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NOTATION 

AVB 

VAi 
i 

AB or 
A{\B 

{\ Ai 
i 
A-B 

A8B 

XE A 
o 

o 

x~y+ 

xmodr 
with r > 0: 

1l" .. jI 
(Kronecker 
delta) 
Re a 
lal ... I 

the set of points belonging to either of the sets A and B, usually called 
the union of A and B. 
the set of points belonging to any of the sets Ai. 

the set of points belonging to both of the sets A and B, usually called 
the product or intersection of the sets A and B. 
the set of points belonging to all the sets Ai' 

the set of points in A but not in B, usually called the difference of the 
sets A and B. 
the set of points in A or B but not both, usually called the symmetric 
difference of the sets A and B. 
x an element of the set A. 
f(x) = o(g(x» as x ~ r if Jim f(x)/ g(x) = 0 

:c->r 

f(x) 20 O(g(x» as x ~ r if If(x)/g(x)1 ~ K < 00 as x -t T. 

f "" g f is approximately the same as g. 
f(x) ,....., g(x) as x ~ r if lim f(x) / g(x) = 1. 

:c->r 

x approaches y from the right. 

x mod r = x - mT where mr is the largest multiple of T less than or 
equal to x. 

/lA.jI is equal to one if" = J.I and zero otherwise. 
real part of the complex number a. 
the set of a satisfying the condition written in the place indicated by 
the three dots. 
If a is understood this may simply be written as { . . . }. 

All formulas are numbered starting with (1) at the beginning of each section of 
each chapter. If a formula is referred to in the same section in which it appears, it 
will be referred to by number alone. If the formula appears in the same chapter 
but not in the same section, it will be referred to by number and letter of the section 
in which it appears. A formula appearing in a different chapter will be referred to 
by chapter, letter of section, and number. Suppose we are reading in section b of 
Chapter III. A reference to formula (13) indicates that the formula is listed in the 
same chapter and section. Formula (a.13) is in section a of the same chapter. 
Formula (II.a.13) is in section a of Chapter II. 



I 
INTRODUCTION 

This text has as its object an introduction to elements of the theory 
of random processes. Strictly speaking, only a good background in the 
topics usually associated with a course in Advanced Calculus (see, for 
example, the text of Apostol [1]) and the elements of matrix algebra is 
required although additional background is always helpful. N onethe­
less a strong effort has been made to keep the required background on 
the level specified above. This means that a course based on this book 
would be appropriate for a beginning graduate student or an advanced 
undergraduate. 

Previous knowledge of probability theory is not required since the 
discussion starts with the basic notions of probability theory. Chapters 
II and III are concerned with discrete probability spaces and elements 
of the theory of Markov chains respectively. These two chapters thus 
deal with probability theory for finite or countable models. The object 
is to present some of the basic ideas and problems of the theory in a 
discrete context where difficulties of heavy technique and detailed 
measure theoretic discussions do not obscure the ideas and problems. 
Further, the hope is that the discussion in the discrete context will 
motivate the treatment in the case of continuous state spaces on intui­
tive grounds. Of course, measure theory arises quite naturally in prob­
ability theory, especially so in areas like that of ergodic theory. How­
ever, it is rather extreme and in terms of motivation rather meaningless 
to claim that probability theory is just measure theory. The basic 
measure theoretic tools required for discussion in continuous state 
spaces are introduced in Chapter IV without proof and motivated on 
intuitive grounds and by comparison with the discrete case. For other­
wise, we would get lost in the detailed derivations of measure theory. 
In fact, throughout the book the presentation is made with the main 
object understanding of the material on intuitive grounds. If rigorous 
proofs are proper and meaningful with this view in mind they are pre­
sented. In a number of places where such rigorous discussions are too 
lengthy and do not give much immediate understanding, they may be 
deleted with heuristic discussions given in their place. However, this 
will be indicated in the derivations. Attention has been paid to the 

.3 



4 Random Processes 

question of motivating the material in terms of the situations in which 
the probabilistic problems dealt with typically arise. 

The principal topics dealt with in the following chapters are strongly 
and weakly stationary processes and Markov processes. The basic result 
in the chapter on strongly stationary processes is the ergodic theorem. 
The related concepts of ergodicity and mixing are also considered. 
Fourier analytic methods are the appropriate tools for weakly sta­
tionary processes. Random harmonic analysis of these processes is con­
sidered at some length in Chapter VII. Associated statistical questions 
relating to spectral estimation for Gaussian stationary processes are 
also discussed. Chapter VI deals with Markov processes. The two 
extremes of jump processes and diffusion processes are dealt with. 
The discussion of diffusion processes is heuristic since it was felt that the 
detailed sets of estimates involved in a completely rigorous develop­
ment were rather tedious and would not reward the reader with a 
degree of understanding consonant with the time required for such a 
development. 

The topics in the theory of random processes dealt with in the book 
are certainly not fully representative of the field as it exists today. 
However, it was felt that they are representative of certain broad areas 
in terms of content and development. Further, they appeared to be 
most appropriate for an introduction. For extended discussion of the 
various areas in the field, the reader is referred to Doob's treatise [12] 
and the excellent monographs on specific types of processes and their 
applications. 

As remarked before, the object of the book is to introduce the reader 
as soon as possible to elements of the theory of random processes. This 
means that many of the beautiful and detailed results of what might be 
called classical probability theory, that is, the study of independent 
random variables, are dealt with only insofar as they lead to and moti­
vate study of dependent phenomena. It is hoped that the choice of 
models of random phenomena studied will be especially attractive to a 
student who is interested in using them in applied work. One hopes 
that the book will therefore be appropriate as a text for courses in 
mathematics, applied mathematics, and mathematical statistics. Vari­
ous compromises have been made in writing the book with this in mind. 
They are not likely to please everyone. The author can only offer his 
apologies to those who are disconcerted by some of these compromises. 

Problems are provided for the student. Many of the problems may 
be nontrivial. They have been chosen so as to lead the student to a 
greater understanding of the subject and enable him to realize the 
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potential of the ideas developed in the text. There are references to the 
work of some of the people that developed the theory discussed. The 
references are by no means complete. However, I hope they do give 
some sense of historical development of the ideas and techniques as 
they exist today. Too often, one gets the impression that a body of 
theory has arisen instantaneously since the usual reference is given to 
the latest or most current version of that theory. References are also 
given to more extended developments of theory and its application. 

Some of the topics chosen are reflections of the author's interest. This 
is perhaps especially true of some of the discussion on functions of 
Markov chains and the uniform mixing condition in Chapters III and 
IX. The section on functions of Markov chains does give much more 
insight into the nature of the Markov assumption. The uniform mixing 
condition is a natural condition to introduce if one is to have asymptotic 
normality of averages of dependent processes. 

Chapter VIII has been added because of the general interest in 
martingales. Optional sampling and a version of a martingale conver­
gence theorem are discussed. A central limit theorem for martingales 
is derived and applied to get a central limit theorem for stationary 
processes. 



n 
BASIC NOTIONS FOR FINITE 

AND DENUMERABLE STATE MODELS 

a. Events and Probabilities of Events 

Let us first discuss the intuitive background of a context in which 
the probability notion arises before trying to formally set up a prob­
ability model. Consider an experiment to be performed. Some event A 
mayor may not occur as a result of the experiment and we are inter­
ested in a number peA) associated with the event A that is to be called 
the probability of A occurring· in the experiment. Let us assume that 
this experiment can be performed again and again under the same 
conditions, each repetition independent of the others. Let N be the 
total number of experiments performed and N A be the number of times 
event A occurred in these N performances. If N is large, we would 
expect the probability peA) to be close to N,,/ N 

(1) 

In fact, if the experiment could be performed again and again under 
these conditions without end, peA) would be thought of ideally as the 
limit of NA / N, as N increases without bound. Of course, all this is an 
intuitive discussion but it sets the framework for some of the basic 
properties one expects the probability of an event in an experimental 
context to have. Thus peA), the probability of the event A, ought to be 
a real number greater than or equal to zero and less than or equal to 1 

o ~ peA) ~ 1. (2) 

Now consider an experiment in which two events A" A2 might occur. 
Suppose we wish to consider the event "either Al or A2 occurs," which 
we shall denote notationally by Al U A2• Suppose the two events are 
disjoint in the following sense: the event Al can occur and the event A2 
can occur but both cannot occur simultaneously. Now consider repeat­
ing the same experiment independently a large number of times, say N. 

6 
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Then intuitively 

P(AI) ~ NA,/N, P(A 2) ~ NAiN, 
P(AI U A2) ~ NA,VA2/ N. 

7 

(3) 

But NA,VA" the number of times "AI or A2 occurs" in the experiment 
is equal to N A , + N A ,. Thus if AI, A2 are disjoint we ought to have 

(4) 

By extension, if a finite number of events AI, ... ,An can occur in an 
n 

experiment, let Al U A2 U ... U An = U Ai denote the event 
i=-l 

"either Al or A2 or ... or An occurs in the experiment." If the events 
are disjoint, that is, no two can occur simultaneously, we anticipate 
as before tha t 

n n 
P(U Ai) = ~ P(Ai). (5) 

i-I i-I 

Of course, if the events are not disjoint such an additivity relation will 
not hold. The notation U Ai need not be restricted to a finite collection 
of events {Ad. It will also be used for infinite collections of events. 
Relation (5) would be expected to hold for a denumerable or count­
able collection AI, A2, ... of disjoint events. 

There is an interesting but trivial event n, the event "something 
occurs." I t is clear that No = N and hence 

pen) = 1. (6) 

With each event A there is associated an event A, "A does not oc­
cur." We shall refer to this event as the complement of A. Since 
N'A = N - NA it is natural to set 

peA) = 1 - peA). (7) 

Notice that the complement of n, q, = 0 ("nothing occurs") has prob­
ability zero 

P(q,) = 1 - pen) = o. (8) 

Let us now consider what is implicit in our discussion above. A 
family of events is associated with the experiment. The events represent 
classes of outcomes of the experiment. Call the family of events A asso­
ciated with the experiment ff. The family of events ff has the following 
properties: 

1 1. If the events AI, A2Eff then the event Al U A2, "either Al or A2 
occurs," is an element of ff. 
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2. The event n, "something occurs" is an tlement of 5'. 
3. Given any event AE5', the complementary event A, "A does not occur," 

is an element of 5'. 

Further, a function of the events AE5', peA), is given with the following 
properties: 

2 1. 0 ~ peA) ~ 1 
2. pen) = 1 
3. peAl V A2) = peAl) + P(A 2) zf AI, A2E5' are disjoint. 

Notice that the relation 

peA) = 1 - peA) (9) 

follows from 2.2 and 2.3. 
In the case of an experiment with a finite number of possible ele­

mentary outcomes we can distinguish between compound and simple 
events associated with the experiment. A simple event is just the speci­
fication of a particular elementary outcome. A compound event is the 
specification that one of several elementary outcomes has been realized 
in the experiment. Of course, the simple events are disjoint and can be 
thought of as sets, each consists of one point, the particular elementary 
outcome each corresponds to. The compound events are then sets each 
consisting of several points, the distinct elementary outcomes they 
encompass. In the probability literature the simple events are at times 
referred to as the "sample points" of the probability model at hand. 
The probabilities of the simple events, let us say Eh E2, , En, are 
assumed to be specified. Clearly 

(10) 

and since the simple events are disjoint and exhaustive (in that they 
account for all possible elementary outcomes of the experiment) 

n 

~ peE;) = 1. (11) 
i-I 

The probability of any event A by 2.3 is 

peA) = ~ peE;). (12) 
EiCA 

The events A of ff are the events obtained by considering all possible 
collections of elementary occurrences. Thus the number of distinct 
events A of ff are 210 altogether. A collection of events (or sets) satisfying 
conditions 1.1-1.3 is commonly called afield. In the case of experiments 
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with an infinite number of possible elementary outcomes one usually 
wishes to strengthen assumption 1 in the following way: 

1 1'. Given any denumerable (finite or infinite) collection of events AI, 
A2, ... of if At V A2 V ... = V Ai "either At or A2 or ... 
occurs" is an element of if. Such a collection of events or sets with prop­
erty 1.1 replaced by 1.1' is called a sigma-field. In dealing with P as a 
function of events A of a O'-field if, assumption 2.3 is strengthened and 
replaced by 

2.3' P(V Ai) = :z peA;) if AI, A2, ••• , E if (13) 
i 

is a denumerable collection of disjoint events. This property is commonly 
referred to as countable additivity of the P function. 

By introducing "sample points" we are able to speak alternatively of 
events or sets. In fact disjointness of events means disjointness of the 
corresponding events viewed as collections of elementary outcomes of 
the experiment. Generally, it will be quite convenient to think of 
events as sets and use all the results on set operations which have com­
plete counterparts in operations on events. In fact the V operation on 
events is simply set addition for the events regarded as sets. Similarly 
complementation of an event amounts to set complementation for the 
event regarded as a set. 

It is very important to note that our basic notion is that of an experi­
ment with outcomes subject to random fluctuation. A family or field 
of events representing the possible outcomes of the experiment is con­
sidered with a numerical value attached to each event. This numerical 
value or probability associated with the event represents the relative 
frequency with which one expects the event to occur in a large number 
of independent repetitions of the experiment. This mode of thought is 
very much due to von Mises [57]. 

Let us now illustrate the basic notions introduced in terms of a 
simple experiment. The experiment considered is the toss of a die. 
There are six elementary outcomes of the experiment corresponding 
to the six faces of the die that may face up after a toss. Let Ei represent 
the elementary event "i faces up on the die after the toss." Let 

(14) 

be the probability of Ei• The probability of the compound event 
A = {an even number faces up} is easily seen to be 

(15) 
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The die is said to be a "fair" die if 

Pl = P2 = ... = P6 = ~~. 
Another event or set operation that is of importance can be simply 

derived from those already considered. Given two events At, A2e5', 
consider the derived event Al (\ A2 "both Al and A2 occur." It is 
clear that 

b. Conditional Probability, Independence, and 
Random Variables 

(16) 

A natural and important question is what is to be meant by the 
conditional probability of an event Al given that another event A2 
has occurred. The events Al , Az are, of course, possible outcomes of a 
given experiment. Let us again think in terms of a large number N 
of independent repetitions of the experiment. Let N A, be the number 
of times A2 has occurred and NA,f'oA, the number of times Al and A2 
have simultaneously occurred in the N repetitions of the experiment. 
It is quite natural to think of the conditional probability of Al given A2, 

P(A1IA 2), as very close to 

(1) 

if N is large. This motivates the definition of the conditional probability 
P(A 1IA 2) by 

(2) 

which is well defined as long as P(A 2) > O. If P(A 2) = 0, P(A 1IA 2) can 
be taken as any number between zero and one. Notice that with 
this definition of conditional probability, given any Be5' (the field of 
events of the experiment) for which PCB) > 0, the conditional proba­
bility P(AIB), Ae5', as a function of Ae5' is a well-defined probability 
function satisfying 2.1-2.3. It is very easy to verify that 

~ P(AIEi)P(Ei ) = peA) (3) 
i 

where the E/s are the simple events of the probability field 5'. A similar 
relation will be used later on to define conditional probabilities in the 
case of experiments with more complicated spaces of sample points 
(sample spaces). 
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The term independence has been used repeatedly in an intuitive 
and unspecified sense. Let us now consider what we ought to mean by 
the independence of two events AI, A2. Suppose we know that A2 has 
occurred. It is then clear that the relevant probability statement about 
Al is a statement in terms of the conditional probability of Al given A 2• 

It would be natural to say that Al is independent of A2 if the conditional 
probability of Al given A2 is equal to the probability of Al 

(4) 

that is, the knowledge that A2 has occurred does not change our expec­
tation of the frequency with which Al should occur. Now 

so that 
(5) 

Note that the argument phrased in terms of P(A 2\A I ) would lead to the 
same conclusion, namely relation (5). Suppose a denumerable collec­
tion (finite or infinite) of events AI, A2 ... is considered. We shall 
say that the collection of events is a collection of independent events if 
every finite subcollection of events Ak " • , Ak •• , 1 ~ ki < . . . <km, 

satisfies the product relation 
m 

It is easy to give an example of a collection of events that are pair­
wise independent but not jointly independent. Let 5 be a field of sets 
with four distinct simple events Eh E2, E3, E4 

peE;) = %, i = 1, . . . , 4. 

Let the compound events Ai i = 1, 2, 3 be given by 

Al =EI V E2 
A2 = EI V Ea 
A3 = EI V E4• 

Then 

while 

The events Ai are clearly pairwise independent. Nonetheless 

(6) 

(7) 
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Thus far independence of events within a collection has been discussed. 
Suppose we have several collections of events C1 = {A~l); i = 1, 
... , nd, C2= {A~2); i= 1, ... , n2}, ... , Cm = {A~m); i= 1, 
. . . , nm }. What shall we mean by the independence of these collec­
tions of events? It is natural to call the collections Cr, ... , Cm inde­
pendent if every m-tuple of events Ag), ... , A~:::) consisting of one 
event from each collection is a collection of independent events. 

This discussion of independence of collections of events can now be 
applied in defining what we ought to mean by independence of experi­
ments. Suppose we have m experiments with corresponding fields 
5=1, ••• , 5=m. Let the corresponding collections of simple events be 

{Ell); i = 1, ... ,nd, ... , {Elm); i = 1, ... ,nm}. 

Now the m experiments can be considered jointly as one global experi­
ment in which case the global experiment has a field of events generated 
by the following collection of simple events 

(10) 

and the m experiments are said to be independent if 

m 

P(E; ..... . ;J = P(El~)El;l ... E1:::» = n peEl:»~. (11) 
k-l 

Consider this in the case of a simple coin tossing experiment. The coin 
has two faces, head and tail, denoted by 1 and 0 respectively. The 
probability of a head in a coin toss is p, 0 ~ p ~ 1. Suppose the coin 
is tossed m times, each time independent of the others. Each coin toss 
can be regarded as an experiment, in which case we have m independent 
experiments. If the m experiments are jointly regarded as one experi­
ment, each simple event can be represented as 

Eih ... • im = {(ir, ... ,im)}, i l , ... , im = 0, 1. (12) 

Thus each simple event consists of one point, an m-vector with coor­
dinates 0 or 1. Each such point is a sample point. Since the coin tosses 
are independent 

m 

P(E; .. ... . im) = P {(ir, . . . ,im)} = n peEl:»~ = p'Eikqm-'Eil (13) 
k=l 

where q = 1 - p. If the coin is fair, that is, p = q = 72', the probabil­
ities of simple events are all equal to 72'm. 

We can regard the models of experiments dealt with as triplets of 
entities (n,ff',p) where n is a space of points (all the sample points), 
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it the field (if there are a finite number of sample points) or sigma-field 
(if there are a denumerably infinite number of sample points) of 
events generated by the sample points, and P is the probability func­
tion defined on the events of it. Such a model of an experiment is called 
a probability space. Usually the sample points are written as w. A numeri­
cal valued function X(w) on the space 11 of sample points is called a 
random variable. Thus X(w) represents an observable in the experi­
ment. In the case of the m successive independent coin tossings dis­
cussed above, the number of heads obtained would be a random 
variable. A random variable X(w) generates a field (sigma-field) itx of 
events generated by events of the form (wIX(w) = a} where a is any 
number. The field consists of events which are unions of events of 
the form (wIX(w) = a}. The probability function P on the events of 
this field itx generated by X(w) is called the probability distribution of X(w). 
Quite often the explicit indication of X(w) as a function of w is 
omitted and the random variable X(w) is written as X. We shall 
typically follow this convention unless there is an explicit need for 
clarification. Suppose we have n random variables X 1(w), ... ,Xn(W) 
defined on a probability space. The random variables Xl, . . . , X .. 
are said to be independent if the fields (sigma-fields) itXll ... , itxft gen­
erated by them are independent. 

The discussion of a probability space and of random variables on 
the space is essentially the same in the case of a sample space with a 
nondenumerable number of sample points. The discussion must, how­
ever, be carried out much more carefully due to the greater complexity 
of the context at hand. We leave such a discussion for Chapter IV. 

c. The Binomial and Poisson Distributions 

Two classical probability distributions are discussed in this section. 
The first distribution, the binomial, is simply derived in the context of 
the coin tossing experiment discussed in the previous section. Consider 
the random variable X = {number of heads in m successive independent 
coin tossings}. Each sample point (it, ... , im), ik = 0, 1, of the prob­
ability space corresponding to an outcome with r heads and m - r 

tails, 0 ::; r ::; m, has probability prqm-r where q = 1 - p, 0 ::; p ::; 1. 
But there are precisely factorial coefficient 

( m) m! 
r = r!(m - r)! 

(1) 



14 Random Processes 

such distinct sample points with r heads and m - r tails. Therefore the 
probability distribution of X is given by 

r = 0, 1, ... ,m. (2) 

Of course, 

(3) 

and we recognize the probabilities as the terms In the binomial 
expansion 

(4) 

an obvious motivation for the name binomial distribution. 
The Poisson distribution is obtained from the binomial distribution 

by a limiting argument. Set mp = A > ° with A constant and consider 

lim P(X = r). 
m ....... 

as m -+ 00. A random variable Y with probability distribution 

AT 
P( Y = r) = - e-A 

r! 

(5) 

(7) 

is said to have a Poisson distribution. It is clear that we would expect 
this distribution to be a good approximation when the experiment can 
be regarded as a succession of many independent simple binomial 
trials (a simple binomial trial is an experiment with a simple success 

or failure outcome), the probability of success p = ~ is small, and the 
m 

probability distribution of the total number of successes is desired. 
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Such is the case when dealing with a Geiger counter for radioactive 
material. For if we divide the time period of observation into many 
small equal subintervals, the over-all experiment can then be regarded 
as an ensemble of independent binomial experiments, one correspond­
ing to each subinterval. In each subinterval there is a large probability 

1 - ~ that there will be no scintillation and a small probability ~ 
m m 

that there will be precisely one scintillation. 

d. Expectation and Variance of Random Variables 
(Moments) 

Let X be a random variable on a probability space with probability 
distribution 

i = 1, 2, .... (1) 

The expectation of X, that is, EX, will be defined for random variables X 
on the probability space with 

(2) 

finite. As we shall see, E can be regarded as a linear operator acting 
on these random variables. The expectation EX is defined as 

00 

EX = ~ aipi. 
0=1 

(3) 

Thus EX is just the mean or first moment of the probability distribution 
of X. More generally, n-th order moments, n = 0, 1, ... ,are defined 
for random variables X with 

00 

~ lailnpi < co. 
i-1 

(4) 

The n-th order moment of X is defined as the expectation of Xn, EXn, 

00 

EXn = ~ afpi. (5) 
i-l 

The n-th order absolute moment of X is 

00 

EIXln = ~ lailnp,;. (6) 
i-1 
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The first moment or mean of X, m = EX, is the center of mass of 
the probability distribution of X, where probability is regarded as 
mass. Let X, Y be two random variables with well-defined expecta­
tions, EX, EY, and a, {3 any two numbers. Let the values assumed by 
X, Y with positive probability be ai, bi respectively. Then 

E(aX + {3Y) = ~ (aai + {3bj )P(X = ai, Y = bj ) 
i.i 

= a ~ aiP(X = ai) + {3~biP(Y = bi ) (7) 
i 

= aEX+ {3EY. 

Thus E is a linear operator on the random variables X for which EX is 
well defined. Of course, this can be extended to any finite number of 
such random variables Xl, ... , Xm so that we have 

m m 
E( ~ aiX) = ~ aiEX. (8) 

i-I ';==1 

It is easy to give an example of a random variable for which the 
expectation is undefined. Simply take ai = i, i = 1, 2, ... and set 

Pi = Ki-'¥> i = 1, 2, 

'" K = (~ i-~~)-l. 
(9) 

ial 

Since 
'" '" ~ iPi = ~ i-Y. K = ~ (10) 
i-I i=1 

EX is not well defined. This is due to the fact that too much probability 
mass has been put in the tail (large values of X) of the probability 
distribution of X. 

Now consider two independent random variables X,Y whose expecta­
tions are well defined. As before let the values assumed by X, Y with 
positive probability be ai, bi respectively. Then the expectation of the 
product XY is given by 

EXY = ~ aibjP(X = ai, Y = hj) 
i,i 

= ~ aibjP(X = ai)P(Y = hi) 
i.1 

= E(X)E(Y). 

(11) 

Thus the expectation operator is multiplicative when dealing with 
products of independent random variables. If X,Y are independent 
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and f,g are any two functions, f(X),g(Y) are independent. The argu­
ment given above then indicates that 

E(j(X)g(Y» = Ef(X)Eg(Y) (12) 

if Ef(X),Eg(Y) are well defined. This basic and important property 
will be used often when dealing with independent random variables. 

A measure of concentration of the probability mass of a random 
variable X about its mean is given by the central moment 

a2 = E(X - m)2 = E(X2 - 2mX + m2) 
= EX2 - m2, 

(13) 

commonly called the variance of the probability distribution. The 
variance 0-2(X) = 0-2 is well defined as long as EX2 is. The central 
moments are moments about the mean of the probability distribution. 
Just as in the case of noncentral moments, one can consider central 
moments (if any exist) of all non-negative integral orders 

It is clear that 
E(X - m)n n = 0, 1, 2, .. 

E(X - m)O = E1 = 1 
E(X - m) = 0 

E(X - m)2 = 0-2 

(14) 

(15) 

There is a very interesting additive property of the variance in the 
case of independent random variables. Let Xl, ... ,X. be independ­
ent random variables with finite second moments. Set 

i = 1, ... , s. 

Then the variance of the sum 

8 • 

0-2 (~Xi) = E (~ (Xi - mi»2 
1 1 

• 
= ~ E[(Xi - mi)(Xj - mj)] 

i,j=1 

• = ~ a'f + ~ E(Xi - mi) (Xj - mj) 
i=1 i¢j 

8 

= ~ o-~ 
i-I 

by the independence of the random variables. 

(16) 

(17) 
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Let us now consider computing the first few moments of the 
binomial and Poisson distributions. First of all, by making use of (6) 
it is seen that all moments of these distributions are well defined. The 
moments will be evaluated by making use of a tool that is very valuable 
when dealing with probability distributions concentrated on the non­
negative integers. A transform of the probability distribution commonly 
called the generating function of the distribution is introduced as follows 

'" g(s) = ~ hSk = E(sX). (18) 
k=O 

The generating function g(s) is the formal power series with coefficient 
of Sk the probability h. This power series is well defined on the closed 
interval lsi ~ 1 and infinitely differentiable on the open interval 
lsi < 1 since 

h ;::: 0, "i-h = 1. (19) 

Here all the moments EXn are absolute moments since the probability 
mass is concentrated on the non-negative integers. Certain moments, 
called factorial moments, are very closely related to the ordinary 
moments and can readily be derived from the generating function by 
differentiation. The r-th factorial moment of X 

E[X(X - 1) ... (X - r + 1)] r = 1,2, . (20) 

is well defined if and only if the r-th moment of X, EX', is well defined. 
Notice that 

'" 
E[X(X - 1) ... (X - r + 1)] = 2: k(k - 1) 

k=O 

'" 

(k - r + 1)h 

(21) 

8~~ 2: k(k - 1) 
d' 

(k - r + 1)hsk-r = lim d-;.g(s). 
8->1- s 

k=O 

Here s~ 1- indicates that s approaches 1 from the left. 
Let us now consider computing the moments of the binomial and 

Poisson distribution. First consider the binomial distribution. Its 
generating function 

n 

g(s) = 2: (~) pkqn-ksk (22) 
k=O 

= (ps + q)n. 
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The r-th derivative 

d' 
dsrg(s) = n(n - 1) ... (n - r + l)(ps + q)n-rp' (23) 

so that 
dr 

lim -;.g(s) = n(n - 1) ... (n - r + l)pr. (24) 
8->1- ds 

The first and second moments are given by 

EX=np 
EX2 = E[X(X - 1)] + EX 

= n(n - 1)p2 + np. 

The variance of the distribution 

0-2 = EX2 - (EX)2 
= n(n - 1)p2 + np - n2p2 
= npq. 

The generating function of the Poisson distribution 

The r-th factorial moment 
d' lim - e).(·-lj = ').. •. 

11-->1- dsr 

The first and second moments 

EX=').. 
EX2 = ')..2 + ').. 

so that the variance 

is equal to the mean. 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 

Let X, Y be two independent non-negative integer-valued random 
variables with probability distributions 

P[X = k] = h, P[Y = k] = qk (31) 

respectively, where k = 0, 1, 2,. .. The generating function h(s) 
of the sum X + Y of the two random variables is readily given in 
terms of the generating functions f(s) , g(s) of X and Y respectively. For 

h(s) = E(sx+y) = E(sX)E(sY) = f(s)g(s). (32) 
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The probability distribution of X + Y is given in terms of an operation 
on the p and q sequences commonly referred to as the convolution 
operation 

k 

P[X + Y = k] = ~ Pjqk-j = (p*qh. 
j-O 

e. The Weak Law of Large Numbers and the 
Central Limit Theorem 

(33) 

A very simple limit argument was used in section c to derive the 
Poisson distribution. This was a simple example of a limit theorem. 
In fact much of the classical literature in probability theory (which is 
primarily concerned with a study of independent random variables) is 
centered about such limit theorems. The weak law of large numbers 
and the central limit theorem are further examples of such limit 
theorems. 

A simple but basic inequality due to Chebyshev is a necessary 
preliminary to our proof of the weak law of large numbers. Let X 
be a random variable with finite second moment. Then, given any positive number 
e;(>O), 

The proof is rather straightforward. For 

00 

EX2 = ~ a~Pi 
i-I 

~ ~ a~Pi 
lail;::-

~ e;2 ~ Pi = e;2P(IXI ~ e;). 
lail;::_ 

(1) 

(2) 

This inequality gives us a crude but interesting estimate of the prob­
ability mass in the tail of the probability distribution in terms of the 
second moment of the distribution. 

The weak law of large numbers follows. Let XI, ... , Xn be inde­
pendent random variables with the same probability distribution (identically 
distributed) and finite second moment. Set 

n 
Sn = ~ X; 

j-l 

m = EX; j = 1, ... , n. 
(3) 



Finite and Denumerable State Models 21 

Then, given any c > 0, 

(4) 

as n - 00. This states that for any small fixed positive number c, there 
is an n large enough so that most of the probability mass of the dis­
tribution of Sn/n falls in the closed interval Ix - ml ~ c. The random 
variables Xl, ... , Xn can be regarded as the observations in n 
independent repetitions of the same experiment. In that case Sn/n is 
simply the sample mean and the weak law of large numbers states that 
the mass of the probability distribution of the sample mean concen­
trates about the population mean m = EX as n - 00. Intuitively, this 
motivates taking the sample mean as an estimate of the population 
mean when the sample size (number of experiments) is large. As we 
shall later see, it is essential that there be some moment condition such 
as that given in the statement of the weak law, that is, a condition on 
the amount of mass in the tail of the probability distribution of X. 
The law is called a weak law of large numbers because (4) amounts 
to a weak sort of convergence of Sn/n to m. This point will be clarified 
later on in Chapter IV. 

Now consider the proof of the law of large numbers. Let 0'2 be the 
common variance of the random variables Xi. Note that 

(5) 

by the Chebyshev inequality and the independence of the random 
variables Xi. On letting n - 00, we obtain the desired result. 

We give a simple and exceedingly clever proof of the Weierstrass 
approximation theorem due to S. Bernstein [3]. This interpolation is 
appropriate because it indicates how probabilistic ideas at times lead 
to new approaches to nonprobabilistic problems. Consider the con­
tinuous functions on any closed finite interval. For convenience take the 
interval as [0,1]. The Weierstrass approximation theorem states that 
any given continuous function on [0,1] can be approximated arbitrarili well 
uniformly on [0,1] by a polynomial of sufficiently high degree. Serge Bernstein 
gave an explicit construction by means of his "Bernstein polynomials." 
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Let f(x), ° :::; x :::; 1, be the given continuous function. Let Y be a 
binomial variable of sample size n, that is, with n coin tosses where the 
probability of success in one toss is x. Consider the derived random 
variable f(Yfn). We might regard f(Yfn) as an estimate of f(x). 
This estimate is equal to f(kfn), k = 0, 1, ... ,n, with probability 

(;) xk(1 - x)lI-k. As n --+ 00, by the weak law of large numbers, Yin 

approaches x in probability and hence by the continuity of the function 
f, fey In) approaches f(x) in probability. However, we are not really 
interested in fey In) but rather its mean value Ef(Y /n). The expectation 

n 

Ef(Y/n) = 2: f(k/n) G) xk(l - X)"-k = PlI(x) (6) 
k=O 

is a polynomial of degree n in x which we shall call the Bernstein 
polynomial of degree n corresponding to f(x). A simple argument using 
the law of large numbers will show that PlI(x) approaches f(x) uni­
formly as n --+ 00. Since f(x) is continuous on the closed interval [0,1], it 
is uniformly continuous on [0,1]. Given any e > 0, there is a 5(e) > ° 
such that for any x, Yf[O,l] with Ix - y\ < 5(e), If(x) - fCy) \ < e. Con­
sider any e > 0. We shall show that for sufficiently large n 

IPn(x) - f(x) \ < e 
for all x. Note that 

P [I ~ - x 12 7)J :::; q2(Y/n)/7)2 = x(ln~ x) 

1 <-. - 4n7)2 

(7) 

(8) 

Set 7) = Ho(ej2). Let M/2 be an absolute bound for f(x) on the 
interval [0,1]. Then 

IPn(x) - f(x) \ = \E(f(Y/n) - f(x)) \ 

:::; MP[\Y/n - xl 2 }15(e/2)] + e/2 

M 
:::; n52(e/2) + e/2 :::; e 

if n is taken greater than 2M/(e o2(e/2)). 

(9) 

The proof of the central limit theorem is somewhat more difficult. 
As before Xl, . . . , Xn are assumed to be independent, identically distrib­
uted random variables with finite second moment. Let m = EX, (12 > 0, be 
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the common mean and variance. The central limit theorem states that 

(vn [Sn ]) fX 1 -~ lim P - - - m ~ x = 4>(x) = _ ~ e 2 duo 
7t--> co U n _ co V 211' 

(10) 

It is not surprising that the proof is more difficult. This result tells us 
much more than the law of large numbers since it indicates the rate 
at which the probability mass of the distribution of Sn/n concentrates 
about the mean value m as n ~ 00. It is enough to prove the theorem 
for random variables with mean zero and variance one since 

7t 

S - nm 2: n = (X. - m)/u a J 
(11) 

;=1 

is a sum of independent identically distributed random variables 

(Xi - m)/u (12) 

with mean zero and variance one. 
The proof of the central limit theorem given is due to Petrovsky 

and Kolmogorov (see [40]). Let the Xi, i = 1, . . . ,n, be independent 
identically distributed random variables with mean zero and variance 
one. Let 

Pi = P(X = a,) 
};Pi = 1 

j = 1, 2, ... 
(13) 

so that the a/s are the points on which the probability mass of the X/s 
are located. Now 

P(X ~ x) = }; Pi = F(x) (14) 
Bi:$X 

is a nondecreasing function of x called the distribution function of the 
random variable X. Let us list the properties of a distribution function 
F(x). We have just noted that F(x) is nondecreasing. Further 

lim F(x) = lim P(X ~ x) = 0 
X--+ - CIO x--+ - 00 

(15) 
lim F(x) = P(X < 00) = 1. 

x--> co 

The distribution functions are also continuous to the right, that is, 

lim F(y) = F(x + 0) = F(x) (16) 
y-->x+ 

where y ~ x+ indicates that y approaches x from the right. Thus, 
distribution functions Fare nondecreasing functions with total increase 
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one and lim F(x) = O. The distribution functions we consider are 

jump functions (they increase only by jumps) since they correspond to 
random variables and only discrete valued random variables have been 
considered thus far. However, we will call any function satisfying the 
above conditions a distribution function even though it does not corre­
spond to a discrete valued random variable. Later it will be shown that 
such functions can be made to correspond to random variables with a 
continuous (not necessarily discrete) value range. The reason for 
introducing such an enlarged notion of distribution function now is 
due to the fact that we have to deal with cp(x) which is a distribution 
function in this enlarged sense but not in the original restricted sense. 
Since the mean and second moment of a discrete valued random vari­
able X are given in terms of its distribution function as 

(17) 

respectively, we shall generally refer to these as the mean and second 
moment (variance if the mean is zero) of the distribution function F. 
Thus the mean and variance of cp(x) are zero and one respectively. 

The distribution function Fn(x) of X/yn is given by 

Fn(x) = P(X/yn ~ x) = F(vn x). 

Let Uk,n(x) be the distribution function of 
k 

2: Xi/y n. 
j=l 

Now 
k 

Uk,n(x) = P (2: Xj/yn ~ x) 
j=l 

k-l 

= 2: p(2: Xj/yn ~ x - ;In' Xk = ai ) 

i j=l 
k-l 

= 2: p(2: Xi/vn ~ x - ;In) P(Xk = ai) 

i j=l 

= 2: Uk_l,,,(X - ;In)Pi 
i 

(18) 

(19) 

(20) 



Finite and Denumerable State Models 25 

for 1 < k :::; n. Now Un(x) = Un.n(X) is the distribution function of 

£ Xi/y~ (21) 
j=l 

and our object is to show that 

lim Un(x) = 4l(x). (22) 
n-"O 

Notice that 4l(x/Vt) is a solution of the "heat equation" or "diffusion 
equation" 

a41 1 a241 
at = 2" ax2 

in the half-plane I > O. The "upper" function 

V(x,/) = 4l(x/yt) + e I 

(23) 

(24) 

(e > 0 a fixed positive number) plays a basic role in the proof. The 
function V satisfies the equation 

(25) 

Two intermediate results or lemmas will be required. The basic 
idea of the proof is to replace each of the n distribution functions Fn(x) 
by the distribution function 4l( yTi x). The object is to show that the 
error made in each such replacement is small enough so that the over-all 
error made is negligible. The lemmas are required in getting sufficiently 
good estimates of the error. 

Lemma 1: Given any ~ > 0 there is an n (depending on ~, e) sufficiently 
large so Ihal 

V (x, t +~) > f Vex - ~,/) dFnW 

in the whole half-plane t > O. 
Now 

_ av 1 2 a2v 
V(x - ~,t) - V(x,/) - ~ ax + 2" ~ ax2 + p(x,~,/) 

where 

1 [a 2V a2V] p(x;~,t) = 2" ~2 ax2 (x - (J~, I) - ax2 (x,/) ,0 < (J < 1, 

by the law of the mean. Since 

(26) 

(27) 

(28) 

(29) 
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we have 

where 

Now 

J 1 a2v 
Vex - ~,t) dFnW = V(x,t) + 2n ax2 + J 

J = Ip(x,~,t) dFnW. 

Ip(x,~,t)1 < ~2/0 

(30) 

(31) 

(32) 

for t > 0 since the absolute value of a2v/iJx2 is bounded by 1/20 in the 
half-plane t > o. On the other hand 

(33) 

when t > 0 by a corresponding bound on iJ3v/a.'(3. Making use of the 
last inequality, we see that 

Ip(x,~,t)1 < ~ ~2 (34) 

in t > 0 when I~I ~ T = ~ o~~. It then follows that 

IJI ~ f Ip(x,~,t)1 dFnW + f Ip(x,~,t)1 dFnW 

1~I:5T I~I>T 

~ ~ f e dFnW + ~ f e dFnW (35) 

1~I:5T I~I>T 

<~!+A.l 
- 3 n on 

where 

A = n f ~2dFnW = f edF(~). (36) 

U,I>T lel>Yn T 

For n sufficiently large A < e 0/3 and hence 

IJI < ~~. 
3n 

Since Vex,!) satisfies equation (25) it follows that 

J 1aV e1 
Vex - ~,t) dFnW < V(x,t) + nat - :3 n' (37) 

The relation 

( 1) 1 av 1 [a2V] 
V x, t + n = V(x,t) + nat + 2n 2 at2 .r,l+*' 0 < 8 < 1, (38) 
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implies that 

( 1) 1av 1 
V x, t + n > V(x,t) + nat - 2n282 

since I ~t~ I < 12 when t > 8. For sufficiently large n therefore 

V x t + - > Vex t) + - - - --. ( 1) laV El 
'n 'n at 3 n 

Lemma 1 follows from relations (37) and (40). 

27 

(39) 

(40) 

Lemma 2: Let Gl, G2 be two distribution functions with zero mean and 
variances less than {3. Then 

( 41) 

for all x and all a > o. 
This lemma follows readily by considering two cases and an applica­

tion of Chebyshev's inequality. If x ~ -a 

(42) 
and hence 

(43) 
If x> -a 

(44) 

and we again have 

The two lemmas are now applied to complete the proof of the 
central limit theorem. Take 8 a fixed number, 0 < 5 < 1. For some 
value of s, s = 1, . . . , n 

5 < sin < 25. 

The distribution function U ... (x) has mean zero and variance ~ < 25. . n 

Now q, (x / ~D has the same property. By Lemma 2 for all x and 

a>O 

U () _ q, (X + 2a) < 25 
B." x ~ 2 S a 

n 

(46) 
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and thus 

US,fI(X) - v(x + 2a,~) < !~. 

By Lemma 1, since ~ > 5, 
n 

for k > s. Set 

Wk(X) = Uk,n(X) - V (x + 2a,~) 
Using (20) and (48), we obtain 

(47) 

(49) 

(50) 

Let ILk be the least upper bound of Wk(x). Since I dFn = 1, Jl.k:::; 

Jl.k_l(k> s) and hence Jl.n :::; JI. •• Thus 
25 

Un(x) - Vex + 2a, 1) = Un(X) - q,(x + 2a) - e :::; JI.. < 2 (51) 
a 

or 

1 l x+2a 25 Un (X) < q,(x) + _ /_ riIL'du + e + 2 
-v 2~ x a 

2a 21> < q,(x) + --= + e + -. 
V2~ a 2 

(52) 

With an appropriate choice of a, 5 

Un(X) < q,(x) + 2 e. (53) 

A completely analogous argument with the "lower" function q,(x/ v't) 
- e t leads us to 

Un (X) > q,(x) - 2 e (54) 

for sufficiently large n. Since e is an arbitrary positive number, the 
proof of the central limit theorem is complete. 

The central limit theorem is often invoked in the theory of errors. 
Assume that a series of independent experiments to measure the 
physical constant m is to be set up. The random variables Xl, . . . , 
Xn are the measurements of the constant m in the n experiments. There 
will generally be an error Xi - m in the i-th experiment due to reading 
error, imperfections in the measuring instrument-and other such effects. 
Assuming not too much mass in the tail of the probability distribution 
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of the X's (existence of a second moment), it is reasonable to take the 
n 

mean of the observations ~ 2: Xi as an estimate of the physical constant 

1 

m. Of course, it is assumed that the experiments are not biased, that 
is, the mean of the probability distribution of X is equal to m. Then the 
central limit theorem provides an approximation for the probability 
distribution of the sample mean for n large. 

f. Entropy of an Experiment 

Consider an experiment a with a finite number of elementary out-
comes At, ... , An and corresponding probabilities of occurrence 
Pi> 0, i = 1, ... ,n, 'J:-Pi = 1. We should like to associate a number 
R(a) with the experiment a that will be a reasonable measure of the 
uncertainty associated with a. Notice that R(a) could alternatively 
be written as a function of the n probabilities pi, R(p!, ... ,pn), when 
a has n elementary outcomes. We shall call the number R(a) the 
entropy of the experiment a. 

Suppose two experiments a, (B with elementary outcomes Ai, 
i = 1, ... ,n, Bj, j = 1, ... ,m respectively are considered jointly. 
Assume that the form of R(a) as a function of the probabilities Pi is 
known. It is then natural to take the conditional entropy of the 
experiment a given outcome Bj of experiment (B, R(aIBJ, as the func­
tion of the conditional probabilities P(AiIBj ) i = 1, . . . ,n of the same 
form. The conditional entropy of the experiment a given the experi­
ment (B, Rm( a), is naturally taken as 

n 
Rm(a) = ~ R(aIBj)p(Bj). 

j=1 
(1) 

Let us now consider properties that it might be reasonable to require 
of the entropy of an experiment. As already remarked, 

is a function of the probabilities Pi of the elementary outcomes of a. 
Our first assumption is that R(PI, . . . , Pn) is a continuous and sym­
metric function of P!, . . . ,pn' Further, one feels that R(Pl, . . . ,pn) 

should take its largest value when PI = . . . = pn = ! since this corre-
n 
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sponds to the experiment a with n elementary outcomes that has the 
highest degree of randomness. The next property to be required is an 
additivity property. Let a, CB be two experiments with a finite number 
of elementary outcomes Ai, Bj • Let CB V a denote the joint experiment 
with elementary outcomes BiAj and H(CB va) the entropy of that joint 
experiment. We ask that the entrop,V of a and CB jointly be equal to the sum 
of the entropy of a and the conditional entropy of CB given a 

H(CBva) = H(a) + H««(53). (2) 

The last condition is a consistency condition, namely, 

(3) 

Here, the entropies of two experiments, one with n outcomes and the 
other with n + 1 outcomes, have been equated. However, it is clear 
they are the same experiment since the n + 181 outcome has proba­
bility zero. 

We first consider L(n) = H (!, ... ,!) and show that L(n) = X 
n n 

log n with X a positive constant. By the second and fourth assumptions 

L(n) = H (~, ... ,~) = H (~, ... ,~, 0) 
5.: H(_l_, ... ,_1_) = L(n + 1). 

n+l n+l 

(4) 

Thus L(n) is a nondecreasing function of n. Let m, r be positive integers. 
Take m mutually independent experiments S1> ••• , Sm each with r 

equally likely elementary outcomes so that H(Sk) = H (~, ... ,~) 
= L(r), k = 1, ... , m. The additivity of the entropy function 
implies that 

But SI V 
therefore 

m 

H(SI V .. V Sm) = ~ H(Sk) = mL(r). (5) 
1 

V Sm has , m elementary equally likely events and 

(6) 

Assume that the function L is not identically zero. Consider arbitrary 
fixed integers s, n > O. Take 1 an integer greater than one with L(r) ~ O. 
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Then an integer m can be determined such that 

m log r ::; n log s ::; (m + 1) log r 

'!: < log s < m + 1. 
n - log r - n 

By the mono tonicity of L we have 

Therefore 

L(rm) ::; L(sn) ::; L(rm+l) 

mL(r) ::; nL(s) ::; (m + 1) L(T) 

~ < L(s) < m + 1. 
n - L(r) - n 

I L(s) _ log s I < !. 
L(T) log r - n 

On letting n ~ 00 we see that 

L(s) _ log S 

L(T) - log" 

31 

(7) 

(8) 

(9) 

(10) 

But this implies that L(n) = A log n with A > 0 because L is non­
decreasing. 

