DO, s) = S29).

¢(s)
Exercise 1.2.6 Prove that
i 2u(n) Cz(s)
= ((2s)

Exercise 1.2.7 Show that
$ bl _ <00
= n ¢(2s)
Exercise 1.2.8 Let d(n) denote the number of divisors of n. Prove

that
— 2(n) _ (4(s)

n® o ((2s)’

n=1

(This example is due to Ramanujan.)
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Exercise 1.2.9 For any complex numbers a,b, show that

= ga(n)op(n) _ ((s)¢(s —a)C(s — b)¢(s —a—b)
Z ns B ((2s—a-10) ’

n=1

Exercise 1.2.10 Let gx(n) be 1 if n is kth power-free and 0 other-
wise. Show that

— qk(n) _ {(s)
7; ns  ((ks)

1.3 Orders of Some Arithmetical Functions

The order of an arithmetic function refers to its rate of growth.
There are various ways of measuring this rate of growth. The most
common way is to find some nice continuous function that serves as
a universal upper bound. For example, d(n) < n, but this is not the
best possible bound, as the exercises below illustrate.

We will also use freely the “big O” notation. We will write f(n) =
O(g(n)) if there is a constant K such that |f(n)| < Kg(n) for all
values of n. Sometimes we use the notation > and write g(n) > f(n)
to indicate the same thing. We may also indicate this by f(n) <
g(n). This is just for notational convenience. Thus d(n) = O(n).
However, d(n) = O(y/n), and in fact is O(n€) for any € > 0 as the
exercises below show. We also have ¢(n) = O(n).

It is also useful to introduce the “little o” notation. We will write
f(z) = o(g(z)) to mean

f(z)/g(z) =0

as £ — oo. Thus d(n) = o(n?), and in fact, d(n) = o(n€) for any
¢ > 0 by Exercise 1.3.3 below. We also write p*||n to mean p*|n and
petlyn.

Exercise 1.3.1 Show that d(n) < 2/n, where d(n) is the number
of divisors of n.

Exercise 1.3.2 For any € > 0, there is a constant C(€) such that
d(n) < C(e)n®.

Exercise 1.3.3 For any n > 0, show that

d(n) < 9(1+n) logn/loglogn
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for all n sufficiently large.
Exercise 1.3.4 Prove that 01(n) < n(logn + 1).
Exercise 1.3.5 Prove that

an’ < ¢(n)or(n) < con®
for certain positive constants c¢; and cy.

Exercise 1.3.6 Let v(n) denote the number of distinct prime fac-
tors of n. Show that

1.4 Average Orders of Arithmetical Functions

Let f(n) be an arithmetical function and g(z) a monotonic increasing
function of z. Suppose

Y f(n) = zg(z) + o(zg(<))

n<z
as ¢ — co. We say that g(n) is the average order of f(n).
Exercise 1.4.1 Show that the average order of d(n) is logn.

Exercise 1.4.2 Show that the average order of ¢(n) is cn for some
constant c.

Exercise 1.4.3 Show that the average order of o1(n) is cin for some
constant c;.

Exercise 1.4.4 Let qx(n) = 1 if n is kth power-free and zero other-
wise. Show that

Y gi(n) =crz+0 (wl/k) ;

n<lz

where

 1(n)
%= T
n=1
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1.5 Supplementary Problems

Exercise 1.5.1 Prove that

as r —r o0.

Exercise 1.5.2 Let J.(n) be the number of r-tuples of integers

(a1,a9,... ,ar) satisfying 1 < a; < n and ged(ay, ... ,ar,n) = 1.
Show that
=TI (1- )
pln

(J(n) is called Jordan’s totient function. For r = 1, this is, of course,
Euler’s ¢-function.)

Exercise 1.5.3 For r > 2, show that there are positive constants c;
and co such that
cn” < Jr(n) < con’.

Exercise 1.5.4 Show that the average order of J.(n) is cn” for some
constant ¢ > 0.

Exercise 1.5.5 Let dx(n) be the number of ways of writing n as a
product of k positive numbers. Show that

Z dk(n k

Exercise 1.5.6 If dj.(n) denotes the number of factorizations of n
as a product of k positive numbers each greater than 1, show that

S E® (s -1y

ns

n=1

Exercise 1.5.7 Let A(n) be the number of nontrivial factorizations
of n. Show that
— A(n)
2 -
> =@

as a formal Dirichlet series.
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Exercise 1.5.8 Show that
Y n= %(-I’:—)x? + O(d(k)z),

nlz
(n,k)=1

where d(k) denotes the number of divisors of k.

Exercise 1.5.9 Prove that

3 ud) = (-1y (V(nl— 1),

djn
v(d)<r

where v(n) denotes the number of distinct prime factors of n.

Exercise 1.5.10 Let 7(z,z) denote the number of n < x coprime
to all the prime numbers p < z. Show that

n(z,2) =z ][] (1 - %) +0(2).

p<z
Exercise 1.5.11 Prove that

1
Z— > loglogz + ¢
p<z

for some constant c.

Exercise 1.5.12 Let 7(z) be the number of primes less than or equal
to x. Choosing z = logx in Ezercise 1.5.10, deduce that

m(e) = O(log E)g:v)'

Exercise 1.5.13 Let M(z) =5 .. p(n). Show that

n<zc

Sw(E) -
n<z
Exercise 1.5.14 Let Fy[z] denote the polynomial ring over the fi-
nite field of p elements. Let Ny be the number of monic irreducible
polynomials of degree d in Fy[z]. Using the fact that every monic
polynomial in Fp[z] can be factored uniquely as a product of monic
wrreducible polynomials show that

p* =) dNg.

d|n
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Exercise 1.5.15 With the notation as in the previous exercise, show
that )
_ = n/d
== uldp
dln

and that N, > 1. Deduce that there is always an irreducible polyno-
mial of degree n in Fp[z].

Exercise 1.5.16 (Dual Mdobius inversion formula) Suppose f(d) =
Zd[n g(n), where the summation is over all multiples of d. Show that

9d) =Y u(%) )
dn

and conversely (assuming that all the series are absolutely conver-
gent).
Exercise 1.5.17 Prove that
n
Z #ln) = cz + O(log z)
n<z n
for some constant ¢ > 0.

Exercise 1.5.18 For Re(s) > 2, prove that

() _ ((s—1)
n’ ¢(s)

n=1
Exercise 1.5.19 Let k be a fized natural number. Show that if

=Y g(n/d"),

dk|n

Zu )f(n/d),

d*|n

then

and conversely.

Exercise 1.5.20 The mth cyclotomic polynomial is defined as
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where (, denotes a primitive mth root of unity. Show that

" —-1= H da(z).

dlm

Exercise 1.5.21 With the notation as in the previous ezercise, show
that the coefficient of

ze(m)—1
in ¢m(z) is —p(m).
Exercise 1.5.22 Prove that

bn@) = [[(@* = /.

dlm

Exercise 1.5.23 If ¢.,(z) is the mth cyclotomic polynomial, prove
that
p if m=p®
Pm(1) =

1 otherwise,

where p is a prime number.
Exercise 1.5.24 Prove that ¢, (z) has integer coefficients.

Exercise 1.5.25 Let g be a prime number. Show that any prime
divisor p of a? — 1 satisfies p =1 (mod q) or p|(a — 1).

Exercise 1.5.26 Let ¢ be a prime number. Show that any prime
divisor p of 1 +a+a?+---+a97! satisfies p=1 (mod q) or p = q.
Deduce that there are infinitely many primes p =1 (mod q).

Exercise 1.5.27 Let q be a prime number. Show that any prime
divisor p of
L+b+b% 4 4 b771

with b= a?" " satisfies p=1 (mod ¢¥) or p = q.

Exercise 1.5.28 Using the previous exercise, deduce that there are
infinitely many primes p =1 (mod ¢*), for any positive integer k.
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Exercise 1.5.29 Let p be a prime not dividing m. Show that p|¢m(a)

if and only if the order of a (mod p) is m. (Here ¢m(x) is the mth
cyclotomic polynomial.)

Exercise 1.5.30 Using the previous ezercise, deduce the infinitude
of primes p =1 (mod m).



2

Primes in Arithmetic Progressions

In 1837 Dirichlet proved by an ingenious analytic method that there
are infinitely many primes in the arithmetic progression

a, a+gq, a+2q, a+3q, ...

in which a and ¢ have no common factor and g is prime. The general
case, for arbitrary ¢, was completed only later by him, in 1840, when
he had finished proving his celebrated class number formula. In fact,
many are of the view that the subject of analytic number theory
begins with these two papers. It is also accurate to say that character
theory of finite groups also begins here.

In this chapter we will derive Dirichlet’s theorem, not exactly fol-
lowing his approach, but at least initially tracing his inspiration.

2.1 Summation Techniques

A very useful result is the following

Theorem 2.1.1 Suppose {a,}52, is a sequence of complez numbers
and f(t) is a continuously differentiable function on [1,z]. Set

At) = an.

n<t
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Then
> anfn) = A@)f(@) - [ AWF (et

n<z

Proof. First, suppose z is a natural number. We write the left-hand
side as

Y anf(n) = Y {A(n) - Aln - 1)}f(n)

n<z n<lc
= Y AM)f(n)- Y A@)f(n+1)
n<z n<lzr—1
+
= A(n f(t)dt
nggzl J/
= A@@)f(@) - ) A(t)f'(t)dt,
n<z—17"

since A(t) is a step function. Also,
n+1 T
> [ awred- [ awsod
n<z—1"" 1

and we have proved the result if = is an integer. If z is not an integer,
write [z] for the greatest integer less than or equal to z, and observe
that

A@){f(@) - F([D)} - / ~0,

which completes the proof.

Remark. Theorem 2.1.1 is often referred to as “partial summation.”

Exercise 2.1.2 Show that
Z logn =zlogz — z + O(log z).
n<lz
Exercise 2.1.3 Show that
Z 1 logz + O(1).
n

n<lz
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In fact, show that

Jim (3% - 1ogz)

n<lz

ezists. (The limit is denoted by « and called Euler’s constant.)

Exercise 2.1.4 Let d(n) denote the number of divisors of a natural
number n. Show that

Z d(n) = zlogz + O(x).
n<lz
Exercise 2.1.5 Suppose A(z) = O(z°). Show that for s > 4,

o0
an © A(t)
Z e 3/1 541 dt.

n=1

Hence the Dirichlet series converges for s > 6.

Exercise 2.1.6 Show that for s > 1,

()= [ A2y,

where {z} = z — [z]. Deduce that lim,_,;+(s — 1){(s) = 1.

Consider the sequence {b.(z)}%2, of polynomials defined recur-
sively as follows:

bo(z) = 1,
1.(.’1,') = T‘b,-__l(.'B) (7‘21),

/lbr(z)dz 0 (r>1).
0

Thus, from the penultimate equation, b,(z) is obtained by integrat-
ing rb,_1(z), and the constant of integration is determined from the
last condition.

Exercise 2.1.7 Prove that
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It is easy to see that

ba(z) =2° —z — g,
bs(z) = 23 — 322 + 1z,

_ 4 3,2 1
by(z) =2* - 2z° + - 35

bs(z) = 2% — 3z* + §x3 — 33

These are called the Bernoulli polynomials. One defines the rth
Bernoulli function B,(z) as the periodic function that coincides
with b.(z) on [0,1). The number B, := B,(0) is called the rth
Bernoulli number. Note that if we denote by {z} the quantity

z - [z], B (z) = br({z}).
Exercise 2.1.8 Show that Ba,+1 =0 for r > 1.

The Bernoulli polynomials are useful in deriving the Euler -
Maclaurin summation formula (Theorem 2.1.9 below).

