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Like fire in a piece of flint, knowledge exists in the mind. 
Suggestion is the friction which brings it out. 

- Vivekananda 



Preface 

"In order to become proficient in mathematics, or in any subject," 
writes Andre Weil, "the student must realize that most topics in­
volve only a small number of basic ideas." After learning these basic 
concepts and theorems, the student should "drill in routine exercises, 
by which the necessary reflexes in handling such concepts may be ac­
quired. . .. There can be no real understanding of the basic concepts 
of a mathematical theory without an ability to use them intelligently 
and apply them to specific problems." Weil's insightfulobservation 
becomes especially important at the graduate and research level. It 
is the viewpoint of this book. Our goal is to acquaint the student 
with the methods of analytic number theory as rapidly as possible 
through examples and exercises. 

Any landmark theorem opens up a method of attacking other 
problems. Unless the student is able to sift out from the mass of 
theory the underlying techniques, his or her understanding will only 
be academic and not that of a participant in research. The prime 
number theorem has given rise to the rich Tauberian theory and 
a general method of Dirichlet series with which one can study the 
asymptotics of sequences. It has also motivated the development of 
sieve methods. We focus on this theme in the book. We also touch 
upon the emerging Selberg theory (in Chapter 8) and p-adic analytic 
number theory (in Chapter 10). 
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This book is a collection of about five hundred problems in analytic 
number theory with the singular purpose of training the beginning 
graduate student in some of its significant techniques. As such, it 
is expected that the student has had at least a semester course in 
each ofreal and complex analysis. The problems have been organized 
with the purpose of self-instruction. Those who exercise their men­
tal muscles by grappling with these problems on a daily basis will 
develop not only a knowledge of analytic number theory but also the 
discipline needed for self-instruction, which is indispensable at the 
research level. 

The book is ideal for a first course in analytic number theory 
either at the senior undergraduate level or the graduate level. There 
are several ways to give such a course. An introductory course at the 
senior undergraduate level can focus on chapters 1, 2, 3, 9, and 10. 
A beginning graduate course can in addition cover chapters 4, 5, and 
8. An intense graduate course can easily cover the entire text in one 
semester, relegating some of the routine chapters such as chapters 
6, 7, and 10 to student presentations. Or one can take up a chapter 
a week during a semester course with the instructor focusing on the 
main theorems and illustrating them with a few worked examples. 

In the course of training students for graduate research, I found 
it tedious to keep repeating the cyclic pattern of courses in analytic 
and algebraic number theory. This book, along with my other book 
"Problems in Algebraic Number Theory" (written jointly with J. 
Esmonde), which appears as Graduate Texts in Mathematics, Vol. 
190, are intended to enable the student gain a quick initiation into 
the beautiful subject of number theory. No doubt, many important 
topics have been left out. Nevertheless, the material included here 
is a "basic tool kit" for the number theorist and so me of the harder 
exercises reveal the subtle "tricks of the trade." 

U nless the mi nd is challenged, it does not perform. The student is 
therefore advised to work through the quest ions with some attention 
to the time factor. "Work expands to fill the time allotted to it" 
and so if no upper limit is assigned, the mind does not get focused. 
There is no universal rule on how long one should work on a problem. 
However, it is a well-known fact that self-discipline, whatever shape 
it may take, opens the door for inspiration. If the mental muscles are 
exercised in this fashion, the nuances of the solution become clearer 
and significant. In this way, it is hoped that many, who do not have 
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access to an "extern al teacher" will benefit by the approach of this 
text and awaken their "internal teacher." 

Princeton, November 1999 M. Ram Murty 
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Part I 

Problems 



1 
Arithmetic Functions 

An arithmetic function f is a complex-valued function defined on 
the natural numbers. Such an f is called an additive function if 

f(mn) = f(m) + f(n) (1.1) 

whenever m and n are coprime. If (1.1) hülds für all m, n, then f 
is called completely additive. A multiplicative functiün is an 
arithmetic function f satisfying f(l) = 1 and 

f(mn) = f(m)f(n) (1.2) 

whenever m and n are coprime. If (1.2) holds for all m, n, then f is 
called completely multiplicative. 

Let v(n) denote the number of distinct prime divisors of n. Let 
n( n) be the number of prime divisors of n counted with multiplicity. 
Then v and n are examples of additive functions. Moreover, n is 
completely additive, whereas v is not. 

Let s E ce and consider the divisor functions 
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where the summation is over the sth powers of the divisors of n. 
The special case s = 0 gives the number of divisors of n, usually 
denoted by d(n). It is not difficult to see that for each s E ce, O"s(n) 
is a multiplicative function that is not completely multiplicative. We 
also have a tendency to use the letter p to denote a prime number. 

An important multiplicative function is the Möbius function, 
defined by 

(n) = {(_l)V(n) ifn is square-free, 
p, 0 otherwise. 

The Euler totient function given by 

~(n) = n· II (1- ~) 
pln 

is another well-known multiplicative function which enumerates the 
number of coprime residue classes (mod n). 

The von Mangoldt function, defined by 

A(n) = {lOgp if n = ~Q for some Cl! ~ 1, 
o otherwzse, 

is neither additive nor multiplicative. Still, it plays a central role in 
the study of the distribution of prime numbers. 

1.1 The Möbius Inversion Formula and 
Applications 

Exercise 1.1.1 Prove that 

1 if n = 1, 

o otherwise. 

Exercise 1.1.2 (The Möbius inversion formula) Show that 

f(n) = z=g(d) 
dln 

if and only if 
g(n) = z= p,(d)f(n/ d). 

dln 
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Exercise 1.1.3 Show that 

L'P(d) = n. 
dln 

Exercise 1.1.4 Show that 

'P(n) _ ~ J-L(d) 
----;;:- - L.; d· 

dln 

Exercise 1.1.5 Let f be multiplicative. Suppose that 

is the unique ]actorization 0] n into powers 0] distinct primes. Show 

that 
L f(d) = II (1 + f(P) + f(p2) + ... + f(pQ))· 

dln palln 

Deduce that the ]unction g( n) = L.dln f (d) is also multiplicative. The 
notation pll:lln means that pQ is the exact power of p dividing n. 

Exercise 1.1.6 Show that 

Deduce that 

LA(d) = logn. 
dln 

A(n) = - L J-L(d) log d. 
dln 

Exercise 1.1. 7 Show that 

if n is square-]ree, 

otherwise. 

Exercise 1.1.8 Show that for any natural number k, 

if n is kth power-free, 

otherwise. 



6 1. Arithmetic Functions 

Exercise 1.1.9 If for alt positive x, 

G(x) = LF(~), 
n<x 

show that 

F(x) = L JL(n)G(~) 
n<x 

and conversely. 

Exercise 1.1.10 Suppose that 

00 

Ld3(k)lf(kx)1 < 00, 

k=l 

where d3(k) denotes the number of factorizations of k as a product 
three numbers. Show that if 

00 

g(x) = L f(mx), 
m=l 

then 
00 

f(x) = L JL(n)g(nx) 
n=l 

and conversely. 

Exercise 1.1.11 Let A(n) denote Liouville'sfunction given by A(n) = 
(-1 )O(n), where O( n) is the total number (counting multiplicity) of 
prime factors of n. Show that 

LA(d) = { 1 
dln 0 

if n is a square, 

otherwise. 

Exercise 1.1.12 (Ramanujan sums) The Ramanujan sum en(m) is 
defined as 

en(m) = L e(h;:), 

where e(t) = e27rit • Show that 

l<h<n 
(h~nF=l 

en(m) = L dJL(n/d). 
dl(m,n) 
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Exercise 1.1.13 Show that 

JL(n) = L e(~). 
l<h<n 
(h-;-nF=l 

Exercise 1.1.14 Suppose (n, m) = 8. Show that 

en(m) = JL(nj8)cp(n)jcp(nj8). 

1.2 Formal Dirichlet Series 

If f is an arithmetic function, the formal Dirichlet series attached to 
fis given by 

00 

D(j, s) = L f(n)n- s . 

n=l 

We define the sum and product of two such series in the obvious 
way: 

00 

D(j, s) + D(g, s) = L(j(n) + g(n))n-S 

n=l 

and 
00 

D(j, s)D(g, s) = L h(n)n-S, 
n=l 

where 

h(n) = L f(d)g(e). 
de=n 

We sometimes write h = f * 9 to denote this equality. It is also 
useful to introduce 8(n) = 1 ifn = 1 and 0 otherwise. Thus D(8, s) = 
1. 

Exercise 1.2.1 Let f be a multiplicative function. Show that 
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Exercise 1.2.2 If 

show that 

00 1 
((8) = D(l, 8) = ""' -, L.t nS 

n=l 

D(f.-L, 8) = l/((s). 

Exercise 1.2.3 Show that 

D(A,8) = f A~~) = - ~ (8), 
n=l 

where -('(8) = L~=l(logn)n-S. 

Exercise 1.2.4 Suppose that 

f(n) = Lg(d). 
dln 

Show that DU, 8) = D(g, 8)((8). 

Exercise 1.2.5 Let A(n) be the Liouville function defined by A(n) = 

( -1 )f2(n), where O( n) is the total number of prime factars of n. Show 
that 

D(A ) = ((28) 
,8 ((8) . 

Exercise 1.2.6 Prove that 

00 2v(n) _ (2(8) 

~ n S - ((28)· 

Exercise 1.2.7 Show that 

f If.-L(n) I = ((8) 
n=l n S ((28)" 

Exercise 1.2.8 Let d(n) denote the number of divisors of n. Prove 
that 

~ d2(n) _ (4(8) 
~ ns - ((28)' 

(This example is due to Ramanujan.) 
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Exercise 1.2.9 For any complex numbers a, b, show that 

~ ~a(n)~b(n) == ((s)((s - a)((s - b)((s - a - b) 
n=l n S ((2s - a - b) . 

Exercise 1.2.10 Let qk(n) be 1 if n is kth power-free and 0 other-
wise. Show that 

~ qk(n) == ((s) 
~ n S ((ks)· 

1.3 Orders of Some Arithmetical Functions 

The order of an arithmetic function refers to its rate of growth. 
There are various ways of measuring this rate of growth. The most 
common way is to find some ni ce continuous function that serves as 
a universal upper bound. For example, d( n) :::; n, but this is not the 
best possible bound, as the exercises below illustrate. 

We will also use freely the "big 0" notation. We will write f (n) = 
O(g(n)) if there is a constant K such that If(n)1 :::; Kg(n) for all 
values of n. Sometimes we use the notation ~ and write g(n) ~ f(n) 
to indicate the same thing. We mayaiso indicate this by f (n) ~ 
g(n). This is just for notational convenience. Thus d(n) = O(n). 
However, d(n) = O(y'n), and in fact is O(nE ) for any E > 0 as the 
exercises below show. We also have cp(n) = O(n). 

It is also useful to introduce the "little 0" notation. We will write 
f(x) = o(g(x)) to mean 

f(x)jg(x) -t 0 

as x -t 00. Thus d(n) = o(n2 ), and in fact, d(n) = o(nE ) for any 
E > 0 by Exercise 1.3.3 below. We also write pnlln to mean pnln and 
pn+l t n. 

Exercise 1.3.1 Show that d(n) :::; 2y'n, where d(n) is the number 
of divisors ofn. 

Exercise 1.3.2 For any E > 0, there is a constant C(E) such that 
d(n) :::; C(E)nE• 

Exercise 1.3.3 For any 'TJ > 0, show that 

d( n) < 2(1+1)) log n/ log logn 
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for all n sufficientZy Zarge. 

Exercise 1.3.4 Prove that (TI(n) :S n(logn + 1). 

Exercise 1.3.5 Prove that 

for certain positive constants Cl and c2. 

Exercise 1.3.6 Let v(n) denote the number of distinct prime fac­
tors of n. Show that 

() logn 
v n < --. 

- log2 

1.4 Average Orders of Arithmetical Functions 

Let f(n) be an arithmetieal function and g(x) a monotonie inereasing 
fun.ction of x. Suppose 

L f(n) = xg(x) + o(xg(x)) 
n:::;x 

as x -+ 00. We say that g(n) is the average order of f(n). 

Exercise 1.4.1 Show that the average order of d(n) is logn. 

Exercise 1.4.2 Show that the average order of <jJ(n) is cn for some 
constant c. 

Exercise 1.4.3 Show that the average order of (Tl (n) is cln for some 
constant Cl. 

Exercise 1.4.4 Let qk(n) = 1 if n is kth power-free and zero other­
wise. Show that 

where 

L qk(n) = CkX + 0 (x l / k) , 
n<x 

C = ~ ~(n) 
k ~ k' n 

n=l 
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1.5 Supplementary Problems 

Exercise 1.5.1 Prove that 

as x -7 00. 

L ~ rv <P~k) log x 
n<x 

(n,k)=l 

Exercise 1.5.2 Let Jr(n) be the number of r-tuples of integers 
(al,a2, ... ,ar) satis]ying 1 ::; ai ::; n and gcd(al, ... ,ar,n) = 1. 
Show that 

Jr(n) = nr rr (1 - ;r) 
pln 

(Jr(n) is called Jordan's totient function. For r = 1, this is, of course, 
Euler' s <P-function. ) 

Exercise 1.5.3 For r ~ 2, show that there are positive constants Cl 

and C2 such that 
Clnr ::; Jr(n) ::; C2 nr . 

Exercise 1.5.4 Show that the average order of Jr(n) is cnr ]or some 
constant c > o. 
Exercise 1.5.5 Let dk(n) be the number 0] ways of writing n as a 
product of k positive numbers. Show that 

Exercise 1.5.6 I] dk(n) denotes the number 0] ]actorizations 0] n 
as a product of k positive numbers each greater than 1, show that 

Exercise 1.5.7 Let ß( n) be the number 0] nontrivial ]actorizations 
of n. Show that 

as a formal Dirichlet series. 
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Exercise 1.5.8 Show that 

L n = 4>~:) x 2 + O(d(k)x), 
n<x 

(n,k')=l 

where d(k) denotes the number of divisors of k. 

Exercise 1.5.9 Prove that 

L f1(d) = (-Ir (v(n~ -1), 
dln 

v(d)::;r 

where v(n) denotes the number of distinct prime factors of n. 

Exercise 1.5.10 Let 1f(x, z) denote the number of n :::;; x coprzme 
to all the prime numbers p :::;; z. Show that 

1f(x, z) = x II (1 -~) + 0(2Z ). 

PS:.z p 

Exercise 1.5.11 Prove that 

1 L - ~ log log x + c 
PS:.x P 

fOT some constant c. 

Exercise 1.5.12 Let1f(x) be the number ofprimes less than or equal 
to x. Choosing z = log x in Exercise 1.5.10, deduce that 

1f(x) =0(1 x ). 
og log x 

Exercise 1.5.13 Let M(x) = 2:nS:.xf1(n). Show that 

Exercise 1.5.14 Let lFp[x] denote the polynomial ring over the fi­
nite field of p elements. Let Nd be the number of monic irreducible 
polynomials of degree d in lFp[x]. Using the fact that every monic 
polynomial in lFp [x] can be factored uniquely as a product of monic 
irreducible polynomials show that 
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Exercise 1.5.15 With the notation as in the previous exercise, show 
that 

N n = ~ LJL(d)pn/d 
n 

dln 

and that Nn ~ 1. Deduce that there is always an irreducible polyno­
mi al of degree n in lFp [xl· 

Exercise 1.5.16 (Dual Möbius inversion formula) Suppose f(d) = 

Ldln g( n), where the summation is over alt multiples of d. Show that 

g(d) = LJL(S)f(n) 
dln 

and conversely (assuming that alt the series are absolutely conver­
gent). 

Exercise 1.5.17 Prove that 

L cp(n) = cx + O(logx) 
n 

n<x 

for some constant c > O. 

Exercise 1.5.18 For Re( s) > 2, prove that 

Exercise 1.5.19 Let k be a fixed natural number. Show that if 

f(n) = L g(n/dk ), 

dkln 

then 
g(n) = L JL(d)f(n/dk ), 

dkln 

and conversely. 

Exercise 1.5.20 The mth cyclotomic polynomial is defined as 

CPm(x) = II (x - (:n), 
1<i<m 
(Cm)=1 
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where (m denotes a primitive mth root of unity. Show that 

Xm - 1 = II cfJd(X). 
dlm 

Exercise 1.5.21 With the notation as in the previous exercise, show 
that the coefficient of 

x'P(m)-l 

in cfJm(x) is -J.t(m). 

Exercise 1.5.22 Prove that 

cfJm(x) = rr (xd - l)Jl(m/d). 
dlm 

Exercise 1.5.23 1f cfJm(x) is the mth cyclotomic polynomial, prove 
that 

{ 
p if m = pO: 

cfJm(l) = 1 
otherwise, 

where p is a prime number. 

Exercise 1.5.24 Prove that cfJm(x) has integer coefficients. 

Exercise 1.5.25 Let q be a prime number. Show that any prime 
divisor p of aq - 1 satisfies p == 1 (mod q) or pl(a - 1). 

Exercise 1.5.26 Let q be a prime number. Show that any prime 
divisor p of 1 + a + a2 + ... + aq- 1 satisfies p == 1 (mod q) or p = q. 
Deduce that there are infinitely many primes p == 1 (mod q). 

Exercise 1.5.27 Let q be a prime number. Show that any prime 
divisor p of 

1+b+b2 +···+bq- 1 

k-l k 
with b = aq satisfies p == 1 (mod q ) or p = q. 

Exercise 1.5.28 Using the previous exercise, deduce that there are 
infinitely many primes p == 1 (mod qk), for any positive integer k. 



1.5 Supplementary Problems 15 

Exercise 1.5.29 Let p be a prime not dividing m. Show that pl<Pm(a) 
if and only if the order of a (mod p) is m. (Here <Pm(x) is the mth 
cyclotomic polynomial. ) 

Exercise 1.5.30 Using the previous exercise, deduce the infinitude 
of primes p == 1 (mod m). 



2 
Primes in Arithmetic Progressions 

In 1837 Dirichlet proved by an ingenious analytic method that there 
are infinitely many primes in the arithmetic progression 

a, a + q, a + 2q, a + 3q, ... 

in which a and q have no common factor and q is prime. The general 
case, for arbitrary q, was completed only later by hirn, in 1840, when 
he had finished proving his celebrated dass number formula. In fact, 
many are of the view that the subject of analytic number theory 
begins with these two papers. It is also accurate to say that character 
theory of finite groups also begins here. 

In this chapter we will derive Dirichlet's theorem, not exactly fol­
lowing his approach, but at least initially tracing his inspiration. 

2.1 Summation Techniques 

A very useful result is the following 

Theorem 2.1.1 Suppose {an}~=l is a sequence of complex numbers 
and f(t) is a continuously differentiable function on [l,x]. Set 
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Then 

L anf(n) = A(x)f(x) -lX A(t)f'(t)dt. 
n<x 1 

Proof. First, suppose x is a natural number. We write the left-hand 
side as 

L anf(n) L {A(n) - A(n -1)}f(n) 
n<x n<x 

L A(n)f(n) - L A(n)f(n + 1) 
n<x n<x-1 

(n+1 
A(x)f(x) - L A(n) in j'(t)dt 

n<x-1 n 

1n+1 

A(x)f(x) - L A(t)j'(t)dt, 
n<x-1 n 

since A(t) is a step function. Also, 

r+1 (X L in A(t)j'(t)dt = i, A(t)j'(t)dt, 
n<x-1 n 1 

and we have proved the result if x is an integer. If x is not an integer, 
write [xl for the greatest integer less than or equal to x, and observe 
that 

A(x){J(x) - f([x])} - (X A(t)j'(t)dt = 0, 
i[x] 

which completes the proof. 

Remark. Theorem 2.1.1 is often referred to as "partial summation." 

Exercise 2.1.2 Show that 

L logn = x log x - x + O(logx). 
n<x 

Exercise 2.1.3 Show that 

1 L - = log x + 0(1). 
n 

n<x 
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In fact, show that 

lim (L.!. -IOgx) 
x~oo n 

n<x 

exists. (The limit is denoted by ,and called Euler's constant.) 

Exercise 2.1.4 Let d(n) denote the number of divisors of a natural 
number n. Show that 

L d(n) = x log x + O(x). 
n<x 

Exercise 2.1.5 Suppose A(x) = O(x"). Show that for s > 15, 

Hence the Dirichlet series converges for s > 15. 

Exercise 2.1.6 Show that for s > 1, 

s 100 {x} ((s) = -- - s -dx, 
s - 1 1 x s+1 

where {x} = x - [x]. Deduce that lims~l+(s -l)((s) = 1. 

Consider the sequence {br (x) } ~o of polynomials defined recur­
sively as folIows: 

bo(x) 
b~(x) 

11 
br(x)dx 

1, 
rbr-1(x) (r 2: 1), 

o (r2:1). 

Thus, from the penultimate equation, br(x) is obtained by integrat­
ing rbr - 1 (x), and the constant of integration is determined from the 
last condition. 

Exercise 2.1. 7 Prove that 
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It is easy to see that 

bo(x) = 1, 

bs(x) = xS - ~x4 + ix3 - i x . 

These are called the Bernoulli polynomials. One defines the rth 
Bernoulli function Br (x) as the periodic function that co in eides 
with br(x) on [0,1). The number Br := Br(O) is called the rth 
Bernoulli number. Note that if we denote by {x} the quantity 
x - [x], Br(x) = br( {x}). 

Exercise 2.1.8 Show that B2r+l = 0 fOT r 2: 1. 

The Bernoulli polynomials are useful in deriving the Euler -
Maclaurin summation formula (Theorem 2.1.9 below). 

Let a, bE Z. We will use the Stieltjes integral with respect to the 
measure d[t]. Then 

L f(n) = lb f(t)d[t]. 
a<n::;b a 

Notice that the interval of summation is a < n ~ b, so that 

L f(n) = lb f(t)dt -lb f(t)dB1(t) 
a<n::;b a a 

because d[t] = dt - d{t} and B1(t) = {t} - ~, by the theory of the 
Stieltjes integraL We can evaluate the last integral by parts: 

lb f(t)dBI(t) = (f(b) - f(a))B1 -lb B1(t)/ (t)dt, 
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1b 
f(t)dB1 (t) = (J(b) - f(a))B 1 - ~! 1b 

/ (t)dB2 (t), 

provided that f is differentiable on [a, b]. We can iterate this pro ce­
dure to deduce he following Theorem: 

Theorem 2.1.9 (Euler-Maclaurin summation formula) Let k 
be a nonnegative integer and f be (k + 1) tim es differentiable on [a, b] 
with a, bE Z. Then 

L f(n) 
{b k ( l) r+l 

Ja f(t)dt + ~ (~+ I)! (J(r)(b) - f(r)(a))Br+1 

+ (-1 )k l b B (t)f(k+l) (t)dt. 
(k + I)! a k+l 

Example 2.1.10 For integers X ~ 1, 

111 ( 1 ) '" - = log X + , + - + -- + 0 - . 
~ n 2x 12x2 x3 
n<x 

Solution. Put f(t) = l/t in Theorem 2.1.9, a = 1, b = X, and k = 2. 
Then 

1 1 (1 ) 1 ( 1 ) /,X B3 (t) '" - = log X + - - - 1 + - - - 1 - --dt, 
~ n 2 X 12 x2 t 4 

2<n<x 1 

so that 

1 1 1/,xB3(t) 1 1 
L-=logx+---- --dt+---. 

n 2 12 1 t4 2x 12x2 
n<x 

Since 

-, = lim (lOg x - '" ~) , 
x-too ~ n 

n<x 

we must have _ ~ _ ~ _ /,00 B3(t)dt 
, - 2 12 1 t4 · 

Also, 

100 B3(t)dt = o(~) 
t 4 3 ' x X 

so that the result is now immediate. 
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Exercise 2.1.11 Show that for some constant B, 

L Jn = 2VX + B + 0 (~). 
n~x 

Exercise 2.1.12 For z E C, and I arg zl ::; 7r - 8, where 8 > 0, show 
that 

n 

Llog(z + j) 
j=O 

(z + n + ~) log (z + n) 

( 1) in BI (x)dx -n - z - - log z + . 
2 0 z +x 

2.2 Characters mod q 

Consider the group (ZjqZ)* of coprime residue classes mod q. A 
homomorphism 

x: (ZjqZ)* -+ ([* 

into the multiplicative group of complex numbers is called a charac­
ter (mod q). Since (ZjqZ)* has order rp(q), then by Euler's theorem 
we have 

a'P(q) == 1 (mod q), 

and so we must have X'P(q) (a) = 1 for all a E (ZjqZ)*. Thus x(a) 

must be a rp(q)th root of unity. 
We extend the definition of X to all natural numbers by setting 

(n) = {x(n(mod q)) if(n,q). = 1, 
X 0 otherwlse. 

Exercise 2.2.1 Prove that Xis a completely multiplicative function. 

We now define the L-series, 

L(s, X) = ~ x(n) . 
L..t nS 
n=l 

Since Ix(n)1 ::; 1, the series is absolutely convergent for Re(s) > 1. 
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Exercise 2.2.2 Prove that for Re(s) > 1, 

where the product is over prime numbers p. 

The eharaeter 
Xo : (ZjqZ)* -+ e 

satisfying XO (a) = 1 for all (a, q) = 1 is ealled the trivial eharaeter. 
Moreover, if X and 'l/; are eharacters, so is x'l/;, as well as X defined 
by 

x(a) = x(a), 

whieh is clearly a homomorphism of (ZjqZ)*. Thus, the set of ehar­
aeters forms a group. This is a finite group, as the value of X( a) is a 
cp(q)th root of unity for (a, q) = 1. 

But more ean be said. If we write 

as the unique factorization of q as a product of prime powers, then 
by the Chinese remainder theorem, 

is an isomorphism of rings. Thus, 

Exercise 2.2.3 Show that (ZjpZ)* is cyclic if p is a prime. 

An element 9 that generates (ZjpZ)* is ealled a primitive root 
(mod p). 

Exercise 2.2.4 Let p be an odd prime. Show that (ZjpaZ)* is cyclic 
for any a 2: 1. 

In the previous exereise it is erueial that p is odd. For instanee, 
(Zj8Z)* is not eyclie but rather isomorphie to the Klein four-group 
Zj2Z x Zj2Z. However, one ean show that (Zj2a Z)* is isomorphie to 
a direet product of a eyclie group and a group of order 2 for a 2: 3. 
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Exercise 2.2.5 Let a ~ 3. Show that 5 (mod 2a ) has order 2a- 2 . 

Exercise 2.2.6 Show that (Zj2aZ)* is isomorphie to (Zj2Z) x 
(Zj2a- 2Z), for a ~ 3. 

Exercise 2.2.7 Show that the group of eharaeters (mod q) has order 
<p(q). 

Exercise 2.2.8 1f X =1= Xo, show that 

2: x(a) = O. 
a(mod q) 

Exercise 2.2.9 Show that 

~ x(n) = {o<p(q) if n == 1 (modq), 
~ otherwise. 

x(modq) 

2.3 Dirichlet's Theorem 

The central idea of Dirichlet 's argument is to show that 

lim " ~ = +00, 
s---+l+ ~ ps 

p=a(modq) 

where the summation is over primes p == a (modq). 
If q = 1, this is clear, because 

( 1 )-1 
((s)=II I-ps 

p 

and 

log ((s) 

upon using the expression 

00 n 

-log(l- x) = 2:~. 
n 

n=l 
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Observing that 
lim ((8) = +00 

S-t1+ 

by virtue of the divergenee of the harmonie series, we get 

lim log ((8) = +00. 
S-t1+ 

Consequently, 

( 1 1 ) lim - + -- = +00. 
s-t1+ L pS L L npns 

p p n2::2 

In view of the fact for 8 2:: 1, 

we deduee 

lim L ~ = +00. 
s-t1+ pS 

p 

Exercise 2.3.1 Let X = Xo be the trivial character (modq). Show 
that 

lim logL(8,XO) = +00. 
s-t1+ 

Exercise 2.3.2 Show that for 8 > 1, 

1 
'" log L(s, X) = <p(q) '" '" ~ ~ ~ npns 

x(modq) n2::1 pn=:l(modq) 

Exercise 2.3.3 Show that for 8 > 1 the Dirichlet 8eries 

00 

L ~::= 11 L(8, X) 
n=l x(modq) 

has the property that a1 = 1 and an ~ 0 for n ~ 2. 

Exercise 2.3.4 For X # Xo, a Dirichlet character (modq), show 
that I L:n<x x(n)1 ::; q. Deduce that 

converges for 8 > O. 

L(8, X) = ~ x(n) o nS 
n=l 
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Exercise 2.3.5 1f L(1, X) i=- 0, show that L(1, X) i=- 0 for any char­
acter X i=- Xo mod q. 

Exercise 2.3.6 Show that 

lim (s - 1)L(s, Xo) = <p(q)jq. 
8-+1+ 

Exercise 2.3.7 1f L(1, X) i=- 0 for every X i=- Xo, deduce that 

lim (s - 1) II L(s, X) i=- 0 
s-+l+ 

x(mod q) 

and hence 
1 L - = +00. 

p=l(modq) P 

Conclude that there are infinitely many primes p == 1 (mod q). 

This exercise shows that the essential step in establishing the in­
finitude of primes congruent to 1 (mod q) is the nonvanishing of 
L(1, X). The exercise below establishes the same for other progres­
sions (mod q). 

Exercise 2.3.8 Fix (a, q) = 1. Show that 

~ X X 0 otherwzse. 
'" (a) (n) = {<p(q) if n ==. a (modq), 

x(mod q) 

Exercise 2.3.9 Fix (a, q) = 1. 1f L(1, X) i=- 0, show that 

lim (s - 1) II L(s, X)x(a) i=- O. 
8-+1+ 

x(mod q) 

Deduce that 

1 L - = +00. 
p=a(modq) P 

The essential thing now is to show that L(1, X) i=- 0 for X i=- Xo· 
Historically, this was a difficult step to surmount. Now, there are 
many ways to establish this. We will take the most expedient route. 
We will exploit the fact that 

F(s):= II L(s, X) 
x(modq) 
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is a Dirichlet series L::~=l ann-s with al = 1 and an 2: O. If for some 
Xl, L(l, Xl) = 0, we want to establish a contradiction. 

Exercise 2.3.10 Suppose Xl i- Xl (that is, Xl is not real-valued). 
Show that L(l,XI) i- 0 by considering F(s). 

It remains to show that L(l, X) i- 0 when X is real and not equal 
to Xo. 

We will establish this in the next seetion by developing an inter­
esting technique discovered by Dirichlet that was first developed by 
hirn not to tackle this question, but rat her another problem, namely 
the Dirichlet divisor problem. 

2.4 Dirichlet's Hyperbola Method 

Suppose we have an arithmetical function J = 9 * h. That is, 

J(n) = Lg(d)h(njd) 
dtn 

for two arithmetical functions 9 and h. Define 

G(x) = L g(n), 
n<x 

H(x) = L h(n). 
n<x 

Theorem 2.4.1 For any y > 0, 

Proof. We have 

LJ(n) L g(d)h(e) 
n<x de<x 

L g(d)h(e) + L g(d)h(e) 
de<;x de<" 
d<y d>y 

t g(d)H(S) + L h(e){ G(~) - G(Y)} 
d~y e~~ 

Lg(d)H(S) + L h(e)G(~) - G(Y)H(;). 0 
d~y e~~ 
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The method derives its name from the fact that the inequality 
de ~ x is the area underneath a hyperbola. Historically, this method 
was first applied to the problem of estimating the error term E(x) 
defined as 

E(x) = L O"o(n) - {x (log x) + (21 -l)x}, 
n<x 

where 0"0 is the number of divisors of n and 1 is Euler's constant. 

Exercise 2.4.2 Prove that 

L O"o(n) = x log x + (21 - l)x + O( v'x). 
n<x 

Exercise 2.4.3 Let X be areal character (mod q). Define 

f(n) = L X(d). 
dln 

Show that f(l) = 1 and f(n) 2: O. In addition, show that f(n) 2: 1 
whenever n is aperfeet square. 

Exercise 2.4.4 Using Diriehlet's hyperbola method, show that 

~ f(n) 
6 Vn = 2L(1, X)v'x + 0(1), 
n<x 

where f(n) = L:dln X(d) and X i= Xo· 

Exercise 2.4.5 If X i= xo is areal eharaeter, deduee from the pre­
vious exereise that L(l, X) i= O. 

Exercise 2.4.6 Prove that 

whenever X is a nontrivial eharacter (mod q). 
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Exercise 2.4.7 Let 

an = LX(d) 
dln 

where X is a nonprincipal character (modq). Show that 

L an = xL(1, X) + O( vIx). 
n<x 

Exercise 2.4.8 Deduce from the previous exercise that L(1, X) i= 0 
for X real. 

Thus, we have proved the following Theorem: 

Theorem 2.4.9 (Dirichlet) For any natural number q, and a co­
prime residue dass a (modq), there are infinitely many prim es p == 
a (modq). 

2.5 Supplementary Problems 

Exercise 2.5.1 Let dk(n) be the number of ways of writing n as a 
product of k numbers. Show that 

x(log x)k-l L dk(n) = (k -1)! + O(x(logx)k-2) 
n:::;x 

for every natural number k ~ 2. 

Exercise 2.5.2 Show that 

L log ~ = x + o (log x). 
n 

n:::;x 

Exercise 2.5.3 Let A(x) = En:::;x an. Show that for x a positive 
integer, 

Exercise 2.5.4 Let {x} denote the fractional part of x. Show that 

L {;} = (1 - 'Y)x + O(x1/ 2), 

n<x 

where'Y is Euler's constant. 
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Exercise 2.5.5 Prove that 

I: logk ~ = O(x) 
n 

n<x 

for any k > O. 

Exercise 2.5.6 Show that for X ~ 3, 

I: 11 = log log x + B + 0(-11-). 
n ogn x ogx 

3:Sn:Sx 

Exercise 2.5.7 Let X be a nonprincipal character (modq). Show 
that 

Exercise 2.5.8 For any integer k ~ 0, show that 

lol n logk+ 1 X I:-n - = k+1 +0(1). 
n<x 

Exercise 2.5.9 Let d(n) be the number of divisors of n. Show that 
fOT same constant c, 

I: d~) = ~ log2 X + (21' - 1) log x + c + O(Jx) 
n<x 

for x ~ 1. 

Exercise 2.5.10 Let 0: ~ 0 and suppose an = O(nG:) and 

A(x) := I: an = 0(x8) 

n<x 

for some fixed 8 < 1. Define 

Prove that I: bn = cx + 0 (x(1-O)(1+G:)!(2-0)) , 

n:Sx 

for some constant c. 
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Exercise 2.5.11 Let X be a nontrivial character (mod q) and set 

f(n) = LX(d). 
dln 

Show that 

L f(n) = xL(l, X) + O(qVX), 
n<x 

where the constant implied is independent of q. 

Exercise 2.5.12 Suppose that an :2: ° and that for some 8 > 0, we 
have 

Let bn be defined by the formal Dirichlet series 

Show that 

L bn «x(logx)1-28. 
n<x 

Exercise 2.5.13 Let {an} be a sequence of nonnegative numbers. 
Show that there exists (TO E IR. (possibly infinite) such that 

00 

f(s) = " an 
~ns 
n=l 

converges for Re(s) > (TO and diverges for Re(s) < (TO· Moreover, if 
sEC with Re( s) > (TO, show that the series converges uniformly in 

Re(s) 2: (TO + 8 for any 8 > 0 and that 

for Re(s) > (TO ((TO is called the abscissa of convergence of the 
Dirichlet series 2:~=1 an/nS ). 
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Exercise 2.5.14 (Landau's theorem) Let an ~ 0 be a sequence 01 
nonnegative numbers. Let 0"0 be the abscissa 01 convergence 01 

00 

l(s) = ~ an. 
L...J nS 
n=l 

Show that s = 0"0 is a singular point 01 1 (s) (that is, 1 (s) cannot be 
extended to define an analytic lunction at s = so). 

Exercise 2.5.15 Let X be a nontrivial character (mod q) and define 

O"a,x = LX(d)da. 
dln 

11 Xl, X2 are two characters (mod q), prove that 10r a, b E C, 

00 

L O"a,Xl (n)O"b,X2 (n)n-S 

n=l 

((s)L(s - a, Xl)L(s - b, X2)L(s - a - b, XlX2) 
-

L(2s - a - b, XlX2) 

as formal Dirichlet series. 

Exercise 2.5.16 Let X be a nontrivial character (modq). Set a = b, 
Xl = X and X2 = X in the previous exercise to deduce that 

~ 1 ()12 -s _ ((s)L(s - a, X)L(s - a, X)L(s - a - a, Xo) 
L...JO"axn n -, L(2s - a - a, Xo 
n=l 

Exercise 2.5.17 Using Landau 's theorem and the previous exercise, 
show that L(l,X) =I- 0 10r any non-trivial real character (mod q). 

Exercise 2.5.18 Show that ((s) =I- 0 10r Re(s) > 1. 

Exercise 2.5.19 (Landau's theorem for integrals) Suppose that 

100 A(x) 
l(s) = -+1 dx, 

1 x S 

with A(x) ~ O. Let 0"0 be the infimum 01 all real s 10r which the 
integral converges. Show that 1 (s) has a singularity at s = 0"0. 
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Exercise 2.5.20 Let>. denote Liouville 's function and set 

S(x) = :L >.(n). 
n<x 

Show that if S (x) is of constant sign for alt x sufficiently large, then 
(( s) i= 0 for Re( s) > ~. (The hypothesis is an old conjecture of 
P61ya. It was shown by Haselgrove in 1958 that S(x) changes sign 
infinitely often.) 

Exercise 2.5.21 Prove that 

where bn(x) is the nth Bernoulti polynomial and B n denotes the nth 
Bernoulli number. 

Exercise 2.5.22 Prove that 

where bn (x) denotes the nth Bernoulli polynomial. 

Exercise 2.5.23 Let 

Prove that for k ~ 1, 



3 
The Prime N umber Theorem 

Let 1f(x) denote the number of primes p ::; x. The prime number 
theorem is the assertion that 

lim 1f(x) = 1. 
x-too x / log x 

It was proved independently by Hadamard and de la Vallee Poussin 
in 1896. It is the goal of this chapter to prove this theorem follow­
ing a method evolved by Wiener and Ikehara in the early twentieth 
century. 

As far as we know, it was Legendre who first conjectured that for 
large x, 1f(x) is approximately 

x 
log x - 1.08· 

This suggests the truth of the prime number theorem. In a letter 
of 1849, Gauss related that as a boy he had thought about this 
quest ion and felt that a good approximation to 1f(x) is given by the 
logarithmic integral 

r dt 
lix:= J2 logt" 

This is closer to the truth. Indeed, one can prove 
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1f(x) = lix + 0 (xe-cv1ogx) 

for some constant c. Integrating the logarithmic integral by parts, 
we see that 

x x n!x l x dt 
lix = -1 - + (1 )2 + ... + (1 ) +1 + (n + I)! (1 ) +1' og X og X og X n 2 og t n 

from which it is easily deduced that if we interpret Legendre's state-
ment as 

X 
1f(x) = , 

logx - A(x) 

where A(x) -+ 1.08, then the above analysis shows that it is false, 
since A(x) -+ 1. 

Chebyshev in 1851 obtained by very elementary methods upper 
and lower bounds for 1f(x). He proved that 

. 1f(x) . 1f(x) 
lim mf / I :::; 1 :::; hm sup / ' x ogx x logx 

so that if the limit exists, then it must be 1. 

3.1 Chebyshev's Theorem 

The elementary method of Chebyshev begins by observing that the 
binomial coefficient 

is divisible by every prime between n and 2n. 

Exercise 3.1.1 Let 
O(n) = L logp, 

p<n 

where the summation is over primes. Prove that 

O(n) :::; 4nlog2. 

Exercise 3.1.2 Prove that O(2m + 1) - O(m) :::; 2mlog2. Deduce 
that 

(}(n) :::; 2nlog2. 
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Exercise 3.1.3 Let 

'IjJ(x) = L logp = L A(n), 
p"':::x n<x 

where A is the von Mangoldt function. Show that 

lcm[1,2, ... ,nJ = e1J;(n). 

Exercise 3.1.4 Show that 

e1J;(2n+1) 101 xn(l - xtdx 

is a positive integer. Deduce that 'IjJ(2n + 1) 2:: 2n log 2. (The method 
of deriving this is due to M. Nair.) 

Exercise 3.1.5 Prove that there are constants A and B such that 

Ax Bx 
-- < 1f(x) < -­
logx - - logx 

for all x sufficiently Zarge. This result was first proved by Chebyshev. 

Exercise 3.1.6 Prove that 

1 
T(x) := L logn = x log x - x + 2" log x + c + O(l/x) 

n<x 

for some constant c (this improves Exercise 2.1.2). 

Exercise 3.1. 7 Using the fact 

prove that 

logn = L A(d), 
dJn 

L A~n) = log x + 0(1). 
n:::x 

Exercise 3.1.8 Prove that 

1 L - = loglogx + 0(1). 
p:::x P 
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Theorem 3.1.9 (Bertrand's postulate) For n sufficiently Zarge, 
there is a prime between n and 2n. 

Proof: (S. Ramanujan) Observe that if 

aO ~ al ~ a2 ~ ... 

is a decreasing sequence of real numbers tending to zero, then 
00 

ao - al :s; 2:) -1 ) n an :s; aO - al + a2· 

n=O 

This is the starting point of Ramanujan's proof. We can write 

T(x) = L logn = L A(d) = L 'lj!(~). 
n:::;x de:::;x e:::;x 

We know that T(x) = xlogx - x + O(logx) by Exercise 2.1.2. On 
the other hand, 

T(x) - 2T(~) = L( -lt-l'lj!(~) :s; 'lj!(x) - 'lj!(~) + 'lj!(~) 
n<x 

by the observation above. Hence 

'lj!(x) -1jJ(~) + 'lj!(~) ~ (log2)x + O(logx). 

On the other hand, 

'lj!(x) - 'lj!(~) :s; (log2)x + O(logx), 

from which we deduce inductively 

'lj!(x) :s; 2(log 2)x + 0 (log2 x) . 

Thus, 'lj!(x) - 'lj!(~) ~ i(log2)x + O(log2 x ). Now, 'lj!(x) = e(x) + 
o (..jXlog2 x) . Hence 

e(x) - e(~) ~ t(log2)X + 0 (v'xlog2 x). 

Therefore, for x sufficiently large, there is a prime between 
x/2 and x. 

Remark. This theorem was first proved by Chebyshev by a similar, 
but more elaborate, method. 
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Exercise 3.1.10 Suppose that {an}~=l is a sequence of complex 
numbers and set 

If 

lim S(x) = 0: , 
x-+oo X 

show that 
""' an ~ - = 0: log x + o(logx) 

n 
n<x 

as X -+ 00. 

Exercise 3.1.11 Show that 

if and only if 

Exercise 3.1.12 If 

then show that 

lim 'ljJ(x) = 1 
x-+oo x 

lim 1f(x) = 1. 
x-+oo x/log x 

1. 1f(x) 
1m = 0:, 

x-+oo x/log x 

1 L - = 0: log log x + o(log log x). 
p<x P 

Deduce that if the limit exists, it must be 1. 

3.2 Nonvanishing of Dirichlet Series on Re(s) = 1 

The proof of the prime number theorem, as given by Hadamard and 
de la Vallee Poussin, has two ingredients: (a) the analytic contin­
uation of (( s) to Re (s) = 1 and (b) the nonvanishing of (( s) on 
Re(s) = 1. 

It was believed that any proof of the prime number theorem must 
use the theory of complex variables until Erdös and Selberg inde­
pendently discovered an "elementary proof" in 1949. 

In this section we will discuss nonvanishing results of various Dirich­
let series. 
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Exercise 3.2.1 Show that 

((s) = _s _ _ s (Xi {x} dx 
s - 1 11 xs+l 

for Re( s) > 1. Since the right-hand side of the equation is analytic for 
Re(s) > 0, s i= 1, we obtain an analytic continuation of (s - l)((s). 

Exercise 3.2.2 Show that ((s) i= 0 for Re(s) > 1. 

Exercise 3.2.3 Prove that for a > 1, tE lR, 

Relog((a + it) = f Ain ) eos(tlogn). 
n=1 n U ogn 

Exercise 3.2.4 Prove that 

Re(3log ((a) + 4 log ((a + it) + log ((a + 2it)) ~ 0, 

for a > 1, t E lR. 

Exercise 3.2.5 Prove that for a > 1, tE lR, 

Deduce that ((1 + it) i= 0 for any t E lR, t i= O. Deduce in a similar 
way, by considering 

that L(l, X) i= 0 for X not real. 

Exercise 3.2.6 Show that -%(s) has an analytic continuation to 
Re(s) = 1, with only a simple pole at s = 1, with residue 1. 

In the exereises below we will attempt to unravel the essential 
trigonometrie idea underlying the proof of the nonvanishing of (( s ) 
on Re( s) = 1. We begin with a few trigonometrie identities. 

Exercise 3.2.7 Prove that 

1 sin(n+1)0 
- + eos 0 + eos 20 + ... + eos nO = ,} 
2 2sin"2 
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Exercise 3.2.8 Prove that 

sin2ne 
eos e + eos 3e + ... + eos(2n - l)e = . 

2sine 

Exercise 3.2.9 Prove that 

sin3e sin5e sin(2n -1)e (Sinne)2 
1+--+--+···+ = -- . 

sine sine sine sine 

Exercise 3.2.10 Prove that 

(2m + 1) + 2 2~1 (j + 1) eos(2m _ j)e = (sin(~ + !)e) 2 , 
o smfl. 
j=O 2 

jor alt integers m 2: O. 

Remark. Notiee that the ease m = 1 gives 

3 + 4 eos e + 2 eos 2e 2: 0, 

whieh would have worked equally well in Exereises 3.2.4 and 3.2.5. 

The following exereise gives us a general theorem of nonvanishing 
of Diriehlet series on Re (8) = 1. 

Exercise 3.2.11 Let 1 (8) be a complex-valued junction satisjying: 

1. 1 is holomorphic in Re( 8) > 1 and non-zero there; 

2. log f (8) can be written as a Dirichlet series 

with bn 2: 0 for Re(8) > 1; 

3. on the line Re( 8) = 1, j is holomorphic except jor a pole oj 

order e 2: 0 at 8 = 1. 

11 1 has a zero on the line Re( 8) = 1, then prove that the order 01 the 
zero is bounded by ej2. (This result is due to Kumar Murty [MM, 
p.10].) 

Exercise 3.2.12 Let 1(8) = ITx L(8,X), where the product is over 
Dirichlet characters (mod q). Show that 1 (8) is a Dirichlet series 
with nonnegative coejficients. Deduce that L(8, X) =I=- 0 for Re(s) = 1. 
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3.3 The Ikehara - Wiener Theorem 

We begin by reviewing certain facts from Fourier analysis. Let 

{ ~j } S = jE Coo(lR): lim xn -d = 0 for all n,m E Z+ . 
Ixl-too xm 

This space is called the Schwartz space of rapidly decreasing func­
tions. For j E S, we have the Fourier inversion 

and 

Hence 

j(x) = _1_ (oo j(t)e-itxdt 
.j'Fff J-oo 

1 joo A • j(x) = rn= j(t)e~txdt. 
v 21f -00 

j(x _ y) = _1_ (oo j(t)eitYe-itxdt, 
.j'Fff J-oo 

so that j(x - y) and j(t)eity are Fourier transforms of each other. 
Parseval's formula is 

I: j(x)g(x)dx = I: j(t)g(t)dt. 

Though these formulas are first established for j, 9 E S, they are 
easily extended for all j, 9 E L2 (lR). We will employ these facts for 
such functions. 

The Riemann - Lebesgue lemma states that 

lim {oo j(t)ei>.tdt = 0 
>.-too J-oo 

for absolutely integrable functions. The Fejer kernel 

K ( ) = sin2 AX 
>. x AX2 

has Fourier transform 

K>.(x) = { 20v'21f(1 - ~~) if lxi ~ 2A, 
otherwise. 

We begin with the following theorem due to Ikehara and Wiener (see 
for example, [MM, p.7]). 
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Theorem 3.3.1 Let F(s) = I:~=l bn/ns be a Dirichlet series with 
positive real coefficients and absolutely convergent for Re( s) > 1. 
Suppose that F(s) can be extended to a meromorphic function in the 
region Re( s) ~ 1 having no poles except for a simple pole at s = 1 
with residue R ~ 0. Then 

B(x) := L bn = Rx + o(x) 
n<x 

as x -+ 00. 

Remark. Without loss of generality, we may suppose R > 0, for if 
R = 0, we can consider F(s) + ((s). If F(s) is analytic at s = 1, we 
obtain I:n<x bn = o(x) as x -+ 00. 

Proof. Replacing bn by bn / R, we may suppose without loss of gen­
erality that R = 1. Then 

f oo B(x) 
F(s) = S 1 xS+ 1 dx. 

Set x = eU • Then 

Note that 100 1 
e-u(s-l)du = --. 

o s - 1 

Setting s = 1 + 8 + it, 8 > 0, we get 

Set 

and 

g(u) 

h(5(t) 

B(eU)e-U, 

F(1+8+it) 1 

1 + 8 + it s - l' 

h(t) __ F(l + it) ___ l~ 
~ (s = 1 + it), 

1 + it s - 1 

which is regular for t E R Our goal is to prove g(u) -+ 1 as u -+ 00. 

The above formula says that the Fourier transform of y'2K(g(u) -
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l)e-U " is h,,(t). Observe that for 8 > 0, both of these functions are 
square-integrable, since 

00 

B(x) = L bn ~ L Ibnl(x/n)C, 
n<x n==l 

for every c > 1. Applying Parseval's formula, 

Also by Parseval's formula, we have 

Since K>.. has compact support, the limit as 8 --+ 0 of the right-hand 
side exists. Thus the same is true of the left-hand side. Hence 

By the Riemann - Lebesgue lemma, the limit of the integral on the 
right-hand side as v --+ 00 is O. Thus, 

lim 100 (g(u) - l)K>..(u - v)du = o. 
v--+oo -00 

Since (by Exercise 3.4.13) 

we obtain 

100 sin2 AX _ 
A 2 dX-1f, 

-00 X 

I: g(u)K>..(u - v)du = 1f. 

Set -A(U - v) = a. Then u = v - ~, and so as 9 is bounded, 

Iv>" ( a) sin2 a 
lim 9 v - - --da = 1f. 

v--+oo -00 A a 2 

Since B(x) is monotone increasing, we see that 



3.3 The Ikehara - Wiener Theorem 45 

Thus, for lai :S ../X, we have 

( a) ( 1) 1 +" ( 1) 2 9 v-- >g v-- e- vx X >g v-- e-vx. 
A - ../X - ../X 

Since 

j V>.. ( a) sin2 a 
lim sup 9 v-\" --2-da:S 1f, 

v-too -V>.. /\ a 

we deduce 

( 1 ) _--1... 1f 
lim sup 9 v - /\ e vx:S" . 

v-too VA JV>' sin2 etd 
-V>.. ~ a 

Since v is arbitrary, changing v to v + ]x, we get 

lim supg(v) :S 1. 
v-too 

The lower bound is obtained similarly: 

rV>.. ( a) sin2 a ( 1 ) 
v~~ inf } -V>.. 9 v - >: ~da ~ 1f + 0 ../X . 

Since 

( a) ( 1) 1 +" ( 1) 2 9 V - >: :S 9 v + ../X evx X:s 9 v + ../X e vx , 

we obtain 

( 1 ) --1... jV>.. sin2 a ( 1 ) lim infg v + /\ e vx --2-da ~ 1f + 0 /\' 
v-too V A -V>.. a v A 

so that lim inf g( v) > 1. Putting this together with the previous 
v-too 

result, we obtain 
lim g(v) = 1. 

v-too 

o 
We apply this theorem to the Dirichlet series 

- (' (s) = f A(~) , 
( n=l n 

which has nonnegative coefficients and is absolutely convergent for 
Re(s) > 1. By virtue of ((s) I- 0 on Re(s) = 1, we see that -t(s) 
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extends to a meromorphic function that has a simple pole at 8 = 1 
with residue 1. Indeed, we know that 

h(8) := (8 - 1)((8) 

is analytic at 8 = 1 and h(l) = 1. Moreover, as ((8) i= 0 on Re(8) 2:: 1, 
we get by logarithmic differentiation: 

h' (8) 1 (' 
h(8) = 8 - 1 + "((8), 

for which our assertion is obvious. Applying the Ikehara - Wiener 
theorem, we obtain the prime number theorem: 

Theorem 3.3.2 (The Prime Number Theorem) Let 

if;(x) = L A(n). 
n:Sx 

Then 
lim if; ( x) = 1. 

n--too X 

Exercise 3.3.3 Supp08e 

00 

1(8) = L an/nS 
n=l 

is a Dirichlet series with real coefficients that is absolutely convergent 
for Re( 8) > 1. 1f 1 (8) extends to a meromorphic function in the 
region Re(8) 2:: 1, with only a simple pole at 8 = 1 with residue r, 
and lanl :::; bn where F(8) = L~=l bn/ns satisfies the hypotheses of 
Theorem 3.3.1, show that 

as x -+ 00. 

Lan=rx+o(x) 
n<x 

Exercise 3.3.4 Show that the conclusion of the previous exercise is 
still valid if an E C. 

Exercise 3.3.5 Let q be a natural number. Suppose (a, q) = 1. Show 
that 
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'lj;(x; q, a):= L A(n) 
n<x 

n=a (modq) 

lim 'lj;(x) = 1. 
X-H)() X / cp( q) 

Exercise 3.3.6 Suppose F(s) = 'E~=1 bn/ns is a Dirichlet series 
with positive coefficients and is convergent for Re( s) > c > O. 1f 
F(s) extends to a meromorphic function in the region Re(s) > c 
with only a simple pole at s = c with residue R, show that 

as x -t 00. 

Rxc L bn = - + o(XC ) 
C 

n~x 

Exercise 3.3.7 Suppose f(s) = 'E~=1 an/nS is a Dirichlet series 
with complex coefficients that is absolutely convergent for Re( s) > c. 
1f f (s) extends to a meromorphic function in the region Re( s) 2: c 
with only a simple pole at s = c and residue r, and lanl ::; bn where 
f(s) = 'E~=1 bn/ns satisfies the hypo thesis of Exercise 3.3.6, show 
that 

as X -t 00. 

Exercise 3.3.8 Let a(n) be a multiplicative function defined by 

a(pa) = { p + Cp if a = 1, 
o otherwise, 

where Icpl ::; p() with () < 1. Show that as x -t 00, 

for some non-zero constant r. 

Exercise 3.3.9 Suppose Cn 2: 0 and that 

L Cn = Ax + o( x). 
n<x 
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Show that 

as x ----t 00. 

~Cn 
~ - = Alogx + o(logx) 

n 
n<x 

3.4 Supplementary Problems 

Exercise 3.4.1 Show that 

L A(n) logn = 'Ij;(x) log x + O(x). 
n<x 

Exercise 3.4.2 Show that 

L A(d)A(~) = A(n) logn + L JL(d) log2 d. 
dJn dJn 

Exercise 3.4.3 Show that 

L JL(d) log2 ~ = 
dln 

{ log2 X if n = 1, 
2A(n) log x - A(n) logn + ~hk=n A(h)h(k) if n> 1. 

Exercise 3.4.4 Let 

S (x) = L (L JL (d) log2 ~) . 
n'Sx dln 

Show that 

S(x) = 'Ij;(x) log x + L A(n)'Ij; (;) + O(x). 
n<x 

Exercise 3.4.5 Show that 

S (x) - ,,? = L JL (d) [~] { log2 ~ _ ,2 } , 
d<x d 

where , is Euler's constant. 
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Exercise 3.4.6 Show that 

S(x) = xL J1-~d) { log2 ~ _,2} + O(x). 
d:::;x 

Exercise 3.4.7 Using the fact 

L ~ = log x + , + 0 (~) 
n<x 

deduce that 

S(x) = L J1-(d) (log ~ -I) + 0(1). 
x de d 

de~x 

Exercise 3.4.8 Prove that 

S(x) = 2 log x + 0(1). 
x 

Exercise 3.4.9 (Selberg's identity) Prove that 

1jJ(x) log x + L A(n)1jJ(;) = 2x log x + O(x). 
n~x 

Exercise 3.4.10 Show that 

( logn ) 
v(n) = 0 I 1 ' og ogn 

where v(n) denotes the number of distinct prime factors of n. 

Exercise 3.4.11 Let v(n) be as in the previous exercise. Show that 

L v(n) = x log log x + O(x). 
n<x 

Exercise 3.4.12 Let v(n) be as in the previous exercise. Show that 

L v2(n) = x(loglog x)2 + O(x log log x). 
n~x 

Exercise 3.4.13 Prove that 

/

00 sin2 AX _ 
A 2 dx - 1r. 

-00 x 
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Exercise 3.4.14 Let 

T(x) := L logn. 
n<x 

Show that for x > 1, 

IT(x) - (x log x - x)1 ~ 4 + log(x + 1). 

Exercise 3.4.15 Show that 

'lj;(x) - 'lj;(i) ~ (log2)x + 12 + 31og(x + 1). 

Deduce that 

o'.() 2(1 2) 12 log x 3 log (x + 1) log x 
'f' x ~ og x + log 2 + log 2 . 

Exercise 3.4.16 Show that 

'lj;(x) - 'lj;(i) + 'lj;(~) 2: (log2)x - 21og(x + 1) -7. 

Exercise 3.4.17 Prove that for x 2: e12 , 

'lj;(x) - 'lj;(~) 2: ~(log2)x _ 5(logx)(log(x + 1) -7. 
2 3 log 2 

Exercise 3.4.1~ Find an explicit constant Co such that for x 2: Co, 

Exercise 3.4.19 With Co as in the previous exercise, show that for 

x 2: Co, 
B(x)-B(~) > (log2)x _ JX(logx)2 -7. 

2 6 log 2 

Exercise 3.4.20 Find an explicit constant Cl such that for x 2: Cl, 

B(x) - B(~) > (log2)x -7 
2 12 . 

Exercise 3.4.21 Find an explicit constant C3 such that for x 2: C3, 

B(x) - B(x/2) 2: 1. Deduce that for x 2: C3, there is always a prime 
between x /2 and x. 
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Exercise 3.4.22 Let 

F(x) = L f(~J 
n<x 

be a function of bounded variation in every finite interval [1, xl. Sup­
pose that as x -t 00, 

F(x) = xlogx + Cx + O(xß) 

with C, ß eonstant and 0::; ß < 1. Show that if M(x) := L:n<x f.L(n) = 
o(x) as x -t 00, then -

f(x) = x + o(x). 

Exercise 3.4.23 Assuming M(x) = o(x) as in the previous exer-
eise, deduee that 

lim 1j; ( x) = 1. 
x---+oo x 



4 
The Method of Contour Integration 

Given a sequence of complex numbers {an}~=l' one would like to 
study the asymptotic behavior of 

A(x):= Lan 

n<x 

as x -+ 00. A standard method of analytic number theory is to study 
instead the associated Dirichlet series 

00 

L an f(s):= -, 
n S 

n=l 

derive an analytic continuation to a region containing the line 
Re (s) = 1, and then apply methods of contour integration to de­
duce an asymptotic formula for A(x). 

4.1 Some Basic Integrals 

We shall adopt the following notation: 

1 l c+ioo 
---. f(s)ds 
21r2 c-ioo 
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will be abbreviated to 

-21 . r f(s)ds. 
m J(c) 

This integral must be interpreted in the principal value sense. That 
is, we first integrate from e - iR to e + iR and take the limit as R 
goes to infinity. 

Exercise 4.1.1 1f x > 1, show that 

- -ds= 1 1 1 x 8 

21fi (c) s 

for any e> O. 

Exercise 4.1.2 1f 0 < x < 1, show that 

2~i jc) :8 ds = O. 

Exercise 4.1.3 Show that 

1 r ds 

21fi J(c) s 

1 

2 

We summarize the previous examples and exercises in the following. 
If 

o if 0< x< 1, 

8(x) = ~ if x = 1, 

1 if x > 1, 

then 
1 l c+ioo X S 

8(x) = -. -ds. 
21f2 c-ioo s 

Theorem 4.1.4 Let 8(x) be defined as above. Let 

1 lc+iR X S 
I(x, R) = -2 . -ds. 

1f2 c-iR s 
Then, for x> O,e > O,R > 0, we have 

{

Xc min(l, R-1llog xl-1) 

II(x, R) - 8(x)1 < ~ 

if x -=J 1, 

if x = 1. 
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Proof. Suppose first 0 < x < 1. Consider the reet angular eontour 
Ku oriented eountereloekwise with vertiees c - iR, c + iR, U + iR, 
U - iR, U > O. By Cauehy's theorem 

1 1 X
S 

-2' -ds = 0 = 0 (x). 
m Ku s 

To prove the theorem, we must estimate the three integrals 

Now, 

1 jU+iR X S 
- -ds 
27fi c+iR s ' 

1 jU-iR X S 
- -ds 
27fi c-iR s ' 

1 l U+iR X S 

-. -ds. 
27fZ U-iR s 

-ds < - x do. 
11U+iR XS I 1 lU 6 

c+iR s - R c 

As U -+ 00, this integral is bounded by 

R[logx[' 

A similar estimate holds for the other integral. Now, 

I ~ lU+iR xSds I :s xUR, 
27fz U-iR s U 

whieh goes to zero as U -+ 00, sinee 0 < x < 1. This proves one of the 
two stated inequalities in the ease 0 < x < 1. For the other inequality, 
eonsider the cirele of radius (c2 + R2) 1/2 eentered at the origin. This 
cirele passes through c - iR and c + iR. We ean therefore replaee the 
vertieal line integral under eonsideration by a eireular path on the 
right side of the line segment joining c - iR to c + iR. The integral 
is easily estimated: 

1 XC 
[I(x, R)[ :s 27f 7fR· R < xc, 

sinee [X S [ :S XC on the eireular path. 
The proof when x > 1 is similar but uses a rectangle or a eircular 

are to the left. The eontour then ineludes the pole at s = 0, where 
the residue is 1 = o(x). We leave the details as an exereise to the 
reader. 
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Finally, the case x = 1 is handled directly as in Exercise 4.1.3. We 
have 

1 lC+iR ds c {R dt 

211"i c-iR ----; = -; J 0 c2 + t 2 ' 

which equals 

1 {R/c du 1 1 (OO du 

-; Jo 1 + u2 = "2 - -; J R/c 1 + u2 · 

The last integral is less than cl R, and this proves the theorem. 0 

Exercise 4.1.5 Let 

00 

f(s) = ~ an 
~ns 
n=l 

be a Dirichlet series absolutely convergent in Re( s) > c - E. Show 
that if x is not an integer, then 

1 j X S L an = ~ f(s)-ds. 
n<x 11"2 (c) S 

(The integral is taken in the sense of Cauchy's principal value.) 

Exercise 4.1.6 Prove that 

2~i jC) s::l ds = { 
b(logX)k if x 2:: 1, 
o if x:::; 1, 

for every integer k 2:: 1. 