The form of H has been obtained when PI = . . . = pn = !. Let 
n 

us now consider the form of H for rational Pi > 0, '1:.pi = 1. Take 
n 

Pi = gi/ g, i = 1, . . . , n, g. > 0, ~ gi = g with the gi integers. Con-
I 

sider an experiment <B with g equally likely elementary outcomes 
Bl, ... , Bg. Let a be the cruder experiment with n elementary out­
comes AI • ... , An 

Notice that peAk) = gk/ g = Pk and the conditional probability of an 
event Bi given Ak is 1/ gk if Bi is a subset of Ak and zero otherwise. 
Therefore 

n n 
H(J.(<B) = ~ pkH(<BIAk) = A ~ Pk log gk 

k=1 k=1 
n n 

(12) 

= A ~ Pk log gPk = A log g + A ~ PI< log Pk. 
k=1 k=l 
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Now the experiment CB V a hasg elementary outcomes, each occurring 
with probability 1/g, the remaining elementary outcomes all having 
probability zero. Thus R(CB V a) = ~ log g. Using the additivity 
property of the entropy 

we find that 
R(a) = R(CB V a) - Rr!(CB) 

n 

R(a) = -~ ~ pdog Pk. 
k=l 

(13) 

(14) 

Since the entropy R(pI, . . . ,pn) is assumed to be a continuous func­
tion of Ph . . . ,pn, this representation is valid for real Ph . . . ,pn. 

g. Problems 

n n _ 

1. Show that (l Ai = V Ai 
i=I i-I 

n n_ 
and V Ai = (l Ai. 

Consider the two results above for infinite collections of sets. 

2. Given Al and Az show that 

1 - peAl) - P(Az) ~ P(AIA z) ~ 1 
and 

P(AIA2) = 1 - peAl) - P(A2) + P(AIA2). 

Extend the results given above to collections of more than two sets. 

3. Derive P(A1iAz) = peAl), P(AliA z) = peAl) from P(A1iA2) = 
peAl). 

4. Consider an experiment with k disjoint possible outcomes where 
k 

Ph . . . ,p" ;::: 0 are the probabilities of the outcomes, ~ Pi = 1. 
1 

Suppose n independent identically distributed experiments of this 
type are conducted. Let Xi> j = 1, ... , k, be the number of 
times outcome j arose in the n experiments. Find the joint prob­
ability distribution of Xl, . . . ,Xk • 

5. Find the limit of the joint distribution required in the previous 
example under the restraints 

nh = Al > 0, . . . ,nPk-l = .\k-1 > 0 
as n --+ 00. 
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6. Let Xl, ... ,Xn be independent identically distributed binomial 
variables of sample size one each with probability p of success. 
Show that the probability distribution of Xl + . . . + Xn is the 
binomial distribution of sample size n. 

7. Let X, Y be independent binomial distributed random variables 
of sample size nand m respectively with the probability of a success 
p. Show that the probability distribution of X + Y is binomial 
with sample size n + m. 

8. Let X, Y be independent Poisson distributed random variables 
with means Xl, X2 > 0 respectively. Show that the probability 
distribution of X + Y is Poisson with mean Xl + X2• 

9. Let X be a random variable that can assume only non-negative 
'" 

integer values. Let g(s) = ~ PkSk, Pk = P(X = k), be the gen­
k=O 

erating function of the distribution of X. Does knowledge of g(s) 
determine the probability distribution of X? Why? 

10. Let f(t) be a continuous even function on [-11",11} By setting 
x = cos t and using the Weierstrass approximation theorem, show 
that f(t) can be uniformly approximated by finite trigonometric 
series in sin kt, cos kt. Use this result to show that any continuous 
function f(t) on [-11",11"] with f(1I") = f( -11") can be uniformly 
approximated by finite trigonometric series. 

11. The functions in x and y which are weighted sums of (~) (;) Xk 

(1 - x)n-kyi (1 - y)n-i , k, j = 0, 1, ... , n, are analogues of the 
Bernstein polynomials. Prove the Weierstrass approximation 
theorem for a continuous function of two variables on the unit 
square using these polynomials. 

12. Show that 82V/8x2 is bounded in absolute value by 1/28 in the 
half-plane t > 0 > 0 where V(x,t) = if>(x/Vt) + E t and if> is the 
normal distribution function given by (e.10). 

13. Show that 8S V / 8x3 is bounded in absolute value by 2/6312 in 
t > 6 > ° where V is the function given in Problem 12. 

14. Let Xi> j = 1, ... , n, be independent random variables with 
mean zero and variance u1 > 0. The distribution function of Xj is 

n 
F/x). Let Bn = ~ uj. Show how to modify the proof of the 

j~l 



34 Random Processes 

central limit theorem of ~ection e so as to obtain asymptotic 
n _ 

normality of }; Xii V Bn under the assumption that 
j=l 

as n ~ <Xl for every T > o. 
n 

15. Show that if}; EIXilaj B"a12 ~ 0, Cl' > 2, as 11 ~ 00 then 
1 

n I J x 2 dFk(X)jBn ~ 0 
1 1:rI>TB,,~2 

for any fixed T > 0 where Bn is as defined in the previous example. 
This remark coupled with the previous example gives us Lia­
pounoff's form of the central limit theorem. 

16. A function / defined on (0,00) is called convex if 

/(X.'( + (1 - A)Y) ~ A/(x) + (1 - A)/(Y) 

for all X, 0 ~ X ~ 1, and x, Y in its domain of definition. Indicate 
what this means geometrically. Show that if /1f(X) exists and is 
non-negative everywhere, the function / is convex. Apply this to 
lex) = x log x. 

17. Show that a convex function / satisfies the inequality 

for all XI, • • • , Xn and all Pi, Pi ~ 0, 't-pi = 1. This inequality is 
called Jensen's inequality. 

18. Find the entropy of Ca.) the binomial distribution; (b.) the Poisson 
distribution. 

19. Using Jensen's inequality show that H«(ffi) ~ H(ffi). What hap­
pens to the inequality when a and ffi are independent experiments. 
Use the inequality above to obtain HCa V ffi) ~ Hca) + H(ffi). 
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Notes 

1. Many of the basic ideas and tools of probability theory are discussed in sec­
tions a, b, and d for probability spaces with at most a countable number of points. 
They are introduced in Chapter IV again for general probability spaces. One hopes 
that the treatment given for the discrete case in this chapter will intuitively motivate 
the discussion in Chapter IV for general probability spaces. 

2. The binomial and Poisson distributions of section c are the discrete proba­
bility distributions that most commonly arise in theory and practice. An extensive 
discussion of other discrete distributions and of a wide range of combinatorial 
problems in which they arise can be found in Feller [15]. 

3. A derivation of the Weierstrass approximation theorem ordinarily would 
not be given in a text on probability theory. It is given in section e because it follows 
immediately from the law of large numbers by S. Bernstein's simple and beautiful 
proof. Notice that it explicitly produces an approximation of simple form. Further, 
a more detailed analysis would give bounds on the error of approximation in terms 
of the regularity of the continuous function approximated. 

4. The proof of the central limit theorem given in section e is an older proof 
but it is well worth reviving for expository purposes. Most of the current proofs have 
limited intuitive appeal because they use a circuitous argument via some version 
of transform theory. The derivation presented in this chapter certainly does not 
have this failing. Further, even though some detailed estimates are required, the 
proof is elementary in character. An interesting recent paper of C. Stein [A1S] also 
uses a direct approach to estimate the error in the normal approximation to the dis­
tribution of a sum of dependent random variables. 



III 
MARKOV CHAINS 

a. The Markov Assumption 

Thus far we have discussed models of independent observations. 
In fact, the most detailed and classical investigations in Probability 
Theory are centered about the notion of independence. However, there 
are many contexts which require models in which some notion of 
statistical dependence is basic. The simplest models of this sort are 
based on the Markov assumption. Even though this assumption does 
not appear to allow radical departures from independence, we shall 
later on see that the study of such Markov schemes or processes will 
give us great insight in studying various types of statistical dependence. 

Consider a system that is to be studied at discrete time points 
t = 1, ... , n and whose possible states at each time t can be com­
pletely labeled by the integers i = 1, 2, .... It is convenient to refer 
to the possible states at a fixed time as the state space of the model. The 
various possible histories of the system or sample points of the probability 
space to be constructed are given by n-vectors of integers w = 
(it, ... ,in)' Assume that we are given a vector 

'" of non-negative numbers Pi, }; Pi = 1 and matrices 
1 

p(m,mH) = (p~=::r::.-+;ll); im, im+l = 1, 2, ... ), 

m = 1, ... ,n - 1, 

with non-negative elements and row sums one 

(1) 

(2) 

(3) 

The Markov assumption states that the probability of a sample point 
(il, ... ,in) is given by the product 

P( (il, . . . ,in» = PilP~~:;2) 
36 

P(",-l,,,,) 
• •• tn_t,l-n· (4) 
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The m-th coordinate Xm(w) = im, m = 1, ... ,n, of a sample point w 
is a random variable and represents the state of the system at time m. 
Such a family of random variables on a probability space is an example 
of a random or stochastic process. Making use of formula (4), it is now 
clear that the vector p is the vector of initial probabilities 

(5) 

and the elements of the matrices pCm.m+l) are one' step conditional 
probabilities 

P<m.m+l) - P(X - l' IX - l' ) ,'" - m+l - m+l m - m, m'''m+l 
(6) 

m = i, ... , n - 1. 

Such a probability model is called a Markov chain. Thus, the Markov 
assumption states that joint probabilities can be computed in a simple 
manner (as given by (4» from an initial probability distribution and 
one-step transition probabilities or conditional probabilities. The 
simplest and most carefully studied case is that in which the transition 
probability matrices pCm.m+l) are independent of m. We shall refer to 
this as the case of stationary transition mechanism and discuss it in some 
detail later on. If all the one-step transition probabilities 

(7) 

do not depend on the initial subscript lm, the random variables 
Xm, m = 1, . . . ,n, are independent random variables. 

The Markov assumption can be recast in another form that gives 
greater insight into its intuitive meaning. Consider time t = m as the 
present. Let A be any set of sample points obtained by restrictions on 
the possible states of the system in the past, that is, t < m, and B any 
set of sample points obtained by restrictions on the possible states of 
the system in the future, t > m. Thus, we would have A, B of the form 

A = {al ~ Xl ~ bh . . . ,am-l ~ Xm- 1 ~ bm- 1 } 

B = {am+l ~ Xm+1 ~ bm+1, ••• ,an ~ Xn ~ bn}. 
(8) 

Suppose it is known that the system is in the state im at time m. Then 
the Markov assumption (4) and the additivity of the probability 
function indicates that the conditional probability of the joint occur­
rence of A and B factors 

Thus, given precise knowledge of the present, the past (A) and future (B) are 
independent. We have only shown that the Markov assumption implies 
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this property. However, one can easily show that this reformulation 
of the Markov property implies (4). 

Higher order transition probabilities can be easily computed in 
terms of one-step transition probabilities 

(10) 

Call the matrix of transition probabilities P}::,":.~r>, pCn"".+r). A matrix 

equation for computing higher order transition probabilities from 
those of lower order follows readily 

pCr,.)pC8,t) = pCr,!), r < s < t. (11) 

This equation is usually called the Chapman-Kolmogorov equation. The 
equation reduces simply in the case of a Markov chain with stationary 
transition mechanism for then 

pCr,.) = p •• r, S > r, (12) 

where P = pCm,m+l), m = 1, ... , n - 1. The higher order transi­
tion probability matrices are just powers of the one-step transition 
probability matrix. All the relations obtained above have been written 
out for a Markov chain with a denumerable infinity of states. All the 
relations are the same, of course, in the case of a chain with a finite 
number of states. They differ only in that infinite sums are replaced 
by finite sums. 

A simple example of a Markov chain without stationary transition 
mechanism is given by the chain with 

{ 

'\;-i 
I\m -X" > . 

P(m,m+l) _ ( . ') I e m if} _ z 
i,; - } - l . 

o otherwise 
(13) 

i, j = 1, 2, ... , and m = 1, ... , n - 1, where Xl ¢ A2 ¢ ... 

¢ An-I, Ai > O. Of course, if we allow Xl = A2 = . . . = An-l a chain 
with stationary transition mechanism is obtained. Since the row dis­
tributions of the matrices pCm,m+l) are Poisson, it follows that the 



Markov Chains 39 

elements p~':J,m+~J of pCm,m+r) are given by 

1 
m+~-1 m+r-l 

( ~ Xi)/-i - ~ Ai 

P!,,!,m+rJ = i-m e i-m if)' > i I., (j-i)! - , 

o otherwise, 

(14) 

, > O. This Markov chain could be taken as a model of a telephone 
exchange as observed at the discrete time points t = 1, . . . , n. The 
random variable Xi is the number of calls made through the exchange 
from time t = 1 through time t = j. The additional number of calls 
made in the time interval j < t ~ j + 1 is assumed to be governed 
by a Poisson distribution with mean Xi and independent of the calls 
already made. Such a Markov chain is sometimes called a growth 
process because the probability mass drifts into the states with larger 
index as time goes. This is obvious since the number of calls increases 
as time goes on. 

The next example is sometimes taken as a model of population 
growth or death. Assume that we are studying a homogeneous popula­
tion whose growth (and death) mechanism does not change with time. 
X. denotes the number of individuals in the population at time s. The 
probability of one individual at time s generating j individuals at 
time s + 1 is given by q; ~ 0, where 

.. 
~ qj = 1. (15) 

i-O 

If there are i individuals at time s, they are assumed to act independ­
ently of each other in generating progeny for the next generation. 
Thus, pi,;' the probability of i individuals at time s generating j progeny 
at time s + 1, is given by 

(16) 

the j-th element in the vector obtained by convoluting the sequence 
q = (qo,qJ, ... ) with itself i times. Let !pes) be the generating function 
of the q sequence, that is, .. 

!pCs) = ~ qjSi. 
i=O 

(17) 

It is clear that q5i *J is the coefficient of s; in the power series expansion 
of !pes);. 



40 Random Processes 

Suppose we start with one individual at time t = O. The probability 
of j individuals at time t = 1 is qil the coefficient of si in the power 
series expansion of <p(s). Let us compute the probability of a population 
of j individuals at time t = 2. Suppose there are i individuals at time 
t = 1. The joint probability of i individuals at t = 1 and j .at time 
t = 2 is given by qiq?*l. The probability of j at time t = 2 is obtained 
by summing over i 

00 

~ q;qY*l. 
i=-O 

(18) 

But this is the coefficient of si in the power series expansion of 

,., 
<p(2)(S) = <pC<P(s» = ~ qi <p(S)i. (19) 

i=O 

Essentially the same argument indicates that the probability of j 
individuals at time t + 1 is given by the coefficient of si in the expan­
sion of 

<p(t+U(s) = <p(<p(t)(s» t = 1,2, .... (20) 

Certain aspects of the growth or death of the population can be 
described by studying the iterates <p(t)(s) ofthe generating function <p(s). 

Let et be the probability that the population dies out before or at 
time t, that is, 

et = P(Xt = 0). (21) 

Thus et = <p(t)(0). Suppose we are interested in the probability of 
eventual extinction of the population, namely, lim et = e. This limit 

t-+,., 

exists since et is a nondecreasing bounded sequence. Note that <p(s) is a 
continuous nondecreasing non-negative function on 0 :::; s :::; 1 with 
<p(1) = 1. It is clear that e is a solution of the equation 

(22) 

for 
e = lim et+l = lim <p(<p(t)(O» = <pCe). (23) 

t~1X) t-+c:o 

In fact e is the smallest solution of this equation in the interval [0,1] 
(see figure 3.1). For if r is any other solution in [0,1] 

e = lim <p(t)(O) :::; lim <p(t)(r) = r (24) 
t-+ 00 t~oo 

since <p is nondecreasing. Consider the solutions of r = <p(r) in [0,1]. 
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The value t = 1 is one such solution. If there is another solution r, 
o ~ t < 1, 

(;?(1) - (;?(r) = 1 
1 - t . (25) 

By the mean value theorem there is a point u, t < u < 1, at which 
'" (;?'(u) = 1. Now (;?'(s) = ~ kqkSk-1 is a continuous nondecreasing 

k=D 
function of s, 0 ~ s < 1. Thus, if there is such a point u, (;?'(1) ~ 1. 

5 
5=e 5=1 

5=0 

FIG. 3.1. Graph of the generating function (;?(s). 

In fact, excluding the trivial case (;?(s) = s, (;?'(s) is strictly increasing 
and (;?' (1) > 1; there can be at most one such point 0 ~ t < 1 such 
that t = (;?(t). Conversely if (;?'(1) > 1 there is a solution t, 0 ~ t < 1, 
of (22) since (;?(O) ~ O. Notice that (;?'(1) = T-kqk = JL is the expected 
number of individuals produced by one generation. We therefore have the 
following result. If JL ~ 1 (except for the trivial case ql = 1) the prob-
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ability of eventual extinction of the population is one. If /l > 1, there is a unique 
solution r, ° ::; r < 1, of (22) and r is the probability of eventual extinction 
of the population. If there are many individuals, say r, the probability 
of eventual extinction when r < 1 is small, for it is rr assuming the 
individuals act independently. 

It is very easy to compute the expected number of individuals at 
time n for it is given by 

d d 
EXn = ds ep(n) (s) Is=l = ds ep(ep(n-l) (s))18=1 

= ep'(1) fs ep(n-l)(S) 18 =1 = ... = /In. (26) 

If /l > 1 the growth of the population is exponential in the mean. 
Such models are called branching processes. They have been used as 
models of bacterial colony growth and chain reactions. An intensive 
discussion of such models can be found in a paper of T. Harris [31]. A 
treatment of corresponding multi-population models can be found in 
another paper of Harris [32]. 

A third illustrative example is provided by some simple discrete 
models of a diffusion process. Consider a particle in a random walk 
on the integer points of the real line. The states are labeled by the 
integers i = 0, ± 1, . . . . Given that the particle is at i at time t, its 
probability of going one step to the right is given by p and one step 
to the left by q, p, q ~ 0, p + q = 1. Thus 

pi,i+l = p, Pi,i-l = q. (27) 

Assuming that the particle is at i = ° at t = 0, let us compute the prob­
ability that it will be at i = j at time t = n. The particle can only reach 
even points in an even number of steps and odd points in an odd num­
ber of steps. For convenience, the computation will only be carried out 
for j, n even. The particle can only end up at j if it makes (n + j) /2 
steps to the right and (n - j)/2 steps to the left. There are precisely 
binomial coefficient 

(28) 

such distinct paths and each of them has probability 

(29) 
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The probability desired is therefore given by 

(n ;j)/2)/~iqn;j. (30) 

Consider now a random walk with an absorbing barrier at - a < o· 
The states are now labeled by the integers i = -a, -a + 1, .... 
The transition probabilities from the states i > -a are given as before 

pi,i+! = p, Pi,i-l = q, (31) 

p, q ~ O,p + q = 1. However, 

p-a,-a = 1. (32) 

Thus, if the particle ever enters state -a in its walk, it is held fast there 
from then on, Again assuming the particle is at 0 at time t = 0, we 
would like to compute the probability that the particle is at j > - a at 
time t = n. For convenience, assume that j and n are odd. In comput­
ing the desired probability the paths in the unrestricted random walk 
(without a barrier) that go from 0 to j in n steps and pass through -a 
must be deleted. However, there is a one-one correspondence between 
the paths that go from 0 to j through -a in n steps and those that go 
from - 2a to j in n steps. Consider any specific path that goes from 0 to j 
through -a. Let t, 0 < t < n, be the first time the particle following 
the path is at -a. Take the mirror image of this first part of the path, 
from time 0 to time t, with respect to -a. We then have a path that 
starts at -2a at 0 and is at -a at time t. Leave the remainder of the 
path from time t to time n as it was. The new path is then a path from 
- 2a to j. A little reflection indicates that this correspondence is one­
one. Thus the total number of paths from 0 to j in time n that do not 
pass through -a is equal to the total number of paths from 0 to j in 
the unrestricted random walk less the total number of paths from - 2a 

to j in an unrestricted walk 

(n ;i)/2) - (n t f) + a) (33) 

n+i n-j 
Since each path has probability p-2-q-2-, the probability of reaching j 
in n steps is 
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Let us now return to a brief discussion of a Markov chain with 
stationary transition mechanism. The transition mechanism is governed 
by the one-step transition probability matrix P = (Ai)' Given a 
transition matrix P one mayor may not be able to find a left invariant 
probability vector p = (Pi), Pi ~ 0, 'J;pi = 1 

pP = p. (35) 

Given the existence of such a vector, it is of interest to look at the 
Markov chain with initial distribution p and transition matrix P. 
The instantaneous probability distribution 

P(X. = i) = pi, s = 0, 1, ... ,n (36) 

is invariant under time shift. In fact, the probability of the events 
{X.1+t = iI, ... ,X8a+t = ia}, Sl < ... < sa, is independent of t 

(37) 

(p~~} is the (i,j)-th element of po). Thus, the probability structure of 
the process is invariant under time shifts. Such processes are called 
stationary processes. Processes like this are reasonable as models when the 
probability structure of the phenomenon described is stable through 
time. In Chapter V we shall examine stationary processes that are more 
complex in structure. 

Invariant probability vectors will be shown to exist for any finite 
dimensional transition probability matrix P in section b. However, 
they need not exist when P is infinite dimensional. An example illustrat­
ing this last remark is given by the matrix P for the growth process with 

{ 72 if j = i, i + 1 
pi,i = ° otherwise. (38) 

A left invariant probability vector p would have to satisfy 

~ pipi,j = 72(Pi-l + Pj) = P; (39) 
i 

for j > 1 and therefore all its components would have to be equal. 
This is obviously impossible. 

h. Matrices with Non-negative Elements (Approach 
of Perron-Frobenius) 

We shall discuss certain structural properties of finite square 
matrices A = (ai,;; i, j = 1, ... ,n) with non-negative elements ai.; ~ ° 
in this section. Finite probability matrices correspond to the special 
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case obtained by setting row sums ~ ai,; equal to one. This is a con-
i 

dition on preservation of mass. The more general case discussed here 
allows for generation or destruction of mass. Our approach is non­
probabilistic and due to Perron and Frobenius. The very elegant 
treatment given here is due to H. Wielandt [76]. In section c analogues 
of some of the results will be established for transition probability 
matrices in both finite and infinite dimensional cases by probability 
methods. 

A number A is said to be a right eigenvalue of the matrix A if there 
is a nontrivial solution x r6 0 = (0, . . . ,0) of the equation 

Ax' = AX'.* (1) 

The column vector x' is a corresponding right eigenvector. Now (1) 
is satisfied if and only if A - AI (I the identity matrix) is singular. Thus A 
is also a left eigenvalue since there is a vector y such that yA = Ay. Of 
course x,y will generally be different vectors. We shall simply refer 
to A as an eigenvalue of A. It is clear that the eigenvalues A of A are the 
solutions of the characteristic equation 

.p(A) = det (A - AI) = o. (2) 

Knowledge of the eigenvalues A of A gives one considerable infor­
mation about the behavior of the elements atj) of Am for large m. 
Consider the generating function 

"" A(z) = ~ ziAi = (I - ZA)-l (3) 
i=O 

which is well defined for sufficiently small 14 By Cramer's rule the 
(i,j)-th element ai.;(z) of A(z) is given by 

a .. (z) - pi,;(Z) 
>,] - det (I - zA) 

pdz) 
(4) 

where pi,;(Z) is the cofactor of the (j,i)-th element in 1 - zA and 
AI, . • . ,An are the eigenvalues of A. If the eigenvalues Ai are distinct 
we see that 

"" a· ·(z) = ~ a<m) zm 1", '1-,] 

m=O 
where 

{
Oii if m = 0 

a(m)- n 
',j - ~ b(klAm otherwise 

-",' k , 
k=l 

(5) 
o 

that is, a~:y is a weighted sum of the m-th powers of the eigenvalues. 

* Given a rectangular matrix A, A' is its transpose, that is a:.i = ai." 
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An n X n matrix A is said to be irreducible if one cannot bring A 
into a form 

(All i A12) 
~·······-···l·····~~·~ (6) 

by a consistent relabeling of the rows and columns where Au is an 
r X r matrix, 1 ~ r < n, and A22 is an (n - r) X (n - r) matrix. 
Otherwise A is reducible. We shall be interested in irreducible non­
negative matrices. A vector x will be called non-negative if all its com­
ponents Xi are non-negative. 

Theorem 1: The characteristic equation of the non-negative irreducible 
matrix A 

q,(z) = det (zI - A) = 0 (7) 

has a simple positive root>. that is greater than or equal to the absolute value 
of any other root. The eigenvector of A corresponding to this root can be taken 
with all its components positive. The maximal eigenvalue A is the only one with 
its corresponding eigenvector non-negative. 

Let x be any non-negative vector that is nontrivial (x r6- 0). Set 

~ ai,jXi 

Az = min-i--
i Xi 

(8) 

with the convention that the fraction is set equal to + 00 if Xi = O. 
Notice that >'z is the largest number for which 

Ax' - Axx' ~ O. (9) 

Let y be the vector with all components equal to one. Then 

>'z < yAx' < Cyx' = C 
- yx' - yx' 

(10) 

where C is the largest component of the vector yA. Thus the numbers 
Az are bounded above. Let>. be the least upper bound of the num­
bers >'z 

~ ai,jXj 

A = max min _i_­
x >0 i Xi 
xii'o 

(11) 

This upper bound A is positive since Ax > 0 for x = y (A has no row 
consisting entirely of zeros since it is irreducible). 
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It is clear that there are extremal vectors, that is, vectors z ~ 0, 
z ;::: 0 such that Az' - AZ' ;::: O. Note that these are vectors for which 
A is attained, namely A = Az• Nonetheless, by the very definition of A 
there is no vector x ;::: 0 such that Ax' - AX' > O. We wish to show 
that every extremal vector z is an eigenvector of A with eigenvalue A and that 
z is positive. Consider any vector x ;::: 0, x ~ O. We shall first show that 
(I + A)n-1x' > O. Set (I + A)·x' = x(·)'. Then X(·+l) = x(·) + x(')A' 
;::: x(·) ;::: O. Thus in X(·+l) at most those components that vanished in 
x(·) can be zero. However, it might be that exactly the same compo­
nents in x(·) and X(·+l) vanish. But then we can write 

x(·)' = (~'), u > 0 

X(.+l)' = x(.)' + Ax(.)' = (u') + (All A12) (u') (12) o A21 A22 0 

= (~'} 
But then A21U' = 0 implying that A21 = 0 contrary to the assumption 
of irreducibility of A, a contradiction. Since x = x(O) has at most 
n - 1 components zero, this implies that x(n-l) has no zeros. Now 
let z be an extremal vector so that z ~ 0, z ;::: 0, Az' - AZ' = x' ;::: O. 
If x ~ 0, (I + A)n-1x' = Ay' - Ay' > 0 where y' = (I + A)n-lz'. 
Since this is impossible x = 0 and z is an eigenvector of A with eigen­
value A. Moreover z > 0 since 0 < y = (1 + A)n-1Z. 

Given any matrix M = (mi.;) let M* = (Imi';!) be the matrix with 
elements the absolute values of the corresponding elements of M. Now 
let a be any eigenvalue of A so that Ax' = ax' for some x ~ O. Then 

lalx*' ~ Ax*', lal ~ Ax. ~ A (13) 

so that A is the eigenvalue with maximal absolute value. Further A is the only 
eigenvalue with a non-negative eigenvector. For suppose there were another 
such eigenvalue a with eigenvector x ;::: 0, x ~ O. Let y be an ex­
tremal vector of A'. Then 

ayx' = yAx' = (yA)x' = AyX'. (14) 

Then a = A since Y > 0 implies that yx' ~ O. 
Let x be an eigenvector of A with eigenvalue A and z a given 

extremal vector. Take c so that x - cz = y ;::: 0 and one component 
of y vanishes. But then y cannot be an extremal vector. However, 
Ay = Ay and therefore y is extremal unless y = O. Thus x = cz and A 
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has only one linearly independent eigenvector whose components can all be taken 
positive. 

We now show that>. is a simple root of <I>(z). It is enough to show 
that <I>'(>.) ~ O. But <I>'(>.) is the trace of the matrix Q that is adjoint 
to >'1 - A. Since the rank of>.! - A is n - 1, Qis not the null matrix. 
Further (>.1 - A)Q = O. This implies that every nonvanishing 
column of Q has elements of the same sign (since it is an eigenvector 
of A with eigenvalue >.). However, the relation Q(>.! - A) = 0 
implies the same of the rows of Q. Thus all elements of Q have the 
same sign and hence <I>'(>') = trace (Q) ~ O. The proof of the theorem 
is complete. 

Notice that (11) is an interesting maxmin property of the eigen­
value. Of course, when A is a transition probability matrix>. = 1. For 

~ ai,jXj 

min-i-- ~ 1 
Xi 

(15) 

for any x ~ 0, x ~ 0, since ~ ai,i = 1. However, 1 is attained by 
i 

taking Xl = . . . = X1I ~ O. The left eigenvector x of A with eigenvalue 
one can be taken as the initial probability distribution of a Markov chain with 
transition matrix A If it is normed so that ~ Xi = 1. In fact, this chain will 

j 

then clearly be a stationary Markov chain. 
The next result is an interesting comparison theorem. 

Theorem 2: Let A = (ad be an irreducible matrix with non-negative 
elements and B = (bd a matrix with complex elements, ib;,;j ~ ai,j, i,j = 1, 
. . . ,n. Let>. be the maximal eigenvalue of A and f3 an arbitrary eigen­
value of B. Then if3i ~ >.. If equality holds f3 = >.ei'" and B can be written 

(16) 

where D is a diagonal matrix whose diagonal elements have absolute value one; 
further then ibi,ii = ai,i' 

Now 
f3x' = Bx' (17) 

implies 
if3ix*' ~ B*x*' ~ Ax*' (18) 

so that if3i ~ >'x* ~ >.. If if3i = >., x* is an extremal vector of A and 

if3ix*' = Ax*', x* > O. (19) 
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But then B* = A, Ibioi! = ai.j' Now x' = Dx*' where D is a diagonal 
matrix whose diagonal entries have absolute value one. Set (3 = Xei'l'. 
Then 

1(3lx*' = Cx*' (20) 
where 

C = e-;'I'D-IBD, C* = B* = A. (21) 

But Cx*' = C*x*' and since x* > 0 

C = C*, C = A, B = ei'l'DAD-l. (22) 

Theorem 2 can be used to obtain the following result. 

Theorem 3: Let A be an irreducible non-negative matrix. Suppose there 
are k roots of cI>(z) = 0 of maximal absolute value. Then they must all be 
simple and of the form Xe21riflk(j = 1, . . . , k). The set of all n roots of A 
are invariant under a rotation in the complex plane about zero through an angle 
of 27r jk but not through any smaller angle. By appropriate relabeling of rows 
(and correspondingly of columns) A can be put ill the form 

0 A12 0 0 
0 0 A 23 0 
0 0 0 0 

(23) 

0 0 0 Ak-1,k 

Akl 0 0 0 

Suppose there are k roots of maximal absolute value X 

OIj = Xei<pj o = 'PI ~ 'P2 ~ ••• ~ 'Pk < 27r. (24) 

The assumptions of Theorem 2 are satisfied with B = A and (3 = OIf 

and thus there is a diagonal matrix Df such that 

A = ei'l'jDfADj l. (25) 

Since X is a simple root of cI>(z) = 0 so are all the roots OIf j = 1, . ,k. 
Thus the OIf are all distinct. Using (25) we see that 

A = ei('I'j±<pj')TAT-I(T = DfDJil) (26) 

so that the numbers Xei('I'j±'I'j') are eigenvalues of A. But this implies that 

'Pj = (j - 1) 27r. 
k 

(27) 
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The invariance of the set of eigenvalues through a rotation of 2; about 

the origin follows from (27). 
Rearrange the rows and columns of the matrices so that D2 has 

the form 
o 

D2 = (28) 

o 

where the 1/s are identity matrices and the o;'s differ from each other 
mod 211". Carry out the corresponding decomposition of A into g2 sub­
matrices Aij • Equation (25) in the case j = 2 can then be rewritten 

A i(!..k"+8.-8;)A 
ij = e ij 

(29) 

so that Aij = 0 when 2; + Oi ¢ OJ mod 211". Thus there is at most for 

each i one j for which Aij ¢ O. On the other hand there must be one 
since A is assumed to be irreducible. Thus given Oi there is precisely 

one j such that OJ = 2; + Oi. If the rows (and columns) have been 

ordered properly 

OJ = 01 + (j - 1) 2; j = 1, • • • , k = g (30) 

and A has the form (23). 
We have already remarked that one is always an eigenvalue of 

maximal absolute value if A is a transition probability matrix. Let us 
see what the probabilistic meaning of other eigenvalues of absolute 
value one is when A is irreducible. If there are k eigenvalues of absolute 
value one, Theorem 3 states that there are k sub matrices such that A 
can be laid out in block cyclic form (23). Call the distinct sets ofrow 
labelings (or sets of states) corresponding to A12, ••• , Akl the sets 
of states Sl, . . . , Sk. Consider the natural order of the sets of states 
induced by the integer indexing with the convention that 1 follows k. 
From (23) it is clear that one can go from a state in set Si in one step 
with positive probability only to states in the following set of states. 
Consequently one can only return to Si after leaving Si with positive 
probability in a multiple of k steps. It is natural to call such states 
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periodic with period k. Theorem 3 tells us that if an irreducible transi­
tion probability matrix has k eigenvalues of absolute value one, the 
states are all periodic with period k. We shall discuss periodic states 
again in section c. 

A simple illustrative example is given by the circulant matrices, 
that is, matrices of the form 

ao al an-l 

an-l ao an-2 

A= (31) 

Since matrices with non-negative elements are desired, the ai ;::: O. 
However, most of our computations are valid without this restraint. 
Notice that the matrix A is a polynomial 

n-1 

A= }"; akJk (32) 
k=O 

in the matrix J 
0 1 0 0 
0 0 1 ° 

J= (33) 

0 0 0 1 
1 0 0 ° 

with JO = I, the identity matrix. We need therefore only obtain the 
eigenvalue and eigenvector structure of J in order to get that of A. The 
eigenvalues of J are Aj = e2'1riiln with corresponding right eigenvectors 

1 

1 
V;' j = 0, 1, ... ,n - 1. (34) 

e21rii(n-l)fn 

2mi 
The eigenvalues of A are then Ai = a(en ) 

that a maximal eigenvalue of A is Ao = }"; ak 
Ie 

n -1 27rilcj 

= }"; akc n • Notice 
k=O 

since the ak's are all 
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non-negative. It will be simple as long as one ak other than aD is posi­

tive. The left eigenvector with maximal eigenvalue is ~n (1,1, . . . ,1). 

c. Limit Properties for Markov Chains 

Let us now consider a Markov chain (finite or infinite state) with 
stationary transition mechanism. Let P = (pi,;; i, j = 1, 2, ... ), pi,; 
~ 0, ~ pi,i = 1, be the transition probability matrix of the chain. Our 

j 

primary interest is in the asymptotic behavior of the n-step transition 
probabilities P~':J, pn = (p~'J), as n ~ 00. An interesting and illuminat­
ing classification of the states of the chain will be introduced. 

The state k can be reached from the state j if there is an integer 
n ~ 1 such that pj~~ > 0. We shall call a class of states C of the chain 
closed if Pi,k = ° whenever j is in C and k is outside. Thus no state outside 
a closed class C can be reached from any state in C. A closed class of 
states is minimal if it contains no proper closed subset of states. Notice that 
the statement that the matrix P is irreducible (see section b) is equiva­
lent to the class of all states of the process being a minimal closed class 
of states. We might therefore call such a Markov chain an irreducible 
chain. 

Consider now a fixed state j of the chain and suppose the system 
studied is in statej at time zero. Letfr) then be the probability that the 
first return to j occurs at time n ~ 1. Note that 

and generally 

The sum 

ffl) = P;'j 

f~2) = p(2) - f(l)'P' . 
1 }.1 1 J,} 

f in) = p(n) - f(l)'P(n.-l) - ••• -f(n-l)'P" 
1 1,1 } I,} } 301' 

'" Ii = ~ fin) 
n~l 

(1) 

(2) 

(3) 

is the probability that the system ever returns to the state j. If Ii = 1, 
the time for a first return to state j is a well-defined random variable. 
The time required for a first return from state j to state j is called the 
recurrence time for the state j. If Ii = 1 the first moment 

00 

Il; = ~ nfjn) 
n-O 

(4) 
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is the mean recurrence time for state j. Note that if Ii < 1, there is a positive 
probability the system will never return to j. 

We shall introduce a classification of the states of the chain in terms 
of tlieir recurrence time. The state j is called a transient state if return to j 
is not sure, that is, Ii < 1. If return to j (from j) is sure (1; = 1) the state is a 
recurrent state. A recurrent state with infinite mean recurrence time Jl.j = 00 

is called a null state. A state j is periodic with period t If return is impossible 
except in perhaps t, 2t, 3t, . . . steps and t is the greatest integer larger than 
one with this property. A recurrent state that is neither null nor periodic is called 
a persistent state. 

It should be noted that the study of Markov chains with an infinite 
number of states was initiated by A. Kolmogorov (45]. Further work 
was carried on by Doeblin (10], Doob (11], Chung (8], Feller (17], and 
others. The terminology used in this section is due to W. Feller (17]. 

The recurrence time distribution of a state of the chain can be 
studied by making use of generating functions. Equations (2) relate the 
probabilities fr) of first return and the ordinary transition probabilities 
P}~l. Suppose we let 

1(0) = 0 PIO) = 1 
I '1.1 

(5) 

and introduce the generating functions 

'" F(s) = ~ jJn)sn 
n=O 

(6) 

'" G(s) = ~ p(n)sn. 
O }.} 

n= 
(7) 

Equations (1) and (2) can then be written in terms of the generating 
functions as 

G(s) - 1 = F(s)G(s) (8) 
or 

1 
G(s) = 1 - F(s)' (9) 

From this it is clear that j is a recurrent state if and only if 

'" lim G(s) = ~ pIn) = 00. }.I 
_1- n=O 

(10) 

Consider as an example the unbounded random walk on the lattice 
points i = 0, ± 1, ± 2, ... of the line with probability p > 0 of 
going one step to the right and q = 1 - P > 0 of going one step to 
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the left. Suppose we start at a state (say i = 0) at time zero. The 
probability of returning in n steps to zero is 

~ 0 if n is odd 

p~! ~ I G) p'; ;r n i, even. 
(11) 

Thus it is already clear that the state (and hence every state) has period 
two. The generating function 

00 

= 2: (_1)n22n ( -~) pnqns2n 

n=O 

= (1 - 4pqs2)-~~. (12) 
Now 

lim G(s) = (1 - 4pq)-H (13) 
&->1-

which is finite if p ~ q and infinite if p = q = %. Thus if P ~ q, the 
states are all transient. This is not unexpected since if p > q (p < q) we 
would expect a pronounced drift to the right (left). However, if there 
is balance, p = q = ~, the states are recurrent. Now 

F(s) = 1 - (1 - 4pqs2)lfi 

so that when p = q = 72, the mean recurrence time is given by 

lim F'(s) = lim s(1 - S2)-~~ = 00. 

&->1- &->1-

(14) 

(15) 

This is somewhat surprising for the random walk can be thought of in 
terms of a succession of independent tossings of fair coins. At time n the 
location of the particle in the random walk is equal to the excess of 
heads over tails in n tossings. Location zero corresponds to equilib­
rium, an equal number of heads and tails. Since the states are recurrent, 
we come back to equilibrium with probability one as expected. But 
the fact that the mean recurrence time is infinite implies that one may 
have to wait a very long time before one comes back to equilibrium. 

Consider now an irreducible Markov chain. Let j,k be any two 
states of the chain. Since the chain is irreducible one can go from j 
to k and from k to j with positive probability. For suppose k is inacces-
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sible from j. Then by deleting k and all states that lead into k with 
positive probability we would obtain a proper closed subchain con­
trary to the assumption that the original chain is irreducible. Let N 
be the length of the shortest path from j to k with positive probability. 
Similarly let M be the length of the shortest path from k to j with posi­
tive probability. Set P}r:,/ = a > 0, P~"!/ = (3 > 0. Then for any posi­
tive n it is clear that 

p}j'rNHfl ~ PYj/Pt#~~:) = a{3p~~l 
Pk~tN+Ml ~ Pk"!/pj~JPJ;r.' = a{3pJ,:]. 

(16) 

Thus the sequences Pi':], Ptl have the same asymptotic behavior. We 
"" 

already know that j is recurrent if and only if ~ pj~J = 00. But the 
n=O 

inequalities (16) imply the equivalence of the divergence of'I-P}':] and 
'I-Pk~k' Thus thl states of an irreducible chain are either all recurrent or all 
transient. Now suppose j is periodic with period t. The number N + M 
is divisible by t since a return to j is possible in N + M steps. The 
inequalities (16) then imply that k is periodic with period t. Therefore, 
if one state in an irreducible chain is periodic with period t, all the states are 
periodic with period t. A theorem of Erdos, Feller, and Pollard indicates 
that 

(17) 

as n ~ 00 if j is a recurrent non periodic state. Here, of course, /Lj is the 
mean recurrence time of the state j. If j is a null state Uj = ° and If j is a 
persistent state then Uj > 0. Let us assume this result for the moment. 
The Erdos, Feller, Pollard theorem will be derived later on. The Erdos, 
Feller, Pollard theorem and inequalities (16) imply that all the states of 
an irreducible chain are persistent or none of them are. 

Let us briefly discuss the case of an irreducible chain with states of 
period t. Let j and k be any two states of the chain. Since the chain is 
irreducible there are integers N, M such that pj~' > 0, Pk~) > o. 
Since p)~+Ml ~ PJ~'Pf/'J>' the integer N + M is divisible by t. Hence if 
N, N' are the lengths of two paths of positive probability from j to k, 
they must have the same remainder after division by t. For fixed j each 
state k corresponds to a remainder 11, ° ~ 11 ~ t - 1, such that a 
transition from j to k with positive probability is possible only in 
11, 11 + t, 11 + 2t, . . . steps. Take j = 1 and classify all the states into 
disjoint sets So, S1> . . . ,St-l where k belongs to S. if Pi~1 > ° implies 
that N = 11 + nt. Consider the sets S. in their natural indexed order 
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with the convention that So follows St-l. It is then clear that a one-step 
transition from a state in Sv will lead to a state in the following set of 
states. Notice that a t-step transition leads back to a state in the same 
set. If we therefore consider the matrix of transition probabilities pI, 
each set of states Sv is a closed irreducible nonperiodic class of states. 

Consider an irreducible nonperiodic Markov chain. Let us now 
examine the asymptotic behavior of the transition probabilities P}~~ 
as n ~ co where j and k may be distinct states. We already know that 
the irreducible character of the chain implies that all states must be of 
the same type. Now 

n 

Pen) - ~ j(m)'P<n-m) 
i.1e - i.k k.k 

m=l 
(18) 

where if'J/ is the probability of a first passage from j to k in precisely 
m steps. If the states of the chain are transient Ptk ~ 0 as n ~ co for all k 

'" and hence by relation (18) Pi~~ ~ 0 as n ~ co for all j,k ( ~ fY:;/ ::; 1). 
m=l 

If the states of the chain are null states, pink ~! = ~ = 0 as n ~ co 
• P-k co 

and the same argument indicates that PJ~l ~ 0 as n ~ co. Now consider 
the case of persistent states. Since the states are recurrent ~ frJ'> = 1 

m 

for otherwise return to j from j would not occur with probability one. 

Further by (17) P5Y ~ ± = Uj > 0 as n ~ co and thus relation (18) 

implies Pl~~ ~ Uk > 0 as n ~ co. We shall now show that if the chain 
is irreducible and non periodic, there is an invariant instantaneous distribution 
if and only if the states are persistent, in which case the distribution is unique 
and given by {Uk}. Let {Vk} be an instantaneous invariant distribution, 
that is, a probability distribution satisfying 

Relation (19) implies that 

Vj = ~ ViPi,;. 
i 

Vj = ~ viP~~l 
i 

for all n. On letting n ~ co we have 

Vj=~ViUj=Uj 
i 

(19) 

(20) 

(21) 

so that if there is an invariant distribution it is uniquely given by {Uj}. 

The states of the process must therefore be persistent. All that is now 
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required is to show that {Uj I is in fact a probability distribution satis­
fying (19) if the states are persistent. Now ~ Uk ::; 1 since ~ pl(n~ = 1 

k k • 

and Uk = lim Pl~lc. Now P~'1+ll = ~ P~~~Pp.k. On letting n -+ 00 the in-
n-+ co II 

equality 
(22) 

is obtained. On summing over k the same quantity ~ u. is obtained and 
p 

hence the inequalities must have been equalities. But then {up} is a 
nontrivial solution of (19) since the Uk > O. Setting Vk = Uk(~Up)-l an 
invariant distribution is obtained. But we have already seen that an 
invariant distribution if it exists must be {Uk}. Thus ~ Up = 1 . 

• 
Notice that existence of an invariant distribution means that one is 

a left eigenvalue of P with corresponding eigenvector a probability 
vector. Periodic states imply the existence of other eigenvalues of P 
of absolute value one. 

The Erdos, Pollard, Feller, theorem relates to the asymptotic 
behavior of a sequence N~l (n -+ 00) satisfying relation (2). We now 
state and prove this theorem. In the following proof think of fn as the 
probability of first return to a state in n steps and of Un as the transition 
probability of return (not necessarily a first return) to the same state 
in n steps. 

Theorem: Let Un}, n = 0, 1, ... , be such that fo = 0, f .. ~ 0, 
~fn = 1 and the greatest common divisor of the integers n for which fn > 0 is 
one. Set Uo = 1 and for n ~ 1 let 

(23) 

Then u .. -+ lip. where p. = ~nfn(u .. -+ 0 if ~nf .. = 00) as n -+ 00. 
Let rn = fn+1 + f"+2 + .... Then ro = 1 and Ii = T;-1 - T;, 

j = 1, 2, .... Using this relation between the f's and r's, equation 
(23) can be rewritten as 

.. n-l 
An = ~ TjUn_j = ~ TjUn-l-j = A n- 1 = . . . = 10Uo = Ao = 1. (24) 

i-O i-O 

Now Uo = 1 and hence by equation (23) 0 ::; Un ::; 1 for all n. Let 
'- = lim sup Un. Further let j > 0 be such that fj > O. We show that 

n~" 

if n. is an increasing sequence such that un. -+ '-, then Un.-i -+ '-. For 
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if this were not so there would be arbitrarily large n in the sequence n. 
00 

with Un_j < >'" < >... Take N so large that TN = ~ h < e, e > O. 
N+l 

Since Uk ~ 1, for n > N 

Un ~ /oUn + !tUn-l + ... + /NUn-N + e. (25) 

For sufficiently large 12 of this sort we would then have 

>.. - e < Un < (Jo + ... + Ii-I + Ii+I + ... + /N)(>" + e) 
+ h>'" + e (26) 

~ (1 - h)(>" + e) + h>'" + e < >.. + 2 e - h(>.. - >..') 

and this leads to a contradiction if h(>" - >..') > 3 e. Therefore un.-i -+ >... 
A repetition of this argument indicates that Un .-2i -+ >.. and generally 
Un.-::; -+ A for any fixed positive integer x. Similarly if 'Y = lim inf Un 

n-.oo 

and 12. is any sequence for which un. -+ 'Y, then un ._::; -+ 'Y for any posi. 
tive integer x. Now consider all the integers j for which h > O. There 
is a finite subcollection a, b, c, . . . , m of these integers with greatest 
common divisor 1. Now by an extension of the argument given above 
if un. -+ A, then Un.-:za-ub- ... -wm -+ A for all fixed integers x, y, . . . , 
w > o. But every integer k greater than the product abc . . . m can 
be represented in the form k = xa + yb + ... + wm with x, y, 
. . . ,w > O. Thus Un.-k -+ A for every k > ab . . . m. The analogous 
result for convergence to 'Y holds if Un. -+ 'Y. Now let un. -+ >... Then 
Un.-k -+ >.. for k > ab ... m and taking n = n. - ab . m - 1 we 
have 

1 ~ ToUn + TIUn_l + . . . + TNUn-N. (27) 

On letting n. -+ 00 the inequality 1 ~ A(TO + . . . + TN) is obtained. 
Since this is true for all N, 1 ~ }..J.L since J.L = '1;Tj. Notice that this 
implies that A = lim Un = 0 if J.L is infinite. Suppose JL finite. Take N 
sufficiently large so that ~ Tj < e, e > O. Let n. be an increasing 

i>N 
sequence such that un. ~ 'Y. Take n = 12. - ab ... m - 1. Then 

1 =:; TOUn + ... + TNUn-N + e (28) 

and on letting 12. ~ 00 we obtain 1 ~ (To + ... + TNh + e and 
hence JL'Y ~ 1. Since it was already shown that J.LA ~ 1, the equality 

1 
>.. = 'Y = - must hold. 