Let a,b € Z. We will use the Stieltjes integral with respect to the
measure d[t]. Then

b
> o= [ s
a<n<b a
Notice that the interval of summation is a < n < b, so that

b b
> fn)= [ s [ s0aBi

a<n<b

because d[t] = dt — d{t} and Bi(t) = {t} — 1, by the theory of the
Stieltjes integral. We can evaluate the last integral by parts:

b b ,
/ F(®)dBy(t) = (F(8) - f(a))By — / Bi(t)f (t)dt,
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since B;(b) = Bi(a) = B1(0). From Bj(t) = 2By (t), we can write

/ FOAB) = (10) - @B - 3, [ 104300,
provided that f is differentiable on [a,b]. We can iterate this proce-
dure to deduce he following Theorem:

Theorem 2.1.9 (Euler-Maclaurin summation formula) Letk
be a nonnegative integer and f be (k+1) times differentiable on [a, b]
with a,b € Z. Then

/ F(t)dt + Z )(6) ~ (@) Brys
vt ] ka+1(t)f(’°+”(t)dt-

(k+ 1)/,
Example 2.1.10 For integers z > 1,

Zl log T + +1+1+0 1
n o BT T o T 192 3

n<lc

Solution. Put f(¢) = 1/t in Theorem 2.1.9,a =1,b =z, and k = 2.

Then
1 1/1 1,1 T By(t)
D ) A Ea J; me

so that

1 1 1 [*By(t), 1 1
S = S dt+ — — ——.
D =logrt g /1 o T o2

n<z

a<n<b

Since

we must have

1 [® Bs(t)dt
/1 .

t4

[T B0 _o(L),

so that the result is now immediate.

Also,
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Exercise 2.1.11 Show that for some constant B,
ZL —2ﬁ+B+O(—1—)
= vn NZYa

Exercise 2.1.12 For z € C, and |arg z| < m — 4, where § > 0, show
that

Zn:log(z +j) = (z +n+ %) log(z +n)
=0

n
—n—(z—%)logz%-/ M
0

z2+x

2.2 Characters mod g

Consider the group (Z/qZ)* of coprime residue classes mod ¢. A

homomorphism
x:(Z/qZ)" = C

into the multiplicative group of complex numbers is called a charac-
ter (mod g). Since (Z/qZ)* has order ¢(q), then by Euler’s theorem

we have
a®@ =1 (mod q),

and so we must have ¥ (a) = 1 for all a € (Z/qZ)*. Thus x(a)
must be a ¢(g)th root of unity.
We extend the definition of x to all natural numbers by setting

_ J x(n(modgq)) if(n,q) =1,
x(n) = { 0 otherwise.

Exercise 2.2.1 Prove that x is a completely multiplicative function.

We now define the L-series,

L(s;x) =) X::)-
n=1

Since |x(n)| < 1, the series is absolutely convergent for Re(s) > 1.
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Exercise 2.2.2 Prove that for Re(s) > 1,

Ls0 =] (1—@)_1,

S
P p
where the product is over prime numbers p.

The character
xo: (Z/9Z)* - C

satisfying xo(a) = 1 for all (a,q) =1 is called the trivial character.
Moreover, if x and 1 are characters, so is x1, as well as ¥ defined
by
x(a) = x(a),
which is clearly a homomorphism of (Z/qZ)*. Thus, the set of char-
acters forms a group. This is a finite group, as the value of x(a) is a
©(q)th root of unity for (a,q) = 1.
But more can be said. If we write

g=pi" - pe*

as the unique factorization of ¢ as a product of prime powers, then
by the Chinese remainder theorem,

Z/qL = &L/p;"L
is an isomorphism of rings. Thus,
(Z/qZ)" ~ &i(Z/p;"Z)".

Exercise 2.2.3 Show that (Z/pZ)* is cyclic if p is a prime.

An element g that generates (Z/pZ)* is called a primitive root
(mod p).

Exercise 2.2.4 Let p be an odd prime. Show that (Z/p®Z)* is cyclic
for any a > 1.

In the previous exercise it is crucial that p is odd. For instance,
(Z/8Z)* is not cyclic but rather isomorphic to the Klein four-group
7./]27. x 7./ 27.. However, one can show that (Z/2%Z)* is isomorphic to
a direct product of a cyclic group and a group of order 2 for o > 3.
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Exercise 2.2.5 Let a > 3. Show that 5 (mod 2%) has order 2°2.

Exercise 2.2.6 Show that (Z/2°Z)* is isomorphic to (Z/2Z) x
(Z./272Z), for a > 3.

Exercise 2.2.7 Show that the group of characters (mod q) has order
(q)-

Exercise 2.2.8 If x # Xxo, show that

z x(a) =0.

a(mod gq)

Exercise 2.2.9 Show that

_J o(@ if n=1(modg),
Z x(n) = { 0 otherwise.
x(mod g)

2.3 Dirichlet’s Theorem

The central idea of Dirichlet’s argument is to show that
lim 2 1_ +00
s—1+ ps ’

p=a(mod q)

where the summation is over primes p = a (mod gq).
If ¢ = 1, this is clear, because

v p
and
log((s) = —Zlog(l—%)
P
- ;(;n;ns)

upon using the expression

—log(l—2z) = Z %

n=1



2.3 Dirichlet’s Theorem 25

Observing that
lim ¢(s) = 400
s—1t

by virtue of the divergence of the harmonic series, we get

lim log((s) = +oo0.

s—1+
Consequently,
Jim, (Z 2D ns) =
b4 n>2
In view of the fact for s > 1,
1
n 7
p n>2 " p n>2 P
we deduce 1
lim — = 400.
s—1t > ps

Exercise 2.3.1 Let x = xo be the trivial character (mod q). Show
that
lim log L(s, x0) = +00.

s—1t
Exercise 2.3.2 Show that for s > 1,
1
> logL(s,x)=¢@), >,

n ns’
x(mod ) n>1 pn=1(modq) F

Exercise 2.3.3 Show that for s > 1 the Dirichlet series

o0

a—z:: H L(s,x)

n=1 x(mod q)
has the property that a; =1 and ap, > 0 for n > 2.

Exercise 2.3.4 For x # Xo, a Dirichlet character (modgq), show
that | Y n<s x(n)| < g. Deduce that

_ i x(n)

n=1

converges for s > 0.
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Exercise 2.3.5 If L(1,x) # 0, show that L(1,%) # 0 for any char-
acter x # xo modgq.

Exercise 2.3.6 Show that

lim (s — 1)L(s, x0) = ©(q)/q.

s—1t

Exercise 2.3.7 If L(1,x) # 0 for every x # Xo, deduce that

lim (s — 1) H L(s,x) #0

s—+1+
x(mod q)

Z l=-¥—o<>.

p=1(modq) p

and hence

Conclude that there are infinitely many primes p = 1(mod q).

This exercise shows that the essential step in establishing the in-
finitude of primes congruent to 1 (modgq) is the nonvanishing of
L(1,x). The exercise below establishes the same for other progres-
sions (mod g).

Exercise 2.3.8 Fiz (a,q) = 1. Show that

i) _f »(q) if n=a(modyg),
X(,%q)X(a)X(n) B { 0 otherwise.

Exercise 2.3.9 Fiz (a,q) = 1. If L(1,x) # 0, show that
li - x(a)
. _1)1{1+ s—1) H L(s,x) # 0.
x(modq)
Deduce that
1
Z — = 4o00.
p=a(mod q) p

The essential thing now is to show that L(1,x) # 0 for x # xo-
Historically, this was a difficult step to surmount. Now, there are
many ways to establish this. We will take the most expedient route.
We will exploit the fact that
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is a Dirichlet series Y >, apn™° with a; = 1 and a, > 0. If for some
x1, L(1,x1) = 0, we want to establish a contradiction.

Exercise 2.3.10 Suppose x1 # X1 (that is, x1 is not real-valued).
Show that L(1,x1) # 0 by considering F(s).

It remains to show that L(1,x) # 0 when y is real and not equal
to Xxo-

We will establish this in the next section by developing an inter-
esting technique discovered by Dirichlet that was first developed by
him not to tackle this question, but rather another problem, namely
the Dirichlet divisor problem.

2.4 Dirichlet’s Hyperbola Method

Suppose we have an arithmetical function f = g x h. That is,
)= ol@hin/a
dln

for two arithmetical functions g and h. Define

=Y g(n)

n<z

= h(n)

n<z
Theorem 2.4.1 For any y > 0,

S i) =Y g @H () + Y @6 (%) -ewH().
<z

n<lz d<y

Proof. We have

Yim) = Y gldh(e)

n<zg de<z
- ; ) + Z:
_ f:yg(d)H(E) :3: h(e){G(%) -Gy}
d<y e<y
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The method derives its name from the fact that the inequality
de < z is the area underneath a hyperbola. Historically, this method
was first applied to the problem of estimating the error term F(z)
defined as

)= 3" ool(n) — {z(log) + (2y — 1)a},

n<zT
where o9 is the number of divisors of n and - is Euler’s constant.

Exercise 2.4.2 Prove that

Z oo(n) =zlogz + (2y — 1)z + O(Vz).

n<lc

Exercise 2.4.3 Let x be a real character (mod q). Define

=Y " x(d)

d|n

Show that f(1) = 1 and f(n) > 0. In addition, show that f(n) > 1
whenever n is a perfect square.

Exercise 2.4.4 Using Dirichlet’s hyperbola method, show that

3 % — 2L(1, %)z + 0(1),

n<lz

where f(n) = > g4, x(d) and x # xo.

Exercise 2.4.5 If x # xo s a real character, deduce from the pre-
vious ezercise that L(1,x) # 0.

Exercise 2.4.6 Prove that
Y x(n) _ o(l)
n T
n>x

whenever x is a nontrivial character (mod q).
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Exercise 2.4.7 Let

an = Z X(d)

dln
where x s a nonprincipal character (mod q). Show that
> an =zL(1,x) + O(V).
n<zc

Exercise 2.4.8 Deduce from the previous ezercise that L(1,x) # 0
for x real.

Thus, we have proved the following Theorem:

Theorem 2.4.9 (Dirichlet) For any natural number g, and a co-
prime residue class a (mod q), there are infinitely many primes p =
a (mod q).

2.5 Supplementary Problems

Exercise 2.5.1 Let di(n) be the number of ways of writing n as a
product of k numbers. Show that

> dutm) = 0BT+ O(alog )

n<z

for every natural number k > 2.

Exercise 2.5.2 Show that
Z log % =z + O(logz).

n<lz

Exercise 2.5.3 Let A(z) = ), < an- Show that for z a positive

integer,
Z an log - = / @

n<z

Exercise 2.5.4 Let {z} denote the fractional part of x. Show that
i 1/2
> {Z}=1-ne+0a"),
n<z

where «y is Fuler’s constant.
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Exercise 2.5.5 Prove that

Z log® % = 0(z)

n<z
for any k > 0.

Exercise 2.5.6 Show that for x > 3,

1 1
Zznlogn = loglogm—}-B-l-O(zlogx).

Exercise 2.5.7 Let x be a nonprincipal character (modgq). Show
that
3 x(n) _ O(L)
= vn &
Exercise 2.5.8 For any integer k > 0, show that
k+1 T

logkn_log
> —— = tow

n<lz

Exercise 2.5.9 Let d(n) be the number of divisors of n. Show that
for some constant c,

d 1
Z—(—TQ =_loglz + (2y - 1)logm+c+0(i)
n 2 NZA
n<lz
forx > 1.

Exercise 2.5.10 Let a > 0 and suppose a, = O(n®) and
Az) == Z an = 0(z°)
n<lz
for some fized § < 1. Define
b, = Z ag-
dln

Prove that
Y ba=cz+0 ($(1—6)<1+a)/<2—«s)) ,

n<z

for some constant c.
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Exercise 2.5.11 Let x be a nontrivial character (mod q) and set

=Y x(d)

dln

Show that
S f(n) = 5L(1,%) + O(aVa),

where the constant implied is independent of q.