Exercise 4.1. 7 Let 
00 

f(s) = ~ an 
~ns 
n=l 

be a Dirichlet series absolutely convergent in Re( s) > c - E. For 
k 2:: 1, show that 

1 (X)k 1 j XS 

-kl L an log - = -. f(s) k+1 ds. 
. n 211"2 (c) s 

n:::;x 
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Exercise 4.1.8 1f k is any positive integer, c> 0, show that 

_1 { xSds = { ;;h (1 - ~ r if x ~ 1, 
27ri J(c) 8(8 + 1) ... (8 + k) 0 if 0::; x ::; 1. 

Exercise 4.1. 9 Let 
00 

f(8) = '" an 
~ns 
n=l 

be a Dirichlet series ab80lutely convergent in Re( 8) > c - E. Show 
that 

1 k k! l c+ioo f(8)X S d8 - an(x-n) =-
xk L 27ri _. 8(8 + 1) ... (8 + k) n<x c zoo 

for any k ~ 1. 

4.2 The Prime Number Theorem 

We will use the ideas of the previous section to give another proof of 
the prime number theorem. Our derivation is illustrative of a general 
method of contour integration to derive such formulas. Thus, it can 
be applied in other contexts. The method also has the advantage of 
giving an explicit error term. 

Our strategy is to begin with the formula 

1 1 (' X S 

'ljJ(x) := L A(n) = ~ --( (S)-d8, 
n<x 7rZ (2) 8 

which is valid when x is not an integer. We will then move the line of 
integration to the left and pick up the residue at 8 = 1 coming from 
the simple pole of -('(8)/((8). This residue is x, which is the main 
term in the formula for 'ljJ(x). Our contour will not include 8 = 0 nor 
any of the zeros of -('(8)/((8), and so the error term comes from 
estimating the horizontal and vertical integrals of the contour. 

Exercise 4.2.1 Using the Euler - Maclaurin summation formula 
(Theorem 2.1.9), prove that for ()" = Re(8) > 0, 

n-l 1 n-s n 1- s 100 x - [x]- 1 
((8)= "'-+-+--8 2dx, 

~ m S 2 8 - 1 xs+l 
m=l n 

where [x] denotes the greatest integer function. 
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We will now study (( s) in the region RT deseribed by the reet angle 
joining 2 - iT, 2 + iT, 0"0 + iT, 0"0 - iT, where 0"0 = 1 - 1/ log T, 
T ~ e2. 

Exercise 4.2.2 Using the previous exercise, show that 

1 
((s) - s _ 1 = O(logT) 

for sE RT· 

Exercise 4.2.3 Show that 

((s) = O(logT) 

for s on the boundary of RT. 

Exercise 4.2.4 Show that for 0" > ~, ((s) = O(T1/ 2 ), where 
T = 1 Im(s) 1 --+ 00. 

Exercise 4.2.5 For s E RT, show that 

('(s) + (s ~ 1)2 = o (log2 T). 

Exercise 4.2.6 Show that 

where T = 1 Im(s)1 and s is on the boundary of RT. 

The method used to show that (( s) t= 0 for Re( s) = 1 ean be 
sharpened to yield a region in whieh ((s) t= o. 
Theorem 4.2.7 Let s = 0" + it. There are positive constants Cl and 
C2 such that 

1((s)1 > (lo~~'')7 

where 1 ~ 1 Im(s)1 ~ T. 

Proof. In Exereise 3.2.5, we proved 
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for (7 > 1. Thus, 

N ow, (((7) ((7 - 1) remains bounded as (7 -+ 1 + and being continuous 
for 1 ::::; (7 ::::; 2 has an upper bound in that region. By Exercise 4.2.3, 
for some constant K, 

Thus we get 

If 
Cl 

1 + (logT)9 ::::; (7 ::::; 2, 

then we obtain 
1 

1((s)1 ~ (logT)1 

in this region. We can extend this result to the region 

1 - Cl < (7 < 1 + Cl 
(logT)9 - - (logT)9 

and 1 ::::; I Im( s) I ::::; T, by using the mean value theorem. Indeed, 
choose SI such that s' = (7' + it, with 

, Cl 

(7 = 1 + (logT)9. 

Then 
(((7' + it) - (((7 + it) = 0(((7 - (7') log2 T) 

by an application of the mean value theorem and Exercise 4.2.5. 
Thus, if Cl is chosen sufficiently small, we obtain 

o 

Exercise 4.2.8 Let s = (7 + it, with 1 ::::; Itl ::::; T. There is a constant 
C > 0 such that 

for 

('(s) = 0(log9T) 
((s) 

C 

1 - (logT)9 ::::; (7 ::::; 2. 
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We can now prove the prime number theorem in the following 
form: 

Theorem 4.2.9 Let 

1jJ(x) = L A(n). 
n<x 

Then 
1jJ(x) = x + 0 (xexp (-c(logx)l/lO)) 

for some positive constant c. 

Proof. We have for x which is 1/2 more than a natural number, 

1 1. (' X S 

1jJ(x) = -. --(s)-ds 
2m (a) ( s 

for any a > 1. We choose a = 1 + c/ log9 T, with T ?:: 1 to be 
determined later. By Theorem 4.1.4, we can replace the infinite line 
integral by the finite line integral: 

1 ja+iT (' X S 

1jJ(x) = -. --(s)-ds 
21[2 a-iT ( S 

The O-term is estimated as folIows: 
if n < i or n > 3;, then I log ~ I > log ~, and the summation 

corresponding to such n is bounded by 

smce 

für any fixed a > 1. For ~ < n < 3;, we put z = 1 - i and observe 
that Izl :::; 1/2. Also, 

X z2 
lüg ~ == -log(l - z) = z + 2 + ... , 
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so that for Izl :::; 1/2, 

Ilog;1 ~ 11z1. 
Thus, for the summation corresponding to this range, we get the 
estimate 

""" x x (log x) ~ 2a Tlx _ nl « T(logx)2 
x/2"5cn"5c3x/2 

since Ix - nl ranges over ~, ~, ... , ~ + [~l. Therefore, the O-term is 

o ( a log9 T x log2 X) 
x T + T . 

Now, -('(s)/((s) has a simple pole at s = 1 with residue 1. By 
Cauchy's theorem, 

1 l a+iT (' X S 

-. --(s)-ds 
27rz a-iT ( S 

1 
=x--

27ri 
{ ( rHiT + r b-.iT + ra- iT) _ ~ ( ) X S d } 

Ja+~T JH~T Jb-~T (s S s , 

where b = 1 - log~ T' The integrals in the above formula are easily 
estimated using Exercise 4.2.8. Indeed, 

1

1 lHiT (' X S 1 x a log9 T 
- --(s)-ds «---
27ri a+iT (s T 

with a similar estimate for 

1 l a+iT (' X S 
- --(s)-ds. 
27ri b-iT ( S 

Also, 

Therefore, 

( ) 0 ( xalOg9T bl lOT X(lOgX)2) 
'lj; x = x + + x og + . T T 

We choose T such that 

2c log x = loglO T. 
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The error term becomes 

for some constant Cl > O. This completes the proof. o 

In a later chapter we will see that this error term can be improved 
to 

o (xexp (-C2(logx)I/2)) 

for some constant C2 > O. This can be furt her improved but not 
substantially. The Riemann hypothesis would give an estimate of 

0(xl/2log2 x). 

4.3 Further Examples 

The technique introduced in the last two sections can be used to 
treat other questions. We illustrate this through some examples. 

Example 4.3.1 Prove that 

L d2 (n) log3 ~ = xP3(logx) + 0 (x 1/ 2) , 

n<x 

where P3(t) is a polynomial of degree 3 and d(n) denotes the number 

of divisors of n. 

Solution. By Exercise 1.2.8, we have 

Thus, by Exercise 4.1.6 (with k = 3), we have 

~ " d2(n) log3 ~ = _1_ r (4(s) X
S ds 

3! L..J n 21fi }r(,a) ((2s) s4 ' 
n:Sx 

where a > 1. We first truncate the infinite line integral at Rand 
estimate the portion of the integral from -00 to -Rand from R to 
00. By Exercise 4.2.4, we have (4(s) = 0(ltI 2 ), so that 

1 r (4 (s) XS 1 la+iR (4 (s) XS (X a ) 

21fi}(a)((2S)s4 ds =21fi a-iR ((2s)s4 ds + 0 R . 
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Now let C be the reet angular eontour joining a - iR, a + iR, ~ + iR, 
and ~ - iR. By Cauehy's theorem, 

Sinee 
1 

(( s) = -- + Co + Cl (s - 1) + ... 
s-1 

it is easily seen that 

for some polynomial P3(t) of degree 3. Now we ean write 

where 

and 

1 ll/2±iR (4(s) X S 

H±=- ---ds 
27ri a±iR (( 2s) s4 

Va. = ~ r+ iR (4(s) x: ds. 
2m lU-iR ((2s) s 

The horizontal integrals H± can be bounded using Exercise 4.2.4 
and Theorem 4.2.7 to give 

o (xa log7 R) . 
R2 logx 

For the vertieal integral VI / 2' we have 

Choosing a = 1 + 1/ log x, we obtain that the sum in question is 

Choosing R = x gives an error term of 0 (x l / 2) as stated. 0 



64 4. The Method of Contour Integration 

Exercise 4.3.2 Suppose that for any € ;::: 0, we have an = O(nE). 
Prove that for any c > 1 and X not an integer, 

_ ~lc+iR f(s)x S (XC+E) (xEIOgx) L an-2· ds+O R +0 R ' 
7r'l c-iR s n::;x 

where 
00 

f(s) =" an. L..J nS 
n=l 

The Lindelöf hypothesis is the assertion that for every € > 0, 
((s) = OW) for Re{s) ;::: !. One can show that it follows from the 
Riemann hypothesis. It is, however, a substantially weaker conjec­
ture, which still remains unproved. 

Exercise 4.3.3 Assuming the Lindelöf hypothesis, prove that for 

any € > 0, 
L dk{n) = XPk-l (log x) + 0(x1/2+E), 
n$x 

where dk (n) denotes the number of ways of writing n as a product of 
k natural numbers. 

Exercise 4.3.4 Show that 

M{x):= LJt{n) =O(xexp(-c{logx)l/lO)) 
n<x 

for some positive constant c. 

Exercise 4.3.5 Let E{x) be the number of square-free n ~ x with 
an even number of prime factors. Prove that 

E{x) = :2 x + 0 (x exp ( -c(log x)l/lO)) 

for some constant c > 0. 

4.4 Supplementary Problems 

Exercise 4.4.1 Let ).(n) be the Liouville function defined by ).(n) = 
(-1 )n(n) where O( n) is the total number of prime factors of n, counted 
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with multiplicity. Show that 

L A(n) = 0 (xexp (-c(lOgx)l/lO)) 
n<x 

for some constant c > O. 

Exercise 4.4.2 Show that 

converges for every s with Re(s) = l. 

Exercise 4.4.3 Show that 

I: A~n) = log x + B + 0 (exp ( -c(log x)l/lO)) 
n<x 

for some constants Band c, with c > O. [This improves upon Exercise 
3.l.7.] 

Exercise 4.4.4 Let f (s) = l:~=l A n / n 5 be a Dirichlet series abso­
lutely convergent for Re( s) > l. Show that for any c > 1, 

Exercise 4.4.5 Define an for n :2: 1 by 

Prove that 
L an = 0 (xexp (-c(logX)l/lO)) 
n<x 

for some positive constant c. 

Exercise 4.4.6 Prove that 

I: p,(n)d(n) = 0 (x exp (-c(log x)1/10) ) 
n<x 

for some constant c > o. 
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Exercise 4.4.7 If f(s) = L~=l an/nS is a Dirichlet series converg­
ing absolutely for a = Re( 8) = a a, show that 

1 jT . lim - f(a + it)mCf+ttdt = am . 
T--'too 2T -T 

Exercise 4.4.8 Suppose 

00 

f(8):= Lan/ns , 
n=l 

00 

g(8) := L bn/ns, 
n=l 

and f (s) = g( 8) in a half-plane of absolute convergence. Then prove 
that am = bm for all m. 

Exercise 4.4.9 If 
00 

f(8) = L an/nS 
n=l 

converges absolutely for a = Re( 8) > a a, show that 

1 jT 00 la 12 
lim 2T If(a + it)1 2dt = L +. 

T--'too T n Cf 
- n=l 

Exercise 4.4.10 Let Q(x) be the number of square-free numbers less 
than or equal to x. Show that 

Q(x) = (~2) + 0 (x1/2 exp ( -c(log x)l/lO)) 

for some positive constant c. 

Exercise 4.4.11 Let ,(n) = npln P. Show that 

1 L n (n) < 00. 

n<x ' 

Exercise 4.4.12 Show that 

L cp~n) «x. 
n<x 
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Exercise 4.4.13 Deduce by partial summation from the previous ex-
ercise that 

1 l:= cjJ(n) «logx. 
n<x 

Exercise 4.4.14 Prove that 

1 l:= cjJ( n) '" clog X 
n<x 

for some positive constant c. 

Exercise 4.4.15 (Perron's formula) Let f(8) = L:~=l ~~ be a Dirich­
let series absolutely convergent for Re(s) > 1. Show that for x not 
an integer and (J > 1, 

n<x 

Exercise 4.4.16 Suppose an = O(nE) for any E > 0 in the previous 
exercise. Show that for x not an integer, 

Exercise 4.4.17 Let f(s) = L:~=l an/nS, with an = O(nE). Sup-
pose that 

f(8) = ((s)kg(s), 

where k is a natural number and g( s) is a Dirichlet series absolutely 
convergent in Re( s) > 1 - 8 for some 0 < 8 < 1. Show that 

L an'" g(l)x(logx)k-l /(k -I)! 
n<x 

as x -+ 00. 
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Exercise 4.4.18 Let v(n) denote the number 01 distinct prime 1ac­
tors 01 n. Show that 

L 2v(n) rv x log x 
n<x ((2) 

as x ---t 00. 



5 
Functional Equations 

In this chapter we will derive the functional equations of (( s) and 
Dirichlet's L(s, X). Our main tool is the Poisson summation formula 
and the theory of Fourier transforms. 

5.1 Poisson's Summation Formula 

Let us recall Fejer's fundamental theorem concerning Fourier series. 
Let J (x) be a function of a real variable that is bounded, measurable, 
and periodic with period 1. The Fourier coefficients of J are, by 
definition, given by 

for each n E Z. The partial sums of the Fourier series of J are defined 
as 

SN(X) = L cne27rinx. 

InlSN 

Let Xo E lR be such that the function J(x) admits left and right 
limits: 

J(xo ± 0) = lim J(xo ± h). 
h-*O+ 
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Then Fejer proved 

f(xo + 0) + f(xo - 0) 
2 

1. So(xo) + ... + SN(XO) 
1m . 

N-too N + 1 

If f(x) is continuous at xo, and the partial sums SN(XO) converge, 
then 

00 

f(xo) = Co + L (Cne21rinXo + C-ne-21rinxo). 

n=l 

When f(x) is continuous and L~oo Icnl < 00, then the function is 
represented by the absolutely convergent Fourier series 

00 

f (x) = L Cn e21rinx . 

-00 

If F(x) is continuous such that 

i: IF(x)ldx < 00, 

then we define its Fourier transform by 

It is also a continuous function of u. If i: IF(u)ldu < 00, 

then we have the Fourier inversion formula 

Thus, the Fourier transform of F(u) is F( -x). 

Exercise 5.1.1 For Re(c) > 0, let F(x) = e-c1xl . Show that 

A 2c 
F(u) = 2 4 2 2· 

C + 1r U 
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Theorem 5.1.3 (Poisson summation formula) Let F E LI (lR.). 
Suppose that the series 

converges absolutely and uniformly in v, and that 

L IF(m)1 < 00. 

mEZ 

Then 

Proof. The function 

G(v) = LF(n+v) 
nEZ 

is a continuous function of V of period 1. The Fourier coefficients of 
Gare given by 

cm 11 G(v)e-27rimVdv 

L r1 F(n + v)e-27rimVdv 

nEZ io 
rn+1 

L in F(x)e-27rimXdx 
nEZ n i: F(x)e-27rimxdx = F(m). 

Since L:mEZ IF(m)1 < 00, we can represent G by its Fourier series 

LF(n+v) = LF(n)e27rinV, 

nEZ nEZ 

as desired. 

Corollary 5.1.4 With F as above, 

L F(n) = L F(n). 
nEZ nEZ 

o 
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Proof. Set v = 0 in the theorem. o 

Exercise 5.1.5 With F as in Theorem 5.1.3, show that 

LF(v:n) = LltIF(nt)e27rintv. 
nEZ nEZ 

Exercise 5.1.6 Show that 

Exercise 5.1.7 Show that 

L e-(n+a)27r /x = x 1/ 2 L e-n27rx+27rina 

nEZ nEZ 

for any a E lR, and x > o. 
Setting a = 0 in the previous exercise gives the following Theorem. 

Theorem 5.1.8 

L e-n27r/x = x 1/ 2 L e-n27rx . 
nEZ nEZ 

5.2 The Riemann Zeta Function 

We will now derive the functional equation of the Riemann zeta 
function and its analytic continuation to the entire complex plane. 
To this end, we introduce the O-function 

O(z) = L e7rin2z 
nEZ 

for z E C, with Im(z) > o. If we put z = iy and set w(y) = O(iy), 
Theorem 5.1.8 gives us the functional equation: 

w(ljx) = x1/ 2w(x). 

Riemann derives his functional equation from this fact. Recall that 
the f-function is given by the integral 
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valid for Re(s) > o. Thus 

Putting t = n 27rx, we get 

Hence, for a > 1, we can surn both sides of the above equation over 
all positive integers n, to obtain 

the inversion being justified by the absolute convergence of the right­
hand side. Indeed, notice that 

Observing that 

we get 

Let us put 

00 

L e-n27rx ~ e-7rx . 

n=l 

~ -n27rX _ w(x) - 1 
~e - 2 ' 
n=l 

W(x) = W(x; - 1, 

and write the right-hand side as 

We decornpose this as 
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and make the change of variables x t-7 1 j x in the second integral to 
get 

/
00 S dx /00 ( 1 ) S dx x2"W(x)- + W - x-2"-. 

1 X 1 X X 

Now, 

( 1) _ w(ljx) - 1 _ x 1/2w(x) - 1 _ 1 1 1/2 1/2W() w - - - - -- + -x + x x 
x 2 2 2 2 

by Theorem 5.1.8. Therefore, 

- - + _x1/2 + X 1/2W(x) x-"2-/ 00 ( 1 1 ) s~ 
122 x 

1 1 /00 l-s dx -- + -- + x-2 W(x)-. 
s s-1 1 x 

Putting this together proves that 

1T-S/2r(~)((s) = 1 +/,00 W(x) (x~ +x 1;S) dx 
2 s(s - 1) 1 X 

for Re(s) > 1. However, the integral on the right-hand side converges 
absolutely for all sEC, since W(x) = O(e-1I"X) as x --7 00. This gives 
the analytic continuation and functional equation for (( s ): 

TheoreUJ 5.2.1 We have 

1T-S/2r(~)((s) = 1 + /,00 W(x) (x~ + x 1;S) dx 
2 s(s-l) 1 x 

for all sEC. Moreover, if we define 

~(s) := ~s(s - 1)1T-S/2r(~)((s), 

then ~(s) is entire and ~(1 - s) = ~(s). 

Exercise 5.2.2 Show that 

r(s + 1) = sr(s) 

for Re( s) > 0 and that this functional equation can be used to extend 
r( s) as a meromorphic function for all s E <C with only simple poles 
ats=O,-1,-2, .... 
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Exercise 5.2.3 Show that ((s) has simple zeros at s = -2n, for n 
a positive integer. 

Exercise 5.2.4 Prove that ((0) = -1/2. 

Exercise 5.2.5 Show that ((s) =1= 0 for any real s satisfying 

O<s<1. 

5.3 Gauss Sums 

For any character X (modq), the Gauss sum r(x) is defined by 

q 

r(x) = L x(m)e(m), 
m=l q 

where e(t) = e21C'it. The Gauss sum plays a significant role in the 
functional equation of Dirichlet L-functions. 

Before we proceed, we classify Dirichlet characters (mod q) into 
two types: primitive and imprimitive, according as its period is q or 
Iess than q. 

Example 5.3.1 1f (n, q) = 1, then 

q 

x(n)r(x) = L x(m)e(mn). 
m=l q 

Solution. We have 
q 

x(n)r(x) L x(m)x(n)e(m) 
m=l . q 

q nh 
= Lx(h)e(-) 

h=l q 

on putting h == mn-1 (mod q), which we can do, since (n, q) = 1. 0 

Exercise 5.3.2 1f X is a primitive, nonprincipal character (mod q), 
show that 

q 

x(n)r(x) = L x(m)e(mn) 
m=l q 

if(n,q) > 1. 



76 5. Functional Equations 

Theorem 5.3.3 Iix is a primitive character (mod q), then IT(X)I = 
ql/2. 

Proof. By Exercise 5.3.2, 

Thus 

Summing over n for 1 :S n :S q gives 

so that IT(X) 12 = q, as required. o 

5.4 Dirichlet L-functions 

The functional equation for a Dirichlet L-function L(s, x) can be 
derived easily by means of the Poisson summation formula. The dis­
cussion splits according as X is an even or odd character, that is, 
according as X ( -1) = 1 or -1, respectively. 

We discuss the even case first and relegate the odd case to the 
exercises. Thus, suppose x( -1) = 1. We have 

-8/2 8/2r (S) -8 -100 -n2 nx/q !!. dx 7r q - n - e X 2 -. 

2 0 x 

We multiply this equation by X( n) and surn over n to get 

for Re(s) > 1. Since X(-1) = 1 and X(O) = 0, we rewrite this as 

~ 100 
X8

/
2()(X, x) d: ' 
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where 
00 

()(x, X) = L x(n)e-n27rx/q. 
n=-oo 

We can derive a functional equation for ()(x, X) by noting that upon 
multiplication of the Gauss sum T(X), we get 

q 00 

T(XW(X, X) = L x(m) L e-n27rx/q+27rimn/q. 
m=l n=-oo 

By Exercise 5.1.7, the inner sum is equal to 

00 

(q/x)1/2 L e-(n+m/q)2 7rq/x, 
n=-oo 

so that 

q 00 

T(X)()(X, X) (q/X)1/2 L x(m) L e-(nq+m)27r /xq 

m=l n=-oo 

00 

(q/x)1/2 L x(l)e-127r/Xq 

1=-00 

Thus, as before, we write the integral for L(s, X) as 

1 /,00 8 dx ql/2 /,00 1-8 dx 
= 2 1 x2(}(x,X)-;- + 2T(X) 1 x-2 O(x,X)-;-. 

The right-hand side is regular for all sEC, since O(x, X) = O(e-7rX ). 
Also, if we replace s by 1 - sand X by X, the expression becomes 

ql/2 /,00 8 dx 1 /,00 1-8 dx 
-- x 20(x,X)- + - x-:r-O(x,X)-, 
2T(X) 1 x 2 1 X 

which is the previous expression multiplied by ql/2/T(X), since IT(x) 12 = 

q. This proves the fOllowing theorem. 
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Theorem 5.4.1 Suppose X(-l) = 1. Set 

~(s,X) = 7f-S/2qS/2r(~)L(s,x). 

Then ~(s, X) in entire and 

where W x = T(X) j yq. 

Exercise 5.4.2 Suppose X(-l) = 1. Show that L(s,X) has simple 
zeros at s = -2, -4, -6, .... 

Below, we will derive the functional equation in the case X ( -1) = 

-1. Note that the above argument fails because for now, O(x, X) is 
identically zero. 

Exercise 5.4.3 Prove that 

7f-(S+1l/2q(S+1l/2r( s; 1 )n-s = 1000 ne-7fn2x/qx st1 d: 
and hence deduce that 

( s+l) (s+l) (S + 1) 1 (oo s+l dx 7f- -2- q -2- r -2- L(s,X) ="2 Jo Ol(X,X)X-2----;-, 

where 
00 

Ol(X,X) = L nx(n)e-n27fX/q. 
n=-oo 

Exercise 5.4.4 Prove that 

00 00 L ne-n27fX/q+27fimn/q = i (qjx)3/2 L (n + m)e-7f(n+m/ql2q/x. 
n=-oo n=-oo q 

Exercise 5.4.5 Prove thatfor X(-l) = -1, if 

~(s,X) = 7f-S/2qS/2rC; 1 )L(s,x), 

then e(s, X) is entire and 

~(s, X) = wx~(1- s, X), 

where W x = T(X)jiql/2. 
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5.5 Supplementary Problems 

Exercise 5.5.1 Let 
00 

f(y) = L ane-27rny 
n=l 

converge for y > O. Suppose that for some w E .z, 

and that an = O(nC ) for some constant c > O. Let 
00 

Lf(s) = Lann- s. 
n=l 

Show that (27r)-Sf(s)Lf(s) extends to an entire function and satis­
fies the functional equation 

(27r)-Sf(s)L f (s) = (-l)W(27r)-(r-s)f(r - s)Lf(r - s). 

Exercise 5.5.2 Let 
00 

g(y) = L ane-27rny 
n=O 

converge for y > O. Suppose that for some w E .z, 

and that an = O(nC ) for same constant c > O. Let Lf(s) = I:~=l ann-s. 
Show that (27r)-Sf(s)Lf(s) extends to a meromorphic function with 
at most simple poles at s = 0 and s = rand satisfies the functional 
equation 

(27r)-Sf(s)Lf(s) = (-1)W(27rY- S f(r - s)Lf(r - s). 

Exercise 5.5.3 Let 

Show that 

~(x) = { ~ - [x] - ~ t ~:~: 
~ () ~ e( mx) < 1 

x + ~ 27rim - 27rMllxll' 
O<lml::;M 

where e(t) = e27rit and Ilxll denotes the distance from x to the nearest 
integer. 



80 5. Functional Equations 

Exercise 5.5.4 Let f(x) be a differentiable function on [0,1] satis­
fying If'(x)1 :::; K. Show that 

L 11 f(x)e(mx)dx - f(O); f(1) ~ Kl:;M 

Iml::;M 0 

Deduce that 

f r1 f(x)e(mx)dx = f(O) + f(1) . 
10 2 

-00 

Exercise 5.5.5 By using the previous exercise with f(x) = x 2, de-
duce that 

Exercise 5.5.6 (P61ya - Vinogradov inequality) Let X be a primitive 
character modq. Show that for q > 1, 

Lx(n) ~q1/21ogq. 
n<x 

Exercise 5.5.7 Show that ifx is a primitive character (modq), then 

L(1,X) = L x~n) + 0 (q1/2:0gq ) 
n<x 

for any x 2:: 1 and q > 1. 

Exercise 5.5.8 Prove that 

L L(1,X) = tp(q) + O(q1/2 logq), 

x7'=xo 

where the summation is over all nontrivial characters (mod q). 

Exercise 5.5.9 Por any sEC with Re(s) > 0, show that for any 
x 2:: 1, 

L( )=~x(n) o(ISlq1/210gq) 
s,x ~ s + (J' n CTX 

n::;x 

where X is a non trivial character mod q and CT = Re( s). 
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Exercise 5.5.10 Prove that for any eJ > 1/2, 

L L(eJ, X) = cp(q) + O(q3/2-u), 
x#xo 

where the sum is over alt non trivial characters (rnod q). 

Exercise 5.5.11 Let Bn(x) denote the nth Bernoulti polynomial in­
troduced in Chapter 2. For n ~ 2, show that 

Bn(x) = ~ e(mx) 
n! ~ (27fim)n· 

m#O 

Exercise 5.5.12 Let f(x) be differentiable on [A, B] and satisfy for 
some constant K, If'(x)1 ::; K for alt xE [A, B]. Show that 

B 00 B 

L 'f(n) = L 1 f(x)e(mx)dx, 
n=A m=-oo A 

where the dash on the summation means that the end-terms are re­
placed by f(A)/2 and f(B)/2. (Hint: Use Exercise 5.5.4.) 

Exercise 5.5.13 Apply the previous exercise to each of the func­
tions f (x) = cos(27fx2 / N) and f (x) = sin(27fx2 / N) to deduce that 

S = N-l e(n2 ) = N 1j2 if N == 1 (rnod4), {

(I + i)N1j2 if N == 0 (rnod4), 

L N 0 if N == 2 (rnod4), 
n=O 

iN1/ 2 if N==3(rnod4). 

Exercise 5.5.14 Let X be a nontrivial quadratic character rnodp 
with p prime. Show that 

T(X) = ~ x(m)e(mp ) = {~p :fj p == 1 (rnod4), 
~ "Vi' " P == 3 (rnod4). 
m=l 

Frorn this result we can deduce the law of quadratic reciprocity as 
follows. 

Let p and q be distinct odd prirnes. Let T(X) be the Gauss surn for 
X the quadratic character rnodulo p. Using the above forrnula and 
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(a/q) == a(q-l)/2 (mod q) we get 

T(X)q+l = (_1)(P-l)/2p( T(X)2)(q-l)/2 

= (_1)(P-l)/2+(p-l)(q-l)/4p (~) (mod q). 

On the other hand, using the multinomial theorem, we obtain 

7(X),+1 = 7(X)7(X)' = 7(X) ( ~ (~) e(nqfp) + f(e(lfp))) , 

where f(x) is a polynomial with integer coefficients divisible by q. 
Using Exercise 5.3.2 we get 

~ (~) e(nq/p) = (~) T(X). 

So 

T(X)q+l = (~) (-1)(P-l)/2p +h(e(1/p)) 

for another polynomial h(x) with integer coefficients divisible by q. 
Collecting same powers of e(l/p) and using the fact that 1, e(l/p), 
e(2/p), ... , e((p - 2)/p) are linearly independent, since 1 + x + x2 + 
... + xp- 1 is irreducible (see, for example, [EM, p. 37 and p. 183]) 
we get 

(~) p(_1)(P-l)/2 == (_1)(P-l)/2+(P-l)(q-l)/4p (~) (mod q), 

from which it follows easily that 

(~) = (~) (_1)(p-l)(q-l)/4. 

Exercise 5.5.15 Let cfJ(s) = (21f)-Sf(s)((s)((s+1). Show that cfJ( -s) = 

cfJ( s). 

Exercise 5.5.16 Show that cfJ(s) in Exercise 5.5.15 has a double pole 
at s = 0 and simple poles at s = ±l. Show further that Ress=l cfJ( s) = 
1f/12 and Ress=-lcfJ(S) = -1f/12. 
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Exercise 5.5.17 Show that if a(n) = Ldln d, then 

~ a(n) 
D n s+1 = ((s)((s + 1), 
n=l 

and that 

00 () 1 12+ioo L a n e-nx = -2 . x-Sr(s)((s)((s + l)ds. 
n=l n 1f~ 2-ioo 

Exercise 5.5.18 Show that 

Loo a(n) -nx 1f 1fX 1 1 Loo a(n) -47r2n/x --e =---+- ogx+ --e . 
n 12x 12 2 n 

n=l n=l 

Exercise 5.5.19 For a and b eoprime integers, define 

b-l 

C(~) = L e27rij2a/b. 

J=O 

Let q be prime and (p, q) = 1. Show that 

limVie(t+ 2Pi) = ~C( _ !?). 
t-tO q q q 

Exercise 5.5.20 Let r = p/q. Show that 

lim ~e( 1.) = (1- i) c(.2....) , 
HO V ~ t + 2~r 4y1J(j 4p 

with notation as in the previous exereise. 

Exercise 5.5.21 Deduee from the previous exereise the law of quad-
ratie reciproeity 

(~) (;) = (-1)9·Y 

for odd primes p and q, and where (%) denotes the Legendre symbol. 

Exercise 5.5.22 Suppose that f(s) is an entire funetion satisfying 
the funetional equation 

ASr(s)f(s) = A1- sr(1 - s)f(l - s). 

Show that if f(1/2) =1= 0, then 

i' (~) = - f(1/2) (log A + ~g:~?) . 



6 
Hadamard Products 

An entire function j (z) is said to be of finite order if for some 
a 2: 0, we have 

j(z) = 0 (e1zl") 

as Izl -+ 00. If a = 0, then j(z) is constant by Liouville's theorem. 
The infimum of the numbers a such that the above estimate holds 
is called the order of j (z). 

In the 1890s, Hadamard developed the theory of entire functions 
offinite order. He showed that, very much like polynomials, they can 
be factored into an infinite product over the zeros of j(z). 

In this chapter we will derive this factorization theorem of Hadamard 
for entire functions of order 1 and then apply it to derive a wider 
zero free region for (( s ) . 

6.1 Jensen's Theorem 

Let j(z) be an entire function of finite order ß. Jensen's theorem 
relates ß to the distribution of the zeros of 1 (z). 

Example 6.1.1 Show that an entire lunction I(z) 01 finite order ß 
without any zeros must be of the form f(z) = eg(z), where g(z) is a 
polynomial and ß = degg. 
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Solution. 
Let h(z) = log j(z) - log j(O). Then h(z) is entire, since j(z) has 

no zeros. Also, for any t > 0, 

Reh(z) = log Ij(z)1 «: Rß+E. 

Writing 
00 

h(z) = ~)an + ibn)zn 
n=O 

with an, bn E IR, we see that for z = Rei8 , 

00 00 

Re(h(z)) = LanRncosnO- LbnRnsinnO. 
n=O n=O 

By Fourier analysis, we get 

Since h(O) = 0, we have ao = 0, and therefore 

Observe that for x E IR, we have 

{ 
2x 

lxi +x = 0 

if x ~ 0, 

if x< O. 

Hence 

Letting R -+ 00 yields an = 0 if n > ß. o 
Notice that in this example the same result holds if the estimate 

R!3+< 
lf(z)1 «: e i 

holds for Izl = ~ and Ri is a sequence tending to infinity. 
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Theorem 6.1.2 (Jensen's theorem) Let j(z) be an entire junc­
tion 0] order ß such that j(O) =1= O. 1] Zl, Z2, . .. ,Zn are the zeros 0] 

](z) in Izi < R, counted with multiplicity, then 

Proof. We may assurne, without loss of generality, that j(O) = 1. 
Also, it is clear that if the theorem is true for functions 9 and h, 
that it is also true for the product gh. Thus, it suffices to prove it 
for functions with either no zero or one zero in Izl < R. Indeed, if 
] has no zeros in Izl < R, the right-hand side is zero. The left-hand 
side is 

~ 1 (log j(z)) dZ, 
2m Izl=R z 

which by Cauchy's theorem is zero. Taking real parts gives the de­
sired result. 

If ] has one zero z = Zl in Izl < R, we consider the contour 
Izl = R taken in the counterclockwise direction anq cut it from Zl 

to the boundary. We deform the contour so that we go around Zl 

in a clockwise direction along a circle of radius E (say). Then, by 
Cauchy's theorem with g(z) = log](z), 

0= ---. g(z)--1 1 dz 
21f~ C Z 

where C is the contour given above. 
Since the argument changes by -21fi when g(z) goes around the 

zero z = Zl, we see that as E ---+ 0, we deduce 

1 127f R - log 1](Rei8 )lde = log ---I I' 
21f 0 Zl 

as desired. This completes the proof. D 

An alternative proof of Jensen's theorem can be given that avoids 
the use of cutting the plane. One considers 
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Then 1(z) is regular for Izl ::; R. Moreover, 11(z)1 = 1 on Izl = R, 
and 11(0)1 = IZll/R, as a simple calculation shows. Jensen's theorem 
is easily verified for this choice of 1. But any holomorphic function 
on Izi ::; R can be written as a function with no zeros in Izi ::; Rand 
a product of functions of the form 

R(z - Zi) 

R2 - Zi Z . 

Now Jensen's theorem easily follows. 

Corollary 6.1.3 Let 1 be as in Theorem 6.1.2. Then 

log (I IRnl I)::; maxlogI1(z)l-logI1(0)1· 
Zl ... Zn Izl=R 

Proof. This is clear from Jensen's theorem. D 

Now define nf(r) := n(r) to be the number of zeros of 1 in Izi ::; r. 

Exercise 6.1.4 Show that 

IoR n(r)dr 
~~ ::; max log 11(z)1 -log 11(0)1, 

o r Izl=R 

with 1 as in Jensen's theorem. 

Exercise 6.1.5 111(z) is 01 order ß, show that nf(r) = O(rß+E), 

for any E > o. 
Exercise 6.1.6 Let 1(z) be an entire function of order ß. Show that 

00 

converges for any E > 0 (Here, we have indexed the zeros Zi so that 
IZll ::; IZ21 ::; ... ). 

6.2 Entire Functions of Order 1 

We will now derive a factorization theorem for entire functions of 
order 1. A similar result holds for entire functions of higher order, 
and we relegate their study to the supplementary problems. 
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Theorem 6.2.1 Let j(z) be an entire junction of order 1 with ze­
ros Zl, Z2, . .. arranged so that I zll ::; I z21 ::; ... and repeated with 
appropriate multiplicity. Then j can be written as 

where A and Bare constants. 

Proof. The product 

00 

P (z) = I1 (1 - ~) eZ / Zn 

n=l 

converges absolutely for all z, since 

(1 - z)eZ = 1 - z2 + ... 

and by Exercise 6.1.6. Thus, P(z) represents an entire function. If 
we write 

j(z) = P(z)F(z), 

then F(z) is an entire function without zeros. If F were of finite 
order, we could conclude by Example 6.1.1 that F(z) = eg(z), where 
g(z) is a polynomial. 

By the remark after Example 6.1.1, it suffices to show tha 

R1+< IF(z)1 «e i 

to deduce that F(z) = eg(z) where g(z) is of the form A + Bz for 
certain constants A and B. 

To tllis end, we will choose Ri satisfying 

for all n. This can be done, since the total measure of the intervals 
(Iznl -lznl-2, IZnl + IZnl-2) is bounded by 

00 

2 L IZnl-2 < 00, 

n=l 

since j (z) has order 1. 
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We write 
P(Z) = PI (z)P2(Z)P3(Z), 

where in PI, IZnl < ~.R, in P2 , ~Ri :::; IZnl :::; 2.R, and in P3, IZnl > 
2.R. For the factors of PI we have for Izi = Ri, 

Since 

we get 

by the way we have chosen .R. 
Since n(.R) = O(Ri+<), we get 

1P2(Z) I »(Ri3)R~+€ ;:: exp(-cIRi+2c ). 

Finally, for P3 (z), we have Iz/znl < 1/2 so that 

1 ( 1 - :n) eZ/Zn I;:: e-c2RUlznl2 

and 
00 

L IZnl-2 < (2R)-1+< L IZnl-I -<. 

IZnl>2R n=l 

Thus, on Izi =.R we have 

so that 

Hence, F(z) 
most 1. 

IP(z)1 > exp(-R1+3<), 

IF(z)1 < exp(R1+4e). 

e9(z), where g(z) is a polynomial of degree at 
o 
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6.3 The Gamma Function 

We will prove that l/f(z) is an entire function of order 1 and derive 
its Hadamard factorization. 

Exercise 6.3.1 Show that 

for 0< x < 1. 

Exercise 6.3.2 Show that 

[7r/2 
f(x)f(y) = 2f(x + y) Jo (cos B)2x-l(sinB)2y- 1dB 

for x,y > O. 

Exercise 6.3.3 Show that 

(The integral is denoted B(x, y) and called the beta function.) 

Exercise 6.3.4 Prove that 

1[" 

f(x)f(l - x) = -.-
SIll 1["X 

for 0< x < 1. 

Exercise 6.3.5 Prove that 

Exercise 6.3.6 (Legendre's duplication formula) Show that 

f(2x)f (~) = 22x- 1 f(x)f (x + ~) 

for x> O. 

Exercise 6.3.7 Let c be a positive constant. Show that as x --+ 00, 
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Exercise 6.3.8 (Stirling's formula) Show that 

f(x) f'Ve- x x x - 1/ 2.j2; 

as x -+ 00. 

Exercise 6.3.9 Show that l/r(z) is an entire function with simple 
zeros at z = 0, -1, -2, .... 

Exercise 6.3.10 Show that for some constant K, 

f'(z) = (l{l_(l_t)Z-l}dt -K. 
f(z) Ja t 

Exercise 6.3.11 Show that for z not a negative integer, 

~~i ~ t,(n:l -n:J-K 
for some constant K. 

Exercise 6.3.12 Derive the Hadamard factorization of l/f(z): 

1 00 z 
- = e'Yz z II (1 + _)e-z / n , 
f(z) n=l n 

where 'Y denotes Euler's constant. 

Exercise 6.3.13 Show that 

log f(z) = (z - ~) log z - z + ~ log 21f + (oo [u] - u + ~ du. 
2 2 Ja u + z 

Exercise 6.3.14 For any 6 > 0, show that 

log f (z) = (z - ~) log z - z + ~ log 21f + 0 ( I: I ) 
uniformly for -1f + 6 :::; arg z :::; 1f - 6. 

Exercise 6.3.15 If lJ is fixed, and Itl -+ 00, show that 

If(lJ+it)1 f'Ve-t7rltlltIO"-t.j2;. 

Exercise 6.3.16 Show that l/f(z) is of order 1. 

Exercise 6.3.17 Show that 

f' (z) ( 1 ) 
f(z) = logz + 0 r:;r 

for Izl -+ 00 in the sector -1f + 6 < arg z < 1f - 6 for any fixed 6 > 0. 
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6.4 Infinite Products for ~(s) and ~(s, X) 

In this section we will establish that ~ (s) and ~ (s, X) are entire func­
tions of order 1. Then we will derive their Hadamard factorizations. 

Recall that 

~(s) = ~s(s - 1)?T-S/2r(~)((s) 
and that when Xis a primitive character (mod q), 

s+a (S + a) ~(s,X) = (q/?T)-2 r -2- L(s,X), 

where a = 0 or 1 according as X( -1) = 1 or -1. 

Exercise 6.4.1 Show that for some constant c, 

1~(s)1 < exp(clsllog Isl) 

as Isl-+ 00. Conclude that ~(s) has order 1. 

Exercise 6.4.2 Prove that ((s) has infinitely many zeros m 
o ~ Re(s) ~ 1. 

Exercise 6.4.3 Show that 

where the product is over the nontrivial zeroes of (( s) in the region 
o ~ Re(s) ~ 1 and A = -log 2, B = -,/2 -1 + ~ log4?T, where, is 
Euler's constant. 

Exercise 6.4.4 Let X be a primitive character (mod q). Show that 
~(s, X) is an entire function of order 1. 

Exercise 6.4.5 Show that L(s, X) has infinitely many zeros m 
o ~ Re(s) ~ 1 and that 

~(s,X) = eA+BsII (1- ~)es/p, 
p P 

where the product is over the nontrivial zeros of L(s, X). 
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Exercise 6.4.6 For A and B occurring in the previous exerczse, 
show that 

and that 

Re(B) = - LRe (~), 
p p 

where the sum is over the nontrivial zeros p of L(s, X). 

6.5 Zero-Free Regions for (( s) and L( s, X) 

In Exercise 3.2.5 we proved the nonvanishing of ((s) for Re(s) = 1. A 
similar deduction was made for L(s, X) in Exercise 3.2.12. Using the 
Hadamard factorization for e (s) and e (s, X), we will derive a wider 
zero-free region. 

The starting point is 

_ Re ((' (s )) = f A (n) cos (t log n) 
((s) n=l nCT ' 

where, following custom, we write s = (J" + it. 

Exercise 6.5.1 Show that 

for t E ~ and (7 > 1. 

Exercise 6.5.2 For 1 < (7 < 2, show that 

('((7) 1 
- (((7) < (7 - 1 + A 

for some constant A. 

Exercise 6.5.3 Prove that 

( (' (s ) ) (1 1 ) -Re - < Alogltl- LRe --+-
((s) s-p p 

p 

for 1 ::; (7 ::; 2 and Itl 2: 2. 
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Exercise 6.5.4 Show that 

Re (_1_ +~) ~ o. 
8 - P P 

Deduce that 

( (1(8) ) 
-Re ((8) < Alogltl 

for 1 ~ (7 ~ 2, Itl ~ 2. 

Exercise 6.5.5 Let p = ß + h be any nontrivial zero of ((8). Show 
that for Itl ~ 2, 

( ('((7+it)) 1 
- Re (((7 + it) < Alog Itl - (7 - ß· 

Theorem 6.5.6 There exi8ts a constant c > 0 such that ((8) has 
no zero in the region 

c 
(7 ~ 1 - log Itl ' Itl ~ 2. 

Proof. By Exercise 6.5.5, 

We also know, by Exercises 6.5.2 and 6.5.4, that 

and 
( (1((7 + 2it)) 

- Re (((7 + 2it) < A310g Itl· 

Inserting these inequalities into 

(Exercise 6.5.1), we obtain 

4 3 
(7 - ß < (7 _ 1 + A log Itl 
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for some constant A. Taking (j = 1 + 8/ log Itl gives 

(j 4(j 

ß < 1 + log Itl - (3 + A8) log Itl ' 

so that if 8 is sufficiently small, we get 

C 
ß<1--­

log Itl 

for some suitable positive constant c. D 

Corollary 6.5.7 There exists a constant C > 0 such that ((s) has 
no zero in the region 

C 
(j > 1 - ~---;-:--:------:-

- 10g(ltl + 2) . 

Proof. The region (j 2': 1, Itl ::; 2 contains no zeros of ((s). Thus, 
there must be a constant Cl > 0 such that (( s) has no zeros in 
(j 2': 1 - Cl and Itl ::; 2. Combining such a region with the zero-free 
region provided by the theorem gives the result. D 

Exercise 6.5.8 Show that 

-Re (~g]) < Re C ~ 1) +cllog(/t/ +2) 

for some constant Cl > 0 and (j > 1. 

In the following exercises we will derive analogous results for the 
Dirichlet L-functions L(s,X). 

Exercise 6.5.9 Suppose that X is a primitive character (mod q) sat­
isfying X2 i= Xo· Show that there is a constant C > 0 such that L(s, X) 
has no zero in the region 

C 
(j > 1 - -..,......,.....,-----,-

log(qltl + 2)· 

Exercise 6.5.10 Show that the previous result remains valid when 
X is a nonreal imprimitive character. 

We now proceed to extend the previous results for X2 = Xo. Let 
us first observe that 

j L'(S,XO)_('(S)j<lO q 
L(s,Xo) ((s) - g 
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for a > 1. By Exercise 6.5.8, 

( (/(S)) (1) 
-Re ((s) <Re s-l +c1 log(ltl+2). 

Hence, if X2 = Xo, 

( L 1(a+2it,x2 )) ( 1 ) 
- Re L(a + 2it, X2) < Re a _ 1 + 2it + c2 10g(q(ltl + 2)). 

When we insert this estimate into our previous calculations, we ob­
tain 

4 3 (1) --ß<--l+ Re 1 2· +c3 10g(q(I'YI+2)). 
a - a - a - + 2'Y 

Let us write L for log( q( Itl + 2)). Taking a = 1 + 8/ Land assuming 
'Y > 8/ L gives 

so that 
ß< 1 _ 4 - C3 8 8 

16 + 5C38 L 
Hence if 8 is sufficiently small in relation to C3, we get the following: 

Theorem 6.5.11 There exists a constant c > 0 such that if 0 < 
8 < c and X is areal, nonprincipal character (mod q), L(s, X) has no 
zeros in the region 

and 

where L = 10g(q(ltl + 2)). 

8 
a>l--

4L 

8 
Itl> -1 -, ogq 

The case where Itl < 8/log q still needs to be considered. We will 
show that for suitable 8 (independant of q) there is at most one zero 
in the region and this zero is simple and real. Such a zero, if it exists, 
is called a Siegel zero in the literature. 

Theorem 6.5.12 There exists a positive absolute constant c such 
that if 0 < 8 < c, then L(s, X) has no zeros in the region 

c 
8 > 1 - -----,-.,--,---,-

log q(ltl + 2) 
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except possibly if X is real and nonprincipal, in which case there is 
at most one simple, real zero in the region. 

Proof. We need only consider the case where X is real and nonprin­
cipal and 11'1 < 6/ log q. First suppose there are two complex zeros 
in the region. We have 

L'(a, X) '""' 1 
- L( ) < Cl log q - ~ --, a,X a - p 

p 

the sum over the zeros being real, since they occur in cOIhplex con­
jugate pairs. If ß ± i{ are zeros of L(s, X), with l' i- 0, then 

L'(a, X) 2(a - ß) 
- L( ) < Cl log q - ( ß)2· 2 . a,X a - + l' 

Also, 

_ L'(a, X) = f x(n)A(n) > _ f A(n) = ('(a) > __ 1_ - CO 

L(a, X) n=l nU - n=l nU ((a) a - 1 

for some constant CO. Thus 

1 2(a -ß) 
--- < c2 logq - ( ß)2 2' a-1 a- +1' 

and taking a = 1 + 26/ log q gives 

because 

Therefore, 

1 8 
- a - 1 < c2 logq - 5(a - ß) 

611 
11'1 < - = -(a - 1) < -(a - ß)· 

logq 2 2 

8 
ß<l-­

logq 

for a sufficiently small 6. The argument for two real zeros or a double 
real zero is the same. This completes the proof. 0 
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6.6 Supplementary Problems 

Exercise 6.6.1 Prove that f(s) has poles only at s 
... , and that these are simple, with 

Exercise 6.6.2 Show that 

e~l/x = ~! xSf(s)ds, 
2m (0') 

for any (J > 1 and x :2: 1. 

0, -1, -2, 

Exercise 6.6.3 Let f(s) = L~=l an/nS be an absolutely convergent 
Dirichlet series in the half-plane Re( s) > 1. Show that 

for any (J > 1. 

Exercise 6.6.4 Prove that 

00 2 

sin z = z II (1 - n~7r2)' 
n=l 

Exercise 6.6.5 Using the previous exercise, deduce that 
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Explicit Formulas 

In this chapter our goal is to derive the explicit formula 

xP ('(0) 1 -2 
'lj; (x) = x - '" - - - - - log (1 - x ) 

L. p ((0) 2 ' 
P 

where the sum is over the nontrivial zeros p of ((8). The method will 
then be used to derive the result 

'lj;(x) = x + 0 (x1/ 2 1og2 x) 

assuming the Riemann hypothesis. A similar result can be obtained 
for primes in arithmetic progressions. 

7.1 Counting Zeros 

If j(z) is analytic in C, then the integral 

1 1 j' -. -(z)dz 
27f2 c j 

is equal to the number of zeros of j inside C, counted with multi­
plicity. This is easily seen by Cauchy's theorem. 
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Since 
d j'(z) 
dz log I(z) = I(z) , 

we have 
r I' Je ,(z)dz = ße log I(z), 

where ße denotes the variation of log I(z) around the contour C. 
Also, 

log I(z) = log II(z)1 + iargl(z), 

and log 1I1 is single-valued. Thus, the formula can be rewritten as 

1 
27f ßeargl(z). 

Exercise 7.1.1 Let L be the line joining 2 to 2 + iT and then ~ + iT. 
Show that 

Exercise 7.1.2 With L as in the previous exercise, show that 

Exercise 7.1.3 With L as in the previous exercise, show that 

( s ) T T T 3 (1) ß L arg r - + 1 = - log - - - + -7f + 0 - . 
2 2 2 2 8 T 

Exercise 7.1.4 Show that 

1 L 1 + (T _,)2 = O(logT), 
p 

where the sum is over the nontrivial zeros p = ß + i{ 01 (( s). 

Exercise 7.1.5 Let N(T) be the number 01 zeros 01 ((s) with 0 < 
Im( s) :s: T. Show that 

N(T + 1) - N(T) = O(logT). 
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Exercise 7.1.6 Let 8 = U + it with tunequal to an ordinate 0/ a 
zero. Show that /or large Itl and -1 ~ u ~ 2, 

('(8) I 1 
((8) = L 8 _ P + O(log Itl), 

p 

where the da8h on the summation indicates that it is limited to those 
p /or which It -,1 < 1. 

Theorem 7.1.7 Let N(T) be the number 0/ zeros 0/ ((8) in the 
rectangle 0 < u < 1, 0< t < T. Then 

T T T 7 (1) N(T) = -log - - - + - + S(T) + 0 -
27r 27r 27r 8 T ' 

where 

and L denotes the path 0/ line segments joining 2 to 2 + iT and then 
to ~ + iT. We also have 

S(T) = O(logT). 

Proof. Let R be the rectangle with vertices 2, 2 + iT, -1 + iT, and 
-1, traversed in the counterclockwise direction. Then 

There is no change in the argument as 8 goes from -1 to 2. Also, 
the change when 8 moves from ~ + iT to -1 + iT and then to -1 is 
equal to the change as 8 moves from 2 to 2 + iT and then to ~ + iT, 
since 

~(u + it) = ~(1 - u - it) = ~(1- u + it). 

Hence 7rN(T) = ßLarg~(8), where L denotes the path of line seg­
ments joining 2 to 2 + iT and then to ~ + iT. By Exercises 7.1.1 and 
7.1.3, we deduce 

T T T 7 (1) N(T) = -log - - - + - + S(T) + 0 - , 
27r 27r 27r 8 T 

where 
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N ow, the variation of (( s) along (j = 2 is bounded, since log (( s) is 
bounded there. Thus, 

1fS(T) = 0(1) _ {2+iT Im (~((s))) ds. 
h+iT " 8 

We now apply Exercise 7.1.6, which says that 

(' (8) I 1 
((8) = L 8 _ P + O(logt) 

p 

where the dash on the summation means I Im(8 - p)1 < 1. Observing 
that 

h2+iT (1) 
Im -- d8 = ~arg(8 - p) 

%+iT 8 - P 

is at most 1f and noting that the number of terms in the sum above 
is O(log Itl) by Exercise 7.1.5 gives us 

S(T) = O(logT). 

This completes the proof. D 

7.2 Explicit Formula for 'ljJ(x) 

Our main tool in deriving the explicit formula for 'lj;(x) will be The­
orem 4.1.4. Recall that this theorem says that 

1 lc+iR X S 

I(x,R) = -2 . -d8 
1f2 c-iR 8 

satisfies 

{

Xc min(l, R-1llog Xl-I) 

II(x, R) - <5(x) I < c 

R 

if X i= 1, 

if X = 1, 

where 
o if 0< x < 1, 

<5(x) = 1/2 if x = 1, 

1 if x>1. 
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Exercise 7.2.1 Show that if x is not a prime power and x > 1, then 

_ 1 lc+iR ('(8) X S 

'ljJ(x) - -2 . --;:--( ) -d8 
1fZ c-iR ., 8 8 

Exercise 7.2.2 Prove that if x is not an integer, then 

where "xii denotes the distance of x to the nearest integer. 

Exercise 7.2.3 By choosing c = 1 + IO~ x in the penultimate exercise, 
deduce that 

1 l c+iR ('(8) X S (x log2 x) 'ljJ(x) = - ---d8 + 0 
21fi c-iR ((8) s R 

if x - ~ is a positive integer. 

Exercise 7.2.4 Let C be the rectangle with vertices c - iR, c + iR, 
-U + iR, -U - iR, where c = 1 + 1/ log x, and U is an odd positive 
integer. Show that 

~ r _ ('(8) X S d8 = X _ xP _ ('(0) + x-2m 

21fi Je ((8) 8 LI p ((0) L 2m' h <R O<2m<U 

where we are writing the nontrivial zeros of ((8) as p = ß + iT. (R 
is chosen so that it is not the ordinate of any zero of ((8).) 

Exercise 7.2.5 Recall that the number of zeros p = ß+iT satisfying 
Ir-RI < 1 is O(logR). Show that we can ensure Ir-RI ~ (logR)-l 
by varying R by a bounded amount. 

Exercise 7.2.6 Let U be a positive odd number. Prove that 

1('(s)/((s)1 ~ (log2lsl) 

for -U ~ () ~ -1, provided that we exclude circles of a fixed positive 
radius around the trivial zeros s = - 2, -4, . .. of (( s). 
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Exercise 7.2.7 In Exercise 7.2.4, letting U ~ 00 along the odd 
numbers and R ~ 00 appropriately (that is, as in Exercise 7.2.5) 
prove that 

xP ('(0) 1 -2 
'lj;(x) = x - '" - - - + -log(l - x ) 

L; P ((0) 2 ' 
P 

whenever x is half more than an integer. 

We use these ideas to prove the following result: 

Theorem 7.2.8 For some constant Cl > 0, 

'lj;(x) = x + 0 (xexp (-Cl Vlogx)) 

Proof. By the solution to Exercise 7.2.7, we know that 

( ) = _ '" xP _ ('(0) ~ 1 (1 _ -2) 0 (x log2 X X log2 R) 
'lj; x x L; ((0) + 2 og x + R + Rio x . 

Ipl<R P g 

By Theorem 6.5.6, we have Re(p) = ß < 1 - IO~R' so that the sum 
over the zeros is 

( CIogx) '" 1 xexp - -- L;-' 
log R h'I<R Ipl 

By partial summation and Theorem 7.1.7 we have 

1 /,R logt 2: -I I « -t-dt « log2 R. 
I'YI<R P I 

The optimal choice for R satisfies 

10gR = c2(10gx)I/2 

for some appropriate constant C2. It is now easily verified that this 
gives the desired result. 0 

Exercise 7.2.9 4ssuming the Riemann hypothesis, show that 

as x ~ 00. 
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Exercise 7.2.10 Show that if 

1j;(x) = x + 0 (x1/ 2 1og2 x) 

then ((s) has no zeros for Re(s) > 1/2. 

7.3 Weil's Explicit Formula 

The general philosophy of explicit formulas is to relate the sum of a 
suitable function over prime powers to the sum of the Fourier trans­
form of that function over the zeros of the zeta function. The same 
philosophy applies to any function of the Selberg dass (see Chapter 
8). Here, we develop it only for the zeta function. In many applica­
tions, such formulas are useful in establishing subtle information on 
the distribution of prime numbers by exploiting information ab out 
the zeros of (( s) or vice versa. 

Lemma 7.3.1 Let E > 0 and let h(s) be holomorphic in the strip 
-! - E :::; Re(s) :::; ! + E and satisfy h(s) = h( -s), h(s) = O(lsl-1-E) 
as Isl --+ 00. Then 

~! ((t + s) h(s)ds = L h(iry) , 
2m (~+E)~(2+s) I 

where ~(s) = s(s -1)1f- s/ 2r(s/2)((s), and the summation is over all 
I such that ~ + iry is a zero of ((s) with Im(iry) > O. 

Proof. Recall that ~ (s) is an entire function of order 1 and has the 
factorization 

~eBS rr (1- ~)es/p, 
p P 

where the product is over the nontrivial zeros p = ! + iry of ((s) in 
0:::; Re(s) :::; 1 (Exercise 6.4.3). 

Thus 

((s) 

~(s) 
B + '" (_1_ + ~) 

L.t s-p p 
p 
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By the argument in Exercise 7.1.6, we see that 

e'(s) "" s 
~(s) = ~ p(s _ p) + O(log(ltl + 1)), 

p 

where the dash on the summation means I Im(s - p)1 < 1 and t = 

Im( s ). For any given T we can vary T by a bounded amount to 
ensure that I, - tl ~ (logT)-l by the argument in Exercise 7.2.5. 
Thus the summation is O(lsllog Isl) for Im(s) = T. 

Thus, by the hypothesis on h( s), we can always find arbitrarily 
large T > 0 such that 

for s = a + iT and -1 - E :::; a :::; 1 + E. Now let RT be the closed 
rectangular contour described by traversing the vertices ~ + E - iT, 
~ + E + iT, -~ - E + iT, and -~ - E - iT. Since the zeros of ((s) 
occur in pairs 1/2 ± iJ, it follows by Cauchy's theorem that 

1 1 ((l+ s) 
-2 . (f) h(s)ds = 2 L h(iJ)· 

m R ~ - +s 
T 2 0 <Irn(i,) < T 

Since 

for - ~ - E :::; a :::; ~ + E, it follows that the horizontal integrals tend 
to 0 as T -+ 00. By the functional equation ~(s) = ~(1 - s), we have 

((~ + s) 

~a + s) 

((~ - s) 

~(~-s)' 

so that the vertical line integrals are equal to 

1 l~+E+iT ((~ + s) 
-. 1 h(s)ds. 
2m, ~+E-iT ~(-2+s) 

Now 

e'(~ + s) 
~(~+s) 

1 _ ~ 10 1r f'(s/2 + 3/4) ('(s + 1/2) 
s - 1/2 2 g + 2f(s/2 + 3/4) + ((s + 1/2) . 
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On the verticalline Re( s) = 1 + E, the quantity 

is bounded by 

Also, 
f'(s/2 + 3/4) 
f(s/2 + 3/4) 

is bounded according to Exercise 6.3.17 by O(log(lsl + 1)). Since 
h(s) = 0(lsl- 1-0), the above integral converges absolutely. Letting 
T -7 00 establishes the lemma. 0 

Theorem 7.3.2 (Weil's explicit formula) Assume that h(s) sat­
isfies the conditions of Lemma 7.3.1. In addition, assume that h(it) = 
ho (t /21f) is a real-valued function for t E ßt whose Fourier transform 

satisfies the bound 

for fixed E > 0 as y -7 00. Then we have 

~h(i'Y) + ~ A:;! ho (log n) 

(1) 1 ~ (OO f'(1/4+i1ft) 
= h 2" - 2"(log1f)ho(O) + 1-00 f(1/4 + i1ft) ho (t)dt, 

where the first sum is over alt zeros 1/2 + i'y satisfying Im(i'y) > 0, 
and A(n) is the von Mangoldt function, so that the second sum is 
over alt prime powers. 

Remark. The growth conditions on hand ho ensure that the inte­
grals and sums in the formula converge absolutely. 
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Proof. Recall that 

e(~+s) 
e(~+s) 

= 1 + 1 _ ~ 10 7r + f' (1/4 + s /2) _ 00 A ( n ) 
s + 1/2 s - 1/2 2 g f(1/4 + s/2) ~ n S +1/2' 

so that inserting this into Lemma 7.3.1 we see that 

1 Ir {I 1 1 - + - -log7r 
27ri (~+€) s + 1/2 s - 1/2 2 

f'(1/4 + s/2) _ ~ A(n) }h( )d = '"' h(· ) 
+ f(1/4 + s/2) ~ ns+1/2 s s ~ Y'f. 

Observe that by the growth condition on h, 

by moving the line of integration to the purely imaginary axis. Thus 

- ho(t/27r)e-itlogndt 1 100 

27r -00 

ho(logn). 

Similarly, we can also move the other integrals to Re(s) = 0, which 
gives rise to the other terms of the formula. This completes the 
~~ 0 
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7.4 Supplementary Problems 

Exercise 7.4.1 Using the method of Exercise 6.5.3, prove that for 
1 ~ (J ~ 2, Itl 2:: 2, 

-Re( ~(~,':j) < Allogq(ltl + 2) - LReC ~ p)' 
p 

where Al is an absolute constant, and the summation is over alt zeros 
p of L(s,X), and X is a primitive Dirichlet character (modq). (Of 
course, s = (J + it, as usual.) 