J.L 
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Relation (17) is obtained by applying the above theorem to the 
equations (2). For the asymptotic behavior of transition probability 
of periodic states see problem III.14. 

d. Functions of a Markov Chain 

The structure of a Markov chain X(m) has been discussed. * How­
ever, in various contexts, it may be that the experimenter does not 
observe the process X(m) but rather a derived process Y(m) = f(X(m)) 
where f is a given function on the state space of the Markov chain 
X(m). The states i of the original process on which f equals some fixed 
constant are collapsed into a single state of the new process Y(m). We 
shall call the collection of states on which f takes the value a the set 
of states Sa. Of course, only nonempty sets of states are of interest. 
One would like to know whether the new process is Markovian. The 
following simple example indicates that this is generally not the case. 
Let the initial process X(m) be a Markov chain with the three states 
I) 2, 3, transition probability matrix 

(1) 

and initial probability vector 

p = (%,%,%). (2) 

The process X(m) is stationary since p is a left eigenvector of P with 
eigenvalue one. Collapse the set of states S consisting of 1, 2 into one 
state. Then 

P(X(m + 2)e S, X(m + l)e SIX(m)e S) = 2%6 

~ P(X(n + l)e SIX(n)e S)2 = (1%4)2 (3) 

so that the new process is not Markovian. It is natural to look for condi­
tions on the function f and the probability structure of the Markov chain 
X(m) that will imply that the new process Y(m) = f(X(m)) is Mark­
ovian. For if Y(m) is Markovian, we can apply the powerful techniques 
that are relevant in the analysis of such processes to the computation 

* Every so often we shall write X(m) instead of Xm• There will however be no 
confusion as it will always be clear what is meant from the context. 
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of aspects of the probability structure of Y(m). In section a we have 
already noted that the transition probabilities of a Markov chain 
satisfy the Chapman-Kolmogorov equation. Such a condition might 
therefore possibly be provided by insisting that the transition proba­
bilities of the Y(m) process satisfy the Chapman-Kolmogorov equation. 
However, an example of P. Levy [52] indicates that this condition does 
not generally imply that the new process Y(m) is Markovian. We now 
give an example that is a simplification of P. Levy's to illustrate this. 

Let X(m) = (Y(m), Y(m - 1», m = 1, 2, ... , be a Markov 
chain with transition probabilities 

P(Y(m + 2) = u2lY(m + 1) = Ul, Y(m) = uo) 

= ~ {1 - cos [2r'Tr (2U2 - Ul - uo) J} 
Uo, UJ, U2 = 0, 1, ... ,r - 1. (4) 

Thus X(m) is a Markov chain with a state space consisting of the r2 
points (i,j) , i, j = 0, ... , r - 1. Let the initial probability dis­
tribution be 

1 
PUO,Ul = P[y(o) = Uo, Y(1) = Ul] = 2' 

r 
(5) 

With this initial distribution X(m) is stationary and persistent. The 
process Y(m) is a function of X(m) but is not Markovian (it might be 
appropriate to call it two-step Markovian) since the transition struc­
ture (4) depends on the two previous locations ofthe process. However, 
a direct computation indicates that the one-step transition probabilities 
of Y(m) are of the form 

1 
P(Y(t) = ut!Y(s) = u.) = -, 1 ~ s < t, (6) 

r 

and they clearly satisfy the Chapman-Kolmogorov equation. We thus 
have a simple example of a non-Markovian process Y(m) whose one­
step conditional probabilities (6) satisfy the Chapman-Kolmogorov 
equation. 

Let X(m) be a Markov chain with transition probability matrix 
P = (Pi,;). Take! a given function on the integers. The requirement 
that we will impose on ! and P will be somewhat stronger than that 
spoken of above. It will be that Y(m) = !(X(m» be Markovian what­
ever the initial probability distribution of X(m). Let the sets of states 
of such a process X(m) that are collapsed into single states a of Y(m) 
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by the function f be denoted by Sa. Take any initial distribution 
W = (Wi), Wi > 0, for X(m). lfthe new process Y(m) is Markovian, then 

(7) 

where 
(8) 

The expression on the right of (7) is well defined as long as ft;.s{J > 0 
for some i. We shall call a set of states Sa a single entry set if Pi,Sa > 0 
for i from at most one set of states S{J. Single entry sets complicate the dis­
cussion and therefore it will be assumed that none of the sets of states Sa 
are single entry sets. A discussion of the problem allowing single entry 
sets in the case of Markov processes with a general state space is to be 
found in [68]. Consider any two states i, i' in distinct sets of states 
Sa, Sa' for which pi,S{J' Pi',S{J > O. Let all the Wu with u ¢ i, i' tend to 
zero. Relation (7) then implies that 

(9) 

But this is valid for all Wi, Wi' only if 

(10) 

Notice that (10) is obviously satisfied if Pi,S{J = O. Equation (10) there­
fore holds for all i, i', {3, "(. 

We shall show that if all the collapsed sets of states Sa are not single 
entry sets, relation (10) is a necessary and suffident condition for the new process 
Y(m) = f(X(m)) to be Markovian. Since the necessity has already been 
proven, it is only necessary to prove it sufficient. Let CS{J,s-r be the 
common value of 

(11) 
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for all i for which pi,Sfj > O. Now 

P[Y(1) = all ... , Yen) = an] 

so that Y(m) is Markovian. Notice that the transition mechanism from 
time 2 on is stationary since 

CSa,Sfj = P[Y(m + 1) = ,8IY(m) = a] (13) 

for m ~ 2. If the transition mechanism is to be stationary for all time, 
that is, for time 1 also, 

(14) 

must hold for all Wi > O. This leads to a condition somewhat more 
stringent than (10), namely for all a, ,8 

(15) 

when iESQ • Condition (15) had already arisen in some work of B. Rankin 
[61] and a number of aggregation problems as they arise in econo­
metrics [65]. One can readily see that condition (15) is more restrictive 
than (10). For if given any {3 

(16) 

for all i andjESfj relation (10) is satisfied while (15) need not be. 
The corresponding problem in the case of a stationary Markov 

chain, that is, whether a function of a stationary Markov chain is 
Markovian, does not appear to have a simple answer generally. How­
eve ... , one can give a complete answer for certain special types of chains. 
Notice that we do not ask that the Markovian property be preserved 
for any initial distribution, only for an invariant initial probability 
vector. If the chain is irreducible there can be at most one such vector. 
Let P be the transition probability matrix of a chain and p a left 
invariant probability vector of P. Assume that all the components of p 
are positive. Let D be the diagonal matrix with its ith diagonal entry Pi. 
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A chain with transition matrix P and stationary instantaneous probability 
distribution p is said to be reversible if 

DP = P'D. (17) 

This is an appropriate name since relation (17) implies that the back­
ward and forward transition probabilities are the same 

P(X(m + 1) = iIX(m) = i) = P(X(m) = ilX(m + 1) = i). (18) 

For such chains evolution forwards and backwards in time are statisti­
cally indistinguishable. We shall show that for reversible chains relation 
(15) is a necessary and szifficient condition for a function Y(m) = f(X(m)) of the 
chain to retain the Markovian property. The sufficiency is already apparent. 
A demo'nstration of the necessity of the condition is only required. For 
convenience, the computation is carried out in the case of a chain X(m) 
with a finite number of states. Let u be the number of states of X(m) and 
v < u the number of distinct sets of states that f collapses the X state 
space into. We introduce v X u and u X v matrices A, B as follows. 
The elements of B are of the form 

b . . = {1 if iESi 
',1 0 otherwise (19) 

while 
A = (B'DB)-lB'D. (20) 

The n-step transition probability matrix of the Y(m) process is of the 
form 

Q(n) == ApnB = (q1:j» 
qt}l = P(Y(t + n) = SiIY(t) = Si). 

(21) 

If Y(m) is Markovian, the Chapman-Kolmogorov equations are 
satisfied by the Q(n) and in particular we must have 

(22) 
or 

AP(I - BA)PB = O. (23) 
But this implies that 

B'DP(I - BA)PB = O. (24) 

Because of the reversibility of the X(m) process this last equation can 
be written as 

B'P/D(I - BA)PB = O. (25) 
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The matrix D(I - BA) is positive definite so that 

D(I - BA) = R'R (26) 

for some u X u matrix R. Thus (RPB)'(RPB) = 0 and hence RPB = O. 
But then 

R'RPB = D(I - BA)PB = 0 (27) 
and hence 

(I - BA)PB = O. (28) 

This last equation is simply relation (15) written in matrix notation. 

e. Problems 

1. Show that if Xn n = 0, 1, 2, ... is a Markov chain, then 

P[XnJ = i1lXn, = i2, ••• , Xn1 = ik] = P[Xnl = i1lXn, = i2] 

if nl > n2 > . . . > nk. This is equivalent to the Markov property 
for a chain as stated in this chapter. 

2. Let P be a transition probability matrix with column sums equal 
to one. Let x be a probability vector and y the probability vector 
generated from x by y = xP. Show that the entropy ofy is greater 
than or equal to that of x. What happens if the condition that 
column sums equal one is relaxed? 

3. Show that there is no invariant probability vector for 

.. = {Xi-ie-A / (j - i)! 
Pt.] 0 otherwise. 

if j ~ i 

4. Find the eigenvalues of the transition probability matrix 

(~ ~. ~ ~) 
7;! % 0 0 
%7;!0 o. 

5. In the case of a branching process {Xn\ show that Var(Xn+1) 

= floVar(Xn) + flo2n a2 where flo is the mean and a2 the variance of 
the qi distribution. 

6. Let XI, X2, • • • be independent random variables with common 
distribution P(X = j) = h, j = 0, 1, 2, .... Let N be a non­
negative random variable independent of the X's with distribution 
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peN = m) = gm, m = 0, 1, 2, Show that the distribution 
of the sum Xl + X 2 + ... + XN = SN (the sum of a random 

co 

number of random variables) is given by P(SN = k) = ~ gm/k(m*) 
m=O 

where /k(m*) is the k-th element of the m-th convolution of the /k 
sequence with itself. Find the generating function of the probability 
distribution of SN. 

7. Consider an insurance company. Suppose that the number of 
deaths of people insured by the company in time t is given by a 
Poisson distributed random variable with mean At. Further, let 
the amount of insurance to be paid up by the company on the 
death of an insured person be given by P(X = j) = h in terms of 
dollars j. Assuming independence, find the generating function 
of the distribution of SN(t), the total amount of insurance paid out 
by the company in time t. The probability distribution of SN(t) is 
called a compound Poisson distribution. 

8. Show that for any positive integer n there is a probability distribu­
tion {gk} such that the sum of n independent, identically distrib­
uted random variables with this distribution has the distribution 
of SN(t) referred to in the previous example. For this reason, a 
compound Poisson distribution is called infinitely divisible. See the 
book of Kolmogorov and Gnedenko [23] for a detailed discussion 
of infinitely divisible laws. 

9. Consider a random walk with reflecting barriers at ° and a. Let 
p~n) = P(X" = j), j = 0, 1, ... , a. Examine the behavior of 
PJ") as n ~ 00. Does this behavior depend on the initial distribution? 
We say ° and a are reflecting barriers if PO,1 = pa,a-l = 1. 

10. Consider the preceding problem with an absorbing barrier at ° 
and a reflecting barrier at a. 

11. Consider a finite state Markov chain whose transition matrix 
has only positive elements. Show that all the states are persistent. 

12. What is the left invariant probability vector of P if P is an irreduci­
ble transition probability matrix with column sums equal to one? 

13. Let the first column of the transition probability matrix P of a 
Markov chain be {qU, qI, . . .} with pi,i+! = 1 - qi for i = 0, 
1, . . . . When is the chain irreducible? Show that if the chain is 
irreducible, the states are transient if and only if 'l;q; < 00, Find 
out when the states are null and when they are persistent. 
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14. Show that if j is a recurrent periodic state of period t > 1, then 
Pi':'/ = 0 if m is not a multiple of t and 

as s ~ 00 where p.j is the mean recurrence time of state j. Hint: 
Apply the Erdos, Feller, Pollard theorem to Ii'" and pj~p. 

15. Suppose P is an irreducible transition probability matrix. Show 
n-l 

that lim ~ ~ Pl':'/ exists and is equal to 0 if the states are transient 
n-+oo ~ 

m=O 

and lip.; if the states are recurrent. 

16. Let P be a transition probability matrix (not necessarily irreduci­
n-l 

ble). Show that lim ~ ~ P}j) exists for all i, j. Evaluate the limit. 
n-+oo n ~ 

m=O 

Notes 

1. Instead of using (a.4) to define Markov chains, property (a.9) or that given 
in example 1 could have been employed. In fact, these other approaches are more 
usual and might be considered more natural. In spite of this, property (aA) ap­
peared to be more convenient to use at this point. Specific types of Markov chains 
of interest are discussed in a variety of books on chains. We mention the book of 
Frech~t [19] which discusses some of the early literature. 

2. Section b is given because it was felt that an analysis of transition probability 
matrices from the point of view of their eigenvalue structure was proper as a valu­
able complement to the purely probabilistic approach. This is an analysis of 
matrices with non-negative elements of finite order and was originally developed 
in the work of Perron and Frobenius (see Gantmacher, vol. 2 [21]). Row sums of 
the matrices are not assumed to be equal because this condition is not required for 
the characterization of the eigenvalue structure. Matrices with non-negative ele­
ments have recently attracted interest in the analysis of flow networks. The element 
Qt.; can be interpreted as the mass flowing per unit time from location i to location j. 
Row sums equal would correspond to conservation of mass. Row sums unequal 
could be accounted for by creation or destruction of mass. See [5] for an interesting 
application to reactor problems. The paper of D. Rosenblatt [64] in part discusses 
the application of such matrix representations in the analysis of economic "input­
output" problems. 

3. The basic results on Markov chains presented in section c appear to be due' 
to Kolmogorov [45] and Doeblin [10]. The presentation is essentially that given by 
Feller [17]. It should be noted that the terminology for states of a chain varies from 
one presentation to another. The terminology in Feller's second edition differs 
from that given in his first edition. Chung's terminology [8] differs from that given 
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in Feller. We have used the terminology given in Feller's first edition. The state 
classification given in his second edition is a little unpleasant since periodic states 
of an ergodic chain (see section b of Chapter V) are not called ergodic states. A 
much more extensive treatment of infinite state Markov chains and a discussion 
of the historical background can be found in Chung's monograph [8]. 

4. The question of necessary and sufficient conditions for a function of a general 
finite state Markov chain to be Markovian is still open. Further results on related 
problems can be found in [7] and [68]. Related aggregation problems are considered 
in the paper of D. Rosenblatt [65]. Recent work on conditions for a function or a 
general state Markov process with stationary transition mechanism to be Markovian 
can be found in the book of M. Rosenblatt [A14]. 



IV 
PROBABILITY SPACES WITH AN 

INFINITE NUMBER OF SAMPLE POINTS 

a. Discussion of Basic Concepts 

Thus far, we have concerned ourselves with probability spaces that 
contain a finite or at most a denumerable number of sample points. 
However, the natural probability spaces in many contexts will contain 
a nondenumerable number of sample points. The simplest situation of 
this sort arises when the result of an experimental measurement may be 
any real number, for the set of real numbers is nondenumerable 
(see [1]). Much of this chapter will be concerned with the introduction 
of concepts and tools relevant in such a general context. This presenta­
tion is motivated to a great extent by the discussion in the denumerable 
case. Sigma-fields and probability set functions will be introduced as 
they were in that simpler domain. Generally our object will be the 
understanding of these concepts and tools rather than a concern with 
subtleties and proofs. A detailed derivation of the results we present 
and discuss can be found in many books on measure theory (see [29J, 
[53]). Typically measure theory is used as a basic tool in setting up the 
foundations of probability theory. 

Consider an experiment. As before, there is a space n of points 
("sample points") w, where the points are to be regarded as the ele­
mentary outcomes of the experiment. A collection ;y of subsets of n 
with the following properties (just as before) is called a sigma-field or 
Borel field. 

1 1. If a denumerable collection of sets AI, A2, ••• e5' then the union 
., 

\..) A;E5'. 
i=l 

2. The set n is an element of ;Yo 

3. Given any set Ae;Y, the complementary set Ii is an element of 5'. 

In the case of an experiment with at most a denumerable number of 
elementary outcomes, it was natural to take the class of all subsets of n 
as the sigma-field of events. In fact, we would have to do so if the field 

68 
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of events is to contain the sets consisting of single points of the space 
(the sample points). Since the events are to have well-defined prob­
abilities, a probability function (such a non-negative set function is 
often referred to as a measure) on a sigma-field should satisfy the follow­
ing conditions: 

2 1. The probability function P is well dtfintd on all sets Ae;:t and for such A 

o ~ peA) ~ 1. 
2. pen) = 1. 
3. Given any denumerable collection of disjoint sets AI, A2, ••• e;Y 

P(U Ai) = ~ peA;). (1 ) 
i i 

Property 2.3 is commonly referred to as the countable additivity or 
sigma-additivity of the measure P. If n is a space with a nondenumer­
able set of points w, the sigma-field of all subsets of n wiII generally be 
too large a field to take for;Y. For example, if n is the set of real numbers 
w, 0 ~ w ~ 1, there is no probability function P defined on all subsets 
of n that agrees with the ordinary notion of length on the subintervals 
of n (see [29]). It is then natural to take ;:t as a smaller subfield that is 
sufficiently rich to include all sets consisting of single points and on 
which a probability function can be defined. 

A probability space, as before, is a triple (n,;:t,p) with n the space of 
points, ;:t a sigma-field of subsets of nand P a probability function defined on the 
sets of;:t. The sets of the sigma-field ;:t are called measurable sets or events. A 
class of real-valued functions X(w) on n consistent with the sigma-field 
is of especial interest. These are the functions X(w) such that every 
set of the form (wIX(w) ~ y I with y real is an element of the sigma­
field ;Yo Such functions X(w) are called measurable functions or random 
variables. Notice that for real precision one ought to use the phrase 
"measurable functions with respect to the sigma-field ;Y." 

Often it is natural to consider the sigma-field generated by a specific 
collection e of subsets of n. This sigma-field ;y = ;:tee) is the smallest 
sigma-field containing the collection of sets e. Generally there will be several 
sigma-fields containing e. As an interesting example consider n as the 
set of points in k-dimensional Euclidean space, that is, k-tuples of real 
numbers w = (WI, ... ,Wk). Let e be the collections of subsets of n 
of the form 

(2) 

with XI, ••• , Xk any k real numbers. The sigma-field <B = ;:tee) 
generated by e is called the sigma-field of k-dimensional Borel sets. A 
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function X(w) measurable with respect to the sigma-field (B of Borel sets is called 
a Borel function. Notice that a Borel field (sigma-field) need not be the 
Borel field of Borel sets. The discussion given here is also valid for a 
countably infinite dimensional space. 

The family of functions X(w), measurable with respect to 5', has 
some very interesting properties. We enumerate these properties as 
follows: 

3 1. Given any two measurable functions X(w) , Yew) and allY two real 
numbers a and (3, the linear combination aX(w) + (3Y(w) is a measur­
able function. 

2. The limit (if it exists) of a sequence of measurable functions X .. (w), 
n = 1, 2, ... , 

(3) n __ co 

is a measurable function. 
3. Given k measurable functions X 1(w), ... , Xk(w) and a Borel func­

tion Y(Xh . . . ,Xk) of k (real) variables, the composite function 
Y(X1(w), ... ,Xk(w» is then measurable. 

These properties of the family of measurable functions indicate that 
it is closed under certain basic and natural operations. Consider the 
function 

I { 1 if wEA 
AW = () ° otherwise. 

(4) 

This is obviously a measurable function if Ae:F This function IACw) is 
called the indicator function of the set A. Let All ... ,Ak be sets of 
:F and aI, . . . , ak any real numbers. By repeated use of property 1 
of measurable functions, it is clear that 

(5) 

is a measurable function. 
Let us now sketch the definition of the integral (if it exists) of a 

measurable function or correspondingly in probabilistic language, the 
expectation of a random variable. We do this first for a non-negative 
measurable function X(w). The sets 

Ak,j = {wlj/2k :s; X(w) < (j + 1)/2k }, (6) 

with i = 0, 1, ... , k(2k - 1) and k = 1, 2, ... , are measurable 
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sets. Consider the simple approximating function 

11k IAkoj(w) = Xk(W). 
i 

Notice that lim Xk(W) = X(w). It is natural to take the integral 
hoo 
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(7) 

(8) 

(9) 

Clearly the sequence of values (9) is nondecreasing. If the limit of the 
values (9) is finite, we say that X(w) is integrable and take 

fX(w)dP = lim fXk(w) dP. (10) 
k ..... 00 

If X(w) takes both non-negative and negative values, introduce the 
non-negative and negative parts of X(w) 

X+(w) = max (X(w),O) 
X_(w) = X+(w) - X(w). 

(11) 

We say that X(w) is integrable if its non-negative and negative parts are both 
integrable and in that case set 

IX(w) dP = fX+(w) dP - fX-(w) dP. (12) 

The probabilistic notation for expectation of a random variable X(w) is 

EX(w) = fX(w) dP. (13) 

The integral so defined has the following natural properties: 

4 1. Given any two integrable functions X(w), Yew) and any two real num­
bers OI,fj the linear combination OIX(W) + fjY(w) is integrable and its 
integral is given by 

f[O/X(w) + fjY(w)] dP = O/fX(w) dP + fjfY(w) dP. (14) 

2. Given a sequence of functions Xn(W), n = 1, 2, ... , bounded in 
absolute value by the integrable function Yew), with limit lim Xn(W) 

" ..... 00 

= X(w), then 
fX(w) dP = lim fXn(w) dP. (15) 

" ..... 00 
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The second property of integrals referred to above can be strengthened 
in the following way. Let Xn(w), n = 1, 2, ... , be a sequence of 
integrable functions with X(w) = lim Xn(W). Let the set 

n->oo 

Bn •a = {wi IXn(w) I ;::: a}. (16) 

The functions Xn(w) are said to be uniformly integrable zf 

uniformly in n as a --t 00. One can show that zf Xn(w), n = 1,2, ,are 
uniformly integrable, then 

lim fIX(w) - Xn(w) I dP = O. (18) 
n->oo 

Given a sigma-field ff and a probability measure defined on it, one often 
wishes to consider any subset of an ff set of probability zero as measur­
able and assign to it probability zero. This implies that one ought to 
consider the completed sigma-field ffc generated by ff and the subsets 
of ff sets of measure zero. Every set of the completed sigma-field ffc 
differs from an appropriately chosen set of ff by at most a subset of an 
ff set of measure zero. Naturally one takes the measure of the ffc set 
(considering now an extension of the measure on ff to ffc) as equal to 
that of the ff set which approximates it to within a subset of an ff set 
of measure zero. 

At times it will be natural to deal with measures somewhat more 
general than probability measures. Such a measure, meA), will satisfy 
all the conditions of 2 except perhaps for 0 ~ peA) ~ 1, pen) = 1. 
If these are replaced by 0 ~ meA), men) < 00 we call the measure a finite 
measure. Here the measure of the whole space may be some non-nega­
tive number other than one. This may be further generalized by assum­
ing n can be decomposed into a countable number of disjoint sets on each of 
which m acts as a finite measure, where the measure of the whole space need not 
be finite. Such a measure is called a sigma-finite measure. The measures we 
deal with in this book will be at most sigma-finite. The measure of the 
whole space n for such a sigma-finite measure m may be infinite. 

A collection e of subsets of n satisfying 7 with condition 1 replaced by the 
weaker requirement 

l' If a finite collection of sets AI, A2, ••• ,AkEe 
k 

is called a field. 

then the union U AiEe, 
i=l 
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Often one may be given a non-negative set function m defined on a 
field e. It is of great interest to find out when m can be extended to a 
measure defined on the sigma-field 5'(e) generated by the field e. 
A theorem due to Caratheodory ([53] p. 87) indicates that such an 
extension can be carried out if m already acts like a measure on the 
field e, namely meA) ~ 0 for AEe, and for any countable collection of 
disjoint sets AI, A2, ••• , Ee with UAiEe (notice that this assumption 
would not have to be made if e were a sigma-field since it would auto­
matically be true) m(UAi) = 2;m(A;). This theorem further assures us 
that the extension is unique on 5'(e) if m is sigma-finite on e. Further, 
any set of the sigma-field 5'(e) can be approximated arbitrarily well 
in measure by sets of the field e generating 5'(e) in the following sense. 
Given a set AE5'(e) and any fixed c > 0 there is a set BEe such that the 
symmetric difference of the sets A and B 

A 8 B = (A - B) U (B - A) (19) 

(the set of points in either A or B but not both) has measure 

meA 8B) < c (20) 

if meA) is finite. 
Let us examine some of the remarks and results spoken of in the 

preceding paragraphs. First, consider taking n as the set of real num­
bers w, 0 < w ~ 1. Let e consist of intervals of the form 

{wla < w ~ ,B}, a < ,B, (21) 

and sets formed by taking unions of a finite number of such intervals. 
It is clear that the collection of sets e is a field. As already remarked 
above the sigma-field 5'(e) generated by e is the sigma-field of one­
dimensional Borel sets. Our object is to define a measure on the Borel 
sets that agrees with the ordinary notion of length for intervals. Every 
set of e can be represented as a union of disjoint intervals 

Simply set 

U{wla; < w ~ ,Bd, ai < ,Bi. 
i 

m(U{wlai < w ~ ,Bd) = ~ (,Bi - a;). 
i i 

(22) 

(23) 

One can readily see that m does act like a measure on e. It therefore 
can be extended uniquely to a measure on the one-dimensional Borel 
sets. Notice that this measure is a probability measure since men) 
= m«O,l]) = 1. The completion of the sigma-field of Borel sets 5'(e), 
5'c(e), is commonly referred to as the sigma-field of Lebesgue sets. 
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The extension of m from 5'(e) to 5'c(e) is called Lebesgue measure. We 
could equally well have taken ~ as the set of all real numbers and carried 
out the construction given above. 5'(e) would then consist of the Borel 
subsets of the whole real line rather than the interval (0,1] and a corre­
sponding statement would hold for 5'c(e). Notice that Lebesgue 
measure on the real line is a sigma-finite measure, not a finite measure. 

We now make a few remarks on product spaces. Suppose ~ll,n2 are 
spaces of points Wl,W2 respectively. Let 5'1 and 5'2 be sigma-fields of sets 
of U1 and U2 respectively with ml,m2 measures on the sigma-fields 
5'1,5'2. The space of points W = (Wt,W2) with WIE~1,W2E~2 is called the 
product space U1 X U2. Consider the collection of sets of the form 
lw = (Wl,W2)lw]EA1,W2EA2} = Al X A2 with Ar,A2 any two sets of 
5'],5'2 respectively. The sigma-field generated by sets of this collection 
is ,the product sigma-field 5'] X 5'2. Generate the measure m = m] X m2 
(called the product measure generated by m!,m2) on 5'1 X 5'2 in the 
following manner. Given any set Al X A2 with A1E5'I,A 2e5'2, let 

m(A1 X A2) = ml X m2(A I X A2) = ml(A 1)m2(A2). (24) 

Given any finite union of disjoint sets AVl X A'll, Al.ile5'h A~jle5'2' 

j = 1, ... ,n, set 
n n 

m( U (AP) X AVl» = ~ ml(AI.i»)m2(AVl). (25) 
j=1 j~l 

The collection of finite unions of sets of the form Al X A2, A1E5'I, 
A2E5'2, is a field and it can be shown that m is countably additive on this 
field. One can therefore extend m to a measure on the sigma-field 
5'1 X 5'2 generated by this field using Caratheodory's theorem. The 
same procedure can be used to construct product spaces, product fields, 
and product measures generated by any finite number of spaces, 
fields, and measures. Notice that 5'1 X 5'2 is not a completed sigma-field 
with respect to ml X m2. 

Let few) = f(wl,w2) be a function measurable with respect to 
5'1 X 5'2. One can show that for each fixed W2, f(wl,w2) is measurable 
with respect to 5'1 in WI and for each fixed WI measurable with respect to 
5'2 in W2. Assume that few) is integrable with respect to m = ml X m2 
on U1 X U2• A result commonly referred to as Fubini's theorem states 
that the integral of f with respect to ml X m2 can be written as an 
iterated integral 

( f(w)ml X m2(dw) = ( {r f(wl,w2)m2(dw2)} m1(dw1) 
)OIXO. lOI lo. 

= 10. {/0/(w1,w2)m 1(dw1)} m2(dw2). (26) 
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The equation (26) implies that f{wl,w2) is integrable with respect to 
ml for almost every point W2 and is integrable with respect to m2 for 
almost every point WI. If few) is nonnegative, equation (26) holds 
without the assumption of integrability. If one of the integrals is 
infinite, all of them are. 

There are several notions of convergence for a sequence of random 
variables Xn(W), n = 1, 2, ... , that are of interest. We say that 
the sequence of random variables Xn(W) converge almost everywhere or converge 
with probability one to the random variable X(w) If 

X(w) = lim Xn(W) (27) 
n-tco 

except possibly on a set of W points of probability measure zero. The random 
variables X .. (w) are said to converge in probability to X(w) as n ---t 00 if for 
everye > 0 

lim P(IXn(w) - X(w) 1 > e) = o. (28) 
n-tco 

Whenever a condition is satisfied at all points outside of a set of proba­
bility or measure zero, it is referred to as a condition holding almost 
everywhere or almost surely. 

Convergence almost everywhere implies convergence in probability. 
However, the converse does not hold as is indicated by the following 
example. Let Q be the interval [0,1] With. g: the Lebesgue subsets of 

n 
the interval and P(·) Lebesgue measure on these sets. Set Sn = ~ 11j. 

1 

Let 

o ~ u < 00, and 
co 

Xn(w) = ~ /n(j + w), 0 ~ W ~ 1. 
i=O 

(29) 

(30) 

See the accompanying figure 4.1 for a graph of fn(u). The sequence of 
random variables Xn(W) certainly converge in probability to X(w) = 0, 
but they do not converge almost everywhere. A third mode of con­
vergence is that of convergence in mean square. Let Xl, X 2, • • • , X. 
be random variables with finite second moment. The random variables X .. con­
verge to X in mean square as n ---t 00 if 

lim EIXn - XI2 ---t O. (31) 
n-to:> 

A simple application of the Chebyshev inequality indicates that con­
vergence in mean square implies convergence in probability. A Cauchy 
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convergence criterion holds for each of these modes of convergence. 
If xn - Xm ~ 0 as n,m ~ ex:> almost everywhere, in probability or in mean 
square, there is a random variable X such that Xn ~ X in the corresponding 
sense as n ~ ex:>. This result is referred to as the Riesz-Fisher theorem 
when one is dealing with mean square convergence. We have noted in 
section e of Chapter II that continuous functions on a finite closed 
interval can be uniformly approximated by polynomials. Actually one 
can show that a square integrable function on a finite interval can be 
approximated arbitrarily well by polynomials in mean square. Problem 
10 of Chapter II indicates that a continuous function f on [-11',11'] 
with f(1I') = f( -11') can be uniformly approximated by finite trigo­
nometric series in cos kx, sin kx. Just as in the case of polynomial approxi­
mation any square integrable function on [-11',/1'] can be approximated 

o 2 3 

FIG. 4.1. Graph of function fn(u). 

arbitrarily well in mean square by finite trigonometric series. An 
analogous result holds for a square integrable function of several 
variables on a finite interval. To be specific, suppose f(x,y) is a square 
integrable function on -11'::; X, y ::; 7r. Then f(x,y) can be approxi­
mated arbitrarily well in mean square by polynomials in x and y or by 
finite multiple trigonometric series in x and y. We shall make use of this 
remark in deriving a representation for certain random processes in 
section c of Chapter VIII. 

Let X 1(w), ... , Xk(W) be k random variables on the probability 
space (!l,!f,P). Any set of the form 

(32) 

with Xl, ••• ,Xk real is an element of !f. This implies that the function 
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is well defined for all Xl, • • • , Xk. This function is called the dis­
tribution function of the random variables Xl, . . . ,Xk • Let us note the 
properties of such a distribution function. First of all 

(i) 
(ii) 

(iii) 

o :s; F(xI, . . . ,Xk) :s; 1 
lim F(xI, ... ,Xk) = 0 i = 1, 

za:-+ - 00 

lim 
Xl • •• • • Xk--+ co 

. ,k (34) 

Furthermore F is nondecreasing in each coordinate Xi since the differ­
ence in the i-th variable 

/)"h,F(XI, ... ,Xk) = F(xl, ... ,Xi-I, Xi + h;, Xi+I, ... ,Xk) (35) 
- F(xI, . . . ,Xi-I,Xi,Xi+I, . . . ,Xk) 

= P[!wIAi(w) :s; Xj, j = 1, ... ,k, j ~ i, Xi < Xi(W) :s; Xi + h;}] ~:O 

for hi > O. In fact the k-th order difference 

/),,"1~h2 • • • /)"hkF(XI, . . . ,Xk) 
= P[{WIXi < Xj(w) :s; Xj + hilj = 1, ... , k}] ~ 0 (36) 

with hI, . . . , hk ~ O. Further F(xI, . . . ,Xk) is continuous to the 
right in each variable separately, that is, 

lim F(xI, .. ,Xi-I,Yi,Xi+h . . . ,Xk) 
Yi-JoXi+ 

= F(xI, , Xi-I, Xi + 0, Xi+h • . . ,Xk) 
= F(XI, ,Xi-l,.1:i,Xi+l, ••• ,Xk). (37) 

As we have seen, a distribution function satisfies conditions (34) to (37) 
(notice that (36) is obviously redundant when k = 1). One might ask 
whether the converse is also true. It will be shown that any function 
F(Xl, ... ,Xk) satisfying conditions (34) to (37) can be considered 
the distribution function of an appropriately constructed set of 
random variables. Let n be the space of k-dimensional points W = 
(Wl, ... ,Wk). Consider the field e consisting of intervals of the form 

1= {wlx; < Wi:S; Xi + hi, i = 1, ... ,k}, hi ~ 0, (38) 

and all unions of a finite number of such intervals. Every set of e can 
be expressed as a union of disjoint intervals 

Set 
Ulj = U{wlx~i) < Wi:S; x~i) + hIj), i = 1, ... , k}. (39) 

m(Ulj ) = ~/)"hlCi)' •• /)"hk(;)F(x~), ... ,Xkil ). 
j 
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The non-negative set function m acts like a measure on e and hence 
can be extended to the sigma-field (the k-dimensional Borel sets) 
generated by e using Caratheodory's theorem. The extended measure 
m is clearly a probability measure and the random variables X;(w) = 
Wi, i = 1, . . . , k, have F(XI, . . . ,Xk) as their joint distribution 
function. 

Take XI(w), ... , Xk(W) as random variables on a probability 
space. If g(XI, . . . ,X,.) is a Borel measurable function of the real 
arguments Xl, ••• , X,. we have already remarked that Yew) = 
g(XI (w) , ... ,X,.(w)) is a random variable on that probability space. 
The expectation of Y, if it exists, is given by 

EY(w) -= Eg(XI(w), ... ,Xk(w)) 
= !g(XI(w), ... ,Xk(W)) dP. (40) 

If g is a continuous function of x!, . . • , Xk, the expectation can be 
written as a Riemann-Stieltjes integral with respect to the joint dis­
tribution function F(XI, ... ,Xk) of the random variables XI(W), 

, Xk(w), just as in the discrete case, 

00 

= J ... J g(XI, ... ,Xk) dF(xl, ... ,Xk). (41) 
-co -----k 

Often, it is more convenient, for ease in computation, to write expecta­
tions in this form. 

Here are a few simple distribution functions of random variables 
with a continuous range of values that are of considerable interest. 
The first of these is the distribution function of a uniformly distributed 
random variable. A random variable is said to be uniformly distributed 
on [a,b], a < b, if its distribution function has the form 

l 0 
x-a 

F(x) = -­
b - a 

1 

Notice that the derivative f(x) of F(x) 
if it exists) is given by 

(x) ~ { b ~ a 

if x < a 

ifa~x~b 

otherwise. 

(42) 

(called the probability density 

ifa<x<b (43) 

otherwise. 
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We encountered a more interesting class of distribution functions in our 
discussion of the central limit theorem (see section II.e). These are 
the normal distribution functions. A random variable is saId to be nor­
mally distributed with mean m and variance 0'2 > 0 if its distribution 
function is 

F(x) = -==- e -2;2" duo 
1 j'" (u-m)' 

y21T 0' _00 

(44) 

Notice that the mean of such a random variable is 

(45) 

and its variance is given by 

(46) 

If X(w) is a normally distributed random variable with mean zero and 
variance one, the derived random variable Yew) = m + oX(w) is 
normally distributed with mean m and variance 0'2. Of course, a random 
variable with mean m and variance 0'2 = 0 is equal to m with proba­
bility one, that is, the total probability mass is concentrated at the 
point m. 

The random variables Xl(W), . ,Xk(w) are called jointly independent 
if 

P(X1(w) ~ Xl, X2(W) ~ X2, ... ,Xk(w) ~ Xk) 
= P(XI(W) ~ Xl)P(X2(w) ~ X2) ... P(Xk(W) ~ Xk) (47) 

for any set of k real numbers Xl, • • • ,Xk. This implies the following 
much stronger property. Given k Borel measurable functions gl(XI), 

, gk(Xk), the random variables 

(48) 

are independent if XI(w), ... , Xk(W) are independent. Notice that 
the property of independence can be immediately rewritten in terms 
of distribution functions 

(49) 

where FI , • • • , Fk are the distribution functions of the random 
variables XI, ... , Xk taken one at a time (commonly referred to as 
the marginal distribution functions of the random variables Xl, 



80 Random Processes 

, Xk ). Thus, if the random variables are independent, the joint 
distribution function of the random variables is the product of the 
marginal distribution functions. An analogous property holds for the 
expectation of the product of independent random variables: the expectation of the 
product is equal to the product of the expectations of the individual random 
variables 

k 

J n Xi dF(Xl,' . ,Xk) 
i-=l 

k J J n Xi dF1(Xl) ... dFk(Xk) 
i-I 

k k n J Xi dFi(x,) = n E[Xi(W)], (50) 
.-1 i=1 

b. Distribution Functions and Their Transforms 

Given a random variable X(w), let cp(t) be defined as the following 
Fourier-Stieltjes transform of its distribution function F(x) 

cp(t) = E exp (itX(w» = E[cos (tX(w» + i sin (tX(w»] 

= J _"'", eilx dF(x). 
(1) 

This transform is commonly called the characteristic function of X(w). 
Notice that 

cp(O) = J -"'co dF (x) = 1 (2) 

and 

(3) 

Further cp(t) is a continuous function of t. Given any finite number of t 
points t1, ••• , tk and complex numbers CJ, ••• , Ck consider the 
quadratic form 

k 

~ C,[,CP(t, - ti)' 
iii r;$1 

The quadratic form is positive definite since 

'.J u,v 

(4) 

u 
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It is natural to ask for conditions on a function I{) ensuring that it be a 
characteristic function, that is, the Fourier-Stieltjes transform of a 
distribution function. A theorem of Bochner [53] states that the 
necessary conditions that I{) be continuous and (2), (5) cited above hold 
are also sufficient for I{)(t) to be a characteristic function. 

The characteristic function of a random variable uniformly dis­
tributed on [a,b] is 

I{)(t) = _1_ (b eitz dx = (eitb _ eitB)j(b - a). (6) 
b - a}a 

The characteristic function of a normally distributed random variable 
with mean m and variance 0"2 is also given readily by 

1 f'" _(o:-ml' 
I{)(t) = -=- eitze 2 .. ' dx 

y2?!"0" _'" 
(7) 

If I{)(t) is the characteristic function of the random variable X, the 
characteristic function of aX + b (a,b constants) is 

(8) 

Given random variables X1(w), ... , Xk(w), one can introduce a 
joint characteristic function I{) (tl' . • . ,tk) of the random variables 
in an analogous manner as follows 

k 

ep(tl' ... ,h) = E exp (i l tiXiCw)) 
j-l 

'" k 

= J ... J exp (i l tiX;) dF(Xl, ••. ,Xk). (9) 
-'" 1 ------k 

The multidimensional characteristic function satisfies conditions that 
parallel those mentioned in the one-dimensional case above. If 
Xl(w), ... , Xk(W) are independent, the functions exp(itlXl), 
. . . , exp(itkXk) are independent. But this implies that the joint 
characteristic function of independent random variables Xl, . . . , X k 

k 

ep(tt, . . . ,tk) = E [n exp (itjXi) ] 
1 

k 

= n E exp (itjXi ) = epl(tl) ... epk(tk) (10) 
1 
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is equal to the product of the characteristic functions of the individual 
random variables !PI(tI), ... ,!Pk(tk). Thus, the characteristic function 

k 
of the sum ~ Xi of independent random variables is the product 

1 
k 

n !pi(t). (11) 

There is a one-one correspondence between characteristic func­
tions and corresponding distribution functions. The definition of !pet) 
indicates how a characteristic function is given in terms of the corre­
sponding distribution function. There are inversion formulas indicating 
how the distribution function can be recovered from knowledge of the 
characteristic function. We shall encounter a few of these inversion 
formulas later on. 

Often, it is more convenient to carry out a discussion in terms of 
characteristic functions rather than distribution functions. This is so 
in part when considering jointly normally distributed random variables. 
We say that the random variables Xl(w), ... , Xk(W) are jointly normally 
distributed if every linear combination of the random variables 

(12) 

is a normally distributed random variable. Thus, a definition of k-dimensional 
normality is introduced in terms of one-dimensional normality. The 
means and variances of Xl, .., Xk clearly exist. Let them be denoted 
by mX, ••• , mk and u~, ... , uZ respectively. The mixed central 
moments 

u, v = 1, ... ,k (13) 

are called the covariances of the random variables and they exist by 
the Schwarz inequality since 

Iru.vl ~ EI(Xu - mu)(Xw - mv)1 = fl(Xu(w) - mu)(Xv(w) - m.)1 dP 
~ [fIXu(w) - mul2 dPfIXv(w) - mvl 2 dPF~ = UuUv' (14) 

The covariance matrix of the random variables 

R = (1'u ,.; u, v = 1, ... ,k) 

is positive definite since 

u,U u,V 

= EI~ c .. (Xu - mu )12 ~ O. 
" 

(15) 

(16) 
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Notice that the positive definiteness of the covariance matrix is gen­
erally true. It does not stem from normality. We shall now obtain the 
joint characteristic function of the jointly normal random variables 
Xl, . . . ,Xk • Consider the random variable 

(17) 

By the very definition of joint normality, the random variable Y is 
normal with mean 

and variance 
E(Y - tm')2 = E[t(X - m)'J2 

= tE(X - m)' (X - m)t' 
= tRt', 

(18) 

(19) 

where t, m, X are the row vectors of tis, mis, and Xis respectively. The 
characteristic function of Y is then 

rpy(r) = E(eiT!") = exp {- Y2r2tRt' + irtm'l. (20) 

However, the joint characteristic function of XI, ... ,Xk is given by 

k 
i~tjXj 

rp(tI, ... ,tk) = rpy(1) = E(eiY) = E(e 1 ) 

= exp /- Y2tRt' + itm'l. (21) 

Of course, one would like to invert this expression if possible. Let us 
assume that R is nonsingular. This means that R is a positive definite 
matrix. The matrix R has a unique positive definite square root Rlh.. 
Let R-lh. be the inverse of R~~. Consider the new k-vector Z of random 
variables Zi 

Z = (X - m)R-lh.. (22) 

The random variables Zi are jointly normal since they are obtained 
from the Xis by a linear transformation. The mean of the Z vector is 
the null vector 

EZ = E(X - m)R-lh. = 0 

and the covariance matrix of the vector is 

EZ'Z = R-lh.E[(X - m)'(X - m)]R-lh. 
= R-~~RR-~2 = I. 

(23) 

(24) 
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The characteristic function of the Zi random variables is thus 

k 

tp(tl, . . . ,tk) = exp {- Y2tt'} = n exp (- Ht~). (25) 
i-I 

But this is the characteristic function of k independent normally dis­
tributed random variables with mean zero and variance 1. Their 
joint density function is therefore 

k 

g(Zl, •.. ,Zk) = (2:)kI2 exp { - H 2: zJ}. (26) 
i=1 

The joint density function of the Xi random variables can simply be 
obtained by making use of the transformation 

z = (x - m)R-lh.. 

The joint density function of the Xi random variables is given by 

f(xl, • . • ,Xk) = (2~k/2 exp {- Y2zz'} 

(27) 

= (2'11')k~2IRIlh. exp {-Y2(x - m)R-I(x - m)'} (28) 

where J = IRI-~~ is the Jacobian of the transformation (27) and IRI 
denotes the determinant of R. 