Exercise 2.5.12 Suppose that a, > 0 and that for some § > 0, we
have

Z an K 738 1

n<z gw

Let b, be defined by the formal Dirichlet series

o0 n 2
2™ (nzl )
Show that
Z by, < z(logz)! =%,

n<z

Exercise 2.5.13 Let {a,} be a sequence of nonnegative numbers.
Show that there ezists oy € R (possibly infinite) such that

fe) =Y

n=1

converges for Re(s) > og and diverges for Re(s) < og. Moreover, if
s € C with Re(s) > og, show that the series converges uniformly in
Re(s) > a9 + d for any 6 > 0 and that

f(k) (s) = (—l)k i an(logn)*
n=1

for Re(s) > g (0o 1s called the abscissa of convergence of the
Dirichlet series ) 7, a,/n°).
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Exercise 2.5.14 (Landau’s theorem) Let a,, > 0 be a sequence of
nonnegative numbers. Let oy be the abscissa of convergence of

) an
f(s) = er

n=1

Show that s = oq is a singular point of f(s) (that is, f(s) cannot be
eztended to define an analytic function at s = sg).

Exercise 2.5.15 Let x be a nontrivial character (mod q) and define

gax =Y x(d)d*

dln

If x1, x2 are two characters (mod q), prove that for a,b € C,

—S
Z aayxl ab:XZ )

¢(s)L(s — a,x1)L(s = b,x2)L(s —a — b, X1x2)
L(2s — a - b,x1x2)

as formal Dirichlet series.

Exercise 2.5.16 Let x be a nontrivial character (modq). Set a = b,
X1 = x and x2 =X in the previous exercise to deduce that

S ~o_ U&)L(s 0, )L(s =8, X)L(s —a = @ x0)
>~ [oa(m)Pn~ = T

Exercise 2.5.17 Using Landau’s theorem and the previous ezercise,
show that L(1,x) # 0 for any non-trivial real character (mod q).

Exercise 2.5.18 Show that ((s) # 0 for Re(s) > 1
Exercise 2.5.19 (Landau’s theorem for integrals) Suppose that

X Az
to) = [ 28,

with A(z) > 0. Let oo be the infimum of all real s for which the
integral converges. Show that f(s) has a singularity at s = oy.
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Exercise 2.5.20 Let ) denote Liouville’s function and set

=)0

n<z

Show that if S(z) is of constant sign for all z sufficiently large, then
¢(s) # 0 for Re(s) > % (The hypothesis is an old conjecture of
Pélya. It was shown by Haselgrove in 1958 that S(z) changes sign
infinitely often.)

Exercise 2.5.21 Prove that
" /n
i) = 3 () Bocsst

where by, (z) is the nth Bernoulli polynomial and B,, denotes the nth
Bernoulli number.

Exercise 2.5.22 Prove that
bn(1 =) = (=1)"bn(z),
where b, (z) denotes the nth Bernoulli polynomial.
Exercise 2.5.23 Let
spn) =1F+ 28 138 ... 4 (n— 1)k,
Prove that for k> 1,

k
k+1 .
b =3 ()

1=0
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The Prime Number Theorem

Let m(z) denote the number of primes p < z. The prime number
theorem is the assertion that
m(z)

lim =1
2h00 z/logx

It was proved independently by Hadamard and de la Vallée Poussin
in 1896. It is the goal of this chapter to prove this theorem follow-
ing a method evolved by Wiener and Ikehara in the early twentieth
century.
As far as we know, it was Legendre who first conjectured that for
large z, m(z) is approximately
z

logz — 1.08"

This suggests the truth of the prime number theorem. In a letter
of 1849, Gauss related that as a boy he had thought about this
question and felt that a good approximation to m(z) is given by the
logarithmic integral

T odt

liz:= .
5 logt

This is closer to the truth. Indeed, one can prove
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n(z) =liz+ O (ze‘cviogz)
for some constant c. Integrating the logarithmic integral by parts,
we see that

_ % L% L nlz y +1)'/x dt
~logz  (logz)? (logz)ntt " T o (logt)ntl’

liz

from which it is easily deduced that if we interpret Legendre’s state-

ment as
T

m(z) = logz — A(z)’

where A(z) — 1.08, then the above analysis shows that it is false,
since A(z) — 1.

Chebyshev in 1851 obtained by very elementary methods upper
and lower bounds for (z). He proved that

7(z)
z/logz’

m(z)

.. <1<l
lim inf 2/ logs = 1 < limsup

so that if the limit exists, then it must be 1.

3.1 Chebyshev’s Theorem

The elementary method of Chebyshev begins by observing that the
binomial coefficient

2n

n

is divisible by every prime between n and 2n.

Exercise 3.1.1 Let

f(n) =) logp,

p<n

where the summation is over primes. Prove that

f(n) < 4nlog2.

Exercise 3.1.2 Prove that §(2m + 1) — 6(m) < 2mlog2. Deduce
that
f(n) < 2nlog2.
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Exercise 3.1.3 Let

P(z) =Y logp=>_ A(n),

pe<z n<z
where A 1is the von Mangoldt function. Show that

lem[1,2, --- ,n] = e¥(™).

Exercise 3.1.4 Show that
1
ew(2n+1)/ z"(1 — z)"dz
0

is a positive integer. Deduce that ¥(2n + 1) > 2nlog2. (The method
of deriving this is due to M. Nair.)

Exercise 3.1.5 Prove that there are constants A and B such that
Az < Bz

<
(@) < log z

logx —
for all z sufficiently large. This result was first proved by Chebyshev.

Exercise 3.1.6 Prove that

1
T(z):= Zlogn =zlogr —z + §log:c+c+0(1/x)

n<z
for some constant c (this improves Ezercise 2.1.2).

Exercise 3.1.7 Using the fact

logn = Z A(d),

d|n

prove that
A
Z Aln) =logz + O(1).
n<zr n

Exercise 3.1.8 Prove that

1
E — =loglogz + O(1).
prp
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Theorem 3.1.9 (Bertrand’s postulate) For n sufficiently large,
there is a prime between n and 2n.

Proof: (S. Ramanujan) Observe that if
ap>ap >ay>---

is a decreasing sequence of real numbers tending to zero, then
[e o]
ag —ay < Z(—l)"an <ag—aj+as.
n=0

This is the starting point of Ramanujan’s proof. We can write

T(z) = Zlogn = Z A(d) = Z’zﬁ(%)

n<z de<z ez

We know that T'(z) = zlogz — z + O(log z) by Exercise 2.1.2. On
the other hand,

1) -21(5) = Do Z) < v -4(3) +9(3)

by the observation above. Hence
v(@) - ¥(3) +%(3) 2 log2)z + O(log 2).
On the other hand,
$(@) ~(3) < (log2)z + Ollog ),
from which we deduce inductively
P(z) < 2(log2)z + O (log® z) .
Thus, 9(z) — ¢(§) > L(log2)z + O(log? z). Now, 9(z) = 6(z) +
O (Vzlog? z) . Hence
o) - 6(3) > é(log 2z + 0 (Vzlog’z)

Therefore, for z sufficiently large, there is a prime between
z/2 and z.

Remark. This theorem was first proved by Chebyshev by a similar,
but more elaborate, method.



3.2 Nonvanishing of Dirichlet Series on Re(s) =1 39

Exercise 3.1.10 Suppose that {an}>2, is a sequence of complex

numbers and set
S(z) = Z an.

n<lzc
If
S
lim ﬂ = q,
T—00 €T
show that a
Z = = alogz + o(log =)
n<z n
as T — 00.

Exercise 3.1.11 Show that
lim M

T—00 I

=1

if and only if @
w(z

200 z/logz

Exercise 3.1.12 If
7(z)

00 z/logz -
then show that

1
Z — = aloglog z + o(log log z).
p<z

Deduce that if the limit exists, it must be 1.

3.2 Nonvanishing of Dirichlet Series on Re(s) =1

The proof of the prime number theorem, as given by Hadamard and
de la Vallée Poussin, has two ingredients: (a) the analytic contin-
uation of ((s) to Re(s) = 1 and (b) the nonvanishing of ((s) on
Re(s) = 1.

It was believed that any proof of the prime number theorem must
use the theory of complex variables until Erdos and Selberg inde-
pendently discovered an “elementary proof” in 1949.

In this section we will discuss nonvanishing results of various Dirich-
let series.
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Exercise 3.2.1 Show that

C(s)z—s——s ” {x}dx

s—1 1 x5t

for Re(s) > 1. Since the right-hand side of the equation is analytic for
Re(s) > 0, s # 1, we obtain an analytic continuation of (s — 1)((s).

Exercise 3.2.2 Show that {(s) # 0 for Re(s) > 1.

Exercise 3.2.3 Prove that foroc > 1, t € R,

A(n)

n? logn

Relog((o +it) = Z

n=1

cos(tlogn).

Exercise 3.2.4 Prove that

Re(3log ((0) + 4log ( (o + it) + log ¢ (o + 2it)) > 0,
foro>1,teR

Exercise 3.2.5 Prove that foro > 1, t € R,
¢(0)3¢(o + it)*¢ (o + 2it)| > 1.

Deduce that (1 +it) # 0 for any t € R, t # 0. Deduce in a similar
way, by considering

¢(0)°L(0,x)* L(o, x°),
that L(1,x) # 0 for x not real.

Exercise 3.2.6 Show that -%(s) has an analytic continuation to
Re(s) = 1, with only a simple pole at s = 1, with residue 1.

In the exercises below we will attempt to unravel the essential
trigonometric idea underlying the proof of the nonvanishing of ((s)
on Re(s) = 1. We begin with a few trigonometric identities.

Exercise 3.2.7 Prove that

i 1
)0
1+0089+cos29+---+cosn0:m.

2 25ing
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Exercise 3.2.8 Prove that

cosf + cos30 + - - - + cos(2n — 1)0 = Sln.2n9.
2sin6

Exercise 3.2.9 Prove that

1+

sin 360 v sin 56 L sin(2n — 1)0 _ (sinn9>2'

sin @ sin@ sin @ sin @

Exercise 3.2.10 Prove that
2m—1 ) 1 0 9
@m+1)+2 Y (j+1)cos(2m — j)b = (M:_ﬂ_) ’

§=0 sin 3

for all integers m > 0.
Remark. Notice that the case m =1 gives

3+4cosf+2cos20 > 0,

which would have worked equally well in Exercises 3.2.4 and 3.2.5.

The following exercise gives us a general theorem of nonvanishing
of Dirichlet series on Re(s) = 1.

Exercise 3.2.11 Let f(s) be a complez-valued function satisfying:
1. f is holomorphic in Re(s) > 1 and non-zero there;

2. log f(s) can be written as a Dirichlet series

with by, > 0 for Re(s) > 1;

3. on the line Re(s) = 1, f is holomorphic exzcept for a pole of
order e > 0 at s = 1.

If f has a zero on the line Re(s) = 1, then prove that the order of the
zero is bounded by e/2. (This result is due to Kumar Murty [MM,

p.10].)
Exercise 3.2.12 Let f(s) = [[, L(s,x), where the product is over

Dirichlet characters (modq). Show that f(s) is a Dirichlet series
with nonnegative coefficients. Deduce that L(s,x) # 0 for Re(s) = 1.
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3.3 The Ikehara - Wiener Theorem

We begin by reviewing certain facts from Fourier analysis. Let

S={f€C’°°(]R): lim xnuzﬂ for all n,m€Z+}.

|z|—00  dT™

This space is called the Schwartz space of rapidly decreasing func-
tions. For f € S, we have the Fourier inversion

£ 1 e —itz
f($)=\/—§/_oof(t)e dt

1 ® ; itx
@) = == / fweteae

fa-v == [ reeiea

and

Hence

so that f(z —y) and f(t)e"™ are Fourier transforms of each other.
Parseval’s formula is

/ Z f@o@ds= [ fatar

Though these formulas are first established for f,g € S, they are
easily extended for all f,g € L?(R). We will employ these facts for
such functions.

The Riemann - Lebesgue lemma states that

S -
lim / ft)eMdt =0
)

A—00
for absolutely integrable functions. The Fejér kernel

12
sin” Az
K,\(.T)) = _>\:1)T

has Fourier transform

- 2v2r(1— 2 if |z| < 2
K = 2\ — :
A(2) { 0 otherwise.