Exercise 7.4.2 Let X be a primitive Dirichlet character (modq). If 
p = ß + h runs through the nontrivial zeros of L(s, X), then show 
that for any real t, 

1 L ( )2 =O(logq(ltl+2)). 
1 + t-, 

p 

Exercise 7.4.3 With X a primitive character (mod q) and t not co­
inciding with the ordinate of a zero, show that for -3/2 ~ (J ~ 5/2, 
Itl 2:: 2, 

L' I 1 
-(s,X) = '" - + O(logq(ltl + 2)), 
L 6 s-p 

p 

where the dash on the sum means we sum over p = ß + h for which 
/t -,I < 1. 

Exercise 7.4.4 Let X be a primitive Dirichlet character (mod q). 
Let N(T, X) be the number of zeros of L(s, X) in the rectangle 0 < 
(J < 1, Itl < T. Show that 

T qT T 
N(T, X) = -log - - - + O(logqT) 

1f 21f 21f 

for T 2:: 2. 

Exercise 7.4.5 Let X be a primitive Dirichlet character (modq). If 
x is not a prime power and X( -1) = -1, derive the explicit formula 

'lj;(x, X) := L x(n)A(n) 
n<x 

xP L'(O,X) 00 x l - 2m 

- L -p - L(O X) + L 2m - 1 ' 
P 'm=l 
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where the first sum on the right-hand side is over the non trivial zeros 
0] L(s, X). 

Exercise 7.4.6 Let X be a primitive Dirichlet character (modq). I] 
x is not a prime power and X( -1) = 1, derive the explicit ]ormula 

'" xP 1_2 'Ij;(x,X) = - ~ - -logx - b(X) - "21og(1- x ), 
p p 

where b(X) = lims-to (f(~,':] - ~), and the sum on the right-hand 

side is over the nontrivial zeros 0] L(s, X). 

Exercise 7.4.7 Let X be a primitive Dirichlet character (mod q) and 
set a = 0 or 1 according as X( -1) = 1 or -1. I] x -1/2 is a positive 
integer, show that 

'Ij;(x, X) 
x P - L - - (1- a)(logx + b(X)) 

i'Y1<R P 

00 xa-2m (X log2 qxR) 
+ L 2m-a +0 R ' 

m=l 

where the first summation is over zeros p = ß + hand R is chosen 
greater than or equal to 2 so as not to coincide with the ordinate 0] 
any zero 0] L(s, X). 

Exercise 7.4.8 I] we assume that alt the nontrivial zeros 0] L(s, X) 
lie on Re(s) = 1/2 (the generalized Riemann hypothesis), prove that 

Exercise 7.4.9 Let 

'Ij;(x, q, a) = L A(n). 

Show that the generalized Riemann hypo thesis implies 

'Ij;(x, q, a) = rj;[q) + 0 (x1/ 2 1og2 qx) 

when (a, q) = 1. 
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Exercise 7.4.10 Assuming the generalized Riemann hypothesis, 
show that there is always a prime p « q2 1og4 q satisfying p == 
a(modq) whenever (a,q) = 1. 

Exercise 7.4.11 Show that if q is prime, then 

( _ 1) (d) {I if a has order q - 1 
cp q _ 1 L fJ. d L x(a) = 

q dlq-l cp( ) o(x)=d 0 otherwise, 

where the inner sum is over characters X mod q whose order is d. 

Exercise 7.4.12 Let q be prime. Assuming the generalized Riemann 
hypothesis, 
show that there is always a prime p < q such that p is a primitive 
root (mod q), for q sufficiently large. 

Exercise 7.4.13 Let q be a prime. Show that the smallest primitive 
root modq is 0 (2v(q-l)ql/21ogq), where v(q - 1) is the number of 

distinct prime factors of q - 1. 

Exercise 7.4.14 Let q be a prime and assume the generalized Rie­
mann hypothesis. Show that there is always a prime-power primitive 
root satisfying the bound 0 (4v (q-l) log4 q). 

Exercise 7.4.15 Let q be prime and assume the generalized Rie­
mann hypothesis. Show that the least quadratic nonresidue (modq) 
is O(log4 q). 

Exercise 7.4.16 Let q be prime and assume the generalized Rie­
mann hypothesis. Show that the least prime quadratic residue (mod q) 
is O(log4 q). 

Exercise 7.4.17 Prove that for n > 1, 

. 1 A(n) 
11m - L n P =---

T--+oo T 1f ' 
I,I'S.T 

where the summation is over zeros p = ß+h, ß E ffi., ofthe Riemann 
zeta function. 



8 
The Selberg Class 

The Selberg dass S consists of functions F (s) of a complex variable 
s satisfying the following properties: 

1. (Dirichlet series): For Re( s) > 1, 

00 

F(s) = " an 
~ns 
n=l 

where al = 1. (We will write an(F) = an for the coefficients of 
the Dirichlet se ries of F.) 

2. (Analytic continuation): For some integer m ~ 0, (s -l)mF(s) 
extends to an entire function of finite order. 

3. (Functional equation): There are numbers Q > 0, ai > 0, 
Ti E C with Reh) ~ ° such that 

d 

<1>(s) = QsI1r(ais+ ri)F(s) 
i=l 

satisfies the functional equation 

<1>(8) = w<1>(l - s), 

where w is a complex number with Iwl = 1 and <1>(8) = <1>(8). 
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4. (Euler product): For Re(s) > 1, 

F(s) = II Fp(s), 
p 

where 
00 b 

Fp (s) = exp (L f:) 
k=l P 

and bpk = O(PkB) for some () < 1/2, and p denotes a prime 
number here. We shall write bp(F) = bp. 

5. (Ramanujan hypothesis): For any fixed E > 0, 

where the implied constant may depend upon E. 

A prototypical example of an element of S is, of course, the Rie­
mann zeta function. But more exemplary is the Ramanujan zeta 
function 

where Tn = T(n)/n1/2 and T is defined by the infinite product 

00 00 

n=l n=l 

Ramanujan established properties (i), (ii), and (iii) and conjectured 
(iv) and (v). Property (iv) was proved by Mordell and (v) by Deligne. 

8.1 The Phragmen - Lindelöf Theorem 

We discuss an important theorem that allows us to estimate the 
growth of a function in the region a ::; Re(s) ::; b just by knowing its 
behaviour on Re( s) = a and Re( s) = b. We first recall the maximum 
modulus principle. 
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Exercise 8.1.1 Let j(z) be an analytic function, regular in a region 
Rand on the boundary ßR, which we assume to be a simple closed 
contour. 1f If(z)1 :S M on ßR, show that If(z)1 :S M for all zER. 

Exercise 8.1.2 (The maximum modulus principle) 1f f is as in the 
previous exercise, show that If(z)1 < M for all interior points zER, 
unless f is constant. 

Theorem 8.1.3 (Phragmen - Lindelöf) Suppose that f (s) is en­
tire in the region 

S(a,b) = {s E C: a:S Re(s):S b} 

and that as Itl --+ 00, 

If(s)1 = 0 (elt!") 

for some a ~ 1. 1f j (s) is bounded on the two verticallines Re( s) = a 
and Re(s) = b, then f(s) is bounded in S(a, b). 

Proof. We first select an integer m > a, m == 2 (mod4). Since 
arg s --+ 7r /2 as t --+ 00, we can choose Tl sufficiently large so that 

I arg s - 7r/21 < 7r/4m. 

Then for I Im(s)1 ~ Tl, we find that arg s = 7r /2-8 = () (say) satisfies 

cosm() = - cosm8 < -1/V2. 

Therefore, if we consider 

then 
\9E(S)1 :S Kelt!" e-Elslm/V2. 

Thus, 19E(S)\ --+ 0 as Itl --+ 00. Let B be the maximum of f(s) in the 
region 

a :S Re(s) :S b, O:S I Im(s)1 :S Tl· 

Let T2 be chosen such that 
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for I Im(s)1 ~ T2 · Thus, 

for I Im(s)1 ~ T2· Applying the maximum modulus principle to the 
regIOn 

a S Re(s) Sb, 0 s I Im(s)1 S T2 , 

we find that I f (s ) I s B eElslm. This estimate holds for all s in S (a, b). 
Letting E -+ 0 yields the result. 0 

Corollary 8.1.4 Suppose that f(s) is entire in S(a, b) and that If(s)1 
= O(e1tJ<') for some a ~ 1 as Itl-+ 00. 1f f(s) is O(ltIA) on the two 
vertical lines Re(s) = a and Re(s) = b, then f(s) = O(ltI A ) in 
S(a, b). 

Proof. We apply the theorem to the function g(s) = f(s)/(s - u)A, 
where u > b. Then 9 is bounded on the two vertical strips, and the 
result follows. 0 

Exercise 8.1.5 Show that for any entire function FES, we have 

F(s) = 0 (ltIA) , 

for some A > 0, in the region 0 S Re( s) S 1. 

8.2 Basic Properties 

We begin by stating the following theorem of Selberg: 

Theorem 8.2.1 (Selberg) For any FES, let NF(T) be the num­
ber of zeros p of F (s) satisfying 0 S Im(p) S T, counted with multi­
plicity. Then 

as T -+ 00. 

Proof. This is easily derived by the method used to count zeros of 
((s) and L(s, X) as in Theorem 7.1.7 and Exercise 7.4.4. 

o 



8.2 Basic Properties 119 

Clearly, the functional equation for FES is not unique, by 
virtue of Legendre's duplication formula. However, the above the­
orem shows that the sum of the CYi'S is well-defined. Accordingly, we 
define the degree of F by 

d 

deg F := 22:.: CYi· 

i=l 

Lemma 8.2.2 (Conrey and Ghosh) [f FES and degF 0, 
then F = 1. 

Proof. We follow [CG]. A Dirichlet series can be viewed as apower 
series in the infinitely many vaiables p-s as we range over primes p. 

Thus, if deg F = 0, we can write our functional equation as 

where Iwl = 1. 
Thus, if an i= 0 for some n, then Q2 In is an integer. Hence Q2 is an 

integer. Moreover, an i= 0 implies nl Q2, so that our Dirichlet series is 
reallya Dirichlet polynomial. Therefore, if Q2 = 1, then F = 1, and 
we are done. So, let us suppose q := Q2 > 1. Since al = 1, comparing 
the Q2s term in the functional equation above gives laql = Q. Since 
an is multiplicative, we must have for some prime power prll q that 
lapr I ~ pr/2. Now consider the p-Euler factor 

with logarithm 

2:.:00 bpi 
10gFp(s) = - .. 

pJs 
j=o 

Viewing these as power series in x = p-s, we write 

P(x) 

10gP(x) 

"r A. j 
uj=o J X ' 

,,00 B. j 
uj=O J X ' 
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where Aj = api, B j = bpi. Since a1 = 1, we can factor 

r 

P(x) = rr (1 - ~x), 
j=l 

so that 

We also know that 

so that 

But 

r rr IRil ~ pr/2, 
i=l 

r Rj 1;­
Ibpil1fj = IBj l1fj = 12: -j..1 J 

i=l J 

tends to maxl<i<r IRil as j -+ 00, which is greater than or equal to 
pl/2. This contra-dicts the condition that bn = O(nO) with (J < 1/2. 
Therefore, Q = 1 and hence F = 1. 0 

We can now prove the foHowing basic result: 

Theorem 8.2.3 (Selberg) 11 FES and F is 01 positive degree, 
then deg F ~ 1. 

Proof. We follow [CG]. Consider the identity 

Because of the Phragmen - Lindelöf principle and the functional 
equation, we find that F(s) has polynomial growth in I Im(s)1 in any 
vertical strip. Thus, moving the line of integration to the left, and 
taking into account the possible pole at s = 1 of F (s) as weH as the 
poles of r(s) at s = 0, -1, -2, ... , we obtain 

~ -nx _ P(logx) ~ F(-n)(-l)nxn 
L..Jane - + L..J , ' 
n=l X n=O n. 
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where P is a polynomial. The functional equation relates F( -n) to 
F(n + 1) with a product of gamma functions. If 0 < deg F < 1, 
we find by Stirling's formula that the sum on the right-hand side 
converges for all x. Moreover, P (log x) is analytic in C\ {x ::; 0 : x E 

~}. Hence the left-hand side is analytic in C\ {x ::; 0 : x E ~}. But 
since the left-hand side is periodic with period 27ri, we find that 

00 

f(z) = L ane-nz 

n==l 

is entire. Thus, for any x, 

ane-nx = fo27r f(x + iy)einYdy « n-2 

by integrating by parts. Choosing x = l/n gives an 
Hence the Dirichlet series 

00 

F ( s) = '"""' an 
~ns 
n==l 

converges absolutely for Re s > -1. However, relating F( -1/2 + it) 
to F(3/2-it) by the functional equation and using Stirling's formula, 
we find that F( -1/2 + it) is not bounded. This contradiction forces 
degF ~ 1. D 

An element FES will be called primitive if F =1= 1 and F = F1F2 

with F1 , F2 E S implies F1 = 1 or F2 = l. 
Thus, a primitive function cannot be factored nontrivially in S. 

Exercise 8.2.4 Show that 

Exercise 8.2.5 1f FES has degree 1, show that it is primitive. 

Exercise 8.2.6 Show that any FES, F =1= 1, can be written as a 
product of primitive functions. 

Exercise 8.2.7 Show that the Riemann zeta funciion is a primitive 
function. 

Exercise 8.2.8 1f X is a primitive character (modq), show that 
L(s, X) is a primitive function of S. 
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Exercise 8.2.9 1f FES, show that \an \ :S c(f)nE implies that 

Exercise 8.2.10 Prove the asymmetrie form of the funetional equa­
tion for (( s ) : 

Exercise 8.2.11 Show that for k E N, 

for some absolute eonstant C. 

Exercise 8.2.12 Show that 

~ e-nx = x-I + ~ (( -k)( -x)k 
L...J L...J k! . 
n=1 k=O 

Deduee that for k = 2, 3, ... 

((1 - k) = -Bk/k 

and ((0) = -1/2, where Bk denotes the kth Bernoulli number. 

Exercise 8.2.13 Let X be a primitive Diriehlet eharaeter (mod q) 
satisfying X( -1) = 1. Prove that 

f2 ql/2 (27r) 1/2-8 ( 7rS) 
L(1 - s, X) = V:; T(X) q eos 2 f(s)L(s, X), 

where T(X) denotes the Gauss sumo 

Exercise 8.2.14 Let X be a primitive eharacter (mod q), satisfying 
X( -1) = 1. Show that for k E N, 

\L( -k, X)\ :S Ck!(q/27r)k 

for some eonstant C = O(y/q). 
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Exercise 8.2.15 Let X be a primitive character (mod q), satisfying 
X( -1) = 1. Show that 

iq1/2 (21f) 1/2-8 ( 1fS) 
L(l - s, X) = _(21f)-1/2 T(X) q sin 2 r(s + l)L(s, x)· 

Exercise 8.2.16 Let X be a primitive Dirichlet character (modq) 
satisfying X( -1) = -1. Show that for k E N, 

IL( -k, x)1 ::s; C(k + 1)!(qj21f)k 

for some constant C = 0 ( y7i). 

Exercise 8.2.17 Prove that 

~ ( ) -nx = ~ L(-k,X)(-x)k 
L;X n e L; k! 
n=1 k=ü 

Deduce that for n 2:: 1, 

L(l - n,x) = -Bn,xjn, 

where 
q 

Bn,x = qn-1 L x(a)bn (-'::), 
a=1 q 

with bn(x) denoting the nth Bernoulli polynomial. 

8.3 Selberg's Conjectures 

We have seen in the previous section that (( s) and Dirichlet's L­
functions L(s, X) are primitive since they are of degree 1. Selberg [S] 
conjectures that as x --+ 00: 

(a) for any primitive function F, 

L lap (F)1 2 = log log x + 0(1); 

PScx p 

(b) for two distinct primitive functions Fand G, 
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We have also seen that any function of S can be factored into prim­
itive functions. Two of the important consequences of conjectures (a) 
and (b) are contained in the following exercises. 

Exercise 8.3.1 Assuming (a) and (b), prove that any function FE 
S can be factored uniquely as a product of primitive functions. 

Exercise 8.3.2 Suppose F, G E Sand ap(F) = ap(G) for alt but 
finitely many primes p. Assuming (a) and (b), prove that F = G. 

This exercise shows that a form of "strong multiplicity" holds for 
the Selberg dass. It is possible to prove a slightly stronger version 
of this fact without assuming (a) and (b). This is the goal of the 
exercises below. 

Exercise 8.3.3 1f F(s) = 2:~=1 ann-s and (J = Re(s) > (Ja(F), the 
abscissa of absolute convergence of F, then prove that 

lim ~ {T F((J + it)ylJ+itdt = { 
T-too 2T J -T 0 otherwise, 

for any real y. 

Exercise 8.3.4 Prove that 

for c > 0 and 0'., ß > O. 

Exercise 8.3.5 Let f (s) be a meromorphic function on ce, analytic 
for Re( s) ~ ~, and nonvanishing there. Suppose that log f (s) 2S a 
Dirichlet series and that f (s) satisfies the functional equation 

H(s) = wH(l - s), 

where w is a complex number of absolute value 1, and 

H(s) = AsTIf~l f(O'.i S + ßi) f(s) 
rrf;l f( "fiS + 8d 

with certain A, O'.i, "fi > 0 and Re(ßd, Re(8d ~ O. Show that f(s) is 
constant. 
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Exercise 8.3.6 Let F, G E S. Suppose ap(F) = ap(G), apdF) = 
ap2 (G) for all but jinitely many primes p. Show that F = G. 

Exercise 8.3.7 Assume Selberg 's conjectures (a) and (b). If FES 
has a pole of order m at s = 1, show that F(s)/((s)m is entire. 

Exercise 8.3.8 Assume Selberg's conjectures (a) and (b). Show that 
for any FES, there are no zeros on Re( s) = 1. 

8.4 Supplementary Problems 

Exercise 8.4.1 Verify that the primitive functions ((s) and L(s, X), 
where Xis a primitive character (modq), satisfy Selberg's conjectures 
(a) and (b). 

Exercise 8.4.2 For each F, G in S, dejine 

(F ® G)(s) = TI Hp(s), 
p 

where 
00 

Hp(s) = exp (L kbpk (F)bpk (G)p-kS). 
k=l 

If Fp(s) = det(l - App-S)-l and Gp(s) = det(l - Bpp-S)-l for 
certain nonsingular matrices Ap and Bp, show that 

Exercise 8.4.3 With notation as in the previous exercise, show that 
if F, G ES, then F ® G converges absolutely for Re( s) > 1. 

Exercise 8.4.4 If FES and F ® F extends to an analytic function 
for Re(s) 2: 1/2, except for a simple pole at s = 1, we will say that 
F is ®-simple. Prove that a ®-simple function has at most a simple 
pole at s = 1. 

Exercise 8.4.5 If FES and 

F = F:1 F;2 ... F:k 

is a factorization of F into distinct primitive functions, show that 

L lap (F)1 2 = (ei + e~ + ... + e~) log log x + 0(1), 
p<x p 
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assuming Selberg's eonjeetures (a) and (b). 

Exercise 8.4.6 If FES and F ® PES show that F is ®-simple 
if and only if F is primitive, assuming Selberg's eonjeetures (a) and 
(b). 

Exercise 8.4.7 If FES is ®-simple and entire, prove that F(l + 
it) =1= ° for all t E llt 

Exercise 8.4.8 Let FES and write 

For T > 1 and n E N, n > 1, show that 

l: n P = - :Ap(n) + 0 (n3/ 2 1og2 T) , 
l'YI~T 

where p = ß + i'y, ß > 0, runs over the nontrivial zeros of F(s). 

Exercise 8.4.9 Suppose F, GE S. Let 

Zp(T) = {p = ß + i'y, ß > 0, F(p) = ° and 1,1 :::; T}. 

Suppose that as T -+ CX), 

IZp(T)LlZc(T) I = o(T), 

where Ll denotes the symmetrie differenee ALlB = (A \ B) U (B \ A). 
Show that F = G. 



9 
Sieve Methods 

9.1 The Sieve of Eratosthenes 

The basic principle of a sieve method is the following: Given a finite 
set of natural numbers, estimate its size (from above and below) 
given information about the image of the set mod p for a given set 
of primes p. For example, let S be the set of primes in the interval 
[.jX, xl. We know that for each prime p ::; .jX, the image of S modp 
fails to contain the zero residue dass. Given this information, the 
estimation of S from above and below gives us estimates for 7r(x) -
7r( .jX). 

The oldest method to attack this quest ion is the sieve of Eratos­
thenes (300 B.e.). It was formally written in the following form by 
Legendre in the eighteenth century. 

Example 9.1.1 (Eratosthenes-Legendre) Let Pz be the product oi 
the primes p ::; z, and 7f(x, z) the number oi n < x that are not 
divisible by any prime p ::; z. Then 

7r(X, z) = L ~(d) [~J. 
dlPz 
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Solution. Clearly, 

1l"(X,z) 

as required. 

L L Jj(d) 
n~x dl(n,Pz ) 

L Jj(d) L 1 = L Jj(d) [J] 
dlPz nSx dlPz 

dln 

We saw in Exercise 1.5.10 that 

and in Exercise 1.5.11 that 

( 1)-1 rr 1 - - » log z. 
p~z p 

This gives the estimate (Exercise 1.5.12) 

X 
1l"(x, z) «-1 - + 0(2Z ). 

ogz 

Choosing z = log x, we obtain 

1l"(X) = 0(1 ~ ). og ogx 

Exercise 9.1.2 Prove that there is a constant c such that 

1 e-c 1 rr (1 - p) = log z ( 1 + 0 ( log z) ) . 
p<z 

o 

There is a famous theorem of Mertens that shows that the constant 
ein the previous exercise is Euler's constant T, given by 

T = lim (~~ -logt). 
t-+oo 6 n 

n<t 

This is proved in the following way. For (j > 0, we have 
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N ow consider 

f(O") 

In Exercise 9.1.2 it was proved that C = Co + Cl, where 

and 

Co = - L { log (1 - ~ ) + ~ } 
p p p 

Cl = lim (""' ~ - log log z) . z-too ~ p 
Ps'z 

Hence Co = limu-to f (0"). I t is clear that as 0" -+ 0+, log (( 1 + 0") = 
log ~ + 0(0"). Now, as 0" -+ 0+, log(l- e-U ) = logO" + 0(0"), so that 
as 0" -+ 0+, 

log ( (1 + 0") -log(l - e-U ) + 0(0") 
00 -un 

L 7 +0(0"). 
n=l 

Put H(t) = L:n::;t ~ and P(t) = L:p::;t ~. By partial summation, 

Similarly, 

1 L pl+u = 
p 

as 0" -+ 0+. Hence, 

f(O") = 0" 100 
e-ut (H(t) - P(et )) dt + 0(0"). 
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Since H(t) = logt + "f + O(l/t) by Example 2.1.10, and P(et ) 

logt + Cl + O(l/t), we deduce 

(CO 1 
j(r5) = (J"}o e-O"t("f- Cl+ OC+1))dt+0((J") 

1co 1 b - cd + (J" e-O"to (--) dt + O((J"). 
o t + 1 

An easy integration by parts shows that the integrand is O((J"), so 
that j(O) = Co = "f - Cl· This proves the following theorem: 

Theorem 9.1.3 (Mertens) 

V(z) = rr (1-~) = ~(1 + 0(_1 )). 
p log z log z 

ps.z 

Exercise 9.1.4 For z ::; log x, prove that 

xe-' 
7r(x, z) = (1 + 0(1))­

logz 

whenever z = z(x) -+ 00 as x -+ 00. 

We now define <I> (x, z) to be the number of n ::; x all of whose 
prime factors are less than or equal to z. This function, along with 
7r(x, z), plays an important role in sieve problems. 

Exercise 9.1.5 (Rankin's trick) Prove that 

( 1 )-1 
<I> (x, z) ::; XO rr 1 - 8" 

p<z P 

for any r5 > O. 

Exercise 9.1.6 Choose r5 = 1 - lo~z in the previous exerC2se to 
deduce that 

<I>(x,z)« x(logz)exp ( - ~:::). 
Exercise 9.1.7 Prove that 

~ p,(d) ( ( log X)) 1f(x, z) = X L.; d + 0 x(log z) exp - log z 
dlFz 
d<x 

for z = z(x) -+ 00 as x -+ 00. 
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Exercise 9.1.8 Prove that 

L ft ~d) = II (1 - ~ ) + ° ( (log z) 2 exp ( - ~:g:) ) , 
dlPz p~z P g 
d~x 

with z = z(X) -+ 00 as X -+ 00. 

Exercise 9.1.9 Prove that 

7r(x,z) = xV(z) + O(x(logz)2 exp ( - ~:~:)), 
where 

and z = z(x) -+ 00 as X -+ 00. 

Exercise 9.1.10 Prove that 
X 

7r (x) « -1 - log log X 
ogx 

by setting log z = E log x/log log X for some sufficiently sm all E in the 
. . 

prevwus exerc~se. 

Exercise 9.1.11 For any A > 0, show that 

A xe-" 
7r(x, (log x) ),..., Al 1 

og ogx 

as X -+ 00. 

The estimate of Exercise 9.1.9 for 7r(x) will be seen to be as good 
as the one obtained by the elementary Brun sieve of the next section. 

Let A be any set of natural numbers and let P be a set of primes. 
To each prime pEP, let there be w(p) distinguished residue classes 
mod p. Let Ap denote the set of elements of A belonging to at least 
one of these distinguished classes modp. For any square-free number 
d composed of primes PEP, let 

Ad = npldAp. 

We denote by S(A, P, z) the number of elements of 

A \ UPEP,p~zAp. 

Let w(d) = ITpldw(P), and P(z) = ITp~z,PEPP' 
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Exercise 9.1.12 Suppose that 

L w(P) logp ~ 11: log z + 0(1). 
p<z p 
pEP 

Show that 
Fw(t, z):= L w(d) 

d<t 
dlPlz) 

is bounded by O(t(logz)~exp ( - :~~!)). 

Exercise 9.1.13 Let C be a constant. With the same hypo thesis as 
in the previous exercise, show that 

L w~) = 0((IOgzt+1exp ( - ~:g:)). 
dIP(z) g 
d>Cx 

We are now ready to prove our version of the sieve of Eratosthenes. 
We follow [MS]. We suppose there is an X such that 

IAdl = Xw(d) + Rd 
d 

with Rd = O(w(d)). We also assume 

L w(p) logp ~ 11: log z + 0(1) 
p<z p 
pEP 

and set 

W(z) = rr (1- w(p)) . 
p<z P 
pEP 

Exercise 9.1.14 (Sieve ofEratosthenes) Suppose there is a con­
stant C > 0 such that IAdl = 0 for d > Cx. Then 

S(A,P,z) =XW(z)+O(x(logz)~+lexp( - ~:~:)). 

We can apply this to the problem of estimating the number of twin 
primes and prove Brun's theorem (Exercise 9.1.16) using only the 
sieve of Eratosthenes. 
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Exercise 9.1.15 Show that the number of primes p ::; x such that 
p + 2 is also prime is « x(log log x)2 / (log x)2. 

Exercise 9.1.16 (Brun, 1915) Show that 

",I 
~ - < 00, 

P 

where the dash on the sum means we sum over primes p such that 
p + 2 is also prime. 

9.2 Brun's Elementary Sieve 

By comparing coeffients of x r on both sides of the identity 

we deduce 

This implies that 

L Jt(d) = (_ly(v(n~ -1), 
dln 

v(d):Sr 

where v(n) is the number of prime factors of n. This observation is 
the basis of Brun's elementary sieve. Namely, let 

Then setting 

{ 
Jt ( d) if v (d) ::; r 

Jtr(d) = 
o if v(d) > r. 

1/Jr(n) = L Jtr(d), 
dln 

we find that ifr is even, 2:dln Jt(d) ::; 1/Jr(n) and ifr is odd, 2:dln Jt(d) 2: 
1/Jr(n). Thus 

L Jt(d) = 1/Jr(n) + 0 ( L IJt(d)I). 
dln dln 

v(d)=r+l 
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Exercise 9.2.1 Show that for r even, 

71" (x, z) ::; x 2: fJ.r~d) + O(zr). 
dlPz 

We now turn our attention to 

" fJ.r(d) 
L..J d . 
dlPz 

By Möbius inversion, 

so that 

fJ.r(d) = 2: fJ.(d/6)'l/Jr(6), 
<lId 

where V(z) is as in the previous section and ifJ denotes Euler's func­
tion. Let us note that 

2: fJ.r~d) = V(z) + V(z) 2: 'l/Jr~) . 
dlPz olPz ifJ( ) 

0>1 

We now want to estirnate the last surn. Observe that 

so that the surn under consideration is bounded by 

L (V(6) -1) _1_ < 
alPz r ifJ(6) 
0>1 

1 
< ,(log log z + CIr exp(log log z + Cl), 

r. 
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where we have utilized the elementary estimate 

1 L - < log log z + Cl 

p<z P 

for some constant q. Since er 2: ~~, we can write l/r! ::; (e/r)r, and 
thus 

" 'lj;r(8) V(z)L.....t rj;(8) ::;c2 exp(r-rlogr+rlogA), 
oJPz 
0>1 

where A = log log z + Cl, and we have used the estimate 

1 
V(z)« -1 -. 

ogz 

The idea is to choose r so that the r log r term dominates. This 
will minimize the error term. Indeed, choosing r to be the nearest 
even integer to a log x /log z, with a < 1, gives an error term of 

for some constant C3, and we impose 

alogx 
1 > 2(10g log z + Cl) 
ogz 

to ensure that the error term is sufficiently small. This proves the 
following theorem: 

Theorem 9.2.2 There is a constant C4 > 0 such that for 

log z < C4 log x/log log x, 

we have 

7r (x, z) ::; x V (z) + 0 (x exp ( - C3 ::: :) ) . 

Remark. Observe that this is comparable to the estimate obtained 
earlier by using the sieve of Eratosthenes combined with the careful 
application of Rankin's trick (Exercises 9.1.8 and 9.1.9). 

Also note that Theorem 9.2.2 gives us the upper bound 

X 
7r(x)« --(loglogx), 

log x 
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which is comparable to the estimate we obtained in Exercise 9.1.10. 
Brun used his method described above to deduce that the number 

of primes p :s; x such that p + 2 is also prime is bounded by 

x 2 
« (log x )2 (log log x) . 

From this, it is easy to deduce by partial summation that 

""I 6 - < 00, 
P 

where p is such that p + 2 is prime, a result that created asensation 
at the time it was proved by Brun. We have derived this using only 
the sieve of Eratosthenes in the previous section. 

Let A be a finite set of natural numbers, P a set of primes. For 
square-free d composed of primes from P, let Ad be the set of ele­
ments of A divisible by d. Far some w(d) multiplicative, suppose 

Let S(A, P, z) denote the number of elements of A coprime to 

As above 

S(A, P,z) 

P(z) = rr p. 

nEA dl(n,P(z)) 

p<z 
pEP 

L(1fJr(n,p(z))+O( LI)) 
nEA dl(n,P(z)) 

v(d)=r+1 

L JLr(d) (W~d) lAI + Rd) + 0 c;~r) . 
dIP(z) 

We make the hypothesis IRdl :s; w(d). Then 

S(A,"P, z) = lAI L JLr(d~W(d) + 0 c;~r) 
dIP(z) 

+ 0(1 + Lw(p)f. 
p<z 
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Exercise 9.2.3 Show that 

where 0(6) = ITpl,,(p - w(p)). 

Exercise 9.2.4 Suppose that w(p) :::; c, and that 

for some constants c, Cl, and C2· Show that there are constants C3, 

C4, and C5 such that 

We can put these inequalities together in the following form: 

Theorem 9.2.5 (Brun's elementary sieve) Suppose that w(p) :::; 
c and that 

'" w(p) ~ -- :::; Cl log log z + C2 

p<z P 
pEP 

for some constants c, Cl, and c2· Suppose further that R d = 0 (w (d) ). 
Then there are constants C3 and C4 such that 

S(A,P,z) = lAI D (1- w~)) +0 c;~r) +o(zr) 

pEP 

+ 0 ('AI. (CIIOgr~OgZ+C4Y (logz)C3) 

for any even number r. 

To make this amenable for applications, we use the inequality 

~ :::; (~)r 
r! r 

to obtain 

S(A,P,z) = IAI(W(z) +O(exp(-rlogr+rlogz+r))) +O(zr). 
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9.3 Selberg's Sieve 

The key idea of Selberg is to replace the use of the Möbius function 
that appears in Brun's sieve as weIl as the sieve of Eratosthenes by 
another sequence optimally chosen so as to minimize the resulting 
estimates. The method is best illustrated by the example below. 

Let Al = 1, and let us set Ad = 0 for d > z. Let us now consider 
the problem of estimating 7l"(x, z). 

Exercise 9.3.1 Let Pz = TIp::;z p be the product of the primes p ~ z. 
Show that 

7l"(X,z)~L( L Adf, 
n::;x dl(n,Pz ) 

for any sequence Ad of real numbers satisfying Al = 1. 

where [d1 , d2] is the least common multiple of d1 and d2. 

The main idea is to notice that we have a quadratic form on the 
right-hand side, given by 

and we seek to minimize it. We will show that there is a choice of Ad'S 
such that IAdl ~ 1, as required in Exercise 9.3.2. It should also be 
noted that the error term here is O(z2) in contrast to O(2Z ), which 
we obtained in the simplest form of the sieve of Eratosthenes. 

Exercise 9.3.3 Prove that 

where (d1 , d2) is the greatest common divisor of d1 and d2. 

Exercise 9.3.4 Show that 

L ~t~d2 = Lq?(8)(L ~r· 
dl,d2<Z [ 1, 2] 8<z Jld 

- - d~z 
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We now use the method of Lagrange multipliers to minimize the 
quadratic form of the previous exercise. 

Exercise 9.3.5 If 

show that 

A8 '"' T = ~f.L(dj8)Ud. 
81d 

(Note that U8 = 0 for 8 > z, since Ad = 0 for d > z.) 

Exercise 9.3.6 Show that if Al = 1, then 

~ Adl Ad2 

dl,d2<Z [d1 , d2l 

attains the minimum value 1jV(z), where 

f.L2 (d) 
V(z) = ~ <fy(d) . 

d<z 

By Exercise 9.3.4, we must minimize 

~<fy(b)( ~ ~dr 
69 61d 

d<z 

subject to the constraint Al = 1. 

Exercise 9.3.7 Show that for the choice of 

U8 = f.L(8)j(<fy(8)V(z)), 

we have IAdl ~ 1. 

This leads to the following problem: 

Exercise 9.3.8 Show that 

7r(x, z) ~ V~z) + O(z2). 

Deduce that 7r(x) = 0 (xjlogx) by setting z = x 1/ 2- E • 
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Exercise 9.3.9 Let f be a multiplicative function. Show that 

Let P be a set of primes. Suppose that we are given a sequence 
of integers A = {an}~::::l and we would like to count the number 
N(x, z) of n :::; x such that (an, P(z)) = 1 where P(z) is the product 
of the primes p :::; z, pEP. We now derive a more formal version 
of Selberg's sieve. For convenience, we write N (d) for the number of 
n :::; x such that dlan , and ass urne 

X 
N(d) = f(d) + Rd 

for some multiplicative function fand some X. 

Theorem 9.3.10 (Selberg's sieve, 1947) 

where 

and 
f(n) = L h(d). 

dln 

Proof. We have 

N(x,z):::; L ( L Adr, 

n:Sx dl(an,P(z)) 
anEA 

where Al = 1 and Ad are real numbers to be chosen. We will set Ad = 
o for d > z. Expanding the right-hand side of the above inequality, 
we get 

N(x,z) < L Ad1Ad2( L 1) 
dl ,d2:SZ dl,d2lan 

n<x 
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By Exercise 9.3.8, we have 

Hence, the first sum can be rewritten as 

Rearranging, we get 

Lh(8)( L f~~))2, 
<l:Sz <lId 

d<z 

which we seek to minimize subject to the condition Al = 1. As before, 
we set 

By Möbius inversion (Exercise 1.5.16), 

Thus, we must minimize 

subject to the condition 

By the Lagrange multiplier method, 

for some scalar A. Thus, 
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so that 

Therefore, the minimum is 

In addition, we have 

Hence, 

= L J.L(t)Udt 

= J.L( d) L J.L2 (t) 
h(d) (d,t)=l h(t)U(z)· 

t~zld 

f(d) '" J.L2(t) 
U(Z)Ad = J.L(d) f (d) ~ f (t) . 

1 (d,t)=l 1 

t~zld 

Nüw, für d square-free, 

Therefore, 

f(d) 
h(d) 

from which we see that i>\dl ~ 1. Hence, the error term is 
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We have therefore proved 

as desired. 

Exercise 9.3.11 Show that 

1 
U(z) > "'­- ~ 1(5)' 

8<z 

o 

where 1 (n) is the completely multiplicative junction defined by 1 (p) = 
j(p). 

Exercise 9.3.12 Let 7r2(X) denote the number ojtwin primes p::; x. 
Using Selberg 's sieve, show that 

7r2(X) = O(~). 
log x 

Exercise 9.3.13 (The Brun - Titchmarsh theorem) For (a, k) = 1, 
and k ::; x, show that 

(2 + E)X 
7r(x, k, a) ::; '(J(k) log(2xjk) 

jor x > XO(E), where 7r(x, k, a) denotes the number oj primes less 
than x which are congruent to a (mod k). 

Exercise 9.3.14 (Titchmarsh divisor problem) Show that 

L d(p - 1) = O(x), 
p<x 

where the sum is over primes and d(n) denotes the divisor junction. 

9.4 Supplementary Problems 

Exercise 9.4.1 Show that 

p<x 
p=l (mod k) 

1 log log x + log k 
P « '(J(k) , 

where the implied constant is absolute. 
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Exercise 9.4.2 Suppose that P is a set of primes such that 

1 2:- =+00. 
PEP P 

Show that the number of n :::; x not divisible by any prime pEP is 
o(x) as x --+ 00. 

Exercise 9.4.3 Show that the number of solutions 01 [d11 d2l :::; z is 
O(z(log z)3). 

Exercise 9.4.4 Prove that 

2: 1 = 0 (log log x) 
plog(x/p) log x 1 

P"5. x / 2 

where the summation is over prime numbers. 

Exercise 9.4.5 Let 7rk(X) denote the number ofn:::; x with k prime 
factors (not necessarily distinct). Using the sieve 01 Eratosthenes, 
show that 

() x(Aloglogx+B)k 
7rk x < --'----'-----"----'--

- k!logx 

for some constants A and B. 

Exercise 9.4.6 Let a be an even integer. Show that the number of 
primes p :::; x such that p + a is also prime is 

where the implied constant is absolute. 

Exercise 9.4.7 Let k be an even integer greater than 1. Show that 
the number of primes p :::; x such that kp + 1 is also prime is 

Exercise 9.4.8 Let k be even and satisfy 2 :::; k < x. The number 
of primes p :::; x such that p - 1 = kq with q prime is 

x 
« 2 . 

ip(k) log (x/k) 
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Exercise 9.4.9 Let n be a natural number. Show that the number 
oJ solutions oJ the equation [a, bJ = n is d(n2 ), where d(n) is the 
number oJ divisors oJ n. 

Exercise 9.4.10 Show that the error term in Theorem 9.3.10 can 
be replaced by 

o( L d(a2)IRa l). 
a<z2 

Exercise 9.4.11 Show that 

'" p-1 ( x ) ~ cp(p - 1) = 0 log x ' 
pS,x 

where the summation is over prime numbers. 

Exercise 9.4.12 Prove that 

II (1 - :C) « -,---1_ 
p (logx)r' 

r<ps,x 

Exercise 9.4.13 Prove that Jor some constant c > 0, we have 

d(n2 ) L -(n) = c(logx)3 + O(log2 x). 
n<x cP 

Exercise 9.4.14 Let d(n) denote the number oJ divisors oJ n. Show 
that 

L d2 (p - 1) = 0 (x log2 X log log x), 
p<x 

where the summation is over prime numbers. 

Exercise 9.4.15 Show that the result in the previous exercise can be 
improved to O(x log2 x) by noting that d2 (n) :::; d4(n), where d4(n) is 
the number oJ ways oJ writing n as a product oJ Jour natural numbers. 



10 
p-adic Methods 

10.1 Ostrowski' s Theorem 

Recall that a metric on a set X is a map d : X x X -t Il4 such that 

1. d(x,y) = 0 {:} x = y; 

2. d(x, y) = d(y, x); 

3. d(x, y) :S d(x, z) + d(z, y) Vz EX. 

Property (3) is called the triangle inequality. The pair (X, d) is 
then called a metric space, with metric d. 

A norm on a field F is a map 11·11 : F -t ll4 such that 
(1) Ilxll = 0 {:} x = 0; 
(2) Ilxyll = Ilxllllyll; 
(3) Ilx + yll :S Ilxll + Ilyll (triangle inequality). 

Exercise 10.1.1 1f F is a field with norm 11·11, show that d(x, y) = 

11 x - y 11 defines ametrie on F. 

The well-known norm on the field of rational numbers is, of course, 
the usual absolute value I· I. The induced metric Ix - yl is the usual 
distance function on the realline. But there are other norms that we 
can define on Ql that give rise to other metrics and "new" not ions of 
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distance. For each prime p and any rational number x i= 0, we can 
write x = pVp(X) Xl where Xl is a rational number coprime to p (that 
is, when Xl is written in lowest terms, neither the numerator nor the 
denominator is divisible by p). Define a norm I . Ip by 

Ixl p = p-vp(x) 

for x i= ° and for x = 0, 10Ip = 0. 

Exercise 10.1.2 Show that I· Ip is a norm on Q. 

A norm safisfying 

Ilx + yll ~ max(llxll, Ilyll) 

is called a nonarchimedean norm (or a finite valuation). The solu­
tion of Exercise 10.1.2 shows that the p-adic metric I . Ip is nonar­
chimedean. A metric that is not nonarchimedean is called 
Archimedean (or an infinite valuation). 

Exercise 10.1.3 Show that the usual absolute value on Q is archi­
medean. 

The celebrated theorem of Ostrowski states that essentially the 
only norms we can define on Q are the p-adic norms and the usual 
absolute value. To make this precise, we need the not ion of equiva­
lence of two norms. 

Given a metric space X, we can discuss the not ion of a Cauchy 
sequence. This is any sequence {an}~=l of elements of X such that 
given any E > 0, there exists an N (depending only on E) such that 
d(am, an) < E for m, n > N. 

Two metrics dl , d2 on X are said to be equivalent if every se­
quence that is Cauchy with respect to dl is also Cauchy with respect 
to d2 . Two norms on a field are said to be equivalent if they induce 
equivalent metrics. 

Exercise 10.1.4 1f ° < c < 1 and p is prime, define 

{ 
cVp(x) if x i= 0, 

Ilxll = 
° if x = ° 

for all rational numbers x. Show that 1I . 11 is equivalent to I . Ip on Q. 
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The usual absolute value on CQ we will denüte by 1·100 to distinguish 
it from the p-adic metrics. Note that we can always define a "trivial" 
norm by setting 11011 = 0, and Ilxll = 1 for x #- 0. We also note that 
11- xii = Ilxll follows from the axioms. 

Theorem 10.1.5 (Ostrüwski) Every nontrivial norm 11· II on CQ 
is equivalent to I . Ip for some prime p or I . 100. 

Proof. Case (i): Suppose there is a natural number n such that 
Ilnll > 1. Let no be the least such n. We know that no > 1, so we 
can write Iino II = n~ for some positive Q. Write any natural number 
n in base no: 

and as #- 0. Then, by the triangle inequality, 

Ilnll < Ilaoll + IIa1noil + ... + IlasnßII 

< Ilaoll + IIa111ng + ... + Ilasllngs. 

Since all the ai are less than no, we have Ilaill S 1. Hence, 

Ilnll < 1 + ng + ... + nos 

o<s ( 1 ) < no 1 + nO< + .... 
o 

Since n > nö, we deduce Ilnll :::; CnO< for some constant C and für all 
natural numbers n. Thus, IlnNII s CnNo< , so that Ilnll s C1/NnO<. 
Letting N ---7 00 gives Ilnll s nO< for all natural numbers n. We can 
also get the reverse inequality as follows: since nß+1 > n 2:: nß, we 
have 

Ilng+111 Iin + ng+ 1 - nil 
< Ilnll + Ilng+1 - nil, 

so that 

Ilnll > Ilng+111-llng+1 - nil 
> (s+1)o< (s+1 )0< no - no - n . 

Thus, 
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since n 2 ng, so that 

Ilnll > n~s+l)Q (1- (1 - ~J Q) 
> ClnQ 

für süme cünstant Cl. Repeating the previüus argument gives Ilnll ;::: 
n Q and therefüre Ilnll = n Q für all natural numbers n. Thus, 11 . 11 is 
equivalent tü I . 100· 

Case (ii): Suppüse that Ilnll ::; 1 für all natural numbers. Since 
the nürm is nüntrivial, there is an n such that Ilnll < 1. Let no 

be the least such n. Then no must be prime, für if no = ab, then 

Iinoll = Ilallllbll < 1 implies Ilall < 1 and Ilbll < 1, cüntrary tü the 
chüice üf no. Say no = p. If q is a prime not equal tü p, then we 
claim Ilqll = 1. Indeed, ifnüt, then Ilqll < 1, and für sufficiently large 
N, IlqN11 < 1/2. Similarly, for sufficiently large M, IlpM11 < 1/2. 
Since pM, qN are cüprime, we can find integers a and b such that 
apM + bqN = 1. Hence 

1 IlapM + bqNl1 ::; IlallllpMl1 + IlbllllqNl1 

< 1/2 + 1/2 = 1, 

a cüntradiction. Therefore, Ilqll = 1. Now write C = Ilpll. Since 
any natural number can be written uniquely as a product of prime 
powers, we get 

By Exercise 10.1.4, this metric is equivalent to I . Ip , which com-
pletes the proof. 0 

Exercise 10.1.6 Let F be a field with norm 11·11 satisfying 

Ilx + yll ::; max(llxll, Ilyll)· 

1f a E F, and r > 0, let B(a, r) be the open disk, {x E F: Ilx - all< 
r}. Show that B(a,r) = B(b,r) for any b E B(a,r). (This result says 
that every point of the disk is the "center" of the disc.) 

Exercise 10.1.7 Let F be a field with 11 . 11. Let R be the set of 
alt Cauchy sequences {an}~=l. Define addition and multiplication of 
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sequences pointwise: that is, 

{an}~=l + {bn}~=1 = {an + bn}~=I' 

{an}~=1 x {bn}~=1 = {anbn}~=I· 

Show that (R, +, x) is a commutative ring. Show further that the 
subset R consisting of null Cauchy sequences (namely those satisfying 
Ilanll -+ ° as n -+ (0) forms a maximal ideal m. 

We can embed our field F in R by the map a t-+ (a, a, ... ), which 
is clearly a Cauchy sequence. Since m is a maximal ideal, R/m is a 
field. R/m is called the completion of F with respect to 11·11. In the 
case of F = Q with norm I . Ip, the completion is called the field of 
p-adic numbers, and denoted by Qp. 

We can extend the concept of norm to Qp by setting 

lal p = lim lanl p 
n--too 

for any Cauchy sequence a = {an}~=I. It is easily seen that this is 
well-defined. 

Theorem 10.1.8 Qp is complete with respect to I . Ip . 

Proof. Let {a (j)} ~I be a Cauchy sequence of equivalence classes 
in Qp. We must show that there is a Cauchy sequence to which it 

converges. We write aU) = {aW)}~=1 and set s = {a;j)}~I' the 
"diagonal" sequence. First, observe that s is a Cauchy sequence, 
since {aU)}~1 is Cauchy, so that given E > 0, there is an N(E) such 

that for j, k ~ N(E), we have laU) - a(k)lp < E. This means that for 
j, k, n ~ NI (E) for so me NI (E), we have 

laW) - a~k) Ip < E. 

In particular, 

la;j) - a1k)l p ::; max (Ia;j) - a~)lp' la~) - a1k)lp) 

for j, k ~ NI (E). Therefore, s is a Cauchy sequence. We now show 
that limj--too aU) = s. That is, given E > 0, we must show that there 
is an N2(E) such that for j ~ N2(E), we have 

laU) - slp < E. 
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This means that we must show that for some N3(E) and j, n ;:: N3(E), 
we have laW) - a~n) Ip < E. But this is clear from the above for N 3 (E) = 

NI (E). D 

When we complete Q with respect to the usual absolute value 
I· 100' we get the real number field ~ which is complete. When we 
complete Q with respect to I . Ip we get Qp, which we just proved to 
be complete. It is this point of view that motivates p-adic analysis. 
Real analysis is seen to be the special case of only one completion of 
Q. As we shall see, it is fruitful to develop p-adic analysis on an equal 
footing. When applied to the context of number theory, we get an 
important theme of p-adic analytic number theory, which is playing 
a central role in the modern perspective. 

Exercise 10.1.9 Show that 

is a ring. (This ring is called the ring of p-adic integers.) 

Exercise 10.1.10 Given x E Q satisfying Ixlp :::; 1, and any natural 
number i, show that Ix - ailp :::; p-i. Moreover, we can choose ai 
satisfying 0 :S ai < pi. 

Just as it is impractical to think of real numbers as Cauchy se­
quences, it is impractical to think of elements of Qp as Cauchy se­
quences. It is better to think of them as formal series 

00 
L bnpn, 0:::; bn :::; p - 1, 

n=-N 

as the following theorem shows. 

Theorem 10.1.11 Every equivalence class s in Qp for which 
Islp :::; 1 has exactly one representative Cauchy sequence {ad~I sat­
isfying 0 :::; ai < pi and ai == ai+I (modpi) for i = 1,2,3, .... 

Proof. The uniqueness is clear, for if {a~}~1 is another such se­
quence, we have ai == a~(modpi), which forces ai = a~. Now let 
{ Ci} ~ I be a Cauchy sequence of Qp in s. Then for each j, there is 
an N(j) such that 
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for i, k ~ N(j). Without loss of generality, we may take N(j) ~ j. 
Since Islp ::; 1, we have ICilp ::; 1 for i ~ N(l) because 

ICilp < max(lqlp, ICi - cklp) 

< max(l cklp,l/p), 

so that by choosing a sufficiently large k we are ensured that 
ICkip ::; 1, since Islp = limk=oo Iqlp ::; 1. By Exercise 10.1.10, we 
can find a sequence of integers aj such that 

with 0 ::; aj < pi. The claim is that {aj} 'f-=l is the required sequence. 
First observe that by the triangle inequality, 

laj+l - ajlp ::; max(laj+l - CN(j+1) Ip ' ICN(j+l) - CN(j) Ip ' 

ICN(j) - aj Ip) 

< max (p-j-\p-j,p-j) = p-j, 

so that 
aj == aj+l(modpY), 

for i = 1,2, .... Second, for any j, and i ~ N(j), we have 

lai - cilp < max(lai - ajlp, laj - cN(j)lp, IcN(j) - cjlp) 

< max(p-j ,p-j ,p-j) = p-j 

o 

The above theorem says that Z is dense in Zp, the ring of p-adic 
integers. Now writing each ai of Theorem 10.1.11 in base p, we see 
that 

ai = bo + b1P + ... + bi_lpi-l, 

where 0 ::; bi < p. The condition ai == ai+l (mod pi) means that 

in base p. Therefore, every element of Zp can be written as L:~=o bnpn, 

o ::; bn < p. If x E Qp, we can always multiply x by an appropriate 
power of p (say pN) so that IpN xlp ::; 1. Then, we can expand pN x 
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as above to deduce that every p-adic number has a unique expansion 
as 'Lr:=-N bnpn, 0 ~ bn ~ p - l. 

It is useful to observe the analogy with Laurent series and the 
field of meromorphic functions of a eomplex variable. At each point 
z E C, the meromorphie function has a Laurent expansion, which is 
unique. Thus, if a rational number has denominator divisible by p, 
we can think of it as having a "pole" at p. This analogy has been a 
guiding force for mueh of the development in p-adic theory. 

Exercise 10.1.12 Show that the p-adic series 

converges if and only if lenlp ~ O. 

Thus convergence of infinite series is easily verified. Note, however, 
that the analogue ofExercise 10.1.12 is not true for the real numbers, 
as the example of the harmonie series shows. 

Exercise 10.1.13 Show that 

00 

Ln! 
n=l 

converges in Qp. 

Exercise 10.1.14 Show that 

00 

L n . n!=-l 
n=l 

in Qp. 

Exercise 10.1.15 Show that the power series 

00 n 

L:! 
n=O 

1 
converges in the disk Ixlp < p - p-l • 
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Exercise 10.1.16 (Product formula) Prove that for x E tQ, 

where the product is taken over alt primes p including 00. 

Exercise 10.1.17 Prove that for any natural number n and a finite 
przme p, 

10.2 Hensel's Lemma 

In many ways tQp is analogous to IR.. For example, IR is not al­
gebraically closed. The exercises below show that tQp is not alge­
braically closed. However, by adjoining i = A to IR, we get the 
field of complex numbers, which is algebraically closed. In contrast, 
the algebraic closure tQp of tQp is not of finite degree over tQ. More­
over, ce is complete with respect to the extension of the usual norm 
of IR. Unfortunately, tQp is not complete with respect to the exten­
sion of the p-adic norm. So after completing it (via the usual method 
of Cauchy sequences) we get a still larger field, usually denoted by 
CCp, and it turns out to be both algebraically closed and complete. 
It is this field CCp that is the p-adic analogue of the field of complex 
numbers. Very little is known about it. The topic of rigid analytic 
spaces in the literature refers to its study, which we will not cover 
in this chapter. We confine much of our study to tQp. 

Exercise 10.2.1 Show that x 2 = 7 has no solution in Qs. 

Example 10.2.2 Show that x 2 = 6 has a solution in Qs . 

Solution. The equation x 2 == 6 (mod 5) has a solution (namely x == 
1 (mod 5)). We will show inductively that x 2 == 6 (mod5n ) has a 
solution for every n ~ 1. Suppose 

We want to find X~+l == 6 (mod5n + 1). Write X n+1 = 5n t+xn . So we 
must have 
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which means that 2· 5ntxn + x~ == 6(mod5n +l). This reduces to 

x2 - 6 
2txn + T == 0 (mod5), 

so that we can clearly solve for t. The method pro duces a sequence of 
integers {xn} ~=1 such that x~ == 6 (mod 5n ) and x n+ 1 == xn (mod 5n ). 
The sequence is therefore Cauchy and its limit x (which exists in Qp 
by completeness) satisfies x 2 = 6. 0 

The method suggested by the previous example is quite general. 
It is the main idea behind Hensel's lemma which is the following 
theorem. 

Theorem 10.2.3 Let f(x) E Zp[x] be a polynomial with coefficients 
in Zp. Write f'(x) for its formal derivative. 1f f(x) == 0 (modp) has 
a solution ao satisfying f'(ao) ;j:. 0 (modp), then there is a unique 
p-adic integer a such that f(a) = 0 and a == ao (modp). 

Proof. We imitate the construction suggested by the example. Sup­
pose 

has a solution an. We claim that there is a unique solution 

an+l (mod pn+l) 

such that 

and an+l == an(modpn). Indeed, writing an+l = pnt+an , we require 
f(pnt+an) == o (mod pn+l). We write f(x) = 2:icixi, so that 

We need to solve for t in the congruence 
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Since f(an) == 0 (modpn), this reduces to 

which has a unique solution (modp), since f'(an) "t 0 (modp), be­
cause an == ao(modp). This proves the claim. As before, {an}~=l is 
a Cauchy sequence, whose limit is the required solution. Since an+l 
is a unique lifting (mod pn+l) of an (mod pn), the uniqueness of the 
solution is now clear. 0 

Exercise 10.2.4 Let f(x) E Zp[x]. Suppose for some N and ao E Zp 
we have f(ao) == 0 (mod p2N+l), f'(ao) == 0 (modpN) but f'(ao) "t 
o (mod pN+1). Show that there is a unique a E Zp such that f(a) = 0 
and a == ao (mod pN+1). 

Exercise 10.2.5 For any prime p, and any positive integer m co­
prime to p, show that there exists a primitive mth root of unity in 
Qp if and only ifml(p -1). 

Exercise 10.2.6 Show that the set of (p - l)st roots of unity in Qp 
is a cyclic group of order (p - 1). 

Remark. The previous exercise shows the existence of p-adic num­
bers ao, a1, ... ,ap-1 that are roots of the polynomial xP - x = 0 
such that ai == i (modp). These roots are called the "Teichmüller 
representatives." 

Exercise 10.2.7 (Polynomial form of Hensel's Lemma) Suppose 
f(x) E Zp[x] and that there exist gl, h1 E (ZjpZ)[x] such that 

f(x) == gl(x)h1(x) (modp), 

with (gI, hd = 1, gl (x) monic. Then there exist polynomials g(x), 
h(x) E Zp[x] such that g(x) is monic, f(x) = g(x)h(x), and g(x) == 
gl(X) (modp), h(x) == h1(x) (modp). 

We now consider Qp, the algebraic closure of Qp. The p-adic norm 

extends uniquely to Qp in the obvious way, which we will also denote 
by I . Ip· Indeed, if KjQp is a finite extension of degree n, we have 
for xE K, 

Ixl p = (INKjiQp(x)lp)ljn. 

Theorem 10.2.8 I· Ip is a nonarchimedean norm on K. 
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Proof. It is clear that Ixlp = 0 if and only if x = O. It is also clear 
that IxYlp = Ixlplylp, since the norm is multiplicative. To prove that 

we see (upon dividing by y) that it suffices to prove for a E K, 

It is easily seen that this follows if we can show 

That is, we must show 

This re duces to showing 

It is now necessary to use a little bit of algebraic number theory. 
Clearly, Qp(a) = Qp(a - 1). Now let 

be the minimal polynomial for a. The minimal polynomial for a - 1 
is clearly 

f(x + 1) = xn + (an-l + n)xn- 1 + ... + (1 + an-l + ... + al + ao). 

Now NKjQp(a) = (_1)n ao and 

NKjQp(a -1) = (-lt(l + an-l + ... + al + ao). 

We now use the polynomial form of Hensel's lemma. If all the coef­
ficients of f (x) are in Zp, we are done. So, assurne that 

is such that ao E Zp but so me ai rf. Zpo Choose m to be the smallest 
exponent such that pmai E Zp for all i and now "clear denominators" : 
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with bi = pmai . Since f(x) is monic, bn = pm, and bo = pmao . By 
assumption, at least one bi is not divisible by p. Thus 

where k is the smallest index such that bk is not divisible by p. 
By Exercise 10.2.7 (the polynomial form of Hensel's lemma) this 
lifts to a factorization in Zp[x], which means that g(x) = pmf(x) is 
reducible, a contradiction, since f(x) is the minimal polynomial of 
a. This completes the proof. 0 

Exercise 10.2.9 Show that for p i= 2, the only solution to x2 

1 (modpn) is x = ±1, for every n 2': 1. 

10.3 p-adic Interpolation 

The not ion of p-adic continuity is evident. We say that a function 
f : Qp ---7 Qp is continuous if f(x n ) ---7 f(x) whenever X n ---7 x. 

The problem of interpolation is this: Given a sequence al, a2, a3, ... 
of elements in Qp, does there exist a continuous function f : Zp ---7 Qp 
such that f (n) = an? Since the set of natural numbers is dense in 
Zp, there can exist at most one such function. 

The classic example of interpolation is given by the f-function: 

Hence 

f(s + 1) = 1000 
e-xxsdx 

interpolates the sequence of factorials. 

Exercise 10.3.1 Show that there is no continuous function f : Zp ---7 

Qp such that f(n) = n! 

The difficulty in interpolation sterns from n! being highly divisible 
by p. Thus, a natural idea is to consider the sequence 

IIj 
l:::;j:::;n 
(j,p)=l 
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instead of the factorials and hope that this works. 
A celebrated theorem of Mahler states that a continuous function 

f : Zp -+ Qp is in fact determined by its restriction to natural 
numbers. Thus given a sequence of integers {ak}~o, we need only 
verify that for any natural number m, there is an integer N = N (m) 
such that 

(10.1) 

That is, whenever k and k' are elose p-adically, then ak and ak' 
are elose p-adically. 

We first begin by showing that the sequence defined by 

ak = II j 
"<k L 

(j,p)=l 

has almost the property (10.1). As we shall see, this is essentially 
Wilson's theorem of elementary number theory. 

Exercise 10.3.2 Let p =/: 2, be prime. Prove that for any natural 
numbers n, s we have 

pS_l 

II (n + j) == -1 (modpS). 
j=l 

(n+j,p)=l 

Exercise 10.3.3 Show that if p =/: 2, 

then ak+ps == -ak (modpS). 

ak = II ), 
"<k L 

(j,p)=l 

The previous exercise almost satisfies (10.1) apart from the sign. 
This motivates the definition of the p-adic gamma function: 

rp(n) := (_l)n II j. 
j<n 

(j,p)=l 

Exercise 10.3.4 Prave that fOT p =/: 2, 
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We now prove Mahler's interpolation theorem. As will be seen, the 
essential idea is combinatorial analysis based on a simplification due 
to Bojanic. 

Exercise 10.3.5 Let 

be the p-adic expansions of n and k, respectively. Show that 

(~) == (~~) (~J (~;) ... (modp). 

Exercise 10.3.6 1f p is prime, show that 

for 1 ::; k ::; pn - 1. 

Exercise 10.3.7 (Binomial inversion formula) Suppose 

Show that 

and conversely. 

Exercise 10.3.8 Prove that 

if n = m, 

otherwise. 

Exercise 10.3.7 suggests the following. If f : Zp --+ Qp is continu­
ous, then let 

an(f) = t (~) (-lt- k f(k), 
k=O 
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so that 

f(n) = t (~)ak(f). 
k=O 

If we can show that the function 

f (~)ak(J) 
k=O 

is p-adically continuous, then this solves the interpolation problem. 
That is, if we can show that the series converges, we are done. This is 
the key idea of Mahler's theorem, namely, to show that lak (J) Ip ---t 0 
if the sequence {f(k)}~l satisfies condition (10.1). 

Exercise 10.3.9 Define 

f,."j(x) = E (~)(-!)"-'j(X+k) 
Show that 

!:l.nf(x) = f (":)!:l.n+ j f(x - m). 
j=O J 

Exercise 10.3.10 Prove that 

tu (7)",,+;(1) = E(-l)n-k (~)j(k+ m) 

with an (J) defined by 

",,(f) = E(-l)"-·(~)f(k). 
Exercise 10.3.11 Show that the polynomial 

() { 

X(X-l).~~x-n+1) if 

:= 1 . ij 

n ~ 1, 

n=O, 

takes integer values for x E Z. Deduce that 

for all x E Zp. 
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Theorem 10.3.12 (Mahler, 1961) Suppose f : Zp -7 Qp is con­
tinuous. Let 

Then the series 

f (~)ak(f) 
k=O 

converges uniformly in Zp and 

Proof. We know that given any positive integer s, there exists a 
positive integer t such that for x, y E Zp, 

In particular, 

for k = 0,1,2, .... 
Since f is continuous on Zp, it is bounded there (recall that Zp 

is compact), and so we may suppose without loss of generality that 
If (x) Ip ::; 1 for all x E Zp. Hence, 

lan(f)lp::; 1 for n = 0,1,2, .... 