Given a sequence of distribution functions Fn(x), they are said to converge 
to a limiting distribution function F(x) if lim Fn(x) = F(x) for every point x n __ co 

at which F is continuous. It should be noted that the set of points x at 
which a distribution function F is discontinuous can be at most count­
able since F is nondecreasing (see [1] p. 85). Such limit theorems are 
often of considerable interest. In fact, several theorems of this type 
were obtained in Chapter II. If the sequence of distribution functions 
Fn converge to a distribution function F, the corresponding charac­
teristic functions 

(29) 

converge to the limiting characteristic function 

(30) 

A converse of this fact, commonly called the continuity theorem for 
characteristic function, holds and runs as follows. If a sequence of char-
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acteristic functions CPn(t) converges to a limit function cp(t) that is continuous at 
zero, the limit function cp(t) is a characteristic function and the sequence of 
corresponding distribution functions Fn(x) converges to the distribution function 
F(x) corresponding to the characteristic function cp(t) at every continuity point 
of F(x). Thus, one can obtain limit theorems for distribution functions 
by proving limiting results for characteristic functions. This is exceed­
ingly handy whenever the characteristic function domain is a more 
natural one to deal with. Such is the case generally when dealing with 
the distribution functions of sums of independent random variables. 
We shall show this by giving an alternative proof of the central limit 
theorem derived in Chapter II. The proof given here will make use of 
characteristic function techniques. Let Xl, . . . , Xn be n independent 
identically distributed random variables with mean zero and variance 
one. Our object is to show that 

(31) 

is asymptotically normally distributed with mean zero and variance 
one. Let the common characteristic function of the Xi's be cp(t). The 
existence of the second moment implies that cp is doubly differentiable, 

(32) 

where F(x) is the common distribution function of the X/so Let us 
carry out a Taylor expansion of cpCt) about t = 0 with error term. Then 

t 2 
!pet) = 1 + cp'(O)t + cp"(O) 2" + 0(t2) 

t2 
= 1 - 2" + 0(t2) (33) 

since 

cp'(O) = i f_<rO<rO x dF(x) = iEX = 0 

cp"(O) = - f_<rO<rO x2 dF(x) = _EX2 = -1. 
(34) 

Now the characteristic function of (31) is 

by the multiplicative property (11) when dealing with independent 
random variables. But 

( t2 (t2))n [cp(t/vn)]n = 1 - 2n + 0;; ~ e-t'/2 (35) 
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as n -7 00. The limit function exp (- t2/2) is the characteristic function 
of the normal distribution with mean zero and variance one. An 
application of the continuity theorem for characteristic functions 
immediately implies the central limit theorem. Of course, this proof 
looks simpler and more immediate than that of Chapter II. However, 
this is an illusion in part. First of all we are using more sophisticated 
techniques. Further, rather nontrivial and unproved results like the 
continuity theorem for characteristic functions have been employed. 

Earlier in this section, inversion formulas to recover the distribution 
function from the corresponding characteristic function were referred 
to. The most famous formula of this sort is due to P. Levy. Let F(x) be 
a distribution function and cp(t) the corresponding characteristic func­
tion. The P. Levy inversion formula states that 

1 fT e-ita - e-itb 
F(b) - F(a) = lim -2 . cp(t) dt 

T-"", 11' - T zt 
(36) 

for any two continuity points a,b of F. Since F has at most a countable 
number of discontinuity points and is continuous to the right, this is 
enough to determine F everywhere. If cp(t) is integrable, F is differen­
tiable with a density function f 

F(x) = J: co feu) du (37) 

and the density function can be given as an ordinary Fourier transform, 

f(x) = - e-itXcp(t) dt. 1 foe> 
211' _ co 

(38) 

The reader should refer to Loeve [53] for a discussion of inversion for­
mulas for multidimensional characteristic functions. 

c. Derivatives of Measures and Conditional 
Probabilities 

One can regard a measure m as an indicator of a mass distribution 
over the space n, meA) with Ae5' the amount of mass located in the 
set A. Consider two measures ml,m2 on the sigma-field 5'. The measure 
ml is said to be absolutely continuous with respect to m2 if for each AeIT for which 
m2(A) = 0, ml(A) = 0. A basic result of Radon and Nikodym states 
that if ml is absolutely continuous with respect to m2, mi has a deriva-
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tive with respect to m2. Specifically, the Radon-Nikodym theorem 
states that if ml is absolutely continuous with respect to m2, there is a function 
few) measurable with respect to ff and uniquely defined up to a set of m2 measure 
zero, such that 

(1) 

for euery set Aeff. If n is k-dimensional space with ff the sigma-field of k­
dimensional Borel or Lebesgue sets and m2 k-dimensional Lebesgue 
measure, it is common to simply refer to ml as absolutely continuous 
if it is absolutely continuous with respect to m2. 

In Chapter II we introduced the notion of conditional probability 
in the context of a probability space with a finite number of sample 
points. It is not obvious how this concept ought to be introduced in a 
probability space with an uncountable number of sample points. For 
suppose X(w) is a random variable with a continuous range of values 
on the probability space. Given a set Aeff, one would like to make the 
conditional probability of A given X(w) = x,P(AIX(w) = x), meaning­
ful. We call the sigma-field generated by the family of sets (wIX(w) ::;; xl 
where x is any real number, the sigma-field ffx generated by the random 
variable X(w). The sigma-field ffx generated by the random vari­
able X(w) is a subsigma-field of ff. If the conditional probability 
P(AIX(w) = x) is to be thought of for fixed A as a function on n, it is 
natural to take it as a function measurable with respect to the subsigma­
field ffx. In any case this suggests that we rephrase the problem as one 
of defining the conditional probability of an event given a sigma-field 
rather than that of the conditional probability of an event given a value 
of a random variable since the second can be subsumed as a special case 
of the first 

P(AIX(w) = x) = P(AIil'x)(w). (2) 

In Chapter II, it was noted that the conditional probability func­
tion satisfied relation (II.b.3). An analogue of this relation will be 
used as the definition of the conditional probability function in general. 
The Radon-Nikodym theorem will be heavily used in this definition. 

Suppose we wish to define the conditional probability of Aeil' given 
the subsigma-field <B of ff, P(AI<B)(w). Consider the two measures 
P(AB) = PA(B) and PCB) on the sets B of the sigma-field <B. Since 
o ::;; P(AB) ::;; PCB), it follows that PA is absolutely continuous with 
respect to P on <B. There is then a derivative fA(w) of PA with respect 
to P on <B that is measurable with respect to <B and uniquely defined 
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up to an w set of P measure zero. This derivative fA(w) is characterized 
by the fact that it satisfies the relation 

(3) 

for every Beffi and is measurable with respect to ffi. The conditional probability 
of A given the sigma-field ffi is defined to be fA (w), 

P(Alffi)(w) = fA(w). (4) 

Thus the conditional probability P(Alffi) (w) is determined by the 
relation 

PA(B) = P(AB) = IB P(Alffi)(w) dP, Beffi, (5) 

and its ffi measurability as a function of w. The relation (5) implies that 

(i) 
(ii) 

o :::; P(Alffi)(w) :::; 1 
P(Qlffi)(w) = 1 

(iii) for a countable collection AI, A 2, ••• of disjoint sets of ff 

P(U Ailffi)(w) = ~ P(A·ilffi)(w) 
i 

(6) 
(7) 

(8) 

except for a W set of P measure zero. Notice that these relations imply 
that one ought to be able to treat the conditional probability function 
P(Alffi)(w) for fixed w as a measure in the sets AEff. There is only one 
difficulty. In dealing with a property like (iii) of the conditional 
probability function, there is an exceptional w set of P measure zero on 
which the relation may not hold. The exceptional W set corresponds to 
the countable collection AI, A 2, •••• Since there may be an uncount­
able number of such countable collections Ai, we may be confronted 
with an uncountable number of exceptional w sets, each of P measure 
zero, that add up to a w set of positive P measure. This would be exceed­
ingly unpleasant. At the worst, one would like to have an exceptional w 
set of P measure zero that is the same for all sets AEff. Even though this 
is not true generally, it can be made to be the case in the contexts of 
greatest interest. A detailed discussion of this question can be found in 
Doob's book [12]. Whenever a use of the conditional probability 
function as a measure in A is required in our discussions, we will be in a 
context where it can be arranged. Thus, whenever the conditional 
probability function is spoken of as a measure, it will satisfy the follow­
ing requirements: (a) For each Aeff, as a function of w P(Alffi)(w) is 
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measurable with respect to CB. (b) For each wa! (notice that this is apparently 
stronger than "for almost every w" but not essentially) P(AICB)(w) is 
a measure on sets AEff". Of course, it must be a function satisfying these 
requirements which is consistent with relation (5). The conditional 
expectation (or mean) of one random variable Yew) given another 
random variable X(w), or more appropriately given the sigma-field 
ff"x generated by X(w), is now plausibly given by 

E[YIX(w) = x] = E[YIff"x](w) = fY(w')P(dw'lff"x)(w) (9) 

the integral of Yew) with respect to the measure P(AIff"x)(w). Thus 
E[YIff"x](w) is a function that is ff"x measurable. More generally con­
sider the conditional expectation of Y with respect to a sigma-field 
CB (a subsigma-field of ff") not necessarily generated by a single random 
variable X. Then E(YICB)(w) is the integral of Y with respect to the 
measure P(AICB)(w) 

E(YICB)(w) = fY(w') P(dw' ICB) (w). (10) 

Notice that relations (5), (10) suggest that the conditional expectation 
E(YICB)(w) satisfies 

IB Yew) dP = If Y(w')P(dw'ICB)(w) dP 
B 

= IB E(YICB)(w) dP (11) 

for every BECB. This last equality is sometimes taken as the defining 
relation for E(Yj,<B)(w) together with the condition that the conditional 
expectation be CB measurable. Notice that the conditional probability 
P(AICB)(w) can be considered as a special case of a conditional expecta­
tion with Yew) taken as the characteristic function CA(W) of the set A 

P(AICB)(w) = E(CAICB)(w). 

We mention an important property of conditional expected values. 
Let CB', CB be two subsigma-fields of ff" with CB' C CB. Then if f is 
integrable 

E(EUICB)ICB') = E(fICB'). (12) 

As an example let us consider the joint distribution function 
F(xt,x2) of two random variables Xl, X2 and the probability measure P 
on the two-dimensional Borel sets generated by the distribution func­
tion F(xl,x2). The space n consists of two-dimensional points w = 
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(WI,W2) with the first component corresponding to a possible value of 
Xl and the second component a possible value of X 2• The sigma-field 
~ is the sigma-field of two-dimensional Borel sets. Let Af~. Suppose 
we wish to compute the conditional probability of A given X 2, 

P(AIX2(w) = W2) = P(AI~X2)(W) = P(AICB)(w). Here ffi = ~X2' Thus 
CB is that subsigma-field of ~ consisting of sets with no restriction on the 
first component WI of w. Thus P(AICB)(w) depends on w only through 
the second component W2 as is to be expected, due to its measurability 
with respect to CB. Suppose the measure P is absolutely continuous with 
respect to two-dimensional Lebesgue measure. Then, by the Radon­
Nikodym theorem, there is a density function !(WI,W2) ~ 0 such that 

peA) = J J !(Wl,W2) dWl dW2. (13) 
A 

The probability measure on the sets ReCB = ~x, is given by 

(14) 

Assuming !(Wl,W2) > 0 everywhere, the conditional probability 
P(AICB)(w) is given by 

J !(Wl,W2) dWl 
P(AICB)(w) = '-"(wc.:.!II.:..:;(w:'-'l,w""-',:!....).=A.:....I ___ _ 

J _"'", !(Wl,W2) dWl 
(15) 

Notice that 

(16) 

is the conditional density function, that is, the density function of the 
conditional probability measure. The discussion of the diametrically 
opposite case in which the measure P has a countable number of points 
won which all the probability mass is concentrated parallels that given 
in section b of Chapter II. 

Suppose we illustrate the example of the previous paragraph by 
taking the two random variables Xl,X2 jointly normally distributed 
with nonsingular covariance matrix R and vector of means m. The 
joint density function !(Wl,W2) of Xl,X2 is given by 

and the marginal density function of X 2 alone is 
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The conditional density function of Xl given X 2 becomes 

f(wl!w2) = f(wl,w2)//2(w2) 

91 

(19) 

= [21r(rll -rf2/r22)]-~ exp {- 2( r22 2 ) [Wl-ml- r12 (W2- m2) ]2}. 
rUr22 - r 12 r22 

It is clear that the conditional distribution of Xl given X 2 is itself a 
normal distribution with mean 

(20) 

and variance 
(21) 

d. Random Processes 

A random or stochastic process {Xt(w),tET} is an indexed family of random 
variables Xt(w) on a probability space with the index t ranging over some 
parameter set T. Of course, the implicitly given probability measure 
determines the joint probability structure of the random variables Xt. 
If the process is to represent some aspect of a system subject to random 
fluctuations through time, the parameter t will typically be thought of 
as time. For a system observed at discrete time points, the index set T 
might be the set of lattice points {kh; k = 0, ± 1, . . .}, h > 0. If 
observation is continuous, T is the set of real numbers. Such would 
be the case if we were observing random fluctuations of current through 
a cable or the fluctuating water level behind a dam through time. An 
example of a multidimensional index t is given by turbulent fluid 
motion. Xt{w) can be taken as one component of the random velocity 
of the fluid at location t. Here t is three dimensional. Another simple 
example of a stochastic process with a multidimensional parameter t is 
given by 

X t = ~ cos (tAj)Zj 
i 

(1) 

where the Zis are a finite number of independent normal variables 
and t and the Ais are k-vectors. 

In section a of this chapter, given a distribution function 

F(Xl, •.. ,Xk) 

we noted how a probability measure P could be set up on the 
space of k-dimensional points w = (Wl' . . . ,Wk) so that the coor-
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dinates Xi(W) = W;, i = 1, ... , k, are random variables with 
F(XI, ... ,Xk) as their distribution function. This is a rather natural 
construction since the points W of the probability space can be thought 
of as sample points. A corresponding question arises when we consider a 
random process, generally a collection of an infinite number (possibly 
uncountable) of random variables. 

Given a stochastic process {Xt(w),teT}, the distribution function 

(2) 

of any finite number of random variables XI" . . . , X lk , tI, . . . , tkE T, 
is determined. This family of the joint distribution functions of any 
finite collection of random variables of the process satisfies certain 
obvious consistency conditions. Suppose Q is a permutation of the 
integers 1, ... ,k among themselves. Then clearly 

since the order in which the random variables are listed is irrelevant. 
Further, if we let the variables XtHtI • • • , Xtk, 1 ~ j < k, approach 
infinity, the distribution function of the randomyariables Xt" ... , Xti 
is obtained 

F (X'I.··· ,X'k) (Xl X' 00 00) , . . . '" ,..., 
= F(X'I' ... ,X'i) (XI, ••. ,Xi), 1 ~ j < k. (4) 

Typically in a description of a random process, the measure space and 
the probability measure on the space are not given. One simply 
describes the family of joint distribution functions of every finite collec­
tion of random variables of the process. The question that arises in the 
case of such a specification is as to whether there actually is a random 
process with such a family of joint distribution functions. A theorem of 
Kolmogorov [44] assures us that this is the case if the joint distribution 
functions satisfy the natural consistency conditions (3), (4). The proba­
bility space on which the process is constructed has functions w = (w(t), 
teT) as its "sample points." Thus a sample point w = (w(t),teT) corre­
sponds to a possible realization of the whole process. Since a function 
(w(t),teT) can really be thought of as a vector (generally infinite­
dimensional) with dimension the number of index points in T, this 
is an appropriate generalization of the finite dimensional probability 
space spoken of above. The random variable Xt(w) is simply the value 
of w = (w(t),teT) at the fixed point t 

Xt(w) = wet). (5) 
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The sigma-field 5' that the probability measure P is defined on, is 
generated by the sets of the form 

In effect, a set function is defined on the field of sets generated by those 
of the form (6), starting from the given joint distribution functions. 
It is then shown that the set function actually acts like a measure on 
the field and hence by Caratheodory's theorem can be extended to a 
measure on the sigma-field 5' generated by the field. 

The sigma-field 5' considered in the Kolmogorov theorem is rich 
enough to contain events of the form 

{WIW(tl) ::::; Xl, • • • , W(tk) ::::; Xk, • • • ; 11, 12, . . . E T} 
= {wIX,,(w) ::::; Xl, ••• ,Xtk(w) ::::; Xk, ••• ; 11, 12, ••• ET}, (7) 

that is, events characterized by conditions imposed on a countable 
number of the random variables X,. However, in many contexts, there 
is an interest in events of the form 

{wlmaxIXt(w) I ::::; a} (8) 
t.u 

where U is a subset of T. If U contains an uncountable number of 
points, an event of this type will not be in 5'. However if the parameter 
set T has a topology on it (a neighborhood notion) and the properties 
of {Xt,tET} are decent as t varies through T, we may hope to be able 
to set up the probability space on which the process is defined in such a 
way that the difference between (8) and 

{wlmaxIXt(w) I ::::; a} 
t.U. 

(9) 

is a set of probability zero, when Uc is a countable subset of U with 
points that are dense in U. Then a set of type (8) specified by conditions 
at an uncountable number of points I is in 5'. Whenever this is possible, 
it follows from the fact that the space of sample points w = {wet), 
leT} need not be taken as the set of all functions on T; it can be taken 
as a set of functions with some strong regularity properties such as 
continuity, piece-wise continuity, or bounded variation depending on 
the joint probability distribution of the random variables X,. Then the 
form of a sample function can be determined by its behavior on a dense 
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set of points. Whenever an event specified by conditions on an uncount­
able number of random variables arises in a specific context, it will be a 
context in which it can be phrased in terms of a countable number of 
conditions on an appropriate probability space. A discussion of condi­
tions under which such a replacement can be effected can be found in 
Doob [12] where he speaks of them as "separability" conditions. 

Let us now consider a few continuous parameter random processes. 
The first of these is the simplest normal or Gaussian process. A process 
is called a normal process if the joint distribution of any finite number of the 
random variables is normal. This process is usually called the "Wiener" or 
"Brownian motion" process. It has been used as a crude model of a 
particle in Brownian motion. The particle starts out from zero at time 
zero 

Xo(w) == O. (10) 

The displacements of the particle over nonoverlap ping time intervals 
are independent and normal with means zero and variances equal to the 
lengths of the intervals. Thus 

i = 1, ... , k (11) 

o ~ 'TI ~ tl ~ • • • ~ 'Tk ::; tk are independent with means zero and 
variances ti - 'Ti respectively. Such a process is sometimes referred to as 
a process with independent increments. This implies that the joint 
probability density of the random variables Xt,{w), ... , Xtk(w) is 
given by 

(12) 

The sample functions (points) of this process can be taken to be con­
tinuous (see [12]). 

A second example of a continuous time parameter process with 
independent increments is given by the Poisson process. Here, as 
before, 

Xo(w) == O. (13) 

Now the increments of the process over nonoverlapping time intervals 
are independent Poisson variables with means equal to }"(>O) multi-
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plied by the lengths of the time intervals. This implies that the 
probability 

P(Xft(w) = h, ... , X t.(w) = jk; ° < tl < ... <tk) 
k-l 

= (~tl)ile-}.tl IT [~(tu+l - tu)Jiu~.-iu e-}.(tU+l-t.> 
. I ( . . ) I }1. },,+1 -}u . 

1L= 1 

if the integers h, ... ,jk satisfy ° 5: it 5: ... 5: jk (14) ° otherwise. 

This process is sometimes used in a simplified model of a telephone 
exchange. Xt(w) then represents the number of calls made from time ° to time t. The sample functions of this process can be taken as jump 
functions (see [12]). 

When dealing with a continuous time parameter random process 
Xt(w), ° 5: t 5: T, one often assumes that X,(w) is jointly measurable 
in t and w. We shall clarify what is meant by this statement. The 
process Xt(w) is considered as a function of (t,w) on the product space 
[0, T] X n of the real line segment [0, T] and the space n on which the 
random variables X t are defined. The product sigma-field generated by 
the sigma-field of Lebesgue measurable sets on [0, T] and the sigma-field 
n= on n is considered. By joint measurability of Xt(w) in (t,w) one means 
measurability with respect to this product sigma-field. This assumption 
is a convenient one to make (if possible) in certain contexts. Let 
m X P be the product measure with m Lebesgue measure on [0, T] and 
P the probability measure of the process on n. Suppose that Xt(w) is 
jointly measurable in t and w with a bounded second moment 

The iterated integral 

is finite. By Fubini's theorem 

JOT E!Xi(w)!2 dt = J !Xi(w)!2m X P(d(t,w») 
[O,Tlxn 

(16) 

= JnJoT !Xt(w)!2dtdP (17) 

and hence 
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is finite for almost every w. The assumption of joint measurability in t 
and w is made in section c of Chapter VIII. 

We have taken random variables as real-valued measurable func­
tions with respect to the sigma-field of the probability space. In the 
discussion of certain types of random phenomena it is convenient to 
enlarge the concept of random variable. A random or stochastic 
process !Xt(w),tfT} is still an indexed family of random variables Xt(w) 
on a probability space with index t ranging over some parameter set T 
but the random variables are allowed to be complex-valued or vector­
valued (possibly infinite dimensional). If the random variables are 
complex-valued, the real and imaginary parts of the random variables 
must be measurable with respect to the sigma-field of the probability 
space. If the random variables are vector-valued (let us say with real­
valued components), all the components of the random variables must 
be measurable with respect to the sigma-field of the probability space. 
Occasionally such an enlarged notion of random variable and random 
process will be allowed in the chapters following. 

e. Problems 

1. Let Xl, . . . ,X .. be n independent, identically distributed random 
variables with an exponential distribution 

F(x) = {~-e-z x<o 
x ~ o. 

Find the distribution function of the sum Xl + ... + X ... 

2. Let Xl, ... , X .. be independent, identically distributed random 
variables with common density function 

n 

Find the probability distribution of Sn = ~ 2: Xi. 
;=1 

What does this imply about S .. as an estimate of p.? 
Can you suggest other estimates of p.? The density function II' is 
sometimes called the Cauchy denSity function. 

3. Let X be a random variable with a continuous distribution func­
tion F(x). Find the probability distribution of F(X). 



Continuous Probability Spaces 97 

4. What can be said about the previous example if F(x) has dis­
continuities? 

5. Let Xl, X 2 be two random variables with joint distribution func­
tion F(XI,X2). Suppose that F(XI,X2) is absolutely continuous, that is, 

Let FI(XI) be the marginal distribution function of Xl and F(X2IxI) 
the conditional distribution function of X2 given Xl. Find the joint 
distribution of FI(XI) and F(X2IX1). 

6. Let Xl, . . . , Xn be n independent random variables with com­
mon density function 

18(x) = {~-l exp (-x/8) X>o 
x ~ O. 

Let Y I , ••• , Yn, Y I ~ • • • ~ Yn, be the magnitudes Xl, ... , 
Xn relabeled in order of size. Find the joint distribution of YJ, 
. . . , Yr, 1 ~ T ~ n. 

7. Prove Lyapunov's form of the central limit theorem (see Problem 
15 of Chapter II) by using characteristic function techniques. 

8. Show that if a random variable X has a finite positive integral 
absolute moment EIXln < 00, then the characteristic function of 
its distribution is differentiable up to n-th order. 

9. Show that if the characteristic function of the distribution of X is 
differentiable up to even order 2n then 

P[lXI ~ t] = o(t-2n) as t --7 00. 

10. Let Xl, X2, Xa, X. be jointly normal random variables with com­
mon mean zero and covariances Ti,; = EX.X;, i, j = 1, 2, 3, 4. 
Show that the fourth-order moment EXIX2X 3X. = T12T3. + T13T24 

+ T14T 23· 

11. Let Xl, X2 be two random variables with a given joint distribution. 
Xl is assumed to have finite second moment. We wish to predict Xl 
by a predictor p(X2) in terms of X2• Show that the predictor of Xl 
best in terms of minimizing the mean square error of prediction 
is p(X2) = E(XIIX2). The result can be obtained by making use 
of the identity E(XI - p(X2»)2 = E(E«XI - p(X2»)2IX2». 

12. Apply the result of the previous example when Xl, X2 are jointly 
normally distributed. 
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13. Let f(ul, ... ,Uk) be a non-negative continuous function defined 
on the unit hypercube 0 ~ U}, U2, . . • , Uk ~ 1 and bounded 
above by one. Consider (Xii), ... ,XLi»), i = 1, ... , n, as 
independent, identically distributed points, each uniformly dis­
tributed over the k-dimensional hypercube. Find the mean and 
variance of the statistic 

n 

~ ~ f(X~i>, ... ,Xii»). 
i:=;;z 1 

14. Show how the statistic introduced in the previous example can be 
used as an estimate of the integral 

J . f f(u1, . . . ,Uk) du} . . . dUk. 
o 

This is a simple example of a Monte Carlo technique. Can you 
show what advantage there is in using such an estimate when k is 
not small? 

15. By using a table of random numbers get an estimate of 

4 f· f n (l-u;/2) du} dU2 dua dU4 

o i=1 

on the basis of a sample of size n 
with the actual value? 

Notes 

15. How does this compare 

1. There are several ways of developing the theory of the integral. The brief 
heuristic discussion in section a is consistent with only one ofthese. It is worthwhile 
looking at [29], [53], [63] for alternative developments. 

2. Characteristic functions (Fourier-Stieltjes transforms of distribution func­
tions) are a basic tool in the analysis of possible limiting probability distributions 
of normed sums of independent random variables. The derivation of the central 
limit theorem for sums of identically distributed random variables with finite second 
moment given in section b is the simplest such application. A detailed analysis of 
the limiting distributions of normed sums of independent random variables can be 
found in Gnedenko and Kolmogorov [23). Our principal interest is in the charac-
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terization of a positive definite function 'P(t), that is, the characterization of a func­
tion satisfying (b.5) as the Fourier-Stieltjes transform of a bounded nondecreasing 
function. This result is applied in Chapter VII on weakly stationary processes. 

3. The statistical model of turbulent fluid motion casually referred to at the 
beginning of section d is examined in considerable detail in Batchelor's monograph 
on homogeneous turbulence [2]. Other examples of random processes with a multi­
dimensional parameter are encountered in statistical models of storm-generated 
ocean waves [60]. 



v 
STATIONARY PROCESSES 

a. Definition 

Consider a random process XI(w) indexed by a parameter tET for 
which an additive group operation is defined. Typical examples are 
those in which T is the set of real numbers or the set of lattice points 
t = 0, ± 1, ... on the real line. More generally T might be all the 
points in k-dimensional Euclidian space or the lattice points in such a 
space. We shall say that the process is strictly stationary if the random 
variables 

(1) 

have the same joint probability distribution as the random variables 

(2) 

for any positive integer m, any th . . . , tm and all h in T. This can be 
phrased more succinctly by stating that the probability structure of 
the process is invariant under parameter translation. The finite dimen­
sional joint probability distributions therefore depend on tl, ... , tm 
only through the differences t2 - th ... , tm - tl. It is worthwhile 
giving a few examples of stationary processes as they arise as models 
of various types of natural phenomena. The examples we give are set 
in an engineering or physics context. This is natural since it is here that 
stationary processes have been thought of as natural models of natural 
phenomena most frequently. 

1. The first example is that of shot noise. Consider the output cur­
rent XI of a vacuum tube. The current observed at time t is a summation 
of the contributions due to electrons arriving at the anode of the tube 
at time t or earlier. The tube and circuit can be characterized by a 
function get) that gives the contribution to the current observed at 
time t due to the arrival of an electron at time 0. Assume that the elec­
tron arrivals are independent of each other. Further let the probability 
of an arrival in (t, t + At) be ~At. Then the number net) of arrivals of 
electrons during the time (O,t) is a Poisson process. Assume that the 

100 
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effects of the electrons superimpose linearly. The current at time t is 
then given by 

X t = ~ get - t.) (3) 
t. =:;t 

where the t. are the time points of arrival of the electrons. Notice that 
the process X t can also be written 

Xt = 1-.... get - T) dn (T) = I~ .. get - T) dn (T) (4) 

since get) would be zero for negative t. 
2. A second example arises in statistical mechanics. Consider a 

conserVative dynamical system with n degrees of freedom [22]. The 
system is described by n generalized coordinates qI, q2, . • . , qn and 
the corresponding generalized momenta PI, P2, . . . ,pn' The motion 
of the system is prescribed by the system of differential equations 

dqi - aH l de - api . 
dpi = _ aH Z = 1, ... ,n 

dt aqi 

(5) 

where t is time and H = H(Pi,qi; i = 1, ... ,n) is the Hamiltonian of 
the system. If H is a sufficiently smooth function, the system of differen­
tial equations has a unique solution for prescribed initial values of the 
pi's and qis. The 2n-space of points A = (XI,X2, ... ,X2n), with Xl = qI, 
• • . , Xn = qn, Xn+1 = PI, . . . , X2n = pn, is called the phase space of 
the system. A system characterized by a point A. in phase space at 
time s is characterized by the point A.+t after time t. We have a one­
parameter family of transformations T t of the phase space into itself. 
Consider a set S of finite volume in the phase space. The transformation 
T, transforms the set S into a set St = T,s with volume 

(6) 

where Tt(YI, •. ,Y2n) = (Xl, .. ,X2n) and J is the corresponding 
Jacobian 

(7) 
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We shall show that volume is preserved under these transformations. 
Now 

where 

2n 

aJ = \' Jk at L. 
k=l 

and x = dXk/ dt. But 

and 
n n 

aJ \' a2H \' a2H 
at = J L. apktf~ - J L. aqkiJpk = o. 

k=l k=l 

(8) 

(9) 

(11) 

Thus J does not depend on t and therefore J == 1. The volume is 
left unchanged by T t• This result is known as Liouville's theorem. Con­
sider that part of phase space between two surfaces of constant energy. 
Since the dynamical system is conservative, a point A in this region will 
continue to remain in it throughout its history. If we start out with an 
initial uniform probability distribution on this region it will remain 
unchanged as time progresses. If we consider a phase function (or set of 
phase functions), that is, functions of PI, ... ,pn, qI,' .. ,qn, as time 
progresses, a strictly stationary process is generated. It was in such a 
context that people tried to prove the equality of space averages and time 
averages and were led to ergodic theorems. We shall consider some ergo­
dic theorems in section b of this chapter and in Chapter VII. 

3. The previous examples dealt with continuous time parameter 
stationary processes. A simple example of a discrete time parameter 
stationary process is provided by a class of Markov chains. Let P = 
(h;; i,j = 1,2, ... ) be a transition probability matrix with an invari­
ant probability vector p = (Pi; i = 1,2, ... ), that is, 

pP = p. (12) 

As we have already seen, a Markov chain with stationary transition 
probability matrix P and invariant instantaneous probability vector p 
is an example of a stationary process (see Chapter III). 
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h. The Ergodic Theorem and Stationary Processes 

The ergodic hypothesis, "equality of space averages and time 
averages," was casually referred to in our discussion of Liouville's 
theorem. We shall now investigate this hypothesis in some detail in 
the context of a strictly stationary real-valued discrete parameter 
process. The restriction to a discrete time parameter is not essential 
and is used to avoid a tedious discussion of fine points. 

Let {X n 1, n = 0, ± 1, . . . ,be a strictly stationary process with finite 
first moment, that is, EIXnl = EIXI < cx). The basic probability space 
can be thought of as the space of points w = ( ... ,W_I,WO,WI, ... ) 
with Xn(W) = Wn. Thus each W point represents a possible history of 
the system considered as it evolves from t = - CX) to t = + CX) with 
Xn = Wn the location of the system at time n. We now introduce a 
transformation T of the space n of W points into itself. This transforma­
tion T is naturally called the "shift" transformation since it takes the 
point W with n-th coordinate Wn into the point w' = Tw with n-th coor­
dinate w~ = (Tw)n = Wn+l. Let T-I be the transformation inverse to T 
so that the point w' = T-1w has n-th coordinate w~ = (T-1w)n = Wn-l. 

Given any set A of W points let 

TA = {wIT-1wEA}. (1) 

By the stationarity assumption the event 

(2) 

has the same probability as 

T-IA = {WIXnl(Tw) ~ ).1, • ,Xnk(Tw) ~ ).k} 

= {WIXn1+1(W) ~ ).1, ••• ,Xnk+1(W) ~ ).d· (3) 

But then, by the theorem of Kolmogorov, peA) = P(T-IA) for all sets 
A, in the Borel field generated by events of the form (2). Such a trans­
formation T is called a "measure-preserving" transformation for the 
probability measure P( . ) since the probabilities of the events A and 
T-IA are the same for all A. Thus, the shift transformation is a meas­
ure-preserving transformation for the probability measure of a strictly 
stationary process. 
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Ergodic theory is basically concerned with the limit behavior of 
time averages of the process 

n-l n-l 

~ 2: Xk(W) = ~ 2: Xo(Tkw) (4) 

k=O k=O 

or more generally, the limit behavior of time averages of a decent func­
tion of the process and its time shifts, that is, 

n-l 

~ 2: f (Pw). (5) 

k=O 

By a decent function j, we mean one that is measurable with re­
spect to the Borel field of measurable sets and is integrable so that 
E/J(w) I < co. Any function of the process can be written in the form 
few) since the w points are simply the countably dimensional vectors 
that are the possible sequences of Xn values. A basic interest in ergodic 
theory is that of finding conditions under which the limiting time 
average 

n-l 

lim ~ \' f(Pw) 
n-+ QO Tl '-' 

k=O 

is equal to the "space average" 

Ef(w) 

(6) 

(7) 

for any decent function f of the process. The expectation Ef(w) is a 
space average since it is an average with respect to the probability 
measure of the process over all possible paths or histories w of the 
system. On the other hand, the time average 

n-l 

~ 2: f(Pw) (8) 
k=O 

is an average with respect to a specific history or sample point w. Of 
course, equality cannot be expected for all w; it is enough to require it 
for almost all w. A strictly stationary process {Xn} is called an ergodic process 
if the limiting time average 

n-l 

lim! \' f(Pw) 
n~CIO n '-' 

(9) 

k=O 
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exists and is equal to the space average 

Ef(w) (10) 

for almost all wand every integrable J. Such ergodic processes are of con­
siderable interest. For in the case of such a process by studying the time 
evolution of one possible sample path or history, the statistical struc­
ture of the whole ensemble of possible paths can be obtained due to 
the interchangeability of time and space averages. 

The ergodic theorem that we shall obtain will give us necessary 
and sufficient conditions for the ergodicity of a process. It is unfor­
tunately true that in many situations it may require almost as much 
work to verify these conditions as to prove ergodicity directly. How­
ever, there are probabilistic contexts in which these conditions are 
convenient. It is natural to introduce some of the relevant concepts 
in terms of the shift transformation T and the probability measure P of 
the process. An event A of the Borelfield is called an invariant event if A = T-IA 
with at most the exception of a set having P measure zero. The collection of 
invariant events (or sets) is a subsigma-field of the Borel field of the 
process. The process (or the corresponding measure P) is called "metrically 
transitive" z/ the field of invariant sets is the trivial field consisting of the whole 
space n, the null set cp and sets difJering from these two by at most a set of prob­
ability or Pmeasure zero. It will later be seen that the metrically transitive 
processes are identical with the ergodic processes. Paralleling the 
notion of an invariant event, we introduce the notion of an invariant 
function. A function f is called an invariant function if few) = f(Tw) 
almost everywhere. An equivalent way of stating this can be given in terms 
of invariant events. A function f is invariant if the set {wlf(w) ~ xl 
is invariant for every real number x. Notice that a process is metrically 
transitive if and only if every invariant function is equal to a constant 
almost everywhere. Thus in the case of metrically transitive processes, 
the only invariant functions are the trivial constant functions. 

The ergodic theorem we prove in this section is called the "strong" 
or "individual" ergodic theorem because it is concerned with point­
wise convergence. It was originally obtained by George Birkhoff. The 
proof given here is ingenious and is due to F. Riesz [62J. 

Ergodic Theorem: Let P( . ) be the measure on the space of sequences w 
generated by a strictly stationary process. Let T be the shift transformation and 9 
the Borel field of invariant w sets. If f is a function with finite first moment 
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Elf(w) I < oc, thell 
17-1 

lim! \' f(Tiw) 
n----+:lIO Il ~ 

)=0 
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(11) 

exists with probability olle (P measure) and is equal to E{f(w)I.'1}· If the 
stationary process is metrically transitive E{f(w) 1.'1} = E{f(w)} so that time 
and space averages are equal. 

We first make a simple remark about a finite sequence C1, ••• ,Cn 

of real numbers. Let A be the set of integers m < n such that Cm is exceeded by 
the maximum of those numbers in sequence following it 

(m < max Cj. 
i>m 

(12) 

The set A can then be decomposed into maximal disjoint blocks of 
successive integers. If a, {3 are the first and last integers of such a block 

(13) 

This is rather simple for since {3 + 1 ;A, CHI ~ max Ch and there­
j>tI+ 1 

fore since {3eA 
Ctl < max Cj = CIl+!' 

.i>tI 
(14) 

If a < {3, the number {3 - lEA and hence CIl-l < max Cj = CIl+l' 
i>tI-l 

For a < (3 - 1 the argument continues as given above. 
Consider now few) any function with finite first moment Elf(w) I 

< oc. Let Sn = Sn(w) be the partial sum 

S .. (w) = few) + f(Tw) + ... + fCTn-1w). (15) 

Take (3 to be any constant and M any invariant set of the probability 
measure PC .) generated by the process. As a basic step in the proof of 
the ergodic theorem, we shall first show that 

f few) dP ~ {3P [ {L~~·lb. Sn~W) > {3} M 1 (16) 

{ SnCw)} wlL.u.b.-->tI M 
n~l n 

Here L.u.b. serves as a convenient abbreviation for least upper bound. 
Notice that it is enough to prove this inequality for the case {3 = 0, for 
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one can reduce it to this case by replacing few) 
S,,{w)/n by Sn(W)/n - (3. Set 

A = /wIL.u.b. Sn(W) > OJ 
n~l 

Aj = /wlL.u.b. S,,(w) > OJ. 
l::;n ::;j 
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by few) - (3 and 

(17) 

The sequence of sets Aj is an increasing sequence with A the limit as 
j -+ 00. Consider the sequence SleW), ... , Sn(W) and let A = A{w) 
be the set of integers relative to this sequence discussed in the previous 
paragraph, that is, 

A(w) = {mlm < n, Sm(w) < max Sj(w)}. (18) 
j>m 

Further let Nj be the set of w points such that jEA(w). The discussion 
of the preceding paragraph indicates that 

~ f(Tiw) ~ O. (19) 
j.A(w) 

But this implies that 
n-l 

1M ~ f{Tiw ) dP = ~ IMN/{Tiw ) dP ~ O. (20) 
j.A(w) j=l 

The set 

N j = {wi max [j{Tiw) + .. + f(Tkw)] > 0\ = T-JA"_i (21) 
j,;;k::;n-l 

and T is measure-preserving. Therefore 

n-1 n-1 

O~ ~ IMNJ{Tiw) dP = ~ J f{Tiw) dP 
j-1 j=l MT-iAn_i 

11-1 II-I 

Since 

= L J few) dP = L IMA/(W) dP. 
i=l MA._i i=l 

(22) 

(23) 

inequality (16) is obtained from (22) on dividing by n and taking the 
limit as n -+ 00, 

It is almost immediately clear that 

Y1(W) = lim inf S .. (w) (24) n...... n 
and 

() I, S,,(w) 
Y2 W = 1m sup --,, __ .. n (25) 
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are invariant functions. It will be enough to give the argument for 
YI(W). Now 

() 1· . f few) + ... + f(Tn-Iw) 
YI W = 1m m ~--'------'-=---=---~ 

n-+ co n 

1· . f f(Tw) + ... + f(Tnw) ('T' ) = 1m In = Yl .I. W • 
n-+~ n 

(26) 

We shall now show that YI(W) = Y2(W) almost everywhere so that 
lim Sn(w)/n exists. Take any two real numbers a, {3, a < {3. Let Ma,fJ 

n ....... 

be the invariant set {WiYl(W) < a < (3 <Y2(W)}. Now 

Ma,(j = Ma,fJ {wiL.u.b, Sn(W) > {3} 
n 2:1 n 

so that by inequality (16) 

JM few) dP = J few) dP ~ {3P{Ma,(j}' 
a,(j {Sn(w) \ 

Ma,(j wf~ib'-n->fJ f 
The inequality -

1M few) dP ~ aP{Ma,(j} 
a,fJ 

(27) 

(28) 

(29) 

is obtained by applying the same argument to {-f( Tiw)} with a, {3 
replaced by - {3, - a. The inequalities (28) and (29) cannot both be 
valid unless P{Ma,(j} = O. Let us now take a, {3 any pair of rational 
numbers with a < (3. Then 

P{YI(W) < Y2(W)} = P{ V Ma,(j} ~ ~ P{Ma,(j} = 0 (30) 
a<fJ a,fJ 

so that YI(W) = Y2(W) = yew) = lim Sn(w)/n almost everywhere. 
n ..... ., 

Since the random variables f(T;w) have a common distribution 
because of the stationarity of the measure P, the averages (see note 3 
at the end of this chapter) 

Sn(w) few) + ... + f(Tn-Iw) 
---

n n 
(31) 

are uniformly integrable. But this implies that the limit yew) = lim 
n-o .. 

Sn(w)/n is finite-valued with probability one and integrable. Take M 
to be any invariant set. Then 

n-l n-1 

[ few) dP =! ~ [ f(T;w) dP =! ~ [ f(T;w) dP 1 M n ~ 1 T-;M n ~ 1M 
o 0 

= [ Sn{W) dP. 
1M n 

(32) 
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Because of the uniform integrability we can go to the limit and find that 

(33) 

In fact, the uniform integrability implies that Sn(w)/n converges to yew) in 
the mean, that is, 

f I Sn~W) - yew) I dP--+ 0 (34) 

as n --+ 00. 

Since y is measurable with respect to the sigma-field of invariant sets, 
it is clear that 

y(w) = E(f(w)id) (35) 

and hence that yew) = Ef(w) almost everywhere if the measure is 
metrically transitive. On the other hand, if 

n-l 

lim! \' f(Tiw) = Ef(w) 
n--teo n ~ 

(36) 

j=O 

for every function f with Eif(w) i < 00, it is clear that the process must 
be metrically transitive. Thus, metric transitivity is a necessary and sufficient 
condition for a stationary process to be ergodic. 

It will be convenient to obtain conditions for ergodicity of a sta­
tionary process in a different form. Let IA(w) be the set characteristic 
function of a measurable set A (an event), that is, 

I w = {1 if wEA 
A () 0 otherwise. (37) 

Let A,B denote any two measurable sets. If the process is ergodic 

n-l 

~ 1IA(T'W) ~EIA(w) =P(A) (38) 

j=O 

as n --+ 00. But this implies that 

n-l 

~ 1 IA(T'W)IB(W) ~ IB(w)P(A) (39) 

jsO 
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as n ~ 00. On integrating the above, we find that 

n-1 n-1 

~ 2: PCB (\ T-iA) = f ~ 2: IA(Tiw)IB(w) dP (40) 
i-O i=O 
~ fIB(w)P(A) dP= P(B)P(A) as n ~ 00. 

Hence ergodicity implies that 

n-1 

lim! \' PCB (\ T-iA) = P(A)P(B) 
n-+CiO n '-' 

(41) 

i=O 

for any two measurable sets A, B. Now consider applying relation (41) 
to an invariant set C, that is, set A, B = C. Then 

n-1 

P(C) = lim ~ 2: P(C (\ T-iC) = P2(C). (42) 

i=O 

Since one can only have P(C) = ° or P(C) = 1, every invari­
ant set is trivial and the process is ergodic by the ergodic theorem. 
Condition (41) for any two measurable sets A, B is therefore a necessary and 
sufficient condition for ergodicity. Notice that (41) is implied by a stronger 
condition, namely 

lim PCB (\ T-iA) = P(B)P(A) (43) 
i-+ eo 

for any two pairs of events A, B. This condition is commonly re­
ferred to as a mixing condition and is, essentially, a form of asymptotic 
independence. 

As one might expect, a stationary process of independent, idTJnticaliy 
distributed random variables is mixing. We shall now prove this result. Let 
A, B be any two events. Given any e > 0, there are events An, Bn 
measurable with respect to the Borel field <Bn generated by X_new), 
... , Xn{w) (n will of course depend on e) such that the probabilities 
of the symmetric differences A e An, B e Bn is less than e, that is, 

peA e An), PCB e Bn) < e. (44) 

This follows since the union of the Borel fields <Bn is a field that gen­
erates the Borel field of the process. Now 

IP(B (\ T-iA) - P(Bn nT-iAn)] = 
IP(B n T-iA) - P(Bn n T-iA) + P(Bn n T-iA) - PCB,. (\ T-iA n) I 

< 2 e. (45) 
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Since 

for j > 2n, it follows that 

IP(B (\ T-iA) - P(B)P(A) I < 4 e 

for j > 2n = 2n(e). But this is valid for every e > 0 and hence 

lim PCB (\ T-iA) = P(B)P(A). 
j-+co 
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(47) 

(48) 

It is natural that a process of independent random variables ought 
to satisfy as strong a mixing condition as desired and thus be ergodic. 
A less trivial and somewhat more illuminating set of examples is pro­
vided by the class of stationary Markov chains. First consider the case 
of a chaIn that is not irreducible. Then there are at least two nonempty 
disjoint closed sets Gl , G2 so that 

o < P(X .. (w)eGi ) < 1, i = 1,2. (49) 

Moreover, since C1 is closed the event A = IwIXo(w)eGd is a non­
trivial invariant set (T-IA = A). A chain that is not irreducible is clearly 
not ergodic. We shall now see that the irreducible chains are the ergodic chains. 
Ergodicity is implied by the validity of relation (41) for any pair of 
events A, B. However, by the argument of the preceding paragraph, 
it is enough to verify (41) for any pair of events Am, Bm measurable 
with respect to <Bm (the field generated by X_meW), ... , Xm(W». 
Let Am, Bm be the events 

Now 

Am = IwIX-m(w) = i_m, 
Bm = IwIX-m(w) = j-m, 

, Xm(W) = iml 
, Xm(w) = jm}. 

. p. . p(~-2m)p.. ... p. . 
'J.m-ltfm 'im.-,i_JIt J-m,J-m+l 3m-113m 

(50) 

(51) 

for k sufficiently large. By Problem 15 of Chapter III, if the chain is 
irreducible 

But this implies that 

lim (52) 
n->oo 

n-I 

lim ! \' P(Bm (\ T-kAm) (53) 
n-+QO n L..t 

k=O 

= PL •• P;-.."i--m+l ... ft;m-himPi- .. Pi-m.;--m+l ... Pim-,.im = P(Am)P(Bm) 
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so that the chain is ergodic. If the chain is irreducible with persistent states, 
condition (52) can be replaced by the stronger condition 

lim P~:~j_ .. = Pi_no, (54) 
n--+'" 

which implies that the chain is mixing by a similar argument. 
Let us now return to the case of a stationary process of independent 

random variables and make an almost obvious but nonetheless worth­
while remark. Any Borel function few) on the sample space of the 
process induces a derived process, namely, 

Y,,(w) = f(Tnw). (55) 

Since the original process X,,(w) is mixing, it follows that any such 
derived process Yn(W) is mixing. In particular, any process of the form 

.. 
Yn = ~ ajXn _;, 

j--oo 
~ aJ < co, (56) 
J 

with the Xn's independent, identically distributed with mean zero 
and variance one, is mixing. 

There are not many processes that have been characterized in 
terms of ergodic or mixing properties. A precise characterization of 
the normal processes that are ergodic or mixing has been given in a 
paper of Maruyama [55]. 

c. Convergence of Conditional Probabilities 

At this point we shall prove a theorem on the convergence of 
sequences of conditional probabilities. Even though there is consider­
able interest in this result for its own sake, we shall be basically inter­
ested in applying it to obtain MacMillan's theorem, a result of some 
importance in information theory, in the following section. It should 
be noted that this convergence theorem can be regarded as a special 
case of a Martingale convergence theorem (see Doob [12]). 