We begin with the following theorem due to Ikehara and Wiener (see
for example, [MM, p.7]).
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Theorem 3.3.1 Let F(s) = Y o2, bn/n® be a Dirichlet series with
positive real coefficients and absolutely convergent for Re(s) > 1.
Suppose that F(s) can be extended to a meromorphic function in the
region Re(s) > 1 having no poles except for a simple pole at s = 1
with residue R > 0. Then

B(z) =Y by = Rz +o(z)
n<z
as T —r O0.

Remark. Without loss of generality, we may suppose R > 0, for if
R =0, we can consider F(s) + ((s). If F(s) is analytic at s = 1, we
obtain Y . b, = o(z) as z — oo.

Proof. Replacing b, by b,/R, we may suppose without loss of gen-
erality that R = 1. Then

n<zx

Set £ = e%. Then

Note that

o0 1
/ e =Dy = )
0 S — 1

Setting s =1+ 4 +14t, 6 > 0, we get

F+5+it) 1 /‘0o s i
= [ (B(e")e™ = 1)eMe M dy,
1+o+dt  s—1 J (B(e")e Je e du

Set
g(u) = B(e")e™,
hslt) = F§1++66++iit) - sil’
and F(1+1t) 1 )
M) =17 —5-1 =i+

which is regular for ¢ € R. Our goal is to prove g(u) — 1 as u — oo.
The above formula says that the Fourier transform of v2m(g(u) —
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1)e™*0 is hg(t). Observe that for § > 0, both of these functions are
square-integrable, since

B(z) =) by < Y |bal(z/n)",
n=1

n<z

for every ¢ > 1. Applying Parseval’s formula,

o o
[ (ot - DeRawdn = [ b Rao)ae
—00 —0o0
Also by Parseval’s formula, we have
o0 o . .
/ (9(u) — 1)e ™Ky (u — v)du = / hs(t) K (t)e™ dt.
-0 —00

Since K, has compact support, the limit as § — 0 of the right-hand
side exists. Thus the same is true of the left-hand side. Hence

/ " (9w) = DEx (u - v)du = / * WO ()t

—00 —00
By the Riemann - Lebesgue lemma, the limit of the integral on the
right-hand side as v — oo is 0. Thus,
(oo}

lim (9(u) = 1)Ky (u — v)du = 0.

v—=00 J_ o

Since (by Exercise 3.4.13)

/°° sin? )\xd:v _
Az? =™

—00

we obtain o
/ 9(u) Ky (u — v)du = 7.
—00

Set —~A(u —v) = o. Then u =v — §, and so as g is bounded,

. vA a)\ sin? o
lim g(’u — —) ———da =T.
v—=00 J_ oo A a?

Since B(z) is monotone increasing, we see that

9(u2) > g(u1)e™ ™, uy < ug.
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Thus, for || < VA, we have

oo 200~ K) S 2alo- B

Since
. /‘/X a\ sin? «
lim sup g(v - —) da <,
V=00 VX N o2
we deduce
1 _2 s
lim su (v— ——)e N —
v—00 Py \/X - f_\/\_f>X siniada

Since v is arbitrary, changing v to v + \/LX’ we get

lim supg(v) < 1.

vV—00
The lower bound is obtained similarly:

1}ligloinf/_\\/;g('u - %) Sh;zada >m+ O(\/LX)

Since

we obtain

vli)rgoinfg(v + %)e% /\/X inzg—doz > 7r+0<i),

_vx o? VA
so that lim infg(v) > 1. Putting this together with the previous
v— 00
result, we obtain
lim g(v) = 1.
vV—>00

We apply this theorem to the Dirichlet series
¢y Am)
—E('s) = Z ns '
n=1

which has nonnegative coefficients and is absolutely convergent for
Re(s) > 1. By virtue of ((s) # 0 on Re(s) = 1, we see that —%(s)
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extends to a meromorphic function that has a simple pole at s = 1
with residue 1. Indeed, we know that

h(s) := (s = 1)¢(s)

is analytic at s = 1 and h(1) = 1. Moreover, as ((s) # 0 on Re(s) > 1,
we get by logarithmic differentiation:

W) 1 ¢
h(s) s—1 + Z(S)’

for which our assertion is obvious. Applying the Ikehara - Wiener
theorem, we obtain the prime number theorem:

Theorem 3.3.2 (The Prime Number Theorem) Let

Y(z) =) An).

n<lz
Then
lim M =1.
n—oo T

Exercise 3.3.3 Suppose
(o]
f(8) =) an/n’
n=1

15 a Dirichlet series with real coefficients that is absolutely convergent
for Re(s) > 1. If f(s) extends to a meromorphic function in the
region Re(s) > 1, with only a simple pole at s = 1 with residue T,
and |ay| < by, where F(s) =Y 2, by/n® satisfies the hypotheses of
Theorem 3.3.1, show that

Z an, =1z + o(x)
n<z
as T — oo.

Exercise 3.3.4 Show that the conclusion of the previous exercise is
still valid if an € C.

Exercise 3.3.5 Let g be a natural number. Suppose (a,q) = 1. Show
that
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Y(z;q,0) = Y A(n)

n<z
n=a (modq)

satisfies
)
200 7./p(q)

Exercise 3.3.6 Suppose F(s) = Y.oby/n® is a Dirichlet series
with positive coefficients and is convergent for Re(s) > ¢ > 0. If
F(s) extends to a meromorphic function in the region Re(s) > ¢
with only a simple pole at s = ¢ with residue R, show that

(6
S b= 4 o(af)

C

n<z

as r —r 0.

Exercise 3.3.7 Suppose f(s) = Y. oo, an/n’® is a Dirichlet series
with complex coefficients that is absolutely convergent for Re(s) > c.
If f(s) extends to a meromorphic function in the region Re(s) > ¢
with only a simple pole at s = ¢ and residue T, and |a,| < b, where
f(s) = 302, bp/n® satisfies the hypothesis of Ezercise 3.3.6, show

that
rT

zan = —Ci + o(z°)

n<zc

as r — O0.

Exercise 3.3.8 Let a(n) be a multiplicative function defined by
oy | Pte if a=1,
a(p”) = { 0 otherwise,

where |cp| < p? with 6 < 1. Show that as z — oo,

m:2

Z a(n) = - + o(z?)
n<z

for some non-zero constant r.

Exercise 3.3.9 Suppose ¢, > 0 and that
z cn = Az + o(x).

n<z
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Show that .
Z ;n = Alogz + o(log z)

n<z

as T — 0Q.

3.4 Supplementary Problems

Exercise 3.4.1 Show that

EA n)logn = 9 (z) logz + O(z).

n<lzc

Exercise 3.4.2 Show that

Z A(d)A(%) = A(n)logn + Z 1(d) log? d.

dln djn

Exercise 3.4.3 Show that

> u(d log

d|n
{ log? z if n=1,
2A(n)logz — A(n)logn + Y, A(h)h(k) if n>1.

Exercise 3.4.4 Let

2) =3 (L u@og 7).

n<lz d|n

Show that

S(a) = (@) logz+ A(n)qp(%) +0().

n<lc

Exercise 3.4.5 Show that

e Swa[2] oS )

d<z

where 7y is Euler’s constant.
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Exercise 3.4.6 Show that
_ p(d) 2T 9
S(z) —xZ——d {log 777 }+O(m).
d<z
Exercise 3.4.7 Using the fact
1 1
Z — = logm+’y+0(—)
n<z n z

deduce that

5z) = Z M(logf—'y) +0(1).

do<n de d

Exercise 3.4.8 Prove that

S(z) _
— = 2logz + O(1).

Exercise 3.4.9 (Selberg’s identity) Prove that
Y(z)logz + Z A(n)@b(-gf) = 2zlogz + O(z).

n
n<z

Exercise 3.4.10 Show that

v(n) =0 (lol;)ign) ’

where v(n) denotes the number of distinct prime factors of n.

Exercise 3.4.11 Let v(n) be as in the previous ezercise. Show that

Z v(n) = zloglogz + O(z).

n<zc

Exercise 3.4.12 Let v(n) be as in the previous ezercise. Show that

Z v2(n) = z(loglog z)? + O(z log log z).

n<zc

Exercise 3.4.13 Prove that

/°° sin? \z
—2d$ =T.
—o0 AT
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Exercise 3.4.14 Let

T(z):= Z logn.

n<z
Show that for z > 1,
|T(z) — (zlogz — z)| < 4+ log(z + 1).
Exercise 3.4.15 Show that
P(z) — 1/)(%) < (log2)z + 12 + 3log(z + 1).

Deduce that

12logz  3log(z +1)logz

< 2(log 2
¥(z) < 2(log2)z + log 2 log 2

Exercise 3.4.16 Show that
T T
P(z) — ¢(§) + ¢(§) > (log2)z —2log(z +1) — 7.

Exercise 3.4.17 Prove that for z > e!?,

_ 5(logz)(log(z +1)
log 2

(log2)z 7.

v@) -o(3) 2 3

Exercise 3.4.18 Find an ezplicit constant ¢y such that for z > cg,

¥(z) _1/}(%) S (log62)w _

Exercise 3.4.19 With ¢y as in the previous exercise, show that for
T 2 Co,

z (log2)z  /z(logz)?
6(z) - 9(5) . log2 T

Exercise 3.4.20 Find an explicit constant ¢, such that for z > ci,

0(z) — 9(-;3) > (lofj)‘” _7.

Exercise 3.4.21 Find an ezplicit constant c3 such that for © > c3,
0(z) — 0(x/2) > 1. Deduce that for = > cs3, there is always a prime
between /2 and x.
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Exercise 3.4.22 Let

be a function of bounded variation in every finite interval [1,z]. Sup-
pose that as T — o0,

F(z) = zlogz + Cz 4 O(zP)

with C, B constant and 0 < B < 1. Show that if M (z) := 3, ., pu(n) =
o(z) as T — oo, then -

f(z) =z + o(z).
Exercise 3.4.23 Assuming M(z) = o(z) as in the previous ezer-
cise, deduce that
lim ¢—($l =1.

—00 T



4
The Method of Contour Integration

(e}

ne1, one would like to

Given a sequence of complex numbers {an}
study the asymptotic behavior of

Az) := Z an

n<zx

as £ — 00. A standard method of analytic number theory is to study
instead the associated Dirichlet series

o0

)= %,

n=1

derive an analytic continuation to a region containing the line
Re(s) = 1, and then apply methods of contour integration to de-
duce an asymptotic formula for A(z).

4.1 Some Basic Integrals

We shall adopt the following notation:

1 c+io00

— f(s)ds
271 c—100
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will be abbreviated to

1
o f s)ds.
21 (c) ( )

This integral must be interpreted in the principal value sense. That
is, we first integrate from ¢ — ¢R to ¢ + iR and take the limit as R
goes to infinity.

Exercise 4.1.1 Ifx > 1, show that

——d =
2m/ s=1

Exercise 4.1.2 If0 < z < 1, show that

1 S
— [ Zds=o.
21 Je) 8

Exercise 4.1.3 Show that

for any ¢ > 0.

1 ds 1

omi Jiy s 2

We summarize the previous examples and exercises in the following.

If
0 if O0<z<1,

S(z)=4¢ 3 if z=1,
1 if z>1,
then i
1 CT10 .8
§(z) = =— / T ds.
270 Jo—ioo S

Theorem 4.1.4 Let 6(z) be defined as above. Let

1 c+'LR
I(z,R) = —/ —ds

s RS
Then, for x > 0,c > 0, R > 0, we have
z°min(1, R logz|™Y) if z #1,
|[I(z,R) —d(z)| <

% if z=1.
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Proof. Suppose first 0 < z < 1. Consider the rectangular contour
Ky oriented counterclockwise with vertices ¢ —iR,c + iR, U + iR,
U - iR, U > 0. By Cauchy’s theorem

1 S
— | Zds=0=d).
2mi Jg, S

To prove the theorem, we must estimate the three integrals

1 U+iR :L.sd 1 U—iR :L.sd 1 U+iR xsd
b —as — —as b —as.
271 c+iR S ’ 2m ¢c—iR S ’ 27 U—iR S
Now,
U+iR .5 U
T 1
/ —ds| < = / z0ds.
ct+iR S R c

As U — oo, this integral is bounded by

:L.C

R|logz|

A similar estimate holds for the other integral. Now,

1 /U+iR 5ds
2m1 U—iR S

YR
< 7
- U
which goes to zero as U — oo, since 0 < z < 1. This proves one of the
two stated inequalities in the case 0 < z < 1. For the other inequality,
consider the circle of radius (c? + R%)'/2 centered at the origin. This
circle passes through ¢ — iR and c+¢R. We can therefore replace the
vertical line integral under consideration by a circular path on the
right side of the line segment joining ¢ — <R to ¢ + ¢R. The integral
is easily estimated:

|I(z,R)| < L7rR- z <z
T 2w R ’
since |z°| < z¢ on the circular path.