Now by Exercise 10.3.10, 

By Exercise 10.3.6, pi (~t) for 1 ::; j ::; pt - 1, so that 

Since lan(f)lp ::; 1, we obtain 

lan(f)lp ::; p-l for n 2': pt. 
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Replacing n by n + pt in the penultimate inequality and using the 
abüve inequality, we übtain 

Repeating the argument (s - 1) times gives 

lan(f)lp :s: p-s für n:::: spt. 

This proves an(f) --+ 0 as n --+ 00. By Exercise 10.3.11, we have 

for x E Zp. Therefore, the series 

converges uniformlyon Zp and thus defines a continuous function. 
Since this function agrees with f (n) on the natural numbers and N 
is dense in Zp, we deduce the result. 0 

Exercise 10.3.13 1f f(x) E ([[xl is a polynomial ta king integral 
values at integral arguments, show that 

for certain integers Ck. 

Exercise 10.3.14 1fn:::::: 1 (modp), prove thatnpm :::::: 1 (modpm+l). 
Deduce that the sequence ak = nk can be p-adically interpolated. 

The previous exercise shows that if n :::::: 1 (mod p), then f (s) = n S 

is a continuous function of a p-adic variables s. The next exercises 
show how this can be extended for other values of n. 

Exercise 10.3.15 Let (n,p) = 1. 1f k :::::: k' (mod (p - 1)pN), then 
show that 

n k :::::: n k' (müdpN+l). 

Exercise 10.3.16 Fix So E {O, 1,2, ... ,p - 2} and let Aso be the 
set 01 integers congruent to So (müdp - 1). Show that Aso is a dense 
subset 01 Zp. 
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Exercise 10.3.17 1f (n,p) = 1, show that f(k) = nk can be ex­
tended to a continuous function on Aso. 

Remark. By Exercise 10.3.16, we see that f(s) = n S is a continuous 
function fso : Zp -+ Zp that interpolates n S , for s == so(modp - 1). 

10.4 The p-adic Zeta-Function 

We begin with abrief description of p-adic integration theory. For 
furt her details we refer the reader to Koblitz [Kl. A p-adic distribu­
tion /-t on Zp is a Qp-valued additive map from the set of compact 
open subsets in Zp. It is called a measure if there is a constant 
B E IR such that 

for all compact open U ~ Zp. 
To define a distribution or measure on Zp, it suffices to define it 

on subsets of the form 

1 = {a + pN Zp, 0:::; a :::; pN - 1, N = 1,2, ... } , 

since any open subset of Qp is a union of subsets of this type. 
It is not difficult to verify that a map /-t : 1 -+ Qp satisfying 

p-l 

J-l(a + pnZp ) = LJ-l(a + bpn + pn+lZp) 

b=O 

extends uniquely to a p-adic distribution on Zp. 
We define the Bernoulli distributions. Let 

bo(x) = 1, 

be the sequence of Bernoulli polynomials. Define 

Exercise 10.4.1 Verify that /-tk extends to a distribution on Zp. 

If J-l is a p-adic measure, one can define a good theory of integra­
tion: 
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Theorem 10.4.2 Let /-L be a p-adic measure on Zp, and let f : Zp -+ 
Qp be a continuous junction. Then the "Riemann sums" 

SN:= L f(Xa,N)/-L(a+pNZ p), 
a~a~pN -1 

where Xa,N is any element in the "interval" a + pnZ, converge to a 
limit in Qp as N -+ 00, and this limit is independent oj the choices 
{Xa,N }. 

Proof. We first show that the sequence of SN is Cauchy. By the con­
tinuity of f, we assurne that N is large enough so that 
If(x) - f(y)1 < E whenever x == y(modpN). Now let M > N. By 
the additivity of /-L, we can rewrite 

where adenotes the least nonnegative residue of a (modpN) . Since 
Xa,N == Xa,M (mod pN) , 

p 

where 1/-L(U)lp ~ B for all compact open U. Since Qp is complete, 
the sequence of SN'S converges to a limit. This limit is easily seen to 
be independent of the choice of the Xa,N 'so 0 

If /-L is a measure on Zp and f : Zp -+ Qp is a continuous function, 
we denote by Jz f(x)d/-L(x) the limit of the "Riemann sums" of 

p 

Theorem 10.4.2. 
We now introduce the Mazur measure. Let a E Zp, We let (a)N 

be the rational integer between 0 and pN - 1 that is congruent to 
a (modpN). If /-L is a distribution and a E Qp, it is clear that a/-L is 
again a distribution. If a E Z;, then /-L' defined by /-L' (U) = /-L( aU) is 
again a distribution. Now let a be any rational integer coprime to p 
and unequal to 1. We define the "regularized" Bernoulli distribution 
by setting 

/-Lk,a(U) = /-Lk(U) - a-k/-Lk(aU) 

for any compact open set U. It can be shown that /-Lk,a is a measure. 
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Exercise 10.4.3 Show that /-l1,a is a measure. 

The measure /-l1,a is called the Mazur measure. Its significance is 
disdosed by Theorem 10.4.7. 

Exercise 10.4.4 Let dk be the least common multiple 01 the denom­
inators 01 coefficients 01 bk(x). Show that 

dk/-lk,a(a + pNZp) == dkkak-1/-lI,a(a + pNZp) (modpN). 

Exercise 10.4.5 Show that 

{ d/-lk,a = k { Xk-Id/-ll,a. 
Jzp Jzp 

For any /-l-measurable set U and a continuous function 1 : X -7 

Qp, we define 

Exercise 10.4.6 11 Z; is the group 01 units 01 Zp, show that 

where Bk is the kth Bernoulli number. 

Putting these two exercises together gives the following important 
theorem: 

Theorem 10.4.7 (Mazur, 1972) 

-(1 - pk-I)Bk/k = _k1 {xk-Id/-l1,a. 
a - 1 Jz* p 

By Exercise 8.2.12, we can interpret the left hand side of the equa­
tion in Theorem 10.4.7 as 

(1- pk-I) ((1- k). 

The theorem allows us to show that these veilues can be p-adically 
interpolated, provided that k lies in a fixed residue dass (modp - 1). 

Exercise 10.4.8 (Kummer congruences) 11 (p - 1) f i and i == 
j (modpn), show that 

(1 - pi-l)Bi/i == (1 - pi-l)Bjfj (modpn+l). 
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Exercise 10.4.9 (Kummer) 1f (p - 1) t i, show that IBdilp :::; l. 

Exercise 10.4.10 (Clausen and von Staudt) 1f (p - l)li and i is 
even, then 

pBi == -1 (modp). 

Theorem 10.4.7 and the Kummer congruences motivate the def­
inition of the p-adic (-function. If k is in a fixed residue dass So 
(modp - 1), then the Kummer congruences imply that the numbers 

can be p-adically interpolated. By Theorem 10.4.7 we see that this 
function must be 

1 r xso+(p-1)s-ld 
a-(so+(p-1)s) - 1 }z* Jl-1,a, 

p 

and we designate it as (p,so (s ), and call it the p-adic zeta function. 
One can show that (p,so(s) does not depend on the choice of a. 

This observation of Kubota and Leopoldt in 1964 initiated a rich 
theory of p-adic zeta and L-functions. We refer the reader to Koblitz 
[K] and Washington [W] for furt her details. 

10.5 Supplementary Problems 

Exercise 10.5.1 Let 1 :::; a :::; p - 1, and set cjJ(a) = (aP- 1 - l)/p. 
Prove that cjJ(ab) == cjJ(a) + cjJ(b) (modp). 

Exercise 10.5.2 With cjJ as in the previous exercise, show that 

cjJ(a + pt) == cjJ(a) - at (modp), 

where aa == 1 (modp). 

Exercise 10.5.3 Let [xl denote the greatest integer less than or 
equal to x. For 1 :::; a :S p - 1, show that 

p-1 aP - a 1 [aj] -- == L --:- - (modp). 
p j=l J P 
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Exercise 10.5.4 Prove the following generalization of Wilson's the-
orem: 

(p - k)! (k - I)! == (-1) k (mod p) 

for 1 :S k :S p - 1. 

Exercise 10.5.5 Prove that for an odd prime p, 

2P- 1 -1 _ p-1 (_1)j+1 
--= L 2· (modp). 

p j=l J 

Deduce that 2P- 1 == 1 (mod p2) if and only if the numerator of 

1 1 1 
1--+--···_--

2 3 p-1 

is divisible by p. 

Exercise 10.5.6 Let p be an odd prime. Show that for all x E '1'..p, 

rp(x + 1) = hp(x)rp(x), where 

hp(x) = { -x 

-1 

if Ixlp = 1, 

if Ixlp < 1. 

Exercise 10.5.7 For s ;:::: 2, show that the only solutions of x 2 == 
1 (mod 2S ) are x == 1, -1, 2s- 1 - 1, and 2s - 1 + 1. 

Exercise 10.5.8 (The 2-adic r-function) Show that the sequence 
defined by 

r2 (n) = (_1)n II J 
l<j<n 
(]"))=l 

can be extended to a continuous function on '1'..2. 

Exercise 10.5.9 Prove that for all natural numbers n, 

Exercise 10.5.10 1f p is an odd prime, prove that for x E '1'..p, 

where P(x) is defined as the element of {1, 2, ... ,p} satisfying f(x) == 
x (modp). (This is the p-adic analogue of Exercise 6.3.4.) 
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Exercise 10.5.11 Show that 

{
I if p == 3 (mod 4), 

r p (1/2)2 = 
-1 if p == 1 (mod4). 



Part 11 

Solutions 



1 
Arithmetic Functions 

1.1 The Möbius Inversion Formula and 
Applications 

1.1.1 Prove that 

{
I if n = 1, 

L lL(d) = 
dln 0 otherwise. 

Let n = pr1 ... p~k be the unique factorization of n as a product 
of powers of primes. Let N = PI··· Pk. Then 

LIL(d) = LIL(d), 
dln dlN 

since the Möbius function vanishes on numbers that are not square­
free. Any divisor of N corresponds to a subset of {PI, ... ,Pk}. Thus, 
for n > 1, 

LI'(d) ~ t G)HY ~ (1-I)k ~ o. 
dln r=O 

The result is clear if n = 1. o 
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1.1.2 (The Möbius inversion formula)Show that 

f(n) = Lg(d) 
dln 

if and onty if 
g(n) = L fL(d)f(n/d). 

dln 

We have 

LfL(d)f (J) LfL(d) Lg(e) 
dln dln el~ 

L fL(d)g(e) 
des=n 

Lg(e) LfL(d) 
ein dl~ 

g(n), 

since the inner surn in the penultirnate step is zero unless nie = 1. 
The converse is also easily established as follows. Suppose 

g(n) = L fL(d)f(n/d). 
dln 

Then 
L L p,(e)f(d/e) 
dln eid 

L fL(e)f(s) 
est=n 

Lf(s) LfL(e) 
Bin el::;-
f(n), 

since the inner surn is again by (1.1.1) equal to zero unless 
n/s = 1. 0 

1.1.3 Show that 

L<p(d) = n. 
dln 
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We shall count the residue classes (mod n) in two different ways. 
On the one hand, there are n residue classes. Each resiq.ue class 
representative u can be written as dno, where d = (u, n). Thus 
(no,njd) = 1. Thus, we can partition the residue classes u(modn) 
according to the value of gcd(u, n). The number of classes corre­
sponding to a given dln is precisely cp(njd). Thus 

as desired. 

1.1.4 Show that 

n = L cp(njd) = L cp(d), 
dln dln 

cp(n) = '" J1.(d) 
n ~ d . 

dln 

o 

This is immediate from the Möbius inversion formula and Exercise 
1.1.3. 

1.1.5 Let f be multiplicative. Suppose that 

n = rr pQ 

p"'lln 

is the unique factorization of n into powers of disti'fltct primes. Show 
that 

L f(d) = rr (1 + f(P) + f(p2) + ... + f(PQ))· 
dln p"'IIn 

Deduce that the function g(n) = 2:dln f(d) is also multiplicative. The 
notation pQlln means that pQ is the exact power dividing n. 

A typical divisor d of n is of the form d = TIpln pß(p) , w here ß (P) ::; 

0:' and pQlln. Thus f(d) = TIplnf (pß(p)) , which is a typical term 
appearing in the expansion of the product on the right-hand side. 
Clearly, if nl and n2 are coprime, then 

rr (1 + f(P) + ... + f(PQ)) 
p"'llnln2 

since we can decompose the product into two parts, namely those 
primes dividing nl and those dividing n2. (This result can be used 
to give an alternative solution of Exercise 1.1.4.) 0 
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1.1.6 Show that 

LA(d) = logn. 
dln 

Deduce that 

A(n) = - L p,(d) log d. 
dln 

This is immediate from the unique factorization theorem: 

where the Pi are distinct primes. Then 

k 

logn = Lai log Pi = L A(d). 
i==l dln 

The equality 

A(n) = L p,(d) log ~ 
dln 

follows from Möbius inversion. Therefore, 

A(n) = - L p,(d) log d, 
dln 

since L::dln p,(d) = 0 unless n = 1 (by Exercise 1.1.1). 

1.1. 7 Show that 

1 if n is square-free 

otherwise. 

Clearly, the sum on the left-hand side is a multiplicative function. 
It therefore suffices to evaluate it when n is a prime power. If n = pct, 
we see that 

1 if a::; 1, 

o otherwise. 
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The result is now clear from this fact. 0 

1.1.8 Show that for any natural number k, 

{
I if n is kth power-free, 

L J-L(d) = 
dkln 0 otherwise. 

Since the left-hand side is a multiplicative function of n, it suffices 
to evaluate it when n is a prime power. Thus 

1 if a::; k - 1, 

o otherwise, 

from which the result follows. o 

1.1.9 If for all positive x, 

G(x) = LF(~), 
n<x 

show that 

F(x) = L J-L(n)G(~) 
n~x 

and conversely. 

We have 

L J-L(n) L FC:n) 
n<x m<"'-- -n 

LF(~) LJ-L(n) 
r~x nlr 

F(x) 
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by an application of Exercise 1.1.1. For the converse, 

L G(;) L Il(m) 
r~x mir 

= G(x), 

as required. o 
1.1.10 Suppose that 

00 

L d3 (k)lf(kx)1 < 00, 

k=l 

where d3 (k) denotes the number of factorizations of k as a product 
of three numbers. Show that if 

00 

g(x) = L f(mx), 
m=l 

then 
00 

f(x) = L Il(n)g(nx) 
n=l 

and conversely. We have, by absolute convergence of the series in­

volved, 

00 00 00 

L Il(n)g(nx) LIl(n) L f(mnx) 
n=l n=l m=l 

00 

L f(rx) L Il(n) 
r=l nlr 

= f(x) 
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by Exercise 1.1.1. For the converse, 

00 00 00 

L f(mx) L L f.k(n)g(mnx) 
m=l m=ln=l 

00 

L g(rx) L f.k(n) 
r=l nlr 

g(x), 

as required. In the first case, the rearrangement of the series is jus­
tified by the absolute convergence of 

00 

L f(mnx) = L d(k)f(kx), 
m,n k=l 

where d(k) is the number of divisors of k. In the second case, the 
absolute convergence of 

m,n 

follows from the convergence of 

o 
1.1.11 Let )..( n) denote Liouville 's function given by )..( n) = (-1 )fl(n) , 

where D(n) is the total number (counting multiplicity) of prime fac­
tors of n. Show that 

L)"(d) = { 1 

dln 0 

if n is a square, 

otherwise. 

The left-hand side is multiplicative and therefore it suffices to com­
pute it for prime powers. We have 

{
I if 

L)"(d) = 
dip<> 0 if a 

a is even, 

is odd, 
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from whieh the result follows immediately. 

1.1.12 The Ramanujan sum cn(m) is defined as 

cn(m) = L e(h;:), 
l<h<n 
(h-;-nF=l 

where e( t) = e27rit . Show that 

Let 

cn(m) = L dJ-L(njd). 
dl(m,n) 

g(n) = L e(h;:). 
l<h<n 

Sinee this is the sum of a geometrie progression, we find that 

But we ean write 

g(n) = {: 
if nlm, 

otherwise. 

g(n) L L e(h;:) 
dln l$h$n 

(h,n)=d 

o 

where we have written h = dh1, n = dnl with (h1,nd = 1 in the 
last sumo Thus, 

g(n) = L Cnjd(m), 
dln 

which by Möbius inversion (Exercise 1.1.2) gives 

en(m) = L J-L(d)g(njd). 
dln 
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But g(d) = d if dlm and vanishes otherwise. Therefore, 

as required. 

1.1.13 Show that 

en(m) = L dJ.l(njd) 
dl(n,m) 

J.l(n) = L e(~). 
l<h<n 
(h-;n)~1 

Set m = 1 in the previous exercise. 

1.1.14 Suppose (n, m) = 5. Show that 

cn(m) = J.l(nj5)<p(n)j<p(nj5). 

We have (by Exercise 1.1.12) 

cn(m) = L dJ.l(njd) 
dill 

L dJ.l( nej 5) 
de=ll 

D 

D 

where n = 5nl. Now, J.l(nle) = J.l(nJJ.l(e) if (nl,e) = 1 and 0 other­
wise. Thus, 

en(m) L dJ.l(nJJ.l(e) 
de=8 

(nl,e)=1 

J.l( nl)5 L J.l~e) 
el8 

(nl,e)=1 
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By Exercise 1.1.4, 

from which the result follows. o 

1.2 Formal Dirichlet Series 

1.2.1 Let f be a multiplicative function. Show that 

This is more or less an extension ofExercise 1.1.5 and is immediate 
upon expansion of the infinite product on the right-hand side and 
the unique factorization theorem. 0 

1.2.21f 

show that 

By Exercise 1.2.1, 

00 1 
((8) = D(l, 8) = ~-, L-ns 

n=l 

D(j.L, s) = 1/((s). 

( 1 1 ) (1 )-1 ((s) = II 1 + - + - +... = II 1 - -pS p2s pS 
P P 

Again by Exercise 1.2.1, 

1 
D(j.L,s) = II(1- -). pS 

P 

The result is now immediate. 

1.2.3 Show that 

00 A(n) (' 
D(A, s) = L -:;;s = --(s), 

n=1 ( 

o 
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where -('(8) = 2:~=l(logn)n-S. Since 

00 

-('(8) = 2)logn)n-S 

n=l 

and 

by the previous exercise, we obtain upon multiplying the two series, 

D(/-L* (-log),8), 

which by Exercise 1.1.6 is the formal series attached to A. 0 

1.2.4 Suppose that 

j(n) = Lg(d). 
dln 

Show that D(f,8) = D(g,8)((8). 

This is immediate from the formula for the multiplication of formal 
series. 0 

1.2.5 Let A(n) be the Liouville junction defined by A(n) = (_1)!1(n), 
where O(n) is the total number of prime factars of n. Show that 

D(A ) = ((28) 
,8 ((8) . 

Since A is multiplicative, by Exercise 1.2.1 we have 

D(A,8) rr (1 _ ~ + ~ __ 1 + ... ) 
ps p2s p3s 

P 

( 1 ) -1 ( 1 ) -1 ( 1 ) rr 1 + pS = rr 1 - p2s 1 - pS 
p P 

((28) 
((8) 

by an application of Exercise 1.2.2. 
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1.2.6 Prove that 

00 2v(n) _ (2(s) 

~ nS - ((2s)· 

Since 2v(n) is multiplicative, 

rr (1 + ! + ~ + ... ) 
pS p2s 

P 

I] (1+ :' (1- ;, f) 
II (1 -;s) -1 (:s + (1 -;s ) ) 

p 

rr (1 -;s) -1 (1 + ;s) 
p 

= ((s) II (1 + ;s) . 
p 

The latter product is ((s)/((2s) by Exercise 1.2.5, so that the result 
is now immediate. 0 

1.2.7 Show that 

Since IJ.LI is a multiplicative function, we obtain 

~ 1J.L(n) I = II (1 + ~) = ((s) . 
L nS pS I' (2s) 
n=l p ., 

by Exercise 1.2.5. o 
1.2.8 Let d(n) denote the number of divisors of n. Prove that 

(This example is due to Ramanujan.) 
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We observe the following identity due to Ramanujan: 

(1 - aI'T)(l - abT)(1 - ßI'T) (1 - ßbT) , 

whieh is proved easily using the formula for the sum of a geometrie 
series. This identity is useful in other eontexts, and so we reeord it 
here far future use. 

If we write 

we see that the special ease a = ß = I' = b = 1 gives the identity 

Thus, 

as desir~d. 

I] (~(ap:,!)') 
rr (1 - p~s) (1 - ;s ) -4 

p 

(4(s) 

((2s)' 

1.2.9 For any complex numbers a, b, show that 

~ ~a(n)~b(n) = ((s)((s - a)((s - b)((s - a - b) 
~ nS ((2s -a- b) . 
n=l 

We have 

o 
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Now, 
a(a+l) _ 1 

(]' a (pa) = 1 + pa + p2a + ... + paa = p . 
pa -1 

We apply Ramanujan's identity (see Exercise 1.2.8) to deduce 

Putting T = p-s in this identity, we deduce the stated result. 0 

1.2.10 Let qk(n) be 1 if n is kth power-free and ° otherwise. Show 
that 

~ qk(n) = ((s) 
~ n S ((ks)' 

If we multiply out the series on the right-hand side, we obtain 

The inner sum is qk(n) by Exercise 1.1.8. o 

1.3 Orders of Some Arithmetical Functions 

1.3.1 Show that d(n) :S: 2yn, where d(n) is the number of divisors 
ofn. 

Each divisor a of n corresponds to a factorization aß = n. One 
of a or ß must be less than or equal to y'ri. Thus, the number of 
divisors of n is less than or equal to 2y'n. 0 

1.3.2 For any I: > 0, there is a constant C(I:) such that d(n) :S: 
C(I:)nf • 

Observe that 

d(n) 
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We decompose the product into two parts: those p < 21/ t and those 
p ~ 21/ t . 

In the second part, pt ~ 2, so that pat ~ 2a and 

a+1 a+1 
--<--<1. pat - 2a -

Thus, we must estimate the first part. Notice that 

a+ 1 a 1 --<1+-<1+--pQt - pQE - E log 2 ' 

since 

Hence 

II (1 + d:g 2) = C (E) 
p<21 /< 

is the desired constant. 

1.3.3 For any 'TJ > 0, show that 

d(n) < 2(1+1)) lognjloglogn 

for alt n sufficiently large. 

We refine the argument of Exercise 1.3.2, where we now set 

(1 + ~) log 2 
E = ----'=----

log logn 

o 

in the proof. The estimate for the second part of the product remains 
valid. We must estimate (by applying 1 + x :s; eX ) 

II (1 + _1_) :s; exp {-11_21/ t }. 
Elog2 E og2 

p<21 /< 

Now, 

so that 

C(E) < ex { log log n (10 n)l/(1+~)} 
p (1 + ~) log2 2 g 

< { 'TJ (10g2)10gn} exp -
2 log logn 

for n 2 no('TJ). o 
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1.3.4 Prove that O"l(n) ~ n(logn + 1). 

We have 

0"1 (n) = L d = L ~ ~ n L ~. 
dln dln d::;n 

Now, 
1 jn dt L d ~ t =logn. 

2<d<n 1 

1.3.5 Prove that 

for certain positive constants Cl and c2. 
We have 

and 

Now, 

so that 

p0:+l _ 1 
O"l(n) = II . 

p-1 
p"lln 

O"l(n) = II (1+~+~+ ... +~,) 
n p p2 pa 

p"lln 

4>(n)O"l(n) = II (1- _1 ). 
n2 pa+1 

p" Iin 

Since each factor in the product is less than or equal to 1, we have 

4>( n)o-l (n) 
2 ~ l. n 

Also, 
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where v(n) denotes the number of distinct prime factors of n, and 
Pi is the ith prime. 

Recall that an infinite product 

converges if and only if I:~=llanl < 00. Therefore 

In addition, ((2) i= O. Since the product converges to a nonzero limit, 
it is clear that there is a Cl > 0 such that 

o 
1.3.6 Let v(n) denote the number of distinct prime factors of n. 
Show that 

() log n 
v n < --. 

- log2 

Writing n = pf ... p~k, where the Pi are distinct primes, we obtain 

Lai logPi "S log n. 
i 

Since each Pi ;::: 2, we deduce the stronger result 

(log 2)n( n) "S log n, 

1.4 Average Orders of Arithmetical Functions 

1.4.1 Show that the average order of d(n) is logn. 

We have 

L d(n) = L 1 = L [~]. 
n~x ~~x a~x 

o 
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Now, 

Thus, 

We can cornpare 

with the integral 

and we easily obtain 

Thus, 

[~] = ~ + 0(1). 

L [~] = x L ~ + O(x). 
a<x a<x - -

I x dt 
- = log x, 

1 t 

1 L - = log x + 0(1). 
a 

a<x 

L d(n) = x log x + O(x). 
n<x 

D 

1.4.2 Show that the average order of cjJ(n) zs cn for some 
constant c. 

By Exercise 1.1.4, we obtain 

L cp(n) L /l(a)b 
n:S,x ab<x 

a<x b<'"--a 

The inner surn is 

which is equal to 

1 (X )2 x2 (X) - - + 0(1) = - + 0 - . 
2 a 2a2 a 
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Inserting this into the penultirnate surn, we obtain 

L <p(n) 
n<x 

Now, 

by an easy application of the integral test. 
The series 

converges by the cornparison test. This cornpletes the proof. (Later, 
we shall see that the value of the series is 6/7r2 . ) 0 

1.4.3 Show that the average order of 0'1 (n) is Cl n for some constant 

Cl· 

We have 

LO'I(n) = LLd= L d. 
n~x dln de~x 

Now, 

Ld = LL d 
de~x e~xd~x/e 

L ~[;] ([;] + 1) 
e<x 

= ~ L [;] (; + 0(1)) 
e~x 

- ~ L [~] ~ + O(xlogx). 
e~x 
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Also, 

L [~] ~ = L ~ + O(logx), 
e e e 

e<x e<x - -

so that 
x 2 1 L O"l(n) = 2 L e2 + O(x log x). 

n<x e<x - -

Since z= 1/e2 < 00, we deduce 

for so me constant Cl. o 
1.4.4 Let qk(n) = 1 if n is kth power-free and zero otherwise. Show 
that 

L qk(n) = Ck X + 0 (x l / k) , 
n<x 

where 

C = ~ J-L(n) 
k ~ k· n 

n=l 

By Exercise 1.1.8, 

qk(n) = L J-L(d) , 
dkln 

so that 

L J-L(d) ; + O(xl / k). 
dk<x 

By the integral test, 

(d) 100 dt '" ~ ~ - ~ x-1+t, 
~ dk l/k tk 

d>x 1/ k x 
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so that the desired result follows immediately. 0 

1.5.1 Prove that 

as x -+ 00. 

1 <jJ( k) L -~-logx 
n k 

n<x 
(n,k)=l 

By Exercise 1.1.1, the left-hand side can be written as 

1 L - L M(d) 
n 

n~x dl(n,k) 

1 
LM(d) L-

n 
dlk n:<=x 

dln 

L M~d) (log ~ + 0(1)) 
dlk 

by the solution of Exercise 1.4.1. Therefore, 

L ~ = (L M~)) log x + 0(1), 
n:<=x dlk 

(n,k)=l 

where the O-constant now may depend on k. But, by Exercise 1.1.4, 

" M(d) = <jJ(k) 
~ d k' 
dlk 

which completes the proof. o 

1.5.2 Let Jr(n) be the number ofr-tuples (al,a2,'" ,ar) satisfying 
ai :::; n and gcd(al," . ,ar, n) = 1. Show that 

Jr(n) = nrII (1- ;r). 
pln 

(Jr(n) is called Jordan's totient function. For r = 1, this is, of course, 
Euler's <jJ-function.) 
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We partition the total number of r-tuples (ai, a2, ... ,ar) accord-
ing to d = gcd(al, ... ,ar, n). Thus, 1 = gcd(add, ... ,arid, nld) 
and each ai ::; n, so that we have 

nr = L Jr(nld). 
dJn 

By Möbius inversion, the result is now immediate. o 

1.5 Supplementary Problems 

1.5.3 For r ~ 2, show that there are positive constant Cl and C2 such 
that 

Since each factor of 

is less than 1, we can take C2 = 1. For the lower bound, we have 

which converges to a nonzero limit as v(n) -+ 00. Thus, there is a 
constant Cl such that 

o 

1.5.4 Show that the average order of Jr(n) is cnr for some constant 
C > O. We have (by Exercise 1.5.2) 
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LnrL ILd~) 
n::;x dln 

LIL(d) L tr, 
d<x t::;x/d 

where we have written n = dt in the inner surn of the penultirnate 
step. Now, 

N k N rk+1 

L 1 vr dr ~ L tr ~ L J k vr dv 
k=l k-l l::;t::;N k=l k 

by a cornparison of areas. Thus 

Thus, 

L Jr(n) = L lL(d) {~::~ + o( (~r) } 
n::;x d::;x 

frorn which we deduce 

where 

L Jr(n) = crxr+1 + O(xr), 
n<x 

1 ~ lL(d) 7 

Cr = r + 1 ~ dr+1 =I 0, 
d=l 

since it can be written as 

r ! 1 II ( 1 - pT~ 1 ) . 0 
p 
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1.5.5 Let dk (n) be the number of ways of writing n as a product of 
k positive numbers. Show that 

Clearly, 

dk(n) = Ldk-l(<5), 
aln 

since for each factorization n = <5e we can count the number of ways 
of writing <5 as a product of k -1 numbers to enumerate dk(n). This 
shows that 

~ dk(n) = ((s) ~ dk - 1(n). 
~ nS ~ nS 
n=l n=l 

Since d2 (n) = d(n) satisfies 

the desired result follows by induction. o 
1.5.6 If dk (n) denotes the number of factorizations of n as a product 
of k positive numbers each greater than 1, show that 

Expanding the right-hand side as a Dirichlet series and collecting 
terms we get the desired result. 0 

1.5.7 Let ß( n) be the number of nontrivial factorization of n. Show 
that 

t ß(~) = (2 - ((s))-1, 
n n=l 

as a formal Dirichlet series. We can write 

00 

ß(n) = 1 + L dk(n), 
k=2 
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so that 
00 ß( ) 00 

L n~ = 1 + (((s) -1) + L(((s) -1)k, 
n=l k=2 

which is equal to 

as required. 

1.5.8 Show that 

1 
2 - ((s) 

L n = <P~:) x2 + O(d(k)x), 
n<x 

(n,k)=l 

where d(k) denotes the number 01 divisors 01 k. 

We have 

Ln LM(d) 
n<x dln 

dlk 
n<x 

(n,k)=l 

LM(d)d L t 
dlk t~x/d 

which is equal to 

as required. 

o 

o 
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1.5.9 Prove that 

L M(d) = (_lr(lI(n~ -1), 
dln 

v(d)::;r 

where lI(n) denotes the number 0] distinct prime ]actors 0] n. 
By comparing the coefficient of xT on both sides of the identity, 

we deduce 

Now, if N is the product of the distinct prime divisors of n, then 

L M(d) = L M(d), 
dln dlN 

V(d)~T V(d)~T 

and the latter sum is 

by our initial observation. o 

1.5.10 Let 1r(x, z) denote the number 0] n ::; x coprime to all the 
prime numbers p ::; z. Show that 

1r(X, z) = x II (1 - ~) + O(2Z ). 

p~z p 
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Let Pz denote the product of the primes less than or equal to z. 
Then 

7r(x,z) L J-L(d) 
n<x 

dl(n,Pz) 

L J-L(d)] [J] 
dlPz 

x L J-L~d) + 0(2Z ) 

dlPz 

by Exercise 1.1.4, as required. 

1.5.11 Prove that 
1 L - 2:: log log x + c 

PScx P 

for some constant c. 

o 

Since every natural number can be written as a product of prime 
numbers, we have 

1 (1)-1 L;:::;Il 1-- . 
n<x p<x P - -

Taking logarithms and using the fact that 

we deduce 

Now, 

1 L - = log x + 0(1), 
n 

n<x 

-L log ( 1 - ~) 2:: log log x + 0 (1) . 
pScx P 
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so that 
1 L - 2: log log x + 0(1), 

p<x P 

since 2:p 1/p2 < 00. This completes the proof. o 
1.5.12 Let 1f(x) be the number of primes less than or equal to x. 
Choosing z = log x in Exercise 1.5.10, deduce that 

1f(x) =0(1 ~ ). og ogx 

Clearly, 

1f(x) :::; 1f(x, z) + z. 

Now, 

1f(x, z) = x II (1 - ~ ) + 0(2Z ) 

p<!::z p 

by Exercise 1.5.10. Choosing z = log x and observing that 

-L log ( 1 - ~) = L ~ + O( 1), 
p<z P p<z P - -

we deduce 

1f(x,z) 

_ O( x ) 
log log x 

by the previous exercise. This completes the proof. 

1.5.13 Let M(x) = 2:n<xlL(n). Show that 

We have 

LM(~) = L L lL(d) = L lL(d) = L (LIL(d)). 
n<!::x n<!::x d<!::x/n dn<!::x r<!::x dir 

o 
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The inner sum is 1 if r = 1, and 0 otherwise by Exereise 1.1.1. The 
result is now immediate. 0 

1.5.14 Let lP'p [xl denote the polynomial ring over the finite field of 
p elements. Let Nd be the number of monie irredueible polynomials 
of degree d in lP'p [xl. Using the fact that every monie polynomial 
in lP'p [xl can be factored uniquely as a produet of monie irredueible 
polynomials show that 

Consider the formal power series 

LTdegf, 

f 

where the summation is over monie polynomials f in lP'p [xl. Sinee 
every f ean be written uniquely as a product of monie irredueible 
polynomials and deg hh = deg h + deg 12, we obtain 

L Tdeg f = rr (1 + Tdeg v + T 2 deg v + ... ), 
f v 

where the product is over monie irredueible polynomials v of lP'p [xl. 
Thus, 

rr ( 1 - Tdeg v) -1 

v 

But the left-hand side is 
00 

LpnTn = (1- pT)-l, 
n=l 

sinee the number of monie polynomials of degree n in pn. Therefore, 

00 

-log(1 - pT) = - L Nd log (1 - T d ) 

d=l 
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so that 

fpn:n 
n=l 

Comparing coefficients of T n gives us the result. o 
1.5.15 With the notation as in the previous exercise, show that 

and that Nn ~ 1. Deduce that there is always an irreducible polyno­
mial 01 degree n in IFp[x]. 

The formula for Nn is immediate upon Möbius inversion of the 
result derived in the previous exercise. Notice that 

nNn = L f..L(d)pnjd. 
dln 

The right hand side can be viewed as the difference of two numbers 
in base p with the larger number having (n + 1) digits and the smaller 
one at most n/2 + 1 digits. Thus, the righthand side is not zero, so 
that nNn ~ 1, which implies Nn ~ l/n. Since Nn is an integer, we 
get Nn ~ 1. (This fact is used to establish the existence of finite 
fields IFpn for every n.) 

1.5.16 Suppose 1 (d) = l:dln g( n), where the summation is over all 
multiples 01 d. Show that 

g(d) = Lf..L(~)1(n) 
dln 

and conversely (assuming that all the series are absolutely conver­
gent). 
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We have 

LJt(~)f(n) = LJt(t)f(dt) 
dln 

LJt(t) Lg(dtr) 
t r 

= Lg(dm) ( L Jt(t)) =g(m), 
m tr=m 

since the inner surn is 1 if m = 1, and zero otherwise. Sirnilarly, for 
the converse, 

Lg(n) = Lg(dt) 
dln 

L f (dm) ( L Jt (r)) = f (d), 
m tr=m 

since the inner surn is again 1 if m = 1, and zero otherwise. 0 

1.5.17 Prove that 

L cp(n) = cx + o (log x) 
n 

n:Sx 

for some constant c > O. We have 

so that 

Hence, 

cp(n) = ~ Jt(d) 
n L..J d ' 

dln 

L Jt~d) [SJ = xL Jt~) + O(logx). 
d:Sx d:Sx 
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Now, 

and the latter surn is O(l/x). Thus, 

"" <p(n) L..J ----;;;:- = cx + 0 (log x) 
n::;'x 

with c = 2:%:1 J.L(d)/d2 = I1p (1 - 1/p2) =1= o. 
1.5.18 For Re(8) > 2, prove that 

Since 

we have 

as required. 

~ <p(n) = ((8 - 1) 
L..J n S ((8)· 
n=l 

<p(n) = L J.L(d)(n/d) , 
dln 

= (f J.L~~)) (f :s) 

= 

n=l n=l 

((8 - 1) 
((8) , 

1.5.19 Let k be a fixed natural number. Show that if 

f(n) = L g(n/dk ), 

dkln 

then 

g(n) = L J.L(d)f(n/dk ) 

dkln 

and conversely. 

o 

o 
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We have 

L t-t(d)g(t) 
dkökt=n 

L g(n/rk ) ( L t-t(d)) , 
rkln dÖ=r 

and the inner surn is 1 if r = 1, and 0 ütherwise. Therefüre, 

g(n) = L t-t(d)f(n/dk ). 

dkln 

Für the cünverse, 

L L t-t(8)f(e/fi) 
dke=n Ökle 

L t-t(8)f(t) 
dkÖkt=n 

L f(n/r k ) ( L t-t(tj)) = f(n), 
rkln dÖ=r 

as required. 

1.5.20 The mth cyclotomic polynomial is dejined as 

4Ym(x) = II (x - (:n), 
l<i<m 
(Cm)=l 

where (m denotes a primitive mth root of unity. Show that 

xm - 1 = II 4Yd(X). 
dlm 

We have 
xm - 1 = II (x - (:n). 

l::;i::;m 

o 
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We can partition the right-hand side according to d = gcd(i, m). 
Then, (i/d,m/d) = 1, and 

ri = r i / d 
~m ~m/d 

is a primitive {m/d)th root of unity. Also, every primitive (m/d)th 
root of unity is a root of xm - 1. Thus, 

Xm - 1 = II q;m/d(X) = II q;d{X), 
dlm dlm 

as required. o 
1.5.21 With the notation as in the previous exercise, show that the 
coefficient of 

X'P(m)-l 

in q;m{x) is -J.L{m). 
The coefficient of x</>(m)-l in q;m(x) is clearly 

- L (:n, 
l<i<m 
(i;-m)=l 

which is the Ramanujan sum -em (1) = -J.1(m) by Exercise 1.1.13. 
o 
1.5.22 Prove that 

q;m{X) = II (xd - l)J.L(m/d). 
dlm 

By Exercise 1.5.20, 

so that 

Xm - 1 = II q;d{X) , 
dlm 

log{xm -1) = Llogq;d{x), 
dlm 

as formal series. By Möbius inversion, 

log q;m{x) = L J.L{d) log(xm / d - 1). 
dlm 
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Hence 

as required. 

<Pm(X) = II (xd - l)tt(m/d) , 
dlm 

1.5.23 1/ <Pm (x) is the mth cyclotomic polynomial, prove that 

otherwise, 

where p is a prime number. 
We have 

x m -1 
x-I = II CPd(X). 

dirn 
d;{o1 

o 

The left-hand side is 1 + x + x 2 + ... + xm- 1 . Evaluating both sides 
of the equation at x = 1 gives 

logm = L log CPd(l). 
dirn 
#1 

Set g(d) = log <Pd(l), if d i- 1 and g(l) = 0 otherwise. Thus, 

logm = Lg(d), 
dlm 

and by Möbius inversion, we have 

9 (m) = L J-t (d) log m / d 
dlm 

-L J-t(d) log d 
dlm 

for m i- 1. By Exercise 1.1.6, g(m) = A(m) as required. 0 

1.5.24 Prove that <Pm(x) has integer coefficients. We proceed by 

induction on m. For m = 1, this is clear. Writing 

xm - 1 = II <Pd (x) = CPm(x) ( II CPd(X)) 
dlm dirn 

d<rn 

<Pm(x)v(x) (say) , 
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we find that v(x) has integer eoeffieients by induetion. Also note that 
v(x) is monie. Thus, by long division, we ean write 

x m - 1 = q(x)v(x) + r(x), 

where q(x), r(x) have integer eoeffieients and either r = 0 or degree of 
r < degree of v. For every eomplex root a of v(x), we have am -1 = 
o so that r(a) = O. This forees r = 0 for otherwise it will have 
more eomplex roots than its degree. Henee q(x) = CPm(x) has integer 
eoeffieients. 0 

1.5.25 Let q be a prime number. Show that any prime divisor p of 
aq - 1 satisfies p == 1 (modq) or pl(a - 1). We have 

aq == l(modp). 

Thus, the order of a (mod p) divides q. Sinee q is not a prime, it must 
be either 1 or q. If it is 1, then a == 1 (mod p), so that pl(a - 1). If 
the order is q, then qlp -1, sinee the group of eoprime residue classes 
(mod p) has order p - 1. 0 

1.5.26 Let q be a prime number. Show that any prime divisor p of 
1 + a + a2 + ... + aq- 1 satisfies p == 1 (mod q) or p = q. Deduce that 
there are infinitely many prim es p == 1 (mod q). 

Notiee that 

if a i- 1. Hence if 

2 -1 aq - 1 1 + a + a + ... + aq =-­
a-1 

1+a+a2 +···+aq- 1 ==O (modp), 

then either aq == 1 (mod p) and a -=/=. 1 (mod p) or a == 1 (mod p). In 
the former ease qlp - 1, sinee a has order q. Notice that any prime 
divisor of 2q -1 is eongruent to 1 (mod q), by the previous exereise. 
Thus, there is at least one prime eongruent to 1 (mod q). If there 
are only finitely many such primes, let us list them as 

PI, P2, P3,··· , Pk· 

Then, putting a = qPIP2··· Pk, we find that any prime divisor p of 

1 + a + a2 + ... aq- I 
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is first, coprime to a = qPI ... Pk, and second, must be congruent to 
1 (mod q) or equal to q, which is a contradiction. 0 

1.5.27 Let q be a prime number. Show that any prime divisor P of 

1+b+b2 +···+bq- 1 

with b = aqk- 1 satisfies P == 1 (mod qk) or P = q. 

If b *' 1 (mod p), then 

bq - 1 
1 + b + ... + bq- I = -- == 0 (mod p) 

b-l 

implies that a has order qk, so P == 1 (mod qk). If b == 1 (mod p), 
then P = q, as required. 0 

1.5.28 Using the previous exercise, deduce that there are infinitely 
many primes p == 1 (mod qk), for any positive integer k. In the 

previous exercise, we set b = aqk- 1 to deduce that 

1 + b + b2 + ... + bq- I 

has a prime divisor congruent to 1 (mod qk). Thus, there is at least 
one prime congruent to 1 (mod qk). Now suppose there are only 
finitely many such primes, PI,P2,··· ,Pr (say). Then, with 

b = (qPI ... Pr)q 
k-l 

we deduce 1 + b + ... + bq- I has a prime divisor congruent to 1 
(mod qk) different from PI, ... ,Pr, a contradiction. 0 

1.5.29 Let P be a prime not dividing m. Show that pl<Pm(a) if and 
only ifthe order of a mod pis m. (Here <Pm(x) is the mth cyclotomic 
polynomial. ) 

Since 
xm - 1 = II <Pd(X), 

d\m 

we deduce am == 1 (mod p). If k is the order of a (mod p), then 

ak - 1 = II <Pd(a) == 0 (mod p), 
d\k 

so that <Pd(a) == 0 (mod p) for some dlk. If k < m, then 

am - 1 = <Pm (a)<pd(a) (other factors) == 0 (mod p2 ). 
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Since <Pm{a + p) == <pm{a)(modp) we deduce 

{a + p)m == 1 (mod p2), 

on the one hand, and 

(a + p)m == am + mam-Ip (mod p2), 

on the other. Thus, mam-Ip == 0 (mod p2), so that plm (because 
(a, p) = 1). This is a contradiction. Hence k = m. For the converse, 
if a has order m, then am == 1 (mod p). From 

we deduce <Pd(a) == 0 (mod p) for some d ~ m. If d < m, then 

ad - 1 = II <po(a) 
old 

is divisible by p, implying ad == 1 (modp). This contradicts the fact 
that a has order m. 0 

1.5.30 Using the previous exercise, deduce the infinitude 01 prim es 
p == 1 (mod m). 

Observe that from 

we deduce that <Pd(O) = ±1 for any d. Thus, <Pm(mT ) is coprime to 
m. As r varies over positive integers, only a finite number of them 
can be equal to ±1 since <Pm(x) has degree <p(m). Thus, for some r, 

and so there is a prime divisor p of <Pm(mT ). The order of mT (modp) 
is m. Hence, there is a prime p == 1 (mod m). Ifthere are only finitely 
many such primes PI,P2,.·· ,Pt (say), then 

must have a prime divisor p == 1 (mod p) different from PI, . .. ,Pt. 
This is a contradiction. 0 



2 
Primes in Arithmetic Progressions 

2.1 Characters mod q 

2.1.2 Show that 

L log n = x log x - x + 0 (log x). 
nS;x 

Put f(t) = logt, an = 1 in Theorem 2.1.1. We obtain 

! x dt 
[x]logx- [t]-

1 t 
Llog n 
n<x 

= x log x - x + 0 (log x) 

upon writing [t] = t - {t}, where {t} denotes the fractional part of 
t, in the integral. 0 

2.1.3 Show that 

In fact, show that 

exists. 

1 L - = log x + 0(1). 
n 

nS;x 

lim (L.!. -logx) 
x-too n 

nS;x 
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Put an = 1, f(t) = 1ft in Theorem 2.1.1. Notice that for x a 
positive integer, we have 

1 L ;;: -logx 
2::;n::;x 

Since 

we deduce that 

1 rx dt L -- 11 -
2::;n::;x n 1 t 

= L (! - rn dt) 
n 111- t 2::;n::;x n 1 

= 

1 L - -logx 
n 

2::;n::;x 

converges to a limit as x ~ 00. 

2.1.4 Let d(n) denote the number of divisors of a natural number n. 
Show that 

L d(n) = x log x + O(x). 
n::;x 

Since d(n) = :E51n 1, we have 

L d(n) = L [J] = x L ~ + O(x), 
n::;x 5::;x 5::;x 

and by Exercise 2.1.3, we are done. o 
2.1.5 Suppose A(x) = O(x5). Show that for s > 8, 

Hence the Dirichlet series converges for s > 8. 
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By Theorem 2.1.1, with f(n) = n- s , 

'""' a n- s = A(x) + s t A(t) dt. 
~ n XS 11 t s+1 
n<x 1 

For s fixed, s > 8, we know that A(x) = O(XO), so that 

lim A(x) = o. 
x-+oo X S 

Thus 

far any s > 8. 

2.1.6 Show that for s > 1, 

s /00 {x} ((s) = -- - s -dx 
s - 1 1 x s+1 ' 

where {x} = x - [xl. Deduce that lims-+1+(s -l)((s) = 1. 

By Exercise 2.1.5, we get 

[00 [xl 
((s) = s 11 xs+1 dx 

[00 x - {x}d 
S 11 x s+1 X 

---s --dx. s /00 {x} 
s - 1 1 x s+1 

Also, 

(XJ {x} 
(s - l)((s) = s - s(s - 1) 11 xs+1 dx, 

so that 

lim (s - 1)( ( s) = 1, 
s-+1+ 

since the integral converges for s > o. D 
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2.1.7 Prove that 

00 tr text 
F(x, t) = '" br(x)-, = --. L.. r. eX - 1 

r=O 

By the recursion for br (x), we have 

d 
dx F(x, t) 

t ·.F(x, t). 

Thus, 
log F(x, t) = tx + c(t). 

Exponentiating, we get 

F(x, t) = etx+c(t). 

On the other hand, 

Thus, 

1 ( ) ec(t) . [etX ] x=l 1 = Io (etx+c t )dx = 
t x=o 

so that 

as desired. 

c(t) et - 1 e --
t ' 

text 
F(x, t) = -t-' 

e -1 

2.1.8 Show that B2r+1 = 0 fOT T ~ 1. 

Since 

o 
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and the right-hand side is an even function, it follows that br(O) = 0 
for r odd, r ~ 3. 0 

2.1.11 Show that for some constant B, 

L Jn = 2Fr + B + 0 (Jx). 
n<x 

Suppose first that x is a natural numQer. Put f(t) = 1/0 in 
Theorem 2.1.9, a = 1 and b = x. Take k = O. Then, 

The integral 

JOO B2(t) dt 
1 t3/ 2 

converges, and we may write for SOlile constant B', 

j x B2(t) dt = B' _ (OO B2(t) dt. 
1 t3/ 2 Jx t3/ 2 

The latter integral is O(l/Fr), whence 

for some constant B. If x is not a natural number, notice that 

( Fr - vTxl) (Fr + vTxl) = x - [xl :S 1. 

From this inequality, the result is clear for all x. 

2.1.12 For z E C, and I arg zl :S 7r - 8, where 8 > 0, show that 

n 

Llog(z + j) 
j=O 

( z + n + ~) log( z + n) 

( 1) in BI (x)dx -n - z - - log z + . 
2 0 z+x 

o 



216 2. Primes in Arithmetic Progressions 

We apply Theorem 2.1.9 for k = 1: 

L fU) 
a<j~b 

lb 1 
f(t)dt + -(J(b) - f(a)) 

a 2 

-lb 
BI (t)f'(t)dt. 

Now set fU) = log(z + j) which is analytic in larg zl ~ 7r - o. The 
result is now immediate. 

2.2.1 Prove that X is a completely multiplicative function. 

We must show that x(mn) = x(m)x(n) for all natural numbers 
m, n. If m or n is not coprime to q, then both sides of the equation 
are zero, and the result is clear. If m and n are coprime to q, then 
since X is a homomorphism, the result is immediate. 0 

2.2.2 Prove that for Re( s) > 1, 

L(s,X) = I] (1 -X~)r 
where the product is over prime numbers p. 

Since Xis multiplicative, so is x(n)jn S , and so 

~ X(pm) = (1- X(p))-l 
~ pms pS' 
m=O 

and the result is now clear. o 
2.2.3 Show that (ZjpZ)* is cyclic if p is a prime. 

We first list all the possible orders of elements of (ZjpZ)*: 
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Let e be the least common multiple of dl , d2, ... ,dr and factor 

as a product of distinct prime powers. For each pfi there is some dj 

divisible by it. Thus 
d a· 

j = Pi 'i 

for some i coprime to Pi. Since the dj's are orders of elements of 
(ZjpZ)*, there is an element Xi whose order is pfii. Therefore, the 
element Yi = x~ has order pfi. Hence, the element YlY2 ... Yk has order 
e. Thus, we have found an element of order e. Therefore, elp - 1. But 
the polynomial 

has (p - 1) roots (mod p), since every nonzero element of Z j pZ is 
a root. Since ZjpZ is a field, any polynomial of degree e cannot 
have more than e roots. Thus, (p - 1) ~ e. Since elp - 1, we deduce 
e = p - 1. Thus, we have found an element of order p - 1. 0 

2.2.4 Let p be an odd prime. Show that (ZjpaZ)* is cyclic for any 
a> 1-

For a = 1, we are done by Exercise 2.2.3. Let 9 be a primitive root 
(mod p). We first find a i such that 

(g + pi)p-l ~ 1 (mod p2). 

Indeed, if gP-l :t= 1 (mod p2), then we can take t = O. Otherwise, 

(g + pt)p-l 

1 + p(p - 1)igP- 2 (mod p2), 

so that i = 1 works. Let 9 + pi have order d (modpa). Then dl<p(pa) 
by Euler's theorem. Thus, dlpa-l (p - 1). Since 9 is a primitive root 
mod p, (p - l)ld, and so d = pr-l(p - 1) for some r ~ a. We also 
know that 

(g + pi)p-l = 1 + PUl, 

where Ul is not divisible by p. Thus 
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Beca1.ise pis odd, m = P(P;I) == 0 (mod p). Thus 

(g + pt)p(p-I) == 1 + p2UI (mod p3) . 

By induction, 

(g + pt)pb-l(p-I) == 1 + pbUI (mod pHI). 

Now, 9 + pt has order d = pT-I(p - 1) (mod pa) implies 

But then 1 + pT UI == 1 (mod pT+!) if r ~ a - 1, which implies PIUI, 
a contradiction. Thus, r = a, and we are done. 0 

2.2.5 Let a ~ 3. Show that 5 (mod 2a) has order 2a-2. 

We will prCive by induction that 

52n - 3 == 1 + 2n - 1 (mod 2n ) 

for n ~ 3. For n = 3, this is clear, since 5 == 1 + 4 (mod 8). Suppose 
we know 

2n - 3 I 5 == 1 + 2n- + 2nu. 

Then squaring both sides, we obtain 

from which the result is immediate. 
It is also clear that 

52n - 2 = (1 + 2n - I)2 (mod 2n ) 

Thus, 5 has order 2n - 2 (mod 2n ). 0 

2.2.6 Show that (Z/2aZ)* is isomorphie to (71.,/271.,) x (Z/2a-2Z) , for 
a ~ 3. 
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By Exercise 2.2.5, we see that 5 has order 2a- 2 (mod 2a ). Observe 
that if 5j == -1 (mod 2a ), then 1 == -1 (mod 4), a contradiction. 
Thus -1 is not in the subgroup generated by 5 (mod 2a ). Hence, 
every coprime residue dass can be written as ±5j . D 

2.2.7 Show that the group of characters (mod q) has order cp(q). 

Since 

where q = p~l ... p%k is the unique factorization of q into prime 
powers, we see that any character X (mod q) decomposes uniquely 
as 

XIX2'" Xk, 

where Xi is a character of (Z/pfiZ)*. If Pi is odd, the latter group is 
cydic of order cp(pfi), so that the number of choices for Xi is cp(pfi). 
If Pi = 2, then Xi is a character of Z/2Z x Z/2ai - 2Z, and again 
the number of such characters is cp(2ai ). Thus, the total number of 
characters is cp(p~l) ... cp(p%k) = cp(q). D 

2.2.8 1f X i= Xo, show that 

L x(a) = O. 
a(mod q) 

Since X i= XO, there is a b (mod q) such that (b, q) = 1 and X(b) =f 
1. Then 

s = L x(a) = L x(ab) = X(b)s, 
a(mod q) a(mod q) 

since ab runs through coprime residue dasses as a does. Hence 

(1 - X(b))s = O. 

Therefore, s = 0, since X(b) i= 1. 

2.2.9 Show that 

{ 
cp(q) 

L x(n) = 
x(mod q) 0 

ifn == 1 (mod q) 

otherwise. 

D 
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If n == 1 (mod q), the result is dear. If n 1= 1 (mod q) and (n, q) = 

1, then there is a character 'ljJ such that 'ljJ(n) =1= 1. Thus 

T = 2: x(n) = 2: ('ljJx)(n) = 'ljJ(n) 2: x(n) 
x(mod q) x(mod q) x(mod q) 

because 'ljJx ranges over all the characters (mod q) as X does. But 
then 

(1 - 'ljJ(n)) 2: x(n) = 0, 
x(mod q) 

so that .Ex(mod q) x(n) = 0, since'l/J =1= 1. 

2.2 Dirichlet's Theorem 

2.3.1 Let X = XO be the trivial character (mod q). Show that 

lim log L(s, Xo) = +00. 
s-t1+ 

Since L(s, Xo) = ((s) ITp lq(l - pis), the result is dear. 

2.3.2 Show that for s > 1, 

x(mod q) 

"logL(s,X)=cp(q)" " L...J L...J L...J npns 
n2':l pn=l(mod q) 

1 

Since L(s, X) = ITp (1 - X;f)) -1, we have 

( x(pn)) 2: 2: 2: npns 
x(mod q) p n2':l 

2: 10gL(s,X) 
x(modq) 

2: n~ns ( 2: x(pn)) , 
p,n x(mod q) 

o 

o 

the interchange of summation being justified because the series con­
verge absolutely for s > 1. By Exercise 2.2.9, we find that the inner 
sum is ° unless pn == 1 mod q in which case it is cp(q). The result is 
now immediate. 0 



2.2 Dirichlet's Theorem 221 

2.3.3 Show that for s > 1 the Dirichlet series 

00 

L :~:= II L(s,X) 
n=l x(mod q) 

has the property that al = 1 and an 2: 0 for n 2: 2. 

If we exponentiate the identity of Exercise 2.3.2 and use the series 

x2 
eX = 1 +x+ - + ... 

2! ' 

the result is clear. o 
2.3.4 For X =1= Xo, a Dirichlet character (rnod q), show that 

Lx(n) ~ q. 
n<x 

Deduce that 

L(s, X) = f X(~) 
n=l n 

converges for s > o. 
By Exercise 2.1.5 

(CO S(t) 
L(s, X) = s 11 t s+1 dt, 

where S(t) = L:n9 x(n). By Exercise 2.3.8, we know that L:n:'Sq x(n) = 
O. Since X is periodic with period q, L:n:'Skq x(n) = 0 for any k. Let 
k satisfy kq ~ t ~ (k + l)q. Then 

S(t) = L x(n) + L x(n). 
n:'Skq kq<n:'St 

The first surn is zero, and the latter surn cannot exceed q. Thus, the 
series converges for s > o. 0 

2.3.5 If L(l, X) =1= 0, show that L(l, X) =1= 0 for any character X =1= Xo 
(rnodq). 

We know that 
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L(1, X) = lim '" x(n) , 
x-too~ n 

n<x 

since the series converges by Exercise 2.3.4. Now, 

L(1, X) = lim '" x(n) = L(1, X), 
x-too~ n 

n<x 

from which the result folIows. 

2.3.6 Show that 

lim (s - 1)L(s, Xo) = cp(q)jq. 
5-tl+ 

Since 

L(s,Xo) = ((s) II (1- :5)' 
plq 

we obtain 

lim (s -1)L(s,xo) = lim [(s -1)((s)J II (1-~) = cp(q) 
5-tl+ 8-tl+ I p5 q 

pq 

by Exercise 2.1.6. 

2.3.7 1f L(1, X) =I 0 for every X =I Xo, deduce that 

lim (s - 1) II L(s, X) =I 0 
5-tl+ 

x(mod q) 

and hence 

L ~ = +00. 
p=l(mod q) P 

D 

D 

(That is, there are infinitely many primes congruent to 1 (mod q).) 

We have 

lim (s - 1) II L(s, X) = 
8-tl+ 

x(mod q) 

lim (s - 1)L(s, Xo) II L(s, X) 
5-tl+ 

x#xo 

cp(q) II L(1, X) =I O. 
q 

x#xo 
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On the other hand, by Exercise 2.3.2, 

II L(s, X) = exp (<p(q) 
x(mod q) 

Observe that we can write the exponential as 

<p(q) ( ~ ;s + P~2 n;ns) , 
p=l(mod q) pn=l(~od q) 

and we clearly see that 

Thus, 

lim L 1 
s-+l+ npns 

p,n?2 

< 
1 

L npn 
p,n?2 

1 
< L p(p -1) < 00. 

p 

lim (s - 1) exp (<p(q) L ~) #: O. 
s-+l+ pS 

p=l(mod q) 

It is now immediate that L":P=l(mod q) ~ = +00. 

2.3.8 Fix (a, q) = 1. Show that 

{ 
cp(q) 

L x(a)x(n) = 
x(mod q) 0 

if n == a (mod q) 

otherwise. 

Note that x(a)x(a) = 1. Also, x(a)x(a-1 ) = 1. Hence x(a) 
x(a-1), where a-1 is the inverse of a in (ZjqZ)*. Therefore, 

L x(a)x(n) = L x(a-1n), 
x(mod q) x(mod q) 

o 

which by Exercise 2.2.9 is <p(q) if a-1n == 1 (mod q), and 0 otherwise. 
Thus, 

{ 
<p(q) 

L x(a)x(n) = 
x(mod q) 0 

if n == a (mod q), 

otherwise. 



224 2. Prim es in Arithmetic Progressions 

2.3.9 Fix (a, q) = 1. 1f L(l, X) i= 0, show that 

lirn (s - 1) II L(s, X)x(a) i= 0. 
8-+1+ 

x(mod q) 

Deduce that 

1 L - =+00. 
P p=a(mod q) 

We see that for 8 > 1, 

L x(a) logL(8,X) 
x(mod q) 

as in Exercise 2.3.2. The inner surn, by Exercise 2.3.8, is cp(q) if 
pn == a (rnod q) and zero otherwise. Thus 

II L(8, X)x(a) = exp (cp(q) 
x(mod q) 

As before 

lirn (8 - 1) II L(8, X)x(a) 
8-+1+ 

x(mod q) 

= lirn (8 - 1)L(8, XO) II L(8, X)x(a) i= 0, 
8-+1+ 

X=FXO 

since L(l, X) i= O. The result now follows as in Exercise 2.3.7. 0 

2.3.10 Supp08e Xl i= ~\ (that is, Xl is not real-valued). Show that 
L(1,Xl) i= 0 by considering F(8). 

By Exercise 2.3.4, L(8, X) converges for 8 > O. If L(1, Xl) = 0 then 
set 

L(8, Xl) = (8 - 1)g(8, xd (say) , 

where 9(8, X) is continuous for 8 > 0, 8 i= 1. Observe also that since 

/,
00 S(t) 

L(8, X) = s 1 t 8+1 dt, 
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where IS(t)1 ~ q, the integral is absolutely convergent for s > o. 
We also see that L(s, X) is differentiable. Thus if we set g(1, X) = 
L'(1,xd ab ove , then g(s,X) is continuous for all s > o. By Exercise 
2.3.5, L(1, Xl) #- 0, and we can also write L(s, Xl) = (s - 1)g(s, Xl)· 
Therefore, 

rr L(s, X) = L(s, xo)(s - 1)2g(s, XI)g(S, Xl) rr L(s, X) 
x 

and we see that 

lim rr L(s, X) 
s-tl+ 

X 

= lim (s - 1)L(s, Xo)(s - 1)g(s, XI)g(S, Xl) rr L(s, X) 
s-tl+ 

X#Xl,Xl,XO 

= r.p(q) lim (s - 1)g(s, XI)g(S, Xl) rr L(s, X) = O. 
q s-tl+ _ 

However, writing 

X#Xl,Xl'XO 

rr L(s,X) 
x(mod q) 

00 

1 '""' an = +L..-J s' n 
n=2 

we proved an ~ 0 in Exercise 2.3.3, so that 

lim rr L(s, X) ~ l. 
s-tl+ 

x(mod q) 

This contradiction implies L(1, Xl) #- O. 