Suppose there is an increasing sequence of subsigma-fields en(en 
C en+l) of CB with e the subsigma-field of CB that U ell generates. 
Let A be an event. We shall show that 

(1) 

almost everywhere as n ~ 00. In section d this result will be applied in a 
context where en is the Borel field generated by a family of random 
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variables X-leW), ... , X_new) and e that generated by the infinite 
family X_leW), X_ 2(w), .... Notice that (1) can be rewritten 

(2) 

where CA is the set-characteristic function of the event A. T!lis suggests 
the apparently more general result 

E(f(w)len) ~ E(f(w) Ie) (3) 

with f a bounded measurable function (with respect to m). Notice 
that (3) readily follows if we are able to show that 

(4) 

almost everywhere for a bounded function g measurable with respect 
to the subsigma-field e. For g(w) = E(f(w)le) is measurable with 
respect to e and hence by a basic property of conditional expectations 
(see equation (IV.c.12» 

E(f(w)len) = E(E(f(w)le)len) = E(g(w)len) 
~ g(w) = E(f(w) Ie) (5) 

asn~co. 

Further, it is enough to prove (4) for simple functions (linear com­
bination of a finite number of set characteristic functions of events) 
measurable with respect to e and therefore sufficient to verify it for a 
e measurable characteristic function. For a bounded e measurable 
function g is the limit almost everywhere of a uniformly convergent 
sequence of simple functions gk measurable e (such a sequence is 
given by gk(W) = [kg(w)]/k where [x] denotes the largest integer less 
than x) and 

The first and last term on the right will be small if k is large. The second 
term is small for large n. 

Since it is enough to verify (2) for g the characteristic function CA(W) 

of a set A measurable e, let us establish this. Take E, 5 as two small 
positive numbers less than one. Since e is generated by the fields en, 
there is a set B in some field ek with k sufficiently large such that 
peA e B) < E 5/2. Let 

(7) 
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Set Fk1) = B n Dk, Fk'},) = B n Dk+l - Fk1>, F13) = B n Dk+2 -

(F(1) V F(2») N' h FCj)' . Ii) N k k' • • •• ot1ce t at k 1S 10 vk+i-l. ow 

so that if Fk = V Fli), then 
i 

(9) 

This implies that PCB - A) ~ P(Fk) e. But P(Fk) < 8/2 since PCB - A) 
~ PCB e A) < e 6/2. 

If weB - Fk, then p(Ale .. ) ~ 1 - e when n ~ k for Fk = B n 
{w11 - inf p(Ale .. ) ~ e} where inf is an abbreviation for infimum . 

.. ;?!k . 

This implies that p(Ale .. ) ~ 1 - e throughout A except for a set of 
probability at most 6 since peA e B) + P(Fk) ~ e 6/2 + 8/2 < 6. 
Since e, 8 are arbitrary PeAle .. ) converges to 1 almost everywhere in A. 
The same argument applied to A indicates that p(Ale .. ) --" 0 almost 
everywhere in A. Thus p(Ale .. ) --" CA(W) almost everywhere. 

d. MacMillan's Theorem 

In recent years there has been a considerable interest in communi­
cation problems. In particular, work of Shannon [73] and others has 
led to the growth of a field of interest commonly referred to as "infor­
mation theory." Excellent discussions of the basic problems in this 
field are to be found in the monographs of Khinchin [42] and A. Fein­
stein [14]. In such problems, there is a message to be transmitted over 
a communication channel. The message must be encoded in a form 
that the channel can accept. After transmission, the message received 
must be decoded so as to reproduce the information transmitted. Since 
there is noise corrupting and distorting the transmission of messages 
over the channel, a basic question that arises is the encoding of the 
message so as to guarantee the most efficient transmission of informa­
tion over the channel. This will depend on the statistical character 
of the message to be transmitted and the channel. We shall not study 
the full communication problem, only certain aspects of the message 
to be transmitted. 

Suppose the message to be transmitted is in an alphabet of s 
letters. For convenience, let us denote these letters by the symbols 
aI, . . . , a,. Assume that the message to be transmitted can be rea-
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sonably regarded as the realization of a stationary stochastic process 
Xn(w), n = 0, ± 1, ±2, .... Then XnCw) is the symbol to be trans­
mitted at time n. The probability space of the process Xn(W) has a 
nonenumerable number of elementary events and the concept of entropy 
has only been introduced for probability spaces with a finite (or 
countable) number of elementary events. It will be adva.ltageous to 
extend the entropy concept to the probability spaces of such processes 
X,,(w). 

Consider the random variables X-n+l(w), ... , Xo(w). There are 
sn possible corresponding distinct sequences of symbols and hence the 
field (in of these random variables can be regarded as a finite field 
with s" elementary events. Let T be the shift operator introduced 
in section b. Then Ta,. is the field of X_new), ... , X-leW). Let 
Hn = H(a,,) be the entropy of (i". If lim H,,/n = H exists, it would be 

n-too 

natural to call this limit the entropy of the process X,,(w) (it would be more 
accurate to call this the average entropy per symbol). This limit will 
be shown to exist. Now 

H( a,,+m) = H( an V Tn~) 
= HC(i,,) + HI1,,(Tn~). 

Further 

(see problem 19 of Chapter II) from which it follows that 

From this it follows that Hn :::; nHl and hence that 

H = lim inf H,,/n 
n-too 

is finite. Consider any e > O. Let m be such that 

Hm < H+ e. 
m 

Given any n > m, there is an integer k > 1 such that 

(k - 1)m :::; n < km. 

But then inequality (3) implies that 

H .. < Hkm < k Hm k (H + ) n - (k - 1)m - k - 1 Tn < k - 1 e 

(1) 

(2) 

(4) 

(5) 

(6) 

(7) 
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and therefore, for sufficiently large n, 

H - E < ~ .. < k ~ 1 (H + e) < H + 2 E. (8) 

Since E is arbitrary 

Now let 

H 1· . fH.. 1· H .. = lID. In - = Im-· 
n-+" n n-+" n 

p,.(ao, ... ,a,,-I) = P[Xo(w) = ao, ... , X .. _I(W) = a,,-l] 
p(a,,-lla,,_2, . . . ,ao) 

(9) 

= P[X .. _l(w) = a,,_IIX,,_2 = a .. _2, ••• ,Xo(W) = ao] (10) 

where ao, ... , a .. _l,each assume one of the values aI, ..• , a,. 

MacMillan's theorem states that the random quantity 

1 
- -log P .. (Xo(w), ..• ,X .. _l(w» = J .. (w) (11) 

n 

converges to H in mean as n -+ 00 iJ X .. (w) is an ergodic process. This result 
is essentially obtained by an application of the ergodic theorem. 

We have 

- log P .. (Xo(w), ••• ,X_leW»~ 
.. -1 

= - 2; log p(Xk (w)IX1c-l(W), .. ,Xo(w» (12) 
k-O 

n-l 
= 2; gk(Tkw) 

k-O 
where 

gk(W) = - logp(Xo(w)IX_l(w), ••. ,X-Te(W». (13) 

By section c, 

- log P(Xo(w) = aIX_l(w), .•• ,X_Te(w» = gk(Wja) (14) 

converges almost everywhere as k -+ 00. But then 

gk(Wja) - gk'(Wja) -+ 0 

almost everywhere as k,k' -+ co. However, 

II. 

(15) 

Igk(W) - gTe'(W) I ~ 2; Igr.(w;a) - gk,(wja)l-+ 0 (16) 

as k,k' -+ 00 and therefore gk(W) converges to a limit g(w) almost 
everywhere as k -+ 00. It is conceivable that g(w) might be infinite 
on a set of positive probability. As we shall see this is not possible since 
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the sequence gk(W) will be shown to be uniformly integrable. Notice 
that gk(W) is measurable with respect to ak+l. Let Bk be an elementary 
event in Tak and Al an elementary event in a l . An elementary event 
of ak+1 is then of the form BkA I . Since gk(W) is measurable with respect 
to ak+h for wEiJkAh 

(17) 

Let Sk,; = {wJj :c::; gk(W) < j + 1}. If BkAl is an elementary event of 
ak+l that is a subset of Sk.i then 

I P(BkA I ) > . 
- og P(Bk) - J 

and hence P(BkA I ) :c::; e-ip(Bk). Then 

J gk(W) dP = l J gk(W) dP 
Sk,; Be BkSk,j 

:c::; l (j + l)P(BkA ISk ,j) :c::; sU + l)e-i 

Bk,A I 

(18) 

(19) 

where s is the number of values that can be assumed by Xn(w). 
Inequality (19) implies that the sequence gk(W) is a uniformly integrable 
sequence of random variables. Thus g(w) = lim gk(W) is integrable and 

flgk(W) - g(w)1 dP~ 0 

as k ~ go. By the ergodic theorem 
n-l 

(20) 

~ 2: g(Tkw) (21) 
k=O 

approaches an invariant function hew) in mean as n ~ go. Further, if 
the process Xn(W) is ergodic, hew) is the constant 

hew) = Eg(w) = lim Egk(w) = H. (22) 
k-t .. 

Now 
n-l 

J Ifn(w) - h(w)1 dP = f I ~ 2: gk(TkW) - hew) I dP 
k=O 

n-l n-l 

:c::; f I ~ 2: [gk(Tkw) - g(TkW)] I dP + J I ~ 2: g(TkW) - hew) I dP 
k=O k-O 

n-l n-l 

:c::;~2:Jlgk(W)-g(w)ldP+ fl~2:g(TkW)-h(w)ldP~O (23) 
k-O k-O 
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as n -+ C1J by the stationarity of the measure P (generated by the Xn(W) 
process) and the ergodic theorem. The proof of MacMillan's theorem 
is complete. 

MacMillan's theorem can be given an interesting interpretation. 
Consider messages of length n. There are sn such possible messages. 
MacMillan's theorem states that with probability almost one the prob­
ability of such a possible message is to the first order 

(24) 

There are roughly enH such sequences. However, H:::; log s and thus 
the number of messages of appreciable probability is enH which is 
usually much smaller than s" = e" log •• In encoding, one therefore need 
essentially consider only the enH messages of large probability. 

e. Problems 

1. Consider the integers 1, 2, ... , n with the uniform distribution 
on them. Let the function f map the integers 1, 2, . . . , n onto 
themselves. Show that the process generated by f is strictly sta­
tionary. Under what circumstances is it ergodic? Can it be mixing? 

2. Let X be a random variable uniformly distributed on [0;1]. Con­
sider the process X .. = X + na mod 1 where a is an irrational num­
ber. Show that the process Xn, n = 0, ± 1, ... is strictly station­
ary. Is it ergodic? 

3. Let X be a given random variable. Consider the process X .. = X, 
n = 0, ± 1, . . . . Is this process ergodic? If not, indicate the 
sigma-field of invariant sets. 

4. Consider the unit square 0 :::; x, y :::; 1 with uniform measure on it. 
Let T(x,y) = (2x,72Y) if 0 :::; x < 72 and T(x,y) = (2x,~~(y + 1» 
if 72 :::; x < 1. These equations are to be taken mod 1. Show that 
the process generated by the transformation is strictly stationary. 
Is it ergodic? 

5. We say Xn is m-step dependent if blocks of random variables are 
independent when separated by m indices. Let Xn be an m-step 
dependent strictly stationary process. When is such a process 
ergodic? When is it mixing? Construct examples of m-step depend­
ent processes for m = 1, 2, . . . . 
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6. Let Xn be a strictly stationary process that can assume only the 
values 0 or 1 at any fixed time. Let the probability 

P[Xnl = iI, Xn, = i2, • , Xnr. = ik] 

k k 
1 }; ia k- ~ ia 

= 10 pa-l (1 - p) a-I dF(p) 

where FCp) is a distribution function with all its mass on [0,1]. 
What are the invariant sets of this process? Under what conditions 
is it ergodic? 

7. Compute the entropy per unit time of a stationary Markov chain. 

Notes 

1. An extensive discussion of the background in statistical mechanics in which the 
ergodic problems first arose can be found in Khinchin's book [41]. M. Kac has 
much material on the current status of allied problems in statistical mechanics in 
his recent volume [37]. 

2. Ergodic theory has grown into a field of considerable breadth after G. Birk­
hoff and J. von Neumann derived their ergodic theorems. It would be hopeless to 
try to give any extensive bibliography of the work in this area. It is worthwhile, 
however, referring to the books of E. Hopf [35] and P. Halmos [30] on ergodic 
theory. HopPs monograph is excellent in its treatment of the early work on these 
problems. Halmos's essay is recent and discusses interesting open questions in this 
area. The two books are an excellent introduction to ergodic theory. A later book of 
S. R. Foguel (AS] is concerned with ergodic theory of a Markov process and deals 
with results and ideas that we haven't touched on. 

3. The uniform integrability of the sequence Sn/n used on page 108 can be 
readily seen in the following way. The random variables f(Tiw) are uniformly inte­
grable since their marginal distribution functions are identical. Thus, given any 
E > 0, there is a 6(£) > 0 such that if P(Mn) < 6(£) 

But then 

{ If(Tiw)1 dP < E, 1Mn j = 0, ... ,n - 1. 



VI 
MARKOV PROCESSES 

a. Definition 

We have already discussed a special but exceedingly rich and 
interesting class of Markov processes in Chapter III, the Markov 
chains. In going from Markov chains to Markov processes one allows 
possibly for a much more general state space. Continuous time param­
eter processes will be of special interest in this chapter. 

The object of this section is to characterize the class of processes 
for which past and future are independent given precise knowledge of 
the present. It is already clear from the preceding statement that the 
indexing parameter of the random variables of the process must be a 
time-like parameter. Let T be the parameter set. The most common 
choices of T are the set of real numbers or the set of lattice points 
kh, k = 0, ± 1, ... , h > 0, or any subset of these. Now consider 
the question of specifying the joint probability structure of the random 
variables {Xt(w),tET\. This will be done by specifying the joint prob­
ability structure of any finite number of them in a consistent way. 
The theorem of Kolmogorov [44J then assures us that there is a sto­
chastic process with this probability structure. Actually we shall not 
restrict ourselves to real-valued random variables. The random vari­
ables Xt(w) can take as values complex numbers, points in Euclidean 
k~dimensional space, or even points in an abstract space. However, 
even if we do allow this generality, it is clear we have to say something 
about the range of the random variables, that is, the state space of the 
process. Let Ox be the state space of the random variables Xt. Take g:x 
as the sigma-field of measurable subsets of Ox. Further, we shall assume 
that g:x includes all sets consisting of a single point of Ox. For con­
venience, assume that there is a first point to the set T. The probability 
structure will be specified in terms of an initial probability measure 
and a transition probability function describing how transitions take 
place from one time to another. 

Let P(to,A) be a probability measure on the sets A of g:x. This, as 
we shall see, is the probability distribution at the initial time to. Further 

120 
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let the transition probability function P(T,x;t,A), to:::; T < t, xenx, 
Ae5=x, be a function with the following properties: 

(i) P(T,x;t,A) is a probability measure in Ae5=x for fixed T, x, t; 
(ii) P(T,x;t,A) is measurable in x with respect to 5=x for fixed T, t, A; 

(iii) P(T,x;t,A) satisfies the integral equation (commonly called 
the Chapman-Kolmogorov equation) 

P(T,x;t,A) = ( P(T,x;t',dy)P(t',y;t,A) J Ox. 
(1) 

for any t' with T < t' < t. We are now in a position to specify the joint 
probability structure of the random variables {Xt,te T}. Of course, Xt 
is to specify the location of an observed system subject to random 
disturbances at time t. The probability that the system is in set Ao at 
time to and in set Ai at time ti> to < tl < . . . < tn, is defined to be 

P[XtoEAo, •.. ,Xt.EAn] = f ... f P(to,dYo)P(to,YO;tl,dYI) (2) 
AD An_' 

... P(tn-2,Yn_2;tn_l,dYn_I)P(tn_I,Yn_1 ;tn,An). 

A little reflection indicates that (2) coupled with the Chapman­
Kolmogorov equation ensure that the probability structure is given 
consistently. The probability distribution P(t,A) at time t > to is then 

P(t,A) = P[XteAJ = ( P(to,dyo)P(to,yo;t,A). J Ox. 
(3) 

The family of sets {wIXtD(w)EA o, •.• ,Xtn(w)EAn} generates a field 
of sets in the space of sample functions w = wet) (see section d of 
Chapter IV) with values of the sample functions points in the space nx. 
Now since P as given by (2) is countably additive on this field, it can by 
Caratheodory's theorem be extended to a probability measure on the 
sigma-field generated by this field. 

In the case of Markov chains (see Chapter III) time is discrete 
and the state space is countable. Because of this, the transition prob­
ability functions can be represented in matrix form and integration is 
replaced by summation in the formulas given above. 

It follows readily from (2) that the transition probability function 
P(T,X ;t,A) is the conditional probability P[Xt(w)eAIXT(w) = xJ. Suppose 
we take sets A, B of the form 

A = {wIXt,(w)eA 1, ... ,Xt.(w)eAd 
B = {wIXtk+1(W)eAk+l> ... ,Xt.cw)eAn } , 

(4) 
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to ::s; tl < . . . < tk < t < tk+l < . . . < tn, (as in section a of 
Chapter III) in the past and future relative to t. Then (2) implies that 

P[ABIXt(w) = x] = P[AIXt(w) = x]P[BIXt(w) = x] (5) 

so that given the present the past and future are independent. There 
is a second way of rephrasing the Markovian property that follows 
from (2). Let B be an event in the future relative to t. It then follows 
from (2) that 

P[BIX,(w) = x, X/.(w) = Xk, ••• ,X/,(w) = Xl] 
= P[BIXt(w) = x], (6) 

that is, all higher order conditional probabilities reduce to first-order 
conditional probabilities. Of course, this is not surprising since (2) 
states that the full probability structure is determined by the initial 
probability distribution and the first-order conditional probabilities 
in the case of a Markov process. In the case of a non-Markovian 
process, the higher order conditional probabilities do not reduce to 
first-order conditional probabilities and hence they are needed for a 
full specification of the probability structure of the process. 

If the transition probability function depends on T, t only through 
the time difference t - T so that 

P(T,x;t,A) = pet - 7, x, A), (7) 

the process {Xt } is said to have a stationary transition mechanism. The 
Brownian motion and Poisson processes introduced in section d of 
Chapter IV are examples of Markov processes with stationary transi­
tion mechanism. In the case of the Brownian motion process, the state 
space is the set of real numbers and the transition probability function 
is given by 

P(7,x;t,A) = P[X/(w)eAIXT(w) = x] _ _ j 1 (y - X)2) - pet - 7, x, A) - v' exp - 2( _ ) dy. 
A 211'(t - 7) t 7 

(8) 

The state space of the Poisson process is the set of non-negative integers. 
The transition probability function is given by 

2: [~(t - 7)]k-; pet - ]' A) = e-A(I-T) 
7, , (k _ j) ! 

k.A 
k~j 

(9) 
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where k and j are non-negative integers. Notice that even though the 
two specific Markov processes referred to above have stationary transi­
tion mechanism, they are not stationary processes. In fact, a Markov 
process with stationary transition mechanism will not be stationary 
unless its probability distribution at time t P(t,A) is independent of t, 
that is, 

P(t,A) = r P(to,dx)P(t - to, x, A) 
}ox 

= P(to,A) = peA). (10) 

Thus, the initial distribution P(to,A) = peA) must reproduce itself 
through time. However, we have already seen in section a of Chapter 
III that there are stationary transition probability functions for which 
there is no self-reproducing initial probability distribution. 

If the Markov process has stationary transition mechanism and 
time is discrete (t = 0, ± 1, ... ), all higher order transition prob­
abilities P(t,x,A) can be given recursively in terms of the first-order or 
one-step transition probability P(l,x,A) as follows for t = 0, 1, . 

P(2,x,A) = r P(1,x,dy)P(l,y,A) 
}ox 

pet + 1, x, A) = r P(t,x,dy)P(l,y,A) 
}ox 

= r P(l,x,dy)P(t,y,A). 
}ox 

(11) 

It is very easy to give examples of non-Markovian processes. For 
simplicity consider discrete time t = 0, ± 1, .... Let Xt be a normal 
process satisfying the difference equation 

(12) 

where the it are independent normal random variables with mean 
zero and ~t is independent of Xt-I, Xt- 2, • • • • The process Xt is 
clearly Markovian if m = 1 but not if m > 1. For the conditional ex-

m 
pected value E(Xt!Xt-I, ... ,Xt- m) = -aol ~ akXt-k and this would 

k=l 

depend only on X t- 1 if the process were Markovian. However, even 
if m > 1 we can introduce a related process with the same amount of 
information that is Markovian. Let Yt be the m-vector valued process 

(13) 
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This process is clearly Markovian. Thus, a process Y! with a simpler 
structure has been obtained, a Markovian structure, at the cost of a 
more complicated state space. This can generally be done in an almost 
vacuous manner for any process X!, t = 0, ± 1, .... Simply let 
V!, t = 0, ± 1, ... , be the process with 

(14) 

The process Y! is a Markov process with state space consisting of points 
with a countably infinite number of components. This trivial way of 
imbedding a general process in a Markov process usually does not 
lead to anything interesting. However, there is a variety of problems 
dealing with stochastic processes where the solution basically depends 
on imbedding the process cleverly in a Markov process . 

. There have in recent years been attempts to extend a Markov like 
notion to processes with a multidimensional time parameter. We briefly 
describe such a definition and refer to a paper of L. Pitt [A12] for a 
detailed exposition and development as well as a bibliography of re­
lated papers. Let X!th be a process on the plane. Consider any domain 
with a smooth boundary. Assume any event determined by observa­
tions in the domain and any event determined by observations outside 
the domain are conditionally independent given data on the boundary. 
If this is true for every such domain, the process is called Markovian. 

h. Jump Processes with Continuous Time 

A systematic study of continuous time parameter Markov processes 
was given by Kolmogorov in his basic paper [43]. Among these were 
Markov processes with a countable state space. The characteristic 
feature of these processes is that they are jump processes, that is, in a 
small time, the system described by the process is almost sure to remain 
in the state originally occupied and it will jump to another state only 
with small probability. The scope of such jump processes was enlarged 
by Feller in his papers [15] and [16]. We shall, in fact, generally follow 
the approach given in Feller's paper [16]. Our first object is to indicate 
more precisely what is meant by a jump process. Our discussion will 
be carried out in the context of a general state space ~h. The reader 
may find it helpful to keep the case of a denumerable state space in 
mind in which case all integrals over the state space are to be replaced 
by sums over the state space. Functions jJ(t,x) ~ ° and II(t,x,A), with t 
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real, xenx and Aeg'x satisfying the following conditions are assumed 
given: 

(i) For fixed x, p(t,x) is a continuous function of t and for fixed t 
it is measurable with respect to g'x. We shall assume that p(t,x) is 
bounded in t, x jointly so that one is led to a fairly simple theory. 
Otherwise the study of jump processes becomes much more compli­
cated (see section e of this chapter for an example in which such 
complications arise). 

(ii) For fixed x, A, II(t,x,A) is continuous in t; for fixed t, x, it is a 
probability measure on g'x; for fixed t, A, II(t,x,A) is measurable with 
respect to g'x. The jump character of the process is determined by 
specifying the transition behavior of the process in a small time interval. 
The process is a jump process if the transition probability 

P(r,x;t,A) = {1 - p(t,x)(t - r)} !S(x,A) 
+ p(t,x)(t - r)II(t,x,A) + oCt - r) (1) 

for small t - r > 0, where 

!S(x A) = {1 if xEA (2) 
, 0 otherwise. 

Notice that the probability of a change of state in time t - r is of 
order t - r. A Poisson process is perhaps the simplest and most typical 
nontrivial example of such a discontinuous process. In the case of the 
Poisson process, the state space consists of the non-negative integers. 
Therep(t,x) == A and II(t,x,A) = !S(x + 1, A). Thus, if there is a change 
of state in a small time, it is to the first order in t - r from x to x + 1. 

The transition probability function P(r,x;t,A) of a Markov process 
satisfying the assumptions of this section can be shown to be a solution 
of two integrodifferential equations 

ap(r~;t,A) = p(r,x) {P(r,x;t,A) - f P(r,y;t,A)II(r,x,dY)} (3) 

and 

ap(ra~;t,A) = - f p(t,y)P(r,x;t,dy) + f p(t,y)II(t,y,A)P(r,x;t,dy), 

(4) 

commonly called the backward and forward equations respectively. 
The derivation of the backward equation will be given in some detail. 
That of the forward equation will be given in less detail. To derive the 
backward equation, we consider the Chapman-Kolmogorov equation 
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corresponding to a transition from time T - dT, dT > 0, to time T and 
then from time T to time t. The equation required is 

peT - dT, x; t, A) = fP(T - dT, x; T, dy)P(T,y;t,A). (5) 

A small time transition is considered at the beginning T - dT rather 
than at the end t (as in the derivation of the forward equation). This, 
in part, explains the names "backward" and "forward" equations. If 
we split the range of integration on the right of (5) into ~h - {x} and 
Ix}, we obtain 

peT - dT, x; t, A) - peT - dT, x; T, {x})P(T,x;t,A) 
= [peT - dT, x; t, A) - P(T,x;t,A)] + p(T,x)dTP(T,x;t,A) + O(dT) 
= fP(T,y;t,A)P(T - dT, x; T, dy) (6) 

Or - {zl 

using the basic property (1) of jump processes. For every set A not 
containing x, peT - dT, x; T, A)/ dT approaches p(T,X)n(T,X,A) asdT ~ 0. 
On dividing equation (6) by dT and letting dT ~ 0, the following 
identity is obtained 

iJP(T'a:;t,A) = P(T,X) {P(T,x;t,A) - f P(T,y ;t,A)n(T,X,dY)} (7) 

where the derivative on the left is to be understood as a left-hand 
derivative. By considering a transition from T to T + dT and then from 
T + dT to t, the corresponding equation is obtained with a right-hand 
derivative using the continuity of p(t,x) and n(t,x,A). Thus, the equa­
tion holds with iJP/iJT understood as an ordinary derivative. 

The forward equation is obtained by considering a transition from 
T to t and then from t to t + dt in the Chapman-Kolmogorov equation 

PCT, x; t + dt, A) = fP(t,y; t + dt, A)P(T,X;t,dy). (8) 

A more convenient form in which to write this is 

1 
dt {peT, x; 1+ d/, A) - P(T,x;t,A)} 

= f P(T,x;t,dy){P(t,y; t + dt, A) - 8(y,A) }/dt (9) 

and the desired result (4) follows from this on letting dt ~ ° by (1) and 
bounded convergence. Actually, without the boundedness condition 
on p(t,x), one would not get an equality in the forward relation, only 
an inequality. 
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It has been established that the transltlOn probability function 
satisfying (1), if it exists, should satisfy the backward and forward 
equations. Two basic questions now arise, that of existence of a solution 
and if it exists whether it is unique. Our object is now to construct a 
solution of the problem and show that it is unique. Let 

Po(r,x;t,A) = 5(x,A) exp {- it p(s,x) ds}. (10) 

This is the probability of no jump in the time interval (r,t). We now 
construct the probability of precisely n jumps in the time interval (r,t). 
Introduce the function 

n*(r,x;t,A) = fA exp {- it p(s,y) dS} n(r,x,dy). (11) 

We shall try to construct the desired probability recursively. Assume 
that the probability of n - 1 jumps precisely in time (r,t) in going 
from x at time r into set A at time t, Pn_1(r,x;t,A), is already given. 
Intuitively, it would follow that one ought to be able to construct 
Pn(r,x;t,A) out of Pn_1(r,x;t,A) in the following way. If precisely n 
jumps have taken place in (r,t), the n-th or last jump must have taken 
place at precisely some intermediate time 0', r < 0' < t. There will 
then be n - 1 jumps in the open interval (r,O') and none in the open 
interval (a,t). Thus 

Pn(r,x;t,A) = /t da r p(0',y)II*(0',y;t,A)Pn_1(r,x;a,dy). (12) 
T lox 

A similar argument in terms of the first jump instead of the n-th jump 
leads to the equation . 

Pn(r,x;t,A) = it p(O',x) exp {- f' p(s,x) ds}. (13) 

J Pn_1(0',y;t,A)II(0',x,dy) dO". 

The functions Pn(r,x;t,A) as generated from Po(r,x;t,A) by either 
system (12) or system (13) can be seen to be the same on writing them 
out as iterated integrals. Of course, we have been guided in our defini­
tion of the functions Pn by intuitive considerations. But we have to 
verify that they are in fact probabilities. Let 

Then by (13) 

n 

Sn(r,x;t,A) = ~ Pj(r,x;t,A). 
j=O 

(14) 

Sn(r,x;t,A) = exp {- it p(s,x) dS} {5(x,A) (15) 

+ itp(u,x) exp {J"tp(s,x) dS} dO" J Sn_l(O',y;t,A)II(O",x,dy)}. 
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Now O:$; SO(T,x;t,A) = Po(T,x;t,A) :$; 1. Further S,. ~ S,.-1 ~ O. If 
S7I-l :$; 1, by equation (15) 

S,.(T,x;t,A) :$; exp {- it p(s,x) dS} 

{1 + it p(a,x) exp {f p(s,x) dS} da } = 1. (16) 

By induction the sequence S .. (T,x;t,A) is a nondecreasing sequence 
bounded below by zero and above by one. Thus 

'" P(T,x;t,A) = ~ Pj(T,x;t,A) = lim S .. (T,x;t,A) :$; 1 (17) 
I i-O n .... '" .. 

~s well defined. THe tc~rm Pn(T,x;t,A) can therefore be interpreted as 
the conditional probability of going from x at time T into A at time t 
with precisely n jumps or changes of state. It is still an open point as to 
just when P(T,x;t,o.x) = 1. P(T,x;t,A) is the conditional probability 
of going from x at time T into A at time t in a finite number of jumps. 

Let 

Ln(r,x,t) = it da f p(a,Y)Pn(T,x;a,dy) (18) 

be the conditional probability of having had at least n + 1 jumps in 
time (T,t) given that the system was in state x at time r. Notice that 

aII*(~:;t,A) = - i p(t,y)II*(T,x;t,dy). 

It follows from (12) and (19) that 

1t dal L p(rrhy)P .. +1(r,x;rrl,dy) 

= - 1t drrl 1'" da f p(rr,y) aII*(~~~ahA) P,.(r,x;a,dy). 

(19) 

(20) 

An interchange of order of integration and the observation that 
II*(a,y ;a,A) = II(rr,y,A) leads us to the equation 

it drrl fA p(al,y)P"+1(r,x;rrl,dy) 

= it drr f p(rr,y)II(rr,y,A)P,.(r,x;a,dy) 

- it da f p(a,y)II*(a,y;t,A)P,.(r,x;a,dy). (21) 
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This can be recast in the more convenient form 

Pn+l(T,X;t,A) + it du fA p«(J',y)P1I+1(T,Xiu,dy) 

= it d(J' f p(u,y)II«(J',y,A)P1I(T,X;u,dy) (22) 

by using (12). The interesting relation 

Pn+l(T,X;t,OX) + L1I+1(T,X,t) = L1I(T,X,t) 

follows from (22) on setting A = Ox. Now 

PO(T,X;t,Ox) + LO(T,X,t) = 1. 

This coupled with (23) indicates that 

N 
P(T,xit,Ox) = lim ~ P1I(T,xit,Ox) 

N ...... n=O 

= lim (1 - LN(T,X,t» 
N ...... 

(23) 

(24) 

(25) 

equals one if and only if the limit L(T,X,t) of the nonincreasing sequence 
L .. (T,X,t) is zero. But 

L(T,X,t) :::;; it du f p(u,y)Pn(T,x;u,dy) 

:::;; K it Pn(T,XiU,Ox) du (26) 

since p(u,y) is bounded by a constant K. The right-hand side of (26) 
is the general term of a convergent series so that L(T,X,t) must be zero. 
It follows that P(T,xjt,A) is a probability measure in A. 

From the definition it follows that for T < X < t 
n 

P .. (T,xit,A) = ~ fP,,(T,XjX,dy)Pn-k(X,yjt,A). (27) 
k-O 

Of course this only states that if there are precisely n jumps in going 
from x into A in (T,t), for some integer k (k = 0, 1, ... , n) there will 
be k jumps in (T,X) and n - k jumps in (X,t). On summing over n the 
Chapman-Kolmogorov equation (a.1) is obtained. The construction 
of the functions P,,(T,xit,A) (see (13» and the boundedness of p(t,x) 
imply that P(T,xjt,A) satisfies condition (1). The arguments given 
earlier in this section imply that the function P(T,xjt,A) constructed 
must satisfy both the forward and backward equations. 

Let us now consider the uniqueness of P(T,xjt,A). Suppose there 
were another transition probability function P*(T,xjt,A) satisfying the 
Chapman-Kolmogorov equation and condition (1). P*(T,x;t,A) would 
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have to satisfy the backward equation (3). If the backward equation is 
treated as an ordinary differential equation, the following equation 
is obtained 

P*(r,x;t,A) = exp {- it p(s,x) dS} {5(x,A) (28) 

+ itp(u,x) exp {-latp(s,x) dS} du J P*(u,y;t,A)IT(u,x,dy)}. 

Clearly P*(r,x;t,A) ~ Po(r,x;t,A) = So(r,x;t,A). But this implies that 
P*(r,x;t,A) ~ Sl(r,x;t,A). By iterating this argument we see that 
P*(r,x;t,A) ~ Sn(r,x;t,A) for every n. ThereforeP*(r,x;t,A) ~ P(r,x;t,A). 
But the inequality must be equality since P(r,x;t,A) is already a prob­
ability measure in A. 

The boundedness condition on p(t,x) (see condition (i)) implies that 
transitions over a finite time period take place through a finite number 
of jumps. To a great extent, what we have shown above amounts to 
this apparently simple statement. If the boundedness condition is 
relaxed, transitions can take place in a much more complicated manner. 
There may no longer be a finite number of jumps with probability 
one in a finite time interval. In fact, the set of time points where jumps 
occur may have many limit points. Further, uniqueness of a transition 
probability function satisfying the infinitesimal condition (1) no 
longer follows. The more complicated behavior of sample functions 
and the possible nonuniqueness of solutions are two related aspects 
of the difficulties that arise when one allows for unbounded or even 
infinite p(t,x). Much of the recent work on Markov processes has been 
concerned with problems of this type (see Chung [8]). 

The Markov processes with stationary transition mechanism have 
been investigated most extensively. If such a Markov process has a 
countable state space, we refer to it as a Markov chain just as in the 
case of a discrete time parameter. There are a few simple remarks that 
can be made about finite state Markov chains with stationary transi­
tion mechanism. The transition probability function of a Markov 
chain with stationary transition mechanism can be conveniently 
written in matrix form 

pet) = (Pi.i(t); i,j = 1,2, ... ), t ~ 0, 
pdt) = P[X(r + t) = jIX(r) = i]. 

The Chapman-Kolmogorov equation is then 

P(t)P(s) = pet + s), t, s ~ 0. 

(29) 

(30) 
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If pet) corresponds to a "decent" Markov chain, it will be continuous 
with 

lim pet) = I. (31 ) 
t->O+ 

For sufficiently small t, PCt) will be close to I. More formally, given any 
E > 0, there is a ~(E) > 0 such that for 0 ~ t < ~(E), Ipi,i(t) - ~i.;1 < E, 
i, j = 1, ... , n, where n is the number of states of the chain. For 
sufficiently small E > 0, log A is well defined for matrices A within 
the E neighborhood of I, laid - ~i.iI < c, i, j = 1, ... , n, by 

., 
log A = log (I - (I - A)) = - ~ (I - A)k/k. (32) 

k=l 

As expected exp {log A} = A. Further, for commuting matrices A, B 
such that A, B, AB are in the c neighborhood of 1 spoken of above 

log AB = log A + log B. (33) 

The Chapman-Kolmogorov equation indicates that the matrices pet) 
commute with each other. Thus, for sufficiently small t, 

log pet + T) = log P(t)P(T) = log pet) + log peT). (34) 

But equation (34) will hold for continuous pet) and t sufficiently small 
if and only if 

log pet) = Bt (35) 

where B is an n X n matrix. Thus pet) = exp (Bt) for t sufficiently 
small. The Chapman-Kolmogorov equation implies that pet) ::::: 
[p(t/n)]n for all positive integral n so that 

pet) = exp (Bt) (36) 

for all t ~ O. Notice that B = P'(O), the derivative of pet) at t = O. 
Since PCt) is a transition probability matrix with P(O) = I, it follows 
that 

b.· i = P~ .(0) = lim Pi.i(t) - 1 < 0 
. t.' 1->0+ t -

b· . - P' (0) - l' Pi,i(t) > 0 . -.t: • '3 - .. - 1m -- J .,... Z 
, '" 1-+0+ t -, , 

(37) 

2: bi,; = 2: pL(O) = ~ 2: Ai(t) It=o = i (1) = o. 
; j j 
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It is interesting that the assumption that P(t) is a transition probability 
matrix of finite order n, continuous with lim pet) = I, is enough to 

/->0+ 

imply that conditions (i), (ii) cited at the beginning of section bare 
satisfied in the form (37). The argument used in this section to con­
struct transition probability functions in the case of a general state 
space shows that any matrix B of order n with 

bi,i ~ 0 

hi :2: 0, j r6 i, 

~ bi,; = 0 
i 

(38) 

can be used to construct a transition probability matrix pet) = exp (Bt). 
Thus, the general form of a continuous transition probability matrix 
with pet) ~ I as t ~ 0 has been given in the case of a finite state space. 
The backward and forward equations assume a particularly simple 
form. The backward equation is simply 

or 

dP(t) = BP(t) 
dt 

dPi,j(t) \' b ().. 1 
~ = L..t i,kPk,j t , I,} = ,..., n, 

k 

while the forward equation is given by 

or 

dP(t) = P(t)B 
dt 

dpi,f(t) \' ( )b .. 1 ----rJt = L..t pi,k t k,i, I,) = ,..., n. 
k 

(39) 

(40) 

(41) 

(42) 

As already remarked, the situation in the case of a denumerable state 
space is much more complicated. In fact, many questions are as yet 
unresolved. An extensive discussion of the current state of knowledge 
on Markov chains with stationary transition mechanism and an infinite 
number of states is given in Chung'S monograph [8]. 

There are a number of types of Markov chains that have been 
investigated in some detail. We briefly discuss one such type, the 
"birth and death" processes. These processes are often taken as models 
of population deVelopment through time, as might be inferred from 
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their name. Let us think of j, j ~ 0, as the population size. The state 
j = 0 corresponds to the death of the population, that is, no individuals 
at all in the population. In a small time, if there is any change in 
population size at all, it is either through one birth or one death. Thus 

with 

p~,;CO) = bo,; = 0 
p:)O) = bi,i = 0 if j ~ i, i - 1, i + 1 

~ bi ,; = O. 
j 

(43) 

(44) 

An extensive discussion of the birth and death processes has been 
carried out in a series of papers of Karlin and MacGregor [39]. Their 
work is based on the observation that structural questions concerning 
these processes are closely related to classical moment problems. 

c. Diffusion Processes 

We have already noted that the jump processes are roughly char­
acterized by the fact that in a short time the system will with large prob­
ability not change state, but that if it does move it will by an appreci­
able amount. Of course, this was not completely apparent in the previous 
section since a topology (the concept of neighborhood or a notion 
of closeness) was not introduced in the discussion because strictly 
speaking it was not required. The diffusion processes are at the other 
extreme. A topology is necessary here explicitly or implicitly. In a 
rough and inexact way the diffusion processes are characterized by 
the property that in a short time one is sure that the system will move, 
but only by a small amount. The Wiener process that was introduced 
in section d of Chapter IV is the simplest and the basic example of a 
diffusion process. 

We shall give a limited discussion of diffusion processes on the real 
line. Let F(T,~;t,X) be the conditional distribution function 

F(T,~;t,X) = P[X(t) ~ xlXH = ~], T < t. (1 ) 

Since the process X(t) is assumed to be Markovian, the conditional 
distribution function F(T,~;t,X) satisfies the Chapman-Kolmogorov 
equation 

F(T,~;t,X) = f-"' .. F(u,y;t,x)duF(T,tu,y), T < u < t. (2) 
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The function F(T,~;t,X) determines the full probability structure of the 
process XCt) since the process is Markovian. 

We shall call the process X(t) a diffusion process if it satisfies the 
following conditions 

I· 1 J 1m -
.1t ..... O Ilt 

duF(t - Ilt, x; t,y) = 0 (3) 

lv-xl ;::a 

I· 1 J 1m -, 
.1t-->O Ilt 

(y - x)2duF(t - Ilt, x; t,y) = a(t,x) ~ 0 (4) 

Iv-xl<a 

I· 1 J 1m -
.1t-->O Ilt 

(y - x)duF(t - Ilt, x; t,y) = b(t,x) (5) 

Iy-xl<a 

for any fixed positive ~. The first limit condition (3) states that the 
probability of drifting away from an initial position x by an amount 
greater than 0 in time Ilt is of smaller order than Ilt for Ilt small. Thus, 
in a small time interval the particle in diffusion (if we regard X(t) as 
the position of the diffusing particle at time t) is almost sure to remain 
in the immediate neighborhood of its initial position. The relations 
(4) and (5) are conditions on the truncated variance and mean dis­
placement of the particle in a small time Ilt. Notice that the Wiener 
process satisfies these conditions with a(t,x) == 1 and b(t,x) = o. This 
suggests that a diffusion process X(t) satisfying conditions (3), (4), 
and (5) could be regarded as acting locally in time like a Wiener 
process yet) in that the change in position IlX(t) = X(t + Ilt) - X(t) 
is given to the first order by 

b(t,X(t» Ilt + [a(t,X(t)"P'IlY(t) (6) 

where IlY(t) = yet + Ilt) - Yet). This idea appears to be due to 
S. Bernstein [4] and was used very effectively by K. Ito [36]. This 
approach involves direct analysis of the ,stochastic process. Our inter­
est is basically analytic and it will therefore concern itself with the 
analytic properties of the conditional distribution function F(T,~;t,X). 

Assume that the partial derivatives 

i1F(T,~;t,X) i12F(T,~;t,X) 
i1~ , i1~2 

(7) 
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exist. Using a Taylor expansion with error term, we find that 

F(T - AT, ~; t, x) - F(T,~;t,X) 
AT 

! f {F(T,y;t,X) - F(T,~;t,x)}duF(T - AT, ~;T,y) 
LJ.T 

JY-~I>a 

+ aF(T,~;t,X) ~ 
a~ AT 

f (y - ~)duF(T - AT, ~; T,y) 
J1J-~1<6 

1S5 

(8) 

+ a2F~~~;t,x) 1T f {(y ~ ~)2 + o(y - ~)2} duF(T - AT,~;T,y). 
11J-~J<a 

On letting AT ~ 0 and making use of conditions (3), (4) and (5), one 
finds that a left-hand derivative 

(9) 

exists and satisfies the partial differential equation 

(10) 

This differential equation is a parabolic differential equation (see [74]) 
in the backward variables T, ~. This suggests that one ought to look for 
solutions of equation (10) that have the properties of a conditional 
distribution function and satisfy the Chapman-Kolmogorov equation. 
W. Feller has in fact done this under a variety of boundedness and 
regularity conditions on the coefficients a(T,~), b(T,~) of the equation 
(10). Notice that if a(T,~) is bounded away from zero and infinity and 
infinity and differentiable in ~, the equation (10) can be reduced to 
an equation of the form 

(11) 

by the transformation 

foE dy 
1/-

- 0 Va (T,y) 
(12) 
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(see Problem 8 of this chapter). This implies that one might just as well 
consider the simpler equation 

If F has a sufficiently smooth density function f 

F(T,~;t,X) = I~ .. f(T,~;t,y) dy, 

(13) 

(14) 

the density function f(T,~;t,X) will satisfy the same differential equation 

(15) 

We shall briefly indicate how one might construct a solution f of (15) 
assuming that b(T,~) is sufficiently smooth. The argument is a heuristic 
version of that used by Feller in his paper [15]. 

First notice that if b(T,~) were identically zero, the transition prob­
ability density of the Wiener process 

U(T,~;t,X) = [271'(t - T)]-~~ exp 1-H(x - ~)2/(t - T)} (16) 

would satisfy the differential equation (15) and would have the desired 
properties. Let 

G(T,~) = t T dt 1-.... g(t,X)U(T,~;t,X) dx. (17) 

If g(t,x) satisfies a Holder condition of the form 

Ig(t,x) - g(t',x') I < KIlt - t'la + Ix - x'la}, a > ° (18) 

in a neighborhood of every point (t,x), one can show that the partial 

derivatives ~~, :~, :~~ of G exist and that G satisfies the partial 

differential equation 

(19) 

(see Problem 9 of this chapter). Consider now using the following 
iterative procedure. Let 

fO(T,~;t,X) = U(T,~;t,X) 

fn+l(T,~;t,X) = (t dp / .. b(p,q) afn(~q;t,x) fO(T,~;P,q) dq (20) 
JT -.. q 

n = 0, 1, .... 
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With sufficiently strong regularity conditions on the function b(T,~) one 
should be able to show that all the functions fn are well defined and 
smooth and that 

ilfn+l + ! il 2fn+l = -be 1:) illn. 
ilT 2 oe T,t,; il~ (21) 

If the series 't,f" and the appropriate series in derivatives of In converge 
rapidly enough 

'" 
f = ~ fn (22) 

n=O 

will be a solution of the differential equation (15). Of course, this solu­
tion is one obtained by a successive approximation. Feller [15] has 
also shown that the function f(T,~;t,X) constructed above also satisfies 
the partial differential equation 

ill 1 iJ 21 () - = - - - - (b(t x)f) 
ilt 2 iJx2 ilx ' 

(commonly called the forward equation) in the forward variables t, x 
under the boundedness and regularity conditions on a(t,x), b(t,x) 
referred to. If a(t,x) ¢ 1 the partial differential equation 

of 1 il2 il 
ilt = 2 ilx2 (a(t,x)f) - ilx (b(t,x)f) 

would be satisfied in the forward variables. This differential equation 
is sometimes referred to as a Fokker-Planck equation [18]. 

d. A Refined Model of Brownian Motion 

We have already remarked that the Gaussian process X(t) , 
o ~ t < 00, with X(O) = 0, mean EX(t) = ° and covariance func­
tion EX(t)X(T) = min (t,T) has been used to represent the position of 
a particle in Brownian motion at time t. Here, the diffusion constant 
has been set equal to unity for convenience. The process is Markovian 
and its transition probability density 

il pet - T,Y - x) = oy P[X(t) ~ yjX(T) = x] 

= [211"(t - 7)]-% exp {- (y - x)2/2(t - 7)} (1) 
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satisfies the forward differential equation 

(2) 

in y, t and the backward differential equation 

(3) 

in x, T. However, this model is unpleasant in that it leads to nondiffer­
entiable sample functions, that is, the particle in Brownian motion 
has no well-defined velocity. This is suggested by the fact that the 
difference quotient 

X(t + h) - X(t) 
h 

(4) 

does not converge in mean square as h ~ O. In fact, it is readily 
verified that the second moment of the difference quotient (4) diverges 
as h~O. 

