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Preface

Five years ago, I taught a one-quarter course in homological algebra. I
discovered that there was no book which was really suitable as a text for
such a short course, so I decided to write one. The point was to cover both
Ext and Tor early, and still have enough material for a larger course (one
semester or two quarters) going off in any of several possible directions.
This book is 'also intended to be readable enough for independent study.

The core of the subject is covered in Chapters 1 through 3 and the first
two sections of Chapter 4. At that point there are several options. Chapters
4 and 5 cover the more traditional aspects of dimension and ring changes.
Chapters 6 and 7 cover derived functors in general. Chapter 8 focuses on
a special property of Tor. These three groupings are independent, as are
various sections from Chapter 9, which is intended as a source of special
topics. (The prerequisites for each section of Chapter 9 are stated at the
beginning.)

Some things have been included simply because they are hard to find else
where, and they naturally fit into the discussion. Lazard's theorem (Section
8.4)-is an example; Sections 4,5, and 7 of Chapter 9 contain other examples,
as do the appendices at the end.

The idea of the book's plan is that subjects can be selected based on the
needs of the class. When I taught the course, it was a prerequisite for a
course on noncommutative algebraic geometry. It was also taken by several
students interested in algebraic topology, who requested the material in
Sections 9.2 and 9.3. (One student later said he wished he'd seen injective
envelopes, so I put them in, too.) The ordering of the subjects in Chapter
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9 is primarily based on how involved each section's prerequisites are.
The prerequisite for this book is a graduate algebra course. Those who

have seen categories and functors can skip Chapter 1 (after a peek at its
appendix).

There are a few oddities. The chapter on abstract homological algebra,
for example, follows the pedagogical rule that if you don't need it, don't
define it. For the expert, the absence of pullbacks and pushouts will stand
out, but they are not needed for abstract homological algebra, not even for
the long exact sequences in Abelian categories. In fact, they obscure the
fact that, for example, the connecting morphism in the ker-coker exact se
quence (sometimes called the snake lemma) is really a homology morphism.
Similarly, overindulgence in 8-functor concepts may lead one to believe that
the subject of Section 6.5 is moot.

In the other direction, more attention is paid (where necessary) to set
theoretic technicalities than is usual. This subject (like category theory) has
become widely available of late, thanks to the very readable texts of Devlin
[15], Just and Weese [41], and Vaught [73]. Such details are not needed very
often, however, and the discussion starts at a much lower level.

Solution outlines are included for some exercises, including exercises that
are used in the text.

In preparing this book, I acknowledge a huge debt to Mark Johnson.
He read the whole thing and supplied numerous suggestions, both mathe
matical and stylistic. I also received helpful suggestions from Garth Warner
and Paul Smith, as well as from Dave Frazzini, David Hubbard, Izuru Mori,
Lee Nave, Julie Nuzman, Amy Rossi, Jim Mailhot, Eric Rimbey, and H.
A. R. V. Wijesundera. Kate Senehi and Lois Fisher also supplied helpful
information at strategic points. Many thanks to them all. I finally wish to
thank Mary Sheetz, who put the manuscript together better than I would
have believed possible.

Concerning source material, the very readable texts of Jans [40] and
Rotman [68] showed me what good exposition can do for this subject, and
I used them heavily in preparing the original course. I only wish I could
write as well as they do.

M. Scott Osborne
University of Washington
Fall, 1998
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1
Categories

Homological algebra addresses questions that appear naturally in category
theory, so category theory is a good starting point. Most of what follows is
standard, but there are a few slippery points.

First, a few words about classes. The concept of a class is intended to
generalize the concept of a set. That is, not only will all sets be classes,
but some other collections of things that are "too big" to be sets will also
be classes. Fi;>r example, the collection of all sets is a class. It is a proper
class, in the sense that it cannot be a set; this is the Russell paradox, which
traditionally is presented as follows.

Let S be the class of all sets. Assume S is a set. Then

A = {X E S IX Ii X}

is also a set. Note that for any set X,

XEA{::}XIiX.

In particular, taking X = A,

A E A {::} A Ii A,

a contradiction.
Note also that peS) c S, which should be bizarre enough.
In Godel-Bernays-von Neumann class theory, sets are defined as classes

which are members of other classes. In fact, the only members any class
has are sets. The power class is the collection of subsets, so peS) = s,
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and S 'I. P(S). The axioms of Godel-Bernays-von Neumann class theory
lead to what we have learned to expect of classes, but this is a complicated
business. A brief variant appears as an appendix to Kelley [48, pp. 250-281].

For our purposes (at least until Section 6.6), all we need to know is
that the class concept is like the set concept, only broader: Classes are still
collections of things, and all sets are classes, but some classes (like the class
of all sets) are not sets. Also, the elementary set manipulations, like union,
intersection, specification, formation of functions, etc., can be carried out
for classes as well. The one thing we cannot do is force a class to belong to
another class, unless the first class is actually a set. For example, one can
define an equivalence relation on a class, and then form equivalence classes,
but one cannot form the class of equivalence classes unless the equivalence
classes are actually sets. An example on the class S: Say that X "-' Y when
X and Y have the same cardinality. The equivalence class of 0 is {0}; it is
the only equivalence class which is a set.

A category C consists of a class of objects, obj C, together with sets
(repeat, sets) of morphisms, which arise in the following manner. There
is a function Mor which assigns to each pair A, B E obj C a set of mor
phisms Mor(A, B) from A to B, sometimes written Morc(A, B) if C is to
be emphasized. Mor(A, B) is called the set of morphisms from A to B. The
category C also includes a pairing (function), called composition:

Mor(B, C) x Mor(A, B) ~ Mor(A, C)

(g, f) f-7 gf.

Finally, each Mor(A, A) contains a distinguished element iA. The axioms
are:

1) Composition is associative. That is, if f E Mor(C, D), 9 E Mor(B, C),
and h E Mor(A, B), then (fg)h = f(gh).

2) Each iA is an identity. That is, if f E Mor(A, B), then f = fiA = iBf.

Note: Many authors also require

3) Mor(A,B) is disjoint from Mor(C, D) unless A = C, B = D.

T.his serves as a bookkeeping device, and also allows certain construc
tions. It is also a pain in the neck to enforce. (See below concerning con
crete categories.) However, if C does not satisfy this, one may replace
f E Mor(A, B) by the ordered triple (A, f, B). That is, replace Mor(A, B)
by {A} x Mor(A, B) x {B}.

Example 1 SETS. obj Set = class of all sets. Mor(A, B) = all functions
from A to B.