2.3 Dirichlet's Hyperbola Method 

2.4.2 Prove that 

L ao(n) = xlogx + (2, -1)x + 0 (v'x). 
n:::;x 

o 
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We have 
O"o(n) = L 1. 

dln 

We can apply Theorem 2.4.2 with f(n) = O"o(n), 9 = h = 1, and 
y=VX· 

2 L [~] - [v'x]2 
d~..;x 

2 L ~ - [v'x]2 + O( v'x). 
d~..;x 

By Exercise 2.1.10, we have 

L ~ = ~ log x + "( + 0 ( ]x) , 
d~..;x 

so inserting this above leads to 

L O"o(n) = x log x + 2"(x - [v'x]2 + O( v'x). 
n<x 

Now, 
[v'x]2 = (v'x - {v'x})2 = x + O( v'x) 

from which we deduce the final result. 

2.4.3 Let X be areal character (mod q). Define 

f(n) = L X(d). 
dln 

o 

Show that f(l) = 1 and f(n) ~ O. In addition, show that f(n) ~ 1 
whenever n is aperfeet square. 

Since X is multiplicative, so is f. If we write 

as the unique factorization of n as a product of prime powers, then 

II (1 + X(p) + X(p2) + ... + X(pCl)). 
p"'lln 
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Since X is real, X(p) = ±1 whenever p is coprime to q. If X(p) = 1, 
then 

If X(p) = -1, the sum is either 0 or 1 according as ais odd or even. 
Ifplq, the sum is 1. In every case we have f(n) ~ O. Clearly, f(l) = 1 
and when n is a perfect square, each ai is even. Thus, each sum in 
the product is greater than or equal to 1. Hence f(n) ~ 1 whenever 
n is aperfeet square. 0 

2.4.4 Using Dirichlet's hyperbola method, show that 

L f:ln = 2L(1, xh/X + 0(1), 
n<x 

where f(n) = 2:dln X(d) and X i= Xo· 

We let g(d) = X(d)jVd, h(e) = 1jve in Theorem 2.4.1. We ehoose 
y = .jX. Therefore, 

with notation as in Theorem 2.4.1. Now, 

H(x) = 2: Jn = 2Vx + B + o(Jx) 
n<x 

by Exereise 2.1.11. Also, 

",x(n) (1) (1) G(x) = D ..;n = L 2'X + 0 .jX , 
n<x 

sinee 

~ x(n) = L (~ ) 
D ..;n 2'X, 
n=l 

and by partial summation, 
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where S(t) = L:n<tx(n). Therefore, 

We will write 

so that 

Observe that 

L ~( G(J) - G(y'X)) = 0(1). 
d~Vx vd 

Hence, 

= 2y'XL(1, X) + 0(1), 

where we have used 

L x~n) = L(l,X) + O(~), 
n<x 

which is easily deduced by partial summation. This completes the 
~~ 0 

2.4.5 1f X =1= xo is areal character, deduce from the previous exercise 
that L(l, X) =1= o. 

Suppose L(l, X) = o. Then 

L f(n) = 0(1). 
n<x Vn 
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On the other hand, by Exercise 2.4.3, f(n) ~ 0, and f(n) ~ 1 when 
n is a perfect square, so that 

f(n) 1 L r::: ~ L -» logx, yn m 
n:Sx m:Sv'x 

a contradiction. 

2.4.6 Prove that 

L x~n) = O(~) 
n>x 

whenever X is a nontrivial character (mod q). 

By partial summation, we have 

L x(n) 100 s(t)dt -« --
n t2 ' n>x x 

o 

where s(t) = 2:n<tx(n). But Is(t)1 ~ q, so that the estimate is now 
immediate. - 0 

2.4.7 Let 

an = LX(d), 
dln 

where X is a nonprincipal character (mod q). Show that 

L an = xL(l,X) + O(JX). 
n<x 

We apply Dirichlet's hyperbola method: 

where s(y) = 2:n:Sy x(n). Since Is(y)1 ~ q, we get 

Choosing y = ...;x, we obtain 
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Finally, by the previous exercise, 

L(l, X) - L X~) 
d>..fi 

which implies the required result. 0 

2.4.8 Deduce from the previous exercise that L(l, X) i= ° for X real. 

Consider the Dirichlet series 

with an = l:dln X(d) ~ 0, as in Exercise 2.4.3. Then, if L(l, X) = 0, 
by Exercise 2.4.7 

F(x) = I: an = 0 (v'x). 
n~x 

A summation by parts, as in Exercise 2.1.5 gives 

00 an (oe F(t) d 
L: nS = s J 1 ts+1 t 
n=l 

for s > 1/2 and the Dirichlet series converges for Re s > 1/2. By 
Exercise 1.2.4 

00 

~ an = L(s,xK(s), Res> 1. L..J nS 
n=l 

(2.1) 

Since L( s, X) converges and is analytic for Re s > ° by Exercise 2.3.4 
and ((s) has analytic continuation to Res> ° by Exercise 2.1.6 
we can set s = 1/2 + € in (2.1). The product on the right of (2.1) 
converges to L(1/2,xK{1/2) as € ~ 0, since ((s) has only a pole at 
s = 1 by Exercise 2.1.6. On the other side of (2.1) 

by 2.4.3. However, as € ~ 0, ((I + 2€) ~ 00, since 1 is a pole of ((s). 
This gives a contradiction. 0 
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2.4 Supplementary Problems 

2.5.1 Let ddn) be the number of ways of writing n as a product of 
k numbers. Show that 

X(logX)k-l 'L dk(n) = (k _ 1)! + O(x(log x)k-2) 
n<x 

for every natural number k 2: 2. 

For k = 2, this is Exercise 2.1.4. We will prove the result by 
induction on k. Recall that 

so that 

dk(n) = 'Ldk-l(8), 
öln 

'L 'L dk-l (8) 
n~x öln 

xL dk-l(8) + 0(x(logx)k-2) 

o~x 

by the induction hypothesis. Also by the same, and by Theorem 
2.1.1, 

(k-2)! 'L dk-l (8) = /x (logt)k-2 + ~((logt)k-3) dt+0((logx)k-2), 

ö~x 1 

which easily gives 

~dk-l(8) = (logx)k-l 0((1 )k-2) 
~ 8 (k _ 1)! + og x . 
ö~x 

Inserting this in the above calculation gives the desired result. 0 

2.5.2 Show that 
L log:' = x + O(logx). 

n 
n<x 
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By Exercise 2.1.2, 

L logn = x log x - x + O(logx). 
n<x 

Thus, 

L log x = [x] log x = x log x + O(1ogx)". 
n<x 

Subtracting gives the result. 0 

2.5.3 Let A(x) = 2:n<x an· Show that for x a positive integer, 

L an log ~ = /,X A(t)dt" 
n 1 t 

n<x 

We write the left-hand side as 

L {A(n) - A(n -I)} log ~ 
n<x 

LA(n) log ~ 
n 

n<x 

L A(n)log-X­
n+1 

n<x-l 

n+l L A(n)log-
n 

n<x-l 

L A(n) in+l ~t 
n<x-l n 

/,
x A(t)dt 

1 t ' 

since A(t) is a step function. 0 

2.5.4 Let {x} denote the fractional part of x. Show that 

L {~} = (1 - "()x + O(x1/ 2 ), 

n'Sx 

where "( is Euler's constant. 
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We have 

L{~} L (~- [~]) 
n<x n<x 

1 
xL - - LO"o(n). 

n 
n:::;x n:::;x 

By Example 2.1.10 and Exercise 2.4.2, we find that this is 

x (log x +, + O(~) ) - (x log x + (2, -l)x + O(vx)) , 

which simplifies to 

as required. 

2.5.5 Prove that 

for any k > O. 

(1 - ,)x + 0 (v'X) , 

L logk ~ = O(x) 
n 

n<x 

Since log t is an increasing function of t, we have for n ~ 2, 

logk ~ ~ in (logk~) dt. 
n n-l t 

Hence, 

Set u = x/t in the integral to deduce 

x iX logk u L logk - ~ x -2-du = O(x), 
n<x n 1 u 

o 

since the latter integral converges for any k > O. (This also gives 
another proof of Exercise 2.5.2 in the case k = 1.) 0 

2.5.6 Show that for x ~ 3, 

L 11 = log log x + B = 0(-11-). 
3<n<x n ogn x ogx 
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We apply Theorem 2.1.9 with f(t) = l/(tlogt), a = 3, b = x, and 
k = O. Then, 

1 
I:: nlogn 

2:Sn:'Sx 

{X dt (1 1) 
J 3 tlog t + 2x log x - 6 log 3 

lx ({x} - ~)( 1 + log t) 
+ ()2 dt. 

3 t log t 

the first integral is 
log log x - log log 3. 

For the second integral, observe that the integrand is 

0(_1_) 
t2 10gt ' 

so that 
(Xl ({t} - ~)(1 +logt)dt _ 

J3 (t log t)2 -c<oo. 

Thus, the second integral can be written as 

c-o -- =c+o --(100 dt ) (1) 
X t 2 log t x log x . 

This completes the proof. 

2.5.7 Let X be a nonprincipal character (mod q). Show that 

By Exercise 2.3.4, we know that 

I:: x(n) = 0(1). 
n<x 

Thus, by partial summation, 

'" x(n) = 0(100 ~) = 0(_1 ), 
L..; In t3/ 2 'x n>x v'· x VoL 

o 
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as required. 0 

2.5.8 For any integer k 2: 0, show that 

logk n logk+ 1 X 2:-n-= k+l +0(1). 
n<x 

We apply Theorem 2.1.1 with an = l/n and f(n) = logk n. Using 
Example 2.1.10, we have 

2: logk n 
n 

n<x 
(Iogk x) (log x + , + 0 (~ ) ) 

_ !X (IOgt+,+O (~)) k(lOgk-1t)~t. 

The main term is now evident. The terms involving , as a coefficient 
cancel. The remaining error terms are easily seen to be 0(1). In fact, 
this argument can easily be modified to show that 

logk n logk+ 1 X (logk X) "'--= +c+O -- . ~ n k+l x 
n'Sx 

2.5.9 Let d(n) be the number of divisors of n. Show that for some 
constant c, 

2: d~) = ~ log2 X + (2, - 1) log x + c + O(~) 
n<x 

for positive integers x 2: 1. 

We apply Theorem 2.1.1 with an = d(n) and f(n) = l/n. Using 
Exercise 2.4.2, we get 

2: d(n) 
n 

n<x 

= {X (t log t + (2, - l)t + O(..;t))dt 
11 t 2 

(x log x + (2, - l)x + O( JX)) 
x 
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The integral is 

1 /x dt 
"2log2x+(21'-1)logx+O( I t 3/ 2 )· 

Since the integral in the error term converges, we can write it as 

(Xl dt 1 
Cl - O(Jx t3/J = er + O(JX) 

for some constant er. Combining these estimates gives the final re­
~. 0 

2.5.10 Let a ~ 0 and suppose an = O(nO!) and 

A(x) := L an = O(Xo) 
n<x 

for some fixed 8 < 1. Define 

Prove that 
( (1-0)(1+<») L bn = cx + 0 X 2-0 , 

n~x 

for some constant c. By Dirichlet's hyperbola method, 

The sum "I:-d<Y d-o is O(yl-O), SO that 

L bn = Lad [~] + O(XOyl-O + xl-I). 
n~x d~y 

1-0 
We choose y = x 2 - o to minimize the error terms (which is the case 
when the two terms are equal). Thus 

'" '" [X] (1-0-0
2

) L...J bn = L...J ad d + 0 X 2=r . 

n~x d~y 
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Also, 

Lad [S] = XL a; + O(yl+Q) 
d~y d~y 

and 
00 

L~=La;-La;. 
d~y d=l d>y 

We have 

(by Exercise 2.1.5). By partial summation, 

Thus, 

a 100 A(t) '" ~ « --dt « yÖ-l. 
6 d t2 
d>y y 

L ad [~] = cx + O(xyÖ-l + yl+Q). 
d~y 

With the choice of y given above, we get 

( 
(l-o)(H"') 1-0-02 ) 

Lbn=cx+O x 2 8 +x~. 
n<x 

Since (1 - 8)(1 + a) 2: 1 - 8 - 82 , we get 

'" ( (1-8)(1+"')) 6 bn = cx + 0 X 2 <5 

n<x 

as required. 

2.5.11 Let X be a nontrivial character (mod q) and set 

f(n) = L X(d). 
dln 

Show that 

L f(n) = xL(l, X) + O(q.jX), 
n~x 

where the constant implied is independent of q. 

o 
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We apply Dirichlet's hyperbola method with y = y'x. Let S(x) = 

2:n:Sx x(n). Then 

L f(n) = L X(d) [J] + L S(J) - S (y'x) [JX] . 
n:Sx d:Sv'x d:Sv'x 

Since IS(x)1 ~ q, we have 

L f(n) = L X(d) [J] + O(qy'x). 
n:Sx d:Sv'x 

Now, 

L X(d) [J] = x L X~) + O(y'x) 
d:Sv'x d:Sv'x 

and 
'"' X(d) ( q ) ~ d =L(l,X)+O y'x , 

d:Sv'x 

by partial summation. Putting this all together gives the desired 
result. If we use Exercise 5.5.6, we can replace q by ql/210g q. 0 

2.5.12 Suppose that an ~ ° and that for some <5 > 0, we have 

I:: an « (10 xx)"· 
n:Sx g 

Let bn be defined by the formal Dirichlet series 

Show that 

We have 

L bn «x(10gx)1-2". 
n<x 

bn = L adan/d, 
dln 

and so we can apply Dirichlet's hyperbola method with 
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to get 

Lbn =2 L adA(~)-A(Vx)2. 
nS;x dS;,;x 

The last term is 0 (x / (log x) 28). The summation on the right hand 
side is bounded by 

x L ad « -(log x)8 d . 
dS;,;x 

By partial summation, 

which is easily seen to be 0 (logl-8 x), and this gives the stated 
result. 0 

2.5.13 Let {an} be a sequence of nonnegative numbers. Show that 
there exists (JO E lR (possibly infinite) such that 

00 

f(s) = ~ an 
~ns 
n=l 

converges for Re(s) > (JO and diverges for Re(s) < (JO. Moreover, if 
s E <C with Re( s) > (Jo, show that the series converges uniformly in 
Re(s) ~ (JO + 8 for any 8 > 0 and that 

for Re(s) > (JO. ((Jo is called the abscissa of convergence of the 

Dirichlet series L:~=l an/ns .) 

If there is no real value of s for which the series converges, we take 
(JO = 00, and there is nothing to prove in this case. Now suppose there 
is some real So for which the series converges. By the comparison 
test, the series converges for all Re(s) > So, since the coefficients are 
real and nonnegative. Now let (JO be the infimum of all real So for 
which the series converges. This establishes the existence of (JO. The 
uniform convergence in Re( s) > (JO + 8 for any 8 > 0 is immediate. 
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Thus, in this region, we can differentiate the series term by term to 
derive the formula 

o 
2.5.14 Let an ~ 0 be a sequence of nonnegative numbers. Let (JO be 
the abscissa of convergence of 

00 

f(s) = '" an. 
~ns 
n=l 

Show that s = (JO is a singular point of f (s). (That is, f (s) cannot 
be extended to define an analytic function at s = so.) 

By the previous exercise, f(s) is holomorphic in Re(s) > (JO. If f 
is not singular at s = (JO, then there is a disk 

D = {s: I s - (JII < 8} 

where (JI > (JO such that 1(J0 - (JII < 8 and a holomorphic function 
9 in D such that g(s) = 1(s) for Re(s) > So, s E D. By Taylor's 
formula, 

since g(s) = f(s) for s in a neighborhood of (JI. Thus, the series 

converges absolutely far any s E D. By the previous exercise, we can 
write this as a double series 



2.4 Supplementary Problems 241 

If 0"1 - 8 < s < 0"1, this convergent double series consists of nonneg­
ative terms and we may interchange the summation to find 

00 00 ( )k ( )k 00 
"""' an """' 0"1 - s log n = """' an < 00. 
L., neTl L., k! L., nS 
n=l k=O n=l 

Since 0"1 - 8 < 0"0 < 0"1, this is a contradiction for s = 0"0. Thus, the 
abscissa of convergence is a singular point of f (s ). 0 

2.5.15 Let X be a nontrivial character (mod q) and define 

O"a,x = L X(d)da . 

dln 

1f Xl, X2 are two characters (mod q), prove that for a, b E C, 

00 

L O"a,Xl (n)O"b,X2 (n)n- S = 
n=l 

((s)L(s - a,Xl)L(s - b,X2)L(s - a - b,XlX2) 
L(2s - a - b, XlX2) 

as formal Dirichlet series. 

We apply Ramanujan's identity (see Exercise 1.2.8) 

= 
(1 - a,T) (1 - a8T)(1 - ß,T)(l - ß8T) 

to deduce that 
00 

L 0" a,Xl (pn )O"b,X2 (pn )Tn 
n=O 

Putting T = p-s and multiplying over the primes p gives 

((s)L(s - a,X1)(L(s - b,X2)L(s - a - b,XlX2) 
L(2s - a - b, XlX2) 

o 
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2.5.16 Let X be a nontrivial character (mod q). Set a = b, Xl = X, 
and X2 = X in the previous exercise to deduce that 

~ 1 ()12 -s _ ((s)L(s - a,x)L(s - ä,X)L(s - a - ä,Xo) 
L...Juaxn n - . , L(2s - a - ä,Xo) 
n=l 

Observe that 
ua,x(n)ua,x(n) = IUa,x(n)12 

and XX = Xo, so that the result is now immediate. D 

2.5.17 Using Landau 's theorem and the previous exercise, show that 
L(1, X) =1= 0 for any nontrivial real character (mod q). 

Set a = 0 in Exercise 2.5.16. Then 

f luo,x(n)12 = ((s)L(s,X)L(s,X)L(s,xo) 
n=l nS L(2s, Xo) . 

The right hand side is regular for Re( s) > 1/2, except possibly s = 1. 
However, if L(l, X) = 0, then the right-hand side is regular at s = 1. 
Therefore, the Dirichlet series 

represents an analytic function for Re(s) > uo, where Uo is the ab­
scissa of convergence. We roust have Uo < 1. However, for X real and 
n=m2, 

uo,x(m2) ~ 1, 

so that the Dirichlet series diverges for s = 1/2. Hence 1/2 :::; Uo < 1. 
Since L(2s, XO)-l is regular for s ~ 1/2, we have a contradiction 
because 

((s)L(s, X)L(s, X)L(s, Xo) 
L(2s,Xo) 

is regular for any real s ~ 1/2. D 

2.5.18 Show that ((s) =1= 0 for Re(s) > 1. We have for U = Re(8), 

((8) = II (1 + ~ + ~ + ... ) pS p2s ' 
p 
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so that 

I( (8 ) 1 ~ TI (1 - 1a - ;cr - ... ), 
p p p 

so that 

1((8)1 ~ TI (1- pa ~ 1) =F 0, 
p 

and the infinite product converges because (j > l. o 
2.5.19 (Landau's theorem for integrals)Suppose that 

/

00 A(x) 
](8) = -+1 dx, 

1 X S 

with A(x) ~ O. Let (ja be the infimum 0] all real 8 ]or which the 
integral converges. Show that ] (8) has a singularity at 8 = (ja. This 

is similar to Exercise 2.5.14, and so we merely indicate the modifica­
tions needed in the solution of that problem to obtain the required 
result. As before, we can differentiate under the integral sign to get 

If (ja is not a singularity, we deduce that 

using the notation in the solution to Exercise 2.5.14. Interchanging 
the summation and integration gives 

/

00 A(x) 
-:tTdx < 00 

1 X S 

for s satisfying (j1 - 8 < 8 < (j1· For 8 = (ja, this is a contradiction. 
o 
2.5.20 Let Adenote Liouville 's function and set 

S(x) = L A(n). 
n<x 

Show that if S (x) is of constant sign for all x sufficiently large, then 
(( 8) =F 0 for Re( s) > 1/2. (The hypothesis is an old conjecture of 
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P61ya. It was shown by Haselgrove in 1958 that S(x) changes sign 
infinitely often.} 

We have by Exercise 1.2.5 and partial summation that 

((28) = 8/,00 S(x)dx 
((8) 1 xs+l' 

If S (x) 2': 0 for all x, then the integral represents an analytic function 
for Re(8) > 0'0, where 0'0 is the abscissa of convergence. However, by 
Exercise 2.1.6, 

(8 -1)((8) = 8 - 8(8 -1) /,00 {x+\ dx, 
1 X s 

so if ((8) = 0 for some 8 satisfying 1/2 < 8 < 1, we get 

/,
00 {x} 

1 = (8 -1) -+1 dx, 
1 X S 

a contradiction because the right-hand side is negative. Thus ((8) # 
o for 1/2 < 8 < 1. We find that ((28)/((8) has its first real singularity 
at 8 = 1/2. Therefore, 0'0 = 1/2. Therefore, ((28)/((8) is regular for 
Re(s) > 1/2, which means that ((s) # 0 for Re(8) > 1/2. (This is 
the celebrated Riemann hypothesis, which still remains unproved, as 
of the year 2000.) 0 

2.5.21 Prove that 

where bn(x) i8 the nth Bernoulli polynomial and Bn denote8 the nth 
Bernoulli number. 

We have from Exercise 2.1.7 that 

F(x, t) = ext F(O, t). 

As power series, this equation is 
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so that comparing the coefficients of tn on both sides gives the 
result. 0 

2.5.22 Prove that 

where bn(x) denotes the nth Bernoulli polynomial. 

We have from Exercise 2.1.7 that 

F(1 - x, t) 

from which the result follows. 

2.5.23 Let 

Prove that fOT k ;:::: 1, 

We consider the power series 

Writing 

00 tk n-l 

2: kl(2:l) 
k=O j=O 

n-l nt 1 2: t" e -
e J = --­et -1 . 

j=O 

--_.--
t et - 1 

(f nk~~-l) (f Bjr) 
k=l j=O 

o 

and comparing coefficients of both sides gives the result. 0 



3 
The Prime N umber Theorem 

3.1 Chebyshev's Theorem 

3.1.1 Let 
fJ(n) = L logp, 

p<n 

where the summation is over primes. Prove that 

fJ(n) ::::; 4nlog2. 

Since every prime between n and 2n divides 

C:) ::::; 22n , 

because it is one of the binomial coefficients occurring in the binomial 
expansion of (1 + 1)2n, we see that 

fJ(2n) - fJ(n) ::::; 2nlog2. 

If n = 2T , we obtain fJ(2 T+l) - fJ(2T ) ::::; 2T+1 log2, valid for r 
0,1,2, ... ,m (say). Adding up these inequalities, we obtain 

fJ(2m+1) < (2m+1 +2m +··.+2+1)log2 
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If n satisfies 2m ::; n < 2m+ 1, then 

< 2m+1log 2 + 2m+1log 2 ::; 4n log 2. 

o 
3.1.2 Prove that 

B(n) ::; 2nlog2. 

We induct on n. If n is not prime, then 

B(n) = B(n - 1) ::; 2(n - 1) log 2 

by the induction hypothesis. If n is odd, write n = 2m + 1, then 
notice that 

is divisible by all the primes between m + 1 and 2m + 1. Notice that 

so that 

Hence 
B(2m + 1) - B(m) ::; 2m log 2 

and induction gives B(m) ::; 2m log 2, so that 

B(2m + 1) ::; 4m log 2 ::; 2(2m + 1) log 2 

as desired. 

3.1.3 Let 

'IjJ(x) = L logp = L A(n), 
p"'5::x n<x 

o 
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where A is the von Mangoldt function. Show that 

lcm[l, 2, ... ,nJ = e'I/J(n). 

Clearly, we can write 

lcm[l, 2, ... ,nJ = TI pep, 
p~n 

where ep is the largest power of p :; n. Thus 

from which the result folIows. 

3.1.4 Show that 

e'I/J(2n+1) 11 
x n(1- xtdx 

is a positive integer. Deduce that 'Ij;(2n + 1) ~ 2n log 2. (The method 
of deriving this is due to M. Nair.) 

The integral 

t (~) (_l)k t xn+kdx 
k=O Ja 

n (n) (-l)k 
= L k n+k+l 

k=O 

is a ratiunal number. It is clear that lcm[l, 2, ... ,2n+ 1]1 is a positive 
integer. Since 

for 0 :; x :; 1, we obtain 

1 
x(l - x) :; 4 

Hence, by Exercise 3.1.3, we obtain 

e'I/J(2n+1) I > 1 
- , 

so that e'I/J(2n+1) ~ 22n , as required. o 
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3.1.5 Prove that there are constants A and B such that 

Ax Bx 
- <7r(x) <­
logx - - logx 

for all x sufficientZy Zarge. (This result was first proved by 
Chebycheff. ) 

By the previous exercises, we have 

Hence, 

which implies 

This yields 

fJ(x) < 2x log 2, 

'ljJ(2n + 1) > 2n log 2. 

L logp ~ 2x log 2, 
..;x<p~x 

1 
(71" (x) - 7r (Fr)) 2" log x ~ 2x log 2. 

4x log 2 
7r(x) ~ 1 +7r (Jx). ogx 

Since 7r (.JX) ~ .JX, we get 

7r(x) ~ 4xlog2 + 0 (Fr) = O(~). 
log x log x 

For the lower bound, notice that 

'ljJ(x) ~ x, 

and that 
'ljJ(x) - fJ(x) = L logp = o (Frlog2 x). 

Hence 

and as before, 

p<>:<;x 
<>2:2 

fJ(x) ~ x, 

L logp + O(Frlogx) ~ x, 
..;x~p~x 
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so that 7r(x) log x ~ x for x sufficiently large. Thus, 7r(x) ~ IO~x. 0 

3.1.6 Prove that 

T(x) := L logn = x log x - x + c + O(l/x) 
n<x 

for some constant c. (This improves Exercise 2.1.2.) 

We apply Theorem 2.1.9 with f(n) = logn, a = 1, b = x, and 
k = 1 to get 

/,
x 1 1 /,X B (t) 

L logn = logtdt + "2 log x +"2 +dt + 0(1). 
n<x 1 1 

We hve 

/,
x B2(t)dt = /,00 B2(t)dt O(~) 

t2 t2 + , 
1 1 X 

and the integral on the right-hand side converges because B 2(t) is 
bounded. Since 

l x 
log t dt = x log x - x + 1, 

this completes the proof. 

3.1. 7 Using the fact 

prove that 

We have 

logn = LA(d), 
dJn 

L A(n) = log x + 0(1). 
n 

n<x 

T(x) = L A(d) [J] = xL A~d) + O(1jJ(x)). 
d~x d~x 

o 

Since T(x) = x 10gx+0(x) and 1jJ(x) = O(x), we obtain the required 
result upon dividing by x. 0 

3.1.8 Prove that 
1 L - = log log x + 0(1). 

p~xP 
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From Exercise 3.1.7, we deduce 

~logp 
6 - = log x + 0(1), 
p<x p 

since the contribution from higher prime powers is bounded by a 
convergent sumo Thus, by partial summation, 

Now, 

and 

L logp . _1_ = 0(1) + {X {logt + 0(1)} dt. 
p logp 12 (log tF t 

p~x 

lx dt 
-1- = log log x + 0(1) 

2 t ogt 

lx dt 
=01 2 t(logt)2 ( ). 

The result is now immediate. o 
3.1.10 Suppose that {an}~=l is a sequence 01 complex numbers and 
set 

1f 

show that 

as x -t 00. 

S(x) = 2: an· 
n~x 

lim S(x) = a 
x-too X 

, 

~an 6 - = alogx + o(logx) 
n 

n<x 

By partial summation 

an S(x) jX S(t) L - = -- + -2-dt = alogx + o(logx). 
n x 1 t 

n<x 

The integral is divided into two parts: 
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We may use S(t) = at + o(t) in the second integral if we choose 
y = y(x) --+ 00. The first integral is O(logy). Thus, choosing y such 
that log y = o(log x) justifies the last step. 0 

3.1.11 Show that 

if and only if 

We have 

'"""' A(n) 
~ logn 

2<n<x 

Now, 

We have 

lim 'IjJ(x) = 1 
x-too X 

lim 1f(x) = 1. 
x-too x/log x 

'IjJ(x) lx 'IjJ(t) dt --+ 
log x 2 (log t)2 t 

= --+0 -- +0 --x (X) (lX dt ) 
log x log x 2 10g2 t . 

rx~=O(JX)+!X ~=O(_X_) 
12 log2 t yX log2 t log2 X • 

Thus, 'ljJ(x) = x + o(x) implies 1f(x) = x/logx + o(x/logx). The 
converse is similarly deduced. Let f(n) = 1 if n is prime, and zero 
otherwise. Then 

()(x) L f(n) logn = 1f(x) log x - r 1f~t) dt 
n<x 12 

X + o( x) + 0 (10: x ) . 

Therefore, ()(x) = x + o(x). Since 'IjJ(x) = ()(x) + 0 (X1/210g2 x) , 
we deduce 'IjJ(x) = x + o(x) as required. 

o 
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3.2 N onvanishing of Dirichlet Series on Re( s) = 1 

3.1.12 If 

then show that 

lim 7r(x) = a, 
x-too x/log x 

1 L - = a log log x + o(log log x). 
p-:::x p 

Deduce that if the limit exists, it must be 1. 

By partial summation, 

a log log x + o(log log x). 

By Exercise 3.1.8, we know that a must be 1. 

3.2.1 Show that 

((8) = _8 __ 8 (oo {x} dx 
8 - 1 11 xS+1 

o 

for Re( 8) > 1. Since the right-hand side of the equation is analytic for 
Re(8) > 0, 8 I- 1, we obtain an analytic continuation of (8 - 1)((8). 

This was already derived in Exercise 2.1.6. It remains only to ob­
serve that the integral on the right-hand side converges for Re(8) > O. 
Observe that ((8) has a simple pole at 8 = 1 with residue 1. 0 

3.2.2 Show that ((8) I- 0 for Re(8) > 1. 

We have 
( 1 )-1 

(( 8 ) = II 1 - pS 
P 

for (J = Re( 8) > 1. Since 
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and 
1 1 1 1 

1- - - - - ... = 1- -- > 1- -- > 0 
pU p2u pU - 1 - 2u - 1 

for a > 1, we are done. 

3.2.3 Prove that for a > 1, t E IR, 

Relog((a + it) = ~ A;n) cos(tlogn). 
L nU ogn 
n=l 

We have 

log ((s) 

00 1 

LL kpks 
P k=l 

~ A(n) .. 
L I {cos(tlogn)-~sm(tlogn)}, 

nU ogn 
n=l 

from which the result follows. 

3.2.4 Prove that 

Re(31og((a) + 41og((a + it) + log((a + 2it)) 2: 0, 

for a > 1, t E IR. 

o 

o 

By Exercise 3.2.3, we see that the left-hand side of the inequality 
is 

~ A(n) {3 + 4 cos(t log n) + cos(2t log n)} . 
L nUlogn 
n=l 

Since 3 + 4 cos 0 + cos 20 = 2(1 + cos 0)2 > 0, the result is now 
immediate. 0 

3.2.5 Prove that for a > 1, t E IR, 

Deduce that ((1 + it) =/: 0 for any t E IR, t =/: O. Deduce in a similar 
way, by considering 
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that L(1, X) =f. 0 for X not real. 

By Exercises 3.2.3 and 3.2.4 we obtain 

Now, we know that 

Suppose ((s) has zero of order m at s = 1 + it, t =f. o. Then 

Hence, 

Letting er -7 1+ gives us a finite limit on the left-hand side and 
infinity on the right-hand side if m ~ 1. Therefore, ((1 + it) =f. 0 
for t E ~ t =f. o. If X2 =f. Xo, where Xo is the principal character 
(mod q), then 

log L(er, X) = ~ ~ x(p)V, er> 1, 
~~ p(]"vl/ 

P v=l 

and similarly for X2 . N otice that if X (p) = e27ri()p, then X2 (p) = e47ri()p. 

Using the inequality 3+4cos O+cos(20) ~ 0 and Exercise 3.2.3 with 
t = 0, we get by taking real parts that 

This gives 

similarly to the above. If L(1, X) = 0 we get a fourth-order zero for 
L(er, X)4, while ((er)3 gives a third-order pole. However, L(er, X2 ) does 
not have a pole at s = 1, since X2 is not the principal character. 0 

3.2.6 Show that - t (s) has an analytic continuation to Re( s) = 1, 
with only a simple pole at s = 1, with residue 1. 
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Since ((8) =1= 0 for Re(8) 2 1, 8 =1= 1, -t(8) is analytic for 
Re(8) 2 1, 8 =1= 1. Now, 

(8 - 1)((8) = 8 - 8(8 - 1) /00 ;:11 dx 

by Exercise 3.2.1. Thus, we can write 

(8 - 1)((8) = 8f(8), 

where j(8) is analytic for Re(8) > o. Therefore, differentiating the 
equation, we get ((8) + (8 - 1)('(8) = 81'(8) + f(8), SO that 

('(8) f(8) f'(8) 
1 + (8 - 1) ((8) = ((8) + 8 ((8)" 

Since lims-+l+ ((8) = +00, we get lims-+l+(8 - 1)t(8) = -1. D 

3.2.7 Prove that 

1 sin(n + 1.)8 
- + cos 8 + cos 28 + ... + cos n8 = (}2 

2 2 sin 2 

The left-hand side is the real part of 

The term in the parentheses is the sum of a geometrie progression 
and equals 

ei(n+l)(} _ 1 (ei(n+l)(} - 1) e-i (}/2 

ei (} - 1 2i sin( 8 /2) 

The real part is 
sin(n + ~)B 1 
--------0"--- + -

2 sin ~ 2' 

and the result is now immediate. D 

3.2.8 Prove that 

sin2n8 
cos 8 + cos 38 + ... + cos(2n - 1)8 = . 8. 

2sm 

By Exercise 3.2.7, 
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1 sin(2n + 1)0 - + cos 0 + cos 20 + ... + cos 2nO = ,/ 
2 2sin '2 

and 

1 sin(2n + 1)0 - + cos 20 + cos 40 + ... + cos 2nO = . 2 . 0 ' 
2 SIn 

putting first 2n instead of n and 20 instead of 0, respectively. Sub­
tracting gives 

cos 0 + cos 30 + ... + cos(2n - 1)0 = 

sin(2n + ~)O sin(2n + 1)0 
= ---::-=---

2 sin ~ 2 sin 0 

N ow, sin 0 = 2 sin ~ cos !, so that the above is equal to 

Since 

2cos!. sin(2n +~)O - sin(2n + 1)0 
4sin !l. cos!l. 2 2 

sin( 2n + 1)0 = sin (2n + ~) 0 cös ~ + sin ~ cos (2n + ~) (}, 
we deduce that the expression in question is 

cos ~ sin(2n + ~)O - sin ~ cos(2n + ~)O sin2nO 
2sinO - 2sinO' 

as desired. 

3.2.9 Prove that 

sin 30 sin 50 sin( 2n - 1 )0 (Sin nO) 2 

1 + sinO + sinO + ... + sinO = sinO . 

o 

We prove ihis by induction on n. For n = 1, it is clear. Assuming 
that it is true for n ~ m, we must show it for n = m + 1. After a 
simple calculation, we are led to prove that 

sin2(n + 1)0 = sin2 nO + (sin(2n + 1)0) sinO, 

or equivalently, 
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(sin( n + 1)0 - sin nO)(sin(n + 1)0 + sin nO) = (sin(2n + 1)0) sin O. 

Using 
. A . B 2' A+B A-B sm + sm = sm -2- cos -2-

and 
., A+B. A-B 

sm A - sm B = 2 cos -2- sm -2-

we find that we must prove that 

( 1) . 0 . ( 1) O. . 4cos n+"2 Osm"2 sm n+"2 Ocos"2=(sm(2n+1)O)smO. 

But the left-hand side is 

sin 2 ( n + ~) 0 . sin 0, 

as desired. o 
3.2.10 Prove that 

2m-1 ( . ( + 1 )ll) 2 sm m - u 
(2m + 1) + 2 L (j + 1) cos(2m - j)O = . () 2 , 

j=O sm 2 

for all integers m 2: O. 

We must prove 

2m (1 )2 sin(m + -)0 
2m + 1 + 2 L(2m - j + 1) cosj8 = . () 2 

j=1 sm 2 

Changing 0 to 2'(J, we must prove that 

2m ( . (2 1))2 sm m+ 
2m+1+2"(2m-j+1)cos2j'(J= . '(J L-t sm'(J 

j=1 

By Exercise 3.2.7, we know that 

1 sin(2n + 1)8 
- + cos 20 + cos 48 + ... + cos 2n8 = . 8 . 
2 2~ 
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That is, 

1 2 ~ 2' sin(2n+1)ip + L...J cos J ip = . . 
j=1 smip 

Summing both sides over 0 ::; n ::; 2m, we obtain 

2m n 2m . (2 1) 
(2m+1)+2LLcos2jip=L sm ~+ ip. 

n=O j=1 n=O Sin ip 

The left-hand side is 

2m 2m 

(2m+1)+2 L cos2jip L 1 = (2m+1)+2 L(2m-j+1) cos2jip, 
j=1 j~n~2m j=1 

and the right hand side is 

( sin(2~ + 1)ip)2 
smip 

by Exercise 3.2.9, as desired. D 

3.2.11 Let f(s) be a complex-valued function satisfying 

1. f is holomorphic in Re( s) > 1 and non-zero there; 

2. log f (s) can be written as a Dirichlet series 

with bn ~ 0 for Re(s) > 1; 

3. on the line Re( s) = 1, f is holomorphic except for a pole of 
order e ~ 0 at s = l. 

1f f has a zero on the line Re(s) = 1, then the order of the zero is 
bounded by e/2. (This result is due to Kumar Murty.) 

Suppose f has a zero at 1 + ito of order k > ~. Then e ::; 2k - l. 
Consider the function 

2k 
g(s) = f(S)2k+1 II f(s + ijtO)2(2k+1-j) 

j=l 

f(S)2k+1 f(s + itO)4k f(s + 2ito)4k-2 ... f(s + 2kito)2. 
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Then 9 is holomorphic for Re( 8) > 1 and vanishing to at least first 
order at 8 = 1, since 

4k2 - (2k + 1)e ~ 4k2 - (2k + 1)(2k - 1) = 1. 

However, for Re(8) > 1, 

Let 0 = tologn. Then for 8 = a > 1, 

00 b 2k 

Relogg(a) = log Ig(a)1 = L n: (2k+ 1 +2 L 2(2k+ 1- j) cosjO). 
n=l j=l 

By Exercise 3.2.10, the quantity in the parentheses is greater than 
or equal to O. Thus, 

Ig(a)1 ~ 1. 

Letting a --+ 1+ we get a contradiction, since g(1) = O. o 

3.2.12 Let f(8) = Ilx L(8, X), where the product i8 over Dirichlet 
characters (mod q). Show that f(8) is a Dirichlet series with non­
negative coefficients. Deduce that L( s, X) =1= 0 for Re( s) = 1. 

By the Euler product for each L(s, X), we know that it does not 
vanish for Re(8) > 1. Also, for Re(s) > 1, 

1 
logf(s) = I)ogL(s,x) = L n ns LX(pn) 

X n,p P X 

which by the orthogonality relations (see Exercise 2.3.8) is equal to 

1 
<p(q) L 

n,p npns 
pn=l (mod q) 

This is patently a Dirichlet series with nonnegative coefficients. 
L(s,X) is regular for Re(s) > 0 (by Exercise 2.3.4) for X =1= XO. 
L(8, Xo) has a simple pole at 8 = 1. Applying Exercise 3.2.11 gives 
the desired result. 0 
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3.3 The Ikehara - Wiener Theorem 

3.3.3 Suppose 

n=l 

is a Dirichlet series with real coefficients absolutely convergent for 
Re( s) > 1. 1f f (s) extends to a meromorphic function in the region 
Re(s) ~ 1, with only a simple pole at s = 1 with residue r, and lanl ~ 
bn, where F(s) = ~~=1 bn/ns satisfies the hypotheses of Theorem 
3.3.1, show that 

as x -+ 00. 

Lan=rx+o(x) 
n~x 

The series G(s) = F(s) - f(s) is a Dirichlet series satisfying the 
hypotheses of Theorem 3.3.1, and therefore 

L(bn - an) = (R - r)x + o(x) 
n<x 

as x -+ 00. On the other hand, 

so that 

as required. 

Lbn = Rx+o(x), 
n~x 

L an = rx + o( x), 
n~x 

o 
3.3.4 Show that the conclusion of the previous exercise is still valid 
if an E C. 

Define 
00 

I*(s) = LCin/ns 

n=l 

and observe that 

f = ~(f + 1*) + i (f ;/*) . 
Furthermore, (f + f*)/2 and (f - f*)/2i are represented by Dirichlet 
series with real coefficients, absolutely convergent in Re( s) > 1. Since 
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r("s) = f(s), 

we have I*(s) = f(8). 
We leave it to the reader to show that f*(s) satisfies the Cauchy 

- Riemann equations and thus both (J + 1*)/2 and (J - 1*)/2i 
satisfy the condition of the previous exercise. The result is now 
immediate. D 

3.3.5 Let q be a natural number. Suppose (a, q) = 1. Show that 

satisfies 

'lj;(x;q,a) := L A(n) 
n<:z: 

n=a (inod q) 

lim 'lj;(x) = 1. 
x-too x/cp(q) 

We apply the previous exercise to the function 

1 -- L' 
f(s) = cp(q) L x(a) ( - 1:(s, X)) 

X (mod q) 

which is 

" A(n) 
L...J nS 

n=:a(mod q) 

Since L(s, X) i= 0 on Re(s) = 1, and the only character contributing 
a pole to the sum is the principal character, we see that 

1 
Ress=d(s) = cp(q) , 

from which the result is immediate. D 

3.3.6 Suppose F(s) = L:~=1 bn/ns is a Dirichlet series with positive 
coefficients and is convergent for Re(s) > c> O. If F(s) extends to 
a meromorphic junction in the region Re(s) 2:: c with only a simple 
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pole at s = c with residue R, show that 

as x --+ 00. 

The Dirichlet series G (s) = F (s + c - 1) satisfies the conditions of 
Theorem 3.3.1. Therefore, 

A(x) := L n~~l = Rx + o(x) 
n<x 

as x --+ 00. Now, by partial summation, 

as required. o 
3.3.7 Suppose f(s) = 2:~=1 an/nS is a Dirichlet series with complex 
coefficients absolutely convergent for Re( s) > c. 1f f (s) extends to 
a meromorphic function in the region Re( s) ~ c with only a simple 

pole at s = c and residue r, and lanl ::; bn, where f(s) = 2:~=1 bn/ns 

satisfies the hypo thesis of Exercise 3.3.6, show that 

as x --+ 00. 

If we write g( s) = f (s + c - 1), then g( s) satisfies the conditions 
of Exercises 3.3.3 and 3.3.4. Thus, 
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as x ~ 00. By partial summation (as in the previous exercise), the 
result is now immediate. 0 

3.3.8 Let a( n) be a multiplicative ]unction defined by 

{ 
p + cp i] a = 1, 

a(pQ) = 
o otherwise, 

where ICpl :::; pB with () < 1. Show that as x ~ 00, 

]or some nonzero constant r. 

The Dirichlet series ] ( s) = l:~= 1 a ( n ) / n s is 

II (1 + P + Cp ) = II (1 + _1 + Cp ). 
pS ps-l ps 

P P 

We can factor 

( 1 Cp ) 1+-+­ps-l ps 

It is easy to see that 

( 1)( cp cp ) 1+-· 1+----+···. ps-l pS p2s-1 

converges absolutely for Re(8) > 1 + (). Moreover, h(s) does not 
vanish in this half-plane. Also, 

II ( 1) ((s - 1) 
g(s) := 1 + ps-l = ((2s _ 2) 

p 

by Exercise 1.2.7. Thus, 

((s - 1) 
](s) = ((28 _ 2) h(s) 
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can be continued analytically to Re( s) ~ 2 with only a simple pole 
at s = 2 and residue r = h(2)j((2) =1= O. We can now apply the 
previous exercise witn c = 2 to deduce the result. 0 

3.3.9 Suppose Cn ~ 0 and that 

LCn =Ax+o(x). 
n:5x 

Show that 
L ~ = Alogx + o(logx) 
n:5x 

as x -+ 00. 

Let s(x) = 'En:5x Cn· By partial summation, we get 

s(x) + (X s(t) dt 
x 11 t2 

Alogx + o(logx) 

as required. o 

3.4 Supplementary Problems 

3.4.1 Show that 

L A(n) logn = 1/J(x) log x + O(x). 
n:5x 

By partial summation, 

L A(n) logn = 1/J(x) log x -lx 1/J(?dt. 
n:5x 1 

Using Chebyshev's estimate that 1/J(x) = O(x) in the integral gives 
the result. 0 

3.4.2 Show that 

LA(d)A(~) = A(n) logn+ LJL(d) log2 d. 
dln dln 
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By Exercise 1.1.6, we have 

so that 

Since 

we have 

A(n) = - LJ.L(d) logd, 
dln 

LA(d)A(~) = L A(d)A(e) 
dln de=n 

= - L A(d) L J.L(8) log 8 
de=n t.5=e 

- L J.L(8)log8A(d) . 
.5td=n 

L A(d) = log J' 
td=n/.5 

LA(d)A(~) 
dln 

- L J.L (d) log d log ~ 
dln 

= A(n) logn + L J.L(d) log2 d 
dln 

as required. 

3.4.3 Show that 

o 

if n = 1, 
{ 

log2 X 

- 2A(n) log x - A(n) logn + L:hk=n A(h)h(k) if n> 1. 
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If n = 1, the result is clear. For n > 1, recall that 'EdJn p,(d) = 0 
(Exercise 1.1.1) and that - 'EdJn p,(d) log d = A(n) (Exercise 1.1.6), 
so that 

L p,( d) (log2 d - 2 log x log d) 
dJn 

2A(n) log x + L p,(d) log2 d. 
dJn 

By the previous exercise, we have 

LP,(d)log2d= L A(h)A(k) -A(n)logn, 
dln hk=n 

which cornpletes the proof. 0 

3.4.4 Let 
S (x) = L (L p,( d) log2 ~) . 

n~x dln 

Show that 

S(x) = 'lj!(x) log x + L A(n)'lj!(~) + O(x). 
n<x 

We surn the result of Exercise 3.4.3 to get 

S(x) = log2 x + 21j;(x) log x - LA(n)logn+ L A(m)A(n). 
n<x mn<x 

The first surn, by Exercise 3.4.1, is 1j;(x)logx + O(x). The second 
surn is 

L A(n)1j;(~). 
n~x 

Putting all this together gives the desired result. 

3.4.5 Show that 

S (x) - [2 = L p, (d) [~] {log2 ~ - [2} , 
d~x 

where [ is Euler's constant. 

o 
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We have 

s (x) - 'l = L L ft (d) { 10g2 J -1'2 } 
n:Sx dln 

since L:dln ft(d) = 1 if n = 1, and 0 otherwise. Interchanging the 
sums now gives the required result. 0 

3.4.6 Show that 

S(x) = xL ft~d) {10g2 J - I'2} + O(x). 
d<x 

Recall that (Exercise 2.5.5 ) 

L 10g2 J = O(x), 
d<x 

so that when we remove the square brackets in [x / d] in Exercise 
3.4.5, the error term is O(x). 0 

3.4.7 Using the fact 

L ~ = log x + I' + 0 (~ ) 
n<x 

deduce that 

S(x) = L ft(d) (log::' - 1') + 0(1). 
x de d 

de<x 

By the previous exercise, we can write 

S(x) 
x 

L ft~d) {lOg J -I'} {log J + I'} + 0(1). 
d<x 

Writing 

log ~ + I' = L ~ + 0 (~) 
d e x 

e:Sxld 
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gives 

S(x) = L p,(d) (lOg:: - ,) L ~ + o(~ ~ log ::), 
x d d e xL.t d 

d~x e~x/d d~x 

and the error term is 0(1) by Exercise 2.5.5, which proves the result. 
o 
3.4.8 Prove that 

S(x) = 2logx + 0(1). 
x 

By the previous exercise, 

S(x) 
x L ~ L p,(d) ( log ~ -,) 

n~x dln 

= L A~n) + log x - , 
n~x 

2logx + 0(1) 

by Exercise 3.1.7. 

3.4.9 (Selberg's identity) Prove that 

'lj;(x) log x + L A(n)'lj;(~) = 2xlogx + o(x). 
n~x 

By Exercise 3.4.4, 

S(x) = 'lj;(x) log x + L A(n)'lj;(;) + o(x). 
n~x 

By the previous exercise, 

S (x) = 2x log x + 0 (x). 

Putting these facts together gives the result. 

3.4.10 Show that 
v(n) = o( logn ), 

loglogn 

o 
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where v(n) denotes the number of distinct prime factors of n. 

In the interval [1, n], the number with the largest number of prime 
factors is 

where t is chosen as large as possible so that N ~ n. Hence 

v(n) ~ 1f(t), 

and by Chebyshev's theorem (Exercise 3.1.4) we have log N » t. By 
Exercise 3.1. 5, 

t 
1f(t) « -1 -, 

ogt 

so that v(n) « (logN)j log t. Also, n ~ IIp<t+l p, by our choice of 
t. Again by Chebyshev's theorem, -

logn« t, 

so that 
v(n)« lognjloglogn 

as required. o 
3.4.11 Let v( n) be as in the previous exercise. Show that 

l:= v(n) = x log log x + O(x). 
n<x 

We have 
v(n) = l:= 1, 

pln 

so that 

I: v(n) 
nS;x 

xloglogx + O(x) 

by Exercise 3.1.8. 
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3.4.12 Let v(n) be as in the previous exercise. Show that 

L v2(n) = x(log log x)2 + O(x log log x). 
n<x 

We have 

L v2 (n) = L L 1 = L [~] + L [::]. 
n:5:x n:5:x p,qln pq~x pq P:5:x P 

p-,-q 

The second sum is O(x log log x) by the previous exercise. The first 
sum is 

Now, 

L ~+O(x) 
pq$x pq 
p#-q 

= L ~+O(x). 
pq:5:x pq 

L~=(L~r-L~' 
pq<x pq p<x P p,q~x pq 

- - pq>x 

and the first sum on the right-hand side is 

(log log x + 0(1))2 

by Exercise 3.1.8. The second sum is bounded by 

since p, q ::; x and pq > x imply either p > ..jX or q > ..jX. But 

L 1 JX 1f(t)dt 
-~ --~1 
p t 2 

yX<p<x yX 

by partial summation and Chebyshev's estimate for 1f(t). Thus, the 
second sum in quest ion is 

O(log log x), 
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which completes the proof. D 

3.4.13 Prove that 

Let 

Then 

By Parseval's theorem 

as desired. 

3.4.14 Let 

Show that for x > 1, 

100 sin2 >.X _ 
>. 2 dx - 1f. 

-00 X 

if Itl ~ >., 

otherwise. 

j(x) = 2 sin >.x . 
..;x:;x 

2 /00 sin2 >.x _ 
- 2 dx - 2>', 
'Ir 00 X 

T(x) := L logn. 
n<x 

IT(x) - (x log x - x)1 ~ 4 + log(x + 1). 

By the inequalities of the integral test, we have 

T(x) ~ lx logtdt = xlogx - x + 1. 

Also, 

(x+1 
T(x) ~ 11 logtdt = (x + 1) log(x + 1) - (x + 1) - 2log2 + 2. 

Hence 

( x+ 1) T(x) - (x log x - x) ~ x log -x- + log(x + 1) + 3 - 21og2. 

D 
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Since 10g(1 + t) :s; t, for Itl < 1 we deduce 

I T (x) - (x log x - x) I :s; 4 + log (x + 1) 

as required. o 
3.4.15 Show that 

'ljJ ( x) - 'ljJ ( ~) :s; (log 2) x + 12 + 3 log (x + 1). 

Deduce that 

.I.() (1 2) 1210gx 310g(x+1)10gx 
'f' x :s; 2 og x + log 2 + log 2 . 

We have (by the proof of Theorem 3.1.9) 

By Exercise 3.4.14, we have 

T(x) - 2T(~) :s; (10g2)x + 12 + 310g(x + 1). 

By iteration we obtain 

'ljJ(~) -'ljJ(~):s; (10g2)~+12+310g(X+1) 

and so on. Adding these up gives the stated inequality. 0 

3.4.16 Show that 

'ljJ(x) - 'ljJ(~) + 'ljJ(i) ~ (10g2)x - 210g(x + 1) -7. 

We have (as in the previous exercise or by the proof of Theorem 
3.1.9) 

'ljJ (x) - 'ljJ ( ~) + 'ljJ ( i) ~ T (x) - 2T ( ~ ) . 
Using Exercise 3.4.14 now gives the result. 

3.4.17 Prove that for x ~ e12 , 

'ljJ(x) _ 'ljJ(~) ~ ~(10g2)x _ 5 (log x) log(x + 1) -7. 
2 3 log 2 

o 
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By the previous two exercises 

'ljJ(x) - 'ljJ(~) ~ ~(log2)X - 2(log(x + 1)) - 7 

12log(x+1) 

log 2 
3 (log x) log(x + 1) 

log 2 

If x ~ e12 , we can replace 2log(x + 1) and 2log(x + l)j log 2 by 
(logx)(log(x + 1))jlog2. D 

3.4.18 Find an explicit constant Co such that for x ~ Co, 

'ljJ(x) - 'ljJ(~) > (lO~2)X - 7. 

Since log x < log (x + 1), we may write by the previous exercise 

'ljJ(x) _ 'ljJ(~) ~ ~(log2)x _ 5(log(x + 1))2 - 7. 
2 3 ~g2 

Now let c = (log2)2j30, so that we have (log(x+1))2 < CX, provided 
that 

(CX)3/2 
l+x<l+ 6 

or, equivalently, x ~ 36 j c3 . This yields 

'ljJ(x) - 'ljJ(~) ~ ~(lOg2)X -7, 

provided that x ~ Co = 36 j c3 . D 

3.4.19 With Co as in the previous exercise, show that for x ~ Co, 

O(x)-o(~) > (log2)x _ JX(logx)2 -7. 
2 6 log 2 

Let 
O*(x) = L logp. 
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Then, by the previous exercise, 

O(x) - O(~) + O*(x) > (IO~2)X -7 

for x > co. Also, 
O*(x) ~ JX(logx)2/log 2, 

from which the result folIows. 

3.4.20 Find an explicit constant Cl such that for x 2: CI, 

O(x)-O(~) > (log2)x -7. 
2 12 

We have 
.jX(logx)2 (log2)x --'----'--.::....-.;- < -'--=-.....:..-

log 2 12 

iff x < exp ((log 2)xl/4 /.Ji2). This is certainly the case if 

1 (log 2 1/4) 8 
x < 8' i1<)x , . v12 

or in other words, if x 2: C2 = 124 . 8!/(log 2)8. Therefore, 

O(x) - O(~) > (log2)x -7 
2 12 

o 

if x 2: max(co, C2), with Co as in Exercise 3.4.18. We set CI = 

max(co, C2) to deduce the stated inequality. D. 

3.4.21 Find an explicit constant C3 such that for x 2: C3, O(x) -
O(x/2) 2: 1. Deduce that for x 2: C3, there is always a prime between 
x/2 and x. 

By the previous exercise, we may set C3 = max(cl, 96/ log 2) to 
deduce that O(x) - O(x/2) 2: 1 for x 2: C3. 0 

3.4.22 Let 

F(x) = Lf(~) 
n::;;x 

be a function of bounded variation in every finite interval [1, x]. Sup­
pose that as x -+ 00, 

F (x) = x log x + Cx + 0 (xß) 
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with C, ß constant and 0 ::; ß < 1. Show that if M(x) := Ln<x J-l(n) = 
o(x) as x -700, then -

f(x) = x + o(x). 

By replacing f(x) by 

fo(x) = f(x) - x - (C -1'), 

we find that 

Fo(x) := L fo (;) 
n<x 

satisfies Fo(x) = O(xß). It suffices to show that fo(x) = o(x). By 
Möbius inversion, 

fo(x) = L J-l(n)Fo (;). 
n<x 

It is clear that Fo is also of bounded variation. We write 

fo(x) = L J-l(n)Fo (;) + L J-l(n)Fo (;) 
n~EX Ex<n~x 

We estimate LI trivially: 

which is O(E1- ßX). 
For L2' we may write Fo(x) = P(x) - Q(x) with P and Q positive 

monotonie inereasing functions, since Fo is of bounded variation. 
Thus 

L 2 L J-l(n)Fo (;) 
Ex<n<x 

L J-l(n)P(~) - L J-l(n)Q(~). 
Ex~n~x Ex~n~x 
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We estimateL:"x~n~x J1.( n)P (~) as follows. By partial summation, 
for x a positive integer, 

L {M(n) - M(n - I)} p(~) 
"x~n~x 

= M(x)P(I) + 

Thus, 

I L J1.(n)P(::) I ~ 2P(~) max IM(n)l, 
n E "x<n<x 

"x<n~x -

and a similar estimate holds for the Q-term. For any fixed E > 0, 

lim max IM(n)1 < lim max IM(n)1 = 0 
x--+oo "x~n~x X - x--+oo "x~n~x n ' 

so that for x sufficiently large, 

fo(x) = o{x) 

as required. o 
3.4.23 Assuming M{x) = o{x) as in the previous exercise, deduce 
that 

lim 'Ij;{x) = 1. 
x--+oo x 

We know that 

and 

T{x):= L10gn = xlogx - x + O{logx) 
n~x 

T{x) = L 'Ij;(~). 
n<x 

We may apply the previous exercise with c = -1 and any 0 < ß < 
1. We deduce that 'Ij;{x) = x + o{x), which is the prime number 
theorem. 0 



4 
The Method of Contour Integration 

4.1 Some Basic Integrals 

4.1.1 If x > 1, show that 

- -ds= 1 1 j X S 

21ri (c) s 

for any c > o. 
Consider the integral 

1 jC+iR X S 

- -ds 
21ri c-iR s ' 

with R > c, and the contour (R described by the line segment joining 
c - iR to c + iR and the semicircle SR of radius R centered at c and 
enclosing the origin. By Cauchy's theorem, 

Thus 
1 jC+iR X S 1 1 X S 

- -ds + - -ds = l. 
21ri c-iR s 21ri SR s 
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The seeond integral satisfies 

I~ r X
S dsl ~ ~ r37r

/
2 xRcos'Pdcp. 

2m J SR s 27fR J7r/2 

Putting t = - eos cp, the integral on the right hand side of the in­
equality is 

r1 dt {x- R 7f ( } 2 Jo x-Rt v'1-=t2 = 2 -2- + Jo (Rlogx)x-Rtaresintdt 

so that we get a final estimate of 

whieh goes to 0 as R -+ 00. 

4.1.2 110 < x < 1, show that 

1 r X S 

27fi J(c) -;ds = O. 

We proeeed as in Exercise 4.1.1 and consider 

1 /C+iR X S 

-. -ds. 
2m c-iR s 

o 

However, the eontour we choose will be 1)R described as the line 
segment joining c - iR to c + iR and the semicircle SR to the right 
of the line segment, of radius R, centered at c and not enclosing the 
origin. 

By Cauchy's theorem, 

Thus 
1 lc+iR X S 1 1 xSds -. -ds+-. --=0. 

2m c-iR s 2m SR s 

The second integral can be estimated as before by 

I 1 1 X S I XC 137r /2 -. -ds ~ -- xRcos 'P dcp. 
2m SR s 27fR 7r/2 
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The integral is easily estimated, and we get a final estimate of 

which goes to zero as R --t 00. 

4.1.3 Show that 

2R' 

1 ! ds 
21fi (c) s 

1 

2 

We have 

--\ l c+iR ds 
21f2 c-iR S 

1 jR idt 
- --
21fi -R c + it 

= ~ jR c - it dt 
21f _ R c2 + t2 . 

o 

The imaginary part of the integral vanishes, since the range of inte­
gration varies from - R to R. Thus, the integral is 

c rR dt 1 rR / C du 
-; Ja c2 + t2 = -; Ja 1 + u2 ' 

The latter integral tends to arctan 00 = 1f /2, so that the final result 
is 1/2. 0 

4.1.5 Let 

00 

f(s) = '"' an 6 n s 
n=l 

be a Dirichlet series absolutely convergent in Re( s) > c - E. Show 

that if x is not an integer, 

I! X
s L an = ~ f(s)-ds. 

n<x 1f2 (c) S 

(The integral is taken in the sense of Cauchy's principal value.) 

We can integrate term by term in the expression 

I! X S 1 ! 00 x s ds - f(8) -ds = - an - -
21fi (c) 8 21fi (c) ~ (n) s' 



282 4. The Method of Contour Integration 

since the function f(s) is uniformly convergent in this half-plane. By 
Theorem 4.1.4, we get, letting T --+ 00, 

o 
4.1.6 Prove that 

1 r s { ir(logx)k if x 2: 1, 

27ri J(c) s~+l ds = 0 if x::; 1, 

for every integer k 2: 1. 

When x 2: 1, we choose our contour (R as in Exercise 4.1.1. By 
Cauchy's theorem, 

Thus 

1 jC+iR XS 1 1 X S 1 k 
-2 . k+1 ds + -2· k+l ds = k J (log x) . 

7r2 c-iR S 7r2 SR S . 

The second integral is bounded by 

w hich goes to zero as R --+ 00. 

If x < 1, we choose our contour DR as in Exercise 4.1.2. By 
Cauchy's theorem, 

Thus 

1 l c+iR 
X

S 1 1 X S 
- --ds+- --ds=O. 
27ri c-iR sk+l 27ri SR sk+l 

The second integral is easily estimated by 
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which goes to zero as R -+ 00. 0 

4.1. 7 Let 
00 

f(s) = '"' an 
~ns 
n=l 

be a Dirichlet series absolutely convergent in Re( s) > C - E. For 
k ;:: 1, show that 

This is straightforward from the previous exercise. The proof is 
analogous to that of Exercise 4.1.5. 0 

4.1.8 1f k is any positive integer, c> 0, show that 

x ;:: 1, 

The method is identical to that of the previous exercises. If x ;:: 1, 
we choose our contour as in Exercise 4.1.1. We choose R > 2k such 
that by Cauchy's theorem, 

1 l c+iR xSds 1 1 xSds - +-
27ri c-iR s(s + 1) ... (s + k) 27ri SR s(s + 1) ... (s + k) 

k S 

= L Ress=-j s(s + 1)~ .. (s + k)· 
)=0 

The residues are easily calculated: 

XS 

Ress--j () - s(s+l)··· s+k 

which is 

(-j)( -j + 1) ... (-1)(1)(2) ... (k - j)' 

( -l)jx-j 

·'(k - .)" J. J . 

and the sum of these residues is 
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On SR we obtain 

Is + jl ? R - k ? ~, 
and hence 

which goes to zero as R -+ 00. In the case 0 :s; x :s; 1, we use the 
contour as in Exercise 4.1.2, and since the integrand is analytic inside 
this contour, Cauchy's theorem gives 

1 /C+iR xSds 1 r xSds 

21ri c-iR s(s + 1)··· (s + k) = - 21ri JSR s(s + 1)··· (s + k) 

with R > 2k, as before. The integral on the right is 

which tends to zero as R -+ 00. 