Ornstein and Uhlenbeck [58] constructed a model of Brownian 
motion in which the particle in diffusion has a well-defined velocity. 
We first introduce the random process Vet) describing the velocity of 
the particle. Vet) is given in terms of the process X(t) as follows 

Vet) = Va exp (-(jt)X(e2(j1), - 00 < t < 00. (5) 

It is clear that Vet) is a Gaussian process since it is derived from the 
Gaussian process X(t) by (5). The first and second moment properties 
of Vet) are therefore enough to characterize the full probability struc­
ture of the process. The first moment is identically zero since 

EV(t) = Va exp (-(jt)EX(e2(j1) == 0 (6) 

and the covariance function is given by 

EV(t)V(T) = a exp (-(j(t + T»EX(e2(jI)X(e2(j7') 
= a exp (-(j(t + r» exp (2(j min (t,T» (7) 
= a exp (-(jlt - rl). 

Thus Vet) is a strictly stationary process. In fact, Vet) is just X(t) 
appropriately modified so as to make it stationary. This has been 
accomplished by a change of scale in time so as to take zero into - 00 and 
a renormalization by exp (-(jt). Further Vet) is Markovian since it is 
obtained from X(t) by an instantaneous one-one transformation and 
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X(t) is Markovian. The process U(t) is usually called the Ornstein­
Uhlenbeck process. Notice that the Ornstein-Uhlenbeck process satisfies 
the formal equation 

dUet) + ~U(t) dt = va exp (-~t) dX(e2{11) ~ ~ dX(t). (8) 

Here V20l~ dX(t) can be regarded as a random impulse where 20l~ is a 
measure of the mean square displacement of the impulse and ~ is a 
friction coefficient. We shall set Ol = 1 for convenience. The transition 
probability density of U(t) can be written down readily using the 
properties of X(t). Since the increments of X(t) over nonoverlapping 
intervals are independent, it follows from (5) that 

U(t) - exp (-(3(t - r»U(r), t > r, (9) 

is independent of U(r). Therefore the conditional expected value 

E[U(t)IU(r)] = E[U(t) - exp (-~(t - r»U(r)IU(r)] 
+ exp (-(3(t - r»U(r) 

= exp (-~(t - r»U(r) (10) 
and by formula (7) 

E[{ U(t) - exp (-(3(t - r»U(r) PIU(r)] 
= E[U(t) - exp (-~(t - r»U(r»)2 
= 1 - exp (-2~(t - r», t > r. (11) 

The conditional distribution function of UCt) given U(r) is Gaussian 
since the process U(t) is Gaussian. The conditional mean and variance 
of U(t) given UCr) are (10) and (11) respectively. It then follows that 
the transition probability density 

a 
p(r,xit,y) = ay P[U(t) ::; yIU(r) = x] 

= (21J')-~i[1 - exp (-2~(t - r))]-~ (12) 
exp {-[y - exp (-~(t - r»xF/2[1 - exp (-2~(t - r»]). 

Further, notice that 

E[U(t + h) - U(t)IU(t)] = exp (-~h)U(t) - U(t) 
= -~hU(t) + o(h) (13) 

and 

E[{ U(t + h) - U(t) PI U(t)] 
= E[{U(t + h) - exp (-~h)U(t) + U(t)(exp (-~h) - l»)2IU(t)] 
= 1 - exp (-2~h) + U(t)2(exp (-~h) - 1)2 
= 2~h + o(h). (14) 
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This indicates that the transition probability density satisfies the for­
ward equation 

ap a2p a 
at = {3 ay2 + {3 ay (yp) (15) 

in y, t and the backward equation 

_ ap = {3 iJ2p _ (3x iJp 
iJT iJx2 iJx 

(16) 

in x, T. Of course, this could be verified directly. 
If the velocity of the particle is to be described by U(t), the position 

of the particle must be given by 

B(t) = Jot U(a) da (17) 

assuming that the particle starts at zero at time t = O. The process 
B(t) is Gaussian since it is derived from a Gaussian process by a linear 
operation. The mean 

EB(t) = Jot EU(a) da == 0 (18) 

and the covariance 

EB(t)B(T) = lot loT EU(a)U(b) da db 

= Jot JOT exp (-{3la - bi) da db 

max(t,T) min(t,T) 

J J 
min (t,T) 0 

exp (-{3(a - b» db da 

min(t,T) a 

+ 2 J J exp (-{3(a - b» dbda 
o 0 

= ~ min (t,T) + ~ [exp (-{3 min (t,T» 

+ exp (-{3 max (t,T» - exp (-{3lt - T\) - 1]. 

(19) 

Clearly if we set (3 = 2, for large t, T and It - TI the process B(t) looks 
very much like the process X(t). However, the process B(t) is not 
Markovian. If B(t) is considered jointly with U(t), a two-dimensional Markov 
process is obtained. Let us see what the equation satisfied by the transition 
probability density looks like. By (13) and (14) 

E[U(t + h) - U(t)IU(t), B(t)] = -(3hU(t) + o(h) (20) 
and 

E[{ U(t + h) - U(t) PI U(t) , B(t)] = 2{3h + o(h). (21) 
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Further 
t+h 

E[B(t + h) - B(t)IU(t), B(t)] = E [f U(a) daIU(t)] (22) 
t 

t+h 

= E[ f fUCa) - exp (-{3(a - t»U(t)} daIU(t)] 
t 

t+h 

+ f exp (-{3(a - t» da Vet) 
t 

= hU(t) + o(h) 
while 

E[{B(t + h) - B(t) PI U(t), B(t)] 
t+h 

= E [{ f U(a) dar IU(t)] = O(h2). (23) 
t 

Notice that (21) and (23) imply that 

E[{B(t + h) - B(t)}{U(t + h) - V(t)}IU(t), B(t)] = o(h). (24) 

The transition probability density 

a a 
P(T,U,v;t,x,y) = ax ay P[B(t) ::; y, U(t) ::; xIB(T) = U, U(T) = v] (25) 

of the Markov process (B(t),U(t» should therefore satisfy the forward 
equation 

~ a~ a a - = {3- + (3- (xp) - - (xp) at ax2 ax ay (26) 

in x, y, t and the corresponding backward equation in v, u, T. This is a 
two-dimensional diffusion equation that is singular since the second­
order partial derivatives in y do not appear. 

e. Pathological Jump Processes 

In section b of this chapter, it was established that the transition 
probability function of a jump process satisfied both the backward 
and forward equations (b.3) and (b.4) under certain uniformity con­
ditions. We shall construct simple examples of stationary denumerable 
state Markov chains with transition mechanism that do not satisfy the 
forward or backward equations. This "pathological" behavior is due 
to the fact that the boundedness of p(t,x) assumed in condition (i) of 
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section b is not satisfied. The first process constructed will behave very 
much like a pure birth process locally in time. 

Let 
bi,i = -bi 

bi,i+! = bi > 0 
bi ,; = 0 if j ~ i, i + 1 

(1) 

where i,j = 0, 1, 2, .... Here, of course, we are labeling the states 
of the process as 0, 1, 2, .. , . The forward equations then are 

P:';(t) = b;-lPi,;-l(t) - b;Pi,;(t) if j ~ 1 
p;,o(t) = -boPi,o(t), if j = O. 

Call the solution of this set of equations satisfying the condition 

(2) 

(3) 

p~~l(t). It will be convenient to make use of the Laplace transform in 
the following discussion (see [1]). Let 

p~~}(s) = fo co e-'lp~~l(t) dt. 

The differential equations (2) become the following simple 
linear equations in terms of the Laplace transforms p~~}(s) 

since 

sp~?}(s) - lii,; = b;-lP~IJ_l(S) - b;p~?}(s) if j ~ 1 
sp~?6Cs) - lii,O = -bop~?6(S) 

A small computation leads to the solution 

o if j<i 
p(O)() _ {i-1 j 
',; s - n bk / n (s + bk ) if j 2 i. 

k-i k-i 

The discussion of section b indicates that p~?}(t) ~ 0 

o ~ ]; P~IJ(t) = 1 - Mt) ~ 1 
j 

(4) 

set of 

(5) 

(6) 

(7) 

(8) 

and that ho(t) is nondecreasing. In fact, one can show that h;{t) == 0 if 
and only if 

]; 1jb .. = co (9) 
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and that otherwise h.{t) is strictly increasing (see Problem 10). Of 
course, ~ lib,. < 00 means that the bn's diverge rapidly as n ~ 00. The 
specification (1) means that a system in state i in a short time will with 
large probability either remain in i or else will move one step to the 
right. The system cannot move to the left. The path of the system 
through time can therefore be regarded as a continual drift to the right 
through states of increasing magnitude. h;.(t) can be thought of as the 
probability that the system starting at i has passed through all the 
states in the finite time t. Further, we can provide a "sink" or absorbing 
state at infinity where the system is lodged after it has passed through 
all states. Thus hi(t) is the probability that the system has passed into 
the adjoined state at infinity from state i in time t. However, instead of 
adjoining an absorbing state at infinity, we can immediately return the 
system after it has drifted out of the finite states to the state i with 
probability ai ~ 0, ~ai = 1, and start it out again with the same 
transition mechanism as before. The probability P~?}{t) can then be 
interpreted as the probability of going from i to j in time t without 
ever passing out of the set of finite states. The probability 

P~~](t) = Jot I akPk~}(t - T) dh.{T) (10) 
k 

is the probability of going from i to j in time t while having passed out 
of the set of finite states exactly once. Similarly 

ptj+l)(t) = Jot I akPl"'!](t - T) dhi(T) 
k 

(11) 

is the probability of going from i to j in time t while having passed out 
of the set of finite states exactly m + 1 times. Let 

.. 
pdt) = ~ P}-:-/(t). 

m=O 

By using Laplace transform techniques we shall show that 

~ P •. i{t) == 1. 
i 

(12) 

(13) 

Let 'h.{s) and py:;'{S) be the Laplace transforms of h;(t) and P~':P{t) 
respectively. Now (II) implies that 

(14) 
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so that 

The transform Pij(S) of Pij(t) is therefore given by 

Since 

(17) 

it follows that 

the Laplace transform of one. Thus (13) is verified. 
The backward equations are 

(19) 
or 

S];· ·(s) - 0" = b'P-'+l ·(s) - b·p-· ·(s) ,],1,) 1,1 1. 1. .;) ,,1..,. (20) 

The probabilities P}~}(t) satisfy the forward equations since they were 
derived as solutions of those equations. They also satisfy the backward 
equations as is seen by simple inspection. Further, the Chapman­
Kolmogorov equations follow also since 

- !!:.... ];(01(s) = ~ p-(O)(s)p-CO).(s). ds 1',.1 i..( ,.k k.1 

k 

However, ~ M~](t) < 1 for t > 0 when ~ l/bn < 00. , 

(21) 

The probabilities Pi.j(t) yield a true transition matrix since 
~ p;,;(t) == 1. They satisfy the Chapman-Kolmogorov equation (see 
j 

Problem VI.12). Moreover they behave locally like the probabilities 
P;.~)(t) since the derivatives 

{
-bi if j = i 

P~.j(O) = hi if j = i + 1 
o otherwise. 

(22) 
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This follows from the fact that lim [s2pds) - S~i';] = pL(O). Simple 
8-+'" 

substitution in (20) indicates that the probabilities satisfy the back­
ward equations. However, they do not satisfy the forward equations. 
Instead forward inequalities 

p~)t) > bj-1Pi.i-l(t) - bjpdt), j ~ 1 
P~.o(t) > - bOPi,O(t) 

(23) 

are obtained for t > 0, Limiting stationary probabilities Pi = lim Pi,j(t) 
t-+'" 

can be evaluated 

Pi = ~~ SPi,i(S) = i I ak / (I ak I L). (24) 
k~j k m~k 

Let us take these limiting probabilities as the initial distribution so 
that we have a stationary Markov chain. If time is reversed a new 
stationary Markov chain with the same stationary initial distribution 
Pi and transition probabilities 

qi,i(t) = PiP;,;(t)/Pi (25) 

is obtained. The backward and forward equations of the new chain 
are the forward and backward equations respectively of the original 
chain. Thus, the transition probabilities qi,j(t) of the new chain now 
satisfy the forward equations but only backward inequalities are 
satisfied. 

By combining the chains with transition probabilities Pi,j(t) and 
qi.i(t) respectively in the proper manner a chain whose transition prob­
abilities satisfy neither backward nor forward equations can be con­
structed. Let us consider a chain with doubly indexed states (i,i'), 
i, i' = 0, 1, 2, . . . . Let the stationary probability of being in the 
state (i,i') be given by 

P[X(t) = (i,i')] = PiPi', (26) 

Further set the transition probability equal to 

P[X(t) = (j,j')IX(r) = (i,i')] 
= Pi.i(t - r)qi'At - r), r < t. (27) 

The transition probabilities of this chain satisfy neither the backward 
nor forward equations. 
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f. Problems 

1. Let M!, M 2, • • • be independent and identically distributed 
n 

random matrices. Set Tn = n Mi' Show that the sequence of 
j=l 

random matrices Tn can be considered a Markov process. Examine 
Ef n in terms of the distribution of the random matrices M k • 

Consider also ET~. 

2. Suppose the Mk in the previous example are random transition 
probability matrices. Can you give more detai,led information 
about the limit behavior of Tn as n --t oc? 

3. Consider a strictly stationary process Xn n = 0, ± 1, ± 2, ... 
where the random variables Xn take only the two possible values 
0, 1. Let Yn n = 0, ± 1, ... be the stationary process obtained 
by setting Yn equal to the binary expansion Yn = . XnXn_1 •••• 

Show that Yn is Markovian and determine the transition mecha­
nism of this Markov process. 

4. Consider the following idealization of a telephone trunking prob­
lem. Suppose infinitely many trunks or channels are available and 
that the probability of a telephone conversation ending in the 
interval (t, t + h) is Jl-h to the first order. Further assume the prob­
ability of a new call coming in during the interval (t, t + h) is XIz 
to the first order. The system is in state n if n lines are busy. Show 
that the generating function P(s,t) = ~ Po ... (t)sn satisfies 

" 
iJP/at = (1 - s) {-Xp + IJ. ~:}. 

Solve for P(s,t) and find the limit behavior of pO,n(t) as t --t co. 

5. Let X(t) be the Wiener process. Consider the derived process 
yet) = X(t) if max X(T) < a and a otherwise where a > O. Is 

O~T~t 

yet) Markovian? Find the probability structure of the process Yet). 
Can you physically interpret what has been done to the process 
X(t) to obtain the process yet)? Show that the transition probability 
density of the Y process satisfies the heat equation away from a? 

6. Let X(t) be the Wiener process as in the previous example. Let 

{X(t) 
yet) = 2a - X(t) 

if X(t) :::; a 
if X(t) ~ a. 
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Answer the questions posed in the previous problem with respect 
to this process. 

7. Let X(t) be the Wiener process. Let yet) = X(t) - [X(t)] where 
[x] is the greatest integer less than x. Answer the questions posed 
in the previous problem with respect to the process Yet). 

8. Under the assumption that a(T,~) is bounded away from zero and 
infinity and differentiable in ~, show that the differential equation 
aF 1 a2F aF . 
aT +"2 a(T,~) a~2 + b(T,~) a~ = 0 can be reduced to an equatIon 

aG 1 a2G aG . 
of the form aT + "2 a7J2 + C(7,7J) a7J = 0 by the change of variable 

71 = lo~ dy/Va(7,y). 

9. Show that if g(t,x) satisfies a Holder condition of the type (c.1S) and 

G(T,~) = ItT dt 1-.... g(t,X)U(T,~;t,X) dx 

h aG aG a2G. d G . fi h d'fii . I . t at iJT' af ae eXist an sahs es tel erentla equation 

aG 1 a2G 
aT + "2 a~2 = -g(T,~). 

Hint: See the paper of E. E. Levi [49]. 

10. Show that in the case of a pure birth process ~ p~~(t) == 1 if and 
J 

only if ~ l/b .. = co. 

11. Show that the P!~(t) of section e satisfy the backward equations. 

12. Show that the Pi.;(t) of section e satisfy the Chapman-Kolmogorov 
equation. 

Notes 

1. Generalizations of the Markovian concept for processes with multidimensional 
time were initially discussed by P. Levy (see [51]). More recently there has been 
renewed interest on these questions and some rather interesting results (see the papers 
of Dobrushin [A3] and L. Pitt [A12]). 

2. The discussion of Markov processes given in this chapter is basically classical 
and analytic in character. This was thought to be a most effective presentation in an 
introductory book. Of course, this means that much of the recent work on Markov 
processes, particularly that concerned with analysis of regularity properties of 
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sample functions of the process as well as that utilizing semigroup techniques to 
obtain properties of the process, is not discussed. We make a few brief remarks to 
indicate how a semigroup arises naturally when dealing with a stationary transition 
mechanism. It is obvious that one is dealing with a semigroup of matrices in the 
case of a Markov chain. Nonetheless, it is worthwhile making a few remarks in the 
case of a general state space. Let P(I,x,A) be a stationary transition probability 
function 

PCI,x,A) = P[X(I + T)EA!X(T) = x], t ~ 0, 

satisfying the analogues of conditions (i)-CHi) of section a for a stationary transition 
mechanism. We can alternatively construct a semigroup of operators acting on 
probability measures or functions in terms of P(t,x,A). First consider a probability 
measure p. on (Tx. The transition probability function takes p. into a probability 
measure v 

v(A) = r p.(dx)P(I,x,A) = (TCt)p.)(A). Jox 
The family of operators TW, t ~ 0, is a semigroup 

TCtlTCr) = TClfT), I, T ~ 0, 
since 

r P(I,x,dy)PCT,y,A) = PCt + T, X, A). Jox 
One can also construct a family of operators S(l), t ~ 0, taking bounded functions 
f into bounded functions g 

g(x) = r f(y)P(I,x,dy) = (S(t)/) (x). Jox 
Notice that SU) is a positive operator since it takes non-negative functions into non­
negative functions. The family of operators sm, t ~ 0, is a semigroup 

SCt)SCr) = SCI+r), I, T ~ 0, 
because of (a.1). 

3. Kolmogorov's paper on analytic methods in dealing with jump and continuous 
Markov processes [43] is an early basic paper. It is well worth reading since many 
ofthe approaches later elaborated and refined are presented there. Under appropriate 
conditions one can show that there is a representation of diffusion processes with con­
tinuous sample functions (see Doob [12]). Even when dealing with jump processes one 
often wants a representation with right continuous sample furictions. The example 
mentioned in the last paragraph of section e shows that this may not be possible to 
achieve. 



VII 
WEAKLY STATIONARY PROCESSES 

AND RANDOM HARMONIC ANALYSIS 

a. Definition 

In Chapter V stationary processes (sometimes called strictly sta­
tionaryprocesses) were motivated and discussed as models of natural 
phenomena. We will now consider a related class of processes commonly 
termed weakly stationary processes. Though the name would appear to 
imply a larger class than that of the stationary processes, this is not 
quite the case. These processes are characterized essentially by their 
second moment properties. Let Xt(w), - 00 < t < 00, be a continuous 
time parameter complex-valued process with finite second moments 
E/Xt(W)/2 < 00. For convenience we shall take its mean EX,(w) == O. 
Xt(w) is called a weakly stationary process if its covariance function 

EXt(w)XT(w) = r(t,r) = ret - r) (1) 

depends only on the time difference t - r and is continuous. Notice 
that the continuity of ret) implies that Xt(w) is continuous in the mean, 
that is, 

E/X,(w) - XT(w)12 = 2r(0) - ret - r) - r(r - t) ~ 0 (2) 

as t - r - O. It is clear that a stationary process with finite second 
moments must be weakly stationary while the converse is not true. 
On the other hand, if a stationary process has infinite second moments 
it is meaningless to speak of weak stationarity. 

The covariance function ret) is positive definite (see section b, 
Chapter IV) since for any given finite number of points tl, •.. , tk 

and complex numbers Cl, ••• , Ck 

k k 
~ CiCjr(ti - ti) = EI ~ CiX'l(W) 12 ;::: O. (3) 

i,i==l ic::ll 

Now Bochner's theorem (see section b of Chapter VI) implies that 
149 
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ret) is, except for a constant factor, a characteristic function. Therefore 
ret) has a Fourier-Stieltjes representation 

ret) = f _"'", eit). dF(A) (4) 

where F(A) is a nondecreasing function with F( + 00) - F( - 00) = lim 
r.-.", 

[F(L) - F( -L)] = reO) finite (not necessarily one). For convenience 
F(A) is assumed to be continuous to the right. The function F(A) 
is called the spectral distribution function of the process Xt(w). Here 
dF(A) is the weight to be attributed to eit). in the frequency resolution 
of ret). We refer to (4) as a frequency resolution because the covariances 
ret) have been partitioned into components eit). dF(A) corresponding 
to the frequencies A. Notice that in the case of a real-valued process 
X, ret) = r( -t) so that the spectral mass is symmetrically located about 
zero, that is, dF(X) = dF( -A). If F is absolutely continuous with 
respect to Lebesgue measure, its derivative f(A) = F' (A) is called the 
spectral density function of the process. 

Suppose the continuous parameter process XI is observed only at 
the discrete time points t = kll, k = 0, ± 1, . . . . The covariance 
function of the corresponding discrete parameter process XkA is r(kl1) = 
EX(i+k)AXjA (also called weakly stationary because the covariance 
function depends only on time differences). Notice that r(kll), k = 0, 
± 1, ... is a positive definite sequence. Now 

where 

'" ;), 

= I f eikA)' dF(A) 
j= -00 (2j-1),.. 

-;),-

'" 
= f~!. eikA)' dC(A) 

;), 

(5) 

The range of the frequency resolution of the sequence r(kll) is [ - X' X} 
a finite range. The spectral distribution function C(A) of the discrete 
parameter process XkA is obtained from the spectral distribution func-
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tion F{X) of the continuous parameter process by a folding operation 
(see (5», an effect called "aliasing." A point X is called a point of 
increaseofFifforallAt,A2withX1 < X < X20nehasF(X2) - F(X 1) > 0. 
Notice that aliasing means that the spectrum of the continuous param­
eter process XI cannot be completely determined from that of the 
process discretely sampled XkA unless the spectrum of XI is "band 
limited," that is, the points of increase of F are limited to a finite 
interval. Nonetheless, one can, of course, obtain considerable informa­
tion about the spectrum through discrete sampling. The spectral 
density g{X) of X"A is given in terms of I{X) by 

00 

g(X) = .2: I(X + 2:} IXI < i· (6) 
j_ -GO 

As is implied by (5), a formula paralleling (4) holds for discrete param­
eter weakly stationary processes. Let X", k = 0, ± 1, , EX" == 0, 
be a discrete parameter stationary process so that 

(7) 

The covariance sequence rIo is positive definite and hence by an ante­
cedent of Bochner's theorem due to Herglotz (see [53]) T/, has the 
representation 

rio = J ~1r e"k>' dF(A) (8) 

with F a nondecreasing bounded function. The function F as before 
is called the spectral distribution function of X". 

A simple example of a discrete time parameter stationary process 
is given by 

11. 

Xt = ~ c"ei(l>'k+'Pk) , t=0,±1, ... , (9) 
"-1 

where the c" are real constants, the Ak real numbers in [ -'11',11'] and the 
f{Jk independent random variables uniformly distributed on [-'11','11']. 
This example arises in the theory of noise (see [26]), where the noise 
current at time t is considered a superposition of alternating current 
components of frequency Xk/2'11' cycles per second with amplitudes c" 
and random phases f{Jk. It is called the model of random phases. The 
mean value of the process is zero 

(10) 
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and the covariance function 

(11) 

because of the independence of the C(Jk. The spectral distribution func­
tion F is the nondecreasing step function 

F('}..) = ~ c%. (12) 
)o.k :::;)0. 

The second model is a representative example of some that enter 
in econometric discussions [48]. Let Xl, Yt be the price and supply 
respectively of a specific commodity at time t = 0, ± 1, . . . . The 
price X, and the supply Yt are linked by the difference equations 

Xt = ex - /3Yt + Tft' 

Yt = 'Y + OXI _ 1 + Tft" 
(13) 

where ex, /3, 'Y. 0 are real constants and Tft', Tft" are random variables 
representing the random disturbances that this aspect of the economic 
system are exposed to. On solving for Xt we obtain 

Xt = ex - /3'Y - /3 oXt_1 + 71/ - /31/t". (14) 

This is a stochastic difference equation of order 1. Difference equations 
of this type will be discussed in some detail in section c. 

It is clear from the representations (4) and (8) that the second­
order properties of weakly stationary processes can be examined using 
either their covariances or spectra since they are equivalent. In certain 
communication problems in engineering, the message transmitted is 
represented by a continuous time parameter weakly stationary process 
Xt. Suppose the message is passed through a linear filter 5=. Then the 
output of the filter is given by 

Yt = 5=Xt = J~", get - T)X(T) dT 

= J~", get - T)X(T) dT. 
(15) 

It is physically plausible to assume get) = 0 for t < 0 and we have done 
this. The function get) is called the transient response function because 



Random Harmonic Analysis 153 

get) dt is the output at time t due to a small pulse of height one and 
length dt at t = o. To make (15) meaningful we assume g to be in­
tegrable. Consider the covariance function of the output 

cov (Yt,YT ) = ffg(t - o:)g(r - m cov (Xa,Xp) do: d{3 

= ffg(t - o:)g(r - (3)r(o: - (3) do: d{3 (16) 

= fr(u)fg(r - t + u - o:)g( -o:} do: du. 

Notice that the covariance function of the output is obtained from the 
covariance function of the input by an operation that is computa­
tionally often quite messy, the convolution operation. The correspond­
ing transformation in the spectral domain is much simpler since as we 
shall see it is simply a multiplication. Using the representation of the 
covariance function in terms of the spectral distribution function 

where 

cov (Yt,Y,) = ffg(t - o:)g(r - (3)fei(a-Pl>. dF(X) do: d{3 

= fei(Hl>'I'Y(X)12 dF(X) 

'Y(X) = f e-it>'g(t) dt. 

(17) 

(18) 

Thus the spectral distribution function G(X) of the output is related 
to that of the input by the simple relation 

dG(X) = I'Y(X) 12 dF(X). (19) 

The function 'Y(X) is called the frequency response function because 
its absolute value measures the amplification at frequency X due to the 
filter. The preference for speaking in spectral terms in the engineering 
literature is due in part to the simple transformation properties re­
ferred to above. 

h. Harmonic Representation of a Stationary Process 
and Random Integrals 

A stationary process X t has a random Fourier representation 
paralleling that of its covariance function (see (a.4) and (a.8)). A 
detailed derivation of this representation will be carried out in the 
case of a continuous time parameter process. It is readily seen that an 
analogous argument will yield the corresponding result if time is 
discrete. 

Let F(X) be the spectral distribution function of X,. Let X, Il, X < Il, 
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be continuity points of F. We introduce the random variable 

ZT(",X) = - X, e-i'IJ da dt 1 IT tl' 
211" -T A 

(1) 

Now if 0 < T ~ T 

_ 1 IT r'I' - e-itl, 
- -2 X, . dt. 

11" -T -zt 

EIZT(P,X)-Z .. (P,X)12 = ~2 E I ( X, il' e-ilIJ da dt 12 
"$I,I<T (2) 

= ~ flO dF(u) I J [I' e-il(IJ--U) da dt 12 
4?r -.. JA 

.. :5III<T 
making use of the Fourier representation of the covariance function. 
The function 

f fAI' e-iI(IJ-u) da dt (3) 
1":5III<T 

converges uniformly to zero as T, T -+ 00 if lu-,.,.I, IU-AI > e where 
e is any fixed positive number. For 

{T (I' cos tea _ u) da dt = fT sin t(" - u) - sin t(X - u) dt (4) 
J.. JA 1" t 

and 

I fT sin t(p. - u) dt I ~ I cos t(p. - u) \T I + I (T cos t(" - u) dt I 
.. t t(,.,.-u) .. J .. t2 (,.,.-u) 

( 1 1) 1 
:::;; 2 :;: + T I" - ul' 

Also a direct estimate using the oscillatory character of sin tIt shows 
that expression (3) is uniformly bounded in absolute value. 
Thus 

(5) 

as T, T -+ co and hence, by the Riesz-Fischer theorem (see section a of 
Chapter IV) ZT(",X) converges in mean square as T -+ co to a limiting 
random variable that we shall call Z(",X). We consider now the com­
putation of the covariance 

(6) 

where, for convenience, ", X, p.', X' are taken to be points of continuity 
of the spectral distribution function F(X) of the process X,. These 
covariances exist since 

EIZ(p,X)12 = lim EIZT(",X)12 
T-.,. 

(7) 
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is finite. Now 

E(Z(p.,A)Z(p.',A'» = lim E(ZT(p.,A)Zr(p.',A'» 
T ..... oo 
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= lim .4~2 f'" dF(u) (T 2 (,. cos tea - u) da dt 
T ..... '" 't'lf -00 }o I>. 

(T 2 (,., cos t'(a' - u) da' dt'. (8) 
}o })" 

Note that 

cos a - u ua t = t. loT 1" t( ) J d loT sin t(p. - u) - sin t(A - u) d 
o A 0 t 

(9) 

We now use the fact that 

1m -- t- -- t--I· loT sin ta d - 10 00 sin ta d _ 71' 

T ..... oo 0 tot 2 
(10) 

for a > 0 (see Courant's Integral and Dijferential Calculus, p. 450). Thus 

1
7l'ifA<u<p. 

• T,. Oifp.<uMu<A 
hm ( r cos t( a - u) da dt = 

T ..... ",}O }A 71' if ' 2 u=l\oru=p.. 
(11) 

In fact, the convergence is uniform if u is bounded away from A and p.. 
On interchanging limiting operations in (8) it is seen that 

E Z ' , J dF(u) = F(min (p.,p.'» - F(max (>',A'» {

min (,.,,.') 

( (p.,A)Z(p.,>.» = max (A,).') if min (p.,p.') > max (A,>,') (12) 
o otherwise. 

Thus, if (>.,p.) and (>.',p.') are disjoint intervals Z(p.,>') and Z(p.',A') are 
orthogonal, that is, they are uncorrelated. Notice that (12) implies that 

EIZ(p.,A)12 = F(p.) - F(>'). (13) 
Since 

EIZ(p.,A) - Z(p.,A') 12 = IF(>') - F(>.') 1-+ 0 (14) 

as >., A' -+ - co 
lim Z(p.,>.) = Z(p.) (15) 

A->-oo 

exists as a limit in mean square. Using the definition (15) it is readily 
seen that 

Z(p.,A) = Z(p.) - Z(A). (16) 
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Property (12) can be rewritten in terms of the process Z(p.) as 

E(Z(p.) - Z(X»(Z(p.') - Z(X'» = 0 (17) 

if (X,p.), (X',p.') are disjoint and 

EIZ(p.) - Z(X)i2 = F(p.) - F(X), (18) 

or even more intuitively in differential notation 

E dZ(X) dZ(p.) = OA.," dF(X) (19) 

where 0,...," is the Kronecker delta. Such processes Z(X) are typically 
called processes with orthogonal increments. We have in the discussion above 
limited ourselves to continuity points X of F(X) to avoid the additional 
fuss and notation required at discontinuity points. However, the process 
Z(X) is readily defined at discontinuity points X of F by setting 

Z(X) = lim Z(p.) (20) 
,"->}.+ 

where p. approaches X from above through continuity points of F. Of 
course, this can be done since the continuity points of F are dense 
everywhere. 

A random Stieltjes integral of the form 

Jg(X) dZ(X) (21) 

with g a fixed function and Z a process of orthogonal increments can 
be introduced in the following way. The integral is first defined for 
step functions, that is, functions g of the form 

(X) = {gk if ak-l < X :::; ak 
g 0 otherwise 

k = 1, ... , i 
(22) 

where - <Xl < ao < ... < ai < <Xl. For such a function g we define 
Jg(X) dZ(X) as 

Notice that 

n 

J g(X) dZ(X) = I gk[Z(ak) - Z(ak-l)]. 
k=l 

n 

(23) 

E I J g(X) dZ(X) 12 = IlgkI2[F(ak) - F(ak-l)] 
k=l 

= J Ig(X) 12 dp.(X) (24) 
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since Z is a process with orthogonal increments and J.I. is the measure on 
the real line generated by F. The integral will now be defined for any 
bounded continuous function g. Given any such continuous function g, 
there is a sequence of step functions gn of the form (22) such that 

f/g(>..) - gn(>") 12 dJ.l. ~ 0 (25) 

as n ~ 00. Let I n be the random variable 

I n = fgn(>") dZ(>"). (26) 
Then 

as n, m ~ 00 by (24) and (25). By the Riesz-Fischer theorem I n con­
verges in the mean square to a random variable J with 

EIJI2 = lim' EIJnl2 = flg(>..) 12 dJ.l.(>"). (28) 
n->oo 

It is natural to define fg(>..) dZ(>") as J since J does not depend on the 
particular sequence gn(>") by which g is approximated. This follows 
from a simple application of the Minkowski inequality (see [1]). 
Actually this integral can be defined for the larger class of Borel func­
tions g for which flg(>..) 12 dJ.l.(>,,) is finite by a similar argument. This 
integral has the following typical properties of an integral and these 
properties can be derived formally by considering approximating step 
functions and going to the limit: 

1. f[ag(>..) + bh(>")] dZ(>..) = afg(>..) dZ(>..) + bfh(>") dZ(>..) (29) 

2. lim fgn(>") dZ(>..) = fg(>..) dZ(>..) (30) 
n->oo 

if and only if 
flgn(>") - g(>.)12 dJ.l.(>,,) ~ 0 (31) 

asn~oo. 

3. Efg(>..) dZ(>..)fh(>.) dZ(>..) = fg(>')h(>") dJ.l.(>"). (32) 

We shall now show that a weakly stationary process X t has a random 
Fourier representation in terms of a process Z(>..) with orthogonal increments, 
that is, 

X, = J _00 .. eil ). dZ(>"), 

where Z(>..) is the process given by (15). Further 

E dZ(>.) dZ(J.I.) = a)..,. dF(>..) 

(33) 

(34) 
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where F(X) is the spectral distribution function of Xt. Let X, p, be continuity 
points of F(X), X < p,. Now 

1 fT 1/J EXtZT(p.,>..) = -2 ret - T) eiTa dO/. dT 
11" -T A 

f'"' 11oTl/J = eit,. dF(u) - cos T(O/. - u) dO/. dT 
-00 11" 0 A 

f'"' . d'F() 1 loT sin T(P, - u) - sin T(X - u) d = ~ u- T 
-00 11" 0 T 

(35) 

~ 1/J eit,. dF(u) 

as T -+ co, making use of (1), (10), and the Fourier representation of 
the covariance function ret). But 

EX,[Z(p,) - Z(X)] = EX, IA/J dZ(X) = IA/J eil,. dF(u) (36) 

since Z(p.) - Z(X) is the limit in mean square of ZT(X,P.) as T ~ co. 
There is a sequence gn(X) of step functions of the form (22) with jumps 
at continuity points of F(X) such that 

(37) 

as n ~ co. Therefore fgn(X) dZ(X) ~ f eil}. dZ(X) as n ~ co. Relation 
(36) implies that 

(38) 
and hence 

EX,J eil}. dZ(X) = lim EX,Jgn(X) dZ(X) 
n--+oo 

= lim f eU-"gn(X) dp,(X) = f dF(X). (39) 
1\--+ 00 

Now 

EIXt - feil}. dZ(X) 12 = EIXtl2 - 2 Re EX,Jei°'dZ(X) + Elfe;'}. dZ(X) 12 

= 0 (40) 

using (aA), (32), and (39). But this implies that 

(41) 

with probability one. 
Of course, a corresponding representation holds in the case of a 
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discrete time parameter weakly stationary process X .. , n = 0, ± 1, 
± 2, . . . , except that in this case the range of integration in the 
random Fourier representation is [-71",71"] instead of (- co,co) 

X .. = f~" ei .. >. dZ(A) , E dZ(A)dZ(p.) = a)..,. dF(A). (42) 

Here, F(A) is as before the spectral distribution function of the process 
X ... Notice that in the representations (41) and (42) there is a random 
frequency resolution of the processes with dZ(A) the random amplitude 
of eil).. The random amplitudes dZ(A), dZ(p.) corresponding to distinct 
frequencies A ~ p. are orthogonal and the variance of dZ(A) is given 
by dF(A).(see (42». 

We, shall use the random spectral representation of a weakly 
stationary process obtained above to derive a mean square ergodic 
theorem for a discrete parameter stationary process. Let X .. be a 
weakly stationary process with mean EX .. = m not necessarily zero. 
Our object is to investigate the behavior of the time average 

(43) 

as n -+ co. Let £\Z(O) = Z(O) - lim Z( - e) = Z(O) - Z(O-) be 
..... 0+ 

the jump of Z(A) at zero. Of course £\Z(O) = 0 if there is no jump. We 
n 

shall show that the time average ~ 2: X" converges to £\Z(O) + m as n -+ co. 

k-l 

The random variable X" - m has the Fourier representation 

X" - m = J~" eik'A dZ(A) = J~" eik'A dZ'(A) + £\Z(O) (44) 

where 

, {Z(A) 
Z (A) = Z(A) _ £\Z(O) 

Notice that 

where 

, {F(A) 
F (A) = F(A) _ £\F(O) 

if A < 0 
if A ~ O. 

if A < 0 
if A ~O 

(45) 

(46) 

(47) 
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is continuous at >. = 0 since the possible jump tJ.F(O) of F at zero has 
been removed. The expectation 

(48) 

Since F' is continuous at zero this last expression can be made arbi­
trarily small with n sufficiently large. Therefore 

(49) 

in mean square. Notice that this indicates that the limiting time average 
n 

lim ! ~ Xk is equal to the space average m = EXk if and only if 
n-+'" n '-' 

k-1 

tJ.Z(O) = O. 

c. The Linear Prediction Problem and 
Autoregressive Schemes 

Let us first consider the problem of predicting Xo by a linear form 
in the observed variables X_I, . . . , X_no The object is to obtain a 

n 
best linear predictor X: = 2; ajX_j in the sense that it attains the 

j=1 

minimal mean square error of prediction among all linear predictors 
in terms of X_I, . . . , X-n 

n 
EIXo - X:12 = min EIXo - 2; aj X_ j I2. (1) 

aj j=1 

It is natural to call this a one-step prediction problem since we want 
to predict one step into the future. Predicting Xl in terms of X_I, 
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. . . , Xn would be a two-step prediction problem. For convenience 
assume that X_n, X-n+1, • • . , Xo are a finite segment of a weakly 
stationary process {Xk } with mean zero and a spectral distribution func­
tion F()..) with an infinite number of points of increase. Fis said to have 
a point of increase at p. if for every e > 0, F(p. + e) - F(p. - e) > O. 
The best linear predictor will be given in terms of an appropriately 
constructed set of orthogonal random variables. The procedure by 
which the orthogonal random variables are to be constructed is usually 
referred to as the Gramm-Schmidt orthogonalization procedure (see 
Apostol [1]). Let 

(2) 

Then EI~_nI2 = 1. Set 

11-70+1 = X-n+l - E(X-n+l~-n)~-n (3) 
and 

(4) 

We shall later see that ~-n+1 is well defined since we shall show that 
EI11_n+112 > O. Assuming this, notice that 

E~-n~-n+1 = 0, EI~_n+112 = 1. (5) 

Suppose that ~-n+i has been constructed as a linear form in X-n, 
X-n+i in such a way that 

. . , 

E~-n+i~-n+i' = Oi.i' (6) 

i, i' = 0, 1, ... ,j - 1. The random variable ~-n+i is constructed as 
follows. Let 

(7) 

Now 11-n+i must have positive variance. For otherwise there would be 
a linear relationship among X-n, ••• , X-n+i 

i 
~ aiX-n+i = 0 

i-O 

with the als not all zero so that 

i i 

(8) 

ElL aiX-n+i 12 = f ~1f I L akeilcA [2 dF(A) = O. (9) 
i=O k-O 

But this could not hold unless F had at most a finite number of points 
of increase and we have assumed this is not the case. Thus EI11_n+iI 2 > O. 
Set 

(10) 
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In this way we recursively construct orthonormal random variables 
~-n+i, i = 0, 1, . . . , n, 

E~-n+i~-n+i = Di,j (11) 

such that ~-n+i is given by a linear form in X-n, , X-n+i. A possi­
ble predictor is a linear form in X_n, • • • ,X-1 and hence in terms of 
~-n, ... , ~-l 

11-1 11-1 x: = ~ aiX-n+i = ~ Ui~-n+i' (12) 
;-0 ;-0 

The mean square error of prediction with this predictor is given by 

11-1 n-l 

= EIXol2 - 2 Re ~ ajE(Xo~_n+j) + ~ IUjl2 (13) 
;=0 j=O 

n-l n-l 
= EIXol2 - ~ IE(Xo~_n+i)12 + ~ IUj - E(Xo~-n+j)/2. 

;=0 j=O 

It is clear that the mean square error of prediction is minimized by 
setting Uj = E(Xo~_n+j) so that the best linear predictor is given by 

(14) 

The error of prediction Xo - Xri is orthogonal to X-n, . . . , X-I since 
11 

Xo = ~ E(Xo~-n+jH-n+i' In fact, a little reflection indicates that the 
;-0 

best linear predictor is characterized by this orthogonality property. For suppose 
Xo - x: is orthogonal to X-n, ••• , X-I for some predictor Xri. 
Because of this orthogonality property it follows that 

Xo - x: = {3~o 
for some constant (3. We know that 

Thus 

(15) 

(16) 

(17) 

Since x: is a predictor it must be a linear form in X_n, , X-I 
or equivalently ~-n, . . . , ~-l and therefore fJ = E(Xo~o) so that X;i 
is the best linear predictor (see (14». 
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Let us now consider a weakly stationary process X .. that satisfies 
the system of difference equations 

where the ~n are a sequence of orthogonal random variables 

E~n~m = c5n,mO'2, 0'2 > 0, 

(18) 

(19) 

with mean zero, E~n == 0, and ao ~ 0. The processes {Xn} and {~n} 
are both stationary and hence have random spectral representations 

Clearly 

X .. = J~" ei .. >. dZ.,('X) 

~n = J~" ei .. >. dZE(X). 
(20) 

(21) 

because of the orthogonality of the {~ .. } process. The difference equa­
tions (18) imply that 

J~" ein>'a(e-i >.) dZ.,(X) = J~" ein>. dZE(X) (22) 

m 
where a(z) = ~ akzk• On approximating the function which is 1 for 

k=O 
-'lI' ::; X ::; p. and zero for p. < X < 'lI' by linear forms gn(X) in the 
complete system of functions ein>., n = 0, ± 1, ... , and using prop­
erty 2 of random integrals cited in section b, we obtain 

(23) 

From this, it follows that 

(24) 

(12 
where F",(X) and FE(X) = 2'l1' (X + 'lI') are the spectral distribution 

functions of the {Xn} and {~n} processes respectively. If F",(X) has any 
jumps a(e-i>.) must be zero there since the right-hand side of (24) is 
continuous. Let F""d(X) be the jump part of F(X) if any exists, that is, 

(25) 
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where 1lF,,()o.j) is the jump of F" at >"j. Call the continuous part of F,,(>..) , 
F~(>..) 

(26) 
Then 

(27) 

Since the right-hand side of (27) is absolutely continuous (with respect 
to Lebesgue measure) the left-hand side must be. Thus F~(>") is differ­
entiable with 

(28) 

Since the spectral density function fi>..) is integrable, a(e-i}.) can have 
no zeros and jumps of F" cannot exist. Processes satisfying a system of 
difference equations of the form (18) are called autoregressive schemes. We have 
just shown that a weakly stationary solution of this system of equations exists 
if and only if a(e-i }.) has no zeros. Further, if a solution exists, it is unique. 
The spectral distribution function F,,(>..) of the scheme is absolutely continuous 
with a spectral density given by 

(29) 

Notice that we have implicitly also shown that 

(30) 

One of the main reasons for interest in autoregressive schemes 
is due to the fact that the linear prediction problem is simple when 
dealing with them. Suppose that the difference equations (18) have 
been set up so that ~" is orthogonal to X,,-l, X,,-2, . . . for all n. From 
the discussion at the beginning of this section 

m 

X! = ~ .~X"-k ~ao 
(31) 

k-l 

is the best linear (one-step) predictor of X" in terms of X,,-l, Xn- 2, 

The prediction error is ~n/ao with mean square error of prediction 

(32) 
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The best linear predictor (two-step) of Xn in terms of X,,-2, X"-3, 
is obtained by replacing X,,-1 by X:_l in (31). 

165 

Let us now determine the circumstances under which ~n is orthog­
onal to X,,-h X"-2, .... We have already seen that 

f" 1 
X" = ein).. (-i)..) dZ~(A) 

_or a e 
(33) 

'" where a(z) = ~ ad'. Let the zeros of a(z) in the complex plane be 
k-O 

ZI, Z2, ••• , Zm where the zeros are enumerated so that ZI, ••• , Zp 

are inside and Zp+h • • • , Zm are outside the unit circle Izi = 1. To 
avoid a more elaborate notation we assume that all zeros are simple. 
The following partial fraction expansion of l/a(z) 

1 ~ A. ~ A. ~ (z.); ~ A. ~ (z); 
a(z) = ~ z - z. = ~ z ~ z ~ z. ~ z: (34) 

.=1 .=1 i=O .=p+1 j=o 

is uniformly convergent for Izi = 1. The argument is completely 
analogous for multiple roots except for a more complicated partial 
fraction expansion. Introducing (34) into (33) the following represen­
tation of X" as a moving average of ~,,'s is obtained 

P .. m .. 

X" = ~ A. ~ ~"+i+lZt- ~ A. ~ ~,,_jZ;-j-l • (35) 
• ~1 i-O .=p+1 j=O 

It is easily seen that ~n will be orthogonal to X,,-I, X,,-2, . . . if and only 
if all the zeros z. are outside the unit circle, that Iz.1 > 1 for all II. This 
is a bit disconcerting because a(z) will generally have zeros inside and 
outside the unit circle. However, we shall show that if {X" I is an 
autoregressive scheme of order m (satisfies a system of difference 
equations ofthe form (18)), one can find a system of difference equations 

with 

m 

~ bkXn_k = 'Tl", 
k-O 

bo rf 0, (36) 

E'Tl" == 0, E'Tl,,1im = ~",mq2, q2 > 0, (37) 

that {X,,} satisfies where 'Tl" is orthogonal to X,,-I, X,,-2, . for all n. 
Since {X,,} satisfies (18), it has the representation (33). Suppose that 
a(z) has p zeros ZI, ••• ,Zp inside the unit circle. Let 

~ nP (zz - 1) b(z) = ~ bkzk = a(z) z"- z. . (38) 

o .=1 
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Notice that b(z) has all its zeros outside the unit circle. The process 
IX,,} has the representation 

f,.. 1 
X" = _,.. ein). b(e-i ).) dZlX) (39) 

where 

(40) 

Z,(X) is a process with orthogonal increments such that 

(41) 

since 

(42) 

But this implies that 
m L bkXn_ k = f~,.. eifl).b(riA) dZ"cX) 

k-O 

(43) 

with 11" orthogonal to X,,_l, Xn- 2, •••• 

One can easily express the one-step prediction error q2/lbol2 in 
terms of the spectral density of the autoregressive scheme. First notice 
that 

f~,..log Iri). - Zl2 dX - 2'11' log Izl2 
= f~...I0g (1 - r i).z-1)(1 - eiAz-1) dX 

~ ~ 

= f~,..{ L e-ik).z-k/k + L eikAZ-k/k} dX = 0 (44) 

if Izl > 1. But then 
k-1 k-1 

2~ f~,..log fiX) dX - log (;;) = 1'11' f~7f log Ib(e-;).) 1-2 dX 

m 

= - ~ \' f'" log le-i>. - Z.12 dX - log Ibml2 
2'11' i.{ -,.. 