The proof when z > 1 is similar but uses a rectangle or a circular
arc to the left. The contour then includes the pole at s = 0, where
the residue is 1 = d(z). We leave the details as an exercise to the
reader.
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Finally, the case z = 1 is handled directly as in Exercise 4.1.3. We
have

2mi J._ir S s

1/R/C du 1 1/°° du
)y 1+u? 2 Rje L +u?

The last integral is less than ¢/R, and this proves the theorem. O

B c? + 12’

1 c+iR§ _c /R dt
0

which equals

Exercise 4.1.5 Let

0o an
f(3)=n:1;;

be a Dirichlet series absolutely convergent in Re(s) > ¢ — €. Show
that if x is not an integer, then

1
Zan = — f(s)m—ds.
— 211 J () s
(The integral is taken in the sense of Cauchy’s principal value.)

Exercise 4.1.6 Prove that

1/ z* d __{%(log:c)k if z2>1,
© 0

omi =S if <1,
for every integer k > 1.

Exercise 4.1.7 Let

o0

flo) =y 2

n=1

an

be a Dirichlet series absolutely convergent in Re(s) > ¢ — €. For
k > 1, show that

1 k 1
E—!Zan(log %) =55 f(s)s‘:ﬁds.

n<z (o)
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Exercise 4.1.8 If k is any positive integer, ¢ > 0, show that

k
L/ z°ds _ %(1 - %) if x2>1,
2T (C)S(S+1)"'(8+k) 0 ’lf 0<z<l1.

Exercise 4.1.9 Let

an

ns
n=1

be a Dirichlet series absolutely convergent in Re(s) > ¢ — e. Show
that

k! [efie f(s)z®ds
$k2anm_n i Jomioo s(s+ 1) (s+F)

n<z

for any k > 1.

4.2 The Prime Number Theorem

We will use the ideas of the previous section to give another proof of
the prime number theorem. Our derivation is illustrative of a general
method of contour integration to derive such formulas. Thus, it can
be applied in other contexts. The method also has the advantage of
giving an explicit error term.

Our strategy is to begin with the formula

! S
= A =5 [ 0 Zds
n<z e (2) C S
which is valid when z is not an integer. We will then move the line of
integration to the left and pick up the residue at s = 1 coming from
the simple pole of —(’(s)/{(s). This residue is z, which is the main
term in the formula for 9(z). Our contour will not include s = 0 nor
any of the zeros of —('(s)/{(s), and so the error term comes from
estimating the horizontal and vertical integrals of the contour.

Exercise 4.2.1 Using the FEuler - Maclaurin summation formula
(Theorem 2.1.9), prove that for o = Re(s) > 0,

n—1 1

n=s npl=s ® gz —[z] - %
C(S): %‘i‘ 9 +$_1—3/ Tdiﬂ,
m=1 n

where [z] denotes the greatest integer function.
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We will now study ((s) in the region Ry described by the rectangle
joining 2 — 1T, 2 + 1T, o¢ + iT, 0¢ — iT, where o9 = 1 — 1/logT,
T > e

Exercise 4.2.2 Using the previous ezercise, show that

¢(s) -

! - = O(logT)

8..—
for s € Rr.

Exercise 4.2.3 Show that
¢(s) = O(log T)
for s on the boundary of Rr.

Exercise 4.2.4 Show that for o > %, ((s) = O(TY?), where
T = |Im(s)| = oo.

Exercise 4.2.5 For s € Ry, show that

¢'(s) + e O(log? T).
Exercise 4.2.6 Show that
¢'(s) = O(log? T),
where T = |Im(s)| and s is on the boundary of Rr.

The method used to show that {(s) # 0 for Re(s) = 1 can be
sharpened to yield a region in which {(s) # 0.

Theorem 4.2.7 Let s = o +1t. There are positive constants ¢; and
co such that
C
1K) > fogiyr
where 1 < |Im(s)| < T.

Proof. In Exercise 3.2.5, we proved

1¢(0)3¢ (0 + it)*¢ (o + 2it)| > 1
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for 0 > 1. Thus,
¢(o +at)|* > [¢(o + 2it)| ¢ (o) 2

Now, ((c)(c — 1) remains bounded as ¢ — 11 and being continuous
for 1 < o < 2 has an upper bound in that region. By Exercise 4.2.3,
for some constant K,

|¢(o + 2it)| 7t > K(logT) ™.

Thus we get
IC(o +it)|* > Ki1(log T) (o — 1)3.
If o
1 <o<2
" llogTy? =7 ="
then we obtain
O oy
in this region. We can extend this result to the region
C1 C1
l-—r <0<+ ——
(og7)? =7 =" " {log T’

and 1 < |Im(s)] < T, by using the mean value theorem. Indeed,
choose s’ such that s’ = ¢’ + it, with

Il —L
M (log T)?

Then
C(o" +it) — C(o+it) = O((o — ') log? T)

by an application of the mean value theorem and Exercise 4.2.5.
Thus, if ¢; is chosen sufficiently small, we obtain

()] > (log )"
g

Exercise 4.2.8 Let s = o +it, with 1 < |[t| < T. There is a constant
¢ > 0 such that

ORI
) - O(log”T)
for

C
- < < 2.
L gy =7
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We can now prove the prime number theorem in the following
form:

Theorem 4.2.9 Let
P(z) =Y Aln).

n<lz

Then
P(z)=z+0 (:z exp (_c(logx)l/lo))

for some positive constant c.

Proof. We have for z which is 1/2 more than a natural number,

S B SR
’/’(x)—zm./(a) C(s)sds

for any a > 1. We choose a = 1 + c/loggT, with T > 1 to be
determined later. By Theorem 4.1.4, we can replace the infinite line
integral by the finite line integral:

1 a+1T CI

zs
Vo) = g ) 9T

JFO(g1 (%)aA(n) min (1,T‘1 |1og %(_1» .

The O-term is estimated as follows:
ifn < $ormn > 32 then |log 2| > log 2, and the summation

corresponding to such n is bounded by
zt 1\ _ A[Z8 log® T
o(Fta-17") =0(==).

since

i Aln) < (a-1)71

n=1 ne
for any fixed a > 1. For § <n < 37“, we put z =1 — 2 and observe
that |z| < 1/2. Also,

2

z z
logZ = —log(l —2) = 24+ 2 4 ...
ogn og(l —z) z+2+ ,
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so that for |z| < 1/2,
]10 x‘>3||
- —1Z|-
gn — 4

Thus, for the summation corresponding to this range, we get the

estimate $ z
(log z) Z 2¢ TE P < T (log z)?
z/2<n<3z/2 "

since |z — n| ranges over —é—, %, -+, 5 + 5. Therefore, the O-term is

log? T zlog’z
a
O(a: T + T )
Now, —(’(s)/¢(s) has a simple pole at s = 1 with residue 1. By
Cauchy’s theorem,
1 a+1T C, s

27T’L —iT C (3);‘(13

= oo {4 BT+ ) - S0z s},

2me

where b =1 — @,—T—. The integrals in the above formula are easily
estimated using Exercise 4.2.8. Indeed,

1 b+iT ! a] 9 T
1 / o= ; g BT
2mi a+:T ¢ s T

with a similar estimate for

'277‘ - —Z(S)";ds
Also,
b—iT CI
/ (s ) ds < zPlog!® T.
b+1T C
Therefore,
a] 9T 2
Y(z)=z+ 0 (m__(;g__ +zPlogh® T + fﬂoﬁ—”) .

We choose T such that

2¢clog z = log!®
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The error term becomes
O(z exp(—c1 (log z)'/1?))

for some constant ¢; > 0. This completes the proof. O

In a later chapter we will see that this error term can be improved

to
) (w exp (—cz(log z)l/Z))

for some constant co > 0. This can be further improved but not
substantially. The Riemann hypothesis would give an estimate of

0(z?log? z).

4.3 Further Examples

The technique introduced in the last two sections can be used to
treat other questions. We illustrate this through some examples.

Example 4.3.1 Prove that

Zd2 ) log® -—-—a:Pg(loga:)+O( 1/2),

n<lc

where Ps(t) is a polynomial of degree 3 and d(n) denotes the number
of divisors of n.

Solution. By Exercise 1.2.8, we have

¢*s) _ =¥ (n)
¢(2s) —‘; ns

Thus, by Exercise 4.1.6 (with k£ = 3), we have

I e s = L[ e
3! Zd (n) log n 2w /(a) ¢(2s) s* ds

n<z

where a > 1. We first truncate the infinite line integral at R and
estimate the portion of the integral from —oo to —R and from R to
co. By Exercise 4.2.4, we have ¢*(s) = O([t|?), so that

1 C4(S) B 1 a+iR <4() z
2mi (23)34 * = omi a—ir C(2 )—d +O(R>
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Now let C be the rectangular contour joining a — iR, a +¢R, % +1R,
and %— —iR. By Cauchy’s theorem,
1 [¢Hs) 2 ¢H(s)z?

— T ds = Resyeq oms .
271 Jo C(2s) st s Ress—lC(23)34

Since .
((s) = S—:—I+60+C1(S— +---
it is easily seen that
4 s

% = zP3(log x)

for some polynomial P3(t) of degree 3. Now we can write

Res;—1

1 C4(s) z°
- “ds=V,+H, —H_—Vys,
27 Jo C(2s) st s 1/2

where L/24iR 4
1 S

aoo L SOF:
2mi Jorin  C(28) s*

and +iR 4
1 o11 S
=L ¢*(s) =° N
2mi Jo_ir ((2s) st

The horizontal integrals H+ can be bounded using Exercise 4.2.4
and Theorem 4.2.7 to give

0 z%log’ R .
R2logx
For the vertical integral V) 5, we have

V1/2 <K .’ISl/2.

Choosing a = 1 + 1/log z, we obtain that the sum in question is

zlog' R 1/2
zP3(logz) + O <R2 logac) +0 (m ) .

Choosing R = z gives an error term of O (z1/2) as stated. g
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Exercise 4.3.2 Suppose that for any € > 0, we have a, = O(nf).
Prove that for any ¢ > 1 and z not an integer,

1 c+iR f(s)xs pcte € logm
an = — = ds+0(=—)+0 ,
1%; 2wt Jo_ir S ( R ) ( R )
where
00 an
f(s) = prt
n=1

The Lindelof hypothesis is the assertion that for every e > 0,
¢(s) = O(t°) for Re(s) > 3. One can show that it follows from the
Riemann hypothesis. It is, however, a substantially weaker conjec-
ture, which still remains unproved.

Exercise 4.3.3 Assuming the Lindelb’f hypothesis, rove that for
any € > 0, prov at f
Z di(n) = zPy_1(log ) + O(xl/2 "f)7

n<z

where di(n) denotes the number of ways of writing n as a product of
k natural numbers.

Exercise 4.3.4 Show that

M@):=3 u(n)=0 (m exp (~c(1og a:)l/lo))

n<lzc
for some positive constant c.

Exercise 4.3.5 Let E(z) be the number of square-free n < z with
an even number of prime factors. Prove that

E(z) = iw +0 (x exp (*C(log x)l/lO))

——7(2

for some constant ¢ > 0.