4.1.9 Let 
00 

f(s) = ~ an 
~ns 
n=l 

o 

be a Dirichlet series absolutely convergent in Re( s) > c - E. Show 
that 

1 k k! /C+ioo f(s)xSds 
- an(x -n) =-
xkL 21ri _" s(s+l)···(s+k) 

n~x C ~oo 

for any k ? 1. 

Substituting the Dirichlet series for f (s) in the expression 

1 r f(s)xSds 
21ri J(c) s(s + 1) ... (s + k) 

and integrating term by term using the previous exercises, we obtain 
the result. 0 
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4.2 The Prime Number Theorem 

4.2.1 Using the Euler - Maclaurin summation formula 
(Theorem 2.1.9), prove that for (J" = Re(8) > 0, 

n-1 1 -s l-s 100 [] 1 L n n x-x--
((8)= -+-+--8 2dx 

m S 2 8 - 1 x s+1 
m=l n 

where [x] denotes the greatest integer function. 

In Theorem 2.1.9, we take f(t) = 1/tS and k = 1 to get 

~ ~ = rB dt + ~ (~ + ~) _ 8 rB x - [x]- 1/2 dx. 
~ m S in t S 2 n S BS In xs+1 

m=n n n 

Let B -7 00. Then, 

00 1 1 n 1- s 100 1 dx ,,-=----8 (x-[x]--)-. 
~ m S 2ns 1 - 8 2 x s+1 
m=n n 

Thus, 

n-l 1 1 l-s 100 [] 1 n x-x--
((8)= ,,-+----8 2dx 

~ m S 2ns 1 - 8 x s+1 
m=l n 

as desired. 

4.2.2 Using the previous exercise, show that 

for 8 E RT· 

We have 

1 
((8) - 8 _ 1 = O(logT) 

o 

(8) __ 1_ = ~ ~ + _1 + n 1- s -1 _ 8 roo (x - [x]-1/2)dx, 
( 8 - 1 ~ m S 2ns 8 - 1 in x s+1 

m=l n 

and we observe that writing 8 = (J" + it, 

I 1 I n-1 1 1 jn (J 181100 dx ((8)---<"-+-+ x-dx+- -
8 - 1 - ~ m(J 2n(J 2 X(J+l' 

m=l 1 n 
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smce 
n l - s - 1 = _ (n dx 

s - 1 11 X S 

and Ix - [xl - ~I ~ ~. Also, by the integral test, 

n-l 1 /,n d 
'" - < 1 + -.!.., L....t m U XU 
m=l I 

which gives an estimate of 

/,
n dx Isl100 dx 2(nl - u - 1) Isln-u 

1+2 -+- -- <1+ +--
I X U 2 n x u+ I-I - (J 2(J 

2nl - u Isln-u 
<--+--. 
- 1 - (J 2(J 

We are free to choose n optimally to minimize this quantity. Let 
n = [Tl. In RT, Isl < 2 + T and for (J > 1/2, 

Isl 2+T 
-<--<2+T 2(J 2(J , 

which leads to a final estimate of 

Since 

Tl - u (_2_ + 2 + T) . 
1 - (J T 

1 
(J>(Jo=l---

- logT' 

we have 1 - (J ~ I/log T, from which we get from above 

1(( s) - _1_1 < 1 + 2 {T dt + 11 ((X) ~. 
s - 1 - 11 tU 2 lT t u+l 

By monotonicity, we get 

I((s) __ 1 I 
s - 1 

< /,
T dt 100 dt 1+2 - s --

I tuo + I I T tuo+! 

~ logT, 

for s E RT, as required. o 



4.2 The Prime Number Theorem 287 

4.2.3 Show that 
((8) = O(logT) 

for 8 on the boundary of Rr· 

Since 

1_1 I = I 1 I < min (_1 ~) 
8 - 1 (J - 1 + iT - (J - 1 ' T 

and (J 2: 1 - I/log T for 8 on the boundary of Rr, we get the desired 
~~. 0 

4.2.4 Show that for (J 2: 1/2, ((8) = O(T1j2), where T = I Im(8)1 ~ 
00. 

By Exercise 4.2.1, we get with n = [T], 

by an easy estimation of the quantities in that formula. 0 

4.2.5 For 8 E Rr, show that 

I 1 2 
( (8) + (8 _ 1)2 = O(log T). 

We use Exercise 4.2.1 again and differentiate the formula there 
with respect to 8. Thus 

('(8) + (8 ~ 1)2 

-100 x - [xl - 1/2 dx 
x s+1 

n 

100 x - [xl - 1/2 
+8 (logx)dx. 

x s+1 
n 

Estimating all of the terms on the right-hand side as in Exercise 
4.2.2, we get with n = [Tl the desired estimate. 0 

4.2.6 Show that 
('(8) = O(log2T), 
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where T = I Im(s)1 and s is on the boundary of RT. 

We proceed as before: 

1 
0">1---

- logT' 

which implies (1- 0")-2 ::; log2 T, and this gives us the stated result. 
o 
4.2.8 Let s = 0" + it, with 1 ::; Itl ::; T. There is a constant c > 0 
such that 

for 

('(s) = 0(log9T) 
((s) 

c 
1 - (logT)9 ::; 0" ::; 2. 

Combining Theorem 4.2.7 and Exercise 4.2.5 gives the result. 0 

4.3 Further Examples 

4.3.2 Suppose that for any E ::: 0, we have an = O(nE ). Prove that 
for any c > 1, and x not an integer, 

1 l C+iR f(s)x S (X C+E
) (xEIogx) Lan=-2· ds+O -R +0 R ' 

7fZ c-iR S 
n~x 

where 
00 

f(s) = "an. 
~ns 
n=l 

By Theorem 4.1.4, we have 

1 lC+iR f(s)x S 
( 00 (X)c. ( 1)) 

-2·. ds= Lan+O Llanl - mm 1, I ~I . 
7f't c-tR s < 1 n R log n x n= n 

- n,px 

The analysis of the error term is handled as in the proof of Theorem 
4.2.9. We split the sum into three parts: n < x/2, x/2 < n < 2x, 
and n > 2x. Far the first and last parts I log x/ni ~ log 2, so that 

L lanl(~r ~ X C+E
• 

n~x/2 



4.3 Further Examples 289 

Also, 

Finally, for the middle part (x/n) is bounded so that 

( 1) XE L /an / min 1, Rilo ~I ~ R logx. 
xI2~n~2x g n 

Putting all this together gives the desired result. o 
4.3.3 Assuming the Lindelöf hypothesis, prove that for any E > 0, 

L dk(n) = XPk-l(logx) + O(xl/2+E ), 

n<x 

where dk (n) denotes the number of ways of writing n as a product of 
k natural numbers. 

By Exercise 1.5.5, we know that 

By Exercise 1.3.2 and the fact that dk(n) ::; d(n)k, we see that 
dk(n) = O(nE ) for any E > o. Applying the previous exercise, we 
obtain 

for any c > 1. If C is the rectangular contour joining c - iR, c + iR, 
~ + iR, ~ - iR, we have by Cauchy's theorem 

for some polynomial Pk-l of degree k - 1. Also 

1 l c+iR r k ( ) SC) ) _. ., s x ds + o( l-~ + O(xl/2 RE 
2m c-iR s R log x 
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where the horizontal and vertical integrals in the contour have been 
estimated using (( s) = 0 (tE). Choosing R = x and c = 1 + 1/ log x 
gives the desired result. 0 

4.3.4 Show that 

M(x):= LJL(n) = O(xexp(-c(logx)ljlO)) 
n<x 

for some positive constant c. 

By Exercise 4.3.2 with E = 0, 

By Theorem 4.2.7, 11/((s)1 = O(log7 R) for 1 :s 1 Im(s)1 :s Rand 

CI 
<5 = 1 - -- < a < 2. 

log9 R - -

We choose C to be the rectangular contour joining c - iR, c + iR, 
<5 + iR and <5 - iR. Then, by Cauchy's theorem, 

Therefore, 

1 jC+iR XS ds 1 (!HiR ra-iR re-iR) (X S ds ) 
21fi c-iR s((s) = - 21fi c+iR + JHiR + Ja-iR s((s)' 

We use the estimate provided by Theorem 4.2.7 to estimate these 
integrals: 

1 (!HiR re-iR) (X S ds ) XC log 7 R 
21fi c+iR + Ja-iR s((s)« Rlogx ' 

if R ~ 1. For the vertical integral, we can use the same technique to 
bound the integrand, observing that 1/((s) is regular at s = 1 and 
thus is bounded in 0 :s IIm(s)1 :s 1, <5 :s Re(s) :s 2. Therefore, the 
vertical integral is 
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Putting this all together gives 

Put c = 1 + 1/ log x. The optimal choice of R is obtained hyequat­
ing error terms. We choose R = exp(cl(logx)l/lO) to get for some 
constant C> 0, 

M(x) « xexp ( -c(log x)l/lO) 

as required. o 
4.3.5 Let E(x) be the number of square-free n :::; x with an even 
number of prime factors. Prove that 

E(x) = :2X + 0 (xexp ( -c(log x)l/lO)) 

for some constant c > o. 
The function an = f.L 2 (n )( 1 + f.L (n) ) /2 is 1 if n is squarefree and 

has an even number of prime factors, and 0 otherwise. Thus, 

E(x) = L an = Q(x)/2 + O(M(x)), 
n<x 

where Q(x) is the number of square-free numbers less than or equal 
to x. Now apply Exercise 1.4.4 to deduce the behavior of the main 
term. By the previous exercise, M (x) = 0 (x exp ( -c(log x) 1/10) ) , 
so that the result is now immediate. 0 

4.4 Supplementary Problems 

4.4.1 Let >.(n) be the Liouville function defined by >.(n) = (_l)fl(n), 
where n( n) is the total number of prime factors of n, counted with 

multiplicity. Show that 

L >.(n) = 0 (xexp (-c(logx)l/lO)) 
n:S,x 

for some constant c > o. 
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Recall that (see Exercise 1.2.5) 

f A(n) _ ((28) 
n=l -;:s - ((8) . 

One can apply the method of contour integration as in Exercise 4.3.4 
and derive the result. An alternative approach is to make use of 
Exercise 4.3.4 in the following way. We have from the above Dirichlet 
senes 

A(n) = L J.L(e) , 
d2 e=n 

so that 

in the notation of Exercise 4.3.4. By that exercise, we have 

M(x) = 0 (xexp (-c(logX)I/IO)) 

for some constant c > o. Inserting this estimate above gives 

LA(n) 
n<x 

L 0 (; exp ( -c (log ;r/IO)) 
d"'5:v'x 

L + L (say). 
d<x 1/ 4 x 1/ 4 <d"'5:x1/ 2 

The first sum is easily seen to be 

for some constant Cl > O. The second sum is bounded by 

""' ~ ~ x 3/ 4 
~ d2 ' 

d>x 1/ 4 

and this completes the proof. 

4.4.2 Show that 

converge8 for every 8 with Re( 8) = 1. 

o 



4.4 Supplementary Problems 293 

Let s = 1 + it. By partial summation 

L p,(n)n-1-it = ~~~: + (1 + it) /,N M(w)w-2-itdw. 
n5:N 1 

The first term on the right-hand side is, by Exercise 4.3.4, 

o (exp ( -c(log N)l/lO) ) . 

The second term can be written as 

(1 + it) i oo 
M(w)w- 2- itdw - (1 + it) Loo M(w)w- 2- itdw. 

Since M ( w) = 0 ( w j log2 w), the first integral above converges to a 
limit L (say). The second integral is bounded by 

« J: exp(-c(logw)l/lO)dwjw 

« exp(-~(logN)l/lO) {OO exp (-~(logw)l/lO) dW, 
2 iN 2 w 

which is 
o (exp ( -~(log N)l/lO)) , 

since the integral converges. Letting N -+ 00 shows that the series 
converges to L. 0 

4.4.3 Show that 

L A~n) = log x + B + 0 (exp ( _c(logx)l/lO)) 
n<x 

for some constants Band c, with c > O. The summation is over 
prime numbers. (This improves upon Exercise 3.1.7.) 

We have 

LA(n) 
n 

n<x 

1jJ(x) + /,X 1jJ(t)dt 
x 1 t2 

1 + O(exp( -c(log X)l/lO)) + log x 



294 4. The Method of Contour Integration 

The integral is easily seen to converge. Accordingly, we split the 
integral into two parts as 

and estimate the second integral as in the previous exercise. This 
shows that 

L A~n) = log x + BI + 0 (exp (-cI(logx)l/lO)) 
n<x 

for some constants BI, Cl with Cl > 0, as desired. o 
4.4.4 Let f(s) = L~=l An/ns be a Dirichlet series absolutely con­
vergent for Re( s) > 1. Show that for any C > 1, 

We have 

I LAnl :; L IAnl :; L IAnl(~r ~ xc, 
n~x n~x n~x 

as required. o 
4.4.5 Define an for n 2:: 1 by 

00 

""' an 1 
~ n S = (2(s)· 
n=1 

Prove that 
Lan = 0 (xexp (-c(logx)l/lO)) 
n<x 

for some positive constant c. 

We have 

an = L f-l(d)f-l(e). 
de=n 

Applying Dirichlet's hyperbola method (Theorem 2.4.1), we have 
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We choose y = Vx and apply Exercise 4.3.4 to get 

n<x 

for some positive constant Cl as required. 

4.4.6 Prove that 

LJ-L(n)d(n) = 0 (xexp (-c(logx)l/lO)) 
n<x 

fOT same constant c > o. 

We have 

f(s) := f J-L(n~~(n) = II (1- 2s ). 

n=l p p 

We may write 

(1-!) = (1- ~)2(1_ ~(1- ~)-2), 
pS pS p2s pS 

so that 
g(s) 

f (s) = (2 (s) , 

o 

where g(s) is a Dirichlet series absolutely convergent for Re(s) > 1/2. 
Writing 

00 b 
g(s) = L n~' 

n=l 

let us note that 

J-L(n)d(n) = Ladbe, 
de=n 

where an is as in the previous exercise. Applying Dirichlet's hyper­
bola method with 

A(x):= L:an , 

n<x 
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B(x):= Lbn, 
n<x 

we get 

We choose y = ..;x and note that for some positive constants c, 

A(x) = 0 (xexp (_c(logx)I/IO)) 

(by Exercise 4.4.5). Also, by Exercise 4.4.4, B(x) = 0 (X I/2+E) . Thus 

L J.l(n)d(n) 
n<x 

The series 

LI~I 
d 

is finite, and an = O(nE ), and the second sum is 

The final contribution is 

o (x exp ( -c(log x)I/IO)) 

as required. o 
4.4.7 1f f(8) = 2:~=1 an/nS is a Dirichlet series converging abso­
lutely for (7 = Re( 8) = (7 a, show that 

1 jT _ 
lim - f((7 + it)mCf+ztdt = am · 

T-+oo 2T -T 

We have 

~ jT (~ ~)mCf+itdt = m Cf ~ an jT (m)it dt . 
2T T ~ nCf+zt 2T ~ n Cf T n 

- n=l n=l -
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Now, 

{ 
2T 

T m it 
- dt= 

IT ( n ) 2sin(Tlogmjn) 
logmjn 

if m = n, 

otherwise. 

The surn 
L lanl 
n=l nlTllogm/nl 
n#rn 

converges. Indeed, if n < m/2 or n > 2m, this is clear, since I log m/nl 
is then bounded. If m/2 < n < 2m, then the finite sum is clearly 
bounded. The result is now immediate. 0 

4.4.8 Suppose 
00 

f(s) := L an/ns, 
n=l 

00 

g(s) := L bn/ns, 
n=l 

and f(s) = g(s) in a half-plane of absolute convergence. Then am = 

bm for alt m. 

We apply the previous exercise: 

4.4.91f 

1 l T . lim - j(cr + it)mo+ztdt 
T--+oo 2T -T 7' 
lim ~ 1 g(cr + it)mlT+itdt = bm · 

T--+oo 2T -T 

00 

f(s) = L an/nS 

n=l 

converges absolutely for cr = Re(s) > cra , show that 

1 17' 00 la 1
2 

lim - If(cr + it)1 2dt = L +. 
1'--+00 2T -7' n=l n lT 

o 
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We have 

If(O" + it)1 2 

so that 

~lT If(O"+itWdt= ~ lan l2 +" aman 2sin(Tlogn/m). 
2T -T ~l n20" ~ mO"nO" 2T(10gn/m) 

n= mopn 

The double series is analyzed as before. For fixed m, the ranges 
n < m/2 and n > 2m are easily handled, and the remaining range 
is finite. Thus, for fixed m, the summation over n is bounded. The 
summation over m is also bounded, since 0" > O"a. Thus the double 
sum is O(l/T) and the result follows. 0 

4.4.10 Let Q(x) be the number of squarefree numbers less than or 
equal to x. Show that 

Q(x) = (~) + 0 (x1/2 exp ( -c(log x)l/lO) ) 

for some positive constant c. 

We have 
Q(x) = L jk(d) = L jk(d) [;] 

d2e~x d2~x 

as in Exercise 1.1.9. Writing [x/d2] = x/d2 + E(x, d), we observe that 
IE(x, d)1 ~ 1. Now, 

Q(x) = L jk(d); + L jk(d)E(x, d). 
d~..Ji d~..Ji 

Let us analyze the first term. We have 

1 (/00 M(t) ) 
((2) + 0 ..Ji i3dt . 
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By Exercise 4.3.4, 

M(x) = 0 (xexp (-c(lOgx)l/lO)), 

so that f; M~!)dt «x-1/ 2 exp ( -c(log x)l/lO) . 

For the second term, we write 

L p,(d)E(x, d) = L (M(d) - M(d - l))E(x, d) 

= M([v'x))E(x, [v'x)) + L M(d){ E(x, d) - E(x, d + I)}. 
d~Vx-1 

Using the estimate for M(x) and the fact IE(x, d)1 ~ 1 gives the 
result. 0 

4.4.11 Let i(n) = TIpinP. Show that 

1 L n (n) < 00. 
n<x i 

Clearly, i( n) is multiplicative. Also, 

1 (1 1 ) "'--«II 1+-+-+··· ~ ni(n) p2 p3 ' 
n~x p~x 

from which the result folIows. 

4.4.12 Show that 

L q;~n) «x. 
n<x 

We have 

L~ 
n<x q;(n) 

( 1)-1 1 LfI 1 -z; =LLd 
n~x pln n~x -y(d) In 

'" 1 x '" x ~ d· (d) ~ ~ d (d) «x, 
-y(d)~x i d i 

< 

o 
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by the previous exercise. o 
4.4.13 Deduce by partial summation from the previous exercise that 

1 L </>(n) «logx. 
n::;x 

By partial summation, 

n 1 jX dt L -- . - « - « log x 
</>(n) n 1 t 

n::;x 

as desired. o 
4.4.14 Prove that 

1 L </>(n) '" clog X 
n<x 

for some positive constant c. 

We consider the Dirichlet series 

1 1 
f(s) = L </>(n) . nS 

n::;x 
( 1 1 ) 1+ + + ... II pS(p _ 1) p2s+l(p - 1) 

p 

II (1 + (p _l)~S+l -1)) . 
p 

The quotient f (s ) / (( s + 1) is easily seen to be regular for Re s > -1, 
simply by long division of the Euler factors. We may write 

f(s) = ((s + l)h(s), 

so that 
00 n 1 

f(s - 1) = ,,- . -
~ </>(n) nS 
n=l 

is ((s)h(s -1), with h(s -1) regular for Res> O. We therefore have 
by contour integration (or by an application of a Tauberian theorem) 
that 

By partial summaton, we can deduce the desired result. 0 
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4.4.15 (Perron's formula) Let f(s) = E~=l ~~ be a Dirichlet series 
absolutely convergent for Re(s) > 1. Show that for x not an integer 
and (J" > 1, 

1 l lJ+ iT X S 
( 00 (X)lJ ( 1 Lan = -2 . f(s)-ds+O L - lanlmin 1, I XI))· 

71:Z a-iT S 1 n T log-n<x n= n 

This is just a straightforward application of Theorem 4.1.4. 0 

4.4.16 Suppose an = O(nE ) for any E > 0 in the previous exercise. 
Show that for x not an integer, 

We estimate the error term in the previous exercise as in Theorem 
4.2.9 for n < x/2 or n > 3x/2. In these cases, the log term is bounded 
absolutely from below. The series 

converges. For x/2 < n < 3x/2, we have lanl = O(xE), and we use 
this in the estimate. The log term for this range of n is handled as 
in the proof of Theorem 4.2.9. 0 

4.4.17 Let f(s) = E~=l an/nS, with an = O(nE). Suppose that 

f(s) = ((s)kg(s), 

where k is a natural number and 9 (s) is a Dirichlet series absolutely 

convergent in Re(s) > 1 - {) for some 0 < {) < 1. 
Show that 

L an rv g(l)x(log x)k-l /(k - I)! 
n-::;x 

as x --+ 00. 

By the previous exercise, 

1 l a+iT X S xa+E L an = 2" . (k(s)g(s)-ds + O( T)· 
n<x 71:2 a-zT S 
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We move the line of integration to Re( s) = a > 1 - 8. The pole at 
8 = 1 of (( 8) contributes 

xg(1)(log x)k-l 

(k - 1)! 

By Exercise 4.2.4, ((8) = O(T1/ 2 ) for T -+ 00. Thus, the horizontal 
integral contributes 

o (X"T~-l) , 
log x 

and the vertical integral contributes 

on the line Re(8) = a. We choose T = x2a/ k , and this gives an error 
term of O( x a+a + xa(l-i)+E). 

We can choose er such that a + er < 1 and er(1 - 2jk) + E < 1. This 
completes the proof. 0 

4.4.18 Let v(n) denote the number of distinct prime factors of n. 
Show that 

as x -+ 00. 

We have 

by Exercise 1.2.6. Also, f(8) satisfies the hypotheses ofthe previous 
exercise. Hence L 2v(n) '"'"' X log x 

n<x ((2) 

as x -+ 00. o 



5 
Functional Equations 

5.1 Poisson's Summation Formula 

5.1.1 For Re{c) > 0, let F(x) = e-c1xl . Show that 

A 2c 
F(u) = 2 2 2· 

C + 47r U 

We have 

Since 100 1 
e-vxdx = -

o v 

für Re(v) > 0, we get 

All 2c 
F{u) = + = . 

c + 27riu c - 27riu c2 + 47r2U2 
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o 
2 A 2 

5.1.2 For F(x) = e-7rX , show that F(u) = e-1rU . 

We must show that 

which is the same as 

But this is essentially the famous probability integral 

100 2 

[ = e -1rX dx = 1. 
-00 

To see this, observe that for u = 0, we have 

where we have made the polar substitution x = rcosB, y = rsinB. 
Thus 

{OO 2 
[2 = Jo e-1rr (21fr)dr = 1. 
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Since I > 0, we conclude that I = 1. For the general case, notice 
that 

27fi i: (x + iu)e-7r (x+i1.l.)2 dx 

[ ] 
x=+oo 

ie-7r(x+iu)2 x=-oo = 0. 

Thus, the value of the integral is independent of u. But for u = 0, 
the value is 1. Hence 

o 
5.1.5 With F as in Theorem 5.1.3, show that 

L F(v: n) = L ItIF(nt)e27rintv. 
nEZ nEZ 

Observe that the Fourier transform of F(xjt) is ItIF(tu), so that 
the result is now immediate from Theorem 5.1.3. 0 

5.1.6 Show that 

By Exercise 5.1.1 and Corollary 5.1.4, this result is immediate. 0 

5.1. 7 Show that 

L e-(n+a)27r/x = x1/ 2 L e-n27rx+27rina 

nEZ nEZ 

for any a E R, and x > o. 
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We have the pair of Fourier transforms 

Thus, the function e-1T(Ha)2 has transform e21Tiate-1Tt2 Also, 
e-1T (a+t/.,fX)2 has transform 

Applying the Poisson summation formula gives 

2:: e-1T(a+n/v'x)2 = x1/ 2 2:: e-1Tn2x+21Tianv'x. 

nEZ nEZ 

Setting a = aJX gives 

2:: e-1T(n+a)2/x = x 1/ 2 2:: e-1Tn2x+21Tina 

nEZ nEZ 

as desired. D 

5.2 The Riemann Zeta Function 

5.2.2 Show that 
f(s + 1) = sf(s) 

for Re( s) > 0 and that this functional equation can be used to extend 
f(s) as a meromorphic function for all s E ce with only simple poles 
ats=O,-1,-2, .... 

The equation 
f(s + 1) = sf(s) 

is easily deduced by an integration by parts. Thus, for Re( s) > -1, 
we can define 

r(s) = f(s + 1) 
s 

from which we see that f(s) has a simple pole at s = O. Continuing 
in this way, we see that 

f(s) = f(s + 2) 
s(s+l)' 
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which gives a meromorphic continuation to Re( s) > -2 with again 
a simple pole at s = -1. The result is now clear. 0 

5.2.3 Show that ((s) has simple zeros at s = -2n, for n a positive 
integer. 

The integral on the right-hand side in Theorem 5.2.1 converges for 
all sEC. Thus 1T- s / 2 f(s/2)((s) is analytic for any s = -2n, with n 
a positive integer. Note that 

1 + 2n(2n + 1) /00 W(x) (x-n + xn+l/2) d: > o. 

Since the f -function has a simple pole there, (( s) must have a simple 
zero at that point. 0 

5.2.4 Prove that ((0) = -1/2. 

Since f(s/2) '" (s/2)-1 as s -7 0, multiplying the equation in 
Theorem 5.2.1 by s/2 and taking limits as s -70 gives the result. 0 

5.2.5 Show that ((s) i- 0 for any real s satisfying 0 < s < 1. 

Since 
s /00 {x} ((s)=--s -dx, 

s - 1 1 x s+1 

we see that 

((s) - - < s - = 1. I s I /,00 dx 
s - 1 1 x s+1 

Hence 

1 s s 2s - 1 -- = -1 + -- < ((s) < 1 + -- = --. 
s-l s-l s-l s-l 

Thus, for 1/2 < s < 1, we have (2s - l)/(s - 1) < 0, which shows 
that ((s) i- 0 for 1/2 < s < 1. By the functional equation, we have 
it for the whole range 0 < s < 1. 

5.3 Gauss Sums 

5.3.2 1f X is a primitive nonprincipal character (mod q), show that 
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if (n,q) > 1. 
Let us put 

= 
q ql 

where (nI, ql) = 1 and qllq, ql < q. If n is a multiple of q, the 
left-hand side is zero, and so is the right-hand side, since 

q 

L x(m) = o. 
m=l 

So, we may suppose 1 < ql < q. We have to prove that 
q 

L x(m)e(m~l) = O. 
m=l q 

Write q = qlq2 and put m = aql + b, where 0 ~ a < q2, 1 ~ b ~ ql. 
Then, the above sum can be rewritten 

L e (b~l) L x(aql + b), 
I :Sb:Sql 0:Sa<q2 

and it suffices to prove that the inner sum is zero. Let us write 

S(b) = L x(aql + b). 
0:Sa<Q2 

Observe that S(b + ql) = S(b). If cis any integer satisfying 

(c, q) = 1, c == 1 (mod ql), 

then 

X(c)S(b) L x(caql + cb) 
0:Sa<Q2 

L x(aql + b) = S(b), 
0:Sa<Q2 

since S(b + qd = S(b). Since X is a primitive character (mod q), it 
is not periodic to any modulus ql that is a proper factor of q. Thus, 
there are integers Cl, c2 such that 

(Cl, q) = (C2, q) = 1, CI == C2 (mod ql), 

and X(Cl) i=- X(C2). Hence, there exists C == CIC2"l (modql), (c, q) = 1, 
such that X(c) i=- 1. Thus S(b) = 0, as desired. 0 
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5.4 Dirichlet L-functions 

5.4.2 Suppose x(-1) = 1. Show that L(s,x) has simple zeros at 
s = -2, -4, -6, .... 

Since L(1- s,X) has no zeros far Re(1- s) > 1 and r((1- s)/2) 
has no zeros at all , the only zeros of L(s, X) for Re(s) < 0 are at 
s = -2, -4, -6, ... corresponding to the poles of r(s/2). This is so 
because by the ab ove , their product is entire. 0 

5.4.3 Prove that 

-(s+1)/2 (s+1)/2r (s + 1) -s -100 -7rn2x/q 5+1 dx 7f q -- n - ne x 2 -

2 0 x ' 

and hence deduce that 

( 5+1) (s+l) (S + 1) 1 (OO s+l dx 
7f- -2 q -2 r -2- L(s, X) = "21

0 
81(x, X)X-2 -;-

where 
00 

81(x,x) = L nx(n)e-n27rx/q. 
n=-oo 

Changing s to s + 1 in the formula 

gives the first result. Then summing over n gives the second equation 
upon noting that since X( -1) = -1, 

00 00 

81(x, X) = L nx(n)e-n27rX/q = 2 L nx(n)e-n27rx/q. 
n=-oo n=l 

o 
5.4.4 Prove that 

00 00 L ne-n27rX/q+27rimn/q = i(q/x)3/2 L (n + m)e-7r (n+m/q)2 q/x. 
n=-oo n=-oo q 
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This is immediate from Poisson's summation formula. Indeed, by 
Exercise 5.1. 7, we have 

00 00 

L e -n27ry+27rinn =y -1/2 L e-7r (n+n)2/ y . 

n=-oo n=-oo 

Differentiating with respect to a gives 

00 00 

21ri L 2 2· 3 ne -n 7rY+ 7rmn = - 21rY -"2 L (n + a)e-(n+n)2 n jy, 

n=-oo n=-oo 

and substituting x/q for y and m/q for a gives the stated equation. 
o 
5.4.5 Prove that for X( -1) = -1, if 

~(8, X) = 1r-s/2qs/2r((8 + 1)/2)L(8, X), 

then ~(8, X) is entire and 

~(8, X) = wx~(1- 8, X), 

where Wx = T(X)j(iql/2). 

By Exercises 5.4.3 and 5.4.4, we obtain 

_(s+l) s+l (8+1) ( ) 1r 2 q 2 r -2- L 8, X 

1/00 s+l dx 1/00 -1 _s+l dx = - (h(x,x)x 2 - + - 01(X ,x)x 2-
2 1 X 2 1 X 

This gives the analytic continuation for L(8, X) and establishes the 
functional equation, since the change of the right-hand side when 8 

is replaced by 1 - 8 is as stated. 0 

5.5.1 Let 
00 

f(y) = L ane-27rny 

n=l 
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converge for y > O. Suppose that for some w E Z, 

and that an = O(nC ) for some constant c> O. Let 

00 

Lf(s) = Lann-s. 
n=l 

Show that (21f)-sr(s)Lf(s) extends to an entire function and satis­
fies the functional equation 

We have 

the interchange being justified by the estimate an = O(nC ) which 
implies the absolute convergence of the integral. Changing variables 
in the integral gives 

which converges absolutely for Re(s) > O. Now write the integral as 

We make a change of variable y = 1/i in the first integral: 
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Using the fact that f(l/t) = (-l)Wt r f(t), we obtain 

Hence 

which establishes the functional equation. Note that the integral con­
verges for all sEC. This gives the result. 0 

5.5 Supplementary Problems 

5.5.2 Let 
00 

g(y) = L ane-27rny 

n=O 

converge for y > o. Suppose that for some w E Z, 

and that an = O(nC ) jor some constant c > O. Let 

00 

Lf(s) = L ann-s . 

n=l 

Show that (271")-Sf(s)Lf(s) extends to a meromorphic junction with 
at most simple poles at s = 0 and s = rand satisfies the functional 
equation 

Set 
00 

h(y) = L ane-27rny = g(y) - ao· 
n=l 
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Note that the Dirichlet series 2.:~=1 ann-s converges absolutely for 
Re( s) > 1 + c. Thus, in this half-plane, 

which converges for Re(s) > o. Now, 

h(1/y) = g(1/y) - ao 

We write the integral 

and change variables in the first integral by setting y = 1/t to obtain 

by the functional equation for h. Thus 
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and the two integrals are easily evaluated: 

so that 

[ _ yr-s] 00 __ 1 

r-s 1 r-s 

-aO ((-1)W +~) 
r - s s 

+ 100 h(y)(yS-l + (_1)w yr-s-l)dy, 

and the right-hand side gives the meromorphic continuation with 
only simple poles at s = 0, r. Also, the functional equation is imme­
diate, since 

as required. 

5.5.3 Let 

Show that 

-aO ((_1)W + _1_) 
s r - s 

{

X - [x]- ~ 
'lI(x) = 

° 

if x rf. Z 

if xE Z 

W(x) + L e(mx) < 1 
O<lmISM 27rim - 27rMllxll 

o 

where e(t) = e27rit and Ilxll denotes the distance fram x to the nearest 
integer. 
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The function 'lr (x) is periodie with period 1. If x E Z, the result 
is clear, sinee in the sum we ean pair m and -m to get O. Suppose 
first 0 < x :s; 1/2. Then 

e mt t = -- - -'----'--;:
x ( )d e(mx) (_1)m 

1/2 27fim 27fim ' 

so that summing both sides of this equation for 0 < Iml :s; M gives 

rx ( L e(mt))dt = L e(mx) 
11/2 O<lml::;M O<lml::;M 27fim' 

smee 

Thus 

;:X ( L e(mt))dt = L ~~~ + (x -~). 
1/2 O::;lml::;M O<lml::;M 

The integrand is a geometrie progression, whieh is easily summed to 

e( -Mt) (e((2M + l)t) - 1) 
e(t) - 1 

e((M + ~)t) - e( -(M + ~)t) 
e(t/2) - e( -t/2) 

sin( (2M + 1 )7ft) 
sin 7ft 

Reeall the following mean value theorem for integrals: Let f(x) be 
bounded, monotonie deereasing, nonnegative, and differentiable in 
[a, b] and let g(x) be a bounded integrable function. Then 

lb f(x)g(x)dx = f(a) l~ g(x)dx 

for some a :s; ~ :s; b. Indeed, letting 

G(t) = lX g(x)dx 

we have by integration by parts, 

.lb f(x)g(x)dx = G(b)f(b) -lb j'(x)G(x)dx, 
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and the last integral is, by the familiar mean value theorem for in­
tegrals, 

= G(17) 1b f'(x)dx = G(17)(f(b) - f(a)), 

for some a ~ 17 ~ b. Suppose now, without loss of generality, that 
G(17) ~ G(b). Then, since f(a) :2: f(b), we deduce that 

G(17)f(a) ~ G(b)f(b) + G(17)(f(a) - f(b)) ~ G(b)f(a). 

Since G is continuous, we must have 

G(b)f(b) + G(17)(f(a) - f(b)) = G(~)f(a) 

for some ~ satisfying a ~ ~ ~ b. Note that we apply this with f(x) = 
1/ sin 7fX, g(x) = sin(2m + l)7fx, and [a, b] = [x,1/2J. Then f(x) is 
monotone decreasing, and we have 

11/2 sin(2m + l)7ft dt = _._1_ {~sin(2m + l)7ftdt 
x sin 7ft sm 7fX 1x 

= _1_ [_ cos(2m + l)7ft]~ 
sin7fx (2m + 1)7f x· 

Thus, 

{X sin(2~ + l)7ft dt < 1 
11/2 sm 7ft - (2m + l)7fx 

by the elementary inequality sin 7fX :2: 2x, valid for 0 ~ x ~ 1/2. The 
result is proved for 0 < x ~ 1/2. We still need to treat the range 
1/2 < x < 1. Observe that W(l- x) = w( -x) (because W has period 
1) and W( -x) = -W(x) because for x > 0, [-xJ = -[xJ -1. Thus by 
the ab ove , 

W(l- x) + L e(m(l - x)) 1 
< . 
- (2M + 1)7f(1 - x) 

O<lml:::;M 

Now, 1 - x = Ilxll for 1/2 < x < 1. Hence 

-W(x) + L 
O<lml:::;M 

e( -mx) 1 
< . 

27fim - (2M + l)7fllxll 
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which gives 

'T'( ) + L e(mx) < 1 'I' x 
27rim - (2M + l)7rllxll 

O<lml:SM 

for ~ ~ x < 1. This completes the proof. D. 

5.5.4 Let f(x) be a differentiable junction on [0,1] satisjying 1f'(x)1 ~ 
K. Show that 

L 11 f(x)e(mx)dx - f(O); f(l) «Kl;;M 
Iml:SM 0 

Deduce that 

f t f(x)e(mx)dx = f(O) + f(l). 
Jo 2 

-00 

By integrating by parts, we have for m =1= 0, 

t f(x)e(mx)dx = [f(x)e.(mx)] 1 _ t f'(x)e(~x)dx. 
Jo 2mm 0 Jo 27rzm 

Summing both sides over ° < Iml ~ M gives 

11 11 e(mx) L f(x)e(mx)dx = - f'(x) L -.-dx, 
o 0 2mm 

O<lml:SM O<lml:SM 

smce 

[f(X) L e2\:~ r = 0, 
O<lml:SM 0 

as is easily seen by pairing m and -m in the summation. 
By the previous exercise, 

"'"' e(mx) ( 1 ) 
L 27rim = 'lF(x) + 0 Mllxll . 

O<lml:SM 

Before inserting this fact into the integral, let us note that 

tiM f'(x) "'"' e(~x) dx KlogM 
Jo L 2mm ~ M . 

O<lml:SM 
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Similarly, 

(I j'(X) " e(~x) dx < K log M. 
11 1 ~ 2mm - M 

-M O<lml::;M 

Thus, 

/
1-1/ M ( ) 

- f' (X) L e ~X dx 
11M 2mm O<lml::;M 

{I-11M , ( t- l/M f'(X)dX) 
= 111M f (x)w(x)dx + 0 111M Mllxll . 

The error term is easily estimated by breaking the interval into two 
parts: [1/M, 1/2] and [1/2,1 - 1/M]. The error is O(Klog M/M). 

Therefore, 

L 11 f(x)e(mx)dx = 11 j'(x)w(x)dx + 0 (KI~M) . 
O<lml::;M 0 0 

The integral on the right-hand side is 

101 
f'(x) (X -~) dx = [f(X) (X -~) J: -101 

f(x)dx 

= f(1); f(O) -11 f(x)dx, 

which completes the proof. o 
5.5.5 By using the previous exercise with f(x) = x 2 , deduce that 

00 1 1f2 

L m 2 =6· 
m==1 

We have for m =1= 0, 

101 f(x)e(mx)dx 
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by an easy integration by parts. 
For m = 0, 

r1 1 
Jo f(x)dx = 3· 

By Exercise 5.5.4, 

1 ~ (1 1) 1 (lOg M) 
3 + ~ 27rim + 27r2m 2 ="2 + 0 U- . 

O<lml:SM 

Since 
1 L 27rim = 0, 

O<lml:SM 

the result is now immediate upon letting M -+ 00. D 

5.5.6 (P61ya - Vinogradov inequality) Let X be a primitive character 
(mod q). Show that for q > 1, 

I L x(n) I <t: ql/21og q. 
n:Sx 

We use Gauss sums. By Example 5.3.1 and Exercise 5.3.2, we can 
write 

q 

7(x)x(n) = L x(m)e(mn). 
m=l q 

Since the summation is over any complete set of residues (mod q), 
we can replace the range of summation by -q/2 < m < q/2. Thus, 

The inner sum is bounded by 2/le(m/q) -11. Writing e(m/q) -1 = 
e(m/2q)(e(m/2q) - e( -m/2q)) we obtain 

1 
17(x)1 ~ x(n)::; L I· / I· ~ SIn7rm q 

n:Sx O<lml<qj2 

Using the inequality 1 sin 7rxl ;::: 2x for ° ::; x ::; 1/2, we get 

!7(X)! L x(n)! <t: qlogq. 
n:Sx 
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Finally, by Theorem 5.3.3, IT(X) I = ql/2, so that the result is now 
immediate. D 

5.5.7 Show that if X is a primitive character (mod q), then 

L(l,X) = L x~n) +0 (ql/2~Ogq) 
n<x 

for any x 2: 1 and q > l. 

We have 

L(l,X) = f x(n) = L x(n) + L x(n). 
n n n 

n=l n<x n>x 

By partial summation and the P61ya - Vinogradov inequality 
(Exercise 5.5.6), the second sum is 

as required. 

5.5.8 Prove that 

ql/2logq 
~--~ 

x 

L L(l, X) = ip(q) + 0(ql/2log q), 
x#xo 

where the summation is over alt nontrivial characters (mod q). 

By Exercise 5.5.7, 

L(l,X) = L x~n) + 0(ql/2~Ogq) 
n<x 

D 

for any nontrivial character X because the conductor of Xis bounded 
by q. Summing this over X =1= Xo (mod q), we get 

L L(l,X) = L ~( L x(n)) + 0 (q3/2~Ogq) . 
x#xo n:::;x x#xo 

We choose x = q. Also, 
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Thus, 

as desired. 

{ 
'fJ (q) - 1 if n == 1 (mod q), 

L x(n) = 
x#xo -1 otherwise. 

L L(l,X) = 'fJ(q) + 0 (q1/2logq), 
x#xo 

5.5.9 For any sEC with Re(s) > 0, show that for any x ~ 1, 

L(s,X) = ~ x(n) +0 (ISlq1/2l0gq), 
D n S (}Xa 
n<x 

where X is a nontrivial character (mod q) and () = Re(s). 

o 

By partial summation and the Polya - Vinogradov inequality, we 
have 

L x(n) 1 1100 0(q1/2 logq)d « s +1 t, n S t a 
n>x x 

from which the result is now immediate. o 
5.5.10 Prove that for any () > 1/2, 

L L((}, X) = 'fJ(q) + 0 (q3/2-a) 
x#xo 

where the sum is over all nontrivial characters (mod q). 

By the previous exercise, 

Summing both sides over X =F Xo, we get 
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We treat the inner surn as in Exercise 5.5.8 and choose x = q, to 
obtain 

as required. 

L L(o-, X) = cp(q) + 0 (ql-U + q3/2-U) 
x;txo 

= cp(q) + 0 (q3/2-U) , 

o 
5.5.11 Let Bn(x) denote the nth Bernoulli polynomial introduced in 
Chapter 2. For n :2: 2, show that 

Bn(x) = ""' e(mx) 
n! L..J (27rim)n· 

m;to 

For n :2: 2, the function defined by the series is uniforrnly continu­
ous. Let us denote it by Bn(x)/nL Then B~/n! = Bn- 1(x)/(n -I)!, 
so that B~(x) = nBn- 1(x). Also, 

101 Bn(x)dx = 0 für n 2:: 2. 

Exercise 5.5.3 shows that the forrnula stated in the exercise hülds für 
Ti = 1. These rnust therefore coincide with the Bernoulli polynornials. 
This cornpletes the proof. 0 

5.5.12 Let f(x) be diJJerentiable on [A,B] satisfying If'(x)1 :S K for 
all xE [A, B]. Show that 

B 00 B 

L ' f(n) = L 1 f(x)e(mx)dx, 
n=A m=-oo A 

where the dash on the summation means that the end-terms are re­
placed by f(A)/2 and f(B)/2. 

By Exercise 5.5.4, we have 

f(n) + f(n + 1) 
2 

rn+1 KI A1 L in f(x)e(mx)dx:S : . 
Iml:SM n 
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Adding this result over n E [A, B] gives 

B B I: I f(n) - I: 1 f(x)e(mx)dx :s; (B - Al:" log M. 
n=A Iml:SM A 

Now let M -7 00 to deduce the result. o 
5.5.13 Apply the previous exercise to each of the functions f(x) = 

cos(27rx2 IN) and f(x) = sin(27rx2 IN) to deduce that 

= ~ (n2 ) = N 1/ 2 if N == 1 (mod4), { 

(1 + i)N1/ 2 if N == 0 (mod4), 

S Lt e N 0 if N == 2 (mod 4), 
n-O 
- iN1/ 2 if N == 3 (mod4). 

By Exercise 5.5.12, we have to evaluate 

~'e(n2IN) ~ mtt e (~ +mx) dx 

We change variables in the integrand: put x = Nt so that the 
integral is 

( ( Nm2
) r1 

N Jo e(Nt2 + mNt)dt = Ne --4- Jo e (N(t + m/2)2) dt. 

We must therefore evaluate 

11 lm/2+1 
e(N(t + m/2)2)dt = e(Ny2)dy. 

o m/2 

Thus, we have 

N 00 (N 2) rm/2+l 
~ I e(n2 IN) = N m~oo e - : Jm/2 e(Ny2)dy. 

Now e( - N m2 14) is 1 if m is even, and i-N if m is odd. This suggests 
we divide the infinite sum into two parts, m even and m odd: 
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If we put y = N-1/ 2u, then the integral becomes 

N-1/ 2 i: e(u2 )du = N-1/ 2C 

for some constant c. This constant is easily evaluated upon setting 
N = 1. Then 

N 

L'e(n2 jN) = 1, 
n=O 

so that c = (1 + i-I )-1 = (1 - i)-l. Therefore, 

t,'e(n2/N) = C t~~N) N ' /2 

Notice that the left-hand side is equal to Sand the right-hand side 
takes the four values stated according as N belongs to the various 
classes (mod 4). 

5.5.14 Let X be a nontrivial quadratic character (mod p) with p 
prime. Show that 

p-l { ;;n zf 1 ( d 4) 
T(X) = J; x(m)e(;) = ~~ if ~ ~ 3 (:~d 4): 

Clearly, 
p-l 

T(X) - 1 = L (1 + x(m))e(m), 
m=l p 

since 2:~-~1 e(mjp) = -1. 
Now, 1 + x(m) = 2 or 0 according as m is a square (modp) or not 

for (m,p) = 1. Thus, 

T(X) 

By the previous exercise, the sum is pl/2 if p == 1 (mod 4) and ipl/2 
if p == 3 (mod 4), and this completes the proof. 
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5.5.15 Let <jJ(s) = (27r)-Sr(s)((s)((s + 1). Show that <jJ(-s) = <jJ(s). 

By Legendre's duplication formula (see Exercise 6.3.6) we have 

Also, by Exercise 6.3.5, r(1/2) = Vii. Therefore, 

<jJ(s) (27r)-S7r-l/22S-1r(~)r( s; 1 )((s)((s + 1) 

Tl (7r-S/2r(s/2)((s))7r-(S+1)/2r( s; 1 )((s + 1). 

By the functional equation of the (-function, we see that 

<jJ(s) T 1(7r-(1-S)/2rC; S)((1_ s))7rS/2r(~S)((_s) 
<jJ( -s) 

by another application of the duplication formula. 

5.5.16 Show that <jJ(s) in Exercise 5.5.15 has a double pole at s = 0 
and simple poles at s = ±1. Show further that Ress=l<jJ(S) = 7r/12 
and Ress=-l<jJ(S) = -7r/12. 

Since r(s) has a simple pole at s = 0 and ((s + 1) has a simple 
pole at s = 0, it is clear that <jJ( s) has a double pole at s = o. It is 
also clear that <jJ(s) has simple poles at s = 1 and s = -1, the latter 
pole arising from the r-function. We have 

Ress=l<jJ(S) = lim(s - l)<jJ(s) = (27r)-1((2). 
s-+l 

By Exercise 5.5.5, this is equal to 7r /12. Also, 

lim (s + l)<jJ(s) 
s-+-l 

lim (27r)-S r(s + 2) ((s)((s + 1) 
s-+-l S 

- (27r)(( -1 )((0). 

By Exercise 5.2.4, ((0) = -1/2. Also, by the functional equation for 
the Riemann zeta function, we have 
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Now (-1/2)f( -1/2) = f(1/2), since sr(s) = f(s + 1). By Exercise 
6.3.5, f(1/2) = y'ir. Therefore 

((-1) = -1/12. 

Therefore, 

Ress=-lCP(S) = -(27r)(-1/12)(-1/2) = 7r/12. 

o 
5.5.17 Show that if CT(n) = Ldln d, then 

~ CT(n) 
L n s+1 = ((s)((s + 1), 
n=l 

and that 

00 CT(n) 1 12+ioo L _e-nx = -2 . x-sr(s)((s)((s + l)ds. 
n=l n 7r2 2-ioo 

The first part is clear. The second part follows from Exercise 
6.6.3. 0 

5.5.18 Show that 

2:00 CT(n) -nx 7r 7rX 1 1 2:00 CT(n) -47r2n/x --e =---+- ogx+ --e . 
n 12x 12 2 n 

n=l n=l 

By Exercise 5.5.17, we can move the line of integration to Re(s) = 
-2 to deduce 

~ CT(n) -nx 
L--e 

n 
n=l 

7r 7rX 1 
12x - 12 + "2 log x 

1 r-2+ioo 

+ 27ri J-2-ioo x-Sf(s)((s)((s + l)ds 

by an application of Exercise 5.5.16. By Exercise 5.5.15, the inte­
grand becomes 

( 27r)-S (27r)-S -;- cp(-s) = -;- cp(s) 
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upon changing s to -so Moreover, 

1 12+ioo 2 -s 00 () 
-. (~) (27r)-Sr(s)((s)((s + l)ds = L a n e-47r2n/x, 
27r2 2-ioo X n 

as desired. 

5.5.19 For a and b coprime integers, define 

b-l 

c(~) = L e27riPa/b. 

j=O 

Let q be prime and (p, q) = 1. Show that 

n=l 

hmvtO t+- = -C -- . . r; ( 2pi) 1 (p) 
t-+O q q q 

o bserve that 

n=-oo 

q-l 

Le-27rib2p/q( L e-7rn2t ). 

b=O n=b (mod q) 

We now write n = qm + b in the inner sum: 

00 

L e-7rn2t = L e-7rt(qm+b)2. 

n=b(mod q) m=-oo 

o 

Let O(t, a) = L:~=-oo e27rina-n27rt. Then, by Exercise 5.1.7, we have 

Hence, 

As t -+ 0, 1/tq2 -+ 00, and the O-term goes to 1. The result now 
follows. 0 
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5.5.20 Let r = p/q. Show that 

lim jt {} ( 1 ) = (1 - i) c (.2...) 
HO V ~ t + 2ir 4Vfiij 4p' 

with notation as in the previous exercise. 
Write 

1 i 
=T--

t + 2ir 2r' 

where 
it2 + 2rt 

T = --:-7---;:-:-

2r(t2 + 4r2)" 

Then the limit in quest ion is 

lim jt f e-7rn2 (T-i/2r) 
HOV~ 

n=-oo 

Ä; 4P-l 

= lim t. L e27rib2q/4p 
t-tO t + 22r 

b=O n::::b(mod 4p) 

which is treated as in the previous exercise. The limit is easily eval­
uated to be 

fiP ~C(.2...) V q; 4p 4p· 

Since 
00 

8(z) = L e7rin2z 

-00 

is analytic for Im(z) > 0, the functional equation of the (}-function 
extends to 8: 

8(-1/z) = [f8(Z). 

Now, Vz is well-defined on the cut plane C \ (-00,0]. This means 
that i = ei7r /2 and 

in the above limit that was evaluated. This completes the proof. 0 
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5.5.21 Deduce from the previous exercise the law of quadratic reci­
procity: 

(~) (~) = (-1)~'Y 
for odd primes p and q, and (ajb) denotes the Legendre symbol. 

The limits in the two previous exercises are equal by the functional 
equation of the O-function. Therefore, 

~C( -~) = ~~C(4~)' 
We have 

and it is easily checked that 

Also 

C (P4q) = 2(1 + i pq ). 

We use Exercise 5.5.13 (or put p = 1 in the above identity relating 
C( -pjq) with C(qj4p)) to deduce 

{
vg 

C(ljq) = 
ivg 

if q == 1 (mod4), 

if q == 3 (mod4). 

Moreover, C(4qjp) = (qjp)C(ljp), so that 

(-1)9 (E) C (!) = (l-i)(l +ipq
) (C].) C (!) 

q q q 2VJXj p p 

from which the result easily follows. o 
5.5.22 Suppose that f (s) is an entire function satisfying the func­

tional equation 

AT(s)f(s) = AI - s r(l - s)f(l - s). 
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Show that i] ](1/2) -# 0, then 

!'(~) = -](1/2) (logA+ r /{1/2)). 
2 r{1/2) 

We logarithmically differentiate the functional equation and set 
s = 1/2 to get the desired result. 0 



6 
Hadamard Products 

6.1 J ensen's theorem 

6.1.4 Show that 

l R n(r)dr 
---'--'-- ::; max log I/(z)1 -log 1/(0)1, 

o r Izl=R 

with f as in Jensen's theorem. 

Let us order the Zi so that 

Then 

rR n(r) dr 
Jo r 
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The result is now clear from Jensen's theorem. o 
6.1.5 If f(z) is of order ß, show that nf(r) = O(rß+E), for any E > o. 

Since 

max If(z)1 ~ exp (Rß+€) , 
Izl=R 

we get by Exercise 6.1.4 that 

But then 

12R n(r) --dr ~ Rß+€. 
o r 

(2R n(r) dr ~ Rß+€, 
JR r 

so that n(R) log 2 ~ Rß+€, as desired. 

6.1.6 Let j(z) be an entire junction of order ß. Show that 

o 

converges for any E > 0 (Here, we have indexed the zeros Zi so that 
IZII ::; IZ 21 ::; ... ). 

By partial summation, 

By Exercise 6.1.5, n(r) ~ r ß+€/2, and therefore the integral con­
verges. 

6.2 The Gamma Function 

6.3.1 Show that 
{OO vx - 1 dv 1f 

J 0 1 + v = sin 1fX 

for 0< x < 1. 
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Consider the integral r zx-ldz 

Je, 1 + z ' 

where CE is the contour taken along the real axis from E to R, then in 
the positive direction along the circle Cl of radius R centered at the 
origin, and then back along the real axis to z = E and finally around 
the circle C2 of radius E centered at the origin, taken in the negative 
direction. 

The function 

1+z 

is regular except at z = -1, where it has a simple pole with residue 

e1fi(x-l) . 

We will take E < 1 < R so that integrating the function along the 
contour indicated above shows by Cauchy's theorem 

= (27fi)e1fi (X-l). 

The two integrals along the real axis together give 

(1 - e21fz(x-l)) = -2ie1fZX (sin 7fx) . 
. jR uX-ldu . jR uX-ldu 

E 1+u E 1+u 

The other two integrals tend to 0 as R -+ 00 because on Cl, 

so that 

1 

zx-l 1 R x- 1 
-- <--
1+z - R-1' 

11 zX-ldz 1 Rx-l 27fRX 
<--27fR=--

1+z - R-1 R-1' 
Cl 

which tends to 0, since x < l. 
Similarly, 
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which tends to 0, as E -+ 0 since x > O. Therefore, 

. 100 ux-1du . 
-2ie1rtX (sin 1fX) = _21fie1rtX , 

o l+u 

which gives 

o 
6.3.2 Show that 

(1r/2 
r(x)r(y) = 2r(x + y) Jo (cosB)2X-l(sinB)2y-1dB 

for x,y > O. 

For x, y > 0, we have 

Putting u = tv and inverting the order of integration, we obtain 

r(x)r(y) = 

(OO vy-1dv 
= r(x+y) Jo (l+v)x+y' 

The interchanging of integrals is easily justified by Fubini's theorem. 
This last integral is 

where we have put v = tan2 O. 
Again, making a substitution of A = cos2 B transforms the integral 

to 
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which is the familiar beta function B(x, y). 
For 0 < x < 1, we obtain 

Putting 
.:\ 

V=--
1-.:\ 

in the integral gives 

r(x)r(1 _ x) = rXJ v X
-

1dv, 
Jo 1 +v 

which by Exercise 6.3.1 is 

. , 
Slll7rX 

which gives the desired result. 

6.3.3 Show that 

r(x)r(y) = r(x + y) 101 
.:\x-1{1_ .:\)y-1dy. 

o 

(The integral is denoted by B(x, y) and called the beta function.) 

Making the substitution of .:\ = cos2 0 in the integral of Exercise 
6.3.2 gives 

101 AX - 1(1 - A)y-1dA, 

which is the familiar beta function B(x, y). 

6.3.4 Prove that 
7r 

r(x)r(1- x) = -.-
Slll7rX 

for 0< x < l. 

This is clear from the solution to Exercise 6.3.2. 

6.3.5 Prove that 

In Exercise 6.3.4, put x = Y = ! to obtain 

( 1)2 [7r/2 
r 2 = 2r(1) Jo dO = 7r. 

o 

o 
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Since f(1/2) is positive, we obtain f(1/2) = y1i. 

6.3.6 Show that 

f(2X)f(~) = 22X- 1f(x)f( x +~) 

for x> o. 

In Exercise 6.3.3, put x = y to obtain 

o 

Since .x(1-.x) ~ l, we may write .x(1-.x) = l- i, so that .x = 1-20. 
This substitution gives 

f(X)2 = f(2x) r1 (1 - t)X-1!!!. 
2 Jo 4 Vi 

The latter integral is, by Exercise 6.3.3, 

f(x)f(~) 

f(x +~)" 

Inserting this in the penultimate step gives the desired result. 0 

6.3.7 Let c be a positive constant. Show that as x -+ 00, 



6.2 The Gamma Functiün 337 

Suppüse first that c > 1. Then, by Exercise 6.3.3, 

f(x)f(c) 
f(x + c) 

The first integral is f(c)x- c . The second integral is easily estimated 
as füllüws. Nütice that 1 - e- t < t für t > 0, and that 

t 1 2 1 - e- > t - -t 
2 

für 0 < t < 1. Thus, the secünd integral is püsitive and less than 

Für 0 < x < 1, we have für c > 1, 

1 - (1 _ !)C-l < t 
2 -, 

as is easily checked by elementary calculus. Thus, the secünd integral 
is less than 

This proves the result für c > 1. Für 0 < c < 1, we can use the 
fürmula 

r(x + 1) = xr(x) 

tü deduce the result. 

6.3.8 Show that 

as x -+ 00. 

By Exercise 2.1.12 we knüw that für a natural number n, 

lügr(n) = lüg(n - I)! = (n - ~) lügn - n + CI + 0(1) 

o 
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as n -+ 00 (and with Cl an absolute constant). If x is not an integer, 
let us write x = n+c for some 0< C < 1. By Exercise 6.3.7, we have 

r(n + c) f'V nCr(n), 

so that 

log r(x) logr(n) + clogn + 0(1) 

(x - ~) logn - n + Cl + 0(1). 

Also, 

log (n : C) = log (1 + ~) = ~ + 0 (:2) , 
so that 

log x = logn + ~ + 0(:2)' 
Inserting this observation above gives 

logr(x) = (x -~) log x - x + Cl + 0(1). 

We can use the duplication formula to evaluate Cl. Indeed, on the 
one hand we have from above 

log r (2x) = (2x - ~) log 2x - 2x + Cl + o( 1). 

On the other hand, by the duplication formula (Exercise 6.3.6) we 
have 

log r (2x) = (2x - 1) log 2 + log r (x) + log r (x + ~) - ~ log 7r, 

which is equal to 

( 1) 1 1 2x - 2" log 2x - 2x - 2" log 2 + 2CI - 2" log 7r + 0(1), 

so that 
1 log 2 

CI = 2CI - -log7r - --. 
2 2 

Thus, as required 

CI = log -)2;. 0 
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6.3.9 Show that l/f(z) is an entire function with simple zeros at 
z=0,-1,-2, .... 

From the functional equation 

1f 
f(z)f(l - z) = -.-, 

Slll1fZ 

we see that f(z)f(l - z) is regular except when z is an integer, in 
which case it has a simple pole. 

We also see from this functional equation that since f(z) is regular 
in Re(z) > 0, f(l- z) has simple poles at z = 1,2,3, .... Therefore, 

l/f(z) = f(l - z)(sin 1fz)/1f 

is regular in Re(l- z) ~ 0. If Re(z) ::; 0, then Re(l- z) ~ 1 and the 
right-hand side of the above equation is regular. This completes the 
~~ 0 

6.3.10 Show that for some constant K, 

f'(z) = t {1- (1- ty-l}dt - K. 
f(z) Jo t 

By Exercise 6.3.3, we have 

f(z - h)f(h) 
r(z) 

1 {l 
= h + Jo {(I - ty-h-l - 1 }th-1dt. 

The Taylor expansion of the left-hand side with respect to h is 

_1 {f( z) - f' (z)h + ... } {~ + K + ... } 
f(z) h 

= ~ _ f'(z) K O(h) 
h f(z) + + . 

The Taylor expansion of the right-hand side is 

1 {l { Z 1 } dt 
= h + Jo (1 - t) - - 1 t + O(h), 
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so that by equating the constant terms we get the desired result. 0 

6.3.11 Show that for z not equal to a negative integer, 

~(~? = t, (n: 1 - n: J -K 

for some constant K. 

First, for z > 1, we use Exercise 6.3.10 and expand 

1 00 

t = L(1-tt 
n=O 

in the integrand and integrate term by term to obtain the result. 
The step is valid for z > 1 and by analytic continuation for all z 
unequal to a negative integer. 0 

6.3.12 Derive the Hadamard factorization of l/f(z) : 

00 

l/f(z) = e'YZz TI (1 + ~)e-zjn, 
n=l 

where, denotes Euler's constant. 

We integrate the formula 

~(~? = ~ (n:l -n:J-K 
from z = 1 to z = wand take exponentials, to obtain 

1 00 

- = eBz TI (1 + ~) e-zjn 
f(z) n=l n 

for some constant B. Putting z = 1 gives 

o 
00 1 1 

B + L { log ( 1 + ~) - ~} 
n=l 

NIl 
B + lim L { log (1 + -) - -} 

N-too n n 
n=l 

B-,. o 
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6.3.13 Show that 

logr(z)= z-- logz-z+-log21l"+ - 2du. ( 1) 1 1000 [u] u + 1 

2 2 0 u+z 

By Exercise 6.3.12, 

00 

log r (z) = L { ~ - log ( 1 + ~) } - ,z - log z 
n=l n n 

with each logarithm having its principal value. 
By Exercise 2.1.12, we see that 

N-l 

L {~-log(l+~)} = log(N-1)!+Z(1+!+ ... +_1_) 
n=l n n 2 N-1 

- (N - ~ + z) log(N + z) - N 

ioN Bl(U)du 
+ . 

o u+z 

Letting N -7 00, and using 

1 1 
1 + - + ... + -- = logN +,+0(1) 

2 N-1 

as weIl as 

log(N + z) = logN + ~ + O(~2)' 
we obtain the desired result by an application of Stirling's formula. 
This completes the proof. 0 

6.3.14 For any 6 > 0, show that 

logr(z) = (z - ~) logz - z + ~ log21l" + 0 C!I) 
uniformly for -1l" + 6 :::; arg z :::; 1l" - 6. 
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By the previous exercise, it suffices to estimate 

Let us write f(v) = Jav ([uj- u + ~)du. Then f is bounded, since 

f(v + 1) = f(v) for any integer v. Thus, 

{')O f'(u) du = {')O f(u)du . 
Ja u+z Ja (u+z)2 

Writing z = rei<p, we see that 

= u2 + 2ur cos <p + r2. 