... 1 
m 

= - 2: log Iz.12 - log Ibml2 = - log Ibol2 (45) 
.-1 
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where the zis are the zeros of b and hence all have absolute value 
greater than one. The one-step prediction error is thus given by 

0'2 { 1 f1r } Ibol2 = 211' exp 211' _".log I.(''A) d). • (46) 

This result is valid for all weakly stationary processes with absolutely 
continuous spectral distribution function (see [27]). We shall, however, 
prove this result only for such processes with spectral density positive 
and continuous on [ -11',11'] andf( -11') = f(1I'). 

The reciprocal of the spectral density of an autoregressive scheme 
is a positive continuous trigonometric polynomial 

m m 

;; f}X) = Ib(e-iA)12 = 2: Ale cos kX + 2: Bk sin kX. (47) 
k=O k=1 

We should like to show that every positive continuous trigonometric poly­
nomial has a representation as the absolute square of a one-sided trigonometric 

m 
polynomial \ ~ b,.e-ik).12. This is a special case of a result due to Fejer 

k=O 
and Riesz (see [27]). Let p(X) be such a trigonometric polynomial 

m m 

P(X) = ~ Ale cos kX + ~ Bk sin kX (48) 
k=O k=1 

with Ao and either Am or Bm not zero. Replace cos kX by (zle + z-le)/2 
and sin kX by (Zk - z-k)/2i. The resulting expression has the form 
z-mG(z) where G(z) is a polynomial in z of degree 2m with G(O) ¢' O. 

Further G (~) = G(z). But this means that there is a one-one cor­

respondence between the roots of G inside the unit circle and those 
outside. If Zo is any root of G(z) with Izol < 1, then iOl is a root of G 
outside the unit circle. Zero cannot be a root since G(O) ¢' O. Further 
there can be no roots of absolute value one since the polynomial p(X) 
is assumed to be positive. Thus G has the form 

m 

G(z) = A n (z - z.)(z - Z;l) (49) 
.=1 

and hence 

m 

m 

= B n lei). - Z.12 (50) 
.=1 
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where 
m 

B = A n (-Z;1) > 0. (51) 

The desired representation is given above in (50). Notice that this 
implies that any stationary process with spectral density the reciprocal 
of a trigonometric polynomial is an autoregressive scheme. 

Now consider a stationary process {X,,} with absolutely continuous 
spectral distribution function and spectral density I(X) continuous and 
positive on [-71",71"] with I( -71") = 1(71"). The mean square error of 
prediction in predicting X" by a linear form in Xn- 1, ••• , X,,-m is 
given by 

m 

u;"(f(X» = m~n E 1 X" - l CjX,,-i 12 
c, j-l 

m 

= m~n J ~1r)1 - l Cie- if" 12 I(X) rh.. (52) 
c, j-l 

It is natural to call the limit of u;"(f(X» as m -7 00, the mean square 
error of prediction of X" when predicting by linear forms- in terms ot 
the past, that is, Xn_ I, Xn- 2, •••• We shall show that 

u2(f(X» = lim u;"(f(X» 
m-too 

= 271" exp {2~ J~1r log I(X) d'A}. (53) 

Given any e > 0, by the Weierstrass approximation theorem (see 
Problem 10 of Chapter II) one can find positive trigonometric poly­
nomials PI( . ), P2( . ) such that 

I(X) - e < PI(X) ~ I(X) ~ P2(X) ~ I(X) + e (54) 

for all X. But it is clear from (52) that 

(55) 

if I(X) ~ g(X) for all X. Further, a stationary process with spectral 
density Pi(X) has mean square error of prediction 

271" exp {2~ J~1r log PiCA) dX} = U 2(Pi(X», i = 1, 2, (56) 

since it is an autoregressive scheme. This implies that 

(57) 
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with u2(p/X», i = 1, 2, given by (56). This cannot be valid for every 
e > 0 unless (53) holds. 

d. Spectral Estimates for Normal Processes 

Let {X .. l be a discrete parameter normal stationary process. If the 
mean m == EXn of the process is not zero, we have already seen that 
the time average 

(1) 

will be a reasonable estimate of m if there is no jump AZ(O) in the 
random spectral resolution of Xn at X = O. For then m* will converge 
to m in mean square as N ~ 00 by the mean square ergodic theorem 
(see section b of this chapter). A detailed discussion of how such an 
estimate compares with other linear estimates can be found in [25] 
and [26]. 

However, in many cases one is also interested in obtaining infor­
mation about the spectrum of the process from a sample Xn, n = 1, 
. . . , N. Assume that the spectral distribution function of X .. is abso­
lutely continuous with a positive continuous spectral density on [ -71','11-], 
In this section whenever we speak of continuity on [-71',71'], it is to be 
understood that -71' is identified with 71' and hence that 1(71') = f( -71'). 
In fact we are really dealing with the points on a circle rather than a 
line segment. Keeping this in mind, if the points s with Is - 71'1 < e 
are referred to, it is understood that one means the points s with 
-71' ~ s < -71' + e and 71' - e < s ~ 71'. Our object is to investigate 
estimates of l(X). If the covariance sequence Tn = Exmxm+ .. is absolutely 
summable, that is, ~hl < 00, the spectral density f(X) is given by 

., 

f(X) = 2~ I T"e-;n),. (2) 

n==-oo 

One approach is to replace Tn wherever possible by a good estimate 
T .. (N). A good estimate of Tn is given by 

N-JnJ 

Tn(N) = ~ I xn,xm+lnl (3) 

m~l 
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if Inl < N. Obviously, if Inl ~ N, Tn cannot be estimated from the 
sample since there are no lags tl that large available in the sample. 
One might as well estimate them by zero. The resulting estimate is 

N 

[N(X) = 2~ L rn(N)e-in). 
n.- -N 

N 

= _1 I" X e_;iX\2, 
27rN ~ J 

j=l 

commonly called the periodogram. 
First consider the bias of IN(X) as an estimate of I(X) , that is, 

The bias indicates how well the estimate is centered. Now 

N 

= _1_ E I /11" " eii(I'-X) dZ(p.) \2 
27rN _11" ~ 

1 

_ 1 f1r sin2 ~ (p. - X) 
- 27rN -1r • 2 P. - X I(p.) dp.. 

sm -2-

The bias is therefore 

(4) 

(5) 

(6) 

1 f'll" sin2 ~ (p. - X) 
bN(X) = 27rN -r • 2 P. _ X [J(p.) - J(X)] dp.. (7) 

sm -2-

Notice that the weight function 

1 sin2 ~ X 

27rN . 2 X 
sm 2 

(8) 
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is non-negative and it has integral one over [-11',11']. Further, given 
anye > 0 

. 2N "-f 1 SIn 2"1\ 
lim --- rJ>.. = 1. 

N-H" 211'N. 2 X 
I"I:S· SIn 2 

(9) 

Thus, all the mass of the weight function accumulates in the immediate 
neighborhood of X = 0 as N ~ 00. This implies that IN ('X) is asymptoti­
cally unbiased since bN(X) ~ 0 as N ~ 00. If the spectral density is 
assumed to be sufficiently smooth, one can get convenient bounds 
on the rate at which bN(X) ~ O. For example, suppose that I(X) is 
continuously differentiable. Now I(p.) - I(A) is given by 

I(p.) - I(X) = f'(X + 8(p. - X»(p. - X) (10) 

181 < 1, for Ip. - AI < A < ~. The following bound is simply obtained 

by using formula (10) 

f sin2 ~ (p. - X) f + } sin2 ~(p. - X) Ip. - XI dp. 
A A 

II.-AI<N N:SII'-AI<A 

1 f sin2 ~ (p. - X) log N 
+ 211'N sin2 Y2(p. _ X) I!(p.) - I(X) I dp. ~ K lr (11) 

I,,-AI~A 

where K is a constant. Thus bN(>..) approaches zero with order of 

magnitude lo~ N as N ~ 00. The bias of the periodogram is quite 

small. But, as we shall see, the variance of the periodogram is unfor­
tunately large. Nonetheless a detailed estimate of the variance will be 
made since it will be useful in considering more reasonable estimates 
of the spectral density. We assume the spectral density 1(>") to be con­
tinuously differentiable as we did in the estimate of the bias carried 
out above. The procedure we use is in part a modification of an argu­
ment carried out by P. Scheinok in his thesis [72]. Now 

N 
411'2N2 cov (IN(>..),IN(p.» = ~ ei.,Ae-i.,Aei·,/le-"'" cov (x •• x • .,x •• x.,) (12) 

I'i-l 

where 
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(see Problem 10 of Chapter IV). Using the spectral representation of 
the covariances, we note that 

47r2N2 cov (INC>..),IN(p.)) 
,.. N 

= J J l t ei .) O,+alei •• cll-ale-i., C"-/lle-i'tCIl+/ll 

-11' lIi-=l 

". 

= J J DN(X + a)DN(p. - a)DN( -x + (3)DN( -p. - (3)f(a)f«(3) da d(3 

". 

+ J J DN(X + a)DN( -p. - a)DN( -x + (3)DN(P. - (3)f(a)f«(3) da d(3 
-". 

(15) 

where 
N 

DN(X) = L: ei ." = 
. eiN" - 1 

et " • eiA - 1 
(16) 

'Dl 

If f is set equal to the constant function one, the first integral and 
second integral of (15) are seen to be 

(17) 

and 

(18) 

respectively. This suggests estimating (15) by 

(19) 
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The difference between (15) and (19) is given by 

" f f DN(X + a)DN(f.L - a)DN( -x + fJ)DN( -f.L - fJ)[j(a)f(fJ) 
-,.. 

- f(X)f(f.L)] da dfJ (20) 
". 

+ f J DN(X + a)DN( -f.L - a)DN( -x + fJ)DN(f.L - fJ)[j(a)f(fJ) 
-r 

- f(X)f(f.L)] da dfJ. 

We shall only carry out the estimation for the second term of (20) 
~ince the estimation for the first term is completely analogous and 
leads to the same bound. By the Schwarz inequality 

". 

411'!N21 ff DN(X + a)DN( -f.L - a)DN( -X + fJ)DN(f.L - f3)[j(a)f(fJ) 
-". 

- f(X)f(f.L)] da dfJl 
,.. (21) 

::;; 41!'!N2 [ff IDN (A+a)DN (Ik-,8)12 f(a)f(fJ) - f(X)f(f.L) I da dfJ 

11' 

ff IDN(-Ik-a)DN (-A+,8)12 f(a)f(fJ) - f(X)f(f.L) I dadfJ r~· 
-,.. 

It will be enough to look at 

". 

411'!N2 ff D;'(X + a)D1(f.L - fJ)lf(a)f(fJ) - f(X)f(f.L) I da dfJ. (22) 

Divide the integral over -11' ::;; a, fJ ::;; 11' into integrals over the two 
subdomains RJ, R2 where 

Rl = {a,fJIIX + al ~ A or 1f.L - fJl ~ A} 
R2 = {a,fJIIX + al < A and 1f.L - fJl < AI. 

(23) 

The integral over RJ is bounded by KI! N where KJ is some constant. 
By the mean value theorem 

f(a)f(f3) - f(X)f(f.L) = f'(a)f(ff'J(a + X) + f'(ff'Jf(a)(fJ - f.L) (24) 
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where (a,P) is a point on the line joining (a,{3) to (->',J.I). The integral 
over R2 is seen to be bounded by K2 log N / N by using this expansion 
and an estimation procedure like that leading to (11). Thus the covari­
ance of IN(>') and INCJ.I) is given by 

_lSin 2 ~ (X - J.I) sin2~ (X + J.I)l {(X)f(J.I) 
cov (IN(X),IN(p.» - . (X _ ) + . (X + J.I) N2 

5m2 J.I sm2 (25) 
2 2 

+ °CO~N) 
under the assumption of continuous differentiability of the spectral density. 
Notice that the limiting variance 

if X :;t!. 0, ±11" 
otherwise. 

(26) 

This implies that the periodogram IN(X) doesn't even converge to f(X) 
in mean square as N ~ co if f{X) :;t!. 0, a dubious feature for a proposed 
estimate of the spectral density. However, IN(X) and IN(J.I) are asymp­
totically uncorrelated if X ~ J.I and f{X) and f(J.I) are positive. This 
suggests that we might get a reasonable estimate of f(X) by averaging 
IN{J.I) in the neighborhood of X. Let WN(J.I) be a sequence of positive weighl 
functions on [-11",11"] with the following properties: 

(a) J~" U'N(J.I) dJ.l = 1 

(b) WN(J.I) ~ ° uniformly in J.I for IJ.lI ~ e 

as N ~ co for every fixed e > ° 
J ~1f WN(X)WN(X + J.I) dX _ 1 

J~r w'jy(X) dX 

as N ~ co for an A > O. 

~O 

(27) 

(28) 

(29) 

Notice that (a) and (b) imply that more and more of the mass ofthe 
weight functions accumulate in the immediate vicinity of X = 0 as 

N ~ co and hence that J ~11" w'jy(a) da ~ co as N ~ 00. The proposed 

sequence of estimates is 

fN(X) = J ~r WN(X - J.I)IN(J.I) dJ.l. (30) 
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Our object is to investigate the bias and variance of this sequence of 
estimates as N ~ 00. From (6) it is clear that the bias bN(X) is given by 

under the assumption of continuous differentiability of the spectral 
density. Conditions (a), (b) oil the sequence of weight functions imply 
that bN(X) ~ 0 as N ~ 00 so that the estimates are asymptotically 
unbiased. 

Consider now the variance q2(fN(X» of the estimate fN(X). Formula 
(25) implies that the variance is given by 

,.. 

q2(fN(X» = ff WN(X - a)wN(X - (3) cov (IN(a),IN«(3» da d{3 
-". 

1 fy'II" sin2 ~ (a + (3) 
+ N2 WN(X - a)wN(X - (3) • (a + (3) f(a)f«(3) da d{3 

sm 2 -'---:---=-...:... -,.. 2 

Assumption (c) essentially states that WN(",) accumulates mass in the 
neighborhood of '" = 0 at a slower rate than the Fejer kernel. This 
suggests that one ought to approximate the two integrals of (32) by 

211"/" N _'II" wx,(X - a)J2(a) da (33) 

and 

(34) 



176 Random Processes 

respectively. It will only be necessary to carry out the approximation 
for the first integral in detail since the approximation is quite analogous 
for the second integral. Let us split 

1< sin2 N (a - (3) 
~2 fr ( WN(X - a)WN(X - (3) • 2(01 _ (3) f(Ot)f«(3) dOt d(3 (35) 

J sm2-,--~...:... 
2 

into two integrals II and 12, the first over the region lOt - (31 ~ ~ and 

A 
the second over lOt - (31 > N' We have 

. 2N 
1 f sm zUf1r 

II = N2 . 2 U -1r WN(X - a)WN(X - a + u)f(a)f(Ot - u) dOl du 
A sm -

lul:S N 2 

• 2 Nu 

1 f sm 2 f.... (1 J1r ) = N2 ~ -7r w1(X - a)f2(a) dOl du + 0 N -'lI" Wk(Ot) dOt 
A sm -

lul:SN 2 

211'/11" (1 f'll" ) = N -7r Wk(X - a)J2(Ot) dOt + 0 N -11" Wk(Ot) dOt . (36) 

Similarly 

• 2 Nu 
1 f sm 2f'll" 12 = N2 ~ _'/I" WN(X - Ot)WN(X - Ot + u)f(Ot)f(Ot - u) dOt du 

A sm -
lul>N 2 

K2 f 1 f'" ~ N2 -- wJ.,(a) dOl du 
• 2 U -11" Asm -

lul>N 2 

K' /11" (1 f'/l" ) ~ NA -11" wJ.,(Ot) dOl = 0 N -11" wk(Ot) dOl (37) 

since A can be made arbitrarily large. Thus 

(38) 
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as N ~ 00. If WNC'J...) is symmetric about A = 0 as it is in most applica­
tions, a further approximation leads us to 

if A r6 0, ±11" 
(39) 

otherwise. 

A few simple weight functions are given by 

(40) 

and 

(41) 

otherwise 

where hN diverges at a rate slower than N as N ~ 00. 

Various approximations have been proposed for the probability 
distribution of such spectral estimates. The most commonly suggested 
is that with density function g(x) where 

I aA 
g(x) = r(A) xA-1e-az for x > 0 

o otherwise. 
(42) 

Here (x, A are determined by fitting the first two moments. This approxi­
mation is quite reasonable for moderate sample size. A Gaussian dis­
tribution can be used when the sample size is large. A detailed discus­
sion of approximations for small sample size can be found in [20] 
and [28]. 

The discussion of corresponding estimates in the continuous 
parameter case is similar. Extensive discussions of spectral analysis 
can be found in [6], [26], and [71]. 

In many cases the discrete parameter time series is obtained by 
discretely sampling a continuous parameter time series (see the dis­
cussion in section a of this chapter). The following conditions on the 
spectrum of the continuous parameter process are enough to ensure 
that the spectrum of the derived discrete parameter process satisfy the 
conditions assumed in this section. Let the spectrum of the continuous 
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time parameter process be absolutely continuous with a continuously 
differentiable spectral density leA). Further, let 

leA) = O(IAI-l-o) (43) 

as Ixi --+ 00 where e is some positive number. The derivative of the 
spectral density of the derived discrete parameter process is then 
continuous and is given by 

(44) 

where a is the sampling interval. 

e. Problems 

1. Let Y be a random variable with distribution function F(y). Let 
X .. = exp (inY), n = 0, ± 1, . . .. Compute the moments 
EX .. Jlm• 

2. Let Xn, n = 0, ± 1, ± 2, ... , EXn = 0, be a weakly stationary 

process so that Tn = EXkXk+ .. has the representation Tn = J~ ... einA 

dF(X) where F is a bounded 'nondecreasing function. Show that 

X .. has the representation X .. = J~ ... einA dZ(X) where Z(X) is a 

process of orthogonal increments with E dZ(A) dZ(p,) = OA." dF(X). 

3. Let Xt, te[0,211'], EXt == 0 be weakly stationary on the unit circle. 
This means that t = 0 is identified with t = 211' and 

EXt X, = T,. u = t - s mod 211'. 
Show that 

"" 
Tt = ~ a .. eit .. 

n= -co 

where the numbers an are the Fourier coefficients of Tt and that 
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4. A weakly stationary process X" - 00 < t < 00, EX, == 0, has the 
representation 

where Z(X) is a process with orthogonal increments. Show that a 
real-valued weakly stationary process has the representation 

where 
E dZj (X) dZ,.(p,) = aj,/c2 dF(X) , j, k = 1, 2. 

Further dZ1(X) = 2 Re dZ(X), 

5. Let X" - 00 < t < 00, EX, == 0, be a weakly stationary process. 
Assume that the spectrum of the process is band-limited to 
[-lI'W,lI'w] so that X, has the representation 

Xt = flMD eit). dZ(X). 
-"'10 

Show that .. 
X = 2: X sinr(wt - n). 

I ,./10 (t ) 11' W - n 

6. Let X" t = 0, ± 1, ... ,EX, = 0, be a strictly stationary Markov 
chain with a finite number of states and transition probability 
matrix M. Assume that M has only simple eigenvalues. Find the 
spectral distribution function of X, in terms of the eigenvalues of M. 

7. Let X,., n = 0, ±1, ±2, ... be a normal process satisfying 
equations of the form 

m m 
2; akX,._k = 2; bk~lI-k with ao, bo ~ 0, 

k-O k=O 

where the ~,. are independent normal random variables with mean 
zero and variance one. Under what conditions will there be a sta­
tionary solution X,.? Can you express the X,. process directly in 
terms of the ~1I process? What is the spectrum of a stationary solu­
tion if it exists? 

8. Let X,. = (X~1),X~2», EX,. == 0, n = 0, ± 1, ... be a weakly 
stationary two-vector-valued process, that is, r ll ,m = EX~Xm 
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depends only on the time difference n - m. Show that then 

r n- m = r",m has the representation r n- m = I~" ei(n-m» .. dF('h) where 

F('h) is a 2 X 2 matrix-valued Hermitian function that is bounded 
(every element a bounded function) and nondecreasing in that 
LlF('h) = F('ht} - F('h2) is a positive definite matrix for every pair 
AI, A2 with Al > A2. 

9. Let X" be a two-vector-valued weakly stationary process as in the 
last example. Assume that the components are real-valued. It 
then follows that dF(A) = dF(-A). Show that Xn has the real 
representation 

X~ll = lo'll'cos nAdZpl('h) + lo'll' sin n'\dZ~ll('h) 

X~2l = lo'll' cos nAdZF'('h) + 10" sin n'\dZ~2l(A) 

where the Z~j)('h) are real-valued processes with orthogonal 
increments such that 

E dZ~ll('h) dZj1'(J.I.) = E dZi2l('h) dZj2l(J.I.) = 25;,;5)0.,1' dF;,;('h) 
E dZ}ll('h) dZl2l(J.I.) = 25>..1' Re dF1,2('h) i, j = 1, 2 
E dZPl('h) dZ~2l(J.I.) = -E dZ~l)(A) dZF'(J.I.) = 25)0.,1' 1m dF1,2('h). 

If the process has a spectral density function, that is, F('h) = 

1 ~". f(J.I.) dJ.l., the real and imaginary parts of the cross-spectral 

density Re/12('h), Im/12('h) are sometimes referred to as the cospec­
trum and quadrature spectrum of X~l) and X~2). 

10. Consider the results of the two previous examples in the case of a 
normal stationary two-vector-valued process Xn satisfying the 
matrix equation 

X .. = AXn_ 1 + ~n 

where ~ .. is a two-vector-valued process with components two inde­
pendent normal white noise processes and A a 2 X 2 matrix with 
real elements such that AA' :::;; I. 

11. Consider what parallels of the results of this chapter you can 
obtain in the case of a two-parameter process Xt,T' EXt,T = 0, 
weakly stationary in that EXt,TXt+a,r+(1 depends only on the 
differences ex, {3. 
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Notes 

1. For a more extensive discussion of weakly stationary processes one should 
refer to the books of Grenander and Rosenblatt [26] and Doob [12]. A general 
method of obtaining the harmonic representation of a stationary process and many 
allied results by Hilbert space methods is given in Karhunen's paper [38] on linear 
methods in probability theory. The book of Iu. Rosanov [A13] on stationary pro­
cesses develops many of the basic results in this area. 

n 

2. The result on time averages ~ L Xk of a weakly stationary process is essen­

k=l 
tially the von Neumann ergodic theorem (see [35]). 

3. The linear prediction problem is considered in section c only for weakly 
stationary processes with a continuous spectral density withf( - .... ) = f( .... ) bounded 
away from zero. A discussion of the general result and related material can be found 
in the excellent book of Grenander and Szego [27] on Toeplitz forms. Recently 
there has been a good deal of work on the prediction problem for vector-valued 
weakly stationary time series (see [33], [56]). The initial work on prediction prob­
lems is due to Kolmogorov [46] and Wiener [77]. The analytic problem that 
basically enters into the prediction problem for discrete time parameter weakly 
stationary processes was treated by G. Szego [75]. 

4. An extensive discussion of spectral analysis of stationary time series can be 
found in Grenander and Rosenblatt [26]. The derivation of the asymptotic prop­
erties of spectral estimates given in section d is special since it is carried out only 
for normal processes and under rather strong regularity restrictions on the spectral 
density of the process. However, it was felt that there are advantages to this since 
the derivation is elementary and is carried out completely in the spectral domain 
rather than in terms of the covariances of the process. Further, some of the inter­
mediate estimates made such as (d. 32) give greater insight into the discontinuity 
in the limit formula at 0 and ±r. For a derivation under more general conditions 
see Parzen's paper [59]. A discussion of spectral analysis for vector-valued stationary 
time series can be found in [24] and [71]. The books ofT. W. Anderson [AI] and E.]. 
Hannan [A7] which have recently appeared are also very useful references. 



VIII 
MARTINGALES 

a. Definition and mustrations 

We consider a family of processes called martingales. Though a 
number of other illustrative examples will be given, the most immediate 
interpretation is that of a fair game. The discrete parameter case is con­
sidered for simplicity. The parameter n is assumed to run over all the 
integers, the positive integers or the negative integers. Let Xn be a 
sequence of random variables with $n a corresponding nondecreasing 
sequence of Borel subfields of:t. The random variable Xn is assumed to 
be measurable with respect to $n. In fact, $n is often taken to be the 
Borel field generated by Xk , k :::;; n, though this is not necessarily the 
case in our discussion. Also let E [I Xn I] < 00 for each n. The sequence {Xn} 
is called a martingale with respect to the Borelfields {$n} if 

(1) 

almost surely. Think of a sequence of gambles at the times n. $n can be 
thought of as corresponding to the information available to the player at 
time n. Xn is the cumulative gain (or loss) of the player up to and 
including time n. Condition (1) then states that the sequence of plays 
is "fair" in the sense that the conditional net gain from time m to n given 
information up to and including time m is zero. If the condition (1) is 
replaced by 

(2) 

almost surely, the sequence {Xn} is called a supermartingale relative to {$n}. 
Notice that if Yn, n = 1,2, ... , is a sequence ofindependent random 
variables with means equal to zero and $n = (YI ,j :::;; n), the partial 

n 
sums Xn = ~ YI are a martingale relative to {$n}. If the means of the 

1=1 

random variables Yn are all nonpositive, the sequence (Xn) is a super­
martingale relative to ($n). 

In Section c of Chapter V another example of a martingale had 
already been implicitly considered. Let f be a bounded measurable 

182 
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function on a probability space with Borel field of events $. The in­
creasing family of subsigma-fields en of $ is assumed given with e the 
sub-sigma-field of $ that uen generates. Set 

(3) 

Then (Xn) is a martingale relative to (en) since 

Xm = E[f(w) lem] 

= E[E[f(w) lenl I em] = E[Xnlem] (4) 

for m < n. In Section c of Chapter V we showed that Xn = E[f(w) len] 
converges almost everywhere to 

x'" = E[f(w) Ie], (5) 

as n _ co. This is an example of a martingale convergence theorem. A 
general result of this type will be derived in Section b. The following 
is a related example of a martingale. Consider a probability space with 
Borel field $ and probability measure P on $. For each n let C(8), 
C<~), ... be a countable collection of disjoint measurable sets with 
union the whole space n. Denote the Borel field generated by CCI]> (n 
fixed) by en. Further assume each cent 1) is a subset of some Ce~). Let v 

be another measure on $. Then if 

v(qn») 
Xn(w) = p(qn») for weqn), (6) 

it can be easily verified that Xm = E[Xnlem], m < n, so that (Xn) is a 
martingale relative to (en). A particular case ofinterest is that in which 
n = [0,1], $ is the Borel field of Borel sets and en is the finite field 
generated by the binary subintervals {x\jj2n::;; x < (j + 1)j2n}, 
j = 0, 1, . . . , 2n -1. Think of P as the uniform measure on [0,1] and v 

as any other probability measure on the Borel sets. The function Xn(w) 
is then the quotient of v relative to the binary intervals oflength 1 j2n. 

Consider a discrete time parameter Markov process with stationary 
transition mechanism. Let the j step transition function be P(j,x,A) 
with x, A a point and a measurable subset of the state space. Still an­
other illustration will be furnished in this context. Let Nc be the first 
hitting time of the measurable subset C (of the state space) for the Markov 
process (Ym n = 0,1, ... ), that is 

{wINc(w) = k} = {wIYj(w)¢C,j = 0, ... ,k - 1, Yk(w)eC} 
k = 0, 1,2, . 

{wINc(w) = co} = {wIYj(w)¢C,j = 0, 1,2, ... }. (7) 
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Formally, No is an "improper" random variable in that we're possibly 
allowing it to take on the value 00 with positive probability. However, 
it is easily seen that this will cause no difficulties in the following dis­
cussion. The random variable No is an example of what is called a 
stopping time relative to the increasingfamily of Borelfields $11. = $(Y"j ::;; n), 
that is 

(8) 

In the case of No this also holds for n = 00 with $<X) = $(Y"j = 0, 
1, ... ). Generally, a stopping time can be defined with respect to any 
increasing family of Borel fields. Let 

h(y) = P[No(w) < 001 Yo(w) = y], (9) 

that is, h(y) is the conditional probability of ever hitting C given that 
one starts from y initially. Set Xn(w) = h(Yn(w)). Our claim is that 
(Xn, n = 0, 1, ... ) is a supermartingale relative to the Borel fields 
$11. = $(Y"j ::;; n). This follows since 

by the Markov character of (Yn) and 

E[XnIYm] = E[h(Yn(w))IYm] 

= I P(n - m, Y n, dz)h(z) 

= P[Y,€C for somej 2 nlYm] 
::;; P[Yj€C for somej 2 mlYm] 

(10) 

= h(Ym) = Xn, n 2 m. (11) 

Notice that if {Xn} is a martingale relative to the sequence of Borel 
fields $11., the corresponding sequence of martingale differences {Zn} 
with Zn = Xn - Xn- 1 satisfy 

(12) 

SInce 

if m < n. A sequence of martingale differences arises naturally in the 
context ofa prediction problem. Let (Yn , n = ... , -1,0, 1, ... ) 
be a strictly stationary process with finite second moment, EY~ < 00. 

Consider the best (possibly nonlinear) predictor Y: ofYn depending on 
Y" j ::;; n - 1, in terms of minimizing the mean square error of pre­
diction 
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(14) 

Let $n = $,(Y;,j s n) be the Borel field generated by Yf,j S n. Then 
Y: is a $n -1 measurable random variable. One can show that 

(15) 

by the argument used to obtain the result in Problem 11 of Chapter IV. 
The prediction error is 

Zn = Yn - Y:. (16) 

The process (Zn) is a martingale difference relative to the sequence of 
Borel fields ($n) since 

E(Znl$,m) = E(Yn - Y:I$,m) 
= E(Ynl$,m) - E(E(Ynl$,n-1)I$,m) 
= E(Ynl$,m) - E(Ynl$,m) = 0, (17) 

ifm < n. 

There are two fairly obvious but interesting remarks one can make 
about supermartingales. First notice that if {Xn} and {Y,J are super­
martingales relative to the sequence of Borel fields {$,n} then aXn + bY n 
is a supermartingale relative to {$n} for a,b 2 O. The second is that 
{min(Xmynn is then a supermartingale relative to {$,n} since if Xm S 
Ym, m < n, 

min(Xm,Ym) = Xm 2 E[Xnl$,m] 
2 E[min(Xn,Ynl$,m]. (18) 

(Xn) is called a submartingale if ( -Xn) is a supermartingale. Clearly 
(Xn) is a martingale if and only ifit is both a super and submartingale. 

b. Optional Sampling and a Martingale 
Convergence Theorem 

Let T be a stopping time relative to the increasing sequence of 
Borel fields $,n. Then T is called a bounded stopping time if there is a 
finite number N such that I TI S N with probability one. Given a 
stopping time T and a process X = (Xn) on a probability space, we 
mean by the process X stopped at T (denoted by XT) 

(1) 
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Also given a measurable set or event A, let fA denote the indicator 
function of A, that is, 

f (w) = {1 ~fwd 
A ° Ifw¢A. 

(2) 

We first show that if X = (Xn) is a martingale (supermartingale) rela­
tive to the increasing sequence of Borel fields $", n = 0, 1, . . . , and T is a 
stopping time, that then the stopped process XT is a martingale (supermartingale) . 
Notice that 

(3) 

This implies that 

E[X~+l - X~I.'Bn] = E[f{Tc.:n+l}(Xn+1 - Xn)l.'Bn] 
= f{Tc.:n+l}E[(Xn+l-Xn)l.'Bn] (~) 0. (4) 

The integrability of X~ follows from 

(5) 

The proof is essentially complete. 
The result just derived on a stopped martingale suggests the follow­

ing theorem on optional sampling. Before stating the theorem a little 
additional notation is introduced. If T is a stopping time, the Borel 
field $T consists of all events A such that 

Also given the event A, let the stopping time TA be such that 

ifwd 
ifw¢A. 

(6) 

(7) 

Theorem (optional sampling): Let X be a supermartingale (martingale) 
relative to the increasing family of Borelfields $n, n = 0, 1, ... , with Sand 
T two bounded stopping times such that S :::::; T. The random variables Xs and 
XT are then integrable with 

(8) 

with probability one. 
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Assume that k is a large enough integer such that k ~ T with 
probability one. Introduce the process Y = (Y,,) 

Y" = XmlnCT,,,) - XminCS,,,)' (9) 

The details of the proof will be given for the case in which X is a super­
martingale since the result for X a martingale follows easily from that. 
The process Y will be shown to be a supermartingale. Notice that 
Yo = ° and Yk = XT - XS' One can write 

" 
Y,,= ~ Xi - 1([(S <i-1 =T} - [(S=i-1 <T}) + X"[(S<"~T}' (10) 

i=1 
This implies that 

E[Y"+1 - Y"I$,,] = E[[(S<"+1~T}(X"+1 - X,,) 1$,,] 
= [(S<"+1~T}E[X"+1 - X"I$,,] ::;; 0, (11) 

so that Y is a supermartingale. Since Y is a supermartingale we must 
have ° ~ E(Yk ) = E(XT - Xs). To obtain (8) consider any event 
A€$s and replace Sand T in the inequality just obtained by S' = 
min(SA,k) and T' = min(TA,k) respectively. The inequality 

° ~ E(XT' - XS') = f (XT - Xs) dP (12) 
A 

follows. The definition of conditional expectation and inequality (12) 
imply (8). 

As an immediate corollary the following result on the retention of 
the martingale property is obtained. 

Corollary: Let X = (X,,) be a martingale relative to the sequence of 
Borel fields $". Assume that T1 ::;; T2 ::;; . . . are a sequence of bounded 
stopping times. Then the derived optionally sampled process (XTn ) is a martingale. 

There is an immediate interpretation of this corollary. Suppose that 
X = (X,,) represents the results in a sequence of fair games. If the 
gambler chooses not to play every time but only at the stopping times 
T1 ::;; T2 ::;; ... (so that he has no knowledge ofthe future), he is still 
playing a sequence of fair games. 

We now state and derive an integral inequality for supermartin­
gales. Let X = (X,,) be a supermartingale relative to the Borel fields $no 
n = 0, 1, ... , and the event A€$o. Then if c > 0, 

cP(A n { inf Xk < -c}) ::;; f Xi (13) 
o~k~m An! In! Xk < -c} 

o~k~m 
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for j 2 m. First set 

Y {o ifweA 
n(w) = Xn(w) if w¢A. (14) 

The sequence Y = (Yn) is a supermartingale since 

E(Yn+l - Yn/$n) = E(IA(Xn+l - X,,)/$n) 
= IAE (Xn + 1 - Xn/$n) :::;; O. (15) 

Let 

T(w) = inf{n/n :::;; m, Yn(w) :::;; -c}. (16) 

If no such integer n exists set T(w) = m. The random variable T is a 
stopping time bounded by m so that the theorem on optional sampling 
can be applied. Thus E[YT ] 2 E[Ym] and so 

E[Ym] :::;; E[YT ] :::;; -cP[A n {inf Xn :::;; -c}] 
nSm 

+ I xm, (17) 
(A " { inC Xn > - c» 

nsm 

or 

cP[A n {inf X" :::;; -C}] :::;;I Xm. (18) 
n sm A " {inC Xn S - c) 

nSm 

The inequality just derived can be used to prove a martingale con­
vergence theorem. 

Theorem: Let X = (Xn) be a martingale relative to the family of Borel 
fields $n, n = 0,1, ... , with E/Xj / :::;; M < 00 for allj. Then 

lim Xj = X 
j ... 00 

(19) 

exists with probability one where E / X / :::;; M. 

The proof is indirect. Assume there is no convergence with prob­
ability one. Then there are numbers a < b such that the set 

D = {lim X > b lim X k < a} k ,_ (20) 
k .... co k ... co 

has P (D) > O. Let 

Bmn = {sup X k > b} 
mSkSn 

Amn = { inf Xk < a}. (21) 
mSksn 
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We can then find a sequence of integers n1 < n2 <. . such that 

P(D n AI"l) 2 P(D)(l - 4-1) 
P(D n AI"l n B"1"2) 2 P(D)(l - 4-1 - 4- 2) 

P(D n A1"1 n B"1"2 n A"2"a) 2 P(D)(l - 4-1 - 4- 2 - 4- 3) 

(22) 

Let DI = AI"l' D2 = AI"l n B"1"2' .... Since X is a martingale, X 
and -X are supermartingales. The inequality (18) implies that 

(23) 

or 

according as k is even or odd, for j > nk' This implies that 

ifj> nUl (k even). Then 

EIXil 2 %r(b - a)P(D) (25) 

with r any given positive integer ifj is sufficiently large. But this contra­
dicts the boundedness of E IXil uniformly inj. 

We shall say that a martingale X = (X,,) with respect to $", 
n = 1, 2,. ., is closed if there is a random variable Y, ElY I < 00, 

such that 

(26) 

with probability one. The following result indicates when a martingale 
is closed. 

Corollary: A martingale X = (X,,) is closed if and on?J if it is uniform?J 
integrable. 

Assume X = (X,,) is closed by Y. Then 

(27) 

and 

1 1 
P{IX"I > c} :s;: - EIX"I :s;: - EI YI, c c 

(28) 



190 Random Processes 

so that the first integral on the left of (27) is less than e for c sufficiently 
large. Thus X is uniformly integrable. Conversely, assume that (Xn) is 
uniformly integrable. Then EIXnl :::::;: M < 00 for some constant M. 
The martingale convergence theorem implies that there is a random 
variable Y = lim Xn with EIYI < 00. The uniform integrability 
implies that n .... <Xl 

EIXn - YI ~O, (29) 

as n ~ 00. Since 

f Xm = r Y = i lim Xn, JA JA An .... "" 
(30) 

for Ae$s, s :::::;: m, Y closes X. 
As an application of these results, consider the illustration of section 

a in which one had a probability space with Borel field $, measures v 
and P on $ and the increasing family of subfields Cj • The sequence 
Xn(w) as given by (a.6) is a martingale with EXn(w) = EIXn(w) I :::::;: 
v(Q) < 00. The martingale convergence theorem of this section implies 
that 

lim Xn(w) = X",,(w) (31) 
n .... "" 

exists almost surely with EXoo(w) :::::;: v(Q). If v is absolutely con­
tinuous with respect to P so that 

v(B) = fBf(w) dP (32) 

the martingale is closed since 

Xn = E[f(w) ICn]· (33) 

The corollary then implies that 

(34) 

"" as n ~ 00. Further, if $ = V Cj ($ is the smallest Borel field contain-

"" ing U Cj ), we must have 
j=l 

almost surely. 

1=1 

(35) 
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c. A Central Limit Theorem for Martingale 
Differences 

191 

The principal result of this section is concerned with a stationary 
sequence of martingale differences X = (X,,) relative to a sequence of 
Borel fields $", n = ... , -1,0, 1, ... , that is, 

(1) 

Theorem: Let X = (X,,) be a stationary ergodic sequence of martingale 
differences with finite second moment EX; = 1. Then 

_1 '\' Xi 
Vn~ 

J=l 

(2) 

is asymptotically normally distributed with mean zero and variance one as 
n ~ co. 

Results of this type are initially due to P. Levy. The particular result 
stated is due to Billingsley. The format of the proofwe give is modeled 
on one of Brown and Eagleson [A2J. The following lemma is helpful in 
the proof. 

Lemma: Let X"' w,,' n = 1,2, ... , be random variables with cf>(t) a 
characteristic function. Assume for some fixed t that w -,,1 converges to cf> (t) - 1 in 
mean of order one and that 

lim E(W-"l. exp(itX,,) - 1) = 0. 
" .... co 

Then 

lim E exp(itX,,) = cf>(t). 
" .... co 

The lemma follows since 

IE (exp (itX,,) - cf>(t)) I ~ IE exp (itX,,) (1 - w; 1cf>(t)) I 
+ IEcf>(t)(W;l exp (itX,,) - 1)1 

::;: Ell - w;lcf>(t) I 
+ 1cf>(t)IIE(w;l exp (itX,,) - 1)1 

~ Elw;l - cf>(t) -11 
+ IE(w;l exp (itX,,) - 1)1 
~ ° as n ~ co. 

(3) 

(4) 

(5) 
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We now go on to prove the theorem. Let 

bn = max a~;. 
1~/~n 

(6) 

Because of the ergodicity of the process X = (Xn) and EX~ = 1, it 
follows that V~n ~ EXr = 1 with probability one as n ~ 00. Thus 

lim P(V~n ~ 2) = 1. (7) 
n"''''' 

It is clear that 

(8) 

as n ~ 00 where e is any fixed positive number. But this implies 
that 

n 

~ L E(X~I{lxJI<!ev'n}I$I-1) ~ 0 (9) 

J=1 

in probability as n ~ 00 since (7) is the expected value of the non­
negative random variable (8). Notice that (9) implies that 

in probability as n ~ 00 since 

Let 

bn ~ e2 + ~ max E(X~I{lxJI Uv'n}l$f-1) 
11 1 

n 

< e + ~ L E(X~I{lXJI<!Bv'n}I$I-1). 
1=1 

(10) 

(11) 

(12) 

Then X!l' ... ,X!n is a martingale difference sequence relative to 
$1' . . . , $n since I{v:k or; 2} is $k -1 measurable. If we set 



Martingales 193 

V~~ = ~ ! E(X~fl$j-l) 
1=1 

then 

" 
V~: = ~ 2: I{V2nj';2}E(X~I$'-1) ~ 2 (13) 

1=1 

with probability one. Now 

!~~ P LC\ (X~f = X,)] = 1, (14) 

smce (X~f =f= Xj) = (V;j > 2) and (V;, > 2) C (n" > 2) so that 

" P[ U (Xj =f= X~j)] C P(V;" > 2). Thus, it is enough to carry out the 
f=1 

proof with X~/s instead of X/so However, the proof follows just as if we 
took the X/s and assumed V;" ~ 2 with probability one and this is the 
way we shall continue. Let gt(x) = (eitx - 1 - itX)X-2. Since 

(15) 

formula (9) implies that if X"k = ~Xk' 

in probability as n ~ 00. Because of the boundedness of V;" 

in mean of order one as n ~ 00. Let 

where 

Gnk = exp [i<~ Xnf - J:l E(gt(X"j)X;jl.'Bj _1)] 

X {exp (itX"k) - exp (E(gt(Xnk)X;kl.'Bk- 1))}. (18) 
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Then 
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exp [i<t: Xnj - ~l E (gt(Xnj)X;jl$j-1)] ' 

with Q(x) = eX - 1 - x. Now 

Q(x) ~ Y2l x l2 e1xl • 

This implies that 

Thus 

n 
~ ~t4 exp (2t 2)E ~ a~k 

k=l 

(19) 

(20) 

(21) 

(22) 

as n ~ 00. Now use the lemma with Xn = Sn, cfo(t) = exp (-t 2/2) and 

(23) 

and we find that 

lim E exp (itSn) = e- t2 /2 (24) 
n-+ 00 

for every t. The desired result follows by using the continuity theorem 
for characteristic functions. 

In the following corollary we have a central limit theorem for a 
broader class of stationary processes. The basic idea is that of intro­
ducing an appropriately defined martingale and applying the foregoing 
theorem. This technique was first used by Gordin [A6]. 

Corollary: Let Y = (Yn), n = ... , -1,0,1, ... be a strictly 
stationary process with EYj = 0, EY~ < 00. If $n = (Yk , k ::; n) is the 
Borel field generated by Y k' k ~ n, assume that 

co 

~ {E(E(Yol$n}))2}Y. < 00, 
1=1 

(25) 
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and 

<XI 

EY~ + 2 ~ E(YkYO) = a2 > O. 

Then 

k=1 

1 n 
--- ~Yj Vn a j=1 

is asymptotically normal with mean zero and variance one. 

n 

Let Sn = ~ Y j • Then 
j=1 

n 

ES~ = nEn + 2 ~ (n - k)E(YkYO). 
k=1 

Now 

Notice that (25), (26), (28) and (29) imply that 

1 
_ES2 ~a2 > 0 n n , 

as n ~ 00. Let 

<XI <XI 
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(26) 

(27) 

(28) 

(30) 

The inequality (25) implies that {EI ~ ur I2}7'. ::;: ~ {Elu rI2}7'. < 00 so 
.=0 .=0 

tha t we can set 

<XI 

Xo = ~ Un 
.=0 

(32) 

where T is the shift operator. Notice that X = (X.) is a process of 
martingale differences since 

(33) 
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almost surely. The basic properties of conditional expectations imply 
that 

E(urur+,,) = E(E(Yrl.'Bo)E(Yr+lcl.'Bo» 
- E(E(YTI.'B_l)E(Yr+kl.'B_l» 

= E(Yr+kE(Yrl.'Bo» - E(YT+kE(YTI.'B- 1» 
= E(YkE(Yol.'B- T» - E(YkE(Yol.'B- r - 1». (34) 

Now to evaluate 

" EIXol2 = lim EI ~ uTI2 
n,-+a) 1'=0 

CIO 

= Eyg + 2 ~ E(YkYO) = 0'2> O. (35) 
k=1 

" Set T" = ~ XJ' Since X is a martingale, by the preceding theorem 
J=1 

(36) 

is asymptotically normal with mean zero and variance one. Clearly 

ET; = n0'2. Thus, if one can show that ~ ESn Tn ~ 0'2 as n ~ 00, it will 
n 

imply that! E(Sn - Tn)2 ~ 0 as n ~ 00 and consequently the desired 
n 

conclusion of the corollary. Again using properties of conditional 
expectations we find 

" = nEXoYo + ~ (n - j){E(YoXj) + E(YoX -j)} 
j=1 

,,-1 

= ~ (n - j)E(YoX-J) 
j=O 

= ~~(n - j)E{YOT~ (E(Y -1+TI.'B- J) - E(Y -1+ rl.'B- J- 1»} 
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= C~ .~ (n - j) - ,t1'~ (n - j + 1) )E(YoE(Lj+.I.'B_ j )) 

n-1 n ~ 

= L (n - j)E(YoY -i) - L L E(YoE( Y -1+.I.'B-1)) 
1=0 j=l.=l 

co 

+ n L E(YoE(Y.I.'Bo)) 
.=1 

n-l n ~ 

= L (n - j)E(YoYj) - L L E(YjE(Y.I.'Bo)) 
j=o 1=1 T=l 

co 

+ n L E(YoY.) . (37) 
• =1 

d. Problems 

1. Let Xl' X 2 , • • • be a Markov chain with transition probability 
matrix P. Assume that A is a set of recurrent states of the chain. Let 
N1 < N2 < ... be the successive times that the chain takes values 
in A. Show that X N1 , X N2 , ••• is a Markov chain. 