4.4 Supplementary Problems

Exercise 4.4.1 Let \(n) be the Liouville function defined by \(n) =
(=1)4") where Q(n) is the total number of prime factors of n, counted
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with multiplicity. Show that

Y Aln) =0 (m exp (—c(log :n)l/m))

n<x

for some constant ¢ > 0.

Exercise 4.4.2 Show that

i p(n)

=1

3

converges for every s with Re(s) = 1.

Exercise 4.4.3 Show that

520 s +0 o (- )

n<z

for some constants B and ¢, with ¢ > 0. [This improves upon Exercise
3.1.7]

Exercise 4.4.4 Let f(s) = Y.,~, An/n® be a Dirichlet series abso-
lutely convergent for Re(s) > 1. Show that for any ¢ > 1,

> A =0(z9).

n<zr

Exercise 4.4.5 Define a, forn > 1 by

o
an, 1

nt o (3(s)

n=1

Z ap, =0 (:1: exp (—c(log z)l/w))
n<zc

for some positive constant c.

Prove that

Exercise 4.4.6 Prove that

> uln)d(n) =0 (T exp (—C(log ;z;)”“’))

n<zc

for some constant ¢ > 0.
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Exercise 4.4.7 If f(s) =Y., an/n® is a Dirichlet series converg-
ing absolutely for o = Re(s) = o,, show that

_ o+it _
Tlglc}ozT/ flo+it)ym°™dt = ay,.

Exercise 4.4.8 Suppose

s) == Zan/ns,
n=1

) = zbn/ns)
n=1

and f(s) = g(s) in a half-plane of absolute convergence. Then prove
that amy, = by, for all m.

Exercise 4.4.9 If

oo

1) =3 an/n*

n=1
converges absolutely for o = Re(s) > o,, show that

T |an12

1 12 >
Th—{goi—f |f(o +it)] dt—; e

Exercise 4.4.10 Let Q(z) be the number of square-free numbers less
than or equal to . Show that

Q(z) = C—E% +0 <$1/2 exp (—c(log $)1/1o)>

for some positive constant c.

Exercise 4.4.11 Let y(n) =[], - Show that

1
Z ()<oo

ny(n
n527

Exercise 4.4.12 Show that

Z—<<a:

n<a:
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Exercise 4.4.13 Deduce by partial summation from the previous ez-

ercise that {
Z — < logz.
= ¢(n)
Exercise 4.4.14 Prove that

Z ~clogz

n<z
for some positive constant c.

Exercise 4.4.15 (Perron’s formula) Let f(s) = Y oo & be a Dirich-

n=1 ns
let series absolutely convergent for Re(s) > 1. Show that for = not
an integer and o > 1,

Zan

n<z

1 o+iT

z’ 2\ [T\ . 1
=9 e f(s)—s—ds+0(z (—7;) |an| min (1’———Tllog%|>>'

n=1

Exercise 4.4.16 Suppose a, = O(nf) for any € > 0 in the previous
ezercise. Show that for x not an integer,

1 U+iT

s rote
Zan = —2‘% T f(S)?dS‘FO( T ) .

n<zc

Exercise 4.4.17 Let f(s) = Y o, an/n®, with ap = O(nf). Sup-
pose that
f(s) = ¢(s)*9(s),

where k is a natural number and g(s) is a Dirichlet series absolutely
convergent in Re(s) > 1 — 0 for some 0 < § < 1. Show that

S an ~ g(1)z(log 2) ™/ (k — 1)!

as T —r 00.
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Exercise 4.4.18 Let v(n) denote the number of distinct prime fac-
tors of n. Show that

Z 2,,(”) T lOg T
¢(2)

n<z

as T — o0.
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Functional Equations

In this chapter we will derive the functional equations of ((s) and
Dirichlet’s L(s, x). Our main tool is the Poisson summation formula
and the theory of Fourier transforms.

5.1 Poisson’s Summation Formula

Let us recall Fejér’s fundamental theorem concerning Fourier series.
Let f(z) be a function of a real variable that is bounded, measurable,
and periodic with period 1. The Fourier coefficients of f are, by
definition, given by

1
e [ ot
0

for each n € Z. The partial sums of the Fourier series of f are defined
as _
Sn(z) = Z cpe®™me,
In|<N
Let zop € R be such that the function f(z) admits left and right
limits:
f(zo£0) = hl_i)fé{rf(xo + h).
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Then Fejér proved

f(xo+0) + f(zo —0) im So(o) + -+ -+ Sn(zo)
2 "~ Nooo N+1

If f(z) is continuous at zo, and the partial sums Sy (zy) converge,
then

00
f(IEo) =co+ Z (cn627rim:o + c_ne—27rim:o)‘

n=1

When f(z) is continuous and Y% |c,| < oo, then the function is
represented by the absolutely convergent Fourier series

o
f(:l?) — 2%627”'111:.
—00
If F(z) is continuous such that

/oo |F(z)|dz < oo,

—00

then we define its Fourier transform by
A o0 .
F(u) = / F(z)e M=%y,
—0o0

It is also a continuous function of u. If

| 1l < o

—00

then we have the Fourier inversion formula,

F(z) = /00 F(u)e?™ gy,

—00
Thus, the Fourier transform of F(u) is F(—z).

Exercise 5.1.1 For Re(c) > 0, let F(z) = e~“l*l. Show that

~ 2¢
F e
(u) c? + 4n2y2

2

Exercise 5.1.2 For F(z) = e™™’ show that F(u) = e~™".
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Theorem 5.1.3 (Poisson summation formula) Let F € L'(R).
Suppose that the series

> F(n+v)

converges absolutely and uniformly in v, and that

Z |F(m)| < oo.

meZ

Z F(n+v) = Z F(n)e?™n,

nez nez

Then

Proof. The function
= Z F(n+v)

is a continuous function of v of period 1. The Fourier coefficients of
G are given by

1 -
Cn = /G(v) —2mimy g,

= Z/ (n + v)e 2 m dy
n+1

n€eZ

-y / F(z)e~2"m g

nez "

= / F(z)e ™M dy = F(m).

Since Y.z |F'(m)| < oo, we can represent G by its Fourier series
Z F(n + 1) Z F 27rznv
nez nez

as desired. O

Corollary 5.1.4 With F' as above,

nez nez
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Proof. Set v = 0 in the theorem. O

Exercise 5.1.5 With F as in Theorem 5.1.8, show that
v+n\ S omint
ZF( t ) =3 [t (nt)e2mm.
neL nez

Exercise 5.1.6 Show that

(e 9)

ec+1 2c
e —1 _Zc2+47r2n2'

—00

Exercise 5.1.7 Show that
Z e—(n+a)27r/z — 71/2 Ze-nzmﬂ—%rina
nez nez

for any a € R, and z > 0.
Setting @ = 0 in the previous exercise gives the following Theorem.

Theorem 5.1.8

—n2? _n?
Ze nw/z:$1/2ze n°re.

nez nez

5.2 The Riemann Zeta Function

We will now derive the functional equation of the Riemann zeta
function and its analytic continuation to the entire complex plane.
To this end, we introduce the #-function

9(2’) — Z e7ri'n,2z
nez

for z € C, with Im(z) > 0. If we put z = 1y and set w(y) = 6(1y),
Theorem 5.1.8 gives us the functional equation:

w(l/z) = z1%w(z).

Riemann derives his functional equation from this fact. Recall that
the I'-function is given by the integral

I'(s) = / e tt51dt,
0
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valid for Re(s) > 0. Thus
oo
I‘(%) - /0 et dt.
T, we get

7'('_3/21—‘(%)”—3 _ /\mm%_le_nZﬂxdm.
0

Hence, for ¢ > 1, we can sum both sides of the above equation over
all positive integers n, to obtain

r(2)ee) = [ ot (e )i

the inversion being justified by the absolute convergence of the right-
hand side. Indeed, notice that

Putting ¢ = n?

o0

Ze—nzﬂz &L e ™,
n=1
Observing that
iC_HZM: _ w(:c) -1
n=1 2
we get
o
—s/2p (8 _ s$_1 w(ﬂ)) -1
I‘(2)C(s) /0 x?2 ( 5 dz
Let us put
w(z) -1

and write the right-hand side as
o0 S
/ 2 W (z)dz.
0

We decompose this as

00 1
/ 2 W (z)dz + / 27 W (z)dz
1 0
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and make the change of variables z — 1/z in the second integral to
Bet o d o 1 d
[Tew@ T [w(i)e i
1 z 1 z x

1\ _w/z)-1_ @) -1 _ 1 1,5 4
W(ZE)— 2 2 = T W ()

by Theorem 5.1.8. Therefore,

Now,

o 1 _gdl' _ ®© 1 1/2 1/2 _gd.’l?
/1 W(;)m 2~ = /1 (_§+ g+ W(z))m 2 —
1 1 ® 1o
= ——- +/ z3 W(m)d—x
s s—1 1 T
Putting this together proves that
—s/2p(S _ 1 *® s 1=s d_-’E
m F(2)C(s) s(s—1) +/1 W(z) (mz o ) z

for Re(s) > 1. However, the integral on the right-hand side converges
absolutely for all s € C, since W(z) = O(e™"*) as z — oo. This gives
the analytic continuation and functional equation for {(s):

Theorem 5.2.1 We have

—s s 1 * s 1=s dz
I(3)0 = T +/1 W) (of +23)
for all s € C. Moreover, if we define
1
£(s) = 55(s = D20 () (s),

then £(s) is entire and &(1 — s) = &(s).
Exercise 5.2.2 Show that
I(s+1) =sI'(s)

for Re(s) > 0 and that this functional equation can be used to extend
I'(s) as a meromorphic function for all s € C with only simple poles
at s =0,-1,-2,....
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Exercise 5.2.3 Show that {(s) has simple zeros at s = —2n, for n
a positive integer.

Exercise 5.2.4 Prove that ((0) = —1/2.

Exercise 5.2.5 Show that ((s) # 0 for any real s satisfying
0<s<1.

5.3 Gauss Sums

For any character x (mod g), the Gauss sum 7(x) is defined by

rm=inm#ﬁ,

m=1

where e(t) = e?™. The Gauss sum plays a significant role in the
functional equation of Dirichlet L-functions.

Before we proceed, we classify Dirichlet characters (modgq) into
two types: primitive and imprimitive, according as its period is q or
less than gq.

Example 5.3.1 If (n,q) =1, then

on putting h = mn~! (mod ¢), which we can do, since (n,q) =1. O

Exercise 5.3.2 If x is a primitive, nonprincipal character (mod gq),
show that

wmm=imm4%)

m=1

if (n,q) > 1.
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Theorem 5.3.3 If x is a primitive character (mod q), then |7(x)| =
1/2
q'’e.

Proof. By Exercise 5.3.2,

q
X) = Z;z(m)e(ﬂqﬁ).

m=1

Thus

MR = 3 Y o ma)e(P=)),

mi=1mo=1 q

Summing over n for 1 < n < g gives

@I (X)° = a¢(a),

so that |7(x)|? = ¢, as required. a

5.4 Dirichlet L-functions

The functional equation for a Dirichlet L-function L(s,x) can be
derived easily by means of the Poisson summation formula. The dis-
cussion splits according as x is an even or odd character, that is,
according as x(—1) =1 or —1, respectively.

We discuss the even case first and relegate the odd case to the
exercises. Thus, suppose x(—1) = 1. We have

7r'3/2qs/2f(f)n_s = /ooe RETL IS futed d:v
2 0 $

We multiply this equation by x(n) and sum over n to get

~s/2g/2p (& - dz
(31000 = o8 (5 o)
for Re(s) > 1. Since x(—1) = 1 and x(0) = 0, we rewrite this as

/ 20w, 2,
0

N =
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where
o0

b(ex)= Y x(n)e ™.

n=—oo
We can derive a functional equation for 6(z, x) by noting that upon
multiplication of the Gauss sum 7(x), we get

q 00
T(—X—)0(17X) = Z —X.(m) Z e_nzﬂz/q+27l'imn/q‘

m=1 n=—oo
By Exercise 5.1.7, the inner sum is equal to

oo

(q/2)/? Y e-(wim/ayma/z,
so that
q o0 ,
T(Y)e(w,x) = (q/m)1/2ZY(m) Z e—(nq+m) 7/zq
m=1 n=-—oo
= (g/2)'* Y x()en/m
l=—00

= (¢/2)"*6(z"",%).