We break the integral into three parts, 

r/2 + {2r + (OO 
Ja Jr/2 J2r 

Since f is bounded, each of these integrals is 0 (:) as required. 0 

6.3.15 1f (J' is fixed and Itl ~ 00, show that 

1r((J' + it) I "-' e-~7rltlltICT- ~ J2;. 

This is immediate from Exercise 6.3.14. 

6.3.16 Show that l/r(z) is of order 1. 

This is a consequence of Stirling's formula. 

6.3.17 Show that 

r'(z) ( 1 ) 
r(z) =logz+O ~ 

for Izl ~ 00 in the angle -7f + <5 < arg z < 7f - <5 for any fixed <5 > O. 
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By Exercise 6.3.13, we can differentiate the expression 

( 1) 1 (Xl [u] - u + 1 
log f (z) = z -"2 log z - z + "2 log 21f + 10 u + Z 2 du 

to obtain 

f'(z) _ _ ~ _ (OO [u]- u + ~ 
f(z) -logz 2z 10 (u + zF du. 

The integral is easily seen to be O(1/lzl). 

6.3 Infinite Products for e( s) and e( s, X) 

6.4.1 Show that for some constant c, 

1~(s)1 < exp(clsllog Isl) 

as Isl -+ 00. Conclude that ~(s) has order 1. 
By the functional equation, 

~(s) = ~(1- s), 

so that it suffices to prove the result for (J = Re( s) :::: 1/2. 
Clearly, 

I ~s(s - 1)1f-S / 2
1 < exp(clsl), 

and by Stirling's formula 

If(s/2)1 < exp(clsllog Isl), 

which is valid in the range under consideration. We also have 

s /00 {x} ((s)=--s -dx, 
s - 1 1 x s+1 

o 

valid for (J > O. (Here {x} denotes the fractional part of x.) The 
integral is bounded for (J :::: 1/2. Since 

. s 
11m -- =1, 

Isl-+oo s - 1 
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we see that for some constant c, 

1((s)1 < clsl 

as Isl -7 00. Putting all this together shows that ~(s) satisfies the 
stated inequality. Observe also that ((s) -7 1 as s -7 00 through real 
values, and since log r( s) f"V S log s, we see that 

for such values of s. Therefore, ~ (s) has order 1. 0 

6.4.2 Prove that (( s) has infinitely many zeros in 0 :::; Re( s) :::; 1. 
The zeros of (( s) in the stated region are precisely those of ~ ( s ). 

If there were only finitely many zeros, ~(s) would be a polynomial 
and hence of order zero, which is not the case. 0 

6.4.3 Show that 

«s) ~ eA+B • I] (1 -~) c';P, 

where the product is over the nontrivial zeros 01 (( s) in the region 
0:::; Re(s) :::; 1 and A = -log2, B = -1/2 -1 + ~ log41f, where 1 is 
Euler's constant. 

The existence of the factorization is clear since ~ (s) has order 1. 
Since the trivial zeros of (( s) are canceled by the simple poles of 
r(s/2), we see that the product must be over nontrivial zeros of 
((s). Notice that 

lim -21 s(s - 1)1f-8/2r(~)((s) 
8--+ 1 2 

1 (1) . _1f- 1/ 2r - hm(s - l)((s) 
2 2 8--+1 

= ~1f-1/2r(~) = ~ 
by Exercise 6.3.5. Therefore, ~(O) = ~, and consequently, eA = 1/2, 
as required. To evaluate B, we logarithmically differentiate ~(s): 

e (s ) (' (s ) 1 1 f' ( ~ + 1) -- = -- + -- - -log1f + ---';---7-

~ (s) (( s) s - 1 2 2f ( ~ + 1) 
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on the one hand, 

e'(8) = B + (_1_ + ~) ~(8) L 8 - pp' 
p 

so that 
B _ e'(O) _ e'(1) 

- ~(O) - - ~(1) 

from the functional equation. We therefore need to evaluate tm. 
For the Hadamard product for 1/r(8), we see that 

so that 

since 

Thus, 

Now, 

where 

so that 

Now, 

r' (3/2) "f 
- 2f(3/2) = 2" -1 + log 2, 

00 (_l)n L -- = -10g2. 
n 

n=l 

8 
((8) = - - 8I(8), 

8 - 1 

( ) = 1,00 {x}dx 
I 8 +1 ' 

1 X s 

. { (' (8) I} 11m -+-- =l-I(l). 
s-t 1 ((8) 8 - 1 

I(l) = /,00 {xl dx = lim /,N {xl dx, 
1 x N-too 1 X 
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and the latter integral is 

Therefore, 

and 

as required. 

N-1 rn+1 d 
= log N - L: n } rl x~ 

n=l n 

N-1 1 1 
10gN- L:n(---) 

n=l 
n n+1 

N 1 
10gN - L: - + 1 

n 
n=l 

1 - ')'. 

((1) ')' 1 
e(l) = 2" + 1- "2 log 471" 

')' 1 
B = - - - 1 + - log 471" 

22' 
D 

6.4.4 Let X be a primitive character (mod q). Show that e(s, X) zs 
an entire junction oj order l. 

Recall that 

/

00 S(x) 
L(s, X) = s -+1 dx, 

1 X S 

where S(x) = I:n<x x(n). Since IS(x)1 ::; q, the integral converges 
for Re(s) > o. AIso~ by the functional equation for e(s, X), it suffices 
to estimate it for Re(s) ~ ~. Thus, for (J" = Re(s) ~ 1/2, 

IL(s, x)1 ::; 2qlsl, 

so that 

0"+3 
< q-2 exp(Clsllog Isl) 
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for some suitable constant C. This inequality is best possible, since 
for s -+ 00 through real values, L(s, X) -+ 1, and Stirling's formula 
implies that the above inequality cannot be improved. 0 

6.4.5 Show that L(s,X) has infinitely many zeros in 0 :s; Re(s) :s; 1 
and that 

~(s,x) = eA+Bs II (1- ~)es/P, 
P P 

where the product is over the nontrivial zeros 01 L(s, X). 

The trivial zeros of L(s, X) are cancelled by the f((s + a)j2) factor. 
If L(s, X) had only finitely many zeros in the critical strip (0 :s; 
a :s; 1), then it would be a polynomial and hence of order zero, 
which is not the case. The final product follows from the Hadamard 
factorization theorem. 0 

6.4.6 For A and B occurring in the previous exercise, show that 

and that 

Re(B) = - LRe (~), 
P P 

where the sum is over nontrivial zeros P 01 L(s, X). 

Setting s = 0 in the Hadamard factorization of ~(s, X) gives eA = 
~(O, X). (By the functional equation, we can therefore express A in 
terms of L(l, X).) Logarithmic differentiation üf the Hadamard prüd­
uct and setting s = 0 gives 

B = e'(O,X) = _ e'(l,X) 
~(O, X) ~(1, X) 

by the functional equation. Writing B x für B (since it depends ün X), 
we find upon logarithmic differentiation of the expression for ~(s, X) 
and setting s = 1 that 

e'(1, X) _ B- ~ (_1_ ~) 
C(l -) - x + ~ 1 - - + - , 
':, ,X P P P 

where the sum is over nontrivial zeros P of L(s, X). Thus, 

B = - B- - 2: (_1_ + ~). x x 1 - -- - P P 
P 
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Since Bx = Bx' we get 

-2 Re(Bx ) = ~ Re C ~ p) + Re (~). 
p 

The terms in the sum are nonnegative, and we can replace 1 - P by 
p, since by the functional equation 1 - P is also a zero of L(s, X) 
whenever pis. Thus, 

so that 

Re(B) = - 2:: Re (~) 
p p 

as required. 

6.4 Zero-Free Regions for ((s) and L(s, X) 

6.5.1 Show that 

_3('(er) -4Re (('(er+~t)) -Re (('(er+2~t)) > 0 
((er) ((er + ~t) ((er + 2~t) -

for t E IR and er > 1. 
Since 

3 + 4cosO + cos20 ~ 0, 

the result is clear (See Exercise 3.2.4). 

6.5.2 For 1 < er < 2, show that 

_ ('(er) < _1_ + A 
((er) er - 1 

for some constant A. 

o 

o 

The function f (s) = (s - 1)( (s) is regular, and nonvanishing for 
Re( s) ~ 1. Hence, 

I'(s) 1 ('(s) 
--=--+--
f(s) s-l ((s)· 
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Since the left hand side is regular in Re(8) ~ 1, 

is bounded by a constant for 1 ::; ()" ::; 2. This proves the result. 0 

6.5.3 Prove that 

( 
(' ( 8 ) ) (1 1 ) -Re - <Alogltl-LRe -+-
((s) 8 - P P 

p 

for 1 ::; ()" ::; 2 and Itl ~ 2. 

By Exercise 6.4.3, we know that 

e (8 ) _ B + (_1_ + ~) ~(8) - L 8 - P P 
p 

and 

e (8) (' (8) 1 1 f' (~ + 1) -- - -- + -- - -log7r + -~-.;.-
~ (8) - ((8) 8 - 1 2 2f Ü + 1) , 

so that 

By Exercise 6.3.17, the f-term is O(logt) for Itl ~ 2 and 1 ::; ()" ::; 2. 
Thus, in this region, 

( ('(8)) (1 1) -Re - <Alogltl-LRe --+- , 
((8) 8 - P P 

p 

since 

(_1 ) =R ( 1 ) = (}"+1 =O(~) 
Re 8 _ 1 e (()" _ 1) + it (()" - 1)2 + t 2 t 2 • 

o 
6.5.4 Show that 

Re(_l_+~) ~o. 
8 - P P 
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Deduce that 

- Re (~f;j) < Alog Itl 

for 1 :::; CJ :::; 2, Itl ~ 2. 

Let us write p = ß + i'y. Then, 

Re (_1 ) _ .,.-CJ -----:-;:-ß 
s - p - Is - pl2 

and 

Re(~) = 1~2. 
Thus, by Exercise 6.5.3, we get the required estimate. o 
6.5.5 Let p = ß + i'y be any nontrivial zero of (( s). Show that 

( ('(CJ+it)) 1 
- Re ((CJ + it) < Alog Itl- CJ - ß· 

In the sum in Exercise 6.5.3, by taking one term involving ß we 
obtain the result. 0 

6.5.8 Show that 

-Re (~~:?) < Re C ~ 1) + cllog(ltl + 2) 

for some constant Cl > 0 and CJ > 1. 

We proceed as in Exercise 6.5.3: 

The sum over the zeros is positive. The f-term is O(log(ltl + 2)). 
Thus 

( ('(s)) (1) - Re ((s) < Re s _ 1 + cllog(ltl + 2). 

o 
6.5.9 Suppose that X is a primitive character (mod q) satisfying 
X2 # Xo. Show that there is a constant C > 0 such that L(s, X) 
has no zero in the region 

C 
CJ>l--...,......,......,.---

log(qltl + 2)· 



6.4 Zero-Free Regions for ((s) and L(s, X) 351 

We proceed as in the case of the (-function. We first observe that 

for t E ~ and u > 1. (Here we are using X2 =I- Xo, for otherwise, the 
X2 term above will present difficulties.) 

Observe that 

_ L'(u, Xo) = f xo(n)A(n) < _ ('(u) < _1_ + Cl 

L(u, xo) n=l nU - ((u) u - 1 

for 1 < u < 2 and some constant Cl > O. Also (with the notation of 
Exercise 6.4.5), 

and for a = 0 or 1, 

( ((s,x)) 1 q (r'(~)) (L'(S,x)) 
Re ~(s,X) =2 Iog ;+Re 2r(sta) +Re L(s,X) . 

Thus, 

_ Re (L'(S, x)) 
L(s,X) 

= -log - + Re 2 - Re(B) - "'"' Re -- + - . 1 q ( r' ( s+a) ) (1 1 ) 
2 7r 2reta) 7 s - p p 

By Exercise 6.4.6, 

Re(B) = ~Re m, 
and the r-term is O(log(ltl + 2)) by Exercise 6.3.17. Thus, 

- Re (f~: ~;) < c2 log(qltl + 2) - L Re (s ~ p) . 
p 
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This estimate holds for any primitive character X (mod q), real or 
complex. Since 

Re (_1_) ~ 0, 
s-p 

we can omit the series or any part of it in our estimations. Thus, 

( L'(s X2)) 
- Re L(s: X2) < c2 log(qltl + 2), 

provided that X2 is a primitive character (mod q). If X2 is not prim­
itive, let Xl be the primitive character inducing X2 . Then 

I_L-,-/(S_,-;:X2:-:-) _ L'(S,XI) I < ,",p-O"logp < '"'logp < logq. 
L(s, X2) L(s, Xl) - ~I 1 - p-O" - ~I -

p q p q 

Thus, the penultimate estimate remains valid whether X2 is primitive 
or not. Hence, as before, we get (by choosing t = ,) 

( L'(O"+it,x)) 1 
- Re L( . ) < c2 10gq(ltl + 2) - --ß' 

0" + d,X 0"-

so that 
4 3 

O"-ß < 0"-1 +c3 10gq(ltl+2). 

Taking 0" = 1 + 8/ log q(ltl + 2) with 8 sufficiently small gives 

ß< 1- c4/logq(ltl + 2) 

as required. D 

6.5.10 Show that the previous result remains valid when X is a non­
real imprimitive character. 

If Xl induces X, then the zeros of L(s, X) are the zeros of L(s, xd 
and the zeros of a finite number of factors of the form 1 - Xl (p )p-s. 
But the additional zeros are on the line 0" = 0. Thus, the result of Ex­
ercise 6.5.9 holds for all characters X (mod q) satisfying 

x2 =1= Xo· D 
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6.5 Supplementary Problems 

6.6.1 Prove that f(s) has poles only at s = 0, -1, ... , and that these 
are simple, with 

By Exercise 6.3.9, we know that l/f(s) is entire and has simple 
zeros at s = 0, -1, - 2, .... By the Hadamard factorization of 1 /f (s) 
(Exercise 6.3.12), these are the only zeros. Thus, the first part of the 
quest ion is established. For the second part, we need to calculate 

lim (s + k)f(s). 
s--+-k 

But sf(s) = f(s + 1), so that 

f(s) = r(s + 1) = f(s + 2) = ... = f(s + k) 
s s(s+l) s(s+1)···(s+k-1) 

by integration. Hence 

lim (s + k)f(s) 
s--+-k 

1. (s + k)f(s + k) 
1m ~~~~~--~~ 

s--+-k s(s + 1) ... (s + k - 1) 

1. f(s + k + 1) 
1m ~--~--~~--~ 

s--+-k s(s + 1) ... (8 + k - 1) 

6.6.2 Show that 

e-1/ x = ~ ( xT(s)ds, 
27r~ J(cr) 

for any a > 1, and x 2': 1. 

o 

We first truncate the infinite line integral at Rand use Stirling's 
formula (Exercise 6.3.15) to estimate it. Thus 
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and the latter integrand is clearly e-cR for some constant c > O. A 
similar analysis applies to the range from (J - iR to (J - ioo. Thus, 

As usual, we move the line of integration to Re( s) = - N - ~, N a 
positive integer. We pick up the residue at the poles of f(s), namely 

N 

I) _l)kx -k /k!. 

k=O 

The horizontal and vertical integrals are estimated easily using Stir­
ling's formula. Indeed, the horizontal integral 

1 l-(N+~)+iR S 

---2 . x f(s)ds 
1f2 (}"+iR 

is bounded by 0 ( x(}" Ne - ~ R) . A similar estimate holds for the other 

horizontal integral. The vertical integral 

1 l-(N+~)+iR 
---. xSf(s)ds 
21f2 -(N+~)-iR 

is bounded by 

«X-N-~ i: !f( -N - ~ + it)! dt. 

Using the functional equation sf(s) = f(s + 1), we find that on 
repeated application of this 

. f(~ + it) 
f( - N - 1/2 + 2t) = 1 l' 

(-N - 2 + it) ... (-2 + it) 

so that 
jf(l 't)'j 

jf( -N - 1/2 + it)j ::; 2:; 2 • 

By Stirling's formula, Ir(~ + it)1 = 0 (e-~Itl) and we deduce 
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We now choose R = N and let N --7 00 through the integers to 
deduce 

~ j xSf(s)ds = f (-1)~x-k = e-1/ x 

27r~ (eT) k=O k. 

as required. This could also be derived by Mellin inversion. 0 

6.6.3 Let f(s) = l::~=l an/nS be an absolutely convergent Dirichlet 
series in the half-plane Re( s) > 1. Show that 

for any a > 1. 

We have 

~j (f an)xSf(s)ds = fan~j (::)Sf(s)ds, 
2m (eT) n=l n S n=l 27r~ (eT) n 

the interchange being justified by absolute convergence of the term 
on the left-hand side. By Exercise 6.6.2, the integral on the right­
hand side is e-n / x , which completes the proof. 0 

6.6.4 Prove that 

We have 

so that 

00 2 

sinz = z II (1 - n~7r2)· 
n=l 

eiz _ e-iz 
sinz= ----

2i 

I sin zl « e1zl . 

Since sin z is entire, the above estimate shows it has order 1. By 
Hadamard's factorization theorem, 

sinz = eA+Bz II (1 _ ~)e-z/1fn, 
z 7rn 

nEZ 
nopQ 

for some constants A, B. Combining the terms corresponding to ±n 
in the product gives 

• 00 2 
Slnz = eA+Bz II (1 __ Z_). 

Z 7r2n 2 
n=l 



356 6. Hadamard Products 

Letting z -t 00 gives 

so that A = O. Also, sin( - z) = - sin z yields 

so that e2Bz = 0, forcing B = O. Thus, 

sinz = z :fi: (1 - 7r~:2) , 
n=l 

as desired. o 
6.6.5 Using the previous exercise, deduce that 

We have 

Expanding the product on the right-hand side and comparing the 
coefficient of z2 on both sides gives 

aS desired. 

1 00 1 ----,,-6 - 61f2n 2 
n=l 

D. 



7 
Explicit Formulas 

7.1 Counting Zeros 

7.1.1 Let L be the line joining 2 to 2 + iT and then ~ + iT. Show 
that 

We have 

b.L arg(s - 1) = arg(iT - -21) = ~2 + arcsin ( 1 ) . VI +4T2 

Since 
1 sinx 
im -- = 1 

x-tO x ' 

we have 
1 arcsmx 
im = 1. 

x-tO x 

Thus, 

arcsin ( VI ~ 4T2) = 0 (~ ) , 

which proves the assertion. o 
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7.1.2 With L as in the previous exercise, show that 

We have 

o 
7.1.3 With L as in the previous exercise, show that 

( s ) T T T 3 (1) Dt.L arg r - + 1 = -log - - - + -1f + 0 - . 
2 2 2 2 8 T 

By Stirling's formula, 

(S) (5 iT) Dt.L arg r "2 + 1 = Im log r 4: + ""2 

3"T 5"T 5 "T 1 1 
= Im { (4: + ~ ) log (4: + ~ ) - 4: - ~ + "2 log 21f + 0 (T ) }. 

This is easily calculated to be 

-log- - - + -1f+0 -T T T 3 (1) 
2 2 2 8 T' 

as required. o 
7.1.4 Show that 

1 L 1 + (T _ ,)2 = O(logT), 
p 

where the sum is over the non trivial zeros p = ß + i'y oi (( s ). 

By Exercise 6.5.3 we know that 

( ('(s)) (1 1) -Re -- < Alogltl- LRe --+-
((s) s - p p 

p 
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for 1 :::; a :::; 2 and Itl ;::: 2 with A an absolute constant. If we take 
8 = 2 + iT in this formula, we deduce 

""' Re (_1_ +!) < Al logT 
~ 8-P P 

p 

for some constant Al, since 1('/(1 is bounded for Re(8) = 2. But 

Re (_1_) = 2 -ß > 1 
8 - P (2 - ß)2 + (T - 1)2 - 4 + (T - 1)2 

and 

Since 

we deduce 

Re(~) = 1~2' 
1 

~ jpj2 < 00, 

1 
L4+(T-1)2 <A2 1ogT 

p 

for some constant A2 . Since 

the required result is now immediate. o 
7.1.5 Let N(T) be the number of zeros of ((8) with 0 < Im(s) :::; T. 
Show that 

N(T + 1) - N(T) = O(logT). 

We must count zeros p = ß + i-y satisfying T :::; 1 :::; T + 1. Thus, 
o :::; 'Y - T :::; 1. From the previous exercise, the contribution of such 
zeros to the sum is greater than or equal to 1/2. Hence, the estimate 
now follows from the previous exercise. 0 

7.1.6 Let 8 = a + it with tunequal to an ordinate of a zero. Show 
that for large Itl and -1 :::; a :::; 2, 

('(s) I 1 
((8) = L 8 _ P + O(log ItD, 

p 
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where the dash on the summation is limited to those p for which 

It -,I < 1. 

From the formula 

_ ('(8) = _1 __ B _ ~ 10g7r + f'(s/2 + 1) _ (_1_ + ~) 
((8) 8 -1 2 2f(8/2 + 1) L s - p p 

p 

evaluated first at 8 = J + it and then at 2 + it and subtracting gives 

('(8) (1 1) 
((8) =L 8-P -2+it-p +O(logltl) 

p 

because of the estimate for the growth of the f-term (see Exercise 
6.3.17). Note that 

1

1 1 1 2-0" 3 
s-p - 2+it-p = l(s-p)(2+it-p)l::; It-,12 ' 

so that the contribution of the zeros satisfying It - ,I 2: 1 is 

3 6 
L It - ,12 ::; L 1 + It - ,12 ' 

It-'Y1:::::1 P 

and the latter sum is O(log Itl) by Exercise 7.1.4. Finally, in the 
remaining terms, I, - tl < 1, and we have 

12 + it - pi 2: 1 

for such zeros. The number of such zeros is O(log Itl) by the previous 
exercise. Putting this all together gives the desired result. 0 

7.2 Explicit Formula for 'ljJ(x) 

7.2.1 Show that if x is not a prime power and x > 1, then 

_1_ jC+iR _ ('(8) X S ds 
'ljJ(x) = 27ri c-iR ((8) s 

00 

+ O(LA(n)(~r min(l,R-IlIog~l-l)). 
n=l 
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Since x is not a prime power, 

00 

7jJ(x) = L A(n)8(~). 
n=l 

By Theorem 4.1.4, the result is now immediate. 

7.2.2 Prove that if x is not an integer, then 

L I log ~I-I = 0(11:11 log x ), 
~x<n<2x 

where Ilxll denotes the distance of x to the nearest integer. 

D 

Let Xl be the largest integer less than x. Split the sum into two 
parts: ~x < n < x and x < n < 2x. Writing n = Xl - v, we have 

X xl (V ) log - 2: log - = - log 1 - -
n n Xl 

Thus, 

I X 1-1 x X 
log;: :::; L -; = O(x log x). 

~x<n<xl v=l 

For n = Xl, we have 

x X - {x} {x} 
log - = - log 2: -. 

Xl x X 

The analysis for the range X < n < 2x is similar. Putting this all 
together gives the stated result. D 

7.2.3 By choosing c = 1 + lo~x in the penultimate exercise, deduce 
that 

1 jC+iR ('(s)X S (XlOg2 X) 
7jJ(x) = - ---ds + 0 

21ri c-iR (( s) s R 

if X - ~ is a positive integer. 

By Exercise 7.2.1, we must estimate 

00 

L A(n) (~) c min (1, R-Illog ~I-I) 
n=l 
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with c = 1 + Ijlogx. Indeed, if n < ~x, or n > 2x, I log ~I-l is 
bounded, and the contribution of such terms is 

By partial summation 

~ A(n) 100 'Ij;(t)dt 1 
~ --:;;;;- ~ c t c+1 ~ og X 
n=l 1 

by an application of Chebyshev's estimate for 'Ij;(x). Thus, the con­
tribution from the terms n < ~x or n > 2x is 

O(Xl~X). 

For ~ < n < 2x, we apply Exercise 7.2.2 and observe that in this 
range xjn is bounded. Since Ilxll = ~, we find that the contribution 
from n in this range is 

o (Xl~2 x), 
where we have used A(n) :s log2x for n :S 2x. o 
7.2.4 Let C be the rectangle with vertices c - iR, c + iR, -U + iR, 
-U - iR, where c = 1 + I/log x and U is an odd positive integer. 
Show that 

_1_ r _ ('(8) X S d8 = X _ xP _ ('(0) + x-2m 

27ri Je ((8) 8 L p ((0) L 2m' 
I'YI<R O<2m<U 

where we are writing the nontrivial zeros 0/ ((s) as p = ß + i'y. (R 
is chosen so that it is not the ordinate of any zero of (( 8 ) . ) 

By Cauchy's theorem, we need to compute the residue of the in­
tegrand whenever a pole occurs. Since ((8) has zeros at 8 = -2m 
with m > 0, in addition to its nontrivial zeros, we must compute 
the residue of the integrand there. By Exercise 6.5.3 and the partial 
fraction expansion for 

r'(~ + 1) 
2r(~ + 1)' 
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we see that -('(s)/((s) has a simple pole at s = -2m with residue 
-1. Thus, the residue of the integrand above is x-2m /2m when s = 
-2m. The contribution of the remaining singularities is clear. 0 

7.2.5 Recall that the number of zeros p = ß+i'"'( satisfying 1'"'(- RI < 1 
is O(log R). Show that we can ensure 1'"'( - RI ~ (log R)-l by varying 
R by a bounded amount. 

Consider the zeros p = ß + i'"'( satisfying R - 1 < '"'( < R + 1. 
The number of such zeros is O(log R). We subdivide the interval 
[R - 1, R + 1] into equal parts of length c/ log R for some constant 
c. The number of parts is O(logR), and we now choose c such that 
the number of parts exceeds the number of zeros. By the pigeonhole 
principle, there is apart that contains no zero. Thus for Ri lying in 
such apart, we must have IRi-'"'(1 ~ (logRi)-l. SinceRi-R = 0(1), 
we have proved the desired result. 0 

7.2.6 Let U be a positive odd number. Prove that 

1('(s)/((s)1 « (log2lsl) 

for - U ~ (J ~ -1, provided that we exclude circles 0 f a fixed positive 
radius around the trivial zeros s = -2, -4, ... of ((s). 

The functional equation in its asymmetrie form is 

The logarithmic derivative üf the right-hand side is 

1 1f S f' (s ) (' (s ) 
-log21f - 2"1ftan"2 + f(s) + ((s)· 

We need to estimate this für (J ;::: 2. The tangent term is bounded 
if Is - (2m + 1)1 ;::: r for some fixed r. The second term is O(log ISI) 
by Stirling's formula and therefore O(log211 - si) if (J ;::: 2. The last 
term is bounded in the region. This completes the proof. 0 

7.2.7 In Exercise '1.2.4, letting U --+ 00 along the odd numbers and 
R --+ 00 appropriately (that is, as in Exercise '1. 2. 5) prove that 

'Ij;(x) = x - ~ xP _ ('(0) + ~ log (1 _ x-2) 
~ P ((0) 2 ' 

P 

whenever x is half more than an integer. 
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By Exercise 7.2.3, 

__ 1_1c+iR _ ('(8) XS (X log2 X) 
'ljJ(X) - 2 . r() d8 + 0 R . 

7r2 c-iR ., 8 8 

We replace the verticalline segment by the contour C and take into 
account the contribution of the residues: 

xP ('(0) x-2m (X log2 X) 
'ljJ(x) = L - - -0 + L 2m - IR - Iu + 0 R ' 

I'YI<R P (() O<2m<U 

where IR denotes the two horizontal integrals in the contour C and 
Iu denotes the vertical integral along Re(8) = -U. By Exercise 7.1.6 
we have 

(' (8) f 1 
((8) = L 8 _ P + O(logR), 

P 

where the dash on the summation means IR-,i < 1 and -1 :s: a :s: 2. 
With R chosen as in the previous exercise, we can arrange 

Ir - RI ~ (log R)-I. 

The number of zeros in the summation is O(logR). Thus, 

('(8) = O(log2 R) 
((8) 

for -1 :s: a :s: 2. Thus the contribution to the horizontal integral IR 
for this range of a is 

jc I X S I X log2 R ~ (log2 R) -d8 ~ RI . 
-1 8 ogx 

In the range a :s: -1, we use Exercise 7.2.6 to get 

I X log2 R log 2R /-1 ud 
R~ RI +-R X a, ogx -u 

which is 

o (XIOg2 R) . 
Rlogx 
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The vertical integral is 

I log2U jR -ud RlogU 
u«-u x t« UR· 

-R x 

We first let U -7 00 along odd positive integers to obtain 

~ x P ('(0) 1 
'ljJ(x) = x - L.t - - - + -log(l - x-2 ) 

I'YI<R P ((0) 2 

o (x log2 X X log2 R) 
+ R + Rlogx . 

Now let R -7 00 appropriately (as in Exercise 7.2.5) to deduce the 
~~. 0 

7.2.9 Assuming the Riemann hypothesis, show that 

'ljJ(x) = x + 0 (x1/ 2 l0g2 x) 

as x -7 00. 

Again, by Exercise 7.2.7, we have 

"1.( ) = _ ~ xP 0 (x log2 X X log2 R) 
'P X x L.t + R + Rl . 

I I P ogx 'Y <R 

The Riemann hypothesis says that p = ~ + iry. Thus, the sum over 
the zeros is 

o (xl/21og2 R) . 

Choosing R = Vi gives the desired result. 

7.2.10 Show that if 

'ljJ(x) = x + 0 (x1/ 2log2 x) 

then ((8) has no zeros for Re(s) > 1/2. 
By partial summation 

_ ('(8) = 8 (OO 'ljJ(x)dx. 
((8) Jl xs+l 

o 

Inserting the estimate for 'ljJ(x) into the integral gives an analytic 
continuation of -('(8)/((8) for Re(8) > 1/2 apart from a simple 
pole at 8 = 1. This means that ((8) has no zeros for Re( 8) > 1/2, as 
required. (The same deduction can be made from the weaker estimate 
of O(x1/2+€) for any E > 0, for the error term.) 0 
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7.3 Supplementary Problems 

7.4.1 Using the method of Exercise 6.5.3, prove that for 1 S; (J' S; 2, 

Itl 2:: 2, 

where Al is an absolute constant, and the summation is over all zeros 
p of L(s, X), and X is a primitive Dirichlet character (mod q). (Of 
course, s = (J' + it, as usual.) 

This is essentially contained in the solution to Exercise 6.5.9. 

7.4.2 Let X be a primitive Dirichlet character (modq). 1f p = ß+h 
runs through the nontrivial zeros of L(s, X), then show that for any 
real t, 

1 L ( )2 = O(logq(ltl +2)). 
1 + t-, 

p 

We take s = 2+it in the previous exercise. Since IL' / LI is bounded 
for such s, we obtain 

LReC~p) < A2 logq(ltl +2). 
p 

Now, 

Re (_1_) = 2-ß > 1 
s-p (2-ß)2+(t-,)2 - 4+(t-,)2' 

and this last quantity is greater than or equal to i(l + (t _,)2)-1 
from which the result follows. O. 

7.4.3 With X a primitive character (mod q) and t not coinciding with 
the ordinate of a zero, show that for -3/2 S; (J' S; 5/2, Itl 2:: 2, 

L' I 1 
-L (s, X) = "" - + O(logq(ltl + 2)), L s-p 

p 

where the dash on the sum is over p = ß + h for which It - ,I < 1. 

The method is essentially the same as Exercise 7.1.6. 0 
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7.4.4 Let X be a primitive Dirichlet character (modq). Let N(T,X) 
be the number of zeros of L(s, X) in the rectangle 0 < a < 1, Itl < T. 
Show that 

T qT T 
N (T, X) = - log -2 - -2 + O(log qT) 

7r 7r 7r 

for T ~ 2. 

We follow the method of Theorem 7.1.7. Let R be the rectangle 
with vertiees 

5 . 
- -~T 
2 ' 

5 'T - +~ 
2 ' 

3 . 
--+~T 

2 ' 
3 . 

-- -~T 2 . 

(This reet angle is slightly larger than the one used for (( s) so as to 
include a possible zero at s = -1.) 

This rectangle eontains at most one trivial zero of L(s, X), either 
at s = 0 or s = -1. Therefore, 

27r(N(T, X) + 1) = fl. R arg ~(s, X)· 

By the functional equation (Theorem 5.4.1), 

arg e (a + it, X) = arg e (1 - a - it, xJ + c 

for some eonstant independent of s. Therefore, the eontribution of 
the left half of the eontour is equal to that of the right half. Clearly, 

(s + a) T .6. arg r -2- = Tlog"2 - T + 0(1), 

where a = 0 or 1 aeeording as X(-1) is 1 or -1, and fl. is the half 
eontour from ! - iT to ~ - iT, then to ~ + iT, and then to ! + iT. 
We add these two variations and then doubl~ the result. It remains 
to eonsider 

27rS(t, X) = fl.L(s, X)· 

Sinee log L(s, X) is bounded on Res = 5/2, it suffiees to eonsider the 
variation along the horizontal segments from 1/2 - iT to 5/2 - iT, 
and from 5/2 + iT to 1/2 + iT. By Exereise 7.4.3, this reduees to 
ealculating fl. arg( s - p) along the li ne segments. But this variation 
is at most 7r, and we get 

S(t,X) = O(logq(ltl + 2)). 

This gives the desired formula for N(T, X). o 
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7.4.5 Let X be a primitive Dirichlet character (modq). I] x is not a 
prime power and X( -1) = -1, derive the explicit ]ormula 

'lj;(x, X) := I:: x(n)A(n) 

xP L'(O, X) 00 x l - 2m 

-~ p - L(O,X) + ~l 2m -1' 

where the first sum on the right hand side is over the nontrivial zeros 
0] L(s, X). 

This follows easily by the method used in Exercise 7.2.7 where we 
replace ('(s)/((s) by L'(s, X)/L(s, X)· 0 

7.4.6 Let X be a primitive Dirichlet character (modq). I] x is not a 
prime power and X( -1) = 1, derive the explicit ]ormula 

""' xP 1_2 'lj;(x,X) = - ~ - -logx - b(X) - 2"log(1- x ), 
p p 

where b(X) = lims~o (~g,~] - ~), and the sum on the right-hand 

side is over the nontrivial zeros 0/ L(s, X). 

This again follows mutatis mutandis from the method of Exercise 
7.2.7. However, the only difference is that now L(s, X) has a simple 
zero at s = 0, and so 

Since 

L'(s,X) = ~ + b(X) + .... 
L(s, X) s 

X S 1 - = - + log x + ... , 
s s 

the residue of -L'(s, X)x S / sL(s, X) at s = ° is -(log x + b(X)). The 
trivial zeros contribute 

00 -2m 1 
""' x -2 ~ 2m = -2"10g(1-x ). 
m=l 

o 
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7.4.7 Let X be a primitive Dirichlet character (mod q) and set a = 0 
or 1 according as X( -1) = 1 or -1. 11 x - 1/2 is a positive integer, 
show that 

1jJ(x,x) 
x P - L - - (1- a)(logx + b(X)) 

I'YI<R p 

00 xa-2m (x log2 qXR) 
+ L 2m-a +0 R ' 

m==l 

where the first summation is over zeros p = ß + it and R is chosen 
greater than or equal to 2 so as not to coincide with the ordinate 01 
any zero 01 L(s, X). 

We follow the method of Exercises 7.2.3, 7.2.4 and 7.2.7. The only 
difference is that we must use the estimate 

L'((7+iR,X) =0(log2 qR) 
L((7 + iR, X) , 

valid for -1 ::; (7 ::; 2, which is easily deduced from Exercises 7.4.2 
and 7.4.3. For (7 ::; 1, we must use the estimate 

L'(s, X) 
L(s,X) = O(logqlsl), 

provided that we exclude circles of radius 1/2 around the trivial 
zeros. The latter estimate comes from logarithmic differentiation of 
the functional equation in its asymmetrie form: 

L(1 - s, X) = w(X)21- S 7r-Sqs-l/2 (cos ~7r(s - a)) r(s)L(s, X) 

(see Exercises 8.2.13 and 8.2.15), where Iw(x)1 = 1. The result is 
now derived as in Exercise 7.2.4. 0 

7.4.8 11 we assume that all the nontrivial zeros 01 L(s, X) lie on 
Re(s) = 1/2 (the generalized Riemann hypothesis), prove that 

1jJ(x, X) = 0 ( x1/ 2 1og2 qx) . 

We choose R = x1/ 2 in the previous exercise. We need to estimate 
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as weH as b(X). By partial summation and Exercise 7.4.4, we obtain 

~ 1 2 
~ 1PT = O(log qx). 

bl<x1/ 2 

As for b(X), this appears only if x( -1) = -1. In that case, we have 
from Exercise 6.4.5 that 

L'(s,X) 1 q r'(s/2) ~ (1 1) 
L(s,X) =-2 10g ;- 2r(s/2) +B(X)+ ~ s-p +p . 

p 

Replacing s by 2 and subtracting gives us 

L'(s,X) = _ r'(s/2) + L (_1 ___ 1_) + 0(1) 
L(s,X) 2r(s/2) s - p 2 - p , 

p 

so that 

b(X) = - L (~ + 2 ~ p) + 0(1). 
p 

In this sum, the terms with 111 :2: 1 are easily handled: 

L I! + 2 ~ I ~ L 1112 = O(logq) 
bl21 P P 11'121 ' 

by Exercise 7.4.2. For 1,1 < 1, we observe that 12 - pi » 12 - p12, so 
that 

b(X) = O(log q) - L !. 
bl<l p 

The nurnber of zeros in the surn is 0 (log q) by Exercise 7.4.4, and 
for each p we have Ipl :2: ~, from which the result follows. 0 

7.4.9 Let 

'lj;(x, q, a) = L A(n). 

Show that the generalized Riemann hypo thesis implies 

'lj;(x, q, a) = rp~q) + 0 (x1/ 2 10g2 qx) 

when (a, q) = 1. 
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We have 
1 

V;(x, q, a) = cjJ(q) L x(a)v;(x, X)· 
x(mod q) 

For X = XO, the trivial character, we have 

V;(x, Xo) = x + O(x1/ 2 Iog2 x) 

by Exercise 7.2.9. For X i=- Xo, we have V;(x, X) = 0 (x1/ 2 Iog2 qx) by 
the previous exercise, from which the desired result follows. 0 

7.4.10 Assuming the generalized Riemann hypothesis, show that there 
is always a prime p « q2 log4 q satisjying p == a (mod q) whenever 
(a,q) =1. 

By Exercise 7.4.9, we have 

V;(x, q, a) = cjJ~q) + 0 (X1/ 2 Iog2 qx) . 

Putting x = Aq2 log4 q for an appropriate constant A gives us the 
required result. 0 

7.4.11 Show that ij q is prime, then 

<p(q _-11) '" /1 (dd) '" x(a) = {01 ij a has order q - 1 
q ~ <p( ) ~ otherwise. 

dlq-l o(X)=d 

where the inner sum is over characters X (mod q) whose order is d. 
Let j (a) = 1 if a is a primitive root and 0 otherwise. Let 9 be a 

primitive root (mod q) and set 

T(gj) = e27rij/q-l, 1::; j ::; q - 1. 

Then T is a multiplicative character (mod q) and all multiplicative 
characters mod q can be written as T k for some k, 1 ::; k ::; q - 1. 

Now write 
j(a) = L ](x)x(a). 

x 

By orthogonality, we see that 

](Tk ) = _1_ L e27rijk/q-l. 
q-1 

(j,q-l)=l 
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The right hand side is a Ramanujan sum and by Exercise 1.1.14 is 
easily evaluated as 

<p(q -1)fL(~) 
(q -1)<PCq~~\)) . 

If we write d = (q - 1, k), then dlq - 1. Moreover, T k has order 
(q - 1)/d. As dranges over the divisors of q - 1, so does (q - 1)/d, 
and the result is now clear. 0 

7.4.12 Let q be prime. Assuming the generaZized Riemann hypothe­
sis, show that there is aZways a prime p < q such that p is a primitive 
root (mod q), for q sufficiently Zarge. 

By the previous exercise, we have that 

<p(q - 1) 2: fL(~) 2: 'Ij;(x, X) 
q - 1 dlq-l <p( ) o(x)=d 

is the number of prime powers pi weighted by log p such that pi is a 
primitive root (modq). The leading term (corresponding to d = 1) 
gives 

<p(q - 1) 'Ij;(x). 
q-1 

For X =1= Xo, we use Exercise 7.4.8 to deduce that the contribution is 

o (<p(q - 1) d(q - 1)x1/ 210g2 qx) , 
q-1 

where d(q - 1) is the number of divisors of q - 1, since the number 
of characters of order d is <p( d). 

Since 'IjJ(x) = x + 0 (x1/ 210g2 x), we see that for x = q, the main 
term is larger than the error term, for q sufficiently large. Moreover, 
if pi < q is a primitive root, so is p < q. 0 

7.4.13 Let q be a prime. Show that the smallest primitive root 
(mod q) is O(2v(q-l)ql/2logq), where v(q -1) is the number of dis­
tinct prime factors of q - 1. 

By Exercise 7.4.11, the number ofprimitive roots (modq) that are 
less than x is 

<p(q-1)x+ <p(q-1) 2: fL(d) 2: (2:x(a)). 
q - 1 q - 1 dlq-l <p(d) o(x)=d a<x 

d>l 
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By the P6lya - Vinogradov inequality (Exercise 5.5.6) we find that 
the innermost sum is 0 (ql/2logq) . Thus, the number of primitive 
roots less than x is 

<p(q - 1) (x + O(2v (q-l) ql/2log q)), 
q-1 

which is positive if x ~ 2v (q-l)ql/2logq. This completes the proof. 
o 
7.4.14 Let q be a prime and assume the generalized Riemann hy­
pothesis. Show that there is always a prime-power primitive root sat­
isfying the bound 0 (4v (q-l) log4 q). 

We examine the solution of Exercise 7.4.12, where we showed that 
the number of prime-power primitive roots is 

<p(q-1) (x + O(2v (q-l)ql/2logq)). 
q-1 

A little reflection shows that d(q - 1) can be replaced by 2v (q-l). 

Setting x = C4v (q-l) log4 q for a sufficiently large constant gives us 
the desired result. 0 

7.4.15 Let q be prime and assume the generalized Riemann hypoth­
esis. Show that the least quadratic nonresidue (mod q) is 0 (log4 q). 

Since 
a {2 if a is a nonresidue, 

1-(-)= 
q 0 otherwise, 

we see that 

equals 

'lj;(x) + O(x1/ 2 log2 qx) 
2 

under the stated hypothesis. If x = C log4 q for a sufficiently large q, 
the result is now clear. 0 

7.4.16 Let q be prime and assume the generalized Riemann hypothe­
sis. Show that the least prime quadratic residue (mod q) is O(log4 q). 

This is clear from the method of the previous exercise. 0 
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7.4.17 Prove that for n > 1, 

where the summation is over zeros p = ß+ir, ß E IR, of the Riemann 
zeta function. 

Let R denote the rectangle oriented counterclockwise with vertices 
3/2 - iT, 3/2 + iT, -1/2 + iT, -1/2 - iT. Clearly, 

1 r ((s) s _ '" p 
21fi } R (( s) n ds - Lt n - n 

p 

where p runs over zeros of ((s) inside the rectangle. Let 11 , ... ,14 

be the four parts of the integral relative to the sides of R starting 
with the vertical one in the half-plane Re(s) > 1 and proceeding 
counterclockwise. Moreover, we have chosen T such that 

uniformly in -2 :S (J" :S 3, which we can do as in the solution of 
Exercise 7.2.7. Thus, 

1 jT ~ (n )3/2+it h = - Lt A( m) - dt 
21f -T m=l m 

T ( (n )3/2 1 ) 
- 1f A(n) + 0 ~ A(m) m Ilogn/ml· 

m#n 

Splitting the summation into the ranges 

m ::; n/2, n/2 < m < 2n, m 2:: 2n 

and handling these sums as in Exercises 7.2.2 and 7.2.3 gives an 
estimate of 0 (n3/ 2) for the error term above. By using the estimate 
of 0 (log2 T) for the integrand, we deduce that 
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Finally, for Js, we use the functional equation to relate (' j(( -1/2+it) 
to (' /((3/2 - it). The f-factor gives rise to a term of the form 

O(logT) 

by Stirling's formula, and after integrating we get that 

Thus, the result is now clear. o 



8 
The Selberg Class 

8.1 The Phragmen - Lindelöf Theorem 

8.1.1 Let j(z) be an analytic function, regular in a region Rand on 
the boundary ßR, which we assume to be a simple closed contour. 1f 
/j(z)/ ::; M on ßR, show that /j(z)/ ::; M for all zER. 

If zER, then by Cauchy's theorem, 

so that 

where 

K-- --1 In I dw I 
- 21f 8R w - z . 

Taking nth roots and letting n -+ 00 gives the result. o 

8.1.2 (The maximum modulus principle) 1f j is as in the previous 
exercise, show that Ij(z)1 < M for all interior points zER, unless 
j is constant. 
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If Zo is an integer point, consider the Laurent expansion of f ab out 
Zo: 

00 

f (zo + reiB) = L anrneinB. 
n=O 

Parseval's formula yields that 

If Zo is an interior point where the maximum is attained, we have 
laol = M and 

M = laol 2 ~ laol 2 + lall 2r2 + ... ~ If(zo)1 2 = 1, 

so that we are forced to have al = a2 = ... = 0 and f is constant. 0 

8.1.5 Show that for any entire function FES, we have 

for some A > 0, in the region 0 ~ Re(s) ~ 1. 

This is an immediate consequence of the functional equation and 
Stirling's formula. Indeed, F(s) is bounded on Re(s) = 2. By the 
functional equation and Stirling's formula, it has polynomial growth 
on Re( s) = -1. By the Phragmen - Lindelöf theorem, it has polyno­
mial growth in the region -1 ~ Re(s) ~ 2. 0 

8.2 Basic Properties 

8.2.4 Show that 

Since 
NF1F2(T) = NFl (T) + N F2 (T), 

the result is immediate from Theorem 8.2.1. 

8.2.5 If FES has degree 1, show that it is primitive. 

o 



8.2 Basic Properties 379 

If Fis not primitive, we can write F = F 1F2 with F 1 i= 1, F2 i= 1. 
But then, deg F = deg F 1 +deg F2 , and by Theorem 8.2.3 and Lemma 
8.2.2, deg F 1 ~ 1 and deg F2 ~ 1 so that deg F ~ 2, a contradiction. 
[Observe that the proof shows that any FES of degree less than 2 
is primitive.] 

D 

8.2.6 Show that any FES, F i= 1, can be written as a product of 
primitive functions. 

We first show that every FES is divisible by a primitive function. 
If F is not primitive, we write F = F 1 GI with F I i= 1 and GI i= 1. 
Since deg H < deg F, we either have F I primitive or not. If not, 
factor F I = F2G2 and in this way we get degF2 < degFI . In fact, 
we have 

0< degFI < degF -1, 

0< degF2 < degFI -1 ::; degF - 2, 

and so on. This cannot go on ad infinitum. Thus, any function FES 
has a primitive factor, F I (say). Write F = FI GI and now proceed 
to decompose GI. Since the degree of each factor is strictly less than 
deg F, the process terminates. D 

8.2.7 Show that the Riemann zeta function is a primitive function. 

((s) has degree 1 by Theorem 5.2.1. Now apply Exercise 8.2.5. 0 

8.2.8 1fx is a primitive character (modq) show that L(s,X) is a 
primitive function of S. 

By Theorem 5.4.1 and Exercise 5.4.5 we see that L(s, X) extends 
to an entire function and has degree 1. D 

8.2.9 1f FES, show that lanl ::; c(E)nE implies that 

We have 
00 00 b 

F(s) = I: ~~ = II exp (I: p~:) 
n=l p k=l 
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so that 
_ F'(s) = ""' kbpk logp 

F(s) Lt pks . 
p,k 

We deduce that 

anlogn = LjbpJ(logp)an/pJ' 
pJln 

Setting n = pk yields 

k-1 

kbpk logp = kapk logp - LjbpJ(logp)apk-j. 
j=l 

We now induct on k. For k = 1, we have ap = bp , and the result is 
clear. 

Assurne that the inequality has been proved for exponents less 
than or equal to k - 1. Then 

k-1 

klbpk I ::; c(E)kpkE + LjlbpJ !c(E)p(k-j)E 

j=l 

< c(,)pk< { k + ~(2j -I)} 
< C(E)pkE (2k -1), 

as desired. o 
8.2.10 Prove the asymmetrie form of the funetional equation for 
((s): 

((1 - s) = 21- s 11"-S (cos S;) f(s)((s). 

We recall that f( s) satisfies 

f(s)f(l - s) = 11"/ sin 11"S, 

by Exercise 6.3.9 and the Legendre duplication formula (Exercise 
6.3.6): 

f(2s)vn = 22S - 1 f(s)f(s + ~). 
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Combining these two facts gives 

By the functional equation far (( s ), we may write 

((1 - s) = 1[1/2-8 r(s/2) ((s) 
f((l - s)/2) 

by Theorem 5.2.1. Putting these together gives the result. 0 

8.2.11 Show that for k E N, 

for some absolute constant C. 

By the previous exercise, 

Since 1imk---+oo ((k + 1) = 1, we get 

as required. o 
8.2.12 Show that 

Deduce that for k = 2,3, ... 

and ((0) = -1/2, where Bk denotes the kth Bernoulli number. 
medskip We specialize the proof of Theorem 8.2.3 to the case of 

the (-function: 

~ -nx = -1 + ~ (( -k)( -x)k 
~e x ~ I . k. 
n=l k=O 
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By Exereise 8.2.11, the power series on the right-hand side eonverges 
for lxi< 27r. The left-hand side is a geometrie series that is easily 
summed to be 

---= 

By Exereise 2.1.7, 

so that 
1 1 00 BkXk - 1 

eX -1 =; + L k! 
k=1 

We may eompare eoeffieients of the two power series to deduee that 

For k odd, k 2: 3, Bk = 0 by Exereise 2.1.8. Henee the formula is 
clear for k odd 2: 3. For k even, we obtain 

((1 - k) = -Bk/k. 

For k = 1, we have ((0) = BI = 1/2, and we reeover the result of 
Exereise 5.2.4. 0 

8.2.13 Let X be a primitive Dirichlet character (mod q) satisfying 

X( -1) = 1. Prove that 

f2 ql/2 (27r) 1/2-8 ( 7rS) 
L(l - s, X) = V -; T(X) q eos"2 r(s)L(s, X), 

where T(X) denotes the Gauss sumo 

By the functional equation (Theorem 5.4.1), we have 

_ ql/2 (7r) 1/2-8 r ( ~) . 
L(l- s,X) = -(-) - () L(s,X)· 

T X q r 1-8 
2 

As in the solution to Exereise 8.2.10, we have 

from whieh the result is easily dedueed. o 
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8.2.14 Let X be a primitive character (mod q) satisfying X( -1) = 1. 
Show that for k E N, 

IL( -k, x)1 ~ Ck!(qj27r)k 

for some constant C = O(y'q). 

We proceed as in Exercise 8.2.11, except that we use the previous 
exercise instead of Exercise 8.2.10. 0 

8.2.15 Let X be a primitive Dirichlet character (modq) satisfying 
X( -1) = -1. Show that 

iq1/2 (27r) 1/2-5 ( 7rS) 
L(l - s, X) = _(27r)-1/2 T(X) q sin 2 r(s + l)L(s, X)· 

This again uses the method of Exercise 8.2.10. By Exercise 5.4.5, 
we have 

_ iq1/2 (7r) 1/2-5 r ( ~) 
L(l- s,X) = T(X) q r( _~) L(s,X)· 

By the formula 

(derived in the solution to Exercise 8.2.10) we obtain the desired 
re~. 0 

8.2.16 Let X be a primitive Dirichlet character (mod q) satisfying 
X(-l) = -1. Show that for k E N, 

IL( -k, x)1 ~ C(k + 1)!(qj27r)k 

for some constant C = O(y'q). 

We proceed as in Exercises 8.2.14 and 8.2.11, except that we use 
the previous exercise to derive the estimate. 0 

8.2.17 Prove that 

~ ( ) -nx = ~ L(-k,X)(-x)k 
~xne ~ k! 
n=l k=O 
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Deduce that for n ;::: 1, 

L(1- n,x) = -Bn;x./n, 

where 

with Bn(x) denoting the nth Bernoulli polynomial. 

From the proof of Theorem 8.2.3, the derivation of the formula 

I=x(n)e-nx = I: L(-k,~[(-x)k 
n=l k=O 

is dear. The left-hand side can be simplified as follows. 

00 

Lx(n)e-nx 

n=l b(mod q) n:=b(mod q) 
q 00 

LX(b)( L e-(qr+b)x) 

b=l r=O 

q -bx 

= LX(b) 1 ~ e-qx 
b=l 

q (q-b)x 

= LX(b) :qX -1 
b=l 

Now, by Exercise 2.1.7, 

Thus, 
e(q-b)x e(1-b/q)qx 

eqx - 1 eqx - 1 

can be expanded as 

00 ( b) qr-lxr-l 
~b 1--LJ r I 
r=O q r. 
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When we insert this in the above formula, we obtain 

00 00 q b ( r 1 

Lx(n)e-nx = L (LX(b)br (l- -)) qXr!-
n=1 r=O b=1 q 

(notice that for r = 0, bo(x) = 1), and since 

q 

LX(b) = 0, 
b=1 

the polar term disappears. We deduce 

( )n-l q b 
L(l-n,x)= -qn LX(b)bn (l--). 

b=1 q 

Recall that B n (x) = bn ( { x }) and that 

(see Exercise 2.5.22), from which the stated result follows. 0 

8.3 Selberg's Conjectures 

8.3.1 Assuming (a) and (b), prove that any junction FES can be 
factored uniquely as a product oj primitive junctions. 

Suppose 
F = F;l .. ·F;r 

is a factorization of F into distinct primitive functions Fi and 

is another factorization of F into distinct primitive functions Gi. 
Then 

F;l ... F;r = G{l ... Gft 

and we may suppose, without loss of generality, that no Fi is a Gj. 
Comparing the pth coefficient of both sides of the above equation, 
we deduce 

r t 

Leiap(Fd = Ljjap(Gj ). 
i=1 j=1 
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Multiplying both sides of the equation by ap(Fr) , dividing by p, and 
then summing over p ~ x gives us 

el log log x + 0(1) = 0(1), 

assuming (a) and (b). Thus, el = 0, a contradiction. This proves the 
unique factorization. 0 

8.3.2 Suppose F, G E Sand ap(F) = ap( G) for alt but jinitely many 
primes p. Assuming (a) and (b), prove that F = G. 

Let us write 

F = F:I .. ·F:r 

G = Fl l ... Flr 

where FI , . .. ,Fr are distinct primitive functions and ei, li are non­
negative integers. We want to show that ei = li for an i. Without 
loss of generality, suppose el =1= h· Then, since 

we have 
Leiap(Fd = Lhap(Fd 

i 

for an but finitely many primes p. Multiplying both sides of the 
equation by ap(FI ), dividing by p, and then summing over p ~ x 
gives 

h ~ lap (:,)12 + ~ f; (~ap(F;~(F,») 

Assuming (a) and (bj gives 

el log log x + 0(1) = h log log x + 0(1), 

whence el = h, a contradiction. Thus, ei = fi, for an i and we have 
F=G. 0 
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8.3.3 If F(s) = .E~=1 ann-s and rJ = Re(s) > rJa(F), the abscissa 
of absolute convergence of F, then prove that 

1 jT "{ an(F) lim - F(rJ + it)yu+ttdt = 
T-)-oo 2T -T 0 

if n = y, 

otherwise, 

for any real y. 

We have 

1 jT u jT 00 "t 
_ F(rJ + it)yu+itdt = JL (~ an ('#..)t )dt. 
2T -T 2T -T n=l nU n 

Interchanging the summation and integration, which is justified 
by absolute convergence of the Dirichlet series, we obtain that the 
above is 

u ~ an (sinTIOg(y/n)) =a +y -
Y nU Tlog(y/n) nf:y 

with the a y term occurring only if y is a natural number. The series 

'"' an 1 
~ nU • I log 1L1 nf:y n 

is easily seen to converge absolutely if n > 2y or n < y /2. The 
intermediate range is a finite sum, and so as T -+ 00, the summation 
in the penultimate step goes to zero as required. This completes the 
proof. 0 

8.3.4 Prove that 

if y> 1, 

if 0 ~ y ~ 1, 

for c > 0 and a, ß > O. 

First, suppose y > 1. We apply contour integration as in Exercise 
4.1.6. Let eR be the contour described by the line segment joining 
c - iR to c + iR and the semicircle SR of radius R centered at c 
enclosing -ß/a. Then, by Cauchy's theorem 

1 1 ySds _ yS _ -2 -ß/o 1 
-. ( ß)2 - Ress=_ß!o ( ß)2 - a y ogy. 
27r2 (R as + as + 



388 8. The Selberg Class 

Thus, 

1 lc+iR ySds 1 h ySds _ + - = a-2y-ß/Ctlogy 
21l"i c-iR (as + ß)2 21l"i SR (as + ß)2 . 

The second integral satisfies 

1
_1_ [ yS ds 1 ~ yc 137r /2 yRcOS rp dcp 
21l"i JSR (as + ß)2 R 7r/2 ' 

and the latter integral is easily seen to be bounded (see Exercise 
4.1.1). Thus, as R --+ 00, the integral goes to zero. 

If now 0 ::; y ::; 1, then we choose the contour 'DR (as in Exercise 
4.1.2) described by the line segment joining c - iR to c + iR and the 
semicircle SR to the right of the line segment of radius R, centered 
at c and not enclosing s = -ß/a. By Cauchy's theorem, 

~ [ ySds = 0 
21l"i IDR (as + ß)2 . 

We now proceed exactly as above. 0 

8.3.5 Let 1 (s) be a meromorphic lunction on C, analytic for Re( s) ~ 
~ and nonvanishing there. Suppose that log 1 (s) is a Dirichlet series 
and that 1 (s) satisfies the functional equation 

H(s) = wH(l - s), 

where w is a complex number of absolute value 1, and 

H(s) = Asn1';lr(ais+ßi) f(s) 
n1;1 r('"YiS + c5i ) 

with certain A, ai, ri > 0 and Re (ßi) , Re( c5i ) ~ O. Show that f (s) is 
constant. 

Since f(s) is analytic in Re(s) ~ ~, and the r-function does not 
have any poles in Re( s) > 0, we see immediately that H (s) is analytic 
and nonvanishing (since fis) in the region Re(s) ~ 1/2. By the 
functional equation, the same is true for Re(s) ::; 1/2. Thus H(s) is 
entire. By Stirling's formula and the functional equation, we see that 
H(s) is of order 1. Since H(s) has no zeros, it follows by Hadamard's 
theorem that H (s) = eas+b for some constants a and b. Hence 

l'(s) dl r' d2 r' 
I(s) = a -logA + ~ rdriS + c5i hi - ~ r(ais + ßi)ai 

t=l t=l 
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is a Dirichlet series (since log f (s) is). The derivative of this is again 
a Dirichlet series. Since 

d (r') 00 1 
ds r(s) = -~ (s+m)2' 

then by Exercise 8.3.4 we deduce 

1 { d (f' (s ) ) 8 

27ri J(u) ds f(s) y dy = 0(1) 

for any y ~ 1. By Exercise 8.3.3, this means that every coefficient of 

~ (I'(s)) 
ds f(s) 

is zero. Since I' (s) / f (s) is a Dirichlet series, this means that f' (s) / f (s) = 
O. Hence f(s) is a constant. 0 

8.3.6 Let F,G E S. Suppose ap(F) = ap(G), ap2(F) = ap2(G) for 
all but jinitely many primes p. Show that F = G. 

Set 
f(s) = I1 Fp(s)/Gp(s). 

p 

Since log Fp (s) is an absolutely convergent Dirichlet series for Re( s) > 
0, we deduce that Fp{s) is absolutely convergent for Re(s) > () and is 
nonvanishing there. Since () < 1/2, this holds for Re(s) ~ 1/2. Since 
ap(F) = ap(G) and ap2(F) = ap2(G) for all but finitely many primes 
p, we can factor 

( ap(F) ap2 (F))-l 
1 + --s- + 28 

P P 

from the numerator and denominator of Fp(s)/ap(s) and write 

f(s) = I1 fp(s), 
p 

where each fp(s) is absolutely convergent for Re(s) ~ 1/2 and non­
vanishing there. Thus, f (s) satisfies the conditions of Exercise 8.3.5. 
Hence f(s) is constant, and that constant must be 1, since 

lim fp(s) = 1 
s-too 
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and consequently lims-7oo f (8) = 1. Therefore, F = G. 0 

8.3.7 Assume Selberg's conjectures (a) and (b). 1f FES has a pole 
of order m at s = 1, show that F(8)/((8)m is entire. 

If G is a primitive function that has a pole at 8 = 1, then 

L ap(G) 

p~x p 

is unbounded as x -+ 00. If G =I- (, by (b) we have 

L ap(G) = L ap(G)a;R) = 0(1), 
p~x p p~x p 

a contradiction. Thus, the only primitive function with a pole at 
s = 1 is the Riemann zeta function. By Exercise 8.3.1, ((8) must 
appear in the unique factorization of F as a product of primitive 
functions. 0 

8.3.8 Assume Selberg's conjectures (a) and (b). Show that for any 
FES, there are no zeros on Re( s) = 1. 

By Exercise 8.3.1, it suffices to prove this for primitive functions 
F. For the primitive function ((s), this is true by Exercise 3.2.5. So 
we may suppose F #- (. By Exercise 8.3.7, we mayaiso suppose F(s) 
has no pole at 8 = 1 and that it extends to an entire function. For 
any t E ~ we can conclude that G(s) = F(s + it) is again primitive. 
By conjecture (b), 

L ap(G)ap(() = 0(1) 

p~x p 

as x -+ 00. This means that 

'"' ap(F) = O( ) 
L...J Hit 1 
p~x p 

for all t E llt Hence, F(s) has no zeros on Re(s) = 1. o 

8.4 Supplementary Problems 

8.4.1 Verify that the primitive functions ((s), and L(s, X), where X 
is a primitive character (modq), satisfy Selberg's conjectures (a) and 
(b). 
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To verify (a) for ((s), we apply Exercise 3.1.8. This also verifies 
(a) for all L(s, X). To verify (b), notice that 

L x(p) = L x(n)A(n) + 0(1) 
p nlogn 

p::;x n::;x 

follows easily by partial summation. 
Now, 

L x(n) logn -+ L'(1, X) 
n 

n<x 

and hence is 0(1). On the other hand, we can write logn = Ldln A(d), 
so that 

L x(n) logn = L X(d)A(d) ( L x(e)). 
n d e 

n::;x d::;x e::;x/d 

The inner sum by Exercise 2.4.6 is 

L(1,X) + O(~). 

Hence 
L x(n)~ogn = L(1, X) L X(d)dA(d) + 0(1) 

n<x d<x - -

by an application of Chebyshev's theorem (Exercise 3.1.5). There-
fore, 

L X(d):(d) = 0(1), 

d<x 

since L(1, X) "# 0 by Exercises 2.3.10 and 2.4.5. The result now fol­
lows easily by partial summation. 