2. Consider Xl, X 2 , • • • a sequence of independent identically dis­
tributed random variables with E IXil < 00 and N a stopping time 
on the sample space with EN < 00. Show that 

E(XI + ... + X N) = E(N)E(X). 

(This result is commonly referred to as Wald's equation.) 

3. Let Xl, X2, . . . be a Markov chain with Nl < N2 < . . . a 
sequence of stopping times. Show that XN1 , XN2 , ••• is a Markov 
chain. 

4. Let P be the transition probability function of a Markov chain. The 
vector h is said to be sub harmonic (harmonic) with respect to P if 

(=) 

h ~Ph. If Al+l =p, AI-l =q with ° <p < 1, q = 1 -p, 
i = 0, ±1, ... , determine the harmonic and superharmonic 
functions relative to P. 

5. Let Xl, X 2 , • • • be a Markov chain with transition probability 
matrix P. Suppose that h is superharmonic relative to P and that 
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Elh(Xk)1 < 00 for all k. Show that Yk = h(Xk), k = 1,2, ... ,is a 
supermartingale. 

6. Consider the random walk on the lattice points (i,j), i,j = 0, 
± 1, ... in the plane with 

At,fl,(l+l,f) = P<t,f),(I-I,f) = P(I,fl,(I,HI) = P<t,f),(l,f-l) = %. 
Let A be a set of lattice points with B a subset of A. Let N be the 
first hitting time of the set A where it is understood that N = 0 if 
one starts in A. Consider. 

P[XNEB C AIXo = (i,j)] = h(i,j), 

where Xl' X 2 , • • • is the random walk. Show that 

h( ' .) ={1 if(i,j)EB 
t,) 0 if (i,j)EA - B 

and that 

h(i,j) = %{h(i,j + 1) + h(i,j - 1) + h(i + 1,j) + h(i - 1,j)} 

if (i,j)¢A. 

7. In the context of problem 6 let 

P[XNEB C A,N = nlXo = (i,j)] = hn(i,j), 

where N is the first hitting time of the set A. Show that 

while 

and 

h ( .. ) _ {1 if (i,j)EB 
o t,) - 0 if (i,j)¢B 

hn(i,j) = 0 if (i,j)EA and n > 0 

hn(i,j) = %(hn-l(i + 1,j) + hn-l(i - 1,j) + hn_l(i,j + 1) 

+ hn-l(i,j - 1)) 

if (i,j)¢A, n > O. Also 

co 

h(i,j) = L hn(i,j)· 
n=O 
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8. Let (Xn) be a martingale difference sequence relative to the sequence 
of Borel fields $m n = 1, 2, . . . . Set 

n 

Sn = L Xj' a~ = E(X~I$n-1)' 
1=1 

n 
V~ = L al, and s~ = ES~ = EV~. 

1=1 

Show that if s~ t 00 

S; 2 max aJ ~ 0 in probability 
jSn 

V~ ~ a2 (constant) in probability 
n 

S;;2 L E(XJI(IXil ~ esn)l$n-l) ~ 0 in probability 
j=1 

as n ~ 00 for each e > 0, then Snlsn converges in distribution as 
n ~ 00 to a normal distribution with mean 0 and variance a 2 • 

Notes 

1. In the case of a continuous time parameter t, the Borel fields t are assumed to 
be nondecreasing and right continuous in the sense that 

t = t+ = n 
s>t 

(see Meyer [A10]). 

2. P. Levy (see his Theorii de l'Addition des Variables AUatoires, 1937) obtained the 
earliest results on martingales. Much of the development of interest in martingales and 
their application is due to the research and influence of J. L. Doob [12]. 

3. A broader class of limit theorems for martingales can be found in the paper of 
Brown and Eagleson [A2]. 



IX 
ADDITIONAL TOPICS 

a. A Zero-One Law 

Let AI, A2, ••• be a sequence of events of the probability space 
of interest and therefore by implication elements of the sigma-field on 
which the probability measure is defined. Our object is to compute the 
probability of the set of points belonging to an infinite number of the 
sets Ai, i = 1, 2, . . . . Loosely speaking, we are interested in the prob­
ability that the Ai occur infinitely often. For convenience, this set will 
be referred to as Ai i.o. and its complement (the Ai occur finitely often) 
as Ai f.o. The event Ai i.o. belongs to the sigma-field of sets on which the 
probability is defined since 

'" '" Ai Lo. = (\ V Ai. (1) 
n-l i-n 

Therefore 

'" '" P(A i Lo.) 5 P(U Ai) 5 ~ P(Ai) (2) 
i=-n i-n 

so that if 
P(A i i.o.) > 0 (3) 

then 

(4) 

diverges. 
A parallel statement in the opposite direction is not possible for 

general Ai. However, it is feasible for independent Ai. Let us therefore 
now assume that the Ai are a sequence of independent events. Now 

'" <Xl 

Ai f.o. = (Ai i.o.) = V (\ Ai (5) 
n=:ll illllllln 

(see Problem 1, Chapter II). Since the Ai are independent 

.. 00 00 

PC (\ Ai) = II (1 - P(A;» 5 exp (- ~ P(A;». (6) 
i-n f=n i=-n 

200 
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., 

If ~P(Ai) diverges, P( n .{) = ° by (6) and thus 
j-l 

P(Ai f.o.) = 0. 

201 

(7) 

It therefore follows that If Ai, i = 1,2, ... ,is a sequence of independent 
events, P(Ai i.o.) can only assume the two values 0 and 1. The values 0 and 1 
correspond to the convergence and divergence of ~P(Ai) respectively. Such a 
result is an example of a zero-one law. 

b. Markov Chains and Independent Random 
Variables 

Let Xn , n = 0, ± 1, . . . ,be a finite state stationary Markov chain 
with transition probability matrix 

P = (Pi.j; i, j = 1, ... , m) 
pi,j = P(Xn+l = jlXn = i) 

and instantaneous invariant probability vector 

p = (Pi; i = 1, 2, ... , m) 
Pi = P(Xn = i) 

pP = p. 

(1) 

(2) 

For convenience we assume that the transition probabilities pi,j are all 
positive. This implies that the process Xn is an ergodic process without 
any periodic states (see Problem 11, Chapter III). Our object is to show 
that the process Xn can be represented as a one-sided function f of independent 
uniformly distributed (on [0,1]) random variables ~n and its shifts, that is, 

(3) 

To carry out the construction, a continuous state stationary Markov 
process IYn }, n = 0, ±1, ... ,is introduced. Let 

n = 0, ±1, ... (4) 

where the Un are a sequence of independent uniformly distributed 
random variables [0,1], and the process I Un} is independent of the 
process IXn }. Notice that we have enlarged the probability space of the 
Xn process by adjoining the Un process. The process Yn is a stationary 
ergodic Markov process with transition probability density 

p(yly') =hiifi -1 =::;y' < iandj -1 =::;y <j (5) 
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and instantaneous density function 

p(v) = Pi if j - 1 ~ Y < j, (6) 

i, j = 1, 2, ... ,m. Notice that 

(7) 

where [y] is the greatest integer less than y. Let F(yly') be the condi­
tional distribution function of Yn given Yn- 1. Thus 

j-l 

F(yly') = ~ Pi,k + Pi,f(Y - j + 1) 
k=1 

(8) 

if i - 1 ~ y' < i and j - 1 ~ y < j. Notice that F(yly') with y' fixed, 
o ~ y' < m, increases strictly from zero to one as y ranges from zero to 
m. Further, the function z = F(yly') with y fixed, 0 ~ y < m, maps 
each y' interval of the form i - 1 ~ y' < i, i = 1, ... , m, into a 
single z value. Of course, the z value depends on the fixed values of 
y and i. Introduce the random variable 

(9) 

The random variable ~n = F(YnIYn- 1) is uniformly distributed on 
[0,1] and independent of Yn- 1 (see Problem IV.S). The Markovian 
property of the Yn sequence implies that ~n is independent not only of 
Yn- 1 but also of all the preceding random variables Yn- 2, Yn- 3, •••• 

The ~n are therefore a sequence of independent uniformly distributed 
random variables on [0,1]. 

Let 
o = minpi,l > O. 

i 
(10) 

From (8) and (9) it follows that 0 < ~n-l < 0 implies that 0 ~ Yn- 1 < 
1. If it is also true that 0 < ~n < 0, then by (8) 

Further, knowledge of Yn and ~n+1 determine Yn+1 since 

Yn+1 = F-l(~n+1IYn)' 

(11) 

(12) 

Here F-l(zly') = y is the inverse function of z = F(YIy') as a function 
of y, 0 ~ y < m, with y' fixed. It is now possible to see how the process 
Yn can be constructed out of the ~n sequence by a one-sided function 
and its shifts. Let An be the event 

(13) 
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Set 

and recursively 

G1(z,y) = P-l(Z/Y) 
G2(ZI,Z2,y) = P-l(Zl/G1(Z2,y)) 

203 

(14) 
(15) 

Consider the one-sided infinite sequence of independent random 
variables 

• , ~n-2, ~n-l, ~" (17) 

and the independent events 
(18) 

'" defined in terms of these random variables. Notice that :E P(An- 2k) 
k=l 

diverges since all the events have the same positive probability. By 
the zero-one law almost every realization of the sequence (17) must 
lie in one of the events An - 2k , k = 1, 2, .... Suppose j is the smallest 
positive integer for which the realization of (17) falls into an event 
An- 2k (j of course depends on the realization). Then 

(19) 

with probability one. Since Xn is given in terms of Y" by (7), X" is 
determined in terms of ~n, ~n-l, . • . • 

Actually a necessary and sufficient condition that a general denum­
erable state stationary Markov chain have a representation of the form 
(3) is that the chain be ergodic and have no periodic states (see [67], 
[69]). The argument is more elaborate and the representation is not as 
simple as (19). 

c. A Representation for a Class of Random Processes 

Let Xt = Xt(w), 0 :::; t :::; T < 00, be a real-valued random process 
continuous in mean square. Further, we shall assume that our repre­
sentation of the process is such that Xt(w) is jointly measurable in t and 
w. As before the mean value EXt(w) is taken to be identically zero for 
convenience. The mean square continuity of the process implies that 
the covariance function 

(1) 

is continuous in t and T jointly on the square 0 :::; t, T :::; T. 
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The representation of the process X t will be given in terms of the 
solutions ep(t) of the integral equation 

(2) 

with kernel r(t,T). A solution ep(t) of equation (2) is called an eigenfunction 
of the equation and the corresponding number A its eigenvalue. Of course, 
we are only interested in nontrivial solutions ep and hence the corre­
sponding eigenvalue A r!i O. Further, the eigenfunctions of interest are 
to be decent in that they are square integrable, that is, 

(3) 

More can actually be said. The kernel r(t,T) is uniformly continuous 
since it is continuous on the closed interval 0 ~ t, T ~ T. This coupled 
with an application of the Schwarz inequality implies that the eigen­
functions ep(t) of the integral equation (2) are all continuous. It has 
already been remarked that the covariance function of a random 
process is positive definite. Thus 

T 

lOT lep(t)/2 dt = A II ep(t)r(t,T)ep(T) dt dT > O. (4) 
o 

It follows that all eigenvalues of the integral equation are positive. The 
eigenfunctions ep(t) can be taken as real-valued functions. For even if ep(t) 
were complex, by (2) its real and imaginary parts separately would be 
eigenfunctions with eigenvalue A. Consider now any two eigenfunctions 
ep1(t), ep2(t) corresponding to distinct eigenvalues AI, A2, A1 r!i A2. Then 

T 

;1 loT epl(t)ep2(t) dt = II epl(t)r(t,T)ep2(T) dr dt 
o 
1 (T 

= A2 Jo epl(t)ep2(t) dt (5) 

by the symmetry of the kernel r(t,T). This cannot hold unless the eigen­
functions are orthogonal, that is, 

(6) 

It is possible to have several eigenfunctions corresponding to one 
eigenvalue A. However, as we shall later see, there can be at most a 
finite number of linearly independent eigenfunctions corresponding to 
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one eigenvalue (see [1]). Further it will be convenient to assume that 
the eigenfunctions have been orthonormalized by, for example, the 
Gramm-Schmidt procedure (see [1]). 

The following theorem on the integral equation (2) will be used in 
the representation of the process Xt. The eigenvalues ~i of equation (2) 
are countable in number. Each eigenvalue has at most a finite number of linearly 
independent eigenfunctions I{)i(t) (assumed orthonormal). Furthermore, 
the kernel r(t,r) has the following representation in terms of the eigenfunctions 
I{)i(t) and the corresponding eigenvalues ~i 

'" 
r(t,T) = 2: l{)i(t~:i(T). (7) 

i-l 

This result will be derived later on. Actually the convergence in (7) 
is uniform. 

The expansion (7) will now be used to obtain a representation of the 
process XI, 0 ~ t ~ T, in terms of the eigenfunctions and eigenvalues 
of equation (2). Now 

(8) 

Fubini's theorem (see section a of Chapter IV) then implies that 

(9) 

is finite for almost every realization of the process. Thus integrals of 
the form 

are all well defined. Let 

Zi = ~ lOT Xtl{)i(t) dt. 

The random variables Z; are orthonormal since 

T 

EZiZ; = II l{)i(t)I{);(T)r(t,T) dt dT VN~i 
o 

= lOT l{)i(t)I{);(t) dt(~i/N)"h = 0;,; 

(10) 

(11) 

(12) 
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where E(X1XT ) = r(t,T). Further, using this property, 

N 
EIX, - }; Z.'Pi(t)/~12 

1=1 
N _ /_ N 

= r(t,t) - 2 }; <{'i(t)E(XtZi)/v Xi + }; <{'~(t)/N (13) 
1=1 i=1 
N 

= r(t,t) - }; <{'r(t)/Xi 
i=1 

since 

E(X1Zi) = v~ loT r(t,T)<{'i(T) dT = <{'i(t)/V~. (14) 

It follows from (7) that 

Xt = ~ Zi'Pi(t)/VX. (15) 
;=1 

in the sense of mean square convergence since (13) approaches zero as 
N ---t 00. Notice that the Zi are independent normal variables with mean zero 
and variance one if X, is a Gaussian process. 

Let us now derive the results on the integral equation (2) that were 
assumed in the previous discussion. Let the 'Pi(t) i = 1, ... , n be 
any finite number of orthonormal eigenfunctions of (2) and the Xi the 
corresponding eigenvalues. Set 

n 
Sn(t,T) = r(t,T) - }; <{'i(t)'Pi(T)/Xi = r(t,T) - qn(t,T). (16) 

i=1 

Any square integrable function g can be expanded in the form 

n 
get) = ~ ai'Pi(t) + h(t) (17) 

i=1 

where h is orthogonal to 'PI(t), ... , <{'net). It follows that 

T T 

I Ig(t)sn(t,r)g( T) dt dT= II h(t)r(t,T)h(T) dt dT ~ O. (18) 
o 0 

Let get) equal l/s (s > 0) in an interval of length S about to and zero 
elsewhere. The function Sn(t,T) is continuous in t and T jointly since 
r(t,T) and the eigenfunctions <{'i are continuous. On letting S ---t 0 in 
(18) we therefore obtain 

n 
Sn(to,tO) = r(to,to) - }; 'Pt(tO)/N ~ O. 

i~1 

(19) 
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Integrate the inequality (19) from zero to T to obtain 

n 

fo T r(t,t) dt ~ L 1/>..;. 
;=1 

207 

(20) 

First of all it is now clear that there can be at most a finite number of eigen­
functions corresponding to one eigenvalue >... For if there were an infinite 
number, all the>..; in (20) could be taken equal to this eigenvalue}. and 
the right-hand side of the inequality would be unbounded leading to a 
contradiction. Further there can be at most a countable number of eigenvalues. 
If there were an uncountable number of eigenvalues, an infinite number 
of them would have to lie in one of the sets (1, C(), (H,l), ... , 
(Hn+\Hn), .... If the >"i in (20) were set equal to eigenvalues 
lying in this particular set, the right-hand side of the inequality would 
be unbounded again leading to a contradiction. It is therefore seen that 

.. 
~ tpW)/>..; ~ r(t,t) < C(). (21) 
I 

From this it follows that 

.. .. .. 
I ~ tp,(t)tpiCT)/>"il ~ [~ tpW)/>", ~ tpHT)/>"i]~z (22) 

so that 
i=k i=k i=k 

.. 
~ tpi(t)tpi(T)/>"i = q(t,T) 
1 

(23) 

is convergent. Actually (22) indicates that the convergence is uniform 
in T for fixed t so that (23) is continuous in T for fixed t. Of course, the 
preceding statement is valid with T and t interchanged. 

We shall now introduce notation and definitions that will be helpful 
in the following discussion. Given any two functions f, g that are square 
integrable on 0 ~ t ~ T, let (j,g) denote the "inner product" of the two 
functions where 

(j,g) = fo T f(t)g(t) dt. (24) 

I t is immediately clear that 

(j,g) = (g ,j) (25) 
and 

(af + ~h, g) = a(j,g) + ~(h,g) (26) 
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for any square integrable functions f, fl, g and real numbers a, (l Let 
IIf" denote the "length" of a square integrable function where 

(27) 

The Schwarz inequality gives us a bound on the inner product (f,g) 
in terms of the lengths IIfll, IIg II of f, g 

'(f,g) , ~ IIfil . "gil· (28) 

The Minkowski inequality can then be rewritten as 

IIf + gil ~ 'If II + IIgil (29) 

.in this notation where f, g are understood to be square integrable. 
The terms "inner product" and "length" used imply that the square 
integrable functions can be regarded as vectors. This is in fact the case. 
They are, however, vectors in an infinite dimensional space. The same 
notation, at the risk of hopefully small confusion, will be used for a 
function of two variables at times. Thus, if r(t,r) and s(t,r) are square 
integrable functions on 0 ~ t,r ~ T, (r,s) and IIril will be understood 
to be 

and 

respectively. 

T 

J J r(t,r)s(t,r) dt dr 
o 

o 

(30) 

(31) 

Let r be square integrable on 0 ~ t, r ~ T. Then the integrable operator 
R generated by r 

(32) 

takes square integrable functions g into square integrable functions 
h on 0 ~ t ~ T. For by the Schwarz inequality 

IIhil = "Rgil ~ IIril . IIgll· (33) 

In fact, it is a bounded operator in the sense that 

IIR" = sup ",R, g"" = sup ",R, ~"l' ~ "rll < 00. (34) 
lIall>O g lIull-1 g 
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The constant IIRII is called the norm of the transformation R. We shall 
show that given any sequence of functions gn bounded in mean square, 

(35) 

the sequence of functions Rgn = hn contains a subsequence hn~ that 
converges in mean square 

(36) 

as k, j ~ 00. Of course, the subsequence converges to a square inte­
grable function h(t) by the Riesz-Fisher theorem. This property of an 
operator is sometimes referred to as complete continuity. Notice that 
the sum of two integral operators of type (32) that are completely continuous 
also has this property. A simple operator of type (32) with r(t,T) of the form 

rl(t,T) = a(t){3(T), (37) 

where a, f3 are square integrable on [0, T], is completely continuous. 
For 

(R1g)(t) = ({3,g)a(t). (38) 

If gn is a sequence of functions bounded in mean square, the sequence 
of numbers ({3,gn) is bounded and therefore has a finite limit point c. 
Let gnk be a subsequence of gn such that ((3,gn~) ~ c as k ~ 00. If we 
take h(t) = ca(t), it is clear that 

(39) 

as k ~ 00. Thus, the very simple kernel r(t,T) of the form (37) generates 
a completely continuous operator. Further it is immediately clear 
that a kernel r(t,T) which is the sum of a finite number of terms of the 
form (37), namely 

N 
rN(t,T) = ~ CXi(t)f3i(T), (40) 

i=l 

generates a completely continuous integral operator. Consider now a 
general square integrable function r(t,T) on 0 :$ t, T :$ T. The Fourier 
series of r(t,T) in t, Ton 0 :$ t, T :$ T converges to r(t,T) in mean square 
(see the remarks on mean square approximation of functions in section a 
of Chapter IV). Let rN(t,T) be a truncation of the Fourier series with a 
finite number of terms and such that 

Ilr - rN11 :$ 1/N. (41) 

Since rN has only a finite number of terms, it is of the form (40). Let 
RN be the integral operator generated by rN. We have already shown that 
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the operators RN are all completely continuous. Our object is now to 
show that the operator R they approximate is also completely con­
tinuous. Let gn be a sequence of functions bounded in mean square. 
Let g~l) be a subsequence of gn such that Rlg~l' converges in mean 
square. Take g~2' a subsequence of g~l such that R2g~21 converges in 
mean square. Generally, let g~' be a subsequence of g;::-ll such that 
Rkg~' converges in mean square. We derive a sequence gkkl by taking 
the k-th element of the k-th sequence. Notice that RNg~k' converges in 
mean square for every N. This implies that Rgkk' converges in mean 
square for 

/lRg~k' - Rgjj'lI 
::; /I(R - RN)gick1l/ + /lRNgik1 - Kvgjilll + IICR - RN)gJjl/i 
::; Ilr - rNIICIIgik1/i + /lgJj'll) + IlrN11 . Ilg~d - gjj'/I (42) 

and (42) can be made as small as is desired by taking N, k, j sufficiently 
large. Therefore Rgick1 converges in mean square to some function, say 
h(t). 

Consider the quadratic form (Rf,f). Let 

NR = sup I (Rf,f) I· 
11/11 =1 

(43) 

Since 

I (Rf,f) I ::; IIRfl1 . /If I I (44) 
it follows that 

NR ::; IIRII. (45) 

Assume now that r(t,T) is symmetric, that is, r(t,T) = r(T,t). We will show 
that in this case 

(46) 
Let A > o. Then 

IIRfll2 = (Rf,RJ) 

= }~ [(R {Af + ~Rf}' AI + ~Rf) - (R {Af - ~Rf}' Af - ~Rf)] 

::; ~N R [ II Af + ~ Rf Ir + II Af - ~ Rf W] 

= YzNR [>'21IfI12 + ~211Rf112l (47) 

The minimum of the last expression is assumed by settingA2 = IIRfll/llfll 
if /lRf11 ~ O. The inequalities 

(48) 
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then follow. Notice that these inequalities hold even if I/Rfl/ = O. But 
they imply that IIRI/ ~ NR so that the equality (46) is established. 

Assume that IIRII > o. We shall show that R then has at least one 
nontrivial eigenfunction rp with eigenvalue X F o. Letf,. be a sequence 
of square integrable functions with 

We can already assume that they have been chosen so that 

(SO) 

(if R is positive definite). Then 

The right-hand side of (Sl) tends to zero as n ~ co since 

(S2) 
Thus 

(S3) 

in mean square. By the complete continuity of R, there is a convergent 
subsequence Rfnk of Rfn that converges in mean square. And then by 
(S3) it follows that fnk itself has a limit in mean square, say rp. Therefore 

Rrp = Xrp, (S4) 

that is, rp is an eigenfunction of (2) with eigenvalue X. 
Considerthekernels(t,r) = r(t,r) - q(t,r). It is symmetric and square 

integrable. Let the corresponding integral operator be S. Notice that 
Srpi = 0 for all the eigenfunctions rpi of R. Consider any square inte­
grable function f. It has an expansion 

(SS) 

where (h,rp.) = 0 for all i. Therefore 

Sf = Sh. (56) 

Now we must have Sh = 0 for all such h for otherwise the norm IISI/ 
would be positive and S would have a nontrivial eigenfunction among 
the square integrable functions h orthogonal to the rpis. But such an 
eigenfunction would also have to be an eigenfunction of R leading us 
to a contradiction since the rpis are supposed to be all the eigenfunctions 
of R. Therefore Sf = 0 for all square integrable f. We have previously 
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shown that continuity of r(t,T) implies continuity of q(t,T) in T for fixed 
t. It follows that S(t,T) is continuous in T for fixed t. But then 

Sf = loT [r(t,T) - q(t,T)]jH dT = 0 (57) 

for any continuous f. Taking f(T) = rCt,T) - qCt,T) we see that rCt,T) -
qCt,T) = O. Thus, the equality (7) is established. The uniform con­
vergence of the series follows from the fact that the truncated series 

(58) 

which is continuous in t and T converges to a continuous function 
t(t,T) as follows. It is clear that 

! CPt(tZt(T) - r{t,T) = 

1=1 l=n+1 

n 
Now L cpNt)/At is continuous and converges to r(t,t) monotonically. 

1 
n 

By a result called Dini's theorem (see [1]) L cp~(t)/At converges to 
1 

co 
r(t,t) uniformly. But this implies that L cpr(t)/At converges to zero 

n+1 

uniformly. Thus, the series (58) converges to r(t,T) uniformly as 
n~oo. 

An interesting illustration of the basic theorem (15) of this section 
is provided by the Wiener process Xt on 0 ~ t ~ 1. As we have already 
noted in section d of Chapter IV, the Wiener process is a normal 
process with covariance function 

rCt,T) = min Ct,T), 0 ~ t, T ~ 1. (59) 

The integral equation (2) is 

fP(t) = A /01 min (t,T)fP{T) dT 

= A {lot TfP{T) dT + 1/ tfP(T) dT}' (60) 
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Equation (60) implies that 
'P(O) = 0 

213 

(61) 

for every eigenfunction 'P. On differentiating the equation with respect 
to t we obtain the relation 

'P'(t) = ~ J/ 'PH dT. (62) 

This in turn implies that 
ep'(1) = o. (63) 

The differential equation for ep 

(64) 

is obtained by differentiating (62). The solutions of (62) are of the form 

'P(t) = A sin vi:. t + B cos v'A t. (65) 

The restraint (61) implies that B = 0 and the second restraint (63) 
implies that h = (k + Yz)271"2. The orthonormalized eigenfunctions of 
(60) are therefore 

l{Jk(t) = v'2 sin (k + Yz)7I"t (66) 

with corresponding eigenvalues ~k = (k + %)271"2, k = 1, 2, . 
The Wiener process X t on 0 ~ t ~ 1 therefore has the representation 

.. 
Xt = V2 ~ Zk sin (k + Yz)7I"t/(k + >~)71". (67) 

k-l 

d. A Uniform Mixing Condition and Narrow 
Band-Pass Filtering 

The concept of mixing was introduced in section b of Chapter V. 
This property is appreciably stronger than that of ergodicity. However, 
a central limit theorem need not hold for a dependent process satisfying 
even this requirement. We shall discuss here the property of uniform 
mixing which was introduced in [66], [70] and is strong enough to 
imply a central limit theorem. 

Let X/(w) = XI, - 00 < t < 00, be a random process (not neces­
sarily stationary) that is measurable in t and w jointly. Let <Bt be the 
Borel field of events generated by the random variables Xu, u ~ t, and 
5'. the Borel field of events generated by the random variables Xu, 
u ~ T. Thus CBt and 5'. represent the information given by knowledge 
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of the process before t and after T respectively. The process XI satisfies 
a uniform mixing condition if there is some positive function g(s) defined for 
o ~ s < 00 with g(s) -70 as s -7 00 such that for any pair of events BECBt, 
FeffT , t < T, 

IP(B (\ F) - P(B)P(F) I < geT - t). (1) 

Further any process YI derived from the XI process by operations over a 
finite time interval and their shifts is also uniformly mixing. Specifically, 
if for some fixed L, 0 < L < 00, and every t Yt(w) is measurable with 
respect to the Borel field generated by X,,(w), t - L ~ u ~ t, it 
follows that the process Yt(w) is uniformly mixing. Asymptotic normality 
for time averages of a discrete parameter uniformly mixing process was 
obtained in [66] under certain moment conditions. However, the proof 
can easily be modified so as to get the corresponding result for contin­
uous parameter processes. Recently Kolmogorov and Rosanov obtained 
conditions under which a stationary Gaussian process is uniformly 
mixing [47]. 

Consider a process XI, - 00 < t < 00, with finite fourth moments, 
EXt4 < 00, and continuous in the mean of fourth order, that is, 

(2) 

as t -7 T. It will be convenient to take the first moment EXt as identically 
zero. Further assume that XI is stationary in moments of second order and 
fourth order so that 

E[Xt,Xt.] = r(t2 - t1) 
E[Xt,Xt.Xt.xt,] = P(t2 - t1, ta - t1, t4 - t1)' (3) 

Introduce the fourth-order cumulant function 

Q(t2 - t1, ta - t1, t4 - t1) = P(t2 - t1, ta - il, t4 - t'l) 
- PO(t2 - t1, ta - t1, t4 - t1) (4) 

where Po is what P would be in the case of a normal process, namely, 

PO(t2 - tI, ta - t1, t4 - tI) = r(t2 - tI)r(t4 - ta) 
+ r(ta - t1)r(t4 - t2) + r(t4 - tI)r(ta - tI) (5) 

(see [54]). Notice that if ret) is absolutely integrable, the spectral 
density fe>..) of the process Xt exists and is continuous. We shall assume 
that ret) and Q(tI,i2,ta) are absolutely integrable over one- and three-dimensional 
space respectively. Further the spectral density f(X) will be assumed positive 
everywhere. 

In the communication engineering literature it is often assumed 
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that a narrow band-pass filter applied to a stationary random input 
yields an output that is approximately normally distributed. Such an 
output is of the form 

10 T WT(t)Xt dt (6) 

where the weight function WT(t) is chosen so that the spectral mass of 
XI away from ~, - ~ (~ the frequency of interest) is damped out and 
that around ~, -~ is passed through. We shall consider a class of 
weight functions WT(t) large enough to include such filters. Let 

WeT) = lOT wi(t).dt. (7) 

Assumethat the weight functions WT(t) satisfy the following conditions: 

1. WeT) _ 00 as T- 00 

2. The functions WT(t) are slowly increasing in that 

(a) I !WT(t)\2 dt = o( W( T» as T - 00 

A(T) 

(8) 

(9) 

for any sequence of subsets A(T) of [0, T] with the Lebesgue measure (of 
A(T» m(A(T» = o( T), uniformly in m(A(T»/T as T _ 00 and 

(b) WT(t) = 0(W(T)~2) uniformly in t as T- 00 (10) 

T-Ihl 

3. lim W(T)-l I WT(t + !hJ)WT(t) dt = p(h) 
T-... 0 

(11) 

exists for every h and is continuous in h. The limit function p(h) can be seen 
to be a positive definite function and therefore has a representation 

p(h) = 1-"""" eih )' dM(~) (12) 

with M(~) a non decreasing bounded function by Bochner's theorem. 
Notice that dM(~) = dM( -~) since p(h) = p( -h). When WT(t) 
corresponds to a narrow band-pass filter, conditions 1 and 2 of this 
section will usually be obviously satisfied since the functions WT(t) are 
typically uniformly bounded in T with W( T) the same order of magni­
tude as T. In the case of narrow band-pass filtering about p., M(~) 

will increase only at p. and - p.. Actually the conditions on WT(t) are 
general enough to cover situations that often occur in regression 
problems as they arise in time series analysis [26]. 
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Let X" EX, == 0, be a uniformly mixing process stationary up to moments 
of fourth order and satisfying the conditions on ret) and Q(tl,l2,t3) specified 
before. Further let the weight function WT(t) satisfy the assumptions 1, 2, 
3 of this section. We shall then show that 

(13) 

is asymptotically normally distributed with mean zero and variance 

2'11" 1_"'.,fCX) dM(X). (14) 

Our proof will follow that given in [70]. 
Let 

(15) 

and set 
(Hl)p(T)+jq(T) 

Uj(T) = 1 WT(t)Xt dt (16) 
;[p(T) +q(T)] 

(H l)[p(T) +q(T)] 

Vj(T) = J WT(t)Xt dt (17) 
u+ l)p(T) +iq(T) 

j = 0, 1, ... , k - 1. Here k[p(T) + q(T)] = T and k = k(T), 
peT), q(T) will be chosen so that k, p, q -+ 00 and q(T)/p(T) -+ ° as 
T -+ 00. The interval [0, T] is being divided into an alternating suc­
~ession of big blocks and small blocks, each of length peT) and q(T) 
respectively. The U;'s and V/s are the large and small block integrals 
respectively. We first show that the contribution of the small block 
integrals is negligible. Now 

k 

E II VjW(T)-~ \2 = E \ J WT(t)Xt dt W(T)-~ 12 
j-lJ A(T) 

where 

~ J Ir(u)1 J IWT(t + u)WT(t)1 dt du W(T)-l 
A(T) 

~ J Ir(u) I [ J IWT(t + u)i2 dt J IWT(t)12 dt r2 W(T)-l (18) 
A(T) A(T) 

k 
A(T) = U (tljp(T) + (j -1)q(T) ~ t ~j(p(T) + q(T»}. (19) 

;=1 

But (18) must approach zero because of the absolute integrability of 
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r(u) and condition 2 of this section. But then 

(20) 

in probability as T ~ 00. 

Our object now is to show that 

k 
2': Uj W( T)-~2 (21) 
1 

is asymptotically normally distributed with mean zero and variance 
(14) as T~ 00. The theorem on asymptotic normality ofS(T)W(T)-~2 
would then follow immediately for (20) is asymptotically negligible. 
Introduce for this purpose the distribution functions 

(22) 

and the events 

A(j,T,mj,5) = {mj5 < UjW(T)-~2 ~ (mj + 1)5}. (23) 
Now with ml, . . . , mk integers 

k k 
2': pen A(j,T,mj,o» ~ PC 2': U;W(T)-~2 ~ x) 

(m,+··· +m.+k)6::;;" j=1 ;=1 
k 

~ 2': pen A(j,T,mj,o»). (24) 
(m,+ ... +111.)6::;;", j=1 

Notice that 
P( max IUjW(T)-~~1 > Tk) < E (25) 

j=l, '" ,k 

where Tk = k(C/E)~2 with C a constant. This follows from the fact that 

k 
EI max IUjW(T)-~2112 ~ EI ~ IU)V(T)-~~1J2 

j~I, ... ,k 1 
k 

~ W(T)-1( 2': E~IUjI2)2 ~ k2C (26) 
;=1 

and an application of the Chebyshev inequality. 
Further 

k 

I 2: k 

pen A(j, T,mj,tJ» -
1 

2: n P(A(j,T,mj,tJ» I 
(m,+ ... +m.)a::;;" (m,+ ... +mk)a::;;X 1 

k 

For the probability contributed by all the sets n A(j, T,mj,5) for which 
j=1 
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max I Uj W( T)-Y.'I > Tk is by (25) at most E. Consider all the sets 
10 
n A(j,T,mj,o) for which max IUjW(T)-~21 ::; Tk. By repeated applica­
j=1 

tion of the uniform mixing condition it is clear that 

k k 

/P«(lA(j,T;,m,o» - TIP(A(j,T,m;,O))\::; kg(q(T». (28) 
J=1 j~1 

Since there are (2Tk/O)k sets of this form, the desired inequality (27) 
is obtained. 

Inequality (27) will be applied later to show that the sum of the 
Uj W( T)-~2 has the same asymptotic distribution as the sum of inde­
pendent random variables with the same marginal distributions, as 
long as k( T), q( T), p( T) are appropriately chosen. But first Iet us see 
what the asymptotic distribution of the sum of such independent 
random variables would be. The distribution function of the sum 
of these k independent random variables is 

(29) 

the convolution of G1,T(X), ... , G,.,T(X). We now show that (21) is 
asymptotically normally distributed with mean zero and variance (14). Now 

k L EIU;W(T)-~12 ~ 1-.... r(u)p(u) du = 211' 1-.... I(X) dM(X) (30) 
j=1 

as T ~ 00 by conditions 2a and 3 of this section. Further (30) is posi­
tive since I(X) is positive everywhere. By Lyapunov's form of the 
central limit theorem (see Loeve [53]), if 

k k 
~ EIU;W(T)-~~14 = o( ~ EIU;W(T)-~12)2 (31) 

i=1 j=1 

expression (21) is asymptotically normal with mean zero and variance 
(14). But 

(H 1)p(THjq(T) 
EIUjW(T)-~114 = W(T)-2 I II I WT(t1)WT(t2)WT(t3)WT(t4) 

j[p(THq(T)] (32) 
. [r(t1 - t2)r(t3 - t4) + r(t1 - t3)r(t2 - t4) + r(t1 - t4)r(t2 - t3) 

+ Q(t2 - t1, t3 - t1, t4 - t1)] dt1 dt2 dta dt4. 

The sum over j of the first three terms on the right-hand side of equality 
(32) is 

k 
3 ~ E2IUjW(T)-~212. 

j=1 
(33) 
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By condition 2a, EIUj W(T)-HI2 approaches zero uniformly inj. This 
coupled with (30) implies that expression (33) approaches zero as 
T ~ 00. Consider the last term on the right-hand side of (32). By 
condition 2 and the absolute integrability of Q, the sum over j of the 
last term on the right of (32) tends to zero as T ~ 00. Lyapunov's 
condition for the central limit theorem is therefore satisfied. 

Notice that 
k 

G1,T* • *Gk,T(X - ko) ~ l n P(A(j, T,mj,o)) 
(ml+ ... +mk+k)a~", j=1 

k 

n P(A(j, T,m;,o» ~ GI,T* . 

(34) 
The asymptotic normality of (29) coupled with (27), (30), (31), and 
(34) implies the desired theorem if o(T), k(T), peT), q(T) can be 
chosen so that 

k(T)[p(T) + q(T)] = T 

k(T), peT), q(T) ~ 00 

q(T)/p(T) ~ 0 

k(T)o(T) ~ 0 

k e;ky g(q(T» ~ O. 

(35) 

The condition k(T)o(T) ~ 0 is easily satisfied if we set ° = k;-2. The 
difficult condition to satisfy is the last one. Now 

(36) 

with D = 2 (C/E)H. Given the existence of a function g satisfying (1), 
it can always be taken so that 

g(u) > (u + 1)-1. (37) 
If k is chosen so that 

k ~ [- log g(q(T»)P2 (38) 

the last of the conditions (35) is satisfied. Keeping these remarks in 
mind, it is clear that if one takes q( T) = T~2 for large T, all the condi­
tions (35) can be satisfied. The proof of the asymptotic normality of 
(6) is now complete. 
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e. Problems 

1. Consider the two-state (say ° and 1) stationary Markov chain Xn. 

with transition probability matrix P = (~ ;} ° < p < q < 1, 

q = 1 - p, and instantaneous probability vector (72,72)' Show 
that the random variables 

(X ) {1 if (Xn,Xn.-l) = (1,1) or (0,0) 
~n = ~ n,Xn- 1 = ° otherwise 

are independent and identically distributed. Further show that 
Xn is determined by ~n, ~n-l, • • • , ~n-T .. Xn- k- 1 for every k = 0, 
1, 2, .... Is Xn determined by ~n., ~n-l, ••• ? If not, why not? 

2. Let XI be a Gaussian process with covariance function ",(t,T) = min 
(t,T) - tT, ° ~ t, T ~ 1. Find the representation of Xt on [0,1] 
in terms of the eigenfunctions and eigenvalues of the integral equa­
tion with kernel ",(t,T). 

3. Consider the previous problem with covariance function ",(t,T) = 
exp (-It - TD, ° ~ t, T ~ 1. 

4. Consider the previous problem with covariance function 

",(t,T) = ~aj exp (- {lilt - TD, 

° ~ t, T ~ 1, where the (J/s are positive and the a/s are chosen so 
that the function ",(t,T) is positive definite. 

5. Let ~I be the Wiener process. Suppose XI is a process constructed 
so that Xt is functionally dependent on €t - ~T for t - L ~ T ~ t 
where L is a fixed positive number. Is Xt uniformly mixing? 

6. Let ~I be a continuous parameter (- 00 < t < 00) process with the 
increments of ~t (~t - ~T) over disjoint intervals independent. 
Further, assume that ~t - ~T (t > T) is Poisson distributed with 

mean X(t - T). Examine the limiting distribution of ~ loT ('l/t - X) dt 

where 'l/t = ~t - ~t-l as T -+ 00. What can you say about it in 
terms of the central limit theorem derived in this chapter? 
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1. The zero-one law derived in section a is commonly called the Borel-Cantelli 
lemma. 

2. The problem considered in section b can be posed in the broader context of real 
valued Markov processes or strictly stationary processes. Refer to references [A 7] and 
[67] for work in this general setting. There are still many interesting open questions. 
Some related work is taken up in the isomorphism problem (see, for example, D. 
Ornstein [All]). 

3. Most of section c is devoted to the proof of a result on integral equations 
called Mercer's theorem. It was felt that it would be more convenient to have a 
proof in the text rather than to refer the reader to a book with material on integral 
equations (such as [63], for example). Notice that the result on the representation 
of processes follows almost immediately from Mercer's theorem. The representation 
theorem for processes is usually attributed to Karhunen and 4J~ve. 

4. The uniform mixing condition of section d has been of increasing interest in 
recent years (see [A9] and [A13]). 
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Absolute continuity, 86ff. 
Absorbing barrier, 43 
Aggregation problem, 62, 67 
Aliasing, 151 
Approximation, 2Iff., 33, 35, 76, 168 
Autoregressive scheme, 164 

Backward equation, I 25ff., 138, 140, 
l44ff. 

Band-pass filter, 214ff. 
Bernstein polynomial, 2Iff., 33 
Bias, 170 
Binomial distribution, 13ff., 18ff., 33ff. 
Birth and death process, 133ff. 
Borel field (= sigma field), 68 
Borel function, 70 
Borel set, 69 
Borel-Cantelli lemma, 220 
Branching process, 42 
Brownian motion, 94, 122, 137ff. 

Cauchy distribution, 96 
Central limit theorem, 22ff., 33ff., 85ff., 

97, 19 Iff., 218 
Chapman-Kolmogorov equation, 38, 

60, 121, 130ff., 133 
Characteristic function, 80ff., 97 
Chebyshev's inequality, 20 
Closed set of states, 52 
Coin tossing, 12ff. 
Conditional: expectation, 89; proba­

bility, 10, 87ff., 90, 112ff. 
Convergence: almost everywhere, 75; 

in mean square, 75; in probability, 75 
Convergence theorem, martingale, 188 
Convex function, 34 
Convolution, 20, 39 
Countable additivity, 9, 69 
Covariance, 82; function, 149 

Density function, 78, 86 
Derivative, 86ff. 
Die,9ff. 
Difference equations, 152, 163 

Diffusion: equation, 25, 141; process, 
I 33ff. 

Distribution function, 23ff., 76ff., 89, 91, 
96ff.; marginal, 79 

Eigenfunction, 204 
Eigenvalue: of a matrix, 45ff., 57, 64; 

of an integral equation, 204 
Eigenvector, 45, 57 
Entropy: of an experiment, 29ff., 64; 

of a stationary process, 115ff.; con­
ditional, 29 

Ergodic: process, 104ff., I09ff., 116, 118, 
203; theorem, 102, 105ff., 119, 159, 
181 

Expectation, 15ff., 78,80 
Exponential distribution, 96 

Fair game, 182 
Field, 8, 72ff., 77 
Fokker-Planck equation, 137 
Forward equation, 125ff., 137ff., 142ff. 
Fourier: representation, 153; -Stieltjes 

transform, 80, 98, 150; transform, 
86 

Frequency response function, 153 

Gaussian ( = normal), 219 
Generating function, 18, 33, 39, 53ff. 
Growth process, 39 

Harmonic analysis ( = Fourier analysis), 
149 

Harmonic, superharmonic functions, 197, 
198 

Heat equation, 25 
Hitting time, 182 

Independence: of events, II, 200; of 
random variables, 13, 16, 37, 79, 81, 
96ff., 110, 201 

Inner product, 207 
Input-output problem, 66 
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Integral, 70ff. ; equation, 204ff. ; ran­
dom, 156; Riemann-Stieltjes, 78 

Integrodifferential equation, 125 
Invariant: function, 105, 107; set, 105, 

108 

Jensen's inequality, 34 
Jump process, 124ff., 141ff. 

Large numbers, law of, 20ff. 
Lebesgue: measure, 74; sets, 73 
Levy, P.: inversion formula, 86 

Markov chain, 36ff., 102, Iliff., 119, 
130ff., 201, 219; function of, 59ff.; 
irreducible, 52; reversible, 63 

Markov process, 120ff. 
Markov property, 36ff., 64, 66, 121ff. 
Martingale difference, 184 
Martingales (super, sub), 182ff., 185 
Matrix, 36; covariance, 82; irreducible, 

46; with non-negative elements. 44ff.; 
positive definite, 82 

Mean, 15 
Measurability, 69ff., 74 
Measure-preserving transformation, 103 
Metric transitivity, 105ff., 109 
Mixing, 11Off., 118; uniform, 213 
Moment ( = expectation), 15ff.; facto-

rial, 18 
Monte Carlo, 98 
m-step dependent process, 118 

Norm, 209 
Normal: random variable, 79; jointly 

normal random variables, 82ff., 90, 
97; process, 94, 123, 138, 169 

Null state, 53 

Operator, 208 
Optional sampling, 186 
Orthogonal increments, process of, 156 
Orthogonalization, 161, 205 

Parabolic differential equation, 135 
Periodic state, 53 
Periodogram, 170 
Persistent state, 53, 65 
Poisson: distribution, 14ff., 18ff., 33ff., 

38; compound Poisson distribution, 
65; process, 94ff., 100, 122ff. 

Population model, 39 
Positive definite: function, 149; matrix, 

82; sequence, 151 

Index 
Prediction, 97, 160ff., 181 
Probability: measure, 72; space, 13, 35, 

69 

Random: variable, 13, 37, 69; phases, 
model of, 151; process, 37, 9IfT.; 
walk, 42ff., 54, 65 

Recurrence time, 52; mean, 52ff. 
Recurrent state, 53, 66 
Reflecting barrier, 65 

Sample: functions, 93; points, 8ff., 36, 
68,92; space, 10 

Semigroup, 148 
Separability, 94 
Shift transformation, 103 
Shot noise, 100 
Sigma-field, 9, 68ff. ; completed, 72 ; 

product, 74 
Spectral: density, 150; distribution func­

tion, 150; estimate, I 69ff. 
State space: ofa Markov chain, 36; ofa 

Markov process, 120 
Stationary: process, 44, looff., 183; 

transition mechanism, 37, 122; weakly 
stationary process, 149ff. 

Statistical mechanics, 101, 119 
Stochastic process, 91 
Stopping time, 184 

TheoreIns: Bochner, 81; Caratheodory, 
73; Fubini, 74; Kolmogorov, 92; 
Liouville, 102; MacMillan, I 14ff. ; 
Mercer, 220; Radon-Nikodym, 86ff.; 
Riesz-Fisher, 76; Weierstrass, 21, 33 

Toeplitz form, 181 
Transient state, 53 
Transient response function, 152 
Transition: matrix, 37; probability 

function, 121 

Uniform: distribution, 78; integrability, 
72, 189 

Vector: extremal, 47; invariant prob­
ability, 44 

Vector-valued process, 96, I 79ff. 

Wald's equation, 197 
Wiener process, 94 

Zero-one law, I 49ff. 