Thus, as before, we write the integral for L(s, x) as

1 o0 s d.’E 1 o s dx
- 5 bt i ~30(z L. )=
2A zze(an) T +2[ T 2 ("E 7X) T
1 0o dz q1/2 o dz
- - 5 @ 9 0(z, %) 2Z.
2/1 226(z,X)— +2T(7)/1 7% 0(z,%)—

The right-hand side is regular for all s € C, since 0(z, x) = O(e™™).
Also, if we replace s by 1 — s and x by %, the expression becomes

1/2 ® dr 1 [ 1-s dx
q s _

x20(x — 4+ = T 0(x _

2T(X) [ 2 ( 7X) 2 A 2 ( ,X) b

which is the previous expression multiplied by ¢'/2/7(x), since |7(x)|? =
g. This proves the following theorem.
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Theorem 5.4.1 Suppose x(—1) = 1. Set
— ——8/2 5/2 _5_
E(s,) = 7~*/%¢°r (3) L(s, ).
Then &(s,x) in entire and
f(s,X) = wxé(]- - S,Y),

where wy, = 7(x)/+/4-

Exercise 5.4.2 Suppose x(—1) = 1. Show that L(s,x) has simple
zeros at s = —2,—4,—6,....

Below, we will derive the functional equation in the case x(—1) =
—1. Note that the above argument fails because for now, 0(z, ) is
identically zero.

Exercise 5.4.3 Prove that

,r—(s+1)/2q(s+1)/2p(__3 + l)n—s = / " pemie/ag 42
2 0 T

and hence deduce that

o]
P () L0 = 5 [ omna P L,
2 2 J

x

where -
61(z,x) = Y nx(n)e ™/,
n=—00
Exercise 5.4.4 Prove that
o0 o0
S nemrrslasaminns = (g2 37 (g D)t
n=—oo n=-—oo q

Exercise 5.4.5 Prove that for x(—1) = -1, if

_ —s/2 s/op (St
€(s,x) = /%0 (2= ) L(s, x),
then &(s, x) is entire and

£(s,x) = wx¢(1 - ,X),

where w,, = 7(x)/ig"/?.
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5.5 Supplementary Problems

Exercise 5.5.1 Let
o0
fly) = ane™>™
n=1

converge for y > 0. Suppose that for some w € Z,

F(1)y) = (=1)"Y"f(y),

and that a, = O(n°) for some constant ¢ > 0. Let

o0
L¢(s) = Zann‘s.
n=1

Show that (2m)~°T'(s)L(s) extends to an entire function and satis-
fies the functional equation

(27)°T(s)L(s) = (—=1)“(27) "I (r — s)L(r — ).
Exercise 5.5.2 Let

o0
o) = Y e
n=0

converge for y > 0. Suppose that for some w € Z,

9(1/y) = (=1)"y"g(y)

and that an, = O(n®) for some constant ¢ > 0. Let L¢(s) = Y o> | apn™5.
Show that (2m)~°T'(s)Ls(s) eztends to a meromorphic function with
at most simple poles at s = 0 and s = r and satisfies the functional

equation
(2m)~°T'(s)Ls(s) = (=1)*(2m)"~°T'(r — s)Ls(r —s).
Exercise 5.5.3 Let

_fe-[agl-5 f z¢7Z,
‘I’("’)“{o i zez

Show that
B(z) + Z e(mz) < 1

2mim | ~ 2rM||z|’
0<|m|<M

where e(t) = e*™ and ||z|| denotes the distance from z to the nearest
integer.
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Exercise 5.5.4 Let f(z) be a differentiable function on [0,1] satis-
fying |f'(z)| < K. Show that

3 /f Jemajas — 1O S0  Kloght

M
|m|<M

Deduce that

[ _fO+f@)
;/0 f(z)e(mz)dz = —

Exercise 5.5.5 By using the previous ezercise with f(z) = x2, de-

duce that
o0
-——1 =
Z m2

m=1

2

Exercise 5.5.6 (Pdlya - Vinogradov inequality) Let x be a primitive
character mod q. Show that for ¢ > 1,

> x(n)| < ¢ logg.

n<z
Exercise 5.5.7 Show that if x is a primitive character (mod q), then
1/2 lo
n z
n<z
for any x > 1 and ¢ > 1.

Exercise 5.5.8 Prove that

> L(1,x) = ¢(q) + O(q"/* log q),
XFX0

where the summation is over all nontrivial characters (modgq).
Exercise 5.5.9 For any s € C with Re(s) > 0, show that for any

z>1,
<« x(n) |s|g*/%log g
$,X) = Z e +0 (_——aac" ,

n<lz

where x is a nontrivial character mod q and o = Re(s).
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Exercise 5.5.10 Prove that for any o > 1/2,

> L(o,x) = plg) + O(¢*/*),
X#X0

where the sum is over all nontrivial characters (mod q).

Exercise 5.5.11 Let By, (z) denote the nth Bernoulli polynomial in-
‘troduced in Chapter 2. For n > 2, show that

B, (z e(mzx
- 2 (27(m'm))n‘
m#0

Exercise 5.5.12 Let f(z) be differentiable on [A, B] and satisfy for
some constant K, |f'(z)| < K for all z € [A, B]. Show that

B

00 B
Sy = Y /A f(2)e(ma)dz,

n=A

where the dash on the summation means that the end-terms are re-
placed by f(A)/2 and f(B)/2. (Hint: Use Exercise 5.5.4.)

Exercise 5.5.13 Apply the previous ezercise to each of the func-
tions f(z) = cos(2rz?/N) and f(z) = sin(2rz?/N) to deduce that

Nt (1+4)NY2 if N =0 (mod4),
S:Ze(n—z): N1/2 if N =1 (mod4),
— \N 0 if N =2 (mod4),
iN'/?2 if N =3 (mod4).

Exercise 5.5.14 Let x be a nontrivial quadratic character modp
with p prime. Show that

X (™) VP
T(x)—n;x(m)e(;)—{ o

From this result we can deduce the law of quadratic reciprocity as
follows.

Let p and g be distinct odd primes. Let 7(x) be the Gauss sum for
x the quadratic character modulo p. Using the above formula and
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(a/q) = ald=1/2 (mod q) we get
T = (<) (7))

= (=1)P~D12p(—1)P-1(a-1D/4p(a-1)/2

(_1)(p—1)/2+(P—1)(q—1)/4p (g) (mod q),

On the other hand, using the multinomial theorem, we obtain

(0™ = 7007007 = () (Z (g) e(na/p) + f(e(l/p))> ,

n

where f(z) is a polynomial with integer coefficients divisible by g.
Using Exercise 5.3.2 we get

) (2) etnarm) = (2) 7t

So

()7 = (I%) (—1)®2p 1 h(e(1/p))

for another polynomial h(z) with integer coefficients divisible by gq.
Collecting same powers of e(1/p) and using the fact that 1,e(1/p),
e(2/p), ..., e((p—2)/p) are linearly independent, since 1 + z + 2% +
.-+ + P71 is irreducible (see, for example, [EM, p. 37 and p. 183])
we get

from which it follows easily that

(9)- @)

Exercise 5.5.15 Let ¢(s) = (2m)~°I'(s)¢(s)¢(s+1). Show that ¢(—s) =
$(s)-
Exercise 5.5.16 Show that ¢(s) in Ezercise 5.5.15 has a double pole

at s = 0 and simple poles at s = £1. Show further that Res;=14(s) =
7/12 and Ress—_14(s) = —7/12.
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Exercise 5.5.17 Show that if o(n) =}, d, then

and that

Y —e = = 27 T(s)¢(s)C(s + 1)ds.

Exercise 5.5.18 Show that

3

n 12z 12

n=1

Exercise 5.5.19 For a and b coprime integers, define

b—1
ay _ 2mij2a/b
c(3) 2 '
J=0
Let q be prime and (p,q) = 1. Show that

2 1

lim V20t + ﬂ) =-c(-9).
t—0 q q q

Exercise 5.5.20 Let r = p/q. Show that

sy t+t2ir0(t+12ir> N (i\;p_(?c(%)’

with notation as in the previous ezxercise.

ZO’( ) —nz:l____+ 10g$+i0(n)e—47r2n/z
n=1 n '

83

Exercise 5.5.21 Deduce from the previous ezercise the law of quad-

ratic reciprocity

BIORE

for odd primes p and q, and where (%) denotes the Legendre symbol.

Exercise 5.5.22 Suppose that f(s) is an entire function satisfying

the functional equation
AT(s)f(s) = AY°T(1 — s)f(1 - s).
Show that if f(1/2) # 0, then

f’(%) =—-f(1/2) (logA+ 1;((11//22))> .




§
Hadamard Products

An entire function f(z) is said to be of finite order if for some
a > 0, we have

flz)=0 (elzl")

as |z| — oo. If & = 0, then f(z) is constant by Liouville’s theorem.
The infimum of the numbers a such that the above estimate holds
is called the order of f(z).

In the 1890s, Hadamard developed the theory of entire functions
of finite order. He showed that, very much like polynomials, they can
be factored into an infinite product over the zeros of f(z).

In this chapter we will derive this factorization theorem of Hadamard
for entire functions of order 1 and then apply it to derive a wider
zero free region for ((s).

6.1 Jensen’s Theorem

Let f(z) be an entire function of finite order 8. Jensen’s theorem
relates 3 to the distribution of the zeros of f(z).

Example 6.1.1 Show that an entire function f(z) of finite order
without any zeros must be of the form f(z) = €9, where g(2) is a
polynomial and = degg.
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Solution.
Let h(z) = log f(z) — log f(0). Then h(z) is entire, since f(z) has
no zeros. Also, for any € > 0,

Reh(z) = log|f(z)| < RP*e.
Writing
(o)
h(z) =) (an + iby)2"

n=0

with a,, b, € R, we see that for z = Re',

Re(h(z)) = Z anR" cosnf — Z b, R" sinnf.

n=0 n=0

By Fourier analysis, we get

onlf < [ [ (1 (e .

Since h(0) = 0, we have ag = 0, and therefore

/O " Re ( (Re?)) s =o.

Observe that for z € R, we have

2z if x>0,
lz| +z =

0 if z<O.
Hence
2T ' _
lan|R" < / {1 Re(h(Re'))| + Reh(Re“’)}de
0
& RPte

Letting R — oo yields a, =0 ifn > . O

Notice that in this example the same result holds if the estimate

B+e
£ (2)] < e

holds for |z| = R; and R; is a sequence tending to infinity.
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Theorem 6.1.2 (Jensen’s theorem) Let f(2) be an entire func-
tion of order 8 such that f(0) # 0. If z1,22,... ,2, are the zeros of
f(z) in |z| < R, counted with multiplicity, then

n

1 27 0 R
— 1 Re")|do =1 0 log | —— ).
5 [, gl (Re)ldb = log 0]+ 1og (")

Proof. We may assume, without loss of generality, that f(0) = 1.
Also, it is clear that if the theorem is true for functions g and h,
that it is also true for the product gh. Thus, it suffices to prove it
for functions with either no zero or one zero in |z| < R. Indeed, if
f has no zeros in |z| < R, the right-hand side is zero. The left-hand
side is
[ togfe) %,
™ |z|=R z

which by Cauchy’s theorem is zero. Taking real parts gives the de-
sired result.

If f has one zero z = z; in |z| < R, we consider the contour
|z| = R taken in the counterclockwise direction and cut it from z;
to the boundary. We deform the contour so that we go around z;
in a clockwise direction along a circle of radius e (say). Then, by
Cauchy’s theorem with g(z) = log f(z),

1 dz
0=5—~ g g(z)—z—
where C is the contour given above.