Finally, if Xl and X2 are distinct primitive characters mod ql and 
modq2 (respectively) then we may view X1X2 as an imprimitive char­
acter mod [ql, q2]. Indeed, we may extend both Xl and X2 to charac­
ters mod [ql, q2] in the usual way. If ql = q2, the extended character 
is trivial if and only if Xl = X2· If ql "# q2, then XIX2 is never trivial, 
and so we are done by the previous considerations. 0 

8.4.2 For each F, G in S, define 

(F ® G)(s) = II Hp(s), 
p 
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where 
00 

Hp(s) = exp (L:kbpk(F)bpk(G)p-kS). 
k=l 

If Fp(s) = det(1 - App-s)-l and Gp(s) = det(1 - Bpp-S)-l for 

certain nonsingular matrices Ap and B p, show that 

We use the well-known identity 

( 
00 tr(Ak)tk ) 

det(1 - At) = exp t; k ' 

so that what we must show is 

d ( (A B)) ( ~ tr(Ak)tr(Bk)tk ) 
et 1 - ® t = exp ~ k . 

k=l 

Since the matrices Ap and Bp are nonsingular, the eigenvalues of the 
matrix A Q9 B can be taken to be Aifl-j as Ai runs through eigenvalues 
of A and /-Lj runs through eigenvalues of B. Thus the right-hand side 
of the identity to be proved is det(l - (A ® B)t) as required. 0 

8.4.3 With notation as in the previous exercise, show that if F, G E 
S, then F ® G converges absolutely for Re(s) > l. 

This is the immediate consequence of Exercise 8.2.9. 

8.4.4 If FES and F®F extends to an analytic function for Re(s) ~ 
1/2, except for a simple pole at s = 1, we will say that F is ®-simple. 
Prove that a ®-simple function has at most a simple pole at s = 1. 

Suppose F has a pole of order m at s = 1. Let s be real and 
s -+ 1+ Then 

1 
10gF(s) '" mlog --. 

s-1 

But log F (s) = L p app~) + 0 (1). Since F is ®-simple, we have by 
definition 
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as s -+ 1+. Thus, by Cauchy's inequality 

from which we deduce that Iml S 1, as required. 

8.4.5 If FES and 
F = F:1 F;2 ... F:k 

o 

is a factorization of F into distinct primitive functions, show that 

L -,-la.!....p(-,-F....:...)-,-12 = (ei + e~ + ... + e~) log log x + 0(1), 
p<x p 

assuming Selberg's conjectures (a) and (b). 

We have dearly 

ap(F) = L eiap(Fi ), 
z 

from which 

and the result is now deaL o 
8.4.6 If FES, and F 0 PES show that F is 0-simple if and only 
if F is primitive, assuming Selberg's conjectures (a) and (b). 

One way is dear. If F is primitive, then F is 0-simple. Now sup­
pose F is 0-simple. Then 

L lap(FW = log log x + 0(1). 
p-::;x p 

If F = F:1 F;2 ... F:k is the factorization of F into distinct primitive 
functions, then by Exercise 8.4.5, we get 

from which we deduce that F is primitive. o 
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8.4.7 1f FES is ®-simple and entire, prove that F(l + it) =1= 0 for 
all tE IR. 

Suppose F has a zero on Re( s) = 1. By translating, we may sup­
pose F has a zero at s = 1. Consider 

G(s) = ((s)F(s)F(s)(F ® F)(s). 

Then G(s) is a Dirichlet series that is analytic for Re(s) ~ 1/2. 
Also, logG(s) is a Dirichlet series with nonnegative coefficients. By 
Exercise 3.2.11, G(l + it) =1= 0 for all t E IR. By Landau's theorem 
(Exercise 2.5.14) the abscissa of convergence is areal singularity 0"0 

(say). Thus log G(O") ~ 0 for 0" > 0"0. Hence 

IG(O")I ~ 1 

for 0" > 0"0. By continuity, IG(O"o)I ~ 1. However, 0"0 is a singularity 
of log G(s), which must come from a zero of G(s). Thus G(so) = 0, 
which is a contradiction. Hence, F(l) =1= O. 0 

8.4.8 Let FES and write 

For T > 1 and nE N, n> 1, show that 

L nP = - :Ap(n) +0 (n3/2 Iog2 T) 
I'YI~T 

where p = ß + i'y, ß > 0 runs over the non-trivial zeros of F(s). 

This is a generalization of Exercise 7.4.17 and the proof is similar. 
(The result shows how to reconstruct F(s) from a knowledge of its 
zeros.) 0 

8.4.9 Suppose F, GE S. Let 

Zp(T) = {p = ß + i'y,ß > O,F(p) = 0 andhl ~ T}. 

Suppose that as T ---+ co, 

IZp(T)ßZa(T) I = o(T), 
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where.6. denotes the symmetrie differenee A.6.B = (A \B) U (B \A). 
Show that F = G. 

By the previous exercise, 

-Ap(n) = lim 7r L nP 
T~ooT 

I,I:ST 

where the summation runs over zeros of F(s) with imaginary part, 
satisfying 1,1 ::s: T. Since the zeros of G(s) are the same apart from 
o(T) of them, we find that the above limit is -Aa(n). Thus, F = G, 
as required. 0 



9 
Sieve Methods 

9.1 The Sieve of Eratosthenes 

9.1.2 Prove that there is a constant c such that 

1 e-c 1 
II (1 - p) = log z ( 1 + 0 (log z ) ) . 
p:::;z 

Let V(z) = IIp:::;z (1 - ~). Then 

1 1 
-logV(z) = L - + L p. 

p<z P k?;2 P 
- p";z 

The second surn satisfies 

1 1 1 
LP ~LLk= L (P-l)' 
k?;2 P p<z k>2 P p<z P 
p";z - - -

so that 

-logV(z) = L ~ + Co + O(~), 
p:::;z p 

with 
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On the other hand, we have 

'" logp R(z):= ~ - = logz + 0(1) 
p$.z p 

by Exercise 3.1.7, so that by partial summation 

L ~ = R(z) + t R(t)dt 
p$.z p log z 12 t 10g2 t 

log log z + Cl + oCo~z) 
for some constant Cl. Thus, 

- log V (z) = log log z + (co + Cl) + 0 Co~ z) , 

so that with C = Co + Cl, 

( 1) e-c 
( (1)) 1-- =- 1+0 -II p log z log z ' 

p<z 

as required. 

9.1.4 For z ~ logx, prave that 

xe-"( 
1r(x, z) = (1 + 0(1))-1 -

ogz 

whenever z = z(x) -+ 00 as x -+ 00. 

By Exercise 9.1.2, 

1r(x, z) = x II (1 -~) + 0(2Z ). 

p<z p 

o 

For z $ logx, the error term is O(xO) with (J < 1. The result now 
follows by applying Mertens's theorem. 0 

9.1.5 (Rankin's trick) Prove that 

( 1 )-1 
cp(x, z) ~ x5 II 1 - "8 

p<z P 

for any 6 > O. 
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For any J > 0, we have 

<I> (x, z) S; 
n<x n<x 

pln,*p$z pln,*p$z 

9.1.6 Choose J = 1 - lo~ z in the previous exercise to deduce that 

( log X) 
<I>(x,z) ~ x(logz)exp - logz . 

Choosing J = 1 - TJ with TJ -7 0 as z -7 00, we see that 

<I>(x,z)~x8II(1+ 18). 
p<z p 

Applying the elementary inequality 1 + X S; eX , we obtain 

<I> (x, z) ~ exp (J log x + L 1,,). 
p~z p 

o 

Writing p-" = p-lp'TJ = p-1e'TJ1ogp, and using the inequality 

eX S; 1 + xex , we deduce 

since pS; z. Now choosing TJ = IO~z gives the desired result. 0 

9.1. 7 Prove that 

7r(x, z) = x L fL~d) + 0 (x (log z) exp ( - :::~)) 
dlPz 
d$x 

for z = z(x) -7 (X) as x -7 00. 

Observe that 

'"' fL(d) 7r(x,z) = x Lt d + O(<I>(x,z)), 
dlPz 
d:'Sx 
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since [x / d] = 0 unless d :S x. N ow use Exercise 9.1. 6. 

9.1.8 Prove that 

with z = z(x) -+ 00 as x -+ 00. 

We have 

The last sum is dominated by 

" 1 q>(x, z) 100 q>(t, z)dt 
L.,; d :::; - x + t2 ' 
dlPz X 
d>x 

o 

on using partial summation. Using the estimate derived for q>(t, z) 
in Exercise 9.1.6, we get that the integral is bounded by 

(log z) {OO exp ( _ 110g t ) dt = (1 ) {OO dt 
Jx ogz t ogz Jx t1+1/ 1og z 

This completes the proof. 

9.1.9 Prove that 

~ (log z)2 exp ( - ::~ :). 

1f (x, z) = x V (z) + 0 (x (log z) 2 exp ( - ~:~ : ) ) , 

where 

V(z) = rr (1 -~) 
p<z P 

and z = z(x) -+ 00 as x -+ 00. 

o 

This essentially follows from Exercises 9.1.7 and 9.1.8. 0 

9.1.10 Prove that 
X 

1f(x) ~ -1 -loglogx 
ogx 
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by setting log z = E log x j log log x for some sufficiently small E in the 
previous exercise. 

We have 
7r(x) ~ 7r(x, z) + 7r(z). 

Choosing z as stated shows that 

X 
7r(x, z) ~ -1 -log log x 

ogx 

from Mertens's theorem and Exercise 9.1.9. Here, the implied con­
stant depends on E. 0 

9.1.11 For any A > 0, show that 

A xe-' 
7r (x, (log x) ) "-' All og ogx 

as x -+ 00. 

A pply Exercise 9.1. 9 with z = (log x) A . 

9.1.12 Suppose that 

Show that 

is bounded by 

L w(p) logp ~ J1;logz + 0(1). 
p:S;z p 
pEP 

Fw(t, z):= L w(d) 
d<t 

dlP(z) 

O(t(logztexp ( - ;:;~)). 

We apply Rankin's trick for any 8 > 0, 

Fw(t, z) ~ L w(d)(tjd)8. 
dIP(z) 

Since w is multiplicative (by definition), we see that 

Fw(t, z) ~ exp (810gt + L W(f)) , 
p:S;z p 
pEP 

o 
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on applying the elementary inequality 1 + x :::; eX • Setting r5 = 1 - TJ 
and using the inequality eX :::; 1 + xex , which is valid for x 2: 0, we 
obtain 

Fw(t,z) :::; texp (-TJ log t + L w(P) + TJz1) L w(p) logp) . 
p:S;z p p:S;z P 
pEP pEP 

The hypothesis gives by partial summation that 

so that 

L w(p) :::; I>; log logz + 0(1), 
p<z p 
pEP 

Fw (t, z) «: t exp( -TJ log t + I>; log log z + I>;TJ(log z )z1)). 

Choosing TJ = 1jlog z gives the result. o 
9.1.13 Let C be a constant. With the same hypo thesis as zn the 
previous exercise, show that 

With the notation of Exercise 9.1.12, we have 

and the previous exercise immediately gives the result. o 
9.1.14 (Sieve of Eratosthenes) Suppose there is a constant C > 0 
such that IAdl = 0 for d > Cx. Then 

S(A, P, z) = XW(z) + 0 (x(log zy-+1 exp ( - ~:: :)). 
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By the inclusion - exclusion principle, we have 

S(A, P, z) = L lL(d)IAdl 
dIP(z) 

" Xw(d) 
~ lL(d) d + O(Fw(Cx, z)), 

dl1'(z) 
d5,Cx 

in the notation of the previous exercise. Then, the first sum can be 
rewritten 

so that we can use the estimate of Exercise 9.1.13 on the second sumo 
Exercise 9.1.12 gives an estimate for Fw ( Cx, z). This completes the 
~~ 0 

9.1.15 Show that the number 01 primes p ~ x such that p + 2 is also 
prime is « x(log log x)2 j (log x)2. 

Let A = {n : n ~ x}; P = {p: 2 < P ~ z}, the set of odd primes 
less than or equal to z. For each odd prime p, we distinguish the 
residue classes 0 and -2(mod p), so that w(p) = 2. Then, w(d) 
211(d) , where v(d) is the number of prime factors of d, and Ad 

npldAp. By the Chinese remainder theorem, 

IAdl = xw(d) + Rd 
d 

with IRdl = O(211(d)). Thus with f't, = 2, Exercise 9.1.14 gives 

S(A,P,z) = xW(z) +O(x(logz)3 exp ( - ~:!:)). 

We choose logz = log xjA log log x for an appropriate constant A (in 
fact, A = 5 is permissible). This gives the result, since 

so that an application of Mertens's theorem completes the proof. 0 
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9.1.16 (Brun, 1915) Show that 

L ,1 - < 00 P , 

where p is such that p + 2 is prime. 

Let 1r2(X) be the number of twin primes less than or equal to x. 
By partial summation, the sum is 

(X> 1r2(t)dt (X> (loglogt)2dt 
« J3 t2 «J3 t(logt)2 < 00. 

9.2 Brun's Elementary Sieve 

9.2.1 Show that for r even, 

1r(x, z) ~ xL J.Lr~d) + o(zr). 
dJPz 

Recall that 

1r(X,z) = L L p(d) 
n$x dJ(n,Pz ) 

< L L Pr(d) 
n$x dJ(n,Pz ) 

< L J.Lr(d) [J] 
dJPz 

< L J.Lr(d) L x -d- + lJ.Lr(d) I· 
dJPz dJPz 

The last term is easily seen to be O(zr), as required. 
9.2.3 Show that 

where 0(8) = I1pJ5(P - w(P)). 

o 

o 
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By Möbius inversion, we have 

JLr(d) = LJL(dj8)'l/Jr(tn, 
81 d 

so that 

L JLr(d~w(d) 

dIP(z) 

where f2(8) = ITp I8(P - w(p)). o 

9.2.4 Suppose that w(p) :::; c, and that .Ep$z w~) :::; Cl log log z + C2 
pEP 

for some constants c, Cl, and C2· Show that there are constants C3, C4 

and Cs such that 

Recall that 

so that the surn under consideration is 

< 

< 

L (V(8) - 1) w(8) 
r f2(8) 

8IP(z) 
8>1 

L (;)~!(L;~~)m 
r<m<7r(z) p$z 

- - pEP 

which gives the result. o 
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9.3 Selberg's Sieve 

9.3.1 Let Pz = ITp::;zP be the product of the primes p ::; z. Show that 

7f(x,z)::;L:( L: )..df, 
n::;x dlen,Pz ) 

for any sequence )..d of real numbers satisfying )..1 = 1. 

This is dear from )..1 = 1. The quantity on the right-hand side is 
always nonnegative and is equal to 1 when (n, Pz ) = 1. 0 

9.3.2 Show that if !)..d! ::; 1, then 

where [dI, d2] is the least common multiple of d1 and d2. 

In Exercise 9.3.1, we expand the sequence, 

since )..d = 0 for d > z. Since 

and !)..d! ::; 1, the estimate is dear. 

9.3.3 Prove that 

where (dI, d2 ) is the greatest common divisor of d1 and d2 . 

This is dear from unique factorization. Write 

d1 = IIpO<p, d2 = IIpßp. 
p p 

o 
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Then 

and 

9.3.4 Show that 

[d l , d2J = TI pmax(Qp,ßp) 

p 

(d l ,d2 ) = TIpmin(Qp,ßp). 

p 

By the previous exercise, we can write the left-hand side as 

o 

as required (notice that this is a "diagonalization" of the quadratic 
form). 0 

9.3.51f 

show that 

U,s = L ~d, 
81d 
d~z 

A,s '" T = L.J J.L(d/8)Ud· 
,sld 

(Note that U,s = 0 for 8 > Z, since Ad = 0 for d > Z.) 

This is an application of the dual Möbius inversion formula (Ex-
ercise 1.5.16). 0 

9.3.6 Show that if Al = 1, then 
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attains the minimum value l/V(z), where 

/-L2 (d) 
V(z) = L <jJ(d) . 

d<z 

By Exercise 9.3.4, we must minimize 

subject to the constraint Al = 1. By Exercise 9.3.5 we must minimize 

subject to 

By the Lagrange multiplier method, this minimum is attained when 

for some scalar A. Thus, 

so that 

and the minimum is 

as desired. o 
9.3.7 Show that for the choice of 

U6 = /-L ( 6) / ( <jJ ( 6) V ( z ) ) , 
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we have lAdi:::; 1. 

We have, by Exercise 9.3.5, 

L/1(t)Udt 

/1(d) L /12(t) 
<fy(d) (d,t)=l <fy(t)V(z)· 

t5cz/d 

Hence 

/1(d) II (1 + _1_) L /12(t) 
pld P - 1 t5c z /d <fy( t) 

(t,d)=l 

""' /12 (J) ""' /1 2(t) 
/1(d) ~ <fy(J) ~ <fy(t)· 

81d t5cz/d 
(t,d)=l 

Thus, 

so that I Ad I :::; 1, as required. 

9.3.8 Show that 
X 2 

1f(X, z) :S V(z) + O(z ). 

Deduce that 1f(x) = O(IO~x) by setting z = x 1/2- E • 

We have 

by the following elementary argument. We have 

""' /12 (J) > ""' /12 (J) 
~ (J) ~ J . 
8<z <fy - 8<z 

- -

Now, 
1 L J = logz + 0(1), 

8<z 

o 
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and it is clear that 

where the dash on the sum means that m has a squared prime factor. 
Clearly, 

,1 1 1 1 L m 54 L "8 5 4(logz+O(1)). 
m:::;z Ö:::;z/4 

Thus, 

Now choose z = x1/ 2- E to obtain the desired result. o 
9.3.9 Let j be a multiplicative junction. Show that 

We can write 

where el(d1 ,d2) = d1, e2(d1,d2) = d2· Thus el,e2, (d1 ,d2) are mu­
tually coprime. Therefore, 

Multiplying both sides by j(d1 , d2 ) gives 

as desired, since el and (d1, d2) are coprime, as well as e2 and (d1, d2). 
o 
9.3.11 Show that 

1 
U(z) > "'­- ~ j(o) , 

ö:::;z 

where j(n) is the completely multiplicativejunction defined by j(p) = 

j(p). 



We have 

U(z) = L J-l2(d) . 
d<z h(d) 
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N ow, for square-free n, 

f(n) 

h(n) 
II f(p) - II (1- _1 )-1 

f(p) - 1 - f(p) 
p[n p[n 

~' 1 7 j(d) , 

where the dash on the summation means that dranges over elements 
of the monoid generated by the prime divisors of n. Hence, for square-
free n, 

1 1 ~' 1 
h(n) = j(n) 7 j(d)' 

so that 
U z _ J-l2(d) > _1_ ( ) - L h(d) - L j(8) , 

d<z 8<z - -

as required. o 
9.3.12 Let 7r2(X) denote the number of twin primes p ~ x. Using 
Selberg's sieve, show that 

7r2(X) = 0 (+) . 
log x 

We consider the sequence an = n(n + 2) and count the number 
of elements coprime to Pz . The number of n ~ x such that dl an is 
clearly 

2v (d) ( ) T +0 2v (d) 

by an application of the Chinese remainder theorem. Thus, f(d) = 

dj2v (d) in the notation of Selberg's sieve, and we have 

N(x, z) 
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By Exercise 1.4.1, the error term is easily seen to be 0 (z2 log2 z) . 
By Exercise 9.3.11, 

2w(d) 

U(z) ~ 2:= -d-' 
d~z 

where w(d) is the number of prime factors of d counted with mul­
tiplicity. By partial summation (using the result of Exercise 4.4.18) 
we deduce 

2w (d) 2:= -d- '" c(log z)2 
d~z 

for some nonzero constant c. Thus, 

x (2 2) N(x, z) « (log z)2 + 0 z log z . 

The number of twin primes is clear ly less than or equal to z + N (x, z) 
for any value of z. Choosing z = x1/ 4 (say) gives us the required 
~~. 0 

9.3.13 (The Brun - Titchmarsh theorem) For (a, k) = 1, and k ::; x, 
show that 

(2 + E)X 
7r(x, k, a) ::; <p(k) log(2x/k) 

]or x > XO(E), where 7r(x, k, a) denotes the number 0] prim es less 
than x which are congruent to a (mod k) . 

We consider the set of numbers n ::; x, n == a (mod k) that are 
not divisible by primes p such that p ::; z and (p, k) = 1. Clearly, the 
primes counted by 

7r(X, k, a) - 7r(z, k, a) 

are contained in this set. In the notation of the Selberg sieve, we 
obtain 

N(d) = :d + 0(1), 

and the upper bound becomes 

By Exercise 9.3.11, 
1 

U(z) ~ 2:= "d. 
d<z 

(d,k)==l 
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Now, 

k II( 1)-1 ""' 1 1 -k U(z) ~ 1 - - ~ d ~ L -, 
4>( ) pik P d~z m~z m 

(d,k)=l 

and the latter quantity is asymptotic to log z. This gives a final 
estimate of 

7r(x,k,a) :::; 4>(k)~ogZ + O(z2), 

and choosing z = (2x/k)1/2-E gives the final result. D 

9.3.14 (Titchmarsh divisor problem) Show that :Lp<x d(p - 1) 
O(x), where the sum is over primes and d(n) denotes the divisor 
function. 

We have, trivially, 

so that 

d(n):::; 2 L 1, 
dln 

d$..fo 

L d(p-1):::; 2 L 7r(x,d, 1). 

By an application of the Brun - Titchmarsh theorem we get 

L d(p - 1) ~ lox x L 4>t8)" 
p~x g 6~Vx 

By Exercise 4.4.14 (or the weaker 4.4.13) we are done. 

9.4 Supplementary Problems 

9.4.1 Show that 

p<x 
p=l (mod k) 

1 log log x + log k 

P ~ cp(k) , 

where the implied constant is absolute. 

By partial summation, we have 

pS;x 
p=l(mod k) 

~ = 7r(x, k, 1) + {X 7r(t, k~ l)dt. 
P x J2 t 

D 
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We have the trivial estimate 7r(x, k, 1) ::; xjk, so the first term is 
negligible. 

For the integral, we break the interval of integration into two parts: 
[2, k2] and [k2 , x]. On the first interval we use the trivial estimate 
to get an estimate of 0 ( (log k) j k). On the second interval, we use 
the Brun - Titchmarsh theorem (Exercise 9.3.13) to obtain the final 
~~. 0 

9.4.2 Suppose that P is a set 01 primes such that 

1 2: - = +00. 

PEP P 

Show that the number 01 n ::; x not divisible by any prime pEP is 
o(x) as x -+ 00. 

We apply the sieve of Eratosthenes. The number is clearly bounded 
by 

for any value of z. Now, for 0 < x < 1, 

so that 1 - x < e-x . Hence the bound in question is 

Since 

the result follows upon choosing z = log x. o 

9.4.3 Show that the number 01 solutions 01 [d1, d2] ::; z is O(z(log z)3). 
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The number in question is clearly 

< L [d Z d 1 L <jJ(J) 
dl ,d2 'S.z 1, 2 8l dl,d2 

< ZL<jJ(J)(L~r «Z(logz)2L<jJ~~) 
8'S.z 81d 8'S.z 

d<z 

« z(log z)3, 

as required. 

9.4.4 Prove that 

L 1 = 0 (loglOgx) 
plog(x/p) log x ' 

p'S.x/2 

where the summation is over prime numbers. 

o 

We subdivide the interval [1, x /2] into subintervals of the form 
I j = [e j , eH 1] . We estimate 

111 
L plog(x/p) ::; log(x/e j ) L p' 
PE~ PE~ 

By Chebyshev's theorem, 

1 "(ej ) 1 L - «e-J --:- «-;-. 
pElj p J J 

We need to estimate 

log(x/2) 1 I I 
~ " = 0 ( og og X) 
~ jlog(x/eJ ) log x 

by an easy partial summation. o 
9.4.5 Let 1Tk(X) denote the number of n ::; x with k prime factors 
(not necessarily distinct). Using the sieve of Eratosthenes, show that 

() x (A log log x + B) k 

1Tk X ::; kll .ogx 

for some constants A and B. 
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We prove it by induction on k. For k = 1, this is Exercise 1.5.12. 
Clearly, 

1 
1l"k(X) ::; k L 1l"k-I(X/P), 

p-:;'x/2 

since a number PI ... Pk ::; X is counted k times in the summation 

L 1l"k-I(X/P)· 
p-:;'x/2 

(Also, we may suppose that each Pi ::; x/2, since k 2:: 2.) By the 
induction hypothesis and Exercise 9.4.4, we are done. 0 

9.4.6 Let a be an even integer. Show that the number of primes P ::; x 
such that P + a is also prime is 

where the implied constant is absolute. 

We let an = n( n + a) and apply the Selberg sieve. For P, we take 
the set of all primes, and in the notation of Theorem 9.3.10 we take 
2 < z ::; y'x. If n > y'x, then an == 0 (mod p) implies that either n 
or n + a is composite. Thus, the number to be estimated is less than 
or equal to 

y'x + N(x, z). 

Let us write each square-free d as 

where the Pi 's divide a and the qi 's are coprime to a. By the Chinese 
remainder theorem it is easily seen that for square-free d, 

where Rd ::; 2w (d) and g(d) is the completely multiplicative function 
defined by 

g(P) ~ { 
2/p if (p, a) = 1, 

1/p if pla. 
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Thus, by Exercise 9.3.11 and Theorem 9.3.10, we obtain that the 
number of primes in quest ion is 

:::; JX+ UXz +o( L 2W (d)). 
( ) d<z2 

The error term is easily seen to be 0 (z2 log z). As for the other term, 
we have 

where 

1 
U(z) 2:: L (m)' 

m<zg 

2Wa (m) 
g(m) =--

m 

with wa(m) equal to the total number (including multiplicity) of 
prime factors of m that are coprime to a. If we let da (m) be the num­
ber of divisors of m coprime to a, then we see that 
g(m) 2:: da(m)/m. Hence 

where ,(n) is the product of the distinct pnme divisors of a. 
Rearranging the sums, we find that the above sum is 

00 1 >""­-L-t 
t=l m<z 

m[t,l'(t/m)[a 
mit 

1'(t/m)[a 

The inner sum is clearly greater than or equal to d(t). Thus 

( 1) d(t) 
U(z) 2:: II 1 - p L -t . 

p[a t~z 

By Exercise 2.5.9, this gives 
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Choosing z = x 1/ 4 and observing that 

gives the final result. o 
9.4.7 Let k be an even integer, k ~ 1. Show that the number of 
primes p ~ x such that kp + 1 is also prime is 

We proceed as in Exercise 9.4.6 and take the sequence 
an = n(kn + 1). As before, we obtain 

x 
N(d) = g(d) + Rd 

with IRdl ~ 2w(d), and g(d) as in Exercise 9.4.6. We proceed as in 
the previous exercise to deduce the result. 0 

9.4.8 Let k be even and satisfy 2 ~ k < x. The number of primes 
p ~ x such that p - 1 = kq with q prime is 

x 
~ 2 . 

<p(k) log (xjk) 

We substitute x j k for x in the previous exercise and observe that 
we have actually proved 

II (1 - t) -\0;2 x 
pik 

as the upper bound. Since the product is kj<p(k), the result follows. 
D 

9.4.9 Let n be a natural number. Show that the number of solutions of 
the equation [a, b] = n is d(n2 ), where d(n) is the number of divisors 
ofn. 
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Clearly, a and b can only have prime factors dividing n. Writing 

we must have vp(n) = max(vp(a), vp(b)). The number of solutions 
for this latter equation is enumerated as folIows. We can set vp (a) = 

vp(n) and vary vp(b) between 0 and vp(n) or the other way around. 
But we have counted the pair (vp(a), vp(b)) = (vp(n), vp(n)) twice. 
Thus the number of solutions is 

II (2vp (n) + 1) = d(n2 ). 

pln 

o 
9.4.10 Show that the error term in Theorem 9.3.10 can be replaced 
by 

o( L d(a2 )IRa l). 
a<z2 

By the previous exercise, the number of solutions of [d1, d2l = a is 
d(a2), and we are done. 0 

9.4.11 Show that 

'"'" p-1 ( x ) 
Lt 'P (p - 1) = 0 log x ' 
p<x 

where the summation is over prime numbers. 

Observe that 

n (1) -1 (1) -=II 1-- «II 1+-, 
'P(n) I p I p 

so that 

Therefore, 

pn pn 

n ,,1 
-(-) «Lt-· 'P n n 

dln 

" p - 1 " 7r(x, d, 1) 
Lt ( 1) « Lt d . 
p~x 'P P - d~x 
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The latter sum is split into two parts: d ~ .jX and d > .jX. On 
the second part we use the trivial estimate 7r(x, d, 1) ~ x/d, and on 
the first part, we use the Brun - Titchmarsh theorem to deduce the 
desired estimate. 0 

9.4.12 Prove that 

II (1 _ ~) « -,---1---:--
p (logxY· 

T<P~X 

We have the inequality 

easily verified to be valid for x ::::: O. Indeed, let f(x) = e-x + x - 1. 
Then f'(x) = _e-x + 1, which is nonnegative for x::::: O. Hence, f(x) 
is increasing, so that f(x) ::::: f(O) = 0, for x::::: o. This fact, combined 
with the elementary fact 

1 L - = log log x + 0(1), 
p~xp 

gives the desired result. D 

9.4.13 Prove that for some constant c > 0, we have 

d(n2) L -(n) = c(10gx)3 + 0 (10g2 x). 
n~x r.p 

We consider the Dirichlet series 

00 d(n2) ( 3 ) 
f(8) = ~ r.p(n)ns = 1] 1 + pS(p - 1) +... . 

We see that g(s) = f(8 -1) has a pole of order 3 at 8 = 1. Moreover, 
we can write g( 8) = (3 (8 )h( 8), where h( 8) is regular for Re( 8) > 1/2. 
Hence by the methods of Chapter 4, we deduce that 

L d(n2 )n/r.p(n) rv qx(10gx)2. 
n<x 

The result now follows by partial summation. o 
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9.4.14 Let d(n) denote the number 01 divisors 01 n. Show that 

L d2 (p - 1) = 0 (x log2 X log log x), 
p::;x 

where the summation is over prime numbers. 

The sum in quest ion is 

L 7r(x, [d1, d2], 1) = L 7r(x, n, 1)d(n2 ) 

[d1 ,d2l::;x n::;x 

by Exercise 9.4.4. By the Brun - Titchmarsh theorem, this latter 
sum is bounded by 

'" xd(n2 ) 
« L cp(n) log;!C' 

n<x n 

We split the summation over dyadic intervals of the form [2k , 2k+ 1] = 
h (say). The sum is 

where N = [logxj log 2]. The inner sum by the previous exercise is 
O(k2 ), and we must estimate 

N-l 

X L ~(N - j)2 
. 1 J J= 

« xN2logN = O(xlog2xloglogx), 

as desired. o 

9.4.15 Show that the result in the previous exercise can be improved 
to O(x log2 x) by noting that d2 (n) ::; d4(n), where d4(n) is the num­
ber 01 ways 01 writing n as a product 01 four natural numbers. 
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If we write n = dld2d3d4 ::; x, then we must have some di ~ n 1/ 4 . 

It is than not difficult to see that 

Ld2(p -1) < Ld4 (P -1) 
p~x p~x 

« L 1r(x, d1d2d3, 1). 
dld2d3~x3/4 

Now apply the Brun - Titchmarsh theorem (Exercise 9.3.13) to get 
the desired result. 0 



10 
p-adic Methods 

10.1 Ostrowski 's Theorem 

10.1.1 11 F is a field with norm 11· 11, show that d(x, y) = Ilx - yll 
defines a metne on F. 

We may suppose 0 i= 1 in F, in which case 11111 = 111112 implies 
11111 = 1. Hence 11 - 1112 = 1 gives 11 - 111 = 1. Now, d(x, y) = 0 
{::} Ilx - Yll = 0 {::} x = Y; also, d(x, y) = d(y, x), since 11 - 111 = l. 
Finally, d(x, y) = IIx - ylI ~ IIx - zll + IIz - xII = d(x, z) + d(z, x), 
which is the triangle inequality. 0 

10.1.2 Show that I ·Ip is a norm on Q. 

Clearly Ixlp = 0 if and only if x = O. Also, we can write x = 
pVp(x)XI, Y = pVp(Y)YI with XI,YI coprime to p. Then, it is clear 
that IxYlp = IxlplYlp· To prove the triangle inequality, suppose first 
that IIp(x) i= IIp(Y) and without loss of generality IIp(x) < IIp(Y). 
Then x + Y = pVp(x)XI + pVp(Y)YI = pvp(x) (Xl + pVp(Y)-Vp(X)YI) , so 

that Ix + Yl p ~ Ixlp = max(lxlp, IYlp) in this case. If IIp(x) = IIp(Y), 
the number Xl + YI when written in lowest terms has denominator 
coprime to p. Thus, 
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in this case also. Thus, we have the triangle inequality satisfied in a 
sharper form. 0 

10.1.3 Show that the usual absolute value on Ql is archimedean. 

We must show that Ix + Yl :::; max(lxl, lyl) is not satisfied for some 
pair of rational numbers x, y. If x > Y > 0, we have Ix + yl = x + Y > 
x= lxi. 0 

10.1.4 1f 0 < c< 1 and p is prime, define 

_ {CVp(X) if x =1= 0 
IIxll - 0 if x = 0 , 

for all rational numbers x. Show that 11 . 11 is equivalent to I . Ip on 

Ql. 

Since vp(x + y) :::; min(vp(x), vp(Y)) the result is clear. 0 

10.1.6 Let F be a field with norm 11 ·11, satisfying 

IIx + ylI :::; max(lIxll, lIylI)· 

1fa E F andr > 0, letB(a,r) be the open disk{x E F: IIx-ali < r}. 
Show that B(a, r) = B(b, r) for any b E B(a, r). (This result says 
that every point of the disk is the 'center' of the disk.) 

If x E B(a, r), then IIx-all < r, so that Ilx-bll = II(x-a)+(a-b)11 
:::; max(lIx - all, Ila - bl I) < r, so that x E B(b, r). The converse is 
also clear. 0 

10.1. 7 Let F be a field with 11 . 11. Let R be the set of all Cauchy 
sequences {an}~=l. Define addition and multiplication of sequences 
pointwise: that is, 

{an}~=l x {bn}~=l = {anbn}~=l· 

Show that (R, +, x) is a commutative ring. Show further that the 
subset R consisting of null Cauchy sequences (namely those satisfying 
lIanll -+ 0 as n -+ 00) forms a maximal ideal m. 

We must first show that the sum and product of two Cauchy se­
quences is again Cauchy. Let E > O. Choose NI such that Ilan -am II < 
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E/2 for n,m 2: NI· Choose N2 such that Ilbn - bmll < E/2 for 
n, m 2: N 2 . Then, for N = max(NI, N 2 ), we have 

II(an + bn) - (am + bm)11 < Ilan - amll + Ilbn - bmll 
< E/2 + E/2 = E, 

for n, m 2: N. Thus, the sum of two Cauchy sequences is again 
Cauchy. Now let K be such that Ilanll :::; K, Ilbnll :::; K for all n (this 
is clear from the Cauchy property). Then given E > 0, choose MI 
such that for n,m 2: MI, we have Ilan - amll < E/2K. Let M2 be 
such that Ilbn - bmll < E/2K for n,m 2: M2 . For M = max(MI,M2) 

and n, m 2: M, we have 

Ilanbn - ambmll < Ilanllllbn - bmll + Ilbmllllam - anll 
< E/2 + E/2 = E. 

Thus, the product of two Cauchy sequences is again Cauchy. There­
fore R is closed under taking sums and products. The other ring 
axioms are easily verified. Clearly, the sum and product of two null 
sequences is again a null sequence. It is also clear that given a null 
sequence {an}~=1 and a Cauchy sequence {bn}~=1 E R, {anbn}~1 
is again a null sequence. Therefore, the null sequences form an ideal 
m of R. To show that m is a maximal ideal, it suffices to show that 
R/m is a field. To do this, we must show that any nonzero element 
has an inverse. Thus, given {an}~=1 rt m, we know that there is an 
EI > 0 such that lan Ip > EI for all n sufficiently large. By adjust­
ing a few of the initial elements (if necessary) we may suppose that 
an =I- 0 for all n, because the adjusted sequence would still be in the 
same equivalence class (mod m). It is now clear that {l/an}~=1 is a 
Cauchy sequence and is inverse to the given sequence. Thus, R/m is 
a field and m is a maximal ideal. D. 

10.1.9 Show that 

is a ring. (This ring is called the ring of p-adic integers.) 

Each x E Qp is a Cauchy sequence, say {an} ~=I' We have defined 
Ixlp = limn --+oo lanlp. Thus, lanlp :::; 1 for n sufficiently large, since 
the values taken on by lanlp are integral powers of p. If x, Y E Qp are 
such that Ixpl :::; 1 and IYpl :::; 1, then writing Y = {bn}~=I' we see 
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that lan + bnlp ::; max(lanlp, Ibnlp) ::; 1 for n sufficiently large. The 
same is true for lanbnlp = lanllbnl. Thus, it is clear that Zp is a ring. 
This completes the proof. 0 

10.1.10 Given x E Q satisfying Ixlp ::; 1, and any natural number 
i, show that Ix - ailp ::; p-i. Moreover, we can choose ai satisfying 
0::; ai < pi. 

Let x = alb, with (a, b) = 1. Since Ixlp ::; 1, p does not divide b, 
so that pi and b are coprime. We can therefore find integers u and v 
such that ub + vpi = 1. Let ai = ua. Then 

lua - ~Ip = 1~lplub -llp 

< p-i, 

so that ai does the job. By translating ai by a multiple of pi we can 
ensure 0 ::; ai < pi, and the above inequality is not altered. 0 

10.1.12 Show that the p-adic series 

converges if and only if Icnlp -+ O. 

It is clear that ifthe series converges, then lenlp -+ o. Now suppose 
lenlp -+ o. Let SN = 2:;;'"=1 en· Since Qp is complete, it suffices to show 
that {SN}~=1 is Cauchy. We have for M > N, 

ISM - sNlp ICN+l + CN+2 + ... + cMlp 

< max (ICN+llp, ICN+2Ip,··· ,ICMlp), 

which goes to 0 as N -+ 00. 

10.1.13 Show that 

converges in Qp. 

00 

Ln! 
n=1 

o 

Clearly, In!lp -+ 0 as n -+ 00, and we are done by Exercise 
10.1.12. 0 
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10.1.14 Show that 
00 

Ln.n! =-1 
n=1 

in Qp. 

We have 
N 

SN = Ln. n! = (N + I)! - 1, 
n=1 

as an easy induction argument shows. 
Indeed, SI = 2! - 1 = 1 and 

SN+l = SN + (N + I)(N + I)! = (N + 2)! - 1 

by the induction hypothesis. Thus, limN---+oo SN = -l. 

10.1.15 Show that the power series 

00 n 

L:! 
n=O 

1 

converges in the disk Ixl p < p - p-l . 

The power of p dividing n! is 

Therefore, 

so that 
Ixn jn!lp < Ix l;pn/(p-l) , 

which goes to 0 as n -+ 00. 

10.1.16 (Product formula) Prove that for x E Q, 

where the product is taken over alt primes p including 00. 

This is just arestatement of unique factorization. 

D 

D 

D 
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10.1.17 Prove that for any natural number n and a finite prime p, 

1 
Inl p 2:: Inl oo ' 

This also is clear from 

and 

o 

10.2 Hensel's Lemma 

10.2.1 Show that x2 = 7 has no solution in tQs. 

If it did, then we could write x as a 5-adic number 

The 5-adic expansion of 7 is 2 + 1 . 5, so that N = O. Thus 

Reducing (mod5) shows that aö == 2 (mod5) has a solution, which 
is not the case. 0 

10.2.4 Let f(x) E Zp[xJ. Suppose that for some N and ao E Zp 
we have f(ao) == 0 (modp2N+1) , f'(ao) == 0 (modpN) but f'(ao) :j:. 
o (modpN+l). Show that there is a unique a E Zp such that f(a) = 0 
and a == ao (mod pN+1). 

We proceed as in the proof of Theorem 10.2.3. Write f(x) 
2.:i CiXi . We will solve inductively 

f(an) == 0 (mod p2N+n+1) 

satisfyingan +1 == an (mod pN+n+1) , f'(an) == 0 (modpN) andf'(an):j:. 
o (modpN+1) . Writing an+l = an + tpN+n+1, we need to solve 

f(an + tpN+n+l) == 0 (mod p2N+n+2) , 
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which reduces (as before) to 

f(an) + pN+n+ltf' (an) == 0 (mod p2N+n+2) . 

We can divide through by p2N +n+ 1, since 

f'(an) == f'(ao) == 0 (modpN) , 

which gives a congruence (modp) since f'(an)jpN is coprime to p 
Thus, we can solve for t. The sequence {an}~=l is Cauchy, and its 
limit satisfies the required conditions. D 

10.2.5 For any prime p and any positive integer m eoprime to p, 
show that there exists a primitive mth raot of unity in Qp if and only 
if ml(P - 1). 

First suppose ml(P - 1). The polynomial f(x) = xm - 1 has m 
distinct roots (modp) because (ZjpZ)* is a cyclic group of order 
(P - 1). Moreover, each of these roots lifts to Zp by Hensel's lemma. 
Among the roots (modp), precisely cp(m), where cp(m) denotes Eu­
ler's function, have order exactly m. For the converse, notice that if 
a E Qp such that a has order m then, since f (x) is monic, a E Zp 
and a is an element of order m (modp). Thus, ml(P - 1). D 

10.2.6 Show that the set of (p - l)st roots of unity in Qp is a eyclie 
graup of order (P - 1). 

This is again a consequence of Hensel's lemma. Each of the residue 
classes modp lifts to a unique (P - l)st root of unity in Zp. It is dear 
that the set of such roots of unity is a group. The cyclicity follows 
from the fact that there is an element of order (P - 1) established in 
the previous exercise. D 

10.2.7 (Polynomial form of Hensel's lemma) Suppose f(x) E Zp[x] 
and that there exist gl, h1 E (ZjpZ)[x] sueh that f(x) == gl(X) h1(x) 
(modp), with (g1, ht) = 1, gl (x) monie. Then there exist polynomials 
g(x), h(x) E Zp[x] sueh that g(x) is monie, f(x) = g(x)h(x), and 
g(x) == gl(X) (modp), h(x) == h1(x) (modp). 

The idea is to construct two sequences of polynomials gn and hn 
such that 

gn+l == gn(modpn), hn+l == hn(modpn), 

and f(x) == gn(x)hn(x)(modpn), with each gn monic and of degree 
equal to deg gl and then take the limit. The idea is as in Hensel's 
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lemma. We do this first for n = 2. Write g2(X) = gl(X) +prl(X), for 
some polynomial rl(x) E Zp[x]. Similarly, h2(x) = h1(x) + PSl(X). 
We want 

That is, 

Since f(x) == gl(x)h1(x) (modp), we can write f(x) - gl(x)h1(x) = 
pk1(x) for some k1(x) E Zp[x]. Therefore, we get 

Since (gI, h1) = 1, we can find polynomials a(x), b(x) such that 

a(x)gl(X) + b(x)h1(x) == 1 (modp). 

If we set h(x) = b(x)k1(x), Sl(X) = a(x)k1(x), these polynomials 
almost work for rl, SI. We have to ensure that deg g2 = deg gl and 
that g2 is monie. By the Euclidean algorithm for (Z/pZ)[x], 

with degrl < deggl. Set Sl(X) = Sl(X) + h1(x)q(x); then 

as required. Also, since deg rl < deg gl, we have g2 monic and 
degg2 = deggl. We now continue in this way for g3, g4, ... and 
take the limit. O. 

10.2.9 Show that for p =1= 2, the only solution to x 2 == 1 (modpn) is 
x = ±1, for every n ~ 1. 

For n = 1, this is clear. Since the polynomial f(x) = x2 - 1 
satisfies f'(x) = 2x and f'(±l) =1= 0 (modp) (since p =1= 2), we ean 
apply Hensel's lemma to obtain that both x == 1 (modp) and x == 
-1 (modp) extend to p-adic solutions. These are clearly x = ±1. 0 
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10.3 p-adic Interpolation 

10.3.1 Show that there is no continuous function f : Zp -+ Qp such 
that f(n) = n! 

Let x E Zp \ Z. We want n! -+ f(x) as n -+ x. But n! is getting 
p-adically doser to ° as n -+ x (since n gets large in the usual sense 
as n -+ x). Therefore, liIDn-tx n! = 0, so that there is no continuous 
p-adic function interpolating the factorials. 0 

10.3.2 Let p =1= 2 be prime. Prave that for any natural numbers n, S 

we have 
pS_1 

rr (n + j) == -1(modpS). 
j=l 

(n+j,p}=l 

The numbers n, n+ 1, ... ,n+ps -1 form a complete set of residues 
mod pS. The product therefore is congruent to the product of all the 
coprime residue classes modps. Now, in any abelian group A, 

since we can pair 9 and 9-1 in the left-hand product. By Exercise 
10.2.9, 

x2 == 1 (modpS) 

has only 2 solutions, namely x = ±l. Thus, 

pS_1 rr (n + j) == -1 (modpS). 
j=l 

(n+j,p}=l 

(Notice that for s = 1, n = 0, this is just Wilson's theorem.) 0 

10.3.3 Show that if p =1= 2, 
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We have 

IIJ 
j-::;k+ps 
(j,p)=l 

II J II 
j-::;ps pS <j-::;k+ps 

(j,p)=l (j,p)=l 

- II j(modpS ) 

"<k J_ 
(j,p)=l 

by application of Exercise 10.3.2. Therefore, 

10.3.4 Prove that for p i= 2, 

J 

o 

We have r p(n) = (-1)n an- l , in the notation of the previous ex­
ercise. Thus, 

which gives the result. (Note that pis odd.) 

10.3.5 Let 
n = ao + alP + a2p2 + ... , 

k = bo + blP + b2p2 + . . . , 

be the p-adic expansions of n and k, respectively. Show that 

We have 

o 

Now compare coefficients of xk on both sides. Since k = bo+blp+··· 
is the unique p-adic expansion, the result is now evident. 0 
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10.3.6 1f p is prime, show that 

for 1 ~ k ~ pn - l. 

The p-adic expansion of pn is just pn, so that ao = al = 
an-l = 0 from which the result now follows. 0 

10.3.7 (Binomial inversion formula) Suppose 

Show that 

and conversely. 

Consider the multiplication of formal power series: 

It is easily seen that 

Thus, the given relation for bn implies 

OOb n 00 n 
~~=ex~anx 
~ n! ~ n! 
n=O n=O 

from which the result is dear. o 
10.3.8 Prave that 

if n = m, 

otherwise. 
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Put 

{ 
(_1)m if k=m, 

ak = 
o otherwise. 

In the notation of the previous exercise, 

so that 

if n = m, 

otherwise, 

as desired. o 
10.3.9 Define 

Show that 

/}.n f(x) = f (~) /}.n+j f(x - m) . 
. 0 J J= 

It suffices to show that 

f(x) = f (~)/}.j f(x - m), 
j=O J 

for the result follows by applying the operator /}. n to both sides of 
the equation. But then 

f (~) t ({)(-l)j-kf(x-m+k) 
J=O J k=O 

f ( _l)k f (x - m + k) f (~) ({) ( -l)j , 
k=O j=o J 

and the inner surn is 0 unless k = m, in which case it is (_l)m, by 
Exercise 10.3.8. Thus, the result is immediate. 0 
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10.3.10 Prove that 

with an (1) defined by 

For m = 0, the formula is dear. By the previous exercise, 

tJ.nf(m) = f (rr:)tJ.n+jf(O) . 
. 0 J J= 

Now, 

tJ.nf(m) = t (~)(-l)n-kf(k+m), 
k=O 

and we need only observe that tJ.n f(O) 
proof. 

10.3.11 Show that the polynomial 

(~) = { :(X-')~\X-n+') 

an (f) to complete the 
o 

if n ~ 1 

if n = O. 

takes integer values for x E Z. Deduce that 

for all x E Zp. 

For x a natural number, this is dear. If x = -m (m E N) then 

The polynomial (~) is continuous. Since Z is dense in Zp, it follows 
that for all x E Zp 
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10.3.13 If f(x) E qx] is a polynomial taking integral values at 
integral arguments, show that 

for certain integers Ck· 

This is purely formal, and a consequence of Exercise 10.3.7. Indeed, 
set 

an(f) = t (~) (_l)n-k f(k), 
k=O 

which gives a sequence of integers, since the f(k) are all integers. By 
the binomial inversion formula, 

Let D be the degree of f. Set 

Now, for 0 ::; n ::; D, 

Since the polynomials f{x) and f*{x) have the same degree and 
agree on D + 1 points, we must have f(x) = f*(x). This completes 
the proof. 0 

10.3.14 If n == 1 (modp), prove that npm == 1 (modpm+1). Deduce 
that the sequence ak = n k can be p-adically interpolated. 

We prove the congruence by induction. For m = 1, we may write 
n = 1 + tp, for some t, so that nP = (1 + tp)P == 1 (mod p2). Assurne 
that the result has been shown for m ::; n. Then, we must show that 
that n pn == 1 (mod pn+2). By induction, we have npn = 1 + j pn+l 

for so me j. Hence, n pn+1 = (1 + j pn+1)p == 1 (mod pn+2) as required. 
To prove that the sequence of ak 's can be p-adically interpolated, it 
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suffices to show that if k == k'(modpm), then ak == ak,(mod pm+1). 
Indeed, we have 

nk - k' == 1(modpm+1) 

by what we have just shown. 

10.3.15 Let (n,p) = 1. 1f k == k' (mod (p - l)pN), then show that 

nk == n k' (mod pN+l). 

We have to prove 

But this follows from Euler's theorem. 

o 

o 

10.3.16 Fix So E {O, 1, 2, ... ,p- 2} and let Aso be the set of integers 
congruent to So (modp - 1). Show that Aso is a dense subset of Zp. 

This is an application of the Chinese reminder theorem. Given 
m E Zp, we must find an integer n such that n == m(modpN) and 
n == so(modp - 1), which we can do since p and p - 1 are coprime. 
o 
10.3.17 1f (n,p) = 1, show that f(k) = n k can be extended to a 
continuous function on Aso. 

For s E Aso, we write s = So + (p - 1)SI, and hence f(s) = 
n So (nP- l )BI. Since nP- l == 1 (modp), the function (nP- l )SI can be 
p-adically interpolated for all SI E Zp by Exercise 10.3.14. Thus, f 
extends to a continuous function on Aso. 0 

10.4 The p-adic (-Function 

10.4.1 Verify that J1k extends to a distribution on Zp. 

We must verify that 

p-l 

J1k(a + pnZp ) = L J1k(a + bpn + pn+1zp ). 

b=O 
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The right-hand side equals 

p-l 
(n+l)(k-l) '" b (a + bpn ) p ~ k n+l . 

b=O P 

After multiplying both sides by p-n(k-l), the identity to be proved 
reduces to 

p-l 
bk(PX) = pk-l L bk (x +~) , 

b=O P 

and this is easily deduced from the power series generating function 
for the Bernoulli polynomials 0 

10.4.3 Show that J-Ll,a is a measure. 

We have 

where [.] denotes the greatest integer function. Thus, 

( N71 ) _ 1 [o:a] (1/0:) - 1 
J-Ll,a a + p !LJp - - N + 2 . 

0: P 

Since 0: E Z;, 1/0: E Zp and ((1/0:) - 1)/2 E Zp if p =f. 2. If p = 2, 
then 0:-1 == 1 (mod2) and (0:-1 - 1)/2 E Zp in this case also. Thus, 

J-Ll,a(a + pNZp) E Zp, 

and hence 

Since every compact-open set U is a finite disjoint union of inter­
vals of the form a + pN Zp, the result immediately follows from the 
nonarchimedean property of the p-adic norm. 0 

10.4.4 Let dk be the least common multiple 0/ the denominators 0/ 
coefficients 0/ bk(X). Show that 

dkJ-Lk,a(a + pNZp) == dkkak- 1J-Ll,a (a + pNZp) (modpN). 
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The Bernoulli polynomial begins as 

k k k-1 
X - -x + ... 

2 ' 
as is easily checked. Now, 

dkf-tk,a{a + pNZp) = dkpN(k-1) (bk (p~ ) - a-kbk Cc;JN)) . 

The polynomial dkBk(X) has integral coefficients, and its first two 
terms are dkxk - k{dk/2)Xk-1. Since x = a/pN has denominator 
pN, and we are multiplying by pN(k-1), the terms after xk- 2 will be 
divisible by pN for x = a/pN. Thus, 

dkf-tk(a+pNZp) == dkpN(k-1)(~_a-k((aa)N)k 
pNk pN 

k (ak- 1 _k((aa)N)k-1)) N -2" pN(k-1) - a PN (modp ) 

dk(~ _ a-kpN(k-1) (aa _ [aa])k 
pN pN pN 

_ ~ ( ak- 1 _ a -kpN(k-1) (;~ _ [;~] r-1
) ) 

k k k 
dk (~ - a-k (~ _ kak-1ak- 1 [aa]) 

pN pN pN 

_~(ak-1 _ a-k(ak-1ak-l))) (modpN) 

dkkak-1 (~[;;] + a-12 - 1) (modpN) 

= dkkak-1f-tl,a(a + pNZp) (modpN). 

10.4.5 Show that 

In the notation of the previous exercise we see that 

dk 1 df-tk,a == l: JJk,a (a + pNZp) (modpN) 
Zp O:S;a:S;pN-1 

dkk L ak-1JJl,a (a + pNZp) (modpN), 
O:S;a:S;pN -1 
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from which the result now follows. o 
10.4.6 11 Z; is the group 01 units 01 Zp, show that 

J-lk,a(Z;) = (1 - a -k) (1 - pk-l ) Bk, 

where Bk is the kth Bernoulli number. 

Clearly, 

J-lk,a(Zp) - J-lk,a(PZp) 

J-lk(Zp) - a-kJ-lk(aZp) - J-lk(pZp) + a-kJ-lk(aZp)' 

Now, J-lk(Zp) = Bk, and J-lk(pZp) = pk-l Bk. Also, since a is an integer 
coprime to p, aZp = Zp, so that J-lk(aZp) = Bk and J-lk(apZp) = 

pk-l Bk. The result now follows. 0 

10.4.8 (Kummer congruences) 11 (p-1) ti and i == j (modpn) show 
that 

Let a be a primitive root (modp). Since (p - 1) t i, we have ai =:j. 
1 (modp), so that a-i - 1 E Z;. By Theorem 10.4.7, it suffices to 
prove a-i - 1 == a- j - 1 (mod pn+1) and 

r Xi-1dJ-ll,a == r xj-1dJ-ll,a (modpn+l). 
Jz~ Jz~ 

The former congruence follows from Euler's theorem. The latter fol­
lows from x i - 1 == xj - 1(mod pn+1), by the same theorem. 0 

10.4.9 (Kummer) 11 (p - 1) t i, show that IBdilp S 1. 
As in Exercise 10.4.8, 

Since (p - 1) Xi, a i - 1 is coprime to p. Thus, 

because lJ-ll,a(U)lp S 1 for all compact-open sets U. o 
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10.4.10 (Clausen and von Staudt) 11 (p - 1) li and i is even, then 

pBi == -1 (modp). 

By Exercise 2.5.23, 

where 

Therefore, 

which is equal to 

S ( ) _ _ P __ _ ~ rn Bk m+l-k. m+l m-l ( ) 

mP rn+1 ~ k-1 k P 
k=l 

By Exercise 10.4.9, IBk/kl p ::; 1 if (p - 1) t k. We now write 
rn = (p - l)t and induct on t. For t = 1, 

p-2 
-1 ~ (p - 1) Bk -k pBp- 1 = Sp-l(p) - r? - 6 k _ 1 Tr? == --1 (modp) 

k=l 

by Fermat's little theorem. The result is now deduced by an easy 
induction argument. 0 

10.5 Supplementary Problems 

10.5.1 Let 1 ::; a ::; p - 1, and set rjJ(a) = (aP- 1 - l)/p. Prove that 
q;(ab) == q;(a) + q;(b) (modp). 

We have 

(ab)p-l aP-1bP-1 = (1 + pq;(a))(l + pq;(b)) 

1 + p(rjJ(a) + rjJ(b)) (mod p2), 
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and the result is now clear. 

10.5.2 With cjJ as in the previous exercise, show that 

cjJ(a + pt) ::::::: cjJ(a) - at (modp), 

where aa::::::: 1 (modp). 

We have 

(a + pt)p-l aP- 1 + p(p - 1)taP- 2 (mod p2) 

1 + pcjJ(a) - ptaP-1a (mod p2) 

1 + pcjJ(a) - pt(l + pcjJ(a))a (mod p2) 

1 + pcjJ(a) - pta (mod p2), 

from which the congruence follows. 

D 

D 

10.5.3 Let [xl denote the greatest integer less than or equal to x. For 
1 ~ a ~ p - 1, show that 

We have 

Thus 

p-l 

aP - a p-l 1 [aj] --::::::: L -:- - (modp). 
p j=l J P 

p-l p-l 

L ~(aj) L cjJ(a) + L cjJ(j) (modp) 
j=l j=l j=l 

p-l 

(p - l)cjJ(a) + L cjJ(j) (modp). 
j=l 

p-l p-l 

cjJ(a) ::::::: L cjJ(j) - L cjJ(aj) (modp). 
j=l j=l 

Write aj = rj + pqj, where 1 ::; rj ::; p - 1. Then by Exercise 10.5.2, 

q. 
cjJ(aj) = cjJ(rj + pqj) ::::::: cjJ(rj) - ...2 (modp), 

Tj 

so that 
p-l p-l p-l 

q L cjJ(aj) = L cjJ(Tj) - L /; (modp). 
j=l j=l j=l J 



10.5 Supplementary Problems 443 

Clearly, as j runs through 1 to p - 1, so does r j. Hence 

p-1 
q" 

cjy(a) == L /. (modp). 
j=l ) 

Now, aj == rj (modp) and qj = [aj/p], so that 

p-1 1 [ "] 
acjy(a) == L -:- aJ (modp) 

j=l J P 

as desired. 

10.5.4 Prove the following generalization of Wilson's theorem: 

(p - k)!(k - 1)! == (_1)k (modp) 

for 1 :::; k :::; p - 1. 

Write 

-1 == (p - 1)! == (p - 1) (p - 2) ... (p - (k - 1)) (p - k)! (mod p) 

== (_1)k-1(k -1)!(P - k)! (modp), 

from which the result folIows. 

10.5.5 Prove that for an odd prime p, 

2P- 1 _ 1 _ p-1 (-l)j+1 
--- = L 2' (modp). 

p j=l J 

Deduce that 2p- 1 == 1 (mod p2) if and only if the numerator of 

is divisible by p. 

We have, 

2P- 1 - 1 

p 

1 1 1 
1--+--···_--

2 3 p-1 

p-1 
(1 + 1)P - 2 = ~ L (~) 

2p 2p" J 
)=1 

1 p-1 (p - 1)! 

2?=(P-j)!j" 
)=1 

o 

o 
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By Wilson's theorem the numerator of each summand is congruent 
to -1 (modp). By Exercise 10.5.4, the denominator is congruent to 
(-l)j j{modp). Thus 

2P- 1 _ 1 _ p-l (-l)jH 
-- = L 2· (modp), 

p j=1 J 

as desired. o 
10.5.6 Let p be an odd prime. Show that for all x E Zp, r p{x + 1) = 
hp{x)rp{x), where 

hp{x) = { -x 

-1 

From the definition, we have 

if Ixlp = 1, 

if Ixlp< 1. 

if (n,p) = 1, 

if (n,p) 1= 1. 

The result now follows by continuity. o 
10.5.7 For s ~ 2, show that the only solutions of x 2 == 1 (mod28 ) 

are x == 1, _1,28 - 1 - 1, and 28 - 1 + 1. 

We have 28 1{x2 -1). Since x 2 -1 = (x -l)(x + 1), exactly one of 
(x - 1) or (x + 1) is divisible by 4. Either 211(x -1) or 211(x + 1). In 
the former case, x == -1 (mod 28 - 1), so that 

x = 28 - 1t - 1 

for some t. If t is even, we get x == -1 (mod28 ). If t is odd, we get 
x == 28 - 1 - 1 (mod 28 .) In the latter case, x == 1 (mod 28 - 1), and if t 
is odd, we get x == 28 - 1 + 1 (mod 28 ). 0 

10.5.8 (The 2-adic r-function) Show that the sequence defined by 

r2(n)=(-lt rr j 
l:::;j<n 
(j,2)=1 

can be extended to a continuous function on '1.2• 
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We have 

f 2 (n + 2S ) = f 2 (n) II (n + j). 
O~j<2s 

(n+j,2)=1 

As we remarked earlier, the product of all the elements in an abelian 
group is equal to the product of the elements of order 2. We must 
therefore solve 

x 2 == 1 (mod 2S ). 

By Exercise 10.5.7, these are precisely 1, -1, 2s - 1 + 1, and 2s - 1 - 1. 
Therefore, 

from which the result follows by an application of Mahler's theorem. 
This completes the proof. 0 

10.5.9 Prove that for alt natural numbers n, 

By Exercise 10.5.6, we have 

and so on. Thus, 
n 

fp(-n)-l = II hp(-j) 
j=l 

for any natural number n. Again by Exercise 10.5.6, we know that 
hp ( -j) = -1 if plj, and j otherwise. Thus, 

f p (-n)-l = (_1)[n/p] II J 

l~j~n 
(j,p)=l 

(_1)[n/p]+n+lfp (n + 1), 

as desired. o 
10.5.10 1f p is an odd prime, prove that for x E Zp, 
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where f(x) is defined as the element oj {I, 2, ... ,p} satisjying f(x) == 
x (modp). (This is the p-adic analogue of Exercise 6.3.4.) 

From Exercise 10.5.9, we have 

Write n - 1 instead of n: 

If n = ao + alP + a2p2 + ... is the p-adic expansion of n, then 

[(n - l)/p] = [((ao - 1) + alP + ... )/p]. 

First suppose ao #- 0. Then 

[( n - 1) / p] = al + a2P + . .. , 

so that n - p[(n - l)/p] = ao = f(n). Clearly, 

(_l)n+[(n-l)/p] = (-lt-p[(n-l)/p] = (_l)f(n), 

and the formula is proved in this case. If ao = 0, then 

n - 1 = (p - 1) + blP + ... 

and 

which gives 
n - p[(n - l)/p] = p = f(n), 

and again the formula is proved. 

10.5.11 Show that 

{
I ij p == 3 (mod 4), 

f p (1/2)2 = 

-1 ij p == 1 (mod4). 

By Exercise 10.5.10, 

f p(1/2)2 = (_1)f(~/2). 

D 

Now, f(1/2) = f((p + 1)/2) = (p + 1)/2, so the result folIows. D 
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