Since the argument changes by —277 when ¢(z) goes around the
zero z = z1, we see that as e — 0, we deduce

21 .
5 | toglf(Relas = tog
2T 0 lzll

as desired. This completes the proof. O

An alternative proof of Jensen’s theorem can be given that avoids
the use of cutting the plane. One considers

s = BE=2)
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Then f(z) is regular for |z| < R. Moreover, |f(z)] =1 on |z| = R,
and |f(0)| = |z1]/R, as a simple calculation shows. Jensen’s theorem
is easily verified for this choice of f. But any holomorphic function
on |z| < R can be written as a function with no zeros in |z| < R and
a product of functions of the form

R(z — z)
R2 -7z~

Now Jensen’s theorem easily follows.

Corollary 6.1.3 Let f be as in Theorem 6.1.2. Then

og (e ) < max g (2)| - og 7O

lznl ) T izl=R
Proof. This is clear from Jensen’s theorem. O

Now define ns(r) := n(r) to be the number of zeros of f in |z| < 7.

Exercise 6.1.4 Show that

Rn'r‘ T
/0 (r)d < max log|f(z)| — log |f(0)],

T |z|=R
with f as in Jensen’s theorem.

Exercise 6.1.5 If f(z) is of order B, show that ns(r) = O(rf*e),
for any € > 0.

Exercise 6.1.6 Let f(z) be an entire function of order B. Show that

00
>l
n=1

converges for any € > 0 (Here, we have indexed the zeros z; so that
21| < lz2f < ---)

6.2 Entire Functions of Order 1

We will now derive a factorization theorem for entire functions of
order 1. A similar result holds for entire functions of higher order,
and we relegate their study to the supplementary problems.
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Theorem 6.2.1 Let f(z) be an entire function of order 1 with ze-
T0S 21,29,... arranged so that |z1| < |z2] < --- and repeated with
appropriate multiplicity. Then f can be written as

00
f(Z) — 6A+Bz H (1 _ j:_)ez/zn’
n=1 n

where A and B are constants.

Proof. The product

py =TT 1 2o

n=1
converges absolutely for all z, since
(1-z)ef=1-2%+--

and by Exercise 6.1.6. Thus, P(z) represents an entire function. If
we write

f(z) = P(2)F(2),

then F(z) is an entire function without zeros. If F' were of finite
order, we could conclude by Example 6.1.1 that F(z) = e9(%), where
g(z) is a polynomial.

By the remark after Example 6.1.1, it suffices to show tha

|F(2)| < ™™
to deduce that F(z) = e9(*) where g(2) is of the form A + Bz for

certain constants A and B.
To this end, we will choose R; satisfying

[B: = lzal| > el 2

for all n. This can be done, since the total measure of the intervals
(|2a] = |2a]72, |2n| + 2] %) is bounded by

o0
2 Z |2n| ™2 < 00,
n=1

since f(z) has order 1.
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We write
P(z) = P1(2) P2(2) P3(2),

where in Py, |z, < 3R;, in Py, 3R; < |2,| < 2R;, and in P, |2,| >
2R;. For the factors of P; we have for |z| = R;,

0-2) 1=

_ 1) e~ 12l/lznl 5 g=Riflznl.

2n
Since
IS TR

> leal™ < (GR) X leal

|zl <3 R n=1
we get

|P1(2)| > exp(—R;*).

For P»(z),

> e 2|z — 2,|/2R; > R?

(-2~
Zn

by the way we have chosen R;.
Since n(R;) = O(R}T®), we get

IPo(2)] > (R7®)™™ 2 exp(—ci REF).

Finally, for P;(z), we have |z/2,| < 1/2 so that
1- 2 ) e#lon
Zn
o0

D 1zl < QR)THED gy

|zn|>2R n=1

S o—C2R?/|zn]?

and

Thus, on |z| = R; we have
|P(2)| > exp(~R'*"¥),

so that

|F(2)| < exp(R}**).
Hence, F(z) = e9(), where g(z) is a polynomial of degree at
most 1. (]
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6.3 The Gamma Function

We will prove that 1/T'(z) is an entire function of order 1 and derive
its Hadamard factorization.

Exercise 6.3.1 Show that
/°° v dy o
o l+v  sinmz

Exercise 6.3.2 Show that

for0 <z <1

/2
[(z)['(y) = 2T(z +v) /0 (cos 0)**(sinf)#~1dp

for z,y > 0.
Exercise 6.3.3 Show that

1
I'(z)'(y) =T (z + y)/0 ATTHL =AYy

(The integral is denoted B(z,y) and called the beta function.)

Exercise 6.3.4 Prove that
T

P(2)T(1 - z) =

sin Tz

for0 <z <1.

Exercise 6.3.5 Prove that

Exercise 6.3.6 (Legendre’s duplication formula) Show that

F(Zx)I‘(%) = 25710 (@)T (2 + %)

for x > 0.

Exercise 6.3.7 Let ¢ be a positive constant. Show that as x — 00,

I'(z 4 ¢) ~ z°T(z).
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Exercise 6.3.8 (Stirling’s formula) Show that
I'(z) ~ e %z /22
as T — 00.

Exercise 6.3.9 Show that 1/T(2) is an entire function with simple
zeros at z =0,—-1,—-2,....

Exercise 6.3.10 Show that for some constant K,
I'(2) 1 dt
= [ {1-a-p"}= -k
I'(2) /0 { ( ) t
Exercise 6.3.11 Show that for z not a negative integer,

I'(z) _
I'(z) =Z(n-1|—1 __n-ll—z)_K

n=0

for some constant K.

Exercise 6.3.12 Derive the Hadamard factorization of 1/I'(z):

1 ez ﬁ (1 + —z-)e_z/"
['(2) n ’
n=1
where v denotes Euler’s constant.
Exercise 6.3.13 Show that

1 1 00 — 1
g (2) = (x = 5) og 2+ jogr+ [ L

Exercise 6.3.14 For any 6 > 0, show that

log () = (= - %) logz — 2+ %mzwo(%)

uniformly for —m+0 <argz <7 — 4.

Exercise 6.3.15 If o is fized, and |t| — oo, show that
ID(0 + it)| ~ e~ 2|t~ 2 /27,

Exercise 6.3.16 Show that 1/T'(z) is of order 1.

Exercise 6.3.17 Show that

I'(z
F((—z:)l = logz+0(|i—l)

for |z| = oo in the sector —m+0 < argz < m— 4§ for any fized 6 > 0.



6.4 Infinite Products for £(s) and £(s, x) 93
6.4 Infinite Products for £(s) and £(s, x)

In this section we will establish that £(s) and £(s, x) are entire func-
tions of order 1. Then we will derive their Hadamard factorizations.
Recall that

1 s
£(s) = 55(s = D2 (5)¢(6)
and that when x is a primitive character (mod g),

£(5,%) = a/m) T (222) Lis, ),

where a = 0 or 1 according as x(—1) =1 or —1.

Exercise 6.4.1 Show that for some constant c,

[€(s)] < exp(c|s|log|s])
as |s| = oo. Conclude that &(s) has order 1.

Exercise 6.4.2 Prove that ((s) has infinitely many zeros in
0 < Re(s) < 1.

Exercise 6.4.3 Show that

f(s) _ eA-i-Bs H (1 _ f)(es/p7

s p

where the product is over the nontrivial zeroes of ((s) in the region
0 <Re(s) <1 and A= —log2, B=—v/2—1+ ;log4n, where v is
Euler’s constant.

Exercise 6.4.4 Let x be a primitive character (mod q). Show that
(s, x) is an entire function of order 1.

Exercise 6.4.5 Show that L(s,x) has infinitely many zeros in
0 < Re(s) <1 and that

£(s,x) = eA+BsH (1 _ %)es/",
p

where the product is over the nontrivial zeros of L(s, x)-
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Exercise 6.4.6 For A and B occurring in the previous ezercise,
show that
e’ = ¢£(0,x)

Re(B) = — ZRe (%),
p

where the sum is over the nontrivial zeros p of L(s,x).

and that

6.5 Zero-Free Regions for {(s) and L(s, x)

In Exercise 3.2.5 we proved the nonvanishing of ((s) for Re(s) = 1. A
similar deduction was made for L(s, x) in Exercise 3.2.12. Using the
Hadamard factorization for {(s) and &(s, x), we will derive a wider
zero-free region.

The starting point is

¢'(s)\ _ x= A(n)cos(tlogn)
_Re(((s))—nzz:1 ne ’

where, following custom, we write s = o + it.
Exercise 6.5.1 Show that

(o) (o +it) (o +2it)
o 4R (orig) R (o) 20

forte R and o > 1.

Exercise 6.5.2 For 1 < o < 2, show that

o) 1

(o) o-1

+A

for some constant A.

Exercise 6.5.3 Prove that

—Re(cl(s))<Alog]tj—ZRe< ! +1)
p

(s) s—p p

for1<o<2and|t| > 2.
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Exercise 6.5.4 Show that

s—p p
Deduce that ¢(s)
S
- Al
Re(((s)) < Alog |t]

for1<o <2 |t >2.

Exercise 6.5.5 Let p = 3+ iy be any nontrivial zero of ((s). Show
that for |t| > 2,

C’(a+it)) 1

—Re(c(a+it) < Alogli] - ——.

Theorem 6.5.6 There exists a constant ¢ > 0 such that ((s) has
no zero in the region

Proof. By Exercise 6.5.9,

¢'(o +1t) 1
—Re (m) < Ajlog |t| — m

We also know, by Exercises 6.5.2 and 6.5.4, that

(o) 1
- (o) < ;_—1 + Az

and
¢'(o + 2it)

C(o + 2it)

Inserting these inequalities into

—Re( ) < Aslog [t].

-3

¢'(o) ('(o +it) ('(o + 2t)
(o) —4Re(c(a:i;)) —Re(((or—_:%:)) 20

(Exercise 6.5.1), we obtain

4 3
—— + Alog |t
a—-ﬂ<a—1+ og |t
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for some constant A. Taking o =1+ ¢/ log || gives

40

Bl - ,
log|t| (3 + Ad)logl|t]

so that if d is sufficiently small, we get

B <1

C
log ||

for some suitable positive constant c. O

Corollary 6.5.7 There ezists a constant ¢ > 0 such that ((s) has
no zero in the region

1— C
0 log(lt|+2)

Proof. The region o > 1, |t| < 2 contains no zeros of {(s). Thus,
there must be a constant ¢; > 0 such that {(s) has no zeros in
0 >1—¢; and |¢| < 2. Combining such a region with the zero-free
region provided by the theorem gives the result. O

Exercise 6.5.8 Show that

“Re (%’(%)) < Re (ﬁ) + et log(|t] + 2)

for some constant ¢c; >0 and o > 1.

In the following exercises we will derive analogous results for the
Dirichlet L-functions L(s, x).

Exercise 6.5.9 Suppose that x is a primitive character (mod q) sat-
isfying x2 # Xxo. Show that there is a constant ¢ > 0 such that L(s, x)
has no zero in the region

(&

o>1— —u
log(q|t| +2)

Exercise 6.5.10 Show that the previous result remains valid when
X s a nonreal imprimitive character.

We now proceed to extend the previous results for x? = xg. Let
us first observe that

Doxo) @)

L(37X0) C(S)
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for o > 1. By Exercise 6.5.8,

~Re (%) < Re (s%) + e log([t] + 2).

Hence, if x* = xo,

L' (o + 2it, XQ))

_Re(ua+2mxa

1
e (m) + co log(q(|t] + 2)).

When we insert this estimate into our previous calculations, we ob-
tain

4
<

o—p U_1+Re(

m) + czlog(q(|v| + 2)).

Let us write £ for log(g(|t| +2)). Taking 0 =1+ /L and assuming
v > 0/ L gives

4 <%+—£—+c£
o—B 6 55 7

so that 4 P
1—-— 3% 2

A<l 5a0L

Hence if § is sufficiently small in relation to c3, we get the following:

Theorem 6.5.11 There exists a constant ¢ > 0 such that if 0 <
§ < ¢ an